]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/doc/gdb.texinfo
gdb/
[thirdparty/binutils-gdb.git] / gdb / doc / gdb.texinfo
CommitLineData
c906108c 1\input texinfo @c -*-texinfo-*-
c02a867d 2@c Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
65d12d83 3@c 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2008
c906108c
SS
4@c Free Software Foundation, Inc.
5@c
5d161b24 6@c %**start of header
c906108c
SS
7@c makeinfo ignores cmds prev to setfilename, so its arg cannot make use
8@c of @set vars. However, you can override filename with makeinfo -o.
9@setfilename gdb.info
10@c
11@include gdb-cfg.texi
12@c
c906108c 13@settitle Debugging with @value{GDBN}
c906108c
SS
14@setchapternewpage odd
15@c %**end of header
16
17@iftex
18@c @smallbook
19@c @cropmarks
20@end iftex
21
22@finalout
23@syncodeindex ky cp
24
41afff9a 25@c readline appendices use @vindex, @findex and @ftable,
48e934c6 26@c annotate.texi and gdbmi use @findex.
c906108c 27@syncodeindex vr cp
41afff9a 28@syncodeindex fn cp
c906108c
SS
29
30@c !!set GDB manual's edition---not the same as GDB version!
9fe8321b 31@c This is updated by GNU Press.
e9c75b65 32@set EDITION Ninth
c906108c 33
87885426
FN
34@c !!set GDB edit command default editor
35@set EDITOR /bin/ex
c906108c 36
6c0e9fb3 37@c THIS MANUAL REQUIRES TEXINFO 4.0 OR LATER.
c906108c 38
c906108c 39@c This is a dir.info fragment to support semi-automated addition of
6d2ebf8b 40@c manuals to an info tree.
03727ca6 41@dircategory Software development
96a2c332 42@direntry
03727ca6 43* Gdb: (gdb). The GNU debugger.
96a2c332
SS
44@end direntry
45
c906108c
SS
46@ifinfo
47This file documents the @sc{gnu} debugger @value{GDBN}.
48
49
9fe8321b
AC
50This is the @value{EDITION} Edition, of @cite{Debugging with
51@value{GDBN}: the @sc{gnu} Source-Level Debugger} for @value{GDBN}
c16158bc
JM
52@ifset VERSION_PACKAGE
53@value{VERSION_PACKAGE}
54@end ifset
9fe8321b 55Version @value{GDBVN}.
c906108c 56
8a037dd7 57Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,@*
b620eb07 58 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006@*
7d51c7de 59 Free Software Foundation, Inc.
c906108c 60
e9c75b65
EZ
61Permission is granted to copy, distribute and/or modify this document
62under the terms of the GNU Free Documentation License, Version 1.1 or
63any later version published by the Free Software Foundation; with the
959acfd1
EZ
64Invariant Sections being ``Free Software'' and ``Free Software Needs
65Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
66and with the Back-Cover Texts as in (a) below.
c906108c 67
b8533aec
DJ
68(a) The FSF's Back-Cover Text is: ``You are free to copy and modify
69this GNU Manual. Buying copies from GNU Press supports the FSF in
70developing GNU and promoting software freedom.''
c906108c
SS
71@end ifinfo
72
73@titlepage
74@title Debugging with @value{GDBN}
75@subtitle The @sc{gnu} Source-Level Debugger
c906108c 76@sp 1
c906108c 77@subtitle @value{EDITION} Edition, for @value{GDBN} version @value{GDBVN}
c16158bc
JM
78@ifset VERSION_PACKAGE
79@sp 1
80@subtitle @value{VERSION_PACKAGE}
81@end ifset
9e9c5ae7 82@author Richard Stallman, Roland Pesch, Stan Shebs, et al.
c906108c 83@page
c906108c
SS
84@tex
85{\parskip=0pt
c16158bc 86\hfill (Send bugs and comments on @value{GDBN} to @value{BUGURL}.)\par
c906108c
SS
87\hfill {\it Debugging with @value{GDBN}}\par
88\hfill \TeX{}info \texinfoversion\par
89}
90@end tex
53a5351d 91
c906108c 92@vskip 0pt plus 1filll
8a037dd7 93Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
b620eb07 941996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2006
7d51c7de 95Free Software Foundation, Inc.
c906108c 96@sp 2
c906108c 97Published by the Free Software Foundation @*
c02a867d
EZ
9851 Franklin Street, Fifth Floor,
99Boston, MA 02110-1301, USA@*
6d2ebf8b 100ISBN 1-882114-77-9 @*
e9c75b65
EZ
101
102Permission is granted to copy, distribute and/or modify this document
103under the terms of the GNU Free Documentation License, Version 1.1 or
104any later version published by the Free Software Foundation; with the
959acfd1
EZ
105Invariant Sections being ``Free Software'' and ``Free Software Needs
106Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
107and with the Back-Cover Texts as in (a) below.
e9c75b65 108
b8533aec
DJ
109(a) The FSF's Back-Cover Text is: ``You are free to copy and modify
110this GNU Manual. Buying copies from GNU Press supports the FSF in
111developing GNU and promoting software freedom.''
3fb6a982
JB
112@page
113This edition of the GDB manual is dedicated to the memory of Fred
114Fish. Fred was a long-standing contributor to GDB and to Free
115software in general. We will miss him.
c906108c
SS
116@end titlepage
117@page
118
6c0e9fb3 119@ifnottex
6d2ebf8b
SS
120@node Top, Summary, (dir), (dir)
121
c906108c
SS
122@top Debugging with @value{GDBN}
123
124This file describes @value{GDBN}, the @sc{gnu} symbolic debugger.
125
c16158bc
JM
126This is the @value{EDITION} Edition, for @value{GDBN}
127@ifset VERSION_PACKAGE
128@value{VERSION_PACKAGE}
129@end ifset
130Version @value{GDBVN}.
c906108c 131
b620eb07 132Copyright (C) 1988-2006 Free Software Foundation, Inc.
6d2ebf8b 133
3fb6a982
JB
134This edition of the GDB manual is dedicated to the memory of Fred
135Fish. Fred was a long-standing contributor to GDB and to Free
136software in general. We will miss him.
137
6d2ebf8b
SS
138@menu
139* Summary:: Summary of @value{GDBN}
140* Sample Session:: A sample @value{GDBN} session
141
142* Invocation:: Getting in and out of @value{GDBN}
143* Commands:: @value{GDBN} commands
144* Running:: Running programs under @value{GDBN}
145* Stopping:: Stopping and continuing
146* Stack:: Examining the stack
147* Source:: Examining source files
148* Data:: Examining data
e2e0bcd1 149* Macros:: Preprocessor Macros
b37052ae 150* Tracepoints:: Debugging remote targets non-intrusively
df0cd8c5 151* Overlays:: Debugging programs that use overlays
6d2ebf8b
SS
152
153* Languages:: Using @value{GDBN} with different languages
154
155* Symbols:: Examining the symbol table
156* Altering:: Altering execution
157* GDB Files:: @value{GDBN} files
158* Targets:: Specifying a debugging target
6b2f586d 159* Remote Debugging:: Debugging remote programs
6d2ebf8b
SS
160* Configurations:: Configuration-specific information
161* Controlling GDB:: Controlling @value{GDBN}
162* Sequences:: Canned sequences of commands
21c294e6 163* Interpreters:: Command Interpreters
c8f4133a 164* TUI:: @value{GDBN} Text User Interface
6d2ebf8b 165* Emacs:: Using @value{GDBN} under @sc{gnu} Emacs
7162c0ca 166* GDB/MI:: @value{GDBN}'s Machine Interface.
c8f4133a 167* Annotations:: @value{GDBN}'s annotation interface.
6d2ebf8b
SS
168
169* GDB Bugs:: Reporting bugs in @value{GDBN}
6d2ebf8b
SS
170
171* Command Line Editing:: Command Line Editing
172* Using History Interactively:: Using History Interactively
0869d01b 173* Formatting Documentation:: How to format and print @value{GDBN} documentation
6d2ebf8b 174* Installing GDB:: Installing GDB
eb12ee30 175* Maintenance Commands:: Maintenance Commands
e0ce93ac 176* Remote Protocol:: GDB Remote Serial Protocol
f418dd93 177* Agent Expressions:: The GDB Agent Expression Mechanism
23181151
DJ
178* Target Descriptions:: How targets can describe themselves to
179 @value{GDBN}
aab4e0ec
AC
180* Copying:: GNU General Public License says
181 how you can copy and share GDB
6826cf00 182* GNU Free Documentation License:: The license for this documentation
6d2ebf8b
SS
183* Index:: Index
184@end menu
185
6c0e9fb3 186@end ifnottex
c906108c 187
449f3b6c 188@contents
449f3b6c 189
6d2ebf8b 190@node Summary
c906108c
SS
191@unnumbered Summary of @value{GDBN}
192
193The purpose of a debugger such as @value{GDBN} is to allow you to see what is
194going on ``inside'' another program while it executes---or what another
195program was doing at the moment it crashed.
196
197@value{GDBN} can do four main kinds of things (plus other things in support of
198these) to help you catch bugs in the act:
199
200@itemize @bullet
201@item
202Start your program, specifying anything that might affect its behavior.
203
204@item
205Make your program stop on specified conditions.
206
207@item
208Examine what has happened, when your program has stopped.
209
210@item
211Change things in your program, so you can experiment with correcting the
212effects of one bug and go on to learn about another.
213@end itemize
214
49efadf5 215You can use @value{GDBN} to debug programs written in C and C@t{++}.
79a6e687 216For more information, see @ref{Supported Languages,,Supported Languages}.
c906108c
SS
217For more information, see @ref{C,,C and C++}.
218
cce74817 219@cindex Modula-2
e632838e
AC
220Support for Modula-2 is partial. For information on Modula-2, see
221@ref{Modula-2,,Modula-2}.
c906108c 222
cce74817
JM
223@cindex Pascal
224Debugging Pascal programs which use sets, subranges, file variables, or
225nested functions does not currently work. @value{GDBN} does not support
226entering expressions, printing values, or similar features using Pascal
227syntax.
c906108c 228
c906108c
SS
229@cindex Fortran
230@value{GDBN} can be used to debug programs written in Fortran, although
53a5351d 231it may be necessary to refer to some variables with a trailing
cce74817 232underscore.
c906108c 233
b37303ee
AF
234@value{GDBN} can be used to debug programs written in Objective-C,
235using either the Apple/NeXT or the GNU Objective-C runtime.
236
c906108c
SS
237@menu
238* Free Software:: Freely redistributable software
239* Contributors:: Contributors to GDB
240@end menu
241
6d2ebf8b 242@node Free Software
79a6e687 243@unnumberedsec Free Software
c906108c 244
5d161b24 245@value{GDBN} is @dfn{free software}, protected by the @sc{gnu}
c906108c
SS
246General Public License
247(GPL). The GPL gives you the freedom to copy or adapt a licensed
248program---but every person getting a copy also gets with it the
249freedom to modify that copy (which means that they must get access to
250the source code), and the freedom to distribute further copies.
251Typical software companies use copyrights to limit your freedoms; the
252Free Software Foundation uses the GPL to preserve these freedoms.
253
254Fundamentally, the General Public License is a license which says that
255you have these freedoms and that you cannot take these freedoms away
256from anyone else.
257
2666264b 258@unnumberedsec Free Software Needs Free Documentation
959acfd1
EZ
259
260The biggest deficiency in the free software community today is not in
261the software---it is the lack of good free documentation that we can
262include with the free software. Many of our most important
263programs do not come with free reference manuals and free introductory
264texts. Documentation is an essential part of any software package;
265when an important free software package does not come with a free
266manual and a free tutorial, that is a major gap. We have many such
267gaps today.
268
269Consider Perl, for instance. The tutorial manuals that people
270normally use are non-free. How did this come about? Because the
271authors of those manuals published them with restrictive terms---no
272copying, no modification, source files not available---which exclude
273them from the free software world.
274
275That wasn't the first time this sort of thing happened, and it was far
276from the last. Many times we have heard a GNU user eagerly describe a
277manual that he is writing, his intended contribution to the community,
278only to learn that he had ruined everything by signing a publication
279contract to make it non-free.
280
281Free documentation, like free software, is a matter of freedom, not
282price. The problem with the non-free manual is not that publishers
283charge a price for printed copies---that in itself is fine. (The Free
284Software Foundation sells printed copies of manuals, too.) The
285problem is the restrictions on the use of the manual. Free manuals
286are available in source code form, and give you permission to copy and
287modify. Non-free manuals do not allow this.
288
289The criteria of freedom for a free manual are roughly the same as for
290free software. Redistribution (including the normal kinds of
291commercial redistribution) must be permitted, so that the manual can
292accompany every copy of the program, both on-line and on paper.
293
294Permission for modification of the technical content is crucial too.
295When people modify the software, adding or changing features, if they
296are conscientious they will change the manual too---so they can
297provide accurate and clear documentation for the modified program. A
298manual that leaves you no choice but to write a new manual to document
299a changed version of the program is not really available to our
300community.
301
302Some kinds of limits on the way modification is handled are
303acceptable. For example, requirements to preserve the original
304author's copyright notice, the distribution terms, or the list of
305authors, are ok. It is also no problem to require modified versions
306to include notice that they were modified. Even entire sections that
307may not be deleted or changed are acceptable, as long as they deal
308with nontechnical topics (like this one). These kinds of restrictions
309are acceptable because they don't obstruct the community's normal use
310of the manual.
311
312However, it must be possible to modify all the @emph{technical}
313content of the manual, and then distribute the result in all the usual
314media, through all the usual channels. Otherwise, the restrictions
315obstruct the use of the manual, it is not free, and we need another
316manual to replace it.
317
318Please spread the word about this issue. Our community continues to
319lose manuals to proprietary publishing. If we spread the word that
320free software needs free reference manuals and free tutorials, perhaps
321the next person who wants to contribute by writing documentation will
322realize, before it is too late, that only free manuals contribute to
323the free software community.
324
325If you are writing documentation, please insist on publishing it under
326the GNU Free Documentation License or another free documentation
327license. Remember that this decision requires your approval---you
328don't have to let the publisher decide. Some commercial publishers
329will use a free license if you insist, but they will not propose the
330option; it is up to you to raise the issue and say firmly that this is
331what you want. If the publisher you are dealing with refuses, please
332try other publishers. If you're not sure whether a proposed license
42584a72 333is free, write to @email{licensing@@gnu.org}.
959acfd1
EZ
334
335You can encourage commercial publishers to sell more free, copylefted
336manuals and tutorials by buying them, and particularly by buying
337copies from the publishers that paid for their writing or for major
338improvements. Meanwhile, try to avoid buying non-free documentation
339at all. Check the distribution terms of a manual before you buy it,
340and insist that whoever seeks your business must respect your freedom.
72c9928d
EZ
341Check the history of the book, and try to reward the publishers that
342have paid or pay the authors to work on it.
959acfd1
EZ
343
344The Free Software Foundation maintains a list of free documentation
345published by other publishers, at
346@url{http://www.fsf.org/doc/other-free-books.html}.
347
6d2ebf8b 348@node Contributors
96a2c332
SS
349@unnumberedsec Contributors to @value{GDBN}
350
351Richard Stallman was the original author of @value{GDBN}, and of many
352other @sc{gnu} programs. Many others have contributed to its
353development. This section attempts to credit major contributors. One
354of the virtues of free software is that everyone is free to contribute
355to it; with regret, we cannot actually acknowledge everyone here. The
356file @file{ChangeLog} in the @value{GDBN} distribution approximates a
c906108c
SS
357blow-by-blow account.
358
359Changes much prior to version 2.0 are lost in the mists of time.
360
361@quotation
362@emph{Plea:} Additions to this section are particularly welcome. If you
363or your friends (or enemies, to be evenhanded) have been unfairly
364omitted from this list, we would like to add your names!
365@end quotation
366
367So that they may not regard their many labors as thankless, we
368particularly thank those who shepherded @value{GDBN} through major
369releases:
7ba3cf9c 370Andrew Cagney (releases 6.3, 6.2, 6.1, 6.0, 5.3, 5.2, 5.1 and 5.0);
c906108c
SS
371Jim Blandy (release 4.18);
372Jason Molenda (release 4.17);
373Stan Shebs (release 4.14);
374Fred Fish (releases 4.16, 4.15, 4.13, 4.12, 4.11, 4.10, and 4.9);
375Stu Grossman and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, and 4.4);
376John Gilmore (releases 4.3, 4.2, 4.1, 4.0, and 3.9);
377Jim Kingdon (releases 3.5, 3.4, and 3.3);
378and Randy Smith (releases 3.2, 3.1, and 3.0).
379
380Richard Stallman, assisted at various times by Peter TerMaat, Chris
381Hanson, and Richard Mlynarik, handled releases through 2.8.
382
b37052ae
EZ
383Michael Tiemann is the author of most of the @sc{gnu} C@t{++} support
384in @value{GDBN}, with significant additional contributions from Per
385Bothner and Daniel Berlin. James Clark wrote the @sc{gnu} C@t{++}
386demangler. Early work on C@t{++} was by Peter TerMaat (who also did
387much general update work leading to release 3.0).
c906108c 388
b37052ae 389@value{GDBN} uses the BFD subroutine library to examine multiple
c906108c
SS
390object-file formats; BFD was a joint project of David V.
391Henkel-Wallace, Rich Pixley, Steve Chamberlain, and John Gilmore.
392
393David Johnson wrote the original COFF support; Pace Willison did
394the original support for encapsulated COFF.
395
0179ffac 396Brent Benson of Harris Computer Systems contributed DWARF 2 support.
c906108c
SS
397
398Adam de Boor and Bradley Davis contributed the ISI Optimum V support.
399Per Bothner, Noboyuki Hikichi, and Alessandro Forin contributed MIPS
400support.
401Jean-Daniel Fekete contributed Sun 386i support.
402Chris Hanson improved the HP9000 support.
403Noboyuki Hikichi and Tomoyuki Hasei contributed Sony/News OS 3 support.
404David Johnson contributed Encore Umax support.
405Jyrki Kuoppala contributed Altos 3068 support.
406Jeff Law contributed HP PA and SOM support.
407Keith Packard contributed NS32K support.
408Doug Rabson contributed Acorn Risc Machine support.
409Bob Rusk contributed Harris Nighthawk CX-UX support.
410Chris Smith contributed Convex support (and Fortran debugging).
411Jonathan Stone contributed Pyramid support.
412Michael Tiemann contributed SPARC support.
413Tim Tucker contributed support for the Gould NP1 and Gould Powernode.
414Pace Willison contributed Intel 386 support.
415Jay Vosburgh contributed Symmetry support.
a37295f9 416Marko Mlinar contributed OpenRISC 1000 support.
c906108c 417
1104b9e7 418Andreas Schwab contributed M68K @sc{gnu}/Linux support.
c906108c
SS
419
420Rich Schaefer and Peter Schauer helped with support of SunOS shared
421libraries.
422
423Jay Fenlason and Roland McGrath ensured that @value{GDBN} and GAS agree
424about several machine instruction sets.
425
426Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop
427remote debugging. Intel Corporation, Wind River Systems, AMD, and ARM
428contributed remote debugging modules for the i960, VxWorks, A29K UDI,
429and RDI targets, respectively.
430
431Brian Fox is the author of the readline libraries providing
432command-line editing and command history.
433
7a292a7a
SS
434Andrew Beers of SUNY Buffalo wrote the language-switching code, the
435Modula-2 support, and contributed the Languages chapter of this manual.
c906108c 436
5d161b24 437Fred Fish wrote most of the support for Unix System Vr4.
b37052ae 438He also enhanced the command-completion support to cover C@t{++} overloaded
c906108c 439symbols.
c906108c 440
f24c5e49
KI
441Hitachi America (now Renesas America), Ltd. sponsored the support for
442H8/300, H8/500, and Super-H processors.
c906108c
SS
443
444NEC sponsored the support for the v850, Vr4xxx, and Vr5xxx processors.
445
f24c5e49
KI
446Mitsubishi (now Renesas) sponsored the support for D10V, D30V, and M32R/D
447processors.
c906108c
SS
448
449Toshiba sponsored the support for the TX39 Mips processor.
450
451Matsushita sponsored the support for the MN10200 and MN10300 processors.
452
96a2c332 453Fujitsu sponsored the support for SPARClite and FR30 processors.
c906108c
SS
454
455Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware
456watchpoints.
457
458Michael Snyder added support for tracepoints.
459
460Stu Grossman wrote gdbserver.
461
462Jim Kingdon, Peter Schauer, Ian Taylor, and Stu Grossman made
96a2c332 463nearly innumerable bug fixes and cleanups throughout @value{GDBN}.
c906108c
SS
464
465The following people at the Hewlett-Packard Company contributed
466support for the PA-RISC 2.0 architecture, HP-UX 10.20, 10.30, and 11.0
b37052ae 467(narrow mode), HP's implementation of kernel threads, HP's aC@t{++}
d0d5df6f
AC
468compiler, and the Text User Interface (nee Terminal User Interface):
469Ben Krepp, Richard Title, John Bishop, Susan Macchia, Kathy Mann,
470Satish Pai, India Paul, Steve Rehrauer, and Elena Zannoni. Kim Haase
471provided HP-specific information in this manual.
c906108c 472
b37052ae
EZ
473DJ Delorie ported @value{GDBN} to MS-DOS, for the DJGPP project.
474Robert Hoehne made significant contributions to the DJGPP port.
475
96a2c332
SS
476Cygnus Solutions has sponsored @value{GDBN} maintenance and much of its
477development since 1991. Cygnus engineers who have worked on @value{GDBN}
2df3850c
JM
478fulltime include Mark Alexander, Jim Blandy, Per Bothner, Kevin
479Buettner, Edith Epstein, Chris Faylor, Fred Fish, Martin Hunt, Jim
480Ingham, John Gilmore, Stu Grossman, Kung Hsu, Jim Kingdon, John Metzler,
481Fernando Nasser, Geoffrey Noer, Dawn Perchik, Rich Pixley, Zdenek
482Radouch, Keith Seitz, Stan Shebs, David Taylor, and Elena Zannoni. In
483addition, Dave Brolley, Ian Carmichael, Steve Chamberlain, Nick Clifton,
484JT Conklin, Stan Cox, DJ Delorie, Ulrich Drepper, Frank Eigler, Doug
485Evans, Sean Fagan, David Henkel-Wallace, Richard Henderson, Jeff
486Holcomb, Jeff Law, Jim Lemke, Tom Lord, Bob Manson, Michael Meissner,
487Jason Merrill, Catherine Moore, Drew Moseley, Ken Raeburn, Gavin
488Romig-Koch, Rob Savoye, Jamie Smith, Mike Stump, Ian Taylor, Angela
489Thomas, Michael Tiemann, Tom Tromey, Ron Unrau, Jim Wilson, and David
490Zuhn have made contributions both large and small.
c906108c 491
ffed4509
AC
492Andrew Cagney, Fernando Nasser, and Elena Zannoni, while working for
493Cygnus Solutions, implemented the original @sc{gdb/mi} interface.
494
e2e0bcd1
JB
495Jim Blandy added support for preprocessor macros, while working for Red
496Hat.
c906108c 497
a9967aef
AC
498Andrew Cagney designed @value{GDBN}'s architecture vector. Many
499people including Andrew Cagney, Stephane Carrez, Randolph Chung, Nick
500Duffek, Richard Henderson, Mark Kettenis, Grace Sainsbury, Kei
501Sakamoto, Yoshinori Sato, Michael Snyder, Andreas Schwab, Jason
502Thorpe, Corinna Vinschen, Ulrich Weigand, and Elena Zannoni, helped
503with the migration of old architectures to this new framework.
504
c5e30d01
AC
505Andrew Cagney completely re-designed and re-implemented @value{GDBN}'s
506unwinder framework, this consisting of a fresh new design featuring
507frame IDs, independent frame sniffers, and the sentinel frame. Mark
508Kettenis implemented the @sc{dwarf 2} unwinder, Jeff Johnston the
509libunwind unwinder, and Andrew Cagney the dummy, sentinel, tramp, and
db2e3e2e 510trad unwinders. The architecture-specific changes, each involving a
c5e30d01
AC
511complete rewrite of the architecture's frame code, were carried out by
512Jim Blandy, Joel Brobecker, Kevin Buettner, Andrew Cagney, Stephane
513Carrez, Randolph Chung, Orjan Friberg, Richard Henderson, Daniel
514Jacobowitz, Jeff Johnston, Mark Kettenis, Theodore A. Roth, Kei
515Sakamoto, Yoshinori Sato, Michael Snyder, Corinna Vinschen, and Ulrich
516Weigand.
517
ca3bf3bd
DJ
518Christian Zankel, Ross Morley, Bob Wilson, and Maxim Grigoriev from
519Tensilica, Inc.@: contributed support for Xtensa processors. Others
520who have worked on the Xtensa port of @value{GDBN} in the past include
521Steve Tjiang, John Newlin, and Scott Foehner.
522
6d2ebf8b 523@node Sample Session
c906108c
SS
524@chapter A Sample @value{GDBN} Session
525
526You can use this manual at your leisure to read all about @value{GDBN}.
527However, a handful of commands are enough to get started using the
528debugger. This chapter illustrates those commands.
529
530@iftex
531In this sample session, we emphasize user input like this: @b{input},
532to make it easier to pick out from the surrounding output.
533@end iftex
534
535@c FIXME: this example may not be appropriate for some configs, where
536@c FIXME...primary interest is in remote use.
537
538One of the preliminary versions of @sc{gnu} @code{m4} (a generic macro
539processor) exhibits the following bug: sometimes, when we change its
540quote strings from the default, the commands used to capture one macro
541definition within another stop working. In the following short @code{m4}
542session, we define a macro @code{foo} which expands to @code{0000}; we
543then use the @code{m4} built-in @code{defn} to define @code{bar} as the
544same thing. However, when we change the open quote string to
545@code{<QUOTE>} and the close quote string to @code{<UNQUOTE>}, the same
546procedure fails to define a new synonym @code{baz}:
547
548@smallexample
549$ @b{cd gnu/m4}
550$ @b{./m4}
551@b{define(foo,0000)}
552
553@b{foo}
5540000
555@b{define(bar,defn(`foo'))}
556
557@b{bar}
5580000
559@b{changequote(<QUOTE>,<UNQUOTE>)}
560
561@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
562@b{baz}
c8aa23ab 563@b{Ctrl-d}
c906108c
SS
564m4: End of input: 0: fatal error: EOF in string
565@end smallexample
566
567@noindent
568Let us use @value{GDBN} to try to see what is going on.
569
c906108c
SS
570@smallexample
571$ @b{@value{GDBP} m4}
572@c FIXME: this falsifies the exact text played out, to permit smallbook
573@c FIXME... format to come out better.
574@value{GDBN} is free software and you are welcome to distribute copies
5d161b24 575 of it under certain conditions; type "show copying" to see
c906108c 576 the conditions.
5d161b24 577There is absolutely no warranty for @value{GDBN}; type "show warranty"
c906108c
SS
578 for details.
579
580@value{GDBN} @value{GDBVN}, Copyright 1999 Free Software Foundation, Inc...
581(@value{GDBP})
582@end smallexample
c906108c
SS
583
584@noindent
585@value{GDBN} reads only enough symbol data to know where to find the
586rest when needed; as a result, the first prompt comes up very quickly.
587We now tell @value{GDBN} to use a narrower display width than usual, so
588that examples fit in this manual.
589
590@smallexample
591(@value{GDBP}) @b{set width 70}
592@end smallexample
593
594@noindent
595We need to see how the @code{m4} built-in @code{changequote} works.
596Having looked at the source, we know the relevant subroutine is
597@code{m4_changequote}, so we set a breakpoint there with the @value{GDBN}
598@code{break} command.
599
600@smallexample
601(@value{GDBP}) @b{break m4_changequote}
602Breakpoint 1 at 0x62f4: file builtin.c, line 879.
603@end smallexample
604
605@noindent
606Using the @code{run} command, we start @code{m4} running under @value{GDBN}
607control; as long as control does not reach the @code{m4_changequote}
608subroutine, the program runs as usual:
609
610@smallexample
611(@value{GDBP}) @b{run}
612Starting program: /work/Editorial/gdb/gnu/m4/m4
613@b{define(foo,0000)}
614
615@b{foo}
6160000
617@end smallexample
618
619@noindent
620To trigger the breakpoint, we call @code{changequote}. @value{GDBN}
621suspends execution of @code{m4}, displaying information about the
622context where it stops.
623
624@smallexample
625@b{changequote(<QUOTE>,<UNQUOTE>)}
626
5d161b24 627Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)
c906108c
SS
628 at builtin.c:879
629879 if (bad_argc(TOKEN_DATA_TEXT(argv[0]),argc,1,3))
630@end smallexample
631
632@noindent
633Now we use the command @code{n} (@code{next}) to advance execution to
634the next line of the current function.
635
636@smallexample
637(@value{GDBP}) @b{n}
638882 set_quotes((argc >= 2) ? TOKEN_DATA_TEXT(argv[1])\
639 : nil,
640@end smallexample
641
642@noindent
643@code{set_quotes} looks like a promising subroutine. We can go into it
644by using the command @code{s} (@code{step}) instead of @code{next}.
645@code{step} goes to the next line to be executed in @emph{any}
646subroutine, so it steps into @code{set_quotes}.
647
648@smallexample
649(@value{GDBP}) @b{s}
650set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
651 at input.c:530
652530 if (lquote != def_lquote)
653@end smallexample
654
655@noindent
656The display that shows the subroutine where @code{m4} is now
657suspended (and its arguments) is called a stack frame display. It
658shows a summary of the stack. We can use the @code{backtrace}
659command (which can also be spelled @code{bt}), to see where we are
660in the stack as a whole: the @code{backtrace} command displays a
661stack frame for each active subroutine.
662
663@smallexample
664(@value{GDBP}) @b{bt}
665#0 set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
666 at input.c:530
5d161b24 667#1 0x6344 in m4_changequote (argc=3, argv=0x33c70)
c906108c
SS
668 at builtin.c:882
669#2 0x8174 in expand_macro (sym=0x33320) at macro.c:242
670#3 0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)
671 at macro.c:71
672#4 0x79dc in expand_input () at macro.c:40
673#5 0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195
674@end smallexample
675
676@noindent
677We step through a few more lines to see what happens. The first two
678times, we can use @samp{s}; the next two times we use @code{n} to avoid
679falling into the @code{xstrdup} subroutine.
680
681@smallexample
682(@value{GDBP}) @b{s}
6830x3b5c 532 if (rquote != def_rquote)
684(@value{GDBP}) @b{s}
6850x3b80 535 lquote = (lq == nil || *lq == '\0') ? \
686def_lquote : xstrdup(lq);
687(@value{GDBP}) @b{n}
688536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
689 : xstrdup(rq);
690(@value{GDBP}) @b{n}
691538 len_lquote = strlen(rquote);
692@end smallexample
693
694@noindent
695The last line displayed looks a little odd; we can examine the variables
696@code{lquote} and @code{rquote} to see if they are in fact the new left
697and right quotes we specified. We use the command @code{p}
698(@code{print}) to see their values.
699
700@smallexample
701(@value{GDBP}) @b{p lquote}
702$1 = 0x35d40 "<QUOTE>"
703(@value{GDBP}) @b{p rquote}
704$2 = 0x35d50 "<UNQUOTE>"
705@end smallexample
706
707@noindent
708@code{lquote} and @code{rquote} are indeed the new left and right quotes.
709To look at some context, we can display ten lines of source
710surrounding the current line with the @code{l} (@code{list}) command.
711
712@smallexample
713(@value{GDBP}) @b{l}
714533 xfree(rquote);
715534
716535 lquote = (lq == nil || *lq == '\0') ? def_lquote\
717 : xstrdup (lq);
718536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
719 : xstrdup (rq);
720537
721538 len_lquote = strlen(rquote);
722539 len_rquote = strlen(lquote);
723540 @}
724541
725542 void
726@end smallexample
727
728@noindent
729Let us step past the two lines that set @code{len_lquote} and
730@code{len_rquote}, and then examine the values of those variables.
731
732@smallexample
733(@value{GDBP}) @b{n}
734539 len_rquote = strlen(lquote);
735(@value{GDBP}) @b{n}
736540 @}
737(@value{GDBP}) @b{p len_lquote}
738$3 = 9
739(@value{GDBP}) @b{p len_rquote}
740$4 = 7
741@end smallexample
742
743@noindent
744That certainly looks wrong, assuming @code{len_lquote} and
745@code{len_rquote} are meant to be the lengths of @code{lquote} and
746@code{rquote} respectively. We can set them to better values using
747the @code{p} command, since it can print the value of
748any expression---and that expression can include subroutine calls and
749assignments.
750
751@smallexample
752(@value{GDBP}) @b{p len_lquote=strlen(lquote)}
753$5 = 7
754(@value{GDBP}) @b{p len_rquote=strlen(rquote)}
755$6 = 9
756@end smallexample
757
758@noindent
759Is that enough to fix the problem of using the new quotes with the
760@code{m4} built-in @code{defn}? We can allow @code{m4} to continue
761executing with the @code{c} (@code{continue}) command, and then try the
762example that caused trouble initially:
763
764@smallexample
765(@value{GDBP}) @b{c}
766Continuing.
767
768@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
769
770baz
7710000
772@end smallexample
773
774@noindent
775Success! The new quotes now work just as well as the default ones. The
776problem seems to have been just the two typos defining the wrong
777lengths. We allow @code{m4} exit by giving it an EOF as input:
778
779@smallexample
c8aa23ab 780@b{Ctrl-d}
c906108c
SS
781Program exited normally.
782@end smallexample
783
784@noindent
785The message @samp{Program exited normally.} is from @value{GDBN}; it
786indicates @code{m4} has finished executing. We can end our @value{GDBN}
787session with the @value{GDBN} @code{quit} command.
788
789@smallexample
790(@value{GDBP}) @b{quit}
791@end smallexample
c906108c 792
6d2ebf8b 793@node Invocation
c906108c
SS
794@chapter Getting In and Out of @value{GDBN}
795
796This chapter discusses how to start @value{GDBN}, and how to get out of it.
5d161b24 797The essentials are:
c906108c 798@itemize @bullet
5d161b24 799@item
53a5351d 800type @samp{@value{GDBP}} to start @value{GDBN}.
5d161b24 801@item
c8aa23ab 802type @kbd{quit} or @kbd{Ctrl-d} to exit.
c906108c
SS
803@end itemize
804
805@menu
806* Invoking GDB:: How to start @value{GDBN}
807* Quitting GDB:: How to quit @value{GDBN}
808* Shell Commands:: How to use shell commands inside @value{GDBN}
79a6e687 809* Logging Output:: How to log @value{GDBN}'s output to a file
c906108c
SS
810@end menu
811
6d2ebf8b 812@node Invoking GDB
c906108c
SS
813@section Invoking @value{GDBN}
814
c906108c
SS
815Invoke @value{GDBN} by running the program @code{@value{GDBP}}. Once started,
816@value{GDBN} reads commands from the terminal until you tell it to exit.
817
818You can also run @code{@value{GDBP}} with a variety of arguments and options,
819to specify more of your debugging environment at the outset.
820
c906108c
SS
821The command-line options described here are designed
822to cover a variety of situations; in some environments, some of these
5d161b24 823options may effectively be unavailable.
c906108c
SS
824
825The most usual way to start @value{GDBN} is with one argument,
826specifying an executable program:
827
474c8240 828@smallexample
c906108c 829@value{GDBP} @var{program}
474c8240 830@end smallexample
c906108c 831
c906108c
SS
832@noindent
833You can also start with both an executable program and a core file
834specified:
835
474c8240 836@smallexample
c906108c 837@value{GDBP} @var{program} @var{core}
474c8240 838@end smallexample
c906108c
SS
839
840You can, instead, specify a process ID as a second argument, if you want
841to debug a running process:
842
474c8240 843@smallexample
c906108c 844@value{GDBP} @var{program} 1234
474c8240 845@end smallexample
c906108c
SS
846
847@noindent
848would attach @value{GDBN} to process @code{1234} (unless you also have a file
849named @file{1234}; @value{GDBN} does check for a core file first).
850
c906108c 851Taking advantage of the second command-line argument requires a fairly
2df3850c
JM
852complete operating system; when you use @value{GDBN} as a remote
853debugger attached to a bare board, there may not be any notion of
854``process'', and there is often no way to get a core dump. @value{GDBN}
855will warn you if it is unable to attach or to read core dumps.
c906108c 856
aa26fa3a
TT
857You can optionally have @code{@value{GDBP}} pass any arguments after the
858executable file to the inferior using @code{--args}. This option stops
859option processing.
474c8240 860@smallexample
3f94c067 861@value{GDBP} --args gcc -O2 -c foo.c
474c8240 862@end smallexample
aa26fa3a
TT
863This will cause @code{@value{GDBP}} to debug @code{gcc}, and to set
864@code{gcc}'s command-line arguments (@pxref{Arguments}) to @samp{-O2 -c foo.c}.
865
96a2c332 866You can run @code{@value{GDBP}} without printing the front material, which describes
c906108c
SS
867@value{GDBN}'s non-warranty, by specifying @code{-silent}:
868
869@smallexample
870@value{GDBP} -silent
871@end smallexample
872
873@noindent
874You can further control how @value{GDBN} starts up by using command-line
875options. @value{GDBN} itself can remind you of the options available.
876
877@noindent
878Type
879
474c8240 880@smallexample
c906108c 881@value{GDBP} -help
474c8240 882@end smallexample
c906108c
SS
883
884@noindent
885to display all available options and briefly describe their use
886(@samp{@value{GDBP} -h} is a shorter equivalent).
887
888All options and command line arguments you give are processed
889in sequential order. The order makes a difference when the
890@samp{-x} option is used.
891
892
893@menu
c906108c
SS
894* File Options:: Choosing files
895* Mode Options:: Choosing modes
6fc08d32 896* Startup:: What @value{GDBN} does during startup
c906108c
SS
897@end menu
898
6d2ebf8b 899@node File Options
79a6e687 900@subsection Choosing Files
c906108c 901
2df3850c 902When @value{GDBN} starts, it reads any arguments other than options as
c906108c
SS
903specifying an executable file and core file (or process ID). This is
904the same as if the arguments were specified by the @samp{-se} and
d52fb0e9 905@samp{-c} (or @samp{-p}) options respectively. (@value{GDBN} reads the
19837790
MS
906first argument that does not have an associated option flag as
907equivalent to the @samp{-se} option followed by that argument; and the
908second argument that does not have an associated option flag, if any, as
909equivalent to the @samp{-c}/@samp{-p} option followed by that argument.)
910If the second argument begins with a decimal digit, @value{GDBN} will
911first attempt to attach to it as a process, and if that fails, attempt
912to open it as a corefile. If you have a corefile whose name begins with
b383017d 913a digit, you can prevent @value{GDBN} from treating it as a pid by
c1468174 914prefixing it with @file{./}, e.g.@: @file{./12345}.
7a292a7a
SS
915
916If @value{GDBN} has not been configured to included core file support,
917such as for most embedded targets, then it will complain about a second
918argument and ignore it.
c906108c
SS
919
920Many options have both long and short forms; both are shown in the
921following list. @value{GDBN} also recognizes the long forms if you truncate
922them, so long as enough of the option is present to be unambiguous.
923(If you prefer, you can flag option arguments with @samp{--} rather
924than @samp{-}, though we illustrate the more usual convention.)
925
d700128c
EZ
926@c NOTE: the @cindex entries here use double dashes ON PURPOSE. This
927@c way, both those who look for -foo and --foo in the index, will find
928@c it.
929
c906108c
SS
930@table @code
931@item -symbols @var{file}
932@itemx -s @var{file}
d700128c
EZ
933@cindex @code{--symbols}
934@cindex @code{-s}
c906108c
SS
935Read symbol table from file @var{file}.
936
937@item -exec @var{file}
938@itemx -e @var{file}
d700128c
EZ
939@cindex @code{--exec}
940@cindex @code{-e}
7a292a7a
SS
941Use file @var{file} as the executable file to execute when appropriate,
942and for examining pure data in conjunction with a core dump.
c906108c
SS
943
944@item -se @var{file}
d700128c 945@cindex @code{--se}
c906108c
SS
946Read symbol table from file @var{file} and use it as the executable
947file.
948
c906108c
SS
949@item -core @var{file}
950@itemx -c @var{file}
d700128c
EZ
951@cindex @code{--core}
952@cindex @code{-c}
b383017d 953Use file @var{file} as a core dump to examine.
c906108c 954
19837790
MS
955@item -pid @var{number}
956@itemx -p @var{number}
957@cindex @code{--pid}
958@cindex @code{-p}
959Connect to process ID @var{number}, as with the @code{attach} command.
c906108c
SS
960
961@item -command @var{file}
962@itemx -x @var{file}
d700128c
EZ
963@cindex @code{--command}
964@cindex @code{-x}
c906108c
SS
965Execute @value{GDBN} commands from file @var{file}. @xref{Command
966Files,, Command files}.
967
8a5a3c82
AS
968@item -eval-command @var{command}
969@itemx -ex @var{command}
970@cindex @code{--eval-command}
971@cindex @code{-ex}
972Execute a single @value{GDBN} command.
973
974This option may be used multiple times to call multiple commands. It may
975also be interleaved with @samp{-command} as required.
976
977@smallexample
978@value{GDBP} -ex 'target sim' -ex 'load' \
979 -x setbreakpoints -ex 'run' a.out
980@end smallexample
981
c906108c
SS
982@item -directory @var{directory}
983@itemx -d @var{directory}
d700128c
EZ
984@cindex @code{--directory}
985@cindex @code{-d}
4b505b12 986Add @var{directory} to the path to search for source and script files.
c906108c 987
c906108c
SS
988@item -r
989@itemx -readnow
d700128c
EZ
990@cindex @code{--readnow}
991@cindex @code{-r}
c906108c
SS
992Read each symbol file's entire symbol table immediately, rather than
993the default, which is to read it incrementally as it is needed.
994This makes startup slower, but makes future operations faster.
53a5351d 995
c906108c
SS
996@end table
997
6d2ebf8b 998@node Mode Options
79a6e687 999@subsection Choosing Modes
c906108c
SS
1000
1001You can run @value{GDBN} in various alternative modes---for example, in
1002batch mode or quiet mode.
1003
1004@table @code
1005@item -nx
1006@itemx -n
d700128c
EZ
1007@cindex @code{--nx}
1008@cindex @code{-n}
96565e91 1009Do not execute commands found in any initialization files. Normally,
2df3850c
JM
1010@value{GDBN} executes the commands in these files after all the command
1011options and arguments have been processed. @xref{Command Files,,Command
79a6e687 1012Files}.
c906108c
SS
1013
1014@item -quiet
d700128c 1015@itemx -silent
c906108c 1016@itemx -q
d700128c
EZ
1017@cindex @code{--quiet}
1018@cindex @code{--silent}
1019@cindex @code{-q}
c906108c
SS
1020``Quiet''. Do not print the introductory and copyright messages. These
1021messages are also suppressed in batch mode.
1022
1023@item -batch
d700128c 1024@cindex @code{--batch}
c906108c
SS
1025Run in batch mode. Exit with status @code{0} after processing all the
1026command files specified with @samp{-x} (and all commands from
1027initialization files, if not inhibited with @samp{-n}). Exit with
1028nonzero status if an error occurs in executing the @value{GDBN} commands
1029in the command files.
1030
2df3850c
JM
1031Batch mode may be useful for running @value{GDBN} as a filter, for
1032example to download and run a program on another computer; in order to
1033make this more useful, the message
c906108c 1034
474c8240 1035@smallexample
c906108c 1036Program exited normally.
474c8240 1037@end smallexample
c906108c
SS
1038
1039@noindent
2df3850c
JM
1040(which is ordinarily issued whenever a program running under
1041@value{GDBN} control terminates) is not issued when running in batch
1042mode.
1043
1a088d06
AS
1044@item -batch-silent
1045@cindex @code{--batch-silent}
1046Run in batch mode exactly like @samp{-batch}, but totally silently. All
1047@value{GDBN} output to @code{stdout} is prevented (@code{stderr} is
1048unaffected). This is much quieter than @samp{-silent} and would be useless
1049for an interactive session.
1050
1051This is particularly useful when using targets that give @samp{Loading section}
1052messages, for example.
1053
1054Note that targets that give their output via @value{GDBN}, as opposed to
1055writing directly to @code{stdout}, will also be made silent.
1056
4b0ad762
AS
1057@item -return-child-result
1058@cindex @code{--return-child-result}
1059The return code from @value{GDBN} will be the return code from the child
1060process (the process being debugged), with the following exceptions:
1061
1062@itemize @bullet
1063@item
1064@value{GDBN} exits abnormally. E.g., due to an incorrect argument or an
1065internal error. In this case the exit code is the same as it would have been
1066without @samp{-return-child-result}.
1067@item
1068The user quits with an explicit value. E.g., @samp{quit 1}.
1069@item
1070The child process never runs, or is not allowed to terminate, in which case
1071the exit code will be -1.
1072@end itemize
1073
1074This option is useful in conjunction with @samp{-batch} or @samp{-batch-silent},
1075when @value{GDBN} is being used as a remote program loader or simulator
1076interface.
1077
2df3850c
JM
1078@item -nowindows
1079@itemx -nw
d700128c
EZ
1080@cindex @code{--nowindows}
1081@cindex @code{-nw}
2df3850c 1082``No windows''. If @value{GDBN} comes with a graphical user interface
96a2c332 1083(GUI) built in, then this option tells @value{GDBN} to only use the command-line
2df3850c
JM
1084interface. If no GUI is available, this option has no effect.
1085
1086@item -windows
1087@itemx -w
d700128c
EZ
1088@cindex @code{--windows}
1089@cindex @code{-w}
2df3850c
JM
1090If @value{GDBN} includes a GUI, then this option requires it to be
1091used if possible.
c906108c
SS
1092
1093@item -cd @var{directory}
d700128c 1094@cindex @code{--cd}
c906108c
SS
1095Run @value{GDBN} using @var{directory} as its working directory,
1096instead of the current directory.
1097
c906108c
SS
1098@item -fullname
1099@itemx -f
d700128c
EZ
1100@cindex @code{--fullname}
1101@cindex @code{-f}
7a292a7a
SS
1102@sc{gnu} Emacs sets this option when it runs @value{GDBN} as a
1103subprocess. It tells @value{GDBN} to output the full file name and line
1104number in a standard, recognizable fashion each time a stack frame is
1105displayed (which includes each time your program stops). This
1106recognizable format looks like two @samp{\032} characters, followed by
1107the file name, line number and character position separated by colons,
1108and a newline. The Emacs-to-@value{GDBN} interface program uses the two
1109@samp{\032} characters as a signal to display the source code for the
1110frame.
c906108c 1111
d700128c
EZ
1112@item -epoch
1113@cindex @code{--epoch}
1114The Epoch Emacs-@value{GDBN} interface sets this option when it runs
1115@value{GDBN} as a subprocess. It tells @value{GDBN} to modify its print
1116routines so as to allow Epoch to display values of expressions in a
1117separate window.
1118
1119@item -annotate @var{level}
1120@cindex @code{--annotate}
1121This option sets the @dfn{annotation level} inside @value{GDBN}. Its
1122effect is identical to using @samp{set annotate @var{level}}
086432e2
AC
1123(@pxref{Annotations}). The annotation @var{level} controls how much
1124information @value{GDBN} prints together with its prompt, values of
1125expressions, source lines, and other types of output. Level 0 is the
1126normal, level 1 is for use when @value{GDBN} is run as a subprocess of
1127@sc{gnu} Emacs, level 3 is the maximum annotation suitable for programs
1128that control @value{GDBN}, and level 2 has been deprecated.
1129
265eeb58 1130The annotation mechanism has largely been superseded by @sc{gdb/mi}
086432e2 1131(@pxref{GDB/MI}).
d700128c 1132
aa26fa3a
TT
1133@item --args
1134@cindex @code{--args}
1135Change interpretation of command line so that arguments following the
1136executable file are passed as command line arguments to the inferior.
1137This option stops option processing.
1138
2df3850c
JM
1139@item -baud @var{bps}
1140@itemx -b @var{bps}
d700128c
EZ
1141@cindex @code{--baud}
1142@cindex @code{-b}
c906108c
SS
1143Set the line speed (baud rate or bits per second) of any serial
1144interface used by @value{GDBN} for remote debugging.
c906108c 1145
f47b1503
AS
1146@item -l @var{timeout}
1147@cindex @code{-l}
1148Set the timeout (in seconds) of any communication used by @value{GDBN}
1149for remote debugging.
1150
c906108c 1151@item -tty @var{device}
d700128c
EZ
1152@itemx -t @var{device}
1153@cindex @code{--tty}
1154@cindex @code{-t}
c906108c
SS
1155Run using @var{device} for your program's standard input and output.
1156@c FIXME: kingdon thinks there is more to -tty. Investigate.
c906108c 1157
53a5351d 1158@c resolve the situation of these eventually
c4555f82
SC
1159@item -tui
1160@cindex @code{--tui}
d0d5df6f
AC
1161Activate the @dfn{Text User Interface} when starting. The Text User
1162Interface manages several text windows on the terminal, showing
1163source, assembly, registers and @value{GDBN} command outputs
1164(@pxref{TUI, ,@value{GDBN} Text User Interface}). Alternatively, the
1165Text User Interface can be enabled by invoking the program
46ba6afa 1166@samp{@value{GDBTUI}}. Do not use this option if you run @value{GDBN} from
d0d5df6f 1167Emacs (@pxref{Emacs, ,Using @value{GDBN} under @sc{gnu} Emacs}).
53a5351d
JM
1168
1169@c @item -xdb
d700128c 1170@c @cindex @code{--xdb}
53a5351d
JM
1171@c Run in XDB compatibility mode, allowing the use of certain XDB commands.
1172@c For information, see the file @file{xdb_trans.html}, which is usually
1173@c installed in the directory @code{/opt/langtools/wdb/doc} on HP-UX
1174@c systems.
1175
d700128c
EZ
1176@item -interpreter @var{interp}
1177@cindex @code{--interpreter}
1178Use the interpreter @var{interp} for interface with the controlling
1179program or device. This option is meant to be set by programs which
94bbb2c0 1180communicate with @value{GDBN} using it as a back end.
21c294e6 1181@xref{Interpreters, , Command Interpreters}.
94bbb2c0 1182
da0f9dcd 1183@samp{--interpreter=mi} (or @samp{--interpreter=mi2}) causes
2fcf52f0 1184@value{GDBN} to use the @dfn{@sc{gdb/mi} interface} (@pxref{GDB/MI, ,
6b5e8c01 1185The @sc{gdb/mi} Interface}) included since @value{GDBN} version 6.0. The
6c74ac8b
AC
1186previous @sc{gdb/mi} interface, included in @value{GDBN} version 5.3 and
1187selected with @samp{--interpreter=mi1}, is deprecated. Earlier
1188@sc{gdb/mi} interfaces are no longer supported.
d700128c
EZ
1189
1190@item -write
1191@cindex @code{--write}
1192Open the executable and core files for both reading and writing. This
1193is equivalent to the @samp{set write on} command inside @value{GDBN}
1194(@pxref{Patching}).
1195
1196@item -statistics
1197@cindex @code{--statistics}
1198This option causes @value{GDBN} to print statistics about time and
1199memory usage after it completes each command and returns to the prompt.
1200
1201@item -version
1202@cindex @code{--version}
1203This option causes @value{GDBN} to print its version number and
1204no-warranty blurb, and exit.
1205
c906108c
SS
1206@end table
1207
6fc08d32 1208@node Startup
79a6e687 1209@subsection What @value{GDBN} Does During Startup
6fc08d32
EZ
1210@cindex @value{GDBN} startup
1211
1212Here's the description of what @value{GDBN} does during session startup:
1213
1214@enumerate
1215@item
1216Sets up the command interpreter as specified by the command line
1217(@pxref{Mode Options, interpreter}).
1218
1219@item
1220@cindex init file
1221Reads the @dfn{init file} (if any) in your home directory@footnote{On
1222DOS/Windows systems, the home directory is the one pointed to by the
1223@code{HOME} environment variable.} and executes all the commands in
1224that file.
1225
1226@item
1227Processes command line options and operands.
1228
1229@item
1230Reads and executes the commands from init file (if any) in the current
119b882a
EZ
1231working directory. This is only done if the current directory is
1232different from your home directory. Thus, you can have more than one
1233init file, one generic in your home directory, and another, specific
1234to the program you are debugging, in the directory where you invoke
6fc08d32
EZ
1235@value{GDBN}.
1236
1237@item
1238Reads command files specified by the @samp{-x} option. @xref{Command
1239Files}, for more details about @value{GDBN} command files.
1240
1241@item
1242Reads the command history recorded in the @dfn{history file}.
d620b259 1243@xref{Command History}, for more details about the command history and the
6fc08d32
EZ
1244files where @value{GDBN} records it.
1245@end enumerate
1246
1247Init files use the same syntax as @dfn{command files} (@pxref{Command
1248Files}) and are processed by @value{GDBN} in the same way. The init
1249file in your home directory can set options (such as @samp{set
1250complaints}) that affect subsequent processing of command line options
1251and operands. Init files are not executed if you use the @samp{-nx}
79a6e687 1252option (@pxref{Mode Options, ,Choosing Modes}).
6fc08d32
EZ
1253
1254@cindex init file name
1255@cindex @file{.gdbinit}
119b882a 1256@cindex @file{gdb.ini}
8807d78b 1257The @value{GDBN} init files are normally called @file{.gdbinit}.
119b882a
EZ
1258The DJGPP port of @value{GDBN} uses the name @file{gdb.ini}, due to
1259the limitations of file names imposed by DOS filesystems. The Windows
1260ports of @value{GDBN} use the standard name, but if they find a
1261@file{gdb.ini} file, they warn you about that and suggest to rename
1262the file to the standard name.
1263
6fc08d32 1264
6d2ebf8b 1265@node Quitting GDB
c906108c
SS
1266@section Quitting @value{GDBN}
1267@cindex exiting @value{GDBN}
1268@cindex leaving @value{GDBN}
1269
1270@table @code
1271@kindex quit @r{[}@var{expression}@r{]}
41afff9a 1272@kindex q @r{(@code{quit})}
96a2c332
SS
1273@item quit @r{[}@var{expression}@r{]}
1274@itemx q
1275To exit @value{GDBN}, use the @code{quit} command (abbreviated
c8aa23ab 1276@code{q}), or type an end-of-file character (usually @kbd{Ctrl-d}). If you
96a2c332
SS
1277do not supply @var{expression}, @value{GDBN} will terminate normally;
1278otherwise it will terminate using the result of @var{expression} as the
1279error code.
c906108c
SS
1280@end table
1281
1282@cindex interrupt
c8aa23ab 1283An interrupt (often @kbd{Ctrl-c}) does not exit from @value{GDBN}, but rather
c906108c
SS
1284terminates the action of any @value{GDBN} command that is in progress and
1285returns to @value{GDBN} command level. It is safe to type the interrupt
1286character at any time because @value{GDBN} does not allow it to take effect
1287until a time when it is safe.
1288
c906108c
SS
1289If you have been using @value{GDBN} to control an attached process or
1290device, you can release it with the @code{detach} command
79a6e687 1291(@pxref{Attach, ,Debugging an Already-running Process}).
c906108c 1292
6d2ebf8b 1293@node Shell Commands
79a6e687 1294@section Shell Commands
c906108c
SS
1295
1296If you need to execute occasional shell commands during your
1297debugging session, there is no need to leave or suspend @value{GDBN}; you can
1298just use the @code{shell} command.
1299
1300@table @code
1301@kindex shell
1302@cindex shell escape
1303@item shell @var{command string}
1304Invoke a standard shell to execute @var{command string}.
c906108c 1305If it exists, the environment variable @code{SHELL} determines which
d4f3574e
SS
1306shell to run. Otherwise @value{GDBN} uses the default shell
1307(@file{/bin/sh} on Unix systems, @file{COMMAND.COM} on MS-DOS, etc.).
c906108c
SS
1308@end table
1309
1310The utility @code{make} is often needed in development environments.
1311You do not have to use the @code{shell} command for this purpose in
1312@value{GDBN}:
1313
1314@table @code
1315@kindex make
1316@cindex calling make
1317@item make @var{make-args}
1318Execute the @code{make} program with the specified
1319arguments. This is equivalent to @samp{shell make @var{make-args}}.
1320@end table
1321
79a6e687
BW
1322@node Logging Output
1323@section Logging Output
0fac0b41 1324@cindex logging @value{GDBN} output
9c16f35a 1325@cindex save @value{GDBN} output to a file
0fac0b41
DJ
1326
1327You may want to save the output of @value{GDBN} commands to a file.
1328There are several commands to control @value{GDBN}'s logging.
1329
1330@table @code
1331@kindex set logging
1332@item set logging on
1333Enable logging.
1334@item set logging off
1335Disable logging.
9c16f35a 1336@cindex logging file name
0fac0b41
DJ
1337@item set logging file @var{file}
1338Change the name of the current logfile. The default logfile is @file{gdb.txt}.
1339@item set logging overwrite [on|off]
1340By default, @value{GDBN} will append to the logfile. Set @code{overwrite} if
1341you want @code{set logging on} to overwrite the logfile instead.
1342@item set logging redirect [on|off]
1343By default, @value{GDBN} output will go to both the terminal and the logfile.
1344Set @code{redirect} if you want output to go only to the log file.
1345@kindex show logging
1346@item show logging
1347Show the current values of the logging settings.
1348@end table
1349
6d2ebf8b 1350@node Commands
c906108c
SS
1351@chapter @value{GDBN} Commands
1352
1353You can abbreviate a @value{GDBN} command to the first few letters of the command
1354name, if that abbreviation is unambiguous; and you can repeat certain
1355@value{GDBN} commands by typing just @key{RET}. You can also use the @key{TAB}
1356key to get @value{GDBN} to fill out the rest of a word in a command (or to
1357show you the alternatives available, if there is more than one possibility).
1358
1359@menu
1360* Command Syntax:: How to give commands to @value{GDBN}
1361* Completion:: Command completion
1362* Help:: How to ask @value{GDBN} for help
1363@end menu
1364
6d2ebf8b 1365@node Command Syntax
79a6e687 1366@section Command Syntax
c906108c
SS
1367
1368A @value{GDBN} command is a single line of input. There is no limit on
1369how long it can be. It starts with a command name, which is followed by
1370arguments whose meaning depends on the command name. For example, the
1371command @code{step} accepts an argument which is the number of times to
1372step, as in @samp{step 5}. You can also use the @code{step} command
96a2c332 1373with no arguments. Some commands do not allow any arguments.
c906108c
SS
1374
1375@cindex abbreviation
1376@value{GDBN} command names may always be truncated if that abbreviation is
1377unambiguous. Other possible command abbreviations are listed in the
1378documentation for individual commands. In some cases, even ambiguous
1379abbreviations are allowed; for example, @code{s} is specially defined as
1380equivalent to @code{step} even though there are other commands whose
1381names start with @code{s}. You can test abbreviations by using them as
1382arguments to the @code{help} command.
1383
1384@cindex repeating commands
41afff9a 1385@kindex RET @r{(repeat last command)}
c906108c 1386A blank line as input to @value{GDBN} (typing just @key{RET}) means to
96a2c332 1387repeat the previous command. Certain commands (for example, @code{run})
c906108c
SS
1388will not repeat this way; these are commands whose unintentional
1389repetition might cause trouble and which you are unlikely to want to
c45da7e6
EZ
1390repeat. User-defined commands can disable this feature; see
1391@ref{Define, dont-repeat}.
c906108c
SS
1392
1393The @code{list} and @code{x} commands, when you repeat them with
1394@key{RET}, construct new arguments rather than repeating
1395exactly as typed. This permits easy scanning of source or memory.
1396
1397@value{GDBN} can also use @key{RET} in another way: to partition lengthy
1398output, in a way similar to the common utility @code{more}
79a6e687 1399(@pxref{Screen Size,,Screen Size}). Since it is easy to press one
c906108c
SS
1400@key{RET} too many in this situation, @value{GDBN} disables command
1401repetition after any command that generates this sort of display.
1402
41afff9a 1403@kindex # @r{(a comment)}
c906108c
SS
1404@cindex comment
1405Any text from a @kbd{#} to the end of the line is a comment; it does
1406nothing. This is useful mainly in command files (@pxref{Command
79a6e687 1407Files,,Command Files}).
c906108c 1408
88118b3a 1409@cindex repeating command sequences
c8aa23ab
EZ
1410@kindex Ctrl-o @r{(operate-and-get-next)}
1411The @kbd{Ctrl-o} binding is useful for repeating a complex sequence of
7f9087cb 1412commands. This command accepts the current line, like @key{RET}, and
88118b3a
TT
1413then fetches the next line relative to the current line from the history
1414for editing.
1415
6d2ebf8b 1416@node Completion
79a6e687 1417@section Command Completion
c906108c
SS
1418
1419@cindex completion
1420@cindex word completion
1421@value{GDBN} can fill in the rest of a word in a command for you, if there is
1422only one possibility; it can also show you what the valid possibilities
1423are for the next word in a command, at any time. This works for @value{GDBN}
1424commands, @value{GDBN} subcommands, and the names of symbols in your program.
1425
1426Press the @key{TAB} key whenever you want @value{GDBN} to fill out the rest
1427of a word. If there is only one possibility, @value{GDBN} fills in the
1428word, and waits for you to finish the command (or press @key{RET} to
1429enter it). For example, if you type
1430
1431@c FIXME "@key" does not distinguish its argument sufficiently to permit
1432@c complete accuracy in these examples; space introduced for clarity.
1433@c If texinfo enhancements make it unnecessary, it would be nice to
1434@c replace " @key" by "@key" in the following...
474c8240 1435@smallexample
c906108c 1436(@value{GDBP}) info bre @key{TAB}
474c8240 1437@end smallexample
c906108c
SS
1438
1439@noindent
1440@value{GDBN} fills in the rest of the word @samp{breakpoints}, since that is
1441the only @code{info} subcommand beginning with @samp{bre}:
1442
474c8240 1443@smallexample
c906108c 1444(@value{GDBP}) info breakpoints
474c8240 1445@end smallexample
c906108c
SS
1446
1447@noindent
1448You can either press @key{RET} at this point, to run the @code{info
1449breakpoints} command, or backspace and enter something else, if
1450@samp{breakpoints} does not look like the command you expected. (If you
1451were sure you wanted @code{info breakpoints} in the first place, you
1452might as well just type @key{RET} immediately after @samp{info bre},
1453to exploit command abbreviations rather than command completion).
1454
1455If there is more than one possibility for the next word when you press
1456@key{TAB}, @value{GDBN} sounds a bell. You can either supply more
1457characters and try again, or just press @key{TAB} a second time;
1458@value{GDBN} displays all the possible completions for that word. For
1459example, you might want to set a breakpoint on a subroutine whose name
1460begins with @samp{make_}, but when you type @kbd{b make_@key{TAB}} @value{GDBN}
1461just sounds the bell. Typing @key{TAB} again displays all the
1462function names in your program that begin with those characters, for
1463example:
1464
474c8240 1465@smallexample
c906108c
SS
1466(@value{GDBP}) b make_ @key{TAB}
1467@exdent @value{GDBN} sounds bell; press @key{TAB} again, to see:
5d161b24
DB
1468make_a_section_from_file make_environ
1469make_abs_section make_function_type
1470make_blockvector make_pointer_type
1471make_cleanup make_reference_type
c906108c
SS
1472make_command make_symbol_completion_list
1473(@value{GDBP}) b make_
474c8240 1474@end smallexample
c906108c
SS
1475
1476@noindent
1477After displaying the available possibilities, @value{GDBN} copies your
1478partial input (@samp{b make_} in the example) so you can finish the
1479command.
1480
1481If you just want to see the list of alternatives in the first place, you
b37052ae 1482can press @kbd{M-?} rather than pressing @key{TAB} twice. @kbd{M-?}
7a292a7a 1483means @kbd{@key{META} ?}. You can type this either by holding down a
c906108c 1484key designated as the @key{META} shift on your keyboard (if there is
7a292a7a 1485one) while typing @kbd{?}, or as @key{ESC} followed by @kbd{?}.
c906108c
SS
1486
1487@cindex quotes in commands
1488@cindex completion of quoted strings
1489Sometimes the string you need, while logically a ``word'', may contain
7a292a7a
SS
1490parentheses or other characters that @value{GDBN} normally excludes from
1491its notion of a word. To permit word completion to work in this
1492situation, you may enclose words in @code{'} (single quote marks) in
1493@value{GDBN} commands.
c906108c 1494
c906108c 1495The most likely situation where you might need this is in typing the
b37052ae
EZ
1496name of a C@t{++} function. This is because C@t{++} allows function
1497overloading (multiple definitions of the same function, distinguished
1498by argument type). For example, when you want to set a breakpoint you
1499may need to distinguish whether you mean the version of @code{name}
1500that takes an @code{int} parameter, @code{name(int)}, or the version
1501that takes a @code{float} parameter, @code{name(float)}. To use the
1502word-completion facilities in this situation, type a single quote
1503@code{'} at the beginning of the function name. This alerts
1504@value{GDBN} that it may need to consider more information than usual
1505when you press @key{TAB} or @kbd{M-?} to request word completion:
c906108c 1506
474c8240 1507@smallexample
96a2c332 1508(@value{GDBP}) b 'bubble( @kbd{M-?}
c906108c
SS
1509bubble(double,double) bubble(int,int)
1510(@value{GDBP}) b 'bubble(
474c8240 1511@end smallexample
c906108c
SS
1512
1513In some cases, @value{GDBN} can tell that completing a name requires using
1514quotes. When this happens, @value{GDBN} inserts the quote for you (while
1515completing as much as it can) if you do not type the quote in the first
1516place:
1517
474c8240 1518@smallexample
c906108c
SS
1519(@value{GDBP}) b bub @key{TAB}
1520@exdent @value{GDBN} alters your input line to the following, and rings a bell:
1521(@value{GDBP}) b 'bubble(
474c8240 1522@end smallexample
c906108c
SS
1523
1524@noindent
1525In general, @value{GDBN} can tell that a quote is needed (and inserts it) if
1526you have not yet started typing the argument list when you ask for
1527completion on an overloaded symbol.
1528
79a6e687
BW
1529For more information about overloaded functions, see @ref{C Plus Plus
1530Expressions, ,C@t{++} Expressions}. You can use the command @code{set
c906108c 1531overload-resolution off} to disable overload resolution;
79a6e687 1532see @ref{Debugging C Plus Plus, ,@value{GDBN} Features for C@t{++}}.
c906108c 1533
65d12d83
TT
1534@cindex completion of structure field names
1535@cindex structure field name completion
1536@cindex completion of union field names
1537@cindex union field name completion
1538When completing in an expression which looks up a field in a
1539structure, @value{GDBN} also tries@footnote{The completer can be
1540confused by certain kinds of invalid expressions. Also, it only
1541examines the static type of the expression, not the dynamic type.} to
1542limit completions to the field names available in the type of the
1543left-hand-side:
1544
1545@smallexample
1546(@value{GDBP}) p gdb_stdout.@kbd{M-?}
1547magic to_delete to_fputs to_put to_rewind
1548to_data to_flush to_isatty to_read to_write
1549@end smallexample
1550
1551@noindent
1552This is because the @code{gdb_stdout} is a variable of the type
1553@code{struct ui_file} that is defined in @value{GDBN} sources as
1554follows:
1555
1556@smallexample
1557struct ui_file
1558@{
1559 int *magic;
1560 ui_file_flush_ftype *to_flush;
1561 ui_file_write_ftype *to_write;
1562 ui_file_fputs_ftype *to_fputs;
1563 ui_file_read_ftype *to_read;
1564 ui_file_delete_ftype *to_delete;
1565 ui_file_isatty_ftype *to_isatty;
1566 ui_file_rewind_ftype *to_rewind;
1567 ui_file_put_ftype *to_put;
1568 void *to_data;
1569@}
1570@end smallexample
1571
c906108c 1572
6d2ebf8b 1573@node Help
79a6e687 1574@section Getting Help
c906108c
SS
1575@cindex online documentation
1576@kindex help
1577
5d161b24 1578You can always ask @value{GDBN} itself for information on its commands,
c906108c
SS
1579using the command @code{help}.
1580
1581@table @code
41afff9a 1582@kindex h @r{(@code{help})}
c906108c
SS
1583@item help
1584@itemx h
1585You can use @code{help} (abbreviated @code{h}) with no arguments to
1586display a short list of named classes of commands:
1587
1588@smallexample
1589(@value{GDBP}) help
1590List of classes of commands:
1591
2df3850c 1592aliases -- Aliases of other commands
c906108c 1593breakpoints -- Making program stop at certain points
2df3850c 1594data -- Examining data
c906108c 1595files -- Specifying and examining files
2df3850c
JM
1596internals -- Maintenance commands
1597obscure -- Obscure features
1598running -- Running the program
1599stack -- Examining the stack
c906108c
SS
1600status -- Status inquiries
1601support -- Support facilities
12c27660 1602tracepoints -- Tracing of program execution without
96a2c332 1603 stopping the program
c906108c 1604user-defined -- User-defined commands
c906108c 1605
5d161b24 1606Type "help" followed by a class name for a list of
c906108c 1607commands in that class.
5d161b24 1608Type "help" followed by command name for full
c906108c
SS
1609documentation.
1610Command name abbreviations are allowed if unambiguous.
1611(@value{GDBP})
1612@end smallexample
96a2c332 1613@c the above line break eliminates huge line overfull...
c906108c
SS
1614
1615@item help @var{class}
1616Using one of the general help classes as an argument, you can get a
1617list of the individual commands in that class. For example, here is the
1618help display for the class @code{status}:
1619
1620@smallexample
1621(@value{GDBP}) help status
1622Status inquiries.
1623
1624List of commands:
1625
1626@c Line break in "show" line falsifies real output, but needed
1627@c to fit in smallbook page size.
2df3850c 1628info -- Generic command for showing things
12c27660 1629 about the program being debugged
2df3850c 1630show -- Generic command for showing things
12c27660 1631 about the debugger
c906108c 1632
5d161b24 1633Type "help" followed by command name for full
c906108c
SS
1634documentation.
1635Command name abbreviations are allowed if unambiguous.
1636(@value{GDBP})
1637@end smallexample
1638
1639@item help @var{command}
1640With a command name as @code{help} argument, @value{GDBN} displays a
1641short paragraph on how to use that command.
1642
6837a0a2
DB
1643@kindex apropos
1644@item apropos @var{args}
09d4efe1 1645The @code{apropos} command searches through all of the @value{GDBN}
6837a0a2
DB
1646commands, and their documentation, for the regular expression specified in
1647@var{args}. It prints out all matches found. For example:
1648
1649@smallexample
1650apropos reload
1651@end smallexample
1652
b37052ae
EZ
1653@noindent
1654results in:
6837a0a2
DB
1655
1656@smallexample
6d2ebf8b
SS
1657@c @group
1658set symbol-reloading -- Set dynamic symbol table reloading
12c27660 1659 multiple times in one run
6d2ebf8b 1660show symbol-reloading -- Show dynamic symbol table reloading
12c27660 1661 multiple times in one run
6d2ebf8b 1662@c @end group
6837a0a2
DB
1663@end smallexample
1664
c906108c
SS
1665@kindex complete
1666@item complete @var{args}
1667The @code{complete @var{args}} command lists all the possible completions
1668for the beginning of a command. Use @var{args} to specify the beginning of the
1669command you want completed. For example:
1670
1671@smallexample
1672complete i
1673@end smallexample
1674
1675@noindent results in:
1676
1677@smallexample
1678@group
2df3850c
JM
1679if
1680ignore
c906108c
SS
1681info
1682inspect
c906108c
SS
1683@end group
1684@end smallexample
1685
1686@noindent This is intended for use by @sc{gnu} Emacs.
1687@end table
1688
1689In addition to @code{help}, you can use the @value{GDBN} commands @code{info}
1690and @code{show} to inquire about the state of your program, or the state
1691of @value{GDBN} itself. Each command supports many topics of inquiry; this
1692manual introduces each of them in the appropriate context. The listings
1693under @code{info} and under @code{show} in the Index point to
1694all the sub-commands. @xref{Index}.
1695
1696@c @group
1697@table @code
1698@kindex info
41afff9a 1699@kindex i @r{(@code{info})}
c906108c
SS
1700@item info
1701This command (abbreviated @code{i}) is for describing the state of your
cda4ce5a 1702program. For example, you can show the arguments passed to a function
c906108c
SS
1703with @code{info args}, list the registers currently in use with @code{info
1704registers}, or list the breakpoints you have set with @code{info breakpoints}.
1705You can get a complete list of the @code{info} sub-commands with
1706@w{@code{help info}}.
1707
1708@kindex set
1709@item set
5d161b24 1710You can assign the result of an expression to an environment variable with
c906108c
SS
1711@code{set}. For example, you can set the @value{GDBN} prompt to a $-sign with
1712@code{set prompt $}.
1713
1714@kindex show
1715@item show
5d161b24 1716In contrast to @code{info}, @code{show} is for describing the state of
c906108c
SS
1717@value{GDBN} itself.
1718You can change most of the things you can @code{show}, by using the
1719related command @code{set}; for example, you can control what number
1720system is used for displays with @code{set radix}, or simply inquire
1721which is currently in use with @code{show radix}.
1722
1723@kindex info set
1724To display all the settable parameters and their current
1725values, you can use @code{show} with no arguments; you may also use
1726@code{info set}. Both commands produce the same display.
1727@c FIXME: "info set" violates the rule that "info" is for state of
1728@c FIXME...program. Ck w/ GNU: "info set" to be called something else,
1729@c FIXME...or change desc of rule---eg "state of prog and debugging session"?
1730@end table
1731@c @end group
1732
1733Here are three miscellaneous @code{show} subcommands, all of which are
1734exceptional in lacking corresponding @code{set} commands:
1735
1736@table @code
1737@kindex show version
9c16f35a 1738@cindex @value{GDBN} version number
c906108c
SS
1739@item show version
1740Show what version of @value{GDBN} is running. You should include this
2df3850c
JM
1741information in @value{GDBN} bug-reports. If multiple versions of
1742@value{GDBN} are in use at your site, you may need to determine which
1743version of @value{GDBN} you are running; as @value{GDBN} evolves, new
1744commands are introduced, and old ones may wither away. Also, many
1745system vendors ship variant versions of @value{GDBN}, and there are
96a2c332 1746variant versions of @value{GDBN} in @sc{gnu}/Linux distributions as well.
2df3850c
JM
1747The version number is the same as the one announced when you start
1748@value{GDBN}.
c906108c
SS
1749
1750@kindex show copying
09d4efe1 1751@kindex info copying
9c16f35a 1752@cindex display @value{GDBN} copyright
c906108c 1753@item show copying
09d4efe1 1754@itemx info copying
c906108c
SS
1755Display information about permission for copying @value{GDBN}.
1756
1757@kindex show warranty
09d4efe1 1758@kindex info warranty
c906108c 1759@item show warranty
09d4efe1 1760@itemx info warranty
2df3850c 1761Display the @sc{gnu} ``NO WARRANTY'' statement, or a warranty,
96a2c332 1762if your version of @value{GDBN} comes with one.
2df3850c 1763
c906108c
SS
1764@end table
1765
6d2ebf8b 1766@node Running
c906108c
SS
1767@chapter Running Programs Under @value{GDBN}
1768
1769When you run a program under @value{GDBN}, you must first generate
1770debugging information when you compile it.
7a292a7a
SS
1771
1772You may start @value{GDBN} with its arguments, if any, in an environment
1773of your choice. If you are doing native debugging, you may redirect
1774your program's input and output, debug an already running process, or
1775kill a child process.
c906108c
SS
1776
1777@menu
1778* Compilation:: Compiling for debugging
1779* Starting:: Starting your program
c906108c
SS
1780* Arguments:: Your program's arguments
1781* Environment:: Your program's environment
c906108c
SS
1782
1783* Working Directory:: Your program's working directory
1784* Input/Output:: Your program's input and output
1785* Attach:: Debugging an already-running process
1786* Kill Process:: Killing the child process
c906108c
SS
1787
1788* Threads:: Debugging programs with multiple threads
1789* Processes:: Debugging programs with multiple processes
5c95884b 1790* Checkpoint/Restart:: Setting a @emph{bookmark} to return to later
c906108c
SS
1791@end menu
1792
6d2ebf8b 1793@node Compilation
79a6e687 1794@section Compiling for Debugging
c906108c
SS
1795
1796In order to debug a program effectively, you need to generate
1797debugging information when you compile it. This debugging information
1798is stored in the object file; it describes the data type of each
1799variable or function and the correspondence between source line numbers
1800and addresses in the executable code.
1801
1802To request debugging information, specify the @samp{-g} option when you run
1803the compiler.
1804
514c4d71
EZ
1805Programs that are to be shipped to your customers are compiled with
1806optimizations, using the @samp{-O} compiler option. However, many
1807compilers are unable to handle the @samp{-g} and @samp{-O} options
1808together. Using those compilers, you cannot generate optimized
c906108c
SS
1809executables containing debugging information.
1810
514c4d71 1811@value{NGCC}, the @sc{gnu} C/C@t{++} compiler, supports @samp{-g} with or
53a5351d
JM
1812without @samp{-O}, making it possible to debug optimized code. We
1813recommend that you @emph{always} use @samp{-g} whenever you compile a
1814program. You may think your program is correct, but there is no sense
1815in pushing your luck.
c906108c
SS
1816
1817@cindex optimized code, debugging
1818@cindex debugging optimized code
1819When you debug a program compiled with @samp{-g -O}, remember that the
1820optimizer is rearranging your code; the debugger shows you what is
1821really there. Do not be too surprised when the execution path does not
1822exactly match your source file! An extreme example: if you define a
1823variable, but never use it, @value{GDBN} never sees that
1824variable---because the compiler optimizes it out of existence.
1825
1826Some things do not work as well with @samp{-g -O} as with just
1827@samp{-g}, particularly on machines with instruction scheduling. If in
1828doubt, recompile with @samp{-g} alone, and if this fixes the problem,
1829please report it to us as a bug (including a test case!).
15387254 1830@xref{Variables}, for more information about debugging optimized code.
c906108c
SS
1831
1832Older versions of the @sc{gnu} C compiler permitted a variant option
1833@w{@samp{-gg}} for debugging information. @value{GDBN} no longer supports this
1834format; if your @sc{gnu} C compiler has this option, do not use it.
1835
514c4d71
EZ
1836@value{GDBN} knows about preprocessor macros and can show you their
1837expansion (@pxref{Macros}). Most compilers do not include information
1838about preprocessor macros in the debugging information if you specify
1839the @option{-g} flag alone, because this information is rather large.
1840Version 3.1 and later of @value{NGCC}, the @sc{gnu} C compiler,
1841provides macro information if you specify the options
1842@option{-gdwarf-2} and @option{-g3}; the former option requests
1843debugging information in the Dwarf 2 format, and the latter requests
1844``extra information''. In the future, we hope to find more compact
1845ways to represent macro information, so that it can be included with
1846@option{-g} alone.
1847
c906108c 1848@need 2000
6d2ebf8b 1849@node Starting
79a6e687 1850@section Starting your Program
c906108c
SS
1851@cindex starting
1852@cindex running
1853
1854@table @code
1855@kindex run
41afff9a 1856@kindex r @r{(@code{run})}
c906108c
SS
1857@item run
1858@itemx r
7a292a7a
SS
1859Use the @code{run} command to start your program under @value{GDBN}.
1860You must first specify the program name (except on VxWorks) with an
1861argument to @value{GDBN} (@pxref{Invocation, ,Getting In and Out of
1862@value{GDBN}}), or by using the @code{file} or @code{exec-file} command
79a6e687 1863(@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
1864
1865@end table
1866
c906108c
SS
1867If you are running your program in an execution environment that
1868supports processes, @code{run} creates an inferior process and makes
8edfe269
DJ
1869that process run your program. In some environments without processes,
1870@code{run} jumps to the start of your program. Other targets,
1871like @samp{remote}, are always running. If you get an error
1872message like this one:
1873
1874@smallexample
1875The "remote" target does not support "run".
1876Try "help target" or "continue".
1877@end smallexample
1878
1879@noindent
1880then use @code{continue} to run your program. You may need @code{load}
1881first (@pxref{load}).
c906108c
SS
1882
1883The execution of a program is affected by certain information it
1884receives from its superior. @value{GDBN} provides ways to specify this
1885information, which you must do @emph{before} starting your program. (You
1886can change it after starting your program, but such changes only affect
1887your program the next time you start it.) This information may be
1888divided into four categories:
1889
1890@table @asis
1891@item The @emph{arguments.}
1892Specify the arguments to give your program as the arguments of the
1893@code{run} command. If a shell is available on your target, the shell
1894is used to pass the arguments, so that you may use normal conventions
1895(such as wildcard expansion or variable substitution) in describing
1896the arguments.
1897In Unix systems, you can control which shell is used with the
1898@code{SHELL} environment variable.
79a6e687 1899@xref{Arguments, ,Your Program's Arguments}.
c906108c
SS
1900
1901@item The @emph{environment.}
1902Your program normally inherits its environment from @value{GDBN}, but you can
1903use the @value{GDBN} commands @code{set environment} and @code{unset
1904environment} to change parts of the environment that affect
79a6e687 1905your program. @xref{Environment, ,Your Program's Environment}.
c906108c
SS
1906
1907@item The @emph{working directory.}
1908Your program inherits its working directory from @value{GDBN}. You can set
1909the @value{GDBN} working directory with the @code{cd} command in @value{GDBN}.
79a6e687 1910@xref{Working Directory, ,Your Program's Working Directory}.
c906108c
SS
1911
1912@item The @emph{standard input and output.}
1913Your program normally uses the same device for standard input and
1914standard output as @value{GDBN} is using. You can redirect input and output
1915in the @code{run} command line, or you can use the @code{tty} command to
1916set a different device for your program.
79a6e687 1917@xref{Input/Output, ,Your Program's Input and Output}.
c906108c
SS
1918
1919@cindex pipes
1920@emph{Warning:} While input and output redirection work, you cannot use
1921pipes to pass the output of the program you are debugging to another
1922program; if you attempt this, @value{GDBN} is likely to wind up debugging the
1923wrong program.
1924@end table
c906108c
SS
1925
1926When you issue the @code{run} command, your program begins to execute
79a6e687 1927immediately. @xref{Stopping, ,Stopping and Continuing}, for discussion
c906108c
SS
1928of how to arrange for your program to stop. Once your program has
1929stopped, you may call functions in your program, using the @code{print}
1930or @code{call} commands. @xref{Data, ,Examining Data}.
1931
1932If the modification time of your symbol file has changed since the last
1933time @value{GDBN} read its symbols, @value{GDBN} discards its symbol
1934table, and reads it again. When it does this, @value{GDBN} tries to retain
1935your current breakpoints.
1936
4e8b0763
JB
1937@table @code
1938@kindex start
1939@item start
1940@cindex run to main procedure
1941The name of the main procedure can vary from language to language.
1942With C or C@t{++}, the main procedure name is always @code{main}, but
1943other languages such as Ada do not require a specific name for their
1944main procedure. The debugger provides a convenient way to start the
1945execution of the program and to stop at the beginning of the main
1946procedure, depending on the language used.
1947
1948The @samp{start} command does the equivalent of setting a temporary
1949breakpoint at the beginning of the main procedure and then invoking
1950the @samp{run} command.
1951
f018e82f
EZ
1952@cindex elaboration phase
1953Some programs contain an @dfn{elaboration} phase where some startup code is
1954executed before the main procedure is called. This depends on the
1955languages used to write your program. In C@t{++}, for instance,
4e8b0763
JB
1956constructors for static and global objects are executed before
1957@code{main} is called. It is therefore possible that the debugger stops
1958before reaching the main procedure. However, the temporary breakpoint
1959will remain to halt execution.
1960
1961Specify the arguments to give to your program as arguments to the
1962@samp{start} command. These arguments will be given verbatim to the
1963underlying @samp{run} command. Note that the same arguments will be
1964reused if no argument is provided during subsequent calls to
1965@samp{start} or @samp{run}.
1966
1967It is sometimes necessary to debug the program during elaboration. In
1968these cases, using the @code{start} command would stop the execution of
1969your program too late, as the program would have already completed the
1970elaboration phase. Under these circumstances, insert breakpoints in your
1971elaboration code before running your program.
ccd213ac
DJ
1972
1973@kindex set exec-wrapper
1974@item set exec-wrapper @var{wrapper}
1975@itemx show exec-wrapper
1976@itemx unset exec-wrapper
1977When @samp{exec-wrapper} is set, the specified wrapper is used to
1978launch programs for debugging. @value{GDBN} starts your program
1979with a shell command of the form @kbd{exec @var{wrapper}
1980@var{program}}. Quoting is added to @var{program} and its
1981arguments, but not to @var{wrapper}, so you should add quotes if
1982appropriate for your shell. The wrapper runs until it executes
1983your program, and then @value{GDBN} takes control.
1984
1985You can use any program that eventually calls @code{execve} with
1986its arguments as a wrapper. Several standard Unix utilities do
1987this, e.g.@: @code{env} and @code{nohup}. Any Unix shell script ending
1988with @code{exec "$@@"} will also work.
1989
1990For example, you can use @code{env} to pass an environment variable to
1991the debugged program, without setting the variable in your shell's
1992environment:
1993
1994@smallexample
1995(@value{GDBP}) set exec-wrapper env 'LD_PRELOAD=libtest.so'
1996(@value{GDBP}) run
1997@end smallexample
1998
1999This command is available when debugging locally on most targets, excluding
2000@sc{djgpp}, Cygwin, MS Windows, and QNX Neutrino.
2001
10568435
JK
2002@kindex set disable-randomization
2003@item set disable-randomization
2004@itemx set disable-randomization on
2005This option (enabled by default in @value{GDBN}) will turn off the native
2006randomization of the virtual address space of the started program. This option
2007is useful for multiple debugging sessions to make the execution better
2008reproducible and memory addresses reusable across debugging sessions.
2009
2010This feature is implemented only on @sc{gnu}/Linux. You can get the same
2011behavior using
2012
2013@smallexample
2014(@value{GDBP}) set exec-wrapper setarch `uname -m` -R
2015@end smallexample
2016
2017@item set disable-randomization off
2018Leave the behavior of the started executable unchanged. Some bugs rear their
2019ugly heads only when the program is loaded at certain addresses. If your bug
2020disappears when you run the program under @value{GDBN}, that might be because
2021@value{GDBN} by default disables the address randomization on platforms, such
2022as @sc{gnu}/Linux, which do that for stand-alone programs. Use @kbd{set
2023disable-randomization off} to try to reproduce such elusive bugs.
2024
2025The virtual address space randomization is implemented only on @sc{gnu}/Linux.
2026It protects the programs against some kinds of security attacks. In these
2027cases the attacker needs to know the exact location of a concrete executable
2028code. Randomizing its location makes it impossible to inject jumps misusing
2029a code at its expected addresses.
2030
2031Prelinking shared libraries provides a startup performance advantage but it
2032makes addresses in these libraries predictable for privileged processes by
2033having just unprivileged access at the target system. Reading the shared
2034library binary gives enough information for assembling the malicious code
2035misusing it. Still even a prelinked shared library can get loaded at a new
2036random address just requiring the regular relocation process during the
2037startup. Shared libraries not already prelinked are always loaded at
2038a randomly chosen address.
2039
2040Position independent executables (PIE) contain position independent code
2041similar to the shared libraries and therefore such executables get loaded at
2042a randomly chosen address upon startup. PIE executables always load even
2043already prelinked shared libraries at a random address. You can build such
2044executable using @command{gcc -fPIE -pie}.
2045
2046Heap (malloc storage), stack and custom mmap areas are always placed randomly
2047(as long as the randomization is enabled).
2048
2049@item show disable-randomization
2050Show the current setting of the explicit disable of the native randomization of
2051the virtual address space of the started program.
2052
4e8b0763
JB
2053@end table
2054
6d2ebf8b 2055@node Arguments
79a6e687 2056@section Your Program's Arguments
c906108c
SS
2057
2058@cindex arguments (to your program)
2059The arguments to your program can be specified by the arguments of the
5d161b24 2060@code{run} command.
c906108c
SS
2061They are passed to a shell, which expands wildcard characters and
2062performs redirection of I/O, and thence to your program. Your
2063@code{SHELL} environment variable (if it exists) specifies what shell
2064@value{GDBN} uses. If you do not define @code{SHELL}, @value{GDBN} uses
d4f3574e
SS
2065the default shell (@file{/bin/sh} on Unix).
2066
2067On non-Unix systems, the program is usually invoked directly by
2068@value{GDBN}, which emulates I/O redirection via the appropriate system
2069calls, and the wildcard characters are expanded by the startup code of
2070the program, not by the shell.
c906108c
SS
2071
2072@code{run} with no arguments uses the same arguments used by the previous
2073@code{run}, or those set by the @code{set args} command.
2074
c906108c 2075@table @code
41afff9a 2076@kindex set args
c906108c
SS
2077@item set args
2078Specify the arguments to be used the next time your program is run. If
2079@code{set args} has no arguments, @code{run} executes your program
2080with no arguments. Once you have run your program with arguments,
2081using @code{set args} before the next @code{run} is the only way to run
2082it again without arguments.
2083
2084@kindex show args
2085@item show args
2086Show the arguments to give your program when it is started.
2087@end table
2088
6d2ebf8b 2089@node Environment
79a6e687 2090@section Your Program's Environment
c906108c
SS
2091
2092@cindex environment (of your program)
2093The @dfn{environment} consists of a set of environment variables and
2094their values. Environment variables conventionally record such things as
2095your user name, your home directory, your terminal type, and your search
2096path for programs to run. Usually you set up environment variables with
2097the shell and they are inherited by all the other programs you run. When
2098debugging, it can be useful to try running your program with a modified
2099environment without having to start @value{GDBN} over again.
2100
2101@table @code
2102@kindex path
2103@item path @var{directory}
2104Add @var{directory} to the front of the @code{PATH} environment variable
17cc6a06
EZ
2105(the search path for executables) that will be passed to your program.
2106The value of @code{PATH} used by @value{GDBN} does not change.
d4f3574e
SS
2107You may specify several directory names, separated by whitespace or by a
2108system-dependent separator character (@samp{:} on Unix, @samp{;} on
2109MS-DOS and MS-Windows). If @var{directory} is already in the path, it
2110is moved to the front, so it is searched sooner.
c906108c
SS
2111
2112You can use the string @samp{$cwd} to refer to whatever is the current
2113working directory at the time @value{GDBN} searches the path. If you
2114use @samp{.} instead, it refers to the directory where you executed the
2115@code{path} command. @value{GDBN} replaces @samp{.} in the
2116@var{directory} argument (with the current path) before adding
2117@var{directory} to the search path.
2118@c 'path' is explicitly nonrepeatable, but RMS points out it is silly to
2119@c document that, since repeating it would be a no-op.
2120
2121@kindex show paths
2122@item show paths
2123Display the list of search paths for executables (the @code{PATH}
2124environment variable).
2125
2126@kindex show environment
2127@item show environment @r{[}@var{varname}@r{]}
2128Print the value of environment variable @var{varname} to be given to
2129your program when it starts. If you do not supply @var{varname},
2130print the names and values of all environment variables to be given to
2131your program. You can abbreviate @code{environment} as @code{env}.
2132
2133@kindex set environment
53a5351d 2134@item set environment @var{varname} @r{[}=@var{value}@r{]}
c906108c
SS
2135Set environment variable @var{varname} to @var{value}. The value
2136changes for your program only, not for @value{GDBN} itself. @var{value} may
2137be any string; the values of environment variables are just strings, and
2138any interpretation is supplied by your program itself. The @var{value}
2139parameter is optional; if it is eliminated, the variable is set to a
2140null value.
2141@c "any string" here does not include leading, trailing
2142@c blanks. Gnu asks: does anyone care?
2143
2144For example, this command:
2145
474c8240 2146@smallexample
c906108c 2147set env USER = foo
474c8240 2148@end smallexample
c906108c
SS
2149
2150@noindent
d4f3574e 2151tells the debugged program, when subsequently run, that its user is named
c906108c
SS
2152@samp{foo}. (The spaces around @samp{=} are used for clarity here; they
2153are not actually required.)
2154
2155@kindex unset environment
2156@item unset environment @var{varname}
2157Remove variable @var{varname} from the environment to be passed to your
2158program. This is different from @samp{set env @var{varname} =};
2159@code{unset environment} removes the variable from the environment,
2160rather than assigning it an empty value.
2161@end table
2162
d4f3574e
SS
2163@emph{Warning:} On Unix systems, @value{GDBN} runs your program using
2164the shell indicated
c906108c
SS
2165by your @code{SHELL} environment variable if it exists (or
2166@code{/bin/sh} if not). If your @code{SHELL} variable names a shell
2167that runs an initialization file---such as @file{.cshrc} for C-shell, or
2168@file{.bashrc} for BASH---any variables you set in that file affect
2169your program. You may wish to move setting of environment variables to
2170files that are only run when you sign on, such as @file{.login} or
2171@file{.profile}.
2172
6d2ebf8b 2173@node Working Directory
79a6e687 2174@section Your Program's Working Directory
c906108c
SS
2175
2176@cindex working directory (of your program)
2177Each time you start your program with @code{run}, it inherits its
2178working directory from the current working directory of @value{GDBN}.
2179The @value{GDBN} working directory is initially whatever it inherited
2180from its parent process (typically the shell), but you can specify a new
2181working directory in @value{GDBN} with the @code{cd} command.
2182
2183The @value{GDBN} working directory also serves as a default for the commands
2184that specify files for @value{GDBN} to operate on. @xref{Files, ,Commands to
79a6e687 2185Specify Files}.
c906108c
SS
2186
2187@table @code
2188@kindex cd
721c2651 2189@cindex change working directory
c906108c
SS
2190@item cd @var{directory}
2191Set the @value{GDBN} working directory to @var{directory}.
2192
2193@kindex pwd
2194@item pwd
2195Print the @value{GDBN} working directory.
2196@end table
2197
60bf7e09
EZ
2198It is generally impossible to find the current working directory of
2199the process being debugged (since a program can change its directory
2200during its run). If you work on a system where @value{GDBN} is
2201configured with the @file{/proc} support, you can use the @code{info
2202proc} command (@pxref{SVR4 Process Information}) to find out the
2203current working directory of the debuggee.
2204
6d2ebf8b 2205@node Input/Output
79a6e687 2206@section Your Program's Input and Output
c906108c
SS
2207
2208@cindex redirection
2209@cindex i/o
2210@cindex terminal
2211By default, the program you run under @value{GDBN} does input and output to
5d161b24 2212the same terminal that @value{GDBN} uses. @value{GDBN} switches the terminal
c906108c
SS
2213to its own terminal modes to interact with you, but it records the terminal
2214modes your program was using and switches back to them when you continue
2215running your program.
2216
2217@table @code
2218@kindex info terminal
2219@item info terminal
2220Displays information recorded by @value{GDBN} about the terminal modes your
2221program is using.
2222@end table
2223
2224You can redirect your program's input and/or output using shell
2225redirection with the @code{run} command. For example,
2226
474c8240 2227@smallexample
c906108c 2228run > outfile
474c8240 2229@end smallexample
c906108c
SS
2230
2231@noindent
2232starts your program, diverting its output to the file @file{outfile}.
2233
2234@kindex tty
2235@cindex controlling terminal
2236Another way to specify where your program should do input and output is
2237with the @code{tty} command. This command accepts a file name as
2238argument, and causes this file to be the default for future @code{run}
2239commands. It also resets the controlling terminal for the child
2240process, for future @code{run} commands. For example,
2241
474c8240 2242@smallexample
c906108c 2243tty /dev/ttyb
474c8240 2244@end smallexample
c906108c
SS
2245
2246@noindent
2247directs that processes started with subsequent @code{run} commands
2248default to do input and output on the terminal @file{/dev/ttyb} and have
2249that as their controlling terminal.
2250
2251An explicit redirection in @code{run} overrides the @code{tty} command's
2252effect on the input/output device, but not its effect on the controlling
2253terminal.
2254
2255When you use the @code{tty} command or redirect input in the @code{run}
2256command, only the input @emph{for your program} is affected. The input
3cb3b8df
BR
2257for @value{GDBN} still comes from your terminal. @code{tty} is an alias
2258for @code{set inferior-tty}.
2259
2260@cindex inferior tty
2261@cindex set inferior controlling terminal
2262You can use the @code{show inferior-tty} command to tell @value{GDBN} to
2263display the name of the terminal that will be used for future runs of your
2264program.
2265
2266@table @code
2267@item set inferior-tty /dev/ttyb
2268@kindex set inferior-tty
2269Set the tty for the program being debugged to /dev/ttyb.
2270
2271@item show inferior-tty
2272@kindex show inferior-tty
2273Show the current tty for the program being debugged.
2274@end table
c906108c 2275
6d2ebf8b 2276@node Attach
79a6e687 2277@section Debugging an Already-running Process
c906108c
SS
2278@kindex attach
2279@cindex attach
2280
2281@table @code
2282@item attach @var{process-id}
2283This command attaches to a running process---one that was started
2284outside @value{GDBN}. (@code{info files} shows your active
2285targets.) The command takes as argument a process ID. The usual way to
09d4efe1 2286find out the @var{process-id} of a Unix process is with the @code{ps} utility,
c906108c
SS
2287or with the @samp{jobs -l} shell command.
2288
2289@code{attach} does not repeat if you press @key{RET} a second time after
2290executing the command.
2291@end table
2292
2293To use @code{attach}, your program must be running in an environment
2294which supports processes; for example, @code{attach} does not work for
2295programs on bare-board targets that lack an operating system. You must
2296also have permission to send the process a signal.
2297
2298When you use @code{attach}, the debugger finds the program running in
2299the process first by looking in the current working directory, then (if
2300the program is not found) by using the source file search path
79a6e687 2301(@pxref{Source Path, ,Specifying Source Directories}). You can also use
c906108c
SS
2302the @code{file} command to load the program. @xref{Files, ,Commands to
2303Specify Files}.
2304
2305The first thing @value{GDBN} does after arranging to debug the specified
2306process is to stop it. You can examine and modify an attached process
53a5351d
JM
2307with all the @value{GDBN} commands that are ordinarily available when
2308you start processes with @code{run}. You can insert breakpoints; you
2309can step and continue; you can modify storage. If you would rather the
2310process continue running, you may use the @code{continue} command after
c906108c
SS
2311attaching @value{GDBN} to the process.
2312
2313@table @code
2314@kindex detach
2315@item detach
2316When you have finished debugging the attached process, you can use the
2317@code{detach} command to release it from @value{GDBN} control. Detaching
2318the process continues its execution. After the @code{detach} command,
2319that process and @value{GDBN} become completely independent once more, and you
2320are ready to @code{attach} another process or start one with @code{run}.
2321@code{detach} does not repeat if you press @key{RET} again after
2322executing the command.
2323@end table
2324
159fcc13
JK
2325If you exit @value{GDBN} while you have an attached process, you detach
2326that process. If you use the @code{run} command, you kill that process.
2327By default, @value{GDBN} asks for confirmation if you try to do either of these
2328things; you can control whether or not you need to confirm by using the
2329@code{set confirm} command (@pxref{Messages/Warnings, ,Optional Warnings and
79a6e687 2330Messages}).
c906108c 2331
6d2ebf8b 2332@node Kill Process
79a6e687 2333@section Killing the Child Process
c906108c
SS
2334
2335@table @code
2336@kindex kill
2337@item kill
2338Kill the child process in which your program is running under @value{GDBN}.
2339@end table
2340
2341This command is useful if you wish to debug a core dump instead of a
2342running process. @value{GDBN} ignores any core dump file while your program
2343is running.
2344
2345On some operating systems, a program cannot be executed outside @value{GDBN}
2346while you have breakpoints set on it inside @value{GDBN}. You can use the
2347@code{kill} command in this situation to permit running your program
2348outside the debugger.
2349
2350The @code{kill} command is also useful if you wish to recompile and
2351relink your program, since on many systems it is impossible to modify an
2352executable file while it is running in a process. In this case, when you
2353next type @code{run}, @value{GDBN} notices that the file has changed, and
2354reads the symbol table again (while trying to preserve your current
2355breakpoint settings).
2356
6d2ebf8b 2357@node Threads
79a6e687 2358@section Debugging Programs with Multiple Threads
c906108c
SS
2359
2360@cindex threads of execution
2361@cindex multiple threads
2362@cindex switching threads
2363In some operating systems, such as HP-UX and Solaris, a single program
2364may have more than one @dfn{thread} of execution. The precise semantics
2365of threads differ from one operating system to another, but in general
2366the threads of a single program are akin to multiple processes---except
2367that they share one address space (that is, they can all examine and
2368modify the same variables). On the other hand, each thread has its own
2369registers and execution stack, and perhaps private memory.
2370
2371@value{GDBN} provides these facilities for debugging multi-thread
2372programs:
2373
2374@itemize @bullet
2375@item automatic notification of new threads
2376@item @samp{thread @var{threadno}}, a command to switch among threads
2377@item @samp{info threads}, a command to inquire about existing threads
5d161b24 2378@item @samp{thread apply [@var{threadno}] [@var{all}] @var{args}},
c906108c
SS
2379a command to apply a command to a list of threads
2380@item thread-specific breakpoints
93815fbf
VP
2381@item @samp{set print thread-events}, which controls printing of
2382messages on thread start and exit.
c906108c
SS
2383@end itemize
2384
c906108c
SS
2385@quotation
2386@emph{Warning:} These facilities are not yet available on every
2387@value{GDBN} configuration where the operating system supports threads.
2388If your @value{GDBN} does not support threads, these commands have no
2389effect. For example, a system without thread support shows no output
2390from @samp{info threads}, and always rejects the @code{thread} command,
2391like this:
2392
2393@smallexample
2394(@value{GDBP}) info threads
2395(@value{GDBP}) thread 1
2396Thread ID 1 not known. Use the "info threads" command to
2397see the IDs of currently known threads.
2398@end smallexample
2399@c FIXME to implementors: how hard would it be to say "sorry, this GDB
2400@c doesn't support threads"?
2401@end quotation
c906108c
SS
2402
2403@cindex focus of debugging
2404@cindex current thread
2405The @value{GDBN} thread debugging facility allows you to observe all
2406threads while your program runs---but whenever @value{GDBN} takes
2407control, one thread in particular is always the focus of debugging.
2408This thread is called the @dfn{current thread}. Debugging commands show
2409program information from the perspective of the current thread.
2410
41afff9a 2411@cindex @code{New} @var{systag} message
c906108c
SS
2412@cindex thread identifier (system)
2413@c FIXME-implementors!! It would be more helpful if the [New...] message
2414@c included GDB's numeric thread handle, so you could just go to that
2415@c thread without first checking `info threads'.
2416Whenever @value{GDBN} detects a new thread in your program, it displays
2417the target system's identification for the thread with a message in the
2418form @samp{[New @var{systag}]}. @var{systag} is a thread identifier
2419whose form varies depending on the particular system. For example, on
8807d78b 2420@sc{gnu}/Linux, you might see
c906108c 2421
474c8240 2422@smallexample
8807d78b 2423[New Thread 46912507313328 (LWP 25582)]
474c8240 2424@end smallexample
c906108c
SS
2425
2426@noindent
2427when @value{GDBN} notices a new thread. In contrast, on an SGI system,
2428the @var{systag} is simply something like @samp{process 368}, with no
2429further qualifier.
2430
2431@c FIXME!! (1) Does the [New...] message appear even for the very first
2432@c thread of a program, or does it only appear for the
6ca652b0 2433@c second---i.e.@: when it becomes obvious we have a multithread
c906108c
SS
2434@c program?
2435@c (2) *Is* there necessarily a first thread always? Or do some
2436@c multithread systems permit starting a program with multiple
5d161b24 2437@c threads ab initio?
c906108c
SS
2438
2439@cindex thread number
2440@cindex thread identifier (GDB)
2441For debugging purposes, @value{GDBN} associates its own thread
2442number---always a single integer---with each thread in your program.
2443
2444@table @code
2445@kindex info threads
2446@item info threads
2447Display a summary of all threads currently in your
2448program. @value{GDBN} displays for each thread (in this order):
2449
2450@enumerate
09d4efe1
EZ
2451@item
2452the thread number assigned by @value{GDBN}
c906108c 2453
09d4efe1
EZ
2454@item
2455the target system's thread identifier (@var{systag})
c906108c 2456
09d4efe1
EZ
2457@item
2458the current stack frame summary for that thread
c906108c
SS
2459@end enumerate
2460
2461@noindent
2462An asterisk @samp{*} to the left of the @value{GDBN} thread number
2463indicates the current thread.
2464
5d161b24 2465For example,
c906108c
SS
2466@end table
2467@c end table here to get a little more width for example
2468
2469@smallexample
2470(@value{GDBP}) info threads
2471 3 process 35 thread 27 0x34e5 in sigpause ()
2472 2 process 35 thread 23 0x34e5 in sigpause ()
2473* 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)
2474 at threadtest.c:68
2475@end smallexample
53a5351d
JM
2476
2477On HP-UX systems:
c906108c 2478
4644b6e3
EZ
2479@cindex debugging multithreaded programs (on HP-UX)
2480@cindex thread identifier (GDB), on HP-UX
c906108c
SS
2481For debugging purposes, @value{GDBN} associates its own thread
2482number---a small integer assigned in thread-creation order---with each
2483thread in your program.
2484
41afff9a
EZ
2485@cindex @code{New} @var{systag} message, on HP-UX
2486@cindex thread identifier (system), on HP-UX
c906108c
SS
2487@c FIXME-implementors!! It would be more helpful if the [New...] message
2488@c included GDB's numeric thread handle, so you could just go to that
2489@c thread without first checking `info threads'.
2490Whenever @value{GDBN} detects a new thread in your program, it displays
2491both @value{GDBN}'s thread number and the target system's identification for the thread with a message in the
2492form @samp{[New @var{systag}]}. @var{systag} is a thread identifier
2493whose form varies depending on the particular system. For example, on
2494HP-UX, you see
2495
474c8240 2496@smallexample
c906108c 2497[New thread 2 (system thread 26594)]
474c8240 2498@end smallexample
c906108c
SS
2499
2500@noindent
5d161b24 2501when @value{GDBN} notices a new thread.
c906108c
SS
2502
2503@table @code
4644b6e3 2504@kindex info threads (HP-UX)
c906108c
SS
2505@item info threads
2506Display a summary of all threads currently in your
2507program. @value{GDBN} displays for each thread (in this order):
2508
2509@enumerate
2510@item the thread number assigned by @value{GDBN}
2511
2512@item the target system's thread identifier (@var{systag})
2513
2514@item the current stack frame summary for that thread
2515@end enumerate
2516
2517@noindent
2518An asterisk @samp{*} to the left of the @value{GDBN} thread number
2519indicates the current thread.
2520
5d161b24 2521For example,
c906108c
SS
2522@end table
2523@c end table here to get a little more width for example
2524
474c8240 2525@smallexample
c906108c 2526(@value{GDBP}) info threads
6d2ebf8b
SS
2527 * 3 system thread 26607 worker (wptr=0x7b09c318 "@@") \@*
2528 at quicksort.c:137
2529 2 system thread 26606 0x7b0030d8 in __ksleep () \@*
2530 from /usr/lib/libc.2
2531 1 system thread 27905 0x7b003498 in _brk () \@*
2532 from /usr/lib/libc.2
474c8240 2533@end smallexample
c906108c 2534
c45da7e6
EZ
2535On Solaris, you can display more information about user threads with a
2536Solaris-specific command:
2537
2538@table @code
2539@item maint info sol-threads
2540@kindex maint info sol-threads
2541@cindex thread info (Solaris)
2542Display info on Solaris user threads.
2543@end table
2544
c906108c
SS
2545@table @code
2546@kindex thread @var{threadno}
2547@item thread @var{threadno}
2548Make thread number @var{threadno} the current thread. The command
2549argument @var{threadno} is the internal @value{GDBN} thread number, as
2550shown in the first field of the @samp{info threads} display.
2551@value{GDBN} responds by displaying the system identifier of the thread
2552you selected, and its current stack frame summary:
2553
2554@smallexample
2555@c FIXME!! This example made up; find a @value{GDBN} w/threads and get real one
2556(@value{GDBP}) thread 2
c906108c 2557[Switching to process 35 thread 23]
c906108c
SS
25580x34e5 in sigpause ()
2559@end smallexample
2560
2561@noindent
2562As with the @samp{[New @dots{}]} message, the form of the text after
2563@samp{Switching to} depends on your system's conventions for identifying
5d161b24 2564threads.
c906108c 2565
9c16f35a 2566@kindex thread apply
638ac427 2567@cindex apply command to several threads
839c27b7
EZ
2568@item thread apply [@var{threadno}] [@var{all}] @var{command}
2569The @code{thread apply} command allows you to apply the named
2570@var{command} to one or more threads. Specify the numbers of the
2571threads that you want affected with the command argument
2572@var{threadno}. It can be a single thread number, one of the numbers
2573shown in the first field of the @samp{info threads} display; or it
2574could be a range of thread numbers, as in @code{2-4}. To apply a
2575command to all threads, type @kbd{thread apply all @var{command}}.
93815fbf
VP
2576
2577@kindex set print thread-events
2578@cindex print messages on thread start and exit
2579@item set print thread-events
2580@itemx set print thread-events on
2581@itemx set print thread-events off
2582The @code{set print thread-events} command allows you to enable or
2583disable printing of messages when @value{GDBN} notices that new threads have
2584started or that threads have exited. By default, these messages will
2585be printed if detection of these events is supported by the target.
2586Note that these messages cannot be disabled on all targets.
2587
2588@kindex show print thread-events
2589@item show print thread-events
2590Show whether messages will be printed when @value{GDBN} detects that threads
2591have started and exited.
c906108c
SS
2592@end table
2593
2594@cindex automatic thread selection
2595@cindex switching threads automatically
2596@cindex threads, automatic switching
2597Whenever @value{GDBN} stops your program, due to a breakpoint or a
2598signal, it automatically selects the thread where that breakpoint or
2599signal happened. @value{GDBN} alerts you to the context switch with a
2600message of the form @samp{[Switching to @var{systag}]} to identify the
2601thread.
2602
79a6e687 2603@xref{Thread Stops,,Stopping and Starting Multi-thread Programs}, for
c906108c
SS
2604more information about how @value{GDBN} behaves when you stop and start
2605programs with multiple threads.
2606
79a6e687 2607@xref{Set Watchpoints,,Setting Watchpoints}, for information about
c906108c 2608watchpoints in programs with multiple threads.
c906108c 2609
6d2ebf8b 2610@node Processes
79a6e687 2611@section Debugging Programs with Multiple Processes
c906108c
SS
2612
2613@cindex fork, debugging programs which call
2614@cindex multiple processes
2615@cindex processes, multiple
53a5351d
JM
2616On most systems, @value{GDBN} has no special support for debugging
2617programs which create additional processes using the @code{fork}
2618function. When a program forks, @value{GDBN} will continue to debug the
2619parent process and the child process will run unimpeded. If you have
2620set a breakpoint in any code which the child then executes, the child
2621will get a @code{SIGTRAP} signal which (unless it catches the signal)
2622will cause it to terminate.
c906108c
SS
2623
2624However, if you want to debug the child process there is a workaround
2625which isn't too painful. Put a call to @code{sleep} in the code which
2626the child process executes after the fork. It may be useful to sleep
2627only if a certain environment variable is set, or a certain file exists,
2628so that the delay need not occur when you don't want to run @value{GDBN}
2629on the child. While the child is sleeping, use the @code{ps} program to
2630get its process ID. Then tell @value{GDBN} (a new invocation of
2631@value{GDBN} if you are also debugging the parent process) to attach to
d4f3574e 2632the child process (@pxref{Attach}). From that point on you can debug
c906108c 2633the child process just like any other process which you attached to.
c906108c 2634
b51970ac
DJ
2635On some systems, @value{GDBN} provides support for debugging programs that
2636create additional processes using the @code{fork} or @code{vfork} functions.
2637Currently, the only platforms with this feature are HP-UX (11.x and later
a6b151f1 2638only?) and @sc{gnu}/Linux (kernel version 2.5.60 and later).
c906108c
SS
2639
2640By default, when a program forks, @value{GDBN} will continue to debug
2641the parent process and the child process will run unimpeded.
2642
2643If you want to follow the child process instead of the parent process,
2644use the command @w{@code{set follow-fork-mode}}.
2645
2646@table @code
2647@kindex set follow-fork-mode
2648@item set follow-fork-mode @var{mode}
2649Set the debugger response to a program call of @code{fork} or
2650@code{vfork}. A call to @code{fork} or @code{vfork} creates a new
9c16f35a 2651process. The @var{mode} argument can be:
c906108c
SS
2652
2653@table @code
2654@item parent
2655The original process is debugged after a fork. The child process runs
2df3850c 2656unimpeded. This is the default.
c906108c
SS
2657
2658@item child
2659The new process is debugged after a fork. The parent process runs
2660unimpeded.
2661
c906108c
SS
2662@end table
2663
9c16f35a 2664@kindex show follow-fork-mode
c906108c 2665@item show follow-fork-mode
2df3850c 2666Display the current debugger response to a @code{fork} or @code{vfork} call.
c906108c
SS
2667@end table
2668
5c95884b
MS
2669@cindex debugging multiple processes
2670On Linux, if you want to debug both the parent and child processes, use the
2671command @w{@code{set detach-on-fork}}.
2672
2673@table @code
2674@kindex set detach-on-fork
2675@item set detach-on-fork @var{mode}
2676Tells gdb whether to detach one of the processes after a fork, or
2677retain debugger control over them both.
2678
2679@table @code
2680@item on
2681The child process (or parent process, depending on the value of
2682@code{follow-fork-mode}) will be detached and allowed to run
2683independently. This is the default.
2684
2685@item off
2686Both processes will be held under the control of @value{GDBN}.
2687One process (child or parent, depending on the value of
2688@code{follow-fork-mode}) is debugged as usual, while the other
2689is held suspended.
2690
2691@end table
2692
11310833
NR
2693@kindex show detach-on-fork
2694@item show detach-on-fork
2695Show whether detach-on-fork mode is on/off.
5c95884b
MS
2696@end table
2697
11310833 2698If you choose to set @samp{detach-on-fork} mode off, then
5c95884b
MS
2699@value{GDBN} will retain control of all forked processes (including
2700nested forks). You can list the forked processes under the control of
2701@value{GDBN} by using the @w{@code{info forks}} command, and switch
2702from one fork to another by using the @w{@code{fork}} command.
2703
2704@table @code
2705@kindex info forks
2706@item info forks
2707Print a list of all forked processes under the control of @value{GDBN}.
2708The listing will include a fork id, a process id, and the current
2709position (program counter) of the process.
2710
5c95884b
MS
2711@kindex fork @var{fork-id}
2712@item fork @var{fork-id}
2713Make fork number @var{fork-id} the current process. The argument
2714@var{fork-id} is the internal fork number assigned by @value{GDBN},
2715as shown in the first field of the @samp{info forks} display.
2716
11310833
NR
2717@kindex process @var{process-id}
2718@item process @var{process-id}
2719Make process number @var{process-id} the current process. The
2720argument @var{process-id} must be one that is listed in the output of
2721@samp{info forks}.
2722
5c95884b
MS
2723@end table
2724
2725To quit debugging one of the forked processes, you can either detach
f73adfeb 2726from it by using the @w{@code{detach fork}} command (allowing it to
5c95884b 2727run independently), or delete (and kill) it using the
b8db102d 2728@w{@code{delete fork}} command.
5c95884b
MS
2729
2730@table @code
f73adfeb
AS
2731@kindex detach fork @var{fork-id}
2732@item detach fork @var{fork-id}
5c95884b
MS
2733Detach from the process identified by @value{GDBN} fork number
2734@var{fork-id}, and remove it from the fork list. The process will be
2735allowed to run independently.
2736
b8db102d
MS
2737@kindex delete fork @var{fork-id}
2738@item delete fork @var{fork-id}
5c95884b
MS
2739Kill the process identified by @value{GDBN} fork number @var{fork-id},
2740and remove it from the fork list.
2741
2742@end table
2743
c906108c
SS
2744If you ask to debug a child process and a @code{vfork} is followed by an
2745@code{exec}, @value{GDBN} executes the new target up to the first
2746breakpoint in the new target. If you have a breakpoint set on
2747@code{main} in your original program, the breakpoint will also be set on
2748the child process's @code{main}.
2749
2750When a child process is spawned by @code{vfork}, you cannot debug the
2751child or parent until an @code{exec} call completes.
2752
2753If you issue a @code{run} command to @value{GDBN} after an @code{exec}
2754call executes, the new target restarts. To restart the parent process,
2755use the @code{file} command with the parent executable name as its
2756argument.
2757
2758You can use the @code{catch} command to make @value{GDBN} stop whenever
2759a @code{fork}, @code{vfork}, or @code{exec} call is made. @xref{Set
79a6e687 2760Catchpoints, ,Setting Catchpoints}.
c906108c 2761
5c95884b 2762@node Checkpoint/Restart
79a6e687 2763@section Setting a @emph{Bookmark} to Return to Later
5c95884b
MS
2764
2765@cindex checkpoint
2766@cindex restart
2767@cindex bookmark
2768@cindex snapshot of a process
2769@cindex rewind program state
2770
2771On certain operating systems@footnote{Currently, only
2772@sc{gnu}/Linux.}, @value{GDBN} is able to save a @dfn{snapshot} of a
2773program's state, called a @dfn{checkpoint}, and come back to it
2774later.
2775
2776Returning to a checkpoint effectively undoes everything that has
2777happened in the program since the @code{checkpoint} was saved. This
2778includes changes in memory, registers, and even (within some limits)
2779system state. Effectively, it is like going back in time to the
2780moment when the checkpoint was saved.
2781
2782Thus, if you're stepping thru a program and you think you're
2783getting close to the point where things go wrong, you can save
2784a checkpoint. Then, if you accidentally go too far and miss
2785the critical statement, instead of having to restart your program
2786from the beginning, you can just go back to the checkpoint and
2787start again from there.
2788
2789This can be especially useful if it takes a lot of time or
2790steps to reach the point where you think the bug occurs.
2791
2792To use the @code{checkpoint}/@code{restart} method of debugging:
2793
2794@table @code
2795@kindex checkpoint
2796@item checkpoint
2797Save a snapshot of the debugged program's current execution state.
2798The @code{checkpoint} command takes no arguments, but each checkpoint
2799is assigned a small integer id, similar to a breakpoint id.
2800
2801@kindex info checkpoints
2802@item info checkpoints
2803List the checkpoints that have been saved in the current debugging
2804session. For each checkpoint, the following information will be
2805listed:
2806
2807@table @code
2808@item Checkpoint ID
2809@item Process ID
2810@item Code Address
2811@item Source line, or label
2812@end table
2813
2814@kindex restart @var{checkpoint-id}
2815@item restart @var{checkpoint-id}
2816Restore the program state that was saved as checkpoint number
2817@var{checkpoint-id}. All program variables, registers, stack frames
2818etc.@: will be returned to the values that they had when the checkpoint
2819was saved. In essence, gdb will ``wind back the clock'' to the point
2820in time when the checkpoint was saved.
2821
2822Note that breakpoints, @value{GDBN} variables, command history etc.
2823are not affected by restoring a checkpoint. In general, a checkpoint
2824only restores things that reside in the program being debugged, not in
2825the debugger.
2826
b8db102d
MS
2827@kindex delete checkpoint @var{checkpoint-id}
2828@item delete checkpoint @var{checkpoint-id}
5c95884b
MS
2829Delete the previously-saved checkpoint identified by @var{checkpoint-id}.
2830
2831@end table
2832
2833Returning to a previously saved checkpoint will restore the user state
2834of the program being debugged, plus a significant subset of the system
2835(OS) state, including file pointers. It won't ``un-write'' data from
2836a file, but it will rewind the file pointer to the previous location,
2837so that the previously written data can be overwritten. For files
2838opened in read mode, the pointer will also be restored so that the
2839previously read data can be read again.
2840
2841Of course, characters that have been sent to a printer (or other
2842external device) cannot be ``snatched back'', and characters received
2843from eg.@: a serial device can be removed from internal program buffers,
2844but they cannot be ``pushed back'' into the serial pipeline, ready to
2845be received again. Similarly, the actual contents of files that have
2846been changed cannot be restored (at this time).
2847
2848However, within those constraints, you actually can ``rewind'' your
2849program to a previously saved point in time, and begin debugging it
2850again --- and you can change the course of events so as to debug a
2851different execution path this time.
2852
2853@cindex checkpoints and process id
2854Finally, there is one bit of internal program state that will be
2855different when you return to a checkpoint --- the program's process
2856id. Each checkpoint will have a unique process id (or @var{pid}),
2857and each will be different from the program's original @var{pid}.
2858If your program has saved a local copy of its process id, this could
2859potentially pose a problem.
2860
79a6e687 2861@subsection A Non-obvious Benefit of Using Checkpoints
5c95884b
MS
2862
2863On some systems such as @sc{gnu}/Linux, address space randomization
2864is performed on new processes for security reasons. This makes it
2865difficult or impossible to set a breakpoint, or watchpoint, on an
2866absolute address if you have to restart the program, since the
2867absolute location of a symbol will change from one execution to the
2868next.
2869
2870A checkpoint, however, is an @emph{identical} copy of a process.
2871Therefore if you create a checkpoint at (eg.@:) the start of main,
2872and simply return to that checkpoint instead of restarting the
2873process, you can avoid the effects of address randomization and
2874your symbols will all stay in the same place.
2875
6d2ebf8b 2876@node Stopping
c906108c
SS
2877@chapter Stopping and Continuing
2878
2879The principal purposes of using a debugger are so that you can stop your
2880program before it terminates; or so that, if your program runs into
2881trouble, you can investigate and find out why.
2882
7a292a7a
SS
2883Inside @value{GDBN}, your program may stop for any of several reasons,
2884such as a signal, a breakpoint, or reaching a new line after a
2885@value{GDBN} command such as @code{step}. You may then examine and
2886change variables, set new breakpoints or remove old ones, and then
2887continue execution. Usually, the messages shown by @value{GDBN} provide
2888ample explanation of the status of your program---but you can also
2889explicitly request this information at any time.
c906108c
SS
2890
2891@table @code
2892@kindex info program
2893@item info program
2894Display information about the status of your program: whether it is
7a292a7a 2895running or not, what process it is, and why it stopped.
c906108c
SS
2896@end table
2897
2898@menu
2899* Breakpoints:: Breakpoints, watchpoints, and catchpoints
2900* Continuing and Stepping:: Resuming execution
c906108c 2901* Signals:: Signals
c906108c 2902* Thread Stops:: Stopping and starting multi-thread programs
c906108c
SS
2903@end menu
2904
6d2ebf8b 2905@node Breakpoints
79a6e687 2906@section Breakpoints, Watchpoints, and Catchpoints
c906108c
SS
2907
2908@cindex breakpoints
2909A @dfn{breakpoint} makes your program stop whenever a certain point in
2910the program is reached. For each breakpoint, you can add conditions to
2911control in finer detail whether your program stops. You can set
2912breakpoints with the @code{break} command and its variants (@pxref{Set
79a6e687 2913Breaks, ,Setting Breakpoints}), to specify the place where your program
c906108c
SS
2914should stop by line number, function name or exact address in the
2915program.
2916
09d4efe1
EZ
2917On some systems, you can set breakpoints in shared libraries before
2918the executable is run. There is a minor limitation on HP-UX systems:
2919you must wait until the executable is run in order to set breakpoints
2920in shared library routines that are not called directly by the program
2921(for example, routines that are arguments in a @code{pthread_create}
2922call).
c906108c
SS
2923
2924@cindex watchpoints
fd60e0df 2925@cindex data breakpoints
c906108c
SS
2926@cindex memory tracing
2927@cindex breakpoint on memory address
2928@cindex breakpoint on variable modification
2929A @dfn{watchpoint} is a special breakpoint that stops your program
fd60e0df 2930when the value of an expression changes. The expression may be a value
0ced0c34 2931of a variable, or it could involve values of one or more variables
fd60e0df
EZ
2932combined by operators, such as @samp{a + b}. This is sometimes called
2933@dfn{data breakpoints}. You must use a different command to set
79a6e687 2934watchpoints (@pxref{Set Watchpoints, ,Setting Watchpoints}), but aside
fd60e0df
EZ
2935from that, you can manage a watchpoint like any other breakpoint: you
2936enable, disable, and delete both breakpoints and watchpoints using the
2937same commands.
c906108c
SS
2938
2939You can arrange to have values from your program displayed automatically
2940whenever @value{GDBN} stops at a breakpoint. @xref{Auto Display,,
79a6e687 2941Automatic Display}.
c906108c
SS
2942
2943@cindex catchpoints
2944@cindex breakpoint on events
2945A @dfn{catchpoint} is another special breakpoint that stops your program
b37052ae 2946when a certain kind of event occurs, such as the throwing of a C@t{++}
c906108c
SS
2947exception or the loading of a library. As with watchpoints, you use a
2948different command to set a catchpoint (@pxref{Set Catchpoints, ,Setting
79a6e687 2949Catchpoints}), but aside from that, you can manage a catchpoint like any
c906108c 2950other breakpoint. (To stop when your program receives a signal, use the
d4f3574e 2951@code{handle} command; see @ref{Signals, ,Signals}.)
c906108c
SS
2952
2953@cindex breakpoint numbers
2954@cindex numbers for breakpoints
2955@value{GDBN} assigns a number to each breakpoint, watchpoint, or
2956catchpoint when you create it; these numbers are successive integers
2957starting with one. In many of the commands for controlling various
2958features of breakpoints you use the breakpoint number to say which
2959breakpoint you want to change. Each breakpoint may be @dfn{enabled} or
2960@dfn{disabled}; if disabled, it has no effect on your program until you
2961enable it again.
2962
c5394b80
JM
2963@cindex breakpoint ranges
2964@cindex ranges of breakpoints
2965Some @value{GDBN} commands accept a range of breakpoints on which to
2966operate. A breakpoint range is either a single breakpoint number, like
2967@samp{5}, or two such numbers, in increasing order, separated by a
2968hyphen, like @samp{5-7}. When a breakpoint range is given to a command,
d52fb0e9 2969all breakpoints in that range are operated on.
c5394b80 2970
c906108c
SS
2971@menu
2972* Set Breaks:: Setting breakpoints
2973* Set Watchpoints:: Setting watchpoints
2974* Set Catchpoints:: Setting catchpoints
2975* Delete Breaks:: Deleting breakpoints
2976* Disabling:: Disabling breakpoints
2977* Conditions:: Break conditions
2978* Break Commands:: Breakpoint command lists
d4f3574e 2979* Error in Breakpoints:: ``Cannot insert breakpoints''
79a6e687 2980* Breakpoint-related Warnings:: ``Breakpoint address adjusted...''
c906108c
SS
2981@end menu
2982
6d2ebf8b 2983@node Set Breaks
79a6e687 2984@subsection Setting Breakpoints
c906108c 2985
5d161b24 2986@c FIXME LMB what does GDB do if no code on line of breakpt?
c906108c
SS
2987@c consider in particular declaration with/without initialization.
2988@c
2989@c FIXME 2 is there stuff on this already? break at fun start, already init?
2990
2991@kindex break
41afff9a
EZ
2992@kindex b @r{(@code{break})}
2993@vindex $bpnum@r{, convenience variable}
c906108c
SS
2994@cindex latest breakpoint
2995Breakpoints are set with the @code{break} command (abbreviated
5d161b24 2996@code{b}). The debugger convenience variable @samp{$bpnum} records the
f3b28801 2997number of the breakpoint you've set most recently; see @ref{Convenience
79a6e687 2998Vars,, Convenience Variables}, for a discussion of what you can do with
c906108c
SS
2999convenience variables.
3000
c906108c 3001@table @code
2a25a5ba
EZ
3002@item break @var{location}
3003Set a breakpoint at the given @var{location}, which can specify a
3004function name, a line number, or an address of an instruction.
3005(@xref{Specify Location}, for a list of all the possible ways to
3006specify a @var{location}.) The breakpoint will stop your program just
3007before it executes any of the code in the specified @var{location}.
3008
c906108c 3009When using source languages that permit overloading of symbols, such as
2a25a5ba 3010C@t{++}, a function name may refer to more than one possible place to break.
6ba66d6a
JB
3011@xref{Ambiguous Expressions,,Ambiguous Expressions}, for a discussion of
3012that situation.
c906108c 3013
c906108c
SS
3014@item break
3015When called without any arguments, @code{break} sets a breakpoint at
3016the next instruction to be executed in the selected stack frame
3017(@pxref{Stack, ,Examining the Stack}). In any selected frame but the
3018innermost, this makes your program stop as soon as control
3019returns to that frame. This is similar to the effect of a
3020@code{finish} command in the frame inside the selected frame---except
3021that @code{finish} does not leave an active breakpoint. If you use
3022@code{break} without an argument in the innermost frame, @value{GDBN} stops
3023the next time it reaches the current location; this may be useful
3024inside loops.
3025
3026@value{GDBN} normally ignores breakpoints when it resumes execution, until at
3027least one instruction has been executed. If it did not do this, you
3028would be unable to proceed past a breakpoint without first disabling the
3029breakpoint. This rule applies whether or not the breakpoint already
3030existed when your program stopped.
3031
3032@item break @dots{} if @var{cond}
3033Set a breakpoint with condition @var{cond}; evaluate the expression
3034@var{cond} each time the breakpoint is reached, and stop only if the
3035value is nonzero---that is, if @var{cond} evaluates as true.
3036@samp{@dots{}} stands for one of the possible arguments described
3037above (or no argument) specifying where to break. @xref{Conditions,
79a6e687 3038,Break Conditions}, for more information on breakpoint conditions.
c906108c
SS
3039
3040@kindex tbreak
3041@item tbreak @var{args}
3042Set a breakpoint enabled only for one stop. @var{args} are the
3043same as for the @code{break} command, and the breakpoint is set in the same
3044way, but the breakpoint is automatically deleted after the first time your
79a6e687 3045program stops there. @xref{Disabling, ,Disabling Breakpoints}.
c906108c 3046
c906108c 3047@kindex hbreak
ba04e063 3048@cindex hardware breakpoints
c906108c 3049@item hbreak @var{args}
d4f3574e
SS
3050Set a hardware-assisted breakpoint. @var{args} are the same as for the
3051@code{break} command and the breakpoint is set in the same way, but the
c906108c
SS
3052breakpoint requires hardware support and some target hardware may not
3053have this support. The main purpose of this is EPROM/ROM code
d4f3574e
SS
3054debugging, so you can set a breakpoint at an instruction without
3055changing the instruction. This can be used with the new trap-generation
09d4efe1 3056provided by SPARClite DSU and most x86-based targets. These targets
d4f3574e
SS
3057will generate traps when a program accesses some data or instruction
3058address that is assigned to the debug registers. However the hardware
3059breakpoint registers can take a limited number of breakpoints. For
3060example, on the DSU, only two data breakpoints can be set at a time, and
3061@value{GDBN} will reject this command if more than two are used. Delete
3062or disable unused hardware breakpoints before setting new ones
79a6e687
BW
3063(@pxref{Disabling, ,Disabling Breakpoints}).
3064@xref{Conditions, ,Break Conditions}.
9c16f35a
EZ
3065For remote targets, you can restrict the number of hardware
3066breakpoints @value{GDBN} will use, see @ref{set remote
3067hardware-breakpoint-limit}.
501eef12 3068
c906108c
SS
3069@kindex thbreak
3070@item thbreak @var{args}
3071Set a hardware-assisted breakpoint enabled only for one stop. @var{args}
3072are the same as for the @code{hbreak} command and the breakpoint is set in
5d161b24 3073the same way. However, like the @code{tbreak} command,
c906108c
SS
3074the breakpoint is automatically deleted after the
3075first time your program stops there. Also, like the @code{hbreak}
5d161b24 3076command, the breakpoint requires hardware support and some target hardware
79a6e687
BW
3077may not have this support. @xref{Disabling, ,Disabling Breakpoints}.
3078See also @ref{Conditions, ,Break Conditions}.
c906108c
SS
3079
3080@kindex rbreak
3081@cindex regular expression
c45da7e6
EZ
3082@cindex breakpoints in functions matching a regexp
3083@cindex set breakpoints in many functions
c906108c 3084@item rbreak @var{regex}
c906108c 3085Set breakpoints on all functions matching the regular expression
11cf8741
JM
3086@var{regex}. This command sets an unconditional breakpoint on all
3087matches, printing a list of all breakpoints it set. Once these
3088breakpoints are set, they are treated just like the breakpoints set with
3089the @code{break} command. You can delete them, disable them, or make
3090them conditional the same way as any other breakpoint.
3091
3092The syntax of the regular expression is the standard one used with tools
3093like @file{grep}. Note that this is different from the syntax used by
3094shells, so for instance @code{foo*} matches all functions that include
3095an @code{fo} followed by zero or more @code{o}s. There is an implicit
3096@code{.*} leading and trailing the regular expression you supply, so to
3097match only functions that begin with @code{foo}, use @code{^foo}.
c906108c 3098
f7dc1244 3099@cindex non-member C@t{++} functions, set breakpoint in
b37052ae 3100When debugging C@t{++} programs, @code{rbreak} is useful for setting
c906108c
SS
3101breakpoints on overloaded functions that are not members of any special
3102classes.
c906108c 3103
f7dc1244
EZ
3104@cindex set breakpoints on all functions
3105The @code{rbreak} command can be used to set breakpoints in
3106@strong{all} the functions in a program, like this:
3107
3108@smallexample
3109(@value{GDBP}) rbreak .
3110@end smallexample
3111
c906108c
SS
3112@kindex info breakpoints
3113@cindex @code{$_} and @code{info breakpoints}
3114@item info breakpoints @r{[}@var{n}@r{]}
3115@itemx info break @r{[}@var{n}@r{]}
3116@itemx info watchpoints @r{[}@var{n}@r{]}
3117Print a table of all breakpoints, watchpoints, and catchpoints set and
45ac1734
EZ
3118not deleted. Optional argument @var{n} means print information only
3119about the specified breakpoint (or watchpoint or catchpoint). For
3120each breakpoint, following columns are printed:
c906108c
SS
3121
3122@table @emph
3123@item Breakpoint Numbers
3124@item Type
3125Breakpoint, watchpoint, or catchpoint.
3126@item Disposition
3127Whether the breakpoint is marked to be disabled or deleted when hit.
3128@item Enabled or Disabled
3129Enabled breakpoints are marked with @samp{y}. @samp{n} marks breakpoints
b3db7447 3130that are not enabled.
c906108c 3131@item Address
fe6fbf8b 3132Where the breakpoint is in your program, as a memory address. For a
b3db7447
NR
3133pending breakpoint whose address is not yet known, this field will
3134contain @samp{<PENDING>}. Such breakpoint won't fire until a shared
3135library that has the symbol or line referred by breakpoint is loaded.
3136See below for details. A breakpoint with several locations will
3b784c4f 3137have @samp{<MULTIPLE>} in this field---see below for details.
c906108c
SS
3138@item What
3139Where the breakpoint is in the source for your program, as a file and
2650777c
JJ
3140line number. For a pending breakpoint, the original string passed to
3141the breakpoint command will be listed as it cannot be resolved until
3142the appropriate shared library is loaded in the future.
c906108c
SS
3143@end table
3144
3145@noindent
3146If a breakpoint is conditional, @code{info break} shows the condition on
3147the line following the affected breakpoint; breakpoint commands, if any,
2650777c
JJ
3148are listed after that. A pending breakpoint is allowed to have a condition
3149specified for it. The condition is not parsed for validity until a shared
3150library is loaded that allows the pending breakpoint to resolve to a
3151valid location.
c906108c
SS
3152
3153@noindent
3154@code{info break} with a breakpoint
3155number @var{n} as argument lists only that breakpoint. The
3156convenience variable @code{$_} and the default examining-address for
3157the @code{x} command are set to the address of the last breakpoint
79a6e687 3158listed (@pxref{Memory, ,Examining Memory}).
c906108c
SS
3159
3160@noindent
3161@code{info break} displays a count of the number of times the breakpoint
3162has been hit. This is especially useful in conjunction with the
3163@code{ignore} command. You can ignore a large number of breakpoint
3164hits, look at the breakpoint info to see how many times the breakpoint
3165was hit, and then run again, ignoring one less than that number. This
3166will get you quickly to the last hit of that breakpoint.
3167@end table
3168
3169@value{GDBN} allows you to set any number of breakpoints at the same place in
3170your program. There is nothing silly or meaningless about this. When
3171the breakpoints are conditional, this is even useful
79a6e687 3172(@pxref{Conditions, ,Break Conditions}).
c906108c 3173
2e9132cc
EZ
3174@cindex multiple locations, breakpoints
3175@cindex breakpoints, multiple locations
fcda367b 3176It is possible that a breakpoint corresponds to several locations
fe6fbf8b
VP
3177in your program. Examples of this situation are:
3178
3179@itemize @bullet
fe6fbf8b
VP
3180@item
3181For a C@t{++} constructor, the @value{NGCC} compiler generates several
3182instances of the function body, used in different cases.
3183
3184@item
3185For a C@t{++} template function, a given line in the function can
3186correspond to any number of instantiations.
3187
3188@item
3189For an inlined function, a given source line can correspond to
3190several places where that function is inlined.
fe6fbf8b
VP
3191@end itemize
3192
3193In all those cases, @value{GDBN} will insert a breakpoint at all
2e9132cc
EZ
3194the relevant locations@footnote{
3195As of this writing, multiple-location breakpoints work only if there's
3196line number information for all the locations. This means that they
3197will generally not work in system libraries, unless you have debug
3198info with line numbers for them.}.
fe6fbf8b 3199
3b784c4f
EZ
3200A breakpoint with multiple locations is displayed in the breakpoint
3201table using several rows---one header row, followed by one row for
3202each breakpoint location. The header row has @samp{<MULTIPLE>} in the
3203address column. The rows for individual locations contain the actual
3204addresses for locations, and show the functions to which those
3205locations belong. The number column for a location is of the form
fe6fbf8b
VP
3206@var{breakpoint-number}.@var{location-number}.
3207
3208For example:
3b784c4f 3209
fe6fbf8b
VP
3210@smallexample
3211Num Type Disp Enb Address What
32121 breakpoint keep y <MULTIPLE>
3213 stop only if i==1
3214 breakpoint already hit 1 time
32151.1 y 0x080486a2 in void foo<int>() at t.cc:8
32161.2 y 0x080486ca in void foo<double>() at t.cc:8
3217@end smallexample
3218
3219Each location can be individually enabled or disabled by passing
3220@var{breakpoint-number}.@var{location-number} as argument to the
3b784c4f
EZ
3221@code{enable} and @code{disable} commands. Note that you cannot
3222delete the individual locations from the list, you can only delete the
16bfc218 3223entire list of locations that belong to their parent breakpoint (with
3b784c4f
EZ
3224the @kbd{delete @var{num}} command, where @var{num} is the number of
3225the parent breakpoint, 1 in the above example). Disabling or enabling
3226the parent breakpoint (@pxref{Disabling}) affects all of the locations
3227that belong to that breakpoint.
fe6fbf8b 3228
2650777c 3229@cindex pending breakpoints
fe6fbf8b 3230It's quite common to have a breakpoint inside a shared library.
3b784c4f 3231Shared libraries can be loaded and unloaded explicitly,
fe6fbf8b
VP
3232and possibly repeatedly, as the program is executed. To support
3233this use case, @value{GDBN} updates breakpoint locations whenever
3234any shared library is loaded or unloaded. Typically, you would
fcda367b 3235set a breakpoint in a shared library at the beginning of your
fe6fbf8b
VP
3236debugging session, when the library is not loaded, and when the
3237symbols from the library are not available. When you try to set
3238breakpoint, @value{GDBN} will ask you if you want to set
3b784c4f 3239a so called @dfn{pending breakpoint}---breakpoint whose address
fe6fbf8b
VP
3240is not yet resolved.
3241
3242After the program is run, whenever a new shared library is loaded,
3243@value{GDBN} reevaluates all the breakpoints. When a newly loaded
3244shared library contains the symbol or line referred to by some
3245pending breakpoint, that breakpoint is resolved and becomes an
3246ordinary breakpoint. When a library is unloaded, all breakpoints
3247that refer to its symbols or source lines become pending again.
3248
3249This logic works for breakpoints with multiple locations, too. For
3250example, if you have a breakpoint in a C@t{++} template function, and
3251a newly loaded shared library has an instantiation of that template,
3252a new location is added to the list of locations for the breakpoint.
3253
3254Except for having unresolved address, pending breakpoints do not
3255differ from regular breakpoints. You can set conditions or commands,
3256enable and disable them and perform other breakpoint operations.
3257
3258@value{GDBN} provides some additional commands for controlling what
3259happens when the @samp{break} command cannot resolve breakpoint
3260address specification to an address:
dd79a6cf
JJ
3261
3262@kindex set breakpoint pending
3263@kindex show breakpoint pending
3264@table @code
3265@item set breakpoint pending auto
3266This is the default behavior. When @value{GDBN} cannot find the breakpoint
3267location, it queries you whether a pending breakpoint should be created.
3268
3269@item set breakpoint pending on
3270This indicates that an unrecognized breakpoint location should automatically
3271result in a pending breakpoint being created.
3272
3273@item set breakpoint pending off
3274This indicates that pending breakpoints are not to be created. Any
3275unrecognized breakpoint location results in an error. This setting does
3276not affect any pending breakpoints previously created.
3277
3278@item show breakpoint pending
3279Show the current behavior setting for creating pending breakpoints.
3280@end table
2650777c 3281
fe6fbf8b
VP
3282The settings above only affect the @code{break} command and its
3283variants. Once breakpoint is set, it will be automatically updated
3284as shared libraries are loaded and unloaded.
2650777c 3285
765dc015
VP
3286@cindex automatic hardware breakpoints
3287For some targets, @value{GDBN} can automatically decide if hardware or
3288software breakpoints should be used, depending on whether the
3289breakpoint address is read-only or read-write. This applies to
3290breakpoints set with the @code{break} command as well as to internal
3291breakpoints set by commands like @code{next} and @code{finish}. For
fcda367b 3292breakpoints set with @code{hbreak}, @value{GDBN} will always use hardware
765dc015
VP
3293breakpoints.
3294
3295You can control this automatic behaviour with the following commands::
3296
3297@kindex set breakpoint auto-hw
3298@kindex show breakpoint auto-hw
3299@table @code
3300@item set breakpoint auto-hw on
3301This is the default behavior. When @value{GDBN} sets a breakpoint, it
3302will try to use the target memory map to decide if software or hardware
3303breakpoint must be used.
3304
3305@item set breakpoint auto-hw off
3306This indicates @value{GDBN} should not automatically select breakpoint
3307type. If the target provides a memory map, @value{GDBN} will warn when
3308trying to set software breakpoint at a read-only address.
3309@end table
3310
74960c60
VP
3311@value{GDBN} normally implements breakpoints by replacing the program code
3312at the breakpoint address with a special instruction, which, when
3313executed, given control to the debugger. By default, the program
3314code is so modified only when the program is resumed. As soon as
3315the program stops, @value{GDBN} restores the original instructions. This
3316behaviour guards against leaving breakpoints inserted in the
3317target should gdb abrubptly disconnect. However, with slow remote
3318targets, inserting and removing breakpoint can reduce the performance.
3319This behavior can be controlled with the following commands::
3320
3321@kindex set breakpoint always-inserted
3322@kindex show breakpoint always-inserted
3323@table @code
3324@item set breakpoint always-inserted off
3325This is the default behaviour. All breakpoints, including newly added
3326by the user, are inserted in the target only when the target is
3327resumed. All breakpoints are removed from the target when it stops.
3328
3329@item set breakpoint always-inserted on
3330Causes all breakpoints to be inserted in the target at all times. If
3331the user adds a new breakpoint, or changes an existing breakpoint, the
3332breakpoints in the target are updated immediately. A breakpoint is
3333removed from the target only when breakpoint itself is removed.
3334@end table
765dc015 3335
c906108c
SS
3336@cindex negative breakpoint numbers
3337@cindex internal @value{GDBN} breakpoints
eb12ee30
AC
3338@value{GDBN} itself sometimes sets breakpoints in your program for
3339special purposes, such as proper handling of @code{longjmp} (in C
3340programs). These internal breakpoints are assigned negative numbers,
3341starting with @code{-1}; @samp{info breakpoints} does not display them.
c906108c 3342You can see these breakpoints with the @value{GDBN} maintenance command
eb12ee30 3343@samp{maint info breakpoints} (@pxref{maint info breakpoints}).
c906108c
SS
3344
3345
6d2ebf8b 3346@node Set Watchpoints
79a6e687 3347@subsection Setting Watchpoints
c906108c
SS
3348
3349@cindex setting watchpoints
c906108c
SS
3350You can use a watchpoint to stop execution whenever the value of an
3351expression changes, without having to predict a particular place where
fd60e0df
EZ
3352this may happen. (This is sometimes called a @dfn{data breakpoint}.)
3353The expression may be as simple as the value of a single variable, or
3354as complex as many variables combined by operators. Examples include:
3355
3356@itemize @bullet
3357@item
3358A reference to the value of a single variable.
3359
3360@item
3361An address cast to an appropriate data type. For example,
3362@samp{*(int *)0x12345678} will watch a 4-byte region at the specified
3363address (assuming an @code{int} occupies 4 bytes).
3364
3365@item
3366An arbitrarily complex expression, such as @samp{a*b + c/d}. The
3367expression can use any operators valid in the program's native
3368language (@pxref{Languages}).
3369@end itemize
c906108c 3370
fa4727a6
DJ
3371You can set a watchpoint on an expression even if the expression can
3372not be evaluated yet. For instance, you can set a watchpoint on
3373@samp{*global_ptr} before @samp{global_ptr} is initialized.
3374@value{GDBN} will stop when your program sets @samp{global_ptr} and
3375the expression produces a valid value. If the expression becomes
3376valid in some other way than changing a variable (e.g.@: if the memory
3377pointed to by @samp{*global_ptr} becomes readable as the result of a
3378@code{malloc} call), @value{GDBN} may not stop until the next time
3379the expression changes.
3380
82f2d802
EZ
3381@cindex software watchpoints
3382@cindex hardware watchpoints
c906108c 3383Depending on your system, watchpoints may be implemented in software or
2df3850c 3384hardware. @value{GDBN} does software watchpointing by single-stepping your
c906108c
SS
3385program and testing the variable's value each time, which is hundreds of
3386times slower than normal execution. (But this may still be worth it, to
3387catch errors where you have no clue what part of your program is the
3388culprit.)
3389
37e4754d 3390On some systems, such as HP-UX, PowerPC, @sc{gnu}/Linux and most other
82f2d802
EZ
3391x86-based targets, @value{GDBN} includes support for hardware
3392watchpoints, which do not slow down the running of your program.
c906108c
SS
3393
3394@table @code
3395@kindex watch
d8b2a693 3396@item watch @var{expr} @r{[}thread @var{threadnum}@r{]}
fd60e0df
EZ
3397Set a watchpoint for an expression. @value{GDBN} will break when the
3398expression @var{expr} is written into by the program and its value
3399changes. The simplest (and the most popular) use of this command is
3400to watch the value of a single variable:
3401
3402@smallexample
3403(@value{GDBP}) watch foo
3404@end smallexample
c906108c 3405
d8b2a693
JB
3406If the command includes a @code{@r{[}thread @var{threadnum}@r{]}}
3407clause, @value{GDBN} breaks only when the thread identified by
3408@var{threadnum} changes the value of @var{expr}. If any other threads
3409change the value of @var{expr}, @value{GDBN} will not break. Note
3410that watchpoints restricted to a single thread in this way only work
3411with Hardware Watchpoints.
3412
c906108c 3413@kindex rwatch
d8b2a693 3414@item rwatch @var{expr} @r{[}thread @var{threadnum}@r{]}
09d4efe1
EZ
3415Set a watchpoint that will break when the value of @var{expr} is read
3416by the program.
c906108c
SS
3417
3418@kindex awatch
d8b2a693 3419@item awatch @var{expr} @r{[}thread @var{threadnum}@r{]}
09d4efe1
EZ
3420Set a watchpoint that will break when @var{expr} is either read from
3421or written into by the program.
c906108c 3422
45ac1734 3423@kindex info watchpoints @r{[}@var{n}@r{]}
c906108c
SS
3424@item info watchpoints
3425This command prints a list of watchpoints, breakpoints, and catchpoints;
09d4efe1 3426it is the same as @code{info break} (@pxref{Set Breaks}).
c906108c
SS
3427@end table
3428
3429@value{GDBN} sets a @dfn{hardware watchpoint} if possible. Hardware
3430watchpoints execute very quickly, and the debugger reports a change in
3431value at the exact instruction where the change occurs. If @value{GDBN}
3432cannot set a hardware watchpoint, it sets a software watchpoint, which
3433executes more slowly and reports the change in value at the next
82f2d802
EZ
3434@emph{statement}, not the instruction, after the change occurs.
3435
82f2d802
EZ
3436@cindex use only software watchpoints
3437You can force @value{GDBN} to use only software watchpoints with the
3438@kbd{set can-use-hw-watchpoints 0} command. With this variable set to
3439zero, @value{GDBN} will never try to use hardware watchpoints, even if
3440the underlying system supports them. (Note that hardware-assisted
3441watchpoints that were set @emph{before} setting
3442@code{can-use-hw-watchpoints} to zero will still use the hardware
d3e8051b 3443mechanism of watching expression values.)
c906108c 3444
9c16f35a
EZ
3445@table @code
3446@item set can-use-hw-watchpoints
3447@kindex set can-use-hw-watchpoints
3448Set whether or not to use hardware watchpoints.
3449
3450@item show can-use-hw-watchpoints
3451@kindex show can-use-hw-watchpoints
3452Show the current mode of using hardware watchpoints.
3453@end table
3454
3455For remote targets, you can restrict the number of hardware
3456watchpoints @value{GDBN} will use, see @ref{set remote
3457hardware-breakpoint-limit}.
3458
c906108c
SS
3459When you issue the @code{watch} command, @value{GDBN} reports
3460
474c8240 3461@smallexample
c906108c 3462Hardware watchpoint @var{num}: @var{expr}
474c8240 3463@end smallexample
c906108c
SS
3464
3465@noindent
3466if it was able to set a hardware watchpoint.
3467
7be570e7
JM
3468Currently, the @code{awatch} and @code{rwatch} commands can only set
3469hardware watchpoints, because accesses to data that don't change the
3470value of the watched expression cannot be detected without examining
3471every instruction as it is being executed, and @value{GDBN} does not do
3472that currently. If @value{GDBN} finds that it is unable to set a
3473hardware breakpoint with the @code{awatch} or @code{rwatch} command, it
3474will print a message like this:
3475
3476@smallexample
3477Expression cannot be implemented with read/access watchpoint.
3478@end smallexample
3479
3480Sometimes, @value{GDBN} cannot set a hardware watchpoint because the
3481data type of the watched expression is wider than what a hardware
3482watchpoint on the target machine can handle. For example, some systems
3483can only watch regions that are up to 4 bytes wide; on such systems you
3484cannot set hardware watchpoints for an expression that yields a
3485double-precision floating-point number (which is typically 8 bytes
3486wide). As a work-around, it might be possible to break the large region
3487into a series of smaller ones and watch them with separate watchpoints.
3488
3489If you set too many hardware watchpoints, @value{GDBN} might be unable
3490to insert all of them when you resume the execution of your program.
3491Since the precise number of active watchpoints is unknown until such
3492time as the program is about to be resumed, @value{GDBN} might not be
3493able to warn you about this when you set the watchpoints, and the
3494warning will be printed only when the program is resumed:
3495
3496@smallexample
3497Hardware watchpoint @var{num}: Could not insert watchpoint
3498@end smallexample
3499
3500@noindent
3501If this happens, delete or disable some of the watchpoints.
3502
fd60e0df
EZ
3503Watching complex expressions that reference many variables can also
3504exhaust the resources available for hardware-assisted watchpoints.
3505That's because @value{GDBN} needs to watch every variable in the
3506expression with separately allocated resources.
3507
c906108c 3508If you call a function interactively using @code{print} or @code{call},
2df3850c 3509any watchpoints you have set will be inactive until @value{GDBN} reaches another
c906108c
SS
3510kind of breakpoint or the call completes.
3511
7be570e7
JM
3512@value{GDBN} automatically deletes watchpoints that watch local
3513(automatic) variables, or expressions that involve such variables, when
3514they go out of scope, that is, when the execution leaves the block in
3515which these variables were defined. In particular, when the program
3516being debugged terminates, @emph{all} local variables go out of scope,
3517and so only watchpoints that watch global variables remain set. If you
3518rerun the program, you will need to set all such watchpoints again. One
3519way of doing that would be to set a code breakpoint at the entry to the
3520@code{main} function and when it breaks, set all the watchpoints.
3521
c906108c
SS
3522@cindex watchpoints and threads
3523@cindex threads and watchpoints
d983da9c
DJ
3524In multi-threaded programs, watchpoints will detect changes to the
3525watched expression from every thread.
3526
3527@quotation
3528@emph{Warning:} In multi-threaded programs, software watchpoints
53a5351d
JM
3529have only limited usefulness. If @value{GDBN} creates a software
3530watchpoint, it can only watch the value of an expression @emph{in a
3531single thread}. If you are confident that the expression can only
3532change due to the current thread's activity (and if you are also
3533confident that no other thread can become current), then you can use
3534software watchpoints as usual. However, @value{GDBN} may not notice
3535when a non-current thread's activity changes the expression. (Hardware
3536watchpoints, in contrast, watch an expression in all threads.)
c906108c 3537@end quotation
c906108c 3538
501eef12
AC
3539@xref{set remote hardware-watchpoint-limit}.
3540
6d2ebf8b 3541@node Set Catchpoints
79a6e687 3542@subsection Setting Catchpoints
d4f3574e 3543@cindex catchpoints, setting
c906108c
SS
3544@cindex exception handlers
3545@cindex event handling
3546
3547You can use @dfn{catchpoints} to cause the debugger to stop for certain
b37052ae 3548kinds of program events, such as C@t{++} exceptions or the loading of a
c906108c
SS
3549shared library. Use the @code{catch} command to set a catchpoint.
3550
3551@table @code
3552@kindex catch
3553@item catch @var{event}
3554Stop when @var{event} occurs. @var{event} can be any of the following:
3555@table @code
3556@item throw
4644b6e3 3557@cindex stop on C@t{++} exceptions
b37052ae 3558The throwing of a C@t{++} exception.
c906108c
SS
3559
3560@item catch
b37052ae 3561The catching of a C@t{++} exception.
c906108c 3562
8936fcda
JB
3563@item exception
3564@cindex Ada exception catching
3565@cindex catch Ada exceptions
3566An Ada exception being raised. If an exception name is specified
3567at the end of the command (eg @code{catch exception Program_Error}),
3568the debugger will stop only when this specific exception is raised.
3569Otherwise, the debugger stops execution when any Ada exception is raised.
3570
3571@item exception unhandled
3572An exception that was raised but is not handled by the program.
3573
3574@item assert
3575A failed Ada assertion.
3576
c906108c 3577@item exec
4644b6e3 3578@cindex break on fork/exec
5ee187d7
DJ
3579A call to @code{exec}. This is currently only available for HP-UX
3580and @sc{gnu}/Linux.
c906108c
SS
3581
3582@item fork
5ee187d7
DJ
3583A call to @code{fork}. This is currently only available for HP-UX
3584and @sc{gnu}/Linux.
c906108c
SS
3585
3586@item vfork
5ee187d7
DJ
3587A call to @code{vfork}. This is currently only available for HP-UX
3588and @sc{gnu}/Linux.
c906108c
SS
3589
3590@item load
3591@itemx load @var{libname}
4644b6e3 3592@cindex break on load/unload of shared library
c906108c
SS
3593The dynamic loading of any shared library, or the loading of the library
3594@var{libname}. This is currently only available for HP-UX.
3595
3596@item unload
3597@itemx unload @var{libname}
c906108c
SS
3598The unloading of any dynamically loaded shared library, or the unloading
3599of the library @var{libname}. This is currently only available for HP-UX.
3600@end table
3601
3602@item tcatch @var{event}
3603Set a catchpoint that is enabled only for one stop. The catchpoint is
3604automatically deleted after the first time the event is caught.
3605
3606@end table
3607
3608Use the @code{info break} command to list the current catchpoints.
3609
b37052ae 3610There are currently some limitations to C@t{++} exception handling
c906108c
SS
3611(@code{catch throw} and @code{catch catch}) in @value{GDBN}:
3612
3613@itemize @bullet
3614@item
3615If you call a function interactively, @value{GDBN} normally returns
3616control to you when the function has finished executing. If the call
3617raises an exception, however, the call may bypass the mechanism that
3618returns control to you and cause your program either to abort or to
3619simply continue running until it hits a breakpoint, catches a signal
3620that @value{GDBN} is listening for, or exits. This is the case even if
3621you set a catchpoint for the exception; catchpoints on exceptions are
3622disabled within interactive calls.
3623
3624@item
3625You cannot raise an exception interactively.
3626
3627@item
3628You cannot install an exception handler interactively.
3629@end itemize
3630
3631@cindex raise exceptions
3632Sometimes @code{catch} is not the best way to debug exception handling:
3633if you need to know exactly where an exception is raised, it is better to
3634stop @emph{before} the exception handler is called, since that way you
3635can see the stack before any unwinding takes place. If you set a
3636breakpoint in an exception handler instead, it may not be easy to find
3637out where the exception was raised.
3638
3639To stop just before an exception handler is called, you need some
b37052ae 3640knowledge of the implementation. In the case of @sc{gnu} C@t{++}, exceptions are
c906108c
SS
3641raised by calling a library function named @code{__raise_exception}
3642which has the following ANSI C interface:
3643
474c8240 3644@smallexample
c906108c 3645 /* @var{addr} is where the exception identifier is stored.
d4f3574e
SS
3646 @var{id} is the exception identifier. */
3647 void __raise_exception (void **addr, void *id);
474c8240 3648@end smallexample
c906108c
SS
3649
3650@noindent
3651To make the debugger catch all exceptions before any stack
3652unwinding takes place, set a breakpoint on @code{__raise_exception}
79a6e687 3653(@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Exceptions}).
c906108c 3654
79a6e687 3655With a conditional breakpoint (@pxref{Conditions, ,Break Conditions})
c906108c
SS
3656that depends on the value of @var{id}, you can stop your program when
3657a specific exception is raised. You can use multiple conditional
3658breakpoints to stop your program when any of a number of exceptions are
3659raised.
3660
3661
6d2ebf8b 3662@node Delete Breaks
79a6e687 3663@subsection Deleting Breakpoints
c906108c
SS
3664
3665@cindex clearing breakpoints, watchpoints, catchpoints
3666@cindex deleting breakpoints, watchpoints, catchpoints
3667It is often necessary to eliminate a breakpoint, watchpoint, or
3668catchpoint once it has done its job and you no longer want your program
3669to stop there. This is called @dfn{deleting} the breakpoint. A
3670breakpoint that has been deleted no longer exists; it is forgotten.
3671
3672With the @code{clear} command you can delete breakpoints according to
3673where they are in your program. With the @code{delete} command you can
3674delete individual breakpoints, watchpoints, or catchpoints by specifying
3675their breakpoint numbers.
3676
3677It is not necessary to delete a breakpoint to proceed past it. @value{GDBN}
3678automatically ignores breakpoints on the first instruction to be executed
3679when you continue execution without changing the execution address.
3680
3681@table @code
3682@kindex clear
3683@item clear
3684Delete any breakpoints at the next instruction to be executed in the
79a6e687 3685selected stack frame (@pxref{Selection, ,Selecting a Frame}). When
c906108c
SS
3686the innermost frame is selected, this is a good way to delete a
3687breakpoint where your program just stopped.
3688
2a25a5ba
EZ
3689@item clear @var{location}
3690Delete any breakpoints set at the specified @var{location}.
3691@xref{Specify Location}, for the various forms of @var{location}; the
3692most useful ones are listed below:
3693
3694@table @code
c906108c
SS
3695@item clear @var{function}
3696@itemx clear @var{filename}:@var{function}
09d4efe1 3697Delete any breakpoints set at entry to the named @var{function}.
c906108c
SS
3698
3699@item clear @var{linenum}
3700@itemx clear @var{filename}:@var{linenum}
09d4efe1
EZ
3701Delete any breakpoints set at or within the code of the specified
3702@var{linenum} of the specified @var{filename}.
2a25a5ba 3703@end table
c906108c
SS
3704
3705@cindex delete breakpoints
3706@kindex delete
41afff9a 3707@kindex d @r{(@code{delete})}
c5394b80
JM
3708@item delete @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
3709Delete the breakpoints, watchpoints, or catchpoints of the breakpoint
3710ranges specified as arguments. If no argument is specified, delete all
c906108c
SS
3711breakpoints (@value{GDBN} asks confirmation, unless you have @code{set
3712confirm off}). You can abbreviate this command as @code{d}.
3713@end table
3714
6d2ebf8b 3715@node Disabling
79a6e687 3716@subsection Disabling Breakpoints
c906108c 3717
4644b6e3 3718@cindex enable/disable a breakpoint
c906108c
SS
3719Rather than deleting a breakpoint, watchpoint, or catchpoint, you might
3720prefer to @dfn{disable} it. This makes the breakpoint inoperative as if
3721it had been deleted, but remembers the information on the breakpoint so
3722that you can @dfn{enable} it again later.
3723
3724You disable and enable breakpoints, watchpoints, and catchpoints with
3725the @code{enable} and @code{disable} commands, optionally specifying one
3726or more breakpoint numbers as arguments. Use @code{info break} or
3727@code{info watch} to print a list of breakpoints, watchpoints, and
3728catchpoints if you do not know which numbers to use.
3729
3b784c4f
EZ
3730Disabling and enabling a breakpoint that has multiple locations
3731affects all of its locations.
3732
c906108c
SS
3733A breakpoint, watchpoint, or catchpoint can have any of four different
3734states of enablement:
3735
3736@itemize @bullet
3737@item
3738Enabled. The breakpoint stops your program. A breakpoint set
3739with the @code{break} command starts out in this state.
3740@item
3741Disabled. The breakpoint has no effect on your program.
3742@item
3743Enabled once. The breakpoint stops your program, but then becomes
d4f3574e 3744disabled.
c906108c
SS
3745@item
3746Enabled for deletion. The breakpoint stops your program, but
d4f3574e
SS
3747immediately after it does so it is deleted permanently. A breakpoint
3748set with the @code{tbreak} command starts out in this state.
c906108c
SS
3749@end itemize
3750
3751You can use the following commands to enable or disable breakpoints,
3752watchpoints, and catchpoints:
3753
3754@table @code
c906108c 3755@kindex disable
41afff9a 3756@kindex dis @r{(@code{disable})}
c5394b80 3757@item disable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
c906108c
SS
3758Disable the specified breakpoints---or all breakpoints, if none are
3759listed. A disabled breakpoint has no effect but is not forgotten. All
3760options such as ignore-counts, conditions and commands are remembered in
3761case the breakpoint is enabled again later. You may abbreviate
3762@code{disable} as @code{dis}.
3763
c906108c 3764@kindex enable
c5394b80 3765@item enable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
c906108c
SS
3766Enable the specified breakpoints (or all defined breakpoints). They
3767become effective once again in stopping your program.
3768
c5394b80 3769@item enable @r{[}breakpoints@r{]} once @var{range}@dots{}
c906108c
SS
3770Enable the specified breakpoints temporarily. @value{GDBN} disables any
3771of these breakpoints immediately after stopping your program.
3772
c5394b80 3773@item enable @r{[}breakpoints@r{]} delete @var{range}@dots{}
c906108c
SS
3774Enable the specified breakpoints to work once, then die. @value{GDBN}
3775deletes any of these breakpoints as soon as your program stops there.
09d4efe1 3776Breakpoints set by the @code{tbreak} command start out in this state.
c906108c
SS
3777@end table
3778
d4f3574e
SS
3779@c FIXME: I think the following ``Except for [...] @code{tbreak}'' is
3780@c confusing: tbreak is also initially enabled.
c906108c 3781Except for a breakpoint set with @code{tbreak} (@pxref{Set Breaks,
79a6e687 3782,Setting Breakpoints}), breakpoints that you set are initially enabled;
c906108c
SS
3783subsequently, they become disabled or enabled only when you use one of
3784the commands above. (The command @code{until} can set and delete a
3785breakpoint of its own, but it does not change the state of your other
3786breakpoints; see @ref{Continuing and Stepping, ,Continuing and
79a6e687 3787Stepping}.)
c906108c 3788
6d2ebf8b 3789@node Conditions
79a6e687 3790@subsection Break Conditions
c906108c
SS
3791@cindex conditional breakpoints
3792@cindex breakpoint conditions
3793
3794@c FIXME what is scope of break condition expr? Context where wanted?
5d161b24 3795@c in particular for a watchpoint?
c906108c
SS
3796The simplest sort of breakpoint breaks every time your program reaches a
3797specified place. You can also specify a @dfn{condition} for a
3798breakpoint. A condition is just a Boolean expression in your
3799programming language (@pxref{Expressions, ,Expressions}). A breakpoint with
3800a condition evaluates the expression each time your program reaches it,
3801and your program stops only if the condition is @emph{true}.
3802
3803This is the converse of using assertions for program validation; in that
3804situation, you want to stop when the assertion is violated---that is,
3805when the condition is false. In C, if you want to test an assertion expressed
3806by the condition @var{assert}, you should set the condition
3807@samp{! @var{assert}} on the appropriate breakpoint.
3808
3809Conditions are also accepted for watchpoints; you may not need them,
3810since a watchpoint is inspecting the value of an expression anyhow---but
3811it might be simpler, say, to just set a watchpoint on a variable name,
3812and specify a condition that tests whether the new value is an interesting
3813one.
3814
3815Break conditions can have side effects, and may even call functions in
3816your program. This can be useful, for example, to activate functions
3817that log program progress, or to use your own print functions to
3818format special data structures. The effects are completely predictable
3819unless there is another enabled breakpoint at the same address. (In
3820that case, @value{GDBN} might see the other breakpoint first and stop your
3821program without checking the condition of this one.) Note that
d4f3574e
SS
3822breakpoint commands are usually more convenient and flexible than break
3823conditions for the
c906108c 3824purpose of performing side effects when a breakpoint is reached
79a6e687 3825(@pxref{Break Commands, ,Breakpoint Command Lists}).
c906108c
SS
3826
3827Break conditions can be specified when a breakpoint is set, by using
3828@samp{if} in the arguments to the @code{break} command. @xref{Set
79a6e687 3829Breaks, ,Setting Breakpoints}. They can also be changed at any time
c906108c 3830with the @code{condition} command.
53a5351d 3831
c906108c
SS
3832You can also use the @code{if} keyword with the @code{watch} command.
3833The @code{catch} command does not recognize the @code{if} keyword;
3834@code{condition} is the only way to impose a further condition on a
3835catchpoint.
c906108c
SS
3836
3837@table @code
3838@kindex condition
3839@item condition @var{bnum} @var{expression}
3840Specify @var{expression} as the break condition for breakpoint,
3841watchpoint, or catchpoint number @var{bnum}. After you set a condition,
3842breakpoint @var{bnum} stops your program only if the value of
3843@var{expression} is true (nonzero, in C). When you use
3844@code{condition}, @value{GDBN} checks @var{expression} immediately for
3845syntactic correctness, and to determine whether symbols in it have
d4f3574e
SS
3846referents in the context of your breakpoint. If @var{expression} uses
3847symbols not referenced in the context of the breakpoint, @value{GDBN}
3848prints an error message:
3849
474c8240 3850@smallexample
d4f3574e 3851No symbol "foo" in current context.
474c8240 3852@end smallexample
d4f3574e
SS
3853
3854@noindent
c906108c
SS
3855@value{GDBN} does
3856not actually evaluate @var{expression} at the time the @code{condition}
d4f3574e
SS
3857command (or a command that sets a breakpoint with a condition, like
3858@code{break if @dots{}}) is given, however. @xref{Expressions, ,Expressions}.
c906108c
SS
3859
3860@item condition @var{bnum}
3861Remove the condition from breakpoint number @var{bnum}. It becomes
3862an ordinary unconditional breakpoint.
3863@end table
3864
3865@cindex ignore count (of breakpoint)
3866A special case of a breakpoint condition is to stop only when the
3867breakpoint has been reached a certain number of times. This is so
3868useful that there is a special way to do it, using the @dfn{ignore
3869count} of the breakpoint. Every breakpoint has an ignore count, which
3870is an integer. Most of the time, the ignore count is zero, and
3871therefore has no effect. But if your program reaches a breakpoint whose
3872ignore count is positive, then instead of stopping, it just decrements
3873the ignore count by one and continues. As a result, if the ignore count
3874value is @var{n}, the breakpoint does not stop the next @var{n} times
3875your program reaches it.
3876
3877@table @code
3878@kindex ignore
3879@item ignore @var{bnum} @var{count}
3880Set the ignore count of breakpoint number @var{bnum} to @var{count}.
3881The next @var{count} times the breakpoint is reached, your program's
3882execution does not stop; other than to decrement the ignore count, @value{GDBN}
3883takes no action.
3884
3885To make the breakpoint stop the next time it is reached, specify
3886a count of zero.
3887
3888When you use @code{continue} to resume execution of your program from a
3889breakpoint, you can specify an ignore count directly as an argument to
3890@code{continue}, rather than using @code{ignore}. @xref{Continuing and
79a6e687 3891Stepping,,Continuing and Stepping}.
c906108c
SS
3892
3893If a breakpoint has a positive ignore count and a condition, the
3894condition is not checked. Once the ignore count reaches zero,
3895@value{GDBN} resumes checking the condition.
3896
3897You could achieve the effect of the ignore count with a condition such
3898as @w{@samp{$foo-- <= 0}} using a debugger convenience variable that
3899is decremented each time. @xref{Convenience Vars, ,Convenience
79a6e687 3900Variables}.
c906108c
SS
3901@end table
3902
3903Ignore counts apply to breakpoints, watchpoints, and catchpoints.
3904
3905
6d2ebf8b 3906@node Break Commands
79a6e687 3907@subsection Breakpoint Command Lists
c906108c
SS
3908
3909@cindex breakpoint commands
3910You can give any breakpoint (or watchpoint or catchpoint) a series of
3911commands to execute when your program stops due to that breakpoint. For
3912example, you might want to print the values of certain expressions, or
3913enable other breakpoints.
3914
3915@table @code
3916@kindex commands
ca91424e 3917@kindex end@r{ (breakpoint commands)}
c906108c
SS
3918@item commands @r{[}@var{bnum}@r{]}
3919@itemx @dots{} @var{command-list} @dots{}
3920@itemx end
3921Specify a list of commands for breakpoint number @var{bnum}. The commands
3922themselves appear on the following lines. Type a line containing just
3923@code{end} to terminate the commands.
3924
3925To remove all commands from a breakpoint, type @code{commands} and
3926follow it immediately with @code{end}; that is, give no commands.
3927
3928With no @var{bnum} argument, @code{commands} refers to the last
3929breakpoint, watchpoint, or catchpoint set (not to the breakpoint most
3930recently encountered).
3931@end table
3932
3933Pressing @key{RET} as a means of repeating the last @value{GDBN} command is
3934disabled within a @var{command-list}.
3935
3936You can use breakpoint commands to start your program up again. Simply
3937use the @code{continue} command, or @code{step}, or any other command
3938that resumes execution.
3939
3940Any other commands in the command list, after a command that resumes
3941execution, are ignored. This is because any time you resume execution
3942(even with a simple @code{next} or @code{step}), you may encounter
3943another breakpoint---which could have its own command list, leading to
3944ambiguities about which list to execute.
3945
3946@kindex silent
3947If the first command you specify in a command list is @code{silent}, the
3948usual message about stopping at a breakpoint is not printed. This may
3949be desirable for breakpoints that are to print a specific message and
3950then continue. If none of the remaining commands print anything, you
3951see no sign that the breakpoint was reached. @code{silent} is
3952meaningful only at the beginning of a breakpoint command list.
3953
3954The commands @code{echo}, @code{output}, and @code{printf} allow you to
3955print precisely controlled output, and are often useful in silent
79a6e687 3956breakpoints. @xref{Output, ,Commands for Controlled Output}.
c906108c
SS
3957
3958For example, here is how you could use breakpoint commands to print the
3959value of @code{x} at entry to @code{foo} whenever @code{x} is positive.
3960
474c8240 3961@smallexample
c906108c
SS
3962break foo if x>0
3963commands
3964silent
3965printf "x is %d\n",x
3966cont
3967end
474c8240 3968@end smallexample
c906108c
SS
3969
3970One application for breakpoint commands is to compensate for one bug so
3971you can test for another. Put a breakpoint just after the erroneous line
3972of code, give it a condition to detect the case in which something
3973erroneous has been done, and give it commands to assign correct values
3974to any variables that need them. End with the @code{continue} command
3975so that your program does not stop, and start with the @code{silent}
3976command so that no output is produced. Here is an example:
3977
474c8240 3978@smallexample
c906108c
SS
3979break 403
3980commands
3981silent
3982set x = y + 4
3983cont
3984end
474c8240 3985@end smallexample
c906108c 3986
c906108c 3987@c @ifclear BARETARGET
6d2ebf8b 3988@node Error in Breakpoints
d4f3574e 3989@subsection ``Cannot insert breakpoints''
c906108c
SS
3990@c
3991@c FIXME!! 14/6/95 Is there a real example of this? Let's use it.
3992@c
d4f3574e
SS
3993Under some operating systems, breakpoints cannot be used in a program if
3994any other process is running that program. In this situation,
5d161b24 3995attempting to run or continue a program with a breakpoint causes
d4f3574e
SS
3996@value{GDBN} to print an error message:
3997
474c8240 3998@smallexample
d4f3574e
SS
3999Cannot insert breakpoints.
4000The same program may be running in another process.
474c8240 4001@end smallexample
d4f3574e
SS
4002
4003When this happens, you have three ways to proceed:
4004
4005@enumerate
4006@item
4007Remove or disable the breakpoints, then continue.
4008
4009@item
5d161b24 4010Suspend @value{GDBN}, and copy the file containing your program to a new
d4f3574e 4011name. Resume @value{GDBN} and use the @code{exec-file} command to specify
5d161b24 4012that @value{GDBN} should run your program under that name.
d4f3574e
SS
4013Then start your program again.
4014
4015@item
4016Relink your program so that the text segment is nonsharable, using the
4017linker option @samp{-N}. The operating system limitation may not apply
4018to nonsharable executables.
4019@end enumerate
c906108c
SS
4020@c @end ifclear
4021
d4f3574e
SS
4022A similar message can be printed if you request too many active
4023hardware-assisted breakpoints and watchpoints:
4024
4025@c FIXME: the precise wording of this message may change; the relevant
4026@c source change is not committed yet (Sep 3, 1999).
4027@smallexample
4028Stopped; cannot insert breakpoints.
4029You may have requested too many hardware breakpoints and watchpoints.
4030@end smallexample
4031
4032@noindent
4033This message is printed when you attempt to resume the program, since
4034only then @value{GDBN} knows exactly how many hardware breakpoints and
4035watchpoints it needs to insert.
4036
4037When this message is printed, you need to disable or remove some of the
4038hardware-assisted breakpoints and watchpoints, and then continue.
4039
79a6e687 4040@node Breakpoint-related Warnings
1485d690
KB
4041@subsection ``Breakpoint address adjusted...''
4042@cindex breakpoint address adjusted
4043
4044Some processor architectures place constraints on the addresses at
4045which breakpoints may be placed. For architectures thus constrained,
4046@value{GDBN} will attempt to adjust the breakpoint's address to comply
4047with the constraints dictated by the architecture.
4048
4049One example of such an architecture is the Fujitsu FR-V. The FR-V is
4050a VLIW architecture in which a number of RISC-like instructions may be
4051bundled together for parallel execution. The FR-V architecture
4052constrains the location of a breakpoint instruction within such a
4053bundle to the instruction with the lowest address. @value{GDBN}
4054honors this constraint by adjusting a breakpoint's address to the
4055first in the bundle.
4056
4057It is not uncommon for optimized code to have bundles which contain
4058instructions from different source statements, thus it may happen that
4059a breakpoint's address will be adjusted from one source statement to
4060another. Since this adjustment may significantly alter @value{GDBN}'s
4061breakpoint related behavior from what the user expects, a warning is
4062printed when the breakpoint is first set and also when the breakpoint
4063is hit.
4064
4065A warning like the one below is printed when setting a breakpoint
4066that's been subject to address adjustment:
4067
4068@smallexample
4069warning: Breakpoint address adjusted from 0x00010414 to 0x00010410.
4070@end smallexample
4071
4072Such warnings are printed both for user settable and @value{GDBN}'s
4073internal breakpoints. If you see one of these warnings, you should
4074verify that a breakpoint set at the adjusted address will have the
4075desired affect. If not, the breakpoint in question may be removed and
b383017d 4076other breakpoints may be set which will have the desired behavior.
1485d690
KB
4077E.g., it may be sufficient to place the breakpoint at a later
4078instruction. A conditional breakpoint may also be useful in some
4079cases to prevent the breakpoint from triggering too often.
4080
4081@value{GDBN} will also issue a warning when stopping at one of these
4082adjusted breakpoints:
4083
4084@smallexample
4085warning: Breakpoint 1 address previously adjusted from 0x00010414
4086to 0x00010410.
4087@end smallexample
4088
4089When this warning is encountered, it may be too late to take remedial
4090action except in cases where the breakpoint is hit earlier or more
4091frequently than expected.
d4f3574e 4092
6d2ebf8b 4093@node Continuing and Stepping
79a6e687 4094@section Continuing and Stepping
c906108c
SS
4095
4096@cindex stepping
4097@cindex continuing
4098@cindex resuming execution
4099@dfn{Continuing} means resuming program execution until your program
4100completes normally. In contrast, @dfn{stepping} means executing just
4101one more ``step'' of your program, where ``step'' may mean either one
4102line of source code, or one machine instruction (depending on what
7a292a7a
SS
4103particular command you use). Either when continuing or when stepping,
4104your program may stop even sooner, due to a breakpoint or a signal. (If
d4f3574e
SS
4105it stops due to a signal, you may want to use @code{handle}, or use
4106@samp{signal 0} to resume execution. @xref{Signals, ,Signals}.)
c906108c
SS
4107
4108@table @code
4109@kindex continue
41afff9a
EZ
4110@kindex c @r{(@code{continue})}
4111@kindex fg @r{(resume foreground execution)}
c906108c
SS
4112@item continue @r{[}@var{ignore-count}@r{]}
4113@itemx c @r{[}@var{ignore-count}@r{]}
4114@itemx fg @r{[}@var{ignore-count}@r{]}
4115Resume program execution, at the address where your program last stopped;
4116any breakpoints set at that address are bypassed. The optional argument
4117@var{ignore-count} allows you to specify a further number of times to
4118ignore a breakpoint at this location; its effect is like that of
79a6e687 4119@code{ignore} (@pxref{Conditions, ,Break Conditions}).
c906108c
SS
4120
4121The argument @var{ignore-count} is meaningful only when your program
4122stopped due to a breakpoint. At other times, the argument to
4123@code{continue} is ignored.
4124
d4f3574e
SS
4125The synonyms @code{c} and @code{fg} (for @dfn{foreground}, as the
4126debugged program is deemed to be the foreground program) are provided
4127purely for convenience, and have exactly the same behavior as
4128@code{continue}.
c906108c
SS
4129@end table
4130
4131To resume execution at a different place, you can use @code{return}
79a6e687 4132(@pxref{Returning, ,Returning from a Function}) to go back to the
c906108c 4133calling function; or @code{jump} (@pxref{Jumping, ,Continuing at a
79a6e687 4134Different Address}) to go to an arbitrary location in your program.
c906108c
SS
4135
4136A typical technique for using stepping is to set a breakpoint
79a6e687 4137(@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Catchpoints}) at the
c906108c
SS
4138beginning of the function or the section of your program where a problem
4139is believed to lie, run your program until it stops at that breakpoint,
4140and then step through the suspect area, examining the variables that are
4141interesting, until you see the problem happen.
4142
4143@table @code
4144@kindex step
41afff9a 4145@kindex s @r{(@code{step})}
c906108c
SS
4146@item step
4147Continue running your program until control reaches a different source
4148line, then stop it and return control to @value{GDBN}. This command is
4149abbreviated @code{s}.
4150
4151@quotation
4152@c "without debugging information" is imprecise; actually "without line
4153@c numbers in the debugging information". (gcc -g1 has debugging info but
4154@c not line numbers). But it seems complex to try to make that
4155@c distinction here.
4156@emph{Warning:} If you use the @code{step} command while control is
4157within a function that was compiled without debugging information,
4158execution proceeds until control reaches a function that does have
4159debugging information. Likewise, it will not step into a function which
4160is compiled without debugging information. To step through functions
4161without debugging information, use the @code{stepi} command, described
4162below.
4163@end quotation
4164
4a92d011
EZ
4165The @code{step} command only stops at the first instruction of a source
4166line. This prevents the multiple stops that could otherwise occur in
4167@code{switch} statements, @code{for} loops, etc. @code{step} continues
4168to stop if a function that has debugging information is called within
4169the line. In other words, @code{step} @emph{steps inside} any functions
4170called within the line.
c906108c 4171
d4f3574e
SS
4172Also, the @code{step} command only enters a function if there is line
4173number information for the function. Otherwise it acts like the
5d161b24 4174@code{next} command. This avoids problems when using @code{cc -gl}
c906108c 4175on MIPS machines. Previously, @code{step} entered subroutines if there
5d161b24 4176was any debugging information about the routine.
c906108c
SS
4177
4178@item step @var{count}
4179Continue running as in @code{step}, but do so @var{count} times. If a
7a292a7a
SS
4180breakpoint is reached, or a signal not related to stepping occurs before
4181@var{count} steps, stepping stops right away.
c906108c
SS
4182
4183@kindex next
41afff9a 4184@kindex n @r{(@code{next})}
c906108c
SS
4185@item next @r{[}@var{count}@r{]}
4186Continue to the next source line in the current (innermost) stack frame.
7a292a7a
SS
4187This is similar to @code{step}, but function calls that appear within
4188the line of code are executed without stopping. Execution stops when
4189control reaches a different line of code at the original stack level
4190that was executing when you gave the @code{next} command. This command
4191is abbreviated @code{n}.
c906108c
SS
4192
4193An argument @var{count} is a repeat count, as for @code{step}.
4194
4195
4196@c FIX ME!! Do we delete this, or is there a way it fits in with
4197@c the following paragraph? --- Vctoria
4198@c
4199@c @code{next} within a function that lacks debugging information acts like
4200@c @code{step}, but any function calls appearing within the code of the
4201@c function are executed without stopping.
4202
d4f3574e
SS
4203The @code{next} command only stops at the first instruction of a
4204source line. This prevents multiple stops that could otherwise occur in
4a92d011 4205@code{switch} statements, @code{for} loops, etc.
c906108c 4206
b90a5f51
CF
4207@kindex set step-mode
4208@item set step-mode
4209@cindex functions without line info, and stepping
4210@cindex stepping into functions with no line info
4211@itemx set step-mode on
4a92d011 4212The @code{set step-mode on} command causes the @code{step} command to
b90a5f51
CF
4213stop at the first instruction of a function which contains no debug line
4214information rather than stepping over it.
4215
4a92d011
EZ
4216This is useful in cases where you may be interested in inspecting the
4217machine instructions of a function which has no symbolic info and do not
4218want @value{GDBN} to automatically skip over this function.
b90a5f51
CF
4219
4220@item set step-mode off
4a92d011 4221Causes the @code{step} command to step over any functions which contains no
b90a5f51
CF
4222debug information. This is the default.
4223
9c16f35a
EZ
4224@item show step-mode
4225Show whether @value{GDBN} will stop in or step over functions without
4226source line debug information.
4227
c906108c 4228@kindex finish
8dfa32fc 4229@kindex fin @r{(@code{finish})}
c906108c
SS
4230@item finish
4231Continue running until just after function in the selected stack frame
8dfa32fc
JB
4232returns. Print the returned value (if any). This command can be
4233abbreviated as @code{fin}.
c906108c
SS
4234
4235Contrast this with the @code{return} command (@pxref{Returning,
79a6e687 4236,Returning from a Function}).
c906108c
SS
4237
4238@kindex until
41afff9a 4239@kindex u @r{(@code{until})}
09d4efe1 4240@cindex run until specified location
c906108c
SS
4241@item until
4242@itemx u
4243Continue running until a source line past the current line, in the
4244current stack frame, is reached. This command is used to avoid single
4245stepping through a loop more than once. It is like the @code{next}
4246command, except that when @code{until} encounters a jump, it
4247automatically continues execution until the program counter is greater
4248than the address of the jump.
4249
4250This means that when you reach the end of a loop after single stepping
4251though it, @code{until} makes your program continue execution until it
4252exits the loop. In contrast, a @code{next} command at the end of a loop
4253simply steps back to the beginning of the loop, which forces you to step
4254through the next iteration.
4255
4256@code{until} always stops your program if it attempts to exit the current
4257stack frame.
4258
4259@code{until} may produce somewhat counterintuitive results if the order
4260of machine code does not match the order of the source lines. For
4261example, in the following excerpt from a debugging session, the @code{f}
4262(@code{frame}) command shows that execution is stopped at line
4263@code{206}; yet when we use @code{until}, we get to line @code{195}:
4264
474c8240 4265@smallexample
c906108c
SS
4266(@value{GDBP}) f
4267#0 main (argc=4, argv=0xf7fffae8) at m4.c:206
4268206 expand_input();
4269(@value{GDBP}) until
4270195 for ( ; argc > 0; NEXTARG) @{
474c8240 4271@end smallexample
c906108c
SS
4272
4273This happened because, for execution efficiency, the compiler had
4274generated code for the loop closure test at the end, rather than the
4275start, of the loop---even though the test in a C @code{for}-loop is
4276written before the body of the loop. The @code{until} command appeared
4277to step back to the beginning of the loop when it advanced to this
4278expression; however, it has not really gone to an earlier
4279statement---not in terms of the actual machine code.
4280
4281@code{until} with no argument works by means of single
4282instruction stepping, and hence is slower than @code{until} with an
4283argument.
4284
4285@item until @var{location}
4286@itemx u @var{location}
4287Continue running your program until either the specified location is
4288reached, or the current stack frame returns. @var{location} is any of
2a25a5ba
EZ
4289the forms described in @ref{Specify Location}.
4290This form of the command uses temporary breakpoints, and
c60eb6f1
EZ
4291hence is quicker than @code{until} without an argument. The specified
4292location is actually reached only if it is in the current frame. This
4293implies that @code{until} can be used to skip over recursive function
4294invocations. For instance in the code below, if the current location is
4295line @code{96}, issuing @code{until 99} will execute the program up to
db2e3e2e 4296line @code{99} in the same invocation of factorial, i.e., after the inner
c60eb6f1
EZ
4297invocations have returned.
4298
4299@smallexample
430094 int factorial (int value)
430195 @{
430296 if (value > 1) @{
430397 value *= factorial (value - 1);
430498 @}
430599 return (value);
4306100 @}
4307@end smallexample
4308
4309
4310@kindex advance @var{location}
4311@itemx advance @var{location}
09d4efe1 4312Continue running the program up to the given @var{location}. An argument is
2a25a5ba
EZ
4313required, which should be of one of the forms described in
4314@ref{Specify Location}.
4315Execution will also stop upon exit from the current stack
c60eb6f1
EZ
4316frame. This command is similar to @code{until}, but @code{advance} will
4317not skip over recursive function calls, and the target location doesn't
4318have to be in the same frame as the current one.
4319
c906108c
SS
4320
4321@kindex stepi
41afff9a 4322@kindex si @r{(@code{stepi})}
c906108c 4323@item stepi
96a2c332 4324@itemx stepi @var{arg}
c906108c
SS
4325@itemx si
4326Execute one machine instruction, then stop and return to the debugger.
4327
4328It is often useful to do @samp{display/i $pc} when stepping by machine
4329instructions. This makes @value{GDBN} automatically display the next
4330instruction to be executed, each time your program stops. @xref{Auto
79a6e687 4331Display,, Automatic Display}.
c906108c
SS
4332
4333An argument is a repeat count, as in @code{step}.
4334
4335@need 750
4336@kindex nexti
41afff9a 4337@kindex ni @r{(@code{nexti})}
c906108c 4338@item nexti
96a2c332 4339@itemx nexti @var{arg}
c906108c
SS
4340@itemx ni
4341Execute one machine instruction, but if it is a function call,
4342proceed until the function returns.
4343
4344An argument is a repeat count, as in @code{next}.
4345@end table
4346
6d2ebf8b 4347@node Signals
c906108c
SS
4348@section Signals
4349@cindex signals
4350
4351A signal is an asynchronous event that can happen in a program. The
4352operating system defines the possible kinds of signals, and gives each
4353kind a name and a number. For example, in Unix @code{SIGINT} is the
c8aa23ab 4354signal a program gets when you type an interrupt character (often @kbd{Ctrl-c});
c906108c
SS
4355@code{SIGSEGV} is the signal a program gets from referencing a place in
4356memory far away from all the areas in use; @code{SIGALRM} occurs when
4357the alarm clock timer goes off (which happens only if your program has
4358requested an alarm).
4359
4360@cindex fatal signals
4361Some signals, including @code{SIGALRM}, are a normal part of the
4362functioning of your program. Others, such as @code{SIGSEGV}, indicate
d4f3574e 4363errors; these signals are @dfn{fatal} (they kill your program immediately) if the
c906108c
SS
4364program has not specified in advance some other way to handle the signal.
4365@code{SIGINT} does not indicate an error in your program, but it is normally
4366fatal so it can carry out the purpose of the interrupt: to kill the program.
4367
4368@value{GDBN} has the ability to detect any occurrence of a signal in your
4369program. You can tell @value{GDBN} in advance what to do for each kind of
4370signal.
4371
4372@cindex handling signals
24f93129
EZ
4373Normally, @value{GDBN} is set up to let the non-erroneous signals like
4374@code{SIGALRM} be silently passed to your program
4375(so as not to interfere with their role in the program's functioning)
c906108c
SS
4376but to stop your program immediately whenever an error signal happens.
4377You can change these settings with the @code{handle} command.
4378
4379@table @code
4380@kindex info signals
09d4efe1 4381@kindex info handle
c906108c 4382@item info signals
96a2c332 4383@itemx info handle
c906108c
SS
4384Print a table of all the kinds of signals and how @value{GDBN} has been told to
4385handle each one. You can use this to see the signal numbers of all
4386the defined types of signals.
4387
45ac1734
EZ
4388@item info signals @var{sig}
4389Similar, but print information only about the specified signal number.
4390
d4f3574e 4391@code{info handle} is an alias for @code{info signals}.
c906108c
SS
4392
4393@kindex handle
45ac1734 4394@item handle @var{signal} @r{[}@var{keywords}@dots{}@r{]}
5ece1a18
EZ
4395Change the way @value{GDBN} handles signal @var{signal}. @var{signal}
4396can be the number of a signal or its name (with or without the
24f93129 4397@samp{SIG} at the beginning); a list of signal numbers of the form
5ece1a18 4398@samp{@var{low}-@var{high}}; or the word @samp{all}, meaning all the
45ac1734
EZ
4399known signals. Optional arguments @var{keywords}, described below,
4400say what change to make.
c906108c
SS
4401@end table
4402
4403@c @group
4404The keywords allowed by the @code{handle} command can be abbreviated.
4405Their full names are:
4406
4407@table @code
4408@item nostop
4409@value{GDBN} should not stop your program when this signal happens. It may
4410still print a message telling you that the signal has come in.
4411
4412@item stop
4413@value{GDBN} should stop your program when this signal happens. This implies
4414the @code{print} keyword as well.
4415
4416@item print
4417@value{GDBN} should print a message when this signal happens.
4418
4419@item noprint
4420@value{GDBN} should not mention the occurrence of the signal at all. This
4421implies the @code{nostop} keyword as well.
4422
4423@item pass
5ece1a18 4424@itemx noignore
c906108c
SS
4425@value{GDBN} should allow your program to see this signal; your program
4426can handle the signal, or else it may terminate if the signal is fatal
5ece1a18 4427and not handled. @code{pass} and @code{noignore} are synonyms.
c906108c
SS
4428
4429@item nopass
5ece1a18 4430@itemx ignore
c906108c 4431@value{GDBN} should not allow your program to see this signal.
5ece1a18 4432@code{nopass} and @code{ignore} are synonyms.
c906108c
SS
4433@end table
4434@c @end group
4435
d4f3574e
SS
4436When a signal stops your program, the signal is not visible to the
4437program until you
c906108c
SS
4438continue. Your program sees the signal then, if @code{pass} is in
4439effect for the signal in question @emph{at that time}. In other words,
4440after @value{GDBN} reports a signal, you can use the @code{handle}
4441command with @code{pass} or @code{nopass} to control whether your
4442program sees that signal when you continue.
4443
24f93129
EZ
4444The default is set to @code{nostop}, @code{noprint}, @code{pass} for
4445non-erroneous signals such as @code{SIGALRM}, @code{SIGWINCH} and
4446@code{SIGCHLD}, and to @code{stop}, @code{print}, @code{pass} for the
4447erroneous signals.
4448
c906108c
SS
4449You can also use the @code{signal} command to prevent your program from
4450seeing a signal, or cause it to see a signal it normally would not see,
4451or to give it any signal at any time. For example, if your program stopped
4452due to some sort of memory reference error, you might store correct
4453values into the erroneous variables and continue, hoping to see more
4454execution; but your program would probably terminate immediately as
4455a result of the fatal signal once it saw the signal. To prevent this,
4456you can continue with @samp{signal 0}. @xref{Signaling, ,Giving your
79a6e687 4457Program a Signal}.
c906108c 4458
6d2ebf8b 4459@node Thread Stops
79a6e687 4460@section Stopping and Starting Multi-thread Programs
c906108c
SS
4461
4462When your program has multiple threads (@pxref{Threads,, Debugging
79a6e687 4463Programs with Multiple Threads}), you can choose whether to set
c906108c
SS
4464breakpoints on all threads, or on a particular thread.
4465
4466@table @code
4467@cindex breakpoints and threads
4468@cindex thread breakpoints
4469@kindex break @dots{} thread @var{threadno}
4470@item break @var{linespec} thread @var{threadno}
4471@itemx break @var{linespec} thread @var{threadno} if @dots{}
4472@var{linespec} specifies source lines; there are several ways of
2a25a5ba
EZ
4473writing them (@pxref{Specify Location}), but the effect is always to
4474specify some source line.
c906108c
SS
4475
4476Use the qualifier @samp{thread @var{threadno}} with a breakpoint command
4477to specify that you only want @value{GDBN} to stop the program when a
4478particular thread reaches this breakpoint. @var{threadno} is one of the
4479numeric thread identifiers assigned by @value{GDBN}, shown in the first
4480column of the @samp{info threads} display.
4481
4482If you do not specify @samp{thread @var{threadno}} when you set a
4483breakpoint, the breakpoint applies to @emph{all} threads of your
4484program.
4485
4486You can use the @code{thread} qualifier on conditional breakpoints as
4487well; in this case, place @samp{thread @var{threadno}} before the
4488breakpoint condition, like this:
4489
4490@smallexample
2df3850c 4491(@value{GDBP}) break frik.c:13 thread 28 if bartab > lim
c906108c
SS
4492@end smallexample
4493
4494@end table
4495
4496@cindex stopped threads
4497@cindex threads, stopped
4498Whenever your program stops under @value{GDBN} for any reason,
4499@emph{all} threads of execution stop, not just the current thread. This
4500allows you to examine the overall state of the program, including
4501switching between threads, without worrying that things may change
4502underfoot.
4503
36d86913
MC
4504@cindex thread breakpoints and system calls
4505@cindex system calls and thread breakpoints
4506@cindex premature return from system calls
4507There is an unfortunate side effect. If one thread stops for a
4508breakpoint, or for some other reason, and another thread is blocked in a
4509system call, then the system call may return prematurely. This is a
4510consequence of the interaction between multiple threads and the signals
4511that @value{GDBN} uses to implement breakpoints and other events that
4512stop execution.
4513
4514To handle this problem, your program should check the return value of
4515each system call and react appropriately. This is good programming
4516style anyways.
4517
4518For example, do not write code like this:
4519
4520@smallexample
4521 sleep (10);
4522@end smallexample
4523
4524The call to @code{sleep} will return early if a different thread stops
4525at a breakpoint or for some other reason.
4526
4527Instead, write this:
4528
4529@smallexample
4530 int unslept = 10;
4531 while (unslept > 0)
4532 unslept = sleep (unslept);
4533@end smallexample
4534
4535A system call is allowed to return early, so the system is still
4536conforming to its specification. But @value{GDBN} does cause your
4537multi-threaded program to behave differently than it would without
4538@value{GDBN}.
4539
4540Also, @value{GDBN} uses internal breakpoints in the thread library to
4541monitor certain events such as thread creation and thread destruction.
4542When such an event happens, a system call in another thread may return
4543prematurely, even though your program does not appear to stop.
4544
c906108c
SS
4545@cindex continuing threads
4546@cindex threads, continuing
4547Conversely, whenever you restart the program, @emph{all} threads start
4548executing. @emph{This is true even when single-stepping} with commands
5d161b24 4549like @code{step} or @code{next}.
c906108c
SS
4550
4551In particular, @value{GDBN} cannot single-step all threads in lockstep.
4552Since thread scheduling is up to your debugging target's operating
4553system (not controlled by @value{GDBN}), other threads may
4554execute more than one statement while the current thread completes a
4555single step. Moreover, in general other threads stop in the middle of a
4556statement, rather than at a clean statement boundary, when the program
4557stops.
4558
4559You might even find your program stopped in another thread after
4560continuing or even single-stepping. This happens whenever some other
4561thread runs into a breakpoint, a signal, or an exception before the
4562first thread completes whatever you requested.
4563
4564On some OSes, you can lock the OS scheduler and thus allow only a single
4565thread to run.
4566
4567@table @code
4568@item set scheduler-locking @var{mode}
9c16f35a
EZ
4569@cindex scheduler locking mode
4570@cindex lock scheduler
c906108c
SS
4571Set the scheduler locking mode. If it is @code{off}, then there is no
4572locking and any thread may run at any time. If @code{on}, then only the
4573current thread may run when the inferior is resumed. The @code{step}
4574mode optimizes for single-stepping. It stops other threads from
4575``seizing the prompt'' by preempting the current thread while you are
4576stepping. Other threads will only rarely (or never) get a chance to run
d4f3574e 4577when you step. They are more likely to run when you @samp{next} over a
c906108c 4578function call, and they are completely free to run when you use commands
d4f3574e 4579like @samp{continue}, @samp{until}, or @samp{finish}. However, unless another
c906108c 4580thread hits a breakpoint during its timeslice, they will never steal the
2df3850c 4581@value{GDBN} prompt away from the thread that you are debugging.
c906108c
SS
4582
4583@item show scheduler-locking
4584Display the current scheduler locking mode.
4585@end table
4586
c906108c 4587
6d2ebf8b 4588@node Stack
c906108c
SS
4589@chapter Examining the Stack
4590
4591When your program has stopped, the first thing you need to know is where it
4592stopped and how it got there.
4593
4594@cindex call stack
5d161b24
DB
4595Each time your program performs a function call, information about the call
4596is generated.
4597That information includes the location of the call in your program,
4598the arguments of the call,
c906108c 4599and the local variables of the function being called.
5d161b24 4600The information is saved in a block of data called a @dfn{stack frame}.
c906108c
SS
4601The stack frames are allocated in a region of memory called the @dfn{call
4602stack}.
4603
4604When your program stops, the @value{GDBN} commands for examining the
4605stack allow you to see all of this information.
4606
4607@cindex selected frame
4608One of the stack frames is @dfn{selected} by @value{GDBN} and many
4609@value{GDBN} commands refer implicitly to the selected frame. In
4610particular, whenever you ask @value{GDBN} for the value of a variable in
4611your program, the value is found in the selected frame. There are
4612special @value{GDBN} commands to select whichever frame you are
79a6e687 4613interested in. @xref{Selection, ,Selecting a Frame}.
c906108c
SS
4614
4615When your program stops, @value{GDBN} automatically selects the
5d161b24 4616currently executing frame and describes it briefly, similar to the
79a6e687 4617@code{frame} command (@pxref{Frame Info, ,Information about a Frame}).
c906108c
SS
4618
4619@menu
4620* Frames:: Stack frames
4621* Backtrace:: Backtraces
4622* Selection:: Selecting a frame
4623* Frame Info:: Information on a frame
c906108c
SS
4624
4625@end menu
4626
6d2ebf8b 4627@node Frames
79a6e687 4628@section Stack Frames
c906108c 4629
d4f3574e 4630@cindex frame, definition
c906108c
SS
4631@cindex stack frame
4632The call stack is divided up into contiguous pieces called @dfn{stack
4633frames}, or @dfn{frames} for short; each frame is the data associated
4634with one call to one function. The frame contains the arguments given
4635to the function, the function's local variables, and the address at
4636which the function is executing.
4637
4638@cindex initial frame
4639@cindex outermost frame
4640@cindex innermost frame
4641When your program is started, the stack has only one frame, that of the
4642function @code{main}. This is called the @dfn{initial} frame or the
4643@dfn{outermost} frame. Each time a function is called, a new frame is
4644made. Each time a function returns, the frame for that function invocation
4645is eliminated. If a function is recursive, there can be many frames for
4646the same function. The frame for the function in which execution is
4647actually occurring is called the @dfn{innermost} frame. This is the most
4648recently created of all the stack frames that still exist.
4649
4650@cindex frame pointer
4651Inside your program, stack frames are identified by their addresses. A
4652stack frame consists of many bytes, each of which has its own address; each
4653kind of computer has a convention for choosing one byte whose
4654address serves as the address of the frame. Usually this address is kept
e09f16f9
EZ
4655in a register called the @dfn{frame pointer register}
4656(@pxref{Registers, $fp}) while execution is going on in that frame.
c906108c
SS
4657
4658@cindex frame number
4659@value{GDBN} assigns numbers to all existing stack frames, starting with
4660zero for the innermost frame, one for the frame that called it,
4661and so on upward. These numbers do not really exist in your program;
4662they are assigned by @value{GDBN} to give you a way of designating stack
4663frames in @value{GDBN} commands.
4664
6d2ebf8b
SS
4665@c The -fomit-frame-pointer below perennially causes hbox overflow
4666@c underflow problems.
c906108c
SS
4667@cindex frameless execution
4668Some compilers provide a way to compile functions so that they operate
e22ea452 4669without stack frames. (For example, the @value{NGCC} option
474c8240 4670@smallexample
6d2ebf8b 4671@samp{-fomit-frame-pointer}
474c8240 4672@end smallexample
6d2ebf8b 4673generates functions without a frame.)
c906108c
SS
4674This is occasionally done with heavily used library functions to save
4675the frame setup time. @value{GDBN} has limited facilities for dealing
4676with these function invocations. If the innermost function invocation
4677has no stack frame, @value{GDBN} nevertheless regards it as though
4678it had a separate frame, which is numbered zero as usual, allowing
4679correct tracing of the function call chain. However, @value{GDBN} has
4680no provision for frameless functions elsewhere in the stack.
4681
4682@table @code
d4f3574e 4683@kindex frame@r{, command}
41afff9a 4684@cindex current stack frame
c906108c 4685@item frame @var{args}
5d161b24 4686The @code{frame} command allows you to move from one stack frame to another,
c906108c 4687and to print the stack frame you select. @var{args} may be either the
5d161b24
DB
4688address of the frame or the stack frame number. Without an argument,
4689@code{frame} prints the current stack frame.
c906108c
SS
4690
4691@kindex select-frame
41afff9a 4692@cindex selecting frame silently
c906108c
SS
4693@item select-frame
4694The @code{select-frame} command allows you to move from one stack frame
4695to another without printing the frame. This is the silent version of
4696@code{frame}.
4697@end table
4698
6d2ebf8b 4699@node Backtrace
c906108c
SS
4700@section Backtraces
4701
09d4efe1
EZ
4702@cindex traceback
4703@cindex call stack traces
c906108c
SS
4704A backtrace is a summary of how your program got where it is. It shows one
4705line per frame, for many frames, starting with the currently executing
4706frame (frame zero), followed by its caller (frame one), and on up the
4707stack.
4708
4709@table @code
4710@kindex backtrace
41afff9a 4711@kindex bt @r{(@code{backtrace})}
c906108c
SS
4712@item backtrace
4713@itemx bt
4714Print a backtrace of the entire stack: one line per frame for all
4715frames in the stack.
4716
4717You can stop the backtrace at any time by typing the system interrupt
c8aa23ab 4718character, normally @kbd{Ctrl-c}.
c906108c
SS
4719
4720@item backtrace @var{n}
4721@itemx bt @var{n}
4722Similar, but print only the innermost @var{n} frames.
4723
4724@item backtrace -@var{n}
4725@itemx bt -@var{n}
4726Similar, but print only the outermost @var{n} frames.
0f061b69
NR
4727
4728@item backtrace full
0f061b69 4729@itemx bt full
dd74f6ae
NR
4730@itemx bt full @var{n}
4731@itemx bt full -@var{n}
e7109c7e 4732Print the values of the local variables also. @var{n} specifies the
286ba84d 4733number of frames to print, as described above.
c906108c
SS
4734@end table
4735
4736@kindex where
4737@kindex info stack
c906108c
SS
4738The names @code{where} and @code{info stack} (abbreviated @code{info s})
4739are additional aliases for @code{backtrace}.
4740
839c27b7
EZ
4741@cindex multiple threads, backtrace
4742In a multi-threaded program, @value{GDBN} by default shows the
4743backtrace only for the current thread. To display the backtrace for
4744several or all of the threads, use the command @code{thread apply}
4745(@pxref{Threads, thread apply}). For example, if you type @kbd{thread
4746apply all backtrace}, @value{GDBN} will display the backtrace for all
4747the threads; this is handy when you debug a core dump of a
4748multi-threaded program.
4749
c906108c
SS
4750Each line in the backtrace shows the frame number and the function name.
4751The program counter value is also shown---unless you use @code{set
4752print address off}. The backtrace also shows the source file name and
4753line number, as well as the arguments to the function. The program
4754counter value is omitted if it is at the beginning of the code for that
4755line number.
4756
4757Here is an example of a backtrace. It was made with the command
4758@samp{bt 3}, so it shows the innermost three frames.
4759
4760@smallexample
4761@group
5d161b24 4762#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
c906108c
SS
4763 at builtin.c:993
4764#1 0x6e38 in expand_macro (sym=0x2b600) at macro.c:242
4765#2 0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)
4766 at macro.c:71
4767(More stack frames follow...)
4768@end group
4769@end smallexample
4770
4771@noindent
4772The display for frame zero does not begin with a program counter
4773value, indicating that your program has stopped at the beginning of the
4774code for line @code{993} of @code{builtin.c}.
4775
18999be5
EZ
4776@cindex value optimized out, in backtrace
4777@cindex function call arguments, optimized out
4778If your program was compiled with optimizations, some compilers will
4779optimize away arguments passed to functions if those arguments are
4780never used after the call. Such optimizations generate code that
4781passes arguments through registers, but doesn't store those arguments
4782in the stack frame. @value{GDBN} has no way of displaying such
4783arguments in stack frames other than the innermost one. Here's what
4784such a backtrace might look like:
4785
4786@smallexample
4787@group
4788#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
4789 at builtin.c:993
4790#1 0x6e38 in expand_macro (sym=<value optimized out>) at macro.c:242
4791#2 0x6840 in expand_token (obs=0x0, t=<value optimized out>, td=0xf7fffb08)
4792 at macro.c:71
4793(More stack frames follow...)
4794@end group
4795@end smallexample
4796
4797@noindent
4798The values of arguments that were not saved in their stack frames are
4799shown as @samp{<value optimized out>}.
4800
4801If you need to display the values of such optimized-out arguments,
4802either deduce that from other variables whose values depend on the one
4803you are interested in, or recompile without optimizations.
4804
a8f24a35
EZ
4805@cindex backtrace beyond @code{main} function
4806@cindex program entry point
4807@cindex startup code, and backtrace
25d29d70
AC
4808Most programs have a standard user entry point---a place where system
4809libraries and startup code transition into user code. For C this is
d416eeec
EZ
4810@code{main}@footnote{
4811Note that embedded programs (the so-called ``free-standing''
4812environment) are not required to have a @code{main} function as the
4813entry point. They could even have multiple entry points.}.
4814When @value{GDBN} finds the entry function in a backtrace
25d29d70
AC
4815it will terminate the backtrace, to avoid tracing into highly
4816system-specific (and generally uninteresting) code.
4817
4818If you need to examine the startup code, or limit the number of levels
4819in a backtrace, you can change this behavior:
95f90d25
DJ
4820
4821@table @code
25d29d70
AC
4822@item set backtrace past-main
4823@itemx set backtrace past-main on
4644b6e3 4824@kindex set backtrace
25d29d70
AC
4825Backtraces will continue past the user entry point.
4826
4827@item set backtrace past-main off
95f90d25
DJ
4828Backtraces will stop when they encounter the user entry point. This is the
4829default.
4830
25d29d70 4831@item show backtrace past-main
4644b6e3 4832@kindex show backtrace
25d29d70
AC
4833Display the current user entry point backtrace policy.
4834
2315ffec
RC
4835@item set backtrace past-entry
4836@itemx set backtrace past-entry on
a8f24a35 4837Backtraces will continue past the internal entry point of an application.
2315ffec
RC
4838This entry point is encoded by the linker when the application is built,
4839and is likely before the user entry point @code{main} (or equivalent) is called.
4840
4841@item set backtrace past-entry off
d3e8051b 4842Backtraces will stop when they encounter the internal entry point of an
2315ffec
RC
4843application. This is the default.
4844
4845@item show backtrace past-entry
4846Display the current internal entry point backtrace policy.
4847
25d29d70
AC
4848@item set backtrace limit @var{n}
4849@itemx set backtrace limit 0
4850@cindex backtrace limit
4851Limit the backtrace to @var{n} levels. A value of zero means
4852unlimited.
95f90d25 4853
25d29d70
AC
4854@item show backtrace limit
4855Display the current limit on backtrace levels.
95f90d25
DJ
4856@end table
4857
6d2ebf8b 4858@node Selection
79a6e687 4859@section Selecting a Frame
c906108c
SS
4860
4861Most commands for examining the stack and other data in your program work on
4862whichever stack frame is selected at the moment. Here are the commands for
4863selecting a stack frame; all of them finish by printing a brief description
4864of the stack frame just selected.
4865
4866@table @code
d4f3574e 4867@kindex frame@r{, selecting}
41afff9a 4868@kindex f @r{(@code{frame})}
c906108c
SS
4869@item frame @var{n}
4870@itemx f @var{n}
4871Select frame number @var{n}. Recall that frame zero is the innermost
4872(currently executing) frame, frame one is the frame that called the
4873innermost one, and so on. The highest-numbered frame is the one for
4874@code{main}.
4875
4876@item frame @var{addr}
4877@itemx f @var{addr}
4878Select the frame at address @var{addr}. This is useful mainly if the
4879chaining of stack frames has been damaged by a bug, making it
4880impossible for @value{GDBN} to assign numbers properly to all frames. In
4881addition, this can be useful when your program has multiple stacks and
4882switches between them.
4883
c906108c
SS
4884On the SPARC architecture, @code{frame} needs two addresses to
4885select an arbitrary frame: a frame pointer and a stack pointer.
4886
4887On the MIPS and Alpha architecture, it needs two addresses: a stack
4888pointer and a program counter.
4889
4890On the 29k architecture, it needs three addresses: a register stack
4891pointer, a program counter, and a memory stack pointer.
c906108c
SS
4892
4893@kindex up
4894@item up @var{n}
4895Move @var{n} frames up the stack. For positive numbers @var{n}, this
4896advances toward the outermost frame, to higher frame numbers, to frames
4897that have existed longer. @var{n} defaults to one.
4898
4899@kindex down
41afff9a 4900@kindex do @r{(@code{down})}
c906108c
SS
4901@item down @var{n}
4902Move @var{n} frames down the stack. For positive numbers @var{n}, this
4903advances toward the innermost frame, to lower frame numbers, to frames
4904that were created more recently. @var{n} defaults to one. You may
4905abbreviate @code{down} as @code{do}.
4906@end table
4907
4908All of these commands end by printing two lines of output describing the
4909frame. The first line shows the frame number, the function name, the
4910arguments, and the source file and line number of execution in that
5d161b24 4911frame. The second line shows the text of that source line.
c906108c
SS
4912
4913@need 1000
4914For example:
4915
4916@smallexample
4917@group
4918(@value{GDBP}) up
4919#1 0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)
4920 at env.c:10
492110 read_input_file (argv[i]);
4922@end group
4923@end smallexample
4924
4925After such a printout, the @code{list} command with no arguments
4926prints ten lines centered on the point of execution in the frame.
87885426
FN
4927You can also edit the program at the point of execution with your favorite
4928editing program by typing @code{edit}.
79a6e687 4929@xref{List, ,Printing Source Lines},
87885426 4930for details.
c906108c
SS
4931
4932@table @code
4933@kindex down-silently
4934@kindex up-silently
4935@item up-silently @var{n}
4936@itemx down-silently @var{n}
4937These two commands are variants of @code{up} and @code{down},
4938respectively; they differ in that they do their work silently, without
4939causing display of the new frame. They are intended primarily for use
4940in @value{GDBN} command scripts, where the output might be unnecessary and
4941distracting.
4942@end table
4943
6d2ebf8b 4944@node Frame Info
79a6e687 4945@section Information About a Frame
c906108c
SS
4946
4947There are several other commands to print information about the selected
4948stack frame.
4949
4950@table @code
4951@item frame
4952@itemx f
4953When used without any argument, this command does not change which
4954frame is selected, but prints a brief description of the currently
4955selected stack frame. It can be abbreviated @code{f}. With an
4956argument, this command is used to select a stack frame.
79a6e687 4957@xref{Selection, ,Selecting a Frame}.
c906108c
SS
4958
4959@kindex info frame
41afff9a 4960@kindex info f @r{(@code{info frame})}
c906108c
SS
4961@item info frame
4962@itemx info f
4963This command prints a verbose description of the selected stack frame,
4964including:
4965
4966@itemize @bullet
5d161b24
DB
4967@item
4968the address of the frame
c906108c
SS
4969@item
4970the address of the next frame down (called by this frame)
4971@item
4972the address of the next frame up (caller of this frame)
4973@item
4974the language in which the source code corresponding to this frame is written
4975@item
4976the address of the frame's arguments
4977@item
d4f3574e
SS
4978the address of the frame's local variables
4979@item
c906108c
SS
4980the program counter saved in it (the address of execution in the caller frame)
4981@item
4982which registers were saved in the frame
4983@end itemize
4984
4985@noindent The verbose description is useful when
4986something has gone wrong that has made the stack format fail to fit
4987the usual conventions.
4988
4989@item info frame @var{addr}
4990@itemx info f @var{addr}
4991Print a verbose description of the frame at address @var{addr}, without
4992selecting that frame. The selected frame remains unchanged by this
4993command. This requires the same kind of address (more than one for some
4994architectures) that you specify in the @code{frame} command.
79a6e687 4995@xref{Selection, ,Selecting a Frame}.
c906108c
SS
4996
4997@kindex info args
4998@item info args
4999Print the arguments of the selected frame, each on a separate line.
5000
5001@item info locals
5002@kindex info locals
5003Print the local variables of the selected frame, each on a separate
5004line. These are all variables (declared either static or automatic)
5005accessible at the point of execution of the selected frame.
5006
c906108c 5007@kindex info catch
d4f3574e
SS
5008@cindex catch exceptions, list active handlers
5009@cindex exception handlers, how to list
c906108c
SS
5010@item info catch
5011Print a list of all the exception handlers that are active in the
5012current stack frame at the current point of execution. To see other
5013exception handlers, visit the associated frame (using the @code{up},
5014@code{down}, or @code{frame} commands); then type @code{info catch}.
79a6e687 5015@xref{Set Catchpoints, , Setting Catchpoints}.
53a5351d 5016
c906108c
SS
5017@end table
5018
c906108c 5019
6d2ebf8b 5020@node Source
c906108c
SS
5021@chapter Examining Source Files
5022
5023@value{GDBN} can print parts of your program's source, since the debugging
5024information recorded in the program tells @value{GDBN} what source files were
5025used to build it. When your program stops, @value{GDBN} spontaneously prints
5026the line where it stopped. Likewise, when you select a stack frame
79a6e687 5027(@pxref{Selection, ,Selecting a Frame}), @value{GDBN} prints the line where
c906108c
SS
5028execution in that frame has stopped. You can print other portions of
5029source files by explicit command.
5030
7a292a7a 5031If you use @value{GDBN} through its @sc{gnu} Emacs interface, you may
d4f3574e 5032prefer to use Emacs facilities to view source; see @ref{Emacs, ,Using
7a292a7a 5033@value{GDBN} under @sc{gnu} Emacs}.
c906108c
SS
5034
5035@menu
5036* List:: Printing source lines
2a25a5ba 5037* Specify Location:: How to specify code locations
87885426 5038* Edit:: Editing source files
c906108c 5039* Search:: Searching source files
c906108c
SS
5040* Source Path:: Specifying source directories
5041* Machine Code:: Source and machine code
5042@end menu
5043
6d2ebf8b 5044@node List
79a6e687 5045@section Printing Source Lines
c906108c
SS
5046
5047@kindex list
41afff9a 5048@kindex l @r{(@code{list})}
c906108c 5049To print lines from a source file, use the @code{list} command
5d161b24 5050(abbreviated @code{l}). By default, ten lines are printed.
2a25a5ba
EZ
5051There are several ways to specify what part of the file you want to
5052print; see @ref{Specify Location}, for the full list.
c906108c
SS
5053
5054Here are the forms of the @code{list} command most commonly used:
5055
5056@table @code
5057@item list @var{linenum}
5058Print lines centered around line number @var{linenum} in the
5059current source file.
5060
5061@item list @var{function}
5062Print lines centered around the beginning of function
5063@var{function}.
5064
5065@item list
5066Print more lines. If the last lines printed were printed with a
5067@code{list} command, this prints lines following the last lines
5068printed; however, if the last line printed was a solitary line printed
5069as part of displaying a stack frame (@pxref{Stack, ,Examining the
5070Stack}), this prints lines centered around that line.
5071
5072@item list -
5073Print lines just before the lines last printed.
5074@end table
5075
9c16f35a 5076@cindex @code{list}, how many lines to display
c906108c
SS
5077By default, @value{GDBN} prints ten source lines with any of these forms of
5078the @code{list} command. You can change this using @code{set listsize}:
5079
5080@table @code
5081@kindex set listsize
5082@item set listsize @var{count}
5083Make the @code{list} command display @var{count} source lines (unless
5084the @code{list} argument explicitly specifies some other number).
5085
5086@kindex show listsize
5087@item show listsize
5088Display the number of lines that @code{list} prints.
5089@end table
5090
5091Repeating a @code{list} command with @key{RET} discards the argument,
5092so it is equivalent to typing just @code{list}. This is more useful
5093than listing the same lines again. An exception is made for an
5094argument of @samp{-}; that argument is preserved in repetition so that
5095each repetition moves up in the source file.
5096
c906108c
SS
5097In general, the @code{list} command expects you to supply zero, one or two
5098@dfn{linespecs}. Linespecs specify source lines; there are several ways
2a25a5ba
EZ
5099of writing them (@pxref{Specify Location}), but the effect is always
5100to specify some source line.
5101
c906108c
SS
5102Here is a complete description of the possible arguments for @code{list}:
5103
5104@table @code
5105@item list @var{linespec}
5106Print lines centered around the line specified by @var{linespec}.
5107
5108@item list @var{first},@var{last}
5109Print lines from @var{first} to @var{last}. Both arguments are
2a25a5ba
EZ
5110linespecs. When a @code{list} command has two linespecs, and the
5111source file of the second linespec is omitted, this refers to
5112the same source file as the first linespec.
c906108c
SS
5113
5114@item list ,@var{last}
5115Print lines ending with @var{last}.
5116
5117@item list @var{first},
5118Print lines starting with @var{first}.
5119
5120@item list +
5121Print lines just after the lines last printed.
5122
5123@item list -
5124Print lines just before the lines last printed.
5125
5126@item list
5127As described in the preceding table.
5128@end table
5129
2a25a5ba
EZ
5130@node Specify Location
5131@section Specifying a Location
5132@cindex specifying location
5133@cindex linespec
c906108c 5134
2a25a5ba
EZ
5135Several @value{GDBN} commands accept arguments that specify a location
5136of your program's code. Since @value{GDBN} is a source-level
5137debugger, a location usually specifies some line in the source code;
5138for that reason, locations are also known as @dfn{linespecs}.
c906108c 5139
2a25a5ba
EZ
5140Here are all the different ways of specifying a code location that
5141@value{GDBN} understands:
c906108c 5142
2a25a5ba
EZ
5143@table @code
5144@item @var{linenum}
5145Specifies the line number @var{linenum} of the current source file.
c906108c 5146
2a25a5ba
EZ
5147@item -@var{offset}
5148@itemx +@var{offset}
5149Specifies the line @var{offset} lines before or after the @dfn{current
5150line}. For the @code{list} command, the current line is the last one
5151printed; for the breakpoint commands, this is the line at which
5152execution stopped in the currently selected @dfn{stack frame}
5153(@pxref{Frames, ,Frames}, for a description of stack frames.) When
5154used as the second of the two linespecs in a @code{list} command,
5155this specifies the line @var{offset} lines up or down from the first
5156linespec.
5157
5158@item @var{filename}:@var{linenum}
5159Specifies the line @var{linenum} in the source file @var{filename}.
c906108c
SS
5160
5161@item @var{function}
5162Specifies the line that begins the body of the function @var{function}.
2a25a5ba 5163For example, in C, this is the line with the open brace.
c906108c
SS
5164
5165@item @var{filename}:@var{function}
2a25a5ba
EZ
5166Specifies the line that begins the body of the function @var{function}
5167in the file @var{filename}. You only need the file name with a
5168function name to avoid ambiguity when there are identically named
5169functions in different source files.
c906108c
SS
5170
5171@item *@var{address}
2a25a5ba
EZ
5172Specifies the program address @var{address}. For line-oriented
5173commands, such as @code{list} and @code{edit}, this specifies a source
5174line that contains @var{address}. For @code{break} and other
5175breakpoint oriented commands, this can be used to set breakpoints in
5176parts of your program which do not have debugging information or
5177source files.
5178
5179Here @var{address} may be any expression valid in the current working
5180language (@pxref{Languages, working language}) that specifies a code
5fa54e5d
EZ
5181address. In addition, as a convenience, @value{GDBN} extends the
5182semantics of expressions used in locations to cover the situations
5183that frequently happen during debugging. Here are the various forms
5184of @var{address}:
2a25a5ba
EZ
5185
5186@table @code
5187@item @var{expression}
5188Any expression valid in the current working language.
5189
5190@item @var{funcaddr}
5191An address of a function or procedure derived from its name. In C,
5192C@t{++}, Java, Objective-C, Fortran, minimal, and assembly, this is
5193simply the function's name @var{function} (and actually a special case
5194of a valid expression). In Pascal and Modula-2, this is
5195@code{&@var{function}}. In Ada, this is @code{@var{function}'Address}
5196(although the Pascal form also works).
5197
5198This form specifies the address of the function's first instruction,
5199before the stack frame and arguments have been set up.
5200
5201@item '@var{filename}'::@var{funcaddr}
5202Like @var{funcaddr} above, but also specifies the name of the source
5203file explicitly. This is useful if the name of the function does not
5204specify the function unambiguously, e.g., if there are several
5205functions with identical names in different source files.
c906108c
SS
5206@end table
5207
2a25a5ba
EZ
5208@end table
5209
5210
87885426 5211@node Edit
79a6e687 5212@section Editing Source Files
87885426
FN
5213@cindex editing source files
5214
5215@kindex edit
5216@kindex e @r{(@code{edit})}
5217To edit the lines in a source file, use the @code{edit} command.
5218The editing program of your choice
5219is invoked with the current line set to
5220the active line in the program.
5221Alternatively, there are several ways to specify what part of the file you
2a25a5ba 5222want to print if you want to see other parts of the program:
87885426
FN
5223
5224@table @code
2a25a5ba
EZ
5225@item edit @var{location}
5226Edit the source file specified by @code{location}. Editing starts at
5227that @var{location}, e.g., at the specified source line of the
5228specified file. @xref{Specify Location}, for all the possible forms
5229of the @var{location} argument; here are the forms of the @code{edit}
5230command most commonly used:
87885426 5231
2a25a5ba 5232@table @code
87885426
FN
5233@item edit @var{number}
5234Edit the current source file with @var{number} as the active line number.
5235
5236@item edit @var{function}
5237Edit the file containing @var{function} at the beginning of its definition.
2a25a5ba 5238@end table
87885426 5239
87885426
FN
5240@end table
5241
79a6e687 5242@subsection Choosing your Editor
87885426
FN
5243You can customize @value{GDBN} to use any editor you want
5244@footnote{
5245The only restriction is that your editor (say @code{ex}), recognizes the
5246following command-line syntax:
10998722 5247@smallexample
87885426 5248ex +@var{number} file
10998722 5249@end smallexample
15387254
EZ
5250The optional numeric value +@var{number} specifies the number of the line in
5251the file where to start editing.}.
5252By default, it is @file{@value{EDITOR}}, but you can change this
10998722
AC
5253by setting the environment variable @code{EDITOR} before using
5254@value{GDBN}. For example, to configure @value{GDBN} to use the
5255@code{vi} editor, you could use these commands with the @code{sh} shell:
5256@smallexample
87885426
FN
5257EDITOR=/usr/bin/vi
5258export EDITOR
15387254 5259gdb @dots{}
10998722 5260@end smallexample
87885426 5261or in the @code{csh} shell,
10998722 5262@smallexample
87885426 5263setenv EDITOR /usr/bin/vi
15387254 5264gdb @dots{}
10998722 5265@end smallexample
87885426 5266
6d2ebf8b 5267@node Search
79a6e687 5268@section Searching Source Files
15387254 5269@cindex searching source files
c906108c
SS
5270
5271There are two commands for searching through the current source file for a
5272regular expression.
5273
5274@table @code
5275@kindex search
5276@kindex forward-search
5277@item forward-search @var{regexp}
5278@itemx search @var{regexp}
5279The command @samp{forward-search @var{regexp}} checks each line,
5280starting with the one following the last line listed, for a match for
5d161b24 5281@var{regexp}. It lists the line that is found. You can use the
c906108c
SS
5282synonym @samp{search @var{regexp}} or abbreviate the command name as
5283@code{fo}.
5284
09d4efe1 5285@kindex reverse-search
c906108c
SS
5286@item reverse-search @var{regexp}
5287The command @samp{reverse-search @var{regexp}} checks each line, starting
5288with the one before the last line listed and going backward, for a match
5289for @var{regexp}. It lists the line that is found. You can abbreviate
5290this command as @code{rev}.
5291@end table
c906108c 5292
6d2ebf8b 5293@node Source Path
79a6e687 5294@section Specifying Source Directories
c906108c
SS
5295
5296@cindex source path
5297@cindex directories for source files
5298Executable programs sometimes do not record the directories of the source
5299files from which they were compiled, just the names. Even when they do,
5300the directories could be moved between the compilation and your debugging
5301session. @value{GDBN} has a list of directories to search for source files;
5302this is called the @dfn{source path}. Each time @value{GDBN} wants a source file,
5303it tries all the directories in the list, in the order they are present
0b66e38c
EZ
5304in the list, until it finds a file with the desired name.
5305
5306For example, suppose an executable references the file
5307@file{/usr/src/foo-1.0/lib/foo.c}, and our source path is
5308@file{/mnt/cross}. The file is first looked up literally; if this
5309fails, @file{/mnt/cross/usr/src/foo-1.0/lib/foo.c} is tried; if this
5310fails, @file{/mnt/cross/foo.c} is opened; if this fails, an error
5311message is printed. @value{GDBN} does not look up the parts of the
5312source file name, such as @file{/mnt/cross/src/foo-1.0/lib/foo.c}.
5313Likewise, the subdirectories of the source path are not searched: if
5314the source path is @file{/mnt/cross}, and the binary refers to
5315@file{foo.c}, @value{GDBN} would not find it under
5316@file{/mnt/cross/usr/src/foo-1.0/lib}.
5317
5318Plain file names, relative file names with leading directories, file
5319names containing dots, etc.@: are all treated as described above; for
5320instance, if the source path is @file{/mnt/cross}, and the source file
5321is recorded as @file{../lib/foo.c}, @value{GDBN} would first try
5322@file{../lib/foo.c}, then @file{/mnt/cross/../lib/foo.c}, and after
5323that---@file{/mnt/cross/foo.c}.
5324
5325Note that the executable search path is @emph{not} used to locate the
cd852561 5326source files.
c906108c
SS
5327
5328Whenever you reset or rearrange the source path, @value{GDBN} clears out
5329any information it has cached about where source files are found and where
5330each line is in the file.
5331
5332@kindex directory
5333@kindex dir
d4f3574e
SS
5334When you start @value{GDBN}, its source path includes only @samp{cdir}
5335and @samp{cwd}, in that order.
c906108c
SS
5336To add other directories, use the @code{directory} command.
5337
4b505b12
AS
5338The search path is used to find both program source files and @value{GDBN}
5339script files (read using the @samp{-command} option and @samp{source} command).
5340
30daae6c
JB
5341In addition to the source path, @value{GDBN} provides a set of commands
5342that manage a list of source path substitution rules. A @dfn{substitution
5343rule} specifies how to rewrite source directories stored in the program's
5344debug information in case the sources were moved to a different
5345directory between compilation and debugging. A rule is made of
5346two strings, the first specifying what needs to be rewritten in
5347the path, and the second specifying how it should be rewritten.
5348In @ref{set substitute-path}, we name these two parts @var{from} and
5349@var{to} respectively. @value{GDBN} does a simple string replacement
5350of @var{from} with @var{to} at the start of the directory part of the
5351source file name, and uses that result instead of the original file
5352name to look up the sources.
5353
5354Using the previous example, suppose the @file{foo-1.0} tree has been
5355moved from @file{/usr/src} to @file{/mnt/cross}, then you can tell
3f94c067 5356@value{GDBN} to replace @file{/usr/src} in all source path names with
30daae6c
JB
5357@file{/mnt/cross}. The first lookup will then be
5358@file{/mnt/cross/foo-1.0/lib/foo.c} in place of the original location
5359of @file{/usr/src/foo-1.0/lib/foo.c}. To define a source path
5360substitution rule, use the @code{set substitute-path} command
5361(@pxref{set substitute-path}).
5362
5363To avoid unexpected substitution results, a rule is applied only if the
5364@var{from} part of the directory name ends at a directory separator.
5365For instance, a rule substituting @file{/usr/source} into
5366@file{/mnt/cross} will be applied to @file{/usr/source/foo-1.0} but
5367not to @file{/usr/sourceware/foo-2.0}. And because the substitution
d3e8051b 5368is applied only at the beginning of the directory name, this rule will
30daae6c
JB
5369not be applied to @file{/root/usr/source/baz.c} either.
5370
5371In many cases, you can achieve the same result using the @code{directory}
5372command. However, @code{set substitute-path} can be more efficient in
5373the case where the sources are organized in a complex tree with multiple
5374subdirectories. With the @code{directory} command, you need to add each
5375subdirectory of your project. If you moved the entire tree while
5376preserving its internal organization, then @code{set substitute-path}
5377allows you to direct the debugger to all the sources with one single
5378command.
5379
5380@code{set substitute-path} is also more than just a shortcut command.
5381The source path is only used if the file at the original location no
5382longer exists. On the other hand, @code{set substitute-path} modifies
5383the debugger behavior to look at the rewritten location instead. So, if
5384for any reason a source file that is not relevant to your executable is
5385located at the original location, a substitution rule is the only
3f94c067 5386method available to point @value{GDBN} at the new location.
30daae6c 5387
c906108c
SS
5388@table @code
5389@item directory @var{dirname} @dots{}
5390@item dir @var{dirname} @dots{}
5391Add directory @var{dirname} to the front of the source path. Several
d4f3574e
SS
5392directory names may be given to this command, separated by @samp{:}
5393(@samp{;} on MS-DOS and MS-Windows, where @samp{:} usually appears as
5394part of absolute file names) or
c906108c
SS
5395whitespace. You may specify a directory that is already in the source
5396path; this moves it forward, so @value{GDBN} searches it sooner.
5397
5398@kindex cdir
5399@kindex cwd
41afff9a 5400@vindex $cdir@r{, convenience variable}
d3e8051b 5401@vindex $cwd@r{, convenience variable}
c906108c
SS
5402@cindex compilation directory
5403@cindex current directory
5404@cindex working directory
5405@cindex directory, current
5406@cindex directory, compilation
5407You can use the string @samp{$cdir} to refer to the compilation
5408directory (if one is recorded), and @samp{$cwd} to refer to the current
5409working directory. @samp{$cwd} is not the same as @samp{.}---the former
5410tracks the current working directory as it changes during your @value{GDBN}
5411session, while the latter is immediately expanded to the current
5412directory at the time you add an entry to the source path.
5413
5414@item directory
cd852561 5415Reset the source path to its default value (@samp{$cdir:$cwd} on Unix systems). This requires confirmation.
c906108c
SS
5416
5417@c RET-repeat for @code{directory} is explicitly disabled, but since
5418@c repeating it would be a no-op we do not say that. (thanks to RMS)
5419
5420@item show directories
5421@kindex show directories
5422Print the source path: show which directories it contains.
30daae6c
JB
5423
5424@anchor{set substitute-path}
5425@item set substitute-path @var{from} @var{to}
5426@kindex set substitute-path
5427Define a source path substitution rule, and add it at the end of the
5428current list of existing substitution rules. If a rule with the same
5429@var{from} was already defined, then the old rule is also deleted.
5430
5431For example, if the file @file{/foo/bar/baz.c} was moved to
5432@file{/mnt/cross/baz.c}, then the command
5433
5434@smallexample
5435(@value{GDBP}) set substitute-path /usr/src /mnt/cross
5436@end smallexample
5437
5438@noindent
5439will tell @value{GDBN} to replace @samp{/usr/src} with
5440@samp{/mnt/cross}, which will allow @value{GDBN} to find the file
5441@file{baz.c} even though it was moved.
5442
5443In the case when more than one substitution rule have been defined,
5444the rules are evaluated one by one in the order where they have been
5445defined. The first one matching, if any, is selected to perform
5446the substitution.
5447
5448For instance, if we had entered the following commands:
5449
5450@smallexample
5451(@value{GDBP}) set substitute-path /usr/src/include /mnt/include
5452(@value{GDBP}) set substitute-path /usr/src /mnt/src
5453@end smallexample
5454
5455@noindent
5456@value{GDBN} would then rewrite @file{/usr/src/include/defs.h} into
5457@file{/mnt/include/defs.h} by using the first rule. However, it would
5458use the second rule to rewrite @file{/usr/src/lib/foo.c} into
5459@file{/mnt/src/lib/foo.c}.
5460
5461
5462@item unset substitute-path [path]
5463@kindex unset substitute-path
5464If a path is specified, search the current list of substitution rules
5465for a rule that would rewrite that path. Delete that rule if found.
5466A warning is emitted by the debugger if no rule could be found.
5467
5468If no path is specified, then all substitution rules are deleted.
5469
5470@item show substitute-path [path]
5471@kindex show substitute-path
5472If a path is specified, then print the source path substitution rule
5473which would rewrite that path, if any.
5474
5475If no path is specified, then print all existing source path substitution
5476rules.
5477
c906108c
SS
5478@end table
5479
5480If your source path is cluttered with directories that are no longer of
5481interest, @value{GDBN} may sometimes cause confusion by finding the wrong
5482versions of source. You can correct the situation as follows:
5483
5484@enumerate
5485@item
cd852561 5486Use @code{directory} with no argument to reset the source path to its default value.
c906108c
SS
5487
5488@item
5489Use @code{directory} with suitable arguments to reinstall the
5490directories you want in the source path. You can add all the
5491directories in one command.
5492@end enumerate
5493
6d2ebf8b 5494@node Machine Code
79a6e687 5495@section Source and Machine Code
15387254 5496@cindex source line and its code address
c906108c
SS
5497
5498You can use the command @code{info line} to map source lines to program
5499addresses (and vice versa), and the command @code{disassemble} to display
5500a range of addresses as machine instructions. When run under @sc{gnu} Emacs
d4f3574e 5501mode, the @code{info line} command causes the arrow to point to the
5d161b24 5502line specified. Also, @code{info line} prints addresses in symbolic form as
c906108c
SS
5503well as hex.
5504
5505@table @code
5506@kindex info line
5507@item info line @var{linespec}
5508Print the starting and ending addresses of the compiled code for
5509source line @var{linespec}. You can specify source lines in any of
2a25a5ba 5510the ways documented in @ref{Specify Location}.
c906108c
SS
5511@end table
5512
5513For example, we can use @code{info line} to discover the location of
5514the object code for the first line of function
5515@code{m4_changequote}:
5516
d4f3574e
SS
5517@c FIXME: I think this example should also show the addresses in
5518@c symbolic form, as they usually would be displayed.
c906108c 5519@smallexample
96a2c332 5520(@value{GDBP}) info line m4_changequote
c906108c
SS
5521Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.
5522@end smallexample
5523
5524@noindent
15387254 5525@cindex code address and its source line
c906108c
SS
5526We can also inquire (using @code{*@var{addr}} as the form for
5527@var{linespec}) what source line covers a particular address:
5528@smallexample
5529(@value{GDBP}) info line *0x63ff
5530Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.
5531@end smallexample
5532
5533@cindex @code{$_} and @code{info line}
15387254 5534@cindex @code{x} command, default address
41afff9a 5535@kindex x@r{(examine), and} info line
c906108c
SS
5536After @code{info line}, the default address for the @code{x} command
5537is changed to the starting address of the line, so that @samp{x/i} is
5538sufficient to begin examining the machine code (@pxref{Memory,
79a6e687 5539,Examining Memory}). Also, this address is saved as the value of the
c906108c 5540convenience variable @code{$_} (@pxref{Convenience Vars, ,Convenience
79a6e687 5541Variables}).
c906108c
SS
5542
5543@table @code
5544@kindex disassemble
5545@cindex assembly instructions
5546@cindex instructions, assembly
5547@cindex machine instructions
5548@cindex listing machine instructions
5549@item disassemble
d14508fe 5550@itemx disassemble /m
c906108c 5551This specialized command dumps a range of memory as machine
d14508fe
DE
5552instructions. It can also print mixed source+disassembly by specifying
5553the @code{/m} modifier.
5554The default memory range is the function surrounding the
c906108c
SS
5555program counter of the selected frame. A single argument to this
5556command is a program counter value; @value{GDBN} dumps the function
5557surrounding this value. Two arguments specify a range of addresses
5558(first inclusive, second exclusive) to dump.
5559@end table
5560
c906108c
SS
5561The following example shows the disassembly of a range of addresses of
5562HP PA-RISC 2.0 code:
5563
5564@smallexample
5565(@value{GDBP}) disas 0x32c4 0x32e4
5566Dump of assembler code from 0x32c4 to 0x32e4:
55670x32c4 <main+204>: addil 0,dp
55680x32c8 <main+208>: ldw 0x22c(sr0,r1),r26
55690x32cc <main+212>: ldil 0x3000,r31
55700x32d0 <main+216>: ble 0x3f8(sr4,r31)
55710x32d4 <main+220>: ldo 0(r31),rp
55720x32d8 <main+224>: addil -0x800,dp
55730x32dc <main+228>: ldo 0x588(r1),r26
55740x32e0 <main+232>: ldil 0x3000,r31
5575End of assembler dump.
5576@end smallexample
c906108c 5577
d14508fe
DE
5578Here is an example showing mixed source+assembly for Intel x86:
5579
5580@smallexample
5581(@value{GDBP}) disas /m main
5582Dump of assembler code for function main:
55835 @{
55840x08048330 <main+0>: push %ebp
55850x08048331 <main+1>: mov %esp,%ebp
55860x08048333 <main+3>: sub $0x8,%esp
55870x08048336 <main+6>: and $0xfffffff0,%esp
55880x08048339 <main+9>: sub $0x10,%esp
5589
55906 printf ("Hello.\n");
55910x0804833c <main+12>: movl $0x8048440,(%esp)
55920x08048343 <main+19>: call 0x8048284 <puts@@plt>
5593
55947 return 0;
55958 @}
55960x08048348 <main+24>: mov $0x0,%eax
55970x0804834d <main+29>: leave
55980x0804834e <main+30>: ret
5599
5600End of assembler dump.
5601@end smallexample
5602
c906108c
SS
5603Some architectures have more than one commonly-used set of instruction
5604mnemonics or other syntax.
5605
76d17f34
EZ
5606For programs that were dynamically linked and use shared libraries,
5607instructions that call functions or branch to locations in the shared
5608libraries might show a seemingly bogus location---it's actually a
5609location of the relocation table. On some architectures, @value{GDBN}
5610might be able to resolve these to actual function names.
5611
c906108c 5612@table @code
d4f3574e 5613@kindex set disassembly-flavor
d4f3574e
SS
5614@cindex Intel disassembly flavor
5615@cindex AT&T disassembly flavor
5616@item set disassembly-flavor @var{instruction-set}
c906108c
SS
5617Select the instruction set to use when disassembling the
5618program via the @code{disassemble} or @code{x/i} commands.
5619
5620Currently this command is only defined for the Intel x86 family. You
d4f3574e
SS
5621can set @var{instruction-set} to either @code{intel} or @code{att}.
5622The default is @code{att}, the AT&T flavor used by default by Unix
5623assemblers for x86-based targets.
9c16f35a
EZ
5624
5625@kindex show disassembly-flavor
5626@item show disassembly-flavor
5627Show the current setting of the disassembly flavor.
c906108c
SS
5628@end table
5629
5630
6d2ebf8b 5631@node Data
c906108c
SS
5632@chapter Examining Data
5633
5634@cindex printing data
5635@cindex examining data
5636@kindex print
5637@kindex inspect
5638@c "inspect" is not quite a synonym if you are using Epoch, which we do not
5639@c document because it is nonstandard... Under Epoch it displays in a
5640@c different window or something like that.
5641The usual way to examine data in your program is with the @code{print}
7a292a7a
SS
5642command (abbreviated @code{p}), or its synonym @code{inspect}. It
5643evaluates and prints the value of an expression of the language your
5644program is written in (@pxref{Languages, ,Using @value{GDBN} with
5645Different Languages}).
c906108c
SS
5646
5647@table @code
d4f3574e
SS
5648@item print @var{expr}
5649@itemx print /@var{f} @var{expr}
5650@var{expr} is an expression (in the source language). By default the
5651value of @var{expr} is printed in a format appropriate to its data type;
c906108c 5652you can choose a different format by specifying @samp{/@var{f}}, where
d4f3574e 5653@var{f} is a letter specifying the format; see @ref{Output Formats,,Output
79a6e687 5654Formats}.
c906108c
SS
5655
5656@item print
5657@itemx print /@var{f}
15387254 5658@cindex reprint the last value
d4f3574e 5659If you omit @var{expr}, @value{GDBN} displays the last value again (from the
79a6e687 5660@dfn{value history}; @pxref{Value History, ,Value History}). This allows you to
c906108c
SS
5661conveniently inspect the same value in an alternative format.
5662@end table
5663
5664A more low-level way of examining data is with the @code{x} command.
5665It examines data in memory at a specified address and prints it in a
79a6e687 5666specified format. @xref{Memory, ,Examining Memory}.
c906108c 5667
7a292a7a 5668If you are interested in information about types, or about how the
d4f3574e
SS
5669fields of a struct or a class are declared, use the @code{ptype @var{exp}}
5670command rather than @code{print}. @xref{Symbols, ,Examining the Symbol
7a292a7a 5671Table}.
c906108c
SS
5672
5673@menu
5674* Expressions:: Expressions
6ba66d6a 5675* Ambiguous Expressions:: Ambiguous Expressions
c906108c
SS
5676* Variables:: Program variables
5677* Arrays:: Artificial arrays
5678* Output Formats:: Output formats
5679* Memory:: Examining memory
5680* Auto Display:: Automatic display
5681* Print Settings:: Print settings
5682* Value History:: Value history
5683* Convenience Vars:: Convenience variables
5684* Registers:: Registers
c906108c 5685* Floating Point Hardware:: Floating point hardware
53c69bd7 5686* Vector Unit:: Vector Unit
721c2651 5687* OS Information:: Auxiliary data provided by operating system
29e57380 5688* Memory Region Attributes:: Memory region attributes
16d9dec6 5689* Dump/Restore Files:: Copy between memory and a file
384ee23f 5690* Core File Generation:: Cause a program dump its core
a0eb71c5
KB
5691* Character Sets:: Debugging programs that use a different
5692 character set than GDB does
09d4efe1 5693* Caching Remote Data:: Data caching for remote targets
08388c79 5694* Searching Memory:: Searching memory for a sequence of bytes
c906108c
SS
5695@end menu
5696
6d2ebf8b 5697@node Expressions
c906108c
SS
5698@section Expressions
5699
5700@cindex expressions
5701@code{print} and many other @value{GDBN} commands accept an expression and
5702compute its value. Any kind of constant, variable or operator defined
5703by the programming language you are using is valid in an expression in
e2e0bcd1
JB
5704@value{GDBN}. This includes conditional expressions, function calls,
5705casts, and string constants. It also includes preprocessor macros, if
5706you compiled your program to include this information; see
5707@ref{Compilation}.
c906108c 5708
15387254 5709@cindex arrays in expressions
d4f3574e
SS
5710@value{GDBN} supports array constants in expressions input by
5711the user. The syntax is @{@var{element}, @var{element}@dots{}@}. For example,
63092375
DJ
5712you can use the command @code{print @{1, 2, 3@}} to create an array
5713of three integers. If you pass an array to a function or assign it
5714to a program variable, @value{GDBN} copies the array to memory that
5715is @code{malloc}ed in the target program.
c906108c 5716
c906108c
SS
5717Because C is so widespread, most of the expressions shown in examples in
5718this manual are in C. @xref{Languages, , Using @value{GDBN} with Different
5719Languages}, for information on how to use expressions in other
5720languages.
5721
5722In this section, we discuss operators that you can use in @value{GDBN}
5723expressions regardless of your programming language.
5724
15387254 5725@cindex casts, in expressions
c906108c
SS
5726Casts are supported in all languages, not just in C, because it is so
5727useful to cast a number into a pointer in order to examine a structure
5728at that address in memory.
5729@c FIXME: casts supported---Mod2 true?
c906108c
SS
5730
5731@value{GDBN} supports these operators, in addition to those common
5732to programming languages:
5733
5734@table @code
5735@item @@
5736@samp{@@} is a binary operator for treating parts of memory as arrays.
79a6e687 5737@xref{Arrays, ,Artificial Arrays}, for more information.
c906108c
SS
5738
5739@item ::
5740@samp{::} allows you to specify a variable in terms of the file or
79a6e687 5741function where it is defined. @xref{Variables, ,Program Variables}.
c906108c
SS
5742
5743@cindex @{@var{type}@}
5744@cindex type casting memory
5745@cindex memory, viewing as typed object
5746@cindex casts, to view memory
5747@item @{@var{type}@} @var{addr}
5748Refers to an object of type @var{type} stored at address @var{addr} in
5749memory. @var{addr} may be any expression whose value is an integer or
5750pointer (but parentheses are required around binary operators, just as in
5751a cast). This construct is allowed regardless of what kind of data is
5752normally supposed to reside at @var{addr}.
5753@end table
5754
6ba66d6a
JB
5755@node Ambiguous Expressions
5756@section Ambiguous Expressions
5757@cindex ambiguous expressions
5758
5759Expressions can sometimes contain some ambiguous elements. For instance,
5760some programming languages (notably Ada, C@t{++} and Objective-C) permit
5761a single function name to be defined several times, for application in
5762different contexts. This is called @dfn{overloading}. Another example
5763involving Ada is generics. A @dfn{generic package} is similar to C@t{++}
5764templates and is typically instantiated several times, resulting in
5765the same function name being defined in different contexts.
5766
5767In some cases and depending on the language, it is possible to adjust
5768the expression to remove the ambiguity. For instance in C@t{++}, you
5769can specify the signature of the function you want to break on, as in
5770@kbd{break @var{function}(@var{types})}. In Ada, using the fully
5771qualified name of your function often makes the expression unambiguous
5772as well.
5773
5774When an ambiguity that needs to be resolved is detected, the debugger
5775has the capability to display a menu of numbered choices for each
5776possibility, and then waits for the selection with the prompt @samp{>}.
5777The first option is always @samp{[0] cancel}, and typing @kbd{0 @key{RET}}
5778aborts the current command. If the command in which the expression was
5779used allows more than one choice to be selected, the next option in the
5780menu is @samp{[1] all}, and typing @kbd{1 @key{RET}} selects all possible
5781choices.
5782
5783For example, the following session excerpt shows an attempt to set a
5784breakpoint at the overloaded symbol @code{String::after}.
5785We choose three particular definitions of that function name:
5786
5787@c FIXME! This is likely to change to show arg type lists, at least
5788@smallexample
5789@group
5790(@value{GDBP}) b String::after
5791[0] cancel
5792[1] all
5793[2] file:String.cc; line number:867
5794[3] file:String.cc; line number:860
5795[4] file:String.cc; line number:875
5796[5] file:String.cc; line number:853
5797[6] file:String.cc; line number:846
5798[7] file:String.cc; line number:735
5799> 2 4 6
5800Breakpoint 1 at 0xb26c: file String.cc, line 867.
5801Breakpoint 2 at 0xb344: file String.cc, line 875.
5802Breakpoint 3 at 0xafcc: file String.cc, line 846.
5803Multiple breakpoints were set.
5804Use the "delete" command to delete unwanted
5805 breakpoints.
5806(@value{GDBP})
5807@end group
5808@end smallexample
5809
5810@table @code
5811@kindex set multiple-symbols
5812@item set multiple-symbols @var{mode}
5813@cindex multiple-symbols menu
5814
5815This option allows you to adjust the debugger behavior when an expression
5816is ambiguous.
5817
5818By default, @var{mode} is set to @code{all}. If the command with which
5819the expression is used allows more than one choice, then @value{GDBN}
5820automatically selects all possible choices. For instance, inserting
5821a breakpoint on a function using an ambiguous name results in a breakpoint
5822inserted on each possible match. However, if a unique choice must be made,
5823then @value{GDBN} uses the menu to help you disambiguate the expression.
5824For instance, printing the address of an overloaded function will result
5825in the use of the menu.
5826
5827When @var{mode} is set to @code{ask}, the debugger always uses the menu
5828when an ambiguity is detected.
5829
5830Finally, when @var{mode} is set to @code{cancel}, the debugger reports
5831an error due to the ambiguity and the command is aborted.
5832
5833@kindex show multiple-symbols
5834@item show multiple-symbols
5835Show the current value of the @code{multiple-symbols} setting.
5836@end table
5837
6d2ebf8b 5838@node Variables
79a6e687 5839@section Program Variables
c906108c
SS
5840
5841The most common kind of expression to use is the name of a variable
5842in your program.
5843
5844Variables in expressions are understood in the selected stack frame
79a6e687 5845(@pxref{Selection, ,Selecting a Frame}); they must be either:
c906108c
SS
5846
5847@itemize @bullet
5848@item
5849global (or file-static)
5850@end itemize
5851
5d161b24 5852@noindent or
c906108c
SS
5853
5854@itemize @bullet
5855@item
5856visible according to the scope rules of the
5857programming language from the point of execution in that frame
5d161b24 5858@end itemize
c906108c
SS
5859
5860@noindent This means that in the function
5861
474c8240 5862@smallexample
c906108c
SS
5863foo (a)
5864 int a;
5865@{
5866 bar (a);
5867 @{
5868 int b = test ();
5869 bar (b);
5870 @}
5871@}
474c8240 5872@end smallexample
c906108c
SS
5873
5874@noindent
5875you can examine and use the variable @code{a} whenever your program is
5876executing within the function @code{foo}, but you can only use or
5877examine the variable @code{b} while your program is executing inside
5878the block where @code{b} is declared.
5879
5880@cindex variable name conflict
5881There is an exception: you can refer to a variable or function whose
5882scope is a single source file even if the current execution point is not
5883in this file. But it is possible to have more than one such variable or
5884function with the same name (in different source files). If that
5885happens, referring to that name has unpredictable effects. If you wish,
5886you can specify a static variable in a particular function or file,
15387254 5887using the colon-colon (@code{::}) notation:
c906108c 5888
d4f3574e 5889@cindex colon-colon, context for variables/functions
12c27660 5890@ifnotinfo
c906108c 5891@c info cannot cope with a :: index entry, but why deprive hard copy readers?
41afff9a 5892@cindex @code{::}, context for variables/functions
12c27660 5893@end ifnotinfo
474c8240 5894@smallexample
c906108c
SS
5895@var{file}::@var{variable}
5896@var{function}::@var{variable}
474c8240 5897@end smallexample
c906108c
SS
5898
5899@noindent
5900Here @var{file} or @var{function} is the name of the context for the
5901static @var{variable}. In the case of file names, you can use quotes to
5902make sure @value{GDBN} parses the file name as a single word---for example,
5903to print a global value of @code{x} defined in @file{f2.c}:
5904
474c8240 5905@smallexample
c906108c 5906(@value{GDBP}) p 'f2.c'::x
474c8240 5907@end smallexample
c906108c 5908
b37052ae 5909@cindex C@t{++} scope resolution
c906108c 5910This use of @samp{::} is very rarely in conflict with the very similar
b37052ae 5911use of the same notation in C@t{++}. @value{GDBN} also supports use of the C@t{++}
c906108c
SS
5912scope resolution operator in @value{GDBN} expressions.
5913@c FIXME: Um, so what happens in one of those rare cases where it's in
5914@c conflict?? --mew
c906108c
SS
5915
5916@cindex wrong values
5917@cindex variable values, wrong
15387254
EZ
5918@cindex function entry/exit, wrong values of variables
5919@cindex optimized code, wrong values of variables
c906108c
SS
5920@quotation
5921@emph{Warning:} Occasionally, a local variable may appear to have the
5922wrong value at certain points in a function---just after entry to a new
5923scope, and just before exit.
5924@end quotation
5925You may see this problem when you are stepping by machine instructions.
5926This is because, on most machines, it takes more than one instruction to
5927set up a stack frame (including local variable definitions); if you are
5928stepping by machine instructions, variables may appear to have the wrong
5929values until the stack frame is completely built. On exit, it usually
5930also takes more than one machine instruction to destroy a stack frame;
5931after you begin stepping through that group of instructions, local
5932variable definitions may be gone.
5933
5934This may also happen when the compiler does significant optimizations.
5935To be sure of always seeing accurate values, turn off all optimization
5936when compiling.
5937
d4f3574e
SS
5938@cindex ``No symbol "foo" in current context''
5939Another possible effect of compiler optimizations is to optimize
5940unused variables out of existence, or assign variables to registers (as
5941opposed to memory addresses). Depending on the support for such cases
5942offered by the debug info format used by the compiler, @value{GDBN}
5943might not be able to display values for such local variables. If that
5944happens, @value{GDBN} will print a message like this:
5945
474c8240 5946@smallexample
d4f3574e 5947No symbol "foo" in current context.
474c8240 5948@end smallexample
d4f3574e
SS
5949
5950To solve such problems, either recompile without optimizations, or use a
5951different debug info format, if the compiler supports several such
15387254 5952formats. For example, @value{NGCC}, the @sc{gnu} C/C@t{++} compiler,
0179ffac
DC
5953usually supports the @option{-gstabs+} option. @option{-gstabs+}
5954produces debug info in a format that is superior to formats such as
5955COFF. You may be able to use DWARF 2 (@option{-gdwarf-2}), which is also
5956an effective form for debug info. @xref{Debugging Options,,Options
ce9341a1
BW
5957for Debugging Your Program or GCC, gcc.info, Using the @sc{gnu}
5958Compiler Collection (GCC)}.
79a6e687 5959@xref{C, ,C and C@t{++}}, for more information about debug info formats
15387254 5960that are best suited to C@t{++} programs.
d4f3574e 5961
ab1adacd
EZ
5962If you ask to print an object whose contents are unknown to
5963@value{GDBN}, e.g., because its data type is not completely specified
5964by the debug information, @value{GDBN} will say @samp{<incomplete
5965type>}. @xref{Symbols, incomplete type}, for more about this.
5966
3a60f64e
JK
5967Strings are identified as arrays of @code{char} values without specified
5968signedness. Arrays of either @code{signed char} or @code{unsigned char} get
5969printed as arrays of 1 byte sized integers. @code{-fsigned-char} or
5970@code{-funsigned-char} @value{NGCC} options have no effect as @value{GDBN}
5971defines literal string type @code{"char"} as @code{char} without a sign.
5972For program code
5973
5974@smallexample
5975char var0[] = "A";
5976signed char var1[] = "A";
5977@end smallexample
5978
5979You get during debugging
5980@smallexample
5981(gdb) print var0
5982$1 = "A"
5983(gdb) print var1
5984$2 = @{65 'A', 0 '\0'@}
5985@end smallexample
5986
6d2ebf8b 5987@node Arrays
79a6e687 5988@section Artificial Arrays
c906108c
SS
5989
5990@cindex artificial array
15387254 5991@cindex arrays
41afff9a 5992@kindex @@@r{, referencing memory as an array}
c906108c
SS
5993It is often useful to print out several successive objects of the
5994same type in memory; a section of an array, or an array of
5995dynamically determined size for which only a pointer exists in the
5996program.
5997
5998You can do this by referring to a contiguous span of memory as an
5999@dfn{artificial array}, using the binary operator @samp{@@}. The left
6000operand of @samp{@@} should be the first element of the desired array
6001and be an individual object. The right operand should be the desired length
6002of the array. The result is an array value whose elements are all of
6003the type of the left argument. The first element is actually the left
6004argument; the second element comes from bytes of memory immediately
6005following those that hold the first element, and so on. Here is an
6006example. If a program says
6007
474c8240 6008@smallexample
c906108c 6009int *array = (int *) malloc (len * sizeof (int));
474c8240 6010@end smallexample
c906108c
SS
6011
6012@noindent
6013you can print the contents of @code{array} with
6014
474c8240 6015@smallexample
c906108c 6016p *array@@len
474c8240 6017@end smallexample
c906108c
SS
6018
6019The left operand of @samp{@@} must reside in memory. Array values made
6020with @samp{@@} in this way behave just like other arrays in terms of
6021subscripting, and are coerced to pointers when used in expressions.
6022Artificial arrays most often appear in expressions via the value history
79a6e687 6023(@pxref{Value History, ,Value History}), after printing one out.
c906108c
SS
6024
6025Another way to create an artificial array is to use a cast.
6026This re-interprets a value as if it were an array.
6027The value need not be in memory:
474c8240 6028@smallexample
c906108c
SS
6029(@value{GDBP}) p/x (short[2])0x12345678
6030$1 = @{0x1234, 0x5678@}
474c8240 6031@end smallexample
c906108c
SS
6032
6033As a convenience, if you leave the array length out (as in
c3f6f71d 6034@samp{(@var{type}[])@var{value}}) @value{GDBN} calculates the size to fill
c906108c 6035the value (as @samp{sizeof(@var{value})/sizeof(@var{type})}:
474c8240 6036@smallexample
c906108c
SS
6037(@value{GDBP}) p/x (short[])0x12345678
6038$2 = @{0x1234, 0x5678@}
474c8240 6039@end smallexample
c906108c
SS
6040
6041Sometimes the artificial array mechanism is not quite enough; in
6042moderately complex data structures, the elements of interest may not
6043actually be adjacent---for example, if you are interested in the values
6044of pointers in an array. One useful work-around in this situation is
6045to use a convenience variable (@pxref{Convenience Vars, ,Convenience
79a6e687 6046Variables}) as a counter in an expression that prints the first
c906108c
SS
6047interesting value, and then repeat that expression via @key{RET}. For
6048instance, suppose you have an array @code{dtab} of pointers to
6049structures, and you are interested in the values of a field @code{fv}
6050in each structure. Here is an example of what you might type:
6051
474c8240 6052@smallexample
c906108c
SS
6053set $i = 0
6054p dtab[$i++]->fv
6055@key{RET}
6056@key{RET}
6057@dots{}
474c8240 6058@end smallexample
c906108c 6059
6d2ebf8b 6060@node Output Formats
79a6e687 6061@section Output Formats
c906108c
SS
6062
6063@cindex formatted output
6064@cindex output formats
6065By default, @value{GDBN} prints a value according to its data type. Sometimes
6066this is not what you want. For example, you might want to print a number
6067in hex, or a pointer in decimal. Or you might want to view data in memory
6068at a certain address as a character string or as an instruction. To do
6069these things, specify an @dfn{output format} when you print a value.
6070
6071The simplest use of output formats is to say how to print a value
6072already computed. This is done by starting the arguments of the
6073@code{print} command with a slash and a format letter. The format
6074letters supported are:
6075
6076@table @code
6077@item x
6078Regard the bits of the value as an integer, and print the integer in
6079hexadecimal.
6080
6081@item d
6082Print as integer in signed decimal.
6083
6084@item u
6085Print as integer in unsigned decimal.
6086
6087@item o
6088Print as integer in octal.
6089
6090@item t
6091Print as integer in binary. The letter @samp{t} stands for ``two''.
6092@footnote{@samp{b} cannot be used because these format letters are also
6093used with the @code{x} command, where @samp{b} stands for ``byte'';
79a6e687 6094see @ref{Memory,,Examining Memory}.}
c906108c
SS
6095
6096@item a
6097@cindex unknown address, locating
3d67e040 6098@cindex locate address
c906108c
SS
6099Print as an address, both absolute in hexadecimal and as an offset from
6100the nearest preceding symbol. You can use this format used to discover
6101where (in what function) an unknown address is located:
6102
474c8240 6103@smallexample
c906108c
SS
6104(@value{GDBP}) p/a 0x54320
6105$3 = 0x54320 <_initialize_vx+396>
474c8240 6106@end smallexample
c906108c 6107
3d67e040
EZ
6108@noindent
6109The command @code{info symbol 0x54320} yields similar results.
6110@xref{Symbols, info symbol}.
6111
c906108c 6112@item c
51274035
EZ
6113Regard as an integer and print it as a character constant. This
6114prints both the numerical value and its character representation. The
6115character representation is replaced with the octal escape @samp{\nnn}
6116for characters outside the 7-bit @sc{ascii} range.
c906108c 6117
ea37ba09
DJ
6118Without this format, @value{GDBN} displays @code{char},
6119@w{@code{unsigned char}}, and @w{@code{signed char}} data as character
6120constants. Single-byte members of vectors are displayed as integer
6121data.
6122
c906108c
SS
6123@item f
6124Regard the bits of the value as a floating point number and print
6125using typical floating point syntax.
ea37ba09
DJ
6126
6127@item s
6128@cindex printing strings
6129@cindex printing byte arrays
6130Regard as a string, if possible. With this format, pointers to single-byte
6131data are displayed as null-terminated strings and arrays of single-byte data
6132are displayed as fixed-length strings. Other values are displayed in their
6133natural types.
6134
6135Without this format, @value{GDBN} displays pointers to and arrays of
6136@code{char}, @w{@code{unsigned char}}, and @w{@code{signed char}} as
6137strings. Single-byte members of a vector are displayed as an integer
6138array.
c906108c
SS
6139@end table
6140
6141For example, to print the program counter in hex (@pxref{Registers}), type
6142
474c8240 6143@smallexample
c906108c 6144p/x $pc
474c8240 6145@end smallexample
c906108c
SS
6146
6147@noindent
6148Note that no space is required before the slash; this is because command
6149names in @value{GDBN} cannot contain a slash.
6150
6151To reprint the last value in the value history with a different format,
6152you can use the @code{print} command with just a format and no
6153expression. For example, @samp{p/x} reprints the last value in hex.
6154
6d2ebf8b 6155@node Memory
79a6e687 6156@section Examining Memory
c906108c
SS
6157
6158You can use the command @code{x} (for ``examine'') to examine memory in
6159any of several formats, independently of your program's data types.
6160
6161@cindex examining memory
6162@table @code
41afff9a 6163@kindex x @r{(examine memory)}
c906108c
SS
6164@item x/@var{nfu} @var{addr}
6165@itemx x @var{addr}
6166@itemx x
6167Use the @code{x} command to examine memory.
6168@end table
6169
6170@var{n}, @var{f}, and @var{u} are all optional parameters that specify how
6171much memory to display and how to format it; @var{addr} is an
6172expression giving the address where you want to start displaying memory.
6173If you use defaults for @var{nfu}, you need not type the slash @samp{/}.
6174Several commands set convenient defaults for @var{addr}.
6175
6176@table @r
6177@item @var{n}, the repeat count
6178The repeat count is a decimal integer; the default is 1. It specifies
6179how much memory (counting by units @var{u}) to display.
6180@c This really is **decimal**; unaffected by 'set radix' as of GDB
6181@c 4.1.2.
6182
6183@item @var{f}, the display format
51274035
EZ
6184The display format is one of the formats used by @code{print}
6185(@samp{x}, @samp{d}, @samp{u}, @samp{o}, @samp{t}, @samp{a}, @samp{c},
ea37ba09
DJ
6186@samp{f}, @samp{s}), and in addition @samp{i} (for machine instructions).
6187The default is @samp{x} (hexadecimal) initially. The default changes
6188each time you use either @code{x} or @code{print}.
c906108c
SS
6189
6190@item @var{u}, the unit size
6191The unit size is any of
6192
6193@table @code
6194@item b
6195Bytes.
6196@item h
6197Halfwords (two bytes).
6198@item w
6199Words (four bytes). This is the initial default.
6200@item g
6201Giant words (eight bytes).
6202@end table
6203
6204Each time you specify a unit size with @code{x}, that size becomes the
6205default unit the next time you use @code{x}. (For the @samp{s} and
6206@samp{i} formats, the unit size is ignored and is normally not written.)
6207
6208@item @var{addr}, starting display address
6209@var{addr} is the address where you want @value{GDBN} to begin displaying
6210memory. The expression need not have a pointer value (though it may);
6211it is always interpreted as an integer address of a byte of memory.
6212@xref{Expressions, ,Expressions}, for more information on expressions. The default for
6213@var{addr} is usually just after the last address examined---but several
6214other commands also set the default address: @code{info breakpoints} (to
6215the address of the last breakpoint listed), @code{info line} (to the
6216starting address of a line), and @code{print} (if you use it to display
6217a value from memory).
6218@end table
6219
6220For example, @samp{x/3uh 0x54320} is a request to display three halfwords
6221(@code{h}) of memory, formatted as unsigned decimal integers (@samp{u}),
6222starting at address @code{0x54320}. @samp{x/4xw $sp} prints the four
6223words (@samp{w}) of memory above the stack pointer (here, @samp{$sp};
d4f3574e 6224@pxref{Registers, ,Registers}) in hexadecimal (@samp{x}).
c906108c
SS
6225
6226Since the letters indicating unit sizes are all distinct from the
6227letters specifying output formats, you do not have to remember whether
6228unit size or format comes first; either order works. The output
6229specifications @samp{4xw} and @samp{4wx} mean exactly the same thing.
6230(However, the count @var{n} must come first; @samp{wx4} does not work.)
6231
6232Even though the unit size @var{u} is ignored for the formats @samp{s}
6233and @samp{i}, you might still want to use a count @var{n}; for example,
6234@samp{3i} specifies that you want to see three machine instructions,
a4642986
MR
6235including any operands. For convenience, especially when used with
6236the @code{display} command, the @samp{i} format also prints branch delay
6237slot instructions, if any, beyond the count specified, which immediately
6238follow the last instruction that is within the count. The command
6239@code{disassemble} gives an alternative way of inspecting machine
6240instructions; see @ref{Machine Code,,Source and Machine Code}.
c906108c
SS
6241
6242All the defaults for the arguments to @code{x} are designed to make it
6243easy to continue scanning memory with minimal specifications each time
6244you use @code{x}. For example, after you have inspected three machine
6245instructions with @samp{x/3i @var{addr}}, you can inspect the next seven
6246with just @samp{x/7}. If you use @key{RET} to repeat the @code{x} command,
6247the repeat count @var{n} is used again; the other arguments default as
6248for successive uses of @code{x}.
6249
6250@cindex @code{$_}, @code{$__}, and value history
6251The addresses and contents printed by the @code{x} command are not saved
6252in the value history because there is often too much of them and they
6253would get in the way. Instead, @value{GDBN} makes these values available for
6254subsequent use in expressions as values of the convenience variables
6255@code{$_} and @code{$__}. After an @code{x} command, the last address
6256examined is available for use in expressions in the convenience variable
6257@code{$_}. The contents of that address, as examined, are available in
6258the convenience variable @code{$__}.
6259
6260If the @code{x} command has a repeat count, the address and contents saved
6261are from the last memory unit printed; this is not the same as the last
6262address printed if several units were printed on the last line of output.
6263
09d4efe1
EZ
6264@cindex remote memory comparison
6265@cindex verify remote memory image
6266When you are debugging a program running on a remote target machine
ea35711c 6267(@pxref{Remote Debugging}), you may wish to verify the program's image in the
09d4efe1
EZ
6268remote machine's memory against the executable file you downloaded to
6269the target. The @code{compare-sections} command is provided for such
6270situations.
6271
6272@table @code
6273@kindex compare-sections
6274@item compare-sections @r{[}@var{section-name}@r{]}
6275Compare the data of a loadable section @var{section-name} in the
6276executable file of the program being debugged with the same section in
6277the remote machine's memory, and report any mismatches. With no
6278arguments, compares all loadable sections. This command's
6279availability depends on the target's support for the @code{"qCRC"}
6280remote request.
6281@end table
6282
6d2ebf8b 6283@node Auto Display
79a6e687 6284@section Automatic Display
c906108c
SS
6285@cindex automatic display
6286@cindex display of expressions
6287
6288If you find that you want to print the value of an expression frequently
6289(to see how it changes), you might want to add it to the @dfn{automatic
6290display list} so that @value{GDBN} prints its value each time your program stops.
6291Each expression added to the list is given a number to identify it;
6292to remove an expression from the list, you specify that number.
6293The automatic display looks like this:
6294
474c8240 6295@smallexample
c906108c
SS
62962: foo = 38
62973: bar[5] = (struct hack *) 0x3804
474c8240 6298@end smallexample
c906108c
SS
6299
6300@noindent
6301This display shows item numbers, expressions and their current values. As with
6302displays you request manually using @code{x} or @code{print}, you can
6303specify the output format you prefer; in fact, @code{display} decides
ea37ba09
DJ
6304whether to use @code{print} or @code{x} depending your format
6305specification---it uses @code{x} if you specify either the @samp{i}
6306or @samp{s} format, or a unit size; otherwise it uses @code{print}.
c906108c
SS
6307
6308@table @code
6309@kindex display
d4f3574e
SS
6310@item display @var{expr}
6311Add the expression @var{expr} to the list of expressions to display
c906108c
SS
6312each time your program stops. @xref{Expressions, ,Expressions}.
6313
6314@code{display} does not repeat if you press @key{RET} again after using it.
6315
d4f3574e 6316@item display/@var{fmt} @var{expr}
c906108c 6317For @var{fmt} specifying only a display format and not a size or
d4f3574e 6318count, add the expression @var{expr} to the auto-display list but
c906108c 6319arrange to display it each time in the specified format @var{fmt}.
79a6e687 6320@xref{Output Formats,,Output Formats}.
c906108c
SS
6321
6322@item display/@var{fmt} @var{addr}
6323For @var{fmt} @samp{i} or @samp{s}, or including a unit-size or a
6324number of units, add the expression @var{addr} as a memory address to
6325be examined each time your program stops. Examining means in effect
79a6e687 6326doing @samp{x/@var{fmt} @var{addr}}. @xref{Memory, ,Examining Memory}.
c906108c
SS
6327@end table
6328
6329For example, @samp{display/i $pc} can be helpful, to see the machine
6330instruction about to be executed each time execution stops (@samp{$pc}
d4f3574e 6331is a common name for the program counter; @pxref{Registers, ,Registers}).
c906108c
SS
6332
6333@table @code
6334@kindex delete display
6335@kindex undisplay
6336@item undisplay @var{dnums}@dots{}
6337@itemx delete display @var{dnums}@dots{}
6338Remove item numbers @var{dnums} from the list of expressions to display.
6339
6340@code{undisplay} does not repeat if you press @key{RET} after using it.
6341(Otherwise you would just get the error @samp{No display number @dots{}}.)
6342
6343@kindex disable display
6344@item disable display @var{dnums}@dots{}
6345Disable the display of item numbers @var{dnums}. A disabled display
6346item is not printed automatically, but is not forgotten. It may be
6347enabled again later.
6348
6349@kindex enable display
6350@item enable display @var{dnums}@dots{}
6351Enable display of item numbers @var{dnums}. It becomes effective once
6352again in auto display of its expression, until you specify otherwise.
6353
6354@item display
6355Display the current values of the expressions on the list, just as is
6356done when your program stops.
6357
6358@kindex info display
6359@item info display
6360Print the list of expressions previously set up to display
6361automatically, each one with its item number, but without showing the
6362values. This includes disabled expressions, which are marked as such.
6363It also includes expressions which would not be displayed right now
6364because they refer to automatic variables not currently available.
6365@end table
6366
15387254 6367@cindex display disabled out of scope
c906108c
SS
6368If a display expression refers to local variables, then it does not make
6369sense outside the lexical context for which it was set up. Such an
6370expression is disabled when execution enters a context where one of its
6371variables is not defined. For example, if you give the command
6372@code{display last_char} while inside a function with an argument
6373@code{last_char}, @value{GDBN} displays this argument while your program
6374continues to stop inside that function. When it stops elsewhere---where
6375there is no variable @code{last_char}---the display is disabled
6376automatically. The next time your program stops where @code{last_char}
6377is meaningful, you can enable the display expression once again.
6378
6d2ebf8b 6379@node Print Settings
79a6e687 6380@section Print Settings
c906108c
SS
6381
6382@cindex format options
6383@cindex print settings
6384@value{GDBN} provides the following ways to control how arrays, structures,
6385and symbols are printed.
6386
6387@noindent
6388These settings are useful for debugging programs in any language:
6389
6390@table @code
4644b6e3 6391@kindex set print
c906108c
SS
6392@item set print address
6393@itemx set print address on
4644b6e3 6394@cindex print/don't print memory addresses
c906108c
SS
6395@value{GDBN} prints memory addresses showing the location of stack
6396traces, structure values, pointer values, breakpoints, and so forth,
6397even when it also displays the contents of those addresses. The default
6398is @code{on}. For example, this is what a stack frame display looks like with
6399@code{set print address on}:
6400
6401@smallexample
6402@group
6403(@value{GDBP}) f
6404#0 set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")
6405 at input.c:530
6406530 if (lquote != def_lquote)
6407@end group
6408@end smallexample
6409
6410@item set print address off
6411Do not print addresses when displaying their contents. For example,
6412this is the same stack frame displayed with @code{set print address off}:
6413
6414@smallexample
6415@group
6416(@value{GDBP}) set print addr off
6417(@value{GDBP}) f
6418#0 set_quotes (lq="<<", rq=">>") at input.c:530
6419530 if (lquote != def_lquote)
6420@end group
6421@end smallexample
6422
6423You can use @samp{set print address off} to eliminate all machine
6424dependent displays from the @value{GDBN} interface. For example, with
6425@code{print address off}, you should get the same text for backtraces on
6426all machines---whether or not they involve pointer arguments.
6427
4644b6e3 6428@kindex show print
c906108c
SS
6429@item show print address
6430Show whether or not addresses are to be printed.
6431@end table
6432
6433When @value{GDBN} prints a symbolic address, it normally prints the
6434closest earlier symbol plus an offset. If that symbol does not uniquely
6435identify the address (for example, it is a name whose scope is a single
6436source file), you may need to clarify. One way to do this is with
6437@code{info line}, for example @samp{info line *0x4537}. Alternately,
6438you can set @value{GDBN} to print the source file and line number when
6439it prints a symbolic address:
6440
6441@table @code
c906108c 6442@item set print symbol-filename on
9c16f35a
EZ
6443@cindex source file and line of a symbol
6444@cindex symbol, source file and line
c906108c
SS
6445Tell @value{GDBN} to print the source file name and line number of a
6446symbol in the symbolic form of an address.
6447
6448@item set print symbol-filename off
6449Do not print source file name and line number of a symbol. This is the
6450default.
6451
c906108c
SS
6452@item show print symbol-filename
6453Show whether or not @value{GDBN} will print the source file name and
6454line number of a symbol in the symbolic form of an address.
6455@end table
6456
6457Another situation where it is helpful to show symbol filenames and line
6458numbers is when disassembling code; @value{GDBN} shows you the line
6459number and source file that corresponds to each instruction.
6460
6461Also, you may wish to see the symbolic form only if the address being
6462printed is reasonably close to the closest earlier symbol:
6463
6464@table @code
c906108c 6465@item set print max-symbolic-offset @var{max-offset}
4644b6e3 6466@cindex maximum value for offset of closest symbol
c906108c
SS
6467Tell @value{GDBN} to only display the symbolic form of an address if the
6468offset between the closest earlier symbol and the address is less than
5d161b24 6469@var{max-offset}. The default is 0, which tells @value{GDBN}
c906108c
SS
6470to always print the symbolic form of an address if any symbol precedes it.
6471
c906108c
SS
6472@item show print max-symbolic-offset
6473Ask how large the maximum offset is that @value{GDBN} prints in a
6474symbolic address.
6475@end table
6476
6477@cindex wild pointer, interpreting
6478@cindex pointer, finding referent
6479If you have a pointer and you are not sure where it points, try
6480@samp{set print symbol-filename on}. Then you can determine the name
6481and source file location of the variable where it points, using
6482@samp{p/a @var{pointer}}. This interprets the address in symbolic form.
6483For example, here @value{GDBN} shows that a variable @code{ptt} points
6484at another variable @code{t}, defined in @file{hi2.c}:
6485
474c8240 6486@smallexample
c906108c
SS
6487(@value{GDBP}) set print symbol-filename on
6488(@value{GDBP}) p/a ptt
6489$4 = 0xe008 <t in hi2.c>
474c8240 6490@end smallexample
c906108c
SS
6491
6492@quotation
6493@emph{Warning:} For pointers that point to a local variable, @samp{p/a}
6494does not show the symbol name and filename of the referent, even with
6495the appropriate @code{set print} options turned on.
6496@end quotation
6497
6498Other settings control how different kinds of objects are printed:
6499
6500@table @code
c906108c
SS
6501@item set print array
6502@itemx set print array on
4644b6e3 6503@cindex pretty print arrays
c906108c
SS
6504Pretty print arrays. This format is more convenient to read,
6505but uses more space. The default is off.
6506
6507@item set print array off
6508Return to compressed format for arrays.
6509
c906108c
SS
6510@item show print array
6511Show whether compressed or pretty format is selected for displaying
6512arrays.
6513
3c9c013a
JB
6514@cindex print array indexes
6515@item set print array-indexes
6516@itemx set print array-indexes on
6517Print the index of each element when displaying arrays. May be more
6518convenient to locate a given element in the array or quickly find the
6519index of a given element in that printed array. The default is off.
6520
6521@item set print array-indexes off
6522Stop printing element indexes when displaying arrays.
6523
6524@item show print array-indexes
6525Show whether the index of each element is printed when displaying
6526arrays.
6527
c906108c 6528@item set print elements @var{number-of-elements}
4644b6e3 6529@cindex number of array elements to print
9c16f35a 6530@cindex limit on number of printed array elements
c906108c
SS
6531Set a limit on how many elements of an array @value{GDBN} will print.
6532If @value{GDBN} is printing a large array, it stops printing after it has
6533printed the number of elements set by the @code{set print elements} command.
6534This limit also applies to the display of strings.
d4f3574e 6535When @value{GDBN} starts, this limit is set to 200.
c906108c
SS
6536Setting @var{number-of-elements} to zero means that the printing is unlimited.
6537
c906108c
SS
6538@item show print elements
6539Display the number of elements of a large array that @value{GDBN} will print.
6540If the number is 0, then the printing is unlimited.
6541
b4740add
JB
6542@item set print frame-arguments @var{value}
6543@cindex printing frame argument values
6544@cindex print all frame argument values
6545@cindex print frame argument values for scalars only
6546@cindex do not print frame argument values
6547This command allows to control how the values of arguments are printed
6548when the debugger prints a frame (@pxref{Frames}). The possible
6549values are:
6550
6551@table @code
6552@item all
6553The values of all arguments are printed. This is the default.
6554
6555@item scalars
6556Print the value of an argument only if it is a scalar. The value of more
6557complex arguments such as arrays, structures, unions, etc, is replaced
6558by @code{@dots{}}. Here is an example where only scalar arguments are shown:
6559
6560@smallexample
6561#1 0x08048361 in call_me (i=3, s=@dots{}, ss=0xbf8d508c, u=@dots{}, e=green)
6562 at frame-args.c:23
6563@end smallexample
6564
6565@item none
6566None of the argument values are printed. Instead, the value of each argument
6567is replaced by @code{@dots{}}. In this case, the example above now becomes:
6568
6569@smallexample
6570#1 0x08048361 in call_me (i=@dots{}, s=@dots{}, ss=@dots{}, u=@dots{}, e=@dots{})
6571 at frame-args.c:23
6572@end smallexample
6573@end table
6574
6575By default, all argument values are always printed. But this command
6576can be useful in several cases. For instance, it can be used to reduce
6577the amount of information printed in each frame, making the backtrace
6578more readable. Also, this command can be used to improve performance
6579when displaying Ada frames, because the computation of large arguments
6580can sometimes be CPU-intensive, especiallly in large applications.
6581Setting @code{print frame-arguments} to @code{scalars} or @code{none}
6582avoids this computation, thus speeding up the display of each Ada frame.
6583
6584@item show print frame-arguments
6585Show how the value of arguments should be displayed when printing a frame.
6586
9c16f35a
EZ
6587@item set print repeats
6588@cindex repeated array elements
6589Set the threshold for suppressing display of repeated array
d3e8051b 6590elements. When the number of consecutive identical elements of an
9c16f35a
EZ
6591array exceeds the threshold, @value{GDBN} prints the string
6592@code{"<repeats @var{n} times>"}, where @var{n} is the number of
6593identical repetitions, instead of displaying the identical elements
6594themselves. Setting the threshold to zero will cause all elements to
6595be individually printed. The default threshold is 10.
6596
6597@item show print repeats
6598Display the current threshold for printing repeated identical
6599elements.
6600
c906108c 6601@item set print null-stop
4644b6e3 6602@cindex @sc{null} elements in arrays
c906108c 6603Cause @value{GDBN} to stop printing the characters of an array when the first
d4f3574e 6604@sc{null} is encountered. This is useful when large arrays actually
c906108c 6605contain only short strings.
d4f3574e 6606The default is off.
c906108c 6607
9c16f35a
EZ
6608@item show print null-stop
6609Show whether @value{GDBN} stops printing an array on the first
6610@sc{null} character.
6611
c906108c 6612@item set print pretty on
9c16f35a
EZ
6613@cindex print structures in indented form
6614@cindex indentation in structure display
5d161b24 6615Cause @value{GDBN} to print structures in an indented format with one member
c906108c
SS
6616per line, like this:
6617
6618@smallexample
6619@group
6620$1 = @{
6621 next = 0x0,
6622 flags = @{
6623 sweet = 1,
6624 sour = 1
6625 @},
6626 meat = 0x54 "Pork"
6627@}
6628@end group
6629@end smallexample
6630
6631@item set print pretty off
6632Cause @value{GDBN} to print structures in a compact format, like this:
6633
6634@smallexample
6635@group
6636$1 = @{next = 0x0, flags = @{sweet = 1, sour = 1@}, \
6637meat = 0x54 "Pork"@}
6638@end group
6639@end smallexample
6640
6641@noindent
6642This is the default format.
6643
c906108c
SS
6644@item show print pretty
6645Show which format @value{GDBN} is using to print structures.
6646
c906108c 6647@item set print sevenbit-strings on
4644b6e3
EZ
6648@cindex eight-bit characters in strings
6649@cindex octal escapes in strings
c906108c
SS
6650Print using only seven-bit characters; if this option is set,
6651@value{GDBN} displays any eight-bit characters (in strings or
6652character values) using the notation @code{\}@var{nnn}. This setting is
6653best if you are working in English (@sc{ascii}) and you use the
6654high-order bit of characters as a marker or ``meta'' bit.
6655
6656@item set print sevenbit-strings off
6657Print full eight-bit characters. This allows the use of more
6658international character sets, and is the default.
6659
c906108c
SS
6660@item show print sevenbit-strings
6661Show whether or not @value{GDBN} is printing only seven-bit characters.
6662
c906108c 6663@item set print union on
4644b6e3 6664@cindex unions in structures, printing
9c16f35a
EZ
6665Tell @value{GDBN} to print unions which are contained in structures
6666and other unions. This is the default setting.
c906108c
SS
6667
6668@item set print union off
9c16f35a
EZ
6669Tell @value{GDBN} not to print unions which are contained in
6670structures and other unions. @value{GDBN} will print @code{"@{...@}"}
6671instead.
c906108c 6672
c906108c
SS
6673@item show print union
6674Ask @value{GDBN} whether or not it will print unions which are contained in
9c16f35a 6675structures and other unions.
c906108c
SS
6676
6677For example, given the declarations
6678
6679@smallexample
6680typedef enum @{Tree, Bug@} Species;
6681typedef enum @{Big_tree, Acorn, Seedling@} Tree_forms;
5d161b24 6682typedef enum @{Caterpillar, Cocoon, Butterfly@}
c906108c
SS
6683 Bug_forms;
6684
6685struct thing @{
6686 Species it;
6687 union @{
6688 Tree_forms tree;
6689 Bug_forms bug;
6690 @} form;
6691@};
6692
6693struct thing foo = @{Tree, @{Acorn@}@};
6694@end smallexample
6695
6696@noindent
6697with @code{set print union on} in effect @samp{p foo} would print
6698
6699@smallexample
6700$1 = @{it = Tree, form = @{tree = Acorn, bug = Cocoon@}@}
6701@end smallexample
6702
6703@noindent
6704and with @code{set print union off} in effect it would print
6705
6706@smallexample
6707$1 = @{it = Tree, form = @{...@}@}
6708@end smallexample
9c16f35a
EZ
6709
6710@noindent
6711@code{set print union} affects programs written in C-like languages
6712and in Pascal.
c906108c
SS
6713@end table
6714
c906108c
SS
6715@need 1000
6716@noindent
b37052ae 6717These settings are of interest when debugging C@t{++} programs:
c906108c
SS
6718
6719@table @code
4644b6e3 6720@cindex demangling C@t{++} names
c906108c
SS
6721@item set print demangle
6722@itemx set print demangle on
b37052ae 6723Print C@t{++} names in their source form rather than in the encoded
c906108c 6724(``mangled'') form passed to the assembler and linker for type-safe
d4f3574e 6725linkage. The default is on.
c906108c 6726
c906108c 6727@item show print demangle
b37052ae 6728Show whether C@t{++} names are printed in mangled or demangled form.
c906108c 6729
c906108c
SS
6730@item set print asm-demangle
6731@itemx set print asm-demangle on
b37052ae 6732Print C@t{++} names in their source form rather than their mangled form, even
c906108c
SS
6733in assembler code printouts such as instruction disassemblies.
6734The default is off.
6735
c906108c 6736@item show print asm-demangle
b37052ae 6737Show whether C@t{++} names in assembly listings are printed in mangled
c906108c
SS
6738or demangled form.
6739
b37052ae
EZ
6740@cindex C@t{++} symbol decoding style
6741@cindex symbol decoding style, C@t{++}
a8f24a35 6742@kindex set demangle-style
c906108c
SS
6743@item set demangle-style @var{style}
6744Choose among several encoding schemes used by different compilers to
b37052ae 6745represent C@t{++} names. The choices for @var{style} are currently:
c906108c
SS
6746
6747@table @code
6748@item auto
6749Allow @value{GDBN} to choose a decoding style by inspecting your program.
6750
6751@item gnu
b37052ae 6752Decode based on the @sc{gnu} C@t{++} compiler (@code{g++}) encoding algorithm.
c906108c 6753This is the default.
c906108c
SS
6754
6755@item hp
b37052ae 6756Decode based on the HP ANSI C@t{++} (@code{aCC}) encoding algorithm.
c906108c
SS
6757
6758@item lucid
b37052ae 6759Decode based on the Lucid C@t{++} compiler (@code{lcc}) encoding algorithm.
c906108c
SS
6760
6761@item arm
b37052ae 6762Decode using the algorithm in the @cite{C@t{++} Annotated Reference Manual}.
c906108c
SS
6763@strong{Warning:} this setting alone is not sufficient to allow
6764debugging @code{cfront}-generated executables. @value{GDBN} would
6765require further enhancement to permit that.
6766
6767@end table
6768If you omit @var{style}, you will see a list of possible formats.
6769
c906108c 6770@item show demangle-style
b37052ae 6771Display the encoding style currently in use for decoding C@t{++} symbols.
c906108c 6772
c906108c
SS
6773@item set print object
6774@itemx set print object on
4644b6e3 6775@cindex derived type of an object, printing
9c16f35a 6776@cindex display derived types
c906108c
SS
6777When displaying a pointer to an object, identify the @emph{actual}
6778(derived) type of the object rather than the @emph{declared} type, using
6779the virtual function table.
6780
6781@item set print object off
6782Display only the declared type of objects, without reference to the
6783virtual function table. This is the default setting.
6784
c906108c
SS
6785@item show print object
6786Show whether actual, or declared, object types are displayed.
6787
c906108c
SS
6788@item set print static-members
6789@itemx set print static-members on
4644b6e3 6790@cindex static members of C@t{++} objects
b37052ae 6791Print static members when displaying a C@t{++} object. The default is on.
c906108c
SS
6792
6793@item set print static-members off
b37052ae 6794Do not print static members when displaying a C@t{++} object.
c906108c 6795
c906108c 6796@item show print static-members
9c16f35a
EZ
6797Show whether C@t{++} static members are printed or not.
6798
6799@item set print pascal_static-members
6800@itemx set print pascal_static-members on
d3e8051b
EZ
6801@cindex static members of Pascal objects
6802@cindex Pascal objects, static members display
9c16f35a
EZ
6803Print static members when displaying a Pascal object. The default is on.
6804
6805@item set print pascal_static-members off
6806Do not print static members when displaying a Pascal object.
6807
6808@item show print pascal_static-members
6809Show whether Pascal static members are printed or not.
c906108c
SS
6810
6811@c These don't work with HP ANSI C++ yet.
c906108c
SS
6812@item set print vtbl
6813@itemx set print vtbl on
4644b6e3 6814@cindex pretty print C@t{++} virtual function tables
9c16f35a
EZ
6815@cindex virtual functions (C@t{++}) display
6816@cindex VTBL display
b37052ae 6817Pretty print C@t{++} virtual function tables. The default is off.
c906108c 6818(The @code{vtbl} commands do not work on programs compiled with the HP
b37052ae 6819ANSI C@t{++} compiler (@code{aCC}).)
c906108c
SS
6820
6821@item set print vtbl off
b37052ae 6822Do not pretty print C@t{++} virtual function tables.
c906108c 6823
c906108c 6824@item show print vtbl
b37052ae 6825Show whether C@t{++} virtual function tables are pretty printed, or not.
c906108c 6826@end table
c906108c 6827
6d2ebf8b 6828@node Value History
79a6e687 6829@section Value History
c906108c
SS
6830
6831@cindex value history
9c16f35a 6832@cindex history of values printed by @value{GDBN}
5d161b24
DB
6833Values printed by the @code{print} command are saved in the @value{GDBN}
6834@dfn{value history}. This allows you to refer to them in other expressions.
6835Values are kept until the symbol table is re-read or discarded
6836(for example with the @code{file} or @code{symbol-file} commands).
6837When the symbol table changes, the value history is discarded,
6838since the values may contain pointers back to the types defined in the
c906108c
SS
6839symbol table.
6840
6841@cindex @code{$}
6842@cindex @code{$$}
6843@cindex history number
6844The values printed are given @dfn{history numbers} by which you can
6845refer to them. These are successive integers starting with one.
6846@code{print} shows you the history number assigned to a value by
6847printing @samp{$@var{num} = } before the value; here @var{num} is the
6848history number.
6849
6850To refer to any previous value, use @samp{$} followed by the value's
6851history number. The way @code{print} labels its output is designed to
6852remind you of this. Just @code{$} refers to the most recent value in
6853the history, and @code{$$} refers to the value before that.
6854@code{$$@var{n}} refers to the @var{n}th value from the end; @code{$$2}
6855is the value just prior to @code{$$}, @code{$$1} is equivalent to
6856@code{$$}, and @code{$$0} is equivalent to @code{$}.
6857
6858For example, suppose you have just printed a pointer to a structure and
6859want to see the contents of the structure. It suffices to type
6860
474c8240 6861@smallexample
c906108c 6862p *$
474c8240 6863@end smallexample
c906108c
SS
6864
6865If you have a chain of structures where the component @code{next} points
6866to the next one, you can print the contents of the next one with this:
6867
474c8240 6868@smallexample
c906108c 6869p *$.next
474c8240 6870@end smallexample
c906108c
SS
6871
6872@noindent
6873You can print successive links in the chain by repeating this
6874command---which you can do by just typing @key{RET}.
6875
6876Note that the history records values, not expressions. If the value of
6877@code{x} is 4 and you type these commands:
6878
474c8240 6879@smallexample
c906108c
SS
6880print x
6881set x=5
474c8240 6882@end smallexample
c906108c
SS
6883
6884@noindent
6885then the value recorded in the value history by the @code{print} command
6886remains 4 even though the value of @code{x} has changed.
6887
6888@table @code
6889@kindex show values
6890@item show values
6891Print the last ten values in the value history, with their item numbers.
6892This is like @samp{p@ $$9} repeated ten times, except that @code{show
6893values} does not change the history.
6894
6895@item show values @var{n}
6896Print ten history values centered on history item number @var{n}.
6897
6898@item show values +
6899Print ten history values just after the values last printed. If no more
6900values are available, @code{show values +} produces no display.
6901@end table
6902
6903Pressing @key{RET} to repeat @code{show values @var{n}} has exactly the
6904same effect as @samp{show values +}.
6905
6d2ebf8b 6906@node Convenience Vars
79a6e687 6907@section Convenience Variables
c906108c
SS
6908
6909@cindex convenience variables
9c16f35a 6910@cindex user-defined variables
c906108c
SS
6911@value{GDBN} provides @dfn{convenience variables} that you can use within
6912@value{GDBN} to hold on to a value and refer to it later. These variables
6913exist entirely within @value{GDBN}; they are not part of your program, and
6914setting a convenience variable has no direct effect on further execution
6915of your program. That is why you can use them freely.
6916
6917Convenience variables are prefixed with @samp{$}. Any name preceded by
6918@samp{$} can be used for a convenience variable, unless it is one of
d4f3574e 6919the predefined machine-specific register names (@pxref{Registers, ,Registers}).
c906108c 6920(Value history references, in contrast, are @emph{numbers} preceded
79a6e687 6921by @samp{$}. @xref{Value History, ,Value History}.)
c906108c
SS
6922
6923You can save a value in a convenience variable with an assignment
6924expression, just as you would set a variable in your program.
6925For example:
6926
474c8240 6927@smallexample
c906108c 6928set $foo = *object_ptr
474c8240 6929@end smallexample
c906108c
SS
6930
6931@noindent
6932would save in @code{$foo} the value contained in the object pointed to by
6933@code{object_ptr}.
6934
6935Using a convenience variable for the first time creates it, but its
6936value is @code{void} until you assign a new value. You can alter the
6937value with another assignment at any time.
6938
6939Convenience variables have no fixed types. You can assign a convenience
6940variable any type of value, including structures and arrays, even if
6941that variable already has a value of a different type. The convenience
6942variable, when used as an expression, has the type of its current value.
6943
6944@table @code
6945@kindex show convenience
9c16f35a 6946@cindex show all user variables
c906108c
SS
6947@item show convenience
6948Print a list of convenience variables used so far, and their values.
d4f3574e 6949Abbreviated @code{show conv}.
53e5f3cf
AS
6950
6951@kindex init-if-undefined
6952@cindex convenience variables, initializing
6953@item init-if-undefined $@var{variable} = @var{expression}
6954Set a convenience variable if it has not already been set. This is useful
6955for user-defined commands that keep some state. It is similar, in concept,
6956to using local static variables with initializers in C (except that
6957convenience variables are global). It can also be used to allow users to
6958override default values used in a command script.
6959
6960If the variable is already defined then the expression is not evaluated so
6961any side-effects do not occur.
c906108c
SS
6962@end table
6963
6964One of the ways to use a convenience variable is as a counter to be
6965incremented or a pointer to be advanced. For example, to print
6966a field from successive elements of an array of structures:
6967
474c8240 6968@smallexample
c906108c
SS
6969set $i = 0
6970print bar[$i++]->contents
474c8240 6971@end smallexample
c906108c 6972
d4f3574e
SS
6973@noindent
6974Repeat that command by typing @key{RET}.
c906108c
SS
6975
6976Some convenience variables are created automatically by @value{GDBN} and given
6977values likely to be useful.
6978
6979@table @code
41afff9a 6980@vindex $_@r{, convenience variable}
c906108c
SS
6981@item $_
6982The variable @code{$_} is automatically set by the @code{x} command to
79a6e687 6983the last address examined (@pxref{Memory, ,Examining Memory}). Other
c906108c
SS
6984commands which provide a default address for @code{x} to examine also
6985set @code{$_} to that address; these commands include @code{info line}
6986and @code{info breakpoint}. The type of @code{$_} is @code{void *}
6987except when set by the @code{x} command, in which case it is a pointer
6988to the type of @code{$__}.
6989
41afff9a 6990@vindex $__@r{, convenience variable}
c906108c
SS
6991@item $__
6992The variable @code{$__} is automatically set by the @code{x} command
6993to the value found in the last address examined. Its type is chosen
6994to match the format in which the data was printed.
6995
6996@item $_exitcode
41afff9a 6997@vindex $_exitcode@r{, convenience variable}
c906108c
SS
6998The variable @code{$_exitcode} is automatically set to the exit code when
6999the program being debugged terminates.
7000@end table
7001
53a5351d
JM
7002On HP-UX systems, if you refer to a function or variable name that
7003begins with a dollar sign, @value{GDBN} searches for a user or system
7004name first, before it searches for a convenience variable.
c906108c 7005
6d2ebf8b 7006@node Registers
c906108c
SS
7007@section Registers
7008
7009@cindex registers
7010You can refer to machine register contents, in expressions, as variables
7011with names starting with @samp{$}. The names of registers are different
7012for each machine; use @code{info registers} to see the names used on
7013your machine.
7014
7015@table @code
7016@kindex info registers
7017@item info registers
7018Print the names and values of all registers except floating-point
c85508ee 7019and vector registers (in the selected stack frame).
c906108c
SS
7020
7021@kindex info all-registers
7022@cindex floating point registers
7023@item info all-registers
7024Print the names and values of all registers, including floating-point
c85508ee 7025and vector registers (in the selected stack frame).
c906108c
SS
7026
7027@item info registers @var{regname} @dots{}
7028Print the @dfn{relativized} value of each specified register @var{regname}.
5d161b24
DB
7029As discussed in detail below, register values are normally relative to
7030the selected stack frame. @var{regname} may be any register name valid on
c906108c
SS
7031the machine you are using, with or without the initial @samp{$}.
7032@end table
7033
e09f16f9
EZ
7034@cindex stack pointer register
7035@cindex program counter register
7036@cindex process status register
7037@cindex frame pointer register
7038@cindex standard registers
c906108c
SS
7039@value{GDBN} has four ``standard'' register names that are available (in
7040expressions) on most machines---whenever they do not conflict with an
7041architecture's canonical mnemonics for registers. The register names
7042@code{$pc} and @code{$sp} are used for the program counter register and
7043the stack pointer. @code{$fp} is used for a register that contains a
7044pointer to the current stack frame, and @code{$ps} is used for a
7045register that contains the processor status. For example,
7046you could print the program counter in hex with
7047
474c8240 7048@smallexample
c906108c 7049p/x $pc
474c8240 7050@end smallexample
c906108c
SS
7051
7052@noindent
7053or print the instruction to be executed next with
7054
474c8240 7055@smallexample
c906108c 7056x/i $pc
474c8240 7057@end smallexample
c906108c
SS
7058
7059@noindent
7060or add four to the stack pointer@footnote{This is a way of removing
7061one word from the stack, on machines where stacks grow downward in
7062memory (most machines, nowadays). This assumes that the innermost
7063stack frame is selected; setting @code{$sp} is not allowed when other
7064stack frames are selected. To pop entire frames off the stack,
7065regardless of machine architecture, use @code{return};
79a6e687 7066see @ref{Returning, ,Returning from a Function}.} with
c906108c 7067
474c8240 7068@smallexample
c906108c 7069set $sp += 4
474c8240 7070@end smallexample
c906108c
SS
7071
7072Whenever possible, these four standard register names are available on
7073your machine even though the machine has different canonical mnemonics,
7074so long as there is no conflict. The @code{info registers} command
7075shows the canonical names. For example, on the SPARC, @code{info
7076registers} displays the processor status register as @code{$psr} but you
d4f3574e
SS
7077can also refer to it as @code{$ps}; and on x86-based machines @code{$ps}
7078is an alias for the @sc{eflags} register.
c906108c
SS
7079
7080@value{GDBN} always considers the contents of an ordinary register as an
7081integer when the register is examined in this way. Some machines have
7082special registers which can hold nothing but floating point; these
7083registers are considered to have floating point values. There is no way
7084to refer to the contents of an ordinary register as floating point value
7085(although you can @emph{print} it as a floating point value with
7086@samp{print/f $@var{regname}}).
7087
7088Some registers have distinct ``raw'' and ``virtual'' data formats. This
7089means that the data format in which the register contents are saved by
7090the operating system is not the same one that your program normally
7091sees. For example, the registers of the 68881 floating point
7092coprocessor are always saved in ``extended'' (raw) format, but all C
7093programs expect to work with ``double'' (virtual) format. In such
5d161b24 7094cases, @value{GDBN} normally works with the virtual format only (the format
c906108c
SS
7095that makes sense for your program), but the @code{info registers} command
7096prints the data in both formats.
7097
36b80e65
EZ
7098@cindex SSE registers (x86)
7099@cindex MMX registers (x86)
7100Some machines have special registers whose contents can be interpreted
7101in several different ways. For example, modern x86-based machines
7102have SSE and MMX registers that can hold several values packed
7103together in several different formats. @value{GDBN} refers to such
7104registers in @code{struct} notation:
7105
7106@smallexample
7107(@value{GDBP}) print $xmm1
7108$1 = @{
7109 v4_float = @{0, 3.43859137e-038, 1.54142831e-044, 1.821688e-044@},
7110 v2_double = @{9.92129282474342e-303, 2.7585945287983262e-313@},
7111 v16_int8 = "\000\000\000\000\3706;\001\v\000\000\000\r\000\000",
7112 v8_int16 = @{0, 0, 14072, 315, 11, 0, 13, 0@},
7113 v4_int32 = @{0, 20657912, 11, 13@},
7114 v2_int64 = @{88725056443645952, 55834574859@},
7115 uint128 = 0x0000000d0000000b013b36f800000000
7116@}
7117@end smallexample
7118
7119@noindent
7120To set values of such registers, you need to tell @value{GDBN} which
7121view of the register you wish to change, as if you were assigning
7122value to a @code{struct} member:
7123
7124@smallexample
7125 (@value{GDBP}) set $xmm1.uint128 = 0x000000000000000000000000FFFFFFFF
7126@end smallexample
7127
c906108c 7128Normally, register values are relative to the selected stack frame
79a6e687 7129(@pxref{Selection, ,Selecting a Frame}). This means that you get the
c906108c
SS
7130value that the register would contain if all stack frames farther in
7131were exited and their saved registers restored. In order to see the
7132true contents of hardware registers, you must select the innermost
7133frame (with @samp{frame 0}).
7134
7135However, @value{GDBN} must deduce where registers are saved, from the machine
7136code generated by your compiler. If some registers are not saved, or if
7137@value{GDBN} is unable to locate the saved registers, the selected stack
7138frame makes no difference.
7139
6d2ebf8b 7140@node Floating Point Hardware
79a6e687 7141@section Floating Point Hardware
c906108c
SS
7142@cindex floating point
7143
7144Depending on the configuration, @value{GDBN} may be able to give
7145you more information about the status of the floating point hardware.
7146
7147@table @code
7148@kindex info float
7149@item info float
7150Display hardware-dependent information about the floating
7151point unit. The exact contents and layout vary depending on the
7152floating point chip. Currently, @samp{info float} is supported on
7153the ARM and x86 machines.
7154@end table
c906108c 7155
e76f1f2e
AC
7156@node Vector Unit
7157@section Vector Unit
7158@cindex vector unit
7159
7160Depending on the configuration, @value{GDBN} may be able to give you
7161more information about the status of the vector unit.
7162
7163@table @code
7164@kindex info vector
7165@item info vector
7166Display information about the vector unit. The exact contents and
7167layout vary depending on the hardware.
7168@end table
7169
721c2651 7170@node OS Information
79a6e687 7171@section Operating System Auxiliary Information
721c2651
EZ
7172@cindex OS information
7173
7174@value{GDBN} provides interfaces to useful OS facilities that can help
7175you debug your program.
7176
7177@cindex @code{ptrace} system call
7178@cindex @code{struct user} contents
7179When @value{GDBN} runs on a @dfn{Posix system} (such as GNU or Unix
7180machines), it interfaces with the inferior via the @code{ptrace}
7181system call. The operating system creates a special sata structure,
7182called @code{struct user}, for this interface. You can use the
7183command @code{info udot} to display the contents of this data
7184structure.
7185
7186@table @code
7187@item info udot
7188@kindex info udot
7189Display the contents of the @code{struct user} maintained by the OS
7190kernel for the program being debugged. @value{GDBN} displays the
7191contents of @code{struct user} as a list of hex numbers, similar to
7192the @code{examine} command.
7193@end table
7194
b383017d
RM
7195@cindex auxiliary vector
7196@cindex vector, auxiliary
b383017d
RM
7197Some operating systems supply an @dfn{auxiliary vector} to programs at
7198startup. This is akin to the arguments and environment that you
7199specify for a program, but contains a system-dependent variety of
7200binary values that tell system libraries important details about the
7201hardware, operating system, and process. Each value's purpose is
7202identified by an integer tag; the meanings are well-known but system-specific.
7203Depending on the configuration and operating system facilities,
9c16f35a
EZ
7204@value{GDBN} may be able to show you this information. For remote
7205targets, this functionality may further depend on the remote stub's
427c3a89
DJ
7206support of the @samp{qXfer:auxv:read} packet, see
7207@ref{qXfer auxiliary vector read}.
b383017d
RM
7208
7209@table @code
7210@kindex info auxv
7211@item info auxv
7212Display the auxiliary vector of the inferior, which can be either a
e4937fc1 7213live process or a core dump file. @value{GDBN} prints each tag value
b383017d
RM
7214numerically, and also shows names and text descriptions for recognized
7215tags. Some values in the vector are numbers, some bit masks, and some
e4937fc1 7216pointers to strings or other data. @value{GDBN} displays each value in the
b383017d
RM
7217most appropriate form for a recognized tag, and in hexadecimal for
7218an unrecognized tag.
7219@end table
7220
721c2651 7221
29e57380 7222@node Memory Region Attributes
79a6e687 7223@section Memory Region Attributes
29e57380
C
7224@cindex memory region attributes
7225
b383017d 7226@dfn{Memory region attributes} allow you to describe special handling
fd79ecee
DJ
7227required by regions of your target's memory. @value{GDBN} uses
7228attributes to determine whether to allow certain types of memory
7229accesses; whether to use specific width accesses; and whether to cache
7230target memory. By default the description of memory regions is
7231fetched from the target (if the current target supports this), but the
7232user can override the fetched regions.
29e57380
C
7233
7234Defined memory regions can be individually enabled and disabled. When a
7235memory region is disabled, @value{GDBN} uses the default attributes when
7236accessing memory in that region. Similarly, if no memory regions have
7237been defined, @value{GDBN} uses the default attributes when accessing
7238all memory.
7239
b383017d 7240When a memory region is defined, it is given a number to identify it;
29e57380
C
7241to enable, disable, or remove a memory region, you specify that number.
7242
7243@table @code
7244@kindex mem
bfac230e 7245@item mem @var{lower} @var{upper} @var{attributes}@dots{}
09d4efe1
EZ
7246Define a memory region bounded by @var{lower} and @var{upper} with
7247attributes @var{attributes}@dots{}, and add it to the list of regions
7248monitored by @value{GDBN}. Note that @var{upper} == 0 is a special
d3e8051b 7249case: it is treated as the target's maximum memory address.
bfac230e 7250(0xffff on 16 bit targets, 0xffffffff on 32 bit targets, etc.)
29e57380 7251
fd79ecee
DJ
7252@item mem auto
7253Discard any user changes to the memory regions and use target-supplied
7254regions, if available, or no regions if the target does not support.
7255
29e57380
C
7256@kindex delete mem
7257@item delete mem @var{nums}@dots{}
09d4efe1
EZ
7258Remove memory regions @var{nums}@dots{} from the list of regions
7259monitored by @value{GDBN}.
29e57380
C
7260
7261@kindex disable mem
7262@item disable mem @var{nums}@dots{}
09d4efe1 7263Disable monitoring of memory regions @var{nums}@dots{}.
b383017d 7264A disabled memory region is not forgotten.
29e57380
C
7265It may be enabled again later.
7266
7267@kindex enable mem
7268@item enable mem @var{nums}@dots{}
09d4efe1 7269Enable monitoring of memory regions @var{nums}@dots{}.
29e57380
C
7270
7271@kindex info mem
7272@item info mem
7273Print a table of all defined memory regions, with the following columns
09d4efe1 7274for each region:
29e57380
C
7275
7276@table @emph
7277@item Memory Region Number
7278@item Enabled or Disabled.
b383017d 7279Enabled memory regions are marked with @samp{y}.
29e57380
C
7280Disabled memory regions are marked with @samp{n}.
7281
7282@item Lo Address
7283The address defining the inclusive lower bound of the memory region.
7284
7285@item Hi Address
7286The address defining the exclusive upper bound of the memory region.
7287
7288@item Attributes
7289The list of attributes set for this memory region.
7290@end table
7291@end table
7292
7293
7294@subsection Attributes
7295
b383017d 7296@subsubsection Memory Access Mode
29e57380
C
7297The access mode attributes set whether @value{GDBN} may make read or
7298write accesses to a memory region.
7299
7300While these attributes prevent @value{GDBN} from performing invalid
7301memory accesses, they do nothing to prevent the target system, I/O DMA,
359df76b 7302etc.@: from accessing memory.
29e57380
C
7303
7304@table @code
7305@item ro
7306Memory is read only.
7307@item wo
7308Memory is write only.
7309@item rw
6ca652b0 7310Memory is read/write. This is the default.
29e57380
C
7311@end table
7312
7313@subsubsection Memory Access Size
d3e8051b 7314The access size attribute tells @value{GDBN} to use specific sized
29e57380
C
7315accesses in the memory region. Often memory mapped device registers
7316require specific sized accesses. If no access size attribute is
7317specified, @value{GDBN} may use accesses of any size.
7318
7319@table @code
7320@item 8
7321Use 8 bit memory accesses.
7322@item 16
7323Use 16 bit memory accesses.
7324@item 32
7325Use 32 bit memory accesses.
7326@item 64
7327Use 64 bit memory accesses.
7328@end table
7329
7330@c @subsubsection Hardware/Software Breakpoints
7331@c The hardware/software breakpoint attributes set whether @value{GDBN}
7332@c will use hardware or software breakpoints for the internal breakpoints
7333@c used by the step, next, finish, until, etc. commands.
7334@c
7335@c @table @code
7336@c @item hwbreak
b383017d 7337@c Always use hardware breakpoints
29e57380
C
7338@c @item swbreak (default)
7339@c @end table
7340
7341@subsubsection Data Cache
7342The data cache attributes set whether @value{GDBN} will cache target
7343memory. While this generally improves performance by reducing debug
7344protocol overhead, it can lead to incorrect results because @value{GDBN}
7345does not know about volatile variables or memory mapped device
7346registers.
7347
7348@table @code
7349@item cache
b383017d 7350Enable @value{GDBN} to cache target memory.
6ca652b0
EZ
7351@item nocache
7352Disable @value{GDBN} from caching target memory. This is the default.
29e57380
C
7353@end table
7354
4b5752d0
VP
7355@subsection Memory Access Checking
7356@value{GDBN} can be instructed to refuse accesses to memory that is
7357not explicitly described. This can be useful if accessing such
7358regions has undesired effects for a specific target, or to provide
7359better error checking. The following commands control this behaviour.
7360
7361@table @code
7362@kindex set mem inaccessible-by-default
7363@item set mem inaccessible-by-default [on|off]
7364If @code{on} is specified, make @value{GDBN} treat memory not
7365explicitly described by the memory ranges as non-existent and refuse accesses
7366to such memory. The checks are only performed if there's at least one
7367memory range defined. If @code{off} is specified, make @value{GDBN}
7368treat the memory not explicitly described by the memory ranges as RAM.
56cf5405 7369The default value is @code{on}.
4b5752d0
VP
7370@kindex show mem inaccessible-by-default
7371@item show mem inaccessible-by-default
7372Show the current handling of accesses to unknown memory.
7373@end table
7374
7375
29e57380 7376@c @subsubsection Memory Write Verification
b383017d 7377@c The memory write verification attributes set whether @value{GDBN}
29e57380
C
7378@c will re-reads data after each write to verify the write was successful.
7379@c
7380@c @table @code
7381@c @item verify
7382@c @item noverify (default)
7383@c @end table
7384
16d9dec6 7385@node Dump/Restore Files
79a6e687 7386@section Copy Between Memory and a File
16d9dec6
MS
7387@cindex dump/restore files
7388@cindex append data to a file
7389@cindex dump data to a file
7390@cindex restore data from a file
16d9dec6 7391
df5215a6
JB
7392You can use the commands @code{dump}, @code{append}, and
7393@code{restore} to copy data between target memory and a file. The
7394@code{dump} and @code{append} commands write data to a file, and the
7395@code{restore} command reads data from a file back into the inferior's
7396memory. Files may be in binary, Motorola S-record, Intel hex, or
7397Tektronix Hex format; however, @value{GDBN} can only append to binary
7398files.
7399
7400@table @code
7401
7402@kindex dump
7403@item dump @r{[}@var{format}@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7404@itemx dump @r{[}@var{format}@r{]} value @var{filename} @var{expr}
7405Dump the contents of memory from @var{start_addr} to @var{end_addr},
7406or the value of @var{expr}, to @var{filename} in the given format.
16d9dec6 7407
df5215a6 7408The @var{format} parameter may be any one of:
16d9dec6 7409@table @code
df5215a6
JB
7410@item binary
7411Raw binary form.
7412@item ihex
7413Intel hex format.
7414@item srec
7415Motorola S-record format.
7416@item tekhex
7417Tektronix Hex format.
7418@end table
7419
7420@value{GDBN} uses the same definitions of these formats as the
7421@sc{gnu} binary utilities, like @samp{objdump} and @samp{objcopy}. If
7422@var{format} is omitted, @value{GDBN} dumps the data in raw binary
7423form.
7424
7425@kindex append
7426@item append @r{[}binary@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7427@itemx append @r{[}binary@r{]} value @var{filename} @var{expr}
7428Append the contents of memory from @var{start_addr} to @var{end_addr},
09d4efe1 7429or the value of @var{expr}, to the file @var{filename}, in raw binary form.
df5215a6
JB
7430(@value{GDBN} can only append data to files in raw binary form.)
7431
7432@kindex restore
7433@item restore @var{filename} @r{[}binary@r{]} @var{bias} @var{start} @var{end}
7434Restore the contents of file @var{filename} into memory. The
7435@code{restore} command can automatically recognize any known @sc{bfd}
7436file format, except for raw binary. To restore a raw binary file you
7437must specify the optional keyword @code{binary} after the filename.
16d9dec6 7438
b383017d 7439If @var{bias} is non-zero, its value will be added to the addresses
16d9dec6
MS
7440contained in the file. Binary files always start at address zero, so
7441they will be restored at address @var{bias}. Other bfd files have
7442a built-in location; they will be restored at offset @var{bias}
7443from that location.
7444
7445If @var{start} and/or @var{end} are non-zero, then only data between
7446file offset @var{start} and file offset @var{end} will be restored.
b383017d 7447These offsets are relative to the addresses in the file, before
16d9dec6
MS
7448the @var{bias} argument is applied.
7449
7450@end table
7451
384ee23f
EZ
7452@node Core File Generation
7453@section How to Produce a Core File from Your Program
7454@cindex dump core from inferior
7455
7456A @dfn{core file} or @dfn{core dump} is a file that records the memory
7457image of a running process and its process status (register values
7458etc.). Its primary use is post-mortem debugging of a program that
7459crashed while it ran outside a debugger. A program that crashes
7460automatically produces a core file, unless this feature is disabled by
7461the user. @xref{Files}, for information on invoking @value{GDBN} in
7462the post-mortem debugging mode.
7463
7464Occasionally, you may wish to produce a core file of the program you
7465are debugging in order to preserve a snapshot of its state.
7466@value{GDBN} has a special command for that.
7467
7468@table @code
7469@kindex gcore
7470@kindex generate-core-file
7471@item generate-core-file [@var{file}]
7472@itemx gcore [@var{file}]
7473Produce a core dump of the inferior process. The optional argument
7474@var{file} specifies the file name where to put the core dump. If not
7475specified, the file name defaults to @file{core.@var{pid}}, where
7476@var{pid} is the inferior process ID.
7477
7478Note that this command is implemented only for some systems (as of
7479this writing, @sc{gnu}/Linux, FreeBSD, Solaris, Unixware, and S390).
7480@end table
7481
a0eb71c5
KB
7482@node Character Sets
7483@section Character Sets
7484@cindex character sets
7485@cindex charset
7486@cindex translating between character sets
7487@cindex host character set
7488@cindex target character set
7489
7490If the program you are debugging uses a different character set to
7491represent characters and strings than the one @value{GDBN} uses itself,
7492@value{GDBN} can automatically translate between the character sets for
7493you. The character set @value{GDBN} uses we call the @dfn{host
7494character set}; the one the inferior program uses we call the
7495@dfn{target character set}.
7496
7497For example, if you are running @value{GDBN} on a @sc{gnu}/Linux system, which
7498uses the ISO Latin 1 character set, but you are using @value{GDBN}'s
ea35711c 7499remote protocol (@pxref{Remote Debugging}) to debug a program
a0eb71c5
KB
7500running on an IBM mainframe, which uses the @sc{ebcdic} character set,
7501then the host character set is Latin-1, and the target character set is
7502@sc{ebcdic}. If you give @value{GDBN} the command @code{set
e33d66ec 7503target-charset EBCDIC-US}, then @value{GDBN} translates between
a0eb71c5
KB
7504@sc{ebcdic} and Latin 1 as you print character or string values, or use
7505character and string literals in expressions.
7506
7507@value{GDBN} has no way to automatically recognize which character set
7508the inferior program uses; you must tell it, using the @code{set
7509target-charset} command, described below.
7510
7511Here are the commands for controlling @value{GDBN}'s character set
7512support:
7513
7514@table @code
7515@item set target-charset @var{charset}
7516@kindex set target-charset
7517Set the current target character set to @var{charset}. We list the
e33d66ec
EZ
7518character set names @value{GDBN} recognizes below, but if you type
7519@code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7520list the target character sets it supports.
a0eb71c5
KB
7521@end table
7522
7523@table @code
7524@item set host-charset @var{charset}
7525@kindex set host-charset
7526Set the current host character set to @var{charset}.
7527
7528By default, @value{GDBN} uses a host character set appropriate to the
7529system it is running on; you can override that default using the
7530@code{set host-charset} command.
7531
7532@value{GDBN} can only use certain character sets as its host character
7533set. We list the character set names @value{GDBN} recognizes below, and
e33d66ec
EZ
7534indicate which can be host character sets, but if you type
7535@code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7536list the host character sets it supports.
a0eb71c5
KB
7537
7538@item set charset @var{charset}
7539@kindex set charset
e33d66ec
EZ
7540Set the current host and target character sets to @var{charset}. As
7541above, if you type @code{set charset} followed by @key{TAB}@key{TAB},
7542@value{GDBN} will list the name of the character sets that can be used
7543for both host and target.
7544
a0eb71c5
KB
7545
7546@item show charset
a0eb71c5 7547@kindex show charset
b383017d 7548Show the names of the current host and target charsets.
e33d66ec
EZ
7549
7550@itemx show host-charset
a0eb71c5 7551@kindex show host-charset
b383017d 7552Show the name of the current host charset.
e33d66ec
EZ
7553
7554@itemx show target-charset
a0eb71c5 7555@kindex show target-charset
b383017d 7556Show the name of the current target charset.
a0eb71c5
KB
7557
7558@end table
7559
7560@value{GDBN} currently includes support for the following character
7561sets:
7562
7563@table @code
7564
7565@item ASCII
7566@cindex ASCII character set
7567Seven-bit U.S. @sc{ascii}. @value{GDBN} can use this as its host
7568character set.
7569
7570@item ISO-8859-1
7571@cindex ISO 8859-1 character set
7572@cindex ISO Latin 1 character set
e33d66ec 7573The ISO Latin 1 character set. This extends @sc{ascii} with accented
a0eb71c5
KB
7574characters needed for French, German, and Spanish. @value{GDBN} can use
7575this as its host character set.
7576
7577@item EBCDIC-US
7578@itemx IBM1047
7579@cindex EBCDIC character set
7580@cindex IBM1047 character set
7581Variants of the @sc{ebcdic} character set, used on some of IBM's
7582mainframe operating systems. (@sc{gnu}/Linux on the S/390 uses U.S. @sc{ascii}.)
7583@value{GDBN} cannot use these as its host character set.
7584
7585@end table
7586
7587Note that these are all single-byte character sets. More work inside
3f94c067 7588@value{GDBN} is needed to support multi-byte or variable-width character
a0eb71c5
KB
7589encodings, like the UTF-8 and UCS-2 encodings of Unicode.
7590
7591Here is an example of @value{GDBN}'s character set support in action.
7592Assume that the following source code has been placed in the file
7593@file{charset-test.c}:
7594
7595@smallexample
7596#include <stdio.h>
7597
7598char ascii_hello[]
7599 = @{72, 101, 108, 108, 111, 44, 32, 119,
7600 111, 114, 108, 100, 33, 10, 0@};
7601char ibm1047_hello[]
7602 = @{200, 133, 147, 147, 150, 107, 64, 166,
7603 150, 153, 147, 132, 90, 37, 0@};
7604
7605main ()
7606@{
7607 printf ("Hello, world!\n");
7608@}
10998722 7609@end smallexample
a0eb71c5
KB
7610
7611In this program, @code{ascii_hello} and @code{ibm1047_hello} are arrays
7612containing the string @samp{Hello, world!} followed by a newline,
7613encoded in the @sc{ascii} and @sc{ibm1047} character sets.
7614
7615We compile the program, and invoke the debugger on it:
7616
7617@smallexample
7618$ gcc -g charset-test.c -o charset-test
7619$ gdb -nw charset-test
7620GNU gdb 2001-12-19-cvs
7621Copyright 2001 Free Software Foundation, Inc.
7622@dots{}
f7dc1244 7623(@value{GDBP})
10998722 7624@end smallexample
a0eb71c5
KB
7625
7626We can use the @code{show charset} command to see what character sets
7627@value{GDBN} is currently using to interpret and display characters and
7628strings:
7629
7630@smallexample
f7dc1244 7631(@value{GDBP}) show charset
e33d66ec 7632The current host and target character set is `ISO-8859-1'.
f7dc1244 7633(@value{GDBP})
10998722 7634@end smallexample
a0eb71c5
KB
7635
7636For the sake of printing this manual, let's use @sc{ascii} as our
7637initial character set:
7638@smallexample
f7dc1244
EZ
7639(@value{GDBP}) set charset ASCII
7640(@value{GDBP}) show charset
e33d66ec 7641The current host and target character set is `ASCII'.
f7dc1244 7642(@value{GDBP})
10998722 7643@end smallexample
a0eb71c5
KB
7644
7645Let's assume that @sc{ascii} is indeed the correct character set for our
7646host system --- in other words, let's assume that if @value{GDBN} prints
7647characters using the @sc{ascii} character set, our terminal will display
7648them properly. Since our current target character set is also
7649@sc{ascii}, the contents of @code{ascii_hello} print legibly:
7650
7651@smallexample
f7dc1244 7652(@value{GDBP}) print ascii_hello
a0eb71c5 7653$1 = 0x401698 "Hello, world!\n"
f7dc1244 7654(@value{GDBP}) print ascii_hello[0]
a0eb71c5 7655$2 = 72 'H'
f7dc1244 7656(@value{GDBP})
10998722 7657@end smallexample
a0eb71c5
KB
7658
7659@value{GDBN} uses the target character set for character and string
7660literals you use in expressions:
7661
7662@smallexample
f7dc1244 7663(@value{GDBP}) print '+'
a0eb71c5 7664$3 = 43 '+'
f7dc1244 7665(@value{GDBP})
10998722 7666@end smallexample
a0eb71c5
KB
7667
7668The @sc{ascii} character set uses the number 43 to encode the @samp{+}
7669character.
7670
7671@value{GDBN} relies on the user to tell it which character set the
7672target program uses. If we print @code{ibm1047_hello} while our target
7673character set is still @sc{ascii}, we get jibberish:
7674
7675@smallexample
f7dc1244 7676(@value{GDBP}) print ibm1047_hello
a0eb71c5 7677$4 = 0x4016a8 "\310\205\223\223\226k@@\246\226\231\223\204Z%"
f7dc1244 7678(@value{GDBP}) print ibm1047_hello[0]
a0eb71c5 7679$5 = 200 '\310'
f7dc1244 7680(@value{GDBP})
10998722 7681@end smallexample
a0eb71c5 7682
e33d66ec 7683If we invoke the @code{set target-charset} followed by @key{TAB}@key{TAB},
a0eb71c5
KB
7684@value{GDBN} tells us the character sets it supports:
7685
7686@smallexample
f7dc1244 7687(@value{GDBP}) set target-charset
b383017d 7688ASCII EBCDIC-US IBM1047 ISO-8859-1
f7dc1244 7689(@value{GDBP}) set target-charset
10998722 7690@end smallexample
a0eb71c5
KB
7691
7692We can select @sc{ibm1047} as our target character set, and examine the
7693program's strings again. Now the @sc{ascii} string is wrong, but
7694@value{GDBN} translates the contents of @code{ibm1047_hello} from the
7695target character set, @sc{ibm1047}, to the host character set,
7696@sc{ascii}, and they display correctly:
7697
7698@smallexample
f7dc1244
EZ
7699(@value{GDBP}) set target-charset IBM1047
7700(@value{GDBP}) show charset
e33d66ec
EZ
7701The current host character set is `ASCII'.
7702The current target character set is `IBM1047'.
f7dc1244 7703(@value{GDBP}) print ascii_hello
a0eb71c5 7704$6 = 0x401698 "\110\145%%?\054\040\167?\162%\144\041\012"
f7dc1244 7705(@value{GDBP}) print ascii_hello[0]
a0eb71c5 7706$7 = 72 '\110'
f7dc1244 7707(@value{GDBP}) print ibm1047_hello
a0eb71c5 7708$8 = 0x4016a8 "Hello, world!\n"
f7dc1244 7709(@value{GDBP}) print ibm1047_hello[0]
a0eb71c5 7710$9 = 200 'H'
f7dc1244 7711(@value{GDBP})
10998722 7712@end smallexample
a0eb71c5
KB
7713
7714As above, @value{GDBN} uses the target character set for character and
7715string literals you use in expressions:
7716
7717@smallexample
f7dc1244 7718(@value{GDBP}) print '+'
a0eb71c5 7719$10 = 78 '+'
f7dc1244 7720(@value{GDBP})
10998722 7721@end smallexample
a0eb71c5 7722
e33d66ec 7723The @sc{ibm1047} character set uses the number 78 to encode the @samp{+}
a0eb71c5
KB
7724character.
7725
09d4efe1
EZ
7726@node Caching Remote Data
7727@section Caching Data of Remote Targets
7728@cindex caching data of remote targets
7729
7730@value{GDBN} can cache data exchanged between the debugger and a
ea35711c 7731remote target (@pxref{Remote Debugging}). Such caching generally improves
09d4efe1
EZ
7732performance, because it reduces the overhead of the remote protocol by
7733bundling memory reads and writes into large chunks. Unfortunately,
7734@value{GDBN} does not currently know anything about volatile
7735registers, and thus data caching will produce incorrect results when
7736volatile registers are in use.
7737
7738@table @code
7739@kindex set remotecache
7740@item set remotecache on
7741@itemx set remotecache off
7742Set caching state for remote targets. When @code{ON}, use data
7743caching. By default, this option is @code{OFF}.
7744
7745@kindex show remotecache
7746@item show remotecache
7747Show the current state of data caching for remote targets.
7748
7749@kindex info dcache
7750@item info dcache
7751Print the information about the data cache performance. The
7752information displayed includes: the dcache width and depth; and for
7753each cache line, how many times it was referenced, and its data and
7754state (dirty, bad, ok, etc.). This command is useful for debugging
7755the data cache operation.
7756@end table
7757
08388c79
DE
7758@node Searching Memory
7759@section Search Memory
7760@cindex searching memory
7761
7762Memory can be searched for a particular sequence of bytes with the
7763@code{find} command.
7764
7765@table @code
7766@kindex find
7767@item find @r{[}/@var{sn}@r{]} @var{start_addr}, +@var{len}, @var{val1} @r{[}, @var{val2}, @dots{}@r{]}
7768@itemx find @r{[}/@var{sn}@r{]} @var{start_addr}, @var{end_addr}, @var{val1} @r{[}, @var{val2}, @dots{}@r{]}
7769Search memory for the sequence of bytes specified by @var{val1}, @var{val2},
7770etc. The search begins at address @var{start_addr} and continues for either
7771@var{len} bytes or through to @var{end_addr} inclusive.
7772@end table
7773
7774@var{s} and @var{n} are optional parameters.
7775They may be specified in either order, apart or together.
7776
7777@table @r
7778@item @var{s}, search query size
7779The size of each search query value.
7780
7781@table @code
7782@item b
7783bytes
7784@item h
7785halfwords (two bytes)
7786@item w
7787words (four bytes)
7788@item g
7789giant words (eight bytes)
7790@end table
7791
7792All values are interpreted in the current language.
7793This means, for example, that if the current source language is C/C@t{++}
7794then searching for the string ``hello'' includes the trailing '\0'.
7795
7796If the value size is not specified, it is taken from the
7797value's type in the current language.
7798This is useful when one wants to specify the search
7799pattern as a mixture of types.
7800Note that this means, for example, that in the case of C-like languages
7801a search for an untyped 0x42 will search for @samp{(int) 0x42}
7802which is typically four bytes.
7803
7804@item @var{n}, maximum number of finds
7805The maximum number of matches to print. The default is to print all finds.
7806@end table
7807
7808You can use strings as search values. Quote them with double-quotes
7809 (@code{"}).
7810The string value is copied into the search pattern byte by byte,
7811regardless of the endianness of the target and the size specification.
7812
7813The address of each match found is printed as well as a count of the
7814number of matches found.
7815
7816The address of the last value found is stored in convenience variable
7817@samp{$_}.
7818A count of the number of matches is stored in @samp{$numfound}.
7819
7820For example, if stopped at the @code{printf} in this function:
7821
7822@smallexample
7823void
7824hello ()
7825@{
7826 static char hello[] = "hello-hello";
7827 static struct @{ char c; short s; int i; @}
7828 __attribute__ ((packed)) mixed
7829 = @{ 'c', 0x1234, 0x87654321 @};
7830 printf ("%s\n", hello);
7831@}
7832@end smallexample
7833
7834@noindent
7835you get during debugging:
7836
7837@smallexample
7838(gdb) find &hello[0], +sizeof(hello), "hello"
78390x804956d <hello.1620+6>
78401 pattern found
7841(gdb) find &hello[0], +sizeof(hello), 'h', 'e', 'l', 'l', 'o'
78420x8049567 <hello.1620>
78430x804956d <hello.1620+6>
78442 patterns found
7845(gdb) find /b1 &hello[0], +sizeof(hello), 'h', 0x65, 'l'
78460x8049567 <hello.1620>
78471 pattern found
7848(gdb) find &mixed, +sizeof(mixed), (char) 'c', (short) 0x1234, (int) 0x87654321
78490x8049560 <mixed.1625>
78501 pattern found
7851(gdb) print $numfound
7852$1 = 1
7853(gdb) print $_
7854$2 = (void *) 0x8049560
7855@end smallexample
a0eb71c5 7856
e2e0bcd1
JB
7857@node Macros
7858@chapter C Preprocessor Macros
7859
49efadf5 7860Some languages, such as C and C@t{++}, provide a way to define and invoke
e2e0bcd1
JB
7861``preprocessor macros'' which expand into strings of tokens.
7862@value{GDBN} can evaluate expressions containing macro invocations, show
7863the result of macro expansion, and show a macro's definition, including
7864where it was defined.
7865
7866You may need to compile your program specially to provide @value{GDBN}
7867with information about preprocessor macros. Most compilers do not
7868include macros in their debugging information, even when you compile
7869with the @option{-g} flag. @xref{Compilation}.
7870
7871A program may define a macro at one point, remove that definition later,
7872and then provide a different definition after that. Thus, at different
7873points in the program, a macro may have different definitions, or have
7874no definition at all. If there is a current stack frame, @value{GDBN}
7875uses the macros in scope at that frame's source code line. Otherwise,
7876@value{GDBN} uses the macros in scope at the current listing location;
7877see @ref{List}.
7878
7879At the moment, @value{GDBN} does not support the @code{##}
7880token-splicing operator, the @code{#} stringification operator, or
7881variable-arity macros.
7882
7883Whenever @value{GDBN} evaluates an expression, it always expands any
7884macro invocations present in the expression. @value{GDBN} also provides
7885the following commands for working with macros explicitly.
7886
7887@table @code
7888
7889@kindex macro expand
7890@cindex macro expansion, showing the results of preprocessor
7891@cindex preprocessor macro expansion, showing the results of
7892@cindex expanding preprocessor macros
7893@item macro expand @var{expression}
7894@itemx macro exp @var{expression}
7895Show the results of expanding all preprocessor macro invocations in
7896@var{expression}. Since @value{GDBN} simply expands macros, but does
7897not parse the result, @var{expression} need not be a valid expression;
7898it can be any string of tokens.
7899
09d4efe1 7900@kindex macro exp1
e2e0bcd1
JB
7901@item macro expand-once @var{expression}
7902@itemx macro exp1 @var{expression}
4644b6e3 7903@cindex expand macro once
e2e0bcd1
JB
7904@i{(This command is not yet implemented.)} Show the results of
7905expanding those preprocessor macro invocations that appear explicitly in
7906@var{expression}. Macro invocations appearing in that expansion are
7907left unchanged. This command allows you to see the effect of a
7908particular macro more clearly, without being confused by further
7909expansions. Since @value{GDBN} simply expands macros, but does not
7910parse the result, @var{expression} need not be a valid expression; it
7911can be any string of tokens.
7912
475b0867 7913@kindex info macro
e2e0bcd1
JB
7914@cindex macro definition, showing
7915@cindex definition, showing a macro's
475b0867 7916@item info macro @var{macro}
e2e0bcd1
JB
7917Show the definition of the macro named @var{macro}, and describe the
7918source location where that definition was established.
7919
7920@kindex macro define
7921@cindex user-defined macros
7922@cindex defining macros interactively
7923@cindex macros, user-defined
7924@item macro define @var{macro} @var{replacement-list}
7925@itemx macro define @var{macro}(@var{arglist}) @var{replacement-list}
7926@i{(This command is not yet implemented.)} Introduce a definition for a
7927preprocessor macro named @var{macro}, invocations of which are replaced
7928by the tokens given in @var{replacement-list}. The first form of this
7929command defines an ``object-like'' macro, which takes no arguments; the
7930second form defines a ``function-like'' macro, which takes the arguments
7931given in @var{arglist}.
7932
7933A definition introduced by this command is in scope in every expression
7934evaluated in @value{GDBN}, until it is removed with the @command{macro
7935undef} command, described below. The definition overrides all
7936definitions for @var{macro} present in the program being debugged, as
7937well as any previous user-supplied definition.
7938
7939@kindex macro undef
7940@item macro undef @var{macro}
7941@i{(This command is not yet implemented.)} Remove any user-supplied
7942definition for the macro named @var{macro}. This command only affects
7943definitions provided with the @command{macro define} command, described
7944above; it cannot remove definitions present in the program being
7945debugged.
7946
09d4efe1
EZ
7947@kindex macro list
7948@item macro list
7949@i{(This command is not yet implemented.)} List all the macros
7950defined using the @code{macro define} command.
e2e0bcd1
JB
7951@end table
7952
7953@cindex macros, example of debugging with
7954Here is a transcript showing the above commands in action. First, we
7955show our source files:
7956
7957@smallexample
7958$ cat sample.c
7959#include <stdio.h>
7960#include "sample.h"
7961
7962#define M 42
7963#define ADD(x) (M + x)
7964
7965main ()
7966@{
7967#define N 28
7968 printf ("Hello, world!\n");
7969#undef N
7970 printf ("We're so creative.\n");
7971#define N 1729
7972 printf ("Goodbye, world!\n");
7973@}
7974$ cat sample.h
7975#define Q <
7976$
7977@end smallexample
7978
7979Now, we compile the program using the @sc{gnu} C compiler, @value{NGCC}.
7980We pass the @option{-gdwarf-2} and @option{-g3} flags to ensure the
7981compiler includes information about preprocessor macros in the debugging
7982information.
7983
7984@smallexample
7985$ gcc -gdwarf-2 -g3 sample.c -o sample
7986$
7987@end smallexample
7988
7989Now, we start @value{GDBN} on our sample program:
7990
7991@smallexample
7992$ gdb -nw sample
7993GNU gdb 2002-05-06-cvs
7994Copyright 2002 Free Software Foundation, Inc.
7995GDB is free software, @dots{}
f7dc1244 7996(@value{GDBP})
e2e0bcd1
JB
7997@end smallexample
7998
7999We can expand macros and examine their definitions, even when the
8000program is not running. @value{GDBN} uses the current listing position
8001to decide which macro definitions are in scope:
8002
8003@smallexample
f7dc1244 8004(@value{GDBP}) list main
e2e0bcd1
JB
80053
80064 #define M 42
80075 #define ADD(x) (M + x)
80086
80097 main ()
80108 @{
80119 #define N 28
801210 printf ("Hello, world!\n");
801311 #undef N
801412 printf ("We're so creative.\n");
f7dc1244 8015(@value{GDBP}) info macro ADD
e2e0bcd1
JB
8016Defined at /home/jimb/gdb/macros/play/sample.c:5
8017#define ADD(x) (M + x)
f7dc1244 8018(@value{GDBP}) info macro Q
e2e0bcd1
JB
8019Defined at /home/jimb/gdb/macros/play/sample.h:1
8020 included at /home/jimb/gdb/macros/play/sample.c:2
8021#define Q <
f7dc1244 8022(@value{GDBP}) macro expand ADD(1)
e2e0bcd1 8023expands to: (42 + 1)
f7dc1244 8024(@value{GDBP}) macro expand-once ADD(1)
e2e0bcd1 8025expands to: once (M + 1)
f7dc1244 8026(@value{GDBP})
e2e0bcd1
JB
8027@end smallexample
8028
8029In the example above, note that @command{macro expand-once} expands only
8030the macro invocation explicit in the original text --- the invocation of
8031@code{ADD} --- but does not expand the invocation of the macro @code{M},
8032which was introduced by @code{ADD}.
8033
3f94c067
BW
8034Once the program is running, @value{GDBN} uses the macro definitions in
8035force at the source line of the current stack frame:
e2e0bcd1
JB
8036
8037@smallexample
f7dc1244 8038(@value{GDBP}) break main
e2e0bcd1 8039Breakpoint 1 at 0x8048370: file sample.c, line 10.
f7dc1244 8040(@value{GDBP}) run
b383017d 8041Starting program: /home/jimb/gdb/macros/play/sample
e2e0bcd1
JB
8042
8043Breakpoint 1, main () at sample.c:10
804410 printf ("Hello, world!\n");
f7dc1244 8045(@value{GDBP})
e2e0bcd1
JB
8046@end smallexample
8047
8048At line 10, the definition of the macro @code{N} at line 9 is in force:
8049
8050@smallexample
f7dc1244 8051(@value{GDBP}) info macro N
e2e0bcd1
JB
8052Defined at /home/jimb/gdb/macros/play/sample.c:9
8053#define N 28
f7dc1244 8054(@value{GDBP}) macro expand N Q M
e2e0bcd1 8055expands to: 28 < 42
f7dc1244 8056(@value{GDBP}) print N Q M
e2e0bcd1 8057$1 = 1
f7dc1244 8058(@value{GDBP})
e2e0bcd1
JB
8059@end smallexample
8060
8061As we step over directives that remove @code{N}'s definition, and then
8062give it a new definition, @value{GDBN} finds the definition (or lack
8063thereof) in force at each point:
8064
8065@smallexample
f7dc1244 8066(@value{GDBP}) next
e2e0bcd1
JB
8067Hello, world!
806812 printf ("We're so creative.\n");
f7dc1244 8069(@value{GDBP}) info macro N
e2e0bcd1
JB
8070The symbol `N' has no definition as a C/C++ preprocessor macro
8071at /home/jimb/gdb/macros/play/sample.c:12
f7dc1244 8072(@value{GDBP}) next
e2e0bcd1
JB
8073We're so creative.
807414 printf ("Goodbye, world!\n");
f7dc1244 8075(@value{GDBP}) info macro N
e2e0bcd1
JB
8076Defined at /home/jimb/gdb/macros/play/sample.c:13
8077#define N 1729
f7dc1244 8078(@value{GDBP}) macro expand N Q M
e2e0bcd1 8079expands to: 1729 < 42
f7dc1244 8080(@value{GDBP}) print N Q M
e2e0bcd1 8081$2 = 0
f7dc1244 8082(@value{GDBP})
e2e0bcd1
JB
8083@end smallexample
8084
8085
b37052ae
EZ
8086@node Tracepoints
8087@chapter Tracepoints
8088@c This chapter is based on the documentation written by Michael
8089@c Snyder, David Taylor, Jim Blandy, and Elena Zannoni.
8090
8091@cindex tracepoints
8092In some applications, it is not feasible for the debugger to interrupt
8093the program's execution long enough for the developer to learn
8094anything helpful about its behavior. If the program's correctness
8095depends on its real-time behavior, delays introduced by a debugger
8096might cause the program to change its behavior drastically, or perhaps
8097fail, even when the code itself is correct. It is useful to be able
8098to observe the program's behavior without interrupting it.
8099
8100Using @value{GDBN}'s @code{trace} and @code{collect} commands, you can
8101specify locations in the program, called @dfn{tracepoints}, and
8102arbitrary expressions to evaluate when those tracepoints are reached.
8103Later, using the @code{tfind} command, you can examine the values
8104those expressions had when the program hit the tracepoints. The
8105expressions may also denote objects in memory---structures or arrays,
8106for example---whose values @value{GDBN} should record; while visiting
8107a particular tracepoint, you may inspect those objects as if they were
8108in memory at that moment. However, because @value{GDBN} records these
8109values without interacting with you, it can do so quickly and
8110unobtrusively, hopefully not disturbing the program's behavior.
8111
8112The tracepoint facility is currently available only for remote
9d29849a
JB
8113targets. @xref{Targets}. In addition, your remote target must know
8114how to collect trace data. This functionality is implemented in the
8115remote stub; however, none of the stubs distributed with @value{GDBN}
8116support tracepoints as of this writing. The format of the remote
8117packets used to implement tracepoints are described in @ref{Tracepoint
8118Packets}.
b37052ae
EZ
8119
8120This chapter describes the tracepoint commands and features.
8121
8122@menu
b383017d
RM
8123* Set Tracepoints::
8124* Analyze Collected Data::
8125* Tracepoint Variables::
b37052ae
EZ
8126@end menu
8127
8128@node Set Tracepoints
8129@section Commands to Set Tracepoints
8130
8131Before running such a @dfn{trace experiment}, an arbitrary number of
8132tracepoints can be set. Like a breakpoint (@pxref{Set Breaks}), a
8133tracepoint has a number assigned to it by @value{GDBN}. Like with
8134breakpoints, tracepoint numbers are successive integers starting from
8135one. Many of the commands associated with tracepoints take the
8136tracepoint number as their argument, to identify which tracepoint to
8137work on.
8138
8139For each tracepoint, you can specify, in advance, some arbitrary set
8140of data that you want the target to collect in the trace buffer when
8141it hits that tracepoint. The collected data can include registers,
8142local variables, or global data. Later, you can use @value{GDBN}
8143commands to examine the values these data had at the time the
8144tracepoint was hit.
8145
8146This section describes commands to set tracepoints and associated
8147conditions and actions.
8148
8149@menu
b383017d
RM
8150* Create and Delete Tracepoints::
8151* Enable and Disable Tracepoints::
8152* Tracepoint Passcounts::
8153* Tracepoint Actions::
8154* Listing Tracepoints::
79a6e687 8155* Starting and Stopping Trace Experiments::
b37052ae
EZ
8156@end menu
8157
8158@node Create and Delete Tracepoints
8159@subsection Create and Delete Tracepoints
8160
8161@table @code
8162@cindex set tracepoint
8163@kindex trace
8164@item trace
8165The @code{trace} command is very similar to the @code{break} command.
8166Its argument can be a source line, a function name, or an address in
8167the target program. @xref{Set Breaks}. The @code{trace} command
8168defines a tracepoint, which is a point in the target program where the
8169debugger will briefly stop, collect some data, and then allow the
8170program to continue. Setting a tracepoint or changing its commands
8171doesn't take effect until the next @code{tstart} command; thus, you
8172cannot change the tracepoint attributes once a trace experiment is
8173running.
8174
8175Here are some examples of using the @code{trace} command:
8176
8177@smallexample
8178(@value{GDBP}) @b{trace foo.c:121} // a source file and line number
8179
8180(@value{GDBP}) @b{trace +2} // 2 lines forward
8181
8182(@value{GDBP}) @b{trace my_function} // first source line of function
8183
8184(@value{GDBP}) @b{trace *my_function} // EXACT start address of function
8185
8186(@value{GDBP}) @b{trace *0x2117c4} // an address
8187@end smallexample
8188
8189@noindent
8190You can abbreviate @code{trace} as @code{tr}.
8191
8192@vindex $tpnum
8193@cindex last tracepoint number
8194@cindex recent tracepoint number
8195@cindex tracepoint number
8196The convenience variable @code{$tpnum} records the tracepoint number
8197of the most recently set tracepoint.
8198
8199@kindex delete tracepoint
8200@cindex tracepoint deletion
8201@item delete tracepoint @r{[}@var{num}@r{]}
8202Permanently delete one or more tracepoints. With no argument, the
8203default is to delete all tracepoints.
8204
8205Examples:
8206
8207@smallexample
8208(@value{GDBP}) @b{delete trace 1 2 3} // remove three tracepoints
8209
8210(@value{GDBP}) @b{delete trace} // remove all tracepoints
8211@end smallexample
8212
8213@noindent
8214You can abbreviate this command as @code{del tr}.
8215@end table
8216
8217@node Enable and Disable Tracepoints
8218@subsection Enable and Disable Tracepoints
8219
8220@table @code
8221@kindex disable tracepoint
8222@item disable tracepoint @r{[}@var{num}@r{]}
8223Disable tracepoint @var{num}, or all tracepoints if no argument
8224@var{num} is given. A disabled tracepoint will have no effect during
8225the next trace experiment, but it is not forgotten. You can re-enable
8226a disabled tracepoint using the @code{enable tracepoint} command.
8227
8228@kindex enable tracepoint
8229@item enable tracepoint @r{[}@var{num}@r{]}
8230Enable tracepoint @var{num}, or all tracepoints. The enabled
8231tracepoints will become effective the next time a trace experiment is
8232run.
8233@end table
8234
8235@node Tracepoint Passcounts
8236@subsection Tracepoint Passcounts
8237
8238@table @code
8239@kindex passcount
8240@cindex tracepoint pass count
8241@item passcount @r{[}@var{n} @r{[}@var{num}@r{]]}
8242Set the @dfn{passcount} of a tracepoint. The passcount is a way to
8243automatically stop a trace experiment. If a tracepoint's passcount is
8244@var{n}, then the trace experiment will be automatically stopped on
8245the @var{n}'th time that tracepoint is hit. If the tracepoint number
8246@var{num} is not specified, the @code{passcount} command sets the
8247passcount of the most recently defined tracepoint. If no passcount is
8248given, the trace experiment will run until stopped explicitly by the
8249user.
8250
8251Examples:
8252
8253@smallexample
b383017d 8254(@value{GDBP}) @b{passcount 5 2} // Stop on the 5th execution of
6826cf00 8255@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// tracepoint 2}
b37052ae
EZ
8256
8257(@value{GDBP}) @b{passcount 12} // Stop on the 12th execution of the
6826cf00 8258@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// most recently defined tracepoint.}
b37052ae
EZ
8259(@value{GDBP}) @b{trace foo}
8260(@value{GDBP}) @b{pass 3}
8261(@value{GDBP}) @b{trace bar}
8262(@value{GDBP}) @b{pass 2}
8263(@value{GDBP}) @b{trace baz}
8264(@value{GDBP}) @b{pass 1} // Stop tracing when foo has been
6826cf00
EZ
8265@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// executed 3 times OR when bar has}
8266@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// been executed 2 times}
8267@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// OR when baz has been executed 1 time.}
b37052ae
EZ
8268@end smallexample
8269@end table
8270
8271@node Tracepoint Actions
8272@subsection Tracepoint Action Lists
8273
8274@table @code
8275@kindex actions
8276@cindex tracepoint actions
8277@item actions @r{[}@var{num}@r{]}
8278This command will prompt for a list of actions to be taken when the
8279tracepoint is hit. If the tracepoint number @var{num} is not
8280specified, this command sets the actions for the one that was most
8281recently defined (so that you can define a tracepoint and then say
8282@code{actions} without bothering about its number). You specify the
8283actions themselves on the following lines, one action at a time, and
8284terminate the actions list with a line containing just @code{end}. So
8285far, the only defined actions are @code{collect} and
8286@code{while-stepping}.
8287
8288@cindex remove actions from a tracepoint
8289To remove all actions from a tracepoint, type @samp{actions @var{num}}
8290and follow it immediately with @samp{end}.
8291
8292@smallexample
8293(@value{GDBP}) @b{collect @var{data}} // collect some data
8294
6826cf00 8295(@value{GDBP}) @b{while-stepping 5} // single-step 5 times, collect data
b37052ae 8296
6826cf00 8297(@value{GDBP}) @b{end} // signals the end of actions.
b37052ae
EZ
8298@end smallexample
8299
8300In the following example, the action list begins with @code{collect}
8301commands indicating the things to be collected when the tracepoint is
8302hit. Then, in order to single-step and collect additional data
8303following the tracepoint, a @code{while-stepping} command is used,
8304followed by the list of things to be collected while stepping. The
8305@code{while-stepping} command is terminated by its own separate
8306@code{end} command. Lastly, the action list is terminated by an
8307@code{end} command.
8308
8309@smallexample
8310(@value{GDBP}) @b{trace foo}
8311(@value{GDBP}) @b{actions}
8312Enter actions for tracepoint 1, one per line:
8313> collect bar,baz
8314> collect $regs
8315> while-stepping 12
8316 > collect $fp, $sp
8317 > end
8318end
8319@end smallexample
8320
8321@kindex collect @r{(tracepoints)}
8322@item collect @var{expr1}, @var{expr2}, @dots{}
8323Collect values of the given expressions when the tracepoint is hit.
8324This command accepts a comma-separated list of any valid expressions.
8325In addition to global, static, or local variables, the following
8326special arguments are supported:
8327
8328@table @code
8329@item $regs
8330collect all registers
8331
8332@item $args
8333collect all function arguments
8334
8335@item $locals
8336collect all local variables.
8337@end table
8338
8339You can give several consecutive @code{collect} commands, each one
8340with a single argument, or one @code{collect} command with several
8341arguments separated by commas: the effect is the same.
8342
f5c37c66
EZ
8343The command @code{info scope} (@pxref{Symbols, info scope}) is
8344particularly useful for figuring out what data to collect.
8345
b37052ae
EZ
8346@kindex while-stepping @r{(tracepoints)}
8347@item while-stepping @var{n}
8348Perform @var{n} single-step traces after the tracepoint, collecting
8349new data at each step. The @code{while-stepping} command is
8350followed by the list of what to collect while stepping (followed by
8351its own @code{end} command):
8352
8353@smallexample
8354> while-stepping 12
8355 > collect $regs, myglobal
8356 > end
8357>
8358@end smallexample
8359
8360@noindent
8361You may abbreviate @code{while-stepping} as @code{ws} or
8362@code{stepping}.
8363@end table
8364
8365@node Listing Tracepoints
8366@subsection Listing Tracepoints
8367
8368@table @code
8369@kindex info tracepoints
09d4efe1 8370@kindex info tp
b37052ae
EZ
8371@cindex information about tracepoints
8372@item info tracepoints @r{[}@var{num}@r{]}
8a037dd7 8373Display information about the tracepoint @var{num}. If you don't specify
798c8bc6 8374a tracepoint number, displays information about all the tracepoints
b37052ae
EZ
8375defined so far. For each tracepoint, the following information is
8376shown:
8377
8378@itemize @bullet
8379@item
8380its number
8381@item
8382whether it is enabled or disabled
8383@item
8384its address
8385@item
8386its passcount as given by the @code{passcount @var{n}} command
8387@item
8388its step count as given by the @code{while-stepping @var{n}} command
8389@item
8390where in the source files is the tracepoint set
8391@item
8392its action list as given by the @code{actions} command
8393@end itemize
8394
8395@smallexample
8396(@value{GDBP}) @b{info trace}
8397Num Enb Address PassC StepC What
83981 y 0x002117c4 0 0 <gdb_asm>
6826cf00
EZ
83992 y 0x0020dc64 0 0 in g_test at g_test.c:1375
84003 y 0x0020b1f4 0 0 in get_data at ../foo.c:41
b37052ae
EZ
8401(@value{GDBP})
8402@end smallexample
8403
8404@noindent
8405This command can be abbreviated @code{info tp}.
8406@end table
8407
79a6e687
BW
8408@node Starting and Stopping Trace Experiments
8409@subsection Starting and Stopping Trace Experiments
b37052ae
EZ
8410
8411@table @code
8412@kindex tstart
8413@cindex start a new trace experiment
8414@cindex collected data discarded
8415@item tstart
8416This command takes no arguments. It starts the trace experiment, and
8417begins collecting data. This has the side effect of discarding all
8418the data collected in the trace buffer during the previous trace
8419experiment.
8420
8421@kindex tstop
8422@cindex stop a running trace experiment
8423@item tstop
8424This command takes no arguments. It ends the trace experiment, and
8425stops collecting data.
8426
68c71a2e 8427@strong{Note}: a trace experiment and data collection may stop
b37052ae
EZ
8428automatically if any tracepoint's passcount is reached
8429(@pxref{Tracepoint Passcounts}), or if the trace buffer becomes full.
8430
8431@kindex tstatus
8432@cindex status of trace data collection
8433@cindex trace experiment, status of
8434@item tstatus
8435This command displays the status of the current trace data
8436collection.
8437@end table
8438
8439Here is an example of the commands we described so far:
8440
8441@smallexample
8442(@value{GDBP}) @b{trace gdb_c_test}
8443(@value{GDBP}) @b{actions}
8444Enter actions for tracepoint #1, one per line.
8445> collect $regs,$locals,$args
8446> while-stepping 11
8447 > collect $regs
8448 > end
8449> end
8450(@value{GDBP}) @b{tstart}
8451 [time passes @dots{}]
8452(@value{GDBP}) @b{tstop}
8453@end smallexample
8454
8455
8456@node Analyze Collected Data
79a6e687 8457@section Using the Collected Data
b37052ae
EZ
8458
8459After the tracepoint experiment ends, you use @value{GDBN} commands
8460for examining the trace data. The basic idea is that each tracepoint
8461collects a trace @dfn{snapshot} every time it is hit and another
8462snapshot every time it single-steps. All these snapshots are
8463consecutively numbered from zero and go into a buffer, and you can
8464examine them later. The way you examine them is to @dfn{focus} on a
8465specific trace snapshot. When the remote stub is focused on a trace
8466snapshot, it will respond to all @value{GDBN} requests for memory and
8467registers by reading from the buffer which belongs to that snapshot,
8468rather than from @emph{real} memory or registers of the program being
8469debugged. This means that @strong{all} @value{GDBN} commands
8470(@code{print}, @code{info registers}, @code{backtrace}, etc.) will
8471behave as if we were currently debugging the program state as it was
8472when the tracepoint occurred. Any requests for data that are not in
8473the buffer will fail.
8474
8475@menu
8476* tfind:: How to select a trace snapshot
8477* tdump:: How to display all data for a snapshot
8478* save-tracepoints:: How to save tracepoints for a future run
8479@end menu
8480
8481@node tfind
8482@subsection @code{tfind @var{n}}
8483
8484@kindex tfind
8485@cindex select trace snapshot
8486@cindex find trace snapshot
8487The basic command for selecting a trace snapshot from the buffer is
8488@code{tfind @var{n}}, which finds trace snapshot number @var{n},
8489counting from zero. If no argument @var{n} is given, the next
8490snapshot is selected.
8491
8492Here are the various forms of using the @code{tfind} command.
8493
8494@table @code
8495@item tfind start
8496Find the first snapshot in the buffer. This is a synonym for
8497@code{tfind 0} (since 0 is the number of the first snapshot).
8498
8499@item tfind none
8500Stop debugging trace snapshots, resume @emph{live} debugging.
8501
8502@item tfind end
8503Same as @samp{tfind none}.
8504
8505@item tfind
8506No argument means find the next trace snapshot.
8507
8508@item tfind -
8509Find the previous trace snapshot before the current one. This permits
8510retracing earlier steps.
8511
8512@item tfind tracepoint @var{num}
8513Find the next snapshot associated with tracepoint @var{num}. Search
8514proceeds forward from the last examined trace snapshot. If no
8515argument @var{num} is given, it means find the next snapshot collected
8516for the same tracepoint as the current snapshot.
8517
8518@item tfind pc @var{addr}
8519Find the next snapshot associated with the value @var{addr} of the
8520program counter. Search proceeds forward from the last examined trace
8521snapshot. If no argument @var{addr} is given, it means find the next
8522snapshot with the same value of PC as the current snapshot.
8523
8524@item tfind outside @var{addr1}, @var{addr2}
8525Find the next snapshot whose PC is outside the given range of
8526addresses.
8527
8528@item tfind range @var{addr1}, @var{addr2}
8529Find the next snapshot whose PC is between @var{addr1} and
8530@var{addr2}. @c FIXME: Is the range inclusive or exclusive?
8531
8532@item tfind line @r{[}@var{file}:@r{]}@var{n}
8533Find the next snapshot associated with the source line @var{n}. If
8534the optional argument @var{file} is given, refer to line @var{n} in
8535that source file. Search proceeds forward from the last examined
8536trace snapshot. If no argument @var{n} is given, it means find the
8537next line other than the one currently being examined; thus saying
8538@code{tfind line} repeatedly can appear to have the same effect as
8539stepping from line to line in a @emph{live} debugging session.
8540@end table
8541
8542The default arguments for the @code{tfind} commands are specifically
8543designed to make it easy to scan through the trace buffer. For
8544instance, @code{tfind} with no argument selects the next trace
8545snapshot, and @code{tfind -} with no argument selects the previous
8546trace snapshot. So, by giving one @code{tfind} command, and then
8547simply hitting @key{RET} repeatedly you can examine all the trace
8548snapshots in order. Or, by saying @code{tfind -} and then hitting
8549@key{RET} repeatedly you can examine the snapshots in reverse order.
8550The @code{tfind line} command with no argument selects the snapshot
8551for the next source line executed. The @code{tfind pc} command with
8552no argument selects the next snapshot with the same program counter
8553(PC) as the current frame. The @code{tfind tracepoint} command with
8554no argument selects the next trace snapshot collected by the same
8555tracepoint as the current one.
8556
8557In addition to letting you scan through the trace buffer manually,
8558these commands make it easy to construct @value{GDBN} scripts that
8559scan through the trace buffer and print out whatever collected data
8560you are interested in. Thus, if we want to examine the PC, FP, and SP
8561registers from each trace frame in the buffer, we can say this:
8562
8563@smallexample
8564(@value{GDBP}) @b{tfind start}
8565(@value{GDBP}) @b{while ($trace_frame != -1)}
8566> printf "Frame %d, PC = %08X, SP = %08X, FP = %08X\n", \
8567 $trace_frame, $pc, $sp, $fp
8568> tfind
8569> end
8570
8571Frame 0, PC = 0020DC64, SP = 0030BF3C, FP = 0030BF44
8572Frame 1, PC = 0020DC6C, SP = 0030BF38, FP = 0030BF44
8573Frame 2, PC = 0020DC70, SP = 0030BF34, FP = 0030BF44
8574Frame 3, PC = 0020DC74, SP = 0030BF30, FP = 0030BF44
8575Frame 4, PC = 0020DC78, SP = 0030BF2C, FP = 0030BF44
8576Frame 5, PC = 0020DC7C, SP = 0030BF28, FP = 0030BF44
8577Frame 6, PC = 0020DC80, SP = 0030BF24, FP = 0030BF44
8578Frame 7, PC = 0020DC84, SP = 0030BF20, FP = 0030BF44
8579Frame 8, PC = 0020DC88, SP = 0030BF1C, FP = 0030BF44
8580Frame 9, PC = 0020DC8E, SP = 0030BF18, FP = 0030BF44
8581Frame 10, PC = 00203F6C, SP = 0030BE3C, FP = 0030BF14
8582@end smallexample
8583
8584Or, if we want to examine the variable @code{X} at each source line in
8585the buffer:
8586
8587@smallexample
8588(@value{GDBP}) @b{tfind start}
8589(@value{GDBP}) @b{while ($trace_frame != -1)}
8590> printf "Frame %d, X == %d\n", $trace_frame, X
8591> tfind line
8592> end
8593
8594Frame 0, X = 1
8595Frame 7, X = 2
8596Frame 13, X = 255
8597@end smallexample
8598
8599@node tdump
8600@subsection @code{tdump}
8601@kindex tdump
8602@cindex dump all data collected at tracepoint
8603@cindex tracepoint data, display
8604
8605This command takes no arguments. It prints all the data collected at
8606the current trace snapshot.
8607
8608@smallexample
8609(@value{GDBP}) @b{trace 444}
8610(@value{GDBP}) @b{actions}
8611Enter actions for tracepoint #2, one per line:
8612> collect $regs, $locals, $args, gdb_long_test
8613> end
8614
8615(@value{GDBP}) @b{tstart}
8616
8617(@value{GDBP}) @b{tfind line 444}
8618#0 gdb_test (p1=0x11, p2=0x22, p3=0x33, p4=0x44, p5=0x55, p6=0x66)
8619at gdb_test.c:444
8620444 printp( "%s: arguments = 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X\n", )
8621
8622(@value{GDBP}) @b{tdump}
8623Data collected at tracepoint 2, trace frame 1:
8624d0 0xc4aa0085 -995491707
8625d1 0x18 24
8626d2 0x80 128
8627d3 0x33 51
8628d4 0x71aea3d 119204413
8629d5 0x22 34
8630d6 0xe0 224
8631d7 0x380035 3670069
8632a0 0x19e24a 1696330
8633a1 0x3000668 50333288
8634a2 0x100 256
8635a3 0x322000 3284992
8636a4 0x3000698 50333336
8637a5 0x1ad3cc 1758156
8638fp 0x30bf3c 0x30bf3c
8639sp 0x30bf34 0x30bf34
8640ps 0x0 0
8641pc 0x20b2c8 0x20b2c8
8642fpcontrol 0x0 0
8643fpstatus 0x0 0
8644fpiaddr 0x0 0
8645p = 0x20e5b4 "gdb-test"
8646p1 = (void *) 0x11
8647p2 = (void *) 0x22
8648p3 = (void *) 0x33
8649p4 = (void *) 0x44
8650p5 = (void *) 0x55
8651p6 = (void *) 0x66
8652gdb_long_test = 17 '\021'
8653
8654(@value{GDBP})
8655@end smallexample
8656
8657@node save-tracepoints
8658@subsection @code{save-tracepoints @var{filename}}
8659@kindex save-tracepoints
8660@cindex save tracepoints for future sessions
8661
8662This command saves all current tracepoint definitions together with
8663their actions and passcounts, into a file @file{@var{filename}}
8664suitable for use in a later debugging session. To read the saved
8665tracepoint definitions, use the @code{source} command (@pxref{Command
8666Files}).
8667
8668@node Tracepoint Variables
8669@section Convenience Variables for Tracepoints
8670@cindex tracepoint variables
8671@cindex convenience variables for tracepoints
8672
8673@table @code
8674@vindex $trace_frame
8675@item (int) $trace_frame
8676The current trace snapshot (a.k.a.@: @dfn{frame}) number, or -1 if no
8677snapshot is selected.
8678
8679@vindex $tracepoint
8680@item (int) $tracepoint
8681The tracepoint for the current trace snapshot.
8682
8683@vindex $trace_line
8684@item (int) $trace_line
8685The line number for the current trace snapshot.
8686
8687@vindex $trace_file
8688@item (char []) $trace_file
8689The source file for the current trace snapshot.
8690
8691@vindex $trace_func
8692@item (char []) $trace_func
8693The name of the function containing @code{$tracepoint}.
8694@end table
8695
8696Note: @code{$trace_file} is not suitable for use in @code{printf},
8697use @code{output} instead.
8698
8699Here's a simple example of using these convenience variables for
8700stepping through all the trace snapshots and printing some of their
8701data.
8702
8703@smallexample
8704(@value{GDBP}) @b{tfind start}
8705
8706(@value{GDBP}) @b{while $trace_frame != -1}
8707> output $trace_file
8708> printf ", line %d (tracepoint #%d)\n", $trace_line, $tracepoint
8709> tfind
8710> end
8711@end smallexample
8712
df0cd8c5
JB
8713@node Overlays
8714@chapter Debugging Programs That Use Overlays
8715@cindex overlays
8716
8717If your program is too large to fit completely in your target system's
8718memory, you can sometimes use @dfn{overlays} to work around this
8719problem. @value{GDBN} provides some support for debugging programs that
8720use overlays.
8721
8722@menu
8723* How Overlays Work:: A general explanation of overlays.
8724* Overlay Commands:: Managing overlays in @value{GDBN}.
8725* Automatic Overlay Debugging:: @value{GDBN} can find out which overlays are
8726 mapped by asking the inferior.
8727* Overlay Sample Program:: A sample program using overlays.
8728@end menu
8729
8730@node How Overlays Work
8731@section How Overlays Work
8732@cindex mapped overlays
8733@cindex unmapped overlays
8734@cindex load address, overlay's
8735@cindex mapped address
8736@cindex overlay area
8737
8738Suppose you have a computer whose instruction address space is only 64
8739kilobytes long, but which has much more memory which can be accessed by
8740other means: special instructions, segment registers, or memory
8741management hardware, for example. Suppose further that you want to
8742adapt a program which is larger than 64 kilobytes to run on this system.
8743
8744One solution is to identify modules of your program which are relatively
8745independent, and need not call each other directly; call these modules
8746@dfn{overlays}. Separate the overlays from the main program, and place
8747their machine code in the larger memory. Place your main program in
8748instruction memory, but leave at least enough space there to hold the
8749largest overlay as well.
8750
8751Now, to call a function located in an overlay, you must first copy that
8752overlay's machine code from the large memory into the space set aside
8753for it in the instruction memory, and then jump to its entry point
8754there.
8755
c928edc0
AC
8756@c NB: In the below the mapped area's size is greater or equal to the
8757@c size of all overlays. This is intentional to remind the developer
8758@c that overlays don't necessarily need to be the same size.
8759
474c8240 8760@smallexample
df0cd8c5 8761@group
c928edc0
AC
8762 Data Instruction Larger
8763Address Space Address Space Address Space
8764+-----------+ +-----------+ +-----------+
8765| | | | | |
8766+-----------+ +-----------+ +-----------+<-- overlay 1
8767| program | | main | .----| overlay 1 | load address
8768| variables | | program | | +-----------+
8769| and heap | | | | | |
8770+-----------+ | | | +-----------+<-- overlay 2
8771| | +-----------+ | | | load address
8772+-----------+ | | | .-| overlay 2 |
8773 | | | | | |
8774 mapped --->+-----------+ | | +-----------+
8775 address | | | | | |
8776 | overlay | <-' | | |
8777 | area | <---' +-----------+<-- overlay 3
8778 | | <---. | | load address
8779 +-----------+ `--| overlay 3 |
8780 | | | |
8781 +-----------+ | |
8782 +-----------+
8783 | |
8784 +-----------+
8785
8786 @anchor{A code overlay}A code overlay
df0cd8c5 8787@end group
474c8240 8788@end smallexample
df0cd8c5 8789
c928edc0
AC
8790The diagram (@pxref{A code overlay}) shows a system with separate data
8791and instruction address spaces. To map an overlay, the program copies
8792its code from the larger address space to the instruction address space.
8793Since the overlays shown here all use the same mapped address, only one
8794may be mapped at a time. For a system with a single address space for
8795data and instructions, the diagram would be similar, except that the
8796program variables and heap would share an address space with the main
8797program and the overlay area.
df0cd8c5
JB
8798
8799An overlay loaded into instruction memory and ready for use is called a
8800@dfn{mapped} overlay; its @dfn{mapped address} is its address in the
8801instruction memory. An overlay not present (or only partially present)
8802in instruction memory is called @dfn{unmapped}; its @dfn{load address}
8803is its address in the larger memory. The mapped address is also called
8804the @dfn{virtual memory address}, or @dfn{VMA}; the load address is also
8805called the @dfn{load memory address}, or @dfn{LMA}.
8806
8807Unfortunately, overlays are not a completely transparent way to adapt a
8808program to limited instruction memory. They introduce a new set of
8809global constraints you must keep in mind as you design your program:
8810
8811@itemize @bullet
8812
8813@item
8814Before calling or returning to a function in an overlay, your program
8815must make sure that overlay is actually mapped. Otherwise, the call or
8816return will transfer control to the right address, but in the wrong
8817overlay, and your program will probably crash.
8818
8819@item
8820If the process of mapping an overlay is expensive on your system, you
8821will need to choose your overlays carefully to minimize their effect on
8822your program's performance.
8823
8824@item
8825The executable file you load onto your system must contain each
8826overlay's instructions, appearing at the overlay's load address, not its
8827mapped address. However, each overlay's instructions must be relocated
8828and its symbols defined as if the overlay were at its mapped address.
8829You can use GNU linker scripts to specify different load and relocation
8830addresses for pieces of your program; see @ref{Overlay Description,,,
8831ld.info, Using ld: the GNU linker}.
8832
8833@item
8834The procedure for loading executable files onto your system must be able
8835to load their contents into the larger address space as well as the
8836instruction and data spaces.
8837
8838@end itemize
8839
8840The overlay system described above is rather simple, and could be
8841improved in many ways:
8842
8843@itemize @bullet
8844
8845@item
8846If your system has suitable bank switch registers or memory management
8847hardware, you could use those facilities to make an overlay's load area
8848contents simply appear at their mapped address in instruction space.
8849This would probably be faster than copying the overlay to its mapped
8850area in the usual way.
8851
8852@item
8853If your overlays are small enough, you could set aside more than one
8854overlay area, and have more than one overlay mapped at a time.
8855
8856@item
8857You can use overlays to manage data, as well as instructions. In
8858general, data overlays are even less transparent to your design than
8859code overlays: whereas code overlays only require care when you call or
8860return to functions, data overlays require care every time you access
8861the data. Also, if you change the contents of a data overlay, you
8862must copy its contents back out to its load address before you can copy a
8863different data overlay into the same mapped area.
8864
8865@end itemize
8866
8867
8868@node Overlay Commands
8869@section Overlay Commands
8870
8871To use @value{GDBN}'s overlay support, each overlay in your program must
8872correspond to a separate section of the executable file. The section's
8873virtual memory address and load memory address must be the overlay's
8874mapped and load addresses. Identifying overlays with sections allows
8875@value{GDBN} to determine the appropriate address of a function or
8876variable, depending on whether the overlay is mapped or not.
8877
8878@value{GDBN}'s overlay commands all start with the word @code{overlay};
8879you can abbreviate this as @code{ov} or @code{ovly}. The commands are:
8880
8881@table @code
8882@item overlay off
4644b6e3 8883@kindex overlay
df0cd8c5
JB
8884Disable @value{GDBN}'s overlay support. When overlay support is
8885disabled, @value{GDBN} assumes that all functions and variables are
8886always present at their mapped addresses. By default, @value{GDBN}'s
8887overlay support is disabled.
8888
8889@item overlay manual
df0cd8c5
JB
8890@cindex manual overlay debugging
8891Enable @dfn{manual} overlay debugging. In this mode, @value{GDBN}
8892relies on you to tell it which overlays are mapped, and which are not,
8893using the @code{overlay map-overlay} and @code{overlay unmap-overlay}
8894commands described below.
8895
8896@item overlay map-overlay @var{overlay}
8897@itemx overlay map @var{overlay}
df0cd8c5
JB
8898@cindex map an overlay
8899Tell @value{GDBN} that @var{overlay} is now mapped; @var{overlay} must
8900be the name of the object file section containing the overlay. When an
8901overlay is mapped, @value{GDBN} assumes it can find the overlay's
8902functions and variables at their mapped addresses. @value{GDBN} assumes
8903that any other overlays whose mapped ranges overlap that of
8904@var{overlay} are now unmapped.
8905
8906@item overlay unmap-overlay @var{overlay}
8907@itemx overlay unmap @var{overlay}
df0cd8c5
JB
8908@cindex unmap an overlay
8909Tell @value{GDBN} that @var{overlay} is no longer mapped; @var{overlay}
8910must be the name of the object file section containing the overlay.
8911When an overlay is unmapped, @value{GDBN} assumes it can find the
8912overlay's functions and variables at their load addresses.
8913
8914@item overlay auto
df0cd8c5
JB
8915Enable @dfn{automatic} overlay debugging. In this mode, @value{GDBN}
8916consults a data structure the overlay manager maintains in the inferior
8917to see which overlays are mapped. For details, see @ref{Automatic
8918Overlay Debugging}.
8919
8920@item overlay load-target
8921@itemx overlay load
df0cd8c5
JB
8922@cindex reloading the overlay table
8923Re-read the overlay table from the inferior. Normally, @value{GDBN}
8924re-reads the table @value{GDBN} automatically each time the inferior
8925stops, so this command should only be necessary if you have changed the
8926overlay mapping yourself using @value{GDBN}. This command is only
8927useful when using automatic overlay debugging.
8928
8929@item overlay list-overlays
8930@itemx overlay list
8931@cindex listing mapped overlays
8932Display a list of the overlays currently mapped, along with their mapped
8933addresses, load addresses, and sizes.
8934
8935@end table
8936
8937Normally, when @value{GDBN} prints a code address, it includes the name
8938of the function the address falls in:
8939
474c8240 8940@smallexample
f7dc1244 8941(@value{GDBP}) print main
df0cd8c5 8942$3 = @{int ()@} 0x11a0 <main>
474c8240 8943@end smallexample
df0cd8c5
JB
8944@noindent
8945When overlay debugging is enabled, @value{GDBN} recognizes code in
8946unmapped overlays, and prints the names of unmapped functions with
8947asterisks around them. For example, if @code{foo} is a function in an
8948unmapped overlay, @value{GDBN} prints it this way:
8949
474c8240 8950@smallexample
f7dc1244 8951(@value{GDBP}) overlay list
df0cd8c5 8952No sections are mapped.
f7dc1244 8953(@value{GDBP}) print foo
df0cd8c5 8954$5 = @{int (int)@} 0x100000 <*foo*>
474c8240 8955@end smallexample
df0cd8c5
JB
8956@noindent
8957When @code{foo}'s overlay is mapped, @value{GDBN} prints the function's
8958name normally:
8959
474c8240 8960@smallexample
f7dc1244 8961(@value{GDBP}) overlay list
b383017d 8962Section .ov.foo.text, loaded at 0x100000 - 0x100034,
df0cd8c5 8963 mapped at 0x1016 - 0x104a
f7dc1244 8964(@value{GDBP}) print foo
df0cd8c5 8965$6 = @{int (int)@} 0x1016 <foo>
474c8240 8966@end smallexample
df0cd8c5
JB
8967
8968When overlay debugging is enabled, @value{GDBN} can find the correct
8969address for functions and variables in an overlay, whether or not the
8970overlay is mapped. This allows most @value{GDBN} commands, like
8971@code{break} and @code{disassemble}, to work normally, even on unmapped
8972code. However, @value{GDBN}'s breakpoint support has some limitations:
8973
8974@itemize @bullet
8975@item
8976@cindex breakpoints in overlays
8977@cindex overlays, setting breakpoints in
8978You can set breakpoints in functions in unmapped overlays, as long as
8979@value{GDBN} can write to the overlay at its load address.
8980@item
8981@value{GDBN} can not set hardware or simulator-based breakpoints in
8982unmapped overlays. However, if you set a breakpoint at the end of your
8983overlay manager (and tell @value{GDBN} which overlays are now mapped, if
8984you are using manual overlay management), @value{GDBN} will re-set its
8985breakpoints properly.
8986@end itemize
8987
8988
8989@node Automatic Overlay Debugging
8990@section Automatic Overlay Debugging
8991@cindex automatic overlay debugging
8992
8993@value{GDBN} can automatically track which overlays are mapped and which
8994are not, given some simple co-operation from the overlay manager in the
8995inferior. If you enable automatic overlay debugging with the
8996@code{overlay auto} command (@pxref{Overlay Commands}), @value{GDBN}
8997looks in the inferior's memory for certain variables describing the
8998current state of the overlays.
8999
9000Here are the variables your overlay manager must define to support
9001@value{GDBN}'s automatic overlay debugging:
9002
9003@table @asis
9004
9005@item @code{_ovly_table}:
9006This variable must be an array of the following structures:
9007
474c8240 9008@smallexample
df0cd8c5
JB
9009struct
9010@{
9011 /* The overlay's mapped address. */
9012 unsigned long vma;
9013
9014 /* The size of the overlay, in bytes. */
9015 unsigned long size;
9016
9017 /* The overlay's load address. */
9018 unsigned long lma;
9019
9020 /* Non-zero if the overlay is currently mapped;
9021 zero otherwise. */
9022 unsigned long mapped;
9023@}
474c8240 9024@end smallexample
df0cd8c5
JB
9025
9026@item @code{_novlys}:
9027This variable must be a four-byte signed integer, holding the total
9028number of elements in @code{_ovly_table}.
9029
9030@end table
9031
9032To decide whether a particular overlay is mapped or not, @value{GDBN}
9033looks for an entry in @w{@code{_ovly_table}} whose @code{vma} and
9034@code{lma} members equal the VMA and LMA of the overlay's section in the
9035executable file. When @value{GDBN} finds a matching entry, it consults
9036the entry's @code{mapped} member to determine whether the overlay is
9037currently mapped.
9038
81d46470 9039In addition, your overlay manager may define a function called
def71bfa 9040@code{_ovly_debug_event}. If this function is defined, @value{GDBN}
81d46470
MS
9041will silently set a breakpoint there. If the overlay manager then
9042calls this function whenever it has changed the overlay table, this
9043will enable @value{GDBN} to accurately keep track of which overlays
9044are in program memory, and update any breakpoints that may be set
b383017d 9045in overlays. This will allow breakpoints to work even if the
81d46470
MS
9046overlays are kept in ROM or other non-writable memory while they
9047are not being executed.
df0cd8c5
JB
9048
9049@node Overlay Sample Program
9050@section Overlay Sample Program
9051@cindex overlay example program
9052
9053When linking a program which uses overlays, you must place the overlays
9054at their load addresses, while relocating them to run at their mapped
9055addresses. To do this, you must write a linker script (@pxref{Overlay
9056Description,,, ld.info, Using ld: the GNU linker}). Unfortunately,
9057since linker scripts are specific to a particular host system, target
9058architecture, and target memory layout, this manual cannot provide
9059portable sample code demonstrating @value{GDBN}'s overlay support.
9060
9061However, the @value{GDBN} source distribution does contain an overlaid
9062program, with linker scripts for a few systems, as part of its test
9063suite. The program consists of the following files from
9064@file{gdb/testsuite/gdb.base}:
9065
9066@table @file
9067@item overlays.c
9068The main program file.
9069@item ovlymgr.c
9070A simple overlay manager, used by @file{overlays.c}.
9071@item foo.c
9072@itemx bar.c
9073@itemx baz.c
9074@itemx grbx.c
9075Overlay modules, loaded and used by @file{overlays.c}.
9076@item d10v.ld
9077@itemx m32r.ld
9078Linker scripts for linking the test program on the @code{d10v-elf}
9079and @code{m32r-elf} targets.
9080@end table
9081
9082You can build the test program using the @code{d10v-elf} GCC
9083cross-compiler like this:
9084
474c8240 9085@smallexample
df0cd8c5
JB
9086$ d10v-elf-gcc -g -c overlays.c
9087$ d10v-elf-gcc -g -c ovlymgr.c
9088$ d10v-elf-gcc -g -c foo.c
9089$ d10v-elf-gcc -g -c bar.c
9090$ d10v-elf-gcc -g -c baz.c
9091$ d10v-elf-gcc -g -c grbx.c
9092$ d10v-elf-gcc -g overlays.o ovlymgr.o foo.o bar.o \
9093 baz.o grbx.o -Wl,-Td10v.ld -o overlays
474c8240 9094@end smallexample
df0cd8c5
JB
9095
9096The build process is identical for any other architecture, except that
9097you must substitute the appropriate compiler and linker script for the
9098target system for @code{d10v-elf-gcc} and @code{d10v.ld}.
9099
9100
6d2ebf8b 9101@node Languages
c906108c
SS
9102@chapter Using @value{GDBN} with Different Languages
9103@cindex languages
9104
c906108c
SS
9105Although programming languages generally have common aspects, they are
9106rarely expressed in the same manner. For instance, in ANSI C,
9107dereferencing a pointer @code{p} is accomplished by @code{*p}, but in
9108Modula-2, it is accomplished by @code{p^}. Values can also be
5d161b24 9109represented (and displayed) differently. Hex numbers in C appear as
c906108c 9110@samp{0x1ae}, while in Modula-2 they appear as @samp{1AEH}.
c906108c
SS
9111
9112@cindex working language
9113Language-specific information is built into @value{GDBN} for some languages,
9114allowing you to express operations like the above in your program's
9115native language, and allowing @value{GDBN} to output values in a manner
9116consistent with the syntax of your program's native language. The
9117language you use to build expressions is called the @dfn{working
9118language}.
9119
9120@menu
9121* Setting:: Switching between source languages
9122* Show:: Displaying the language
c906108c 9123* Checks:: Type and range checks
79a6e687
BW
9124* Supported Languages:: Supported languages
9125* Unsupported Languages:: Unsupported languages
c906108c
SS
9126@end menu
9127
6d2ebf8b 9128@node Setting
79a6e687 9129@section Switching Between Source Languages
c906108c
SS
9130
9131There are two ways to control the working language---either have @value{GDBN}
9132set it automatically, or select it manually yourself. You can use the
9133@code{set language} command for either purpose. On startup, @value{GDBN}
9134defaults to setting the language automatically. The working language is
9135used to determine how expressions you type are interpreted, how values
9136are printed, etc.
9137
9138In addition to the working language, every source file that
9139@value{GDBN} knows about has its own working language. For some object
9140file formats, the compiler might indicate which language a particular
9141source file is in. However, most of the time @value{GDBN} infers the
9142language from the name of the file. The language of a source file
b37052ae 9143controls whether C@t{++} names are demangled---this way @code{backtrace} can
c906108c 9144show each frame appropriately for its own language. There is no way to
d4f3574e
SS
9145set the language of a source file from within @value{GDBN}, but you can
9146set the language associated with a filename extension. @xref{Show, ,
79a6e687 9147Displaying the Language}.
c906108c
SS
9148
9149This is most commonly a problem when you use a program, such
5d161b24 9150as @code{cfront} or @code{f2c}, that generates C but is written in
c906108c
SS
9151another language. In that case, make the
9152program use @code{#line} directives in its C output; that way
9153@value{GDBN} will know the correct language of the source code of the original
9154program, and will display that source code, not the generated C code.
9155
9156@menu
9157* Filenames:: Filename extensions and languages.
9158* Manually:: Setting the working language manually
9159* Automatically:: Having @value{GDBN} infer the source language
9160@end menu
9161
6d2ebf8b 9162@node Filenames
79a6e687 9163@subsection List of Filename Extensions and Languages
c906108c
SS
9164
9165If a source file name ends in one of the following extensions, then
9166@value{GDBN} infers that its language is the one indicated.
9167
9168@table @file
e07c999f
PH
9169@item .ada
9170@itemx .ads
9171@itemx .adb
9172@itemx .a
9173Ada source file.
c906108c
SS
9174
9175@item .c
9176C source file
9177
9178@item .C
9179@itemx .cc
9180@itemx .cp
9181@itemx .cpp
9182@itemx .cxx
9183@itemx .c++
b37052ae 9184C@t{++} source file
c906108c 9185
b37303ee
AF
9186@item .m
9187Objective-C source file
9188
c906108c
SS
9189@item .f
9190@itemx .F
9191Fortran source file
9192
c906108c
SS
9193@item .mod
9194Modula-2 source file
c906108c
SS
9195
9196@item .s
9197@itemx .S
9198Assembler source file. This actually behaves almost like C, but
9199@value{GDBN} does not skip over function prologues when stepping.
9200@end table
9201
9202In addition, you may set the language associated with a filename
79a6e687 9203extension. @xref{Show, , Displaying the Language}.
c906108c 9204
6d2ebf8b 9205@node Manually
79a6e687 9206@subsection Setting the Working Language
c906108c
SS
9207
9208If you allow @value{GDBN} to set the language automatically,
9209expressions are interpreted the same way in your debugging session and
9210your program.
9211
9212@kindex set language
9213If you wish, you may set the language manually. To do this, issue the
9214command @samp{set language @var{lang}}, where @var{lang} is the name of
5d161b24 9215a language, such as
c906108c 9216@code{c} or @code{modula-2}.
c906108c
SS
9217For a list of the supported languages, type @samp{set language}.
9218
c906108c
SS
9219Setting the language manually prevents @value{GDBN} from updating the working
9220language automatically. This can lead to confusion if you try
9221to debug a program when the working language is not the same as the
9222source language, when an expression is acceptable to both
9223languages---but means different things. For instance, if the current
9224source file were written in C, and @value{GDBN} was parsing Modula-2, a
9225command such as:
9226
474c8240 9227@smallexample
c906108c 9228print a = b + c
474c8240 9229@end smallexample
c906108c
SS
9230
9231@noindent
9232might not have the effect you intended. In C, this means to add
9233@code{b} and @code{c} and place the result in @code{a}. The result
9234printed would be the value of @code{a}. In Modula-2, this means to compare
9235@code{a} to the result of @code{b+c}, yielding a @code{BOOLEAN} value.
c906108c 9236
6d2ebf8b 9237@node Automatically
79a6e687 9238@subsection Having @value{GDBN} Infer the Source Language
c906108c
SS
9239
9240To have @value{GDBN} set the working language automatically, use
9241@samp{set language local} or @samp{set language auto}. @value{GDBN}
9242then infers the working language. That is, when your program stops in a
9243frame (usually by encountering a breakpoint), @value{GDBN} sets the
9244working language to the language recorded for the function in that
9245frame. If the language for a frame is unknown (that is, if the function
9246or block corresponding to the frame was defined in a source file that
9247does not have a recognized extension), the current working language is
9248not changed, and @value{GDBN} issues a warning.
9249
9250This may not seem necessary for most programs, which are written
9251entirely in one source language. However, program modules and libraries
9252written in one source language can be used by a main program written in
9253a different source language. Using @samp{set language auto} in this
9254case frees you from having to set the working language manually.
9255
6d2ebf8b 9256@node Show
79a6e687 9257@section Displaying the Language
c906108c
SS
9258
9259The following commands help you find out which language is the
9260working language, and also what language source files were written in.
9261
c906108c
SS
9262@table @code
9263@item show language
9c16f35a 9264@kindex show language
c906108c
SS
9265Display the current working language. This is the
9266language you can use with commands such as @code{print} to
9267build and compute expressions that may involve variables in your program.
9268
9269@item info frame
4644b6e3 9270@kindex info frame@r{, show the source language}
5d161b24 9271Display the source language for this frame. This language becomes the
c906108c 9272working language if you use an identifier from this frame.
79a6e687 9273@xref{Frame Info, ,Information about a Frame}, to identify the other
c906108c
SS
9274information listed here.
9275
9276@item info source
4644b6e3 9277@kindex info source@r{, show the source language}
c906108c 9278Display the source language of this source file.
5d161b24 9279@xref{Symbols, ,Examining the Symbol Table}, to identify the other
c906108c
SS
9280information listed here.
9281@end table
9282
9283In unusual circumstances, you may have source files with extensions
9284not in the standard list. You can then set the extension associated
9285with a language explicitly:
9286
c906108c 9287@table @code
09d4efe1 9288@item set extension-language @var{ext} @var{language}
9c16f35a 9289@kindex set extension-language
09d4efe1
EZ
9290Tell @value{GDBN} that source files with extension @var{ext} are to be
9291assumed as written in the source language @var{language}.
c906108c
SS
9292
9293@item info extensions
9c16f35a 9294@kindex info extensions
c906108c
SS
9295List all the filename extensions and the associated languages.
9296@end table
9297
6d2ebf8b 9298@node Checks
79a6e687 9299@section Type and Range Checking
c906108c
SS
9300
9301@quotation
9302@emph{Warning:} In this release, the @value{GDBN} commands for type and range
9303checking are included, but they do not yet have any effect. This
9304section documents the intended facilities.
9305@end quotation
9306@c FIXME remove warning when type/range code added
9307
9308Some languages are designed to guard you against making seemingly common
9309errors through a series of compile- and run-time checks. These include
9310checking the type of arguments to functions and operators, and making
9311sure mathematical overflows are caught at run time. Checks such as
9312these help to ensure a program's correctness once it has been compiled
9313by eliminating type mismatches, and providing active checks for range
9314errors when your program is running.
9315
9316@value{GDBN} can check for conditions like the above if you wish.
9c16f35a
EZ
9317Although @value{GDBN} does not check the statements in your program,
9318it can check expressions entered directly into @value{GDBN} for
9319evaluation via the @code{print} command, for example. As with the
9320working language, @value{GDBN} can also decide whether or not to check
9321automatically based on your program's source language.
79a6e687 9322@xref{Supported Languages, ,Supported Languages}, for the default
9c16f35a 9323settings of supported languages.
c906108c
SS
9324
9325@menu
9326* Type Checking:: An overview of type checking
9327* Range Checking:: An overview of range checking
9328@end menu
9329
9330@cindex type checking
9331@cindex checks, type
6d2ebf8b 9332@node Type Checking
79a6e687 9333@subsection An Overview of Type Checking
c906108c
SS
9334
9335Some languages, such as Modula-2, are strongly typed, meaning that the
9336arguments to operators and functions have to be of the correct type,
9337otherwise an error occurs. These checks prevent type mismatch
9338errors from ever causing any run-time problems. For example,
9339
9340@smallexample
93411 + 2 @result{} 3
9342@exdent but
9343@error{} 1 + 2.3
9344@end smallexample
9345
9346The second example fails because the @code{CARDINAL} 1 is not
9347type-compatible with the @code{REAL} 2.3.
9348
5d161b24
DB
9349For the expressions you use in @value{GDBN} commands, you can tell the
9350@value{GDBN} type checker to skip checking;
9351to treat any mismatches as errors and abandon the expression;
9352or to only issue warnings when type mismatches occur,
c906108c
SS
9353but evaluate the expression anyway. When you choose the last of
9354these, @value{GDBN} evaluates expressions like the second example above, but
9355also issues a warning.
9356
5d161b24
DB
9357Even if you turn type checking off, there may be other reasons
9358related to type that prevent @value{GDBN} from evaluating an expression.
9359For instance, @value{GDBN} does not know how to add an @code{int} and
9360a @code{struct foo}. These particular type errors have nothing to do
9361with the language in use, and usually arise from expressions, such as
c906108c
SS
9362the one described above, which make little sense to evaluate anyway.
9363
9364Each language defines to what degree it is strict about type. For
9365instance, both Modula-2 and C require the arguments to arithmetical
9366operators to be numbers. In C, enumerated types and pointers can be
9367represented as numbers, so that they are valid arguments to mathematical
79a6e687 9368operators. @xref{Supported Languages, ,Supported Languages}, for further
c906108c
SS
9369details on specific languages.
9370
9371@value{GDBN} provides some additional commands for controlling the type checker:
9372
c906108c
SS
9373@kindex set check type
9374@kindex show check type
9375@table @code
9376@item set check type auto
9377Set type checking on or off based on the current working language.
79a6e687 9378@xref{Supported Languages, ,Supported Languages}, for the default settings for
c906108c
SS
9379each language.
9380
9381@item set check type on
9382@itemx set check type off
9383Set type checking on or off, overriding the default setting for the
9384current working language. Issue a warning if the setting does not
9385match the language default. If any type mismatches occur in
d4f3574e 9386evaluating an expression while type checking is on, @value{GDBN} prints a
c906108c
SS
9387message and aborts evaluation of the expression.
9388
9389@item set check type warn
9390Cause the type checker to issue warnings, but to always attempt to
9391evaluate the expression. Evaluating the expression may still
9392be impossible for other reasons. For example, @value{GDBN} cannot add
9393numbers and structures.
9394
9395@item show type
5d161b24 9396Show the current setting of the type checker, and whether or not @value{GDBN}
c906108c
SS
9397is setting it automatically.
9398@end table
9399
9400@cindex range checking
9401@cindex checks, range
6d2ebf8b 9402@node Range Checking
79a6e687 9403@subsection An Overview of Range Checking
c906108c
SS
9404
9405In some languages (such as Modula-2), it is an error to exceed the
9406bounds of a type; this is enforced with run-time checks. Such range
9407checking is meant to ensure program correctness by making sure
9408computations do not overflow, or indices on an array element access do
9409not exceed the bounds of the array.
9410
9411For expressions you use in @value{GDBN} commands, you can tell
9412@value{GDBN} to treat range errors in one of three ways: ignore them,
9413always treat them as errors and abandon the expression, or issue
9414warnings but evaluate the expression anyway.
9415
9416A range error can result from numerical overflow, from exceeding an
9417array index bound, or when you type a constant that is not a member
9418of any type. Some languages, however, do not treat overflows as an
9419error. In many implementations of C, mathematical overflow causes the
9420result to ``wrap around'' to lower values---for example, if @var{m} is
9421the largest integer value, and @var{s} is the smallest, then
9422
474c8240 9423@smallexample
c906108c 9424@var{m} + 1 @result{} @var{s}
474c8240 9425@end smallexample
c906108c
SS
9426
9427This, too, is specific to individual languages, and in some cases
79a6e687
BW
9428specific to individual compilers or machines. @xref{Supported Languages, ,
9429Supported Languages}, for further details on specific languages.
c906108c
SS
9430
9431@value{GDBN} provides some additional commands for controlling the range checker:
9432
c906108c
SS
9433@kindex set check range
9434@kindex show check range
9435@table @code
9436@item set check range auto
9437Set range checking on or off based on the current working language.
79a6e687 9438@xref{Supported Languages, ,Supported Languages}, for the default settings for
c906108c
SS
9439each language.
9440
9441@item set check range on
9442@itemx set check range off
9443Set range checking on or off, overriding the default setting for the
9444current working language. A warning is issued if the setting does not
c3f6f71d
JM
9445match the language default. If a range error occurs and range checking is on,
9446then a message is printed and evaluation of the expression is aborted.
c906108c
SS
9447
9448@item set check range warn
9449Output messages when the @value{GDBN} range checker detects a range error,
9450but attempt to evaluate the expression anyway. Evaluating the
9451expression may still be impossible for other reasons, such as accessing
9452memory that the process does not own (a typical example from many Unix
9453systems).
9454
9455@item show range
9456Show the current setting of the range checker, and whether or not it is
9457being set automatically by @value{GDBN}.
9458@end table
c906108c 9459
79a6e687
BW
9460@node Supported Languages
9461@section Supported Languages
c906108c 9462
9c16f35a
EZ
9463@value{GDBN} supports C, C@t{++}, Objective-C, Fortran, Java, Pascal,
9464assembly, Modula-2, and Ada.
cce74817 9465@c This is false ...
c906108c
SS
9466Some @value{GDBN} features may be used in expressions regardless of the
9467language you use: the @value{GDBN} @code{@@} and @code{::} operators,
9468and the @samp{@{type@}addr} construct (@pxref{Expressions,
9469,Expressions}) can be used with the constructs of any supported
9470language.
9471
9472The following sections detail to what degree each source language is
9473supported by @value{GDBN}. These sections are not meant to be language
9474tutorials or references, but serve only as a reference guide to what the
9475@value{GDBN} expression parser accepts, and what input and output
9476formats should look like for different languages. There are many good
9477books written on each of these languages; please look to these for a
9478language reference or tutorial.
9479
c906108c 9480@menu
b37303ee 9481* C:: C and C@t{++}
b383017d 9482* Objective-C:: Objective-C
09d4efe1 9483* Fortran:: Fortran
9c16f35a 9484* Pascal:: Pascal
b37303ee 9485* Modula-2:: Modula-2
e07c999f 9486* Ada:: Ada
c906108c
SS
9487@end menu
9488
6d2ebf8b 9489@node C
b37052ae 9490@subsection C and C@t{++}
7a292a7a 9491
b37052ae
EZ
9492@cindex C and C@t{++}
9493@cindex expressions in C or C@t{++}
c906108c 9494
b37052ae 9495Since C and C@t{++} are so closely related, many features of @value{GDBN} apply
c906108c
SS
9496to both languages. Whenever this is the case, we discuss those languages
9497together.
9498
41afff9a
EZ
9499@cindex C@t{++}
9500@cindex @code{g++}, @sc{gnu} C@t{++} compiler
b37052ae
EZ
9501@cindex @sc{gnu} C@t{++}
9502The C@t{++} debugging facilities are jointly implemented by the C@t{++}
9503compiler and @value{GDBN}. Therefore, to debug your C@t{++} code
9504effectively, you must compile your C@t{++} programs with a supported
9505C@t{++} compiler, such as @sc{gnu} @code{g++}, or the HP ANSI C@t{++}
c906108c
SS
9506compiler (@code{aCC}).
9507
0179ffac
DC
9508For best results when using @sc{gnu} C@t{++}, use the DWARF 2 debugging
9509format; if it doesn't work on your system, try the stabs+ debugging
9510format. You can select those formats explicitly with the @code{g++}
9511command-line options @option{-gdwarf-2} and @option{-gstabs+}.
ce9341a1
BW
9512@xref{Debugging Options,,Options for Debugging Your Program or GCC,
9513gcc.info, Using the @sc{gnu} Compiler Collection (GCC)}.
c906108c 9514
c906108c 9515@menu
b37052ae
EZ
9516* C Operators:: C and C@t{++} operators
9517* C Constants:: C and C@t{++} constants
79a6e687 9518* C Plus Plus Expressions:: C@t{++} expressions
b37052ae
EZ
9519* C Defaults:: Default settings for C and C@t{++}
9520* C Checks:: C and C@t{++} type and range checks
c906108c 9521* Debugging C:: @value{GDBN} and C
79a6e687 9522* Debugging C Plus Plus:: @value{GDBN} features for C@t{++}
febe4383 9523* Decimal Floating Point:: Numbers in Decimal Floating Point format
c906108c 9524@end menu
c906108c 9525
6d2ebf8b 9526@node C Operators
79a6e687 9527@subsubsection C and C@t{++} Operators
7a292a7a 9528
b37052ae 9529@cindex C and C@t{++} operators
c906108c
SS
9530
9531Operators must be defined on values of specific types. For instance,
9532@code{+} is defined on numbers, but not on structures. Operators are
5d161b24 9533often defined on groups of types.
c906108c 9534
b37052ae 9535For the purposes of C and C@t{++}, the following definitions hold:
c906108c
SS
9536
9537@itemize @bullet
53a5351d 9538
c906108c 9539@item
c906108c 9540@emph{Integral types} include @code{int} with any of its storage-class
b37052ae 9541specifiers; @code{char}; @code{enum}; and, for C@t{++}, @code{bool}.
c906108c
SS
9542
9543@item
d4f3574e
SS
9544@emph{Floating-point types} include @code{float}, @code{double}, and
9545@code{long double} (if supported by the target platform).
c906108c
SS
9546
9547@item
53a5351d 9548@emph{Pointer types} include all types defined as @code{(@var{type} *)}.
c906108c
SS
9549
9550@item
9551@emph{Scalar types} include all of the above.
53a5351d 9552
c906108c
SS
9553@end itemize
9554
9555@noindent
9556The following operators are supported. They are listed here
9557in order of increasing precedence:
9558
9559@table @code
9560@item ,
9561The comma or sequencing operator. Expressions in a comma-separated list
9562are evaluated from left to right, with the result of the entire
9563expression being the last expression evaluated.
9564
9565@item =
9566Assignment. The value of an assignment expression is the value
9567assigned. Defined on scalar types.
9568
9569@item @var{op}=
9570Used in an expression of the form @w{@code{@var{a} @var{op}= @var{b}}},
9571and translated to @w{@code{@var{a} = @var{a op b}}}.
d4f3574e 9572@w{@code{@var{op}=}} and @code{=} have the same precedence.
c906108c
SS
9573@var{op} is any one of the operators @code{|}, @code{^}, @code{&},
9574@code{<<}, @code{>>}, @code{+}, @code{-}, @code{*}, @code{/}, @code{%}.
9575
9576@item ?:
9577The ternary operator. @code{@var{a} ? @var{b} : @var{c}} can be thought
9578of as: if @var{a} then @var{b} else @var{c}. @var{a} should be of an
9579integral type.
9580
9581@item ||
9582Logical @sc{or}. Defined on integral types.
9583
9584@item &&
9585Logical @sc{and}. Defined on integral types.
9586
9587@item |
9588Bitwise @sc{or}. Defined on integral types.
9589
9590@item ^
9591Bitwise exclusive-@sc{or}. Defined on integral types.
9592
9593@item &
9594Bitwise @sc{and}. Defined on integral types.
9595
9596@item ==@r{, }!=
9597Equality and inequality. Defined on scalar types. The value of these
9598expressions is 0 for false and non-zero for true.
9599
9600@item <@r{, }>@r{, }<=@r{, }>=
9601Less than, greater than, less than or equal, greater than or equal.
9602Defined on scalar types. The value of these expressions is 0 for false
9603and non-zero for true.
9604
9605@item <<@r{, }>>
9606left shift, and right shift. Defined on integral types.
9607
9608@item @@
9609The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
9610
9611@item +@r{, }-
9612Addition and subtraction. Defined on integral types, floating-point types and
9613pointer types.
9614
9615@item *@r{, }/@r{, }%
9616Multiplication, division, and modulus. Multiplication and division are
9617defined on integral and floating-point types. Modulus is defined on
9618integral types.
9619
9620@item ++@r{, }--
9621Increment and decrement. When appearing before a variable, the
9622operation is performed before the variable is used in an expression;
9623when appearing after it, the variable's value is used before the
9624operation takes place.
9625
9626@item *
9627Pointer dereferencing. Defined on pointer types. Same precedence as
9628@code{++}.
9629
9630@item &
9631Address operator. Defined on variables. Same precedence as @code{++}.
9632
b37052ae
EZ
9633For debugging C@t{++}, @value{GDBN} implements a use of @samp{&} beyond what is
9634allowed in the C@t{++} language itself: you can use @samp{&(&@var{ref})}
b17828ca 9635to examine the address
b37052ae 9636where a C@t{++} reference variable (declared with @samp{&@var{ref}}) is
c906108c 9637stored.
c906108c
SS
9638
9639@item -
9640Negative. Defined on integral and floating-point types. Same
9641precedence as @code{++}.
9642
9643@item !
9644Logical negation. Defined on integral types. Same precedence as
9645@code{++}.
9646
9647@item ~
9648Bitwise complement operator. Defined on integral types. Same precedence as
9649@code{++}.
9650
9651
9652@item .@r{, }->
9653Structure member, and pointer-to-structure member. For convenience,
9654@value{GDBN} regards the two as equivalent, choosing whether to dereference a
9655pointer based on the stored type information.
9656Defined on @code{struct} and @code{union} data.
9657
c906108c
SS
9658@item .*@r{, }->*
9659Dereferences of pointers to members.
c906108c
SS
9660
9661@item []
9662Array indexing. @code{@var{a}[@var{i}]} is defined as
9663@code{*(@var{a}+@var{i})}. Same precedence as @code{->}.
9664
9665@item ()
9666Function parameter list. Same precedence as @code{->}.
9667
c906108c 9668@item ::
b37052ae 9669C@t{++} scope resolution operator. Defined on @code{struct}, @code{union},
7a292a7a 9670and @code{class} types.
c906108c
SS
9671
9672@item ::
7a292a7a
SS
9673Doubled colons also represent the @value{GDBN} scope operator
9674(@pxref{Expressions, ,Expressions}). Same precedence as @code{::},
9675above.
c906108c
SS
9676@end table
9677
c906108c
SS
9678If an operator is redefined in the user code, @value{GDBN} usually
9679attempts to invoke the redefined version instead of using the operator's
9680predefined meaning.
c906108c 9681
6d2ebf8b 9682@node C Constants
79a6e687 9683@subsubsection C and C@t{++} Constants
c906108c 9684
b37052ae 9685@cindex C and C@t{++} constants
c906108c 9686
b37052ae 9687@value{GDBN} allows you to express the constants of C and C@t{++} in the
c906108c 9688following ways:
c906108c
SS
9689
9690@itemize @bullet
9691@item
9692Integer constants are a sequence of digits. Octal constants are
6ca652b0
EZ
9693specified by a leading @samp{0} (i.e.@: zero), and hexadecimal constants
9694by a leading @samp{0x} or @samp{0X}. Constants may also end with a letter
c906108c
SS
9695@samp{l}, specifying that the constant should be treated as a
9696@code{long} value.
9697
9698@item
9699Floating point constants are a sequence of digits, followed by a decimal
9700point, followed by a sequence of digits, and optionally followed by an
9701exponent. An exponent is of the form:
9702@samp{@w{e@r{[[}+@r{]|}-@r{]}@var{nnn}}}, where @var{nnn} is another
9703sequence of digits. The @samp{+} is optional for positive exponents.
d4f3574e
SS
9704A floating-point constant may also end with a letter @samp{f} or
9705@samp{F}, specifying that the constant should be treated as being of
9706the @code{float} (as opposed to the default @code{double}) type; or with
9707a letter @samp{l} or @samp{L}, which specifies a @code{long double}
9708constant.
c906108c
SS
9709
9710@item
9711Enumerated constants consist of enumerated identifiers, or their
9712integral equivalents.
9713
9714@item
9715Character constants are a single character surrounded by single quotes
9716(@code{'}), or a number---the ordinal value of the corresponding character
d4f3574e 9717(usually its @sc{ascii} value). Within quotes, the single character may
c906108c
SS
9718be represented by a letter or by @dfn{escape sequences}, which are of
9719the form @samp{\@var{nnn}}, where @var{nnn} is the octal representation
9720of the character's ordinal value; or of the form @samp{\@var{x}}, where
9721@samp{@var{x}} is a predefined special character---for example,
9722@samp{\n} for newline.
9723
9724@item
96a2c332
SS
9725String constants are a sequence of character constants surrounded by
9726double quotes (@code{"}). Any valid character constant (as described
9727above) may appear. Double quotes within the string must be preceded by
9728a backslash, so for instance @samp{"a\"b'c"} is a string of five
9729characters.
c906108c
SS
9730
9731@item
9732Pointer constants are an integral value. You can also write pointers
9733to constants using the C operator @samp{&}.
9734
9735@item
9736Array constants are comma-separated lists surrounded by braces @samp{@{}
9737and @samp{@}}; for example, @samp{@{1,2,3@}} is a three-element array of
9738integers, @samp{@{@{1,2@}, @{3,4@}, @{5,6@}@}} is a three-by-two array,
9739and @samp{@{&"hi", &"there", &"fred"@}} is a three-element array of pointers.
9740@end itemize
9741
79a6e687
BW
9742@node C Plus Plus Expressions
9743@subsubsection C@t{++} Expressions
b37052ae
EZ
9744
9745@cindex expressions in C@t{++}
9746@value{GDBN} expression handling can interpret most C@t{++} expressions.
9747
0179ffac
DC
9748@cindex debugging C@t{++} programs
9749@cindex C@t{++} compilers
9750@cindex debug formats and C@t{++}
9751@cindex @value{NGCC} and C@t{++}
c906108c 9752@quotation
b37052ae 9753@emph{Warning:} @value{GDBN} can only debug C@t{++} code if you use the
0179ffac
DC
9754proper compiler and the proper debug format. Currently, @value{GDBN}
9755works best when debugging C@t{++} code that is compiled with
9756@value{NGCC} 2.95.3 or with @value{NGCC} 3.1 or newer, using the options
9757@option{-gdwarf-2} or @option{-gstabs+}. DWARF 2 is preferred over
9758stabs+. Most configurations of @value{NGCC} emit either DWARF 2 or
9759stabs+ as their default debug format, so you usually don't need to
9760specify a debug format explicitly. Other compilers and/or debug formats
9761are likely to work badly or not at all when using @value{GDBN} to debug
9762C@t{++} code.
c906108c 9763@end quotation
c906108c
SS
9764
9765@enumerate
9766
9767@cindex member functions
9768@item
9769Member function calls are allowed; you can use expressions like
9770
474c8240 9771@smallexample
c906108c 9772count = aml->GetOriginal(x, y)
474c8240 9773@end smallexample
c906108c 9774
41afff9a 9775@vindex this@r{, inside C@t{++} member functions}
b37052ae 9776@cindex namespace in C@t{++}
c906108c
SS
9777@item
9778While a member function is active (in the selected stack frame), your
9779expressions have the same namespace available as the member function;
9780that is, @value{GDBN} allows implicit references to the class instance
b37052ae 9781pointer @code{this} following the same rules as C@t{++}.
c906108c 9782
c906108c 9783@cindex call overloaded functions
d4f3574e 9784@cindex overloaded functions, calling
b37052ae 9785@cindex type conversions in C@t{++}
c906108c
SS
9786@item
9787You can call overloaded functions; @value{GDBN} resolves the function
d4f3574e 9788call to the right definition, with some restrictions. @value{GDBN} does not
c906108c
SS
9789perform overload resolution involving user-defined type conversions,
9790calls to constructors, or instantiations of templates that do not exist
9791in the program. It also cannot handle ellipsis argument lists or
9792default arguments.
9793
9794It does perform integral conversions and promotions, floating-point
9795promotions, arithmetic conversions, pointer conversions, conversions of
9796class objects to base classes, and standard conversions such as those of
9797functions or arrays to pointers; it requires an exact match on the
9798number of function arguments.
9799
9800Overload resolution is always performed, unless you have specified
79a6e687
BW
9801@code{set overload-resolution off}. @xref{Debugging C Plus Plus,
9802,@value{GDBN} Features for C@t{++}}.
c906108c 9803
d4f3574e 9804You must specify @code{set overload-resolution off} in order to use an
c906108c
SS
9805explicit function signature to call an overloaded function, as in
9806@smallexample
9807p 'foo(char,int)'('x', 13)
9808@end smallexample
d4f3574e 9809
c906108c 9810The @value{GDBN} command-completion facility can simplify this;
79a6e687 9811see @ref{Completion, ,Command Completion}.
c906108c 9812
c906108c
SS
9813@cindex reference declarations
9814@item
b37052ae
EZ
9815@value{GDBN} understands variables declared as C@t{++} references; you can use
9816them in expressions just as you do in C@t{++} source---they are automatically
c906108c
SS
9817dereferenced.
9818
9819In the parameter list shown when @value{GDBN} displays a frame, the values of
9820reference variables are not displayed (unlike other variables); this
9821avoids clutter, since references are often used for large structures.
9822The @emph{address} of a reference variable is always shown, unless
9823you have specified @samp{set print address off}.
9824
9825@item
b37052ae 9826@value{GDBN} supports the C@t{++} name resolution operator @code{::}---your
c906108c
SS
9827expressions can use it just as expressions in your program do. Since
9828one scope may be defined in another, you can use @code{::} repeatedly if
9829necessary, for example in an expression like
9830@samp{@var{scope1}::@var{scope2}::@var{name}}. @value{GDBN} also allows
b37052ae 9831resolving name scope by reference to source files, in both C and C@t{++}
79a6e687 9832debugging (@pxref{Variables, ,Program Variables}).
c906108c
SS
9833@end enumerate
9834
b37052ae 9835In addition, when used with HP's C@t{++} compiler, @value{GDBN} supports
53a5351d
JM
9836calling virtual functions correctly, printing out virtual bases of
9837objects, calling functions in a base subobject, casting objects, and
9838invoking user-defined operators.
c906108c 9839
6d2ebf8b 9840@node C Defaults
79a6e687 9841@subsubsection C and C@t{++} Defaults
7a292a7a 9842
b37052ae 9843@cindex C and C@t{++} defaults
c906108c 9844
c906108c
SS
9845If you allow @value{GDBN} to set type and range checking automatically, they
9846both default to @code{off} whenever the working language changes to
b37052ae 9847C or C@t{++}. This happens regardless of whether you or @value{GDBN}
c906108c 9848selects the working language.
c906108c
SS
9849
9850If you allow @value{GDBN} to set the language automatically, it
9851recognizes source files whose names end with @file{.c}, @file{.C}, or
9852@file{.cc}, etc, and when @value{GDBN} enters code compiled from one of
b37052ae 9853these files, it sets the working language to C or C@t{++}.
79a6e687 9854@xref{Automatically, ,Having @value{GDBN} Infer the Source Language},
c906108c
SS
9855for further details.
9856
c906108c
SS
9857@c Type checking is (a) primarily motivated by Modula-2, and (b)
9858@c unimplemented. If (b) changes, it might make sense to let this node
9859@c appear even if Mod-2 does not, but meanwhile ignore it. roland 16jul93.
7a292a7a 9860
6d2ebf8b 9861@node C Checks
79a6e687 9862@subsubsection C and C@t{++} Type and Range Checks
7a292a7a 9863
b37052ae 9864@cindex C and C@t{++} checks
c906108c 9865
b37052ae 9866By default, when @value{GDBN} parses C or C@t{++} expressions, type checking
c906108c
SS
9867is not used. However, if you turn type checking on, @value{GDBN}
9868considers two variables type equivalent if:
9869
9870@itemize @bullet
9871@item
9872The two variables are structured and have the same structure, union, or
9873enumerated tag.
9874
9875@item
9876The two variables have the same type name, or types that have been
9877declared equivalent through @code{typedef}.
9878
9879@ignore
9880@c leaving this out because neither J Gilmore nor R Pesch understand it.
9881@c FIXME--beers?
9882@item
9883The two @code{struct}, @code{union}, or @code{enum} variables are
9884declared in the same declaration. (Note: this may not be true for all C
9885compilers.)
9886@end ignore
9887@end itemize
9888
9889Range checking, if turned on, is done on mathematical operations. Array
9890indices are not checked, since they are often used to index a pointer
9891that is not itself an array.
c906108c 9892
6d2ebf8b 9893@node Debugging C
c906108c 9894@subsubsection @value{GDBN} and C
c906108c
SS
9895
9896The @code{set print union} and @code{show print union} commands apply to
9897the @code{union} type. When set to @samp{on}, any @code{union} that is
7a292a7a
SS
9898inside a @code{struct} or @code{class} is also printed. Otherwise, it
9899appears as @samp{@{...@}}.
c906108c
SS
9900
9901The @code{@@} operator aids in the debugging of dynamic arrays, formed
9902with pointers and a memory allocation function. @xref{Expressions,
9903,Expressions}.
9904
79a6e687
BW
9905@node Debugging C Plus Plus
9906@subsubsection @value{GDBN} Features for C@t{++}
c906108c 9907
b37052ae 9908@cindex commands for C@t{++}
7a292a7a 9909
b37052ae
EZ
9910Some @value{GDBN} commands are particularly useful with C@t{++}, and some are
9911designed specifically for use with C@t{++}. Here is a summary:
c906108c
SS
9912
9913@table @code
9914@cindex break in overloaded functions
9915@item @r{breakpoint menus}
9916When you want a breakpoint in a function whose name is overloaded,
6ba66d6a
JB
9917@value{GDBN} has the capability to display a menu of possible breakpoint
9918locations to help you specify which function definition you want.
9919@xref{Ambiguous Expressions,,Ambiguous Expressions}.
c906108c 9920
b37052ae 9921@cindex overloading in C@t{++}
c906108c
SS
9922@item rbreak @var{regex}
9923Setting breakpoints using regular expressions is helpful for setting
9924breakpoints on overloaded functions that are not members of any special
9925classes.
79a6e687 9926@xref{Set Breaks, ,Setting Breakpoints}.
c906108c 9927
b37052ae 9928@cindex C@t{++} exception handling
c906108c
SS
9929@item catch throw
9930@itemx catch catch
b37052ae 9931Debug C@t{++} exception handling using these commands. @xref{Set
79a6e687 9932Catchpoints, , Setting Catchpoints}.
c906108c
SS
9933
9934@cindex inheritance
9935@item ptype @var{typename}
9936Print inheritance relationships as well as other information for type
9937@var{typename}.
9938@xref{Symbols, ,Examining the Symbol Table}.
9939
b37052ae 9940@cindex C@t{++} symbol display
c906108c
SS
9941@item set print demangle
9942@itemx show print demangle
9943@itemx set print asm-demangle
9944@itemx show print asm-demangle
b37052ae
EZ
9945Control whether C@t{++} symbols display in their source form, both when
9946displaying code as C@t{++} source and when displaying disassemblies.
79a6e687 9947@xref{Print Settings, ,Print Settings}.
c906108c
SS
9948
9949@item set print object
9950@itemx show print object
9951Choose whether to print derived (actual) or declared types of objects.
79a6e687 9952@xref{Print Settings, ,Print Settings}.
c906108c
SS
9953
9954@item set print vtbl
9955@itemx show print vtbl
9956Control the format for printing virtual function tables.
79a6e687 9957@xref{Print Settings, ,Print Settings}.
c906108c 9958(The @code{vtbl} commands do not work on programs compiled with the HP
b37052ae 9959ANSI C@t{++} compiler (@code{aCC}).)
c906108c
SS
9960
9961@kindex set overload-resolution
d4f3574e 9962@cindex overloaded functions, overload resolution
c906108c 9963@item set overload-resolution on
b37052ae 9964Enable overload resolution for C@t{++} expression evaluation. The default
c906108c
SS
9965is on. For overloaded functions, @value{GDBN} evaluates the arguments
9966and searches for a function whose signature matches the argument types,
79a6e687
BW
9967using the standard C@t{++} conversion rules (see @ref{C Plus Plus
9968Expressions, ,C@t{++} Expressions}, for details).
9969If it cannot find a match, it emits a message.
c906108c
SS
9970
9971@item set overload-resolution off
b37052ae 9972Disable overload resolution for C@t{++} expression evaluation. For
c906108c
SS
9973overloaded functions that are not class member functions, @value{GDBN}
9974chooses the first function of the specified name that it finds in the
9975symbol table, whether or not its arguments are of the correct type. For
9976overloaded functions that are class member functions, @value{GDBN}
9977searches for a function whose signature @emph{exactly} matches the
9978argument types.
c906108c 9979
9c16f35a
EZ
9980@kindex show overload-resolution
9981@item show overload-resolution
9982Show the current setting of overload resolution.
9983
c906108c
SS
9984@item @r{Overloaded symbol names}
9985You can specify a particular definition of an overloaded symbol, using
b37052ae 9986the same notation that is used to declare such symbols in C@t{++}: type
c906108c
SS
9987@code{@var{symbol}(@var{types})} rather than just @var{symbol}. You can
9988also use the @value{GDBN} command-line word completion facilities to list the
9989available choices, or to finish the type list for you.
79a6e687 9990@xref{Completion,, Command Completion}, for details on how to do this.
c906108c 9991@end table
c906108c 9992
febe4383
TJB
9993@node Decimal Floating Point
9994@subsubsection Decimal Floating Point format
9995@cindex decimal floating point format
9996
9997@value{GDBN} can examine, set and perform computations with numbers in
9998decimal floating point format, which in the C language correspond to the
9999@code{_Decimal32}, @code{_Decimal64} and @code{_Decimal128} types as
10000specified by the extension to support decimal floating-point arithmetic.
10001
10002There are two encodings in use, depending on the architecture: BID (Binary
10003Integer Decimal) for x86 and x86-64, and DPD (Densely Packed Decimal) for
10004PowerPC. @value{GDBN} will use the appropriate encoding for the configured
10005target.
10006
10007Because of a limitation in @file{libdecnumber}, the library used by @value{GDBN}
10008to manipulate decimal floating point numbers, it is not possible to convert
10009(using a cast, for example) integers wider than 32-bit to decimal float.
10010
10011In addition, in order to imitate @value{GDBN}'s behaviour with binary floating
10012point computations, error checking in decimal float operations ignores
10013underflow, overflow and divide by zero exceptions.
10014
4acd40f3
TJB
10015In the PowerPC architecture, @value{GDBN} provides a set of pseudo-registers
10016to inspect @code{_Decimal128} values stored in floating point registers. See
10017@ref{PowerPC,,PowerPC} for more details.
10018
b37303ee
AF
10019@node Objective-C
10020@subsection Objective-C
10021
10022@cindex Objective-C
10023This section provides information about some commands and command
721c2651
EZ
10024options that are useful for debugging Objective-C code. See also
10025@ref{Symbols, info classes}, and @ref{Symbols, info selectors}, for a
10026few more commands specific to Objective-C support.
b37303ee
AF
10027
10028@menu
b383017d
RM
10029* Method Names in Commands::
10030* The Print Command with Objective-C::
b37303ee
AF
10031@end menu
10032
c8f4133a 10033@node Method Names in Commands
b37303ee
AF
10034@subsubsection Method Names in Commands
10035
10036The following commands have been extended to accept Objective-C method
10037names as line specifications:
10038
10039@kindex clear@r{, and Objective-C}
10040@kindex break@r{, and Objective-C}
10041@kindex info line@r{, and Objective-C}
10042@kindex jump@r{, and Objective-C}
10043@kindex list@r{, and Objective-C}
10044@itemize
10045@item @code{clear}
10046@item @code{break}
10047@item @code{info line}
10048@item @code{jump}
10049@item @code{list}
10050@end itemize
10051
10052A fully qualified Objective-C method name is specified as
10053
10054@smallexample
10055-[@var{Class} @var{methodName}]
10056@end smallexample
10057
c552b3bb
JM
10058where the minus sign is used to indicate an instance method and a
10059plus sign (not shown) is used to indicate a class method. The class
10060name @var{Class} and method name @var{methodName} are enclosed in
10061brackets, similar to the way messages are specified in Objective-C
10062source code. For example, to set a breakpoint at the @code{create}
10063instance method of class @code{Fruit} in the program currently being
10064debugged, enter:
b37303ee
AF
10065
10066@smallexample
10067break -[Fruit create]
10068@end smallexample
10069
10070To list ten program lines around the @code{initialize} class method,
10071enter:
10072
10073@smallexample
10074list +[NSText initialize]
10075@end smallexample
10076
c552b3bb
JM
10077In the current version of @value{GDBN}, the plus or minus sign is
10078required. In future versions of @value{GDBN}, the plus or minus
10079sign will be optional, but you can use it to narrow the search. It
10080is also possible to specify just a method name:
b37303ee
AF
10081
10082@smallexample
10083break create
10084@end smallexample
10085
10086You must specify the complete method name, including any colons. If
10087your program's source files contain more than one @code{create} method,
10088you'll be presented with a numbered list of classes that implement that
10089method. Indicate your choice by number, or type @samp{0} to exit if
10090none apply.
10091
10092As another example, to clear a breakpoint established at the
10093@code{makeKeyAndOrderFront:} method of the @code{NSWindow} class, enter:
10094
10095@smallexample
10096clear -[NSWindow makeKeyAndOrderFront:]
10097@end smallexample
10098
10099@node The Print Command with Objective-C
10100@subsubsection The Print Command With Objective-C
721c2651 10101@cindex Objective-C, print objects
c552b3bb
JM
10102@kindex print-object
10103@kindex po @r{(@code{print-object})}
b37303ee 10104
c552b3bb 10105The print command has also been extended to accept methods. For example:
b37303ee
AF
10106
10107@smallexample
c552b3bb 10108print -[@var{object} hash]
b37303ee
AF
10109@end smallexample
10110
10111@cindex print an Objective-C object description
c552b3bb
JM
10112@cindex @code{_NSPrintForDebugger}, and printing Objective-C objects
10113@noindent
10114will tell @value{GDBN} to send the @code{hash} message to @var{object}
10115and print the result. Also, an additional command has been added,
10116@code{print-object} or @code{po} for short, which is meant to print
10117the description of an object. However, this command may only work
10118with certain Objective-C libraries that have a particular hook
10119function, @code{_NSPrintForDebugger}, defined.
b37303ee 10120
09d4efe1
EZ
10121@node Fortran
10122@subsection Fortran
10123@cindex Fortran-specific support in @value{GDBN}
10124
814e32d7
WZ
10125@value{GDBN} can be used to debug programs written in Fortran, but it
10126currently supports only the features of Fortran 77 language.
10127
10128@cindex trailing underscore, in Fortran symbols
10129Some Fortran compilers (@sc{gnu} Fortran 77 and Fortran 95 compilers
10130among them) append an underscore to the names of variables and
10131functions. When you debug programs compiled by those compilers, you
10132will need to refer to variables and functions with a trailing
10133underscore.
10134
10135@menu
10136* Fortran Operators:: Fortran operators and expressions
10137* Fortran Defaults:: Default settings for Fortran
79a6e687 10138* Special Fortran Commands:: Special @value{GDBN} commands for Fortran
814e32d7
WZ
10139@end menu
10140
10141@node Fortran Operators
79a6e687 10142@subsubsection Fortran Operators and Expressions
814e32d7
WZ
10143
10144@cindex Fortran operators and expressions
10145
10146Operators must be defined on values of specific types. For instance,
10147@code{+} is defined on numbers, but not on characters or other non-
ff2587ec 10148arithmetic types. Operators are often defined on groups of types.
814e32d7
WZ
10149
10150@table @code
10151@item **
10152The exponentiation operator. It raises the first operand to the power
10153of the second one.
10154
10155@item :
10156The range operator. Normally used in the form of array(low:high) to
10157represent a section of array.
68837c9d
MD
10158
10159@item %
10160The access component operator. Normally used to access elements in derived
10161types. Also suitable for unions. As unions aren't part of regular Fortran,
10162this can only happen when accessing a register that uses a gdbarch-defined
10163union type.
814e32d7
WZ
10164@end table
10165
10166@node Fortran Defaults
10167@subsubsection Fortran Defaults
10168
10169@cindex Fortran Defaults
10170
10171Fortran symbols are usually case-insensitive, so @value{GDBN} by
10172default uses case-insensitive matches for Fortran symbols. You can
10173change that with the @samp{set case-insensitive} command, see
10174@ref{Symbols}, for the details.
10175
79a6e687
BW
10176@node Special Fortran Commands
10177@subsubsection Special Fortran Commands
814e32d7
WZ
10178
10179@cindex Special Fortran commands
10180
db2e3e2e
BW
10181@value{GDBN} has some commands to support Fortran-specific features,
10182such as displaying common blocks.
814e32d7 10183
09d4efe1
EZ
10184@table @code
10185@cindex @code{COMMON} blocks, Fortran
10186@kindex info common
10187@item info common @r{[}@var{common-name}@r{]}
10188This command prints the values contained in the Fortran @code{COMMON}
10189block whose name is @var{common-name}. With no argument, the names of
d52fb0e9 10190all @code{COMMON} blocks visible at the current program location are
09d4efe1
EZ
10191printed.
10192@end table
10193
9c16f35a
EZ
10194@node Pascal
10195@subsection Pascal
10196
10197@cindex Pascal support in @value{GDBN}, limitations
10198Debugging Pascal programs which use sets, subranges, file variables, or
10199nested functions does not currently work. @value{GDBN} does not support
10200entering expressions, printing values, or similar features using Pascal
10201syntax.
10202
10203The Pascal-specific command @code{set print pascal_static-members}
10204controls whether static members of Pascal objects are displayed.
10205@xref{Print Settings, pascal_static-members}.
10206
09d4efe1 10207@node Modula-2
c906108c 10208@subsection Modula-2
7a292a7a 10209
d4f3574e 10210@cindex Modula-2, @value{GDBN} support
c906108c
SS
10211
10212The extensions made to @value{GDBN} to support Modula-2 only support
10213output from the @sc{gnu} Modula-2 compiler (which is currently being
10214developed). Other Modula-2 compilers are not currently supported, and
10215attempting to debug executables produced by them is most likely
10216to give an error as @value{GDBN} reads in the executable's symbol
10217table.
10218
10219@cindex expressions in Modula-2
10220@menu
10221* M2 Operators:: Built-in operators
10222* Built-In Func/Proc:: Built-in functions and procedures
10223* M2 Constants:: Modula-2 constants
72019c9c 10224* M2 Types:: Modula-2 types
c906108c
SS
10225* M2 Defaults:: Default settings for Modula-2
10226* Deviations:: Deviations from standard Modula-2
10227* M2 Checks:: Modula-2 type and range checks
10228* M2 Scope:: The scope operators @code{::} and @code{.}
10229* GDB/M2:: @value{GDBN} and Modula-2
10230@end menu
10231
6d2ebf8b 10232@node M2 Operators
c906108c
SS
10233@subsubsection Operators
10234@cindex Modula-2 operators
10235
10236Operators must be defined on values of specific types. For instance,
10237@code{+} is defined on numbers, but not on structures. Operators are
10238often defined on groups of types. For the purposes of Modula-2, the
10239following definitions hold:
10240
10241@itemize @bullet
10242
10243@item
10244@emph{Integral types} consist of @code{INTEGER}, @code{CARDINAL}, and
10245their subranges.
10246
10247@item
10248@emph{Character types} consist of @code{CHAR} and its subranges.
10249
10250@item
10251@emph{Floating-point types} consist of @code{REAL}.
10252
10253@item
10254@emph{Pointer types} consist of anything declared as @code{POINTER TO
10255@var{type}}.
10256
10257@item
10258@emph{Scalar types} consist of all of the above.
10259
10260@item
10261@emph{Set types} consist of @code{SET} and @code{BITSET} types.
10262
10263@item
10264@emph{Boolean types} consist of @code{BOOLEAN}.
10265@end itemize
10266
10267@noindent
10268The following operators are supported, and appear in order of
10269increasing precedence:
10270
10271@table @code
10272@item ,
10273Function argument or array index separator.
10274
10275@item :=
10276Assignment. The value of @var{var} @code{:=} @var{value} is
10277@var{value}.
10278
10279@item <@r{, }>
10280Less than, greater than on integral, floating-point, or enumerated
10281types.
10282
10283@item <=@r{, }>=
96a2c332 10284Less than or equal to, greater than or equal to
c906108c
SS
10285on integral, floating-point and enumerated types, or set inclusion on
10286set types. Same precedence as @code{<}.
10287
10288@item =@r{, }<>@r{, }#
10289Equality and two ways of expressing inequality, valid on scalar types.
10290Same precedence as @code{<}. In @value{GDBN} scripts, only @code{<>} is
10291available for inequality, since @code{#} conflicts with the script
10292comment character.
10293
10294@item IN
10295Set membership. Defined on set types and the types of their members.
10296Same precedence as @code{<}.
10297
10298@item OR
10299Boolean disjunction. Defined on boolean types.
10300
10301@item AND@r{, }&
d4f3574e 10302Boolean conjunction. Defined on boolean types.
c906108c
SS
10303
10304@item @@
10305The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
10306
10307@item +@r{, }-
10308Addition and subtraction on integral and floating-point types, or union
10309and difference on set types.
10310
10311@item *
10312Multiplication on integral and floating-point types, or set intersection
10313on set types.
10314
10315@item /
10316Division on floating-point types, or symmetric set difference on set
10317types. Same precedence as @code{*}.
10318
10319@item DIV@r{, }MOD
10320Integer division and remainder. Defined on integral types. Same
10321precedence as @code{*}.
10322
10323@item -
10324Negative. Defined on @code{INTEGER} and @code{REAL} data.
10325
10326@item ^
10327Pointer dereferencing. Defined on pointer types.
10328
10329@item NOT
10330Boolean negation. Defined on boolean types. Same precedence as
10331@code{^}.
10332
10333@item .
10334@code{RECORD} field selector. Defined on @code{RECORD} data. Same
10335precedence as @code{^}.
10336
10337@item []
10338Array indexing. Defined on @code{ARRAY} data. Same precedence as @code{^}.
10339
10340@item ()
10341Procedure argument list. Defined on @code{PROCEDURE} objects. Same precedence
10342as @code{^}.
10343
10344@item ::@r{, }.
10345@value{GDBN} and Modula-2 scope operators.
10346@end table
10347
10348@quotation
72019c9c 10349@emph{Warning:} Set expressions and their operations are not yet supported, so @value{GDBN}
c906108c
SS
10350treats the use of the operator @code{IN}, or the use of operators
10351@code{+}, @code{-}, @code{*}, @code{/}, @code{=}, , @code{<>}, @code{#},
10352@code{<=}, and @code{>=} on sets as an error.
10353@end quotation
10354
cb51c4e0 10355
6d2ebf8b 10356@node Built-In Func/Proc
79a6e687 10357@subsubsection Built-in Functions and Procedures
cb51c4e0 10358@cindex Modula-2 built-ins
c906108c
SS
10359
10360Modula-2 also makes available several built-in procedures and functions.
10361In describing these, the following metavariables are used:
10362
10363@table @var
10364
10365@item a
10366represents an @code{ARRAY} variable.
10367
10368@item c
10369represents a @code{CHAR} constant or variable.
10370
10371@item i
10372represents a variable or constant of integral type.
10373
10374@item m
10375represents an identifier that belongs to a set. Generally used in the
10376same function with the metavariable @var{s}. The type of @var{s} should
10377be @code{SET OF @var{mtype}} (where @var{mtype} is the type of @var{m}).
10378
10379@item n
10380represents a variable or constant of integral or floating-point type.
10381
10382@item r
10383represents a variable or constant of floating-point type.
10384
10385@item t
10386represents a type.
10387
10388@item v
10389represents a variable.
10390
10391@item x
10392represents a variable or constant of one of many types. See the
10393explanation of the function for details.
10394@end table
10395
10396All Modula-2 built-in procedures also return a result, described below.
10397
10398@table @code
10399@item ABS(@var{n})
10400Returns the absolute value of @var{n}.
10401
10402@item CAP(@var{c})
10403If @var{c} is a lower case letter, it returns its upper case
c3f6f71d 10404equivalent, otherwise it returns its argument.
c906108c
SS
10405
10406@item CHR(@var{i})
10407Returns the character whose ordinal value is @var{i}.
10408
10409@item DEC(@var{v})
c3f6f71d 10410Decrements the value in the variable @var{v} by one. Returns the new value.
c906108c
SS
10411
10412@item DEC(@var{v},@var{i})
10413Decrements the value in the variable @var{v} by @var{i}. Returns the
10414new value.
10415
10416@item EXCL(@var{m},@var{s})
10417Removes the element @var{m} from the set @var{s}. Returns the new
10418set.
10419
10420@item FLOAT(@var{i})
10421Returns the floating point equivalent of the integer @var{i}.
10422
10423@item HIGH(@var{a})
10424Returns the index of the last member of @var{a}.
10425
10426@item INC(@var{v})
c3f6f71d 10427Increments the value in the variable @var{v} by one. Returns the new value.
c906108c
SS
10428
10429@item INC(@var{v},@var{i})
10430Increments the value in the variable @var{v} by @var{i}. Returns the
10431new value.
10432
10433@item INCL(@var{m},@var{s})
10434Adds the element @var{m} to the set @var{s} if it is not already
10435there. Returns the new set.
10436
10437@item MAX(@var{t})
10438Returns the maximum value of the type @var{t}.
10439
10440@item MIN(@var{t})
10441Returns the minimum value of the type @var{t}.
10442
10443@item ODD(@var{i})
10444Returns boolean TRUE if @var{i} is an odd number.
10445
10446@item ORD(@var{x})
10447Returns the ordinal value of its argument. For example, the ordinal
c3f6f71d
JM
10448value of a character is its @sc{ascii} value (on machines supporting the
10449@sc{ascii} character set). @var{x} must be of an ordered type, which include
c906108c
SS
10450integral, character and enumerated types.
10451
10452@item SIZE(@var{x})
10453Returns the size of its argument. @var{x} can be a variable or a type.
10454
10455@item TRUNC(@var{r})
10456Returns the integral part of @var{r}.
10457
844781a1
GM
10458@item TSIZE(@var{x})
10459Returns the size of its argument. @var{x} can be a variable or a type.
10460
c906108c
SS
10461@item VAL(@var{t},@var{i})
10462Returns the member of the type @var{t} whose ordinal value is @var{i}.
10463@end table
10464
10465@quotation
10466@emph{Warning:} Sets and their operations are not yet supported, so
10467@value{GDBN} treats the use of procedures @code{INCL} and @code{EXCL} as
10468an error.
10469@end quotation
10470
10471@cindex Modula-2 constants
6d2ebf8b 10472@node M2 Constants
c906108c
SS
10473@subsubsection Constants
10474
10475@value{GDBN} allows you to express the constants of Modula-2 in the following
10476ways:
10477
10478@itemize @bullet
10479
10480@item
10481Integer constants are simply a sequence of digits. When used in an
10482expression, a constant is interpreted to be type-compatible with the
10483rest of the expression. Hexadecimal integers are specified by a
10484trailing @samp{H}, and octal integers by a trailing @samp{B}.
10485
10486@item
10487Floating point constants appear as a sequence of digits, followed by a
10488decimal point and another sequence of digits. An optional exponent can
10489then be specified, in the form @samp{E@r{[}+@r{|}-@r{]}@var{nnn}}, where
10490@samp{@r{[}+@r{|}-@r{]}@var{nnn}} is the desired exponent. All of the
10491digits of the floating point constant must be valid decimal (base 10)
10492digits.
10493
10494@item
10495Character constants consist of a single character enclosed by a pair of
10496like quotes, either single (@code{'}) or double (@code{"}). They may
c3f6f71d 10497also be expressed by their ordinal value (their @sc{ascii} value, usually)
c906108c
SS
10498followed by a @samp{C}.
10499
10500@item
10501String constants consist of a sequence of characters enclosed by a
10502pair of like quotes, either single (@code{'}) or double (@code{"}).
10503Escape sequences in the style of C are also allowed. @xref{C
79a6e687 10504Constants, ,C and C@t{++} Constants}, for a brief explanation of escape
c906108c
SS
10505sequences.
10506
10507@item
10508Enumerated constants consist of an enumerated identifier.
10509
10510@item
10511Boolean constants consist of the identifiers @code{TRUE} and
10512@code{FALSE}.
10513
10514@item
10515Pointer constants consist of integral values only.
10516
10517@item
10518Set constants are not yet supported.
10519@end itemize
10520
72019c9c
GM
10521@node M2 Types
10522@subsubsection Modula-2 Types
10523@cindex Modula-2 types
10524
10525Currently @value{GDBN} can print the following data types in Modula-2
10526syntax: array types, record types, set types, pointer types, procedure
10527types, enumerated types, subrange types and base types. You can also
10528print the contents of variables declared using these type.
10529This section gives a number of simple source code examples together with
10530sample @value{GDBN} sessions.
10531
10532The first example contains the following section of code:
10533
10534@smallexample
10535VAR
10536 s: SET OF CHAR ;
10537 r: [20..40] ;
10538@end smallexample
10539
10540@noindent
10541and you can request @value{GDBN} to interrogate the type and value of
10542@code{r} and @code{s}.
10543
10544@smallexample
10545(@value{GDBP}) print s
10546@{'A'..'C', 'Z'@}
10547(@value{GDBP}) ptype s
10548SET OF CHAR
10549(@value{GDBP}) print r
1055021
10551(@value{GDBP}) ptype r
10552[20..40]
10553@end smallexample
10554
10555@noindent
10556Likewise if your source code declares @code{s} as:
10557
10558@smallexample
10559VAR
10560 s: SET ['A'..'Z'] ;
10561@end smallexample
10562
10563@noindent
10564then you may query the type of @code{s} by:
10565
10566@smallexample
10567(@value{GDBP}) ptype s
10568type = SET ['A'..'Z']
10569@end smallexample
10570
10571@noindent
10572Note that at present you cannot interactively manipulate set
10573expressions using the debugger.
10574
10575The following example shows how you might declare an array in Modula-2
10576and how you can interact with @value{GDBN} to print its type and contents:
10577
10578@smallexample
10579VAR
10580 s: ARRAY [-10..10] OF CHAR ;
10581@end smallexample
10582
10583@smallexample
10584(@value{GDBP}) ptype s
10585ARRAY [-10..10] OF CHAR
10586@end smallexample
10587
10588Note that the array handling is not yet complete and although the type
10589is printed correctly, expression handling still assumes that all
10590arrays have a lower bound of zero and not @code{-10} as in the example
844781a1 10591above.
72019c9c
GM
10592
10593Here are some more type related Modula-2 examples:
10594
10595@smallexample
10596TYPE
10597 colour = (blue, red, yellow, green) ;
10598 t = [blue..yellow] ;
10599VAR
10600 s: t ;
10601BEGIN
10602 s := blue ;
10603@end smallexample
10604
10605@noindent
10606The @value{GDBN} interaction shows how you can query the data type
10607and value of a variable.
10608
10609@smallexample
10610(@value{GDBP}) print s
10611$1 = blue
10612(@value{GDBP}) ptype t
10613type = [blue..yellow]
10614@end smallexample
10615
10616@noindent
10617In this example a Modula-2 array is declared and its contents
10618displayed. Observe that the contents are written in the same way as
10619their @code{C} counterparts.
10620
10621@smallexample
10622VAR
10623 s: ARRAY [1..5] OF CARDINAL ;
10624BEGIN
10625 s[1] := 1 ;
10626@end smallexample
10627
10628@smallexample
10629(@value{GDBP}) print s
10630$1 = @{1, 0, 0, 0, 0@}
10631(@value{GDBP}) ptype s
10632type = ARRAY [1..5] OF CARDINAL
10633@end smallexample
10634
10635The Modula-2 language interface to @value{GDBN} also understands
10636pointer types as shown in this example:
10637
10638@smallexample
10639VAR
10640 s: POINTER TO ARRAY [1..5] OF CARDINAL ;
10641BEGIN
10642 NEW(s) ;
10643 s^[1] := 1 ;
10644@end smallexample
10645
10646@noindent
10647and you can request that @value{GDBN} describes the type of @code{s}.
10648
10649@smallexample
10650(@value{GDBP}) ptype s
10651type = POINTER TO ARRAY [1..5] OF CARDINAL
10652@end smallexample
10653
10654@value{GDBN} handles compound types as we can see in this example.
10655Here we combine array types, record types, pointer types and subrange
10656types:
10657
10658@smallexample
10659TYPE
10660 foo = RECORD
10661 f1: CARDINAL ;
10662 f2: CHAR ;
10663 f3: myarray ;
10664 END ;
10665
10666 myarray = ARRAY myrange OF CARDINAL ;
10667 myrange = [-2..2] ;
10668VAR
10669 s: POINTER TO ARRAY myrange OF foo ;
10670@end smallexample
10671
10672@noindent
10673and you can ask @value{GDBN} to describe the type of @code{s} as shown
10674below.
10675
10676@smallexample
10677(@value{GDBP}) ptype s
10678type = POINTER TO ARRAY [-2..2] OF foo = RECORD
10679 f1 : CARDINAL;
10680 f2 : CHAR;
10681 f3 : ARRAY [-2..2] OF CARDINAL;
10682END
10683@end smallexample
10684
6d2ebf8b 10685@node M2 Defaults
79a6e687 10686@subsubsection Modula-2 Defaults
c906108c
SS
10687@cindex Modula-2 defaults
10688
10689If type and range checking are set automatically by @value{GDBN}, they
10690both default to @code{on} whenever the working language changes to
d4f3574e 10691Modula-2. This happens regardless of whether you or @value{GDBN}
c906108c
SS
10692selected the working language.
10693
10694If you allow @value{GDBN} to set the language automatically, then entering
10695code compiled from a file whose name ends with @file{.mod} sets the
79a6e687
BW
10696working language to Modula-2. @xref{Automatically, ,Having @value{GDBN}
10697Infer the Source Language}, for further details.
c906108c 10698
6d2ebf8b 10699@node Deviations
79a6e687 10700@subsubsection Deviations from Standard Modula-2
c906108c
SS
10701@cindex Modula-2, deviations from
10702
10703A few changes have been made to make Modula-2 programs easier to debug.
10704This is done primarily via loosening its type strictness:
10705
10706@itemize @bullet
10707@item
10708Unlike in standard Modula-2, pointer constants can be formed by
10709integers. This allows you to modify pointer variables during
10710debugging. (In standard Modula-2, the actual address contained in a
10711pointer variable is hidden from you; it can only be modified
10712through direct assignment to another pointer variable or expression that
10713returned a pointer.)
10714
10715@item
10716C escape sequences can be used in strings and characters to represent
10717non-printable characters. @value{GDBN} prints out strings with these
10718escape sequences embedded. Single non-printable characters are
10719printed using the @samp{CHR(@var{nnn})} format.
10720
10721@item
10722The assignment operator (@code{:=}) returns the value of its right-hand
10723argument.
10724
10725@item
10726All built-in procedures both modify @emph{and} return their argument.
10727@end itemize
10728
6d2ebf8b 10729@node M2 Checks
79a6e687 10730@subsubsection Modula-2 Type and Range Checks
c906108c
SS
10731@cindex Modula-2 checks
10732
10733@quotation
10734@emph{Warning:} in this release, @value{GDBN} does not yet perform type or
10735range checking.
10736@end quotation
10737@c FIXME remove warning when type/range checks added
10738
10739@value{GDBN} considers two Modula-2 variables type equivalent if:
10740
10741@itemize @bullet
10742@item
10743They are of types that have been declared equivalent via a @code{TYPE
10744@var{t1} = @var{t2}} statement
10745
10746@item
10747They have been declared on the same line. (Note: This is true of the
10748@sc{gnu} Modula-2 compiler, but it may not be true of other compilers.)
10749@end itemize
10750
10751As long as type checking is enabled, any attempt to combine variables
10752whose types are not equivalent is an error.
10753
10754Range checking is done on all mathematical operations, assignment, array
10755index bounds, and all built-in functions and procedures.
10756
6d2ebf8b 10757@node M2 Scope
79a6e687 10758@subsubsection The Scope Operators @code{::} and @code{.}
c906108c 10759@cindex scope
41afff9a 10760@cindex @code{.}, Modula-2 scope operator
c906108c
SS
10761@cindex colon, doubled as scope operator
10762@ifinfo
41afff9a 10763@vindex colon-colon@r{, in Modula-2}
c906108c
SS
10764@c Info cannot handle :: but TeX can.
10765@end ifinfo
10766@iftex
41afff9a 10767@vindex ::@r{, in Modula-2}
c906108c
SS
10768@end iftex
10769
10770There are a few subtle differences between the Modula-2 scope operator
10771(@code{.}) and the @value{GDBN} scope operator (@code{::}). The two have
10772similar syntax:
10773
474c8240 10774@smallexample
c906108c
SS
10775
10776@var{module} . @var{id}
10777@var{scope} :: @var{id}
474c8240 10778@end smallexample
c906108c
SS
10779
10780@noindent
10781where @var{scope} is the name of a module or a procedure,
10782@var{module} the name of a module, and @var{id} is any declared
10783identifier within your program, except another module.
10784
10785Using the @code{::} operator makes @value{GDBN} search the scope
10786specified by @var{scope} for the identifier @var{id}. If it is not
10787found in the specified scope, then @value{GDBN} searches all scopes
10788enclosing the one specified by @var{scope}.
10789
10790Using the @code{.} operator makes @value{GDBN} search the current scope for
10791the identifier specified by @var{id} that was imported from the
10792definition module specified by @var{module}. With this operator, it is
10793an error if the identifier @var{id} was not imported from definition
10794module @var{module}, or if @var{id} is not an identifier in
10795@var{module}.
10796
6d2ebf8b 10797@node GDB/M2
c906108c
SS
10798@subsubsection @value{GDBN} and Modula-2
10799
10800Some @value{GDBN} commands have little use when debugging Modula-2 programs.
10801Five subcommands of @code{set print} and @code{show print} apply
b37052ae 10802specifically to C and C@t{++}: @samp{vtbl}, @samp{demangle},
c906108c 10803@samp{asm-demangle}, @samp{object}, and @samp{union}. The first four
b37052ae 10804apply to C@t{++}, and the last to the C @code{union} type, which has no direct
c906108c
SS
10805analogue in Modula-2.
10806
10807The @code{@@} operator (@pxref{Expressions, ,Expressions}), while available
d4f3574e 10808with any language, is not useful with Modula-2. Its
c906108c 10809intent is to aid the debugging of @dfn{dynamic arrays}, which cannot be
b37052ae 10810created in Modula-2 as they can in C or C@t{++}. However, because an
c906108c 10811address can be specified by an integral constant, the construct
d4f3574e 10812@samp{@{@var{type}@}@var{adrexp}} is still useful.
c906108c
SS
10813
10814@cindex @code{#} in Modula-2
10815In @value{GDBN} scripts, the Modula-2 inequality operator @code{#} is
10816interpreted as the beginning of a comment. Use @code{<>} instead.
c906108c 10817
e07c999f
PH
10818@node Ada
10819@subsection Ada
10820@cindex Ada
10821
10822The extensions made to @value{GDBN} for Ada only support
10823output from the @sc{gnu} Ada (GNAT) compiler.
10824Other Ada compilers are not currently supported, and
10825attempting to debug executables produced by them is most likely
10826to be difficult.
10827
10828
10829@cindex expressions in Ada
10830@menu
10831* Ada Mode Intro:: General remarks on the Ada syntax
10832 and semantics supported by Ada mode
10833 in @value{GDBN}.
10834* Omissions from Ada:: Restrictions on the Ada expression syntax.
10835* Additions to Ada:: Extensions of the Ada expression syntax.
10836* Stopping Before Main Program:: Debugging the program during elaboration.
10837* Ada Glitches:: Known peculiarities of Ada mode.
10838@end menu
10839
10840@node Ada Mode Intro
10841@subsubsection Introduction
10842@cindex Ada mode, general
10843
10844The Ada mode of @value{GDBN} supports a fairly large subset of Ada expression
10845syntax, with some extensions.
10846The philosophy behind the design of this subset is
10847
10848@itemize @bullet
10849@item
10850That @value{GDBN} should provide basic literals and access to operations for
10851arithmetic, dereferencing, field selection, indexing, and subprogram calls,
10852leaving more sophisticated computations to subprograms written into the
10853program (which therefore may be called from @value{GDBN}).
10854
10855@item
10856That type safety and strict adherence to Ada language restrictions
10857are not particularly important to the @value{GDBN} user.
10858
10859@item
10860That brevity is important to the @value{GDBN} user.
10861@end itemize
10862
10863Thus, for brevity, the debugger acts as if there were
10864implicit @code{with} and @code{use} clauses in effect for all user-written
10865packages, making it unnecessary to fully qualify most names with
10866their packages, regardless of context. Where this causes ambiguity,
10867@value{GDBN} asks the user's intent.
10868
10869The debugger will start in Ada mode if it detects an Ada main program.
10870As for other languages, it will enter Ada mode when stopped in a program that
10871was translated from an Ada source file.
10872
10873While in Ada mode, you may use `@t{--}' for comments. This is useful
10874mostly for documenting command files. The standard @value{GDBN} comment
10875(@samp{#}) still works at the beginning of a line in Ada mode, but not in the
10876middle (to allow based literals).
10877
10878The debugger supports limited overloading. Given a subprogram call in which
10879the function symbol has multiple definitions, it will use the number of
10880actual parameters and some information about their types to attempt to narrow
10881the set of definitions. It also makes very limited use of context, preferring
10882procedures to functions in the context of the @code{call} command, and
10883functions to procedures elsewhere.
10884
10885@node Omissions from Ada
10886@subsubsection Omissions from Ada
10887@cindex Ada, omissions from
10888
10889Here are the notable omissions from the subset:
10890
10891@itemize @bullet
10892@item
10893Only a subset of the attributes are supported:
10894
10895@itemize @minus
10896@item
10897@t{'First}, @t{'Last}, and @t{'Length}
10898 on array objects (not on types and subtypes).
10899
10900@item
10901@t{'Min} and @t{'Max}.
10902
10903@item
10904@t{'Pos} and @t{'Val}.
10905
10906@item
10907@t{'Tag}.
10908
10909@item
10910@t{'Range} on array objects (not subtypes), but only as the right
10911operand of the membership (@code{in}) operator.
10912
10913@item
10914@t{'Access}, @t{'Unchecked_Access}, and
10915@t{'Unrestricted_Access} (a GNAT extension).
10916
10917@item
10918@t{'Address}.
10919@end itemize
10920
10921@item
10922The names in
10923@code{Characters.Latin_1} are not available and
10924concatenation is not implemented. Thus, escape characters in strings are
10925not currently available.
10926
10927@item
10928Equality tests (@samp{=} and @samp{/=}) on arrays test for bitwise
10929equality of representations. They will generally work correctly
10930for strings and arrays whose elements have integer or enumeration types.
10931They may not work correctly for arrays whose element
10932types have user-defined equality, for arrays of real values
10933(in particular, IEEE-conformant floating point, because of negative
10934zeroes and NaNs), and for arrays whose elements contain unused bits with
10935indeterminate values.
10936
10937@item
10938The other component-by-component array operations (@code{and}, @code{or},
10939@code{xor}, @code{not}, and relational tests other than equality)
10940are not implemented.
10941
10942@item
860701dc
PH
10943@cindex array aggregates (Ada)
10944@cindex record aggregates (Ada)
10945@cindex aggregates (Ada)
10946There is limited support for array and record aggregates. They are
10947permitted only on the right sides of assignments, as in these examples:
10948
10949@smallexample
10950set An_Array := (1, 2, 3, 4, 5, 6)
10951set An_Array := (1, others => 0)
10952set An_Array := (0|4 => 1, 1..3 => 2, 5 => 6)
10953set A_2D_Array := ((1, 2, 3), (4, 5, 6), (7, 8, 9))
10954set A_Record := (1, "Peter", True);
10955set A_Record := (Name => "Peter", Id => 1, Alive => True)
10956@end smallexample
10957
10958Changing a
10959discriminant's value by assigning an aggregate has an
10960undefined effect if that discriminant is used within the record.
10961However, you can first modify discriminants by directly assigning to
10962them (which normally would not be allowed in Ada), and then performing an
10963aggregate assignment. For example, given a variable @code{A_Rec}
10964declared to have a type such as:
10965
10966@smallexample
10967type Rec (Len : Small_Integer := 0) is record
10968 Id : Integer;
10969 Vals : IntArray (1 .. Len);
10970end record;
10971@end smallexample
10972
10973you can assign a value with a different size of @code{Vals} with two
10974assignments:
10975
10976@smallexample
10977set A_Rec.Len := 4
10978set A_Rec := (Id => 42, Vals => (1, 2, 3, 4))
10979@end smallexample
10980
10981As this example also illustrates, @value{GDBN} is very loose about the usual
10982rules concerning aggregates. You may leave out some of the
10983components of an array or record aggregate (such as the @code{Len}
10984component in the assignment to @code{A_Rec} above); they will retain their
10985original values upon assignment. You may freely use dynamic values as
10986indices in component associations. You may even use overlapping or
10987redundant component associations, although which component values are
10988assigned in such cases is not defined.
e07c999f
PH
10989
10990@item
10991Calls to dispatching subprograms are not implemented.
10992
10993@item
10994The overloading algorithm is much more limited (i.e., less selective)
ae21e955
BW
10995than that of real Ada. It makes only limited use of the context in
10996which a subexpression appears to resolve its meaning, and it is much
10997looser in its rules for allowing type matches. As a result, some
10998function calls will be ambiguous, and the user will be asked to choose
10999the proper resolution.
e07c999f
PH
11000
11001@item
11002The @code{new} operator is not implemented.
11003
11004@item
11005Entry calls are not implemented.
11006
11007@item
11008Aside from printing, arithmetic operations on the native VAX floating-point
11009formats are not supported.
11010
11011@item
11012It is not possible to slice a packed array.
11013@end itemize
11014
11015@node Additions to Ada
11016@subsubsection Additions to Ada
11017@cindex Ada, deviations from
11018
11019As it does for other languages, @value{GDBN} makes certain generic
11020extensions to Ada (@pxref{Expressions}):
11021
11022@itemize @bullet
11023@item
ae21e955
BW
11024If the expression @var{E} is a variable residing in memory (typically
11025a local variable or array element) and @var{N} is a positive integer,
11026then @code{@var{E}@@@var{N}} displays the values of @var{E} and the
11027@var{N}-1 adjacent variables following it in memory as an array. In
11028Ada, this operator is generally not necessary, since its prime use is
11029in displaying parts of an array, and slicing will usually do this in
11030Ada. However, there are occasional uses when debugging programs in
11031which certain debugging information has been optimized away.
e07c999f
PH
11032
11033@item
ae21e955
BW
11034@code{@var{B}::@var{var}} means ``the variable named @var{var} that
11035appears in function or file @var{B}.'' When @var{B} is a file name,
11036you must typically surround it in single quotes.
e07c999f
PH
11037
11038@item
11039The expression @code{@{@var{type}@} @var{addr}} means ``the variable of type
11040@var{type} that appears at address @var{addr}.''
11041
11042@item
11043A name starting with @samp{$} is a convenience variable
11044(@pxref{Convenience Vars}) or a machine register (@pxref{Registers}).
11045@end itemize
11046
ae21e955
BW
11047In addition, @value{GDBN} provides a few other shortcuts and outright
11048additions specific to Ada:
e07c999f
PH
11049
11050@itemize @bullet
11051@item
11052The assignment statement is allowed as an expression, returning
11053its right-hand operand as its value. Thus, you may enter
11054
11055@smallexample
11056set x := y + 3
11057print A(tmp := y + 1)
11058@end smallexample
11059
11060@item
11061The semicolon is allowed as an ``operator,'' returning as its value
11062the value of its right-hand operand.
11063This allows, for example,
11064complex conditional breaks:
11065
11066@smallexample
11067break f
11068condition 1 (report(i); k += 1; A(k) > 100)
11069@end smallexample
11070
11071@item
11072Rather than use catenation and symbolic character names to introduce special
11073characters into strings, one may instead use a special bracket notation,
11074which is also used to print strings. A sequence of characters of the form
11075@samp{["@var{XX}"]} within a string or character literal denotes the
11076(single) character whose numeric encoding is @var{XX} in hexadecimal. The
11077sequence of characters @samp{["""]} also denotes a single quotation mark
11078in strings. For example,
11079@smallexample
11080 "One line.["0a"]Next line.["0a"]"
11081@end smallexample
11082@noindent
ae21e955
BW
11083contains an ASCII newline character (@code{Ada.Characters.Latin_1.LF})
11084after each period.
e07c999f
PH
11085
11086@item
11087The subtype used as a prefix for the attributes @t{'Pos}, @t{'Min}, and
11088@t{'Max} is optional (and is ignored in any case). For example, it is valid
11089to write
11090
11091@smallexample
11092print 'max(x, y)
11093@end smallexample
11094
11095@item
11096When printing arrays, @value{GDBN} uses positional notation when the
11097array has a lower bound of 1, and uses a modified named notation otherwise.
ae21e955
BW
11098For example, a one-dimensional array of three integers with a lower bound
11099of 3 might print as
e07c999f
PH
11100
11101@smallexample
11102(3 => 10, 17, 1)
11103@end smallexample
11104
11105@noindent
11106That is, in contrast to valid Ada, only the first component has a @code{=>}
11107clause.
11108
11109@item
11110You may abbreviate attributes in expressions with any unique,
11111multi-character subsequence of
11112their names (an exact match gets preference).
11113For example, you may use @t{a'len}, @t{a'gth}, or @t{a'lh}
11114in place of @t{a'length}.
11115
11116@item
11117@cindex quoting Ada internal identifiers
11118Since Ada is case-insensitive, the debugger normally maps identifiers you type
11119to lower case. The GNAT compiler uses upper-case characters for
11120some of its internal identifiers, which are normally of no interest to users.
11121For the rare occasions when you actually have to look at them,
11122enclose them in angle brackets to avoid the lower-case mapping.
11123For example,
11124@smallexample
11125@value{GDBP} print <JMPBUF_SAVE>[0]
11126@end smallexample
11127
11128@item
11129Printing an object of class-wide type or dereferencing an
11130access-to-class-wide value will display all the components of the object's
11131specific type (as indicated by its run-time tag). Likewise, component
11132selection on such a value will operate on the specific type of the
11133object.
11134
11135@end itemize
11136
11137@node Stopping Before Main Program
11138@subsubsection Stopping at the Very Beginning
11139
11140@cindex breakpointing Ada elaboration code
11141It is sometimes necessary to debug the program during elaboration, and
11142before reaching the main procedure.
11143As defined in the Ada Reference
11144Manual, the elaboration code is invoked from a procedure called
11145@code{adainit}. To run your program up to the beginning of
11146elaboration, simply use the following two commands:
11147@code{tbreak adainit} and @code{run}.
11148
11149@node Ada Glitches
11150@subsubsection Known Peculiarities of Ada Mode
11151@cindex Ada, problems
11152
11153Besides the omissions listed previously (@pxref{Omissions from Ada}),
11154we know of several problems with and limitations of Ada mode in
11155@value{GDBN},
11156some of which will be fixed with planned future releases of the debugger
11157and the GNU Ada compiler.
11158
11159@itemize @bullet
11160@item
11161Currently, the debugger
11162has insufficient information to determine whether certain pointers represent
11163pointers to objects or the objects themselves.
11164Thus, the user may have to tack an extra @code{.all} after an expression
11165to get it printed properly.
11166
11167@item
11168Static constants that the compiler chooses not to materialize as objects in
11169storage are invisible to the debugger.
11170
11171@item
11172Named parameter associations in function argument lists are ignored (the
11173argument lists are treated as positional).
11174
11175@item
11176Many useful library packages are currently invisible to the debugger.
11177
11178@item
11179Fixed-point arithmetic, conversions, input, and output is carried out using
11180floating-point arithmetic, and may give results that only approximate those on
11181the host machine.
11182
11183@item
11184The type of the @t{'Address} attribute may not be @code{System.Address}.
11185
11186@item
11187The GNAT compiler never generates the prefix @code{Standard} for any of
11188the standard symbols defined by the Ada language. @value{GDBN} knows about
11189this: it will strip the prefix from names when you use it, and will never
11190look for a name you have so qualified among local symbols, nor match against
11191symbols in other packages or subprograms. If you have
11192defined entities anywhere in your program other than parameters and
11193local variables whose simple names match names in @code{Standard},
11194GNAT's lack of qualification here can cause confusion. When this happens,
11195you can usually resolve the confusion
11196by qualifying the problematic names with package
11197@code{Standard} explicitly.
11198@end itemize
11199
79a6e687
BW
11200@node Unsupported Languages
11201@section Unsupported Languages
4e562065
JB
11202
11203@cindex unsupported languages
11204@cindex minimal language
11205In addition to the other fully-supported programming languages,
11206@value{GDBN} also provides a pseudo-language, called @code{minimal}.
11207It does not represent a real programming language, but provides a set
11208of capabilities close to what the C or assembly languages provide.
11209This should allow most simple operations to be performed while debugging
11210an application that uses a language currently not supported by @value{GDBN}.
11211
11212If the language is set to @code{auto}, @value{GDBN} will automatically
11213select this language if the current frame corresponds to an unsupported
11214language.
11215
6d2ebf8b 11216@node Symbols
c906108c
SS
11217@chapter Examining the Symbol Table
11218
d4f3574e 11219The commands described in this chapter allow you to inquire about the
c906108c
SS
11220symbols (names of variables, functions and types) defined in your
11221program. This information is inherent in the text of your program and
11222does not change as your program executes. @value{GDBN} finds it in your
11223program's symbol table, in the file indicated when you started @value{GDBN}
79a6e687
BW
11224(@pxref{File Options, ,Choosing Files}), or by one of the
11225file-management commands (@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
11226
11227@cindex symbol names
11228@cindex names of symbols
11229@cindex quoting names
11230Occasionally, you may need to refer to symbols that contain unusual
11231characters, which @value{GDBN} ordinarily treats as word delimiters. The
11232most frequent case is in referring to static variables in other
79a6e687 11233source files (@pxref{Variables,,Program Variables}). File names
c906108c
SS
11234are recorded in object files as debugging symbols, but @value{GDBN} would
11235ordinarily parse a typical file name, like @file{foo.c}, as the three words
11236@samp{foo} @samp{.} @samp{c}. To allow @value{GDBN} to recognize
11237@samp{foo.c} as a single symbol, enclose it in single quotes; for example,
11238
474c8240 11239@smallexample
c906108c 11240p 'foo.c'::x
474c8240 11241@end smallexample
c906108c
SS
11242
11243@noindent
11244looks up the value of @code{x} in the scope of the file @file{foo.c}.
11245
11246@table @code
a8f24a35
EZ
11247@cindex case-insensitive symbol names
11248@cindex case sensitivity in symbol names
11249@kindex set case-sensitive
11250@item set case-sensitive on
11251@itemx set case-sensitive off
11252@itemx set case-sensitive auto
11253Normally, when @value{GDBN} looks up symbols, it matches their names
11254with case sensitivity determined by the current source language.
11255Occasionally, you may wish to control that. The command @code{set
11256case-sensitive} lets you do that by specifying @code{on} for
11257case-sensitive matches or @code{off} for case-insensitive ones. If
11258you specify @code{auto}, case sensitivity is reset to the default
11259suitable for the source language. The default is case-sensitive
11260matches for all languages except for Fortran, for which the default is
11261case-insensitive matches.
11262
9c16f35a
EZ
11263@kindex show case-sensitive
11264@item show case-sensitive
a8f24a35
EZ
11265This command shows the current setting of case sensitivity for symbols
11266lookups.
11267
c906108c 11268@kindex info address
b37052ae 11269@cindex address of a symbol
c906108c
SS
11270@item info address @var{symbol}
11271Describe where the data for @var{symbol} is stored. For a register
11272variable, this says which register it is kept in. For a non-register
11273local variable, this prints the stack-frame offset at which the variable
11274is always stored.
11275
11276Note the contrast with @samp{print &@var{symbol}}, which does not work
11277at all for a register variable, and for a stack local variable prints
11278the exact address of the current instantiation of the variable.
11279
3d67e040 11280@kindex info symbol
b37052ae 11281@cindex symbol from address
9c16f35a 11282@cindex closest symbol and offset for an address
3d67e040
EZ
11283@item info symbol @var{addr}
11284Print the name of a symbol which is stored at the address @var{addr}.
11285If no symbol is stored exactly at @var{addr}, @value{GDBN} prints the
11286nearest symbol and an offset from it:
11287
474c8240 11288@smallexample
3d67e040
EZ
11289(@value{GDBP}) info symbol 0x54320
11290_initialize_vx + 396 in section .text
474c8240 11291@end smallexample
3d67e040
EZ
11292
11293@noindent
11294This is the opposite of the @code{info address} command. You can use
11295it to find out the name of a variable or a function given its address.
11296
c906108c 11297@kindex whatis
62f3a2ba
FF
11298@item whatis [@var{arg}]
11299Print the data type of @var{arg}, which can be either an expression or
11300a data type. With no argument, print the data type of @code{$}, the
11301last value in the value history. If @var{arg} is an expression, it is
11302not actually evaluated, and any side-effecting operations (such as
11303assignments or function calls) inside it do not take place. If
11304@var{arg} is a type name, it may be the name of a type or typedef, or
11305for C code it may have the form @samp{class @var{class-name}},
11306@samp{struct @var{struct-tag}}, @samp{union @var{union-tag}} or
11307@samp{enum @var{enum-tag}}.
c906108c
SS
11308@xref{Expressions, ,Expressions}.
11309
c906108c 11310@kindex ptype
62f3a2ba
FF
11311@item ptype [@var{arg}]
11312@code{ptype} accepts the same arguments as @code{whatis}, but prints a
11313detailed description of the type, instead of just the name of the type.
11314@xref{Expressions, ,Expressions}.
c906108c
SS
11315
11316For example, for this variable declaration:
11317
474c8240 11318@smallexample
c906108c 11319struct complex @{double real; double imag;@} v;
474c8240 11320@end smallexample
c906108c
SS
11321
11322@noindent
11323the two commands give this output:
11324
474c8240 11325@smallexample
c906108c
SS
11326@group
11327(@value{GDBP}) whatis v
11328type = struct complex
11329(@value{GDBP}) ptype v
11330type = struct complex @{
11331 double real;
11332 double imag;
11333@}
11334@end group
474c8240 11335@end smallexample
c906108c
SS
11336
11337@noindent
11338As with @code{whatis}, using @code{ptype} without an argument refers to
11339the type of @code{$}, the last value in the value history.
11340
ab1adacd
EZ
11341@cindex incomplete type
11342Sometimes, programs use opaque data types or incomplete specifications
11343of complex data structure. If the debug information included in the
11344program does not allow @value{GDBN} to display a full declaration of
11345the data type, it will say @samp{<incomplete type>}. For example,
11346given these declarations:
11347
11348@smallexample
11349 struct foo;
11350 struct foo *fooptr;
11351@end smallexample
11352
11353@noindent
11354but no definition for @code{struct foo} itself, @value{GDBN} will say:
11355
11356@smallexample
ddb50cd7 11357 (@value{GDBP}) ptype foo
ab1adacd
EZ
11358 $1 = <incomplete type>
11359@end smallexample
11360
11361@noindent
11362``Incomplete type'' is C terminology for data types that are not
11363completely specified.
11364
c906108c
SS
11365@kindex info types
11366@item info types @var{regexp}
11367@itemx info types
09d4efe1
EZ
11368Print a brief description of all types whose names match the regular
11369expression @var{regexp} (or all types in your program, if you supply
11370no argument). Each complete typename is matched as though it were a
11371complete line; thus, @samp{i type value} gives information on all
11372types in your program whose names include the string @code{value}, but
11373@samp{i type ^value$} gives information only on types whose complete
11374name is @code{value}.
c906108c
SS
11375
11376This command differs from @code{ptype} in two ways: first, like
11377@code{whatis}, it does not print a detailed description; second, it
11378lists all source files where a type is defined.
11379
b37052ae
EZ
11380@kindex info scope
11381@cindex local variables
09d4efe1 11382@item info scope @var{location}
b37052ae 11383List all the variables local to a particular scope. This command
09d4efe1
EZ
11384accepts a @var{location} argument---a function name, a source line, or
11385an address preceded by a @samp{*}, and prints all the variables local
2a25a5ba
EZ
11386to the scope defined by that location. (@xref{Specify Location}, for
11387details about supported forms of @var{location}.) For example:
b37052ae
EZ
11388
11389@smallexample
11390(@value{GDBP}) @b{info scope command_line_handler}
11391Scope for command_line_handler:
11392Symbol rl is an argument at stack/frame offset 8, length 4.
11393Symbol linebuffer is in static storage at address 0x150a18, length 4.
11394Symbol linelength is in static storage at address 0x150a1c, length 4.
11395Symbol p is a local variable in register $esi, length 4.
11396Symbol p1 is a local variable in register $ebx, length 4.
11397Symbol nline is a local variable in register $edx, length 4.
11398Symbol repeat is a local variable at frame offset -8, length 4.
11399@end smallexample
11400
f5c37c66
EZ
11401@noindent
11402This command is especially useful for determining what data to collect
11403during a @dfn{trace experiment}, see @ref{Tracepoint Actions,
11404collect}.
11405
c906108c
SS
11406@kindex info source
11407@item info source
919d772c
JB
11408Show information about the current source file---that is, the source file for
11409the function containing the current point of execution:
11410@itemize @bullet
11411@item
11412the name of the source file, and the directory containing it,
11413@item
11414the directory it was compiled in,
11415@item
11416its length, in lines,
11417@item
11418which programming language it is written in,
11419@item
11420whether the executable includes debugging information for that file, and
11421if so, what format the information is in (e.g., STABS, Dwarf 2, etc.), and
11422@item
11423whether the debugging information includes information about
11424preprocessor macros.
11425@end itemize
11426
c906108c
SS
11427
11428@kindex info sources
11429@item info sources
11430Print the names of all source files in your program for which there is
11431debugging information, organized into two lists: files whose symbols
11432have already been read, and files whose symbols will be read when needed.
11433
11434@kindex info functions
11435@item info functions
11436Print the names and data types of all defined functions.
11437
11438@item info functions @var{regexp}
11439Print the names and data types of all defined functions
11440whose names contain a match for regular expression @var{regexp}.
11441Thus, @samp{info fun step} finds all functions whose names
11442include @code{step}; @samp{info fun ^step} finds those whose names
b383017d 11443start with @code{step}. If a function name contains characters
c1468174 11444that conflict with the regular expression language (e.g.@:
1c5dfdad 11445@samp{operator*()}), they may be quoted with a backslash.
c906108c
SS
11446
11447@kindex info variables
11448@item info variables
11449Print the names and data types of all variables that are declared
6ca652b0 11450outside of functions (i.e.@: excluding local variables).
c906108c
SS
11451
11452@item info variables @var{regexp}
11453Print the names and data types of all variables (except for local
11454variables) whose names contain a match for regular expression
11455@var{regexp}.
11456
b37303ee 11457@kindex info classes
721c2651 11458@cindex Objective-C, classes and selectors
b37303ee
AF
11459@item info classes
11460@itemx info classes @var{regexp}
11461Display all Objective-C classes in your program, or
11462(with the @var{regexp} argument) all those matching a particular regular
11463expression.
11464
11465@kindex info selectors
11466@item info selectors
11467@itemx info selectors @var{regexp}
11468Display all Objective-C selectors in your program, or
11469(with the @var{regexp} argument) all those matching a particular regular
11470expression.
11471
c906108c
SS
11472@ignore
11473This was never implemented.
11474@kindex info methods
11475@item info methods
11476@itemx info methods @var{regexp}
11477The @code{info methods} command permits the user to examine all defined
b37052ae
EZ
11478methods within C@t{++} program, or (with the @var{regexp} argument) a
11479specific set of methods found in the various C@t{++} classes. Many
11480C@t{++} classes provide a large number of methods. Thus, the output
c906108c
SS
11481from the @code{ptype} command can be overwhelming and hard to use. The
11482@code{info-methods} command filters the methods, printing only those
11483which match the regular-expression @var{regexp}.
11484@end ignore
11485
c906108c
SS
11486@cindex reloading symbols
11487Some systems allow individual object files that make up your program to
7a292a7a
SS
11488be replaced without stopping and restarting your program. For example,
11489in VxWorks you can simply recompile a defective object file and keep on
11490running. If you are running on one of these systems, you can allow
11491@value{GDBN} to reload the symbols for automatically relinked modules:
c906108c
SS
11492
11493@table @code
11494@kindex set symbol-reloading
11495@item set symbol-reloading on
11496Replace symbol definitions for the corresponding source file when an
11497object file with a particular name is seen again.
11498
11499@item set symbol-reloading off
6d2ebf8b
SS
11500Do not replace symbol definitions when encountering object files of the
11501same name more than once. This is the default state; if you are not
11502running on a system that permits automatic relinking of modules, you
11503should leave @code{symbol-reloading} off, since otherwise @value{GDBN}
11504may discard symbols when linking large programs, that may contain
11505several modules (from different directories or libraries) with the same
11506name.
c906108c
SS
11507
11508@kindex show symbol-reloading
11509@item show symbol-reloading
11510Show the current @code{on} or @code{off} setting.
11511@end table
c906108c 11512
9c16f35a 11513@cindex opaque data types
c906108c
SS
11514@kindex set opaque-type-resolution
11515@item set opaque-type-resolution on
11516Tell @value{GDBN} to resolve opaque types. An opaque type is a type
11517declared as a pointer to a @code{struct}, @code{class}, or
11518@code{union}---for example, @code{struct MyType *}---that is used in one
11519source file although the full declaration of @code{struct MyType} is in
11520another source file. The default is on.
11521
11522A change in the setting of this subcommand will not take effect until
11523the next time symbols for a file are loaded.
11524
11525@item set opaque-type-resolution off
11526Tell @value{GDBN} not to resolve opaque types. In this case, the type
11527is printed as follows:
11528@smallexample
11529@{<no data fields>@}
11530@end smallexample
11531
11532@kindex show opaque-type-resolution
11533@item show opaque-type-resolution
11534Show whether opaque types are resolved or not.
c906108c
SS
11535
11536@kindex maint print symbols
11537@cindex symbol dump
11538@kindex maint print psymbols
11539@cindex partial symbol dump
11540@item maint print symbols @var{filename}
11541@itemx maint print psymbols @var{filename}
11542@itemx maint print msymbols @var{filename}
11543Write a dump of debugging symbol data into the file @var{filename}.
11544These commands are used to debug the @value{GDBN} symbol-reading code. Only
11545symbols with debugging data are included. If you use @samp{maint print
11546symbols}, @value{GDBN} includes all the symbols for which it has already
11547collected full details: that is, @var{filename} reflects symbols for
11548only those files whose symbols @value{GDBN} has read. You can use the
11549command @code{info sources} to find out which files these are. If you
11550use @samp{maint print psymbols} instead, the dump shows information about
11551symbols that @value{GDBN} only knows partially---that is, symbols defined in
11552files that @value{GDBN} has skimmed, but not yet read completely. Finally,
11553@samp{maint print msymbols} dumps just the minimal symbol information
11554required for each object file from which @value{GDBN} has read some symbols.
79a6e687 11555@xref{Files, ,Commands to Specify Files}, for a discussion of how
c906108c 11556@value{GDBN} reads symbols (in the description of @code{symbol-file}).
44ea7b70 11557
5e7b2f39
JB
11558@kindex maint info symtabs
11559@kindex maint info psymtabs
44ea7b70
JB
11560@cindex listing @value{GDBN}'s internal symbol tables
11561@cindex symbol tables, listing @value{GDBN}'s internal
11562@cindex full symbol tables, listing @value{GDBN}'s internal
11563@cindex partial symbol tables, listing @value{GDBN}'s internal
5e7b2f39
JB
11564@item maint info symtabs @r{[} @var{regexp} @r{]}
11565@itemx maint info psymtabs @r{[} @var{regexp} @r{]}
44ea7b70
JB
11566
11567List the @code{struct symtab} or @code{struct partial_symtab}
11568structures whose names match @var{regexp}. If @var{regexp} is not
11569given, list them all. The output includes expressions which you can
11570copy into a @value{GDBN} debugging this one to examine a particular
11571structure in more detail. For example:
11572
11573@smallexample
5e7b2f39 11574(@value{GDBP}) maint info psymtabs dwarf2read
44ea7b70
JB
11575@{ objfile /home/gnu/build/gdb/gdb
11576 ((struct objfile *) 0x82e69d0)
b383017d 11577 @{ psymtab /home/gnu/src/gdb/dwarf2read.c
44ea7b70
JB
11578 ((struct partial_symtab *) 0x8474b10)
11579 readin no
11580 fullname (null)
11581 text addresses 0x814d3c8 -- 0x8158074
11582 globals (* (struct partial_symbol **) 0x8507a08 @@ 9)
11583 statics (* (struct partial_symbol **) 0x40e95b78 @@ 2882)
11584 dependencies (none)
11585 @}
11586@}
5e7b2f39 11587(@value{GDBP}) maint info symtabs
44ea7b70
JB
11588(@value{GDBP})
11589@end smallexample
11590@noindent
11591We see that there is one partial symbol table whose filename contains
11592the string @samp{dwarf2read}, belonging to the @samp{gdb} executable;
11593and we see that @value{GDBN} has not read in any symtabs yet at all.
11594If we set a breakpoint on a function, that will cause @value{GDBN} to
11595read the symtab for the compilation unit containing that function:
11596
11597@smallexample
11598(@value{GDBP}) break dwarf2_psymtab_to_symtab
11599Breakpoint 1 at 0x814e5da: file /home/gnu/src/gdb/dwarf2read.c,
11600line 1574.
5e7b2f39 11601(@value{GDBP}) maint info symtabs
b383017d 11602@{ objfile /home/gnu/build/gdb/gdb
44ea7b70 11603 ((struct objfile *) 0x82e69d0)
b383017d 11604 @{ symtab /home/gnu/src/gdb/dwarf2read.c
44ea7b70
JB
11605 ((struct symtab *) 0x86c1f38)
11606 dirname (null)
11607 fullname (null)
11608 blockvector ((struct blockvector *) 0x86c1bd0) (primary)
1b39d5c0 11609 linetable ((struct linetable *) 0x8370fa0)
44ea7b70
JB
11610 debugformat DWARF 2
11611 @}
11612@}
b383017d 11613(@value{GDBP})
44ea7b70 11614@end smallexample
c906108c
SS
11615@end table
11616
44ea7b70 11617
6d2ebf8b 11618@node Altering
c906108c
SS
11619@chapter Altering Execution
11620
11621Once you think you have found an error in your program, you might want to
11622find out for certain whether correcting the apparent error would lead to
11623correct results in the rest of the run. You can find the answer by
11624experiment, using the @value{GDBN} features for altering execution of the
11625program.
11626
11627For example, you can store new values into variables or memory
7a292a7a
SS
11628locations, give your program a signal, restart it at a different
11629address, or even return prematurely from a function.
c906108c
SS
11630
11631@menu
11632* Assignment:: Assignment to variables
11633* Jumping:: Continuing at a different address
c906108c 11634* Signaling:: Giving your program a signal
c906108c
SS
11635* Returning:: Returning from a function
11636* Calling:: Calling your program's functions
11637* Patching:: Patching your program
11638@end menu
11639
6d2ebf8b 11640@node Assignment
79a6e687 11641@section Assignment to Variables
c906108c
SS
11642
11643@cindex assignment
11644@cindex setting variables
11645To alter the value of a variable, evaluate an assignment expression.
11646@xref{Expressions, ,Expressions}. For example,
11647
474c8240 11648@smallexample
c906108c 11649print x=4
474c8240 11650@end smallexample
c906108c
SS
11651
11652@noindent
11653stores the value 4 into the variable @code{x}, and then prints the
5d161b24 11654value of the assignment expression (which is 4).
c906108c
SS
11655@xref{Languages, ,Using @value{GDBN} with Different Languages}, for more
11656information on operators in supported languages.
c906108c
SS
11657
11658@kindex set variable
11659@cindex variables, setting
11660If you are not interested in seeing the value of the assignment, use the
11661@code{set} command instead of the @code{print} command. @code{set} is
11662really the same as @code{print} except that the expression's value is
11663not printed and is not put in the value history (@pxref{Value History,
79a6e687 11664,Value History}). The expression is evaluated only for its effects.
c906108c 11665
c906108c
SS
11666If the beginning of the argument string of the @code{set} command
11667appears identical to a @code{set} subcommand, use the @code{set
11668variable} command instead of just @code{set}. This command is identical
11669to @code{set} except for its lack of subcommands. For example, if your
11670program has a variable @code{width}, you get an error if you try to set
11671a new value with just @samp{set width=13}, because @value{GDBN} has the
11672command @code{set width}:
11673
474c8240 11674@smallexample
c906108c
SS
11675(@value{GDBP}) whatis width
11676type = double
11677(@value{GDBP}) p width
11678$4 = 13
11679(@value{GDBP}) set width=47
11680Invalid syntax in expression.
474c8240 11681@end smallexample
c906108c
SS
11682
11683@noindent
11684The invalid expression, of course, is @samp{=47}. In
11685order to actually set the program's variable @code{width}, use
11686
474c8240 11687@smallexample
c906108c 11688(@value{GDBP}) set var width=47
474c8240 11689@end smallexample
53a5351d 11690
c906108c
SS
11691Because the @code{set} command has many subcommands that can conflict
11692with the names of program variables, it is a good idea to use the
11693@code{set variable} command instead of just @code{set}. For example, if
11694your program has a variable @code{g}, you run into problems if you try
11695to set a new value with just @samp{set g=4}, because @value{GDBN} has
11696the command @code{set gnutarget}, abbreviated @code{set g}:
11697
474c8240 11698@smallexample
c906108c
SS
11699@group
11700(@value{GDBP}) whatis g
11701type = double
11702(@value{GDBP}) p g
11703$1 = 1
11704(@value{GDBP}) set g=4
2df3850c 11705(@value{GDBP}) p g
c906108c
SS
11706$2 = 1
11707(@value{GDBP}) r
11708The program being debugged has been started already.
11709Start it from the beginning? (y or n) y
11710Starting program: /home/smith/cc_progs/a.out
6d2ebf8b
SS
11711"/home/smith/cc_progs/a.out": can't open to read symbols:
11712 Invalid bfd target.
c906108c
SS
11713(@value{GDBP}) show g
11714The current BFD target is "=4".
11715@end group
474c8240 11716@end smallexample
c906108c
SS
11717
11718@noindent
11719The program variable @code{g} did not change, and you silently set the
11720@code{gnutarget} to an invalid value. In order to set the variable
11721@code{g}, use
11722
474c8240 11723@smallexample
c906108c 11724(@value{GDBP}) set var g=4
474c8240 11725@end smallexample
c906108c
SS
11726
11727@value{GDBN} allows more implicit conversions in assignments than C; you can
11728freely store an integer value into a pointer variable or vice versa,
11729and you can convert any structure to any other structure that is the
11730same length or shorter.
11731@comment FIXME: how do structs align/pad in these conversions?
11732@comment /doc@cygnus.com 18dec1990
11733
11734To store values into arbitrary places in memory, use the @samp{@{@dots{}@}}
11735construct to generate a value of specified type at a specified address
11736(@pxref{Expressions, ,Expressions}). For example, @code{@{int@}0x83040} refers
11737to memory location @code{0x83040} as an integer (which implies a certain size
11738and representation in memory), and
11739
474c8240 11740@smallexample
c906108c 11741set @{int@}0x83040 = 4
474c8240 11742@end smallexample
c906108c
SS
11743
11744@noindent
11745stores the value 4 into that memory location.
11746
6d2ebf8b 11747@node Jumping
79a6e687 11748@section Continuing at a Different Address
c906108c
SS
11749
11750Ordinarily, when you continue your program, you do so at the place where
11751it stopped, with the @code{continue} command. You can instead continue at
11752an address of your own choosing, with the following commands:
11753
11754@table @code
11755@kindex jump
11756@item jump @var{linespec}
2a25a5ba
EZ
11757@itemx jump @var{location}
11758Resume execution at line @var{linespec} or at address given by
11759@var{location}. Execution stops again immediately if there is a
11760breakpoint there. @xref{Specify Location}, for a description of the
11761different forms of @var{linespec} and @var{location}. It is common
11762practice to use the @code{tbreak} command in conjunction with
11763@code{jump}. @xref{Set Breaks, ,Setting Breakpoints}.
c906108c
SS
11764
11765The @code{jump} command does not change the current stack frame, or
11766the stack pointer, or the contents of any memory location or any
11767register other than the program counter. If line @var{linespec} is in
11768a different function from the one currently executing, the results may
11769be bizarre if the two functions expect different patterns of arguments or
11770of local variables. For this reason, the @code{jump} command requests
11771confirmation if the specified line is not in the function currently
11772executing. However, even bizarre results are predictable if you are
11773well acquainted with the machine-language code of your program.
c906108c
SS
11774@end table
11775
c906108c 11776@c Doesn't work on HP-UX; have to set $pcoqh and $pcoqt.
53a5351d
JM
11777On many systems, you can get much the same effect as the @code{jump}
11778command by storing a new value into the register @code{$pc}. The
11779difference is that this does not start your program running; it only
11780changes the address of where it @emph{will} run when you continue. For
11781example,
c906108c 11782
474c8240 11783@smallexample
c906108c 11784set $pc = 0x485
474c8240 11785@end smallexample
c906108c
SS
11786
11787@noindent
11788makes the next @code{continue} command or stepping command execute at
11789address @code{0x485}, rather than at the address where your program stopped.
79a6e687 11790@xref{Continuing and Stepping, ,Continuing and Stepping}.
c906108c
SS
11791
11792The most common occasion to use the @code{jump} command is to back
11793up---perhaps with more breakpoints set---over a portion of a program
11794that has already executed, in order to examine its execution in more
11795detail.
11796
c906108c 11797@c @group
6d2ebf8b 11798@node Signaling
79a6e687 11799@section Giving your Program a Signal
9c16f35a 11800@cindex deliver a signal to a program
c906108c
SS
11801
11802@table @code
11803@kindex signal
11804@item signal @var{signal}
11805Resume execution where your program stopped, but immediately give it the
11806signal @var{signal}. @var{signal} can be the name or the number of a
11807signal. For example, on many systems @code{signal 2} and @code{signal
11808SIGINT} are both ways of sending an interrupt signal.
11809
11810Alternatively, if @var{signal} is zero, continue execution without
11811giving a signal. This is useful when your program stopped on account of
11812a signal and would ordinary see the signal when resumed with the
11813@code{continue} command; @samp{signal 0} causes it to resume without a
11814signal.
11815
11816@code{signal} does not repeat when you press @key{RET} a second time
11817after executing the command.
11818@end table
11819@c @end group
11820
11821Invoking the @code{signal} command is not the same as invoking the
11822@code{kill} utility from the shell. Sending a signal with @code{kill}
11823causes @value{GDBN} to decide what to do with the signal depending on
11824the signal handling tables (@pxref{Signals}). The @code{signal} command
11825passes the signal directly to your program.
11826
c906108c 11827
6d2ebf8b 11828@node Returning
79a6e687 11829@section Returning from a Function
c906108c
SS
11830
11831@table @code
11832@cindex returning from a function
11833@kindex return
11834@item return
11835@itemx return @var{expression}
11836You can cancel execution of a function call with the @code{return}
11837command. If you give an
11838@var{expression} argument, its value is used as the function's return
11839value.
11840@end table
11841
11842When you use @code{return}, @value{GDBN} discards the selected stack frame
11843(and all frames within it). You can think of this as making the
11844discarded frame return prematurely. If you wish to specify a value to
11845be returned, give that value as the argument to @code{return}.
11846
11847This pops the selected stack frame (@pxref{Selection, ,Selecting a
79a6e687 11848Frame}), and any other frames inside of it, leaving its caller as the
c906108c
SS
11849innermost remaining frame. That frame becomes selected. The
11850specified value is stored in the registers used for returning values
11851of functions.
11852
11853The @code{return} command does not resume execution; it leaves the
11854program stopped in the state that would exist if the function had just
11855returned. In contrast, the @code{finish} command (@pxref{Continuing
79a6e687 11856and Stepping, ,Continuing and Stepping}) resumes execution until the
c906108c
SS
11857selected stack frame returns naturally.
11858
6d2ebf8b 11859@node Calling
79a6e687 11860@section Calling Program Functions
c906108c 11861
f8568604 11862@table @code
c906108c 11863@cindex calling functions
f8568604
EZ
11864@cindex inferior functions, calling
11865@item print @var{expr}
d3e8051b 11866Evaluate the expression @var{expr} and display the resulting value.
f8568604
EZ
11867@var{expr} may include calls to functions in the program being
11868debugged.
11869
c906108c 11870@kindex call
c906108c
SS
11871@item call @var{expr}
11872Evaluate the expression @var{expr} without displaying @code{void}
11873returned values.
c906108c
SS
11874
11875You can use this variant of the @code{print} command if you want to
f8568604
EZ
11876execute a function from your program that does not return anything
11877(a.k.a.@: @dfn{a void function}), but without cluttering the output
11878with @code{void} returned values that @value{GDBN} will otherwise
11879print. If the result is not void, it is printed and saved in the
11880value history.
11881@end table
11882
9c16f35a
EZ
11883It is possible for the function you call via the @code{print} or
11884@code{call} command to generate a signal (e.g., if there's a bug in
11885the function, or if you passed it incorrect arguments). What happens
11886in that case is controlled by the @code{set unwindonsignal} command.
11887
11888@table @code
11889@item set unwindonsignal
11890@kindex set unwindonsignal
11891@cindex unwind stack in called functions
11892@cindex call dummy stack unwinding
11893Set unwinding of the stack if a signal is received while in a function
11894that @value{GDBN} called in the program being debugged. If set to on,
11895@value{GDBN} unwinds the stack it created for the call and restores
11896the context to what it was before the call. If set to off (the
11897default), @value{GDBN} stops in the frame where the signal was
11898received.
11899
11900@item show unwindonsignal
11901@kindex show unwindonsignal
11902Show the current setting of stack unwinding in the functions called by
11903@value{GDBN}.
11904@end table
11905
f8568604
EZ
11906@cindex weak alias functions
11907Sometimes, a function you wish to call is actually a @dfn{weak alias}
11908for another function. In such case, @value{GDBN} might not pick up
11909the type information, including the types of the function arguments,
11910which causes @value{GDBN} to call the inferior function incorrectly.
11911As a result, the called function will function erroneously and may
11912even crash. A solution to that is to use the name of the aliased
11913function instead.
c906108c 11914
6d2ebf8b 11915@node Patching
79a6e687 11916@section Patching Programs
7a292a7a 11917
c906108c
SS
11918@cindex patching binaries
11919@cindex writing into executables
c906108c 11920@cindex writing into corefiles
c906108c 11921
7a292a7a
SS
11922By default, @value{GDBN} opens the file containing your program's
11923executable code (or the corefile) read-only. This prevents accidental
11924alterations to machine code; but it also prevents you from intentionally
11925patching your program's binary.
c906108c
SS
11926
11927If you'd like to be able to patch the binary, you can specify that
11928explicitly with the @code{set write} command. For example, you might
11929want to turn on internal debugging flags, or even to make emergency
11930repairs.
11931
11932@table @code
11933@kindex set write
11934@item set write on
11935@itemx set write off
7a292a7a
SS
11936If you specify @samp{set write on}, @value{GDBN} opens executable and
11937core files for both reading and writing; if you specify @samp{set write
c906108c
SS
11938off} (the default), @value{GDBN} opens them read-only.
11939
11940If you have already loaded a file, you must load it again (using the
7a292a7a
SS
11941@code{exec-file} or @code{core-file} command) after changing @code{set
11942write}, for your new setting to take effect.
c906108c
SS
11943
11944@item show write
11945@kindex show write
7a292a7a
SS
11946Display whether executable files and core files are opened for writing
11947as well as reading.
c906108c
SS
11948@end table
11949
6d2ebf8b 11950@node GDB Files
c906108c
SS
11951@chapter @value{GDBN} Files
11952
7a292a7a
SS
11953@value{GDBN} needs to know the file name of the program to be debugged,
11954both in order to read its symbol table and in order to start your
11955program. To debug a core dump of a previous run, you must also tell
11956@value{GDBN} the name of the core dump file.
c906108c
SS
11957
11958@menu
11959* Files:: Commands to specify files
5b5d99cf 11960* Separate Debug Files:: Debugging information in separate files
c906108c
SS
11961* Symbol Errors:: Errors reading symbol files
11962@end menu
11963
6d2ebf8b 11964@node Files
79a6e687 11965@section Commands to Specify Files
c906108c 11966
7a292a7a 11967@cindex symbol table
c906108c 11968@cindex core dump file
7a292a7a
SS
11969
11970You may want to specify executable and core dump file names. The usual
11971way to do this is at start-up time, using the arguments to
11972@value{GDBN}'s start-up commands (@pxref{Invocation, , Getting In and
11973Out of @value{GDBN}}).
c906108c
SS
11974
11975Occasionally it is necessary to change to a different file during a
397ca115
EZ
11976@value{GDBN} session. Or you may run @value{GDBN} and forget to
11977specify a file you want to use. Or you are debugging a remote target
79a6e687
BW
11978via @code{gdbserver} (@pxref{Server, file, Using the @code{gdbserver}
11979Program}). In these situations the @value{GDBN} commands to specify
0869d01b 11980new files are useful.
c906108c
SS
11981
11982@table @code
11983@cindex executable file
11984@kindex file
11985@item file @var{filename}
11986Use @var{filename} as the program to be debugged. It is read for its
11987symbols and for the contents of pure memory. It is also the program
11988executed when you use the @code{run} command. If you do not specify a
5d161b24
DB
11989directory and the file is not found in the @value{GDBN} working directory,
11990@value{GDBN} uses the environment variable @code{PATH} as a list of
11991directories to search, just as the shell does when looking for a program
11992to run. You can change the value of this variable, for both @value{GDBN}
c906108c
SS
11993and your program, using the @code{path} command.
11994
fc8be69e
EZ
11995@cindex unlinked object files
11996@cindex patching object files
11997You can load unlinked object @file{.o} files into @value{GDBN} using
11998the @code{file} command. You will not be able to ``run'' an object
11999file, but you can disassemble functions and inspect variables. Also,
12000if the underlying BFD functionality supports it, you could use
12001@kbd{gdb -write} to patch object files using this technique. Note
12002that @value{GDBN} can neither interpret nor modify relocations in this
12003case, so branches and some initialized variables will appear to go to
12004the wrong place. But this feature is still handy from time to time.
12005
c906108c
SS
12006@item file
12007@code{file} with no argument makes @value{GDBN} discard any information it
12008has on both executable file and the symbol table.
12009
12010@kindex exec-file
12011@item exec-file @r{[} @var{filename} @r{]}
12012Specify that the program to be run (but not the symbol table) is found
12013in @var{filename}. @value{GDBN} searches the environment variable @code{PATH}
12014if necessary to locate your program. Omitting @var{filename} means to
12015discard information on the executable file.
12016
12017@kindex symbol-file
12018@item symbol-file @r{[} @var{filename} @r{]}
12019Read symbol table information from file @var{filename}. @code{PATH} is
12020searched when necessary. Use the @code{file} command to get both symbol
12021table and program to run from the same file.
12022
12023@code{symbol-file} with no argument clears out @value{GDBN} information on your
12024program's symbol table.
12025
ae5a43e0
DJ
12026The @code{symbol-file} command causes @value{GDBN} to forget the contents of
12027some breakpoints and auto-display expressions. This is because they may
12028contain pointers to the internal data recording symbols and data types,
12029which are part of the old symbol table data being discarded inside
12030@value{GDBN}.
c906108c
SS
12031
12032@code{symbol-file} does not repeat if you press @key{RET} again after
12033executing it once.
12034
12035When @value{GDBN} is configured for a particular environment, it
12036understands debugging information in whatever format is the standard
12037generated for that environment; you may use either a @sc{gnu} compiler, or
12038other compilers that adhere to the local conventions.
c906108c 12039Best results are usually obtained from @sc{gnu} compilers; for example,
e22ea452 12040using @code{@value{NGCC}} you can generate debugging information for
c906108c 12041optimized code.
c906108c
SS
12042
12043For most kinds of object files, with the exception of old SVR3 systems
12044using COFF, the @code{symbol-file} command does not normally read the
12045symbol table in full right away. Instead, it scans the symbol table
12046quickly to find which source files and which symbols are present. The
12047details are read later, one source file at a time, as they are needed.
12048
12049The purpose of this two-stage reading strategy is to make @value{GDBN}
12050start up faster. For the most part, it is invisible except for
12051occasional pauses while the symbol table details for a particular source
12052file are being read. (The @code{set verbose} command can turn these
12053pauses into messages if desired. @xref{Messages/Warnings, ,Optional
79a6e687 12054Warnings and Messages}.)
c906108c 12055
c906108c
SS
12056We have not implemented the two-stage strategy for COFF yet. When the
12057symbol table is stored in COFF format, @code{symbol-file} reads the
12058symbol table data in full right away. Note that ``stabs-in-COFF''
12059still does the two-stage strategy, since the debug info is actually
12060in stabs format.
12061
12062@kindex readnow
12063@cindex reading symbols immediately
12064@cindex symbols, reading immediately
a94ab193
EZ
12065@item symbol-file @var{filename} @r{[} -readnow @r{]}
12066@itemx file @var{filename} @r{[} -readnow @r{]}
c906108c
SS
12067You can override the @value{GDBN} two-stage strategy for reading symbol
12068tables by using the @samp{-readnow} option with any of the commands that
12069load symbol table information, if you want to be sure @value{GDBN} has the
5d161b24 12070entire symbol table available.
c906108c 12071
c906108c
SS
12072@c FIXME: for now no mention of directories, since this seems to be in
12073@c flux. 13mar1992 status is that in theory GDB would look either in
12074@c current dir or in same dir as myprog; but issues like competing
12075@c GDB's, or clutter in system dirs, mean that in practice right now
12076@c only current dir is used. FFish says maybe a special GDB hierarchy
12077@c (eg rooted in val of env var GDBSYMS) could exist for mappable symbol
12078@c files.
12079
c906108c 12080@kindex core-file
09d4efe1 12081@item core-file @r{[}@var{filename}@r{]}
4644b6e3 12082@itemx core
c906108c
SS
12083Specify the whereabouts of a core dump file to be used as the ``contents
12084of memory''. Traditionally, core files contain only some parts of the
12085address space of the process that generated them; @value{GDBN} can access the
12086executable file itself for other parts.
12087
12088@code{core-file} with no argument specifies that no core file is
12089to be used.
12090
12091Note that the core file is ignored when your program is actually running
7a292a7a
SS
12092under @value{GDBN}. So, if you have been running your program and you
12093wish to debug a core file instead, you must kill the subprocess in which
12094the program is running. To do this, use the @code{kill} command
79a6e687 12095(@pxref{Kill Process, ,Killing the Child Process}).
c906108c 12096
c906108c
SS
12097@kindex add-symbol-file
12098@cindex dynamic linking
12099@item add-symbol-file @var{filename} @var{address}
a94ab193 12100@itemx add-symbol-file @var{filename} @var{address} @r{[} -readnow @r{]}
17d9d558 12101@itemx add-symbol-file @var{filename} @r{-s}@var{section} @var{address} @dots{}
96a2c332
SS
12102The @code{add-symbol-file} command reads additional symbol table
12103information from the file @var{filename}. You would use this command
12104when @var{filename} has been dynamically loaded (by some other means)
12105into the program that is running. @var{address} should be the memory
12106address at which the file has been loaded; @value{GDBN} cannot figure
d167840f
EZ
12107this out for itself. You can additionally specify an arbitrary number
12108of @samp{@r{-s}@var{section} @var{address}} pairs, to give an explicit
12109section name and base address for that section. You can specify any
12110@var{address} as an expression.
c906108c
SS
12111
12112The symbol table of the file @var{filename} is added to the symbol table
12113originally read with the @code{symbol-file} command. You can use the
96a2c332
SS
12114@code{add-symbol-file} command any number of times; the new symbol data
12115thus read keeps adding to the old. To discard all old symbol data
12116instead, use the @code{symbol-file} command without any arguments.
c906108c 12117
17d9d558
JB
12118@cindex relocatable object files, reading symbols from
12119@cindex object files, relocatable, reading symbols from
12120@cindex reading symbols from relocatable object files
12121@cindex symbols, reading from relocatable object files
12122@cindex @file{.o} files, reading symbols from
12123Although @var{filename} is typically a shared library file, an
12124executable file, or some other object file which has been fully
12125relocated for loading into a process, you can also load symbolic
12126information from relocatable @file{.o} files, as long as:
12127
12128@itemize @bullet
12129@item
12130the file's symbolic information refers only to linker symbols defined in
12131that file, not to symbols defined by other object files,
12132@item
12133every section the file's symbolic information refers to has actually
12134been loaded into the inferior, as it appears in the file, and
12135@item
12136you can determine the address at which every section was loaded, and
12137provide these to the @code{add-symbol-file} command.
12138@end itemize
12139
12140@noindent
12141Some embedded operating systems, like Sun Chorus and VxWorks, can load
12142relocatable files into an already running program; such systems
12143typically make the requirements above easy to meet. However, it's
12144important to recognize that many native systems use complex link
49efadf5 12145procedures (@code{.linkonce} section factoring and C@t{++} constructor table
17d9d558
JB
12146assembly, for example) that make the requirements difficult to meet. In
12147general, one cannot assume that using @code{add-symbol-file} to read a
12148relocatable object file's symbolic information will have the same effect
12149as linking the relocatable object file into the program in the normal
12150way.
12151
c906108c
SS
12152@code{add-symbol-file} does not repeat if you press @key{RET} after using it.
12153
c45da7e6
EZ
12154@kindex add-symbol-file-from-memory
12155@cindex @code{syscall DSO}
12156@cindex load symbols from memory
12157@item add-symbol-file-from-memory @var{address}
12158Load symbols from the given @var{address} in a dynamically loaded
12159object file whose image is mapped directly into the inferior's memory.
12160For example, the Linux kernel maps a @code{syscall DSO} into each
12161process's address space; this DSO provides kernel-specific code for
12162some system calls. The argument can be any expression whose
12163evaluation yields the address of the file's shared object file header.
12164For this command to work, you must have used @code{symbol-file} or
12165@code{exec-file} commands in advance.
12166
09d4efe1
EZ
12167@kindex add-shared-symbol-files
12168@kindex assf
12169@item add-shared-symbol-files @var{library-file}
12170@itemx assf @var{library-file}
12171The @code{add-shared-symbol-files} command can currently be used only
12172in the Cygwin build of @value{GDBN} on MS-Windows OS, where it is an
12173alias for the @code{dll-symbols} command (@pxref{Cygwin Native}).
12174@value{GDBN} automatically looks for shared libraries, however if
12175@value{GDBN} does not find yours, you can invoke
12176@code{add-shared-symbol-files}. It takes one argument: the shared
12177library's file name. @code{assf} is a shorthand alias for
12178@code{add-shared-symbol-files}.
c906108c 12179
c906108c 12180@kindex section
09d4efe1
EZ
12181@item section @var{section} @var{addr}
12182The @code{section} command changes the base address of the named
12183@var{section} of the exec file to @var{addr}. This can be used if the
12184exec file does not contain section addresses, (such as in the
12185@code{a.out} format), or when the addresses specified in the file
12186itself are wrong. Each section must be changed separately. The
12187@code{info files} command, described below, lists all the sections and
12188their addresses.
c906108c
SS
12189
12190@kindex info files
12191@kindex info target
12192@item info files
12193@itemx info target
7a292a7a
SS
12194@code{info files} and @code{info target} are synonymous; both print the
12195current target (@pxref{Targets, ,Specifying a Debugging Target}),
12196including the names of the executable and core dump files currently in
12197use by @value{GDBN}, and the files from which symbols were loaded. The
12198command @code{help target} lists all possible targets rather than
12199current ones.
12200
fe95c787
MS
12201@kindex maint info sections
12202@item maint info sections
12203Another command that can give you extra information about program sections
12204is @code{maint info sections}. In addition to the section information
12205displayed by @code{info files}, this command displays the flags and file
12206offset of each section in the executable and core dump files. In addition,
12207@code{maint info sections} provides the following command options (which
12208may be arbitrarily combined):
12209
12210@table @code
12211@item ALLOBJ
12212Display sections for all loaded object files, including shared libraries.
12213@item @var{sections}
6600abed 12214Display info only for named @var{sections}.
fe95c787
MS
12215@item @var{section-flags}
12216Display info only for sections for which @var{section-flags} are true.
12217The section flags that @value{GDBN} currently knows about are:
12218@table @code
12219@item ALLOC
12220Section will have space allocated in the process when loaded.
12221Set for all sections except those containing debug information.
12222@item LOAD
12223Section will be loaded from the file into the child process memory.
12224Set for pre-initialized code and data, clear for @code{.bss} sections.
12225@item RELOC
12226Section needs to be relocated before loading.
12227@item READONLY
12228Section cannot be modified by the child process.
12229@item CODE
12230Section contains executable code only.
6600abed 12231@item DATA
fe95c787
MS
12232Section contains data only (no executable code).
12233@item ROM
12234Section will reside in ROM.
12235@item CONSTRUCTOR
12236Section contains data for constructor/destructor lists.
12237@item HAS_CONTENTS
12238Section is not empty.
12239@item NEVER_LOAD
12240An instruction to the linker to not output the section.
12241@item COFF_SHARED_LIBRARY
12242A notification to the linker that the section contains
12243COFF shared library information.
12244@item IS_COMMON
12245Section contains common symbols.
12246@end table
12247@end table
6763aef9 12248@kindex set trust-readonly-sections
9c16f35a 12249@cindex read-only sections
6763aef9
MS
12250@item set trust-readonly-sections on
12251Tell @value{GDBN} that readonly sections in your object file
6ca652b0 12252really are read-only (i.e.@: that their contents will not change).
6763aef9
MS
12253In that case, @value{GDBN} can fetch values from these sections
12254out of the object file, rather than from the target program.
12255For some targets (notably embedded ones), this can be a significant
12256enhancement to debugging performance.
12257
12258The default is off.
12259
12260@item set trust-readonly-sections off
15110bc3 12261Tell @value{GDBN} not to trust readonly sections. This means that
6763aef9
MS
12262the contents of the section might change while the program is running,
12263and must therefore be fetched from the target when needed.
9c16f35a
EZ
12264
12265@item show trust-readonly-sections
12266Show the current setting of trusting readonly sections.
c906108c
SS
12267@end table
12268
12269All file-specifying commands allow both absolute and relative file names
12270as arguments. @value{GDBN} always converts the file name to an absolute file
12271name and remembers it that way.
12272
c906108c 12273@cindex shared libraries
9cceb671
DJ
12274@anchor{Shared Libraries}
12275@value{GDBN} supports @sc{gnu}/Linux, MS-Windows, HP-UX, SunOS, SVr4, Irix,
9c16f35a 12276and IBM RS/6000 AIX shared libraries.
53a5351d 12277
9cceb671
DJ
12278On MS-Windows @value{GDBN} must be linked with the Expat library to support
12279shared libraries. @xref{Expat}.
12280
c906108c
SS
12281@value{GDBN} automatically loads symbol definitions from shared libraries
12282when you use the @code{run} command, or when you examine a core file.
12283(Before you issue the @code{run} command, @value{GDBN} does not understand
12284references to a function in a shared library, however---unless you are
12285debugging a core file).
53a5351d
JM
12286
12287On HP-UX, if the program loads a library explicitly, @value{GDBN}
12288automatically loads the symbols at the time of the @code{shl_load} call.
12289
c906108c
SS
12290@c FIXME: some @value{GDBN} release may permit some refs to undef
12291@c FIXME...symbols---eg in a break cmd---assuming they are from a shared
12292@c FIXME...lib; check this from time to time when updating manual
12293
b7209cb4
FF
12294There are times, however, when you may wish to not automatically load
12295symbol definitions from shared libraries, such as when they are
12296particularly large or there are many of them.
12297
12298To control the automatic loading of shared library symbols, use the
12299commands:
12300
12301@table @code
12302@kindex set auto-solib-add
12303@item set auto-solib-add @var{mode}
12304If @var{mode} is @code{on}, symbols from all shared object libraries
12305will be loaded automatically when the inferior begins execution, you
12306attach to an independently started inferior, or when the dynamic linker
12307informs @value{GDBN} that a new library has been loaded. If @var{mode}
12308is @code{off}, symbols must be loaded manually, using the
12309@code{sharedlibrary} command. The default value is @code{on}.
12310
dcaf7c2c
EZ
12311@cindex memory used for symbol tables
12312If your program uses lots of shared libraries with debug info that
12313takes large amounts of memory, you can decrease the @value{GDBN}
12314memory footprint by preventing it from automatically loading the
12315symbols from shared libraries. To that end, type @kbd{set
12316auto-solib-add off} before running the inferior, then load each
12317library whose debug symbols you do need with @kbd{sharedlibrary
d3e8051b 12318@var{regexp}}, where @var{regexp} is a regular expression that matches
dcaf7c2c
EZ
12319the libraries whose symbols you want to be loaded.
12320
b7209cb4
FF
12321@kindex show auto-solib-add
12322@item show auto-solib-add
12323Display the current autoloading mode.
12324@end table
12325
c45da7e6 12326@cindex load shared library
b7209cb4
FF
12327To explicitly load shared library symbols, use the @code{sharedlibrary}
12328command:
12329
c906108c
SS
12330@table @code
12331@kindex info sharedlibrary
12332@kindex info share
12333@item info share
12334@itemx info sharedlibrary
12335Print the names of the shared libraries which are currently loaded.
12336
12337@kindex sharedlibrary
12338@kindex share
12339@item sharedlibrary @var{regex}
12340@itemx share @var{regex}
c906108c
SS
12341Load shared object library symbols for files matching a
12342Unix regular expression.
12343As with files loaded automatically, it only loads shared libraries
12344required by your program for a core file or after typing @code{run}. If
12345@var{regex} is omitted all shared libraries required by your program are
12346loaded.
c45da7e6
EZ
12347
12348@item nosharedlibrary
12349@kindex nosharedlibrary
12350@cindex unload symbols from shared libraries
12351Unload all shared object library symbols. This discards all symbols
12352that have been loaded from all shared libraries. Symbols from shared
12353libraries that were loaded by explicit user requests are not
12354discarded.
c906108c
SS
12355@end table
12356
721c2651
EZ
12357Sometimes you may wish that @value{GDBN} stops and gives you control
12358when any of shared library events happen. Use the @code{set
12359stop-on-solib-events} command for this:
12360
12361@table @code
12362@item set stop-on-solib-events
12363@kindex set stop-on-solib-events
12364This command controls whether @value{GDBN} should give you control
12365when the dynamic linker notifies it about some shared library event.
12366The most common event of interest is loading or unloading of a new
12367shared library.
12368
12369@item show stop-on-solib-events
12370@kindex show stop-on-solib-events
12371Show whether @value{GDBN} stops and gives you control when shared
12372library events happen.
12373@end table
12374
f5ebfba0
DJ
12375Shared libraries are also supported in many cross or remote debugging
12376configurations. A copy of the target's libraries need to be present on the
12377host system; they need to be the same as the target libraries, although the
12378copies on the target can be stripped as long as the copies on the host are
12379not.
12380
59b7b46f
EZ
12381@cindex where to look for shared libraries
12382For remote debugging, you need to tell @value{GDBN} where the target
12383libraries are, so that it can load the correct copies---otherwise, it
12384may try to load the host's libraries. @value{GDBN} has two variables
12385to specify the search directories for target libraries.
f5ebfba0
DJ
12386
12387@table @code
59b7b46f 12388@cindex prefix for shared library file names
f822c95b 12389@cindex system root, alternate
f5ebfba0 12390@kindex set solib-absolute-prefix
f822c95b
DJ
12391@kindex set sysroot
12392@item set sysroot @var{path}
12393Use @var{path} as the system root for the program being debugged. Any
12394absolute shared library paths will be prefixed with @var{path}; many
12395runtime loaders store the absolute paths to the shared library in the
12396target program's memory. If you use @code{set sysroot} to find shared
12397libraries, they need to be laid out in the same way that they are on
12398the target, with e.g.@: a @file{/lib} and @file{/usr/lib} hierarchy
12399under @var{path}.
12400
12401The @code{set solib-absolute-prefix} command is an alias for @code{set
12402sysroot}.
12403
12404@cindex default system root
59b7b46f 12405@cindex @samp{--with-sysroot}
f822c95b
DJ
12406You can set the default system root by using the configure-time
12407@samp{--with-sysroot} option. If the system root is inside
12408@value{GDBN}'s configured binary prefix (set with @samp{--prefix} or
12409@samp{--exec-prefix}), then the default system root will be updated
12410automatically if the installed @value{GDBN} is moved to a new
12411location.
12412
12413@kindex show sysroot
12414@item show sysroot
f5ebfba0
DJ
12415Display the current shared library prefix.
12416
12417@kindex set solib-search-path
12418@item set solib-search-path @var{path}
f822c95b
DJ
12419If this variable is set, @var{path} is a colon-separated list of
12420directories to search for shared libraries. @samp{solib-search-path}
12421is used after @samp{sysroot} fails to locate the library, or if the
12422path to the library is relative instead of absolute. If you want to
12423use @samp{solib-search-path} instead of @samp{sysroot}, be sure to set
d3e8051b 12424@samp{sysroot} to a nonexistent directory to prevent @value{GDBN} from
f822c95b 12425finding your host's libraries. @samp{sysroot} is preferred; setting
d3e8051b 12426it to a nonexistent directory may interfere with automatic loading
f822c95b 12427of shared library symbols.
f5ebfba0
DJ
12428
12429@kindex show solib-search-path
12430@item show solib-search-path
12431Display the current shared library search path.
12432@end table
12433
5b5d99cf
JB
12434
12435@node Separate Debug Files
12436@section Debugging Information in Separate Files
12437@cindex separate debugging information files
12438@cindex debugging information in separate files
12439@cindex @file{.debug} subdirectories
12440@cindex debugging information directory, global
12441@cindex global debugging information directory
c7e83d54
EZ
12442@cindex build ID, and separate debugging files
12443@cindex @file{.build-id} directory
5b5d99cf
JB
12444
12445@value{GDBN} allows you to put a program's debugging information in a
12446file separate from the executable itself, in a way that allows
12447@value{GDBN} to find and load the debugging information automatically.
c7e83d54
EZ
12448Since debugging information can be very large---sometimes larger
12449than the executable code itself---some systems distribute debugging
5b5d99cf
JB
12450information for their executables in separate files, which users can
12451install only when they need to debug a problem.
12452
c7e83d54
EZ
12453@value{GDBN} supports two ways of specifying the separate debug info
12454file:
5b5d99cf
JB
12455
12456@itemize @bullet
12457@item
c7e83d54
EZ
12458The executable contains a @dfn{debug link} that specifies the name of
12459the separate debug info file. The separate debug file's name is
12460usually @file{@var{executable}.debug}, where @var{executable} is the
12461name of the corresponding executable file without leading directories
12462(e.g., @file{ls.debug} for @file{/usr/bin/ls}). In addition, the
12463debug link specifies a CRC32 checksum for the debug file, which
12464@value{GDBN} uses to validate that the executable and the debug file
12465came from the same build.
12466
12467@item
7e27a47a 12468The executable contains a @dfn{build ID}, a unique bit string that is
c7e83d54 12469also present in the corresponding debug info file. (This is supported
7e27a47a
EZ
12470only on some operating systems, notably those which use the ELF format
12471for binary files and the @sc{gnu} Binutils.) For more details about
12472this feature, see the description of the @option{--build-id}
12473command-line option in @ref{Options, , Command Line Options, ld.info,
12474The GNU Linker}. The debug info file's name is not specified
12475explicitly by the build ID, but can be computed from the build ID, see
12476below.
d3750b24
JK
12477@end itemize
12478
c7e83d54
EZ
12479Depending on the way the debug info file is specified, @value{GDBN}
12480uses two different methods of looking for the debug file:
d3750b24
JK
12481
12482@itemize @bullet
12483@item
c7e83d54
EZ
12484For the ``debug link'' method, @value{GDBN} looks up the named file in
12485the directory of the executable file, then in a subdirectory of that
12486directory named @file{.debug}, and finally under the global debug
12487directory, in a subdirectory whose name is identical to the leading
12488directories of the executable's absolute file name.
12489
12490@item
83f83d7f 12491For the ``build ID'' method, @value{GDBN} looks in the
c7e83d54
EZ
12492@file{.build-id} subdirectory of the global debug directory for a file
12493named @file{@var{nn}/@var{nnnnnnnn}.debug}, where @var{nn} are the
7e27a47a
EZ
12494first 2 hex characters of the build ID bit string, and @var{nnnnnnnn}
12495are the rest of the bit string. (Real build ID strings are 32 or more
12496hex characters, not 10.)
c7e83d54
EZ
12497@end itemize
12498
12499So, for example, suppose you ask @value{GDBN} to debug
7e27a47a
EZ
12500@file{/usr/bin/ls}, which has a debug link that specifies the
12501file @file{ls.debug}, and a build ID whose value in hex is
c7e83d54
EZ
12502@code{abcdef1234}. If the global debug directory is
12503@file{/usr/lib/debug}, then @value{GDBN} will look for the following
12504debug information files, in the indicated order:
12505
12506@itemize @minus
12507@item
12508@file{/usr/lib/debug/.build-id/ab/cdef1234.debug}
d3750b24 12509@item
c7e83d54 12510@file{/usr/bin/ls.debug}
5b5d99cf 12511@item
c7e83d54 12512@file{/usr/bin/.debug/ls.debug}
5b5d99cf 12513@item
c7e83d54 12514@file{/usr/lib/debug/usr/bin/ls.debug}.
5b5d99cf 12515@end itemize
5b5d99cf
JB
12516
12517You can set the global debugging info directory's name, and view the
12518name @value{GDBN} is currently using.
12519
12520@table @code
12521
12522@kindex set debug-file-directory
12523@item set debug-file-directory @var{directory}
12524Set the directory which @value{GDBN} searches for separate debugging
12525information files to @var{directory}.
12526
12527@kindex show debug-file-directory
12528@item show debug-file-directory
12529Show the directory @value{GDBN} searches for separate debugging
12530information files.
12531
12532@end table
12533
12534@cindex @code{.gnu_debuglink} sections
c7e83d54 12535@cindex debug link sections
5b5d99cf
JB
12536A debug link is a special section of the executable file named
12537@code{.gnu_debuglink}. The section must contain:
12538
12539@itemize
12540@item
12541A filename, with any leading directory components removed, followed by
12542a zero byte,
12543@item
12544zero to three bytes of padding, as needed to reach the next four-byte
12545boundary within the section, and
12546@item
12547a four-byte CRC checksum, stored in the same endianness used for the
12548executable file itself. The checksum is computed on the debugging
12549information file's full contents by the function given below, passing
12550zero as the @var{crc} argument.
12551@end itemize
12552
12553Any executable file format can carry a debug link, as long as it can
12554contain a section named @code{.gnu_debuglink} with the contents
12555described above.
12556
d3750b24 12557@cindex @code{.note.gnu.build-id} sections
c7e83d54 12558@cindex build ID sections
7e27a47a
EZ
12559The build ID is a special section in the executable file (and in other
12560ELF binary files that @value{GDBN} may consider). This section is
12561often named @code{.note.gnu.build-id}, but that name is not mandatory.
12562It contains unique identification for the built files---the ID remains
12563the same across multiple builds of the same build tree. The default
12564algorithm SHA1 produces 160 bits (40 hexadecimal characters) of the
12565content for the build ID string. The same section with an identical
12566value is present in the original built binary with symbols, in its
12567stripped variant, and in the separate debugging information file.
d3750b24 12568
5b5d99cf
JB
12569The debugging information file itself should be an ordinary
12570executable, containing a full set of linker symbols, sections, and
12571debugging information. The sections of the debugging information file
c7e83d54
EZ
12572should have the same names, addresses, and sizes as the original file,
12573but they need not contain any data---much like a @code{.bss} section
5b5d99cf
JB
12574in an ordinary executable.
12575
7e27a47a 12576The @sc{gnu} binary utilities (Binutils) package includes the
c7e83d54
EZ
12577@samp{objcopy} utility that can produce
12578the separated executable / debugging information file pairs using the
12579following commands:
12580
12581@smallexample
12582@kbd{objcopy --only-keep-debug foo foo.debug}
12583@kbd{strip -g foo}
c7e83d54
EZ
12584@end smallexample
12585
12586@noindent
12587These commands remove the debugging
83f83d7f
JK
12588information from the executable file @file{foo} and place it in the file
12589@file{foo.debug}. You can use the first, second or both methods to link the
12590two files:
12591
12592@itemize @bullet
12593@item
12594The debug link method needs the following additional command to also leave
12595behind a debug link in @file{foo}:
12596
12597@smallexample
12598@kbd{objcopy --add-gnu-debuglink=foo.debug foo}
12599@end smallexample
12600
12601Ulrich Drepper's @file{elfutils} package, starting with version 0.53, contains
d3750b24 12602a version of the @code{strip} command such that the command @kbd{strip foo -f
83f83d7f
JK
12603foo.debug} has the same functionality as the two @code{objcopy} commands and
12604the @code{ln -s} command above, together.
12605
12606@item
12607Build ID gets embedded into the main executable using @code{ld --build-id} or
12608the @value{NGCC} counterpart @code{gcc -Wl,--build-id}. Build ID support plus
12609compatibility fixes for debug files separation are present in @sc{gnu} binary
7e27a47a 12610utilities (Binutils) package since version 2.18.
83f83d7f
JK
12611@end itemize
12612
12613@noindent
d3750b24 12614
c7e83d54
EZ
12615Since there are many different ways to compute CRC's for the debug
12616link (different polynomials, reversals, byte ordering, etc.), the
12617simplest way to describe the CRC used in @code{.gnu_debuglink}
12618sections is to give the complete code for a function that computes it:
5b5d99cf 12619
4644b6e3 12620@kindex gnu_debuglink_crc32
5b5d99cf
JB
12621@smallexample
12622unsigned long
12623gnu_debuglink_crc32 (unsigned long crc,
12624 unsigned char *buf, size_t len)
12625@{
12626 static const unsigned long crc32_table[256] =
12627 @{
12628 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,
12629 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
12630 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,
12631 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
12632 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,
12633 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
12634 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
12635 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
12636 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,
12637 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
12638 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,
12639 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
12640 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,
12641 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
12642 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,
12643 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
12644 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,
12645 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
12646 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,
12647 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
12648 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,
12649 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
12650 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,
12651 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
12652 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,
12653 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
12654 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,
12655 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
12656 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,
12657 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
12658 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,
12659 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
12660 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,
12661 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
12662 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
12663 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
12664 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,
12665 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
12666 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,
12667 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
12668 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,
12669 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
12670 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,
12671 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
12672 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,
12673 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
12674 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,
12675 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
12676 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
12677 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
12678 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,
12679 0x2d02ef8d
12680 @};
12681 unsigned char *end;
12682
12683 crc = ~crc & 0xffffffff;
12684 for (end = buf + len; buf < end; ++buf)
12685 crc = crc32_table[(crc ^ *buf) & 0xff] ^ (crc >> 8);
e7a3abfc 12686 return ~crc & 0xffffffff;
5b5d99cf
JB
12687@}
12688@end smallexample
12689
c7e83d54
EZ
12690@noindent
12691This computation does not apply to the ``build ID'' method.
12692
5b5d99cf 12693
6d2ebf8b 12694@node Symbol Errors
79a6e687 12695@section Errors Reading Symbol Files
c906108c
SS
12696
12697While reading a symbol file, @value{GDBN} occasionally encounters problems,
12698such as symbol types it does not recognize, or known bugs in compiler
12699output. By default, @value{GDBN} does not notify you of such problems, since
12700they are relatively common and primarily of interest to people
12701debugging compilers. If you are interested in seeing information
12702about ill-constructed symbol tables, you can either ask @value{GDBN} to print
12703only one message about each such type of problem, no matter how many
12704times the problem occurs; or you can ask @value{GDBN} to print more messages,
12705to see how many times the problems occur, with the @code{set
79a6e687
BW
12706complaints} command (@pxref{Messages/Warnings, ,Optional Warnings and
12707Messages}).
c906108c
SS
12708
12709The messages currently printed, and their meanings, include:
12710
12711@table @code
12712@item inner block not inside outer block in @var{symbol}
12713
12714The symbol information shows where symbol scopes begin and end
12715(such as at the start of a function or a block of statements). This
12716error indicates that an inner scope block is not fully contained
12717in its outer scope blocks.
12718
12719@value{GDBN} circumvents the problem by treating the inner block as if it had
12720the same scope as the outer block. In the error message, @var{symbol}
12721may be shown as ``@code{(don't know)}'' if the outer block is not a
12722function.
12723
12724@item block at @var{address} out of order
12725
12726The symbol information for symbol scope blocks should occur in
12727order of increasing addresses. This error indicates that it does not
12728do so.
12729
12730@value{GDBN} does not circumvent this problem, and has trouble
12731locating symbols in the source file whose symbols it is reading. (You
12732can often determine what source file is affected by specifying
79a6e687
BW
12733@code{set verbose on}. @xref{Messages/Warnings, ,Optional Warnings and
12734Messages}.)
c906108c
SS
12735
12736@item bad block start address patched
12737
12738The symbol information for a symbol scope block has a start address
12739smaller than the address of the preceding source line. This is known
12740to occur in the SunOS 4.1.1 (and earlier) C compiler.
12741
12742@value{GDBN} circumvents the problem by treating the symbol scope block as
12743starting on the previous source line.
12744
12745@item bad string table offset in symbol @var{n}
12746
12747@cindex foo
12748Symbol number @var{n} contains a pointer into the string table which is
12749larger than the size of the string table.
12750
12751@value{GDBN} circumvents the problem by considering the symbol to have the
12752name @code{foo}, which may cause other problems if many symbols end up
12753with this name.
12754
12755@item unknown symbol type @code{0x@var{nn}}
12756
7a292a7a
SS
12757The symbol information contains new data types that @value{GDBN} does
12758not yet know how to read. @code{0x@var{nn}} is the symbol type of the
d4f3574e 12759uncomprehended information, in hexadecimal.
c906108c 12760
7a292a7a
SS
12761@value{GDBN} circumvents the error by ignoring this symbol information.
12762This usually allows you to debug your program, though certain symbols
c906108c 12763are not accessible. If you encounter such a problem and feel like
7a292a7a
SS
12764debugging it, you can debug @code{@value{GDBP}} with itself, breakpoint
12765on @code{complain}, then go up to the function @code{read_dbx_symtab}
12766and examine @code{*bufp} to see the symbol.
c906108c
SS
12767
12768@item stub type has NULL name
c906108c 12769
7a292a7a 12770@value{GDBN} could not find the full definition for a struct or class.
c906108c 12771
7a292a7a 12772@item const/volatile indicator missing (ok if using g++ v1.x), got@dots{}
b37052ae 12773The symbol information for a C@t{++} member function is missing some
7a292a7a
SS
12774information that recent versions of the compiler should have output for
12775it.
c906108c
SS
12776
12777@item info mismatch between compiler and debugger
12778
12779@value{GDBN} could not parse a type specification output by the compiler.
7a292a7a 12780
c906108c
SS
12781@end table
12782
6d2ebf8b 12783@node Targets
c906108c 12784@chapter Specifying a Debugging Target
7a292a7a 12785
c906108c 12786@cindex debugging target
c906108c 12787A @dfn{target} is the execution environment occupied by your program.
53a5351d
JM
12788
12789Often, @value{GDBN} runs in the same host environment as your program;
12790in that case, the debugging target is specified as a side effect when
12791you use the @code{file} or @code{core} commands. When you need more
c906108c
SS
12792flexibility---for example, running @value{GDBN} on a physically separate
12793host, or controlling a standalone system over a serial port or a
53a5351d
JM
12794realtime system over a TCP/IP connection---you can use the @code{target}
12795command to specify one of the target types configured for @value{GDBN}
79a6e687 12796(@pxref{Target Commands, ,Commands for Managing Targets}).
c906108c 12797
a8f24a35
EZ
12798@cindex target architecture
12799It is possible to build @value{GDBN} for several different @dfn{target
12800architectures}. When @value{GDBN} is built like that, you can choose
12801one of the available architectures with the @kbd{set architecture}
12802command.
12803
12804@table @code
12805@kindex set architecture
12806@kindex show architecture
12807@item set architecture @var{arch}
12808This command sets the current target architecture to @var{arch}. The
12809value of @var{arch} can be @code{"auto"}, in addition to one of the
12810supported architectures.
12811
12812@item show architecture
12813Show the current target architecture.
9c16f35a
EZ
12814
12815@item set processor
12816@itemx processor
12817@kindex set processor
12818@kindex show processor
12819These are alias commands for, respectively, @code{set architecture}
12820and @code{show architecture}.
a8f24a35
EZ
12821@end table
12822
c906108c
SS
12823@menu
12824* Active Targets:: Active targets
12825* Target Commands:: Commands for managing targets
c906108c 12826* Byte Order:: Choosing target byte order
c906108c
SS
12827@end menu
12828
6d2ebf8b 12829@node Active Targets
79a6e687 12830@section Active Targets
7a292a7a 12831
c906108c
SS
12832@cindex stacking targets
12833@cindex active targets
12834@cindex multiple targets
12835
c906108c 12836There are three classes of targets: processes, core files, and
7a292a7a
SS
12837executable files. @value{GDBN} can work concurrently on up to three
12838active targets, one in each class. This allows you to (for example)
12839start a process and inspect its activity without abandoning your work on
12840a core file.
c906108c
SS
12841
12842For example, if you execute @samp{gdb a.out}, then the executable file
12843@code{a.out} is the only active target. If you designate a core file as
12844well---presumably from a prior run that crashed and coredumped---then
12845@value{GDBN} has two active targets and uses them in tandem, looking
12846first in the corefile target, then in the executable file, to satisfy
12847requests for memory addresses. (Typically, these two classes of target
12848are complementary, since core files contain only a program's
12849read-write memory---variables and so on---plus machine status, while
12850executable files contain only the program text and initialized data.)
c906108c
SS
12851
12852When you type @code{run}, your executable file becomes an active process
7a292a7a
SS
12853target as well. When a process target is active, all @value{GDBN}
12854commands requesting memory addresses refer to that target; addresses in
12855an active core file or executable file target are obscured while the
12856process target is active.
c906108c 12857
7a292a7a 12858Use the @code{core-file} and @code{exec-file} commands to select a new
79a6e687
BW
12859core file or executable target (@pxref{Files, ,Commands to Specify
12860Files}). To specify as a target a process that is already running, use
12861the @code{attach} command (@pxref{Attach, ,Debugging an Already-running
12862Process}).
c906108c 12863
6d2ebf8b 12864@node Target Commands
79a6e687 12865@section Commands for Managing Targets
c906108c
SS
12866
12867@table @code
12868@item target @var{type} @var{parameters}
7a292a7a
SS
12869Connects the @value{GDBN} host environment to a target machine or
12870process. A target is typically a protocol for talking to debugging
12871facilities. You use the argument @var{type} to specify the type or
12872protocol of the target machine.
c906108c
SS
12873
12874Further @var{parameters} are interpreted by the target protocol, but
12875typically include things like device names or host names to connect
12876with, process numbers, and baud rates.
c906108c
SS
12877
12878The @code{target} command does not repeat if you press @key{RET} again
12879after executing the command.
12880
12881@kindex help target
12882@item help target
12883Displays the names of all targets available. To display targets
12884currently selected, use either @code{info target} or @code{info files}
79a6e687 12885(@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
12886
12887@item help target @var{name}
12888Describe a particular target, including any parameters necessary to
12889select it.
12890
12891@kindex set gnutarget
12892@item set gnutarget @var{args}
5d161b24 12893@value{GDBN} uses its own library BFD to read your files. @value{GDBN}
c906108c 12894knows whether it is reading an @dfn{executable},
5d161b24
DB
12895a @dfn{core}, or a @dfn{.o} file; however, you can specify the file format
12896with the @code{set gnutarget} command. Unlike most @code{target} commands,
c906108c
SS
12897with @code{gnutarget} the @code{target} refers to a program, not a machine.
12898
d4f3574e 12899@quotation
c906108c
SS
12900@emph{Warning:} To specify a file format with @code{set gnutarget},
12901you must know the actual BFD name.
d4f3574e 12902@end quotation
c906108c 12903
d4f3574e 12904@noindent
79a6e687 12905@xref{Files, , Commands to Specify Files}.
c906108c 12906
5d161b24 12907@kindex show gnutarget
c906108c
SS
12908@item show gnutarget
12909Use the @code{show gnutarget} command to display what file format
12910@code{gnutarget} is set to read. If you have not set @code{gnutarget},
12911@value{GDBN} will determine the file format for each file automatically,
12912and @code{show gnutarget} displays @samp{The current BDF target is "auto"}.
12913@end table
12914
4644b6e3 12915@cindex common targets
c906108c
SS
12916Here are some common targets (available, or not, depending on the GDB
12917configuration):
c906108c
SS
12918
12919@table @code
4644b6e3 12920@kindex target
c906108c 12921@item target exec @var{program}
4644b6e3 12922@cindex executable file target
c906108c
SS
12923An executable file. @samp{target exec @var{program}} is the same as
12924@samp{exec-file @var{program}}.
12925
c906108c 12926@item target core @var{filename}
4644b6e3 12927@cindex core dump file target
c906108c
SS
12928A core dump file. @samp{target core @var{filename}} is the same as
12929@samp{core-file @var{filename}}.
c906108c 12930
1a10341b 12931@item target remote @var{medium}
4644b6e3 12932@cindex remote target
1a10341b
JB
12933A remote system connected to @value{GDBN} via a serial line or network
12934connection. This command tells @value{GDBN} to use its own remote
12935protocol over @var{medium} for debugging. @xref{Remote Debugging}.
12936
12937For example, if you have a board connected to @file{/dev/ttya} on the
12938machine running @value{GDBN}, you could say:
12939
12940@smallexample
12941target remote /dev/ttya
12942@end smallexample
12943
12944@code{target remote} supports the @code{load} command. This is only
12945useful if you have some other way of getting the stub to the target
12946system, and you can put it somewhere in memory where it won't get
12947clobbered by the download.
c906108c 12948
c906108c 12949@item target sim
4644b6e3 12950@cindex built-in simulator target
2df3850c 12951Builtin CPU simulator. @value{GDBN} includes simulators for most architectures.
104c1213 12952In general,
474c8240 12953@smallexample
104c1213
JM
12954 target sim
12955 load
12956 run
474c8240 12957@end smallexample
d4f3574e 12958@noindent
104c1213 12959works; however, you cannot assume that a specific memory map, device
d4f3574e 12960drivers, or even basic I/O is available, although some simulators do
104c1213
JM
12961provide these. For info about any processor-specific simulator details,
12962see the appropriate section in @ref{Embedded Processors, ,Embedded
12963Processors}.
12964
c906108c
SS
12965@end table
12966
104c1213 12967Some configurations may include these targets as well:
c906108c
SS
12968
12969@table @code
12970
c906108c 12971@item target nrom @var{dev}
4644b6e3 12972@cindex NetROM ROM emulator target
c906108c
SS
12973NetROM ROM emulator. This target only supports downloading.
12974
c906108c
SS
12975@end table
12976
5d161b24 12977Different targets are available on different configurations of @value{GDBN};
c906108c 12978your configuration may have more or fewer targets.
c906108c 12979
721c2651
EZ
12980Many remote targets require you to download the executable's code once
12981you've successfully established a connection. You may wish to control
3d00d119
DJ
12982various aspects of this process.
12983
12984@table @code
721c2651
EZ
12985
12986@item set hash
12987@kindex set hash@r{, for remote monitors}
12988@cindex hash mark while downloading
12989This command controls whether a hash mark @samp{#} is displayed while
12990downloading a file to the remote monitor. If on, a hash mark is
12991displayed after each S-record is successfully downloaded to the
12992monitor.
12993
12994@item show hash
12995@kindex show hash@r{, for remote monitors}
12996Show the current status of displaying the hash mark.
12997
12998@item set debug monitor
12999@kindex set debug monitor
13000@cindex display remote monitor communications
13001Enable or disable display of communications messages between
13002@value{GDBN} and the remote monitor.
13003
13004@item show debug monitor
13005@kindex show debug monitor
13006Show the current status of displaying communications between
13007@value{GDBN} and the remote monitor.
a8f24a35 13008@end table
c906108c
SS
13009
13010@table @code
13011
13012@kindex load @var{filename}
13013@item load @var{filename}
8edfe269 13014@anchor{load}
c906108c
SS
13015Depending on what remote debugging facilities are configured into
13016@value{GDBN}, the @code{load} command may be available. Where it exists, it
13017is meant to make @var{filename} (an executable) available for debugging
13018on the remote system---by downloading, or dynamic linking, for example.
13019@code{load} also records the @var{filename} symbol table in @value{GDBN}, like
13020the @code{add-symbol-file} command.
13021
13022If your @value{GDBN} does not have a @code{load} command, attempting to
13023execute it gets the error message ``@code{You can't do that when your
13024target is @dots{}}''
c906108c
SS
13025
13026The file is loaded at whatever address is specified in the executable.
13027For some object file formats, you can specify the load address when you
13028link the program; for other formats, like a.out, the object file format
13029specifies a fixed address.
13030@c FIXME! This would be a good place for an xref to the GNU linker doc.
13031
68437a39
DJ
13032Depending on the remote side capabilities, @value{GDBN} may be able to
13033load programs into flash memory.
13034
c906108c
SS
13035@code{load} does not repeat if you press @key{RET} again after using it.
13036@end table
13037
6d2ebf8b 13038@node Byte Order
79a6e687 13039@section Choosing Target Byte Order
7a292a7a 13040
c906108c
SS
13041@cindex choosing target byte order
13042@cindex target byte order
c906108c 13043
172c2a43 13044Some types of processors, such as the MIPS, PowerPC, and Renesas SH,
c906108c
SS
13045offer the ability to run either big-endian or little-endian byte
13046orders. Usually the executable or symbol will include a bit to
13047designate the endian-ness, and you will not need to worry about
13048which to use. However, you may still find it useful to adjust
d4f3574e 13049@value{GDBN}'s idea of processor endian-ness manually.
c906108c
SS
13050
13051@table @code
4644b6e3 13052@kindex set endian
c906108c
SS
13053@item set endian big
13054Instruct @value{GDBN} to assume the target is big-endian.
13055
c906108c
SS
13056@item set endian little
13057Instruct @value{GDBN} to assume the target is little-endian.
13058
c906108c
SS
13059@item set endian auto
13060Instruct @value{GDBN} to use the byte order associated with the
13061executable.
13062
13063@item show endian
13064Display @value{GDBN}'s current idea of the target byte order.
13065
13066@end table
13067
13068Note that these commands merely adjust interpretation of symbolic
13069data on the host, and that they have absolutely no effect on the
13070target system.
13071
ea35711c
DJ
13072
13073@node Remote Debugging
13074@chapter Debugging Remote Programs
c906108c
SS
13075@cindex remote debugging
13076
13077If you are trying to debug a program running on a machine that cannot run
5d161b24
DB
13078@value{GDBN} in the usual way, it is often useful to use remote debugging.
13079For example, you might use remote debugging on an operating system kernel,
c906108c
SS
13080or on a small system which does not have a general purpose operating system
13081powerful enough to run a full-featured debugger.
13082
13083Some configurations of @value{GDBN} have special serial or TCP/IP interfaces
13084to make this work with particular debugging targets. In addition,
5d161b24 13085@value{GDBN} comes with a generic serial protocol (specific to @value{GDBN},
c906108c
SS
13086but not specific to any particular target system) which you can use if you
13087write the remote stubs---the code that runs on the remote system to
13088communicate with @value{GDBN}.
13089
13090Other remote targets may be available in your
13091configuration of @value{GDBN}; use @code{help target} to list them.
c906108c 13092
6b2f586d 13093@menu
07f31aa6 13094* Connecting:: Connecting to a remote target
a6b151f1 13095* File Transfer:: Sending files to a remote system
6b2f586d 13096* Server:: Using the gdbserver program
79a6e687
BW
13097* Remote Configuration:: Remote configuration
13098* Remote Stub:: Implementing a remote stub
6b2f586d
AC
13099@end menu
13100
07f31aa6 13101@node Connecting
79a6e687 13102@section Connecting to a Remote Target
07f31aa6
DJ
13103
13104On the @value{GDBN} host machine, you will need an unstripped copy of
d3e8051b 13105your program, since @value{GDBN} needs symbol and debugging information.
07f31aa6
DJ
13106Start up @value{GDBN} as usual, using the name of the local copy of your
13107program as the first argument.
13108
86941c27
JB
13109@cindex @code{target remote}
13110@value{GDBN} can communicate with the target over a serial line, or
13111over an @acronym{IP} network using @acronym{TCP} or @acronym{UDP}. In
13112each case, @value{GDBN} uses the same protocol for debugging your
13113program; only the medium carrying the debugging packets varies. The
13114@code{target remote} command establishes a connection to the target.
13115Its arguments indicate which medium to use:
13116
13117@table @code
13118
13119@item target remote @var{serial-device}
07f31aa6 13120@cindex serial line, @code{target remote}
86941c27
JB
13121Use @var{serial-device} to communicate with the target. For example,
13122to use a serial line connected to the device named @file{/dev/ttyb}:
13123
13124@smallexample
13125target remote /dev/ttyb
13126@end smallexample
13127
07f31aa6
DJ
13128If you're using a serial line, you may want to give @value{GDBN} the
13129@w{@samp{--baud}} option, or use the @code{set remotebaud} command
79a6e687 13130(@pxref{Remote Configuration, set remotebaud}) before the
9c16f35a 13131@code{target} command.
07f31aa6 13132
86941c27
JB
13133@item target remote @code{@var{host}:@var{port}}
13134@itemx target remote @code{tcp:@var{host}:@var{port}}
13135@cindex @acronym{TCP} port, @code{target remote}
13136Debug using a @acronym{TCP} connection to @var{port} on @var{host}.
13137The @var{host} may be either a host name or a numeric @acronym{IP}
13138address; @var{port} must be a decimal number. The @var{host} could be
13139the target machine itself, if it is directly connected to the net, or
13140it might be a terminal server which in turn has a serial line to the
13141target.
07f31aa6 13142
86941c27
JB
13143For example, to connect to port 2828 on a terminal server named
13144@code{manyfarms}:
07f31aa6
DJ
13145
13146@smallexample
13147target remote manyfarms:2828
13148@end smallexample
13149
86941c27
JB
13150If your remote target is actually running on the same machine as your
13151debugger session (e.g.@: a simulator for your target running on the
13152same host), you can omit the hostname. For example, to connect to
13153port 1234 on your local machine:
07f31aa6
DJ
13154
13155@smallexample
13156target remote :1234
13157@end smallexample
13158@noindent
13159
13160Note that the colon is still required here.
13161
86941c27
JB
13162@item target remote @code{udp:@var{host}:@var{port}}
13163@cindex @acronym{UDP} port, @code{target remote}
13164Debug using @acronym{UDP} packets to @var{port} on @var{host}. For example, to
13165connect to @acronym{UDP} port 2828 on a terminal server named @code{manyfarms}:
07f31aa6
DJ
13166
13167@smallexample
13168target remote udp:manyfarms:2828
13169@end smallexample
13170
86941c27
JB
13171When using a @acronym{UDP} connection for remote debugging, you should
13172keep in mind that the `U' stands for ``Unreliable''. @acronym{UDP}
13173can silently drop packets on busy or unreliable networks, which will
13174cause havoc with your debugging session.
13175
66b8c7f6
JB
13176@item target remote | @var{command}
13177@cindex pipe, @code{target remote} to
13178Run @var{command} in the background and communicate with it using a
13179pipe. The @var{command} is a shell command, to be parsed and expanded
13180by the system's command shell, @code{/bin/sh}; it should expect remote
13181protocol packets on its standard input, and send replies on its
13182standard output. You could use this to run a stand-alone simulator
13183that speaks the remote debugging protocol, to make net connections
13184using programs like @code{ssh}, or for other similar tricks.
13185
13186If @var{command} closes its standard output (perhaps by exiting),
13187@value{GDBN} will try to send it a @code{SIGTERM} signal. (If the
13188program has already exited, this will have no effect.)
13189
86941c27 13190@end table
07f31aa6 13191
86941c27 13192Once the connection has been established, you can use all the usual
8edfe269
DJ
13193commands to examine and change data. The remote program is already
13194running; you can use @kbd{step} and @kbd{continue}, and you do not
13195need to use @kbd{run}.
07f31aa6
DJ
13196
13197@cindex interrupting remote programs
13198@cindex remote programs, interrupting
13199Whenever @value{GDBN} is waiting for the remote program, if you type the
c8aa23ab 13200interrupt character (often @kbd{Ctrl-c}), @value{GDBN} attempts to stop the
07f31aa6
DJ
13201program. This may or may not succeed, depending in part on the hardware
13202and the serial drivers the remote system uses. If you type the
13203interrupt character once again, @value{GDBN} displays this prompt:
13204
13205@smallexample
13206Interrupted while waiting for the program.
13207Give up (and stop debugging it)? (y or n)
13208@end smallexample
13209
13210If you type @kbd{y}, @value{GDBN} abandons the remote debugging session.
13211(If you decide you want to try again later, you can use @samp{target
13212remote} again to connect once more.) If you type @kbd{n}, @value{GDBN}
13213goes back to waiting.
13214
13215@table @code
13216@kindex detach (remote)
13217@item detach
13218When you have finished debugging the remote program, you can use the
13219@code{detach} command to release it from @value{GDBN} control.
13220Detaching from the target normally resumes its execution, but the results
13221will depend on your particular remote stub. After the @code{detach}
13222command, @value{GDBN} is free to connect to another target.
13223
13224@kindex disconnect
13225@item disconnect
13226The @code{disconnect} command behaves like @code{detach}, except that
13227the target is generally not resumed. It will wait for @value{GDBN}
13228(this instance or another one) to connect and continue debugging. After
13229the @code{disconnect} command, @value{GDBN} is again free to connect to
13230another target.
09d4efe1
EZ
13231
13232@cindex send command to remote monitor
fad38dfa
EZ
13233@cindex extend @value{GDBN} for remote targets
13234@cindex add new commands for external monitor
09d4efe1
EZ
13235@kindex monitor
13236@item monitor @var{cmd}
fad38dfa
EZ
13237This command allows you to send arbitrary commands directly to the
13238remote monitor. Since @value{GDBN} doesn't care about the commands it
13239sends like this, this command is the way to extend @value{GDBN}---you
13240can add new commands that only the external monitor will understand
13241and implement.
07f31aa6
DJ
13242@end table
13243
a6b151f1
DJ
13244@node File Transfer
13245@section Sending files to a remote system
13246@cindex remote target, file transfer
13247@cindex file transfer
13248@cindex sending files to remote systems
13249
13250Some remote targets offer the ability to transfer files over the same
13251connection used to communicate with @value{GDBN}. This is convenient
13252for targets accessible through other means, e.g.@: @sc{gnu}/Linux systems
13253running @code{gdbserver} over a network interface. For other targets,
13254e.g.@: embedded devices with only a single serial port, this may be
13255the only way to upload or download files.
13256
13257Not all remote targets support these commands.
13258
13259@table @code
13260@kindex remote put
13261@item remote put @var{hostfile} @var{targetfile}
13262Copy file @var{hostfile} from the host system (the machine running
13263@value{GDBN}) to @var{targetfile} on the target system.
13264
13265@kindex remote get
13266@item remote get @var{targetfile} @var{hostfile}
13267Copy file @var{targetfile} from the target system to @var{hostfile}
13268on the host system.
13269
13270@kindex remote delete
13271@item remote delete @var{targetfile}
13272Delete @var{targetfile} from the target system.
13273
13274@end table
13275
6f05cf9f 13276@node Server
79a6e687 13277@section Using the @code{gdbserver} Program
6f05cf9f
AC
13278
13279@kindex gdbserver
13280@cindex remote connection without stubs
13281@code{gdbserver} is a control program for Unix-like systems, which
13282allows you to connect your program with a remote @value{GDBN} via
13283@code{target remote}---but without linking in the usual debugging stub.
13284
13285@code{gdbserver} is not a complete replacement for the debugging stubs,
13286because it requires essentially the same operating-system facilities
13287that @value{GDBN} itself does. In fact, a system that can run
13288@code{gdbserver} to connect to a remote @value{GDBN} could also run
13289@value{GDBN} locally! @code{gdbserver} is sometimes useful nevertheless,
13290because it is a much smaller program than @value{GDBN} itself. It is
13291also easier to port than all of @value{GDBN}, so you may be able to get
13292started more quickly on a new system by using @code{gdbserver}.
13293Finally, if you develop code for real-time systems, you may find that
13294the tradeoffs involved in real-time operation make it more convenient to
13295do as much development work as possible on another system, for example
13296by cross-compiling. You can use @code{gdbserver} to make a similar
13297choice for debugging.
13298
13299@value{GDBN} and @code{gdbserver} communicate via either a serial line
13300or a TCP connection, using the standard @value{GDBN} remote serial
13301protocol.
13302
2d717e4f
DJ
13303@quotation
13304@emph{Warning:} @code{gdbserver} does not have any built-in security.
13305Do not run @code{gdbserver} connected to any public network; a
13306@value{GDBN} connection to @code{gdbserver} provides access to the
13307target system with the same privileges as the user running
13308@code{gdbserver}.
13309@end quotation
13310
13311@subsection Running @code{gdbserver}
13312@cindex arguments, to @code{gdbserver}
13313
13314Run @code{gdbserver} on the target system. You need a copy of the
13315program you want to debug, including any libraries it requires.
6f05cf9f
AC
13316@code{gdbserver} does not need your program's symbol table, so you can
13317strip the program if necessary to save space. @value{GDBN} on the host
13318system does all the symbol handling.
13319
13320To use the server, you must tell it how to communicate with @value{GDBN};
56460a61 13321the name of your program; and the arguments for your program. The usual
6f05cf9f
AC
13322syntax is:
13323
13324@smallexample
13325target> gdbserver @var{comm} @var{program} [ @var{args} @dots{} ]
13326@end smallexample
13327
13328@var{comm} is either a device name (to use a serial line) or a TCP
13329hostname and portnumber. For example, to debug Emacs with the argument
13330@samp{foo.txt} and communicate with @value{GDBN} over the serial port
13331@file{/dev/com1}:
13332
13333@smallexample
13334target> gdbserver /dev/com1 emacs foo.txt
13335@end smallexample
13336
13337@code{gdbserver} waits passively for the host @value{GDBN} to communicate
13338with it.
13339
13340To use a TCP connection instead of a serial line:
13341
13342@smallexample
13343target> gdbserver host:2345 emacs foo.txt
13344@end smallexample
13345
13346The only difference from the previous example is the first argument,
13347specifying that you are communicating with the host @value{GDBN} via
13348TCP. The @samp{host:2345} argument means that @code{gdbserver} is to
13349expect a TCP connection from machine @samp{host} to local TCP port 2345.
13350(Currently, the @samp{host} part is ignored.) You can choose any number
13351you want for the port number as long as it does not conflict with any
13352TCP ports already in use on the target system (for example, @code{23} is
13353reserved for @code{telnet}).@footnote{If you choose a port number that
13354conflicts with another service, @code{gdbserver} prints an error message
13355and exits.} You must use the same port number with the host @value{GDBN}
13356@code{target remote} command.
13357
2d717e4f
DJ
13358@subsubsection Attaching to a Running Program
13359
56460a61
DJ
13360On some targets, @code{gdbserver} can also attach to running programs.
13361This is accomplished via the @code{--attach} argument. The syntax is:
13362
13363@smallexample
2d717e4f 13364target> gdbserver --attach @var{comm} @var{pid}
56460a61
DJ
13365@end smallexample
13366
13367@var{pid} is the process ID of a currently running process. It isn't necessary
13368to point @code{gdbserver} at a binary for the running process.
13369
b1fe9455
DJ
13370@pindex pidof
13371@cindex attach to a program by name
13372You can debug processes by name instead of process ID if your target has the
13373@code{pidof} utility:
13374
13375@smallexample
2d717e4f 13376target> gdbserver --attach @var{comm} `pidof @var{program}`
b1fe9455
DJ
13377@end smallexample
13378
f822c95b 13379In case more than one copy of @var{program} is running, or @var{program}
b1fe9455
DJ
13380has multiple threads, most versions of @code{pidof} support the
13381@code{-s} option to only return the first process ID.
13382
2d717e4f
DJ
13383@subsubsection Multi-Process Mode for @code{gdbserver}
13384@cindex gdbserver, multiple processes
13385@cindex multiple processes with gdbserver
13386
13387When you connect to @code{gdbserver} using @code{target remote},
13388@code{gdbserver} debugs the specified program only once. When the
13389program exits, or you detach from it, @value{GDBN} closes the connection
13390and @code{gdbserver} exits.
13391
6e6c6f50 13392If you connect using @kbd{target extended-remote}, @code{gdbserver}
2d717e4f
DJ
13393enters multi-process mode. When the debugged program exits, or you
13394detach from it, @value{GDBN} stays connected to @code{gdbserver} even
13395though no program is running. The @code{run} and @code{attach}
13396commands instruct @code{gdbserver} to run or attach to a new program.
13397The @code{run} command uses @code{set remote exec-file} (@pxref{set
13398remote exec-file}) to select the program to run. Command line
13399arguments are supported, except for wildcard expansion and I/O
13400redirection (@pxref{Arguments}).
13401
13402To start @code{gdbserver} without supplying an initial command to run
13403or process ID to attach, use the @option{--multi} command line option.
6e6c6f50 13404Then you can connect using @kbd{target extended-remote} and start
2d717e4f
DJ
13405the program you want to debug.
13406
13407@code{gdbserver} does not automatically exit in multi-process mode.
13408You can terminate it by using @code{monitor exit}
13409(@pxref{Monitor Commands for gdbserver}).
13410
13411@subsubsection Other Command-Line Arguments for @code{gdbserver}
13412
13413You can include @option{--debug} on the @code{gdbserver} command line.
13414@code{gdbserver} will display extra status information about the debugging
13415process. This option is intended for @code{gdbserver} development and
13416for bug reports to the developers.
13417
ccd213ac
DJ
13418The @option{--wrapper} option specifies a wrapper to launch programs
13419for debugging. The option should be followed by the name of the
13420wrapper, then any command-line arguments to pass to the wrapper, then
13421@kbd{--} indicating the end of the wrapper arguments.
13422
13423@code{gdbserver} runs the specified wrapper program with a combined
13424command line including the wrapper arguments, then the name of the
13425program to debug, then any arguments to the program. The wrapper
13426runs until it executes your program, and then @value{GDBN} gains control.
13427
13428You can use any program that eventually calls @code{execve} with
13429its arguments as a wrapper. Several standard Unix utilities do
13430this, e.g.@: @code{env} and @code{nohup}. Any Unix shell script ending
13431with @code{exec "$@@"} will also work.
13432
13433For example, you can use @code{env} to pass an environment variable to
13434the debugged program, without setting the variable in @code{gdbserver}'s
13435environment:
13436
13437@smallexample
13438$ gdbserver --wrapper env LD_PRELOAD=libtest.so -- :2222 ./testprog
13439@end smallexample
13440
2d717e4f
DJ
13441@subsection Connecting to @code{gdbserver}
13442
13443Run @value{GDBN} on the host system.
13444
13445First make sure you have the necessary symbol files. Load symbols for
f822c95b
DJ
13446your application using the @code{file} command before you connect. Use
13447@code{set sysroot} to locate target libraries (unless your @value{GDBN}
2d717e4f 13448was compiled with the correct sysroot using @code{--with-sysroot}).
f822c95b
DJ
13449
13450The symbol file and target libraries must exactly match the executable
13451and libraries on the target, with one exception: the files on the host
13452system should not be stripped, even if the files on the target system
13453are. Mismatched or missing files will lead to confusing results
13454during debugging. On @sc{gnu}/Linux targets, mismatched or missing
13455files may also prevent @code{gdbserver} from debugging multi-threaded
13456programs.
13457
79a6e687 13458Connect to your target (@pxref{Connecting,,Connecting to a Remote Target}).
6f05cf9f
AC
13459For TCP connections, you must start up @code{gdbserver} prior to using
13460the @code{target remote} command. Otherwise you may get an error whose
13461text depends on the host system, but which usually looks something like
2d717e4f 13462@samp{Connection refused}. Don't use the @code{load}
397ca115 13463command in @value{GDBN} when using @code{gdbserver}, since the program is
f822c95b 13464already on the target.
07f31aa6 13465
79a6e687 13466@subsection Monitor Commands for @code{gdbserver}
c74d0ad8 13467@cindex monitor commands, for @code{gdbserver}
2d717e4f 13468@anchor{Monitor Commands for gdbserver}
c74d0ad8
DJ
13469
13470During a @value{GDBN} session using @code{gdbserver}, you can use the
13471@code{monitor} command to send special requests to @code{gdbserver}.
2d717e4f 13472Here are the available commands.
c74d0ad8
DJ
13473
13474@table @code
13475@item monitor help
13476List the available monitor commands.
13477
13478@item monitor set debug 0
13479@itemx monitor set debug 1
13480Disable or enable general debugging messages.
13481
13482@item monitor set remote-debug 0
13483@itemx monitor set remote-debug 1
13484Disable or enable specific debugging messages associated with the remote
13485protocol (@pxref{Remote Protocol}).
13486
2d717e4f
DJ
13487@item monitor exit
13488Tell gdbserver to exit immediately. This command should be followed by
13489@code{disconnect} to close the debugging session. @code{gdbserver} will
13490detach from any attached processes and kill any processes it created.
13491Use @code{monitor exit} to terminate @code{gdbserver} at the end
13492of a multi-process mode debug session.
13493
c74d0ad8
DJ
13494@end table
13495
79a6e687
BW
13496@node Remote Configuration
13497@section Remote Configuration
501eef12 13498
9c16f35a
EZ
13499@kindex set remote
13500@kindex show remote
13501This section documents the configuration options available when
13502debugging remote programs. For the options related to the File I/O
fc320d37 13503extensions of the remote protocol, see @ref{system,
9c16f35a 13504system-call-allowed}.
501eef12
AC
13505
13506@table @code
9c16f35a 13507@item set remoteaddresssize @var{bits}
d3e8051b 13508@cindex address size for remote targets
9c16f35a
EZ
13509@cindex bits in remote address
13510Set the maximum size of address in a memory packet to the specified
13511number of bits. @value{GDBN} will mask off the address bits above
13512that number, when it passes addresses to the remote target. The
13513default value is the number of bits in the target's address.
13514
13515@item show remoteaddresssize
13516Show the current value of remote address size in bits.
13517
13518@item set remotebaud @var{n}
13519@cindex baud rate for remote targets
13520Set the baud rate for the remote serial I/O to @var{n} baud. The
13521value is used to set the speed of the serial port used for debugging
13522remote targets.
13523
13524@item show remotebaud
13525Show the current speed of the remote connection.
13526
13527@item set remotebreak
13528@cindex interrupt remote programs
13529@cindex BREAK signal instead of Ctrl-C
9a6253be 13530@anchor{set remotebreak}
9c16f35a 13531If set to on, @value{GDBN} sends a @code{BREAK} signal to the remote
c8aa23ab 13532when you type @kbd{Ctrl-c} to interrupt the program running
9a7a1b36 13533on the remote. If set to off, @value{GDBN} sends the @samp{Ctrl-C}
9c16f35a
EZ
13534character instead. The default is off, since most remote systems
13535expect to see @samp{Ctrl-C} as the interrupt signal.
13536
13537@item show remotebreak
13538Show whether @value{GDBN} sends @code{BREAK} or @samp{Ctrl-C} to
13539interrupt the remote program.
13540
23776285
MR
13541@item set remoteflow on
13542@itemx set remoteflow off
13543@kindex set remoteflow
13544Enable or disable hardware flow control (@code{RTS}/@code{CTS})
13545on the serial port used to communicate to the remote target.
13546
13547@item show remoteflow
13548@kindex show remoteflow
13549Show the current setting of hardware flow control.
13550
9c16f35a
EZ
13551@item set remotelogbase @var{base}
13552Set the base (a.k.a.@: radix) of logging serial protocol
13553communications to @var{base}. Supported values of @var{base} are:
13554@code{ascii}, @code{octal}, and @code{hex}. The default is
13555@code{ascii}.
13556
13557@item show remotelogbase
13558Show the current setting of the radix for logging remote serial
13559protocol.
13560
13561@item set remotelogfile @var{file}
13562@cindex record serial communications on file
13563Record remote serial communications on the named @var{file}. The
13564default is not to record at all.
13565
13566@item show remotelogfile.
13567Show the current setting of the file name on which to record the
13568serial communications.
13569
13570@item set remotetimeout @var{num}
13571@cindex timeout for serial communications
13572@cindex remote timeout
13573Set the timeout limit to wait for the remote target to respond to
13574@var{num} seconds. The default is 2 seconds.
13575
13576@item show remotetimeout
13577Show the current number of seconds to wait for the remote target
13578responses.
13579
13580@cindex limit hardware breakpoints and watchpoints
13581@cindex remote target, limit break- and watchpoints
501eef12
AC
13582@anchor{set remote hardware-watchpoint-limit}
13583@anchor{set remote hardware-breakpoint-limit}
13584@item set remote hardware-watchpoint-limit @var{limit}
13585@itemx set remote hardware-breakpoint-limit @var{limit}
13586Restrict @value{GDBN} to using @var{limit} remote hardware breakpoint or
13587watchpoints. A limit of -1, the default, is treated as unlimited.
2d717e4f
DJ
13588
13589@item set remote exec-file @var{filename}
13590@itemx show remote exec-file
13591@anchor{set remote exec-file}
13592@cindex executable file, for remote target
13593Select the file used for @code{run} with @code{target
13594extended-remote}. This should be set to a filename valid on the
13595target system. If it is not set, the target will use a default
13596filename (e.g.@: the last program run).
501eef12
AC
13597@end table
13598
427c3a89
DJ
13599@cindex remote packets, enabling and disabling
13600The @value{GDBN} remote protocol autodetects the packets supported by
13601your debugging stub. If you need to override the autodetection, you
13602can use these commands to enable or disable individual packets. Each
13603packet can be set to @samp{on} (the remote target supports this
13604packet), @samp{off} (the remote target does not support this packet),
13605or @samp{auto} (detect remote target support for this packet). They
13606all default to @samp{auto}. For more information about each packet,
13607see @ref{Remote Protocol}.
13608
13609During normal use, you should not have to use any of these commands.
13610If you do, that may be a bug in your remote debugging stub, or a bug
13611in @value{GDBN}. You may want to report the problem to the
13612@value{GDBN} developers.
13613
cfa9d6d9
DJ
13614For each packet @var{name}, the command to enable or disable the
13615packet is @code{set remote @var{name}-packet}. The available settings
13616are:
427c3a89 13617
cfa9d6d9 13618@multitable @columnfractions 0.28 0.32 0.25
427c3a89
DJ
13619@item Command Name
13620@tab Remote Packet
13621@tab Related Features
13622
cfa9d6d9 13623@item @code{fetch-register}
427c3a89
DJ
13624@tab @code{p}
13625@tab @code{info registers}
13626
cfa9d6d9 13627@item @code{set-register}
427c3a89
DJ
13628@tab @code{P}
13629@tab @code{set}
13630
cfa9d6d9 13631@item @code{binary-download}
427c3a89
DJ
13632@tab @code{X}
13633@tab @code{load}, @code{set}
13634
cfa9d6d9 13635@item @code{read-aux-vector}
427c3a89
DJ
13636@tab @code{qXfer:auxv:read}
13637@tab @code{info auxv}
13638
cfa9d6d9 13639@item @code{symbol-lookup}
427c3a89
DJ
13640@tab @code{qSymbol}
13641@tab Detecting multiple threads
13642
2d717e4f
DJ
13643@item @code{attach}
13644@tab @code{vAttach}
13645@tab @code{attach}
13646
cfa9d6d9 13647@item @code{verbose-resume}
427c3a89
DJ
13648@tab @code{vCont}
13649@tab Stepping or resuming multiple threads
13650
2d717e4f
DJ
13651@item @code{run}
13652@tab @code{vRun}
13653@tab @code{run}
13654
cfa9d6d9 13655@item @code{software-breakpoint}
427c3a89
DJ
13656@tab @code{Z0}
13657@tab @code{break}
13658
cfa9d6d9 13659@item @code{hardware-breakpoint}
427c3a89
DJ
13660@tab @code{Z1}
13661@tab @code{hbreak}
13662
cfa9d6d9 13663@item @code{write-watchpoint}
427c3a89
DJ
13664@tab @code{Z2}
13665@tab @code{watch}
13666
cfa9d6d9 13667@item @code{read-watchpoint}
427c3a89
DJ
13668@tab @code{Z3}
13669@tab @code{rwatch}
13670
cfa9d6d9 13671@item @code{access-watchpoint}
427c3a89
DJ
13672@tab @code{Z4}
13673@tab @code{awatch}
13674
cfa9d6d9
DJ
13675@item @code{target-features}
13676@tab @code{qXfer:features:read}
13677@tab @code{set architecture}
13678
13679@item @code{library-info}
13680@tab @code{qXfer:libraries:read}
13681@tab @code{info sharedlibrary}
13682
13683@item @code{memory-map}
13684@tab @code{qXfer:memory-map:read}
13685@tab @code{info mem}
13686
13687@item @code{read-spu-object}
13688@tab @code{qXfer:spu:read}
13689@tab @code{info spu}
13690
13691@item @code{write-spu-object}
13692@tab @code{qXfer:spu:write}
13693@tab @code{info spu}
13694
13695@item @code{get-thread-local-@*storage-address}
427c3a89
DJ
13696@tab @code{qGetTLSAddr}
13697@tab Displaying @code{__thread} variables
13698
08388c79
DE
13699@item @code{search-memory}
13700@tab @code{qSearch:memory}
13701@tab @code{find}
13702
427c3a89
DJ
13703@item @code{supported-packets}
13704@tab @code{qSupported}
13705@tab Remote communications parameters
13706
cfa9d6d9 13707@item @code{pass-signals}
89be2091
DJ
13708@tab @code{QPassSignals}
13709@tab @code{handle @var{signal}}
13710
a6b151f1
DJ
13711@item @code{hostio-close-packet}
13712@tab @code{vFile:close}
13713@tab @code{remote get}, @code{remote put}
13714
13715@item @code{hostio-open-packet}
13716@tab @code{vFile:open}
13717@tab @code{remote get}, @code{remote put}
13718
13719@item @code{hostio-pread-packet}
13720@tab @code{vFile:pread}
13721@tab @code{remote get}, @code{remote put}
13722
13723@item @code{hostio-pwrite-packet}
13724@tab @code{vFile:pwrite}
13725@tab @code{remote get}, @code{remote put}
13726
13727@item @code{hostio-unlink-packet}
13728@tab @code{vFile:unlink}
13729@tab @code{remote delete}
427c3a89
DJ
13730@end multitable
13731
79a6e687
BW
13732@node Remote Stub
13733@section Implementing a Remote Stub
7a292a7a 13734
8e04817f
AC
13735@cindex debugging stub, example
13736@cindex remote stub, example
13737@cindex stub example, remote debugging
13738The stub files provided with @value{GDBN} implement the target side of the
13739communication protocol, and the @value{GDBN} side is implemented in the
13740@value{GDBN} source file @file{remote.c}. Normally, you can simply allow
13741these subroutines to communicate, and ignore the details. (If you're
13742implementing your own stub file, you can still ignore the details: start
13743with one of the existing stub files. @file{sparc-stub.c} is the best
13744organized, and therefore the easiest to read.)
13745
104c1213
JM
13746@cindex remote serial debugging, overview
13747To debug a program running on another machine (the debugging
13748@dfn{target} machine), you must first arrange for all the usual
13749prerequisites for the program to run by itself. For example, for a C
13750program, you need:
c906108c 13751
104c1213
JM
13752@enumerate
13753@item
13754A startup routine to set up the C runtime environment; these usually
13755have a name like @file{crt0}. The startup routine may be supplied by
13756your hardware supplier, or you may have to write your own.
96baa820 13757
5d161b24 13758@item
d4f3574e 13759A C subroutine library to support your program's
104c1213 13760subroutine calls, notably managing input and output.
96baa820 13761
104c1213
JM
13762@item
13763A way of getting your program to the other machine---for example, a
13764download program. These are often supplied by the hardware
13765manufacturer, but you may have to write your own from hardware
13766documentation.
13767@end enumerate
96baa820 13768
104c1213
JM
13769The next step is to arrange for your program to use a serial port to
13770communicate with the machine where @value{GDBN} is running (the @dfn{host}
13771machine). In general terms, the scheme looks like this:
96baa820 13772
104c1213
JM
13773@table @emph
13774@item On the host,
13775@value{GDBN} already understands how to use this protocol; when everything
13776else is set up, you can simply use the @samp{target remote} command
13777(@pxref{Targets,,Specifying a Debugging Target}).
13778
13779@item On the target,
13780you must link with your program a few special-purpose subroutines that
13781implement the @value{GDBN} remote serial protocol. The file containing these
13782subroutines is called a @dfn{debugging stub}.
13783
13784On certain remote targets, you can use an auxiliary program
13785@code{gdbserver} instead of linking a stub into your program.
79a6e687 13786@xref{Server,,Using the @code{gdbserver} Program}, for details.
104c1213 13787@end table
96baa820 13788
104c1213
JM
13789The debugging stub is specific to the architecture of the remote
13790machine; for example, use @file{sparc-stub.c} to debug programs on
13791@sc{sparc} boards.
96baa820 13792
104c1213
JM
13793@cindex remote serial stub list
13794These working remote stubs are distributed with @value{GDBN}:
96baa820 13795
104c1213
JM
13796@table @code
13797
13798@item i386-stub.c
41afff9a 13799@cindex @file{i386-stub.c}
104c1213
JM
13800@cindex Intel
13801@cindex i386
13802For Intel 386 and compatible architectures.
13803
13804@item m68k-stub.c
41afff9a 13805@cindex @file{m68k-stub.c}
104c1213
JM
13806@cindex Motorola 680x0
13807@cindex m680x0
13808For Motorola 680x0 architectures.
13809
13810@item sh-stub.c
41afff9a 13811@cindex @file{sh-stub.c}
172c2a43 13812@cindex Renesas
104c1213 13813@cindex SH
172c2a43 13814For Renesas SH architectures.
104c1213
JM
13815
13816@item sparc-stub.c
41afff9a 13817@cindex @file{sparc-stub.c}
104c1213
JM
13818@cindex Sparc
13819For @sc{sparc} architectures.
13820
13821@item sparcl-stub.c
41afff9a 13822@cindex @file{sparcl-stub.c}
104c1213
JM
13823@cindex Fujitsu
13824@cindex SparcLite
13825For Fujitsu @sc{sparclite} architectures.
13826
13827@end table
13828
13829The @file{README} file in the @value{GDBN} distribution may list other
13830recently added stubs.
13831
13832@menu
13833* Stub Contents:: What the stub can do for you
13834* Bootstrapping:: What you must do for the stub
13835* Debug Session:: Putting it all together
104c1213
JM
13836@end menu
13837
6d2ebf8b 13838@node Stub Contents
79a6e687 13839@subsection What the Stub Can Do for You
104c1213
JM
13840
13841@cindex remote serial stub
13842The debugging stub for your architecture supplies these three
13843subroutines:
13844
13845@table @code
13846@item set_debug_traps
4644b6e3 13847@findex set_debug_traps
104c1213
JM
13848@cindex remote serial stub, initialization
13849This routine arranges for @code{handle_exception} to run when your
13850program stops. You must call this subroutine explicitly near the
13851beginning of your program.
13852
13853@item handle_exception
4644b6e3 13854@findex handle_exception
104c1213
JM
13855@cindex remote serial stub, main routine
13856This is the central workhorse, but your program never calls it
13857explicitly---the setup code arranges for @code{handle_exception} to
13858run when a trap is triggered.
13859
13860@code{handle_exception} takes control when your program stops during
13861execution (for example, on a breakpoint), and mediates communications
13862with @value{GDBN} on the host machine. This is where the communications
13863protocol is implemented; @code{handle_exception} acts as the @value{GDBN}
d4f3574e 13864representative on the target machine. It begins by sending summary
104c1213
JM
13865information on the state of your program, then continues to execute,
13866retrieving and transmitting any information @value{GDBN} needs, until you
13867execute a @value{GDBN} command that makes your program resume; at that point,
13868@code{handle_exception} returns control to your own code on the target
5d161b24 13869machine.
104c1213
JM
13870
13871@item breakpoint
13872@cindex @code{breakpoint} subroutine, remote
13873Use this auxiliary subroutine to make your program contain a
13874breakpoint. Depending on the particular situation, this may be the only
13875way for @value{GDBN} to get control. For instance, if your target
13876machine has some sort of interrupt button, you won't need to call this;
13877pressing the interrupt button transfers control to
13878@code{handle_exception}---in effect, to @value{GDBN}. On some machines,
13879simply receiving characters on the serial port may also trigger a trap;
13880again, in that situation, you don't need to call @code{breakpoint} from
13881your own program---simply running @samp{target remote} from the host
5d161b24 13882@value{GDBN} session gets control.
104c1213
JM
13883
13884Call @code{breakpoint} if none of these is true, or if you simply want
13885to make certain your program stops at a predetermined point for the
13886start of your debugging session.
13887@end table
13888
6d2ebf8b 13889@node Bootstrapping
79a6e687 13890@subsection What You Must Do for the Stub
104c1213
JM
13891
13892@cindex remote stub, support routines
13893The debugging stubs that come with @value{GDBN} are set up for a particular
13894chip architecture, but they have no information about the rest of your
13895debugging target machine.
13896
13897First of all you need to tell the stub how to communicate with the
13898serial port.
13899
13900@table @code
13901@item int getDebugChar()
4644b6e3 13902@findex getDebugChar
104c1213
JM
13903Write this subroutine to read a single character from the serial port.
13904It may be identical to @code{getchar} for your target system; a
13905different name is used to allow you to distinguish the two if you wish.
13906
13907@item void putDebugChar(int)
4644b6e3 13908@findex putDebugChar
104c1213 13909Write this subroutine to write a single character to the serial port.
5d161b24 13910It may be identical to @code{putchar} for your target system; a
104c1213
JM
13911different name is used to allow you to distinguish the two if you wish.
13912@end table
13913
13914@cindex control C, and remote debugging
13915@cindex interrupting remote targets
13916If you want @value{GDBN} to be able to stop your program while it is
13917running, you need to use an interrupt-driven serial driver, and arrange
13918for it to stop when it receives a @code{^C} (@samp{\003}, the control-C
13919character). That is the character which @value{GDBN} uses to tell the
13920remote system to stop.
13921
13922Getting the debugging target to return the proper status to @value{GDBN}
13923probably requires changes to the standard stub; one quick and dirty way
13924is to just execute a breakpoint instruction (the ``dirty'' part is that
13925@value{GDBN} reports a @code{SIGTRAP} instead of a @code{SIGINT}).
13926
13927Other routines you need to supply are:
13928
13929@table @code
13930@item void exceptionHandler (int @var{exception_number}, void *@var{exception_address})
4644b6e3 13931@findex exceptionHandler
104c1213
JM
13932Write this function to install @var{exception_address} in the exception
13933handling tables. You need to do this because the stub does not have any
13934way of knowing what the exception handling tables on your target system
13935are like (for example, the processor's table might be in @sc{rom},
13936containing entries which point to a table in @sc{ram}).
13937@var{exception_number} is the exception number which should be changed;
13938its meaning is architecture-dependent (for example, different numbers
13939might represent divide by zero, misaligned access, etc). When this
13940exception occurs, control should be transferred directly to
13941@var{exception_address}, and the processor state (stack, registers,
13942and so on) should be just as it is when a processor exception occurs. So if
13943you want to use a jump instruction to reach @var{exception_address}, it
13944should be a simple jump, not a jump to subroutine.
13945
13946For the 386, @var{exception_address} should be installed as an interrupt
13947gate so that interrupts are masked while the handler runs. The gate
13948should be at privilege level 0 (the most privileged level). The
13949@sc{sparc} and 68k stubs are able to mask interrupts themselves without
13950help from @code{exceptionHandler}.
13951
13952@item void flush_i_cache()
4644b6e3 13953@findex flush_i_cache
d4f3574e 13954On @sc{sparc} and @sc{sparclite} only, write this subroutine to flush the
104c1213
JM
13955instruction cache, if any, on your target machine. If there is no
13956instruction cache, this subroutine may be a no-op.
13957
13958On target machines that have instruction caches, @value{GDBN} requires this
13959function to make certain that the state of your program is stable.
13960@end table
13961
13962@noindent
13963You must also make sure this library routine is available:
13964
13965@table @code
13966@item void *memset(void *, int, int)
4644b6e3 13967@findex memset
104c1213
JM
13968This is the standard library function @code{memset} that sets an area of
13969memory to a known value. If you have one of the free versions of
13970@code{libc.a}, @code{memset} can be found there; otherwise, you must
13971either obtain it from your hardware manufacturer, or write your own.
13972@end table
13973
13974If you do not use the GNU C compiler, you may need other standard
13975library subroutines as well; this varies from one stub to another,
13976but in general the stubs are likely to use any of the common library
e22ea452 13977subroutines which @code{@value{NGCC}} generates as inline code.
104c1213
JM
13978
13979
6d2ebf8b 13980@node Debug Session
79a6e687 13981@subsection Putting it All Together
104c1213
JM
13982
13983@cindex remote serial debugging summary
13984In summary, when your program is ready to debug, you must follow these
13985steps.
13986
13987@enumerate
13988@item
6d2ebf8b 13989Make sure you have defined the supporting low-level routines
79a6e687 13990(@pxref{Bootstrapping,,What You Must Do for the Stub}):
104c1213
JM
13991@display
13992@code{getDebugChar}, @code{putDebugChar},
13993@code{flush_i_cache}, @code{memset}, @code{exceptionHandler}.
13994@end display
13995
13996@item
13997Insert these lines near the top of your program:
13998
474c8240 13999@smallexample
104c1213
JM
14000set_debug_traps();
14001breakpoint();
474c8240 14002@end smallexample
104c1213
JM
14003
14004@item
14005For the 680x0 stub only, you need to provide a variable called
14006@code{exceptionHook}. Normally you just use:
14007
474c8240 14008@smallexample
104c1213 14009void (*exceptionHook)() = 0;
474c8240 14010@end smallexample
104c1213 14011
d4f3574e 14012@noindent
104c1213 14013but if before calling @code{set_debug_traps}, you set it to point to a
598ca718 14014function in your program, that function is called when
104c1213
JM
14015@code{@value{GDBN}} continues after stopping on a trap (for example, bus
14016error). The function indicated by @code{exceptionHook} is called with
14017one parameter: an @code{int} which is the exception number.
14018
14019@item
14020Compile and link together: your program, the @value{GDBN} debugging stub for
14021your target architecture, and the supporting subroutines.
14022
14023@item
14024Make sure you have a serial connection between your target machine and
14025the @value{GDBN} host, and identify the serial port on the host.
14026
14027@item
14028@c The "remote" target now provides a `load' command, so we should
14029@c document that. FIXME.
14030Download your program to your target machine (or get it there by
14031whatever means the manufacturer provides), and start it.
14032
14033@item
07f31aa6 14034Start @value{GDBN} on the host, and connect to the target
79a6e687 14035(@pxref{Connecting,,Connecting to a Remote Target}).
9db8d71f 14036
104c1213
JM
14037@end enumerate
14038
8e04817f
AC
14039@node Configurations
14040@chapter Configuration-Specific Information
104c1213 14041
8e04817f
AC
14042While nearly all @value{GDBN} commands are available for all native and
14043cross versions of the debugger, there are some exceptions. This chapter
14044describes things that are only available in certain configurations.
104c1213 14045
8e04817f
AC
14046There are three major categories of configurations: native
14047configurations, where the host and target are the same, embedded
14048operating system configurations, which are usually the same for several
14049different processor architectures, and bare embedded processors, which
14050are quite different from each other.
104c1213 14051
8e04817f
AC
14052@menu
14053* Native::
14054* Embedded OS::
14055* Embedded Processors::
14056* Architectures::
14057@end menu
104c1213 14058
8e04817f
AC
14059@node Native
14060@section Native
104c1213 14061
8e04817f
AC
14062This section describes details specific to particular native
14063configurations.
6cf7e474 14064
8e04817f
AC
14065@menu
14066* HP-UX:: HP-UX
7561d450 14067* BSD libkvm Interface:: Debugging BSD kernel memory images
8e04817f
AC
14068* SVR4 Process Information:: SVR4 process information
14069* DJGPP Native:: Features specific to the DJGPP port
78c47bea 14070* Cygwin Native:: Features specific to the Cygwin port
14d6dd68 14071* Hurd Native:: Features specific to @sc{gnu} Hurd
a64548ea 14072* Neutrino:: Features specific to QNX Neutrino
8e04817f 14073@end menu
6cf7e474 14074
8e04817f
AC
14075@node HP-UX
14076@subsection HP-UX
104c1213 14077
8e04817f
AC
14078On HP-UX systems, if you refer to a function or variable name that
14079begins with a dollar sign, @value{GDBN} searches for a user or system
14080name first, before it searches for a convenience variable.
104c1213 14081
9c16f35a 14082
7561d450
MK
14083@node BSD libkvm Interface
14084@subsection BSD libkvm Interface
14085
14086@cindex libkvm
14087@cindex kernel memory image
14088@cindex kernel crash dump
14089
14090BSD-derived systems (FreeBSD/NetBSD/OpenBSD) have a kernel memory
14091interface that provides a uniform interface for accessing kernel virtual
14092memory images, including live systems and crash dumps. @value{GDBN}
14093uses this interface to allow you to debug live kernels and kernel crash
14094dumps on many native BSD configurations. This is implemented as a
14095special @code{kvm} debugging target. For debugging a live system, load
14096the currently running kernel into @value{GDBN} and connect to the
14097@code{kvm} target:
14098
14099@smallexample
14100(@value{GDBP}) @b{target kvm}
14101@end smallexample
14102
14103For debugging crash dumps, provide the file name of the crash dump as an
14104argument:
14105
14106@smallexample
14107(@value{GDBP}) @b{target kvm /var/crash/bsd.0}
14108@end smallexample
14109
14110Once connected to the @code{kvm} target, the following commands are
14111available:
14112
14113@table @code
14114@kindex kvm
14115@item kvm pcb
721c2651 14116Set current context from the @dfn{Process Control Block} (PCB) address.
7561d450
MK
14117
14118@item kvm proc
14119Set current context from proc address. This command isn't available on
14120modern FreeBSD systems.
14121@end table
14122
8e04817f 14123@node SVR4 Process Information
79a6e687 14124@subsection SVR4 Process Information
60bf7e09
EZ
14125@cindex /proc
14126@cindex examine process image
14127@cindex process info via @file{/proc}
104c1213 14128
60bf7e09
EZ
14129Many versions of SVR4 and compatible systems provide a facility called
14130@samp{/proc} that can be used to examine the image of a running
14131process using file-system subroutines. If @value{GDBN} is configured
14132for an operating system with this facility, the command @code{info
14133proc} is available to report information about the process running
14134your program, or about any process running on your system. @code{info
14135proc} works only on SVR4 systems that include the @code{procfs} code.
14136This includes, as of this writing, @sc{gnu}/Linux, OSF/1 (Digital
14137Unix), Solaris, Irix, and Unixware, but not HP-UX, for example.
104c1213 14138
8e04817f
AC
14139@table @code
14140@kindex info proc
60bf7e09 14141@cindex process ID
8e04817f 14142@item info proc
60bf7e09
EZ
14143@itemx info proc @var{process-id}
14144Summarize available information about any running process. If a
14145process ID is specified by @var{process-id}, display information about
14146that process; otherwise display information about the program being
14147debugged. The summary includes the debugged process ID, the command
14148line used to invoke it, its current working directory, and its
14149executable file's absolute file name.
14150
14151On some systems, @var{process-id} can be of the form
14152@samp{[@var{pid}]/@var{tid}} which specifies a certain thread ID
14153within a process. If the optional @var{pid} part is missing, it means
14154a thread from the process being debugged (the leading @samp{/} still
14155needs to be present, or else @value{GDBN} will interpret the number as
14156a process ID rather than a thread ID).
6cf7e474 14157
8e04817f 14158@item info proc mappings
60bf7e09
EZ
14159@cindex memory address space mappings
14160Report the memory address space ranges accessible in the program, with
14161information on whether the process has read, write, or execute access
14162rights to each range. On @sc{gnu}/Linux systems, each memory range
14163includes the object file which is mapped to that range, instead of the
14164memory access rights to that range.
14165
14166@item info proc stat
14167@itemx info proc status
14168@cindex process detailed status information
14169These subcommands are specific to @sc{gnu}/Linux systems. They show
14170the process-related information, including the user ID and group ID;
14171how many threads are there in the process; its virtual memory usage;
14172the signals that are pending, blocked, and ignored; its TTY; its
14173consumption of system and user time; its stack size; its @samp{nice}
2eecc4ab 14174value; etc. For more information, see the @samp{proc} man page
60bf7e09
EZ
14175(type @kbd{man 5 proc} from your shell prompt).
14176
14177@item info proc all
14178Show all the information about the process described under all of the
14179above @code{info proc} subcommands.
14180
8e04817f
AC
14181@ignore
14182@comment These sub-options of 'info proc' were not included when
14183@comment procfs.c was re-written. Keep their descriptions around
14184@comment against the day when someone finds the time to put them back in.
14185@kindex info proc times
14186@item info proc times
14187Starting time, user CPU time, and system CPU time for your program and
14188its children.
6cf7e474 14189
8e04817f
AC
14190@kindex info proc id
14191@item info proc id
14192Report on the process IDs related to your program: its own process ID,
14193the ID of its parent, the process group ID, and the session ID.
8e04817f 14194@end ignore
721c2651
EZ
14195
14196@item set procfs-trace
14197@kindex set procfs-trace
14198@cindex @code{procfs} API calls
14199This command enables and disables tracing of @code{procfs} API calls.
14200
14201@item show procfs-trace
14202@kindex show procfs-trace
14203Show the current state of @code{procfs} API call tracing.
14204
14205@item set procfs-file @var{file}
14206@kindex set procfs-file
14207Tell @value{GDBN} to write @code{procfs} API trace to the named
14208@var{file}. @value{GDBN} appends the trace info to the previous
14209contents of the file. The default is to display the trace on the
14210standard output.
14211
14212@item show procfs-file
14213@kindex show procfs-file
14214Show the file to which @code{procfs} API trace is written.
14215
14216@item proc-trace-entry
14217@itemx proc-trace-exit
14218@itemx proc-untrace-entry
14219@itemx proc-untrace-exit
14220@kindex proc-trace-entry
14221@kindex proc-trace-exit
14222@kindex proc-untrace-entry
14223@kindex proc-untrace-exit
14224These commands enable and disable tracing of entries into and exits
14225from the @code{syscall} interface.
14226
14227@item info pidlist
14228@kindex info pidlist
14229@cindex process list, QNX Neutrino
14230For QNX Neutrino only, this command displays the list of all the
14231processes and all the threads within each process.
14232
14233@item info meminfo
14234@kindex info meminfo
14235@cindex mapinfo list, QNX Neutrino
14236For QNX Neutrino only, this command displays the list of all mapinfos.
8e04817f 14237@end table
104c1213 14238
8e04817f
AC
14239@node DJGPP Native
14240@subsection Features for Debugging @sc{djgpp} Programs
14241@cindex @sc{djgpp} debugging
14242@cindex native @sc{djgpp} debugging
14243@cindex MS-DOS-specific commands
104c1213 14244
514c4d71
EZ
14245@cindex DPMI
14246@sc{djgpp} is a port of the @sc{gnu} development tools to MS-DOS and
8e04817f
AC
14247MS-Windows. @sc{djgpp} programs are 32-bit protected-mode programs
14248that use the @dfn{DPMI} (DOS Protected-Mode Interface) API to run on
14249top of real-mode DOS systems and their emulations.
104c1213 14250
8e04817f
AC
14251@value{GDBN} supports native debugging of @sc{djgpp} programs, and
14252defines a few commands specific to the @sc{djgpp} port. This
14253subsection describes those commands.
104c1213 14254
8e04817f
AC
14255@table @code
14256@kindex info dos
14257@item info dos
14258This is a prefix of @sc{djgpp}-specific commands which print
14259information about the target system and important OS structures.
f1251bdd 14260
8e04817f
AC
14261@kindex sysinfo
14262@cindex MS-DOS system info
14263@cindex free memory information (MS-DOS)
14264@item info dos sysinfo
14265This command displays assorted information about the underlying
14266platform: the CPU type and features, the OS version and flavor, the
14267DPMI version, and the available conventional and DPMI memory.
104c1213 14268
8e04817f
AC
14269@cindex GDT
14270@cindex LDT
14271@cindex IDT
14272@cindex segment descriptor tables
14273@cindex descriptor tables display
14274@item info dos gdt
14275@itemx info dos ldt
14276@itemx info dos idt
14277These 3 commands display entries from, respectively, Global, Local,
14278and Interrupt Descriptor Tables (GDT, LDT, and IDT). The descriptor
14279tables are data structures which store a descriptor for each segment
14280that is currently in use. The segment's selector is an index into a
14281descriptor table; the table entry for that index holds the
14282descriptor's base address and limit, and its attributes and access
14283rights.
104c1213 14284
8e04817f
AC
14285A typical @sc{djgpp} program uses 3 segments: a code segment, a data
14286segment (used for both data and the stack), and a DOS segment (which
14287allows access to DOS/BIOS data structures and absolute addresses in
14288conventional memory). However, the DPMI host will usually define
14289additional segments in order to support the DPMI environment.
d4f3574e 14290
8e04817f
AC
14291@cindex garbled pointers
14292These commands allow to display entries from the descriptor tables.
14293Without an argument, all entries from the specified table are
14294displayed. An argument, which should be an integer expression, means
14295display a single entry whose index is given by the argument. For
14296example, here's a convenient way to display information about the
14297debugged program's data segment:
104c1213 14298
8e04817f
AC
14299@smallexample
14300@exdent @code{(@value{GDBP}) info dos ldt $ds}
14301@exdent @code{0x13f: base=0x11970000 limit=0x0009ffff 32-Bit Data (Read/Write, Exp-up)}
14302@end smallexample
104c1213 14303
8e04817f
AC
14304@noindent
14305This comes in handy when you want to see whether a pointer is outside
14306the data segment's limit (i.e.@: @dfn{garbled}).
104c1213 14307
8e04817f
AC
14308@cindex page tables display (MS-DOS)
14309@item info dos pde
14310@itemx info dos pte
14311These two commands display entries from, respectively, the Page
14312Directory and the Page Tables. Page Directories and Page Tables are
14313data structures which control how virtual memory addresses are mapped
14314into physical addresses. A Page Table includes an entry for every
14315page of memory that is mapped into the program's address space; there
14316may be several Page Tables, each one holding up to 4096 entries. A
14317Page Directory has up to 4096 entries, one each for every Page Table
14318that is currently in use.
104c1213 14319
8e04817f
AC
14320Without an argument, @kbd{info dos pde} displays the entire Page
14321Directory, and @kbd{info dos pte} displays all the entries in all of
14322the Page Tables. An argument, an integer expression, given to the
14323@kbd{info dos pde} command means display only that entry from the Page
14324Directory table. An argument given to the @kbd{info dos pte} command
14325means display entries from a single Page Table, the one pointed to by
14326the specified entry in the Page Directory.
104c1213 14327
8e04817f
AC
14328@cindex direct memory access (DMA) on MS-DOS
14329These commands are useful when your program uses @dfn{DMA} (Direct
14330Memory Access), which needs physical addresses to program the DMA
14331controller.
104c1213 14332
8e04817f 14333These commands are supported only with some DPMI servers.
104c1213 14334
8e04817f
AC
14335@cindex physical address from linear address
14336@item info dos address-pte @var{addr}
14337This command displays the Page Table entry for a specified linear
514c4d71
EZ
14338address. The argument @var{addr} is a linear address which should
14339already have the appropriate segment's base address added to it,
14340because this command accepts addresses which may belong to @emph{any}
14341segment. For example, here's how to display the Page Table entry for
14342the page where a variable @code{i} is stored:
104c1213 14343
b383017d 14344@smallexample
8e04817f
AC
14345@exdent @code{(@value{GDBP}) info dos address-pte __djgpp_base_address + (char *)&i}
14346@exdent @code{Page Table entry for address 0x11a00d30:}
b383017d 14347@exdent @code{Base=0x02698000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0xd30}
8e04817f 14348@end smallexample
104c1213 14349
8e04817f
AC
14350@noindent
14351This says that @code{i} is stored at offset @code{0xd30} from the page
514c4d71 14352whose physical base address is @code{0x02698000}, and shows all the
8e04817f 14353attributes of that page.
104c1213 14354
8e04817f
AC
14355Note that you must cast the addresses of variables to a @code{char *},
14356since otherwise the value of @code{__djgpp_base_address}, the base
14357address of all variables and functions in a @sc{djgpp} program, will
14358be added using the rules of C pointer arithmetics: if @code{i} is
14359declared an @code{int}, @value{GDBN} will add 4 times the value of
14360@code{__djgpp_base_address} to the address of @code{i}.
104c1213 14361
8e04817f
AC
14362Here's another example, it displays the Page Table entry for the
14363transfer buffer:
104c1213 14364
8e04817f
AC
14365@smallexample
14366@exdent @code{(@value{GDBP}) info dos address-pte *((unsigned *)&_go32_info_block + 3)}
14367@exdent @code{Page Table entry for address 0x29110:}
14368@exdent @code{Base=0x00029000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0x110}
14369@end smallexample
104c1213 14370
8e04817f
AC
14371@noindent
14372(The @code{+ 3} offset is because the transfer buffer's address is the
514c4d71
EZ
143733rd member of the @code{_go32_info_block} structure.) The output
14374clearly shows that this DPMI server maps the addresses in conventional
14375memory 1:1, i.e.@: the physical (@code{0x00029000} + @code{0x110}) and
14376linear (@code{0x29110}) addresses are identical.
104c1213 14377
8e04817f
AC
14378This command is supported only with some DPMI servers.
14379@end table
104c1213 14380
c45da7e6 14381@cindex DOS serial data link, remote debugging
a8f24a35
EZ
14382In addition to native debugging, the DJGPP port supports remote
14383debugging via a serial data link. The following commands are specific
14384to remote serial debugging in the DJGPP port of @value{GDBN}.
14385
14386@table @code
14387@kindex set com1base
14388@kindex set com1irq
14389@kindex set com2base
14390@kindex set com2irq
14391@kindex set com3base
14392@kindex set com3irq
14393@kindex set com4base
14394@kindex set com4irq
14395@item set com1base @var{addr}
14396This command sets the base I/O port address of the @file{COM1} serial
14397port.
14398
14399@item set com1irq @var{irq}
14400This command sets the @dfn{Interrupt Request} (@code{IRQ}) line to use
14401for the @file{COM1} serial port.
14402
14403There are similar commands @samp{set com2base}, @samp{set com3irq},
14404etc.@: for setting the port address and the @code{IRQ} lines for the
14405other 3 COM ports.
14406
14407@kindex show com1base
14408@kindex show com1irq
14409@kindex show com2base
14410@kindex show com2irq
14411@kindex show com3base
14412@kindex show com3irq
14413@kindex show com4base
14414@kindex show com4irq
14415The related commands @samp{show com1base}, @samp{show com1irq} etc.@:
14416display the current settings of the base address and the @code{IRQ}
14417lines used by the COM ports.
c45da7e6
EZ
14418
14419@item info serial
14420@kindex info serial
14421@cindex DOS serial port status
14422This command prints the status of the 4 DOS serial ports. For each
14423port, it prints whether it's active or not, its I/O base address and
14424IRQ number, whether it uses a 16550-style FIFO, its baudrate, and the
14425counts of various errors encountered so far.
a8f24a35
EZ
14426@end table
14427
14428
78c47bea 14429@node Cygwin Native
79a6e687 14430@subsection Features for Debugging MS Windows PE Executables
78c47bea
PM
14431@cindex MS Windows debugging
14432@cindex native Cygwin debugging
14433@cindex Cygwin-specific commands
14434
be448670 14435@value{GDBN} supports native debugging of MS Windows programs, including
db2e3e2e
BW
14436DLLs with and without symbolic debugging information. There are various
14437additional Cygwin-specific commands, described in this section.
14438Working with DLLs that have no debugging symbols is described in
14439@ref{Non-debug DLL Symbols}.
78c47bea
PM
14440
14441@table @code
14442@kindex info w32
14443@item info w32
db2e3e2e 14444This is a prefix of MS Windows-specific commands which print
78c47bea
PM
14445information about the target system and important OS structures.
14446
14447@item info w32 selector
14448This command displays information returned by
14449the Win32 API @code{GetThreadSelectorEntry} function.
14450It takes an optional argument that is evaluated to
14451a long value to give the information about this given selector.
14452Without argument, this command displays information
d3e8051b 14453about the six segment registers.
78c47bea
PM
14454
14455@kindex info dll
14456@item info dll
db2e3e2e 14457This is a Cygwin-specific alias of @code{info shared}.
78c47bea
PM
14458
14459@kindex dll-symbols
14460@item dll-symbols
14461This command loads symbols from a dll similarly to
14462add-sym command but without the need to specify a base address.
14463
be90c084 14464@kindex set cygwin-exceptions
e16b02ee
EZ
14465@cindex debugging the Cygwin DLL
14466@cindex Cygwin DLL, debugging
be90c084 14467@item set cygwin-exceptions @var{mode}
e16b02ee
EZ
14468If @var{mode} is @code{on}, @value{GDBN} will break on exceptions that
14469happen inside the Cygwin DLL. If @var{mode} is @code{off},
14470@value{GDBN} will delay recognition of exceptions, and may ignore some
14471exceptions which seem to be caused by internal Cygwin DLL
14472``bookkeeping''. This option is meant primarily for debugging the
14473Cygwin DLL itself; the default value is @code{off} to avoid annoying
14474@value{GDBN} users with false @code{SIGSEGV} signals.
be90c084
CF
14475
14476@kindex show cygwin-exceptions
14477@item show cygwin-exceptions
e16b02ee
EZ
14478Displays whether @value{GDBN} will break on exceptions that happen
14479inside the Cygwin DLL itself.
be90c084 14480
b383017d 14481@kindex set new-console
78c47bea 14482@item set new-console @var{mode}
b383017d 14483If @var{mode} is @code{on} the debuggee will
78c47bea
PM
14484be started in a new console on next start.
14485If @var{mode} is @code{off}i, the debuggee will
14486be started in the same console as the debugger.
14487
14488@kindex show new-console
14489@item show new-console
14490Displays whether a new console is used
14491when the debuggee is started.
14492
14493@kindex set new-group
14494@item set new-group @var{mode}
14495This boolean value controls whether the debuggee should
14496start a new group or stay in the same group as the debugger.
14497This affects the way the Windows OS handles
c8aa23ab 14498@samp{Ctrl-C}.
78c47bea
PM
14499
14500@kindex show new-group
14501@item show new-group
14502Displays current value of new-group boolean.
14503
14504@kindex set debugevents
14505@item set debugevents
219eec71
EZ
14506This boolean value adds debug output concerning kernel events related
14507to the debuggee seen by the debugger. This includes events that
14508signal thread and process creation and exit, DLL loading and
14509unloading, console interrupts, and debugging messages produced by the
14510Windows @code{OutputDebugString} API call.
78c47bea
PM
14511
14512@kindex set debugexec
14513@item set debugexec
b383017d 14514This boolean value adds debug output concerning execute events
219eec71 14515(such as resume thread) seen by the debugger.
78c47bea
PM
14516
14517@kindex set debugexceptions
14518@item set debugexceptions
219eec71
EZ
14519This boolean value adds debug output concerning exceptions in the
14520debuggee seen by the debugger.
78c47bea
PM
14521
14522@kindex set debugmemory
14523@item set debugmemory
219eec71
EZ
14524This boolean value adds debug output concerning debuggee memory reads
14525and writes by the debugger.
78c47bea
PM
14526
14527@kindex set shell
14528@item set shell
14529This boolean values specifies whether the debuggee is called
14530via a shell or directly (default value is on).
14531
14532@kindex show shell
14533@item show shell
14534Displays if the debuggee will be started with a shell.
14535
14536@end table
14537
be448670 14538@menu
79a6e687 14539* Non-debug DLL Symbols:: Support for DLLs without debugging symbols
be448670
CF
14540@end menu
14541
79a6e687
BW
14542@node Non-debug DLL Symbols
14543@subsubsection Support for DLLs without Debugging Symbols
be448670
CF
14544@cindex DLLs with no debugging symbols
14545@cindex Minimal symbols and DLLs
14546
14547Very often on windows, some of the DLLs that your program relies on do
14548not include symbolic debugging information (for example,
db2e3e2e 14549@file{kernel32.dll}). When @value{GDBN} doesn't recognize any debugging
be448670 14550symbols in a DLL, it relies on the minimal amount of symbolic
db2e3e2e 14551information contained in the DLL's export table. This section
be448670
CF
14552describes working with such symbols, known internally to @value{GDBN} as
14553``minimal symbols''.
14554
14555Note that before the debugged program has started execution, no DLLs
db2e3e2e 14556will have been loaded. The easiest way around this problem is simply to
be448670 14557start the program --- either by setting a breakpoint or letting the
db2e3e2e 14558program run once to completion. It is also possible to force
be448670 14559@value{GDBN} to load a particular DLL before starting the executable ---
12c27660 14560see the shared library information in @ref{Files}, or the
db2e3e2e 14561@code{dll-symbols} command in @ref{Cygwin Native}. Currently,
be448670
CF
14562explicitly loading symbols from a DLL with no debugging information will
14563cause the symbol names to be duplicated in @value{GDBN}'s lookup table,
14564which may adversely affect symbol lookup performance.
14565
79a6e687 14566@subsubsection DLL Name Prefixes
be448670
CF
14567
14568In keeping with the naming conventions used by the Microsoft debugging
14569tools, DLL export symbols are made available with a prefix based on the
14570DLL name, for instance @code{KERNEL32!CreateFileA}. The plain name is
14571also entered into the symbol table, so @code{CreateFileA} is often
14572sufficient. In some cases there will be name clashes within a program
14573(particularly if the executable itself includes full debugging symbols)
14574necessitating the use of the fully qualified name when referring to the
14575contents of the DLL. Use single-quotes around the name to avoid the
14576exclamation mark (``!'') being interpreted as a language operator.
14577
14578Note that the internal name of the DLL may be all upper-case, even
14579though the file name of the DLL is lower-case, or vice-versa. Since
14580symbols within @value{GDBN} are @emph{case-sensitive} this may cause
14581some confusion. If in doubt, try the @code{info functions} and
0869d01b
NR
14582@code{info variables} commands or even @code{maint print msymbols}
14583(@pxref{Symbols}). Here's an example:
be448670
CF
14584
14585@smallexample
f7dc1244 14586(@value{GDBP}) info function CreateFileA
be448670
CF
14587All functions matching regular expression "CreateFileA":
14588
14589Non-debugging symbols:
145900x77e885f4 CreateFileA
145910x77e885f4 KERNEL32!CreateFileA
14592@end smallexample
14593
14594@smallexample
f7dc1244 14595(@value{GDBP}) info function !
be448670
CF
14596All functions matching regular expression "!":
14597
14598Non-debugging symbols:
145990x6100114c cygwin1!__assert
146000x61004034 cygwin1!_dll_crt0@@0
146010x61004240 cygwin1!dll_crt0(per_process *)
14602[etc...]
14603@end smallexample
14604
79a6e687 14605@subsubsection Working with Minimal Symbols
be448670
CF
14606
14607Symbols extracted from a DLL's export table do not contain very much
14608type information. All that @value{GDBN} can do is guess whether a symbol
14609refers to a function or variable depending on the linker section that
14610contains the symbol. Also note that the actual contents of the memory
14611contained in a DLL are not available unless the program is running. This
14612means that you cannot examine the contents of a variable or disassemble
14613a function within a DLL without a running program.
14614
14615Variables are generally treated as pointers and dereferenced
14616automatically. For this reason, it is often necessary to prefix a
14617variable name with the address-of operator (``&'') and provide explicit
14618type information in the command. Here's an example of the type of
14619problem:
14620
14621@smallexample
f7dc1244 14622(@value{GDBP}) print 'cygwin1!__argv'
be448670
CF
14623$1 = 268572168
14624@end smallexample
14625
14626@smallexample
f7dc1244 14627(@value{GDBP}) x 'cygwin1!__argv'
be448670
CF
146280x10021610: "\230y\""
14629@end smallexample
14630
14631And two possible solutions:
14632
14633@smallexample
f7dc1244 14634(@value{GDBP}) print ((char **)'cygwin1!__argv')[0]
be448670
CF
14635$2 = 0x22fd98 "/cygdrive/c/mydirectory/myprogram"
14636@end smallexample
14637
14638@smallexample
f7dc1244 14639(@value{GDBP}) x/2x &'cygwin1!__argv'
be448670 146400x610c0aa8 <cygwin1!__argv>: 0x10021608 0x00000000
f7dc1244 14641(@value{GDBP}) x/x 0x10021608
be448670 146420x10021608: 0x0022fd98
f7dc1244 14643(@value{GDBP}) x/s 0x0022fd98
be448670
CF
146440x22fd98: "/cygdrive/c/mydirectory/myprogram"
14645@end smallexample
14646
14647Setting a break point within a DLL is possible even before the program
14648starts execution. However, under these circumstances, @value{GDBN} can't
14649examine the initial instructions of the function in order to skip the
14650function's frame set-up code. You can work around this by using ``*&''
14651to set the breakpoint at a raw memory address:
14652
14653@smallexample
f7dc1244 14654(@value{GDBP}) break *&'python22!PyOS_Readline'
be448670
CF
14655Breakpoint 1 at 0x1e04eff0
14656@end smallexample
14657
14658The author of these extensions is not entirely convinced that setting a
14659break point within a shared DLL like @file{kernel32.dll} is completely
14660safe.
14661
14d6dd68 14662@node Hurd Native
79a6e687 14663@subsection Commands Specific to @sc{gnu} Hurd Systems
14d6dd68
EZ
14664@cindex @sc{gnu} Hurd debugging
14665
14666This subsection describes @value{GDBN} commands specific to the
14667@sc{gnu} Hurd native debugging.
14668
14669@table @code
14670@item set signals
14671@itemx set sigs
14672@kindex set signals@r{, Hurd command}
14673@kindex set sigs@r{, Hurd command}
14674This command toggles the state of inferior signal interception by
14675@value{GDBN}. Mach exceptions, such as breakpoint traps, are not
14676affected by this command. @code{sigs} is a shorthand alias for
14677@code{signals}.
14678
14679@item show signals
14680@itemx show sigs
14681@kindex show signals@r{, Hurd command}
14682@kindex show sigs@r{, Hurd command}
14683Show the current state of intercepting inferior's signals.
14684
14685@item set signal-thread
14686@itemx set sigthread
14687@kindex set signal-thread
14688@kindex set sigthread
14689This command tells @value{GDBN} which thread is the @code{libc} signal
14690thread. That thread is run when a signal is delivered to a running
14691process. @code{set sigthread} is the shorthand alias of @code{set
14692signal-thread}.
14693
14694@item show signal-thread
14695@itemx show sigthread
14696@kindex show signal-thread
14697@kindex show sigthread
14698These two commands show which thread will run when the inferior is
14699delivered a signal.
14700
14701@item set stopped
14702@kindex set stopped@r{, Hurd command}
14703This commands tells @value{GDBN} that the inferior process is stopped,
14704as with the @code{SIGSTOP} signal. The stopped process can be
14705continued by delivering a signal to it.
14706
14707@item show stopped
14708@kindex show stopped@r{, Hurd command}
14709This command shows whether @value{GDBN} thinks the debuggee is
14710stopped.
14711
14712@item set exceptions
14713@kindex set exceptions@r{, Hurd command}
14714Use this command to turn off trapping of exceptions in the inferior.
14715When exception trapping is off, neither breakpoints nor
14716single-stepping will work. To restore the default, set exception
14717trapping on.
14718
14719@item show exceptions
14720@kindex show exceptions@r{, Hurd command}
14721Show the current state of trapping exceptions in the inferior.
14722
14723@item set task pause
14724@kindex set task@r{, Hurd commands}
14725@cindex task attributes (@sc{gnu} Hurd)
14726@cindex pause current task (@sc{gnu} Hurd)
14727This command toggles task suspension when @value{GDBN} has control.
14728Setting it to on takes effect immediately, and the task is suspended
14729whenever @value{GDBN} gets control. Setting it to off will take
14730effect the next time the inferior is continued. If this option is set
14731to off, you can use @code{set thread default pause on} or @code{set
14732thread pause on} (see below) to pause individual threads.
14733
14734@item show task pause
14735@kindex show task@r{, Hurd commands}
14736Show the current state of task suspension.
14737
14738@item set task detach-suspend-count
14739@cindex task suspend count
14740@cindex detach from task, @sc{gnu} Hurd
14741This command sets the suspend count the task will be left with when
14742@value{GDBN} detaches from it.
14743
14744@item show task detach-suspend-count
14745Show the suspend count the task will be left with when detaching.
14746
14747@item set task exception-port
14748@itemx set task excp
14749@cindex task exception port, @sc{gnu} Hurd
14750This command sets the task exception port to which @value{GDBN} will
14751forward exceptions. The argument should be the value of the @dfn{send
14752rights} of the task. @code{set task excp} is a shorthand alias.
14753
14754@item set noninvasive
14755@cindex noninvasive task options
14756This command switches @value{GDBN} to a mode that is the least
14757invasive as far as interfering with the inferior is concerned. This
14758is the same as using @code{set task pause}, @code{set exceptions}, and
14759@code{set signals} to values opposite to the defaults.
14760
14761@item info send-rights
14762@itemx info receive-rights
14763@itemx info port-rights
14764@itemx info port-sets
14765@itemx info dead-names
14766@itemx info ports
14767@itemx info psets
14768@cindex send rights, @sc{gnu} Hurd
14769@cindex receive rights, @sc{gnu} Hurd
14770@cindex port rights, @sc{gnu} Hurd
14771@cindex port sets, @sc{gnu} Hurd
14772@cindex dead names, @sc{gnu} Hurd
14773These commands display information about, respectively, send rights,
14774receive rights, port rights, port sets, and dead names of a task.
14775There are also shorthand aliases: @code{info ports} for @code{info
14776port-rights} and @code{info psets} for @code{info port-sets}.
14777
14778@item set thread pause
14779@kindex set thread@r{, Hurd command}
14780@cindex thread properties, @sc{gnu} Hurd
14781@cindex pause current thread (@sc{gnu} Hurd)
14782This command toggles current thread suspension when @value{GDBN} has
14783control. Setting it to on takes effect immediately, and the current
14784thread is suspended whenever @value{GDBN} gets control. Setting it to
14785off will take effect the next time the inferior is continued.
14786Normally, this command has no effect, since when @value{GDBN} has
14787control, the whole task is suspended. However, if you used @code{set
14788task pause off} (see above), this command comes in handy to suspend
14789only the current thread.
14790
14791@item show thread pause
14792@kindex show thread@r{, Hurd command}
14793This command shows the state of current thread suspension.
14794
14795@item set thread run
d3e8051b 14796This command sets whether the current thread is allowed to run.
14d6dd68
EZ
14797
14798@item show thread run
14799Show whether the current thread is allowed to run.
14800
14801@item set thread detach-suspend-count
14802@cindex thread suspend count, @sc{gnu} Hurd
14803@cindex detach from thread, @sc{gnu} Hurd
14804This command sets the suspend count @value{GDBN} will leave on a
14805thread when detaching. This number is relative to the suspend count
14806found by @value{GDBN} when it notices the thread; use @code{set thread
14807takeover-suspend-count} to force it to an absolute value.
14808
14809@item show thread detach-suspend-count
14810Show the suspend count @value{GDBN} will leave on the thread when
14811detaching.
14812
14813@item set thread exception-port
14814@itemx set thread excp
14815Set the thread exception port to which to forward exceptions. This
14816overrides the port set by @code{set task exception-port} (see above).
14817@code{set thread excp} is the shorthand alias.
14818
14819@item set thread takeover-suspend-count
14820Normally, @value{GDBN}'s thread suspend counts are relative to the
14821value @value{GDBN} finds when it notices each thread. This command
14822changes the suspend counts to be absolute instead.
14823
14824@item set thread default
14825@itemx show thread default
14826@cindex thread default settings, @sc{gnu} Hurd
14827Each of the above @code{set thread} commands has a @code{set thread
14828default} counterpart (e.g., @code{set thread default pause}, @code{set
14829thread default exception-port}, etc.). The @code{thread default}
14830variety of commands sets the default thread properties for all
14831threads; you can then change the properties of individual threads with
14832the non-default commands.
14833@end table
14834
14835
a64548ea
EZ
14836@node Neutrino
14837@subsection QNX Neutrino
14838@cindex QNX Neutrino
14839
14840@value{GDBN} provides the following commands specific to the QNX
14841Neutrino target:
14842
14843@table @code
14844@item set debug nto-debug
14845@kindex set debug nto-debug
14846When set to on, enables debugging messages specific to the QNX
14847Neutrino support.
14848
14849@item show debug nto-debug
14850@kindex show debug nto-debug
14851Show the current state of QNX Neutrino messages.
14852@end table
14853
14854
8e04817f
AC
14855@node Embedded OS
14856@section Embedded Operating Systems
104c1213 14857
8e04817f
AC
14858This section describes configurations involving the debugging of
14859embedded operating systems that are available for several different
14860architectures.
d4f3574e 14861
8e04817f
AC
14862@menu
14863* VxWorks:: Using @value{GDBN} with VxWorks
14864@end menu
104c1213 14865
8e04817f
AC
14866@value{GDBN} includes the ability to debug programs running on
14867various real-time operating systems.
104c1213 14868
8e04817f
AC
14869@node VxWorks
14870@subsection Using @value{GDBN} with VxWorks
104c1213 14871
8e04817f 14872@cindex VxWorks
104c1213 14873
8e04817f 14874@table @code
104c1213 14875
8e04817f
AC
14876@kindex target vxworks
14877@item target vxworks @var{machinename}
14878A VxWorks system, attached via TCP/IP. The argument @var{machinename}
14879is the target system's machine name or IP address.
104c1213 14880
8e04817f 14881@end table
104c1213 14882
8e04817f
AC
14883On VxWorks, @code{load} links @var{filename} dynamically on the
14884current target system as well as adding its symbols in @value{GDBN}.
104c1213 14885
8e04817f
AC
14886@value{GDBN} enables developers to spawn and debug tasks running on networked
14887VxWorks targets from a Unix host. Already-running tasks spawned from
14888the VxWorks shell can also be debugged. @value{GDBN} uses code that runs on
14889both the Unix host and on the VxWorks target. The program
14890@code{@value{GDBP}} is installed and executed on the Unix host. (It may be
14891installed with the name @code{vxgdb}, to distinguish it from a
14892@value{GDBN} for debugging programs on the host itself.)
104c1213 14893
8e04817f
AC
14894@table @code
14895@item VxWorks-timeout @var{args}
14896@kindex vxworks-timeout
14897All VxWorks-based targets now support the option @code{vxworks-timeout}.
14898This option is set by the user, and @var{args} represents the number of
14899seconds @value{GDBN} waits for responses to rpc's. You might use this if
14900your VxWorks target is a slow software simulator or is on the far side
14901of a thin network line.
14902@end table
104c1213 14903
8e04817f
AC
14904The following information on connecting to VxWorks was current when
14905this manual was produced; newer releases of VxWorks may use revised
14906procedures.
104c1213 14907
4644b6e3 14908@findex INCLUDE_RDB
8e04817f
AC
14909To use @value{GDBN} with VxWorks, you must rebuild your VxWorks kernel
14910to include the remote debugging interface routines in the VxWorks
14911library @file{rdb.a}. To do this, define @code{INCLUDE_RDB} in the
14912VxWorks configuration file @file{configAll.h} and rebuild your VxWorks
14913kernel. The resulting kernel contains @file{rdb.a}, and spawns the
14914source debugging task @code{tRdbTask} when VxWorks is booted. For more
14915information on configuring and remaking VxWorks, see the manufacturer's
14916manual.
14917@c VxWorks, see the @cite{VxWorks Programmer's Guide}.
104c1213 14918
8e04817f
AC
14919Once you have included @file{rdb.a} in your VxWorks system image and set
14920your Unix execution search path to find @value{GDBN}, you are ready to
14921run @value{GDBN}. From your Unix host, run @code{@value{GDBP}} (or
14922@code{vxgdb}, depending on your installation).
104c1213 14923
8e04817f 14924@value{GDBN} comes up showing the prompt:
104c1213 14925
474c8240 14926@smallexample
8e04817f 14927(vxgdb)
474c8240 14928@end smallexample
104c1213 14929
8e04817f
AC
14930@menu
14931* VxWorks Connection:: Connecting to VxWorks
14932* VxWorks Download:: VxWorks download
14933* VxWorks Attach:: Running tasks
14934@end menu
104c1213 14935
8e04817f
AC
14936@node VxWorks Connection
14937@subsubsection Connecting to VxWorks
104c1213 14938
8e04817f
AC
14939The @value{GDBN} command @code{target} lets you connect to a VxWorks target on the
14940network. To connect to a target whose host name is ``@code{tt}'', type:
104c1213 14941
474c8240 14942@smallexample
8e04817f 14943(vxgdb) target vxworks tt
474c8240 14944@end smallexample
104c1213 14945
8e04817f
AC
14946@need 750
14947@value{GDBN} displays messages like these:
104c1213 14948
8e04817f
AC
14949@smallexample
14950Attaching remote machine across net...
14951Connected to tt.
14952@end smallexample
104c1213 14953
8e04817f
AC
14954@need 1000
14955@value{GDBN} then attempts to read the symbol tables of any object modules
14956loaded into the VxWorks target since it was last booted. @value{GDBN} locates
14957these files by searching the directories listed in the command search
79a6e687 14958path (@pxref{Environment, ,Your Program's Environment}); if it fails
8e04817f 14959to find an object file, it displays a message such as:
5d161b24 14960
474c8240 14961@smallexample
8e04817f 14962prog.o: No such file or directory.
474c8240 14963@end smallexample
104c1213 14964
8e04817f
AC
14965When this happens, add the appropriate directory to the search path with
14966the @value{GDBN} command @code{path}, and execute the @code{target}
14967command again.
104c1213 14968
8e04817f 14969@node VxWorks Download
79a6e687 14970@subsubsection VxWorks Download
104c1213 14971
8e04817f
AC
14972@cindex download to VxWorks
14973If you have connected to the VxWorks target and you want to debug an
14974object that has not yet been loaded, you can use the @value{GDBN}
14975@code{load} command to download a file from Unix to VxWorks
14976incrementally. The object file given as an argument to the @code{load}
14977command is actually opened twice: first by the VxWorks target in order
14978to download the code, then by @value{GDBN} in order to read the symbol
14979table. This can lead to problems if the current working directories on
14980the two systems differ. If both systems have NFS mounted the same
14981filesystems, you can avoid these problems by using absolute paths.
14982Otherwise, it is simplest to set the working directory on both systems
14983to the directory in which the object file resides, and then to reference
14984the file by its name, without any path. For instance, a program
14985@file{prog.o} may reside in @file{@var{vxpath}/vw/demo/rdb} in VxWorks
14986and in @file{@var{hostpath}/vw/demo/rdb} on the host. To load this
14987program, type this on VxWorks:
104c1213 14988
474c8240 14989@smallexample
8e04817f 14990-> cd "@var{vxpath}/vw/demo/rdb"
474c8240 14991@end smallexample
104c1213 14992
8e04817f
AC
14993@noindent
14994Then, in @value{GDBN}, type:
104c1213 14995
474c8240 14996@smallexample
8e04817f
AC
14997(vxgdb) cd @var{hostpath}/vw/demo/rdb
14998(vxgdb) load prog.o
474c8240 14999@end smallexample
104c1213 15000
8e04817f 15001@value{GDBN} displays a response similar to this:
104c1213 15002
8e04817f
AC
15003@smallexample
15004Reading symbol data from wherever/vw/demo/rdb/prog.o... done.
15005@end smallexample
104c1213 15006
8e04817f
AC
15007You can also use the @code{load} command to reload an object module
15008after editing and recompiling the corresponding source file. Note that
15009this makes @value{GDBN} delete all currently-defined breakpoints,
15010auto-displays, and convenience variables, and to clear the value
15011history. (This is necessary in order to preserve the integrity of
15012debugger's data structures that reference the target system's symbol
15013table.)
104c1213 15014
8e04817f 15015@node VxWorks Attach
79a6e687 15016@subsubsection Running Tasks
104c1213
JM
15017
15018@cindex running VxWorks tasks
15019You can also attach to an existing task using the @code{attach} command as
15020follows:
15021
474c8240 15022@smallexample
104c1213 15023(vxgdb) attach @var{task}
474c8240 15024@end smallexample
104c1213
JM
15025
15026@noindent
15027where @var{task} is the VxWorks hexadecimal task ID. The task can be running
15028or suspended when you attach to it. Running tasks are suspended at
15029the time of attachment.
15030
6d2ebf8b 15031@node Embedded Processors
104c1213
JM
15032@section Embedded Processors
15033
15034This section goes into details specific to particular embedded
15035configurations.
15036
c45da7e6
EZ
15037@cindex send command to simulator
15038Whenever a specific embedded processor has a simulator, @value{GDBN}
15039allows to send an arbitrary command to the simulator.
15040
15041@table @code
15042@item sim @var{command}
15043@kindex sim@r{, a command}
15044Send an arbitrary @var{command} string to the simulator. Consult the
15045documentation for the specific simulator in use for information about
15046acceptable commands.
15047@end table
15048
7d86b5d5 15049
104c1213 15050@menu
c45da7e6 15051* ARM:: ARM RDI
172c2a43 15052* M32R/D:: Renesas M32R/D
104c1213 15053* M68K:: Motorola M68K
104c1213 15054* MIPS Embedded:: MIPS Embedded
a37295f9 15055* OpenRISC 1000:: OpenRisc 1000
104c1213 15056* PA:: HP PA Embedded
4acd40f3 15057* PowerPC Embedded:: PowerPC Embedded
104c1213
JM
15058* Sparclet:: Tsqware Sparclet
15059* Sparclite:: Fujitsu Sparclite
104c1213 15060* Z8000:: Zilog Z8000
a64548ea
EZ
15061* AVR:: Atmel AVR
15062* CRIS:: CRIS
15063* Super-H:: Renesas Super-H
104c1213
JM
15064@end menu
15065
6d2ebf8b 15066@node ARM
104c1213 15067@subsection ARM
c45da7e6 15068@cindex ARM RDI
104c1213
JM
15069
15070@table @code
8e04817f
AC
15071@kindex target rdi
15072@item target rdi @var{dev}
15073ARM Angel monitor, via RDI library interface to ADP protocol. You may
15074use this target to communicate with both boards running the Angel
15075monitor, or with the EmbeddedICE JTAG debug device.
15076
15077@kindex target rdp
15078@item target rdp @var{dev}
15079ARM Demon monitor.
15080
15081@end table
15082
e2f4edfd
EZ
15083@value{GDBN} provides the following ARM-specific commands:
15084
15085@table @code
15086@item set arm disassembler
15087@kindex set arm
15088This commands selects from a list of disassembly styles. The
15089@code{"std"} style is the standard style.
15090
15091@item show arm disassembler
15092@kindex show arm
15093Show the current disassembly style.
15094
15095@item set arm apcs32
15096@cindex ARM 32-bit mode
15097This command toggles ARM operation mode between 32-bit and 26-bit.
15098
15099@item show arm apcs32
15100Display the current usage of the ARM 32-bit mode.
15101
15102@item set arm fpu @var{fputype}
15103This command sets the ARM floating-point unit (FPU) type. The
15104argument @var{fputype} can be one of these:
15105
15106@table @code
15107@item auto
15108Determine the FPU type by querying the OS ABI.
15109@item softfpa
15110Software FPU, with mixed-endian doubles on little-endian ARM
15111processors.
15112@item fpa
15113GCC-compiled FPA co-processor.
15114@item softvfp
15115Software FPU with pure-endian doubles.
15116@item vfp
15117VFP co-processor.
15118@end table
15119
15120@item show arm fpu
15121Show the current type of the FPU.
15122
15123@item set arm abi
15124This command forces @value{GDBN} to use the specified ABI.
15125
15126@item show arm abi
15127Show the currently used ABI.
15128
0428b8f5
DJ
15129@item set arm fallback-mode (arm|thumb|auto)
15130@value{GDBN} uses the symbol table, when available, to determine
15131whether instructions are ARM or Thumb. This command controls
15132@value{GDBN}'s default behavior when the symbol table is not
15133available. The default is @samp{auto}, which causes @value{GDBN} to
15134use the current execution mode (from the @code{T} bit in the @code{CPSR}
15135register).
15136
15137@item show arm fallback-mode
15138Show the current fallback instruction mode.
15139
15140@item set arm force-mode (arm|thumb|auto)
15141This command overrides use of the symbol table to determine whether
15142instructions are ARM or Thumb. The default is @samp{auto}, which
15143causes @value{GDBN} to use the symbol table and then the setting
15144of @samp{set arm fallback-mode}.
15145
15146@item show arm force-mode
15147Show the current forced instruction mode.
15148
e2f4edfd
EZ
15149@item set debug arm
15150Toggle whether to display ARM-specific debugging messages from the ARM
15151target support subsystem.
15152
15153@item show debug arm
15154Show whether ARM-specific debugging messages are enabled.
15155@end table
15156
c45da7e6
EZ
15157The following commands are available when an ARM target is debugged
15158using the RDI interface:
15159
15160@table @code
15161@item rdilogfile @r{[}@var{file}@r{]}
15162@kindex rdilogfile
15163@cindex ADP (Angel Debugger Protocol) logging
15164Set the filename for the ADP (Angel Debugger Protocol) packet log.
15165With an argument, sets the log file to the specified @var{file}. With
15166no argument, show the current log file name. The default log file is
15167@file{rdi.log}.
15168
15169@item rdilogenable @r{[}@var{arg}@r{]}
15170@kindex rdilogenable
15171Control logging of ADP packets. With an argument of 1 or @code{"yes"}
15172enables logging, with an argument 0 or @code{"no"} disables it. With
15173no arguments displays the current setting. When logging is enabled,
15174ADP packets exchanged between @value{GDBN} and the RDI target device
15175are logged to a file.
15176
15177@item set rdiromatzero
15178@kindex set rdiromatzero
15179@cindex ROM at zero address, RDI
15180Tell @value{GDBN} whether the target has ROM at address 0. If on,
15181vector catching is disabled, so that zero address can be used. If off
15182(the default), vector catching is enabled. For this command to take
15183effect, it needs to be invoked prior to the @code{target rdi} command.
15184
15185@item show rdiromatzero
15186@kindex show rdiromatzero
15187Show the current setting of ROM at zero address.
15188
15189@item set rdiheartbeat
15190@kindex set rdiheartbeat
15191@cindex RDI heartbeat
15192Enable or disable RDI heartbeat packets. It is not recommended to
15193turn on this option, since it confuses ARM and EPI JTAG interface, as
15194well as the Angel monitor.
15195
15196@item show rdiheartbeat
15197@kindex show rdiheartbeat
15198Show the setting of RDI heartbeat packets.
15199@end table
15200
e2f4edfd 15201
8e04817f 15202@node M32R/D
ba04e063 15203@subsection Renesas M32R/D and M32R/SDI
8e04817f
AC
15204
15205@table @code
8e04817f
AC
15206@kindex target m32r
15207@item target m32r @var{dev}
172c2a43 15208Renesas M32R/D ROM monitor.
8e04817f 15209
fb3e19c0
KI
15210@kindex target m32rsdi
15211@item target m32rsdi @var{dev}
15212Renesas M32R SDI server, connected via parallel port to the board.
721c2651
EZ
15213@end table
15214
15215The following @value{GDBN} commands are specific to the M32R monitor:
15216
15217@table @code
15218@item set download-path @var{path}
15219@kindex set download-path
15220@cindex find downloadable @sc{srec} files (M32R)
d3e8051b 15221Set the default path for finding downloadable @sc{srec} files.
721c2651
EZ
15222
15223@item show download-path
15224@kindex show download-path
15225Show the default path for downloadable @sc{srec} files.
fb3e19c0 15226
721c2651
EZ
15227@item set board-address @var{addr}
15228@kindex set board-address
15229@cindex M32-EVA target board address
15230Set the IP address for the M32R-EVA target board.
15231
15232@item show board-address
15233@kindex show board-address
15234Show the current IP address of the target board.
15235
15236@item set server-address @var{addr}
15237@kindex set server-address
15238@cindex download server address (M32R)
15239Set the IP address for the download server, which is the @value{GDBN}'s
15240host machine.
15241
15242@item show server-address
15243@kindex show server-address
15244Display the IP address of the download server.
15245
15246@item upload @r{[}@var{file}@r{]}
15247@kindex upload@r{, M32R}
15248Upload the specified @sc{srec} @var{file} via the monitor's Ethernet
15249upload capability. If no @var{file} argument is given, the current
15250executable file is uploaded.
15251
15252@item tload @r{[}@var{file}@r{]}
15253@kindex tload@r{, M32R}
15254Test the @code{upload} command.
8e04817f
AC
15255@end table
15256
ba04e063
EZ
15257The following commands are available for M32R/SDI:
15258
15259@table @code
15260@item sdireset
15261@kindex sdireset
15262@cindex reset SDI connection, M32R
15263This command resets the SDI connection.
15264
15265@item sdistatus
15266@kindex sdistatus
15267This command shows the SDI connection status.
15268
15269@item debug_chaos
15270@kindex debug_chaos
15271@cindex M32R/Chaos debugging
15272Instructs the remote that M32R/Chaos debugging is to be used.
15273
15274@item use_debug_dma
15275@kindex use_debug_dma
15276Instructs the remote to use the DEBUG_DMA method of accessing memory.
15277
15278@item use_mon_code
15279@kindex use_mon_code
15280Instructs the remote to use the MON_CODE method of accessing memory.
15281
15282@item use_ib_break
15283@kindex use_ib_break
15284Instructs the remote to set breakpoints by IB break.
15285
15286@item use_dbt_break
15287@kindex use_dbt_break
15288Instructs the remote to set breakpoints by DBT.
15289@end table
15290
8e04817f
AC
15291@node M68K
15292@subsection M68k
15293
7ce59000
DJ
15294The Motorola m68k configuration includes ColdFire support, and a
15295target command for the following ROM monitor.
8e04817f
AC
15296
15297@table @code
15298
8e04817f
AC
15299@kindex target dbug
15300@item target dbug @var{dev}
15301dBUG ROM monitor for Motorola ColdFire.
15302
8e04817f
AC
15303@end table
15304
8e04817f
AC
15305@node MIPS Embedded
15306@subsection MIPS Embedded
15307
15308@cindex MIPS boards
15309@value{GDBN} can use the MIPS remote debugging protocol to talk to a
15310MIPS board attached to a serial line. This is available when
15311you configure @value{GDBN} with @samp{--target=mips-idt-ecoff}.
104c1213 15312
8e04817f
AC
15313@need 1000
15314Use these @value{GDBN} commands to specify the connection to your target board:
104c1213 15315
8e04817f
AC
15316@table @code
15317@item target mips @var{port}
15318@kindex target mips @var{port}
15319To run a program on the board, start up @code{@value{GDBP}} with the
15320name of your program as the argument. To connect to the board, use the
15321command @samp{target mips @var{port}}, where @var{port} is the name of
15322the serial port connected to the board. If the program has not already
15323been downloaded to the board, you may use the @code{load} command to
15324download it. You can then use all the usual @value{GDBN} commands.
104c1213 15325
8e04817f
AC
15326For example, this sequence connects to the target board through a serial
15327port, and loads and runs a program called @var{prog} through the
15328debugger:
104c1213 15329
474c8240 15330@smallexample
8e04817f
AC
15331host$ @value{GDBP} @var{prog}
15332@value{GDBN} is free software and @dots{}
15333(@value{GDBP}) target mips /dev/ttyb
15334(@value{GDBP}) load @var{prog}
15335(@value{GDBP}) run
474c8240 15336@end smallexample
104c1213 15337
8e04817f
AC
15338@item target mips @var{hostname}:@var{portnumber}
15339On some @value{GDBN} host configurations, you can specify a TCP
15340connection (for instance, to a serial line managed by a terminal
15341concentrator) instead of a serial port, using the syntax
15342@samp{@var{hostname}:@var{portnumber}}.
104c1213 15343
8e04817f
AC
15344@item target pmon @var{port}
15345@kindex target pmon @var{port}
15346PMON ROM monitor.
104c1213 15347
8e04817f
AC
15348@item target ddb @var{port}
15349@kindex target ddb @var{port}
15350NEC's DDB variant of PMON for Vr4300.
104c1213 15351
8e04817f
AC
15352@item target lsi @var{port}
15353@kindex target lsi @var{port}
15354LSI variant of PMON.
104c1213 15355
8e04817f
AC
15356@kindex target r3900
15357@item target r3900 @var{dev}
15358Densan DVE-R3900 ROM monitor for Toshiba R3900 Mips.
104c1213 15359
8e04817f
AC
15360@kindex target array
15361@item target array @var{dev}
15362Array Tech LSI33K RAID controller board.
104c1213 15363
8e04817f 15364@end table
104c1213 15365
104c1213 15366
8e04817f
AC
15367@noindent
15368@value{GDBN} also supports these special commands for MIPS targets:
104c1213 15369
8e04817f 15370@table @code
8e04817f
AC
15371@item set mipsfpu double
15372@itemx set mipsfpu single
15373@itemx set mipsfpu none
a64548ea 15374@itemx set mipsfpu auto
8e04817f
AC
15375@itemx show mipsfpu
15376@kindex set mipsfpu
15377@kindex show mipsfpu
15378@cindex MIPS remote floating point
15379@cindex floating point, MIPS remote
15380If your target board does not support the MIPS floating point
15381coprocessor, you should use the command @samp{set mipsfpu none} (if you
15382need this, you may wish to put the command in your @value{GDBN} init
15383file). This tells @value{GDBN} how to find the return value of
15384functions which return floating point values. It also allows
15385@value{GDBN} to avoid saving the floating point registers when calling
15386functions on the board. If you are using a floating point coprocessor
15387with only single precision floating point support, as on the @sc{r4650}
15388processor, use the command @samp{set mipsfpu single}. The default
15389double precision floating point coprocessor may be selected using
15390@samp{set mipsfpu double}.
104c1213 15391
8e04817f
AC
15392In previous versions the only choices were double precision or no
15393floating point, so @samp{set mipsfpu on} will select double precision
15394and @samp{set mipsfpu off} will select no floating point.
104c1213 15395
8e04817f
AC
15396As usual, you can inquire about the @code{mipsfpu} variable with
15397@samp{show mipsfpu}.
104c1213 15398
8e04817f
AC
15399@item set timeout @var{seconds}
15400@itemx set retransmit-timeout @var{seconds}
15401@itemx show timeout
15402@itemx show retransmit-timeout
15403@cindex @code{timeout}, MIPS protocol
15404@cindex @code{retransmit-timeout}, MIPS protocol
15405@kindex set timeout
15406@kindex show timeout
15407@kindex set retransmit-timeout
15408@kindex show retransmit-timeout
15409You can control the timeout used while waiting for a packet, in the MIPS
15410remote protocol, with the @code{set timeout @var{seconds}} command. The
15411default is 5 seconds. Similarly, you can control the timeout used while
15412waiting for an acknowledgement of a packet with the @code{set
15413retransmit-timeout @var{seconds}} command. The default is 3 seconds.
15414You can inspect both values with @code{show timeout} and @code{show
15415retransmit-timeout}. (These commands are @emph{only} available when
15416@value{GDBN} is configured for @samp{--target=mips-idt-ecoff}.)
104c1213 15417
8e04817f
AC
15418The timeout set by @code{set timeout} does not apply when @value{GDBN}
15419is waiting for your program to stop. In that case, @value{GDBN} waits
15420forever because it has no way of knowing how long the program is going
15421to run before stopping.
ba04e063
EZ
15422
15423@item set syn-garbage-limit @var{num}
15424@kindex set syn-garbage-limit@r{, MIPS remote}
15425@cindex synchronize with remote MIPS target
15426Limit the maximum number of characters @value{GDBN} should ignore when
15427it tries to synchronize with the remote target. The default is 10
15428characters. Setting the limit to -1 means there's no limit.
15429
15430@item show syn-garbage-limit
15431@kindex show syn-garbage-limit@r{, MIPS remote}
15432Show the current limit on the number of characters to ignore when
15433trying to synchronize with the remote system.
15434
15435@item set monitor-prompt @var{prompt}
15436@kindex set monitor-prompt@r{, MIPS remote}
15437@cindex remote monitor prompt
15438Tell @value{GDBN} to expect the specified @var{prompt} string from the
15439remote monitor. The default depends on the target:
15440@table @asis
15441@item pmon target
15442@samp{PMON}
15443@item ddb target
15444@samp{NEC010}
15445@item lsi target
15446@samp{PMON>}
15447@end table
15448
15449@item show monitor-prompt
15450@kindex show monitor-prompt@r{, MIPS remote}
15451Show the current strings @value{GDBN} expects as the prompt from the
15452remote monitor.
15453
15454@item set monitor-warnings
15455@kindex set monitor-warnings@r{, MIPS remote}
15456Enable or disable monitor warnings about hardware breakpoints. This
15457has effect only for the @code{lsi} target. When on, @value{GDBN} will
15458display warning messages whose codes are returned by the @code{lsi}
15459PMON monitor for breakpoint commands.
15460
15461@item show monitor-warnings
15462@kindex show monitor-warnings@r{, MIPS remote}
15463Show the current setting of printing monitor warnings.
15464
15465@item pmon @var{command}
15466@kindex pmon@r{, MIPS remote}
15467@cindex send PMON command
15468This command allows sending an arbitrary @var{command} string to the
15469monitor. The monitor must be in debug mode for this to work.
8e04817f 15470@end table
104c1213 15471
a37295f9
MM
15472@node OpenRISC 1000
15473@subsection OpenRISC 1000
15474@cindex OpenRISC 1000
15475
15476@cindex or1k boards
15477See OR1k Architecture document (@uref{www.opencores.org}) for more information
15478about platform and commands.
15479
15480@table @code
15481
15482@kindex target jtag
15483@item target jtag jtag://@var{host}:@var{port}
15484
15485Connects to remote JTAG server.
15486JTAG remote server can be either an or1ksim or JTAG server,
15487connected via parallel port to the board.
15488
15489Example: @code{target jtag jtag://localhost:9999}
15490
15491@kindex or1ksim
15492@item or1ksim @var{command}
15493If connected to @code{or1ksim} OpenRISC 1000 Architectural
15494Simulator, proprietary commands can be executed.
15495
15496@kindex info or1k spr
15497@item info or1k spr
15498Displays spr groups.
15499
15500@item info or1k spr @var{group}
15501@itemx info or1k spr @var{groupno}
15502Displays register names in selected group.
15503
15504@item info or1k spr @var{group} @var{register}
15505@itemx info or1k spr @var{register}
15506@itemx info or1k spr @var{groupno} @var{registerno}
15507@itemx info or1k spr @var{registerno}
15508Shows information about specified spr register.
15509
15510@kindex spr
15511@item spr @var{group} @var{register} @var{value}
15512@itemx spr @var{register @var{value}}
15513@itemx spr @var{groupno} @var{registerno @var{value}}
15514@itemx spr @var{registerno @var{value}}
15515Writes @var{value} to specified spr register.
15516@end table
15517
15518Some implementations of OpenRISC 1000 Architecture also have hardware trace.
15519It is very similar to @value{GDBN} trace, except it does not interfere with normal
15520program execution and is thus much faster. Hardware breakpoints/watchpoint
15521triggers can be set using:
15522@table @code
15523@item $LEA/$LDATA
15524Load effective address/data
15525@item $SEA/$SDATA
15526Store effective address/data
15527@item $AEA/$ADATA
15528Access effective address ($SEA or $LEA) or data ($SDATA/$LDATA)
15529@item $FETCH
15530Fetch data
15531@end table
15532
15533When triggered, it can capture low level data, like: @code{PC}, @code{LSEA},
15534@code{LDATA}, @code{SDATA}, @code{READSPR}, @code{WRITESPR}, @code{INSTR}.
15535
15536@code{htrace} commands:
15537@cindex OpenRISC 1000 htrace
15538@table @code
15539@kindex hwatch
15540@item hwatch @var{conditional}
d3e8051b 15541Set hardware watchpoint on combination of Load/Store Effective Address(es)
a37295f9
MM
15542or Data. For example:
15543
15544@code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
15545
15546@code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
15547
4644b6e3 15548@kindex htrace
a37295f9
MM
15549@item htrace info
15550Display information about current HW trace configuration.
15551
a37295f9
MM
15552@item htrace trigger @var{conditional}
15553Set starting criteria for HW trace.
15554
a37295f9
MM
15555@item htrace qualifier @var{conditional}
15556Set acquisition qualifier for HW trace.
15557
a37295f9
MM
15558@item htrace stop @var{conditional}
15559Set HW trace stopping criteria.
15560
f153cc92 15561@item htrace record [@var{data}]*
a37295f9
MM
15562Selects the data to be recorded, when qualifier is met and HW trace was
15563triggered.
15564
a37295f9 15565@item htrace enable
a37295f9
MM
15566@itemx htrace disable
15567Enables/disables the HW trace.
15568
f153cc92 15569@item htrace rewind [@var{filename}]
a37295f9
MM
15570Clears currently recorded trace data.
15571
15572If filename is specified, new trace file is made and any newly collected data
15573will be written there.
15574
f153cc92 15575@item htrace print [@var{start} [@var{len}]]
a37295f9
MM
15576Prints trace buffer, using current record configuration.
15577
a37295f9
MM
15578@item htrace mode continuous
15579Set continuous trace mode.
15580
a37295f9
MM
15581@item htrace mode suspend
15582Set suspend trace mode.
15583
15584@end table
15585
4acd40f3
TJB
15586@node PowerPC Embedded
15587@subsection PowerPC Embedded
104c1213 15588
55eddb0f
DJ
15589@value{GDBN} provides the following PowerPC-specific commands:
15590
104c1213 15591@table @code
55eddb0f
DJ
15592@kindex set powerpc
15593@item set powerpc soft-float
15594@itemx show powerpc soft-float
15595Force @value{GDBN} to use (or not use) a software floating point calling
15596convention. By default, @value{GDBN} selects the calling convention based
15597on the selected architecture and the provided executable file.
15598
15599@item set powerpc vector-abi
15600@itemx show powerpc vector-abi
15601Force @value{GDBN} to use the specified calling convention for vector
15602arguments and return values. The valid options are @samp{auto};
15603@samp{generic}, to avoid vector registers even if they are present;
15604@samp{altivec}, to use AltiVec registers; and @samp{spe} to use SPE
15605registers. By default, @value{GDBN} selects the calling convention
15606based on the selected architecture and the provided executable file.
15607
8e04817f
AC
15608@kindex target dink32
15609@item target dink32 @var{dev}
15610DINK32 ROM monitor.
104c1213 15611
8e04817f
AC
15612@kindex target ppcbug
15613@item target ppcbug @var{dev}
15614@kindex target ppcbug1
15615@item target ppcbug1 @var{dev}
15616PPCBUG ROM monitor for PowerPC.
104c1213 15617
8e04817f
AC
15618@kindex target sds
15619@item target sds @var{dev}
15620SDS monitor, running on a PowerPC board (such as Motorola's ADS).
c45da7e6 15621@end table
8e04817f 15622
c45da7e6 15623@cindex SDS protocol
d52fb0e9 15624The following commands specific to the SDS protocol are supported
55eddb0f 15625by @value{GDBN}:
c45da7e6
EZ
15626
15627@table @code
15628@item set sdstimeout @var{nsec}
15629@kindex set sdstimeout
15630Set the timeout for SDS protocol reads to be @var{nsec} seconds. The
15631default is 2 seconds.
15632
15633@item show sdstimeout
15634@kindex show sdstimeout
15635Show the current value of the SDS timeout.
15636
15637@item sds @var{command}
15638@kindex sds@r{, a command}
15639Send the specified @var{command} string to the SDS monitor.
8e04817f
AC
15640@end table
15641
c45da7e6 15642
8e04817f
AC
15643@node PA
15644@subsection HP PA Embedded
104c1213
JM
15645
15646@table @code
15647
8e04817f
AC
15648@kindex target op50n
15649@item target op50n @var{dev}
15650OP50N monitor, running on an OKI HPPA board.
15651
15652@kindex target w89k
15653@item target w89k @var{dev}
15654W89K monitor, running on a Winbond HPPA board.
104c1213
JM
15655
15656@end table
15657
8e04817f
AC
15658@node Sparclet
15659@subsection Tsqware Sparclet
104c1213 15660
8e04817f
AC
15661@cindex Sparclet
15662
15663@value{GDBN} enables developers to debug tasks running on
15664Sparclet targets from a Unix host.
15665@value{GDBN} uses code that runs on
15666both the Unix host and on the Sparclet target. The program
15667@code{@value{GDBP}} is installed and executed on the Unix host.
104c1213 15668
8e04817f
AC
15669@table @code
15670@item remotetimeout @var{args}
15671@kindex remotetimeout
15672@value{GDBN} supports the option @code{remotetimeout}.
15673This option is set by the user, and @var{args} represents the number of
15674seconds @value{GDBN} waits for responses.
104c1213
JM
15675@end table
15676
8e04817f
AC
15677@cindex compiling, on Sparclet
15678When compiling for debugging, include the options @samp{-g} to get debug
15679information and @samp{-Ttext} to relocate the program to where you wish to
15680load it on the target. You may also want to add the options @samp{-n} or
15681@samp{-N} in order to reduce the size of the sections. Example:
104c1213 15682
474c8240 15683@smallexample
8e04817f 15684sparclet-aout-gcc prog.c -Ttext 0x12010000 -g -o prog -N
474c8240 15685@end smallexample
104c1213 15686
8e04817f 15687You can use @code{objdump} to verify that the addresses are what you intended:
104c1213 15688
474c8240 15689@smallexample
8e04817f 15690sparclet-aout-objdump --headers --syms prog
474c8240 15691@end smallexample
104c1213 15692
8e04817f
AC
15693@cindex running, on Sparclet
15694Once you have set
15695your Unix execution search path to find @value{GDBN}, you are ready to
15696run @value{GDBN}. From your Unix host, run @code{@value{GDBP}}
15697(or @code{sparclet-aout-gdb}, depending on your installation).
104c1213 15698
8e04817f
AC
15699@value{GDBN} comes up showing the prompt:
15700
474c8240 15701@smallexample
8e04817f 15702(gdbslet)
474c8240 15703@end smallexample
104c1213
JM
15704
15705@menu
8e04817f
AC
15706* Sparclet File:: Setting the file to debug
15707* Sparclet Connection:: Connecting to Sparclet
15708* Sparclet Download:: Sparclet download
15709* Sparclet Execution:: Running and debugging
104c1213
JM
15710@end menu
15711
8e04817f 15712@node Sparclet File
79a6e687 15713@subsubsection Setting File to Debug
104c1213 15714
8e04817f 15715The @value{GDBN} command @code{file} lets you choose with program to debug.
104c1213 15716
474c8240 15717@smallexample
8e04817f 15718(gdbslet) file prog
474c8240 15719@end smallexample
104c1213 15720
8e04817f
AC
15721@need 1000
15722@value{GDBN} then attempts to read the symbol table of @file{prog}.
15723@value{GDBN} locates
15724the file by searching the directories listed in the command search
15725path.
12c27660 15726If the file was compiled with debug information (option @samp{-g}), source
8e04817f
AC
15727files will be searched as well.
15728@value{GDBN} locates
15729the source files by searching the directories listed in the directory search
79a6e687 15730path (@pxref{Environment, ,Your Program's Environment}).
8e04817f
AC
15731If it fails
15732to find a file, it displays a message such as:
104c1213 15733
474c8240 15734@smallexample
8e04817f 15735prog: No such file or directory.
474c8240 15736@end smallexample
104c1213 15737
8e04817f
AC
15738When this happens, add the appropriate directories to the search paths with
15739the @value{GDBN} commands @code{path} and @code{dir}, and execute the
15740@code{target} command again.
104c1213 15741
8e04817f
AC
15742@node Sparclet Connection
15743@subsubsection Connecting to Sparclet
104c1213 15744
8e04817f
AC
15745The @value{GDBN} command @code{target} lets you connect to a Sparclet target.
15746To connect to a target on serial port ``@code{ttya}'', type:
104c1213 15747
474c8240 15748@smallexample
8e04817f
AC
15749(gdbslet) target sparclet /dev/ttya
15750Remote target sparclet connected to /dev/ttya
15751main () at ../prog.c:3
474c8240 15752@end smallexample
104c1213 15753
8e04817f
AC
15754@need 750
15755@value{GDBN} displays messages like these:
104c1213 15756
474c8240 15757@smallexample
8e04817f 15758Connected to ttya.
474c8240 15759@end smallexample
104c1213 15760
8e04817f 15761@node Sparclet Download
79a6e687 15762@subsubsection Sparclet Download
104c1213 15763
8e04817f
AC
15764@cindex download to Sparclet
15765Once connected to the Sparclet target,
15766you can use the @value{GDBN}
15767@code{load} command to download the file from the host to the target.
15768The file name and load offset should be given as arguments to the @code{load}
15769command.
15770Since the file format is aout, the program must be loaded to the starting
15771address. You can use @code{objdump} to find out what this value is. The load
15772offset is an offset which is added to the VMA (virtual memory address)
15773of each of the file's sections.
15774For instance, if the program
15775@file{prog} was linked to text address 0x1201000, with data at 0x12010160
15776and bss at 0x12010170, in @value{GDBN}, type:
104c1213 15777
474c8240 15778@smallexample
8e04817f
AC
15779(gdbslet) load prog 0x12010000
15780Loading section .text, size 0xdb0 vma 0x12010000
474c8240 15781@end smallexample
104c1213 15782
8e04817f
AC
15783If the code is loaded at a different address then what the program was linked
15784to, you may need to use the @code{section} and @code{add-symbol-file} commands
15785to tell @value{GDBN} where to map the symbol table.
15786
15787@node Sparclet Execution
79a6e687 15788@subsubsection Running and Debugging
8e04817f
AC
15789
15790@cindex running and debugging Sparclet programs
15791You can now begin debugging the task using @value{GDBN}'s execution control
15792commands, @code{b}, @code{step}, @code{run}, etc. See the @value{GDBN}
15793manual for the list of commands.
15794
474c8240 15795@smallexample
8e04817f
AC
15796(gdbslet) b main
15797Breakpoint 1 at 0x12010000: file prog.c, line 3.
15798(gdbslet) run
15799Starting program: prog
15800Breakpoint 1, main (argc=1, argv=0xeffff21c) at prog.c:3
158013 char *symarg = 0;
15802(gdbslet) step
158034 char *execarg = "hello!";
15804(gdbslet)
474c8240 15805@end smallexample
8e04817f
AC
15806
15807@node Sparclite
15808@subsection Fujitsu Sparclite
104c1213
JM
15809
15810@table @code
15811
8e04817f
AC
15812@kindex target sparclite
15813@item target sparclite @var{dev}
15814Fujitsu sparclite boards, used only for the purpose of loading.
15815You must use an additional command to debug the program.
15816For example: target remote @var{dev} using @value{GDBN} standard
15817remote protocol.
104c1213
JM
15818
15819@end table
15820
8e04817f
AC
15821@node Z8000
15822@subsection Zilog Z8000
104c1213 15823
8e04817f
AC
15824@cindex Z8000
15825@cindex simulator, Z8000
15826@cindex Zilog Z8000 simulator
104c1213 15827
8e04817f
AC
15828When configured for debugging Zilog Z8000 targets, @value{GDBN} includes
15829a Z8000 simulator.
15830
15831For the Z8000 family, @samp{target sim} simulates either the Z8002 (the
15832unsegmented variant of the Z8000 architecture) or the Z8001 (the
15833segmented variant). The simulator recognizes which architecture is
15834appropriate by inspecting the object code.
104c1213 15835
8e04817f
AC
15836@table @code
15837@item target sim @var{args}
15838@kindex sim
15839@kindex target sim@r{, with Z8000}
15840Debug programs on a simulated CPU. If the simulator supports setup
15841options, specify them via @var{args}.
104c1213
JM
15842@end table
15843
8e04817f
AC
15844@noindent
15845After specifying this target, you can debug programs for the simulated
15846CPU in the same style as programs for your host computer; use the
15847@code{file} command to load a new program image, the @code{run} command
15848to run your program, and so on.
15849
15850As well as making available all the usual machine registers
15851(@pxref{Registers, ,Registers}), the Z8000 simulator provides three
15852additional items of information as specially named registers:
104c1213
JM
15853
15854@table @code
15855
8e04817f
AC
15856@item cycles
15857Counts clock-ticks in the simulator.
104c1213 15858
8e04817f
AC
15859@item insts
15860Counts instructions run in the simulator.
104c1213 15861
8e04817f
AC
15862@item time
15863Execution time in 60ths of a second.
104c1213 15864
8e04817f 15865@end table
104c1213 15866
8e04817f
AC
15867You can refer to these values in @value{GDBN} expressions with the usual
15868conventions; for example, @w{@samp{b fputc if $cycles>5000}} sets a
15869conditional breakpoint that suspends only after at least 5000
15870simulated clock ticks.
104c1213 15871
a64548ea
EZ
15872@node AVR
15873@subsection Atmel AVR
15874@cindex AVR
15875
15876When configured for debugging the Atmel AVR, @value{GDBN} supports the
15877following AVR-specific commands:
15878
15879@table @code
15880@item info io_registers
15881@kindex info io_registers@r{, AVR}
15882@cindex I/O registers (Atmel AVR)
15883This command displays information about the AVR I/O registers. For
15884each register, @value{GDBN} prints its number and value.
15885@end table
15886
15887@node CRIS
15888@subsection CRIS
15889@cindex CRIS
15890
15891When configured for debugging CRIS, @value{GDBN} provides the
15892following CRIS-specific commands:
15893
15894@table @code
15895@item set cris-version @var{ver}
15896@cindex CRIS version
e22e55c9
OF
15897Set the current CRIS version to @var{ver}, either @samp{10} or @samp{32}.
15898The CRIS version affects register names and sizes. This command is useful in
15899case autodetection of the CRIS version fails.
a64548ea
EZ
15900
15901@item show cris-version
15902Show the current CRIS version.
15903
15904@item set cris-dwarf2-cfi
15905@cindex DWARF-2 CFI and CRIS
e22e55c9
OF
15906Set the usage of DWARF-2 CFI for CRIS debugging. The default is @samp{on}.
15907Change to @samp{off} when using @code{gcc-cris} whose version is below
15908@code{R59}.
a64548ea
EZ
15909
15910@item show cris-dwarf2-cfi
15911Show the current state of using DWARF-2 CFI.
e22e55c9
OF
15912
15913@item set cris-mode @var{mode}
15914@cindex CRIS mode
15915Set the current CRIS mode to @var{mode}. It should only be changed when
15916debugging in guru mode, in which case it should be set to
15917@samp{guru} (the default is @samp{normal}).
15918
15919@item show cris-mode
15920Show the current CRIS mode.
a64548ea
EZ
15921@end table
15922
15923@node Super-H
15924@subsection Renesas Super-H
15925@cindex Super-H
15926
15927For the Renesas Super-H processor, @value{GDBN} provides these
15928commands:
15929
15930@table @code
15931@item regs
15932@kindex regs@r{, Super-H}
15933Show the values of all Super-H registers.
c055b101
CV
15934
15935@item set sh calling-convention @var{convention}
15936@kindex set sh calling-convention
15937Set the calling-convention used when calling functions from @value{GDBN}.
15938Allowed values are @samp{gcc}, which is the default setting, and @samp{renesas}.
15939With the @samp{gcc} setting, functions are called using the @value{NGCC} calling
15940convention. If the DWARF-2 information of the called function specifies
15941that the function follows the Renesas calling convention, the function
15942is called using the Renesas calling convention. If the calling convention
15943is set to @samp{renesas}, the Renesas calling convention is always used,
15944regardless of the DWARF-2 information. This can be used to override the
15945default of @samp{gcc} if debug information is missing, or the compiler
15946does not emit the DWARF-2 calling convention entry for a function.
15947
15948@item show sh calling-convention
15949@kindex show sh calling-convention
15950Show the current calling convention setting.
15951
a64548ea
EZ
15952@end table
15953
15954
8e04817f
AC
15955@node Architectures
15956@section Architectures
104c1213 15957
8e04817f
AC
15958This section describes characteristics of architectures that affect
15959all uses of @value{GDBN} with the architecture, both native and cross.
104c1213 15960
8e04817f 15961@menu
9c16f35a 15962* i386::
8e04817f
AC
15963* A29K::
15964* Alpha::
15965* MIPS::
a64548ea 15966* HPPA:: HP PA architecture
23d964e7 15967* SPU:: Cell Broadband Engine SPU architecture
4acd40f3 15968* PowerPC::
8e04817f 15969@end menu
104c1213 15970
9c16f35a 15971@node i386
db2e3e2e 15972@subsection x86 Architecture-specific Issues
9c16f35a
EZ
15973
15974@table @code
15975@item set struct-convention @var{mode}
15976@kindex set struct-convention
15977@cindex struct return convention
15978@cindex struct/union returned in registers
15979Set the convention used by the inferior to return @code{struct}s and
15980@code{union}s from functions to @var{mode}. Possible values of
15981@var{mode} are @code{"pcc"}, @code{"reg"}, and @code{"default"} (the
15982default). @code{"default"} or @code{"pcc"} means that @code{struct}s
15983are returned on the stack, while @code{"reg"} means that a
15984@code{struct} or a @code{union} whose size is 1, 2, 4, or 8 bytes will
15985be returned in a register.
15986
15987@item show struct-convention
15988@kindex show struct-convention
15989Show the current setting of the convention to return @code{struct}s
15990from functions.
15991@end table
15992
8e04817f
AC
15993@node A29K
15994@subsection A29K
104c1213
JM
15995
15996@table @code
104c1213 15997
8e04817f
AC
15998@kindex set rstack_high_address
15999@cindex AMD 29K register stack
16000@cindex register stack, AMD29K
16001@item set rstack_high_address @var{address}
16002On AMD 29000 family processors, registers are saved in a separate
16003@dfn{register stack}. There is no way for @value{GDBN} to determine the
16004extent of this stack. Normally, @value{GDBN} just assumes that the
16005stack is ``large enough''. This may result in @value{GDBN} referencing
16006memory locations that do not exist. If necessary, you can get around
16007this problem by specifying the ending address of the register stack with
16008the @code{set rstack_high_address} command. The argument should be an
16009address, which you probably want to precede with @samp{0x} to specify in
16010hexadecimal.
104c1213 16011
8e04817f
AC
16012@kindex show rstack_high_address
16013@item show rstack_high_address
16014Display the current limit of the register stack, on AMD 29000 family
16015processors.
104c1213 16016
8e04817f 16017@end table
104c1213 16018
8e04817f
AC
16019@node Alpha
16020@subsection Alpha
104c1213 16021
8e04817f 16022See the following section.
104c1213 16023
8e04817f
AC
16024@node MIPS
16025@subsection MIPS
104c1213 16026
8e04817f
AC
16027@cindex stack on Alpha
16028@cindex stack on MIPS
16029@cindex Alpha stack
16030@cindex MIPS stack
16031Alpha- and MIPS-based computers use an unusual stack frame, which
16032sometimes requires @value{GDBN} to search backward in the object code to
16033find the beginning of a function.
104c1213 16034
8e04817f
AC
16035@cindex response time, MIPS debugging
16036To improve response time (especially for embedded applications, where
16037@value{GDBN} may be restricted to a slow serial line for this search)
16038you may want to limit the size of this search, using one of these
16039commands:
104c1213 16040
8e04817f
AC
16041@table @code
16042@cindex @code{heuristic-fence-post} (Alpha, MIPS)
16043@item set heuristic-fence-post @var{limit}
16044Restrict @value{GDBN} to examining at most @var{limit} bytes in its
16045search for the beginning of a function. A value of @var{0} (the
16046default) means there is no limit. However, except for @var{0}, the
16047larger the limit the more bytes @code{heuristic-fence-post} must search
e2f4edfd
EZ
16048and therefore the longer it takes to run. You should only need to use
16049this command when debugging a stripped executable.
104c1213 16050
8e04817f
AC
16051@item show heuristic-fence-post
16052Display the current limit.
16053@end table
104c1213
JM
16054
16055@noindent
8e04817f
AC
16056These commands are available @emph{only} when @value{GDBN} is configured
16057for debugging programs on Alpha or MIPS processors.
104c1213 16058
a64548ea
EZ
16059Several MIPS-specific commands are available when debugging MIPS
16060programs:
16061
16062@table @code
a64548ea
EZ
16063@item set mips abi @var{arg}
16064@kindex set mips abi
16065@cindex set ABI for MIPS
16066Tell @value{GDBN} which MIPS ABI is used by the inferior. Possible
16067values of @var{arg} are:
16068
16069@table @samp
16070@item auto
16071The default ABI associated with the current binary (this is the
16072default).
16073@item o32
16074@item o64
16075@item n32
16076@item n64
16077@item eabi32
16078@item eabi64
16079@item auto
16080@end table
16081
16082@item show mips abi
16083@kindex show mips abi
16084Show the MIPS ABI used by @value{GDBN} to debug the inferior.
16085
16086@item set mipsfpu
16087@itemx show mipsfpu
16088@xref{MIPS Embedded, set mipsfpu}.
16089
16090@item set mips mask-address @var{arg}
16091@kindex set mips mask-address
16092@cindex MIPS addresses, masking
16093This command determines whether the most-significant 32 bits of 64-bit
16094MIPS addresses are masked off. The argument @var{arg} can be
16095@samp{on}, @samp{off}, or @samp{auto}. The latter is the default
16096setting, which lets @value{GDBN} determine the correct value.
16097
16098@item show mips mask-address
16099@kindex show mips mask-address
16100Show whether the upper 32 bits of MIPS addresses are masked off or
16101not.
16102
16103@item set remote-mips64-transfers-32bit-regs
16104@kindex set remote-mips64-transfers-32bit-regs
16105This command controls compatibility with 64-bit MIPS targets that
16106transfer data in 32-bit quantities. If you have an old MIPS 64 target
16107that transfers 32 bits for some registers, like @sc{sr} and @sc{fsr},
16108and 64 bits for other registers, set this option to @samp{on}.
16109
16110@item show remote-mips64-transfers-32bit-regs
16111@kindex show remote-mips64-transfers-32bit-regs
16112Show the current setting of compatibility with older MIPS 64 targets.
16113
16114@item set debug mips
16115@kindex set debug mips
16116This command turns on and off debugging messages for the MIPS-specific
16117target code in @value{GDBN}.
16118
16119@item show debug mips
16120@kindex show debug mips
16121Show the current setting of MIPS debugging messages.
16122@end table
16123
16124
16125@node HPPA
16126@subsection HPPA
16127@cindex HPPA support
16128
d3e8051b 16129When @value{GDBN} is debugging the HP PA architecture, it provides the
a64548ea
EZ
16130following special commands:
16131
16132@table @code
16133@item set debug hppa
16134@kindex set debug hppa
db2e3e2e 16135This command determines whether HPPA architecture-specific debugging
a64548ea
EZ
16136messages are to be displayed.
16137
16138@item show debug hppa
16139Show whether HPPA debugging messages are displayed.
16140
16141@item maint print unwind @var{address}
16142@kindex maint print unwind@r{, HPPA}
16143This command displays the contents of the unwind table entry at the
16144given @var{address}.
16145
16146@end table
16147
104c1213 16148
23d964e7
UW
16149@node SPU
16150@subsection Cell Broadband Engine SPU architecture
16151@cindex Cell Broadband Engine
16152@cindex SPU
16153
16154When @value{GDBN} is debugging the Cell Broadband Engine SPU architecture,
16155it provides the following special commands:
16156
16157@table @code
16158@item info spu event
16159@kindex info spu
16160Display SPU event facility status. Shows current event mask
16161and pending event status.
16162
16163@item info spu signal
16164Display SPU signal notification facility status. Shows pending
16165signal-control word and signal notification mode of both signal
16166notification channels.
16167
16168@item info spu mailbox
16169Display SPU mailbox facility status. Shows all pending entries,
16170in order of processing, in each of the SPU Write Outbound,
16171SPU Write Outbound Interrupt, and SPU Read Inbound mailboxes.
16172
16173@item info spu dma
16174Display MFC DMA status. Shows all pending commands in the MFC
16175DMA queue. For each entry, opcode, tag, class IDs, effective
16176and local store addresses and transfer size are shown.
16177
16178@item info spu proxydma
16179Display MFC Proxy-DMA status. Shows all pending commands in the MFC
16180Proxy-DMA queue. For each entry, opcode, tag, class IDs, effective
16181and local store addresses and transfer size are shown.
16182
16183@end table
16184
4acd40f3
TJB
16185@node PowerPC
16186@subsection PowerPC
16187@cindex PowerPC architecture
16188
16189When @value{GDBN} is debugging the PowerPC architecture, it provides a set of
16190pseudo-registers to enable inspection of 128-bit wide Decimal Floating Point
16191numbers stored in the floating point registers. These values must be stored
16192in two consecutive registers, always starting at an even register like
16193@code{f0} or @code{f2}.
16194
16195The pseudo-registers go from @code{$dl0} through @code{$dl15}, and are formed
16196by joining the even/odd register pairs @code{f0} and @code{f1} for @code{$dl0},
16197@code{f2} and @code{f3} for @code{$dl1} and so on.
16198
23d964e7 16199
8e04817f
AC
16200@node Controlling GDB
16201@chapter Controlling @value{GDBN}
16202
16203You can alter the way @value{GDBN} interacts with you by using the
16204@code{set} command. For commands controlling how @value{GDBN} displays
79a6e687 16205data, see @ref{Print Settings, ,Print Settings}. Other settings are
8e04817f
AC
16206described here.
16207
16208@menu
16209* Prompt:: Prompt
16210* Editing:: Command editing
d620b259 16211* Command History:: Command history
8e04817f
AC
16212* Screen Size:: Screen size
16213* Numbers:: Numbers
1e698235 16214* ABI:: Configuring the current ABI
8e04817f
AC
16215* Messages/Warnings:: Optional warnings and messages
16216* Debugging Output:: Optional messages about internal happenings
16217@end menu
16218
16219@node Prompt
16220@section Prompt
104c1213 16221
8e04817f 16222@cindex prompt
104c1213 16223
8e04817f
AC
16224@value{GDBN} indicates its readiness to read a command by printing a string
16225called the @dfn{prompt}. This string is normally @samp{(@value{GDBP})}. You
16226can change the prompt string with the @code{set prompt} command. For
16227instance, when debugging @value{GDBN} with @value{GDBN}, it is useful to change
16228the prompt in one of the @value{GDBN} sessions so that you can always tell
16229which one you are talking to.
104c1213 16230
8e04817f
AC
16231@emph{Note:} @code{set prompt} does not add a space for you after the
16232prompt you set. This allows you to set a prompt which ends in a space
16233or a prompt that does not.
104c1213 16234
8e04817f
AC
16235@table @code
16236@kindex set prompt
16237@item set prompt @var{newprompt}
16238Directs @value{GDBN} to use @var{newprompt} as its prompt string henceforth.
104c1213 16239
8e04817f
AC
16240@kindex show prompt
16241@item show prompt
16242Prints a line of the form: @samp{Gdb's prompt is: @var{your-prompt}}
104c1213
JM
16243@end table
16244
8e04817f 16245@node Editing
79a6e687 16246@section Command Editing
8e04817f
AC
16247@cindex readline
16248@cindex command line editing
104c1213 16249
703663ab 16250@value{GDBN} reads its input commands via the @dfn{Readline} interface. This
8e04817f
AC
16251@sc{gnu} library provides consistent behavior for programs which provide a
16252command line interface to the user. Advantages are @sc{gnu} Emacs-style
16253or @dfn{vi}-style inline editing of commands, @code{csh}-like history
16254substitution, and a storage and recall of command history across
16255debugging sessions.
104c1213 16256
8e04817f
AC
16257You may control the behavior of command line editing in @value{GDBN} with the
16258command @code{set}.
104c1213 16259
8e04817f
AC
16260@table @code
16261@kindex set editing
16262@cindex editing
16263@item set editing
16264@itemx set editing on
16265Enable command line editing (enabled by default).
104c1213 16266
8e04817f
AC
16267@item set editing off
16268Disable command line editing.
104c1213 16269
8e04817f
AC
16270@kindex show editing
16271@item show editing
16272Show whether command line editing is enabled.
104c1213
JM
16273@end table
16274
703663ab
EZ
16275@xref{Command Line Editing}, for more details about the Readline
16276interface. Users unfamiliar with @sc{gnu} Emacs or @code{vi} are
16277encouraged to read that chapter.
16278
d620b259 16279@node Command History
79a6e687 16280@section Command History
703663ab 16281@cindex command history
8e04817f
AC
16282
16283@value{GDBN} can keep track of the commands you type during your
16284debugging sessions, so that you can be certain of precisely what
16285happened. Use these commands to manage the @value{GDBN} command
16286history facility.
104c1213 16287
703663ab
EZ
16288@value{GDBN} uses the @sc{gnu} History library, a part of the Readline
16289package, to provide the history facility. @xref{Using History
16290Interactively}, for the detailed description of the History library.
16291
d620b259 16292To issue a command to @value{GDBN} without affecting certain aspects of
9e6c4bd5
NR
16293the state which is seen by users, prefix it with @samp{server }
16294(@pxref{Server Prefix}). This
d620b259
NR
16295means that this command will not affect the command history, nor will it
16296affect @value{GDBN}'s notion of which command to repeat if @key{RET} is
16297pressed on a line by itself.
16298
16299@cindex @code{server}, command prefix
16300The server prefix does not affect the recording of values into the value
16301history; to print a value without recording it into the value history,
16302use the @code{output} command instead of the @code{print} command.
16303
703663ab
EZ
16304Here is the description of @value{GDBN} commands related to command
16305history.
16306
104c1213 16307@table @code
8e04817f
AC
16308@cindex history substitution
16309@cindex history file
16310@kindex set history filename
4644b6e3 16311@cindex @env{GDBHISTFILE}, environment variable
8e04817f
AC
16312@item set history filename @var{fname}
16313Set the name of the @value{GDBN} command history file to @var{fname}.
16314This is the file where @value{GDBN} reads an initial command history
16315list, and where it writes the command history from this session when it
16316exits. You can access this list through history expansion or through
16317the history command editing characters listed below. This file defaults
16318to the value of the environment variable @code{GDBHISTFILE}, or to
16319@file{./.gdb_history} (@file{./_gdb_history} on MS-DOS) if this variable
16320is not set.
104c1213 16321
9c16f35a
EZ
16322@cindex save command history
16323@kindex set history save
8e04817f
AC
16324@item set history save
16325@itemx set history save on
16326Record command history in a file, whose name may be specified with the
16327@code{set history filename} command. By default, this option is disabled.
104c1213 16328
8e04817f
AC
16329@item set history save off
16330Stop recording command history in a file.
104c1213 16331
8e04817f 16332@cindex history size
9c16f35a 16333@kindex set history size
6fc08d32 16334@cindex @env{HISTSIZE}, environment variable
8e04817f
AC
16335@item set history size @var{size}
16336Set the number of commands which @value{GDBN} keeps in its history list.
16337This defaults to the value of the environment variable
16338@code{HISTSIZE}, or to 256 if this variable is not set.
104c1213
JM
16339@end table
16340
8e04817f 16341History expansion assigns special meaning to the character @kbd{!}.
703663ab 16342@xref{Event Designators}, for more details.
8e04817f 16343
703663ab 16344@cindex history expansion, turn on/off
8e04817f
AC
16345Since @kbd{!} is also the logical not operator in C, history expansion
16346is off by default. If you decide to enable history expansion with the
16347@code{set history expansion on} command, you may sometimes need to
16348follow @kbd{!} (when it is used as logical not, in an expression) with
16349a space or a tab to prevent it from being expanded. The readline
16350history facilities do not attempt substitution on the strings
16351@kbd{!=} and @kbd{!(}, even when history expansion is enabled.
16352
16353The commands to control history expansion are:
104c1213
JM
16354
16355@table @code
8e04817f
AC
16356@item set history expansion on
16357@itemx set history expansion
703663ab 16358@kindex set history expansion
8e04817f 16359Enable history expansion. History expansion is off by default.
104c1213 16360
8e04817f
AC
16361@item set history expansion off
16362Disable history expansion.
104c1213 16363
8e04817f
AC
16364@c @group
16365@kindex show history
16366@item show history
16367@itemx show history filename
16368@itemx show history save
16369@itemx show history size
16370@itemx show history expansion
16371These commands display the state of the @value{GDBN} history parameters.
16372@code{show history} by itself displays all four states.
16373@c @end group
16374@end table
16375
16376@table @code
9c16f35a
EZ
16377@kindex show commands
16378@cindex show last commands
16379@cindex display command history
8e04817f
AC
16380@item show commands
16381Display the last ten commands in the command history.
104c1213 16382
8e04817f
AC
16383@item show commands @var{n}
16384Print ten commands centered on command number @var{n}.
16385
16386@item show commands +
16387Print ten commands just after the commands last printed.
104c1213
JM
16388@end table
16389
8e04817f 16390@node Screen Size
79a6e687 16391@section Screen Size
8e04817f
AC
16392@cindex size of screen
16393@cindex pauses in output
104c1213 16394
8e04817f
AC
16395Certain commands to @value{GDBN} may produce large amounts of
16396information output to the screen. To help you read all of it,
16397@value{GDBN} pauses and asks you for input at the end of each page of
16398output. Type @key{RET} when you want to continue the output, or @kbd{q}
16399to discard the remaining output. Also, the screen width setting
16400determines when to wrap lines of output. Depending on what is being
16401printed, @value{GDBN} tries to break the line at a readable place,
16402rather than simply letting it overflow onto the following line.
16403
16404Normally @value{GDBN} knows the size of the screen from the terminal
16405driver software. For example, on Unix @value{GDBN} uses the termcap data base
16406together with the value of the @code{TERM} environment variable and the
16407@code{stty rows} and @code{stty cols} settings. If this is not correct,
16408you can override it with the @code{set height} and @code{set
16409width} commands:
16410
16411@table @code
16412@kindex set height
16413@kindex set width
16414@kindex show width
16415@kindex show height
16416@item set height @var{lpp}
16417@itemx show height
16418@itemx set width @var{cpl}
16419@itemx show width
16420These @code{set} commands specify a screen height of @var{lpp} lines and
16421a screen width of @var{cpl} characters. The associated @code{show}
16422commands display the current settings.
104c1213 16423
8e04817f
AC
16424If you specify a height of zero lines, @value{GDBN} does not pause during
16425output no matter how long the output is. This is useful if output is to a
16426file or to an editor buffer.
104c1213 16427
8e04817f
AC
16428Likewise, you can specify @samp{set width 0} to prevent @value{GDBN}
16429from wrapping its output.
9c16f35a
EZ
16430
16431@item set pagination on
16432@itemx set pagination off
16433@kindex set pagination
16434Turn the output pagination on or off; the default is on. Turning
16435pagination off is the alternative to @code{set height 0}.
16436
16437@item show pagination
16438@kindex show pagination
16439Show the current pagination mode.
104c1213
JM
16440@end table
16441
8e04817f
AC
16442@node Numbers
16443@section Numbers
16444@cindex number representation
16445@cindex entering numbers
104c1213 16446
8e04817f
AC
16447You can always enter numbers in octal, decimal, or hexadecimal in
16448@value{GDBN} by the usual conventions: octal numbers begin with
16449@samp{0}, decimal numbers end with @samp{.}, and hexadecimal numbers
eb2dae08
EZ
16450begin with @samp{0x}. Numbers that neither begin with @samp{0} or
16451@samp{0x}, nor end with a @samp{.} are, by default, entered in base
1645210; likewise, the default display for numbers---when no particular
16453format is specified---is base 10. You can change the default base for
16454both input and output with the commands described below.
104c1213 16455
8e04817f
AC
16456@table @code
16457@kindex set input-radix
16458@item set input-radix @var{base}
16459Set the default base for numeric input. Supported choices
16460for @var{base} are decimal 8, 10, or 16. @var{base} must itself be
eb2dae08 16461specified either unambiguously or using the current input radix; for
8e04817f 16462example, any of
104c1213 16463
8e04817f 16464@smallexample
9c16f35a
EZ
16465set input-radix 012
16466set input-radix 10.
16467set input-radix 0xa
8e04817f 16468@end smallexample
104c1213 16469
8e04817f 16470@noindent
9c16f35a 16471sets the input base to decimal. On the other hand, @samp{set input-radix 10}
eb2dae08
EZ
16472leaves the input radix unchanged, no matter what it was, since
16473@samp{10}, being without any leading or trailing signs of its base, is
16474interpreted in the current radix. Thus, if the current radix is 16,
16475@samp{10} is interpreted in hex, i.e.@: as 16 decimal, which doesn't
16476change the radix.
104c1213 16477
8e04817f
AC
16478@kindex set output-radix
16479@item set output-radix @var{base}
16480Set the default base for numeric display. Supported choices
16481for @var{base} are decimal 8, 10, or 16. @var{base} must itself be
eb2dae08 16482specified either unambiguously or using the current input radix.
104c1213 16483
8e04817f
AC
16484@kindex show input-radix
16485@item show input-radix
16486Display the current default base for numeric input.
104c1213 16487
8e04817f
AC
16488@kindex show output-radix
16489@item show output-radix
16490Display the current default base for numeric display.
9c16f35a
EZ
16491
16492@item set radix @r{[}@var{base}@r{]}
16493@itemx show radix
16494@kindex set radix
16495@kindex show radix
16496These commands set and show the default base for both input and output
16497of numbers. @code{set radix} sets the radix of input and output to
16498the same base; without an argument, it resets the radix back to its
16499default value of 10.
16500
8e04817f 16501@end table
104c1213 16502
1e698235 16503@node ABI
79a6e687 16504@section Configuring the Current ABI
1e698235
DJ
16505
16506@value{GDBN} can determine the @dfn{ABI} (Application Binary Interface) of your
16507application automatically. However, sometimes you need to override its
16508conclusions. Use these commands to manage @value{GDBN}'s view of the
16509current ABI.
16510
98b45e30
DJ
16511@cindex OS ABI
16512@kindex set osabi
b4e9345d 16513@kindex show osabi
98b45e30
DJ
16514
16515One @value{GDBN} configuration can debug binaries for multiple operating
b383017d 16516system targets, either via remote debugging or native emulation.
98b45e30
DJ
16517@value{GDBN} will autodetect the @dfn{OS ABI} (Operating System ABI) in use,
16518but you can override its conclusion using the @code{set osabi} command.
16519One example where this is useful is in debugging of binaries which use
16520an alternate C library (e.g.@: @sc{uClibc} for @sc{gnu}/Linux) which does
16521not have the same identifying marks that the standard C library for your
16522platform provides.
16523
16524@table @code
16525@item show osabi
16526Show the OS ABI currently in use.
16527
16528@item set osabi
16529With no argument, show the list of registered available OS ABI's.
16530
16531@item set osabi @var{abi}
16532Set the current OS ABI to @var{abi}.
16533@end table
16534
1e698235 16535@cindex float promotion
1e698235
DJ
16536
16537Generally, the way that an argument of type @code{float} is passed to a
16538function depends on whether the function is prototyped. For a prototyped
16539(i.e.@: ANSI/ISO style) function, @code{float} arguments are passed unchanged,
16540according to the architecture's convention for @code{float}. For unprototyped
16541(i.e.@: K&R style) functions, @code{float} arguments are first promoted to type
16542@code{double} and then passed.
16543
16544Unfortunately, some forms of debug information do not reliably indicate whether
16545a function is prototyped. If @value{GDBN} calls a function that is not marked
16546as prototyped, it consults @kbd{set coerce-float-to-double}.
16547
16548@table @code
a8f24a35 16549@kindex set coerce-float-to-double
1e698235
DJ
16550@item set coerce-float-to-double
16551@itemx set coerce-float-to-double on
16552Arguments of type @code{float} will be promoted to @code{double} when passed
16553to an unprototyped function. This is the default setting.
16554
16555@item set coerce-float-to-double off
16556Arguments of type @code{float} will be passed directly to unprototyped
16557functions.
9c16f35a
EZ
16558
16559@kindex show coerce-float-to-double
16560@item show coerce-float-to-double
16561Show the current setting of promoting @code{float} to @code{double}.
1e698235
DJ
16562@end table
16563
f1212245
DJ
16564@kindex set cp-abi
16565@kindex show cp-abi
16566@value{GDBN} needs to know the ABI used for your program's C@t{++}
16567objects. The correct C@t{++} ABI depends on which C@t{++} compiler was
16568used to build your application. @value{GDBN} only fully supports
16569programs with a single C@t{++} ABI; if your program contains code using
16570multiple C@t{++} ABI's or if @value{GDBN} can not identify your
16571program's ABI correctly, you can tell @value{GDBN} which ABI to use.
16572Currently supported ABI's include ``gnu-v2'', for @code{g++} versions
16573before 3.0, ``gnu-v3'', for @code{g++} versions 3.0 and later, and
16574``hpaCC'' for the HP ANSI C@t{++} compiler. Other C@t{++} compilers may
16575use the ``gnu-v2'' or ``gnu-v3'' ABI's as well. The default setting is
16576``auto''.
16577
16578@table @code
16579@item show cp-abi
16580Show the C@t{++} ABI currently in use.
16581
16582@item set cp-abi
16583With no argument, show the list of supported C@t{++} ABI's.
16584
16585@item set cp-abi @var{abi}
16586@itemx set cp-abi auto
16587Set the current C@t{++} ABI to @var{abi}, or return to automatic detection.
16588@end table
16589
8e04817f 16590@node Messages/Warnings
79a6e687 16591@section Optional Warnings and Messages
104c1213 16592
9c16f35a
EZ
16593@cindex verbose operation
16594@cindex optional warnings
8e04817f
AC
16595By default, @value{GDBN} is silent about its inner workings. If you are
16596running on a slow machine, you may want to use the @code{set verbose}
16597command. This makes @value{GDBN} tell you when it does a lengthy
16598internal operation, so you will not think it has crashed.
104c1213 16599
8e04817f
AC
16600Currently, the messages controlled by @code{set verbose} are those
16601which announce that the symbol table for a source file is being read;
79a6e687 16602see @code{symbol-file} in @ref{Files, ,Commands to Specify Files}.
104c1213 16603
8e04817f
AC
16604@table @code
16605@kindex set verbose
16606@item set verbose on
16607Enables @value{GDBN} output of certain informational messages.
104c1213 16608
8e04817f
AC
16609@item set verbose off
16610Disables @value{GDBN} output of certain informational messages.
104c1213 16611
8e04817f
AC
16612@kindex show verbose
16613@item show verbose
16614Displays whether @code{set verbose} is on or off.
16615@end table
104c1213 16616
8e04817f
AC
16617By default, if @value{GDBN} encounters bugs in the symbol table of an
16618object file, it is silent; but if you are debugging a compiler, you may
79a6e687
BW
16619find this information useful (@pxref{Symbol Errors, ,Errors Reading
16620Symbol Files}).
104c1213 16621
8e04817f 16622@table @code
104c1213 16623
8e04817f
AC
16624@kindex set complaints
16625@item set complaints @var{limit}
16626Permits @value{GDBN} to output @var{limit} complaints about each type of
16627unusual symbols before becoming silent about the problem. Set
16628@var{limit} to zero to suppress all complaints; set it to a large number
16629to prevent complaints from being suppressed.
104c1213 16630
8e04817f
AC
16631@kindex show complaints
16632@item show complaints
16633Displays how many symbol complaints @value{GDBN} is permitted to produce.
104c1213 16634
8e04817f 16635@end table
104c1213 16636
8e04817f
AC
16637By default, @value{GDBN} is cautious, and asks what sometimes seems to be a
16638lot of stupid questions to confirm certain commands. For example, if
16639you try to run a program which is already running:
104c1213 16640
474c8240 16641@smallexample
8e04817f
AC
16642(@value{GDBP}) run
16643The program being debugged has been started already.
16644Start it from the beginning? (y or n)
474c8240 16645@end smallexample
104c1213 16646
8e04817f
AC
16647If you are willing to unflinchingly face the consequences of your own
16648commands, you can disable this ``feature'':
104c1213 16649
8e04817f 16650@table @code
104c1213 16651
8e04817f
AC
16652@kindex set confirm
16653@cindex flinching
16654@cindex confirmation
16655@cindex stupid questions
16656@item set confirm off
16657Disables confirmation requests.
104c1213 16658
8e04817f
AC
16659@item set confirm on
16660Enables confirmation requests (the default).
104c1213 16661
8e04817f
AC
16662@kindex show confirm
16663@item show confirm
16664Displays state of confirmation requests.
16665
16666@end table
104c1213 16667
16026cd7
AS
16668@cindex command tracing
16669If you need to debug user-defined commands or sourced files you may find it
16670useful to enable @dfn{command tracing}. In this mode each command will be
16671printed as it is executed, prefixed with one or more @samp{+} symbols, the
16672quantity denoting the call depth of each command.
16673
16674@table @code
16675@kindex set trace-commands
16676@cindex command scripts, debugging
16677@item set trace-commands on
16678Enable command tracing.
16679@item set trace-commands off
16680Disable command tracing.
16681@item show trace-commands
16682Display the current state of command tracing.
16683@end table
16684
8e04817f 16685@node Debugging Output
79a6e687 16686@section Optional Messages about Internal Happenings
4644b6e3
EZ
16687@cindex optional debugging messages
16688
da316a69
EZ
16689@value{GDBN} has commands that enable optional debugging messages from
16690various @value{GDBN} subsystems; normally these commands are of
16691interest to @value{GDBN} maintainers, or when reporting a bug. This
16692section documents those commands.
16693
104c1213 16694@table @code
a8f24a35
EZ
16695@kindex set exec-done-display
16696@item set exec-done-display
16697Turns on or off the notification of asynchronous commands'
16698completion. When on, @value{GDBN} will print a message when an
16699asynchronous command finishes its execution. The default is off.
16700@kindex show exec-done-display
16701@item show exec-done-display
16702Displays the current setting of asynchronous command completion
16703notification.
4644b6e3
EZ
16704@kindex set debug
16705@cindex gdbarch debugging info
a8f24a35 16706@cindex architecture debugging info
8e04817f 16707@item set debug arch
a8f24a35 16708Turns on or off display of gdbarch debugging info. The default is off
4644b6e3 16709@kindex show debug
8e04817f
AC
16710@item show debug arch
16711Displays the current state of displaying gdbarch debugging info.
721c2651
EZ
16712@item set debug aix-thread
16713@cindex AIX threads
16714Display debugging messages about inner workings of the AIX thread
16715module.
16716@item show debug aix-thread
16717Show the current state of AIX thread debugging info display.
237fc4c9
PA
16718@item set debug displaced
16719@cindex displaced stepping debugging info
16720Turns on or off display of @value{GDBN} debugging info for the
16721displaced stepping support. The default is off.
16722@item show debug displaced
16723Displays the current state of displaying @value{GDBN} debugging info
16724related to displaced stepping.
8e04817f 16725@item set debug event
4644b6e3 16726@cindex event debugging info
a8f24a35 16727Turns on or off display of @value{GDBN} event debugging info. The
8e04817f 16728default is off.
8e04817f
AC
16729@item show debug event
16730Displays the current state of displaying @value{GDBN} event debugging
16731info.
8e04817f 16732@item set debug expression
4644b6e3 16733@cindex expression debugging info
721c2651
EZ
16734Turns on or off display of debugging info about @value{GDBN}
16735expression parsing. The default is off.
8e04817f 16736@item show debug expression
721c2651
EZ
16737Displays the current state of displaying debugging info about
16738@value{GDBN} expression parsing.
7453dc06 16739@item set debug frame
4644b6e3 16740@cindex frame debugging info
7453dc06
AC
16741Turns on or off display of @value{GDBN} frame debugging info. The
16742default is off.
7453dc06
AC
16743@item show debug frame
16744Displays the current state of displaying @value{GDBN} frame debugging
16745info.
30e91e0b
RC
16746@item set debug infrun
16747@cindex inferior debugging info
16748Turns on or off display of @value{GDBN} debugging info for running the inferior.
16749The default is off. @file{infrun.c} contains GDB's runtime state machine used
16750for implementing operations such as single-stepping the inferior.
16751@item show debug infrun
16752Displays the current state of @value{GDBN} inferior debugging.
da316a69
EZ
16753@item set debug lin-lwp
16754@cindex @sc{gnu}/Linux LWP debug messages
16755@cindex Linux lightweight processes
721c2651 16756Turns on or off debugging messages from the Linux LWP debug support.
da316a69
EZ
16757@item show debug lin-lwp
16758Show the current state of Linux LWP debugging messages.
b84876c2
PA
16759@item set debug lin-lwp-async
16760@cindex @sc{gnu}/Linux LWP async debug messages
16761@cindex Linux lightweight processes
16762Turns on or off debugging messages from the Linux LWP async debug support.
16763@item show debug lin-lwp-async
16764Show the current state of Linux LWP async debugging messages.
2b4855ab 16765@item set debug observer
4644b6e3 16766@cindex observer debugging info
2b4855ab
AC
16767Turns on or off display of @value{GDBN} observer debugging. This
16768includes info such as the notification of observable events.
2b4855ab
AC
16769@item show debug observer
16770Displays the current state of observer debugging.
8e04817f 16771@item set debug overload
4644b6e3 16772@cindex C@t{++} overload debugging info
8e04817f 16773Turns on or off display of @value{GDBN} C@t{++} overload debugging
359df76b 16774info. This includes info such as ranking of functions, etc. The default
8e04817f 16775is off.
8e04817f
AC
16776@item show debug overload
16777Displays the current state of displaying @value{GDBN} C@t{++} overload
16778debugging info.
8e04817f
AC
16779@cindex packets, reporting on stdout
16780@cindex serial connections, debugging
605a56cb
DJ
16781@cindex debug remote protocol
16782@cindex remote protocol debugging
16783@cindex display remote packets
8e04817f
AC
16784@item set debug remote
16785Turns on or off display of reports on all packets sent back and forth across
16786the serial line to the remote machine. The info is printed on the
16787@value{GDBN} standard output stream. The default is off.
8e04817f
AC
16788@item show debug remote
16789Displays the state of display of remote packets.
8e04817f
AC
16790@item set debug serial
16791Turns on or off display of @value{GDBN} serial debugging info. The
16792default is off.
8e04817f
AC
16793@item show debug serial
16794Displays the current state of displaying @value{GDBN} serial debugging
16795info.
c45da7e6
EZ
16796@item set debug solib-frv
16797@cindex FR-V shared-library debugging
16798Turns on or off debugging messages for FR-V shared-library code.
16799@item show debug solib-frv
16800Display the current state of FR-V shared-library code debugging
16801messages.
8e04817f 16802@item set debug target
4644b6e3 16803@cindex target debugging info
8e04817f
AC
16804Turns on or off display of @value{GDBN} target debugging info. This info
16805includes what is going on at the target level of GDB, as it happens. The
701b08bb
DJ
16806default is 0. Set it to 1 to track events, and to 2 to also track the
16807value of large memory transfers. Changes to this flag do not take effect
16808until the next time you connect to a target or use the @code{run} command.
8e04817f
AC
16809@item show debug target
16810Displays the current state of displaying @value{GDBN} target debugging
16811info.
75feb17d
DJ
16812@item set debug timestamp
16813@cindex timestampping debugging info
16814Turns on or off display of timestamps with @value{GDBN} debugging info.
16815When enabled, seconds and microseconds are displayed before each debugging
16816message.
16817@item show debug timestamp
16818Displays the current state of displaying timestamps with @value{GDBN}
16819debugging info.
c45da7e6 16820@item set debugvarobj
4644b6e3 16821@cindex variable object debugging info
8e04817f
AC
16822Turns on or off display of @value{GDBN} variable object debugging
16823info. The default is off.
c45da7e6 16824@item show debugvarobj
8e04817f
AC
16825Displays the current state of displaying @value{GDBN} variable object
16826debugging info.
e776119f
DJ
16827@item set debug xml
16828@cindex XML parser debugging
16829Turns on or off debugging messages for built-in XML parsers.
16830@item show debug xml
16831Displays the current state of XML debugging messages.
8e04817f 16832@end table
104c1213 16833
8e04817f
AC
16834@node Sequences
16835@chapter Canned Sequences of Commands
104c1213 16836
8e04817f 16837Aside from breakpoint commands (@pxref{Break Commands, ,Breakpoint
79a6e687 16838Command Lists}), @value{GDBN} provides two ways to store sequences of
8e04817f
AC
16839commands for execution as a unit: user-defined commands and command
16840files.
104c1213 16841
8e04817f 16842@menu
fcc73fe3
EZ
16843* Define:: How to define your own commands
16844* Hooks:: Hooks for user-defined commands
16845* Command Files:: How to write scripts of commands to be stored in a file
16846* Output:: Commands for controlled output
8e04817f 16847@end menu
104c1213 16848
8e04817f 16849@node Define
79a6e687 16850@section User-defined Commands
104c1213 16851
8e04817f 16852@cindex user-defined command
fcc73fe3 16853@cindex arguments, to user-defined commands
8e04817f
AC
16854A @dfn{user-defined command} is a sequence of @value{GDBN} commands to
16855which you assign a new name as a command. This is done with the
16856@code{define} command. User commands may accept up to 10 arguments
16857separated by whitespace. Arguments are accessed within the user command
c03c782f 16858via @code{$arg0@dots{}$arg9}. A trivial example:
104c1213 16859
8e04817f
AC
16860@smallexample
16861define adder
16862 print $arg0 + $arg1 + $arg2
c03c782f 16863end
8e04817f 16864@end smallexample
104c1213
JM
16865
16866@noindent
8e04817f 16867To execute the command use:
104c1213 16868
8e04817f
AC
16869@smallexample
16870adder 1 2 3
16871@end smallexample
104c1213 16872
8e04817f
AC
16873@noindent
16874This defines the command @code{adder}, which prints the sum of
16875its three arguments. Note the arguments are text substitutions, so they may
16876reference variables, use complex expressions, or even perform inferior
16877functions calls.
104c1213 16878
fcc73fe3
EZ
16879@cindex argument count in user-defined commands
16880@cindex how many arguments (user-defined commands)
c03c782f
AS
16881In addition, @code{$argc} may be used to find out how many arguments have
16882been passed. This expands to a number in the range 0@dots{}10.
16883
16884@smallexample
16885define adder
16886 if $argc == 2
16887 print $arg0 + $arg1
16888 end
16889 if $argc == 3
16890 print $arg0 + $arg1 + $arg2
16891 end
16892end
16893@end smallexample
16894
104c1213 16895@table @code
104c1213 16896
8e04817f
AC
16897@kindex define
16898@item define @var{commandname}
16899Define a command named @var{commandname}. If there is already a command
16900by that name, you are asked to confirm that you want to redefine it.
104c1213 16901
8e04817f
AC
16902The definition of the command is made up of other @value{GDBN} command lines,
16903which are given following the @code{define} command. The end of these
16904commands is marked by a line containing @code{end}.
104c1213 16905
8e04817f 16906@kindex document
ca91424e 16907@kindex end@r{ (user-defined commands)}
8e04817f
AC
16908@item document @var{commandname}
16909Document the user-defined command @var{commandname}, so that it can be
16910accessed by @code{help}. The command @var{commandname} must already be
16911defined. This command reads lines of documentation just as @code{define}
16912reads the lines of the command definition, ending with @code{end}.
16913After the @code{document} command is finished, @code{help} on command
16914@var{commandname} displays the documentation you have written.
104c1213 16915
8e04817f
AC
16916You may use the @code{document} command again to change the
16917documentation of a command. Redefining the command with @code{define}
16918does not change the documentation.
104c1213 16919
c45da7e6
EZ
16920@kindex dont-repeat
16921@cindex don't repeat command
16922@item dont-repeat
16923Used inside a user-defined command, this tells @value{GDBN} that this
16924command should not be repeated when the user hits @key{RET}
16925(@pxref{Command Syntax, repeat last command}).
16926
8e04817f
AC
16927@kindex help user-defined
16928@item help user-defined
16929List all user-defined commands, with the first line of the documentation
16930(if any) for each.
104c1213 16931
8e04817f
AC
16932@kindex show user
16933@item show user
16934@itemx show user @var{commandname}
16935Display the @value{GDBN} commands used to define @var{commandname} (but
16936not its documentation). If no @var{commandname} is given, display the
16937definitions for all user-defined commands.
104c1213 16938
fcc73fe3 16939@cindex infinite recursion in user-defined commands
20f01a46
DH
16940@kindex show max-user-call-depth
16941@kindex set max-user-call-depth
16942@item show max-user-call-depth
5ca0cb28
DH
16943@itemx set max-user-call-depth
16944The value of @code{max-user-call-depth} controls how many recursion
3f94c067 16945levels are allowed in user-defined commands before @value{GDBN} suspects an
5ca0cb28 16946infinite recursion and aborts the command.
104c1213
JM
16947@end table
16948
fcc73fe3
EZ
16949In addition to the above commands, user-defined commands frequently
16950use control flow commands, described in @ref{Command Files}.
16951
8e04817f
AC
16952When user-defined commands are executed, the
16953commands of the definition are not printed. An error in any command
16954stops execution of the user-defined command.
104c1213 16955
8e04817f
AC
16956If used interactively, commands that would ask for confirmation proceed
16957without asking when used inside a user-defined command. Many @value{GDBN}
16958commands that normally print messages to say what they are doing omit the
16959messages when used in a user-defined command.
104c1213 16960
8e04817f 16961@node Hooks
79a6e687 16962@section User-defined Command Hooks
8e04817f
AC
16963@cindex command hooks
16964@cindex hooks, for commands
16965@cindex hooks, pre-command
104c1213 16966
8e04817f 16967@kindex hook
8e04817f
AC
16968You may define @dfn{hooks}, which are a special kind of user-defined
16969command. Whenever you run the command @samp{foo}, if the user-defined
16970command @samp{hook-foo} exists, it is executed (with no arguments)
16971before that command.
104c1213 16972
8e04817f
AC
16973@cindex hooks, post-command
16974@kindex hookpost
8e04817f
AC
16975A hook may also be defined which is run after the command you executed.
16976Whenever you run the command @samp{foo}, if the user-defined command
16977@samp{hookpost-foo} exists, it is executed (with no arguments) after
16978that command. Post-execution hooks may exist simultaneously with
16979pre-execution hooks, for the same command.
104c1213 16980
8e04817f 16981It is valid for a hook to call the command which it hooks. If this
9f1c6395 16982occurs, the hook is not re-executed, thereby avoiding infinite recursion.
104c1213 16983
8e04817f
AC
16984@c It would be nice if hookpost could be passed a parameter indicating
16985@c if the command it hooks executed properly or not. FIXME!
104c1213 16986
8e04817f
AC
16987@kindex stop@r{, a pseudo-command}
16988In addition, a pseudo-command, @samp{stop} exists. Defining
16989(@samp{hook-stop}) makes the associated commands execute every time
16990execution stops in your program: before breakpoint commands are run,
16991displays are printed, or the stack frame is printed.
104c1213 16992
8e04817f
AC
16993For example, to ignore @code{SIGALRM} signals while
16994single-stepping, but treat them normally during normal execution,
16995you could define:
104c1213 16996
474c8240 16997@smallexample
8e04817f
AC
16998define hook-stop
16999handle SIGALRM nopass
17000end
104c1213 17001
8e04817f
AC
17002define hook-run
17003handle SIGALRM pass
17004end
104c1213 17005
8e04817f 17006define hook-continue
d3e8051b 17007handle SIGALRM pass
8e04817f 17008end
474c8240 17009@end smallexample
104c1213 17010
d3e8051b 17011As a further example, to hook at the beginning and end of the @code{echo}
b383017d 17012command, and to add extra text to the beginning and end of the message,
8e04817f 17013you could define:
104c1213 17014
474c8240 17015@smallexample
8e04817f
AC
17016define hook-echo
17017echo <<<---
17018end
104c1213 17019
8e04817f
AC
17020define hookpost-echo
17021echo --->>>\n
17022end
104c1213 17023
8e04817f
AC
17024(@value{GDBP}) echo Hello World
17025<<<---Hello World--->>>
17026(@value{GDBP})
104c1213 17027
474c8240 17028@end smallexample
104c1213 17029
8e04817f
AC
17030You can define a hook for any single-word command in @value{GDBN}, but
17031not for command aliases; you should define a hook for the basic command
c1468174 17032name, e.g.@: @code{backtrace} rather than @code{bt}.
8e04817f
AC
17033@c FIXME! So how does Joe User discover whether a command is an alias
17034@c or not?
17035If an error occurs during the execution of your hook, execution of
17036@value{GDBN} commands stops and @value{GDBN} issues a prompt
17037(before the command that you actually typed had a chance to run).
104c1213 17038
8e04817f
AC
17039If you try to define a hook which does not match any known command, you
17040get a warning from the @code{define} command.
c906108c 17041
8e04817f 17042@node Command Files
79a6e687 17043@section Command Files
c906108c 17044
8e04817f 17045@cindex command files
fcc73fe3 17046@cindex scripting commands
6fc08d32
EZ
17047A command file for @value{GDBN} is a text file made of lines that are
17048@value{GDBN} commands. Comments (lines starting with @kbd{#}) may
17049also be included. An empty line in a command file does nothing; it
17050does not mean to repeat the last command, as it would from the
17051terminal.
c906108c 17052
6fc08d32
EZ
17053You can request the execution of a command file with the @code{source}
17054command:
c906108c 17055
8e04817f
AC
17056@table @code
17057@kindex source
ca91424e 17058@cindex execute commands from a file
16026cd7 17059@item source [@code{-v}] @var{filename}
8e04817f 17060Execute the command file @var{filename}.
c906108c
SS
17061@end table
17062
fcc73fe3
EZ
17063The lines in a command file are generally executed sequentially,
17064unless the order of execution is changed by one of the
17065@emph{flow-control commands} described below. The commands are not
a71ec265
DH
17066printed as they are executed. An error in any command terminates
17067execution of the command file and control is returned to the console.
c906108c 17068
4b505b12
AS
17069@value{GDBN} searches for @var{filename} in the current directory and then
17070on the search path (specified with the @samp{directory} command).
17071
16026cd7
AS
17072If @code{-v}, for verbose mode, is given then @value{GDBN} displays
17073each command as it is executed. The option must be given before
17074@var{filename}, and is interpreted as part of the filename anywhere else.
17075
8e04817f
AC
17076Commands that would ask for confirmation if used interactively proceed
17077without asking when used in a command file. Many @value{GDBN} commands that
17078normally print messages to say what they are doing omit the messages
17079when called from command files.
c906108c 17080
8e04817f
AC
17081@value{GDBN} also accepts command input from standard input. In this
17082mode, normal output goes to standard output and error output goes to
17083standard error. Errors in a command file supplied on standard input do
6fc08d32 17084not terminate execution of the command file---execution continues with
8e04817f 17085the next command.
c906108c 17086
474c8240 17087@smallexample
8e04817f 17088gdb < cmds > log 2>&1
474c8240 17089@end smallexample
c906108c 17090
8e04817f
AC
17091(The syntax above will vary depending on the shell used.) This example
17092will execute commands from the file @file{cmds}. All output and errors
17093would be directed to @file{log}.
c906108c 17094
fcc73fe3
EZ
17095Since commands stored on command files tend to be more general than
17096commands typed interactively, they frequently need to deal with
17097complicated situations, such as different or unexpected values of
17098variables and symbols, changes in how the program being debugged is
17099built, etc. @value{GDBN} provides a set of flow-control commands to
17100deal with these complexities. Using these commands, you can write
17101complex scripts that loop over data structures, execute commands
17102conditionally, etc.
17103
17104@table @code
17105@kindex if
17106@kindex else
17107@item if
17108@itemx else
17109This command allows to include in your script conditionally executed
17110commands. The @code{if} command takes a single argument, which is an
17111expression to evaluate. It is followed by a series of commands that
17112are executed only if the expression is true (its value is nonzero).
17113There can then optionally be an @code{else} line, followed by a series
17114of commands that are only executed if the expression was false. The
17115end of the list is marked by a line containing @code{end}.
17116
17117@kindex while
17118@item while
17119This command allows to write loops. Its syntax is similar to
17120@code{if}: the command takes a single argument, which is an expression
17121to evaluate, and must be followed by the commands to execute, one per
17122line, terminated by an @code{end}. These commands are called the
17123@dfn{body} of the loop. The commands in the body of @code{while} are
17124executed repeatedly as long as the expression evaluates to true.
17125
17126@kindex loop_break
17127@item loop_break
17128This command exits the @code{while} loop in whose body it is included.
17129Execution of the script continues after that @code{while}s @code{end}
17130line.
17131
17132@kindex loop_continue
17133@item loop_continue
17134This command skips the execution of the rest of the body of commands
17135in the @code{while} loop in whose body it is included. Execution
17136branches to the beginning of the @code{while} loop, where it evaluates
17137the controlling expression.
ca91424e
EZ
17138
17139@kindex end@r{ (if/else/while commands)}
17140@item end
17141Terminate the block of commands that are the body of @code{if},
17142@code{else}, or @code{while} flow-control commands.
fcc73fe3
EZ
17143@end table
17144
17145
8e04817f 17146@node Output
79a6e687 17147@section Commands for Controlled Output
c906108c 17148
8e04817f
AC
17149During the execution of a command file or a user-defined command, normal
17150@value{GDBN} output is suppressed; the only output that appears is what is
17151explicitly printed by the commands in the definition. This section
17152describes three commands useful for generating exactly the output you
17153want.
c906108c
SS
17154
17155@table @code
8e04817f
AC
17156@kindex echo
17157@item echo @var{text}
17158@c I do not consider backslash-space a standard C escape sequence
17159@c because it is not in ANSI.
17160Print @var{text}. Nonprinting characters can be included in
17161@var{text} using C escape sequences, such as @samp{\n} to print a
17162newline. @strong{No newline is printed unless you specify one.}
17163In addition to the standard C escape sequences, a backslash followed
17164by a space stands for a space. This is useful for displaying a
17165string with spaces at the beginning or the end, since leading and
17166trailing spaces are otherwise trimmed from all arguments.
17167To print @samp{@w{ }and foo =@w{ }}, use the command
17168@samp{echo \@w{ }and foo = \@w{ }}.
c906108c 17169
8e04817f
AC
17170A backslash at the end of @var{text} can be used, as in C, to continue
17171the command onto subsequent lines. For example,
c906108c 17172
474c8240 17173@smallexample
8e04817f
AC
17174echo This is some text\n\
17175which is continued\n\
17176onto several lines.\n
474c8240 17177@end smallexample
c906108c 17178
8e04817f 17179produces the same output as
c906108c 17180
474c8240 17181@smallexample
8e04817f
AC
17182echo This is some text\n
17183echo which is continued\n
17184echo onto several lines.\n
474c8240 17185@end smallexample
c906108c 17186
8e04817f
AC
17187@kindex output
17188@item output @var{expression}
17189Print the value of @var{expression} and nothing but that value: no
17190newlines, no @samp{$@var{nn} = }. The value is not entered in the
17191value history either. @xref{Expressions, ,Expressions}, for more information
17192on expressions.
c906108c 17193
8e04817f
AC
17194@item output/@var{fmt} @var{expression}
17195Print the value of @var{expression} in format @var{fmt}. You can use
17196the same formats as for @code{print}. @xref{Output Formats,,Output
79a6e687 17197Formats}, for more information.
c906108c 17198
8e04817f 17199@kindex printf
82160952
EZ
17200@item printf @var{template}, @var{expressions}@dots{}
17201Print the values of one or more @var{expressions} under the control of
17202the string @var{template}. To print several values, make
17203@var{expressions} be a comma-separated list of individual expressions,
17204which may be either numbers or pointers. Their values are printed as
17205specified by @var{template}, exactly as a C program would do by
17206executing the code below:
c906108c 17207
474c8240 17208@smallexample
82160952 17209printf (@var{template}, @var{expressions}@dots{});
474c8240 17210@end smallexample
c906108c 17211
82160952
EZ
17212As in @code{C} @code{printf}, ordinary characters in @var{template}
17213are printed verbatim, while @dfn{conversion specification} introduced
17214by the @samp{%} character cause subsequent @var{expressions} to be
17215evaluated, their values converted and formatted according to type and
17216style information encoded in the conversion specifications, and then
17217printed.
17218
8e04817f 17219For example, you can print two values in hex like this:
c906108c 17220
8e04817f
AC
17221@smallexample
17222printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo
17223@end smallexample
c906108c 17224
82160952
EZ
17225@code{printf} supports all the standard @code{C} conversion
17226specifications, including the flags and modifiers between the @samp{%}
17227character and the conversion letter, with the following exceptions:
17228
17229@itemize @bullet
17230@item
17231The argument-ordering modifiers, such as @samp{2$}, are not supported.
17232
17233@item
17234The modifier @samp{*} is not supported for specifying precision or
17235width.
17236
17237@item
17238The @samp{'} flag (for separation of digits into groups according to
17239@code{LC_NUMERIC'}) is not supported.
17240
17241@item
17242The type modifiers @samp{hh}, @samp{j}, @samp{t}, and @samp{z} are not
17243supported.
17244
17245@item
17246The conversion letter @samp{n} (as in @samp{%n}) is not supported.
17247
17248@item
17249The conversion letters @samp{a} and @samp{A} are not supported.
17250@end itemize
17251
17252@noindent
17253Note that the @samp{ll} type modifier is supported only if the
17254underlying @code{C} implementation used to build @value{GDBN} supports
17255the @code{long long int} type, and the @samp{L} type modifier is
17256supported only if @code{long double} type is available.
17257
17258As in @code{C}, @code{printf} supports simple backslash-escape
17259sequences, such as @code{\n}, @samp{\t}, @samp{\\}, @samp{\"},
17260@samp{\a}, and @samp{\f}, that consist of backslash followed by a
17261single character. Octal and hexadecimal escape sequences are not
17262supported.
1a619819
LM
17263
17264Additionally, @code{printf} supports conversion specifications for DFP
0aea4bf3
LM
17265(@dfn{Decimal Floating Point}) types using the following length modifiers
17266together with a floating point specifier.
1a619819
LM
17267letters:
17268
17269@itemize @bullet
17270@item
17271@samp{H} for printing @code{Decimal32} types.
17272
17273@item
17274@samp{D} for printing @code{Decimal64} types.
17275
17276@item
17277@samp{DD} for printing @code{Decimal128} types.
17278@end itemize
17279
17280If the underlying @code{C} implementation used to build @value{GDBN} has
0aea4bf3 17281support for the three length modifiers for DFP types, other modifiers
3b784c4f 17282such as width and precision will also be available for @value{GDBN} to use.
1a619819
LM
17283
17284In case there is no such @code{C} support, no additional modifiers will be
17285available and the value will be printed in the standard way.
17286
17287Here's an example of printing DFP types using the above conversion letters:
17288@smallexample
0aea4bf3 17289printf "D32: %Hf - D64: %Df - D128: %DDf\n",1.2345df,1.2E10dd,1.2E1dl
1a619819
LM
17290@end smallexample
17291
c906108c
SS
17292@end table
17293
21c294e6
AC
17294@node Interpreters
17295@chapter Command Interpreters
17296@cindex command interpreters
17297
17298@value{GDBN} supports multiple command interpreters, and some command
17299infrastructure to allow users or user interface writers to switch
17300between interpreters or run commands in other interpreters.
17301
17302@value{GDBN} currently supports two command interpreters, the console
17303interpreter (sometimes called the command-line interpreter or @sc{cli})
17304and the machine interface interpreter (or @sc{gdb/mi}). This manual
17305describes both of these interfaces in great detail.
17306
17307By default, @value{GDBN} will start with the console interpreter.
17308However, the user may choose to start @value{GDBN} with another
17309interpreter by specifying the @option{-i} or @option{--interpreter}
17310startup options. Defined interpreters include:
17311
17312@table @code
17313@item console
17314@cindex console interpreter
17315The traditional console or command-line interpreter. This is the most often
17316used interpreter with @value{GDBN}. With no interpreter specified at runtime,
17317@value{GDBN} will use this interpreter.
17318
17319@item mi
17320@cindex mi interpreter
17321The newest @sc{gdb/mi} interface (currently @code{mi2}). Used primarily
17322by programs wishing to use @value{GDBN} as a backend for a debugger GUI
17323or an IDE. For more information, see @ref{GDB/MI, ,The @sc{gdb/mi}
17324Interface}.
17325
17326@item mi2
17327@cindex mi2 interpreter
17328The current @sc{gdb/mi} interface.
17329
17330@item mi1
17331@cindex mi1 interpreter
17332The @sc{gdb/mi} interface included in @value{GDBN} 5.1, 5.2, and 5.3.
17333
17334@end table
17335
17336@cindex invoke another interpreter
17337The interpreter being used by @value{GDBN} may not be dynamically
17338switched at runtime. Although possible, this could lead to a very
17339precarious situation. Consider an IDE using @sc{gdb/mi}. If a user
17340enters the command "interpreter-set console" in a console view,
17341@value{GDBN} would switch to using the console interpreter, rendering
17342the IDE inoperable!
17343
17344@kindex interpreter-exec
17345Although you may only choose a single interpreter at startup, you may execute
17346commands in any interpreter from the current interpreter using the appropriate
17347command. If you are running the console interpreter, simply use the
17348@code{interpreter-exec} command:
17349
17350@smallexample
17351interpreter-exec mi "-data-list-register-names"
17352@end smallexample
17353
17354@sc{gdb/mi} has a similar command, although it is only available in versions of
17355@value{GDBN} which support @sc{gdb/mi} version 2 (or greater).
17356
8e04817f
AC
17357@node TUI
17358@chapter @value{GDBN} Text User Interface
17359@cindex TUI
d0d5df6f 17360@cindex Text User Interface
c906108c 17361
8e04817f
AC
17362@menu
17363* TUI Overview:: TUI overview
17364* TUI Keys:: TUI key bindings
7cf36c78 17365* TUI Single Key Mode:: TUI single key mode
db2e3e2e 17366* TUI Commands:: TUI-specific commands
8e04817f
AC
17367* TUI Configuration:: TUI configuration variables
17368@end menu
c906108c 17369
46ba6afa 17370The @value{GDBN} Text User Interface (TUI) is a terminal
d0d5df6f
AC
17371interface which uses the @code{curses} library to show the source
17372file, the assembly output, the program registers and @value{GDBN}
46ba6afa
BW
17373commands in separate text windows. The TUI mode is supported only
17374on platforms where a suitable version of the @code{curses} library
17375is available.
d0d5df6f 17376
46ba6afa
BW
17377@pindex @value{GDBTUI}
17378The TUI mode is enabled by default when you invoke @value{GDBN} as
17379either @samp{@value{GDBTUI}} or @samp{@value{GDBP} -tui}.
17380You can also switch in and out of TUI mode while @value{GDBN} runs by
17381using various TUI commands and key bindings, such as @kbd{C-x C-a}.
17382@xref{TUI Keys, ,TUI Key Bindings}.
c906108c 17383
8e04817f 17384@node TUI Overview
79a6e687 17385@section TUI Overview
c906108c 17386
46ba6afa 17387In TUI mode, @value{GDBN} can display several text windows:
c906108c 17388
8e04817f
AC
17389@table @emph
17390@item command
17391This window is the @value{GDBN} command window with the @value{GDBN}
46ba6afa
BW
17392prompt and the @value{GDBN} output. The @value{GDBN} input is still
17393managed using readline.
c906108c 17394
8e04817f
AC
17395@item source
17396The source window shows the source file of the program. The current
46ba6afa 17397line and active breakpoints are displayed in this window.
c906108c 17398
8e04817f
AC
17399@item assembly
17400The assembly window shows the disassembly output of the program.
c906108c 17401
8e04817f 17402@item register
46ba6afa
BW
17403This window shows the processor registers. Registers are highlighted
17404when their values change.
c906108c
SS
17405@end table
17406
269c21fe 17407The source and assembly windows show the current program position
46ba6afa
BW
17408by highlighting the current line and marking it with a @samp{>} marker.
17409Breakpoints are indicated with two markers. The first marker
269c21fe
SC
17410indicates the breakpoint type:
17411
17412@table @code
17413@item B
17414Breakpoint which was hit at least once.
17415
17416@item b
17417Breakpoint which was never hit.
17418
17419@item H
17420Hardware breakpoint which was hit at least once.
17421
17422@item h
17423Hardware breakpoint which was never hit.
269c21fe
SC
17424@end table
17425
17426The second marker indicates whether the breakpoint is enabled or not:
17427
17428@table @code
17429@item +
17430Breakpoint is enabled.
17431
17432@item -
17433Breakpoint is disabled.
269c21fe
SC
17434@end table
17435
46ba6afa
BW
17436The source, assembly and register windows are updated when the current
17437thread changes, when the frame changes, or when the program counter
17438changes.
17439
17440These windows are not all visible at the same time. The command
17441window is always visible. The others can be arranged in several
17442layouts:
c906108c 17443
8e04817f
AC
17444@itemize @bullet
17445@item
46ba6afa 17446source only,
2df3850c 17447
8e04817f 17448@item
46ba6afa 17449assembly only,
8e04817f
AC
17450
17451@item
46ba6afa 17452source and assembly,
8e04817f
AC
17453
17454@item
46ba6afa 17455source and registers, or
c906108c 17456
8e04817f 17457@item
46ba6afa 17458assembly and registers.
8e04817f 17459@end itemize
c906108c 17460
46ba6afa 17461A status line above the command window shows the following information:
b7bb15bc
SC
17462
17463@table @emph
17464@item target
46ba6afa 17465Indicates the current @value{GDBN} target.
b7bb15bc
SC
17466(@pxref{Targets, ,Specifying a Debugging Target}).
17467
17468@item process
46ba6afa 17469Gives the current process or thread number.
b7bb15bc
SC
17470When no process is being debugged, this field is set to @code{No process}.
17471
17472@item function
17473Gives the current function name for the selected frame.
17474The name is demangled if demangling is turned on (@pxref{Print Settings}).
46ba6afa 17475When there is no symbol corresponding to the current program counter,
b7bb15bc
SC
17476the string @code{??} is displayed.
17477
17478@item line
17479Indicates the current line number for the selected frame.
46ba6afa 17480When the current line number is not known, the string @code{??} is displayed.
b7bb15bc
SC
17481
17482@item pc
17483Indicates the current program counter address.
b7bb15bc
SC
17484@end table
17485
8e04817f
AC
17486@node TUI Keys
17487@section TUI Key Bindings
17488@cindex TUI key bindings
c906108c 17489
8e04817f 17490The TUI installs several key bindings in the readline keymaps
46ba6afa 17491(@pxref{Command Line Editing}). The following key bindings
8e04817f 17492are installed for both TUI mode and the @value{GDBN} standard mode.
c906108c 17493
8e04817f
AC
17494@table @kbd
17495@kindex C-x C-a
17496@item C-x C-a
17497@kindex C-x a
17498@itemx C-x a
17499@kindex C-x A
17500@itemx C-x A
46ba6afa
BW
17501Enter or leave the TUI mode. When leaving the TUI mode,
17502the curses window management stops and @value{GDBN} operates using
17503its standard mode, writing on the terminal directly. When reentering
17504the TUI mode, control is given back to the curses windows.
8e04817f 17505The screen is then refreshed.
c906108c 17506
8e04817f
AC
17507@kindex C-x 1
17508@item C-x 1
17509Use a TUI layout with only one window. The layout will
17510either be @samp{source} or @samp{assembly}. When the TUI mode
17511is not active, it will switch to the TUI mode.
2df3850c 17512
8e04817f 17513Think of this key binding as the Emacs @kbd{C-x 1} binding.
c906108c 17514
8e04817f
AC
17515@kindex C-x 2
17516@item C-x 2
17517Use a TUI layout with at least two windows. When the current
46ba6afa 17518layout already has two windows, the next layout with two windows is used.
8e04817f
AC
17519When a new layout is chosen, one window will always be common to the
17520previous layout and the new one.
c906108c 17521
8e04817f 17522Think of it as the Emacs @kbd{C-x 2} binding.
2df3850c 17523
72ffddc9
SC
17524@kindex C-x o
17525@item C-x o
17526Change the active window. The TUI associates several key bindings
46ba6afa 17527(like scrolling and arrow keys) with the active window. This command
72ffddc9
SC
17528gives the focus to the next TUI window.
17529
17530Think of it as the Emacs @kbd{C-x o} binding.
17531
7cf36c78
SC
17532@kindex C-x s
17533@item C-x s
46ba6afa
BW
17534Switch in and out of the TUI SingleKey mode that binds single
17535keys to @value{GDBN} commands (@pxref{TUI Single Key Mode}).
c906108c
SS
17536@end table
17537
46ba6afa 17538The following key bindings only work in the TUI mode:
5d161b24 17539
46ba6afa 17540@table @asis
8e04817f 17541@kindex PgUp
46ba6afa 17542@item @key{PgUp}
8e04817f 17543Scroll the active window one page up.
c906108c 17544
8e04817f 17545@kindex PgDn
46ba6afa 17546@item @key{PgDn}
8e04817f 17547Scroll the active window one page down.
c906108c 17548
8e04817f 17549@kindex Up
46ba6afa 17550@item @key{Up}
8e04817f 17551Scroll the active window one line up.
c906108c 17552
8e04817f 17553@kindex Down
46ba6afa 17554@item @key{Down}
8e04817f 17555Scroll the active window one line down.
c906108c 17556
8e04817f 17557@kindex Left
46ba6afa 17558@item @key{Left}
8e04817f 17559Scroll the active window one column left.
c906108c 17560
8e04817f 17561@kindex Right
46ba6afa 17562@item @key{Right}
8e04817f 17563Scroll the active window one column right.
c906108c 17564
8e04817f 17565@kindex C-L
46ba6afa 17566@item @kbd{C-L}
8e04817f 17567Refresh the screen.
8e04817f 17568@end table
c906108c 17569
46ba6afa
BW
17570Because the arrow keys scroll the active window in the TUI mode, they
17571are not available for their normal use by readline unless the command
17572window has the focus. When another window is active, you must use
17573other readline key bindings such as @kbd{C-p}, @kbd{C-n}, @kbd{C-b}
17574and @kbd{C-f} to control the command window.
8e04817f 17575
7cf36c78
SC
17576@node TUI Single Key Mode
17577@section TUI Single Key Mode
17578@cindex TUI single key mode
17579
46ba6afa
BW
17580The TUI also provides a @dfn{SingleKey} mode, which binds several
17581frequently used @value{GDBN} commands to single keys. Type @kbd{C-x s} to
17582switch into this mode, where the following key bindings are used:
7cf36c78
SC
17583
17584@table @kbd
17585@kindex c @r{(SingleKey TUI key)}
17586@item c
17587continue
17588
17589@kindex d @r{(SingleKey TUI key)}
17590@item d
17591down
17592
17593@kindex f @r{(SingleKey TUI key)}
17594@item f
17595finish
17596
17597@kindex n @r{(SingleKey TUI key)}
17598@item n
17599next
17600
17601@kindex q @r{(SingleKey TUI key)}
17602@item q
46ba6afa 17603exit the SingleKey mode.
7cf36c78
SC
17604
17605@kindex r @r{(SingleKey TUI key)}
17606@item r
17607run
17608
17609@kindex s @r{(SingleKey TUI key)}
17610@item s
17611step
17612
17613@kindex u @r{(SingleKey TUI key)}
17614@item u
17615up
17616
17617@kindex v @r{(SingleKey TUI key)}
17618@item v
17619info locals
17620
17621@kindex w @r{(SingleKey TUI key)}
17622@item w
17623where
7cf36c78
SC
17624@end table
17625
17626Other keys temporarily switch to the @value{GDBN} command prompt.
17627The key that was pressed is inserted in the editing buffer so that
17628it is possible to type most @value{GDBN} commands without interaction
46ba6afa
BW
17629with the TUI SingleKey mode. Once the command is entered the TUI
17630SingleKey mode is restored. The only way to permanently leave
7f9087cb 17631this mode is by typing @kbd{q} or @kbd{C-x s}.
7cf36c78
SC
17632
17633
8e04817f 17634@node TUI Commands
db2e3e2e 17635@section TUI-specific Commands
8e04817f
AC
17636@cindex TUI commands
17637
17638The TUI has specific commands to control the text windows.
46ba6afa
BW
17639These commands are always available, even when @value{GDBN} is not in
17640the TUI mode. When @value{GDBN} is in the standard mode, most
17641of these commands will automatically switch to the TUI mode.
c906108c
SS
17642
17643@table @code
3d757584
SC
17644@item info win
17645@kindex info win
17646List and give the size of all displayed windows.
17647
8e04817f 17648@item layout next
4644b6e3 17649@kindex layout
8e04817f 17650Display the next layout.
2df3850c 17651
8e04817f 17652@item layout prev
8e04817f 17653Display the previous layout.
c906108c 17654
8e04817f 17655@item layout src
8e04817f 17656Display the source window only.
c906108c 17657
8e04817f 17658@item layout asm
8e04817f 17659Display the assembly window only.
c906108c 17660
8e04817f 17661@item layout split
8e04817f 17662Display the source and assembly window.
c906108c 17663
8e04817f 17664@item layout regs
8e04817f
AC
17665Display the register window together with the source or assembly window.
17666
46ba6afa 17667@item focus next
8e04817f 17668@kindex focus
46ba6afa
BW
17669Make the next window active for scrolling.
17670
17671@item focus prev
17672Make the previous window active for scrolling.
17673
17674@item focus src
17675Make the source window active for scrolling.
17676
17677@item focus asm
17678Make the assembly window active for scrolling.
17679
17680@item focus regs
17681Make the register window active for scrolling.
17682
17683@item focus cmd
17684Make the command window active for scrolling.
c906108c 17685
8e04817f
AC
17686@item refresh
17687@kindex refresh
7f9087cb 17688Refresh the screen. This is similar to typing @kbd{C-L}.
c906108c 17689
6a1b180d
SC
17690@item tui reg float
17691@kindex tui reg
17692Show the floating point registers in the register window.
17693
17694@item tui reg general
17695Show the general registers in the register window.
17696
17697@item tui reg next
17698Show the next register group. The list of register groups as well as
17699their order is target specific. The predefined register groups are the
17700following: @code{general}, @code{float}, @code{system}, @code{vector},
17701@code{all}, @code{save}, @code{restore}.
17702
17703@item tui reg system
17704Show the system registers in the register window.
17705
8e04817f
AC
17706@item update
17707@kindex update
17708Update the source window and the current execution point.
c906108c 17709
8e04817f
AC
17710@item winheight @var{name} +@var{count}
17711@itemx winheight @var{name} -@var{count}
17712@kindex winheight
17713Change the height of the window @var{name} by @var{count}
17714lines. Positive counts increase the height, while negative counts
17715decrease it.
2df3850c 17716
46ba6afa
BW
17717@item tabset @var{nchars}
17718@kindex tabset
c45da7e6 17719Set the width of tab stops to be @var{nchars} characters.
c906108c
SS
17720@end table
17721
8e04817f 17722@node TUI Configuration
79a6e687 17723@section TUI Configuration Variables
8e04817f 17724@cindex TUI configuration variables
c906108c 17725
46ba6afa 17726Several configuration variables control the appearance of TUI windows.
c906108c 17727
8e04817f
AC
17728@table @code
17729@item set tui border-kind @var{kind}
17730@kindex set tui border-kind
17731Select the border appearance for the source, assembly and register windows.
17732The possible values are the following:
17733@table @code
17734@item space
17735Use a space character to draw the border.
c906108c 17736
8e04817f 17737@item ascii
46ba6afa 17738Use @sc{ascii} characters @samp{+}, @samp{-} and @samp{|} to draw the border.
c906108c 17739
8e04817f
AC
17740@item acs
17741Use the Alternate Character Set to draw the border. The border is
17742drawn using character line graphics if the terminal supports them.
8e04817f 17743@end table
c78b4128 17744
8e04817f
AC
17745@item set tui border-mode @var{mode}
17746@kindex set tui border-mode
46ba6afa
BW
17747@itemx set tui active-border-mode @var{mode}
17748@kindex set tui active-border-mode
17749Select the display attributes for the borders of the inactive windows
17750or the active window. The @var{mode} can be one of the following:
8e04817f
AC
17751@table @code
17752@item normal
17753Use normal attributes to display the border.
c906108c 17754
8e04817f
AC
17755@item standout
17756Use standout mode.
c906108c 17757
8e04817f
AC
17758@item reverse
17759Use reverse video mode.
c906108c 17760
8e04817f
AC
17761@item half
17762Use half bright mode.
c906108c 17763
8e04817f
AC
17764@item half-standout
17765Use half bright and standout mode.
c906108c 17766
8e04817f
AC
17767@item bold
17768Use extra bright or bold mode.
c78b4128 17769
8e04817f
AC
17770@item bold-standout
17771Use extra bright or bold and standout mode.
8e04817f 17772@end table
8e04817f 17773@end table
c78b4128 17774
8e04817f
AC
17775@node Emacs
17776@chapter Using @value{GDBN} under @sc{gnu} Emacs
c78b4128 17777
8e04817f
AC
17778@cindex Emacs
17779@cindex @sc{gnu} Emacs
17780A special interface allows you to use @sc{gnu} Emacs to view (and
17781edit) the source files for the program you are debugging with
17782@value{GDBN}.
c906108c 17783
8e04817f
AC
17784To use this interface, use the command @kbd{M-x gdb} in Emacs. Give the
17785executable file you want to debug as an argument. This command starts
17786@value{GDBN} as a subprocess of Emacs, with input and output through a newly
17787created Emacs buffer.
17788@c (Do not use the @code{-tui} option to run @value{GDBN} from Emacs.)
c906108c 17789
5e252a2e 17790Running @value{GDBN} under Emacs can be just like running @value{GDBN} normally except for two
8e04817f 17791things:
c906108c 17792
8e04817f
AC
17793@itemize @bullet
17794@item
5e252a2e
NR
17795All ``terminal'' input and output goes through an Emacs buffer, called
17796the GUD buffer.
c906108c 17797
8e04817f
AC
17798This applies both to @value{GDBN} commands and their output, and to the input
17799and output done by the program you are debugging.
bf0184be 17800
8e04817f
AC
17801This is useful because it means that you can copy the text of previous
17802commands and input them again; you can even use parts of the output
17803in this way.
bf0184be 17804
8e04817f
AC
17805All the facilities of Emacs' Shell mode are available for interacting
17806with your program. In particular, you can send signals the usual
17807way---for example, @kbd{C-c C-c} for an interrupt, @kbd{C-c C-z} for a
17808stop.
bf0184be
ND
17809
17810@item
8e04817f 17811@value{GDBN} displays source code through Emacs.
bf0184be 17812
8e04817f
AC
17813Each time @value{GDBN} displays a stack frame, Emacs automatically finds the
17814source file for that frame and puts an arrow (@samp{=>}) at the
17815left margin of the current line. Emacs uses a separate buffer for
17816source display, and splits the screen to show both your @value{GDBN} session
17817and the source.
bf0184be 17818
8e04817f
AC
17819Explicit @value{GDBN} @code{list} or search commands still produce output as
17820usual, but you probably have no reason to use them from Emacs.
5e252a2e
NR
17821@end itemize
17822
17823We call this @dfn{text command mode}. Emacs 22.1, and later, also uses
17824a graphical mode, enabled by default, which provides further buffers
17825that can control the execution and describe the state of your program.
17826@xref{GDB Graphical Interface,,, Emacs, The @sc{gnu} Emacs Manual}.
c906108c 17827
64fabec2
AC
17828If you specify an absolute file name when prompted for the @kbd{M-x
17829gdb} argument, then Emacs sets your current working directory to where
17830your program resides. If you only specify the file name, then Emacs
17831sets your current working directory to to the directory associated
17832with the previous buffer. In this case, @value{GDBN} may find your
17833program by searching your environment's @code{PATH} variable, but on
17834some operating systems it might not find the source. So, although the
17835@value{GDBN} input and output session proceeds normally, the auxiliary
17836buffer does not display the current source and line of execution.
17837
17838The initial working directory of @value{GDBN} is printed on the top
5e252a2e
NR
17839line of the GUD buffer and this serves as a default for the commands
17840that specify files for @value{GDBN} to operate on. @xref{Files,
17841,Commands to Specify Files}.
64fabec2
AC
17842
17843By default, @kbd{M-x gdb} calls the program called @file{gdb}. If you
17844need to call @value{GDBN} by a different name (for example, if you
17845keep several configurations around, with different names) you can
17846customize the Emacs variable @code{gud-gdb-command-name} to run the
17847one you want.
8e04817f 17848
5e252a2e 17849In the GUD buffer, you can use these special Emacs commands in
8e04817f 17850addition to the standard Shell mode commands:
c906108c 17851
8e04817f
AC
17852@table @kbd
17853@item C-h m
5e252a2e 17854Describe the features of Emacs' GUD Mode.
c906108c 17855
64fabec2 17856@item C-c C-s
8e04817f
AC
17857Execute to another source line, like the @value{GDBN} @code{step} command; also
17858update the display window to show the current file and location.
c906108c 17859
64fabec2 17860@item C-c C-n
8e04817f
AC
17861Execute to next source line in this function, skipping all function
17862calls, like the @value{GDBN} @code{next} command. Then update the display window
17863to show the current file and location.
c906108c 17864
64fabec2 17865@item C-c C-i
8e04817f
AC
17866Execute one instruction, like the @value{GDBN} @code{stepi} command; update
17867display window accordingly.
c906108c 17868
8e04817f
AC
17869@item C-c C-f
17870Execute until exit from the selected stack frame, like the @value{GDBN}
17871@code{finish} command.
c906108c 17872
64fabec2 17873@item C-c C-r
8e04817f
AC
17874Continue execution of your program, like the @value{GDBN} @code{continue}
17875command.
b433d00b 17876
64fabec2 17877@item C-c <
8e04817f
AC
17878Go up the number of frames indicated by the numeric argument
17879(@pxref{Arguments, , Numeric Arguments, Emacs, The @sc{gnu} Emacs Manual}),
17880like the @value{GDBN} @code{up} command.
b433d00b 17881
64fabec2 17882@item C-c >
8e04817f
AC
17883Go down the number of frames indicated by the numeric argument, like the
17884@value{GDBN} @code{down} command.
8e04817f 17885@end table
c906108c 17886
7f9087cb 17887In any source file, the Emacs command @kbd{C-x @key{SPC}} (@code{gud-break})
8e04817f 17888tells @value{GDBN} to set a breakpoint on the source line point is on.
c906108c 17889
5e252a2e
NR
17890In text command mode, if you type @kbd{M-x speedbar}, Emacs displays a
17891separate frame which shows a backtrace when the GUD buffer is current.
17892Move point to any frame in the stack and type @key{RET} to make it
17893become the current frame and display the associated source in the
17894source buffer. Alternatively, click @kbd{Mouse-2} to make the
17895selected frame become the current one. In graphical mode, the
17896speedbar displays watch expressions.
64fabec2 17897
8e04817f
AC
17898If you accidentally delete the source-display buffer, an easy way to get
17899it back is to type the command @code{f} in the @value{GDBN} buffer, to
17900request a frame display; when you run under Emacs, this recreates
17901the source buffer if necessary to show you the context of the current
17902frame.
c906108c 17903
8e04817f
AC
17904The source files displayed in Emacs are in ordinary Emacs buffers
17905which are visiting the source files in the usual way. You can edit
17906the files with these buffers if you wish; but keep in mind that @value{GDBN}
17907communicates with Emacs in terms of line numbers. If you add or
17908delete lines from the text, the line numbers that @value{GDBN} knows cease
17909to correspond properly with the code.
b383017d 17910
5e252a2e
NR
17911A more detailed description of Emacs' interaction with @value{GDBN} is
17912given in the Emacs manual (@pxref{Debuggers,,, Emacs, The @sc{gnu}
17913Emacs Manual}).
c906108c 17914
8e04817f
AC
17915@c The following dropped because Epoch is nonstandard. Reactivate
17916@c if/when v19 does something similar. ---doc@cygnus.com 19dec1990
17917@ignore
17918@kindex Emacs Epoch environment
17919@kindex Epoch
17920@kindex inspect
c906108c 17921
8e04817f
AC
17922Version 18 of @sc{gnu} Emacs has a built-in window system
17923called the @code{epoch}
17924environment. Users of this environment can use a new command,
17925@code{inspect} which performs identically to @code{print} except that
17926each value is printed in its own window.
17927@end ignore
c906108c 17928
922fbb7b
AC
17929
17930@node GDB/MI
17931@chapter The @sc{gdb/mi} Interface
17932
17933@unnumberedsec Function and Purpose
17934
17935@cindex @sc{gdb/mi}, its purpose
6b5e8c01
NR
17936@sc{gdb/mi} is a line based machine oriented text interface to
17937@value{GDBN} and is activated by specifying using the
17938@option{--interpreter} command line option (@pxref{Mode Options}). It
17939is specifically intended to support the development of systems which
17940use the debugger as just one small component of a larger system.
922fbb7b
AC
17941
17942This chapter is a specification of the @sc{gdb/mi} interface. It is written
17943in the form of a reference manual.
17944
17945Note that @sc{gdb/mi} is still under construction, so some of the
af6eff6f
NR
17946features described below are incomplete and subject to change
17947(@pxref{GDB/MI Development and Front Ends, , @sc{gdb/mi} Development and Front Ends}).
922fbb7b
AC
17948
17949@unnumberedsec Notation and Terminology
17950
17951@cindex notational conventions, for @sc{gdb/mi}
17952This chapter uses the following notation:
17953
17954@itemize @bullet
17955@item
17956@code{|} separates two alternatives.
17957
17958@item
17959@code{[ @var{something} ]} indicates that @var{something} is optional:
17960it may or may not be given.
17961
17962@item
17963@code{( @var{group} )*} means that @var{group} inside the parentheses
17964may repeat zero or more times.
17965
17966@item
17967@code{( @var{group} )+} means that @var{group} inside the parentheses
17968may repeat one or more times.
17969
17970@item
17971@code{"@var{string}"} means a literal @var{string}.
17972@end itemize
17973
17974@ignore
17975@heading Dependencies
17976@end ignore
17977
922fbb7b
AC
17978@menu
17979* GDB/MI Command Syntax::
17980* GDB/MI Compatibility with CLI::
af6eff6f 17981* GDB/MI Development and Front Ends::
922fbb7b 17982* GDB/MI Output Records::
ef21caaf 17983* GDB/MI Simple Examples::
922fbb7b 17984* GDB/MI Command Description Format::
ef21caaf 17985* GDB/MI Breakpoint Commands::
a2c02241
NR
17986* GDB/MI Program Context::
17987* GDB/MI Thread Commands::
17988* GDB/MI Program Execution::
17989* GDB/MI Stack Manipulation::
17990* GDB/MI Variable Objects::
922fbb7b 17991* GDB/MI Data Manipulation::
a2c02241
NR
17992* GDB/MI Tracepoint Commands::
17993* GDB/MI Symbol Query::
351ff01a 17994* GDB/MI File Commands::
922fbb7b
AC
17995@ignore
17996* GDB/MI Kod Commands::
17997* GDB/MI Memory Overlay Commands::
17998* GDB/MI Signal Handling Commands::
17999@end ignore
922fbb7b 18000* GDB/MI Target Manipulation::
a6b151f1 18001* GDB/MI File Transfer Commands::
ef21caaf 18002* GDB/MI Miscellaneous Commands::
922fbb7b
AC
18003@end menu
18004
18005@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18006@node GDB/MI Command Syntax
18007@section @sc{gdb/mi} Command Syntax
18008
18009@menu
18010* GDB/MI Input Syntax::
18011* GDB/MI Output Syntax::
922fbb7b
AC
18012@end menu
18013
18014@node GDB/MI Input Syntax
18015@subsection @sc{gdb/mi} Input Syntax
18016
18017@cindex input syntax for @sc{gdb/mi}
18018@cindex @sc{gdb/mi}, input syntax
18019@table @code
18020@item @var{command} @expansion{}
18021@code{@var{cli-command} | @var{mi-command}}
18022
18023@item @var{cli-command} @expansion{}
18024@code{[ @var{token} ] @var{cli-command} @var{nl}}, where
18025@var{cli-command} is any existing @value{GDBN} CLI command.
18026
18027@item @var{mi-command} @expansion{}
18028@code{[ @var{token} ] "-" @var{operation} ( " " @var{option} )*
18029@code{[} " --" @code{]} ( " " @var{parameter} )* @var{nl}}
18030
18031@item @var{token} @expansion{}
18032"any sequence of digits"
18033
18034@item @var{option} @expansion{}
18035@code{"-" @var{parameter} [ " " @var{parameter} ]}
18036
18037@item @var{parameter} @expansion{}
18038@code{@var{non-blank-sequence} | @var{c-string}}
18039
18040@item @var{operation} @expansion{}
18041@emph{any of the operations described in this chapter}
18042
18043@item @var{non-blank-sequence} @expansion{}
18044@emph{anything, provided it doesn't contain special characters such as
18045"-", @var{nl}, """ and of course " "}
18046
18047@item @var{c-string} @expansion{}
18048@code{""" @var{seven-bit-iso-c-string-content} """}
18049
18050@item @var{nl} @expansion{}
18051@code{CR | CR-LF}
18052@end table
18053
18054@noindent
18055Notes:
18056
18057@itemize @bullet
18058@item
18059The CLI commands are still handled by the @sc{mi} interpreter; their
18060output is described below.
18061
18062@item
18063The @code{@var{token}}, when present, is passed back when the command
18064finishes.
18065
18066@item
18067Some @sc{mi} commands accept optional arguments as part of the parameter
18068list. Each option is identified by a leading @samp{-} (dash) and may be
18069followed by an optional argument parameter. Options occur first in the
18070parameter list and can be delimited from normal parameters using
18071@samp{--} (this is useful when some parameters begin with a dash).
18072@end itemize
18073
18074Pragmatics:
18075
18076@itemize @bullet
18077@item
18078We want easy access to the existing CLI syntax (for debugging).
18079
18080@item
18081We want it to be easy to spot a @sc{mi} operation.
18082@end itemize
18083
18084@node GDB/MI Output Syntax
18085@subsection @sc{gdb/mi} Output Syntax
18086
18087@cindex output syntax of @sc{gdb/mi}
18088@cindex @sc{gdb/mi}, output syntax
18089The output from @sc{gdb/mi} consists of zero or more out-of-band records
18090followed, optionally, by a single result record. This result record
18091is for the most recent command. The sequence of output records is
594fe323 18092terminated by @samp{(gdb)}.
922fbb7b
AC
18093
18094If an input command was prefixed with a @code{@var{token}} then the
18095corresponding output for that command will also be prefixed by that same
18096@var{token}.
18097
18098@table @code
18099@item @var{output} @expansion{}
594fe323 18100@code{( @var{out-of-band-record} )* [ @var{result-record} ] "(gdb)" @var{nl}}
922fbb7b
AC
18101
18102@item @var{result-record} @expansion{}
18103@code{ [ @var{token} ] "^" @var{result-class} ( "," @var{result} )* @var{nl}}
18104
18105@item @var{out-of-band-record} @expansion{}
18106@code{@var{async-record} | @var{stream-record}}
18107
18108@item @var{async-record} @expansion{}
18109@code{@var{exec-async-output} | @var{status-async-output} | @var{notify-async-output}}
18110
18111@item @var{exec-async-output} @expansion{}
18112@code{[ @var{token} ] "*" @var{async-output}}
18113
18114@item @var{status-async-output} @expansion{}
18115@code{[ @var{token} ] "+" @var{async-output}}
18116
18117@item @var{notify-async-output} @expansion{}
18118@code{[ @var{token} ] "=" @var{async-output}}
18119
18120@item @var{async-output} @expansion{}
18121@code{@var{async-class} ( "," @var{result} )* @var{nl}}
18122
18123@item @var{result-class} @expansion{}
18124@code{"done" | "running" | "connected" | "error" | "exit"}
18125
18126@item @var{async-class} @expansion{}
18127@code{"stopped" | @var{others}} (where @var{others} will be added
18128depending on the needs---this is still in development).
18129
18130@item @var{result} @expansion{}
18131@code{ @var{variable} "=" @var{value}}
18132
18133@item @var{variable} @expansion{}
18134@code{ @var{string} }
18135
18136@item @var{value} @expansion{}
18137@code{ @var{const} | @var{tuple} | @var{list} }
18138
18139@item @var{const} @expansion{}
18140@code{@var{c-string}}
18141
18142@item @var{tuple} @expansion{}
18143@code{ "@{@}" | "@{" @var{result} ( "," @var{result} )* "@}" }
18144
18145@item @var{list} @expansion{}
18146@code{ "[]" | "[" @var{value} ( "," @var{value} )* "]" | "["
18147@var{result} ( "," @var{result} )* "]" }
18148
18149@item @var{stream-record} @expansion{}
18150@code{@var{console-stream-output} | @var{target-stream-output} | @var{log-stream-output}}
18151
18152@item @var{console-stream-output} @expansion{}
18153@code{"~" @var{c-string}}
18154
18155@item @var{target-stream-output} @expansion{}
18156@code{"@@" @var{c-string}}
18157
18158@item @var{log-stream-output} @expansion{}
18159@code{"&" @var{c-string}}
18160
18161@item @var{nl} @expansion{}
18162@code{CR | CR-LF}
18163
18164@item @var{token} @expansion{}
18165@emph{any sequence of digits}.
18166@end table
18167
18168@noindent
18169Notes:
18170
18171@itemize @bullet
18172@item
18173All output sequences end in a single line containing a period.
18174
18175@item
721c02de
VP
18176The @code{@var{token}} is from the corresponding request. Note that
18177for all async output, while the token is allowed by the grammar and
18178may be output by future versions of @value{GDBN} for select async
18179output messages, it is generally omitted. Frontends should treat
18180all async output as reporting general changes in the state of the
18181target and there should be no need to associate async output to any
18182prior command.
922fbb7b
AC
18183
18184@item
18185@cindex status output in @sc{gdb/mi}
18186@var{status-async-output} contains on-going status information about the
18187progress of a slow operation. It can be discarded. All status output is
18188prefixed by @samp{+}.
18189
18190@item
18191@cindex async output in @sc{gdb/mi}
18192@var{exec-async-output} contains asynchronous state change on the target
18193(stopped, started, disappeared). All async output is prefixed by
18194@samp{*}.
18195
18196@item
18197@cindex notify output in @sc{gdb/mi}
18198@var{notify-async-output} contains supplementary information that the
18199client should handle (e.g., a new breakpoint information). All notify
18200output is prefixed by @samp{=}.
18201
18202@item
18203@cindex console output in @sc{gdb/mi}
18204@var{console-stream-output} is output that should be displayed as is in the
18205console. It is the textual response to a CLI command. All the console
18206output is prefixed by @samp{~}.
18207
18208@item
18209@cindex target output in @sc{gdb/mi}
18210@var{target-stream-output} is the output produced by the target program.
18211All the target output is prefixed by @samp{@@}.
18212
18213@item
18214@cindex log output in @sc{gdb/mi}
18215@var{log-stream-output} is output text coming from @value{GDBN}'s internals, for
18216instance messages that should be displayed as part of an error log. All
18217the log output is prefixed by @samp{&}.
18218
18219@item
18220@cindex list output in @sc{gdb/mi}
18221New @sc{gdb/mi} commands should only output @var{lists} containing
18222@var{values}.
18223
18224
18225@end itemize
18226
18227@xref{GDB/MI Stream Records, , @sc{gdb/mi} Stream Records}, for more
18228details about the various output records.
18229
922fbb7b
AC
18230@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18231@node GDB/MI Compatibility with CLI
18232@section @sc{gdb/mi} Compatibility with CLI
18233
18234@cindex compatibility, @sc{gdb/mi} and CLI
18235@cindex @sc{gdb/mi}, compatibility with CLI
922fbb7b 18236
a2c02241
NR
18237For the developers convenience CLI commands can be entered directly,
18238but there may be some unexpected behaviour. For example, commands
18239that query the user will behave as if the user replied yes, breakpoint
18240command lists are not executed and some CLI commands, such as
18241@code{if}, @code{when} and @code{define}, prompt for further input with
18242@samp{>}, which is not valid MI output.
ef21caaf
NR
18243
18244This feature may be removed at some stage in the future and it is
a2c02241
NR
18245recommended that front ends use the @code{-interpreter-exec} command
18246(@pxref{-interpreter-exec}).
922fbb7b 18247
af6eff6f
NR
18248@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18249@node GDB/MI Development and Front Ends
18250@section @sc{gdb/mi} Development and Front Ends
18251@cindex @sc{gdb/mi} development
18252
18253The application which takes the MI output and presents the state of the
18254program being debugged to the user is called a @dfn{front end}.
18255
18256Although @sc{gdb/mi} is still incomplete, it is currently being used
18257by a variety of front ends to @value{GDBN}. This makes it difficult
18258to introduce new functionality without breaking existing usage. This
18259section tries to minimize the problems by describing how the protocol
18260might change.
18261
18262Some changes in MI need not break a carefully designed front end, and
18263for these the MI version will remain unchanged. The following is a
18264list of changes that may occur within one level, so front ends should
18265parse MI output in a way that can handle them:
18266
18267@itemize @bullet
18268@item
18269New MI commands may be added.
18270
18271@item
18272New fields may be added to the output of any MI command.
18273
36ece8b3
NR
18274@item
18275The range of values for fields with specified values, e.g.,
9f708cb2 18276@code{in_scope} (@pxref{-var-update}) may be extended.
36ece8b3 18277
af6eff6f
NR
18278@c The format of field's content e.g type prefix, may change so parse it
18279@c at your own risk. Yes, in general?
18280
18281@c The order of fields may change? Shouldn't really matter but it might
18282@c resolve inconsistencies.
18283@end itemize
18284
18285If the changes are likely to break front ends, the MI version level
18286will be increased by one. This will allow the front end to parse the
18287output according to the MI version. Apart from mi0, new versions of
18288@value{GDBN} will not support old versions of MI and it will be the
18289responsibility of the front end to work with the new one.
18290
18291@c Starting with mi3, add a new command -mi-version that prints the MI
18292@c version?
18293
18294The best way to avoid unexpected changes in MI that might break your front
18295end is to make your project known to @value{GDBN} developers and
7a9a6b69 18296follow development on @email{gdb@@sourceware.org} and
fa0f268d 18297@email{gdb-patches@@sourceware.org}.
af6eff6f
NR
18298@cindex mailing lists
18299
922fbb7b
AC
18300@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18301@node GDB/MI Output Records
18302@section @sc{gdb/mi} Output Records
18303
18304@menu
18305* GDB/MI Result Records::
18306* GDB/MI Stream Records::
82f68b1c 18307* GDB/MI Async Records::
922fbb7b
AC
18308@end menu
18309
18310@node GDB/MI Result Records
18311@subsection @sc{gdb/mi} Result Records
18312
18313@cindex result records in @sc{gdb/mi}
18314@cindex @sc{gdb/mi}, result records
18315In addition to a number of out-of-band notifications, the response to a
18316@sc{gdb/mi} command includes one of the following result indications:
18317
18318@table @code
18319@findex ^done
18320@item "^done" [ "," @var{results} ]
18321The synchronous operation was successful, @code{@var{results}} are the return
18322values.
18323
18324@item "^running"
18325@findex ^running
18326@c Is this one correct? Should it be an out-of-band notification?
18327The asynchronous operation was successfully started. The target is
18328running.
18329
ef21caaf
NR
18330@item "^connected"
18331@findex ^connected
3f94c067 18332@value{GDBN} has connected to a remote target.
ef21caaf 18333
922fbb7b
AC
18334@item "^error" "," @var{c-string}
18335@findex ^error
18336The operation failed. The @code{@var{c-string}} contains the corresponding
18337error message.
ef21caaf
NR
18338
18339@item "^exit"
18340@findex ^exit
3f94c067 18341@value{GDBN} has terminated.
ef21caaf 18342
922fbb7b
AC
18343@end table
18344
18345@node GDB/MI Stream Records
18346@subsection @sc{gdb/mi} Stream Records
18347
18348@cindex @sc{gdb/mi}, stream records
18349@cindex stream records in @sc{gdb/mi}
18350@value{GDBN} internally maintains a number of output streams: the console, the
18351target, and the log. The output intended for each of these streams is
18352funneled through the @sc{gdb/mi} interface using @dfn{stream records}.
18353
18354Each stream record begins with a unique @dfn{prefix character} which
18355identifies its stream (@pxref{GDB/MI Output Syntax, , @sc{gdb/mi} Output
18356Syntax}). In addition to the prefix, each stream record contains a
18357@code{@var{string-output}}. This is either raw text (with an implicit new
18358line) or a quoted C string (which does not contain an implicit newline).
18359
18360@table @code
18361@item "~" @var{string-output}
18362The console output stream contains text that should be displayed in the
18363CLI console window. It contains the textual responses to CLI commands.
18364
18365@item "@@" @var{string-output}
18366The target output stream contains any textual output from the running
ef21caaf
NR
18367target. This is only present when GDB's event loop is truly
18368asynchronous, which is currently only the case for remote targets.
922fbb7b
AC
18369
18370@item "&" @var{string-output}
18371The log stream contains debugging messages being produced by @value{GDBN}'s
18372internals.
18373@end table
18374
82f68b1c
VP
18375@node GDB/MI Async Records
18376@subsection @sc{gdb/mi} Async Records
922fbb7b 18377
82f68b1c
VP
18378@cindex async records in @sc{gdb/mi}
18379@cindex @sc{gdb/mi}, async records
18380@dfn{Async} records are used to notify the @sc{gdb/mi} client of
922fbb7b 18381additional changes that have occurred. Those changes can either be a
82f68b1c 18382consequence of @sc{gdb/mi} commands (e.g., a breakpoint modified) or a result of
922fbb7b
AC
18383target activity (e.g., target stopped).
18384
8eb41542 18385The following is the list of possible async records:
922fbb7b
AC
18386
18387@table @code
034dad6f 18388
e1ac3328
VP
18389@item *running,thread-id="@var{thread}"
18390The target is now running. The @var{thread} field tells which
18391specific thread is now running, and can be @samp{all} if all threads
18392are running. The frontend should assume that no interaction with a
18393running thread is possible after this notification is produced.
18394The frontend should not assume that this notification is output
18395only once for any command. @value{GDBN} may emit this notification
18396several times, either for different threads, because it cannot resume
18397all threads together, or even for a single thread, if the thread must
18398be stepped though some code before letting it run freely.
18399
82f68b1c
VP
18400@item *stopped,reason="@var{reason}"
18401The target has stopped. The @var{reason} field can have one of the
18402following values:
034dad6f
BR
18403
18404@table @code
18405@item breakpoint-hit
18406A breakpoint was reached.
18407@item watchpoint-trigger
18408A watchpoint was triggered.
18409@item read-watchpoint-trigger
18410A read watchpoint was triggered.
18411@item access-watchpoint-trigger
18412An access watchpoint was triggered.
18413@item function-finished
18414An -exec-finish or similar CLI command was accomplished.
18415@item location-reached
18416An -exec-until or similar CLI command was accomplished.
18417@item watchpoint-scope
18418A watchpoint has gone out of scope.
18419@item end-stepping-range
18420An -exec-next, -exec-next-instruction, -exec-step, -exec-step-instruction or
18421similar CLI command was accomplished.
18422@item exited-signalled
18423The inferior exited because of a signal.
18424@item exited
18425The inferior exited.
18426@item exited-normally
18427The inferior exited normally.
18428@item signal-received
18429A signal was received by the inferior.
922fbb7b
AC
18430@end table
18431
82f68b1c
VP
18432@item =thread-created,id="@var{id}"
18433@itemx =thread-exited,id="@var{id}"
18434A thread either was created, or has exited. The @var{id} field
18435contains the @value{GDBN} identifier of the thread.
18436@end table
18437
18438
922fbb7b 18439
ef21caaf
NR
18440@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18441@node GDB/MI Simple Examples
18442@section Simple Examples of @sc{gdb/mi} Interaction
18443@cindex @sc{gdb/mi}, simple examples
18444
18445This subsection presents several simple examples of interaction using
18446the @sc{gdb/mi} interface. In these examples, @samp{->} means that the
18447following line is passed to @sc{gdb/mi} as input, while @samp{<-} means
18448the output received from @sc{gdb/mi}.
18449
d3e8051b 18450Note the line breaks shown in the examples are here only for
ef21caaf
NR
18451readability, they don't appear in the real output.
18452
79a6e687 18453@subheading Setting a Breakpoint
ef21caaf
NR
18454
18455Setting a breakpoint generates synchronous output which contains detailed
18456information of the breakpoint.
18457
18458@smallexample
18459-> -break-insert main
18460<- ^done,bkpt=@{number="1",type="breakpoint",disp="keep",
18461 enabled="y",addr="0x08048564",func="main",file="myprog.c",
18462 fullname="/home/nickrob/myprog.c",line="68",times="0"@}
18463<- (gdb)
18464@end smallexample
18465
18466@subheading Program Execution
18467
18468Program execution generates asynchronous records and MI gives the
18469reason that execution stopped.
18470
18471@smallexample
18472-> -exec-run
18473<- ^running
18474<- (gdb)
a47ec5fe 18475<- *stopped,reason="breakpoint-hit",disp="keep",bkptno="1",thread-id="0",
ef21caaf
NR
18476 frame=@{addr="0x08048564",func="main",
18477 args=[@{name="argc",value="1"@},@{name="argv",value="0xbfc4d4d4"@}],
18478 file="myprog.c",fullname="/home/nickrob/myprog.c",line="68"@}
18479<- (gdb)
18480-> -exec-continue
18481<- ^running
18482<- (gdb)
18483<- *stopped,reason="exited-normally"
18484<- (gdb)
18485@end smallexample
18486
3f94c067 18487@subheading Quitting @value{GDBN}
ef21caaf 18488
3f94c067 18489Quitting @value{GDBN} just prints the result class @samp{^exit}.
ef21caaf
NR
18490
18491@smallexample
18492-> (gdb)
18493<- -gdb-exit
18494<- ^exit
18495@end smallexample
18496
a2c02241 18497@subheading A Bad Command
ef21caaf
NR
18498
18499Here's what happens if you pass a non-existent command:
18500
18501@smallexample
18502-> -rubbish
18503<- ^error,msg="Undefined MI command: rubbish"
594fe323 18504<- (gdb)
ef21caaf
NR
18505@end smallexample
18506
18507
922fbb7b
AC
18508@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18509@node GDB/MI Command Description Format
18510@section @sc{gdb/mi} Command Description Format
18511
18512The remaining sections describe blocks of commands. Each block of
18513commands is laid out in a fashion similar to this section.
18514
922fbb7b
AC
18515@subheading Motivation
18516
18517The motivation for this collection of commands.
18518
18519@subheading Introduction
18520
18521A brief introduction to this collection of commands as a whole.
18522
18523@subheading Commands
18524
18525For each command in the block, the following is described:
18526
18527@subsubheading Synopsis
18528
18529@smallexample
18530 -command @var{args}@dots{}
18531@end smallexample
18532
922fbb7b
AC
18533@subsubheading Result
18534
265eeb58 18535@subsubheading @value{GDBN} Command
922fbb7b 18536
265eeb58 18537The corresponding @value{GDBN} CLI command(s), if any.
922fbb7b
AC
18538
18539@subsubheading Example
18540
ef21caaf
NR
18541Example(s) formatted for readability. Some of the described commands have
18542not been implemented yet and these are labeled N.A.@: (not available).
18543
18544
922fbb7b 18545@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ef21caaf
NR
18546@node GDB/MI Breakpoint Commands
18547@section @sc{gdb/mi} Breakpoint Commands
922fbb7b
AC
18548
18549@cindex breakpoint commands for @sc{gdb/mi}
18550@cindex @sc{gdb/mi}, breakpoint commands
18551This section documents @sc{gdb/mi} commands for manipulating
18552breakpoints.
18553
18554@subheading The @code{-break-after} Command
18555@findex -break-after
18556
18557@subsubheading Synopsis
18558
18559@smallexample
18560 -break-after @var{number} @var{count}
18561@end smallexample
18562
18563The breakpoint number @var{number} is not in effect until it has been
18564hit @var{count} times. To see how this is reflected in the output of
18565the @samp{-break-list} command, see the description of the
18566@samp{-break-list} command below.
18567
18568@subsubheading @value{GDBN} Command
18569
18570The corresponding @value{GDBN} command is @samp{ignore}.
18571
18572@subsubheading Example
18573
18574@smallexample
594fe323 18575(gdb)
922fbb7b 18576-break-insert main
a47ec5fe
AR
18577^done,bkpt=@{number="1",type="breakpoint",disp="keep",
18578enabled="y",addr="0x000100d0",func="main",file="hello.c",
948d5102 18579fullname="/home/foo/hello.c",line="5",times="0"@}
594fe323 18580(gdb)
922fbb7b
AC
18581-break-after 1 3
18582~
18583^done
594fe323 18584(gdb)
922fbb7b
AC
18585-break-list
18586^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18587hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18588@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18589@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18590@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18591@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18592@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18593body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18594addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18595line="5",times="0",ignore="3"@}]@}
594fe323 18596(gdb)
922fbb7b
AC
18597@end smallexample
18598
18599@ignore
18600@subheading The @code{-break-catch} Command
18601@findex -break-catch
18602
18603@subheading The @code{-break-commands} Command
18604@findex -break-commands
18605@end ignore
18606
18607
18608@subheading The @code{-break-condition} Command
18609@findex -break-condition
18610
18611@subsubheading Synopsis
18612
18613@smallexample
18614 -break-condition @var{number} @var{expr}
18615@end smallexample
18616
18617Breakpoint @var{number} will stop the program only if the condition in
18618@var{expr} is true. The condition becomes part of the
18619@samp{-break-list} output (see the description of the @samp{-break-list}
18620command below).
18621
18622@subsubheading @value{GDBN} Command
18623
18624The corresponding @value{GDBN} command is @samp{condition}.
18625
18626@subsubheading Example
18627
18628@smallexample
594fe323 18629(gdb)
922fbb7b
AC
18630-break-condition 1 1
18631^done
594fe323 18632(gdb)
922fbb7b
AC
18633-break-list
18634^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18635hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18636@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18637@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18638@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18639@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18640@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18641body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18642addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18643line="5",cond="1",times="0",ignore="3"@}]@}
594fe323 18644(gdb)
922fbb7b
AC
18645@end smallexample
18646
18647@subheading The @code{-break-delete} Command
18648@findex -break-delete
18649
18650@subsubheading Synopsis
18651
18652@smallexample
18653 -break-delete ( @var{breakpoint} )+
18654@end smallexample
18655
18656Delete the breakpoint(s) whose number(s) are specified in the argument
18657list. This is obviously reflected in the breakpoint list.
18658
79a6e687 18659@subsubheading @value{GDBN} Command
922fbb7b
AC
18660
18661The corresponding @value{GDBN} command is @samp{delete}.
18662
18663@subsubheading Example
18664
18665@smallexample
594fe323 18666(gdb)
922fbb7b
AC
18667-break-delete 1
18668^done
594fe323 18669(gdb)
922fbb7b
AC
18670-break-list
18671^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
18672hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18673@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18674@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18675@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18676@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18677@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18678body=[]@}
594fe323 18679(gdb)
922fbb7b
AC
18680@end smallexample
18681
18682@subheading The @code{-break-disable} Command
18683@findex -break-disable
18684
18685@subsubheading Synopsis
18686
18687@smallexample
18688 -break-disable ( @var{breakpoint} )+
18689@end smallexample
18690
18691Disable the named @var{breakpoint}(s). The field @samp{enabled} in the
18692break list is now set to @samp{n} for the named @var{breakpoint}(s).
18693
18694@subsubheading @value{GDBN} Command
18695
18696The corresponding @value{GDBN} command is @samp{disable}.
18697
18698@subsubheading Example
18699
18700@smallexample
594fe323 18701(gdb)
922fbb7b
AC
18702-break-disable 2
18703^done
594fe323 18704(gdb)
922fbb7b
AC
18705-break-list
18706^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18707hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18708@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18709@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18710@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18711@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18712@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18713body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="n",
948d5102
NR
18714addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18715line="5",times="0"@}]@}
594fe323 18716(gdb)
922fbb7b
AC
18717@end smallexample
18718
18719@subheading The @code{-break-enable} Command
18720@findex -break-enable
18721
18722@subsubheading Synopsis
18723
18724@smallexample
18725 -break-enable ( @var{breakpoint} )+
18726@end smallexample
18727
18728Enable (previously disabled) @var{breakpoint}(s).
18729
18730@subsubheading @value{GDBN} Command
18731
18732The corresponding @value{GDBN} command is @samp{enable}.
18733
18734@subsubheading Example
18735
18736@smallexample
594fe323 18737(gdb)
922fbb7b
AC
18738-break-enable 2
18739^done
594fe323 18740(gdb)
922fbb7b
AC
18741-break-list
18742^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18743hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18744@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18745@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18746@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18747@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18748@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18749body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18750addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18751line="5",times="0"@}]@}
594fe323 18752(gdb)
922fbb7b
AC
18753@end smallexample
18754
18755@subheading The @code{-break-info} Command
18756@findex -break-info
18757
18758@subsubheading Synopsis
18759
18760@smallexample
18761 -break-info @var{breakpoint}
18762@end smallexample
18763
18764@c REDUNDANT???
18765Get information about a single breakpoint.
18766
79a6e687 18767@subsubheading @value{GDBN} Command
922fbb7b
AC
18768
18769The corresponding @value{GDBN} command is @samp{info break @var{breakpoint}}.
18770
18771@subsubheading Example
18772N.A.
18773
18774@subheading The @code{-break-insert} Command
18775@findex -break-insert
18776
18777@subsubheading Synopsis
18778
18779@smallexample
afe8ab22 18780 -break-insert [ -t ] [ -h ] [ -f ]
922fbb7b 18781 [ -c @var{condition} ] [ -i @var{ignore-count} ]
afe8ab22 18782 [ -p @var{thread} ] [ @var{location} ]
922fbb7b
AC
18783@end smallexample
18784
18785@noindent
afe8ab22 18786If specified, @var{location}, can be one of:
922fbb7b
AC
18787
18788@itemize @bullet
18789@item function
18790@c @item +offset
18791@c @item -offset
18792@c @item linenum
18793@item filename:linenum
18794@item filename:function
18795@item *address
18796@end itemize
18797
18798The possible optional parameters of this command are:
18799
18800@table @samp
18801@item -t
948d5102 18802Insert a temporary breakpoint.
922fbb7b
AC
18803@item -h
18804Insert a hardware breakpoint.
18805@item -c @var{condition}
18806Make the breakpoint conditional on @var{condition}.
18807@item -i @var{ignore-count}
18808Initialize the @var{ignore-count}.
afe8ab22
VP
18809@item -f
18810If @var{location} cannot be parsed (for example if it
18811refers to unknown files or functions), create a pending
18812breakpoint. Without this flag, @value{GDBN} will report
18813an error, and won't create a breakpoint, if @var{location}
18814cannot be parsed.
922fbb7b
AC
18815@end table
18816
18817@subsubheading Result
18818
18819The result is in the form:
18820
18821@smallexample
948d5102
NR
18822^done,bkpt=@{number="@var{number}",type="@var{type}",disp="del"|"keep",
18823enabled="y"|"n",addr="@var{hex}",func="@var{funcname}",file="@var{filename}",
ef21caaf
NR
18824fullname="@var{full_filename}",line="@var{lineno}",[thread="@var{threadno},]
18825times="@var{times}"@}
922fbb7b
AC
18826@end smallexample
18827
18828@noindent
948d5102
NR
18829where @var{number} is the @value{GDBN} number for this breakpoint,
18830@var{funcname} is the name of the function where the breakpoint was
18831inserted, @var{filename} is the name of the source file which contains
18832this function, @var{lineno} is the source line number within that file
18833and @var{times} the number of times that the breakpoint has been hit
18834(always 0 for -break-insert but may be greater for -break-info or -break-list
18835which use the same output).
922fbb7b
AC
18836
18837Note: this format is open to change.
18838@c An out-of-band breakpoint instead of part of the result?
18839
18840@subsubheading @value{GDBN} Command
18841
18842The corresponding @value{GDBN} commands are @samp{break}, @samp{tbreak},
18843@samp{hbreak}, @samp{thbreak}, and @samp{rbreak}.
18844
18845@subsubheading Example
18846
18847@smallexample
594fe323 18848(gdb)
922fbb7b 18849-break-insert main
948d5102
NR
18850^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",
18851fullname="/home/foo/recursive2.c,line="4",times="0"@}
594fe323 18852(gdb)
922fbb7b 18853-break-insert -t foo
948d5102
NR
18854^done,bkpt=@{number="2",addr="0x00010774",file="recursive2.c",
18855fullname="/home/foo/recursive2.c,line="11",times="0"@}
594fe323 18856(gdb)
922fbb7b
AC
18857-break-list
18858^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18859hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18860@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18861@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18862@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18863@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18864@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18865body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18866addr="0x0001072c", func="main",file="recursive2.c",
18867fullname="/home/foo/recursive2.c,"line="4",times="0"@},
922fbb7b 18868bkpt=@{number="2",type="breakpoint",disp="del",enabled="y",
948d5102
NR
18869addr="0x00010774",func="foo",file="recursive2.c",
18870fullname="/home/foo/recursive2.c",line="11",times="0"@}]@}
594fe323 18871(gdb)
922fbb7b
AC
18872-break-insert -r foo.*
18873~int foo(int, int);
948d5102
NR
18874^done,bkpt=@{number="3",addr="0x00010774",file="recursive2.c,
18875"fullname="/home/foo/recursive2.c",line="11",times="0"@}
594fe323 18876(gdb)
922fbb7b
AC
18877@end smallexample
18878
18879@subheading The @code{-break-list} Command
18880@findex -break-list
18881
18882@subsubheading Synopsis
18883
18884@smallexample
18885 -break-list
18886@end smallexample
18887
18888Displays the list of inserted breakpoints, showing the following fields:
18889
18890@table @samp
18891@item Number
18892number of the breakpoint
18893@item Type
18894type of the breakpoint: @samp{breakpoint} or @samp{watchpoint}
18895@item Disposition
18896should the breakpoint be deleted or disabled when it is hit: @samp{keep}
18897or @samp{nokeep}
18898@item Enabled
18899is the breakpoint enabled or no: @samp{y} or @samp{n}
18900@item Address
18901memory location at which the breakpoint is set
18902@item What
18903logical location of the breakpoint, expressed by function name, file
18904name, line number
18905@item Times
18906number of times the breakpoint has been hit
18907@end table
18908
18909If there are no breakpoints or watchpoints, the @code{BreakpointTable}
18910@code{body} field is an empty list.
18911
18912@subsubheading @value{GDBN} Command
18913
18914The corresponding @value{GDBN} command is @samp{info break}.
18915
18916@subsubheading Example
18917
18918@smallexample
594fe323 18919(gdb)
922fbb7b
AC
18920-break-list
18921^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18922hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18923@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18924@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18925@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18926@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18927@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18928body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18929addr="0x000100d0",func="main",file="hello.c",line="5",times="0"@},
18930bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18931addr="0x00010114",func="foo",file="hello.c",fullname="/home/foo/hello.c",
18932line="13",times="0"@}]@}
594fe323 18933(gdb)
922fbb7b
AC
18934@end smallexample
18935
18936Here's an example of the result when there are no breakpoints:
18937
18938@smallexample
594fe323 18939(gdb)
922fbb7b
AC
18940-break-list
18941^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
18942hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18943@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18944@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18945@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18946@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18947@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18948body=[]@}
594fe323 18949(gdb)
922fbb7b
AC
18950@end smallexample
18951
18952@subheading The @code{-break-watch} Command
18953@findex -break-watch
18954
18955@subsubheading Synopsis
18956
18957@smallexample
18958 -break-watch [ -a | -r ]
18959@end smallexample
18960
18961Create a watchpoint. With the @samp{-a} option it will create an
d3e8051b 18962@dfn{access} watchpoint, i.e., a watchpoint that triggers either on a
922fbb7b 18963read from or on a write to the memory location. With the @samp{-r}
d3e8051b 18964option, the watchpoint created is a @dfn{read} watchpoint, i.e., it will
922fbb7b
AC
18965trigger only when the memory location is accessed for reading. Without
18966either of the options, the watchpoint created is a regular watchpoint,
d3e8051b 18967i.e., it will trigger when the memory location is accessed for writing.
79a6e687 18968@xref{Set Watchpoints, , Setting Watchpoints}.
922fbb7b
AC
18969
18970Note that @samp{-break-list} will report a single list of watchpoints and
18971breakpoints inserted.
18972
18973@subsubheading @value{GDBN} Command
18974
18975The corresponding @value{GDBN} commands are @samp{watch}, @samp{awatch}, and
18976@samp{rwatch}.
18977
18978@subsubheading Example
18979
18980Setting a watchpoint on a variable in the @code{main} function:
18981
18982@smallexample
594fe323 18983(gdb)
922fbb7b
AC
18984-break-watch x
18985^done,wpt=@{number="2",exp="x"@}
594fe323 18986(gdb)
922fbb7b
AC
18987-exec-continue
18988^running
0869d01b
NR
18989(gdb)
18990*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="x"@},
922fbb7b 18991value=@{old="-268439212",new="55"@},
76ff342d 18992frame=@{func="main",args=[],file="recursive2.c",
948d5102 18993fullname="/home/foo/bar/recursive2.c",line="5"@}
594fe323 18994(gdb)
922fbb7b
AC
18995@end smallexample
18996
18997Setting a watchpoint on a variable local to a function. @value{GDBN} will stop
18998the program execution twice: first for the variable changing value, then
18999for the watchpoint going out of scope.
19000
19001@smallexample
594fe323 19002(gdb)
922fbb7b
AC
19003-break-watch C
19004^done,wpt=@{number="5",exp="C"@}
594fe323 19005(gdb)
922fbb7b
AC
19006-exec-continue
19007^running
0869d01b
NR
19008(gdb)
19009*stopped,reason="watchpoint-trigger",
922fbb7b
AC
19010wpt=@{number="5",exp="C"@},value=@{old="-276895068",new="3"@},
19011frame=@{func="callee4",args=[],
76ff342d
DJ
19012file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19013fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
594fe323 19014(gdb)
922fbb7b
AC
19015-exec-continue
19016^running
0869d01b
NR
19017(gdb)
19018*stopped,reason="watchpoint-scope",wpnum="5",
922fbb7b
AC
19019frame=@{func="callee3",args=[@{name="strarg",
19020value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
19021file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19022fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 19023(gdb)
922fbb7b
AC
19024@end smallexample
19025
19026Listing breakpoints and watchpoints, at different points in the program
19027execution. Note that once the watchpoint goes out of scope, it is
19028deleted.
19029
19030@smallexample
594fe323 19031(gdb)
922fbb7b
AC
19032-break-watch C
19033^done,wpt=@{number="2",exp="C"@}
594fe323 19034(gdb)
922fbb7b
AC
19035-break-list
19036^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
19037hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
19038@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
19039@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
19040@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
19041@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
19042@{width="40",alignment="2",col_name="what",colhdr="What"@}],
19043body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
19044addr="0x00010734",func="callee4",
948d5102
NR
19045file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19046fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c"line="8",times="1"@},
922fbb7b
AC
19047bkpt=@{number="2",type="watchpoint",disp="keep",
19048enabled="y",addr="",what="C",times="0"@}]@}
594fe323 19049(gdb)
922fbb7b
AC
19050-exec-continue
19051^running
0869d01b
NR
19052(gdb)
19053*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="C"@},
922fbb7b
AC
19054value=@{old="-276895068",new="3"@},
19055frame=@{func="callee4",args=[],
76ff342d
DJ
19056file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19057fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
594fe323 19058(gdb)
922fbb7b
AC
19059-break-list
19060^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
19061hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
19062@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
19063@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
19064@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
19065@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
19066@{width="40",alignment="2",col_name="what",colhdr="What"@}],
19067body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
19068addr="0x00010734",func="callee4",
948d5102
NR
19069file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19070fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",times="1"@},
922fbb7b
AC
19071bkpt=@{number="2",type="watchpoint",disp="keep",
19072enabled="y",addr="",what="C",times="-5"@}]@}
594fe323 19073(gdb)
922fbb7b
AC
19074-exec-continue
19075^running
19076^done,reason="watchpoint-scope",wpnum="2",
19077frame=@{func="callee3",args=[@{name="strarg",
19078value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
19079file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19080fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 19081(gdb)
922fbb7b
AC
19082-break-list
19083^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
19084hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
19085@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
19086@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
19087@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
19088@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
19089@{width="40",alignment="2",col_name="what",colhdr="What"@}],
19090body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
19091addr="0x00010734",func="callee4",
948d5102
NR
19092file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19093fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",
19094times="1"@}]@}
594fe323 19095(gdb)
922fbb7b
AC
19096@end smallexample
19097
19098@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
19099@node GDB/MI Program Context
19100@section @sc{gdb/mi} Program Context
922fbb7b 19101
a2c02241
NR
19102@subheading The @code{-exec-arguments} Command
19103@findex -exec-arguments
922fbb7b 19104
922fbb7b
AC
19105
19106@subsubheading Synopsis
19107
19108@smallexample
a2c02241 19109 -exec-arguments @var{args}
922fbb7b
AC
19110@end smallexample
19111
a2c02241
NR
19112Set the inferior program arguments, to be used in the next
19113@samp{-exec-run}.
922fbb7b 19114
a2c02241 19115@subsubheading @value{GDBN} Command
922fbb7b 19116
a2c02241 19117The corresponding @value{GDBN} command is @samp{set args}.
922fbb7b 19118
a2c02241 19119@subsubheading Example
922fbb7b 19120
fbc5282e
MK
19121@smallexample
19122(gdb)
19123-exec-arguments -v word
19124^done
19125(gdb)
19126@end smallexample
922fbb7b 19127
a2c02241
NR
19128
19129@subheading The @code{-exec-show-arguments} Command
19130@findex -exec-show-arguments
19131
19132@subsubheading Synopsis
19133
19134@smallexample
19135 -exec-show-arguments
19136@end smallexample
19137
19138Print the arguments of the program.
922fbb7b
AC
19139
19140@subsubheading @value{GDBN} Command
19141
a2c02241 19142The corresponding @value{GDBN} command is @samp{show args}.
922fbb7b
AC
19143
19144@subsubheading Example
a2c02241 19145N.A.
922fbb7b 19146
922fbb7b 19147
a2c02241
NR
19148@subheading The @code{-environment-cd} Command
19149@findex -environment-cd
922fbb7b 19150
a2c02241 19151@subsubheading Synopsis
922fbb7b
AC
19152
19153@smallexample
a2c02241 19154 -environment-cd @var{pathdir}
922fbb7b
AC
19155@end smallexample
19156
a2c02241 19157Set @value{GDBN}'s working directory.
922fbb7b 19158
a2c02241 19159@subsubheading @value{GDBN} Command
922fbb7b 19160
a2c02241
NR
19161The corresponding @value{GDBN} command is @samp{cd}.
19162
19163@subsubheading Example
922fbb7b
AC
19164
19165@smallexample
594fe323 19166(gdb)
a2c02241
NR
19167-environment-cd /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
19168^done
594fe323 19169(gdb)
922fbb7b
AC
19170@end smallexample
19171
19172
a2c02241
NR
19173@subheading The @code{-environment-directory} Command
19174@findex -environment-directory
922fbb7b
AC
19175
19176@subsubheading Synopsis
19177
19178@smallexample
a2c02241 19179 -environment-directory [ -r ] [ @var{pathdir} ]+
922fbb7b
AC
19180@end smallexample
19181
a2c02241
NR
19182Add directories @var{pathdir} to beginning of search path for source files.
19183If the @samp{-r} option is used, the search path is reset to the default
19184search path. If directories @var{pathdir} are supplied in addition to the
19185@samp{-r} option, the search path is first reset and then addition
19186occurs as normal.
19187Multiple directories may be specified, separated by blanks. Specifying
19188multiple directories in a single command
19189results in the directories added to the beginning of the
19190search path in the same order they were presented in the command.
19191If blanks are needed as
19192part of a directory name, double-quotes should be used around
19193the name. In the command output, the path will show up separated
d3e8051b 19194by the system directory-separator character. The directory-separator
a2c02241
NR
19195character must not be used
19196in any directory name.
19197If no directories are specified, the current search path is displayed.
922fbb7b
AC
19198
19199@subsubheading @value{GDBN} Command
19200
a2c02241 19201The corresponding @value{GDBN} command is @samp{dir}.
922fbb7b
AC
19202
19203@subsubheading Example
19204
922fbb7b 19205@smallexample
594fe323 19206(gdb)
a2c02241
NR
19207-environment-directory /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
19208^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
594fe323 19209(gdb)
a2c02241
NR
19210-environment-directory ""
19211^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
594fe323 19212(gdb)
a2c02241
NR
19213-environment-directory -r /home/jjohnstn/src/gdb /usr/src
19214^done,source-path="/home/jjohnstn/src/gdb:/usr/src:$cdir:$cwd"
594fe323 19215(gdb)
a2c02241
NR
19216-environment-directory -r
19217^done,source-path="$cdir:$cwd"
594fe323 19218(gdb)
922fbb7b
AC
19219@end smallexample
19220
19221
a2c02241
NR
19222@subheading The @code{-environment-path} Command
19223@findex -environment-path
922fbb7b
AC
19224
19225@subsubheading Synopsis
19226
19227@smallexample
a2c02241 19228 -environment-path [ -r ] [ @var{pathdir} ]+
922fbb7b
AC
19229@end smallexample
19230
a2c02241
NR
19231Add directories @var{pathdir} to beginning of search path for object files.
19232If the @samp{-r} option is used, the search path is reset to the original
19233search path that existed at gdb start-up. If directories @var{pathdir} are
19234supplied in addition to the
19235@samp{-r} option, the search path is first reset and then addition
19236occurs as normal.
19237Multiple directories may be specified, separated by blanks. Specifying
19238multiple directories in a single command
19239results in the directories added to the beginning of the
19240search path in the same order they were presented in the command.
19241If blanks are needed as
19242part of a directory name, double-quotes should be used around
19243the name. In the command output, the path will show up separated
d3e8051b 19244by the system directory-separator character. The directory-separator
a2c02241
NR
19245character must not be used
19246in any directory name.
19247If no directories are specified, the current path is displayed.
19248
922fbb7b
AC
19249
19250@subsubheading @value{GDBN} Command
19251
a2c02241 19252The corresponding @value{GDBN} command is @samp{path}.
922fbb7b
AC
19253
19254@subsubheading Example
19255
922fbb7b 19256@smallexample
594fe323 19257(gdb)
a2c02241
NR
19258-environment-path
19259^done,path="/usr/bin"
594fe323 19260(gdb)
a2c02241
NR
19261-environment-path /kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb /bin
19262^done,path="/kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb:/bin:/usr/bin"
594fe323 19263(gdb)
a2c02241
NR
19264-environment-path -r /usr/local/bin
19265^done,path="/usr/local/bin:/usr/bin"
594fe323 19266(gdb)
922fbb7b
AC
19267@end smallexample
19268
19269
a2c02241
NR
19270@subheading The @code{-environment-pwd} Command
19271@findex -environment-pwd
922fbb7b
AC
19272
19273@subsubheading Synopsis
19274
19275@smallexample
a2c02241 19276 -environment-pwd
922fbb7b
AC
19277@end smallexample
19278
a2c02241 19279Show the current working directory.
922fbb7b 19280
79a6e687 19281@subsubheading @value{GDBN} Command
922fbb7b 19282
a2c02241 19283The corresponding @value{GDBN} command is @samp{pwd}.
922fbb7b
AC
19284
19285@subsubheading Example
19286
922fbb7b 19287@smallexample
594fe323 19288(gdb)
a2c02241
NR
19289-environment-pwd
19290^done,cwd="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb"
594fe323 19291(gdb)
922fbb7b
AC
19292@end smallexample
19293
a2c02241
NR
19294@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
19295@node GDB/MI Thread Commands
19296@section @sc{gdb/mi} Thread Commands
19297
19298
19299@subheading The @code{-thread-info} Command
19300@findex -thread-info
922fbb7b
AC
19301
19302@subsubheading Synopsis
19303
19304@smallexample
8e8901c5 19305 -thread-info [ @var{thread-id} ]
922fbb7b
AC
19306@end smallexample
19307
8e8901c5
VP
19308Reports information about either a specific thread, if
19309the @var{thread-id} parameter is present, or about all
19310threads. When printing information about all threads,
19311also reports the current thread.
19312
79a6e687 19313@subsubheading @value{GDBN} Command
922fbb7b 19314
8e8901c5
VP
19315The @samp{info thread} command prints the same information
19316about all threads.
922fbb7b
AC
19317
19318@subsubheading Example
922fbb7b
AC
19319
19320@smallexample
8e8901c5
VP
19321-thread-info
19322^done,threads=[
19323@{id="2",target-id="Thread 0xb7e14b90 (LWP 21257)",
19324 frame=@{level="0",addr="0xffffe410",func="__kernel_vsyscall",args=[]@},
19325@{id="1",target-id="Thread 0xb7e156b0 (LWP 21254)",
19326 frame=@{level="0",addr="0x0804891f",func="foo",args=[@{name="i",value="10"@}],
19327 file="/tmp/a.c",fullname="/tmp/a.c",line="158"@}@}],
19328current-thread-id="1"
19329(gdb)
922fbb7b
AC
19330@end smallexample
19331
a2c02241
NR
19332@subheading The @code{-thread-list-ids} Command
19333@findex -thread-list-ids
922fbb7b 19334
a2c02241 19335@subsubheading Synopsis
922fbb7b 19336
a2c02241
NR
19337@smallexample
19338 -thread-list-ids
19339@end smallexample
922fbb7b 19340
a2c02241
NR
19341Produces a list of the currently known @value{GDBN} thread ids. At the
19342end of the list it also prints the total number of such threads.
922fbb7b
AC
19343
19344@subsubheading @value{GDBN} Command
19345
a2c02241 19346Part of @samp{info threads} supplies the same information.
922fbb7b
AC
19347
19348@subsubheading Example
19349
a2c02241 19350No threads present, besides the main process:
922fbb7b
AC
19351
19352@smallexample
594fe323 19353(gdb)
a2c02241
NR
19354-thread-list-ids
19355^done,thread-ids=@{@},number-of-threads="0"
594fe323 19356(gdb)
922fbb7b
AC
19357@end smallexample
19358
922fbb7b 19359
a2c02241 19360Several threads:
922fbb7b
AC
19361
19362@smallexample
594fe323 19363(gdb)
a2c02241
NR
19364-thread-list-ids
19365^done,thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
19366number-of-threads="3"
594fe323 19367(gdb)
922fbb7b
AC
19368@end smallexample
19369
a2c02241
NR
19370
19371@subheading The @code{-thread-select} Command
19372@findex -thread-select
922fbb7b
AC
19373
19374@subsubheading Synopsis
19375
19376@smallexample
a2c02241 19377 -thread-select @var{threadnum}
922fbb7b
AC
19378@end smallexample
19379
a2c02241
NR
19380Make @var{threadnum} the current thread. It prints the number of the new
19381current thread, and the topmost frame for that thread.
922fbb7b
AC
19382
19383@subsubheading @value{GDBN} Command
19384
a2c02241 19385The corresponding @value{GDBN} command is @samp{thread}.
922fbb7b
AC
19386
19387@subsubheading Example
922fbb7b
AC
19388
19389@smallexample
594fe323 19390(gdb)
a2c02241
NR
19391-exec-next
19392^running
594fe323 19393(gdb)
a2c02241
NR
19394*stopped,reason="end-stepping-range",thread-id="2",line="187",
19395file="../../../devo/gdb/testsuite/gdb.threads/linux-dp.c"
594fe323 19396(gdb)
a2c02241
NR
19397-thread-list-ids
19398^done,
19399thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
19400number-of-threads="3"
594fe323 19401(gdb)
a2c02241
NR
19402-thread-select 3
19403^done,new-thread-id="3",
19404frame=@{level="0",func="vprintf",
19405args=[@{name="format",value="0x8048e9c \"%*s%c %d %c\\n\""@},
19406@{name="arg",value="0x2"@}],file="vprintf.c",line="31"@}
594fe323 19407(gdb)
922fbb7b
AC
19408@end smallexample
19409
a2c02241
NR
19410@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
19411@node GDB/MI Program Execution
19412@section @sc{gdb/mi} Program Execution
922fbb7b 19413
ef21caaf 19414These are the asynchronous commands which generate the out-of-band
3f94c067 19415record @samp{*stopped}. Currently @value{GDBN} only really executes
ef21caaf
NR
19416asynchronously with remote targets and this interaction is mimicked in
19417other cases.
922fbb7b 19418
922fbb7b
AC
19419@subheading The @code{-exec-continue} Command
19420@findex -exec-continue
19421
19422@subsubheading Synopsis
19423
19424@smallexample
19425 -exec-continue
19426@end smallexample
19427
ef21caaf
NR
19428Resumes the execution of the inferior program until a breakpoint is
19429encountered, or until the inferior exits.
922fbb7b
AC
19430
19431@subsubheading @value{GDBN} Command
19432
19433The corresponding @value{GDBN} corresponding is @samp{continue}.
19434
19435@subsubheading Example
19436
19437@smallexample
19438-exec-continue
19439^running
594fe323 19440(gdb)
922fbb7b 19441@@Hello world
a47ec5fe
AR
19442*stopped,reason="breakpoint-hit",disp="keep",bkptno="2",frame=@{
19443func="foo",args=[],file="hello.c",fullname="/home/foo/bar/hello.c",
19444line="13"@}
594fe323 19445(gdb)
922fbb7b
AC
19446@end smallexample
19447
19448
19449@subheading The @code{-exec-finish} Command
19450@findex -exec-finish
19451
19452@subsubheading Synopsis
19453
19454@smallexample
19455 -exec-finish
19456@end smallexample
19457
ef21caaf
NR
19458Resumes the execution of the inferior program until the current
19459function is exited. Displays the results returned by the function.
922fbb7b
AC
19460
19461@subsubheading @value{GDBN} Command
19462
19463The corresponding @value{GDBN} command is @samp{finish}.
19464
19465@subsubheading Example
19466
19467Function returning @code{void}.
19468
19469@smallexample
19470-exec-finish
19471^running
594fe323 19472(gdb)
922fbb7b
AC
19473@@hello from foo
19474*stopped,reason="function-finished",frame=@{func="main",args=[],
948d5102 19475file="hello.c",fullname="/home/foo/bar/hello.c",line="7"@}
594fe323 19476(gdb)
922fbb7b
AC
19477@end smallexample
19478
19479Function returning other than @code{void}. The name of the internal
19480@value{GDBN} variable storing the result is printed, together with the
19481value itself.
19482
19483@smallexample
19484-exec-finish
19485^running
594fe323 19486(gdb)
922fbb7b
AC
19487*stopped,reason="function-finished",frame=@{addr="0x000107b0",func="foo",
19488args=[@{name="a",value="1"],@{name="b",value="9"@}@},
948d5102 19489file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
922fbb7b 19490gdb-result-var="$1",return-value="0"
594fe323 19491(gdb)
922fbb7b
AC
19492@end smallexample
19493
19494
19495@subheading The @code{-exec-interrupt} Command
19496@findex -exec-interrupt
19497
19498@subsubheading Synopsis
19499
19500@smallexample
19501 -exec-interrupt
19502@end smallexample
19503
ef21caaf
NR
19504Interrupts the background execution of the target. Note how the token
19505associated with the stop message is the one for the execution command
19506that has been interrupted. The token for the interrupt itself only
19507appears in the @samp{^done} output. If the user is trying to
922fbb7b
AC
19508interrupt a non-running program, an error message will be printed.
19509
19510@subsubheading @value{GDBN} Command
19511
19512The corresponding @value{GDBN} command is @samp{interrupt}.
19513
19514@subsubheading Example
19515
19516@smallexample
594fe323 19517(gdb)
922fbb7b
AC
19518111-exec-continue
19519111^running
19520
594fe323 19521(gdb)
922fbb7b
AC
19522222-exec-interrupt
19523222^done
594fe323 19524(gdb)
922fbb7b 19525111*stopped,signal-name="SIGINT",signal-meaning="Interrupt",
76ff342d 19526frame=@{addr="0x00010140",func="foo",args=[],file="try.c",
948d5102 19527fullname="/home/foo/bar/try.c",line="13"@}
594fe323 19528(gdb)
922fbb7b 19529
594fe323 19530(gdb)
922fbb7b
AC
19531-exec-interrupt
19532^error,msg="mi_cmd_exec_interrupt: Inferior not executing."
594fe323 19533(gdb)
922fbb7b
AC
19534@end smallexample
19535
19536
19537@subheading The @code{-exec-next} Command
19538@findex -exec-next
19539
19540@subsubheading Synopsis
19541
19542@smallexample
19543 -exec-next
19544@end smallexample
19545
ef21caaf
NR
19546Resumes execution of the inferior program, stopping when the beginning
19547of the next source line is reached.
922fbb7b
AC
19548
19549@subsubheading @value{GDBN} Command
19550
19551The corresponding @value{GDBN} command is @samp{next}.
19552
19553@subsubheading Example
19554
19555@smallexample
19556-exec-next
19557^running
594fe323 19558(gdb)
922fbb7b 19559*stopped,reason="end-stepping-range",line="8",file="hello.c"
594fe323 19560(gdb)
922fbb7b
AC
19561@end smallexample
19562
19563
19564@subheading The @code{-exec-next-instruction} Command
19565@findex -exec-next-instruction
19566
19567@subsubheading Synopsis
19568
19569@smallexample
19570 -exec-next-instruction
19571@end smallexample
19572
ef21caaf
NR
19573Executes one machine instruction. If the instruction is a function
19574call, continues until the function returns. If the program stops at an
19575instruction in the middle of a source line, the address will be
19576printed as well.
922fbb7b
AC
19577
19578@subsubheading @value{GDBN} Command
19579
19580The corresponding @value{GDBN} command is @samp{nexti}.
19581
19582@subsubheading Example
19583
19584@smallexample
594fe323 19585(gdb)
922fbb7b
AC
19586-exec-next-instruction
19587^running
19588
594fe323 19589(gdb)
922fbb7b
AC
19590*stopped,reason="end-stepping-range",
19591addr="0x000100d4",line="5",file="hello.c"
594fe323 19592(gdb)
922fbb7b
AC
19593@end smallexample
19594
19595
19596@subheading The @code{-exec-return} Command
19597@findex -exec-return
19598
19599@subsubheading Synopsis
19600
19601@smallexample
19602 -exec-return
19603@end smallexample
19604
19605Makes current function return immediately. Doesn't execute the inferior.
19606Displays the new current frame.
19607
19608@subsubheading @value{GDBN} Command
19609
19610The corresponding @value{GDBN} command is @samp{return}.
19611
19612@subsubheading Example
19613
19614@smallexample
594fe323 19615(gdb)
922fbb7b
AC
19616200-break-insert callee4
19617200^done,bkpt=@{number="1",addr="0x00010734",
19618file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
594fe323 19619(gdb)
922fbb7b
AC
19620000-exec-run
19621000^running
594fe323 19622(gdb)
a47ec5fe 19623000*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",
922fbb7b 19624frame=@{func="callee4",args=[],
76ff342d
DJ
19625file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19626fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
594fe323 19627(gdb)
922fbb7b
AC
19628205-break-delete
19629205^done
594fe323 19630(gdb)
922fbb7b
AC
19631111-exec-return
19632111^done,frame=@{level="0",func="callee3",
19633args=[@{name="strarg",
19634value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
19635file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19636fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 19637(gdb)
922fbb7b
AC
19638@end smallexample
19639
19640
19641@subheading The @code{-exec-run} Command
19642@findex -exec-run
19643
19644@subsubheading Synopsis
19645
19646@smallexample
19647 -exec-run
19648@end smallexample
19649
ef21caaf
NR
19650Starts execution of the inferior from the beginning. The inferior
19651executes until either a breakpoint is encountered or the program
19652exits. In the latter case the output will include an exit code, if
19653the program has exited exceptionally.
922fbb7b
AC
19654
19655@subsubheading @value{GDBN} Command
19656
19657The corresponding @value{GDBN} command is @samp{run}.
19658
ef21caaf 19659@subsubheading Examples
922fbb7b
AC
19660
19661@smallexample
594fe323 19662(gdb)
922fbb7b
AC
19663-break-insert main
19664^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",line="4"@}
594fe323 19665(gdb)
922fbb7b
AC
19666-exec-run
19667^running
594fe323 19668(gdb)
a47ec5fe 19669*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",
76ff342d 19670frame=@{func="main",args=[],file="recursive2.c",
948d5102 19671fullname="/home/foo/bar/recursive2.c",line="4"@}
594fe323 19672(gdb)
922fbb7b
AC
19673@end smallexample
19674
ef21caaf
NR
19675@noindent
19676Program exited normally:
19677
19678@smallexample
594fe323 19679(gdb)
ef21caaf
NR
19680-exec-run
19681^running
594fe323 19682(gdb)
ef21caaf
NR
19683x = 55
19684*stopped,reason="exited-normally"
594fe323 19685(gdb)
ef21caaf
NR
19686@end smallexample
19687
19688@noindent
19689Program exited exceptionally:
19690
19691@smallexample
594fe323 19692(gdb)
ef21caaf
NR
19693-exec-run
19694^running
594fe323 19695(gdb)
ef21caaf
NR
19696x = 55
19697*stopped,reason="exited",exit-code="01"
594fe323 19698(gdb)
ef21caaf
NR
19699@end smallexample
19700
19701Another way the program can terminate is if it receives a signal such as
19702@code{SIGINT}. In this case, @sc{gdb/mi} displays this:
19703
19704@smallexample
594fe323 19705(gdb)
ef21caaf
NR
19706*stopped,reason="exited-signalled",signal-name="SIGINT",
19707signal-meaning="Interrupt"
19708@end smallexample
19709
922fbb7b 19710
a2c02241
NR
19711@c @subheading -exec-signal
19712
19713
19714@subheading The @code{-exec-step} Command
19715@findex -exec-step
922fbb7b
AC
19716
19717@subsubheading Synopsis
19718
19719@smallexample
a2c02241 19720 -exec-step
922fbb7b
AC
19721@end smallexample
19722
a2c02241
NR
19723Resumes execution of the inferior program, stopping when the beginning
19724of the next source line is reached, if the next source line is not a
19725function call. If it is, stop at the first instruction of the called
19726function.
922fbb7b
AC
19727
19728@subsubheading @value{GDBN} Command
19729
a2c02241 19730The corresponding @value{GDBN} command is @samp{step}.
922fbb7b
AC
19731
19732@subsubheading Example
19733
19734Stepping into a function:
19735
19736@smallexample
19737-exec-step
19738^running
594fe323 19739(gdb)
922fbb7b
AC
19740*stopped,reason="end-stepping-range",
19741frame=@{func="foo",args=[@{name="a",value="10"@},
76ff342d 19742@{name="b",value="0"@}],file="recursive2.c",
948d5102 19743fullname="/home/foo/bar/recursive2.c",line="11"@}
594fe323 19744(gdb)
922fbb7b
AC
19745@end smallexample
19746
19747Regular stepping:
19748
19749@smallexample
19750-exec-step
19751^running
594fe323 19752(gdb)
922fbb7b 19753*stopped,reason="end-stepping-range",line="14",file="recursive2.c"
594fe323 19754(gdb)
922fbb7b
AC
19755@end smallexample
19756
19757
19758@subheading The @code{-exec-step-instruction} Command
19759@findex -exec-step-instruction
19760
19761@subsubheading Synopsis
19762
19763@smallexample
19764 -exec-step-instruction
19765@end smallexample
19766
ef21caaf
NR
19767Resumes the inferior which executes one machine instruction. The
19768output, once @value{GDBN} has stopped, will vary depending on whether
19769we have stopped in the middle of a source line or not. In the former
19770case, the address at which the program stopped will be printed as
922fbb7b
AC
19771well.
19772
19773@subsubheading @value{GDBN} Command
19774
19775The corresponding @value{GDBN} command is @samp{stepi}.
19776
19777@subsubheading Example
19778
19779@smallexample
594fe323 19780(gdb)
922fbb7b
AC
19781-exec-step-instruction
19782^running
19783
594fe323 19784(gdb)
922fbb7b 19785*stopped,reason="end-stepping-range",
76ff342d 19786frame=@{func="foo",args=[],file="try.c",
948d5102 19787fullname="/home/foo/bar/try.c",line="10"@}
594fe323 19788(gdb)
922fbb7b
AC
19789-exec-step-instruction
19790^running
19791
594fe323 19792(gdb)
922fbb7b 19793*stopped,reason="end-stepping-range",
76ff342d 19794frame=@{addr="0x000100f4",func="foo",args=[],file="try.c",
948d5102 19795fullname="/home/foo/bar/try.c",line="10"@}
594fe323 19796(gdb)
922fbb7b
AC
19797@end smallexample
19798
19799
19800@subheading The @code{-exec-until} Command
19801@findex -exec-until
19802
19803@subsubheading Synopsis
19804
19805@smallexample
19806 -exec-until [ @var{location} ]
19807@end smallexample
19808
ef21caaf
NR
19809Executes the inferior until the @var{location} specified in the
19810argument is reached. If there is no argument, the inferior executes
19811until a source line greater than the current one is reached. The
19812reason for stopping in this case will be @samp{location-reached}.
922fbb7b
AC
19813
19814@subsubheading @value{GDBN} Command
19815
19816The corresponding @value{GDBN} command is @samp{until}.
19817
19818@subsubheading Example
19819
19820@smallexample
594fe323 19821(gdb)
922fbb7b
AC
19822-exec-until recursive2.c:6
19823^running
594fe323 19824(gdb)
922fbb7b
AC
19825x = 55
19826*stopped,reason="location-reached",frame=@{func="main",args=[],
948d5102 19827file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="6"@}
594fe323 19828(gdb)
922fbb7b
AC
19829@end smallexample
19830
19831@ignore
19832@subheading -file-clear
19833Is this going away????
19834@end ignore
19835
351ff01a 19836@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
19837@node GDB/MI Stack Manipulation
19838@section @sc{gdb/mi} Stack Manipulation Commands
351ff01a 19839
922fbb7b 19840
a2c02241
NR
19841@subheading The @code{-stack-info-frame} Command
19842@findex -stack-info-frame
922fbb7b
AC
19843
19844@subsubheading Synopsis
19845
19846@smallexample
a2c02241 19847 -stack-info-frame
922fbb7b
AC
19848@end smallexample
19849
a2c02241 19850Get info on the selected frame.
922fbb7b
AC
19851
19852@subsubheading @value{GDBN} Command
19853
a2c02241
NR
19854The corresponding @value{GDBN} command is @samp{info frame} or @samp{frame}
19855(without arguments).
922fbb7b
AC
19856
19857@subsubheading Example
19858
19859@smallexample
594fe323 19860(gdb)
a2c02241
NR
19861-stack-info-frame
19862^done,frame=@{level="1",addr="0x0001076c",func="callee3",
19863file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19864fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@}
594fe323 19865(gdb)
922fbb7b
AC
19866@end smallexample
19867
a2c02241
NR
19868@subheading The @code{-stack-info-depth} Command
19869@findex -stack-info-depth
922fbb7b
AC
19870
19871@subsubheading Synopsis
19872
19873@smallexample
a2c02241 19874 -stack-info-depth [ @var{max-depth} ]
922fbb7b
AC
19875@end smallexample
19876
a2c02241
NR
19877Return the depth of the stack. If the integer argument @var{max-depth}
19878is specified, do not count beyond @var{max-depth} frames.
922fbb7b
AC
19879
19880@subsubheading @value{GDBN} Command
19881
a2c02241 19882There's no equivalent @value{GDBN} command.
922fbb7b
AC
19883
19884@subsubheading Example
19885
a2c02241
NR
19886For a stack with frame levels 0 through 11:
19887
922fbb7b 19888@smallexample
594fe323 19889(gdb)
a2c02241
NR
19890-stack-info-depth
19891^done,depth="12"
594fe323 19892(gdb)
a2c02241
NR
19893-stack-info-depth 4
19894^done,depth="4"
594fe323 19895(gdb)
a2c02241
NR
19896-stack-info-depth 12
19897^done,depth="12"
594fe323 19898(gdb)
a2c02241
NR
19899-stack-info-depth 11
19900^done,depth="11"
594fe323 19901(gdb)
a2c02241
NR
19902-stack-info-depth 13
19903^done,depth="12"
594fe323 19904(gdb)
922fbb7b
AC
19905@end smallexample
19906
a2c02241
NR
19907@subheading The @code{-stack-list-arguments} Command
19908@findex -stack-list-arguments
922fbb7b
AC
19909
19910@subsubheading Synopsis
19911
19912@smallexample
a2c02241
NR
19913 -stack-list-arguments @var{show-values}
19914 [ @var{low-frame} @var{high-frame} ]
922fbb7b
AC
19915@end smallexample
19916
a2c02241
NR
19917Display a list of the arguments for the frames between @var{low-frame}
19918and @var{high-frame} (inclusive). If @var{low-frame} and
2f1acb09
VP
19919@var{high-frame} are not provided, list the arguments for the whole
19920call stack. If the two arguments are equal, show the single frame
19921at the corresponding level. It is an error if @var{low-frame} is
19922larger than the actual number of frames. On the other hand,
19923@var{high-frame} may be larger than the actual number of frames, in
19924which case only existing frames will be returned.
a2c02241
NR
19925
19926The @var{show-values} argument must have a value of 0 or 1. A value of
199270 means that only the names of the arguments are listed, a value of 1
19928means that both names and values of the arguments are printed.
922fbb7b
AC
19929
19930@subsubheading @value{GDBN} Command
19931
a2c02241
NR
19932@value{GDBN} does not have an equivalent command. @code{gdbtk} has a
19933@samp{gdb_get_args} command which partially overlaps with the
19934functionality of @samp{-stack-list-arguments}.
922fbb7b
AC
19935
19936@subsubheading Example
922fbb7b 19937
a2c02241 19938@smallexample
594fe323 19939(gdb)
a2c02241
NR
19940-stack-list-frames
19941^done,
19942stack=[
19943frame=@{level="0",addr="0x00010734",func="callee4",
19944file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19945fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@},
19946frame=@{level="1",addr="0x0001076c",func="callee3",
19947file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19948fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@},
19949frame=@{level="2",addr="0x0001078c",func="callee2",
19950file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19951fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="22"@},
19952frame=@{level="3",addr="0x000107b4",func="callee1",
19953file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19954fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="27"@},
19955frame=@{level="4",addr="0x000107e0",func="main",
19956file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19957fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="32"@}]
594fe323 19958(gdb)
a2c02241
NR
19959-stack-list-arguments 0
19960^done,
19961stack-args=[
19962frame=@{level="0",args=[]@},
19963frame=@{level="1",args=[name="strarg"]@},
19964frame=@{level="2",args=[name="intarg",name="strarg"]@},
19965frame=@{level="3",args=[name="intarg",name="strarg",name="fltarg"]@},
19966frame=@{level="4",args=[]@}]
594fe323 19967(gdb)
a2c02241
NR
19968-stack-list-arguments 1
19969^done,
19970stack-args=[
19971frame=@{level="0",args=[]@},
19972frame=@{level="1",
19973 args=[@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19974frame=@{level="2",args=[
19975@{name="intarg",value="2"@},
19976@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19977@{frame=@{level="3",args=[
19978@{name="intarg",value="2"@},
19979@{name="strarg",value="0x11940 \"A string argument.\""@},
19980@{name="fltarg",value="3.5"@}]@},
19981frame=@{level="4",args=[]@}]
594fe323 19982(gdb)
a2c02241
NR
19983-stack-list-arguments 0 2 2
19984^done,stack-args=[frame=@{level="2",args=[name="intarg",name="strarg"]@}]
594fe323 19985(gdb)
a2c02241
NR
19986-stack-list-arguments 1 2 2
19987^done,stack-args=[frame=@{level="2",
19988args=[@{name="intarg",value="2"@},
19989@{name="strarg",value="0x11940 \"A string argument.\""@}]@}]
594fe323 19990(gdb)
a2c02241
NR
19991@end smallexample
19992
19993@c @subheading -stack-list-exception-handlers
922fbb7b 19994
a2c02241
NR
19995
19996@subheading The @code{-stack-list-frames} Command
19997@findex -stack-list-frames
1abaf70c
BR
19998
19999@subsubheading Synopsis
20000
20001@smallexample
a2c02241 20002 -stack-list-frames [ @var{low-frame} @var{high-frame} ]
1abaf70c
BR
20003@end smallexample
20004
a2c02241
NR
20005List the frames currently on the stack. For each frame it displays the
20006following info:
20007
20008@table @samp
20009@item @var{level}
d3e8051b 20010The frame number, 0 being the topmost frame, i.e., the innermost function.
a2c02241
NR
20011@item @var{addr}
20012The @code{$pc} value for that frame.
20013@item @var{func}
20014Function name.
20015@item @var{file}
20016File name of the source file where the function lives.
20017@item @var{line}
20018Line number corresponding to the @code{$pc}.
20019@end table
20020
20021If invoked without arguments, this command prints a backtrace for the
20022whole stack. If given two integer arguments, it shows the frames whose
20023levels are between the two arguments (inclusive). If the two arguments
2ab1eb7a
VP
20024are equal, it shows the single frame at the corresponding level. It is
20025an error if @var{low-frame} is larger than the actual number of
a5451f4e 20026frames. On the other hand, @var{high-frame} may be larger than the
2ab1eb7a 20027actual number of frames, in which case only existing frames will be returned.
1abaf70c
BR
20028
20029@subsubheading @value{GDBN} Command
20030
a2c02241 20031The corresponding @value{GDBN} commands are @samp{backtrace} and @samp{where}.
1abaf70c
BR
20032
20033@subsubheading Example
20034
a2c02241
NR
20035Full stack backtrace:
20036
1abaf70c 20037@smallexample
594fe323 20038(gdb)
a2c02241
NR
20039-stack-list-frames
20040^done,stack=
20041[frame=@{level="0",addr="0x0001076c",func="foo",
20042 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="11"@},
20043frame=@{level="1",addr="0x000107a4",func="foo",
20044 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
20045frame=@{level="2",addr="0x000107a4",func="foo",
20046 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
20047frame=@{level="3",addr="0x000107a4",func="foo",
20048 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
20049frame=@{level="4",addr="0x000107a4",func="foo",
20050 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
20051frame=@{level="5",addr="0x000107a4",func="foo",
20052 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
20053frame=@{level="6",addr="0x000107a4",func="foo",
20054 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
20055frame=@{level="7",addr="0x000107a4",func="foo",
20056 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
20057frame=@{level="8",addr="0x000107a4",func="foo",
20058 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
20059frame=@{level="9",addr="0x000107a4",func="foo",
20060 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
20061frame=@{level="10",addr="0x000107a4",func="foo",
20062 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
20063frame=@{level="11",addr="0x00010738",func="main",
20064 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="4"@}]
594fe323 20065(gdb)
1abaf70c
BR
20066@end smallexample
20067
a2c02241 20068Show frames between @var{low_frame} and @var{high_frame}:
1abaf70c 20069
a2c02241 20070@smallexample
594fe323 20071(gdb)
a2c02241
NR
20072-stack-list-frames 3 5
20073^done,stack=
20074[frame=@{level="3",addr="0x000107a4",func="foo",
20075 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
20076frame=@{level="4",addr="0x000107a4",func="foo",
20077 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
20078frame=@{level="5",addr="0x000107a4",func="foo",
20079 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
594fe323 20080(gdb)
a2c02241 20081@end smallexample
922fbb7b 20082
a2c02241 20083Show a single frame:
922fbb7b
AC
20084
20085@smallexample
594fe323 20086(gdb)
a2c02241
NR
20087-stack-list-frames 3 3
20088^done,stack=
20089[frame=@{level="3",addr="0x000107a4",func="foo",
20090 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
594fe323 20091(gdb)
922fbb7b
AC
20092@end smallexample
20093
922fbb7b 20094
a2c02241
NR
20095@subheading The @code{-stack-list-locals} Command
20096@findex -stack-list-locals
57c22c6c 20097
a2c02241 20098@subsubheading Synopsis
922fbb7b
AC
20099
20100@smallexample
a2c02241 20101 -stack-list-locals @var{print-values}
922fbb7b
AC
20102@end smallexample
20103
a2c02241
NR
20104Display the local variable names for the selected frame. If
20105@var{print-values} is 0 or @code{--no-values}, print only the names of
20106the variables; if it is 1 or @code{--all-values}, print also their
20107values; and if it is 2 or @code{--simple-values}, print the name,
20108type and value for simple data types and the name and type for arrays,
20109structures and unions. In this last case, a frontend can immediately
20110display the value of simple data types and create variable objects for
d3e8051b 20111other data types when the user wishes to explore their values in
a2c02241 20112more detail.
922fbb7b
AC
20113
20114@subsubheading @value{GDBN} Command
20115
a2c02241 20116@samp{info locals} in @value{GDBN}, @samp{gdb_get_locals} in @code{gdbtk}.
922fbb7b
AC
20117
20118@subsubheading Example
922fbb7b
AC
20119
20120@smallexample
594fe323 20121(gdb)
a2c02241
NR
20122-stack-list-locals 0
20123^done,locals=[name="A",name="B",name="C"]
594fe323 20124(gdb)
a2c02241
NR
20125-stack-list-locals --all-values
20126^done,locals=[@{name="A",value="1"@},@{name="B",value="2"@},
20127 @{name="C",value="@{1, 2, 3@}"@}]
20128-stack-list-locals --simple-values
20129^done,locals=[@{name="A",type="int",value="1"@},
20130 @{name="B",type="int",value="2"@},@{name="C",type="int [3]"@}]
594fe323 20131(gdb)
922fbb7b
AC
20132@end smallexample
20133
922fbb7b 20134
a2c02241
NR
20135@subheading The @code{-stack-select-frame} Command
20136@findex -stack-select-frame
922fbb7b
AC
20137
20138@subsubheading Synopsis
20139
20140@smallexample
a2c02241 20141 -stack-select-frame @var{framenum}
922fbb7b
AC
20142@end smallexample
20143
a2c02241
NR
20144Change the selected frame. Select a different frame @var{framenum} on
20145the stack.
922fbb7b
AC
20146
20147@subsubheading @value{GDBN} Command
20148
a2c02241
NR
20149The corresponding @value{GDBN} commands are @samp{frame}, @samp{up},
20150@samp{down}, @samp{select-frame}, @samp{up-silent}, and @samp{down-silent}.
922fbb7b
AC
20151
20152@subsubheading Example
20153
20154@smallexample
594fe323 20155(gdb)
a2c02241 20156-stack-select-frame 2
922fbb7b 20157^done
594fe323 20158(gdb)
922fbb7b
AC
20159@end smallexample
20160
20161@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
20162@node GDB/MI Variable Objects
20163@section @sc{gdb/mi} Variable Objects
922fbb7b 20164
a1b5960f 20165@ignore
922fbb7b 20166
a2c02241 20167@subheading Motivation for Variable Objects in @sc{gdb/mi}
922fbb7b 20168
a2c02241
NR
20169For the implementation of a variable debugger window (locals, watched
20170expressions, etc.), we are proposing the adaptation of the existing code
20171used by @code{Insight}.
922fbb7b 20172
a2c02241 20173The two main reasons for that are:
922fbb7b 20174
a2c02241
NR
20175@enumerate 1
20176@item
20177It has been proven in practice (it is already on its second generation).
922fbb7b 20178
a2c02241
NR
20179@item
20180It will shorten development time (needless to say how important it is
20181now).
20182@end enumerate
922fbb7b 20183
a2c02241
NR
20184The original interface was designed to be used by Tcl code, so it was
20185slightly changed so it could be used through @sc{gdb/mi}. This section
20186describes the @sc{gdb/mi} operations that will be available and gives some
20187hints about their use.
922fbb7b 20188
a2c02241
NR
20189@emph{Note}: In addition to the set of operations described here, we
20190expect the @sc{gui} implementation of a variable window to require, at
20191least, the following operations:
922fbb7b 20192
a2c02241
NR
20193@itemize @bullet
20194@item @code{-gdb-show} @code{output-radix}
20195@item @code{-stack-list-arguments}
20196@item @code{-stack-list-locals}
20197@item @code{-stack-select-frame}
20198@end itemize
922fbb7b 20199
a1b5960f
VP
20200@end ignore
20201
c8b2f53c 20202@subheading Introduction to Variable Objects
922fbb7b 20203
a2c02241 20204@cindex variable objects in @sc{gdb/mi}
c8b2f53c
VP
20205
20206Variable objects are "object-oriented" MI interface for examining and
20207changing values of expressions. Unlike some other MI interfaces that
20208work with expressions, variable objects are specifically designed for
20209simple and efficient presentation in the frontend. A variable object
20210is identified by string name. When a variable object is created, the
20211frontend specifies the expression for that variable object. The
20212expression can be a simple variable, or it can be an arbitrary complex
20213expression, and can even involve CPU registers. After creating a
20214variable object, the frontend can invoke other variable object
20215operations---for example to obtain or change the value of a variable
20216object, or to change display format.
20217
20218Variable objects have hierarchical tree structure. Any variable object
20219that corresponds to a composite type, such as structure in C, has
20220a number of child variable objects, for example corresponding to each
20221element of a structure. A child variable object can itself have
20222children, recursively. Recursion ends when we reach
25d5ea92
VP
20223leaf variable objects, which always have built-in types. Child variable
20224objects are created only by explicit request, so if a frontend
20225is not interested in the children of a particular variable object, no
20226child will be created.
c8b2f53c
VP
20227
20228For a leaf variable object it is possible to obtain its value as a
20229string, or set the value from a string. String value can be also
20230obtained for a non-leaf variable object, but it's generally a string
20231that only indicates the type of the object, and does not list its
20232contents. Assignment to a non-leaf variable object is not allowed.
20233
20234A frontend does not need to read the values of all variable objects each time
20235the program stops. Instead, MI provides an update command that lists all
20236variable objects whose values has changed since the last update
20237operation. This considerably reduces the amount of data that must
25d5ea92
VP
20238be transferred to the frontend. As noted above, children variable
20239objects are created on demand, and only leaf variable objects have a
20240real value. As result, gdb will read target memory only for leaf
20241variables that frontend has created.
20242
20243The automatic update is not always desirable. For example, a frontend
20244might want to keep a value of some expression for future reference,
20245and never update it. For another example, fetching memory is
20246relatively slow for embedded targets, so a frontend might want
20247to disable automatic update for the variables that are either not
20248visible on the screen, or ``closed''. This is possible using so
20249called ``frozen variable objects''. Such variable objects are never
20250implicitly updated.
922fbb7b 20251
a2c02241
NR
20252The following is the complete set of @sc{gdb/mi} operations defined to
20253access this functionality:
922fbb7b 20254
a2c02241
NR
20255@multitable @columnfractions .4 .6
20256@item @strong{Operation}
20257@tab @strong{Description}
922fbb7b 20258
a2c02241
NR
20259@item @code{-var-create}
20260@tab create a variable object
20261@item @code{-var-delete}
22d8a470 20262@tab delete the variable object and/or its children
a2c02241
NR
20263@item @code{-var-set-format}
20264@tab set the display format of this variable
20265@item @code{-var-show-format}
20266@tab show the display format of this variable
20267@item @code{-var-info-num-children}
20268@tab tells how many children this object has
20269@item @code{-var-list-children}
20270@tab return a list of the object's children
20271@item @code{-var-info-type}
20272@tab show the type of this variable object
20273@item @code{-var-info-expression}
02142340
VP
20274@tab print parent-relative expression that this variable object represents
20275@item @code{-var-info-path-expression}
20276@tab print full expression that this variable object represents
a2c02241
NR
20277@item @code{-var-show-attributes}
20278@tab is this variable editable? does it exist here?
20279@item @code{-var-evaluate-expression}
20280@tab get the value of this variable
20281@item @code{-var-assign}
20282@tab set the value of this variable
20283@item @code{-var-update}
20284@tab update the variable and its children
25d5ea92
VP
20285@item @code{-var-set-frozen}
20286@tab set frozeness attribute
a2c02241 20287@end multitable
922fbb7b 20288
a2c02241
NR
20289In the next subsection we describe each operation in detail and suggest
20290how it can be used.
922fbb7b 20291
a2c02241 20292@subheading Description And Use of Operations on Variable Objects
922fbb7b 20293
a2c02241
NR
20294@subheading The @code{-var-create} Command
20295@findex -var-create
ef21caaf 20296
a2c02241 20297@subsubheading Synopsis
ef21caaf 20298
a2c02241
NR
20299@smallexample
20300 -var-create @{@var{name} | "-"@}
20301 @{@var{frame-addr} | "*"@} @var{expression}
20302@end smallexample
20303
20304This operation creates a variable object, which allows the monitoring of
20305a variable, the result of an expression, a memory cell or a CPU
20306register.
ef21caaf 20307
a2c02241
NR
20308The @var{name} parameter is the string by which the object can be
20309referenced. It must be unique. If @samp{-} is specified, the varobj
20310system will generate a string ``varNNNNNN'' automatically. It will be
20311unique provided that one does not specify @var{name} on that format.
20312The command fails if a duplicate name is found.
ef21caaf 20313
a2c02241
NR
20314The frame under which the expression should be evaluated can be
20315specified by @var{frame-addr}. A @samp{*} indicates that the current
20316frame should be used.
922fbb7b 20317
a2c02241
NR
20318@var{expression} is any expression valid on the current language set (must not
20319begin with a @samp{*}), or one of the following:
922fbb7b 20320
a2c02241
NR
20321@itemize @bullet
20322@item
20323@samp{*@var{addr}}, where @var{addr} is the address of a memory cell
922fbb7b 20324
a2c02241
NR
20325@item
20326@samp{*@var{addr}-@var{addr}} --- a memory address range (TBD)
922fbb7b 20327
a2c02241
NR
20328@item
20329@samp{$@var{regname}} --- a CPU register name
20330@end itemize
922fbb7b 20331
a2c02241 20332@subsubheading Result
922fbb7b 20333
a2c02241
NR
20334This operation returns the name, number of children and the type of the
20335object created. Type is returned as a string as the ones generated by
20336the @value{GDBN} CLI:
922fbb7b
AC
20337
20338@smallexample
a2c02241 20339 name="@var{name}",numchild="N",type="@var{type}"
dcaaae04
NR
20340@end smallexample
20341
a2c02241
NR
20342
20343@subheading The @code{-var-delete} Command
20344@findex -var-delete
922fbb7b
AC
20345
20346@subsubheading Synopsis
20347
20348@smallexample
22d8a470 20349 -var-delete [ -c ] @var{name}
922fbb7b
AC
20350@end smallexample
20351
a2c02241 20352Deletes a previously created variable object and all of its children.
22d8a470 20353With the @samp{-c} option, just deletes the children.
922fbb7b 20354
a2c02241 20355Returns an error if the object @var{name} is not found.
922fbb7b 20356
922fbb7b 20357
a2c02241
NR
20358@subheading The @code{-var-set-format} Command
20359@findex -var-set-format
922fbb7b 20360
a2c02241 20361@subsubheading Synopsis
922fbb7b
AC
20362
20363@smallexample
a2c02241 20364 -var-set-format @var{name} @var{format-spec}
922fbb7b
AC
20365@end smallexample
20366
a2c02241
NR
20367Sets the output format for the value of the object @var{name} to be
20368@var{format-spec}.
20369
de051565 20370@anchor{-var-set-format}
a2c02241
NR
20371The syntax for the @var{format-spec} is as follows:
20372
20373@smallexample
20374 @var{format-spec} @expansion{}
20375 @{binary | decimal | hexadecimal | octal | natural@}
20376@end smallexample
20377
c8b2f53c
VP
20378The natural format is the default format choosen automatically
20379based on the variable type (like decimal for an @code{int}, hex
20380for pointers, etc.).
20381
20382For a variable with children, the format is set only on the
20383variable itself, and the children are not affected.
a2c02241
NR
20384
20385@subheading The @code{-var-show-format} Command
20386@findex -var-show-format
922fbb7b
AC
20387
20388@subsubheading Synopsis
20389
20390@smallexample
a2c02241 20391 -var-show-format @var{name}
922fbb7b
AC
20392@end smallexample
20393
a2c02241 20394Returns the format used to display the value of the object @var{name}.
922fbb7b 20395
a2c02241
NR
20396@smallexample
20397 @var{format} @expansion{}
20398 @var{format-spec}
20399@end smallexample
922fbb7b 20400
922fbb7b 20401
a2c02241
NR
20402@subheading The @code{-var-info-num-children} Command
20403@findex -var-info-num-children
20404
20405@subsubheading Synopsis
20406
20407@smallexample
20408 -var-info-num-children @var{name}
20409@end smallexample
20410
20411Returns the number of children of a variable object @var{name}:
20412
20413@smallexample
20414 numchild=@var{n}
20415@end smallexample
20416
20417
20418@subheading The @code{-var-list-children} Command
20419@findex -var-list-children
20420
20421@subsubheading Synopsis
20422
20423@smallexample
20424 -var-list-children [@var{print-values}] @var{name}
20425@end smallexample
20426@anchor{-var-list-children}
20427
20428Return a list of the children of the specified variable object and
20429create variable objects for them, if they do not already exist. With
20430a single argument or if @var{print-values} has a value for of 0 or
20431@code{--no-values}, print only the names of the variables; if
20432@var{print-values} is 1 or @code{--all-values}, also print their
20433values; and if it is 2 or @code{--simple-values} print the name and
20434value for simple data types and just the name for arrays, structures
20435and unions.
922fbb7b
AC
20436
20437@subsubheading Example
20438
20439@smallexample
594fe323 20440(gdb)
a2c02241
NR
20441 -var-list-children n
20442 ^done,numchild=@var{n},children=[@{name=@var{name},
20443 numchild=@var{n},type=@var{type}@},@r{(repeats N times)}]
594fe323 20444(gdb)
a2c02241
NR
20445 -var-list-children --all-values n
20446 ^done,numchild=@var{n},children=[@{name=@var{name},
20447 numchild=@var{n},value=@var{value},type=@var{type}@},@r{(repeats N times)}]
922fbb7b
AC
20448@end smallexample
20449
922fbb7b 20450
a2c02241
NR
20451@subheading The @code{-var-info-type} Command
20452@findex -var-info-type
922fbb7b 20453
a2c02241
NR
20454@subsubheading Synopsis
20455
20456@smallexample
20457 -var-info-type @var{name}
20458@end smallexample
20459
20460Returns the type of the specified variable @var{name}. The type is
20461returned as a string in the same format as it is output by the
20462@value{GDBN} CLI:
20463
20464@smallexample
20465 type=@var{typename}
20466@end smallexample
20467
20468
20469@subheading The @code{-var-info-expression} Command
20470@findex -var-info-expression
922fbb7b
AC
20471
20472@subsubheading Synopsis
20473
20474@smallexample
a2c02241 20475 -var-info-expression @var{name}
922fbb7b
AC
20476@end smallexample
20477
02142340
VP
20478Returns a string that is suitable for presenting this
20479variable object in user interface. The string is generally
20480not valid expression in the current language, and cannot be evaluated.
20481
20482For example, if @code{a} is an array, and variable object
20483@code{A} was created for @code{a}, then we'll get this output:
922fbb7b 20484
a2c02241 20485@smallexample
02142340
VP
20486(gdb) -var-info-expression A.1
20487^done,lang="C",exp="1"
a2c02241 20488@end smallexample
922fbb7b 20489
a2c02241 20490@noindent
02142340
VP
20491Here, the values of @code{lang} can be @code{@{"C" | "C++" | "Java"@}}.
20492
20493Note that the output of the @code{-var-list-children} command also
20494includes those expressions, so the @code{-var-info-expression} command
20495is of limited use.
20496
20497@subheading The @code{-var-info-path-expression} Command
20498@findex -var-info-path-expression
20499
20500@subsubheading Synopsis
20501
20502@smallexample
20503 -var-info-path-expression @var{name}
20504@end smallexample
20505
20506Returns an expression that can be evaluated in the current
20507context and will yield the same value that a variable object has.
20508Compare this with the @code{-var-info-expression} command, which
20509result can be used only for UI presentation. Typical use of
20510the @code{-var-info-path-expression} command is creating a
20511watchpoint from a variable object.
20512
20513For example, suppose @code{C} is a C@t{++} class, derived from class
20514@code{Base}, and that the @code{Base} class has a member called
20515@code{m_size}. Assume a variable @code{c} is has the type of
20516@code{C} and a variable object @code{C} was created for variable
20517@code{c}. Then, we'll get this output:
20518@smallexample
20519(gdb) -var-info-path-expression C.Base.public.m_size
20520^done,path_expr=((Base)c).m_size)
20521@end smallexample
922fbb7b 20522
a2c02241
NR
20523@subheading The @code{-var-show-attributes} Command
20524@findex -var-show-attributes
922fbb7b 20525
a2c02241 20526@subsubheading Synopsis
922fbb7b 20527
a2c02241
NR
20528@smallexample
20529 -var-show-attributes @var{name}
20530@end smallexample
922fbb7b 20531
a2c02241 20532List attributes of the specified variable object @var{name}:
922fbb7b
AC
20533
20534@smallexample
a2c02241 20535 status=@var{attr} [ ( ,@var{attr} )* ]
922fbb7b
AC
20536@end smallexample
20537
a2c02241
NR
20538@noindent
20539where @var{attr} is @code{@{ @{ editable | noneditable @} | TBD @}}.
20540
20541@subheading The @code{-var-evaluate-expression} Command
20542@findex -var-evaluate-expression
20543
20544@subsubheading Synopsis
20545
20546@smallexample
de051565 20547 -var-evaluate-expression [-f @var{format-spec}] @var{name}
a2c02241
NR
20548@end smallexample
20549
20550Evaluates the expression that is represented by the specified variable
de051565
MK
20551object and returns its value as a string. The format of the string
20552can be specified with the @samp{-f} option. The possible values of
20553this option are the same as for @code{-var-set-format}
20554(@pxref{-var-set-format}). If the @samp{-f} option is not specified,
20555the current display format will be used. The current display format
20556can be changed using the @code{-var-set-format} command.
a2c02241
NR
20557
20558@smallexample
20559 value=@var{value}
20560@end smallexample
20561
20562Note that one must invoke @code{-var-list-children} for a variable
20563before the value of a child variable can be evaluated.
20564
20565@subheading The @code{-var-assign} Command
20566@findex -var-assign
20567
20568@subsubheading Synopsis
20569
20570@smallexample
20571 -var-assign @var{name} @var{expression}
20572@end smallexample
20573
20574Assigns the value of @var{expression} to the variable object specified
20575by @var{name}. The object must be @samp{editable}. If the variable's
20576value is altered by the assign, the variable will show up in any
20577subsequent @code{-var-update} list.
20578
20579@subsubheading Example
922fbb7b
AC
20580
20581@smallexample
594fe323 20582(gdb)
a2c02241
NR
20583-var-assign var1 3
20584^done,value="3"
594fe323 20585(gdb)
a2c02241
NR
20586-var-update *
20587^done,changelist=[@{name="var1",in_scope="true",type_changed="false"@}]
594fe323 20588(gdb)
922fbb7b
AC
20589@end smallexample
20590
a2c02241
NR
20591@subheading The @code{-var-update} Command
20592@findex -var-update
20593
20594@subsubheading Synopsis
20595
20596@smallexample
20597 -var-update [@var{print-values}] @{@var{name} | "*"@}
20598@end smallexample
20599
c8b2f53c
VP
20600Reevaluate the expressions corresponding to the variable object
20601@var{name} and all its direct and indirect children, and return the
36ece8b3
NR
20602list of variable objects whose values have changed; @var{name} must
20603be a root variable object. Here, ``changed'' means that the result of
20604@code{-var-evaluate-expression} before and after the
20605@code{-var-update} is different. If @samp{*} is used as the variable
9f708cb2
VP
20606object names, all existing variable objects are updated, except
20607for frozen ones (@pxref{-var-set-frozen}). The option
36ece8b3 20608@var{print-values} determines whether both names and values, or just
de051565 20609names are printed. The possible values of this option are the same
36ece8b3
NR
20610as for @code{-var-list-children} (@pxref{-var-list-children}). It is
20611recommended to use the @samp{--all-values} option, to reduce the
20612number of MI commands needed on each program stop.
c8b2f53c 20613
a2c02241
NR
20614
20615@subsubheading Example
922fbb7b
AC
20616
20617@smallexample
594fe323 20618(gdb)
a2c02241
NR
20619-var-assign var1 3
20620^done,value="3"
594fe323 20621(gdb)
a2c02241
NR
20622-var-update --all-values var1
20623^done,changelist=[@{name="var1",value="3",in_scope="true",
20624type_changed="false"@}]
594fe323 20625(gdb)
922fbb7b
AC
20626@end smallexample
20627
9f708cb2 20628@anchor{-var-update}
36ece8b3
NR
20629The field in_scope may take three values:
20630
20631@table @code
20632@item "true"
20633The variable object's current value is valid.
20634
20635@item "false"
20636The variable object does not currently hold a valid value but it may
20637hold one in the future if its associated expression comes back into
20638scope.
20639
20640@item "invalid"
20641The variable object no longer holds a valid value.
20642This can occur when the executable file being debugged has changed,
20643either through recompilation or by using the @value{GDBN} @code{file}
20644command. The front end should normally choose to delete these variable
20645objects.
20646@end table
20647
20648In the future new values may be added to this list so the front should
20649be prepared for this possibility. @xref{GDB/MI Development and Front Ends, ,@sc{GDB/MI} Development and Front Ends}.
20650
25d5ea92
VP
20651@subheading The @code{-var-set-frozen} Command
20652@findex -var-set-frozen
9f708cb2 20653@anchor{-var-set-frozen}
25d5ea92
VP
20654
20655@subsubheading Synopsis
20656
20657@smallexample
9f708cb2 20658 -var-set-frozen @var{name} @var{flag}
25d5ea92
VP
20659@end smallexample
20660
9f708cb2 20661Set the frozenness flag on the variable object @var{name}. The
25d5ea92 20662@var{flag} parameter should be either @samp{1} to make the variable
9f708cb2 20663frozen or @samp{0} to make it unfrozen. If a variable object is
25d5ea92 20664frozen, then neither itself, nor any of its children, are
9f708cb2 20665implicitly updated by @code{-var-update} of
25d5ea92
VP
20666a parent variable or by @code{-var-update *}. Only
20667@code{-var-update} of the variable itself will update its value and
20668values of its children. After a variable object is unfrozen, it is
20669implicitly updated by all subsequent @code{-var-update} operations.
20670Unfreezing a variable does not update it, only subsequent
20671@code{-var-update} does.
20672
20673@subsubheading Example
20674
20675@smallexample
20676(gdb)
20677-var-set-frozen V 1
20678^done
20679(gdb)
20680@end smallexample
20681
20682
a2c02241
NR
20683@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20684@node GDB/MI Data Manipulation
20685@section @sc{gdb/mi} Data Manipulation
922fbb7b 20686
a2c02241
NR
20687@cindex data manipulation, in @sc{gdb/mi}
20688@cindex @sc{gdb/mi}, data manipulation
20689This section describes the @sc{gdb/mi} commands that manipulate data:
20690examine memory and registers, evaluate expressions, etc.
20691
20692@c REMOVED FROM THE INTERFACE.
20693@c @subheading -data-assign
20694@c Change the value of a program variable. Plenty of side effects.
79a6e687 20695@c @subsubheading GDB Command
a2c02241
NR
20696@c set variable
20697@c @subsubheading Example
20698@c N.A.
20699
20700@subheading The @code{-data-disassemble} Command
20701@findex -data-disassemble
922fbb7b
AC
20702
20703@subsubheading Synopsis
20704
20705@smallexample
a2c02241
NR
20706 -data-disassemble
20707 [ -s @var{start-addr} -e @var{end-addr} ]
20708 | [ -f @var{filename} -l @var{linenum} [ -n @var{lines} ] ]
20709 -- @var{mode}
922fbb7b
AC
20710@end smallexample
20711
a2c02241
NR
20712@noindent
20713Where:
20714
20715@table @samp
20716@item @var{start-addr}
20717is the beginning address (or @code{$pc})
20718@item @var{end-addr}
20719is the end address
20720@item @var{filename}
20721is the name of the file to disassemble
20722@item @var{linenum}
20723is the line number to disassemble around
20724@item @var{lines}
d3e8051b 20725is the number of disassembly lines to be produced. If it is -1,
a2c02241
NR
20726the whole function will be disassembled, in case no @var{end-addr} is
20727specified. If @var{end-addr} is specified as a non-zero value, and
20728@var{lines} is lower than the number of disassembly lines between
20729@var{start-addr} and @var{end-addr}, only @var{lines} lines are
20730displayed; if @var{lines} is higher than the number of lines between
20731@var{start-addr} and @var{end-addr}, only the lines up to @var{end-addr}
20732are displayed.
20733@item @var{mode}
20734is either 0 (meaning only disassembly) or 1 (meaning mixed source and
20735disassembly).
20736@end table
20737
20738@subsubheading Result
20739
20740The output for each instruction is composed of four fields:
20741
20742@itemize @bullet
20743@item Address
20744@item Func-name
20745@item Offset
20746@item Instruction
20747@end itemize
20748
20749Note that whatever included in the instruction field, is not manipulated
d3e8051b 20750directly by @sc{gdb/mi}, i.e., it is not possible to adjust its format.
922fbb7b
AC
20751
20752@subsubheading @value{GDBN} Command
20753
a2c02241 20754There's no direct mapping from this command to the CLI.
922fbb7b
AC
20755
20756@subsubheading Example
20757
a2c02241
NR
20758Disassemble from the current value of @code{$pc} to @code{$pc + 20}:
20759
922fbb7b 20760@smallexample
594fe323 20761(gdb)
a2c02241
NR
20762-data-disassemble -s $pc -e "$pc + 20" -- 0
20763^done,
20764asm_insns=[
20765@{address="0x000107c0",func-name="main",offset="4",
20766inst="mov 2, %o0"@},
20767@{address="0x000107c4",func-name="main",offset="8",
20768inst="sethi %hi(0x11800), %o2"@},
20769@{address="0x000107c8",func-name="main",offset="12",
20770inst="or %o2, 0x140, %o1\t! 0x11940 <_lib_version+8>"@},
20771@{address="0x000107cc",func-name="main",offset="16",
20772inst="sethi %hi(0x11800), %o2"@},
20773@{address="0x000107d0",func-name="main",offset="20",
20774inst="or %o2, 0x168, %o4\t! 0x11968 <_lib_version+48>"@}]
594fe323 20775(gdb)
a2c02241
NR
20776@end smallexample
20777
20778Disassemble the whole @code{main} function. Line 32 is part of
20779@code{main}.
20780
20781@smallexample
20782-data-disassemble -f basics.c -l 32 -- 0
20783^done,asm_insns=[
20784@{address="0x000107bc",func-name="main",offset="0",
20785inst="save %sp, -112, %sp"@},
20786@{address="0x000107c0",func-name="main",offset="4",
20787inst="mov 2, %o0"@},
20788@{address="0x000107c4",func-name="main",offset="8",
20789inst="sethi %hi(0x11800), %o2"@},
20790[@dots{}]
20791@{address="0x0001081c",func-name="main",offset="96",inst="ret "@},
20792@{address="0x00010820",func-name="main",offset="100",inst="restore "@}]
594fe323 20793(gdb)
922fbb7b
AC
20794@end smallexample
20795
a2c02241 20796Disassemble 3 instructions from the start of @code{main}:
922fbb7b 20797
a2c02241 20798@smallexample
594fe323 20799(gdb)
a2c02241
NR
20800-data-disassemble -f basics.c -l 32 -n 3 -- 0
20801^done,asm_insns=[
20802@{address="0x000107bc",func-name="main",offset="0",
20803inst="save %sp, -112, %sp"@},
20804@{address="0x000107c0",func-name="main",offset="4",
20805inst="mov 2, %o0"@},
20806@{address="0x000107c4",func-name="main",offset="8",
20807inst="sethi %hi(0x11800), %o2"@}]
594fe323 20808(gdb)
a2c02241
NR
20809@end smallexample
20810
20811Disassemble 3 instructions from the start of @code{main} in mixed mode:
20812
20813@smallexample
594fe323 20814(gdb)
a2c02241
NR
20815-data-disassemble -f basics.c -l 32 -n 3 -- 1
20816^done,asm_insns=[
20817src_and_asm_line=@{line="31",
20818file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
20819 testsuite/gdb.mi/basics.c",line_asm_insn=[
20820@{address="0x000107bc",func-name="main",offset="0",
20821inst="save %sp, -112, %sp"@}]@},
20822src_and_asm_line=@{line="32",
20823file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
20824 testsuite/gdb.mi/basics.c",line_asm_insn=[
20825@{address="0x000107c0",func-name="main",offset="4",
20826inst="mov 2, %o0"@},
20827@{address="0x000107c4",func-name="main",offset="8",
20828inst="sethi %hi(0x11800), %o2"@}]@}]
594fe323 20829(gdb)
a2c02241
NR
20830@end smallexample
20831
20832
20833@subheading The @code{-data-evaluate-expression} Command
20834@findex -data-evaluate-expression
922fbb7b
AC
20835
20836@subsubheading Synopsis
20837
20838@smallexample
a2c02241 20839 -data-evaluate-expression @var{expr}
922fbb7b
AC
20840@end smallexample
20841
a2c02241
NR
20842Evaluate @var{expr} as an expression. The expression could contain an
20843inferior function call. The function call will execute synchronously.
20844If the expression contains spaces, it must be enclosed in double quotes.
922fbb7b
AC
20845
20846@subsubheading @value{GDBN} Command
20847
a2c02241
NR
20848The corresponding @value{GDBN} commands are @samp{print}, @samp{output}, and
20849@samp{call}. In @code{gdbtk} only, there's a corresponding
20850@samp{gdb_eval} command.
922fbb7b
AC
20851
20852@subsubheading Example
20853
a2c02241
NR
20854In the following example, the numbers that precede the commands are the
20855@dfn{tokens} described in @ref{GDB/MI Command Syntax, ,@sc{gdb/mi}
20856Command Syntax}. Notice how @sc{gdb/mi} returns the same tokens in its
20857output.
20858
922fbb7b 20859@smallexample
a2c02241
NR
20860211-data-evaluate-expression A
20861211^done,value="1"
594fe323 20862(gdb)
a2c02241
NR
20863311-data-evaluate-expression &A
20864311^done,value="0xefffeb7c"
594fe323 20865(gdb)
a2c02241
NR
20866411-data-evaluate-expression A+3
20867411^done,value="4"
594fe323 20868(gdb)
a2c02241
NR
20869511-data-evaluate-expression "A + 3"
20870511^done,value="4"
594fe323 20871(gdb)
a2c02241 20872@end smallexample
922fbb7b
AC
20873
20874
a2c02241
NR
20875@subheading The @code{-data-list-changed-registers} Command
20876@findex -data-list-changed-registers
922fbb7b
AC
20877
20878@subsubheading Synopsis
20879
20880@smallexample
a2c02241 20881 -data-list-changed-registers
922fbb7b
AC
20882@end smallexample
20883
a2c02241 20884Display a list of the registers that have changed.
922fbb7b
AC
20885
20886@subsubheading @value{GDBN} Command
20887
a2c02241
NR
20888@value{GDBN} doesn't have a direct analog for this command; @code{gdbtk}
20889has the corresponding command @samp{gdb_changed_register_list}.
922fbb7b
AC
20890
20891@subsubheading Example
922fbb7b 20892
a2c02241 20893On a PPC MBX board:
922fbb7b
AC
20894
20895@smallexample
594fe323 20896(gdb)
a2c02241
NR
20897-exec-continue
20898^running
922fbb7b 20899
594fe323 20900(gdb)
a47ec5fe
AR
20901*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",frame=@{
20902func="main",args=[],file="try.c",fullname="/home/foo/bar/try.c",
20903line="5"@}
594fe323 20904(gdb)
a2c02241
NR
20905-data-list-changed-registers
20906^done,changed-registers=["0","1","2","4","5","6","7","8","9",
20907"10","11","13","14","15","16","17","18","19","20","21","22","23",
20908"24","25","26","27","28","30","31","64","65","66","67","69"]
594fe323 20909(gdb)
a2c02241 20910@end smallexample
922fbb7b
AC
20911
20912
a2c02241
NR
20913@subheading The @code{-data-list-register-names} Command
20914@findex -data-list-register-names
922fbb7b
AC
20915
20916@subsubheading Synopsis
20917
20918@smallexample
a2c02241 20919 -data-list-register-names [ ( @var{regno} )+ ]
922fbb7b
AC
20920@end smallexample
20921
a2c02241
NR
20922Show a list of register names for the current target. If no arguments
20923are given, it shows a list of the names of all the registers. If
20924integer numbers are given as arguments, it will print a list of the
20925names of the registers corresponding to the arguments. To ensure
20926consistency between a register name and its number, the output list may
20927include empty register names.
922fbb7b
AC
20928
20929@subsubheading @value{GDBN} Command
20930
a2c02241
NR
20931@value{GDBN} does not have a command which corresponds to
20932@samp{-data-list-register-names}. In @code{gdbtk} there is a
20933corresponding command @samp{gdb_regnames}.
922fbb7b
AC
20934
20935@subsubheading Example
922fbb7b 20936
a2c02241
NR
20937For the PPC MBX board:
20938@smallexample
594fe323 20939(gdb)
a2c02241
NR
20940-data-list-register-names
20941^done,register-names=["r0","r1","r2","r3","r4","r5","r6","r7",
20942"r8","r9","r10","r11","r12","r13","r14","r15","r16","r17","r18",
20943"r19","r20","r21","r22","r23","r24","r25","r26","r27","r28","r29",
20944"r30","r31","f0","f1","f2","f3","f4","f5","f6","f7","f8","f9",
20945"f10","f11","f12","f13","f14","f15","f16","f17","f18","f19","f20",
20946"f21","f22","f23","f24","f25","f26","f27","f28","f29","f30","f31",
20947"", "pc","ps","cr","lr","ctr","xer"]
594fe323 20948(gdb)
a2c02241
NR
20949-data-list-register-names 1 2 3
20950^done,register-names=["r1","r2","r3"]
594fe323 20951(gdb)
a2c02241 20952@end smallexample
922fbb7b 20953
a2c02241
NR
20954@subheading The @code{-data-list-register-values} Command
20955@findex -data-list-register-values
922fbb7b
AC
20956
20957@subsubheading Synopsis
20958
20959@smallexample
a2c02241 20960 -data-list-register-values @var{fmt} [ ( @var{regno} )*]
922fbb7b
AC
20961@end smallexample
20962
a2c02241
NR
20963Display the registers' contents. @var{fmt} is the format according to
20964which the registers' contents are to be returned, followed by an optional
20965list of numbers specifying the registers to display. A missing list of
20966numbers indicates that the contents of all the registers must be returned.
20967
20968Allowed formats for @var{fmt} are:
20969
20970@table @code
20971@item x
20972Hexadecimal
20973@item o
20974Octal
20975@item t
20976Binary
20977@item d
20978Decimal
20979@item r
20980Raw
20981@item N
20982Natural
20983@end table
922fbb7b
AC
20984
20985@subsubheading @value{GDBN} Command
20986
a2c02241
NR
20987The corresponding @value{GDBN} commands are @samp{info reg}, @samp{info
20988all-reg}, and (in @code{gdbtk}) @samp{gdb_fetch_registers}.
922fbb7b
AC
20989
20990@subsubheading Example
922fbb7b 20991
a2c02241
NR
20992For a PPC MBX board (note: line breaks are for readability only, they
20993don't appear in the actual output):
20994
20995@smallexample
594fe323 20996(gdb)
a2c02241
NR
20997-data-list-register-values r 64 65
20998^done,register-values=[@{number="64",value="0xfe00a300"@},
20999@{number="65",value="0x00029002"@}]
594fe323 21000(gdb)
a2c02241
NR
21001-data-list-register-values x
21002^done,register-values=[@{number="0",value="0xfe0043c8"@},
21003@{number="1",value="0x3fff88"@},@{number="2",value="0xfffffffe"@},
21004@{number="3",value="0x0"@},@{number="4",value="0xa"@},
21005@{number="5",value="0x3fff68"@},@{number="6",value="0x3fff58"@},
21006@{number="7",value="0xfe011e98"@},@{number="8",value="0x2"@},
21007@{number="9",value="0xfa202820"@},@{number="10",value="0xfa202808"@},
21008@{number="11",value="0x1"@},@{number="12",value="0x0"@},
21009@{number="13",value="0x4544"@},@{number="14",value="0xffdfffff"@},
21010@{number="15",value="0xffffffff"@},@{number="16",value="0xfffffeff"@},
21011@{number="17",value="0xefffffed"@},@{number="18",value="0xfffffffe"@},
21012@{number="19",value="0xffffffff"@},@{number="20",value="0xffffffff"@},
21013@{number="21",value="0xffffffff"@},@{number="22",value="0xfffffff7"@},
21014@{number="23",value="0xffffffff"@},@{number="24",value="0xffffffff"@},
21015@{number="25",value="0xffffffff"@},@{number="26",value="0xfffffffb"@},
21016@{number="27",value="0xffffffff"@},@{number="28",value="0xf7bfffff"@},
21017@{number="29",value="0x0"@},@{number="30",value="0xfe010000"@},
21018@{number="31",value="0x0"@},@{number="32",value="0x0"@},
21019@{number="33",value="0x0"@},@{number="34",value="0x0"@},
21020@{number="35",value="0x0"@},@{number="36",value="0x0"@},
21021@{number="37",value="0x0"@},@{number="38",value="0x0"@},
21022@{number="39",value="0x0"@},@{number="40",value="0x0"@},
21023@{number="41",value="0x0"@},@{number="42",value="0x0"@},
21024@{number="43",value="0x0"@},@{number="44",value="0x0"@},
21025@{number="45",value="0x0"@},@{number="46",value="0x0"@},
21026@{number="47",value="0x0"@},@{number="48",value="0x0"@},
21027@{number="49",value="0x0"@},@{number="50",value="0x0"@},
21028@{number="51",value="0x0"@},@{number="52",value="0x0"@},
21029@{number="53",value="0x0"@},@{number="54",value="0x0"@},
21030@{number="55",value="0x0"@},@{number="56",value="0x0"@},
21031@{number="57",value="0x0"@},@{number="58",value="0x0"@},
21032@{number="59",value="0x0"@},@{number="60",value="0x0"@},
21033@{number="61",value="0x0"@},@{number="62",value="0x0"@},
21034@{number="63",value="0x0"@},@{number="64",value="0xfe00a300"@},
21035@{number="65",value="0x29002"@},@{number="66",value="0x202f04b5"@},
21036@{number="67",value="0xfe0043b0"@},@{number="68",value="0xfe00b3e4"@},
21037@{number="69",value="0x20002b03"@}]
594fe323 21038(gdb)
a2c02241 21039@end smallexample
922fbb7b 21040
a2c02241
NR
21041
21042@subheading The @code{-data-read-memory} Command
21043@findex -data-read-memory
922fbb7b
AC
21044
21045@subsubheading Synopsis
21046
21047@smallexample
a2c02241
NR
21048 -data-read-memory [ -o @var{byte-offset} ]
21049 @var{address} @var{word-format} @var{word-size}
21050 @var{nr-rows} @var{nr-cols} [ @var{aschar} ]
922fbb7b
AC
21051@end smallexample
21052
a2c02241
NR
21053@noindent
21054where:
922fbb7b 21055
a2c02241
NR
21056@table @samp
21057@item @var{address}
21058An expression specifying the address of the first memory word to be
21059read. Complex expressions containing embedded white space should be
21060quoted using the C convention.
922fbb7b 21061
a2c02241
NR
21062@item @var{word-format}
21063The format to be used to print the memory words. The notation is the
21064same as for @value{GDBN}'s @code{print} command (@pxref{Output Formats,
79a6e687 21065,Output Formats}).
922fbb7b 21066
a2c02241
NR
21067@item @var{word-size}
21068The size of each memory word in bytes.
922fbb7b 21069
a2c02241
NR
21070@item @var{nr-rows}
21071The number of rows in the output table.
922fbb7b 21072
a2c02241
NR
21073@item @var{nr-cols}
21074The number of columns in the output table.
922fbb7b 21075
a2c02241
NR
21076@item @var{aschar}
21077If present, indicates that each row should include an @sc{ascii} dump. The
21078value of @var{aschar} is used as a padding character when a byte is not a
21079member of the printable @sc{ascii} character set (printable @sc{ascii}
21080characters are those whose code is between 32 and 126, inclusively).
922fbb7b 21081
a2c02241
NR
21082@item @var{byte-offset}
21083An offset to add to the @var{address} before fetching memory.
21084@end table
922fbb7b 21085
a2c02241
NR
21086This command displays memory contents as a table of @var{nr-rows} by
21087@var{nr-cols} words, each word being @var{word-size} bytes. In total,
21088@code{@var{nr-rows} * @var{nr-cols} * @var{word-size}} bytes are read
21089(returned as @samp{total-bytes}). Should less than the requested number
21090of bytes be returned by the target, the missing words are identified
21091using @samp{N/A}. The number of bytes read from the target is returned
21092in @samp{nr-bytes} and the starting address used to read memory in
21093@samp{addr}.
21094
21095The address of the next/previous row or page is available in
21096@samp{next-row} and @samp{prev-row}, @samp{next-page} and
21097@samp{prev-page}.
922fbb7b
AC
21098
21099@subsubheading @value{GDBN} Command
21100
a2c02241
NR
21101The corresponding @value{GDBN} command is @samp{x}. @code{gdbtk} has
21102@samp{gdb_get_mem} memory read command.
922fbb7b
AC
21103
21104@subsubheading Example
32e7087d 21105
a2c02241
NR
21106Read six bytes of memory starting at @code{bytes+6} but then offset by
21107@code{-6} bytes. Format as three rows of two columns. One byte per
21108word. Display each word in hex.
32e7087d
JB
21109
21110@smallexample
594fe323 21111(gdb)
a2c02241
NR
211129-data-read-memory -o -6 -- bytes+6 x 1 3 2
211139^done,addr="0x00001390",nr-bytes="6",total-bytes="6",
21114next-row="0x00001396",prev-row="0x0000138e",next-page="0x00001396",
21115prev-page="0x0000138a",memory=[
21116@{addr="0x00001390",data=["0x00","0x01"]@},
21117@{addr="0x00001392",data=["0x02","0x03"]@},
21118@{addr="0x00001394",data=["0x04","0x05"]@}]
594fe323 21119(gdb)
32e7087d
JB
21120@end smallexample
21121
a2c02241
NR
21122Read two bytes of memory starting at address @code{shorts + 64} and
21123display as a single word formatted in decimal.
32e7087d 21124
32e7087d 21125@smallexample
594fe323 21126(gdb)
a2c02241
NR
211275-data-read-memory shorts+64 d 2 1 1
211285^done,addr="0x00001510",nr-bytes="2",total-bytes="2",
21129next-row="0x00001512",prev-row="0x0000150e",
21130next-page="0x00001512",prev-page="0x0000150e",memory=[
21131@{addr="0x00001510",data=["128"]@}]
594fe323 21132(gdb)
32e7087d
JB
21133@end smallexample
21134
a2c02241
NR
21135Read thirty two bytes of memory starting at @code{bytes+16} and format
21136as eight rows of four columns. Include a string encoding with @samp{x}
21137used as the non-printable character.
922fbb7b
AC
21138
21139@smallexample
594fe323 21140(gdb)
a2c02241
NR
211414-data-read-memory bytes+16 x 1 8 4 x
211424^done,addr="0x000013a0",nr-bytes="32",total-bytes="32",
21143next-row="0x000013c0",prev-row="0x0000139c",
21144next-page="0x000013c0",prev-page="0x00001380",memory=[
21145@{addr="0x000013a0",data=["0x10","0x11","0x12","0x13"],ascii="xxxx"@},
21146@{addr="0x000013a4",data=["0x14","0x15","0x16","0x17"],ascii="xxxx"@},
21147@{addr="0x000013a8",data=["0x18","0x19","0x1a","0x1b"],ascii="xxxx"@},
21148@{addr="0x000013ac",data=["0x1c","0x1d","0x1e","0x1f"],ascii="xxxx"@},
21149@{addr="0x000013b0",data=["0x20","0x21","0x22","0x23"],ascii=" !\"#"@},
21150@{addr="0x000013b4",data=["0x24","0x25","0x26","0x27"],ascii="$%&'"@},
21151@{addr="0x000013b8",data=["0x28","0x29","0x2a","0x2b"],ascii="()*+"@},
21152@{addr="0x000013bc",data=["0x2c","0x2d","0x2e","0x2f"],ascii=",-./"@}]
594fe323 21153(gdb)
922fbb7b
AC
21154@end smallexample
21155
a2c02241
NR
21156@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21157@node GDB/MI Tracepoint Commands
21158@section @sc{gdb/mi} Tracepoint Commands
922fbb7b 21159
a2c02241 21160The tracepoint commands are not yet implemented.
922fbb7b 21161
a2c02241 21162@c @subheading -trace-actions
922fbb7b 21163
a2c02241 21164@c @subheading -trace-delete
922fbb7b 21165
a2c02241 21166@c @subheading -trace-disable
922fbb7b 21167
a2c02241 21168@c @subheading -trace-dump
922fbb7b 21169
a2c02241 21170@c @subheading -trace-enable
922fbb7b 21171
a2c02241 21172@c @subheading -trace-exists
922fbb7b 21173
a2c02241 21174@c @subheading -trace-find
922fbb7b 21175
a2c02241 21176@c @subheading -trace-frame-number
922fbb7b 21177
a2c02241 21178@c @subheading -trace-info
922fbb7b 21179
a2c02241 21180@c @subheading -trace-insert
922fbb7b 21181
a2c02241 21182@c @subheading -trace-list
922fbb7b 21183
a2c02241 21184@c @subheading -trace-pass-count
922fbb7b 21185
a2c02241 21186@c @subheading -trace-save
922fbb7b 21187
a2c02241 21188@c @subheading -trace-start
922fbb7b 21189
a2c02241 21190@c @subheading -trace-stop
922fbb7b 21191
922fbb7b 21192
a2c02241
NR
21193@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21194@node GDB/MI Symbol Query
21195@section @sc{gdb/mi} Symbol Query Commands
922fbb7b
AC
21196
21197
a2c02241
NR
21198@subheading The @code{-symbol-info-address} Command
21199@findex -symbol-info-address
922fbb7b
AC
21200
21201@subsubheading Synopsis
21202
21203@smallexample
a2c02241 21204 -symbol-info-address @var{symbol}
922fbb7b
AC
21205@end smallexample
21206
a2c02241 21207Describe where @var{symbol} is stored.
922fbb7b
AC
21208
21209@subsubheading @value{GDBN} Command
21210
a2c02241 21211The corresponding @value{GDBN} command is @samp{info address}.
922fbb7b
AC
21212
21213@subsubheading Example
21214N.A.
21215
21216
a2c02241
NR
21217@subheading The @code{-symbol-info-file} Command
21218@findex -symbol-info-file
922fbb7b
AC
21219
21220@subsubheading Synopsis
21221
21222@smallexample
a2c02241 21223 -symbol-info-file
922fbb7b
AC
21224@end smallexample
21225
a2c02241 21226Show the file for the symbol.
922fbb7b 21227
a2c02241 21228@subsubheading @value{GDBN} Command
922fbb7b 21229
a2c02241
NR
21230There's no equivalent @value{GDBN} command. @code{gdbtk} has
21231@samp{gdb_find_file}.
922fbb7b
AC
21232
21233@subsubheading Example
21234N.A.
21235
21236
a2c02241
NR
21237@subheading The @code{-symbol-info-function} Command
21238@findex -symbol-info-function
922fbb7b
AC
21239
21240@subsubheading Synopsis
21241
21242@smallexample
a2c02241 21243 -symbol-info-function
922fbb7b
AC
21244@end smallexample
21245
a2c02241 21246Show which function the symbol lives in.
922fbb7b
AC
21247
21248@subsubheading @value{GDBN} Command
21249
a2c02241 21250@samp{gdb_get_function} in @code{gdbtk}.
922fbb7b
AC
21251
21252@subsubheading Example
21253N.A.
21254
21255
a2c02241
NR
21256@subheading The @code{-symbol-info-line} Command
21257@findex -symbol-info-line
922fbb7b
AC
21258
21259@subsubheading Synopsis
21260
21261@smallexample
a2c02241 21262 -symbol-info-line
922fbb7b
AC
21263@end smallexample
21264
a2c02241 21265Show the core addresses of the code for a source line.
922fbb7b 21266
a2c02241 21267@subsubheading @value{GDBN} Command
922fbb7b 21268
a2c02241
NR
21269The corresponding @value{GDBN} command is @samp{info line}.
21270@code{gdbtk} has the @samp{gdb_get_line} and @samp{gdb_get_file} commands.
922fbb7b
AC
21271
21272@subsubheading Example
a2c02241 21273N.A.
922fbb7b
AC
21274
21275
a2c02241
NR
21276@subheading The @code{-symbol-info-symbol} Command
21277@findex -symbol-info-symbol
07f31aa6
DJ
21278
21279@subsubheading Synopsis
21280
a2c02241
NR
21281@smallexample
21282 -symbol-info-symbol @var{addr}
21283@end smallexample
07f31aa6 21284
a2c02241 21285Describe what symbol is at location @var{addr}.
07f31aa6 21286
a2c02241 21287@subsubheading @value{GDBN} Command
07f31aa6 21288
a2c02241 21289The corresponding @value{GDBN} command is @samp{info symbol}.
07f31aa6
DJ
21290
21291@subsubheading Example
a2c02241 21292N.A.
07f31aa6
DJ
21293
21294
a2c02241
NR
21295@subheading The @code{-symbol-list-functions} Command
21296@findex -symbol-list-functions
922fbb7b
AC
21297
21298@subsubheading Synopsis
21299
21300@smallexample
a2c02241 21301 -symbol-list-functions
922fbb7b
AC
21302@end smallexample
21303
a2c02241 21304List the functions in the executable.
922fbb7b
AC
21305
21306@subsubheading @value{GDBN} Command
21307
a2c02241
NR
21308@samp{info functions} in @value{GDBN}, @samp{gdb_listfunc} and
21309@samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
21310
21311@subsubheading Example
a2c02241 21312N.A.
922fbb7b
AC
21313
21314
a2c02241
NR
21315@subheading The @code{-symbol-list-lines} Command
21316@findex -symbol-list-lines
922fbb7b
AC
21317
21318@subsubheading Synopsis
21319
21320@smallexample
a2c02241 21321 -symbol-list-lines @var{filename}
922fbb7b
AC
21322@end smallexample
21323
a2c02241
NR
21324Print the list of lines that contain code and their associated program
21325addresses for the given source filename. The entries are sorted in
21326ascending PC order.
922fbb7b
AC
21327
21328@subsubheading @value{GDBN} Command
21329
a2c02241 21330There is no corresponding @value{GDBN} command.
922fbb7b
AC
21331
21332@subsubheading Example
a2c02241 21333@smallexample
594fe323 21334(gdb)
a2c02241
NR
21335-symbol-list-lines basics.c
21336^done,lines=[@{pc="0x08048554",line="7"@},@{pc="0x0804855a",line="8"@}]
594fe323 21337(gdb)
a2c02241 21338@end smallexample
922fbb7b
AC
21339
21340
a2c02241
NR
21341@subheading The @code{-symbol-list-types} Command
21342@findex -symbol-list-types
922fbb7b
AC
21343
21344@subsubheading Synopsis
21345
21346@smallexample
a2c02241 21347 -symbol-list-types
922fbb7b
AC
21348@end smallexample
21349
a2c02241 21350List all the type names.
922fbb7b
AC
21351
21352@subsubheading @value{GDBN} Command
21353
a2c02241
NR
21354The corresponding commands are @samp{info types} in @value{GDBN},
21355@samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
21356
21357@subsubheading Example
21358N.A.
21359
21360
a2c02241
NR
21361@subheading The @code{-symbol-list-variables} Command
21362@findex -symbol-list-variables
922fbb7b
AC
21363
21364@subsubheading Synopsis
21365
21366@smallexample
a2c02241 21367 -symbol-list-variables
922fbb7b
AC
21368@end smallexample
21369
a2c02241 21370List all the global and static variable names.
922fbb7b
AC
21371
21372@subsubheading @value{GDBN} Command
21373
a2c02241 21374@samp{info variables} in @value{GDBN}, @samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
21375
21376@subsubheading Example
21377N.A.
21378
21379
a2c02241
NR
21380@subheading The @code{-symbol-locate} Command
21381@findex -symbol-locate
922fbb7b
AC
21382
21383@subsubheading Synopsis
21384
21385@smallexample
a2c02241 21386 -symbol-locate
922fbb7b
AC
21387@end smallexample
21388
922fbb7b
AC
21389@subsubheading @value{GDBN} Command
21390
a2c02241 21391@samp{gdb_loc} in @code{gdbtk}.
922fbb7b
AC
21392
21393@subsubheading Example
21394N.A.
21395
21396
a2c02241
NR
21397@subheading The @code{-symbol-type} Command
21398@findex -symbol-type
922fbb7b
AC
21399
21400@subsubheading Synopsis
21401
21402@smallexample
a2c02241 21403 -symbol-type @var{variable}
922fbb7b
AC
21404@end smallexample
21405
a2c02241 21406Show type of @var{variable}.
922fbb7b 21407
a2c02241 21408@subsubheading @value{GDBN} Command
922fbb7b 21409
a2c02241
NR
21410The corresponding @value{GDBN} command is @samp{ptype}, @code{gdbtk} has
21411@samp{gdb_obj_variable}.
21412
21413@subsubheading Example
21414N.A.
21415
21416
21417@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21418@node GDB/MI File Commands
21419@section @sc{gdb/mi} File Commands
21420
21421This section describes the GDB/MI commands to specify executable file names
21422and to read in and obtain symbol table information.
21423
21424@subheading The @code{-file-exec-and-symbols} Command
21425@findex -file-exec-and-symbols
21426
21427@subsubheading Synopsis
922fbb7b
AC
21428
21429@smallexample
a2c02241 21430 -file-exec-and-symbols @var{file}
922fbb7b
AC
21431@end smallexample
21432
a2c02241
NR
21433Specify the executable file to be debugged. This file is the one from
21434which the symbol table is also read. If no file is specified, the
21435command clears the executable and symbol information. If breakpoints
21436are set when using this command with no arguments, @value{GDBN} will produce
21437error messages. Otherwise, no output is produced, except a completion
21438notification.
21439
922fbb7b
AC
21440@subsubheading @value{GDBN} Command
21441
a2c02241 21442The corresponding @value{GDBN} command is @samp{file}.
922fbb7b
AC
21443
21444@subsubheading Example
21445
21446@smallexample
594fe323 21447(gdb)
a2c02241
NR
21448-file-exec-and-symbols /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21449^done
594fe323 21450(gdb)
922fbb7b
AC
21451@end smallexample
21452
922fbb7b 21453
a2c02241
NR
21454@subheading The @code{-file-exec-file} Command
21455@findex -file-exec-file
922fbb7b
AC
21456
21457@subsubheading Synopsis
21458
21459@smallexample
a2c02241 21460 -file-exec-file @var{file}
922fbb7b
AC
21461@end smallexample
21462
a2c02241
NR
21463Specify the executable file to be debugged. Unlike
21464@samp{-file-exec-and-symbols}, the symbol table is @emph{not} read
21465from this file. If used without argument, @value{GDBN} clears the information
21466about the executable file. No output is produced, except a completion
21467notification.
922fbb7b 21468
a2c02241
NR
21469@subsubheading @value{GDBN} Command
21470
21471The corresponding @value{GDBN} command is @samp{exec-file}.
922fbb7b
AC
21472
21473@subsubheading Example
a2c02241
NR
21474
21475@smallexample
594fe323 21476(gdb)
a2c02241
NR
21477-file-exec-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21478^done
594fe323 21479(gdb)
a2c02241 21480@end smallexample
922fbb7b
AC
21481
21482
a2c02241
NR
21483@subheading The @code{-file-list-exec-sections} Command
21484@findex -file-list-exec-sections
922fbb7b
AC
21485
21486@subsubheading Synopsis
21487
21488@smallexample
a2c02241 21489 -file-list-exec-sections
922fbb7b
AC
21490@end smallexample
21491
a2c02241
NR
21492List the sections of the current executable file.
21493
922fbb7b
AC
21494@subsubheading @value{GDBN} Command
21495
a2c02241
NR
21496The @value{GDBN} command @samp{info file} shows, among the rest, the same
21497information as this command. @code{gdbtk} has a corresponding command
21498@samp{gdb_load_info}.
922fbb7b
AC
21499
21500@subsubheading Example
21501N.A.
21502
21503
a2c02241
NR
21504@subheading The @code{-file-list-exec-source-file} Command
21505@findex -file-list-exec-source-file
922fbb7b
AC
21506
21507@subsubheading Synopsis
21508
21509@smallexample
a2c02241 21510 -file-list-exec-source-file
922fbb7b
AC
21511@end smallexample
21512
a2c02241 21513List the line number, the current source file, and the absolute path
44288b44
NR
21514to the current source file for the current executable. The macro
21515information field has a value of @samp{1} or @samp{0} depending on
21516whether or not the file includes preprocessor macro information.
922fbb7b
AC
21517
21518@subsubheading @value{GDBN} Command
21519
a2c02241 21520The @value{GDBN} equivalent is @samp{info source}
922fbb7b
AC
21521
21522@subsubheading Example
21523
922fbb7b 21524@smallexample
594fe323 21525(gdb)
a2c02241 21526123-file-list-exec-source-file
44288b44 21527123^done,line="1",file="foo.c",fullname="/home/bar/foo.c,macro-info="1"
594fe323 21528(gdb)
922fbb7b
AC
21529@end smallexample
21530
21531
a2c02241
NR
21532@subheading The @code{-file-list-exec-source-files} Command
21533@findex -file-list-exec-source-files
922fbb7b
AC
21534
21535@subsubheading Synopsis
21536
21537@smallexample
a2c02241 21538 -file-list-exec-source-files
922fbb7b
AC
21539@end smallexample
21540
a2c02241
NR
21541List the source files for the current executable.
21542
3f94c067
BW
21543It will always output the filename, but only when @value{GDBN} can find
21544the absolute file name of a source file, will it output the fullname.
922fbb7b
AC
21545
21546@subsubheading @value{GDBN} Command
21547
a2c02241
NR
21548The @value{GDBN} equivalent is @samp{info sources}.
21549@code{gdbtk} has an analogous command @samp{gdb_listfiles}.
922fbb7b
AC
21550
21551@subsubheading Example
922fbb7b 21552@smallexample
594fe323 21553(gdb)
a2c02241
NR
21554-file-list-exec-source-files
21555^done,files=[
21556@{file=foo.c,fullname=/home/foo.c@},
21557@{file=/home/bar.c,fullname=/home/bar.c@},
21558@{file=gdb_could_not_find_fullpath.c@}]
594fe323 21559(gdb)
922fbb7b
AC
21560@end smallexample
21561
a2c02241
NR
21562@subheading The @code{-file-list-shared-libraries} Command
21563@findex -file-list-shared-libraries
922fbb7b 21564
a2c02241 21565@subsubheading Synopsis
922fbb7b 21566
a2c02241
NR
21567@smallexample
21568 -file-list-shared-libraries
21569@end smallexample
922fbb7b 21570
a2c02241 21571List the shared libraries in the program.
922fbb7b 21572
a2c02241 21573@subsubheading @value{GDBN} Command
922fbb7b 21574
a2c02241 21575The corresponding @value{GDBN} command is @samp{info shared}.
922fbb7b 21576
a2c02241
NR
21577@subsubheading Example
21578N.A.
922fbb7b
AC
21579
21580
a2c02241
NR
21581@subheading The @code{-file-list-symbol-files} Command
21582@findex -file-list-symbol-files
922fbb7b 21583
a2c02241 21584@subsubheading Synopsis
922fbb7b 21585
a2c02241
NR
21586@smallexample
21587 -file-list-symbol-files
21588@end smallexample
922fbb7b 21589
a2c02241 21590List symbol files.
922fbb7b 21591
a2c02241 21592@subsubheading @value{GDBN} Command
922fbb7b 21593
a2c02241 21594The corresponding @value{GDBN} command is @samp{info file} (part of it).
922fbb7b 21595
a2c02241
NR
21596@subsubheading Example
21597N.A.
922fbb7b 21598
922fbb7b 21599
a2c02241
NR
21600@subheading The @code{-file-symbol-file} Command
21601@findex -file-symbol-file
922fbb7b 21602
a2c02241 21603@subsubheading Synopsis
922fbb7b 21604
a2c02241
NR
21605@smallexample
21606 -file-symbol-file @var{file}
21607@end smallexample
922fbb7b 21608
a2c02241
NR
21609Read symbol table info from the specified @var{file} argument. When
21610used without arguments, clears @value{GDBN}'s symbol table info. No output is
21611produced, except for a completion notification.
922fbb7b 21612
a2c02241 21613@subsubheading @value{GDBN} Command
922fbb7b 21614
a2c02241 21615The corresponding @value{GDBN} command is @samp{symbol-file}.
922fbb7b 21616
a2c02241 21617@subsubheading Example
922fbb7b 21618
a2c02241 21619@smallexample
594fe323 21620(gdb)
a2c02241
NR
21621-file-symbol-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21622^done
594fe323 21623(gdb)
a2c02241 21624@end smallexample
922fbb7b 21625
a2c02241 21626@ignore
a2c02241
NR
21627@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21628@node GDB/MI Memory Overlay Commands
21629@section @sc{gdb/mi} Memory Overlay Commands
922fbb7b 21630
a2c02241 21631The memory overlay commands are not implemented.
922fbb7b 21632
a2c02241 21633@c @subheading -overlay-auto
922fbb7b 21634
a2c02241 21635@c @subheading -overlay-list-mapping-state
922fbb7b 21636
a2c02241 21637@c @subheading -overlay-list-overlays
922fbb7b 21638
a2c02241 21639@c @subheading -overlay-map
922fbb7b 21640
a2c02241 21641@c @subheading -overlay-off
922fbb7b 21642
a2c02241 21643@c @subheading -overlay-on
922fbb7b 21644
a2c02241 21645@c @subheading -overlay-unmap
922fbb7b 21646
a2c02241
NR
21647@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21648@node GDB/MI Signal Handling Commands
21649@section @sc{gdb/mi} Signal Handling Commands
922fbb7b 21650
a2c02241 21651Signal handling commands are not implemented.
922fbb7b 21652
a2c02241 21653@c @subheading -signal-handle
922fbb7b 21654
a2c02241 21655@c @subheading -signal-list-handle-actions
922fbb7b 21656
a2c02241
NR
21657@c @subheading -signal-list-signal-types
21658@end ignore
922fbb7b 21659
922fbb7b 21660
a2c02241
NR
21661@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21662@node GDB/MI Target Manipulation
21663@section @sc{gdb/mi} Target Manipulation Commands
922fbb7b
AC
21664
21665
a2c02241
NR
21666@subheading The @code{-target-attach} Command
21667@findex -target-attach
922fbb7b
AC
21668
21669@subsubheading Synopsis
21670
21671@smallexample
a2c02241 21672 -target-attach @var{pid} | @var{file}
922fbb7b
AC
21673@end smallexample
21674
a2c02241 21675Attach to a process @var{pid} or a file @var{file} outside of @value{GDBN}.
922fbb7b 21676
79a6e687 21677@subsubheading @value{GDBN} Command
922fbb7b 21678
a2c02241 21679The corresponding @value{GDBN} command is @samp{attach}.
922fbb7b 21680
a2c02241 21681@subsubheading Example
b56e7235
VP
21682@smallexample
21683(gdb)
21684-target-attach 34
21685=thread-created,id="1"
5ae4183a 21686*stopped,thread-id="1",frame=@{addr="0xb7f7e410",func="bar",args=[]@}
b56e7235
VP
21687^done
21688(gdb)
21689@end smallexample
a2c02241
NR
21690
21691@subheading The @code{-target-compare-sections} Command
21692@findex -target-compare-sections
922fbb7b
AC
21693
21694@subsubheading Synopsis
21695
21696@smallexample
a2c02241 21697 -target-compare-sections [ @var{section} ]
922fbb7b
AC
21698@end smallexample
21699
a2c02241
NR
21700Compare data of section @var{section} on target to the exec file.
21701Without the argument, all sections are compared.
922fbb7b 21702
a2c02241 21703@subsubheading @value{GDBN} Command
922fbb7b 21704
a2c02241 21705The @value{GDBN} equivalent is @samp{compare-sections}.
922fbb7b 21706
a2c02241
NR
21707@subsubheading Example
21708N.A.
21709
21710
21711@subheading The @code{-target-detach} Command
21712@findex -target-detach
922fbb7b
AC
21713
21714@subsubheading Synopsis
21715
21716@smallexample
a2c02241 21717 -target-detach
922fbb7b
AC
21718@end smallexample
21719
a2c02241
NR
21720Detach from the remote target which normally resumes its execution.
21721There's no output.
21722
79a6e687 21723@subsubheading @value{GDBN} Command
a2c02241
NR
21724
21725The corresponding @value{GDBN} command is @samp{detach}.
21726
21727@subsubheading Example
922fbb7b
AC
21728
21729@smallexample
594fe323 21730(gdb)
a2c02241
NR
21731-target-detach
21732^done
594fe323 21733(gdb)
922fbb7b
AC
21734@end smallexample
21735
21736
a2c02241
NR
21737@subheading The @code{-target-disconnect} Command
21738@findex -target-disconnect
922fbb7b
AC
21739
21740@subsubheading Synopsis
21741
123dc839 21742@smallexample
a2c02241 21743 -target-disconnect
123dc839 21744@end smallexample
922fbb7b 21745
a2c02241
NR
21746Disconnect from the remote target. There's no output and the target is
21747generally not resumed.
21748
79a6e687 21749@subsubheading @value{GDBN} Command
a2c02241
NR
21750
21751The corresponding @value{GDBN} command is @samp{disconnect}.
bc8ced35
NR
21752
21753@subsubheading Example
922fbb7b
AC
21754
21755@smallexample
594fe323 21756(gdb)
a2c02241
NR
21757-target-disconnect
21758^done
594fe323 21759(gdb)
922fbb7b
AC
21760@end smallexample
21761
21762
a2c02241
NR
21763@subheading The @code{-target-download} Command
21764@findex -target-download
922fbb7b
AC
21765
21766@subsubheading Synopsis
21767
21768@smallexample
a2c02241 21769 -target-download
922fbb7b
AC
21770@end smallexample
21771
a2c02241
NR
21772Loads the executable onto the remote target.
21773It prints out an update message every half second, which includes the fields:
21774
21775@table @samp
21776@item section
21777The name of the section.
21778@item section-sent
21779The size of what has been sent so far for that section.
21780@item section-size
21781The size of the section.
21782@item total-sent
21783The total size of what was sent so far (the current and the previous sections).
21784@item total-size
21785The size of the overall executable to download.
21786@end table
21787
21788@noindent
21789Each message is sent as status record (@pxref{GDB/MI Output Syntax, ,
21790@sc{gdb/mi} Output Syntax}).
21791
21792In addition, it prints the name and size of the sections, as they are
21793downloaded. These messages include the following fields:
21794
21795@table @samp
21796@item section
21797The name of the section.
21798@item section-size
21799The size of the section.
21800@item total-size
21801The size of the overall executable to download.
21802@end table
21803
21804@noindent
21805At the end, a summary is printed.
21806
21807@subsubheading @value{GDBN} Command
21808
21809The corresponding @value{GDBN} command is @samp{load}.
21810
21811@subsubheading Example
21812
21813Note: each status message appears on a single line. Here the messages
21814have been broken down so that they can fit onto a page.
922fbb7b
AC
21815
21816@smallexample
594fe323 21817(gdb)
a2c02241
NR
21818-target-download
21819+download,@{section=".text",section-size="6668",total-size="9880"@}
21820+download,@{section=".text",section-sent="512",section-size="6668",
21821total-sent="512",total-size="9880"@}
21822+download,@{section=".text",section-sent="1024",section-size="6668",
21823total-sent="1024",total-size="9880"@}
21824+download,@{section=".text",section-sent="1536",section-size="6668",
21825total-sent="1536",total-size="9880"@}
21826+download,@{section=".text",section-sent="2048",section-size="6668",
21827total-sent="2048",total-size="9880"@}
21828+download,@{section=".text",section-sent="2560",section-size="6668",
21829total-sent="2560",total-size="9880"@}
21830+download,@{section=".text",section-sent="3072",section-size="6668",
21831total-sent="3072",total-size="9880"@}
21832+download,@{section=".text",section-sent="3584",section-size="6668",
21833total-sent="3584",total-size="9880"@}
21834+download,@{section=".text",section-sent="4096",section-size="6668",
21835total-sent="4096",total-size="9880"@}
21836+download,@{section=".text",section-sent="4608",section-size="6668",
21837total-sent="4608",total-size="9880"@}
21838+download,@{section=".text",section-sent="5120",section-size="6668",
21839total-sent="5120",total-size="9880"@}
21840+download,@{section=".text",section-sent="5632",section-size="6668",
21841total-sent="5632",total-size="9880"@}
21842+download,@{section=".text",section-sent="6144",section-size="6668",
21843total-sent="6144",total-size="9880"@}
21844+download,@{section=".text",section-sent="6656",section-size="6668",
21845total-sent="6656",total-size="9880"@}
21846+download,@{section=".init",section-size="28",total-size="9880"@}
21847+download,@{section=".fini",section-size="28",total-size="9880"@}
21848+download,@{section=".data",section-size="3156",total-size="9880"@}
21849+download,@{section=".data",section-sent="512",section-size="3156",
21850total-sent="7236",total-size="9880"@}
21851+download,@{section=".data",section-sent="1024",section-size="3156",
21852total-sent="7748",total-size="9880"@}
21853+download,@{section=".data",section-sent="1536",section-size="3156",
21854total-sent="8260",total-size="9880"@}
21855+download,@{section=".data",section-sent="2048",section-size="3156",
21856total-sent="8772",total-size="9880"@}
21857+download,@{section=".data",section-sent="2560",section-size="3156",
21858total-sent="9284",total-size="9880"@}
21859+download,@{section=".data",section-sent="3072",section-size="3156",
21860total-sent="9796",total-size="9880"@}
21861^done,address="0x10004",load-size="9880",transfer-rate="6586",
21862write-rate="429"
594fe323 21863(gdb)
922fbb7b
AC
21864@end smallexample
21865
21866
a2c02241
NR
21867@subheading The @code{-target-exec-status} Command
21868@findex -target-exec-status
922fbb7b
AC
21869
21870@subsubheading Synopsis
21871
21872@smallexample
a2c02241 21873 -target-exec-status
922fbb7b
AC
21874@end smallexample
21875
a2c02241
NR
21876Provide information on the state of the target (whether it is running or
21877not, for instance).
922fbb7b 21878
a2c02241 21879@subsubheading @value{GDBN} Command
922fbb7b 21880
a2c02241
NR
21881There's no equivalent @value{GDBN} command.
21882
21883@subsubheading Example
21884N.A.
922fbb7b 21885
a2c02241
NR
21886
21887@subheading The @code{-target-list-available-targets} Command
21888@findex -target-list-available-targets
922fbb7b
AC
21889
21890@subsubheading Synopsis
21891
21892@smallexample
a2c02241 21893 -target-list-available-targets
922fbb7b
AC
21894@end smallexample
21895
a2c02241 21896List the possible targets to connect to.
922fbb7b 21897
a2c02241 21898@subsubheading @value{GDBN} Command
922fbb7b 21899
a2c02241 21900The corresponding @value{GDBN} command is @samp{help target}.
922fbb7b 21901
a2c02241
NR
21902@subsubheading Example
21903N.A.
21904
21905
21906@subheading The @code{-target-list-current-targets} Command
21907@findex -target-list-current-targets
922fbb7b
AC
21908
21909@subsubheading Synopsis
21910
21911@smallexample
a2c02241 21912 -target-list-current-targets
922fbb7b
AC
21913@end smallexample
21914
a2c02241 21915Describe the current target.
922fbb7b 21916
a2c02241 21917@subsubheading @value{GDBN} Command
922fbb7b 21918
a2c02241
NR
21919The corresponding information is printed by @samp{info file} (among
21920other things).
922fbb7b 21921
a2c02241
NR
21922@subsubheading Example
21923N.A.
21924
21925
21926@subheading The @code{-target-list-parameters} Command
21927@findex -target-list-parameters
922fbb7b
AC
21928
21929@subsubheading Synopsis
21930
21931@smallexample
a2c02241 21932 -target-list-parameters
922fbb7b
AC
21933@end smallexample
21934
a2c02241
NR
21935@c ????
21936
21937@subsubheading @value{GDBN} Command
21938
21939No equivalent.
922fbb7b
AC
21940
21941@subsubheading Example
a2c02241
NR
21942N.A.
21943
21944
21945@subheading The @code{-target-select} Command
21946@findex -target-select
21947
21948@subsubheading Synopsis
922fbb7b
AC
21949
21950@smallexample
a2c02241 21951 -target-select @var{type} @var{parameters @dots{}}
922fbb7b
AC
21952@end smallexample
21953
a2c02241 21954Connect @value{GDBN} to the remote target. This command takes two args:
922fbb7b 21955
a2c02241
NR
21956@table @samp
21957@item @var{type}
75c99385 21958The type of target, for instance @samp{remote}, etc.
a2c02241
NR
21959@item @var{parameters}
21960Device names, host names and the like. @xref{Target Commands, ,
79a6e687 21961Commands for Managing Targets}, for more details.
a2c02241
NR
21962@end table
21963
21964The output is a connection notification, followed by the address at
21965which the target program is, in the following form:
922fbb7b
AC
21966
21967@smallexample
a2c02241
NR
21968^connected,addr="@var{address}",func="@var{function name}",
21969 args=[@var{arg list}]
922fbb7b
AC
21970@end smallexample
21971
a2c02241
NR
21972@subsubheading @value{GDBN} Command
21973
21974The corresponding @value{GDBN} command is @samp{target}.
265eeb58
NR
21975
21976@subsubheading Example
922fbb7b 21977
265eeb58 21978@smallexample
594fe323 21979(gdb)
75c99385 21980-target-select remote /dev/ttya
a2c02241 21981^connected,addr="0xfe00a300",func="??",args=[]
594fe323 21982(gdb)
265eeb58 21983@end smallexample
ef21caaf 21984
a6b151f1
DJ
21985@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21986@node GDB/MI File Transfer Commands
21987@section @sc{gdb/mi} File Transfer Commands
21988
21989
21990@subheading The @code{-target-file-put} Command
21991@findex -target-file-put
21992
21993@subsubheading Synopsis
21994
21995@smallexample
21996 -target-file-put @var{hostfile} @var{targetfile}
21997@end smallexample
21998
21999Copy file @var{hostfile} from the host system (the machine running
22000@value{GDBN}) to @var{targetfile} on the target system.
22001
22002@subsubheading @value{GDBN} Command
22003
22004The corresponding @value{GDBN} command is @samp{remote put}.
22005
22006@subsubheading Example
22007
22008@smallexample
22009(gdb)
22010-target-file-put localfile remotefile
22011^done
22012(gdb)
22013@end smallexample
22014
22015
1763a388 22016@subheading The @code{-target-file-get} Command
a6b151f1
DJ
22017@findex -target-file-get
22018
22019@subsubheading Synopsis
22020
22021@smallexample
22022 -target-file-get @var{targetfile} @var{hostfile}
22023@end smallexample
22024
22025Copy file @var{targetfile} from the target system to @var{hostfile}
22026on the host system.
22027
22028@subsubheading @value{GDBN} Command
22029
22030The corresponding @value{GDBN} command is @samp{remote get}.
22031
22032@subsubheading Example
22033
22034@smallexample
22035(gdb)
22036-target-file-get remotefile localfile
22037^done
22038(gdb)
22039@end smallexample
22040
22041
22042@subheading The @code{-target-file-delete} Command
22043@findex -target-file-delete
22044
22045@subsubheading Synopsis
22046
22047@smallexample
22048 -target-file-delete @var{targetfile}
22049@end smallexample
22050
22051Delete @var{targetfile} from the target system.
22052
22053@subsubheading @value{GDBN} Command
22054
22055The corresponding @value{GDBN} command is @samp{remote delete}.
22056
22057@subsubheading Example
22058
22059@smallexample
22060(gdb)
22061-target-file-delete remotefile
22062^done
22063(gdb)
22064@end smallexample
22065
22066
ef21caaf
NR
22067@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
22068@node GDB/MI Miscellaneous Commands
22069@section Miscellaneous @sc{gdb/mi} Commands
22070
22071@c @subheading -gdb-complete
22072
22073@subheading The @code{-gdb-exit} Command
22074@findex -gdb-exit
22075
22076@subsubheading Synopsis
22077
22078@smallexample
22079 -gdb-exit
22080@end smallexample
22081
22082Exit @value{GDBN} immediately.
22083
22084@subsubheading @value{GDBN} Command
22085
22086Approximately corresponds to @samp{quit}.
22087
22088@subsubheading Example
22089
22090@smallexample
594fe323 22091(gdb)
ef21caaf
NR
22092-gdb-exit
22093^exit
22094@end smallexample
22095
a2c02241
NR
22096
22097@subheading The @code{-exec-abort} Command
22098@findex -exec-abort
22099
22100@subsubheading Synopsis
22101
22102@smallexample
22103 -exec-abort
22104@end smallexample
22105
22106Kill the inferior running program.
22107
22108@subsubheading @value{GDBN} Command
22109
22110The corresponding @value{GDBN} command is @samp{kill}.
22111
22112@subsubheading Example
22113N.A.
22114
22115
ef21caaf
NR
22116@subheading The @code{-gdb-set} Command
22117@findex -gdb-set
22118
22119@subsubheading Synopsis
22120
22121@smallexample
22122 -gdb-set
22123@end smallexample
22124
22125Set an internal @value{GDBN} variable.
22126@c IS THIS A DOLLAR VARIABLE? OR SOMETHING LIKE ANNOTATE ?????
22127
22128@subsubheading @value{GDBN} Command
22129
22130The corresponding @value{GDBN} command is @samp{set}.
22131
22132@subsubheading Example
22133
22134@smallexample
594fe323 22135(gdb)
ef21caaf
NR
22136-gdb-set $foo=3
22137^done
594fe323 22138(gdb)
ef21caaf
NR
22139@end smallexample
22140
22141
22142@subheading The @code{-gdb-show} Command
22143@findex -gdb-show
22144
22145@subsubheading Synopsis
22146
22147@smallexample
22148 -gdb-show
22149@end smallexample
22150
22151Show the current value of a @value{GDBN} variable.
22152
79a6e687 22153@subsubheading @value{GDBN} Command
ef21caaf
NR
22154
22155The corresponding @value{GDBN} command is @samp{show}.
22156
22157@subsubheading Example
22158
22159@smallexample
594fe323 22160(gdb)
ef21caaf
NR
22161-gdb-show annotate
22162^done,value="0"
594fe323 22163(gdb)
ef21caaf
NR
22164@end smallexample
22165
22166@c @subheading -gdb-source
22167
22168
22169@subheading The @code{-gdb-version} Command
22170@findex -gdb-version
22171
22172@subsubheading Synopsis
22173
22174@smallexample
22175 -gdb-version
22176@end smallexample
22177
22178Show version information for @value{GDBN}. Used mostly in testing.
22179
22180@subsubheading @value{GDBN} Command
22181
22182The @value{GDBN} equivalent is @samp{show version}. @value{GDBN} by
22183default shows this information when you start an interactive session.
22184
22185@subsubheading Example
22186
22187@c This example modifies the actual output from GDB to avoid overfull
22188@c box in TeX.
22189@smallexample
594fe323 22190(gdb)
ef21caaf
NR
22191-gdb-version
22192~GNU gdb 5.2.1
22193~Copyright 2000 Free Software Foundation, Inc.
22194~GDB is free software, covered by the GNU General Public License, and
22195~you are welcome to change it and/or distribute copies of it under
22196~ certain conditions.
22197~Type "show copying" to see the conditions.
22198~There is absolutely no warranty for GDB. Type "show warranty" for
22199~ details.
22200~This GDB was configured as
22201 "--host=sparc-sun-solaris2.5.1 --target=ppc-eabi".
22202^done
594fe323 22203(gdb)
ef21caaf
NR
22204@end smallexample
22205
084344da
VP
22206@subheading The @code{-list-features} Command
22207@findex -list-features
22208
22209Returns a list of particular features of the MI protocol that
22210this version of gdb implements. A feature can be a command,
22211or a new field in an output of some command, or even an
22212important bugfix. While a frontend can sometimes detect presence
22213of a feature at runtime, it is easier to perform detection at debugger
22214startup.
22215
22216The command returns a list of strings, with each string naming an
22217available feature. Each returned string is just a name, it does not
22218have any internal structure. The list of possible feature names
22219is given below.
22220
22221Example output:
22222
22223@smallexample
22224(gdb) -list-features
22225^done,result=["feature1","feature2"]
22226@end smallexample
22227
22228The current list of features is:
22229
22230@itemize @minus
22231@item
22232@samp{frozen-varobjs}---indicates presence of the
22233@code{-var-set-frozen} command, as well as possible presense of the
22234@code{frozen} field in the output of @code{-varobj-create}.
8b4ed427
VP
22235@item
22236@samp{pending-breakpoints}---indicates presence of the @code{-f}
22237option to the @code{-break-insert} command.
8e8901c5
VP
22238@item
22239@samp{thread-info}---indicates presence of the @code{-thread-info} command.
8b4ed427 22240
084344da
VP
22241@end itemize
22242
ef21caaf
NR
22243@subheading The @code{-interpreter-exec} Command
22244@findex -interpreter-exec
22245
22246@subheading Synopsis
22247
22248@smallexample
22249-interpreter-exec @var{interpreter} @var{command}
22250@end smallexample
a2c02241 22251@anchor{-interpreter-exec}
ef21caaf
NR
22252
22253Execute the specified @var{command} in the given @var{interpreter}.
22254
22255@subheading @value{GDBN} Command
22256
22257The corresponding @value{GDBN} command is @samp{interpreter-exec}.
22258
22259@subheading Example
22260
22261@smallexample
594fe323 22262(gdb)
ef21caaf
NR
22263-interpreter-exec console "break main"
22264&"During symbol reading, couldn't parse type; debugger out of date?.\n"
22265&"During symbol reading, bad structure-type format.\n"
22266~"Breakpoint 1 at 0x8074fc6: file ../../src/gdb/main.c, line 743.\n"
22267^done
594fe323 22268(gdb)
ef21caaf
NR
22269@end smallexample
22270
22271@subheading The @code{-inferior-tty-set} Command
22272@findex -inferior-tty-set
22273
22274@subheading Synopsis
22275
22276@smallexample
22277-inferior-tty-set /dev/pts/1
22278@end smallexample
22279
22280Set terminal for future runs of the program being debugged.
22281
22282@subheading @value{GDBN} Command
22283
22284The corresponding @value{GDBN} command is @samp{set inferior-tty} /dev/pts/1.
22285
22286@subheading Example
22287
22288@smallexample
594fe323 22289(gdb)
ef21caaf
NR
22290-inferior-tty-set /dev/pts/1
22291^done
594fe323 22292(gdb)
ef21caaf
NR
22293@end smallexample
22294
22295@subheading The @code{-inferior-tty-show} Command
22296@findex -inferior-tty-show
22297
22298@subheading Synopsis
22299
22300@smallexample
22301-inferior-tty-show
22302@end smallexample
22303
22304Show terminal for future runs of program being debugged.
22305
22306@subheading @value{GDBN} Command
22307
22308The corresponding @value{GDBN} command is @samp{show inferior-tty}.
22309
22310@subheading Example
22311
22312@smallexample
594fe323 22313(gdb)
ef21caaf
NR
22314-inferior-tty-set /dev/pts/1
22315^done
594fe323 22316(gdb)
ef21caaf
NR
22317-inferior-tty-show
22318^done,inferior_tty_terminal="/dev/pts/1"
594fe323 22319(gdb)
ef21caaf 22320@end smallexample
922fbb7b 22321
a4eefcd8
NR
22322@subheading The @code{-enable-timings} Command
22323@findex -enable-timings
22324
22325@subheading Synopsis
22326
22327@smallexample
22328-enable-timings [yes | no]
22329@end smallexample
22330
22331Toggle the printing of the wallclock, user and system times for an MI
22332command as a field in its output. This command is to help frontend
22333developers optimize the performance of their code. No argument is
22334equivalent to @samp{yes}.
22335
22336@subheading @value{GDBN} Command
22337
22338No equivalent.
22339
22340@subheading Example
22341
22342@smallexample
22343(gdb)
22344-enable-timings
22345^done
22346(gdb)
22347-break-insert main
22348^done,bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
22349addr="0x080484ed",func="main",file="myprog.c",
22350fullname="/home/nickrob/myprog.c",line="73",times="0"@},
22351time=@{wallclock="0.05185",user="0.00800",system="0.00000"@}
22352(gdb)
22353-enable-timings no
22354^done
22355(gdb)
22356-exec-run
22357^running
22358(gdb)
a47ec5fe 22359*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",thread-id="0",
a4eefcd8
NR
22360frame=@{addr="0x080484ed",func="main",args=[@{name="argc",value="1"@},
22361@{name="argv",value="0xbfb60364"@}],file="myprog.c",
22362fullname="/home/nickrob/myprog.c",line="73"@}
22363(gdb)
22364@end smallexample
22365
922fbb7b
AC
22366@node Annotations
22367@chapter @value{GDBN} Annotations
22368
086432e2
AC
22369This chapter describes annotations in @value{GDBN}. Annotations were
22370designed to interface @value{GDBN} to graphical user interfaces or other
22371similar programs which want to interact with @value{GDBN} at a
922fbb7b
AC
22372relatively high level.
22373
d3e8051b 22374The annotation mechanism has largely been superseded by @sc{gdb/mi}
086432e2
AC
22375(@pxref{GDB/MI}).
22376
922fbb7b
AC
22377@ignore
22378This is Edition @value{EDITION}, @value{DATE}.
22379@end ignore
22380
22381@menu
22382* Annotations Overview:: What annotations are; the general syntax.
9e6c4bd5 22383* Server Prefix:: Issuing a command without affecting user state.
922fbb7b
AC
22384* Prompting:: Annotations marking @value{GDBN}'s need for input.
22385* Errors:: Annotations for error messages.
922fbb7b
AC
22386* Invalidation:: Some annotations describe things now invalid.
22387* Annotations for Running::
22388 Whether the program is running, how it stopped, etc.
22389* Source Annotations:: Annotations describing source code.
922fbb7b
AC
22390@end menu
22391
22392@node Annotations Overview
22393@section What is an Annotation?
22394@cindex annotations
22395
922fbb7b
AC
22396Annotations start with a newline character, two @samp{control-z}
22397characters, and the name of the annotation. If there is no additional
22398information associated with this annotation, the name of the annotation
22399is followed immediately by a newline. If there is additional
22400information, the name of the annotation is followed by a space, the
22401additional information, and a newline. The additional information
22402cannot contain newline characters.
22403
22404Any output not beginning with a newline and two @samp{control-z}
22405characters denotes literal output from @value{GDBN}. Currently there is
22406no need for @value{GDBN} to output a newline followed by two
22407@samp{control-z} characters, but if there was such a need, the
22408annotations could be extended with an @samp{escape} annotation which
22409means those three characters as output.
22410
086432e2
AC
22411The annotation @var{level}, which is specified using the
22412@option{--annotate} command line option (@pxref{Mode Options}), controls
22413how much information @value{GDBN} prints together with its prompt,
22414values of expressions, source lines, and other types of output. Level 0
d3e8051b 22415is for no annotations, level 1 is for use when @value{GDBN} is run as a
086432e2
AC
22416subprocess of @sc{gnu} Emacs, level 3 is the maximum annotation suitable
22417for programs that control @value{GDBN}, and level 2 annotations have
22418been made obsolete (@pxref{Limitations, , Limitations of the Annotation
09d4efe1
EZ
22419Interface, annotate, GDB's Obsolete Annotations}).
22420
22421@table @code
22422@kindex set annotate
22423@item set annotate @var{level}
e09f16f9 22424The @value{GDBN} command @code{set annotate} sets the level of
09d4efe1 22425annotations to the specified @var{level}.
9c16f35a
EZ
22426
22427@item show annotate
22428@kindex show annotate
22429Show the current annotation level.
09d4efe1
EZ
22430@end table
22431
22432This chapter describes level 3 annotations.
086432e2 22433
922fbb7b
AC
22434A simple example of starting up @value{GDBN} with annotations is:
22435
22436@smallexample
086432e2
AC
22437$ @kbd{gdb --annotate=3}
22438GNU gdb 6.0
22439Copyright 2003 Free Software Foundation, Inc.
922fbb7b
AC
22440GDB is free software, covered by the GNU General Public License,
22441and you are welcome to change it and/or distribute copies of it
22442under certain conditions.
22443Type "show copying" to see the conditions.
22444There is absolutely no warranty for GDB. Type "show warranty"
22445for details.
086432e2 22446This GDB was configured as "i386-pc-linux-gnu"
922fbb7b
AC
22447
22448^Z^Zpre-prompt
f7dc1244 22449(@value{GDBP})
922fbb7b 22450^Z^Zprompt
086432e2 22451@kbd{quit}
922fbb7b
AC
22452
22453^Z^Zpost-prompt
b383017d 22454$
922fbb7b
AC
22455@end smallexample
22456
22457Here @samp{quit} is input to @value{GDBN}; the rest is output from
22458@value{GDBN}. The three lines beginning @samp{^Z^Z} (where @samp{^Z}
22459denotes a @samp{control-z} character) are annotations; the rest is
22460output from @value{GDBN}.
22461
9e6c4bd5
NR
22462@node Server Prefix
22463@section The Server Prefix
22464@cindex server prefix
22465
22466If you prefix a command with @samp{server } then it will not affect
22467the command history, nor will it affect @value{GDBN}'s notion of which
22468command to repeat if @key{RET} is pressed on a line by itself. This
22469means that commands can be run behind a user's back by a front-end in
22470a transparent manner.
22471
22472The server prefix does not affect the recording of values into the value
22473history; to print a value without recording it into the value history,
22474use the @code{output} command instead of the @code{print} command.
22475
922fbb7b
AC
22476@node Prompting
22477@section Annotation for @value{GDBN} Input
22478
22479@cindex annotations for prompts
22480When @value{GDBN} prompts for input, it annotates this fact so it is possible
22481to know when to send output, when the output from a given command is
22482over, etc.
22483
22484Different kinds of input each have a different @dfn{input type}. Each
22485input type has three annotations: a @code{pre-} annotation, which
22486denotes the beginning of any prompt which is being output, a plain
22487annotation, which denotes the end of the prompt, and then a @code{post-}
22488annotation which denotes the end of any echo which may (or may not) be
22489associated with the input. For example, the @code{prompt} input type
22490features the following annotations:
22491
22492@smallexample
22493^Z^Zpre-prompt
22494^Z^Zprompt
22495^Z^Zpost-prompt
22496@end smallexample
22497
22498The input types are
22499
22500@table @code
e5ac9b53
EZ
22501@findex pre-prompt annotation
22502@findex prompt annotation
22503@findex post-prompt annotation
922fbb7b
AC
22504@item prompt
22505When @value{GDBN} is prompting for a command (the main @value{GDBN} prompt).
22506
e5ac9b53
EZ
22507@findex pre-commands annotation
22508@findex commands annotation
22509@findex post-commands annotation
922fbb7b
AC
22510@item commands
22511When @value{GDBN} prompts for a set of commands, like in the @code{commands}
22512command. The annotations are repeated for each command which is input.
22513
e5ac9b53
EZ
22514@findex pre-overload-choice annotation
22515@findex overload-choice annotation
22516@findex post-overload-choice annotation
922fbb7b
AC
22517@item overload-choice
22518When @value{GDBN} wants the user to select between various overloaded functions.
22519
e5ac9b53
EZ
22520@findex pre-query annotation
22521@findex query annotation
22522@findex post-query annotation
922fbb7b
AC
22523@item query
22524When @value{GDBN} wants the user to confirm a potentially dangerous operation.
22525
e5ac9b53
EZ
22526@findex pre-prompt-for-continue annotation
22527@findex prompt-for-continue annotation
22528@findex post-prompt-for-continue annotation
922fbb7b
AC
22529@item prompt-for-continue
22530When @value{GDBN} is asking the user to press return to continue. Note: Don't
22531expect this to work well; instead use @code{set height 0} to disable
22532prompting. This is because the counting of lines is buggy in the
22533presence of annotations.
22534@end table
22535
22536@node Errors
22537@section Errors
22538@cindex annotations for errors, warnings and interrupts
22539
e5ac9b53 22540@findex quit annotation
922fbb7b
AC
22541@smallexample
22542^Z^Zquit
22543@end smallexample
22544
22545This annotation occurs right before @value{GDBN} responds to an interrupt.
22546
e5ac9b53 22547@findex error annotation
922fbb7b
AC
22548@smallexample
22549^Z^Zerror
22550@end smallexample
22551
22552This annotation occurs right before @value{GDBN} responds to an error.
22553
22554Quit and error annotations indicate that any annotations which @value{GDBN} was
22555in the middle of may end abruptly. For example, if a
22556@code{value-history-begin} annotation is followed by a @code{error}, one
22557cannot expect to receive the matching @code{value-history-end}. One
22558cannot expect not to receive it either, however; an error annotation
22559does not necessarily mean that @value{GDBN} is immediately returning all the way
22560to the top level.
22561
e5ac9b53 22562@findex error-begin annotation
922fbb7b
AC
22563A quit or error annotation may be preceded by
22564
22565@smallexample
22566^Z^Zerror-begin
22567@end smallexample
22568
22569Any output between that and the quit or error annotation is the error
22570message.
22571
22572Warning messages are not yet annotated.
22573@c If we want to change that, need to fix warning(), type_error(),
22574@c range_error(), and possibly other places.
22575
922fbb7b
AC
22576@node Invalidation
22577@section Invalidation Notices
22578
22579@cindex annotations for invalidation messages
22580The following annotations say that certain pieces of state may have
22581changed.
22582
22583@table @code
e5ac9b53 22584@findex frames-invalid annotation
922fbb7b
AC
22585@item ^Z^Zframes-invalid
22586
22587The frames (for example, output from the @code{backtrace} command) may
22588have changed.
22589
e5ac9b53 22590@findex breakpoints-invalid annotation
922fbb7b
AC
22591@item ^Z^Zbreakpoints-invalid
22592
22593The breakpoints may have changed. For example, the user just added or
22594deleted a breakpoint.
22595@end table
22596
22597@node Annotations for Running
22598@section Running the Program
22599@cindex annotations for running programs
22600
e5ac9b53
EZ
22601@findex starting annotation
22602@findex stopping annotation
922fbb7b 22603When the program starts executing due to a @value{GDBN} command such as
b383017d 22604@code{step} or @code{continue},
922fbb7b
AC
22605
22606@smallexample
22607^Z^Zstarting
22608@end smallexample
22609
b383017d 22610is output. When the program stops,
922fbb7b
AC
22611
22612@smallexample
22613^Z^Zstopped
22614@end smallexample
22615
22616is output. Before the @code{stopped} annotation, a variety of
22617annotations describe how the program stopped.
22618
22619@table @code
e5ac9b53 22620@findex exited annotation
922fbb7b
AC
22621@item ^Z^Zexited @var{exit-status}
22622The program exited, and @var{exit-status} is the exit status (zero for
22623successful exit, otherwise nonzero).
22624
e5ac9b53
EZ
22625@findex signalled annotation
22626@findex signal-name annotation
22627@findex signal-name-end annotation
22628@findex signal-string annotation
22629@findex signal-string-end annotation
922fbb7b
AC
22630@item ^Z^Zsignalled
22631The program exited with a signal. After the @code{^Z^Zsignalled}, the
22632annotation continues:
22633
22634@smallexample
22635@var{intro-text}
22636^Z^Zsignal-name
22637@var{name}
22638^Z^Zsignal-name-end
22639@var{middle-text}
22640^Z^Zsignal-string
22641@var{string}
22642^Z^Zsignal-string-end
22643@var{end-text}
22644@end smallexample
22645
22646@noindent
22647where @var{name} is the name of the signal, such as @code{SIGILL} or
22648@code{SIGSEGV}, and @var{string} is the explanation of the signal, such
22649as @code{Illegal Instruction} or @code{Segmentation fault}.
22650@var{intro-text}, @var{middle-text}, and @var{end-text} are for the
22651user's benefit and have no particular format.
22652
e5ac9b53 22653@findex signal annotation
922fbb7b
AC
22654@item ^Z^Zsignal
22655The syntax of this annotation is just like @code{signalled}, but @value{GDBN} is
22656just saying that the program received the signal, not that it was
22657terminated with it.
22658
e5ac9b53 22659@findex breakpoint annotation
922fbb7b
AC
22660@item ^Z^Zbreakpoint @var{number}
22661The program hit breakpoint number @var{number}.
22662
e5ac9b53 22663@findex watchpoint annotation
922fbb7b
AC
22664@item ^Z^Zwatchpoint @var{number}
22665The program hit watchpoint number @var{number}.
22666@end table
22667
22668@node Source Annotations
22669@section Displaying Source
22670@cindex annotations for source display
22671
e5ac9b53 22672@findex source annotation
922fbb7b
AC
22673The following annotation is used instead of displaying source code:
22674
22675@smallexample
22676^Z^Zsource @var{filename}:@var{line}:@var{character}:@var{middle}:@var{addr}
22677@end smallexample
22678
22679where @var{filename} is an absolute file name indicating which source
22680file, @var{line} is the line number within that file (where 1 is the
22681first line in the file), @var{character} is the character position
22682within the file (where 0 is the first character in the file) (for most
22683debug formats this will necessarily point to the beginning of a line),
22684@var{middle} is @samp{middle} if @var{addr} is in the middle of the
22685line, or @samp{beg} if @var{addr} is at the beginning of the line, and
22686@var{addr} is the address in the target program associated with the
22687source which is being displayed. @var{addr} is in the form @samp{0x}
22688followed by one or more lowercase hex digits (note that this does not
22689depend on the language).
22690
8e04817f
AC
22691@node GDB Bugs
22692@chapter Reporting Bugs in @value{GDBN}
22693@cindex bugs in @value{GDBN}
22694@cindex reporting bugs in @value{GDBN}
c906108c 22695
8e04817f 22696Your bug reports play an essential role in making @value{GDBN} reliable.
c906108c 22697
8e04817f
AC
22698Reporting a bug may help you by bringing a solution to your problem, or it
22699may not. But in any case the principal function of a bug report is to help
22700the entire community by making the next version of @value{GDBN} work better. Bug
22701reports are your contribution to the maintenance of @value{GDBN}.
c906108c 22702
8e04817f
AC
22703In order for a bug report to serve its purpose, you must include the
22704information that enables us to fix the bug.
c4555f82
SC
22705
22706@menu
8e04817f
AC
22707* Bug Criteria:: Have you found a bug?
22708* Bug Reporting:: How to report bugs
c4555f82
SC
22709@end menu
22710
8e04817f 22711@node Bug Criteria
79a6e687 22712@section Have You Found a Bug?
8e04817f 22713@cindex bug criteria
c4555f82 22714
8e04817f 22715If you are not sure whether you have found a bug, here are some guidelines:
c4555f82
SC
22716
22717@itemize @bullet
8e04817f
AC
22718@cindex fatal signal
22719@cindex debugger crash
22720@cindex crash of debugger
c4555f82 22721@item
8e04817f
AC
22722If the debugger gets a fatal signal, for any input whatever, that is a
22723@value{GDBN} bug. Reliable debuggers never crash.
22724
22725@cindex error on valid input
22726@item
22727If @value{GDBN} produces an error message for valid input, that is a
22728bug. (Note that if you're cross debugging, the problem may also be
22729somewhere in the connection to the target.)
c4555f82 22730
8e04817f 22731@cindex invalid input
c4555f82 22732@item
8e04817f
AC
22733If @value{GDBN} does not produce an error message for invalid input,
22734that is a bug. However, you should note that your idea of
22735``invalid input'' might be our idea of ``an extension'' or ``support
22736for traditional practice''.
22737
22738@item
22739If you are an experienced user of debugging tools, your suggestions
22740for improvement of @value{GDBN} are welcome in any case.
c4555f82
SC
22741@end itemize
22742
8e04817f 22743@node Bug Reporting
79a6e687 22744@section How to Report Bugs
8e04817f
AC
22745@cindex bug reports
22746@cindex @value{GDBN} bugs, reporting
22747
22748A number of companies and individuals offer support for @sc{gnu} products.
22749If you obtained @value{GDBN} from a support organization, we recommend you
22750contact that organization first.
22751
22752You can find contact information for many support companies and
22753individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
22754distribution.
22755@c should add a web page ref...
22756
c16158bc
JM
22757@ifset BUGURL
22758@ifset BUGURL_DEFAULT
129188f6 22759In any event, we also recommend that you submit bug reports for
d3e8051b 22760@value{GDBN}. The preferred method is to submit them directly using
129188f6
AC
22761@uref{http://www.gnu.org/software/gdb/bugs/, @value{GDBN}'s Bugs web
22762page}. Alternatively, the @email{bug-gdb@@gnu.org, e-mail gateway} can
22763be used.
8e04817f
AC
22764
22765@strong{Do not send bug reports to @samp{info-gdb}, or to
22766@samp{help-gdb}, or to any newsgroups.} Most users of @value{GDBN} do
22767not want to receive bug reports. Those that do have arranged to receive
22768@samp{bug-gdb}.
22769
22770The mailing list @samp{bug-gdb} has a newsgroup @samp{gnu.gdb.bug} which
22771serves as a repeater. The mailing list and the newsgroup carry exactly
22772the same messages. Often people think of posting bug reports to the
22773newsgroup instead of mailing them. This appears to work, but it has one
22774problem which can be crucial: a newsgroup posting often lacks a mail
22775path back to the sender. Thus, if we need to ask for more information,
22776we may be unable to reach you. For this reason, it is better to send
22777bug reports to the mailing list.
c16158bc
JM
22778@end ifset
22779@ifclear BUGURL_DEFAULT
22780In any event, we also recommend that you submit bug reports for
22781@value{GDBN} to @value{BUGURL}.
22782@end ifclear
22783@end ifset
c4555f82 22784
8e04817f
AC
22785The fundamental principle of reporting bugs usefully is this:
22786@strong{report all the facts}. If you are not sure whether to state a
22787fact or leave it out, state it!
c4555f82 22788
8e04817f
AC
22789Often people omit facts because they think they know what causes the
22790problem and assume that some details do not matter. Thus, you might
22791assume that the name of the variable you use in an example does not matter.
22792Well, probably it does not, but one cannot be sure. Perhaps the bug is a
22793stray memory reference which happens to fetch from the location where that
22794name is stored in memory; perhaps, if the name were different, the contents
22795of that location would fool the debugger into doing the right thing despite
22796the bug. Play it safe and give a specific, complete example. That is the
22797easiest thing for you to do, and the most helpful.
c4555f82 22798
8e04817f
AC
22799Keep in mind that the purpose of a bug report is to enable us to fix the
22800bug. It may be that the bug has been reported previously, but neither
22801you nor we can know that unless your bug report is complete and
22802self-contained.
c4555f82 22803
8e04817f
AC
22804Sometimes people give a few sketchy facts and ask, ``Does this ring a
22805bell?'' Those bug reports are useless, and we urge everyone to
22806@emph{refuse to respond to them} except to chide the sender to report
22807bugs properly.
22808
22809To enable us to fix the bug, you should include all these things:
c4555f82
SC
22810
22811@itemize @bullet
22812@item
8e04817f
AC
22813The version of @value{GDBN}. @value{GDBN} announces it if you start
22814with no arguments; you can also print it at any time using @code{show
22815version}.
c4555f82 22816
8e04817f
AC
22817Without this, we will not know whether there is any point in looking for
22818the bug in the current version of @value{GDBN}.
c4555f82
SC
22819
22820@item
8e04817f
AC
22821The type of machine you are using, and the operating system name and
22822version number.
c4555f82
SC
22823
22824@item
c1468174 22825What compiler (and its version) was used to compile @value{GDBN}---e.g.@:
8e04817f 22826``@value{GCC}--2.8.1''.
c4555f82
SC
22827
22828@item
8e04817f 22829What compiler (and its version) was used to compile the program you are
c1468174 22830debugging---e.g.@: ``@value{GCC}--2.8.1'', or ``HP92453-01 A.10.32.03 HP
3f94c067
BW
22831C Compiler''. For @value{NGCC}, you can say @kbd{@value{GCC} --version}
22832to get this information; for other compilers, see the documentation for
22833those compilers.
c4555f82 22834
8e04817f
AC
22835@item
22836The command arguments you gave the compiler to compile your example and
22837observe the bug. For example, did you use @samp{-O}? To guarantee
22838you will not omit something important, list them all. A copy of the
22839Makefile (or the output from make) is sufficient.
c4555f82 22840
8e04817f
AC
22841If we were to try to guess the arguments, we would probably guess wrong
22842and then we might not encounter the bug.
c4555f82 22843
8e04817f
AC
22844@item
22845A complete input script, and all necessary source files, that will
22846reproduce the bug.
c4555f82 22847
8e04817f
AC
22848@item
22849A description of what behavior you observe that you believe is
22850incorrect. For example, ``It gets a fatal signal.''
c4555f82 22851
8e04817f
AC
22852Of course, if the bug is that @value{GDBN} gets a fatal signal, then we
22853will certainly notice it. But if the bug is incorrect output, we might
22854not notice unless it is glaringly wrong. You might as well not give us
22855a chance to make a mistake.
c4555f82 22856
8e04817f
AC
22857Even if the problem you experience is a fatal signal, you should still
22858say so explicitly. Suppose something strange is going on, such as, your
22859copy of @value{GDBN} is out of synch, or you have encountered a bug in
22860the C library on your system. (This has happened!) Your copy might
22861crash and ours would not. If you told us to expect a crash, then when
22862ours fails to crash, we would know that the bug was not happening for
22863us. If you had not told us to expect a crash, then we would not be able
22864to draw any conclusion from our observations.
c4555f82 22865
e0c07bf0
MC
22866@pindex script
22867@cindex recording a session script
22868To collect all this information, you can use a session recording program
22869such as @command{script}, which is available on many Unix systems.
22870Just run your @value{GDBN} session inside @command{script} and then
22871include the @file{typescript} file with your bug report.
22872
22873Another way to record a @value{GDBN} session is to run @value{GDBN}
22874inside Emacs and then save the entire buffer to a file.
22875
8e04817f
AC
22876@item
22877If you wish to suggest changes to the @value{GDBN} source, send us context
22878diffs. If you even discuss something in the @value{GDBN} source, refer to
22879it by context, not by line number.
c4555f82 22880
8e04817f
AC
22881The line numbers in our development sources will not match those in your
22882sources. Your line numbers would convey no useful information to us.
c4555f82 22883
8e04817f 22884@end itemize
c4555f82 22885
8e04817f 22886Here are some things that are not necessary:
c4555f82 22887
8e04817f
AC
22888@itemize @bullet
22889@item
22890A description of the envelope of the bug.
c4555f82 22891
8e04817f
AC
22892Often people who encounter a bug spend a lot of time investigating
22893which changes to the input file will make the bug go away and which
22894changes will not affect it.
c4555f82 22895
8e04817f
AC
22896This is often time consuming and not very useful, because the way we
22897will find the bug is by running a single example under the debugger
22898with breakpoints, not by pure deduction from a series of examples.
22899We recommend that you save your time for something else.
c4555f82 22900
8e04817f
AC
22901Of course, if you can find a simpler example to report @emph{instead}
22902of the original one, that is a convenience for us. Errors in the
22903output will be easier to spot, running under the debugger will take
22904less time, and so on.
c4555f82 22905
8e04817f
AC
22906However, simplification is not vital; if you do not want to do this,
22907report the bug anyway and send us the entire test case you used.
c4555f82 22908
8e04817f
AC
22909@item
22910A patch for the bug.
c4555f82 22911
8e04817f
AC
22912A patch for the bug does help us if it is a good one. But do not omit
22913the necessary information, such as the test case, on the assumption that
22914a patch is all we need. We might see problems with your patch and decide
22915to fix the problem another way, or we might not understand it at all.
c4555f82 22916
8e04817f
AC
22917Sometimes with a program as complicated as @value{GDBN} it is very hard to
22918construct an example that will make the program follow a certain path
22919through the code. If you do not send us the example, we will not be able
22920to construct one, so we will not be able to verify that the bug is fixed.
c4555f82 22921
8e04817f
AC
22922And if we cannot understand what bug you are trying to fix, or why your
22923patch should be an improvement, we will not install it. A test case will
22924help us to understand.
c4555f82 22925
8e04817f
AC
22926@item
22927A guess about what the bug is or what it depends on.
c4555f82 22928
8e04817f
AC
22929Such guesses are usually wrong. Even we cannot guess right about such
22930things without first using the debugger to find the facts.
22931@end itemize
c4555f82 22932
8e04817f
AC
22933@c The readline documentation is distributed with the readline code
22934@c and consists of the two following files:
22935@c rluser.texinfo
22936@c inc-hist.texinfo
22937@c Use -I with makeinfo to point to the appropriate directory,
22938@c environment var TEXINPUTS with TeX.
5bdf8622 22939@include rluser.texi
8e04817f 22940@include inc-hist.texinfo
c4555f82 22941
c4555f82 22942
8e04817f
AC
22943@node Formatting Documentation
22944@appendix Formatting Documentation
c4555f82 22945
8e04817f
AC
22946@cindex @value{GDBN} reference card
22947@cindex reference card
22948The @value{GDBN} 4 release includes an already-formatted reference card, ready
22949for printing with PostScript or Ghostscript, in the @file{gdb}
22950subdirectory of the main source directory@footnote{In
22951@file{gdb-@value{GDBVN}/gdb/refcard.ps} of the version @value{GDBVN}
22952release.}. If you can use PostScript or Ghostscript with your printer,
22953you can print the reference card immediately with @file{refcard.ps}.
c4555f82 22954
8e04817f
AC
22955The release also includes the source for the reference card. You
22956can format it, using @TeX{}, by typing:
c4555f82 22957
474c8240 22958@smallexample
8e04817f 22959make refcard.dvi
474c8240 22960@end smallexample
c4555f82 22961
8e04817f
AC
22962The @value{GDBN} reference card is designed to print in @dfn{landscape}
22963mode on US ``letter'' size paper;
22964that is, on a sheet 11 inches wide by 8.5 inches
22965high. You will need to specify this form of printing as an option to
22966your @sc{dvi} output program.
c4555f82 22967
8e04817f 22968@cindex documentation
c4555f82 22969
8e04817f
AC
22970All the documentation for @value{GDBN} comes as part of the machine-readable
22971distribution. The documentation is written in Texinfo format, which is
22972a documentation system that uses a single source file to produce both
22973on-line information and a printed manual. You can use one of the Info
22974formatting commands to create the on-line version of the documentation
22975and @TeX{} (or @code{texi2roff}) to typeset the printed version.
c4555f82 22976
8e04817f
AC
22977@value{GDBN} includes an already formatted copy of the on-line Info
22978version of this manual in the @file{gdb} subdirectory. The main Info
22979file is @file{gdb-@value{GDBVN}/gdb/gdb.info}, and it refers to
22980subordinate files matching @samp{gdb.info*} in the same directory. If
22981necessary, you can print out these files, or read them with any editor;
22982but they are easier to read using the @code{info} subsystem in @sc{gnu}
22983Emacs or the standalone @code{info} program, available as part of the
22984@sc{gnu} Texinfo distribution.
c4555f82 22985
8e04817f
AC
22986If you want to format these Info files yourself, you need one of the
22987Info formatting programs, such as @code{texinfo-format-buffer} or
22988@code{makeinfo}.
c4555f82 22989
8e04817f
AC
22990If you have @code{makeinfo} installed, and are in the top level
22991@value{GDBN} source directory (@file{gdb-@value{GDBVN}}, in the case of
22992version @value{GDBVN}), you can make the Info file by typing:
c4555f82 22993
474c8240 22994@smallexample
8e04817f
AC
22995cd gdb
22996make gdb.info
474c8240 22997@end smallexample
c4555f82 22998
8e04817f
AC
22999If you want to typeset and print copies of this manual, you need @TeX{},
23000a program to print its @sc{dvi} output files, and @file{texinfo.tex}, the
23001Texinfo definitions file.
c4555f82 23002
8e04817f
AC
23003@TeX{} is a typesetting program; it does not print files directly, but
23004produces output files called @sc{dvi} files. To print a typeset
23005document, you need a program to print @sc{dvi} files. If your system
23006has @TeX{} installed, chances are it has such a program. The precise
23007command to use depends on your system; @kbd{lpr -d} is common; another
23008(for PostScript devices) is @kbd{dvips}. The @sc{dvi} print command may
23009require a file name without any extension or a @samp{.dvi} extension.
c4555f82 23010
8e04817f
AC
23011@TeX{} also requires a macro definitions file called
23012@file{texinfo.tex}. This file tells @TeX{} how to typeset a document
23013written in Texinfo format. On its own, @TeX{} cannot either read or
23014typeset a Texinfo file. @file{texinfo.tex} is distributed with GDB
23015and is located in the @file{gdb-@var{version-number}/texinfo}
23016directory.
c4555f82 23017
8e04817f 23018If you have @TeX{} and a @sc{dvi} printer program installed, you can
d3e8051b 23019typeset and print this manual. First switch to the @file{gdb}
8e04817f
AC
23020subdirectory of the main source directory (for example, to
23021@file{gdb-@value{GDBVN}/gdb}) and type:
c4555f82 23022
474c8240 23023@smallexample
8e04817f 23024make gdb.dvi
474c8240 23025@end smallexample
c4555f82 23026
8e04817f 23027Then give @file{gdb.dvi} to your @sc{dvi} printing program.
c4555f82 23028
8e04817f
AC
23029@node Installing GDB
23030@appendix Installing @value{GDBN}
8e04817f 23031@cindex installation
c4555f82 23032
7fa2210b
DJ
23033@menu
23034* Requirements:: Requirements for building @value{GDBN}
db2e3e2e 23035* Running Configure:: Invoking the @value{GDBN} @file{configure} script
7fa2210b
DJ
23036* Separate Objdir:: Compiling @value{GDBN} in another directory
23037* Config Names:: Specifying names for hosts and targets
23038* Configure Options:: Summary of options for configure
23039@end menu
23040
23041@node Requirements
79a6e687 23042@section Requirements for Building @value{GDBN}
7fa2210b
DJ
23043@cindex building @value{GDBN}, requirements for
23044
23045Building @value{GDBN} requires various tools and packages to be available.
23046Other packages will be used only if they are found.
23047
79a6e687 23048@heading Tools/Packages Necessary for Building @value{GDBN}
7fa2210b
DJ
23049@table @asis
23050@item ISO C90 compiler
23051@value{GDBN} is written in ISO C90. It should be buildable with any
23052working C90 compiler, e.g.@: GCC.
23053
23054@end table
23055
79a6e687 23056@heading Tools/Packages Optional for Building @value{GDBN}
7fa2210b
DJ
23057@table @asis
23058@item Expat
123dc839 23059@anchor{Expat}
7fa2210b
DJ
23060@value{GDBN} can use the Expat XML parsing library. This library may be
23061included with your operating system distribution; if it is not, you
23062can get the latest version from @url{http://expat.sourceforge.net}.
db2e3e2e 23063The @file{configure} script will search for this library in several
7fa2210b
DJ
23064standard locations; if it is installed in an unusual path, you can
23065use the @option{--with-libexpat-prefix} option to specify its location.
23066
9cceb671
DJ
23067Expat is used for:
23068
23069@itemize @bullet
23070@item
23071Remote protocol memory maps (@pxref{Memory Map Format})
23072@item
23073Target descriptions (@pxref{Target Descriptions})
23074@item
23075Remote shared library lists (@pxref{Library List Format})
23076@item
23077MS-Windows shared libraries (@pxref{Shared Libraries})
23078@end itemize
7fa2210b 23079
31fffb02
CS
23080@item zlib
23081@cindex compressed debug sections
23082@value{GDBN} will use the @samp{zlib} library, if available, to read
23083compressed debug sections. Some linkers, such as GNU gold, are capable
23084of producing binaries with compressed debug sections. If @value{GDBN}
23085is compiled with @samp{zlib}, it will be able to read the debug
23086information in such binaries.
23087
23088The @samp{zlib} library is likely included with your operating system
23089distribution; if it is not, you can get the latest version from
23090@url{http://zlib.net}.
23091
7fa2210b
DJ
23092@end table
23093
23094@node Running Configure
db2e3e2e 23095@section Invoking the @value{GDBN} @file{configure} Script
7fa2210b 23096@cindex configuring @value{GDBN}
db2e3e2e 23097@value{GDBN} comes with a @file{configure} script that automates the process
8e04817f
AC
23098of preparing @value{GDBN} for installation; you can then use @code{make} to
23099build the @code{gdb} program.
23100@iftex
23101@c irrelevant in info file; it's as current as the code it lives with.
23102@footnote{If you have a more recent version of @value{GDBN} than @value{GDBVN},
23103look at the @file{README} file in the sources; we may have improved the
23104installation procedures since publishing this manual.}
23105@end iftex
c4555f82 23106
8e04817f
AC
23107The @value{GDBN} distribution includes all the source code you need for
23108@value{GDBN} in a single directory, whose name is usually composed by
23109appending the version number to @samp{gdb}.
c4555f82 23110
8e04817f
AC
23111For example, the @value{GDBN} version @value{GDBVN} distribution is in the
23112@file{gdb-@value{GDBVN}} directory. That directory contains:
c4555f82 23113
8e04817f
AC
23114@table @code
23115@item gdb-@value{GDBVN}/configure @r{(and supporting files)}
23116script for configuring @value{GDBN} and all its supporting libraries
c4555f82 23117
8e04817f
AC
23118@item gdb-@value{GDBVN}/gdb
23119the source specific to @value{GDBN} itself
c4555f82 23120
8e04817f
AC
23121@item gdb-@value{GDBVN}/bfd
23122source for the Binary File Descriptor library
c906108c 23123
8e04817f
AC
23124@item gdb-@value{GDBVN}/include
23125@sc{gnu} include files
c906108c 23126
8e04817f
AC
23127@item gdb-@value{GDBVN}/libiberty
23128source for the @samp{-liberty} free software library
c906108c 23129
8e04817f
AC
23130@item gdb-@value{GDBVN}/opcodes
23131source for the library of opcode tables and disassemblers
c906108c 23132
8e04817f
AC
23133@item gdb-@value{GDBVN}/readline
23134source for the @sc{gnu} command-line interface
c906108c 23135
8e04817f
AC
23136@item gdb-@value{GDBVN}/glob
23137source for the @sc{gnu} filename pattern-matching subroutine
c906108c 23138
8e04817f
AC
23139@item gdb-@value{GDBVN}/mmalloc
23140source for the @sc{gnu} memory-mapped malloc package
23141@end table
c906108c 23142
db2e3e2e 23143The simplest way to configure and build @value{GDBN} is to run @file{configure}
8e04817f
AC
23144from the @file{gdb-@var{version-number}} source directory, which in
23145this example is the @file{gdb-@value{GDBVN}} directory.
c906108c 23146
8e04817f 23147First switch to the @file{gdb-@var{version-number}} source directory
db2e3e2e 23148if you are not already in it; then run @file{configure}. Pass the
8e04817f
AC
23149identifier for the platform on which @value{GDBN} will run as an
23150argument.
c906108c 23151
8e04817f 23152For example:
c906108c 23153
474c8240 23154@smallexample
8e04817f
AC
23155cd gdb-@value{GDBVN}
23156./configure @var{host}
23157make
474c8240 23158@end smallexample
c906108c 23159
8e04817f
AC
23160@noindent
23161where @var{host} is an identifier such as @samp{sun4} or
23162@samp{decstation}, that identifies the platform where @value{GDBN} will run.
db2e3e2e 23163(You can often leave off @var{host}; @file{configure} tries to guess the
8e04817f 23164correct value by examining your system.)
c906108c 23165
8e04817f
AC
23166Running @samp{configure @var{host}} and then running @code{make} builds the
23167@file{bfd}, @file{readline}, @file{mmalloc}, and @file{libiberty}
23168libraries, then @code{gdb} itself. The configured source files, and the
23169binaries, are left in the corresponding source directories.
c906108c 23170
8e04817f 23171@need 750
db2e3e2e 23172@file{configure} is a Bourne-shell (@code{/bin/sh}) script; if your
8e04817f
AC
23173system does not recognize this automatically when you run a different
23174shell, you may need to run @code{sh} on it explicitly:
c906108c 23175
474c8240 23176@smallexample
8e04817f 23177sh configure @var{host}
474c8240 23178@end smallexample
c906108c 23179
db2e3e2e 23180If you run @file{configure} from a directory that contains source
8e04817f 23181directories for multiple libraries or programs, such as the
db2e3e2e
BW
23182@file{gdb-@value{GDBVN}} source directory for version @value{GDBVN},
23183@file{configure}
8e04817f
AC
23184creates configuration files for every directory level underneath (unless
23185you tell it not to, with the @samp{--norecursion} option).
23186
db2e3e2e 23187You should run the @file{configure} script from the top directory in the
94e91d6d 23188source tree, the @file{gdb-@var{version-number}} directory. If you run
db2e3e2e 23189@file{configure} from one of the subdirectories, you will configure only
94e91d6d 23190that subdirectory. That is usually not what you want. In particular,
db2e3e2e 23191if you run the first @file{configure} from the @file{gdb} subdirectory
94e91d6d
MC
23192of the @file{gdb-@var{version-number}} directory, you will omit the
23193configuration of @file{bfd}, @file{readline}, and other sibling
23194directories of the @file{gdb} subdirectory. This leads to build errors
23195about missing include files such as @file{bfd/bfd.h}.
c906108c 23196
8e04817f
AC
23197You can install @code{@value{GDBP}} anywhere; it has no hardwired paths.
23198However, you should make sure that the shell on your path (named by
23199the @samp{SHELL} environment variable) is publicly readable. Remember
23200that @value{GDBN} uses the shell to start your program---some systems refuse to
23201let @value{GDBN} debug child processes whose programs are not readable.
c906108c 23202
8e04817f 23203@node Separate Objdir
79a6e687 23204@section Compiling @value{GDBN} in Another Directory
c906108c 23205
8e04817f
AC
23206If you want to run @value{GDBN} versions for several host or target machines,
23207you need a different @code{gdb} compiled for each combination of
db2e3e2e 23208host and target. @file{configure} is designed to make this easy by
8e04817f
AC
23209allowing you to generate each configuration in a separate subdirectory,
23210rather than in the source directory. If your @code{make} program
23211handles the @samp{VPATH} feature (@sc{gnu} @code{make} does), running
23212@code{make} in each of these directories builds the @code{gdb}
23213program specified there.
c906108c 23214
db2e3e2e 23215To build @code{gdb} in a separate directory, run @file{configure}
8e04817f 23216with the @samp{--srcdir} option to specify where to find the source.
db2e3e2e
BW
23217(You also need to specify a path to find @file{configure}
23218itself from your working directory. If the path to @file{configure}
8e04817f
AC
23219would be the same as the argument to @samp{--srcdir}, you can leave out
23220the @samp{--srcdir} option; it is assumed.)
c906108c 23221
8e04817f
AC
23222For example, with version @value{GDBVN}, you can build @value{GDBN} in a
23223separate directory for a Sun 4 like this:
c906108c 23224
474c8240 23225@smallexample
8e04817f
AC
23226@group
23227cd gdb-@value{GDBVN}
23228mkdir ../gdb-sun4
23229cd ../gdb-sun4
23230../gdb-@value{GDBVN}/configure sun4
23231make
23232@end group
474c8240 23233@end smallexample
c906108c 23234
db2e3e2e 23235When @file{configure} builds a configuration using a remote source
8e04817f
AC
23236directory, it creates a tree for the binaries with the same structure
23237(and using the same names) as the tree under the source directory. In
23238the example, you'd find the Sun 4 library @file{libiberty.a} in the
23239directory @file{gdb-sun4/libiberty}, and @value{GDBN} itself in
23240@file{gdb-sun4/gdb}.
c906108c 23241
94e91d6d
MC
23242Make sure that your path to the @file{configure} script has just one
23243instance of @file{gdb} in it. If your path to @file{configure} looks
23244like @file{../gdb-@value{GDBVN}/gdb/configure}, you are configuring only
23245one subdirectory of @value{GDBN}, not the whole package. This leads to
23246build errors about missing include files such as @file{bfd/bfd.h}.
23247
8e04817f
AC
23248One popular reason to build several @value{GDBN} configurations in separate
23249directories is to configure @value{GDBN} for cross-compiling (where
23250@value{GDBN} runs on one machine---the @dfn{host}---while debugging
23251programs that run on another machine---the @dfn{target}).
23252You specify a cross-debugging target by
db2e3e2e 23253giving the @samp{--target=@var{target}} option to @file{configure}.
c906108c 23254
8e04817f
AC
23255When you run @code{make} to build a program or library, you must run
23256it in a configured directory---whatever directory you were in when you
db2e3e2e 23257called @file{configure} (or one of its subdirectories).
c906108c 23258
db2e3e2e 23259The @code{Makefile} that @file{configure} generates in each source
8e04817f
AC
23260directory also runs recursively. If you type @code{make} in a source
23261directory such as @file{gdb-@value{GDBVN}} (or in a separate configured
23262directory configured with @samp{--srcdir=@var{dirname}/gdb-@value{GDBVN}}), you
23263will build all the required libraries, and then build GDB.
c906108c 23264
8e04817f
AC
23265When you have multiple hosts or targets configured in separate
23266directories, you can run @code{make} on them in parallel (for example,
23267if they are NFS-mounted on each of the hosts); they will not interfere
23268with each other.
c906108c 23269
8e04817f 23270@node Config Names
79a6e687 23271@section Specifying Names for Hosts and Targets
c906108c 23272
db2e3e2e 23273The specifications used for hosts and targets in the @file{configure}
8e04817f
AC
23274script are based on a three-part naming scheme, but some short predefined
23275aliases are also supported. The full naming scheme encodes three pieces
23276of information in the following pattern:
c906108c 23277
474c8240 23278@smallexample
8e04817f 23279@var{architecture}-@var{vendor}-@var{os}
474c8240 23280@end smallexample
c906108c 23281
8e04817f
AC
23282For example, you can use the alias @code{sun4} as a @var{host} argument,
23283or as the value for @var{target} in a @code{--target=@var{target}}
23284option. The equivalent full name is @samp{sparc-sun-sunos4}.
c906108c 23285
db2e3e2e 23286The @file{configure} script accompanying @value{GDBN} does not provide
8e04817f 23287any query facility to list all supported host and target names or
db2e3e2e 23288aliases. @file{configure} calls the Bourne shell script
8e04817f
AC
23289@code{config.sub} to map abbreviations to full names; you can read the
23290script, if you wish, or you can use it to test your guesses on
23291abbreviations---for example:
c906108c 23292
8e04817f
AC
23293@smallexample
23294% sh config.sub i386-linux
23295i386-pc-linux-gnu
23296% sh config.sub alpha-linux
23297alpha-unknown-linux-gnu
23298% sh config.sub hp9k700
23299hppa1.1-hp-hpux
23300% sh config.sub sun4
23301sparc-sun-sunos4.1.1
23302% sh config.sub sun3
23303m68k-sun-sunos4.1.1
23304% sh config.sub i986v
23305Invalid configuration `i986v': machine `i986v' not recognized
23306@end smallexample
c906108c 23307
8e04817f
AC
23308@noindent
23309@code{config.sub} is also distributed in the @value{GDBN} source
23310directory (@file{gdb-@value{GDBVN}}, for version @value{GDBVN}).
d700128c 23311
8e04817f 23312@node Configure Options
db2e3e2e 23313@section @file{configure} Options
c906108c 23314
db2e3e2e
BW
23315Here is a summary of the @file{configure} options and arguments that
23316are most often useful for building @value{GDBN}. @file{configure} also has
8e04817f 23317several other options not listed here. @inforef{What Configure
db2e3e2e 23318Does,,configure.info}, for a full explanation of @file{configure}.
c906108c 23319
474c8240 23320@smallexample
8e04817f
AC
23321configure @r{[}--help@r{]}
23322 @r{[}--prefix=@var{dir}@r{]}
23323 @r{[}--exec-prefix=@var{dir}@r{]}
23324 @r{[}--srcdir=@var{dirname}@r{]}
23325 @r{[}--norecursion@r{]} @r{[}--rm@r{]}
23326 @r{[}--target=@var{target}@r{]}
23327 @var{host}
474c8240 23328@end smallexample
c906108c 23329
8e04817f
AC
23330@noindent
23331You may introduce options with a single @samp{-} rather than
23332@samp{--} if you prefer; but you may abbreviate option names if you use
23333@samp{--}.
c906108c 23334
8e04817f
AC
23335@table @code
23336@item --help
db2e3e2e 23337Display a quick summary of how to invoke @file{configure}.
c906108c 23338
8e04817f
AC
23339@item --prefix=@var{dir}
23340Configure the source to install programs and files under directory
23341@file{@var{dir}}.
c906108c 23342
8e04817f
AC
23343@item --exec-prefix=@var{dir}
23344Configure the source to install programs under directory
23345@file{@var{dir}}.
c906108c 23346
8e04817f
AC
23347@c avoid splitting the warning from the explanation:
23348@need 2000
23349@item --srcdir=@var{dirname}
23350@strong{Warning: using this option requires @sc{gnu} @code{make}, or another
23351@code{make} that implements the @code{VPATH} feature.}@*
23352Use this option to make configurations in directories separate from the
23353@value{GDBN} source directories. Among other things, you can use this to
23354build (or maintain) several configurations simultaneously, in separate
db2e3e2e 23355directories. @file{configure} writes configuration-specific files in
8e04817f 23356the current directory, but arranges for them to use the source in the
db2e3e2e 23357directory @var{dirname}. @file{configure} creates directories under
8e04817f
AC
23358the working directory in parallel to the source directories below
23359@var{dirname}.
c906108c 23360
8e04817f 23361@item --norecursion
db2e3e2e 23362Configure only the directory level where @file{configure} is executed; do not
8e04817f 23363propagate configuration to subdirectories.
c906108c 23364
8e04817f
AC
23365@item --target=@var{target}
23366Configure @value{GDBN} for cross-debugging programs running on the specified
23367@var{target}. Without this option, @value{GDBN} is configured to debug
23368programs that run on the same machine (@var{host}) as @value{GDBN} itself.
c906108c 23369
8e04817f 23370There is no convenient way to generate a list of all available targets.
c906108c 23371
8e04817f
AC
23372@item @var{host} @dots{}
23373Configure @value{GDBN} to run on the specified @var{host}.
c906108c 23374
8e04817f
AC
23375There is no convenient way to generate a list of all available hosts.
23376@end table
c906108c 23377
8e04817f
AC
23378There are many other options available as well, but they are generally
23379needed for special purposes only.
c906108c 23380
8e04817f
AC
23381@node Maintenance Commands
23382@appendix Maintenance Commands
23383@cindex maintenance commands
23384@cindex internal commands
c906108c 23385
8e04817f 23386In addition to commands intended for @value{GDBN} users, @value{GDBN}
09d4efe1
EZ
23387includes a number of commands intended for @value{GDBN} developers,
23388that are not documented elsewhere in this manual. These commands are
da316a69
EZ
23389provided here for reference. (For commands that turn on debugging
23390messages, see @ref{Debugging Output}.)
c906108c 23391
8e04817f 23392@table @code
09d4efe1
EZ
23393@kindex maint agent
23394@item maint agent @var{expression}
23395Translate the given @var{expression} into remote agent bytecodes.
23396This command is useful for debugging the Agent Expression mechanism
23397(@pxref{Agent Expressions}).
23398
8e04817f
AC
23399@kindex maint info breakpoints
23400@item @anchor{maint info breakpoints}maint info breakpoints
23401Using the same format as @samp{info breakpoints}, display both the
23402breakpoints you've set explicitly, and those @value{GDBN} is using for
23403internal purposes. Internal breakpoints are shown with negative
23404breakpoint numbers. The type column identifies what kind of breakpoint
23405is shown:
c906108c 23406
8e04817f
AC
23407@table @code
23408@item breakpoint
23409Normal, explicitly set breakpoint.
c906108c 23410
8e04817f
AC
23411@item watchpoint
23412Normal, explicitly set watchpoint.
c906108c 23413
8e04817f
AC
23414@item longjmp
23415Internal breakpoint, used to handle correctly stepping through
23416@code{longjmp} calls.
c906108c 23417
8e04817f
AC
23418@item longjmp resume
23419Internal breakpoint at the target of a @code{longjmp}.
c906108c 23420
8e04817f
AC
23421@item until
23422Temporary internal breakpoint used by the @value{GDBN} @code{until} command.
c906108c 23423
8e04817f
AC
23424@item finish
23425Temporary internal breakpoint used by the @value{GDBN} @code{finish} command.
c906108c 23426
8e04817f
AC
23427@item shlib events
23428Shared library events.
c906108c 23429
8e04817f 23430@end table
c906108c 23431
237fc4c9
PA
23432@kindex maint set can-use-displaced-stepping
23433@kindex maint show can-use-displaced-stepping
23434@cindex displaced stepping support
23435@cindex out-of-line single-stepping
23436@item maint set can-use-displaced-stepping
23437@itemx maint show can-use-displaced-stepping
23438Control whether or not @value{GDBN} will do @dfn{displaced stepping}
23439if the target supports it. The default is on. Displaced stepping is
23440a way to single-step over breakpoints without removing them from the
23441inferior, by executing an out-of-line copy of the instruction that was
23442originally at the breakpoint location. It is also known as
23443out-of-line single-stepping.
23444
09d4efe1
EZ
23445@kindex maint check-symtabs
23446@item maint check-symtabs
23447Check the consistency of psymtabs and symtabs.
23448
23449@kindex maint cplus first_component
23450@item maint cplus first_component @var{name}
23451Print the first C@t{++} class/namespace component of @var{name}.
23452
23453@kindex maint cplus namespace
23454@item maint cplus namespace
23455Print the list of possible C@t{++} namespaces.
23456
23457@kindex maint demangle
23458@item maint demangle @var{name}
d3e8051b 23459Demangle a C@t{++} or Objective-C mangled @var{name}.
09d4efe1
EZ
23460
23461@kindex maint deprecate
23462@kindex maint undeprecate
23463@cindex deprecated commands
23464@item maint deprecate @var{command} @r{[}@var{replacement}@r{]}
23465@itemx maint undeprecate @var{command}
23466Deprecate or undeprecate the named @var{command}. Deprecated commands
23467cause @value{GDBN} to issue a warning when you use them. The optional
23468argument @var{replacement} says which newer command should be used in
23469favor of the deprecated one; if it is given, @value{GDBN} will mention
23470the replacement as part of the warning.
23471
23472@kindex maint dump-me
23473@item maint dump-me
721c2651 23474@cindex @code{SIGQUIT} signal, dump core of @value{GDBN}
09d4efe1 23475Cause a fatal signal in the debugger and force it to dump its core.
721c2651
EZ
23476This is supported only on systems which support aborting a program
23477with the @code{SIGQUIT} signal.
09d4efe1 23478
8d30a00d
AC
23479@kindex maint internal-error
23480@kindex maint internal-warning
09d4efe1
EZ
23481@item maint internal-error @r{[}@var{message-text}@r{]}
23482@itemx maint internal-warning @r{[}@var{message-text}@r{]}
8d30a00d
AC
23483Cause @value{GDBN} to call the internal function @code{internal_error}
23484or @code{internal_warning} and hence behave as though an internal error
23485or internal warning has been detected. In addition to reporting the
23486internal problem, these functions give the user the opportunity to
23487either quit @value{GDBN} or create a core file of the current
23488@value{GDBN} session.
23489
09d4efe1
EZ
23490These commands take an optional parameter @var{message-text} that is
23491used as the text of the error or warning message.
23492
d3e8051b 23493Here's an example of using @code{internal-error}:
09d4efe1 23494
8d30a00d 23495@smallexample
f7dc1244 23496(@value{GDBP}) @kbd{maint internal-error testing, 1, 2}
8d30a00d
AC
23497@dots{}/maint.c:121: internal-error: testing, 1, 2
23498A problem internal to GDB has been detected. Further
23499debugging may prove unreliable.
23500Quit this debugging session? (y or n) @kbd{n}
23501Create a core file? (y or n) @kbd{n}
f7dc1244 23502(@value{GDBP})
8d30a00d
AC
23503@end smallexample
23504
09d4efe1
EZ
23505@kindex maint packet
23506@item maint packet @var{text}
23507If @value{GDBN} is talking to an inferior via the serial protocol,
23508then this command sends the string @var{text} to the inferior, and
23509displays the response packet. @value{GDBN} supplies the initial
23510@samp{$} character, the terminating @samp{#} character, and the
23511checksum.
23512
23513@kindex maint print architecture
23514@item maint print architecture @r{[}@var{file}@r{]}
23515Print the entire architecture configuration. The optional argument
23516@var{file} names the file where the output goes.
8d30a00d 23517
81adfced
DJ
23518@kindex maint print c-tdesc
23519@item maint print c-tdesc
23520Print the current target description (@pxref{Target Descriptions}) as
23521a C source file. The created source file can be used in @value{GDBN}
23522when an XML parser is not available to parse the description.
23523
00905d52
AC
23524@kindex maint print dummy-frames
23525@item maint print dummy-frames
00905d52
AC
23526Prints the contents of @value{GDBN}'s internal dummy-frame stack.
23527
23528@smallexample
f7dc1244 23529(@value{GDBP}) @kbd{b add}
00905d52 23530@dots{}
f7dc1244 23531(@value{GDBP}) @kbd{print add(2,3)}
00905d52
AC
23532Breakpoint 2, add (a=2, b=3) at @dots{}
2353358 return (a + b);
23534The program being debugged stopped while in a function called from GDB.
23535@dots{}
f7dc1244 23536(@value{GDBP}) @kbd{maint print dummy-frames}
00905d52
AC
235370x1a57c80: pc=0x01014068 fp=0x0200bddc sp=0x0200bdd6
23538 top=0x0200bdd4 id=@{stack=0x200bddc,code=0x101405c@}
23539 call_lo=0x01014000 call_hi=0x01014001
f7dc1244 23540(@value{GDBP})
00905d52
AC
23541@end smallexample
23542
23543Takes an optional file parameter.
23544
0680b120
AC
23545@kindex maint print registers
23546@kindex maint print raw-registers
23547@kindex maint print cooked-registers
617073a9 23548@kindex maint print register-groups
09d4efe1
EZ
23549@item maint print registers @r{[}@var{file}@r{]}
23550@itemx maint print raw-registers @r{[}@var{file}@r{]}
23551@itemx maint print cooked-registers @r{[}@var{file}@r{]}
23552@itemx maint print register-groups @r{[}@var{file}@r{]}
0680b120
AC
23553Print @value{GDBN}'s internal register data structures.
23554
617073a9
AC
23555The command @code{maint print raw-registers} includes the contents of
23556the raw register cache; the command @code{maint print cooked-registers}
23557includes the (cooked) value of all registers; and the command
23558@code{maint print register-groups} includes the groups that each
23559register is a member of. @xref{Registers,, Registers, gdbint,
23560@value{GDBN} Internals}.
0680b120 23561
09d4efe1
EZ
23562These commands take an optional parameter, a file name to which to
23563write the information.
0680b120 23564
617073a9 23565@kindex maint print reggroups
09d4efe1
EZ
23566@item maint print reggroups @r{[}@var{file}@r{]}
23567Print @value{GDBN}'s internal register group data structures. The
23568optional argument @var{file} tells to what file to write the
23569information.
617073a9 23570
09d4efe1 23571The register groups info looks like this:
617073a9
AC
23572
23573@smallexample
f7dc1244 23574(@value{GDBP}) @kbd{maint print reggroups}
b383017d
RM
23575 Group Type
23576 general user
23577 float user
23578 all user
23579 vector user
23580 system user
23581 save internal
23582 restore internal
617073a9
AC
23583@end smallexample
23584
09d4efe1
EZ
23585@kindex flushregs
23586@item flushregs
23587This command forces @value{GDBN} to flush its internal register cache.
23588
23589@kindex maint print objfiles
23590@cindex info for known object files
23591@item maint print objfiles
23592Print a dump of all known object files. For each object file, this
23593command prints its name, address in memory, and all of its psymtabs
23594and symtabs.
23595
23596@kindex maint print statistics
23597@cindex bcache statistics
23598@item maint print statistics
23599This command prints, for each object file in the program, various data
23600about that object file followed by the byte cache (@dfn{bcache})
23601statistics for the object file. The objfile data includes the number
d3e8051b 23602of minimal, partial, full, and stabs symbols, the number of types
09d4efe1
EZ
23603defined by the objfile, the number of as yet unexpanded psym tables,
23604the number of line tables and string tables, and the amount of memory
23605used by the various tables. The bcache statistics include the counts,
23606sizes, and counts of duplicates of all and unique objects, max,
23607average, and median entry size, total memory used and its overhead and
23608savings, and various measures of the hash table size and chain
23609lengths.
23610
c7ba131e
JB
23611@kindex maint print target-stack
23612@cindex target stack description
23613@item maint print target-stack
23614A @dfn{target} is an interface between the debugger and a particular
23615kind of file or process. Targets can be stacked in @dfn{strata},
23616so that more than one target can potentially respond to a request.
23617In particular, memory accesses will walk down the stack of targets
23618until they find a target that is interested in handling that particular
23619address.
23620
23621This command prints a short description of each layer that was pushed on
23622the @dfn{target stack}, starting from the top layer down to the bottom one.
23623
09d4efe1
EZ
23624@kindex maint print type
23625@cindex type chain of a data type
23626@item maint print type @var{expr}
23627Print the type chain for a type specified by @var{expr}. The argument
23628can be either a type name or a symbol. If it is a symbol, the type of
23629that symbol is described. The type chain produced by this command is
23630a recursive definition of the data type as stored in @value{GDBN}'s
23631data structures, including its flags and contained types.
23632
23633@kindex maint set dwarf2 max-cache-age
23634@kindex maint show dwarf2 max-cache-age
23635@item maint set dwarf2 max-cache-age
23636@itemx maint show dwarf2 max-cache-age
23637Control the DWARF 2 compilation unit cache.
23638
23639@cindex DWARF 2 compilation units cache
23640In object files with inter-compilation-unit references, such as those
23641produced by the GCC option @samp{-feliminate-dwarf2-dups}, the DWARF 2
23642reader needs to frequently refer to previously read compilation units.
23643This setting controls how long a compilation unit will remain in the
23644cache if it is not referenced. A higher limit means that cached
23645compilation units will be stored in memory longer, and more total
23646memory will be used. Setting it to zero disables caching, which will
23647slow down @value{GDBN} startup, but reduce memory consumption.
23648
e7ba9c65
DJ
23649@kindex maint set profile
23650@kindex maint show profile
23651@cindex profiling GDB
23652@item maint set profile
23653@itemx maint show profile
23654Control profiling of @value{GDBN}.
23655
23656Profiling will be disabled until you use the @samp{maint set profile}
23657command to enable it. When you enable profiling, the system will begin
23658collecting timing and execution count data; when you disable profiling or
23659exit @value{GDBN}, the results will be written to a log file. Remember that
23660if you use profiling, @value{GDBN} will overwrite the profiling log file
23661(often called @file{gmon.out}). If you have a record of important profiling
23662data in a @file{gmon.out} file, be sure to move it to a safe location.
23663
23664Configuring with @samp{--enable-profiling} arranges for @value{GDBN} to be
b383017d 23665compiled with the @samp{-pg} compiler option.
e7ba9c65 23666
b84876c2
PA
23667@kindex maint set linux-async
23668@kindex maint show linux-async
23669@cindex asynchronous support
23670@item maint set linux-async
23671@itemx maint show linux-async
23672Control the GNU/Linux native asynchronous support of @value{GDBN}.
23673
23674GNU/Linux native asynchronous support will be disabled until you use
23675the @samp{maint set linux-async} command to enable it.
23676
75c99385
PA
23677@kindex maint set remote-async
23678@kindex maint show remote-async
23679@cindex asynchronous support
23680@item maint set remote-async
23681@itemx maint show remote-async
23682Control the remote asynchronous support of @value{GDBN}.
23683
23684Remote asynchronous support will be disabled until you use
23685the @samp{maint set remote-async} command to enable it.
23686
09d4efe1
EZ
23687@kindex maint show-debug-regs
23688@cindex x86 hardware debug registers
23689@item maint show-debug-regs
23690Control whether to show variables that mirror the x86 hardware debug
23691registers. Use @code{ON} to enable, @code{OFF} to disable. If
3f94c067 23692enabled, the debug registers values are shown when @value{GDBN} inserts or
09d4efe1
EZ
23693removes a hardware breakpoint or watchpoint, and when the inferior
23694triggers a hardware-assisted breakpoint or watchpoint.
23695
23696@kindex maint space
23697@cindex memory used by commands
23698@item maint space
23699Control whether to display memory usage for each command. If set to a
23700nonzero value, @value{GDBN} will display how much memory each command
23701took, following the command's own output. This can also be requested
23702by invoking @value{GDBN} with the @option{--statistics} command-line
23703switch (@pxref{Mode Options}).
23704
23705@kindex maint time
23706@cindex time of command execution
23707@item maint time
23708Control whether to display the execution time for each command. If
23709set to a nonzero value, @value{GDBN} will display how much time it
23710took to execute each command, following the command's own output.
e2b7ddea
VP
23711The time is not printed for the commands that run the target, since
23712there's no mechanism currently to compute how much time was spend
23713by @value{GDBN} and how much time was spend by the program been debugged.
23714it's not possibly currently
09d4efe1
EZ
23715This can also be requested by invoking @value{GDBN} with the
23716@option{--statistics} command-line switch (@pxref{Mode Options}).
23717
23718@kindex maint translate-address
23719@item maint translate-address @r{[}@var{section}@r{]} @var{addr}
23720Find the symbol stored at the location specified by the address
23721@var{addr} and an optional section name @var{section}. If found,
23722@value{GDBN} prints the name of the closest symbol and an offset from
23723the symbol's location to the specified address. This is similar to
23724the @code{info address} command (@pxref{Symbols}), except that this
23725command also allows to find symbols in other sections.
ae038cb0 23726
8e04817f 23727@end table
c906108c 23728
9c16f35a
EZ
23729The following command is useful for non-interactive invocations of
23730@value{GDBN}, such as in the test suite.
23731
23732@table @code
23733@item set watchdog @var{nsec}
23734@kindex set watchdog
23735@cindex watchdog timer
23736@cindex timeout for commands
23737Set the maximum number of seconds @value{GDBN} will wait for the
23738target operation to finish. If this time expires, @value{GDBN}
23739reports and error and the command is aborted.
23740
23741@item show watchdog
23742Show the current setting of the target wait timeout.
23743@end table
c906108c 23744
e0ce93ac 23745@node Remote Protocol
8e04817f 23746@appendix @value{GDBN} Remote Serial Protocol
c906108c 23747
ee2d5c50
AC
23748@menu
23749* Overview::
23750* Packets::
23751* Stop Reply Packets::
23752* General Query Packets::
23753* Register Packet Format::
9d29849a 23754* Tracepoint Packets::
a6b151f1 23755* Host I/O Packets::
9a6253be 23756* Interrupts::
ee2d5c50 23757* Examples::
79a6e687 23758* File-I/O Remote Protocol Extension::
cfa9d6d9 23759* Library List Format::
79a6e687 23760* Memory Map Format::
ee2d5c50
AC
23761@end menu
23762
23763@node Overview
23764@section Overview
23765
8e04817f
AC
23766There may be occasions when you need to know something about the
23767protocol---for example, if there is only one serial port to your target
23768machine, you might want your program to do something special if it
23769recognizes a packet meant for @value{GDBN}.
c906108c 23770
d2c6833e 23771In the examples below, @samp{->} and @samp{<-} are used to indicate
bf06d120 23772transmitted and received data, respectively.
c906108c 23773
8e04817f
AC
23774@cindex protocol, @value{GDBN} remote serial
23775@cindex serial protocol, @value{GDBN} remote
23776@cindex remote serial protocol
23777All @value{GDBN} commands and responses (other than acknowledgments) are
23778sent as a @var{packet}. A @var{packet} is introduced with the character
23779@samp{$}, the actual @var{packet-data}, and the terminating character
23780@samp{#} followed by a two-digit @var{checksum}:
c906108c 23781
474c8240 23782@smallexample
8e04817f 23783@code{$}@var{packet-data}@code{#}@var{checksum}
474c8240 23784@end smallexample
8e04817f 23785@noindent
c906108c 23786
8e04817f
AC
23787@cindex checksum, for @value{GDBN} remote
23788@noindent
23789The two-digit @var{checksum} is computed as the modulo 256 sum of all
23790characters between the leading @samp{$} and the trailing @samp{#} (an
23791eight bit unsigned checksum).
c906108c 23792
8e04817f
AC
23793Implementors should note that prior to @value{GDBN} 5.0 the protocol
23794specification also included an optional two-digit @var{sequence-id}:
c906108c 23795
474c8240 23796@smallexample
8e04817f 23797@code{$}@var{sequence-id}@code{:}@var{packet-data}@code{#}@var{checksum}
474c8240 23798@end smallexample
c906108c 23799
8e04817f
AC
23800@cindex sequence-id, for @value{GDBN} remote
23801@noindent
23802That @var{sequence-id} was appended to the acknowledgment. @value{GDBN}
23803has never output @var{sequence-id}s. Stubs that handle packets added
23804since @value{GDBN} 5.0 must not accept @var{sequence-id}.
c906108c 23805
8e04817f
AC
23806@cindex acknowledgment, for @value{GDBN} remote
23807When either the host or the target machine receives a packet, the first
23808response expected is an acknowledgment: either @samp{+} (to indicate
23809the package was received correctly) or @samp{-} (to request
23810retransmission):
c906108c 23811
474c8240 23812@smallexample
d2c6833e
AC
23813-> @code{$}@var{packet-data}@code{#}@var{checksum}
23814<- @code{+}
474c8240 23815@end smallexample
8e04817f 23816@noindent
53a5351d 23817
8e04817f
AC
23818The host (@value{GDBN}) sends @var{command}s, and the target (the
23819debugging stub incorporated in your program) sends a @var{response}. In
23820the case of step and continue @var{command}s, the response is only sent
23821when the operation has completed (the target has again stopped).
c906108c 23822
8e04817f
AC
23823@var{packet-data} consists of a sequence of characters with the
23824exception of @samp{#} and @samp{$} (see @samp{X} packet for additional
23825exceptions).
c906108c 23826
ee2d5c50 23827@cindex remote protocol, field separator
0876f84a 23828Fields within the packet should be separated using @samp{,} @samp{;} or
8e04817f 23829@samp{:}. Except where otherwise noted all numbers are represented in
ee2d5c50 23830@sc{hex} with leading zeros suppressed.
c906108c 23831
8e04817f
AC
23832Implementors should note that prior to @value{GDBN} 5.0, the character
23833@samp{:} could not appear as the third character in a packet (as it
23834would potentially conflict with the @var{sequence-id}).
c906108c 23835
0876f84a
DJ
23836@cindex remote protocol, binary data
23837@anchor{Binary Data}
23838Binary data in most packets is encoded either as two hexadecimal
23839digits per byte of binary data. This allowed the traditional remote
23840protocol to work over connections which were only seven-bit clean.
23841Some packets designed more recently assume an eight-bit clean
23842connection, and use a more efficient encoding to send and receive
23843binary data.
23844
23845The binary data representation uses @code{7d} (@sc{ascii} @samp{@}})
23846as an escape character. Any escaped byte is transmitted as the escape
23847character followed by the original character XORed with @code{0x20}.
23848For example, the byte @code{0x7d} would be transmitted as the two
23849bytes @code{0x7d 0x5d}. The bytes @code{0x23} (@sc{ascii} @samp{#}),
23850@code{0x24} (@sc{ascii} @samp{$}), and @code{0x7d} (@sc{ascii}
23851@samp{@}}) must always be escaped. Responses sent by the stub
23852must also escape @code{0x2a} (@sc{ascii} @samp{*}), so that it
23853is not interpreted as the start of a run-length encoded sequence
23854(described next).
23855
1d3811f6
DJ
23856Response @var{data} can be run-length encoded to save space.
23857Run-length encoding replaces runs of identical characters with one
23858instance of the repeated character, followed by a @samp{*} and a
23859repeat count. The repeat count is itself sent encoded, to avoid
23860binary characters in @var{data}: a value of @var{n} is sent as
23861@code{@var{n}+29}. For a repeat count greater or equal to 3, this
23862produces a printable @sc{ascii} character, e.g.@: a space (@sc{ascii}
23863code 32) for a repeat count of 3. (This is because run-length
23864encoding starts to win for counts 3 or more.) Thus, for example,
23865@samp{0* } is a run-length encoding of ``0000'': the space character
23866after @samp{*} means repeat the leading @code{0} @w{@code{32 - 29 =
238673}} more times.
23868
23869The printable characters @samp{#} and @samp{$} or with a numeric value
23870greater than 126 must not be used. Runs of six repeats (@samp{#}) or
23871seven repeats (@samp{$}) can be expanded using a repeat count of only
23872five (@samp{"}). For example, @samp{00000000} can be encoded as
23873@samp{0*"00}.
c906108c 23874
8e04817f
AC
23875The error response returned for some packets includes a two character
23876error number. That number is not well defined.
c906108c 23877
f8da2bff 23878@cindex empty response, for unsupported packets
8e04817f
AC
23879For any @var{command} not supported by the stub, an empty response
23880(@samp{$#00}) should be returned. That way it is possible to extend the
23881protocol. A newer @value{GDBN} can tell if a packet is supported based
23882on that response.
c906108c 23883
b383017d
RM
23884A stub is required to support the @samp{g}, @samp{G}, @samp{m}, @samp{M},
23885@samp{c}, and @samp{s} @var{command}s. All other @var{command}s are
8e04817f 23886optional.
c906108c 23887
ee2d5c50
AC
23888@node Packets
23889@section Packets
23890
23891The following table provides a complete list of all currently defined
23892@var{command}s and their corresponding response @var{data}.
79a6e687 23893@xref{File-I/O Remote Protocol Extension}, for details about the File
9c16f35a 23894I/O extension of the remote protocol.
ee2d5c50 23895
b8ff78ce
JB
23896Each packet's description has a template showing the packet's overall
23897syntax, followed by an explanation of the packet's meaning. We
23898include spaces in some of the templates for clarity; these are not
23899part of the packet's syntax. No @value{GDBN} packet uses spaces to
23900separate its components. For example, a template like @samp{foo
23901@var{bar} @var{baz}} describes a packet beginning with the three ASCII
23902bytes @samp{foo}, followed by a @var{bar}, followed directly by a
3f94c067 23903@var{baz}. @value{GDBN} does not transmit a space character between the
b8ff78ce
JB
23904@samp{foo} and the @var{bar}, or between the @var{bar} and the
23905@var{baz}.
23906
8ffe2530
JB
23907Note that all packet forms beginning with an upper- or lower-case
23908letter, other than those described here, are reserved for future use.
23909
b8ff78ce 23910Here are the packet descriptions.
ee2d5c50 23911
b8ff78ce 23912@table @samp
ee2d5c50 23913
b8ff78ce
JB
23914@item !
23915@cindex @samp{!} packet
2d717e4f 23916@anchor{extended mode}
8e04817f
AC
23917Enable extended mode. In extended mode, the remote server is made
23918persistent. The @samp{R} packet is used to restart the program being
23919debugged.
ee2d5c50
AC
23920
23921Reply:
23922@table @samp
23923@item OK
8e04817f 23924The remote target both supports and has enabled extended mode.
ee2d5c50 23925@end table
c906108c 23926
b8ff78ce
JB
23927@item ?
23928@cindex @samp{?} packet
ee2d5c50
AC
23929Indicate the reason the target halted. The reply is the same as for
23930step and continue.
c906108c 23931
ee2d5c50
AC
23932Reply:
23933@xref{Stop Reply Packets}, for the reply specifications.
23934
b8ff78ce
JB
23935@item A @var{arglen},@var{argnum},@var{arg},@dots{}
23936@cindex @samp{A} packet
23937Initialized @code{argv[]} array passed into program. @var{arglen}
23938specifies the number of bytes in the hex encoded byte stream
23939@var{arg}. See @code{gdbserver} for more details.
ee2d5c50
AC
23940
23941Reply:
23942@table @samp
23943@item OK
b8ff78ce
JB
23944The arguments were set.
23945@item E @var{NN}
23946An error occurred.
ee2d5c50
AC
23947@end table
23948
b8ff78ce
JB
23949@item b @var{baud}
23950@cindex @samp{b} packet
23951(Don't use this packet; its behavior is not well-defined.)
ee2d5c50
AC
23952Change the serial line speed to @var{baud}.
23953
23954JTC: @emph{When does the transport layer state change? When it's
23955received, or after the ACK is transmitted. In either case, there are
23956problems if the command or the acknowledgment packet is dropped.}
23957
23958Stan: @emph{If people really wanted to add something like this, and get
23959it working for the first time, they ought to modify ser-unix.c to send
23960some kind of out-of-band message to a specially-setup stub and have the
23961switch happen "in between" packets, so that from remote protocol's point
23962of view, nothing actually happened.}
23963
b8ff78ce
JB
23964@item B @var{addr},@var{mode}
23965@cindex @samp{B} packet
8e04817f 23966Set (@var{mode} is @samp{S}) or clear (@var{mode} is @samp{C}) a
2f870471
AC
23967breakpoint at @var{addr}.
23968
b8ff78ce 23969Don't use this packet. Use the @samp{Z} and @samp{z} packets instead
2f870471 23970(@pxref{insert breakpoint or watchpoint packet}).
c906108c 23971
4f553f88 23972@item c @r{[}@var{addr}@r{]}
b8ff78ce
JB
23973@cindex @samp{c} packet
23974Continue. @var{addr} is address to resume. If @var{addr} is omitted,
23975resume at current address.
c906108c 23976
ee2d5c50
AC
23977Reply:
23978@xref{Stop Reply Packets}, for the reply specifications.
23979
4f553f88 23980@item C @var{sig}@r{[};@var{addr}@r{]}
b8ff78ce 23981@cindex @samp{C} packet
8e04817f 23982Continue with signal @var{sig} (hex signal number). If
b8ff78ce 23983@samp{;@var{addr}} is omitted, resume at same address.
c906108c 23984
ee2d5c50
AC
23985Reply:
23986@xref{Stop Reply Packets}, for the reply specifications.
c906108c 23987
b8ff78ce
JB
23988@item d
23989@cindex @samp{d} packet
ee2d5c50
AC
23990Toggle debug flag.
23991
b8ff78ce
JB
23992Don't use this packet; instead, define a general set packet
23993(@pxref{General Query Packets}).
ee2d5c50 23994
b8ff78ce
JB
23995@item D
23996@cindex @samp{D} packet
ee2d5c50 23997Detach @value{GDBN} from the remote system. Sent to the remote target
07f31aa6 23998before @value{GDBN} disconnects via the @code{detach} command.
ee2d5c50
AC
23999
24000Reply:
24001@table @samp
10fac096
NW
24002@item OK
24003for success
b8ff78ce 24004@item E @var{NN}
10fac096 24005for an error
ee2d5c50 24006@end table
c906108c 24007
b8ff78ce
JB
24008@item F @var{RC},@var{EE},@var{CF};@var{XX}
24009@cindex @samp{F} packet
24010A reply from @value{GDBN} to an @samp{F} packet sent by the target.
24011This is part of the File-I/O protocol extension. @xref{File-I/O
79a6e687 24012Remote Protocol Extension}, for the specification.
ee2d5c50 24013
b8ff78ce 24014@item g
ee2d5c50 24015@anchor{read registers packet}
b8ff78ce 24016@cindex @samp{g} packet
ee2d5c50
AC
24017Read general registers.
24018
24019Reply:
24020@table @samp
24021@item @var{XX@dots{}}
8e04817f
AC
24022Each byte of register data is described by two hex digits. The bytes
24023with the register are transmitted in target byte order. The size of
b8ff78ce 24024each register and their position within the @samp{g} packet are
4a9bb1df
UW
24025determined by the @value{GDBN} internal gdbarch functions
24026@code{DEPRECATED_REGISTER_RAW_SIZE} and @code{gdbarch_register_name}. The
b8ff78ce
JB
24027specification of several standard @samp{g} packets is specified below.
24028@item E @var{NN}
ee2d5c50
AC
24029for an error.
24030@end table
c906108c 24031
b8ff78ce
JB
24032@item G @var{XX@dots{}}
24033@cindex @samp{G} packet
24034Write general registers. @xref{read registers packet}, for a
24035description of the @var{XX@dots{}} data.
ee2d5c50
AC
24036
24037Reply:
24038@table @samp
24039@item OK
24040for success
b8ff78ce 24041@item E @var{NN}
ee2d5c50
AC
24042for an error
24043@end table
24044
b8ff78ce
JB
24045@item H @var{c} @var{t}
24046@cindex @samp{H} packet
8e04817f 24047Set thread for subsequent operations (@samp{m}, @samp{M}, @samp{g},
ee2d5c50
AC
24048@samp{G}, et.al.). @var{c} depends on the operation to be performed: it
24049should be @samp{c} for step and continue operations, @samp{g} for other
b8ff78ce
JB
24050operations. The thread designator @var{t} may be @samp{-1}, meaning all
24051the threads, a thread number, or @samp{0} which means pick any thread.
ee2d5c50
AC
24052
24053Reply:
24054@table @samp
24055@item OK
24056for success
b8ff78ce 24057@item E @var{NN}
ee2d5c50
AC
24058for an error
24059@end table
c906108c 24060
8e04817f
AC
24061@c FIXME: JTC:
24062@c 'H': How restrictive (or permissive) is the thread model. If a
24063@c thread is selected and stopped, are other threads allowed
24064@c to continue to execute? As I mentioned above, I think the
24065@c semantics of each command when a thread is selected must be
24066@c described. For example:
24067@c
24068@c 'g': If the stub supports threads and a specific thread is
24069@c selected, returns the register block from that thread;
24070@c otherwise returns current registers.
24071@c
24072@c 'G' If the stub supports threads and a specific thread is
24073@c selected, sets the registers of the register block of
24074@c that thread; otherwise sets current registers.
c906108c 24075
b8ff78ce 24076@item i @r{[}@var{addr}@r{[},@var{nnn}@r{]]}
ee2d5c50 24077@anchor{cycle step packet}
b8ff78ce
JB
24078@cindex @samp{i} packet
24079Step the remote target by a single clock cycle. If @samp{,@var{nnn}} is
8e04817f
AC
24080present, cycle step @var{nnn} cycles. If @var{addr} is present, cycle
24081step starting at that address.
c906108c 24082
b8ff78ce
JB
24083@item I
24084@cindex @samp{I} packet
24085Signal, then cycle step. @xref{step with signal packet}. @xref{cycle
24086step packet}.
ee2d5c50 24087
b8ff78ce
JB
24088@item k
24089@cindex @samp{k} packet
24090Kill request.
c906108c 24091
ac282366 24092FIXME: @emph{There is no description of how to operate when a specific
ee2d5c50
AC
24093thread context has been selected (i.e.@: does 'k' kill only that
24094thread?)}.
c906108c 24095
b8ff78ce
JB
24096@item m @var{addr},@var{length}
24097@cindex @samp{m} packet
8e04817f 24098Read @var{length} bytes of memory starting at address @var{addr}.
fb031cdf
JB
24099Note that @var{addr} may not be aligned to any particular boundary.
24100
24101The stub need not use any particular size or alignment when gathering
24102data from memory for the response; even if @var{addr} is word-aligned
24103and @var{length} is a multiple of the word size, the stub is free to
24104use byte accesses, or not. For this reason, this packet may not be
24105suitable for accessing memory-mapped I/O devices.
c43c5473
JB
24106@cindex alignment of remote memory accesses
24107@cindex size of remote memory accesses
24108@cindex memory, alignment and size of remote accesses
c906108c 24109
ee2d5c50
AC
24110Reply:
24111@table @samp
24112@item @var{XX@dots{}}
599b237a 24113Memory contents; each byte is transmitted as a two-digit hexadecimal
b8ff78ce
JB
24114number. The reply may contain fewer bytes than requested if the
24115server was able to read only part of the region of memory.
24116@item E @var{NN}
ee2d5c50
AC
24117@var{NN} is errno
24118@end table
24119
b8ff78ce
JB
24120@item M @var{addr},@var{length}:@var{XX@dots{}}
24121@cindex @samp{M} packet
8e04817f 24122Write @var{length} bytes of memory starting at address @var{addr}.
b8ff78ce 24123@var{XX@dots{}} is the data; each byte is transmitted as a two-digit
599b237a 24124hexadecimal number.
ee2d5c50
AC
24125
24126Reply:
24127@table @samp
24128@item OK
24129for success
b8ff78ce 24130@item E @var{NN}
8e04817f
AC
24131for an error (this includes the case where only part of the data was
24132written).
ee2d5c50 24133@end table
c906108c 24134
b8ff78ce
JB
24135@item p @var{n}
24136@cindex @samp{p} packet
24137Read the value of register @var{n}; @var{n} is in hex.
2e868123
AC
24138@xref{read registers packet}, for a description of how the returned
24139register value is encoded.
ee2d5c50
AC
24140
24141Reply:
24142@table @samp
2e868123
AC
24143@item @var{XX@dots{}}
24144the register's value
b8ff78ce 24145@item E @var{NN}
2e868123
AC
24146for an error
24147@item
24148Indicating an unrecognized @var{query}.
ee2d5c50
AC
24149@end table
24150
b8ff78ce 24151@item P @var{n@dots{}}=@var{r@dots{}}
ee2d5c50 24152@anchor{write register packet}
b8ff78ce
JB
24153@cindex @samp{P} packet
24154Write register @var{n@dots{}} with value @var{r@dots{}}. The register
599b237a 24155number @var{n} is in hexadecimal, and @var{r@dots{}} contains two hex
8e04817f 24156digits for each byte in the register (target byte order).
c906108c 24157
ee2d5c50
AC
24158Reply:
24159@table @samp
24160@item OK
24161for success
b8ff78ce 24162@item E @var{NN}
ee2d5c50
AC
24163for an error
24164@end table
24165
5f3bebba
JB
24166@item q @var{name} @var{params}@dots{}
24167@itemx Q @var{name} @var{params}@dots{}
b8ff78ce 24168@cindex @samp{q} packet
b8ff78ce 24169@cindex @samp{Q} packet
5f3bebba
JB
24170General query (@samp{q}) and set (@samp{Q}). These packets are
24171described fully in @ref{General Query Packets}.
c906108c 24172
b8ff78ce
JB
24173@item r
24174@cindex @samp{r} packet
8e04817f 24175Reset the entire system.
c906108c 24176
b8ff78ce 24177Don't use this packet; use the @samp{R} packet instead.
ee2d5c50 24178
b8ff78ce
JB
24179@item R @var{XX}
24180@cindex @samp{R} packet
8e04817f 24181Restart the program being debugged. @var{XX}, while needed, is ignored.
2d717e4f 24182This packet is only available in extended mode (@pxref{extended mode}).
ee2d5c50 24183
8e04817f 24184The @samp{R} packet has no reply.
ee2d5c50 24185
4f553f88 24186@item s @r{[}@var{addr}@r{]}
b8ff78ce
JB
24187@cindex @samp{s} packet
24188Single step. @var{addr} is the address at which to resume. If
24189@var{addr} is omitted, resume at same address.
c906108c 24190
ee2d5c50
AC
24191Reply:
24192@xref{Stop Reply Packets}, for the reply specifications.
24193
4f553f88 24194@item S @var{sig}@r{[};@var{addr}@r{]}
ee2d5c50 24195@anchor{step with signal packet}
b8ff78ce
JB
24196@cindex @samp{S} packet
24197Step with signal. This is analogous to the @samp{C} packet, but
24198requests a single-step, rather than a normal resumption of execution.
c906108c 24199
ee2d5c50
AC
24200Reply:
24201@xref{Stop Reply Packets}, for the reply specifications.
24202
b8ff78ce
JB
24203@item t @var{addr}:@var{PP},@var{MM}
24204@cindex @samp{t} packet
8e04817f 24205Search backwards starting at address @var{addr} for a match with pattern
ee2d5c50
AC
24206@var{PP} and mask @var{MM}. @var{PP} and @var{MM} are 4 bytes.
24207@var{addr} must be at least 3 digits.
c906108c 24208
b8ff78ce
JB
24209@item T @var{XX}
24210@cindex @samp{T} packet
ee2d5c50 24211Find out if the thread XX is alive.
c906108c 24212
ee2d5c50
AC
24213Reply:
24214@table @samp
24215@item OK
24216thread is still alive
b8ff78ce 24217@item E @var{NN}
ee2d5c50
AC
24218thread is dead
24219@end table
24220
b8ff78ce
JB
24221@item v
24222Packets starting with @samp{v} are identified by a multi-letter name,
24223up to the first @samp{;} or @samp{?} (or the end of the packet).
86d30acc 24224
2d717e4f
DJ
24225@item vAttach;@var{pid}
24226@cindex @samp{vAttach} packet
24227Attach to a new process with the specified process ID. @var{pid} is a
d0d064df
PA
24228hexadecimal integer identifying the process. The attached process is
24229stopped.
2d717e4f
DJ
24230
24231This packet is only available in extended mode (@pxref{extended mode}).
24232
24233Reply:
24234@table @samp
24235@item E @var{nn}
24236for an error
24237@item @r{Any stop packet}
24238for success (@pxref{Stop Reply Packets})
24239@end table
24240
b8ff78ce
JB
24241@item vCont@r{[};@var{action}@r{[}:@var{tid}@r{]]}@dots{}
24242@cindex @samp{vCont} packet
24243Resume the inferior, specifying different actions for each thread.
86d30acc
DJ
24244If an action is specified with no @var{tid}, then it is applied to any
24245threads that don't have a specific action specified; if no default action is
24246specified then other threads should remain stopped. Specifying multiple
24247default actions is an error; specifying no actions is also an error.
24248Thread IDs are specified in hexadecimal. Currently supported actions are:
24249
b8ff78ce 24250@table @samp
86d30acc
DJ
24251@item c
24252Continue.
b8ff78ce 24253@item C @var{sig}
86d30acc
DJ
24254Continue with signal @var{sig}. @var{sig} should be two hex digits.
24255@item s
24256Step.
b8ff78ce 24257@item S @var{sig}
86d30acc
DJ
24258Step with signal @var{sig}. @var{sig} should be two hex digits.
24259@end table
24260
24261The optional @var{addr} argument normally associated with these packets is
b8ff78ce 24262not supported in @samp{vCont}.
86d30acc
DJ
24263
24264Reply:
24265@xref{Stop Reply Packets}, for the reply specifications.
24266
b8ff78ce
JB
24267@item vCont?
24268@cindex @samp{vCont?} packet
d3e8051b 24269Request a list of actions supported by the @samp{vCont} packet.
86d30acc
DJ
24270
24271Reply:
24272@table @samp
b8ff78ce
JB
24273@item vCont@r{[};@var{action}@dots{}@r{]}
24274The @samp{vCont} packet is supported. Each @var{action} is a supported
24275command in the @samp{vCont} packet.
86d30acc 24276@item
b8ff78ce 24277The @samp{vCont} packet is not supported.
86d30acc 24278@end table
ee2d5c50 24279
a6b151f1
DJ
24280@item vFile:@var{operation}:@var{parameter}@dots{}
24281@cindex @samp{vFile} packet
24282Perform a file operation on the target system. For details,
24283see @ref{Host I/O Packets}.
24284
68437a39
DJ
24285@item vFlashErase:@var{addr},@var{length}
24286@cindex @samp{vFlashErase} packet
24287Direct the stub to erase @var{length} bytes of flash starting at
24288@var{addr}. The region may enclose any number of flash blocks, but
24289its start and end must fall on block boundaries, as indicated by the
79a6e687
BW
24290flash block size appearing in the memory map (@pxref{Memory Map
24291Format}). @value{GDBN} groups flash memory programming operations
68437a39
DJ
24292together, and sends a @samp{vFlashDone} request after each group; the
24293stub is allowed to delay erase operation until the @samp{vFlashDone}
24294packet is received.
24295
24296Reply:
24297@table @samp
24298@item OK
24299for success
24300@item E @var{NN}
24301for an error
24302@end table
24303
24304@item vFlashWrite:@var{addr}:@var{XX@dots{}}
24305@cindex @samp{vFlashWrite} packet
24306Direct the stub to write data to flash address @var{addr}. The data
24307is passed in binary form using the same encoding as for the @samp{X}
24308packet (@pxref{Binary Data}). The memory ranges specified by
24309@samp{vFlashWrite} packets preceding a @samp{vFlashDone} packet must
24310not overlap, and must appear in order of increasing addresses
24311(although @samp{vFlashErase} packets for higher addresses may already
24312have been received; the ordering is guaranteed only between
24313@samp{vFlashWrite} packets). If a packet writes to an address that was
24314neither erased by a preceding @samp{vFlashErase} packet nor by some other
24315target-specific method, the results are unpredictable.
24316
24317
24318Reply:
24319@table @samp
24320@item OK
24321for success
24322@item E.memtype
24323for vFlashWrite addressing non-flash memory
24324@item E @var{NN}
24325for an error
24326@end table
24327
24328@item vFlashDone
24329@cindex @samp{vFlashDone} packet
24330Indicate to the stub that flash programming operation is finished.
24331The stub is permitted to delay or batch the effects of a group of
24332@samp{vFlashErase} and @samp{vFlashWrite} packets until a
24333@samp{vFlashDone} packet is received. The contents of the affected
24334regions of flash memory are unpredictable until the @samp{vFlashDone}
24335request is completed.
24336
2d717e4f
DJ
24337@item vRun;@var{filename}@r{[};@var{argument}@r{]}@dots{}
24338@cindex @samp{vRun} packet
24339Run the program @var{filename}, passing it each @var{argument} on its
24340command line. The file and arguments are hex-encoded strings. If
24341@var{filename} is an empty string, the stub may use a default program
24342(e.g.@: the last program run). The program is created in the stopped
9b562ab8 24343state.
2d717e4f
DJ
24344
24345This packet is only available in extended mode (@pxref{extended mode}).
24346
24347Reply:
24348@table @samp
24349@item E @var{nn}
24350for an error
24351@item @r{Any stop packet}
24352for success (@pxref{Stop Reply Packets})
24353@end table
24354
b8ff78ce 24355@item X @var{addr},@var{length}:@var{XX@dots{}}
9a6253be 24356@anchor{X packet}
b8ff78ce
JB
24357@cindex @samp{X} packet
24358Write data to memory, where the data is transmitted in binary.
24359@var{addr} is address, @var{length} is number of bytes,
0876f84a 24360@samp{@var{XX}@dots{}} is binary data (@pxref{Binary Data}).
c906108c 24361
ee2d5c50
AC
24362Reply:
24363@table @samp
24364@item OK
24365for success
b8ff78ce 24366@item E @var{NN}
ee2d5c50
AC
24367for an error
24368@end table
24369
b8ff78ce
JB
24370@item z @var{type},@var{addr},@var{length}
24371@itemx Z @var{type},@var{addr},@var{length}
2f870471 24372@anchor{insert breakpoint or watchpoint packet}
b8ff78ce
JB
24373@cindex @samp{z} packet
24374@cindex @samp{Z} packets
24375Insert (@samp{Z}) or remove (@samp{z}) a @var{type} breakpoint or
2f870471
AC
24376watchpoint starting at address @var{address} and covering the next
24377@var{length} bytes.
ee2d5c50 24378
2f870471
AC
24379Each breakpoint and watchpoint packet @var{type} is documented
24380separately.
24381
512217c7
AC
24382@emph{Implementation notes: A remote target shall return an empty string
24383for an unrecognized breakpoint or watchpoint packet @var{type}. A
24384remote target shall support either both or neither of a given
b8ff78ce 24385@samp{Z@var{type}@dots{}} and @samp{z@var{type}@dots{}} packet pair. To
2f870471
AC
24386avoid potential problems with duplicate packets, the operations should
24387be implemented in an idempotent way.}
24388
b8ff78ce
JB
24389@item z0,@var{addr},@var{length}
24390@itemx Z0,@var{addr},@var{length}
24391@cindex @samp{z0} packet
24392@cindex @samp{Z0} packet
24393Insert (@samp{Z0}) or remove (@samp{z0}) a memory breakpoint at address
24394@var{addr} of size @var{length}.
2f870471
AC
24395
24396A memory breakpoint is implemented by replacing the instruction at
24397@var{addr} with a software breakpoint or trap instruction. The
b8ff78ce 24398@var{length} is used by targets that indicates the size of the
2f870471
AC
24399breakpoint (in bytes) that should be inserted (e.g., the @sc{arm} and
24400@sc{mips} can insert either a 2 or 4 byte breakpoint).
c906108c 24401
2f870471
AC
24402@emph{Implementation note: It is possible for a target to copy or move
24403code that contains memory breakpoints (e.g., when implementing
24404overlays). The behavior of this packet, in the presence of such a
24405target, is not defined.}
c906108c 24406
ee2d5c50
AC
24407Reply:
24408@table @samp
2f870471
AC
24409@item OK
24410success
24411@item
24412not supported
b8ff78ce 24413@item E @var{NN}
ee2d5c50 24414for an error
2f870471
AC
24415@end table
24416
b8ff78ce
JB
24417@item z1,@var{addr},@var{length}
24418@itemx Z1,@var{addr},@var{length}
24419@cindex @samp{z1} packet
24420@cindex @samp{Z1} packet
24421Insert (@samp{Z1}) or remove (@samp{z1}) a hardware breakpoint at
24422address @var{addr} of size @var{length}.
2f870471
AC
24423
24424A hardware breakpoint is implemented using a mechanism that is not
24425dependant on being able to modify the target's memory.
24426
24427@emph{Implementation note: A hardware breakpoint is not affected by code
24428movement.}
24429
24430Reply:
24431@table @samp
ee2d5c50 24432@item OK
2f870471
AC
24433success
24434@item
24435not supported
b8ff78ce 24436@item E @var{NN}
2f870471
AC
24437for an error
24438@end table
24439
b8ff78ce
JB
24440@item z2,@var{addr},@var{length}
24441@itemx Z2,@var{addr},@var{length}
24442@cindex @samp{z2} packet
24443@cindex @samp{Z2} packet
24444Insert (@samp{Z2}) or remove (@samp{z2}) a write watchpoint.
2f870471
AC
24445
24446Reply:
24447@table @samp
24448@item OK
24449success
24450@item
24451not supported
b8ff78ce 24452@item E @var{NN}
2f870471
AC
24453for an error
24454@end table
24455
b8ff78ce
JB
24456@item z3,@var{addr},@var{length}
24457@itemx Z3,@var{addr},@var{length}
24458@cindex @samp{z3} packet
24459@cindex @samp{Z3} packet
24460Insert (@samp{Z3}) or remove (@samp{z3}) a read watchpoint.
2f870471
AC
24461
24462Reply:
24463@table @samp
24464@item OK
24465success
24466@item
24467not supported
b8ff78ce 24468@item E @var{NN}
2f870471
AC
24469for an error
24470@end table
24471
b8ff78ce
JB
24472@item z4,@var{addr},@var{length}
24473@itemx Z4,@var{addr},@var{length}
24474@cindex @samp{z4} packet
24475@cindex @samp{Z4} packet
24476Insert (@samp{Z4}) or remove (@samp{z4}) an access watchpoint.
2f870471
AC
24477
24478Reply:
24479@table @samp
24480@item OK
24481success
24482@item
24483not supported
b8ff78ce 24484@item E @var{NN}
2f870471 24485for an error
ee2d5c50
AC
24486@end table
24487
24488@end table
c906108c 24489
ee2d5c50
AC
24490@node Stop Reply Packets
24491@section Stop Reply Packets
24492@cindex stop reply packets
c906108c 24493
8e04817f
AC
24494The @samp{C}, @samp{c}, @samp{S}, @samp{s} and @samp{?} packets can
24495receive any of the below as a reply. In the case of the @samp{C},
24496@samp{c}, @samp{S} and @samp{s} packets, that reply is only returned
b8ff78ce 24497when the target halts. In the below the exact meaning of @dfn{signal
89be2091
DJ
24498number} is defined by the header @file{include/gdb/signals.h} in the
24499@value{GDBN} source code.
c906108c 24500
b8ff78ce
JB
24501As in the description of request packets, we include spaces in the
24502reply templates for clarity; these are not part of the reply packet's
24503syntax. No @value{GDBN} stop reply packet uses spaces to separate its
24504components.
c906108c 24505
b8ff78ce 24506@table @samp
ee2d5c50 24507
b8ff78ce 24508@item S @var{AA}
599b237a 24509The program received signal number @var{AA} (a two-digit hexadecimal
940178d3
JB
24510number). This is equivalent to a @samp{T} response with no
24511@var{n}:@var{r} pairs.
c906108c 24512
b8ff78ce
JB
24513@item T @var{AA} @var{n1}:@var{r1};@var{n2}:@var{r2};@dots{}
24514@cindex @samp{T} packet reply
599b237a 24515The program received signal number @var{AA} (a two-digit hexadecimal
940178d3
JB
24516number). This is equivalent to an @samp{S} response, except that the
24517@samp{@var{n}:@var{r}} pairs can carry values of important registers
24518and other information directly in the stop reply packet, reducing
24519round-trip latency. Single-step and breakpoint traps are reported
24520this way. Each @samp{@var{n}:@var{r}} pair is interpreted as follows:
cfa9d6d9
DJ
24521
24522@itemize @bullet
b8ff78ce 24523@item
599b237a 24524If @var{n} is a hexadecimal number, it is a register number, and the
b8ff78ce
JB
24525corresponding @var{r} gives that register's value. @var{r} is a
24526series of bytes in target byte order, with each byte given by a
24527two-digit hex number.
cfa9d6d9 24528
b8ff78ce
JB
24529@item
24530If @var{n} is @samp{thread}, then @var{r} is the thread process ID, in
24531hex.
cfa9d6d9 24532
b8ff78ce 24533@item
cfa9d6d9
DJ
24534If @var{n} is a recognized @dfn{stop reason}, it describes a more
24535specific event that stopped the target. The currently defined stop
24536reasons are listed below. @var{aa} should be @samp{05}, the trap
24537signal. At most one stop reason should be present.
24538
b8ff78ce
JB
24539@item
24540Otherwise, @value{GDBN} should ignore this @samp{@var{n}:@var{r}} pair
24541and go on to the next; this allows us to extend the protocol in the
24542future.
cfa9d6d9
DJ
24543@end itemize
24544
24545The currently defined stop reasons are:
24546
24547@table @samp
24548@item watch
24549@itemx rwatch
24550@itemx awatch
24551The packet indicates a watchpoint hit, and @var{r} is the data address, in
24552hex.
24553
24554@cindex shared library events, remote reply
24555@item library
24556The packet indicates that the loaded libraries have changed.
24557@value{GDBN} should use @samp{qXfer:libraries:read} to fetch a new
24558list of loaded libraries. @var{r} is ignored.
24559@end table
ee2d5c50 24560
b8ff78ce 24561@item W @var{AA}
8e04817f 24562The process exited, and @var{AA} is the exit status. This is only
ee2d5c50
AC
24563applicable to certain targets.
24564
b8ff78ce 24565@item X @var{AA}
8e04817f 24566The process terminated with signal @var{AA}.
c906108c 24567
b8ff78ce
JB
24568@item O @var{XX}@dots{}
24569@samp{@var{XX}@dots{}} is hex encoding of @sc{ascii} data, to be
24570written as the program's console output. This can happen at any time
24571while the program is running and the debugger should continue to wait
24572for @samp{W}, @samp{T}, etc.
0ce1b118 24573
b8ff78ce 24574@item F @var{call-id},@var{parameter}@dots{}
0ce1b118
CV
24575@var{call-id} is the identifier which says which host system call should
24576be called. This is just the name of the function. Translation into the
24577correct system call is only applicable as it's defined in @value{GDBN}.
79a6e687 24578@xref{File-I/O Remote Protocol Extension}, for a list of implemented
0ce1b118
CV
24579system calls.
24580
b8ff78ce
JB
24581@samp{@var{parameter}@dots{}} is a list of parameters as defined for
24582this very system call.
0ce1b118 24583
b8ff78ce
JB
24584The target replies with this packet when it expects @value{GDBN} to
24585call a host system call on behalf of the target. @value{GDBN} replies
24586with an appropriate @samp{F} packet and keeps up waiting for the next
24587reply packet from the target. The latest @samp{C}, @samp{c}, @samp{S}
79a6e687
BW
24588or @samp{s} action is expected to be continued. @xref{File-I/O Remote
24589Protocol Extension}, for more details.
0ce1b118 24590
ee2d5c50
AC
24591@end table
24592
24593@node General Query Packets
24594@section General Query Packets
9c16f35a 24595@cindex remote query requests
c906108c 24596
5f3bebba
JB
24597Packets starting with @samp{q} are @dfn{general query packets};
24598packets starting with @samp{Q} are @dfn{general set packets}. General
24599query and set packets are a semi-unified form for retrieving and
24600sending information to and from the stub.
24601
24602The initial letter of a query or set packet is followed by a name
24603indicating what sort of thing the packet applies to. For example,
24604@value{GDBN} may use a @samp{qSymbol} packet to exchange symbol
24605definitions with the stub. These packet names follow some
24606conventions:
24607
24608@itemize @bullet
24609@item
24610The name must not contain commas, colons or semicolons.
24611@item
24612Most @value{GDBN} query and set packets have a leading upper case
24613letter.
24614@item
24615The names of custom vendor packets should use a company prefix, in
24616lower case, followed by a period. For example, packets designed at
24617the Acme Corporation might begin with @samp{qacme.foo} (for querying
24618foos) or @samp{Qacme.bar} (for setting bars).
24619@end itemize
24620
aa56d27a
JB
24621The name of a query or set packet should be separated from any
24622parameters by a @samp{:}; the parameters themselves should be
24623separated by @samp{,} or @samp{;}. Stubs must be careful to match the
369af7bd
DJ
24624full packet name, and check for a separator or the end of the packet,
24625in case two packet names share a common prefix. New packets should not begin
24626with @samp{qC}, @samp{qP}, or @samp{qL}@footnote{The @samp{qP} and @samp{qL}
24627packets predate these conventions, and have arguments without any terminator
24628for the packet name; we suspect they are in widespread use in places that
24629are difficult to upgrade. The @samp{qC} packet has no arguments, but some
24630existing stubs (e.g.@: RedBoot) are known to not check for the end of the
24631packet.}.
c906108c 24632
b8ff78ce
JB
24633Like the descriptions of the other packets, each description here
24634has a template showing the packet's overall syntax, followed by an
24635explanation of the packet's meaning. We include spaces in some of the
24636templates for clarity; these are not part of the packet's syntax. No
24637@value{GDBN} packet uses spaces to separate its components.
24638
5f3bebba
JB
24639Here are the currently defined query and set packets:
24640
b8ff78ce 24641@table @samp
c906108c 24642
b8ff78ce 24643@item qC
9c16f35a 24644@cindex current thread, remote request
b8ff78ce 24645@cindex @samp{qC} packet
ee2d5c50
AC
24646Return the current thread id.
24647
24648Reply:
24649@table @samp
b8ff78ce 24650@item QC @var{pid}
599b237a 24651Where @var{pid} is an unsigned hexadecimal process id.
b8ff78ce 24652@item @r{(anything else)}
ee2d5c50
AC
24653Any other reply implies the old pid.
24654@end table
24655
b8ff78ce 24656@item qCRC:@var{addr},@var{length}
ff2587ec 24657@cindex CRC of memory block, remote request
b8ff78ce
JB
24658@cindex @samp{qCRC} packet
24659Compute the CRC checksum of a block of memory.
ff2587ec
WZ
24660Reply:
24661@table @samp
b8ff78ce 24662@item E @var{NN}
ff2587ec 24663An error (such as memory fault)
b8ff78ce
JB
24664@item C @var{crc32}
24665The specified memory region's checksum is @var{crc32}.
ff2587ec
WZ
24666@end table
24667
b8ff78ce
JB
24668@item qfThreadInfo
24669@itemx qsThreadInfo
9c16f35a 24670@cindex list active threads, remote request
b8ff78ce
JB
24671@cindex @samp{qfThreadInfo} packet
24672@cindex @samp{qsThreadInfo} packet
24673Obtain a list of all active thread ids from the target (OS). Since there
8e04817f
AC
24674may be too many active threads to fit into one reply packet, this query
24675works iteratively: it may require more than one query/reply sequence to
24676obtain the entire list of threads. The first query of the sequence will
b8ff78ce
JB
24677be the @samp{qfThreadInfo} query; subsequent queries in the
24678sequence will be the @samp{qsThreadInfo} query.
ee2d5c50 24679
b8ff78ce 24680NOTE: This packet replaces the @samp{qL} query (see below).
ee2d5c50
AC
24681
24682Reply:
24683@table @samp
b8ff78ce 24684@item m @var{id}
ee2d5c50 24685A single thread id
b8ff78ce 24686@item m @var{id},@var{id}@dots{}
ee2d5c50 24687a comma-separated list of thread ids
b8ff78ce
JB
24688@item l
24689(lower case letter @samp{L}) denotes end of list.
ee2d5c50
AC
24690@end table
24691
24692In response to each query, the target will reply with a list of one or
e1aac25b
JB
24693more thread ids, in big-endian unsigned hex, separated by commas.
24694@value{GDBN} will respond to each reply with a request for more thread
b8ff78ce
JB
24695ids (using the @samp{qs} form of the query), until the target responds
24696with @samp{l} (lower-case el, for @dfn{last}).
c906108c 24697
b8ff78ce 24698@item qGetTLSAddr:@var{thread-id},@var{offset},@var{lm}
ff2587ec 24699@cindex get thread-local storage address, remote request
b8ff78ce 24700@cindex @samp{qGetTLSAddr} packet
ff2587ec
WZ
24701Fetch the address associated with thread local storage specified
24702by @var{thread-id}, @var{offset}, and @var{lm}.
24703
24704@var{thread-id} is the (big endian, hex encoded) thread id associated with the
24705thread for which to fetch the TLS address.
24706
24707@var{offset} is the (big endian, hex encoded) offset associated with the
24708thread local variable. (This offset is obtained from the debug
24709information associated with the variable.)
24710
db2e3e2e 24711@var{lm} is the (big endian, hex encoded) OS/ABI-specific encoding of the
ff2587ec
WZ
24712the load module associated with the thread local storage. For example,
24713a @sc{gnu}/Linux system will pass the link map address of the shared
24714object associated with the thread local storage under consideration.
24715Other operating environments may choose to represent the load module
24716differently, so the precise meaning of this parameter will vary.
ee2d5c50
AC
24717
24718Reply:
b8ff78ce
JB
24719@table @samp
24720@item @var{XX}@dots{}
ff2587ec
WZ
24721Hex encoded (big endian) bytes representing the address of the thread
24722local storage requested.
24723
b8ff78ce
JB
24724@item E @var{nn}
24725An error occurred. @var{nn} are hex digits.
ff2587ec 24726
b8ff78ce
JB
24727@item
24728An empty reply indicates that @samp{qGetTLSAddr} is not supported by the stub.
ee2d5c50
AC
24729@end table
24730
b8ff78ce 24731@item qL @var{startflag} @var{threadcount} @var{nextthread}
8e04817f
AC
24732Obtain thread information from RTOS. Where: @var{startflag} (one hex
24733digit) is one to indicate the first query and zero to indicate a
24734subsequent query; @var{threadcount} (two hex digits) is the maximum
24735number of threads the response packet can contain; and @var{nextthread}
24736(eight hex digits), for subsequent queries (@var{startflag} is zero), is
24737returned in the response as @var{argthread}.
ee2d5c50 24738
b8ff78ce 24739Don't use this packet; use the @samp{qfThreadInfo} query instead (see above).
ee2d5c50
AC
24740
24741Reply:
24742@table @samp
b8ff78ce 24743@item qM @var{count} @var{done} @var{argthread} @var{thread}@dots{}
8e04817f
AC
24744Where: @var{count} (two hex digits) is the number of threads being
24745returned; @var{done} (one hex digit) is zero to indicate more threads
24746and one indicates no further threads; @var{argthreadid} (eight hex
b8ff78ce 24747digits) is @var{nextthread} from the request packet; @var{thread}@dots{}
ee2d5c50 24748is a sequence of thread IDs from the target. @var{threadid} (eight hex
8e04817f 24749digits). See @code{remote.c:parse_threadlist_response()}.
ee2d5c50 24750@end table
c906108c 24751
b8ff78ce 24752@item qOffsets
9c16f35a 24753@cindex section offsets, remote request
b8ff78ce 24754@cindex @samp{qOffsets} packet
31d99776
DJ
24755Get section offsets that the target used when relocating the downloaded
24756image.
c906108c 24757
ee2d5c50
AC
24758Reply:
24759@table @samp
31d99776
DJ
24760@item Text=@var{xxx};Data=@var{yyy}@r{[};Bss=@var{zzz}@r{]}
24761Relocate the @code{Text} section by @var{xxx} from its original address.
24762Relocate the @code{Data} section by @var{yyy} from its original address.
24763If the object file format provides segment information (e.g.@: @sc{elf}
24764@samp{PT_LOAD} program headers), @value{GDBN} will relocate entire
24765segments by the supplied offsets.
24766
24767@emph{Note: while a @code{Bss} offset may be included in the response,
24768@value{GDBN} ignores this and instead applies the @code{Data} offset
24769to the @code{Bss} section.}
24770
24771@item TextSeg=@var{xxx}@r{[};DataSeg=@var{yyy}@r{]}
24772Relocate the first segment of the object file, which conventionally
24773contains program code, to a starting address of @var{xxx}. If
24774@samp{DataSeg} is specified, relocate the second segment, which
24775conventionally contains modifiable data, to a starting address of
24776@var{yyy}. @value{GDBN} will report an error if the object file
24777does not contain segment information, or does not contain at least
24778as many segments as mentioned in the reply. Extra segments are
24779kept at fixed offsets relative to the last relocated segment.
ee2d5c50
AC
24780@end table
24781
b8ff78ce 24782@item qP @var{mode} @var{threadid}
9c16f35a 24783@cindex thread information, remote request
b8ff78ce 24784@cindex @samp{qP} packet
8e04817f
AC
24785Returns information on @var{threadid}. Where: @var{mode} is a hex
24786encoded 32 bit mode; @var{threadid} is a hex encoded 64 bit thread ID.
ee2d5c50 24787
aa56d27a
JB
24788Don't use this packet; use the @samp{qThreadExtraInfo} query instead
24789(see below).
24790
b8ff78ce 24791Reply: see @code{remote.c:remote_unpack_thread_info_response()}.
c906108c 24792
89be2091
DJ
24793@item QPassSignals: @var{signal} @r{[};@var{signal}@r{]}@dots{}
24794@cindex pass signals to inferior, remote request
24795@cindex @samp{QPassSignals} packet
23181151 24796@anchor{QPassSignals}
89be2091
DJ
24797Each listed @var{signal} should be passed directly to the inferior process.
24798Signals are numbered identically to continue packets and stop replies
24799(@pxref{Stop Reply Packets}). Each @var{signal} list item should be
24800strictly greater than the previous item. These signals do not need to stop
24801the inferior, or be reported to @value{GDBN}. All other signals should be
24802reported to @value{GDBN}. Multiple @samp{QPassSignals} packets do not
24803combine; any earlier @samp{QPassSignals} list is completely replaced by the
24804new list. This packet improves performance when using @samp{handle
24805@var{signal} nostop noprint pass}.
24806
24807Reply:
24808@table @samp
24809@item OK
24810The request succeeded.
24811
24812@item E @var{nn}
24813An error occurred. @var{nn} are hex digits.
24814
24815@item
24816An empty reply indicates that @samp{QPassSignals} is not supported by
24817the stub.
24818@end table
24819
24820Use of this packet is controlled by the @code{set remote pass-signals}
79a6e687 24821command (@pxref{Remote Configuration, set remote pass-signals}).
89be2091
DJ
24822This packet is not probed by default; the remote stub must request it,
24823by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24824
b8ff78ce 24825@item qRcmd,@var{command}
ff2587ec 24826@cindex execute remote command, remote request
b8ff78ce 24827@cindex @samp{qRcmd} packet
ff2587ec 24828@var{command} (hex encoded) is passed to the local interpreter for
b8ff78ce
JB
24829execution. Invalid commands should be reported using the output
24830string. Before the final result packet, the target may also respond
24831with a number of intermediate @samp{O@var{output}} console output
24832packets. @emph{Implementors should note that providing access to a
24833stubs's interpreter may have security implications}.
fa93a9d8 24834
ff2587ec
WZ
24835Reply:
24836@table @samp
24837@item OK
24838A command response with no output.
24839@item @var{OUTPUT}
24840A command response with the hex encoded output string @var{OUTPUT}.
b8ff78ce 24841@item E @var{NN}
ff2587ec 24842Indicate a badly formed request.
b8ff78ce
JB
24843@item
24844An empty reply indicates that @samp{qRcmd} is not recognized.
ff2587ec 24845@end table
fa93a9d8 24846
aa56d27a
JB
24847(Note that the @code{qRcmd} packet's name is separated from the
24848command by a @samp{,}, not a @samp{:}, contrary to the naming
24849conventions above. Please don't use this packet as a model for new
24850packets.)
24851
08388c79
DE
24852@item qSearch:memory:@var{address};@var{length};@var{search-pattern}
24853@cindex searching memory, in remote debugging
24854@cindex @samp{qSearch:memory} packet
24855@anchor{qSearch memory}
24856Search @var{length} bytes at @var{address} for @var{search-pattern}.
24857@var{address} and @var{length} are encoded in hex.
24858@var{search-pattern} is a sequence of bytes, hex encoded.
24859
24860Reply:
24861@table @samp
24862@item 0
24863The pattern was not found.
24864@item 1,address
24865The pattern was found at @var{address}.
24866@item E @var{NN}
24867A badly formed request or an error was encountered while searching memory.
24868@item
24869An empty reply indicates that @samp{qSearch:memory} is not recognized.
24870@end table
24871
be2a5f71
DJ
24872@item qSupported @r{[}:@var{gdbfeature} @r{[};@var{gdbfeature}@r{]}@dots{} @r{]}
24873@cindex supported packets, remote query
24874@cindex features of the remote protocol
24875@cindex @samp{qSupported} packet
0876f84a 24876@anchor{qSupported}
be2a5f71
DJ
24877Tell the remote stub about features supported by @value{GDBN}, and
24878query the stub for features it supports. This packet allows
24879@value{GDBN} and the remote stub to take advantage of each others'
24880features. @samp{qSupported} also consolidates multiple feature probes
24881at startup, to improve @value{GDBN} performance---a single larger
24882packet performs better than multiple smaller probe packets on
24883high-latency links. Some features may enable behavior which must not
24884be on by default, e.g.@: because it would confuse older clients or
24885stubs. Other features may describe packets which could be
24886automatically probed for, but are not. These features must be
24887reported before @value{GDBN} will use them. This ``default
24888unsupported'' behavior is not appropriate for all packets, but it
24889helps to keep the initial connection time under control with new
24890versions of @value{GDBN} which support increasing numbers of packets.
24891
24892Reply:
24893@table @samp
24894@item @var{stubfeature} @r{[};@var{stubfeature}@r{]}@dots{}
24895The stub supports or does not support each returned @var{stubfeature},
24896depending on the form of each @var{stubfeature} (see below for the
24897possible forms).
24898@item
24899An empty reply indicates that @samp{qSupported} is not recognized,
24900or that no features needed to be reported to @value{GDBN}.
24901@end table
24902
24903The allowed forms for each feature (either a @var{gdbfeature} in the
24904@samp{qSupported} packet, or a @var{stubfeature} in the response)
24905are:
24906
24907@table @samp
24908@item @var{name}=@var{value}
24909The remote protocol feature @var{name} is supported, and associated
24910with the specified @var{value}. The format of @var{value} depends
24911on the feature, but it must not include a semicolon.
24912@item @var{name}+
24913The remote protocol feature @var{name} is supported, and does not
24914need an associated value.
24915@item @var{name}-
24916The remote protocol feature @var{name} is not supported.
24917@item @var{name}?
24918The remote protocol feature @var{name} may be supported, and
24919@value{GDBN} should auto-detect support in some other way when it is
24920needed. This form will not be used for @var{gdbfeature} notifications,
24921but may be used for @var{stubfeature} responses.
24922@end table
24923
24924Whenever the stub receives a @samp{qSupported} request, the
24925supplied set of @value{GDBN} features should override any previous
24926request. This allows @value{GDBN} to put the stub in a known
24927state, even if the stub had previously been communicating with
24928a different version of @value{GDBN}.
24929
24930No values of @var{gdbfeature} (for the packet sent by @value{GDBN})
24931are defined yet. Stubs should ignore any unknown values for
24932@var{gdbfeature}. Any @value{GDBN} which sends a @samp{qSupported}
24933packet supports receiving packets of unlimited length (earlier
24934versions of @value{GDBN} may reject overly long responses). Values
24935for @var{gdbfeature} may be defined in the future to let the stub take
24936advantage of new features in @value{GDBN}, e.g.@: incompatible
24937improvements in the remote protocol---support for unlimited length
24938responses would be a @var{gdbfeature} example, if it were not implied by
24939the @samp{qSupported} query. The stub's reply should be independent
24940of the @var{gdbfeature} entries sent by @value{GDBN}; first @value{GDBN}
24941describes all the features it supports, and then the stub replies with
24942all the features it supports.
24943
24944Similarly, @value{GDBN} will silently ignore unrecognized stub feature
24945responses, as long as each response uses one of the standard forms.
24946
24947Some features are flags. A stub which supports a flag feature
24948should respond with a @samp{+} form response. Other features
24949require values, and the stub should respond with an @samp{=}
24950form response.
24951
24952Each feature has a default value, which @value{GDBN} will use if
24953@samp{qSupported} is not available or if the feature is not mentioned
24954in the @samp{qSupported} response. The default values are fixed; a
24955stub is free to omit any feature responses that match the defaults.
24956
24957Not all features can be probed, but for those which can, the probing
24958mechanism is useful: in some cases, a stub's internal
24959architecture may not allow the protocol layer to know some information
24960about the underlying target in advance. This is especially common in
24961stubs which may be configured for multiple targets.
24962
24963These are the currently defined stub features and their properties:
24964
cfa9d6d9 24965@multitable @columnfractions 0.35 0.2 0.12 0.2
be2a5f71
DJ
24966@c NOTE: The first row should be @headitem, but we do not yet require
24967@c a new enough version of Texinfo (4.7) to use @headitem.
0876f84a 24968@item Feature Name
be2a5f71
DJ
24969@tab Value Required
24970@tab Default
24971@tab Probe Allowed
24972
24973@item @samp{PacketSize}
24974@tab Yes
24975@tab @samp{-}
24976@tab No
24977
0876f84a
DJ
24978@item @samp{qXfer:auxv:read}
24979@tab No
24980@tab @samp{-}
24981@tab Yes
24982
23181151
DJ
24983@item @samp{qXfer:features:read}
24984@tab No
24985@tab @samp{-}
24986@tab Yes
24987
cfa9d6d9
DJ
24988@item @samp{qXfer:libraries:read}
24989@tab No
24990@tab @samp{-}
24991@tab Yes
24992
68437a39
DJ
24993@item @samp{qXfer:memory-map:read}
24994@tab No
24995@tab @samp{-}
24996@tab Yes
24997
0e7f50da
UW
24998@item @samp{qXfer:spu:read}
24999@tab No
25000@tab @samp{-}
25001@tab Yes
25002
25003@item @samp{qXfer:spu:write}
25004@tab No
25005@tab @samp{-}
25006@tab Yes
25007
89be2091
DJ
25008@item @samp{QPassSignals}
25009@tab No
25010@tab @samp{-}
25011@tab Yes
25012
be2a5f71
DJ
25013@end multitable
25014
25015These are the currently defined stub features, in more detail:
25016
25017@table @samp
25018@cindex packet size, remote protocol
25019@item PacketSize=@var{bytes}
25020The remote stub can accept packets up to at least @var{bytes} in
25021length. @value{GDBN} will send packets up to this size for bulk
25022transfers, and will never send larger packets. This is a limit on the
25023data characters in the packet, including the frame and checksum.
25024There is no trailing NUL byte in a remote protocol packet; if the stub
25025stores packets in a NUL-terminated format, it should allow an extra
25026byte in its buffer for the NUL. If this stub feature is not supported,
25027@value{GDBN} guesses based on the size of the @samp{g} packet response.
25028
0876f84a
DJ
25029@item qXfer:auxv:read
25030The remote stub understands the @samp{qXfer:auxv:read} packet
25031(@pxref{qXfer auxiliary vector read}).
25032
23181151
DJ
25033@item qXfer:features:read
25034The remote stub understands the @samp{qXfer:features:read} packet
25035(@pxref{qXfer target description read}).
25036
cfa9d6d9
DJ
25037@item qXfer:libraries:read
25038The remote stub understands the @samp{qXfer:libraries:read} packet
25039(@pxref{qXfer library list read}).
25040
23181151
DJ
25041@item qXfer:memory-map:read
25042The remote stub understands the @samp{qXfer:memory-map:read} packet
25043(@pxref{qXfer memory map read}).
25044
0e7f50da
UW
25045@item qXfer:spu:read
25046The remote stub understands the @samp{qXfer:spu:read} packet
25047(@pxref{qXfer spu read}).
25048
25049@item qXfer:spu:write
25050The remote stub understands the @samp{qXfer:spu:write} packet
25051(@pxref{qXfer spu write}).
25052
23181151
DJ
25053@item QPassSignals
25054The remote stub understands the @samp{QPassSignals} packet
25055(@pxref{QPassSignals}).
25056
be2a5f71
DJ
25057@end table
25058
b8ff78ce 25059@item qSymbol::
ff2587ec 25060@cindex symbol lookup, remote request
b8ff78ce 25061@cindex @samp{qSymbol} packet
ff2587ec
WZ
25062Notify the target that @value{GDBN} is prepared to serve symbol lookup
25063requests. Accept requests from the target for the values of symbols.
fa93a9d8
JB
25064
25065Reply:
ff2587ec 25066@table @samp
b8ff78ce 25067@item OK
ff2587ec 25068The target does not need to look up any (more) symbols.
b8ff78ce 25069@item qSymbol:@var{sym_name}
ff2587ec
WZ
25070The target requests the value of symbol @var{sym_name} (hex encoded).
25071@value{GDBN} may provide the value by using the
b8ff78ce
JB
25072@samp{qSymbol:@var{sym_value}:@var{sym_name}} message, described
25073below.
ff2587ec 25074@end table
83761cbd 25075
b8ff78ce 25076@item qSymbol:@var{sym_value}:@var{sym_name}
ff2587ec
WZ
25077Set the value of @var{sym_name} to @var{sym_value}.
25078
25079@var{sym_name} (hex encoded) is the name of a symbol whose value the
25080target has previously requested.
25081
25082@var{sym_value} (hex) is the value for symbol @var{sym_name}. If
25083@value{GDBN} cannot supply a value for @var{sym_name}, then this field
25084will be empty.
25085
25086Reply:
25087@table @samp
b8ff78ce 25088@item OK
ff2587ec 25089The target does not need to look up any (more) symbols.
b8ff78ce 25090@item qSymbol:@var{sym_name}
ff2587ec
WZ
25091The target requests the value of a new symbol @var{sym_name} (hex
25092encoded). @value{GDBN} will continue to supply the values of symbols
25093(if available), until the target ceases to request them.
fa93a9d8 25094@end table
0abb7bc7 25095
9d29849a
JB
25096@item QTDP
25097@itemx QTFrame
25098@xref{Tracepoint Packets}.
25099
b8ff78ce 25100@item qThreadExtraInfo,@var{id}
ff2587ec 25101@cindex thread attributes info, remote request
b8ff78ce
JB
25102@cindex @samp{qThreadExtraInfo} packet
25103Obtain a printable string description of a thread's attributes from
25104the target OS. @var{id} is a thread-id in big-endian hex. This
25105string may contain anything that the target OS thinks is interesting
25106for @value{GDBN} to tell the user about the thread. The string is
25107displayed in @value{GDBN}'s @code{info threads} display. Some
25108examples of possible thread extra info strings are @samp{Runnable}, or
25109@samp{Blocked on Mutex}.
ff2587ec
WZ
25110
25111Reply:
25112@table @samp
b8ff78ce
JB
25113@item @var{XX}@dots{}
25114Where @samp{@var{XX}@dots{}} is a hex encoding of @sc{ascii} data,
25115comprising the printable string containing the extra information about
25116the thread's attributes.
ff2587ec 25117@end table
814e32d7 25118
aa56d27a
JB
25119(Note that the @code{qThreadExtraInfo} packet's name is separated from
25120the command by a @samp{,}, not a @samp{:}, contrary to the naming
25121conventions above. Please don't use this packet as a model for new
25122packets.)
25123
9d29849a
JB
25124@item QTStart
25125@itemx QTStop
25126@itemx QTinit
25127@itemx QTro
25128@itemx qTStatus
25129@xref{Tracepoint Packets}.
25130
0876f84a
DJ
25131@item qXfer:@var{object}:read:@var{annex}:@var{offset},@var{length}
25132@cindex read special object, remote request
25133@cindex @samp{qXfer} packet
68437a39 25134@anchor{qXfer read}
0876f84a
DJ
25135Read uninterpreted bytes from the target's special data area
25136identified by the keyword @var{object}. Request @var{length} bytes
25137starting at @var{offset} bytes into the data. The content and
0e7f50da 25138encoding of @var{annex} is specific to @var{object}; it can supply
0876f84a
DJ
25139additional details about what data to access.
25140
25141Here are the specific requests of this form defined so far. All
25142@samp{qXfer:@var{object}:read:@dots{}} requests use the same reply
25143formats, listed below.
25144
25145@table @samp
25146@item qXfer:auxv:read::@var{offset},@var{length}
25147@anchor{qXfer auxiliary vector read}
25148Access the target's @dfn{auxiliary vector}. @xref{OS Information,
427c3a89 25149auxiliary vector}. Note @var{annex} must be empty.
0876f84a
DJ
25150
25151This packet is not probed by default; the remote stub must request it,
89be2091 25152by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
0876f84a 25153
23181151
DJ
25154@item qXfer:features:read:@var{annex}:@var{offset},@var{length}
25155@anchor{qXfer target description read}
25156Access the @dfn{target description}. @xref{Target Descriptions}. The
25157annex specifies which XML document to access. The main description is
25158always loaded from the @samp{target.xml} annex.
25159
25160This packet is not probed by default; the remote stub must request it,
25161by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
25162
cfa9d6d9
DJ
25163@item qXfer:libraries:read:@var{annex}:@var{offset},@var{length}
25164@anchor{qXfer library list read}
25165Access the target's list of loaded libraries. @xref{Library List Format}.
25166The annex part of the generic @samp{qXfer} packet must be empty
25167(@pxref{qXfer read}).
25168
25169Targets which maintain a list of libraries in the program's memory do
25170not need to implement this packet; it is designed for platforms where
25171the operating system manages the list of loaded libraries.
25172
25173This packet is not probed by default; the remote stub must request it,
25174by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
25175
68437a39
DJ
25176@item qXfer:memory-map:read::@var{offset},@var{length}
25177@anchor{qXfer memory map read}
79a6e687 25178Access the target's @dfn{memory-map}. @xref{Memory Map Format}. The
68437a39
DJ
25179annex part of the generic @samp{qXfer} packet must be empty
25180(@pxref{qXfer read}).
25181
0e7f50da
UW
25182This packet is not probed by default; the remote stub must request it,
25183by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
25184
25185@item qXfer:spu:read:@var{annex}:@var{offset},@var{length}
25186@anchor{qXfer spu read}
25187Read contents of an @code{spufs} file on the target system. The
25188annex specifies which file to read; it must be of the form
25189@file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
25190in the target process, and @var{name} identifes the @code{spufs} file
25191in that context to be accessed.
25192
68437a39
DJ
25193This packet is not probed by default; the remote stub must request it,
25194by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
25195@end table
25196
0876f84a
DJ
25197Reply:
25198@table @samp
25199@item m @var{data}
25200Data @var{data} (@pxref{Binary Data}) has been read from the
25201target. There may be more data at a higher address (although
25202it is permitted to return @samp{m} even for the last valid
25203block of data, as long as at least one byte of data was read).
25204@var{data} may have fewer bytes than the @var{length} in the
25205request.
25206
25207@item l @var{data}
25208Data @var{data} (@pxref{Binary Data}) has been read from the target.
25209There is no more data to be read. @var{data} may have fewer bytes
25210than the @var{length} in the request.
25211
25212@item l
25213The @var{offset} in the request is at the end of the data.
25214There is no more data to be read.
25215
25216@item E00
25217The request was malformed, or @var{annex} was invalid.
25218
25219@item E @var{nn}
25220The offset was invalid, or there was an error encountered reading the data.
25221@var{nn} is a hex-encoded @code{errno} value.
25222
25223@item
25224An empty reply indicates the @var{object} string was not recognized by
25225the stub, or that the object does not support reading.
25226@end table
25227
25228@item qXfer:@var{object}:write:@var{annex}:@var{offset}:@var{data}@dots{}
25229@cindex write data into object, remote request
25230Write uninterpreted bytes into the target's special data area
25231identified by the keyword @var{object}, starting at @var{offset} bytes
0e7f50da 25232into the data. @var{data}@dots{} is the binary-encoded data
0876f84a 25233(@pxref{Binary Data}) to be written. The content and encoding of @var{annex}
0e7f50da 25234is specific to @var{object}; it can supply additional details about what data
0876f84a
DJ
25235to access.
25236
0e7f50da
UW
25237Here are the specific requests of this form defined so far. All
25238@samp{qXfer:@var{object}:write:@dots{}} requests use the same reply
25239formats, listed below.
25240
25241@table @samp
25242@item qXfer:@var{spu}:write:@var{annex}:@var{offset}:@var{data}@dots{}
25243@anchor{qXfer spu write}
25244Write @var{data} to an @code{spufs} file on the target system. The
25245annex specifies which file to write; it must be of the form
25246@file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
25247in the target process, and @var{name} identifes the @code{spufs} file
25248in that context to be accessed.
25249
25250This packet is not probed by default; the remote stub must request it,
25251by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
25252@end table
0876f84a
DJ
25253
25254Reply:
25255@table @samp
25256@item @var{nn}
25257@var{nn} (hex encoded) is the number of bytes written.
25258This may be fewer bytes than supplied in the request.
25259
25260@item E00
25261The request was malformed, or @var{annex} was invalid.
25262
25263@item E @var{nn}
25264The offset was invalid, or there was an error encountered writing the data.
25265@var{nn} is a hex-encoded @code{errno} value.
25266
25267@item
25268An empty reply indicates the @var{object} string was not
25269recognized by the stub, or that the object does not support writing.
25270@end table
25271
25272@item qXfer:@var{object}:@var{operation}:@dots{}
25273Requests of this form may be added in the future. When a stub does
25274not recognize the @var{object} keyword, or its support for
25275@var{object} does not recognize the @var{operation} keyword, the stub
25276must respond with an empty packet.
25277
ee2d5c50
AC
25278@end table
25279
25280@node Register Packet Format
25281@section Register Packet Format
eb12ee30 25282
b8ff78ce 25283The following @code{g}/@code{G} packets have previously been defined.
ee2d5c50
AC
25284In the below, some thirty-two bit registers are transferred as
25285sixty-four bits. Those registers should be zero/sign extended (which?)
599b237a
BW
25286to fill the space allocated. Register bytes are transferred in target
25287byte order. The two nibbles within a register byte are transferred
ee2d5c50 25288most-significant - least-significant.
eb12ee30 25289
ee2d5c50 25290@table @r
eb12ee30 25291
8e04817f 25292@item MIPS32
ee2d5c50 25293
599b237a 25294All registers are transferred as thirty-two bit quantities in the order:
8e04817f
AC
2529532 general-purpose; sr; lo; hi; bad; cause; pc; 32 floating-point
25296registers; fsr; fir; fp.
eb12ee30 25297
8e04817f 25298@item MIPS64
ee2d5c50 25299
599b237a 25300All registers are transferred as sixty-four bit quantities (including
8e04817f
AC
25301thirty-two bit registers such as @code{sr}). The ordering is the same
25302as @code{MIPS32}.
eb12ee30 25303
ee2d5c50
AC
25304@end table
25305
9d29849a
JB
25306@node Tracepoint Packets
25307@section Tracepoint Packets
25308@cindex tracepoint packets
25309@cindex packets, tracepoint
25310
25311Here we describe the packets @value{GDBN} uses to implement
25312tracepoints (@pxref{Tracepoints}).
25313
25314@table @samp
25315
25316@item QTDP:@var{n}:@var{addr}:@var{ena}:@var{step}:@var{pass}@r{[}-@r{]}
25317Create a new tracepoint, number @var{n}, at @var{addr}. If @var{ena}
25318is @samp{E}, then the tracepoint is enabled; if it is @samp{D}, then
25319the tracepoint is disabled. @var{step} is the tracepoint's step
25320count, and @var{pass} is its pass count. If the trailing @samp{-} is
25321present, further @samp{QTDP} packets will follow to specify this
25322tracepoint's actions.
25323
25324Replies:
25325@table @samp
25326@item OK
25327The packet was understood and carried out.
25328@item
25329The packet was not recognized.
25330@end table
25331
25332@item QTDP:-@var{n}:@var{addr}:@r{[}S@r{]}@var{action}@dots{}@r{[}-@r{]}
25333Define actions to be taken when a tracepoint is hit. @var{n} and
25334@var{addr} must be the same as in the initial @samp{QTDP} packet for
25335this tracepoint. This packet may only be sent immediately after
25336another @samp{QTDP} packet that ended with a @samp{-}. If the
25337trailing @samp{-} is present, further @samp{QTDP} packets will follow,
25338specifying more actions for this tracepoint.
25339
25340In the series of action packets for a given tracepoint, at most one
25341can have an @samp{S} before its first @var{action}. If such a packet
25342is sent, it and the following packets define ``while-stepping''
25343actions. Any prior packets define ordinary actions --- that is, those
25344taken when the tracepoint is first hit. If no action packet has an
25345@samp{S}, then all the packets in the series specify ordinary
25346tracepoint actions.
25347
25348The @samp{@var{action}@dots{}} portion of the packet is a series of
25349actions, concatenated without separators. Each action has one of the
25350following forms:
25351
25352@table @samp
25353
25354@item R @var{mask}
25355Collect the registers whose bits are set in @var{mask}. @var{mask} is
599b237a 25356a hexadecimal number whose @var{i}'th bit is set if register number
9d29849a
JB
25357@var{i} should be collected. (The least significant bit is numbered
25358zero.) Note that @var{mask} may be any number of digits long; it may
25359not fit in a 32-bit word.
25360
25361@item M @var{basereg},@var{offset},@var{len}
25362Collect @var{len} bytes of memory starting at the address in register
25363number @var{basereg}, plus @var{offset}. If @var{basereg} is
25364@samp{-1}, then the range has a fixed address: @var{offset} is the
25365address of the lowest byte to collect. The @var{basereg},
599b237a 25366@var{offset}, and @var{len} parameters are all unsigned hexadecimal
9d29849a
JB
25367values (the @samp{-1} value for @var{basereg} is a special case).
25368
25369@item X @var{len},@var{expr}
25370Evaluate @var{expr}, whose length is @var{len}, and collect memory as
25371it directs. @var{expr} is an agent expression, as described in
25372@ref{Agent Expressions}. Each byte of the expression is encoded as a
25373two-digit hex number in the packet; @var{len} is the number of bytes
25374in the expression (and thus one-half the number of hex digits in the
25375packet).
25376
25377@end table
25378
25379Any number of actions may be packed together in a single @samp{QTDP}
25380packet, as long as the packet does not exceed the maximum packet
c1947b85
JB
25381length (400 bytes, for many stubs). There may be only one @samp{R}
25382action per tracepoint, and it must precede any @samp{M} or @samp{X}
25383actions. Any registers referred to by @samp{M} and @samp{X} actions
25384must be collected by a preceding @samp{R} action. (The
25385``while-stepping'' actions are treated as if they were attached to a
25386separate tracepoint, as far as these restrictions are concerned.)
9d29849a
JB
25387
25388Replies:
25389@table @samp
25390@item OK
25391The packet was understood and carried out.
25392@item
25393The packet was not recognized.
25394@end table
25395
25396@item QTFrame:@var{n}
25397Select the @var{n}'th tracepoint frame from the buffer, and use the
25398register and memory contents recorded there to answer subsequent
25399request packets from @value{GDBN}.
25400
25401A successful reply from the stub indicates that the stub has found the
25402requested frame. The response is a series of parts, concatenated
25403without separators, describing the frame we selected. Each part has
25404one of the following forms:
25405
25406@table @samp
25407@item F @var{f}
25408The selected frame is number @var{n} in the trace frame buffer;
599b237a 25409@var{f} is a hexadecimal number. If @var{f} is @samp{-1}, then there
9d29849a
JB
25410was no frame matching the criteria in the request packet.
25411
25412@item T @var{t}
25413The selected trace frame records a hit of tracepoint number @var{t};
599b237a 25414@var{t} is a hexadecimal number.
9d29849a
JB
25415
25416@end table
25417
25418@item QTFrame:pc:@var{addr}
25419Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
25420currently selected frame whose PC is @var{addr};
599b237a 25421@var{addr} is a hexadecimal number.
9d29849a
JB
25422
25423@item QTFrame:tdp:@var{t}
25424Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
25425currently selected frame that is a hit of tracepoint @var{t}; @var{t}
599b237a 25426is a hexadecimal number.
9d29849a
JB
25427
25428@item QTFrame:range:@var{start}:@var{end}
25429Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
25430currently selected frame whose PC is between @var{start} (inclusive)
599b237a 25431and @var{end} (exclusive); @var{start} and @var{end} are hexadecimal
9d29849a
JB
25432numbers.
25433
25434@item QTFrame:outside:@var{start}:@var{end}
25435Like @samp{QTFrame:range:@var{start}:@var{end}}, but select the first
25436frame @emph{outside} the given range of addresses.
25437
25438@item QTStart
25439Begin the tracepoint experiment. Begin collecting data from tracepoint
25440hits in the trace frame buffer.
25441
25442@item QTStop
25443End the tracepoint experiment. Stop collecting trace frames.
25444
25445@item QTinit
25446Clear the table of tracepoints, and empty the trace frame buffer.
25447
25448@item QTro:@var{start1},@var{end1}:@var{start2},@var{end2}:@dots{}
25449Establish the given ranges of memory as ``transparent''. The stub
25450will answer requests for these ranges from memory's current contents,
25451if they were not collected as part of the tracepoint hit.
25452
25453@value{GDBN} uses this to mark read-only regions of memory, like those
25454containing program code. Since these areas never change, they should
25455still have the same contents they did when the tracepoint was hit, so
25456there's no reason for the stub to refuse to provide their contents.
25457
25458@item qTStatus
25459Ask the stub if there is a trace experiment running right now.
25460
25461Replies:
25462@table @samp
25463@item T0
25464There is no trace experiment running.
25465@item T1
25466There is a trace experiment running.
25467@end table
25468
25469@end table
25470
25471
a6b151f1
DJ
25472@node Host I/O Packets
25473@section Host I/O Packets
25474@cindex Host I/O, remote protocol
25475@cindex file transfer, remote protocol
25476
25477The @dfn{Host I/O} packets allow @value{GDBN} to perform I/O
25478operations on the far side of a remote link. For example, Host I/O is
25479used to upload and download files to a remote target with its own
25480filesystem. Host I/O uses the same constant values and data structure
25481layout as the target-initiated File-I/O protocol. However, the
25482Host I/O packets are structured differently. The target-initiated
25483protocol relies on target memory to store parameters and buffers.
25484Host I/O requests are initiated by @value{GDBN}, and the
25485target's memory is not involved. @xref{File-I/O Remote Protocol
25486Extension}, for more details on the target-initiated protocol.
25487
25488The Host I/O request packets all encode a single operation along with
25489its arguments. They have this format:
25490
25491@table @samp
25492
25493@item vFile:@var{operation}: @var{parameter}@dots{}
25494@var{operation} is the name of the particular request; the target
25495should compare the entire packet name up to the second colon when checking
25496for a supported operation. The format of @var{parameter} depends on
25497the operation. Numbers are always passed in hexadecimal. Negative
25498numbers have an explicit minus sign (i.e.@: two's complement is not
25499used). Strings (e.g.@: filenames) are encoded as a series of
25500hexadecimal bytes. The last argument to a system call may be a
25501buffer of escaped binary data (@pxref{Binary Data}).
25502
25503@end table
25504
25505The valid responses to Host I/O packets are:
25506
25507@table @samp
25508
25509@item F @var{result} [, @var{errno}] [; @var{attachment}]
25510@var{result} is the integer value returned by this operation, usually
25511non-negative for success and -1 for errors. If an error has occured,
25512@var{errno} will be included in the result. @var{errno} will have a
25513value defined by the File-I/O protocol (@pxref{Errno Values}). For
25514operations which return data, @var{attachment} supplies the data as a
25515binary buffer. Binary buffers in response packets are escaped in the
25516normal way (@pxref{Binary Data}). See the individual packet
25517documentation for the interpretation of @var{result} and
25518@var{attachment}.
25519
25520@item
25521An empty response indicates that this operation is not recognized.
25522
25523@end table
25524
25525These are the supported Host I/O operations:
25526
25527@table @samp
25528@item vFile:open: @var{pathname}, @var{flags}, @var{mode}
25529Open a file at @var{pathname} and return a file descriptor for it, or
25530return -1 if an error occurs. @var{pathname} is a string,
25531@var{flags} is an integer indicating a mask of open flags
25532(@pxref{Open Flags}), and @var{mode} is an integer indicating a mask
25533of mode bits to use if the file is created (@pxref{mode_t Values}).
c1c25a1a 25534@xref{open}, for details of the open flags and mode values.
a6b151f1
DJ
25535
25536@item vFile:close: @var{fd}
25537Close the open file corresponding to @var{fd} and return 0, or
25538-1 if an error occurs.
25539
25540@item vFile:pread: @var{fd}, @var{count}, @var{offset}
25541Read data from the open file corresponding to @var{fd}. Up to
25542@var{count} bytes will be read from the file, starting at @var{offset}
25543relative to the start of the file. The target may read fewer bytes;
25544common reasons include packet size limits and an end-of-file
25545condition. The number of bytes read is returned. Zero should only be
25546returned for a successful read at the end of the file, or if
25547@var{count} was zero.
25548
25549The data read should be returned as a binary attachment on success.
25550If zero bytes were read, the response should include an empty binary
25551attachment (i.e.@: a trailing semicolon). The return value is the
25552number of target bytes read; the binary attachment may be longer if
25553some characters were escaped.
25554
25555@item vFile:pwrite: @var{fd}, @var{offset}, @var{data}
25556Write @var{data} (a binary buffer) to the open file corresponding
25557to @var{fd}. Start the write at @var{offset} from the start of the
25558file. Unlike many @code{write} system calls, there is no
25559separate @var{count} argument; the length of @var{data} in the
25560packet is used. @samp{vFile:write} returns the number of bytes written,
25561which may be shorter than the length of @var{data}, or -1 if an
25562error occurred.
25563
25564@item vFile:unlink: @var{pathname}
25565Delete the file at @var{pathname} on the target. Return 0,
25566or -1 if an error occurs. @var{pathname} is a string.
25567
25568@end table
25569
9a6253be
KB
25570@node Interrupts
25571@section Interrupts
25572@cindex interrupts (remote protocol)
25573
25574When a program on the remote target is running, @value{GDBN} may
25575attempt to interrupt it by sending a @samp{Ctrl-C} or a @code{BREAK},
25576control of which is specified via @value{GDBN}'s @samp{remotebreak}
25577setting (@pxref{set remotebreak}).
25578
25579The precise meaning of @code{BREAK} is defined by the transport
25580mechanism and may, in fact, be undefined. @value{GDBN} does
25581not currently define a @code{BREAK} mechanism for any of the network
25582interfaces.
25583
25584@samp{Ctrl-C}, on the other hand, is defined and implemented for all
25585transport mechanisms. It is represented by sending the single byte
25586@code{0x03} without any of the usual packet overhead described in
25587the Overview section (@pxref{Overview}). When a @code{0x03} byte is
25588transmitted as part of a packet, it is considered to be packet data
25589and does @emph{not} represent an interrupt. E.g., an @samp{X} packet
0876f84a 25590(@pxref{X packet}), used for binary downloads, may include an unescaped
9a6253be
KB
25591@code{0x03} as part of its packet.
25592
25593Stubs are not required to recognize these interrupt mechanisms and the
25594precise meaning associated with receipt of the interrupt is
25595implementation defined. If the stub is successful at interrupting the
25596running program, it is expected that it will send one of the Stop
25597Reply Packets (@pxref{Stop Reply Packets}) to @value{GDBN} as a result
25598of successfully stopping the program. Interrupts received while the
25599program is stopped will be discarded.
25600
ee2d5c50
AC
25601@node Examples
25602@section Examples
eb12ee30 25603
8e04817f
AC
25604Example sequence of a target being re-started. Notice how the restart
25605does not get any direct output:
eb12ee30 25606
474c8240 25607@smallexample
d2c6833e
AC
25608-> @code{R00}
25609<- @code{+}
8e04817f 25610@emph{target restarts}
d2c6833e 25611-> @code{?}
8e04817f 25612<- @code{+}
d2c6833e
AC
25613<- @code{T001:1234123412341234}
25614-> @code{+}
474c8240 25615@end smallexample
eb12ee30 25616
8e04817f 25617Example sequence of a target being stepped by a single instruction:
eb12ee30 25618
474c8240 25619@smallexample
d2c6833e 25620-> @code{G1445@dots{}}
8e04817f 25621<- @code{+}
d2c6833e
AC
25622-> @code{s}
25623<- @code{+}
25624@emph{time passes}
25625<- @code{T001:1234123412341234}
8e04817f 25626-> @code{+}
d2c6833e 25627-> @code{g}
8e04817f 25628<- @code{+}
d2c6833e
AC
25629<- @code{1455@dots{}}
25630-> @code{+}
474c8240 25631@end smallexample
eb12ee30 25632
79a6e687
BW
25633@node File-I/O Remote Protocol Extension
25634@section File-I/O Remote Protocol Extension
0ce1b118
CV
25635@cindex File-I/O remote protocol extension
25636
25637@menu
25638* File-I/O Overview::
79a6e687
BW
25639* Protocol Basics::
25640* The F Request Packet::
25641* The F Reply Packet::
25642* The Ctrl-C Message::
0ce1b118 25643* Console I/O::
79a6e687 25644* List of Supported Calls::
db2e3e2e 25645* Protocol-specific Representation of Datatypes::
0ce1b118
CV
25646* Constants::
25647* File-I/O Examples::
25648@end menu
25649
25650@node File-I/O Overview
25651@subsection File-I/O Overview
25652@cindex file-i/o overview
25653
9c16f35a 25654The @dfn{File I/O remote protocol extension} (short: File-I/O) allows the
fc320d37 25655target to use the host's file system and console I/O to perform various
0ce1b118 25656system calls. System calls on the target system are translated into a
fc320d37
SL
25657remote protocol packet to the host system, which then performs the needed
25658actions and returns a response packet to the target system.
0ce1b118
CV
25659This simulates file system operations even on targets that lack file systems.
25660
fc320d37
SL
25661The protocol is defined to be independent of both the host and target systems.
25662It uses its own internal representation of datatypes and values. Both
0ce1b118 25663@value{GDBN} and the target's @value{GDBN} stub are responsible for
fc320d37
SL
25664translating the system-dependent value representations into the internal
25665protocol representations when data is transmitted.
0ce1b118 25666
fc320d37
SL
25667The communication is synchronous. A system call is possible only when
25668@value{GDBN} is waiting for a response from the @samp{C}, @samp{c}, @samp{S}
25669or @samp{s} packets. While @value{GDBN} handles the request for a system call,
0ce1b118 25670the target is stopped to allow deterministic access to the target's
fc320d37
SL
25671memory. Therefore File-I/O is not interruptible by target signals. On
25672the other hand, it is possible to interrupt File-I/O by a user interrupt
c8aa23ab 25673(@samp{Ctrl-C}) within @value{GDBN}.
0ce1b118
CV
25674
25675The target's request to perform a host system call does not finish
25676the latest @samp{C}, @samp{c}, @samp{S} or @samp{s} action. That means,
25677after finishing the system call, the target returns to continuing the
25678previous activity (continue, step). No additional continue or step
25679request from @value{GDBN} is required.
25680
25681@smallexample
f7dc1244 25682(@value{GDBP}) continue
0ce1b118
CV
25683 <- target requests 'system call X'
25684 target is stopped, @value{GDBN} executes system call
3f94c067
BW
25685 -> @value{GDBN} returns result
25686 ... target continues, @value{GDBN} returns to wait for the target
0ce1b118
CV
25687 <- target hits breakpoint and sends a Txx packet
25688@end smallexample
25689
fc320d37
SL
25690The protocol only supports I/O on the console and to regular files on
25691the host file system. Character or block special devices, pipes,
25692named pipes, sockets or any other communication method on the host
0ce1b118
CV
25693system are not supported by this protocol.
25694
79a6e687
BW
25695@node Protocol Basics
25696@subsection Protocol Basics
0ce1b118
CV
25697@cindex protocol basics, file-i/o
25698
fc320d37
SL
25699The File-I/O protocol uses the @code{F} packet as the request as well
25700as reply packet. Since a File-I/O system call can only occur when
25701@value{GDBN} is waiting for a response from the continuing or stepping target,
25702the File-I/O request is a reply that @value{GDBN} has to expect as a result
25703of a previous @samp{C}, @samp{c}, @samp{S} or @samp{s} packet.
0ce1b118
CV
25704This @code{F} packet contains all information needed to allow @value{GDBN}
25705to call the appropriate host system call:
25706
25707@itemize @bullet
b383017d 25708@item
0ce1b118
CV
25709A unique identifier for the requested system call.
25710
25711@item
25712All parameters to the system call. Pointers are given as addresses
25713in the target memory address space. Pointers to strings are given as
b383017d 25714pointer/length pair. Numerical values are given as they are.
db2e3e2e 25715Numerical control flags are given in a protocol-specific representation.
0ce1b118
CV
25716
25717@end itemize
25718
fc320d37 25719At this point, @value{GDBN} has to perform the following actions.
0ce1b118
CV
25720
25721@itemize @bullet
b383017d 25722@item
fc320d37
SL
25723If the parameters include pointer values to data needed as input to a
25724system call, @value{GDBN} requests this data from the target with a
0ce1b118
CV
25725standard @code{m} packet request. This additional communication has to be
25726expected by the target implementation and is handled as any other @code{m}
25727packet.
25728
25729@item
25730@value{GDBN} translates all value from protocol representation to host
25731representation as needed. Datatypes are coerced into the host types.
25732
25733@item
fc320d37 25734@value{GDBN} calls the system call.
0ce1b118
CV
25735
25736@item
25737It then coerces datatypes back to protocol representation.
25738
25739@item
fc320d37
SL
25740If the system call is expected to return data in buffer space specified
25741by pointer parameters to the call, the data is transmitted to the
0ce1b118
CV
25742target using a @code{M} or @code{X} packet. This packet has to be expected
25743by the target implementation and is handled as any other @code{M} or @code{X}
25744packet.
25745
25746@end itemize
25747
25748Eventually @value{GDBN} replies with another @code{F} packet which contains all
25749necessary information for the target to continue. This at least contains
25750
25751@itemize @bullet
25752@item
25753Return value.
25754
25755@item
25756@code{errno}, if has been changed by the system call.
25757
25758@item
25759``Ctrl-C'' flag.
25760
25761@end itemize
25762
25763After having done the needed type and value coercion, the target continues
25764the latest continue or step action.
25765
79a6e687
BW
25766@node The F Request Packet
25767@subsection The @code{F} Request Packet
0ce1b118
CV
25768@cindex file-i/o request packet
25769@cindex @code{F} request packet
25770
25771The @code{F} request packet has the following format:
25772
25773@table @samp
fc320d37 25774@item F@var{call-id},@var{parameter@dots{}}
0ce1b118
CV
25775
25776@var{call-id} is the identifier to indicate the host system call to be called.
25777This is just the name of the function.
25778
fc320d37
SL
25779@var{parameter@dots{}} are the parameters to the system call.
25780Parameters are hexadecimal integer values, either the actual values in case
25781of scalar datatypes, pointers to target buffer space in case of compound
25782datatypes and unspecified memory areas, or pointer/length pairs in case
25783of string parameters. These are appended to the @var{call-id} as a
25784comma-delimited list. All values are transmitted in ASCII
25785string representation, pointer/length pairs separated by a slash.
0ce1b118 25786
b383017d 25787@end table
0ce1b118 25788
fc320d37 25789
0ce1b118 25790
79a6e687
BW
25791@node The F Reply Packet
25792@subsection The @code{F} Reply Packet
0ce1b118
CV
25793@cindex file-i/o reply packet
25794@cindex @code{F} reply packet
25795
25796The @code{F} reply packet has the following format:
25797
25798@table @samp
25799
d3bdde98 25800@item F@var{retcode},@var{errno},@var{Ctrl-C flag};@var{call-specific attachment}
0ce1b118
CV
25801
25802@var{retcode} is the return code of the system call as hexadecimal value.
25803
db2e3e2e
BW
25804@var{errno} is the @code{errno} set by the call, in protocol-specific
25805representation.
0ce1b118
CV
25806This parameter can be omitted if the call was successful.
25807
fc320d37
SL
25808@var{Ctrl-C flag} is only sent if the user requested a break. In this
25809case, @var{errno} must be sent as well, even if the call was successful.
25810The @var{Ctrl-C flag} itself consists of the character @samp{C}:
0ce1b118
CV
25811
25812@smallexample
25813F0,0,C
25814@end smallexample
25815
25816@noindent
fc320d37 25817or, if the call was interrupted before the host call has been performed:
0ce1b118
CV
25818
25819@smallexample
25820F-1,4,C
25821@end smallexample
25822
25823@noindent
db2e3e2e 25824assuming 4 is the protocol-specific representation of @code{EINTR}.
0ce1b118
CV
25825
25826@end table
25827
0ce1b118 25828
79a6e687
BW
25829@node The Ctrl-C Message
25830@subsection The @samp{Ctrl-C} Message
0ce1b118
CV
25831@cindex ctrl-c message, in file-i/o protocol
25832
c8aa23ab 25833If the @samp{Ctrl-C} flag is set in the @value{GDBN}
79a6e687 25834reply packet (@pxref{The F Reply Packet}),
fc320d37 25835the target should behave as if it had
0ce1b118 25836gotten a break message. The meaning for the target is ``system call
fc320d37 25837interrupted by @code{SIGINT}''. Consequentially, the target should actually stop
0ce1b118 25838(as with a break message) and return to @value{GDBN} with a @code{T02}
c8aa23ab 25839packet.
fc320d37
SL
25840
25841It's important for the target to know in which
25842state the system call was interrupted. There are two possible cases:
0ce1b118
CV
25843
25844@itemize @bullet
25845@item
25846The system call hasn't been performed on the host yet.
25847
25848@item
25849The system call on the host has been finished.
25850
25851@end itemize
25852
25853These two states can be distinguished by the target by the value of the
25854returned @code{errno}. If it's the protocol representation of @code{EINTR}, the system
25855call hasn't been performed. This is equivalent to the @code{EINTR} handling
25856on POSIX systems. In any other case, the target may presume that the
fc320d37 25857system call has been finished --- successfully or not --- and should behave
0ce1b118
CV
25858as if the break message arrived right after the system call.
25859
fc320d37 25860@value{GDBN} must behave reliably. If the system call has not been called
0ce1b118
CV
25861yet, @value{GDBN} may send the @code{F} reply immediately, setting @code{EINTR} as
25862@code{errno} in the packet. If the system call on the host has been finished
fc320d37
SL
25863before the user requests a break, the full action must be finished by
25864@value{GDBN}. This requires sending @code{M} or @code{X} packets as necessary.
25865The @code{F} packet may only be sent when either nothing has happened
0ce1b118
CV
25866or the full action has been completed.
25867
25868@node Console I/O
25869@subsection Console I/O
25870@cindex console i/o as part of file-i/o
25871
d3e8051b 25872By default and if not explicitly closed by the target system, the file
0ce1b118
CV
25873descriptors 0, 1 and 2 are connected to the @value{GDBN} console. Output
25874on the @value{GDBN} console is handled as any other file output operation
25875(@code{write(1, @dots{})} or @code{write(2, @dots{})}). Console input is handled
25876by @value{GDBN} so that after the target read request from file descriptor
258770 all following typing is buffered until either one of the following
25878conditions is met:
25879
25880@itemize @bullet
25881@item
c8aa23ab 25882The user types @kbd{Ctrl-c}. The behaviour is as explained above, and the
0ce1b118
CV
25883@code{read}
25884system call is treated as finished.
25885
25886@item
7f9087cb 25887The user presses @key{RET}. This is treated as end of input with a trailing
fc320d37 25888newline.
0ce1b118
CV
25889
25890@item
c8aa23ab
EZ
25891The user types @kbd{Ctrl-d}. This is treated as end of input. No trailing
25892character (neither newline nor @samp{Ctrl-D}) is appended to the input.
0ce1b118
CV
25893
25894@end itemize
25895
fc320d37
SL
25896If the user has typed more characters than fit in the buffer given to
25897the @code{read} call, the trailing characters are buffered in @value{GDBN} until
25898either another @code{read(0, @dots{})} is requested by the target, or debugging
25899is stopped at the user's request.
0ce1b118 25900
0ce1b118 25901
79a6e687
BW
25902@node List of Supported Calls
25903@subsection List of Supported Calls
0ce1b118
CV
25904@cindex list of supported file-i/o calls
25905
25906@menu
25907* open::
25908* close::
25909* read::
25910* write::
25911* lseek::
25912* rename::
25913* unlink::
25914* stat/fstat::
25915* gettimeofday::
25916* isatty::
25917* system::
25918@end menu
25919
25920@node open
25921@unnumberedsubsubsec open
25922@cindex open, file-i/o system call
25923
fc320d37
SL
25924@table @asis
25925@item Synopsis:
0ce1b118 25926@smallexample
0ce1b118
CV
25927int open(const char *pathname, int flags);
25928int open(const char *pathname, int flags, mode_t mode);
0ce1b118
CV
25929@end smallexample
25930
fc320d37
SL
25931@item Request:
25932@samp{Fopen,@var{pathptr}/@var{len},@var{flags},@var{mode}}
25933
0ce1b118 25934@noindent
fc320d37 25935@var{flags} is the bitwise @code{OR} of the following values:
0ce1b118
CV
25936
25937@table @code
b383017d 25938@item O_CREAT
0ce1b118
CV
25939If the file does not exist it will be created. The host
25940rules apply as far as file ownership and time stamps
25941are concerned.
25942
b383017d 25943@item O_EXCL
fc320d37 25944When used with @code{O_CREAT}, if the file already exists it is
0ce1b118
CV
25945an error and open() fails.
25946
b383017d 25947@item O_TRUNC
0ce1b118 25948If the file already exists and the open mode allows
fc320d37
SL
25949writing (@code{O_RDWR} or @code{O_WRONLY} is given) it will be
25950truncated to zero length.
0ce1b118 25951
b383017d 25952@item O_APPEND
0ce1b118
CV
25953The file is opened in append mode.
25954
b383017d 25955@item O_RDONLY
0ce1b118
CV
25956The file is opened for reading only.
25957
b383017d 25958@item O_WRONLY
0ce1b118
CV
25959The file is opened for writing only.
25960
b383017d 25961@item O_RDWR
0ce1b118 25962The file is opened for reading and writing.
fc320d37 25963@end table
0ce1b118
CV
25964
25965@noindent
fc320d37 25966Other bits are silently ignored.
0ce1b118 25967
0ce1b118
CV
25968
25969@noindent
fc320d37 25970@var{mode} is the bitwise @code{OR} of the following values:
0ce1b118
CV
25971
25972@table @code
b383017d 25973@item S_IRUSR
0ce1b118
CV
25974User has read permission.
25975
b383017d 25976@item S_IWUSR
0ce1b118
CV
25977User has write permission.
25978
b383017d 25979@item S_IRGRP
0ce1b118
CV
25980Group has read permission.
25981
b383017d 25982@item S_IWGRP
0ce1b118
CV
25983Group has write permission.
25984
b383017d 25985@item S_IROTH
0ce1b118
CV
25986Others have read permission.
25987
b383017d 25988@item S_IWOTH
0ce1b118 25989Others have write permission.
fc320d37 25990@end table
0ce1b118
CV
25991
25992@noindent
fc320d37 25993Other bits are silently ignored.
0ce1b118 25994
0ce1b118 25995
fc320d37
SL
25996@item Return value:
25997@code{open} returns the new file descriptor or -1 if an error
25998occurred.
0ce1b118 25999
fc320d37 26000@item Errors:
0ce1b118
CV
26001
26002@table @code
b383017d 26003@item EEXIST
fc320d37 26004@var{pathname} already exists and @code{O_CREAT} and @code{O_EXCL} were used.
0ce1b118 26005
b383017d 26006@item EISDIR
fc320d37 26007@var{pathname} refers to a directory.
0ce1b118 26008
b383017d 26009@item EACCES
0ce1b118
CV
26010The requested access is not allowed.
26011
26012@item ENAMETOOLONG
fc320d37 26013@var{pathname} was too long.
0ce1b118 26014
b383017d 26015@item ENOENT
fc320d37 26016A directory component in @var{pathname} does not exist.
0ce1b118 26017
b383017d 26018@item ENODEV
fc320d37 26019@var{pathname} refers to a device, pipe, named pipe or socket.
0ce1b118 26020
b383017d 26021@item EROFS
fc320d37 26022@var{pathname} refers to a file on a read-only filesystem and
0ce1b118
CV
26023write access was requested.
26024
b383017d 26025@item EFAULT
fc320d37 26026@var{pathname} is an invalid pointer value.
0ce1b118 26027
b383017d 26028@item ENOSPC
0ce1b118
CV
26029No space on device to create the file.
26030
b383017d 26031@item EMFILE
0ce1b118
CV
26032The process already has the maximum number of files open.
26033
b383017d 26034@item ENFILE
0ce1b118
CV
26035The limit on the total number of files open on the system
26036has been reached.
26037
b383017d 26038@item EINTR
0ce1b118
CV
26039The call was interrupted by the user.
26040@end table
26041
fc320d37
SL
26042@end table
26043
0ce1b118
CV
26044@node close
26045@unnumberedsubsubsec close
26046@cindex close, file-i/o system call
26047
fc320d37
SL
26048@table @asis
26049@item Synopsis:
0ce1b118 26050@smallexample
0ce1b118 26051int close(int fd);
fc320d37 26052@end smallexample
0ce1b118 26053
fc320d37
SL
26054@item Request:
26055@samp{Fclose,@var{fd}}
0ce1b118 26056
fc320d37
SL
26057@item Return value:
26058@code{close} returns zero on success, or -1 if an error occurred.
0ce1b118 26059
fc320d37 26060@item Errors:
0ce1b118
CV
26061
26062@table @code
b383017d 26063@item EBADF
fc320d37 26064@var{fd} isn't a valid open file descriptor.
0ce1b118 26065
b383017d 26066@item EINTR
0ce1b118
CV
26067The call was interrupted by the user.
26068@end table
26069
fc320d37
SL
26070@end table
26071
0ce1b118
CV
26072@node read
26073@unnumberedsubsubsec read
26074@cindex read, file-i/o system call
26075
fc320d37
SL
26076@table @asis
26077@item Synopsis:
0ce1b118 26078@smallexample
0ce1b118 26079int read(int fd, void *buf, unsigned int count);
fc320d37 26080@end smallexample
0ce1b118 26081
fc320d37
SL
26082@item Request:
26083@samp{Fread,@var{fd},@var{bufptr},@var{count}}
0ce1b118 26084
fc320d37 26085@item Return value:
0ce1b118
CV
26086On success, the number of bytes read is returned.
26087Zero indicates end of file. If count is zero, read
b383017d 26088returns zero as well. On error, -1 is returned.
0ce1b118 26089
fc320d37 26090@item Errors:
0ce1b118
CV
26091
26092@table @code
b383017d 26093@item EBADF
fc320d37 26094@var{fd} is not a valid file descriptor or is not open for
0ce1b118
CV
26095reading.
26096
b383017d 26097@item EFAULT
fc320d37 26098@var{bufptr} is an invalid pointer value.
0ce1b118 26099
b383017d 26100@item EINTR
0ce1b118
CV
26101The call was interrupted by the user.
26102@end table
26103
fc320d37
SL
26104@end table
26105
0ce1b118
CV
26106@node write
26107@unnumberedsubsubsec write
26108@cindex write, file-i/o system call
26109
fc320d37
SL
26110@table @asis
26111@item Synopsis:
0ce1b118 26112@smallexample
0ce1b118 26113int write(int fd, const void *buf, unsigned int count);
fc320d37 26114@end smallexample
0ce1b118 26115
fc320d37
SL
26116@item Request:
26117@samp{Fwrite,@var{fd},@var{bufptr},@var{count}}
0ce1b118 26118
fc320d37 26119@item Return value:
0ce1b118
CV
26120On success, the number of bytes written are returned.
26121Zero indicates nothing was written. On error, -1
26122is returned.
26123
fc320d37 26124@item Errors:
0ce1b118
CV
26125
26126@table @code
b383017d 26127@item EBADF
fc320d37 26128@var{fd} is not a valid file descriptor or is not open for
0ce1b118
CV
26129writing.
26130
b383017d 26131@item EFAULT
fc320d37 26132@var{bufptr} is an invalid pointer value.
0ce1b118 26133
b383017d 26134@item EFBIG
0ce1b118 26135An attempt was made to write a file that exceeds the
db2e3e2e 26136host-specific maximum file size allowed.
0ce1b118 26137
b383017d 26138@item ENOSPC
0ce1b118
CV
26139No space on device to write the data.
26140
b383017d 26141@item EINTR
0ce1b118
CV
26142The call was interrupted by the user.
26143@end table
26144
fc320d37
SL
26145@end table
26146
0ce1b118
CV
26147@node lseek
26148@unnumberedsubsubsec lseek
26149@cindex lseek, file-i/o system call
26150
fc320d37
SL
26151@table @asis
26152@item Synopsis:
0ce1b118 26153@smallexample
0ce1b118 26154long lseek (int fd, long offset, int flag);
0ce1b118
CV
26155@end smallexample
26156
fc320d37
SL
26157@item Request:
26158@samp{Flseek,@var{fd},@var{offset},@var{flag}}
26159
26160@var{flag} is one of:
0ce1b118
CV
26161
26162@table @code
b383017d 26163@item SEEK_SET
fc320d37 26164The offset is set to @var{offset} bytes.
0ce1b118 26165
b383017d 26166@item SEEK_CUR
fc320d37 26167The offset is set to its current location plus @var{offset}
0ce1b118
CV
26168bytes.
26169
b383017d 26170@item SEEK_END
fc320d37 26171The offset is set to the size of the file plus @var{offset}
0ce1b118
CV
26172bytes.
26173@end table
26174
fc320d37 26175@item Return value:
0ce1b118
CV
26176On success, the resulting unsigned offset in bytes from
26177the beginning of the file is returned. Otherwise, a
26178value of -1 is returned.
26179
fc320d37 26180@item Errors:
0ce1b118
CV
26181
26182@table @code
b383017d 26183@item EBADF
fc320d37 26184@var{fd} is not a valid open file descriptor.
0ce1b118 26185
b383017d 26186@item ESPIPE
fc320d37 26187@var{fd} is associated with the @value{GDBN} console.
0ce1b118 26188
b383017d 26189@item EINVAL
fc320d37 26190@var{flag} is not a proper value.
0ce1b118 26191
b383017d 26192@item EINTR
0ce1b118
CV
26193The call was interrupted by the user.
26194@end table
26195
fc320d37
SL
26196@end table
26197
0ce1b118
CV
26198@node rename
26199@unnumberedsubsubsec rename
26200@cindex rename, file-i/o system call
26201
fc320d37
SL
26202@table @asis
26203@item Synopsis:
0ce1b118 26204@smallexample
0ce1b118 26205int rename(const char *oldpath, const char *newpath);
fc320d37 26206@end smallexample
0ce1b118 26207
fc320d37
SL
26208@item Request:
26209@samp{Frename,@var{oldpathptr}/@var{len},@var{newpathptr}/@var{len}}
0ce1b118 26210
fc320d37 26211@item Return value:
0ce1b118
CV
26212On success, zero is returned. On error, -1 is returned.
26213
fc320d37 26214@item Errors:
0ce1b118
CV
26215
26216@table @code
b383017d 26217@item EISDIR
fc320d37 26218@var{newpath} is an existing directory, but @var{oldpath} is not a
0ce1b118
CV
26219directory.
26220
b383017d 26221@item EEXIST
fc320d37 26222@var{newpath} is a non-empty directory.
0ce1b118 26223
b383017d 26224@item EBUSY
fc320d37 26225@var{oldpath} or @var{newpath} is a directory that is in use by some
0ce1b118
CV
26226process.
26227
b383017d 26228@item EINVAL
0ce1b118
CV
26229An attempt was made to make a directory a subdirectory
26230of itself.
26231
b383017d 26232@item ENOTDIR
fc320d37
SL
26233A component used as a directory in @var{oldpath} or new
26234path is not a directory. Or @var{oldpath} is a directory
26235and @var{newpath} exists but is not a directory.
0ce1b118 26236
b383017d 26237@item EFAULT
fc320d37 26238@var{oldpathptr} or @var{newpathptr} are invalid pointer values.
0ce1b118 26239
b383017d 26240@item EACCES
0ce1b118
CV
26241No access to the file or the path of the file.
26242
26243@item ENAMETOOLONG
b383017d 26244
fc320d37 26245@var{oldpath} or @var{newpath} was too long.
0ce1b118 26246
b383017d 26247@item ENOENT
fc320d37 26248A directory component in @var{oldpath} or @var{newpath} does not exist.
0ce1b118 26249
b383017d 26250@item EROFS
0ce1b118
CV
26251The file is on a read-only filesystem.
26252
b383017d 26253@item ENOSPC
0ce1b118
CV
26254The device containing the file has no room for the new
26255directory entry.
26256
b383017d 26257@item EINTR
0ce1b118
CV
26258The call was interrupted by the user.
26259@end table
26260
fc320d37
SL
26261@end table
26262
0ce1b118
CV
26263@node unlink
26264@unnumberedsubsubsec unlink
26265@cindex unlink, file-i/o system call
26266
fc320d37
SL
26267@table @asis
26268@item Synopsis:
0ce1b118 26269@smallexample
0ce1b118 26270int unlink(const char *pathname);
fc320d37 26271@end smallexample
0ce1b118 26272
fc320d37
SL
26273@item Request:
26274@samp{Funlink,@var{pathnameptr}/@var{len}}
0ce1b118 26275
fc320d37 26276@item Return value:
0ce1b118
CV
26277On success, zero is returned. On error, -1 is returned.
26278
fc320d37 26279@item Errors:
0ce1b118
CV
26280
26281@table @code
b383017d 26282@item EACCES
0ce1b118
CV
26283No access to the file or the path of the file.
26284
b383017d 26285@item EPERM
0ce1b118
CV
26286The system does not allow unlinking of directories.
26287
b383017d 26288@item EBUSY
fc320d37 26289The file @var{pathname} cannot be unlinked because it's
0ce1b118
CV
26290being used by another process.
26291
b383017d 26292@item EFAULT
fc320d37 26293@var{pathnameptr} is an invalid pointer value.
0ce1b118
CV
26294
26295@item ENAMETOOLONG
fc320d37 26296@var{pathname} was too long.
0ce1b118 26297
b383017d 26298@item ENOENT
fc320d37 26299A directory component in @var{pathname} does not exist.
0ce1b118 26300
b383017d 26301@item ENOTDIR
0ce1b118
CV
26302A component of the path is not a directory.
26303
b383017d 26304@item EROFS
0ce1b118
CV
26305The file is on a read-only filesystem.
26306
b383017d 26307@item EINTR
0ce1b118
CV
26308The call was interrupted by the user.
26309@end table
26310
fc320d37
SL
26311@end table
26312
0ce1b118
CV
26313@node stat/fstat
26314@unnumberedsubsubsec stat/fstat
26315@cindex fstat, file-i/o system call
26316@cindex stat, file-i/o system call
26317
fc320d37
SL
26318@table @asis
26319@item Synopsis:
0ce1b118 26320@smallexample
0ce1b118
CV
26321int stat(const char *pathname, struct stat *buf);
26322int fstat(int fd, struct stat *buf);
fc320d37 26323@end smallexample
0ce1b118 26324
fc320d37
SL
26325@item Request:
26326@samp{Fstat,@var{pathnameptr}/@var{len},@var{bufptr}}@*
26327@samp{Ffstat,@var{fd},@var{bufptr}}
0ce1b118 26328
fc320d37 26329@item Return value:
0ce1b118
CV
26330On success, zero is returned. On error, -1 is returned.
26331
fc320d37 26332@item Errors:
0ce1b118
CV
26333
26334@table @code
b383017d 26335@item EBADF
fc320d37 26336@var{fd} is not a valid open file.
0ce1b118 26337
b383017d 26338@item ENOENT
fc320d37 26339A directory component in @var{pathname} does not exist or the
0ce1b118
CV
26340path is an empty string.
26341
b383017d 26342@item ENOTDIR
0ce1b118
CV
26343A component of the path is not a directory.
26344
b383017d 26345@item EFAULT
fc320d37 26346@var{pathnameptr} is an invalid pointer value.
0ce1b118 26347
b383017d 26348@item EACCES
0ce1b118
CV
26349No access to the file or the path of the file.
26350
26351@item ENAMETOOLONG
fc320d37 26352@var{pathname} was too long.
0ce1b118 26353
b383017d 26354@item EINTR
0ce1b118
CV
26355The call was interrupted by the user.
26356@end table
26357
fc320d37
SL
26358@end table
26359
0ce1b118
CV
26360@node gettimeofday
26361@unnumberedsubsubsec gettimeofday
26362@cindex gettimeofday, file-i/o system call
26363
fc320d37
SL
26364@table @asis
26365@item Synopsis:
0ce1b118 26366@smallexample
0ce1b118 26367int gettimeofday(struct timeval *tv, void *tz);
fc320d37 26368@end smallexample
0ce1b118 26369
fc320d37
SL
26370@item Request:
26371@samp{Fgettimeofday,@var{tvptr},@var{tzptr}}
0ce1b118 26372
fc320d37 26373@item Return value:
0ce1b118
CV
26374On success, 0 is returned, -1 otherwise.
26375
fc320d37 26376@item Errors:
0ce1b118
CV
26377
26378@table @code
b383017d 26379@item EINVAL
fc320d37 26380@var{tz} is a non-NULL pointer.
0ce1b118 26381
b383017d 26382@item EFAULT
fc320d37
SL
26383@var{tvptr} and/or @var{tzptr} is an invalid pointer value.
26384@end table
26385
0ce1b118
CV
26386@end table
26387
26388@node isatty
26389@unnumberedsubsubsec isatty
26390@cindex isatty, file-i/o system call
26391
fc320d37
SL
26392@table @asis
26393@item Synopsis:
0ce1b118 26394@smallexample
0ce1b118 26395int isatty(int fd);
fc320d37 26396@end smallexample
0ce1b118 26397
fc320d37
SL
26398@item Request:
26399@samp{Fisatty,@var{fd}}
0ce1b118 26400
fc320d37
SL
26401@item Return value:
26402Returns 1 if @var{fd} refers to the @value{GDBN} console, 0 otherwise.
0ce1b118 26403
fc320d37 26404@item Errors:
0ce1b118
CV
26405
26406@table @code
b383017d 26407@item EINTR
0ce1b118
CV
26408The call was interrupted by the user.
26409@end table
26410
fc320d37
SL
26411@end table
26412
26413Note that the @code{isatty} call is treated as a special case: it returns
264141 to the target if the file descriptor is attached
26415to the @value{GDBN} console, 0 otherwise. Implementing through system calls
26416would require implementing @code{ioctl} and would be more complex than
26417needed.
26418
26419
0ce1b118
CV
26420@node system
26421@unnumberedsubsubsec system
26422@cindex system, file-i/o system call
26423
fc320d37
SL
26424@table @asis
26425@item Synopsis:
0ce1b118 26426@smallexample
0ce1b118 26427int system(const char *command);
fc320d37 26428@end smallexample
0ce1b118 26429
fc320d37
SL
26430@item Request:
26431@samp{Fsystem,@var{commandptr}/@var{len}}
0ce1b118 26432
fc320d37 26433@item Return value:
5600ea19
NS
26434If @var{len} is zero, the return value indicates whether a shell is
26435available. A zero return value indicates a shell is not available.
26436For non-zero @var{len}, the value returned is -1 on error and the
26437return status of the command otherwise. Only the exit status of the
26438command is returned, which is extracted from the host's @code{system}
26439return value by calling @code{WEXITSTATUS(retval)}. In case
26440@file{/bin/sh} could not be executed, 127 is returned.
0ce1b118 26441
fc320d37 26442@item Errors:
0ce1b118
CV
26443
26444@table @code
b383017d 26445@item EINTR
0ce1b118
CV
26446The call was interrupted by the user.
26447@end table
26448
fc320d37
SL
26449@end table
26450
26451@value{GDBN} takes over the full task of calling the necessary host calls
26452to perform the @code{system} call. The return value of @code{system} on
26453the host is simplified before it's returned
26454to the target. Any termination signal information from the child process
26455is discarded, and the return value consists
26456entirely of the exit status of the called command.
26457
26458Due to security concerns, the @code{system} call is by default refused
26459by @value{GDBN}. The user has to allow this call explicitly with the
26460@code{set remote system-call-allowed 1} command.
26461
26462@table @code
26463@item set remote system-call-allowed
26464@kindex set remote system-call-allowed
26465Control whether to allow the @code{system} calls in the File I/O
26466protocol for the remote target. The default is zero (disabled).
26467
26468@item show remote system-call-allowed
26469@kindex show remote system-call-allowed
26470Show whether the @code{system} calls are allowed in the File I/O
26471protocol.
26472@end table
26473
db2e3e2e
BW
26474@node Protocol-specific Representation of Datatypes
26475@subsection Protocol-specific Representation of Datatypes
26476@cindex protocol-specific representation of datatypes, in file-i/o protocol
0ce1b118
CV
26477
26478@menu
79a6e687
BW
26479* Integral Datatypes::
26480* Pointer Values::
26481* Memory Transfer::
0ce1b118
CV
26482* struct stat::
26483* struct timeval::
26484@end menu
26485
79a6e687
BW
26486@node Integral Datatypes
26487@unnumberedsubsubsec Integral Datatypes
0ce1b118
CV
26488@cindex integral datatypes, in file-i/o protocol
26489
fc320d37
SL
26490The integral datatypes used in the system calls are @code{int},
26491@code{unsigned int}, @code{long}, @code{unsigned long},
26492@code{mode_t}, and @code{time_t}.
0ce1b118 26493
fc320d37 26494@code{int}, @code{unsigned int}, @code{mode_t} and @code{time_t} are
0ce1b118
CV
26495implemented as 32 bit values in this protocol.
26496
fc320d37 26497@code{long} and @code{unsigned long} are implemented as 64 bit types.
b383017d 26498
0ce1b118
CV
26499@xref{Limits}, for corresponding MIN and MAX values (similar to those
26500in @file{limits.h}) to allow range checking on host and target.
26501
26502@code{time_t} datatypes are defined as seconds since the Epoch.
26503
26504All integral datatypes transferred as part of a memory read or write of a
26505structured datatype e.g.@: a @code{struct stat} have to be given in big endian
26506byte order.
26507
79a6e687
BW
26508@node Pointer Values
26509@unnumberedsubsubsec Pointer Values
0ce1b118
CV
26510@cindex pointer values, in file-i/o protocol
26511
26512Pointers to target data are transmitted as they are. An exception
26513is made for pointers to buffers for which the length isn't
26514transmitted as part of the function call, namely strings. Strings
26515are transmitted as a pointer/length pair, both as hex values, e.g.@:
26516
26517@smallexample
26518@code{1aaf/12}
26519@end smallexample
26520
26521@noindent
26522which is a pointer to data of length 18 bytes at position 0x1aaf.
26523The length is defined as the full string length in bytes, including
fc320d37
SL
26524the trailing null byte. For example, the string @code{"hello world"}
26525at address 0x123456 is transmitted as
0ce1b118
CV
26526
26527@smallexample
fc320d37 26528@code{123456/d}
0ce1b118
CV
26529@end smallexample
26530
79a6e687
BW
26531@node Memory Transfer
26532@unnumberedsubsubsec Memory Transfer
fc320d37
SL
26533@cindex memory transfer, in file-i/o protocol
26534
26535Structured data which is transferred using a memory read or write (for
db2e3e2e 26536example, a @code{struct stat}) is expected to be in a protocol-specific format
fc320d37
SL
26537with all scalar multibyte datatypes being big endian. Translation to
26538this representation needs to be done both by the target before the @code{F}
26539packet is sent, and by @value{GDBN} before
26540it transfers memory to the target. Transferred pointers to structured
26541data should point to the already-coerced data at any time.
0ce1b118 26542
0ce1b118
CV
26543
26544@node struct stat
26545@unnumberedsubsubsec struct stat
26546@cindex struct stat, in file-i/o protocol
26547
fc320d37
SL
26548The buffer of type @code{struct stat} used by the target and @value{GDBN}
26549is defined as follows:
0ce1b118
CV
26550
26551@smallexample
26552struct stat @{
26553 unsigned int st_dev; /* device */
26554 unsigned int st_ino; /* inode */
26555 mode_t st_mode; /* protection */
26556 unsigned int st_nlink; /* number of hard links */
26557 unsigned int st_uid; /* user ID of owner */
26558 unsigned int st_gid; /* group ID of owner */
26559 unsigned int st_rdev; /* device type (if inode device) */
26560 unsigned long st_size; /* total size, in bytes */
26561 unsigned long st_blksize; /* blocksize for filesystem I/O */
26562 unsigned long st_blocks; /* number of blocks allocated */
26563 time_t st_atime; /* time of last access */
26564 time_t st_mtime; /* time of last modification */
26565 time_t st_ctime; /* time of last change */
26566@};
26567@end smallexample
26568
fc320d37 26569The integral datatypes conform to the definitions given in the
79a6e687 26570appropriate section (see @ref{Integral Datatypes}, for details) so this
0ce1b118
CV
26571structure is of size 64 bytes.
26572
26573The values of several fields have a restricted meaning and/or
26574range of values.
26575
fc320d37 26576@table @code
0ce1b118 26577
fc320d37
SL
26578@item st_dev
26579A value of 0 represents a file, 1 the console.
0ce1b118 26580
fc320d37
SL
26581@item st_ino
26582No valid meaning for the target. Transmitted unchanged.
0ce1b118 26583
fc320d37
SL
26584@item st_mode
26585Valid mode bits are described in @ref{Constants}. Any other
26586bits have currently no meaning for the target.
0ce1b118 26587
fc320d37
SL
26588@item st_uid
26589@itemx st_gid
26590@itemx st_rdev
26591No valid meaning for the target. Transmitted unchanged.
0ce1b118 26592
fc320d37
SL
26593@item st_atime
26594@itemx st_mtime
26595@itemx st_ctime
26596These values have a host and file system dependent
26597accuracy. Especially on Windows hosts, the file system may not
26598support exact timing values.
26599@end table
0ce1b118 26600
fc320d37
SL
26601The target gets a @code{struct stat} of the above representation and is
26602responsible for coercing it to the target representation before
0ce1b118
CV
26603continuing.
26604
fc320d37
SL
26605Note that due to size differences between the host, target, and protocol
26606representations of @code{struct stat} members, these members could eventually
0ce1b118
CV
26607get truncated on the target.
26608
26609@node struct timeval
26610@unnumberedsubsubsec struct timeval
26611@cindex struct timeval, in file-i/o protocol
26612
fc320d37 26613The buffer of type @code{struct timeval} used by the File-I/O protocol
0ce1b118
CV
26614is defined as follows:
26615
26616@smallexample
b383017d 26617struct timeval @{
0ce1b118
CV
26618 time_t tv_sec; /* second */
26619 long tv_usec; /* microsecond */
26620@};
26621@end smallexample
26622
fc320d37 26623The integral datatypes conform to the definitions given in the
79a6e687 26624appropriate section (see @ref{Integral Datatypes}, for details) so this
0ce1b118
CV
26625structure is of size 8 bytes.
26626
26627@node Constants
26628@subsection Constants
26629@cindex constants, in file-i/o protocol
26630
26631The following values are used for the constants inside of the
fc320d37 26632protocol. @value{GDBN} and target are responsible for translating these
0ce1b118
CV
26633values before and after the call as needed.
26634
26635@menu
79a6e687
BW
26636* Open Flags::
26637* mode_t Values::
26638* Errno Values::
26639* Lseek Flags::
0ce1b118
CV
26640* Limits::
26641@end menu
26642
79a6e687
BW
26643@node Open Flags
26644@unnumberedsubsubsec Open Flags
0ce1b118
CV
26645@cindex open flags, in file-i/o protocol
26646
26647All values are given in hexadecimal representation.
26648
26649@smallexample
26650 O_RDONLY 0x0
26651 O_WRONLY 0x1
26652 O_RDWR 0x2
26653 O_APPEND 0x8
26654 O_CREAT 0x200
26655 O_TRUNC 0x400
26656 O_EXCL 0x800
26657@end smallexample
26658
79a6e687
BW
26659@node mode_t Values
26660@unnumberedsubsubsec mode_t Values
0ce1b118
CV
26661@cindex mode_t values, in file-i/o protocol
26662
26663All values are given in octal representation.
26664
26665@smallexample
26666 S_IFREG 0100000
26667 S_IFDIR 040000
26668 S_IRUSR 0400
26669 S_IWUSR 0200
26670 S_IXUSR 0100
26671 S_IRGRP 040
26672 S_IWGRP 020
26673 S_IXGRP 010
26674 S_IROTH 04
26675 S_IWOTH 02
26676 S_IXOTH 01
26677@end smallexample
26678
79a6e687
BW
26679@node Errno Values
26680@unnumberedsubsubsec Errno Values
0ce1b118
CV
26681@cindex errno values, in file-i/o protocol
26682
26683All values are given in decimal representation.
26684
26685@smallexample
26686 EPERM 1
26687 ENOENT 2
26688 EINTR 4
26689 EBADF 9
26690 EACCES 13
26691 EFAULT 14
26692 EBUSY 16
26693 EEXIST 17
26694 ENODEV 19
26695 ENOTDIR 20
26696 EISDIR 21
26697 EINVAL 22
26698 ENFILE 23
26699 EMFILE 24
26700 EFBIG 27
26701 ENOSPC 28
26702 ESPIPE 29
26703 EROFS 30
26704 ENAMETOOLONG 91
26705 EUNKNOWN 9999
26706@end smallexample
26707
fc320d37 26708 @code{EUNKNOWN} is used as a fallback error value if a host system returns
0ce1b118
CV
26709 any error value not in the list of supported error numbers.
26710
79a6e687
BW
26711@node Lseek Flags
26712@unnumberedsubsubsec Lseek Flags
0ce1b118
CV
26713@cindex lseek flags, in file-i/o protocol
26714
26715@smallexample
26716 SEEK_SET 0
26717 SEEK_CUR 1
26718 SEEK_END 2
26719@end smallexample
26720
26721@node Limits
26722@unnumberedsubsubsec Limits
26723@cindex limits, in file-i/o protocol
26724
26725All values are given in decimal representation.
26726
26727@smallexample
26728 INT_MIN -2147483648
26729 INT_MAX 2147483647
26730 UINT_MAX 4294967295
26731 LONG_MIN -9223372036854775808
26732 LONG_MAX 9223372036854775807
26733 ULONG_MAX 18446744073709551615
26734@end smallexample
26735
26736@node File-I/O Examples
26737@subsection File-I/O Examples
26738@cindex file-i/o examples
26739
26740Example sequence of a write call, file descriptor 3, buffer is at target
26741address 0x1234, 6 bytes should be written:
26742
26743@smallexample
26744<- @code{Fwrite,3,1234,6}
26745@emph{request memory read from target}
26746-> @code{m1234,6}
26747<- XXXXXX
26748@emph{return "6 bytes written"}
26749-> @code{F6}
26750@end smallexample
26751
26752Example sequence of a read call, file descriptor 3, buffer is at target
26753address 0x1234, 6 bytes should be read:
26754
26755@smallexample
26756<- @code{Fread,3,1234,6}
26757@emph{request memory write to target}
26758-> @code{X1234,6:XXXXXX}
26759@emph{return "6 bytes read"}
26760-> @code{F6}
26761@end smallexample
26762
26763Example sequence of a read call, call fails on the host due to invalid
fc320d37 26764file descriptor (@code{EBADF}):
0ce1b118
CV
26765
26766@smallexample
26767<- @code{Fread,3,1234,6}
26768-> @code{F-1,9}
26769@end smallexample
26770
c8aa23ab 26771Example sequence of a read call, user presses @kbd{Ctrl-c} before syscall on
0ce1b118
CV
26772host is called:
26773
26774@smallexample
26775<- @code{Fread,3,1234,6}
26776-> @code{F-1,4,C}
26777<- @code{T02}
26778@end smallexample
26779
c8aa23ab 26780Example sequence of a read call, user presses @kbd{Ctrl-c} after syscall on
0ce1b118
CV
26781host is called:
26782
26783@smallexample
26784<- @code{Fread,3,1234,6}
26785-> @code{X1234,6:XXXXXX}
26786<- @code{T02}
26787@end smallexample
26788
cfa9d6d9
DJ
26789@node Library List Format
26790@section Library List Format
26791@cindex library list format, remote protocol
26792
26793On some platforms, a dynamic loader (e.g.@: @file{ld.so}) runs in the
26794same process as your application to manage libraries. In this case,
26795@value{GDBN} can use the loader's symbol table and normal memory
26796operations to maintain a list of shared libraries. On other
26797platforms, the operating system manages loaded libraries.
26798@value{GDBN} can not retrieve the list of currently loaded libraries
26799through memory operations, so it uses the @samp{qXfer:libraries:read}
26800packet (@pxref{qXfer library list read}) instead. The remote stub
26801queries the target's operating system and reports which libraries
26802are loaded.
26803
26804The @samp{qXfer:libraries:read} packet returns an XML document which
26805lists loaded libraries and their offsets. Each library has an
1fddbabb
PA
26806associated name and one or more segment or section base addresses,
26807which report where the library was loaded in memory.
26808
26809For the common case of libraries that are fully linked binaries, the
26810library should have a list of segments. If the target supports
26811dynamic linking of a relocatable object file, its library XML element
26812should instead include a list of allocated sections. The segment or
26813section bases are start addresses, not relocation offsets; they do not
26814depend on the library's link-time base addresses.
cfa9d6d9 26815
9cceb671
DJ
26816@value{GDBN} must be linked with the Expat library to support XML
26817library lists. @xref{Expat}.
26818
cfa9d6d9
DJ
26819A simple memory map, with one loaded library relocated by a single
26820offset, looks like this:
26821
26822@smallexample
26823<library-list>
26824 <library name="/lib/libc.so.6">
26825 <segment address="0x10000000"/>
26826 </library>
26827</library-list>
26828@end smallexample
26829
1fddbabb
PA
26830Another simple memory map, with one loaded library with three
26831allocated sections (.text, .data, .bss), looks like this:
26832
26833@smallexample
26834<library-list>
26835 <library name="sharedlib.o">
26836 <section address="0x10000000"/>
26837 <section address="0x20000000"/>
26838 <section address="0x30000000"/>
26839 </library>
26840</library-list>
26841@end smallexample
26842
cfa9d6d9
DJ
26843The format of a library list is described by this DTD:
26844
26845@smallexample
26846<!-- library-list: Root element with versioning -->
26847<!ELEMENT library-list (library)*>
26848<!ATTLIST library-list version CDATA #FIXED "1.0">
1fddbabb 26849<!ELEMENT library (segment*, section*)>
cfa9d6d9
DJ
26850<!ATTLIST library name CDATA #REQUIRED>
26851<!ELEMENT segment EMPTY>
26852<!ATTLIST segment address CDATA #REQUIRED>
1fddbabb
PA
26853<!ELEMENT section EMPTY>
26854<!ATTLIST section address CDATA #REQUIRED>
cfa9d6d9
DJ
26855@end smallexample
26856
1fddbabb
PA
26857In addition, segments and section descriptors cannot be mixed within a
26858single library element, and you must supply at least one segment or
26859section for each library.
26860
79a6e687
BW
26861@node Memory Map Format
26862@section Memory Map Format
68437a39
DJ
26863@cindex memory map format
26864
26865To be able to write into flash memory, @value{GDBN} needs to obtain a
26866memory map from the target. This section describes the format of the
26867memory map.
26868
26869The memory map is obtained using the @samp{qXfer:memory-map:read}
26870(@pxref{qXfer memory map read}) packet and is an XML document that
9cceb671
DJ
26871lists memory regions.
26872
26873@value{GDBN} must be linked with the Expat library to support XML
26874memory maps. @xref{Expat}.
26875
26876The top-level structure of the document is shown below:
68437a39
DJ
26877
26878@smallexample
26879<?xml version="1.0"?>
26880<!DOCTYPE memory-map
26881 PUBLIC "+//IDN gnu.org//DTD GDB Memory Map V1.0//EN"
26882 "http://sourceware.org/gdb/gdb-memory-map.dtd">
26883<memory-map>
26884 region...
26885</memory-map>
26886@end smallexample
26887
26888Each region can be either:
26889
26890@itemize
26891
26892@item
26893A region of RAM starting at @var{addr} and extending for @var{length}
26894bytes from there:
26895
26896@smallexample
26897<memory type="ram" start="@var{addr}" length="@var{length}"/>
26898@end smallexample
26899
26900
26901@item
26902A region of read-only memory:
26903
26904@smallexample
26905<memory type="rom" start="@var{addr}" length="@var{length}"/>
26906@end smallexample
26907
26908
26909@item
26910A region of flash memory, with erasure blocks @var{blocksize}
26911bytes in length:
26912
26913@smallexample
26914<memory type="flash" start="@var{addr}" length="@var{length}">
26915 <property name="blocksize">@var{blocksize}</property>
26916</memory>
26917@end smallexample
26918
26919@end itemize
26920
26921Regions must not overlap. @value{GDBN} assumes that areas of memory not covered
26922by the memory map are RAM, and uses the ordinary @samp{M} and @samp{X}
26923packets to write to addresses in such ranges.
26924
26925The formal DTD for memory map format is given below:
26926
26927@smallexample
26928<!-- ................................................... -->
26929<!-- Memory Map XML DTD ................................ -->
26930<!-- File: memory-map.dtd .............................. -->
26931<!-- .................................... .............. -->
26932<!-- memory-map.dtd -->
26933<!-- memory-map: Root element with versioning -->
26934<!ELEMENT memory-map (memory | property)>
26935<!ATTLIST memory-map version CDATA #FIXED "1.0.0">
26936<!ELEMENT memory (property)>
26937<!-- memory: Specifies a memory region,
26938 and its type, or device. -->
26939<!ATTLIST memory type CDATA #REQUIRED
26940 start CDATA #REQUIRED
26941 length CDATA #REQUIRED
26942 device CDATA #IMPLIED>
26943<!-- property: Generic attribute tag -->
26944<!ELEMENT property (#PCDATA | property)*>
26945<!ATTLIST property name CDATA #REQUIRED>
26946@end smallexample
26947
f418dd93
DJ
26948@include agentexpr.texi
26949
23181151
DJ
26950@node Target Descriptions
26951@appendix Target Descriptions
26952@cindex target descriptions
26953
26954@strong{Warning:} target descriptions are still under active development,
26955and the contents and format may change between @value{GDBN} releases.
26956The format is expected to stabilize in the future.
26957
26958One of the challenges of using @value{GDBN} to debug embedded systems
26959is that there are so many minor variants of each processor
26960architecture in use. It is common practice for vendors to start with
26961a standard processor core --- ARM, PowerPC, or MIPS, for example ---
26962and then make changes to adapt it to a particular market niche. Some
26963architectures have hundreds of variants, available from dozens of
26964vendors. This leads to a number of problems:
26965
26966@itemize @bullet
26967@item
26968With so many different customized processors, it is difficult for
26969the @value{GDBN} maintainers to keep up with the changes.
26970@item
26971Since individual variants may have short lifetimes or limited
26972audiences, it may not be worthwhile to carry information about every
26973variant in the @value{GDBN} source tree.
26974@item
26975When @value{GDBN} does support the architecture of the embedded system
26976at hand, the task of finding the correct architecture name to give the
26977@command{set architecture} command can be error-prone.
26978@end itemize
26979
26980To address these problems, the @value{GDBN} remote protocol allows a
26981target system to not only identify itself to @value{GDBN}, but to
26982actually describe its own features. This lets @value{GDBN} support
26983processor variants it has never seen before --- to the extent that the
26984descriptions are accurate, and that @value{GDBN} understands them.
26985
9cceb671
DJ
26986@value{GDBN} must be linked with the Expat library to support XML
26987target descriptions. @xref{Expat}.
123dc839 26988
23181151
DJ
26989@menu
26990* Retrieving Descriptions:: How descriptions are fetched from a target.
26991* Target Description Format:: The contents of a target description.
123dc839
DJ
26992* Predefined Target Types:: Standard types available for target
26993 descriptions.
26994* Standard Target Features:: Features @value{GDBN} knows about.
23181151
DJ
26995@end menu
26996
26997@node Retrieving Descriptions
26998@section Retrieving Descriptions
26999
27000Target descriptions can be read from the target automatically, or
27001specified by the user manually. The default behavior is to read the
27002description from the target. @value{GDBN} retrieves it via the remote
27003protocol using @samp{qXfer} requests (@pxref{General Query Packets,
27004qXfer}). The @var{annex} in the @samp{qXfer} packet will be
27005@samp{target.xml}. The contents of the @samp{target.xml} annex are an
27006XML document, of the form described in @ref{Target Description
27007Format}.
27008
27009Alternatively, you can specify a file to read for the target description.
27010If a file is set, the target will not be queried. The commands to
27011specify a file are:
27012
27013@table @code
27014@cindex set tdesc filename
27015@item set tdesc filename @var{path}
27016Read the target description from @var{path}.
27017
27018@cindex unset tdesc filename
27019@item unset tdesc filename
27020Do not read the XML target description from a file. @value{GDBN}
27021will use the description supplied by the current target.
27022
27023@cindex show tdesc filename
27024@item show tdesc filename
27025Show the filename to read for a target description, if any.
27026@end table
27027
27028
27029@node Target Description Format
27030@section Target Description Format
27031@cindex target descriptions, XML format
27032
27033A target description annex is an @uref{http://www.w3.org/XML/, XML}
27034document which complies with the Document Type Definition provided in
27035the @value{GDBN} sources in @file{gdb/features/gdb-target.dtd}. This
27036means you can use generally available tools like @command{xmllint} to
27037check that your feature descriptions are well-formed and valid.
27038However, to help people unfamiliar with XML write descriptions for
27039their targets, we also describe the grammar here.
27040
123dc839
DJ
27041Target descriptions can identify the architecture of the remote target
27042and (for some architectures) provide information about custom register
27043sets. @value{GDBN} can use this information to autoconfigure for your
27044target, or to warn you if you connect to an unsupported target.
23181151
DJ
27045
27046Here is a simple target description:
27047
123dc839 27048@smallexample
1780a0ed 27049<target version="1.0">
23181151
DJ
27050 <architecture>i386:x86-64</architecture>
27051</target>
123dc839 27052@end smallexample
23181151
DJ
27053
27054@noindent
27055This minimal description only says that the target uses
27056the x86-64 architecture.
27057
123dc839
DJ
27058A target description has the following overall form, with [ ] marking
27059optional elements and @dots{} marking repeatable elements. The elements
27060are explained further below.
23181151 27061
123dc839 27062@smallexample
23181151
DJ
27063<?xml version="1.0"?>
27064<!DOCTYPE target SYSTEM "gdb-target.dtd">
1780a0ed 27065<target version="1.0">
123dc839
DJ
27066 @r{[}@var{architecture}@r{]}
27067 @r{[}@var{feature}@dots{}@r{]}
23181151 27068</target>
123dc839 27069@end smallexample
23181151
DJ
27070
27071@noindent
27072The description is generally insensitive to whitespace and line
27073breaks, under the usual common-sense rules. The XML version
27074declaration and document type declaration can generally be omitted
27075(@value{GDBN} does not require them), but specifying them may be
1780a0ed
DJ
27076useful for XML validation tools. The @samp{version} attribute for
27077@samp{<target>} may also be omitted, but we recommend
27078including it; if future versions of @value{GDBN} use an incompatible
27079revision of @file{gdb-target.dtd}, they will detect and report
27080the version mismatch.
23181151 27081
108546a0
DJ
27082@subsection Inclusion
27083@cindex target descriptions, inclusion
27084@cindex XInclude
27085@ifnotinfo
27086@cindex <xi:include>
27087@end ifnotinfo
27088
27089It can sometimes be valuable to split a target description up into
27090several different annexes, either for organizational purposes, or to
27091share files between different possible target descriptions. You can
27092divide a description into multiple files by replacing any element of
27093the target description with an inclusion directive of the form:
27094
123dc839 27095@smallexample
108546a0 27096<xi:include href="@var{document}"/>
123dc839 27097@end smallexample
108546a0
DJ
27098
27099@noindent
27100When @value{GDBN} encounters an element of this form, it will retrieve
27101the named XML @var{document}, and replace the inclusion directive with
27102the contents of that document. If the current description was read
27103using @samp{qXfer}, then so will be the included document;
27104@var{document} will be interpreted as the name of an annex. If the
27105current description was read from a file, @value{GDBN} will look for
27106@var{document} as a file in the same directory where it found the
27107original description.
27108
123dc839
DJ
27109@subsection Architecture
27110@cindex <architecture>
27111
27112An @samp{<architecture>} element has this form:
27113
27114@smallexample
27115 <architecture>@var{arch}</architecture>
27116@end smallexample
27117
27118@var{arch} is an architecture name from the same selection
27119accepted by @code{set architecture} (@pxref{Targets, ,Specifying a
27120Debugging Target}).
27121
27122@subsection Features
27123@cindex <feature>
27124
27125Each @samp{<feature>} describes some logical portion of the target
27126system. Features are currently used to describe available CPU
27127registers and the types of their contents. A @samp{<feature>} element
27128has this form:
27129
27130@smallexample
27131<feature name="@var{name}">
27132 @r{[}@var{type}@dots{}@r{]}
27133 @var{reg}@dots{}
27134</feature>
27135@end smallexample
27136
27137@noindent
27138Each feature's name should be unique within the description. The name
27139of a feature does not matter unless @value{GDBN} has some special
27140knowledge of the contents of that feature; if it does, the feature
27141should have its standard name. @xref{Standard Target Features}.
27142
27143@subsection Types
27144
27145Any register's value is a collection of bits which @value{GDBN} must
27146interpret. The default interpretation is a two's complement integer,
27147but other types can be requested by name in the register description.
27148Some predefined types are provided by @value{GDBN} (@pxref{Predefined
27149Target Types}), and the description can define additional composite types.
27150
27151Each type element must have an @samp{id} attribute, which gives
27152a unique (within the containing @samp{<feature>}) name to the type.
27153Types must be defined before they are used.
27154
27155@cindex <vector>
27156Some targets offer vector registers, which can be treated as arrays
27157of scalar elements. These types are written as @samp{<vector>} elements,
27158specifying the array element type, @var{type}, and the number of elements,
27159@var{count}:
27160
27161@smallexample
27162<vector id="@var{id}" type="@var{type}" count="@var{count}"/>
27163@end smallexample
27164
27165@cindex <union>
27166If a register's value is usefully viewed in multiple ways, define it
27167with a union type containing the useful representations. The
27168@samp{<union>} element contains one or more @samp{<field>} elements,
27169each of which has a @var{name} and a @var{type}:
27170
27171@smallexample
27172<union id="@var{id}">
27173 <field name="@var{name}" type="@var{type}"/>
27174 @dots{}
27175</union>
27176@end smallexample
27177
27178@subsection Registers
27179@cindex <reg>
27180
27181Each register is represented as an element with this form:
27182
27183@smallexample
27184<reg name="@var{name}"
27185 bitsize="@var{size}"
27186 @r{[}regnum="@var{num}"@r{]}
27187 @r{[}save-restore="@var{save-restore}"@r{]}
27188 @r{[}type="@var{type}"@r{]}
27189 @r{[}group="@var{group}"@r{]}/>
27190@end smallexample
27191
27192@noindent
27193The components are as follows:
27194
27195@table @var
27196
27197@item name
27198The register's name; it must be unique within the target description.
27199
27200@item bitsize
27201The register's size, in bits.
27202
27203@item regnum
27204The register's number. If omitted, a register's number is one greater
27205than that of the previous register (either in the current feature or in
27206a preceeding feature); the first register in the target description
27207defaults to zero. This register number is used to read or write
27208the register; e.g.@: it is used in the remote @code{p} and @code{P}
27209packets, and registers appear in the @code{g} and @code{G} packets
27210in order of increasing register number.
27211
27212@item save-restore
27213Whether the register should be preserved across inferior function
27214calls; this must be either @code{yes} or @code{no}. The default is
27215@code{yes}, which is appropriate for most registers except for
27216some system control registers; this is not related to the target's
27217ABI.
27218
27219@item type
27220The type of the register. @var{type} may be a predefined type, a type
27221defined in the current feature, or one of the special types @code{int}
27222and @code{float}. @code{int} is an integer type of the correct size
27223for @var{bitsize}, and @code{float} is a floating point type (in the
27224architecture's normal floating point format) of the correct size for
27225@var{bitsize}. The default is @code{int}.
27226
27227@item group
27228The register group to which this register belongs. @var{group} must
27229be either @code{general}, @code{float}, or @code{vector}. If no
27230@var{group} is specified, @value{GDBN} will not display the register
27231in @code{info registers}.
27232
27233@end table
27234
27235@node Predefined Target Types
27236@section Predefined Target Types
27237@cindex target descriptions, predefined types
27238
27239Type definitions in the self-description can build up composite types
27240from basic building blocks, but can not define fundamental types. Instead,
27241standard identifiers are provided by @value{GDBN} for the fundamental
27242types. The currently supported types are:
27243
27244@table @code
27245
27246@item int8
27247@itemx int16
27248@itemx int32
27249@itemx int64
7cc46491 27250@itemx int128
123dc839
DJ
27251Signed integer types holding the specified number of bits.
27252
27253@item uint8
27254@itemx uint16
27255@itemx uint32
27256@itemx uint64
7cc46491 27257@itemx uint128
123dc839
DJ
27258Unsigned integer types holding the specified number of bits.
27259
27260@item code_ptr
27261@itemx data_ptr
27262Pointers to unspecified code and data. The program counter and
27263any dedicated return address register may be marked as code
27264pointers; printing a code pointer converts it into a symbolic
27265address. The stack pointer and any dedicated address registers
27266may be marked as data pointers.
27267
6e3bbd1a
PB
27268@item ieee_single
27269Single precision IEEE floating point.
27270
27271@item ieee_double
27272Double precision IEEE floating point.
27273
123dc839
DJ
27274@item arm_fpa_ext
27275The 12-byte extended precision format used by ARM FPA registers.
27276
27277@end table
27278
27279@node Standard Target Features
27280@section Standard Target Features
27281@cindex target descriptions, standard features
27282
27283A target description must contain either no registers or all the
27284target's registers. If the description contains no registers, then
27285@value{GDBN} will assume a default register layout, selected based on
27286the architecture. If the description contains any registers, the
27287default layout will not be used; the standard registers must be
27288described in the target description, in such a way that @value{GDBN}
27289can recognize them.
27290
27291This is accomplished by giving specific names to feature elements
27292which contain standard registers. @value{GDBN} will look for features
27293with those names and verify that they contain the expected registers;
27294if any known feature is missing required registers, or if any required
27295feature is missing, @value{GDBN} will reject the target
27296description. You can add additional registers to any of the
27297standard features --- @value{GDBN} will display them just as if
27298they were added to an unrecognized feature.
27299
27300This section lists the known features and their expected contents.
27301Sample XML documents for these features are included in the
27302@value{GDBN} source tree, in the directory @file{gdb/features}.
27303
27304Names recognized by @value{GDBN} should include the name of the
27305company or organization which selected the name, and the overall
27306architecture to which the feature applies; so e.g.@: the feature
27307containing ARM core registers is named @samp{org.gnu.gdb.arm.core}.
27308
ff6f572f
DJ
27309The names of registers are not case sensitive for the purpose
27310of recognizing standard features, but @value{GDBN} will only display
27311registers using the capitalization used in the description.
27312
e9c17194
VP
27313@menu
27314* ARM Features::
1e26b4f8 27315* MIPS Features::
e9c17194 27316* M68K Features::
1e26b4f8 27317* PowerPC Features::
e9c17194
VP
27318@end menu
27319
27320
27321@node ARM Features
123dc839
DJ
27322@subsection ARM Features
27323@cindex target descriptions, ARM features
27324
27325The @samp{org.gnu.gdb.arm.core} feature is required for ARM targets.
27326It should contain registers @samp{r0} through @samp{r13}, @samp{sp},
27327@samp{lr}, @samp{pc}, and @samp{cpsr}.
27328
27329The @samp{org.gnu.gdb.arm.fpa} feature is optional. If present, it
27330should contain registers @samp{f0} through @samp{f7} and @samp{fps}.
27331
ff6f572f
DJ
27332The @samp{org.gnu.gdb.xscale.iwmmxt} feature is optional. If present,
27333it should contain at least registers @samp{wR0} through @samp{wR15} and
27334@samp{wCGR0} through @samp{wCGR3}. The @samp{wCID}, @samp{wCon},
27335@samp{wCSSF}, and @samp{wCASF} registers are optional.
23181151 27336
1e26b4f8 27337@node MIPS Features
f8b73d13
DJ
27338@subsection MIPS Features
27339@cindex target descriptions, MIPS features
27340
27341The @samp{org.gnu.gdb.mips.cpu} feature is required for MIPS targets.
27342It should contain registers @samp{r0} through @samp{r31}, @samp{lo},
27343@samp{hi}, and @samp{pc}. They may be 32-bit or 64-bit depending
27344on the target.
27345
27346The @samp{org.gnu.gdb.mips.cp0} feature is also required. It should
27347contain at least the @samp{status}, @samp{badvaddr}, and @samp{cause}
27348registers. They may be 32-bit or 64-bit depending on the target.
27349
27350The @samp{org.gnu.gdb.mips.fpu} feature is currently required, though
27351it may be optional in a future version of @value{GDBN}. It should
27352contain registers @samp{f0} through @samp{f31}, @samp{fcsr}, and
27353@samp{fir}. They may be 32-bit or 64-bit depending on the target.
27354
822b6570
DJ
27355The @samp{org.gnu.gdb.mips.linux} feature is optional. It should
27356contain a single register, @samp{restart}, which is used by the
27357Linux kernel to control restartable syscalls.
27358
e9c17194
VP
27359@node M68K Features
27360@subsection M68K Features
27361@cindex target descriptions, M68K features
27362
27363@table @code
27364@item @samp{org.gnu.gdb.m68k.core}
27365@itemx @samp{org.gnu.gdb.coldfire.core}
27366@itemx @samp{org.gnu.gdb.fido.core}
27367One of those features must be always present.
27368The feature that is present determines which flavor of m86k is
27369used. The feature that is present should contain registers
27370@samp{d0} through @samp{d7}, @samp{a0} through @samp{a5}, @samp{fp},
27371@samp{sp}, @samp{ps} and @samp{pc}.
27372
27373@item @samp{org.gnu.gdb.coldfire.fp}
27374This feature is optional. If present, it should contain registers
27375@samp{fp0} through @samp{fp7}, @samp{fpcontrol}, @samp{fpstatus} and
27376@samp{fpiaddr}.
27377@end table
27378
1e26b4f8 27379@node PowerPC Features
7cc46491
DJ
27380@subsection PowerPC Features
27381@cindex target descriptions, PowerPC features
27382
27383The @samp{org.gnu.gdb.power.core} feature is required for PowerPC
27384targets. It should contain registers @samp{r0} through @samp{r31},
27385@samp{pc}, @samp{msr}, @samp{cr}, @samp{lr}, @samp{ctr}, and
27386@samp{xer}. They may be 32-bit or 64-bit depending on the target.
27387
27388The @samp{org.gnu.gdb.power.fpu} feature is optional. It should
27389contain registers @samp{f0} through @samp{f31} and @samp{fpscr}.
27390
27391The @samp{org.gnu.gdb.power.altivec} feature is optional. It should
27392contain registers @samp{vr0} through @samp{vr31}, @samp{vscr},
27393and @samp{vrsave}.
27394
27395The @samp{org.gnu.gdb.power.spe} feature is optional. It should
27396contain registers @samp{ev0h} through @samp{ev31h}, @samp{acc}, and
27397@samp{spefscr}. SPE targets should provide 32-bit registers in
27398@samp{org.gnu.gdb.power.core} and provide the upper halves in
27399@samp{ev0h} through @samp{ev31h}. @value{GDBN} will combine
27400these to present registers @samp{ev0} through @samp{ev31} to the
27401user.
27402
aab4e0ec 27403@include gpl.texi
eb12ee30 27404
2154891a 27405@raisesections
6826cf00 27406@include fdl.texi
2154891a 27407@lowersections
6826cf00 27408
6d2ebf8b 27409@node Index
c906108c
SS
27410@unnumbered Index
27411
27412@printindex cp
27413
27414@tex
27415% I think something like @colophon should be in texinfo. In the
27416% meantime:
27417\long\def\colophon{\hbox to0pt{}\vfill
27418\centerline{The body of this manual is set in}
27419\centerline{\fontname\tenrm,}
27420\centerline{with headings in {\bf\fontname\tenbf}}
27421\centerline{and examples in {\tt\fontname\tentt}.}
27422\centerline{{\it\fontname\tenit\/},}
27423\centerline{{\bf\fontname\tenbf}, and}
27424\centerline{{\sl\fontname\tensl\/}}
27425\centerline{are used for emphasis.}\vfill}
27426\page\colophon
27427% Blame: doc@cygnus.com, 1991.
27428@end tex
27429
c906108c 27430@bye