]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/doc/gdb.texinfo
* NEWS: Mention new /m modifier for disassemble command.
[thirdparty/binutils-gdb.git] / gdb / doc / gdb.texinfo
CommitLineData
c906108c 1\input texinfo @c -*-texinfo-*-
c02a867d 2@c Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
b620eb07 3@c 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
c906108c
SS
4@c Free Software Foundation, Inc.
5@c
5d161b24 6@c %**start of header
c906108c
SS
7@c makeinfo ignores cmds prev to setfilename, so its arg cannot make use
8@c of @set vars. However, you can override filename with makeinfo -o.
9@setfilename gdb.info
10@c
11@include gdb-cfg.texi
12@c
c906108c 13@settitle Debugging with @value{GDBN}
c906108c
SS
14@setchapternewpage odd
15@c %**end of header
16
17@iftex
18@c @smallbook
19@c @cropmarks
20@end iftex
21
22@finalout
23@syncodeindex ky cp
24
41afff9a 25@c readline appendices use @vindex, @findex and @ftable,
48e934c6 26@c annotate.texi and gdbmi use @findex.
c906108c 27@syncodeindex vr cp
41afff9a 28@syncodeindex fn cp
c906108c
SS
29
30@c !!set GDB manual's edition---not the same as GDB version!
9fe8321b 31@c This is updated by GNU Press.
e9c75b65 32@set EDITION Ninth
c906108c 33
87885426
FN
34@c !!set GDB edit command default editor
35@set EDITOR /bin/ex
c906108c 36
6c0e9fb3 37@c THIS MANUAL REQUIRES TEXINFO 4.0 OR LATER.
c906108c 38
c906108c 39@c This is a dir.info fragment to support semi-automated addition of
6d2ebf8b 40@c manuals to an info tree.
03727ca6 41@dircategory Software development
96a2c332 42@direntry
03727ca6 43* Gdb: (gdb). The GNU debugger.
96a2c332
SS
44@end direntry
45
c906108c
SS
46@ifinfo
47This file documents the @sc{gnu} debugger @value{GDBN}.
48
49
9fe8321b
AC
50This is the @value{EDITION} Edition, of @cite{Debugging with
51@value{GDBN}: the @sc{gnu} Source-Level Debugger} for @value{GDBN}
52Version @value{GDBVN}.
c906108c 53
8a037dd7 54Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,@*
b620eb07 55 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006@*
7d51c7de 56 Free Software Foundation, Inc.
c906108c 57
e9c75b65
EZ
58Permission is granted to copy, distribute and/or modify this document
59under the terms of the GNU Free Documentation License, Version 1.1 or
60any later version published by the Free Software Foundation; with the
959acfd1
EZ
61Invariant Sections being ``Free Software'' and ``Free Software Needs
62Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
63and with the Back-Cover Texts as in (a) below.
c906108c 64
b8533aec
DJ
65(a) The FSF's Back-Cover Text is: ``You are free to copy and modify
66this GNU Manual. Buying copies from GNU Press supports the FSF in
67developing GNU and promoting software freedom.''
c906108c
SS
68@end ifinfo
69
70@titlepage
71@title Debugging with @value{GDBN}
72@subtitle The @sc{gnu} Source-Level Debugger
c906108c 73@sp 1
c906108c 74@subtitle @value{EDITION} Edition, for @value{GDBN} version @value{GDBVN}
9e9c5ae7 75@author Richard Stallman, Roland Pesch, Stan Shebs, et al.
c906108c 76@page
c906108c
SS
77@tex
78{\parskip=0pt
53a5351d 79\hfill (Send bugs and comments on @value{GDBN} to bug-gdb\@gnu.org.)\par
c906108c
SS
80\hfill {\it Debugging with @value{GDBN}}\par
81\hfill \TeX{}info \texinfoversion\par
82}
83@end tex
53a5351d 84
c906108c 85@vskip 0pt plus 1filll
8a037dd7 86Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
b620eb07 871996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2006
7d51c7de 88Free Software Foundation, Inc.
c906108c 89@sp 2
c906108c 90Published by the Free Software Foundation @*
c02a867d
EZ
9151 Franklin Street, Fifth Floor,
92Boston, MA 02110-1301, USA@*
6d2ebf8b 93ISBN 1-882114-77-9 @*
e9c75b65
EZ
94
95Permission is granted to copy, distribute and/or modify this document
96under the terms of the GNU Free Documentation License, Version 1.1 or
97any later version published by the Free Software Foundation; with the
959acfd1
EZ
98Invariant Sections being ``Free Software'' and ``Free Software Needs
99Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
100and with the Back-Cover Texts as in (a) below.
e9c75b65 101
b8533aec
DJ
102(a) The FSF's Back-Cover Text is: ``You are free to copy and modify
103this GNU Manual. Buying copies from GNU Press supports the FSF in
104developing GNU and promoting software freedom.''
3fb6a982
JB
105@page
106This edition of the GDB manual is dedicated to the memory of Fred
107Fish. Fred was a long-standing contributor to GDB and to Free
108software in general. We will miss him.
c906108c
SS
109@end titlepage
110@page
111
6c0e9fb3 112@ifnottex
6d2ebf8b
SS
113@node Top, Summary, (dir), (dir)
114
c906108c
SS
115@top Debugging with @value{GDBN}
116
117This file describes @value{GDBN}, the @sc{gnu} symbolic debugger.
118
9fe8321b 119This is the @value{EDITION} Edition, for @value{GDBN} Version
c906108c
SS
120@value{GDBVN}.
121
b620eb07 122Copyright (C) 1988-2006 Free Software Foundation, Inc.
6d2ebf8b 123
3fb6a982
JB
124This edition of the GDB manual is dedicated to the memory of Fred
125Fish. Fred was a long-standing contributor to GDB and to Free
126software in general. We will miss him.
127
6d2ebf8b
SS
128@menu
129* Summary:: Summary of @value{GDBN}
130* Sample Session:: A sample @value{GDBN} session
131
132* Invocation:: Getting in and out of @value{GDBN}
133* Commands:: @value{GDBN} commands
134* Running:: Running programs under @value{GDBN}
135* Stopping:: Stopping and continuing
136* Stack:: Examining the stack
137* Source:: Examining source files
138* Data:: Examining data
e2e0bcd1 139* Macros:: Preprocessor Macros
b37052ae 140* Tracepoints:: Debugging remote targets non-intrusively
df0cd8c5 141* Overlays:: Debugging programs that use overlays
6d2ebf8b
SS
142
143* Languages:: Using @value{GDBN} with different languages
144
145* Symbols:: Examining the symbol table
146* Altering:: Altering execution
147* GDB Files:: @value{GDBN} files
148* Targets:: Specifying a debugging target
6b2f586d 149* Remote Debugging:: Debugging remote programs
6d2ebf8b
SS
150* Configurations:: Configuration-specific information
151* Controlling GDB:: Controlling @value{GDBN}
152* Sequences:: Canned sequences of commands
21c294e6 153* Interpreters:: Command Interpreters
c8f4133a 154* TUI:: @value{GDBN} Text User Interface
6d2ebf8b 155* Emacs:: Using @value{GDBN} under @sc{gnu} Emacs
7162c0ca 156* GDB/MI:: @value{GDBN}'s Machine Interface.
c8f4133a 157* Annotations:: @value{GDBN}'s annotation interface.
6d2ebf8b
SS
158
159* GDB Bugs:: Reporting bugs in @value{GDBN}
6d2ebf8b
SS
160
161* Command Line Editing:: Command Line Editing
162* Using History Interactively:: Using History Interactively
0869d01b 163* Formatting Documentation:: How to format and print @value{GDBN} documentation
6d2ebf8b 164* Installing GDB:: Installing GDB
eb12ee30 165* Maintenance Commands:: Maintenance Commands
e0ce93ac 166* Remote Protocol:: GDB Remote Serial Protocol
f418dd93 167* Agent Expressions:: The GDB Agent Expression Mechanism
23181151
DJ
168* Target Descriptions:: How targets can describe themselves to
169 @value{GDBN}
aab4e0ec
AC
170* Copying:: GNU General Public License says
171 how you can copy and share GDB
6826cf00 172* GNU Free Documentation License:: The license for this documentation
6d2ebf8b
SS
173* Index:: Index
174@end menu
175
6c0e9fb3 176@end ifnottex
c906108c 177
449f3b6c 178@contents
449f3b6c 179
6d2ebf8b 180@node Summary
c906108c
SS
181@unnumbered Summary of @value{GDBN}
182
183The purpose of a debugger such as @value{GDBN} is to allow you to see what is
184going on ``inside'' another program while it executes---or what another
185program was doing at the moment it crashed.
186
187@value{GDBN} can do four main kinds of things (plus other things in support of
188these) to help you catch bugs in the act:
189
190@itemize @bullet
191@item
192Start your program, specifying anything that might affect its behavior.
193
194@item
195Make your program stop on specified conditions.
196
197@item
198Examine what has happened, when your program has stopped.
199
200@item
201Change things in your program, so you can experiment with correcting the
202effects of one bug and go on to learn about another.
203@end itemize
204
49efadf5 205You can use @value{GDBN} to debug programs written in C and C@t{++}.
79a6e687 206For more information, see @ref{Supported Languages,,Supported Languages}.
c906108c
SS
207For more information, see @ref{C,,C and C++}.
208
cce74817 209@cindex Modula-2
e632838e
AC
210Support for Modula-2 is partial. For information on Modula-2, see
211@ref{Modula-2,,Modula-2}.
c906108c 212
cce74817
JM
213@cindex Pascal
214Debugging Pascal programs which use sets, subranges, file variables, or
215nested functions does not currently work. @value{GDBN} does not support
216entering expressions, printing values, or similar features using Pascal
217syntax.
c906108c 218
c906108c
SS
219@cindex Fortran
220@value{GDBN} can be used to debug programs written in Fortran, although
53a5351d 221it may be necessary to refer to some variables with a trailing
cce74817 222underscore.
c906108c 223
b37303ee
AF
224@value{GDBN} can be used to debug programs written in Objective-C,
225using either the Apple/NeXT or the GNU Objective-C runtime.
226
c906108c
SS
227@menu
228* Free Software:: Freely redistributable software
229* Contributors:: Contributors to GDB
230@end menu
231
6d2ebf8b 232@node Free Software
79a6e687 233@unnumberedsec Free Software
c906108c 234
5d161b24 235@value{GDBN} is @dfn{free software}, protected by the @sc{gnu}
c906108c
SS
236General Public License
237(GPL). The GPL gives you the freedom to copy or adapt a licensed
238program---but every person getting a copy also gets with it the
239freedom to modify that copy (which means that they must get access to
240the source code), and the freedom to distribute further copies.
241Typical software companies use copyrights to limit your freedoms; the
242Free Software Foundation uses the GPL to preserve these freedoms.
243
244Fundamentally, the General Public License is a license which says that
245you have these freedoms and that you cannot take these freedoms away
246from anyone else.
247
2666264b 248@unnumberedsec Free Software Needs Free Documentation
959acfd1
EZ
249
250The biggest deficiency in the free software community today is not in
251the software---it is the lack of good free documentation that we can
252include with the free software. Many of our most important
253programs do not come with free reference manuals and free introductory
254texts. Documentation is an essential part of any software package;
255when an important free software package does not come with a free
256manual and a free tutorial, that is a major gap. We have many such
257gaps today.
258
259Consider Perl, for instance. The tutorial manuals that people
260normally use are non-free. How did this come about? Because the
261authors of those manuals published them with restrictive terms---no
262copying, no modification, source files not available---which exclude
263them from the free software world.
264
265That wasn't the first time this sort of thing happened, and it was far
266from the last. Many times we have heard a GNU user eagerly describe a
267manual that he is writing, his intended contribution to the community,
268only to learn that he had ruined everything by signing a publication
269contract to make it non-free.
270
271Free documentation, like free software, is a matter of freedom, not
272price. The problem with the non-free manual is not that publishers
273charge a price for printed copies---that in itself is fine. (The Free
274Software Foundation sells printed copies of manuals, too.) The
275problem is the restrictions on the use of the manual. Free manuals
276are available in source code form, and give you permission to copy and
277modify. Non-free manuals do not allow this.
278
279The criteria of freedom for a free manual are roughly the same as for
280free software. Redistribution (including the normal kinds of
281commercial redistribution) must be permitted, so that the manual can
282accompany every copy of the program, both on-line and on paper.
283
284Permission for modification of the technical content is crucial too.
285When people modify the software, adding or changing features, if they
286are conscientious they will change the manual too---so they can
287provide accurate and clear documentation for the modified program. A
288manual that leaves you no choice but to write a new manual to document
289a changed version of the program is not really available to our
290community.
291
292Some kinds of limits on the way modification is handled are
293acceptable. For example, requirements to preserve the original
294author's copyright notice, the distribution terms, or the list of
295authors, are ok. It is also no problem to require modified versions
296to include notice that they were modified. Even entire sections that
297may not be deleted or changed are acceptable, as long as they deal
298with nontechnical topics (like this one). These kinds of restrictions
299are acceptable because they don't obstruct the community's normal use
300of the manual.
301
302However, it must be possible to modify all the @emph{technical}
303content of the manual, and then distribute the result in all the usual
304media, through all the usual channels. Otherwise, the restrictions
305obstruct the use of the manual, it is not free, and we need another
306manual to replace it.
307
308Please spread the word about this issue. Our community continues to
309lose manuals to proprietary publishing. If we spread the word that
310free software needs free reference manuals and free tutorials, perhaps
311the next person who wants to contribute by writing documentation will
312realize, before it is too late, that only free manuals contribute to
313the free software community.
314
315If you are writing documentation, please insist on publishing it under
316the GNU Free Documentation License or another free documentation
317license. Remember that this decision requires your approval---you
318don't have to let the publisher decide. Some commercial publishers
319will use a free license if you insist, but they will not propose the
320option; it is up to you to raise the issue and say firmly that this is
321what you want. If the publisher you are dealing with refuses, please
322try other publishers. If you're not sure whether a proposed license
42584a72 323is free, write to @email{licensing@@gnu.org}.
959acfd1
EZ
324
325You can encourage commercial publishers to sell more free, copylefted
326manuals and tutorials by buying them, and particularly by buying
327copies from the publishers that paid for their writing or for major
328improvements. Meanwhile, try to avoid buying non-free documentation
329at all. Check the distribution terms of a manual before you buy it,
330and insist that whoever seeks your business must respect your freedom.
72c9928d
EZ
331Check the history of the book, and try to reward the publishers that
332have paid or pay the authors to work on it.
959acfd1
EZ
333
334The Free Software Foundation maintains a list of free documentation
335published by other publishers, at
336@url{http://www.fsf.org/doc/other-free-books.html}.
337
6d2ebf8b 338@node Contributors
96a2c332
SS
339@unnumberedsec Contributors to @value{GDBN}
340
341Richard Stallman was the original author of @value{GDBN}, and of many
342other @sc{gnu} programs. Many others have contributed to its
343development. This section attempts to credit major contributors. One
344of the virtues of free software is that everyone is free to contribute
345to it; with regret, we cannot actually acknowledge everyone here. The
346file @file{ChangeLog} in the @value{GDBN} distribution approximates a
c906108c
SS
347blow-by-blow account.
348
349Changes much prior to version 2.0 are lost in the mists of time.
350
351@quotation
352@emph{Plea:} Additions to this section are particularly welcome. If you
353or your friends (or enemies, to be evenhanded) have been unfairly
354omitted from this list, we would like to add your names!
355@end quotation
356
357So that they may not regard their many labors as thankless, we
358particularly thank those who shepherded @value{GDBN} through major
359releases:
7ba3cf9c 360Andrew Cagney (releases 6.3, 6.2, 6.1, 6.0, 5.3, 5.2, 5.1 and 5.0);
c906108c
SS
361Jim Blandy (release 4.18);
362Jason Molenda (release 4.17);
363Stan Shebs (release 4.14);
364Fred Fish (releases 4.16, 4.15, 4.13, 4.12, 4.11, 4.10, and 4.9);
365Stu Grossman and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, and 4.4);
366John Gilmore (releases 4.3, 4.2, 4.1, 4.0, and 3.9);
367Jim Kingdon (releases 3.5, 3.4, and 3.3);
368and Randy Smith (releases 3.2, 3.1, and 3.0).
369
370Richard Stallman, assisted at various times by Peter TerMaat, Chris
371Hanson, and Richard Mlynarik, handled releases through 2.8.
372
b37052ae
EZ
373Michael Tiemann is the author of most of the @sc{gnu} C@t{++} support
374in @value{GDBN}, with significant additional contributions from Per
375Bothner and Daniel Berlin. James Clark wrote the @sc{gnu} C@t{++}
376demangler. Early work on C@t{++} was by Peter TerMaat (who also did
377much general update work leading to release 3.0).
c906108c 378
b37052ae 379@value{GDBN} uses the BFD subroutine library to examine multiple
c906108c
SS
380object-file formats; BFD was a joint project of David V.
381Henkel-Wallace, Rich Pixley, Steve Chamberlain, and John Gilmore.
382
383David Johnson wrote the original COFF support; Pace Willison did
384the original support for encapsulated COFF.
385
0179ffac 386Brent Benson of Harris Computer Systems contributed DWARF 2 support.
c906108c
SS
387
388Adam de Boor and Bradley Davis contributed the ISI Optimum V support.
389Per Bothner, Noboyuki Hikichi, and Alessandro Forin contributed MIPS
390support.
391Jean-Daniel Fekete contributed Sun 386i support.
392Chris Hanson improved the HP9000 support.
393Noboyuki Hikichi and Tomoyuki Hasei contributed Sony/News OS 3 support.
394David Johnson contributed Encore Umax support.
395Jyrki Kuoppala contributed Altos 3068 support.
396Jeff Law contributed HP PA and SOM support.
397Keith Packard contributed NS32K support.
398Doug Rabson contributed Acorn Risc Machine support.
399Bob Rusk contributed Harris Nighthawk CX-UX support.
400Chris Smith contributed Convex support (and Fortran debugging).
401Jonathan Stone contributed Pyramid support.
402Michael Tiemann contributed SPARC support.
403Tim Tucker contributed support for the Gould NP1 and Gould Powernode.
404Pace Willison contributed Intel 386 support.
405Jay Vosburgh contributed Symmetry support.
a37295f9 406Marko Mlinar contributed OpenRISC 1000 support.
c906108c 407
1104b9e7 408Andreas Schwab contributed M68K @sc{gnu}/Linux support.
c906108c
SS
409
410Rich Schaefer and Peter Schauer helped with support of SunOS shared
411libraries.
412
413Jay Fenlason and Roland McGrath ensured that @value{GDBN} and GAS agree
414about several machine instruction sets.
415
416Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop
417remote debugging. Intel Corporation, Wind River Systems, AMD, and ARM
418contributed remote debugging modules for the i960, VxWorks, A29K UDI,
419and RDI targets, respectively.
420
421Brian Fox is the author of the readline libraries providing
422command-line editing and command history.
423
7a292a7a
SS
424Andrew Beers of SUNY Buffalo wrote the language-switching code, the
425Modula-2 support, and contributed the Languages chapter of this manual.
c906108c 426
5d161b24 427Fred Fish wrote most of the support for Unix System Vr4.
b37052ae 428He also enhanced the command-completion support to cover C@t{++} overloaded
c906108c 429symbols.
c906108c 430
f24c5e49
KI
431Hitachi America (now Renesas America), Ltd. sponsored the support for
432H8/300, H8/500, and Super-H processors.
c906108c
SS
433
434NEC sponsored the support for the v850, Vr4xxx, and Vr5xxx processors.
435
f24c5e49
KI
436Mitsubishi (now Renesas) sponsored the support for D10V, D30V, and M32R/D
437processors.
c906108c
SS
438
439Toshiba sponsored the support for the TX39 Mips processor.
440
441Matsushita sponsored the support for the MN10200 and MN10300 processors.
442
96a2c332 443Fujitsu sponsored the support for SPARClite and FR30 processors.
c906108c
SS
444
445Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware
446watchpoints.
447
448Michael Snyder added support for tracepoints.
449
450Stu Grossman wrote gdbserver.
451
452Jim Kingdon, Peter Schauer, Ian Taylor, and Stu Grossman made
96a2c332 453nearly innumerable bug fixes and cleanups throughout @value{GDBN}.
c906108c
SS
454
455The following people at the Hewlett-Packard Company contributed
456support for the PA-RISC 2.0 architecture, HP-UX 10.20, 10.30, and 11.0
b37052ae 457(narrow mode), HP's implementation of kernel threads, HP's aC@t{++}
d0d5df6f
AC
458compiler, and the Text User Interface (nee Terminal User Interface):
459Ben Krepp, Richard Title, John Bishop, Susan Macchia, Kathy Mann,
460Satish Pai, India Paul, Steve Rehrauer, and Elena Zannoni. Kim Haase
461provided HP-specific information in this manual.
c906108c 462
b37052ae
EZ
463DJ Delorie ported @value{GDBN} to MS-DOS, for the DJGPP project.
464Robert Hoehne made significant contributions to the DJGPP port.
465
96a2c332
SS
466Cygnus Solutions has sponsored @value{GDBN} maintenance and much of its
467development since 1991. Cygnus engineers who have worked on @value{GDBN}
2df3850c
JM
468fulltime include Mark Alexander, Jim Blandy, Per Bothner, Kevin
469Buettner, Edith Epstein, Chris Faylor, Fred Fish, Martin Hunt, Jim
470Ingham, John Gilmore, Stu Grossman, Kung Hsu, Jim Kingdon, John Metzler,
471Fernando Nasser, Geoffrey Noer, Dawn Perchik, Rich Pixley, Zdenek
472Radouch, Keith Seitz, Stan Shebs, David Taylor, and Elena Zannoni. In
473addition, Dave Brolley, Ian Carmichael, Steve Chamberlain, Nick Clifton,
474JT Conklin, Stan Cox, DJ Delorie, Ulrich Drepper, Frank Eigler, Doug
475Evans, Sean Fagan, David Henkel-Wallace, Richard Henderson, Jeff
476Holcomb, Jeff Law, Jim Lemke, Tom Lord, Bob Manson, Michael Meissner,
477Jason Merrill, Catherine Moore, Drew Moseley, Ken Raeburn, Gavin
478Romig-Koch, Rob Savoye, Jamie Smith, Mike Stump, Ian Taylor, Angela
479Thomas, Michael Tiemann, Tom Tromey, Ron Unrau, Jim Wilson, and David
480Zuhn have made contributions both large and small.
c906108c 481
ffed4509
AC
482Andrew Cagney, Fernando Nasser, and Elena Zannoni, while working for
483Cygnus Solutions, implemented the original @sc{gdb/mi} interface.
484
e2e0bcd1
JB
485Jim Blandy added support for preprocessor macros, while working for Red
486Hat.
c906108c 487
a9967aef
AC
488Andrew Cagney designed @value{GDBN}'s architecture vector. Many
489people including Andrew Cagney, Stephane Carrez, Randolph Chung, Nick
490Duffek, Richard Henderson, Mark Kettenis, Grace Sainsbury, Kei
491Sakamoto, Yoshinori Sato, Michael Snyder, Andreas Schwab, Jason
492Thorpe, Corinna Vinschen, Ulrich Weigand, and Elena Zannoni, helped
493with the migration of old architectures to this new framework.
494
c5e30d01
AC
495Andrew Cagney completely re-designed and re-implemented @value{GDBN}'s
496unwinder framework, this consisting of a fresh new design featuring
497frame IDs, independent frame sniffers, and the sentinel frame. Mark
498Kettenis implemented the @sc{dwarf 2} unwinder, Jeff Johnston the
499libunwind unwinder, and Andrew Cagney the dummy, sentinel, tramp, and
db2e3e2e 500trad unwinders. The architecture-specific changes, each involving a
c5e30d01
AC
501complete rewrite of the architecture's frame code, were carried out by
502Jim Blandy, Joel Brobecker, Kevin Buettner, Andrew Cagney, Stephane
503Carrez, Randolph Chung, Orjan Friberg, Richard Henderson, Daniel
504Jacobowitz, Jeff Johnston, Mark Kettenis, Theodore A. Roth, Kei
505Sakamoto, Yoshinori Sato, Michael Snyder, Corinna Vinschen, and Ulrich
506Weigand.
507
ca3bf3bd
DJ
508Christian Zankel, Ross Morley, Bob Wilson, and Maxim Grigoriev from
509Tensilica, Inc.@: contributed support for Xtensa processors. Others
510who have worked on the Xtensa port of @value{GDBN} in the past include
511Steve Tjiang, John Newlin, and Scott Foehner.
512
6d2ebf8b 513@node Sample Session
c906108c
SS
514@chapter A Sample @value{GDBN} Session
515
516You can use this manual at your leisure to read all about @value{GDBN}.
517However, a handful of commands are enough to get started using the
518debugger. This chapter illustrates those commands.
519
520@iftex
521In this sample session, we emphasize user input like this: @b{input},
522to make it easier to pick out from the surrounding output.
523@end iftex
524
525@c FIXME: this example may not be appropriate for some configs, where
526@c FIXME...primary interest is in remote use.
527
528One of the preliminary versions of @sc{gnu} @code{m4} (a generic macro
529processor) exhibits the following bug: sometimes, when we change its
530quote strings from the default, the commands used to capture one macro
531definition within another stop working. In the following short @code{m4}
532session, we define a macro @code{foo} which expands to @code{0000}; we
533then use the @code{m4} built-in @code{defn} to define @code{bar} as the
534same thing. However, when we change the open quote string to
535@code{<QUOTE>} and the close quote string to @code{<UNQUOTE>}, the same
536procedure fails to define a new synonym @code{baz}:
537
538@smallexample
539$ @b{cd gnu/m4}
540$ @b{./m4}
541@b{define(foo,0000)}
542
543@b{foo}
5440000
545@b{define(bar,defn(`foo'))}
546
547@b{bar}
5480000
549@b{changequote(<QUOTE>,<UNQUOTE>)}
550
551@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
552@b{baz}
c8aa23ab 553@b{Ctrl-d}
c906108c
SS
554m4: End of input: 0: fatal error: EOF in string
555@end smallexample
556
557@noindent
558Let us use @value{GDBN} to try to see what is going on.
559
c906108c
SS
560@smallexample
561$ @b{@value{GDBP} m4}
562@c FIXME: this falsifies the exact text played out, to permit smallbook
563@c FIXME... format to come out better.
564@value{GDBN} is free software and you are welcome to distribute copies
5d161b24 565 of it under certain conditions; type "show copying" to see
c906108c 566 the conditions.
5d161b24 567There is absolutely no warranty for @value{GDBN}; type "show warranty"
c906108c
SS
568 for details.
569
570@value{GDBN} @value{GDBVN}, Copyright 1999 Free Software Foundation, Inc...
571(@value{GDBP})
572@end smallexample
c906108c
SS
573
574@noindent
575@value{GDBN} reads only enough symbol data to know where to find the
576rest when needed; as a result, the first prompt comes up very quickly.
577We now tell @value{GDBN} to use a narrower display width than usual, so
578that examples fit in this manual.
579
580@smallexample
581(@value{GDBP}) @b{set width 70}
582@end smallexample
583
584@noindent
585We need to see how the @code{m4} built-in @code{changequote} works.
586Having looked at the source, we know the relevant subroutine is
587@code{m4_changequote}, so we set a breakpoint there with the @value{GDBN}
588@code{break} command.
589
590@smallexample
591(@value{GDBP}) @b{break m4_changequote}
592Breakpoint 1 at 0x62f4: file builtin.c, line 879.
593@end smallexample
594
595@noindent
596Using the @code{run} command, we start @code{m4} running under @value{GDBN}
597control; as long as control does not reach the @code{m4_changequote}
598subroutine, the program runs as usual:
599
600@smallexample
601(@value{GDBP}) @b{run}
602Starting program: /work/Editorial/gdb/gnu/m4/m4
603@b{define(foo,0000)}
604
605@b{foo}
6060000
607@end smallexample
608
609@noindent
610To trigger the breakpoint, we call @code{changequote}. @value{GDBN}
611suspends execution of @code{m4}, displaying information about the
612context where it stops.
613
614@smallexample
615@b{changequote(<QUOTE>,<UNQUOTE>)}
616
5d161b24 617Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)
c906108c
SS
618 at builtin.c:879
619879 if (bad_argc(TOKEN_DATA_TEXT(argv[0]),argc,1,3))
620@end smallexample
621
622@noindent
623Now we use the command @code{n} (@code{next}) to advance execution to
624the next line of the current function.
625
626@smallexample
627(@value{GDBP}) @b{n}
628882 set_quotes((argc >= 2) ? TOKEN_DATA_TEXT(argv[1])\
629 : nil,
630@end smallexample
631
632@noindent
633@code{set_quotes} looks like a promising subroutine. We can go into it
634by using the command @code{s} (@code{step}) instead of @code{next}.
635@code{step} goes to the next line to be executed in @emph{any}
636subroutine, so it steps into @code{set_quotes}.
637
638@smallexample
639(@value{GDBP}) @b{s}
640set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
641 at input.c:530
642530 if (lquote != def_lquote)
643@end smallexample
644
645@noindent
646The display that shows the subroutine where @code{m4} is now
647suspended (and its arguments) is called a stack frame display. It
648shows a summary of the stack. We can use the @code{backtrace}
649command (which can also be spelled @code{bt}), to see where we are
650in the stack as a whole: the @code{backtrace} command displays a
651stack frame for each active subroutine.
652
653@smallexample
654(@value{GDBP}) @b{bt}
655#0 set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
656 at input.c:530
5d161b24 657#1 0x6344 in m4_changequote (argc=3, argv=0x33c70)
c906108c
SS
658 at builtin.c:882
659#2 0x8174 in expand_macro (sym=0x33320) at macro.c:242
660#3 0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)
661 at macro.c:71
662#4 0x79dc in expand_input () at macro.c:40
663#5 0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195
664@end smallexample
665
666@noindent
667We step through a few more lines to see what happens. The first two
668times, we can use @samp{s}; the next two times we use @code{n} to avoid
669falling into the @code{xstrdup} subroutine.
670
671@smallexample
672(@value{GDBP}) @b{s}
6730x3b5c 532 if (rquote != def_rquote)
674(@value{GDBP}) @b{s}
6750x3b80 535 lquote = (lq == nil || *lq == '\0') ? \
676def_lquote : xstrdup(lq);
677(@value{GDBP}) @b{n}
678536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
679 : xstrdup(rq);
680(@value{GDBP}) @b{n}
681538 len_lquote = strlen(rquote);
682@end smallexample
683
684@noindent
685The last line displayed looks a little odd; we can examine the variables
686@code{lquote} and @code{rquote} to see if they are in fact the new left
687and right quotes we specified. We use the command @code{p}
688(@code{print}) to see their values.
689
690@smallexample
691(@value{GDBP}) @b{p lquote}
692$1 = 0x35d40 "<QUOTE>"
693(@value{GDBP}) @b{p rquote}
694$2 = 0x35d50 "<UNQUOTE>"
695@end smallexample
696
697@noindent
698@code{lquote} and @code{rquote} are indeed the new left and right quotes.
699To look at some context, we can display ten lines of source
700surrounding the current line with the @code{l} (@code{list}) command.
701
702@smallexample
703(@value{GDBP}) @b{l}
704533 xfree(rquote);
705534
706535 lquote = (lq == nil || *lq == '\0') ? def_lquote\
707 : xstrdup (lq);
708536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
709 : xstrdup (rq);
710537
711538 len_lquote = strlen(rquote);
712539 len_rquote = strlen(lquote);
713540 @}
714541
715542 void
716@end smallexample
717
718@noindent
719Let us step past the two lines that set @code{len_lquote} and
720@code{len_rquote}, and then examine the values of those variables.
721
722@smallexample
723(@value{GDBP}) @b{n}
724539 len_rquote = strlen(lquote);
725(@value{GDBP}) @b{n}
726540 @}
727(@value{GDBP}) @b{p len_lquote}
728$3 = 9
729(@value{GDBP}) @b{p len_rquote}
730$4 = 7
731@end smallexample
732
733@noindent
734That certainly looks wrong, assuming @code{len_lquote} and
735@code{len_rquote} are meant to be the lengths of @code{lquote} and
736@code{rquote} respectively. We can set them to better values using
737the @code{p} command, since it can print the value of
738any expression---and that expression can include subroutine calls and
739assignments.
740
741@smallexample
742(@value{GDBP}) @b{p len_lquote=strlen(lquote)}
743$5 = 7
744(@value{GDBP}) @b{p len_rquote=strlen(rquote)}
745$6 = 9
746@end smallexample
747
748@noindent
749Is that enough to fix the problem of using the new quotes with the
750@code{m4} built-in @code{defn}? We can allow @code{m4} to continue
751executing with the @code{c} (@code{continue}) command, and then try the
752example that caused trouble initially:
753
754@smallexample
755(@value{GDBP}) @b{c}
756Continuing.
757
758@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
759
760baz
7610000
762@end smallexample
763
764@noindent
765Success! The new quotes now work just as well as the default ones. The
766problem seems to have been just the two typos defining the wrong
767lengths. We allow @code{m4} exit by giving it an EOF as input:
768
769@smallexample
c8aa23ab 770@b{Ctrl-d}
c906108c
SS
771Program exited normally.
772@end smallexample
773
774@noindent
775The message @samp{Program exited normally.} is from @value{GDBN}; it
776indicates @code{m4} has finished executing. We can end our @value{GDBN}
777session with the @value{GDBN} @code{quit} command.
778
779@smallexample
780(@value{GDBP}) @b{quit}
781@end smallexample
c906108c 782
6d2ebf8b 783@node Invocation
c906108c
SS
784@chapter Getting In and Out of @value{GDBN}
785
786This chapter discusses how to start @value{GDBN}, and how to get out of it.
5d161b24 787The essentials are:
c906108c 788@itemize @bullet
5d161b24 789@item
53a5351d 790type @samp{@value{GDBP}} to start @value{GDBN}.
5d161b24 791@item
c8aa23ab 792type @kbd{quit} or @kbd{Ctrl-d} to exit.
c906108c
SS
793@end itemize
794
795@menu
796* Invoking GDB:: How to start @value{GDBN}
797* Quitting GDB:: How to quit @value{GDBN}
798* Shell Commands:: How to use shell commands inside @value{GDBN}
79a6e687 799* Logging Output:: How to log @value{GDBN}'s output to a file
c906108c
SS
800@end menu
801
6d2ebf8b 802@node Invoking GDB
c906108c
SS
803@section Invoking @value{GDBN}
804
c906108c
SS
805Invoke @value{GDBN} by running the program @code{@value{GDBP}}. Once started,
806@value{GDBN} reads commands from the terminal until you tell it to exit.
807
808You can also run @code{@value{GDBP}} with a variety of arguments and options,
809to specify more of your debugging environment at the outset.
810
c906108c
SS
811The command-line options described here are designed
812to cover a variety of situations; in some environments, some of these
5d161b24 813options may effectively be unavailable.
c906108c
SS
814
815The most usual way to start @value{GDBN} is with one argument,
816specifying an executable program:
817
474c8240 818@smallexample
c906108c 819@value{GDBP} @var{program}
474c8240 820@end smallexample
c906108c 821
c906108c
SS
822@noindent
823You can also start with both an executable program and a core file
824specified:
825
474c8240 826@smallexample
c906108c 827@value{GDBP} @var{program} @var{core}
474c8240 828@end smallexample
c906108c
SS
829
830You can, instead, specify a process ID as a second argument, if you want
831to debug a running process:
832
474c8240 833@smallexample
c906108c 834@value{GDBP} @var{program} 1234
474c8240 835@end smallexample
c906108c
SS
836
837@noindent
838would attach @value{GDBN} to process @code{1234} (unless you also have a file
839named @file{1234}; @value{GDBN} does check for a core file first).
840
c906108c 841Taking advantage of the second command-line argument requires a fairly
2df3850c
JM
842complete operating system; when you use @value{GDBN} as a remote
843debugger attached to a bare board, there may not be any notion of
844``process'', and there is often no way to get a core dump. @value{GDBN}
845will warn you if it is unable to attach or to read core dumps.
c906108c 846
aa26fa3a
TT
847You can optionally have @code{@value{GDBP}} pass any arguments after the
848executable file to the inferior using @code{--args}. This option stops
849option processing.
474c8240 850@smallexample
3f94c067 851@value{GDBP} --args gcc -O2 -c foo.c
474c8240 852@end smallexample
aa26fa3a
TT
853This will cause @code{@value{GDBP}} to debug @code{gcc}, and to set
854@code{gcc}'s command-line arguments (@pxref{Arguments}) to @samp{-O2 -c foo.c}.
855
96a2c332 856You can run @code{@value{GDBP}} without printing the front material, which describes
c906108c
SS
857@value{GDBN}'s non-warranty, by specifying @code{-silent}:
858
859@smallexample
860@value{GDBP} -silent
861@end smallexample
862
863@noindent
864You can further control how @value{GDBN} starts up by using command-line
865options. @value{GDBN} itself can remind you of the options available.
866
867@noindent
868Type
869
474c8240 870@smallexample
c906108c 871@value{GDBP} -help
474c8240 872@end smallexample
c906108c
SS
873
874@noindent
875to display all available options and briefly describe their use
876(@samp{@value{GDBP} -h} is a shorter equivalent).
877
878All options and command line arguments you give are processed
879in sequential order. The order makes a difference when the
880@samp{-x} option is used.
881
882
883@menu
c906108c
SS
884* File Options:: Choosing files
885* Mode Options:: Choosing modes
6fc08d32 886* Startup:: What @value{GDBN} does during startup
c906108c
SS
887@end menu
888
6d2ebf8b 889@node File Options
79a6e687 890@subsection Choosing Files
c906108c 891
2df3850c 892When @value{GDBN} starts, it reads any arguments other than options as
c906108c
SS
893specifying an executable file and core file (or process ID). This is
894the same as if the arguments were specified by the @samp{-se} and
d52fb0e9 895@samp{-c} (or @samp{-p}) options respectively. (@value{GDBN} reads the
19837790
MS
896first argument that does not have an associated option flag as
897equivalent to the @samp{-se} option followed by that argument; and the
898second argument that does not have an associated option flag, if any, as
899equivalent to the @samp{-c}/@samp{-p} option followed by that argument.)
900If the second argument begins with a decimal digit, @value{GDBN} will
901first attempt to attach to it as a process, and if that fails, attempt
902to open it as a corefile. If you have a corefile whose name begins with
b383017d 903a digit, you can prevent @value{GDBN} from treating it as a pid by
c1468174 904prefixing it with @file{./}, e.g.@: @file{./12345}.
7a292a7a
SS
905
906If @value{GDBN} has not been configured to included core file support,
907such as for most embedded targets, then it will complain about a second
908argument and ignore it.
c906108c
SS
909
910Many options have both long and short forms; both are shown in the
911following list. @value{GDBN} also recognizes the long forms if you truncate
912them, so long as enough of the option is present to be unambiguous.
913(If you prefer, you can flag option arguments with @samp{--} rather
914than @samp{-}, though we illustrate the more usual convention.)
915
d700128c
EZ
916@c NOTE: the @cindex entries here use double dashes ON PURPOSE. This
917@c way, both those who look for -foo and --foo in the index, will find
918@c it.
919
c906108c
SS
920@table @code
921@item -symbols @var{file}
922@itemx -s @var{file}
d700128c
EZ
923@cindex @code{--symbols}
924@cindex @code{-s}
c906108c
SS
925Read symbol table from file @var{file}.
926
927@item -exec @var{file}
928@itemx -e @var{file}
d700128c
EZ
929@cindex @code{--exec}
930@cindex @code{-e}
7a292a7a
SS
931Use file @var{file} as the executable file to execute when appropriate,
932and for examining pure data in conjunction with a core dump.
c906108c
SS
933
934@item -se @var{file}
d700128c 935@cindex @code{--se}
c906108c
SS
936Read symbol table from file @var{file} and use it as the executable
937file.
938
c906108c
SS
939@item -core @var{file}
940@itemx -c @var{file}
d700128c
EZ
941@cindex @code{--core}
942@cindex @code{-c}
b383017d 943Use file @var{file} as a core dump to examine.
c906108c 944
19837790
MS
945@item -pid @var{number}
946@itemx -p @var{number}
947@cindex @code{--pid}
948@cindex @code{-p}
949Connect to process ID @var{number}, as with the @code{attach} command.
c906108c
SS
950
951@item -command @var{file}
952@itemx -x @var{file}
d700128c
EZ
953@cindex @code{--command}
954@cindex @code{-x}
c906108c
SS
955Execute @value{GDBN} commands from file @var{file}. @xref{Command
956Files,, Command files}.
957
8a5a3c82
AS
958@item -eval-command @var{command}
959@itemx -ex @var{command}
960@cindex @code{--eval-command}
961@cindex @code{-ex}
962Execute a single @value{GDBN} command.
963
964This option may be used multiple times to call multiple commands. It may
965also be interleaved with @samp{-command} as required.
966
967@smallexample
968@value{GDBP} -ex 'target sim' -ex 'load' \
969 -x setbreakpoints -ex 'run' a.out
970@end smallexample
971
c906108c
SS
972@item -directory @var{directory}
973@itemx -d @var{directory}
d700128c
EZ
974@cindex @code{--directory}
975@cindex @code{-d}
4b505b12 976Add @var{directory} to the path to search for source and script files.
c906108c 977
c906108c
SS
978@item -r
979@itemx -readnow
d700128c
EZ
980@cindex @code{--readnow}
981@cindex @code{-r}
c906108c
SS
982Read each symbol file's entire symbol table immediately, rather than
983the default, which is to read it incrementally as it is needed.
984This makes startup slower, but makes future operations faster.
53a5351d 985
c906108c
SS
986@end table
987
6d2ebf8b 988@node Mode Options
79a6e687 989@subsection Choosing Modes
c906108c
SS
990
991You can run @value{GDBN} in various alternative modes---for example, in
992batch mode or quiet mode.
993
994@table @code
995@item -nx
996@itemx -n
d700128c
EZ
997@cindex @code{--nx}
998@cindex @code{-n}
96565e91 999Do not execute commands found in any initialization files. Normally,
2df3850c
JM
1000@value{GDBN} executes the commands in these files after all the command
1001options and arguments have been processed. @xref{Command Files,,Command
79a6e687 1002Files}.
c906108c
SS
1003
1004@item -quiet
d700128c 1005@itemx -silent
c906108c 1006@itemx -q
d700128c
EZ
1007@cindex @code{--quiet}
1008@cindex @code{--silent}
1009@cindex @code{-q}
c906108c
SS
1010``Quiet''. Do not print the introductory and copyright messages. These
1011messages are also suppressed in batch mode.
1012
1013@item -batch
d700128c 1014@cindex @code{--batch}
c906108c
SS
1015Run in batch mode. Exit with status @code{0} after processing all the
1016command files specified with @samp{-x} (and all commands from
1017initialization files, if not inhibited with @samp{-n}). Exit with
1018nonzero status if an error occurs in executing the @value{GDBN} commands
1019in the command files.
1020
2df3850c
JM
1021Batch mode may be useful for running @value{GDBN} as a filter, for
1022example to download and run a program on another computer; in order to
1023make this more useful, the message
c906108c 1024
474c8240 1025@smallexample
c906108c 1026Program exited normally.
474c8240 1027@end smallexample
c906108c
SS
1028
1029@noindent
2df3850c
JM
1030(which is ordinarily issued whenever a program running under
1031@value{GDBN} control terminates) is not issued when running in batch
1032mode.
1033
1a088d06
AS
1034@item -batch-silent
1035@cindex @code{--batch-silent}
1036Run in batch mode exactly like @samp{-batch}, but totally silently. All
1037@value{GDBN} output to @code{stdout} is prevented (@code{stderr} is
1038unaffected). This is much quieter than @samp{-silent} and would be useless
1039for an interactive session.
1040
1041This is particularly useful when using targets that give @samp{Loading section}
1042messages, for example.
1043
1044Note that targets that give their output via @value{GDBN}, as opposed to
1045writing directly to @code{stdout}, will also be made silent.
1046
4b0ad762
AS
1047@item -return-child-result
1048@cindex @code{--return-child-result}
1049The return code from @value{GDBN} will be the return code from the child
1050process (the process being debugged), with the following exceptions:
1051
1052@itemize @bullet
1053@item
1054@value{GDBN} exits abnormally. E.g., due to an incorrect argument or an
1055internal error. In this case the exit code is the same as it would have been
1056without @samp{-return-child-result}.
1057@item
1058The user quits with an explicit value. E.g., @samp{quit 1}.
1059@item
1060The child process never runs, or is not allowed to terminate, in which case
1061the exit code will be -1.
1062@end itemize
1063
1064This option is useful in conjunction with @samp{-batch} or @samp{-batch-silent},
1065when @value{GDBN} is being used as a remote program loader or simulator
1066interface.
1067
2df3850c
JM
1068@item -nowindows
1069@itemx -nw
d700128c
EZ
1070@cindex @code{--nowindows}
1071@cindex @code{-nw}
2df3850c 1072``No windows''. If @value{GDBN} comes with a graphical user interface
96a2c332 1073(GUI) built in, then this option tells @value{GDBN} to only use the command-line
2df3850c
JM
1074interface. If no GUI is available, this option has no effect.
1075
1076@item -windows
1077@itemx -w
d700128c
EZ
1078@cindex @code{--windows}
1079@cindex @code{-w}
2df3850c
JM
1080If @value{GDBN} includes a GUI, then this option requires it to be
1081used if possible.
c906108c
SS
1082
1083@item -cd @var{directory}
d700128c 1084@cindex @code{--cd}
c906108c
SS
1085Run @value{GDBN} using @var{directory} as its working directory,
1086instead of the current directory.
1087
c906108c
SS
1088@item -fullname
1089@itemx -f
d700128c
EZ
1090@cindex @code{--fullname}
1091@cindex @code{-f}
7a292a7a
SS
1092@sc{gnu} Emacs sets this option when it runs @value{GDBN} as a
1093subprocess. It tells @value{GDBN} to output the full file name and line
1094number in a standard, recognizable fashion each time a stack frame is
1095displayed (which includes each time your program stops). This
1096recognizable format looks like two @samp{\032} characters, followed by
1097the file name, line number and character position separated by colons,
1098and a newline. The Emacs-to-@value{GDBN} interface program uses the two
1099@samp{\032} characters as a signal to display the source code for the
1100frame.
c906108c 1101
d700128c
EZ
1102@item -epoch
1103@cindex @code{--epoch}
1104The Epoch Emacs-@value{GDBN} interface sets this option when it runs
1105@value{GDBN} as a subprocess. It tells @value{GDBN} to modify its print
1106routines so as to allow Epoch to display values of expressions in a
1107separate window.
1108
1109@item -annotate @var{level}
1110@cindex @code{--annotate}
1111This option sets the @dfn{annotation level} inside @value{GDBN}. Its
1112effect is identical to using @samp{set annotate @var{level}}
086432e2
AC
1113(@pxref{Annotations}). The annotation @var{level} controls how much
1114information @value{GDBN} prints together with its prompt, values of
1115expressions, source lines, and other types of output. Level 0 is the
1116normal, level 1 is for use when @value{GDBN} is run as a subprocess of
1117@sc{gnu} Emacs, level 3 is the maximum annotation suitable for programs
1118that control @value{GDBN}, and level 2 has been deprecated.
1119
265eeb58 1120The annotation mechanism has largely been superseded by @sc{gdb/mi}
086432e2 1121(@pxref{GDB/MI}).
d700128c 1122
aa26fa3a
TT
1123@item --args
1124@cindex @code{--args}
1125Change interpretation of command line so that arguments following the
1126executable file are passed as command line arguments to the inferior.
1127This option stops option processing.
1128
2df3850c
JM
1129@item -baud @var{bps}
1130@itemx -b @var{bps}
d700128c
EZ
1131@cindex @code{--baud}
1132@cindex @code{-b}
c906108c
SS
1133Set the line speed (baud rate or bits per second) of any serial
1134interface used by @value{GDBN} for remote debugging.
c906108c 1135
f47b1503
AS
1136@item -l @var{timeout}
1137@cindex @code{-l}
1138Set the timeout (in seconds) of any communication used by @value{GDBN}
1139for remote debugging.
1140
c906108c 1141@item -tty @var{device}
d700128c
EZ
1142@itemx -t @var{device}
1143@cindex @code{--tty}
1144@cindex @code{-t}
c906108c
SS
1145Run using @var{device} for your program's standard input and output.
1146@c FIXME: kingdon thinks there is more to -tty. Investigate.
c906108c 1147
53a5351d 1148@c resolve the situation of these eventually
c4555f82
SC
1149@item -tui
1150@cindex @code{--tui}
d0d5df6f
AC
1151Activate the @dfn{Text User Interface} when starting. The Text User
1152Interface manages several text windows on the terminal, showing
1153source, assembly, registers and @value{GDBN} command outputs
1154(@pxref{TUI, ,@value{GDBN} Text User Interface}). Alternatively, the
1155Text User Interface can be enabled by invoking the program
46ba6afa 1156@samp{@value{GDBTUI}}. Do not use this option if you run @value{GDBN} from
d0d5df6f 1157Emacs (@pxref{Emacs, ,Using @value{GDBN} under @sc{gnu} Emacs}).
53a5351d
JM
1158
1159@c @item -xdb
d700128c 1160@c @cindex @code{--xdb}
53a5351d
JM
1161@c Run in XDB compatibility mode, allowing the use of certain XDB commands.
1162@c For information, see the file @file{xdb_trans.html}, which is usually
1163@c installed in the directory @code{/opt/langtools/wdb/doc} on HP-UX
1164@c systems.
1165
d700128c
EZ
1166@item -interpreter @var{interp}
1167@cindex @code{--interpreter}
1168Use the interpreter @var{interp} for interface with the controlling
1169program or device. This option is meant to be set by programs which
94bbb2c0 1170communicate with @value{GDBN} using it as a back end.
21c294e6 1171@xref{Interpreters, , Command Interpreters}.
94bbb2c0 1172
da0f9dcd 1173@samp{--interpreter=mi} (or @samp{--interpreter=mi2}) causes
2fcf52f0 1174@value{GDBN} to use the @dfn{@sc{gdb/mi} interface} (@pxref{GDB/MI, ,
6b5e8c01 1175The @sc{gdb/mi} Interface}) included since @value{GDBN} version 6.0. The
6c74ac8b
AC
1176previous @sc{gdb/mi} interface, included in @value{GDBN} version 5.3 and
1177selected with @samp{--interpreter=mi1}, is deprecated. Earlier
1178@sc{gdb/mi} interfaces are no longer supported.
d700128c
EZ
1179
1180@item -write
1181@cindex @code{--write}
1182Open the executable and core files for both reading and writing. This
1183is equivalent to the @samp{set write on} command inside @value{GDBN}
1184(@pxref{Patching}).
1185
1186@item -statistics
1187@cindex @code{--statistics}
1188This option causes @value{GDBN} to print statistics about time and
1189memory usage after it completes each command and returns to the prompt.
1190
1191@item -version
1192@cindex @code{--version}
1193This option causes @value{GDBN} to print its version number and
1194no-warranty blurb, and exit.
1195
c906108c
SS
1196@end table
1197
6fc08d32 1198@node Startup
79a6e687 1199@subsection What @value{GDBN} Does During Startup
6fc08d32
EZ
1200@cindex @value{GDBN} startup
1201
1202Here's the description of what @value{GDBN} does during session startup:
1203
1204@enumerate
1205@item
1206Sets up the command interpreter as specified by the command line
1207(@pxref{Mode Options, interpreter}).
1208
1209@item
1210@cindex init file
1211Reads the @dfn{init file} (if any) in your home directory@footnote{On
1212DOS/Windows systems, the home directory is the one pointed to by the
1213@code{HOME} environment variable.} and executes all the commands in
1214that file.
1215
1216@item
1217Processes command line options and operands.
1218
1219@item
1220Reads and executes the commands from init file (if any) in the current
119b882a
EZ
1221working directory. This is only done if the current directory is
1222different from your home directory. Thus, you can have more than one
1223init file, one generic in your home directory, and another, specific
1224to the program you are debugging, in the directory where you invoke
6fc08d32
EZ
1225@value{GDBN}.
1226
1227@item
1228Reads command files specified by the @samp{-x} option. @xref{Command
1229Files}, for more details about @value{GDBN} command files.
1230
1231@item
1232Reads the command history recorded in the @dfn{history file}.
d620b259 1233@xref{Command History}, for more details about the command history and the
6fc08d32
EZ
1234files where @value{GDBN} records it.
1235@end enumerate
1236
1237Init files use the same syntax as @dfn{command files} (@pxref{Command
1238Files}) and are processed by @value{GDBN} in the same way. The init
1239file in your home directory can set options (such as @samp{set
1240complaints}) that affect subsequent processing of command line options
1241and operands. Init files are not executed if you use the @samp{-nx}
79a6e687 1242option (@pxref{Mode Options, ,Choosing Modes}).
6fc08d32
EZ
1243
1244@cindex init file name
1245@cindex @file{.gdbinit}
119b882a 1246@cindex @file{gdb.ini}
8807d78b 1247The @value{GDBN} init files are normally called @file{.gdbinit}.
119b882a
EZ
1248The DJGPP port of @value{GDBN} uses the name @file{gdb.ini}, due to
1249the limitations of file names imposed by DOS filesystems. The Windows
1250ports of @value{GDBN} use the standard name, but if they find a
1251@file{gdb.ini} file, they warn you about that and suggest to rename
1252the file to the standard name.
1253
6fc08d32 1254
6d2ebf8b 1255@node Quitting GDB
c906108c
SS
1256@section Quitting @value{GDBN}
1257@cindex exiting @value{GDBN}
1258@cindex leaving @value{GDBN}
1259
1260@table @code
1261@kindex quit @r{[}@var{expression}@r{]}
41afff9a 1262@kindex q @r{(@code{quit})}
96a2c332
SS
1263@item quit @r{[}@var{expression}@r{]}
1264@itemx q
1265To exit @value{GDBN}, use the @code{quit} command (abbreviated
c8aa23ab 1266@code{q}), or type an end-of-file character (usually @kbd{Ctrl-d}). If you
96a2c332
SS
1267do not supply @var{expression}, @value{GDBN} will terminate normally;
1268otherwise it will terminate using the result of @var{expression} as the
1269error code.
c906108c
SS
1270@end table
1271
1272@cindex interrupt
c8aa23ab 1273An interrupt (often @kbd{Ctrl-c}) does not exit from @value{GDBN}, but rather
c906108c
SS
1274terminates the action of any @value{GDBN} command that is in progress and
1275returns to @value{GDBN} command level. It is safe to type the interrupt
1276character at any time because @value{GDBN} does not allow it to take effect
1277until a time when it is safe.
1278
c906108c
SS
1279If you have been using @value{GDBN} to control an attached process or
1280device, you can release it with the @code{detach} command
79a6e687 1281(@pxref{Attach, ,Debugging an Already-running Process}).
c906108c 1282
6d2ebf8b 1283@node Shell Commands
79a6e687 1284@section Shell Commands
c906108c
SS
1285
1286If you need to execute occasional shell commands during your
1287debugging session, there is no need to leave or suspend @value{GDBN}; you can
1288just use the @code{shell} command.
1289
1290@table @code
1291@kindex shell
1292@cindex shell escape
1293@item shell @var{command string}
1294Invoke a standard shell to execute @var{command string}.
c906108c 1295If it exists, the environment variable @code{SHELL} determines which
d4f3574e
SS
1296shell to run. Otherwise @value{GDBN} uses the default shell
1297(@file{/bin/sh} on Unix systems, @file{COMMAND.COM} on MS-DOS, etc.).
c906108c
SS
1298@end table
1299
1300The utility @code{make} is often needed in development environments.
1301You do not have to use the @code{shell} command for this purpose in
1302@value{GDBN}:
1303
1304@table @code
1305@kindex make
1306@cindex calling make
1307@item make @var{make-args}
1308Execute the @code{make} program with the specified
1309arguments. This is equivalent to @samp{shell make @var{make-args}}.
1310@end table
1311
79a6e687
BW
1312@node Logging Output
1313@section Logging Output
0fac0b41 1314@cindex logging @value{GDBN} output
9c16f35a 1315@cindex save @value{GDBN} output to a file
0fac0b41
DJ
1316
1317You may want to save the output of @value{GDBN} commands to a file.
1318There are several commands to control @value{GDBN}'s logging.
1319
1320@table @code
1321@kindex set logging
1322@item set logging on
1323Enable logging.
1324@item set logging off
1325Disable logging.
9c16f35a 1326@cindex logging file name
0fac0b41
DJ
1327@item set logging file @var{file}
1328Change the name of the current logfile. The default logfile is @file{gdb.txt}.
1329@item set logging overwrite [on|off]
1330By default, @value{GDBN} will append to the logfile. Set @code{overwrite} if
1331you want @code{set logging on} to overwrite the logfile instead.
1332@item set logging redirect [on|off]
1333By default, @value{GDBN} output will go to both the terminal and the logfile.
1334Set @code{redirect} if you want output to go only to the log file.
1335@kindex show logging
1336@item show logging
1337Show the current values of the logging settings.
1338@end table
1339
6d2ebf8b 1340@node Commands
c906108c
SS
1341@chapter @value{GDBN} Commands
1342
1343You can abbreviate a @value{GDBN} command to the first few letters of the command
1344name, if that abbreviation is unambiguous; and you can repeat certain
1345@value{GDBN} commands by typing just @key{RET}. You can also use the @key{TAB}
1346key to get @value{GDBN} to fill out the rest of a word in a command (or to
1347show you the alternatives available, if there is more than one possibility).
1348
1349@menu
1350* Command Syntax:: How to give commands to @value{GDBN}
1351* Completion:: Command completion
1352* Help:: How to ask @value{GDBN} for help
1353@end menu
1354
6d2ebf8b 1355@node Command Syntax
79a6e687 1356@section Command Syntax
c906108c
SS
1357
1358A @value{GDBN} command is a single line of input. There is no limit on
1359how long it can be. It starts with a command name, which is followed by
1360arguments whose meaning depends on the command name. For example, the
1361command @code{step} accepts an argument which is the number of times to
1362step, as in @samp{step 5}. You can also use the @code{step} command
96a2c332 1363with no arguments. Some commands do not allow any arguments.
c906108c
SS
1364
1365@cindex abbreviation
1366@value{GDBN} command names may always be truncated if that abbreviation is
1367unambiguous. Other possible command abbreviations are listed in the
1368documentation for individual commands. In some cases, even ambiguous
1369abbreviations are allowed; for example, @code{s} is specially defined as
1370equivalent to @code{step} even though there are other commands whose
1371names start with @code{s}. You can test abbreviations by using them as
1372arguments to the @code{help} command.
1373
1374@cindex repeating commands
41afff9a 1375@kindex RET @r{(repeat last command)}
c906108c 1376A blank line as input to @value{GDBN} (typing just @key{RET}) means to
96a2c332 1377repeat the previous command. Certain commands (for example, @code{run})
c906108c
SS
1378will not repeat this way; these are commands whose unintentional
1379repetition might cause trouble and which you are unlikely to want to
c45da7e6
EZ
1380repeat. User-defined commands can disable this feature; see
1381@ref{Define, dont-repeat}.
c906108c
SS
1382
1383The @code{list} and @code{x} commands, when you repeat them with
1384@key{RET}, construct new arguments rather than repeating
1385exactly as typed. This permits easy scanning of source or memory.
1386
1387@value{GDBN} can also use @key{RET} in another way: to partition lengthy
1388output, in a way similar to the common utility @code{more}
79a6e687 1389(@pxref{Screen Size,,Screen Size}). Since it is easy to press one
c906108c
SS
1390@key{RET} too many in this situation, @value{GDBN} disables command
1391repetition after any command that generates this sort of display.
1392
41afff9a 1393@kindex # @r{(a comment)}
c906108c
SS
1394@cindex comment
1395Any text from a @kbd{#} to the end of the line is a comment; it does
1396nothing. This is useful mainly in command files (@pxref{Command
79a6e687 1397Files,,Command Files}).
c906108c 1398
88118b3a 1399@cindex repeating command sequences
c8aa23ab
EZ
1400@kindex Ctrl-o @r{(operate-and-get-next)}
1401The @kbd{Ctrl-o} binding is useful for repeating a complex sequence of
7f9087cb 1402commands. This command accepts the current line, like @key{RET}, and
88118b3a
TT
1403then fetches the next line relative to the current line from the history
1404for editing.
1405
6d2ebf8b 1406@node Completion
79a6e687 1407@section Command Completion
c906108c
SS
1408
1409@cindex completion
1410@cindex word completion
1411@value{GDBN} can fill in the rest of a word in a command for you, if there is
1412only one possibility; it can also show you what the valid possibilities
1413are for the next word in a command, at any time. This works for @value{GDBN}
1414commands, @value{GDBN} subcommands, and the names of symbols in your program.
1415
1416Press the @key{TAB} key whenever you want @value{GDBN} to fill out the rest
1417of a word. If there is only one possibility, @value{GDBN} fills in the
1418word, and waits for you to finish the command (or press @key{RET} to
1419enter it). For example, if you type
1420
1421@c FIXME "@key" does not distinguish its argument sufficiently to permit
1422@c complete accuracy in these examples; space introduced for clarity.
1423@c If texinfo enhancements make it unnecessary, it would be nice to
1424@c replace " @key" by "@key" in the following...
474c8240 1425@smallexample
c906108c 1426(@value{GDBP}) info bre @key{TAB}
474c8240 1427@end smallexample
c906108c
SS
1428
1429@noindent
1430@value{GDBN} fills in the rest of the word @samp{breakpoints}, since that is
1431the only @code{info} subcommand beginning with @samp{bre}:
1432
474c8240 1433@smallexample
c906108c 1434(@value{GDBP}) info breakpoints
474c8240 1435@end smallexample
c906108c
SS
1436
1437@noindent
1438You can either press @key{RET} at this point, to run the @code{info
1439breakpoints} command, or backspace and enter something else, if
1440@samp{breakpoints} does not look like the command you expected. (If you
1441were sure you wanted @code{info breakpoints} in the first place, you
1442might as well just type @key{RET} immediately after @samp{info bre},
1443to exploit command abbreviations rather than command completion).
1444
1445If there is more than one possibility for the next word when you press
1446@key{TAB}, @value{GDBN} sounds a bell. You can either supply more
1447characters and try again, or just press @key{TAB} a second time;
1448@value{GDBN} displays all the possible completions for that word. For
1449example, you might want to set a breakpoint on a subroutine whose name
1450begins with @samp{make_}, but when you type @kbd{b make_@key{TAB}} @value{GDBN}
1451just sounds the bell. Typing @key{TAB} again displays all the
1452function names in your program that begin with those characters, for
1453example:
1454
474c8240 1455@smallexample
c906108c
SS
1456(@value{GDBP}) b make_ @key{TAB}
1457@exdent @value{GDBN} sounds bell; press @key{TAB} again, to see:
5d161b24
DB
1458make_a_section_from_file make_environ
1459make_abs_section make_function_type
1460make_blockvector make_pointer_type
1461make_cleanup make_reference_type
c906108c
SS
1462make_command make_symbol_completion_list
1463(@value{GDBP}) b make_
474c8240 1464@end smallexample
c906108c
SS
1465
1466@noindent
1467After displaying the available possibilities, @value{GDBN} copies your
1468partial input (@samp{b make_} in the example) so you can finish the
1469command.
1470
1471If you just want to see the list of alternatives in the first place, you
b37052ae 1472can press @kbd{M-?} rather than pressing @key{TAB} twice. @kbd{M-?}
7a292a7a 1473means @kbd{@key{META} ?}. You can type this either by holding down a
c906108c 1474key designated as the @key{META} shift on your keyboard (if there is
7a292a7a 1475one) while typing @kbd{?}, or as @key{ESC} followed by @kbd{?}.
c906108c
SS
1476
1477@cindex quotes in commands
1478@cindex completion of quoted strings
1479Sometimes the string you need, while logically a ``word'', may contain
7a292a7a
SS
1480parentheses or other characters that @value{GDBN} normally excludes from
1481its notion of a word. To permit word completion to work in this
1482situation, you may enclose words in @code{'} (single quote marks) in
1483@value{GDBN} commands.
c906108c 1484
c906108c 1485The most likely situation where you might need this is in typing the
b37052ae
EZ
1486name of a C@t{++} function. This is because C@t{++} allows function
1487overloading (multiple definitions of the same function, distinguished
1488by argument type). For example, when you want to set a breakpoint you
1489may need to distinguish whether you mean the version of @code{name}
1490that takes an @code{int} parameter, @code{name(int)}, or the version
1491that takes a @code{float} parameter, @code{name(float)}. To use the
1492word-completion facilities in this situation, type a single quote
1493@code{'} at the beginning of the function name. This alerts
1494@value{GDBN} that it may need to consider more information than usual
1495when you press @key{TAB} or @kbd{M-?} to request word completion:
c906108c 1496
474c8240 1497@smallexample
96a2c332 1498(@value{GDBP}) b 'bubble( @kbd{M-?}
c906108c
SS
1499bubble(double,double) bubble(int,int)
1500(@value{GDBP}) b 'bubble(
474c8240 1501@end smallexample
c906108c
SS
1502
1503In some cases, @value{GDBN} can tell that completing a name requires using
1504quotes. When this happens, @value{GDBN} inserts the quote for you (while
1505completing as much as it can) if you do not type the quote in the first
1506place:
1507
474c8240 1508@smallexample
c906108c
SS
1509(@value{GDBP}) b bub @key{TAB}
1510@exdent @value{GDBN} alters your input line to the following, and rings a bell:
1511(@value{GDBP}) b 'bubble(
474c8240 1512@end smallexample
c906108c
SS
1513
1514@noindent
1515In general, @value{GDBN} can tell that a quote is needed (and inserts it) if
1516you have not yet started typing the argument list when you ask for
1517completion on an overloaded symbol.
1518
79a6e687
BW
1519For more information about overloaded functions, see @ref{C Plus Plus
1520Expressions, ,C@t{++} Expressions}. You can use the command @code{set
c906108c 1521overload-resolution off} to disable overload resolution;
79a6e687 1522see @ref{Debugging C Plus Plus, ,@value{GDBN} Features for C@t{++}}.
c906108c
SS
1523
1524
6d2ebf8b 1525@node Help
79a6e687 1526@section Getting Help
c906108c
SS
1527@cindex online documentation
1528@kindex help
1529
5d161b24 1530You can always ask @value{GDBN} itself for information on its commands,
c906108c
SS
1531using the command @code{help}.
1532
1533@table @code
41afff9a 1534@kindex h @r{(@code{help})}
c906108c
SS
1535@item help
1536@itemx h
1537You can use @code{help} (abbreviated @code{h}) with no arguments to
1538display a short list of named classes of commands:
1539
1540@smallexample
1541(@value{GDBP}) help
1542List of classes of commands:
1543
2df3850c 1544aliases -- Aliases of other commands
c906108c 1545breakpoints -- Making program stop at certain points
2df3850c 1546data -- Examining data
c906108c 1547files -- Specifying and examining files
2df3850c
JM
1548internals -- Maintenance commands
1549obscure -- Obscure features
1550running -- Running the program
1551stack -- Examining the stack
c906108c
SS
1552status -- Status inquiries
1553support -- Support facilities
12c27660 1554tracepoints -- Tracing of program execution without
96a2c332 1555 stopping the program
c906108c 1556user-defined -- User-defined commands
c906108c 1557
5d161b24 1558Type "help" followed by a class name for a list of
c906108c 1559commands in that class.
5d161b24 1560Type "help" followed by command name for full
c906108c
SS
1561documentation.
1562Command name abbreviations are allowed if unambiguous.
1563(@value{GDBP})
1564@end smallexample
96a2c332 1565@c the above line break eliminates huge line overfull...
c906108c
SS
1566
1567@item help @var{class}
1568Using one of the general help classes as an argument, you can get a
1569list of the individual commands in that class. For example, here is the
1570help display for the class @code{status}:
1571
1572@smallexample
1573(@value{GDBP}) help status
1574Status inquiries.
1575
1576List of commands:
1577
1578@c Line break in "show" line falsifies real output, but needed
1579@c to fit in smallbook page size.
2df3850c 1580info -- Generic command for showing things
12c27660 1581 about the program being debugged
2df3850c 1582show -- Generic command for showing things
12c27660 1583 about the debugger
c906108c 1584
5d161b24 1585Type "help" followed by command name for full
c906108c
SS
1586documentation.
1587Command name abbreviations are allowed if unambiguous.
1588(@value{GDBP})
1589@end smallexample
1590
1591@item help @var{command}
1592With a command name as @code{help} argument, @value{GDBN} displays a
1593short paragraph on how to use that command.
1594
6837a0a2
DB
1595@kindex apropos
1596@item apropos @var{args}
09d4efe1 1597The @code{apropos} command searches through all of the @value{GDBN}
6837a0a2
DB
1598commands, and their documentation, for the regular expression specified in
1599@var{args}. It prints out all matches found. For example:
1600
1601@smallexample
1602apropos reload
1603@end smallexample
1604
b37052ae
EZ
1605@noindent
1606results in:
6837a0a2
DB
1607
1608@smallexample
6d2ebf8b
SS
1609@c @group
1610set symbol-reloading -- Set dynamic symbol table reloading
12c27660 1611 multiple times in one run
6d2ebf8b 1612show symbol-reloading -- Show dynamic symbol table reloading
12c27660 1613 multiple times in one run
6d2ebf8b 1614@c @end group
6837a0a2
DB
1615@end smallexample
1616
c906108c
SS
1617@kindex complete
1618@item complete @var{args}
1619The @code{complete @var{args}} command lists all the possible completions
1620for the beginning of a command. Use @var{args} to specify the beginning of the
1621command you want completed. For example:
1622
1623@smallexample
1624complete i
1625@end smallexample
1626
1627@noindent results in:
1628
1629@smallexample
1630@group
2df3850c
JM
1631if
1632ignore
c906108c
SS
1633info
1634inspect
c906108c
SS
1635@end group
1636@end smallexample
1637
1638@noindent This is intended for use by @sc{gnu} Emacs.
1639@end table
1640
1641In addition to @code{help}, you can use the @value{GDBN} commands @code{info}
1642and @code{show} to inquire about the state of your program, or the state
1643of @value{GDBN} itself. Each command supports many topics of inquiry; this
1644manual introduces each of them in the appropriate context. The listings
1645under @code{info} and under @code{show} in the Index point to
1646all the sub-commands. @xref{Index}.
1647
1648@c @group
1649@table @code
1650@kindex info
41afff9a 1651@kindex i @r{(@code{info})}
c906108c
SS
1652@item info
1653This command (abbreviated @code{i}) is for describing the state of your
cda4ce5a 1654program. For example, you can show the arguments passed to a function
c906108c
SS
1655with @code{info args}, list the registers currently in use with @code{info
1656registers}, or list the breakpoints you have set with @code{info breakpoints}.
1657You can get a complete list of the @code{info} sub-commands with
1658@w{@code{help info}}.
1659
1660@kindex set
1661@item set
5d161b24 1662You can assign the result of an expression to an environment variable with
c906108c
SS
1663@code{set}. For example, you can set the @value{GDBN} prompt to a $-sign with
1664@code{set prompt $}.
1665
1666@kindex show
1667@item show
5d161b24 1668In contrast to @code{info}, @code{show} is for describing the state of
c906108c
SS
1669@value{GDBN} itself.
1670You can change most of the things you can @code{show}, by using the
1671related command @code{set}; for example, you can control what number
1672system is used for displays with @code{set radix}, or simply inquire
1673which is currently in use with @code{show radix}.
1674
1675@kindex info set
1676To display all the settable parameters and their current
1677values, you can use @code{show} with no arguments; you may also use
1678@code{info set}. Both commands produce the same display.
1679@c FIXME: "info set" violates the rule that "info" is for state of
1680@c FIXME...program. Ck w/ GNU: "info set" to be called something else,
1681@c FIXME...or change desc of rule---eg "state of prog and debugging session"?
1682@end table
1683@c @end group
1684
1685Here are three miscellaneous @code{show} subcommands, all of which are
1686exceptional in lacking corresponding @code{set} commands:
1687
1688@table @code
1689@kindex show version
9c16f35a 1690@cindex @value{GDBN} version number
c906108c
SS
1691@item show version
1692Show what version of @value{GDBN} is running. You should include this
2df3850c
JM
1693information in @value{GDBN} bug-reports. If multiple versions of
1694@value{GDBN} are in use at your site, you may need to determine which
1695version of @value{GDBN} you are running; as @value{GDBN} evolves, new
1696commands are introduced, and old ones may wither away. Also, many
1697system vendors ship variant versions of @value{GDBN}, and there are
96a2c332 1698variant versions of @value{GDBN} in @sc{gnu}/Linux distributions as well.
2df3850c
JM
1699The version number is the same as the one announced when you start
1700@value{GDBN}.
c906108c
SS
1701
1702@kindex show copying
09d4efe1 1703@kindex info copying
9c16f35a 1704@cindex display @value{GDBN} copyright
c906108c 1705@item show copying
09d4efe1 1706@itemx info copying
c906108c
SS
1707Display information about permission for copying @value{GDBN}.
1708
1709@kindex show warranty
09d4efe1 1710@kindex info warranty
c906108c 1711@item show warranty
09d4efe1 1712@itemx info warranty
2df3850c 1713Display the @sc{gnu} ``NO WARRANTY'' statement, or a warranty,
96a2c332 1714if your version of @value{GDBN} comes with one.
2df3850c 1715
c906108c
SS
1716@end table
1717
6d2ebf8b 1718@node Running
c906108c
SS
1719@chapter Running Programs Under @value{GDBN}
1720
1721When you run a program under @value{GDBN}, you must first generate
1722debugging information when you compile it.
7a292a7a
SS
1723
1724You may start @value{GDBN} with its arguments, if any, in an environment
1725of your choice. If you are doing native debugging, you may redirect
1726your program's input and output, debug an already running process, or
1727kill a child process.
c906108c
SS
1728
1729@menu
1730* Compilation:: Compiling for debugging
1731* Starting:: Starting your program
c906108c
SS
1732* Arguments:: Your program's arguments
1733* Environment:: Your program's environment
c906108c
SS
1734
1735* Working Directory:: Your program's working directory
1736* Input/Output:: Your program's input and output
1737* Attach:: Debugging an already-running process
1738* Kill Process:: Killing the child process
c906108c
SS
1739
1740* Threads:: Debugging programs with multiple threads
1741* Processes:: Debugging programs with multiple processes
5c95884b 1742* Checkpoint/Restart:: Setting a @emph{bookmark} to return to later
c906108c
SS
1743@end menu
1744
6d2ebf8b 1745@node Compilation
79a6e687 1746@section Compiling for Debugging
c906108c
SS
1747
1748In order to debug a program effectively, you need to generate
1749debugging information when you compile it. This debugging information
1750is stored in the object file; it describes the data type of each
1751variable or function and the correspondence between source line numbers
1752and addresses in the executable code.
1753
1754To request debugging information, specify the @samp{-g} option when you run
1755the compiler.
1756
514c4d71
EZ
1757Programs that are to be shipped to your customers are compiled with
1758optimizations, using the @samp{-O} compiler option. However, many
1759compilers are unable to handle the @samp{-g} and @samp{-O} options
1760together. Using those compilers, you cannot generate optimized
c906108c
SS
1761executables containing debugging information.
1762
514c4d71 1763@value{NGCC}, the @sc{gnu} C/C@t{++} compiler, supports @samp{-g} with or
53a5351d
JM
1764without @samp{-O}, making it possible to debug optimized code. We
1765recommend that you @emph{always} use @samp{-g} whenever you compile a
1766program. You may think your program is correct, but there is no sense
1767in pushing your luck.
c906108c
SS
1768
1769@cindex optimized code, debugging
1770@cindex debugging optimized code
1771When you debug a program compiled with @samp{-g -O}, remember that the
1772optimizer is rearranging your code; the debugger shows you what is
1773really there. Do not be too surprised when the execution path does not
1774exactly match your source file! An extreme example: if you define a
1775variable, but never use it, @value{GDBN} never sees that
1776variable---because the compiler optimizes it out of existence.
1777
1778Some things do not work as well with @samp{-g -O} as with just
1779@samp{-g}, particularly on machines with instruction scheduling. If in
1780doubt, recompile with @samp{-g} alone, and if this fixes the problem,
1781please report it to us as a bug (including a test case!).
15387254 1782@xref{Variables}, for more information about debugging optimized code.
c906108c
SS
1783
1784Older versions of the @sc{gnu} C compiler permitted a variant option
1785@w{@samp{-gg}} for debugging information. @value{GDBN} no longer supports this
1786format; if your @sc{gnu} C compiler has this option, do not use it.
1787
514c4d71
EZ
1788@value{GDBN} knows about preprocessor macros and can show you their
1789expansion (@pxref{Macros}). Most compilers do not include information
1790about preprocessor macros in the debugging information if you specify
1791the @option{-g} flag alone, because this information is rather large.
1792Version 3.1 and later of @value{NGCC}, the @sc{gnu} C compiler,
1793provides macro information if you specify the options
1794@option{-gdwarf-2} and @option{-g3}; the former option requests
1795debugging information in the Dwarf 2 format, and the latter requests
1796``extra information''. In the future, we hope to find more compact
1797ways to represent macro information, so that it can be included with
1798@option{-g} alone.
1799
c906108c 1800@need 2000
6d2ebf8b 1801@node Starting
79a6e687 1802@section Starting your Program
c906108c
SS
1803@cindex starting
1804@cindex running
1805
1806@table @code
1807@kindex run
41afff9a 1808@kindex r @r{(@code{run})}
c906108c
SS
1809@item run
1810@itemx r
7a292a7a
SS
1811Use the @code{run} command to start your program under @value{GDBN}.
1812You must first specify the program name (except on VxWorks) with an
1813argument to @value{GDBN} (@pxref{Invocation, ,Getting In and Out of
1814@value{GDBN}}), or by using the @code{file} or @code{exec-file} command
79a6e687 1815(@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
1816
1817@end table
1818
c906108c
SS
1819If you are running your program in an execution environment that
1820supports processes, @code{run} creates an inferior process and makes
8edfe269
DJ
1821that process run your program. In some environments without processes,
1822@code{run} jumps to the start of your program. Other targets,
1823like @samp{remote}, are always running. If you get an error
1824message like this one:
1825
1826@smallexample
1827The "remote" target does not support "run".
1828Try "help target" or "continue".
1829@end smallexample
1830
1831@noindent
1832then use @code{continue} to run your program. You may need @code{load}
1833first (@pxref{load}).
c906108c
SS
1834
1835The execution of a program is affected by certain information it
1836receives from its superior. @value{GDBN} provides ways to specify this
1837information, which you must do @emph{before} starting your program. (You
1838can change it after starting your program, but such changes only affect
1839your program the next time you start it.) This information may be
1840divided into four categories:
1841
1842@table @asis
1843@item The @emph{arguments.}
1844Specify the arguments to give your program as the arguments of the
1845@code{run} command. If a shell is available on your target, the shell
1846is used to pass the arguments, so that you may use normal conventions
1847(such as wildcard expansion or variable substitution) in describing
1848the arguments.
1849In Unix systems, you can control which shell is used with the
1850@code{SHELL} environment variable.
79a6e687 1851@xref{Arguments, ,Your Program's Arguments}.
c906108c
SS
1852
1853@item The @emph{environment.}
1854Your program normally inherits its environment from @value{GDBN}, but you can
1855use the @value{GDBN} commands @code{set environment} and @code{unset
1856environment} to change parts of the environment that affect
79a6e687 1857your program. @xref{Environment, ,Your Program's Environment}.
c906108c
SS
1858
1859@item The @emph{working directory.}
1860Your program inherits its working directory from @value{GDBN}. You can set
1861the @value{GDBN} working directory with the @code{cd} command in @value{GDBN}.
79a6e687 1862@xref{Working Directory, ,Your Program's Working Directory}.
c906108c
SS
1863
1864@item The @emph{standard input and output.}
1865Your program normally uses the same device for standard input and
1866standard output as @value{GDBN} is using. You can redirect input and output
1867in the @code{run} command line, or you can use the @code{tty} command to
1868set a different device for your program.
79a6e687 1869@xref{Input/Output, ,Your Program's Input and Output}.
c906108c
SS
1870
1871@cindex pipes
1872@emph{Warning:} While input and output redirection work, you cannot use
1873pipes to pass the output of the program you are debugging to another
1874program; if you attempt this, @value{GDBN} is likely to wind up debugging the
1875wrong program.
1876@end table
c906108c
SS
1877
1878When you issue the @code{run} command, your program begins to execute
79a6e687 1879immediately. @xref{Stopping, ,Stopping and Continuing}, for discussion
c906108c
SS
1880of how to arrange for your program to stop. Once your program has
1881stopped, you may call functions in your program, using the @code{print}
1882or @code{call} commands. @xref{Data, ,Examining Data}.
1883
1884If the modification time of your symbol file has changed since the last
1885time @value{GDBN} read its symbols, @value{GDBN} discards its symbol
1886table, and reads it again. When it does this, @value{GDBN} tries to retain
1887your current breakpoints.
1888
4e8b0763
JB
1889@table @code
1890@kindex start
1891@item start
1892@cindex run to main procedure
1893The name of the main procedure can vary from language to language.
1894With C or C@t{++}, the main procedure name is always @code{main}, but
1895other languages such as Ada do not require a specific name for their
1896main procedure. The debugger provides a convenient way to start the
1897execution of the program and to stop at the beginning of the main
1898procedure, depending on the language used.
1899
1900The @samp{start} command does the equivalent of setting a temporary
1901breakpoint at the beginning of the main procedure and then invoking
1902the @samp{run} command.
1903
f018e82f
EZ
1904@cindex elaboration phase
1905Some programs contain an @dfn{elaboration} phase where some startup code is
1906executed before the main procedure is called. This depends on the
1907languages used to write your program. In C@t{++}, for instance,
4e8b0763
JB
1908constructors for static and global objects are executed before
1909@code{main} is called. It is therefore possible that the debugger stops
1910before reaching the main procedure. However, the temporary breakpoint
1911will remain to halt execution.
1912
1913Specify the arguments to give to your program as arguments to the
1914@samp{start} command. These arguments will be given verbatim to the
1915underlying @samp{run} command. Note that the same arguments will be
1916reused if no argument is provided during subsequent calls to
1917@samp{start} or @samp{run}.
1918
1919It is sometimes necessary to debug the program during elaboration. In
1920these cases, using the @code{start} command would stop the execution of
1921your program too late, as the program would have already completed the
1922elaboration phase. Under these circumstances, insert breakpoints in your
1923elaboration code before running your program.
ccd213ac
DJ
1924
1925@kindex set exec-wrapper
1926@item set exec-wrapper @var{wrapper}
1927@itemx show exec-wrapper
1928@itemx unset exec-wrapper
1929When @samp{exec-wrapper} is set, the specified wrapper is used to
1930launch programs for debugging. @value{GDBN} starts your program
1931with a shell command of the form @kbd{exec @var{wrapper}
1932@var{program}}. Quoting is added to @var{program} and its
1933arguments, but not to @var{wrapper}, so you should add quotes if
1934appropriate for your shell. The wrapper runs until it executes
1935your program, and then @value{GDBN} takes control.
1936
1937You can use any program that eventually calls @code{execve} with
1938its arguments as a wrapper. Several standard Unix utilities do
1939this, e.g.@: @code{env} and @code{nohup}. Any Unix shell script ending
1940with @code{exec "$@@"} will also work.
1941
1942For example, you can use @code{env} to pass an environment variable to
1943the debugged program, without setting the variable in your shell's
1944environment:
1945
1946@smallexample
1947(@value{GDBP}) set exec-wrapper env 'LD_PRELOAD=libtest.so'
1948(@value{GDBP}) run
1949@end smallexample
1950
1951This command is available when debugging locally on most targets, excluding
1952@sc{djgpp}, Cygwin, MS Windows, and QNX Neutrino.
1953
4e8b0763
JB
1954@end table
1955
6d2ebf8b 1956@node Arguments
79a6e687 1957@section Your Program's Arguments
c906108c
SS
1958
1959@cindex arguments (to your program)
1960The arguments to your program can be specified by the arguments of the
5d161b24 1961@code{run} command.
c906108c
SS
1962They are passed to a shell, which expands wildcard characters and
1963performs redirection of I/O, and thence to your program. Your
1964@code{SHELL} environment variable (if it exists) specifies what shell
1965@value{GDBN} uses. If you do not define @code{SHELL}, @value{GDBN} uses
d4f3574e
SS
1966the default shell (@file{/bin/sh} on Unix).
1967
1968On non-Unix systems, the program is usually invoked directly by
1969@value{GDBN}, which emulates I/O redirection via the appropriate system
1970calls, and the wildcard characters are expanded by the startup code of
1971the program, not by the shell.
c906108c
SS
1972
1973@code{run} with no arguments uses the same arguments used by the previous
1974@code{run}, or those set by the @code{set args} command.
1975
c906108c 1976@table @code
41afff9a 1977@kindex set args
c906108c
SS
1978@item set args
1979Specify the arguments to be used the next time your program is run. If
1980@code{set args} has no arguments, @code{run} executes your program
1981with no arguments. Once you have run your program with arguments,
1982using @code{set args} before the next @code{run} is the only way to run
1983it again without arguments.
1984
1985@kindex show args
1986@item show args
1987Show the arguments to give your program when it is started.
1988@end table
1989
6d2ebf8b 1990@node Environment
79a6e687 1991@section Your Program's Environment
c906108c
SS
1992
1993@cindex environment (of your program)
1994The @dfn{environment} consists of a set of environment variables and
1995their values. Environment variables conventionally record such things as
1996your user name, your home directory, your terminal type, and your search
1997path for programs to run. Usually you set up environment variables with
1998the shell and they are inherited by all the other programs you run. When
1999debugging, it can be useful to try running your program with a modified
2000environment without having to start @value{GDBN} over again.
2001
2002@table @code
2003@kindex path
2004@item path @var{directory}
2005Add @var{directory} to the front of the @code{PATH} environment variable
17cc6a06
EZ
2006(the search path for executables) that will be passed to your program.
2007The value of @code{PATH} used by @value{GDBN} does not change.
d4f3574e
SS
2008You may specify several directory names, separated by whitespace or by a
2009system-dependent separator character (@samp{:} on Unix, @samp{;} on
2010MS-DOS and MS-Windows). If @var{directory} is already in the path, it
2011is moved to the front, so it is searched sooner.
c906108c
SS
2012
2013You can use the string @samp{$cwd} to refer to whatever is the current
2014working directory at the time @value{GDBN} searches the path. If you
2015use @samp{.} instead, it refers to the directory where you executed the
2016@code{path} command. @value{GDBN} replaces @samp{.} in the
2017@var{directory} argument (with the current path) before adding
2018@var{directory} to the search path.
2019@c 'path' is explicitly nonrepeatable, but RMS points out it is silly to
2020@c document that, since repeating it would be a no-op.
2021
2022@kindex show paths
2023@item show paths
2024Display the list of search paths for executables (the @code{PATH}
2025environment variable).
2026
2027@kindex show environment
2028@item show environment @r{[}@var{varname}@r{]}
2029Print the value of environment variable @var{varname} to be given to
2030your program when it starts. If you do not supply @var{varname},
2031print the names and values of all environment variables to be given to
2032your program. You can abbreviate @code{environment} as @code{env}.
2033
2034@kindex set environment
53a5351d 2035@item set environment @var{varname} @r{[}=@var{value}@r{]}
c906108c
SS
2036Set environment variable @var{varname} to @var{value}. The value
2037changes for your program only, not for @value{GDBN} itself. @var{value} may
2038be any string; the values of environment variables are just strings, and
2039any interpretation is supplied by your program itself. The @var{value}
2040parameter is optional; if it is eliminated, the variable is set to a
2041null value.
2042@c "any string" here does not include leading, trailing
2043@c blanks. Gnu asks: does anyone care?
2044
2045For example, this command:
2046
474c8240 2047@smallexample
c906108c 2048set env USER = foo
474c8240 2049@end smallexample
c906108c
SS
2050
2051@noindent
d4f3574e 2052tells the debugged program, when subsequently run, that its user is named
c906108c
SS
2053@samp{foo}. (The spaces around @samp{=} are used for clarity here; they
2054are not actually required.)
2055
2056@kindex unset environment
2057@item unset environment @var{varname}
2058Remove variable @var{varname} from the environment to be passed to your
2059program. This is different from @samp{set env @var{varname} =};
2060@code{unset environment} removes the variable from the environment,
2061rather than assigning it an empty value.
2062@end table
2063
d4f3574e
SS
2064@emph{Warning:} On Unix systems, @value{GDBN} runs your program using
2065the shell indicated
c906108c
SS
2066by your @code{SHELL} environment variable if it exists (or
2067@code{/bin/sh} if not). If your @code{SHELL} variable names a shell
2068that runs an initialization file---such as @file{.cshrc} for C-shell, or
2069@file{.bashrc} for BASH---any variables you set in that file affect
2070your program. You may wish to move setting of environment variables to
2071files that are only run when you sign on, such as @file{.login} or
2072@file{.profile}.
2073
6d2ebf8b 2074@node Working Directory
79a6e687 2075@section Your Program's Working Directory
c906108c
SS
2076
2077@cindex working directory (of your program)
2078Each time you start your program with @code{run}, it inherits its
2079working directory from the current working directory of @value{GDBN}.
2080The @value{GDBN} working directory is initially whatever it inherited
2081from its parent process (typically the shell), but you can specify a new
2082working directory in @value{GDBN} with the @code{cd} command.
2083
2084The @value{GDBN} working directory also serves as a default for the commands
2085that specify files for @value{GDBN} to operate on. @xref{Files, ,Commands to
79a6e687 2086Specify Files}.
c906108c
SS
2087
2088@table @code
2089@kindex cd
721c2651 2090@cindex change working directory
c906108c
SS
2091@item cd @var{directory}
2092Set the @value{GDBN} working directory to @var{directory}.
2093
2094@kindex pwd
2095@item pwd
2096Print the @value{GDBN} working directory.
2097@end table
2098
60bf7e09
EZ
2099It is generally impossible to find the current working directory of
2100the process being debugged (since a program can change its directory
2101during its run). If you work on a system where @value{GDBN} is
2102configured with the @file{/proc} support, you can use the @code{info
2103proc} command (@pxref{SVR4 Process Information}) to find out the
2104current working directory of the debuggee.
2105
6d2ebf8b 2106@node Input/Output
79a6e687 2107@section Your Program's Input and Output
c906108c
SS
2108
2109@cindex redirection
2110@cindex i/o
2111@cindex terminal
2112By default, the program you run under @value{GDBN} does input and output to
5d161b24 2113the same terminal that @value{GDBN} uses. @value{GDBN} switches the terminal
c906108c
SS
2114to its own terminal modes to interact with you, but it records the terminal
2115modes your program was using and switches back to them when you continue
2116running your program.
2117
2118@table @code
2119@kindex info terminal
2120@item info terminal
2121Displays information recorded by @value{GDBN} about the terminal modes your
2122program is using.
2123@end table
2124
2125You can redirect your program's input and/or output using shell
2126redirection with the @code{run} command. For example,
2127
474c8240 2128@smallexample
c906108c 2129run > outfile
474c8240 2130@end smallexample
c906108c
SS
2131
2132@noindent
2133starts your program, diverting its output to the file @file{outfile}.
2134
2135@kindex tty
2136@cindex controlling terminal
2137Another way to specify where your program should do input and output is
2138with the @code{tty} command. This command accepts a file name as
2139argument, and causes this file to be the default for future @code{run}
2140commands. It also resets the controlling terminal for the child
2141process, for future @code{run} commands. For example,
2142
474c8240 2143@smallexample
c906108c 2144tty /dev/ttyb
474c8240 2145@end smallexample
c906108c
SS
2146
2147@noindent
2148directs that processes started with subsequent @code{run} commands
2149default to do input and output on the terminal @file{/dev/ttyb} and have
2150that as their controlling terminal.
2151
2152An explicit redirection in @code{run} overrides the @code{tty} command's
2153effect on the input/output device, but not its effect on the controlling
2154terminal.
2155
2156When you use the @code{tty} command or redirect input in the @code{run}
2157command, only the input @emph{for your program} is affected. The input
3cb3b8df
BR
2158for @value{GDBN} still comes from your terminal. @code{tty} is an alias
2159for @code{set inferior-tty}.
2160
2161@cindex inferior tty
2162@cindex set inferior controlling terminal
2163You can use the @code{show inferior-tty} command to tell @value{GDBN} to
2164display the name of the terminal that will be used for future runs of your
2165program.
2166
2167@table @code
2168@item set inferior-tty /dev/ttyb
2169@kindex set inferior-tty
2170Set the tty for the program being debugged to /dev/ttyb.
2171
2172@item show inferior-tty
2173@kindex show inferior-tty
2174Show the current tty for the program being debugged.
2175@end table
c906108c 2176
6d2ebf8b 2177@node Attach
79a6e687 2178@section Debugging an Already-running Process
c906108c
SS
2179@kindex attach
2180@cindex attach
2181
2182@table @code
2183@item attach @var{process-id}
2184This command attaches to a running process---one that was started
2185outside @value{GDBN}. (@code{info files} shows your active
2186targets.) The command takes as argument a process ID. The usual way to
09d4efe1 2187find out the @var{process-id} of a Unix process is with the @code{ps} utility,
c906108c
SS
2188or with the @samp{jobs -l} shell command.
2189
2190@code{attach} does not repeat if you press @key{RET} a second time after
2191executing the command.
2192@end table
2193
2194To use @code{attach}, your program must be running in an environment
2195which supports processes; for example, @code{attach} does not work for
2196programs on bare-board targets that lack an operating system. You must
2197also have permission to send the process a signal.
2198
2199When you use @code{attach}, the debugger finds the program running in
2200the process first by looking in the current working directory, then (if
2201the program is not found) by using the source file search path
79a6e687 2202(@pxref{Source Path, ,Specifying Source Directories}). You can also use
c906108c
SS
2203the @code{file} command to load the program. @xref{Files, ,Commands to
2204Specify Files}.
2205
2206The first thing @value{GDBN} does after arranging to debug the specified
2207process is to stop it. You can examine and modify an attached process
53a5351d
JM
2208with all the @value{GDBN} commands that are ordinarily available when
2209you start processes with @code{run}. You can insert breakpoints; you
2210can step and continue; you can modify storage. If you would rather the
2211process continue running, you may use the @code{continue} command after
c906108c
SS
2212attaching @value{GDBN} to the process.
2213
2214@table @code
2215@kindex detach
2216@item detach
2217When you have finished debugging the attached process, you can use the
2218@code{detach} command to release it from @value{GDBN} control. Detaching
2219the process continues its execution. After the @code{detach} command,
2220that process and @value{GDBN} become completely independent once more, and you
2221are ready to @code{attach} another process or start one with @code{run}.
2222@code{detach} does not repeat if you press @key{RET} again after
2223executing the command.
2224@end table
2225
159fcc13
JK
2226If you exit @value{GDBN} while you have an attached process, you detach
2227that process. If you use the @code{run} command, you kill that process.
2228By default, @value{GDBN} asks for confirmation if you try to do either of these
2229things; you can control whether or not you need to confirm by using the
2230@code{set confirm} command (@pxref{Messages/Warnings, ,Optional Warnings and
79a6e687 2231Messages}).
c906108c 2232
6d2ebf8b 2233@node Kill Process
79a6e687 2234@section Killing the Child Process
c906108c
SS
2235
2236@table @code
2237@kindex kill
2238@item kill
2239Kill the child process in which your program is running under @value{GDBN}.
2240@end table
2241
2242This command is useful if you wish to debug a core dump instead of a
2243running process. @value{GDBN} ignores any core dump file while your program
2244is running.
2245
2246On some operating systems, a program cannot be executed outside @value{GDBN}
2247while you have breakpoints set on it inside @value{GDBN}. You can use the
2248@code{kill} command in this situation to permit running your program
2249outside the debugger.
2250
2251The @code{kill} command is also useful if you wish to recompile and
2252relink your program, since on many systems it is impossible to modify an
2253executable file while it is running in a process. In this case, when you
2254next type @code{run}, @value{GDBN} notices that the file has changed, and
2255reads the symbol table again (while trying to preserve your current
2256breakpoint settings).
2257
6d2ebf8b 2258@node Threads
79a6e687 2259@section Debugging Programs with Multiple Threads
c906108c
SS
2260
2261@cindex threads of execution
2262@cindex multiple threads
2263@cindex switching threads
2264In some operating systems, such as HP-UX and Solaris, a single program
2265may have more than one @dfn{thread} of execution. The precise semantics
2266of threads differ from one operating system to another, but in general
2267the threads of a single program are akin to multiple processes---except
2268that they share one address space (that is, they can all examine and
2269modify the same variables). On the other hand, each thread has its own
2270registers and execution stack, and perhaps private memory.
2271
2272@value{GDBN} provides these facilities for debugging multi-thread
2273programs:
2274
2275@itemize @bullet
2276@item automatic notification of new threads
2277@item @samp{thread @var{threadno}}, a command to switch among threads
2278@item @samp{info threads}, a command to inquire about existing threads
5d161b24 2279@item @samp{thread apply [@var{threadno}] [@var{all}] @var{args}},
c906108c
SS
2280a command to apply a command to a list of threads
2281@item thread-specific breakpoints
93815fbf
VP
2282@item @samp{set print thread-events}, which controls printing of
2283messages on thread start and exit.
c906108c
SS
2284@end itemize
2285
c906108c
SS
2286@quotation
2287@emph{Warning:} These facilities are not yet available on every
2288@value{GDBN} configuration where the operating system supports threads.
2289If your @value{GDBN} does not support threads, these commands have no
2290effect. For example, a system without thread support shows no output
2291from @samp{info threads}, and always rejects the @code{thread} command,
2292like this:
2293
2294@smallexample
2295(@value{GDBP}) info threads
2296(@value{GDBP}) thread 1
2297Thread ID 1 not known. Use the "info threads" command to
2298see the IDs of currently known threads.
2299@end smallexample
2300@c FIXME to implementors: how hard would it be to say "sorry, this GDB
2301@c doesn't support threads"?
2302@end quotation
c906108c
SS
2303
2304@cindex focus of debugging
2305@cindex current thread
2306The @value{GDBN} thread debugging facility allows you to observe all
2307threads while your program runs---but whenever @value{GDBN} takes
2308control, one thread in particular is always the focus of debugging.
2309This thread is called the @dfn{current thread}. Debugging commands show
2310program information from the perspective of the current thread.
2311
41afff9a 2312@cindex @code{New} @var{systag} message
c906108c
SS
2313@cindex thread identifier (system)
2314@c FIXME-implementors!! It would be more helpful if the [New...] message
2315@c included GDB's numeric thread handle, so you could just go to that
2316@c thread without first checking `info threads'.
2317Whenever @value{GDBN} detects a new thread in your program, it displays
2318the target system's identification for the thread with a message in the
2319form @samp{[New @var{systag}]}. @var{systag} is a thread identifier
2320whose form varies depending on the particular system. For example, on
8807d78b 2321@sc{gnu}/Linux, you might see
c906108c 2322
474c8240 2323@smallexample
8807d78b 2324[New Thread 46912507313328 (LWP 25582)]
474c8240 2325@end smallexample
c906108c
SS
2326
2327@noindent
2328when @value{GDBN} notices a new thread. In contrast, on an SGI system,
2329the @var{systag} is simply something like @samp{process 368}, with no
2330further qualifier.
2331
2332@c FIXME!! (1) Does the [New...] message appear even for the very first
2333@c thread of a program, or does it only appear for the
6ca652b0 2334@c second---i.e.@: when it becomes obvious we have a multithread
c906108c
SS
2335@c program?
2336@c (2) *Is* there necessarily a first thread always? Or do some
2337@c multithread systems permit starting a program with multiple
5d161b24 2338@c threads ab initio?
c906108c
SS
2339
2340@cindex thread number
2341@cindex thread identifier (GDB)
2342For debugging purposes, @value{GDBN} associates its own thread
2343number---always a single integer---with each thread in your program.
2344
2345@table @code
2346@kindex info threads
2347@item info threads
2348Display a summary of all threads currently in your
2349program. @value{GDBN} displays for each thread (in this order):
2350
2351@enumerate
09d4efe1
EZ
2352@item
2353the thread number assigned by @value{GDBN}
c906108c 2354
09d4efe1
EZ
2355@item
2356the target system's thread identifier (@var{systag})
c906108c 2357
09d4efe1
EZ
2358@item
2359the current stack frame summary for that thread
c906108c
SS
2360@end enumerate
2361
2362@noindent
2363An asterisk @samp{*} to the left of the @value{GDBN} thread number
2364indicates the current thread.
2365
5d161b24 2366For example,
c906108c
SS
2367@end table
2368@c end table here to get a little more width for example
2369
2370@smallexample
2371(@value{GDBP}) info threads
2372 3 process 35 thread 27 0x34e5 in sigpause ()
2373 2 process 35 thread 23 0x34e5 in sigpause ()
2374* 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)
2375 at threadtest.c:68
2376@end smallexample
53a5351d
JM
2377
2378On HP-UX systems:
c906108c 2379
4644b6e3
EZ
2380@cindex debugging multithreaded programs (on HP-UX)
2381@cindex thread identifier (GDB), on HP-UX
c906108c
SS
2382For debugging purposes, @value{GDBN} associates its own thread
2383number---a small integer assigned in thread-creation order---with each
2384thread in your program.
2385
41afff9a
EZ
2386@cindex @code{New} @var{systag} message, on HP-UX
2387@cindex thread identifier (system), on HP-UX
c906108c
SS
2388@c FIXME-implementors!! It would be more helpful if the [New...] message
2389@c included GDB's numeric thread handle, so you could just go to that
2390@c thread without first checking `info threads'.
2391Whenever @value{GDBN} detects a new thread in your program, it displays
2392both @value{GDBN}'s thread number and the target system's identification for the thread with a message in the
2393form @samp{[New @var{systag}]}. @var{systag} is a thread identifier
2394whose form varies depending on the particular system. For example, on
2395HP-UX, you see
2396
474c8240 2397@smallexample
c906108c 2398[New thread 2 (system thread 26594)]
474c8240 2399@end smallexample
c906108c
SS
2400
2401@noindent
5d161b24 2402when @value{GDBN} notices a new thread.
c906108c
SS
2403
2404@table @code
4644b6e3 2405@kindex info threads (HP-UX)
c906108c
SS
2406@item info threads
2407Display a summary of all threads currently in your
2408program. @value{GDBN} displays for each thread (in this order):
2409
2410@enumerate
2411@item the thread number assigned by @value{GDBN}
2412
2413@item the target system's thread identifier (@var{systag})
2414
2415@item the current stack frame summary for that thread
2416@end enumerate
2417
2418@noindent
2419An asterisk @samp{*} to the left of the @value{GDBN} thread number
2420indicates the current thread.
2421
5d161b24 2422For example,
c906108c
SS
2423@end table
2424@c end table here to get a little more width for example
2425
474c8240 2426@smallexample
c906108c 2427(@value{GDBP}) info threads
6d2ebf8b
SS
2428 * 3 system thread 26607 worker (wptr=0x7b09c318 "@@") \@*
2429 at quicksort.c:137
2430 2 system thread 26606 0x7b0030d8 in __ksleep () \@*
2431 from /usr/lib/libc.2
2432 1 system thread 27905 0x7b003498 in _brk () \@*
2433 from /usr/lib/libc.2
474c8240 2434@end smallexample
c906108c 2435
c45da7e6
EZ
2436On Solaris, you can display more information about user threads with a
2437Solaris-specific command:
2438
2439@table @code
2440@item maint info sol-threads
2441@kindex maint info sol-threads
2442@cindex thread info (Solaris)
2443Display info on Solaris user threads.
2444@end table
2445
c906108c
SS
2446@table @code
2447@kindex thread @var{threadno}
2448@item thread @var{threadno}
2449Make thread number @var{threadno} the current thread. The command
2450argument @var{threadno} is the internal @value{GDBN} thread number, as
2451shown in the first field of the @samp{info threads} display.
2452@value{GDBN} responds by displaying the system identifier of the thread
2453you selected, and its current stack frame summary:
2454
2455@smallexample
2456@c FIXME!! This example made up; find a @value{GDBN} w/threads and get real one
2457(@value{GDBP}) thread 2
c906108c 2458[Switching to process 35 thread 23]
c906108c
SS
24590x34e5 in sigpause ()
2460@end smallexample
2461
2462@noindent
2463As with the @samp{[New @dots{}]} message, the form of the text after
2464@samp{Switching to} depends on your system's conventions for identifying
5d161b24 2465threads.
c906108c 2466
9c16f35a 2467@kindex thread apply
638ac427 2468@cindex apply command to several threads
839c27b7
EZ
2469@item thread apply [@var{threadno}] [@var{all}] @var{command}
2470The @code{thread apply} command allows you to apply the named
2471@var{command} to one or more threads. Specify the numbers of the
2472threads that you want affected with the command argument
2473@var{threadno}. It can be a single thread number, one of the numbers
2474shown in the first field of the @samp{info threads} display; or it
2475could be a range of thread numbers, as in @code{2-4}. To apply a
2476command to all threads, type @kbd{thread apply all @var{command}}.
93815fbf
VP
2477
2478@kindex set print thread-events
2479@cindex print messages on thread start and exit
2480@item set print thread-events
2481@itemx set print thread-events on
2482@itemx set print thread-events off
2483The @code{set print thread-events} command allows you to enable or
2484disable printing of messages when @value{GDBN} notices that new threads have
2485started or that threads have exited. By default, these messages will
2486be printed if detection of these events is supported by the target.
2487Note that these messages cannot be disabled on all targets.
2488
2489@kindex show print thread-events
2490@item show print thread-events
2491Show whether messages will be printed when @value{GDBN} detects that threads
2492have started and exited.
c906108c
SS
2493@end table
2494
2495@cindex automatic thread selection
2496@cindex switching threads automatically
2497@cindex threads, automatic switching
2498Whenever @value{GDBN} stops your program, due to a breakpoint or a
2499signal, it automatically selects the thread where that breakpoint or
2500signal happened. @value{GDBN} alerts you to the context switch with a
2501message of the form @samp{[Switching to @var{systag}]} to identify the
2502thread.
2503
79a6e687 2504@xref{Thread Stops,,Stopping and Starting Multi-thread Programs}, for
c906108c
SS
2505more information about how @value{GDBN} behaves when you stop and start
2506programs with multiple threads.
2507
79a6e687 2508@xref{Set Watchpoints,,Setting Watchpoints}, for information about
c906108c 2509watchpoints in programs with multiple threads.
c906108c 2510
6d2ebf8b 2511@node Processes
79a6e687 2512@section Debugging Programs with Multiple Processes
c906108c
SS
2513
2514@cindex fork, debugging programs which call
2515@cindex multiple processes
2516@cindex processes, multiple
53a5351d
JM
2517On most systems, @value{GDBN} has no special support for debugging
2518programs which create additional processes using the @code{fork}
2519function. When a program forks, @value{GDBN} will continue to debug the
2520parent process and the child process will run unimpeded. If you have
2521set a breakpoint in any code which the child then executes, the child
2522will get a @code{SIGTRAP} signal which (unless it catches the signal)
2523will cause it to terminate.
c906108c
SS
2524
2525However, if you want to debug the child process there is a workaround
2526which isn't too painful. Put a call to @code{sleep} in the code which
2527the child process executes after the fork. It may be useful to sleep
2528only if a certain environment variable is set, or a certain file exists,
2529so that the delay need not occur when you don't want to run @value{GDBN}
2530on the child. While the child is sleeping, use the @code{ps} program to
2531get its process ID. Then tell @value{GDBN} (a new invocation of
2532@value{GDBN} if you are also debugging the parent process) to attach to
d4f3574e 2533the child process (@pxref{Attach}). From that point on you can debug
c906108c 2534the child process just like any other process which you attached to.
c906108c 2535
b51970ac
DJ
2536On some systems, @value{GDBN} provides support for debugging programs that
2537create additional processes using the @code{fork} or @code{vfork} functions.
2538Currently, the only platforms with this feature are HP-UX (11.x and later
a6b151f1 2539only?) and @sc{gnu}/Linux (kernel version 2.5.60 and later).
c906108c
SS
2540
2541By default, when a program forks, @value{GDBN} will continue to debug
2542the parent process and the child process will run unimpeded.
2543
2544If you want to follow the child process instead of the parent process,
2545use the command @w{@code{set follow-fork-mode}}.
2546
2547@table @code
2548@kindex set follow-fork-mode
2549@item set follow-fork-mode @var{mode}
2550Set the debugger response to a program call of @code{fork} or
2551@code{vfork}. A call to @code{fork} or @code{vfork} creates a new
9c16f35a 2552process. The @var{mode} argument can be:
c906108c
SS
2553
2554@table @code
2555@item parent
2556The original process is debugged after a fork. The child process runs
2df3850c 2557unimpeded. This is the default.
c906108c
SS
2558
2559@item child
2560The new process is debugged after a fork. The parent process runs
2561unimpeded.
2562
c906108c
SS
2563@end table
2564
9c16f35a 2565@kindex show follow-fork-mode
c906108c 2566@item show follow-fork-mode
2df3850c 2567Display the current debugger response to a @code{fork} or @code{vfork} call.
c906108c
SS
2568@end table
2569
5c95884b
MS
2570@cindex debugging multiple processes
2571On Linux, if you want to debug both the parent and child processes, use the
2572command @w{@code{set detach-on-fork}}.
2573
2574@table @code
2575@kindex set detach-on-fork
2576@item set detach-on-fork @var{mode}
2577Tells gdb whether to detach one of the processes after a fork, or
2578retain debugger control over them both.
2579
2580@table @code
2581@item on
2582The child process (or parent process, depending on the value of
2583@code{follow-fork-mode}) will be detached and allowed to run
2584independently. This is the default.
2585
2586@item off
2587Both processes will be held under the control of @value{GDBN}.
2588One process (child or parent, depending on the value of
2589@code{follow-fork-mode}) is debugged as usual, while the other
2590is held suspended.
2591
2592@end table
2593
11310833
NR
2594@kindex show detach-on-fork
2595@item show detach-on-fork
2596Show whether detach-on-fork mode is on/off.
5c95884b
MS
2597@end table
2598
11310833 2599If you choose to set @samp{detach-on-fork} mode off, then
5c95884b
MS
2600@value{GDBN} will retain control of all forked processes (including
2601nested forks). You can list the forked processes under the control of
2602@value{GDBN} by using the @w{@code{info forks}} command, and switch
2603from one fork to another by using the @w{@code{fork}} command.
2604
2605@table @code
2606@kindex info forks
2607@item info forks
2608Print a list of all forked processes under the control of @value{GDBN}.
2609The listing will include a fork id, a process id, and the current
2610position (program counter) of the process.
2611
5c95884b
MS
2612@kindex fork @var{fork-id}
2613@item fork @var{fork-id}
2614Make fork number @var{fork-id} the current process. The argument
2615@var{fork-id} is the internal fork number assigned by @value{GDBN},
2616as shown in the first field of the @samp{info forks} display.
2617
11310833
NR
2618@kindex process @var{process-id}
2619@item process @var{process-id}
2620Make process number @var{process-id} the current process. The
2621argument @var{process-id} must be one that is listed in the output of
2622@samp{info forks}.
2623
5c95884b
MS
2624@end table
2625
2626To quit debugging one of the forked processes, you can either detach
f73adfeb 2627from it by using the @w{@code{detach fork}} command (allowing it to
5c95884b 2628run independently), or delete (and kill) it using the
b8db102d 2629@w{@code{delete fork}} command.
5c95884b
MS
2630
2631@table @code
f73adfeb
AS
2632@kindex detach fork @var{fork-id}
2633@item detach fork @var{fork-id}
5c95884b
MS
2634Detach from the process identified by @value{GDBN} fork number
2635@var{fork-id}, and remove it from the fork list. The process will be
2636allowed to run independently.
2637
b8db102d
MS
2638@kindex delete fork @var{fork-id}
2639@item delete fork @var{fork-id}
5c95884b
MS
2640Kill the process identified by @value{GDBN} fork number @var{fork-id},
2641and remove it from the fork list.
2642
2643@end table
2644
c906108c
SS
2645If you ask to debug a child process and a @code{vfork} is followed by an
2646@code{exec}, @value{GDBN} executes the new target up to the first
2647breakpoint in the new target. If you have a breakpoint set on
2648@code{main} in your original program, the breakpoint will also be set on
2649the child process's @code{main}.
2650
2651When a child process is spawned by @code{vfork}, you cannot debug the
2652child or parent until an @code{exec} call completes.
2653
2654If you issue a @code{run} command to @value{GDBN} after an @code{exec}
2655call executes, the new target restarts. To restart the parent process,
2656use the @code{file} command with the parent executable name as its
2657argument.
2658
2659You can use the @code{catch} command to make @value{GDBN} stop whenever
2660a @code{fork}, @code{vfork}, or @code{exec} call is made. @xref{Set
79a6e687 2661Catchpoints, ,Setting Catchpoints}.
c906108c 2662
5c95884b 2663@node Checkpoint/Restart
79a6e687 2664@section Setting a @emph{Bookmark} to Return to Later
5c95884b
MS
2665
2666@cindex checkpoint
2667@cindex restart
2668@cindex bookmark
2669@cindex snapshot of a process
2670@cindex rewind program state
2671
2672On certain operating systems@footnote{Currently, only
2673@sc{gnu}/Linux.}, @value{GDBN} is able to save a @dfn{snapshot} of a
2674program's state, called a @dfn{checkpoint}, and come back to it
2675later.
2676
2677Returning to a checkpoint effectively undoes everything that has
2678happened in the program since the @code{checkpoint} was saved. This
2679includes changes in memory, registers, and even (within some limits)
2680system state. Effectively, it is like going back in time to the
2681moment when the checkpoint was saved.
2682
2683Thus, if you're stepping thru a program and you think you're
2684getting close to the point where things go wrong, you can save
2685a checkpoint. Then, if you accidentally go too far and miss
2686the critical statement, instead of having to restart your program
2687from the beginning, you can just go back to the checkpoint and
2688start again from there.
2689
2690This can be especially useful if it takes a lot of time or
2691steps to reach the point where you think the bug occurs.
2692
2693To use the @code{checkpoint}/@code{restart} method of debugging:
2694
2695@table @code
2696@kindex checkpoint
2697@item checkpoint
2698Save a snapshot of the debugged program's current execution state.
2699The @code{checkpoint} command takes no arguments, but each checkpoint
2700is assigned a small integer id, similar to a breakpoint id.
2701
2702@kindex info checkpoints
2703@item info checkpoints
2704List the checkpoints that have been saved in the current debugging
2705session. For each checkpoint, the following information will be
2706listed:
2707
2708@table @code
2709@item Checkpoint ID
2710@item Process ID
2711@item Code Address
2712@item Source line, or label
2713@end table
2714
2715@kindex restart @var{checkpoint-id}
2716@item restart @var{checkpoint-id}
2717Restore the program state that was saved as checkpoint number
2718@var{checkpoint-id}. All program variables, registers, stack frames
2719etc.@: will be returned to the values that they had when the checkpoint
2720was saved. In essence, gdb will ``wind back the clock'' to the point
2721in time when the checkpoint was saved.
2722
2723Note that breakpoints, @value{GDBN} variables, command history etc.
2724are not affected by restoring a checkpoint. In general, a checkpoint
2725only restores things that reside in the program being debugged, not in
2726the debugger.
2727
b8db102d
MS
2728@kindex delete checkpoint @var{checkpoint-id}
2729@item delete checkpoint @var{checkpoint-id}
5c95884b
MS
2730Delete the previously-saved checkpoint identified by @var{checkpoint-id}.
2731
2732@end table
2733
2734Returning to a previously saved checkpoint will restore the user state
2735of the program being debugged, plus a significant subset of the system
2736(OS) state, including file pointers. It won't ``un-write'' data from
2737a file, but it will rewind the file pointer to the previous location,
2738so that the previously written data can be overwritten. For files
2739opened in read mode, the pointer will also be restored so that the
2740previously read data can be read again.
2741
2742Of course, characters that have been sent to a printer (or other
2743external device) cannot be ``snatched back'', and characters received
2744from eg.@: a serial device can be removed from internal program buffers,
2745but they cannot be ``pushed back'' into the serial pipeline, ready to
2746be received again. Similarly, the actual contents of files that have
2747been changed cannot be restored (at this time).
2748
2749However, within those constraints, you actually can ``rewind'' your
2750program to a previously saved point in time, and begin debugging it
2751again --- and you can change the course of events so as to debug a
2752different execution path this time.
2753
2754@cindex checkpoints and process id
2755Finally, there is one bit of internal program state that will be
2756different when you return to a checkpoint --- the program's process
2757id. Each checkpoint will have a unique process id (or @var{pid}),
2758and each will be different from the program's original @var{pid}.
2759If your program has saved a local copy of its process id, this could
2760potentially pose a problem.
2761
79a6e687 2762@subsection A Non-obvious Benefit of Using Checkpoints
5c95884b
MS
2763
2764On some systems such as @sc{gnu}/Linux, address space randomization
2765is performed on new processes for security reasons. This makes it
2766difficult or impossible to set a breakpoint, or watchpoint, on an
2767absolute address if you have to restart the program, since the
2768absolute location of a symbol will change from one execution to the
2769next.
2770
2771A checkpoint, however, is an @emph{identical} copy of a process.
2772Therefore if you create a checkpoint at (eg.@:) the start of main,
2773and simply return to that checkpoint instead of restarting the
2774process, you can avoid the effects of address randomization and
2775your symbols will all stay in the same place.
2776
6d2ebf8b 2777@node Stopping
c906108c
SS
2778@chapter Stopping and Continuing
2779
2780The principal purposes of using a debugger are so that you can stop your
2781program before it terminates; or so that, if your program runs into
2782trouble, you can investigate and find out why.
2783
7a292a7a
SS
2784Inside @value{GDBN}, your program may stop for any of several reasons,
2785such as a signal, a breakpoint, or reaching a new line after a
2786@value{GDBN} command such as @code{step}. You may then examine and
2787change variables, set new breakpoints or remove old ones, and then
2788continue execution. Usually, the messages shown by @value{GDBN} provide
2789ample explanation of the status of your program---but you can also
2790explicitly request this information at any time.
c906108c
SS
2791
2792@table @code
2793@kindex info program
2794@item info program
2795Display information about the status of your program: whether it is
7a292a7a 2796running or not, what process it is, and why it stopped.
c906108c
SS
2797@end table
2798
2799@menu
2800* Breakpoints:: Breakpoints, watchpoints, and catchpoints
2801* Continuing and Stepping:: Resuming execution
c906108c 2802* Signals:: Signals
c906108c 2803* Thread Stops:: Stopping and starting multi-thread programs
c906108c
SS
2804@end menu
2805
6d2ebf8b 2806@node Breakpoints
79a6e687 2807@section Breakpoints, Watchpoints, and Catchpoints
c906108c
SS
2808
2809@cindex breakpoints
2810A @dfn{breakpoint} makes your program stop whenever a certain point in
2811the program is reached. For each breakpoint, you can add conditions to
2812control in finer detail whether your program stops. You can set
2813breakpoints with the @code{break} command and its variants (@pxref{Set
79a6e687 2814Breaks, ,Setting Breakpoints}), to specify the place where your program
c906108c
SS
2815should stop by line number, function name or exact address in the
2816program.
2817
09d4efe1
EZ
2818On some systems, you can set breakpoints in shared libraries before
2819the executable is run. There is a minor limitation on HP-UX systems:
2820you must wait until the executable is run in order to set breakpoints
2821in shared library routines that are not called directly by the program
2822(for example, routines that are arguments in a @code{pthread_create}
2823call).
c906108c
SS
2824
2825@cindex watchpoints
fd60e0df 2826@cindex data breakpoints
c906108c
SS
2827@cindex memory tracing
2828@cindex breakpoint on memory address
2829@cindex breakpoint on variable modification
2830A @dfn{watchpoint} is a special breakpoint that stops your program
fd60e0df 2831when the value of an expression changes. The expression may be a value
0ced0c34 2832of a variable, or it could involve values of one or more variables
fd60e0df
EZ
2833combined by operators, such as @samp{a + b}. This is sometimes called
2834@dfn{data breakpoints}. You must use a different command to set
79a6e687 2835watchpoints (@pxref{Set Watchpoints, ,Setting Watchpoints}), but aside
fd60e0df
EZ
2836from that, you can manage a watchpoint like any other breakpoint: you
2837enable, disable, and delete both breakpoints and watchpoints using the
2838same commands.
c906108c
SS
2839
2840You can arrange to have values from your program displayed automatically
2841whenever @value{GDBN} stops at a breakpoint. @xref{Auto Display,,
79a6e687 2842Automatic Display}.
c906108c
SS
2843
2844@cindex catchpoints
2845@cindex breakpoint on events
2846A @dfn{catchpoint} is another special breakpoint that stops your program
b37052ae 2847when a certain kind of event occurs, such as the throwing of a C@t{++}
c906108c
SS
2848exception or the loading of a library. As with watchpoints, you use a
2849different command to set a catchpoint (@pxref{Set Catchpoints, ,Setting
79a6e687 2850Catchpoints}), but aside from that, you can manage a catchpoint like any
c906108c 2851other breakpoint. (To stop when your program receives a signal, use the
d4f3574e 2852@code{handle} command; see @ref{Signals, ,Signals}.)
c906108c
SS
2853
2854@cindex breakpoint numbers
2855@cindex numbers for breakpoints
2856@value{GDBN} assigns a number to each breakpoint, watchpoint, or
2857catchpoint when you create it; these numbers are successive integers
2858starting with one. In many of the commands for controlling various
2859features of breakpoints you use the breakpoint number to say which
2860breakpoint you want to change. Each breakpoint may be @dfn{enabled} or
2861@dfn{disabled}; if disabled, it has no effect on your program until you
2862enable it again.
2863
c5394b80
JM
2864@cindex breakpoint ranges
2865@cindex ranges of breakpoints
2866Some @value{GDBN} commands accept a range of breakpoints on which to
2867operate. A breakpoint range is either a single breakpoint number, like
2868@samp{5}, or two such numbers, in increasing order, separated by a
2869hyphen, like @samp{5-7}. When a breakpoint range is given to a command,
d52fb0e9 2870all breakpoints in that range are operated on.
c5394b80 2871
c906108c
SS
2872@menu
2873* Set Breaks:: Setting breakpoints
2874* Set Watchpoints:: Setting watchpoints
2875* Set Catchpoints:: Setting catchpoints
2876* Delete Breaks:: Deleting breakpoints
2877* Disabling:: Disabling breakpoints
2878* Conditions:: Break conditions
2879* Break Commands:: Breakpoint command lists
d4f3574e 2880* Error in Breakpoints:: ``Cannot insert breakpoints''
79a6e687 2881* Breakpoint-related Warnings:: ``Breakpoint address adjusted...''
c906108c
SS
2882@end menu
2883
6d2ebf8b 2884@node Set Breaks
79a6e687 2885@subsection Setting Breakpoints
c906108c 2886
5d161b24 2887@c FIXME LMB what does GDB do if no code on line of breakpt?
c906108c
SS
2888@c consider in particular declaration with/without initialization.
2889@c
2890@c FIXME 2 is there stuff on this already? break at fun start, already init?
2891
2892@kindex break
41afff9a
EZ
2893@kindex b @r{(@code{break})}
2894@vindex $bpnum@r{, convenience variable}
c906108c
SS
2895@cindex latest breakpoint
2896Breakpoints are set with the @code{break} command (abbreviated
5d161b24 2897@code{b}). The debugger convenience variable @samp{$bpnum} records the
f3b28801 2898number of the breakpoint you've set most recently; see @ref{Convenience
79a6e687 2899Vars,, Convenience Variables}, for a discussion of what you can do with
c906108c
SS
2900convenience variables.
2901
c906108c 2902@table @code
2a25a5ba
EZ
2903@item break @var{location}
2904Set a breakpoint at the given @var{location}, which can specify a
2905function name, a line number, or an address of an instruction.
2906(@xref{Specify Location}, for a list of all the possible ways to
2907specify a @var{location}.) The breakpoint will stop your program just
2908before it executes any of the code in the specified @var{location}.
2909
c906108c 2910When using source languages that permit overloading of symbols, such as
2a25a5ba 2911C@t{++}, a function name may refer to more than one possible place to break.
6ba66d6a
JB
2912@xref{Ambiguous Expressions,,Ambiguous Expressions}, for a discussion of
2913that situation.
c906108c 2914
c906108c
SS
2915@item break
2916When called without any arguments, @code{break} sets a breakpoint at
2917the next instruction to be executed in the selected stack frame
2918(@pxref{Stack, ,Examining the Stack}). In any selected frame but the
2919innermost, this makes your program stop as soon as control
2920returns to that frame. This is similar to the effect of a
2921@code{finish} command in the frame inside the selected frame---except
2922that @code{finish} does not leave an active breakpoint. If you use
2923@code{break} without an argument in the innermost frame, @value{GDBN} stops
2924the next time it reaches the current location; this may be useful
2925inside loops.
2926
2927@value{GDBN} normally ignores breakpoints when it resumes execution, until at
2928least one instruction has been executed. If it did not do this, you
2929would be unable to proceed past a breakpoint without first disabling the
2930breakpoint. This rule applies whether or not the breakpoint already
2931existed when your program stopped.
2932
2933@item break @dots{} if @var{cond}
2934Set a breakpoint with condition @var{cond}; evaluate the expression
2935@var{cond} each time the breakpoint is reached, and stop only if the
2936value is nonzero---that is, if @var{cond} evaluates as true.
2937@samp{@dots{}} stands for one of the possible arguments described
2938above (or no argument) specifying where to break. @xref{Conditions,
79a6e687 2939,Break Conditions}, for more information on breakpoint conditions.
c906108c
SS
2940
2941@kindex tbreak
2942@item tbreak @var{args}
2943Set a breakpoint enabled only for one stop. @var{args} are the
2944same as for the @code{break} command, and the breakpoint is set in the same
2945way, but the breakpoint is automatically deleted after the first time your
79a6e687 2946program stops there. @xref{Disabling, ,Disabling Breakpoints}.
c906108c 2947
c906108c 2948@kindex hbreak
ba04e063 2949@cindex hardware breakpoints
c906108c 2950@item hbreak @var{args}
d4f3574e
SS
2951Set a hardware-assisted breakpoint. @var{args} are the same as for the
2952@code{break} command and the breakpoint is set in the same way, but the
c906108c
SS
2953breakpoint requires hardware support and some target hardware may not
2954have this support. The main purpose of this is EPROM/ROM code
d4f3574e
SS
2955debugging, so you can set a breakpoint at an instruction without
2956changing the instruction. This can be used with the new trap-generation
09d4efe1 2957provided by SPARClite DSU and most x86-based targets. These targets
d4f3574e
SS
2958will generate traps when a program accesses some data or instruction
2959address that is assigned to the debug registers. However the hardware
2960breakpoint registers can take a limited number of breakpoints. For
2961example, on the DSU, only two data breakpoints can be set at a time, and
2962@value{GDBN} will reject this command if more than two are used. Delete
2963or disable unused hardware breakpoints before setting new ones
79a6e687
BW
2964(@pxref{Disabling, ,Disabling Breakpoints}).
2965@xref{Conditions, ,Break Conditions}.
9c16f35a
EZ
2966For remote targets, you can restrict the number of hardware
2967breakpoints @value{GDBN} will use, see @ref{set remote
2968hardware-breakpoint-limit}.
501eef12 2969
c906108c
SS
2970@kindex thbreak
2971@item thbreak @var{args}
2972Set a hardware-assisted breakpoint enabled only for one stop. @var{args}
2973are the same as for the @code{hbreak} command and the breakpoint is set in
5d161b24 2974the same way. However, like the @code{tbreak} command,
c906108c
SS
2975the breakpoint is automatically deleted after the
2976first time your program stops there. Also, like the @code{hbreak}
5d161b24 2977command, the breakpoint requires hardware support and some target hardware
79a6e687
BW
2978may not have this support. @xref{Disabling, ,Disabling Breakpoints}.
2979See also @ref{Conditions, ,Break Conditions}.
c906108c
SS
2980
2981@kindex rbreak
2982@cindex regular expression
c45da7e6
EZ
2983@cindex breakpoints in functions matching a regexp
2984@cindex set breakpoints in many functions
c906108c 2985@item rbreak @var{regex}
c906108c 2986Set breakpoints on all functions matching the regular expression
11cf8741
JM
2987@var{regex}. This command sets an unconditional breakpoint on all
2988matches, printing a list of all breakpoints it set. Once these
2989breakpoints are set, they are treated just like the breakpoints set with
2990the @code{break} command. You can delete them, disable them, or make
2991them conditional the same way as any other breakpoint.
2992
2993The syntax of the regular expression is the standard one used with tools
2994like @file{grep}. Note that this is different from the syntax used by
2995shells, so for instance @code{foo*} matches all functions that include
2996an @code{fo} followed by zero or more @code{o}s. There is an implicit
2997@code{.*} leading and trailing the regular expression you supply, so to
2998match only functions that begin with @code{foo}, use @code{^foo}.
c906108c 2999
f7dc1244 3000@cindex non-member C@t{++} functions, set breakpoint in
b37052ae 3001When debugging C@t{++} programs, @code{rbreak} is useful for setting
c906108c
SS
3002breakpoints on overloaded functions that are not members of any special
3003classes.
c906108c 3004
f7dc1244
EZ
3005@cindex set breakpoints on all functions
3006The @code{rbreak} command can be used to set breakpoints in
3007@strong{all} the functions in a program, like this:
3008
3009@smallexample
3010(@value{GDBP}) rbreak .
3011@end smallexample
3012
c906108c
SS
3013@kindex info breakpoints
3014@cindex @code{$_} and @code{info breakpoints}
3015@item info breakpoints @r{[}@var{n}@r{]}
3016@itemx info break @r{[}@var{n}@r{]}
3017@itemx info watchpoints @r{[}@var{n}@r{]}
3018Print a table of all breakpoints, watchpoints, and catchpoints set and
45ac1734
EZ
3019not deleted. Optional argument @var{n} means print information only
3020about the specified breakpoint (or watchpoint or catchpoint). For
3021each breakpoint, following columns are printed:
c906108c
SS
3022
3023@table @emph
3024@item Breakpoint Numbers
3025@item Type
3026Breakpoint, watchpoint, or catchpoint.
3027@item Disposition
3028Whether the breakpoint is marked to be disabled or deleted when hit.
3029@item Enabled or Disabled
3030Enabled breakpoints are marked with @samp{y}. @samp{n} marks breakpoints
b3db7447 3031that are not enabled.
c906108c 3032@item Address
fe6fbf8b 3033Where the breakpoint is in your program, as a memory address. For a
b3db7447
NR
3034pending breakpoint whose address is not yet known, this field will
3035contain @samp{<PENDING>}. Such breakpoint won't fire until a shared
3036library that has the symbol or line referred by breakpoint is loaded.
3037See below for details. A breakpoint with several locations will
3b784c4f 3038have @samp{<MULTIPLE>} in this field---see below for details.
c906108c
SS
3039@item What
3040Where the breakpoint is in the source for your program, as a file and
2650777c
JJ
3041line number. For a pending breakpoint, the original string passed to
3042the breakpoint command will be listed as it cannot be resolved until
3043the appropriate shared library is loaded in the future.
c906108c
SS
3044@end table
3045
3046@noindent
3047If a breakpoint is conditional, @code{info break} shows the condition on
3048the line following the affected breakpoint; breakpoint commands, if any,
2650777c
JJ
3049are listed after that. A pending breakpoint is allowed to have a condition
3050specified for it. The condition is not parsed for validity until a shared
3051library is loaded that allows the pending breakpoint to resolve to a
3052valid location.
c906108c
SS
3053
3054@noindent
3055@code{info break} with a breakpoint
3056number @var{n} as argument lists only that breakpoint. The
3057convenience variable @code{$_} and the default examining-address for
3058the @code{x} command are set to the address of the last breakpoint
79a6e687 3059listed (@pxref{Memory, ,Examining Memory}).
c906108c
SS
3060
3061@noindent
3062@code{info break} displays a count of the number of times the breakpoint
3063has been hit. This is especially useful in conjunction with the
3064@code{ignore} command. You can ignore a large number of breakpoint
3065hits, look at the breakpoint info to see how many times the breakpoint
3066was hit, and then run again, ignoring one less than that number. This
3067will get you quickly to the last hit of that breakpoint.
3068@end table
3069
3070@value{GDBN} allows you to set any number of breakpoints at the same place in
3071your program. There is nothing silly or meaningless about this. When
3072the breakpoints are conditional, this is even useful
79a6e687 3073(@pxref{Conditions, ,Break Conditions}).
c906108c 3074
2e9132cc
EZ
3075@cindex multiple locations, breakpoints
3076@cindex breakpoints, multiple locations
fcda367b 3077It is possible that a breakpoint corresponds to several locations
fe6fbf8b
VP
3078in your program. Examples of this situation are:
3079
3080@itemize @bullet
fe6fbf8b
VP
3081@item
3082For a C@t{++} constructor, the @value{NGCC} compiler generates several
3083instances of the function body, used in different cases.
3084
3085@item
3086For a C@t{++} template function, a given line in the function can
3087correspond to any number of instantiations.
3088
3089@item
3090For an inlined function, a given source line can correspond to
3091several places where that function is inlined.
fe6fbf8b
VP
3092@end itemize
3093
3094In all those cases, @value{GDBN} will insert a breakpoint at all
2e9132cc
EZ
3095the relevant locations@footnote{
3096As of this writing, multiple-location breakpoints work only if there's
3097line number information for all the locations. This means that they
3098will generally not work in system libraries, unless you have debug
3099info with line numbers for them.}.
fe6fbf8b 3100
3b784c4f
EZ
3101A breakpoint with multiple locations is displayed in the breakpoint
3102table using several rows---one header row, followed by one row for
3103each breakpoint location. The header row has @samp{<MULTIPLE>} in the
3104address column. The rows for individual locations contain the actual
3105addresses for locations, and show the functions to which those
3106locations belong. The number column for a location is of the form
fe6fbf8b
VP
3107@var{breakpoint-number}.@var{location-number}.
3108
3109For example:
3b784c4f 3110
fe6fbf8b
VP
3111@smallexample
3112Num Type Disp Enb Address What
31131 breakpoint keep y <MULTIPLE>
3114 stop only if i==1
3115 breakpoint already hit 1 time
31161.1 y 0x080486a2 in void foo<int>() at t.cc:8
31171.2 y 0x080486ca in void foo<double>() at t.cc:8
3118@end smallexample
3119
3120Each location can be individually enabled or disabled by passing
3121@var{breakpoint-number}.@var{location-number} as argument to the
3b784c4f
EZ
3122@code{enable} and @code{disable} commands. Note that you cannot
3123delete the individual locations from the list, you can only delete the
16bfc218 3124entire list of locations that belong to their parent breakpoint (with
3b784c4f
EZ
3125the @kbd{delete @var{num}} command, where @var{num} is the number of
3126the parent breakpoint, 1 in the above example). Disabling or enabling
3127the parent breakpoint (@pxref{Disabling}) affects all of the locations
3128that belong to that breakpoint.
fe6fbf8b 3129
2650777c 3130@cindex pending breakpoints
fe6fbf8b 3131It's quite common to have a breakpoint inside a shared library.
3b784c4f 3132Shared libraries can be loaded and unloaded explicitly,
fe6fbf8b
VP
3133and possibly repeatedly, as the program is executed. To support
3134this use case, @value{GDBN} updates breakpoint locations whenever
3135any shared library is loaded or unloaded. Typically, you would
fcda367b 3136set a breakpoint in a shared library at the beginning of your
fe6fbf8b
VP
3137debugging session, when the library is not loaded, and when the
3138symbols from the library are not available. When you try to set
3139breakpoint, @value{GDBN} will ask you if you want to set
3b784c4f 3140a so called @dfn{pending breakpoint}---breakpoint whose address
fe6fbf8b
VP
3141is not yet resolved.
3142
3143After the program is run, whenever a new shared library is loaded,
3144@value{GDBN} reevaluates all the breakpoints. When a newly loaded
3145shared library contains the symbol or line referred to by some
3146pending breakpoint, that breakpoint is resolved and becomes an
3147ordinary breakpoint. When a library is unloaded, all breakpoints
3148that refer to its symbols or source lines become pending again.
3149
3150This logic works for breakpoints with multiple locations, too. For
3151example, if you have a breakpoint in a C@t{++} template function, and
3152a newly loaded shared library has an instantiation of that template,
3153a new location is added to the list of locations for the breakpoint.
3154
3155Except for having unresolved address, pending breakpoints do not
3156differ from regular breakpoints. You can set conditions or commands,
3157enable and disable them and perform other breakpoint operations.
3158
3159@value{GDBN} provides some additional commands for controlling what
3160happens when the @samp{break} command cannot resolve breakpoint
3161address specification to an address:
dd79a6cf
JJ
3162
3163@kindex set breakpoint pending
3164@kindex show breakpoint pending
3165@table @code
3166@item set breakpoint pending auto
3167This is the default behavior. When @value{GDBN} cannot find the breakpoint
3168location, it queries you whether a pending breakpoint should be created.
3169
3170@item set breakpoint pending on
3171This indicates that an unrecognized breakpoint location should automatically
3172result in a pending breakpoint being created.
3173
3174@item set breakpoint pending off
3175This indicates that pending breakpoints are not to be created. Any
3176unrecognized breakpoint location results in an error. This setting does
3177not affect any pending breakpoints previously created.
3178
3179@item show breakpoint pending
3180Show the current behavior setting for creating pending breakpoints.
3181@end table
2650777c 3182
fe6fbf8b
VP
3183The settings above only affect the @code{break} command and its
3184variants. Once breakpoint is set, it will be automatically updated
3185as shared libraries are loaded and unloaded.
2650777c 3186
765dc015
VP
3187@cindex automatic hardware breakpoints
3188For some targets, @value{GDBN} can automatically decide if hardware or
3189software breakpoints should be used, depending on whether the
3190breakpoint address is read-only or read-write. This applies to
3191breakpoints set with the @code{break} command as well as to internal
3192breakpoints set by commands like @code{next} and @code{finish}. For
fcda367b 3193breakpoints set with @code{hbreak}, @value{GDBN} will always use hardware
765dc015
VP
3194breakpoints.
3195
3196You can control this automatic behaviour with the following commands::
3197
3198@kindex set breakpoint auto-hw
3199@kindex show breakpoint auto-hw
3200@table @code
3201@item set breakpoint auto-hw on
3202This is the default behavior. When @value{GDBN} sets a breakpoint, it
3203will try to use the target memory map to decide if software or hardware
3204breakpoint must be used.
3205
3206@item set breakpoint auto-hw off
3207This indicates @value{GDBN} should not automatically select breakpoint
3208type. If the target provides a memory map, @value{GDBN} will warn when
3209trying to set software breakpoint at a read-only address.
3210@end table
3211
74960c60
VP
3212@value{GDBN} normally implements breakpoints by replacing the program code
3213at the breakpoint address with a special instruction, which, when
3214executed, given control to the debugger. By default, the program
3215code is so modified only when the program is resumed. As soon as
3216the program stops, @value{GDBN} restores the original instructions. This
3217behaviour guards against leaving breakpoints inserted in the
3218target should gdb abrubptly disconnect. However, with slow remote
3219targets, inserting and removing breakpoint can reduce the performance.
3220This behavior can be controlled with the following commands::
3221
3222@kindex set breakpoint always-inserted
3223@kindex show breakpoint always-inserted
3224@table @code
3225@item set breakpoint always-inserted off
3226This is the default behaviour. All breakpoints, including newly added
3227by the user, are inserted in the target only when the target is
3228resumed. All breakpoints are removed from the target when it stops.
3229
3230@item set breakpoint always-inserted on
3231Causes all breakpoints to be inserted in the target at all times. If
3232the user adds a new breakpoint, or changes an existing breakpoint, the
3233breakpoints in the target are updated immediately. A breakpoint is
3234removed from the target only when breakpoint itself is removed.
3235@end table
765dc015 3236
c906108c
SS
3237@cindex negative breakpoint numbers
3238@cindex internal @value{GDBN} breakpoints
eb12ee30
AC
3239@value{GDBN} itself sometimes sets breakpoints in your program for
3240special purposes, such as proper handling of @code{longjmp} (in C
3241programs). These internal breakpoints are assigned negative numbers,
3242starting with @code{-1}; @samp{info breakpoints} does not display them.
c906108c 3243You can see these breakpoints with the @value{GDBN} maintenance command
eb12ee30 3244@samp{maint info breakpoints} (@pxref{maint info breakpoints}).
c906108c
SS
3245
3246
6d2ebf8b 3247@node Set Watchpoints
79a6e687 3248@subsection Setting Watchpoints
c906108c
SS
3249
3250@cindex setting watchpoints
c906108c
SS
3251You can use a watchpoint to stop execution whenever the value of an
3252expression changes, without having to predict a particular place where
fd60e0df
EZ
3253this may happen. (This is sometimes called a @dfn{data breakpoint}.)
3254The expression may be as simple as the value of a single variable, or
3255as complex as many variables combined by operators. Examples include:
3256
3257@itemize @bullet
3258@item
3259A reference to the value of a single variable.
3260
3261@item
3262An address cast to an appropriate data type. For example,
3263@samp{*(int *)0x12345678} will watch a 4-byte region at the specified
3264address (assuming an @code{int} occupies 4 bytes).
3265
3266@item
3267An arbitrarily complex expression, such as @samp{a*b + c/d}. The
3268expression can use any operators valid in the program's native
3269language (@pxref{Languages}).
3270@end itemize
c906108c 3271
fa4727a6
DJ
3272You can set a watchpoint on an expression even if the expression can
3273not be evaluated yet. For instance, you can set a watchpoint on
3274@samp{*global_ptr} before @samp{global_ptr} is initialized.
3275@value{GDBN} will stop when your program sets @samp{global_ptr} and
3276the expression produces a valid value. If the expression becomes
3277valid in some other way than changing a variable (e.g.@: if the memory
3278pointed to by @samp{*global_ptr} becomes readable as the result of a
3279@code{malloc} call), @value{GDBN} may not stop until the next time
3280the expression changes.
3281
82f2d802
EZ
3282@cindex software watchpoints
3283@cindex hardware watchpoints
c906108c 3284Depending on your system, watchpoints may be implemented in software or
2df3850c 3285hardware. @value{GDBN} does software watchpointing by single-stepping your
c906108c
SS
3286program and testing the variable's value each time, which is hundreds of
3287times slower than normal execution. (But this may still be worth it, to
3288catch errors where you have no clue what part of your program is the
3289culprit.)
3290
37e4754d 3291On some systems, such as HP-UX, PowerPC, @sc{gnu}/Linux and most other
82f2d802
EZ
3292x86-based targets, @value{GDBN} includes support for hardware
3293watchpoints, which do not slow down the running of your program.
c906108c
SS
3294
3295@table @code
3296@kindex watch
d8b2a693 3297@item watch @var{expr} @r{[}thread @var{threadnum}@r{]}
fd60e0df
EZ
3298Set a watchpoint for an expression. @value{GDBN} will break when the
3299expression @var{expr} is written into by the program and its value
3300changes. The simplest (and the most popular) use of this command is
3301to watch the value of a single variable:
3302
3303@smallexample
3304(@value{GDBP}) watch foo
3305@end smallexample
c906108c 3306
d8b2a693
JB
3307If the command includes a @code{@r{[}thread @var{threadnum}@r{]}}
3308clause, @value{GDBN} breaks only when the thread identified by
3309@var{threadnum} changes the value of @var{expr}. If any other threads
3310change the value of @var{expr}, @value{GDBN} will not break. Note
3311that watchpoints restricted to a single thread in this way only work
3312with Hardware Watchpoints.
3313
c906108c 3314@kindex rwatch
d8b2a693 3315@item rwatch @var{expr} @r{[}thread @var{threadnum}@r{]}
09d4efe1
EZ
3316Set a watchpoint that will break when the value of @var{expr} is read
3317by the program.
c906108c
SS
3318
3319@kindex awatch
d8b2a693 3320@item awatch @var{expr} @r{[}thread @var{threadnum}@r{]}
09d4efe1
EZ
3321Set a watchpoint that will break when @var{expr} is either read from
3322or written into by the program.
c906108c 3323
45ac1734 3324@kindex info watchpoints @r{[}@var{n}@r{]}
c906108c
SS
3325@item info watchpoints
3326This command prints a list of watchpoints, breakpoints, and catchpoints;
09d4efe1 3327it is the same as @code{info break} (@pxref{Set Breaks}).
c906108c
SS
3328@end table
3329
3330@value{GDBN} sets a @dfn{hardware watchpoint} if possible. Hardware
3331watchpoints execute very quickly, and the debugger reports a change in
3332value at the exact instruction where the change occurs. If @value{GDBN}
3333cannot set a hardware watchpoint, it sets a software watchpoint, which
3334executes more slowly and reports the change in value at the next
82f2d802
EZ
3335@emph{statement}, not the instruction, after the change occurs.
3336
82f2d802
EZ
3337@cindex use only software watchpoints
3338You can force @value{GDBN} to use only software watchpoints with the
3339@kbd{set can-use-hw-watchpoints 0} command. With this variable set to
3340zero, @value{GDBN} will never try to use hardware watchpoints, even if
3341the underlying system supports them. (Note that hardware-assisted
3342watchpoints that were set @emph{before} setting
3343@code{can-use-hw-watchpoints} to zero will still use the hardware
d3e8051b 3344mechanism of watching expression values.)
c906108c 3345
9c16f35a
EZ
3346@table @code
3347@item set can-use-hw-watchpoints
3348@kindex set can-use-hw-watchpoints
3349Set whether or not to use hardware watchpoints.
3350
3351@item show can-use-hw-watchpoints
3352@kindex show can-use-hw-watchpoints
3353Show the current mode of using hardware watchpoints.
3354@end table
3355
3356For remote targets, you can restrict the number of hardware
3357watchpoints @value{GDBN} will use, see @ref{set remote
3358hardware-breakpoint-limit}.
3359
c906108c
SS
3360When you issue the @code{watch} command, @value{GDBN} reports
3361
474c8240 3362@smallexample
c906108c 3363Hardware watchpoint @var{num}: @var{expr}
474c8240 3364@end smallexample
c906108c
SS
3365
3366@noindent
3367if it was able to set a hardware watchpoint.
3368
7be570e7
JM
3369Currently, the @code{awatch} and @code{rwatch} commands can only set
3370hardware watchpoints, because accesses to data that don't change the
3371value of the watched expression cannot be detected without examining
3372every instruction as it is being executed, and @value{GDBN} does not do
3373that currently. If @value{GDBN} finds that it is unable to set a
3374hardware breakpoint with the @code{awatch} or @code{rwatch} command, it
3375will print a message like this:
3376
3377@smallexample
3378Expression cannot be implemented with read/access watchpoint.
3379@end smallexample
3380
3381Sometimes, @value{GDBN} cannot set a hardware watchpoint because the
3382data type of the watched expression is wider than what a hardware
3383watchpoint on the target machine can handle. For example, some systems
3384can only watch regions that are up to 4 bytes wide; on such systems you
3385cannot set hardware watchpoints for an expression that yields a
3386double-precision floating-point number (which is typically 8 bytes
3387wide). As a work-around, it might be possible to break the large region
3388into a series of smaller ones and watch them with separate watchpoints.
3389
3390If you set too many hardware watchpoints, @value{GDBN} might be unable
3391to insert all of them when you resume the execution of your program.
3392Since the precise number of active watchpoints is unknown until such
3393time as the program is about to be resumed, @value{GDBN} might not be
3394able to warn you about this when you set the watchpoints, and the
3395warning will be printed only when the program is resumed:
3396
3397@smallexample
3398Hardware watchpoint @var{num}: Could not insert watchpoint
3399@end smallexample
3400
3401@noindent
3402If this happens, delete or disable some of the watchpoints.
3403
fd60e0df
EZ
3404Watching complex expressions that reference many variables can also
3405exhaust the resources available for hardware-assisted watchpoints.
3406That's because @value{GDBN} needs to watch every variable in the
3407expression with separately allocated resources.
3408
c906108c 3409If you call a function interactively using @code{print} or @code{call},
2df3850c 3410any watchpoints you have set will be inactive until @value{GDBN} reaches another
c906108c
SS
3411kind of breakpoint or the call completes.
3412
7be570e7
JM
3413@value{GDBN} automatically deletes watchpoints that watch local
3414(automatic) variables, or expressions that involve such variables, when
3415they go out of scope, that is, when the execution leaves the block in
3416which these variables were defined. In particular, when the program
3417being debugged terminates, @emph{all} local variables go out of scope,
3418and so only watchpoints that watch global variables remain set. If you
3419rerun the program, you will need to set all such watchpoints again. One
3420way of doing that would be to set a code breakpoint at the entry to the
3421@code{main} function and when it breaks, set all the watchpoints.
3422
c906108c
SS
3423@cindex watchpoints and threads
3424@cindex threads and watchpoints
d983da9c
DJ
3425In multi-threaded programs, watchpoints will detect changes to the
3426watched expression from every thread.
3427
3428@quotation
3429@emph{Warning:} In multi-threaded programs, software watchpoints
53a5351d
JM
3430have only limited usefulness. If @value{GDBN} creates a software
3431watchpoint, it can only watch the value of an expression @emph{in a
3432single thread}. If you are confident that the expression can only
3433change due to the current thread's activity (and if you are also
3434confident that no other thread can become current), then you can use
3435software watchpoints as usual. However, @value{GDBN} may not notice
3436when a non-current thread's activity changes the expression. (Hardware
3437watchpoints, in contrast, watch an expression in all threads.)
c906108c 3438@end quotation
c906108c 3439
501eef12
AC
3440@xref{set remote hardware-watchpoint-limit}.
3441
6d2ebf8b 3442@node Set Catchpoints
79a6e687 3443@subsection Setting Catchpoints
d4f3574e 3444@cindex catchpoints, setting
c906108c
SS
3445@cindex exception handlers
3446@cindex event handling
3447
3448You can use @dfn{catchpoints} to cause the debugger to stop for certain
b37052ae 3449kinds of program events, such as C@t{++} exceptions or the loading of a
c906108c
SS
3450shared library. Use the @code{catch} command to set a catchpoint.
3451
3452@table @code
3453@kindex catch
3454@item catch @var{event}
3455Stop when @var{event} occurs. @var{event} can be any of the following:
3456@table @code
3457@item throw
4644b6e3 3458@cindex stop on C@t{++} exceptions
b37052ae 3459The throwing of a C@t{++} exception.
c906108c
SS
3460
3461@item catch
b37052ae 3462The catching of a C@t{++} exception.
c906108c 3463
8936fcda
JB
3464@item exception
3465@cindex Ada exception catching
3466@cindex catch Ada exceptions
3467An Ada exception being raised. If an exception name is specified
3468at the end of the command (eg @code{catch exception Program_Error}),
3469the debugger will stop only when this specific exception is raised.
3470Otherwise, the debugger stops execution when any Ada exception is raised.
3471
3472@item exception unhandled
3473An exception that was raised but is not handled by the program.
3474
3475@item assert
3476A failed Ada assertion.
3477
c906108c 3478@item exec
4644b6e3 3479@cindex break on fork/exec
5ee187d7
DJ
3480A call to @code{exec}. This is currently only available for HP-UX
3481and @sc{gnu}/Linux.
c906108c
SS
3482
3483@item fork
5ee187d7
DJ
3484A call to @code{fork}. This is currently only available for HP-UX
3485and @sc{gnu}/Linux.
c906108c
SS
3486
3487@item vfork
5ee187d7
DJ
3488A call to @code{vfork}. This is currently only available for HP-UX
3489and @sc{gnu}/Linux.
c906108c
SS
3490
3491@item load
3492@itemx load @var{libname}
4644b6e3 3493@cindex break on load/unload of shared library
c906108c
SS
3494The dynamic loading of any shared library, or the loading of the library
3495@var{libname}. This is currently only available for HP-UX.
3496
3497@item unload
3498@itemx unload @var{libname}
c906108c
SS
3499The unloading of any dynamically loaded shared library, or the unloading
3500of the library @var{libname}. This is currently only available for HP-UX.
3501@end table
3502
3503@item tcatch @var{event}
3504Set a catchpoint that is enabled only for one stop. The catchpoint is
3505automatically deleted after the first time the event is caught.
3506
3507@end table
3508
3509Use the @code{info break} command to list the current catchpoints.
3510
b37052ae 3511There are currently some limitations to C@t{++} exception handling
c906108c
SS
3512(@code{catch throw} and @code{catch catch}) in @value{GDBN}:
3513
3514@itemize @bullet
3515@item
3516If you call a function interactively, @value{GDBN} normally returns
3517control to you when the function has finished executing. If the call
3518raises an exception, however, the call may bypass the mechanism that
3519returns control to you and cause your program either to abort or to
3520simply continue running until it hits a breakpoint, catches a signal
3521that @value{GDBN} is listening for, or exits. This is the case even if
3522you set a catchpoint for the exception; catchpoints on exceptions are
3523disabled within interactive calls.
3524
3525@item
3526You cannot raise an exception interactively.
3527
3528@item
3529You cannot install an exception handler interactively.
3530@end itemize
3531
3532@cindex raise exceptions
3533Sometimes @code{catch} is not the best way to debug exception handling:
3534if you need to know exactly where an exception is raised, it is better to
3535stop @emph{before} the exception handler is called, since that way you
3536can see the stack before any unwinding takes place. If you set a
3537breakpoint in an exception handler instead, it may not be easy to find
3538out where the exception was raised.
3539
3540To stop just before an exception handler is called, you need some
b37052ae 3541knowledge of the implementation. In the case of @sc{gnu} C@t{++}, exceptions are
c906108c
SS
3542raised by calling a library function named @code{__raise_exception}
3543which has the following ANSI C interface:
3544
474c8240 3545@smallexample
c906108c 3546 /* @var{addr} is where the exception identifier is stored.
d4f3574e
SS
3547 @var{id} is the exception identifier. */
3548 void __raise_exception (void **addr, void *id);
474c8240 3549@end smallexample
c906108c
SS
3550
3551@noindent
3552To make the debugger catch all exceptions before any stack
3553unwinding takes place, set a breakpoint on @code{__raise_exception}
79a6e687 3554(@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Exceptions}).
c906108c 3555
79a6e687 3556With a conditional breakpoint (@pxref{Conditions, ,Break Conditions})
c906108c
SS
3557that depends on the value of @var{id}, you can stop your program when
3558a specific exception is raised. You can use multiple conditional
3559breakpoints to stop your program when any of a number of exceptions are
3560raised.
3561
3562
6d2ebf8b 3563@node Delete Breaks
79a6e687 3564@subsection Deleting Breakpoints
c906108c
SS
3565
3566@cindex clearing breakpoints, watchpoints, catchpoints
3567@cindex deleting breakpoints, watchpoints, catchpoints
3568It is often necessary to eliminate a breakpoint, watchpoint, or
3569catchpoint once it has done its job and you no longer want your program
3570to stop there. This is called @dfn{deleting} the breakpoint. A
3571breakpoint that has been deleted no longer exists; it is forgotten.
3572
3573With the @code{clear} command you can delete breakpoints according to
3574where they are in your program. With the @code{delete} command you can
3575delete individual breakpoints, watchpoints, or catchpoints by specifying
3576their breakpoint numbers.
3577
3578It is not necessary to delete a breakpoint to proceed past it. @value{GDBN}
3579automatically ignores breakpoints on the first instruction to be executed
3580when you continue execution without changing the execution address.
3581
3582@table @code
3583@kindex clear
3584@item clear
3585Delete any breakpoints at the next instruction to be executed in the
79a6e687 3586selected stack frame (@pxref{Selection, ,Selecting a Frame}). When
c906108c
SS
3587the innermost frame is selected, this is a good way to delete a
3588breakpoint where your program just stopped.
3589
2a25a5ba
EZ
3590@item clear @var{location}
3591Delete any breakpoints set at the specified @var{location}.
3592@xref{Specify Location}, for the various forms of @var{location}; the
3593most useful ones are listed below:
3594
3595@table @code
c906108c
SS
3596@item clear @var{function}
3597@itemx clear @var{filename}:@var{function}
09d4efe1 3598Delete any breakpoints set at entry to the named @var{function}.
c906108c
SS
3599
3600@item clear @var{linenum}
3601@itemx clear @var{filename}:@var{linenum}
09d4efe1
EZ
3602Delete any breakpoints set at or within the code of the specified
3603@var{linenum} of the specified @var{filename}.
2a25a5ba 3604@end table
c906108c
SS
3605
3606@cindex delete breakpoints
3607@kindex delete
41afff9a 3608@kindex d @r{(@code{delete})}
c5394b80
JM
3609@item delete @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
3610Delete the breakpoints, watchpoints, or catchpoints of the breakpoint
3611ranges specified as arguments. If no argument is specified, delete all
c906108c
SS
3612breakpoints (@value{GDBN} asks confirmation, unless you have @code{set
3613confirm off}). You can abbreviate this command as @code{d}.
3614@end table
3615
6d2ebf8b 3616@node Disabling
79a6e687 3617@subsection Disabling Breakpoints
c906108c 3618
4644b6e3 3619@cindex enable/disable a breakpoint
c906108c
SS
3620Rather than deleting a breakpoint, watchpoint, or catchpoint, you might
3621prefer to @dfn{disable} it. This makes the breakpoint inoperative as if
3622it had been deleted, but remembers the information on the breakpoint so
3623that you can @dfn{enable} it again later.
3624
3625You disable and enable breakpoints, watchpoints, and catchpoints with
3626the @code{enable} and @code{disable} commands, optionally specifying one
3627or more breakpoint numbers as arguments. Use @code{info break} or
3628@code{info watch} to print a list of breakpoints, watchpoints, and
3629catchpoints if you do not know which numbers to use.
3630
3b784c4f
EZ
3631Disabling and enabling a breakpoint that has multiple locations
3632affects all of its locations.
3633
c906108c
SS
3634A breakpoint, watchpoint, or catchpoint can have any of four different
3635states of enablement:
3636
3637@itemize @bullet
3638@item
3639Enabled. The breakpoint stops your program. A breakpoint set
3640with the @code{break} command starts out in this state.
3641@item
3642Disabled. The breakpoint has no effect on your program.
3643@item
3644Enabled once. The breakpoint stops your program, but then becomes
d4f3574e 3645disabled.
c906108c
SS
3646@item
3647Enabled for deletion. The breakpoint stops your program, but
d4f3574e
SS
3648immediately after it does so it is deleted permanently. A breakpoint
3649set with the @code{tbreak} command starts out in this state.
c906108c
SS
3650@end itemize
3651
3652You can use the following commands to enable or disable breakpoints,
3653watchpoints, and catchpoints:
3654
3655@table @code
c906108c 3656@kindex disable
41afff9a 3657@kindex dis @r{(@code{disable})}
c5394b80 3658@item disable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
c906108c
SS
3659Disable the specified breakpoints---or all breakpoints, if none are
3660listed. A disabled breakpoint has no effect but is not forgotten. All
3661options such as ignore-counts, conditions and commands are remembered in
3662case the breakpoint is enabled again later. You may abbreviate
3663@code{disable} as @code{dis}.
3664
c906108c 3665@kindex enable
c5394b80 3666@item enable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
c906108c
SS
3667Enable the specified breakpoints (or all defined breakpoints). They
3668become effective once again in stopping your program.
3669
c5394b80 3670@item enable @r{[}breakpoints@r{]} once @var{range}@dots{}
c906108c
SS
3671Enable the specified breakpoints temporarily. @value{GDBN} disables any
3672of these breakpoints immediately after stopping your program.
3673
c5394b80 3674@item enable @r{[}breakpoints@r{]} delete @var{range}@dots{}
c906108c
SS
3675Enable the specified breakpoints to work once, then die. @value{GDBN}
3676deletes any of these breakpoints as soon as your program stops there.
09d4efe1 3677Breakpoints set by the @code{tbreak} command start out in this state.
c906108c
SS
3678@end table
3679
d4f3574e
SS
3680@c FIXME: I think the following ``Except for [...] @code{tbreak}'' is
3681@c confusing: tbreak is also initially enabled.
c906108c 3682Except for a breakpoint set with @code{tbreak} (@pxref{Set Breaks,
79a6e687 3683,Setting Breakpoints}), breakpoints that you set are initially enabled;
c906108c
SS
3684subsequently, they become disabled or enabled only when you use one of
3685the commands above. (The command @code{until} can set and delete a
3686breakpoint of its own, but it does not change the state of your other
3687breakpoints; see @ref{Continuing and Stepping, ,Continuing and
79a6e687 3688Stepping}.)
c906108c 3689
6d2ebf8b 3690@node Conditions
79a6e687 3691@subsection Break Conditions
c906108c
SS
3692@cindex conditional breakpoints
3693@cindex breakpoint conditions
3694
3695@c FIXME what is scope of break condition expr? Context where wanted?
5d161b24 3696@c in particular for a watchpoint?
c906108c
SS
3697The simplest sort of breakpoint breaks every time your program reaches a
3698specified place. You can also specify a @dfn{condition} for a
3699breakpoint. A condition is just a Boolean expression in your
3700programming language (@pxref{Expressions, ,Expressions}). A breakpoint with
3701a condition evaluates the expression each time your program reaches it,
3702and your program stops only if the condition is @emph{true}.
3703
3704This is the converse of using assertions for program validation; in that
3705situation, you want to stop when the assertion is violated---that is,
3706when the condition is false. In C, if you want to test an assertion expressed
3707by the condition @var{assert}, you should set the condition
3708@samp{! @var{assert}} on the appropriate breakpoint.
3709
3710Conditions are also accepted for watchpoints; you may not need them,
3711since a watchpoint is inspecting the value of an expression anyhow---but
3712it might be simpler, say, to just set a watchpoint on a variable name,
3713and specify a condition that tests whether the new value is an interesting
3714one.
3715
3716Break conditions can have side effects, and may even call functions in
3717your program. This can be useful, for example, to activate functions
3718that log program progress, or to use your own print functions to
3719format special data structures. The effects are completely predictable
3720unless there is another enabled breakpoint at the same address. (In
3721that case, @value{GDBN} might see the other breakpoint first and stop your
3722program without checking the condition of this one.) Note that
d4f3574e
SS
3723breakpoint commands are usually more convenient and flexible than break
3724conditions for the
c906108c 3725purpose of performing side effects when a breakpoint is reached
79a6e687 3726(@pxref{Break Commands, ,Breakpoint Command Lists}).
c906108c
SS
3727
3728Break conditions can be specified when a breakpoint is set, by using
3729@samp{if} in the arguments to the @code{break} command. @xref{Set
79a6e687 3730Breaks, ,Setting Breakpoints}. They can also be changed at any time
c906108c 3731with the @code{condition} command.
53a5351d 3732
c906108c
SS
3733You can also use the @code{if} keyword with the @code{watch} command.
3734The @code{catch} command does not recognize the @code{if} keyword;
3735@code{condition} is the only way to impose a further condition on a
3736catchpoint.
c906108c
SS
3737
3738@table @code
3739@kindex condition
3740@item condition @var{bnum} @var{expression}
3741Specify @var{expression} as the break condition for breakpoint,
3742watchpoint, or catchpoint number @var{bnum}. After you set a condition,
3743breakpoint @var{bnum} stops your program only if the value of
3744@var{expression} is true (nonzero, in C). When you use
3745@code{condition}, @value{GDBN} checks @var{expression} immediately for
3746syntactic correctness, and to determine whether symbols in it have
d4f3574e
SS
3747referents in the context of your breakpoint. If @var{expression} uses
3748symbols not referenced in the context of the breakpoint, @value{GDBN}
3749prints an error message:
3750
474c8240 3751@smallexample
d4f3574e 3752No symbol "foo" in current context.
474c8240 3753@end smallexample
d4f3574e
SS
3754
3755@noindent
c906108c
SS
3756@value{GDBN} does
3757not actually evaluate @var{expression} at the time the @code{condition}
d4f3574e
SS
3758command (or a command that sets a breakpoint with a condition, like
3759@code{break if @dots{}}) is given, however. @xref{Expressions, ,Expressions}.
c906108c
SS
3760
3761@item condition @var{bnum}
3762Remove the condition from breakpoint number @var{bnum}. It becomes
3763an ordinary unconditional breakpoint.
3764@end table
3765
3766@cindex ignore count (of breakpoint)
3767A special case of a breakpoint condition is to stop only when the
3768breakpoint has been reached a certain number of times. This is so
3769useful that there is a special way to do it, using the @dfn{ignore
3770count} of the breakpoint. Every breakpoint has an ignore count, which
3771is an integer. Most of the time, the ignore count is zero, and
3772therefore has no effect. But if your program reaches a breakpoint whose
3773ignore count is positive, then instead of stopping, it just decrements
3774the ignore count by one and continues. As a result, if the ignore count
3775value is @var{n}, the breakpoint does not stop the next @var{n} times
3776your program reaches it.
3777
3778@table @code
3779@kindex ignore
3780@item ignore @var{bnum} @var{count}
3781Set the ignore count of breakpoint number @var{bnum} to @var{count}.
3782The next @var{count} times the breakpoint is reached, your program's
3783execution does not stop; other than to decrement the ignore count, @value{GDBN}
3784takes no action.
3785
3786To make the breakpoint stop the next time it is reached, specify
3787a count of zero.
3788
3789When you use @code{continue} to resume execution of your program from a
3790breakpoint, you can specify an ignore count directly as an argument to
3791@code{continue}, rather than using @code{ignore}. @xref{Continuing and
79a6e687 3792Stepping,,Continuing and Stepping}.
c906108c
SS
3793
3794If a breakpoint has a positive ignore count and a condition, the
3795condition is not checked. Once the ignore count reaches zero,
3796@value{GDBN} resumes checking the condition.
3797
3798You could achieve the effect of the ignore count with a condition such
3799as @w{@samp{$foo-- <= 0}} using a debugger convenience variable that
3800is decremented each time. @xref{Convenience Vars, ,Convenience
79a6e687 3801Variables}.
c906108c
SS
3802@end table
3803
3804Ignore counts apply to breakpoints, watchpoints, and catchpoints.
3805
3806
6d2ebf8b 3807@node Break Commands
79a6e687 3808@subsection Breakpoint Command Lists
c906108c
SS
3809
3810@cindex breakpoint commands
3811You can give any breakpoint (or watchpoint or catchpoint) a series of
3812commands to execute when your program stops due to that breakpoint. For
3813example, you might want to print the values of certain expressions, or
3814enable other breakpoints.
3815
3816@table @code
3817@kindex commands
ca91424e 3818@kindex end@r{ (breakpoint commands)}
c906108c
SS
3819@item commands @r{[}@var{bnum}@r{]}
3820@itemx @dots{} @var{command-list} @dots{}
3821@itemx end
3822Specify a list of commands for breakpoint number @var{bnum}. The commands
3823themselves appear on the following lines. Type a line containing just
3824@code{end} to terminate the commands.
3825
3826To remove all commands from a breakpoint, type @code{commands} and
3827follow it immediately with @code{end}; that is, give no commands.
3828
3829With no @var{bnum} argument, @code{commands} refers to the last
3830breakpoint, watchpoint, or catchpoint set (not to the breakpoint most
3831recently encountered).
3832@end table
3833
3834Pressing @key{RET} as a means of repeating the last @value{GDBN} command is
3835disabled within a @var{command-list}.
3836
3837You can use breakpoint commands to start your program up again. Simply
3838use the @code{continue} command, or @code{step}, or any other command
3839that resumes execution.
3840
3841Any other commands in the command list, after a command that resumes
3842execution, are ignored. This is because any time you resume execution
3843(even with a simple @code{next} or @code{step}), you may encounter
3844another breakpoint---which could have its own command list, leading to
3845ambiguities about which list to execute.
3846
3847@kindex silent
3848If the first command you specify in a command list is @code{silent}, the
3849usual message about stopping at a breakpoint is not printed. This may
3850be desirable for breakpoints that are to print a specific message and
3851then continue. If none of the remaining commands print anything, you
3852see no sign that the breakpoint was reached. @code{silent} is
3853meaningful only at the beginning of a breakpoint command list.
3854
3855The commands @code{echo}, @code{output}, and @code{printf} allow you to
3856print precisely controlled output, and are often useful in silent
79a6e687 3857breakpoints. @xref{Output, ,Commands for Controlled Output}.
c906108c
SS
3858
3859For example, here is how you could use breakpoint commands to print the
3860value of @code{x} at entry to @code{foo} whenever @code{x} is positive.
3861
474c8240 3862@smallexample
c906108c
SS
3863break foo if x>0
3864commands
3865silent
3866printf "x is %d\n",x
3867cont
3868end
474c8240 3869@end smallexample
c906108c
SS
3870
3871One application for breakpoint commands is to compensate for one bug so
3872you can test for another. Put a breakpoint just after the erroneous line
3873of code, give it a condition to detect the case in which something
3874erroneous has been done, and give it commands to assign correct values
3875to any variables that need them. End with the @code{continue} command
3876so that your program does not stop, and start with the @code{silent}
3877command so that no output is produced. Here is an example:
3878
474c8240 3879@smallexample
c906108c
SS
3880break 403
3881commands
3882silent
3883set x = y + 4
3884cont
3885end
474c8240 3886@end smallexample
c906108c 3887
c906108c 3888@c @ifclear BARETARGET
6d2ebf8b 3889@node Error in Breakpoints
d4f3574e 3890@subsection ``Cannot insert breakpoints''
c906108c
SS
3891@c
3892@c FIXME!! 14/6/95 Is there a real example of this? Let's use it.
3893@c
d4f3574e
SS
3894Under some operating systems, breakpoints cannot be used in a program if
3895any other process is running that program. In this situation,
5d161b24 3896attempting to run or continue a program with a breakpoint causes
d4f3574e
SS
3897@value{GDBN} to print an error message:
3898
474c8240 3899@smallexample
d4f3574e
SS
3900Cannot insert breakpoints.
3901The same program may be running in another process.
474c8240 3902@end smallexample
d4f3574e
SS
3903
3904When this happens, you have three ways to proceed:
3905
3906@enumerate
3907@item
3908Remove or disable the breakpoints, then continue.
3909
3910@item
5d161b24 3911Suspend @value{GDBN}, and copy the file containing your program to a new
d4f3574e 3912name. Resume @value{GDBN} and use the @code{exec-file} command to specify
5d161b24 3913that @value{GDBN} should run your program under that name.
d4f3574e
SS
3914Then start your program again.
3915
3916@item
3917Relink your program so that the text segment is nonsharable, using the
3918linker option @samp{-N}. The operating system limitation may not apply
3919to nonsharable executables.
3920@end enumerate
c906108c
SS
3921@c @end ifclear
3922
d4f3574e
SS
3923A similar message can be printed if you request too many active
3924hardware-assisted breakpoints and watchpoints:
3925
3926@c FIXME: the precise wording of this message may change; the relevant
3927@c source change is not committed yet (Sep 3, 1999).
3928@smallexample
3929Stopped; cannot insert breakpoints.
3930You may have requested too many hardware breakpoints and watchpoints.
3931@end smallexample
3932
3933@noindent
3934This message is printed when you attempt to resume the program, since
3935only then @value{GDBN} knows exactly how many hardware breakpoints and
3936watchpoints it needs to insert.
3937
3938When this message is printed, you need to disable or remove some of the
3939hardware-assisted breakpoints and watchpoints, and then continue.
3940
79a6e687 3941@node Breakpoint-related Warnings
1485d690
KB
3942@subsection ``Breakpoint address adjusted...''
3943@cindex breakpoint address adjusted
3944
3945Some processor architectures place constraints on the addresses at
3946which breakpoints may be placed. For architectures thus constrained,
3947@value{GDBN} will attempt to adjust the breakpoint's address to comply
3948with the constraints dictated by the architecture.
3949
3950One example of such an architecture is the Fujitsu FR-V. The FR-V is
3951a VLIW architecture in which a number of RISC-like instructions may be
3952bundled together for parallel execution. The FR-V architecture
3953constrains the location of a breakpoint instruction within such a
3954bundle to the instruction with the lowest address. @value{GDBN}
3955honors this constraint by adjusting a breakpoint's address to the
3956first in the bundle.
3957
3958It is not uncommon for optimized code to have bundles which contain
3959instructions from different source statements, thus it may happen that
3960a breakpoint's address will be adjusted from one source statement to
3961another. Since this adjustment may significantly alter @value{GDBN}'s
3962breakpoint related behavior from what the user expects, a warning is
3963printed when the breakpoint is first set and also when the breakpoint
3964is hit.
3965
3966A warning like the one below is printed when setting a breakpoint
3967that's been subject to address adjustment:
3968
3969@smallexample
3970warning: Breakpoint address adjusted from 0x00010414 to 0x00010410.
3971@end smallexample
3972
3973Such warnings are printed both for user settable and @value{GDBN}'s
3974internal breakpoints. If you see one of these warnings, you should
3975verify that a breakpoint set at the adjusted address will have the
3976desired affect. If not, the breakpoint in question may be removed and
b383017d 3977other breakpoints may be set which will have the desired behavior.
1485d690
KB
3978E.g., it may be sufficient to place the breakpoint at a later
3979instruction. A conditional breakpoint may also be useful in some
3980cases to prevent the breakpoint from triggering too often.
3981
3982@value{GDBN} will also issue a warning when stopping at one of these
3983adjusted breakpoints:
3984
3985@smallexample
3986warning: Breakpoint 1 address previously adjusted from 0x00010414
3987to 0x00010410.
3988@end smallexample
3989
3990When this warning is encountered, it may be too late to take remedial
3991action except in cases where the breakpoint is hit earlier or more
3992frequently than expected.
d4f3574e 3993
6d2ebf8b 3994@node Continuing and Stepping
79a6e687 3995@section Continuing and Stepping
c906108c
SS
3996
3997@cindex stepping
3998@cindex continuing
3999@cindex resuming execution
4000@dfn{Continuing} means resuming program execution until your program
4001completes normally. In contrast, @dfn{stepping} means executing just
4002one more ``step'' of your program, where ``step'' may mean either one
4003line of source code, or one machine instruction (depending on what
7a292a7a
SS
4004particular command you use). Either when continuing or when stepping,
4005your program may stop even sooner, due to a breakpoint or a signal. (If
d4f3574e
SS
4006it stops due to a signal, you may want to use @code{handle}, or use
4007@samp{signal 0} to resume execution. @xref{Signals, ,Signals}.)
c906108c
SS
4008
4009@table @code
4010@kindex continue
41afff9a
EZ
4011@kindex c @r{(@code{continue})}
4012@kindex fg @r{(resume foreground execution)}
c906108c
SS
4013@item continue @r{[}@var{ignore-count}@r{]}
4014@itemx c @r{[}@var{ignore-count}@r{]}
4015@itemx fg @r{[}@var{ignore-count}@r{]}
4016Resume program execution, at the address where your program last stopped;
4017any breakpoints set at that address are bypassed. The optional argument
4018@var{ignore-count} allows you to specify a further number of times to
4019ignore a breakpoint at this location; its effect is like that of
79a6e687 4020@code{ignore} (@pxref{Conditions, ,Break Conditions}).
c906108c
SS
4021
4022The argument @var{ignore-count} is meaningful only when your program
4023stopped due to a breakpoint. At other times, the argument to
4024@code{continue} is ignored.
4025
d4f3574e
SS
4026The synonyms @code{c} and @code{fg} (for @dfn{foreground}, as the
4027debugged program is deemed to be the foreground program) are provided
4028purely for convenience, and have exactly the same behavior as
4029@code{continue}.
c906108c
SS
4030@end table
4031
4032To resume execution at a different place, you can use @code{return}
79a6e687 4033(@pxref{Returning, ,Returning from a Function}) to go back to the
c906108c 4034calling function; or @code{jump} (@pxref{Jumping, ,Continuing at a
79a6e687 4035Different Address}) to go to an arbitrary location in your program.
c906108c
SS
4036
4037A typical technique for using stepping is to set a breakpoint
79a6e687 4038(@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Catchpoints}) at the
c906108c
SS
4039beginning of the function or the section of your program where a problem
4040is believed to lie, run your program until it stops at that breakpoint,
4041and then step through the suspect area, examining the variables that are
4042interesting, until you see the problem happen.
4043
4044@table @code
4045@kindex step
41afff9a 4046@kindex s @r{(@code{step})}
c906108c
SS
4047@item step
4048Continue running your program until control reaches a different source
4049line, then stop it and return control to @value{GDBN}. This command is
4050abbreviated @code{s}.
4051
4052@quotation
4053@c "without debugging information" is imprecise; actually "without line
4054@c numbers in the debugging information". (gcc -g1 has debugging info but
4055@c not line numbers). But it seems complex to try to make that
4056@c distinction here.
4057@emph{Warning:} If you use the @code{step} command while control is
4058within a function that was compiled without debugging information,
4059execution proceeds until control reaches a function that does have
4060debugging information. Likewise, it will not step into a function which
4061is compiled without debugging information. To step through functions
4062without debugging information, use the @code{stepi} command, described
4063below.
4064@end quotation
4065
4a92d011
EZ
4066The @code{step} command only stops at the first instruction of a source
4067line. This prevents the multiple stops that could otherwise occur in
4068@code{switch} statements, @code{for} loops, etc. @code{step} continues
4069to stop if a function that has debugging information is called within
4070the line. In other words, @code{step} @emph{steps inside} any functions
4071called within the line.
c906108c 4072
d4f3574e
SS
4073Also, the @code{step} command only enters a function if there is line
4074number information for the function. Otherwise it acts like the
5d161b24 4075@code{next} command. This avoids problems when using @code{cc -gl}
c906108c 4076on MIPS machines. Previously, @code{step} entered subroutines if there
5d161b24 4077was any debugging information about the routine.
c906108c
SS
4078
4079@item step @var{count}
4080Continue running as in @code{step}, but do so @var{count} times. If a
7a292a7a
SS
4081breakpoint is reached, or a signal not related to stepping occurs before
4082@var{count} steps, stepping stops right away.
c906108c
SS
4083
4084@kindex next
41afff9a 4085@kindex n @r{(@code{next})}
c906108c
SS
4086@item next @r{[}@var{count}@r{]}
4087Continue to the next source line in the current (innermost) stack frame.
7a292a7a
SS
4088This is similar to @code{step}, but function calls that appear within
4089the line of code are executed without stopping. Execution stops when
4090control reaches a different line of code at the original stack level
4091that was executing when you gave the @code{next} command. This command
4092is abbreviated @code{n}.
c906108c
SS
4093
4094An argument @var{count} is a repeat count, as for @code{step}.
4095
4096
4097@c FIX ME!! Do we delete this, or is there a way it fits in with
4098@c the following paragraph? --- Vctoria
4099@c
4100@c @code{next} within a function that lacks debugging information acts like
4101@c @code{step}, but any function calls appearing within the code of the
4102@c function are executed without stopping.
4103
d4f3574e
SS
4104The @code{next} command only stops at the first instruction of a
4105source line. This prevents multiple stops that could otherwise occur in
4a92d011 4106@code{switch} statements, @code{for} loops, etc.
c906108c 4107
b90a5f51
CF
4108@kindex set step-mode
4109@item set step-mode
4110@cindex functions without line info, and stepping
4111@cindex stepping into functions with no line info
4112@itemx set step-mode on
4a92d011 4113The @code{set step-mode on} command causes the @code{step} command to
b90a5f51
CF
4114stop at the first instruction of a function which contains no debug line
4115information rather than stepping over it.
4116
4a92d011
EZ
4117This is useful in cases where you may be interested in inspecting the
4118machine instructions of a function which has no symbolic info and do not
4119want @value{GDBN} to automatically skip over this function.
b90a5f51
CF
4120
4121@item set step-mode off
4a92d011 4122Causes the @code{step} command to step over any functions which contains no
b90a5f51
CF
4123debug information. This is the default.
4124
9c16f35a
EZ
4125@item show step-mode
4126Show whether @value{GDBN} will stop in or step over functions without
4127source line debug information.
4128
c906108c
SS
4129@kindex finish
4130@item finish
4131Continue running until just after function in the selected stack frame
4132returns. Print the returned value (if any).
4133
4134Contrast this with the @code{return} command (@pxref{Returning,
79a6e687 4135,Returning from a Function}).
c906108c
SS
4136
4137@kindex until
41afff9a 4138@kindex u @r{(@code{until})}
09d4efe1 4139@cindex run until specified location
c906108c
SS
4140@item until
4141@itemx u
4142Continue running until a source line past the current line, in the
4143current stack frame, is reached. This command is used to avoid single
4144stepping through a loop more than once. It is like the @code{next}
4145command, except that when @code{until} encounters a jump, it
4146automatically continues execution until the program counter is greater
4147than the address of the jump.
4148
4149This means that when you reach the end of a loop after single stepping
4150though it, @code{until} makes your program continue execution until it
4151exits the loop. In contrast, a @code{next} command at the end of a loop
4152simply steps back to the beginning of the loop, which forces you to step
4153through the next iteration.
4154
4155@code{until} always stops your program if it attempts to exit the current
4156stack frame.
4157
4158@code{until} may produce somewhat counterintuitive results if the order
4159of machine code does not match the order of the source lines. For
4160example, in the following excerpt from a debugging session, the @code{f}
4161(@code{frame}) command shows that execution is stopped at line
4162@code{206}; yet when we use @code{until}, we get to line @code{195}:
4163
474c8240 4164@smallexample
c906108c
SS
4165(@value{GDBP}) f
4166#0 main (argc=4, argv=0xf7fffae8) at m4.c:206
4167206 expand_input();
4168(@value{GDBP}) until
4169195 for ( ; argc > 0; NEXTARG) @{
474c8240 4170@end smallexample
c906108c
SS
4171
4172This happened because, for execution efficiency, the compiler had
4173generated code for the loop closure test at the end, rather than the
4174start, of the loop---even though the test in a C @code{for}-loop is
4175written before the body of the loop. The @code{until} command appeared
4176to step back to the beginning of the loop when it advanced to this
4177expression; however, it has not really gone to an earlier
4178statement---not in terms of the actual machine code.
4179
4180@code{until} with no argument works by means of single
4181instruction stepping, and hence is slower than @code{until} with an
4182argument.
4183
4184@item until @var{location}
4185@itemx u @var{location}
4186Continue running your program until either the specified location is
4187reached, or the current stack frame returns. @var{location} is any of
2a25a5ba
EZ
4188the forms described in @ref{Specify Location}.
4189This form of the command uses temporary breakpoints, and
c60eb6f1
EZ
4190hence is quicker than @code{until} without an argument. The specified
4191location is actually reached only if it is in the current frame. This
4192implies that @code{until} can be used to skip over recursive function
4193invocations. For instance in the code below, if the current location is
4194line @code{96}, issuing @code{until 99} will execute the program up to
db2e3e2e 4195line @code{99} in the same invocation of factorial, i.e., after the inner
c60eb6f1
EZ
4196invocations have returned.
4197
4198@smallexample
419994 int factorial (int value)
420095 @{
420196 if (value > 1) @{
420297 value *= factorial (value - 1);
420398 @}
420499 return (value);
4205100 @}
4206@end smallexample
4207
4208
4209@kindex advance @var{location}
4210@itemx advance @var{location}
09d4efe1 4211Continue running the program up to the given @var{location}. An argument is
2a25a5ba
EZ
4212required, which should be of one of the forms described in
4213@ref{Specify Location}.
4214Execution will also stop upon exit from the current stack
c60eb6f1
EZ
4215frame. This command is similar to @code{until}, but @code{advance} will
4216not skip over recursive function calls, and the target location doesn't
4217have to be in the same frame as the current one.
4218
c906108c
SS
4219
4220@kindex stepi
41afff9a 4221@kindex si @r{(@code{stepi})}
c906108c 4222@item stepi
96a2c332 4223@itemx stepi @var{arg}
c906108c
SS
4224@itemx si
4225Execute one machine instruction, then stop and return to the debugger.
4226
4227It is often useful to do @samp{display/i $pc} when stepping by machine
4228instructions. This makes @value{GDBN} automatically display the next
4229instruction to be executed, each time your program stops. @xref{Auto
79a6e687 4230Display,, Automatic Display}.
c906108c
SS
4231
4232An argument is a repeat count, as in @code{step}.
4233
4234@need 750
4235@kindex nexti
41afff9a 4236@kindex ni @r{(@code{nexti})}
c906108c 4237@item nexti
96a2c332 4238@itemx nexti @var{arg}
c906108c
SS
4239@itemx ni
4240Execute one machine instruction, but if it is a function call,
4241proceed until the function returns.
4242
4243An argument is a repeat count, as in @code{next}.
4244@end table
4245
6d2ebf8b 4246@node Signals
c906108c
SS
4247@section Signals
4248@cindex signals
4249
4250A signal is an asynchronous event that can happen in a program. The
4251operating system defines the possible kinds of signals, and gives each
4252kind a name and a number. For example, in Unix @code{SIGINT} is the
c8aa23ab 4253signal a program gets when you type an interrupt character (often @kbd{Ctrl-c});
c906108c
SS
4254@code{SIGSEGV} is the signal a program gets from referencing a place in
4255memory far away from all the areas in use; @code{SIGALRM} occurs when
4256the alarm clock timer goes off (which happens only if your program has
4257requested an alarm).
4258
4259@cindex fatal signals
4260Some signals, including @code{SIGALRM}, are a normal part of the
4261functioning of your program. Others, such as @code{SIGSEGV}, indicate
d4f3574e 4262errors; these signals are @dfn{fatal} (they kill your program immediately) if the
c906108c
SS
4263program has not specified in advance some other way to handle the signal.
4264@code{SIGINT} does not indicate an error in your program, but it is normally
4265fatal so it can carry out the purpose of the interrupt: to kill the program.
4266
4267@value{GDBN} has the ability to detect any occurrence of a signal in your
4268program. You can tell @value{GDBN} in advance what to do for each kind of
4269signal.
4270
4271@cindex handling signals
24f93129
EZ
4272Normally, @value{GDBN} is set up to let the non-erroneous signals like
4273@code{SIGALRM} be silently passed to your program
4274(so as not to interfere with their role in the program's functioning)
c906108c
SS
4275but to stop your program immediately whenever an error signal happens.
4276You can change these settings with the @code{handle} command.
4277
4278@table @code
4279@kindex info signals
09d4efe1 4280@kindex info handle
c906108c 4281@item info signals
96a2c332 4282@itemx info handle
c906108c
SS
4283Print a table of all the kinds of signals and how @value{GDBN} has been told to
4284handle each one. You can use this to see the signal numbers of all
4285the defined types of signals.
4286
45ac1734
EZ
4287@item info signals @var{sig}
4288Similar, but print information only about the specified signal number.
4289
d4f3574e 4290@code{info handle} is an alias for @code{info signals}.
c906108c
SS
4291
4292@kindex handle
45ac1734 4293@item handle @var{signal} @r{[}@var{keywords}@dots{}@r{]}
5ece1a18
EZ
4294Change the way @value{GDBN} handles signal @var{signal}. @var{signal}
4295can be the number of a signal or its name (with or without the
24f93129 4296@samp{SIG} at the beginning); a list of signal numbers of the form
5ece1a18 4297@samp{@var{low}-@var{high}}; or the word @samp{all}, meaning all the
45ac1734
EZ
4298known signals. Optional arguments @var{keywords}, described below,
4299say what change to make.
c906108c
SS
4300@end table
4301
4302@c @group
4303The keywords allowed by the @code{handle} command can be abbreviated.
4304Their full names are:
4305
4306@table @code
4307@item nostop
4308@value{GDBN} should not stop your program when this signal happens. It may
4309still print a message telling you that the signal has come in.
4310
4311@item stop
4312@value{GDBN} should stop your program when this signal happens. This implies
4313the @code{print} keyword as well.
4314
4315@item print
4316@value{GDBN} should print a message when this signal happens.
4317
4318@item noprint
4319@value{GDBN} should not mention the occurrence of the signal at all. This
4320implies the @code{nostop} keyword as well.
4321
4322@item pass
5ece1a18 4323@itemx noignore
c906108c
SS
4324@value{GDBN} should allow your program to see this signal; your program
4325can handle the signal, or else it may terminate if the signal is fatal
5ece1a18 4326and not handled. @code{pass} and @code{noignore} are synonyms.
c906108c
SS
4327
4328@item nopass
5ece1a18 4329@itemx ignore
c906108c 4330@value{GDBN} should not allow your program to see this signal.
5ece1a18 4331@code{nopass} and @code{ignore} are synonyms.
c906108c
SS
4332@end table
4333@c @end group
4334
d4f3574e
SS
4335When a signal stops your program, the signal is not visible to the
4336program until you
c906108c
SS
4337continue. Your program sees the signal then, if @code{pass} is in
4338effect for the signal in question @emph{at that time}. In other words,
4339after @value{GDBN} reports a signal, you can use the @code{handle}
4340command with @code{pass} or @code{nopass} to control whether your
4341program sees that signal when you continue.
4342
24f93129
EZ
4343The default is set to @code{nostop}, @code{noprint}, @code{pass} for
4344non-erroneous signals such as @code{SIGALRM}, @code{SIGWINCH} and
4345@code{SIGCHLD}, and to @code{stop}, @code{print}, @code{pass} for the
4346erroneous signals.
4347
c906108c
SS
4348You can also use the @code{signal} command to prevent your program from
4349seeing a signal, or cause it to see a signal it normally would not see,
4350or to give it any signal at any time. For example, if your program stopped
4351due to some sort of memory reference error, you might store correct
4352values into the erroneous variables and continue, hoping to see more
4353execution; but your program would probably terminate immediately as
4354a result of the fatal signal once it saw the signal. To prevent this,
4355you can continue with @samp{signal 0}. @xref{Signaling, ,Giving your
79a6e687 4356Program a Signal}.
c906108c 4357
6d2ebf8b 4358@node Thread Stops
79a6e687 4359@section Stopping and Starting Multi-thread Programs
c906108c
SS
4360
4361When your program has multiple threads (@pxref{Threads,, Debugging
79a6e687 4362Programs with Multiple Threads}), you can choose whether to set
c906108c
SS
4363breakpoints on all threads, or on a particular thread.
4364
4365@table @code
4366@cindex breakpoints and threads
4367@cindex thread breakpoints
4368@kindex break @dots{} thread @var{threadno}
4369@item break @var{linespec} thread @var{threadno}
4370@itemx break @var{linespec} thread @var{threadno} if @dots{}
4371@var{linespec} specifies source lines; there are several ways of
2a25a5ba
EZ
4372writing them (@pxref{Specify Location}), but the effect is always to
4373specify some source line.
c906108c
SS
4374
4375Use the qualifier @samp{thread @var{threadno}} with a breakpoint command
4376to specify that you only want @value{GDBN} to stop the program when a
4377particular thread reaches this breakpoint. @var{threadno} is one of the
4378numeric thread identifiers assigned by @value{GDBN}, shown in the first
4379column of the @samp{info threads} display.
4380
4381If you do not specify @samp{thread @var{threadno}} when you set a
4382breakpoint, the breakpoint applies to @emph{all} threads of your
4383program.
4384
4385You can use the @code{thread} qualifier on conditional breakpoints as
4386well; in this case, place @samp{thread @var{threadno}} before the
4387breakpoint condition, like this:
4388
4389@smallexample
2df3850c 4390(@value{GDBP}) break frik.c:13 thread 28 if bartab > lim
c906108c
SS
4391@end smallexample
4392
4393@end table
4394
4395@cindex stopped threads
4396@cindex threads, stopped
4397Whenever your program stops under @value{GDBN} for any reason,
4398@emph{all} threads of execution stop, not just the current thread. This
4399allows you to examine the overall state of the program, including
4400switching between threads, without worrying that things may change
4401underfoot.
4402
36d86913
MC
4403@cindex thread breakpoints and system calls
4404@cindex system calls and thread breakpoints
4405@cindex premature return from system calls
4406There is an unfortunate side effect. If one thread stops for a
4407breakpoint, or for some other reason, and another thread is blocked in a
4408system call, then the system call may return prematurely. This is a
4409consequence of the interaction between multiple threads and the signals
4410that @value{GDBN} uses to implement breakpoints and other events that
4411stop execution.
4412
4413To handle this problem, your program should check the return value of
4414each system call and react appropriately. This is good programming
4415style anyways.
4416
4417For example, do not write code like this:
4418
4419@smallexample
4420 sleep (10);
4421@end smallexample
4422
4423The call to @code{sleep} will return early if a different thread stops
4424at a breakpoint or for some other reason.
4425
4426Instead, write this:
4427
4428@smallexample
4429 int unslept = 10;
4430 while (unslept > 0)
4431 unslept = sleep (unslept);
4432@end smallexample
4433
4434A system call is allowed to return early, so the system is still
4435conforming to its specification. But @value{GDBN} does cause your
4436multi-threaded program to behave differently than it would without
4437@value{GDBN}.
4438
4439Also, @value{GDBN} uses internal breakpoints in the thread library to
4440monitor certain events such as thread creation and thread destruction.
4441When such an event happens, a system call in another thread may return
4442prematurely, even though your program does not appear to stop.
4443
c906108c
SS
4444@cindex continuing threads
4445@cindex threads, continuing
4446Conversely, whenever you restart the program, @emph{all} threads start
4447executing. @emph{This is true even when single-stepping} with commands
5d161b24 4448like @code{step} or @code{next}.
c906108c
SS
4449
4450In particular, @value{GDBN} cannot single-step all threads in lockstep.
4451Since thread scheduling is up to your debugging target's operating
4452system (not controlled by @value{GDBN}), other threads may
4453execute more than one statement while the current thread completes a
4454single step. Moreover, in general other threads stop in the middle of a
4455statement, rather than at a clean statement boundary, when the program
4456stops.
4457
4458You might even find your program stopped in another thread after
4459continuing or even single-stepping. This happens whenever some other
4460thread runs into a breakpoint, a signal, or an exception before the
4461first thread completes whatever you requested.
4462
4463On some OSes, you can lock the OS scheduler and thus allow only a single
4464thread to run.
4465
4466@table @code
4467@item set scheduler-locking @var{mode}
9c16f35a
EZ
4468@cindex scheduler locking mode
4469@cindex lock scheduler
c906108c
SS
4470Set the scheduler locking mode. If it is @code{off}, then there is no
4471locking and any thread may run at any time. If @code{on}, then only the
4472current thread may run when the inferior is resumed. The @code{step}
4473mode optimizes for single-stepping. It stops other threads from
4474``seizing the prompt'' by preempting the current thread while you are
4475stepping. Other threads will only rarely (or never) get a chance to run
d4f3574e 4476when you step. They are more likely to run when you @samp{next} over a
c906108c 4477function call, and they are completely free to run when you use commands
d4f3574e 4478like @samp{continue}, @samp{until}, or @samp{finish}. However, unless another
c906108c 4479thread hits a breakpoint during its timeslice, they will never steal the
2df3850c 4480@value{GDBN} prompt away from the thread that you are debugging.
c906108c
SS
4481
4482@item show scheduler-locking
4483Display the current scheduler locking mode.
4484@end table
4485
c906108c 4486
6d2ebf8b 4487@node Stack
c906108c
SS
4488@chapter Examining the Stack
4489
4490When your program has stopped, the first thing you need to know is where it
4491stopped and how it got there.
4492
4493@cindex call stack
5d161b24
DB
4494Each time your program performs a function call, information about the call
4495is generated.
4496That information includes the location of the call in your program,
4497the arguments of the call,
c906108c 4498and the local variables of the function being called.
5d161b24 4499The information is saved in a block of data called a @dfn{stack frame}.
c906108c
SS
4500The stack frames are allocated in a region of memory called the @dfn{call
4501stack}.
4502
4503When your program stops, the @value{GDBN} commands for examining the
4504stack allow you to see all of this information.
4505
4506@cindex selected frame
4507One of the stack frames is @dfn{selected} by @value{GDBN} and many
4508@value{GDBN} commands refer implicitly to the selected frame. In
4509particular, whenever you ask @value{GDBN} for the value of a variable in
4510your program, the value is found in the selected frame. There are
4511special @value{GDBN} commands to select whichever frame you are
79a6e687 4512interested in. @xref{Selection, ,Selecting a Frame}.
c906108c
SS
4513
4514When your program stops, @value{GDBN} automatically selects the
5d161b24 4515currently executing frame and describes it briefly, similar to the
79a6e687 4516@code{frame} command (@pxref{Frame Info, ,Information about a Frame}).
c906108c
SS
4517
4518@menu
4519* Frames:: Stack frames
4520* Backtrace:: Backtraces
4521* Selection:: Selecting a frame
4522* Frame Info:: Information on a frame
c906108c
SS
4523
4524@end menu
4525
6d2ebf8b 4526@node Frames
79a6e687 4527@section Stack Frames
c906108c 4528
d4f3574e 4529@cindex frame, definition
c906108c
SS
4530@cindex stack frame
4531The call stack is divided up into contiguous pieces called @dfn{stack
4532frames}, or @dfn{frames} for short; each frame is the data associated
4533with one call to one function. The frame contains the arguments given
4534to the function, the function's local variables, and the address at
4535which the function is executing.
4536
4537@cindex initial frame
4538@cindex outermost frame
4539@cindex innermost frame
4540When your program is started, the stack has only one frame, that of the
4541function @code{main}. This is called the @dfn{initial} frame or the
4542@dfn{outermost} frame. Each time a function is called, a new frame is
4543made. Each time a function returns, the frame for that function invocation
4544is eliminated. If a function is recursive, there can be many frames for
4545the same function. The frame for the function in which execution is
4546actually occurring is called the @dfn{innermost} frame. This is the most
4547recently created of all the stack frames that still exist.
4548
4549@cindex frame pointer
4550Inside your program, stack frames are identified by their addresses. A
4551stack frame consists of many bytes, each of which has its own address; each
4552kind of computer has a convention for choosing one byte whose
4553address serves as the address of the frame. Usually this address is kept
e09f16f9
EZ
4554in a register called the @dfn{frame pointer register}
4555(@pxref{Registers, $fp}) while execution is going on in that frame.
c906108c
SS
4556
4557@cindex frame number
4558@value{GDBN} assigns numbers to all existing stack frames, starting with
4559zero for the innermost frame, one for the frame that called it,
4560and so on upward. These numbers do not really exist in your program;
4561they are assigned by @value{GDBN} to give you a way of designating stack
4562frames in @value{GDBN} commands.
4563
6d2ebf8b
SS
4564@c The -fomit-frame-pointer below perennially causes hbox overflow
4565@c underflow problems.
c906108c
SS
4566@cindex frameless execution
4567Some compilers provide a way to compile functions so that they operate
e22ea452 4568without stack frames. (For example, the @value{NGCC} option
474c8240 4569@smallexample
6d2ebf8b 4570@samp{-fomit-frame-pointer}
474c8240 4571@end smallexample
6d2ebf8b 4572generates functions without a frame.)
c906108c
SS
4573This is occasionally done with heavily used library functions to save
4574the frame setup time. @value{GDBN} has limited facilities for dealing
4575with these function invocations. If the innermost function invocation
4576has no stack frame, @value{GDBN} nevertheless regards it as though
4577it had a separate frame, which is numbered zero as usual, allowing
4578correct tracing of the function call chain. However, @value{GDBN} has
4579no provision for frameless functions elsewhere in the stack.
4580
4581@table @code
d4f3574e 4582@kindex frame@r{, command}
41afff9a 4583@cindex current stack frame
c906108c 4584@item frame @var{args}
5d161b24 4585The @code{frame} command allows you to move from one stack frame to another,
c906108c 4586and to print the stack frame you select. @var{args} may be either the
5d161b24
DB
4587address of the frame or the stack frame number. Without an argument,
4588@code{frame} prints the current stack frame.
c906108c
SS
4589
4590@kindex select-frame
41afff9a 4591@cindex selecting frame silently
c906108c
SS
4592@item select-frame
4593The @code{select-frame} command allows you to move from one stack frame
4594to another without printing the frame. This is the silent version of
4595@code{frame}.
4596@end table
4597
6d2ebf8b 4598@node Backtrace
c906108c
SS
4599@section Backtraces
4600
09d4efe1
EZ
4601@cindex traceback
4602@cindex call stack traces
c906108c
SS
4603A backtrace is a summary of how your program got where it is. It shows one
4604line per frame, for many frames, starting with the currently executing
4605frame (frame zero), followed by its caller (frame one), and on up the
4606stack.
4607
4608@table @code
4609@kindex backtrace
41afff9a 4610@kindex bt @r{(@code{backtrace})}
c906108c
SS
4611@item backtrace
4612@itemx bt
4613Print a backtrace of the entire stack: one line per frame for all
4614frames in the stack.
4615
4616You can stop the backtrace at any time by typing the system interrupt
c8aa23ab 4617character, normally @kbd{Ctrl-c}.
c906108c
SS
4618
4619@item backtrace @var{n}
4620@itemx bt @var{n}
4621Similar, but print only the innermost @var{n} frames.
4622
4623@item backtrace -@var{n}
4624@itemx bt -@var{n}
4625Similar, but print only the outermost @var{n} frames.
0f061b69
NR
4626
4627@item backtrace full
0f061b69 4628@itemx bt full
dd74f6ae
NR
4629@itemx bt full @var{n}
4630@itemx bt full -@var{n}
e7109c7e 4631Print the values of the local variables also. @var{n} specifies the
286ba84d 4632number of frames to print, as described above.
c906108c
SS
4633@end table
4634
4635@kindex where
4636@kindex info stack
c906108c
SS
4637The names @code{where} and @code{info stack} (abbreviated @code{info s})
4638are additional aliases for @code{backtrace}.
4639
839c27b7
EZ
4640@cindex multiple threads, backtrace
4641In a multi-threaded program, @value{GDBN} by default shows the
4642backtrace only for the current thread. To display the backtrace for
4643several or all of the threads, use the command @code{thread apply}
4644(@pxref{Threads, thread apply}). For example, if you type @kbd{thread
4645apply all backtrace}, @value{GDBN} will display the backtrace for all
4646the threads; this is handy when you debug a core dump of a
4647multi-threaded program.
4648
c906108c
SS
4649Each line in the backtrace shows the frame number and the function name.
4650The program counter value is also shown---unless you use @code{set
4651print address off}. The backtrace also shows the source file name and
4652line number, as well as the arguments to the function. The program
4653counter value is omitted if it is at the beginning of the code for that
4654line number.
4655
4656Here is an example of a backtrace. It was made with the command
4657@samp{bt 3}, so it shows the innermost three frames.
4658
4659@smallexample
4660@group
5d161b24 4661#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
c906108c
SS
4662 at builtin.c:993
4663#1 0x6e38 in expand_macro (sym=0x2b600) at macro.c:242
4664#2 0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)
4665 at macro.c:71
4666(More stack frames follow...)
4667@end group
4668@end smallexample
4669
4670@noindent
4671The display for frame zero does not begin with a program counter
4672value, indicating that your program has stopped at the beginning of the
4673code for line @code{993} of @code{builtin.c}.
4674
18999be5
EZ
4675@cindex value optimized out, in backtrace
4676@cindex function call arguments, optimized out
4677If your program was compiled with optimizations, some compilers will
4678optimize away arguments passed to functions if those arguments are
4679never used after the call. Such optimizations generate code that
4680passes arguments through registers, but doesn't store those arguments
4681in the stack frame. @value{GDBN} has no way of displaying such
4682arguments in stack frames other than the innermost one. Here's what
4683such a backtrace might look like:
4684
4685@smallexample
4686@group
4687#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
4688 at builtin.c:993
4689#1 0x6e38 in expand_macro (sym=<value optimized out>) at macro.c:242
4690#2 0x6840 in expand_token (obs=0x0, t=<value optimized out>, td=0xf7fffb08)
4691 at macro.c:71
4692(More stack frames follow...)
4693@end group
4694@end smallexample
4695
4696@noindent
4697The values of arguments that were not saved in their stack frames are
4698shown as @samp{<value optimized out>}.
4699
4700If you need to display the values of such optimized-out arguments,
4701either deduce that from other variables whose values depend on the one
4702you are interested in, or recompile without optimizations.
4703
a8f24a35
EZ
4704@cindex backtrace beyond @code{main} function
4705@cindex program entry point
4706@cindex startup code, and backtrace
25d29d70
AC
4707Most programs have a standard user entry point---a place where system
4708libraries and startup code transition into user code. For C this is
d416eeec
EZ
4709@code{main}@footnote{
4710Note that embedded programs (the so-called ``free-standing''
4711environment) are not required to have a @code{main} function as the
4712entry point. They could even have multiple entry points.}.
4713When @value{GDBN} finds the entry function in a backtrace
25d29d70
AC
4714it will terminate the backtrace, to avoid tracing into highly
4715system-specific (and generally uninteresting) code.
4716
4717If you need to examine the startup code, or limit the number of levels
4718in a backtrace, you can change this behavior:
95f90d25
DJ
4719
4720@table @code
25d29d70
AC
4721@item set backtrace past-main
4722@itemx set backtrace past-main on
4644b6e3 4723@kindex set backtrace
25d29d70
AC
4724Backtraces will continue past the user entry point.
4725
4726@item set backtrace past-main off
95f90d25
DJ
4727Backtraces will stop when they encounter the user entry point. This is the
4728default.
4729
25d29d70 4730@item show backtrace past-main
4644b6e3 4731@kindex show backtrace
25d29d70
AC
4732Display the current user entry point backtrace policy.
4733
2315ffec
RC
4734@item set backtrace past-entry
4735@itemx set backtrace past-entry on
a8f24a35 4736Backtraces will continue past the internal entry point of an application.
2315ffec
RC
4737This entry point is encoded by the linker when the application is built,
4738and is likely before the user entry point @code{main} (or equivalent) is called.
4739
4740@item set backtrace past-entry off
d3e8051b 4741Backtraces will stop when they encounter the internal entry point of an
2315ffec
RC
4742application. This is the default.
4743
4744@item show backtrace past-entry
4745Display the current internal entry point backtrace policy.
4746
25d29d70
AC
4747@item set backtrace limit @var{n}
4748@itemx set backtrace limit 0
4749@cindex backtrace limit
4750Limit the backtrace to @var{n} levels. A value of zero means
4751unlimited.
95f90d25 4752
25d29d70
AC
4753@item show backtrace limit
4754Display the current limit on backtrace levels.
95f90d25
DJ
4755@end table
4756
6d2ebf8b 4757@node Selection
79a6e687 4758@section Selecting a Frame
c906108c
SS
4759
4760Most commands for examining the stack and other data in your program work on
4761whichever stack frame is selected at the moment. Here are the commands for
4762selecting a stack frame; all of them finish by printing a brief description
4763of the stack frame just selected.
4764
4765@table @code
d4f3574e 4766@kindex frame@r{, selecting}
41afff9a 4767@kindex f @r{(@code{frame})}
c906108c
SS
4768@item frame @var{n}
4769@itemx f @var{n}
4770Select frame number @var{n}. Recall that frame zero is the innermost
4771(currently executing) frame, frame one is the frame that called the
4772innermost one, and so on. The highest-numbered frame is the one for
4773@code{main}.
4774
4775@item frame @var{addr}
4776@itemx f @var{addr}
4777Select the frame at address @var{addr}. This is useful mainly if the
4778chaining of stack frames has been damaged by a bug, making it
4779impossible for @value{GDBN} to assign numbers properly to all frames. In
4780addition, this can be useful when your program has multiple stacks and
4781switches between them.
4782
c906108c
SS
4783On the SPARC architecture, @code{frame} needs two addresses to
4784select an arbitrary frame: a frame pointer and a stack pointer.
4785
4786On the MIPS and Alpha architecture, it needs two addresses: a stack
4787pointer and a program counter.
4788
4789On the 29k architecture, it needs three addresses: a register stack
4790pointer, a program counter, and a memory stack pointer.
c906108c
SS
4791
4792@kindex up
4793@item up @var{n}
4794Move @var{n} frames up the stack. For positive numbers @var{n}, this
4795advances toward the outermost frame, to higher frame numbers, to frames
4796that have existed longer. @var{n} defaults to one.
4797
4798@kindex down
41afff9a 4799@kindex do @r{(@code{down})}
c906108c
SS
4800@item down @var{n}
4801Move @var{n} frames down the stack. For positive numbers @var{n}, this
4802advances toward the innermost frame, to lower frame numbers, to frames
4803that were created more recently. @var{n} defaults to one. You may
4804abbreviate @code{down} as @code{do}.
4805@end table
4806
4807All of these commands end by printing two lines of output describing the
4808frame. The first line shows the frame number, the function name, the
4809arguments, and the source file and line number of execution in that
5d161b24 4810frame. The second line shows the text of that source line.
c906108c
SS
4811
4812@need 1000
4813For example:
4814
4815@smallexample
4816@group
4817(@value{GDBP}) up
4818#1 0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)
4819 at env.c:10
482010 read_input_file (argv[i]);
4821@end group
4822@end smallexample
4823
4824After such a printout, the @code{list} command with no arguments
4825prints ten lines centered on the point of execution in the frame.
87885426
FN
4826You can also edit the program at the point of execution with your favorite
4827editing program by typing @code{edit}.
79a6e687 4828@xref{List, ,Printing Source Lines},
87885426 4829for details.
c906108c
SS
4830
4831@table @code
4832@kindex down-silently
4833@kindex up-silently
4834@item up-silently @var{n}
4835@itemx down-silently @var{n}
4836These two commands are variants of @code{up} and @code{down},
4837respectively; they differ in that they do their work silently, without
4838causing display of the new frame. They are intended primarily for use
4839in @value{GDBN} command scripts, where the output might be unnecessary and
4840distracting.
4841@end table
4842
6d2ebf8b 4843@node Frame Info
79a6e687 4844@section Information About a Frame
c906108c
SS
4845
4846There are several other commands to print information about the selected
4847stack frame.
4848
4849@table @code
4850@item frame
4851@itemx f
4852When used without any argument, this command does not change which
4853frame is selected, but prints a brief description of the currently
4854selected stack frame. It can be abbreviated @code{f}. With an
4855argument, this command is used to select a stack frame.
79a6e687 4856@xref{Selection, ,Selecting a Frame}.
c906108c
SS
4857
4858@kindex info frame
41afff9a 4859@kindex info f @r{(@code{info frame})}
c906108c
SS
4860@item info frame
4861@itemx info f
4862This command prints a verbose description of the selected stack frame,
4863including:
4864
4865@itemize @bullet
5d161b24
DB
4866@item
4867the address of the frame
c906108c
SS
4868@item
4869the address of the next frame down (called by this frame)
4870@item
4871the address of the next frame up (caller of this frame)
4872@item
4873the language in which the source code corresponding to this frame is written
4874@item
4875the address of the frame's arguments
4876@item
d4f3574e
SS
4877the address of the frame's local variables
4878@item
c906108c
SS
4879the program counter saved in it (the address of execution in the caller frame)
4880@item
4881which registers were saved in the frame
4882@end itemize
4883
4884@noindent The verbose description is useful when
4885something has gone wrong that has made the stack format fail to fit
4886the usual conventions.
4887
4888@item info frame @var{addr}
4889@itemx info f @var{addr}
4890Print a verbose description of the frame at address @var{addr}, without
4891selecting that frame. The selected frame remains unchanged by this
4892command. This requires the same kind of address (more than one for some
4893architectures) that you specify in the @code{frame} command.
79a6e687 4894@xref{Selection, ,Selecting a Frame}.
c906108c
SS
4895
4896@kindex info args
4897@item info args
4898Print the arguments of the selected frame, each on a separate line.
4899
4900@item info locals
4901@kindex info locals
4902Print the local variables of the selected frame, each on a separate
4903line. These are all variables (declared either static or automatic)
4904accessible at the point of execution of the selected frame.
4905
c906108c 4906@kindex info catch
d4f3574e
SS
4907@cindex catch exceptions, list active handlers
4908@cindex exception handlers, how to list
c906108c
SS
4909@item info catch
4910Print a list of all the exception handlers that are active in the
4911current stack frame at the current point of execution. To see other
4912exception handlers, visit the associated frame (using the @code{up},
4913@code{down}, or @code{frame} commands); then type @code{info catch}.
79a6e687 4914@xref{Set Catchpoints, , Setting Catchpoints}.
53a5351d 4915
c906108c
SS
4916@end table
4917
c906108c 4918
6d2ebf8b 4919@node Source
c906108c
SS
4920@chapter Examining Source Files
4921
4922@value{GDBN} can print parts of your program's source, since the debugging
4923information recorded in the program tells @value{GDBN} what source files were
4924used to build it. When your program stops, @value{GDBN} spontaneously prints
4925the line where it stopped. Likewise, when you select a stack frame
79a6e687 4926(@pxref{Selection, ,Selecting a Frame}), @value{GDBN} prints the line where
c906108c
SS
4927execution in that frame has stopped. You can print other portions of
4928source files by explicit command.
4929
7a292a7a 4930If you use @value{GDBN} through its @sc{gnu} Emacs interface, you may
d4f3574e 4931prefer to use Emacs facilities to view source; see @ref{Emacs, ,Using
7a292a7a 4932@value{GDBN} under @sc{gnu} Emacs}.
c906108c
SS
4933
4934@menu
4935* List:: Printing source lines
2a25a5ba 4936* Specify Location:: How to specify code locations
87885426 4937* Edit:: Editing source files
c906108c 4938* Search:: Searching source files
c906108c
SS
4939* Source Path:: Specifying source directories
4940* Machine Code:: Source and machine code
4941@end menu
4942
6d2ebf8b 4943@node List
79a6e687 4944@section Printing Source Lines
c906108c
SS
4945
4946@kindex list
41afff9a 4947@kindex l @r{(@code{list})}
c906108c 4948To print lines from a source file, use the @code{list} command
5d161b24 4949(abbreviated @code{l}). By default, ten lines are printed.
2a25a5ba
EZ
4950There are several ways to specify what part of the file you want to
4951print; see @ref{Specify Location}, for the full list.
c906108c
SS
4952
4953Here are the forms of the @code{list} command most commonly used:
4954
4955@table @code
4956@item list @var{linenum}
4957Print lines centered around line number @var{linenum} in the
4958current source file.
4959
4960@item list @var{function}
4961Print lines centered around the beginning of function
4962@var{function}.
4963
4964@item list
4965Print more lines. If the last lines printed were printed with a
4966@code{list} command, this prints lines following the last lines
4967printed; however, if the last line printed was a solitary line printed
4968as part of displaying a stack frame (@pxref{Stack, ,Examining the
4969Stack}), this prints lines centered around that line.
4970
4971@item list -
4972Print lines just before the lines last printed.
4973@end table
4974
9c16f35a 4975@cindex @code{list}, how many lines to display
c906108c
SS
4976By default, @value{GDBN} prints ten source lines with any of these forms of
4977the @code{list} command. You can change this using @code{set listsize}:
4978
4979@table @code
4980@kindex set listsize
4981@item set listsize @var{count}
4982Make the @code{list} command display @var{count} source lines (unless
4983the @code{list} argument explicitly specifies some other number).
4984
4985@kindex show listsize
4986@item show listsize
4987Display the number of lines that @code{list} prints.
4988@end table
4989
4990Repeating a @code{list} command with @key{RET} discards the argument,
4991so it is equivalent to typing just @code{list}. This is more useful
4992than listing the same lines again. An exception is made for an
4993argument of @samp{-}; that argument is preserved in repetition so that
4994each repetition moves up in the source file.
4995
c906108c
SS
4996In general, the @code{list} command expects you to supply zero, one or two
4997@dfn{linespecs}. Linespecs specify source lines; there are several ways
2a25a5ba
EZ
4998of writing them (@pxref{Specify Location}), but the effect is always
4999to specify some source line.
5000
c906108c
SS
5001Here is a complete description of the possible arguments for @code{list}:
5002
5003@table @code
5004@item list @var{linespec}
5005Print lines centered around the line specified by @var{linespec}.
5006
5007@item list @var{first},@var{last}
5008Print lines from @var{first} to @var{last}. Both arguments are
2a25a5ba
EZ
5009linespecs. When a @code{list} command has two linespecs, and the
5010source file of the second linespec is omitted, this refers to
5011the same source file as the first linespec.
c906108c
SS
5012
5013@item list ,@var{last}
5014Print lines ending with @var{last}.
5015
5016@item list @var{first},
5017Print lines starting with @var{first}.
5018
5019@item list +
5020Print lines just after the lines last printed.
5021
5022@item list -
5023Print lines just before the lines last printed.
5024
5025@item list
5026As described in the preceding table.
5027@end table
5028
2a25a5ba
EZ
5029@node Specify Location
5030@section Specifying a Location
5031@cindex specifying location
5032@cindex linespec
c906108c 5033
2a25a5ba
EZ
5034Several @value{GDBN} commands accept arguments that specify a location
5035of your program's code. Since @value{GDBN} is a source-level
5036debugger, a location usually specifies some line in the source code;
5037for that reason, locations are also known as @dfn{linespecs}.
c906108c 5038
2a25a5ba
EZ
5039Here are all the different ways of specifying a code location that
5040@value{GDBN} understands:
c906108c 5041
2a25a5ba
EZ
5042@table @code
5043@item @var{linenum}
5044Specifies the line number @var{linenum} of the current source file.
c906108c 5045
2a25a5ba
EZ
5046@item -@var{offset}
5047@itemx +@var{offset}
5048Specifies the line @var{offset} lines before or after the @dfn{current
5049line}. For the @code{list} command, the current line is the last one
5050printed; for the breakpoint commands, this is the line at which
5051execution stopped in the currently selected @dfn{stack frame}
5052(@pxref{Frames, ,Frames}, for a description of stack frames.) When
5053used as the second of the two linespecs in a @code{list} command,
5054this specifies the line @var{offset} lines up or down from the first
5055linespec.
5056
5057@item @var{filename}:@var{linenum}
5058Specifies the line @var{linenum} in the source file @var{filename}.
c906108c
SS
5059
5060@item @var{function}
5061Specifies the line that begins the body of the function @var{function}.
2a25a5ba 5062For example, in C, this is the line with the open brace.
c906108c
SS
5063
5064@item @var{filename}:@var{function}
2a25a5ba
EZ
5065Specifies the line that begins the body of the function @var{function}
5066in the file @var{filename}. You only need the file name with a
5067function name to avoid ambiguity when there are identically named
5068functions in different source files.
c906108c
SS
5069
5070@item *@var{address}
2a25a5ba
EZ
5071Specifies the program address @var{address}. For line-oriented
5072commands, such as @code{list} and @code{edit}, this specifies a source
5073line that contains @var{address}. For @code{break} and other
5074breakpoint oriented commands, this can be used to set breakpoints in
5075parts of your program which do not have debugging information or
5076source files.
5077
5078Here @var{address} may be any expression valid in the current working
5079language (@pxref{Languages, working language}) that specifies a code
5fa54e5d
EZ
5080address. In addition, as a convenience, @value{GDBN} extends the
5081semantics of expressions used in locations to cover the situations
5082that frequently happen during debugging. Here are the various forms
5083of @var{address}:
2a25a5ba
EZ
5084
5085@table @code
5086@item @var{expression}
5087Any expression valid in the current working language.
5088
5089@item @var{funcaddr}
5090An address of a function or procedure derived from its name. In C,
5091C@t{++}, Java, Objective-C, Fortran, minimal, and assembly, this is
5092simply the function's name @var{function} (and actually a special case
5093of a valid expression). In Pascal and Modula-2, this is
5094@code{&@var{function}}. In Ada, this is @code{@var{function}'Address}
5095(although the Pascal form also works).
5096
5097This form specifies the address of the function's first instruction,
5098before the stack frame and arguments have been set up.
5099
5100@item '@var{filename}'::@var{funcaddr}
5101Like @var{funcaddr} above, but also specifies the name of the source
5102file explicitly. This is useful if the name of the function does not
5103specify the function unambiguously, e.g., if there are several
5104functions with identical names in different source files.
c906108c
SS
5105@end table
5106
2a25a5ba
EZ
5107@end table
5108
5109
87885426 5110@node Edit
79a6e687 5111@section Editing Source Files
87885426
FN
5112@cindex editing source files
5113
5114@kindex edit
5115@kindex e @r{(@code{edit})}
5116To edit the lines in a source file, use the @code{edit} command.
5117The editing program of your choice
5118is invoked with the current line set to
5119the active line in the program.
5120Alternatively, there are several ways to specify what part of the file you
2a25a5ba 5121want to print if you want to see other parts of the program:
87885426
FN
5122
5123@table @code
2a25a5ba
EZ
5124@item edit @var{location}
5125Edit the source file specified by @code{location}. Editing starts at
5126that @var{location}, e.g., at the specified source line of the
5127specified file. @xref{Specify Location}, for all the possible forms
5128of the @var{location} argument; here are the forms of the @code{edit}
5129command most commonly used:
87885426 5130
2a25a5ba 5131@table @code
87885426
FN
5132@item edit @var{number}
5133Edit the current source file with @var{number} as the active line number.
5134
5135@item edit @var{function}
5136Edit the file containing @var{function} at the beginning of its definition.
2a25a5ba 5137@end table
87885426 5138
87885426
FN
5139@end table
5140
79a6e687 5141@subsection Choosing your Editor
87885426
FN
5142You can customize @value{GDBN} to use any editor you want
5143@footnote{
5144The only restriction is that your editor (say @code{ex}), recognizes the
5145following command-line syntax:
10998722 5146@smallexample
87885426 5147ex +@var{number} file
10998722 5148@end smallexample
15387254
EZ
5149The optional numeric value +@var{number} specifies the number of the line in
5150the file where to start editing.}.
5151By default, it is @file{@value{EDITOR}}, but you can change this
10998722
AC
5152by setting the environment variable @code{EDITOR} before using
5153@value{GDBN}. For example, to configure @value{GDBN} to use the
5154@code{vi} editor, you could use these commands with the @code{sh} shell:
5155@smallexample
87885426
FN
5156EDITOR=/usr/bin/vi
5157export EDITOR
15387254 5158gdb @dots{}
10998722 5159@end smallexample
87885426 5160or in the @code{csh} shell,
10998722 5161@smallexample
87885426 5162setenv EDITOR /usr/bin/vi
15387254 5163gdb @dots{}
10998722 5164@end smallexample
87885426 5165
6d2ebf8b 5166@node Search
79a6e687 5167@section Searching Source Files
15387254 5168@cindex searching source files
c906108c
SS
5169
5170There are two commands for searching through the current source file for a
5171regular expression.
5172
5173@table @code
5174@kindex search
5175@kindex forward-search
5176@item forward-search @var{regexp}
5177@itemx search @var{regexp}
5178The command @samp{forward-search @var{regexp}} checks each line,
5179starting with the one following the last line listed, for a match for
5d161b24 5180@var{regexp}. It lists the line that is found. You can use the
c906108c
SS
5181synonym @samp{search @var{regexp}} or abbreviate the command name as
5182@code{fo}.
5183
09d4efe1 5184@kindex reverse-search
c906108c
SS
5185@item reverse-search @var{regexp}
5186The command @samp{reverse-search @var{regexp}} checks each line, starting
5187with the one before the last line listed and going backward, for a match
5188for @var{regexp}. It lists the line that is found. You can abbreviate
5189this command as @code{rev}.
5190@end table
c906108c 5191
6d2ebf8b 5192@node Source Path
79a6e687 5193@section Specifying Source Directories
c906108c
SS
5194
5195@cindex source path
5196@cindex directories for source files
5197Executable programs sometimes do not record the directories of the source
5198files from which they were compiled, just the names. Even when they do,
5199the directories could be moved between the compilation and your debugging
5200session. @value{GDBN} has a list of directories to search for source files;
5201this is called the @dfn{source path}. Each time @value{GDBN} wants a source file,
5202it tries all the directories in the list, in the order they are present
0b66e38c
EZ
5203in the list, until it finds a file with the desired name.
5204
5205For example, suppose an executable references the file
5206@file{/usr/src/foo-1.0/lib/foo.c}, and our source path is
5207@file{/mnt/cross}. The file is first looked up literally; if this
5208fails, @file{/mnt/cross/usr/src/foo-1.0/lib/foo.c} is tried; if this
5209fails, @file{/mnt/cross/foo.c} is opened; if this fails, an error
5210message is printed. @value{GDBN} does not look up the parts of the
5211source file name, such as @file{/mnt/cross/src/foo-1.0/lib/foo.c}.
5212Likewise, the subdirectories of the source path are not searched: if
5213the source path is @file{/mnt/cross}, and the binary refers to
5214@file{foo.c}, @value{GDBN} would not find it under
5215@file{/mnt/cross/usr/src/foo-1.0/lib}.
5216
5217Plain file names, relative file names with leading directories, file
5218names containing dots, etc.@: are all treated as described above; for
5219instance, if the source path is @file{/mnt/cross}, and the source file
5220is recorded as @file{../lib/foo.c}, @value{GDBN} would first try
5221@file{../lib/foo.c}, then @file{/mnt/cross/../lib/foo.c}, and after
5222that---@file{/mnt/cross/foo.c}.
5223
5224Note that the executable search path is @emph{not} used to locate the
cd852561 5225source files.
c906108c
SS
5226
5227Whenever you reset or rearrange the source path, @value{GDBN} clears out
5228any information it has cached about where source files are found and where
5229each line is in the file.
5230
5231@kindex directory
5232@kindex dir
d4f3574e
SS
5233When you start @value{GDBN}, its source path includes only @samp{cdir}
5234and @samp{cwd}, in that order.
c906108c
SS
5235To add other directories, use the @code{directory} command.
5236
4b505b12
AS
5237The search path is used to find both program source files and @value{GDBN}
5238script files (read using the @samp{-command} option and @samp{source} command).
5239
30daae6c
JB
5240In addition to the source path, @value{GDBN} provides a set of commands
5241that manage a list of source path substitution rules. A @dfn{substitution
5242rule} specifies how to rewrite source directories stored in the program's
5243debug information in case the sources were moved to a different
5244directory between compilation and debugging. A rule is made of
5245two strings, the first specifying what needs to be rewritten in
5246the path, and the second specifying how it should be rewritten.
5247In @ref{set substitute-path}, we name these two parts @var{from} and
5248@var{to} respectively. @value{GDBN} does a simple string replacement
5249of @var{from} with @var{to} at the start of the directory part of the
5250source file name, and uses that result instead of the original file
5251name to look up the sources.
5252
5253Using the previous example, suppose the @file{foo-1.0} tree has been
5254moved from @file{/usr/src} to @file{/mnt/cross}, then you can tell
3f94c067 5255@value{GDBN} to replace @file{/usr/src} in all source path names with
30daae6c
JB
5256@file{/mnt/cross}. The first lookup will then be
5257@file{/mnt/cross/foo-1.0/lib/foo.c} in place of the original location
5258of @file{/usr/src/foo-1.0/lib/foo.c}. To define a source path
5259substitution rule, use the @code{set substitute-path} command
5260(@pxref{set substitute-path}).
5261
5262To avoid unexpected substitution results, a rule is applied only if the
5263@var{from} part of the directory name ends at a directory separator.
5264For instance, a rule substituting @file{/usr/source} into
5265@file{/mnt/cross} will be applied to @file{/usr/source/foo-1.0} but
5266not to @file{/usr/sourceware/foo-2.0}. And because the substitution
d3e8051b 5267is applied only at the beginning of the directory name, this rule will
30daae6c
JB
5268not be applied to @file{/root/usr/source/baz.c} either.
5269
5270In many cases, you can achieve the same result using the @code{directory}
5271command. However, @code{set substitute-path} can be more efficient in
5272the case where the sources are organized in a complex tree with multiple
5273subdirectories. With the @code{directory} command, you need to add each
5274subdirectory of your project. If you moved the entire tree while
5275preserving its internal organization, then @code{set substitute-path}
5276allows you to direct the debugger to all the sources with one single
5277command.
5278
5279@code{set substitute-path} is also more than just a shortcut command.
5280The source path is only used if the file at the original location no
5281longer exists. On the other hand, @code{set substitute-path} modifies
5282the debugger behavior to look at the rewritten location instead. So, if
5283for any reason a source file that is not relevant to your executable is
5284located at the original location, a substitution rule is the only
3f94c067 5285method available to point @value{GDBN} at the new location.
30daae6c 5286
c906108c
SS
5287@table @code
5288@item directory @var{dirname} @dots{}
5289@item dir @var{dirname} @dots{}
5290Add directory @var{dirname} to the front of the source path. Several
d4f3574e
SS
5291directory names may be given to this command, separated by @samp{:}
5292(@samp{;} on MS-DOS and MS-Windows, where @samp{:} usually appears as
5293part of absolute file names) or
c906108c
SS
5294whitespace. You may specify a directory that is already in the source
5295path; this moves it forward, so @value{GDBN} searches it sooner.
5296
5297@kindex cdir
5298@kindex cwd
41afff9a 5299@vindex $cdir@r{, convenience variable}
d3e8051b 5300@vindex $cwd@r{, convenience variable}
c906108c
SS
5301@cindex compilation directory
5302@cindex current directory
5303@cindex working directory
5304@cindex directory, current
5305@cindex directory, compilation
5306You can use the string @samp{$cdir} to refer to the compilation
5307directory (if one is recorded), and @samp{$cwd} to refer to the current
5308working directory. @samp{$cwd} is not the same as @samp{.}---the former
5309tracks the current working directory as it changes during your @value{GDBN}
5310session, while the latter is immediately expanded to the current
5311directory at the time you add an entry to the source path.
5312
5313@item directory
cd852561 5314Reset the source path to its default value (@samp{$cdir:$cwd} on Unix systems). This requires confirmation.
c906108c
SS
5315
5316@c RET-repeat for @code{directory} is explicitly disabled, but since
5317@c repeating it would be a no-op we do not say that. (thanks to RMS)
5318
5319@item show directories
5320@kindex show directories
5321Print the source path: show which directories it contains.
30daae6c
JB
5322
5323@anchor{set substitute-path}
5324@item set substitute-path @var{from} @var{to}
5325@kindex set substitute-path
5326Define a source path substitution rule, and add it at the end of the
5327current list of existing substitution rules. If a rule with the same
5328@var{from} was already defined, then the old rule is also deleted.
5329
5330For example, if the file @file{/foo/bar/baz.c} was moved to
5331@file{/mnt/cross/baz.c}, then the command
5332
5333@smallexample
5334(@value{GDBP}) set substitute-path /usr/src /mnt/cross
5335@end smallexample
5336
5337@noindent
5338will tell @value{GDBN} to replace @samp{/usr/src} with
5339@samp{/mnt/cross}, which will allow @value{GDBN} to find the file
5340@file{baz.c} even though it was moved.
5341
5342In the case when more than one substitution rule have been defined,
5343the rules are evaluated one by one in the order where they have been
5344defined. The first one matching, if any, is selected to perform
5345the substitution.
5346
5347For instance, if we had entered the following commands:
5348
5349@smallexample
5350(@value{GDBP}) set substitute-path /usr/src/include /mnt/include
5351(@value{GDBP}) set substitute-path /usr/src /mnt/src
5352@end smallexample
5353
5354@noindent
5355@value{GDBN} would then rewrite @file{/usr/src/include/defs.h} into
5356@file{/mnt/include/defs.h} by using the first rule. However, it would
5357use the second rule to rewrite @file{/usr/src/lib/foo.c} into
5358@file{/mnt/src/lib/foo.c}.
5359
5360
5361@item unset substitute-path [path]
5362@kindex unset substitute-path
5363If a path is specified, search the current list of substitution rules
5364for a rule that would rewrite that path. Delete that rule if found.
5365A warning is emitted by the debugger if no rule could be found.
5366
5367If no path is specified, then all substitution rules are deleted.
5368
5369@item show substitute-path [path]
5370@kindex show substitute-path
5371If a path is specified, then print the source path substitution rule
5372which would rewrite that path, if any.
5373
5374If no path is specified, then print all existing source path substitution
5375rules.
5376
c906108c
SS
5377@end table
5378
5379If your source path is cluttered with directories that are no longer of
5380interest, @value{GDBN} may sometimes cause confusion by finding the wrong
5381versions of source. You can correct the situation as follows:
5382
5383@enumerate
5384@item
cd852561 5385Use @code{directory} with no argument to reset the source path to its default value.
c906108c
SS
5386
5387@item
5388Use @code{directory} with suitable arguments to reinstall the
5389directories you want in the source path. You can add all the
5390directories in one command.
5391@end enumerate
5392
6d2ebf8b 5393@node Machine Code
79a6e687 5394@section Source and Machine Code
15387254 5395@cindex source line and its code address
c906108c
SS
5396
5397You can use the command @code{info line} to map source lines to program
5398addresses (and vice versa), and the command @code{disassemble} to display
5399a range of addresses as machine instructions. When run under @sc{gnu} Emacs
d4f3574e 5400mode, the @code{info line} command causes the arrow to point to the
5d161b24 5401line specified. Also, @code{info line} prints addresses in symbolic form as
c906108c
SS
5402well as hex.
5403
5404@table @code
5405@kindex info line
5406@item info line @var{linespec}
5407Print the starting and ending addresses of the compiled code for
5408source line @var{linespec}. You can specify source lines in any of
2a25a5ba 5409the ways documented in @ref{Specify Location}.
c906108c
SS
5410@end table
5411
5412For example, we can use @code{info line} to discover the location of
5413the object code for the first line of function
5414@code{m4_changequote}:
5415
d4f3574e
SS
5416@c FIXME: I think this example should also show the addresses in
5417@c symbolic form, as they usually would be displayed.
c906108c 5418@smallexample
96a2c332 5419(@value{GDBP}) info line m4_changequote
c906108c
SS
5420Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.
5421@end smallexample
5422
5423@noindent
15387254 5424@cindex code address and its source line
c906108c
SS
5425We can also inquire (using @code{*@var{addr}} as the form for
5426@var{linespec}) what source line covers a particular address:
5427@smallexample
5428(@value{GDBP}) info line *0x63ff
5429Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.
5430@end smallexample
5431
5432@cindex @code{$_} and @code{info line}
15387254 5433@cindex @code{x} command, default address
41afff9a 5434@kindex x@r{(examine), and} info line
c906108c
SS
5435After @code{info line}, the default address for the @code{x} command
5436is changed to the starting address of the line, so that @samp{x/i} is
5437sufficient to begin examining the machine code (@pxref{Memory,
79a6e687 5438,Examining Memory}). Also, this address is saved as the value of the
c906108c 5439convenience variable @code{$_} (@pxref{Convenience Vars, ,Convenience
79a6e687 5440Variables}).
c906108c
SS
5441
5442@table @code
5443@kindex disassemble
5444@cindex assembly instructions
5445@cindex instructions, assembly
5446@cindex machine instructions
5447@cindex listing machine instructions
5448@item disassemble
d14508fe 5449@itemx disassemble /m
c906108c 5450This specialized command dumps a range of memory as machine
d14508fe
DE
5451instructions. It can also print mixed source+disassembly by specifying
5452the @code{/m} modifier.
5453The default memory range is the function surrounding the
c906108c
SS
5454program counter of the selected frame. A single argument to this
5455command is a program counter value; @value{GDBN} dumps the function
5456surrounding this value. Two arguments specify a range of addresses
5457(first inclusive, second exclusive) to dump.
5458@end table
5459
c906108c
SS
5460The following example shows the disassembly of a range of addresses of
5461HP PA-RISC 2.0 code:
5462
5463@smallexample
5464(@value{GDBP}) disas 0x32c4 0x32e4
5465Dump of assembler code from 0x32c4 to 0x32e4:
54660x32c4 <main+204>: addil 0,dp
54670x32c8 <main+208>: ldw 0x22c(sr0,r1),r26
54680x32cc <main+212>: ldil 0x3000,r31
54690x32d0 <main+216>: ble 0x3f8(sr4,r31)
54700x32d4 <main+220>: ldo 0(r31),rp
54710x32d8 <main+224>: addil -0x800,dp
54720x32dc <main+228>: ldo 0x588(r1),r26
54730x32e0 <main+232>: ldil 0x3000,r31
5474End of assembler dump.
5475@end smallexample
c906108c 5476
d14508fe
DE
5477Here is an example showing mixed source+assembly for Intel x86:
5478
5479@smallexample
5480(@value{GDBP}) disas /m main
5481Dump of assembler code for function main:
54825 @{
54830x08048330 <main+0>: push %ebp
54840x08048331 <main+1>: mov %esp,%ebp
54850x08048333 <main+3>: sub $0x8,%esp
54860x08048336 <main+6>: and $0xfffffff0,%esp
54870x08048339 <main+9>: sub $0x10,%esp
5488
54896 printf ("Hello.\n");
54900x0804833c <main+12>: movl $0x8048440,(%esp)
54910x08048343 <main+19>: call 0x8048284 <puts@@plt>
5492
54937 return 0;
54948 @}
54950x08048348 <main+24>: mov $0x0,%eax
54960x0804834d <main+29>: leave
54970x0804834e <main+30>: ret
5498
5499End of assembler dump.
5500@end smallexample
5501
c906108c
SS
5502Some architectures have more than one commonly-used set of instruction
5503mnemonics or other syntax.
5504
76d17f34
EZ
5505For programs that were dynamically linked and use shared libraries,
5506instructions that call functions or branch to locations in the shared
5507libraries might show a seemingly bogus location---it's actually a
5508location of the relocation table. On some architectures, @value{GDBN}
5509might be able to resolve these to actual function names.
5510
c906108c 5511@table @code
d4f3574e 5512@kindex set disassembly-flavor
d4f3574e
SS
5513@cindex Intel disassembly flavor
5514@cindex AT&T disassembly flavor
5515@item set disassembly-flavor @var{instruction-set}
c906108c
SS
5516Select the instruction set to use when disassembling the
5517program via the @code{disassemble} or @code{x/i} commands.
5518
5519Currently this command is only defined for the Intel x86 family. You
d4f3574e
SS
5520can set @var{instruction-set} to either @code{intel} or @code{att}.
5521The default is @code{att}, the AT&T flavor used by default by Unix
5522assemblers for x86-based targets.
9c16f35a
EZ
5523
5524@kindex show disassembly-flavor
5525@item show disassembly-flavor
5526Show the current setting of the disassembly flavor.
c906108c
SS
5527@end table
5528
5529
6d2ebf8b 5530@node Data
c906108c
SS
5531@chapter Examining Data
5532
5533@cindex printing data
5534@cindex examining data
5535@kindex print
5536@kindex inspect
5537@c "inspect" is not quite a synonym if you are using Epoch, which we do not
5538@c document because it is nonstandard... Under Epoch it displays in a
5539@c different window or something like that.
5540The usual way to examine data in your program is with the @code{print}
7a292a7a
SS
5541command (abbreviated @code{p}), or its synonym @code{inspect}. It
5542evaluates and prints the value of an expression of the language your
5543program is written in (@pxref{Languages, ,Using @value{GDBN} with
5544Different Languages}).
c906108c
SS
5545
5546@table @code
d4f3574e
SS
5547@item print @var{expr}
5548@itemx print /@var{f} @var{expr}
5549@var{expr} is an expression (in the source language). By default the
5550value of @var{expr} is printed in a format appropriate to its data type;
c906108c 5551you can choose a different format by specifying @samp{/@var{f}}, where
d4f3574e 5552@var{f} is a letter specifying the format; see @ref{Output Formats,,Output
79a6e687 5553Formats}.
c906108c
SS
5554
5555@item print
5556@itemx print /@var{f}
15387254 5557@cindex reprint the last value
d4f3574e 5558If you omit @var{expr}, @value{GDBN} displays the last value again (from the
79a6e687 5559@dfn{value history}; @pxref{Value History, ,Value History}). This allows you to
c906108c
SS
5560conveniently inspect the same value in an alternative format.
5561@end table
5562
5563A more low-level way of examining data is with the @code{x} command.
5564It examines data in memory at a specified address and prints it in a
79a6e687 5565specified format. @xref{Memory, ,Examining Memory}.
c906108c 5566
7a292a7a 5567If you are interested in information about types, or about how the
d4f3574e
SS
5568fields of a struct or a class are declared, use the @code{ptype @var{exp}}
5569command rather than @code{print}. @xref{Symbols, ,Examining the Symbol
7a292a7a 5570Table}.
c906108c
SS
5571
5572@menu
5573* Expressions:: Expressions
6ba66d6a 5574* Ambiguous Expressions:: Ambiguous Expressions
c906108c
SS
5575* Variables:: Program variables
5576* Arrays:: Artificial arrays
5577* Output Formats:: Output formats
5578* Memory:: Examining memory
5579* Auto Display:: Automatic display
5580* Print Settings:: Print settings
5581* Value History:: Value history
5582* Convenience Vars:: Convenience variables
5583* Registers:: Registers
c906108c 5584* Floating Point Hardware:: Floating point hardware
53c69bd7 5585* Vector Unit:: Vector Unit
721c2651 5586* OS Information:: Auxiliary data provided by operating system
29e57380 5587* Memory Region Attributes:: Memory region attributes
16d9dec6 5588* Dump/Restore Files:: Copy between memory and a file
384ee23f 5589* Core File Generation:: Cause a program dump its core
a0eb71c5
KB
5590* Character Sets:: Debugging programs that use a different
5591 character set than GDB does
09d4efe1 5592* Caching Remote Data:: Data caching for remote targets
c906108c
SS
5593@end menu
5594
6d2ebf8b 5595@node Expressions
c906108c
SS
5596@section Expressions
5597
5598@cindex expressions
5599@code{print} and many other @value{GDBN} commands accept an expression and
5600compute its value. Any kind of constant, variable or operator defined
5601by the programming language you are using is valid in an expression in
e2e0bcd1
JB
5602@value{GDBN}. This includes conditional expressions, function calls,
5603casts, and string constants. It also includes preprocessor macros, if
5604you compiled your program to include this information; see
5605@ref{Compilation}.
c906108c 5606
15387254 5607@cindex arrays in expressions
d4f3574e
SS
5608@value{GDBN} supports array constants in expressions input by
5609the user. The syntax is @{@var{element}, @var{element}@dots{}@}. For example,
63092375
DJ
5610you can use the command @code{print @{1, 2, 3@}} to create an array
5611of three integers. If you pass an array to a function or assign it
5612to a program variable, @value{GDBN} copies the array to memory that
5613is @code{malloc}ed in the target program.
c906108c 5614
c906108c
SS
5615Because C is so widespread, most of the expressions shown in examples in
5616this manual are in C. @xref{Languages, , Using @value{GDBN} with Different
5617Languages}, for information on how to use expressions in other
5618languages.
5619
5620In this section, we discuss operators that you can use in @value{GDBN}
5621expressions regardless of your programming language.
5622
15387254 5623@cindex casts, in expressions
c906108c
SS
5624Casts are supported in all languages, not just in C, because it is so
5625useful to cast a number into a pointer in order to examine a structure
5626at that address in memory.
5627@c FIXME: casts supported---Mod2 true?
c906108c
SS
5628
5629@value{GDBN} supports these operators, in addition to those common
5630to programming languages:
5631
5632@table @code
5633@item @@
5634@samp{@@} is a binary operator for treating parts of memory as arrays.
79a6e687 5635@xref{Arrays, ,Artificial Arrays}, for more information.
c906108c
SS
5636
5637@item ::
5638@samp{::} allows you to specify a variable in terms of the file or
79a6e687 5639function where it is defined. @xref{Variables, ,Program Variables}.
c906108c
SS
5640
5641@cindex @{@var{type}@}
5642@cindex type casting memory
5643@cindex memory, viewing as typed object
5644@cindex casts, to view memory
5645@item @{@var{type}@} @var{addr}
5646Refers to an object of type @var{type} stored at address @var{addr} in
5647memory. @var{addr} may be any expression whose value is an integer or
5648pointer (but parentheses are required around binary operators, just as in
5649a cast). This construct is allowed regardless of what kind of data is
5650normally supposed to reside at @var{addr}.
5651@end table
5652
6ba66d6a
JB
5653@node Ambiguous Expressions
5654@section Ambiguous Expressions
5655@cindex ambiguous expressions
5656
5657Expressions can sometimes contain some ambiguous elements. For instance,
5658some programming languages (notably Ada, C@t{++} and Objective-C) permit
5659a single function name to be defined several times, for application in
5660different contexts. This is called @dfn{overloading}. Another example
5661involving Ada is generics. A @dfn{generic package} is similar to C@t{++}
5662templates and is typically instantiated several times, resulting in
5663the same function name being defined in different contexts.
5664
5665In some cases and depending on the language, it is possible to adjust
5666the expression to remove the ambiguity. For instance in C@t{++}, you
5667can specify the signature of the function you want to break on, as in
5668@kbd{break @var{function}(@var{types})}. In Ada, using the fully
5669qualified name of your function often makes the expression unambiguous
5670as well.
5671
5672When an ambiguity that needs to be resolved is detected, the debugger
5673has the capability to display a menu of numbered choices for each
5674possibility, and then waits for the selection with the prompt @samp{>}.
5675The first option is always @samp{[0] cancel}, and typing @kbd{0 @key{RET}}
5676aborts the current command. If the command in which the expression was
5677used allows more than one choice to be selected, the next option in the
5678menu is @samp{[1] all}, and typing @kbd{1 @key{RET}} selects all possible
5679choices.
5680
5681For example, the following session excerpt shows an attempt to set a
5682breakpoint at the overloaded symbol @code{String::after}.
5683We choose three particular definitions of that function name:
5684
5685@c FIXME! This is likely to change to show arg type lists, at least
5686@smallexample
5687@group
5688(@value{GDBP}) b String::after
5689[0] cancel
5690[1] all
5691[2] file:String.cc; line number:867
5692[3] file:String.cc; line number:860
5693[4] file:String.cc; line number:875
5694[5] file:String.cc; line number:853
5695[6] file:String.cc; line number:846
5696[7] file:String.cc; line number:735
5697> 2 4 6
5698Breakpoint 1 at 0xb26c: file String.cc, line 867.
5699Breakpoint 2 at 0xb344: file String.cc, line 875.
5700Breakpoint 3 at 0xafcc: file String.cc, line 846.
5701Multiple breakpoints were set.
5702Use the "delete" command to delete unwanted
5703 breakpoints.
5704(@value{GDBP})
5705@end group
5706@end smallexample
5707
5708@table @code
5709@kindex set multiple-symbols
5710@item set multiple-symbols @var{mode}
5711@cindex multiple-symbols menu
5712
5713This option allows you to adjust the debugger behavior when an expression
5714is ambiguous.
5715
5716By default, @var{mode} is set to @code{all}. If the command with which
5717the expression is used allows more than one choice, then @value{GDBN}
5718automatically selects all possible choices. For instance, inserting
5719a breakpoint on a function using an ambiguous name results in a breakpoint
5720inserted on each possible match. However, if a unique choice must be made,
5721then @value{GDBN} uses the menu to help you disambiguate the expression.
5722For instance, printing the address of an overloaded function will result
5723in the use of the menu.
5724
5725When @var{mode} is set to @code{ask}, the debugger always uses the menu
5726when an ambiguity is detected.
5727
5728Finally, when @var{mode} is set to @code{cancel}, the debugger reports
5729an error due to the ambiguity and the command is aborted.
5730
5731@kindex show multiple-symbols
5732@item show multiple-symbols
5733Show the current value of the @code{multiple-symbols} setting.
5734@end table
5735
6d2ebf8b 5736@node Variables
79a6e687 5737@section Program Variables
c906108c
SS
5738
5739The most common kind of expression to use is the name of a variable
5740in your program.
5741
5742Variables in expressions are understood in the selected stack frame
79a6e687 5743(@pxref{Selection, ,Selecting a Frame}); they must be either:
c906108c
SS
5744
5745@itemize @bullet
5746@item
5747global (or file-static)
5748@end itemize
5749
5d161b24 5750@noindent or
c906108c
SS
5751
5752@itemize @bullet
5753@item
5754visible according to the scope rules of the
5755programming language from the point of execution in that frame
5d161b24 5756@end itemize
c906108c
SS
5757
5758@noindent This means that in the function
5759
474c8240 5760@smallexample
c906108c
SS
5761foo (a)
5762 int a;
5763@{
5764 bar (a);
5765 @{
5766 int b = test ();
5767 bar (b);
5768 @}
5769@}
474c8240 5770@end smallexample
c906108c
SS
5771
5772@noindent
5773you can examine and use the variable @code{a} whenever your program is
5774executing within the function @code{foo}, but you can only use or
5775examine the variable @code{b} while your program is executing inside
5776the block where @code{b} is declared.
5777
5778@cindex variable name conflict
5779There is an exception: you can refer to a variable or function whose
5780scope is a single source file even if the current execution point is not
5781in this file. But it is possible to have more than one such variable or
5782function with the same name (in different source files). If that
5783happens, referring to that name has unpredictable effects. If you wish,
5784you can specify a static variable in a particular function or file,
15387254 5785using the colon-colon (@code{::}) notation:
c906108c 5786
d4f3574e 5787@cindex colon-colon, context for variables/functions
12c27660 5788@ifnotinfo
c906108c 5789@c info cannot cope with a :: index entry, but why deprive hard copy readers?
41afff9a 5790@cindex @code{::}, context for variables/functions
12c27660 5791@end ifnotinfo
474c8240 5792@smallexample
c906108c
SS
5793@var{file}::@var{variable}
5794@var{function}::@var{variable}
474c8240 5795@end smallexample
c906108c
SS
5796
5797@noindent
5798Here @var{file} or @var{function} is the name of the context for the
5799static @var{variable}. In the case of file names, you can use quotes to
5800make sure @value{GDBN} parses the file name as a single word---for example,
5801to print a global value of @code{x} defined in @file{f2.c}:
5802
474c8240 5803@smallexample
c906108c 5804(@value{GDBP}) p 'f2.c'::x
474c8240 5805@end smallexample
c906108c 5806
b37052ae 5807@cindex C@t{++} scope resolution
c906108c 5808This use of @samp{::} is very rarely in conflict with the very similar
b37052ae 5809use of the same notation in C@t{++}. @value{GDBN} also supports use of the C@t{++}
c906108c
SS
5810scope resolution operator in @value{GDBN} expressions.
5811@c FIXME: Um, so what happens in one of those rare cases where it's in
5812@c conflict?? --mew
c906108c
SS
5813
5814@cindex wrong values
5815@cindex variable values, wrong
15387254
EZ
5816@cindex function entry/exit, wrong values of variables
5817@cindex optimized code, wrong values of variables
c906108c
SS
5818@quotation
5819@emph{Warning:} Occasionally, a local variable may appear to have the
5820wrong value at certain points in a function---just after entry to a new
5821scope, and just before exit.
5822@end quotation
5823You may see this problem when you are stepping by machine instructions.
5824This is because, on most machines, it takes more than one instruction to
5825set up a stack frame (including local variable definitions); if you are
5826stepping by machine instructions, variables may appear to have the wrong
5827values until the stack frame is completely built. On exit, it usually
5828also takes more than one machine instruction to destroy a stack frame;
5829after you begin stepping through that group of instructions, local
5830variable definitions may be gone.
5831
5832This may also happen when the compiler does significant optimizations.
5833To be sure of always seeing accurate values, turn off all optimization
5834when compiling.
5835
d4f3574e
SS
5836@cindex ``No symbol "foo" in current context''
5837Another possible effect of compiler optimizations is to optimize
5838unused variables out of existence, or assign variables to registers (as
5839opposed to memory addresses). Depending on the support for such cases
5840offered by the debug info format used by the compiler, @value{GDBN}
5841might not be able to display values for such local variables. If that
5842happens, @value{GDBN} will print a message like this:
5843
474c8240 5844@smallexample
d4f3574e 5845No symbol "foo" in current context.
474c8240 5846@end smallexample
d4f3574e
SS
5847
5848To solve such problems, either recompile without optimizations, or use a
5849different debug info format, if the compiler supports several such
15387254 5850formats. For example, @value{NGCC}, the @sc{gnu} C/C@t{++} compiler,
0179ffac
DC
5851usually supports the @option{-gstabs+} option. @option{-gstabs+}
5852produces debug info in a format that is superior to formats such as
5853COFF. You may be able to use DWARF 2 (@option{-gdwarf-2}), which is also
5854an effective form for debug info. @xref{Debugging Options,,Options
ce9341a1
BW
5855for Debugging Your Program or GCC, gcc.info, Using the @sc{gnu}
5856Compiler Collection (GCC)}.
79a6e687 5857@xref{C, ,C and C@t{++}}, for more information about debug info formats
15387254 5858that are best suited to C@t{++} programs.
d4f3574e 5859
ab1adacd
EZ
5860If you ask to print an object whose contents are unknown to
5861@value{GDBN}, e.g., because its data type is not completely specified
5862by the debug information, @value{GDBN} will say @samp{<incomplete
5863type>}. @xref{Symbols, incomplete type}, for more about this.
5864
3a60f64e
JK
5865Strings are identified as arrays of @code{char} values without specified
5866signedness. Arrays of either @code{signed char} or @code{unsigned char} get
5867printed as arrays of 1 byte sized integers. @code{-fsigned-char} or
5868@code{-funsigned-char} @value{NGCC} options have no effect as @value{GDBN}
5869defines literal string type @code{"char"} as @code{char} without a sign.
5870For program code
5871
5872@smallexample
5873char var0[] = "A";
5874signed char var1[] = "A";
5875@end smallexample
5876
5877You get during debugging
5878@smallexample
5879(gdb) print var0
5880$1 = "A"
5881(gdb) print var1
5882$2 = @{65 'A', 0 '\0'@}
5883@end smallexample
5884
6d2ebf8b 5885@node Arrays
79a6e687 5886@section Artificial Arrays
c906108c
SS
5887
5888@cindex artificial array
15387254 5889@cindex arrays
41afff9a 5890@kindex @@@r{, referencing memory as an array}
c906108c
SS
5891It is often useful to print out several successive objects of the
5892same type in memory; a section of an array, or an array of
5893dynamically determined size for which only a pointer exists in the
5894program.
5895
5896You can do this by referring to a contiguous span of memory as an
5897@dfn{artificial array}, using the binary operator @samp{@@}. The left
5898operand of @samp{@@} should be the first element of the desired array
5899and be an individual object. The right operand should be the desired length
5900of the array. The result is an array value whose elements are all of
5901the type of the left argument. The first element is actually the left
5902argument; the second element comes from bytes of memory immediately
5903following those that hold the first element, and so on. Here is an
5904example. If a program says
5905
474c8240 5906@smallexample
c906108c 5907int *array = (int *) malloc (len * sizeof (int));
474c8240 5908@end smallexample
c906108c
SS
5909
5910@noindent
5911you can print the contents of @code{array} with
5912
474c8240 5913@smallexample
c906108c 5914p *array@@len
474c8240 5915@end smallexample
c906108c
SS
5916
5917The left operand of @samp{@@} must reside in memory. Array values made
5918with @samp{@@} in this way behave just like other arrays in terms of
5919subscripting, and are coerced to pointers when used in expressions.
5920Artificial arrays most often appear in expressions via the value history
79a6e687 5921(@pxref{Value History, ,Value History}), after printing one out.
c906108c
SS
5922
5923Another way to create an artificial array is to use a cast.
5924This re-interprets a value as if it were an array.
5925The value need not be in memory:
474c8240 5926@smallexample
c906108c
SS
5927(@value{GDBP}) p/x (short[2])0x12345678
5928$1 = @{0x1234, 0x5678@}
474c8240 5929@end smallexample
c906108c
SS
5930
5931As a convenience, if you leave the array length out (as in
c3f6f71d 5932@samp{(@var{type}[])@var{value}}) @value{GDBN} calculates the size to fill
c906108c 5933the value (as @samp{sizeof(@var{value})/sizeof(@var{type})}:
474c8240 5934@smallexample
c906108c
SS
5935(@value{GDBP}) p/x (short[])0x12345678
5936$2 = @{0x1234, 0x5678@}
474c8240 5937@end smallexample
c906108c
SS
5938
5939Sometimes the artificial array mechanism is not quite enough; in
5940moderately complex data structures, the elements of interest may not
5941actually be adjacent---for example, if you are interested in the values
5942of pointers in an array. One useful work-around in this situation is
5943to use a convenience variable (@pxref{Convenience Vars, ,Convenience
79a6e687 5944Variables}) as a counter in an expression that prints the first
c906108c
SS
5945interesting value, and then repeat that expression via @key{RET}. For
5946instance, suppose you have an array @code{dtab} of pointers to
5947structures, and you are interested in the values of a field @code{fv}
5948in each structure. Here is an example of what you might type:
5949
474c8240 5950@smallexample
c906108c
SS
5951set $i = 0
5952p dtab[$i++]->fv
5953@key{RET}
5954@key{RET}
5955@dots{}
474c8240 5956@end smallexample
c906108c 5957
6d2ebf8b 5958@node Output Formats
79a6e687 5959@section Output Formats
c906108c
SS
5960
5961@cindex formatted output
5962@cindex output formats
5963By default, @value{GDBN} prints a value according to its data type. Sometimes
5964this is not what you want. For example, you might want to print a number
5965in hex, or a pointer in decimal. Or you might want to view data in memory
5966at a certain address as a character string or as an instruction. To do
5967these things, specify an @dfn{output format} when you print a value.
5968
5969The simplest use of output formats is to say how to print a value
5970already computed. This is done by starting the arguments of the
5971@code{print} command with a slash and a format letter. The format
5972letters supported are:
5973
5974@table @code
5975@item x
5976Regard the bits of the value as an integer, and print the integer in
5977hexadecimal.
5978
5979@item d
5980Print as integer in signed decimal.
5981
5982@item u
5983Print as integer in unsigned decimal.
5984
5985@item o
5986Print as integer in octal.
5987
5988@item t
5989Print as integer in binary. The letter @samp{t} stands for ``two''.
5990@footnote{@samp{b} cannot be used because these format letters are also
5991used with the @code{x} command, where @samp{b} stands for ``byte'';
79a6e687 5992see @ref{Memory,,Examining Memory}.}
c906108c
SS
5993
5994@item a
5995@cindex unknown address, locating
3d67e040 5996@cindex locate address
c906108c
SS
5997Print as an address, both absolute in hexadecimal and as an offset from
5998the nearest preceding symbol. You can use this format used to discover
5999where (in what function) an unknown address is located:
6000
474c8240 6001@smallexample
c906108c
SS
6002(@value{GDBP}) p/a 0x54320
6003$3 = 0x54320 <_initialize_vx+396>
474c8240 6004@end smallexample
c906108c 6005
3d67e040
EZ
6006@noindent
6007The command @code{info symbol 0x54320} yields similar results.
6008@xref{Symbols, info symbol}.
6009
c906108c 6010@item c
51274035
EZ
6011Regard as an integer and print it as a character constant. This
6012prints both the numerical value and its character representation. The
6013character representation is replaced with the octal escape @samp{\nnn}
6014for characters outside the 7-bit @sc{ascii} range.
c906108c 6015
ea37ba09
DJ
6016Without this format, @value{GDBN} displays @code{char},
6017@w{@code{unsigned char}}, and @w{@code{signed char}} data as character
6018constants. Single-byte members of vectors are displayed as integer
6019data.
6020
c906108c
SS
6021@item f
6022Regard the bits of the value as a floating point number and print
6023using typical floating point syntax.
ea37ba09
DJ
6024
6025@item s
6026@cindex printing strings
6027@cindex printing byte arrays
6028Regard as a string, if possible. With this format, pointers to single-byte
6029data are displayed as null-terminated strings and arrays of single-byte data
6030are displayed as fixed-length strings. Other values are displayed in their
6031natural types.
6032
6033Without this format, @value{GDBN} displays pointers to and arrays of
6034@code{char}, @w{@code{unsigned char}}, and @w{@code{signed char}} as
6035strings. Single-byte members of a vector are displayed as an integer
6036array.
c906108c
SS
6037@end table
6038
6039For example, to print the program counter in hex (@pxref{Registers}), type
6040
474c8240 6041@smallexample
c906108c 6042p/x $pc
474c8240 6043@end smallexample
c906108c
SS
6044
6045@noindent
6046Note that no space is required before the slash; this is because command
6047names in @value{GDBN} cannot contain a slash.
6048
6049To reprint the last value in the value history with a different format,
6050you can use the @code{print} command with just a format and no
6051expression. For example, @samp{p/x} reprints the last value in hex.
6052
6d2ebf8b 6053@node Memory
79a6e687 6054@section Examining Memory
c906108c
SS
6055
6056You can use the command @code{x} (for ``examine'') to examine memory in
6057any of several formats, independently of your program's data types.
6058
6059@cindex examining memory
6060@table @code
41afff9a 6061@kindex x @r{(examine memory)}
c906108c
SS
6062@item x/@var{nfu} @var{addr}
6063@itemx x @var{addr}
6064@itemx x
6065Use the @code{x} command to examine memory.
6066@end table
6067
6068@var{n}, @var{f}, and @var{u} are all optional parameters that specify how
6069much memory to display and how to format it; @var{addr} is an
6070expression giving the address where you want to start displaying memory.
6071If you use defaults for @var{nfu}, you need not type the slash @samp{/}.
6072Several commands set convenient defaults for @var{addr}.
6073
6074@table @r
6075@item @var{n}, the repeat count
6076The repeat count is a decimal integer; the default is 1. It specifies
6077how much memory (counting by units @var{u}) to display.
6078@c This really is **decimal**; unaffected by 'set radix' as of GDB
6079@c 4.1.2.
6080
6081@item @var{f}, the display format
51274035
EZ
6082The display format is one of the formats used by @code{print}
6083(@samp{x}, @samp{d}, @samp{u}, @samp{o}, @samp{t}, @samp{a}, @samp{c},
ea37ba09
DJ
6084@samp{f}, @samp{s}), and in addition @samp{i} (for machine instructions).
6085The default is @samp{x} (hexadecimal) initially. The default changes
6086each time you use either @code{x} or @code{print}.
c906108c
SS
6087
6088@item @var{u}, the unit size
6089The unit size is any of
6090
6091@table @code
6092@item b
6093Bytes.
6094@item h
6095Halfwords (two bytes).
6096@item w
6097Words (four bytes). This is the initial default.
6098@item g
6099Giant words (eight bytes).
6100@end table
6101
6102Each time you specify a unit size with @code{x}, that size becomes the
6103default unit the next time you use @code{x}. (For the @samp{s} and
6104@samp{i} formats, the unit size is ignored and is normally not written.)
6105
6106@item @var{addr}, starting display address
6107@var{addr} is the address where you want @value{GDBN} to begin displaying
6108memory. The expression need not have a pointer value (though it may);
6109it is always interpreted as an integer address of a byte of memory.
6110@xref{Expressions, ,Expressions}, for more information on expressions. The default for
6111@var{addr} is usually just after the last address examined---but several
6112other commands also set the default address: @code{info breakpoints} (to
6113the address of the last breakpoint listed), @code{info line} (to the
6114starting address of a line), and @code{print} (if you use it to display
6115a value from memory).
6116@end table
6117
6118For example, @samp{x/3uh 0x54320} is a request to display three halfwords
6119(@code{h}) of memory, formatted as unsigned decimal integers (@samp{u}),
6120starting at address @code{0x54320}. @samp{x/4xw $sp} prints the four
6121words (@samp{w}) of memory above the stack pointer (here, @samp{$sp};
d4f3574e 6122@pxref{Registers, ,Registers}) in hexadecimal (@samp{x}).
c906108c
SS
6123
6124Since the letters indicating unit sizes are all distinct from the
6125letters specifying output formats, you do not have to remember whether
6126unit size or format comes first; either order works. The output
6127specifications @samp{4xw} and @samp{4wx} mean exactly the same thing.
6128(However, the count @var{n} must come first; @samp{wx4} does not work.)
6129
6130Even though the unit size @var{u} is ignored for the formats @samp{s}
6131and @samp{i}, you might still want to use a count @var{n}; for example,
6132@samp{3i} specifies that you want to see three machine instructions,
a4642986
MR
6133including any operands. For convenience, especially when used with
6134the @code{display} command, the @samp{i} format also prints branch delay
6135slot instructions, if any, beyond the count specified, which immediately
6136follow the last instruction that is within the count. The command
6137@code{disassemble} gives an alternative way of inspecting machine
6138instructions; see @ref{Machine Code,,Source and Machine Code}.
c906108c
SS
6139
6140All the defaults for the arguments to @code{x} are designed to make it
6141easy to continue scanning memory with minimal specifications each time
6142you use @code{x}. For example, after you have inspected three machine
6143instructions with @samp{x/3i @var{addr}}, you can inspect the next seven
6144with just @samp{x/7}. If you use @key{RET} to repeat the @code{x} command,
6145the repeat count @var{n} is used again; the other arguments default as
6146for successive uses of @code{x}.
6147
6148@cindex @code{$_}, @code{$__}, and value history
6149The addresses and contents printed by the @code{x} command are not saved
6150in the value history because there is often too much of them and they
6151would get in the way. Instead, @value{GDBN} makes these values available for
6152subsequent use in expressions as values of the convenience variables
6153@code{$_} and @code{$__}. After an @code{x} command, the last address
6154examined is available for use in expressions in the convenience variable
6155@code{$_}. The contents of that address, as examined, are available in
6156the convenience variable @code{$__}.
6157
6158If the @code{x} command has a repeat count, the address and contents saved
6159are from the last memory unit printed; this is not the same as the last
6160address printed if several units were printed on the last line of output.
6161
09d4efe1
EZ
6162@cindex remote memory comparison
6163@cindex verify remote memory image
6164When you are debugging a program running on a remote target machine
ea35711c 6165(@pxref{Remote Debugging}), you may wish to verify the program's image in the
09d4efe1
EZ
6166remote machine's memory against the executable file you downloaded to
6167the target. The @code{compare-sections} command is provided for such
6168situations.
6169
6170@table @code
6171@kindex compare-sections
6172@item compare-sections @r{[}@var{section-name}@r{]}
6173Compare the data of a loadable section @var{section-name} in the
6174executable file of the program being debugged with the same section in
6175the remote machine's memory, and report any mismatches. With no
6176arguments, compares all loadable sections. This command's
6177availability depends on the target's support for the @code{"qCRC"}
6178remote request.
6179@end table
6180
6d2ebf8b 6181@node Auto Display
79a6e687 6182@section Automatic Display
c906108c
SS
6183@cindex automatic display
6184@cindex display of expressions
6185
6186If you find that you want to print the value of an expression frequently
6187(to see how it changes), you might want to add it to the @dfn{automatic
6188display list} so that @value{GDBN} prints its value each time your program stops.
6189Each expression added to the list is given a number to identify it;
6190to remove an expression from the list, you specify that number.
6191The automatic display looks like this:
6192
474c8240 6193@smallexample
c906108c
SS
61942: foo = 38
61953: bar[5] = (struct hack *) 0x3804
474c8240 6196@end smallexample
c906108c
SS
6197
6198@noindent
6199This display shows item numbers, expressions and their current values. As with
6200displays you request manually using @code{x} or @code{print}, you can
6201specify the output format you prefer; in fact, @code{display} decides
ea37ba09
DJ
6202whether to use @code{print} or @code{x} depending your format
6203specification---it uses @code{x} if you specify either the @samp{i}
6204or @samp{s} format, or a unit size; otherwise it uses @code{print}.
c906108c
SS
6205
6206@table @code
6207@kindex display
d4f3574e
SS
6208@item display @var{expr}
6209Add the expression @var{expr} to the list of expressions to display
c906108c
SS
6210each time your program stops. @xref{Expressions, ,Expressions}.
6211
6212@code{display} does not repeat if you press @key{RET} again after using it.
6213
d4f3574e 6214@item display/@var{fmt} @var{expr}
c906108c 6215For @var{fmt} specifying only a display format and not a size or
d4f3574e 6216count, add the expression @var{expr} to the auto-display list but
c906108c 6217arrange to display it each time in the specified format @var{fmt}.
79a6e687 6218@xref{Output Formats,,Output Formats}.
c906108c
SS
6219
6220@item display/@var{fmt} @var{addr}
6221For @var{fmt} @samp{i} or @samp{s}, or including a unit-size or a
6222number of units, add the expression @var{addr} as a memory address to
6223be examined each time your program stops. Examining means in effect
79a6e687 6224doing @samp{x/@var{fmt} @var{addr}}. @xref{Memory, ,Examining Memory}.
c906108c
SS
6225@end table
6226
6227For example, @samp{display/i $pc} can be helpful, to see the machine
6228instruction about to be executed each time execution stops (@samp{$pc}
d4f3574e 6229is a common name for the program counter; @pxref{Registers, ,Registers}).
c906108c
SS
6230
6231@table @code
6232@kindex delete display
6233@kindex undisplay
6234@item undisplay @var{dnums}@dots{}
6235@itemx delete display @var{dnums}@dots{}
6236Remove item numbers @var{dnums} from the list of expressions to display.
6237
6238@code{undisplay} does not repeat if you press @key{RET} after using it.
6239(Otherwise you would just get the error @samp{No display number @dots{}}.)
6240
6241@kindex disable display
6242@item disable display @var{dnums}@dots{}
6243Disable the display of item numbers @var{dnums}. A disabled display
6244item is not printed automatically, but is not forgotten. It may be
6245enabled again later.
6246
6247@kindex enable display
6248@item enable display @var{dnums}@dots{}
6249Enable display of item numbers @var{dnums}. It becomes effective once
6250again in auto display of its expression, until you specify otherwise.
6251
6252@item display
6253Display the current values of the expressions on the list, just as is
6254done when your program stops.
6255
6256@kindex info display
6257@item info display
6258Print the list of expressions previously set up to display
6259automatically, each one with its item number, but without showing the
6260values. This includes disabled expressions, which are marked as such.
6261It also includes expressions which would not be displayed right now
6262because they refer to automatic variables not currently available.
6263@end table
6264
15387254 6265@cindex display disabled out of scope
c906108c
SS
6266If a display expression refers to local variables, then it does not make
6267sense outside the lexical context for which it was set up. Such an
6268expression is disabled when execution enters a context where one of its
6269variables is not defined. For example, if you give the command
6270@code{display last_char} while inside a function with an argument
6271@code{last_char}, @value{GDBN} displays this argument while your program
6272continues to stop inside that function. When it stops elsewhere---where
6273there is no variable @code{last_char}---the display is disabled
6274automatically. The next time your program stops where @code{last_char}
6275is meaningful, you can enable the display expression once again.
6276
6d2ebf8b 6277@node Print Settings
79a6e687 6278@section Print Settings
c906108c
SS
6279
6280@cindex format options
6281@cindex print settings
6282@value{GDBN} provides the following ways to control how arrays, structures,
6283and symbols are printed.
6284
6285@noindent
6286These settings are useful for debugging programs in any language:
6287
6288@table @code
4644b6e3 6289@kindex set print
c906108c
SS
6290@item set print address
6291@itemx set print address on
4644b6e3 6292@cindex print/don't print memory addresses
c906108c
SS
6293@value{GDBN} prints memory addresses showing the location of stack
6294traces, structure values, pointer values, breakpoints, and so forth,
6295even when it also displays the contents of those addresses. The default
6296is @code{on}. For example, this is what a stack frame display looks like with
6297@code{set print address on}:
6298
6299@smallexample
6300@group
6301(@value{GDBP}) f
6302#0 set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")
6303 at input.c:530
6304530 if (lquote != def_lquote)
6305@end group
6306@end smallexample
6307
6308@item set print address off
6309Do not print addresses when displaying their contents. For example,
6310this is the same stack frame displayed with @code{set print address off}:
6311
6312@smallexample
6313@group
6314(@value{GDBP}) set print addr off
6315(@value{GDBP}) f
6316#0 set_quotes (lq="<<", rq=">>") at input.c:530
6317530 if (lquote != def_lquote)
6318@end group
6319@end smallexample
6320
6321You can use @samp{set print address off} to eliminate all machine
6322dependent displays from the @value{GDBN} interface. For example, with
6323@code{print address off}, you should get the same text for backtraces on
6324all machines---whether or not they involve pointer arguments.
6325
4644b6e3 6326@kindex show print
c906108c
SS
6327@item show print address
6328Show whether or not addresses are to be printed.
6329@end table
6330
6331When @value{GDBN} prints a symbolic address, it normally prints the
6332closest earlier symbol plus an offset. If that symbol does not uniquely
6333identify the address (for example, it is a name whose scope is a single
6334source file), you may need to clarify. One way to do this is with
6335@code{info line}, for example @samp{info line *0x4537}. Alternately,
6336you can set @value{GDBN} to print the source file and line number when
6337it prints a symbolic address:
6338
6339@table @code
c906108c 6340@item set print symbol-filename on
9c16f35a
EZ
6341@cindex source file and line of a symbol
6342@cindex symbol, source file and line
c906108c
SS
6343Tell @value{GDBN} to print the source file name and line number of a
6344symbol in the symbolic form of an address.
6345
6346@item set print symbol-filename off
6347Do not print source file name and line number of a symbol. This is the
6348default.
6349
c906108c
SS
6350@item show print symbol-filename
6351Show whether or not @value{GDBN} will print the source file name and
6352line number of a symbol in the symbolic form of an address.
6353@end table
6354
6355Another situation where it is helpful to show symbol filenames and line
6356numbers is when disassembling code; @value{GDBN} shows you the line
6357number and source file that corresponds to each instruction.
6358
6359Also, you may wish to see the symbolic form only if the address being
6360printed is reasonably close to the closest earlier symbol:
6361
6362@table @code
c906108c 6363@item set print max-symbolic-offset @var{max-offset}
4644b6e3 6364@cindex maximum value for offset of closest symbol
c906108c
SS
6365Tell @value{GDBN} to only display the symbolic form of an address if the
6366offset between the closest earlier symbol and the address is less than
5d161b24 6367@var{max-offset}. The default is 0, which tells @value{GDBN}
c906108c
SS
6368to always print the symbolic form of an address if any symbol precedes it.
6369
c906108c
SS
6370@item show print max-symbolic-offset
6371Ask how large the maximum offset is that @value{GDBN} prints in a
6372symbolic address.
6373@end table
6374
6375@cindex wild pointer, interpreting
6376@cindex pointer, finding referent
6377If you have a pointer and you are not sure where it points, try
6378@samp{set print symbol-filename on}. Then you can determine the name
6379and source file location of the variable where it points, using
6380@samp{p/a @var{pointer}}. This interprets the address in symbolic form.
6381For example, here @value{GDBN} shows that a variable @code{ptt} points
6382at another variable @code{t}, defined in @file{hi2.c}:
6383
474c8240 6384@smallexample
c906108c
SS
6385(@value{GDBP}) set print symbol-filename on
6386(@value{GDBP}) p/a ptt
6387$4 = 0xe008 <t in hi2.c>
474c8240 6388@end smallexample
c906108c
SS
6389
6390@quotation
6391@emph{Warning:} For pointers that point to a local variable, @samp{p/a}
6392does not show the symbol name and filename of the referent, even with
6393the appropriate @code{set print} options turned on.
6394@end quotation
6395
6396Other settings control how different kinds of objects are printed:
6397
6398@table @code
c906108c
SS
6399@item set print array
6400@itemx set print array on
4644b6e3 6401@cindex pretty print arrays
c906108c
SS
6402Pretty print arrays. This format is more convenient to read,
6403but uses more space. The default is off.
6404
6405@item set print array off
6406Return to compressed format for arrays.
6407
c906108c
SS
6408@item show print array
6409Show whether compressed or pretty format is selected for displaying
6410arrays.
6411
3c9c013a
JB
6412@cindex print array indexes
6413@item set print array-indexes
6414@itemx set print array-indexes on
6415Print the index of each element when displaying arrays. May be more
6416convenient to locate a given element in the array or quickly find the
6417index of a given element in that printed array. The default is off.
6418
6419@item set print array-indexes off
6420Stop printing element indexes when displaying arrays.
6421
6422@item show print array-indexes
6423Show whether the index of each element is printed when displaying
6424arrays.
6425
c906108c 6426@item set print elements @var{number-of-elements}
4644b6e3 6427@cindex number of array elements to print
9c16f35a 6428@cindex limit on number of printed array elements
c906108c
SS
6429Set a limit on how many elements of an array @value{GDBN} will print.
6430If @value{GDBN} is printing a large array, it stops printing after it has
6431printed the number of elements set by the @code{set print elements} command.
6432This limit also applies to the display of strings.
d4f3574e 6433When @value{GDBN} starts, this limit is set to 200.
c906108c
SS
6434Setting @var{number-of-elements} to zero means that the printing is unlimited.
6435
c906108c
SS
6436@item show print elements
6437Display the number of elements of a large array that @value{GDBN} will print.
6438If the number is 0, then the printing is unlimited.
6439
b4740add
JB
6440@item set print frame-arguments @var{value}
6441@cindex printing frame argument values
6442@cindex print all frame argument values
6443@cindex print frame argument values for scalars only
6444@cindex do not print frame argument values
6445This command allows to control how the values of arguments are printed
6446when the debugger prints a frame (@pxref{Frames}). The possible
6447values are:
6448
6449@table @code
6450@item all
6451The values of all arguments are printed. This is the default.
6452
6453@item scalars
6454Print the value of an argument only if it is a scalar. The value of more
6455complex arguments such as arrays, structures, unions, etc, is replaced
6456by @code{@dots{}}. Here is an example where only scalar arguments are shown:
6457
6458@smallexample
6459#1 0x08048361 in call_me (i=3, s=@dots{}, ss=0xbf8d508c, u=@dots{}, e=green)
6460 at frame-args.c:23
6461@end smallexample
6462
6463@item none
6464None of the argument values are printed. Instead, the value of each argument
6465is replaced by @code{@dots{}}. In this case, the example above now becomes:
6466
6467@smallexample
6468#1 0x08048361 in call_me (i=@dots{}, s=@dots{}, ss=@dots{}, u=@dots{}, e=@dots{})
6469 at frame-args.c:23
6470@end smallexample
6471@end table
6472
6473By default, all argument values are always printed. But this command
6474can be useful in several cases. For instance, it can be used to reduce
6475the amount of information printed in each frame, making the backtrace
6476more readable. Also, this command can be used to improve performance
6477when displaying Ada frames, because the computation of large arguments
6478can sometimes be CPU-intensive, especiallly in large applications.
6479Setting @code{print frame-arguments} to @code{scalars} or @code{none}
6480avoids this computation, thus speeding up the display of each Ada frame.
6481
6482@item show print frame-arguments
6483Show how the value of arguments should be displayed when printing a frame.
6484
9c16f35a
EZ
6485@item set print repeats
6486@cindex repeated array elements
6487Set the threshold for suppressing display of repeated array
d3e8051b 6488elements. When the number of consecutive identical elements of an
9c16f35a
EZ
6489array exceeds the threshold, @value{GDBN} prints the string
6490@code{"<repeats @var{n} times>"}, where @var{n} is the number of
6491identical repetitions, instead of displaying the identical elements
6492themselves. Setting the threshold to zero will cause all elements to
6493be individually printed. The default threshold is 10.
6494
6495@item show print repeats
6496Display the current threshold for printing repeated identical
6497elements.
6498
c906108c 6499@item set print null-stop
4644b6e3 6500@cindex @sc{null} elements in arrays
c906108c 6501Cause @value{GDBN} to stop printing the characters of an array when the first
d4f3574e 6502@sc{null} is encountered. This is useful when large arrays actually
c906108c 6503contain only short strings.
d4f3574e 6504The default is off.
c906108c 6505
9c16f35a
EZ
6506@item show print null-stop
6507Show whether @value{GDBN} stops printing an array on the first
6508@sc{null} character.
6509
c906108c 6510@item set print pretty on
9c16f35a
EZ
6511@cindex print structures in indented form
6512@cindex indentation in structure display
5d161b24 6513Cause @value{GDBN} to print structures in an indented format with one member
c906108c
SS
6514per line, like this:
6515
6516@smallexample
6517@group
6518$1 = @{
6519 next = 0x0,
6520 flags = @{
6521 sweet = 1,
6522 sour = 1
6523 @},
6524 meat = 0x54 "Pork"
6525@}
6526@end group
6527@end smallexample
6528
6529@item set print pretty off
6530Cause @value{GDBN} to print structures in a compact format, like this:
6531
6532@smallexample
6533@group
6534$1 = @{next = 0x0, flags = @{sweet = 1, sour = 1@}, \
6535meat = 0x54 "Pork"@}
6536@end group
6537@end smallexample
6538
6539@noindent
6540This is the default format.
6541
c906108c
SS
6542@item show print pretty
6543Show which format @value{GDBN} is using to print structures.
6544
c906108c 6545@item set print sevenbit-strings on
4644b6e3
EZ
6546@cindex eight-bit characters in strings
6547@cindex octal escapes in strings
c906108c
SS
6548Print using only seven-bit characters; if this option is set,
6549@value{GDBN} displays any eight-bit characters (in strings or
6550character values) using the notation @code{\}@var{nnn}. This setting is
6551best if you are working in English (@sc{ascii}) and you use the
6552high-order bit of characters as a marker or ``meta'' bit.
6553
6554@item set print sevenbit-strings off
6555Print full eight-bit characters. This allows the use of more
6556international character sets, and is the default.
6557
c906108c
SS
6558@item show print sevenbit-strings
6559Show whether or not @value{GDBN} is printing only seven-bit characters.
6560
c906108c 6561@item set print union on
4644b6e3 6562@cindex unions in structures, printing
9c16f35a
EZ
6563Tell @value{GDBN} to print unions which are contained in structures
6564and other unions. This is the default setting.
c906108c
SS
6565
6566@item set print union off
9c16f35a
EZ
6567Tell @value{GDBN} not to print unions which are contained in
6568structures and other unions. @value{GDBN} will print @code{"@{...@}"}
6569instead.
c906108c 6570
c906108c
SS
6571@item show print union
6572Ask @value{GDBN} whether or not it will print unions which are contained in
9c16f35a 6573structures and other unions.
c906108c
SS
6574
6575For example, given the declarations
6576
6577@smallexample
6578typedef enum @{Tree, Bug@} Species;
6579typedef enum @{Big_tree, Acorn, Seedling@} Tree_forms;
5d161b24 6580typedef enum @{Caterpillar, Cocoon, Butterfly@}
c906108c
SS
6581 Bug_forms;
6582
6583struct thing @{
6584 Species it;
6585 union @{
6586 Tree_forms tree;
6587 Bug_forms bug;
6588 @} form;
6589@};
6590
6591struct thing foo = @{Tree, @{Acorn@}@};
6592@end smallexample
6593
6594@noindent
6595with @code{set print union on} in effect @samp{p foo} would print
6596
6597@smallexample
6598$1 = @{it = Tree, form = @{tree = Acorn, bug = Cocoon@}@}
6599@end smallexample
6600
6601@noindent
6602and with @code{set print union off} in effect it would print
6603
6604@smallexample
6605$1 = @{it = Tree, form = @{...@}@}
6606@end smallexample
9c16f35a
EZ
6607
6608@noindent
6609@code{set print union} affects programs written in C-like languages
6610and in Pascal.
c906108c
SS
6611@end table
6612
c906108c
SS
6613@need 1000
6614@noindent
b37052ae 6615These settings are of interest when debugging C@t{++} programs:
c906108c
SS
6616
6617@table @code
4644b6e3 6618@cindex demangling C@t{++} names
c906108c
SS
6619@item set print demangle
6620@itemx set print demangle on
b37052ae 6621Print C@t{++} names in their source form rather than in the encoded
c906108c 6622(``mangled'') form passed to the assembler and linker for type-safe
d4f3574e 6623linkage. The default is on.
c906108c 6624
c906108c 6625@item show print demangle
b37052ae 6626Show whether C@t{++} names are printed in mangled or demangled form.
c906108c 6627
c906108c
SS
6628@item set print asm-demangle
6629@itemx set print asm-demangle on
b37052ae 6630Print C@t{++} names in their source form rather than their mangled form, even
c906108c
SS
6631in assembler code printouts such as instruction disassemblies.
6632The default is off.
6633
c906108c 6634@item show print asm-demangle
b37052ae 6635Show whether C@t{++} names in assembly listings are printed in mangled
c906108c
SS
6636or demangled form.
6637
b37052ae
EZ
6638@cindex C@t{++} symbol decoding style
6639@cindex symbol decoding style, C@t{++}
a8f24a35 6640@kindex set demangle-style
c906108c
SS
6641@item set demangle-style @var{style}
6642Choose among several encoding schemes used by different compilers to
b37052ae 6643represent C@t{++} names. The choices for @var{style} are currently:
c906108c
SS
6644
6645@table @code
6646@item auto
6647Allow @value{GDBN} to choose a decoding style by inspecting your program.
6648
6649@item gnu
b37052ae 6650Decode based on the @sc{gnu} C@t{++} compiler (@code{g++}) encoding algorithm.
c906108c 6651This is the default.
c906108c
SS
6652
6653@item hp
b37052ae 6654Decode based on the HP ANSI C@t{++} (@code{aCC}) encoding algorithm.
c906108c
SS
6655
6656@item lucid
b37052ae 6657Decode based on the Lucid C@t{++} compiler (@code{lcc}) encoding algorithm.
c906108c
SS
6658
6659@item arm
b37052ae 6660Decode using the algorithm in the @cite{C@t{++} Annotated Reference Manual}.
c906108c
SS
6661@strong{Warning:} this setting alone is not sufficient to allow
6662debugging @code{cfront}-generated executables. @value{GDBN} would
6663require further enhancement to permit that.
6664
6665@end table
6666If you omit @var{style}, you will see a list of possible formats.
6667
c906108c 6668@item show demangle-style
b37052ae 6669Display the encoding style currently in use for decoding C@t{++} symbols.
c906108c 6670
c906108c
SS
6671@item set print object
6672@itemx set print object on
4644b6e3 6673@cindex derived type of an object, printing
9c16f35a 6674@cindex display derived types
c906108c
SS
6675When displaying a pointer to an object, identify the @emph{actual}
6676(derived) type of the object rather than the @emph{declared} type, using
6677the virtual function table.
6678
6679@item set print object off
6680Display only the declared type of objects, without reference to the
6681virtual function table. This is the default setting.
6682
c906108c
SS
6683@item show print object
6684Show whether actual, or declared, object types are displayed.
6685
c906108c
SS
6686@item set print static-members
6687@itemx set print static-members on
4644b6e3 6688@cindex static members of C@t{++} objects
b37052ae 6689Print static members when displaying a C@t{++} object. The default is on.
c906108c
SS
6690
6691@item set print static-members off
b37052ae 6692Do not print static members when displaying a C@t{++} object.
c906108c 6693
c906108c 6694@item show print static-members
9c16f35a
EZ
6695Show whether C@t{++} static members are printed or not.
6696
6697@item set print pascal_static-members
6698@itemx set print pascal_static-members on
d3e8051b
EZ
6699@cindex static members of Pascal objects
6700@cindex Pascal objects, static members display
9c16f35a
EZ
6701Print static members when displaying a Pascal object. The default is on.
6702
6703@item set print pascal_static-members off
6704Do not print static members when displaying a Pascal object.
6705
6706@item show print pascal_static-members
6707Show whether Pascal static members are printed or not.
c906108c
SS
6708
6709@c These don't work with HP ANSI C++ yet.
c906108c
SS
6710@item set print vtbl
6711@itemx set print vtbl on
4644b6e3 6712@cindex pretty print C@t{++} virtual function tables
9c16f35a
EZ
6713@cindex virtual functions (C@t{++}) display
6714@cindex VTBL display
b37052ae 6715Pretty print C@t{++} virtual function tables. The default is off.
c906108c 6716(The @code{vtbl} commands do not work on programs compiled with the HP
b37052ae 6717ANSI C@t{++} compiler (@code{aCC}).)
c906108c
SS
6718
6719@item set print vtbl off
b37052ae 6720Do not pretty print C@t{++} virtual function tables.
c906108c 6721
c906108c 6722@item show print vtbl
b37052ae 6723Show whether C@t{++} virtual function tables are pretty printed, or not.
c906108c 6724@end table
c906108c 6725
6d2ebf8b 6726@node Value History
79a6e687 6727@section Value History
c906108c
SS
6728
6729@cindex value history
9c16f35a 6730@cindex history of values printed by @value{GDBN}
5d161b24
DB
6731Values printed by the @code{print} command are saved in the @value{GDBN}
6732@dfn{value history}. This allows you to refer to them in other expressions.
6733Values are kept until the symbol table is re-read or discarded
6734(for example with the @code{file} or @code{symbol-file} commands).
6735When the symbol table changes, the value history is discarded,
6736since the values may contain pointers back to the types defined in the
c906108c
SS
6737symbol table.
6738
6739@cindex @code{$}
6740@cindex @code{$$}
6741@cindex history number
6742The values printed are given @dfn{history numbers} by which you can
6743refer to them. These are successive integers starting with one.
6744@code{print} shows you the history number assigned to a value by
6745printing @samp{$@var{num} = } before the value; here @var{num} is the
6746history number.
6747
6748To refer to any previous value, use @samp{$} followed by the value's
6749history number. The way @code{print} labels its output is designed to
6750remind you of this. Just @code{$} refers to the most recent value in
6751the history, and @code{$$} refers to the value before that.
6752@code{$$@var{n}} refers to the @var{n}th value from the end; @code{$$2}
6753is the value just prior to @code{$$}, @code{$$1} is equivalent to
6754@code{$$}, and @code{$$0} is equivalent to @code{$}.
6755
6756For example, suppose you have just printed a pointer to a structure and
6757want to see the contents of the structure. It suffices to type
6758
474c8240 6759@smallexample
c906108c 6760p *$
474c8240 6761@end smallexample
c906108c
SS
6762
6763If you have a chain of structures where the component @code{next} points
6764to the next one, you can print the contents of the next one with this:
6765
474c8240 6766@smallexample
c906108c 6767p *$.next
474c8240 6768@end smallexample
c906108c
SS
6769
6770@noindent
6771You can print successive links in the chain by repeating this
6772command---which you can do by just typing @key{RET}.
6773
6774Note that the history records values, not expressions. If the value of
6775@code{x} is 4 and you type these commands:
6776
474c8240 6777@smallexample
c906108c
SS
6778print x
6779set x=5
474c8240 6780@end smallexample
c906108c
SS
6781
6782@noindent
6783then the value recorded in the value history by the @code{print} command
6784remains 4 even though the value of @code{x} has changed.
6785
6786@table @code
6787@kindex show values
6788@item show values
6789Print the last ten values in the value history, with their item numbers.
6790This is like @samp{p@ $$9} repeated ten times, except that @code{show
6791values} does not change the history.
6792
6793@item show values @var{n}
6794Print ten history values centered on history item number @var{n}.
6795
6796@item show values +
6797Print ten history values just after the values last printed. If no more
6798values are available, @code{show values +} produces no display.
6799@end table
6800
6801Pressing @key{RET} to repeat @code{show values @var{n}} has exactly the
6802same effect as @samp{show values +}.
6803
6d2ebf8b 6804@node Convenience Vars
79a6e687 6805@section Convenience Variables
c906108c
SS
6806
6807@cindex convenience variables
9c16f35a 6808@cindex user-defined variables
c906108c
SS
6809@value{GDBN} provides @dfn{convenience variables} that you can use within
6810@value{GDBN} to hold on to a value and refer to it later. These variables
6811exist entirely within @value{GDBN}; they are not part of your program, and
6812setting a convenience variable has no direct effect on further execution
6813of your program. That is why you can use them freely.
6814
6815Convenience variables are prefixed with @samp{$}. Any name preceded by
6816@samp{$} can be used for a convenience variable, unless it is one of
d4f3574e 6817the predefined machine-specific register names (@pxref{Registers, ,Registers}).
c906108c 6818(Value history references, in contrast, are @emph{numbers} preceded
79a6e687 6819by @samp{$}. @xref{Value History, ,Value History}.)
c906108c
SS
6820
6821You can save a value in a convenience variable with an assignment
6822expression, just as you would set a variable in your program.
6823For example:
6824
474c8240 6825@smallexample
c906108c 6826set $foo = *object_ptr
474c8240 6827@end smallexample
c906108c
SS
6828
6829@noindent
6830would save in @code{$foo} the value contained in the object pointed to by
6831@code{object_ptr}.
6832
6833Using a convenience variable for the first time creates it, but its
6834value is @code{void} until you assign a new value. You can alter the
6835value with another assignment at any time.
6836
6837Convenience variables have no fixed types. You can assign a convenience
6838variable any type of value, including structures and arrays, even if
6839that variable already has a value of a different type. The convenience
6840variable, when used as an expression, has the type of its current value.
6841
6842@table @code
6843@kindex show convenience
9c16f35a 6844@cindex show all user variables
c906108c
SS
6845@item show convenience
6846Print a list of convenience variables used so far, and their values.
d4f3574e 6847Abbreviated @code{show conv}.
53e5f3cf
AS
6848
6849@kindex init-if-undefined
6850@cindex convenience variables, initializing
6851@item init-if-undefined $@var{variable} = @var{expression}
6852Set a convenience variable if it has not already been set. This is useful
6853for user-defined commands that keep some state. It is similar, in concept,
6854to using local static variables with initializers in C (except that
6855convenience variables are global). It can also be used to allow users to
6856override default values used in a command script.
6857
6858If the variable is already defined then the expression is not evaluated so
6859any side-effects do not occur.
c906108c
SS
6860@end table
6861
6862One of the ways to use a convenience variable is as a counter to be
6863incremented or a pointer to be advanced. For example, to print
6864a field from successive elements of an array of structures:
6865
474c8240 6866@smallexample
c906108c
SS
6867set $i = 0
6868print bar[$i++]->contents
474c8240 6869@end smallexample
c906108c 6870
d4f3574e
SS
6871@noindent
6872Repeat that command by typing @key{RET}.
c906108c
SS
6873
6874Some convenience variables are created automatically by @value{GDBN} and given
6875values likely to be useful.
6876
6877@table @code
41afff9a 6878@vindex $_@r{, convenience variable}
c906108c
SS
6879@item $_
6880The variable @code{$_} is automatically set by the @code{x} command to
79a6e687 6881the last address examined (@pxref{Memory, ,Examining Memory}). Other
c906108c
SS
6882commands which provide a default address for @code{x} to examine also
6883set @code{$_} to that address; these commands include @code{info line}
6884and @code{info breakpoint}. The type of @code{$_} is @code{void *}
6885except when set by the @code{x} command, in which case it is a pointer
6886to the type of @code{$__}.
6887
41afff9a 6888@vindex $__@r{, convenience variable}
c906108c
SS
6889@item $__
6890The variable @code{$__} is automatically set by the @code{x} command
6891to the value found in the last address examined. Its type is chosen
6892to match the format in which the data was printed.
6893
6894@item $_exitcode
41afff9a 6895@vindex $_exitcode@r{, convenience variable}
c906108c
SS
6896The variable @code{$_exitcode} is automatically set to the exit code when
6897the program being debugged terminates.
6898@end table
6899
53a5351d
JM
6900On HP-UX systems, if you refer to a function or variable name that
6901begins with a dollar sign, @value{GDBN} searches for a user or system
6902name first, before it searches for a convenience variable.
c906108c 6903
6d2ebf8b 6904@node Registers
c906108c
SS
6905@section Registers
6906
6907@cindex registers
6908You can refer to machine register contents, in expressions, as variables
6909with names starting with @samp{$}. The names of registers are different
6910for each machine; use @code{info registers} to see the names used on
6911your machine.
6912
6913@table @code
6914@kindex info registers
6915@item info registers
6916Print the names and values of all registers except floating-point
c85508ee 6917and vector registers (in the selected stack frame).
c906108c
SS
6918
6919@kindex info all-registers
6920@cindex floating point registers
6921@item info all-registers
6922Print the names and values of all registers, including floating-point
c85508ee 6923and vector registers (in the selected stack frame).
c906108c
SS
6924
6925@item info registers @var{regname} @dots{}
6926Print the @dfn{relativized} value of each specified register @var{regname}.
5d161b24
DB
6927As discussed in detail below, register values are normally relative to
6928the selected stack frame. @var{regname} may be any register name valid on
c906108c
SS
6929the machine you are using, with or without the initial @samp{$}.
6930@end table
6931
e09f16f9
EZ
6932@cindex stack pointer register
6933@cindex program counter register
6934@cindex process status register
6935@cindex frame pointer register
6936@cindex standard registers
c906108c
SS
6937@value{GDBN} has four ``standard'' register names that are available (in
6938expressions) on most machines---whenever they do not conflict with an
6939architecture's canonical mnemonics for registers. The register names
6940@code{$pc} and @code{$sp} are used for the program counter register and
6941the stack pointer. @code{$fp} is used for a register that contains a
6942pointer to the current stack frame, and @code{$ps} is used for a
6943register that contains the processor status. For example,
6944you could print the program counter in hex with
6945
474c8240 6946@smallexample
c906108c 6947p/x $pc
474c8240 6948@end smallexample
c906108c
SS
6949
6950@noindent
6951or print the instruction to be executed next with
6952
474c8240 6953@smallexample
c906108c 6954x/i $pc
474c8240 6955@end smallexample
c906108c
SS
6956
6957@noindent
6958or add four to the stack pointer@footnote{This is a way of removing
6959one word from the stack, on machines where stacks grow downward in
6960memory (most machines, nowadays). This assumes that the innermost
6961stack frame is selected; setting @code{$sp} is not allowed when other
6962stack frames are selected. To pop entire frames off the stack,
6963regardless of machine architecture, use @code{return};
79a6e687 6964see @ref{Returning, ,Returning from a Function}.} with
c906108c 6965
474c8240 6966@smallexample
c906108c 6967set $sp += 4
474c8240 6968@end smallexample
c906108c
SS
6969
6970Whenever possible, these four standard register names are available on
6971your machine even though the machine has different canonical mnemonics,
6972so long as there is no conflict. The @code{info registers} command
6973shows the canonical names. For example, on the SPARC, @code{info
6974registers} displays the processor status register as @code{$psr} but you
d4f3574e
SS
6975can also refer to it as @code{$ps}; and on x86-based machines @code{$ps}
6976is an alias for the @sc{eflags} register.
c906108c
SS
6977
6978@value{GDBN} always considers the contents of an ordinary register as an
6979integer when the register is examined in this way. Some machines have
6980special registers which can hold nothing but floating point; these
6981registers are considered to have floating point values. There is no way
6982to refer to the contents of an ordinary register as floating point value
6983(although you can @emph{print} it as a floating point value with
6984@samp{print/f $@var{regname}}).
6985
6986Some registers have distinct ``raw'' and ``virtual'' data formats. This
6987means that the data format in which the register contents are saved by
6988the operating system is not the same one that your program normally
6989sees. For example, the registers of the 68881 floating point
6990coprocessor are always saved in ``extended'' (raw) format, but all C
6991programs expect to work with ``double'' (virtual) format. In such
5d161b24 6992cases, @value{GDBN} normally works with the virtual format only (the format
c906108c
SS
6993that makes sense for your program), but the @code{info registers} command
6994prints the data in both formats.
6995
36b80e65
EZ
6996@cindex SSE registers (x86)
6997@cindex MMX registers (x86)
6998Some machines have special registers whose contents can be interpreted
6999in several different ways. For example, modern x86-based machines
7000have SSE and MMX registers that can hold several values packed
7001together in several different formats. @value{GDBN} refers to such
7002registers in @code{struct} notation:
7003
7004@smallexample
7005(@value{GDBP}) print $xmm1
7006$1 = @{
7007 v4_float = @{0, 3.43859137e-038, 1.54142831e-044, 1.821688e-044@},
7008 v2_double = @{9.92129282474342e-303, 2.7585945287983262e-313@},
7009 v16_int8 = "\000\000\000\000\3706;\001\v\000\000\000\r\000\000",
7010 v8_int16 = @{0, 0, 14072, 315, 11, 0, 13, 0@},
7011 v4_int32 = @{0, 20657912, 11, 13@},
7012 v2_int64 = @{88725056443645952, 55834574859@},
7013 uint128 = 0x0000000d0000000b013b36f800000000
7014@}
7015@end smallexample
7016
7017@noindent
7018To set values of such registers, you need to tell @value{GDBN} which
7019view of the register you wish to change, as if you were assigning
7020value to a @code{struct} member:
7021
7022@smallexample
7023 (@value{GDBP}) set $xmm1.uint128 = 0x000000000000000000000000FFFFFFFF
7024@end smallexample
7025
c906108c 7026Normally, register values are relative to the selected stack frame
79a6e687 7027(@pxref{Selection, ,Selecting a Frame}). This means that you get the
c906108c
SS
7028value that the register would contain if all stack frames farther in
7029were exited and their saved registers restored. In order to see the
7030true contents of hardware registers, you must select the innermost
7031frame (with @samp{frame 0}).
7032
7033However, @value{GDBN} must deduce where registers are saved, from the machine
7034code generated by your compiler. If some registers are not saved, or if
7035@value{GDBN} is unable to locate the saved registers, the selected stack
7036frame makes no difference.
7037
6d2ebf8b 7038@node Floating Point Hardware
79a6e687 7039@section Floating Point Hardware
c906108c
SS
7040@cindex floating point
7041
7042Depending on the configuration, @value{GDBN} may be able to give
7043you more information about the status of the floating point hardware.
7044
7045@table @code
7046@kindex info float
7047@item info float
7048Display hardware-dependent information about the floating
7049point unit. The exact contents and layout vary depending on the
7050floating point chip. Currently, @samp{info float} is supported on
7051the ARM and x86 machines.
7052@end table
c906108c 7053
e76f1f2e
AC
7054@node Vector Unit
7055@section Vector Unit
7056@cindex vector unit
7057
7058Depending on the configuration, @value{GDBN} may be able to give you
7059more information about the status of the vector unit.
7060
7061@table @code
7062@kindex info vector
7063@item info vector
7064Display information about the vector unit. The exact contents and
7065layout vary depending on the hardware.
7066@end table
7067
721c2651 7068@node OS Information
79a6e687 7069@section Operating System Auxiliary Information
721c2651
EZ
7070@cindex OS information
7071
7072@value{GDBN} provides interfaces to useful OS facilities that can help
7073you debug your program.
7074
7075@cindex @code{ptrace} system call
7076@cindex @code{struct user} contents
7077When @value{GDBN} runs on a @dfn{Posix system} (such as GNU or Unix
7078machines), it interfaces with the inferior via the @code{ptrace}
7079system call. The operating system creates a special sata structure,
7080called @code{struct user}, for this interface. You can use the
7081command @code{info udot} to display the contents of this data
7082structure.
7083
7084@table @code
7085@item info udot
7086@kindex info udot
7087Display the contents of the @code{struct user} maintained by the OS
7088kernel for the program being debugged. @value{GDBN} displays the
7089contents of @code{struct user} as a list of hex numbers, similar to
7090the @code{examine} command.
7091@end table
7092
b383017d
RM
7093@cindex auxiliary vector
7094@cindex vector, auxiliary
b383017d
RM
7095Some operating systems supply an @dfn{auxiliary vector} to programs at
7096startup. This is akin to the arguments and environment that you
7097specify for a program, but contains a system-dependent variety of
7098binary values that tell system libraries important details about the
7099hardware, operating system, and process. Each value's purpose is
7100identified by an integer tag; the meanings are well-known but system-specific.
7101Depending on the configuration and operating system facilities,
9c16f35a
EZ
7102@value{GDBN} may be able to show you this information. For remote
7103targets, this functionality may further depend on the remote stub's
427c3a89
DJ
7104support of the @samp{qXfer:auxv:read} packet, see
7105@ref{qXfer auxiliary vector read}.
b383017d
RM
7106
7107@table @code
7108@kindex info auxv
7109@item info auxv
7110Display the auxiliary vector of the inferior, which can be either a
e4937fc1 7111live process or a core dump file. @value{GDBN} prints each tag value
b383017d
RM
7112numerically, and also shows names and text descriptions for recognized
7113tags. Some values in the vector are numbers, some bit masks, and some
e4937fc1 7114pointers to strings or other data. @value{GDBN} displays each value in the
b383017d
RM
7115most appropriate form for a recognized tag, and in hexadecimal for
7116an unrecognized tag.
7117@end table
7118
721c2651 7119
29e57380 7120@node Memory Region Attributes
79a6e687 7121@section Memory Region Attributes
29e57380
C
7122@cindex memory region attributes
7123
b383017d 7124@dfn{Memory region attributes} allow you to describe special handling
fd79ecee
DJ
7125required by regions of your target's memory. @value{GDBN} uses
7126attributes to determine whether to allow certain types of memory
7127accesses; whether to use specific width accesses; and whether to cache
7128target memory. By default the description of memory regions is
7129fetched from the target (if the current target supports this), but the
7130user can override the fetched regions.
29e57380
C
7131
7132Defined memory regions can be individually enabled and disabled. When a
7133memory region is disabled, @value{GDBN} uses the default attributes when
7134accessing memory in that region. Similarly, if no memory regions have
7135been defined, @value{GDBN} uses the default attributes when accessing
7136all memory.
7137
b383017d 7138When a memory region is defined, it is given a number to identify it;
29e57380
C
7139to enable, disable, or remove a memory region, you specify that number.
7140
7141@table @code
7142@kindex mem
bfac230e 7143@item mem @var{lower} @var{upper} @var{attributes}@dots{}
09d4efe1
EZ
7144Define a memory region bounded by @var{lower} and @var{upper} with
7145attributes @var{attributes}@dots{}, and add it to the list of regions
7146monitored by @value{GDBN}. Note that @var{upper} == 0 is a special
d3e8051b 7147case: it is treated as the target's maximum memory address.
bfac230e 7148(0xffff on 16 bit targets, 0xffffffff on 32 bit targets, etc.)
29e57380 7149
fd79ecee
DJ
7150@item mem auto
7151Discard any user changes to the memory regions and use target-supplied
7152regions, if available, or no regions if the target does not support.
7153
29e57380
C
7154@kindex delete mem
7155@item delete mem @var{nums}@dots{}
09d4efe1
EZ
7156Remove memory regions @var{nums}@dots{} from the list of regions
7157monitored by @value{GDBN}.
29e57380
C
7158
7159@kindex disable mem
7160@item disable mem @var{nums}@dots{}
09d4efe1 7161Disable monitoring of memory regions @var{nums}@dots{}.
b383017d 7162A disabled memory region is not forgotten.
29e57380
C
7163It may be enabled again later.
7164
7165@kindex enable mem
7166@item enable mem @var{nums}@dots{}
09d4efe1 7167Enable monitoring of memory regions @var{nums}@dots{}.
29e57380
C
7168
7169@kindex info mem
7170@item info mem
7171Print a table of all defined memory regions, with the following columns
09d4efe1 7172for each region:
29e57380
C
7173
7174@table @emph
7175@item Memory Region Number
7176@item Enabled or Disabled.
b383017d 7177Enabled memory regions are marked with @samp{y}.
29e57380
C
7178Disabled memory regions are marked with @samp{n}.
7179
7180@item Lo Address
7181The address defining the inclusive lower bound of the memory region.
7182
7183@item Hi Address
7184The address defining the exclusive upper bound of the memory region.
7185
7186@item Attributes
7187The list of attributes set for this memory region.
7188@end table
7189@end table
7190
7191
7192@subsection Attributes
7193
b383017d 7194@subsubsection Memory Access Mode
29e57380
C
7195The access mode attributes set whether @value{GDBN} may make read or
7196write accesses to a memory region.
7197
7198While these attributes prevent @value{GDBN} from performing invalid
7199memory accesses, they do nothing to prevent the target system, I/O DMA,
359df76b 7200etc.@: from accessing memory.
29e57380
C
7201
7202@table @code
7203@item ro
7204Memory is read only.
7205@item wo
7206Memory is write only.
7207@item rw
6ca652b0 7208Memory is read/write. This is the default.
29e57380
C
7209@end table
7210
7211@subsubsection Memory Access Size
d3e8051b 7212The access size attribute tells @value{GDBN} to use specific sized
29e57380
C
7213accesses in the memory region. Often memory mapped device registers
7214require specific sized accesses. If no access size attribute is
7215specified, @value{GDBN} may use accesses of any size.
7216
7217@table @code
7218@item 8
7219Use 8 bit memory accesses.
7220@item 16
7221Use 16 bit memory accesses.
7222@item 32
7223Use 32 bit memory accesses.
7224@item 64
7225Use 64 bit memory accesses.
7226@end table
7227
7228@c @subsubsection Hardware/Software Breakpoints
7229@c The hardware/software breakpoint attributes set whether @value{GDBN}
7230@c will use hardware or software breakpoints for the internal breakpoints
7231@c used by the step, next, finish, until, etc. commands.
7232@c
7233@c @table @code
7234@c @item hwbreak
b383017d 7235@c Always use hardware breakpoints
29e57380
C
7236@c @item swbreak (default)
7237@c @end table
7238
7239@subsubsection Data Cache
7240The data cache attributes set whether @value{GDBN} will cache target
7241memory. While this generally improves performance by reducing debug
7242protocol overhead, it can lead to incorrect results because @value{GDBN}
7243does not know about volatile variables or memory mapped device
7244registers.
7245
7246@table @code
7247@item cache
b383017d 7248Enable @value{GDBN} to cache target memory.
6ca652b0
EZ
7249@item nocache
7250Disable @value{GDBN} from caching target memory. This is the default.
29e57380
C
7251@end table
7252
4b5752d0
VP
7253@subsection Memory Access Checking
7254@value{GDBN} can be instructed to refuse accesses to memory that is
7255not explicitly described. This can be useful if accessing such
7256regions has undesired effects for a specific target, or to provide
7257better error checking. The following commands control this behaviour.
7258
7259@table @code
7260@kindex set mem inaccessible-by-default
7261@item set mem inaccessible-by-default [on|off]
7262If @code{on} is specified, make @value{GDBN} treat memory not
7263explicitly described by the memory ranges as non-existent and refuse accesses
7264to such memory. The checks are only performed if there's at least one
7265memory range defined. If @code{off} is specified, make @value{GDBN}
7266treat the memory not explicitly described by the memory ranges as RAM.
56cf5405 7267The default value is @code{on}.
4b5752d0
VP
7268@kindex show mem inaccessible-by-default
7269@item show mem inaccessible-by-default
7270Show the current handling of accesses to unknown memory.
7271@end table
7272
7273
29e57380 7274@c @subsubsection Memory Write Verification
b383017d 7275@c The memory write verification attributes set whether @value{GDBN}
29e57380
C
7276@c will re-reads data after each write to verify the write was successful.
7277@c
7278@c @table @code
7279@c @item verify
7280@c @item noverify (default)
7281@c @end table
7282
16d9dec6 7283@node Dump/Restore Files
79a6e687 7284@section Copy Between Memory and a File
16d9dec6
MS
7285@cindex dump/restore files
7286@cindex append data to a file
7287@cindex dump data to a file
7288@cindex restore data from a file
16d9dec6 7289
df5215a6
JB
7290You can use the commands @code{dump}, @code{append}, and
7291@code{restore} to copy data between target memory and a file. The
7292@code{dump} and @code{append} commands write data to a file, and the
7293@code{restore} command reads data from a file back into the inferior's
7294memory. Files may be in binary, Motorola S-record, Intel hex, or
7295Tektronix Hex format; however, @value{GDBN} can only append to binary
7296files.
7297
7298@table @code
7299
7300@kindex dump
7301@item dump @r{[}@var{format}@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7302@itemx dump @r{[}@var{format}@r{]} value @var{filename} @var{expr}
7303Dump the contents of memory from @var{start_addr} to @var{end_addr},
7304or the value of @var{expr}, to @var{filename} in the given format.
16d9dec6 7305
df5215a6 7306The @var{format} parameter may be any one of:
16d9dec6 7307@table @code
df5215a6
JB
7308@item binary
7309Raw binary form.
7310@item ihex
7311Intel hex format.
7312@item srec
7313Motorola S-record format.
7314@item tekhex
7315Tektronix Hex format.
7316@end table
7317
7318@value{GDBN} uses the same definitions of these formats as the
7319@sc{gnu} binary utilities, like @samp{objdump} and @samp{objcopy}. If
7320@var{format} is omitted, @value{GDBN} dumps the data in raw binary
7321form.
7322
7323@kindex append
7324@item append @r{[}binary@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7325@itemx append @r{[}binary@r{]} value @var{filename} @var{expr}
7326Append the contents of memory from @var{start_addr} to @var{end_addr},
09d4efe1 7327or the value of @var{expr}, to the file @var{filename}, in raw binary form.
df5215a6
JB
7328(@value{GDBN} can only append data to files in raw binary form.)
7329
7330@kindex restore
7331@item restore @var{filename} @r{[}binary@r{]} @var{bias} @var{start} @var{end}
7332Restore the contents of file @var{filename} into memory. The
7333@code{restore} command can automatically recognize any known @sc{bfd}
7334file format, except for raw binary. To restore a raw binary file you
7335must specify the optional keyword @code{binary} after the filename.
16d9dec6 7336
b383017d 7337If @var{bias} is non-zero, its value will be added to the addresses
16d9dec6
MS
7338contained in the file. Binary files always start at address zero, so
7339they will be restored at address @var{bias}. Other bfd files have
7340a built-in location; they will be restored at offset @var{bias}
7341from that location.
7342
7343If @var{start} and/or @var{end} are non-zero, then only data between
7344file offset @var{start} and file offset @var{end} will be restored.
b383017d 7345These offsets are relative to the addresses in the file, before
16d9dec6
MS
7346the @var{bias} argument is applied.
7347
7348@end table
7349
384ee23f
EZ
7350@node Core File Generation
7351@section How to Produce a Core File from Your Program
7352@cindex dump core from inferior
7353
7354A @dfn{core file} or @dfn{core dump} is a file that records the memory
7355image of a running process and its process status (register values
7356etc.). Its primary use is post-mortem debugging of a program that
7357crashed while it ran outside a debugger. A program that crashes
7358automatically produces a core file, unless this feature is disabled by
7359the user. @xref{Files}, for information on invoking @value{GDBN} in
7360the post-mortem debugging mode.
7361
7362Occasionally, you may wish to produce a core file of the program you
7363are debugging in order to preserve a snapshot of its state.
7364@value{GDBN} has a special command for that.
7365
7366@table @code
7367@kindex gcore
7368@kindex generate-core-file
7369@item generate-core-file [@var{file}]
7370@itemx gcore [@var{file}]
7371Produce a core dump of the inferior process. The optional argument
7372@var{file} specifies the file name where to put the core dump. If not
7373specified, the file name defaults to @file{core.@var{pid}}, where
7374@var{pid} is the inferior process ID.
7375
7376Note that this command is implemented only for some systems (as of
7377this writing, @sc{gnu}/Linux, FreeBSD, Solaris, Unixware, and S390).
7378@end table
7379
a0eb71c5
KB
7380@node Character Sets
7381@section Character Sets
7382@cindex character sets
7383@cindex charset
7384@cindex translating between character sets
7385@cindex host character set
7386@cindex target character set
7387
7388If the program you are debugging uses a different character set to
7389represent characters and strings than the one @value{GDBN} uses itself,
7390@value{GDBN} can automatically translate between the character sets for
7391you. The character set @value{GDBN} uses we call the @dfn{host
7392character set}; the one the inferior program uses we call the
7393@dfn{target character set}.
7394
7395For example, if you are running @value{GDBN} on a @sc{gnu}/Linux system, which
7396uses the ISO Latin 1 character set, but you are using @value{GDBN}'s
ea35711c 7397remote protocol (@pxref{Remote Debugging}) to debug a program
a0eb71c5
KB
7398running on an IBM mainframe, which uses the @sc{ebcdic} character set,
7399then the host character set is Latin-1, and the target character set is
7400@sc{ebcdic}. If you give @value{GDBN} the command @code{set
e33d66ec 7401target-charset EBCDIC-US}, then @value{GDBN} translates between
a0eb71c5
KB
7402@sc{ebcdic} and Latin 1 as you print character or string values, or use
7403character and string literals in expressions.
7404
7405@value{GDBN} has no way to automatically recognize which character set
7406the inferior program uses; you must tell it, using the @code{set
7407target-charset} command, described below.
7408
7409Here are the commands for controlling @value{GDBN}'s character set
7410support:
7411
7412@table @code
7413@item set target-charset @var{charset}
7414@kindex set target-charset
7415Set the current target character set to @var{charset}. We list the
e33d66ec
EZ
7416character set names @value{GDBN} recognizes below, but if you type
7417@code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7418list the target character sets it supports.
a0eb71c5
KB
7419@end table
7420
7421@table @code
7422@item set host-charset @var{charset}
7423@kindex set host-charset
7424Set the current host character set to @var{charset}.
7425
7426By default, @value{GDBN} uses a host character set appropriate to the
7427system it is running on; you can override that default using the
7428@code{set host-charset} command.
7429
7430@value{GDBN} can only use certain character sets as its host character
7431set. We list the character set names @value{GDBN} recognizes below, and
e33d66ec
EZ
7432indicate which can be host character sets, but if you type
7433@code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7434list the host character sets it supports.
a0eb71c5
KB
7435
7436@item set charset @var{charset}
7437@kindex set charset
e33d66ec
EZ
7438Set the current host and target character sets to @var{charset}. As
7439above, if you type @code{set charset} followed by @key{TAB}@key{TAB},
7440@value{GDBN} will list the name of the character sets that can be used
7441for both host and target.
7442
a0eb71c5
KB
7443
7444@item show charset
a0eb71c5 7445@kindex show charset
b383017d 7446Show the names of the current host and target charsets.
e33d66ec
EZ
7447
7448@itemx show host-charset
a0eb71c5 7449@kindex show host-charset
b383017d 7450Show the name of the current host charset.
e33d66ec
EZ
7451
7452@itemx show target-charset
a0eb71c5 7453@kindex show target-charset
b383017d 7454Show the name of the current target charset.
a0eb71c5
KB
7455
7456@end table
7457
7458@value{GDBN} currently includes support for the following character
7459sets:
7460
7461@table @code
7462
7463@item ASCII
7464@cindex ASCII character set
7465Seven-bit U.S. @sc{ascii}. @value{GDBN} can use this as its host
7466character set.
7467
7468@item ISO-8859-1
7469@cindex ISO 8859-1 character set
7470@cindex ISO Latin 1 character set
e33d66ec 7471The ISO Latin 1 character set. This extends @sc{ascii} with accented
a0eb71c5
KB
7472characters needed for French, German, and Spanish. @value{GDBN} can use
7473this as its host character set.
7474
7475@item EBCDIC-US
7476@itemx IBM1047
7477@cindex EBCDIC character set
7478@cindex IBM1047 character set
7479Variants of the @sc{ebcdic} character set, used on some of IBM's
7480mainframe operating systems. (@sc{gnu}/Linux on the S/390 uses U.S. @sc{ascii}.)
7481@value{GDBN} cannot use these as its host character set.
7482
7483@end table
7484
7485Note that these are all single-byte character sets. More work inside
3f94c067 7486@value{GDBN} is needed to support multi-byte or variable-width character
a0eb71c5
KB
7487encodings, like the UTF-8 and UCS-2 encodings of Unicode.
7488
7489Here is an example of @value{GDBN}'s character set support in action.
7490Assume that the following source code has been placed in the file
7491@file{charset-test.c}:
7492
7493@smallexample
7494#include <stdio.h>
7495
7496char ascii_hello[]
7497 = @{72, 101, 108, 108, 111, 44, 32, 119,
7498 111, 114, 108, 100, 33, 10, 0@};
7499char ibm1047_hello[]
7500 = @{200, 133, 147, 147, 150, 107, 64, 166,
7501 150, 153, 147, 132, 90, 37, 0@};
7502
7503main ()
7504@{
7505 printf ("Hello, world!\n");
7506@}
10998722 7507@end smallexample
a0eb71c5
KB
7508
7509In this program, @code{ascii_hello} and @code{ibm1047_hello} are arrays
7510containing the string @samp{Hello, world!} followed by a newline,
7511encoded in the @sc{ascii} and @sc{ibm1047} character sets.
7512
7513We compile the program, and invoke the debugger on it:
7514
7515@smallexample
7516$ gcc -g charset-test.c -o charset-test
7517$ gdb -nw charset-test
7518GNU gdb 2001-12-19-cvs
7519Copyright 2001 Free Software Foundation, Inc.
7520@dots{}
f7dc1244 7521(@value{GDBP})
10998722 7522@end smallexample
a0eb71c5
KB
7523
7524We can use the @code{show charset} command to see what character sets
7525@value{GDBN} is currently using to interpret and display characters and
7526strings:
7527
7528@smallexample
f7dc1244 7529(@value{GDBP}) show charset
e33d66ec 7530The current host and target character set is `ISO-8859-1'.
f7dc1244 7531(@value{GDBP})
10998722 7532@end smallexample
a0eb71c5
KB
7533
7534For the sake of printing this manual, let's use @sc{ascii} as our
7535initial character set:
7536@smallexample
f7dc1244
EZ
7537(@value{GDBP}) set charset ASCII
7538(@value{GDBP}) show charset
e33d66ec 7539The current host and target character set is `ASCII'.
f7dc1244 7540(@value{GDBP})
10998722 7541@end smallexample
a0eb71c5
KB
7542
7543Let's assume that @sc{ascii} is indeed the correct character set for our
7544host system --- in other words, let's assume that if @value{GDBN} prints
7545characters using the @sc{ascii} character set, our terminal will display
7546them properly. Since our current target character set is also
7547@sc{ascii}, the contents of @code{ascii_hello} print legibly:
7548
7549@smallexample
f7dc1244 7550(@value{GDBP}) print ascii_hello
a0eb71c5 7551$1 = 0x401698 "Hello, world!\n"
f7dc1244 7552(@value{GDBP}) print ascii_hello[0]
a0eb71c5 7553$2 = 72 'H'
f7dc1244 7554(@value{GDBP})
10998722 7555@end smallexample
a0eb71c5
KB
7556
7557@value{GDBN} uses the target character set for character and string
7558literals you use in expressions:
7559
7560@smallexample
f7dc1244 7561(@value{GDBP}) print '+'
a0eb71c5 7562$3 = 43 '+'
f7dc1244 7563(@value{GDBP})
10998722 7564@end smallexample
a0eb71c5
KB
7565
7566The @sc{ascii} character set uses the number 43 to encode the @samp{+}
7567character.
7568
7569@value{GDBN} relies on the user to tell it which character set the
7570target program uses. If we print @code{ibm1047_hello} while our target
7571character set is still @sc{ascii}, we get jibberish:
7572
7573@smallexample
f7dc1244 7574(@value{GDBP}) print ibm1047_hello
a0eb71c5 7575$4 = 0x4016a8 "\310\205\223\223\226k@@\246\226\231\223\204Z%"
f7dc1244 7576(@value{GDBP}) print ibm1047_hello[0]
a0eb71c5 7577$5 = 200 '\310'
f7dc1244 7578(@value{GDBP})
10998722 7579@end smallexample
a0eb71c5 7580
e33d66ec 7581If we invoke the @code{set target-charset} followed by @key{TAB}@key{TAB},
a0eb71c5
KB
7582@value{GDBN} tells us the character sets it supports:
7583
7584@smallexample
f7dc1244 7585(@value{GDBP}) set target-charset
b383017d 7586ASCII EBCDIC-US IBM1047 ISO-8859-1
f7dc1244 7587(@value{GDBP}) set target-charset
10998722 7588@end smallexample
a0eb71c5
KB
7589
7590We can select @sc{ibm1047} as our target character set, and examine the
7591program's strings again. Now the @sc{ascii} string is wrong, but
7592@value{GDBN} translates the contents of @code{ibm1047_hello} from the
7593target character set, @sc{ibm1047}, to the host character set,
7594@sc{ascii}, and they display correctly:
7595
7596@smallexample
f7dc1244
EZ
7597(@value{GDBP}) set target-charset IBM1047
7598(@value{GDBP}) show charset
e33d66ec
EZ
7599The current host character set is `ASCII'.
7600The current target character set is `IBM1047'.
f7dc1244 7601(@value{GDBP}) print ascii_hello
a0eb71c5 7602$6 = 0x401698 "\110\145%%?\054\040\167?\162%\144\041\012"
f7dc1244 7603(@value{GDBP}) print ascii_hello[0]
a0eb71c5 7604$7 = 72 '\110'
f7dc1244 7605(@value{GDBP}) print ibm1047_hello
a0eb71c5 7606$8 = 0x4016a8 "Hello, world!\n"
f7dc1244 7607(@value{GDBP}) print ibm1047_hello[0]
a0eb71c5 7608$9 = 200 'H'
f7dc1244 7609(@value{GDBP})
10998722 7610@end smallexample
a0eb71c5
KB
7611
7612As above, @value{GDBN} uses the target character set for character and
7613string literals you use in expressions:
7614
7615@smallexample
f7dc1244 7616(@value{GDBP}) print '+'
a0eb71c5 7617$10 = 78 '+'
f7dc1244 7618(@value{GDBP})
10998722 7619@end smallexample
a0eb71c5 7620
e33d66ec 7621The @sc{ibm1047} character set uses the number 78 to encode the @samp{+}
a0eb71c5
KB
7622character.
7623
09d4efe1
EZ
7624@node Caching Remote Data
7625@section Caching Data of Remote Targets
7626@cindex caching data of remote targets
7627
7628@value{GDBN} can cache data exchanged between the debugger and a
ea35711c 7629remote target (@pxref{Remote Debugging}). Such caching generally improves
09d4efe1
EZ
7630performance, because it reduces the overhead of the remote protocol by
7631bundling memory reads and writes into large chunks. Unfortunately,
7632@value{GDBN} does not currently know anything about volatile
7633registers, and thus data caching will produce incorrect results when
7634volatile registers are in use.
7635
7636@table @code
7637@kindex set remotecache
7638@item set remotecache on
7639@itemx set remotecache off
7640Set caching state for remote targets. When @code{ON}, use data
7641caching. By default, this option is @code{OFF}.
7642
7643@kindex show remotecache
7644@item show remotecache
7645Show the current state of data caching for remote targets.
7646
7647@kindex info dcache
7648@item info dcache
7649Print the information about the data cache performance. The
7650information displayed includes: the dcache width and depth; and for
7651each cache line, how many times it was referenced, and its data and
7652state (dirty, bad, ok, etc.). This command is useful for debugging
7653the data cache operation.
7654@end table
7655
a0eb71c5 7656
e2e0bcd1
JB
7657@node Macros
7658@chapter C Preprocessor Macros
7659
49efadf5 7660Some languages, such as C and C@t{++}, provide a way to define and invoke
e2e0bcd1
JB
7661``preprocessor macros'' which expand into strings of tokens.
7662@value{GDBN} can evaluate expressions containing macro invocations, show
7663the result of macro expansion, and show a macro's definition, including
7664where it was defined.
7665
7666You may need to compile your program specially to provide @value{GDBN}
7667with information about preprocessor macros. Most compilers do not
7668include macros in their debugging information, even when you compile
7669with the @option{-g} flag. @xref{Compilation}.
7670
7671A program may define a macro at one point, remove that definition later,
7672and then provide a different definition after that. Thus, at different
7673points in the program, a macro may have different definitions, or have
7674no definition at all. If there is a current stack frame, @value{GDBN}
7675uses the macros in scope at that frame's source code line. Otherwise,
7676@value{GDBN} uses the macros in scope at the current listing location;
7677see @ref{List}.
7678
7679At the moment, @value{GDBN} does not support the @code{##}
7680token-splicing operator, the @code{#} stringification operator, or
7681variable-arity macros.
7682
7683Whenever @value{GDBN} evaluates an expression, it always expands any
7684macro invocations present in the expression. @value{GDBN} also provides
7685the following commands for working with macros explicitly.
7686
7687@table @code
7688
7689@kindex macro expand
7690@cindex macro expansion, showing the results of preprocessor
7691@cindex preprocessor macro expansion, showing the results of
7692@cindex expanding preprocessor macros
7693@item macro expand @var{expression}
7694@itemx macro exp @var{expression}
7695Show the results of expanding all preprocessor macro invocations in
7696@var{expression}. Since @value{GDBN} simply expands macros, but does
7697not parse the result, @var{expression} need not be a valid expression;
7698it can be any string of tokens.
7699
09d4efe1 7700@kindex macro exp1
e2e0bcd1
JB
7701@item macro expand-once @var{expression}
7702@itemx macro exp1 @var{expression}
4644b6e3 7703@cindex expand macro once
e2e0bcd1
JB
7704@i{(This command is not yet implemented.)} Show the results of
7705expanding those preprocessor macro invocations that appear explicitly in
7706@var{expression}. Macro invocations appearing in that expansion are
7707left unchanged. This command allows you to see the effect of a
7708particular macro more clearly, without being confused by further
7709expansions. Since @value{GDBN} simply expands macros, but does not
7710parse the result, @var{expression} need not be a valid expression; it
7711can be any string of tokens.
7712
475b0867 7713@kindex info macro
e2e0bcd1
JB
7714@cindex macro definition, showing
7715@cindex definition, showing a macro's
475b0867 7716@item info macro @var{macro}
e2e0bcd1
JB
7717Show the definition of the macro named @var{macro}, and describe the
7718source location where that definition was established.
7719
7720@kindex macro define
7721@cindex user-defined macros
7722@cindex defining macros interactively
7723@cindex macros, user-defined
7724@item macro define @var{macro} @var{replacement-list}
7725@itemx macro define @var{macro}(@var{arglist}) @var{replacement-list}
7726@i{(This command is not yet implemented.)} Introduce a definition for a
7727preprocessor macro named @var{macro}, invocations of which are replaced
7728by the tokens given in @var{replacement-list}. The first form of this
7729command defines an ``object-like'' macro, which takes no arguments; the
7730second form defines a ``function-like'' macro, which takes the arguments
7731given in @var{arglist}.
7732
7733A definition introduced by this command is in scope in every expression
7734evaluated in @value{GDBN}, until it is removed with the @command{macro
7735undef} command, described below. The definition overrides all
7736definitions for @var{macro} present in the program being debugged, as
7737well as any previous user-supplied definition.
7738
7739@kindex macro undef
7740@item macro undef @var{macro}
7741@i{(This command is not yet implemented.)} Remove any user-supplied
7742definition for the macro named @var{macro}. This command only affects
7743definitions provided with the @command{macro define} command, described
7744above; it cannot remove definitions present in the program being
7745debugged.
7746
09d4efe1
EZ
7747@kindex macro list
7748@item macro list
7749@i{(This command is not yet implemented.)} List all the macros
7750defined using the @code{macro define} command.
e2e0bcd1
JB
7751@end table
7752
7753@cindex macros, example of debugging with
7754Here is a transcript showing the above commands in action. First, we
7755show our source files:
7756
7757@smallexample
7758$ cat sample.c
7759#include <stdio.h>
7760#include "sample.h"
7761
7762#define M 42
7763#define ADD(x) (M + x)
7764
7765main ()
7766@{
7767#define N 28
7768 printf ("Hello, world!\n");
7769#undef N
7770 printf ("We're so creative.\n");
7771#define N 1729
7772 printf ("Goodbye, world!\n");
7773@}
7774$ cat sample.h
7775#define Q <
7776$
7777@end smallexample
7778
7779Now, we compile the program using the @sc{gnu} C compiler, @value{NGCC}.
7780We pass the @option{-gdwarf-2} and @option{-g3} flags to ensure the
7781compiler includes information about preprocessor macros in the debugging
7782information.
7783
7784@smallexample
7785$ gcc -gdwarf-2 -g3 sample.c -o sample
7786$
7787@end smallexample
7788
7789Now, we start @value{GDBN} on our sample program:
7790
7791@smallexample
7792$ gdb -nw sample
7793GNU gdb 2002-05-06-cvs
7794Copyright 2002 Free Software Foundation, Inc.
7795GDB is free software, @dots{}
f7dc1244 7796(@value{GDBP})
e2e0bcd1
JB
7797@end smallexample
7798
7799We can expand macros and examine their definitions, even when the
7800program is not running. @value{GDBN} uses the current listing position
7801to decide which macro definitions are in scope:
7802
7803@smallexample
f7dc1244 7804(@value{GDBP}) list main
e2e0bcd1
JB
78053
78064 #define M 42
78075 #define ADD(x) (M + x)
78086
78097 main ()
78108 @{
78119 #define N 28
781210 printf ("Hello, world!\n");
781311 #undef N
781412 printf ("We're so creative.\n");
f7dc1244 7815(@value{GDBP}) info macro ADD
e2e0bcd1
JB
7816Defined at /home/jimb/gdb/macros/play/sample.c:5
7817#define ADD(x) (M + x)
f7dc1244 7818(@value{GDBP}) info macro Q
e2e0bcd1
JB
7819Defined at /home/jimb/gdb/macros/play/sample.h:1
7820 included at /home/jimb/gdb/macros/play/sample.c:2
7821#define Q <
f7dc1244 7822(@value{GDBP}) macro expand ADD(1)
e2e0bcd1 7823expands to: (42 + 1)
f7dc1244 7824(@value{GDBP}) macro expand-once ADD(1)
e2e0bcd1 7825expands to: once (M + 1)
f7dc1244 7826(@value{GDBP})
e2e0bcd1
JB
7827@end smallexample
7828
7829In the example above, note that @command{macro expand-once} expands only
7830the macro invocation explicit in the original text --- the invocation of
7831@code{ADD} --- but does not expand the invocation of the macro @code{M},
7832which was introduced by @code{ADD}.
7833
3f94c067
BW
7834Once the program is running, @value{GDBN} uses the macro definitions in
7835force at the source line of the current stack frame:
e2e0bcd1
JB
7836
7837@smallexample
f7dc1244 7838(@value{GDBP}) break main
e2e0bcd1 7839Breakpoint 1 at 0x8048370: file sample.c, line 10.
f7dc1244 7840(@value{GDBP}) run
b383017d 7841Starting program: /home/jimb/gdb/macros/play/sample
e2e0bcd1
JB
7842
7843Breakpoint 1, main () at sample.c:10
784410 printf ("Hello, world!\n");
f7dc1244 7845(@value{GDBP})
e2e0bcd1
JB
7846@end smallexample
7847
7848At line 10, the definition of the macro @code{N} at line 9 is in force:
7849
7850@smallexample
f7dc1244 7851(@value{GDBP}) info macro N
e2e0bcd1
JB
7852Defined at /home/jimb/gdb/macros/play/sample.c:9
7853#define N 28
f7dc1244 7854(@value{GDBP}) macro expand N Q M
e2e0bcd1 7855expands to: 28 < 42
f7dc1244 7856(@value{GDBP}) print N Q M
e2e0bcd1 7857$1 = 1
f7dc1244 7858(@value{GDBP})
e2e0bcd1
JB
7859@end smallexample
7860
7861As we step over directives that remove @code{N}'s definition, and then
7862give it a new definition, @value{GDBN} finds the definition (or lack
7863thereof) in force at each point:
7864
7865@smallexample
f7dc1244 7866(@value{GDBP}) next
e2e0bcd1
JB
7867Hello, world!
786812 printf ("We're so creative.\n");
f7dc1244 7869(@value{GDBP}) info macro N
e2e0bcd1
JB
7870The symbol `N' has no definition as a C/C++ preprocessor macro
7871at /home/jimb/gdb/macros/play/sample.c:12
f7dc1244 7872(@value{GDBP}) next
e2e0bcd1
JB
7873We're so creative.
787414 printf ("Goodbye, world!\n");
f7dc1244 7875(@value{GDBP}) info macro N
e2e0bcd1
JB
7876Defined at /home/jimb/gdb/macros/play/sample.c:13
7877#define N 1729
f7dc1244 7878(@value{GDBP}) macro expand N Q M
e2e0bcd1 7879expands to: 1729 < 42
f7dc1244 7880(@value{GDBP}) print N Q M
e2e0bcd1 7881$2 = 0
f7dc1244 7882(@value{GDBP})
e2e0bcd1
JB
7883@end smallexample
7884
7885
b37052ae
EZ
7886@node Tracepoints
7887@chapter Tracepoints
7888@c This chapter is based on the documentation written by Michael
7889@c Snyder, David Taylor, Jim Blandy, and Elena Zannoni.
7890
7891@cindex tracepoints
7892In some applications, it is not feasible for the debugger to interrupt
7893the program's execution long enough for the developer to learn
7894anything helpful about its behavior. If the program's correctness
7895depends on its real-time behavior, delays introduced by a debugger
7896might cause the program to change its behavior drastically, or perhaps
7897fail, even when the code itself is correct. It is useful to be able
7898to observe the program's behavior without interrupting it.
7899
7900Using @value{GDBN}'s @code{trace} and @code{collect} commands, you can
7901specify locations in the program, called @dfn{tracepoints}, and
7902arbitrary expressions to evaluate when those tracepoints are reached.
7903Later, using the @code{tfind} command, you can examine the values
7904those expressions had when the program hit the tracepoints. The
7905expressions may also denote objects in memory---structures or arrays,
7906for example---whose values @value{GDBN} should record; while visiting
7907a particular tracepoint, you may inspect those objects as if they were
7908in memory at that moment. However, because @value{GDBN} records these
7909values without interacting with you, it can do so quickly and
7910unobtrusively, hopefully not disturbing the program's behavior.
7911
7912The tracepoint facility is currently available only for remote
9d29849a
JB
7913targets. @xref{Targets}. In addition, your remote target must know
7914how to collect trace data. This functionality is implemented in the
7915remote stub; however, none of the stubs distributed with @value{GDBN}
7916support tracepoints as of this writing. The format of the remote
7917packets used to implement tracepoints are described in @ref{Tracepoint
7918Packets}.
b37052ae
EZ
7919
7920This chapter describes the tracepoint commands and features.
7921
7922@menu
b383017d
RM
7923* Set Tracepoints::
7924* Analyze Collected Data::
7925* Tracepoint Variables::
b37052ae
EZ
7926@end menu
7927
7928@node Set Tracepoints
7929@section Commands to Set Tracepoints
7930
7931Before running such a @dfn{trace experiment}, an arbitrary number of
7932tracepoints can be set. Like a breakpoint (@pxref{Set Breaks}), a
7933tracepoint has a number assigned to it by @value{GDBN}. Like with
7934breakpoints, tracepoint numbers are successive integers starting from
7935one. Many of the commands associated with tracepoints take the
7936tracepoint number as their argument, to identify which tracepoint to
7937work on.
7938
7939For each tracepoint, you can specify, in advance, some arbitrary set
7940of data that you want the target to collect in the trace buffer when
7941it hits that tracepoint. The collected data can include registers,
7942local variables, or global data. Later, you can use @value{GDBN}
7943commands to examine the values these data had at the time the
7944tracepoint was hit.
7945
7946This section describes commands to set tracepoints and associated
7947conditions and actions.
7948
7949@menu
b383017d
RM
7950* Create and Delete Tracepoints::
7951* Enable and Disable Tracepoints::
7952* Tracepoint Passcounts::
7953* Tracepoint Actions::
7954* Listing Tracepoints::
79a6e687 7955* Starting and Stopping Trace Experiments::
b37052ae
EZ
7956@end menu
7957
7958@node Create and Delete Tracepoints
7959@subsection Create and Delete Tracepoints
7960
7961@table @code
7962@cindex set tracepoint
7963@kindex trace
7964@item trace
7965The @code{trace} command is very similar to the @code{break} command.
7966Its argument can be a source line, a function name, or an address in
7967the target program. @xref{Set Breaks}. The @code{trace} command
7968defines a tracepoint, which is a point in the target program where the
7969debugger will briefly stop, collect some data, and then allow the
7970program to continue. Setting a tracepoint or changing its commands
7971doesn't take effect until the next @code{tstart} command; thus, you
7972cannot change the tracepoint attributes once a trace experiment is
7973running.
7974
7975Here are some examples of using the @code{trace} command:
7976
7977@smallexample
7978(@value{GDBP}) @b{trace foo.c:121} // a source file and line number
7979
7980(@value{GDBP}) @b{trace +2} // 2 lines forward
7981
7982(@value{GDBP}) @b{trace my_function} // first source line of function
7983
7984(@value{GDBP}) @b{trace *my_function} // EXACT start address of function
7985
7986(@value{GDBP}) @b{trace *0x2117c4} // an address
7987@end smallexample
7988
7989@noindent
7990You can abbreviate @code{trace} as @code{tr}.
7991
7992@vindex $tpnum
7993@cindex last tracepoint number
7994@cindex recent tracepoint number
7995@cindex tracepoint number
7996The convenience variable @code{$tpnum} records the tracepoint number
7997of the most recently set tracepoint.
7998
7999@kindex delete tracepoint
8000@cindex tracepoint deletion
8001@item delete tracepoint @r{[}@var{num}@r{]}
8002Permanently delete one or more tracepoints. With no argument, the
8003default is to delete all tracepoints.
8004
8005Examples:
8006
8007@smallexample
8008(@value{GDBP}) @b{delete trace 1 2 3} // remove three tracepoints
8009
8010(@value{GDBP}) @b{delete trace} // remove all tracepoints
8011@end smallexample
8012
8013@noindent
8014You can abbreviate this command as @code{del tr}.
8015@end table
8016
8017@node Enable and Disable Tracepoints
8018@subsection Enable and Disable Tracepoints
8019
8020@table @code
8021@kindex disable tracepoint
8022@item disable tracepoint @r{[}@var{num}@r{]}
8023Disable tracepoint @var{num}, or all tracepoints if no argument
8024@var{num} is given. A disabled tracepoint will have no effect during
8025the next trace experiment, but it is not forgotten. You can re-enable
8026a disabled tracepoint using the @code{enable tracepoint} command.
8027
8028@kindex enable tracepoint
8029@item enable tracepoint @r{[}@var{num}@r{]}
8030Enable tracepoint @var{num}, or all tracepoints. The enabled
8031tracepoints will become effective the next time a trace experiment is
8032run.
8033@end table
8034
8035@node Tracepoint Passcounts
8036@subsection Tracepoint Passcounts
8037
8038@table @code
8039@kindex passcount
8040@cindex tracepoint pass count
8041@item passcount @r{[}@var{n} @r{[}@var{num}@r{]]}
8042Set the @dfn{passcount} of a tracepoint. The passcount is a way to
8043automatically stop a trace experiment. If a tracepoint's passcount is
8044@var{n}, then the trace experiment will be automatically stopped on
8045the @var{n}'th time that tracepoint is hit. If the tracepoint number
8046@var{num} is not specified, the @code{passcount} command sets the
8047passcount of the most recently defined tracepoint. If no passcount is
8048given, the trace experiment will run until stopped explicitly by the
8049user.
8050
8051Examples:
8052
8053@smallexample
b383017d 8054(@value{GDBP}) @b{passcount 5 2} // Stop on the 5th execution of
6826cf00 8055@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// tracepoint 2}
b37052ae
EZ
8056
8057(@value{GDBP}) @b{passcount 12} // Stop on the 12th execution of the
6826cf00 8058@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// most recently defined tracepoint.}
b37052ae
EZ
8059(@value{GDBP}) @b{trace foo}
8060(@value{GDBP}) @b{pass 3}
8061(@value{GDBP}) @b{trace bar}
8062(@value{GDBP}) @b{pass 2}
8063(@value{GDBP}) @b{trace baz}
8064(@value{GDBP}) @b{pass 1} // Stop tracing when foo has been
6826cf00
EZ
8065@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// executed 3 times OR when bar has}
8066@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// been executed 2 times}
8067@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// OR when baz has been executed 1 time.}
b37052ae
EZ
8068@end smallexample
8069@end table
8070
8071@node Tracepoint Actions
8072@subsection Tracepoint Action Lists
8073
8074@table @code
8075@kindex actions
8076@cindex tracepoint actions
8077@item actions @r{[}@var{num}@r{]}
8078This command will prompt for a list of actions to be taken when the
8079tracepoint is hit. If the tracepoint number @var{num} is not
8080specified, this command sets the actions for the one that was most
8081recently defined (so that you can define a tracepoint and then say
8082@code{actions} without bothering about its number). You specify the
8083actions themselves on the following lines, one action at a time, and
8084terminate the actions list with a line containing just @code{end}. So
8085far, the only defined actions are @code{collect} and
8086@code{while-stepping}.
8087
8088@cindex remove actions from a tracepoint
8089To remove all actions from a tracepoint, type @samp{actions @var{num}}
8090and follow it immediately with @samp{end}.
8091
8092@smallexample
8093(@value{GDBP}) @b{collect @var{data}} // collect some data
8094
6826cf00 8095(@value{GDBP}) @b{while-stepping 5} // single-step 5 times, collect data
b37052ae 8096
6826cf00 8097(@value{GDBP}) @b{end} // signals the end of actions.
b37052ae
EZ
8098@end smallexample
8099
8100In the following example, the action list begins with @code{collect}
8101commands indicating the things to be collected when the tracepoint is
8102hit. Then, in order to single-step and collect additional data
8103following the tracepoint, a @code{while-stepping} command is used,
8104followed by the list of things to be collected while stepping. The
8105@code{while-stepping} command is terminated by its own separate
8106@code{end} command. Lastly, the action list is terminated by an
8107@code{end} command.
8108
8109@smallexample
8110(@value{GDBP}) @b{trace foo}
8111(@value{GDBP}) @b{actions}
8112Enter actions for tracepoint 1, one per line:
8113> collect bar,baz
8114> collect $regs
8115> while-stepping 12
8116 > collect $fp, $sp
8117 > end
8118end
8119@end smallexample
8120
8121@kindex collect @r{(tracepoints)}
8122@item collect @var{expr1}, @var{expr2}, @dots{}
8123Collect values of the given expressions when the tracepoint is hit.
8124This command accepts a comma-separated list of any valid expressions.
8125In addition to global, static, or local variables, the following
8126special arguments are supported:
8127
8128@table @code
8129@item $regs
8130collect all registers
8131
8132@item $args
8133collect all function arguments
8134
8135@item $locals
8136collect all local variables.
8137@end table
8138
8139You can give several consecutive @code{collect} commands, each one
8140with a single argument, or one @code{collect} command with several
8141arguments separated by commas: the effect is the same.
8142
f5c37c66
EZ
8143The command @code{info scope} (@pxref{Symbols, info scope}) is
8144particularly useful for figuring out what data to collect.
8145
b37052ae
EZ
8146@kindex while-stepping @r{(tracepoints)}
8147@item while-stepping @var{n}
8148Perform @var{n} single-step traces after the tracepoint, collecting
8149new data at each step. The @code{while-stepping} command is
8150followed by the list of what to collect while stepping (followed by
8151its own @code{end} command):
8152
8153@smallexample
8154> while-stepping 12
8155 > collect $regs, myglobal
8156 > end
8157>
8158@end smallexample
8159
8160@noindent
8161You may abbreviate @code{while-stepping} as @code{ws} or
8162@code{stepping}.
8163@end table
8164
8165@node Listing Tracepoints
8166@subsection Listing Tracepoints
8167
8168@table @code
8169@kindex info tracepoints
09d4efe1 8170@kindex info tp
b37052ae
EZ
8171@cindex information about tracepoints
8172@item info tracepoints @r{[}@var{num}@r{]}
8a037dd7 8173Display information about the tracepoint @var{num}. If you don't specify
798c8bc6 8174a tracepoint number, displays information about all the tracepoints
b37052ae
EZ
8175defined so far. For each tracepoint, the following information is
8176shown:
8177
8178@itemize @bullet
8179@item
8180its number
8181@item
8182whether it is enabled or disabled
8183@item
8184its address
8185@item
8186its passcount as given by the @code{passcount @var{n}} command
8187@item
8188its step count as given by the @code{while-stepping @var{n}} command
8189@item
8190where in the source files is the tracepoint set
8191@item
8192its action list as given by the @code{actions} command
8193@end itemize
8194
8195@smallexample
8196(@value{GDBP}) @b{info trace}
8197Num Enb Address PassC StepC What
81981 y 0x002117c4 0 0 <gdb_asm>
6826cf00
EZ
81992 y 0x0020dc64 0 0 in g_test at g_test.c:1375
82003 y 0x0020b1f4 0 0 in get_data at ../foo.c:41
b37052ae
EZ
8201(@value{GDBP})
8202@end smallexample
8203
8204@noindent
8205This command can be abbreviated @code{info tp}.
8206@end table
8207
79a6e687
BW
8208@node Starting and Stopping Trace Experiments
8209@subsection Starting and Stopping Trace Experiments
b37052ae
EZ
8210
8211@table @code
8212@kindex tstart
8213@cindex start a new trace experiment
8214@cindex collected data discarded
8215@item tstart
8216This command takes no arguments. It starts the trace experiment, and
8217begins collecting data. This has the side effect of discarding all
8218the data collected in the trace buffer during the previous trace
8219experiment.
8220
8221@kindex tstop
8222@cindex stop a running trace experiment
8223@item tstop
8224This command takes no arguments. It ends the trace experiment, and
8225stops collecting data.
8226
68c71a2e 8227@strong{Note}: a trace experiment and data collection may stop
b37052ae
EZ
8228automatically if any tracepoint's passcount is reached
8229(@pxref{Tracepoint Passcounts}), or if the trace buffer becomes full.
8230
8231@kindex tstatus
8232@cindex status of trace data collection
8233@cindex trace experiment, status of
8234@item tstatus
8235This command displays the status of the current trace data
8236collection.
8237@end table
8238
8239Here is an example of the commands we described so far:
8240
8241@smallexample
8242(@value{GDBP}) @b{trace gdb_c_test}
8243(@value{GDBP}) @b{actions}
8244Enter actions for tracepoint #1, one per line.
8245> collect $regs,$locals,$args
8246> while-stepping 11
8247 > collect $regs
8248 > end
8249> end
8250(@value{GDBP}) @b{tstart}
8251 [time passes @dots{}]
8252(@value{GDBP}) @b{tstop}
8253@end smallexample
8254
8255
8256@node Analyze Collected Data
79a6e687 8257@section Using the Collected Data
b37052ae
EZ
8258
8259After the tracepoint experiment ends, you use @value{GDBN} commands
8260for examining the trace data. The basic idea is that each tracepoint
8261collects a trace @dfn{snapshot} every time it is hit and another
8262snapshot every time it single-steps. All these snapshots are
8263consecutively numbered from zero and go into a buffer, and you can
8264examine them later. The way you examine them is to @dfn{focus} on a
8265specific trace snapshot. When the remote stub is focused on a trace
8266snapshot, it will respond to all @value{GDBN} requests for memory and
8267registers by reading from the buffer which belongs to that snapshot,
8268rather than from @emph{real} memory or registers of the program being
8269debugged. This means that @strong{all} @value{GDBN} commands
8270(@code{print}, @code{info registers}, @code{backtrace}, etc.) will
8271behave as if we were currently debugging the program state as it was
8272when the tracepoint occurred. Any requests for data that are not in
8273the buffer will fail.
8274
8275@menu
8276* tfind:: How to select a trace snapshot
8277* tdump:: How to display all data for a snapshot
8278* save-tracepoints:: How to save tracepoints for a future run
8279@end menu
8280
8281@node tfind
8282@subsection @code{tfind @var{n}}
8283
8284@kindex tfind
8285@cindex select trace snapshot
8286@cindex find trace snapshot
8287The basic command for selecting a trace snapshot from the buffer is
8288@code{tfind @var{n}}, which finds trace snapshot number @var{n},
8289counting from zero. If no argument @var{n} is given, the next
8290snapshot is selected.
8291
8292Here are the various forms of using the @code{tfind} command.
8293
8294@table @code
8295@item tfind start
8296Find the first snapshot in the buffer. This is a synonym for
8297@code{tfind 0} (since 0 is the number of the first snapshot).
8298
8299@item tfind none
8300Stop debugging trace snapshots, resume @emph{live} debugging.
8301
8302@item tfind end
8303Same as @samp{tfind none}.
8304
8305@item tfind
8306No argument means find the next trace snapshot.
8307
8308@item tfind -
8309Find the previous trace snapshot before the current one. This permits
8310retracing earlier steps.
8311
8312@item tfind tracepoint @var{num}
8313Find the next snapshot associated with tracepoint @var{num}. Search
8314proceeds forward from the last examined trace snapshot. If no
8315argument @var{num} is given, it means find the next snapshot collected
8316for the same tracepoint as the current snapshot.
8317
8318@item tfind pc @var{addr}
8319Find the next snapshot associated with the value @var{addr} of the
8320program counter. Search proceeds forward from the last examined trace
8321snapshot. If no argument @var{addr} is given, it means find the next
8322snapshot with the same value of PC as the current snapshot.
8323
8324@item tfind outside @var{addr1}, @var{addr2}
8325Find the next snapshot whose PC is outside the given range of
8326addresses.
8327
8328@item tfind range @var{addr1}, @var{addr2}
8329Find the next snapshot whose PC is between @var{addr1} and
8330@var{addr2}. @c FIXME: Is the range inclusive or exclusive?
8331
8332@item tfind line @r{[}@var{file}:@r{]}@var{n}
8333Find the next snapshot associated with the source line @var{n}. If
8334the optional argument @var{file} is given, refer to line @var{n} in
8335that source file. Search proceeds forward from the last examined
8336trace snapshot. If no argument @var{n} is given, it means find the
8337next line other than the one currently being examined; thus saying
8338@code{tfind line} repeatedly can appear to have the same effect as
8339stepping from line to line in a @emph{live} debugging session.
8340@end table
8341
8342The default arguments for the @code{tfind} commands are specifically
8343designed to make it easy to scan through the trace buffer. For
8344instance, @code{tfind} with no argument selects the next trace
8345snapshot, and @code{tfind -} with no argument selects the previous
8346trace snapshot. So, by giving one @code{tfind} command, and then
8347simply hitting @key{RET} repeatedly you can examine all the trace
8348snapshots in order. Or, by saying @code{tfind -} and then hitting
8349@key{RET} repeatedly you can examine the snapshots in reverse order.
8350The @code{tfind line} command with no argument selects the snapshot
8351for the next source line executed. The @code{tfind pc} command with
8352no argument selects the next snapshot with the same program counter
8353(PC) as the current frame. The @code{tfind tracepoint} command with
8354no argument selects the next trace snapshot collected by the same
8355tracepoint as the current one.
8356
8357In addition to letting you scan through the trace buffer manually,
8358these commands make it easy to construct @value{GDBN} scripts that
8359scan through the trace buffer and print out whatever collected data
8360you are interested in. Thus, if we want to examine the PC, FP, and SP
8361registers from each trace frame in the buffer, we can say this:
8362
8363@smallexample
8364(@value{GDBP}) @b{tfind start}
8365(@value{GDBP}) @b{while ($trace_frame != -1)}
8366> printf "Frame %d, PC = %08X, SP = %08X, FP = %08X\n", \
8367 $trace_frame, $pc, $sp, $fp
8368> tfind
8369> end
8370
8371Frame 0, PC = 0020DC64, SP = 0030BF3C, FP = 0030BF44
8372Frame 1, PC = 0020DC6C, SP = 0030BF38, FP = 0030BF44
8373Frame 2, PC = 0020DC70, SP = 0030BF34, FP = 0030BF44
8374Frame 3, PC = 0020DC74, SP = 0030BF30, FP = 0030BF44
8375Frame 4, PC = 0020DC78, SP = 0030BF2C, FP = 0030BF44
8376Frame 5, PC = 0020DC7C, SP = 0030BF28, FP = 0030BF44
8377Frame 6, PC = 0020DC80, SP = 0030BF24, FP = 0030BF44
8378Frame 7, PC = 0020DC84, SP = 0030BF20, FP = 0030BF44
8379Frame 8, PC = 0020DC88, SP = 0030BF1C, FP = 0030BF44
8380Frame 9, PC = 0020DC8E, SP = 0030BF18, FP = 0030BF44
8381Frame 10, PC = 00203F6C, SP = 0030BE3C, FP = 0030BF14
8382@end smallexample
8383
8384Or, if we want to examine the variable @code{X} at each source line in
8385the buffer:
8386
8387@smallexample
8388(@value{GDBP}) @b{tfind start}
8389(@value{GDBP}) @b{while ($trace_frame != -1)}
8390> printf "Frame %d, X == %d\n", $trace_frame, X
8391> tfind line
8392> end
8393
8394Frame 0, X = 1
8395Frame 7, X = 2
8396Frame 13, X = 255
8397@end smallexample
8398
8399@node tdump
8400@subsection @code{tdump}
8401@kindex tdump
8402@cindex dump all data collected at tracepoint
8403@cindex tracepoint data, display
8404
8405This command takes no arguments. It prints all the data collected at
8406the current trace snapshot.
8407
8408@smallexample
8409(@value{GDBP}) @b{trace 444}
8410(@value{GDBP}) @b{actions}
8411Enter actions for tracepoint #2, one per line:
8412> collect $regs, $locals, $args, gdb_long_test
8413> end
8414
8415(@value{GDBP}) @b{tstart}
8416
8417(@value{GDBP}) @b{tfind line 444}
8418#0 gdb_test (p1=0x11, p2=0x22, p3=0x33, p4=0x44, p5=0x55, p6=0x66)
8419at gdb_test.c:444
8420444 printp( "%s: arguments = 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X\n", )
8421
8422(@value{GDBP}) @b{tdump}
8423Data collected at tracepoint 2, trace frame 1:
8424d0 0xc4aa0085 -995491707
8425d1 0x18 24
8426d2 0x80 128
8427d3 0x33 51
8428d4 0x71aea3d 119204413
8429d5 0x22 34
8430d6 0xe0 224
8431d7 0x380035 3670069
8432a0 0x19e24a 1696330
8433a1 0x3000668 50333288
8434a2 0x100 256
8435a3 0x322000 3284992
8436a4 0x3000698 50333336
8437a5 0x1ad3cc 1758156
8438fp 0x30bf3c 0x30bf3c
8439sp 0x30bf34 0x30bf34
8440ps 0x0 0
8441pc 0x20b2c8 0x20b2c8
8442fpcontrol 0x0 0
8443fpstatus 0x0 0
8444fpiaddr 0x0 0
8445p = 0x20e5b4 "gdb-test"
8446p1 = (void *) 0x11
8447p2 = (void *) 0x22
8448p3 = (void *) 0x33
8449p4 = (void *) 0x44
8450p5 = (void *) 0x55
8451p6 = (void *) 0x66
8452gdb_long_test = 17 '\021'
8453
8454(@value{GDBP})
8455@end smallexample
8456
8457@node save-tracepoints
8458@subsection @code{save-tracepoints @var{filename}}
8459@kindex save-tracepoints
8460@cindex save tracepoints for future sessions
8461
8462This command saves all current tracepoint definitions together with
8463their actions and passcounts, into a file @file{@var{filename}}
8464suitable for use in a later debugging session. To read the saved
8465tracepoint definitions, use the @code{source} command (@pxref{Command
8466Files}).
8467
8468@node Tracepoint Variables
8469@section Convenience Variables for Tracepoints
8470@cindex tracepoint variables
8471@cindex convenience variables for tracepoints
8472
8473@table @code
8474@vindex $trace_frame
8475@item (int) $trace_frame
8476The current trace snapshot (a.k.a.@: @dfn{frame}) number, or -1 if no
8477snapshot is selected.
8478
8479@vindex $tracepoint
8480@item (int) $tracepoint
8481The tracepoint for the current trace snapshot.
8482
8483@vindex $trace_line
8484@item (int) $trace_line
8485The line number for the current trace snapshot.
8486
8487@vindex $trace_file
8488@item (char []) $trace_file
8489The source file for the current trace snapshot.
8490
8491@vindex $trace_func
8492@item (char []) $trace_func
8493The name of the function containing @code{$tracepoint}.
8494@end table
8495
8496Note: @code{$trace_file} is not suitable for use in @code{printf},
8497use @code{output} instead.
8498
8499Here's a simple example of using these convenience variables for
8500stepping through all the trace snapshots and printing some of their
8501data.
8502
8503@smallexample
8504(@value{GDBP}) @b{tfind start}
8505
8506(@value{GDBP}) @b{while $trace_frame != -1}
8507> output $trace_file
8508> printf ", line %d (tracepoint #%d)\n", $trace_line, $tracepoint
8509> tfind
8510> end
8511@end smallexample
8512
df0cd8c5
JB
8513@node Overlays
8514@chapter Debugging Programs That Use Overlays
8515@cindex overlays
8516
8517If your program is too large to fit completely in your target system's
8518memory, you can sometimes use @dfn{overlays} to work around this
8519problem. @value{GDBN} provides some support for debugging programs that
8520use overlays.
8521
8522@menu
8523* How Overlays Work:: A general explanation of overlays.
8524* Overlay Commands:: Managing overlays in @value{GDBN}.
8525* Automatic Overlay Debugging:: @value{GDBN} can find out which overlays are
8526 mapped by asking the inferior.
8527* Overlay Sample Program:: A sample program using overlays.
8528@end menu
8529
8530@node How Overlays Work
8531@section How Overlays Work
8532@cindex mapped overlays
8533@cindex unmapped overlays
8534@cindex load address, overlay's
8535@cindex mapped address
8536@cindex overlay area
8537
8538Suppose you have a computer whose instruction address space is only 64
8539kilobytes long, but which has much more memory which can be accessed by
8540other means: special instructions, segment registers, or memory
8541management hardware, for example. Suppose further that you want to
8542adapt a program which is larger than 64 kilobytes to run on this system.
8543
8544One solution is to identify modules of your program which are relatively
8545independent, and need not call each other directly; call these modules
8546@dfn{overlays}. Separate the overlays from the main program, and place
8547their machine code in the larger memory. Place your main program in
8548instruction memory, but leave at least enough space there to hold the
8549largest overlay as well.
8550
8551Now, to call a function located in an overlay, you must first copy that
8552overlay's machine code from the large memory into the space set aside
8553for it in the instruction memory, and then jump to its entry point
8554there.
8555
c928edc0
AC
8556@c NB: In the below the mapped area's size is greater or equal to the
8557@c size of all overlays. This is intentional to remind the developer
8558@c that overlays don't necessarily need to be the same size.
8559
474c8240 8560@smallexample
df0cd8c5 8561@group
c928edc0
AC
8562 Data Instruction Larger
8563Address Space Address Space Address Space
8564+-----------+ +-----------+ +-----------+
8565| | | | | |
8566+-----------+ +-----------+ +-----------+<-- overlay 1
8567| program | | main | .----| overlay 1 | load address
8568| variables | | program | | +-----------+
8569| and heap | | | | | |
8570+-----------+ | | | +-----------+<-- overlay 2
8571| | +-----------+ | | | load address
8572+-----------+ | | | .-| overlay 2 |
8573 | | | | | |
8574 mapped --->+-----------+ | | +-----------+
8575 address | | | | | |
8576 | overlay | <-' | | |
8577 | area | <---' +-----------+<-- overlay 3
8578 | | <---. | | load address
8579 +-----------+ `--| overlay 3 |
8580 | | | |
8581 +-----------+ | |
8582 +-----------+
8583 | |
8584 +-----------+
8585
8586 @anchor{A code overlay}A code overlay
df0cd8c5 8587@end group
474c8240 8588@end smallexample
df0cd8c5 8589
c928edc0
AC
8590The diagram (@pxref{A code overlay}) shows a system with separate data
8591and instruction address spaces. To map an overlay, the program copies
8592its code from the larger address space to the instruction address space.
8593Since the overlays shown here all use the same mapped address, only one
8594may be mapped at a time. For a system with a single address space for
8595data and instructions, the diagram would be similar, except that the
8596program variables and heap would share an address space with the main
8597program and the overlay area.
df0cd8c5
JB
8598
8599An overlay loaded into instruction memory and ready for use is called a
8600@dfn{mapped} overlay; its @dfn{mapped address} is its address in the
8601instruction memory. An overlay not present (or only partially present)
8602in instruction memory is called @dfn{unmapped}; its @dfn{load address}
8603is its address in the larger memory. The mapped address is also called
8604the @dfn{virtual memory address}, or @dfn{VMA}; the load address is also
8605called the @dfn{load memory address}, or @dfn{LMA}.
8606
8607Unfortunately, overlays are not a completely transparent way to adapt a
8608program to limited instruction memory. They introduce a new set of
8609global constraints you must keep in mind as you design your program:
8610
8611@itemize @bullet
8612
8613@item
8614Before calling or returning to a function in an overlay, your program
8615must make sure that overlay is actually mapped. Otherwise, the call or
8616return will transfer control to the right address, but in the wrong
8617overlay, and your program will probably crash.
8618
8619@item
8620If the process of mapping an overlay is expensive on your system, you
8621will need to choose your overlays carefully to minimize their effect on
8622your program's performance.
8623
8624@item
8625The executable file you load onto your system must contain each
8626overlay's instructions, appearing at the overlay's load address, not its
8627mapped address. However, each overlay's instructions must be relocated
8628and its symbols defined as if the overlay were at its mapped address.
8629You can use GNU linker scripts to specify different load and relocation
8630addresses for pieces of your program; see @ref{Overlay Description,,,
8631ld.info, Using ld: the GNU linker}.
8632
8633@item
8634The procedure for loading executable files onto your system must be able
8635to load their contents into the larger address space as well as the
8636instruction and data spaces.
8637
8638@end itemize
8639
8640The overlay system described above is rather simple, and could be
8641improved in many ways:
8642
8643@itemize @bullet
8644
8645@item
8646If your system has suitable bank switch registers or memory management
8647hardware, you could use those facilities to make an overlay's load area
8648contents simply appear at their mapped address in instruction space.
8649This would probably be faster than copying the overlay to its mapped
8650area in the usual way.
8651
8652@item
8653If your overlays are small enough, you could set aside more than one
8654overlay area, and have more than one overlay mapped at a time.
8655
8656@item
8657You can use overlays to manage data, as well as instructions. In
8658general, data overlays are even less transparent to your design than
8659code overlays: whereas code overlays only require care when you call or
8660return to functions, data overlays require care every time you access
8661the data. Also, if you change the contents of a data overlay, you
8662must copy its contents back out to its load address before you can copy a
8663different data overlay into the same mapped area.
8664
8665@end itemize
8666
8667
8668@node Overlay Commands
8669@section Overlay Commands
8670
8671To use @value{GDBN}'s overlay support, each overlay in your program must
8672correspond to a separate section of the executable file. The section's
8673virtual memory address and load memory address must be the overlay's
8674mapped and load addresses. Identifying overlays with sections allows
8675@value{GDBN} to determine the appropriate address of a function or
8676variable, depending on whether the overlay is mapped or not.
8677
8678@value{GDBN}'s overlay commands all start with the word @code{overlay};
8679you can abbreviate this as @code{ov} or @code{ovly}. The commands are:
8680
8681@table @code
8682@item overlay off
4644b6e3 8683@kindex overlay
df0cd8c5
JB
8684Disable @value{GDBN}'s overlay support. When overlay support is
8685disabled, @value{GDBN} assumes that all functions and variables are
8686always present at their mapped addresses. By default, @value{GDBN}'s
8687overlay support is disabled.
8688
8689@item overlay manual
df0cd8c5
JB
8690@cindex manual overlay debugging
8691Enable @dfn{manual} overlay debugging. In this mode, @value{GDBN}
8692relies on you to tell it which overlays are mapped, and which are not,
8693using the @code{overlay map-overlay} and @code{overlay unmap-overlay}
8694commands described below.
8695
8696@item overlay map-overlay @var{overlay}
8697@itemx overlay map @var{overlay}
df0cd8c5
JB
8698@cindex map an overlay
8699Tell @value{GDBN} that @var{overlay} is now mapped; @var{overlay} must
8700be the name of the object file section containing the overlay. When an
8701overlay is mapped, @value{GDBN} assumes it can find the overlay's
8702functions and variables at their mapped addresses. @value{GDBN} assumes
8703that any other overlays whose mapped ranges overlap that of
8704@var{overlay} are now unmapped.
8705
8706@item overlay unmap-overlay @var{overlay}
8707@itemx overlay unmap @var{overlay}
df0cd8c5
JB
8708@cindex unmap an overlay
8709Tell @value{GDBN} that @var{overlay} is no longer mapped; @var{overlay}
8710must be the name of the object file section containing the overlay.
8711When an overlay is unmapped, @value{GDBN} assumes it can find the
8712overlay's functions and variables at their load addresses.
8713
8714@item overlay auto
df0cd8c5
JB
8715Enable @dfn{automatic} overlay debugging. In this mode, @value{GDBN}
8716consults a data structure the overlay manager maintains in the inferior
8717to see which overlays are mapped. For details, see @ref{Automatic
8718Overlay Debugging}.
8719
8720@item overlay load-target
8721@itemx overlay load
df0cd8c5
JB
8722@cindex reloading the overlay table
8723Re-read the overlay table from the inferior. Normally, @value{GDBN}
8724re-reads the table @value{GDBN} automatically each time the inferior
8725stops, so this command should only be necessary if you have changed the
8726overlay mapping yourself using @value{GDBN}. This command is only
8727useful when using automatic overlay debugging.
8728
8729@item overlay list-overlays
8730@itemx overlay list
8731@cindex listing mapped overlays
8732Display a list of the overlays currently mapped, along with their mapped
8733addresses, load addresses, and sizes.
8734
8735@end table
8736
8737Normally, when @value{GDBN} prints a code address, it includes the name
8738of the function the address falls in:
8739
474c8240 8740@smallexample
f7dc1244 8741(@value{GDBP}) print main
df0cd8c5 8742$3 = @{int ()@} 0x11a0 <main>
474c8240 8743@end smallexample
df0cd8c5
JB
8744@noindent
8745When overlay debugging is enabled, @value{GDBN} recognizes code in
8746unmapped overlays, and prints the names of unmapped functions with
8747asterisks around them. For example, if @code{foo} is a function in an
8748unmapped overlay, @value{GDBN} prints it this way:
8749
474c8240 8750@smallexample
f7dc1244 8751(@value{GDBP}) overlay list
df0cd8c5 8752No sections are mapped.
f7dc1244 8753(@value{GDBP}) print foo
df0cd8c5 8754$5 = @{int (int)@} 0x100000 <*foo*>
474c8240 8755@end smallexample
df0cd8c5
JB
8756@noindent
8757When @code{foo}'s overlay is mapped, @value{GDBN} prints the function's
8758name normally:
8759
474c8240 8760@smallexample
f7dc1244 8761(@value{GDBP}) overlay list
b383017d 8762Section .ov.foo.text, loaded at 0x100000 - 0x100034,
df0cd8c5 8763 mapped at 0x1016 - 0x104a
f7dc1244 8764(@value{GDBP}) print foo
df0cd8c5 8765$6 = @{int (int)@} 0x1016 <foo>
474c8240 8766@end smallexample
df0cd8c5
JB
8767
8768When overlay debugging is enabled, @value{GDBN} can find the correct
8769address for functions and variables in an overlay, whether or not the
8770overlay is mapped. This allows most @value{GDBN} commands, like
8771@code{break} and @code{disassemble}, to work normally, even on unmapped
8772code. However, @value{GDBN}'s breakpoint support has some limitations:
8773
8774@itemize @bullet
8775@item
8776@cindex breakpoints in overlays
8777@cindex overlays, setting breakpoints in
8778You can set breakpoints in functions in unmapped overlays, as long as
8779@value{GDBN} can write to the overlay at its load address.
8780@item
8781@value{GDBN} can not set hardware or simulator-based breakpoints in
8782unmapped overlays. However, if you set a breakpoint at the end of your
8783overlay manager (and tell @value{GDBN} which overlays are now mapped, if
8784you are using manual overlay management), @value{GDBN} will re-set its
8785breakpoints properly.
8786@end itemize
8787
8788
8789@node Automatic Overlay Debugging
8790@section Automatic Overlay Debugging
8791@cindex automatic overlay debugging
8792
8793@value{GDBN} can automatically track which overlays are mapped and which
8794are not, given some simple co-operation from the overlay manager in the
8795inferior. If you enable automatic overlay debugging with the
8796@code{overlay auto} command (@pxref{Overlay Commands}), @value{GDBN}
8797looks in the inferior's memory for certain variables describing the
8798current state of the overlays.
8799
8800Here are the variables your overlay manager must define to support
8801@value{GDBN}'s automatic overlay debugging:
8802
8803@table @asis
8804
8805@item @code{_ovly_table}:
8806This variable must be an array of the following structures:
8807
474c8240 8808@smallexample
df0cd8c5
JB
8809struct
8810@{
8811 /* The overlay's mapped address. */
8812 unsigned long vma;
8813
8814 /* The size of the overlay, in bytes. */
8815 unsigned long size;
8816
8817 /* The overlay's load address. */
8818 unsigned long lma;
8819
8820 /* Non-zero if the overlay is currently mapped;
8821 zero otherwise. */
8822 unsigned long mapped;
8823@}
474c8240 8824@end smallexample
df0cd8c5
JB
8825
8826@item @code{_novlys}:
8827This variable must be a four-byte signed integer, holding the total
8828number of elements in @code{_ovly_table}.
8829
8830@end table
8831
8832To decide whether a particular overlay is mapped or not, @value{GDBN}
8833looks for an entry in @w{@code{_ovly_table}} whose @code{vma} and
8834@code{lma} members equal the VMA and LMA of the overlay's section in the
8835executable file. When @value{GDBN} finds a matching entry, it consults
8836the entry's @code{mapped} member to determine whether the overlay is
8837currently mapped.
8838
81d46470 8839In addition, your overlay manager may define a function called
def71bfa 8840@code{_ovly_debug_event}. If this function is defined, @value{GDBN}
81d46470
MS
8841will silently set a breakpoint there. If the overlay manager then
8842calls this function whenever it has changed the overlay table, this
8843will enable @value{GDBN} to accurately keep track of which overlays
8844are in program memory, and update any breakpoints that may be set
b383017d 8845in overlays. This will allow breakpoints to work even if the
81d46470
MS
8846overlays are kept in ROM or other non-writable memory while they
8847are not being executed.
df0cd8c5
JB
8848
8849@node Overlay Sample Program
8850@section Overlay Sample Program
8851@cindex overlay example program
8852
8853When linking a program which uses overlays, you must place the overlays
8854at their load addresses, while relocating them to run at their mapped
8855addresses. To do this, you must write a linker script (@pxref{Overlay
8856Description,,, ld.info, Using ld: the GNU linker}). Unfortunately,
8857since linker scripts are specific to a particular host system, target
8858architecture, and target memory layout, this manual cannot provide
8859portable sample code demonstrating @value{GDBN}'s overlay support.
8860
8861However, the @value{GDBN} source distribution does contain an overlaid
8862program, with linker scripts for a few systems, as part of its test
8863suite. The program consists of the following files from
8864@file{gdb/testsuite/gdb.base}:
8865
8866@table @file
8867@item overlays.c
8868The main program file.
8869@item ovlymgr.c
8870A simple overlay manager, used by @file{overlays.c}.
8871@item foo.c
8872@itemx bar.c
8873@itemx baz.c
8874@itemx grbx.c
8875Overlay modules, loaded and used by @file{overlays.c}.
8876@item d10v.ld
8877@itemx m32r.ld
8878Linker scripts for linking the test program on the @code{d10v-elf}
8879and @code{m32r-elf} targets.
8880@end table
8881
8882You can build the test program using the @code{d10v-elf} GCC
8883cross-compiler like this:
8884
474c8240 8885@smallexample
df0cd8c5
JB
8886$ d10v-elf-gcc -g -c overlays.c
8887$ d10v-elf-gcc -g -c ovlymgr.c
8888$ d10v-elf-gcc -g -c foo.c
8889$ d10v-elf-gcc -g -c bar.c
8890$ d10v-elf-gcc -g -c baz.c
8891$ d10v-elf-gcc -g -c grbx.c
8892$ d10v-elf-gcc -g overlays.o ovlymgr.o foo.o bar.o \
8893 baz.o grbx.o -Wl,-Td10v.ld -o overlays
474c8240 8894@end smallexample
df0cd8c5
JB
8895
8896The build process is identical for any other architecture, except that
8897you must substitute the appropriate compiler and linker script for the
8898target system for @code{d10v-elf-gcc} and @code{d10v.ld}.
8899
8900
6d2ebf8b 8901@node Languages
c906108c
SS
8902@chapter Using @value{GDBN} with Different Languages
8903@cindex languages
8904
c906108c
SS
8905Although programming languages generally have common aspects, they are
8906rarely expressed in the same manner. For instance, in ANSI C,
8907dereferencing a pointer @code{p} is accomplished by @code{*p}, but in
8908Modula-2, it is accomplished by @code{p^}. Values can also be
5d161b24 8909represented (and displayed) differently. Hex numbers in C appear as
c906108c 8910@samp{0x1ae}, while in Modula-2 they appear as @samp{1AEH}.
c906108c
SS
8911
8912@cindex working language
8913Language-specific information is built into @value{GDBN} for some languages,
8914allowing you to express operations like the above in your program's
8915native language, and allowing @value{GDBN} to output values in a manner
8916consistent with the syntax of your program's native language. The
8917language you use to build expressions is called the @dfn{working
8918language}.
8919
8920@menu
8921* Setting:: Switching between source languages
8922* Show:: Displaying the language
c906108c 8923* Checks:: Type and range checks
79a6e687
BW
8924* Supported Languages:: Supported languages
8925* Unsupported Languages:: Unsupported languages
c906108c
SS
8926@end menu
8927
6d2ebf8b 8928@node Setting
79a6e687 8929@section Switching Between Source Languages
c906108c
SS
8930
8931There are two ways to control the working language---either have @value{GDBN}
8932set it automatically, or select it manually yourself. You can use the
8933@code{set language} command for either purpose. On startup, @value{GDBN}
8934defaults to setting the language automatically. The working language is
8935used to determine how expressions you type are interpreted, how values
8936are printed, etc.
8937
8938In addition to the working language, every source file that
8939@value{GDBN} knows about has its own working language. For some object
8940file formats, the compiler might indicate which language a particular
8941source file is in. However, most of the time @value{GDBN} infers the
8942language from the name of the file. The language of a source file
b37052ae 8943controls whether C@t{++} names are demangled---this way @code{backtrace} can
c906108c 8944show each frame appropriately for its own language. There is no way to
d4f3574e
SS
8945set the language of a source file from within @value{GDBN}, but you can
8946set the language associated with a filename extension. @xref{Show, ,
79a6e687 8947Displaying the Language}.
c906108c
SS
8948
8949This is most commonly a problem when you use a program, such
5d161b24 8950as @code{cfront} or @code{f2c}, that generates C but is written in
c906108c
SS
8951another language. In that case, make the
8952program use @code{#line} directives in its C output; that way
8953@value{GDBN} will know the correct language of the source code of the original
8954program, and will display that source code, not the generated C code.
8955
8956@menu
8957* Filenames:: Filename extensions and languages.
8958* Manually:: Setting the working language manually
8959* Automatically:: Having @value{GDBN} infer the source language
8960@end menu
8961
6d2ebf8b 8962@node Filenames
79a6e687 8963@subsection List of Filename Extensions and Languages
c906108c
SS
8964
8965If a source file name ends in one of the following extensions, then
8966@value{GDBN} infers that its language is the one indicated.
8967
8968@table @file
e07c999f
PH
8969@item .ada
8970@itemx .ads
8971@itemx .adb
8972@itemx .a
8973Ada source file.
c906108c
SS
8974
8975@item .c
8976C source file
8977
8978@item .C
8979@itemx .cc
8980@itemx .cp
8981@itemx .cpp
8982@itemx .cxx
8983@itemx .c++
b37052ae 8984C@t{++} source file
c906108c 8985
b37303ee
AF
8986@item .m
8987Objective-C source file
8988
c906108c
SS
8989@item .f
8990@itemx .F
8991Fortran source file
8992
c906108c
SS
8993@item .mod
8994Modula-2 source file
c906108c
SS
8995
8996@item .s
8997@itemx .S
8998Assembler source file. This actually behaves almost like C, but
8999@value{GDBN} does not skip over function prologues when stepping.
9000@end table
9001
9002In addition, you may set the language associated with a filename
79a6e687 9003extension. @xref{Show, , Displaying the Language}.
c906108c 9004
6d2ebf8b 9005@node Manually
79a6e687 9006@subsection Setting the Working Language
c906108c
SS
9007
9008If you allow @value{GDBN} to set the language automatically,
9009expressions are interpreted the same way in your debugging session and
9010your program.
9011
9012@kindex set language
9013If you wish, you may set the language manually. To do this, issue the
9014command @samp{set language @var{lang}}, where @var{lang} is the name of
5d161b24 9015a language, such as
c906108c 9016@code{c} or @code{modula-2}.
c906108c
SS
9017For a list of the supported languages, type @samp{set language}.
9018
c906108c
SS
9019Setting the language manually prevents @value{GDBN} from updating the working
9020language automatically. This can lead to confusion if you try
9021to debug a program when the working language is not the same as the
9022source language, when an expression is acceptable to both
9023languages---but means different things. For instance, if the current
9024source file were written in C, and @value{GDBN} was parsing Modula-2, a
9025command such as:
9026
474c8240 9027@smallexample
c906108c 9028print a = b + c
474c8240 9029@end smallexample
c906108c
SS
9030
9031@noindent
9032might not have the effect you intended. In C, this means to add
9033@code{b} and @code{c} and place the result in @code{a}. The result
9034printed would be the value of @code{a}. In Modula-2, this means to compare
9035@code{a} to the result of @code{b+c}, yielding a @code{BOOLEAN} value.
c906108c 9036
6d2ebf8b 9037@node Automatically
79a6e687 9038@subsection Having @value{GDBN} Infer the Source Language
c906108c
SS
9039
9040To have @value{GDBN} set the working language automatically, use
9041@samp{set language local} or @samp{set language auto}. @value{GDBN}
9042then infers the working language. That is, when your program stops in a
9043frame (usually by encountering a breakpoint), @value{GDBN} sets the
9044working language to the language recorded for the function in that
9045frame. If the language for a frame is unknown (that is, if the function
9046or block corresponding to the frame was defined in a source file that
9047does not have a recognized extension), the current working language is
9048not changed, and @value{GDBN} issues a warning.
9049
9050This may not seem necessary for most programs, which are written
9051entirely in one source language. However, program modules and libraries
9052written in one source language can be used by a main program written in
9053a different source language. Using @samp{set language auto} in this
9054case frees you from having to set the working language manually.
9055
6d2ebf8b 9056@node Show
79a6e687 9057@section Displaying the Language
c906108c
SS
9058
9059The following commands help you find out which language is the
9060working language, and also what language source files were written in.
9061
c906108c
SS
9062@table @code
9063@item show language
9c16f35a 9064@kindex show language
c906108c
SS
9065Display the current working language. This is the
9066language you can use with commands such as @code{print} to
9067build and compute expressions that may involve variables in your program.
9068
9069@item info frame
4644b6e3 9070@kindex info frame@r{, show the source language}
5d161b24 9071Display the source language for this frame. This language becomes the
c906108c 9072working language if you use an identifier from this frame.
79a6e687 9073@xref{Frame Info, ,Information about a Frame}, to identify the other
c906108c
SS
9074information listed here.
9075
9076@item info source
4644b6e3 9077@kindex info source@r{, show the source language}
c906108c 9078Display the source language of this source file.
5d161b24 9079@xref{Symbols, ,Examining the Symbol Table}, to identify the other
c906108c
SS
9080information listed here.
9081@end table
9082
9083In unusual circumstances, you may have source files with extensions
9084not in the standard list. You can then set the extension associated
9085with a language explicitly:
9086
c906108c 9087@table @code
09d4efe1 9088@item set extension-language @var{ext} @var{language}
9c16f35a 9089@kindex set extension-language
09d4efe1
EZ
9090Tell @value{GDBN} that source files with extension @var{ext} are to be
9091assumed as written in the source language @var{language}.
c906108c
SS
9092
9093@item info extensions
9c16f35a 9094@kindex info extensions
c906108c
SS
9095List all the filename extensions and the associated languages.
9096@end table
9097
6d2ebf8b 9098@node Checks
79a6e687 9099@section Type and Range Checking
c906108c
SS
9100
9101@quotation
9102@emph{Warning:} In this release, the @value{GDBN} commands for type and range
9103checking are included, but they do not yet have any effect. This
9104section documents the intended facilities.
9105@end quotation
9106@c FIXME remove warning when type/range code added
9107
9108Some languages are designed to guard you against making seemingly common
9109errors through a series of compile- and run-time checks. These include
9110checking the type of arguments to functions and operators, and making
9111sure mathematical overflows are caught at run time. Checks such as
9112these help to ensure a program's correctness once it has been compiled
9113by eliminating type mismatches, and providing active checks for range
9114errors when your program is running.
9115
9116@value{GDBN} can check for conditions like the above if you wish.
9c16f35a
EZ
9117Although @value{GDBN} does not check the statements in your program,
9118it can check expressions entered directly into @value{GDBN} for
9119evaluation via the @code{print} command, for example. As with the
9120working language, @value{GDBN} can also decide whether or not to check
9121automatically based on your program's source language.
79a6e687 9122@xref{Supported Languages, ,Supported Languages}, for the default
9c16f35a 9123settings of supported languages.
c906108c
SS
9124
9125@menu
9126* Type Checking:: An overview of type checking
9127* Range Checking:: An overview of range checking
9128@end menu
9129
9130@cindex type checking
9131@cindex checks, type
6d2ebf8b 9132@node Type Checking
79a6e687 9133@subsection An Overview of Type Checking
c906108c
SS
9134
9135Some languages, such as Modula-2, are strongly typed, meaning that the
9136arguments to operators and functions have to be of the correct type,
9137otherwise an error occurs. These checks prevent type mismatch
9138errors from ever causing any run-time problems. For example,
9139
9140@smallexample
91411 + 2 @result{} 3
9142@exdent but
9143@error{} 1 + 2.3
9144@end smallexample
9145
9146The second example fails because the @code{CARDINAL} 1 is not
9147type-compatible with the @code{REAL} 2.3.
9148
5d161b24
DB
9149For the expressions you use in @value{GDBN} commands, you can tell the
9150@value{GDBN} type checker to skip checking;
9151to treat any mismatches as errors and abandon the expression;
9152or to only issue warnings when type mismatches occur,
c906108c
SS
9153but evaluate the expression anyway. When you choose the last of
9154these, @value{GDBN} evaluates expressions like the second example above, but
9155also issues a warning.
9156
5d161b24
DB
9157Even if you turn type checking off, there may be other reasons
9158related to type that prevent @value{GDBN} from evaluating an expression.
9159For instance, @value{GDBN} does not know how to add an @code{int} and
9160a @code{struct foo}. These particular type errors have nothing to do
9161with the language in use, and usually arise from expressions, such as
c906108c
SS
9162the one described above, which make little sense to evaluate anyway.
9163
9164Each language defines to what degree it is strict about type. For
9165instance, both Modula-2 and C require the arguments to arithmetical
9166operators to be numbers. In C, enumerated types and pointers can be
9167represented as numbers, so that they are valid arguments to mathematical
79a6e687 9168operators. @xref{Supported Languages, ,Supported Languages}, for further
c906108c
SS
9169details on specific languages.
9170
9171@value{GDBN} provides some additional commands for controlling the type checker:
9172
c906108c
SS
9173@kindex set check type
9174@kindex show check type
9175@table @code
9176@item set check type auto
9177Set type checking on or off based on the current working language.
79a6e687 9178@xref{Supported Languages, ,Supported Languages}, for the default settings for
c906108c
SS
9179each language.
9180
9181@item set check type on
9182@itemx set check type off
9183Set type checking on or off, overriding the default setting for the
9184current working language. Issue a warning if the setting does not
9185match the language default. If any type mismatches occur in
d4f3574e 9186evaluating an expression while type checking is on, @value{GDBN} prints a
c906108c
SS
9187message and aborts evaluation of the expression.
9188
9189@item set check type warn
9190Cause the type checker to issue warnings, but to always attempt to
9191evaluate the expression. Evaluating the expression may still
9192be impossible for other reasons. For example, @value{GDBN} cannot add
9193numbers and structures.
9194
9195@item show type
5d161b24 9196Show the current setting of the type checker, and whether or not @value{GDBN}
c906108c
SS
9197is setting it automatically.
9198@end table
9199
9200@cindex range checking
9201@cindex checks, range
6d2ebf8b 9202@node Range Checking
79a6e687 9203@subsection An Overview of Range Checking
c906108c
SS
9204
9205In some languages (such as Modula-2), it is an error to exceed the
9206bounds of a type; this is enforced with run-time checks. Such range
9207checking is meant to ensure program correctness by making sure
9208computations do not overflow, or indices on an array element access do
9209not exceed the bounds of the array.
9210
9211For expressions you use in @value{GDBN} commands, you can tell
9212@value{GDBN} to treat range errors in one of three ways: ignore them,
9213always treat them as errors and abandon the expression, or issue
9214warnings but evaluate the expression anyway.
9215
9216A range error can result from numerical overflow, from exceeding an
9217array index bound, or when you type a constant that is not a member
9218of any type. Some languages, however, do not treat overflows as an
9219error. In many implementations of C, mathematical overflow causes the
9220result to ``wrap around'' to lower values---for example, if @var{m} is
9221the largest integer value, and @var{s} is the smallest, then
9222
474c8240 9223@smallexample
c906108c 9224@var{m} + 1 @result{} @var{s}
474c8240 9225@end smallexample
c906108c
SS
9226
9227This, too, is specific to individual languages, and in some cases
79a6e687
BW
9228specific to individual compilers or machines. @xref{Supported Languages, ,
9229Supported Languages}, for further details on specific languages.
c906108c
SS
9230
9231@value{GDBN} provides some additional commands for controlling the range checker:
9232
c906108c
SS
9233@kindex set check range
9234@kindex show check range
9235@table @code
9236@item set check range auto
9237Set range checking on or off based on the current working language.
79a6e687 9238@xref{Supported Languages, ,Supported Languages}, for the default settings for
c906108c
SS
9239each language.
9240
9241@item set check range on
9242@itemx set check range off
9243Set range checking on or off, overriding the default setting for the
9244current working language. A warning is issued if the setting does not
c3f6f71d
JM
9245match the language default. If a range error occurs and range checking is on,
9246then a message is printed and evaluation of the expression is aborted.
c906108c
SS
9247
9248@item set check range warn
9249Output messages when the @value{GDBN} range checker detects a range error,
9250but attempt to evaluate the expression anyway. Evaluating the
9251expression may still be impossible for other reasons, such as accessing
9252memory that the process does not own (a typical example from many Unix
9253systems).
9254
9255@item show range
9256Show the current setting of the range checker, and whether or not it is
9257being set automatically by @value{GDBN}.
9258@end table
c906108c 9259
79a6e687
BW
9260@node Supported Languages
9261@section Supported Languages
c906108c 9262
9c16f35a
EZ
9263@value{GDBN} supports C, C@t{++}, Objective-C, Fortran, Java, Pascal,
9264assembly, Modula-2, and Ada.
cce74817 9265@c This is false ...
c906108c
SS
9266Some @value{GDBN} features may be used in expressions regardless of the
9267language you use: the @value{GDBN} @code{@@} and @code{::} operators,
9268and the @samp{@{type@}addr} construct (@pxref{Expressions,
9269,Expressions}) can be used with the constructs of any supported
9270language.
9271
9272The following sections detail to what degree each source language is
9273supported by @value{GDBN}. These sections are not meant to be language
9274tutorials or references, but serve only as a reference guide to what the
9275@value{GDBN} expression parser accepts, and what input and output
9276formats should look like for different languages. There are many good
9277books written on each of these languages; please look to these for a
9278language reference or tutorial.
9279
c906108c 9280@menu
b37303ee 9281* C:: C and C@t{++}
b383017d 9282* Objective-C:: Objective-C
09d4efe1 9283* Fortran:: Fortran
9c16f35a 9284* Pascal:: Pascal
b37303ee 9285* Modula-2:: Modula-2
e07c999f 9286* Ada:: Ada
c906108c
SS
9287@end menu
9288
6d2ebf8b 9289@node C
b37052ae 9290@subsection C and C@t{++}
7a292a7a 9291
b37052ae
EZ
9292@cindex C and C@t{++}
9293@cindex expressions in C or C@t{++}
c906108c 9294
b37052ae 9295Since C and C@t{++} are so closely related, many features of @value{GDBN} apply
c906108c
SS
9296to both languages. Whenever this is the case, we discuss those languages
9297together.
9298
41afff9a
EZ
9299@cindex C@t{++}
9300@cindex @code{g++}, @sc{gnu} C@t{++} compiler
b37052ae
EZ
9301@cindex @sc{gnu} C@t{++}
9302The C@t{++} debugging facilities are jointly implemented by the C@t{++}
9303compiler and @value{GDBN}. Therefore, to debug your C@t{++} code
9304effectively, you must compile your C@t{++} programs with a supported
9305C@t{++} compiler, such as @sc{gnu} @code{g++}, or the HP ANSI C@t{++}
c906108c
SS
9306compiler (@code{aCC}).
9307
0179ffac
DC
9308For best results when using @sc{gnu} C@t{++}, use the DWARF 2 debugging
9309format; if it doesn't work on your system, try the stabs+ debugging
9310format. You can select those formats explicitly with the @code{g++}
9311command-line options @option{-gdwarf-2} and @option{-gstabs+}.
ce9341a1
BW
9312@xref{Debugging Options,,Options for Debugging Your Program or GCC,
9313gcc.info, Using the @sc{gnu} Compiler Collection (GCC)}.
c906108c 9314
c906108c 9315@menu
b37052ae
EZ
9316* C Operators:: C and C@t{++} operators
9317* C Constants:: C and C@t{++} constants
79a6e687 9318* C Plus Plus Expressions:: C@t{++} expressions
b37052ae
EZ
9319* C Defaults:: Default settings for C and C@t{++}
9320* C Checks:: C and C@t{++} type and range checks
c906108c 9321* Debugging C:: @value{GDBN} and C
79a6e687 9322* Debugging C Plus Plus:: @value{GDBN} features for C@t{++}
febe4383 9323* Decimal Floating Point:: Numbers in Decimal Floating Point format
c906108c 9324@end menu
c906108c 9325
6d2ebf8b 9326@node C Operators
79a6e687 9327@subsubsection C and C@t{++} Operators
7a292a7a 9328
b37052ae 9329@cindex C and C@t{++} operators
c906108c
SS
9330
9331Operators must be defined on values of specific types. For instance,
9332@code{+} is defined on numbers, but not on structures. Operators are
5d161b24 9333often defined on groups of types.
c906108c 9334
b37052ae 9335For the purposes of C and C@t{++}, the following definitions hold:
c906108c
SS
9336
9337@itemize @bullet
53a5351d 9338
c906108c 9339@item
c906108c 9340@emph{Integral types} include @code{int} with any of its storage-class
b37052ae 9341specifiers; @code{char}; @code{enum}; and, for C@t{++}, @code{bool}.
c906108c
SS
9342
9343@item
d4f3574e
SS
9344@emph{Floating-point types} include @code{float}, @code{double}, and
9345@code{long double} (if supported by the target platform).
c906108c
SS
9346
9347@item
53a5351d 9348@emph{Pointer types} include all types defined as @code{(@var{type} *)}.
c906108c
SS
9349
9350@item
9351@emph{Scalar types} include all of the above.
53a5351d 9352
c906108c
SS
9353@end itemize
9354
9355@noindent
9356The following operators are supported. They are listed here
9357in order of increasing precedence:
9358
9359@table @code
9360@item ,
9361The comma or sequencing operator. Expressions in a comma-separated list
9362are evaluated from left to right, with the result of the entire
9363expression being the last expression evaluated.
9364
9365@item =
9366Assignment. The value of an assignment expression is the value
9367assigned. Defined on scalar types.
9368
9369@item @var{op}=
9370Used in an expression of the form @w{@code{@var{a} @var{op}= @var{b}}},
9371and translated to @w{@code{@var{a} = @var{a op b}}}.
d4f3574e 9372@w{@code{@var{op}=}} and @code{=} have the same precedence.
c906108c
SS
9373@var{op} is any one of the operators @code{|}, @code{^}, @code{&},
9374@code{<<}, @code{>>}, @code{+}, @code{-}, @code{*}, @code{/}, @code{%}.
9375
9376@item ?:
9377The ternary operator. @code{@var{a} ? @var{b} : @var{c}} can be thought
9378of as: if @var{a} then @var{b} else @var{c}. @var{a} should be of an
9379integral type.
9380
9381@item ||
9382Logical @sc{or}. Defined on integral types.
9383
9384@item &&
9385Logical @sc{and}. Defined on integral types.
9386
9387@item |
9388Bitwise @sc{or}. Defined on integral types.
9389
9390@item ^
9391Bitwise exclusive-@sc{or}. Defined on integral types.
9392
9393@item &
9394Bitwise @sc{and}. Defined on integral types.
9395
9396@item ==@r{, }!=
9397Equality and inequality. Defined on scalar types. The value of these
9398expressions is 0 for false and non-zero for true.
9399
9400@item <@r{, }>@r{, }<=@r{, }>=
9401Less than, greater than, less than or equal, greater than or equal.
9402Defined on scalar types. The value of these expressions is 0 for false
9403and non-zero for true.
9404
9405@item <<@r{, }>>
9406left shift, and right shift. Defined on integral types.
9407
9408@item @@
9409The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
9410
9411@item +@r{, }-
9412Addition and subtraction. Defined on integral types, floating-point types and
9413pointer types.
9414
9415@item *@r{, }/@r{, }%
9416Multiplication, division, and modulus. Multiplication and division are
9417defined on integral and floating-point types. Modulus is defined on
9418integral types.
9419
9420@item ++@r{, }--
9421Increment and decrement. When appearing before a variable, the
9422operation is performed before the variable is used in an expression;
9423when appearing after it, the variable's value is used before the
9424operation takes place.
9425
9426@item *
9427Pointer dereferencing. Defined on pointer types. Same precedence as
9428@code{++}.
9429
9430@item &
9431Address operator. Defined on variables. Same precedence as @code{++}.
9432
b37052ae
EZ
9433For debugging C@t{++}, @value{GDBN} implements a use of @samp{&} beyond what is
9434allowed in the C@t{++} language itself: you can use @samp{&(&@var{ref})}
b17828ca 9435to examine the address
b37052ae 9436where a C@t{++} reference variable (declared with @samp{&@var{ref}}) is
c906108c 9437stored.
c906108c
SS
9438
9439@item -
9440Negative. Defined on integral and floating-point types. Same
9441precedence as @code{++}.
9442
9443@item !
9444Logical negation. Defined on integral types. Same precedence as
9445@code{++}.
9446
9447@item ~
9448Bitwise complement operator. Defined on integral types. Same precedence as
9449@code{++}.
9450
9451
9452@item .@r{, }->
9453Structure member, and pointer-to-structure member. For convenience,
9454@value{GDBN} regards the two as equivalent, choosing whether to dereference a
9455pointer based on the stored type information.
9456Defined on @code{struct} and @code{union} data.
9457
c906108c
SS
9458@item .*@r{, }->*
9459Dereferences of pointers to members.
c906108c
SS
9460
9461@item []
9462Array indexing. @code{@var{a}[@var{i}]} is defined as
9463@code{*(@var{a}+@var{i})}. Same precedence as @code{->}.
9464
9465@item ()
9466Function parameter list. Same precedence as @code{->}.
9467
c906108c 9468@item ::
b37052ae 9469C@t{++} scope resolution operator. Defined on @code{struct}, @code{union},
7a292a7a 9470and @code{class} types.
c906108c
SS
9471
9472@item ::
7a292a7a
SS
9473Doubled colons also represent the @value{GDBN} scope operator
9474(@pxref{Expressions, ,Expressions}). Same precedence as @code{::},
9475above.
c906108c
SS
9476@end table
9477
c906108c
SS
9478If an operator is redefined in the user code, @value{GDBN} usually
9479attempts to invoke the redefined version instead of using the operator's
9480predefined meaning.
c906108c 9481
6d2ebf8b 9482@node C Constants
79a6e687 9483@subsubsection C and C@t{++} Constants
c906108c 9484
b37052ae 9485@cindex C and C@t{++} constants
c906108c 9486
b37052ae 9487@value{GDBN} allows you to express the constants of C and C@t{++} in the
c906108c 9488following ways:
c906108c
SS
9489
9490@itemize @bullet
9491@item
9492Integer constants are a sequence of digits. Octal constants are
6ca652b0
EZ
9493specified by a leading @samp{0} (i.e.@: zero), and hexadecimal constants
9494by a leading @samp{0x} or @samp{0X}. Constants may also end with a letter
c906108c
SS
9495@samp{l}, specifying that the constant should be treated as a
9496@code{long} value.
9497
9498@item
9499Floating point constants are a sequence of digits, followed by a decimal
9500point, followed by a sequence of digits, and optionally followed by an
9501exponent. An exponent is of the form:
9502@samp{@w{e@r{[[}+@r{]|}-@r{]}@var{nnn}}}, where @var{nnn} is another
9503sequence of digits. The @samp{+} is optional for positive exponents.
d4f3574e
SS
9504A floating-point constant may also end with a letter @samp{f} or
9505@samp{F}, specifying that the constant should be treated as being of
9506the @code{float} (as opposed to the default @code{double}) type; or with
9507a letter @samp{l} or @samp{L}, which specifies a @code{long double}
9508constant.
c906108c
SS
9509
9510@item
9511Enumerated constants consist of enumerated identifiers, or their
9512integral equivalents.
9513
9514@item
9515Character constants are a single character surrounded by single quotes
9516(@code{'}), or a number---the ordinal value of the corresponding character
d4f3574e 9517(usually its @sc{ascii} value). Within quotes, the single character may
c906108c
SS
9518be represented by a letter or by @dfn{escape sequences}, which are of
9519the form @samp{\@var{nnn}}, where @var{nnn} is the octal representation
9520of the character's ordinal value; or of the form @samp{\@var{x}}, where
9521@samp{@var{x}} is a predefined special character---for example,
9522@samp{\n} for newline.
9523
9524@item
96a2c332
SS
9525String constants are a sequence of character constants surrounded by
9526double quotes (@code{"}). Any valid character constant (as described
9527above) may appear. Double quotes within the string must be preceded by
9528a backslash, so for instance @samp{"a\"b'c"} is a string of five
9529characters.
c906108c
SS
9530
9531@item
9532Pointer constants are an integral value. You can also write pointers
9533to constants using the C operator @samp{&}.
9534
9535@item
9536Array constants are comma-separated lists surrounded by braces @samp{@{}
9537and @samp{@}}; for example, @samp{@{1,2,3@}} is a three-element array of
9538integers, @samp{@{@{1,2@}, @{3,4@}, @{5,6@}@}} is a three-by-two array,
9539and @samp{@{&"hi", &"there", &"fred"@}} is a three-element array of pointers.
9540@end itemize
9541
79a6e687
BW
9542@node C Plus Plus Expressions
9543@subsubsection C@t{++} Expressions
b37052ae
EZ
9544
9545@cindex expressions in C@t{++}
9546@value{GDBN} expression handling can interpret most C@t{++} expressions.
9547
0179ffac
DC
9548@cindex debugging C@t{++} programs
9549@cindex C@t{++} compilers
9550@cindex debug formats and C@t{++}
9551@cindex @value{NGCC} and C@t{++}
c906108c 9552@quotation
b37052ae 9553@emph{Warning:} @value{GDBN} can only debug C@t{++} code if you use the
0179ffac
DC
9554proper compiler and the proper debug format. Currently, @value{GDBN}
9555works best when debugging C@t{++} code that is compiled with
9556@value{NGCC} 2.95.3 or with @value{NGCC} 3.1 or newer, using the options
9557@option{-gdwarf-2} or @option{-gstabs+}. DWARF 2 is preferred over
9558stabs+. Most configurations of @value{NGCC} emit either DWARF 2 or
9559stabs+ as their default debug format, so you usually don't need to
9560specify a debug format explicitly. Other compilers and/or debug formats
9561are likely to work badly or not at all when using @value{GDBN} to debug
9562C@t{++} code.
c906108c 9563@end quotation
c906108c
SS
9564
9565@enumerate
9566
9567@cindex member functions
9568@item
9569Member function calls are allowed; you can use expressions like
9570
474c8240 9571@smallexample
c906108c 9572count = aml->GetOriginal(x, y)
474c8240 9573@end smallexample
c906108c 9574
41afff9a 9575@vindex this@r{, inside C@t{++} member functions}
b37052ae 9576@cindex namespace in C@t{++}
c906108c
SS
9577@item
9578While a member function is active (in the selected stack frame), your
9579expressions have the same namespace available as the member function;
9580that is, @value{GDBN} allows implicit references to the class instance
b37052ae 9581pointer @code{this} following the same rules as C@t{++}.
c906108c 9582
c906108c 9583@cindex call overloaded functions
d4f3574e 9584@cindex overloaded functions, calling
b37052ae 9585@cindex type conversions in C@t{++}
c906108c
SS
9586@item
9587You can call overloaded functions; @value{GDBN} resolves the function
d4f3574e 9588call to the right definition, with some restrictions. @value{GDBN} does not
c906108c
SS
9589perform overload resolution involving user-defined type conversions,
9590calls to constructors, or instantiations of templates that do not exist
9591in the program. It also cannot handle ellipsis argument lists or
9592default arguments.
9593
9594It does perform integral conversions and promotions, floating-point
9595promotions, arithmetic conversions, pointer conversions, conversions of
9596class objects to base classes, and standard conversions such as those of
9597functions or arrays to pointers; it requires an exact match on the
9598number of function arguments.
9599
9600Overload resolution is always performed, unless you have specified
79a6e687
BW
9601@code{set overload-resolution off}. @xref{Debugging C Plus Plus,
9602,@value{GDBN} Features for C@t{++}}.
c906108c 9603
d4f3574e 9604You must specify @code{set overload-resolution off} in order to use an
c906108c
SS
9605explicit function signature to call an overloaded function, as in
9606@smallexample
9607p 'foo(char,int)'('x', 13)
9608@end smallexample
d4f3574e 9609
c906108c 9610The @value{GDBN} command-completion facility can simplify this;
79a6e687 9611see @ref{Completion, ,Command Completion}.
c906108c 9612
c906108c
SS
9613@cindex reference declarations
9614@item
b37052ae
EZ
9615@value{GDBN} understands variables declared as C@t{++} references; you can use
9616them in expressions just as you do in C@t{++} source---they are automatically
c906108c
SS
9617dereferenced.
9618
9619In the parameter list shown when @value{GDBN} displays a frame, the values of
9620reference variables are not displayed (unlike other variables); this
9621avoids clutter, since references are often used for large structures.
9622The @emph{address} of a reference variable is always shown, unless
9623you have specified @samp{set print address off}.
9624
9625@item
b37052ae 9626@value{GDBN} supports the C@t{++} name resolution operator @code{::}---your
c906108c
SS
9627expressions can use it just as expressions in your program do. Since
9628one scope may be defined in another, you can use @code{::} repeatedly if
9629necessary, for example in an expression like
9630@samp{@var{scope1}::@var{scope2}::@var{name}}. @value{GDBN} also allows
b37052ae 9631resolving name scope by reference to source files, in both C and C@t{++}
79a6e687 9632debugging (@pxref{Variables, ,Program Variables}).
c906108c
SS
9633@end enumerate
9634
b37052ae 9635In addition, when used with HP's C@t{++} compiler, @value{GDBN} supports
53a5351d
JM
9636calling virtual functions correctly, printing out virtual bases of
9637objects, calling functions in a base subobject, casting objects, and
9638invoking user-defined operators.
c906108c 9639
6d2ebf8b 9640@node C Defaults
79a6e687 9641@subsubsection C and C@t{++} Defaults
7a292a7a 9642
b37052ae 9643@cindex C and C@t{++} defaults
c906108c 9644
c906108c
SS
9645If you allow @value{GDBN} to set type and range checking automatically, they
9646both default to @code{off} whenever the working language changes to
b37052ae 9647C or C@t{++}. This happens regardless of whether you or @value{GDBN}
c906108c 9648selects the working language.
c906108c
SS
9649
9650If you allow @value{GDBN} to set the language automatically, it
9651recognizes source files whose names end with @file{.c}, @file{.C}, or
9652@file{.cc}, etc, and when @value{GDBN} enters code compiled from one of
b37052ae 9653these files, it sets the working language to C or C@t{++}.
79a6e687 9654@xref{Automatically, ,Having @value{GDBN} Infer the Source Language},
c906108c
SS
9655for further details.
9656
c906108c
SS
9657@c Type checking is (a) primarily motivated by Modula-2, and (b)
9658@c unimplemented. If (b) changes, it might make sense to let this node
9659@c appear even if Mod-2 does not, but meanwhile ignore it. roland 16jul93.
7a292a7a 9660
6d2ebf8b 9661@node C Checks
79a6e687 9662@subsubsection C and C@t{++} Type and Range Checks
7a292a7a 9663
b37052ae 9664@cindex C and C@t{++} checks
c906108c 9665
b37052ae 9666By default, when @value{GDBN} parses C or C@t{++} expressions, type checking
c906108c
SS
9667is not used. However, if you turn type checking on, @value{GDBN}
9668considers two variables type equivalent if:
9669
9670@itemize @bullet
9671@item
9672The two variables are structured and have the same structure, union, or
9673enumerated tag.
9674
9675@item
9676The two variables have the same type name, or types that have been
9677declared equivalent through @code{typedef}.
9678
9679@ignore
9680@c leaving this out because neither J Gilmore nor R Pesch understand it.
9681@c FIXME--beers?
9682@item
9683The two @code{struct}, @code{union}, or @code{enum} variables are
9684declared in the same declaration. (Note: this may not be true for all C
9685compilers.)
9686@end ignore
9687@end itemize
9688
9689Range checking, if turned on, is done on mathematical operations. Array
9690indices are not checked, since they are often used to index a pointer
9691that is not itself an array.
c906108c 9692
6d2ebf8b 9693@node Debugging C
c906108c 9694@subsubsection @value{GDBN} and C
c906108c
SS
9695
9696The @code{set print union} and @code{show print union} commands apply to
9697the @code{union} type. When set to @samp{on}, any @code{union} that is
7a292a7a
SS
9698inside a @code{struct} or @code{class} is also printed. Otherwise, it
9699appears as @samp{@{...@}}.
c906108c
SS
9700
9701The @code{@@} operator aids in the debugging of dynamic arrays, formed
9702with pointers and a memory allocation function. @xref{Expressions,
9703,Expressions}.
9704
79a6e687
BW
9705@node Debugging C Plus Plus
9706@subsubsection @value{GDBN} Features for C@t{++}
c906108c 9707
b37052ae 9708@cindex commands for C@t{++}
7a292a7a 9709
b37052ae
EZ
9710Some @value{GDBN} commands are particularly useful with C@t{++}, and some are
9711designed specifically for use with C@t{++}. Here is a summary:
c906108c
SS
9712
9713@table @code
9714@cindex break in overloaded functions
9715@item @r{breakpoint menus}
9716When you want a breakpoint in a function whose name is overloaded,
6ba66d6a
JB
9717@value{GDBN} has the capability to display a menu of possible breakpoint
9718locations to help you specify which function definition you want.
9719@xref{Ambiguous Expressions,,Ambiguous Expressions}.
c906108c 9720
b37052ae 9721@cindex overloading in C@t{++}
c906108c
SS
9722@item rbreak @var{regex}
9723Setting breakpoints using regular expressions is helpful for setting
9724breakpoints on overloaded functions that are not members of any special
9725classes.
79a6e687 9726@xref{Set Breaks, ,Setting Breakpoints}.
c906108c 9727
b37052ae 9728@cindex C@t{++} exception handling
c906108c
SS
9729@item catch throw
9730@itemx catch catch
b37052ae 9731Debug C@t{++} exception handling using these commands. @xref{Set
79a6e687 9732Catchpoints, , Setting Catchpoints}.
c906108c
SS
9733
9734@cindex inheritance
9735@item ptype @var{typename}
9736Print inheritance relationships as well as other information for type
9737@var{typename}.
9738@xref{Symbols, ,Examining the Symbol Table}.
9739
b37052ae 9740@cindex C@t{++} symbol display
c906108c
SS
9741@item set print demangle
9742@itemx show print demangle
9743@itemx set print asm-demangle
9744@itemx show print asm-demangle
b37052ae
EZ
9745Control whether C@t{++} symbols display in their source form, both when
9746displaying code as C@t{++} source and when displaying disassemblies.
79a6e687 9747@xref{Print Settings, ,Print Settings}.
c906108c
SS
9748
9749@item set print object
9750@itemx show print object
9751Choose whether to print derived (actual) or declared types of objects.
79a6e687 9752@xref{Print Settings, ,Print Settings}.
c906108c
SS
9753
9754@item set print vtbl
9755@itemx show print vtbl
9756Control the format for printing virtual function tables.
79a6e687 9757@xref{Print Settings, ,Print Settings}.
c906108c 9758(The @code{vtbl} commands do not work on programs compiled with the HP
b37052ae 9759ANSI C@t{++} compiler (@code{aCC}).)
c906108c
SS
9760
9761@kindex set overload-resolution
d4f3574e 9762@cindex overloaded functions, overload resolution
c906108c 9763@item set overload-resolution on
b37052ae 9764Enable overload resolution for C@t{++} expression evaluation. The default
c906108c
SS
9765is on. For overloaded functions, @value{GDBN} evaluates the arguments
9766and searches for a function whose signature matches the argument types,
79a6e687
BW
9767using the standard C@t{++} conversion rules (see @ref{C Plus Plus
9768Expressions, ,C@t{++} Expressions}, for details).
9769If it cannot find a match, it emits a message.
c906108c
SS
9770
9771@item set overload-resolution off
b37052ae 9772Disable overload resolution for C@t{++} expression evaluation. For
c906108c
SS
9773overloaded functions that are not class member functions, @value{GDBN}
9774chooses the first function of the specified name that it finds in the
9775symbol table, whether or not its arguments are of the correct type. For
9776overloaded functions that are class member functions, @value{GDBN}
9777searches for a function whose signature @emph{exactly} matches the
9778argument types.
c906108c 9779
9c16f35a
EZ
9780@kindex show overload-resolution
9781@item show overload-resolution
9782Show the current setting of overload resolution.
9783
c906108c
SS
9784@item @r{Overloaded symbol names}
9785You can specify a particular definition of an overloaded symbol, using
b37052ae 9786the same notation that is used to declare such symbols in C@t{++}: type
c906108c
SS
9787@code{@var{symbol}(@var{types})} rather than just @var{symbol}. You can
9788also use the @value{GDBN} command-line word completion facilities to list the
9789available choices, or to finish the type list for you.
79a6e687 9790@xref{Completion,, Command Completion}, for details on how to do this.
c906108c 9791@end table
c906108c 9792
febe4383
TJB
9793@node Decimal Floating Point
9794@subsubsection Decimal Floating Point format
9795@cindex decimal floating point format
9796
9797@value{GDBN} can examine, set and perform computations with numbers in
9798decimal floating point format, which in the C language correspond to the
9799@code{_Decimal32}, @code{_Decimal64} and @code{_Decimal128} types as
9800specified by the extension to support decimal floating-point arithmetic.
9801
9802There are two encodings in use, depending on the architecture: BID (Binary
9803Integer Decimal) for x86 and x86-64, and DPD (Densely Packed Decimal) for
9804PowerPC. @value{GDBN} will use the appropriate encoding for the configured
9805target.
9806
9807Because of a limitation in @file{libdecnumber}, the library used by @value{GDBN}
9808to manipulate decimal floating point numbers, it is not possible to convert
9809(using a cast, for example) integers wider than 32-bit to decimal float.
9810
9811In addition, in order to imitate @value{GDBN}'s behaviour with binary floating
9812point computations, error checking in decimal float operations ignores
9813underflow, overflow and divide by zero exceptions.
9814
4acd40f3
TJB
9815In the PowerPC architecture, @value{GDBN} provides a set of pseudo-registers
9816to inspect @code{_Decimal128} values stored in floating point registers. See
9817@ref{PowerPC,,PowerPC} for more details.
9818
b37303ee
AF
9819@node Objective-C
9820@subsection Objective-C
9821
9822@cindex Objective-C
9823This section provides information about some commands and command
721c2651
EZ
9824options that are useful for debugging Objective-C code. See also
9825@ref{Symbols, info classes}, and @ref{Symbols, info selectors}, for a
9826few more commands specific to Objective-C support.
b37303ee
AF
9827
9828@menu
b383017d
RM
9829* Method Names in Commands::
9830* The Print Command with Objective-C::
b37303ee
AF
9831@end menu
9832
c8f4133a 9833@node Method Names in Commands
b37303ee
AF
9834@subsubsection Method Names in Commands
9835
9836The following commands have been extended to accept Objective-C method
9837names as line specifications:
9838
9839@kindex clear@r{, and Objective-C}
9840@kindex break@r{, and Objective-C}
9841@kindex info line@r{, and Objective-C}
9842@kindex jump@r{, and Objective-C}
9843@kindex list@r{, and Objective-C}
9844@itemize
9845@item @code{clear}
9846@item @code{break}
9847@item @code{info line}
9848@item @code{jump}
9849@item @code{list}
9850@end itemize
9851
9852A fully qualified Objective-C method name is specified as
9853
9854@smallexample
9855-[@var{Class} @var{methodName}]
9856@end smallexample
9857
c552b3bb
JM
9858where the minus sign is used to indicate an instance method and a
9859plus sign (not shown) is used to indicate a class method. The class
9860name @var{Class} and method name @var{methodName} are enclosed in
9861brackets, similar to the way messages are specified in Objective-C
9862source code. For example, to set a breakpoint at the @code{create}
9863instance method of class @code{Fruit} in the program currently being
9864debugged, enter:
b37303ee
AF
9865
9866@smallexample
9867break -[Fruit create]
9868@end smallexample
9869
9870To list ten program lines around the @code{initialize} class method,
9871enter:
9872
9873@smallexample
9874list +[NSText initialize]
9875@end smallexample
9876
c552b3bb
JM
9877In the current version of @value{GDBN}, the plus or minus sign is
9878required. In future versions of @value{GDBN}, the plus or minus
9879sign will be optional, but you can use it to narrow the search. It
9880is also possible to specify just a method name:
b37303ee
AF
9881
9882@smallexample
9883break create
9884@end smallexample
9885
9886You must specify the complete method name, including any colons. If
9887your program's source files contain more than one @code{create} method,
9888you'll be presented with a numbered list of classes that implement that
9889method. Indicate your choice by number, or type @samp{0} to exit if
9890none apply.
9891
9892As another example, to clear a breakpoint established at the
9893@code{makeKeyAndOrderFront:} method of the @code{NSWindow} class, enter:
9894
9895@smallexample
9896clear -[NSWindow makeKeyAndOrderFront:]
9897@end smallexample
9898
9899@node The Print Command with Objective-C
9900@subsubsection The Print Command With Objective-C
721c2651 9901@cindex Objective-C, print objects
c552b3bb
JM
9902@kindex print-object
9903@kindex po @r{(@code{print-object})}
b37303ee 9904
c552b3bb 9905The print command has also been extended to accept methods. For example:
b37303ee
AF
9906
9907@smallexample
c552b3bb 9908print -[@var{object} hash]
b37303ee
AF
9909@end smallexample
9910
9911@cindex print an Objective-C object description
c552b3bb
JM
9912@cindex @code{_NSPrintForDebugger}, and printing Objective-C objects
9913@noindent
9914will tell @value{GDBN} to send the @code{hash} message to @var{object}
9915and print the result. Also, an additional command has been added,
9916@code{print-object} or @code{po} for short, which is meant to print
9917the description of an object. However, this command may only work
9918with certain Objective-C libraries that have a particular hook
9919function, @code{_NSPrintForDebugger}, defined.
b37303ee 9920
09d4efe1
EZ
9921@node Fortran
9922@subsection Fortran
9923@cindex Fortran-specific support in @value{GDBN}
9924
814e32d7
WZ
9925@value{GDBN} can be used to debug programs written in Fortran, but it
9926currently supports only the features of Fortran 77 language.
9927
9928@cindex trailing underscore, in Fortran symbols
9929Some Fortran compilers (@sc{gnu} Fortran 77 and Fortran 95 compilers
9930among them) append an underscore to the names of variables and
9931functions. When you debug programs compiled by those compilers, you
9932will need to refer to variables and functions with a trailing
9933underscore.
9934
9935@menu
9936* Fortran Operators:: Fortran operators and expressions
9937* Fortran Defaults:: Default settings for Fortran
79a6e687 9938* Special Fortran Commands:: Special @value{GDBN} commands for Fortran
814e32d7
WZ
9939@end menu
9940
9941@node Fortran Operators
79a6e687 9942@subsubsection Fortran Operators and Expressions
814e32d7
WZ
9943
9944@cindex Fortran operators and expressions
9945
9946Operators must be defined on values of specific types. For instance,
9947@code{+} is defined on numbers, but not on characters or other non-
ff2587ec 9948arithmetic types. Operators are often defined on groups of types.
814e32d7
WZ
9949
9950@table @code
9951@item **
9952The exponentiation operator. It raises the first operand to the power
9953of the second one.
9954
9955@item :
9956The range operator. Normally used in the form of array(low:high) to
9957represent a section of array.
68837c9d
MD
9958
9959@item %
9960The access component operator. Normally used to access elements in derived
9961types. Also suitable for unions. As unions aren't part of regular Fortran,
9962this can only happen when accessing a register that uses a gdbarch-defined
9963union type.
814e32d7
WZ
9964@end table
9965
9966@node Fortran Defaults
9967@subsubsection Fortran Defaults
9968
9969@cindex Fortran Defaults
9970
9971Fortran symbols are usually case-insensitive, so @value{GDBN} by
9972default uses case-insensitive matches for Fortran symbols. You can
9973change that with the @samp{set case-insensitive} command, see
9974@ref{Symbols}, for the details.
9975
79a6e687
BW
9976@node Special Fortran Commands
9977@subsubsection Special Fortran Commands
814e32d7
WZ
9978
9979@cindex Special Fortran commands
9980
db2e3e2e
BW
9981@value{GDBN} has some commands to support Fortran-specific features,
9982such as displaying common blocks.
814e32d7 9983
09d4efe1
EZ
9984@table @code
9985@cindex @code{COMMON} blocks, Fortran
9986@kindex info common
9987@item info common @r{[}@var{common-name}@r{]}
9988This command prints the values contained in the Fortran @code{COMMON}
9989block whose name is @var{common-name}. With no argument, the names of
d52fb0e9 9990all @code{COMMON} blocks visible at the current program location are
09d4efe1
EZ
9991printed.
9992@end table
9993
9c16f35a
EZ
9994@node Pascal
9995@subsection Pascal
9996
9997@cindex Pascal support in @value{GDBN}, limitations
9998Debugging Pascal programs which use sets, subranges, file variables, or
9999nested functions does not currently work. @value{GDBN} does not support
10000entering expressions, printing values, or similar features using Pascal
10001syntax.
10002
10003The Pascal-specific command @code{set print pascal_static-members}
10004controls whether static members of Pascal objects are displayed.
10005@xref{Print Settings, pascal_static-members}.
10006
09d4efe1 10007@node Modula-2
c906108c 10008@subsection Modula-2
7a292a7a 10009
d4f3574e 10010@cindex Modula-2, @value{GDBN} support
c906108c
SS
10011
10012The extensions made to @value{GDBN} to support Modula-2 only support
10013output from the @sc{gnu} Modula-2 compiler (which is currently being
10014developed). Other Modula-2 compilers are not currently supported, and
10015attempting to debug executables produced by them is most likely
10016to give an error as @value{GDBN} reads in the executable's symbol
10017table.
10018
10019@cindex expressions in Modula-2
10020@menu
10021* M2 Operators:: Built-in operators
10022* Built-In Func/Proc:: Built-in functions and procedures
10023* M2 Constants:: Modula-2 constants
72019c9c 10024* M2 Types:: Modula-2 types
c906108c
SS
10025* M2 Defaults:: Default settings for Modula-2
10026* Deviations:: Deviations from standard Modula-2
10027* M2 Checks:: Modula-2 type and range checks
10028* M2 Scope:: The scope operators @code{::} and @code{.}
10029* GDB/M2:: @value{GDBN} and Modula-2
10030@end menu
10031
6d2ebf8b 10032@node M2 Operators
c906108c
SS
10033@subsubsection Operators
10034@cindex Modula-2 operators
10035
10036Operators must be defined on values of specific types. For instance,
10037@code{+} is defined on numbers, but not on structures. Operators are
10038often defined on groups of types. For the purposes of Modula-2, the
10039following definitions hold:
10040
10041@itemize @bullet
10042
10043@item
10044@emph{Integral types} consist of @code{INTEGER}, @code{CARDINAL}, and
10045their subranges.
10046
10047@item
10048@emph{Character types} consist of @code{CHAR} and its subranges.
10049
10050@item
10051@emph{Floating-point types} consist of @code{REAL}.
10052
10053@item
10054@emph{Pointer types} consist of anything declared as @code{POINTER TO
10055@var{type}}.
10056
10057@item
10058@emph{Scalar types} consist of all of the above.
10059
10060@item
10061@emph{Set types} consist of @code{SET} and @code{BITSET} types.
10062
10063@item
10064@emph{Boolean types} consist of @code{BOOLEAN}.
10065@end itemize
10066
10067@noindent
10068The following operators are supported, and appear in order of
10069increasing precedence:
10070
10071@table @code
10072@item ,
10073Function argument or array index separator.
10074
10075@item :=
10076Assignment. The value of @var{var} @code{:=} @var{value} is
10077@var{value}.
10078
10079@item <@r{, }>
10080Less than, greater than on integral, floating-point, or enumerated
10081types.
10082
10083@item <=@r{, }>=
96a2c332 10084Less than or equal to, greater than or equal to
c906108c
SS
10085on integral, floating-point and enumerated types, or set inclusion on
10086set types. Same precedence as @code{<}.
10087
10088@item =@r{, }<>@r{, }#
10089Equality and two ways of expressing inequality, valid on scalar types.
10090Same precedence as @code{<}. In @value{GDBN} scripts, only @code{<>} is
10091available for inequality, since @code{#} conflicts with the script
10092comment character.
10093
10094@item IN
10095Set membership. Defined on set types and the types of their members.
10096Same precedence as @code{<}.
10097
10098@item OR
10099Boolean disjunction. Defined on boolean types.
10100
10101@item AND@r{, }&
d4f3574e 10102Boolean conjunction. Defined on boolean types.
c906108c
SS
10103
10104@item @@
10105The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
10106
10107@item +@r{, }-
10108Addition and subtraction on integral and floating-point types, or union
10109and difference on set types.
10110
10111@item *
10112Multiplication on integral and floating-point types, or set intersection
10113on set types.
10114
10115@item /
10116Division on floating-point types, or symmetric set difference on set
10117types. Same precedence as @code{*}.
10118
10119@item DIV@r{, }MOD
10120Integer division and remainder. Defined on integral types. Same
10121precedence as @code{*}.
10122
10123@item -
10124Negative. Defined on @code{INTEGER} and @code{REAL} data.
10125
10126@item ^
10127Pointer dereferencing. Defined on pointer types.
10128
10129@item NOT
10130Boolean negation. Defined on boolean types. Same precedence as
10131@code{^}.
10132
10133@item .
10134@code{RECORD} field selector. Defined on @code{RECORD} data. Same
10135precedence as @code{^}.
10136
10137@item []
10138Array indexing. Defined on @code{ARRAY} data. Same precedence as @code{^}.
10139
10140@item ()
10141Procedure argument list. Defined on @code{PROCEDURE} objects. Same precedence
10142as @code{^}.
10143
10144@item ::@r{, }.
10145@value{GDBN} and Modula-2 scope operators.
10146@end table
10147
10148@quotation
72019c9c 10149@emph{Warning:} Set expressions and their operations are not yet supported, so @value{GDBN}
c906108c
SS
10150treats the use of the operator @code{IN}, or the use of operators
10151@code{+}, @code{-}, @code{*}, @code{/}, @code{=}, , @code{<>}, @code{#},
10152@code{<=}, and @code{>=} on sets as an error.
10153@end quotation
10154
cb51c4e0 10155
6d2ebf8b 10156@node Built-In Func/Proc
79a6e687 10157@subsubsection Built-in Functions and Procedures
cb51c4e0 10158@cindex Modula-2 built-ins
c906108c
SS
10159
10160Modula-2 also makes available several built-in procedures and functions.
10161In describing these, the following metavariables are used:
10162
10163@table @var
10164
10165@item a
10166represents an @code{ARRAY} variable.
10167
10168@item c
10169represents a @code{CHAR} constant or variable.
10170
10171@item i
10172represents a variable or constant of integral type.
10173
10174@item m
10175represents an identifier that belongs to a set. Generally used in the
10176same function with the metavariable @var{s}. The type of @var{s} should
10177be @code{SET OF @var{mtype}} (where @var{mtype} is the type of @var{m}).
10178
10179@item n
10180represents a variable or constant of integral or floating-point type.
10181
10182@item r
10183represents a variable or constant of floating-point type.
10184
10185@item t
10186represents a type.
10187
10188@item v
10189represents a variable.
10190
10191@item x
10192represents a variable or constant of one of many types. See the
10193explanation of the function for details.
10194@end table
10195
10196All Modula-2 built-in procedures also return a result, described below.
10197
10198@table @code
10199@item ABS(@var{n})
10200Returns the absolute value of @var{n}.
10201
10202@item CAP(@var{c})
10203If @var{c} is a lower case letter, it returns its upper case
c3f6f71d 10204equivalent, otherwise it returns its argument.
c906108c
SS
10205
10206@item CHR(@var{i})
10207Returns the character whose ordinal value is @var{i}.
10208
10209@item DEC(@var{v})
c3f6f71d 10210Decrements the value in the variable @var{v} by one. Returns the new value.
c906108c
SS
10211
10212@item DEC(@var{v},@var{i})
10213Decrements the value in the variable @var{v} by @var{i}. Returns the
10214new value.
10215
10216@item EXCL(@var{m},@var{s})
10217Removes the element @var{m} from the set @var{s}. Returns the new
10218set.
10219
10220@item FLOAT(@var{i})
10221Returns the floating point equivalent of the integer @var{i}.
10222
10223@item HIGH(@var{a})
10224Returns the index of the last member of @var{a}.
10225
10226@item INC(@var{v})
c3f6f71d 10227Increments the value in the variable @var{v} by one. Returns the new value.
c906108c
SS
10228
10229@item INC(@var{v},@var{i})
10230Increments the value in the variable @var{v} by @var{i}. Returns the
10231new value.
10232
10233@item INCL(@var{m},@var{s})
10234Adds the element @var{m} to the set @var{s} if it is not already
10235there. Returns the new set.
10236
10237@item MAX(@var{t})
10238Returns the maximum value of the type @var{t}.
10239
10240@item MIN(@var{t})
10241Returns the minimum value of the type @var{t}.
10242
10243@item ODD(@var{i})
10244Returns boolean TRUE if @var{i} is an odd number.
10245
10246@item ORD(@var{x})
10247Returns the ordinal value of its argument. For example, the ordinal
c3f6f71d
JM
10248value of a character is its @sc{ascii} value (on machines supporting the
10249@sc{ascii} character set). @var{x} must be of an ordered type, which include
c906108c
SS
10250integral, character and enumerated types.
10251
10252@item SIZE(@var{x})
10253Returns the size of its argument. @var{x} can be a variable or a type.
10254
10255@item TRUNC(@var{r})
10256Returns the integral part of @var{r}.
10257
844781a1
GM
10258@item TSIZE(@var{x})
10259Returns the size of its argument. @var{x} can be a variable or a type.
10260
c906108c
SS
10261@item VAL(@var{t},@var{i})
10262Returns the member of the type @var{t} whose ordinal value is @var{i}.
10263@end table
10264
10265@quotation
10266@emph{Warning:} Sets and their operations are not yet supported, so
10267@value{GDBN} treats the use of procedures @code{INCL} and @code{EXCL} as
10268an error.
10269@end quotation
10270
10271@cindex Modula-2 constants
6d2ebf8b 10272@node M2 Constants
c906108c
SS
10273@subsubsection Constants
10274
10275@value{GDBN} allows you to express the constants of Modula-2 in the following
10276ways:
10277
10278@itemize @bullet
10279
10280@item
10281Integer constants are simply a sequence of digits. When used in an
10282expression, a constant is interpreted to be type-compatible with the
10283rest of the expression. Hexadecimal integers are specified by a
10284trailing @samp{H}, and octal integers by a trailing @samp{B}.
10285
10286@item
10287Floating point constants appear as a sequence of digits, followed by a
10288decimal point and another sequence of digits. An optional exponent can
10289then be specified, in the form @samp{E@r{[}+@r{|}-@r{]}@var{nnn}}, where
10290@samp{@r{[}+@r{|}-@r{]}@var{nnn}} is the desired exponent. All of the
10291digits of the floating point constant must be valid decimal (base 10)
10292digits.
10293
10294@item
10295Character constants consist of a single character enclosed by a pair of
10296like quotes, either single (@code{'}) or double (@code{"}). They may
c3f6f71d 10297also be expressed by their ordinal value (their @sc{ascii} value, usually)
c906108c
SS
10298followed by a @samp{C}.
10299
10300@item
10301String constants consist of a sequence of characters enclosed by a
10302pair of like quotes, either single (@code{'}) or double (@code{"}).
10303Escape sequences in the style of C are also allowed. @xref{C
79a6e687 10304Constants, ,C and C@t{++} Constants}, for a brief explanation of escape
c906108c
SS
10305sequences.
10306
10307@item
10308Enumerated constants consist of an enumerated identifier.
10309
10310@item
10311Boolean constants consist of the identifiers @code{TRUE} and
10312@code{FALSE}.
10313
10314@item
10315Pointer constants consist of integral values only.
10316
10317@item
10318Set constants are not yet supported.
10319@end itemize
10320
72019c9c
GM
10321@node M2 Types
10322@subsubsection Modula-2 Types
10323@cindex Modula-2 types
10324
10325Currently @value{GDBN} can print the following data types in Modula-2
10326syntax: array types, record types, set types, pointer types, procedure
10327types, enumerated types, subrange types and base types. You can also
10328print the contents of variables declared using these type.
10329This section gives a number of simple source code examples together with
10330sample @value{GDBN} sessions.
10331
10332The first example contains the following section of code:
10333
10334@smallexample
10335VAR
10336 s: SET OF CHAR ;
10337 r: [20..40] ;
10338@end smallexample
10339
10340@noindent
10341and you can request @value{GDBN} to interrogate the type and value of
10342@code{r} and @code{s}.
10343
10344@smallexample
10345(@value{GDBP}) print s
10346@{'A'..'C', 'Z'@}
10347(@value{GDBP}) ptype s
10348SET OF CHAR
10349(@value{GDBP}) print r
1035021
10351(@value{GDBP}) ptype r
10352[20..40]
10353@end smallexample
10354
10355@noindent
10356Likewise if your source code declares @code{s} as:
10357
10358@smallexample
10359VAR
10360 s: SET ['A'..'Z'] ;
10361@end smallexample
10362
10363@noindent
10364then you may query the type of @code{s} by:
10365
10366@smallexample
10367(@value{GDBP}) ptype s
10368type = SET ['A'..'Z']
10369@end smallexample
10370
10371@noindent
10372Note that at present you cannot interactively manipulate set
10373expressions using the debugger.
10374
10375The following example shows how you might declare an array in Modula-2
10376and how you can interact with @value{GDBN} to print its type and contents:
10377
10378@smallexample
10379VAR
10380 s: ARRAY [-10..10] OF CHAR ;
10381@end smallexample
10382
10383@smallexample
10384(@value{GDBP}) ptype s
10385ARRAY [-10..10] OF CHAR
10386@end smallexample
10387
10388Note that the array handling is not yet complete and although the type
10389is printed correctly, expression handling still assumes that all
10390arrays have a lower bound of zero and not @code{-10} as in the example
844781a1 10391above.
72019c9c
GM
10392
10393Here are some more type related Modula-2 examples:
10394
10395@smallexample
10396TYPE
10397 colour = (blue, red, yellow, green) ;
10398 t = [blue..yellow] ;
10399VAR
10400 s: t ;
10401BEGIN
10402 s := blue ;
10403@end smallexample
10404
10405@noindent
10406The @value{GDBN} interaction shows how you can query the data type
10407and value of a variable.
10408
10409@smallexample
10410(@value{GDBP}) print s
10411$1 = blue
10412(@value{GDBP}) ptype t
10413type = [blue..yellow]
10414@end smallexample
10415
10416@noindent
10417In this example a Modula-2 array is declared and its contents
10418displayed. Observe that the contents are written in the same way as
10419their @code{C} counterparts.
10420
10421@smallexample
10422VAR
10423 s: ARRAY [1..5] OF CARDINAL ;
10424BEGIN
10425 s[1] := 1 ;
10426@end smallexample
10427
10428@smallexample
10429(@value{GDBP}) print s
10430$1 = @{1, 0, 0, 0, 0@}
10431(@value{GDBP}) ptype s
10432type = ARRAY [1..5] OF CARDINAL
10433@end smallexample
10434
10435The Modula-2 language interface to @value{GDBN} also understands
10436pointer types as shown in this example:
10437
10438@smallexample
10439VAR
10440 s: POINTER TO ARRAY [1..5] OF CARDINAL ;
10441BEGIN
10442 NEW(s) ;
10443 s^[1] := 1 ;
10444@end smallexample
10445
10446@noindent
10447and you can request that @value{GDBN} describes the type of @code{s}.
10448
10449@smallexample
10450(@value{GDBP}) ptype s
10451type = POINTER TO ARRAY [1..5] OF CARDINAL
10452@end smallexample
10453
10454@value{GDBN} handles compound types as we can see in this example.
10455Here we combine array types, record types, pointer types and subrange
10456types:
10457
10458@smallexample
10459TYPE
10460 foo = RECORD
10461 f1: CARDINAL ;
10462 f2: CHAR ;
10463 f3: myarray ;
10464 END ;
10465
10466 myarray = ARRAY myrange OF CARDINAL ;
10467 myrange = [-2..2] ;
10468VAR
10469 s: POINTER TO ARRAY myrange OF foo ;
10470@end smallexample
10471
10472@noindent
10473and you can ask @value{GDBN} to describe the type of @code{s} as shown
10474below.
10475
10476@smallexample
10477(@value{GDBP}) ptype s
10478type = POINTER TO ARRAY [-2..2] OF foo = RECORD
10479 f1 : CARDINAL;
10480 f2 : CHAR;
10481 f3 : ARRAY [-2..2] OF CARDINAL;
10482END
10483@end smallexample
10484
6d2ebf8b 10485@node M2 Defaults
79a6e687 10486@subsubsection Modula-2 Defaults
c906108c
SS
10487@cindex Modula-2 defaults
10488
10489If type and range checking are set automatically by @value{GDBN}, they
10490both default to @code{on} whenever the working language changes to
d4f3574e 10491Modula-2. This happens regardless of whether you or @value{GDBN}
c906108c
SS
10492selected the working language.
10493
10494If you allow @value{GDBN} to set the language automatically, then entering
10495code compiled from a file whose name ends with @file{.mod} sets the
79a6e687
BW
10496working language to Modula-2. @xref{Automatically, ,Having @value{GDBN}
10497Infer the Source Language}, for further details.
c906108c 10498
6d2ebf8b 10499@node Deviations
79a6e687 10500@subsubsection Deviations from Standard Modula-2
c906108c
SS
10501@cindex Modula-2, deviations from
10502
10503A few changes have been made to make Modula-2 programs easier to debug.
10504This is done primarily via loosening its type strictness:
10505
10506@itemize @bullet
10507@item
10508Unlike in standard Modula-2, pointer constants can be formed by
10509integers. This allows you to modify pointer variables during
10510debugging. (In standard Modula-2, the actual address contained in a
10511pointer variable is hidden from you; it can only be modified
10512through direct assignment to another pointer variable or expression that
10513returned a pointer.)
10514
10515@item
10516C escape sequences can be used in strings and characters to represent
10517non-printable characters. @value{GDBN} prints out strings with these
10518escape sequences embedded. Single non-printable characters are
10519printed using the @samp{CHR(@var{nnn})} format.
10520
10521@item
10522The assignment operator (@code{:=}) returns the value of its right-hand
10523argument.
10524
10525@item
10526All built-in procedures both modify @emph{and} return their argument.
10527@end itemize
10528
6d2ebf8b 10529@node M2 Checks
79a6e687 10530@subsubsection Modula-2 Type and Range Checks
c906108c
SS
10531@cindex Modula-2 checks
10532
10533@quotation
10534@emph{Warning:} in this release, @value{GDBN} does not yet perform type or
10535range checking.
10536@end quotation
10537@c FIXME remove warning when type/range checks added
10538
10539@value{GDBN} considers two Modula-2 variables type equivalent if:
10540
10541@itemize @bullet
10542@item
10543They are of types that have been declared equivalent via a @code{TYPE
10544@var{t1} = @var{t2}} statement
10545
10546@item
10547They have been declared on the same line. (Note: This is true of the
10548@sc{gnu} Modula-2 compiler, but it may not be true of other compilers.)
10549@end itemize
10550
10551As long as type checking is enabled, any attempt to combine variables
10552whose types are not equivalent is an error.
10553
10554Range checking is done on all mathematical operations, assignment, array
10555index bounds, and all built-in functions and procedures.
10556
6d2ebf8b 10557@node M2 Scope
79a6e687 10558@subsubsection The Scope Operators @code{::} and @code{.}
c906108c 10559@cindex scope
41afff9a 10560@cindex @code{.}, Modula-2 scope operator
c906108c
SS
10561@cindex colon, doubled as scope operator
10562@ifinfo
41afff9a 10563@vindex colon-colon@r{, in Modula-2}
c906108c
SS
10564@c Info cannot handle :: but TeX can.
10565@end ifinfo
10566@iftex
41afff9a 10567@vindex ::@r{, in Modula-2}
c906108c
SS
10568@end iftex
10569
10570There are a few subtle differences between the Modula-2 scope operator
10571(@code{.}) and the @value{GDBN} scope operator (@code{::}). The two have
10572similar syntax:
10573
474c8240 10574@smallexample
c906108c
SS
10575
10576@var{module} . @var{id}
10577@var{scope} :: @var{id}
474c8240 10578@end smallexample
c906108c
SS
10579
10580@noindent
10581where @var{scope} is the name of a module or a procedure,
10582@var{module} the name of a module, and @var{id} is any declared
10583identifier within your program, except another module.
10584
10585Using the @code{::} operator makes @value{GDBN} search the scope
10586specified by @var{scope} for the identifier @var{id}. If it is not
10587found in the specified scope, then @value{GDBN} searches all scopes
10588enclosing the one specified by @var{scope}.
10589
10590Using the @code{.} operator makes @value{GDBN} search the current scope for
10591the identifier specified by @var{id} that was imported from the
10592definition module specified by @var{module}. With this operator, it is
10593an error if the identifier @var{id} was not imported from definition
10594module @var{module}, or if @var{id} is not an identifier in
10595@var{module}.
10596
6d2ebf8b 10597@node GDB/M2
c906108c
SS
10598@subsubsection @value{GDBN} and Modula-2
10599
10600Some @value{GDBN} commands have little use when debugging Modula-2 programs.
10601Five subcommands of @code{set print} and @code{show print} apply
b37052ae 10602specifically to C and C@t{++}: @samp{vtbl}, @samp{demangle},
c906108c 10603@samp{asm-demangle}, @samp{object}, and @samp{union}. The first four
b37052ae 10604apply to C@t{++}, and the last to the C @code{union} type, which has no direct
c906108c
SS
10605analogue in Modula-2.
10606
10607The @code{@@} operator (@pxref{Expressions, ,Expressions}), while available
d4f3574e 10608with any language, is not useful with Modula-2. Its
c906108c 10609intent is to aid the debugging of @dfn{dynamic arrays}, which cannot be
b37052ae 10610created in Modula-2 as they can in C or C@t{++}. However, because an
c906108c 10611address can be specified by an integral constant, the construct
d4f3574e 10612@samp{@{@var{type}@}@var{adrexp}} is still useful.
c906108c
SS
10613
10614@cindex @code{#} in Modula-2
10615In @value{GDBN} scripts, the Modula-2 inequality operator @code{#} is
10616interpreted as the beginning of a comment. Use @code{<>} instead.
c906108c 10617
e07c999f
PH
10618@node Ada
10619@subsection Ada
10620@cindex Ada
10621
10622The extensions made to @value{GDBN} for Ada only support
10623output from the @sc{gnu} Ada (GNAT) compiler.
10624Other Ada compilers are not currently supported, and
10625attempting to debug executables produced by them is most likely
10626to be difficult.
10627
10628
10629@cindex expressions in Ada
10630@menu
10631* Ada Mode Intro:: General remarks on the Ada syntax
10632 and semantics supported by Ada mode
10633 in @value{GDBN}.
10634* Omissions from Ada:: Restrictions on the Ada expression syntax.
10635* Additions to Ada:: Extensions of the Ada expression syntax.
10636* Stopping Before Main Program:: Debugging the program during elaboration.
10637* Ada Glitches:: Known peculiarities of Ada mode.
10638@end menu
10639
10640@node Ada Mode Intro
10641@subsubsection Introduction
10642@cindex Ada mode, general
10643
10644The Ada mode of @value{GDBN} supports a fairly large subset of Ada expression
10645syntax, with some extensions.
10646The philosophy behind the design of this subset is
10647
10648@itemize @bullet
10649@item
10650That @value{GDBN} should provide basic literals and access to operations for
10651arithmetic, dereferencing, field selection, indexing, and subprogram calls,
10652leaving more sophisticated computations to subprograms written into the
10653program (which therefore may be called from @value{GDBN}).
10654
10655@item
10656That type safety and strict adherence to Ada language restrictions
10657are not particularly important to the @value{GDBN} user.
10658
10659@item
10660That brevity is important to the @value{GDBN} user.
10661@end itemize
10662
10663Thus, for brevity, the debugger acts as if there were
10664implicit @code{with} and @code{use} clauses in effect for all user-written
10665packages, making it unnecessary to fully qualify most names with
10666their packages, regardless of context. Where this causes ambiguity,
10667@value{GDBN} asks the user's intent.
10668
10669The debugger will start in Ada mode if it detects an Ada main program.
10670As for other languages, it will enter Ada mode when stopped in a program that
10671was translated from an Ada source file.
10672
10673While in Ada mode, you may use `@t{--}' for comments. This is useful
10674mostly for documenting command files. The standard @value{GDBN} comment
10675(@samp{#}) still works at the beginning of a line in Ada mode, but not in the
10676middle (to allow based literals).
10677
10678The debugger supports limited overloading. Given a subprogram call in which
10679the function symbol has multiple definitions, it will use the number of
10680actual parameters and some information about their types to attempt to narrow
10681the set of definitions. It also makes very limited use of context, preferring
10682procedures to functions in the context of the @code{call} command, and
10683functions to procedures elsewhere.
10684
10685@node Omissions from Ada
10686@subsubsection Omissions from Ada
10687@cindex Ada, omissions from
10688
10689Here are the notable omissions from the subset:
10690
10691@itemize @bullet
10692@item
10693Only a subset of the attributes are supported:
10694
10695@itemize @minus
10696@item
10697@t{'First}, @t{'Last}, and @t{'Length}
10698 on array objects (not on types and subtypes).
10699
10700@item
10701@t{'Min} and @t{'Max}.
10702
10703@item
10704@t{'Pos} and @t{'Val}.
10705
10706@item
10707@t{'Tag}.
10708
10709@item
10710@t{'Range} on array objects (not subtypes), but only as the right
10711operand of the membership (@code{in}) operator.
10712
10713@item
10714@t{'Access}, @t{'Unchecked_Access}, and
10715@t{'Unrestricted_Access} (a GNAT extension).
10716
10717@item
10718@t{'Address}.
10719@end itemize
10720
10721@item
10722The names in
10723@code{Characters.Latin_1} are not available and
10724concatenation is not implemented. Thus, escape characters in strings are
10725not currently available.
10726
10727@item
10728Equality tests (@samp{=} and @samp{/=}) on arrays test for bitwise
10729equality of representations. They will generally work correctly
10730for strings and arrays whose elements have integer or enumeration types.
10731They may not work correctly for arrays whose element
10732types have user-defined equality, for arrays of real values
10733(in particular, IEEE-conformant floating point, because of negative
10734zeroes and NaNs), and for arrays whose elements contain unused bits with
10735indeterminate values.
10736
10737@item
10738The other component-by-component array operations (@code{and}, @code{or},
10739@code{xor}, @code{not}, and relational tests other than equality)
10740are not implemented.
10741
10742@item
860701dc
PH
10743@cindex array aggregates (Ada)
10744@cindex record aggregates (Ada)
10745@cindex aggregates (Ada)
10746There is limited support for array and record aggregates. They are
10747permitted only on the right sides of assignments, as in these examples:
10748
10749@smallexample
10750set An_Array := (1, 2, 3, 4, 5, 6)
10751set An_Array := (1, others => 0)
10752set An_Array := (0|4 => 1, 1..3 => 2, 5 => 6)
10753set A_2D_Array := ((1, 2, 3), (4, 5, 6), (7, 8, 9))
10754set A_Record := (1, "Peter", True);
10755set A_Record := (Name => "Peter", Id => 1, Alive => True)
10756@end smallexample
10757
10758Changing a
10759discriminant's value by assigning an aggregate has an
10760undefined effect if that discriminant is used within the record.
10761However, you can first modify discriminants by directly assigning to
10762them (which normally would not be allowed in Ada), and then performing an
10763aggregate assignment. For example, given a variable @code{A_Rec}
10764declared to have a type such as:
10765
10766@smallexample
10767type Rec (Len : Small_Integer := 0) is record
10768 Id : Integer;
10769 Vals : IntArray (1 .. Len);
10770end record;
10771@end smallexample
10772
10773you can assign a value with a different size of @code{Vals} with two
10774assignments:
10775
10776@smallexample
10777set A_Rec.Len := 4
10778set A_Rec := (Id => 42, Vals => (1, 2, 3, 4))
10779@end smallexample
10780
10781As this example also illustrates, @value{GDBN} is very loose about the usual
10782rules concerning aggregates. You may leave out some of the
10783components of an array or record aggregate (such as the @code{Len}
10784component in the assignment to @code{A_Rec} above); they will retain their
10785original values upon assignment. You may freely use dynamic values as
10786indices in component associations. You may even use overlapping or
10787redundant component associations, although which component values are
10788assigned in such cases is not defined.
e07c999f
PH
10789
10790@item
10791Calls to dispatching subprograms are not implemented.
10792
10793@item
10794The overloading algorithm is much more limited (i.e., less selective)
ae21e955
BW
10795than that of real Ada. It makes only limited use of the context in
10796which a subexpression appears to resolve its meaning, and it is much
10797looser in its rules for allowing type matches. As a result, some
10798function calls will be ambiguous, and the user will be asked to choose
10799the proper resolution.
e07c999f
PH
10800
10801@item
10802The @code{new} operator is not implemented.
10803
10804@item
10805Entry calls are not implemented.
10806
10807@item
10808Aside from printing, arithmetic operations on the native VAX floating-point
10809formats are not supported.
10810
10811@item
10812It is not possible to slice a packed array.
10813@end itemize
10814
10815@node Additions to Ada
10816@subsubsection Additions to Ada
10817@cindex Ada, deviations from
10818
10819As it does for other languages, @value{GDBN} makes certain generic
10820extensions to Ada (@pxref{Expressions}):
10821
10822@itemize @bullet
10823@item
ae21e955
BW
10824If the expression @var{E} is a variable residing in memory (typically
10825a local variable or array element) and @var{N} is a positive integer,
10826then @code{@var{E}@@@var{N}} displays the values of @var{E} and the
10827@var{N}-1 adjacent variables following it in memory as an array. In
10828Ada, this operator is generally not necessary, since its prime use is
10829in displaying parts of an array, and slicing will usually do this in
10830Ada. However, there are occasional uses when debugging programs in
10831which certain debugging information has been optimized away.
e07c999f
PH
10832
10833@item
ae21e955
BW
10834@code{@var{B}::@var{var}} means ``the variable named @var{var} that
10835appears in function or file @var{B}.'' When @var{B} is a file name,
10836you must typically surround it in single quotes.
e07c999f
PH
10837
10838@item
10839The expression @code{@{@var{type}@} @var{addr}} means ``the variable of type
10840@var{type} that appears at address @var{addr}.''
10841
10842@item
10843A name starting with @samp{$} is a convenience variable
10844(@pxref{Convenience Vars}) or a machine register (@pxref{Registers}).
10845@end itemize
10846
ae21e955
BW
10847In addition, @value{GDBN} provides a few other shortcuts and outright
10848additions specific to Ada:
e07c999f
PH
10849
10850@itemize @bullet
10851@item
10852The assignment statement is allowed as an expression, returning
10853its right-hand operand as its value. Thus, you may enter
10854
10855@smallexample
10856set x := y + 3
10857print A(tmp := y + 1)
10858@end smallexample
10859
10860@item
10861The semicolon is allowed as an ``operator,'' returning as its value
10862the value of its right-hand operand.
10863This allows, for example,
10864complex conditional breaks:
10865
10866@smallexample
10867break f
10868condition 1 (report(i); k += 1; A(k) > 100)
10869@end smallexample
10870
10871@item
10872Rather than use catenation and symbolic character names to introduce special
10873characters into strings, one may instead use a special bracket notation,
10874which is also used to print strings. A sequence of characters of the form
10875@samp{["@var{XX}"]} within a string or character literal denotes the
10876(single) character whose numeric encoding is @var{XX} in hexadecimal. The
10877sequence of characters @samp{["""]} also denotes a single quotation mark
10878in strings. For example,
10879@smallexample
10880 "One line.["0a"]Next line.["0a"]"
10881@end smallexample
10882@noindent
ae21e955
BW
10883contains an ASCII newline character (@code{Ada.Characters.Latin_1.LF})
10884after each period.
e07c999f
PH
10885
10886@item
10887The subtype used as a prefix for the attributes @t{'Pos}, @t{'Min}, and
10888@t{'Max} is optional (and is ignored in any case). For example, it is valid
10889to write
10890
10891@smallexample
10892print 'max(x, y)
10893@end smallexample
10894
10895@item
10896When printing arrays, @value{GDBN} uses positional notation when the
10897array has a lower bound of 1, and uses a modified named notation otherwise.
ae21e955
BW
10898For example, a one-dimensional array of three integers with a lower bound
10899of 3 might print as
e07c999f
PH
10900
10901@smallexample
10902(3 => 10, 17, 1)
10903@end smallexample
10904
10905@noindent
10906That is, in contrast to valid Ada, only the first component has a @code{=>}
10907clause.
10908
10909@item
10910You may abbreviate attributes in expressions with any unique,
10911multi-character subsequence of
10912their names (an exact match gets preference).
10913For example, you may use @t{a'len}, @t{a'gth}, or @t{a'lh}
10914in place of @t{a'length}.
10915
10916@item
10917@cindex quoting Ada internal identifiers
10918Since Ada is case-insensitive, the debugger normally maps identifiers you type
10919to lower case. The GNAT compiler uses upper-case characters for
10920some of its internal identifiers, which are normally of no interest to users.
10921For the rare occasions when you actually have to look at them,
10922enclose them in angle brackets to avoid the lower-case mapping.
10923For example,
10924@smallexample
10925@value{GDBP} print <JMPBUF_SAVE>[0]
10926@end smallexample
10927
10928@item
10929Printing an object of class-wide type or dereferencing an
10930access-to-class-wide value will display all the components of the object's
10931specific type (as indicated by its run-time tag). Likewise, component
10932selection on such a value will operate on the specific type of the
10933object.
10934
10935@end itemize
10936
10937@node Stopping Before Main Program
10938@subsubsection Stopping at the Very Beginning
10939
10940@cindex breakpointing Ada elaboration code
10941It is sometimes necessary to debug the program during elaboration, and
10942before reaching the main procedure.
10943As defined in the Ada Reference
10944Manual, the elaboration code is invoked from a procedure called
10945@code{adainit}. To run your program up to the beginning of
10946elaboration, simply use the following two commands:
10947@code{tbreak adainit} and @code{run}.
10948
10949@node Ada Glitches
10950@subsubsection Known Peculiarities of Ada Mode
10951@cindex Ada, problems
10952
10953Besides the omissions listed previously (@pxref{Omissions from Ada}),
10954we know of several problems with and limitations of Ada mode in
10955@value{GDBN},
10956some of which will be fixed with planned future releases of the debugger
10957and the GNU Ada compiler.
10958
10959@itemize @bullet
10960@item
10961Currently, the debugger
10962has insufficient information to determine whether certain pointers represent
10963pointers to objects or the objects themselves.
10964Thus, the user may have to tack an extra @code{.all} after an expression
10965to get it printed properly.
10966
10967@item
10968Static constants that the compiler chooses not to materialize as objects in
10969storage are invisible to the debugger.
10970
10971@item
10972Named parameter associations in function argument lists are ignored (the
10973argument lists are treated as positional).
10974
10975@item
10976Many useful library packages are currently invisible to the debugger.
10977
10978@item
10979Fixed-point arithmetic, conversions, input, and output is carried out using
10980floating-point arithmetic, and may give results that only approximate those on
10981the host machine.
10982
10983@item
10984The type of the @t{'Address} attribute may not be @code{System.Address}.
10985
10986@item
10987The GNAT compiler never generates the prefix @code{Standard} for any of
10988the standard symbols defined by the Ada language. @value{GDBN} knows about
10989this: it will strip the prefix from names when you use it, and will never
10990look for a name you have so qualified among local symbols, nor match against
10991symbols in other packages or subprograms. If you have
10992defined entities anywhere in your program other than parameters and
10993local variables whose simple names match names in @code{Standard},
10994GNAT's lack of qualification here can cause confusion. When this happens,
10995you can usually resolve the confusion
10996by qualifying the problematic names with package
10997@code{Standard} explicitly.
10998@end itemize
10999
79a6e687
BW
11000@node Unsupported Languages
11001@section Unsupported Languages
4e562065
JB
11002
11003@cindex unsupported languages
11004@cindex minimal language
11005In addition to the other fully-supported programming languages,
11006@value{GDBN} also provides a pseudo-language, called @code{minimal}.
11007It does not represent a real programming language, but provides a set
11008of capabilities close to what the C or assembly languages provide.
11009This should allow most simple operations to be performed while debugging
11010an application that uses a language currently not supported by @value{GDBN}.
11011
11012If the language is set to @code{auto}, @value{GDBN} will automatically
11013select this language if the current frame corresponds to an unsupported
11014language.
11015
6d2ebf8b 11016@node Symbols
c906108c
SS
11017@chapter Examining the Symbol Table
11018
d4f3574e 11019The commands described in this chapter allow you to inquire about the
c906108c
SS
11020symbols (names of variables, functions and types) defined in your
11021program. This information is inherent in the text of your program and
11022does not change as your program executes. @value{GDBN} finds it in your
11023program's symbol table, in the file indicated when you started @value{GDBN}
79a6e687
BW
11024(@pxref{File Options, ,Choosing Files}), or by one of the
11025file-management commands (@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
11026
11027@cindex symbol names
11028@cindex names of symbols
11029@cindex quoting names
11030Occasionally, you may need to refer to symbols that contain unusual
11031characters, which @value{GDBN} ordinarily treats as word delimiters. The
11032most frequent case is in referring to static variables in other
79a6e687 11033source files (@pxref{Variables,,Program Variables}). File names
c906108c
SS
11034are recorded in object files as debugging symbols, but @value{GDBN} would
11035ordinarily parse a typical file name, like @file{foo.c}, as the three words
11036@samp{foo} @samp{.} @samp{c}. To allow @value{GDBN} to recognize
11037@samp{foo.c} as a single symbol, enclose it in single quotes; for example,
11038
474c8240 11039@smallexample
c906108c 11040p 'foo.c'::x
474c8240 11041@end smallexample
c906108c
SS
11042
11043@noindent
11044looks up the value of @code{x} in the scope of the file @file{foo.c}.
11045
11046@table @code
a8f24a35
EZ
11047@cindex case-insensitive symbol names
11048@cindex case sensitivity in symbol names
11049@kindex set case-sensitive
11050@item set case-sensitive on
11051@itemx set case-sensitive off
11052@itemx set case-sensitive auto
11053Normally, when @value{GDBN} looks up symbols, it matches their names
11054with case sensitivity determined by the current source language.
11055Occasionally, you may wish to control that. The command @code{set
11056case-sensitive} lets you do that by specifying @code{on} for
11057case-sensitive matches or @code{off} for case-insensitive ones. If
11058you specify @code{auto}, case sensitivity is reset to the default
11059suitable for the source language. The default is case-sensitive
11060matches for all languages except for Fortran, for which the default is
11061case-insensitive matches.
11062
9c16f35a
EZ
11063@kindex show case-sensitive
11064@item show case-sensitive
a8f24a35
EZ
11065This command shows the current setting of case sensitivity for symbols
11066lookups.
11067
c906108c 11068@kindex info address
b37052ae 11069@cindex address of a symbol
c906108c
SS
11070@item info address @var{symbol}
11071Describe where the data for @var{symbol} is stored. For a register
11072variable, this says which register it is kept in. For a non-register
11073local variable, this prints the stack-frame offset at which the variable
11074is always stored.
11075
11076Note the contrast with @samp{print &@var{symbol}}, which does not work
11077at all for a register variable, and for a stack local variable prints
11078the exact address of the current instantiation of the variable.
11079
3d67e040 11080@kindex info symbol
b37052ae 11081@cindex symbol from address
9c16f35a 11082@cindex closest symbol and offset for an address
3d67e040
EZ
11083@item info symbol @var{addr}
11084Print the name of a symbol which is stored at the address @var{addr}.
11085If no symbol is stored exactly at @var{addr}, @value{GDBN} prints the
11086nearest symbol and an offset from it:
11087
474c8240 11088@smallexample
3d67e040
EZ
11089(@value{GDBP}) info symbol 0x54320
11090_initialize_vx + 396 in section .text
474c8240 11091@end smallexample
3d67e040
EZ
11092
11093@noindent
11094This is the opposite of the @code{info address} command. You can use
11095it to find out the name of a variable or a function given its address.
11096
c906108c 11097@kindex whatis
62f3a2ba
FF
11098@item whatis [@var{arg}]
11099Print the data type of @var{arg}, which can be either an expression or
11100a data type. With no argument, print the data type of @code{$}, the
11101last value in the value history. If @var{arg} is an expression, it is
11102not actually evaluated, and any side-effecting operations (such as
11103assignments or function calls) inside it do not take place. If
11104@var{arg} is a type name, it may be the name of a type or typedef, or
11105for C code it may have the form @samp{class @var{class-name}},
11106@samp{struct @var{struct-tag}}, @samp{union @var{union-tag}} or
11107@samp{enum @var{enum-tag}}.
c906108c
SS
11108@xref{Expressions, ,Expressions}.
11109
c906108c 11110@kindex ptype
62f3a2ba
FF
11111@item ptype [@var{arg}]
11112@code{ptype} accepts the same arguments as @code{whatis}, but prints a
11113detailed description of the type, instead of just the name of the type.
11114@xref{Expressions, ,Expressions}.
c906108c
SS
11115
11116For example, for this variable declaration:
11117
474c8240 11118@smallexample
c906108c 11119struct complex @{double real; double imag;@} v;
474c8240 11120@end smallexample
c906108c
SS
11121
11122@noindent
11123the two commands give this output:
11124
474c8240 11125@smallexample
c906108c
SS
11126@group
11127(@value{GDBP}) whatis v
11128type = struct complex
11129(@value{GDBP}) ptype v
11130type = struct complex @{
11131 double real;
11132 double imag;
11133@}
11134@end group
474c8240 11135@end smallexample
c906108c
SS
11136
11137@noindent
11138As with @code{whatis}, using @code{ptype} without an argument refers to
11139the type of @code{$}, the last value in the value history.
11140
ab1adacd
EZ
11141@cindex incomplete type
11142Sometimes, programs use opaque data types or incomplete specifications
11143of complex data structure. If the debug information included in the
11144program does not allow @value{GDBN} to display a full declaration of
11145the data type, it will say @samp{<incomplete type>}. For example,
11146given these declarations:
11147
11148@smallexample
11149 struct foo;
11150 struct foo *fooptr;
11151@end smallexample
11152
11153@noindent
11154but no definition for @code{struct foo} itself, @value{GDBN} will say:
11155
11156@smallexample
ddb50cd7 11157 (@value{GDBP}) ptype foo
ab1adacd
EZ
11158 $1 = <incomplete type>
11159@end smallexample
11160
11161@noindent
11162``Incomplete type'' is C terminology for data types that are not
11163completely specified.
11164
c906108c
SS
11165@kindex info types
11166@item info types @var{regexp}
11167@itemx info types
09d4efe1
EZ
11168Print a brief description of all types whose names match the regular
11169expression @var{regexp} (or all types in your program, if you supply
11170no argument). Each complete typename is matched as though it were a
11171complete line; thus, @samp{i type value} gives information on all
11172types in your program whose names include the string @code{value}, but
11173@samp{i type ^value$} gives information only on types whose complete
11174name is @code{value}.
c906108c
SS
11175
11176This command differs from @code{ptype} in two ways: first, like
11177@code{whatis}, it does not print a detailed description; second, it
11178lists all source files where a type is defined.
11179
b37052ae
EZ
11180@kindex info scope
11181@cindex local variables
09d4efe1 11182@item info scope @var{location}
b37052ae 11183List all the variables local to a particular scope. This command
09d4efe1
EZ
11184accepts a @var{location} argument---a function name, a source line, or
11185an address preceded by a @samp{*}, and prints all the variables local
2a25a5ba
EZ
11186to the scope defined by that location. (@xref{Specify Location}, for
11187details about supported forms of @var{location}.) For example:
b37052ae
EZ
11188
11189@smallexample
11190(@value{GDBP}) @b{info scope command_line_handler}
11191Scope for command_line_handler:
11192Symbol rl is an argument at stack/frame offset 8, length 4.
11193Symbol linebuffer is in static storage at address 0x150a18, length 4.
11194Symbol linelength is in static storage at address 0x150a1c, length 4.
11195Symbol p is a local variable in register $esi, length 4.
11196Symbol p1 is a local variable in register $ebx, length 4.
11197Symbol nline is a local variable in register $edx, length 4.
11198Symbol repeat is a local variable at frame offset -8, length 4.
11199@end smallexample
11200
f5c37c66
EZ
11201@noindent
11202This command is especially useful for determining what data to collect
11203during a @dfn{trace experiment}, see @ref{Tracepoint Actions,
11204collect}.
11205
c906108c
SS
11206@kindex info source
11207@item info source
919d772c
JB
11208Show information about the current source file---that is, the source file for
11209the function containing the current point of execution:
11210@itemize @bullet
11211@item
11212the name of the source file, and the directory containing it,
11213@item
11214the directory it was compiled in,
11215@item
11216its length, in lines,
11217@item
11218which programming language it is written in,
11219@item
11220whether the executable includes debugging information for that file, and
11221if so, what format the information is in (e.g., STABS, Dwarf 2, etc.), and
11222@item
11223whether the debugging information includes information about
11224preprocessor macros.
11225@end itemize
11226
c906108c
SS
11227
11228@kindex info sources
11229@item info sources
11230Print the names of all source files in your program for which there is
11231debugging information, organized into two lists: files whose symbols
11232have already been read, and files whose symbols will be read when needed.
11233
11234@kindex info functions
11235@item info functions
11236Print the names and data types of all defined functions.
11237
11238@item info functions @var{regexp}
11239Print the names and data types of all defined functions
11240whose names contain a match for regular expression @var{regexp}.
11241Thus, @samp{info fun step} finds all functions whose names
11242include @code{step}; @samp{info fun ^step} finds those whose names
b383017d 11243start with @code{step}. If a function name contains characters
c1468174 11244that conflict with the regular expression language (e.g.@:
1c5dfdad 11245@samp{operator*()}), they may be quoted with a backslash.
c906108c
SS
11246
11247@kindex info variables
11248@item info variables
11249Print the names and data types of all variables that are declared
6ca652b0 11250outside of functions (i.e.@: excluding local variables).
c906108c
SS
11251
11252@item info variables @var{regexp}
11253Print the names and data types of all variables (except for local
11254variables) whose names contain a match for regular expression
11255@var{regexp}.
11256
b37303ee 11257@kindex info classes
721c2651 11258@cindex Objective-C, classes and selectors
b37303ee
AF
11259@item info classes
11260@itemx info classes @var{regexp}
11261Display all Objective-C classes in your program, or
11262(with the @var{regexp} argument) all those matching a particular regular
11263expression.
11264
11265@kindex info selectors
11266@item info selectors
11267@itemx info selectors @var{regexp}
11268Display all Objective-C selectors in your program, or
11269(with the @var{regexp} argument) all those matching a particular regular
11270expression.
11271
c906108c
SS
11272@ignore
11273This was never implemented.
11274@kindex info methods
11275@item info methods
11276@itemx info methods @var{regexp}
11277The @code{info methods} command permits the user to examine all defined
b37052ae
EZ
11278methods within C@t{++} program, or (with the @var{regexp} argument) a
11279specific set of methods found in the various C@t{++} classes. Many
11280C@t{++} classes provide a large number of methods. Thus, the output
c906108c
SS
11281from the @code{ptype} command can be overwhelming and hard to use. The
11282@code{info-methods} command filters the methods, printing only those
11283which match the regular-expression @var{regexp}.
11284@end ignore
11285
c906108c
SS
11286@cindex reloading symbols
11287Some systems allow individual object files that make up your program to
7a292a7a
SS
11288be replaced without stopping and restarting your program. For example,
11289in VxWorks you can simply recompile a defective object file and keep on
11290running. If you are running on one of these systems, you can allow
11291@value{GDBN} to reload the symbols for automatically relinked modules:
c906108c
SS
11292
11293@table @code
11294@kindex set symbol-reloading
11295@item set symbol-reloading on
11296Replace symbol definitions for the corresponding source file when an
11297object file with a particular name is seen again.
11298
11299@item set symbol-reloading off
6d2ebf8b
SS
11300Do not replace symbol definitions when encountering object files of the
11301same name more than once. This is the default state; if you are not
11302running on a system that permits automatic relinking of modules, you
11303should leave @code{symbol-reloading} off, since otherwise @value{GDBN}
11304may discard symbols when linking large programs, that may contain
11305several modules (from different directories or libraries) with the same
11306name.
c906108c
SS
11307
11308@kindex show symbol-reloading
11309@item show symbol-reloading
11310Show the current @code{on} or @code{off} setting.
11311@end table
c906108c 11312
9c16f35a 11313@cindex opaque data types
c906108c
SS
11314@kindex set opaque-type-resolution
11315@item set opaque-type-resolution on
11316Tell @value{GDBN} to resolve opaque types. An opaque type is a type
11317declared as a pointer to a @code{struct}, @code{class}, or
11318@code{union}---for example, @code{struct MyType *}---that is used in one
11319source file although the full declaration of @code{struct MyType} is in
11320another source file. The default is on.
11321
11322A change in the setting of this subcommand will not take effect until
11323the next time symbols for a file are loaded.
11324
11325@item set opaque-type-resolution off
11326Tell @value{GDBN} not to resolve opaque types. In this case, the type
11327is printed as follows:
11328@smallexample
11329@{<no data fields>@}
11330@end smallexample
11331
11332@kindex show opaque-type-resolution
11333@item show opaque-type-resolution
11334Show whether opaque types are resolved or not.
c906108c
SS
11335
11336@kindex maint print symbols
11337@cindex symbol dump
11338@kindex maint print psymbols
11339@cindex partial symbol dump
11340@item maint print symbols @var{filename}
11341@itemx maint print psymbols @var{filename}
11342@itemx maint print msymbols @var{filename}
11343Write a dump of debugging symbol data into the file @var{filename}.
11344These commands are used to debug the @value{GDBN} symbol-reading code. Only
11345symbols with debugging data are included. If you use @samp{maint print
11346symbols}, @value{GDBN} includes all the symbols for which it has already
11347collected full details: that is, @var{filename} reflects symbols for
11348only those files whose symbols @value{GDBN} has read. You can use the
11349command @code{info sources} to find out which files these are. If you
11350use @samp{maint print psymbols} instead, the dump shows information about
11351symbols that @value{GDBN} only knows partially---that is, symbols defined in
11352files that @value{GDBN} has skimmed, but not yet read completely. Finally,
11353@samp{maint print msymbols} dumps just the minimal symbol information
11354required for each object file from which @value{GDBN} has read some symbols.
79a6e687 11355@xref{Files, ,Commands to Specify Files}, for a discussion of how
c906108c 11356@value{GDBN} reads symbols (in the description of @code{symbol-file}).
44ea7b70 11357
5e7b2f39
JB
11358@kindex maint info symtabs
11359@kindex maint info psymtabs
44ea7b70
JB
11360@cindex listing @value{GDBN}'s internal symbol tables
11361@cindex symbol tables, listing @value{GDBN}'s internal
11362@cindex full symbol tables, listing @value{GDBN}'s internal
11363@cindex partial symbol tables, listing @value{GDBN}'s internal
5e7b2f39
JB
11364@item maint info symtabs @r{[} @var{regexp} @r{]}
11365@itemx maint info psymtabs @r{[} @var{regexp} @r{]}
44ea7b70
JB
11366
11367List the @code{struct symtab} or @code{struct partial_symtab}
11368structures whose names match @var{regexp}. If @var{regexp} is not
11369given, list them all. The output includes expressions which you can
11370copy into a @value{GDBN} debugging this one to examine a particular
11371structure in more detail. For example:
11372
11373@smallexample
5e7b2f39 11374(@value{GDBP}) maint info psymtabs dwarf2read
44ea7b70
JB
11375@{ objfile /home/gnu/build/gdb/gdb
11376 ((struct objfile *) 0x82e69d0)
b383017d 11377 @{ psymtab /home/gnu/src/gdb/dwarf2read.c
44ea7b70
JB
11378 ((struct partial_symtab *) 0x8474b10)
11379 readin no
11380 fullname (null)
11381 text addresses 0x814d3c8 -- 0x8158074
11382 globals (* (struct partial_symbol **) 0x8507a08 @@ 9)
11383 statics (* (struct partial_symbol **) 0x40e95b78 @@ 2882)
11384 dependencies (none)
11385 @}
11386@}
5e7b2f39 11387(@value{GDBP}) maint info symtabs
44ea7b70
JB
11388(@value{GDBP})
11389@end smallexample
11390@noindent
11391We see that there is one partial symbol table whose filename contains
11392the string @samp{dwarf2read}, belonging to the @samp{gdb} executable;
11393and we see that @value{GDBN} has not read in any symtabs yet at all.
11394If we set a breakpoint on a function, that will cause @value{GDBN} to
11395read the symtab for the compilation unit containing that function:
11396
11397@smallexample
11398(@value{GDBP}) break dwarf2_psymtab_to_symtab
11399Breakpoint 1 at 0x814e5da: file /home/gnu/src/gdb/dwarf2read.c,
11400line 1574.
5e7b2f39 11401(@value{GDBP}) maint info symtabs
b383017d 11402@{ objfile /home/gnu/build/gdb/gdb
44ea7b70 11403 ((struct objfile *) 0x82e69d0)
b383017d 11404 @{ symtab /home/gnu/src/gdb/dwarf2read.c
44ea7b70
JB
11405 ((struct symtab *) 0x86c1f38)
11406 dirname (null)
11407 fullname (null)
11408 blockvector ((struct blockvector *) 0x86c1bd0) (primary)
1b39d5c0 11409 linetable ((struct linetable *) 0x8370fa0)
44ea7b70
JB
11410 debugformat DWARF 2
11411 @}
11412@}
b383017d 11413(@value{GDBP})
44ea7b70 11414@end smallexample
c906108c
SS
11415@end table
11416
44ea7b70 11417
6d2ebf8b 11418@node Altering
c906108c
SS
11419@chapter Altering Execution
11420
11421Once you think you have found an error in your program, you might want to
11422find out for certain whether correcting the apparent error would lead to
11423correct results in the rest of the run. You can find the answer by
11424experiment, using the @value{GDBN} features for altering execution of the
11425program.
11426
11427For example, you can store new values into variables or memory
7a292a7a
SS
11428locations, give your program a signal, restart it at a different
11429address, or even return prematurely from a function.
c906108c
SS
11430
11431@menu
11432* Assignment:: Assignment to variables
11433* Jumping:: Continuing at a different address
c906108c 11434* Signaling:: Giving your program a signal
c906108c
SS
11435* Returning:: Returning from a function
11436* Calling:: Calling your program's functions
11437* Patching:: Patching your program
11438@end menu
11439
6d2ebf8b 11440@node Assignment
79a6e687 11441@section Assignment to Variables
c906108c
SS
11442
11443@cindex assignment
11444@cindex setting variables
11445To alter the value of a variable, evaluate an assignment expression.
11446@xref{Expressions, ,Expressions}. For example,
11447
474c8240 11448@smallexample
c906108c 11449print x=4
474c8240 11450@end smallexample
c906108c
SS
11451
11452@noindent
11453stores the value 4 into the variable @code{x}, and then prints the
5d161b24 11454value of the assignment expression (which is 4).
c906108c
SS
11455@xref{Languages, ,Using @value{GDBN} with Different Languages}, for more
11456information on operators in supported languages.
c906108c
SS
11457
11458@kindex set variable
11459@cindex variables, setting
11460If you are not interested in seeing the value of the assignment, use the
11461@code{set} command instead of the @code{print} command. @code{set} is
11462really the same as @code{print} except that the expression's value is
11463not printed and is not put in the value history (@pxref{Value History,
79a6e687 11464,Value History}). The expression is evaluated only for its effects.
c906108c 11465
c906108c
SS
11466If the beginning of the argument string of the @code{set} command
11467appears identical to a @code{set} subcommand, use the @code{set
11468variable} command instead of just @code{set}. This command is identical
11469to @code{set} except for its lack of subcommands. For example, if your
11470program has a variable @code{width}, you get an error if you try to set
11471a new value with just @samp{set width=13}, because @value{GDBN} has the
11472command @code{set width}:
11473
474c8240 11474@smallexample
c906108c
SS
11475(@value{GDBP}) whatis width
11476type = double
11477(@value{GDBP}) p width
11478$4 = 13
11479(@value{GDBP}) set width=47
11480Invalid syntax in expression.
474c8240 11481@end smallexample
c906108c
SS
11482
11483@noindent
11484The invalid expression, of course, is @samp{=47}. In
11485order to actually set the program's variable @code{width}, use
11486
474c8240 11487@smallexample
c906108c 11488(@value{GDBP}) set var width=47
474c8240 11489@end smallexample
53a5351d 11490
c906108c
SS
11491Because the @code{set} command has many subcommands that can conflict
11492with the names of program variables, it is a good idea to use the
11493@code{set variable} command instead of just @code{set}. For example, if
11494your program has a variable @code{g}, you run into problems if you try
11495to set a new value with just @samp{set g=4}, because @value{GDBN} has
11496the command @code{set gnutarget}, abbreviated @code{set g}:
11497
474c8240 11498@smallexample
c906108c
SS
11499@group
11500(@value{GDBP}) whatis g
11501type = double
11502(@value{GDBP}) p g
11503$1 = 1
11504(@value{GDBP}) set g=4
2df3850c 11505(@value{GDBP}) p g
c906108c
SS
11506$2 = 1
11507(@value{GDBP}) r
11508The program being debugged has been started already.
11509Start it from the beginning? (y or n) y
11510Starting program: /home/smith/cc_progs/a.out
6d2ebf8b
SS
11511"/home/smith/cc_progs/a.out": can't open to read symbols:
11512 Invalid bfd target.
c906108c
SS
11513(@value{GDBP}) show g
11514The current BFD target is "=4".
11515@end group
474c8240 11516@end smallexample
c906108c
SS
11517
11518@noindent
11519The program variable @code{g} did not change, and you silently set the
11520@code{gnutarget} to an invalid value. In order to set the variable
11521@code{g}, use
11522
474c8240 11523@smallexample
c906108c 11524(@value{GDBP}) set var g=4
474c8240 11525@end smallexample
c906108c
SS
11526
11527@value{GDBN} allows more implicit conversions in assignments than C; you can
11528freely store an integer value into a pointer variable or vice versa,
11529and you can convert any structure to any other structure that is the
11530same length or shorter.
11531@comment FIXME: how do structs align/pad in these conversions?
11532@comment /doc@cygnus.com 18dec1990
11533
11534To store values into arbitrary places in memory, use the @samp{@{@dots{}@}}
11535construct to generate a value of specified type at a specified address
11536(@pxref{Expressions, ,Expressions}). For example, @code{@{int@}0x83040} refers
11537to memory location @code{0x83040} as an integer (which implies a certain size
11538and representation in memory), and
11539
474c8240 11540@smallexample
c906108c 11541set @{int@}0x83040 = 4
474c8240 11542@end smallexample
c906108c
SS
11543
11544@noindent
11545stores the value 4 into that memory location.
11546
6d2ebf8b 11547@node Jumping
79a6e687 11548@section Continuing at a Different Address
c906108c
SS
11549
11550Ordinarily, when you continue your program, you do so at the place where
11551it stopped, with the @code{continue} command. You can instead continue at
11552an address of your own choosing, with the following commands:
11553
11554@table @code
11555@kindex jump
11556@item jump @var{linespec}
2a25a5ba
EZ
11557@itemx jump @var{location}
11558Resume execution at line @var{linespec} or at address given by
11559@var{location}. Execution stops again immediately if there is a
11560breakpoint there. @xref{Specify Location}, for a description of the
11561different forms of @var{linespec} and @var{location}. It is common
11562practice to use the @code{tbreak} command in conjunction with
11563@code{jump}. @xref{Set Breaks, ,Setting Breakpoints}.
c906108c
SS
11564
11565The @code{jump} command does not change the current stack frame, or
11566the stack pointer, or the contents of any memory location or any
11567register other than the program counter. If line @var{linespec} is in
11568a different function from the one currently executing, the results may
11569be bizarre if the two functions expect different patterns of arguments or
11570of local variables. For this reason, the @code{jump} command requests
11571confirmation if the specified line is not in the function currently
11572executing. However, even bizarre results are predictable if you are
11573well acquainted with the machine-language code of your program.
c906108c
SS
11574@end table
11575
c906108c 11576@c Doesn't work on HP-UX; have to set $pcoqh and $pcoqt.
53a5351d
JM
11577On many systems, you can get much the same effect as the @code{jump}
11578command by storing a new value into the register @code{$pc}. The
11579difference is that this does not start your program running; it only
11580changes the address of where it @emph{will} run when you continue. For
11581example,
c906108c 11582
474c8240 11583@smallexample
c906108c 11584set $pc = 0x485
474c8240 11585@end smallexample
c906108c
SS
11586
11587@noindent
11588makes the next @code{continue} command or stepping command execute at
11589address @code{0x485}, rather than at the address where your program stopped.
79a6e687 11590@xref{Continuing and Stepping, ,Continuing and Stepping}.
c906108c
SS
11591
11592The most common occasion to use the @code{jump} command is to back
11593up---perhaps with more breakpoints set---over a portion of a program
11594that has already executed, in order to examine its execution in more
11595detail.
11596
c906108c 11597@c @group
6d2ebf8b 11598@node Signaling
79a6e687 11599@section Giving your Program a Signal
9c16f35a 11600@cindex deliver a signal to a program
c906108c
SS
11601
11602@table @code
11603@kindex signal
11604@item signal @var{signal}
11605Resume execution where your program stopped, but immediately give it the
11606signal @var{signal}. @var{signal} can be the name or the number of a
11607signal. For example, on many systems @code{signal 2} and @code{signal
11608SIGINT} are both ways of sending an interrupt signal.
11609
11610Alternatively, if @var{signal} is zero, continue execution without
11611giving a signal. This is useful when your program stopped on account of
11612a signal and would ordinary see the signal when resumed with the
11613@code{continue} command; @samp{signal 0} causes it to resume without a
11614signal.
11615
11616@code{signal} does not repeat when you press @key{RET} a second time
11617after executing the command.
11618@end table
11619@c @end group
11620
11621Invoking the @code{signal} command is not the same as invoking the
11622@code{kill} utility from the shell. Sending a signal with @code{kill}
11623causes @value{GDBN} to decide what to do with the signal depending on
11624the signal handling tables (@pxref{Signals}). The @code{signal} command
11625passes the signal directly to your program.
11626
c906108c 11627
6d2ebf8b 11628@node Returning
79a6e687 11629@section Returning from a Function
c906108c
SS
11630
11631@table @code
11632@cindex returning from a function
11633@kindex return
11634@item return
11635@itemx return @var{expression}
11636You can cancel execution of a function call with the @code{return}
11637command. If you give an
11638@var{expression} argument, its value is used as the function's return
11639value.
11640@end table
11641
11642When you use @code{return}, @value{GDBN} discards the selected stack frame
11643(and all frames within it). You can think of this as making the
11644discarded frame return prematurely. If you wish to specify a value to
11645be returned, give that value as the argument to @code{return}.
11646
11647This pops the selected stack frame (@pxref{Selection, ,Selecting a
79a6e687 11648Frame}), and any other frames inside of it, leaving its caller as the
c906108c
SS
11649innermost remaining frame. That frame becomes selected. The
11650specified value is stored in the registers used for returning values
11651of functions.
11652
11653The @code{return} command does not resume execution; it leaves the
11654program stopped in the state that would exist if the function had just
11655returned. In contrast, the @code{finish} command (@pxref{Continuing
79a6e687 11656and Stepping, ,Continuing and Stepping}) resumes execution until the
c906108c
SS
11657selected stack frame returns naturally.
11658
6d2ebf8b 11659@node Calling
79a6e687 11660@section Calling Program Functions
c906108c 11661
f8568604 11662@table @code
c906108c 11663@cindex calling functions
f8568604
EZ
11664@cindex inferior functions, calling
11665@item print @var{expr}
d3e8051b 11666Evaluate the expression @var{expr} and display the resulting value.
f8568604
EZ
11667@var{expr} may include calls to functions in the program being
11668debugged.
11669
c906108c 11670@kindex call
c906108c
SS
11671@item call @var{expr}
11672Evaluate the expression @var{expr} without displaying @code{void}
11673returned values.
c906108c
SS
11674
11675You can use this variant of the @code{print} command if you want to
f8568604
EZ
11676execute a function from your program that does not return anything
11677(a.k.a.@: @dfn{a void function}), but without cluttering the output
11678with @code{void} returned values that @value{GDBN} will otherwise
11679print. If the result is not void, it is printed and saved in the
11680value history.
11681@end table
11682
9c16f35a
EZ
11683It is possible for the function you call via the @code{print} or
11684@code{call} command to generate a signal (e.g., if there's a bug in
11685the function, or if you passed it incorrect arguments). What happens
11686in that case is controlled by the @code{set unwindonsignal} command.
11687
11688@table @code
11689@item set unwindonsignal
11690@kindex set unwindonsignal
11691@cindex unwind stack in called functions
11692@cindex call dummy stack unwinding
11693Set unwinding of the stack if a signal is received while in a function
11694that @value{GDBN} called in the program being debugged. If set to on,
11695@value{GDBN} unwinds the stack it created for the call and restores
11696the context to what it was before the call. If set to off (the
11697default), @value{GDBN} stops in the frame where the signal was
11698received.
11699
11700@item show unwindonsignal
11701@kindex show unwindonsignal
11702Show the current setting of stack unwinding in the functions called by
11703@value{GDBN}.
11704@end table
11705
f8568604
EZ
11706@cindex weak alias functions
11707Sometimes, a function you wish to call is actually a @dfn{weak alias}
11708for another function. In such case, @value{GDBN} might not pick up
11709the type information, including the types of the function arguments,
11710which causes @value{GDBN} to call the inferior function incorrectly.
11711As a result, the called function will function erroneously and may
11712even crash. A solution to that is to use the name of the aliased
11713function instead.
c906108c 11714
6d2ebf8b 11715@node Patching
79a6e687 11716@section Patching Programs
7a292a7a 11717
c906108c
SS
11718@cindex patching binaries
11719@cindex writing into executables
c906108c 11720@cindex writing into corefiles
c906108c 11721
7a292a7a
SS
11722By default, @value{GDBN} opens the file containing your program's
11723executable code (or the corefile) read-only. This prevents accidental
11724alterations to machine code; but it also prevents you from intentionally
11725patching your program's binary.
c906108c
SS
11726
11727If you'd like to be able to patch the binary, you can specify that
11728explicitly with the @code{set write} command. For example, you might
11729want to turn on internal debugging flags, or even to make emergency
11730repairs.
11731
11732@table @code
11733@kindex set write
11734@item set write on
11735@itemx set write off
7a292a7a
SS
11736If you specify @samp{set write on}, @value{GDBN} opens executable and
11737core files for both reading and writing; if you specify @samp{set write
c906108c
SS
11738off} (the default), @value{GDBN} opens them read-only.
11739
11740If you have already loaded a file, you must load it again (using the
7a292a7a
SS
11741@code{exec-file} or @code{core-file} command) after changing @code{set
11742write}, for your new setting to take effect.
c906108c
SS
11743
11744@item show write
11745@kindex show write
7a292a7a
SS
11746Display whether executable files and core files are opened for writing
11747as well as reading.
c906108c
SS
11748@end table
11749
6d2ebf8b 11750@node GDB Files
c906108c
SS
11751@chapter @value{GDBN} Files
11752
7a292a7a
SS
11753@value{GDBN} needs to know the file name of the program to be debugged,
11754both in order to read its symbol table and in order to start your
11755program. To debug a core dump of a previous run, you must also tell
11756@value{GDBN} the name of the core dump file.
c906108c
SS
11757
11758@menu
11759* Files:: Commands to specify files
5b5d99cf 11760* Separate Debug Files:: Debugging information in separate files
c906108c
SS
11761* Symbol Errors:: Errors reading symbol files
11762@end menu
11763
6d2ebf8b 11764@node Files
79a6e687 11765@section Commands to Specify Files
c906108c 11766
7a292a7a 11767@cindex symbol table
c906108c 11768@cindex core dump file
7a292a7a
SS
11769
11770You may want to specify executable and core dump file names. The usual
11771way to do this is at start-up time, using the arguments to
11772@value{GDBN}'s start-up commands (@pxref{Invocation, , Getting In and
11773Out of @value{GDBN}}).
c906108c
SS
11774
11775Occasionally it is necessary to change to a different file during a
397ca115
EZ
11776@value{GDBN} session. Or you may run @value{GDBN} and forget to
11777specify a file you want to use. Or you are debugging a remote target
79a6e687
BW
11778via @code{gdbserver} (@pxref{Server, file, Using the @code{gdbserver}
11779Program}). In these situations the @value{GDBN} commands to specify
0869d01b 11780new files are useful.
c906108c
SS
11781
11782@table @code
11783@cindex executable file
11784@kindex file
11785@item file @var{filename}
11786Use @var{filename} as the program to be debugged. It is read for its
11787symbols and for the contents of pure memory. It is also the program
11788executed when you use the @code{run} command. If you do not specify a
5d161b24
DB
11789directory and the file is not found in the @value{GDBN} working directory,
11790@value{GDBN} uses the environment variable @code{PATH} as a list of
11791directories to search, just as the shell does when looking for a program
11792to run. You can change the value of this variable, for both @value{GDBN}
c906108c
SS
11793and your program, using the @code{path} command.
11794
fc8be69e
EZ
11795@cindex unlinked object files
11796@cindex patching object files
11797You can load unlinked object @file{.o} files into @value{GDBN} using
11798the @code{file} command. You will not be able to ``run'' an object
11799file, but you can disassemble functions and inspect variables. Also,
11800if the underlying BFD functionality supports it, you could use
11801@kbd{gdb -write} to patch object files using this technique. Note
11802that @value{GDBN} can neither interpret nor modify relocations in this
11803case, so branches and some initialized variables will appear to go to
11804the wrong place. But this feature is still handy from time to time.
11805
c906108c
SS
11806@item file
11807@code{file} with no argument makes @value{GDBN} discard any information it
11808has on both executable file and the symbol table.
11809
11810@kindex exec-file
11811@item exec-file @r{[} @var{filename} @r{]}
11812Specify that the program to be run (but not the symbol table) is found
11813in @var{filename}. @value{GDBN} searches the environment variable @code{PATH}
11814if necessary to locate your program. Omitting @var{filename} means to
11815discard information on the executable file.
11816
11817@kindex symbol-file
11818@item symbol-file @r{[} @var{filename} @r{]}
11819Read symbol table information from file @var{filename}. @code{PATH} is
11820searched when necessary. Use the @code{file} command to get both symbol
11821table and program to run from the same file.
11822
11823@code{symbol-file} with no argument clears out @value{GDBN} information on your
11824program's symbol table.
11825
ae5a43e0
DJ
11826The @code{symbol-file} command causes @value{GDBN} to forget the contents of
11827some breakpoints and auto-display expressions. This is because they may
11828contain pointers to the internal data recording symbols and data types,
11829which are part of the old symbol table data being discarded inside
11830@value{GDBN}.
c906108c
SS
11831
11832@code{symbol-file} does not repeat if you press @key{RET} again after
11833executing it once.
11834
11835When @value{GDBN} is configured for a particular environment, it
11836understands debugging information in whatever format is the standard
11837generated for that environment; you may use either a @sc{gnu} compiler, or
11838other compilers that adhere to the local conventions.
c906108c 11839Best results are usually obtained from @sc{gnu} compilers; for example,
e22ea452 11840using @code{@value{NGCC}} you can generate debugging information for
c906108c 11841optimized code.
c906108c
SS
11842
11843For most kinds of object files, with the exception of old SVR3 systems
11844using COFF, the @code{symbol-file} command does not normally read the
11845symbol table in full right away. Instead, it scans the symbol table
11846quickly to find which source files and which symbols are present. The
11847details are read later, one source file at a time, as they are needed.
11848
11849The purpose of this two-stage reading strategy is to make @value{GDBN}
11850start up faster. For the most part, it is invisible except for
11851occasional pauses while the symbol table details for a particular source
11852file are being read. (The @code{set verbose} command can turn these
11853pauses into messages if desired. @xref{Messages/Warnings, ,Optional
79a6e687 11854Warnings and Messages}.)
c906108c 11855
c906108c
SS
11856We have not implemented the two-stage strategy for COFF yet. When the
11857symbol table is stored in COFF format, @code{symbol-file} reads the
11858symbol table data in full right away. Note that ``stabs-in-COFF''
11859still does the two-stage strategy, since the debug info is actually
11860in stabs format.
11861
11862@kindex readnow
11863@cindex reading symbols immediately
11864@cindex symbols, reading immediately
a94ab193
EZ
11865@item symbol-file @var{filename} @r{[} -readnow @r{]}
11866@itemx file @var{filename} @r{[} -readnow @r{]}
c906108c
SS
11867You can override the @value{GDBN} two-stage strategy for reading symbol
11868tables by using the @samp{-readnow} option with any of the commands that
11869load symbol table information, if you want to be sure @value{GDBN} has the
5d161b24 11870entire symbol table available.
c906108c 11871
c906108c
SS
11872@c FIXME: for now no mention of directories, since this seems to be in
11873@c flux. 13mar1992 status is that in theory GDB would look either in
11874@c current dir or in same dir as myprog; but issues like competing
11875@c GDB's, or clutter in system dirs, mean that in practice right now
11876@c only current dir is used. FFish says maybe a special GDB hierarchy
11877@c (eg rooted in val of env var GDBSYMS) could exist for mappable symbol
11878@c files.
11879
c906108c 11880@kindex core-file
09d4efe1 11881@item core-file @r{[}@var{filename}@r{]}
4644b6e3 11882@itemx core
c906108c
SS
11883Specify the whereabouts of a core dump file to be used as the ``contents
11884of memory''. Traditionally, core files contain only some parts of the
11885address space of the process that generated them; @value{GDBN} can access the
11886executable file itself for other parts.
11887
11888@code{core-file} with no argument specifies that no core file is
11889to be used.
11890
11891Note that the core file is ignored when your program is actually running
7a292a7a
SS
11892under @value{GDBN}. So, if you have been running your program and you
11893wish to debug a core file instead, you must kill the subprocess in which
11894the program is running. To do this, use the @code{kill} command
79a6e687 11895(@pxref{Kill Process, ,Killing the Child Process}).
c906108c 11896
c906108c
SS
11897@kindex add-symbol-file
11898@cindex dynamic linking
11899@item add-symbol-file @var{filename} @var{address}
a94ab193 11900@itemx add-symbol-file @var{filename} @var{address} @r{[} -readnow @r{]}
17d9d558 11901@itemx add-symbol-file @var{filename} @r{-s}@var{section} @var{address} @dots{}
96a2c332
SS
11902The @code{add-symbol-file} command reads additional symbol table
11903information from the file @var{filename}. You would use this command
11904when @var{filename} has been dynamically loaded (by some other means)
11905into the program that is running. @var{address} should be the memory
11906address at which the file has been loaded; @value{GDBN} cannot figure
d167840f
EZ
11907this out for itself. You can additionally specify an arbitrary number
11908of @samp{@r{-s}@var{section} @var{address}} pairs, to give an explicit
11909section name and base address for that section. You can specify any
11910@var{address} as an expression.
c906108c
SS
11911
11912The symbol table of the file @var{filename} is added to the symbol table
11913originally read with the @code{symbol-file} command. You can use the
96a2c332
SS
11914@code{add-symbol-file} command any number of times; the new symbol data
11915thus read keeps adding to the old. To discard all old symbol data
11916instead, use the @code{symbol-file} command without any arguments.
c906108c 11917
17d9d558
JB
11918@cindex relocatable object files, reading symbols from
11919@cindex object files, relocatable, reading symbols from
11920@cindex reading symbols from relocatable object files
11921@cindex symbols, reading from relocatable object files
11922@cindex @file{.o} files, reading symbols from
11923Although @var{filename} is typically a shared library file, an
11924executable file, or some other object file which has been fully
11925relocated for loading into a process, you can also load symbolic
11926information from relocatable @file{.o} files, as long as:
11927
11928@itemize @bullet
11929@item
11930the file's symbolic information refers only to linker symbols defined in
11931that file, not to symbols defined by other object files,
11932@item
11933every section the file's symbolic information refers to has actually
11934been loaded into the inferior, as it appears in the file, and
11935@item
11936you can determine the address at which every section was loaded, and
11937provide these to the @code{add-symbol-file} command.
11938@end itemize
11939
11940@noindent
11941Some embedded operating systems, like Sun Chorus and VxWorks, can load
11942relocatable files into an already running program; such systems
11943typically make the requirements above easy to meet. However, it's
11944important to recognize that many native systems use complex link
49efadf5 11945procedures (@code{.linkonce} section factoring and C@t{++} constructor table
17d9d558
JB
11946assembly, for example) that make the requirements difficult to meet. In
11947general, one cannot assume that using @code{add-symbol-file} to read a
11948relocatable object file's symbolic information will have the same effect
11949as linking the relocatable object file into the program in the normal
11950way.
11951
c906108c
SS
11952@code{add-symbol-file} does not repeat if you press @key{RET} after using it.
11953
c45da7e6
EZ
11954@kindex add-symbol-file-from-memory
11955@cindex @code{syscall DSO}
11956@cindex load symbols from memory
11957@item add-symbol-file-from-memory @var{address}
11958Load symbols from the given @var{address} in a dynamically loaded
11959object file whose image is mapped directly into the inferior's memory.
11960For example, the Linux kernel maps a @code{syscall DSO} into each
11961process's address space; this DSO provides kernel-specific code for
11962some system calls. The argument can be any expression whose
11963evaluation yields the address of the file's shared object file header.
11964For this command to work, you must have used @code{symbol-file} or
11965@code{exec-file} commands in advance.
11966
09d4efe1
EZ
11967@kindex add-shared-symbol-files
11968@kindex assf
11969@item add-shared-symbol-files @var{library-file}
11970@itemx assf @var{library-file}
11971The @code{add-shared-symbol-files} command can currently be used only
11972in the Cygwin build of @value{GDBN} on MS-Windows OS, where it is an
11973alias for the @code{dll-symbols} command (@pxref{Cygwin Native}).
11974@value{GDBN} automatically looks for shared libraries, however if
11975@value{GDBN} does not find yours, you can invoke
11976@code{add-shared-symbol-files}. It takes one argument: the shared
11977library's file name. @code{assf} is a shorthand alias for
11978@code{add-shared-symbol-files}.
c906108c 11979
c906108c 11980@kindex section
09d4efe1
EZ
11981@item section @var{section} @var{addr}
11982The @code{section} command changes the base address of the named
11983@var{section} of the exec file to @var{addr}. This can be used if the
11984exec file does not contain section addresses, (such as in the
11985@code{a.out} format), or when the addresses specified in the file
11986itself are wrong. Each section must be changed separately. The
11987@code{info files} command, described below, lists all the sections and
11988their addresses.
c906108c
SS
11989
11990@kindex info files
11991@kindex info target
11992@item info files
11993@itemx info target
7a292a7a
SS
11994@code{info files} and @code{info target} are synonymous; both print the
11995current target (@pxref{Targets, ,Specifying a Debugging Target}),
11996including the names of the executable and core dump files currently in
11997use by @value{GDBN}, and the files from which symbols were loaded. The
11998command @code{help target} lists all possible targets rather than
11999current ones.
12000
fe95c787
MS
12001@kindex maint info sections
12002@item maint info sections
12003Another command that can give you extra information about program sections
12004is @code{maint info sections}. In addition to the section information
12005displayed by @code{info files}, this command displays the flags and file
12006offset of each section in the executable and core dump files. In addition,
12007@code{maint info sections} provides the following command options (which
12008may be arbitrarily combined):
12009
12010@table @code
12011@item ALLOBJ
12012Display sections for all loaded object files, including shared libraries.
12013@item @var{sections}
6600abed 12014Display info only for named @var{sections}.
fe95c787
MS
12015@item @var{section-flags}
12016Display info only for sections for which @var{section-flags} are true.
12017The section flags that @value{GDBN} currently knows about are:
12018@table @code
12019@item ALLOC
12020Section will have space allocated in the process when loaded.
12021Set for all sections except those containing debug information.
12022@item LOAD
12023Section will be loaded from the file into the child process memory.
12024Set for pre-initialized code and data, clear for @code{.bss} sections.
12025@item RELOC
12026Section needs to be relocated before loading.
12027@item READONLY
12028Section cannot be modified by the child process.
12029@item CODE
12030Section contains executable code only.
6600abed 12031@item DATA
fe95c787
MS
12032Section contains data only (no executable code).
12033@item ROM
12034Section will reside in ROM.
12035@item CONSTRUCTOR
12036Section contains data for constructor/destructor lists.
12037@item HAS_CONTENTS
12038Section is not empty.
12039@item NEVER_LOAD
12040An instruction to the linker to not output the section.
12041@item COFF_SHARED_LIBRARY
12042A notification to the linker that the section contains
12043COFF shared library information.
12044@item IS_COMMON
12045Section contains common symbols.
12046@end table
12047@end table
6763aef9 12048@kindex set trust-readonly-sections
9c16f35a 12049@cindex read-only sections
6763aef9
MS
12050@item set trust-readonly-sections on
12051Tell @value{GDBN} that readonly sections in your object file
6ca652b0 12052really are read-only (i.e.@: that their contents will not change).
6763aef9
MS
12053In that case, @value{GDBN} can fetch values from these sections
12054out of the object file, rather than from the target program.
12055For some targets (notably embedded ones), this can be a significant
12056enhancement to debugging performance.
12057
12058The default is off.
12059
12060@item set trust-readonly-sections off
15110bc3 12061Tell @value{GDBN} not to trust readonly sections. This means that
6763aef9
MS
12062the contents of the section might change while the program is running,
12063and must therefore be fetched from the target when needed.
9c16f35a
EZ
12064
12065@item show trust-readonly-sections
12066Show the current setting of trusting readonly sections.
c906108c
SS
12067@end table
12068
12069All file-specifying commands allow both absolute and relative file names
12070as arguments. @value{GDBN} always converts the file name to an absolute file
12071name and remembers it that way.
12072
c906108c 12073@cindex shared libraries
9cceb671
DJ
12074@anchor{Shared Libraries}
12075@value{GDBN} supports @sc{gnu}/Linux, MS-Windows, HP-UX, SunOS, SVr4, Irix,
9c16f35a 12076and IBM RS/6000 AIX shared libraries.
53a5351d 12077
9cceb671
DJ
12078On MS-Windows @value{GDBN} must be linked with the Expat library to support
12079shared libraries. @xref{Expat}.
12080
c906108c
SS
12081@value{GDBN} automatically loads symbol definitions from shared libraries
12082when you use the @code{run} command, or when you examine a core file.
12083(Before you issue the @code{run} command, @value{GDBN} does not understand
12084references to a function in a shared library, however---unless you are
12085debugging a core file).
53a5351d
JM
12086
12087On HP-UX, if the program loads a library explicitly, @value{GDBN}
12088automatically loads the symbols at the time of the @code{shl_load} call.
12089
c906108c
SS
12090@c FIXME: some @value{GDBN} release may permit some refs to undef
12091@c FIXME...symbols---eg in a break cmd---assuming they are from a shared
12092@c FIXME...lib; check this from time to time when updating manual
12093
b7209cb4
FF
12094There are times, however, when you may wish to not automatically load
12095symbol definitions from shared libraries, such as when they are
12096particularly large or there are many of them.
12097
12098To control the automatic loading of shared library symbols, use the
12099commands:
12100
12101@table @code
12102@kindex set auto-solib-add
12103@item set auto-solib-add @var{mode}
12104If @var{mode} is @code{on}, symbols from all shared object libraries
12105will be loaded automatically when the inferior begins execution, you
12106attach to an independently started inferior, or when the dynamic linker
12107informs @value{GDBN} that a new library has been loaded. If @var{mode}
12108is @code{off}, symbols must be loaded manually, using the
12109@code{sharedlibrary} command. The default value is @code{on}.
12110
dcaf7c2c
EZ
12111@cindex memory used for symbol tables
12112If your program uses lots of shared libraries with debug info that
12113takes large amounts of memory, you can decrease the @value{GDBN}
12114memory footprint by preventing it from automatically loading the
12115symbols from shared libraries. To that end, type @kbd{set
12116auto-solib-add off} before running the inferior, then load each
12117library whose debug symbols you do need with @kbd{sharedlibrary
d3e8051b 12118@var{regexp}}, where @var{regexp} is a regular expression that matches
dcaf7c2c
EZ
12119the libraries whose symbols you want to be loaded.
12120
b7209cb4
FF
12121@kindex show auto-solib-add
12122@item show auto-solib-add
12123Display the current autoloading mode.
12124@end table
12125
c45da7e6 12126@cindex load shared library
b7209cb4
FF
12127To explicitly load shared library symbols, use the @code{sharedlibrary}
12128command:
12129
c906108c
SS
12130@table @code
12131@kindex info sharedlibrary
12132@kindex info share
12133@item info share
12134@itemx info sharedlibrary
12135Print the names of the shared libraries which are currently loaded.
12136
12137@kindex sharedlibrary
12138@kindex share
12139@item sharedlibrary @var{regex}
12140@itemx share @var{regex}
c906108c
SS
12141Load shared object library symbols for files matching a
12142Unix regular expression.
12143As with files loaded automatically, it only loads shared libraries
12144required by your program for a core file or after typing @code{run}. If
12145@var{regex} is omitted all shared libraries required by your program are
12146loaded.
c45da7e6
EZ
12147
12148@item nosharedlibrary
12149@kindex nosharedlibrary
12150@cindex unload symbols from shared libraries
12151Unload all shared object library symbols. This discards all symbols
12152that have been loaded from all shared libraries. Symbols from shared
12153libraries that were loaded by explicit user requests are not
12154discarded.
c906108c
SS
12155@end table
12156
721c2651
EZ
12157Sometimes you may wish that @value{GDBN} stops and gives you control
12158when any of shared library events happen. Use the @code{set
12159stop-on-solib-events} command for this:
12160
12161@table @code
12162@item set stop-on-solib-events
12163@kindex set stop-on-solib-events
12164This command controls whether @value{GDBN} should give you control
12165when the dynamic linker notifies it about some shared library event.
12166The most common event of interest is loading or unloading of a new
12167shared library.
12168
12169@item show stop-on-solib-events
12170@kindex show stop-on-solib-events
12171Show whether @value{GDBN} stops and gives you control when shared
12172library events happen.
12173@end table
12174
f5ebfba0
DJ
12175Shared libraries are also supported in many cross or remote debugging
12176configurations. A copy of the target's libraries need to be present on the
12177host system; they need to be the same as the target libraries, although the
12178copies on the target can be stripped as long as the copies on the host are
12179not.
12180
59b7b46f
EZ
12181@cindex where to look for shared libraries
12182For remote debugging, you need to tell @value{GDBN} where the target
12183libraries are, so that it can load the correct copies---otherwise, it
12184may try to load the host's libraries. @value{GDBN} has two variables
12185to specify the search directories for target libraries.
f5ebfba0
DJ
12186
12187@table @code
59b7b46f 12188@cindex prefix for shared library file names
f822c95b 12189@cindex system root, alternate
f5ebfba0 12190@kindex set solib-absolute-prefix
f822c95b
DJ
12191@kindex set sysroot
12192@item set sysroot @var{path}
12193Use @var{path} as the system root for the program being debugged. Any
12194absolute shared library paths will be prefixed with @var{path}; many
12195runtime loaders store the absolute paths to the shared library in the
12196target program's memory. If you use @code{set sysroot} to find shared
12197libraries, they need to be laid out in the same way that they are on
12198the target, with e.g.@: a @file{/lib} and @file{/usr/lib} hierarchy
12199under @var{path}.
12200
12201The @code{set solib-absolute-prefix} command is an alias for @code{set
12202sysroot}.
12203
12204@cindex default system root
59b7b46f 12205@cindex @samp{--with-sysroot}
f822c95b
DJ
12206You can set the default system root by using the configure-time
12207@samp{--with-sysroot} option. If the system root is inside
12208@value{GDBN}'s configured binary prefix (set with @samp{--prefix} or
12209@samp{--exec-prefix}), then the default system root will be updated
12210automatically if the installed @value{GDBN} is moved to a new
12211location.
12212
12213@kindex show sysroot
12214@item show sysroot
f5ebfba0
DJ
12215Display the current shared library prefix.
12216
12217@kindex set solib-search-path
12218@item set solib-search-path @var{path}
f822c95b
DJ
12219If this variable is set, @var{path} is a colon-separated list of
12220directories to search for shared libraries. @samp{solib-search-path}
12221is used after @samp{sysroot} fails to locate the library, or if the
12222path to the library is relative instead of absolute. If you want to
12223use @samp{solib-search-path} instead of @samp{sysroot}, be sure to set
d3e8051b 12224@samp{sysroot} to a nonexistent directory to prevent @value{GDBN} from
f822c95b 12225finding your host's libraries. @samp{sysroot} is preferred; setting
d3e8051b 12226it to a nonexistent directory may interfere with automatic loading
f822c95b 12227of shared library symbols.
f5ebfba0
DJ
12228
12229@kindex show solib-search-path
12230@item show solib-search-path
12231Display the current shared library search path.
12232@end table
12233
5b5d99cf
JB
12234
12235@node Separate Debug Files
12236@section Debugging Information in Separate Files
12237@cindex separate debugging information files
12238@cindex debugging information in separate files
12239@cindex @file{.debug} subdirectories
12240@cindex debugging information directory, global
12241@cindex global debugging information directory
c7e83d54
EZ
12242@cindex build ID, and separate debugging files
12243@cindex @file{.build-id} directory
5b5d99cf
JB
12244
12245@value{GDBN} allows you to put a program's debugging information in a
12246file separate from the executable itself, in a way that allows
12247@value{GDBN} to find and load the debugging information automatically.
c7e83d54
EZ
12248Since debugging information can be very large---sometimes larger
12249than the executable code itself---some systems distribute debugging
5b5d99cf
JB
12250information for their executables in separate files, which users can
12251install only when they need to debug a problem.
12252
c7e83d54
EZ
12253@value{GDBN} supports two ways of specifying the separate debug info
12254file:
5b5d99cf
JB
12255
12256@itemize @bullet
12257@item
c7e83d54
EZ
12258The executable contains a @dfn{debug link} that specifies the name of
12259the separate debug info file. The separate debug file's name is
12260usually @file{@var{executable}.debug}, where @var{executable} is the
12261name of the corresponding executable file without leading directories
12262(e.g., @file{ls.debug} for @file{/usr/bin/ls}). In addition, the
12263debug link specifies a CRC32 checksum for the debug file, which
12264@value{GDBN} uses to validate that the executable and the debug file
12265came from the same build.
12266
12267@item
7e27a47a 12268The executable contains a @dfn{build ID}, a unique bit string that is
c7e83d54 12269also present in the corresponding debug info file. (This is supported
7e27a47a
EZ
12270only on some operating systems, notably those which use the ELF format
12271for binary files and the @sc{gnu} Binutils.) For more details about
12272this feature, see the description of the @option{--build-id}
12273command-line option in @ref{Options, , Command Line Options, ld.info,
12274The GNU Linker}. The debug info file's name is not specified
12275explicitly by the build ID, but can be computed from the build ID, see
12276below.
d3750b24
JK
12277@end itemize
12278
c7e83d54
EZ
12279Depending on the way the debug info file is specified, @value{GDBN}
12280uses two different methods of looking for the debug file:
d3750b24
JK
12281
12282@itemize @bullet
12283@item
c7e83d54
EZ
12284For the ``debug link'' method, @value{GDBN} looks up the named file in
12285the directory of the executable file, then in a subdirectory of that
12286directory named @file{.debug}, and finally under the global debug
12287directory, in a subdirectory whose name is identical to the leading
12288directories of the executable's absolute file name.
12289
12290@item
83f83d7f 12291For the ``build ID'' method, @value{GDBN} looks in the
c7e83d54
EZ
12292@file{.build-id} subdirectory of the global debug directory for a file
12293named @file{@var{nn}/@var{nnnnnnnn}.debug}, where @var{nn} are the
7e27a47a
EZ
12294first 2 hex characters of the build ID bit string, and @var{nnnnnnnn}
12295are the rest of the bit string. (Real build ID strings are 32 or more
12296hex characters, not 10.)
c7e83d54
EZ
12297@end itemize
12298
12299So, for example, suppose you ask @value{GDBN} to debug
7e27a47a
EZ
12300@file{/usr/bin/ls}, which has a debug link that specifies the
12301file @file{ls.debug}, and a build ID whose value in hex is
c7e83d54
EZ
12302@code{abcdef1234}. If the global debug directory is
12303@file{/usr/lib/debug}, then @value{GDBN} will look for the following
12304debug information files, in the indicated order:
12305
12306@itemize @minus
12307@item
12308@file{/usr/lib/debug/.build-id/ab/cdef1234.debug}
d3750b24 12309@item
c7e83d54 12310@file{/usr/bin/ls.debug}
5b5d99cf 12311@item
c7e83d54 12312@file{/usr/bin/.debug/ls.debug}
5b5d99cf 12313@item
c7e83d54 12314@file{/usr/lib/debug/usr/bin/ls.debug}.
5b5d99cf 12315@end itemize
5b5d99cf
JB
12316
12317You can set the global debugging info directory's name, and view the
12318name @value{GDBN} is currently using.
12319
12320@table @code
12321
12322@kindex set debug-file-directory
12323@item set debug-file-directory @var{directory}
12324Set the directory which @value{GDBN} searches for separate debugging
12325information files to @var{directory}.
12326
12327@kindex show debug-file-directory
12328@item show debug-file-directory
12329Show the directory @value{GDBN} searches for separate debugging
12330information files.
12331
12332@end table
12333
12334@cindex @code{.gnu_debuglink} sections
c7e83d54 12335@cindex debug link sections
5b5d99cf
JB
12336A debug link is a special section of the executable file named
12337@code{.gnu_debuglink}. The section must contain:
12338
12339@itemize
12340@item
12341A filename, with any leading directory components removed, followed by
12342a zero byte,
12343@item
12344zero to three bytes of padding, as needed to reach the next four-byte
12345boundary within the section, and
12346@item
12347a four-byte CRC checksum, stored in the same endianness used for the
12348executable file itself. The checksum is computed on the debugging
12349information file's full contents by the function given below, passing
12350zero as the @var{crc} argument.
12351@end itemize
12352
12353Any executable file format can carry a debug link, as long as it can
12354contain a section named @code{.gnu_debuglink} with the contents
12355described above.
12356
d3750b24 12357@cindex @code{.note.gnu.build-id} sections
c7e83d54 12358@cindex build ID sections
7e27a47a
EZ
12359The build ID is a special section in the executable file (and in other
12360ELF binary files that @value{GDBN} may consider). This section is
12361often named @code{.note.gnu.build-id}, but that name is not mandatory.
12362It contains unique identification for the built files---the ID remains
12363the same across multiple builds of the same build tree. The default
12364algorithm SHA1 produces 160 bits (40 hexadecimal characters) of the
12365content for the build ID string. The same section with an identical
12366value is present in the original built binary with symbols, in its
12367stripped variant, and in the separate debugging information file.
d3750b24 12368
5b5d99cf
JB
12369The debugging information file itself should be an ordinary
12370executable, containing a full set of linker symbols, sections, and
12371debugging information. The sections of the debugging information file
c7e83d54
EZ
12372should have the same names, addresses, and sizes as the original file,
12373but they need not contain any data---much like a @code{.bss} section
5b5d99cf
JB
12374in an ordinary executable.
12375
7e27a47a 12376The @sc{gnu} binary utilities (Binutils) package includes the
c7e83d54
EZ
12377@samp{objcopy} utility that can produce
12378the separated executable / debugging information file pairs using the
12379following commands:
12380
12381@smallexample
12382@kbd{objcopy --only-keep-debug foo foo.debug}
12383@kbd{strip -g foo}
c7e83d54
EZ
12384@end smallexample
12385
12386@noindent
12387These commands remove the debugging
83f83d7f
JK
12388information from the executable file @file{foo} and place it in the file
12389@file{foo.debug}. You can use the first, second or both methods to link the
12390two files:
12391
12392@itemize @bullet
12393@item
12394The debug link method needs the following additional command to also leave
12395behind a debug link in @file{foo}:
12396
12397@smallexample
12398@kbd{objcopy --add-gnu-debuglink=foo.debug foo}
12399@end smallexample
12400
12401Ulrich Drepper's @file{elfutils} package, starting with version 0.53, contains
d3750b24 12402a version of the @code{strip} command such that the command @kbd{strip foo -f
83f83d7f
JK
12403foo.debug} has the same functionality as the two @code{objcopy} commands and
12404the @code{ln -s} command above, together.
12405
12406@item
12407Build ID gets embedded into the main executable using @code{ld --build-id} or
12408the @value{NGCC} counterpart @code{gcc -Wl,--build-id}. Build ID support plus
12409compatibility fixes for debug files separation are present in @sc{gnu} binary
7e27a47a 12410utilities (Binutils) package since version 2.18.
83f83d7f
JK
12411@end itemize
12412
12413@noindent
d3750b24 12414
c7e83d54
EZ
12415Since there are many different ways to compute CRC's for the debug
12416link (different polynomials, reversals, byte ordering, etc.), the
12417simplest way to describe the CRC used in @code{.gnu_debuglink}
12418sections is to give the complete code for a function that computes it:
5b5d99cf 12419
4644b6e3 12420@kindex gnu_debuglink_crc32
5b5d99cf
JB
12421@smallexample
12422unsigned long
12423gnu_debuglink_crc32 (unsigned long crc,
12424 unsigned char *buf, size_t len)
12425@{
12426 static const unsigned long crc32_table[256] =
12427 @{
12428 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,
12429 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
12430 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,
12431 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
12432 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,
12433 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
12434 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
12435 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
12436 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,
12437 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
12438 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,
12439 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
12440 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,
12441 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
12442 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,
12443 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
12444 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,
12445 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
12446 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,
12447 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
12448 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,
12449 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
12450 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,
12451 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
12452 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,
12453 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
12454 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,
12455 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
12456 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,
12457 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
12458 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,
12459 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
12460 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,
12461 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
12462 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
12463 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
12464 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,
12465 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
12466 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,
12467 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
12468 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,
12469 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
12470 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,
12471 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
12472 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,
12473 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
12474 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,
12475 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
12476 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
12477 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
12478 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,
12479 0x2d02ef8d
12480 @};
12481 unsigned char *end;
12482
12483 crc = ~crc & 0xffffffff;
12484 for (end = buf + len; buf < end; ++buf)
12485 crc = crc32_table[(crc ^ *buf) & 0xff] ^ (crc >> 8);
e7a3abfc 12486 return ~crc & 0xffffffff;
5b5d99cf
JB
12487@}
12488@end smallexample
12489
c7e83d54
EZ
12490@noindent
12491This computation does not apply to the ``build ID'' method.
12492
5b5d99cf 12493
6d2ebf8b 12494@node Symbol Errors
79a6e687 12495@section Errors Reading Symbol Files
c906108c
SS
12496
12497While reading a symbol file, @value{GDBN} occasionally encounters problems,
12498such as symbol types it does not recognize, or known bugs in compiler
12499output. By default, @value{GDBN} does not notify you of such problems, since
12500they are relatively common and primarily of interest to people
12501debugging compilers. If you are interested in seeing information
12502about ill-constructed symbol tables, you can either ask @value{GDBN} to print
12503only one message about each such type of problem, no matter how many
12504times the problem occurs; or you can ask @value{GDBN} to print more messages,
12505to see how many times the problems occur, with the @code{set
79a6e687
BW
12506complaints} command (@pxref{Messages/Warnings, ,Optional Warnings and
12507Messages}).
c906108c
SS
12508
12509The messages currently printed, and their meanings, include:
12510
12511@table @code
12512@item inner block not inside outer block in @var{symbol}
12513
12514The symbol information shows where symbol scopes begin and end
12515(such as at the start of a function or a block of statements). This
12516error indicates that an inner scope block is not fully contained
12517in its outer scope blocks.
12518
12519@value{GDBN} circumvents the problem by treating the inner block as if it had
12520the same scope as the outer block. In the error message, @var{symbol}
12521may be shown as ``@code{(don't know)}'' if the outer block is not a
12522function.
12523
12524@item block at @var{address} out of order
12525
12526The symbol information for symbol scope blocks should occur in
12527order of increasing addresses. This error indicates that it does not
12528do so.
12529
12530@value{GDBN} does not circumvent this problem, and has trouble
12531locating symbols in the source file whose symbols it is reading. (You
12532can often determine what source file is affected by specifying
79a6e687
BW
12533@code{set verbose on}. @xref{Messages/Warnings, ,Optional Warnings and
12534Messages}.)
c906108c
SS
12535
12536@item bad block start address patched
12537
12538The symbol information for a symbol scope block has a start address
12539smaller than the address of the preceding source line. This is known
12540to occur in the SunOS 4.1.1 (and earlier) C compiler.
12541
12542@value{GDBN} circumvents the problem by treating the symbol scope block as
12543starting on the previous source line.
12544
12545@item bad string table offset in symbol @var{n}
12546
12547@cindex foo
12548Symbol number @var{n} contains a pointer into the string table which is
12549larger than the size of the string table.
12550
12551@value{GDBN} circumvents the problem by considering the symbol to have the
12552name @code{foo}, which may cause other problems if many symbols end up
12553with this name.
12554
12555@item unknown symbol type @code{0x@var{nn}}
12556
7a292a7a
SS
12557The symbol information contains new data types that @value{GDBN} does
12558not yet know how to read. @code{0x@var{nn}} is the symbol type of the
d4f3574e 12559uncomprehended information, in hexadecimal.
c906108c 12560
7a292a7a
SS
12561@value{GDBN} circumvents the error by ignoring this symbol information.
12562This usually allows you to debug your program, though certain symbols
c906108c 12563are not accessible. If you encounter such a problem and feel like
7a292a7a
SS
12564debugging it, you can debug @code{@value{GDBP}} with itself, breakpoint
12565on @code{complain}, then go up to the function @code{read_dbx_symtab}
12566and examine @code{*bufp} to see the symbol.
c906108c
SS
12567
12568@item stub type has NULL name
c906108c 12569
7a292a7a 12570@value{GDBN} could not find the full definition for a struct or class.
c906108c 12571
7a292a7a 12572@item const/volatile indicator missing (ok if using g++ v1.x), got@dots{}
b37052ae 12573The symbol information for a C@t{++} member function is missing some
7a292a7a
SS
12574information that recent versions of the compiler should have output for
12575it.
c906108c
SS
12576
12577@item info mismatch between compiler and debugger
12578
12579@value{GDBN} could not parse a type specification output by the compiler.
7a292a7a 12580
c906108c
SS
12581@end table
12582
6d2ebf8b 12583@node Targets
c906108c 12584@chapter Specifying a Debugging Target
7a292a7a 12585
c906108c 12586@cindex debugging target
c906108c 12587A @dfn{target} is the execution environment occupied by your program.
53a5351d
JM
12588
12589Often, @value{GDBN} runs in the same host environment as your program;
12590in that case, the debugging target is specified as a side effect when
12591you use the @code{file} or @code{core} commands. When you need more
c906108c
SS
12592flexibility---for example, running @value{GDBN} on a physically separate
12593host, or controlling a standalone system over a serial port or a
53a5351d
JM
12594realtime system over a TCP/IP connection---you can use the @code{target}
12595command to specify one of the target types configured for @value{GDBN}
79a6e687 12596(@pxref{Target Commands, ,Commands for Managing Targets}).
c906108c 12597
a8f24a35
EZ
12598@cindex target architecture
12599It is possible to build @value{GDBN} for several different @dfn{target
12600architectures}. When @value{GDBN} is built like that, you can choose
12601one of the available architectures with the @kbd{set architecture}
12602command.
12603
12604@table @code
12605@kindex set architecture
12606@kindex show architecture
12607@item set architecture @var{arch}
12608This command sets the current target architecture to @var{arch}. The
12609value of @var{arch} can be @code{"auto"}, in addition to one of the
12610supported architectures.
12611
12612@item show architecture
12613Show the current target architecture.
9c16f35a
EZ
12614
12615@item set processor
12616@itemx processor
12617@kindex set processor
12618@kindex show processor
12619These are alias commands for, respectively, @code{set architecture}
12620and @code{show architecture}.
a8f24a35
EZ
12621@end table
12622
c906108c
SS
12623@menu
12624* Active Targets:: Active targets
12625* Target Commands:: Commands for managing targets
c906108c 12626* Byte Order:: Choosing target byte order
c906108c
SS
12627@end menu
12628
6d2ebf8b 12629@node Active Targets
79a6e687 12630@section Active Targets
7a292a7a 12631
c906108c
SS
12632@cindex stacking targets
12633@cindex active targets
12634@cindex multiple targets
12635
c906108c 12636There are three classes of targets: processes, core files, and
7a292a7a
SS
12637executable files. @value{GDBN} can work concurrently on up to three
12638active targets, one in each class. This allows you to (for example)
12639start a process and inspect its activity without abandoning your work on
12640a core file.
c906108c
SS
12641
12642For example, if you execute @samp{gdb a.out}, then the executable file
12643@code{a.out} is the only active target. If you designate a core file as
12644well---presumably from a prior run that crashed and coredumped---then
12645@value{GDBN} has two active targets and uses them in tandem, looking
12646first in the corefile target, then in the executable file, to satisfy
12647requests for memory addresses. (Typically, these two classes of target
12648are complementary, since core files contain only a program's
12649read-write memory---variables and so on---plus machine status, while
12650executable files contain only the program text and initialized data.)
c906108c
SS
12651
12652When you type @code{run}, your executable file becomes an active process
7a292a7a
SS
12653target as well. When a process target is active, all @value{GDBN}
12654commands requesting memory addresses refer to that target; addresses in
12655an active core file or executable file target are obscured while the
12656process target is active.
c906108c 12657
7a292a7a 12658Use the @code{core-file} and @code{exec-file} commands to select a new
79a6e687
BW
12659core file or executable target (@pxref{Files, ,Commands to Specify
12660Files}). To specify as a target a process that is already running, use
12661the @code{attach} command (@pxref{Attach, ,Debugging an Already-running
12662Process}).
c906108c 12663
6d2ebf8b 12664@node Target Commands
79a6e687 12665@section Commands for Managing Targets
c906108c
SS
12666
12667@table @code
12668@item target @var{type} @var{parameters}
7a292a7a
SS
12669Connects the @value{GDBN} host environment to a target machine or
12670process. A target is typically a protocol for talking to debugging
12671facilities. You use the argument @var{type} to specify the type or
12672protocol of the target machine.
c906108c
SS
12673
12674Further @var{parameters} are interpreted by the target protocol, but
12675typically include things like device names or host names to connect
12676with, process numbers, and baud rates.
c906108c
SS
12677
12678The @code{target} command does not repeat if you press @key{RET} again
12679after executing the command.
12680
12681@kindex help target
12682@item help target
12683Displays the names of all targets available. To display targets
12684currently selected, use either @code{info target} or @code{info files}
79a6e687 12685(@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
12686
12687@item help target @var{name}
12688Describe a particular target, including any parameters necessary to
12689select it.
12690
12691@kindex set gnutarget
12692@item set gnutarget @var{args}
5d161b24 12693@value{GDBN} uses its own library BFD to read your files. @value{GDBN}
c906108c 12694knows whether it is reading an @dfn{executable},
5d161b24
DB
12695a @dfn{core}, or a @dfn{.o} file; however, you can specify the file format
12696with the @code{set gnutarget} command. Unlike most @code{target} commands,
c906108c
SS
12697with @code{gnutarget} the @code{target} refers to a program, not a machine.
12698
d4f3574e 12699@quotation
c906108c
SS
12700@emph{Warning:} To specify a file format with @code{set gnutarget},
12701you must know the actual BFD name.
d4f3574e 12702@end quotation
c906108c 12703
d4f3574e 12704@noindent
79a6e687 12705@xref{Files, , Commands to Specify Files}.
c906108c 12706
5d161b24 12707@kindex show gnutarget
c906108c
SS
12708@item show gnutarget
12709Use the @code{show gnutarget} command to display what file format
12710@code{gnutarget} is set to read. If you have not set @code{gnutarget},
12711@value{GDBN} will determine the file format for each file automatically,
12712and @code{show gnutarget} displays @samp{The current BDF target is "auto"}.
12713@end table
12714
4644b6e3 12715@cindex common targets
c906108c
SS
12716Here are some common targets (available, or not, depending on the GDB
12717configuration):
c906108c
SS
12718
12719@table @code
4644b6e3 12720@kindex target
c906108c 12721@item target exec @var{program}
4644b6e3 12722@cindex executable file target
c906108c
SS
12723An executable file. @samp{target exec @var{program}} is the same as
12724@samp{exec-file @var{program}}.
12725
c906108c 12726@item target core @var{filename}
4644b6e3 12727@cindex core dump file target
c906108c
SS
12728A core dump file. @samp{target core @var{filename}} is the same as
12729@samp{core-file @var{filename}}.
c906108c 12730
1a10341b 12731@item target remote @var{medium}
4644b6e3 12732@cindex remote target
1a10341b
JB
12733A remote system connected to @value{GDBN} via a serial line or network
12734connection. This command tells @value{GDBN} to use its own remote
12735protocol over @var{medium} for debugging. @xref{Remote Debugging}.
12736
12737For example, if you have a board connected to @file{/dev/ttya} on the
12738machine running @value{GDBN}, you could say:
12739
12740@smallexample
12741target remote /dev/ttya
12742@end smallexample
12743
12744@code{target remote} supports the @code{load} command. This is only
12745useful if you have some other way of getting the stub to the target
12746system, and you can put it somewhere in memory where it won't get
12747clobbered by the download.
c906108c 12748
c906108c 12749@item target sim
4644b6e3 12750@cindex built-in simulator target
2df3850c 12751Builtin CPU simulator. @value{GDBN} includes simulators for most architectures.
104c1213 12752In general,
474c8240 12753@smallexample
104c1213
JM
12754 target sim
12755 load
12756 run
474c8240 12757@end smallexample
d4f3574e 12758@noindent
104c1213 12759works; however, you cannot assume that a specific memory map, device
d4f3574e 12760drivers, or even basic I/O is available, although some simulators do
104c1213
JM
12761provide these. For info about any processor-specific simulator details,
12762see the appropriate section in @ref{Embedded Processors, ,Embedded
12763Processors}.
12764
c906108c
SS
12765@end table
12766
104c1213 12767Some configurations may include these targets as well:
c906108c
SS
12768
12769@table @code
12770
c906108c 12771@item target nrom @var{dev}
4644b6e3 12772@cindex NetROM ROM emulator target
c906108c
SS
12773NetROM ROM emulator. This target only supports downloading.
12774
c906108c
SS
12775@end table
12776
5d161b24 12777Different targets are available on different configurations of @value{GDBN};
c906108c 12778your configuration may have more or fewer targets.
c906108c 12779
721c2651
EZ
12780Many remote targets require you to download the executable's code once
12781you've successfully established a connection. You may wish to control
3d00d119
DJ
12782various aspects of this process.
12783
12784@table @code
721c2651
EZ
12785
12786@item set hash
12787@kindex set hash@r{, for remote monitors}
12788@cindex hash mark while downloading
12789This command controls whether a hash mark @samp{#} is displayed while
12790downloading a file to the remote monitor. If on, a hash mark is
12791displayed after each S-record is successfully downloaded to the
12792monitor.
12793
12794@item show hash
12795@kindex show hash@r{, for remote monitors}
12796Show the current status of displaying the hash mark.
12797
12798@item set debug monitor
12799@kindex set debug monitor
12800@cindex display remote monitor communications
12801Enable or disable display of communications messages between
12802@value{GDBN} and the remote monitor.
12803
12804@item show debug monitor
12805@kindex show debug monitor
12806Show the current status of displaying communications between
12807@value{GDBN} and the remote monitor.
a8f24a35 12808@end table
c906108c
SS
12809
12810@table @code
12811
12812@kindex load @var{filename}
12813@item load @var{filename}
8edfe269 12814@anchor{load}
c906108c
SS
12815Depending on what remote debugging facilities are configured into
12816@value{GDBN}, the @code{load} command may be available. Where it exists, it
12817is meant to make @var{filename} (an executable) available for debugging
12818on the remote system---by downloading, or dynamic linking, for example.
12819@code{load} also records the @var{filename} symbol table in @value{GDBN}, like
12820the @code{add-symbol-file} command.
12821
12822If your @value{GDBN} does not have a @code{load} command, attempting to
12823execute it gets the error message ``@code{You can't do that when your
12824target is @dots{}}''
c906108c
SS
12825
12826The file is loaded at whatever address is specified in the executable.
12827For some object file formats, you can specify the load address when you
12828link the program; for other formats, like a.out, the object file format
12829specifies a fixed address.
12830@c FIXME! This would be a good place for an xref to the GNU linker doc.
12831
68437a39
DJ
12832Depending on the remote side capabilities, @value{GDBN} may be able to
12833load programs into flash memory.
12834
c906108c
SS
12835@code{load} does not repeat if you press @key{RET} again after using it.
12836@end table
12837
6d2ebf8b 12838@node Byte Order
79a6e687 12839@section Choosing Target Byte Order
7a292a7a 12840
c906108c
SS
12841@cindex choosing target byte order
12842@cindex target byte order
c906108c 12843
172c2a43 12844Some types of processors, such as the MIPS, PowerPC, and Renesas SH,
c906108c
SS
12845offer the ability to run either big-endian or little-endian byte
12846orders. Usually the executable or symbol will include a bit to
12847designate the endian-ness, and you will not need to worry about
12848which to use. However, you may still find it useful to adjust
d4f3574e 12849@value{GDBN}'s idea of processor endian-ness manually.
c906108c
SS
12850
12851@table @code
4644b6e3 12852@kindex set endian
c906108c
SS
12853@item set endian big
12854Instruct @value{GDBN} to assume the target is big-endian.
12855
c906108c
SS
12856@item set endian little
12857Instruct @value{GDBN} to assume the target is little-endian.
12858
c906108c
SS
12859@item set endian auto
12860Instruct @value{GDBN} to use the byte order associated with the
12861executable.
12862
12863@item show endian
12864Display @value{GDBN}'s current idea of the target byte order.
12865
12866@end table
12867
12868Note that these commands merely adjust interpretation of symbolic
12869data on the host, and that they have absolutely no effect on the
12870target system.
12871
ea35711c
DJ
12872
12873@node Remote Debugging
12874@chapter Debugging Remote Programs
c906108c
SS
12875@cindex remote debugging
12876
12877If you are trying to debug a program running on a machine that cannot run
5d161b24
DB
12878@value{GDBN} in the usual way, it is often useful to use remote debugging.
12879For example, you might use remote debugging on an operating system kernel,
c906108c
SS
12880or on a small system which does not have a general purpose operating system
12881powerful enough to run a full-featured debugger.
12882
12883Some configurations of @value{GDBN} have special serial or TCP/IP interfaces
12884to make this work with particular debugging targets. In addition,
5d161b24 12885@value{GDBN} comes with a generic serial protocol (specific to @value{GDBN},
c906108c
SS
12886but not specific to any particular target system) which you can use if you
12887write the remote stubs---the code that runs on the remote system to
12888communicate with @value{GDBN}.
12889
12890Other remote targets may be available in your
12891configuration of @value{GDBN}; use @code{help target} to list them.
c906108c 12892
6b2f586d 12893@menu
07f31aa6 12894* Connecting:: Connecting to a remote target
a6b151f1 12895* File Transfer:: Sending files to a remote system
6b2f586d 12896* Server:: Using the gdbserver program
79a6e687
BW
12897* Remote Configuration:: Remote configuration
12898* Remote Stub:: Implementing a remote stub
6b2f586d
AC
12899@end menu
12900
07f31aa6 12901@node Connecting
79a6e687 12902@section Connecting to a Remote Target
07f31aa6
DJ
12903
12904On the @value{GDBN} host machine, you will need an unstripped copy of
d3e8051b 12905your program, since @value{GDBN} needs symbol and debugging information.
07f31aa6
DJ
12906Start up @value{GDBN} as usual, using the name of the local copy of your
12907program as the first argument.
12908
86941c27
JB
12909@cindex @code{target remote}
12910@value{GDBN} can communicate with the target over a serial line, or
12911over an @acronym{IP} network using @acronym{TCP} or @acronym{UDP}. In
12912each case, @value{GDBN} uses the same protocol for debugging your
12913program; only the medium carrying the debugging packets varies. The
12914@code{target remote} command establishes a connection to the target.
12915Its arguments indicate which medium to use:
12916
12917@table @code
12918
12919@item target remote @var{serial-device}
07f31aa6 12920@cindex serial line, @code{target remote}
86941c27
JB
12921Use @var{serial-device} to communicate with the target. For example,
12922to use a serial line connected to the device named @file{/dev/ttyb}:
12923
12924@smallexample
12925target remote /dev/ttyb
12926@end smallexample
12927
07f31aa6
DJ
12928If you're using a serial line, you may want to give @value{GDBN} the
12929@w{@samp{--baud}} option, or use the @code{set remotebaud} command
79a6e687 12930(@pxref{Remote Configuration, set remotebaud}) before the
9c16f35a 12931@code{target} command.
07f31aa6 12932
86941c27
JB
12933@item target remote @code{@var{host}:@var{port}}
12934@itemx target remote @code{tcp:@var{host}:@var{port}}
12935@cindex @acronym{TCP} port, @code{target remote}
12936Debug using a @acronym{TCP} connection to @var{port} on @var{host}.
12937The @var{host} may be either a host name or a numeric @acronym{IP}
12938address; @var{port} must be a decimal number. The @var{host} could be
12939the target machine itself, if it is directly connected to the net, or
12940it might be a terminal server which in turn has a serial line to the
12941target.
07f31aa6 12942
86941c27
JB
12943For example, to connect to port 2828 on a terminal server named
12944@code{manyfarms}:
07f31aa6
DJ
12945
12946@smallexample
12947target remote manyfarms:2828
12948@end smallexample
12949
86941c27
JB
12950If your remote target is actually running on the same machine as your
12951debugger session (e.g.@: a simulator for your target running on the
12952same host), you can omit the hostname. For example, to connect to
12953port 1234 on your local machine:
07f31aa6
DJ
12954
12955@smallexample
12956target remote :1234
12957@end smallexample
12958@noindent
12959
12960Note that the colon is still required here.
12961
86941c27
JB
12962@item target remote @code{udp:@var{host}:@var{port}}
12963@cindex @acronym{UDP} port, @code{target remote}
12964Debug using @acronym{UDP} packets to @var{port} on @var{host}. For example, to
12965connect to @acronym{UDP} port 2828 on a terminal server named @code{manyfarms}:
07f31aa6
DJ
12966
12967@smallexample
12968target remote udp:manyfarms:2828
12969@end smallexample
12970
86941c27
JB
12971When using a @acronym{UDP} connection for remote debugging, you should
12972keep in mind that the `U' stands for ``Unreliable''. @acronym{UDP}
12973can silently drop packets on busy or unreliable networks, which will
12974cause havoc with your debugging session.
12975
66b8c7f6
JB
12976@item target remote | @var{command}
12977@cindex pipe, @code{target remote} to
12978Run @var{command} in the background and communicate with it using a
12979pipe. The @var{command} is a shell command, to be parsed and expanded
12980by the system's command shell, @code{/bin/sh}; it should expect remote
12981protocol packets on its standard input, and send replies on its
12982standard output. You could use this to run a stand-alone simulator
12983that speaks the remote debugging protocol, to make net connections
12984using programs like @code{ssh}, or for other similar tricks.
12985
12986If @var{command} closes its standard output (perhaps by exiting),
12987@value{GDBN} will try to send it a @code{SIGTERM} signal. (If the
12988program has already exited, this will have no effect.)
12989
86941c27 12990@end table
07f31aa6 12991
86941c27 12992Once the connection has been established, you can use all the usual
8edfe269
DJ
12993commands to examine and change data. The remote program is already
12994running; you can use @kbd{step} and @kbd{continue}, and you do not
12995need to use @kbd{run}.
07f31aa6
DJ
12996
12997@cindex interrupting remote programs
12998@cindex remote programs, interrupting
12999Whenever @value{GDBN} is waiting for the remote program, if you type the
c8aa23ab 13000interrupt character (often @kbd{Ctrl-c}), @value{GDBN} attempts to stop the
07f31aa6
DJ
13001program. This may or may not succeed, depending in part on the hardware
13002and the serial drivers the remote system uses. If you type the
13003interrupt character once again, @value{GDBN} displays this prompt:
13004
13005@smallexample
13006Interrupted while waiting for the program.
13007Give up (and stop debugging it)? (y or n)
13008@end smallexample
13009
13010If you type @kbd{y}, @value{GDBN} abandons the remote debugging session.
13011(If you decide you want to try again later, you can use @samp{target
13012remote} again to connect once more.) If you type @kbd{n}, @value{GDBN}
13013goes back to waiting.
13014
13015@table @code
13016@kindex detach (remote)
13017@item detach
13018When you have finished debugging the remote program, you can use the
13019@code{detach} command to release it from @value{GDBN} control.
13020Detaching from the target normally resumes its execution, but the results
13021will depend on your particular remote stub. After the @code{detach}
13022command, @value{GDBN} is free to connect to another target.
13023
13024@kindex disconnect
13025@item disconnect
13026The @code{disconnect} command behaves like @code{detach}, except that
13027the target is generally not resumed. It will wait for @value{GDBN}
13028(this instance or another one) to connect and continue debugging. After
13029the @code{disconnect} command, @value{GDBN} is again free to connect to
13030another target.
09d4efe1
EZ
13031
13032@cindex send command to remote monitor
fad38dfa
EZ
13033@cindex extend @value{GDBN} for remote targets
13034@cindex add new commands for external monitor
09d4efe1
EZ
13035@kindex monitor
13036@item monitor @var{cmd}
fad38dfa
EZ
13037This command allows you to send arbitrary commands directly to the
13038remote monitor. Since @value{GDBN} doesn't care about the commands it
13039sends like this, this command is the way to extend @value{GDBN}---you
13040can add new commands that only the external monitor will understand
13041and implement.
07f31aa6
DJ
13042@end table
13043
a6b151f1
DJ
13044@node File Transfer
13045@section Sending files to a remote system
13046@cindex remote target, file transfer
13047@cindex file transfer
13048@cindex sending files to remote systems
13049
13050Some remote targets offer the ability to transfer files over the same
13051connection used to communicate with @value{GDBN}. This is convenient
13052for targets accessible through other means, e.g.@: @sc{gnu}/Linux systems
13053running @code{gdbserver} over a network interface. For other targets,
13054e.g.@: embedded devices with only a single serial port, this may be
13055the only way to upload or download files.
13056
13057Not all remote targets support these commands.
13058
13059@table @code
13060@kindex remote put
13061@item remote put @var{hostfile} @var{targetfile}
13062Copy file @var{hostfile} from the host system (the machine running
13063@value{GDBN}) to @var{targetfile} on the target system.
13064
13065@kindex remote get
13066@item remote get @var{targetfile} @var{hostfile}
13067Copy file @var{targetfile} from the target system to @var{hostfile}
13068on the host system.
13069
13070@kindex remote delete
13071@item remote delete @var{targetfile}
13072Delete @var{targetfile} from the target system.
13073
13074@end table
13075
6f05cf9f 13076@node Server
79a6e687 13077@section Using the @code{gdbserver} Program
6f05cf9f
AC
13078
13079@kindex gdbserver
13080@cindex remote connection without stubs
13081@code{gdbserver} is a control program for Unix-like systems, which
13082allows you to connect your program with a remote @value{GDBN} via
13083@code{target remote}---but without linking in the usual debugging stub.
13084
13085@code{gdbserver} is not a complete replacement for the debugging stubs,
13086because it requires essentially the same operating-system facilities
13087that @value{GDBN} itself does. In fact, a system that can run
13088@code{gdbserver} to connect to a remote @value{GDBN} could also run
13089@value{GDBN} locally! @code{gdbserver} is sometimes useful nevertheless,
13090because it is a much smaller program than @value{GDBN} itself. It is
13091also easier to port than all of @value{GDBN}, so you may be able to get
13092started more quickly on a new system by using @code{gdbserver}.
13093Finally, if you develop code for real-time systems, you may find that
13094the tradeoffs involved in real-time operation make it more convenient to
13095do as much development work as possible on another system, for example
13096by cross-compiling. You can use @code{gdbserver} to make a similar
13097choice for debugging.
13098
13099@value{GDBN} and @code{gdbserver} communicate via either a serial line
13100or a TCP connection, using the standard @value{GDBN} remote serial
13101protocol.
13102
2d717e4f
DJ
13103@quotation
13104@emph{Warning:} @code{gdbserver} does not have any built-in security.
13105Do not run @code{gdbserver} connected to any public network; a
13106@value{GDBN} connection to @code{gdbserver} provides access to the
13107target system with the same privileges as the user running
13108@code{gdbserver}.
13109@end quotation
13110
13111@subsection Running @code{gdbserver}
13112@cindex arguments, to @code{gdbserver}
13113
13114Run @code{gdbserver} on the target system. You need a copy of the
13115program you want to debug, including any libraries it requires.
6f05cf9f
AC
13116@code{gdbserver} does not need your program's symbol table, so you can
13117strip the program if necessary to save space. @value{GDBN} on the host
13118system does all the symbol handling.
13119
13120To use the server, you must tell it how to communicate with @value{GDBN};
56460a61 13121the name of your program; and the arguments for your program. The usual
6f05cf9f
AC
13122syntax is:
13123
13124@smallexample
13125target> gdbserver @var{comm} @var{program} [ @var{args} @dots{} ]
13126@end smallexample
13127
13128@var{comm} is either a device name (to use a serial line) or a TCP
13129hostname and portnumber. For example, to debug Emacs with the argument
13130@samp{foo.txt} and communicate with @value{GDBN} over the serial port
13131@file{/dev/com1}:
13132
13133@smallexample
13134target> gdbserver /dev/com1 emacs foo.txt
13135@end smallexample
13136
13137@code{gdbserver} waits passively for the host @value{GDBN} to communicate
13138with it.
13139
13140To use a TCP connection instead of a serial line:
13141
13142@smallexample
13143target> gdbserver host:2345 emacs foo.txt
13144@end smallexample
13145
13146The only difference from the previous example is the first argument,
13147specifying that you are communicating with the host @value{GDBN} via
13148TCP. The @samp{host:2345} argument means that @code{gdbserver} is to
13149expect a TCP connection from machine @samp{host} to local TCP port 2345.
13150(Currently, the @samp{host} part is ignored.) You can choose any number
13151you want for the port number as long as it does not conflict with any
13152TCP ports already in use on the target system (for example, @code{23} is
13153reserved for @code{telnet}).@footnote{If you choose a port number that
13154conflicts with another service, @code{gdbserver} prints an error message
13155and exits.} You must use the same port number with the host @value{GDBN}
13156@code{target remote} command.
13157
2d717e4f
DJ
13158@subsubsection Attaching to a Running Program
13159
56460a61
DJ
13160On some targets, @code{gdbserver} can also attach to running programs.
13161This is accomplished via the @code{--attach} argument. The syntax is:
13162
13163@smallexample
2d717e4f 13164target> gdbserver --attach @var{comm} @var{pid}
56460a61
DJ
13165@end smallexample
13166
13167@var{pid} is the process ID of a currently running process. It isn't necessary
13168to point @code{gdbserver} at a binary for the running process.
13169
b1fe9455
DJ
13170@pindex pidof
13171@cindex attach to a program by name
13172You can debug processes by name instead of process ID if your target has the
13173@code{pidof} utility:
13174
13175@smallexample
2d717e4f 13176target> gdbserver --attach @var{comm} `pidof @var{program}`
b1fe9455
DJ
13177@end smallexample
13178
f822c95b 13179In case more than one copy of @var{program} is running, or @var{program}
b1fe9455
DJ
13180has multiple threads, most versions of @code{pidof} support the
13181@code{-s} option to only return the first process ID.
13182
2d717e4f
DJ
13183@subsubsection Multi-Process Mode for @code{gdbserver}
13184@cindex gdbserver, multiple processes
13185@cindex multiple processes with gdbserver
13186
13187When you connect to @code{gdbserver} using @code{target remote},
13188@code{gdbserver} debugs the specified program only once. When the
13189program exits, or you detach from it, @value{GDBN} closes the connection
13190and @code{gdbserver} exits.
13191
6e6c6f50 13192If you connect using @kbd{target extended-remote}, @code{gdbserver}
2d717e4f
DJ
13193enters multi-process mode. When the debugged program exits, or you
13194detach from it, @value{GDBN} stays connected to @code{gdbserver} even
13195though no program is running. The @code{run} and @code{attach}
13196commands instruct @code{gdbserver} to run or attach to a new program.
13197The @code{run} command uses @code{set remote exec-file} (@pxref{set
13198remote exec-file}) to select the program to run. Command line
13199arguments are supported, except for wildcard expansion and I/O
13200redirection (@pxref{Arguments}).
13201
13202To start @code{gdbserver} without supplying an initial command to run
13203or process ID to attach, use the @option{--multi} command line option.
6e6c6f50 13204Then you can connect using @kbd{target extended-remote} and start
2d717e4f
DJ
13205the program you want to debug.
13206
13207@code{gdbserver} does not automatically exit in multi-process mode.
13208You can terminate it by using @code{monitor exit}
13209(@pxref{Monitor Commands for gdbserver}).
13210
13211@subsubsection Other Command-Line Arguments for @code{gdbserver}
13212
13213You can include @option{--debug} on the @code{gdbserver} command line.
13214@code{gdbserver} will display extra status information about the debugging
13215process. This option is intended for @code{gdbserver} development and
13216for bug reports to the developers.
13217
ccd213ac
DJ
13218The @option{--wrapper} option specifies a wrapper to launch programs
13219for debugging. The option should be followed by the name of the
13220wrapper, then any command-line arguments to pass to the wrapper, then
13221@kbd{--} indicating the end of the wrapper arguments.
13222
13223@code{gdbserver} runs the specified wrapper program with a combined
13224command line including the wrapper arguments, then the name of the
13225program to debug, then any arguments to the program. The wrapper
13226runs until it executes your program, and then @value{GDBN} gains control.
13227
13228You can use any program that eventually calls @code{execve} with
13229its arguments as a wrapper. Several standard Unix utilities do
13230this, e.g.@: @code{env} and @code{nohup}. Any Unix shell script ending
13231with @code{exec "$@@"} will also work.
13232
13233For example, you can use @code{env} to pass an environment variable to
13234the debugged program, without setting the variable in @code{gdbserver}'s
13235environment:
13236
13237@smallexample
13238$ gdbserver --wrapper env LD_PRELOAD=libtest.so -- :2222 ./testprog
13239@end smallexample
13240
2d717e4f
DJ
13241@subsection Connecting to @code{gdbserver}
13242
13243Run @value{GDBN} on the host system.
13244
13245First make sure you have the necessary symbol files. Load symbols for
f822c95b
DJ
13246your application using the @code{file} command before you connect. Use
13247@code{set sysroot} to locate target libraries (unless your @value{GDBN}
2d717e4f 13248was compiled with the correct sysroot using @code{--with-sysroot}).
f822c95b
DJ
13249
13250The symbol file and target libraries must exactly match the executable
13251and libraries on the target, with one exception: the files on the host
13252system should not be stripped, even if the files on the target system
13253are. Mismatched or missing files will lead to confusing results
13254during debugging. On @sc{gnu}/Linux targets, mismatched or missing
13255files may also prevent @code{gdbserver} from debugging multi-threaded
13256programs.
13257
79a6e687 13258Connect to your target (@pxref{Connecting,,Connecting to a Remote Target}).
6f05cf9f
AC
13259For TCP connections, you must start up @code{gdbserver} prior to using
13260the @code{target remote} command. Otherwise you may get an error whose
13261text depends on the host system, but which usually looks something like
2d717e4f 13262@samp{Connection refused}. Don't use the @code{load}
397ca115 13263command in @value{GDBN} when using @code{gdbserver}, since the program is
f822c95b 13264already on the target.
07f31aa6 13265
79a6e687 13266@subsection Monitor Commands for @code{gdbserver}
c74d0ad8 13267@cindex monitor commands, for @code{gdbserver}
2d717e4f 13268@anchor{Monitor Commands for gdbserver}
c74d0ad8
DJ
13269
13270During a @value{GDBN} session using @code{gdbserver}, you can use the
13271@code{monitor} command to send special requests to @code{gdbserver}.
2d717e4f 13272Here are the available commands.
c74d0ad8
DJ
13273
13274@table @code
13275@item monitor help
13276List the available monitor commands.
13277
13278@item monitor set debug 0
13279@itemx monitor set debug 1
13280Disable or enable general debugging messages.
13281
13282@item monitor set remote-debug 0
13283@itemx monitor set remote-debug 1
13284Disable or enable specific debugging messages associated with the remote
13285protocol (@pxref{Remote Protocol}).
13286
2d717e4f
DJ
13287@item monitor exit
13288Tell gdbserver to exit immediately. This command should be followed by
13289@code{disconnect} to close the debugging session. @code{gdbserver} will
13290detach from any attached processes and kill any processes it created.
13291Use @code{monitor exit} to terminate @code{gdbserver} at the end
13292of a multi-process mode debug session.
13293
c74d0ad8
DJ
13294@end table
13295
79a6e687
BW
13296@node Remote Configuration
13297@section Remote Configuration
501eef12 13298
9c16f35a
EZ
13299@kindex set remote
13300@kindex show remote
13301This section documents the configuration options available when
13302debugging remote programs. For the options related to the File I/O
fc320d37 13303extensions of the remote protocol, see @ref{system,
9c16f35a 13304system-call-allowed}.
501eef12
AC
13305
13306@table @code
9c16f35a 13307@item set remoteaddresssize @var{bits}
d3e8051b 13308@cindex address size for remote targets
9c16f35a
EZ
13309@cindex bits in remote address
13310Set the maximum size of address in a memory packet to the specified
13311number of bits. @value{GDBN} will mask off the address bits above
13312that number, when it passes addresses to the remote target. The
13313default value is the number of bits in the target's address.
13314
13315@item show remoteaddresssize
13316Show the current value of remote address size in bits.
13317
13318@item set remotebaud @var{n}
13319@cindex baud rate for remote targets
13320Set the baud rate for the remote serial I/O to @var{n} baud. The
13321value is used to set the speed of the serial port used for debugging
13322remote targets.
13323
13324@item show remotebaud
13325Show the current speed of the remote connection.
13326
13327@item set remotebreak
13328@cindex interrupt remote programs
13329@cindex BREAK signal instead of Ctrl-C
9a6253be 13330@anchor{set remotebreak}
9c16f35a 13331If set to on, @value{GDBN} sends a @code{BREAK} signal to the remote
c8aa23ab 13332when you type @kbd{Ctrl-c} to interrupt the program running
9a7a1b36 13333on the remote. If set to off, @value{GDBN} sends the @samp{Ctrl-C}
9c16f35a
EZ
13334character instead. The default is off, since most remote systems
13335expect to see @samp{Ctrl-C} as the interrupt signal.
13336
13337@item show remotebreak
13338Show whether @value{GDBN} sends @code{BREAK} or @samp{Ctrl-C} to
13339interrupt the remote program.
13340
23776285
MR
13341@item set remoteflow on
13342@itemx set remoteflow off
13343@kindex set remoteflow
13344Enable or disable hardware flow control (@code{RTS}/@code{CTS})
13345on the serial port used to communicate to the remote target.
13346
13347@item show remoteflow
13348@kindex show remoteflow
13349Show the current setting of hardware flow control.
13350
9c16f35a
EZ
13351@item set remotelogbase @var{base}
13352Set the base (a.k.a.@: radix) of logging serial protocol
13353communications to @var{base}. Supported values of @var{base} are:
13354@code{ascii}, @code{octal}, and @code{hex}. The default is
13355@code{ascii}.
13356
13357@item show remotelogbase
13358Show the current setting of the radix for logging remote serial
13359protocol.
13360
13361@item set remotelogfile @var{file}
13362@cindex record serial communications on file
13363Record remote serial communications on the named @var{file}. The
13364default is not to record at all.
13365
13366@item show remotelogfile.
13367Show the current setting of the file name on which to record the
13368serial communications.
13369
13370@item set remotetimeout @var{num}
13371@cindex timeout for serial communications
13372@cindex remote timeout
13373Set the timeout limit to wait for the remote target to respond to
13374@var{num} seconds. The default is 2 seconds.
13375
13376@item show remotetimeout
13377Show the current number of seconds to wait for the remote target
13378responses.
13379
13380@cindex limit hardware breakpoints and watchpoints
13381@cindex remote target, limit break- and watchpoints
501eef12
AC
13382@anchor{set remote hardware-watchpoint-limit}
13383@anchor{set remote hardware-breakpoint-limit}
13384@item set remote hardware-watchpoint-limit @var{limit}
13385@itemx set remote hardware-breakpoint-limit @var{limit}
13386Restrict @value{GDBN} to using @var{limit} remote hardware breakpoint or
13387watchpoints. A limit of -1, the default, is treated as unlimited.
2d717e4f
DJ
13388
13389@item set remote exec-file @var{filename}
13390@itemx show remote exec-file
13391@anchor{set remote exec-file}
13392@cindex executable file, for remote target
13393Select the file used for @code{run} with @code{target
13394extended-remote}. This should be set to a filename valid on the
13395target system. If it is not set, the target will use a default
13396filename (e.g.@: the last program run).
501eef12
AC
13397@end table
13398
427c3a89
DJ
13399@cindex remote packets, enabling and disabling
13400The @value{GDBN} remote protocol autodetects the packets supported by
13401your debugging stub. If you need to override the autodetection, you
13402can use these commands to enable or disable individual packets. Each
13403packet can be set to @samp{on} (the remote target supports this
13404packet), @samp{off} (the remote target does not support this packet),
13405or @samp{auto} (detect remote target support for this packet). They
13406all default to @samp{auto}. For more information about each packet,
13407see @ref{Remote Protocol}.
13408
13409During normal use, you should not have to use any of these commands.
13410If you do, that may be a bug in your remote debugging stub, or a bug
13411in @value{GDBN}. You may want to report the problem to the
13412@value{GDBN} developers.
13413
cfa9d6d9
DJ
13414For each packet @var{name}, the command to enable or disable the
13415packet is @code{set remote @var{name}-packet}. The available settings
13416are:
427c3a89 13417
cfa9d6d9 13418@multitable @columnfractions 0.28 0.32 0.25
427c3a89
DJ
13419@item Command Name
13420@tab Remote Packet
13421@tab Related Features
13422
cfa9d6d9 13423@item @code{fetch-register}
427c3a89
DJ
13424@tab @code{p}
13425@tab @code{info registers}
13426
cfa9d6d9 13427@item @code{set-register}
427c3a89
DJ
13428@tab @code{P}
13429@tab @code{set}
13430
cfa9d6d9 13431@item @code{binary-download}
427c3a89
DJ
13432@tab @code{X}
13433@tab @code{load}, @code{set}
13434
cfa9d6d9 13435@item @code{read-aux-vector}
427c3a89
DJ
13436@tab @code{qXfer:auxv:read}
13437@tab @code{info auxv}
13438
cfa9d6d9 13439@item @code{symbol-lookup}
427c3a89
DJ
13440@tab @code{qSymbol}
13441@tab Detecting multiple threads
13442
2d717e4f
DJ
13443@item @code{attach}
13444@tab @code{vAttach}
13445@tab @code{attach}
13446
cfa9d6d9 13447@item @code{verbose-resume}
427c3a89
DJ
13448@tab @code{vCont}
13449@tab Stepping or resuming multiple threads
13450
2d717e4f
DJ
13451@item @code{run}
13452@tab @code{vRun}
13453@tab @code{run}
13454
cfa9d6d9 13455@item @code{software-breakpoint}
427c3a89
DJ
13456@tab @code{Z0}
13457@tab @code{break}
13458
cfa9d6d9 13459@item @code{hardware-breakpoint}
427c3a89
DJ
13460@tab @code{Z1}
13461@tab @code{hbreak}
13462
cfa9d6d9 13463@item @code{write-watchpoint}
427c3a89
DJ
13464@tab @code{Z2}
13465@tab @code{watch}
13466
cfa9d6d9 13467@item @code{read-watchpoint}
427c3a89
DJ
13468@tab @code{Z3}
13469@tab @code{rwatch}
13470
cfa9d6d9 13471@item @code{access-watchpoint}
427c3a89
DJ
13472@tab @code{Z4}
13473@tab @code{awatch}
13474
cfa9d6d9
DJ
13475@item @code{target-features}
13476@tab @code{qXfer:features:read}
13477@tab @code{set architecture}
13478
13479@item @code{library-info}
13480@tab @code{qXfer:libraries:read}
13481@tab @code{info sharedlibrary}
13482
13483@item @code{memory-map}
13484@tab @code{qXfer:memory-map:read}
13485@tab @code{info mem}
13486
13487@item @code{read-spu-object}
13488@tab @code{qXfer:spu:read}
13489@tab @code{info spu}
13490
13491@item @code{write-spu-object}
13492@tab @code{qXfer:spu:write}
13493@tab @code{info spu}
13494
13495@item @code{get-thread-local-@*storage-address}
427c3a89
DJ
13496@tab @code{qGetTLSAddr}
13497@tab Displaying @code{__thread} variables
13498
13499@item @code{supported-packets}
13500@tab @code{qSupported}
13501@tab Remote communications parameters
13502
cfa9d6d9 13503@item @code{pass-signals}
89be2091
DJ
13504@tab @code{QPassSignals}
13505@tab @code{handle @var{signal}}
13506
a6b151f1
DJ
13507@item @code{hostio-close-packet}
13508@tab @code{vFile:close}
13509@tab @code{remote get}, @code{remote put}
13510
13511@item @code{hostio-open-packet}
13512@tab @code{vFile:open}
13513@tab @code{remote get}, @code{remote put}
13514
13515@item @code{hostio-pread-packet}
13516@tab @code{vFile:pread}
13517@tab @code{remote get}, @code{remote put}
13518
13519@item @code{hostio-pwrite-packet}
13520@tab @code{vFile:pwrite}
13521@tab @code{remote get}, @code{remote put}
13522
13523@item @code{hostio-unlink-packet}
13524@tab @code{vFile:unlink}
13525@tab @code{remote delete}
427c3a89
DJ
13526@end multitable
13527
79a6e687
BW
13528@node Remote Stub
13529@section Implementing a Remote Stub
7a292a7a 13530
8e04817f
AC
13531@cindex debugging stub, example
13532@cindex remote stub, example
13533@cindex stub example, remote debugging
13534The stub files provided with @value{GDBN} implement the target side of the
13535communication protocol, and the @value{GDBN} side is implemented in the
13536@value{GDBN} source file @file{remote.c}. Normally, you can simply allow
13537these subroutines to communicate, and ignore the details. (If you're
13538implementing your own stub file, you can still ignore the details: start
13539with one of the existing stub files. @file{sparc-stub.c} is the best
13540organized, and therefore the easiest to read.)
13541
104c1213
JM
13542@cindex remote serial debugging, overview
13543To debug a program running on another machine (the debugging
13544@dfn{target} machine), you must first arrange for all the usual
13545prerequisites for the program to run by itself. For example, for a C
13546program, you need:
c906108c 13547
104c1213
JM
13548@enumerate
13549@item
13550A startup routine to set up the C runtime environment; these usually
13551have a name like @file{crt0}. The startup routine may be supplied by
13552your hardware supplier, or you may have to write your own.
96baa820 13553
5d161b24 13554@item
d4f3574e 13555A C subroutine library to support your program's
104c1213 13556subroutine calls, notably managing input and output.
96baa820 13557
104c1213
JM
13558@item
13559A way of getting your program to the other machine---for example, a
13560download program. These are often supplied by the hardware
13561manufacturer, but you may have to write your own from hardware
13562documentation.
13563@end enumerate
96baa820 13564
104c1213
JM
13565The next step is to arrange for your program to use a serial port to
13566communicate with the machine where @value{GDBN} is running (the @dfn{host}
13567machine). In general terms, the scheme looks like this:
96baa820 13568
104c1213
JM
13569@table @emph
13570@item On the host,
13571@value{GDBN} already understands how to use this protocol; when everything
13572else is set up, you can simply use the @samp{target remote} command
13573(@pxref{Targets,,Specifying a Debugging Target}).
13574
13575@item On the target,
13576you must link with your program a few special-purpose subroutines that
13577implement the @value{GDBN} remote serial protocol. The file containing these
13578subroutines is called a @dfn{debugging stub}.
13579
13580On certain remote targets, you can use an auxiliary program
13581@code{gdbserver} instead of linking a stub into your program.
79a6e687 13582@xref{Server,,Using the @code{gdbserver} Program}, for details.
104c1213 13583@end table
96baa820 13584
104c1213
JM
13585The debugging stub is specific to the architecture of the remote
13586machine; for example, use @file{sparc-stub.c} to debug programs on
13587@sc{sparc} boards.
96baa820 13588
104c1213
JM
13589@cindex remote serial stub list
13590These working remote stubs are distributed with @value{GDBN}:
96baa820 13591
104c1213
JM
13592@table @code
13593
13594@item i386-stub.c
41afff9a 13595@cindex @file{i386-stub.c}
104c1213
JM
13596@cindex Intel
13597@cindex i386
13598For Intel 386 and compatible architectures.
13599
13600@item m68k-stub.c
41afff9a 13601@cindex @file{m68k-stub.c}
104c1213
JM
13602@cindex Motorola 680x0
13603@cindex m680x0
13604For Motorola 680x0 architectures.
13605
13606@item sh-stub.c
41afff9a 13607@cindex @file{sh-stub.c}
172c2a43 13608@cindex Renesas
104c1213 13609@cindex SH
172c2a43 13610For Renesas SH architectures.
104c1213
JM
13611
13612@item sparc-stub.c
41afff9a 13613@cindex @file{sparc-stub.c}
104c1213
JM
13614@cindex Sparc
13615For @sc{sparc} architectures.
13616
13617@item sparcl-stub.c
41afff9a 13618@cindex @file{sparcl-stub.c}
104c1213
JM
13619@cindex Fujitsu
13620@cindex SparcLite
13621For Fujitsu @sc{sparclite} architectures.
13622
13623@end table
13624
13625The @file{README} file in the @value{GDBN} distribution may list other
13626recently added stubs.
13627
13628@menu
13629* Stub Contents:: What the stub can do for you
13630* Bootstrapping:: What you must do for the stub
13631* Debug Session:: Putting it all together
104c1213
JM
13632@end menu
13633
6d2ebf8b 13634@node Stub Contents
79a6e687 13635@subsection What the Stub Can Do for You
104c1213
JM
13636
13637@cindex remote serial stub
13638The debugging stub for your architecture supplies these three
13639subroutines:
13640
13641@table @code
13642@item set_debug_traps
4644b6e3 13643@findex set_debug_traps
104c1213
JM
13644@cindex remote serial stub, initialization
13645This routine arranges for @code{handle_exception} to run when your
13646program stops. You must call this subroutine explicitly near the
13647beginning of your program.
13648
13649@item handle_exception
4644b6e3 13650@findex handle_exception
104c1213
JM
13651@cindex remote serial stub, main routine
13652This is the central workhorse, but your program never calls it
13653explicitly---the setup code arranges for @code{handle_exception} to
13654run when a trap is triggered.
13655
13656@code{handle_exception} takes control when your program stops during
13657execution (for example, on a breakpoint), and mediates communications
13658with @value{GDBN} on the host machine. This is where the communications
13659protocol is implemented; @code{handle_exception} acts as the @value{GDBN}
d4f3574e 13660representative on the target machine. It begins by sending summary
104c1213
JM
13661information on the state of your program, then continues to execute,
13662retrieving and transmitting any information @value{GDBN} needs, until you
13663execute a @value{GDBN} command that makes your program resume; at that point,
13664@code{handle_exception} returns control to your own code on the target
5d161b24 13665machine.
104c1213
JM
13666
13667@item breakpoint
13668@cindex @code{breakpoint} subroutine, remote
13669Use this auxiliary subroutine to make your program contain a
13670breakpoint. Depending on the particular situation, this may be the only
13671way for @value{GDBN} to get control. For instance, if your target
13672machine has some sort of interrupt button, you won't need to call this;
13673pressing the interrupt button transfers control to
13674@code{handle_exception}---in effect, to @value{GDBN}. On some machines,
13675simply receiving characters on the serial port may also trigger a trap;
13676again, in that situation, you don't need to call @code{breakpoint} from
13677your own program---simply running @samp{target remote} from the host
5d161b24 13678@value{GDBN} session gets control.
104c1213
JM
13679
13680Call @code{breakpoint} if none of these is true, or if you simply want
13681to make certain your program stops at a predetermined point for the
13682start of your debugging session.
13683@end table
13684
6d2ebf8b 13685@node Bootstrapping
79a6e687 13686@subsection What You Must Do for the Stub
104c1213
JM
13687
13688@cindex remote stub, support routines
13689The debugging stubs that come with @value{GDBN} are set up for a particular
13690chip architecture, but they have no information about the rest of your
13691debugging target machine.
13692
13693First of all you need to tell the stub how to communicate with the
13694serial port.
13695
13696@table @code
13697@item int getDebugChar()
4644b6e3 13698@findex getDebugChar
104c1213
JM
13699Write this subroutine to read a single character from the serial port.
13700It may be identical to @code{getchar} for your target system; a
13701different name is used to allow you to distinguish the two if you wish.
13702
13703@item void putDebugChar(int)
4644b6e3 13704@findex putDebugChar
104c1213 13705Write this subroutine to write a single character to the serial port.
5d161b24 13706It may be identical to @code{putchar} for your target system; a
104c1213
JM
13707different name is used to allow you to distinguish the two if you wish.
13708@end table
13709
13710@cindex control C, and remote debugging
13711@cindex interrupting remote targets
13712If you want @value{GDBN} to be able to stop your program while it is
13713running, you need to use an interrupt-driven serial driver, and arrange
13714for it to stop when it receives a @code{^C} (@samp{\003}, the control-C
13715character). That is the character which @value{GDBN} uses to tell the
13716remote system to stop.
13717
13718Getting the debugging target to return the proper status to @value{GDBN}
13719probably requires changes to the standard stub; one quick and dirty way
13720is to just execute a breakpoint instruction (the ``dirty'' part is that
13721@value{GDBN} reports a @code{SIGTRAP} instead of a @code{SIGINT}).
13722
13723Other routines you need to supply are:
13724
13725@table @code
13726@item void exceptionHandler (int @var{exception_number}, void *@var{exception_address})
4644b6e3 13727@findex exceptionHandler
104c1213
JM
13728Write this function to install @var{exception_address} in the exception
13729handling tables. You need to do this because the stub does not have any
13730way of knowing what the exception handling tables on your target system
13731are like (for example, the processor's table might be in @sc{rom},
13732containing entries which point to a table in @sc{ram}).
13733@var{exception_number} is the exception number which should be changed;
13734its meaning is architecture-dependent (for example, different numbers
13735might represent divide by zero, misaligned access, etc). When this
13736exception occurs, control should be transferred directly to
13737@var{exception_address}, and the processor state (stack, registers,
13738and so on) should be just as it is when a processor exception occurs. So if
13739you want to use a jump instruction to reach @var{exception_address}, it
13740should be a simple jump, not a jump to subroutine.
13741
13742For the 386, @var{exception_address} should be installed as an interrupt
13743gate so that interrupts are masked while the handler runs. The gate
13744should be at privilege level 0 (the most privileged level). The
13745@sc{sparc} and 68k stubs are able to mask interrupts themselves without
13746help from @code{exceptionHandler}.
13747
13748@item void flush_i_cache()
4644b6e3 13749@findex flush_i_cache
d4f3574e 13750On @sc{sparc} and @sc{sparclite} only, write this subroutine to flush the
104c1213
JM
13751instruction cache, if any, on your target machine. If there is no
13752instruction cache, this subroutine may be a no-op.
13753
13754On target machines that have instruction caches, @value{GDBN} requires this
13755function to make certain that the state of your program is stable.
13756@end table
13757
13758@noindent
13759You must also make sure this library routine is available:
13760
13761@table @code
13762@item void *memset(void *, int, int)
4644b6e3 13763@findex memset
104c1213
JM
13764This is the standard library function @code{memset} that sets an area of
13765memory to a known value. If you have one of the free versions of
13766@code{libc.a}, @code{memset} can be found there; otherwise, you must
13767either obtain it from your hardware manufacturer, or write your own.
13768@end table
13769
13770If you do not use the GNU C compiler, you may need other standard
13771library subroutines as well; this varies from one stub to another,
13772but in general the stubs are likely to use any of the common library
e22ea452 13773subroutines which @code{@value{NGCC}} generates as inline code.
104c1213
JM
13774
13775
6d2ebf8b 13776@node Debug Session
79a6e687 13777@subsection Putting it All Together
104c1213
JM
13778
13779@cindex remote serial debugging summary
13780In summary, when your program is ready to debug, you must follow these
13781steps.
13782
13783@enumerate
13784@item
6d2ebf8b 13785Make sure you have defined the supporting low-level routines
79a6e687 13786(@pxref{Bootstrapping,,What You Must Do for the Stub}):
104c1213
JM
13787@display
13788@code{getDebugChar}, @code{putDebugChar},
13789@code{flush_i_cache}, @code{memset}, @code{exceptionHandler}.
13790@end display
13791
13792@item
13793Insert these lines near the top of your program:
13794
474c8240 13795@smallexample
104c1213
JM
13796set_debug_traps();
13797breakpoint();
474c8240 13798@end smallexample
104c1213
JM
13799
13800@item
13801For the 680x0 stub only, you need to provide a variable called
13802@code{exceptionHook}. Normally you just use:
13803
474c8240 13804@smallexample
104c1213 13805void (*exceptionHook)() = 0;
474c8240 13806@end smallexample
104c1213 13807
d4f3574e 13808@noindent
104c1213 13809but if before calling @code{set_debug_traps}, you set it to point to a
598ca718 13810function in your program, that function is called when
104c1213
JM
13811@code{@value{GDBN}} continues after stopping on a trap (for example, bus
13812error). The function indicated by @code{exceptionHook} is called with
13813one parameter: an @code{int} which is the exception number.
13814
13815@item
13816Compile and link together: your program, the @value{GDBN} debugging stub for
13817your target architecture, and the supporting subroutines.
13818
13819@item
13820Make sure you have a serial connection between your target machine and
13821the @value{GDBN} host, and identify the serial port on the host.
13822
13823@item
13824@c The "remote" target now provides a `load' command, so we should
13825@c document that. FIXME.
13826Download your program to your target machine (or get it there by
13827whatever means the manufacturer provides), and start it.
13828
13829@item
07f31aa6 13830Start @value{GDBN} on the host, and connect to the target
79a6e687 13831(@pxref{Connecting,,Connecting to a Remote Target}).
9db8d71f 13832
104c1213
JM
13833@end enumerate
13834
8e04817f
AC
13835@node Configurations
13836@chapter Configuration-Specific Information
104c1213 13837
8e04817f
AC
13838While nearly all @value{GDBN} commands are available for all native and
13839cross versions of the debugger, there are some exceptions. This chapter
13840describes things that are only available in certain configurations.
104c1213 13841
8e04817f
AC
13842There are three major categories of configurations: native
13843configurations, where the host and target are the same, embedded
13844operating system configurations, which are usually the same for several
13845different processor architectures, and bare embedded processors, which
13846are quite different from each other.
104c1213 13847
8e04817f
AC
13848@menu
13849* Native::
13850* Embedded OS::
13851* Embedded Processors::
13852* Architectures::
13853@end menu
104c1213 13854
8e04817f
AC
13855@node Native
13856@section Native
104c1213 13857
8e04817f
AC
13858This section describes details specific to particular native
13859configurations.
6cf7e474 13860
8e04817f
AC
13861@menu
13862* HP-UX:: HP-UX
7561d450 13863* BSD libkvm Interface:: Debugging BSD kernel memory images
8e04817f
AC
13864* SVR4 Process Information:: SVR4 process information
13865* DJGPP Native:: Features specific to the DJGPP port
78c47bea 13866* Cygwin Native:: Features specific to the Cygwin port
14d6dd68 13867* Hurd Native:: Features specific to @sc{gnu} Hurd
a64548ea 13868* Neutrino:: Features specific to QNX Neutrino
8e04817f 13869@end menu
6cf7e474 13870
8e04817f
AC
13871@node HP-UX
13872@subsection HP-UX
104c1213 13873
8e04817f
AC
13874On HP-UX systems, if you refer to a function or variable name that
13875begins with a dollar sign, @value{GDBN} searches for a user or system
13876name first, before it searches for a convenience variable.
104c1213 13877
9c16f35a 13878
7561d450
MK
13879@node BSD libkvm Interface
13880@subsection BSD libkvm Interface
13881
13882@cindex libkvm
13883@cindex kernel memory image
13884@cindex kernel crash dump
13885
13886BSD-derived systems (FreeBSD/NetBSD/OpenBSD) have a kernel memory
13887interface that provides a uniform interface for accessing kernel virtual
13888memory images, including live systems and crash dumps. @value{GDBN}
13889uses this interface to allow you to debug live kernels and kernel crash
13890dumps on many native BSD configurations. This is implemented as a
13891special @code{kvm} debugging target. For debugging a live system, load
13892the currently running kernel into @value{GDBN} and connect to the
13893@code{kvm} target:
13894
13895@smallexample
13896(@value{GDBP}) @b{target kvm}
13897@end smallexample
13898
13899For debugging crash dumps, provide the file name of the crash dump as an
13900argument:
13901
13902@smallexample
13903(@value{GDBP}) @b{target kvm /var/crash/bsd.0}
13904@end smallexample
13905
13906Once connected to the @code{kvm} target, the following commands are
13907available:
13908
13909@table @code
13910@kindex kvm
13911@item kvm pcb
721c2651 13912Set current context from the @dfn{Process Control Block} (PCB) address.
7561d450
MK
13913
13914@item kvm proc
13915Set current context from proc address. This command isn't available on
13916modern FreeBSD systems.
13917@end table
13918
8e04817f 13919@node SVR4 Process Information
79a6e687 13920@subsection SVR4 Process Information
60bf7e09
EZ
13921@cindex /proc
13922@cindex examine process image
13923@cindex process info via @file{/proc}
104c1213 13924
60bf7e09
EZ
13925Many versions of SVR4 and compatible systems provide a facility called
13926@samp{/proc} that can be used to examine the image of a running
13927process using file-system subroutines. If @value{GDBN} is configured
13928for an operating system with this facility, the command @code{info
13929proc} is available to report information about the process running
13930your program, or about any process running on your system. @code{info
13931proc} works only on SVR4 systems that include the @code{procfs} code.
13932This includes, as of this writing, @sc{gnu}/Linux, OSF/1 (Digital
13933Unix), Solaris, Irix, and Unixware, but not HP-UX, for example.
104c1213 13934
8e04817f
AC
13935@table @code
13936@kindex info proc
60bf7e09 13937@cindex process ID
8e04817f 13938@item info proc
60bf7e09
EZ
13939@itemx info proc @var{process-id}
13940Summarize available information about any running process. If a
13941process ID is specified by @var{process-id}, display information about
13942that process; otherwise display information about the program being
13943debugged. The summary includes the debugged process ID, the command
13944line used to invoke it, its current working directory, and its
13945executable file's absolute file name.
13946
13947On some systems, @var{process-id} can be of the form
13948@samp{[@var{pid}]/@var{tid}} which specifies a certain thread ID
13949within a process. If the optional @var{pid} part is missing, it means
13950a thread from the process being debugged (the leading @samp{/} still
13951needs to be present, or else @value{GDBN} will interpret the number as
13952a process ID rather than a thread ID).
6cf7e474 13953
8e04817f 13954@item info proc mappings
60bf7e09
EZ
13955@cindex memory address space mappings
13956Report the memory address space ranges accessible in the program, with
13957information on whether the process has read, write, or execute access
13958rights to each range. On @sc{gnu}/Linux systems, each memory range
13959includes the object file which is mapped to that range, instead of the
13960memory access rights to that range.
13961
13962@item info proc stat
13963@itemx info proc status
13964@cindex process detailed status information
13965These subcommands are specific to @sc{gnu}/Linux systems. They show
13966the process-related information, including the user ID and group ID;
13967how many threads are there in the process; its virtual memory usage;
13968the signals that are pending, blocked, and ignored; its TTY; its
13969consumption of system and user time; its stack size; its @samp{nice}
2eecc4ab 13970value; etc. For more information, see the @samp{proc} man page
60bf7e09
EZ
13971(type @kbd{man 5 proc} from your shell prompt).
13972
13973@item info proc all
13974Show all the information about the process described under all of the
13975above @code{info proc} subcommands.
13976
8e04817f
AC
13977@ignore
13978@comment These sub-options of 'info proc' were not included when
13979@comment procfs.c was re-written. Keep their descriptions around
13980@comment against the day when someone finds the time to put them back in.
13981@kindex info proc times
13982@item info proc times
13983Starting time, user CPU time, and system CPU time for your program and
13984its children.
6cf7e474 13985
8e04817f
AC
13986@kindex info proc id
13987@item info proc id
13988Report on the process IDs related to your program: its own process ID,
13989the ID of its parent, the process group ID, and the session ID.
8e04817f 13990@end ignore
721c2651
EZ
13991
13992@item set procfs-trace
13993@kindex set procfs-trace
13994@cindex @code{procfs} API calls
13995This command enables and disables tracing of @code{procfs} API calls.
13996
13997@item show procfs-trace
13998@kindex show procfs-trace
13999Show the current state of @code{procfs} API call tracing.
14000
14001@item set procfs-file @var{file}
14002@kindex set procfs-file
14003Tell @value{GDBN} to write @code{procfs} API trace to the named
14004@var{file}. @value{GDBN} appends the trace info to the previous
14005contents of the file. The default is to display the trace on the
14006standard output.
14007
14008@item show procfs-file
14009@kindex show procfs-file
14010Show the file to which @code{procfs} API trace is written.
14011
14012@item proc-trace-entry
14013@itemx proc-trace-exit
14014@itemx proc-untrace-entry
14015@itemx proc-untrace-exit
14016@kindex proc-trace-entry
14017@kindex proc-trace-exit
14018@kindex proc-untrace-entry
14019@kindex proc-untrace-exit
14020These commands enable and disable tracing of entries into and exits
14021from the @code{syscall} interface.
14022
14023@item info pidlist
14024@kindex info pidlist
14025@cindex process list, QNX Neutrino
14026For QNX Neutrino only, this command displays the list of all the
14027processes and all the threads within each process.
14028
14029@item info meminfo
14030@kindex info meminfo
14031@cindex mapinfo list, QNX Neutrino
14032For QNX Neutrino only, this command displays the list of all mapinfos.
8e04817f 14033@end table
104c1213 14034
8e04817f
AC
14035@node DJGPP Native
14036@subsection Features for Debugging @sc{djgpp} Programs
14037@cindex @sc{djgpp} debugging
14038@cindex native @sc{djgpp} debugging
14039@cindex MS-DOS-specific commands
104c1213 14040
514c4d71
EZ
14041@cindex DPMI
14042@sc{djgpp} is a port of the @sc{gnu} development tools to MS-DOS and
8e04817f
AC
14043MS-Windows. @sc{djgpp} programs are 32-bit protected-mode programs
14044that use the @dfn{DPMI} (DOS Protected-Mode Interface) API to run on
14045top of real-mode DOS systems and their emulations.
104c1213 14046
8e04817f
AC
14047@value{GDBN} supports native debugging of @sc{djgpp} programs, and
14048defines a few commands specific to the @sc{djgpp} port. This
14049subsection describes those commands.
104c1213 14050
8e04817f
AC
14051@table @code
14052@kindex info dos
14053@item info dos
14054This is a prefix of @sc{djgpp}-specific commands which print
14055information about the target system and important OS structures.
f1251bdd 14056
8e04817f
AC
14057@kindex sysinfo
14058@cindex MS-DOS system info
14059@cindex free memory information (MS-DOS)
14060@item info dos sysinfo
14061This command displays assorted information about the underlying
14062platform: the CPU type and features, the OS version and flavor, the
14063DPMI version, and the available conventional and DPMI memory.
104c1213 14064
8e04817f
AC
14065@cindex GDT
14066@cindex LDT
14067@cindex IDT
14068@cindex segment descriptor tables
14069@cindex descriptor tables display
14070@item info dos gdt
14071@itemx info dos ldt
14072@itemx info dos idt
14073These 3 commands display entries from, respectively, Global, Local,
14074and Interrupt Descriptor Tables (GDT, LDT, and IDT). The descriptor
14075tables are data structures which store a descriptor for each segment
14076that is currently in use. The segment's selector is an index into a
14077descriptor table; the table entry for that index holds the
14078descriptor's base address and limit, and its attributes and access
14079rights.
104c1213 14080
8e04817f
AC
14081A typical @sc{djgpp} program uses 3 segments: a code segment, a data
14082segment (used for both data and the stack), and a DOS segment (which
14083allows access to DOS/BIOS data structures and absolute addresses in
14084conventional memory). However, the DPMI host will usually define
14085additional segments in order to support the DPMI environment.
d4f3574e 14086
8e04817f
AC
14087@cindex garbled pointers
14088These commands allow to display entries from the descriptor tables.
14089Without an argument, all entries from the specified table are
14090displayed. An argument, which should be an integer expression, means
14091display a single entry whose index is given by the argument. For
14092example, here's a convenient way to display information about the
14093debugged program's data segment:
104c1213 14094
8e04817f
AC
14095@smallexample
14096@exdent @code{(@value{GDBP}) info dos ldt $ds}
14097@exdent @code{0x13f: base=0x11970000 limit=0x0009ffff 32-Bit Data (Read/Write, Exp-up)}
14098@end smallexample
104c1213 14099
8e04817f
AC
14100@noindent
14101This comes in handy when you want to see whether a pointer is outside
14102the data segment's limit (i.e.@: @dfn{garbled}).
104c1213 14103
8e04817f
AC
14104@cindex page tables display (MS-DOS)
14105@item info dos pde
14106@itemx info dos pte
14107These two commands display entries from, respectively, the Page
14108Directory and the Page Tables. Page Directories and Page Tables are
14109data structures which control how virtual memory addresses are mapped
14110into physical addresses. A Page Table includes an entry for every
14111page of memory that is mapped into the program's address space; there
14112may be several Page Tables, each one holding up to 4096 entries. A
14113Page Directory has up to 4096 entries, one each for every Page Table
14114that is currently in use.
104c1213 14115
8e04817f
AC
14116Without an argument, @kbd{info dos pde} displays the entire Page
14117Directory, and @kbd{info dos pte} displays all the entries in all of
14118the Page Tables. An argument, an integer expression, given to the
14119@kbd{info dos pde} command means display only that entry from the Page
14120Directory table. An argument given to the @kbd{info dos pte} command
14121means display entries from a single Page Table, the one pointed to by
14122the specified entry in the Page Directory.
104c1213 14123
8e04817f
AC
14124@cindex direct memory access (DMA) on MS-DOS
14125These commands are useful when your program uses @dfn{DMA} (Direct
14126Memory Access), which needs physical addresses to program the DMA
14127controller.
104c1213 14128
8e04817f 14129These commands are supported only with some DPMI servers.
104c1213 14130
8e04817f
AC
14131@cindex physical address from linear address
14132@item info dos address-pte @var{addr}
14133This command displays the Page Table entry for a specified linear
514c4d71
EZ
14134address. The argument @var{addr} is a linear address which should
14135already have the appropriate segment's base address added to it,
14136because this command accepts addresses which may belong to @emph{any}
14137segment. For example, here's how to display the Page Table entry for
14138the page where a variable @code{i} is stored:
104c1213 14139
b383017d 14140@smallexample
8e04817f
AC
14141@exdent @code{(@value{GDBP}) info dos address-pte __djgpp_base_address + (char *)&i}
14142@exdent @code{Page Table entry for address 0x11a00d30:}
b383017d 14143@exdent @code{Base=0x02698000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0xd30}
8e04817f 14144@end smallexample
104c1213 14145
8e04817f
AC
14146@noindent
14147This says that @code{i} is stored at offset @code{0xd30} from the page
514c4d71 14148whose physical base address is @code{0x02698000}, and shows all the
8e04817f 14149attributes of that page.
104c1213 14150
8e04817f
AC
14151Note that you must cast the addresses of variables to a @code{char *},
14152since otherwise the value of @code{__djgpp_base_address}, the base
14153address of all variables and functions in a @sc{djgpp} program, will
14154be added using the rules of C pointer arithmetics: if @code{i} is
14155declared an @code{int}, @value{GDBN} will add 4 times the value of
14156@code{__djgpp_base_address} to the address of @code{i}.
104c1213 14157
8e04817f
AC
14158Here's another example, it displays the Page Table entry for the
14159transfer buffer:
104c1213 14160
8e04817f
AC
14161@smallexample
14162@exdent @code{(@value{GDBP}) info dos address-pte *((unsigned *)&_go32_info_block + 3)}
14163@exdent @code{Page Table entry for address 0x29110:}
14164@exdent @code{Base=0x00029000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0x110}
14165@end smallexample
104c1213 14166
8e04817f
AC
14167@noindent
14168(The @code{+ 3} offset is because the transfer buffer's address is the
514c4d71
EZ
141693rd member of the @code{_go32_info_block} structure.) The output
14170clearly shows that this DPMI server maps the addresses in conventional
14171memory 1:1, i.e.@: the physical (@code{0x00029000} + @code{0x110}) and
14172linear (@code{0x29110}) addresses are identical.
104c1213 14173
8e04817f
AC
14174This command is supported only with some DPMI servers.
14175@end table
104c1213 14176
c45da7e6 14177@cindex DOS serial data link, remote debugging
a8f24a35
EZ
14178In addition to native debugging, the DJGPP port supports remote
14179debugging via a serial data link. The following commands are specific
14180to remote serial debugging in the DJGPP port of @value{GDBN}.
14181
14182@table @code
14183@kindex set com1base
14184@kindex set com1irq
14185@kindex set com2base
14186@kindex set com2irq
14187@kindex set com3base
14188@kindex set com3irq
14189@kindex set com4base
14190@kindex set com4irq
14191@item set com1base @var{addr}
14192This command sets the base I/O port address of the @file{COM1} serial
14193port.
14194
14195@item set com1irq @var{irq}
14196This command sets the @dfn{Interrupt Request} (@code{IRQ}) line to use
14197for the @file{COM1} serial port.
14198
14199There are similar commands @samp{set com2base}, @samp{set com3irq},
14200etc.@: for setting the port address and the @code{IRQ} lines for the
14201other 3 COM ports.
14202
14203@kindex show com1base
14204@kindex show com1irq
14205@kindex show com2base
14206@kindex show com2irq
14207@kindex show com3base
14208@kindex show com3irq
14209@kindex show com4base
14210@kindex show com4irq
14211The related commands @samp{show com1base}, @samp{show com1irq} etc.@:
14212display the current settings of the base address and the @code{IRQ}
14213lines used by the COM ports.
c45da7e6
EZ
14214
14215@item info serial
14216@kindex info serial
14217@cindex DOS serial port status
14218This command prints the status of the 4 DOS serial ports. For each
14219port, it prints whether it's active or not, its I/O base address and
14220IRQ number, whether it uses a 16550-style FIFO, its baudrate, and the
14221counts of various errors encountered so far.
a8f24a35
EZ
14222@end table
14223
14224
78c47bea 14225@node Cygwin Native
79a6e687 14226@subsection Features for Debugging MS Windows PE Executables
78c47bea
PM
14227@cindex MS Windows debugging
14228@cindex native Cygwin debugging
14229@cindex Cygwin-specific commands
14230
be448670 14231@value{GDBN} supports native debugging of MS Windows programs, including
db2e3e2e
BW
14232DLLs with and without symbolic debugging information. There are various
14233additional Cygwin-specific commands, described in this section.
14234Working with DLLs that have no debugging symbols is described in
14235@ref{Non-debug DLL Symbols}.
78c47bea
PM
14236
14237@table @code
14238@kindex info w32
14239@item info w32
db2e3e2e 14240This is a prefix of MS Windows-specific commands which print
78c47bea
PM
14241information about the target system and important OS structures.
14242
14243@item info w32 selector
14244This command displays information returned by
14245the Win32 API @code{GetThreadSelectorEntry} function.
14246It takes an optional argument that is evaluated to
14247a long value to give the information about this given selector.
14248Without argument, this command displays information
d3e8051b 14249about the six segment registers.
78c47bea
PM
14250
14251@kindex info dll
14252@item info dll
db2e3e2e 14253This is a Cygwin-specific alias of @code{info shared}.
78c47bea
PM
14254
14255@kindex dll-symbols
14256@item dll-symbols
14257This command loads symbols from a dll similarly to
14258add-sym command but without the need to specify a base address.
14259
be90c084 14260@kindex set cygwin-exceptions
e16b02ee
EZ
14261@cindex debugging the Cygwin DLL
14262@cindex Cygwin DLL, debugging
be90c084 14263@item set cygwin-exceptions @var{mode}
e16b02ee
EZ
14264If @var{mode} is @code{on}, @value{GDBN} will break on exceptions that
14265happen inside the Cygwin DLL. If @var{mode} is @code{off},
14266@value{GDBN} will delay recognition of exceptions, and may ignore some
14267exceptions which seem to be caused by internal Cygwin DLL
14268``bookkeeping''. This option is meant primarily for debugging the
14269Cygwin DLL itself; the default value is @code{off} to avoid annoying
14270@value{GDBN} users with false @code{SIGSEGV} signals.
be90c084
CF
14271
14272@kindex show cygwin-exceptions
14273@item show cygwin-exceptions
e16b02ee
EZ
14274Displays whether @value{GDBN} will break on exceptions that happen
14275inside the Cygwin DLL itself.
be90c084 14276
b383017d 14277@kindex set new-console
78c47bea 14278@item set new-console @var{mode}
b383017d 14279If @var{mode} is @code{on} the debuggee will
78c47bea
PM
14280be started in a new console on next start.
14281If @var{mode} is @code{off}i, the debuggee will
14282be started in the same console as the debugger.
14283
14284@kindex show new-console
14285@item show new-console
14286Displays whether a new console is used
14287when the debuggee is started.
14288
14289@kindex set new-group
14290@item set new-group @var{mode}
14291This boolean value controls whether the debuggee should
14292start a new group or stay in the same group as the debugger.
14293This affects the way the Windows OS handles
c8aa23ab 14294@samp{Ctrl-C}.
78c47bea
PM
14295
14296@kindex show new-group
14297@item show new-group
14298Displays current value of new-group boolean.
14299
14300@kindex set debugevents
14301@item set debugevents
219eec71
EZ
14302This boolean value adds debug output concerning kernel events related
14303to the debuggee seen by the debugger. This includes events that
14304signal thread and process creation and exit, DLL loading and
14305unloading, console interrupts, and debugging messages produced by the
14306Windows @code{OutputDebugString} API call.
78c47bea
PM
14307
14308@kindex set debugexec
14309@item set debugexec
b383017d 14310This boolean value adds debug output concerning execute events
219eec71 14311(such as resume thread) seen by the debugger.
78c47bea
PM
14312
14313@kindex set debugexceptions
14314@item set debugexceptions
219eec71
EZ
14315This boolean value adds debug output concerning exceptions in the
14316debuggee seen by the debugger.
78c47bea
PM
14317
14318@kindex set debugmemory
14319@item set debugmemory
219eec71
EZ
14320This boolean value adds debug output concerning debuggee memory reads
14321and writes by the debugger.
78c47bea
PM
14322
14323@kindex set shell
14324@item set shell
14325This boolean values specifies whether the debuggee is called
14326via a shell or directly (default value is on).
14327
14328@kindex show shell
14329@item show shell
14330Displays if the debuggee will be started with a shell.
14331
14332@end table
14333
be448670 14334@menu
79a6e687 14335* Non-debug DLL Symbols:: Support for DLLs without debugging symbols
be448670
CF
14336@end menu
14337
79a6e687
BW
14338@node Non-debug DLL Symbols
14339@subsubsection Support for DLLs without Debugging Symbols
be448670
CF
14340@cindex DLLs with no debugging symbols
14341@cindex Minimal symbols and DLLs
14342
14343Very often on windows, some of the DLLs that your program relies on do
14344not include symbolic debugging information (for example,
db2e3e2e 14345@file{kernel32.dll}). When @value{GDBN} doesn't recognize any debugging
be448670 14346symbols in a DLL, it relies on the minimal amount of symbolic
db2e3e2e 14347information contained in the DLL's export table. This section
be448670
CF
14348describes working with such symbols, known internally to @value{GDBN} as
14349``minimal symbols''.
14350
14351Note that before the debugged program has started execution, no DLLs
db2e3e2e 14352will have been loaded. The easiest way around this problem is simply to
be448670 14353start the program --- either by setting a breakpoint or letting the
db2e3e2e 14354program run once to completion. It is also possible to force
be448670 14355@value{GDBN} to load a particular DLL before starting the executable ---
12c27660 14356see the shared library information in @ref{Files}, or the
db2e3e2e 14357@code{dll-symbols} command in @ref{Cygwin Native}. Currently,
be448670
CF
14358explicitly loading symbols from a DLL with no debugging information will
14359cause the symbol names to be duplicated in @value{GDBN}'s lookup table,
14360which may adversely affect symbol lookup performance.
14361
79a6e687 14362@subsubsection DLL Name Prefixes
be448670
CF
14363
14364In keeping with the naming conventions used by the Microsoft debugging
14365tools, DLL export symbols are made available with a prefix based on the
14366DLL name, for instance @code{KERNEL32!CreateFileA}. The plain name is
14367also entered into the symbol table, so @code{CreateFileA} is often
14368sufficient. In some cases there will be name clashes within a program
14369(particularly if the executable itself includes full debugging symbols)
14370necessitating the use of the fully qualified name when referring to the
14371contents of the DLL. Use single-quotes around the name to avoid the
14372exclamation mark (``!'') being interpreted as a language operator.
14373
14374Note that the internal name of the DLL may be all upper-case, even
14375though the file name of the DLL is lower-case, or vice-versa. Since
14376symbols within @value{GDBN} are @emph{case-sensitive} this may cause
14377some confusion. If in doubt, try the @code{info functions} and
0869d01b
NR
14378@code{info variables} commands or even @code{maint print msymbols}
14379(@pxref{Symbols}). Here's an example:
be448670
CF
14380
14381@smallexample
f7dc1244 14382(@value{GDBP}) info function CreateFileA
be448670
CF
14383All functions matching regular expression "CreateFileA":
14384
14385Non-debugging symbols:
143860x77e885f4 CreateFileA
143870x77e885f4 KERNEL32!CreateFileA
14388@end smallexample
14389
14390@smallexample
f7dc1244 14391(@value{GDBP}) info function !
be448670
CF
14392All functions matching regular expression "!":
14393
14394Non-debugging symbols:
143950x6100114c cygwin1!__assert
143960x61004034 cygwin1!_dll_crt0@@0
143970x61004240 cygwin1!dll_crt0(per_process *)
14398[etc...]
14399@end smallexample
14400
79a6e687 14401@subsubsection Working with Minimal Symbols
be448670
CF
14402
14403Symbols extracted from a DLL's export table do not contain very much
14404type information. All that @value{GDBN} can do is guess whether a symbol
14405refers to a function or variable depending on the linker section that
14406contains the symbol. Also note that the actual contents of the memory
14407contained in a DLL are not available unless the program is running. This
14408means that you cannot examine the contents of a variable or disassemble
14409a function within a DLL without a running program.
14410
14411Variables are generally treated as pointers and dereferenced
14412automatically. For this reason, it is often necessary to prefix a
14413variable name with the address-of operator (``&'') and provide explicit
14414type information in the command. Here's an example of the type of
14415problem:
14416
14417@smallexample
f7dc1244 14418(@value{GDBP}) print 'cygwin1!__argv'
be448670
CF
14419$1 = 268572168
14420@end smallexample
14421
14422@smallexample
f7dc1244 14423(@value{GDBP}) x 'cygwin1!__argv'
be448670
CF
144240x10021610: "\230y\""
14425@end smallexample
14426
14427And two possible solutions:
14428
14429@smallexample
f7dc1244 14430(@value{GDBP}) print ((char **)'cygwin1!__argv')[0]
be448670
CF
14431$2 = 0x22fd98 "/cygdrive/c/mydirectory/myprogram"
14432@end smallexample
14433
14434@smallexample
f7dc1244 14435(@value{GDBP}) x/2x &'cygwin1!__argv'
be448670 144360x610c0aa8 <cygwin1!__argv>: 0x10021608 0x00000000
f7dc1244 14437(@value{GDBP}) x/x 0x10021608
be448670 144380x10021608: 0x0022fd98
f7dc1244 14439(@value{GDBP}) x/s 0x0022fd98
be448670
CF
144400x22fd98: "/cygdrive/c/mydirectory/myprogram"
14441@end smallexample
14442
14443Setting a break point within a DLL is possible even before the program
14444starts execution. However, under these circumstances, @value{GDBN} can't
14445examine the initial instructions of the function in order to skip the
14446function's frame set-up code. You can work around this by using ``*&''
14447to set the breakpoint at a raw memory address:
14448
14449@smallexample
f7dc1244 14450(@value{GDBP}) break *&'python22!PyOS_Readline'
be448670
CF
14451Breakpoint 1 at 0x1e04eff0
14452@end smallexample
14453
14454The author of these extensions is not entirely convinced that setting a
14455break point within a shared DLL like @file{kernel32.dll} is completely
14456safe.
14457
14d6dd68 14458@node Hurd Native
79a6e687 14459@subsection Commands Specific to @sc{gnu} Hurd Systems
14d6dd68
EZ
14460@cindex @sc{gnu} Hurd debugging
14461
14462This subsection describes @value{GDBN} commands specific to the
14463@sc{gnu} Hurd native debugging.
14464
14465@table @code
14466@item set signals
14467@itemx set sigs
14468@kindex set signals@r{, Hurd command}
14469@kindex set sigs@r{, Hurd command}
14470This command toggles the state of inferior signal interception by
14471@value{GDBN}. Mach exceptions, such as breakpoint traps, are not
14472affected by this command. @code{sigs} is a shorthand alias for
14473@code{signals}.
14474
14475@item show signals
14476@itemx show sigs
14477@kindex show signals@r{, Hurd command}
14478@kindex show sigs@r{, Hurd command}
14479Show the current state of intercepting inferior's signals.
14480
14481@item set signal-thread
14482@itemx set sigthread
14483@kindex set signal-thread
14484@kindex set sigthread
14485This command tells @value{GDBN} which thread is the @code{libc} signal
14486thread. That thread is run when a signal is delivered to a running
14487process. @code{set sigthread} is the shorthand alias of @code{set
14488signal-thread}.
14489
14490@item show signal-thread
14491@itemx show sigthread
14492@kindex show signal-thread
14493@kindex show sigthread
14494These two commands show which thread will run when the inferior is
14495delivered a signal.
14496
14497@item set stopped
14498@kindex set stopped@r{, Hurd command}
14499This commands tells @value{GDBN} that the inferior process is stopped,
14500as with the @code{SIGSTOP} signal. The stopped process can be
14501continued by delivering a signal to it.
14502
14503@item show stopped
14504@kindex show stopped@r{, Hurd command}
14505This command shows whether @value{GDBN} thinks the debuggee is
14506stopped.
14507
14508@item set exceptions
14509@kindex set exceptions@r{, Hurd command}
14510Use this command to turn off trapping of exceptions in the inferior.
14511When exception trapping is off, neither breakpoints nor
14512single-stepping will work. To restore the default, set exception
14513trapping on.
14514
14515@item show exceptions
14516@kindex show exceptions@r{, Hurd command}
14517Show the current state of trapping exceptions in the inferior.
14518
14519@item set task pause
14520@kindex set task@r{, Hurd commands}
14521@cindex task attributes (@sc{gnu} Hurd)
14522@cindex pause current task (@sc{gnu} Hurd)
14523This command toggles task suspension when @value{GDBN} has control.
14524Setting it to on takes effect immediately, and the task is suspended
14525whenever @value{GDBN} gets control. Setting it to off will take
14526effect the next time the inferior is continued. If this option is set
14527to off, you can use @code{set thread default pause on} or @code{set
14528thread pause on} (see below) to pause individual threads.
14529
14530@item show task pause
14531@kindex show task@r{, Hurd commands}
14532Show the current state of task suspension.
14533
14534@item set task detach-suspend-count
14535@cindex task suspend count
14536@cindex detach from task, @sc{gnu} Hurd
14537This command sets the suspend count the task will be left with when
14538@value{GDBN} detaches from it.
14539
14540@item show task detach-suspend-count
14541Show the suspend count the task will be left with when detaching.
14542
14543@item set task exception-port
14544@itemx set task excp
14545@cindex task exception port, @sc{gnu} Hurd
14546This command sets the task exception port to which @value{GDBN} will
14547forward exceptions. The argument should be the value of the @dfn{send
14548rights} of the task. @code{set task excp} is a shorthand alias.
14549
14550@item set noninvasive
14551@cindex noninvasive task options
14552This command switches @value{GDBN} to a mode that is the least
14553invasive as far as interfering with the inferior is concerned. This
14554is the same as using @code{set task pause}, @code{set exceptions}, and
14555@code{set signals} to values opposite to the defaults.
14556
14557@item info send-rights
14558@itemx info receive-rights
14559@itemx info port-rights
14560@itemx info port-sets
14561@itemx info dead-names
14562@itemx info ports
14563@itemx info psets
14564@cindex send rights, @sc{gnu} Hurd
14565@cindex receive rights, @sc{gnu} Hurd
14566@cindex port rights, @sc{gnu} Hurd
14567@cindex port sets, @sc{gnu} Hurd
14568@cindex dead names, @sc{gnu} Hurd
14569These commands display information about, respectively, send rights,
14570receive rights, port rights, port sets, and dead names of a task.
14571There are also shorthand aliases: @code{info ports} for @code{info
14572port-rights} and @code{info psets} for @code{info port-sets}.
14573
14574@item set thread pause
14575@kindex set thread@r{, Hurd command}
14576@cindex thread properties, @sc{gnu} Hurd
14577@cindex pause current thread (@sc{gnu} Hurd)
14578This command toggles current thread suspension when @value{GDBN} has
14579control. Setting it to on takes effect immediately, and the current
14580thread is suspended whenever @value{GDBN} gets control. Setting it to
14581off will take effect the next time the inferior is continued.
14582Normally, this command has no effect, since when @value{GDBN} has
14583control, the whole task is suspended. However, if you used @code{set
14584task pause off} (see above), this command comes in handy to suspend
14585only the current thread.
14586
14587@item show thread pause
14588@kindex show thread@r{, Hurd command}
14589This command shows the state of current thread suspension.
14590
14591@item set thread run
d3e8051b 14592This command sets whether the current thread is allowed to run.
14d6dd68
EZ
14593
14594@item show thread run
14595Show whether the current thread is allowed to run.
14596
14597@item set thread detach-suspend-count
14598@cindex thread suspend count, @sc{gnu} Hurd
14599@cindex detach from thread, @sc{gnu} Hurd
14600This command sets the suspend count @value{GDBN} will leave on a
14601thread when detaching. This number is relative to the suspend count
14602found by @value{GDBN} when it notices the thread; use @code{set thread
14603takeover-suspend-count} to force it to an absolute value.
14604
14605@item show thread detach-suspend-count
14606Show the suspend count @value{GDBN} will leave on the thread when
14607detaching.
14608
14609@item set thread exception-port
14610@itemx set thread excp
14611Set the thread exception port to which to forward exceptions. This
14612overrides the port set by @code{set task exception-port} (see above).
14613@code{set thread excp} is the shorthand alias.
14614
14615@item set thread takeover-suspend-count
14616Normally, @value{GDBN}'s thread suspend counts are relative to the
14617value @value{GDBN} finds when it notices each thread. This command
14618changes the suspend counts to be absolute instead.
14619
14620@item set thread default
14621@itemx show thread default
14622@cindex thread default settings, @sc{gnu} Hurd
14623Each of the above @code{set thread} commands has a @code{set thread
14624default} counterpart (e.g., @code{set thread default pause}, @code{set
14625thread default exception-port}, etc.). The @code{thread default}
14626variety of commands sets the default thread properties for all
14627threads; you can then change the properties of individual threads with
14628the non-default commands.
14629@end table
14630
14631
a64548ea
EZ
14632@node Neutrino
14633@subsection QNX Neutrino
14634@cindex QNX Neutrino
14635
14636@value{GDBN} provides the following commands specific to the QNX
14637Neutrino target:
14638
14639@table @code
14640@item set debug nto-debug
14641@kindex set debug nto-debug
14642When set to on, enables debugging messages specific to the QNX
14643Neutrino support.
14644
14645@item show debug nto-debug
14646@kindex show debug nto-debug
14647Show the current state of QNX Neutrino messages.
14648@end table
14649
14650
8e04817f
AC
14651@node Embedded OS
14652@section Embedded Operating Systems
104c1213 14653
8e04817f
AC
14654This section describes configurations involving the debugging of
14655embedded operating systems that are available for several different
14656architectures.
d4f3574e 14657
8e04817f
AC
14658@menu
14659* VxWorks:: Using @value{GDBN} with VxWorks
14660@end menu
104c1213 14661
8e04817f
AC
14662@value{GDBN} includes the ability to debug programs running on
14663various real-time operating systems.
104c1213 14664
8e04817f
AC
14665@node VxWorks
14666@subsection Using @value{GDBN} with VxWorks
104c1213 14667
8e04817f 14668@cindex VxWorks
104c1213 14669
8e04817f 14670@table @code
104c1213 14671
8e04817f
AC
14672@kindex target vxworks
14673@item target vxworks @var{machinename}
14674A VxWorks system, attached via TCP/IP. The argument @var{machinename}
14675is the target system's machine name or IP address.
104c1213 14676
8e04817f 14677@end table
104c1213 14678
8e04817f
AC
14679On VxWorks, @code{load} links @var{filename} dynamically on the
14680current target system as well as adding its symbols in @value{GDBN}.
104c1213 14681
8e04817f
AC
14682@value{GDBN} enables developers to spawn and debug tasks running on networked
14683VxWorks targets from a Unix host. Already-running tasks spawned from
14684the VxWorks shell can also be debugged. @value{GDBN} uses code that runs on
14685both the Unix host and on the VxWorks target. The program
14686@code{@value{GDBP}} is installed and executed on the Unix host. (It may be
14687installed with the name @code{vxgdb}, to distinguish it from a
14688@value{GDBN} for debugging programs on the host itself.)
104c1213 14689
8e04817f
AC
14690@table @code
14691@item VxWorks-timeout @var{args}
14692@kindex vxworks-timeout
14693All VxWorks-based targets now support the option @code{vxworks-timeout}.
14694This option is set by the user, and @var{args} represents the number of
14695seconds @value{GDBN} waits for responses to rpc's. You might use this if
14696your VxWorks target is a slow software simulator or is on the far side
14697of a thin network line.
14698@end table
104c1213 14699
8e04817f
AC
14700The following information on connecting to VxWorks was current when
14701this manual was produced; newer releases of VxWorks may use revised
14702procedures.
104c1213 14703
4644b6e3 14704@findex INCLUDE_RDB
8e04817f
AC
14705To use @value{GDBN} with VxWorks, you must rebuild your VxWorks kernel
14706to include the remote debugging interface routines in the VxWorks
14707library @file{rdb.a}. To do this, define @code{INCLUDE_RDB} in the
14708VxWorks configuration file @file{configAll.h} and rebuild your VxWorks
14709kernel. The resulting kernel contains @file{rdb.a}, and spawns the
14710source debugging task @code{tRdbTask} when VxWorks is booted. For more
14711information on configuring and remaking VxWorks, see the manufacturer's
14712manual.
14713@c VxWorks, see the @cite{VxWorks Programmer's Guide}.
104c1213 14714
8e04817f
AC
14715Once you have included @file{rdb.a} in your VxWorks system image and set
14716your Unix execution search path to find @value{GDBN}, you are ready to
14717run @value{GDBN}. From your Unix host, run @code{@value{GDBP}} (or
14718@code{vxgdb}, depending on your installation).
104c1213 14719
8e04817f 14720@value{GDBN} comes up showing the prompt:
104c1213 14721
474c8240 14722@smallexample
8e04817f 14723(vxgdb)
474c8240 14724@end smallexample
104c1213 14725
8e04817f
AC
14726@menu
14727* VxWorks Connection:: Connecting to VxWorks
14728* VxWorks Download:: VxWorks download
14729* VxWorks Attach:: Running tasks
14730@end menu
104c1213 14731
8e04817f
AC
14732@node VxWorks Connection
14733@subsubsection Connecting to VxWorks
104c1213 14734
8e04817f
AC
14735The @value{GDBN} command @code{target} lets you connect to a VxWorks target on the
14736network. To connect to a target whose host name is ``@code{tt}'', type:
104c1213 14737
474c8240 14738@smallexample
8e04817f 14739(vxgdb) target vxworks tt
474c8240 14740@end smallexample
104c1213 14741
8e04817f
AC
14742@need 750
14743@value{GDBN} displays messages like these:
104c1213 14744
8e04817f
AC
14745@smallexample
14746Attaching remote machine across net...
14747Connected to tt.
14748@end smallexample
104c1213 14749
8e04817f
AC
14750@need 1000
14751@value{GDBN} then attempts to read the symbol tables of any object modules
14752loaded into the VxWorks target since it was last booted. @value{GDBN} locates
14753these files by searching the directories listed in the command search
79a6e687 14754path (@pxref{Environment, ,Your Program's Environment}); if it fails
8e04817f 14755to find an object file, it displays a message such as:
5d161b24 14756
474c8240 14757@smallexample
8e04817f 14758prog.o: No such file or directory.
474c8240 14759@end smallexample
104c1213 14760
8e04817f
AC
14761When this happens, add the appropriate directory to the search path with
14762the @value{GDBN} command @code{path}, and execute the @code{target}
14763command again.
104c1213 14764
8e04817f 14765@node VxWorks Download
79a6e687 14766@subsubsection VxWorks Download
104c1213 14767
8e04817f
AC
14768@cindex download to VxWorks
14769If you have connected to the VxWorks target and you want to debug an
14770object that has not yet been loaded, you can use the @value{GDBN}
14771@code{load} command to download a file from Unix to VxWorks
14772incrementally. The object file given as an argument to the @code{load}
14773command is actually opened twice: first by the VxWorks target in order
14774to download the code, then by @value{GDBN} in order to read the symbol
14775table. This can lead to problems if the current working directories on
14776the two systems differ. If both systems have NFS mounted the same
14777filesystems, you can avoid these problems by using absolute paths.
14778Otherwise, it is simplest to set the working directory on both systems
14779to the directory in which the object file resides, and then to reference
14780the file by its name, without any path. For instance, a program
14781@file{prog.o} may reside in @file{@var{vxpath}/vw/demo/rdb} in VxWorks
14782and in @file{@var{hostpath}/vw/demo/rdb} on the host. To load this
14783program, type this on VxWorks:
104c1213 14784
474c8240 14785@smallexample
8e04817f 14786-> cd "@var{vxpath}/vw/demo/rdb"
474c8240 14787@end smallexample
104c1213 14788
8e04817f
AC
14789@noindent
14790Then, in @value{GDBN}, type:
104c1213 14791
474c8240 14792@smallexample
8e04817f
AC
14793(vxgdb) cd @var{hostpath}/vw/demo/rdb
14794(vxgdb) load prog.o
474c8240 14795@end smallexample
104c1213 14796
8e04817f 14797@value{GDBN} displays a response similar to this:
104c1213 14798
8e04817f
AC
14799@smallexample
14800Reading symbol data from wherever/vw/demo/rdb/prog.o... done.
14801@end smallexample
104c1213 14802
8e04817f
AC
14803You can also use the @code{load} command to reload an object module
14804after editing and recompiling the corresponding source file. Note that
14805this makes @value{GDBN} delete all currently-defined breakpoints,
14806auto-displays, and convenience variables, and to clear the value
14807history. (This is necessary in order to preserve the integrity of
14808debugger's data structures that reference the target system's symbol
14809table.)
104c1213 14810
8e04817f 14811@node VxWorks Attach
79a6e687 14812@subsubsection Running Tasks
104c1213
JM
14813
14814@cindex running VxWorks tasks
14815You can also attach to an existing task using the @code{attach} command as
14816follows:
14817
474c8240 14818@smallexample
104c1213 14819(vxgdb) attach @var{task}
474c8240 14820@end smallexample
104c1213
JM
14821
14822@noindent
14823where @var{task} is the VxWorks hexadecimal task ID. The task can be running
14824or suspended when you attach to it. Running tasks are suspended at
14825the time of attachment.
14826
6d2ebf8b 14827@node Embedded Processors
104c1213
JM
14828@section Embedded Processors
14829
14830This section goes into details specific to particular embedded
14831configurations.
14832
c45da7e6
EZ
14833@cindex send command to simulator
14834Whenever a specific embedded processor has a simulator, @value{GDBN}
14835allows to send an arbitrary command to the simulator.
14836
14837@table @code
14838@item sim @var{command}
14839@kindex sim@r{, a command}
14840Send an arbitrary @var{command} string to the simulator. Consult the
14841documentation for the specific simulator in use for information about
14842acceptable commands.
14843@end table
14844
7d86b5d5 14845
104c1213 14846@menu
c45da7e6 14847* ARM:: ARM RDI
172c2a43 14848* M32R/D:: Renesas M32R/D
104c1213 14849* M68K:: Motorola M68K
104c1213 14850* MIPS Embedded:: MIPS Embedded
a37295f9 14851* OpenRISC 1000:: OpenRisc 1000
104c1213 14852* PA:: HP PA Embedded
4acd40f3 14853* PowerPC Embedded:: PowerPC Embedded
104c1213
JM
14854* Sparclet:: Tsqware Sparclet
14855* Sparclite:: Fujitsu Sparclite
104c1213 14856* Z8000:: Zilog Z8000
a64548ea
EZ
14857* AVR:: Atmel AVR
14858* CRIS:: CRIS
14859* Super-H:: Renesas Super-H
104c1213
JM
14860@end menu
14861
6d2ebf8b 14862@node ARM
104c1213 14863@subsection ARM
c45da7e6 14864@cindex ARM RDI
104c1213
JM
14865
14866@table @code
8e04817f
AC
14867@kindex target rdi
14868@item target rdi @var{dev}
14869ARM Angel monitor, via RDI library interface to ADP protocol. You may
14870use this target to communicate with both boards running the Angel
14871monitor, or with the EmbeddedICE JTAG debug device.
14872
14873@kindex target rdp
14874@item target rdp @var{dev}
14875ARM Demon monitor.
14876
14877@end table
14878
e2f4edfd
EZ
14879@value{GDBN} provides the following ARM-specific commands:
14880
14881@table @code
14882@item set arm disassembler
14883@kindex set arm
14884This commands selects from a list of disassembly styles. The
14885@code{"std"} style is the standard style.
14886
14887@item show arm disassembler
14888@kindex show arm
14889Show the current disassembly style.
14890
14891@item set arm apcs32
14892@cindex ARM 32-bit mode
14893This command toggles ARM operation mode between 32-bit and 26-bit.
14894
14895@item show arm apcs32
14896Display the current usage of the ARM 32-bit mode.
14897
14898@item set arm fpu @var{fputype}
14899This command sets the ARM floating-point unit (FPU) type. The
14900argument @var{fputype} can be one of these:
14901
14902@table @code
14903@item auto
14904Determine the FPU type by querying the OS ABI.
14905@item softfpa
14906Software FPU, with mixed-endian doubles on little-endian ARM
14907processors.
14908@item fpa
14909GCC-compiled FPA co-processor.
14910@item softvfp
14911Software FPU with pure-endian doubles.
14912@item vfp
14913VFP co-processor.
14914@end table
14915
14916@item show arm fpu
14917Show the current type of the FPU.
14918
14919@item set arm abi
14920This command forces @value{GDBN} to use the specified ABI.
14921
14922@item show arm abi
14923Show the currently used ABI.
14924
0428b8f5
DJ
14925@item set arm fallback-mode (arm|thumb|auto)
14926@value{GDBN} uses the symbol table, when available, to determine
14927whether instructions are ARM or Thumb. This command controls
14928@value{GDBN}'s default behavior when the symbol table is not
14929available. The default is @samp{auto}, which causes @value{GDBN} to
14930use the current execution mode (from the @code{T} bit in the @code{CPSR}
14931register).
14932
14933@item show arm fallback-mode
14934Show the current fallback instruction mode.
14935
14936@item set arm force-mode (arm|thumb|auto)
14937This command overrides use of the symbol table to determine whether
14938instructions are ARM or Thumb. The default is @samp{auto}, which
14939causes @value{GDBN} to use the symbol table and then the setting
14940of @samp{set arm fallback-mode}.
14941
14942@item show arm force-mode
14943Show the current forced instruction mode.
14944
e2f4edfd
EZ
14945@item set debug arm
14946Toggle whether to display ARM-specific debugging messages from the ARM
14947target support subsystem.
14948
14949@item show debug arm
14950Show whether ARM-specific debugging messages are enabled.
14951@end table
14952
c45da7e6
EZ
14953The following commands are available when an ARM target is debugged
14954using the RDI interface:
14955
14956@table @code
14957@item rdilogfile @r{[}@var{file}@r{]}
14958@kindex rdilogfile
14959@cindex ADP (Angel Debugger Protocol) logging
14960Set the filename for the ADP (Angel Debugger Protocol) packet log.
14961With an argument, sets the log file to the specified @var{file}. With
14962no argument, show the current log file name. The default log file is
14963@file{rdi.log}.
14964
14965@item rdilogenable @r{[}@var{arg}@r{]}
14966@kindex rdilogenable
14967Control logging of ADP packets. With an argument of 1 or @code{"yes"}
14968enables logging, with an argument 0 or @code{"no"} disables it. With
14969no arguments displays the current setting. When logging is enabled,
14970ADP packets exchanged between @value{GDBN} and the RDI target device
14971are logged to a file.
14972
14973@item set rdiromatzero
14974@kindex set rdiromatzero
14975@cindex ROM at zero address, RDI
14976Tell @value{GDBN} whether the target has ROM at address 0. If on,
14977vector catching is disabled, so that zero address can be used. If off
14978(the default), vector catching is enabled. For this command to take
14979effect, it needs to be invoked prior to the @code{target rdi} command.
14980
14981@item show rdiromatzero
14982@kindex show rdiromatzero
14983Show the current setting of ROM at zero address.
14984
14985@item set rdiheartbeat
14986@kindex set rdiheartbeat
14987@cindex RDI heartbeat
14988Enable or disable RDI heartbeat packets. It is not recommended to
14989turn on this option, since it confuses ARM and EPI JTAG interface, as
14990well as the Angel monitor.
14991
14992@item show rdiheartbeat
14993@kindex show rdiheartbeat
14994Show the setting of RDI heartbeat packets.
14995@end table
14996
e2f4edfd 14997
8e04817f 14998@node M32R/D
ba04e063 14999@subsection Renesas M32R/D and M32R/SDI
8e04817f
AC
15000
15001@table @code
8e04817f
AC
15002@kindex target m32r
15003@item target m32r @var{dev}
172c2a43 15004Renesas M32R/D ROM monitor.
8e04817f 15005
fb3e19c0
KI
15006@kindex target m32rsdi
15007@item target m32rsdi @var{dev}
15008Renesas M32R SDI server, connected via parallel port to the board.
721c2651
EZ
15009@end table
15010
15011The following @value{GDBN} commands are specific to the M32R monitor:
15012
15013@table @code
15014@item set download-path @var{path}
15015@kindex set download-path
15016@cindex find downloadable @sc{srec} files (M32R)
d3e8051b 15017Set the default path for finding downloadable @sc{srec} files.
721c2651
EZ
15018
15019@item show download-path
15020@kindex show download-path
15021Show the default path for downloadable @sc{srec} files.
fb3e19c0 15022
721c2651
EZ
15023@item set board-address @var{addr}
15024@kindex set board-address
15025@cindex M32-EVA target board address
15026Set the IP address for the M32R-EVA target board.
15027
15028@item show board-address
15029@kindex show board-address
15030Show the current IP address of the target board.
15031
15032@item set server-address @var{addr}
15033@kindex set server-address
15034@cindex download server address (M32R)
15035Set the IP address for the download server, which is the @value{GDBN}'s
15036host machine.
15037
15038@item show server-address
15039@kindex show server-address
15040Display the IP address of the download server.
15041
15042@item upload @r{[}@var{file}@r{]}
15043@kindex upload@r{, M32R}
15044Upload the specified @sc{srec} @var{file} via the monitor's Ethernet
15045upload capability. If no @var{file} argument is given, the current
15046executable file is uploaded.
15047
15048@item tload @r{[}@var{file}@r{]}
15049@kindex tload@r{, M32R}
15050Test the @code{upload} command.
8e04817f
AC
15051@end table
15052
ba04e063
EZ
15053The following commands are available for M32R/SDI:
15054
15055@table @code
15056@item sdireset
15057@kindex sdireset
15058@cindex reset SDI connection, M32R
15059This command resets the SDI connection.
15060
15061@item sdistatus
15062@kindex sdistatus
15063This command shows the SDI connection status.
15064
15065@item debug_chaos
15066@kindex debug_chaos
15067@cindex M32R/Chaos debugging
15068Instructs the remote that M32R/Chaos debugging is to be used.
15069
15070@item use_debug_dma
15071@kindex use_debug_dma
15072Instructs the remote to use the DEBUG_DMA method of accessing memory.
15073
15074@item use_mon_code
15075@kindex use_mon_code
15076Instructs the remote to use the MON_CODE method of accessing memory.
15077
15078@item use_ib_break
15079@kindex use_ib_break
15080Instructs the remote to set breakpoints by IB break.
15081
15082@item use_dbt_break
15083@kindex use_dbt_break
15084Instructs the remote to set breakpoints by DBT.
15085@end table
15086
8e04817f
AC
15087@node M68K
15088@subsection M68k
15089
7ce59000
DJ
15090The Motorola m68k configuration includes ColdFire support, and a
15091target command for the following ROM monitor.
8e04817f
AC
15092
15093@table @code
15094
8e04817f
AC
15095@kindex target dbug
15096@item target dbug @var{dev}
15097dBUG ROM monitor for Motorola ColdFire.
15098
8e04817f
AC
15099@end table
15100
8e04817f
AC
15101@node MIPS Embedded
15102@subsection MIPS Embedded
15103
15104@cindex MIPS boards
15105@value{GDBN} can use the MIPS remote debugging protocol to talk to a
15106MIPS board attached to a serial line. This is available when
15107you configure @value{GDBN} with @samp{--target=mips-idt-ecoff}.
104c1213 15108
8e04817f
AC
15109@need 1000
15110Use these @value{GDBN} commands to specify the connection to your target board:
104c1213 15111
8e04817f
AC
15112@table @code
15113@item target mips @var{port}
15114@kindex target mips @var{port}
15115To run a program on the board, start up @code{@value{GDBP}} with the
15116name of your program as the argument. To connect to the board, use the
15117command @samp{target mips @var{port}}, where @var{port} is the name of
15118the serial port connected to the board. If the program has not already
15119been downloaded to the board, you may use the @code{load} command to
15120download it. You can then use all the usual @value{GDBN} commands.
104c1213 15121
8e04817f
AC
15122For example, this sequence connects to the target board through a serial
15123port, and loads and runs a program called @var{prog} through the
15124debugger:
104c1213 15125
474c8240 15126@smallexample
8e04817f
AC
15127host$ @value{GDBP} @var{prog}
15128@value{GDBN} is free software and @dots{}
15129(@value{GDBP}) target mips /dev/ttyb
15130(@value{GDBP}) load @var{prog}
15131(@value{GDBP}) run
474c8240 15132@end smallexample
104c1213 15133
8e04817f
AC
15134@item target mips @var{hostname}:@var{portnumber}
15135On some @value{GDBN} host configurations, you can specify a TCP
15136connection (for instance, to a serial line managed by a terminal
15137concentrator) instead of a serial port, using the syntax
15138@samp{@var{hostname}:@var{portnumber}}.
104c1213 15139
8e04817f
AC
15140@item target pmon @var{port}
15141@kindex target pmon @var{port}
15142PMON ROM monitor.
104c1213 15143
8e04817f
AC
15144@item target ddb @var{port}
15145@kindex target ddb @var{port}
15146NEC's DDB variant of PMON for Vr4300.
104c1213 15147
8e04817f
AC
15148@item target lsi @var{port}
15149@kindex target lsi @var{port}
15150LSI variant of PMON.
104c1213 15151
8e04817f
AC
15152@kindex target r3900
15153@item target r3900 @var{dev}
15154Densan DVE-R3900 ROM monitor for Toshiba R3900 Mips.
104c1213 15155
8e04817f
AC
15156@kindex target array
15157@item target array @var{dev}
15158Array Tech LSI33K RAID controller board.
104c1213 15159
8e04817f 15160@end table
104c1213 15161
104c1213 15162
8e04817f
AC
15163@noindent
15164@value{GDBN} also supports these special commands for MIPS targets:
104c1213 15165
8e04817f 15166@table @code
8e04817f
AC
15167@item set mipsfpu double
15168@itemx set mipsfpu single
15169@itemx set mipsfpu none
a64548ea 15170@itemx set mipsfpu auto
8e04817f
AC
15171@itemx show mipsfpu
15172@kindex set mipsfpu
15173@kindex show mipsfpu
15174@cindex MIPS remote floating point
15175@cindex floating point, MIPS remote
15176If your target board does not support the MIPS floating point
15177coprocessor, you should use the command @samp{set mipsfpu none} (if you
15178need this, you may wish to put the command in your @value{GDBN} init
15179file). This tells @value{GDBN} how to find the return value of
15180functions which return floating point values. It also allows
15181@value{GDBN} to avoid saving the floating point registers when calling
15182functions on the board. If you are using a floating point coprocessor
15183with only single precision floating point support, as on the @sc{r4650}
15184processor, use the command @samp{set mipsfpu single}. The default
15185double precision floating point coprocessor may be selected using
15186@samp{set mipsfpu double}.
104c1213 15187
8e04817f
AC
15188In previous versions the only choices were double precision or no
15189floating point, so @samp{set mipsfpu on} will select double precision
15190and @samp{set mipsfpu off} will select no floating point.
104c1213 15191
8e04817f
AC
15192As usual, you can inquire about the @code{mipsfpu} variable with
15193@samp{show mipsfpu}.
104c1213 15194
8e04817f
AC
15195@item set timeout @var{seconds}
15196@itemx set retransmit-timeout @var{seconds}
15197@itemx show timeout
15198@itemx show retransmit-timeout
15199@cindex @code{timeout}, MIPS protocol
15200@cindex @code{retransmit-timeout}, MIPS protocol
15201@kindex set timeout
15202@kindex show timeout
15203@kindex set retransmit-timeout
15204@kindex show retransmit-timeout
15205You can control the timeout used while waiting for a packet, in the MIPS
15206remote protocol, with the @code{set timeout @var{seconds}} command. The
15207default is 5 seconds. Similarly, you can control the timeout used while
15208waiting for an acknowledgement of a packet with the @code{set
15209retransmit-timeout @var{seconds}} command. The default is 3 seconds.
15210You can inspect both values with @code{show timeout} and @code{show
15211retransmit-timeout}. (These commands are @emph{only} available when
15212@value{GDBN} is configured for @samp{--target=mips-idt-ecoff}.)
104c1213 15213
8e04817f
AC
15214The timeout set by @code{set timeout} does not apply when @value{GDBN}
15215is waiting for your program to stop. In that case, @value{GDBN} waits
15216forever because it has no way of knowing how long the program is going
15217to run before stopping.
ba04e063
EZ
15218
15219@item set syn-garbage-limit @var{num}
15220@kindex set syn-garbage-limit@r{, MIPS remote}
15221@cindex synchronize with remote MIPS target
15222Limit the maximum number of characters @value{GDBN} should ignore when
15223it tries to synchronize with the remote target. The default is 10
15224characters. Setting the limit to -1 means there's no limit.
15225
15226@item show syn-garbage-limit
15227@kindex show syn-garbage-limit@r{, MIPS remote}
15228Show the current limit on the number of characters to ignore when
15229trying to synchronize with the remote system.
15230
15231@item set monitor-prompt @var{prompt}
15232@kindex set monitor-prompt@r{, MIPS remote}
15233@cindex remote monitor prompt
15234Tell @value{GDBN} to expect the specified @var{prompt} string from the
15235remote monitor. The default depends on the target:
15236@table @asis
15237@item pmon target
15238@samp{PMON}
15239@item ddb target
15240@samp{NEC010}
15241@item lsi target
15242@samp{PMON>}
15243@end table
15244
15245@item show monitor-prompt
15246@kindex show monitor-prompt@r{, MIPS remote}
15247Show the current strings @value{GDBN} expects as the prompt from the
15248remote monitor.
15249
15250@item set monitor-warnings
15251@kindex set monitor-warnings@r{, MIPS remote}
15252Enable or disable monitor warnings about hardware breakpoints. This
15253has effect only for the @code{lsi} target. When on, @value{GDBN} will
15254display warning messages whose codes are returned by the @code{lsi}
15255PMON monitor for breakpoint commands.
15256
15257@item show monitor-warnings
15258@kindex show monitor-warnings@r{, MIPS remote}
15259Show the current setting of printing monitor warnings.
15260
15261@item pmon @var{command}
15262@kindex pmon@r{, MIPS remote}
15263@cindex send PMON command
15264This command allows sending an arbitrary @var{command} string to the
15265monitor. The monitor must be in debug mode for this to work.
8e04817f 15266@end table
104c1213 15267
a37295f9
MM
15268@node OpenRISC 1000
15269@subsection OpenRISC 1000
15270@cindex OpenRISC 1000
15271
15272@cindex or1k boards
15273See OR1k Architecture document (@uref{www.opencores.org}) for more information
15274about platform and commands.
15275
15276@table @code
15277
15278@kindex target jtag
15279@item target jtag jtag://@var{host}:@var{port}
15280
15281Connects to remote JTAG server.
15282JTAG remote server can be either an or1ksim or JTAG server,
15283connected via parallel port to the board.
15284
15285Example: @code{target jtag jtag://localhost:9999}
15286
15287@kindex or1ksim
15288@item or1ksim @var{command}
15289If connected to @code{or1ksim} OpenRISC 1000 Architectural
15290Simulator, proprietary commands can be executed.
15291
15292@kindex info or1k spr
15293@item info or1k spr
15294Displays spr groups.
15295
15296@item info or1k spr @var{group}
15297@itemx info or1k spr @var{groupno}
15298Displays register names in selected group.
15299
15300@item info or1k spr @var{group} @var{register}
15301@itemx info or1k spr @var{register}
15302@itemx info or1k spr @var{groupno} @var{registerno}
15303@itemx info or1k spr @var{registerno}
15304Shows information about specified spr register.
15305
15306@kindex spr
15307@item spr @var{group} @var{register} @var{value}
15308@itemx spr @var{register @var{value}}
15309@itemx spr @var{groupno} @var{registerno @var{value}}
15310@itemx spr @var{registerno @var{value}}
15311Writes @var{value} to specified spr register.
15312@end table
15313
15314Some implementations of OpenRISC 1000 Architecture also have hardware trace.
15315It is very similar to @value{GDBN} trace, except it does not interfere with normal
15316program execution and is thus much faster. Hardware breakpoints/watchpoint
15317triggers can be set using:
15318@table @code
15319@item $LEA/$LDATA
15320Load effective address/data
15321@item $SEA/$SDATA
15322Store effective address/data
15323@item $AEA/$ADATA
15324Access effective address ($SEA or $LEA) or data ($SDATA/$LDATA)
15325@item $FETCH
15326Fetch data
15327@end table
15328
15329When triggered, it can capture low level data, like: @code{PC}, @code{LSEA},
15330@code{LDATA}, @code{SDATA}, @code{READSPR}, @code{WRITESPR}, @code{INSTR}.
15331
15332@code{htrace} commands:
15333@cindex OpenRISC 1000 htrace
15334@table @code
15335@kindex hwatch
15336@item hwatch @var{conditional}
d3e8051b 15337Set hardware watchpoint on combination of Load/Store Effective Address(es)
a37295f9
MM
15338or Data. For example:
15339
15340@code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
15341
15342@code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
15343
4644b6e3 15344@kindex htrace
a37295f9
MM
15345@item htrace info
15346Display information about current HW trace configuration.
15347
a37295f9
MM
15348@item htrace trigger @var{conditional}
15349Set starting criteria for HW trace.
15350
a37295f9
MM
15351@item htrace qualifier @var{conditional}
15352Set acquisition qualifier for HW trace.
15353
a37295f9
MM
15354@item htrace stop @var{conditional}
15355Set HW trace stopping criteria.
15356
f153cc92 15357@item htrace record [@var{data}]*
a37295f9
MM
15358Selects the data to be recorded, when qualifier is met and HW trace was
15359triggered.
15360
a37295f9 15361@item htrace enable
a37295f9
MM
15362@itemx htrace disable
15363Enables/disables the HW trace.
15364
f153cc92 15365@item htrace rewind [@var{filename}]
a37295f9
MM
15366Clears currently recorded trace data.
15367
15368If filename is specified, new trace file is made and any newly collected data
15369will be written there.
15370
f153cc92 15371@item htrace print [@var{start} [@var{len}]]
a37295f9
MM
15372Prints trace buffer, using current record configuration.
15373
a37295f9
MM
15374@item htrace mode continuous
15375Set continuous trace mode.
15376
a37295f9
MM
15377@item htrace mode suspend
15378Set suspend trace mode.
15379
15380@end table
15381
4acd40f3
TJB
15382@node PowerPC Embedded
15383@subsection PowerPC Embedded
104c1213 15384
55eddb0f
DJ
15385@value{GDBN} provides the following PowerPC-specific commands:
15386
104c1213 15387@table @code
55eddb0f
DJ
15388@kindex set powerpc
15389@item set powerpc soft-float
15390@itemx show powerpc soft-float
15391Force @value{GDBN} to use (or not use) a software floating point calling
15392convention. By default, @value{GDBN} selects the calling convention based
15393on the selected architecture and the provided executable file.
15394
15395@item set powerpc vector-abi
15396@itemx show powerpc vector-abi
15397Force @value{GDBN} to use the specified calling convention for vector
15398arguments and return values. The valid options are @samp{auto};
15399@samp{generic}, to avoid vector registers even if they are present;
15400@samp{altivec}, to use AltiVec registers; and @samp{spe} to use SPE
15401registers. By default, @value{GDBN} selects the calling convention
15402based on the selected architecture and the provided executable file.
15403
8e04817f
AC
15404@kindex target dink32
15405@item target dink32 @var{dev}
15406DINK32 ROM monitor.
104c1213 15407
8e04817f
AC
15408@kindex target ppcbug
15409@item target ppcbug @var{dev}
15410@kindex target ppcbug1
15411@item target ppcbug1 @var{dev}
15412PPCBUG ROM monitor for PowerPC.
104c1213 15413
8e04817f
AC
15414@kindex target sds
15415@item target sds @var{dev}
15416SDS monitor, running on a PowerPC board (such as Motorola's ADS).
c45da7e6 15417@end table
8e04817f 15418
c45da7e6 15419@cindex SDS protocol
d52fb0e9 15420The following commands specific to the SDS protocol are supported
55eddb0f 15421by @value{GDBN}:
c45da7e6
EZ
15422
15423@table @code
15424@item set sdstimeout @var{nsec}
15425@kindex set sdstimeout
15426Set the timeout for SDS protocol reads to be @var{nsec} seconds. The
15427default is 2 seconds.
15428
15429@item show sdstimeout
15430@kindex show sdstimeout
15431Show the current value of the SDS timeout.
15432
15433@item sds @var{command}
15434@kindex sds@r{, a command}
15435Send the specified @var{command} string to the SDS monitor.
8e04817f
AC
15436@end table
15437
c45da7e6 15438
8e04817f
AC
15439@node PA
15440@subsection HP PA Embedded
104c1213
JM
15441
15442@table @code
15443
8e04817f
AC
15444@kindex target op50n
15445@item target op50n @var{dev}
15446OP50N monitor, running on an OKI HPPA board.
15447
15448@kindex target w89k
15449@item target w89k @var{dev}
15450W89K monitor, running on a Winbond HPPA board.
104c1213
JM
15451
15452@end table
15453
8e04817f
AC
15454@node Sparclet
15455@subsection Tsqware Sparclet
104c1213 15456
8e04817f
AC
15457@cindex Sparclet
15458
15459@value{GDBN} enables developers to debug tasks running on
15460Sparclet targets from a Unix host.
15461@value{GDBN} uses code that runs on
15462both the Unix host and on the Sparclet target. The program
15463@code{@value{GDBP}} is installed and executed on the Unix host.
104c1213 15464
8e04817f
AC
15465@table @code
15466@item remotetimeout @var{args}
15467@kindex remotetimeout
15468@value{GDBN} supports the option @code{remotetimeout}.
15469This option is set by the user, and @var{args} represents the number of
15470seconds @value{GDBN} waits for responses.
104c1213
JM
15471@end table
15472
8e04817f
AC
15473@cindex compiling, on Sparclet
15474When compiling for debugging, include the options @samp{-g} to get debug
15475information and @samp{-Ttext} to relocate the program to where you wish to
15476load it on the target. You may also want to add the options @samp{-n} or
15477@samp{-N} in order to reduce the size of the sections. Example:
104c1213 15478
474c8240 15479@smallexample
8e04817f 15480sparclet-aout-gcc prog.c -Ttext 0x12010000 -g -o prog -N
474c8240 15481@end smallexample
104c1213 15482
8e04817f 15483You can use @code{objdump} to verify that the addresses are what you intended:
104c1213 15484
474c8240 15485@smallexample
8e04817f 15486sparclet-aout-objdump --headers --syms prog
474c8240 15487@end smallexample
104c1213 15488
8e04817f
AC
15489@cindex running, on Sparclet
15490Once you have set
15491your Unix execution search path to find @value{GDBN}, you are ready to
15492run @value{GDBN}. From your Unix host, run @code{@value{GDBP}}
15493(or @code{sparclet-aout-gdb}, depending on your installation).
104c1213 15494
8e04817f
AC
15495@value{GDBN} comes up showing the prompt:
15496
474c8240 15497@smallexample
8e04817f 15498(gdbslet)
474c8240 15499@end smallexample
104c1213
JM
15500
15501@menu
8e04817f
AC
15502* Sparclet File:: Setting the file to debug
15503* Sparclet Connection:: Connecting to Sparclet
15504* Sparclet Download:: Sparclet download
15505* Sparclet Execution:: Running and debugging
104c1213
JM
15506@end menu
15507
8e04817f 15508@node Sparclet File
79a6e687 15509@subsubsection Setting File to Debug
104c1213 15510
8e04817f 15511The @value{GDBN} command @code{file} lets you choose with program to debug.
104c1213 15512
474c8240 15513@smallexample
8e04817f 15514(gdbslet) file prog
474c8240 15515@end smallexample
104c1213 15516
8e04817f
AC
15517@need 1000
15518@value{GDBN} then attempts to read the symbol table of @file{prog}.
15519@value{GDBN} locates
15520the file by searching the directories listed in the command search
15521path.
12c27660 15522If the file was compiled with debug information (option @samp{-g}), source
8e04817f
AC
15523files will be searched as well.
15524@value{GDBN} locates
15525the source files by searching the directories listed in the directory search
79a6e687 15526path (@pxref{Environment, ,Your Program's Environment}).
8e04817f
AC
15527If it fails
15528to find a file, it displays a message such as:
104c1213 15529
474c8240 15530@smallexample
8e04817f 15531prog: No such file or directory.
474c8240 15532@end smallexample
104c1213 15533
8e04817f
AC
15534When this happens, add the appropriate directories to the search paths with
15535the @value{GDBN} commands @code{path} and @code{dir}, and execute the
15536@code{target} command again.
104c1213 15537
8e04817f
AC
15538@node Sparclet Connection
15539@subsubsection Connecting to Sparclet
104c1213 15540
8e04817f
AC
15541The @value{GDBN} command @code{target} lets you connect to a Sparclet target.
15542To connect to a target on serial port ``@code{ttya}'', type:
104c1213 15543
474c8240 15544@smallexample
8e04817f
AC
15545(gdbslet) target sparclet /dev/ttya
15546Remote target sparclet connected to /dev/ttya
15547main () at ../prog.c:3
474c8240 15548@end smallexample
104c1213 15549
8e04817f
AC
15550@need 750
15551@value{GDBN} displays messages like these:
104c1213 15552
474c8240 15553@smallexample
8e04817f 15554Connected to ttya.
474c8240 15555@end smallexample
104c1213 15556
8e04817f 15557@node Sparclet Download
79a6e687 15558@subsubsection Sparclet Download
104c1213 15559
8e04817f
AC
15560@cindex download to Sparclet
15561Once connected to the Sparclet target,
15562you can use the @value{GDBN}
15563@code{load} command to download the file from the host to the target.
15564The file name and load offset should be given as arguments to the @code{load}
15565command.
15566Since the file format is aout, the program must be loaded to the starting
15567address. You can use @code{objdump} to find out what this value is. The load
15568offset is an offset which is added to the VMA (virtual memory address)
15569of each of the file's sections.
15570For instance, if the program
15571@file{prog} was linked to text address 0x1201000, with data at 0x12010160
15572and bss at 0x12010170, in @value{GDBN}, type:
104c1213 15573
474c8240 15574@smallexample
8e04817f
AC
15575(gdbslet) load prog 0x12010000
15576Loading section .text, size 0xdb0 vma 0x12010000
474c8240 15577@end smallexample
104c1213 15578
8e04817f
AC
15579If the code is loaded at a different address then what the program was linked
15580to, you may need to use the @code{section} and @code{add-symbol-file} commands
15581to tell @value{GDBN} where to map the symbol table.
15582
15583@node Sparclet Execution
79a6e687 15584@subsubsection Running and Debugging
8e04817f
AC
15585
15586@cindex running and debugging Sparclet programs
15587You can now begin debugging the task using @value{GDBN}'s execution control
15588commands, @code{b}, @code{step}, @code{run}, etc. See the @value{GDBN}
15589manual for the list of commands.
15590
474c8240 15591@smallexample
8e04817f
AC
15592(gdbslet) b main
15593Breakpoint 1 at 0x12010000: file prog.c, line 3.
15594(gdbslet) run
15595Starting program: prog
15596Breakpoint 1, main (argc=1, argv=0xeffff21c) at prog.c:3
155973 char *symarg = 0;
15598(gdbslet) step
155994 char *execarg = "hello!";
15600(gdbslet)
474c8240 15601@end smallexample
8e04817f
AC
15602
15603@node Sparclite
15604@subsection Fujitsu Sparclite
104c1213
JM
15605
15606@table @code
15607
8e04817f
AC
15608@kindex target sparclite
15609@item target sparclite @var{dev}
15610Fujitsu sparclite boards, used only for the purpose of loading.
15611You must use an additional command to debug the program.
15612For example: target remote @var{dev} using @value{GDBN} standard
15613remote protocol.
104c1213
JM
15614
15615@end table
15616
8e04817f
AC
15617@node Z8000
15618@subsection Zilog Z8000
104c1213 15619
8e04817f
AC
15620@cindex Z8000
15621@cindex simulator, Z8000
15622@cindex Zilog Z8000 simulator
104c1213 15623
8e04817f
AC
15624When configured for debugging Zilog Z8000 targets, @value{GDBN} includes
15625a Z8000 simulator.
15626
15627For the Z8000 family, @samp{target sim} simulates either the Z8002 (the
15628unsegmented variant of the Z8000 architecture) or the Z8001 (the
15629segmented variant). The simulator recognizes which architecture is
15630appropriate by inspecting the object code.
104c1213 15631
8e04817f
AC
15632@table @code
15633@item target sim @var{args}
15634@kindex sim
15635@kindex target sim@r{, with Z8000}
15636Debug programs on a simulated CPU. If the simulator supports setup
15637options, specify them via @var{args}.
104c1213
JM
15638@end table
15639
8e04817f
AC
15640@noindent
15641After specifying this target, you can debug programs for the simulated
15642CPU in the same style as programs for your host computer; use the
15643@code{file} command to load a new program image, the @code{run} command
15644to run your program, and so on.
15645
15646As well as making available all the usual machine registers
15647(@pxref{Registers, ,Registers}), the Z8000 simulator provides three
15648additional items of information as specially named registers:
104c1213
JM
15649
15650@table @code
15651
8e04817f
AC
15652@item cycles
15653Counts clock-ticks in the simulator.
104c1213 15654
8e04817f
AC
15655@item insts
15656Counts instructions run in the simulator.
104c1213 15657
8e04817f
AC
15658@item time
15659Execution time in 60ths of a second.
104c1213 15660
8e04817f 15661@end table
104c1213 15662
8e04817f
AC
15663You can refer to these values in @value{GDBN} expressions with the usual
15664conventions; for example, @w{@samp{b fputc if $cycles>5000}} sets a
15665conditional breakpoint that suspends only after at least 5000
15666simulated clock ticks.
104c1213 15667
a64548ea
EZ
15668@node AVR
15669@subsection Atmel AVR
15670@cindex AVR
15671
15672When configured for debugging the Atmel AVR, @value{GDBN} supports the
15673following AVR-specific commands:
15674
15675@table @code
15676@item info io_registers
15677@kindex info io_registers@r{, AVR}
15678@cindex I/O registers (Atmel AVR)
15679This command displays information about the AVR I/O registers. For
15680each register, @value{GDBN} prints its number and value.
15681@end table
15682
15683@node CRIS
15684@subsection CRIS
15685@cindex CRIS
15686
15687When configured for debugging CRIS, @value{GDBN} provides the
15688following CRIS-specific commands:
15689
15690@table @code
15691@item set cris-version @var{ver}
15692@cindex CRIS version
e22e55c9
OF
15693Set the current CRIS version to @var{ver}, either @samp{10} or @samp{32}.
15694The CRIS version affects register names and sizes. This command is useful in
15695case autodetection of the CRIS version fails.
a64548ea
EZ
15696
15697@item show cris-version
15698Show the current CRIS version.
15699
15700@item set cris-dwarf2-cfi
15701@cindex DWARF-2 CFI and CRIS
e22e55c9
OF
15702Set the usage of DWARF-2 CFI for CRIS debugging. The default is @samp{on}.
15703Change to @samp{off} when using @code{gcc-cris} whose version is below
15704@code{R59}.
a64548ea
EZ
15705
15706@item show cris-dwarf2-cfi
15707Show the current state of using DWARF-2 CFI.
e22e55c9
OF
15708
15709@item set cris-mode @var{mode}
15710@cindex CRIS mode
15711Set the current CRIS mode to @var{mode}. It should only be changed when
15712debugging in guru mode, in which case it should be set to
15713@samp{guru} (the default is @samp{normal}).
15714
15715@item show cris-mode
15716Show the current CRIS mode.
a64548ea
EZ
15717@end table
15718
15719@node Super-H
15720@subsection Renesas Super-H
15721@cindex Super-H
15722
15723For the Renesas Super-H processor, @value{GDBN} provides these
15724commands:
15725
15726@table @code
15727@item regs
15728@kindex regs@r{, Super-H}
15729Show the values of all Super-H registers.
c055b101
CV
15730
15731@item set sh calling-convention @var{convention}
15732@kindex set sh calling-convention
15733Set the calling-convention used when calling functions from @value{GDBN}.
15734Allowed values are @samp{gcc}, which is the default setting, and @samp{renesas}.
15735With the @samp{gcc} setting, functions are called using the @value{NGCC} calling
15736convention. If the DWARF-2 information of the called function specifies
15737that the function follows the Renesas calling convention, the function
15738is called using the Renesas calling convention. If the calling convention
15739is set to @samp{renesas}, the Renesas calling convention is always used,
15740regardless of the DWARF-2 information. This can be used to override the
15741default of @samp{gcc} if debug information is missing, or the compiler
15742does not emit the DWARF-2 calling convention entry for a function.
15743
15744@item show sh calling-convention
15745@kindex show sh calling-convention
15746Show the current calling convention setting.
15747
a64548ea
EZ
15748@end table
15749
15750
8e04817f
AC
15751@node Architectures
15752@section Architectures
104c1213 15753
8e04817f
AC
15754This section describes characteristics of architectures that affect
15755all uses of @value{GDBN} with the architecture, both native and cross.
104c1213 15756
8e04817f 15757@menu
9c16f35a 15758* i386::
8e04817f
AC
15759* A29K::
15760* Alpha::
15761* MIPS::
a64548ea 15762* HPPA:: HP PA architecture
23d964e7 15763* SPU:: Cell Broadband Engine SPU architecture
4acd40f3 15764* PowerPC::
8e04817f 15765@end menu
104c1213 15766
9c16f35a 15767@node i386
db2e3e2e 15768@subsection x86 Architecture-specific Issues
9c16f35a
EZ
15769
15770@table @code
15771@item set struct-convention @var{mode}
15772@kindex set struct-convention
15773@cindex struct return convention
15774@cindex struct/union returned in registers
15775Set the convention used by the inferior to return @code{struct}s and
15776@code{union}s from functions to @var{mode}. Possible values of
15777@var{mode} are @code{"pcc"}, @code{"reg"}, and @code{"default"} (the
15778default). @code{"default"} or @code{"pcc"} means that @code{struct}s
15779are returned on the stack, while @code{"reg"} means that a
15780@code{struct} or a @code{union} whose size is 1, 2, 4, or 8 bytes will
15781be returned in a register.
15782
15783@item show struct-convention
15784@kindex show struct-convention
15785Show the current setting of the convention to return @code{struct}s
15786from functions.
15787@end table
15788
8e04817f
AC
15789@node A29K
15790@subsection A29K
104c1213
JM
15791
15792@table @code
104c1213 15793
8e04817f
AC
15794@kindex set rstack_high_address
15795@cindex AMD 29K register stack
15796@cindex register stack, AMD29K
15797@item set rstack_high_address @var{address}
15798On AMD 29000 family processors, registers are saved in a separate
15799@dfn{register stack}. There is no way for @value{GDBN} to determine the
15800extent of this stack. Normally, @value{GDBN} just assumes that the
15801stack is ``large enough''. This may result in @value{GDBN} referencing
15802memory locations that do not exist. If necessary, you can get around
15803this problem by specifying the ending address of the register stack with
15804the @code{set rstack_high_address} command. The argument should be an
15805address, which you probably want to precede with @samp{0x} to specify in
15806hexadecimal.
104c1213 15807
8e04817f
AC
15808@kindex show rstack_high_address
15809@item show rstack_high_address
15810Display the current limit of the register stack, on AMD 29000 family
15811processors.
104c1213 15812
8e04817f 15813@end table
104c1213 15814
8e04817f
AC
15815@node Alpha
15816@subsection Alpha
104c1213 15817
8e04817f 15818See the following section.
104c1213 15819
8e04817f
AC
15820@node MIPS
15821@subsection MIPS
104c1213 15822
8e04817f
AC
15823@cindex stack on Alpha
15824@cindex stack on MIPS
15825@cindex Alpha stack
15826@cindex MIPS stack
15827Alpha- and MIPS-based computers use an unusual stack frame, which
15828sometimes requires @value{GDBN} to search backward in the object code to
15829find the beginning of a function.
104c1213 15830
8e04817f
AC
15831@cindex response time, MIPS debugging
15832To improve response time (especially for embedded applications, where
15833@value{GDBN} may be restricted to a slow serial line for this search)
15834you may want to limit the size of this search, using one of these
15835commands:
104c1213 15836
8e04817f
AC
15837@table @code
15838@cindex @code{heuristic-fence-post} (Alpha, MIPS)
15839@item set heuristic-fence-post @var{limit}
15840Restrict @value{GDBN} to examining at most @var{limit} bytes in its
15841search for the beginning of a function. A value of @var{0} (the
15842default) means there is no limit. However, except for @var{0}, the
15843larger the limit the more bytes @code{heuristic-fence-post} must search
e2f4edfd
EZ
15844and therefore the longer it takes to run. You should only need to use
15845this command when debugging a stripped executable.
104c1213 15846
8e04817f
AC
15847@item show heuristic-fence-post
15848Display the current limit.
15849@end table
104c1213
JM
15850
15851@noindent
8e04817f
AC
15852These commands are available @emph{only} when @value{GDBN} is configured
15853for debugging programs on Alpha or MIPS processors.
104c1213 15854
a64548ea
EZ
15855Several MIPS-specific commands are available when debugging MIPS
15856programs:
15857
15858@table @code
a64548ea
EZ
15859@item set mips abi @var{arg}
15860@kindex set mips abi
15861@cindex set ABI for MIPS
15862Tell @value{GDBN} which MIPS ABI is used by the inferior. Possible
15863values of @var{arg} are:
15864
15865@table @samp
15866@item auto
15867The default ABI associated with the current binary (this is the
15868default).
15869@item o32
15870@item o64
15871@item n32
15872@item n64
15873@item eabi32
15874@item eabi64
15875@item auto
15876@end table
15877
15878@item show mips abi
15879@kindex show mips abi
15880Show the MIPS ABI used by @value{GDBN} to debug the inferior.
15881
15882@item set mipsfpu
15883@itemx show mipsfpu
15884@xref{MIPS Embedded, set mipsfpu}.
15885
15886@item set mips mask-address @var{arg}
15887@kindex set mips mask-address
15888@cindex MIPS addresses, masking
15889This command determines whether the most-significant 32 bits of 64-bit
15890MIPS addresses are masked off. The argument @var{arg} can be
15891@samp{on}, @samp{off}, or @samp{auto}. The latter is the default
15892setting, which lets @value{GDBN} determine the correct value.
15893
15894@item show mips mask-address
15895@kindex show mips mask-address
15896Show whether the upper 32 bits of MIPS addresses are masked off or
15897not.
15898
15899@item set remote-mips64-transfers-32bit-regs
15900@kindex set remote-mips64-transfers-32bit-regs
15901This command controls compatibility with 64-bit MIPS targets that
15902transfer data in 32-bit quantities. If you have an old MIPS 64 target
15903that transfers 32 bits for some registers, like @sc{sr} and @sc{fsr},
15904and 64 bits for other registers, set this option to @samp{on}.
15905
15906@item show remote-mips64-transfers-32bit-regs
15907@kindex show remote-mips64-transfers-32bit-regs
15908Show the current setting of compatibility with older MIPS 64 targets.
15909
15910@item set debug mips
15911@kindex set debug mips
15912This command turns on and off debugging messages for the MIPS-specific
15913target code in @value{GDBN}.
15914
15915@item show debug mips
15916@kindex show debug mips
15917Show the current setting of MIPS debugging messages.
15918@end table
15919
15920
15921@node HPPA
15922@subsection HPPA
15923@cindex HPPA support
15924
d3e8051b 15925When @value{GDBN} is debugging the HP PA architecture, it provides the
a64548ea
EZ
15926following special commands:
15927
15928@table @code
15929@item set debug hppa
15930@kindex set debug hppa
db2e3e2e 15931This command determines whether HPPA architecture-specific debugging
a64548ea
EZ
15932messages are to be displayed.
15933
15934@item show debug hppa
15935Show whether HPPA debugging messages are displayed.
15936
15937@item maint print unwind @var{address}
15938@kindex maint print unwind@r{, HPPA}
15939This command displays the contents of the unwind table entry at the
15940given @var{address}.
15941
15942@end table
15943
104c1213 15944
23d964e7
UW
15945@node SPU
15946@subsection Cell Broadband Engine SPU architecture
15947@cindex Cell Broadband Engine
15948@cindex SPU
15949
15950When @value{GDBN} is debugging the Cell Broadband Engine SPU architecture,
15951it provides the following special commands:
15952
15953@table @code
15954@item info spu event
15955@kindex info spu
15956Display SPU event facility status. Shows current event mask
15957and pending event status.
15958
15959@item info spu signal
15960Display SPU signal notification facility status. Shows pending
15961signal-control word and signal notification mode of both signal
15962notification channels.
15963
15964@item info spu mailbox
15965Display SPU mailbox facility status. Shows all pending entries,
15966in order of processing, in each of the SPU Write Outbound,
15967SPU Write Outbound Interrupt, and SPU Read Inbound mailboxes.
15968
15969@item info spu dma
15970Display MFC DMA status. Shows all pending commands in the MFC
15971DMA queue. For each entry, opcode, tag, class IDs, effective
15972and local store addresses and transfer size are shown.
15973
15974@item info spu proxydma
15975Display MFC Proxy-DMA status. Shows all pending commands in the MFC
15976Proxy-DMA queue. For each entry, opcode, tag, class IDs, effective
15977and local store addresses and transfer size are shown.
15978
15979@end table
15980
4acd40f3
TJB
15981@node PowerPC
15982@subsection PowerPC
15983@cindex PowerPC architecture
15984
15985When @value{GDBN} is debugging the PowerPC architecture, it provides a set of
15986pseudo-registers to enable inspection of 128-bit wide Decimal Floating Point
15987numbers stored in the floating point registers. These values must be stored
15988in two consecutive registers, always starting at an even register like
15989@code{f0} or @code{f2}.
15990
15991The pseudo-registers go from @code{$dl0} through @code{$dl15}, and are formed
15992by joining the even/odd register pairs @code{f0} and @code{f1} for @code{$dl0},
15993@code{f2} and @code{f3} for @code{$dl1} and so on.
15994
23d964e7 15995
8e04817f
AC
15996@node Controlling GDB
15997@chapter Controlling @value{GDBN}
15998
15999You can alter the way @value{GDBN} interacts with you by using the
16000@code{set} command. For commands controlling how @value{GDBN} displays
79a6e687 16001data, see @ref{Print Settings, ,Print Settings}. Other settings are
8e04817f
AC
16002described here.
16003
16004@menu
16005* Prompt:: Prompt
16006* Editing:: Command editing
d620b259 16007* Command History:: Command history
8e04817f
AC
16008* Screen Size:: Screen size
16009* Numbers:: Numbers
1e698235 16010* ABI:: Configuring the current ABI
8e04817f
AC
16011* Messages/Warnings:: Optional warnings and messages
16012* Debugging Output:: Optional messages about internal happenings
16013@end menu
16014
16015@node Prompt
16016@section Prompt
104c1213 16017
8e04817f 16018@cindex prompt
104c1213 16019
8e04817f
AC
16020@value{GDBN} indicates its readiness to read a command by printing a string
16021called the @dfn{prompt}. This string is normally @samp{(@value{GDBP})}. You
16022can change the prompt string with the @code{set prompt} command. For
16023instance, when debugging @value{GDBN} with @value{GDBN}, it is useful to change
16024the prompt in one of the @value{GDBN} sessions so that you can always tell
16025which one you are talking to.
104c1213 16026
8e04817f
AC
16027@emph{Note:} @code{set prompt} does not add a space for you after the
16028prompt you set. This allows you to set a prompt which ends in a space
16029or a prompt that does not.
104c1213 16030
8e04817f
AC
16031@table @code
16032@kindex set prompt
16033@item set prompt @var{newprompt}
16034Directs @value{GDBN} to use @var{newprompt} as its prompt string henceforth.
104c1213 16035
8e04817f
AC
16036@kindex show prompt
16037@item show prompt
16038Prints a line of the form: @samp{Gdb's prompt is: @var{your-prompt}}
104c1213
JM
16039@end table
16040
8e04817f 16041@node Editing
79a6e687 16042@section Command Editing
8e04817f
AC
16043@cindex readline
16044@cindex command line editing
104c1213 16045
703663ab 16046@value{GDBN} reads its input commands via the @dfn{Readline} interface. This
8e04817f
AC
16047@sc{gnu} library provides consistent behavior for programs which provide a
16048command line interface to the user. Advantages are @sc{gnu} Emacs-style
16049or @dfn{vi}-style inline editing of commands, @code{csh}-like history
16050substitution, and a storage and recall of command history across
16051debugging sessions.
104c1213 16052
8e04817f
AC
16053You may control the behavior of command line editing in @value{GDBN} with the
16054command @code{set}.
104c1213 16055
8e04817f
AC
16056@table @code
16057@kindex set editing
16058@cindex editing
16059@item set editing
16060@itemx set editing on
16061Enable command line editing (enabled by default).
104c1213 16062
8e04817f
AC
16063@item set editing off
16064Disable command line editing.
104c1213 16065
8e04817f
AC
16066@kindex show editing
16067@item show editing
16068Show whether command line editing is enabled.
104c1213
JM
16069@end table
16070
703663ab
EZ
16071@xref{Command Line Editing}, for more details about the Readline
16072interface. Users unfamiliar with @sc{gnu} Emacs or @code{vi} are
16073encouraged to read that chapter.
16074
d620b259 16075@node Command History
79a6e687 16076@section Command History
703663ab 16077@cindex command history
8e04817f
AC
16078
16079@value{GDBN} can keep track of the commands you type during your
16080debugging sessions, so that you can be certain of precisely what
16081happened. Use these commands to manage the @value{GDBN} command
16082history facility.
104c1213 16083
703663ab
EZ
16084@value{GDBN} uses the @sc{gnu} History library, a part of the Readline
16085package, to provide the history facility. @xref{Using History
16086Interactively}, for the detailed description of the History library.
16087
d620b259 16088To issue a command to @value{GDBN} without affecting certain aspects of
9e6c4bd5
NR
16089the state which is seen by users, prefix it with @samp{server }
16090(@pxref{Server Prefix}). This
d620b259
NR
16091means that this command will not affect the command history, nor will it
16092affect @value{GDBN}'s notion of which command to repeat if @key{RET} is
16093pressed on a line by itself.
16094
16095@cindex @code{server}, command prefix
16096The server prefix does not affect the recording of values into the value
16097history; to print a value without recording it into the value history,
16098use the @code{output} command instead of the @code{print} command.
16099
703663ab
EZ
16100Here is the description of @value{GDBN} commands related to command
16101history.
16102
104c1213 16103@table @code
8e04817f
AC
16104@cindex history substitution
16105@cindex history file
16106@kindex set history filename
4644b6e3 16107@cindex @env{GDBHISTFILE}, environment variable
8e04817f
AC
16108@item set history filename @var{fname}
16109Set the name of the @value{GDBN} command history file to @var{fname}.
16110This is the file where @value{GDBN} reads an initial command history
16111list, and where it writes the command history from this session when it
16112exits. You can access this list through history expansion or through
16113the history command editing characters listed below. This file defaults
16114to the value of the environment variable @code{GDBHISTFILE}, or to
16115@file{./.gdb_history} (@file{./_gdb_history} on MS-DOS) if this variable
16116is not set.
104c1213 16117
9c16f35a
EZ
16118@cindex save command history
16119@kindex set history save
8e04817f
AC
16120@item set history save
16121@itemx set history save on
16122Record command history in a file, whose name may be specified with the
16123@code{set history filename} command. By default, this option is disabled.
104c1213 16124
8e04817f
AC
16125@item set history save off
16126Stop recording command history in a file.
104c1213 16127
8e04817f 16128@cindex history size
9c16f35a 16129@kindex set history size
6fc08d32 16130@cindex @env{HISTSIZE}, environment variable
8e04817f
AC
16131@item set history size @var{size}
16132Set the number of commands which @value{GDBN} keeps in its history list.
16133This defaults to the value of the environment variable
16134@code{HISTSIZE}, or to 256 if this variable is not set.
104c1213
JM
16135@end table
16136
8e04817f 16137History expansion assigns special meaning to the character @kbd{!}.
703663ab 16138@xref{Event Designators}, for more details.
8e04817f 16139
703663ab 16140@cindex history expansion, turn on/off
8e04817f
AC
16141Since @kbd{!} is also the logical not operator in C, history expansion
16142is off by default. If you decide to enable history expansion with the
16143@code{set history expansion on} command, you may sometimes need to
16144follow @kbd{!} (when it is used as logical not, in an expression) with
16145a space or a tab to prevent it from being expanded. The readline
16146history facilities do not attempt substitution on the strings
16147@kbd{!=} and @kbd{!(}, even when history expansion is enabled.
16148
16149The commands to control history expansion are:
104c1213
JM
16150
16151@table @code
8e04817f
AC
16152@item set history expansion on
16153@itemx set history expansion
703663ab 16154@kindex set history expansion
8e04817f 16155Enable history expansion. History expansion is off by default.
104c1213 16156
8e04817f
AC
16157@item set history expansion off
16158Disable history expansion.
104c1213 16159
8e04817f
AC
16160@c @group
16161@kindex show history
16162@item show history
16163@itemx show history filename
16164@itemx show history save
16165@itemx show history size
16166@itemx show history expansion
16167These commands display the state of the @value{GDBN} history parameters.
16168@code{show history} by itself displays all four states.
16169@c @end group
16170@end table
16171
16172@table @code
9c16f35a
EZ
16173@kindex show commands
16174@cindex show last commands
16175@cindex display command history
8e04817f
AC
16176@item show commands
16177Display the last ten commands in the command history.
104c1213 16178
8e04817f
AC
16179@item show commands @var{n}
16180Print ten commands centered on command number @var{n}.
16181
16182@item show commands +
16183Print ten commands just after the commands last printed.
104c1213
JM
16184@end table
16185
8e04817f 16186@node Screen Size
79a6e687 16187@section Screen Size
8e04817f
AC
16188@cindex size of screen
16189@cindex pauses in output
104c1213 16190
8e04817f
AC
16191Certain commands to @value{GDBN} may produce large amounts of
16192information output to the screen. To help you read all of it,
16193@value{GDBN} pauses and asks you for input at the end of each page of
16194output. Type @key{RET} when you want to continue the output, or @kbd{q}
16195to discard the remaining output. Also, the screen width setting
16196determines when to wrap lines of output. Depending on what is being
16197printed, @value{GDBN} tries to break the line at a readable place,
16198rather than simply letting it overflow onto the following line.
16199
16200Normally @value{GDBN} knows the size of the screen from the terminal
16201driver software. For example, on Unix @value{GDBN} uses the termcap data base
16202together with the value of the @code{TERM} environment variable and the
16203@code{stty rows} and @code{stty cols} settings. If this is not correct,
16204you can override it with the @code{set height} and @code{set
16205width} commands:
16206
16207@table @code
16208@kindex set height
16209@kindex set width
16210@kindex show width
16211@kindex show height
16212@item set height @var{lpp}
16213@itemx show height
16214@itemx set width @var{cpl}
16215@itemx show width
16216These @code{set} commands specify a screen height of @var{lpp} lines and
16217a screen width of @var{cpl} characters. The associated @code{show}
16218commands display the current settings.
104c1213 16219
8e04817f
AC
16220If you specify a height of zero lines, @value{GDBN} does not pause during
16221output no matter how long the output is. This is useful if output is to a
16222file or to an editor buffer.
104c1213 16223
8e04817f
AC
16224Likewise, you can specify @samp{set width 0} to prevent @value{GDBN}
16225from wrapping its output.
9c16f35a
EZ
16226
16227@item set pagination on
16228@itemx set pagination off
16229@kindex set pagination
16230Turn the output pagination on or off; the default is on. Turning
16231pagination off is the alternative to @code{set height 0}.
16232
16233@item show pagination
16234@kindex show pagination
16235Show the current pagination mode.
104c1213
JM
16236@end table
16237
8e04817f
AC
16238@node Numbers
16239@section Numbers
16240@cindex number representation
16241@cindex entering numbers
104c1213 16242
8e04817f
AC
16243You can always enter numbers in octal, decimal, or hexadecimal in
16244@value{GDBN} by the usual conventions: octal numbers begin with
16245@samp{0}, decimal numbers end with @samp{.}, and hexadecimal numbers
eb2dae08
EZ
16246begin with @samp{0x}. Numbers that neither begin with @samp{0} or
16247@samp{0x}, nor end with a @samp{.} are, by default, entered in base
1624810; likewise, the default display for numbers---when no particular
16249format is specified---is base 10. You can change the default base for
16250both input and output with the commands described below.
104c1213 16251
8e04817f
AC
16252@table @code
16253@kindex set input-radix
16254@item set input-radix @var{base}
16255Set the default base for numeric input. Supported choices
16256for @var{base} are decimal 8, 10, or 16. @var{base} must itself be
eb2dae08 16257specified either unambiguously or using the current input radix; for
8e04817f 16258example, any of
104c1213 16259
8e04817f 16260@smallexample
9c16f35a
EZ
16261set input-radix 012
16262set input-radix 10.
16263set input-radix 0xa
8e04817f 16264@end smallexample
104c1213 16265
8e04817f 16266@noindent
9c16f35a 16267sets the input base to decimal. On the other hand, @samp{set input-radix 10}
eb2dae08
EZ
16268leaves the input radix unchanged, no matter what it was, since
16269@samp{10}, being without any leading or trailing signs of its base, is
16270interpreted in the current radix. Thus, if the current radix is 16,
16271@samp{10} is interpreted in hex, i.e.@: as 16 decimal, which doesn't
16272change the radix.
104c1213 16273
8e04817f
AC
16274@kindex set output-radix
16275@item set output-radix @var{base}
16276Set the default base for numeric display. Supported choices
16277for @var{base} are decimal 8, 10, or 16. @var{base} must itself be
eb2dae08 16278specified either unambiguously or using the current input radix.
104c1213 16279
8e04817f
AC
16280@kindex show input-radix
16281@item show input-radix
16282Display the current default base for numeric input.
104c1213 16283
8e04817f
AC
16284@kindex show output-radix
16285@item show output-radix
16286Display the current default base for numeric display.
9c16f35a
EZ
16287
16288@item set radix @r{[}@var{base}@r{]}
16289@itemx show radix
16290@kindex set radix
16291@kindex show radix
16292These commands set and show the default base for both input and output
16293of numbers. @code{set radix} sets the radix of input and output to
16294the same base; without an argument, it resets the radix back to its
16295default value of 10.
16296
8e04817f 16297@end table
104c1213 16298
1e698235 16299@node ABI
79a6e687 16300@section Configuring the Current ABI
1e698235
DJ
16301
16302@value{GDBN} can determine the @dfn{ABI} (Application Binary Interface) of your
16303application automatically. However, sometimes you need to override its
16304conclusions. Use these commands to manage @value{GDBN}'s view of the
16305current ABI.
16306
98b45e30
DJ
16307@cindex OS ABI
16308@kindex set osabi
b4e9345d 16309@kindex show osabi
98b45e30
DJ
16310
16311One @value{GDBN} configuration can debug binaries for multiple operating
b383017d 16312system targets, either via remote debugging or native emulation.
98b45e30
DJ
16313@value{GDBN} will autodetect the @dfn{OS ABI} (Operating System ABI) in use,
16314but you can override its conclusion using the @code{set osabi} command.
16315One example where this is useful is in debugging of binaries which use
16316an alternate C library (e.g.@: @sc{uClibc} for @sc{gnu}/Linux) which does
16317not have the same identifying marks that the standard C library for your
16318platform provides.
16319
16320@table @code
16321@item show osabi
16322Show the OS ABI currently in use.
16323
16324@item set osabi
16325With no argument, show the list of registered available OS ABI's.
16326
16327@item set osabi @var{abi}
16328Set the current OS ABI to @var{abi}.
16329@end table
16330
1e698235 16331@cindex float promotion
1e698235
DJ
16332
16333Generally, the way that an argument of type @code{float} is passed to a
16334function depends on whether the function is prototyped. For a prototyped
16335(i.e.@: ANSI/ISO style) function, @code{float} arguments are passed unchanged,
16336according to the architecture's convention for @code{float}. For unprototyped
16337(i.e.@: K&R style) functions, @code{float} arguments are first promoted to type
16338@code{double} and then passed.
16339
16340Unfortunately, some forms of debug information do not reliably indicate whether
16341a function is prototyped. If @value{GDBN} calls a function that is not marked
16342as prototyped, it consults @kbd{set coerce-float-to-double}.
16343
16344@table @code
a8f24a35 16345@kindex set coerce-float-to-double
1e698235
DJ
16346@item set coerce-float-to-double
16347@itemx set coerce-float-to-double on
16348Arguments of type @code{float} will be promoted to @code{double} when passed
16349to an unprototyped function. This is the default setting.
16350
16351@item set coerce-float-to-double off
16352Arguments of type @code{float} will be passed directly to unprototyped
16353functions.
9c16f35a
EZ
16354
16355@kindex show coerce-float-to-double
16356@item show coerce-float-to-double
16357Show the current setting of promoting @code{float} to @code{double}.
1e698235
DJ
16358@end table
16359
f1212245
DJ
16360@kindex set cp-abi
16361@kindex show cp-abi
16362@value{GDBN} needs to know the ABI used for your program's C@t{++}
16363objects. The correct C@t{++} ABI depends on which C@t{++} compiler was
16364used to build your application. @value{GDBN} only fully supports
16365programs with a single C@t{++} ABI; if your program contains code using
16366multiple C@t{++} ABI's or if @value{GDBN} can not identify your
16367program's ABI correctly, you can tell @value{GDBN} which ABI to use.
16368Currently supported ABI's include ``gnu-v2'', for @code{g++} versions
16369before 3.0, ``gnu-v3'', for @code{g++} versions 3.0 and later, and
16370``hpaCC'' for the HP ANSI C@t{++} compiler. Other C@t{++} compilers may
16371use the ``gnu-v2'' or ``gnu-v3'' ABI's as well. The default setting is
16372``auto''.
16373
16374@table @code
16375@item show cp-abi
16376Show the C@t{++} ABI currently in use.
16377
16378@item set cp-abi
16379With no argument, show the list of supported C@t{++} ABI's.
16380
16381@item set cp-abi @var{abi}
16382@itemx set cp-abi auto
16383Set the current C@t{++} ABI to @var{abi}, or return to automatic detection.
16384@end table
16385
8e04817f 16386@node Messages/Warnings
79a6e687 16387@section Optional Warnings and Messages
104c1213 16388
9c16f35a
EZ
16389@cindex verbose operation
16390@cindex optional warnings
8e04817f
AC
16391By default, @value{GDBN} is silent about its inner workings. If you are
16392running on a slow machine, you may want to use the @code{set verbose}
16393command. This makes @value{GDBN} tell you when it does a lengthy
16394internal operation, so you will not think it has crashed.
104c1213 16395
8e04817f
AC
16396Currently, the messages controlled by @code{set verbose} are those
16397which announce that the symbol table for a source file is being read;
79a6e687 16398see @code{symbol-file} in @ref{Files, ,Commands to Specify Files}.
104c1213 16399
8e04817f
AC
16400@table @code
16401@kindex set verbose
16402@item set verbose on
16403Enables @value{GDBN} output of certain informational messages.
104c1213 16404
8e04817f
AC
16405@item set verbose off
16406Disables @value{GDBN} output of certain informational messages.
104c1213 16407
8e04817f
AC
16408@kindex show verbose
16409@item show verbose
16410Displays whether @code{set verbose} is on or off.
16411@end table
104c1213 16412
8e04817f
AC
16413By default, if @value{GDBN} encounters bugs in the symbol table of an
16414object file, it is silent; but if you are debugging a compiler, you may
79a6e687
BW
16415find this information useful (@pxref{Symbol Errors, ,Errors Reading
16416Symbol Files}).
104c1213 16417
8e04817f 16418@table @code
104c1213 16419
8e04817f
AC
16420@kindex set complaints
16421@item set complaints @var{limit}
16422Permits @value{GDBN} to output @var{limit} complaints about each type of
16423unusual symbols before becoming silent about the problem. Set
16424@var{limit} to zero to suppress all complaints; set it to a large number
16425to prevent complaints from being suppressed.
104c1213 16426
8e04817f
AC
16427@kindex show complaints
16428@item show complaints
16429Displays how many symbol complaints @value{GDBN} is permitted to produce.
104c1213 16430
8e04817f 16431@end table
104c1213 16432
8e04817f
AC
16433By default, @value{GDBN} is cautious, and asks what sometimes seems to be a
16434lot of stupid questions to confirm certain commands. For example, if
16435you try to run a program which is already running:
104c1213 16436
474c8240 16437@smallexample
8e04817f
AC
16438(@value{GDBP}) run
16439The program being debugged has been started already.
16440Start it from the beginning? (y or n)
474c8240 16441@end smallexample
104c1213 16442
8e04817f
AC
16443If you are willing to unflinchingly face the consequences of your own
16444commands, you can disable this ``feature'':
104c1213 16445
8e04817f 16446@table @code
104c1213 16447
8e04817f
AC
16448@kindex set confirm
16449@cindex flinching
16450@cindex confirmation
16451@cindex stupid questions
16452@item set confirm off
16453Disables confirmation requests.
104c1213 16454
8e04817f
AC
16455@item set confirm on
16456Enables confirmation requests (the default).
104c1213 16457
8e04817f
AC
16458@kindex show confirm
16459@item show confirm
16460Displays state of confirmation requests.
16461
16462@end table
104c1213 16463
16026cd7
AS
16464@cindex command tracing
16465If you need to debug user-defined commands or sourced files you may find it
16466useful to enable @dfn{command tracing}. In this mode each command will be
16467printed as it is executed, prefixed with one or more @samp{+} symbols, the
16468quantity denoting the call depth of each command.
16469
16470@table @code
16471@kindex set trace-commands
16472@cindex command scripts, debugging
16473@item set trace-commands on
16474Enable command tracing.
16475@item set trace-commands off
16476Disable command tracing.
16477@item show trace-commands
16478Display the current state of command tracing.
16479@end table
16480
8e04817f 16481@node Debugging Output
79a6e687 16482@section Optional Messages about Internal Happenings
4644b6e3
EZ
16483@cindex optional debugging messages
16484
da316a69
EZ
16485@value{GDBN} has commands that enable optional debugging messages from
16486various @value{GDBN} subsystems; normally these commands are of
16487interest to @value{GDBN} maintainers, or when reporting a bug. This
16488section documents those commands.
16489
104c1213 16490@table @code
a8f24a35
EZ
16491@kindex set exec-done-display
16492@item set exec-done-display
16493Turns on or off the notification of asynchronous commands'
16494completion. When on, @value{GDBN} will print a message when an
16495asynchronous command finishes its execution. The default is off.
16496@kindex show exec-done-display
16497@item show exec-done-display
16498Displays the current setting of asynchronous command completion
16499notification.
4644b6e3
EZ
16500@kindex set debug
16501@cindex gdbarch debugging info
a8f24a35 16502@cindex architecture debugging info
8e04817f 16503@item set debug arch
a8f24a35 16504Turns on or off display of gdbarch debugging info. The default is off
4644b6e3 16505@kindex show debug
8e04817f
AC
16506@item show debug arch
16507Displays the current state of displaying gdbarch debugging info.
721c2651
EZ
16508@item set debug aix-thread
16509@cindex AIX threads
16510Display debugging messages about inner workings of the AIX thread
16511module.
16512@item show debug aix-thread
16513Show the current state of AIX thread debugging info display.
237fc4c9
PA
16514@item set debug displaced
16515@cindex displaced stepping debugging info
16516Turns on or off display of @value{GDBN} debugging info for the
16517displaced stepping support. The default is off.
16518@item show debug displaced
16519Displays the current state of displaying @value{GDBN} debugging info
16520related to displaced stepping.
8e04817f 16521@item set debug event
4644b6e3 16522@cindex event debugging info
a8f24a35 16523Turns on or off display of @value{GDBN} event debugging info. The
8e04817f 16524default is off.
8e04817f
AC
16525@item show debug event
16526Displays the current state of displaying @value{GDBN} event debugging
16527info.
8e04817f 16528@item set debug expression
4644b6e3 16529@cindex expression debugging info
721c2651
EZ
16530Turns on or off display of debugging info about @value{GDBN}
16531expression parsing. The default is off.
8e04817f 16532@item show debug expression
721c2651
EZ
16533Displays the current state of displaying debugging info about
16534@value{GDBN} expression parsing.
7453dc06 16535@item set debug frame
4644b6e3 16536@cindex frame debugging info
7453dc06
AC
16537Turns on or off display of @value{GDBN} frame debugging info. The
16538default is off.
7453dc06
AC
16539@item show debug frame
16540Displays the current state of displaying @value{GDBN} frame debugging
16541info.
30e91e0b
RC
16542@item set debug infrun
16543@cindex inferior debugging info
16544Turns on or off display of @value{GDBN} debugging info for running the inferior.
16545The default is off. @file{infrun.c} contains GDB's runtime state machine used
16546for implementing operations such as single-stepping the inferior.
16547@item show debug infrun
16548Displays the current state of @value{GDBN} inferior debugging.
da316a69
EZ
16549@item set debug lin-lwp
16550@cindex @sc{gnu}/Linux LWP debug messages
16551@cindex Linux lightweight processes
721c2651 16552Turns on or off debugging messages from the Linux LWP debug support.
da316a69
EZ
16553@item show debug lin-lwp
16554Show the current state of Linux LWP debugging messages.
b84876c2
PA
16555@item set debug lin-lwp-async
16556@cindex @sc{gnu}/Linux LWP async debug messages
16557@cindex Linux lightweight processes
16558Turns on or off debugging messages from the Linux LWP async debug support.
16559@item show debug lin-lwp-async
16560Show the current state of Linux LWP async debugging messages.
2b4855ab 16561@item set debug observer
4644b6e3 16562@cindex observer debugging info
2b4855ab
AC
16563Turns on or off display of @value{GDBN} observer debugging. This
16564includes info such as the notification of observable events.
2b4855ab
AC
16565@item show debug observer
16566Displays the current state of observer debugging.
8e04817f 16567@item set debug overload
4644b6e3 16568@cindex C@t{++} overload debugging info
8e04817f 16569Turns on or off display of @value{GDBN} C@t{++} overload debugging
359df76b 16570info. This includes info such as ranking of functions, etc. The default
8e04817f 16571is off.
8e04817f
AC
16572@item show debug overload
16573Displays the current state of displaying @value{GDBN} C@t{++} overload
16574debugging info.
8e04817f
AC
16575@cindex packets, reporting on stdout
16576@cindex serial connections, debugging
605a56cb
DJ
16577@cindex debug remote protocol
16578@cindex remote protocol debugging
16579@cindex display remote packets
8e04817f
AC
16580@item set debug remote
16581Turns on or off display of reports on all packets sent back and forth across
16582the serial line to the remote machine. The info is printed on the
16583@value{GDBN} standard output stream. The default is off.
8e04817f
AC
16584@item show debug remote
16585Displays the state of display of remote packets.
8e04817f
AC
16586@item set debug serial
16587Turns on or off display of @value{GDBN} serial debugging info. The
16588default is off.
8e04817f
AC
16589@item show debug serial
16590Displays the current state of displaying @value{GDBN} serial debugging
16591info.
c45da7e6
EZ
16592@item set debug solib-frv
16593@cindex FR-V shared-library debugging
16594Turns on or off debugging messages for FR-V shared-library code.
16595@item show debug solib-frv
16596Display the current state of FR-V shared-library code debugging
16597messages.
8e04817f 16598@item set debug target
4644b6e3 16599@cindex target debugging info
8e04817f
AC
16600Turns on or off display of @value{GDBN} target debugging info. This info
16601includes what is going on at the target level of GDB, as it happens. The
701b08bb
DJ
16602default is 0. Set it to 1 to track events, and to 2 to also track the
16603value of large memory transfers. Changes to this flag do not take effect
16604until the next time you connect to a target or use the @code{run} command.
8e04817f
AC
16605@item show debug target
16606Displays the current state of displaying @value{GDBN} target debugging
16607info.
75feb17d
DJ
16608@item set debug timestamp
16609@cindex timestampping debugging info
16610Turns on or off display of timestamps with @value{GDBN} debugging info.
16611When enabled, seconds and microseconds are displayed before each debugging
16612message.
16613@item show debug timestamp
16614Displays the current state of displaying timestamps with @value{GDBN}
16615debugging info.
c45da7e6 16616@item set debugvarobj
4644b6e3 16617@cindex variable object debugging info
8e04817f
AC
16618Turns on or off display of @value{GDBN} variable object debugging
16619info. The default is off.
c45da7e6 16620@item show debugvarobj
8e04817f
AC
16621Displays the current state of displaying @value{GDBN} variable object
16622debugging info.
e776119f
DJ
16623@item set debug xml
16624@cindex XML parser debugging
16625Turns on or off debugging messages for built-in XML parsers.
16626@item show debug xml
16627Displays the current state of XML debugging messages.
8e04817f 16628@end table
104c1213 16629
8e04817f
AC
16630@node Sequences
16631@chapter Canned Sequences of Commands
104c1213 16632
8e04817f 16633Aside from breakpoint commands (@pxref{Break Commands, ,Breakpoint
79a6e687 16634Command Lists}), @value{GDBN} provides two ways to store sequences of
8e04817f
AC
16635commands for execution as a unit: user-defined commands and command
16636files.
104c1213 16637
8e04817f 16638@menu
fcc73fe3
EZ
16639* Define:: How to define your own commands
16640* Hooks:: Hooks for user-defined commands
16641* Command Files:: How to write scripts of commands to be stored in a file
16642* Output:: Commands for controlled output
8e04817f 16643@end menu
104c1213 16644
8e04817f 16645@node Define
79a6e687 16646@section User-defined Commands
104c1213 16647
8e04817f 16648@cindex user-defined command
fcc73fe3 16649@cindex arguments, to user-defined commands
8e04817f
AC
16650A @dfn{user-defined command} is a sequence of @value{GDBN} commands to
16651which you assign a new name as a command. This is done with the
16652@code{define} command. User commands may accept up to 10 arguments
16653separated by whitespace. Arguments are accessed within the user command
c03c782f 16654via @code{$arg0@dots{}$arg9}. A trivial example:
104c1213 16655
8e04817f
AC
16656@smallexample
16657define adder
16658 print $arg0 + $arg1 + $arg2
c03c782f 16659end
8e04817f 16660@end smallexample
104c1213
JM
16661
16662@noindent
8e04817f 16663To execute the command use:
104c1213 16664
8e04817f
AC
16665@smallexample
16666adder 1 2 3
16667@end smallexample
104c1213 16668
8e04817f
AC
16669@noindent
16670This defines the command @code{adder}, which prints the sum of
16671its three arguments. Note the arguments are text substitutions, so they may
16672reference variables, use complex expressions, or even perform inferior
16673functions calls.
104c1213 16674
fcc73fe3
EZ
16675@cindex argument count in user-defined commands
16676@cindex how many arguments (user-defined commands)
c03c782f
AS
16677In addition, @code{$argc} may be used to find out how many arguments have
16678been passed. This expands to a number in the range 0@dots{}10.
16679
16680@smallexample
16681define adder
16682 if $argc == 2
16683 print $arg0 + $arg1
16684 end
16685 if $argc == 3
16686 print $arg0 + $arg1 + $arg2
16687 end
16688end
16689@end smallexample
16690
104c1213 16691@table @code
104c1213 16692
8e04817f
AC
16693@kindex define
16694@item define @var{commandname}
16695Define a command named @var{commandname}. If there is already a command
16696by that name, you are asked to confirm that you want to redefine it.
104c1213 16697
8e04817f
AC
16698The definition of the command is made up of other @value{GDBN} command lines,
16699which are given following the @code{define} command. The end of these
16700commands is marked by a line containing @code{end}.
104c1213 16701
8e04817f 16702@kindex document
ca91424e 16703@kindex end@r{ (user-defined commands)}
8e04817f
AC
16704@item document @var{commandname}
16705Document the user-defined command @var{commandname}, so that it can be
16706accessed by @code{help}. The command @var{commandname} must already be
16707defined. This command reads lines of documentation just as @code{define}
16708reads the lines of the command definition, ending with @code{end}.
16709After the @code{document} command is finished, @code{help} on command
16710@var{commandname} displays the documentation you have written.
104c1213 16711
8e04817f
AC
16712You may use the @code{document} command again to change the
16713documentation of a command. Redefining the command with @code{define}
16714does not change the documentation.
104c1213 16715
c45da7e6
EZ
16716@kindex dont-repeat
16717@cindex don't repeat command
16718@item dont-repeat
16719Used inside a user-defined command, this tells @value{GDBN} that this
16720command should not be repeated when the user hits @key{RET}
16721(@pxref{Command Syntax, repeat last command}).
16722
8e04817f
AC
16723@kindex help user-defined
16724@item help user-defined
16725List all user-defined commands, with the first line of the documentation
16726(if any) for each.
104c1213 16727
8e04817f
AC
16728@kindex show user
16729@item show user
16730@itemx show user @var{commandname}
16731Display the @value{GDBN} commands used to define @var{commandname} (but
16732not its documentation). If no @var{commandname} is given, display the
16733definitions for all user-defined commands.
104c1213 16734
fcc73fe3 16735@cindex infinite recursion in user-defined commands
20f01a46
DH
16736@kindex show max-user-call-depth
16737@kindex set max-user-call-depth
16738@item show max-user-call-depth
5ca0cb28
DH
16739@itemx set max-user-call-depth
16740The value of @code{max-user-call-depth} controls how many recursion
3f94c067 16741levels are allowed in user-defined commands before @value{GDBN} suspects an
5ca0cb28 16742infinite recursion and aborts the command.
104c1213
JM
16743@end table
16744
fcc73fe3
EZ
16745In addition to the above commands, user-defined commands frequently
16746use control flow commands, described in @ref{Command Files}.
16747
8e04817f
AC
16748When user-defined commands are executed, the
16749commands of the definition are not printed. An error in any command
16750stops execution of the user-defined command.
104c1213 16751
8e04817f
AC
16752If used interactively, commands that would ask for confirmation proceed
16753without asking when used inside a user-defined command. Many @value{GDBN}
16754commands that normally print messages to say what they are doing omit the
16755messages when used in a user-defined command.
104c1213 16756
8e04817f 16757@node Hooks
79a6e687 16758@section User-defined Command Hooks
8e04817f
AC
16759@cindex command hooks
16760@cindex hooks, for commands
16761@cindex hooks, pre-command
104c1213 16762
8e04817f 16763@kindex hook
8e04817f
AC
16764You may define @dfn{hooks}, which are a special kind of user-defined
16765command. Whenever you run the command @samp{foo}, if the user-defined
16766command @samp{hook-foo} exists, it is executed (with no arguments)
16767before that command.
104c1213 16768
8e04817f
AC
16769@cindex hooks, post-command
16770@kindex hookpost
8e04817f
AC
16771A hook may also be defined which is run after the command you executed.
16772Whenever you run the command @samp{foo}, if the user-defined command
16773@samp{hookpost-foo} exists, it is executed (with no arguments) after
16774that command. Post-execution hooks may exist simultaneously with
16775pre-execution hooks, for the same command.
104c1213 16776
8e04817f 16777It is valid for a hook to call the command which it hooks. If this
9f1c6395 16778occurs, the hook is not re-executed, thereby avoiding infinite recursion.
104c1213 16779
8e04817f
AC
16780@c It would be nice if hookpost could be passed a parameter indicating
16781@c if the command it hooks executed properly or not. FIXME!
104c1213 16782
8e04817f
AC
16783@kindex stop@r{, a pseudo-command}
16784In addition, a pseudo-command, @samp{stop} exists. Defining
16785(@samp{hook-stop}) makes the associated commands execute every time
16786execution stops in your program: before breakpoint commands are run,
16787displays are printed, or the stack frame is printed.
104c1213 16788
8e04817f
AC
16789For example, to ignore @code{SIGALRM} signals while
16790single-stepping, but treat them normally during normal execution,
16791you could define:
104c1213 16792
474c8240 16793@smallexample
8e04817f
AC
16794define hook-stop
16795handle SIGALRM nopass
16796end
104c1213 16797
8e04817f
AC
16798define hook-run
16799handle SIGALRM pass
16800end
104c1213 16801
8e04817f 16802define hook-continue
d3e8051b 16803handle SIGALRM pass
8e04817f 16804end
474c8240 16805@end smallexample
104c1213 16806
d3e8051b 16807As a further example, to hook at the beginning and end of the @code{echo}
b383017d 16808command, and to add extra text to the beginning and end of the message,
8e04817f 16809you could define:
104c1213 16810
474c8240 16811@smallexample
8e04817f
AC
16812define hook-echo
16813echo <<<---
16814end
104c1213 16815
8e04817f
AC
16816define hookpost-echo
16817echo --->>>\n
16818end
104c1213 16819
8e04817f
AC
16820(@value{GDBP}) echo Hello World
16821<<<---Hello World--->>>
16822(@value{GDBP})
104c1213 16823
474c8240 16824@end smallexample
104c1213 16825
8e04817f
AC
16826You can define a hook for any single-word command in @value{GDBN}, but
16827not for command aliases; you should define a hook for the basic command
c1468174 16828name, e.g.@: @code{backtrace} rather than @code{bt}.
8e04817f
AC
16829@c FIXME! So how does Joe User discover whether a command is an alias
16830@c or not?
16831If an error occurs during the execution of your hook, execution of
16832@value{GDBN} commands stops and @value{GDBN} issues a prompt
16833(before the command that you actually typed had a chance to run).
104c1213 16834
8e04817f
AC
16835If you try to define a hook which does not match any known command, you
16836get a warning from the @code{define} command.
c906108c 16837
8e04817f 16838@node Command Files
79a6e687 16839@section Command Files
c906108c 16840
8e04817f 16841@cindex command files
fcc73fe3 16842@cindex scripting commands
6fc08d32
EZ
16843A command file for @value{GDBN} is a text file made of lines that are
16844@value{GDBN} commands. Comments (lines starting with @kbd{#}) may
16845also be included. An empty line in a command file does nothing; it
16846does not mean to repeat the last command, as it would from the
16847terminal.
c906108c 16848
6fc08d32
EZ
16849You can request the execution of a command file with the @code{source}
16850command:
c906108c 16851
8e04817f
AC
16852@table @code
16853@kindex source
ca91424e 16854@cindex execute commands from a file
16026cd7 16855@item source [@code{-v}] @var{filename}
8e04817f 16856Execute the command file @var{filename}.
c906108c
SS
16857@end table
16858
fcc73fe3
EZ
16859The lines in a command file are generally executed sequentially,
16860unless the order of execution is changed by one of the
16861@emph{flow-control commands} described below. The commands are not
a71ec265
DH
16862printed as they are executed. An error in any command terminates
16863execution of the command file and control is returned to the console.
c906108c 16864
4b505b12
AS
16865@value{GDBN} searches for @var{filename} in the current directory and then
16866on the search path (specified with the @samp{directory} command).
16867
16026cd7
AS
16868If @code{-v}, for verbose mode, is given then @value{GDBN} displays
16869each command as it is executed. The option must be given before
16870@var{filename}, and is interpreted as part of the filename anywhere else.
16871
8e04817f
AC
16872Commands that would ask for confirmation if used interactively proceed
16873without asking when used in a command file. Many @value{GDBN} commands that
16874normally print messages to say what they are doing omit the messages
16875when called from command files.
c906108c 16876
8e04817f
AC
16877@value{GDBN} also accepts command input from standard input. In this
16878mode, normal output goes to standard output and error output goes to
16879standard error. Errors in a command file supplied on standard input do
6fc08d32 16880not terminate execution of the command file---execution continues with
8e04817f 16881the next command.
c906108c 16882
474c8240 16883@smallexample
8e04817f 16884gdb < cmds > log 2>&1
474c8240 16885@end smallexample
c906108c 16886
8e04817f
AC
16887(The syntax above will vary depending on the shell used.) This example
16888will execute commands from the file @file{cmds}. All output and errors
16889would be directed to @file{log}.
c906108c 16890
fcc73fe3
EZ
16891Since commands stored on command files tend to be more general than
16892commands typed interactively, they frequently need to deal with
16893complicated situations, such as different or unexpected values of
16894variables and symbols, changes in how the program being debugged is
16895built, etc. @value{GDBN} provides a set of flow-control commands to
16896deal with these complexities. Using these commands, you can write
16897complex scripts that loop over data structures, execute commands
16898conditionally, etc.
16899
16900@table @code
16901@kindex if
16902@kindex else
16903@item if
16904@itemx else
16905This command allows to include in your script conditionally executed
16906commands. The @code{if} command takes a single argument, which is an
16907expression to evaluate. It is followed by a series of commands that
16908are executed only if the expression is true (its value is nonzero).
16909There can then optionally be an @code{else} line, followed by a series
16910of commands that are only executed if the expression was false. The
16911end of the list is marked by a line containing @code{end}.
16912
16913@kindex while
16914@item while
16915This command allows to write loops. Its syntax is similar to
16916@code{if}: the command takes a single argument, which is an expression
16917to evaluate, and must be followed by the commands to execute, one per
16918line, terminated by an @code{end}. These commands are called the
16919@dfn{body} of the loop. The commands in the body of @code{while} are
16920executed repeatedly as long as the expression evaluates to true.
16921
16922@kindex loop_break
16923@item loop_break
16924This command exits the @code{while} loop in whose body it is included.
16925Execution of the script continues after that @code{while}s @code{end}
16926line.
16927
16928@kindex loop_continue
16929@item loop_continue
16930This command skips the execution of the rest of the body of commands
16931in the @code{while} loop in whose body it is included. Execution
16932branches to the beginning of the @code{while} loop, where it evaluates
16933the controlling expression.
ca91424e
EZ
16934
16935@kindex end@r{ (if/else/while commands)}
16936@item end
16937Terminate the block of commands that are the body of @code{if},
16938@code{else}, or @code{while} flow-control commands.
fcc73fe3
EZ
16939@end table
16940
16941
8e04817f 16942@node Output
79a6e687 16943@section Commands for Controlled Output
c906108c 16944
8e04817f
AC
16945During the execution of a command file or a user-defined command, normal
16946@value{GDBN} output is suppressed; the only output that appears is what is
16947explicitly printed by the commands in the definition. This section
16948describes three commands useful for generating exactly the output you
16949want.
c906108c
SS
16950
16951@table @code
8e04817f
AC
16952@kindex echo
16953@item echo @var{text}
16954@c I do not consider backslash-space a standard C escape sequence
16955@c because it is not in ANSI.
16956Print @var{text}. Nonprinting characters can be included in
16957@var{text} using C escape sequences, such as @samp{\n} to print a
16958newline. @strong{No newline is printed unless you specify one.}
16959In addition to the standard C escape sequences, a backslash followed
16960by a space stands for a space. This is useful for displaying a
16961string with spaces at the beginning or the end, since leading and
16962trailing spaces are otherwise trimmed from all arguments.
16963To print @samp{@w{ }and foo =@w{ }}, use the command
16964@samp{echo \@w{ }and foo = \@w{ }}.
c906108c 16965
8e04817f
AC
16966A backslash at the end of @var{text} can be used, as in C, to continue
16967the command onto subsequent lines. For example,
c906108c 16968
474c8240 16969@smallexample
8e04817f
AC
16970echo This is some text\n\
16971which is continued\n\
16972onto several lines.\n
474c8240 16973@end smallexample
c906108c 16974
8e04817f 16975produces the same output as
c906108c 16976
474c8240 16977@smallexample
8e04817f
AC
16978echo This is some text\n
16979echo which is continued\n
16980echo onto several lines.\n
474c8240 16981@end smallexample
c906108c 16982
8e04817f
AC
16983@kindex output
16984@item output @var{expression}
16985Print the value of @var{expression} and nothing but that value: no
16986newlines, no @samp{$@var{nn} = }. The value is not entered in the
16987value history either. @xref{Expressions, ,Expressions}, for more information
16988on expressions.
c906108c 16989
8e04817f
AC
16990@item output/@var{fmt} @var{expression}
16991Print the value of @var{expression} in format @var{fmt}. You can use
16992the same formats as for @code{print}. @xref{Output Formats,,Output
79a6e687 16993Formats}, for more information.
c906108c 16994
8e04817f 16995@kindex printf
82160952
EZ
16996@item printf @var{template}, @var{expressions}@dots{}
16997Print the values of one or more @var{expressions} under the control of
16998the string @var{template}. To print several values, make
16999@var{expressions} be a comma-separated list of individual expressions,
17000which may be either numbers or pointers. Their values are printed as
17001specified by @var{template}, exactly as a C program would do by
17002executing the code below:
c906108c 17003
474c8240 17004@smallexample
82160952 17005printf (@var{template}, @var{expressions}@dots{});
474c8240 17006@end smallexample
c906108c 17007
82160952
EZ
17008As in @code{C} @code{printf}, ordinary characters in @var{template}
17009are printed verbatim, while @dfn{conversion specification} introduced
17010by the @samp{%} character cause subsequent @var{expressions} to be
17011evaluated, their values converted and formatted according to type and
17012style information encoded in the conversion specifications, and then
17013printed.
17014
8e04817f 17015For example, you can print two values in hex like this:
c906108c 17016
8e04817f
AC
17017@smallexample
17018printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo
17019@end smallexample
c906108c 17020
82160952
EZ
17021@code{printf} supports all the standard @code{C} conversion
17022specifications, including the flags and modifiers between the @samp{%}
17023character and the conversion letter, with the following exceptions:
17024
17025@itemize @bullet
17026@item
17027The argument-ordering modifiers, such as @samp{2$}, are not supported.
17028
17029@item
17030The modifier @samp{*} is not supported for specifying precision or
17031width.
17032
17033@item
17034The @samp{'} flag (for separation of digits into groups according to
17035@code{LC_NUMERIC'}) is not supported.
17036
17037@item
17038The type modifiers @samp{hh}, @samp{j}, @samp{t}, and @samp{z} are not
17039supported.
17040
17041@item
17042The conversion letter @samp{n} (as in @samp{%n}) is not supported.
17043
17044@item
17045The conversion letters @samp{a} and @samp{A} are not supported.
17046@end itemize
17047
17048@noindent
17049Note that the @samp{ll} type modifier is supported only if the
17050underlying @code{C} implementation used to build @value{GDBN} supports
17051the @code{long long int} type, and the @samp{L} type modifier is
17052supported only if @code{long double} type is available.
17053
17054As in @code{C}, @code{printf} supports simple backslash-escape
17055sequences, such as @code{\n}, @samp{\t}, @samp{\\}, @samp{\"},
17056@samp{\a}, and @samp{\f}, that consist of backslash followed by a
17057single character. Octal and hexadecimal escape sequences are not
17058supported.
1a619819
LM
17059
17060Additionally, @code{printf} supports conversion specifications for DFP
0aea4bf3
LM
17061(@dfn{Decimal Floating Point}) types using the following length modifiers
17062together with a floating point specifier.
1a619819
LM
17063letters:
17064
17065@itemize @bullet
17066@item
17067@samp{H} for printing @code{Decimal32} types.
17068
17069@item
17070@samp{D} for printing @code{Decimal64} types.
17071
17072@item
17073@samp{DD} for printing @code{Decimal128} types.
17074@end itemize
17075
17076If the underlying @code{C} implementation used to build @value{GDBN} has
0aea4bf3 17077support for the three length modifiers for DFP types, other modifiers
3b784c4f 17078such as width and precision will also be available for @value{GDBN} to use.
1a619819
LM
17079
17080In case there is no such @code{C} support, no additional modifiers will be
17081available and the value will be printed in the standard way.
17082
17083Here's an example of printing DFP types using the above conversion letters:
17084@smallexample
0aea4bf3 17085printf "D32: %Hf - D64: %Df - D128: %DDf\n",1.2345df,1.2E10dd,1.2E1dl
1a619819
LM
17086@end smallexample
17087
c906108c
SS
17088@end table
17089
21c294e6
AC
17090@node Interpreters
17091@chapter Command Interpreters
17092@cindex command interpreters
17093
17094@value{GDBN} supports multiple command interpreters, and some command
17095infrastructure to allow users or user interface writers to switch
17096between interpreters or run commands in other interpreters.
17097
17098@value{GDBN} currently supports two command interpreters, the console
17099interpreter (sometimes called the command-line interpreter or @sc{cli})
17100and the machine interface interpreter (or @sc{gdb/mi}). This manual
17101describes both of these interfaces in great detail.
17102
17103By default, @value{GDBN} will start with the console interpreter.
17104However, the user may choose to start @value{GDBN} with another
17105interpreter by specifying the @option{-i} or @option{--interpreter}
17106startup options. Defined interpreters include:
17107
17108@table @code
17109@item console
17110@cindex console interpreter
17111The traditional console or command-line interpreter. This is the most often
17112used interpreter with @value{GDBN}. With no interpreter specified at runtime,
17113@value{GDBN} will use this interpreter.
17114
17115@item mi
17116@cindex mi interpreter
17117The newest @sc{gdb/mi} interface (currently @code{mi2}). Used primarily
17118by programs wishing to use @value{GDBN} as a backend for a debugger GUI
17119or an IDE. For more information, see @ref{GDB/MI, ,The @sc{gdb/mi}
17120Interface}.
17121
17122@item mi2
17123@cindex mi2 interpreter
17124The current @sc{gdb/mi} interface.
17125
17126@item mi1
17127@cindex mi1 interpreter
17128The @sc{gdb/mi} interface included in @value{GDBN} 5.1, 5.2, and 5.3.
17129
17130@end table
17131
17132@cindex invoke another interpreter
17133The interpreter being used by @value{GDBN} may not be dynamically
17134switched at runtime. Although possible, this could lead to a very
17135precarious situation. Consider an IDE using @sc{gdb/mi}. If a user
17136enters the command "interpreter-set console" in a console view,
17137@value{GDBN} would switch to using the console interpreter, rendering
17138the IDE inoperable!
17139
17140@kindex interpreter-exec
17141Although you may only choose a single interpreter at startup, you may execute
17142commands in any interpreter from the current interpreter using the appropriate
17143command. If you are running the console interpreter, simply use the
17144@code{interpreter-exec} command:
17145
17146@smallexample
17147interpreter-exec mi "-data-list-register-names"
17148@end smallexample
17149
17150@sc{gdb/mi} has a similar command, although it is only available in versions of
17151@value{GDBN} which support @sc{gdb/mi} version 2 (or greater).
17152
8e04817f
AC
17153@node TUI
17154@chapter @value{GDBN} Text User Interface
17155@cindex TUI
d0d5df6f 17156@cindex Text User Interface
c906108c 17157
8e04817f
AC
17158@menu
17159* TUI Overview:: TUI overview
17160* TUI Keys:: TUI key bindings
7cf36c78 17161* TUI Single Key Mode:: TUI single key mode
db2e3e2e 17162* TUI Commands:: TUI-specific commands
8e04817f
AC
17163* TUI Configuration:: TUI configuration variables
17164@end menu
c906108c 17165
46ba6afa 17166The @value{GDBN} Text User Interface (TUI) is a terminal
d0d5df6f
AC
17167interface which uses the @code{curses} library to show the source
17168file, the assembly output, the program registers and @value{GDBN}
46ba6afa
BW
17169commands in separate text windows. The TUI mode is supported only
17170on platforms where a suitable version of the @code{curses} library
17171is available.
d0d5df6f 17172
46ba6afa
BW
17173@pindex @value{GDBTUI}
17174The TUI mode is enabled by default when you invoke @value{GDBN} as
17175either @samp{@value{GDBTUI}} or @samp{@value{GDBP} -tui}.
17176You can also switch in and out of TUI mode while @value{GDBN} runs by
17177using various TUI commands and key bindings, such as @kbd{C-x C-a}.
17178@xref{TUI Keys, ,TUI Key Bindings}.
c906108c 17179
8e04817f 17180@node TUI Overview
79a6e687 17181@section TUI Overview
c906108c 17182
46ba6afa 17183In TUI mode, @value{GDBN} can display several text windows:
c906108c 17184
8e04817f
AC
17185@table @emph
17186@item command
17187This window is the @value{GDBN} command window with the @value{GDBN}
46ba6afa
BW
17188prompt and the @value{GDBN} output. The @value{GDBN} input is still
17189managed using readline.
c906108c 17190
8e04817f
AC
17191@item source
17192The source window shows the source file of the program. The current
46ba6afa 17193line and active breakpoints are displayed in this window.
c906108c 17194
8e04817f
AC
17195@item assembly
17196The assembly window shows the disassembly output of the program.
c906108c 17197
8e04817f 17198@item register
46ba6afa
BW
17199This window shows the processor registers. Registers are highlighted
17200when their values change.
c906108c
SS
17201@end table
17202
269c21fe 17203The source and assembly windows show the current program position
46ba6afa
BW
17204by highlighting the current line and marking it with a @samp{>} marker.
17205Breakpoints are indicated with two markers. The first marker
269c21fe
SC
17206indicates the breakpoint type:
17207
17208@table @code
17209@item B
17210Breakpoint which was hit at least once.
17211
17212@item b
17213Breakpoint which was never hit.
17214
17215@item H
17216Hardware breakpoint which was hit at least once.
17217
17218@item h
17219Hardware breakpoint which was never hit.
269c21fe
SC
17220@end table
17221
17222The second marker indicates whether the breakpoint is enabled or not:
17223
17224@table @code
17225@item +
17226Breakpoint is enabled.
17227
17228@item -
17229Breakpoint is disabled.
269c21fe
SC
17230@end table
17231
46ba6afa
BW
17232The source, assembly and register windows are updated when the current
17233thread changes, when the frame changes, or when the program counter
17234changes.
17235
17236These windows are not all visible at the same time. The command
17237window is always visible. The others can be arranged in several
17238layouts:
c906108c 17239
8e04817f
AC
17240@itemize @bullet
17241@item
46ba6afa 17242source only,
2df3850c 17243
8e04817f 17244@item
46ba6afa 17245assembly only,
8e04817f
AC
17246
17247@item
46ba6afa 17248source and assembly,
8e04817f
AC
17249
17250@item
46ba6afa 17251source and registers, or
c906108c 17252
8e04817f 17253@item
46ba6afa 17254assembly and registers.
8e04817f 17255@end itemize
c906108c 17256
46ba6afa 17257A status line above the command window shows the following information:
b7bb15bc
SC
17258
17259@table @emph
17260@item target
46ba6afa 17261Indicates the current @value{GDBN} target.
b7bb15bc
SC
17262(@pxref{Targets, ,Specifying a Debugging Target}).
17263
17264@item process
46ba6afa 17265Gives the current process or thread number.
b7bb15bc
SC
17266When no process is being debugged, this field is set to @code{No process}.
17267
17268@item function
17269Gives the current function name for the selected frame.
17270The name is demangled if demangling is turned on (@pxref{Print Settings}).
46ba6afa 17271When there is no symbol corresponding to the current program counter,
b7bb15bc
SC
17272the string @code{??} is displayed.
17273
17274@item line
17275Indicates the current line number for the selected frame.
46ba6afa 17276When the current line number is not known, the string @code{??} is displayed.
b7bb15bc
SC
17277
17278@item pc
17279Indicates the current program counter address.
b7bb15bc
SC
17280@end table
17281
8e04817f
AC
17282@node TUI Keys
17283@section TUI Key Bindings
17284@cindex TUI key bindings
c906108c 17285
8e04817f 17286The TUI installs several key bindings in the readline keymaps
46ba6afa 17287(@pxref{Command Line Editing}). The following key bindings
8e04817f 17288are installed for both TUI mode and the @value{GDBN} standard mode.
c906108c 17289
8e04817f
AC
17290@table @kbd
17291@kindex C-x C-a
17292@item C-x C-a
17293@kindex C-x a
17294@itemx C-x a
17295@kindex C-x A
17296@itemx C-x A
46ba6afa
BW
17297Enter or leave the TUI mode. When leaving the TUI mode,
17298the curses window management stops and @value{GDBN} operates using
17299its standard mode, writing on the terminal directly. When reentering
17300the TUI mode, control is given back to the curses windows.
8e04817f 17301The screen is then refreshed.
c906108c 17302
8e04817f
AC
17303@kindex C-x 1
17304@item C-x 1
17305Use a TUI layout with only one window. The layout will
17306either be @samp{source} or @samp{assembly}. When the TUI mode
17307is not active, it will switch to the TUI mode.
2df3850c 17308
8e04817f 17309Think of this key binding as the Emacs @kbd{C-x 1} binding.
c906108c 17310
8e04817f
AC
17311@kindex C-x 2
17312@item C-x 2
17313Use a TUI layout with at least two windows. When the current
46ba6afa 17314layout already has two windows, the next layout with two windows is used.
8e04817f
AC
17315When a new layout is chosen, one window will always be common to the
17316previous layout and the new one.
c906108c 17317
8e04817f 17318Think of it as the Emacs @kbd{C-x 2} binding.
2df3850c 17319
72ffddc9
SC
17320@kindex C-x o
17321@item C-x o
17322Change the active window. The TUI associates several key bindings
46ba6afa 17323(like scrolling and arrow keys) with the active window. This command
72ffddc9
SC
17324gives the focus to the next TUI window.
17325
17326Think of it as the Emacs @kbd{C-x o} binding.
17327
7cf36c78
SC
17328@kindex C-x s
17329@item C-x s
46ba6afa
BW
17330Switch in and out of the TUI SingleKey mode that binds single
17331keys to @value{GDBN} commands (@pxref{TUI Single Key Mode}).
c906108c
SS
17332@end table
17333
46ba6afa 17334The following key bindings only work in the TUI mode:
5d161b24 17335
46ba6afa 17336@table @asis
8e04817f 17337@kindex PgUp
46ba6afa 17338@item @key{PgUp}
8e04817f 17339Scroll the active window one page up.
c906108c 17340
8e04817f 17341@kindex PgDn
46ba6afa 17342@item @key{PgDn}
8e04817f 17343Scroll the active window one page down.
c906108c 17344
8e04817f 17345@kindex Up
46ba6afa 17346@item @key{Up}
8e04817f 17347Scroll the active window one line up.
c906108c 17348
8e04817f 17349@kindex Down
46ba6afa 17350@item @key{Down}
8e04817f 17351Scroll the active window one line down.
c906108c 17352
8e04817f 17353@kindex Left
46ba6afa 17354@item @key{Left}
8e04817f 17355Scroll the active window one column left.
c906108c 17356
8e04817f 17357@kindex Right
46ba6afa 17358@item @key{Right}
8e04817f 17359Scroll the active window one column right.
c906108c 17360
8e04817f 17361@kindex C-L
46ba6afa 17362@item @kbd{C-L}
8e04817f 17363Refresh the screen.
8e04817f 17364@end table
c906108c 17365
46ba6afa
BW
17366Because the arrow keys scroll the active window in the TUI mode, they
17367are not available for their normal use by readline unless the command
17368window has the focus. When another window is active, you must use
17369other readline key bindings such as @kbd{C-p}, @kbd{C-n}, @kbd{C-b}
17370and @kbd{C-f} to control the command window.
8e04817f 17371
7cf36c78
SC
17372@node TUI Single Key Mode
17373@section TUI Single Key Mode
17374@cindex TUI single key mode
17375
46ba6afa
BW
17376The TUI also provides a @dfn{SingleKey} mode, which binds several
17377frequently used @value{GDBN} commands to single keys. Type @kbd{C-x s} to
17378switch into this mode, where the following key bindings are used:
7cf36c78
SC
17379
17380@table @kbd
17381@kindex c @r{(SingleKey TUI key)}
17382@item c
17383continue
17384
17385@kindex d @r{(SingleKey TUI key)}
17386@item d
17387down
17388
17389@kindex f @r{(SingleKey TUI key)}
17390@item f
17391finish
17392
17393@kindex n @r{(SingleKey TUI key)}
17394@item n
17395next
17396
17397@kindex q @r{(SingleKey TUI key)}
17398@item q
46ba6afa 17399exit the SingleKey mode.
7cf36c78
SC
17400
17401@kindex r @r{(SingleKey TUI key)}
17402@item r
17403run
17404
17405@kindex s @r{(SingleKey TUI key)}
17406@item s
17407step
17408
17409@kindex u @r{(SingleKey TUI key)}
17410@item u
17411up
17412
17413@kindex v @r{(SingleKey TUI key)}
17414@item v
17415info locals
17416
17417@kindex w @r{(SingleKey TUI key)}
17418@item w
17419where
7cf36c78
SC
17420@end table
17421
17422Other keys temporarily switch to the @value{GDBN} command prompt.
17423The key that was pressed is inserted in the editing buffer so that
17424it is possible to type most @value{GDBN} commands without interaction
46ba6afa
BW
17425with the TUI SingleKey mode. Once the command is entered the TUI
17426SingleKey mode is restored. The only way to permanently leave
7f9087cb 17427this mode is by typing @kbd{q} or @kbd{C-x s}.
7cf36c78
SC
17428
17429
8e04817f 17430@node TUI Commands
db2e3e2e 17431@section TUI-specific Commands
8e04817f
AC
17432@cindex TUI commands
17433
17434The TUI has specific commands to control the text windows.
46ba6afa
BW
17435These commands are always available, even when @value{GDBN} is not in
17436the TUI mode. When @value{GDBN} is in the standard mode, most
17437of these commands will automatically switch to the TUI mode.
c906108c
SS
17438
17439@table @code
3d757584
SC
17440@item info win
17441@kindex info win
17442List and give the size of all displayed windows.
17443
8e04817f 17444@item layout next
4644b6e3 17445@kindex layout
8e04817f 17446Display the next layout.
2df3850c 17447
8e04817f 17448@item layout prev
8e04817f 17449Display the previous layout.
c906108c 17450
8e04817f 17451@item layout src
8e04817f 17452Display the source window only.
c906108c 17453
8e04817f 17454@item layout asm
8e04817f 17455Display the assembly window only.
c906108c 17456
8e04817f 17457@item layout split
8e04817f 17458Display the source and assembly window.
c906108c 17459
8e04817f 17460@item layout regs
8e04817f
AC
17461Display the register window together with the source or assembly window.
17462
46ba6afa 17463@item focus next
8e04817f 17464@kindex focus
46ba6afa
BW
17465Make the next window active for scrolling.
17466
17467@item focus prev
17468Make the previous window active for scrolling.
17469
17470@item focus src
17471Make the source window active for scrolling.
17472
17473@item focus asm
17474Make the assembly window active for scrolling.
17475
17476@item focus regs
17477Make the register window active for scrolling.
17478
17479@item focus cmd
17480Make the command window active for scrolling.
c906108c 17481
8e04817f
AC
17482@item refresh
17483@kindex refresh
7f9087cb 17484Refresh the screen. This is similar to typing @kbd{C-L}.
c906108c 17485
6a1b180d
SC
17486@item tui reg float
17487@kindex tui reg
17488Show the floating point registers in the register window.
17489
17490@item tui reg general
17491Show the general registers in the register window.
17492
17493@item tui reg next
17494Show the next register group. The list of register groups as well as
17495their order is target specific. The predefined register groups are the
17496following: @code{general}, @code{float}, @code{system}, @code{vector},
17497@code{all}, @code{save}, @code{restore}.
17498
17499@item tui reg system
17500Show the system registers in the register window.
17501
8e04817f
AC
17502@item update
17503@kindex update
17504Update the source window and the current execution point.
c906108c 17505
8e04817f
AC
17506@item winheight @var{name} +@var{count}
17507@itemx winheight @var{name} -@var{count}
17508@kindex winheight
17509Change the height of the window @var{name} by @var{count}
17510lines. Positive counts increase the height, while negative counts
17511decrease it.
2df3850c 17512
46ba6afa
BW
17513@item tabset @var{nchars}
17514@kindex tabset
c45da7e6 17515Set the width of tab stops to be @var{nchars} characters.
c906108c
SS
17516@end table
17517
8e04817f 17518@node TUI Configuration
79a6e687 17519@section TUI Configuration Variables
8e04817f 17520@cindex TUI configuration variables
c906108c 17521
46ba6afa 17522Several configuration variables control the appearance of TUI windows.
c906108c 17523
8e04817f
AC
17524@table @code
17525@item set tui border-kind @var{kind}
17526@kindex set tui border-kind
17527Select the border appearance for the source, assembly and register windows.
17528The possible values are the following:
17529@table @code
17530@item space
17531Use a space character to draw the border.
c906108c 17532
8e04817f 17533@item ascii
46ba6afa 17534Use @sc{ascii} characters @samp{+}, @samp{-} and @samp{|} to draw the border.
c906108c 17535
8e04817f
AC
17536@item acs
17537Use the Alternate Character Set to draw the border. The border is
17538drawn using character line graphics if the terminal supports them.
8e04817f 17539@end table
c78b4128 17540
8e04817f
AC
17541@item set tui border-mode @var{mode}
17542@kindex set tui border-mode
46ba6afa
BW
17543@itemx set tui active-border-mode @var{mode}
17544@kindex set tui active-border-mode
17545Select the display attributes for the borders of the inactive windows
17546or the active window. The @var{mode} can be one of the following:
8e04817f
AC
17547@table @code
17548@item normal
17549Use normal attributes to display the border.
c906108c 17550
8e04817f
AC
17551@item standout
17552Use standout mode.
c906108c 17553
8e04817f
AC
17554@item reverse
17555Use reverse video mode.
c906108c 17556
8e04817f
AC
17557@item half
17558Use half bright mode.
c906108c 17559
8e04817f
AC
17560@item half-standout
17561Use half bright and standout mode.
c906108c 17562
8e04817f
AC
17563@item bold
17564Use extra bright or bold mode.
c78b4128 17565
8e04817f
AC
17566@item bold-standout
17567Use extra bright or bold and standout mode.
8e04817f 17568@end table
8e04817f 17569@end table
c78b4128 17570
8e04817f
AC
17571@node Emacs
17572@chapter Using @value{GDBN} under @sc{gnu} Emacs
c78b4128 17573
8e04817f
AC
17574@cindex Emacs
17575@cindex @sc{gnu} Emacs
17576A special interface allows you to use @sc{gnu} Emacs to view (and
17577edit) the source files for the program you are debugging with
17578@value{GDBN}.
c906108c 17579
8e04817f
AC
17580To use this interface, use the command @kbd{M-x gdb} in Emacs. Give the
17581executable file you want to debug as an argument. This command starts
17582@value{GDBN} as a subprocess of Emacs, with input and output through a newly
17583created Emacs buffer.
17584@c (Do not use the @code{-tui} option to run @value{GDBN} from Emacs.)
c906108c 17585
5e252a2e 17586Running @value{GDBN} under Emacs can be just like running @value{GDBN} normally except for two
8e04817f 17587things:
c906108c 17588
8e04817f
AC
17589@itemize @bullet
17590@item
5e252a2e
NR
17591All ``terminal'' input and output goes through an Emacs buffer, called
17592the GUD buffer.
c906108c 17593
8e04817f
AC
17594This applies both to @value{GDBN} commands and their output, and to the input
17595and output done by the program you are debugging.
bf0184be 17596
8e04817f
AC
17597This is useful because it means that you can copy the text of previous
17598commands and input them again; you can even use parts of the output
17599in this way.
bf0184be 17600
8e04817f
AC
17601All the facilities of Emacs' Shell mode are available for interacting
17602with your program. In particular, you can send signals the usual
17603way---for example, @kbd{C-c C-c} for an interrupt, @kbd{C-c C-z} for a
17604stop.
bf0184be
ND
17605
17606@item
8e04817f 17607@value{GDBN} displays source code through Emacs.
bf0184be 17608
8e04817f
AC
17609Each time @value{GDBN} displays a stack frame, Emacs automatically finds the
17610source file for that frame and puts an arrow (@samp{=>}) at the
17611left margin of the current line. Emacs uses a separate buffer for
17612source display, and splits the screen to show both your @value{GDBN} session
17613and the source.
bf0184be 17614
8e04817f
AC
17615Explicit @value{GDBN} @code{list} or search commands still produce output as
17616usual, but you probably have no reason to use them from Emacs.
5e252a2e
NR
17617@end itemize
17618
17619We call this @dfn{text command mode}. Emacs 22.1, and later, also uses
17620a graphical mode, enabled by default, which provides further buffers
17621that can control the execution and describe the state of your program.
17622@xref{GDB Graphical Interface,,, Emacs, The @sc{gnu} Emacs Manual}.
c906108c 17623
64fabec2
AC
17624If you specify an absolute file name when prompted for the @kbd{M-x
17625gdb} argument, then Emacs sets your current working directory to where
17626your program resides. If you only specify the file name, then Emacs
17627sets your current working directory to to the directory associated
17628with the previous buffer. In this case, @value{GDBN} may find your
17629program by searching your environment's @code{PATH} variable, but on
17630some operating systems it might not find the source. So, although the
17631@value{GDBN} input and output session proceeds normally, the auxiliary
17632buffer does not display the current source and line of execution.
17633
17634The initial working directory of @value{GDBN} is printed on the top
5e252a2e
NR
17635line of the GUD buffer and this serves as a default for the commands
17636that specify files for @value{GDBN} to operate on. @xref{Files,
17637,Commands to Specify Files}.
64fabec2
AC
17638
17639By default, @kbd{M-x gdb} calls the program called @file{gdb}. If you
17640need to call @value{GDBN} by a different name (for example, if you
17641keep several configurations around, with different names) you can
17642customize the Emacs variable @code{gud-gdb-command-name} to run the
17643one you want.
8e04817f 17644
5e252a2e 17645In the GUD buffer, you can use these special Emacs commands in
8e04817f 17646addition to the standard Shell mode commands:
c906108c 17647
8e04817f
AC
17648@table @kbd
17649@item C-h m
5e252a2e 17650Describe the features of Emacs' GUD Mode.
c906108c 17651
64fabec2 17652@item C-c C-s
8e04817f
AC
17653Execute to another source line, like the @value{GDBN} @code{step} command; also
17654update the display window to show the current file and location.
c906108c 17655
64fabec2 17656@item C-c C-n
8e04817f
AC
17657Execute to next source line in this function, skipping all function
17658calls, like the @value{GDBN} @code{next} command. Then update the display window
17659to show the current file and location.
c906108c 17660
64fabec2 17661@item C-c C-i
8e04817f
AC
17662Execute one instruction, like the @value{GDBN} @code{stepi} command; update
17663display window accordingly.
c906108c 17664
8e04817f
AC
17665@item C-c C-f
17666Execute until exit from the selected stack frame, like the @value{GDBN}
17667@code{finish} command.
c906108c 17668
64fabec2 17669@item C-c C-r
8e04817f
AC
17670Continue execution of your program, like the @value{GDBN} @code{continue}
17671command.
b433d00b 17672
64fabec2 17673@item C-c <
8e04817f
AC
17674Go up the number of frames indicated by the numeric argument
17675(@pxref{Arguments, , Numeric Arguments, Emacs, The @sc{gnu} Emacs Manual}),
17676like the @value{GDBN} @code{up} command.
b433d00b 17677
64fabec2 17678@item C-c >
8e04817f
AC
17679Go down the number of frames indicated by the numeric argument, like the
17680@value{GDBN} @code{down} command.
8e04817f 17681@end table
c906108c 17682
7f9087cb 17683In any source file, the Emacs command @kbd{C-x @key{SPC}} (@code{gud-break})
8e04817f 17684tells @value{GDBN} to set a breakpoint on the source line point is on.
c906108c 17685
5e252a2e
NR
17686In text command mode, if you type @kbd{M-x speedbar}, Emacs displays a
17687separate frame which shows a backtrace when the GUD buffer is current.
17688Move point to any frame in the stack and type @key{RET} to make it
17689become the current frame and display the associated source in the
17690source buffer. Alternatively, click @kbd{Mouse-2} to make the
17691selected frame become the current one. In graphical mode, the
17692speedbar displays watch expressions.
64fabec2 17693
8e04817f
AC
17694If you accidentally delete the source-display buffer, an easy way to get
17695it back is to type the command @code{f} in the @value{GDBN} buffer, to
17696request a frame display; when you run under Emacs, this recreates
17697the source buffer if necessary to show you the context of the current
17698frame.
c906108c 17699
8e04817f
AC
17700The source files displayed in Emacs are in ordinary Emacs buffers
17701which are visiting the source files in the usual way. You can edit
17702the files with these buffers if you wish; but keep in mind that @value{GDBN}
17703communicates with Emacs in terms of line numbers. If you add or
17704delete lines from the text, the line numbers that @value{GDBN} knows cease
17705to correspond properly with the code.
b383017d 17706
5e252a2e
NR
17707A more detailed description of Emacs' interaction with @value{GDBN} is
17708given in the Emacs manual (@pxref{Debuggers,,, Emacs, The @sc{gnu}
17709Emacs Manual}).
c906108c 17710
8e04817f
AC
17711@c The following dropped because Epoch is nonstandard. Reactivate
17712@c if/when v19 does something similar. ---doc@cygnus.com 19dec1990
17713@ignore
17714@kindex Emacs Epoch environment
17715@kindex Epoch
17716@kindex inspect
c906108c 17717
8e04817f
AC
17718Version 18 of @sc{gnu} Emacs has a built-in window system
17719called the @code{epoch}
17720environment. Users of this environment can use a new command,
17721@code{inspect} which performs identically to @code{print} except that
17722each value is printed in its own window.
17723@end ignore
c906108c 17724
922fbb7b
AC
17725
17726@node GDB/MI
17727@chapter The @sc{gdb/mi} Interface
17728
17729@unnumberedsec Function and Purpose
17730
17731@cindex @sc{gdb/mi}, its purpose
6b5e8c01
NR
17732@sc{gdb/mi} is a line based machine oriented text interface to
17733@value{GDBN} and is activated by specifying using the
17734@option{--interpreter} command line option (@pxref{Mode Options}). It
17735is specifically intended to support the development of systems which
17736use the debugger as just one small component of a larger system.
922fbb7b
AC
17737
17738This chapter is a specification of the @sc{gdb/mi} interface. It is written
17739in the form of a reference manual.
17740
17741Note that @sc{gdb/mi} is still under construction, so some of the
af6eff6f
NR
17742features described below are incomplete and subject to change
17743(@pxref{GDB/MI Development and Front Ends, , @sc{gdb/mi} Development and Front Ends}).
922fbb7b
AC
17744
17745@unnumberedsec Notation and Terminology
17746
17747@cindex notational conventions, for @sc{gdb/mi}
17748This chapter uses the following notation:
17749
17750@itemize @bullet
17751@item
17752@code{|} separates two alternatives.
17753
17754@item
17755@code{[ @var{something} ]} indicates that @var{something} is optional:
17756it may or may not be given.
17757
17758@item
17759@code{( @var{group} )*} means that @var{group} inside the parentheses
17760may repeat zero or more times.
17761
17762@item
17763@code{( @var{group} )+} means that @var{group} inside the parentheses
17764may repeat one or more times.
17765
17766@item
17767@code{"@var{string}"} means a literal @var{string}.
17768@end itemize
17769
17770@ignore
17771@heading Dependencies
17772@end ignore
17773
922fbb7b
AC
17774@menu
17775* GDB/MI Command Syntax::
17776* GDB/MI Compatibility with CLI::
af6eff6f 17777* GDB/MI Development and Front Ends::
922fbb7b 17778* GDB/MI Output Records::
ef21caaf 17779* GDB/MI Simple Examples::
922fbb7b 17780* GDB/MI Command Description Format::
ef21caaf 17781* GDB/MI Breakpoint Commands::
a2c02241
NR
17782* GDB/MI Program Context::
17783* GDB/MI Thread Commands::
17784* GDB/MI Program Execution::
17785* GDB/MI Stack Manipulation::
17786* GDB/MI Variable Objects::
922fbb7b 17787* GDB/MI Data Manipulation::
a2c02241
NR
17788* GDB/MI Tracepoint Commands::
17789* GDB/MI Symbol Query::
351ff01a 17790* GDB/MI File Commands::
922fbb7b
AC
17791@ignore
17792* GDB/MI Kod Commands::
17793* GDB/MI Memory Overlay Commands::
17794* GDB/MI Signal Handling Commands::
17795@end ignore
922fbb7b 17796* GDB/MI Target Manipulation::
a6b151f1 17797* GDB/MI File Transfer Commands::
ef21caaf 17798* GDB/MI Miscellaneous Commands::
922fbb7b
AC
17799@end menu
17800
17801@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17802@node GDB/MI Command Syntax
17803@section @sc{gdb/mi} Command Syntax
17804
17805@menu
17806* GDB/MI Input Syntax::
17807* GDB/MI Output Syntax::
922fbb7b
AC
17808@end menu
17809
17810@node GDB/MI Input Syntax
17811@subsection @sc{gdb/mi} Input Syntax
17812
17813@cindex input syntax for @sc{gdb/mi}
17814@cindex @sc{gdb/mi}, input syntax
17815@table @code
17816@item @var{command} @expansion{}
17817@code{@var{cli-command} | @var{mi-command}}
17818
17819@item @var{cli-command} @expansion{}
17820@code{[ @var{token} ] @var{cli-command} @var{nl}}, where
17821@var{cli-command} is any existing @value{GDBN} CLI command.
17822
17823@item @var{mi-command} @expansion{}
17824@code{[ @var{token} ] "-" @var{operation} ( " " @var{option} )*
17825@code{[} " --" @code{]} ( " " @var{parameter} )* @var{nl}}
17826
17827@item @var{token} @expansion{}
17828"any sequence of digits"
17829
17830@item @var{option} @expansion{}
17831@code{"-" @var{parameter} [ " " @var{parameter} ]}
17832
17833@item @var{parameter} @expansion{}
17834@code{@var{non-blank-sequence} | @var{c-string}}
17835
17836@item @var{operation} @expansion{}
17837@emph{any of the operations described in this chapter}
17838
17839@item @var{non-blank-sequence} @expansion{}
17840@emph{anything, provided it doesn't contain special characters such as
17841"-", @var{nl}, """ and of course " "}
17842
17843@item @var{c-string} @expansion{}
17844@code{""" @var{seven-bit-iso-c-string-content} """}
17845
17846@item @var{nl} @expansion{}
17847@code{CR | CR-LF}
17848@end table
17849
17850@noindent
17851Notes:
17852
17853@itemize @bullet
17854@item
17855The CLI commands are still handled by the @sc{mi} interpreter; their
17856output is described below.
17857
17858@item
17859The @code{@var{token}}, when present, is passed back when the command
17860finishes.
17861
17862@item
17863Some @sc{mi} commands accept optional arguments as part of the parameter
17864list. Each option is identified by a leading @samp{-} (dash) and may be
17865followed by an optional argument parameter. Options occur first in the
17866parameter list and can be delimited from normal parameters using
17867@samp{--} (this is useful when some parameters begin with a dash).
17868@end itemize
17869
17870Pragmatics:
17871
17872@itemize @bullet
17873@item
17874We want easy access to the existing CLI syntax (for debugging).
17875
17876@item
17877We want it to be easy to spot a @sc{mi} operation.
17878@end itemize
17879
17880@node GDB/MI Output Syntax
17881@subsection @sc{gdb/mi} Output Syntax
17882
17883@cindex output syntax of @sc{gdb/mi}
17884@cindex @sc{gdb/mi}, output syntax
17885The output from @sc{gdb/mi} consists of zero or more out-of-band records
17886followed, optionally, by a single result record. This result record
17887is for the most recent command. The sequence of output records is
594fe323 17888terminated by @samp{(gdb)}.
922fbb7b
AC
17889
17890If an input command was prefixed with a @code{@var{token}} then the
17891corresponding output for that command will also be prefixed by that same
17892@var{token}.
17893
17894@table @code
17895@item @var{output} @expansion{}
594fe323 17896@code{( @var{out-of-band-record} )* [ @var{result-record} ] "(gdb)" @var{nl}}
922fbb7b
AC
17897
17898@item @var{result-record} @expansion{}
17899@code{ [ @var{token} ] "^" @var{result-class} ( "," @var{result} )* @var{nl}}
17900
17901@item @var{out-of-band-record} @expansion{}
17902@code{@var{async-record} | @var{stream-record}}
17903
17904@item @var{async-record} @expansion{}
17905@code{@var{exec-async-output} | @var{status-async-output} | @var{notify-async-output}}
17906
17907@item @var{exec-async-output} @expansion{}
17908@code{[ @var{token} ] "*" @var{async-output}}
17909
17910@item @var{status-async-output} @expansion{}
17911@code{[ @var{token} ] "+" @var{async-output}}
17912
17913@item @var{notify-async-output} @expansion{}
17914@code{[ @var{token} ] "=" @var{async-output}}
17915
17916@item @var{async-output} @expansion{}
17917@code{@var{async-class} ( "," @var{result} )* @var{nl}}
17918
17919@item @var{result-class} @expansion{}
17920@code{"done" | "running" | "connected" | "error" | "exit"}
17921
17922@item @var{async-class} @expansion{}
17923@code{"stopped" | @var{others}} (where @var{others} will be added
17924depending on the needs---this is still in development).
17925
17926@item @var{result} @expansion{}
17927@code{ @var{variable} "=" @var{value}}
17928
17929@item @var{variable} @expansion{}
17930@code{ @var{string} }
17931
17932@item @var{value} @expansion{}
17933@code{ @var{const} | @var{tuple} | @var{list} }
17934
17935@item @var{const} @expansion{}
17936@code{@var{c-string}}
17937
17938@item @var{tuple} @expansion{}
17939@code{ "@{@}" | "@{" @var{result} ( "," @var{result} )* "@}" }
17940
17941@item @var{list} @expansion{}
17942@code{ "[]" | "[" @var{value} ( "," @var{value} )* "]" | "["
17943@var{result} ( "," @var{result} )* "]" }
17944
17945@item @var{stream-record} @expansion{}
17946@code{@var{console-stream-output} | @var{target-stream-output} | @var{log-stream-output}}
17947
17948@item @var{console-stream-output} @expansion{}
17949@code{"~" @var{c-string}}
17950
17951@item @var{target-stream-output} @expansion{}
17952@code{"@@" @var{c-string}}
17953
17954@item @var{log-stream-output} @expansion{}
17955@code{"&" @var{c-string}}
17956
17957@item @var{nl} @expansion{}
17958@code{CR | CR-LF}
17959
17960@item @var{token} @expansion{}
17961@emph{any sequence of digits}.
17962@end table
17963
17964@noindent
17965Notes:
17966
17967@itemize @bullet
17968@item
17969All output sequences end in a single line containing a period.
17970
17971@item
721c02de
VP
17972The @code{@var{token}} is from the corresponding request. Note that
17973for all async output, while the token is allowed by the grammar and
17974may be output by future versions of @value{GDBN} for select async
17975output messages, it is generally omitted. Frontends should treat
17976all async output as reporting general changes in the state of the
17977target and there should be no need to associate async output to any
17978prior command.
922fbb7b
AC
17979
17980@item
17981@cindex status output in @sc{gdb/mi}
17982@var{status-async-output} contains on-going status information about the
17983progress of a slow operation. It can be discarded. All status output is
17984prefixed by @samp{+}.
17985
17986@item
17987@cindex async output in @sc{gdb/mi}
17988@var{exec-async-output} contains asynchronous state change on the target
17989(stopped, started, disappeared). All async output is prefixed by
17990@samp{*}.
17991
17992@item
17993@cindex notify output in @sc{gdb/mi}
17994@var{notify-async-output} contains supplementary information that the
17995client should handle (e.g., a new breakpoint information). All notify
17996output is prefixed by @samp{=}.
17997
17998@item
17999@cindex console output in @sc{gdb/mi}
18000@var{console-stream-output} is output that should be displayed as is in the
18001console. It is the textual response to a CLI command. All the console
18002output is prefixed by @samp{~}.
18003
18004@item
18005@cindex target output in @sc{gdb/mi}
18006@var{target-stream-output} is the output produced by the target program.
18007All the target output is prefixed by @samp{@@}.
18008
18009@item
18010@cindex log output in @sc{gdb/mi}
18011@var{log-stream-output} is output text coming from @value{GDBN}'s internals, for
18012instance messages that should be displayed as part of an error log. All
18013the log output is prefixed by @samp{&}.
18014
18015@item
18016@cindex list output in @sc{gdb/mi}
18017New @sc{gdb/mi} commands should only output @var{lists} containing
18018@var{values}.
18019
18020
18021@end itemize
18022
18023@xref{GDB/MI Stream Records, , @sc{gdb/mi} Stream Records}, for more
18024details about the various output records.
18025
922fbb7b
AC
18026@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18027@node GDB/MI Compatibility with CLI
18028@section @sc{gdb/mi} Compatibility with CLI
18029
18030@cindex compatibility, @sc{gdb/mi} and CLI
18031@cindex @sc{gdb/mi}, compatibility with CLI
922fbb7b 18032
a2c02241
NR
18033For the developers convenience CLI commands can be entered directly,
18034but there may be some unexpected behaviour. For example, commands
18035that query the user will behave as if the user replied yes, breakpoint
18036command lists are not executed and some CLI commands, such as
18037@code{if}, @code{when} and @code{define}, prompt for further input with
18038@samp{>}, which is not valid MI output.
ef21caaf
NR
18039
18040This feature may be removed at some stage in the future and it is
a2c02241
NR
18041recommended that front ends use the @code{-interpreter-exec} command
18042(@pxref{-interpreter-exec}).
922fbb7b 18043
af6eff6f
NR
18044@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18045@node GDB/MI Development and Front Ends
18046@section @sc{gdb/mi} Development and Front Ends
18047@cindex @sc{gdb/mi} development
18048
18049The application which takes the MI output and presents the state of the
18050program being debugged to the user is called a @dfn{front end}.
18051
18052Although @sc{gdb/mi} is still incomplete, it is currently being used
18053by a variety of front ends to @value{GDBN}. This makes it difficult
18054to introduce new functionality without breaking existing usage. This
18055section tries to minimize the problems by describing how the protocol
18056might change.
18057
18058Some changes in MI need not break a carefully designed front end, and
18059for these the MI version will remain unchanged. The following is a
18060list of changes that may occur within one level, so front ends should
18061parse MI output in a way that can handle them:
18062
18063@itemize @bullet
18064@item
18065New MI commands may be added.
18066
18067@item
18068New fields may be added to the output of any MI command.
18069
36ece8b3
NR
18070@item
18071The range of values for fields with specified values, e.g.,
9f708cb2 18072@code{in_scope} (@pxref{-var-update}) may be extended.
36ece8b3 18073
af6eff6f
NR
18074@c The format of field's content e.g type prefix, may change so parse it
18075@c at your own risk. Yes, in general?
18076
18077@c The order of fields may change? Shouldn't really matter but it might
18078@c resolve inconsistencies.
18079@end itemize
18080
18081If the changes are likely to break front ends, the MI version level
18082will be increased by one. This will allow the front end to parse the
18083output according to the MI version. Apart from mi0, new versions of
18084@value{GDBN} will not support old versions of MI and it will be the
18085responsibility of the front end to work with the new one.
18086
18087@c Starting with mi3, add a new command -mi-version that prints the MI
18088@c version?
18089
18090The best way to avoid unexpected changes in MI that might break your front
18091end is to make your project known to @value{GDBN} developers and
7a9a6b69 18092follow development on @email{gdb@@sourceware.org} and
fa0f268d 18093@email{gdb-patches@@sourceware.org}.
af6eff6f
NR
18094@cindex mailing lists
18095
922fbb7b
AC
18096@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18097@node GDB/MI Output Records
18098@section @sc{gdb/mi} Output Records
18099
18100@menu
18101* GDB/MI Result Records::
18102* GDB/MI Stream Records::
82f68b1c 18103* GDB/MI Async Records::
922fbb7b
AC
18104@end menu
18105
18106@node GDB/MI Result Records
18107@subsection @sc{gdb/mi} Result Records
18108
18109@cindex result records in @sc{gdb/mi}
18110@cindex @sc{gdb/mi}, result records
18111In addition to a number of out-of-band notifications, the response to a
18112@sc{gdb/mi} command includes one of the following result indications:
18113
18114@table @code
18115@findex ^done
18116@item "^done" [ "," @var{results} ]
18117The synchronous operation was successful, @code{@var{results}} are the return
18118values.
18119
18120@item "^running"
18121@findex ^running
18122@c Is this one correct? Should it be an out-of-band notification?
18123The asynchronous operation was successfully started. The target is
18124running.
18125
ef21caaf
NR
18126@item "^connected"
18127@findex ^connected
3f94c067 18128@value{GDBN} has connected to a remote target.
ef21caaf 18129
922fbb7b
AC
18130@item "^error" "," @var{c-string}
18131@findex ^error
18132The operation failed. The @code{@var{c-string}} contains the corresponding
18133error message.
ef21caaf
NR
18134
18135@item "^exit"
18136@findex ^exit
3f94c067 18137@value{GDBN} has terminated.
ef21caaf 18138
922fbb7b
AC
18139@end table
18140
18141@node GDB/MI Stream Records
18142@subsection @sc{gdb/mi} Stream Records
18143
18144@cindex @sc{gdb/mi}, stream records
18145@cindex stream records in @sc{gdb/mi}
18146@value{GDBN} internally maintains a number of output streams: the console, the
18147target, and the log. The output intended for each of these streams is
18148funneled through the @sc{gdb/mi} interface using @dfn{stream records}.
18149
18150Each stream record begins with a unique @dfn{prefix character} which
18151identifies its stream (@pxref{GDB/MI Output Syntax, , @sc{gdb/mi} Output
18152Syntax}). In addition to the prefix, each stream record contains a
18153@code{@var{string-output}}. This is either raw text (with an implicit new
18154line) or a quoted C string (which does not contain an implicit newline).
18155
18156@table @code
18157@item "~" @var{string-output}
18158The console output stream contains text that should be displayed in the
18159CLI console window. It contains the textual responses to CLI commands.
18160
18161@item "@@" @var{string-output}
18162The target output stream contains any textual output from the running
ef21caaf
NR
18163target. This is only present when GDB's event loop is truly
18164asynchronous, which is currently only the case for remote targets.
922fbb7b
AC
18165
18166@item "&" @var{string-output}
18167The log stream contains debugging messages being produced by @value{GDBN}'s
18168internals.
18169@end table
18170
82f68b1c
VP
18171@node GDB/MI Async Records
18172@subsection @sc{gdb/mi} Async Records
922fbb7b 18173
82f68b1c
VP
18174@cindex async records in @sc{gdb/mi}
18175@cindex @sc{gdb/mi}, async records
18176@dfn{Async} records are used to notify the @sc{gdb/mi} client of
922fbb7b 18177additional changes that have occurred. Those changes can either be a
82f68b1c 18178consequence of @sc{gdb/mi} commands (e.g., a breakpoint modified) or a result of
922fbb7b
AC
18179target activity (e.g., target stopped).
18180
8eb41542 18181The following is the list of possible async records:
922fbb7b
AC
18182
18183@table @code
034dad6f 18184
82f68b1c
VP
18185@item *stopped,reason="@var{reason}"
18186The target has stopped. The @var{reason} field can have one of the
18187following values:
034dad6f
BR
18188
18189@table @code
18190@item breakpoint-hit
18191A breakpoint was reached.
18192@item watchpoint-trigger
18193A watchpoint was triggered.
18194@item read-watchpoint-trigger
18195A read watchpoint was triggered.
18196@item access-watchpoint-trigger
18197An access watchpoint was triggered.
18198@item function-finished
18199An -exec-finish or similar CLI command was accomplished.
18200@item location-reached
18201An -exec-until or similar CLI command was accomplished.
18202@item watchpoint-scope
18203A watchpoint has gone out of scope.
18204@item end-stepping-range
18205An -exec-next, -exec-next-instruction, -exec-step, -exec-step-instruction or
18206similar CLI command was accomplished.
18207@item exited-signalled
18208The inferior exited because of a signal.
18209@item exited
18210The inferior exited.
18211@item exited-normally
18212The inferior exited normally.
18213@item signal-received
18214A signal was received by the inferior.
922fbb7b
AC
18215@end table
18216
82f68b1c
VP
18217@item =thread-created,id="@var{id}"
18218@itemx =thread-exited,id="@var{id}"
18219A thread either was created, or has exited. The @var{id} field
18220contains the @value{GDBN} identifier of the thread.
18221@end table
18222
18223
922fbb7b 18224
ef21caaf
NR
18225@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18226@node GDB/MI Simple Examples
18227@section Simple Examples of @sc{gdb/mi} Interaction
18228@cindex @sc{gdb/mi}, simple examples
18229
18230This subsection presents several simple examples of interaction using
18231the @sc{gdb/mi} interface. In these examples, @samp{->} means that the
18232following line is passed to @sc{gdb/mi} as input, while @samp{<-} means
18233the output received from @sc{gdb/mi}.
18234
d3e8051b 18235Note the line breaks shown in the examples are here only for
ef21caaf
NR
18236readability, they don't appear in the real output.
18237
79a6e687 18238@subheading Setting a Breakpoint
ef21caaf
NR
18239
18240Setting a breakpoint generates synchronous output which contains detailed
18241information of the breakpoint.
18242
18243@smallexample
18244-> -break-insert main
18245<- ^done,bkpt=@{number="1",type="breakpoint",disp="keep",
18246 enabled="y",addr="0x08048564",func="main",file="myprog.c",
18247 fullname="/home/nickrob/myprog.c",line="68",times="0"@}
18248<- (gdb)
18249@end smallexample
18250
18251@subheading Program Execution
18252
18253Program execution generates asynchronous records and MI gives the
18254reason that execution stopped.
18255
18256@smallexample
18257-> -exec-run
18258<- ^running
18259<- (gdb)
a47ec5fe 18260<- *stopped,reason="breakpoint-hit",disp="keep",bkptno="1",thread-id="0",
ef21caaf
NR
18261 frame=@{addr="0x08048564",func="main",
18262 args=[@{name="argc",value="1"@},@{name="argv",value="0xbfc4d4d4"@}],
18263 file="myprog.c",fullname="/home/nickrob/myprog.c",line="68"@}
18264<- (gdb)
18265-> -exec-continue
18266<- ^running
18267<- (gdb)
18268<- *stopped,reason="exited-normally"
18269<- (gdb)
18270@end smallexample
18271
3f94c067 18272@subheading Quitting @value{GDBN}
ef21caaf 18273
3f94c067 18274Quitting @value{GDBN} just prints the result class @samp{^exit}.
ef21caaf
NR
18275
18276@smallexample
18277-> (gdb)
18278<- -gdb-exit
18279<- ^exit
18280@end smallexample
18281
a2c02241 18282@subheading A Bad Command
ef21caaf
NR
18283
18284Here's what happens if you pass a non-existent command:
18285
18286@smallexample
18287-> -rubbish
18288<- ^error,msg="Undefined MI command: rubbish"
594fe323 18289<- (gdb)
ef21caaf
NR
18290@end smallexample
18291
18292
922fbb7b
AC
18293@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18294@node GDB/MI Command Description Format
18295@section @sc{gdb/mi} Command Description Format
18296
18297The remaining sections describe blocks of commands. Each block of
18298commands is laid out in a fashion similar to this section.
18299
922fbb7b
AC
18300@subheading Motivation
18301
18302The motivation for this collection of commands.
18303
18304@subheading Introduction
18305
18306A brief introduction to this collection of commands as a whole.
18307
18308@subheading Commands
18309
18310For each command in the block, the following is described:
18311
18312@subsubheading Synopsis
18313
18314@smallexample
18315 -command @var{args}@dots{}
18316@end smallexample
18317
922fbb7b
AC
18318@subsubheading Result
18319
265eeb58 18320@subsubheading @value{GDBN} Command
922fbb7b 18321
265eeb58 18322The corresponding @value{GDBN} CLI command(s), if any.
922fbb7b
AC
18323
18324@subsubheading Example
18325
ef21caaf
NR
18326Example(s) formatted for readability. Some of the described commands have
18327not been implemented yet and these are labeled N.A.@: (not available).
18328
18329
922fbb7b 18330@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ef21caaf
NR
18331@node GDB/MI Breakpoint Commands
18332@section @sc{gdb/mi} Breakpoint Commands
922fbb7b
AC
18333
18334@cindex breakpoint commands for @sc{gdb/mi}
18335@cindex @sc{gdb/mi}, breakpoint commands
18336This section documents @sc{gdb/mi} commands for manipulating
18337breakpoints.
18338
18339@subheading The @code{-break-after} Command
18340@findex -break-after
18341
18342@subsubheading Synopsis
18343
18344@smallexample
18345 -break-after @var{number} @var{count}
18346@end smallexample
18347
18348The breakpoint number @var{number} is not in effect until it has been
18349hit @var{count} times. To see how this is reflected in the output of
18350the @samp{-break-list} command, see the description of the
18351@samp{-break-list} command below.
18352
18353@subsubheading @value{GDBN} Command
18354
18355The corresponding @value{GDBN} command is @samp{ignore}.
18356
18357@subsubheading Example
18358
18359@smallexample
594fe323 18360(gdb)
922fbb7b 18361-break-insert main
a47ec5fe
AR
18362^done,bkpt=@{number="1",type="breakpoint",disp="keep",
18363enabled="y",addr="0x000100d0",func="main",file="hello.c",
948d5102 18364fullname="/home/foo/hello.c",line="5",times="0"@}
594fe323 18365(gdb)
922fbb7b
AC
18366-break-after 1 3
18367~
18368^done
594fe323 18369(gdb)
922fbb7b
AC
18370-break-list
18371^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18372hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18373@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18374@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18375@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18376@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18377@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18378body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18379addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18380line="5",times="0",ignore="3"@}]@}
594fe323 18381(gdb)
922fbb7b
AC
18382@end smallexample
18383
18384@ignore
18385@subheading The @code{-break-catch} Command
18386@findex -break-catch
18387
18388@subheading The @code{-break-commands} Command
18389@findex -break-commands
18390@end ignore
18391
18392
18393@subheading The @code{-break-condition} Command
18394@findex -break-condition
18395
18396@subsubheading Synopsis
18397
18398@smallexample
18399 -break-condition @var{number} @var{expr}
18400@end smallexample
18401
18402Breakpoint @var{number} will stop the program only if the condition in
18403@var{expr} is true. The condition becomes part of the
18404@samp{-break-list} output (see the description of the @samp{-break-list}
18405command below).
18406
18407@subsubheading @value{GDBN} Command
18408
18409The corresponding @value{GDBN} command is @samp{condition}.
18410
18411@subsubheading Example
18412
18413@smallexample
594fe323 18414(gdb)
922fbb7b
AC
18415-break-condition 1 1
18416^done
594fe323 18417(gdb)
922fbb7b
AC
18418-break-list
18419^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18420hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18421@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18422@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18423@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18424@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18425@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18426body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18427addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18428line="5",cond="1",times="0",ignore="3"@}]@}
594fe323 18429(gdb)
922fbb7b
AC
18430@end smallexample
18431
18432@subheading The @code{-break-delete} Command
18433@findex -break-delete
18434
18435@subsubheading Synopsis
18436
18437@smallexample
18438 -break-delete ( @var{breakpoint} )+
18439@end smallexample
18440
18441Delete the breakpoint(s) whose number(s) are specified in the argument
18442list. This is obviously reflected in the breakpoint list.
18443
79a6e687 18444@subsubheading @value{GDBN} Command
922fbb7b
AC
18445
18446The corresponding @value{GDBN} command is @samp{delete}.
18447
18448@subsubheading Example
18449
18450@smallexample
594fe323 18451(gdb)
922fbb7b
AC
18452-break-delete 1
18453^done
594fe323 18454(gdb)
922fbb7b
AC
18455-break-list
18456^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
18457hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18458@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18459@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18460@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18461@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18462@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18463body=[]@}
594fe323 18464(gdb)
922fbb7b
AC
18465@end smallexample
18466
18467@subheading The @code{-break-disable} Command
18468@findex -break-disable
18469
18470@subsubheading Synopsis
18471
18472@smallexample
18473 -break-disable ( @var{breakpoint} )+
18474@end smallexample
18475
18476Disable the named @var{breakpoint}(s). The field @samp{enabled} in the
18477break list is now set to @samp{n} for the named @var{breakpoint}(s).
18478
18479@subsubheading @value{GDBN} Command
18480
18481The corresponding @value{GDBN} command is @samp{disable}.
18482
18483@subsubheading Example
18484
18485@smallexample
594fe323 18486(gdb)
922fbb7b
AC
18487-break-disable 2
18488^done
594fe323 18489(gdb)
922fbb7b
AC
18490-break-list
18491^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18492hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18493@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18494@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18495@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18496@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18497@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18498body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="n",
948d5102
NR
18499addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18500line="5",times="0"@}]@}
594fe323 18501(gdb)
922fbb7b
AC
18502@end smallexample
18503
18504@subheading The @code{-break-enable} Command
18505@findex -break-enable
18506
18507@subsubheading Synopsis
18508
18509@smallexample
18510 -break-enable ( @var{breakpoint} )+
18511@end smallexample
18512
18513Enable (previously disabled) @var{breakpoint}(s).
18514
18515@subsubheading @value{GDBN} Command
18516
18517The corresponding @value{GDBN} command is @samp{enable}.
18518
18519@subsubheading Example
18520
18521@smallexample
594fe323 18522(gdb)
922fbb7b
AC
18523-break-enable 2
18524^done
594fe323 18525(gdb)
922fbb7b
AC
18526-break-list
18527^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18528hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18529@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18530@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18531@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18532@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18533@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18534body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18535addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18536line="5",times="0"@}]@}
594fe323 18537(gdb)
922fbb7b
AC
18538@end smallexample
18539
18540@subheading The @code{-break-info} Command
18541@findex -break-info
18542
18543@subsubheading Synopsis
18544
18545@smallexample
18546 -break-info @var{breakpoint}
18547@end smallexample
18548
18549@c REDUNDANT???
18550Get information about a single breakpoint.
18551
79a6e687 18552@subsubheading @value{GDBN} Command
922fbb7b
AC
18553
18554The corresponding @value{GDBN} command is @samp{info break @var{breakpoint}}.
18555
18556@subsubheading Example
18557N.A.
18558
18559@subheading The @code{-break-insert} Command
18560@findex -break-insert
18561
18562@subsubheading Synopsis
18563
18564@smallexample
afe8ab22 18565 -break-insert [ -t ] [ -h ] [ -f ]
922fbb7b 18566 [ -c @var{condition} ] [ -i @var{ignore-count} ]
afe8ab22 18567 [ -p @var{thread} ] [ @var{location} ]
922fbb7b
AC
18568@end smallexample
18569
18570@noindent
afe8ab22 18571If specified, @var{location}, can be one of:
922fbb7b
AC
18572
18573@itemize @bullet
18574@item function
18575@c @item +offset
18576@c @item -offset
18577@c @item linenum
18578@item filename:linenum
18579@item filename:function
18580@item *address
18581@end itemize
18582
18583The possible optional parameters of this command are:
18584
18585@table @samp
18586@item -t
948d5102 18587Insert a temporary breakpoint.
922fbb7b
AC
18588@item -h
18589Insert a hardware breakpoint.
18590@item -c @var{condition}
18591Make the breakpoint conditional on @var{condition}.
18592@item -i @var{ignore-count}
18593Initialize the @var{ignore-count}.
afe8ab22
VP
18594@item -f
18595If @var{location} cannot be parsed (for example if it
18596refers to unknown files or functions), create a pending
18597breakpoint. Without this flag, @value{GDBN} will report
18598an error, and won't create a breakpoint, if @var{location}
18599cannot be parsed.
922fbb7b
AC
18600@end table
18601
18602@subsubheading Result
18603
18604The result is in the form:
18605
18606@smallexample
948d5102
NR
18607^done,bkpt=@{number="@var{number}",type="@var{type}",disp="del"|"keep",
18608enabled="y"|"n",addr="@var{hex}",func="@var{funcname}",file="@var{filename}",
ef21caaf
NR
18609fullname="@var{full_filename}",line="@var{lineno}",[thread="@var{threadno},]
18610times="@var{times}"@}
922fbb7b
AC
18611@end smallexample
18612
18613@noindent
948d5102
NR
18614where @var{number} is the @value{GDBN} number for this breakpoint,
18615@var{funcname} is the name of the function where the breakpoint was
18616inserted, @var{filename} is the name of the source file which contains
18617this function, @var{lineno} is the source line number within that file
18618and @var{times} the number of times that the breakpoint has been hit
18619(always 0 for -break-insert but may be greater for -break-info or -break-list
18620which use the same output).
922fbb7b
AC
18621
18622Note: this format is open to change.
18623@c An out-of-band breakpoint instead of part of the result?
18624
18625@subsubheading @value{GDBN} Command
18626
18627The corresponding @value{GDBN} commands are @samp{break}, @samp{tbreak},
18628@samp{hbreak}, @samp{thbreak}, and @samp{rbreak}.
18629
18630@subsubheading Example
18631
18632@smallexample
594fe323 18633(gdb)
922fbb7b 18634-break-insert main
948d5102
NR
18635^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",
18636fullname="/home/foo/recursive2.c,line="4",times="0"@}
594fe323 18637(gdb)
922fbb7b 18638-break-insert -t foo
948d5102
NR
18639^done,bkpt=@{number="2",addr="0x00010774",file="recursive2.c",
18640fullname="/home/foo/recursive2.c,line="11",times="0"@}
594fe323 18641(gdb)
922fbb7b
AC
18642-break-list
18643^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18644hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18645@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18646@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18647@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18648@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18649@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18650body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18651addr="0x0001072c", func="main",file="recursive2.c",
18652fullname="/home/foo/recursive2.c,"line="4",times="0"@},
922fbb7b 18653bkpt=@{number="2",type="breakpoint",disp="del",enabled="y",
948d5102
NR
18654addr="0x00010774",func="foo",file="recursive2.c",
18655fullname="/home/foo/recursive2.c",line="11",times="0"@}]@}
594fe323 18656(gdb)
922fbb7b
AC
18657-break-insert -r foo.*
18658~int foo(int, int);
948d5102
NR
18659^done,bkpt=@{number="3",addr="0x00010774",file="recursive2.c,
18660"fullname="/home/foo/recursive2.c",line="11",times="0"@}
594fe323 18661(gdb)
922fbb7b
AC
18662@end smallexample
18663
18664@subheading The @code{-break-list} Command
18665@findex -break-list
18666
18667@subsubheading Synopsis
18668
18669@smallexample
18670 -break-list
18671@end smallexample
18672
18673Displays the list of inserted breakpoints, showing the following fields:
18674
18675@table @samp
18676@item Number
18677number of the breakpoint
18678@item Type
18679type of the breakpoint: @samp{breakpoint} or @samp{watchpoint}
18680@item Disposition
18681should the breakpoint be deleted or disabled when it is hit: @samp{keep}
18682or @samp{nokeep}
18683@item Enabled
18684is the breakpoint enabled or no: @samp{y} or @samp{n}
18685@item Address
18686memory location at which the breakpoint is set
18687@item What
18688logical location of the breakpoint, expressed by function name, file
18689name, line number
18690@item Times
18691number of times the breakpoint has been hit
18692@end table
18693
18694If there are no breakpoints or watchpoints, the @code{BreakpointTable}
18695@code{body} field is an empty list.
18696
18697@subsubheading @value{GDBN} Command
18698
18699The corresponding @value{GDBN} command is @samp{info break}.
18700
18701@subsubheading Example
18702
18703@smallexample
594fe323 18704(gdb)
922fbb7b
AC
18705-break-list
18706^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18707hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18708@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18709@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18710@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18711@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18712@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18713body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18714addr="0x000100d0",func="main",file="hello.c",line="5",times="0"@},
18715bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18716addr="0x00010114",func="foo",file="hello.c",fullname="/home/foo/hello.c",
18717line="13",times="0"@}]@}
594fe323 18718(gdb)
922fbb7b
AC
18719@end smallexample
18720
18721Here's an example of the result when there are no breakpoints:
18722
18723@smallexample
594fe323 18724(gdb)
922fbb7b
AC
18725-break-list
18726^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
18727hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18728@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18729@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18730@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18731@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18732@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18733body=[]@}
594fe323 18734(gdb)
922fbb7b
AC
18735@end smallexample
18736
18737@subheading The @code{-break-watch} Command
18738@findex -break-watch
18739
18740@subsubheading Synopsis
18741
18742@smallexample
18743 -break-watch [ -a | -r ]
18744@end smallexample
18745
18746Create a watchpoint. With the @samp{-a} option it will create an
d3e8051b 18747@dfn{access} watchpoint, i.e., a watchpoint that triggers either on a
922fbb7b 18748read from or on a write to the memory location. With the @samp{-r}
d3e8051b 18749option, the watchpoint created is a @dfn{read} watchpoint, i.e., it will
922fbb7b
AC
18750trigger only when the memory location is accessed for reading. Without
18751either of the options, the watchpoint created is a regular watchpoint,
d3e8051b 18752i.e., it will trigger when the memory location is accessed for writing.
79a6e687 18753@xref{Set Watchpoints, , Setting Watchpoints}.
922fbb7b
AC
18754
18755Note that @samp{-break-list} will report a single list of watchpoints and
18756breakpoints inserted.
18757
18758@subsubheading @value{GDBN} Command
18759
18760The corresponding @value{GDBN} commands are @samp{watch}, @samp{awatch}, and
18761@samp{rwatch}.
18762
18763@subsubheading Example
18764
18765Setting a watchpoint on a variable in the @code{main} function:
18766
18767@smallexample
594fe323 18768(gdb)
922fbb7b
AC
18769-break-watch x
18770^done,wpt=@{number="2",exp="x"@}
594fe323 18771(gdb)
922fbb7b
AC
18772-exec-continue
18773^running
0869d01b
NR
18774(gdb)
18775*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="x"@},
922fbb7b 18776value=@{old="-268439212",new="55"@},
76ff342d 18777frame=@{func="main",args=[],file="recursive2.c",
948d5102 18778fullname="/home/foo/bar/recursive2.c",line="5"@}
594fe323 18779(gdb)
922fbb7b
AC
18780@end smallexample
18781
18782Setting a watchpoint on a variable local to a function. @value{GDBN} will stop
18783the program execution twice: first for the variable changing value, then
18784for the watchpoint going out of scope.
18785
18786@smallexample
594fe323 18787(gdb)
922fbb7b
AC
18788-break-watch C
18789^done,wpt=@{number="5",exp="C"@}
594fe323 18790(gdb)
922fbb7b
AC
18791-exec-continue
18792^running
0869d01b
NR
18793(gdb)
18794*stopped,reason="watchpoint-trigger",
922fbb7b
AC
18795wpt=@{number="5",exp="C"@},value=@{old="-276895068",new="3"@},
18796frame=@{func="callee4",args=[],
76ff342d
DJ
18797file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18798fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
594fe323 18799(gdb)
922fbb7b
AC
18800-exec-continue
18801^running
0869d01b
NR
18802(gdb)
18803*stopped,reason="watchpoint-scope",wpnum="5",
922fbb7b
AC
18804frame=@{func="callee3",args=[@{name="strarg",
18805value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
18806file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18807fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 18808(gdb)
922fbb7b
AC
18809@end smallexample
18810
18811Listing breakpoints and watchpoints, at different points in the program
18812execution. Note that once the watchpoint goes out of scope, it is
18813deleted.
18814
18815@smallexample
594fe323 18816(gdb)
922fbb7b
AC
18817-break-watch C
18818^done,wpt=@{number="2",exp="C"@}
594fe323 18819(gdb)
922fbb7b
AC
18820-break-list
18821^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18822hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18823@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18824@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18825@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18826@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18827@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18828body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18829addr="0x00010734",func="callee4",
948d5102
NR
18830file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18831fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c"line="8",times="1"@},
922fbb7b
AC
18832bkpt=@{number="2",type="watchpoint",disp="keep",
18833enabled="y",addr="",what="C",times="0"@}]@}
594fe323 18834(gdb)
922fbb7b
AC
18835-exec-continue
18836^running
0869d01b
NR
18837(gdb)
18838*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="C"@},
922fbb7b
AC
18839value=@{old="-276895068",new="3"@},
18840frame=@{func="callee4",args=[],
76ff342d
DJ
18841file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18842fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
594fe323 18843(gdb)
922fbb7b
AC
18844-break-list
18845^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18846hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18847@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18848@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18849@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18850@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18851@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18852body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18853addr="0x00010734",func="callee4",
948d5102
NR
18854file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18855fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",times="1"@},
922fbb7b
AC
18856bkpt=@{number="2",type="watchpoint",disp="keep",
18857enabled="y",addr="",what="C",times="-5"@}]@}
594fe323 18858(gdb)
922fbb7b
AC
18859-exec-continue
18860^running
18861^done,reason="watchpoint-scope",wpnum="2",
18862frame=@{func="callee3",args=[@{name="strarg",
18863value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
18864file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18865fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 18866(gdb)
922fbb7b
AC
18867-break-list
18868^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18869hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18870@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18871@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18872@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18873@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18874@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18875body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18876addr="0x00010734",func="callee4",
948d5102
NR
18877file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18878fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",
18879times="1"@}]@}
594fe323 18880(gdb)
922fbb7b
AC
18881@end smallexample
18882
18883@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
18884@node GDB/MI Program Context
18885@section @sc{gdb/mi} Program Context
922fbb7b 18886
a2c02241
NR
18887@subheading The @code{-exec-arguments} Command
18888@findex -exec-arguments
922fbb7b 18889
922fbb7b
AC
18890
18891@subsubheading Synopsis
18892
18893@smallexample
a2c02241 18894 -exec-arguments @var{args}
922fbb7b
AC
18895@end smallexample
18896
a2c02241
NR
18897Set the inferior program arguments, to be used in the next
18898@samp{-exec-run}.
922fbb7b 18899
a2c02241 18900@subsubheading @value{GDBN} Command
922fbb7b 18901
a2c02241 18902The corresponding @value{GDBN} command is @samp{set args}.
922fbb7b 18903
a2c02241 18904@subsubheading Example
922fbb7b 18905
a2c02241
NR
18906@c FIXME!
18907Don't have one around.
922fbb7b 18908
a2c02241
NR
18909
18910@subheading The @code{-exec-show-arguments} Command
18911@findex -exec-show-arguments
18912
18913@subsubheading Synopsis
18914
18915@smallexample
18916 -exec-show-arguments
18917@end smallexample
18918
18919Print the arguments of the program.
922fbb7b
AC
18920
18921@subsubheading @value{GDBN} Command
18922
a2c02241 18923The corresponding @value{GDBN} command is @samp{show args}.
922fbb7b
AC
18924
18925@subsubheading Example
a2c02241 18926N.A.
922fbb7b 18927
922fbb7b 18928
a2c02241
NR
18929@subheading The @code{-environment-cd} Command
18930@findex -environment-cd
922fbb7b 18931
a2c02241 18932@subsubheading Synopsis
922fbb7b
AC
18933
18934@smallexample
a2c02241 18935 -environment-cd @var{pathdir}
922fbb7b
AC
18936@end smallexample
18937
a2c02241 18938Set @value{GDBN}'s working directory.
922fbb7b 18939
a2c02241 18940@subsubheading @value{GDBN} Command
922fbb7b 18941
a2c02241
NR
18942The corresponding @value{GDBN} command is @samp{cd}.
18943
18944@subsubheading Example
922fbb7b
AC
18945
18946@smallexample
594fe323 18947(gdb)
a2c02241
NR
18948-environment-cd /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
18949^done
594fe323 18950(gdb)
922fbb7b
AC
18951@end smallexample
18952
18953
a2c02241
NR
18954@subheading The @code{-environment-directory} Command
18955@findex -environment-directory
922fbb7b
AC
18956
18957@subsubheading Synopsis
18958
18959@smallexample
a2c02241 18960 -environment-directory [ -r ] [ @var{pathdir} ]+
922fbb7b
AC
18961@end smallexample
18962
a2c02241
NR
18963Add directories @var{pathdir} to beginning of search path for source files.
18964If the @samp{-r} option is used, the search path is reset to the default
18965search path. If directories @var{pathdir} are supplied in addition to the
18966@samp{-r} option, the search path is first reset and then addition
18967occurs as normal.
18968Multiple directories may be specified, separated by blanks. Specifying
18969multiple directories in a single command
18970results in the directories added to the beginning of the
18971search path in the same order they were presented in the command.
18972If blanks are needed as
18973part of a directory name, double-quotes should be used around
18974the name. In the command output, the path will show up separated
d3e8051b 18975by the system directory-separator character. The directory-separator
a2c02241
NR
18976character must not be used
18977in any directory name.
18978If no directories are specified, the current search path is displayed.
922fbb7b
AC
18979
18980@subsubheading @value{GDBN} Command
18981
a2c02241 18982The corresponding @value{GDBN} command is @samp{dir}.
922fbb7b
AC
18983
18984@subsubheading Example
18985
922fbb7b 18986@smallexample
594fe323 18987(gdb)
a2c02241
NR
18988-environment-directory /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
18989^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
594fe323 18990(gdb)
a2c02241
NR
18991-environment-directory ""
18992^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
594fe323 18993(gdb)
a2c02241
NR
18994-environment-directory -r /home/jjohnstn/src/gdb /usr/src
18995^done,source-path="/home/jjohnstn/src/gdb:/usr/src:$cdir:$cwd"
594fe323 18996(gdb)
a2c02241
NR
18997-environment-directory -r
18998^done,source-path="$cdir:$cwd"
594fe323 18999(gdb)
922fbb7b
AC
19000@end smallexample
19001
19002
a2c02241
NR
19003@subheading The @code{-environment-path} Command
19004@findex -environment-path
922fbb7b
AC
19005
19006@subsubheading Synopsis
19007
19008@smallexample
a2c02241 19009 -environment-path [ -r ] [ @var{pathdir} ]+
922fbb7b
AC
19010@end smallexample
19011
a2c02241
NR
19012Add directories @var{pathdir} to beginning of search path for object files.
19013If the @samp{-r} option is used, the search path is reset to the original
19014search path that existed at gdb start-up. If directories @var{pathdir} are
19015supplied in addition to the
19016@samp{-r} option, the search path is first reset and then addition
19017occurs as normal.
19018Multiple directories may be specified, separated by blanks. Specifying
19019multiple directories in a single command
19020results in the directories added to the beginning of the
19021search path in the same order they were presented in the command.
19022If blanks are needed as
19023part of a directory name, double-quotes should be used around
19024the name. In the command output, the path will show up separated
d3e8051b 19025by the system directory-separator character. The directory-separator
a2c02241
NR
19026character must not be used
19027in any directory name.
19028If no directories are specified, the current path is displayed.
19029
922fbb7b
AC
19030
19031@subsubheading @value{GDBN} Command
19032
a2c02241 19033The corresponding @value{GDBN} command is @samp{path}.
922fbb7b
AC
19034
19035@subsubheading Example
19036
922fbb7b 19037@smallexample
594fe323 19038(gdb)
a2c02241
NR
19039-environment-path
19040^done,path="/usr/bin"
594fe323 19041(gdb)
a2c02241
NR
19042-environment-path /kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb /bin
19043^done,path="/kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb:/bin:/usr/bin"
594fe323 19044(gdb)
a2c02241
NR
19045-environment-path -r /usr/local/bin
19046^done,path="/usr/local/bin:/usr/bin"
594fe323 19047(gdb)
922fbb7b
AC
19048@end smallexample
19049
19050
a2c02241
NR
19051@subheading The @code{-environment-pwd} Command
19052@findex -environment-pwd
922fbb7b
AC
19053
19054@subsubheading Synopsis
19055
19056@smallexample
a2c02241 19057 -environment-pwd
922fbb7b
AC
19058@end smallexample
19059
a2c02241 19060Show the current working directory.
922fbb7b 19061
79a6e687 19062@subsubheading @value{GDBN} Command
922fbb7b 19063
a2c02241 19064The corresponding @value{GDBN} command is @samp{pwd}.
922fbb7b
AC
19065
19066@subsubheading Example
19067
922fbb7b 19068@smallexample
594fe323 19069(gdb)
a2c02241
NR
19070-environment-pwd
19071^done,cwd="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb"
594fe323 19072(gdb)
922fbb7b
AC
19073@end smallexample
19074
a2c02241
NR
19075@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
19076@node GDB/MI Thread Commands
19077@section @sc{gdb/mi} Thread Commands
19078
19079
19080@subheading The @code{-thread-info} Command
19081@findex -thread-info
922fbb7b
AC
19082
19083@subsubheading Synopsis
19084
19085@smallexample
8e8901c5 19086 -thread-info [ @var{thread-id} ]
922fbb7b
AC
19087@end smallexample
19088
8e8901c5
VP
19089Reports information about either a specific thread, if
19090the @var{thread-id} parameter is present, or about all
19091threads. When printing information about all threads,
19092also reports the current thread.
19093
79a6e687 19094@subsubheading @value{GDBN} Command
922fbb7b 19095
8e8901c5
VP
19096The @samp{info thread} command prints the same information
19097about all threads.
922fbb7b
AC
19098
19099@subsubheading Example
922fbb7b
AC
19100
19101@smallexample
8e8901c5
VP
19102-thread-info
19103^done,threads=[
19104@{id="2",target-id="Thread 0xb7e14b90 (LWP 21257)",
19105 frame=@{level="0",addr="0xffffe410",func="__kernel_vsyscall",args=[]@},
19106@{id="1",target-id="Thread 0xb7e156b0 (LWP 21254)",
19107 frame=@{level="0",addr="0x0804891f",func="foo",args=[@{name="i",value="10"@}],
19108 file="/tmp/a.c",fullname="/tmp/a.c",line="158"@}@}],
19109current-thread-id="1"
19110(gdb)
922fbb7b
AC
19111@end smallexample
19112
a2c02241
NR
19113@subheading The @code{-thread-list-ids} Command
19114@findex -thread-list-ids
922fbb7b 19115
a2c02241 19116@subsubheading Synopsis
922fbb7b 19117
a2c02241
NR
19118@smallexample
19119 -thread-list-ids
19120@end smallexample
922fbb7b 19121
a2c02241
NR
19122Produces a list of the currently known @value{GDBN} thread ids. At the
19123end of the list it also prints the total number of such threads.
922fbb7b
AC
19124
19125@subsubheading @value{GDBN} Command
19126
a2c02241 19127Part of @samp{info threads} supplies the same information.
922fbb7b
AC
19128
19129@subsubheading Example
19130
a2c02241 19131No threads present, besides the main process:
922fbb7b
AC
19132
19133@smallexample
594fe323 19134(gdb)
a2c02241
NR
19135-thread-list-ids
19136^done,thread-ids=@{@},number-of-threads="0"
594fe323 19137(gdb)
922fbb7b
AC
19138@end smallexample
19139
922fbb7b 19140
a2c02241 19141Several threads:
922fbb7b
AC
19142
19143@smallexample
594fe323 19144(gdb)
a2c02241
NR
19145-thread-list-ids
19146^done,thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
19147number-of-threads="3"
594fe323 19148(gdb)
922fbb7b
AC
19149@end smallexample
19150
a2c02241
NR
19151
19152@subheading The @code{-thread-select} Command
19153@findex -thread-select
922fbb7b
AC
19154
19155@subsubheading Synopsis
19156
19157@smallexample
a2c02241 19158 -thread-select @var{threadnum}
922fbb7b
AC
19159@end smallexample
19160
a2c02241
NR
19161Make @var{threadnum} the current thread. It prints the number of the new
19162current thread, and the topmost frame for that thread.
922fbb7b
AC
19163
19164@subsubheading @value{GDBN} Command
19165
a2c02241 19166The corresponding @value{GDBN} command is @samp{thread}.
922fbb7b
AC
19167
19168@subsubheading Example
922fbb7b
AC
19169
19170@smallexample
594fe323 19171(gdb)
a2c02241
NR
19172-exec-next
19173^running
594fe323 19174(gdb)
a2c02241
NR
19175*stopped,reason="end-stepping-range",thread-id="2",line="187",
19176file="../../../devo/gdb/testsuite/gdb.threads/linux-dp.c"
594fe323 19177(gdb)
a2c02241
NR
19178-thread-list-ids
19179^done,
19180thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
19181number-of-threads="3"
594fe323 19182(gdb)
a2c02241
NR
19183-thread-select 3
19184^done,new-thread-id="3",
19185frame=@{level="0",func="vprintf",
19186args=[@{name="format",value="0x8048e9c \"%*s%c %d %c\\n\""@},
19187@{name="arg",value="0x2"@}],file="vprintf.c",line="31"@}
594fe323 19188(gdb)
922fbb7b
AC
19189@end smallexample
19190
a2c02241
NR
19191@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
19192@node GDB/MI Program Execution
19193@section @sc{gdb/mi} Program Execution
922fbb7b 19194
ef21caaf 19195These are the asynchronous commands which generate the out-of-band
3f94c067 19196record @samp{*stopped}. Currently @value{GDBN} only really executes
ef21caaf
NR
19197asynchronously with remote targets and this interaction is mimicked in
19198other cases.
922fbb7b 19199
922fbb7b
AC
19200@subheading The @code{-exec-continue} Command
19201@findex -exec-continue
19202
19203@subsubheading Synopsis
19204
19205@smallexample
19206 -exec-continue
19207@end smallexample
19208
ef21caaf
NR
19209Resumes the execution of the inferior program until a breakpoint is
19210encountered, or until the inferior exits.
922fbb7b
AC
19211
19212@subsubheading @value{GDBN} Command
19213
19214The corresponding @value{GDBN} corresponding is @samp{continue}.
19215
19216@subsubheading Example
19217
19218@smallexample
19219-exec-continue
19220^running
594fe323 19221(gdb)
922fbb7b 19222@@Hello world
a47ec5fe
AR
19223*stopped,reason="breakpoint-hit",disp="keep",bkptno="2",frame=@{
19224func="foo",args=[],file="hello.c",fullname="/home/foo/bar/hello.c",
19225line="13"@}
594fe323 19226(gdb)
922fbb7b
AC
19227@end smallexample
19228
19229
19230@subheading The @code{-exec-finish} Command
19231@findex -exec-finish
19232
19233@subsubheading Synopsis
19234
19235@smallexample
19236 -exec-finish
19237@end smallexample
19238
ef21caaf
NR
19239Resumes the execution of the inferior program until the current
19240function is exited. Displays the results returned by the function.
922fbb7b
AC
19241
19242@subsubheading @value{GDBN} Command
19243
19244The corresponding @value{GDBN} command is @samp{finish}.
19245
19246@subsubheading Example
19247
19248Function returning @code{void}.
19249
19250@smallexample
19251-exec-finish
19252^running
594fe323 19253(gdb)
922fbb7b
AC
19254@@hello from foo
19255*stopped,reason="function-finished",frame=@{func="main",args=[],
948d5102 19256file="hello.c",fullname="/home/foo/bar/hello.c",line="7"@}
594fe323 19257(gdb)
922fbb7b
AC
19258@end smallexample
19259
19260Function returning other than @code{void}. The name of the internal
19261@value{GDBN} variable storing the result is printed, together with the
19262value itself.
19263
19264@smallexample
19265-exec-finish
19266^running
594fe323 19267(gdb)
922fbb7b
AC
19268*stopped,reason="function-finished",frame=@{addr="0x000107b0",func="foo",
19269args=[@{name="a",value="1"],@{name="b",value="9"@}@},
948d5102 19270file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
922fbb7b 19271gdb-result-var="$1",return-value="0"
594fe323 19272(gdb)
922fbb7b
AC
19273@end smallexample
19274
19275
19276@subheading The @code{-exec-interrupt} Command
19277@findex -exec-interrupt
19278
19279@subsubheading Synopsis
19280
19281@smallexample
19282 -exec-interrupt
19283@end smallexample
19284
ef21caaf
NR
19285Interrupts the background execution of the target. Note how the token
19286associated with the stop message is the one for the execution command
19287that has been interrupted. The token for the interrupt itself only
19288appears in the @samp{^done} output. If the user is trying to
922fbb7b
AC
19289interrupt a non-running program, an error message will be printed.
19290
19291@subsubheading @value{GDBN} Command
19292
19293The corresponding @value{GDBN} command is @samp{interrupt}.
19294
19295@subsubheading Example
19296
19297@smallexample
594fe323 19298(gdb)
922fbb7b
AC
19299111-exec-continue
19300111^running
19301
594fe323 19302(gdb)
922fbb7b
AC
19303222-exec-interrupt
19304222^done
594fe323 19305(gdb)
922fbb7b 19306111*stopped,signal-name="SIGINT",signal-meaning="Interrupt",
76ff342d 19307frame=@{addr="0x00010140",func="foo",args=[],file="try.c",
948d5102 19308fullname="/home/foo/bar/try.c",line="13"@}
594fe323 19309(gdb)
922fbb7b 19310
594fe323 19311(gdb)
922fbb7b
AC
19312-exec-interrupt
19313^error,msg="mi_cmd_exec_interrupt: Inferior not executing."
594fe323 19314(gdb)
922fbb7b
AC
19315@end smallexample
19316
19317
19318@subheading The @code{-exec-next} Command
19319@findex -exec-next
19320
19321@subsubheading Synopsis
19322
19323@smallexample
19324 -exec-next
19325@end smallexample
19326
ef21caaf
NR
19327Resumes execution of the inferior program, stopping when the beginning
19328of the next source line is reached.
922fbb7b
AC
19329
19330@subsubheading @value{GDBN} Command
19331
19332The corresponding @value{GDBN} command is @samp{next}.
19333
19334@subsubheading Example
19335
19336@smallexample
19337-exec-next
19338^running
594fe323 19339(gdb)
922fbb7b 19340*stopped,reason="end-stepping-range",line="8",file="hello.c"
594fe323 19341(gdb)
922fbb7b
AC
19342@end smallexample
19343
19344
19345@subheading The @code{-exec-next-instruction} Command
19346@findex -exec-next-instruction
19347
19348@subsubheading Synopsis
19349
19350@smallexample
19351 -exec-next-instruction
19352@end smallexample
19353
ef21caaf
NR
19354Executes one machine instruction. If the instruction is a function
19355call, continues until the function returns. If the program stops at an
19356instruction in the middle of a source line, the address will be
19357printed as well.
922fbb7b
AC
19358
19359@subsubheading @value{GDBN} Command
19360
19361The corresponding @value{GDBN} command is @samp{nexti}.
19362
19363@subsubheading Example
19364
19365@smallexample
594fe323 19366(gdb)
922fbb7b
AC
19367-exec-next-instruction
19368^running
19369
594fe323 19370(gdb)
922fbb7b
AC
19371*stopped,reason="end-stepping-range",
19372addr="0x000100d4",line="5",file="hello.c"
594fe323 19373(gdb)
922fbb7b
AC
19374@end smallexample
19375
19376
19377@subheading The @code{-exec-return} Command
19378@findex -exec-return
19379
19380@subsubheading Synopsis
19381
19382@smallexample
19383 -exec-return
19384@end smallexample
19385
19386Makes current function return immediately. Doesn't execute the inferior.
19387Displays the new current frame.
19388
19389@subsubheading @value{GDBN} Command
19390
19391The corresponding @value{GDBN} command is @samp{return}.
19392
19393@subsubheading Example
19394
19395@smallexample
594fe323 19396(gdb)
922fbb7b
AC
19397200-break-insert callee4
19398200^done,bkpt=@{number="1",addr="0x00010734",
19399file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
594fe323 19400(gdb)
922fbb7b
AC
19401000-exec-run
19402000^running
594fe323 19403(gdb)
a47ec5fe 19404000*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",
922fbb7b 19405frame=@{func="callee4",args=[],
76ff342d
DJ
19406file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19407fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
594fe323 19408(gdb)
922fbb7b
AC
19409205-break-delete
19410205^done
594fe323 19411(gdb)
922fbb7b
AC
19412111-exec-return
19413111^done,frame=@{level="0",func="callee3",
19414args=[@{name="strarg",
19415value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
19416file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19417fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 19418(gdb)
922fbb7b
AC
19419@end smallexample
19420
19421
19422@subheading The @code{-exec-run} Command
19423@findex -exec-run
19424
19425@subsubheading Synopsis
19426
19427@smallexample
19428 -exec-run
19429@end smallexample
19430
ef21caaf
NR
19431Starts execution of the inferior from the beginning. The inferior
19432executes until either a breakpoint is encountered or the program
19433exits. In the latter case the output will include an exit code, if
19434the program has exited exceptionally.
922fbb7b
AC
19435
19436@subsubheading @value{GDBN} Command
19437
19438The corresponding @value{GDBN} command is @samp{run}.
19439
ef21caaf 19440@subsubheading Examples
922fbb7b
AC
19441
19442@smallexample
594fe323 19443(gdb)
922fbb7b
AC
19444-break-insert main
19445^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",line="4"@}
594fe323 19446(gdb)
922fbb7b
AC
19447-exec-run
19448^running
594fe323 19449(gdb)
a47ec5fe 19450*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",
76ff342d 19451frame=@{func="main",args=[],file="recursive2.c",
948d5102 19452fullname="/home/foo/bar/recursive2.c",line="4"@}
594fe323 19453(gdb)
922fbb7b
AC
19454@end smallexample
19455
ef21caaf
NR
19456@noindent
19457Program exited normally:
19458
19459@smallexample
594fe323 19460(gdb)
ef21caaf
NR
19461-exec-run
19462^running
594fe323 19463(gdb)
ef21caaf
NR
19464x = 55
19465*stopped,reason="exited-normally"
594fe323 19466(gdb)
ef21caaf
NR
19467@end smallexample
19468
19469@noindent
19470Program exited exceptionally:
19471
19472@smallexample
594fe323 19473(gdb)
ef21caaf
NR
19474-exec-run
19475^running
594fe323 19476(gdb)
ef21caaf
NR
19477x = 55
19478*stopped,reason="exited",exit-code="01"
594fe323 19479(gdb)
ef21caaf
NR
19480@end smallexample
19481
19482Another way the program can terminate is if it receives a signal such as
19483@code{SIGINT}. In this case, @sc{gdb/mi} displays this:
19484
19485@smallexample
594fe323 19486(gdb)
ef21caaf
NR
19487*stopped,reason="exited-signalled",signal-name="SIGINT",
19488signal-meaning="Interrupt"
19489@end smallexample
19490
922fbb7b 19491
a2c02241
NR
19492@c @subheading -exec-signal
19493
19494
19495@subheading The @code{-exec-step} Command
19496@findex -exec-step
922fbb7b
AC
19497
19498@subsubheading Synopsis
19499
19500@smallexample
a2c02241 19501 -exec-step
922fbb7b
AC
19502@end smallexample
19503
a2c02241
NR
19504Resumes execution of the inferior program, stopping when the beginning
19505of the next source line is reached, if the next source line is not a
19506function call. If it is, stop at the first instruction of the called
19507function.
922fbb7b
AC
19508
19509@subsubheading @value{GDBN} Command
19510
a2c02241 19511The corresponding @value{GDBN} command is @samp{step}.
922fbb7b
AC
19512
19513@subsubheading Example
19514
19515Stepping into a function:
19516
19517@smallexample
19518-exec-step
19519^running
594fe323 19520(gdb)
922fbb7b
AC
19521*stopped,reason="end-stepping-range",
19522frame=@{func="foo",args=[@{name="a",value="10"@},
76ff342d 19523@{name="b",value="0"@}],file="recursive2.c",
948d5102 19524fullname="/home/foo/bar/recursive2.c",line="11"@}
594fe323 19525(gdb)
922fbb7b
AC
19526@end smallexample
19527
19528Regular stepping:
19529
19530@smallexample
19531-exec-step
19532^running
594fe323 19533(gdb)
922fbb7b 19534*stopped,reason="end-stepping-range",line="14",file="recursive2.c"
594fe323 19535(gdb)
922fbb7b
AC
19536@end smallexample
19537
19538
19539@subheading The @code{-exec-step-instruction} Command
19540@findex -exec-step-instruction
19541
19542@subsubheading Synopsis
19543
19544@smallexample
19545 -exec-step-instruction
19546@end smallexample
19547
ef21caaf
NR
19548Resumes the inferior which executes one machine instruction. The
19549output, once @value{GDBN} has stopped, will vary depending on whether
19550we have stopped in the middle of a source line or not. In the former
19551case, the address at which the program stopped will be printed as
922fbb7b
AC
19552well.
19553
19554@subsubheading @value{GDBN} Command
19555
19556The corresponding @value{GDBN} command is @samp{stepi}.
19557
19558@subsubheading Example
19559
19560@smallexample
594fe323 19561(gdb)
922fbb7b
AC
19562-exec-step-instruction
19563^running
19564
594fe323 19565(gdb)
922fbb7b 19566*stopped,reason="end-stepping-range",
76ff342d 19567frame=@{func="foo",args=[],file="try.c",
948d5102 19568fullname="/home/foo/bar/try.c",line="10"@}
594fe323 19569(gdb)
922fbb7b
AC
19570-exec-step-instruction
19571^running
19572
594fe323 19573(gdb)
922fbb7b 19574*stopped,reason="end-stepping-range",
76ff342d 19575frame=@{addr="0x000100f4",func="foo",args=[],file="try.c",
948d5102 19576fullname="/home/foo/bar/try.c",line="10"@}
594fe323 19577(gdb)
922fbb7b
AC
19578@end smallexample
19579
19580
19581@subheading The @code{-exec-until} Command
19582@findex -exec-until
19583
19584@subsubheading Synopsis
19585
19586@smallexample
19587 -exec-until [ @var{location} ]
19588@end smallexample
19589
ef21caaf
NR
19590Executes the inferior until the @var{location} specified in the
19591argument is reached. If there is no argument, the inferior executes
19592until a source line greater than the current one is reached. The
19593reason for stopping in this case will be @samp{location-reached}.
922fbb7b
AC
19594
19595@subsubheading @value{GDBN} Command
19596
19597The corresponding @value{GDBN} command is @samp{until}.
19598
19599@subsubheading Example
19600
19601@smallexample
594fe323 19602(gdb)
922fbb7b
AC
19603-exec-until recursive2.c:6
19604^running
594fe323 19605(gdb)
922fbb7b
AC
19606x = 55
19607*stopped,reason="location-reached",frame=@{func="main",args=[],
948d5102 19608file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="6"@}
594fe323 19609(gdb)
922fbb7b
AC
19610@end smallexample
19611
19612@ignore
19613@subheading -file-clear
19614Is this going away????
19615@end ignore
19616
351ff01a 19617@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
19618@node GDB/MI Stack Manipulation
19619@section @sc{gdb/mi} Stack Manipulation Commands
351ff01a 19620
922fbb7b 19621
a2c02241
NR
19622@subheading The @code{-stack-info-frame} Command
19623@findex -stack-info-frame
922fbb7b
AC
19624
19625@subsubheading Synopsis
19626
19627@smallexample
a2c02241 19628 -stack-info-frame
922fbb7b
AC
19629@end smallexample
19630
a2c02241 19631Get info on the selected frame.
922fbb7b
AC
19632
19633@subsubheading @value{GDBN} Command
19634
a2c02241
NR
19635The corresponding @value{GDBN} command is @samp{info frame} or @samp{frame}
19636(without arguments).
922fbb7b
AC
19637
19638@subsubheading Example
19639
19640@smallexample
594fe323 19641(gdb)
a2c02241
NR
19642-stack-info-frame
19643^done,frame=@{level="1",addr="0x0001076c",func="callee3",
19644file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19645fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@}
594fe323 19646(gdb)
922fbb7b
AC
19647@end smallexample
19648
a2c02241
NR
19649@subheading The @code{-stack-info-depth} Command
19650@findex -stack-info-depth
922fbb7b
AC
19651
19652@subsubheading Synopsis
19653
19654@smallexample
a2c02241 19655 -stack-info-depth [ @var{max-depth} ]
922fbb7b
AC
19656@end smallexample
19657
a2c02241
NR
19658Return the depth of the stack. If the integer argument @var{max-depth}
19659is specified, do not count beyond @var{max-depth} frames.
922fbb7b
AC
19660
19661@subsubheading @value{GDBN} Command
19662
a2c02241 19663There's no equivalent @value{GDBN} command.
922fbb7b
AC
19664
19665@subsubheading Example
19666
a2c02241
NR
19667For a stack with frame levels 0 through 11:
19668
922fbb7b 19669@smallexample
594fe323 19670(gdb)
a2c02241
NR
19671-stack-info-depth
19672^done,depth="12"
594fe323 19673(gdb)
a2c02241
NR
19674-stack-info-depth 4
19675^done,depth="4"
594fe323 19676(gdb)
a2c02241
NR
19677-stack-info-depth 12
19678^done,depth="12"
594fe323 19679(gdb)
a2c02241
NR
19680-stack-info-depth 11
19681^done,depth="11"
594fe323 19682(gdb)
a2c02241
NR
19683-stack-info-depth 13
19684^done,depth="12"
594fe323 19685(gdb)
922fbb7b
AC
19686@end smallexample
19687
a2c02241
NR
19688@subheading The @code{-stack-list-arguments} Command
19689@findex -stack-list-arguments
922fbb7b
AC
19690
19691@subsubheading Synopsis
19692
19693@smallexample
a2c02241
NR
19694 -stack-list-arguments @var{show-values}
19695 [ @var{low-frame} @var{high-frame} ]
922fbb7b
AC
19696@end smallexample
19697
a2c02241
NR
19698Display a list of the arguments for the frames between @var{low-frame}
19699and @var{high-frame} (inclusive). If @var{low-frame} and
2f1acb09
VP
19700@var{high-frame} are not provided, list the arguments for the whole
19701call stack. If the two arguments are equal, show the single frame
19702at the corresponding level. It is an error if @var{low-frame} is
19703larger than the actual number of frames. On the other hand,
19704@var{high-frame} may be larger than the actual number of frames, in
19705which case only existing frames will be returned.
a2c02241
NR
19706
19707The @var{show-values} argument must have a value of 0 or 1. A value of
197080 means that only the names of the arguments are listed, a value of 1
19709means that both names and values of the arguments are printed.
922fbb7b
AC
19710
19711@subsubheading @value{GDBN} Command
19712
a2c02241
NR
19713@value{GDBN} does not have an equivalent command. @code{gdbtk} has a
19714@samp{gdb_get_args} command which partially overlaps with the
19715functionality of @samp{-stack-list-arguments}.
922fbb7b
AC
19716
19717@subsubheading Example
922fbb7b 19718
a2c02241 19719@smallexample
594fe323 19720(gdb)
a2c02241
NR
19721-stack-list-frames
19722^done,
19723stack=[
19724frame=@{level="0",addr="0x00010734",func="callee4",
19725file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19726fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@},
19727frame=@{level="1",addr="0x0001076c",func="callee3",
19728file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19729fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@},
19730frame=@{level="2",addr="0x0001078c",func="callee2",
19731file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19732fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="22"@},
19733frame=@{level="3",addr="0x000107b4",func="callee1",
19734file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19735fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="27"@},
19736frame=@{level="4",addr="0x000107e0",func="main",
19737file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19738fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="32"@}]
594fe323 19739(gdb)
a2c02241
NR
19740-stack-list-arguments 0
19741^done,
19742stack-args=[
19743frame=@{level="0",args=[]@},
19744frame=@{level="1",args=[name="strarg"]@},
19745frame=@{level="2",args=[name="intarg",name="strarg"]@},
19746frame=@{level="3",args=[name="intarg",name="strarg",name="fltarg"]@},
19747frame=@{level="4",args=[]@}]
594fe323 19748(gdb)
a2c02241
NR
19749-stack-list-arguments 1
19750^done,
19751stack-args=[
19752frame=@{level="0",args=[]@},
19753frame=@{level="1",
19754 args=[@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19755frame=@{level="2",args=[
19756@{name="intarg",value="2"@},
19757@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19758@{frame=@{level="3",args=[
19759@{name="intarg",value="2"@},
19760@{name="strarg",value="0x11940 \"A string argument.\""@},
19761@{name="fltarg",value="3.5"@}]@},
19762frame=@{level="4",args=[]@}]
594fe323 19763(gdb)
a2c02241
NR
19764-stack-list-arguments 0 2 2
19765^done,stack-args=[frame=@{level="2",args=[name="intarg",name="strarg"]@}]
594fe323 19766(gdb)
a2c02241
NR
19767-stack-list-arguments 1 2 2
19768^done,stack-args=[frame=@{level="2",
19769args=[@{name="intarg",value="2"@},
19770@{name="strarg",value="0x11940 \"A string argument.\""@}]@}]
594fe323 19771(gdb)
a2c02241
NR
19772@end smallexample
19773
19774@c @subheading -stack-list-exception-handlers
922fbb7b 19775
a2c02241
NR
19776
19777@subheading The @code{-stack-list-frames} Command
19778@findex -stack-list-frames
1abaf70c
BR
19779
19780@subsubheading Synopsis
19781
19782@smallexample
a2c02241 19783 -stack-list-frames [ @var{low-frame} @var{high-frame} ]
1abaf70c
BR
19784@end smallexample
19785
a2c02241
NR
19786List the frames currently on the stack. For each frame it displays the
19787following info:
19788
19789@table @samp
19790@item @var{level}
d3e8051b 19791The frame number, 0 being the topmost frame, i.e., the innermost function.
a2c02241
NR
19792@item @var{addr}
19793The @code{$pc} value for that frame.
19794@item @var{func}
19795Function name.
19796@item @var{file}
19797File name of the source file where the function lives.
19798@item @var{line}
19799Line number corresponding to the @code{$pc}.
19800@end table
19801
19802If invoked without arguments, this command prints a backtrace for the
19803whole stack. If given two integer arguments, it shows the frames whose
19804levels are between the two arguments (inclusive). If the two arguments
2ab1eb7a
VP
19805are equal, it shows the single frame at the corresponding level. It is
19806an error if @var{low-frame} is larger than the actual number of
a5451f4e 19807frames. On the other hand, @var{high-frame} may be larger than the
2ab1eb7a 19808actual number of frames, in which case only existing frames will be returned.
1abaf70c
BR
19809
19810@subsubheading @value{GDBN} Command
19811
a2c02241 19812The corresponding @value{GDBN} commands are @samp{backtrace} and @samp{where}.
1abaf70c
BR
19813
19814@subsubheading Example
19815
a2c02241
NR
19816Full stack backtrace:
19817
1abaf70c 19818@smallexample
594fe323 19819(gdb)
a2c02241
NR
19820-stack-list-frames
19821^done,stack=
19822[frame=@{level="0",addr="0x0001076c",func="foo",
19823 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="11"@},
19824frame=@{level="1",addr="0x000107a4",func="foo",
19825 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19826frame=@{level="2",addr="0x000107a4",func="foo",
19827 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19828frame=@{level="3",addr="0x000107a4",func="foo",
19829 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19830frame=@{level="4",addr="0x000107a4",func="foo",
19831 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19832frame=@{level="5",addr="0x000107a4",func="foo",
19833 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19834frame=@{level="6",addr="0x000107a4",func="foo",
19835 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19836frame=@{level="7",addr="0x000107a4",func="foo",
19837 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19838frame=@{level="8",addr="0x000107a4",func="foo",
19839 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19840frame=@{level="9",addr="0x000107a4",func="foo",
19841 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19842frame=@{level="10",addr="0x000107a4",func="foo",
19843 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19844frame=@{level="11",addr="0x00010738",func="main",
19845 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="4"@}]
594fe323 19846(gdb)
1abaf70c
BR
19847@end smallexample
19848
a2c02241 19849Show frames between @var{low_frame} and @var{high_frame}:
1abaf70c 19850
a2c02241 19851@smallexample
594fe323 19852(gdb)
a2c02241
NR
19853-stack-list-frames 3 5
19854^done,stack=
19855[frame=@{level="3",addr="0x000107a4",func="foo",
19856 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19857frame=@{level="4",addr="0x000107a4",func="foo",
19858 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19859frame=@{level="5",addr="0x000107a4",func="foo",
19860 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
594fe323 19861(gdb)
a2c02241 19862@end smallexample
922fbb7b 19863
a2c02241 19864Show a single frame:
922fbb7b
AC
19865
19866@smallexample
594fe323 19867(gdb)
a2c02241
NR
19868-stack-list-frames 3 3
19869^done,stack=
19870[frame=@{level="3",addr="0x000107a4",func="foo",
19871 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
594fe323 19872(gdb)
922fbb7b
AC
19873@end smallexample
19874
922fbb7b 19875
a2c02241
NR
19876@subheading The @code{-stack-list-locals} Command
19877@findex -stack-list-locals
57c22c6c 19878
a2c02241 19879@subsubheading Synopsis
922fbb7b
AC
19880
19881@smallexample
a2c02241 19882 -stack-list-locals @var{print-values}
922fbb7b
AC
19883@end smallexample
19884
a2c02241
NR
19885Display the local variable names for the selected frame. If
19886@var{print-values} is 0 or @code{--no-values}, print only the names of
19887the variables; if it is 1 or @code{--all-values}, print also their
19888values; and if it is 2 or @code{--simple-values}, print the name,
19889type and value for simple data types and the name and type for arrays,
19890structures and unions. In this last case, a frontend can immediately
19891display the value of simple data types and create variable objects for
d3e8051b 19892other data types when the user wishes to explore their values in
a2c02241 19893more detail.
922fbb7b
AC
19894
19895@subsubheading @value{GDBN} Command
19896
a2c02241 19897@samp{info locals} in @value{GDBN}, @samp{gdb_get_locals} in @code{gdbtk}.
922fbb7b
AC
19898
19899@subsubheading Example
922fbb7b
AC
19900
19901@smallexample
594fe323 19902(gdb)
a2c02241
NR
19903-stack-list-locals 0
19904^done,locals=[name="A",name="B",name="C"]
594fe323 19905(gdb)
a2c02241
NR
19906-stack-list-locals --all-values
19907^done,locals=[@{name="A",value="1"@},@{name="B",value="2"@},
19908 @{name="C",value="@{1, 2, 3@}"@}]
19909-stack-list-locals --simple-values
19910^done,locals=[@{name="A",type="int",value="1"@},
19911 @{name="B",type="int",value="2"@},@{name="C",type="int [3]"@}]
594fe323 19912(gdb)
922fbb7b
AC
19913@end smallexample
19914
922fbb7b 19915
a2c02241
NR
19916@subheading The @code{-stack-select-frame} Command
19917@findex -stack-select-frame
922fbb7b
AC
19918
19919@subsubheading Synopsis
19920
19921@smallexample
a2c02241 19922 -stack-select-frame @var{framenum}
922fbb7b
AC
19923@end smallexample
19924
a2c02241
NR
19925Change the selected frame. Select a different frame @var{framenum} on
19926the stack.
922fbb7b
AC
19927
19928@subsubheading @value{GDBN} Command
19929
a2c02241
NR
19930The corresponding @value{GDBN} commands are @samp{frame}, @samp{up},
19931@samp{down}, @samp{select-frame}, @samp{up-silent}, and @samp{down-silent}.
922fbb7b
AC
19932
19933@subsubheading Example
19934
19935@smallexample
594fe323 19936(gdb)
a2c02241 19937-stack-select-frame 2
922fbb7b 19938^done
594fe323 19939(gdb)
922fbb7b
AC
19940@end smallexample
19941
19942@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
19943@node GDB/MI Variable Objects
19944@section @sc{gdb/mi} Variable Objects
922fbb7b 19945
a1b5960f 19946@ignore
922fbb7b 19947
a2c02241 19948@subheading Motivation for Variable Objects in @sc{gdb/mi}
922fbb7b 19949
a2c02241
NR
19950For the implementation of a variable debugger window (locals, watched
19951expressions, etc.), we are proposing the adaptation of the existing code
19952used by @code{Insight}.
922fbb7b 19953
a2c02241 19954The two main reasons for that are:
922fbb7b 19955
a2c02241
NR
19956@enumerate 1
19957@item
19958It has been proven in practice (it is already on its second generation).
922fbb7b 19959
a2c02241
NR
19960@item
19961It will shorten development time (needless to say how important it is
19962now).
19963@end enumerate
922fbb7b 19964
a2c02241
NR
19965The original interface was designed to be used by Tcl code, so it was
19966slightly changed so it could be used through @sc{gdb/mi}. This section
19967describes the @sc{gdb/mi} operations that will be available and gives some
19968hints about their use.
922fbb7b 19969
a2c02241
NR
19970@emph{Note}: In addition to the set of operations described here, we
19971expect the @sc{gui} implementation of a variable window to require, at
19972least, the following operations:
922fbb7b 19973
a2c02241
NR
19974@itemize @bullet
19975@item @code{-gdb-show} @code{output-radix}
19976@item @code{-stack-list-arguments}
19977@item @code{-stack-list-locals}
19978@item @code{-stack-select-frame}
19979@end itemize
922fbb7b 19980
a1b5960f
VP
19981@end ignore
19982
c8b2f53c 19983@subheading Introduction to Variable Objects
922fbb7b 19984
a2c02241 19985@cindex variable objects in @sc{gdb/mi}
c8b2f53c
VP
19986
19987Variable objects are "object-oriented" MI interface for examining and
19988changing values of expressions. Unlike some other MI interfaces that
19989work with expressions, variable objects are specifically designed for
19990simple and efficient presentation in the frontend. A variable object
19991is identified by string name. When a variable object is created, the
19992frontend specifies the expression for that variable object. The
19993expression can be a simple variable, or it can be an arbitrary complex
19994expression, and can even involve CPU registers. After creating a
19995variable object, the frontend can invoke other variable object
19996operations---for example to obtain or change the value of a variable
19997object, or to change display format.
19998
19999Variable objects have hierarchical tree structure. Any variable object
20000that corresponds to a composite type, such as structure in C, has
20001a number of child variable objects, for example corresponding to each
20002element of a structure. A child variable object can itself have
20003children, recursively. Recursion ends when we reach
25d5ea92
VP
20004leaf variable objects, which always have built-in types. Child variable
20005objects are created only by explicit request, so if a frontend
20006is not interested in the children of a particular variable object, no
20007child will be created.
c8b2f53c
VP
20008
20009For a leaf variable object it is possible to obtain its value as a
20010string, or set the value from a string. String value can be also
20011obtained for a non-leaf variable object, but it's generally a string
20012that only indicates the type of the object, and does not list its
20013contents. Assignment to a non-leaf variable object is not allowed.
20014
20015A frontend does not need to read the values of all variable objects each time
20016the program stops. Instead, MI provides an update command that lists all
20017variable objects whose values has changed since the last update
20018operation. This considerably reduces the amount of data that must
25d5ea92
VP
20019be transferred to the frontend. As noted above, children variable
20020objects are created on demand, and only leaf variable objects have a
20021real value. As result, gdb will read target memory only for leaf
20022variables that frontend has created.
20023
20024The automatic update is not always desirable. For example, a frontend
20025might want to keep a value of some expression for future reference,
20026and never update it. For another example, fetching memory is
20027relatively slow for embedded targets, so a frontend might want
20028to disable automatic update for the variables that are either not
20029visible on the screen, or ``closed''. This is possible using so
20030called ``frozen variable objects''. Such variable objects are never
20031implicitly updated.
922fbb7b 20032
a2c02241
NR
20033The following is the complete set of @sc{gdb/mi} operations defined to
20034access this functionality:
922fbb7b 20035
a2c02241
NR
20036@multitable @columnfractions .4 .6
20037@item @strong{Operation}
20038@tab @strong{Description}
922fbb7b 20039
a2c02241
NR
20040@item @code{-var-create}
20041@tab create a variable object
20042@item @code{-var-delete}
22d8a470 20043@tab delete the variable object and/or its children
a2c02241
NR
20044@item @code{-var-set-format}
20045@tab set the display format of this variable
20046@item @code{-var-show-format}
20047@tab show the display format of this variable
20048@item @code{-var-info-num-children}
20049@tab tells how many children this object has
20050@item @code{-var-list-children}
20051@tab return a list of the object's children
20052@item @code{-var-info-type}
20053@tab show the type of this variable object
20054@item @code{-var-info-expression}
02142340
VP
20055@tab print parent-relative expression that this variable object represents
20056@item @code{-var-info-path-expression}
20057@tab print full expression that this variable object represents
a2c02241
NR
20058@item @code{-var-show-attributes}
20059@tab is this variable editable? does it exist here?
20060@item @code{-var-evaluate-expression}
20061@tab get the value of this variable
20062@item @code{-var-assign}
20063@tab set the value of this variable
20064@item @code{-var-update}
20065@tab update the variable and its children
25d5ea92
VP
20066@item @code{-var-set-frozen}
20067@tab set frozeness attribute
a2c02241 20068@end multitable
922fbb7b 20069
a2c02241
NR
20070In the next subsection we describe each operation in detail and suggest
20071how it can be used.
922fbb7b 20072
a2c02241 20073@subheading Description And Use of Operations on Variable Objects
922fbb7b 20074
a2c02241
NR
20075@subheading The @code{-var-create} Command
20076@findex -var-create
ef21caaf 20077
a2c02241 20078@subsubheading Synopsis
ef21caaf 20079
a2c02241
NR
20080@smallexample
20081 -var-create @{@var{name} | "-"@}
20082 @{@var{frame-addr} | "*"@} @var{expression}
20083@end smallexample
20084
20085This operation creates a variable object, which allows the monitoring of
20086a variable, the result of an expression, a memory cell or a CPU
20087register.
ef21caaf 20088
a2c02241
NR
20089The @var{name} parameter is the string by which the object can be
20090referenced. It must be unique. If @samp{-} is specified, the varobj
20091system will generate a string ``varNNNNNN'' automatically. It will be
20092unique provided that one does not specify @var{name} on that format.
20093The command fails if a duplicate name is found.
ef21caaf 20094
a2c02241
NR
20095The frame under which the expression should be evaluated can be
20096specified by @var{frame-addr}. A @samp{*} indicates that the current
20097frame should be used.
922fbb7b 20098
a2c02241
NR
20099@var{expression} is any expression valid on the current language set (must not
20100begin with a @samp{*}), or one of the following:
922fbb7b 20101
a2c02241
NR
20102@itemize @bullet
20103@item
20104@samp{*@var{addr}}, where @var{addr} is the address of a memory cell
922fbb7b 20105
a2c02241
NR
20106@item
20107@samp{*@var{addr}-@var{addr}} --- a memory address range (TBD)
922fbb7b 20108
a2c02241
NR
20109@item
20110@samp{$@var{regname}} --- a CPU register name
20111@end itemize
922fbb7b 20112
a2c02241 20113@subsubheading Result
922fbb7b 20114
a2c02241
NR
20115This operation returns the name, number of children and the type of the
20116object created. Type is returned as a string as the ones generated by
20117the @value{GDBN} CLI:
922fbb7b
AC
20118
20119@smallexample
a2c02241 20120 name="@var{name}",numchild="N",type="@var{type}"
dcaaae04
NR
20121@end smallexample
20122
a2c02241
NR
20123
20124@subheading The @code{-var-delete} Command
20125@findex -var-delete
922fbb7b
AC
20126
20127@subsubheading Synopsis
20128
20129@smallexample
22d8a470 20130 -var-delete [ -c ] @var{name}
922fbb7b
AC
20131@end smallexample
20132
a2c02241 20133Deletes a previously created variable object and all of its children.
22d8a470 20134With the @samp{-c} option, just deletes the children.
922fbb7b 20135
a2c02241 20136Returns an error if the object @var{name} is not found.
922fbb7b 20137
922fbb7b 20138
a2c02241
NR
20139@subheading The @code{-var-set-format} Command
20140@findex -var-set-format
922fbb7b 20141
a2c02241 20142@subsubheading Synopsis
922fbb7b
AC
20143
20144@smallexample
a2c02241 20145 -var-set-format @var{name} @var{format-spec}
922fbb7b
AC
20146@end smallexample
20147
a2c02241
NR
20148Sets the output format for the value of the object @var{name} to be
20149@var{format-spec}.
20150
de051565 20151@anchor{-var-set-format}
a2c02241
NR
20152The syntax for the @var{format-spec} is as follows:
20153
20154@smallexample
20155 @var{format-spec} @expansion{}
20156 @{binary | decimal | hexadecimal | octal | natural@}
20157@end smallexample
20158
c8b2f53c
VP
20159The natural format is the default format choosen automatically
20160based on the variable type (like decimal for an @code{int}, hex
20161for pointers, etc.).
20162
20163For a variable with children, the format is set only on the
20164variable itself, and the children are not affected.
a2c02241
NR
20165
20166@subheading The @code{-var-show-format} Command
20167@findex -var-show-format
922fbb7b
AC
20168
20169@subsubheading Synopsis
20170
20171@smallexample
a2c02241 20172 -var-show-format @var{name}
922fbb7b
AC
20173@end smallexample
20174
a2c02241 20175Returns the format used to display the value of the object @var{name}.
922fbb7b 20176
a2c02241
NR
20177@smallexample
20178 @var{format} @expansion{}
20179 @var{format-spec}
20180@end smallexample
922fbb7b 20181
922fbb7b 20182
a2c02241
NR
20183@subheading The @code{-var-info-num-children} Command
20184@findex -var-info-num-children
20185
20186@subsubheading Synopsis
20187
20188@smallexample
20189 -var-info-num-children @var{name}
20190@end smallexample
20191
20192Returns the number of children of a variable object @var{name}:
20193
20194@smallexample
20195 numchild=@var{n}
20196@end smallexample
20197
20198
20199@subheading The @code{-var-list-children} Command
20200@findex -var-list-children
20201
20202@subsubheading Synopsis
20203
20204@smallexample
20205 -var-list-children [@var{print-values}] @var{name}
20206@end smallexample
20207@anchor{-var-list-children}
20208
20209Return a list of the children of the specified variable object and
20210create variable objects for them, if they do not already exist. With
20211a single argument or if @var{print-values} has a value for of 0 or
20212@code{--no-values}, print only the names of the variables; if
20213@var{print-values} is 1 or @code{--all-values}, also print their
20214values; and if it is 2 or @code{--simple-values} print the name and
20215value for simple data types and just the name for arrays, structures
20216and unions.
922fbb7b
AC
20217
20218@subsubheading Example
20219
20220@smallexample
594fe323 20221(gdb)
a2c02241
NR
20222 -var-list-children n
20223 ^done,numchild=@var{n},children=[@{name=@var{name},
20224 numchild=@var{n},type=@var{type}@},@r{(repeats N times)}]
594fe323 20225(gdb)
a2c02241
NR
20226 -var-list-children --all-values n
20227 ^done,numchild=@var{n},children=[@{name=@var{name},
20228 numchild=@var{n},value=@var{value},type=@var{type}@},@r{(repeats N times)}]
922fbb7b
AC
20229@end smallexample
20230
922fbb7b 20231
a2c02241
NR
20232@subheading The @code{-var-info-type} Command
20233@findex -var-info-type
922fbb7b 20234
a2c02241
NR
20235@subsubheading Synopsis
20236
20237@smallexample
20238 -var-info-type @var{name}
20239@end smallexample
20240
20241Returns the type of the specified variable @var{name}. The type is
20242returned as a string in the same format as it is output by the
20243@value{GDBN} CLI:
20244
20245@smallexample
20246 type=@var{typename}
20247@end smallexample
20248
20249
20250@subheading The @code{-var-info-expression} Command
20251@findex -var-info-expression
922fbb7b
AC
20252
20253@subsubheading Synopsis
20254
20255@smallexample
a2c02241 20256 -var-info-expression @var{name}
922fbb7b
AC
20257@end smallexample
20258
02142340
VP
20259Returns a string that is suitable for presenting this
20260variable object in user interface. The string is generally
20261not valid expression in the current language, and cannot be evaluated.
20262
20263For example, if @code{a} is an array, and variable object
20264@code{A} was created for @code{a}, then we'll get this output:
922fbb7b 20265
a2c02241 20266@smallexample
02142340
VP
20267(gdb) -var-info-expression A.1
20268^done,lang="C",exp="1"
a2c02241 20269@end smallexample
922fbb7b 20270
a2c02241 20271@noindent
02142340
VP
20272Here, the values of @code{lang} can be @code{@{"C" | "C++" | "Java"@}}.
20273
20274Note that the output of the @code{-var-list-children} command also
20275includes those expressions, so the @code{-var-info-expression} command
20276is of limited use.
20277
20278@subheading The @code{-var-info-path-expression} Command
20279@findex -var-info-path-expression
20280
20281@subsubheading Synopsis
20282
20283@smallexample
20284 -var-info-path-expression @var{name}
20285@end smallexample
20286
20287Returns an expression that can be evaluated in the current
20288context and will yield the same value that a variable object has.
20289Compare this with the @code{-var-info-expression} command, which
20290result can be used only for UI presentation. Typical use of
20291the @code{-var-info-path-expression} command is creating a
20292watchpoint from a variable object.
20293
20294For example, suppose @code{C} is a C@t{++} class, derived from class
20295@code{Base}, and that the @code{Base} class has a member called
20296@code{m_size}. Assume a variable @code{c} is has the type of
20297@code{C} and a variable object @code{C} was created for variable
20298@code{c}. Then, we'll get this output:
20299@smallexample
20300(gdb) -var-info-path-expression C.Base.public.m_size
20301^done,path_expr=((Base)c).m_size)
20302@end smallexample
922fbb7b 20303
a2c02241
NR
20304@subheading The @code{-var-show-attributes} Command
20305@findex -var-show-attributes
922fbb7b 20306
a2c02241 20307@subsubheading Synopsis
922fbb7b 20308
a2c02241
NR
20309@smallexample
20310 -var-show-attributes @var{name}
20311@end smallexample
922fbb7b 20312
a2c02241 20313List attributes of the specified variable object @var{name}:
922fbb7b
AC
20314
20315@smallexample
a2c02241 20316 status=@var{attr} [ ( ,@var{attr} )* ]
922fbb7b
AC
20317@end smallexample
20318
a2c02241
NR
20319@noindent
20320where @var{attr} is @code{@{ @{ editable | noneditable @} | TBD @}}.
20321
20322@subheading The @code{-var-evaluate-expression} Command
20323@findex -var-evaluate-expression
20324
20325@subsubheading Synopsis
20326
20327@smallexample
de051565 20328 -var-evaluate-expression [-f @var{format-spec}] @var{name}
a2c02241
NR
20329@end smallexample
20330
20331Evaluates the expression that is represented by the specified variable
de051565
MK
20332object and returns its value as a string. The format of the string
20333can be specified with the @samp{-f} option. The possible values of
20334this option are the same as for @code{-var-set-format}
20335(@pxref{-var-set-format}). If the @samp{-f} option is not specified,
20336the current display format will be used. The current display format
20337can be changed using the @code{-var-set-format} command.
a2c02241
NR
20338
20339@smallexample
20340 value=@var{value}
20341@end smallexample
20342
20343Note that one must invoke @code{-var-list-children} for a variable
20344before the value of a child variable can be evaluated.
20345
20346@subheading The @code{-var-assign} Command
20347@findex -var-assign
20348
20349@subsubheading Synopsis
20350
20351@smallexample
20352 -var-assign @var{name} @var{expression}
20353@end smallexample
20354
20355Assigns the value of @var{expression} to the variable object specified
20356by @var{name}. The object must be @samp{editable}. If the variable's
20357value is altered by the assign, the variable will show up in any
20358subsequent @code{-var-update} list.
20359
20360@subsubheading Example
922fbb7b
AC
20361
20362@smallexample
594fe323 20363(gdb)
a2c02241
NR
20364-var-assign var1 3
20365^done,value="3"
594fe323 20366(gdb)
a2c02241
NR
20367-var-update *
20368^done,changelist=[@{name="var1",in_scope="true",type_changed="false"@}]
594fe323 20369(gdb)
922fbb7b
AC
20370@end smallexample
20371
a2c02241
NR
20372@subheading The @code{-var-update} Command
20373@findex -var-update
20374
20375@subsubheading Synopsis
20376
20377@smallexample
20378 -var-update [@var{print-values}] @{@var{name} | "*"@}
20379@end smallexample
20380
c8b2f53c
VP
20381Reevaluate the expressions corresponding to the variable object
20382@var{name} and all its direct and indirect children, and return the
36ece8b3
NR
20383list of variable objects whose values have changed; @var{name} must
20384be a root variable object. Here, ``changed'' means that the result of
20385@code{-var-evaluate-expression} before and after the
20386@code{-var-update} is different. If @samp{*} is used as the variable
9f708cb2
VP
20387object names, all existing variable objects are updated, except
20388for frozen ones (@pxref{-var-set-frozen}). The option
36ece8b3 20389@var{print-values} determines whether both names and values, or just
de051565 20390names are printed. The possible values of this option are the same
36ece8b3
NR
20391as for @code{-var-list-children} (@pxref{-var-list-children}). It is
20392recommended to use the @samp{--all-values} option, to reduce the
20393number of MI commands needed on each program stop.
c8b2f53c 20394
a2c02241
NR
20395
20396@subsubheading Example
922fbb7b
AC
20397
20398@smallexample
594fe323 20399(gdb)
a2c02241
NR
20400-var-assign var1 3
20401^done,value="3"
594fe323 20402(gdb)
a2c02241
NR
20403-var-update --all-values var1
20404^done,changelist=[@{name="var1",value="3",in_scope="true",
20405type_changed="false"@}]
594fe323 20406(gdb)
922fbb7b
AC
20407@end smallexample
20408
9f708cb2 20409@anchor{-var-update}
36ece8b3
NR
20410The field in_scope may take three values:
20411
20412@table @code
20413@item "true"
20414The variable object's current value is valid.
20415
20416@item "false"
20417The variable object does not currently hold a valid value but it may
20418hold one in the future if its associated expression comes back into
20419scope.
20420
20421@item "invalid"
20422The variable object no longer holds a valid value.
20423This can occur when the executable file being debugged has changed,
20424either through recompilation or by using the @value{GDBN} @code{file}
20425command. The front end should normally choose to delete these variable
20426objects.
20427@end table
20428
20429In the future new values may be added to this list so the front should
20430be prepared for this possibility. @xref{GDB/MI Development and Front Ends, ,@sc{GDB/MI} Development and Front Ends}.
20431
25d5ea92
VP
20432@subheading The @code{-var-set-frozen} Command
20433@findex -var-set-frozen
9f708cb2 20434@anchor{-var-set-frozen}
25d5ea92
VP
20435
20436@subsubheading Synopsis
20437
20438@smallexample
9f708cb2 20439 -var-set-frozen @var{name} @var{flag}
25d5ea92
VP
20440@end smallexample
20441
9f708cb2 20442Set the frozenness flag on the variable object @var{name}. The
25d5ea92 20443@var{flag} parameter should be either @samp{1} to make the variable
9f708cb2 20444frozen or @samp{0} to make it unfrozen. If a variable object is
25d5ea92 20445frozen, then neither itself, nor any of its children, are
9f708cb2 20446implicitly updated by @code{-var-update} of
25d5ea92
VP
20447a parent variable or by @code{-var-update *}. Only
20448@code{-var-update} of the variable itself will update its value and
20449values of its children. After a variable object is unfrozen, it is
20450implicitly updated by all subsequent @code{-var-update} operations.
20451Unfreezing a variable does not update it, only subsequent
20452@code{-var-update} does.
20453
20454@subsubheading Example
20455
20456@smallexample
20457(gdb)
20458-var-set-frozen V 1
20459^done
20460(gdb)
20461@end smallexample
20462
20463
a2c02241
NR
20464@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20465@node GDB/MI Data Manipulation
20466@section @sc{gdb/mi} Data Manipulation
922fbb7b 20467
a2c02241
NR
20468@cindex data manipulation, in @sc{gdb/mi}
20469@cindex @sc{gdb/mi}, data manipulation
20470This section describes the @sc{gdb/mi} commands that manipulate data:
20471examine memory and registers, evaluate expressions, etc.
20472
20473@c REMOVED FROM THE INTERFACE.
20474@c @subheading -data-assign
20475@c Change the value of a program variable. Plenty of side effects.
79a6e687 20476@c @subsubheading GDB Command
a2c02241
NR
20477@c set variable
20478@c @subsubheading Example
20479@c N.A.
20480
20481@subheading The @code{-data-disassemble} Command
20482@findex -data-disassemble
922fbb7b
AC
20483
20484@subsubheading Synopsis
20485
20486@smallexample
a2c02241
NR
20487 -data-disassemble
20488 [ -s @var{start-addr} -e @var{end-addr} ]
20489 | [ -f @var{filename} -l @var{linenum} [ -n @var{lines} ] ]
20490 -- @var{mode}
922fbb7b
AC
20491@end smallexample
20492
a2c02241
NR
20493@noindent
20494Where:
20495
20496@table @samp
20497@item @var{start-addr}
20498is the beginning address (or @code{$pc})
20499@item @var{end-addr}
20500is the end address
20501@item @var{filename}
20502is the name of the file to disassemble
20503@item @var{linenum}
20504is the line number to disassemble around
20505@item @var{lines}
d3e8051b 20506is the number of disassembly lines to be produced. If it is -1,
a2c02241
NR
20507the whole function will be disassembled, in case no @var{end-addr} is
20508specified. If @var{end-addr} is specified as a non-zero value, and
20509@var{lines} is lower than the number of disassembly lines between
20510@var{start-addr} and @var{end-addr}, only @var{lines} lines are
20511displayed; if @var{lines} is higher than the number of lines between
20512@var{start-addr} and @var{end-addr}, only the lines up to @var{end-addr}
20513are displayed.
20514@item @var{mode}
20515is either 0 (meaning only disassembly) or 1 (meaning mixed source and
20516disassembly).
20517@end table
20518
20519@subsubheading Result
20520
20521The output for each instruction is composed of four fields:
20522
20523@itemize @bullet
20524@item Address
20525@item Func-name
20526@item Offset
20527@item Instruction
20528@end itemize
20529
20530Note that whatever included in the instruction field, is not manipulated
d3e8051b 20531directly by @sc{gdb/mi}, i.e., it is not possible to adjust its format.
922fbb7b
AC
20532
20533@subsubheading @value{GDBN} Command
20534
a2c02241 20535There's no direct mapping from this command to the CLI.
922fbb7b
AC
20536
20537@subsubheading Example
20538
a2c02241
NR
20539Disassemble from the current value of @code{$pc} to @code{$pc + 20}:
20540
922fbb7b 20541@smallexample
594fe323 20542(gdb)
a2c02241
NR
20543-data-disassemble -s $pc -e "$pc + 20" -- 0
20544^done,
20545asm_insns=[
20546@{address="0x000107c0",func-name="main",offset="4",
20547inst="mov 2, %o0"@},
20548@{address="0x000107c4",func-name="main",offset="8",
20549inst="sethi %hi(0x11800), %o2"@},
20550@{address="0x000107c8",func-name="main",offset="12",
20551inst="or %o2, 0x140, %o1\t! 0x11940 <_lib_version+8>"@},
20552@{address="0x000107cc",func-name="main",offset="16",
20553inst="sethi %hi(0x11800), %o2"@},
20554@{address="0x000107d0",func-name="main",offset="20",
20555inst="or %o2, 0x168, %o4\t! 0x11968 <_lib_version+48>"@}]
594fe323 20556(gdb)
a2c02241
NR
20557@end smallexample
20558
20559Disassemble the whole @code{main} function. Line 32 is part of
20560@code{main}.
20561
20562@smallexample
20563-data-disassemble -f basics.c -l 32 -- 0
20564^done,asm_insns=[
20565@{address="0x000107bc",func-name="main",offset="0",
20566inst="save %sp, -112, %sp"@},
20567@{address="0x000107c0",func-name="main",offset="4",
20568inst="mov 2, %o0"@},
20569@{address="0x000107c4",func-name="main",offset="8",
20570inst="sethi %hi(0x11800), %o2"@},
20571[@dots{}]
20572@{address="0x0001081c",func-name="main",offset="96",inst="ret "@},
20573@{address="0x00010820",func-name="main",offset="100",inst="restore "@}]
594fe323 20574(gdb)
922fbb7b
AC
20575@end smallexample
20576
a2c02241 20577Disassemble 3 instructions from the start of @code{main}:
922fbb7b 20578
a2c02241 20579@smallexample
594fe323 20580(gdb)
a2c02241
NR
20581-data-disassemble -f basics.c -l 32 -n 3 -- 0
20582^done,asm_insns=[
20583@{address="0x000107bc",func-name="main",offset="0",
20584inst="save %sp, -112, %sp"@},
20585@{address="0x000107c0",func-name="main",offset="4",
20586inst="mov 2, %o0"@},
20587@{address="0x000107c4",func-name="main",offset="8",
20588inst="sethi %hi(0x11800), %o2"@}]
594fe323 20589(gdb)
a2c02241
NR
20590@end smallexample
20591
20592Disassemble 3 instructions from the start of @code{main} in mixed mode:
20593
20594@smallexample
594fe323 20595(gdb)
a2c02241
NR
20596-data-disassemble -f basics.c -l 32 -n 3 -- 1
20597^done,asm_insns=[
20598src_and_asm_line=@{line="31",
20599file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
20600 testsuite/gdb.mi/basics.c",line_asm_insn=[
20601@{address="0x000107bc",func-name="main",offset="0",
20602inst="save %sp, -112, %sp"@}]@},
20603src_and_asm_line=@{line="32",
20604file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
20605 testsuite/gdb.mi/basics.c",line_asm_insn=[
20606@{address="0x000107c0",func-name="main",offset="4",
20607inst="mov 2, %o0"@},
20608@{address="0x000107c4",func-name="main",offset="8",
20609inst="sethi %hi(0x11800), %o2"@}]@}]
594fe323 20610(gdb)
a2c02241
NR
20611@end smallexample
20612
20613
20614@subheading The @code{-data-evaluate-expression} Command
20615@findex -data-evaluate-expression
922fbb7b
AC
20616
20617@subsubheading Synopsis
20618
20619@smallexample
a2c02241 20620 -data-evaluate-expression @var{expr}
922fbb7b
AC
20621@end smallexample
20622
a2c02241
NR
20623Evaluate @var{expr} as an expression. The expression could contain an
20624inferior function call. The function call will execute synchronously.
20625If the expression contains spaces, it must be enclosed in double quotes.
922fbb7b
AC
20626
20627@subsubheading @value{GDBN} Command
20628
a2c02241
NR
20629The corresponding @value{GDBN} commands are @samp{print}, @samp{output}, and
20630@samp{call}. In @code{gdbtk} only, there's a corresponding
20631@samp{gdb_eval} command.
922fbb7b
AC
20632
20633@subsubheading Example
20634
a2c02241
NR
20635In the following example, the numbers that precede the commands are the
20636@dfn{tokens} described in @ref{GDB/MI Command Syntax, ,@sc{gdb/mi}
20637Command Syntax}. Notice how @sc{gdb/mi} returns the same tokens in its
20638output.
20639
922fbb7b 20640@smallexample
a2c02241
NR
20641211-data-evaluate-expression A
20642211^done,value="1"
594fe323 20643(gdb)
a2c02241
NR
20644311-data-evaluate-expression &A
20645311^done,value="0xefffeb7c"
594fe323 20646(gdb)
a2c02241
NR
20647411-data-evaluate-expression A+3
20648411^done,value="4"
594fe323 20649(gdb)
a2c02241
NR
20650511-data-evaluate-expression "A + 3"
20651511^done,value="4"
594fe323 20652(gdb)
a2c02241 20653@end smallexample
922fbb7b
AC
20654
20655
a2c02241
NR
20656@subheading The @code{-data-list-changed-registers} Command
20657@findex -data-list-changed-registers
922fbb7b
AC
20658
20659@subsubheading Synopsis
20660
20661@smallexample
a2c02241 20662 -data-list-changed-registers
922fbb7b
AC
20663@end smallexample
20664
a2c02241 20665Display a list of the registers that have changed.
922fbb7b
AC
20666
20667@subsubheading @value{GDBN} Command
20668
a2c02241
NR
20669@value{GDBN} doesn't have a direct analog for this command; @code{gdbtk}
20670has the corresponding command @samp{gdb_changed_register_list}.
922fbb7b
AC
20671
20672@subsubheading Example
922fbb7b 20673
a2c02241 20674On a PPC MBX board:
922fbb7b
AC
20675
20676@smallexample
594fe323 20677(gdb)
a2c02241
NR
20678-exec-continue
20679^running
922fbb7b 20680
594fe323 20681(gdb)
a47ec5fe
AR
20682*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",frame=@{
20683func="main",args=[],file="try.c",fullname="/home/foo/bar/try.c",
20684line="5"@}
594fe323 20685(gdb)
a2c02241
NR
20686-data-list-changed-registers
20687^done,changed-registers=["0","1","2","4","5","6","7","8","9",
20688"10","11","13","14","15","16","17","18","19","20","21","22","23",
20689"24","25","26","27","28","30","31","64","65","66","67","69"]
594fe323 20690(gdb)
a2c02241 20691@end smallexample
922fbb7b
AC
20692
20693
a2c02241
NR
20694@subheading The @code{-data-list-register-names} Command
20695@findex -data-list-register-names
922fbb7b
AC
20696
20697@subsubheading Synopsis
20698
20699@smallexample
a2c02241 20700 -data-list-register-names [ ( @var{regno} )+ ]
922fbb7b
AC
20701@end smallexample
20702
a2c02241
NR
20703Show a list of register names for the current target. If no arguments
20704are given, it shows a list of the names of all the registers. If
20705integer numbers are given as arguments, it will print a list of the
20706names of the registers corresponding to the arguments. To ensure
20707consistency between a register name and its number, the output list may
20708include empty register names.
922fbb7b
AC
20709
20710@subsubheading @value{GDBN} Command
20711
a2c02241
NR
20712@value{GDBN} does not have a command which corresponds to
20713@samp{-data-list-register-names}. In @code{gdbtk} there is a
20714corresponding command @samp{gdb_regnames}.
922fbb7b
AC
20715
20716@subsubheading Example
922fbb7b 20717
a2c02241
NR
20718For the PPC MBX board:
20719@smallexample
594fe323 20720(gdb)
a2c02241
NR
20721-data-list-register-names
20722^done,register-names=["r0","r1","r2","r3","r4","r5","r6","r7",
20723"r8","r9","r10","r11","r12","r13","r14","r15","r16","r17","r18",
20724"r19","r20","r21","r22","r23","r24","r25","r26","r27","r28","r29",
20725"r30","r31","f0","f1","f2","f3","f4","f5","f6","f7","f8","f9",
20726"f10","f11","f12","f13","f14","f15","f16","f17","f18","f19","f20",
20727"f21","f22","f23","f24","f25","f26","f27","f28","f29","f30","f31",
20728"", "pc","ps","cr","lr","ctr","xer"]
594fe323 20729(gdb)
a2c02241
NR
20730-data-list-register-names 1 2 3
20731^done,register-names=["r1","r2","r3"]
594fe323 20732(gdb)
a2c02241 20733@end smallexample
922fbb7b 20734
a2c02241
NR
20735@subheading The @code{-data-list-register-values} Command
20736@findex -data-list-register-values
922fbb7b
AC
20737
20738@subsubheading Synopsis
20739
20740@smallexample
a2c02241 20741 -data-list-register-values @var{fmt} [ ( @var{regno} )*]
922fbb7b
AC
20742@end smallexample
20743
a2c02241
NR
20744Display the registers' contents. @var{fmt} is the format according to
20745which the registers' contents are to be returned, followed by an optional
20746list of numbers specifying the registers to display. A missing list of
20747numbers indicates that the contents of all the registers must be returned.
20748
20749Allowed formats for @var{fmt} are:
20750
20751@table @code
20752@item x
20753Hexadecimal
20754@item o
20755Octal
20756@item t
20757Binary
20758@item d
20759Decimal
20760@item r
20761Raw
20762@item N
20763Natural
20764@end table
922fbb7b
AC
20765
20766@subsubheading @value{GDBN} Command
20767
a2c02241
NR
20768The corresponding @value{GDBN} commands are @samp{info reg}, @samp{info
20769all-reg}, and (in @code{gdbtk}) @samp{gdb_fetch_registers}.
922fbb7b
AC
20770
20771@subsubheading Example
922fbb7b 20772
a2c02241
NR
20773For a PPC MBX board (note: line breaks are for readability only, they
20774don't appear in the actual output):
20775
20776@smallexample
594fe323 20777(gdb)
a2c02241
NR
20778-data-list-register-values r 64 65
20779^done,register-values=[@{number="64",value="0xfe00a300"@},
20780@{number="65",value="0x00029002"@}]
594fe323 20781(gdb)
a2c02241
NR
20782-data-list-register-values x
20783^done,register-values=[@{number="0",value="0xfe0043c8"@},
20784@{number="1",value="0x3fff88"@},@{number="2",value="0xfffffffe"@},
20785@{number="3",value="0x0"@},@{number="4",value="0xa"@},
20786@{number="5",value="0x3fff68"@},@{number="6",value="0x3fff58"@},
20787@{number="7",value="0xfe011e98"@},@{number="8",value="0x2"@},
20788@{number="9",value="0xfa202820"@},@{number="10",value="0xfa202808"@},
20789@{number="11",value="0x1"@},@{number="12",value="0x0"@},
20790@{number="13",value="0x4544"@},@{number="14",value="0xffdfffff"@},
20791@{number="15",value="0xffffffff"@},@{number="16",value="0xfffffeff"@},
20792@{number="17",value="0xefffffed"@},@{number="18",value="0xfffffffe"@},
20793@{number="19",value="0xffffffff"@},@{number="20",value="0xffffffff"@},
20794@{number="21",value="0xffffffff"@},@{number="22",value="0xfffffff7"@},
20795@{number="23",value="0xffffffff"@},@{number="24",value="0xffffffff"@},
20796@{number="25",value="0xffffffff"@},@{number="26",value="0xfffffffb"@},
20797@{number="27",value="0xffffffff"@},@{number="28",value="0xf7bfffff"@},
20798@{number="29",value="0x0"@},@{number="30",value="0xfe010000"@},
20799@{number="31",value="0x0"@},@{number="32",value="0x0"@},
20800@{number="33",value="0x0"@},@{number="34",value="0x0"@},
20801@{number="35",value="0x0"@},@{number="36",value="0x0"@},
20802@{number="37",value="0x0"@},@{number="38",value="0x0"@},
20803@{number="39",value="0x0"@},@{number="40",value="0x0"@},
20804@{number="41",value="0x0"@},@{number="42",value="0x0"@},
20805@{number="43",value="0x0"@},@{number="44",value="0x0"@},
20806@{number="45",value="0x0"@},@{number="46",value="0x0"@},
20807@{number="47",value="0x0"@},@{number="48",value="0x0"@},
20808@{number="49",value="0x0"@},@{number="50",value="0x0"@},
20809@{number="51",value="0x0"@},@{number="52",value="0x0"@},
20810@{number="53",value="0x0"@},@{number="54",value="0x0"@},
20811@{number="55",value="0x0"@},@{number="56",value="0x0"@},
20812@{number="57",value="0x0"@},@{number="58",value="0x0"@},
20813@{number="59",value="0x0"@},@{number="60",value="0x0"@},
20814@{number="61",value="0x0"@},@{number="62",value="0x0"@},
20815@{number="63",value="0x0"@},@{number="64",value="0xfe00a300"@},
20816@{number="65",value="0x29002"@},@{number="66",value="0x202f04b5"@},
20817@{number="67",value="0xfe0043b0"@},@{number="68",value="0xfe00b3e4"@},
20818@{number="69",value="0x20002b03"@}]
594fe323 20819(gdb)
a2c02241 20820@end smallexample
922fbb7b 20821
a2c02241
NR
20822
20823@subheading The @code{-data-read-memory} Command
20824@findex -data-read-memory
922fbb7b
AC
20825
20826@subsubheading Synopsis
20827
20828@smallexample
a2c02241
NR
20829 -data-read-memory [ -o @var{byte-offset} ]
20830 @var{address} @var{word-format} @var{word-size}
20831 @var{nr-rows} @var{nr-cols} [ @var{aschar} ]
922fbb7b
AC
20832@end smallexample
20833
a2c02241
NR
20834@noindent
20835where:
922fbb7b 20836
a2c02241
NR
20837@table @samp
20838@item @var{address}
20839An expression specifying the address of the first memory word to be
20840read. Complex expressions containing embedded white space should be
20841quoted using the C convention.
922fbb7b 20842
a2c02241
NR
20843@item @var{word-format}
20844The format to be used to print the memory words. The notation is the
20845same as for @value{GDBN}'s @code{print} command (@pxref{Output Formats,
79a6e687 20846,Output Formats}).
922fbb7b 20847
a2c02241
NR
20848@item @var{word-size}
20849The size of each memory word in bytes.
922fbb7b 20850
a2c02241
NR
20851@item @var{nr-rows}
20852The number of rows in the output table.
922fbb7b 20853
a2c02241
NR
20854@item @var{nr-cols}
20855The number of columns in the output table.
922fbb7b 20856
a2c02241
NR
20857@item @var{aschar}
20858If present, indicates that each row should include an @sc{ascii} dump. The
20859value of @var{aschar} is used as a padding character when a byte is not a
20860member of the printable @sc{ascii} character set (printable @sc{ascii}
20861characters are those whose code is between 32 and 126, inclusively).
922fbb7b 20862
a2c02241
NR
20863@item @var{byte-offset}
20864An offset to add to the @var{address} before fetching memory.
20865@end table
922fbb7b 20866
a2c02241
NR
20867This command displays memory contents as a table of @var{nr-rows} by
20868@var{nr-cols} words, each word being @var{word-size} bytes. In total,
20869@code{@var{nr-rows} * @var{nr-cols} * @var{word-size}} bytes are read
20870(returned as @samp{total-bytes}). Should less than the requested number
20871of bytes be returned by the target, the missing words are identified
20872using @samp{N/A}. The number of bytes read from the target is returned
20873in @samp{nr-bytes} and the starting address used to read memory in
20874@samp{addr}.
20875
20876The address of the next/previous row or page is available in
20877@samp{next-row} and @samp{prev-row}, @samp{next-page} and
20878@samp{prev-page}.
922fbb7b
AC
20879
20880@subsubheading @value{GDBN} Command
20881
a2c02241
NR
20882The corresponding @value{GDBN} command is @samp{x}. @code{gdbtk} has
20883@samp{gdb_get_mem} memory read command.
922fbb7b
AC
20884
20885@subsubheading Example
32e7087d 20886
a2c02241
NR
20887Read six bytes of memory starting at @code{bytes+6} but then offset by
20888@code{-6} bytes. Format as three rows of two columns. One byte per
20889word. Display each word in hex.
32e7087d
JB
20890
20891@smallexample
594fe323 20892(gdb)
a2c02241
NR
208939-data-read-memory -o -6 -- bytes+6 x 1 3 2
208949^done,addr="0x00001390",nr-bytes="6",total-bytes="6",
20895next-row="0x00001396",prev-row="0x0000138e",next-page="0x00001396",
20896prev-page="0x0000138a",memory=[
20897@{addr="0x00001390",data=["0x00","0x01"]@},
20898@{addr="0x00001392",data=["0x02","0x03"]@},
20899@{addr="0x00001394",data=["0x04","0x05"]@}]
594fe323 20900(gdb)
32e7087d
JB
20901@end smallexample
20902
a2c02241
NR
20903Read two bytes of memory starting at address @code{shorts + 64} and
20904display as a single word formatted in decimal.
32e7087d 20905
32e7087d 20906@smallexample
594fe323 20907(gdb)
a2c02241
NR
209085-data-read-memory shorts+64 d 2 1 1
209095^done,addr="0x00001510",nr-bytes="2",total-bytes="2",
20910next-row="0x00001512",prev-row="0x0000150e",
20911next-page="0x00001512",prev-page="0x0000150e",memory=[
20912@{addr="0x00001510",data=["128"]@}]
594fe323 20913(gdb)
32e7087d
JB
20914@end smallexample
20915
a2c02241
NR
20916Read thirty two bytes of memory starting at @code{bytes+16} and format
20917as eight rows of four columns. Include a string encoding with @samp{x}
20918used as the non-printable character.
922fbb7b
AC
20919
20920@smallexample
594fe323 20921(gdb)
a2c02241
NR
209224-data-read-memory bytes+16 x 1 8 4 x
209234^done,addr="0x000013a0",nr-bytes="32",total-bytes="32",
20924next-row="0x000013c0",prev-row="0x0000139c",
20925next-page="0x000013c0",prev-page="0x00001380",memory=[
20926@{addr="0x000013a0",data=["0x10","0x11","0x12","0x13"],ascii="xxxx"@},
20927@{addr="0x000013a4",data=["0x14","0x15","0x16","0x17"],ascii="xxxx"@},
20928@{addr="0x000013a8",data=["0x18","0x19","0x1a","0x1b"],ascii="xxxx"@},
20929@{addr="0x000013ac",data=["0x1c","0x1d","0x1e","0x1f"],ascii="xxxx"@},
20930@{addr="0x000013b0",data=["0x20","0x21","0x22","0x23"],ascii=" !\"#"@},
20931@{addr="0x000013b4",data=["0x24","0x25","0x26","0x27"],ascii="$%&'"@},
20932@{addr="0x000013b8",data=["0x28","0x29","0x2a","0x2b"],ascii="()*+"@},
20933@{addr="0x000013bc",data=["0x2c","0x2d","0x2e","0x2f"],ascii=",-./"@}]
594fe323 20934(gdb)
922fbb7b
AC
20935@end smallexample
20936
a2c02241
NR
20937@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20938@node GDB/MI Tracepoint Commands
20939@section @sc{gdb/mi} Tracepoint Commands
922fbb7b 20940
a2c02241 20941The tracepoint commands are not yet implemented.
922fbb7b 20942
a2c02241 20943@c @subheading -trace-actions
922fbb7b 20944
a2c02241 20945@c @subheading -trace-delete
922fbb7b 20946
a2c02241 20947@c @subheading -trace-disable
922fbb7b 20948
a2c02241 20949@c @subheading -trace-dump
922fbb7b 20950
a2c02241 20951@c @subheading -trace-enable
922fbb7b 20952
a2c02241 20953@c @subheading -trace-exists
922fbb7b 20954
a2c02241 20955@c @subheading -trace-find
922fbb7b 20956
a2c02241 20957@c @subheading -trace-frame-number
922fbb7b 20958
a2c02241 20959@c @subheading -trace-info
922fbb7b 20960
a2c02241 20961@c @subheading -trace-insert
922fbb7b 20962
a2c02241 20963@c @subheading -trace-list
922fbb7b 20964
a2c02241 20965@c @subheading -trace-pass-count
922fbb7b 20966
a2c02241 20967@c @subheading -trace-save
922fbb7b 20968
a2c02241 20969@c @subheading -trace-start
922fbb7b 20970
a2c02241 20971@c @subheading -trace-stop
922fbb7b 20972
922fbb7b 20973
a2c02241
NR
20974@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20975@node GDB/MI Symbol Query
20976@section @sc{gdb/mi} Symbol Query Commands
922fbb7b
AC
20977
20978
a2c02241
NR
20979@subheading The @code{-symbol-info-address} Command
20980@findex -symbol-info-address
922fbb7b
AC
20981
20982@subsubheading Synopsis
20983
20984@smallexample
a2c02241 20985 -symbol-info-address @var{symbol}
922fbb7b
AC
20986@end smallexample
20987
a2c02241 20988Describe where @var{symbol} is stored.
922fbb7b
AC
20989
20990@subsubheading @value{GDBN} Command
20991
a2c02241 20992The corresponding @value{GDBN} command is @samp{info address}.
922fbb7b
AC
20993
20994@subsubheading Example
20995N.A.
20996
20997
a2c02241
NR
20998@subheading The @code{-symbol-info-file} Command
20999@findex -symbol-info-file
922fbb7b
AC
21000
21001@subsubheading Synopsis
21002
21003@smallexample
a2c02241 21004 -symbol-info-file
922fbb7b
AC
21005@end smallexample
21006
a2c02241 21007Show the file for the symbol.
922fbb7b 21008
a2c02241 21009@subsubheading @value{GDBN} Command
922fbb7b 21010
a2c02241
NR
21011There's no equivalent @value{GDBN} command. @code{gdbtk} has
21012@samp{gdb_find_file}.
922fbb7b
AC
21013
21014@subsubheading Example
21015N.A.
21016
21017
a2c02241
NR
21018@subheading The @code{-symbol-info-function} Command
21019@findex -symbol-info-function
922fbb7b
AC
21020
21021@subsubheading Synopsis
21022
21023@smallexample
a2c02241 21024 -symbol-info-function
922fbb7b
AC
21025@end smallexample
21026
a2c02241 21027Show which function the symbol lives in.
922fbb7b
AC
21028
21029@subsubheading @value{GDBN} Command
21030
a2c02241 21031@samp{gdb_get_function} in @code{gdbtk}.
922fbb7b
AC
21032
21033@subsubheading Example
21034N.A.
21035
21036
a2c02241
NR
21037@subheading The @code{-symbol-info-line} Command
21038@findex -symbol-info-line
922fbb7b
AC
21039
21040@subsubheading Synopsis
21041
21042@smallexample
a2c02241 21043 -symbol-info-line
922fbb7b
AC
21044@end smallexample
21045
a2c02241 21046Show the core addresses of the code for a source line.
922fbb7b 21047
a2c02241 21048@subsubheading @value{GDBN} Command
922fbb7b 21049
a2c02241
NR
21050The corresponding @value{GDBN} command is @samp{info line}.
21051@code{gdbtk} has the @samp{gdb_get_line} and @samp{gdb_get_file} commands.
922fbb7b
AC
21052
21053@subsubheading Example
a2c02241 21054N.A.
922fbb7b
AC
21055
21056
a2c02241
NR
21057@subheading The @code{-symbol-info-symbol} Command
21058@findex -symbol-info-symbol
07f31aa6
DJ
21059
21060@subsubheading Synopsis
21061
a2c02241
NR
21062@smallexample
21063 -symbol-info-symbol @var{addr}
21064@end smallexample
07f31aa6 21065
a2c02241 21066Describe what symbol is at location @var{addr}.
07f31aa6 21067
a2c02241 21068@subsubheading @value{GDBN} Command
07f31aa6 21069
a2c02241 21070The corresponding @value{GDBN} command is @samp{info symbol}.
07f31aa6
DJ
21071
21072@subsubheading Example
a2c02241 21073N.A.
07f31aa6
DJ
21074
21075
a2c02241
NR
21076@subheading The @code{-symbol-list-functions} Command
21077@findex -symbol-list-functions
922fbb7b
AC
21078
21079@subsubheading Synopsis
21080
21081@smallexample
a2c02241 21082 -symbol-list-functions
922fbb7b
AC
21083@end smallexample
21084
a2c02241 21085List the functions in the executable.
922fbb7b
AC
21086
21087@subsubheading @value{GDBN} Command
21088
a2c02241
NR
21089@samp{info functions} in @value{GDBN}, @samp{gdb_listfunc} and
21090@samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
21091
21092@subsubheading Example
a2c02241 21093N.A.
922fbb7b
AC
21094
21095
a2c02241
NR
21096@subheading The @code{-symbol-list-lines} Command
21097@findex -symbol-list-lines
922fbb7b
AC
21098
21099@subsubheading Synopsis
21100
21101@smallexample
a2c02241 21102 -symbol-list-lines @var{filename}
922fbb7b
AC
21103@end smallexample
21104
a2c02241
NR
21105Print the list of lines that contain code and their associated program
21106addresses for the given source filename. The entries are sorted in
21107ascending PC order.
922fbb7b
AC
21108
21109@subsubheading @value{GDBN} Command
21110
a2c02241 21111There is no corresponding @value{GDBN} command.
922fbb7b
AC
21112
21113@subsubheading Example
a2c02241 21114@smallexample
594fe323 21115(gdb)
a2c02241
NR
21116-symbol-list-lines basics.c
21117^done,lines=[@{pc="0x08048554",line="7"@},@{pc="0x0804855a",line="8"@}]
594fe323 21118(gdb)
a2c02241 21119@end smallexample
922fbb7b
AC
21120
21121
a2c02241
NR
21122@subheading The @code{-symbol-list-types} Command
21123@findex -symbol-list-types
922fbb7b
AC
21124
21125@subsubheading Synopsis
21126
21127@smallexample
a2c02241 21128 -symbol-list-types
922fbb7b
AC
21129@end smallexample
21130
a2c02241 21131List all the type names.
922fbb7b
AC
21132
21133@subsubheading @value{GDBN} Command
21134
a2c02241
NR
21135The corresponding commands are @samp{info types} in @value{GDBN},
21136@samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
21137
21138@subsubheading Example
21139N.A.
21140
21141
a2c02241
NR
21142@subheading The @code{-symbol-list-variables} Command
21143@findex -symbol-list-variables
922fbb7b
AC
21144
21145@subsubheading Synopsis
21146
21147@smallexample
a2c02241 21148 -symbol-list-variables
922fbb7b
AC
21149@end smallexample
21150
a2c02241 21151List all the global and static variable names.
922fbb7b
AC
21152
21153@subsubheading @value{GDBN} Command
21154
a2c02241 21155@samp{info variables} in @value{GDBN}, @samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
21156
21157@subsubheading Example
21158N.A.
21159
21160
a2c02241
NR
21161@subheading The @code{-symbol-locate} Command
21162@findex -symbol-locate
922fbb7b
AC
21163
21164@subsubheading Synopsis
21165
21166@smallexample
a2c02241 21167 -symbol-locate
922fbb7b
AC
21168@end smallexample
21169
922fbb7b
AC
21170@subsubheading @value{GDBN} Command
21171
a2c02241 21172@samp{gdb_loc} in @code{gdbtk}.
922fbb7b
AC
21173
21174@subsubheading Example
21175N.A.
21176
21177
a2c02241
NR
21178@subheading The @code{-symbol-type} Command
21179@findex -symbol-type
922fbb7b
AC
21180
21181@subsubheading Synopsis
21182
21183@smallexample
a2c02241 21184 -symbol-type @var{variable}
922fbb7b
AC
21185@end smallexample
21186
a2c02241 21187Show type of @var{variable}.
922fbb7b 21188
a2c02241 21189@subsubheading @value{GDBN} Command
922fbb7b 21190
a2c02241
NR
21191The corresponding @value{GDBN} command is @samp{ptype}, @code{gdbtk} has
21192@samp{gdb_obj_variable}.
21193
21194@subsubheading Example
21195N.A.
21196
21197
21198@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21199@node GDB/MI File Commands
21200@section @sc{gdb/mi} File Commands
21201
21202This section describes the GDB/MI commands to specify executable file names
21203and to read in and obtain symbol table information.
21204
21205@subheading The @code{-file-exec-and-symbols} Command
21206@findex -file-exec-and-symbols
21207
21208@subsubheading Synopsis
922fbb7b
AC
21209
21210@smallexample
a2c02241 21211 -file-exec-and-symbols @var{file}
922fbb7b
AC
21212@end smallexample
21213
a2c02241
NR
21214Specify the executable file to be debugged. This file is the one from
21215which the symbol table is also read. If no file is specified, the
21216command clears the executable and symbol information. If breakpoints
21217are set when using this command with no arguments, @value{GDBN} will produce
21218error messages. Otherwise, no output is produced, except a completion
21219notification.
21220
922fbb7b
AC
21221@subsubheading @value{GDBN} Command
21222
a2c02241 21223The corresponding @value{GDBN} command is @samp{file}.
922fbb7b
AC
21224
21225@subsubheading Example
21226
21227@smallexample
594fe323 21228(gdb)
a2c02241
NR
21229-file-exec-and-symbols /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21230^done
594fe323 21231(gdb)
922fbb7b
AC
21232@end smallexample
21233
922fbb7b 21234
a2c02241
NR
21235@subheading The @code{-file-exec-file} Command
21236@findex -file-exec-file
922fbb7b
AC
21237
21238@subsubheading Synopsis
21239
21240@smallexample
a2c02241 21241 -file-exec-file @var{file}
922fbb7b
AC
21242@end smallexample
21243
a2c02241
NR
21244Specify the executable file to be debugged. Unlike
21245@samp{-file-exec-and-symbols}, the symbol table is @emph{not} read
21246from this file. If used without argument, @value{GDBN} clears the information
21247about the executable file. No output is produced, except a completion
21248notification.
922fbb7b 21249
a2c02241
NR
21250@subsubheading @value{GDBN} Command
21251
21252The corresponding @value{GDBN} command is @samp{exec-file}.
922fbb7b
AC
21253
21254@subsubheading Example
a2c02241
NR
21255
21256@smallexample
594fe323 21257(gdb)
a2c02241
NR
21258-file-exec-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21259^done
594fe323 21260(gdb)
a2c02241 21261@end smallexample
922fbb7b
AC
21262
21263
a2c02241
NR
21264@subheading The @code{-file-list-exec-sections} Command
21265@findex -file-list-exec-sections
922fbb7b
AC
21266
21267@subsubheading Synopsis
21268
21269@smallexample
a2c02241 21270 -file-list-exec-sections
922fbb7b
AC
21271@end smallexample
21272
a2c02241
NR
21273List the sections of the current executable file.
21274
922fbb7b
AC
21275@subsubheading @value{GDBN} Command
21276
a2c02241
NR
21277The @value{GDBN} command @samp{info file} shows, among the rest, the same
21278information as this command. @code{gdbtk} has a corresponding command
21279@samp{gdb_load_info}.
922fbb7b
AC
21280
21281@subsubheading Example
21282N.A.
21283
21284
a2c02241
NR
21285@subheading The @code{-file-list-exec-source-file} Command
21286@findex -file-list-exec-source-file
922fbb7b
AC
21287
21288@subsubheading Synopsis
21289
21290@smallexample
a2c02241 21291 -file-list-exec-source-file
922fbb7b
AC
21292@end smallexample
21293
a2c02241 21294List the line number, the current source file, and the absolute path
44288b44
NR
21295to the current source file for the current executable. The macro
21296information field has a value of @samp{1} or @samp{0} depending on
21297whether or not the file includes preprocessor macro information.
922fbb7b
AC
21298
21299@subsubheading @value{GDBN} Command
21300
a2c02241 21301The @value{GDBN} equivalent is @samp{info source}
922fbb7b
AC
21302
21303@subsubheading Example
21304
922fbb7b 21305@smallexample
594fe323 21306(gdb)
a2c02241 21307123-file-list-exec-source-file
44288b44 21308123^done,line="1",file="foo.c",fullname="/home/bar/foo.c,macro-info="1"
594fe323 21309(gdb)
922fbb7b
AC
21310@end smallexample
21311
21312
a2c02241
NR
21313@subheading The @code{-file-list-exec-source-files} Command
21314@findex -file-list-exec-source-files
922fbb7b
AC
21315
21316@subsubheading Synopsis
21317
21318@smallexample
a2c02241 21319 -file-list-exec-source-files
922fbb7b
AC
21320@end smallexample
21321
a2c02241
NR
21322List the source files for the current executable.
21323
3f94c067
BW
21324It will always output the filename, but only when @value{GDBN} can find
21325the absolute file name of a source file, will it output the fullname.
922fbb7b
AC
21326
21327@subsubheading @value{GDBN} Command
21328
a2c02241
NR
21329The @value{GDBN} equivalent is @samp{info sources}.
21330@code{gdbtk} has an analogous command @samp{gdb_listfiles}.
922fbb7b
AC
21331
21332@subsubheading Example
922fbb7b 21333@smallexample
594fe323 21334(gdb)
a2c02241
NR
21335-file-list-exec-source-files
21336^done,files=[
21337@{file=foo.c,fullname=/home/foo.c@},
21338@{file=/home/bar.c,fullname=/home/bar.c@},
21339@{file=gdb_could_not_find_fullpath.c@}]
594fe323 21340(gdb)
922fbb7b
AC
21341@end smallexample
21342
a2c02241
NR
21343@subheading The @code{-file-list-shared-libraries} Command
21344@findex -file-list-shared-libraries
922fbb7b 21345
a2c02241 21346@subsubheading Synopsis
922fbb7b 21347
a2c02241
NR
21348@smallexample
21349 -file-list-shared-libraries
21350@end smallexample
922fbb7b 21351
a2c02241 21352List the shared libraries in the program.
922fbb7b 21353
a2c02241 21354@subsubheading @value{GDBN} Command
922fbb7b 21355
a2c02241 21356The corresponding @value{GDBN} command is @samp{info shared}.
922fbb7b 21357
a2c02241
NR
21358@subsubheading Example
21359N.A.
922fbb7b
AC
21360
21361
a2c02241
NR
21362@subheading The @code{-file-list-symbol-files} Command
21363@findex -file-list-symbol-files
922fbb7b 21364
a2c02241 21365@subsubheading Synopsis
922fbb7b 21366
a2c02241
NR
21367@smallexample
21368 -file-list-symbol-files
21369@end smallexample
922fbb7b 21370
a2c02241 21371List symbol files.
922fbb7b 21372
a2c02241 21373@subsubheading @value{GDBN} Command
922fbb7b 21374
a2c02241 21375The corresponding @value{GDBN} command is @samp{info file} (part of it).
922fbb7b 21376
a2c02241
NR
21377@subsubheading Example
21378N.A.
922fbb7b 21379
922fbb7b 21380
a2c02241
NR
21381@subheading The @code{-file-symbol-file} Command
21382@findex -file-symbol-file
922fbb7b 21383
a2c02241 21384@subsubheading Synopsis
922fbb7b 21385
a2c02241
NR
21386@smallexample
21387 -file-symbol-file @var{file}
21388@end smallexample
922fbb7b 21389
a2c02241
NR
21390Read symbol table info from the specified @var{file} argument. When
21391used without arguments, clears @value{GDBN}'s symbol table info. No output is
21392produced, except for a completion notification.
922fbb7b 21393
a2c02241 21394@subsubheading @value{GDBN} Command
922fbb7b 21395
a2c02241 21396The corresponding @value{GDBN} command is @samp{symbol-file}.
922fbb7b 21397
a2c02241 21398@subsubheading Example
922fbb7b 21399
a2c02241 21400@smallexample
594fe323 21401(gdb)
a2c02241
NR
21402-file-symbol-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21403^done
594fe323 21404(gdb)
a2c02241 21405@end smallexample
922fbb7b 21406
a2c02241 21407@ignore
a2c02241
NR
21408@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21409@node GDB/MI Memory Overlay Commands
21410@section @sc{gdb/mi} Memory Overlay Commands
922fbb7b 21411
a2c02241 21412The memory overlay commands are not implemented.
922fbb7b 21413
a2c02241 21414@c @subheading -overlay-auto
922fbb7b 21415
a2c02241 21416@c @subheading -overlay-list-mapping-state
922fbb7b 21417
a2c02241 21418@c @subheading -overlay-list-overlays
922fbb7b 21419
a2c02241 21420@c @subheading -overlay-map
922fbb7b 21421
a2c02241 21422@c @subheading -overlay-off
922fbb7b 21423
a2c02241 21424@c @subheading -overlay-on
922fbb7b 21425
a2c02241 21426@c @subheading -overlay-unmap
922fbb7b 21427
a2c02241
NR
21428@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21429@node GDB/MI Signal Handling Commands
21430@section @sc{gdb/mi} Signal Handling Commands
922fbb7b 21431
a2c02241 21432Signal handling commands are not implemented.
922fbb7b 21433
a2c02241 21434@c @subheading -signal-handle
922fbb7b 21435
a2c02241 21436@c @subheading -signal-list-handle-actions
922fbb7b 21437
a2c02241
NR
21438@c @subheading -signal-list-signal-types
21439@end ignore
922fbb7b 21440
922fbb7b 21441
a2c02241
NR
21442@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21443@node GDB/MI Target Manipulation
21444@section @sc{gdb/mi} Target Manipulation Commands
922fbb7b
AC
21445
21446
a2c02241
NR
21447@subheading The @code{-target-attach} Command
21448@findex -target-attach
922fbb7b
AC
21449
21450@subsubheading Synopsis
21451
21452@smallexample
a2c02241 21453 -target-attach @var{pid} | @var{file}
922fbb7b
AC
21454@end smallexample
21455
a2c02241 21456Attach to a process @var{pid} or a file @var{file} outside of @value{GDBN}.
922fbb7b 21457
79a6e687 21458@subsubheading @value{GDBN} Command
922fbb7b 21459
a2c02241 21460The corresponding @value{GDBN} command is @samp{attach}.
922fbb7b 21461
a2c02241
NR
21462@subsubheading Example
21463N.A.
922fbb7b 21464
a2c02241
NR
21465
21466@subheading The @code{-target-compare-sections} Command
21467@findex -target-compare-sections
922fbb7b
AC
21468
21469@subsubheading Synopsis
21470
21471@smallexample
a2c02241 21472 -target-compare-sections [ @var{section} ]
922fbb7b
AC
21473@end smallexample
21474
a2c02241
NR
21475Compare data of section @var{section} on target to the exec file.
21476Without the argument, all sections are compared.
922fbb7b 21477
a2c02241 21478@subsubheading @value{GDBN} Command
922fbb7b 21479
a2c02241 21480The @value{GDBN} equivalent is @samp{compare-sections}.
922fbb7b 21481
a2c02241
NR
21482@subsubheading Example
21483N.A.
21484
21485
21486@subheading The @code{-target-detach} Command
21487@findex -target-detach
922fbb7b
AC
21488
21489@subsubheading Synopsis
21490
21491@smallexample
a2c02241 21492 -target-detach
922fbb7b
AC
21493@end smallexample
21494
a2c02241
NR
21495Detach from the remote target which normally resumes its execution.
21496There's no output.
21497
79a6e687 21498@subsubheading @value{GDBN} Command
a2c02241
NR
21499
21500The corresponding @value{GDBN} command is @samp{detach}.
21501
21502@subsubheading Example
922fbb7b
AC
21503
21504@smallexample
594fe323 21505(gdb)
a2c02241
NR
21506-target-detach
21507^done
594fe323 21508(gdb)
922fbb7b
AC
21509@end smallexample
21510
21511
a2c02241
NR
21512@subheading The @code{-target-disconnect} Command
21513@findex -target-disconnect
922fbb7b
AC
21514
21515@subsubheading Synopsis
21516
123dc839 21517@smallexample
a2c02241 21518 -target-disconnect
123dc839 21519@end smallexample
922fbb7b 21520
a2c02241
NR
21521Disconnect from the remote target. There's no output and the target is
21522generally not resumed.
21523
79a6e687 21524@subsubheading @value{GDBN} Command
a2c02241
NR
21525
21526The corresponding @value{GDBN} command is @samp{disconnect}.
bc8ced35
NR
21527
21528@subsubheading Example
922fbb7b
AC
21529
21530@smallexample
594fe323 21531(gdb)
a2c02241
NR
21532-target-disconnect
21533^done
594fe323 21534(gdb)
922fbb7b
AC
21535@end smallexample
21536
21537
a2c02241
NR
21538@subheading The @code{-target-download} Command
21539@findex -target-download
922fbb7b
AC
21540
21541@subsubheading Synopsis
21542
21543@smallexample
a2c02241 21544 -target-download
922fbb7b
AC
21545@end smallexample
21546
a2c02241
NR
21547Loads the executable onto the remote target.
21548It prints out an update message every half second, which includes the fields:
21549
21550@table @samp
21551@item section
21552The name of the section.
21553@item section-sent
21554The size of what has been sent so far for that section.
21555@item section-size
21556The size of the section.
21557@item total-sent
21558The total size of what was sent so far (the current and the previous sections).
21559@item total-size
21560The size of the overall executable to download.
21561@end table
21562
21563@noindent
21564Each message is sent as status record (@pxref{GDB/MI Output Syntax, ,
21565@sc{gdb/mi} Output Syntax}).
21566
21567In addition, it prints the name and size of the sections, as they are
21568downloaded. These messages include the following fields:
21569
21570@table @samp
21571@item section
21572The name of the section.
21573@item section-size
21574The size of the section.
21575@item total-size
21576The size of the overall executable to download.
21577@end table
21578
21579@noindent
21580At the end, a summary is printed.
21581
21582@subsubheading @value{GDBN} Command
21583
21584The corresponding @value{GDBN} command is @samp{load}.
21585
21586@subsubheading Example
21587
21588Note: each status message appears on a single line. Here the messages
21589have been broken down so that they can fit onto a page.
922fbb7b
AC
21590
21591@smallexample
594fe323 21592(gdb)
a2c02241
NR
21593-target-download
21594+download,@{section=".text",section-size="6668",total-size="9880"@}
21595+download,@{section=".text",section-sent="512",section-size="6668",
21596total-sent="512",total-size="9880"@}
21597+download,@{section=".text",section-sent="1024",section-size="6668",
21598total-sent="1024",total-size="9880"@}
21599+download,@{section=".text",section-sent="1536",section-size="6668",
21600total-sent="1536",total-size="9880"@}
21601+download,@{section=".text",section-sent="2048",section-size="6668",
21602total-sent="2048",total-size="9880"@}
21603+download,@{section=".text",section-sent="2560",section-size="6668",
21604total-sent="2560",total-size="9880"@}
21605+download,@{section=".text",section-sent="3072",section-size="6668",
21606total-sent="3072",total-size="9880"@}
21607+download,@{section=".text",section-sent="3584",section-size="6668",
21608total-sent="3584",total-size="9880"@}
21609+download,@{section=".text",section-sent="4096",section-size="6668",
21610total-sent="4096",total-size="9880"@}
21611+download,@{section=".text",section-sent="4608",section-size="6668",
21612total-sent="4608",total-size="9880"@}
21613+download,@{section=".text",section-sent="5120",section-size="6668",
21614total-sent="5120",total-size="9880"@}
21615+download,@{section=".text",section-sent="5632",section-size="6668",
21616total-sent="5632",total-size="9880"@}
21617+download,@{section=".text",section-sent="6144",section-size="6668",
21618total-sent="6144",total-size="9880"@}
21619+download,@{section=".text",section-sent="6656",section-size="6668",
21620total-sent="6656",total-size="9880"@}
21621+download,@{section=".init",section-size="28",total-size="9880"@}
21622+download,@{section=".fini",section-size="28",total-size="9880"@}
21623+download,@{section=".data",section-size="3156",total-size="9880"@}
21624+download,@{section=".data",section-sent="512",section-size="3156",
21625total-sent="7236",total-size="9880"@}
21626+download,@{section=".data",section-sent="1024",section-size="3156",
21627total-sent="7748",total-size="9880"@}
21628+download,@{section=".data",section-sent="1536",section-size="3156",
21629total-sent="8260",total-size="9880"@}
21630+download,@{section=".data",section-sent="2048",section-size="3156",
21631total-sent="8772",total-size="9880"@}
21632+download,@{section=".data",section-sent="2560",section-size="3156",
21633total-sent="9284",total-size="9880"@}
21634+download,@{section=".data",section-sent="3072",section-size="3156",
21635total-sent="9796",total-size="9880"@}
21636^done,address="0x10004",load-size="9880",transfer-rate="6586",
21637write-rate="429"
594fe323 21638(gdb)
922fbb7b
AC
21639@end smallexample
21640
21641
a2c02241
NR
21642@subheading The @code{-target-exec-status} Command
21643@findex -target-exec-status
922fbb7b
AC
21644
21645@subsubheading Synopsis
21646
21647@smallexample
a2c02241 21648 -target-exec-status
922fbb7b
AC
21649@end smallexample
21650
a2c02241
NR
21651Provide information on the state of the target (whether it is running or
21652not, for instance).
922fbb7b 21653
a2c02241 21654@subsubheading @value{GDBN} Command
922fbb7b 21655
a2c02241
NR
21656There's no equivalent @value{GDBN} command.
21657
21658@subsubheading Example
21659N.A.
922fbb7b 21660
a2c02241
NR
21661
21662@subheading The @code{-target-list-available-targets} Command
21663@findex -target-list-available-targets
922fbb7b
AC
21664
21665@subsubheading Synopsis
21666
21667@smallexample
a2c02241 21668 -target-list-available-targets
922fbb7b
AC
21669@end smallexample
21670
a2c02241 21671List the possible targets to connect to.
922fbb7b 21672
a2c02241 21673@subsubheading @value{GDBN} Command
922fbb7b 21674
a2c02241 21675The corresponding @value{GDBN} command is @samp{help target}.
922fbb7b 21676
a2c02241
NR
21677@subsubheading Example
21678N.A.
21679
21680
21681@subheading The @code{-target-list-current-targets} Command
21682@findex -target-list-current-targets
922fbb7b
AC
21683
21684@subsubheading Synopsis
21685
21686@smallexample
a2c02241 21687 -target-list-current-targets
922fbb7b
AC
21688@end smallexample
21689
a2c02241 21690Describe the current target.
922fbb7b 21691
a2c02241 21692@subsubheading @value{GDBN} Command
922fbb7b 21693
a2c02241
NR
21694The corresponding information is printed by @samp{info file} (among
21695other things).
922fbb7b 21696
a2c02241
NR
21697@subsubheading Example
21698N.A.
21699
21700
21701@subheading The @code{-target-list-parameters} Command
21702@findex -target-list-parameters
922fbb7b
AC
21703
21704@subsubheading Synopsis
21705
21706@smallexample
a2c02241 21707 -target-list-parameters
922fbb7b
AC
21708@end smallexample
21709
a2c02241
NR
21710@c ????
21711
21712@subsubheading @value{GDBN} Command
21713
21714No equivalent.
922fbb7b
AC
21715
21716@subsubheading Example
a2c02241
NR
21717N.A.
21718
21719
21720@subheading The @code{-target-select} Command
21721@findex -target-select
21722
21723@subsubheading Synopsis
922fbb7b
AC
21724
21725@smallexample
a2c02241 21726 -target-select @var{type} @var{parameters @dots{}}
922fbb7b
AC
21727@end smallexample
21728
a2c02241 21729Connect @value{GDBN} to the remote target. This command takes two args:
922fbb7b 21730
a2c02241
NR
21731@table @samp
21732@item @var{type}
21733The type of target, for instance @samp{async}, @samp{remote}, etc.
21734@item @var{parameters}
21735Device names, host names and the like. @xref{Target Commands, ,
79a6e687 21736Commands for Managing Targets}, for more details.
a2c02241
NR
21737@end table
21738
21739The output is a connection notification, followed by the address at
21740which the target program is, in the following form:
922fbb7b
AC
21741
21742@smallexample
a2c02241
NR
21743^connected,addr="@var{address}",func="@var{function name}",
21744 args=[@var{arg list}]
922fbb7b
AC
21745@end smallexample
21746
a2c02241
NR
21747@subsubheading @value{GDBN} Command
21748
21749The corresponding @value{GDBN} command is @samp{target}.
265eeb58
NR
21750
21751@subsubheading Example
922fbb7b 21752
265eeb58 21753@smallexample
594fe323 21754(gdb)
a2c02241
NR
21755-target-select async /dev/ttya
21756^connected,addr="0xfe00a300",func="??",args=[]
594fe323 21757(gdb)
265eeb58 21758@end smallexample
ef21caaf 21759
a6b151f1
DJ
21760@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21761@node GDB/MI File Transfer Commands
21762@section @sc{gdb/mi} File Transfer Commands
21763
21764
21765@subheading The @code{-target-file-put} Command
21766@findex -target-file-put
21767
21768@subsubheading Synopsis
21769
21770@smallexample
21771 -target-file-put @var{hostfile} @var{targetfile}
21772@end smallexample
21773
21774Copy file @var{hostfile} from the host system (the machine running
21775@value{GDBN}) to @var{targetfile} on the target system.
21776
21777@subsubheading @value{GDBN} Command
21778
21779The corresponding @value{GDBN} command is @samp{remote put}.
21780
21781@subsubheading Example
21782
21783@smallexample
21784(gdb)
21785-target-file-put localfile remotefile
21786^done
21787(gdb)
21788@end smallexample
21789
21790
21791@subheading The @code{-target-file-put} Command
21792@findex -target-file-get
21793
21794@subsubheading Synopsis
21795
21796@smallexample
21797 -target-file-get @var{targetfile} @var{hostfile}
21798@end smallexample
21799
21800Copy file @var{targetfile} from the target system to @var{hostfile}
21801on the host system.
21802
21803@subsubheading @value{GDBN} Command
21804
21805The corresponding @value{GDBN} command is @samp{remote get}.
21806
21807@subsubheading Example
21808
21809@smallexample
21810(gdb)
21811-target-file-get remotefile localfile
21812^done
21813(gdb)
21814@end smallexample
21815
21816
21817@subheading The @code{-target-file-delete} Command
21818@findex -target-file-delete
21819
21820@subsubheading Synopsis
21821
21822@smallexample
21823 -target-file-delete @var{targetfile}
21824@end smallexample
21825
21826Delete @var{targetfile} from the target system.
21827
21828@subsubheading @value{GDBN} Command
21829
21830The corresponding @value{GDBN} command is @samp{remote delete}.
21831
21832@subsubheading Example
21833
21834@smallexample
21835(gdb)
21836-target-file-delete remotefile
21837^done
21838(gdb)
21839@end smallexample
21840
21841
ef21caaf
NR
21842@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21843@node GDB/MI Miscellaneous Commands
21844@section Miscellaneous @sc{gdb/mi} Commands
21845
21846@c @subheading -gdb-complete
21847
21848@subheading The @code{-gdb-exit} Command
21849@findex -gdb-exit
21850
21851@subsubheading Synopsis
21852
21853@smallexample
21854 -gdb-exit
21855@end smallexample
21856
21857Exit @value{GDBN} immediately.
21858
21859@subsubheading @value{GDBN} Command
21860
21861Approximately corresponds to @samp{quit}.
21862
21863@subsubheading Example
21864
21865@smallexample
594fe323 21866(gdb)
ef21caaf
NR
21867-gdb-exit
21868^exit
21869@end smallexample
21870
a2c02241
NR
21871
21872@subheading The @code{-exec-abort} Command
21873@findex -exec-abort
21874
21875@subsubheading Synopsis
21876
21877@smallexample
21878 -exec-abort
21879@end smallexample
21880
21881Kill the inferior running program.
21882
21883@subsubheading @value{GDBN} Command
21884
21885The corresponding @value{GDBN} command is @samp{kill}.
21886
21887@subsubheading Example
21888N.A.
21889
21890
ef21caaf
NR
21891@subheading The @code{-gdb-set} Command
21892@findex -gdb-set
21893
21894@subsubheading Synopsis
21895
21896@smallexample
21897 -gdb-set
21898@end smallexample
21899
21900Set an internal @value{GDBN} variable.
21901@c IS THIS A DOLLAR VARIABLE? OR SOMETHING LIKE ANNOTATE ?????
21902
21903@subsubheading @value{GDBN} Command
21904
21905The corresponding @value{GDBN} command is @samp{set}.
21906
21907@subsubheading Example
21908
21909@smallexample
594fe323 21910(gdb)
ef21caaf
NR
21911-gdb-set $foo=3
21912^done
594fe323 21913(gdb)
ef21caaf
NR
21914@end smallexample
21915
21916
21917@subheading The @code{-gdb-show} Command
21918@findex -gdb-show
21919
21920@subsubheading Synopsis
21921
21922@smallexample
21923 -gdb-show
21924@end smallexample
21925
21926Show the current value of a @value{GDBN} variable.
21927
79a6e687 21928@subsubheading @value{GDBN} Command
ef21caaf
NR
21929
21930The corresponding @value{GDBN} command is @samp{show}.
21931
21932@subsubheading Example
21933
21934@smallexample
594fe323 21935(gdb)
ef21caaf
NR
21936-gdb-show annotate
21937^done,value="0"
594fe323 21938(gdb)
ef21caaf
NR
21939@end smallexample
21940
21941@c @subheading -gdb-source
21942
21943
21944@subheading The @code{-gdb-version} Command
21945@findex -gdb-version
21946
21947@subsubheading Synopsis
21948
21949@smallexample
21950 -gdb-version
21951@end smallexample
21952
21953Show version information for @value{GDBN}. Used mostly in testing.
21954
21955@subsubheading @value{GDBN} Command
21956
21957The @value{GDBN} equivalent is @samp{show version}. @value{GDBN} by
21958default shows this information when you start an interactive session.
21959
21960@subsubheading Example
21961
21962@c This example modifies the actual output from GDB to avoid overfull
21963@c box in TeX.
21964@smallexample
594fe323 21965(gdb)
ef21caaf
NR
21966-gdb-version
21967~GNU gdb 5.2.1
21968~Copyright 2000 Free Software Foundation, Inc.
21969~GDB is free software, covered by the GNU General Public License, and
21970~you are welcome to change it and/or distribute copies of it under
21971~ certain conditions.
21972~Type "show copying" to see the conditions.
21973~There is absolutely no warranty for GDB. Type "show warranty" for
21974~ details.
21975~This GDB was configured as
21976 "--host=sparc-sun-solaris2.5.1 --target=ppc-eabi".
21977^done
594fe323 21978(gdb)
ef21caaf
NR
21979@end smallexample
21980
084344da
VP
21981@subheading The @code{-list-features} Command
21982@findex -list-features
21983
21984Returns a list of particular features of the MI protocol that
21985this version of gdb implements. A feature can be a command,
21986or a new field in an output of some command, or even an
21987important bugfix. While a frontend can sometimes detect presence
21988of a feature at runtime, it is easier to perform detection at debugger
21989startup.
21990
21991The command returns a list of strings, with each string naming an
21992available feature. Each returned string is just a name, it does not
21993have any internal structure. The list of possible feature names
21994is given below.
21995
21996Example output:
21997
21998@smallexample
21999(gdb) -list-features
22000^done,result=["feature1","feature2"]
22001@end smallexample
22002
22003The current list of features is:
22004
22005@itemize @minus
22006@item
22007@samp{frozen-varobjs}---indicates presence of the
22008@code{-var-set-frozen} command, as well as possible presense of the
22009@code{frozen} field in the output of @code{-varobj-create}.
8b4ed427
VP
22010@item
22011@samp{pending-breakpoints}---indicates presence of the @code{-f}
22012option to the @code{-break-insert} command.
8e8901c5
VP
22013@item
22014@samp{thread-info}---indicates presence of the @code{-thread-info} command.
8b4ed427 22015
084344da
VP
22016@end itemize
22017
ef21caaf
NR
22018@subheading The @code{-interpreter-exec} Command
22019@findex -interpreter-exec
22020
22021@subheading Synopsis
22022
22023@smallexample
22024-interpreter-exec @var{interpreter} @var{command}
22025@end smallexample
a2c02241 22026@anchor{-interpreter-exec}
ef21caaf
NR
22027
22028Execute the specified @var{command} in the given @var{interpreter}.
22029
22030@subheading @value{GDBN} Command
22031
22032The corresponding @value{GDBN} command is @samp{interpreter-exec}.
22033
22034@subheading Example
22035
22036@smallexample
594fe323 22037(gdb)
ef21caaf
NR
22038-interpreter-exec console "break main"
22039&"During symbol reading, couldn't parse type; debugger out of date?.\n"
22040&"During symbol reading, bad structure-type format.\n"
22041~"Breakpoint 1 at 0x8074fc6: file ../../src/gdb/main.c, line 743.\n"
22042^done
594fe323 22043(gdb)
ef21caaf
NR
22044@end smallexample
22045
22046@subheading The @code{-inferior-tty-set} Command
22047@findex -inferior-tty-set
22048
22049@subheading Synopsis
22050
22051@smallexample
22052-inferior-tty-set /dev/pts/1
22053@end smallexample
22054
22055Set terminal for future runs of the program being debugged.
22056
22057@subheading @value{GDBN} Command
22058
22059The corresponding @value{GDBN} command is @samp{set inferior-tty} /dev/pts/1.
22060
22061@subheading Example
22062
22063@smallexample
594fe323 22064(gdb)
ef21caaf
NR
22065-inferior-tty-set /dev/pts/1
22066^done
594fe323 22067(gdb)
ef21caaf
NR
22068@end smallexample
22069
22070@subheading The @code{-inferior-tty-show} Command
22071@findex -inferior-tty-show
22072
22073@subheading Synopsis
22074
22075@smallexample
22076-inferior-tty-show
22077@end smallexample
22078
22079Show terminal for future runs of program being debugged.
22080
22081@subheading @value{GDBN} Command
22082
22083The corresponding @value{GDBN} command is @samp{show inferior-tty}.
22084
22085@subheading Example
22086
22087@smallexample
594fe323 22088(gdb)
ef21caaf
NR
22089-inferior-tty-set /dev/pts/1
22090^done
594fe323 22091(gdb)
ef21caaf
NR
22092-inferior-tty-show
22093^done,inferior_tty_terminal="/dev/pts/1"
594fe323 22094(gdb)
ef21caaf 22095@end smallexample
922fbb7b 22096
a4eefcd8
NR
22097@subheading The @code{-enable-timings} Command
22098@findex -enable-timings
22099
22100@subheading Synopsis
22101
22102@smallexample
22103-enable-timings [yes | no]
22104@end smallexample
22105
22106Toggle the printing of the wallclock, user and system times for an MI
22107command as a field in its output. This command is to help frontend
22108developers optimize the performance of their code. No argument is
22109equivalent to @samp{yes}.
22110
22111@subheading @value{GDBN} Command
22112
22113No equivalent.
22114
22115@subheading Example
22116
22117@smallexample
22118(gdb)
22119-enable-timings
22120^done
22121(gdb)
22122-break-insert main
22123^done,bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
22124addr="0x080484ed",func="main",file="myprog.c",
22125fullname="/home/nickrob/myprog.c",line="73",times="0"@},
22126time=@{wallclock="0.05185",user="0.00800",system="0.00000"@}
22127(gdb)
22128-enable-timings no
22129^done
22130(gdb)
22131-exec-run
22132^running
22133(gdb)
a47ec5fe 22134*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",thread-id="0",
a4eefcd8
NR
22135frame=@{addr="0x080484ed",func="main",args=[@{name="argc",value="1"@},
22136@{name="argv",value="0xbfb60364"@}],file="myprog.c",
22137fullname="/home/nickrob/myprog.c",line="73"@}
22138(gdb)
22139@end smallexample
22140
922fbb7b
AC
22141@node Annotations
22142@chapter @value{GDBN} Annotations
22143
086432e2
AC
22144This chapter describes annotations in @value{GDBN}. Annotations were
22145designed to interface @value{GDBN} to graphical user interfaces or other
22146similar programs which want to interact with @value{GDBN} at a
922fbb7b
AC
22147relatively high level.
22148
d3e8051b 22149The annotation mechanism has largely been superseded by @sc{gdb/mi}
086432e2
AC
22150(@pxref{GDB/MI}).
22151
922fbb7b
AC
22152@ignore
22153This is Edition @value{EDITION}, @value{DATE}.
22154@end ignore
22155
22156@menu
22157* Annotations Overview:: What annotations are; the general syntax.
9e6c4bd5 22158* Server Prefix:: Issuing a command without affecting user state.
922fbb7b
AC
22159* Prompting:: Annotations marking @value{GDBN}'s need for input.
22160* Errors:: Annotations for error messages.
922fbb7b
AC
22161* Invalidation:: Some annotations describe things now invalid.
22162* Annotations for Running::
22163 Whether the program is running, how it stopped, etc.
22164* Source Annotations:: Annotations describing source code.
922fbb7b
AC
22165@end menu
22166
22167@node Annotations Overview
22168@section What is an Annotation?
22169@cindex annotations
22170
922fbb7b
AC
22171Annotations start with a newline character, two @samp{control-z}
22172characters, and the name of the annotation. If there is no additional
22173information associated with this annotation, the name of the annotation
22174is followed immediately by a newline. If there is additional
22175information, the name of the annotation is followed by a space, the
22176additional information, and a newline. The additional information
22177cannot contain newline characters.
22178
22179Any output not beginning with a newline and two @samp{control-z}
22180characters denotes literal output from @value{GDBN}. Currently there is
22181no need for @value{GDBN} to output a newline followed by two
22182@samp{control-z} characters, but if there was such a need, the
22183annotations could be extended with an @samp{escape} annotation which
22184means those three characters as output.
22185
086432e2
AC
22186The annotation @var{level}, which is specified using the
22187@option{--annotate} command line option (@pxref{Mode Options}), controls
22188how much information @value{GDBN} prints together with its prompt,
22189values of expressions, source lines, and other types of output. Level 0
d3e8051b 22190is for no annotations, level 1 is for use when @value{GDBN} is run as a
086432e2
AC
22191subprocess of @sc{gnu} Emacs, level 3 is the maximum annotation suitable
22192for programs that control @value{GDBN}, and level 2 annotations have
22193been made obsolete (@pxref{Limitations, , Limitations of the Annotation
09d4efe1
EZ
22194Interface, annotate, GDB's Obsolete Annotations}).
22195
22196@table @code
22197@kindex set annotate
22198@item set annotate @var{level}
e09f16f9 22199The @value{GDBN} command @code{set annotate} sets the level of
09d4efe1 22200annotations to the specified @var{level}.
9c16f35a
EZ
22201
22202@item show annotate
22203@kindex show annotate
22204Show the current annotation level.
09d4efe1
EZ
22205@end table
22206
22207This chapter describes level 3 annotations.
086432e2 22208
922fbb7b
AC
22209A simple example of starting up @value{GDBN} with annotations is:
22210
22211@smallexample
086432e2
AC
22212$ @kbd{gdb --annotate=3}
22213GNU gdb 6.0
22214Copyright 2003 Free Software Foundation, Inc.
922fbb7b
AC
22215GDB is free software, covered by the GNU General Public License,
22216and you are welcome to change it and/or distribute copies of it
22217under certain conditions.
22218Type "show copying" to see the conditions.
22219There is absolutely no warranty for GDB. Type "show warranty"
22220for details.
086432e2 22221This GDB was configured as "i386-pc-linux-gnu"
922fbb7b
AC
22222
22223^Z^Zpre-prompt
f7dc1244 22224(@value{GDBP})
922fbb7b 22225^Z^Zprompt
086432e2 22226@kbd{quit}
922fbb7b
AC
22227
22228^Z^Zpost-prompt
b383017d 22229$
922fbb7b
AC
22230@end smallexample
22231
22232Here @samp{quit} is input to @value{GDBN}; the rest is output from
22233@value{GDBN}. The three lines beginning @samp{^Z^Z} (where @samp{^Z}
22234denotes a @samp{control-z} character) are annotations; the rest is
22235output from @value{GDBN}.
22236
9e6c4bd5
NR
22237@node Server Prefix
22238@section The Server Prefix
22239@cindex server prefix
22240
22241If you prefix a command with @samp{server } then it will not affect
22242the command history, nor will it affect @value{GDBN}'s notion of which
22243command to repeat if @key{RET} is pressed on a line by itself. This
22244means that commands can be run behind a user's back by a front-end in
22245a transparent manner.
22246
22247The server prefix does not affect the recording of values into the value
22248history; to print a value without recording it into the value history,
22249use the @code{output} command instead of the @code{print} command.
22250
922fbb7b
AC
22251@node Prompting
22252@section Annotation for @value{GDBN} Input
22253
22254@cindex annotations for prompts
22255When @value{GDBN} prompts for input, it annotates this fact so it is possible
22256to know when to send output, when the output from a given command is
22257over, etc.
22258
22259Different kinds of input each have a different @dfn{input type}. Each
22260input type has three annotations: a @code{pre-} annotation, which
22261denotes the beginning of any prompt which is being output, a plain
22262annotation, which denotes the end of the prompt, and then a @code{post-}
22263annotation which denotes the end of any echo which may (or may not) be
22264associated with the input. For example, the @code{prompt} input type
22265features the following annotations:
22266
22267@smallexample
22268^Z^Zpre-prompt
22269^Z^Zprompt
22270^Z^Zpost-prompt
22271@end smallexample
22272
22273The input types are
22274
22275@table @code
e5ac9b53
EZ
22276@findex pre-prompt annotation
22277@findex prompt annotation
22278@findex post-prompt annotation
922fbb7b
AC
22279@item prompt
22280When @value{GDBN} is prompting for a command (the main @value{GDBN} prompt).
22281
e5ac9b53
EZ
22282@findex pre-commands annotation
22283@findex commands annotation
22284@findex post-commands annotation
922fbb7b
AC
22285@item commands
22286When @value{GDBN} prompts for a set of commands, like in the @code{commands}
22287command. The annotations are repeated for each command which is input.
22288
e5ac9b53
EZ
22289@findex pre-overload-choice annotation
22290@findex overload-choice annotation
22291@findex post-overload-choice annotation
922fbb7b
AC
22292@item overload-choice
22293When @value{GDBN} wants the user to select between various overloaded functions.
22294
e5ac9b53
EZ
22295@findex pre-query annotation
22296@findex query annotation
22297@findex post-query annotation
922fbb7b
AC
22298@item query
22299When @value{GDBN} wants the user to confirm a potentially dangerous operation.
22300
e5ac9b53
EZ
22301@findex pre-prompt-for-continue annotation
22302@findex prompt-for-continue annotation
22303@findex post-prompt-for-continue annotation
922fbb7b
AC
22304@item prompt-for-continue
22305When @value{GDBN} is asking the user to press return to continue. Note: Don't
22306expect this to work well; instead use @code{set height 0} to disable
22307prompting. This is because the counting of lines is buggy in the
22308presence of annotations.
22309@end table
22310
22311@node Errors
22312@section Errors
22313@cindex annotations for errors, warnings and interrupts
22314
e5ac9b53 22315@findex quit annotation
922fbb7b
AC
22316@smallexample
22317^Z^Zquit
22318@end smallexample
22319
22320This annotation occurs right before @value{GDBN} responds to an interrupt.
22321
e5ac9b53 22322@findex error annotation
922fbb7b
AC
22323@smallexample
22324^Z^Zerror
22325@end smallexample
22326
22327This annotation occurs right before @value{GDBN} responds to an error.
22328
22329Quit and error annotations indicate that any annotations which @value{GDBN} was
22330in the middle of may end abruptly. For example, if a
22331@code{value-history-begin} annotation is followed by a @code{error}, one
22332cannot expect to receive the matching @code{value-history-end}. One
22333cannot expect not to receive it either, however; an error annotation
22334does not necessarily mean that @value{GDBN} is immediately returning all the way
22335to the top level.
22336
e5ac9b53 22337@findex error-begin annotation
922fbb7b
AC
22338A quit or error annotation may be preceded by
22339
22340@smallexample
22341^Z^Zerror-begin
22342@end smallexample
22343
22344Any output between that and the quit or error annotation is the error
22345message.
22346
22347Warning messages are not yet annotated.
22348@c If we want to change that, need to fix warning(), type_error(),
22349@c range_error(), and possibly other places.
22350
922fbb7b
AC
22351@node Invalidation
22352@section Invalidation Notices
22353
22354@cindex annotations for invalidation messages
22355The following annotations say that certain pieces of state may have
22356changed.
22357
22358@table @code
e5ac9b53 22359@findex frames-invalid annotation
922fbb7b
AC
22360@item ^Z^Zframes-invalid
22361
22362The frames (for example, output from the @code{backtrace} command) may
22363have changed.
22364
e5ac9b53 22365@findex breakpoints-invalid annotation
922fbb7b
AC
22366@item ^Z^Zbreakpoints-invalid
22367
22368The breakpoints may have changed. For example, the user just added or
22369deleted a breakpoint.
22370@end table
22371
22372@node Annotations for Running
22373@section Running the Program
22374@cindex annotations for running programs
22375
e5ac9b53
EZ
22376@findex starting annotation
22377@findex stopping annotation
922fbb7b 22378When the program starts executing due to a @value{GDBN} command such as
b383017d 22379@code{step} or @code{continue},
922fbb7b
AC
22380
22381@smallexample
22382^Z^Zstarting
22383@end smallexample
22384
b383017d 22385is output. When the program stops,
922fbb7b
AC
22386
22387@smallexample
22388^Z^Zstopped
22389@end smallexample
22390
22391is output. Before the @code{stopped} annotation, a variety of
22392annotations describe how the program stopped.
22393
22394@table @code
e5ac9b53 22395@findex exited annotation
922fbb7b
AC
22396@item ^Z^Zexited @var{exit-status}
22397The program exited, and @var{exit-status} is the exit status (zero for
22398successful exit, otherwise nonzero).
22399
e5ac9b53
EZ
22400@findex signalled annotation
22401@findex signal-name annotation
22402@findex signal-name-end annotation
22403@findex signal-string annotation
22404@findex signal-string-end annotation
922fbb7b
AC
22405@item ^Z^Zsignalled
22406The program exited with a signal. After the @code{^Z^Zsignalled}, the
22407annotation continues:
22408
22409@smallexample
22410@var{intro-text}
22411^Z^Zsignal-name
22412@var{name}
22413^Z^Zsignal-name-end
22414@var{middle-text}
22415^Z^Zsignal-string
22416@var{string}
22417^Z^Zsignal-string-end
22418@var{end-text}
22419@end smallexample
22420
22421@noindent
22422where @var{name} is the name of the signal, such as @code{SIGILL} or
22423@code{SIGSEGV}, and @var{string} is the explanation of the signal, such
22424as @code{Illegal Instruction} or @code{Segmentation fault}.
22425@var{intro-text}, @var{middle-text}, and @var{end-text} are for the
22426user's benefit and have no particular format.
22427
e5ac9b53 22428@findex signal annotation
922fbb7b
AC
22429@item ^Z^Zsignal
22430The syntax of this annotation is just like @code{signalled}, but @value{GDBN} is
22431just saying that the program received the signal, not that it was
22432terminated with it.
22433
e5ac9b53 22434@findex breakpoint annotation
922fbb7b
AC
22435@item ^Z^Zbreakpoint @var{number}
22436The program hit breakpoint number @var{number}.
22437
e5ac9b53 22438@findex watchpoint annotation
922fbb7b
AC
22439@item ^Z^Zwatchpoint @var{number}
22440The program hit watchpoint number @var{number}.
22441@end table
22442
22443@node Source Annotations
22444@section Displaying Source
22445@cindex annotations for source display
22446
e5ac9b53 22447@findex source annotation
922fbb7b
AC
22448The following annotation is used instead of displaying source code:
22449
22450@smallexample
22451^Z^Zsource @var{filename}:@var{line}:@var{character}:@var{middle}:@var{addr}
22452@end smallexample
22453
22454where @var{filename} is an absolute file name indicating which source
22455file, @var{line} is the line number within that file (where 1 is the
22456first line in the file), @var{character} is the character position
22457within the file (where 0 is the first character in the file) (for most
22458debug formats this will necessarily point to the beginning of a line),
22459@var{middle} is @samp{middle} if @var{addr} is in the middle of the
22460line, or @samp{beg} if @var{addr} is at the beginning of the line, and
22461@var{addr} is the address in the target program associated with the
22462source which is being displayed. @var{addr} is in the form @samp{0x}
22463followed by one or more lowercase hex digits (note that this does not
22464depend on the language).
22465
8e04817f
AC
22466@node GDB Bugs
22467@chapter Reporting Bugs in @value{GDBN}
22468@cindex bugs in @value{GDBN}
22469@cindex reporting bugs in @value{GDBN}
c906108c 22470
8e04817f 22471Your bug reports play an essential role in making @value{GDBN} reliable.
c906108c 22472
8e04817f
AC
22473Reporting a bug may help you by bringing a solution to your problem, or it
22474may not. But in any case the principal function of a bug report is to help
22475the entire community by making the next version of @value{GDBN} work better. Bug
22476reports are your contribution to the maintenance of @value{GDBN}.
c906108c 22477
8e04817f
AC
22478In order for a bug report to serve its purpose, you must include the
22479information that enables us to fix the bug.
c4555f82
SC
22480
22481@menu
8e04817f
AC
22482* Bug Criteria:: Have you found a bug?
22483* Bug Reporting:: How to report bugs
c4555f82
SC
22484@end menu
22485
8e04817f 22486@node Bug Criteria
79a6e687 22487@section Have You Found a Bug?
8e04817f 22488@cindex bug criteria
c4555f82 22489
8e04817f 22490If you are not sure whether you have found a bug, here are some guidelines:
c4555f82
SC
22491
22492@itemize @bullet
8e04817f
AC
22493@cindex fatal signal
22494@cindex debugger crash
22495@cindex crash of debugger
c4555f82 22496@item
8e04817f
AC
22497If the debugger gets a fatal signal, for any input whatever, that is a
22498@value{GDBN} bug. Reliable debuggers never crash.
22499
22500@cindex error on valid input
22501@item
22502If @value{GDBN} produces an error message for valid input, that is a
22503bug. (Note that if you're cross debugging, the problem may also be
22504somewhere in the connection to the target.)
c4555f82 22505
8e04817f 22506@cindex invalid input
c4555f82 22507@item
8e04817f
AC
22508If @value{GDBN} does not produce an error message for invalid input,
22509that is a bug. However, you should note that your idea of
22510``invalid input'' might be our idea of ``an extension'' or ``support
22511for traditional practice''.
22512
22513@item
22514If you are an experienced user of debugging tools, your suggestions
22515for improvement of @value{GDBN} are welcome in any case.
c4555f82
SC
22516@end itemize
22517
8e04817f 22518@node Bug Reporting
79a6e687 22519@section How to Report Bugs
8e04817f
AC
22520@cindex bug reports
22521@cindex @value{GDBN} bugs, reporting
22522
22523A number of companies and individuals offer support for @sc{gnu} products.
22524If you obtained @value{GDBN} from a support organization, we recommend you
22525contact that organization first.
22526
22527You can find contact information for many support companies and
22528individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
22529distribution.
22530@c should add a web page ref...
22531
129188f6 22532In any event, we also recommend that you submit bug reports for
d3e8051b 22533@value{GDBN}. The preferred method is to submit them directly using
129188f6
AC
22534@uref{http://www.gnu.org/software/gdb/bugs/, @value{GDBN}'s Bugs web
22535page}. Alternatively, the @email{bug-gdb@@gnu.org, e-mail gateway} can
22536be used.
8e04817f
AC
22537
22538@strong{Do not send bug reports to @samp{info-gdb}, or to
22539@samp{help-gdb}, or to any newsgroups.} Most users of @value{GDBN} do
22540not want to receive bug reports. Those that do have arranged to receive
22541@samp{bug-gdb}.
22542
22543The mailing list @samp{bug-gdb} has a newsgroup @samp{gnu.gdb.bug} which
22544serves as a repeater. The mailing list and the newsgroup carry exactly
22545the same messages. Often people think of posting bug reports to the
22546newsgroup instead of mailing them. This appears to work, but it has one
22547problem which can be crucial: a newsgroup posting often lacks a mail
22548path back to the sender. Thus, if we need to ask for more information,
22549we may be unable to reach you. For this reason, it is better to send
22550bug reports to the mailing list.
c4555f82 22551
8e04817f
AC
22552The fundamental principle of reporting bugs usefully is this:
22553@strong{report all the facts}. If you are not sure whether to state a
22554fact or leave it out, state it!
c4555f82 22555
8e04817f
AC
22556Often people omit facts because they think they know what causes the
22557problem and assume that some details do not matter. Thus, you might
22558assume that the name of the variable you use in an example does not matter.
22559Well, probably it does not, but one cannot be sure. Perhaps the bug is a
22560stray memory reference which happens to fetch from the location where that
22561name is stored in memory; perhaps, if the name were different, the contents
22562of that location would fool the debugger into doing the right thing despite
22563the bug. Play it safe and give a specific, complete example. That is the
22564easiest thing for you to do, and the most helpful.
c4555f82 22565
8e04817f
AC
22566Keep in mind that the purpose of a bug report is to enable us to fix the
22567bug. It may be that the bug has been reported previously, but neither
22568you nor we can know that unless your bug report is complete and
22569self-contained.
c4555f82 22570
8e04817f
AC
22571Sometimes people give a few sketchy facts and ask, ``Does this ring a
22572bell?'' Those bug reports are useless, and we urge everyone to
22573@emph{refuse to respond to them} except to chide the sender to report
22574bugs properly.
22575
22576To enable us to fix the bug, you should include all these things:
c4555f82
SC
22577
22578@itemize @bullet
22579@item
8e04817f
AC
22580The version of @value{GDBN}. @value{GDBN} announces it if you start
22581with no arguments; you can also print it at any time using @code{show
22582version}.
c4555f82 22583
8e04817f
AC
22584Without this, we will not know whether there is any point in looking for
22585the bug in the current version of @value{GDBN}.
c4555f82
SC
22586
22587@item
8e04817f
AC
22588The type of machine you are using, and the operating system name and
22589version number.
c4555f82
SC
22590
22591@item
c1468174 22592What compiler (and its version) was used to compile @value{GDBN}---e.g.@:
8e04817f 22593``@value{GCC}--2.8.1''.
c4555f82
SC
22594
22595@item
8e04817f 22596What compiler (and its version) was used to compile the program you are
c1468174 22597debugging---e.g.@: ``@value{GCC}--2.8.1'', or ``HP92453-01 A.10.32.03 HP
3f94c067
BW
22598C Compiler''. For @value{NGCC}, you can say @kbd{@value{GCC} --version}
22599to get this information; for other compilers, see the documentation for
22600those compilers.
c4555f82 22601
8e04817f
AC
22602@item
22603The command arguments you gave the compiler to compile your example and
22604observe the bug. For example, did you use @samp{-O}? To guarantee
22605you will not omit something important, list them all. A copy of the
22606Makefile (or the output from make) is sufficient.
c4555f82 22607
8e04817f
AC
22608If we were to try to guess the arguments, we would probably guess wrong
22609and then we might not encounter the bug.
c4555f82 22610
8e04817f
AC
22611@item
22612A complete input script, and all necessary source files, that will
22613reproduce the bug.
c4555f82 22614
8e04817f
AC
22615@item
22616A description of what behavior you observe that you believe is
22617incorrect. For example, ``It gets a fatal signal.''
c4555f82 22618
8e04817f
AC
22619Of course, if the bug is that @value{GDBN} gets a fatal signal, then we
22620will certainly notice it. But if the bug is incorrect output, we might
22621not notice unless it is glaringly wrong. You might as well not give us
22622a chance to make a mistake.
c4555f82 22623
8e04817f
AC
22624Even if the problem you experience is a fatal signal, you should still
22625say so explicitly. Suppose something strange is going on, such as, your
22626copy of @value{GDBN} is out of synch, or you have encountered a bug in
22627the C library on your system. (This has happened!) Your copy might
22628crash and ours would not. If you told us to expect a crash, then when
22629ours fails to crash, we would know that the bug was not happening for
22630us. If you had not told us to expect a crash, then we would not be able
22631to draw any conclusion from our observations.
c4555f82 22632
e0c07bf0
MC
22633@pindex script
22634@cindex recording a session script
22635To collect all this information, you can use a session recording program
22636such as @command{script}, which is available on many Unix systems.
22637Just run your @value{GDBN} session inside @command{script} and then
22638include the @file{typescript} file with your bug report.
22639
22640Another way to record a @value{GDBN} session is to run @value{GDBN}
22641inside Emacs and then save the entire buffer to a file.
22642
8e04817f
AC
22643@item
22644If you wish to suggest changes to the @value{GDBN} source, send us context
22645diffs. If you even discuss something in the @value{GDBN} source, refer to
22646it by context, not by line number.
c4555f82 22647
8e04817f
AC
22648The line numbers in our development sources will not match those in your
22649sources. Your line numbers would convey no useful information to us.
c4555f82 22650
8e04817f 22651@end itemize
c4555f82 22652
8e04817f 22653Here are some things that are not necessary:
c4555f82 22654
8e04817f
AC
22655@itemize @bullet
22656@item
22657A description of the envelope of the bug.
c4555f82 22658
8e04817f
AC
22659Often people who encounter a bug spend a lot of time investigating
22660which changes to the input file will make the bug go away and which
22661changes will not affect it.
c4555f82 22662
8e04817f
AC
22663This is often time consuming and not very useful, because the way we
22664will find the bug is by running a single example under the debugger
22665with breakpoints, not by pure deduction from a series of examples.
22666We recommend that you save your time for something else.
c4555f82 22667
8e04817f
AC
22668Of course, if you can find a simpler example to report @emph{instead}
22669of the original one, that is a convenience for us. Errors in the
22670output will be easier to spot, running under the debugger will take
22671less time, and so on.
c4555f82 22672
8e04817f
AC
22673However, simplification is not vital; if you do not want to do this,
22674report the bug anyway and send us the entire test case you used.
c4555f82 22675
8e04817f
AC
22676@item
22677A patch for the bug.
c4555f82 22678
8e04817f
AC
22679A patch for the bug does help us if it is a good one. But do not omit
22680the necessary information, such as the test case, on the assumption that
22681a patch is all we need. We might see problems with your patch and decide
22682to fix the problem another way, or we might not understand it at all.
c4555f82 22683
8e04817f
AC
22684Sometimes with a program as complicated as @value{GDBN} it is very hard to
22685construct an example that will make the program follow a certain path
22686through the code. If you do not send us the example, we will not be able
22687to construct one, so we will not be able to verify that the bug is fixed.
c4555f82 22688
8e04817f
AC
22689And if we cannot understand what bug you are trying to fix, or why your
22690patch should be an improvement, we will not install it. A test case will
22691help us to understand.
c4555f82 22692
8e04817f
AC
22693@item
22694A guess about what the bug is or what it depends on.
c4555f82 22695
8e04817f
AC
22696Such guesses are usually wrong. Even we cannot guess right about such
22697things without first using the debugger to find the facts.
22698@end itemize
c4555f82 22699
8e04817f
AC
22700@c The readline documentation is distributed with the readline code
22701@c and consists of the two following files:
22702@c rluser.texinfo
22703@c inc-hist.texinfo
22704@c Use -I with makeinfo to point to the appropriate directory,
22705@c environment var TEXINPUTS with TeX.
5bdf8622 22706@include rluser.texi
8e04817f 22707@include inc-hist.texinfo
c4555f82 22708
c4555f82 22709
8e04817f
AC
22710@node Formatting Documentation
22711@appendix Formatting Documentation
c4555f82 22712
8e04817f
AC
22713@cindex @value{GDBN} reference card
22714@cindex reference card
22715The @value{GDBN} 4 release includes an already-formatted reference card, ready
22716for printing with PostScript or Ghostscript, in the @file{gdb}
22717subdirectory of the main source directory@footnote{In
22718@file{gdb-@value{GDBVN}/gdb/refcard.ps} of the version @value{GDBVN}
22719release.}. If you can use PostScript or Ghostscript with your printer,
22720you can print the reference card immediately with @file{refcard.ps}.
c4555f82 22721
8e04817f
AC
22722The release also includes the source for the reference card. You
22723can format it, using @TeX{}, by typing:
c4555f82 22724
474c8240 22725@smallexample
8e04817f 22726make refcard.dvi
474c8240 22727@end smallexample
c4555f82 22728
8e04817f
AC
22729The @value{GDBN} reference card is designed to print in @dfn{landscape}
22730mode on US ``letter'' size paper;
22731that is, on a sheet 11 inches wide by 8.5 inches
22732high. You will need to specify this form of printing as an option to
22733your @sc{dvi} output program.
c4555f82 22734
8e04817f 22735@cindex documentation
c4555f82 22736
8e04817f
AC
22737All the documentation for @value{GDBN} comes as part of the machine-readable
22738distribution. The documentation is written in Texinfo format, which is
22739a documentation system that uses a single source file to produce both
22740on-line information and a printed manual. You can use one of the Info
22741formatting commands to create the on-line version of the documentation
22742and @TeX{} (or @code{texi2roff}) to typeset the printed version.
c4555f82 22743
8e04817f
AC
22744@value{GDBN} includes an already formatted copy of the on-line Info
22745version of this manual in the @file{gdb} subdirectory. The main Info
22746file is @file{gdb-@value{GDBVN}/gdb/gdb.info}, and it refers to
22747subordinate files matching @samp{gdb.info*} in the same directory. If
22748necessary, you can print out these files, or read them with any editor;
22749but they are easier to read using the @code{info} subsystem in @sc{gnu}
22750Emacs or the standalone @code{info} program, available as part of the
22751@sc{gnu} Texinfo distribution.
c4555f82 22752
8e04817f
AC
22753If you want to format these Info files yourself, you need one of the
22754Info formatting programs, such as @code{texinfo-format-buffer} or
22755@code{makeinfo}.
c4555f82 22756
8e04817f
AC
22757If you have @code{makeinfo} installed, and are in the top level
22758@value{GDBN} source directory (@file{gdb-@value{GDBVN}}, in the case of
22759version @value{GDBVN}), you can make the Info file by typing:
c4555f82 22760
474c8240 22761@smallexample
8e04817f
AC
22762cd gdb
22763make gdb.info
474c8240 22764@end smallexample
c4555f82 22765
8e04817f
AC
22766If you want to typeset and print copies of this manual, you need @TeX{},
22767a program to print its @sc{dvi} output files, and @file{texinfo.tex}, the
22768Texinfo definitions file.
c4555f82 22769
8e04817f
AC
22770@TeX{} is a typesetting program; it does not print files directly, but
22771produces output files called @sc{dvi} files. To print a typeset
22772document, you need a program to print @sc{dvi} files. If your system
22773has @TeX{} installed, chances are it has such a program. The precise
22774command to use depends on your system; @kbd{lpr -d} is common; another
22775(for PostScript devices) is @kbd{dvips}. The @sc{dvi} print command may
22776require a file name without any extension or a @samp{.dvi} extension.
c4555f82 22777
8e04817f
AC
22778@TeX{} also requires a macro definitions file called
22779@file{texinfo.tex}. This file tells @TeX{} how to typeset a document
22780written in Texinfo format. On its own, @TeX{} cannot either read or
22781typeset a Texinfo file. @file{texinfo.tex} is distributed with GDB
22782and is located in the @file{gdb-@var{version-number}/texinfo}
22783directory.
c4555f82 22784
8e04817f 22785If you have @TeX{} and a @sc{dvi} printer program installed, you can
d3e8051b 22786typeset and print this manual. First switch to the @file{gdb}
8e04817f
AC
22787subdirectory of the main source directory (for example, to
22788@file{gdb-@value{GDBVN}/gdb}) and type:
c4555f82 22789
474c8240 22790@smallexample
8e04817f 22791make gdb.dvi
474c8240 22792@end smallexample
c4555f82 22793
8e04817f 22794Then give @file{gdb.dvi} to your @sc{dvi} printing program.
c4555f82 22795
8e04817f
AC
22796@node Installing GDB
22797@appendix Installing @value{GDBN}
8e04817f 22798@cindex installation
c4555f82 22799
7fa2210b
DJ
22800@menu
22801* Requirements:: Requirements for building @value{GDBN}
db2e3e2e 22802* Running Configure:: Invoking the @value{GDBN} @file{configure} script
7fa2210b
DJ
22803* Separate Objdir:: Compiling @value{GDBN} in another directory
22804* Config Names:: Specifying names for hosts and targets
22805* Configure Options:: Summary of options for configure
22806@end menu
22807
22808@node Requirements
79a6e687 22809@section Requirements for Building @value{GDBN}
7fa2210b
DJ
22810@cindex building @value{GDBN}, requirements for
22811
22812Building @value{GDBN} requires various tools and packages to be available.
22813Other packages will be used only if they are found.
22814
79a6e687 22815@heading Tools/Packages Necessary for Building @value{GDBN}
7fa2210b
DJ
22816@table @asis
22817@item ISO C90 compiler
22818@value{GDBN} is written in ISO C90. It should be buildable with any
22819working C90 compiler, e.g.@: GCC.
22820
22821@end table
22822
79a6e687 22823@heading Tools/Packages Optional for Building @value{GDBN}
7fa2210b
DJ
22824@table @asis
22825@item Expat
123dc839 22826@anchor{Expat}
7fa2210b
DJ
22827@value{GDBN} can use the Expat XML parsing library. This library may be
22828included with your operating system distribution; if it is not, you
22829can get the latest version from @url{http://expat.sourceforge.net}.
db2e3e2e 22830The @file{configure} script will search for this library in several
7fa2210b
DJ
22831standard locations; if it is installed in an unusual path, you can
22832use the @option{--with-libexpat-prefix} option to specify its location.
22833
9cceb671
DJ
22834Expat is used for:
22835
22836@itemize @bullet
22837@item
22838Remote protocol memory maps (@pxref{Memory Map Format})
22839@item
22840Target descriptions (@pxref{Target Descriptions})
22841@item
22842Remote shared library lists (@pxref{Library List Format})
22843@item
22844MS-Windows shared libraries (@pxref{Shared Libraries})
22845@end itemize
7fa2210b 22846
31fffb02
CS
22847@item zlib
22848@cindex compressed debug sections
22849@value{GDBN} will use the @samp{zlib} library, if available, to read
22850compressed debug sections. Some linkers, such as GNU gold, are capable
22851of producing binaries with compressed debug sections. If @value{GDBN}
22852is compiled with @samp{zlib}, it will be able to read the debug
22853information in such binaries.
22854
22855The @samp{zlib} library is likely included with your operating system
22856distribution; if it is not, you can get the latest version from
22857@url{http://zlib.net}.
22858
7fa2210b
DJ
22859@end table
22860
22861@node Running Configure
db2e3e2e 22862@section Invoking the @value{GDBN} @file{configure} Script
7fa2210b 22863@cindex configuring @value{GDBN}
db2e3e2e 22864@value{GDBN} comes with a @file{configure} script that automates the process
8e04817f
AC
22865of preparing @value{GDBN} for installation; you can then use @code{make} to
22866build the @code{gdb} program.
22867@iftex
22868@c irrelevant in info file; it's as current as the code it lives with.
22869@footnote{If you have a more recent version of @value{GDBN} than @value{GDBVN},
22870look at the @file{README} file in the sources; we may have improved the
22871installation procedures since publishing this manual.}
22872@end iftex
c4555f82 22873
8e04817f
AC
22874The @value{GDBN} distribution includes all the source code you need for
22875@value{GDBN} in a single directory, whose name is usually composed by
22876appending the version number to @samp{gdb}.
c4555f82 22877
8e04817f
AC
22878For example, the @value{GDBN} version @value{GDBVN} distribution is in the
22879@file{gdb-@value{GDBVN}} directory. That directory contains:
c4555f82 22880
8e04817f
AC
22881@table @code
22882@item gdb-@value{GDBVN}/configure @r{(and supporting files)}
22883script for configuring @value{GDBN} and all its supporting libraries
c4555f82 22884
8e04817f
AC
22885@item gdb-@value{GDBVN}/gdb
22886the source specific to @value{GDBN} itself
c4555f82 22887
8e04817f
AC
22888@item gdb-@value{GDBVN}/bfd
22889source for the Binary File Descriptor library
c906108c 22890
8e04817f
AC
22891@item gdb-@value{GDBVN}/include
22892@sc{gnu} include files
c906108c 22893
8e04817f
AC
22894@item gdb-@value{GDBVN}/libiberty
22895source for the @samp{-liberty} free software library
c906108c 22896
8e04817f
AC
22897@item gdb-@value{GDBVN}/opcodes
22898source for the library of opcode tables and disassemblers
c906108c 22899
8e04817f
AC
22900@item gdb-@value{GDBVN}/readline
22901source for the @sc{gnu} command-line interface
c906108c 22902
8e04817f
AC
22903@item gdb-@value{GDBVN}/glob
22904source for the @sc{gnu} filename pattern-matching subroutine
c906108c 22905
8e04817f
AC
22906@item gdb-@value{GDBVN}/mmalloc
22907source for the @sc{gnu} memory-mapped malloc package
22908@end table
c906108c 22909
db2e3e2e 22910The simplest way to configure and build @value{GDBN} is to run @file{configure}
8e04817f
AC
22911from the @file{gdb-@var{version-number}} source directory, which in
22912this example is the @file{gdb-@value{GDBVN}} directory.
c906108c 22913
8e04817f 22914First switch to the @file{gdb-@var{version-number}} source directory
db2e3e2e 22915if you are not already in it; then run @file{configure}. Pass the
8e04817f
AC
22916identifier for the platform on which @value{GDBN} will run as an
22917argument.
c906108c 22918
8e04817f 22919For example:
c906108c 22920
474c8240 22921@smallexample
8e04817f
AC
22922cd gdb-@value{GDBVN}
22923./configure @var{host}
22924make
474c8240 22925@end smallexample
c906108c 22926
8e04817f
AC
22927@noindent
22928where @var{host} is an identifier such as @samp{sun4} or
22929@samp{decstation}, that identifies the platform where @value{GDBN} will run.
db2e3e2e 22930(You can often leave off @var{host}; @file{configure} tries to guess the
8e04817f 22931correct value by examining your system.)
c906108c 22932
8e04817f
AC
22933Running @samp{configure @var{host}} and then running @code{make} builds the
22934@file{bfd}, @file{readline}, @file{mmalloc}, and @file{libiberty}
22935libraries, then @code{gdb} itself. The configured source files, and the
22936binaries, are left in the corresponding source directories.
c906108c 22937
8e04817f 22938@need 750
db2e3e2e 22939@file{configure} is a Bourne-shell (@code{/bin/sh}) script; if your
8e04817f
AC
22940system does not recognize this automatically when you run a different
22941shell, you may need to run @code{sh} on it explicitly:
c906108c 22942
474c8240 22943@smallexample
8e04817f 22944sh configure @var{host}
474c8240 22945@end smallexample
c906108c 22946
db2e3e2e 22947If you run @file{configure} from a directory that contains source
8e04817f 22948directories for multiple libraries or programs, such as the
db2e3e2e
BW
22949@file{gdb-@value{GDBVN}} source directory for version @value{GDBVN},
22950@file{configure}
8e04817f
AC
22951creates configuration files for every directory level underneath (unless
22952you tell it not to, with the @samp{--norecursion} option).
22953
db2e3e2e 22954You should run the @file{configure} script from the top directory in the
94e91d6d 22955source tree, the @file{gdb-@var{version-number}} directory. If you run
db2e3e2e 22956@file{configure} from one of the subdirectories, you will configure only
94e91d6d 22957that subdirectory. That is usually not what you want. In particular,
db2e3e2e 22958if you run the first @file{configure} from the @file{gdb} subdirectory
94e91d6d
MC
22959of the @file{gdb-@var{version-number}} directory, you will omit the
22960configuration of @file{bfd}, @file{readline}, and other sibling
22961directories of the @file{gdb} subdirectory. This leads to build errors
22962about missing include files such as @file{bfd/bfd.h}.
c906108c 22963
8e04817f
AC
22964You can install @code{@value{GDBP}} anywhere; it has no hardwired paths.
22965However, you should make sure that the shell on your path (named by
22966the @samp{SHELL} environment variable) is publicly readable. Remember
22967that @value{GDBN} uses the shell to start your program---some systems refuse to
22968let @value{GDBN} debug child processes whose programs are not readable.
c906108c 22969
8e04817f 22970@node Separate Objdir
79a6e687 22971@section Compiling @value{GDBN} in Another Directory
c906108c 22972
8e04817f
AC
22973If you want to run @value{GDBN} versions for several host or target machines,
22974you need a different @code{gdb} compiled for each combination of
db2e3e2e 22975host and target. @file{configure} is designed to make this easy by
8e04817f
AC
22976allowing you to generate each configuration in a separate subdirectory,
22977rather than in the source directory. If your @code{make} program
22978handles the @samp{VPATH} feature (@sc{gnu} @code{make} does), running
22979@code{make} in each of these directories builds the @code{gdb}
22980program specified there.
c906108c 22981
db2e3e2e 22982To build @code{gdb} in a separate directory, run @file{configure}
8e04817f 22983with the @samp{--srcdir} option to specify where to find the source.
db2e3e2e
BW
22984(You also need to specify a path to find @file{configure}
22985itself from your working directory. If the path to @file{configure}
8e04817f
AC
22986would be the same as the argument to @samp{--srcdir}, you can leave out
22987the @samp{--srcdir} option; it is assumed.)
c906108c 22988
8e04817f
AC
22989For example, with version @value{GDBVN}, you can build @value{GDBN} in a
22990separate directory for a Sun 4 like this:
c906108c 22991
474c8240 22992@smallexample
8e04817f
AC
22993@group
22994cd gdb-@value{GDBVN}
22995mkdir ../gdb-sun4
22996cd ../gdb-sun4
22997../gdb-@value{GDBVN}/configure sun4
22998make
22999@end group
474c8240 23000@end smallexample
c906108c 23001
db2e3e2e 23002When @file{configure} builds a configuration using a remote source
8e04817f
AC
23003directory, it creates a tree for the binaries with the same structure
23004(and using the same names) as the tree under the source directory. In
23005the example, you'd find the Sun 4 library @file{libiberty.a} in the
23006directory @file{gdb-sun4/libiberty}, and @value{GDBN} itself in
23007@file{gdb-sun4/gdb}.
c906108c 23008
94e91d6d
MC
23009Make sure that your path to the @file{configure} script has just one
23010instance of @file{gdb} in it. If your path to @file{configure} looks
23011like @file{../gdb-@value{GDBVN}/gdb/configure}, you are configuring only
23012one subdirectory of @value{GDBN}, not the whole package. This leads to
23013build errors about missing include files such as @file{bfd/bfd.h}.
23014
8e04817f
AC
23015One popular reason to build several @value{GDBN} configurations in separate
23016directories is to configure @value{GDBN} for cross-compiling (where
23017@value{GDBN} runs on one machine---the @dfn{host}---while debugging
23018programs that run on another machine---the @dfn{target}).
23019You specify a cross-debugging target by
db2e3e2e 23020giving the @samp{--target=@var{target}} option to @file{configure}.
c906108c 23021
8e04817f
AC
23022When you run @code{make} to build a program or library, you must run
23023it in a configured directory---whatever directory you were in when you
db2e3e2e 23024called @file{configure} (or one of its subdirectories).
c906108c 23025
db2e3e2e 23026The @code{Makefile} that @file{configure} generates in each source
8e04817f
AC
23027directory also runs recursively. If you type @code{make} in a source
23028directory such as @file{gdb-@value{GDBVN}} (or in a separate configured
23029directory configured with @samp{--srcdir=@var{dirname}/gdb-@value{GDBVN}}), you
23030will build all the required libraries, and then build GDB.
c906108c 23031
8e04817f
AC
23032When you have multiple hosts or targets configured in separate
23033directories, you can run @code{make} on them in parallel (for example,
23034if they are NFS-mounted on each of the hosts); they will not interfere
23035with each other.
c906108c 23036
8e04817f 23037@node Config Names
79a6e687 23038@section Specifying Names for Hosts and Targets
c906108c 23039
db2e3e2e 23040The specifications used for hosts and targets in the @file{configure}
8e04817f
AC
23041script are based on a three-part naming scheme, but some short predefined
23042aliases are also supported. The full naming scheme encodes three pieces
23043of information in the following pattern:
c906108c 23044
474c8240 23045@smallexample
8e04817f 23046@var{architecture}-@var{vendor}-@var{os}
474c8240 23047@end smallexample
c906108c 23048
8e04817f
AC
23049For example, you can use the alias @code{sun4} as a @var{host} argument,
23050or as the value for @var{target} in a @code{--target=@var{target}}
23051option. The equivalent full name is @samp{sparc-sun-sunos4}.
c906108c 23052
db2e3e2e 23053The @file{configure} script accompanying @value{GDBN} does not provide
8e04817f 23054any query facility to list all supported host and target names or
db2e3e2e 23055aliases. @file{configure} calls the Bourne shell script
8e04817f
AC
23056@code{config.sub} to map abbreviations to full names; you can read the
23057script, if you wish, or you can use it to test your guesses on
23058abbreviations---for example:
c906108c 23059
8e04817f
AC
23060@smallexample
23061% sh config.sub i386-linux
23062i386-pc-linux-gnu
23063% sh config.sub alpha-linux
23064alpha-unknown-linux-gnu
23065% sh config.sub hp9k700
23066hppa1.1-hp-hpux
23067% sh config.sub sun4
23068sparc-sun-sunos4.1.1
23069% sh config.sub sun3
23070m68k-sun-sunos4.1.1
23071% sh config.sub i986v
23072Invalid configuration `i986v': machine `i986v' not recognized
23073@end smallexample
c906108c 23074
8e04817f
AC
23075@noindent
23076@code{config.sub} is also distributed in the @value{GDBN} source
23077directory (@file{gdb-@value{GDBVN}}, for version @value{GDBVN}).
d700128c 23078
8e04817f 23079@node Configure Options
db2e3e2e 23080@section @file{configure} Options
c906108c 23081
db2e3e2e
BW
23082Here is a summary of the @file{configure} options and arguments that
23083are most often useful for building @value{GDBN}. @file{configure} also has
8e04817f 23084several other options not listed here. @inforef{What Configure
db2e3e2e 23085Does,,configure.info}, for a full explanation of @file{configure}.
c906108c 23086
474c8240 23087@smallexample
8e04817f
AC
23088configure @r{[}--help@r{]}
23089 @r{[}--prefix=@var{dir}@r{]}
23090 @r{[}--exec-prefix=@var{dir}@r{]}
23091 @r{[}--srcdir=@var{dirname}@r{]}
23092 @r{[}--norecursion@r{]} @r{[}--rm@r{]}
23093 @r{[}--target=@var{target}@r{]}
23094 @var{host}
474c8240 23095@end smallexample
c906108c 23096
8e04817f
AC
23097@noindent
23098You may introduce options with a single @samp{-} rather than
23099@samp{--} if you prefer; but you may abbreviate option names if you use
23100@samp{--}.
c906108c 23101
8e04817f
AC
23102@table @code
23103@item --help
db2e3e2e 23104Display a quick summary of how to invoke @file{configure}.
c906108c 23105
8e04817f
AC
23106@item --prefix=@var{dir}
23107Configure the source to install programs and files under directory
23108@file{@var{dir}}.
c906108c 23109
8e04817f
AC
23110@item --exec-prefix=@var{dir}
23111Configure the source to install programs under directory
23112@file{@var{dir}}.
c906108c 23113
8e04817f
AC
23114@c avoid splitting the warning from the explanation:
23115@need 2000
23116@item --srcdir=@var{dirname}
23117@strong{Warning: using this option requires @sc{gnu} @code{make}, or another
23118@code{make} that implements the @code{VPATH} feature.}@*
23119Use this option to make configurations in directories separate from the
23120@value{GDBN} source directories. Among other things, you can use this to
23121build (or maintain) several configurations simultaneously, in separate
db2e3e2e 23122directories. @file{configure} writes configuration-specific files in
8e04817f 23123the current directory, but arranges for them to use the source in the
db2e3e2e 23124directory @var{dirname}. @file{configure} creates directories under
8e04817f
AC
23125the working directory in parallel to the source directories below
23126@var{dirname}.
c906108c 23127
8e04817f 23128@item --norecursion
db2e3e2e 23129Configure only the directory level where @file{configure} is executed; do not
8e04817f 23130propagate configuration to subdirectories.
c906108c 23131
8e04817f
AC
23132@item --target=@var{target}
23133Configure @value{GDBN} for cross-debugging programs running on the specified
23134@var{target}. Without this option, @value{GDBN} is configured to debug
23135programs that run on the same machine (@var{host}) as @value{GDBN} itself.
c906108c 23136
8e04817f 23137There is no convenient way to generate a list of all available targets.
c906108c 23138
8e04817f
AC
23139@item @var{host} @dots{}
23140Configure @value{GDBN} to run on the specified @var{host}.
c906108c 23141
8e04817f
AC
23142There is no convenient way to generate a list of all available hosts.
23143@end table
c906108c 23144
8e04817f
AC
23145There are many other options available as well, but they are generally
23146needed for special purposes only.
c906108c 23147
8e04817f
AC
23148@node Maintenance Commands
23149@appendix Maintenance Commands
23150@cindex maintenance commands
23151@cindex internal commands
c906108c 23152
8e04817f 23153In addition to commands intended for @value{GDBN} users, @value{GDBN}
09d4efe1
EZ
23154includes a number of commands intended for @value{GDBN} developers,
23155that are not documented elsewhere in this manual. These commands are
da316a69
EZ
23156provided here for reference. (For commands that turn on debugging
23157messages, see @ref{Debugging Output}.)
c906108c 23158
8e04817f 23159@table @code
09d4efe1
EZ
23160@kindex maint agent
23161@item maint agent @var{expression}
23162Translate the given @var{expression} into remote agent bytecodes.
23163This command is useful for debugging the Agent Expression mechanism
23164(@pxref{Agent Expressions}).
23165
8e04817f
AC
23166@kindex maint info breakpoints
23167@item @anchor{maint info breakpoints}maint info breakpoints
23168Using the same format as @samp{info breakpoints}, display both the
23169breakpoints you've set explicitly, and those @value{GDBN} is using for
23170internal purposes. Internal breakpoints are shown with negative
23171breakpoint numbers. The type column identifies what kind of breakpoint
23172is shown:
c906108c 23173
8e04817f
AC
23174@table @code
23175@item breakpoint
23176Normal, explicitly set breakpoint.
c906108c 23177
8e04817f
AC
23178@item watchpoint
23179Normal, explicitly set watchpoint.
c906108c 23180
8e04817f
AC
23181@item longjmp
23182Internal breakpoint, used to handle correctly stepping through
23183@code{longjmp} calls.
c906108c 23184
8e04817f
AC
23185@item longjmp resume
23186Internal breakpoint at the target of a @code{longjmp}.
c906108c 23187
8e04817f
AC
23188@item until
23189Temporary internal breakpoint used by the @value{GDBN} @code{until} command.
c906108c 23190
8e04817f
AC
23191@item finish
23192Temporary internal breakpoint used by the @value{GDBN} @code{finish} command.
c906108c 23193
8e04817f
AC
23194@item shlib events
23195Shared library events.
c906108c 23196
8e04817f 23197@end table
c906108c 23198
237fc4c9
PA
23199@kindex maint set can-use-displaced-stepping
23200@kindex maint show can-use-displaced-stepping
23201@cindex displaced stepping support
23202@cindex out-of-line single-stepping
23203@item maint set can-use-displaced-stepping
23204@itemx maint show can-use-displaced-stepping
23205Control whether or not @value{GDBN} will do @dfn{displaced stepping}
23206if the target supports it. The default is on. Displaced stepping is
23207a way to single-step over breakpoints without removing them from the
23208inferior, by executing an out-of-line copy of the instruction that was
23209originally at the breakpoint location. It is also known as
23210out-of-line single-stepping.
23211
09d4efe1
EZ
23212@kindex maint check-symtabs
23213@item maint check-symtabs
23214Check the consistency of psymtabs and symtabs.
23215
23216@kindex maint cplus first_component
23217@item maint cplus first_component @var{name}
23218Print the first C@t{++} class/namespace component of @var{name}.
23219
23220@kindex maint cplus namespace
23221@item maint cplus namespace
23222Print the list of possible C@t{++} namespaces.
23223
23224@kindex maint demangle
23225@item maint demangle @var{name}
d3e8051b 23226Demangle a C@t{++} or Objective-C mangled @var{name}.
09d4efe1
EZ
23227
23228@kindex maint deprecate
23229@kindex maint undeprecate
23230@cindex deprecated commands
23231@item maint deprecate @var{command} @r{[}@var{replacement}@r{]}
23232@itemx maint undeprecate @var{command}
23233Deprecate or undeprecate the named @var{command}. Deprecated commands
23234cause @value{GDBN} to issue a warning when you use them. The optional
23235argument @var{replacement} says which newer command should be used in
23236favor of the deprecated one; if it is given, @value{GDBN} will mention
23237the replacement as part of the warning.
23238
23239@kindex maint dump-me
23240@item maint dump-me
721c2651 23241@cindex @code{SIGQUIT} signal, dump core of @value{GDBN}
09d4efe1 23242Cause a fatal signal in the debugger and force it to dump its core.
721c2651
EZ
23243This is supported only on systems which support aborting a program
23244with the @code{SIGQUIT} signal.
09d4efe1 23245
8d30a00d
AC
23246@kindex maint internal-error
23247@kindex maint internal-warning
09d4efe1
EZ
23248@item maint internal-error @r{[}@var{message-text}@r{]}
23249@itemx maint internal-warning @r{[}@var{message-text}@r{]}
8d30a00d
AC
23250Cause @value{GDBN} to call the internal function @code{internal_error}
23251or @code{internal_warning} and hence behave as though an internal error
23252or internal warning has been detected. In addition to reporting the
23253internal problem, these functions give the user the opportunity to
23254either quit @value{GDBN} or create a core file of the current
23255@value{GDBN} session.
23256
09d4efe1
EZ
23257These commands take an optional parameter @var{message-text} that is
23258used as the text of the error or warning message.
23259
d3e8051b 23260Here's an example of using @code{internal-error}:
09d4efe1 23261
8d30a00d 23262@smallexample
f7dc1244 23263(@value{GDBP}) @kbd{maint internal-error testing, 1, 2}
8d30a00d
AC
23264@dots{}/maint.c:121: internal-error: testing, 1, 2
23265A problem internal to GDB has been detected. Further
23266debugging may prove unreliable.
23267Quit this debugging session? (y or n) @kbd{n}
23268Create a core file? (y or n) @kbd{n}
f7dc1244 23269(@value{GDBP})
8d30a00d
AC
23270@end smallexample
23271
09d4efe1
EZ
23272@kindex maint packet
23273@item maint packet @var{text}
23274If @value{GDBN} is talking to an inferior via the serial protocol,
23275then this command sends the string @var{text} to the inferior, and
23276displays the response packet. @value{GDBN} supplies the initial
23277@samp{$} character, the terminating @samp{#} character, and the
23278checksum.
23279
23280@kindex maint print architecture
23281@item maint print architecture @r{[}@var{file}@r{]}
23282Print the entire architecture configuration. The optional argument
23283@var{file} names the file where the output goes.
8d30a00d 23284
81adfced
DJ
23285@kindex maint print c-tdesc
23286@item maint print c-tdesc
23287Print the current target description (@pxref{Target Descriptions}) as
23288a C source file. The created source file can be used in @value{GDBN}
23289when an XML parser is not available to parse the description.
23290
00905d52
AC
23291@kindex maint print dummy-frames
23292@item maint print dummy-frames
00905d52
AC
23293Prints the contents of @value{GDBN}'s internal dummy-frame stack.
23294
23295@smallexample
f7dc1244 23296(@value{GDBP}) @kbd{b add}
00905d52 23297@dots{}
f7dc1244 23298(@value{GDBP}) @kbd{print add(2,3)}
00905d52
AC
23299Breakpoint 2, add (a=2, b=3) at @dots{}
2330058 return (a + b);
23301The program being debugged stopped while in a function called from GDB.
23302@dots{}
f7dc1244 23303(@value{GDBP}) @kbd{maint print dummy-frames}
00905d52
AC
233040x1a57c80: pc=0x01014068 fp=0x0200bddc sp=0x0200bdd6
23305 top=0x0200bdd4 id=@{stack=0x200bddc,code=0x101405c@}
23306 call_lo=0x01014000 call_hi=0x01014001
f7dc1244 23307(@value{GDBP})
00905d52
AC
23308@end smallexample
23309
23310Takes an optional file parameter.
23311
0680b120
AC
23312@kindex maint print registers
23313@kindex maint print raw-registers
23314@kindex maint print cooked-registers
617073a9 23315@kindex maint print register-groups
09d4efe1
EZ
23316@item maint print registers @r{[}@var{file}@r{]}
23317@itemx maint print raw-registers @r{[}@var{file}@r{]}
23318@itemx maint print cooked-registers @r{[}@var{file}@r{]}
23319@itemx maint print register-groups @r{[}@var{file}@r{]}
0680b120
AC
23320Print @value{GDBN}'s internal register data structures.
23321
617073a9
AC
23322The command @code{maint print raw-registers} includes the contents of
23323the raw register cache; the command @code{maint print cooked-registers}
23324includes the (cooked) value of all registers; and the command
23325@code{maint print register-groups} includes the groups that each
23326register is a member of. @xref{Registers,, Registers, gdbint,
23327@value{GDBN} Internals}.
0680b120 23328
09d4efe1
EZ
23329These commands take an optional parameter, a file name to which to
23330write the information.
0680b120 23331
617073a9 23332@kindex maint print reggroups
09d4efe1
EZ
23333@item maint print reggroups @r{[}@var{file}@r{]}
23334Print @value{GDBN}'s internal register group data structures. The
23335optional argument @var{file} tells to what file to write the
23336information.
617073a9 23337
09d4efe1 23338The register groups info looks like this:
617073a9
AC
23339
23340@smallexample
f7dc1244 23341(@value{GDBP}) @kbd{maint print reggroups}
b383017d
RM
23342 Group Type
23343 general user
23344 float user
23345 all user
23346 vector user
23347 system user
23348 save internal
23349 restore internal
617073a9
AC
23350@end smallexample
23351
09d4efe1
EZ
23352@kindex flushregs
23353@item flushregs
23354This command forces @value{GDBN} to flush its internal register cache.
23355
23356@kindex maint print objfiles
23357@cindex info for known object files
23358@item maint print objfiles
23359Print a dump of all known object files. For each object file, this
23360command prints its name, address in memory, and all of its psymtabs
23361and symtabs.
23362
23363@kindex maint print statistics
23364@cindex bcache statistics
23365@item maint print statistics
23366This command prints, for each object file in the program, various data
23367about that object file followed by the byte cache (@dfn{bcache})
23368statistics for the object file. The objfile data includes the number
d3e8051b 23369of minimal, partial, full, and stabs symbols, the number of types
09d4efe1
EZ
23370defined by the objfile, the number of as yet unexpanded psym tables,
23371the number of line tables and string tables, and the amount of memory
23372used by the various tables. The bcache statistics include the counts,
23373sizes, and counts of duplicates of all and unique objects, max,
23374average, and median entry size, total memory used and its overhead and
23375savings, and various measures of the hash table size and chain
23376lengths.
23377
c7ba131e
JB
23378@kindex maint print target-stack
23379@cindex target stack description
23380@item maint print target-stack
23381A @dfn{target} is an interface between the debugger and a particular
23382kind of file or process. Targets can be stacked in @dfn{strata},
23383so that more than one target can potentially respond to a request.
23384In particular, memory accesses will walk down the stack of targets
23385until they find a target that is interested in handling that particular
23386address.
23387
23388This command prints a short description of each layer that was pushed on
23389the @dfn{target stack}, starting from the top layer down to the bottom one.
23390
09d4efe1
EZ
23391@kindex maint print type
23392@cindex type chain of a data type
23393@item maint print type @var{expr}
23394Print the type chain for a type specified by @var{expr}. The argument
23395can be either a type name or a symbol. If it is a symbol, the type of
23396that symbol is described. The type chain produced by this command is
23397a recursive definition of the data type as stored in @value{GDBN}'s
23398data structures, including its flags and contained types.
23399
23400@kindex maint set dwarf2 max-cache-age
23401@kindex maint show dwarf2 max-cache-age
23402@item maint set dwarf2 max-cache-age
23403@itemx maint show dwarf2 max-cache-age
23404Control the DWARF 2 compilation unit cache.
23405
23406@cindex DWARF 2 compilation units cache
23407In object files with inter-compilation-unit references, such as those
23408produced by the GCC option @samp{-feliminate-dwarf2-dups}, the DWARF 2
23409reader needs to frequently refer to previously read compilation units.
23410This setting controls how long a compilation unit will remain in the
23411cache if it is not referenced. A higher limit means that cached
23412compilation units will be stored in memory longer, and more total
23413memory will be used. Setting it to zero disables caching, which will
23414slow down @value{GDBN} startup, but reduce memory consumption.
23415
e7ba9c65
DJ
23416@kindex maint set profile
23417@kindex maint show profile
23418@cindex profiling GDB
23419@item maint set profile
23420@itemx maint show profile
23421Control profiling of @value{GDBN}.
23422
23423Profiling will be disabled until you use the @samp{maint set profile}
23424command to enable it. When you enable profiling, the system will begin
23425collecting timing and execution count data; when you disable profiling or
23426exit @value{GDBN}, the results will be written to a log file. Remember that
23427if you use profiling, @value{GDBN} will overwrite the profiling log file
23428(often called @file{gmon.out}). If you have a record of important profiling
23429data in a @file{gmon.out} file, be sure to move it to a safe location.
23430
23431Configuring with @samp{--enable-profiling} arranges for @value{GDBN} to be
b383017d 23432compiled with the @samp{-pg} compiler option.
e7ba9c65 23433
b84876c2
PA
23434@kindex maint set linux-async
23435@kindex maint show linux-async
23436@cindex asynchronous support
23437@item maint set linux-async
23438@itemx maint show linux-async
23439Control the GNU/Linux native asynchronous support of @value{GDBN}.
23440
23441GNU/Linux native asynchronous support will be disabled until you use
23442the @samp{maint set linux-async} command to enable it.
23443
09d4efe1
EZ
23444@kindex maint show-debug-regs
23445@cindex x86 hardware debug registers
23446@item maint show-debug-regs
23447Control whether to show variables that mirror the x86 hardware debug
23448registers. Use @code{ON} to enable, @code{OFF} to disable. If
3f94c067 23449enabled, the debug registers values are shown when @value{GDBN} inserts or
09d4efe1
EZ
23450removes a hardware breakpoint or watchpoint, and when the inferior
23451triggers a hardware-assisted breakpoint or watchpoint.
23452
23453@kindex maint space
23454@cindex memory used by commands
23455@item maint space
23456Control whether to display memory usage for each command. If set to a
23457nonzero value, @value{GDBN} will display how much memory each command
23458took, following the command's own output. This can also be requested
23459by invoking @value{GDBN} with the @option{--statistics} command-line
23460switch (@pxref{Mode Options}).
23461
23462@kindex maint time
23463@cindex time of command execution
23464@item maint time
23465Control whether to display the execution time for each command. If
23466set to a nonzero value, @value{GDBN} will display how much time it
23467took to execute each command, following the command's own output.
e2b7ddea
VP
23468The time is not printed for the commands that run the target, since
23469there's no mechanism currently to compute how much time was spend
23470by @value{GDBN} and how much time was spend by the program been debugged.
23471it's not possibly currently
09d4efe1
EZ
23472This can also be requested by invoking @value{GDBN} with the
23473@option{--statistics} command-line switch (@pxref{Mode Options}).
23474
23475@kindex maint translate-address
23476@item maint translate-address @r{[}@var{section}@r{]} @var{addr}
23477Find the symbol stored at the location specified by the address
23478@var{addr} and an optional section name @var{section}. If found,
23479@value{GDBN} prints the name of the closest symbol and an offset from
23480the symbol's location to the specified address. This is similar to
23481the @code{info address} command (@pxref{Symbols}), except that this
23482command also allows to find symbols in other sections.
ae038cb0 23483
8e04817f 23484@end table
c906108c 23485
9c16f35a
EZ
23486The following command is useful for non-interactive invocations of
23487@value{GDBN}, such as in the test suite.
23488
23489@table @code
23490@item set watchdog @var{nsec}
23491@kindex set watchdog
23492@cindex watchdog timer
23493@cindex timeout for commands
23494Set the maximum number of seconds @value{GDBN} will wait for the
23495target operation to finish. If this time expires, @value{GDBN}
23496reports and error and the command is aborted.
23497
23498@item show watchdog
23499Show the current setting of the target wait timeout.
23500@end table
c906108c 23501
e0ce93ac 23502@node Remote Protocol
8e04817f 23503@appendix @value{GDBN} Remote Serial Protocol
c906108c 23504
ee2d5c50
AC
23505@menu
23506* Overview::
23507* Packets::
23508* Stop Reply Packets::
23509* General Query Packets::
23510* Register Packet Format::
9d29849a 23511* Tracepoint Packets::
a6b151f1 23512* Host I/O Packets::
9a6253be 23513* Interrupts::
ee2d5c50 23514* Examples::
79a6e687 23515* File-I/O Remote Protocol Extension::
cfa9d6d9 23516* Library List Format::
79a6e687 23517* Memory Map Format::
ee2d5c50
AC
23518@end menu
23519
23520@node Overview
23521@section Overview
23522
8e04817f
AC
23523There may be occasions when you need to know something about the
23524protocol---for example, if there is only one serial port to your target
23525machine, you might want your program to do something special if it
23526recognizes a packet meant for @value{GDBN}.
c906108c 23527
d2c6833e 23528In the examples below, @samp{->} and @samp{<-} are used to indicate
bf06d120 23529transmitted and received data, respectively.
c906108c 23530
8e04817f
AC
23531@cindex protocol, @value{GDBN} remote serial
23532@cindex serial protocol, @value{GDBN} remote
23533@cindex remote serial protocol
23534All @value{GDBN} commands and responses (other than acknowledgments) are
23535sent as a @var{packet}. A @var{packet} is introduced with the character
23536@samp{$}, the actual @var{packet-data}, and the terminating character
23537@samp{#} followed by a two-digit @var{checksum}:
c906108c 23538
474c8240 23539@smallexample
8e04817f 23540@code{$}@var{packet-data}@code{#}@var{checksum}
474c8240 23541@end smallexample
8e04817f 23542@noindent
c906108c 23543
8e04817f
AC
23544@cindex checksum, for @value{GDBN} remote
23545@noindent
23546The two-digit @var{checksum} is computed as the modulo 256 sum of all
23547characters between the leading @samp{$} and the trailing @samp{#} (an
23548eight bit unsigned checksum).
c906108c 23549
8e04817f
AC
23550Implementors should note that prior to @value{GDBN} 5.0 the protocol
23551specification also included an optional two-digit @var{sequence-id}:
c906108c 23552
474c8240 23553@smallexample
8e04817f 23554@code{$}@var{sequence-id}@code{:}@var{packet-data}@code{#}@var{checksum}
474c8240 23555@end smallexample
c906108c 23556
8e04817f
AC
23557@cindex sequence-id, for @value{GDBN} remote
23558@noindent
23559That @var{sequence-id} was appended to the acknowledgment. @value{GDBN}
23560has never output @var{sequence-id}s. Stubs that handle packets added
23561since @value{GDBN} 5.0 must not accept @var{sequence-id}.
c906108c 23562
8e04817f
AC
23563@cindex acknowledgment, for @value{GDBN} remote
23564When either the host or the target machine receives a packet, the first
23565response expected is an acknowledgment: either @samp{+} (to indicate
23566the package was received correctly) or @samp{-} (to request
23567retransmission):
c906108c 23568
474c8240 23569@smallexample
d2c6833e
AC
23570-> @code{$}@var{packet-data}@code{#}@var{checksum}
23571<- @code{+}
474c8240 23572@end smallexample
8e04817f 23573@noindent
53a5351d 23574
8e04817f
AC
23575The host (@value{GDBN}) sends @var{command}s, and the target (the
23576debugging stub incorporated in your program) sends a @var{response}. In
23577the case of step and continue @var{command}s, the response is only sent
23578when the operation has completed (the target has again stopped).
c906108c 23579
8e04817f
AC
23580@var{packet-data} consists of a sequence of characters with the
23581exception of @samp{#} and @samp{$} (see @samp{X} packet for additional
23582exceptions).
c906108c 23583
ee2d5c50 23584@cindex remote protocol, field separator
0876f84a 23585Fields within the packet should be separated using @samp{,} @samp{;} or
8e04817f 23586@samp{:}. Except where otherwise noted all numbers are represented in
ee2d5c50 23587@sc{hex} with leading zeros suppressed.
c906108c 23588
8e04817f
AC
23589Implementors should note that prior to @value{GDBN} 5.0, the character
23590@samp{:} could not appear as the third character in a packet (as it
23591would potentially conflict with the @var{sequence-id}).
c906108c 23592
0876f84a
DJ
23593@cindex remote protocol, binary data
23594@anchor{Binary Data}
23595Binary data in most packets is encoded either as two hexadecimal
23596digits per byte of binary data. This allowed the traditional remote
23597protocol to work over connections which were only seven-bit clean.
23598Some packets designed more recently assume an eight-bit clean
23599connection, and use a more efficient encoding to send and receive
23600binary data.
23601
23602The binary data representation uses @code{7d} (@sc{ascii} @samp{@}})
23603as an escape character. Any escaped byte is transmitted as the escape
23604character followed by the original character XORed with @code{0x20}.
23605For example, the byte @code{0x7d} would be transmitted as the two
23606bytes @code{0x7d 0x5d}. The bytes @code{0x23} (@sc{ascii} @samp{#}),
23607@code{0x24} (@sc{ascii} @samp{$}), and @code{0x7d} (@sc{ascii}
23608@samp{@}}) must always be escaped. Responses sent by the stub
23609must also escape @code{0x2a} (@sc{ascii} @samp{*}), so that it
23610is not interpreted as the start of a run-length encoded sequence
23611(described next).
23612
1d3811f6
DJ
23613Response @var{data} can be run-length encoded to save space.
23614Run-length encoding replaces runs of identical characters with one
23615instance of the repeated character, followed by a @samp{*} and a
23616repeat count. The repeat count is itself sent encoded, to avoid
23617binary characters in @var{data}: a value of @var{n} is sent as
23618@code{@var{n}+29}. For a repeat count greater or equal to 3, this
23619produces a printable @sc{ascii} character, e.g.@: a space (@sc{ascii}
23620code 32) for a repeat count of 3. (This is because run-length
23621encoding starts to win for counts 3 or more.) Thus, for example,
23622@samp{0* } is a run-length encoding of ``0000'': the space character
23623after @samp{*} means repeat the leading @code{0} @w{@code{32 - 29 =
236243}} more times.
23625
23626The printable characters @samp{#} and @samp{$} or with a numeric value
23627greater than 126 must not be used. Runs of six repeats (@samp{#}) or
23628seven repeats (@samp{$}) can be expanded using a repeat count of only
23629five (@samp{"}). For example, @samp{00000000} can be encoded as
23630@samp{0*"00}.
c906108c 23631
8e04817f
AC
23632The error response returned for some packets includes a two character
23633error number. That number is not well defined.
c906108c 23634
f8da2bff 23635@cindex empty response, for unsupported packets
8e04817f
AC
23636For any @var{command} not supported by the stub, an empty response
23637(@samp{$#00}) should be returned. That way it is possible to extend the
23638protocol. A newer @value{GDBN} can tell if a packet is supported based
23639on that response.
c906108c 23640
b383017d
RM
23641A stub is required to support the @samp{g}, @samp{G}, @samp{m}, @samp{M},
23642@samp{c}, and @samp{s} @var{command}s. All other @var{command}s are
8e04817f 23643optional.
c906108c 23644
ee2d5c50
AC
23645@node Packets
23646@section Packets
23647
23648The following table provides a complete list of all currently defined
23649@var{command}s and their corresponding response @var{data}.
79a6e687 23650@xref{File-I/O Remote Protocol Extension}, for details about the File
9c16f35a 23651I/O extension of the remote protocol.
ee2d5c50 23652
b8ff78ce
JB
23653Each packet's description has a template showing the packet's overall
23654syntax, followed by an explanation of the packet's meaning. We
23655include spaces in some of the templates for clarity; these are not
23656part of the packet's syntax. No @value{GDBN} packet uses spaces to
23657separate its components. For example, a template like @samp{foo
23658@var{bar} @var{baz}} describes a packet beginning with the three ASCII
23659bytes @samp{foo}, followed by a @var{bar}, followed directly by a
3f94c067 23660@var{baz}. @value{GDBN} does not transmit a space character between the
b8ff78ce
JB
23661@samp{foo} and the @var{bar}, or between the @var{bar} and the
23662@var{baz}.
23663
8ffe2530
JB
23664Note that all packet forms beginning with an upper- or lower-case
23665letter, other than those described here, are reserved for future use.
23666
b8ff78ce 23667Here are the packet descriptions.
ee2d5c50 23668
b8ff78ce 23669@table @samp
ee2d5c50 23670
b8ff78ce
JB
23671@item !
23672@cindex @samp{!} packet
2d717e4f 23673@anchor{extended mode}
8e04817f
AC
23674Enable extended mode. In extended mode, the remote server is made
23675persistent. The @samp{R} packet is used to restart the program being
23676debugged.
ee2d5c50
AC
23677
23678Reply:
23679@table @samp
23680@item OK
8e04817f 23681The remote target both supports and has enabled extended mode.
ee2d5c50 23682@end table
c906108c 23683
b8ff78ce
JB
23684@item ?
23685@cindex @samp{?} packet
ee2d5c50
AC
23686Indicate the reason the target halted. The reply is the same as for
23687step and continue.
c906108c 23688
ee2d5c50
AC
23689Reply:
23690@xref{Stop Reply Packets}, for the reply specifications.
23691
b8ff78ce
JB
23692@item A @var{arglen},@var{argnum},@var{arg},@dots{}
23693@cindex @samp{A} packet
23694Initialized @code{argv[]} array passed into program. @var{arglen}
23695specifies the number of bytes in the hex encoded byte stream
23696@var{arg}. See @code{gdbserver} for more details.
ee2d5c50
AC
23697
23698Reply:
23699@table @samp
23700@item OK
b8ff78ce
JB
23701The arguments were set.
23702@item E @var{NN}
23703An error occurred.
ee2d5c50
AC
23704@end table
23705
b8ff78ce
JB
23706@item b @var{baud}
23707@cindex @samp{b} packet
23708(Don't use this packet; its behavior is not well-defined.)
ee2d5c50
AC
23709Change the serial line speed to @var{baud}.
23710
23711JTC: @emph{When does the transport layer state change? When it's
23712received, or after the ACK is transmitted. In either case, there are
23713problems if the command or the acknowledgment packet is dropped.}
23714
23715Stan: @emph{If people really wanted to add something like this, and get
23716it working for the first time, they ought to modify ser-unix.c to send
23717some kind of out-of-band message to a specially-setup stub and have the
23718switch happen "in between" packets, so that from remote protocol's point
23719of view, nothing actually happened.}
23720
b8ff78ce
JB
23721@item B @var{addr},@var{mode}
23722@cindex @samp{B} packet
8e04817f 23723Set (@var{mode} is @samp{S}) or clear (@var{mode} is @samp{C}) a
2f870471
AC
23724breakpoint at @var{addr}.
23725
b8ff78ce 23726Don't use this packet. Use the @samp{Z} and @samp{z} packets instead
2f870471 23727(@pxref{insert breakpoint or watchpoint packet}).
c906108c 23728
4f553f88 23729@item c @r{[}@var{addr}@r{]}
b8ff78ce
JB
23730@cindex @samp{c} packet
23731Continue. @var{addr} is address to resume. If @var{addr} is omitted,
23732resume at current address.
c906108c 23733
ee2d5c50
AC
23734Reply:
23735@xref{Stop Reply Packets}, for the reply specifications.
23736
4f553f88 23737@item C @var{sig}@r{[};@var{addr}@r{]}
b8ff78ce 23738@cindex @samp{C} packet
8e04817f 23739Continue with signal @var{sig} (hex signal number). If
b8ff78ce 23740@samp{;@var{addr}} is omitted, resume at same address.
c906108c 23741
ee2d5c50
AC
23742Reply:
23743@xref{Stop Reply Packets}, for the reply specifications.
c906108c 23744
b8ff78ce
JB
23745@item d
23746@cindex @samp{d} packet
ee2d5c50
AC
23747Toggle debug flag.
23748
b8ff78ce
JB
23749Don't use this packet; instead, define a general set packet
23750(@pxref{General Query Packets}).
ee2d5c50 23751
b8ff78ce
JB
23752@item D
23753@cindex @samp{D} packet
ee2d5c50 23754Detach @value{GDBN} from the remote system. Sent to the remote target
07f31aa6 23755before @value{GDBN} disconnects via the @code{detach} command.
ee2d5c50
AC
23756
23757Reply:
23758@table @samp
10fac096
NW
23759@item OK
23760for success
b8ff78ce 23761@item E @var{NN}
10fac096 23762for an error
ee2d5c50 23763@end table
c906108c 23764
b8ff78ce
JB
23765@item F @var{RC},@var{EE},@var{CF};@var{XX}
23766@cindex @samp{F} packet
23767A reply from @value{GDBN} to an @samp{F} packet sent by the target.
23768This is part of the File-I/O protocol extension. @xref{File-I/O
79a6e687 23769Remote Protocol Extension}, for the specification.
ee2d5c50 23770
b8ff78ce 23771@item g
ee2d5c50 23772@anchor{read registers packet}
b8ff78ce 23773@cindex @samp{g} packet
ee2d5c50
AC
23774Read general registers.
23775
23776Reply:
23777@table @samp
23778@item @var{XX@dots{}}
8e04817f
AC
23779Each byte of register data is described by two hex digits. The bytes
23780with the register are transmitted in target byte order. The size of
b8ff78ce 23781each register and their position within the @samp{g} packet are
4a9bb1df
UW
23782determined by the @value{GDBN} internal gdbarch functions
23783@code{DEPRECATED_REGISTER_RAW_SIZE} and @code{gdbarch_register_name}. The
b8ff78ce
JB
23784specification of several standard @samp{g} packets is specified below.
23785@item E @var{NN}
ee2d5c50
AC
23786for an error.
23787@end table
c906108c 23788
b8ff78ce
JB
23789@item G @var{XX@dots{}}
23790@cindex @samp{G} packet
23791Write general registers. @xref{read registers packet}, for a
23792description of the @var{XX@dots{}} data.
ee2d5c50
AC
23793
23794Reply:
23795@table @samp
23796@item OK
23797for success
b8ff78ce 23798@item E @var{NN}
ee2d5c50
AC
23799for an error
23800@end table
23801
b8ff78ce
JB
23802@item H @var{c} @var{t}
23803@cindex @samp{H} packet
8e04817f 23804Set thread for subsequent operations (@samp{m}, @samp{M}, @samp{g},
ee2d5c50
AC
23805@samp{G}, et.al.). @var{c} depends on the operation to be performed: it
23806should be @samp{c} for step and continue operations, @samp{g} for other
b8ff78ce
JB
23807operations. The thread designator @var{t} may be @samp{-1}, meaning all
23808the threads, a thread number, or @samp{0} which means pick any thread.
ee2d5c50
AC
23809
23810Reply:
23811@table @samp
23812@item OK
23813for success
b8ff78ce 23814@item E @var{NN}
ee2d5c50
AC
23815for an error
23816@end table
c906108c 23817
8e04817f
AC
23818@c FIXME: JTC:
23819@c 'H': How restrictive (or permissive) is the thread model. If a
23820@c thread is selected and stopped, are other threads allowed
23821@c to continue to execute? As I mentioned above, I think the
23822@c semantics of each command when a thread is selected must be
23823@c described. For example:
23824@c
23825@c 'g': If the stub supports threads and a specific thread is
23826@c selected, returns the register block from that thread;
23827@c otherwise returns current registers.
23828@c
23829@c 'G' If the stub supports threads and a specific thread is
23830@c selected, sets the registers of the register block of
23831@c that thread; otherwise sets current registers.
c906108c 23832
b8ff78ce 23833@item i @r{[}@var{addr}@r{[},@var{nnn}@r{]]}
ee2d5c50 23834@anchor{cycle step packet}
b8ff78ce
JB
23835@cindex @samp{i} packet
23836Step the remote target by a single clock cycle. If @samp{,@var{nnn}} is
8e04817f
AC
23837present, cycle step @var{nnn} cycles. If @var{addr} is present, cycle
23838step starting at that address.
c906108c 23839
b8ff78ce
JB
23840@item I
23841@cindex @samp{I} packet
23842Signal, then cycle step. @xref{step with signal packet}. @xref{cycle
23843step packet}.
ee2d5c50 23844
b8ff78ce
JB
23845@item k
23846@cindex @samp{k} packet
23847Kill request.
c906108c 23848
ac282366 23849FIXME: @emph{There is no description of how to operate when a specific
ee2d5c50
AC
23850thread context has been selected (i.e.@: does 'k' kill only that
23851thread?)}.
c906108c 23852
b8ff78ce
JB
23853@item m @var{addr},@var{length}
23854@cindex @samp{m} packet
8e04817f 23855Read @var{length} bytes of memory starting at address @var{addr}.
fb031cdf
JB
23856Note that @var{addr} may not be aligned to any particular boundary.
23857
23858The stub need not use any particular size or alignment when gathering
23859data from memory for the response; even if @var{addr} is word-aligned
23860and @var{length} is a multiple of the word size, the stub is free to
23861use byte accesses, or not. For this reason, this packet may not be
23862suitable for accessing memory-mapped I/O devices.
c43c5473
JB
23863@cindex alignment of remote memory accesses
23864@cindex size of remote memory accesses
23865@cindex memory, alignment and size of remote accesses
c906108c 23866
ee2d5c50
AC
23867Reply:
23868@table @samp
23869@item @var{XX@dots{}}
599b237a 23870Memory contents; each byte is transmitted as a two-digit hexadecimal
b8ff78ce
JB
23871number. The reply may contain fewer bytes than requested if the
23872server was able to read only part of the region of memory.
23873@item E @var{NN}
ee2d5c50
AC
23874@var{NN} is errno
23875@end table
23876
b8ff78ce
JB
23877@item M @var{addr},@var{length}:@var{XX@dots{}}
23878@cindex @samp{M} packet
8e04817f 23879Write @var{length} bytes of memory starting at address @var{addr}.
b8ff78ce 23880@var{XX@dots{}} is the data; each byte is transmitted as a two-digit
599b237a 23881hexadecimal number.
ee2d5c50
AC
23882
23883Reply:
23884@table @samp
23885@item OK
23886for success
b8ff78ce 23887@item E @var{NN}
8e04817f
AC
23888for an error (this includes the case where only part of the data was
23889written).
ee2d5c50 23890@end table
c906108c 23891
b8ff78ce
JB
23892@item p @var{n}
23893@cindex @samp{p} packet
23894Read the value of register @var{n}; @var{n} is in hex.
2e868123
AC
23895@xref{read registers packet}, for a description of how the returned
23896register value is encoded.
ee2d5c50
AC
23897
23898Reply:
23899@table @samp
2e868123
AC
23900@item @var{XX@dots{}}
23901the register's value
b8ff78ce 23902@item E @var{NN}
2e868123
AC
23903for an error
23904@item
23905Indicating an unrecognized @var{query}.
ee2d5c50
AC
23906@end table
23907
b8ff78ce 23908@item P @var{n@dots{}}=@var{r@dots{}}
ee2d5c50 23909@anchor{write register packet}
b8ff78ce
JB
23910@cindex @samp{P} packet
23911Write register @var{n@dots{}} with value @var{r@dots{}}. The register
599b237a 23912number @var{n} is in hexadecimal, and @var{r@dots{}} contains two hex
8e04817f 23913digits for each byte in the register (target byte order).
c906108c 23914
ee2d5c50
AC
23915Reply:
23916@table @samp
23917@item OK
23918for success
b8ff78ce 23919@item E @var{NN}
ee2d5c50
AC
23920for an error
23921@end table
23922
5f3bebba
JB
23923@item q @var{name} @var{params}@dots{}
23924@itemx Q @var{name} @var{params}@dots{}
b8ff78ce 23925@cindex @samp{q} packet
b8ff78ce 23926@cindex @samp{Q} packet
5f3bebba
JB
23927General query (@samp{q}) and set (@samp{Q}). These packets are
23928described fully in @ref{General Query Packets}.
c906108c 23929
b8ff78ce
JB
23930@item r
23931@cindex @samp{r} packet
8e04817f 23932Reset the entire system.
c906108c 23933
b8ff78ce 23934Don't use this packet; use the @samp{R} packet instead.
ee2d5c50 23935
b8ff78ce
JB
23936@item R @var{XX}
23937@cindex @samp{R} packet
8e04817f 23938Restart the program being debugged. @var{XX}, while needed, is ignored.
2d717e4f 23939This packet is only available in extended mode (@pxref{extended mode}).
ee2d5c50 23940
8e04817f 23941The @samp{R} packet has no reply.
ee2d5c50 23942
4f553f88 23943@item s @r{[}@var{addr}@r{]}
b8ff78ce
JB
23944@cindex @samp{s} packet
23945Single step. @var{addr} is the address at which to resume. If
23946@var{addr} is omitted, resume at same address.
c906108c 23947
ee2d5c50
AC
23948Reply:
23949@xref{Stop Reply Packets}, for the reply specifications.
23950
4f553f88 23951@item S @var{sig}@r{[};@var{addr}@r{]}
ee2d5c50 23952@anchor{step with signal packet}
b8ff78ce
JB
23953@cindex @samp{S} packet
23954Step with signal. This is analogous to the @samp{C} packet, but
23955requests a single-step, rather than a normal resumption of execution.
c906108c 23956
ee2d5c50
AC
23957Reply:
23958@xref{Stop Reply Packets}, for the reply specifications.
23959
b8ff78ce
JB
23960@item t @var{addr}:@var{PP},@var{MM}
23961@cindex @samp{t} packet
8e04817f 23962Search backwards starting at address @var{addr} for a match with pattern
ee2d5c50
AC
23963@var{PP} and mask @var{MM}. @var{PP} and @var{MM} are 4 bytes.
23964@var{addr} must be at least 3 digits.
c906108c 23965
b8ff78ce
JB
23966@item T @var{XX}
23967@cindex @samp{T} packet
ee2d5c50 23968Find out if the thread XX is alive.
c906108c 23969
ee2d5c50
AC
23970Reply:
23971@table @samp
23972@item OK
23973thread is still alive
b8ff78ce 23974@item E @var{NN}
ee2d5c50
AC
23975thread is dead
23976@end table
23977
b8ff78ce
JB
23978@item v
23979Packets starting with @samp{v} are identified by a multi-letter name,
23980up to the first @samp{;} or @samp{?} (or the end of the packet).
86d30acc 23981
2d717e4f
DJ
23982@item vAttach;@var{pid}
23983@cindex @samp{vAttach} packet
23984Attach to a new process with the specified process ID. @var{pid} is a
1fddbabb
PA
23985hexadecimal integer identifying the process. If the stub is currently
23986controlling a process, it is killed. The attached process is stopped.
2d717e4f
DJ
23987
23988This packet is only available in extended mode (@pxref{extended mode}).
23989
23990Reply:
23991@table @samp
23992@item E @var{nn}
23993for an error
23994@item @r{Any stop packet}
23995for success (@pxref{Stop Reply Packets})
23996@end table
23997
b8ff78ce
JB
23998@item vCont@r{[};@var{action}@r{[}:@var{tid}@r{]]}@dots{}
23999@cindex @samp{vCont} packet
24000Resume the inferior, specifying different actions for each thread.
86d30acc
DJ
24001If an action is specified with no @var{tid}, then it is applied to any
24002threads that don't have a specific action specified; if no default action is
24003specified then other threads should remain stopped. Specifying multiple
24004default actions is an error; specifying no actions is also an error.
24005Thread IDs are specified in hexadecimal. Currently supported actions are:
24006
b8ff78ce 24007@table @samp
86d30acc
DJ
24008@item c
24009Continue.
b8ff78ce 24010@item C @var{sig}
86d30acc
DJ
24011Continue with signal @var{sig}. @var{sig} should be two hex digits.
24012@item s
24013Step.
b8ff78ce 24014@item S @var{sig}
86d30acc
DJ
24015Step with signal @var{sig}. @var{sig} should be two hex digits.
24016@end table
24017
24018The optional @var{addr} argument normally associated with these packets is
b8ff78ce 24019not supported in @samp{vCont}.
86d30acc
DJ
24020
24021Reply:
24022@xref{Stop Reply Packets}, for the reply specifications.
24023
b8ff78ce
JB
24024@item vCont?
24025@cindex @samp{vCont?} packet
d3e8051b 24026Request a list of actions supported by the @samp{vCont} packet.
86d30acc
DJ
24027
24028Reply:
24029@table @samp
b8ff78ce
JB
24030@item vCont@r{[};@var{action}@dots{}@r{]}
24031The @samp{vCont} packet is supported. Each @var{action} is a supported
24032command in the @samp{vCont} packet.
86d30acc 24033@item
b8ff78ce 24034The @samp{vCont} packet is not supported.
86d30acc 24035@end table
ee2d5c50 24036
a6b151f1
DJ
24037@item vFile:@var{operation}:@var{parameter}@dots{}
24038@cindex @samp{vFile} packet
24039Perform a file operation on the target system. For details,
24040see @ref{Host I/O Packets}.
24041
68437a39
DJ
24042@item vFlashErase:@var{addr},@var{length}
24043@cindex @samp{vFlashErase} packet
24044Direct the stub to erase @var{length} bytes of flash starting at
24045@var{addr}. The region may enclose any number of flash blocks, but
24046its start and end must fall on block boundaries, as indicated by the
79a6e687
BW
24047flash block size appearing in the memory map (@pxref{Memory Map
24048Format}). @value{GDBN} groups flash memory programming operations
68437a39
DJ
24049together, and sends a @samp{vFlashDone} request after each group; the
24050stub is allowed to delay erase operation until the @samp{vFlashDone}
24051packet is received.
24052
24053Reply:
24054@table @samp
24055@item OK
24056for success
24057@item E @var{NN}
24058for an error
24059@end table
24060
24061@item vFlashWrite:@var{addr}:@var{XX@dots{}}
24062@cindex @samp{vFlashWrite} packet
24063Direct the stub to write data to flash address @var{addr}. The data
24064is passed in binary form using the same encoding as for the @samp{X}
24065packet (@pxref{Binary Data}). The memory ranges specified by
24066@samp{vFlashWrite} packets preceding a @samp{vFlashDone} packet must
24067not overlap, and must appear in order of increasing addresses
24068(although @samp{vFlashErase} packets for higher addresses may already
24069have been received; the ordering is guaranteed only between
24070@samp{vFlashWrite} packets). If a packet writes to an address that was
24071neither erased by a preceding @samp{vFlashErase} packet nor by some other
24072target-specific method, the results are unpredictable.
24073
24074
24075Reply:
24076@table @samp
24077@item OK
24078for success
24079@item E.memtype
24080for vFlashWrite addressing non-flash memory
24081@item E @var{NN}
24082for an error
24083@end table
24084
24085@item vFlashDone
24086@cindex @samp{vFlashDone} packet
24087Indicate to the stub that flash programming operation is finished.
24088The stub is permitted to delay or batch the effects of a group of
24089@samp{vFlashErase} and @samp{vFlashWrite} packets until a
24090@samp{vFlashDone} packet is received. The contents of the affected
24091regions of flash memory are unpredictable until the @samp{vFlashDone}
24092request is completed.
24093
2d717e4f
DJ
24094@item vRun;@var{filename}@r{[};@var{argument}@r{]}@dots{}
24095@cindex @samp{vRun} packet
24096Run the program @var{filename}, passing it each @var{argument} on its
24097command line. The file and arguments are hex-encoded strings. If
24098@var{filename} is an empty string, the stub may use a default program
24099(e.g.@: the last program run). The program is created in the stopped
1fddbabb 24100state. If the stub is currently controlling a process, it is killed.
2d717e4f
DJ
24101
24102This packet is only available in extended mode (@pxref{extended mode}).
24103
24104Reply:
24105@table @samp
24106@item E @var{nn}
24107for an error
24108@item @r{Any stop packet}
24109for success (@pxref{Stop Reply Packets})
24110@end table
24111
b8ff78ce 24112@item X @var{addr},@var{length}:@var{XX@dots{}}
9a6253be 24113@anchor{X packet}
b8ff78ce
JB
24114@cindex @samp{X} packet
24115Write data to memory, where the data is transmitted in binary.
24116@var{addr} is address, @var{length} is number of bytes,
0876f84a 24117@samp{@var{XX}@dots{}} is binary data (@pxref{Binary Data}).
c906108c 24118
ee2d5c50
AC
24119Reply:
24120@table @samp
24121@item OK
24122for success
b8ff78ce 24123@item E @var{NN}
ee2d5c50
AC
24124for an error
24125@end table
24126
b8ff78ce
JB
24127@item z @var{type},@var{addr},@var{length}
24128@itemx Z @var{type},@var{addr},@var{length}
2f870471 24129@anchor{insert breakpoint or watchpoint packet}
b8ff78ce
JB
24130@cindex @samp{z} packet
24131@cindex @samp{Z} packets
24132Insert (@samp{Z}) or remove (@samp{z}) a @var{type} breakpoint or
2f870471
AC
24133watchpoint starting at address @var{address} and covering the next
24134@var{length} bytes.
ee2d5c50 24135
2f870471
AC
24136Each breakpoint and watchpoint packet @var{type} is documented
24137separately.
24138
512217c7
AC
24139@emph{Implementation notes: A remote target shall return an empty string
24140for an unrecognized breakpoint or watchpoint packet @var{type}. A
24141remote target shall support either both or neither of a given
b8ff78ce 24142@samp{Z@var{type}@dots{}} and @samp{z@var{type}@dots{}} packet pair. To
2f870471
AC
24143avoid potential problems with duplicate packets, the operations should
24144be implemented in an idempotent way.}
24145
b8ff78ce
JB
24146@item z0,@var{addr},@var{length}
24147@itemx Z0,@var{addr},@var{length}
24148@cindex @samp{z0} packet
24149@cindex @samp{Z0} packet
24150Insert (@samp{Z0}) or remove (@samp{z0}) a memory breakpoint at address
24151@var{addr} of size @var{length}.
2f870471
AC
24152
24153A memory breakpoint is implemented by replacing the instruction at
24154@var{addr} with a software breakpoint or trap instruction. The
b8ff78ce 24155@var{length} is used by targets that indicates the size of the
2f870471
AC
24156breakpoint (in bytes) that should be inserted (e.g., the @sc{arm} and
24157@sc{mips} can insert either a 2 or 4 byte breakpoint).
c906108c 24158
2f870471
AC
24159@emph{Implementation note: It is possible for a target to copy or move
24160code that contains memory breakpoints (e.g., when implementing
24161overlays). The behavior of this packet, in the presence of such a
24162target, is not defined.}
c906108c 24163
ee2d5c50
AC
24164Reply:
24165@table @samp
2f870471
AC
24166@item OK
24167success
24168@item
24169not supported
b8ff78ce 24170@item E @var{NN}
ee2d5c50 24171for an error
2f870471
AC
24172@end table
24173
b8ff78ce
JB
24174@item z1,@var{addr},@var{length}
24175@itemx Z1,@var{addr},@var{length}
24176@cindex @samp{z1} packet
24177@cindex @samp{Z1} packet
24178Insert (@samp{Z1}) or remove (@samp{z1}) a hardware breakpoint at
24179address @var{addr} of size @var{length}.
2f870471
AC
24180
24181A hardware breakpoint is implemented using a mechanism that is not
24182dependant on being able to modify the target's memory.
24183
24184@emph{Implementation note: A hardware breakpoint is not affected by code
24185movement.}
24186
24187Reply:
24188@table @samp
ee2d5c50 24189@item OK
2f870471
AC
24190success
24191@item
24192not supported
b8ff78ce 24193@item E @var{NN}
2f870471
AC
24194for an error
24195@end table
24196
b8ff78ce
JB
24197@item z2,@var{addr},@var{length}
24198@itemx Z2,@var{addr},@var{length}
24199@cindex @samp{z2} packet
24200@cindex @samp{Z2} packet
24201Insert (@samp{Z2}) or remove (@samp{z2}) a write watchpoint.
2f870471
AC
24202
24203Reply:
24204@table @samp
24205@item OK
24206success
24207@item
24208not supported
b8ff78ce 24209@item E @var{NN}
2f870471
AC
24210for an error
24211@end table
24212
b8ff78ce
JB
24213@item z3,@var{addr},@var{length}
24214@itemx Z3,@var{addr},@var{length}
24215@cindex @samp{z3} packet
24216@cindex @samp{Z3} packet
24217Insert (@samp{Z3}) or remove (@samp{z3}) a read watchpoint.
2f870471
AC
24218
24219Reply:
24220@table @samp
24221@item OK
24222success
24223@item
24224not supported
b8ff78ce 24225@item E @var{NN}
2f870471
AC
24226for an error
24227@end table
24228
b8ff78ce
JB
24229@item z4,@var{addr},@var{length}
24230@itemx Z4,@var{addr},@var{length}
24231@cindex @samp{z4} packet
24232@cindex @samp{Z4} packet
24233Insert (@samp{Z4}) or remove (@samp{z4}) an access watchpoint.
2f870471
AC
24234
24235Reply:
24236@table @samp
24237@item OK
24238success
24239@item
24240not supported
b8ff78ce 24241@item E @var{NN}
2f870471 24242for an error
ee2d5c50
AC
24243@end table
24244
24245@end table
c906108c 24246
ee2d5c50
AC
24247@node Stop Reply Packets
24248@section Stop Reply Packets
24249@cindex stop reply packets
c906108c 24250
8e04817f
AC
24251The @samp{C}, @samp{c}, @samp{S}, @samp{s} and @samp{?} packets can
24252receive any of the below as a reply. In the case of the @samp{C},
24253@samp{c}, @samp{S} and @samp{s} packets, that reply is only returned
b8ff78ce 24254when the target halts. In the below the exact meaning of @dfn{signal
89be2091
DJ
24255number} is defined by the header @file{include/gdb/signals.h} in the
24256@value{GDBN} source code.
c906108c 24257
b8ff78ce
JB
24258As in the description of request packets, we include spaces in the
24259reply templates for clarity; these are not part of the reply packet's
24260syntax. No @value{GDBN} stop reply packet uses spaces to separate its
24261components.
c906108c 24262
b8ff78ce 24263@table @samp
ee2d5c50 24264
b8ff78ce 24265@item S @var{AA}
599b237a 24266The program received signal number @var{AA} (a two-digit hexadecimal
940178d3
JB
24267number). This is equivalent to a @samp{T} response with no
24268@var{n}:@var{r} pairs.
c906108c 24269
b8ff78ce
JB
24270@item T @var{AA} @var{n1}:@var{r1};@var{n2}:@var{r2};@dots{}
24271@cindex @samp{T} packet reply
599b237a 24272The program received signal number @var{AA} (a two-digit hexadecimal
940178d3
JB
24273number). This is equivalent to an @samp{S} response, except that the
24274@samp{@var{n}:@var{r}} pairs can carry values of important registers
24275and other information directly in the stop reply packet, reducing
24276round-trip latency. Single-step and breakpoint traps are reported
24277this way. Each @samp{@var{n}:@var{r}} pair is interpreted as follows:
cfa9d6d9
DJ
24278
24279@itemize @bullet
b8ff78ce 24280@item
599b237a 24281If @var{n} is a hexadecimal number, it is a register number, and the
b8ff78ce
JB
24282corresponding @var{r} gives that register's value. @var{r} is a
24283series of bytes in target byte order, with each byte given by a
24284two-digit hex number.
cfa9d6d9 24285
b8ff78ce
JB
24286@item
24287If @var{n} is @samp{thread}, then @var{r} is the thread process ID, in
24288hex.
cfa9d6d9 24289
b8ff78ce 24290@item
cfa9d6d9
DJ
24291If @var{n} is a recognized @dfn{stop reason}, it describes a more
24292specific event that stopped the target. The currently defined stop
24293reasons are listed below. @var{aa} should be @samp{05}, the trap
24294signal. At most one stop reason should be present.
24295
b8ff78ce
JB
24296@item
24297Otherwise, @value{GDBN} should ignore this @samp{@var{n}:@var{r}} pair
24298and go on to the next; this allows us to extend the protocol in the
24299future.
cfa9d6d9
DJ
24300@end itemize
24301
24302The currently defined stop reasons are:
24303
24304@table @samp
24305@item watch
24306@itemx rwatch
24307@itemx awatch
24308The packet indicates a watchpoint hit, and @var{r} is the data address, in
24309hex.
24310
24311@cindex shared library events, remote reply
24312@item library
24313The packet indicates that the loaded libraries have changed.
24314@value{GDBN} should use @samp{qXfer:libraries:read} to fetch a new
24315list of loaded libraries. @var{r} is ignored.
24316@end table
ee2d5c50 24317
b8ff78ce 24318@item W @var{AA}
8e04817f 24319The process exited, and @var{AA} is the exit status. This is only
ee2d5c50
AC
24320applicable to certain targets.
24321
b8ff78ce 24322@item X @var{AA}
8e04817f 24323The process terminated with signal @var{AA}.
c906108c 24324
b8ff78ce
JB
24325@item O @var{XX}@dots{}
24326@samp{@var{XX}@dots{}} is hex encoding of @sc{ascii} data, to be
24327written as the program's console output. This can happen at any time
24328while the program is running and the debugger should continue to wait
24329for @samp{W}, @samp{T}, etc.
0ce1b118 24330
b8ff78ce 24331@item F @var{call-id},@var{parameter}@dots{}
0ce1b118
CV
24332@var{call-id} is the identifier which says which host system call should
24333be called. This is just the name of the function. Translation into the
24334correct system call is only applicable as it's defined in @value{GDBN}.
79a6e687 24335@xref{File-I/O Remote Protocol Extension}, for a list of implemented
0ce1b118
CV
24336system calls.
24337
b8ff78ce
JB
24338@samp{@var{parameter}@dots{}} is a list of parameters as defined for
24339this very system call.
0ce1b118 24340
b8ff78ce
JB
24341The target replies with this packet when it expects @value{GDBN} to
24342call a host system call on behalf of the target. @value{GDBN} replies
24343with an appropriate @samp{F} packet and keeps up waiting for the next
24344reply packet from the target. The latest @samp{C}, @samp{c}, @samp{S}
79a6e687
BW
24345or @samp{s} action is expected to be continued. @xref{File-I/O Remote
24346Protocol Extension}, for more details.
0ce1b118 24347
ee2d5c50
AC
24348@end table
24349
24350@node General Query Packets
24351@section General Query Packets
9c16f35a 24352@cindex remote query requests
c906108c 24353
5f3bebba
JB
24354Packets starting with @samp{q} are @dfn{general query packets};
24355packets starting with @samp{Q} are @dfn{general set packets}. General
24356query and set packets are a semi-unified form for retrieving and
24357sending information to and from the stub.
24358
24359The initial letter of a query or set packet is followed by a name
24360indicating what sort of thing the packet applies to. For example,
24361@value{GDBN} may use a @samp{qSymbol} packet to exchange symbol
24362definitions with the stub. These packet names follow some
24363conventions:
24364
24365@itemize @bullet
24366@item
24367The name must not contain commas, colons or semicolons.
24368@item
24369Most @value{GDBN} query and set packets have a leading upper case
24370letter.
24371@item
24372The names of custom vendor packets should use a company prefix, in
24373lower case, followed by a period. For example, packets designed at
24374the Acme Corporation might begin with @samp{qacme.foo} (for querying
24375foos) or @samp{Qacme.bar} (for setting bars).
24376@end itemize
24377
aa56d27a
JB
24378The name of a query or set packet should be separated from any
24379parameters by a @samp{:}; the parameters themselves should be
24380separated by @samp{,} or @samp{;}. Stubs must be careful to match the
369af7bd
DJ
24381full packet name, and check for a separator or the end of the packet,
24382in case two packet names share a common prefix. New packets should not begin
24383with @samp{qC}, @samp{qP}, or @samp{qL}@footnote{The @samp{qP} and @samp{qL}
24384packets predate these conventions, and have arguments without any terminator
24385for the packet name; we suspect they are in widespread use in places that
24386are difficult to upgrade. The @samp{qC} packet has no arguments, but some
24387existing stubs (e.g.@: RedBoot) are known to not check for the end of the
24388packet.}.
c906108c 24389
b8ff78ce
JB
24390Like the descriptions of the other packets, each description here
24391has a template showing the packet's overall syntax, followed by an
24392explanation of the packet's meaning. We include spaces in some of the
24393templates for clarity; these are not part of the packet's syntax. No
24394@value{GDBN} packet uses spaces to separate its components.
24395
5f3bebba
JB
24396Here are the currently defined query and set packets:
24397
b8ff78ce 24398@table @samp
c906108c 24399
b8ff78ce 24400@item qC
9c16f35a 24401@cindex current thread, remote request
b8ff78ce 24402@cindex @samp{qC} packet
ee2d5c50
AC
24403Return the current thread id.
24404
24405Reply:
24406@table @samp
b8ff78ce 24407@item QC @var{pid}
599b237a 24408Where @var{pid} is an unsigned hexadecimal process id.
b8ff78ce 24409@item @r{(anything else)}
ee2d5c50
AC
24410Any other reply implies the old pid.
24411@end table
24412
b8ff78ce 24413@item qCRC:@var{addr},@var{length}
ff2587ec 24414@cindex CRC of memory block, remote request
b8ff78ce
JB
24415@cindex @samp{qCRC} packet
24416Compute the CRC checksum of a block of memory.
ff2587ec
WZ
24417Reply:
24418@table @samp
b8ff78ce 24419@item E @var{NN}
ff2587ec 24420An error (such as memory fault)
b8ff78ce
JB
24421@item C @var{crc32}
24422The specified memory region's checksum is @var{crc32}.
ff2587ec
WZ
24423@end table
24424
b8ff78ce
JB
24425@item qfThreadInfo
24426@itemx qsThreadInfo
9c16f35a 24427@cindex list active threads, remote request
b8ff78ce
JB
24428@cindex @samp{qfThreadInfo} packet
24429@cindex @samp{qsThreadInfo} packet
24430Obtain a list of all active thread ids from the target (OS). Since there
8e04817f
AC
24431may be too many active threads to fit into one reply packet, this query
24432works iteratively: it may require more than one query/reply sequence to
24433obtain the entire list of threads. The first query of the sequence will
b8ff78ce
JB
24434be the @samp{qfThreadInfo} query; subsequent queries in the
24435sequence will be the @samp{qsThreadInfo} query.
ee2d5c50 24436
b8ff78ce 24437NOTE: This packet replaces the @samp{qL} query (see below).
ee2d5c50
AC
24438
24439Reply:
24440@table @samp
b8ff78ce 24441@item m @var{id}
ee2d5c50 24442A single thread id
b8ff78ce 24443@item m @var{id},@var{id}@dots{}
ee2d5c50 24444a comma-separated list of thread ids
b8ff78ce
JB
24445@item l
24446(lower case letter @samp{L}) denotes end of list.
ee2d5c50
AC
24447@end table
24448
24449In response to each query, the target will reply with a list of one or
e1aac25b
JB
24450more thread ids, in big-endian unsigned hex, separated by commas.
24451@value{GDBN} will respond to each reply with a request for more thread
b8ff78ce
JB
24452ids (using the @samp{qs} form of the query), until the target responds
24453with @samp{l} (lower-case el, for @dfn{last}).
c906108c 24454
b8ff78ce 24455@item qGetTLSAddr:@var{thread-id},@var{offset},@var{lm}
ff2587ec 24456@cindex get thread-local storage address, remote request
b8ff78ce 24457@cindex @samp{qGetTLSAddr} packet
ff2587ec
WZ
24458Fetch the address associated with thread local storage specified
24459by @var{thread-id}, @var{offset}, and @var{lm}.
24460
24461@var{thread-id} is the (big endian, hex encoded) thread id associated with the
24462thread for which to fetch the TLS address.
24463
24464@var{offset} is the (big endian, hex encoded) offset associated with the
24465thread local variable. (This offset is obtained from the debug
24466information associated with the variable.)
24467
db2e3e2e 24468@var{lm} is the (big endian, hex encoded) OS/ABI-specific encoding of the
ff2587ec
WZ
24469the load module associated with the thread local storage. For example,
24470a @sc{gnu}/Linux system will pass the link map address of the shared
24471object associated with the thread local storage under consideration.
24472Other operating environments may choose to represent the load module
24473differently, so the precise meaning of this parameter will vary.
ee2d5c50
AC
24474
24475Reply:
b8ff78ce
JB
24476@table @samp
24477@item @var{XX}@dots{}
ff2587ec
WZ
24478Hex encoded (big endian) bytes representing the address of the thread
24479local storage requested.
24480
b8ff78ce
JB
24481@item E @var{nn}
24482An error occurred. @var{nn} are hex digits.
ff2587ec 24483
b8ff78ce
JB
24484@item
24485An empty reply indicates that @samp{qGetTLSAddr} is not supported by the stub.
ee2d5c50
AC
24486@end table
24487
b8ff78ce 24488@item qL @var{startflag} @var{threadcount} @var{nextthread}
8e04817f
AC
24489Obtain thread information from RTOS. Where: @var{startflag} (one hex
24490digit) is one to indicate the first query and zero to indicate a
24491subsequent query; @var{threadcount} (two hex digits) is the maximum
24492number of threads the response packet can contain; and @var{nextthread}
24493(eight hex digits), for subsequent queries (@var{startflag} is zero), is
24494returned in the response as @var{argthread}.
ee2d5c50 24495
b8ff78ce 24496Don't use this packet; use the @samp{qfThreadInfo} query instead (see above).
ee2d5c50
AC
24497
24498Reply:
24499@table @samp
b8ff78ce 24500@item qM @var{count} @var{done} @var{argthread} @var{thread}@dots{}
8e04817f
AC
24501Where: @var{count} (two hex digits) is the number of threads being
24502returned; @var{done} (one hex digit) is zero to indicate more threads
24503and one indicates no further threads; @var{argthreadid} (eight hex
b8ff78ce 24504digits) is @var{nextthread} from the request packet; @var{thread}@dots{}
ee2d5c50 24505is a sequence of thread IDs from the target. @var{threadid} (eight hex
8e04817f 24506digits). See @code{remote.c:parse_threadlist_response()}.
ee2d5c50 24507@end table
c906108c 24508
b8ff78ce 24509@item qOffsets
9c16f35a 24510@cindex section offsets, remote request
b8ff78ce 24511@cindex @samp{qOffsets} packet
31d99776
DJ
24512Get section offsets that the target used when relocating the downloaded
24513image.
c906108c 24514
ee2d5c50
AC
24515Reply:
24516@table @samp
31d99776
DJ
24517@item Text=@var{xxx};Data=@var{yyy}@r{[};Bss=@var{zzz}@r{]}
24518Relocate the @code{Text} section by @var{xxx} from its original address.
24519Relocate the @code{Data} section by @var{yyy} from its original address.
24520If the object file format provides segment information (e.g.@: @sc{elf}
24521@samp{PT_LOAD} program headers), @value{GDBN} will relocate entire
24522segments by the supplied offsets.
24523
24524@emph{Note: while a @code{Bss} offset may be included in the response,
24525@value{GDBN} ignores this and instead applies the @code{Data} offset
24526to the @code{Bss} section.}
24527
24528@item TextSeg=@var{xxx}@r{[};DataSeg=@var{yyy}@r{]}
24529Relocate the first segment of the object file, which conventionally
24530contains program code, to a starting address of @var{xxx}. If
24531@samp{DataSeg} is specified, relocate the second segment, which
24532conventionally contains modifiable data, to a starting address of
24533@var{yyy}. @value{GDBN} will report an error if the object file
24534does not contain segment information, or does not contain at least
24535as many segments as mentioned in the reply. Extra segments are
24536kept at fixed offsets relative to the last relocated segment.
ee2d5c50
AC
24537@end table
24538
b8ff78ce 24539@item qP @var{mode} @var{threadid}
9c16f35a 24540@cindex thread information, remote request
b8ff78ce 24541@cindex @samp{qP} packet
8e04817f
AC
24542Returns information on @var{threadid}. Where: @var{mode} is a hex
24543encoded 32 bit mode; @var{threadid} is a hex encoded 64 bit thread ID.
ee2d5c50 24544
aa56d27a
JB
24545Don't use this packet; use the @samp{qThreadExtraInfo} query instead
24546(see below).
24547
b8ff78ce 24548Reply: see @code{remote.c:remote_unpack_thread_info_response()}.
c906108c 24549
89be2091
DJ
24550@item QPassSignals: @var{signal} @r{[};@var{signal}@r{]}@dots{}
24551@cindex pass signals to inferior, remote request
24552@cindex @samp{QPassSignals} packet
23181151 24553@anchor{QPassSignals}
89be2091
DJ
24554Each listed @var{signal} should be passed directly to the inferior process.
24555Signals are numbered identically to continue packets and stop replies
24556(@pxref{Stop Reply Packets}). Each @var{signal} list item should be
24557strictly greater than the previous item. These signals do not need to stop
24558the inferior, or be reported to @value{GDBN}. All other signals should be
24559reported to @value{GDBN}. Multiple @samp{QPassSignals} packets do not
24560combine; any earlier @samp{QPassSignals} list is completely replaced by the
24561new list. This packet improves performance when using @samp{handle
24562@var{signal} nostop noprint pass}.
24563
24564Reply:
24565@table @samp
24566@item OK
24567The request succeeded.
24568
24569@item E @var{nn}
24570An error occurred. @var{nn} are hex digits.
24571
24572@item
24573An empty reply indicates that @samp{QPassSignals} is not supported by
24574the stub.
24575@end table
24576
24577Use of this packet is controlled by the @code{set remote pass-signals}
79a6e687 24578command (@pxref{Remote Configuration, set remote pass-signals}).
89be2091
DJ
24579This packet is not probed by default; the remote stub must request it,
24580by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24581
b8ff78ce 24582@item qRcmd,@var{command}
ff2587ec 24583@cindex execute remote command, remote request
b8ff78ce 24584@cindex @samp{qRcmd} packet
ff2587ec 24585@var{command} (hex encoded) is passed to the local interpreter for
b8ff78ce
JB
24586execution. Invalid commands should be reported using the output
24587string. Before the final result packet, the target may also respond
24588with a number of intermediate @samp{O@var{output}} console output
24589packets. @emph{Implementors should note that providing access to a
24590stubs's interpreter may have security implications}.
fa93a9d8 24591
ff2587ec
WZ
24592Reply:
24593@table @samp
24594@item OK
24595A command response with no output.
24596@item @var{OUTPUT}
24597A command response with the hex encoded output string @var{OUTPUT}.
b8ff78ce 24598@item E @var{NN}
ff2587ec 24599Indicate a badly formed request.
b8ff78ce
JB
24600@item
24601An empty reply indicates that @samp{qRcmd} is not recognized.
ff2587ec 24602@end table
fa93a9d8 24603
aa56d27a
JB
24604(Note that the @code{qRcmd} packet's name is separated from the
24605command by a @samp{,}, not a @samp{:}, contrary to the naming
24606conventions above. Please don't use this packet as a model for new
24607packets.)
24608
be2a5f71
DJ
24609@item qSupported @r{[}:@var{gdbfeature} @r{[};@var{gdbfeature}@r{]}@dots{} @r{]}
24610@cindex supported packets, remote query
24611@cindex features of the remote protocol
24612@cindex @samp{qSupported} packet
0876f84a 24613@anchor{qSupported}
be2a5f71
DJ
24614Tell the remote stub about features supported by @value{GDBN}, and
24615query the stub for features it supports. This packet allows
24616@value{GDBN} and the remote stub to take advantage of each others'
24617features. @samp{qSupported} also consolidates multiple feature probes
24618at startup, to improve @value{GDBN} performance---a single larger
24619packet performs better than multiple smaller probe packets on
24620high-latency links. Some features may enable behavior which must not
24621be on by default, e.g.@: because it would confuse older clients or
24622stubs. Other features may describe packets which could be
24623automatically probed for, but are not. These features must be
24624reported before @value{GDBN} will use them. This ``default
24625unsupported'' behavior is not appropriate for all packets, but it
24626helps to keep the initial connection time under control with new
24627versions of @value{GDBN} which support increasing numbers of packets.
24628
24629Reply:
24630@table @samp
24631@item @var{stubfeature} @r{[};@var{stubfeature}@r{]}@dots{}
24632The stub supports or does not support each returned @var{stubfeature},
24633depending on the form of each @var{stubfeature} (see below for the
24634possible forms).
24635@item
24636An empty reply indicates that @samp{qSupported} is not recognized,
24637or that no features needed to be reported to @value{GDBN}.
24638@end table
24639
24640The allowed forms for each feature (either a @var{gdbfeature} in the
24641@samp{qSupported} packet, or a @var{stubfeature} in the response)
24642are:
24643
24644@table @samp
24645@item @var{name}=@var{value}
24646The remote protocol feature @var{name} is supported, and associated
24647with the specified @var{value}. The format of @var{value} depends
24648on the feature, but it must not include a semicolon.
24649@item @var{name}+
24650The remote protocol feature @var{name} is supported, and does not
24651need an associated value.
24652@item @var{name}-
24653The remote protocol feature @var{name} is not supported.
24654@item @var{name}?
24655The remote protocol feature @var{name} may be supported, and
24656@value{GDBN} should auto-detect support in some other way when it is
24657needed. This form will not be used for @var{gdbfeature} notifications,
24658but may be used for @var{stubfeature} responses.
24659@end table
24660
24661Whenever the stub receives a @samp{qSupported} request, the
24662supplied set of @value{GDBN} features should override any previous
24663request. This allows @value{GDBN} to put the stub in a known
24664state, even if the stub had previously been communicating with
24665a different version of @value{GDBN}.
24666
24667No values of @var{gdbfeature} (for the packet sent by @value{GDBN})
24668are defined yet. Stubs should ignore any unknown values for
24669@var{gdbfeature}. Any @value{GDBN} which sends a @samp{qSupported}
24670packet supports receiving packets of unlimited length (earlier
24671versions of @value{GDBN} may reject overly long responses). Values
24672for @var{gdbfeature} may be defined in the future to let the stub take
24673advantage of new features in @value{GDBN}, e.g.@: incompatible
24674improvements in the remote protocol---support for unlimited length
24675responses would be a @var{gdbfeature} example, if it were not implied by
24676the @samp{qSupported} query. The stub's reply should be independent
24677of the @var{gdbfeature} entries sent by @value{GDBN}; first @value{GDBN}
24678describes all the features it supports, and then the stub replies with
24679all the features it supports.
24680
24681Similarly, @value{GDBN} will silently ignore unrecognized stub feature
24682responses, as long as each response uses one of the standard forms.
24683
24684Some features are flags. A stub which supports a flag feature
24685should respond with a @samp{+} form response. Other features
24686require values, and the stub should respond with an @samp{=}
24687form response.
24688
24689Each feature has a default value, which @value{GDBN} will use if
24690@samp{qSupported} is not available or if the feature is not mentioned
24691in the @samp{qSupported} response. The default values are fixed; a
24692stub is free to omit any feature responses that match the defaults.
24693
24694Not all features can be probed, but for those which can, the probing
24695mechanism is useful: in some cases, a stub's internal
24696architecture may not allow the protocol layer to know some information
24697about the underlying target in advance. This is especially common in
24698stubs which may be configured for multiple targets.
24699
24700These are the currently defined stub features and their properties:
24701
cfa9d6d9 24702@multitable @columnfractions 0.35 0.2 0.12 0.2
be2a5f71
DJ
24703@c NOTE: The first row should be @headitem, but we do not yet require
24704@c a new enough version of Texinfo (4.7) to use @headitem.
0876f84a 24705@item Feature Name
be2a5f71
DJ
24706@tab Value Required
24707@tab Default
24708@tab Probe Allowed
24709
24710@item @samp{PacketSize}
24711@tab Yes
24712@tab @samp{-}
24713@tab No
24714
0876f84a
DJ
24715@item @samp{qXfer:auxv:read}
24716@tab No
24717@tab @samp{-}
24718@tab Yes
24719
23181151
DJ
24720@item @samp{qXfer:features:read}
24721@tab No
24722@tab @samp{-}
24723@tab Yes
24724
cfa9d6d9
DJ
24725@item @samp{qXfer:libraries:read}
24726@tab No
24727@tab @samp{-}
24728@tab Yes
24729
68437a39
DJ
24730@item @samp{qXfer:memory-map:read}
24731@tab No
24732@tab @samp{-}
24733@tab Yes
24734
0e7f50da
UW
24735@item @samp{qXfer:spu:read}
24736@tab No
24737@tab @samp{-}
24738@tab Yes
24739
24740@item @samp{qXfer:spu:write}
24741@tab No
24742@tab @samp{-}
24743@tab Yes
24744
89be2091
DJ
24745@item @samp{QPassSignals}
24746@tab No
24747@tab @samp{-}
24748@tab Yes
24749
be2a5f71
DJ
24750@end multitable
24751
24752These are the currently defined stub features, in more detail:
24753
24754@table @samp
24755@cindex packet size, remote protocol
24756@item PacketSize=@var{bytes}
24757The remote stub can accept packets up to at least @var{bytes} in
24758length. @value{GDBN} will send packets up to this size for bulk
24759transfers, and will never send larger packets. This is a limit on the
24760data characters in the packet, including the frame and checksum.
24761There is no trailing NUL byte in a remote protocol packet; if the stub
24762stores packets in a NUL-terminated format, it should allow an extra
24763byte in its buffer for the NUL. If this stub feature is not supported,
24764@value{GDBN} guesses based on the size of the @samp{g} packet response.
24765
0876f84a
DJ
24766@item qXfer:auxv:read
24767The remote stub understands the @samp{qXfer:auxv:read} packet
24768(@pxref{qXfer auxiliary vector read}).
24769
23181151
DJ
24770@item qXfer:features:read
24771The remote stub understands the @samp{qXfer:features:read} packet
24772(@pxref{qXfer target description read}).
24773
cfa9d6d9
DJ
24774@item qXfer:libraries:read
24775The remote stub understands the @samp{qXfer:libraries:read} packet
24776(@pxref{qXfer library list read}).
24777
23181151
DJ
24778@item qXfer:memory-map:read
24779The remote stub understands the @samp{qXfer:memory-map:read} packet
24780(@pxref{qXfer memory map read}).
24781
0e7f50da
UW
24782@item qXfer:spu:read
24783The remote stub understands the @samp{qXfer:spu:read} packet
24784(@pxref{qXfer spu read}).
24785
24786@item qXfer:spu:write
24787The remote stub understands the @samp{qXfer:spu:write} packet
24788(@pxref{qXfer spu write}).
24789
23181151
DJ
24790@item QPassSignals
24791The remote stub understands the @samp{QPassSignals} packet
24792(@pxref{QPassSignals}).
24793
be2a5f71
DJ
24794@end table
24795
b8ff78ce 24796@item qSymbol::
ff2587ec 24797@cindex symbol lookup, remote request
b8ff78ce 24798@cindex @samp{qSymbol} packet
ff2587ec
WZ
24799Notify the target that @value{GDBN} is prepared to serve symbol lookup
24800requests. Accept requests from the target for the values of symbols.
fa93a9d8
JB
24801
24802Reply:
ff2587ec 24803@table @samp
b8ff78ce 24804@item OK
ff2587ec 24805The target does not need to look up any (more) symbols.
b8ff78ce 24806@item qSymbol:@var{sym_name}
ff2587ec
WZ
24807The target requests the value of symbol @var{sym_name} (hex encoded).
24808@value{GDBN} may provide the value by using the
b8ff78ce
JB
24809@samp{qSymbol:@var{sym_value}:@var{sym_name}} message, described
24810below.
ff2587ec 24811@end table
83761cbd 24812
b8ff78ce 24813@item qSymbol:@var{sym_value}:@var{sym_name}
ff2587ec
WZ
24814Set the value of @var{sym_name} to @var{sym_value}.
24815
24816@var{sym_name} (hex encoded) is the name of a symbol whose value the
24817target has previously requested.
24818
24819@var{sym_value} (hex) is the value for symbol @var{sym_name}. If
24820@value{GDBN} cannot supply a value for @var{sym_name}, then this field
24821will be empty.
24822
24823Reply:
24824@table @samp
b8ff78ce 24825@item OK
ff2587ec 24826The target does not need to look up any (more) symbols.
b8ff78ce 24827@item qSymbol:@var{sym_name}
ff2587ec
WZ
24828The target requests the value of a new symbol @var{sym_name} (hex
24829encoded). @value{GDBN} will continue to supply the values of symbols
24830(if available), until the target ceases to request them.
fa93a9d8 24831@end table
0abb7bc7 24832
9d29849a
JB
24833@item QTDP
24834@itemx QTFrame
24835@xref{Tracepoint Packets}.
24836
b8ff78ce 24837@item qThreadExtraInfo,@var{id}
ff2587ec 24838@cindex thread attributes info, remote request
b8ff78ce
JB
24839@cindex @samp{qThreadExtraInfo} packet
24840Obtain a printable string description of a thread's attributes from
24841the target OS. @var{id} is a thread-id in big-endian hex. This
24842string may contain anything that the target OS thinks is interesting
24843for @value{GDBN} to tell the user about the thread. The string is
24844displayed in @value{GDBN}'s @code{info threads} display. Some
24845examples of possible thread extra info strings are @samp{Runnable}, or
24846@samp{Blocked on Mutex}.
ff2587ec
WZ
24847
24848Reply:
24849@table @samp
b8ff78ce
JB
24850@item @var{XX}@dots{}
24851Where @samp{@var{XX}@dots{}} is a hex encoding of @sc{ascii} data,
24852comprising the printable string containing the extra information about
24853the thread's attributes.
ff2587ec 24854@end table
814e32d7 24855
aa56d27a
JB
24856(Note that the @code{qThreadExtraInfo} packet's name is separated from
24857the command by a @samp{,}, not a @samp{:}, contrary to the naming
24858conventions above. Please don't use this packet as a model for new
24859packets.)
24860
9d29849a
JB
24861@item QTStart
24862@itemx QTStop
24863@itemx QTinit
24864@itemx QTro
24865@itemx qTStatus
24866@xref{Tracepoint Packets}.
24867
0876f84a
DJ
24868@item qXfer:@var{object}:read:@var{annex}:@var{offset},@var{length}
24869@cindex read special object, remote request
24870@cindex @samp{qXfer} packet
68437a39 24871@anchor{qXfer read}
0876f84a
DJ
24872Read uninterpreted bytes from the target's special data area
24873identified by the keyword @var{object}. Request @var{length} bytes
24874starting at @var{offset} bytes into the data. The content and
0e7f50da 24875encoding of @var{annex} is specific to @var{object}; it can supply
0876f84a
DJ
24876additional details about what data to access.
24877
24878Here are the specific requests of this form defined so far. All
24879@samp{qXfer:@var{object}:read:@dots{}} requests use the same reply
24880formats, listed below.
24881
24882@table @samp
24883@item qXfer:auxv:read::@var{offset},@var{length}
24884@anchor{qXfer auxiliary vector read}
24885Access the target's @dfn{auxiliary vector}. @xref{OS Information,
427c3a89 24886auxiliary vector}. Note @var{annex} must be empty.
0876f84a
DJ
24887
24888This packet is not probed by default; the remote stub must request it,
89be2091 24889by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
0876f84a 24890
23181151
DJ
24891@item qXfer:features:read:@var{annex}:@var{offset},@var{length}
24892@anchor{qXfer target description read}
24893Access the @dfn{target description}. @xref{Target Descriptions}. The
24894annex specifies which XML document to access. The main description is
24895always loaded from the @samp{target.xml} annex.
24896
24897This packet is not probed by default; the remote stub must request it,
24898by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24899
cfa9d6d9
DJ
24900@item qXfer:libraries:read:@var{annex}:@var{offset},@var{length}
24901@anchor{qXfer library list read}
24902Access the target's list of loaded libraries. @xref{Library List Format}.
24903The annex part of the generic @samp{qXfer} packet must be empty
24904(@pxref{qXfer read}).
24905
24906Targets which maintain a list of libraries in the program's memory do
24907not need to implement this packet; it is designed for platforms where
24908the operating system manages the list of loaded libraries.
24909
24910This packet is not probed by default; the remote stub must request it,
24911by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24912
68437a39
DJ
24913@item qXfer:memory-map:read::@var{offset},@var{length}
24914@anchor{qXfer memory map read}
79a6e687 24915Access the target's @dfn{memory-map}. @xref{Memory Map Format}. The
68437a39
DJ
24916annex part of the generic @samp{qXfer} packet must be empty
24917(@pxref{qXfer read}).
24918
0e7f50da
UW
24919This packet is not probed by default; the remote stub must request it,
24920by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24921
24922@item qXfer:spu:read:@var{annex}:@var{offset},@var{length}
24923@anchor{qXfer spu read}
24924Read contents of an @code{spufs} file on the target system. The
24925annex specifies which file to read; it must be of the form
24926@file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
24927in the target process, and @var{name} identifes the @code{spufs} file
24928in that context to be accessed.
24929
68437a39
DJ
24930This packet is not probed by default; the remote stub must request it,
24931by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24932@end table
24933
0876f84a
DJ
24934Reply:
24935@table @samp
24936@item m @var{data}
24937Data @var{data} (@pxref{Binary Data}) has been read from the
24938target. There may be more data at a higher address (although
24939it is permitted to return @samp{m} even for the last valid
24940block of data, as long as at least one byte of data was read).
24941@var{data} may have fewer bytes than the @var{length} in the
24942request.
24943
24944@item l @var{data}
24945Data @var{data} (@pxref{Binary Data}) has been read from the target.
24946There is no more data to be read. @var{data} may have fewer bytes
24947than the @var{length} in the request.
24948
24949@item l
24950The @var{offset} in the request is at the end of the data.
24951There is no more data to be read.
24952
24953@item E00
24954The request was malformed, or @var{annex} was invalid.
24955
24956@item E @var{nn}
24957The offset was invalid, or there was an error encountered reading the data.
24958@var{nn} is a hex-encoded @code{errno} value.
24959
24960@item
24961An empty reply indicates the @var{object} string was not recognized by
24962the stub, or that the object does not support reading.
24963@end table
24964
24965@item qXfer:@var{object}:write:@var{annex}:@var{offset}:@var{data}@dots{}
24966@cindex write data into object, remote request
24967Write uninterpreted bytes into the target's special data area
24968identified by the keyword @var{object}, starting at @var{offset} bytes
0e7f50da 24969into the data. @var{data}@dots{} is the binary-encoded data
0876f84a 24970(@pxref{Binary Data}) to be written. The content and encoding of @var{annex}
0e7f50da 24971is specific to @var{object}; it can supply additional details about what data
0876f84a
DJ
24972to access.
24973
0e7f50da
UW
24974Here are the specific requests of this form defined so far. All
24975@samp{qXfer:@var{object}:write:@dots{}} requests use the same reply
24976formats, listed below.
24977
24978@table @samp
24979@item qXfer:@var{spu}:write:@var{annex}:@var{offset}:@var{data}@dots{}
24980@anchor{qXfer spu write}
24981Write @var{data} to an @code{spufs} file on the target system. The
24982annex specifies which file to write; it must be of the form
24983@file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
24984in the target process, and @var{name} identifes the @code{spufs} file
24985in that context to be accessed.
24986
24987This packet is not probed by default; the remote stub must request it,
24988by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24989@end table
0876f84a
DJ
24990
24991Reply:
24992@table @samp
24993@item @var{nn}
24994@var{nn} (hex encoded) is the number of bytes written.
24995This may be fewer bytes than supplied in the request.
24996
24997@item E00
24998The request was malformed, or @var{annex} was invalid.
24999
25000@item E @var{nn}
25001The offset was invalid, or there was an error encountered writing the data.
25002@var{nn} is a hex-encoded @code{errno} value.
25003
25004@item
25005An empty reply indicates the @var{object} string was not
25006recognized by the stub, or that the object does not support writing.
25007@end table
25008
25009@item qXfer:@var{object}:@var{operation}:@dots{}
25010Requests of this form may be added in the future. When a stub does
25011not recognize the @var{object} keyword, or its support for
25012@var{object} does not recognize the @var{operation} keyword, the stub
25013must respond with an empty packet.
25014
ee2d5c50
AC
25015@end table
25016
25017@node Register Packet Format
25018@section Register Packet Format
eb12ee30 25019
b8ff78ce 25020The following @code{g}/@code{G} packets have previously been defined.
ee2d5c50
AC
25021In the below, some thirty-two bit registers are transferred as
25022sixty-four bits. Those registers should be zero/sign extended (which?)
599b237a
BW
25023to fill the space allocated. Register bytes are transferred in target
25024byte order. The two nibbles within a register byte are transferred
ee2d5c50 25025most-significant - least-significant.
eb12ee30 25026
ee2d5c50 25027@table @r
eb12ee30 25028
8e04817f 25029@item MIPS32
ee2d5c50 25030
599b237a 25031All registers are transferred as thirty-two bit quantities in the order:
8e04817f
AC
2503232 general-purpose; sr; lo; hi; bad; cause; pc; 32 floating-point
25033registers; fsr; fir; fp.
eb12ee30 25034
8e04817f 25035@item MIPS64
ee2d5c50 25036
599b237a 25037All registers are transferred as sixty-four bit quantities (including
8e04817f
AC
25038thirty-two bit registers such as @code{sr}). The ordering is the same
25039as @code{MIPS32}.
eb12ee30 25040
ee2d5c50
AC
25041@end table
25042
9d29849a
JB
25043@node Tracepoint Packets
25044@section Tracepoint Packets
25045@cindex tracepoint packets
25046@cindex packets, tracepoint
25047
25048Here we describe the packets @value{GDBN} uses to implement
25049tracepoints (@pxref{Tracepoints}).
25050
25051@table @samp
25052
25053@item QTDP:@var{n}:@var{addr}:@var{ena}:@var{step}:@var{pass}@r{[}-@r{]}
25054Create a new tracepoint, number @var{n}, at @var{addr}. If @var{ena}
25055is @samp{E}, then the tracepoint is enabled; if it is @samp{D}, then
25056the tracepoint is disabled. @var{step} is the tracepoint's step
25057count, and @var{pass} is its pass count. If the trailing @samp{-} is
25058present, further @samp{QTDP} packets will follow to specify this
25059tracepoint's actions.
25060
25061Replies:
25062@table @samp
25063@item OK
25064The packet was understood and carried out.
25065@item
25066The packet was not recognized.
25067@end table
25068
25069@item QTDP:-@var{n}:@var{addr}:@r{[}S@r{]}@var{action}@dots{}@r{[}-@r{]}
25070Define actions to be taken when a tracepoint is hit. @var{n} and
25071@var{addr} must be the same as in the initial @samp{QTDP} packet for
25072this tracepoint. This packet may only be sent immediately after
25073another @samp{QTDP} packet that ended with a @samp{-}. If the
25074trailing @samp{-} is present, further @samp{QTDP} packets will follow,
25075specifying more actions for this tracepoint.
25076
25077In the series of action packets for a given tracepoint, at most one
25078can have an @samp{S} before its first @var{action}. If such a packet
25079is sent, it and the following packets define ``while-stepping''
25080actions. Any prior packets define ordinary actions --- that is, those
25081taken when the tracepoint is first hit. If no action packet has an
25082@samp{S}, then all the packets in the series specify ordinary
25083tracepoint actions.
25084
25085The @samp{@var{action}@dots{}} portion of the packet is a series of
25086actions, concatenated without separators. Each action has one of the
25087following forms:
25088
25089@table @samp
25090
25091@item R @var{mask}
25092Collect the registers whose bits are set in @var{mask}. @var{mask} is
599b237a 25093a hexadecimal number whose @var{i}'th bit is set if register number
9d29849a
JB
25094@var{i} should be collected. (The least significant bit is numbered
25095zero.) Note that @var{mask} may be any number of digits long; it may
25096not fit in a 32-bit word.
25097
25098@item M @var{basereg},@var{offset},@var{len}
25099Collect @var{len} bytes of memory starting at the address in register
25100number @var{basereg}, plus @var{offset}. If @var{basereg} is
25101@samp{-1}, then the range has a fixed address: @var{offset} is the
25102address of the lowest byte to collect. The @var{basereg},
599b237a 25103@var{offset}, and @var{len} parameters are all unsigned hexadecimal
9d29849a
JB
25104values (the @samp{-1} value for @var{basereg} is a special case).
25105
25106@item X @var{len},@var{expr}
25107Evaluate @var{expr}, whose length is @var{len}, and collect memory as
25108it directs. @var{expr} is an agent expression, as described in
25109@ref{Agent Expressions}. Each byte of the expression is encoded as a
25110two-digit hex number in the packet; @var{len} is the number of bytes
25111in the expression (and thus one-half the number of hex digits in the
25112packet).
25113
25114@end table
25115
25116Any number of actions may be packed together in a single @samp{QTDP}
25117packet, as long as the packet does not exceed the maximum packet
c1947b85
JB
25118length (400 bytes, for many stubs). There may be only one @samp{R}
25119action per tracepoint, and it must precede any @samp{M} or @samp{X}
25120actions. Any registers referred to by @samp{M} and @samp{X} actions
25121must be collected by a preceding @samp{R} action. (The
25122``while-stepping'' actions are treated as if they were attached to a
25123separate tracepoint, as far as these restrictions are concerned.)
9d29849a
JB
25124
25125Replies:
25126@table @samp
25127@item OK
25128The packet was understood and carried out.
25129@item
25130The packet was not recognized.
25131@end table
25132
25133@item QTFrame:@var{n}
25134Select the @var{n}'th tracepoint frame from the buffer, and use the
25135register and memory contents recorded there to answer subsequent
25136request packets from @value{GDBN}.
25137
25138A successful reply from the stub indicates that the stub has found the
25139requested frame. The response is a series of parts, concatenated
25140without separators, describing the frame we selected. Each part has
25141one of the following forms:
25142
25143@table @samp
25144@item F @var{f}
25145The selected frame is number @var{n} in the trace frame buffer;
599b237a 25146@var{f} is a hexadecimal number. If @var{f} is @samp{-1}, then there
9d29849a
JB
25147was no frame matching the criteria in the request packet.
25148
25149@item T @var{t}
25150The selected trace frame records a hit of tracepoint number @var{t};
599b237a 25151@var{t} is a hexadecimal number.
9d29849a
JB
25152
25153@end table
25154
25155@item QTFrame:pc:@var{addr}
25156Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
25157currently selected frame whose PC is @var{addr};
599b237a 25158@var{addr} is a hexadecimal number.
9d29849a
JB
25159
25160@item QTFrame:tdp:@var{t}
25161Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
25162currently selected frame that is a hit of tracepoint @var{t}; @var{t}
599b237a 25163is a hexadecimal number.
9d29849a
JB
25164
25165@item QTFrame:range:@var{start}:@var{end}
25166Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
25167currently selected frame whose PC is between @var{start} (inclusive)
599b237a 25168and @var{end} (exclusive); @var{start} and @var{end} are hexadecimal
9d29849a
JB
25169numbers.
25170
25171@item QTFrame:outside:@var{start}:@var{end}
25172Like @samp{QTFrame:range:@var{start}:@var{end}}, but select the first
25173frame @emph{outside} the given range of addresses.
25174
25175@item QTStart
25176Begin the tracepoint experiment. Begin collecting data from tracepoint
25177hits in the trace frame buffer.
25178
25179@item QTStop
25180End the tracepoint experiment. Stop collecting trace frames.
25181
25182@item QTinit
25183Clear the table of tracepoints, and empty the trace frame buffer.
25184
25185@item QTro:@var{start1},@var{end1}:@var{start2},@var{end2}:@dots{}
25186Establish the given ranges of memory as ``transparent''. The stub
25187will answer requests for these ranges from memory's current contents,
25188if they were not collected as part of the tracepoint hit.
25189
25190@value{GDBN} uses this to mark read-only regions of memory, like those
25191containing program code. Since these areas never change, they should
25192still have the same contents they did when the tracepoint was hit, so
25193there's no reason for the stub to refuse to provide their contents.
25194
25195@item qTStatus
25196Ask the stub if there is a trace experiment running right now.
25197
25198Replies:
25199@table @samp
25200@item T0
25201There is no trace experiment running.
25202@item T1
25203There is a trace experiment running.
25204@end table
25205
25206@end table
25207
25208
a6b151f1
DJ
25209@node Host I/O Packets
25210@section Host I/O Packets
25211@cindex Host I/O, remote protocol
25212@cindex file transfer, remote protocol
25213
25214The @dfn{Host I/O} packets allow @value{GDBN} to perform I/O
25215operations on the far side of a remote link. For example, Host I/O is
25216used to upload and download files to a remote target with its own
25217filesystem. Host I/O uses the same constant values and data structure
25218layout as the target-initiated File-I/O protocol. However, the
25219Host I/O packets are structured differently. The target-initiated
25220protocol relies on target memory to store parameters and buffers.
25221Host I/O requests are initiated by @value{GDBN}, and the
25222target's memory is not involved. @xref{File-I/O Remote Protocol
25223Extension}, for more details on the target-initiated protocol.
25224
25225The Host I/O request packets all encode a single operation along with
25226its arguments. They have this format:
25227
25228@table @samp
25229
25230@item vFile:@var{operation}: @var{parameter}@dots{}
25231@var{operation} is the name of the particular request; the target
25232should compare the entire packet name up to the second colon when checking
25233for a supported operation. The format of @var{parameter} depends on
25234the operation. Numbers are always passed in hexadecimal. Negative
25235numbers have an explicit minus sign (i.e.@: two's complement is not
25236used). Strings (e.g.@: filenames) are encoded as a series of
25237hexadecimal bytes. The last argument to a system call may be a
25238buffer of escaped binary data (@pxref{Binary Data}).
25239
25240@end table
25241
25242The valid responses to Host I/O packets are:
25243
25244@table @samp
25245
25246@item F @var{result} [, @var{errno}] [; @var{attachment}]
25247@var{result} is the integer value returned by this operation, usually
25248non-negative for success and -1 for errors. If an error has occured,
25249@var{errno} will be included in the result. @var{errno} will have a
25250value defined by the File-I/O protocol (@pxref{Errno Values}). For
25251operations which return data, @var{attachment} supplies the data as a
25252binary buffer. Binary buffers in response packets are escaped in the
25253normal way (@pxref{Binary Data}). See the individual packet
25254documentation for the interpretation of @var{result} and
25255@var{attachment}.
25256
25257@item
25258An empty response indicates that this operation is not recognized.
25259
25260@end table
25261
25262These are the supported Host I/O operations:
25263
25264@table @samp
25265@item vFile:open: @var{pathname}, @var{flags}, @var{mode}
25266Open a file at @var{pathname} and return a file descriptor for it, or
25267return -1 if an error occurs. @var{pathname} is a string,
25268@var{flags} is an integer indicating a mask of open flags
25269(@pxref{Open Flags}), and @var{mode} is an integer indicating a mask
25270of mode bits to use if the file is created (@pxref{mode_t Values}).
c1c25a1a 25271@xref{open}, for details of the open flags and mode values.
a6b151f1
DJ
25272
25273@item vFile:close: @var{fd}
25274Close the open file corresponding to @var{fd} and return 0, or
25275-1 if an error occurs.
25276
25277@item vFile:pread: @var{fd}, @var{count}, @var{offset}
25278Read data from the open file corresponding to @var{fd}. Up to
25279@var{count} bytes will be read from the file, starting at @var{offset}
25280relative to the start of the file. The target may read fewer bytes;
25281common reasons include packet size limits and an end-of-file
25282condition. The number of bytes read is returned. Zero should only be
25283returned for a successful read at the end of the file, or if
25284@var{count} was zero.
25285
25286The data read should be returned as a binary attachment on success.
25287If zero bytes were read, the response should include an empty binary
25288attachment (i.e.@: a trailing semicolon). The return value is the
25289number of target bytes read; the binary attachment may be longer if
25290some characters were escaped.
25291
25292@item vFile:pwrite: @var{fd}, @var{offset}, @var{data}
25293Write @var{data} (a binary buffer) to the open file corresponding
25294to @var{fd}. Start the write at @var{offset} from the start of the
25295file. Unlike many @code{write} system calls, there is no
25296separate @var{count} argument; the length of @var{data} in the
25297packet is used. @samp{vFile:write} returns the number of bytes written,
25298which may be shorter than the length of @var{data}, or -1 if an
25299error occurred.
25300
25301@item vFile:unlink: @var{pathname}
25302Delete the file at @var{pathname} on the target. Return 0,
25303or -1 if an error occurs. @var{pathname} is a string.
25304
25305@end table
25306
9a6253be
KB
25307@node Interrupts
25308@section Interrupts
25309@cindex interrupts (remote protocol)
25310
25311When a program on the remote target is running, @value{GDBN} may
25312attempt to interrupt it by sending a @samp{Ctrl-C} or a @code{BREAK},
25313control of which is specified via @value{GDBN}'s @samp{remotebreak}
25314setting (@pxref{set remotebreak}).
25315
25316The precise meaning of @code{BREAK} is defined by the transport
25317mechanism and may, in fact, be undefined. @value{GDBN} does
25318not currently define a @code{BREAK} mechanism for any of the network
25319interfaces.
25320
25321@samp{Ctrl-C}, on the other hand, is defined and implemented for all
25322transport mechanisms. It is represented by sending the single byte
25323@code{0x03} without any of the usual packet overhead described in
25324the Overview section (@pxref{Overview}). When a @code{0x03} byte is
25325transmitted as part of a packet, it is considered to be packet data
25326and does @emph{not} represent an interrupt. E.g., an @samp{X} packet
0876f84a 25327(@pxref{X packet}), used for binary downloads, may include an unescaped
9a6253be
KB
25328@code{0x03} as part of its packet.
25329
25330Stubs are not required to recognize these interrupt mechanisms and the
25331precise meaning associated with receipt of the interrupt is
25332implementation defined. If the stub is successful at interrupting the
25333running program, it is expected that it will send one of the Stop
25334Reply Packets (@pxref{Stop Reply Packets}) to @value{GDBN} as a result
25335of successfully stopping the program. Interrupts received while the
25336program is stopped will be discarded.
25337
ee2d5c50
AC
25338@node Examples
25339@section Examples
eb12ee30 25340
8e04817f
AC
25341Example sequence of a target being re-started. Notice how the restart
25342does not get any direct output:
eb12ee30 25343
474c8240 25344@smallexample
d2c6833e
AC
25345-> @code{R00}
25346<- @code{+}
8e04817f 25347@emph{target restarts}
d2c6833e 25348-> @code{?}
8e04817f 25349<- @code{+}
d2c6833e
AC
25350<- @code{T001:1234123412341234}
25351-> @code{+}
474c8240 25352@end smallexample
eb12ee30 25353
8e04817f 25354Example sequence of a target being stepped by a single instruction:
eb12ee30 25355
474c8240 25356@smallexample
d2c6833e 25357-> @code{G1445@dots{}}
8e04817f 25358<- @code{+}
d2c6833e
AC
25359-> @code{s}
25360<- @code{+}
25361@emph{time passes}
25362<- @code{T001:1234123412341234}
8e04817f 25363-> @code{+}
d2c6833e 25364-> @code{g}
8e04817f 25365<- @code{+}
d2c6833e
AC
25366<- @code{1455@dots{}}
25367-> @code{+}
474c8240 25368@end smallexample
eb12ee30 25369
79a6e687
BW
25370@node File-I/O Remote Protocol Extension
25371@section File-I/O Remote Protocol Extension
0ce1b118
CV
25372@cindex File-I/O remote protocol extension
25373
25374@menu
25375* File-I/O Overview::
79a6e687
BW
25376* Protocol Basics::
25377* The F Request Packet::
25378* The F Reply Packet::
25379* The Ctrl-C Message::
0ce1b118 25380* Console I/O::
79a6e687 25381* List of Supported Calls::
db2e3e2e 25382* Protocol-specific Representation of Datatypes::
0ce1b118
CV
25383* Constants::
25384* File-I/O Examples::
25385@end menu
25386
25387@node File-I/O Overview
25388@subsection File-I/O Overview
25389@cindex file-i/o overview
25390
9c16f35a 25391The @dfn{File I/O remote protocol extension} (short: File-I/O) allows the
fc320d37 25392target to use the host's file system and console I/O to perform various
0ce1b118 25393system calls. System calls on the target system are translated into a
fc320d37
SL
25394remote protocol packet to the host system, which then performs the needed
25395actions and returns a response packet to the target system.
0ce1b118
CV
25396This simulates file system operations even on targets that lack file systems.
25397
fc320d37
SL
25398The protocol is defined to be independent of both the host and target systems.
25399It uses its own internal representation of datatypes and values. Both
0ce1b118 25400@value{GDBN} and the target's @value{GDBN} stub are responsible for
fc320d37
SL
25401translating the system-dependent value representations into the internal
25402protocol representations when data is transmitted.
0ce1b118 25403
fc320d37
SL
25404The communication is synchronous. A system call is possible only when
25405@value{GDBN} is waiting for a response from the @samp{C}, @samp{c}, @samp{S}
25406or @samp{s} packets. While @value{GDBN} handles the request for a system call,
0ce1b118 25407the target is stopped to allow deterministic access to the target's
fc320d37
SL
25408memory. Therefore File-I/O is not interruptible by target signals. On
25409the other hand, it is possible to interrupt File-I/O by a user interrupt
c8aa23ab 25410(@samp{Ctrl-C}) within @value{GDBN}.
0ce1b118
CV
25411
25412The target's request to perform a host system call does not finish
25413the latest @samp{C}, @samp{c}, @samp{S} or @samp{s} action. That means,
25414after finishing the system call, the target returns to continuing the
25415previous activity (continue, step). No additional continue or step
25416request from @value{GDBN} is required.
25417
25418@smallexample
f7dc1244 25419(@value{GDBP}) continue
0ce1b118
CV
25420 <- target requests 'system call X'
25421 target is stopped, @value{GDBN} executes system call
3f94c067
BW
25422 -> @value{GDBN} returns result
25423 ... target continues, @value{GDBN} returns to wait for the target
0ce1b118
CV
25424 <- target hits breakpoint and sends a Txx packet
25425@end smallexample
25426
fc320d37
SL
25427The protocol only supports I/O on the console and to regular files on
25428the host file system. Character or block special devices, pipes,
25429named pipes, sockets or any other communication method on the host
0ce1b118
CV
25430system are not supported by this protocol.
25431
79a6e687
BW
25432@node Protocol Basics
25433@subsection Protocol Basics
0ce1b118
CV
25434@cindex protocol basics, file-i/o
25435
fc320d37
SL
25436The File-I/O protocol uses the @code{F} packet as the request as well
25437as reply packet. Since a File-I/O system call can only occur when
25438@value{GDBN} is waiting for a response from the continuing or stepping target,
25439the File-I/O request is a reply that @value{GDBN} has to expect as a result
25440of a previous @samp{C}, @samp{c}, @samp{S} or @samp{s} packet.
0ce1b118
CV
25441This @code{F} packet contains all information needed to allow @value{GDBN}
25442to call the appropriate host system call:
25443
25444@itemize @bullet
b383017d 25445@item
0ce1b118
CV
25446A unique identifier for the requested system call.
25447
25448@item
25449All parameters to the system call. Pointers are given as addresses
25450in the target memory address space. Pointers to strings are given as
b383017d 25451pointer/length pair. Numerical values are given as they are.
db2e3e2e 25452Numerical control flags are given in a protocol-specific representation.
0ce1b118
CV
25453
25454@end itemize
25455
fc320d37 25456At this point, @value{GDBN} has to perform the following actions.
0ce1b118
CV
25457
25458@itemize @bullet
b383017d 25459@item
fc320d37
SL
25460If the parameters include pointer values to data needed as input to a
25461system call, @value{GDBN} requests this data from the target with a
0ce1b118
CV
25462standard @code{m} packet request. This additional communication has to be
25463expected by the target implementation and is handled as any other @code{m}
25464packet.
25465
25466@item
25467@value{GDBN} translates all value from protocol representation to host
25468representation as needed. Datatypes are coerced into the host types.
25469
25470@item
fc320d37 25471@value{GDBN} calls the system call.
0ce1b118
CV
25472
25473@item
25474It then coerces datatypes back to protocol representation.
25475
25476@item
fc320d37
SL
25477If the system call is expected to return data in buffer space specified
25478by pointer parameters to the call, the data is transmitted to the
0ce1b118
CV
25479target using a @code{M} or @code{X} packet. This packet has to be expected
25480by the target implementation and is handled as any other @code{M} or @code{X}
25481packet.
25482
25483@end itemize
25484
25485Eventually @value{GDBN} replies with another @code{F} packet which contains all
25486necessary information for the target to continue. This at least contains
25487
25488@itemize @bullet
25489@item
25490Return value.
25491
25492@item
25493@code{errno}, if has been changed by the system call.
25494
25495@item
25496``Ctrl-C'' flag.
25497
25498@end itemize
25499
25500After having done the needed type and value coercion, the target continues
25501the latest continue or step action.
25502
79a6e687
BW
25503@node The F Request Packet
25504@subsection The @code{F} Request Packet
0ce1b118
CV
25505@cindex file-i/o request packet
25506@cindex @code{F} request packet
25507
25508The @code{F} request packet has the following format:
25509
25510@table @samp
fc320d37 25511@item F@var{call-id},@var{parameter@dots{}}
0ce1b118
CV
25512
25513@var{call-id} is the identifier to indicate the host system call to be called.
25514This is just the name of the function.
25515
fc320d37
SL
25516@var{parameter@dots{}} are the parameters to the system call.
25517Parameters are hexadecimal integer values, either the actual values in case
25518of scalar datatypes, pointers to target buffer space in case of compound
25519datatypes and unspecified memory areas, or pointer/length pairs in case
25520of string parameters. These are appended to the @var{call-id} as a
25521comma-delimited list. All values are transmitted in ASCII
25522string representation, pointer/length pairs separated by a slash.
0ce1b118 25523
b383017d 25524@end table
0ce1b118 25525
fc320d37 25526
0ce1b118 25527
79a6e687
BW
25528@node The F Reply Packet
25529@subsection The @code{F} Reply Packet
0ce1b118
CV
25530@cindex file-i/o reply packet
25531@cindex @code{F} reply packet
25532
25533The @code{F} reply packet has the following format:
25534
25535@table @samp
25536
d3bdde98 25537@item F@var{retcode},@var{errno},@var{Ctrl-C flag};@var{call-specific attachment}
0ce1b118
CV
25538
25539@var{retcode} is the return code of the system call as hexadecimal value.
25540
db2e3e2e
BW
25541@var{errno} is the @code{errno} set by the call, in protocol-specific
25542representation.
0ce1b118
CV
25543This parameter can be omitted if the call was successful.
25544
fc320d37
SL
25545@var{Ctrl-C flag} is only sent if the user requested a break. In this
25546case, @var{errno} must be sent as well, even if the call was successful.
25547The @var{Ctrl-C flag} itself consists of the character @samp{C}:
0ce1b118
CV
25548
25549@smallexample
25550F0,0,C
25551@end smallexample
25552
25553@noindent
fc320d37 25554or, if the call was interrupted before the host call has been performed:
0ce1b118
CV
25555
25556@smallexample
25557F-1,4,C
25558@end smallexample
25559
25560@noindent
db2e3e2e 25561assuming 4 is the protocol-specific representation of @code{EINTR}.
0ce1b118
CV
25562
25563@end table
25564
0ce1b118 25565
79a6e687
BW
25566@node The Ctrl-C Message
25567@subsection The @samp{Ctrl-C} Message
0ce1b118
CV
25568@cindex ctrl-c message, in file-i/o protocol
25569
c8aa23ab 25570If the @samp{Ctrl-C} flag is set in the @value{GDBN}
79a6e687 25571reply packet (@pxref{The F Reply Packet}),
fc320d37 25572the target should behave as if it had
0ce1b118 25573gotten a break message. The meaning for the target is ``system call
fc320d37 25574interrupted by @code{SIGINT}''. Consequentially, the target should actually stop
0ce1b118 25575(as with a break message) and return to @value{GDBN} with a @code{T02}
c8aa23ab 25576packet.
fc320d37
SL
25577
25578It's important for the target to know in which
25579state the system call was interrupted. There are two possible cases:
0ce1b118
CV
25580
25581@itemize @bullet
25582@item
25583The system call hasn't been performed on the host yet.
25584
25585@item
25586The system call on the host has been finished.
25587
25588@end itemize
25589
25590These two states can be distinguished by the target by the value of the
25591returned @code{errno}. If it's the protocol representation of @code{EINTR}, the system
25592call hasn't been performed. This is equivalent to the @code{EINTR} handling
25593on POSIX systems. In any other case, the target may presume that the
fc320d37 25594system call has been finished --- successfully or not --- and should behave
0ce1b118
CV
25595as if the break message arrived right after the system call.
25596
fc320d37 25597@value{GDBN} must behave reliably. If the system call has not been called
0ce1b118
CV
25598yet, @value{GDBN} may send the @code{F} reply immediately, setting @code{EINTR} as
25599@code{errno} in the packet. If the system call on the host has been finished
fc320d37
SL
25600before the user requests a break, the full action must be finished by
25601@value{GDBN}. This requires sending @code{M} or @code{X} packets as necessary.
25602The @code{F} packet may only be sent when either nothing has happened
0ce1b118
CV
25603or the full action has been completed.
25604
25605@node Console I/O
25606@subsection Console I/O
25607@cindex console i/o as part of file-i/o
25608
d3e8051b 25609By default and if not explicitly closed by the target system, the file
0ce1b118
CV
25610descriptors 0, 1 and 2 are connected to the @value{GDBN} console. Output
25611on the @value{GDBN} console is handled as any other file output operation
25612(@code{write(1, @dots{})} or @code{write(2, @dots{})}). Console input is handled
25613by @value{GDBN} so that after the target read request from file descriptor
256140 all following typing is buffered until either one of the following
25615conditions is met:
25616
25617@itemize @bullet
25618@item
c8aa23ab 25619The user types @kbd{Ctrl-c}. The behaviour is as explained above, and the
0ce1b118
CV
25620@code{read}
25621system call is treated as finished.
25622
25623@item
7f9087cb 25624The user presses @key{RET}. This is treated as end of input with a trailing
fc320d37 25625newline.
0ce1b118
CV
25626
25627@item
c8aa23ab
EZ
25628The user types @kbd{Ctrl-d}. This is treated as end of input. No trailing
25629character (neither newline nor @samp{Ctrl-D}) is appended to the input.
0ce1b118
CV
25630
25631@end itemize
25632
fc320d37
SL
25633If the user has typed more characters than fit in the buffer given to
25634the @code{read} call, the trailing characters are buffered in @value{GDBN} until
25635either another @code{read(0, @dots{})} is requested by the target, or debugging
25636is stopped at the user's request.
0ce1b118 25637
0ce1b118 25638
79a6e687
BW
25639@node List of Supported Calls
25640@subsection List of Supported Calls
0ce1b118
CV
25641@cindex list of supported file-i/o calls
25642
25643@menu
25644* open::
25645* close::
25646* read::
25647* write::
25648* lseek::
25649* rename::
25650* unlink::
25651* stat/fstat::
25652* gettimeofday::
25653* isatty::
25654* system::
25655@end menu
25656
25657@node open
25658@unnumberedsubsubsec open
25659@cindex open, file-i/o system call
25660
fc320d37
SL
25661@table @asis
25662@item Synopsis:
0ce1b118 25663@smallexample
0ce1b118
CV
25664int open(const char *pathname, int flags);
25665int open(const char *pathname, int flags, mode_t mode);
0ce1b118
CV
25666@end smallexample
25667
fc320d37
SL
25668@item Request:
25669@samp{Fopen,@var{pathptr}/@var{len},@var{flags},@var{mode}}
25670
0ce1b118 25671@noindent
fc320d37 25672@var{flags} is the bitwise @code{OR} of the following values:
0ce1b118
CV
25673
25674@table @code
b383017d 25675@item O_CREAT
0ce1b118
CV
25676If the file does not exist it will be created. The host
25677rules apply as far as file ownership and time stamps
25678are concerned.
25679
b383017d 25680@item O_EXCL
fc320d37 25681When used with @code{O_CREAT}, if the file already exists it is
0ce1b118
CV
25682an error and open() fails.
25683
b383017d 25684@item O_TRUNC
0ce1b118 25685If the file already exists and the open mode allows
fc320d37
SL
25686writing (@code{O_RDWR} or @code{O_WRONLY} is given) it will be
25687truncated to zero length.
0ce1b118 25688
b383017d 25689@item O_APPEND
0ce1b118
CV
25690The file is opened in append mode.
25691
b383017d 25692@item O_RDONLY
0ce1b118
CV
25693The file is opened for reading only.
25694
b383017d 25695@item O_WRONLY
0ce1b118
CV
25696The file is opened for writing only.
25697
b383017d 25698@item O_RDWR
0ce1b118 25699The file is opened for reading and writing.
fc320d37 25700@end table
0ce1b118
CV
25701
25702@noindent
fc320d37 25703Other bits are silently ignored.
0ce1b118 25704
0ce1b118
CV
25705
25706@noindent
fc320d37 25707@var{mode} is the bitwise @code{OR} of the following values:
0ce1b118
CV
25708
25709@table @code
b383017d 25710@item S_IRUSR
0ce1b118
CV
25711User has read permission.
25712
b383017d 25713@item S_IWUSR
0ce1b118
CV
25714User has write permission.
25715
b383017d 25716@item S_IRGRP
0ce1b118
CV
25717Group has read permission.
25718
b383017d 25719@item S_IWGRP
0ce1b118
CV
25720Group has write permission.
25721
b383017d 25722@item S_IROTH
0ce1b118
CV
25723Others have read permission.
25724
b383017d 25725@item S_IWOTH
0ce1b118 25726Others have write permission.
fc320d37 25727@end table
0ce1b118
CV
25728
25729@noindent
fc320d37 25730Other bits are silently ignored.
0ce1b118 25731
0ce1b118 25732
fc320d37
SL
25733@item Return value:
25734@code{open} returns the new file descriptor or -1 if an error
25735occurred.
0ce1b118 25736
fc320d37 25737@item Errors:
0ce1b118
CV
25738
25739@table @code
b383017d 25740@item EEXIST
fc320d37 25741@var{pathname} already exists and @code{O_CREAT} and @code{O_EXCL} were used.
0ce1b118 25742
b383017d 25743@item EISDIR
fc320d37 25744@var{pathname} refers to a directory.
0ce1b118 25745
b383017d 25746@item EACCES
0ce1b118
CV
25747The requested access is not allowed.
25748
25749@item ENAMETOOLONG
fc320d37 25750@var{pathname} was too long.
0ce1b118 25751
b383017d 25752@item ENOENT
fc320d37 25753A directory component in @var{pathname} does not exist.
0ce1b118 25754
b383017d 25755@item ENODEV
fc320d37 25756@var{pathname} refers to a device, pipe, named pipe or socket.
0ce1b118 25757
b383017d 25758@item EROFS
fc320d37 25759@var{pathname} refers to a file on a read-only filesystem and
0ce1b118
CV
25760write access was requested.
25761
b383017d 25762@item EFAULT
fc320d37 25763@var{pathname} is an invalid pointer value.
0ce1b118 25764
b383017d 25765@item ENOSPC
0ce1b118
CV
25766No space on device to create the file.
25767
b383017d 25768@item EMFILE
0ce1b118
CV
25769The process already has the maximum number of files open.
25770
b383017d 25771@item ENFILE
0ce1b118
CV
25772The limit on the total number of files open on the system
25773has been reached.
25774
b383017d 25775@item EINTR
0ce1b118
CV
25776The call was interrupted by the user.
25777@end table
25778
fc320d37
SL
25779@end table
25780
0ce1b118
CV
25781@node close
25782@unnumberedsubsubsec close
25783@cindex close, file-i/o system call
25784
fc320d37
SL
25785@table @asis
25786@item Synopsis:
0ce1b118 25787@smallexample
0ce1b118 25788int close(int fd);
fc320d37 25789@end smallexample
0ce1b118 25790
fc320d37
SL
25791@item Request:
25792@samp{Fclose,@var{fd}}
0ce1b118 25793
fc320d37
SL
25794@item Return value:
25795@code{close} returns zero on success, or -1 if an error occurred.
0ce1b118 25796
fc320d37 25797@item Errors:
0ce1b118
CV
25798
25799@table @code
b383017d 25800@item EBADF
fc320d37 25801@var{fd} isn't a valid open file descriptor.
0ce1b118 25802
b383017d 25803@item EINTR
0ce1b118
CV
25804The call was interrupted by the user.
25805@end table
25806
fc320d37
SL
25807@end table
25808
0ce1b118
CV
25809@node read
25810@unnumberedsubsubsec read
25811@cindex read, file-i/o system call
25812
fc320d37
SL
25813@table @asis
25814@item Synopsis:
0ce1b118 25815@smallexample
0ce1b118 25816int read(int fd, void *buf, unsigned int count);
fc320d37 25817@end smallexample
0ce1b118 25818
fc320d37
SL
25819@item Request:
25820@samp{Fread,@var{fd},@var{bufptr},@var{count}}
0ce1b118 25821
fc320d37 25822@item Return value:
0ce1b118
CV
25823On success, the number of bytes read is returned.
25824Zero indicates end of file. If count is zero, read
b383017d 25825returns zero as well. On error, -1 is returned.
0ce1b118 25826
fc320d37 25827@item Errors:
0ce1b118
CV
25828
25829@table @code
b383017d 25830@item EBADF
fc320d37 25831@var{fd} is not a valid file descriptor or is not open for
0ce1b118
CV
25832reading.
25833
b383017d 25834@item EFAULT
fc320d37 25835@var{bufptr} is an invalid pointer value.
0ce1b118 25836
b383017d 25837@item EINTR
0ce1b118
CV
25838The call was interrupted by the user.
25839@end table
25840
fc320d37
SL
25841@end table
25842
0ce1b118
CV
25843@node write
25844@unnumberedsubsubsec write
25845@cindex write, file-i/o system call
25846
fc320d37
SL
25847@table @asis
25848@item Synopsis:
0ce1b118 25849@smallexample
0ce1b118 25850int write(int fd, const void *buf, unsigned int count);
fc320d37 25851@end smallexample
0ce1b118 25852
fc320d37
SL
25853@item Request:
25854@samp{Fwrite,@var{fd},@var{bufptr},@var{count}}
0ce1b118 25855
fc320d37 25856@item Return value:
0ce1b118
CV
25857On success, the number of bytes written are returned.
25858Zero indicates nothing was written. On error, -1
25859is returned.
25860
fc320d37 25861@item Errors:
0ce1b118
CV
25862
25863@table @code
b383017d 25864@item EBADF
fc320d37 25865@var{fd} is not a valid file descriptor or is not open for
0ce1b118
CV
25866writing.
25867
b383017d 25868@item EFAULT
fc320d37 25869@var{bufptr} is an invalid pointer value.
0ce1b118 25870
b383017d 25871@item EFBIG
0ce1b118 25872An attempt was made to write a file that exceeds the
db2e3e2e 25873host-specific maximum file size allowed.
0ce1b118 25874
b383017d 25875@item ENOSPC
0ce1b118
CV
25876No space on device to write the data.
25877
b383017d 25878@item EINTR
0ce1b118
CV
25879The call was interrupted by the user.
25880@end table
25881
fc320d37
SL
25882@end table
25883
0ce1b118
CV
25884@node lseek
25885@unnumberedsubsubsec lseek
25886@cindex lseek, file-i/o system call
25887
fc320d37
SL
25888@table @asis
25889@item Synopsis:
0ce1b118 25890@smallexample
0ce1b118 25891long lseek (int fd, long offset, int flag);
0ce1b118
CV
25892@end smallexample
25893
fc320d37
SL
25894@item Request:
25895@samp{Flseek,@var{fd},@var{offset},@var{flag}}
25896
25897@var{flag} is one of:
0ce1b118
CV
25898
25899@table @code
b383017d 25900@item SEEK_SET
fc320d37 25901The offset is set to @var{offset} bytes.
0ce1b118 25902
b383017d 25903@item SEEK_CUR
fc320d37 25904The offset is set to its current location plus @var{offset}
0ce1b118
CV
25905bytes.
25906
b383017d 25907@item SEEK_END
fc320d37 25908The offset is set to the size of the file plus @var{offset}
0ce1b118
CV
25909bytes.
25910@end table
25911
fc320d37 25912@item Return value:
0ce1b118
CV
25913On success, the resulting unsigned offset in bytes from
25914the beginning of the file is returned. Otherwise, a
25915value of -1 is returned.
25916
fc320d37 25917@item Errors:
0ce1b118
CV
25918
25919@table @code
b383017d 25920@item EBADF
fc320d37 25921@var{fd} is not a valid open file descriptor.
0ce1b118 25922
b383017d 25923@item ESPIPE
fc320d37 25924@var{fd} is associated with the @value{GDBN} console.
0ce1b118 25925
b383017d 25926@item EINVAL
fc320d37 25927@var{flag} is not a proper value.
0ce1b118 25928
b383017d 25929@item EINTR
0ce1b118
CV
25930The call was interrupted by the user.
25931@end table
25932
fc320d37
SL
25933@end table
25934
0ce1b118
CV
25935@node rename
25936@unnumberedsubsubsec rename
25937@cindex rename, file-i/o system call
25938
fc320d37
SL
25939@table @asis
25940@item Synopsis:
0ce1b118 25941@smallexample
0ce1b118 25942int rename(const char *oldpath, const char *newpath);
fc320d37 25943@end smallexample
0ce1b118 25944
fc320d37
SL
25945@item Request:
25946@samp{Frename,@var{oldpathptr}/@var{len},@var{newpathptr}/@var{len}}
0ce1b118 25947
fc320d37 25948@item Return value:
0ce1b118
CV
25949On success, zero is returned. On error, -1 is returned.
25950
fc320d37 25951@item Errors:
0ce1b118
CV
25952
25953@table @code
b383017d 25954@item EISDIR
fc320d37 25955@var{newpath} is an existing directory, but @var{oldpath} is not a
0ce1b118
CV
25956directory.
25957
b383017d 25958@item EEXIST
fc320d37 25959@var{newpath} is a non-empty directory.
0ce1b118 25960
b383017d 25961@item EBUSY
fc320d37 25962@var{oldpath} or @var{newpath} is a directory that is in use by some
0ce1b118
CV
25963process.
25964
b383017d 25965@item EINVAL
0ce1b118
CV
25966An attempt was made to make a directory a subdirectory
25967of itself.
25968
b383017d 25969@item ENOTDIR
fc320d37
SL
25970A component used as a directory in @var{oldpath} or new
25971path is not a directory. Or @var{oldpath} is a directory
25972and @var{newpath} exists but is not a directory.
0ce1b118 25973
b383017d 25974@item EFAULT
fc320d37 25975@var{oldpathptr} or @var{newpathptr} are invalid pointer values.
0ce1b118 25976
b383017d 25977@item EACCES
0ce1b118
CV
25978No access to the file or the path of the file.
25979
25980@item ENAMETOOLONG
b383017d 25981
fc320d37 25982@var{oldpath} or @var{newpath} was too long.
0ce1b118 25983
b383017d 25984@item ENOENT
fc320d37 25985A directory component in @var{oldpath} or @var{newpath} does not exist.
0ce1b118 25986
b383017d 25987@item EROFS
0ce1b118
CV
25988The file is on a read-only filesystem.
25989
b383017d 25990@item ENOSPC
0ce1b118
CV
25991The device containing the file has no room for the new
25992directory entry.
25993
b383017d 25994@item EINTR
0ce1b118
CV
25995The call was interrupted by the user.
25996@end table
25997
fc320d37
SL
25998@end table
25999
0ce1b118
CV
26000@node unlink
26001@unnumberedsubsubsec unlink
26002@cindex unlink, file-i/o system call
26003
fc320d37
SL
26004@table @asis
26005@item Synopsis:
0ce1b118 26006@smallexample
0ce1b118 26007int unlink(const char *pathname);
fc320d37 26008@end smallexample
0ce1b118 26009
fc320d37
SL
26010@item Request:
26011@samp{Funlink,@var{pathnameptr}/@var{len}}
0ce1b118 26012
fc320d37 26013@item Return value:
0ce1b118
CV
26014On success, zero is returned. On error, -1 is returned.
26015
fc320d37 26016@item Errors:
0ce1b118
CV
26017
26018@table @code
b383017d 26019@item EACCES
0ce1b118
CV
26020No access to the file or the path of the file.
26021
b383017d 26022@item EPERM
0ce1b118
CV
26023The system does not allow unlinking of directories.
26024
b383017d 26025@item EBUSY
fc320d37 26026The file @var{pathname} cannot be unlinked because it's
0ce1b118
CV
26027being used by another process.
26028
b383017d 26029@item EFAULT
fc320d37 26030@var{pathnameptr} is an invalid pointer value.
0ce1b118
CV
26031
26032@item ENAMETOOLONG
fc320d37 26033@var{pathname} was too long.
0ce1b118 26034
b383017d 26035@item ENOENT
fc320d37 26036A directory component in @var{pathname} does not exist.
0ce1b118 26037
b383017d 26038@item ENOTDIR
0ce1b118
CV
26039A component of the path is not a directory.
26040
b383017d 26041@item EROFS
0ce1b118
CV
26042The file is on a read-only filesystem.
26043
b383017d 26044@item EINTR
0ce1b118
CV
26045The call was interrupted by the user.
26046@end table
26047
fc320d37
SL
26048@end table
26049
0ce1b118
CV
26050@node stat/fstat
26051@unnumberedsubsubsec stat/fstat
26052@cindex fstat, file-i/o system call
26053@cindex stat, file-i/o system call
26054
fc320d37
SL
26055@table @asis
26056@item Synopsis:
0ce1b118 26057@smallexample
0ce1b118
CV
26058int stat(const char *pathname, struct stat *buf);
26059int fstat(int fd, struct stat *buf);
fc320d37 26060@end smallexample
0ce1b118 26061
fc320d37
SL
26062@item Request:
26063@samp{Fstat,@var{pathnameptr}/@var{len},@var{bufptr}}@*
26064@samp{Ffstat,@var{fd},@var{bufptr}}
0ce1b118 26065
fc320d37 26066@item Return value:
0ce1b118
CV
26067On success, zero is returned. On error, -1 is returned.
26068
fc320d37 26069@item Errors:
0ce1b118
CV
26070
26071@table @code
b383017d 26072@item EBADF
fc320d37 26073@var{fd} is not a valid open file.
0ce1b118 26074
b383017d 26075@item ENOENT
fc320d37 26076A directory component in @var{pathname} does not exist or the
0ce1b118
CV
26077path is an empty string.
26078
b383017d 26079@item ENOTDIR
0ce1b118
CV
26080A component of the path is not a directory.
26081
b383017d 26082@item EFAULT
fc320d37 26083@var{pathnameptr} is an invalid pointer value.
0ce1b118 26084
b383017d 26085@item EACCES
0ce1b118
CV
26086No access to the file or the path of the file.
26087
26088@item ENAMETOOLONG
fc320d37 26089@var{pathname} was too long.
0ce1b118 26090
b383017d 26091@item EINTR
0ce1b118
CV
26092The call was interrupted by the user.
26093@end table
26094
fc320d37
SL
26095@end table
26096
0ce1b118
CV
26097@node gettimeofday
26098@unnumberedsubsubsec gettimeofday
26099@cindex gettimeofday, file-i/o system call
26100
fc320d37
SL
26101@table @asis
26102@item Synopsis:
0ce1b118 26103@smallexample
0ce1b118 26104int gettimeofday(struct timeval *tv, void *tz);
fc320d37 26105@end smallexample
0ce1b118 26106
fc320d37
SL
26107@item Request:
26108@samp{Fgettimeofday,@var{tvptr},@var{tzptr}}
0ce1b118 26109
fc320d37 26110@item Return value:
0ce1b118
CV
26111On success, 0 is returned, -1 otherwise.
26112
fc320d37 26113@item Errors:
0ce1b118
CV
26114
26115@table @code
b383017d 26116@item EINVAL
fc320d37 26117@var{tz} is a non-NULL pointer.
0ce1b118 26118
b383017d 26119@item EFAULT
fc320d37
SL
26120@var{tvptr} and/or @var{tzptr} is an invalid pointer value.
26121@end table
26122
0ce1b118
CV
26123@end table
26124
26125@node isatty
26126@unnumberedsubsubsec isatty
26127@cindex isatty, file-i/o system call
26128
fc320d37
SL
26129@table @asis
26130@item Synopsis:
0ce1b118 26131@smallexample
0ce1b118 26132int isatty(int fd);
fc320d37 26133@end smallexample
0ce1b118 26134
fc320d37
SL
26135@item Request:
26136@samp{Fisatty,@var{fd}}
0ce1b118 26137
fc320d37
SL
26138@item Return value:
26139Returns 1 if @var{fd} refers to the @value{GDBN} console, 0 otherwise.
0ce1b118 26140
fc320d37 26141@item Errors:
0ce1b118
CV
26142
26143@table @code
b383017d 26144@item EINTR
0ce1b118
CV
26145The call was interrupted by the user.
26146@end table
26147
fc320d37
SL
26148@end table
26149
26150Note that the @code{isatty} call is treated as a special case: it returns
261511 to the target if the file descriptor is attached
26152to the @value{GDBN} console, 0 otherwise. Implementing through system calls
26153would require implementing @code{ioctl} and would be more complex than
26154needed.
26155
26156
0ce1b118
CV
26157@node system
26158@unnumberedsubsubsec system
26159@cindex system, file-i/o system call
26160
fc320d37
SL
26161@table @asis
26162@item Synopsis:
0ce1b118 26163@smallexample
0ce1b118 26164int system(const char *command);
fc320d37 26165@end smallexample
0ce1b118 26166
fc320d37
SL
26167@item Request:
26168@samp{Fsystem,@var{commandptr}/@var{len}}
0ce1b118 26169
fc320d37 26170@item Return value:
5600ea19
NS
26171If @var{len} is zero, the return value indicates whether a shell is
26172available. A zero return value indicates a shell is not available.
26173For non-zero @var{len}, the value returned is -1 on error and the
26174return status of the command otherwise. Only the exit status of the
26175command is returned, which is extracted from the host's @code{system}
26176return value by calling @code{WEXITSTATUS(retval)}. In case
26177@file{/bin/sh} could not be executed, 127 is returned.
0ce1b118 26178
fc320d37 26179@item Errors:
0ce1b118
CV
26180
26181@table @code
b383017d 26182@item EINTR
0ce1b118
CV
26183The call was interrupted by the user.
26184@end table
26185
fc320d37
SL
26186@end table
26187
26188@value{GDBN} takes over the full task of calling the necessary host calls
26189to perform the @code{system} call. The return value of @code{system} on
26190the host is simplified before it's returned
26191to the target. Any termination signal information from the child process
26192is discarded, and the return value consists
26193entirely of the exit status of the called command.
26194
26195Due to security concerns, the @code{system} call is by default refused
26196by @value{GDBN}. The user has to allow this call explicitly with the
26197@code{set remote system-call-allowed 1} command.
26198
26199@table @code
26200@item set remote system-call-allowed
26201@kindex set remote system-call-allowed
26202Control whether to allow the @code{system} calls in the File I/O
26203protocol for the remote target. The default is zero (disabled).
26204
26205@item show remote system-call-allowed
26206@kindex show remote system-call-allowed
26207Show whether the @code{system} calls are allowed in the File I/O
26208protocol.
26209@end table
26210
db2e3e2e
BW
26211@node Protocol-specific Representation of Datatypes
26212@subsection Protocol-specific Representation of Datatypes
26213@cindex protocol-specific representation of datatypes, in file-i/o protocol
0ce1b118
CV
26214
26215@menu
79a6e687
BW
26216* Integral Datatypes::
26217* Pointer Values::
26218* Memory Transfer::
0ce1b118
CV
26219* struct stat::
26220* struct timeval::
26221@end menu
26222
79a6e687
BW
26223@node Integral Datatypes
26224@unnumberedsubsubsec Integral Datatypes
0ce1b118
CV
26225@cindex integral datatypes, in file-i/o protocol
26226
fc320d37
SL
26227The integral datatypes used in the system calls are @code{int},
26228@code{unsigned int}, @code{long}, @code{unsigned long},
26229@code{mode_t}, and @code{time_t}.
0ce1b118 26230
fc320d37 26231@code{int}, @code{unsigned int}, @code{mode_t} and @code{time_t} are
0ce1b118
CV
26232implemented as 32 bit values in this protocol.
26233
fc320d37 26234@code{long} and @code{unsigned long} are implemented as 64 bit types.
b383017d 26235
0ce1b118
CV
26236@xref{Limits}, for corresponding MIN and MAX values (similar to those
26237in @file{limits.h}) to allow range checking on host and target.
26238
26239@code{time_t} datatypes are defined as seconds since the Epoch.
26240
26241All integral datatypes transferred as part of a memory read or write of a
26242structured datatype e.g.@: a @code{struct stat} have to be given in big endian
26243byte order.
26244
79a6e687
BW
26245@node Pointer Values
26246@unnumberedsubsubsec Pointer Values
0ce1b118
CV
26247@cindex pointer values, in file-i/o protocol
26248
26249Pointers to target data are transmitted as they are. An exception
26250is made for pointers to buffers for which the length isn't
26251transmitted as part of the function call, namely strings. Strings
26252are transmitted as a pointer/length pair, both as hex values, e.g.@:
26253
26254@smallexample
26255@code{1aaf/12}
26256@end smallexample
26257
26258@noindent
26259which is a pointer to data of length 18 bytes at position 0x1aaf.
26260The length is defined as the full string length in bytes, including
fc320d37
SL
26261the trailing null byte. For example, the string @code{"hello world"}
26262at address 0x123456 is transmitted as
0ce1b118
CV
26263
26264@smallexample
fc320d37 26265@code{123456/d}
0ce1b118
CV
26266@end smallexample
26267
79a6e687
BW
26268@node Memory Transfer
26269@unnumberedsubsubsec Memory Transfer
fc320d37
SL
26270@cindex memory transfer, in file-i/o protocol
26271
26272Structured data which is transferred using a memory read or write (for
db2e3e2e 26273example, a @code{struct stat}) is expected to be in a protocol-specific format
fc320d37
SL
26274with all scalar multibyte datatypes being big endian. Translation to
26275this representation needs to be done both by the target before the @code{F}
26276packet is sent, and by @value{GDBN} before
26277it transfers memory to the target. Transferred pointers to structured
26278data should point to the already-coerced data at any time.
0ce1b118 26279
0ce1b118
CV
26280
26281@node struct stat
26282@unnumberedsubsubsec struct stat
26283@cindex struct stat, in file-i/o protocol
26284
fc320d37
SL
26285The buffer of type @code{struct stat} used by the target and @value{GDBN}
26286is defined as follows:
0ce1b118
CV
26287
26288@smallexample
26289struct stat @{
26290 unsigned int st_dev; /* device */
26291 unsigned int st_ino; /* inode */
26292 mode_t st_mode; /* protection */
26293 unsigned int st_nlink; /* number of hard links */
26294 unsigned int st_uid; /* user ID of owner */
26295 unsigned int st_gid; /* group ID of owner */
26296 unsigned int st_rdev; /* device type (if inode device) */
26297 unsigned long st_size; /* total size, in bytes */
26298 unsigned long st_blksize; /* blocksize for filesystem I/O */
26299 unsigned long st_blocks; /* number of blocks allocated */
26300 time_t st_atime; /* time of last access */
26301 time_t st_mtime; /* time of last modification */
26302 time_t st_ctime; /* time of last change */
26303@};
26304@end smallexample
26305
fc320d37 26306The integral datatypes conform to the definitions given in the
79a6e687 26307appropriate section (see @ref{Integral Datatypes}, for details) so this
0ce1b118
CV
26308structure is of size 64 bytes.
26309
26310The values of several fields have a restricted meaning and/or
26311range of values.
26312
fc320d37 26313@table @code
0ce1b118 26314
fc320d37
SL
26315@item st_dev
26316A value of 0 represents a file, 1 the console.
0ce1b118 26317
fc320d37
SL
26318@item st_ino
26319No valid meaning for the target. Transmitted unchanged.
0ce1b118 26320
fc320d37
SL
26321@item st_mode
26322Valid mode bits are described in @ref{Constants}. Any other
26323bits have currently no meaning for the target.
0ce1b118 26324
fc320d37
SL
26325@item st_uid
26326@itemx st_gid
26327@itemx st_rdev
26328No valid meaning for the target. Transmitted unchanged.
0ce1b118 26329
fc320d37
SL
26330@item st_atime
26331@itemx st_mtime
26332@itemx st_ctime
26333These values have a host and file system dependent
26334accuracy. Especially on Windows hosts, the file system may not
26335support exact timing values.
26336@end table
0ce1b118 26337
fc320d37
SL
26338The target gets a @code{struct stat} of the above representation and is
26339responsible for coercing it to the target representation before
0ce1b118
CV
26340continuing.
26341
fc320d37
SL
26342Note that due to size differences between the host, target, and protocol
26343representations of @code{struct stat} members, these members could eventually
0ce1b118
CV
26344get truncated on the target.
26345
26346@node struct timeval
26347@unnumberedsubsubsec struct timeval
26348@cindex struct timeval, in file-i/o protocol
26349
fc320d37 26350The buffer of type @code{struct timeval} used by the File-I/O protocol
0ce1b118
CV
26351is defined as follows:
26352
26353@smallexample
b383017d 26354struct timeval @{
0ce1b118
CV
26355 time_t tv_sec; /* second */
26356 long tv_usec; /* microsecond */
26357@};
26358@end smallexample
26359
fc320d37 26360The integral datatypes conform to the definitions given in the
79a6e687 26361appropriate section (see @ref{Integral Datatypes}, for details) so this
0ce1b118
CV
26362structure is of size 8 bytes.
26363
26364@node Constants
26365@subsection Constants
26366@cindex constants, in file-i/o protocol
26367
26368The following values are used for the constants inside of the
fc320d37 26369protocol. @value{GDBN} and target are responsible for translating these
0ce1b118
CV
26370values before and after the call as needed.
26371
26372@menu
79a6e687
BW
26373* Open Flags::
26374* mode_t Values::
26375* Errno Values::
26376* Lseek Flags::
0ce1b118
CV
26377* Limits::
26378@end menu
26379
79a6e687
BW
26380@node Open Flags
26381@unnumberedsubsubsec Open Flags
0ce1b118
CV
26382@cindex open flags, in file-i/o protocol
26383
26384All values are given in hexadecimal representation.
26385
26386@smallexample
26387 O_RDONLY 0x0
26388 O_WRONLY 0x1
26389 O_RDWR 0x2
26390 O_APPEND 0x8
26391 O_CREAT 0x200
26392 O_TRUNC 0x400
26393 O_EXCL 0x800
26394@end smallexample
26395
79a6e687
BW
26396@node mode_t Values
26397@unnumberedsubsubsec mode_t Values
0ce1b118
CV
26398@cindex mode_t values, in file-i/o protocol
26399
26400All values are given in octal representation.
26401
26402@smallexample
26403 S_IFREG 0100000
26404 S_IFDIR 040000
26405 S_IRUSR 0400
26406 S_IWUSR 0200
26407 S_IXUSR 0100
26408 S_IRGRP 040
26409 S_IWGRP 020
26410 S_IXGRP 010
26411 S_IROTH 04
26412 S_IWOTH 02
26413 S_IXOTH 01
26414@end smallexample
26415
79a6e687
BW
26416@node Errno Values
26417@unnumberedsubsubsec Errno Values
0ce1b118
CV
26418@cindex errno values, in file-i/o protocol
26419
26420All values are given in decimal representation.
26421
26422@smallexample
26423 EPERM 1
26424 ENOENT 2
26425 EINTR 4
26426 EBADF 9
26427 EACCES 13
26428 EFAULT 14
26429 EBUSY 16
26430 EEXIST 17
26431 ENODEV 19
26432 ENOTDIR 20
26433 EISDIR 21
26434 EINVAL 22
26435 ENFILE 23
26436 EMFILE 24
26437 EFBIG 27
26438 ENOSPC 28
26439 ESPIPE 29
26440 EROFS 30
26441 ENAMETOOLONG 91
26442 EUNKNOWN 9999
26443@end smallexample
26444
fc320d37 26445 @code{EUNKNOWN} is used as a fallback error value if a host system returns
0ce1b118
CV
26446 any error value not in the list of supported error numbers.
26447
79a6e687
BW
26448@node Lseek Flags
26449@unnumberedsubsubsec Lseek Flags
0ce1b118
CV
26450@cindex lseek flags, in file-i/o protocol
26451
26452@smallexample
26453 SEEK_SET 0
26454 SEEK_CUR 1
26455 SEEK_END 2
26456@end smallexample
26457
26458@node Limits
26459@unnumberedsubsubsec Limits
26460@cindex limits, in file-i/o protocol
26461
26462All values are given in decimal representation.
26463
26464@smallexample
26465 INT_MIN -2147483648
26466 INT_MAX 2147483647
26467 UINT_MAX 4294967295
26468 LONG_MIN -9223372036854775808
26469 LONG_MAX 9223372036854775807
26470 ULONG_MAX 18446744073709551615
26471@end smallexample
26472
26473@node File-I/O Examples
26474@subsection File-I/O Examples
26475@cindex file-i/o examples
26476
26477Example sequence of a write call, file descriptor 3, buffer is at target
26478address 0x1234, 6 bytes should be written:
26479
26480@smallexample
26481<- @code{Fwrite,3,1234,6}
26482@emph{request memory read from target}
26483-> @code{m1234,6}
26484<- XXXXXX
26485@emph{return "6 bytes written"}
26486-> @code{F6}
26487@end smallexample
26488
26489Example sequence of a read call, file descriptor 3, buffer is at target
26490address 0x1234, 6 bytes should be read:
26491
26492@smallexample
26493<- @code{Fread,3,1234,6}
26494@emph{request memory write to target}
26495-> @code{X1234,6:XXXXXX}
26496@emph{return "6 bytes read"}
26497-> @code{F6}
26498@end smallexample
26499
26500Example sequence of a read call, call fails on the host due to invalid
fc320d37 26501file descriptor (@code{EBADF}):
0ce1b118
CV
26502
26503@smallexample
26504<- @code{Fread,3,1234,6}
26505-> @code{F-1,9}
26506@end smallexample
26507
c8aa23ab 26508Example sequence of a read call, user presses @kbd{Ctrl-c} before syscall on
0ce1b118
CV
26509host is called:
26510
26511@smallexample
26512<- @code{Fread,3,1234,6}
26513-> @code{F-1,4,C}
26514<- @code{T02}
26515@end smallexample
26516
c8aa23ab 26517Example sequence of a read call, user presses @kbd{Ctrl-c} after syscall on
0ce1b118
CV
26518host is called:
26519
26520@smallexample
26521<- @code{Fread,3,1234,6}
26522-> @code{X1234,6:XXXXXX}
26523<- @code{T02}
26524@end smallexample
26525
cfa9d6d9
DJ
26526@node Library List Format
26527@section Library List Format
26528@cindex library list format, remote protocol
26529
26530On some platforms, a dynamic loader (e.g.@: @file{ld.so}) runs in the
26531same process as your application to manage libraries. In this case,
26532@value{GDBN} can use the loader's symbol table and normal memory
26533operations to maintain a list of shared libraries. On other
26534platforms, the operating system manages loaded libraries.
26535@value{GDBN} can not retrieve the list of currently loaded libraries
26536through memory operations, so it uses the @samp{qXfer:libraries:read}
26537packet (@pxref{qXfer library list read}) instead. The remote stub
26538queries the target's operating system and reports which libraries
26539are loaded.
26540
26541The @samp{qXfer:libraries:read} packet returns an XML document which
26542lists loaded libraries and their offsets. Each library has an
1fddbabb
PA
26543associated name and one or more segment or section base addresses,
26544which report where the library was loaded in memory.
26545
26546For the common case of libraries that are fully linked binaries, the
26547library should have a list of segments. If the target supports
26548dynamic linking of a relocatable object file, its library XML element
26549should instead include a list of allocated sections. The segment or
26550section bases are start addresses, not relocation offsets; they do not
26551depend on the library's link-time base addresses.
cfa9d6d9 26552
9cceb671
DJ
26553@value{GDBN} must be linked with the Expat library to support XML
26554library lists. @xref{Expat}.
26555
cfa9d6d9
DJ
26556A simple memory map, with one loaded library relocated by a single
26557offset, looks like this:
26558
26559@smallexample
26560<library-list>
26561 <library name="/lib/libc.so.6">
26562 <segment address="0x10000000"/>
26563 </library>
26564</library-list>
26565@end smallexample
26566
1fddbabb
PA
26567Another simple memory map, with one loaded library with three
26568allocated sections (.text, .data, .bss), looks like this:
26569
26570@smallexample
26571<library-list>
26572 <library name="sharedlib.o">
26573 <section address="0x10000000"/>
26574 <section address="0x20000000"/>
26575 <section address="0x30000000"/>
26576 </library>
26577</library-list>
26578@end smallexample
26579
cfa9d6d9
DJ
26580The format of a library list is described by this DTD:
26581
26582@smallexample
26583<!-- library-list: Root element with versioning -->
26584<!ELEMENT library-list (library)*>
26585<!ATTLIST library-list version CDATA #FIXED "1.0">
1fddbabb 26586<!ELEMENT library (segment*, section*)>
cfa9d6d9
DJ
26587<!ATTLIST library name CDATA #REQUIRED>
26588<!ELEMENT segment EMPTY>
26589<!ATTLIST segment address CDATA #REQUIRED>
1fddbabb
PA
26590<!ELEMENT section EMPTY>
26591<!ATTLIST section address CDATA #REQUIRED>
cfa9d6d9
DJ
26592@end smallexample
26593
1fddbabb
PA
26594In addition, segments and section descriptors cannot be mixed within a
26595single library element, and you must supply at least one segment or
26596section for each library.
26597
79a6e687
BW
26598@node Memory Map Format
26599@section Memory Map Format
68437a39
DJ
26600@cindex memory map format
26601
26602To be able to write into flash memory, @value{GDBN} needs to obtain a
26603memory map from the target. This section describes the format of the
26604memory map.
26605
26606The memory map is obtained using the @samp{qXfer:memory-map:read}
26607(@pxref{qXfer memory map read}) packet and is an XML document that
9cceb671
DJ
26608lists memory regions.
26609
26610@value{GDBN} must be linked with the Expat library to support XML
26611memory maps. @xref{Expat}.
26612
26613The top-level structure of the document is shown below:
68437a39
DJ
26614
26615@smallexample
26616<?xml version="1.0"?>
26617<!DOCTYPE memory-map
26618 PUBLIC "+//IDN gnu.org//DTD GDB Memory Map V1.0//EN"
26619 "http://sourceware.org/gdb/gdb-memory-map.dtd">
26620<memory-map>
26621 region...
26622</memory-map>
26623@end smallexample
26624
26625Each region can be either:
26626
26627@itemize
26628
26629@item
26630A region of RAM starting at @var{addr} and extending for @var{length}
26631bytes from there:
26632
26633@smallexample
26634<memory type="ram" start="@var{addr}" length="@var{length}"/>
26635@end smallexample
26636
26637
26638@item
26639A region of read-only memory:
26640
26641@smallexample
26642<memory type="rom" start="@var{addr}" length="@var{length}"/>
26643@end smallexample
26644
26645
26646@item
26647A region of flash memory, with erasure blocks @var{blocksize}
26648bytes in length:
26649
26650@smallexample
26651<memory type="flash" start="@var{addr}" length="@var{length}">
26652 <property name="blocksize">@var{blocksize}</property>
26653</memory>
26654@end smallexample
26655
26656@end itemize
26657
26658Regions must not overlap. @value{GDBN} assumes that areas of memory not covered
26659by the memory map are RAM, and uses the ordinary @samp{M} and @samp{X}
26660packets to write to addresses in such ranges.
26661
26662The formal DTD for memory map format is given below:
26663
26664@smallexample
26665<!-- ................................................... -->
26666<!-- Memory Map XML DTD ................................ -->
26667<!-- File: memory-map.dtd .............................. -->
26668<!-- .................................... .............. -->
26669<!-- memory-map.dtd -->
26670<!-- memory-map: Root element with versioning -->
26671<!ELEMENT memory-map (memory | property)>
26672<!ATTLIST memory-map version CDATA #FIXED "1.0.0">
26673<!ELEMENT memory (property)>
26674<!-- memory: Specifies a memory region,
26675 and its type, or device. -->
26676<!ATTLIST memory type CDATA #REQUIRED
26677 start CDATA #REQUIRED
26678 length CDATA #REQUIRED
26679 device CDATA #IMPLIED>
26680<!-- property: Generic attribute tag -->
26681<!ELEMENT property (#PCDATA | property)*>
26682<!ATTLIST property name CDATA #REQUIRED>
26683@end smallexample
26684
f418dd93
DJ
26685@include agentexpr.texi
26686
23181151
DJ
26687@node Target Descriptions
26688@appendix Target Descriptions
26689@cindex target descriptions
26690
26691@strong{Warning:} target descriptions are still under active development,
26692and the contents and format may change between @value{GDBN} releases.
26693The format is expected to stabilize in the future.
26694
26695One of the challenges of using @value{GDBN} to debug embedded systems
26696is that there are so many minor variants of each processor
26697architecture in use. It is common practice for vendors to start with
26698a standard processor core --- ARM, PowerPC, or MIPS, for example ---
26699and then make changes to adapt it to a particular market niche. Some
26700architectures have hundreds of variants, available from dozens of
26701vendors. This leads to a number of problems:
26702
26703@itemize @bullet
26704@item
26705With so many different customized processors, it is difficult for
26706the @value{GDBN} maintainers to keep up with the changes.
26707@item
26708Since individual variants may have short lifetimes or limited
26709audiences, it may not be worthwhile to carry information about every
26710variant in the @value{GDBN} source tree.
26711@item
26712When @value{GDBN} does support the architecture of the embedded system
26713at hand, the task of finding the correct architecture name to give the
26714@command{set architecture} command can be error-prone.
26715@end itemize
26716
26717To address these problems, the @value{GDBN} remote protocol allows a
26718target system to not only identify itself to @value{GDBN}, but to
26719actually describe its own features. This lets @value{GDBN} support
26720processor variants it has never seen before --- to the extent that the
26721descriptions are accurate, and that @value{GDBN} understands them.
26722
9cceb671
DJ
26723@value{GDBN} must be linked with the Expat library to support XML
26724target descriptions. @xref{Expat}.
123dc839 26725
23181151
DJ
26726@menu
26727* Retrieving Descriptions:: How descriptions are fetched from a target.
26728* Target Description Format:: The contents of a target description.
123dc839
DJ
26729* Predefined Target Types:: Standard types available for target
26730 descriptions.
26731* Standard Target Features:: Features @value{GDBN} knows about.
23181151
DJ
26732@end menu
26733
26734@node Retrieving Descriptions
26735@section Retrieving Descriptions
26736
26737Target descriptions can be read from the target automatically, or
26738specified by the user manually. The default behavior is to read the
26739description from the target. @value{GDBN} retrieves it via the remote
26740protocol using @samp{qXfer} requests (@pxref{General Query Packets,
26741qXfer}). The @var{annex} in the @samp{qXfer} packet will be
26742@samp{target.xml}. The contents of the @samp{target.xml} annex are an
26743XML document, of the form described in @ref{Target Description
26744Format}.
26745
26746Alternatively, you can specify a file to read for the target description.
26747If a file is set, the target will not be queried. The commands to
26748specify a file are:
26749
26750@table @code
26751@cindex set tdesc filename
26752@item set tdesc filename @var{path}
26753Read the target description from @var{path}.
26754
26755@cindex unset tdesc filename
26756@item unset tdesc filename
26757Do not read the XML target description from a file. @value{GDBN}
26758will use the description supplied by the current target.
26759
26760@cindex show tdesc filename
26761@item show tdesc filename
26762Show the filename to read for a target description, if any.
26763@end table
26764
26765
26766@node Target Description Format
26767@section Target Description Format
26768@cindex target descriptions, XML format
26769
26770A target description annex is an @uref{http://www.w3.org/XML/, XML}
26771document which complies with the Document Type Definition provided in
26772the @value{GDBN} sources in @file{gdb/features/gdb-target.dtd}. This
26773means you can use generally available tools like @command{xmllint} to
26774check that your feature descriptions are well-formed and valid.
26775However, to help people unfamiliar with XML write descriptions for
26776their targets, we also describe the grammar here.
26777
123dc839
DJ
26778Target descriptions can identify the architecture of the remote target
26779and (for some architectures) provide information about custom register
26780sets. @value{GDBN} can use this information to autoconfigure for your
26781target, or to warn you if you connect to an unsupported target.
23181151
DJ
26782
26783Here is a simple target description:
26784
123dc839 26785@smallexample
1780a0ed 26786<target version="1.0">
23181151
DJ
26787 <architecture>i386:x86-64</architecture>
26788</target>
123dc839 26789@end smallexample
23181151
DJ
26790
26791@noindent
26792This minimal description only says that the target uses
26793the x86-64 architecture.
26794
123dc839
DJ
26795A target description has the following overall form, with [ ] marking
26796optional elements and @dots{} marking repeatable elements. The elements
26797are explained further below.
23181151 26798
123dc839 26799@smallexample
23181151
DJ
26800<?xml version="1.0"?>
26801<!DOCTYPE target SYSTEM "gdb-target.dtd">
1780a0ed 26802<target version="1.0">
123dc839
DJ
26803 @r{[}@var{architecture}@r{]}
26804 @r{[}@var{feature}@dots{}@r{]}
23181151 26805</target>
123dc839 26806@end smallexample
23181151
DJ
26807
26808@noindent
26809The description is generally insensitive to whitespace and line
26810breaks, under the usual common-sense rules. The XML version
26811declaration and document type declaration can generally be omitted
26812(@value{GDBN} does not require them), but specifying them may be
1780a0ed
DJ
26813useful for XML validation tools. The @samp{version} attribute for
26814@samp{<target>} may also be omitted, but we recommend
26815including it; if future versions of @value{GDBN} use an incompatible
26816revision of @file{gdb-target.dtd}, they will detect and report
26817the version mismatch.
23181151 26818
108546a0
DJ
26819@subsection Inclusion
26820@cindex target descriptions, inclusion
26821@cindex XInclude
26822@ifnotinfo
26823@cindex <xi:include>
26824@end ifnotinfo
26825
26826It can sometimes be valuable to split a target description up into
26827several different annexes, either for organizational purposes, or to
26828share files between different possible target descriptions. You can
26829divide a description into multiple files by replacing any element of
26830the target description with an inclusion directive of the form:
26831
123dc839 26832@smallexample
108546a0 26833<xi:include href="@var{document}"/>
123dc839 26834@end smallexample
108546a0
DJ
26835
26836@noindent
26837When @value{GDBN} encounters an element of this form, it will retrieve
26838the named XML @var{document}, and replace the inclusion directive with
26839the contents of that document. If the current description was read
26840using @samp{qXfer}, then so will be the included document;
26841@var{document} will be interpreted as the name of an annex. If the
26842current description was read from a file, @value{GDBN} will look for
26843@var{document} as a file in the same directory where it found the
26844original description.
26845
123dc839
DJ
26846@subsection Architecture
26847@cindex <architecture>
26848
26849An @samp{<architecture>} element has this form:
26850
26851@smallexample
26852 <architecture>@var{arch}</architecture>
26853@end smallexample
26854
26855@var{arch} is an architecture name from the same selection
26856accepted by @code{set architecture} (@pxref{Targets, ,Specifying a
26857Debugging Target}).
26858
26859@subsection Features
26860@cindex <feature>
26861
26862Each @samp{<feature>} describes some logical portion of the target
26863system. Features are currently used to describe available CPU
26864registers and the types of their contents. A @samp{<feature>} element
26865has this form:
26866
26867@smallexample
26868<feature name="@var{name}">
26869 @r{[}@var{type}@dots{}@r{]}
26870 @var{reg}@dots{}
26871</feature>
26872@end smallexample
26873
26874@noindent
26875Each feature's name should be unique within the description. The name
26876of a feature does not matter unless @value{GDBN} has some special
26877knowledge of the contents of that feature; if it does, the feature
26878should have its standard name. @xref{Standard Target Features}.
26879
26880@subsection Types
26881
26882Any register's value is a collection of bits which @value{GDBN} must
26883interpret. The default interpretation is a two's complement integer,
26884but other types can be requested by name in the register description.
26885Some predefined types are provided by @value{GDBN} (@pxref{Predefined
26886Target Types}), and the description can define additional composite types.
26887
26888Each type element must have an @samp{id} attribute, which gives
26889a unique (within the containing @samp{<feature>}) name to the type.
26890Types must be defined before they are used.
26891
26892@cindex <vector>
26893Some targets offer vector registers, which can be treated as arrays
26894of scalar elements. These types are written as @samp{<vector>} elements,
26895specifying the array element type, @var{type}, and the number of elements,
26896@var{count}:
26897
26898@smallexample
26899<vector id="@var{id}" type="@var{type}" count="@var{count}"/>
26900@end smallexample
26901
26902@cindex <union>
26903If a register's value is usefully viewed in multiple ways, define it
26904with a union type containing the useful representations. The
26905@samp{<union>} element contains one or more @samp{<field>} elements,
26906each of which has a @var{name} and a @var{type}:
26907
26908@smallexample
26909<union id="@var{id}">
26910 <field name="@var{name}" type="@var{type}"/>
26911 @dots{}
26912</union>
26913@end smallexample
26914
26915@subsection Registers
26916@cindex <reg>
26917
26918Each register is represented as an element with this form:
26919
26920@smallexample
26921<reg name="@var{name}"
26922 bitsize="@var{size}"
26923 @r{[}regnum="@var{num}"@r{]}
26924 @r{[}save-restore="@var{save-restore}"@r{]}
26925 @r{[}type="@var{type}"@r{]}
26926 @r{[}group="@var{group}"@r{]}/>
26927@end smallexample
26928
26929@noindent
26930The components are as follows:
26931
26932@table @var
26933
26934@item name
26935The register's name; it must be unique within the target description.
26936
26937@item bitsize
26938The register's size, in bits.
26939
26940@item regnum
26941The register's number. If omitted, a register's number is one greater
26942than that of the previous register (either in the current feature or in
26943a preceeding feature); the first register in the target description
26944defaults to zero. This register number is used to read or write
26945the register; e.g.@: it is used in the remote @code{p} and @code{P}
26946packets, and registers appear in the @code{g} and @code{G} packets
26947in order of increasing register number.
26948
26949@item save-restore
26950Whether the register should be preserved across inferior function
26951calls; this must be either @code{yes} or @code{no}. The default is
26952@code{yes}, which is appropriate for most registers except for
26953some system control registers; this is not related to the target's
26954ABI.
26955
26956@item type
26957The type of the register. @var{type} may be a predefined type, a type
26958defined in the current feature, or one of the special types @code{int}
26959and @code{float}. @code{int} is an integer type of the correct size
26960for @var{bitsize}, and @code{float} is a floating point type (in the
26961architecture's normal floating point format) of the correct size for
26962@var{bitsize}. The default is @code{int}.
26963
26964@item group
26965The register group to which this register belongs. @var{group} must
26966be either @code{general}, @code{float}, or @code{vector}. If no
26967@var{group} is specified, @value{GDBN} will not display the register
26968in @code{info registers}.
26969
26970@end table
26971
26972@node Predefined Target Types
26973@section Predefined Target Types
26974@cindex target descriptions, predefined types
26975
26976Type definitions in the self-description can build up composite types
26977from basic building blocks, but can not define fundamental types. Instead,
26978standard identifiers are provided by @value{GDBN} for the fundamental
26979types. The currently supported types are:
26980
26981@table @code
26982
26983@item int8
26984@itemx int16
26985@itemx int32
26986@itemx int64
7cc46491 26987@itemx int128
123dc839
DJ
26988Signed integer types holding the specified number of bits.
26989
26990@item uint8
26991@itemx uint16
26992@itemx uint32
26993@itemx uint64
7cc46491 26994@itemx uint128
123dc839
DJ
26995Unsigned integer types holding the specified number of bits.
26996
26997@item code_ptr
26998@itemx data_ptr
26999Pointers to unspecified code and data. The program counter and
27000any dedicated return address register may be marked as code
27001pointers; printing a code pointer converts it into a symbolic
27002address. The stack pointer and any dedicated address registers
27003may be marked as data pointers.
27004
6e3bbd1a
PB
27005@item ieee_single
27006Single precision IEEE floating point.
27007
27008@item ieee_double
27009Double precision IEEE floating point.
27010
123dc839
DJ
27011@item arm_fpa_ext
27012The 12-byte extended precision format used by ARM FPA registers.
27013
27014@end table
27015
27016@node Standard Target Features
27017@section Standard Target Features
27018@cindex target descriptions, standard features
27019
27020A target description must contain either no registers or all the
27021target's registers. If the description contains no registers, then
27022@value{GDBN} will assume a default register layout, selected based on
27023the architecture. If the description contains any registers, the
27024default layout will not be used; the standard registers must be
27025described in the target description, in such a way that @value{GDBN}
27026can recognize them.
27027
27028This is accomplished by giving specific names to feature elements
27029which contain standard registers. @value{GDBN} will look for features
27030with those names and verify that they contain the expected registers;
27031if any known feature is missing required registers, or if any required
27032feature is missing, @value{GDBN} will reject the target
27033description. You can add additional registers to any of the
27034standard features --- @value{GDBN} will display them just as if
27035they were added to an unrecognized feature.
27036
27037This section lists the known features and their expected contents.
27038Sample XML documents for these features are included in the
27039@value{GDBN} source tree, in the directory @file{gdb/features}.
27040
27041Names recognized by @value{GDBN} should include the name of the
27042company or organization which selected the name, and the overall
27043architecture to which the feature applies; so e.g.@: the feature
27044containing ARM core registers is named @samp{org.gnu.gdb.arm.core}.
27045
ff6f572f
DJ
27046The names of registers are not case sensitive for the purpose
27047of recognizing standard features, but @value{GDBN} will only display
27048registers using the capitalization used in the description.
27049
e9c17194
VP
27050@menu
27051* ARM Features::
1e26b4f8 27052* MIPS Features::
e9c17194 27053* M68K Features::
1e26b4f8 27054* PowerPC Features::
e9c17194
VP
27055@end menu
27056
27057
27058@node ARM Features
123dc839
DJ
27059@subsection ARM Features
27060@cindex target descriptions, ARM features
27061
27062The @samp{org.gnu.gdb.arm.core} feature is required for ARM targets.
27063It should contain registers @samp{r0} through @samp{r13}, @samp{sp},
27064@samp{lr}, @samp{pc}, and @samp{cpsr}.
27065
27066The @samp{org.gnu.gdb.arm.fpa} feature is optional. If present, it
27067should contain registers @samp{f0} through @samp{f7} and @samp{fps}.
27068
ff6f572f
DJ
27069The @samp{org.gnu.gdb.xscale.iwmmxt} feature is optional. If present,
27070it should contain at least registers @samp{wR0} through @samp{wR15} and
27071@samp{wCGR0} through @samp{wCGR3}. The @samp{wCID}, @samp{wCon},
27072@samp{wCSSF}, and @samp{wCASF} registers are optional.
23181151 27073
1e26b4f8 27074@node MIPS Features
f8b73d13
DJ
27075@subsection MIPS Features
27076@cindex target descriptions, MIPS features
27077
27078The @samp{org.gnu.gdb.mips.cpu} feature is required for MIPS targets.
27079It should contain registers @samp{r0} through @samp{r31}, @samp{lo},
27080@samp{hi}, and @samp{pc}. They may be 32-bit or 64-bit depending
27081on the target.
27082
27083The @samp{org.gnu.gdb.mips.cp0} feature is also required. It should
27084contain at least the @samp{status}, @samp{badvaddr}, and @samp{cause}
27085registers. They may be 32-bit or 64-bit depending on the target.
27086
27087The @samp{org.gnu.gdb.mips.fpu} feature is currently required, though
27088it may be optional in a future version of @value{GDBN}. It should
27089contain registers @samp{f0} through @samp{f31}, @samp{fcsr}, and
27090@samp{fir}. They may be 32-bit or 64-bit depending on the target.
27091
822b6570
DJ
27092The @samp{org.gnu.gdb.mips.linux} feature is optional. It should
27093contain a single register, @samp{restart}, which is used by the
27094Linux kernel to control restartable syscalls.
27095
e9c17194
VP
27096@node M68K Features
27097@subsection M68K Features
27098@cindex target descriptions, M68K features
27099
27100@table @code
27101@item @samp{org.gnu.gdb.m68k.core}
27102@itemx @samp{org.gnu.gdb.coldfire.core}
27103@itemx @samp{org.gnu.gdb.fido.core}
27104One of those features must be always present.
27105The feature that is present determines which flavor of m86k is
27106used. The feature that is present should contain registers
27107@samp{d0} through @samp{d7}, @samp{a0} through @samp{a5}, @samp{fp},
27108@samp{sp}, @samp{ps} and @samp{pc}.
27109
27110@item @samp{org.gnu.gdb.coldfire.fp}
27111This feature is optional. If present, it should contain registers
27112@samp{fp0} through @samp{fp7}, @samp{fpcontrol}, @samp{fpstatus} and
27113@samp{fpiaddr}.
27114@end table
27115
1e26b4f8 27116@node PowerPC Features
7cc46491
DJ
27117@subsection PowerPC Features
27118@cindex target descriptions, PowerPC features
27119
27120The @samp{org.gnu.gdb.power.core} feature is required for PowerPC
27121targets. It should contain registers @samp{r0} through @samp{r31},
27122@samp{pc}, @samp{msr}, @samp{cr}, @samp{lr}, @samp{ctr}, and
27123@samp{xer}. They may be 32-bit or 64-bit depending on the target.
27124
27125The @samp{org.gnu.gdb.power.fpu} feature is optional. It should
27126contain registers @samp{f0} through @samp{f31} and @samp{fpscr}.
27127
27128The @samp{org.gnu.gdb.power.altivec} feature is optional. It should
27129contain registers @samp{vr0} through @samp{vr31}, @samp{vscr},
27130and @samp{vrsave}.
27131
27132The @samp{org.gnu.gdb.power.spe} feature is optional. It should
27133contain registers @samp{ev0h} through @samp{ev31h}, @samp{acc}, and
27134@samp{spefscr}. SPE targets should provide 32-bit registers in
27135@samp{org.gnu.gdb.power.core} and provide the upper halves in
27136@samp{ev0h} through @samp{ev31h}. @value{GDBN} will combine
27137these to present registers @samp{ev0} through @samp{ev31} to the
27138user.
27139
aab4e0ec 27140@include gpl.texi
eb12ee30 27141
2154891a 27142@raisesections
6826cf00 27143@include fdl.texi
2154891a 27144@lowersections
6826cf00 27145
6d2ebf8b 27146@node Index
c906108c
SS
27147@unnumbered Index
27148
27149@printindex cp
27150
27151@tex
27152% I think something like @colophon should be in texinfo. In the
27153% meantime:
27154\long\def\colophon{\hbox to0pt{}\vfill
27155\centerline{The body of this manual is set in}
27156\centerline{\fontname\tenrm,}
27157\centerline{with headings in {\bf\fontname\tenbf}}
27158\centerline{and examples in {\tt\fontname\tentt}.}
27159\centerline{{\it\fontname\tenit\/},}
27160\centerline{{\bf\fontname\tenbf}, and}
27161\centerline{{\sl\fontname\tensl\/}}
27162\centerline{are used for emphasis.}\vfill}
27163\page\colophon
27164% Blame: doc@cygnus.com, 1991.
27165@end tex
27166
c906108c 27167@bye