]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/dwarf2read.c
PR symtab/18258
[thirdparty/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
32d0add0 3 Copyright (C) 1994-2015 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270
KS
55#include "typeprint.h"
56#include "jv-lang.h"
ccefe4c4 57#include "psympriv.h"
53ce3c39 58#include <sys/stat.h>
96d19272 59#include "completer.h"
34eaf542 60#include "vec.h"
98bfdba5 61#include "c-lang.h"
a766d390 62#include "go-lang.h"
98bfdba5 63#include "valprint.h"
3019eac3 64#include "gdbcore.h" /* for gnutarget */
156942c7 65#include "gdb/gdb-index.h"
60d5a603 66#include <ctype.h>
cbb099e8 67#include "gdb_bfd.h"
4357ac6c 68#include "f-lang.h"
05cba821 69#include "source.h"
614c279d 70#include "filestuff.h"
dc294be5 71#include "build-id.h"
4c2df51b 72
c906108c 73#include <fcntl.h>
c906108c 74#include <sys/types.h>
d8151005 75
34eaf542
TT
76typedef struct symbol *symbolp;
77DEF_VEC_P (symbolp);
78
73be47f5
DE
79/* When == 1, print basic high level tracing messages.
80 When > 1, be more verbose.
b4f54984
DE
81 This is in contrast to the low level DIE reading of dwarf_die_debug. */
82static unsigned int dwarf_read_debug = 0;
45cfd468 83
d97bc12b 84/* When non-zero, dump DIEs after they are read in. */
b4f54984 85static unsigned int dwarf_die_debug = 0;
d97bc12b 86
900e11f9
JK
87/* When non-zero, cross-check physname against demangler. */
88static int check_physname = 0;
89
481860b3 90/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 91static int use_deprecated_index_sections = 0;
481860b3 92
6502dd73
DJ
93static const struct objfile_data *dwarf2_objfile_data_key;
94
f1e6e072
TT
95/* The "aclass" indices for various kinds of computed DWARF symbols. */
96
97static int dwarf2_locexpr_index;
98static int dwarf2_loclist_index;
99static int dwarf2_locexpr_block_index;
100static int dwarf2_loclist_block_index;
101
73869dc2
DE
102/* A descriptor for dwarf sections.
103
104 S.ASECTION, SIZE are typically initialized when the objfile is first
105 scanned. BUFFER, READIN are filled in later when the section is read.
106 If the section contained compressed data then SIZE is updated to record
107 the uncompressed size of the section.
108
109 DWP file format V2 introduces a wrinkle that is easiest to handle by
110 creating the concept of virtual sections contained within a real section.
111 In DWP V2 the sections of the input DWO files are concatenated together
112 into one section, but section offsets are kept relative to the original
113 input section.
114 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
115 the real section this "virtual" section is contained in, and BUFFER,SIZE
116 describe the virtual section. */
117
dce234bc
PP
118struct dwarf2_section_info
119{
73869dc2
DE
120 union
121 {
e5aa3347 122 /* If this is a real section, the bfd section. */
73869dc2
DE
123 asection *asection;
124 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 125 section. */
73869dc2
DE
126 struct dwarf2_section_info *containing_section;
127 } s;
19ac8c2e 128 /* Pointer to section data, only valid if readin. */
d521ce57 129 const gdb_byte *buffer;
73869dc2 130 /* The size of the section, real or virtual. */
dce234bc 131 bfd_size_type size;
73869dc2
DE
132 /* If this is a virtual section, the offset in the real section.
133 Only valid if is_virtual. */
134 bfd_size_type virtual_offset;
be391dca 135 /* True if we have tried to read this section. */
73869dc2
DE
136 char readin;
137 /* True if this is a virtual section, False otherwise.
138 This specifies which of s.asection and s.containing_section to use. */
139 char is_virtual;
dce234bc
PP
140};
141
8b70b953
TT
142typedef struct dwarf2_section_info dwarf2_section_info_def;
143DEF_VEC_O (dwarf2_section_info_def);
144
9291a0cd
TT
145/* All offsets in the index are of this type. It must be
146 architecture-independent. */
147typedef uint32_t offset_type;
148
149DEF_VEC_I (offset_type);
150
156942c7
DE
151/* Ensure only legit values are used. */
152#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
153 do { \
154 gdb_assert ((unsigned int) (value) <= 1); \
155 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
156 } while (0)
157
158/* Ensure only legit values are used. */
159#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
160 do { \
161 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
162 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
163 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
164 } while (0)
165
166/* Ensure we don't use more than the alloted nuber of bits for the CU. */
167#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
168 do { \
169 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
170 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
171 } while (0)
172
9291a0cd
TT
173/* A description of the mapped index. The file format is described in
174 a comment by the code that writes the index. */
175struct mapped_index
176{
559a7a62
JK
177 /* Index data format version. */
178 int version;
179
9291a0cd
TT
180 /* The total length of the buffer. */
181 off_t total_size;
b11b1f88 182
9291a0cd
TT
183 /* A pointer to the address table data. */
184 const gdb_byte *address_table;
b11b1f88 185
9291a0cd
TT
186 /* Size of the address table data in bytes. */
187 offset_type address_table_size;
b11b1f88 188
3876f04e
DE
189 /* The symbol table, implemented as a hash table. */
190 const offset_type *symbol_table;
b11b1f88 191
9291a0cd 192 /* Size in slots, each slot is 2 offset_types. */
3876f04e 193 offset_type symbol_table_slots;
b11b1f88 194
9291a0cd
TT
195 /* A pointer to the constant pool. */
196 const char *constant_pool;
197};
198
95554aad
TT
199typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
200DEF_VEC_P (dwarf2_per_cu_ptr);
201
52059ffd
TT
202struct tu_stats
203{
204 int nr_uniq_abbrev_tables;
205 int nr_symtabs;
206 int nr_symtab_sharers;
207 int nr_stmt_less_type_units;
208 int nr_all_type_units_reallocs;
209};
210
9cdd5dbd
DE
211/* Collection of data recorded per objfile.
212 This hangs off of dwarf2_objfile_data_key. */
213
6502dd73
DJ
214struct dwarf2_per_objfile
215{
dce234bc
PP
216 struct dwarf2_section_info info;
217 struct dwarf2_section_info abbrev;
218 struct dwarf2_section_info line;
dce234bc
PP
219 struct dwarf2_section_info loc;
220 struct dwarf2_section_info macinfo;
cf2c3c16 221 struct dwarf2_section_info macro;
dce234bc
PP
222 struct dwarf2_section_info str;
223 struct dwarf2_section_info ranges;
3019eac3 224 struct dwarf2_section_info addr;
dce234bc
PP
225 struct dwarf2_section_info frame;
226 struct dwarf2_section_info eh_frame;
9291a0cd 227 struct dwarf2_section_info gdb_index;
ae038cb0 228
8b70b953
TT
229 VEC (dwarf2_section_info_def) *types;
230
be391dca
TT
231 /* Back link. */
232 struct objfile *objfile;
233
d467dd73 234 /* Table of all the compilation units. This is used to locate
10b3939b 235 the target compilation unit of a particular reference. */
ae038cb0
DJ
236 struct dwarf2_per_cu_data **all_comp_units;
237
238 /* The number of compilation units in ALL_COMP_UNITS. */
239 int n_comp_units;
240
1fd400ff 241 /* The number of .debug_types-related CUs. */
d467dd73 242 int n_type_units;
1fd400ff 243
6aa5f3a6
DE
244 /* The number of elements allocated in all_type_units.
245 If there are skeleton-less TUs, we add them to all_type_units lazily. */
246 int n_allocated_type_units;
247
a2ce51a0
DE
248 /* The .debug_types-related CUs (TUs).
249 This is stored in malloc space because we may realloc it. */
b4dd5633 250 struct signatured_type **all_type_units;
1fd400ff 251
f4dc4d17
DE
252 /* Table of struct type_unit_group objects.
253 The hash key is the DW_AT_stmt_list value. */
254 htab_t type_unit_groups;
72dca2f5 255
348e048f
DE
256 /* A table mapping .debug_types signatures to its signatured_type entry.
257 This is NULL if the .debug_types section hasn't been read in yet. */
258 htab_t signatured_types;
259
f4dc4d17
DE
260 /* Type unit statistics, to see how well the scaling improvements
261 are doing. */
52059ffd 262 struct tu_stats tu_stats;
f4dc4d17
DE
263
264 /* A chain of compilation units that are currently read in, so that
265 they can be freed later. */
266 struct dwarf2_per_cu_data *read_in_chain;
267
3019eac3
DE
268 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
269 This is NULL if the table hasn't been allocated yet. */
270 htab_t dwo_files;
271
80626a55
DE
272 /* Non-zero if we've check for whether there is a DWP file. */
273 int dwp_checked;
274
275 /* The DWP file if there is one, or NULL. */
276 struct dwp_file *dwp_file;
277
36586728
TT
278 /* The shared '.dwz' file, if one exists. This is used when the
279 original data was compressed using 'dwz -m'. */
280 struct dwz_file *dwz_file;
281
72dca2f5
FR
282 /* A flag indicating wether this objfile has a section loaded at a
283 VMA of 0. */
284 int has_section_at_zero;
9291a0cd 285
ae2de4f8
DE
286 /* True if we are using the mapped index,
287 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
288 unsigned char using_index;
289
ae2de4f8 290 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 291 struct mapped_index *index_table;
98bfdba5 292
7b9f3c50 293 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
294 TUs typically share line table entries with a CU, so we maintain a
295 separate table of all line table entries to support the sharing.
296 Note that while there can be way more TUs than CUs, we've already
297 sorted all the TUs into "type unit groups", grouped by their
298 DW_AT_stmt_list value. Therefore the only sharing done here is with a
299 CU and its associated TU group if there is one. */
7b9f3c50
DE
300 htab_t quick_file_names_table;
301
98bfdba5
PA
302 /* Set during partial symbol reading, to prevent queueing of full
303 symbols. */
304 int reading_partial_symbols;
673bfd45 305
dee91e82 306 /* Table mapping type DIEs to their struct type *.
673bfd45 307 This is NULL if not allocated yet.
02142a6c 308 The mapping is done via (CU/TU + DIE offset) -> type. */
dee91e82 309 htab_t die_type_hash;
95554aad
TT
310
311 /* The CUs we recently read. */
312 VEC (dwarf2_per_cu_ptr) *just_read_cus;
527f3840
JK
313
314 /* Table containing line_header indexed by offset and offset_in_dwz. */
315 htab_t line_header_hash;
6502dd73
DJ
316};
317
318static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 319
251d32d9 320/* Default names of the debugging sections. */
c906108c 321
233a11ab
CS
322/* Note that if the debugging section has been compressed, it might
323 have a name like .zdebug_info. */
324
9cdd5dbd
DE
325static const struct dwarf2_debug_sections dwarf2_elf_names =
326{
251d32d9
TG
327 { ".debug_info", ".zdebug_info" },
328 { ".debug_abbrev", ".zdebug_abbrev" },
329 { ".debug_line", ".zdebug_line" },
330 { ".debug_loc", ".zdebug_loc" },
331 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 332 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
333 { ".debug_str", ".zdebug_str" },
334 { ".debug_ranges", ".zdebug_ranges" },
335 { ".debug_types", ".zdebug_types" },
3019eac3 336 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
337 { ".debug_frame", ".zdebug_frame" },
338 { ".eh_frame", NULL },
24d3216f
TT
339 { ".gdb_index", ".zgdb_index" },
340 23
251d32d9 341};
c906108c 342
80626a55 343/* List of DWO/DWP sections. */
3019eac3 344
80626a55 345static const struct dwop_section_names
3019eac3
DE
346{
347 struct dwarf2_section_names abbrev_dwo;
348 struct dwarf2_section_names info_dwo;
349 struct dwarf2_section_names line_dwo;
350 struct dwarf2_section_names loc_dwo;
09262596
DE
351 struct dwarf2_section_names macinfo_dwo;
352 struct dwarf2_section_names macro_dwo;
3019eac3
DE
353 struct dwarf2_section_names str_dwo;
354 struct dwarf2_section_names str_offsets_dwo;
355 struct dwarf2_section_names types_dwo;
80626a55
DE
356 struct dwarf2_section_names cu_index;
357 struct dwarf2_section_names tu_index;
3019eac3 358}
80626a55 359dwop_section_names =
3019eac3
DE
360{
361 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
362 { ".debug_info.dwo", ".zdebug_info.dwo" },
363 { ".debug_line.dwo", ".zdebug_line.dwo" },
364 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
09262596
DE
365 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
366 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
367 { ".debug_str.dwo", ".zdebug_str.dwo" },
368 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
369 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
370 { ".debug_cu_index", ".zdebug_cu_index" },
371 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
372};
373
c906108c
SS
374/* local data types */
375
107d2387
AC
376/* The data in a compilation unit header, after target2host
377 translation, looks like this. */
c906108c 378struct comp_unit_head
a738430d 379{
c764a876 380 unsigned int length;
a738430d 381 short version;
a738430d
MK
382 unsigned char addr_size;
383 unsigned char signed_addr_p;
b64f50a1 384 sect_offset abbrev_offset;
57349743 385
a738430d
MK
386 /* Size of file offsets; either 4 or 8. */
387 unsigned int offset_size;
57349743 388
a738430d
MK
389 /* Size of the length field; either 4 or 12. */
390 unsigned int initial_length_size;
57349743 391
a738430d
MK
392 /* Offset to the first byte of this compilation unit header in the
393 .debug_info section, for resolving relative reference dies. */
b64f50a1 394 sect_offset offset;
57349743 395
d00adf39
DE
396 /* Offset to first die in this cu from the start of the cu.
397 This will be the first byte following the compilation unit header. */
b64f50a1 398 cu_offset first_die_offset;
a738430d 399};
c906108c 400
3da10d80
KS
401/* Type used for delaying computation of method physnames.
402 See comments for compute_delayed_physnames. */
403struct delayed_method_info
404{
405 /* The type to which the method is attached, i.e., its parent class. */
406 struct type *type;
407
408 /* The index of the method in the type's function fieldlists. */
409 int fnfield_index;
410
411 /* The index of the method in the fieldlist. */
412 int index;
413
414 /* The name of the DIE. */
415 const char *name;
416
417 /* The DIE associated with this method. */
418 struct die_info *die;
419};
420
421typedef struct delayed_method_info delayed_method_info;
422DEF_VEC_O (delayed_method_info);
423
e7c27a73
DJ
424/* Internal state when decoding a particular compilation unit. */
425struct dwarf2_cu
426{
427 /* The objfile containing this compilation unit. */
428 struct objfile *objfile;
429
d00adf39 430 /* The header of the compilation unit. */
e7c27a73 431 struct comp_unit_head header;
e142c38c 432
d00adf39
DE
433 /* Base address of this compilation unit. */
434 CORE_ADDR base_address;
435
436 /* Non-zero if base_address has been set. */
437 int base_known;
438
e142c38c
DJ
439 /* The language we are debugging. */
440 enum language language;
441 const struct language_defn *language_defn;
442
b0f35d58
DL
443 const char *producer;
444
e142c38c
DJ
445 /* The generic symbol table building routines have separate lists for
446 file scope symbols and all all other scopes (local scopes). So
447 we need to select the right one to pass to add_symbol_to_list().
448 We do it by keeping a pointer to the correct list in list_in_scope.
449
450 FIXME: The original dwarf code just treated the file scope as the
451 first local scope, and all other local scopes as nested local
452 scopes, and worked fine. Check to see if we really need to
453 distinguish these in buildsym.c. */
454 struct pending **list_in_scope;
455
433df2d4
DE
456 /* The abbrev table for this CU.
457 Normally this points to the abbrev table in the objfile.
458 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
459 struct abbrev_table *abbrev_table;
72bf9492 460
b64f50a1
JK
461 /* Hash table holding all the loaded partial DIEs
462 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
463 htab_t partial_dies;
464
465 /* Storage for things with the same lifetime as this read-in compilation
466 unit, including partial DIEs. */
467 struct obstack comp_unit_obstack;
468
ae038cb0
DJ
469 /* When multiple dwarf2_cu structures are living in memory, this field
470 chains them all together, so that they can be released efficiently.
471 We will probably also want a generation counter so that most-recently-used
472 compilation units are cached... */
473 struct dwarf2_per_cu_data *read_in_chain;
474
69d751e3 475 /* Backlink to our per_cu entry. */
ae038cb0
DJ
476 struct dwarf2_per_cu_data *per_cu;
477
478 /* How many compilation units ago was this CU last referenced? */
479 int last_used;
480
b64f50a1
JK
481 /* A hash table of DIE cu_offset for following references with
482 die_info->offset.sect_off as hash. */
51545339 483 htab_t die_hash;
10b3939b
DJ
484
485 /* Full DIEs if read in. */
486 struct die_info *dies;
487
488 /* A set of pointers to dwarf2_per_cu_data objects for compilation
489 units referenced by this one. Only set during full symbol processing;
490 partial symbol tables do not have dependencies. */
491 htab_t dependencies;
492
cb1df416
DJ
493 /* Header data from the line table, during full symbol processing. */
494 struct line_header *line_header;
495
3da10d80
KS
496 /* A list of methods which need to have physnames computed
497 after all type information has been read. */
498 VEC (delayed_method_info) *method_list;
499
96408a79
SA
500 /* To be copied to symtab->call_site_htab. */
501 htab_t call_site_htab;
502
034e5797
DE
503 /* Non-NULL if this CU came from a DWO file.
504 There is an invariant here that is important to remember:
505 Except for attributes copied from the top level DIE in the "main"
506 (or "stub") file in preparation for reading the DWO file
507 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
508 Either there isn't a DWO file (in which case this is NULL and the point
509 is moot), or there is and either we're not going to read it (in which
510 case this is NULL) or there is and we are reading it (in which case this
511 is non-NULL). */
3019eac3
DE
512 struct dwo_unit *dwo_unit;
513
514 /* The DW_AT_addr_base attribute if present, zero otherwise
515 (zero is a valid value though).
1dbab08b 516 Note this value comes from the Fission stub CU/TU's DIE. */
3019eac3
DE
517 ULONGEST addr_base;
518
2e3cf129
DE
519 /* The DW_AT_ranges_base attribute if present, zero otherwise
520 (zero is a valid value though).
1dbab08b 521 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 522 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
523 be used without needing to know whether DWO files are in use or not.
524 N.B. This does not apply to DW_AT_ranges appearing in
525 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
526 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
527 DW_AT_ranges_base *would* have to be applied, and we'd have to care
528 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
529 ULONGEST ranges_base;
530
ae038cb0
DJ
531 /* Mark used when releasing cached dies. */
532 unsigned int mark : 1;
533
8be455d7
JK
534 /* This CU references .debug_loc. See the symtab->locations_valid field.
535 This test is imperfect as there may exist optimized debug code not using
536 any location list and still facing inlining issues if handled as
537 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 538 unsigned int has_loclist : 1;
ba919b58 539
1b80a9fa
JK
540 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
541 if all the producer_is_* fields are valid. This information is cached
542 because profiling CU expansion showed excessive time spent in
543 producer_is_gxx_lt_4_6. */
ba919b58
TT
544 unsigned int checked_producer : 1;
545 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 546 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 547 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
548
549 /* When set, the file that we're processing is known to have
550 debugging info for C++ namespaces. GCC 3.3.x did not produce
551 this information, but later versions do. */
552
553 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
554};
555
10b3939b
DJ
556/* Persistent data held for a compilation unit, even when not
557 processing it. We put a pointer to this structure in the
28dee7f5 558 read_symtab_private field of the psymtab. */
10b3939b 559
ae038cb0
DJ
560struct dwarf2_per_cu_data
561{
36586728 562 /* The start offset and length of this compilation unit.
45452591 563 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
564 initial_length_size.
565 If the DIE refers to a DWO file, this is always of the original die,
566 not the DWO file. */
b64f50a1 567 sect_offset offset;
36586728 568 unsigned int length;
ae038cb0
DJ
569
570 /* Flag indicating this compilation unit will be read in before
571 any of the current compilation units are processed. */
c764a876 572 unsigned int queued : 1;
ae038cb0 573
0d99eb77
DE
574 /* This flag will be set when reading partial DIEs if we need to load
575 absolutely all DIEs for this compilation unit, instead of just the ones
576 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
577 hash table and don't find it. */
578 unsigned int load_all_dies : 1;
579
0186c6a7
DE
580 /* Non-zero if this CU is from .debug_types.
581 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
582 this is non-zero. */
3019eac3
DE
583 unsigned int is_debug_types : 1;
584
36586728
TT
585 /* Non-zero if this CU is from the .dwz file. */
586 unsigned int is_dwz : 1;
587
a2ce51a0
DE
588 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
589 This flag is only valid if is_debug_types is true.
590 We can't read a CU directly from a DWO file: There are required
591 attributes in the stub. */
592 unsigned int reading_dwo_directly : 1;
593
7ee85ab1
DE
594 /* Non-zero if the TU has been read.
595 This is used to assist the "Stay in DWO Optimization" for Fission:
596 When reading a DWO, it's faster to read TUs from the DWO instead of
597 fetching them from random other DWOs (due to comdat folding).
598 If the TU has already been read, the optimization is unnecessary
599 (and unwise - we don't want to change where gdb thinks the TU lives
600 "midflight").
601 This flag is only valid if is_debug_types is true. */
602 unsigned int tu_read : 1;
603
3019eac3
DE
604 /* The section this CU/TU lives in.
605 If the DIE refers to a DWO file, this is always the original die,
606 not the DWO file. */
8a0459fd 607 struct dwarf2_section_info *section;
348e048f 608
17ea53c3
JK
609 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
610 of the CU cache it gets reset to NULL again. */
ae038cb0 611 struct dwarf2_cu *cu;
1c379e20 612
9cdd5dbd
DE
613 /* The corresponding objfile.
614 Normally we can get the objfile from dwarf2_per_objfile.
615 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
616 struct objfile *objfile;
617
fffbe6a8
YQ
618 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
619 is active. Otherwise, the 'psymtab' field is active. */
9291a0cd
TT
620 union
621 {
622 /* The partial symbol table associated with this compilation unit,
95554aad 623 or NULL for unread partial units. */
9291a0cd
TT
624 struct partial_symtab *psymtab;
625
626 /* Data needed by the "quick" functions. */
627 struct dwarf2_per_cu_quick_data *quick;
628 } v;
95554aad 629
796a7ff8
DE
630 /* The CUs we import using DW_TAG_imported_unit. This is filled in
631 while reading psymtabs, used to compute the psymtab dependencies,
632 and then cleared. Then it is filled in again while reading full
633 symbols, and only deleted when the objfile is destroyed.
634
635 This is also used to work around a difference between the way gold
636 generates .gdb_index version <=7 and the way gdb does. Arguably this
637 is a gold bug. For symbols coming from TUs, gold records in the index
638 the CU that includes the TU instead of the TU itself. This breaks
639 dw2_lookup_symbol: It assumes that if the index says symbol X lives
640 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
641 will find X. Alas TUs live in their own symtab, so after expanding CU Y
642 we need to look in TU Z to find X. Fortunately, this is akin to
643 DW_TAG_imported_unit, so we just use the same mechanism: For
644 .gdb_index version <=7 this also records the TUs that the CU referred
645 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
646 indices so we only pay a price for gold generated indices.
647 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 648 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
649};
650
348e048f
DE
651/* Entry in the signatured_types hash table. */
652
653struct signatured_type
654{
42e7ad6c 655 /* The "per_cu" object of this type.
ac9ec31b 656 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
657 N.B.: This is the first member so that it's easy to convert pointers
658 between them. */
659 struct dwarf2_per_cu_data per_cu;
660
3019eac3 661 /* The type's signature. */
348e048f
DE
662 ULONGEST signature;
663
3019eac3 664 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
665 If this TU is a DWO stub and the definition lives in a DWO file
666 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
667 cu_offset type_offset_in_tu;
668
669 /* Offset in the section of the type's DIE.
670 If the definition lives in a DWO file, this is the offset in the
671 .debug_types.dwo section.
672 The value is zero until the actual value is known.
673 Zero is otherwise not a valid section offset. */
674 sect_offset type_offset_in_section;
0186c6a7
DE
675
676 /* Type units are grouped by their DW_AT_stmt_list entry so that they
677 can share them. This points to the containing symtab. */
678 struct type_unit_group *type_unit_group;
ac9ec31b
DE
679
680 /* The type.
681 The first time we encounter this type we fully read it in and install it
682 in the symbol tables. Subsequent times we only need the type. */
683 struct type *type;
a2ce51a0
DE
684
685 /* Containing DWO unit.
686 This field is valid iff per_cu.reading_dwo_directly. */
687 struct dwo_unit *dwo_unit;
348e048f
DE
688};
689
0186c6a7
DE
690typedef struct signatured_type *sig_type_ptr;
691DEF_VEC_P (sig_type_ptr);
692
094b34ac
DE
693/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
694 This includes type_unit_group and quick_file_names. */
695
696struct stmt_list_hash
697{
698 /* The DWO unit this table is from or NULL if there is none. */
699 struct dwo_unit *dwo_unit;
700
701 /* Offset in .debug_line or .debug_line.dwo. */
702 sect_offset line_offset;
703};
704
f4dc4d17
DE
705/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
706 an object of this type. */
707
708struct type_unit_group
709{
0186c6a7 710 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
711 To simplify things we create an artificial CU that "includes" all the
712 type units using this stmt_list so that the rest of the code still has
713 a "per_cu" handle on the symtab.
714 This PER_CU is recognized by having no section. */
8a0459fd 715#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
716 struct dwarf2_per_cu_data per_cu;
717
0186c6a7
DE
718 /* The TUs that share this DW_AT_stmt_list entry.
719 This is added to while parsing type units to build partial symtabs,
720 and is deleted afterwards and not used again. */
721 VEC (sig_type_ptr) *tus;
f4dc4d17 722
43f3e411 723 /* The compunit symtab.
094b34ac 724 Type units in a group needn't all be defined in the same source file,
43f3e411
DE
725 so we create an essentially anonymous symtab as the compunit symtab. */
726 struct compunit_symtab *compunit_symtab;
f4dc4d17 727
094b34ac
DE
728 /* The data used to construct the hash key. */
729 struct stmt_list_hash hash;
f4dc4d17
DE
730
731 /* The number of symtabs from the line header.
732 The value here must match line_header.num_file_names. */
733 unsigned int num_symtabs;
734
735 /* The symbol tables for this TU (obtained from the files listed in
736 DW_AT_stmt_list).
737 WARNING: The order of entries here must match the order of entries
738 in the line header. After the first TU using this type_unit_group, the
739 line header for the subsequent TUs is recreated from this. This is done
740 because we need to use the same symtabs for each TU using the same
741 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
742 there's no guarantee the line header doesn't have duplicate entries. */
743 struct symtab **symtabs;
744};
745
73869dc2 746/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
747
748struct dwo_sections
749{
750 struct dwarf2_section_info abbrev;
3019eac3
DE
751 struct dwarf2_section_info line;
752 struct dwarf2_section_info loc;
09262596
DE
753 struct dwarf2_section_info macinfo;
754 struct dwarf2_section_info macro;
3019eac3
DE
755 struct dwarf2_section_info str;
756 struct dwarf2_section_info str_offsets;
80626a55
DE
757 /* In the case of a virtual DWO file, these two are unused. */
758 struct dwarf2_section_info info;
3019eac3
DE
759 VEC (dwarf2_section_info_def) *types;
760};
761
c88ee1f0 762/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
763
764struct dwo_unit
765{
766 /* Backlink to the containing struct dwo_file. */
767 struct dwo_file *dwo_file;
768
769 /* The "id" that distinguishes this CU/TU.
770 .debug_info calls this "dwo_id", .debug_types calls this "signature".
771 Since signatures came first, we stick with it for consistency. */
772 ULONGEST signature;
773
774 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 775 struct dwarf2_section_info *section;
3019eac3 776
19ac8c2e 777 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
3019eac3
DE
778 sect_offset offset;
779 unsigned int length;
780
781 /* For types, offset in the type's DIE of the type defined by this TU. */
782 cu_offset type_offset_in_tu;
783};
784
73869dc2
DE
785/* include/dwarf2.h defines the DWP section codes.
786 It defines a max value but it doesn't define a min value, which we
787 use for error checking, so provide one. */
788
789enum dwp_v2_section_ids
790{
791 DW_SECT_MIN = 1
792};
793
80626a55 794/* Data for one DWO file.
57d63ce2
DE
795
796 This includes virtual DWO files (a virtual DWO file is a DWO file as it
797 appears in a DWP file). DWP files don't really have DWO files per se -
798 comdat folding of types "loses" the DWO file they came from, and from
799 a high level view DWP files appear to contain a mass of random types.
800 However, to maintain consistency with the non-DWP case we pretend DWP
801 files contain virtual DWO files, and we assign each TU with one virtual
802 DWO file (generally based on the line and abbrev section offsets -
803 a heuristic that seems to work in practice). */
3019eac3
DE
804
805struct dwo_file
806{
0ac5b59e 807 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
808 For virtual DWO files the name is constructed from the section offsets
809 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
810 from related CU+TUs. */
0ac5b59e
DE
811 const char *dwo_name;
812
813 /* The DW_AT_comp_dir attribute. */
814 const char *comp_dir;
3019eac3 815
80626a55
DE
816 /* The bfd, when the file is open. Otherwise this is NULL.
817 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
818 bfd *dbfd;
3019eac3 819
73869dc2
DE
820 /* The sections that make up this DWO file.
821 Remember that for virtual DWO files in DWP V2, these are virtual
822 sections (for lack of a better name). */
3019eac3
DE
823 struct dwo_sections sections;
824
19c3d4c9
DE
825 /* The CU in the file.
826 We only support one because having more than one requires hacking the
827 dwo_name of each to match, which is highly unlikely to happen.
828 Doing this means all TUs can share comp_dir: We also assume that
829 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
830 struct dwo_unit *cu;
3019eac3
DE
831
832 /* Table of TUs in the file.
833 Each element is a struct dwo_unit. */
834 htab_t tus;
835};
836
80626a55
DE
837/* These sections are what may appear in a DWP file. */
838
839struct dwp_sections
840{
73869dc2 841 /* These are used by both DWP version 1 and 2. */
80626a55
DE
842 struct dwarf2_section_info str;
843 struct dwarf2_section_info cu_index;
844 struct dwarf2_section_info tu_index;
73869dc2
DE
845
846 /* These are only used by DWP version 2 files.
847 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
848 sections are referenced by section number, and are not recorded here.
849 In DWP version 2 there is at most one copy of all these sections, each
850 section being (effectively) comprised of the concatenation of all of the
851 individual sections that exist in the version 1 format.
852 To keep the code simple we treat each of these concatenated pieces as a
853 section itself (a virtual section?). */
854 struct dwarf2_section_info abbrev;
855 struct dwarf2_section_info info;
856 struct dwarf2_section_info line;
857 struct dwarf2_section_info loc;
858 struct dwarf2_section_info macinfo;
859 struct dwarf2_section_info macro;
860 struct dwarf2_section_info str_offsets;
861 struct dwarf2_section_info types;
80626a55
DE
862};
863
73869dc2
DE
864/* These sections are what may appear in a virtual DWO file in DWP version 1.
865 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 866
73869dc2 867struct virtual_v1_dwo_sections
80626a55
DE
868{
869 struct dwarf2_section_info abbrev;
870 struct dwarf2_section_info line;
871 struct dwarf2_section_info loc;
872 struct dwarf2_section_info macinfo;
873 struct dwarf2_section_info macro;
874 struct dwarf2_section_info str_offsets;
875 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 876 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
877 struct dwarf2_section_info info_or_types;
878};
879
73869dc2
DE
880/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
881 In version 2, the sections of the DWO files are concatenated together
882 and stored in one section of that name. Thus each ELF section contains
883 several "virtual" sections. */
884
885struct virtual_v2_dwo_sections
886{
887 bfd_size_type abbrev_offset;
888 bfd_size_type abbrev_size;
889
890 bfd_size_type line_offset;
891 bfd_size_type line_size;
892
893 bfd_size_type loc_offset;
894 bfd_size_type loc_size;
895
896 bfd_size_type macinfo_offset;
897 bfd_size_type macinfo_size;
898
899 bfd_size_type macro_offset;
900 bfd_size_type macro_size;
901
902 bfd_size_type str_offsets_offset;
903 bfd_size_type str_offsets_size;
904
905 /* Each DWP hash table entry records one CU or one TU.
906 That is recorded here, and copied to dwo_unit.section. */
907 bfd_size_type info_or_types_offset;
908 bfd_size_type info_or_types_size;
909};
910
80626a55
DE
911/* Contents of DWP hash tables. */
912
913struct dwp_hash_table
914{
73869dc2 915 uint32_t version, nr_columns;
80626a55 916 uint32_t nr_units, nr_slots;
73869dc2
DE
917 const gdb_byte *hash_table, *unit_table;
918 union
919 {
920 struct
921 {
922 const gdb_byte *indices;
923 } v1;
924 struct
925 {
926 /* This is indexed by column number and gives the id of the section
927 in that column. */
928#define MAX_NR_V2_DWO_SECTIONS \
929 (1 /* .debug_info or .debug_types */ \
930 + 1 /* .debug_abbrev */ \
931 + 1 /* .debug_line */ \
932 + 1 /* .debug_loc */ \
933 + 1 /* .debug_str_offsets */ \
934 + 1 /* .debug_macro or .debug_macinfo */)
935 int section_ids[MAX_NR_V2_DWO_SECTIONS];
936 const gdb_byte *offsets;
937 const gdb_byte *sizes;
938 } v2;
939 } section_pool;
80626a55
DE
940};
941
942/* Data for one DWP file. */
943
944struct dwp_file
945{
946 /* Name of the file. */
947 const char *name;
948
73869dc2
DE
949 /* File format version. */
950 int version;
951
93417882 952 /* The bfd. */
80626a55
DE
953 bfd *dbfd;
954
955 /* Section info for this file. */
956 struct dwp_sections sections;
957
57d63ce2 958 /* Table of CUs in the file. */
80626a55
DE
959 const struct dwp_hash_table *cus;
960
961 /* Table of TUs in the file. */
962 const struct dwp_hash_table *tus;
963
19ac8c2e
DE
964 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
965 htab_t loaded_cus;
966 htab_t loaded_tus;
80626a55 967
73869dc2
DE
968 /* Table to map ELF section numbers to their sections.
969 This is only needed for the DWP V1 file format. */
80626a55
DE
970 unsigned int num_sections;
971 asection **elf_sections;
972};
973
36586728
TT
974/* This represents a '.dwz' file. */
975
976struct dwz_file
977{
978 /* A dwz file can only contain a few sections. */
979 struct dwarf2_section_info abbrev;
980 struct dwarf2_section_info info;
981 struct dwarf2_section_info str;
982 struct dwarf2_section_info line;
983 struct dwarf2_section_info macro;
2ec9a5e0 984 struct dwarf2_section_info gdb_index;
36586728
TT
985
986 /* The dwz's BFD. */
987 bfd *dwz_bfd;
988};
989
0963b4bd
MS
990/* Struct used to pass misc. parameters to read_die_and_children, et
991 al. which are used for both .debug_info and .debug_types dies.
992 All parameters here are unchanging for the life of the call. This
dee91e82 993 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
994
995struct die_reader_specs
996{
a32a8923 997 /* The bfd of die_section. */
93311388
DE
998 bfd* abfd;
999
1000 /* The CU of the DIE we are parsing. */
1001 struct dwarf2_cu *cu;
1002
80626a55 1003 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
1004 struct dwo_file *dwo_file;
1005
dee91e82 1006 /* The section the die comes from.
3019eac3 1007 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1008 struct dwarf2_section_info *die_section;
1009
1010 /* die_section->buffer. */
d521ce57 1011 const gdb_byte *buffer;
f664829e
DE
1012
1013 /* The end of the buffer. */
1014 const gdb_byte *buffer_end;
a2ce51a0
DE
1015
1016 /* The value of the DW_AT_comp_dir attribute. */
1017 const char *comp_dir;
93311388
DE
1018};
1019
fd820528 1020/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1021typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1022 const gdb_byte *info_ptr,
dee91e82
DE
1023 struct die_info *comp_unit_die,
1024 int has_children,
1025 void *data);
1026
52059ffd
TT
1027struct file_entry
1028{
1029 const char *name;
1030 unsigned int dir_index;
1031 unsigned int mod_time;
1032 unsigned int length;
83769d0b
DE
1033 /* Non-zero if referenced by the Line Number Program. */
1034 int included_p;
1035 /* The associated symbol table, if any. */
1036 struct symtab *symtab;
52059ffd
TT
1037};
1038
debd256d
JB
1039/* The line number information for a compilation unit (found in the
1040 .debug_line section) begins with a "statement program header",
1041 which contains the following information. */
1042struct line_header
1043{
527f3840
JK
1044 /* Offset of line number information in .debug_line section. */
1045 sect_offset offset;
1046
1047 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1048 unsigned offset_in_dwz : 1;
1049
debd256d
JB
1050 unsigned int total_length;
1051 unsigned short version;
1052 unsigned int header_length;
1053 unsigned char minimum_instruction_length;
2dc7f7b3 1054 unsigned char maximum_ops_per_instruction;
debd256d
JB
1055 unsigned char default_is_stmt;
1056 int line_base;
1057 unsigned char line_range;
1058 unsigned char opcode_base;
1059
1060 /* standard_opcode_lengths[i] is the number of operands for the
1061 standard opcode whose value is i. This means that
1062 standard_opcode_lengths[0] is unused, and the last meaningful
1063 element is standard_opcode_lengths[opcode_base - 1]. */
1064 unsigned char *standard_opcode_lengths;
1065
1066 /* The include_directories table. NOTE! These strings are not
1067 allocated with xmalloc; instead, they are pointers into
1068 debug_line_buffer. If you try to free them, `free' will get
1069 indigestion. */
1070 unsigned int num_include_dirs, include_dirs_size;
d521ce57 1071 const char **include_dirs;
debd256d
JB
1072
1073 /* The file_names table. NOTE! These strings are not allocated
1074 with xmalloc; instead, they are pointers into debug_line_buffer.
1075 Don't try to free them directly. */
1076 unsigned int num_file_names, file_names_size;
52059ffd 1077 struct file_entry *file_names;
debd256d
JB
1078
1079 /* The start and end of the statement program following this
6502dd73 1080 header. These point into dwarf2_per_objfile->line_buffer. */
d521ce57 1081 const gdb_byte *statement_program_start, *statement_program_end;
debd256d 1082};
c906108c
SS
1083
1084/* When we construct a partial symbol table entry we only
0963b4bd 1085 need this much information. */
c906108c
SS
1086struct partial_die_info
1087 {
72bf9492 1088 /* Offset of this DIE. */
b64f50a1 1089 sect_offset offset;
72bf9492
DJ
1090
1091 /* DWARF-2 tag for this DIE. */
1092 ENUM_BITFIELD(dwarf_tag) tag : 16;
1093
72bf9492
DJ
1094 /* Assorted flags describing the data found in this DIE. */
1095 unsigned int has_children : 1;
1096 unsigned int is_external : 1;
1097 unsigned int is_declaration : 1;
1098 unsigned int has_type : 1;
1099 unsigned int has_specification : 1;
1100 unsigned int has_pc_info : 1;
481860b3 1101 unsigned int may_be_inlined : 1;
72bf9492
DJ
1102
1103 /* Flag set if the SCOPE field of this structure has been
1104 computed. */
1105 unsigned int scope_set : 1;
1106
fa4028e9
JB
1107 /* Flag set if the DIE has a byte_size attribute. */
1108 unsigned int has_byte_size : 1;
1109
ff908ebf
AW
1110 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1111 unsigned int has_const_value : 1;
1112
98bfdba5
PA
1113 /* Flag set if any of the DIE's children are template arguments. */
1114 unsigned int has_template_arguments : 1;
1115
abc72ce4
DE
1116 /* Flag set if fixup_partial_die has been called on this die. */
1117 unsigned int fixup_called : 1;
1118
36586728
TT
1119 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1120 unsigned int is_dwz : 1;
1121
1122 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1123 unsigned int spec_is_dwz : 1;
1124
72bf9492 1125 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1126 sometimes a default name for unnamed DIEs. */
15d034d0 1127 const char *name;
72bf9492 1128
abc72ce4
DE
1129 /* The linkage name, if present. */
1130 const char *linkage_name;
1131
72bf9492
DJ
1132 /* The scope to prepend to our children. This is generally
1133 allocated on the comp_unit_obstack, so will disappear
1134 when this compilation unit leaves the cache. */
15d034d0 1135 const char *scope;
72bf9492 1136
95554aad
TT
1137 /* Some data associated with the partial DIE. The tag determines
1138 which field is live. */
1139 union
1140 {
1141 /* The location description associated with this DIE, if any. */
1142 struct dwarf_block *locdesc;
1143 /* The offset of an import, for DW_TAG_imported_unit. */
1144 sect_offset offset;
1145 } d;
72bf9492
DJ
1146
1147 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1148 CORE_ADDR lowpc;
1149 CORE_ADDR highpc;
72bf9492 1150
93311388 1151 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1152 DW_AT_sibling, if any. */
abc72ce4
DE
1153 /* NOTE: This member isn't strictly necessary, read_partial_die could
1154 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1155 const gdb_byte *sibling;
72bf9492
DJ
1156
1157 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1158 DW_AT_specification (or DW_AT_abstract_origin or
1159 DW_AT_extension). */
b64f50a1 1160 sect_offset spec_offset;
72bf9492
DJ
1161
1162 /* Pointers to this DIE's parent, first child, and next sibling,
1163 if any. */
1164 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1165 };
1166
0963b4bd 1167/* This data structure holds the information of an abbrev. */
c906108c
SS
1168struct abbrev_info
1169 {
1170 unsigned int number; /* number identifying abbrev */
1171 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1172 unsigned short has_children; /* boolean */
1173 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1174 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1175 struct abbrev_info *next; /* next in chain */
1176 };
1177
1178struct attr_abbrev
1179 {
9d25dd43
DE
1180 ENUM_BITFIELD(dwarf_attribute) name : 16;
1181 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
1182 };
1183
433df2d4
DE
1184/* Size of abbrev_table.abbrev_hash_table. */
1185#define ABBREV_HASH_SIZE 121
1186
1187/* Top level data structure to contain an abbreviation table. */
1188
1189struct abbrev_table
1190{
f4dc4d17
DE
1191 /* Where the abbrev table came from.
1192 This is used as a sanity check when the table is used. */
433df2d4
DE
1193 sect_offset offset;
1194
1195 /* Storage for the abbrev table. */
1196 struct obstack abbrev_obstack;
1197
1198 /* Hash table of abbrevs.
1199 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1200 It could be statically allocated, but the previous code didn't so we
1201 don't either. */
1202 struct abbrev_info **abbrevs;
1203};
1204
0963b4bd 1205/* Attributes have a name and a value. */
b60c80d6
DJ
1206struct attribute
1207 {
9d25dd43 1208 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1209 ENUM_BITFIELD(dwarf_form) form : 15;
1210
1211 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1212 field should be in u.str (existing only for DW_STRING) but it is kept
1213 here for better struct attribute alignment. */
1214 unsigned int string_is_canonical : 1;
1215
b60c80d6
DJ
1216 union
1217 {
15d034d0 1218 const char *str;
b60c80d6 1219 struct dwarf_block *blk;
43bbcdc2
PH
1220 ULONGEST unsnd;
1221 LONGEST snd;
b60c80d6 1222 CORE_ADDR addr;
ac9ec31b 1223 ULONGEST signature;
b60c80d6
DJ
1224 }
1225 u;
1226 };
1227
0963b4bd 1228/* This data structure holds a complete die structure. */
c906108c
SS
1229struct die_info
1230 {
76815b17
DE
1231 /* DWARF-2 tag for this DIE. */
1232 ENUM_BITFIELD(dwarf_tag) tag : 16;
1233
1234 /* Number of attributes */
98bfdba5
PA
1235 unsigned char num_attrs;
1236
1237 /* True if we're presently building the full type name for the
1238 type derived from this DIE. */
1239 unsigned char building_fullname : 1;
76815b17 1240
adde2bff
DE
1241 /* True if this die is in process. PR 16581. */
1242 unsigned char in_process : 1;
1243
76815b17
DE
1244 /* Abbrev number */
1245 unsigned int abbrev;
1246
93311388 1247 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1248 sect_offset offset;
78ba4af6
JB
1249
1250 /* The dies in a compilation unit form an n-ary tree. PARENT
1251 points to this die's parent; CHILD points to the first child of
1252 this node; and all the children of a given node are chained
4950bc1c 1253 together via their SIBLING fields. */
639d11d3
DC
1254 struct die_info *child; /* Its first child, if any. */
1255 struct die_info *sibling; /* Its next sibling, if any. */
1256 struct die_info *parent; /* Its parent, if any. */
c906108c 1257
b60c80d6
DJ
1258 /* An array of attributes, with NUM_ATTRS elements. There may be
1259 zero, but it's not common and zero-sized arrays are not
1260 sufficiently portable C. */
1261 struct attribute attrs[1];
c906108c
SS
1262 };
1263
0963b4bd 1264/* Get at parts of an attribute structure. */
c906108c
SS
1265
1266#define DW_STRING(attr) ((attr)->u.str)
8285870a 1267#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1268#define DW_UNSND(attr) ((attr)->u.unsnd)
1269#define DW_BLOCK(attr) ((attr)->u.blk)
1270#define DW_SND(attr) ((attr)->u.snd)
1271#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1272#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1273
0963b4bd 1274/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1275struct dwarf_block
1276 {
56eb65bd 1277 size_t size;
1d6edc3c
JK
1278
1279 /* Valid only if SIZE is not zero. */
d521ce57 1280 const gdb_byte *data;
c906108c
SS
1281 };
1282
c906108c
SS
1283#ifndef ATTR_ALLOC_CHUNK
1284#define ATTR_ALLOC_CHUNK 4
1285#endif
1286
c906108c
SS
1287/* Allocate fields for structs, unions and enums in this size. */
1288#ifndef DW_FIELD_ALLOC_CHUNK
1289#define DW_FIELD_ALLOC_CHUNK 4
1290#endif
1291
c906108c
SS
1292/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1293 but this would require a corresponding change in unpack_field_as_long
1294 and friends. */
1295static int bits_per_byte = 8;
1296
52059ffd
TT
1297struct nextfield
1298{
1299 struct nextfield *next;
1300 int accessibility;
1301 int virtuality;
1302 struct field field;
1303};
1304
1305struct nextfnfield
1306{
1307 struct nextfnfield *next;
1308 struct fn_field fnfield;
1309};
1310
1311struct fnfieldlist
1312{
1313 const char *name;
1314 int length;
1315 struct nextfnfield *head;
1316};
1317
1318struct typedef_field_list
1319{
1320 struct typedef_field field;
1321 struct typedef_field_list *next;
1322};
1323
c906108c
SS
1324/* The routines that read and process dies for a C struct or C++ class
1325 pass lists of data member fields and lists of member function fields
1326 in an instance of a field_info structure, as defined below. */
1327struct field_info
c5aa993b 1328 {
0963b4bd 1329 /* List of data member and baseclasses fields. */
52059ffd 1330 struct nextfield *fields, *baseclasses;
c906108c 1331
7d0ccb61 1332 /* Number of fields (including baseclasses). */
c5aa993b 1333 int nfields;
c906108c 1334
c5aa993b
JM
1335 /* Number of baseclasses. */
1336 int nbaseclasses;
c906108c 1337
c5aa993b
JM
1338 /* Set if the accesibility of one of the fields is not public. */
1339 int non_public_fields;
c906108c 1340
c5aa993b
JM
1341 /* Member function fields array, entries are allocated in the order they
1342 are encountered in the object file. */
52059ffd 1343 struct nextfnfield *fnfields;
c906108c 1344
c5aa993b
JM
1345 /* Member function fieldlist array, contains name of possibly overloaded
1346 member function, number of overloaded member functions and a pointer
1347 to the head of the member function field chain. */
52059ffd 1348 struct fnfieldlist *fnfieldlists;
c906108c 1349
c5aa993b
JM
1350 /* Number of entries in the fnfieldlists array. */
1351 int nfnfields;
98751a41
JK
1352
1353 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1354 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
52059ffd 1355 struct typedef_field_list *typedef_field_list;
98751a41 1356 unsigned typedef_field_list_count;
c5aa993b 1357 };
c906108c 1358
10b3939b
DJ
1359/* One item on the queue of compilation units to read in full symbols
1360 for. */
1361struct dwarf2_queue_item
1362{
1363 struct dwarf2_per_cu_data *per_cu;
95554aad 1364 enum language pretend_language;
10b3939b
DJ
1365 struct dwarf2_queue_item *next;
1366};
1367
1368/* The current queue. */
1369static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1370
ae038cb0
DJ
1371/* Loaded secondary compilation units are kept in memory until they
1372 have not been referenced for the processing of this many
1373 compilation units. Set this to zero to disable caching. Cache
1374 sizes of up to at least twenty will improve startup time for
1375 typical inter-CU-reference binaries, at an obvious memory cost. */
b4f54984 1376static int dwarf_max_cache_age = 5;
920d2a44 1377static void
b4f54984
DE
1378show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1379 struct cmd_list_element *c, const char *value)
920d2a44 1380{
3e43a32a 1381 fprintf_filtered (file, _("The upper bound on the age of cached "
b4f54984 1382 "DWARF compilation units is %s.\n"),
920d2a44
AC
1383 value);
1384}
4390d890 1385\f
c906108c
SS
1386/* local function prototypes */
1387
a32a8923
DE
1388static const char *get_section_name (const struct dwarf2_section_info *);
1389
1390static const char *get_section_file_name (const struct dwarf2_section_info *);
1391
4efb68b1 1392static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1393
918dd910
JK
1394static void dwarf2_find_base_address (struct die_info *die,
1395 struct dwarf2_cu *cu);
1396
0018ea6f
DE
1397static struct partial_symtab *create_partial_symtab
1398 (struct dwarf2_per_cu_data *per_cu, const char *name);
1399
c67a9c90 1400static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1401
72bf9492
DJ
1402static void scan_partial_symbols (struct partial_die_info *,
1403 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1404 int, struct dwarf2_cu *);
c906108c 1405
72bf9492
DJ
1406static void add_partial_symbol (struct partial_die_info *,
1407 struct dwarf2_cu *);
63d06c5c 1408
72bf9492
DJ
1409static void add_partial_namespace (struct partial_die_info *pdi,
1410 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 1411 int set_addrmap, struct dwarf2_cu *cu);
63d06c5c 1412
5d7cb8df 1413static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 1414 CORE_ADDR *highpc, int set_addrmap,
5d7cb8df
JK
1415 struct dwarf2_cu *cu);
1416
72bf9492
DJ
1417static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1418 struct dwarf2_cu *cu);
91c24f0a 1419
bc30ff58
JB
1420static void add_partial_subprogram (struct partial_die_info *pdi,
1421 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1422 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1423
257e7a09
YQ
1424static void dwarf2_read_symtab (struct partial_symtab *,
1425 struct objfile *);
c906108c 1426
a14ed312 1427static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1428
433df2d4
DE
1429static struct abbrev_info *abbrev_table_lookup_abbrev
1430 (const struct abbrev_table *, unsigned int);
1431
1432static struct abbrev_table *abbrev_table_read_table
1433 (struct dwarf2_section_info *, sect_offset);
1434
1435static void abbrev_table_free (struct abbrev_table *);
1436
f4dc4d17
DE
1437static void abbrev_table_free_cleanup (void *);
1438
dee91e82
DE
1439static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1440 struct dwarf2_section_info *);
c906108c 1441
f3dd6933 1442static void dwarf2_free_abbrev_table (void *);
c906108c 1443
d521ce57 1444static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1445
dee91e82 1446static struct partial_die_info *load_partial_dies
d521ce57 1447 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1448
d521ce57
TT
1449static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1450 struct partial_die_info *,
1451 struct abbrev_info *,
1452 unsigned int,
1453 const gdb_byte *);
c906108c 1454
36586728 1455static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1456 struct dwarf2_cu *);
72bf9492
DJ
1457
1458static void fixup_partial_die (struct partial_die_info *,
1459 struct dwarf2_cu *);
1460
d521ce57
TT
1461static const gdb_byte *read_attribute (const struct die_reader_specs *,
1462 struct attribute *, struct attr_abbrev *,
1463 const gdb_byte *);
a8329558 1464
a1855c1d 1465static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1466
a1855c1d 1467static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1468
a1855c1d 1469static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1470
a1855c1d 1471static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1472
a1855c1d 1473static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1474
d521ce57 1475static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1476 unsigned int *);
c906108c 1477
d521ce57 1478static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1479
1480static LONGEST read_checked_initial_length_and_offset
d521ce57 1481 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1482 unsigned int *, unsigned int *);
613e1657 1483
d521ce57
TT
1484static LONGEST read_offset (bfd *, const gdb_byte *,
1485 const struct comp_unit_head *,
c764a876
DE
1486 unsigned int *);
1487
d521ce57 1488static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1489
f4dc4d17
DE
1490static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1491 sect_offset);
1492
d521ce57 1493static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1494
d521ce57 1495static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1496
d521ce57
TT
1497static const char *read_indirect_string (bfd *, const gdb_byte *,
1498 const struct comp_unit_head *,
1499 unsigned int *);
4bdf3d34 1500
d521ce57 1501static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
36586728 1502
d521ce57 1503static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1504
d521ce57 1505static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1506
d521ce57
TT
1507static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1508 const gdb_byte *,
3019eac3
DE
1509 unsigned int *);
1510
d521ce57 1511static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1512 ULONGEST str_index);
3019eac3 1513
e142c38c 1514static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1515
e142c38c
DJ
1516static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1517 struct dwarf2_cu *);
c906108c 1518
348e048f 1519static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1520 unsigned int);
348e048f 1521
05cf31d1
JB
1522static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1523 struct dwarf2_cu *cu);
1524
e142c38c 1525static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1526
e142c38c 1527static struct die_info *die_specification (struct die_info *die,
f2f0e013 1528 struct dwarf2_cu **);
63d06c5c 1529
debd256d
JB
1530static void free_line_header (struct line_header *lh);
1531
3019eac3
DE
1532static struct line_header *dwarf_decode_line_header (unsigned int offset,
1533 struct dwarf2_cu *cu);
debd256d 1534
f3f5162e 1535static void dwarf_decode_lines (struct line_header *, const char *,
c3b7b696 1536 struct dwarf2_cu *, struct partial_symtab *,
527f3840 1537 CORE_ADDR, int decode_mapping);
c906108c 1538
4d663531 1539static void dwarf2_start_subfile (const char *, const char *);
c906108c 1540
43f3e411
DE
1541static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1542 const char *, const char *,
1543 CORE_ADDR);
f4dc4d17 1544
a14ed312 1545static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1546 struct dwarf2_cu *);
c906108c 1547
34eaf542
TT
1548static struct symbol *new_symbol_full (struct die_info *, struct type *,
1549 struct dwarf2_cu *, struct symbol *);
1550
ff39bb5e 1551static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1552 struct dwarf2_cu *);
c906108c 1553
ff39bb5e 1554static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1555 struct type *type,
1556 const char *name,
1557 struct obstack *obstack,
12df843f 1558 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1559 const gdb_byte **bytes,
98bfdba5 1560 struct dwarf2_locexpr_baton **baton);
2df3850c 1561
e7c27a73 1562static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1563
b4ba55a1
JB
1564static int need_gnat_info (struct dwarf2_cu *);
1565
3e43a32a
MS
1566static struct type *die_descriptive_type (struct die_info *,
1567 struct dwarf2_cu *);
b4ba55a1
JB
1568
1569static void set_descriptive_type (struct type *, struct die_info *,
1570 struct dwarf2_cu *);
1571
e7c27a73
DJ
1572static struct type *die_containing_type (struct die_info *,
1573 struct dwarf2_cu *);
c906108c 1574
ff39bb5e 1575static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1576 struct dwarf2_cu *);
c906108c 1577
f792889a 1578static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1579
673bfd45
DE
1580static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1581
0d5cff50 1582static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1583
6e70227d 1584static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1585 const char *suffix, int physname,
1586 struct dwarf2_cu *cu);
63d06c5c 1587
e7c27a73 1588static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1589
348e048f
DE
1590static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1591
e7c27a73 1592static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1593
e7c27a73 1594static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1595
96408a79
SA
1596static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1597
ff013f42
JK
1598static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1599 struct dwarf2_cu *, struct partial_symtab *);
1600
a14ed312 1601static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1602 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1603 struct partial_symtab *);
c906108c 1604
fae299cd
DC
1605static void get_scope_pc_bounds (struct die_info *,
1606 CORE_ADDR *, CORE_ADDR *,
1607 struct dwarf2_cu *);
1608
801e3a5b
JB
1609static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1610 CORE_ADDR, struct dwarf2_cu *);
1611
a14ed312 1612static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1613 struct dwarf2_cu *);
c906108c 1614
a14ed312 1615static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1616 struct type *, struct dwarf2_cu *);
c906108c 1617
a14ed312 1618static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1619 struct die_info *, struct type *,
e7c27a73 1620 struct dwarf2_cu *);
c906108c 1621
a14ed312 1622static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1623 struct type *,
1624 struct dwarf2_cu *);
c906108c 1625
134d01f1 1626static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1627
e7c27a73 1628static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1629
e7c27a73 1630static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1631
5d7cb8df
JK
1632static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1633
27aa8d6a
SW
1634static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1635
74921315
KS
1636static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1637
f55ee35c
JK
1638static struct type *read_module_type (struct die_info *die,
1639 struct dwarf2_cu *cu);
1640
38d518c9 1641static const char *namespace_name (struct die_info *die,
e142c38c 1642 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1643
134d01f1 1644static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1645
e7c27a73 1646static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1647
6e70227d 1648static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1649 struct dwarf2_cu *);
1650
bf6af496 1651static struct die_info *read_die_and_siblings_1
d521ce57 1652 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1653 struct die_info *);
639d11d3 1654
dee91e82 1655static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1656 const gdb_byte *info_ptr,
1657 const gdb_byte **new_info_ptr,
639d11d3
DC
1658 struct die_info *parent);
1659
d521ce57
TT
1660static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1661 struct die_info **, const gdb_byte *,
1662 int *, int);
3019eac3 1663
d521ce57
TT
1664static const gdb_byte *read_full_die (const struct die_reader_specs *,
1665 struct die_info **, const gdb_byte *,
1666 int *);
93311388 1667
e7c27a73 1668static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1669
15d034d0
TT
1670static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1671 struct obstack *);
71c25dea 1672
15d034d0 1673static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1674
15d034d0 1675static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1676 struct die_info *die,
1677 struct dwarf2_cu *cu);
1678
ca69b9e6
DE
1679static const char *dwarf2_physname (const char *name, struct die_info *die,
1680 struct dwarf2_cu *cu);
1681
e142c38c 1682static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1683 struct dwarf2_cu **);
9219021c 1684
f39c6ffd 1685static const char *dwarf_tag_name (unsigned int);
c906108c 1686
f39c6ffd 1687static const char *dwarf_attr_name (unsigned int);
c906108c 1688
f39c6ffd 1689static const char *dwarf_form_name (unsigned int);
c906108c 1690
a14ed312 1691static char *dwarf_bool_name (unsigned int);
c906108c 1692
f39c6ffd 1693static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1694
f9aca02d 1695static struct die_info *sibling_die (struct die_info *);
c906108c 1696
d97bc12b
DE
1697static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1698
1699static void dump_die_for_error (struct die_info *);
1700
1701static void dump_die_1 (struct ui_file *, int level, int max_level,
1702 struct die_info *);
c906108c 1703
d97bc12b 1704/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1705
51545339 1706static void store_in_ref_table (struct die_info *,
10b3939b 1707 struct dwarf2_cu *);
c906108c 1708
ff39bb5e 1709static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1710
ff39bb5e 1711static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1712
348e048f 1713static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1714 const struct attribute *,
348e048f
DE
1715 struct dwarf2_cu **);
1716
10b3939b 1717static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1718 const struct attribute *,
f2f0e013 1719 struct dwarf2_cu **);
c906108c 1720
348e048f 1721static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1722 const struct attribute *,
348e048f
DE
1723 struct dwarf2_cu **);
1724
ac9ec31b
DE
1725static struct type *get_signatured_type (struct die_info *, ULONGEST,
1726 struct dwarf2_cu *);
1727
1728static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1729 const struct attribute *,
ac9ec31b
DE
1730 struct dwarf2_cu *);
1731
e5fe5e75 1732static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1733
52dc124a 1734static void read_signatured_type (struct signatured_type *);
348e048f 1735
c906108c
SS
1736/* memory allocation interface */
1737
7b5a2f43 1738static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1739
b60c80d6 1740static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1741
43f3e411 1742static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2e276125 1743
6e5a29e1 1744static int attr_form_is_block (const struct attribute *);
8e19ed76 1745
6e5a29e1 1746static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1747
6e5a29e1 1748static int attr_form_is_constant (const struct attribute *);
3690dd37 1749
6e5a29e1 1750static int attr_form_is_ref (const struct attribute *);
7771576e 1751
8cf6f0b1
TT
1752static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1753 struct dwarf2_loclist_baton *baton,
ff39bb5e 1754 const struct attribute *attr);
8cf6f0b1 1755
ff39bb5e 1756static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1757 struct symbol *sym,
f1e6e072
TT
1758 struct dwarf2_cu *cu,
1759 int is_block);
4c2df51b 1760
d521ce57
TT
1761static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1762 const gdb_byte *info_ptr,
1763 struct abbrev_info *abbrev);
4bb7a0a7 1764
72bf9492
DJ
1765static void free_stack_comp_unit (void *);
1766
72bf9492
DJ
1767static hashval_t partial_die_hash (const void *item);
1768
1769static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1770
ae038cb0 1771static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1772 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1773
9816fde3 1774static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1775 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1776
1777static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1778 struct die_info *comp_unit_die,
1779 enum language pretend_language);
93311388 1780
68dc6402 1781static void free_heap_comp_unit (void *);
ae038cb0
DJ
1782
1783static void free_cached_comp_units (void *);
1784
1785static void age_cached_comp_units (void);
1786
dee91e82 1787static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1788
f792889a
DJ
1789static struct type *set_die_type (struct die_info *, struct type *,
1790 struct dwarf2_cu *);
1c379e20 1791
ae038cb0
DJ
1792static void create_all_comp_units (struct objfile *);
1793
0e50663e 1794static int create_all_type_units (struct objfile *);
1fd400ff 1795
95554aad
TT
1796static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1797 enum language);
10b3939b 1798
95554aad
TT
1799static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1800 enum language);
10b3939b 1801
f4dc4d17
DE
1802static void process_full_type_unit (struct dwarf2_per_cu_data *,
1803 enum language);
1804
10b3939b
DJ
1805static void dwarf2_add_dependence (struct dwarf2_cu *,
1806 struct dwarf2_per_cu_data *);
1807
ae038cb0
DJ
1808static void dwarf2_mark (struct dwarf2_cu *);
1809
1810static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1811
b64f50a1 1812static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1813 struct dwarf2_per_cu_data *);
673bfd45 1814
f792889a 1815static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1816
9291a0cd
TT
1817static void dwarf2_release_queue (void *dummy);
1818
95554aad
TT
1819static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1820 enum language pretend_language);
1821
a0f42c21 1822static void process_queue (void);
9291a0cd
TT
1823
1824static void find_file_and_directory (struct die_info *die,
1825 struct dwarf2_cu *cu,
15d034d0 1826 const char **name, const char **comp_dir);
9291a0cd
TT
1827
1828static char *file_full_name (int file, struct line_header *lh,
1829 const char *comp_dir);
1830
d521ce57 1831static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
1832 (struct comp_unit_head *header,
1833 struct dwarf2_section_info *section,
d521ce57 1834 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
36586728
TT
1835 int is_debug_types_section);
1836
fd820528 1837static void init_cutu_and_read_dies
f4dc4d17
DE
1838 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1839 int use_existing_cu, int keep,
3019eac3
DE
1840 die_reader_func_ftype *die_reader_func, void *data);
1841
dee91e82
DE
1842static void init_cutu_and_read_dies_simple
1843 (struct dwarf2_per_cu_data *this_cu,
1844 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1845
673bfd45 1846static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1847
3019eac3
DE
1848static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1849
57d63ce2
DE
1850static struct dwo_unit *lookup_dwo_unit_in_dwp
1851 (struct dwp_file *dwp_file, const char *comp_dir,
1852 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
1853
1854static struct dwp_file *get_dwp_file (void);
1855
3019eac3 1856static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1857 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1858
1859static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1860 (struct signatured_type *, const char *, const char *);
3019eac3 1861
89e63ee4
DE
1862static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1863
3019eac3
DE
1864static void free_dwo_file_cleanup (void *);
1865
95554aad
TT
1866static void process_cu_includes (void);
1867
1b80a9fa 1868static void check_producer (struct dwarf2_cu *cu);
527f3840
JK
1869
1870static void free_line_header_voidp (void *arg);
4390d890
DE
1871\f
1872/* Various complaints about symbol reading that don't abort the process. */
1873
1874static void
1875dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1876{
1877 complaint (&symfile_complaints,
1878 _("statement list doesn't fit in .debug_line section"));
1879}
1880
1881static void
1882dwarf2_debug_line_missing_file_complaint (void)
1883{
1884 complaint (&symfile_complaints,
1885 _(".debug_line section has line data without a file"));
1886}
1887
1888static void
1889dwarf2_debug_line_missing_end_sequence_complaint (void)
1890{
1891 complaint (&symfile_complaints,
1892 _(".debug_line section has line "
1893 "program sequence without an end"));
1894}
1895
1896static void
1897dwarf2_complex_location_expr_complaint (void)
1898{
1899 complaint (&symfile_complaints, _("location expression too complex"));
1900}
1901
1902static void
1903dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1904 int arg3)
1905{
1906 complaint (&symfile_complaints,
1907 _("const value length mismatch for '%s', got %d, expected %d"),
1908 arg1, arg2, arg3);
1909}
1910
1911static void
1912dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1913{
1914 complaint (&symfile_complaints,
1915 _("debug info runs off end of %s section"
1916 " [in module %s]"),
a32a8923
DE
1917 get_section_name (section),
1918 get_section_file_name (section));
4390d890 1919}
1b80a9fa 1920
4390d890
DE
1921static void
1922dwarf2_macro_malformed_definition_complaint (const char *arg1)
1923{
1924 complaint (&symfile_complaints,
1925 _("macro debug info contains a "
1926 "malformed macro definition:\n`%s'"),
1927 arg1);
1928}
1929
1930static void
1931dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1932{
1933 complaint (&symfile_complaints,
1934 _("invalid attribute class or form for '%s' in '%s'"),
1935 arg1, arg2);
1936}
527f3840
JK
1937
1938/* Hash function for line_header_hash. */
1939
1940static hashval_t
1941line_header_hash (const struct line_header *ofs)
1942{
1943 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1944}
1945
1946/* Hash function for htab_create_alloc_ex for line_header_hash. */
1947
1948static hashval_t
1949line_header_hash_voidp (const void *item)
1950{
1951 const struct line_header *ofs = item;
1952
1953 return line_header_hash (ofs);
1954}
1955
1956/* Equality function for line_header_hash. */
1957
1958static int
1959line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1960{
1961 const struct line_header *ofs_lhs = item_lhs;
1962 const struct line_header *ofs_rhs = item_rhs;
1963
1964 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1965 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1966}
1967
4390d890 1968\f
9291a0cd
TT
1969#if WORDS_BIGENDIAN
1970
1971/* Convert VALUE between big- and little-endian. */
1972static offset_type
1973byte_swap (offset_type value)
1974{
1975 offset_type result;
1976
1977 result = (value & 0xff) << 24;
1978 result |= (value & 0xff00) << 8;
1979 result |= (value & 0xff0000) >> 8;
1980 result |= (value & 0xff000000) >> 24;
1981 return result;
1982}
1983
1984#define MAYBE_SWAP(V) byte_swap (V)
1985
1986#else
1987#define MAYBE_SWAP(V) (V)
1988#endif /* WORDS_BIGENDIAN */
1989
31aa7e4e
JB
1990/* Read the given attribute value as an address, taking the attribute's
1991 form into account. */
1992
1993static CORE_ADDR
1994attr_value_as_address (struct attribute *attr)
1995{
1996 CORE_ADDR addr;
1997
1998 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1999 {
2000 /* Aside from a few clearly defined exceptions, attributes that
2001 contain an address must always be in DW_FORM_addr form.
2002 Unfortunately, some compilers happen to be violating this
2003 requirement by encoding addresses using other forms, such
2004 as DW_FORM_data4 for example. For those broken compilers,
2005 we try to do our best, without any guarantee of success,
2006 to interpret the address correctly. It would also be nice
2007 to generate a complaint, but that would require us to maintain
2008 a list of legitimate cases where a non-address form is allowed,
2009 as well as update callers to pass in at least the CU's DWARF
2010 version. This is more overhead than what we're willing to
2011 expand for a pretty rare case. */
2012 addr = DW_UNSND (attr);
2013 }
2014 else
2015 addr = DW_ADDR (attr);
2016
2017 return addr;
2018}
2019
9291a0cd
TT
2020/* The suffix for an index file. */
2021#define INDEX_SUFFIX ".gdb-index"
2022
c906108c 2023/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
2024 information and return true if we have enough to do something.
2025 NAMES points to the dwarf2 section names, or is NULL if the standard
2026 ELF names are used. */
c906108c
SS
2027
2028int
251d32d9
TG
2029dwarf2_has_info (struct objfile *objfile,
2030 const struct dwarf2_debug_sections *names)
c906108c 2031{
be391dca
TT
2032 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2033 if (!dwarf2_per_objfile)
2034 {
2035 /* Initialize per-objfile state. */
2036 struct dwarf2_per_objfile *data
2037 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
9a619af0 2038
be391dca
TT
2039 memset (data, 0, sizeof (*data));
2040 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2041 dwarf2_per_objfile = data;
6502dd73 2042
251d32d9
TG
2043 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2044 (void *) names);
be391dca
TT
2045 dwarf2_per_objfile->objfile = objfile;
2046 }
73869dc2
DE
2047 return (!dwarf2_per_objfile->info.is_virtual
2048 && dwarf2_per_objfile->info.s.asection != NULL
2049 && !dwarf2_per_objfile->abbrev.is_virtual
2050 && dwarf2_per_objfile->abbrev.s.asection != NULL);
2051}
2052
2053/* Return the containing section of virtual section SECTION. */
2054
2055static struct dwarf2_section_info *
2056get_containing_section (const struct dwarf2_section_info *section)
2057{
2058 gdb_assert (section->is_virtual);
2059 return section->s.containing_section;
c906108c
SS
2060}
2061
a32a8923
DE
2062/* Return the bfd owner of SECTION. */
2063
2064static struct bfd *
2065get_section_bfd_owner (const struct dwarf2_section_info *section)
2066{
73869dc2
DE
2067 if (section->is_virtual)
2068 {
2069 section = get_containing_section (section);
2070 gdb_assert (!section->is_virtual);
2071 }
2072 return section->s.asection->owner;
a32a8923
DE
2073}
2074
2075/* Return the bfd section of SECTION.
2076 Returns NULL if the section is not present. */
2077
2078static asection *
2079get_section_bfd_section (const struct dwarf2_section_info *section)
2080{
73869dc2
DE
2081 if (section->is_virtual)
2082 {
2083 section = get_containing_section (section);
2084 gdb_assert (!section->is_virtual);
2085 }
2086 return section->s.asection;
a32a8923
DE
2087}
2088
2089/* Return the name of SECTION. */
2090
2091static const char *
2092get_section_name (const struct dwarf2_section_info *section)
2093{
2094 asection *sectp = get_section_bfd_section (section);
2095
2096 gdb_assert (sectp != NULL);
2097 return bfd_section_name (get_section_bfd_owner (section), sectp);
2098}
2099
2100/* Return the name of the file SECTION is in. */
2101
2102static const char *
2103get_section_file_name (const struct dwarf2_section_info *section)
2104{
2105 bfd *abfd = get_section_bfd_owner (section);
2106
2107 return bfd_get_filename (abfd);
2108}
2109
2110/* Return the id of SECTION.
2111 Returns 0 if SECTION doesn't exist. */
2112
2113static int
2114get_section_id (const struct dwarf2_section_info *section)
2115{
2116 asection *sectp = get_section_bfd_section (section);
2117
2118 if (sectp == NULL)
2119 return 0;
2120 return sectp->id;
2121}
2122
2123/* Return the flags of SECTION.
73869dc2 2124 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2125
2126static int
2127get_section_flags (const struct dwarf2_section_info *section)
2128{
2129 asection *sectp = get_section_bfd_section (section);
2130
2131 gdb_assert (sectp != NULL);
2132 return bfd_get_section_flags (sectp->owner, sectp);
2133}
2134
251d32d9
TG
2135/* When loading sections, we look either for uncompressed section or for
2136 compressed section names. */
233a11ab
CS
2137
2138static int
251d32d9
TG
2139section_is_p (const char *section_name,
2140 const struct dwarf2_section_names *names)
233a11ab 2141{
251d32d9
TG
2142 if (names->normal != NULL
2143 && strcmp (section_name, names->normal) == 0)
2144 return 1;
2145 if (names->compressed != NULL
2146 && strcmp (section_name, names->compressed) == 0)
2147 return 1;
2148 return 0;
233a11ab
CS
2149}
2150
c906108c
SS
2151/* This function is mapped across the sections and remembers the
2152 offset and size of each of the debugging sections we are interested
2153 in. */
2154
2155static void
251d32d9 2156dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 2157{
251d32d9 2158 const struct dwarf2_debug_sections *names;
dc7650b8 2159 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
2160
2161 if (vnames == NULL)
2162 names = &dwarf2_elf_names;
2163 else
2164 names = (const struct dwarf2_debug_sections *) vnames;
2165
dc7650b8
JK
2166 if ((aflag & SEC_HAS_CONTENTS) == 0)
2167 {
2168 }
2169 else if (section_is_p (sectp->name, &names->info))
c906108c 2170 {
73869dc2 2171 dwarf2_per_objfile->info.s.asection = sectp;
dce234bc 2172 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 2173 }
251d32d9 2174 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 2175 {
73869dc2 2176 dwarf2_per_objfile->abbrev.s.asection = sectp;
dce234bc 2177 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 2178 }
251d32d9 2179 else if (section_is_p (sectp->name, &names->line))
c906108c 2180 {
73869dc2 2181 dwarf2_per_objfile->line.s.asection = sectp;
dce234bc 2182 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 2183 }
251d32d9 2184 else if (section_is_p (sectp->name, &names->loc))
c906108c 2185 {
73869dc2 2186 dwarf2_per_objfile->loc.s.asection = sectp;
dce234bc 2187 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 2188 }
251d32d9 2189 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 2190 {
73869dc2 2191 dwarf2_per_objfile->macinfo.s.asection = sectp;
dce234bc 2192 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 2193 }
cf2c3c16
TT
2194 else if (section_is_p (sectp->name, &names->macro))
2195 {
73869dc2 2196 dwarf2_per_objfile->macro.s.asection = sectp;
cf2c3c16
TT
2197 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2198 }
251d32d9 2199 else if (section_is_p (sectp->name, &names->str))
c906108c 2200 {
73869dc2 2201 dwarf2_per_objfile->str.s.asection = sectp;
dce234bc 2202 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 2203 }
3019eac3
DE
2204 else if (section_is_p (sectp->name, &names->addr))
2205 {
73869dc2 2206 dwarf2_per_objfile->addr.s.asection = sectp;
3019eac3
DE
2207 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2208 }
251d32d9 2209 else if (section_is_p (sectp->name, &names->frame))
b6af0555 2210 {
73869dc2 2211 dwarf2_per_objfile->frame.s.asection = sectp;
dce234bc 2212 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 2213 }
251d32d9 2214 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 2215 {
73869dc2 2216 dwarf2_per_objfile->eh_frame.s.asection = sectp;
dc7650b8 2217 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2218 }
251d32d9 2219 else if (section_is_p (sectp->name, &names->ranges))
af34e669 2220 {
73869dc2 2221 dwarf2_per_objfile->ranges.s.asection = sectp;
dce234bc 2222 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 2223 }
251d32d9 2224 else if (section_is_p (sectp->name, &names->types))
348e048f 2225 {
8b70b953
TT
2226 struct dwarf2_section_info type_section;
2227
2228 memset (&type_section, 0, sizeof (type_section));
73869dc2 2229 type_section.s.asection = sectp;
8b70b953
TT
2230 type_section.size = bfd_get_section_size (sectp);
2231
2232 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2233 &type_section);
348e048f 2234 }
251d32d9 2235 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd 2236 {
73869dc2 2237 dwarf2_per_objfile->gdb_index.s.asection = sectp;
9291a0cd
TT
2238 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2239 }
dce234bc 2240
72dca2f5
FR
2241 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2242 && bfd_section_vma (abfd, sectp) == 0)
2243 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
2244}
2245
fceca515
DE
2246/* A helper function that decides whether a section is empty,
2247 or not present. */
9e0ac564
TT
2248
2249static int
19ac8c2e 2250dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2251{
73869dc2
DE
2252 if (section->is_virtual)
2253 return section->size == 0;
2254 return section->s.asection == NULL || section->size == 0;
9e0ac564
TT
2255}
2256
3019eac3
DE
2257/* Read the contents of the section INFO.
2258 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2259 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2260 of the DWO file.
dce234bc 2261 If the section is compressed, uncompress it before returning. */
c906108c 2262
dce234bc
PP
2263static void
2264dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2265{
a32a8923 2266 asection *sectp;
3019eac3 2267 bfd *abfd;
dce234bc 2268 gdb_byte *buf, *retbuf;
c906108c 2269
be391dca
TT
2270 if (info->readin)
2271 return;
dce234bc 2272 info->buffer = NULL;
be391dca 2273 info->readin = 1;
188dd5d6 2274
9e0ac564 2275 if (dwarf2_section_empty_p (info))
dce234bc 2276 return;
c906108c 2277
a32a8923 2278 sectp = get_section_bfd_section (info);
3019eac3 2279
73869dc2
DE
2280 /* If this is a virtual section we need to read in the real one first. */
2281 if (info->is_virtual)
2282 {
2283 struct dwarf2_section_info *containing_section =
2284 get_containing_section (info);
2285
2286 gdb_assert (sectp != NULL);
2287 if ((sectp->flags & SEC_RELOC) != 0)
2288 {
2289 error (_("Dwarf Error: DWP format V2 with relocations is not"
2290 " supported in section %s [in module %s]"),
2291 get_section_name (info), get_section_file_name (info));
2292 }
2293 dwarf2_read_section (objfile, containing_section);
2294 /* Other code should have already caught virtual sections that don't
2295 fit. */
2296 gdb_assert (info->virtual_offset + info->size
2297 <= containing_section->size);
2298 /* If the real section is empty or there was a problem reading the
2299 section we shouldn't get here. */
2300 gdb_assert (containing_section->buffer != NULL);
2301 info->buffer = containing_section->buffer + info->virtual_offset;
2302 return;
2303 }
2304
4bf44c1c
TT
2305 /* If the section has relocations, we must read it ourselves.
2306 Otherwise we attach it to the BFD. */
2307 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2308 {
d521ce57 2309 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2310 return;
dce234bc 2311 }
dce234bc 2312
4bf44c1c
TT
2313 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2314 info->buffer = buf;
dce234bc
PP
2315
2316 /* When debugging .o files, we may need to apply relocations; see
2317 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2318 We never compress sections in .o files, so we only need to
2319 try this when the section is not compressed. */
ac8035ab 2320 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2321 if (retbuf != NULL)
2322 {
2323 info->buffer = retbuf;
2324 return;
2325 }
2326
a32a8923
DE
2327 abfd = get_section_bfd_owner (info);
2328 gdb_assert (abfd != NULL);
2329
dce234bc
PP
2330 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2331 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2332 {
2333 error (_("Dwarf Error: Can't read DWARF data"
2334 " in section %s [in module %s]"),
2335 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2336 }
dce234bc
PP
2337}
2338
9e0ac564
TT
2339/* A helper function that returns the size of a section in a safe way.
2340 If you are positive that the section has been read before using the
2341 size, then it is safe to refer to the dwarf2_section_info object's
2342 "size" field directly. In other cases, you must call this
2343 function, because for compressed sections the size field is not set
2344 correctly until the section has been read. */
2345
2346static bfd_size_type
2347dwarf2_section_size (struct objfile *objfile,
2348 struct dwarf2_section_info *info)
2349{
2350 if (!info->readin)
2351 dwarf2_read_section (objfile, info);
2352 return info->size;
2353}
2354
dce234bc 2355/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2356 SECTION_NAME. */
af34e669 2357
dce234bc 2358void
3017a003
TG
2359dwarf2_get_section_info (struct objfile *objfile,
2360 enum dwarf2_section_enum sect,
d521ce57 2361 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2362 bfd_size_type *sizep)
2363{
2364 struct dwarf2_per_objfile *data
2365 = objfile_data (objfile, dwarf2_objfile_data_key);
2366 struct dwarf2_section_info *info;
a3b2a86b
TT
2367
2368 /* We may see an objfile without any DWARF, in which case we just
2369 return nothing. */
2370 if (data == NULL)
2371 {
2372 *sectp = NULL;
2373 *bufp = NULL;
2374 *sizep = 0;
2375 return;
2376 }
3017a003
TG
2377 switch (sect)
2378 {
2379 case DWARF2_DEBUG_FRAME:
2380 info = &data->frame;
2381 break;
2382 case DWARF2_EH_FRAME:
2383 info = &data->eh_frame;
2384 break;
2385 default:
2386 gdb_assert_not_reached ("unexpected section");
2387 }
dce234bc 2388
9e0ac564 2389 dwarf2_read_section (objfile, info);
dce234bc 2390
a32a8923 2391 *sectp = get_section_bfd_section (info);
dce234bc
PP
2392 *bufp = info->buffer;
2393 *sizep = info->size;
2394}
2395
36586728
TT
2396/* A helper function to find the sections for a .dwz file. */
2397
2398static void
2399locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2400{
2401 struct dwz_file *dwz_file = arg;
2402
2403 /* Note that we only support the standard ELF names, because .dwz
2404 is ELF-only (at the time of writing). */
2405 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2406 {
73869dc2 2407 dwz_file->abbrev.s.asection = sectp;
36586728
TT
2408 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2409 }
2410 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2411 {
73869dc2 2412 dwz_file->info.s.asection = sectp;
36586728
TT
2413 dwz_file->info.size = bfd_get_section_size (sectp);
2414 }
2415 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2416 {
73869dc2 2417 dwz_file->str.s.asection = sectp;
36586728
TT
2418 dwz_file->str.size = bfd_get_section_size (sectp);
2419 }
2420 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2421 {
73869dc2 2422 dwz_file->line.s.asection = sectp;
36586728
TT
2423 dwz_file->line.size = bfd_get_section_size (sectp);
2424 }
2425 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2426 {
73869dc2 2427 dwz_file->macro.s.asection = sectp;
36586728
TT
2428 dwz_file->macro.size = bfd_get_section_size (sectp);
2429 }
2ec9a5e0
TT
2430 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2431 {
73869dc2 2432 dwz_file->gdb_index.s.asection = sectp;
2ec9a5e0
TT
2433 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2434 }
36586728
TT
2435}
2436
4db1a1dc
TT
2437/* Open the separate '.dwz' debug file, if needed. Return NULL if
2438 there is no .gnu_debugaltlink section in the file. Error if there
2439 is such a section but the file cannot be found. */
36586728
TT
2440
2441static struct dwz_file *
2442dwarf2_get_dwz_file (void)
2443{
4db1a1dc
TT
2444 bfd *dwz_bfd;
2445 char *data;
36586728
TT
2446 struct cleanup *cleanup;
2447 const char *filename;
2448 struct dwz_file *result;
acd13123 2449 bfd_size_type buildid_len_arg;
dc294be5
TT
2450 size_t buildid_len;
2451 bfd_byte *buildid;
36586728
TT
2452
2453 if (dwarf2_per_objfile->dwz_file != NULL)
2454 return dwarf2_per_objfile->dwz_file;
2455
4db1a1dc
TT
2456 bfd_set_error (bfd_error_no_error);
2457 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
acd13123 2458 &buildid_len_arg, &buildid);
4db1a1dc
TT
2459 if (data == NULL)
2460 {
2461 if (bfd_get_error () == bfd_error_no_error)
2462 return NULL;
2463 error (_("could not read '.gnu_debugaltlink' section: %s"),
2464 bfd_errmsg (bfd_get_error ()));
2465 }
36586728 2466 cleanup = make_cleanup (xfree, data);
dc294be5 2467 make_cleanup (xfree, buildid);
36586728 2468
acd13123
TT
2469 buildid_len = (size_t) buildid_len_arg;
2470
f9d83a0b 2471 filename = (const char *) data;
36586728
TT
2472 if (!IS_ABSOLUTE_PATH (filename))
2473 {
4262abfb 2474 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728
TT
2475 char *rel;
2476
2477 make_cleanup (xfree, abs);
2478 abs = ldirname (abs);
2479 make_cleanup (xfree, abs);
2480
2481 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2482 make_cleanup (xfree, rel);
2483 filename = rel;
2484 }
2485
dc294be5
TT
2486 /* First try the file name given in the section. If that doesn't
2487 work, try to use the build-id instead. */
36586728 2488 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
dc294be5 2489 if (dwz_bfd != NULL)
36586728 2490 {
dc294be5
TT
2491 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2492 {
2493 gdb_bfd_unref (dwz_bfd);
2494 dwz_bfd = NULL;
2495 }
36586728
TT
2496 }
2497
dc294be5
TT
2498 if (dwz_bfd == NULL)
2499 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2500
2501 if (dwz_bfd == NULL)
2502 error (_("could not find '.gnu_debugaltlink' file for %s"),
2503 objfile_name (dwarf2_per_objfile->objfile));
2504
36586728
TT
2505 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2506 struct dwz_file);
2507 result->dwz_bfd = dwz_bfd;
2508
2509 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2510
2511 do_cleanups (cleanup);
2512
13aaf454 2513 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
8d2cc612 2514 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2515 return result;
2516}
9291a0cd 2517\f
7b9f3c50
DE
2518/* DWARF quick_symbols_functions support. */
2519
2520/* TUs can share .debug_line entries, and there can be a lot more TUs than
2521 unique line tables, so we maintain a separate table of all .debug_line
2522 derived entries to support the sharing.
2523 All the quick functions need is the list of file names. We discard the
2524 line_header when we're done and don't need to record it here. */
2525struct quick_file_names
2526{
094b34ac
DE
2527 /* The data used to construct the hash key. */
2528 struct stmt_list_hash hash;
7b9f3c50
DE
2529
2530 /* The number of entries in file_names, real_names. */
2531 unsigned int num_file_names;
2532
2533 /* The file names from the line table, after being run through
2534 file_full_name. */
2535 const char **file_names;
2536
2537 /* The file names from the line table after being run through
2538 gdb_realpath. These are computed lazily. */
2539 const char **real_names;
2540};
2541
2542/* When using the index (and thus not using psymtabs), each CU has an
2543 object of this type. This is used to hold information needed by
2544 the various "quick" methods. */
2545struct dwarf2_per_cu_quick_data
2546{
2547 /* The file table. This can be NULL if there was no file table
2548 or it's currently not read in.
2549 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2550 struct quick_file_names *file_names;
2551
2552 /* The corresponding symbol table. This is NULL if symbols for this
2553 CU have not yet been read. */
43f3e411 2554 struct compunit_symtab *compunit_symtab;
7b9f3c50
DE
2555
2556 /* A temporary mark bit used when iterating over all CUs in
2557 expand_symtabs_matching. */
2558 unsigned int mark : 1;
2559
2560 /* True if we've tried to read the file table and found there isn't one.
2561 There will be no point in trying to read it again next time. */
2562 unsigned int no_file_data : 1;
2563};
2564
094b34ac
DE
2565/* Utility hash function for a stmt_list_hash. */
2566
2567static hashval_t
2568hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2569{
2570 hashval_t v = 0;
2571
2572 if (stmt_list_hash->dwo_unit != NULL)
2573 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2574 v += stmt_list_hash->line_offset.sect_off;
2575 return v;
2576}
2577
2578/* Utility equality function for a stmt_list_hash. */
2579
2580static int
2581eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2582 const struct stmt_list_hash *rhs)
2583{
2584 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2585 return 0;
2586 if (lhs->dwo_unit != NULL
2587 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2588 return 0;
2589
2590 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2591}
2592
7b9f3c50
DE
2593/* Hash function for a quick_file_names. */
2594
2595static hashval_t
2596hash_file_name_entry (const void *e)
2597{
2598 const struct quick_file_names *file_data = e;
2599
094b34ac 2600 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2601}
2602
2603/* Equality function for a quick_file_names. */
2604
2605static int
2606eq_file_name_entry (const void *a, const void *b)
2607{
2608 const struct quick_file_names *ea = a;
2609 const struct quick_file_names *eb = b;
2610
094b34ac 2611 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2612}
2613
2614/* Delete function for a quick_file_names. */
2615
2616static void
2617delete_file_name_entry (void *e)
2618{
2619 struct quick_file_names *file_data = e;
2620 int i;
2621
2622 for (i = 0; i < file_data->num_file_names; ++i)
2623 {
2624 xfree ((void*) file_data->file_names[i]);
2625 if (file_data->real_names)
2626 xfree ((void*) file_data->real_names[i]);
2627 }
2628
2629 /* The space for the struct itself lives on objfile_obstack,
2630 so we don't free it here. */
2631}
2632
2633/* Create a quick_file_names hash table. */
2634
2635static htab_t
2636create_quick_file_names_table (unsigned int nr_initial_entries)
2637{
2638 return htab_create_alloc (nr_initial_entries,
2639 hash_file_name_entry, eq_file_name_entry,
2640 delete_file_name_entry, xcalloc, xfree);
2641}
9291a0cd 2642
918dd910
JK
2643/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2644 have to be created afterwards. You should call age_cached_comp_units after
2645 processing PER_CU->CU. dw2_setup must have been already called. */
2646
2647static void
2648load_cu (struct dwarf2_per_cu_data *per_cu)
2649{
3019eac3 2650 if (per_cu->is_debug_types)
e5fe5e75 2651 load_full_type_unit (per_cu);
918dd910 2652 else
95554aad 2653 load_full_comp_unit (per_cu, language_minimal);
918dd910 2654
918dd910 2655 gdb_assert (per_cu->cu != NULL);
2dc860c0
DE
2656
2657 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2658}
2659
a0f42c21 2660/* Read in the symbols for PER_CU. */
2fdf6df6 2661
9291a0cd 2662static void
a0f42c21 2663dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2664{
2665 struct cleanup *back_to;
2666
f4dc4d17
DE
2667 /* Skip type_unit_groups, reading the type units they contain
2668 is handled elsewhere. */
2669 if (IS_TYPE_UNIT_GROUP (per_cu))
2670 return;
2671
9291a0cd
TT
2672 back_to = make_cleanup (dwarf2_release_queue, NULL);
2673
95554aad 2674 if (dwarf2_per_objfile->using_index
43f3e411 2675 ? per_cu->v.quick->compunit_symtab == NULL
95554aad
TT
2676 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2677 {
2678 queue_comp_unit (per_cu, language_minimal);
2679 load_cu (per_cu);
89e63ee4
DE
2680
2681 /* If we just loaded a CU from a DWO, and we're working with an index
2682 that may badly handle TUs, load all the TUs in that DWO as well.
2683 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2684 if (!per_cu->is_debug_types
2685 && per_cu->cu->dwo_unit != NULL
2686 && dwarf2_per_objfile->index_table != NULL
2687 && dwarf2_per_objfile->index_table->version <= 7
2688 /* DWP files aren't supported yet. */
2689 && get_dwp_file () == NULL)
2690 queue_and_load_all_dwo_tus (per_cu);
95554aad 2691 }
9291a0cd 2692
a0f42c21 2693 process_queue ();
9291a0cd
TT
2694
2695 /* Age the cache, releasing compilation units that have not
2696 been used recently. */
2697 age_cached_comp_units ();
2698
2699 do_cleanups (back_to);
2700}
2701
2702/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2703 the objfile from which this CU came. Returns the resulting symbol
2704 table. */
2fdf6df6 2705
43f3e411 2706static struct compunit_symtab *
a0f42c21 2707dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2708{
95554aad 2709 gdb_assert (dwarf2_per_objfile->using_index);
43f3e411 2710 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
2711 {
2712 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2713 increment_reading_symtab ();
a0f42c21 2714 dw2_do_instantiate_symtab (per_cu);
95554aad 2715 process_cu_includes ();
9291a0cd
TT
2716 do_cleanups (back_to);
2717 }
f194fefb 2718
43f3e411 2719 return per_cu->v.quick->compunit_symtab;
9291a0cd
TT
2720}
2721
8832e7e3 2722/* Return the CU/TU given its index.
f4dc4d17
DE
2723
2724 This is intended for loops like:
2725
2726 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2727 + dwarf2_per_objfile->n_type_units); ++i)
2728 {
8832e7e3 2729 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
f4dc4d17
DE
2730
2731 ...;
2732 }
2733*/
2fdf6df6 2734
1fd400ff 2735static struct dwarf2_per_cu_data *
8832e7e3 2736dw2_get_cutu (int index)
1fd400ff
TT
2737{
2738 if (index >= dwarf2_per_objfile->n_comp_units)
2739 {
f4dc4d17 2740 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2741 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2742 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2743 }
2744
2745 return dwarf2_per_objfile->all_comp_units[index];
2746}
2747
8832e7e3
DE
2748/* Return the CU given its index.
2749 This differs from dw2_get_cutu in that it's for when you know INDEX
2750 refers to a CU. */
f4dc4d17
DE
2751
2752static struct dwarf2_per_cu_data *
8832e7e3 2753dw2_get_cu (int index)
f4dc4d17 2754{
8832e7e3 2755 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
f4dc4d17 2756
1fd400ff
TT
2757 return dwarf2_per_objfile->all_comp_units[index];
2758}
2759
2ec9a5e0
TT
2760/* A helper for create_cus_from_index that handles a given list of
2761 CUs. */
2fdf6df6 2762
74a0d9f6 2763static void
2ec9a5e0
TT
2764create_cus_from_index_list (struct objfile *objfile,
2765 const gdb_byte *cu_list, offset_type n_elements,
2766 struct dwarf2_section_info *section,
2767 int is_dwz,
2768 int base_offset)
9291a0cd
TT
2769{
2770 offset_type i;
9291a0cd 2771
2ec9a5e0 2772 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2773 {
2774 struct dwarf2_per_cu_data *the_cu;
2775 ULONGEST offset, length;
2776
74a0d9f6
JK
2777 gdb_static_assert (sizeof (ULONGEST) >= 8);
2778 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2779 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2780 cu_list += 2 * 8;
2781
2782 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2783 struct dwarf2_per_cu_data);
b64f50a1 2784 the_cu->offset.sect_off = offset;
9291a0cd
TT
2785 the_cu->length = length;
2786 the_cu->objfile = objfile;
8a0459fd 2787 the_cu->section = section;
9291a0cd
TT
2788 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2789 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2790 the_cu->is_dwz = is_dwz;
2791 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 2792 }
9291a0cd
TT
2793}
2794
2ec9a5e0 2795/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 2796 the CU objects for this objfile. */
2ec9a5e0 2797
74a0d9f6 2798static void
2ec9a5e0
TT
2799create_cus_from_index (struct objfile *objfile,
2800 const gdb_byte *cu_list, offset_type cu_list_elements,
2801 const gdb_byte *dwz_list, offset_type dwz_elements)
2802{
2803 struct dwz_file *dwz;
2804
2805 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2806 dwarf2_per_objfile->all_comp_units
2807 = obstack_alloc (&objfile->objfile_obstack,
2808 dwarf2_per_objfile->n_comp_units
2809 * sizeof (struct dwarf2_per_cu_data *));
2810
74a0d9f6
JK
2811 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2812 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
2813
2814 if (dwz_elements == 0)
74a0d9f6 2815 return;
2ec9a5e0
TT
2816
2817 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
2818 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2819 cu_list_elements / 2);
2ec9a5e0
TT
2820}
2821
1fd400ff 2822/* Create the signatured type hash table from the index. */
673bfd45 2823
74a0d9f6 2824static void
673bfd45 2825create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2826 struct dwarf2_section_info *section,
673bfd45
DE
2827 const gdb_byte *bytes,
2828 offset_type elements)
1fd400ff
TT
2829{
2830 offset_type i;
673bfd45 2831 htab_t sig_types_hash;
1fd400ff 2832
6aa5f3a6
DE
2833 dwarf2_per_objfile->n_type_units
2834 = dwarf2_per_objfile->n_allocated_type_units
2835 = elements / 3;
d467dd73 2836 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
2837 = xmalloc (dwarf2_per_objfile->n_type_units
2838 * sizeof (struct signatured_type *));
1fd400ff 2839
673bfd45 2840 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2841
2842 for (i = 0; i < elements; i += 3)
2843 {
52dc124a
DE
2844 struct signatured_type *sig_type;
2845 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2846 void **slot;
2847
74a0d9f6
JK
2848 gdb_static_assert (sizeof (ULONGEST) >= 8);
2849 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2850 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2851 BFD_ENDIAN_LITTLE);
1fd400ff
TT
2852 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2853 bytes += 3 * 8;
2854
52dc124a 2855 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2856 struct signatured_type);
52dc124a 2857 sig_type->signature = signature;
3019eac3
DE
2858 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2859 sig_type->per_cu.is_debug_types = 1;
8a0459fd 2860 sig_type->per_cu.section = section;
52dc124a
DE
2861 sig_type->per_cu.offset.sect_off = offset;
2862 sig_type->per_cu.objfile = objfile;
2863 sig_type->per_cu.v.quick
1fd400ff
TT
2864 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2865 struct dwarf2_per_cu_quick_data);
2866
52dc124a
DE
2867 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2868 *slot = sig_type;
1fd400ff 2869
b4dd5633 2870 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2871 }
2872
673bfd45 2873 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2874}
2875
9291a0cd
TT
2876/* Read the address map data from the mapped index, and use it to
2877 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2878
9291a0cd
TT
2879static void
2880create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2881{
3e29f34a 2882 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9291a0cd
TT
2883 const gdb_byte *iter, *end;
2884 struct obstack temp_obstack;
2885 struct addrmap *mutable_map;
2886 struct cleanup *cleanup;
2887 CORE_ADDR baseaddr;
2888
2889 obstack_init (&temp_obstack);
2890 cleanup = make_cleanup_obstack_free (&temp_obstack);
2891 mutable_map = addrmap_create_mutable (&temp_obstack);
2892
2893 iter = index->address_table;
2894 end = iter + index->address_table_size;
2895
2896 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2897
2898 while (iter < end)
2899 {
2900 ULONGEST hi, lo, cu_index;
2901 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2902 iter += 8;
2903 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2904 iter += 8;
2905 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2906 iter += 4;
f652bce2 2907
24a55014 2908 if (lo > hi)
f652bce2 2909 {
24a55014
DE
2910 complaint (&symfile_complaints,
2911 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 2912 hex_string (lo), hex_string (hi));
24a55014 2913 continue;
f652bce2 2914 }
24a55014
DE
2915
2916 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
2917 {
2918 complaint (&symfile_complaints,
2919 _(".gdb_index address table has invalid CU number %u"),
2920 (unsigned) cu_index);
24a55014 2921 continue;
f652bce2 2922 }
24a55014 2923
3e29f34a
MR
2924 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2925 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2926 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
9291a0cd
TT
2927 }
2928
2929 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2930 &objfile->objfile_obstack);
2931 do_cleanups (cleanup);
2932}
2933
59d7bcaf
JK
2934/* The hash function for strings in the mapped index. This is the same as
2935 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2936 implementation. This is necessary because the hash function is tied to the
2937 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2938 SYMBOL_HASH_NEXT.
2939
2940 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2941
9291a0cd 2942static hashval_t
559a7a62 2943mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2944{
2945 const unsigned char *str = (const unsigned char *) p;
2946 hashval_t r = 0;
2947 unsigned char c;
2948
2949 while ((c = *str++) != 0)
559a7a62
JK
2950 {
2951 if (index_version >= 5)
2952 c = tolower (c);
2953 r = r * 67 + c - 113;
2954 }
9291a0cd
TT
2955
2956 return r;
2957}
2958
2959/* Find a slot in the mapped index INDEX for the object named NAME.
2960 If NAME is found, set *VEC_OUT to point to the CU vector in the
2961 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2962
9291a0cd
TT
2963static int
2964find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2965 offset_type **vec_out)
2966{
0cf03b49
JK
2967 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2968 offset_type hash;
9291a0cd 2969 offset_type slot, step;
559a7a62 2970 int (*cmp) (const char *, const char *);
9291a0cd 2971
0cf03b49
JK
2972 if (current_language->la_language == language_cplus
2973 || current_language->la_language == language_java
2974 || current_language->la_language == language_fortran)
2975 {
2976 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2977 not contain any. */
a8719064 2978
72998fb3 2979 if (strchr (name, '(') != NULL)
0cf03b49 2980 {
72998fb3 2981 char *without_params = cp_remove_params (name);
0cf03b49 2982
72998fb3
DE
2983 if (without_params != NULL)
2984 {
2985 make_cleanup (xfree, without_params);
2986 name = without_params;
2987 }
0cf03b49
JK
2988 }
2989 }
2990
559a7a62 2991 /* Index version 4 did not support case insensitive searches. But the
feea76c2 2992 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
2993 simulate our NAME being searched is also lowercased. */
2994 hash = mapped_index_string_hash ((index->version == 4
2995 && case_sensitivity == case_sensitive_off
2996 ? 5 : index->version),
2997 name);
2998
3876f04e
DE
2999 slot = hash & (index->symbol_table_slots - 1);
3000 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 3001 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
3002
3003 for (;;)
3004 {
3005 /* Convert a slot number to an offset into the table. */
3006 offset_type i = 2 * slot;
3007 const char *str;
3876f04e 3008 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
3009 {
3010 do_cleanups (back_to);
3011 return 0;
3012 }
9291a0cd 3013
3876f04e 3014 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 3015 if (!cmp (name, str))
9291a0cd
TT
3016 {
3017 *vec_out = (offset_type *) (index->constant_pool
3876f04e 3018 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 3019 do_cleanups (back_to);
9291a0cd
TT
3020 return 1;
3021 }
3022
3876f04e 3023 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
3024 }
3025}
3026
2ec9a5e0
TT
3027/* A helper function that reads the .gdb_index from SECTION and fills
3028 in MAP. FILENAME is the name of the file containing the section;
3029 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3030 ok to use deprecated sections.
3031
3032 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3033 out parameters that are filled in with information about the CU and
3034 TU lists in the section.
3035
3036 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 3037
9291a0cd 3038static int
2ec9a5e0
TT
3039read_index_from_section (struct objfile *objfile,
3040 const char *filename,
3041 int deprecated_ok,
3042 struct dwarf2_section_info *section,
3043 struct mapped_index *map,
3044 const gdb_byte **cu_list,
3045 offset_type *cu_list_elements,
3046 const gdb_byte **types_list,
3047 offset_type *types_list_elements)
9291a0cd 3048{
948f8e3d 3049 const gdb_byte *addr;
2ec9a5e0 3050 offset_type version;
b3b272e1 3051 offset_type *metadata;
1fd400ff 3052 int i;
9291a0cd 3053
2ec9a5e0 3054 if (dwarf2_section_empty_p (section))
9291a0cd 3055 return 0;
82430852
JK
3056
3057 /* Older elfutils strip versions could keep the section in the main
3058 executable while splitting it for the separate debug info file. */
a32a8923 3059 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
3060 return 0;
3061
2ec9a5e0 3062 dwarf2_read_section (objfile, section);
9291a0cd 3063
2ec9a5e0 3064 addr = section->buffer;
9291a0cd 3065 /* Version check. */
1fd400ff 3066 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3067 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3068 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3069 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3070 indices. */
831adc1f 3071 if (version < 4)
481860b3
GB
3072 {
3073 static int warning_printed = 0;
3074 if (!warning_printed)
3075 {
3076 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3077 filename);
481860b3
GB
3078 warning_printed = 1;
3079 }
3080 return 0;
3081 }
3082 /* Index version 4 uses a different hash function than index version
3083 5 and later.
3084
3085 Versions earlier than 6 did not emit psymbols for inlined
3086 functions. Using these files will cause GDB not to be able to
3087 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3088 indices unless the user has done
3089 "set use-deprecated-index-sections on". */
2ec9a5e0 3090 if (version < 6 && !deprecated_ok)
481860b3
GB
3091 {
3092 static int warning_printed = 0;
3093 if (!warning_printed)
3094 {
e615022a
DE
3095 warning (_("\
3096Skipping deprecated .gdb_index section in %s.\n\
3097Do \"set use-deprecated-index-sections on\" before the file is read\n\
3098to use the section anyway."),
2ec9a5e0 3099 filename);
481860b3
GB
3100 warning_printed = 1;
3101 }
3102 return 0;
3103 }
796a7ff8 3104 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3105 of the TU (for symbols coming from TUs),
3106 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3107 Plus gold-generated indices can have duplicate entries for global symbols,
3108 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3109 These are just performance bugs, and we can't distinguish gdb-generated
3110 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3111
481860b3 3112 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3113 longer backward compatible. */
796a7ff8 3114 if (version > 8)
594e8718 3115 return 0;
9291a0cd 3116
559a7a62 3117 map->version = version;
2ec9a5e0 3118 map->total_size = section->size;
9291a0cd
TT
3119
3120 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3121
3122 i = 0;
2ec9a5e0
TT
3123 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3124 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3125 / 8);
1fd400ff
TT
3126 ++i;
3127
2ec9a5e0
TT
3128 *types_list = addr + MAYBE_SWAP (metadata[i]);
3129 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3130 - MAYBE_SWAP (metadata[i]))
3131 / 8);
987d643c 3132 ++i;
1fd400ff
TT
3133
3134 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3135 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3136 - MAYBE_SWAP (metadata[i]));
3137 ++i;
3138
3876f04e
DE
3139 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3140 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3141 - MAYBE_SWAP (metadata[i]))
3142 / (2 * sizeof (offset_type)));
1fd400ff 3143 ++i;
9291a0cd 3144
f9d83a0b 3145 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3146
2ec9a5e0
TT
3147 return 1;
3148}
3149
3150
3151/* Read the index file. If everything went ok, initialize the "quick"
3152 elements of all the CUs and return 1. Otherwise, return 0. */
3153
3154static int
3155dwarf2_read_index (struct objfile *objfile)
3156{
3157 struct mapped_index local_map, *map;
3158 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3159 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3160 struct dwz_file *dwz;
2ec9a5e0 3161
4262abfb 3162 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3163 use_deprecated_index_sections,
3164 &dwarf2_per_objfile->gdb_index, &local_map,
3165 &cu_list, &cu_list_elements,
3166 &types_list, &types_list_elements))
3167 return 0;
3168
0fefef59 3169 /* Don't use the index if it's empty. */
2ec9a5e0 3170 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3171 return 0;
3172
2ec9a5e0
TT
3173 /* If there is a .dwz file, read it so we can get its CU list as
3174 well. */
4db1a1dc
TT
3175 dwz = dwarf2_get_dwz_file ();
3176 if (dwz != NULL)
2ec9a5e0 3177 {
2ec9a5e0
TT
3178 struct mapped_index dwz_map;
3179 const gdb_byte *dwz_types_ignore;
3180 offset_type dwz_types_elements_ignore;
3181
3182 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3183 1,
3184 &dwz->gdb_index, &dwz_map,
3185 &dwz_list, &dwz_list_elements,
3186 &dwz_types_ignore,
3187 &dwz_types_elements_ignore))
3188 {
3189 warning (_("could not read '.gdb_index' section from %s; skipping"),
3190 bfd_get_filename (dwz->dwz_bfd));
3191 return 0;
3192 }
3193 }
3194
74a0d9f6
JK
3195 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3196 dwz_list_elements);
1fd400ff 3197
8b70b953
TT
3198 if (types_list_elements)
3199 {
3200 struct dwarf2_section_info *section;
3201
3202 /* We can only handle a single .debug_types when we have an
3203 index. */
3204 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3205 return 0;
3206
3207 section = VEC_index (dwarf2_section_info_def,
3208 dwarf2_per_objfile->types, 0);
3209
74a0d9f6
JK
3210 create_signatured_type_table_from_index (objfile, section, types_list,
3211 types_list_elements);
8b70b953 3212 }
9291a0cd 3213
2ec9a5e0
TT
3214 create_addrmap_from_index (objfile, &local_map);
3215
3216 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3217 *map = local_map;
9291a0cd
TT
3218
3219 dwarf2_per_objfile->index_table = map;
3220 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3221 dwarf2_per_objfile->quick_file_names_table =
3222 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3223
3224 return 1;
3225}
3226
3227/* A helper for the "quick" functions which sets the global
3228 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3229
9291a0cd
TT
3230static void
3231dw2_setup (struct objfile *objfile)
3232{
3233 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3234 gdb_assert (dwarf2_per_objfile);
3235}
3236
dee91e82 3237/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3238
dee91e82
DE
3239static void
3240dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3241 const gdb_byte *info_ptr,
dee91e82
DE
3242 struct die_info *comp_unit_die,
3243 int has_children,
3244 void *data)
9291a0cd 3245{
dee91e82
DE
3246 struct dwarf2_cu *cu = reader->cu;
3247 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3248 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3249 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 3250 struct line_header *lh;
9291a0cd 3251 struct attribute *attr;
dee91e82 3252 int i;
15d034d0 3253 const char *name, *comp_dir;
7b9f3c50
DE
3254 void **slot;
3255 struct quick_file_names *qfn;
3256 unsigned int line_offset;
9291a0cd 3257
0186c6a7
DE
3258 gdb_assert (! this_cu->is_debug_types);
3259
07261596
TT
3260 /* Our callers never want to match partial units -- instead they
3261 will match the enclosing full CU. */
3262 if (comp_unit_die->tag == DW_TAG_partial_unit)
3263 {
3264 this_cu->v.quick->no_file_data = 1;
3265 return;
3266 }
3267
0186c6a7 3268 lh_cu = this_cu;
7b9f3c50
DE
3269 lh = NULL;
3270 slot = NULL;
3271 line_offset = 0;
dee91e82
DE
3272
3273 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3274 if (attr)
3275 {
7b9f3c50
DE
3276 struct quick_file_names find_entry;
3277
3278 line_offset = DW_UNSND (attr);
3279
3280 /* We may have already read in this line header (TU line header sharing).
3281 If we have we're done. */
094b34ac
DE
3282 find_entry.hash.dwo_unit = cu->dwo_unit;
3283 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3284 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3285 &find_entry, INSERT);
3286 if (*slot != NULL)
3287 {
094b34ac 3288 lh_cu->v.quick->file_names = *slot;
dee91e82 3289 return;
7b9f3c50
DE
3290 }
3291
3019eac3 3292 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3293 }
3294 if (lh == NULL)
3295 {
094b34ac 3296 lh_cu->v.quick->no_file_data = 1;
dee91e82 3297 return;
9291a0cd
TT
3298 }
3299
7b9f3c50 3300 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
094b34ac
DE
3301 qfn->hash.dwo_unit = cu->dwo_unit;
3302 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3303 gdb_assert (slot != NULL);
3304 *slot = qfn;
9291a0cd 3305
dee91e82 3306 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 3307
7b9f3c50
DE
3308 qfn->num_file_names = lh->num_file_names;
3309 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3310 lh->num_file_names * sizeof (char *));
9291a0cd 3311 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
3312 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3313 qfn->real_names = NULL;
9291a0cd 3314
7b9f3c50 3315 free_line_header (lh);
7b9f3c50 3316
094b34ac 3317 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3318}
3319
3320/* A helper for the "quick" functions which attempts to read the line
3321 table for THIS_CU. */
3322
3323static struct quick_file_names *
e4a48d9d 3324dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3325{
0186c6a7
DE
3326 /* This should never be called for TUs. */
3327 gdb_assert (! this_cu->is_debug_types);
3328 /* Nor type unit groups. */
3329 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3330
dee91e82
DE
3331 if (this_cu->v.quick->file_names != NULL)
3332 return this_cu->v.quick->file_names;
3333 /* If we know there is no line data, no point in looking again. */
3334 if (this_cu->v.quick->no_file_data)
3335 return NULL;
3336
0186c6a7 3337 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3338
3339 if (this_cu->v.quick->no_file_data)
3340 return NULL;
3341 return this_cu->v.quick->file_names;
9291a0cd
TT
3342}
3343
3344/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3345 real path for a given file name from the line table. */
2fdf6df6 3346
9291a0cd 3347static const char *
7b9f3c50
DE
3348dw2_get_real_path (struct objfile *objfile,
3349 struct quick_file_names *qfn, int index)
9291a0cd 3350{
7b9f3c50
DE
3351 if (qfn->real_names == NULL)
3352 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3353 qfn->num_file_names, const char *);
9291a0cd 3354
7b9f3c50
DE
3355 if (qfn->real_names[index] == NULL)
3356 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3357
7b9f3c50 3358 return qfn->real_names[index];
9291a0cd
TT
3359}
3360
3361static struct symtab *
3362dw2_find_last_source_symtab (struct objfile *objfile)
3363{
43f3e411 3364 struct compunit_symtab *cust;
9291a0cd 3365 int index;
ae2de4f8 3366
9291a0cd
TT
3367 dw2_setup (objfile);
3368 index = dwarf2_per_objfile->n_comp_units - 1;
43f3e411
DE
3369 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3370 if (cust == NULL)
3371 return NULL;
3372 return compunit_primary_filetab (cust);
9291a0cd
TT
3373}
3374
7b9f3c50
DE
3375/* Traversal function for dw2_forget_cached_source_info. */
3376
3377static int
3378dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3379{
7b9f3c50 3380 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3381
7b9f3c50 3382 if (file_data->real_names)
9291a0cd 3383 {
7b9f3c50 3384 int i;
9291a0cd 3385
7b9f3c50 3386 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3387 {
7b9f3c50
DE
3388 xfree ((void*) file_data->real_names[i]);
3389 file_data->real_names[i] = NULL;
9291a0cd
TT
3390 }
3391 }
7b9f3c50
DE
3392
3393 return 1;
3394}
3395
3396static void
3397dw2_forget_cached_source_info (struct objfile *objfile)
3398{
3399 dw2_setup (objfile);
3400
3401 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3402 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3403}
3404
f8eba3c6
TT
3405/* Helper function for dw2_map_symtabs_matching_filename that expands
3406 the symtabs and calls the iterator. */
3407
3408static int
3409dw2_map_expand_apply (struct objfile *objfile,
3410 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3411 const char *name, const char *real_path,
f8eba3c6
TT
3412 int (*callback) (struct symtab *, void *),
3413 void *data)
3414{
43f3e411 3415 struct compunit_symtab *last_made = objfile->compunit_symtabs;
f8eba3c6
TT
3416
3417 /* Don't visit already-expanded CUs. */
43f3e411 3418 if (per_cu->v.quick->compunit_symtab)
f8eba3c6
TT
3419 return 0;
3420
3421 /* This may expand more than one symtab, and we want to iterate over
3422 all of them. */
a0f42c21 3423 dw2_instantiate_symtab (per_cu);
f8eba3c6 3424
f5b95b50 3425 return iterate_over_some_symtabs (name, real_path, callback, data,
43f3e411 3426 objfile->compunit_symtabs, last_made);
f8eba3c6
TT
3427}
3428
3429/* Implementation of the map_symtabs_matching_filename method. */
3430
9291a0cd 3431static int
f8eba3c6 3432dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
f5b95b50 3433 const char *real_path,
f8eba3c6
TT
3434 int (*callback) (struct symtab *, void *),
3435 void *data)
9291a0cd
TT
3436{
3437 int i;
c011a4f4 3438 const char *name_basename = lbasename (name);
9291a0cd
TT
3439
3440 dw2_setup (objfile);
ae2de4f8 3441
848e3e78
DE
3442 /* The rule is CUs specify all the files, including those used by
3443 any TU, so there's no need to scan TUs here. */
f4dc4d17 3444
848e3e78 3445 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3446 {
3447 int j;
8832e7e3 3448 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3449 struct quick_file_names *file_data;
9291a0cd 3450
3d7bb9d9 3451 /* We only need to look at symtabs not already expanded. */
43f3e411 3452 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3453 continue;
3454
e4a48d9d 3455 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3456 if (file_data == NULL)
9291a0cd
TT
3457 continue;
3458
7b9f3c50 3459 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3460 {
7b9f3c50 3461 const char *this_name = file_data->file_names[j];
da235a7c 3462 const char *this_real_name;
9291a0cd 3463
af529f8f 3464 if (compare_filenames_for_search (this_name, name))
9291a0cd 3465 {
f5b95b50 3466 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3467 callback, data))
3468 return 1;
288e77a7 3469 continue;
4aac40c8 3470 }
9291a0cd 3471
c011a4f4
DE
3472 /* Before we invoke realpath, which can get expensive when many
3473 files are involved, do a quick comparison of the basenames. */
3474 if (! basenames_may_differ
3475 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3476 continue;
3477
da235a7c
JK
3478 this_real_name = dw2_get_real_path (objfile, file_data, j);
3479 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3480 {
da235a7c
JK
3481 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3482 callback, data))
3483 return 1;
288e77a7 3484 continue;
da235a7c 3485 }
9291a0cd 3486
da235a7c
JK
3487 if (real_path != NULL)
3488 {
af529f8f
JK
3489 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3490 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3491 if (this_real_name != NULL
af529f8f 3492 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3493 {
f5b95b50 3494 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3495 callback, data))
3496 return 1;
288e77a7 3497 continue;
9291a0cd
TT
3498 }
3499 }
3500 }
3501 }
3502
9291a0cd
TT
3503 return 0;
3504}
3505
da51c347
DE
3506/* Struct used to manage iterating over all CUs looking for a symbol. */
3507
3508struct dw2_symtab_iterator
9291a0cd 3509{
da51c347
DE
3510 /* The internalized form of .gdb_index. */
3511 struct mapped_index *index;
3512 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3513 int want_specific_block;
3514 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3515 Unused if !WANT_SPECIFIC_BLOCK. */
3516 int block_index;
3517 /* The kind of symbol we're looking for. */
3518 domain_enum domain;
3519 /* The list of CUs from the index entry of the symbol,
3520 or NULL if not found. */
3521 offset_type *vec;
3522 /* The next element in VEC to look at. */
3523 int next;
3524 /* The number of elements in VEC, or zero if there is no match. */
3525 int length;
8943b874
DE
3526 /* Have we seen a global version of the symbol?
3527 If so we can ignore all further global instances.
3528 This is to work around gold/15646, inefficient gold-generated
3529 indices. */
3530 int global_seen;
da51c347 3531};
9291a0cd 3532
da51c347
DE
3533/* Initialize the index symtab iterator ITER.
3534 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3535 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3536
9291a0cd 3537static void
da51c347
DE
3538dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3539 struct mapped_index *index,
3540 int want_specific_block,
3541 int block_index,
3542 domain_enum domain,
3543 const char *name)
3544{
3545 iter->index = index;
3546 iter->want_specific_block = want_specific_block;
3547 iter->block_index = block_index;
3548 iter->domain = domain;
3549 iter->next = 0;
8943b874 3550 iter->global_seen = 0;
da51c347
DE
3551
3552 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3553 iter->length = MAYBE_SWAP (*iter->vec);
3554 else
3555 {
3556 iter->vec = NULL;
3557 iter->length = 0;
3558 }
3559}
3560
3561/* Return the next matching CU or NULL if there are no more. */
3562
3563static struct dwarf2_per_cu_data *
3564dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3565{
3566 for ( ; iter->next < iter->length; ++iter->next)
3567 {
3568 offset_type cu_index_and_attrs =
3569 MAYBE_SWAP (iter->vec[iter->next + 1]);
3570 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3571 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3572 int want_static = iter->block_index != GLOBAL_BLOCK;
3573 /* This value is only valid for index versions >= 7. */
3574 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3575 gdb_index_symbol_kind symbol_kind =
3576 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3577 /* Only check the symbol attributes if they're present.
3578 Indices prior to version 7 don't record them,
3579 and indices >= 7 may elide them for certain symbols
3580 (gold does this). */
3581 int attrs_valid =
3582 (iter->index->version >= 7
3583 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3584
3190f0c6
DE
3585 /* Don't crash on bad data. */
3586 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3587 + dwarf2_per_objfile->n_type_units))
3588 {
3589 complaint (&symfile_complaints,
3590 _(".gdb_index entry has bad CU index"
4262abfb
JK
3591 " [in module %s]"),
3592 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3593 continue;
3594 }
3595
8832e7e3 3596 per_cu = dw2_get_cutu (cu_index);
3190f0c6 3597
da51c347 3598 /* Skip if already read in. */
43f3e411 3599 if (per_cu->v.quick->compunit_symtab)
da51c347
DE
3600 continue;
3601
8943b874
DE
3602 /* Check static vs global. */
3603 if (attrs_valid)
3604 {
3605 if (iter->want_specific_block
3606 && want_static != is_static)
3607 continue;
3608 /* Work around gold/15646. */
3609 if (!is_static && iter->global_seen)
3610 continue;
3611 if (!is_static)
3612 iter->global_seen = 1;
3613 }
da51c347
DE
3614
3615 /* Only check the symbol's kind if it has one. */
3616 if (attrs_valid)
3617 {
3618 switch (iter->domain)
3619 {
3620 case VAR_DOMAIN:
3621 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3622 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3623 /* Some types are also in VAR_DOMAIN. */
3624 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3625 continue;
3626 break;
3627 case STRUCT_DOMAIN:
3628 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3629 continue;
3630 break;
3631 case LABEL_DOMAIN:
3632 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3633 continue;
3634 break;
3635 default:
3636 break;
3637 }
3638 }
3639
3640 ++iter->next;
3641 return per_cu;
3642 }
3643
3644 return NULL;
3645}
3646
43f3e411 3647static struct compunit_symtab *
da51c347
DE
3648dw2_lookup_symbol (struct objfile *objfile, int block_index,
3649 const char *name, domain_enum domain)
9291a0cd 3650{
43f3e411 3651 struct compunit_symtab *stab_best = NULL;
156942c7
DE
3652 struct mapped_index *index;
3653
9291a0cd
TT
3654 dw2_setup (objfile);
3655
156942c7
DE
3656 index = dwarf2_per_objfile->index_table;
3657
da51c347 3658 /* index is NULL if OBJF_READNOW. */
156942c7 3659 if (index)
9291a0cd 3660 {
da51c347
DE
3661 struct dw2_symtab_iterator iter;
3662 struct dwarf2_per_cu_data *per_cu;
3663
3664 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3665
da51c347 3666 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3667 {
b2e2f908 3668 struct symbol *sym, *with_opaque = NULL;
43f3e411
DE
3669 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3670 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
f194fefb 3671 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
da51c347 3672
b2e2f908
DE
3673 sym = block_find_symbol (block, name, domain,
3674 block_find_non_opaque_type_preferred,
3675 &with_opaque);
3676
da51c347
DE
3677 /* Some caution must be observed with overloaded functions
3678 and methods, since the index will not contain any overload
3679 information (but NAME might contain it). */
da51c347 3680
b2e2f908
DE
3681 if (sym != NULL
3682 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3683 return stab;
3684 if (with_opaque != NULL
3685 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3686 stab_best = stab;
da51c347
DE
3687
3688 /* Keep looking through other CUs. */
9291a0cd
TT
3689 }
3690 }
9291a0cd 3691
da51c347 3692 return stab_best;
9291a0cd
TT
3693}
3694
3695static void
3696dw2_print_stats (struct objfile *objfile)
3697{
e4a48d9d 3698 int i, total, count;
9291a0cd
TT
3699
3700 dw2_setup (objfile);
e4a48d9d 3701 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3702 count = 0;
e4a48d9d 3703 for (i = 0; i < total; ++i)
9291a0cd 3704 {
8832e7e3 3705 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3706
43f3e411 3707 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3708 ++count;
3709 }
e4a48d9d 3710 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3711 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3712}
3713
779bd270
DE
3714/* This dumps minimal information about the index.
3715 It is called via "mt print objfiles".
3716 One use is to verify .gdb_index has been loaded by the
3717 gdb.dwarf2/gdb-index.exp testcase. */
3718
9291a0cd
TT
3719static void
3720dw2_dump (struct objfile *objfile)
3721{
779bd270
DE
3722 dw2_setup (objfile);
3723 gdb_assert (dwarf2_per_objfile->using_index);
3724 printf_filtered (".gdb_index:");
3725 if (dwarf2_per_objfile->index_table != NULL)
3726 {
3727 printf_filtered (" version %d\n",
3728 dwarf2_per_objfile->index_table->version);
3729 }
3730 else
3731 printf_filtered (" faked for \"readnow\"\n");
3732 printf_filtered ("\n");
9291a0cd
TT
3733}
3734
3735static void
3189cb12
DE
3736dw2_relocate (struct objfile *objfile,
3737 const struct section_offsets *new_offsets,
3738 const struct section_offsets *delta)
9291a0cd
TT
3739{
3740 /* There's nothing to relocate here. */
3741}
3742
3743static void
3744dw2_expand_symtabs_for_function (struct objfile *objfile,
3745 const char *func_name)
3746{
da51c347
DE
3747 struct mapped_index *index;
3748
3749 dw2_setup (objfile);
3750
3751 index = dwarf2_per_objfile->index_table;
3752
3753 /* index is NULL if OBJF_READNOW. */
3754 if (index)
3755 {
3756 struct dw2_symtab_iterator iter;
3757 struct dwarf2_per_cu_data *per_cu;
3758
3759 /* Note: It doesn't matter what we pass for block_index here. */
3760 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3761 func_name);
3762
3763 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3764 dw2_instantiate_symtab (per_cu);
3765 }
9291a0cd
TT
3766}
3767
3768static void
3769dw2_expand_all_symtabs (struct objfile *objfile)
3770{
3771 int i;
3772
3773 dw2_setup (objfile);
1fd400ff
TT
3774
3775 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3776 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3777 {
8832e7e3 3778 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3779
a0f42c21 3780 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3781 }
3782}
3783
3784static void
652a8996
JK
3785dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3786 const char *fullname)
9291a0cd
TT
3787{
3788 int i;
3789
3790 dw2_setup (objfile);
d4637a04
DE
3791
3792 /* We don't need to consider type units here.
3793 This is only called for examining code, e.g. expand_line_sal.
3794 There can be an order of magnitude (or more) more type units
3795 than comp units, and we avoid them if we can. */
3796
3797 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3798 {
3799 int j;
8832e7e3 3800 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7b9f3c50 3801 struct quick_file_names *file_data;
9291a0cd 3802
3d7bb9d9 3803 /* We only need to look at symtabs not already expanded. */
43f3e411 3804 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3805 continue;
3806
e4a48d9d 3807 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3808 if (file_data == NULL)
9291a0cd
TT
3809 continue;
3810
7b9f3c50 3811 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3812 {
652a8996
JK
3813 const char *this_fullname = file_data->file_names[j];
3814
3815 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 3816 {
a0f42c21 3817 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3818 break;
3819 }
3820 }
3821 }
3822}
3823
9291a0cd 3824static void
ade7ed9e 3825dw2_map_matching_symbols (struct objfile *objfile,
fe978cb0 3826 const char * name, domain_enum domain,
ade7ed9e 3827 int global,
40658b94
PH
3828 int (*callback) (struct block *,
3829 struct symbol *, void *),
2edb89d3
JK
3830 void *data, symbol_compare_ftype *match,
3831 symbol_compare_ftype *ordered_compare)
9291a0cd 3832{
40658b94 3833 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3834 current language is Ada for a non-Ada objfile using GNU index. As Ada
3835 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3836}
3837
3838static void
f8eba3c6
TT
3839dw2_expand_symtabs_matching
3840 (struct objfile *objfile,
206f2a57
DE
3841 expand_symtabs_file_matcher_ftype *file_matcher,
3842 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
276d885b 3843 expand_symtabs_exp_notify_ftype *expansion_notify,
f8eba3c6
TT
3844 enum search_domain kind,
3845 void *data)
9291a0cd
TT
3846{
3847 int i;
3848 offset_type iter;
4b5246aa 3849 struct mapped_index *index;
9291a0cd
TT
3850
3851 dw2_setup (objfile);
ae2de4f8
DE
3852
3853 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3854 if (!dwarf2_per_objfile->index_table)
3855 return;
4b5246aa 3856 index = dwarf2_per_objfile->index_table;
9291a0cd 3857
7b08b9eb 3858 if (file_matcher != NULL)
24c79950
TT
3859 {
3860 struct cleanup *cleanup;
3861 htab_t visited_found, visited_not_found;
3862
3863 visited_found = htab_create_alloc (10,
3864 htab_hash_pointer, htab_eq_pointer,
3865 NULL, xcalloc, xfree);
3866 cleanup = make_cleanup_htab_delete (visited_found);
3867 visited_not_found = htab_create_alloc (10,
3868 htab_hash_pointer, htab_eq_pointer,
3869 NULL, xcalloc, xfree);
3870 make_cleanup_htab_delete (visited_not_found);
3871
848e3e78
DE
3872 /* The rule is CUs specify all the files, including those used by
3873 any TU, so there's no need to scan TUs here. */
3874
3875 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3876 {
3877 int j;
8832e7e3 3878 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
24c79950
TT
3879 struct quick_file_names *file_data;
3880 void **slot;
7b08b9eb 3881
61d96d7e
DE
3882 QUIT;
3883
24c79950 3884 per_cu->v.quick->mark = 0;
3d7bb9d9 3885
24c79950 3886 /* We only need to look at symtabs not already expanded. */
43f3e411 3887 if (per_cu->v.quick->compunit_symtab)
24c79950 3888 continue;
7b08b9eb 3889
e4a48d9d 3890 file_data = dw2_get_file_names (per_cu);
24c79950
TT
3891 if (file_data == NULL)
3892 continue;
7b08b9eb 3893
24c79950
TT
3894 if (htab_find (visited_not_found, file_data) != NULL)
3895 continue;
3896 else if (htab_find (visited_found, file_data) != NULL)
3897 {
3898 per_cu->v.quick->mark = 1;
3899 continue;
3900 }
3901
3902 for (j = 0; j < file_data->num_file_names; ++j)
3903 {
da235a7c
JK
3904 const char *this_real_name;
3905
fbd9ab74 3906 if (file_matcher (file_data->file_names[j], data, 0))
24c79950
TT
3907 {
3908 per_cu->v.quick->mark = 1;
3909 break;
3910 }
da235a7c
JK
3911
3912 /* Before we invoke realpath, which can get expensive when many
3913 files are involved, do a quick comparison of the basenames. */
3914 if (!basenames_may_differ
3915 && !file_matcher (lbasename (file_data->file_names[j]),
3916 data, 1))
3917 continue;
3918
3919 this_real_name = dw2_get_real_path (objfile, file_data, j);
3920 if (file_matcher (this_real_name, data, 0))
3921 {
3922 per_cu->v.quick->mark = 1;
3923 break;
3924 }
24c79950
TT
3925 }
3926
3927 slot = htab_find_slot (per_cu->v.quick->mark
3928 ? visited_found
3929 : visited_not_found,
3930 file_data, INSERT);
3931 *slot = file_data;
3932 }
3933
3934 do_cleanups (cleanup);
3935 }
9291a0cd 3936
3876f04e 3937 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
3938 {
3939 offset_type idx = 2 * iter;
3940 const char *name;
3941 offset_type *vec, vec_len, vec_idx;
8943b874 3942 int global_seen = 0;
9291a0cd 3943
61d96d7e
DE
3944 QUIT;
3945
3876f04e 3946 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
3947 continue;
3948
3876f04e 3949 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 3950
206f2a57 3951 if (! (*symbol_matcher) (name, data))
9291a0cd
TT
3952 continue;
3953
3954 /* The name was matched, now expand corresponding CUs that were
3955 marked. */
4b5246aa 3956 vec = (offset_type *) (index->constant_pool
3876f04e 3957 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
3958 vec_len = MAYBE_SWAP (vec[0]);
3959 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3960 {
e254ef6a 3961 struct dwarf2_per_cu_data *per_cu;
156942c7 3962 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
8943b874
DE
3963 /* This value is only valid for index versions >= 7. */
3964 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
156942c7
DE
3965 gdb_index_symbol_kind symbol_kind =
3966 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3967 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
3968 /* Only check the symbol attributes if they're present.
3969 Indices prior to version 7 don't record them,
3970 and indices >= 7 may elide them for certain symbols
3971 (gold does this). */
3972 int attrs_valid =
3973 (index->version >= 7
3974 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3975
8943b874
DE
3976 /* Work around gold/15646. */
3977 if (attrs_valid)
3978 {
3979 if (!is_static && global_seen)
3980 continue;
3981 if (!is_static)
3982 global_seen = 1;
3983 }
3984
3190f0c6
DE
3985 /* Only check the symbol's kind if it has one. */
3986 if (attrs_valid)
156942c7
DE
3987 {
3988 switch (kind)
3989 {
3990 case VARIABLES_DOMAIN:
3991 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3992 continue;
3993 break;
3994 case FUNCTIONS_DOMAIN:
3995 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3996 continue;
3997 break;
3998 case TYPES_DOMAIN:
3999 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4000 continue;
4001 break;
4002 default:
4003 break;
4004 }
4005 }
4006
3190f0c6
DE
4007 /* Don't crash on bad data. */
4008 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4009 + dwarf2_per_objfile->n_type_units))
4010 {
4011 complaint (&symfile_complaints,
4012 _(".gdb_index entry has bad CU index"
4262abfb 4013 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
4014 continue;
4015 }
4016
8832e7e3 4017 per_cu = dw2_get_cutu (cu_index);
7b08b9eb 4018 if (file_matcher == NULL || per_cu->v.quick->mark)
276d885b
GB
4019 {
4020 int symtab_was_null =
4021 (per_cu->v.quick->compunit_symtab == NULL);
4022
4023 dw2_instantiate_symtab (per_cu);
4024
4025 if (expansion_notify != NULL
4026 && symtab_was_null
4027 && per_cu->v.quick->compunit_symtab != NULL)
4028 {
4029 expansion_notify (per_cu->v.quick->compunit_symtab,
4030 data);
4031 }
4032 }
9291a0cd
TT
4033 }
4034 }
4035}
4036
43f3e411 4037/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
9703b513
TT
4038 symtab. */
4039
43f3e411
DE
4040static struct compunit_symtab *
4041recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4042 CORE_ADDR pc)
9703b513
TT
4043{
4044 int i;
4045
43f3e411
DE
4046 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4047 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4048 return cust;
9703b513 4049
43f3e411 4050 if (cust->includes == NULL)
a3ec0bb1
DE
4051 return NULL;
4052
43f3e411 4053 for (i = 0; cust->includes[i]; ++i)
9703b513 4054 {
43f3e411 4055 struct compunit_symtab *s = cust->includes[i];
9703b513 4056
43f3e411 4057 s = recursively_find_pc_sect_compunit_symtab (s, pc);
9703b513
TT
4058 if (s != NULL)
4059 return s;
4060 }
4061
4062 return NULL;
4063}
4064
43f3e411
DE
4065static struct compunit_symtab *
4066dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4067 struct bound_minimal_symbol msymbol,
4068 CORE_ADDR pc,
4069 struct obj_section *section,
4070 int warn_if_readin)
9291a0cd
TT
4071{
4072 struct dwarf2_per_cu_data *data;
43f3e411 4073 struct compunit_symtab *result;
9291a0cd
TT
4074
4075 dw2_setup (objfile);
4076
4077 if (!objfile->psymtabs_addrmap)
4078 return NULL;
4079
4080 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4081 if (!data)
4082 return NULL;
4083
43f3e411 4084 if (warn_if_readin && data->v.quick->compunit_symtab)
abebb8b0 4085 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
4086 paddress (get_objfile_arch (objfile), pc));
4087
43f3e411
DE
4088 result
4089 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4090 pc);
9703b513
TT
4091 gdb_assert (result != NULL);
4092 return result;
9291a0cd
TT
4093}
4094
9291a0cd 4095static void
44b13c5a 4096dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 4097 void *data, int need_fullname)
9291a0cd
TT
4098{
4099 int i;
24c79950
TT
4100 struct cleanup *cleanup;
4101 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4102 NULL, xcalloc, xfree);
9291a0cd 4103
24c79950 4104 cleanup = make_cleanup_htab_delete (visited);
9291a0cd 4105 dw2_setup (objfile);
ae2de4f8 4106
848e3e78
DE
4107 /* The rule is CUs specify all the files, including those used by
4108 any TU, so there's no need to scan TUs here.
4109 We can ignore file names coming from already-expanded CUs. */
f4dc4d17 4110
848e3e78 4111 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950 4112 {
8832e7e3 4113 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
24c79950 4114
43f3e411 4115 if (per_cu->v.quick->compunit_symtab)
24c79950
TT
4116 {
4117 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4118 INSERT);
4119
4120 *slot = per_cu->v.quick->file_names;
4121 }
4122 }
4123
848e3e78 4124 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4125 {
4126 int j;
8832e7e3 4127 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 4128 struct quick_file_names *file_data;
24c79950 4129 void **slot;
9291a0cd 4130
3d7bb9d9 4131 /* We only need to look at symtabs not already expanded. */
43f3e411 4132 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4133 continue;
4134
e4a48d9d 4135 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4136 if (file_data == NULL)
9291a0cd
TT
4137 continue;
4138
24c79950
TT
4139 slot = htab_find_slot (visited, file_data, INSERT);
4140 if (*slot)
4141 {
4142 /* Already visited. */
4143 continue;
4144 }
4145 *slot = file_data;
4146
7b9f3c50 4147 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4148 {
74e2f255
DE
4149 const char *this_real_name;
4150
4151 if (need_fullname)
4152 this_real_name = dw2_get_real_path (objfile, file_data, j);
4153 else
4154 this_real_name = NULL;
7b9f3c50 4155 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
4156 }
4157 }
24c79950
TT
4158
4159 do_cleanups (cleanup);
9291a0cd
TT
4160}
4161
4162static int
4163dw2_has_symbols (struct objfile *objfile)
4164{
4165 return 1;
4166}
4167
4168const struct quick_symbol_functions dwarf2_gdb_index_functions =
4169{
4170 dw2_has_symbols,
4171 dw2_find_last_source_symtab,
4172 dw2_forget_cached_source_info,
f8eba3c6 4173 dw2_map_symtabs_matching_filename,
9291a0cd 4174 dw2_lookup_symbol,
9291a0cd
TT
4175 dw2_print_stats,
4176 dw2_dump,
4177 dw2_relocate,
4178 dw2_expand_symtabs_for_function,
4179 dw2_expand_all_symtabs,
652a8996 4180 dw2_expand_symtabs_with_fullname,
40658b94 4181 dw2_map_matching_symbols,
9291a0cd 4182 dw2_expand_symtabs_matching,
43f3e411 4183 dw2_find_pc_sect_compunit_symtab,
9291a0cd
TT
4184 dw2_map_symbol_filenames
4185};
4186
4187/* Initialize for reading DWARF for this objfile. Return 0 if this
4188 file will use psymtabs, or 1 if using the GNU index. */
4189
4190int
4191dwarf2_initialize_objfile (struct objfile *objfile)
4192{
4193 /* If we're about to read full symbols, don't bother with the
4194 indices. In this case we also don't care if some other debug
4195 format is making psymtabs, because they are all about to be
4196 expanded anyway. */
4197 if ((objfile->flags & OBJF_READNOW))
4198 {
4199 int i;
4200
4201 dwarf2_per_objfile->using_index = 1;
4202 create_all_comp_units (objfile);
0e50663e 4203 create_all_type_units (objfile);
7b9f3c50
DE
4204 dwarf2_per_objfile->quick_file_names_table =
4205 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4206
1fd400ff 4207 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4208 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4209 {
8832e7e3 4210 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4211
e254ef6a
DE
4212 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4213 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4214 }
4215
4216 /* Return 1 so that gdb sees the "quick" functions. However,
4217 these functions will be no-ops because we will have expanded
4218 all symtabs. */
4219 return 1;
4220 }
4221
4222 if (dwarf2_read_index (objfile))
4223 return 1;
4224
9291a0cd
TT
4225 return 0;
4226}
4227
4228\f
4229
dce234bc
PP
4230/* Build a partial symbol table. */
4231
4232void
f29dff0a 4233dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4234{
c9bf0622 4235
f29dff0a 4236 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
4237 {
4238 init_psymbol_list (objfile, 1024);
4239 }
4240
492d29ea 4241 TRY
c9bf0622
TT
4242 {
4243 /* This isn't really ideal: all the data we allocate on the
4244 objfile's obstack is still uselessly kept around. However,
4245 freeing it seems unsafe. */
4246 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4247
4248 dwarf2_build_psymtabs_hard (objfile);
4249 discard_cleanups (cleanups);
4250 }
492d29ea
PA
4251 CATCH (except, RETURN_MASK_ERROR)
4252 {
4253 exception_print (gdb_stderr, except);
4254 }
4255 END_CATCH
c906108c 4256}
c906108c 4257
1ce1cefd
DE
4258/* Return the total length of the CU described by HEADER. */
4259
4260static unsigned int
4261get_cu_length (const struct comp_unit_head *header)
4262{
4263 return header->initial_length_size + header->length;
4264}
4265
45452591
DE
4266/* Return TRUE if OFFSET is within CU_HEADER. */
4267
4268static inline int
b64f50a1 4269offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 4270{
b64f50a1 4271 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 4272 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 4273
b64f50a1 4274 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
4275}
4276
3b80fe9b
DE
4277/* Find the base address of the compilation unit for range lists and
4278 location lists. It will normally be specified by DW_AT_low_pc.
4279 In DWARF-3 draft 4, the base address could be overridden by
4280 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4281 compilation units with discontinuous ranges. */
4282
4283static void
4284dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4285{
4286 struct attribute *attr;
4287
4288 cu->base_known = 0;
4289 cu->base_address = 0;
4290
4291 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4292 if (attr)
4293 {
31aa7e4e 4294 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4295 cu->base_known = 1;
4296 }
4297 else
4298 {
4299 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4300 if (attr)
4301 {
31aa7e4e 4302 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4303 cu->base_known = 1;
4304 }
4305 }
4306}
4307
93311388
DE
4308/* Read in the comp unit header information from the debug_info at info_ptr.
4309 NOTE: This leaves members offset, first_die_offset to be filled in
4310 by the caller. */
107d2387 4311
d521ce57 4312static const gdb_byte *
107d2387 4313read_comp_unit_head (struct comp_unit_head *cu_header,
d521ce57 4314 const gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
4315{
4316 int signed_addr;
891d2f0b 4317 unsigned int bytes_read;
c764a876
DE
4318
4319 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4320 cu_header->initial_length_size = bytes_read;
4321 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4322 info_ptr += bytes_read;
107d2387
AC
4323 cu_header->version = read_2_bytes (abfd, info_ptr);
4324 info_ptr += 2;
b64f50a1
JK
4325 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4326 &bytes_read);
613e1657 4327 info_ptr += bytes_read;
107d2387
AC
4328 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4329 info_ptr += 1;
4330 signed_addr = bfd_get_sign_extend_vma (abfd);
4331 if (signed_addr < 0)
8e65ff28 4332 internal_error (__FILE__, __LINE__,
e2e0b3e5 4333 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4334 cu_header->signed_addr_p = signed_addr;
c764a876 4335
107d2387
AC
4336 return info_ptr;
4337}
4338
36586728
TT
4339/* Helper function that returns the proper abbrev section for
4340 THIS_CU. */
4341
4342static struct dwarf2_section_info *
4343get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4344{
4345 struct dwarf2_section_info *abbrev;
4346
4347 if (this_cu->is_dwz)
4348 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4349 else
4350 abbrev = &dwarf2_per_objfile->abbrev;
4351
4352 return abbrev;
4353}
4354
9ff913ba
DE
4355/* Subroutine of read_and_check_comp_unit_head and
4356 read_and_check_type_unit_head to simplify them.
4357 Perform various error checking on the header. */
4358
4359static void
4360error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4361 struct dwarf2_section_info *section,
4362 struct dwarf2_section_info *abbrev_section)
9ff913ba 4363{
a32a8923
DE
4364 bfd *abfd = get_section_bfd_owner (section);
4365 const char *filename = get_section_file_name (section);
9ff913ba
DE
4366
4367 if (header->version != 2 && header->version != 3 && header->version != 4)
4368 error (_("Dwarf Error: wrong version in compilation unit header "
4369 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4370 filename);
4371
b64f50a1 4372 if (header->abbrev_offset.sect_off
36586728 4373 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
4374 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4375 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 4376 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
4377 filename);
4378
4379 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4380 avoid potential 32-bit overflow. */
1ce1cefd 4381 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
4382 > section->size)
4383 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4384 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 4385 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
4386 filename);
4387}
4388
4389/* Read in a CU/TU header and perform some basic error checking.
4390 The contents of the header are stored in HEADER.
4391 The result is a pointer to the start of the first DIE. */
adabb602 4392
d521ce57 4393static const gdb_byte *
9ff913ba
DE
4394read_and_check_comp_unit_head (struct comp_unit_head *header,
4395 struct dwarf2_section_info *section,
4bdcc0c1 4396 struct dwarf2_section_info *abbrev_section,
d521ce57 4397 const gdb_byte *info_ptr,
9ff913ba 4398 int is_debug_types_section)
72bf9492 4399{
d521ce57 4400 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4401 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4402
b64f50a1 4403 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 4404
72bf9492
DJ
4405 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4406
460c1c54
CC
4407 /* If we're reading a type unit, skip over the signature and
4408 type_offset fields. */
b0df02fd 4409 if (is_debug_types_section)
460c1c54
CC
4410 info_ptr += 8 /*signature*/ + header->offset_size;
4411
b64f50a1 4412 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
adabb602 4413
4bdcc0c1 4414 error_check_comp_unit_head (header, section, abbrev_section);
72bf9492
DJ
4415
4416 return info_ptr;
4417}
4418
348e048f
DE
4419/* Read in the types comp unit header information from .debug_types entry at
4420 types_ptr. The result is a pointer to one past the end of the header. */
4421
d521ce57 4422static const gdb_byte *
9ff913ba
DE
4423read_and_check_type_unit_head (struct comp_unit_head *header,
4424 struct dwarf2_section_info *section,
4bdcc0c1 4425 struct dwarf2_section_info *abbrev_section,
d521ce57 4426 const gdb_byte *info_ptr,
dee91e82
DE
4427 ULONGEST *signature,
4428 cu_offset *type_offset_in_tu)
348e048f 4429{
d521ce57 4430 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4431 bfd *abfd = get_section_bfd_owner (section);
348e048f 4432
b64f50a1 4433 header->offset.sect_off = beg_of_comp_unit - section->buffer;
348e048f 4434
9ff913ba 4435 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 4436
9ff913ba
DE
4437 /* If we're reading a type unit, skip over the signature and
4438 type_offset fields. */
4439 if (signature != NULL)
4440 *signature = read_8_bytes (abfd, info_ptr);
4441 info_ptr += 8;
dee91e82
DE
4442 if (type_offset_in_tu != NULL)
4443 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4444 header->offset_size);
9ff913ba
DE
4445 info_ptr += header->offset_size;
4446
b64f50a1 4447 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 4448
4bdcc0c1 4449 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4450
4451 return info_ptr;
348e048f
DE
4452}
4453
f4dc4d17
DE
4454/* Fetch the abbreviation table offset from a comp or type unit header. */
4455
4456static sect_offset
4457read_abbrev_offset (struct dwarf2_section_info *section,
4458 sect_offset offset)
4459{
a32a8923 4460 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4461 const gdb_byte *info_ptr;
f4dc4d17
DE
4462 unsigned int length, initial_length_size, offset_size;
4463 sect_offset abbrev_offset;
4464
4465 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4466 info_ptr = section->buffer + offset.sect_off;
4467 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4468 offset_size = initial_length_size == 4 ? 4 : 8;
4469 info_ptr += initial_length_size + 2 /*version*/;
4470 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4471 return abbrev_offset;
4472}
4473
aaa75496
JB
4474/* Allocate a new partial symtab for file named NAME and mark this new
4475 partial symtab as being an include of PST. */
4476
4477static void
d521ce57 4478dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4479 struct objfile *objfile)
4480{
4481 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4482
fbd9ab74
JK
4483 if (!IS_ABSOLUTE_PATH (subpst->filename))
4484 {
4485 /* It shares objfile->objfile_obstack. */
4486 subpst->dirname = pst->dirname;
4487 }
4488
aaa75496
JB
4489 subpst->section_offsets = pst->section_offsets;
4490 subpst->textlow = 0;
4491 subpst->texthigh = 0;
4492
4493 subpst->dependencies = (struct partial_symtab **)
4494 obstack_alloc (&objfile->objfile_obstack,
4495 sizeof (struct partial_symtab *));
4496 subpst->dependencies[0] = pst;
4497 subpst->number_of_dependencies = 1;
4498
4499 subpst->globals_offset = 0;
4500 subpst->n_global_syms = 0;
4501 subpst->statics_offset = 0;
4502 subpst->n_static_syms = 0;
43f3e411 4503 subpst->compunit_symtab = NULL;
aaa75496
JB
4504 subpst->read_symtab = pst->read_symtab;
4505 subpst->readin = 0;
4506
4507 /* No private part is necessary for include psymtabs. This property
4508 can be used to differentiate between such include psymtabs and
10b3939b 4509 the regular ones. */
58a9656e 4510 subpst->read_symtab_private = NULL;
aaa75496
JB
4511}
4512
4513/* Read the Line Number Program data and extract the list of files
4514 included by the source file represented by PST. Build an include
d85a05f0 4515 partial symtab for each of these included files. */
aaa75496
JB
4516
4517static void
4518dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4519 struct die_info *die,
4520 struct partial_symtab *pst)
aaa75496 4521{
d85a05f0
DJ
4522 struct line_header *lh = NULL;
4523 struct attribute *attr;
aaa75496 4524
d85a05f0
DJ
4525 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4526 if (attr)
3019eac3 4527 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4528 if (lh == NULL)
4529 return; /* No linetable, so no includes. */
4530
c6da4cef 4531 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
527f3840 4532 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
aaa75496
JB
4533
4534 free_line_header (lh);
4535}
4536
348e048f 4537static hashval_t
52dc124a 4538hash_signatured_type (const void *item)
348e048f 4539{
52dc124a 4540 const struct signatured_type *sig_type = item;
9a619af0 4541
348e048f 4542 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4543 return sig_type->signature;
348e048f
DE
4544}
4545
4546static int
52dc124a 4547eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f
DE
4548{
4549 const struct signatured_type *lhs = item_lhs;
4550 const struct signatured_type *rhs = item_rhs;
9a619af0 4551
348e048f
DE
4552 return lhs->signature == rhs->signature;
4553}
4554
1fd400ff
TT
4555/* Allocate a hash table for signatured types. */
4556
4557static htab_t
673bfd45 4558allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4559{
4560 return htab_create_alloc_ex (41,
52dc124a
DE
4561 hash_signatured_type,
4562 eq_signatured_type,
1fd400ff
TT
4563 NULL,
4564 &objfile->objfile_obstack,
4565 hashtab_obstack_allocate,
4566 dummy_obstack_deallocate);
4567}
4568
d467dd73 4569/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4570
4571static int
d467dd73 4572add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff
TT
4573{
4574 struct signatured_type *sigt = *slot;
b4dd5633 4575 struct signatured_type ***datap = datum;
1fd400ff 4576
b4dd5633 4577 **datap = sigt;
1fd400ff
TT
4578 ++*datap;
4579
4580 return 1;
4581}
4582
c88ee1f0
DE
4583/* Create the hash table of all entries in the .debug_types
4584 (or .debug_types.dwo) section(s).
4585 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4586 otherwise it is NULL.
4587
4588 The result is a pointer to the hash table or NULL if there are no types.
4589
4590 Note: This function processes DWO files only, not DWP files. */
348e048f 4591
3019eac3
DE
4592static htab_t
4593create_debug_types_hash_table (struct dwo_file *dwo_file,
4594 VEC (dwarf2_section_info_def) *types)
348e048f 4595{
3019eac3 4596 struct objfile *objfile = dwarf2_per_objfile->objfile;
8b70b953 4597 htab_t types_htab = NULL;
8b70b953
TT
4598 int ix;
4599 struct dwarf2_section_info *section;
4bdcc0c1 4600 struct dwarf2_section_info *abbrev_section;
348e048f 4601
3019eac3
DE
4602 if (VEC_empty (dwarf2_section_info_def, types))
4603 return NULL;
348e048f 4604
4bdcc0c1
DE
4605 abbrev_section = (dwo_file != NULL
4606 ? &dwo_file->sections.abbrev
4607 : &dwarf2_per_objfile->abbrev);
4608
b4f54984 4609 if (dwarf_read_debug)
09406207
DE
4610 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4611 dwo_file ? ".dwo" : "",
a32a8923 4612 get_section_file_name (abbrev_section));
09406207 4613
8b70b953 4614 for (ix = 0;
3019eac3 4615 VEC_iterate (dwarf2_section_info_def, types, ix, section);
8b70b953
TT
4616 ++ix)
4617 {
3019eac3 4618 bfd *abfd;
d521ce57 4619 const gdb_byte *info_ptr, *end_ptr;
348e048f 4620
8b70b953
TT
4621 dwarf2_read_section (objfile, section);
4622 info_ptr = section->buffer;
348e048f 4623
8b70b953
TT
4624 if (info_ptr == NULL)
4625 continue;
348e048f 4626
3019eac3 4627 /* We can't set abfd until now because the section may be empty or
a32a8923
DE
4628 not present, in which case the bfd is unknown. */
4629 abfd = get_section_bfd_owner (section);
3019eac3 4630
dee91e82
DE
4631 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4632 because we don't need to read any dies: the signature is in the
4633 header. */
8b70b953
TT
4634
4635 end_ptr = info_ptr + section->size;
4636 while (info_ptr < end_ptr)
4637 {
b64f50a1 4638 sect_offset offset;
3019eac3 4639 cu_offset type_offset_in_tu;
8b70b953 4640 ULONGEST signature;
52dc124a 4641 struct signatured_type *sig_type;
3019eac3 4642 struct dwo_unit *dwo_tu;
8b70b953 4643 void **slot;
d521ce57 4644 const gdb_byte *ptr = info_ptr;
9ff913ba 4645 struct comp_unit_head header;
dee91e82 4646 unsigned int length;
348e048f 4647
b64f50a1 4648 offset.sect_off = ptr - section->buffer;
348e048f 4649
8b70b953 4650 /* We need to read the type's signature in order to build the hash
9ff913ba 4651 table, but we don't need anything else just yet. */
348e048f 4652
4bdcc0c1
DE
4653 ptr = read_and_check_type_unit_head (&header, section,
4654 abbrev_section, ptr,
3019eac3 4655 &signature, &type_offset_in_tu);
6caca83c 4656
1ce1cefd 4657 length = get_cu_length (&header);
dee91e82 4658
6caca83c 4659 /* Skip dummy type units. */
dee91e82
DE
4660 if (ptr >= info_ptr + length
4661 || peek_abbrev_code (abfd, ptr) == 0)
6caca83c 4662 {
1ce1cefd 4663 info_ptr += length;
6caca83c
CC
4664 continue;
4665 }
8b70b953 4666
0349ea22
DE
4667 if (types_htab == NULL)
4668 {
4669 if (dwo_file)
4670 types_htab = allocate_dwo_unit_table (objfile);
4671 else
4672 types_htab = allocate_signatured_type_table (objfile);
4673 }
4674
3019eac3
DE
4675 if (dwo_file)
4676 {
4677 sig_type = NULL;
4678 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4679 struct dwo_unit);
4680 dwo_tu->dwo_file = dwo_file;
4681 dwo_tu->signature = signature;
4682 dwo_tu->type_offset_in_tu = type_offset_in_tu;
8a0459fd 4683 dwo_tu->section = section;
3019eac3
DE
4684 dwo_tu->offset = offset;
4685 dwo_tu->length = length;
4686 }
4687 else
4688 {
4689 /* N.B.: type_offset is not usable if this type uses a DWO file.
4690 The real type_offset is in the DWO file. */
4691 dwo_tu = NULL;
4692 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4693 struct signatured_type);
4694 sig_type->signature = signature;
4695 sig_type->type_offset_in_tu = type_offset_in_tu;
4696 sig_type->per_cu.objfile = objfile;
4697 sig_type->per_cu.is_debug_types = 1;
8a0459fd 4698 sig_type->per_cu.section = section;
3019eac3
DE
4699 sig_type->per_cu.offset = offset;
4700 sig_type->per_cu.length = length;
4701 }
8b70b953 4702
3019eac3
DE
4703 slot = htab_find_slot (types_htab,
4704 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4705 INSERT);
8b70b953
TT
4706 gdb_assert (slot != NULL);
4707 if (*slot != NULL)
4708 {
3019eac3
DE
4709 sect_offset dup_offset;
4710
4711 if (dwo_file)
4712 {
4713 const struct dwo_unit *dup_tu = *slot;
4714
4715 dup_offset = dup_tu->offset;
4716 }
4717 else
4718 {
4719 const struct signatured_type *dup_tu = *slot;
4720
4721 dup_offset = dup_tu->per_cu.offset;
4722 }
b3c8eb43 4723
8b70b953 4724 complaint (&symfile_complaints,
c88ee1f0 4725 _("debug type entry at offset 0x%x is duplicate to"
4031ecc5 4726 " the entry at offset 0x%x, signature %s"),
3019eac3 4727 offset.sect_off, dup_offset.sect_off,
4031ecc5 4728 hex_string (signature));
8b70b953 4729 }
3019eac3 4730 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
348e048f 4731
b4f54984 4732 if (dwarf_read_debug > 1)
4031ecc5 4733 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
b64f50a1 4734 offset.sect_off,
4031ecc5 4735 hex_string (signature));
348e048f 4736
dee91e82 4737 info_ptr += length;
8b70b953 4738 }
348e048f
DE
4739 }
4740
3019eac3
DE
4741 return types_htab;
4742}
4743
4744/* Create the hash table of all entries in the .debug_types section,
4745 and initialize all_type_units.
4746 The result is zero if there is an error (e.g. missing .debug_types section),
4747 otherwise non-zero. */
4748
4749static int
4750create_all_type_units (struct objfile *objfile)
4751{
4752 htab_t types_htab;
b4dd5633 4753 struct signatured_type **iter;
3019eac3
DE
4754
4755 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4756 if (types_htab == NULL)
4757 {
4758 dwarf2_per_objfile->signatured_types = NULL;
4759 return 0;
4760 }
4761
348e048f
DE
4762 dwarf2_per_objfile->signatured_types = types_htab;
4763
6aa5f3a6
DE
4764 dwarf2_per_objfile->n_type_units
4765 = dwarf2_per_objfile->n_allocated_type_units
4766 = htab_elements (types_htab);
d467dd73 4767 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
4768 = xmalloc (dwarf2_per_objfile->n_type_units
4769 * sizeof (struct signatured_type *));
d467dd73
DE
4770 iter = &dwarf2_per_objfile->all_type_units[0];
4771 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4772 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4773 == dwarf2_per_objfile->n_type_units);
1fd400ff 4774
348e048f
DE
4775 return 1;
4776}
4777
6aa5f3a6
DE
4778/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4779 If SLOT is non-NULL, it is the entry to use in the hash table.
4780 Otherwise we find one. */
4781
4782static struct signatured_type *
4783add_type_unit (ULONGEST sig, void **slot)
4784{
4785 struct objfile *objfile = dwarf2_per_objfile->objfile;
4786 int n_type_units = dwarf2_per_objfile->n_type_units;
4787 struct signatured_type *sig_type;
4788
4789 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4790 ++n_type_units;
4791 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4792 {
4793 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4794 dwarf2_per_objfile->n_allocated_type_units = 1;
4795 dwarf2_per_objfile->n_allocated_type_units *= 2;
4796 dwarf2_per_objfile->all_type_units
4797 = xrealloc (dwarf2_per_objfile->all_type_units,
4798 dwarf2_per_objfile->n_allocated_type_units
4799 * sizeof (struct signatured_type *));
4800 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4801 }
4802 dwarf2_per_objfile->n_type_units = n_type_units;
4803
4804 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4805 struct signatured_type);
4806 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4807 sig_type->signature = sig;
4808 sig_type->per_cu.is_debug_types = 1;
4809 if (dwarf2_per_objfile->using_index)
4810 {
4811 sig_type->per_cu.v.quick =
4812 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4813 struct dwarf2_per_cu_quick_data);
4814 }
4815
4816 if (slot == NULL)
4817 {
4818 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4819 sig_type, INSERT);
4820 }
4821 gdb_assert (*slot == NULL);
4822 *slot = sig_type;
4823 /* The rest of sig_type must be filled in by the caller. */
4824 return sig_type;
4825}
4826
a2ce51a0
DE
4827/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4828 Fill in SIG_ENTRY with DWO_ENTRY. */
4829
4830static void
4831fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4832 struct signatured_type *sig_entry,
4833 struct dwo_unit *dwo_entry)
4834{
7ee85ab1 4835 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
4836 gdb_assert (! sig_entry->per_cu.queued);
4837 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
4838 if (dwarf2_per_objfile->using_index)
4839 {
4840 gdb_assert (sig_entry->per_cu.v.quick != NULL);
43f3e411 4841 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6aa5f3a6
DE
4842 }
4843 else
4844 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0
DE
4845 gdb_assert (sig_entry->signature == dwo_entry->signature);
4846 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4847 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
4848 gdb_assert (sig_entry->dwo_unit == NULL);
4849
4850 sig_entry->per_cu.section = dwo_entry->section;
4851 sig_entry->per_cu.offset = dwo_entry->offset;
4852 sig_entry->per_cu.length = dwo_entry->length;
4853 sig_entry->per_cu.reading_dwo_directly = 1;
4854 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
4855 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4856 sig_entry->dwo_unit = dwo_entry;
4857}
4858
4859/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
4860 If we haven't read the TU yet, create the signatured_type data structure
4861 for a TU to be read in directly from a DWO file, bypassing the stub.
4862 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4863 using .gdb_index, then when reading a CU we want to stay in the DWO file
4864 containing that CU. Otherwise we could end up reading several other DWO
4865 files (due to comdat folding) to process the transitive closure of all the
4866 mentioned TUs, and that can be slow. The current DWO file will have every
4867 type signature that it needs.
a2ce51a0
DE
4868 We only do this for .gdb_index because in the psymtab case we already have
4869 to read all the DWOs to build the type unit groups. */
4870
4871static struct signatured_type *
4872lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4873{
4874 struct objfile *objfile = dwarf2_per_objfile->objfile;
4875 struct dwo_file *dwo_file;
4876 struct dwo_unit find_dwo_entry, *dwo_entry;
4877 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4878 void **slot;
a2ce51a0
DE
4879
4880 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4881
6aa5f3a6
DE
4882 /* If TU skeletons have been removed then we may not have read in any
4883 TUs yet. */
4884 if (dwarf2_per_objfile->signatured_types == NULL)
4885 {
4886 dwarf2_per_objfile->signatured_types
4887 = allocate_signatured_type_table (objfile);
4888 }
a2ce51a0
DE
4889
4890 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
4891 Use the global signatured_types array to do our own comdat-folding
4892 of types. If this is the first time we're reading this TU, and
4893 the TU has an entry in .gdb_index, replace the recorded data from
4894 .gdb_index with this TU. */
a2ce51a0 4895
a2ce51a0 4896 find_sig_entry.signature = sig;
6aa5f3a6
DE
4897 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4898 &find_sig_entry, INSERT);
4899 sig_entry = *slot;
7ee85ab1
DE
4900
4901 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
4902 read. Don't reassign the global entry to point to this DWO if that's
4903 the case. Also note that if the TU is already being read, it may not
4904 have come from a DWO, the program may be a mix of Fission-compiled
4905 code and non-Fission-compiled code. */
4906
4907 /* Have we already tried to read this TU?
4908 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4909 needn't exist in the global table yet). */
4910 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
4911 return sig_entry;
4912
6aa5f3a6
DE
4913 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4914 dwo_unit of the TU itself. */
4915 dwo_file = cu->dwo_unit->dwo_file;
4916
a2ce51a0
DE
4917 /* Ok, this is the first time we're reading this TU. */
4918 if (dwo_file->tus == NULL)
4919 return NULL;
4920 find_dwo_entry.signature = sig;
4921 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4922 if (dwo_entry == NULL)
4923 return NULL;
4924
6aa5f3a6
DE
4925 /* If the global table doesn't have an entry for this TU, add one. */
4926 if (sig_entry == NULL)
4927 sig_entry = add_type_unit (sig, slot);
4928
a2ce51a0 4929 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 4930 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
4931 return sig_entry;
4932}
4933
a2ce51a0
DE
4934/* Subroutine of lookup_signatured_type.
4935 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
4936 then try the DWP file. If the TU stub (skeleton) has been removed then
4937 it won't be in .gdb_index. */
a2ce51a0
DE
4938
4939static struct signatured_type *
4940lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4941{
4942 struct objfile *objfile = dwarf2_per_objfile->objfile;
4943 struct dwp_file *dwp_file = get_dwp_file ();
4944 struct dwo_unit *dwo_entry;
4945 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4946 void **slot;
a2ce51a0
DE
4947
4948 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4949 gdb_assert (dwp_file != NULL);
4950
6aa5f3a6
DE
4951 /* If TU skeletons have been removed then we may not have read in any
4952 TUs yet. */
4953 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 4954 {
6aa5f3a6
DE
4955 dwarf2_per_objfile->signatured_types
4956 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
4957 }
4958
6aa5f3a6
DE
4959 find_sig_entry.signature = sig;
4960 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4961 &find_sig_entry, INSERT);
4962 sig_entry = *slot;
4963
4964 /* Have we already tried to read this TU?
4965 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4966 needn't exist in the global table yet). */
4967 if (sig_entry != NULL)
4968 return sig_entry;
4969
a2ce51a0
DE
4970 if (dwp_file->tus == NULL)
4971 return NULL;
57d63ce2
DE
4972 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4973 sig, 1 /* is_debug_types */);
a2ce51a0
DE
4974 if (dwo_entry == NULL)
4975 return NULL;
4976
6aa5f3a6 4977 sig_entry = add_type_unit (sig, slot);
a2ce51a0
DE
4978 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4979
a2ce51a0
DE
4980 return sig_entry;
4981}
4982
380bca97 4983/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
4984 Returns NULL if signature SIG is not present in the table.
4985 It is up to the caller to complain about this. */
348e048f
DE
4986
4987static struct signatured_type *
a2ce51a0 4988lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 4989{
a2ce51a0
DE
4990 if (cu->dwo_unit
4991 && dwarf2_per_objfile->using_index)
4992 {
4993 /* We're in a DWO/DWP file, and we're using .gdb_index.
4994 These cases require special processing. */
4995 if (get_dwp_file () == NULL)
4996 return lookup_dwo_signatured_type (cu, sig);
4997 else
4998 return lookup_dwp_signatured_type (cu, sig);
4999 }
5000 else
5001 {
5002 struct signatured_type find_entry, *entry;
348e048f 5003
a2ce51a0
DE
5004 if (dwarf2_per_objfile->signatured_types == NULL)
5005 return NULL;
5006 find_entry.signature = sig;
5007 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
5008 return entry;
5009 }
348e048f 5010}
42e7ad6c
DE
5011\f
5012/* Low level DIE reading support. */
348e048f 5013
d85a05f0
DJ
5014/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5015
5016static void
5017init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 5018 struct dwarf2_cu *cu,
3019eac3
DE
5019 struct dwarf2_section_info *section,
5020 struct dwo_file *dwo_file)
d85a05f0 5021{
fceca515 5022 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 5023 reader->abfd = get_section_bfd_owner (section);
d85a05f0 5024 reader->cu = cu;
3019eac3 5025 reader->dwo_file = dwo_file;
dee91e82
DE
5026 reader->die_section = section;
5027 reader->buffer = section->buffer;
f664829e 5028 reader->buffer_end = section->buffer + section->size;
a2ce51a0 5029 reader->comp_dir = NULL;
d85a05f0
DJ
5030}
5031
b0c7bfa9
DE
5032/* Subroutine of init_cutu_and_read_dies to simplify it.
5033 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5034 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5035 already.
5036
5037 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5038 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
5039 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5040 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
5041 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5042 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
5043 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5044 are filled in with the info of the DIE from the DWO file.
5045 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5046 provided an abbrev table to use.
5047 The result is non-zero if a valid (non-dummy) DIE was found. */
5048
5049static int
5050read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5051 struct dwo_unit *dwo_unit,
5052 int abbrev_table_provided,
5053 struct die_info *stub_comp_unit_die,
a2ce51a0 5054 const char *stub_comp_dir,
b0c7bfa9 5055 struct die_reader_specs *result_reader,
d521ce57 5056 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
5057 struct die_info **result_comp_unit_die,
5058 int *result_has_children)
5059{
5060 struct objfile *objfile = dwarf2_per_objfile->objfile;
5061 struct dwarf2_cu *cu = this_cu->cu;
5062 struct dwarf2_section_info *section;
5063 bfd *abfd;
d521ce57 5064 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
5065 ULONGEST signature; /* Or dwo_id. */
5066 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5067 int i,num_extra_attrs;
5068 struct dwarf2_section_info *dwo_abbrev_section;
5069 struct attribute *attr;
5070 struct die_info *comp_unit_die;
5071
b0aeadb3
DE
5072 /* At most one of these may be provided. */
5073 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 5074
b0c7bfa9
DE
5075 /* These attributes aren't processed until later:
5076 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
5077 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5078 referenced later. However, these attributes are found in the stub
5079 which we won't have later. In order to not impose this complication
5080 on the rest of the code, we read them here and copy them to the
5081 DWO CU/TU die. */
b0c7bfa9
DE
5082
5083 stmt_list = NULL;
5084 low_pc = NULL;
5085 high_pc = NULL;
5086 ranges = NULL;
5087 comp_dir = NULL;
5088
5089 if (stub_comp_unit_die != NULL)
5090 {
5091 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5092 DWO file. */
5093 if (! this_cu->is_debug_types)
5094 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5095 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5096 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5097 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5098 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5099
5100 /* There should be a DW_AT_addr_base attribute here (if needed).
5101 We need the value before we can process DW_FORM_GNU_addr_index. */
5102 cu->addr_base = 0;
5103 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5104 if (attr)
5105 cu->addr_base = DW_UNSND (attr);
5106
5107 /* There should be a DW_AT_ranges_base attribute here (if needed).
5108 We need the value before we can process DW_AT_ranges. */
5109 cu->ranges_base = 0;
5110 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5111 if (attr)
5112 cu->ranges_base = DW_UNSND (attr);
5113 }
a2ce51a0
DE
5114 else if (stub_comp_dir != NULL)
5115 {
5116 /* Reconstruct the comp_dir attribute to simplify the code below. */
5117 comp_dir = (struct attribute *)
5118 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5119 comp_dir->name = DW_AT_comp_dir;
5120 comp_dir->form = DW_FORM_string;
5121 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5122 DW_STRING (comp_dir) = stub_comp_dir;
5123 }
b0c7bfa9
DE
5124
5125 /* Set up for reading the DWO CU/TU. */
5126 cu->dwo_unit = dwo_unit;
5127 section = dwo_unit->section;
5128 dwarf2_read_section (objfile, section);
a32a8923 5129 abfd = get_section_bfd_owner (section);
b0c7bfa9
DE
5130 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5131 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5132 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5133
5134 if (this_cu->is_debug_types)
5135 {
5136 ULONGEST header_signature;
5137 cu_offset type_offset_in_tu;
5138 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5139
5140 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5141 dwo_abbrev_section,
5142 info_ptr,
5143 &header_signature,
5144 &type_offset_in_tu);
a2ce51a0
DE
5145 /* This is not an assert because it can be caused by bad debug info. */
5146 if (sig_type->signature != header_signature)
5147 {
5148 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5149 " TU at offset 0x%x [in module %s]"),
5150 hex_string (sig_type->signature),
5151 hex_string (header_signature),
5152 dwo_unit->offset.sect_off,
5153 bfd_get_filename (abfd));
5154 }
b0c7bfa9
DE
5155 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5156 /* For DWOs coming from DWP files, we don't know the CU length
5157 nor the type's offset in the TU until now. */
5158 dwo_unit->length = get_cu_length (&cu->header);
5159 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5160
5161 /* Establish the type offset that can be used to lookup the type.
5162 For DWO files, we don't know it until now. */
5163 sig_type->type_offset_in_section.sect_off =
5164 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5165 }
5166 else
5167 {
5168 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5169 dwo_abbrev_section,
5170 info_ptr, 0);
5171 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5172 /* For DWOs coming from DWP files, we don't know the CU length
5173 until now. */
5174 dwo_unit->length = get_cu_length (&cu->header);
5175 }
5176
02142a6c
DE
5177 /* Replace the CU's original abbrev table with the DWO's.
5178 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5179 if (abbrev_table_provided)
5180 {
5181 /* Don't free the provided abbrev table, the caller of
5182 init_cutu_and_read_dies owns it. */
5183 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5184 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5185 make_cleanup (dwarf2_free_abbrev_table, cu);
5186 }
5187 else
5188 {
5189 dwarf2_free_abbrev_table (cu);
5190 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5191 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5192 }
5193
5194 /* Read in the die, but leave space to copy over the attributes
5195 from the stub. This has the benefit of simplifying the rest of
5196 the code - all the work to maintain the illusion of a single
5197 DW_TAG_{compile,type}_unit DIE is done here. */
5198 num_extra_attrs = ((stmt_list != NULL)
5199 + (low_pc != NULL)
5200 + (high_pc != NULL)
5201 + (ranges != NULL)
5202 + (comp_dir != NULL));
5203 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5204 result_has_children, num_extra_attrs);
5205
5206 /* Copy over the attributes from the stub to the DIE we just read in. */
5207 comp_unit_die = *result_comp_unit_die;
5208 i = comp_unit_die->num_attrs;
5209 if (stmt_list != NULL)
5210 comp_unit_die->attrs[i++] = *stmt_list;
5211 if (low_pc != NULL)
5212 comp_unit_die->attrs[i++] = *low_pc;
5213 if (high_pc != NULL)
5214 comp_unit_die->attrs[i++] = *high_pc;
5215 if (ranges != NULL)
5216 comp_unit_die->attrs[i++] = *ranges;
5217 if (comp_dir != NULL)
5218 comp_unit_die->attrs[i++] = *comp_dir;
5219 comp_unit_die->num_attrs += num_extra_attrs;
5220
b4f54984 5221 if (dwarf_die_debug)
bf6af496
DE
5222 {
5223 fprintf_unfiltered (gdb_stdlog,
5224 "Read die from %s@0x%x of %s:\n",
a32a8923 5225 get_section_name (section),
bf6af496
DE
5226 (unsigned) (begin_info_ptr - section->buffer),
5227 bfd_get_filename (abfd));
b4f54984 5228 dump_die (comp_unit_die, dwarf_die_debug);
bf6af496
DE
5229 }
5230
a2ce51a0
DE
5231 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5232 TUs by skipping the stub and going directly to the entry in the DWO file.
5233 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5234 to get it via circuitous means. Blech. */
5235 if (comp_dir != NULL)
5236 result_reader->comp_dir = DW_STRING (comp_dir);
5237
b0c7bfa9
DE
5238 /* Skip dummy compilation units. */
5239 if (info_ptr >= begin_info_ptr + dwo_unit->length
5240 || peek_abbrev_code (abfd, info_ptr) == 0)
5241 return 0;
5242
5243 *result_info_ptr = info_ptr;
5244 return 1;
5245}
5246
5247/* Subroutine of init_cutu_and_read_dies to simplify it.
5248 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5249 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5250
5251static struct dwo_unit *
5252lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5253 struct die_info *comp_unit_die)
5254{
5255 struct dwarf2_cu *cu = this_cu->cu;
5256 struct attribute *attr;
5257 ULONGEST signature;
5258 struct dwo_unit *dwo_unit;
5259 const char *comp_dir, *dwo_name;
5260
a2ce51a0
DE
5261 gdb_assert (cu != NULL);
5262
b0c7bfa9
DE
5263 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5264 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5265 gdb_assert (attr != NULL);
5266 dwo_name = DW_STRING (attr);
5267 comp_dir = NULL;
5268 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5269 if (attr)
5270 comp_dir = DW_STRING (attr);
5271
5272 if (this_cu->is_debug_types)
5273 {
5274 struct signatured_type *sig_type;
5275
5276 /* Since this_cu is the first member of struct signatured_type,
5277 we can go from a pointer to one to a pointer to the other. */
5278 sig_type = (struct signatured_type *) this_cu;
5279 signature = sig_type->signature;
5280 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5281 }
5282 else
5283 {
5284 struct attribute *attr;
5285
5286 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5287 if (! attr)
5288 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5289 " [in module %s]"),
4262abfb 5290 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5291 signature = DW_UNSND (attr);
5292 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5293 signature);
5294 }
5295
b0c7bfa9
DE
5296 return dwo_unit;
5297}
5298
a2ce51a0 5299/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6
DE
5300 See it for a description of the parameters.
5301 Read a TU directly from a DWO file, bypassing the stub.
5302
5303 Note: This function could be a little bit simpler if we shared cleanups
5304 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5305 to do, so we keep this function self-contained. Or we could move this
5306 into our caller, but it's complex enough already. */
a2ce51a0
DE
5307
5308static void
6aa5f3a6
DE
5309init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5310 int use_existing_cu, int keep,
a2ce51a0
DE
5311 die_reader_func_ftype *die_reader_func,
5312 void *data)
5313{
5314 struct dwarf2_cu *cu;
5315 struct signatured_type *sig_type;
6aa5f3a6 5316 struct cleanup *cleanups, *free_cu_cleanup = NULL;
a2ce51a0
DE
5317 struct die_reader_specs reader;
5318 const gdb_byte *info_ptr;
5319 struct die_info *comp_unit_die;
5320 int has_children;
5321
5322 /* Verify we can do the following downcast, and that we have the
5323 data we need. */
5324 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5325 sig_type = (struct signatured_type *) this_cu;
5326 gdb_assert (sig_type->dwo_unit != NULL);
5327
5328 cleanups = make_cleanup (null_cleanup, NULL);
5329
6aa5f3a6
DE
5330 if (use_existing_cu && this_cu->cu != NULL)
5331 {
5332 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5333 cu = this_cu->cu;
5334 /* There's no need to do the rereading_dwo_cu handling that
5335 init_cutu_and_read_dies does since we don't read the stub. */
5336 }
5337 else
5338 {
5339 /* If !use_existing_cu, this_cu->cu must be NULL. */
5340 gdb_assert (this_cu->cu == NULL);
5341 cu = xmalloc (sizeof (*cu));
5342 init_one_comp_unit (cu, this_cu);
5343 /* If an error occurs while loading, release our storage. */
5344 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5345 }
5346
5347 /* A future optimization, if needed, would be to use an existing
5348 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5349 could share abbrev tables. */
a2ce51a0
DE
5350
5351 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5352 0 /* abbrev_table_provided */,
5353 NULL /* stub_comp_unit_die */,
5354 sig_type->dwo_unit->dwo_file->comp_dir,
5355 &reader, &info_ptr,
5356 &comp_unit_die, &has_children) == 0)
5357 {
5358 /* Dummy die. */
5359 do_cleanups (cleanups);
5360 return;
5361 }
5362
5363 /* All the "real" work is done here. */
5364 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5365
6aa5f3a6 5366 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
5367 but the alternative is making the latter more complex.
5368 This function is only for the special case of using DWO files directly:
5369 no point in overly complicating the general case just to handle this. */
6aa5f3a6 5370 if (free_cu_cleanup != NULL)
a2ce51a0 5371 {
6aa5f3a6
DE
5372 if (keep)
5373 {
5374 /* We've successfully allocated this compilation unit. Let our
5375 caller clean it up when finished with it. */
5376 discard_cleanups (free_cu_cleanup);
a2ce51a0 5377
6aa5f3a6
DE
5378 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5379 So we have to manually free the abbrev table. */
5380 dwarf2_free_abbrev_table (cu);
a2ce51a0 5381
6aa5f3a6
DE
5382 /* Link this CU into read_in_chain. */
5383 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5384 dwarf2_per_objfile->read_in_chain = this_cu;
5385 }
5386 else
5387 do_cleanups (free_cu_cleanup);
a2ce51a0 5388 }
a2ce51a0
DE
5389
5390 do_cleanups (cleanups);
5391}
5392
fd820528 5393/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5394 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5395
f4dc4d17
DE
5396 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5397 Otherwise the table specified in the comp unit header is read in and used.
5398 This is an optimization for when we already have the abbrev table.
5399
dee91e82
DE
5400 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5401 Otherwise, a new CU is allocated with xmalloc.
5402
5403 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5404 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5405
5406 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5407 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5408
70221824 5409static void
fd820528 5410init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5411 struct abbrev_table *abbrev_table,
fd820528
DE
5412 int use_existing_cu, int keep,
5413 die_reader_func_ftype *die_reader_func,
5414 void *data)
c906108c 5415{
dee91e82 5416 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5417 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5418 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5419 struct dwarf2_cu *cu;
d521ce57 5420 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5421 struct die_reader_specs reader;
d85a05f0 5422 struct die_info *comp_unit_die;
dee91e82 5423 int has_children;
d85a05f0 5424 struct attribute *attr;
365156ad 5425 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5426 struct signatured_type *sig_type = NULL;
4bdcc0c1 5427 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5428 /* Non-zero if CU currently points to a DWO file and we need to
5429 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5430 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5431 int rereading_dwo_cu = 0;
c906108c 5432
b4f54984 5433 if (dwarf_die_debug)
09406207
DE
5434 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5435 this_cu->is_debug_types ? "type" : "comp",
5436 this_cu->offset.sect_off);
5437
dee91e82
DE
5438 if (use_existing_cu)
5439 gdb_assert (keep);
23745b47 5440
a2ce51a0
DE
5441 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5442 file (instead of going through the stub), short-circuit all of this. */
5443 if (this_cu->reading_dwo_directly)
5444 {
5445 /* Narrow down the scope of possibilities to have to understand. */
5446 gdb_assert (this_cu->is_debug_types);
5447 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
5448 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5449 die_reader_func, data);
a2ce51a0
DE
5450 return;
5451 }
5452
dee91e82
DE
5453 cleanups = make_cleanup (null_cleanup, NULL);
5454
5455 /* This is cheap if the section is already read in. */
5456 dwarf2_read_section (objfile, section);
5457
5458 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
5459
5460 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5461
5462 if (use_existing_cu && this_cu->cu != NULL)
5463 {
5464 cu = this_cu->cu;
42e7ad6c
DE
5465 /* If this CU is from a DWO file we need to start over, we need to
5466 refetch the attributes from the skeleton CU.
5467 This could be optimized by retrieving those attributes from when we
5468 were here the first time: the previous comp_unit_die was stored in
5469 comp_unit_obstack. But there's no data yet that we need this
5470 optimization. */
5471 if (cu->dwo_unit != NULL)
5472 rereading_dwo_cu = 1;
dee91e82
DE
5473 }
5474 else
5475 {
5476 /* If !use_existing_cu, this_cu->cu must be NULL. */
5477 gdb_assert (this_cu->cu == NULL);
dee91e82
DE
5478 cu = xmalloc (sizeof (*cu));
5479 init_one_comp_unit (cu, this_cu);
dee91e82 5480 /* If an error occurs while loading, release our storage. */
365156ad 5481 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5482 }
dee91e82 5483
b0c7bfa9 5484 /* Get the header. */
42e7ad6c
DE
5485 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5486 {
5487 /* We already have the header, there's no need to read it in again. */
5488 info_ptr += cu->header.first_die_offset.cu_off;
5489 }
5490 else
5491 {
3019eac3 5492 if (this_cu->is_debug_types)
dee91e82
DE
5493 {
5494 ULONGEST signature;
42e7ad6c 5495 cu_offset type_offset_in_tu;
dee91e82 5496
4bdcc0c1
DE
5497 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5498 abbrev_section, info_ptr,
42e7ad6c
DE
5499 &signature,
5500 &type_offset_in_tu);
dee91e82 5501
42e7ad6c
DE
5502 /* Since per_cu is the first member of struct signatured_type,
5503 we can go from a pointer to one to a pointer to the other. */
5504 sig_type = (struct signatured_type *) this_cu;
5505 gdb_assert (sig_type->signature == signature);
5506 gdb_assert (sig_type->type_offset_in_tu.cu_off
5507 == type_offset_in_tu.cu_off);
dee91e82
DE
5508 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5509
42e7ad6c
DE
5510 /* LENGTH has not been set yet for type units if we're
5511 using .gdb_index. */
1ce1cefd 5512 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5513
5514 /* Establish the type offset that can be used to lookup the type. */
5515 sig_type->type_offset_in_section.sect_off =
5516 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
dee91e82
DE
5517 }
5518 else
5519 {
4bdcc0c1
DE
5520 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5521 abbrev_section,
5522 info_ptr, 0);
dee91e82
DE
5523
5524 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 5525 gdb_assert (this_cu->length == get_cu_length (&cu->header));
dee91e82
DE
5526 }
5527 }
10b3939b 5528
6caca83c 5529 /* Skip dummy compilation units. */
dee91e82 5530 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5531 || peek_abbrev_code (abfd, info_ptr) == 0)
5532 {
dee91e82 5533 do_cleanups (cleanups);
21b2bd31 5534 return;
6caca83c
CC
5535 }
5536
433df2d4
DE
5537 /* If we don't have them yet, read the abbrevs for this compilation unit.
5538 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5539 done. Note that it's important that if the CU had an abbrev table
5540 on entry we don't free it when we're done: Somewhere up the call stack
5541 it may be in use. */
f4dc4d17
DE
5542 if (abbrev_table != NULL)
5543 {
5544 gdb_assert (cu->abbrev_table == NULL);
5545 gdb_assert (cu->header.abbrev_offset.sect_off
5546 == abbrev_table->offset.sect_off);
5547 cu->abbrev_table = abbrev_table;
5548 }
5549 else if (cu->abbrev_table == NULL)
dee91e82 5550 {
4bdcc0c1 5551 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5552 make_cleanup (dwarf2_free_abbrev_table, cu);
5553 }
42e7ad6c
DE
5554 else if (rereading_dwo_cu)
5555 {
5556 dwarf2_free_abbrev_table (cu);
5557 dwarf2_read_abbrevs (cu, abbrev_section);
5558 }
af703f96 5559
dee91e82 5560 /* Read the top level CU/TU die. */
3019eac3 5561 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5562 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5563
b0c7bfa9
DE
5564 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5565 from the DWO file.
5566 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5567 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5568 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5569 if (attr)
5570 {
3019eac3 5571 struct dwo_unit *dwo_unit;
b0c7bfa9 5572 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5573
5574 if (has_children)
6a506a2d
DE
5575 {
5576 complaint (&symfile_complaints,
5577 _("compilation unit with DW_AT_GNU_dwo_name"
5578 " has children (offset 0x%x) [in module %s]"),
5579 this_cu->offset.sect_off, bfd_get_filename (abfd));
5580 }
b0c7bfa9 5581 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5582 if (dwo_unit != NULL)
3019eac3 5583 {
6a506a2d
DE
5584 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5585 abbrev_table != NULL,
a2ce51a0 5586 comp_unit_die, NULL,
6a506a2d
DE
5587 &reader, &info_ptr,
5588 &dwo_comp_unit_die, &has_children) == 0)
5589 {
5590 /* Dummy die. */
5591 do_cleanups (cleanups);
5592 return;
5593 }
5594 comp_unit_die = dwo_comp_unit_die;
5595 }
5596 else
5597 {
5598 /* Yikes, we couldn't find the rest of the DIE, we only have
5599 the stub. A complaint has already been logged. There's
5600 not much more we can do except pass on the stub DIE to
5601 die_reader_func. We don't want to throw an error on bad
5602 debug info. */
3019eac3
DE
5603 }
5604 }
5605
b0c7bfa9 5606 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5607 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5608
b0c7bfa9 5609 /* Done, clean up. */
365156ad 5610 if (free_cu_cleanup != NULL)
348e048f 5611 {
365156ad
TT
5612 if (keep)
5613 {
5614 /* We've successfully allocated this compilation unit. Let our
5615 caller clean it up when finished with it. */
5616 discard_cleanups (free_cu_cleanup);
dee91e82 5617
365156ad
TT
5618 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5619 So we have to manually free the abbrev table. */
5620 dwarf2_free_abbrev_table (cu);
dee91e82 5621
365156ad
TT
5622 /* Link this CU into read_in_chain. */
5623 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5624 dwarf2_per_objfile->read_in_chain = this_cu;
5625 }
5626 else
5627 do_cleanups (free_cu_cleanup);
348e048f 5628 }
365156ad
TT
5629
5630 do_cleanups (cleanups);
dee91e82
DE
5631}
5632
33e80786
DE
5633/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5634 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5635 to have already done the lookup to find the DWO file).
dee91e82
DE
5636
5637 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5638 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5639
5640 We fill in THIS_CU->length.
5641
5642 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5643 linker) then DIE_READER_FUNC will not get called.
5644
5645 THIS_CU->cu is always freed when done.
3019eac3
DE
5646 This is done in order to not leave THIS_CU->cu in a state where we have
5647 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5648
5649static void
5650init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 5651 struct dwo_file *dwo_file,
dee91e82
DE
5652 die_reader_func_ftype *die_reader_func,
5653 void *data)
5654{
5655 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5656 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5657 bfd *abfd = get_section_bfd_owner (section);
33e80786 5658 struct dwarf2_section_info *abbrev_section;
dee91e82 5659 struct dwarf2_cu cu;
d521ce57 5660 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5661 struct die_reader_specs reader;
5662 struct cleanup *cleanups;
5663 struct die_info *comp_unit_die;
5664 int has_children;
5665
b4f54984 5666 if (dwarf_die_debug)
09406207
DE
5667 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5668 this_cu->is_debug_types ? "type" : "comp",
5669 this_cu->offset.sect_off);
5670
dee91e82
DE
5671 gdb_assert (this_cu->cu == NULL);
5672
33e80786
DE
5673 abbrev_section = (dwo_file != NULL
5674 ? &dwo_file->sections.abbrev
5675 : get_abbrev_section_for_cu (this_cu));
5676
dee91e82
DE
5677 /* This is cheap if the section is already read in. */
5678 dwarf2_read_section (objfile, section);
5679
5680 init_one_comp_unit (&cu, this_cu);
5681
5682 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5683
5684 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
5685 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5686 abbrev_section, info_ptr,
3019eac3 5687 this_cu->is_debug_types);
dee91e82 5688
1ce1cefd 5689 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5690
5691 /* Skip dummy compilation units. */
5692 if (info_ptr >= begin_info_ptr + this_cu->length
5693 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5694 {
dee91e82 5695 do_cleanups (cleanups);
21b2bd31 5696 return;
93311388 5697 }
72bf9492 5698
dee91e82
DE
5699 dwarf2_read_abbrevs (&cu, abbrev_section);
5700 make_cleanup (dwarf2_free_abbrev_table, &cu);
5701
3019eac3 5702 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5703 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5704
5705 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5706
5707 do_cleanups (cleanups);
5708}
5709
3019eac3
DE
5710/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5711 does not lookup the specified DWO file.
5712 This cannot be used to read DWO files.
dee91e82
DE
5713
5714 THIS_CU->cu is always freed when done.
3019eac3
DE
5715 This is done in order to not leave THIS_CU->cu in a state where we have
5716 to care whether it refers to the "main" CU or the DWO CU.
5717 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5718
5719static void
5720init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5721 die_reader_func_ftype *die_reader_func,
5722 void *data)
5723{
33e80786 5724 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 5725}
0018ea6f
DE
5726\f
5727/* Type Unit Groups.
dee91e82 5728
0018ea6f
DE
5729 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5730 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5731 so that all types coming from the same compilation (.o file) are grouped
5732 together. A future step could be to put the types in the same symtab as
5733 the CU the types ultimately came from. */
ff013f42 5734
f4dc4d17
DE
5735static hashval_t
5736hash_type_unit_group (const void *item)
5737{
094b34ac 5738 const struct type_unit_group *tu_group = item;
f4dc4d17 5739
094b34ac 5740 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 5741}
348e048f
DE
5742
5743static int
f4dc4d17 5744eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 5745{
f4dc4d17
DE
5746 const struct type_unit_group *lhs = item_lhs;
5747 const struct type_unit_group *rhs = item_rhs;
348e048f 5748
094b34ac 5749 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 5750}
348e048f 5751
f4dc4d17
DE
5752/* Allocate a hash table for type unit groups. */
5753
5754static htab_t
5755allocate_type_unit_groups_table (void)
5756{
5757 return htab_create_alloc_ex (3,
5758 hash_type_unit_group,
5759 eq_type_unit_group,
5760 NULL,
5761 &dwarf2_per_objfile->objfile->objfile_obstack,
5762 hashtab_obstack_allocate,
5763 dummy_obstack_deallocate);
5764}
dee91e82 5765
f4dc4d17
DE
5766/* Type units that don't have DW_AT_stmt_list are grouped into their own
5767 partial symtabs. We combine several TUs per psymtab to not let the size
5768 of any one psymtab grow too big. */
5769#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5770#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5771
094b34ac 5772/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5773 Create the type_unit_group object used to hold one or more TUs. */
5774
5775static struct type_unit_group *
094b34ac 5776create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5777{
5778 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5779 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5780 struct type_unit_group *tu_group;
f4dc4d17
DE
5781
5782 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5783 struct type_unit_group);
094b34ac 5784 per_cu = &tu_group->per_cu;
f4dc4d17 5785 per_cu->objfile = objfile;
f4dc4d17 5786
094b34ac
DE
5787 if (dwarf2_per_objfile->using_index)
5788 {
5789 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5790 struct dwarf2_per_cu_quick_data);
094b34ac
DE
5791 }
5792 else
5793 {
5794 unsigned int line_offset = line_offset_struct.sect_off;
5795 struct partial_symtab *pst;
5796 char *name;
5797
5798 /* Give the symtab a useful name for debug purposes. */
5799 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5800 name = xstrprintf ("<type_units_%d>",
5801 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5802 else
5803 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5804
5805 pst = create_partial_symtab (per_cu, name);
5806 pst->anonymous = 1;
f4dc4d17 5807
094b34ac
DE
5808 xfree (name);
5809 }
f4dc4d17 5810
094b34ac
DE
5811 tu_group->hash.dwo_unit = cu->dwo_unit;
5812 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5813
5814 return tu_group;
5815}
5816
094b34ac
DE
5817/* Look up the type_unit_group for type unit CU, and create it if necessary.
5818 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5819
5820static struct type_unit_group *
ff39bb5e 5821get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
5822{
5823 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5824 struct type_unit_group *tu_group;
5825 void **slot;
5826 unsigned int line_offset;
5827 struct type_unit_group type_unit_group_for_lookup;
5828
5829 if (dwarf2_per_objfile->type_unit_groups == NULL)
5830 {
5831 dwarf2_per_objfile->type_unit_groups =
5832 allocate_type_unit_groups_table ();
5833 }
5834
5835 /* Do we need to create a new group, or can we use an existing one? */
5836
5837 if (stmt_list)
5838 {
5839 line_offset = DW_UNSND (stmt_list);
5840 ++tu_stats->nr_symtab_sharers;
5841 }
5842 else
5843 {
5844 /* Ugh, no stmt_list. Rare, but we have to handle it.
5845 We can do various things here like create one group per TU or
5846 spread them over multiple groups to split up the expansion work.
5847 To avoid worst case scenarios (too many groups or too large groups)
5848 we, umm, group them in bunches. */
5849 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5850 | (tu_stats->nr_stmt_less_type_units
5851 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5852 ++tu_stats->nr_stmt_less_type_units;
5853 }
5854
094b34ac
DE
5855 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5856 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5857 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5858 &type_unit_group_for_lookup, INSERT);
5859 if (*slot != NULL)
5860 {
5861 tu_group = *slot;
5862 gdb_assert (tu_group != NULL);
5863 }
5864 else
5865 {
5866 sect_offset line_offset_struct;
5867
5868 line_offset_struct.sect_off = line_offset;
094b34ac 5869 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5870 *slot = tu_group;
5871 ++tu_stats->nr_symtabs;
5872 }
5873
5874 return tu_group;
5875}
0018ea6f
DE
5876\f
5877/* Partial symbol tables. */
5878
5879/* Create a psymtab named NAME and assign it to PER_CU.
5880
5881 The caller must fill in the following details:
5882 dirname, textlow, texthigh. */
5883
5884static struct partial_symtab *
5885create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5886{
5887 struct objfile *objfile = per_cu->objfile;
5888 struct partial_symtab *pst;
5889
5890 pst = start_psymtab_common (objfile, objfile->section_offsets,
5891 name, 0,
5892 objfile->global_psymbols.next,
5893 objfile->static_psymbols.next);
5894
5895 pst->psymtabs_addrmap_supported = 1;
5896
5897 /* This is the glue that links PST into GDB's symbol API. */
5898 pst->read_symtab_private = per_cu;
5899 pst->read_symtab = dwarf2_read_symtab;
5900 per_cu->v.psymtab = pst;
5901
5902 return pst;
5903}
5904
b93601f3
TT
5905/* The DATA object passed to process_psymtab_comp_unit_reader has this
5906 type. */
5907
5908struct process_psymtab_comp_unit_data
5909{
5910 /* True if we are reading a DW_TAG_partial_unit. */
5911
5912 int want_partial_unit;
5913
5914 /* The "pretend" language that is used if the CU doesn't declare a
5915 language. */
5916
5917 enum language pretend_language;
5918};
5919
0018ea6f
DE
5920/* die_reader_func for process_psymtab_comp_unit. */
5921
5922static void
5923process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 5924 const gdb_byte *info_ptr,
0018ea6f
DE
5925 struct die_info *comp_unit_die,
5926 int has_children,
5927 void *data)
5928{
5929 struct dwarf2_cu *cu = reader->cu;
5930 struct objfile *objfile = cu->objfile;
3e29f34a 5931 struct gdbarch *gdbarch = get_objfile_arch (objfile);
0018ea6f
DE
5932 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5933 struct attribute *attr;
5934 CORE_ADDR baseaddr;
5935 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5936 struct partial_symtab *pst;
5937 int has_pc_info;
5938 const char *filename;
b93601f3 5939 struct process_psymtab_comp_unit_data *info = data;
0018ea6f 5940
b93601f3 5941 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
5942 return;
5943
5944 gdb_assert (! per_cu->is_debug_types);
5945
b93601f3 5946 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
5947
5948 cu->list_in_scope = &file_symbols;
5949
5950 /* Allocate a new partial symbol table structure. */
5951 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5952 if (attr == NULL || !DW_STRING (attr))
5953 filename = "";
5954 else
5955 filename = DW_STRING (attr);
5956
5957 pst = create_partial_symtab (per_cu, filename);
5958
5959 /* This must be done before calling dwarf2_build_include_psymtabs. */
5960 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5961 if (attr != NULL)
5962 pst->dirname = DW_STRING (attr);
5963
5964 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5965
5966 dwarf2_find_base_address (comp_unit_die, cu);
5967
5968 /* Possibly set the default values of LOWPC and HIGHPC from
5969 `DW_AT_ranges'. */
5970 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5971 &best_highpc, cu, pst);
5972 if (has_pc_info == 1 && best_lowpc < best_highpc)
5973 /* Store the contiguous range if it is not empty; it can be empty for
5974 CUs with no code. */
5975 addrmap_set_empty (objfile->psymtabs_addrmap,
3e29f34a
MR
5976 gdbarch_adjust_dwarf2_addr (gdbarch,
5977 best_lowpc + baseaddr),
5978 gdbarch_adjust_dwarf2_addr (gdbarch,
5979 best_highpc + baseaddr) - 1,
5980 pst);
0018ea6f
DE
5981
5982 /* Check if comp unit has_children.
5983 If so, read the rest of the partial symbols from this comp unit.
5984 If not, there's no more debug_info for this comp unit. */
5985 if (has_children)
5986 {
5987 struct partial_die_info *first_die;
5988 CORE_ADDR lowpc, highpc;
5989
5990 lowpc = ((CORE_ADDR) -1);
5991 highpc = ((CORE_ADDR) 0);
5992
5993 first_die = load_partial_dies (reader, info_ptr, 1);
5994
5995 scan_partial_symbols (first_die, &lowpc, &highpc,
5996 ! has_pc_info, cu);
5997
5998 /* If we didn't find a lowpc, set it to highpc to avoid
5999 complaints from `maint check'. */
6000 if (lowpc == ((CORE_ADDR) -1))
6001 lowpc = highpc;
6002
6003 /* If the compilation unit didn't have an explicit address range,
6004 then use the information extracted from its child dies. */
6005 if (! has_pc_info)
6006 {
6007 best_lowpc = lowpc;
6008 best_highpc = highpc;
6009 }
6010 }
3e29f34a
MR
6011 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6012 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
0018ea6f
DE
6013
6014 pst->n_global_syms = objfile->global_psymbols.next -
6015 (objfile->global_psymbols.list + pst->globals_offset);
6016 pst->n_static_syms = objfile->static_psymbols.next -
6017 (objfile->static_psymbols.list + pst->statics_offset);
6018 sort_pst_symbols (objfile, pst);
6019
6020 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6021 {
6022 int i;
6023 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6024 struct dwarf2_per_cu_data *iter;
6025
6026 /* Fill in 'dependencies' here; we fill in 'users' in a
6027 post-pass. */
6028 pst->number_of_dependencies = len;
6029 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6030 len * sizeof (struct symtab *));
6031 for (i = 0;
6032 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6033 i, iter);
6034 ++i)
6035 pst->dependencies[i] = iter->v.psymtab;
6036
6037 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6038 }
6039
6040 /* Get the list of files included in the current compilation unit,
6041 and build a psymtab for each of them. */
6042 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6043
b4f54984 6044 if (dwarf_read_debug)
0018ea6f
DE
6045 {
6046 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6047
6048 fprintf_unfiltered (gdb_stdlog,
6049 "Psymtab for %s unit @0x%x: %s - %s"
6050 ", %d global, %d static syms\n",
6051 per_cu->is_debug_types ? "type" : "comp",
6052 per_cu->offset.sect_off,
6053 paddress (gdbarch, pst->textlow),
6054 paddress (gdbarch, pst->texthigh),
6055 pst->n_global_syms, pst->n_static_syms);
6056 }
6057}
6058
6059/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6060 Process compilation unit THIS_CU for a psymtab. */
6061
6062static void
6063process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
6064 int want_partial_unit,
6065 enum language pretend_language)
0018ea6f 6066{
b93601f3
TT
6067 struct process_psymtab_comp_unit_data info;
6068
0018ea6f
DE
6069 /* If this compilation unit was already read in, free the
6070 cached copy in order to read it in again. This is
6071 necessary because we skipped some symbols when we first
6072 read in the compilation unit (see load_partial_dies).
6073 This problem could be avoided, but the benefit is unclear. */
6074 if (this_cu->cu != NULL)
6075 free_one_cached_comp_unit (this_cu);
6076
6077 gdb_assert (! this_cu->is_debug_types);
b93601f3
TT
6078 info.want_partial_unit = want_partial_unit;
6079 info.pretend_language = pretend_language;
0018ea6f
DE
6080 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6081 process_psymtab_comp_unit_reader,
b93601f3 6082 &info);
0018ea6f
DE
6083
6084 /* Age out any secondary CUs. */
6085 age_cached_comp_units ();
6086}
f4dc4d17
DE
6087
6088/* Reader function for build_type_psymtabs. */
6089
6090static void
6091build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6092 const gdb_byte *info_ptr,
f4dc4d17
DE
6093 struct die_info *type_unit_die,
6094 int has_children,
6095 void *data)
6096{
6097 struct objfile *objfile = dwarf2_per_objfile->objfile;
6098 struct dwarf2_cu *cu = reader->cu;
6099 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6100 struct signatured_type *sig_type;
f4dc4d17
DE
6101 struct type_unit_group *tu_group;
6102 struct attribute *attr;
6103 struct partial_die_info *first_die;
6104 CORE_ADDR lowpc, highpc;
6105 struct partial_symtab *pst;
6106
6107 gdb_assert (data == NULL);
0186c6a7
DE
6108 gdb_assert (per_cu->is_debug_types);
6109 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6110
6111 if (! has_children)
6112 return;
6113
6114 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6115 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6116
0186c6a7 6117 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6118
6119 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6120 cu->list_in_scope = &file_symbols;
6121 pst = create_partial_symtab (per_cu, "");
6122 pst->anonymous = 1;
6123
6124 first_die = load_partial_dies (reader, info_ptr, 1);
6125
6126 lowpc = (CORE_ADDR) -1;
6127 highpc = (CORE_ADDR) 0;
6128 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6129
6130 pst->n_global_syms = objfile->global_psymbols.next -
6131 (objfile->global_psymbols.list + pst->globals_offset);
6132 pst->n_static_syms = objfile->static_psymbols.next -
6133 (objfile->static_psymbols.list + pst->statics_offset);
5c80ed9d 6134 sort_pst_symbols (objfile, pst);
f4dc4d17
DE
6135}
6136
73051182
DE
6137/* Struct used to sort TUs by their abbreviation table offset. */
6138
6139struct tu_abbrev_offset
6140{
6141 struct signatured_type *sig_type;
6142 sect_offset abbrev_offset;
6143};
6144
6145/* Helper routine for build_type_psymtabs_1, passed to qsort. */
6146
6147static int
6148sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6149{
6150 const struct tu_abbrev_offset * const *a = ap;
6151 const struct tu_abbrev_offset * const *b = bp;
6152 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6153 unsigned int boff = (*b)->abbrev_offset.sect_off;
6154
6155 return (aoff > boff) - (aoff < boff);
6156}
6157
6158/* Efficiently read all the type units.
6159 This does the bulk of the work for build_type_psymtabs.
6160
6161 The efficiency is because we sort TUs by the abbrev table they use and
6162 only read each abbrev table once. In one program there are 200K TUs
6163 sharing 8K abbrev tables.
6164
6165 The main purpose of this function is to support building the
6166 dwarf2_per_objfile->type_unit_groups table.
6167 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6168 can collapse the search space by grouping them by stmt_list.
6169 The savings can be significant, in the same program from above the 200K TUs
6170 share 8K stmt_list tables.
6171
6172 FUNC is expected to call get_type_unit_group, which will create the
6173 struct type_unit_group if necessary and add it to
6174 dwarf2_per_objfile->type_unit_groups. */
6175
6176static void
6177build_type_psymtabs_1 (void)
6178{
6179 struct objfile *objfile = dwarf2_per_objfile->objfile;
6180 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6181 struct cleanup *cleanups;
6182 struct abbrev_table *abbrev_table;
6183 sect_offset abbrev_offset;
6184 struct tu_abbrev_offset *sorted_by_abbrev;
6185 struct type_unit_group **iter;
6186 int i;
6187
6188 /* It's up to the caller to not call us multiple times. */
6189 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6190
6191 if (dwarf2_per_objfile->n_type_units == 0)
6192 return;
6193
6194 /* TUs typically share abbrev tables, and there can be way more TUs than
6195 abbrev tables. Sort by abbrev table to reduce the number of times we
6196 read each abbrev table in.
6197 Alternatives are to punt or to maintain a cache of abbrev tables.
6198 This is simpler and efficient enough for now.
6199
6200 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6201 symtab to use). Typically TUs with the same abbrev offset have the same
6202 stmt_list value too so in practice this should work well.
6203
6204 The basic algorithm here is:
6205
6206 sort TUs by abbrev table
6207 for each TU with same abbrev table:
6208 read abbrev table if first user
6209 read TU top level DIE
6210 [IWBN if DWO skeletons had DW_AT_stmt_list]
6211 call FUNC */
6212
b4f54984 6213 if (dwarf_read_debug)
73051182
DE
6214 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6215
6216 /* Sort in a separate table to maintain the order of all_type_units
6217 for .gdb_index: TU indices directly index all_type_units. */
6218 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6219 dwarf2_per_objfile->n_type_units);
6220 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6221 {
6222 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6223
6224 sorted_by_abbrev[i].sig_type = sig_type;
6225 sorted_by_abbrev[i].abbrev_offset =
6226 read_abbrev_offset (sig_type->per_cu.section,
6227 sig_type->per_cu.offset);
6228 }
6229 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6230 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6231 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6232
6233 abbrev_offset.sect_off = ~(unsigned) 0;
6234 abbrev_table = NULL;
6235 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6236
6237 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6238 {
6239 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6240
6241 /* Switch to the next abbrev table if necessary. */
6242 if (abbrev_table == NULL
6243 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6244 {
6245 if (abbrev_table != NULL)
6246 {
6247 abbrev_table_free (abbrev_table);
6248 /* Reset to NULL in case abbrev_table_read_table throws
6249 an error: abbrev_table_free_cleanup will get called. */
6250 abbrev_table = NULL;
6251 }
6252 abbrev_offset = tu->abbrev_offset;
6253 abbrev_table =
6254 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6255 abbrev_offset);
6256 ++tu_stats->nr_uniq_abbrev_tables;
6257 }
6258
6259 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6260 build_type_psymtabs_reader, NULL);
6261 }
6262
73051182 6263 do_cleanups (cleanups);
6aa5f3a6 6264}
73051182 6265
6aa5f3a6
DE
6266/* Print collected type unit statistics. */
6267
6268static void
6269print_tu_stats (void)
6270{
6271 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6272
6273 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6274 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6275 dwarf2_per_objfile->n_type_units);
6276 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6277 tu_stats->nr_uniq_abbrev_tables);
6278 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6279 tu_stats->nr_symtabs);
6280 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6281 tu_stats->nr_symtab_sharers);
6282 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6283 tu_stats->nr_stmt_less_type_units);
6284 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6285 tu_stats->nr_all_type_units_reallocs);
73051182
DE
6286}
6287
f4dc4d17
DE
6288/* Traversal function for build_type_psymtabs. */
6289
6290static int
6291build_type_psymtab_dependencies (void **slot, void *info)
6292{
6293 struct objfile *objfile = dwarf2_per_objfile->objfile;
6294 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6295 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6296 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6297 int len = VEC_length (sig_type_ptr, tu_group->tus);
6298 struct signatured_type *iter;
f4dc4d17
DE
6299 int i;
6300
6301 gdb_assert (len > 0);
0186c6a7 6302 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6303
6304 pst->number_of_dependencies = len;
6305 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6306 len * sizeof (struct psymtab *));
6307 for (i = 0;
0186c6a7 6308 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6309 ++i)
6310 {
0186c6a7
DE
6311 gdb_assert (iter->per_cu.is_debug_types);
6312 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6313 iter->type_unit_group = tu_group;
f4dc4d17
DE
6314 }
6315
0186c6a7 6316 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6317
6318 return 1;
6319}
6320
6321/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6322 Build partial symbol tables for the .debug_types comp-units. */
6323
6324static void
6325build_type_psymtabs (struct objfile *objfile)
6326{
0e50663e 6327 if (! create_all_type_units (objfile))
348e048f
DE
6328 return;
6329
73051182 6330 build_type_psymtabs_1 ();
6aa5f3a6 6331}
f4dc4d17 6332
6aa5f3a6
DE
6333/* Traversal function for process_skeletonless_type_unit.
6334 Read a TU in a DWO file and build partial symbols for it. */
6335
6336static int
6337process_skeletonless_type_unit (void **slot, void *info)
6338{
6339 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6340 struct objfile *objfile = info;
6341 struct signatured_type find_entry, *entry;
6342
6343 /* If this TU doesn't exist in the global table, add it and read it in. */
6344
6345 if (dwarf2_per_objfile->signatured_types == NULL)
6346 {
6347 dwarf2_per_objfile->signatured_types
6348 = allocate_signatured_type_table (objfile);
6349 }
6350
6351 find_entry.signature = dwo_unit->signature;
6352 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6353 INSERT);
6354 /* If we've already seen this type there's nothing to do. What's happening
6355 is we're doing our own version of comdat-folding here. */
6356 if (*slot != NULL)
6357 return 1;
6358
6359 /* This does the job that create_all_type_units would have done for
6360 this TU. */
6361 entry = add_type_unit (dwo_unit->signature, slot);
6362 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6363 *slot = entry;
6364
6365 /* This does the job that build_type_psymtabs_1 would have done. */
6366 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6367 build_type_psymtabs_reader, NULL);
6368
6369 return 1;
6370}
6371
6372/* Traversal function for process_skeletonless_type_units. */
6373
6374static int
6375process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6376{
6377 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6378
6379 if (dwo_file->tus != NULL)
6380 {
6381 htab_traverse_noresize (dwo_file->tus,
6382 process_skeletonless_type_unit, info);
6383 }
6384
6385 return 1;
6386}
6387
6388/* Scan all TUs of DWO files, verifying we've processed them.
6389 This is needed in case a TU was emitted without its skeleton.
6390 Note: This can't be done until we know what all the DWO files are. */
6391
6392static void
6393process_skeletonless_type_units (struct objfile *objfile)
6394{
6395 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6396 if (get_dwp_file () == NULL
6397 && dwarf2_per_objfile->dwo_files != NULL)
6398 {
6399 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6400 process_dwo_file_for_skeletonless_type_units,
6401 objfile);
6402 }
348e048f
DE
6403}
6404
60606b2c
TT
6405/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6406
6407static void
6408psymtabs_addrmap_cleanup (void *o)
6409{
6410 struct objfile *objfile = o;
ec61707d 6411
60606b2c
TT
6412 objfile->psymtabs_addrmap = NULL;
6413}
6414
95554aad
TT
6415/* Compute the 'user' field for each psymtab in OBJFILE. */
6416
6417static void
6418set_partial_user (struct objfile *objfile)
6419{
6420 int i;
6421
6422 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6423 {
8832e7e3 6424 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
95554aad
TT
6425 struct partial_symtab *pst = per_cu->v.psymtab;
6426 int j;
6427
36586728
TT
6428 if (pst == NULL)
6429 continue;
6430
95554aad
TT
6431 for (j = 0; j < pst->number_of_dependencies; ++j)
6432 {
6433 /* Set the 'user' field only if it is not already set. */
6434 if (pst->dependencies[j]->user == NULL)
6435 pst->dependencies[j]->user = pst;
6436 }
6437 }
6438}
6439
93311388
DE
6440/* Build the partial symbol table by doing a quick pass through the
6441 .debug_info and .debug_abbrev sections. */
72bf9492 6442
93311388 6443static void
c67a9c90 6444dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6445{
60606b2c
TT
6446 struct cleanup *back_to, *addrmap_cleanup;
6447 struct obstack temp_obstack;
21b2bd31 6448 int i;
93311388 6449
b4f54984 6450 if (dwarf_read_debug)
45cfd468
DE
6451 {
6452 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6453 objfile_name (objfile));
45cfd468
DE
6454 }
6455
98bfdba5
PA
6456 dwarf2_per_objfile->reading_partial_symbols = 1;
6457
be391dca 6458 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6459
93311388
DE
6460 /* Any cached compilation units will be linked by the per-objfile
6461 read_in_chain. Make sure to free them when we're done. */
6462 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6463
348e048f
DE
6464 build_type_psymtabs (objfile);
6465
93311388 6466 create_all_comp_units (objfile);
c906108c 6467
60606b2c
TT
6468 /* Create a temporary address map on a temporary obstack. We later
6469 copy this to the final obstack. */
6470 obstack_init (&temp_obstack);
6471 make_cleanup_obstack_free (&temp_obstack);
6472 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6473 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6474
21b2bd31 6475 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6476 {
8832e7e3 6477 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
aaa75496 6478
b93601f3 6479 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6480 }
ff013f42 6481
6aa5f3a6
DE
6482 /* This has to wait until we read the CUs, we need the list of DWOs. */
6483 process_skeletonless_type_units (objfile);
6484
6485 /* Now that all TUs have been processed we can fill in the dependencies. */
6486 if (dwarf2_per_objfile->type_unit_groups != NULL)
6487 {
6488 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6489 build_type_psymtab_dependencies, NULL);
6490 }
6491
b4f54984 6492 if (dwarf_read_debug)
6aa5f3a6
DE
6493 print_tu_stats ();
6494
95554aad
TT
6495 set_partial_user (objfile);
6496
ff013f42
JK
6497 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6498 &objfile->objfile_obstack);
60606b2c 6499 discard_cleanups (addrmap_cleanup);
ff013f42 6500
ae038cb0 6501 do_cleanups (back_to);
45cfd468 6502
b4f54984 6503 if (dwarf_read_debug)
45cfd468 6504 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6505 objfile_name (objfile));
ae038cb0
DJ
6506}
6507
3019eac3 6508/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6509
6510static void
dee91e82 6511load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6512 const gdb_byte *info_ptr,
dee91e82
DE
6513 struct die_info *comp_unit_die,
6514 int has_children,
6515 void *data)
ae038cb0 6516{
dee91e82 6517 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6518
95554aad 6519 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6520
ae038cb0
DJ
6521 /* Check if comp unit has_children.
6522 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6523 If not, there's no more debug_info for this comp unit. */
d85a05f0 6524 if (has_children)
dee91e82
DE
6525 load_partial_dies (reader, info_ptr, 0);
6526}
98bfdba5 6527
dee91e82
DE
6528/* Load the partial DIEs for a secondary CU into memory.
6529 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6530
dee91e82
DE
6531static void
6532load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6533{
f4dc4d17
DE
6534 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6535 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6536}
6537
ae038cb0 6538static void
36586728
TT
6539read_comp_units_from_section (struct objfile *objfile,
6540 struct dwarf2_section_info *section,
6541 unsigned int is_dwz,
6542 int *n_allocated,
6543 int *n_comp_units,
6544 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6545{
d521ce57 6546 const gdb_byte *info_ptr;
a32a8923 6547 bfd *abfd = get_section_bfd_owner (section);
be391dca 6548
b4f54984 6549 if (dwarf_read_debug)
bf6af496 6550 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6551 get_section_name (section),
6552 get_section_file_name (section));
bf6af496 6553
36586728 6554 dwarf2_read_section (objfile, section);
ae038cb0 6555
36586728 6556 info_ptr = section->buffer;
6e70227d 6557
36586728 6558 while (info_ptr < section->buffer + section->size)
ae038cb0 6559 {
c764a876 6560 unsigned int length, initial_length_size;
ae038cb0 6561 struct dwarf2_per_cu_data *this_cu;
b64f50a1 6562 sect_offset offset;
ae038cb0 6563
36586728 6564 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
6565
6566 /* Read just enough information to find out where the next
6567 compilation unit is. */
36586728 6568 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
6569
6570 /* Save the compilation unit for later lookup. */
6571 this_cu = obstack_alloc (&objfile->objfile_obstack,
6572 sizeof (struct dwarf2_per_cu_data));
6573 memset (this_cu, 0, sizeof (*this_cu));
6574 this_cu->offset = offset;
c764a876 6575 this_cu->length = length + initial_length_size;
36586728 6576 this_cu->is_dwz = is_dwz;
9291a0cd 6577 this_cu->objfile = objfile;
8a0459fd 6578 this_cu->section = section;
ae038cb0 6579
36586728 6580 if (*n_comp_units == *n_allocated)
ae038cb0 6581 {
36586728
TT
6582 *n_allocated *= 2;
6583 *all_comp_units = xrealloc (*all_comp_units,
6584 *n_allocated
6585 * sizeof (struct dwarf2_per_cu_data *));
ae038cb0 6586 }
36586728
TT
6587 (*all_comp_units)[*n_comp_units] = this_cu;
6588 ++*n_comp_units;
ae038cb0
DJ
6589
6590 info_ptr = info_ptr + this_cu->length;
6591 }
36586728
TT
6592}
6593
6594/* Create a list of all compilation units in OBJFILE.
6595 This is only done for -readnow and building partial symtabs. */
6596
6597static void
6598create_all_comp_units (struct objfile *objfile)
6599{
6600 int n_allocated;
6601 int n_comp_units;
6602 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6603 struct dwz_file *dwz;
36586728
TT
6604
6605 n_comp_units = 0;
6606 n_allocated = 10;
6607 all_comp_units = xmalloc (n_allocated
6608 * sizeof (struct dwarf2_per_cu_data *));
6609
6610 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6611 &n_allocated, &n_comp_units, &all_comp_units);
6612
4db1a1dc
TT
6613 dwz = dwarf2_get_dwz_file ();
6614 if (dwz != NULL)
6615 read_comp_units_from_section (objfile, &dwz->info, 1,
6616 &n_allocated, &n_comp_units,
6617 &all_comp_units);
ae038cb0
DJ
6618
6619 dwarf2_per_objfile->all_comp_units
6620 = obstack_alloc (&objfile->objfile_obstack,
6621 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6622 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6623 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6624 xfree (all_comp_units);
6625 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6626}
6627
5734ee8b 6628/* Process all loaded DIEs for compilation unit CU, starting at
cdc07690 6629 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
5734ee8b 6630 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
cdc07690
YQ
6631 DW_AT_ranges). See the comments of add_partial_subprogram on how
6632 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
c906108c 6633
72bf9492
DJ
6634static void
6635scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
cdc07690
YQ
6636 CORE_ADDR *highpc, int set_addrmap,
6637 struct dwarf2_cu *cu)
c906108c 6638{
72bf9492 6639 struct partial_die_info *pdi;
c906108c 6640
91c24f0a
DC
6641 /* Now, march along the PDI's, descending into ones which have
6642 interesting children but skipping the children of the other ones,
6643 until we reach the end of the compilation unit. */
c906108c 6644
72bf9492 6645 pdi = first_die;
91c24f0a 6646
72bf9492
DJ
6647 while (pdi != NULL)
6648 {
6649 fixup_partial_die (pdi, cu);
c906108c 6650
f55ee35c 6651 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6652 children, so we need to look at them. Ditto for anonymous
6653 enums. */
933c6fe4 6654
72bf9492 6655 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6656 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6657 || pdi->tag == DW_TAG_imported_unit)
c906108c 6658 {
72bf9492 6659 switch (pdi->tag)
c906108c
SS
6660 {
6661 case DW_TAG_subprogram:
cdc07690 6662 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
c906108c 6663 break;
72929c62 6664 case DW_TAG_constant:
c906108c
SS
6665 case DW_TAG_variable:
6666 case DW_TAG_typedef:
91c24f0a 6667 case DW_TAG_union_type:
72bf9492 6668 if (!pdi->is_declaration)
63d06c5c 6669 {
72bf9492 6670 add_partial_symbol (pdi, cu);
63d06c5c
DC
6671 }
6672 break;
c906108c 6673 case DW_TAG_class_type:
680b30c7 6674 case DW_TAG_interface_type:
c906108c 6675 case DW_TAG_structure_type:
72bf9492 6676 if (!pdi->is_declaration)
c906108c 6677 {
72bf9492 6678 add_partial_symbol (pdi, cu);
c906108c
SS
6679 }
6680 break;
91c24f0a 6681 case DW_TAG_enumeration_type:
72bf9492
DJ
6682 if (!pdi->is_declaration)
6683 add_partial_enumeration (pdi, cu);
c906108c
SS
6684 break;
6685 case DW_TAG_base_type:
a02abb62 6686 case DW_TAG_subrange_type:
c906108c 6687 /* File scope base type definitions are added to the partial
c5aa993b 6688 symbol table. */
72bf9492 6689 add_partial_symbol (pdi, cu);
c906108c 6690 break;
d9fa45fe 6691 case DW_TAG_namespace:
cdc07690 6692 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
91c24f0a 6693 break;
5d7cb8df 6694 case DW_TAG_module:
cdc07690 6695 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
5d7cb8df 6696 break;
95554aad
TT
6697 case DW_TAG_imported_unit:
6698 {
6699 struct dwarf2_per_cu_data *per_cu;
6700
f4dc4d17
DE
6701 /* For now we don't handle imported units in type units. */
6702 if (cu->per_cu->is_debug_types)
6703 {
6704 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6705 " supported in type units [in module %s]"),
4262abfb 6706 objfile_name (cu->objfile));
f4dc4d17
DE
6707 }
6708
95554aad 6709 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 6710 pdi->is_dwz,
95554aad
TT
6711 cu->objfile);
6712
6713 /* Go read the partial unit, if needed. */
6714 if (per_cu->v.psymtab == NULL)
b93601f3 6715 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6716
f4dc4d17 6717 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6718 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6719 }
6720 break;
74921315
KS
6721 case DW_TAG_imported_declaration:
6722 add_partial_symbol (pdi, cu);
6723 break;
c906108c
SS
6724 default:
6725 break;
6726 }
6727 }
6728
72bf9492
DJ
6729 /* If the die has a sibling, skip to the sibling. */
6730
6731 pdi = pdi->die_sibling;
6732 }
6733}
6734
6735/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6736
72bf9492 6737 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
6738 name is concatenated with "::" and the partial DIE's name. For
6739 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
6740 Enumerators are an exception; they use the scope of their parent
6741 enumeration type, i.e. the name of the enumeration type is not
6742 prepended to the enumerator.
91c24f0a 6743
72bf9492
DJ
6744 There are two complexities. One is DW_AT_specification; in this
6745 case "parent" means the parent of the target of the specification,
6746 instead of the direct parent of the DIE. The other is compilers
6747 which do not emit DW_TAG_namespace; in this case we try to guess
6748 the fully qualified name of structure types from their members'
6749 linkage names. This must be done using the DIE's children rather
6750 than the children of any DW_AT_specification target. We only need
6751 to do this for structures at the top level, i.e. if the target of
6752 any DW_AT_specification (if any; otherwise the DIE itself) does not
6753 have a parent. */
6754
6755/* Compute the scope prefix associated with PDI's parent, in
6756 compilation unit CU. The result will be allocated on CU's
6757 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6758 field. NULL is returned if no prefix is necessary. */
15d034d0 6759static const char *
72bf9492
DJ
6760partial_die_parent_scope (struct partial_die_info *pdi,
6761 struct dwarf2_cu *cu)
6762{
15d034d0 6763 const char *grandparent_scope;
72bf9492 6764 struct partial_die_info *parent, *real_pdi;
91c24f0a 6765
72bf9492
DJ
6766 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6767 then this means the parent of the specification DIE. */
6768
6769 real_pdi = pdi;
72bf9492 6770 while (real_pdi->has_specification)
36586728
TT
6771 real_pdi = find_partial_die (real_pdi->spec_offset,
6772 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
6773
6774 parent = real_pdi->die_parent;
6775 if (parent == NULL)
6776 return NULL;
6777
6778 if (parent->scope_set)
6779 return parent->scope;
6780
6781 fixup_partial_die (parent, cu);
6782
10b3939b 6783 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 6784
acebe513
UW
6785 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6786 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6787 Work around this problem here. */
6788 if (cu->language == language_cplus
6e70227d 6789 && parent->tag == DW_TAG_namespace
acebe513
UW
6790 && strcmp (parent->name, "::") == 0
6791 && grandparent_scope == NULL)
6792 {
6793 parent->scope = NULL;
6794 parent->scope_set = 1;
6795 return NULL;
6796 }
6797
9c6c53f7
SA
6798 if (pdi->tag == DW_TAG_enumerator)
6799 /* Enumerators should not get the name of the enumeration as a prefix. */
6800 parent->scope = grandparent_scope;
6801 else if (parent->tag == DW_TAG_namespace
f55ee35c 6802 || parent->tag == DW_TAG_module
72bf9492
DJ
6803 || parent->tag == DW_TAG_structure_type
6804 || parent->tag == DW_TAG_class_type
680b30c7 6805 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
6806 || parent->tag == DW_TAG_union_type
6807 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
6808 {
6809 if (grandparent_scope == NULL)
6810 parent->scope = parent->name;
6811 else
3e43a32a
MS
6812 parent->scope = typename_concat (&cu->comp_unit_obstack,
6813 grandparent_scope,
f55ee35c 6814 parent->name, 0, cu);
72bf9492 6815 }
72bf9492
DJ
6816 else
6817 {
6818 /* FIXME drow/2004-04-01: What should we be doing with
6819 function-local names? For partial symbols, we should probably be
6820 ignoring them. */
6821 complaint (&symfile_complaints,
e2e0b3e5 6822 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 6823 parent->tag, pdi->offset.sect_off);
72bf9492 6824 parent->scope = grandparent_scope;
c906108c
SS
6825 }
6826
72bf9492
DJ
6827 parent->scope_set = 1;
6828 return parent->scope;
6829}
6830
6831/* Return the fully scoped name associated with PDI, from compilation unit
6832 CU. The result will be allocated with malloc. */
4568ecf9 6833
72bf9492
DJ
6834static char *
6835partial_die_full_name (struct partial_die_info *pdi,
6836 struct dwarf2_cu *cu)
6837{
15d034d0 6838 const char *parent_scope;
72bf9492 6839
98bfdba5
PA
6840 /* If this is a template instantiation, we can not work out the
6841 template arguments from partial DIEs. So, unfortunately, we have
6842 to go through the full DIEs. At least any work we do building
6843 types here will be reused if full symbols are loaded later. */
6844 if (pdi->has_template_arguments)
6845 {
6846 fixup_partial_die (pdi, cu);
6847
6848 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6849 {
6850 struct die_info *die;
6851 struct attribute attr;
6852 struct dwarf2_cu *ref_cu = cu;
6853
b64f50a1 6854 /* DW_FORM_ref_addr is using section offset. */
98bfdba5
PA
6855 attr.name = 0;
6856 attr.form = DW_FORM_ref_addr;
4568ecf9 6857 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
6858 die = follow_die_ref (NULL, &attr, &ref_cu);
6859
6860 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6861 }
6862 }
6863
72bf9492
DJ
6864 parent_scope = partial_die_parent_scope (pdi, cu);
6865 if (parent_scope == NULL)
6866 return NULL;
6867 else
f55ee35c 6868 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
6869}
6870
6871static void
72bf9492 6872add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 6873{
e7c27a73 6874 struct objfile *objfile = cu->objfile;
3e29f34a 6875 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 6876 CORE_ADDR addr = 0;
15d034d0 6877 const char *actual_name = NULL;
e142c38c 6878 CORE_ADDR baseaddr;
15d034d0 6879 char *built_actual_name;
e142c38c
DJ
6880
6881 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6882
15d034d0
TT
6883 built_actual_name = partial_die_full_name (pdi, cu);
6884 if (built_actual_name != NULL)
6885 actual_name = built_actual_name;
63d06c5c 6886
72bf9492
DJ
6887 if (actual_name == NULL)
6888 actual_name = pdi->name;
6889
c906108c
SS
6890 switch (pdi->tag)
6891 {
6892 case DW_TAG_subprogram:
3e29f34a 6893 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
2cfa0c8d 6894 if (pdi->is_external || cu->language == language_ada)
c906108c 6895 {
2cfa0c8d
JB
6896 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6897 of the global scope. But in Ada, we want to be able to access
6898 nested procedures globally. So all Ada subprograms are stored
6899 in the global scope. */
3e29f34a
MR
6900 /* prim_record_minimal_symbol (actual_name, addr, mst_text,
6901 objfile); */
f47fb265 6902 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6903 built_actual_name != NULL,
f47fb265
MS
6904 VAR_DOMAIN, LOC_BLOCK,
6905 &objfile->global_psymbols,
3e29f34a 6906 0, addr, cu->language, objfile);
c906108c
SS
6907 }
6908 else
6909 {
3e29f34a
MR
6910 /* prim_record_minimal_symbol (actual_name, addr, mst_file_text,
6911 objfile); */
f47fb265 6912 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6913 built_actual_name != NULL,
f47fb265
MS
6914 VAR_DOMAIN, LOC_BLOCK,
6915 &objfile->static_psymbols,
3e29f34a 6916 0, addr, cu->language, objfile);
c906108c
SS
6917 }
6918 break;
72929c62
JB
6919 case DW_TAG_constant:
6920 {
6921 struct psymbol_allocation_list *list;
6922
6923 if (pdi->is_external)
6924 list = &objfile->global_psymbols;
6925 else
6926 list = &objfile->static_psymbols;
f47fb265 6927 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6928 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
f47fb265 6929 list, 0, 0, cu->language, objfile);
72929c62
JB
6930 }
6931 break;
c906108c 6932 case DW_TAG_variable:
95554aad
TT
6933 if (pdi->d.locdesc)
6934 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 6935
95554aad 6936 if (pdi->d.locdesc
caac4577
JG
6937 && addr == 0
6938 && !dwarf2_per_objfile->has_section_at_zero)
6939 {
6940 /* A global or static variable may also have been stripped
6941 out by the linker if unused, in which case its address
6942 will be nullified; do not add such variables into partial
6943 symbol table then. */
6944 }
6945 else if (pdi->is_external)
c906108c
SS
6946 {
6947 /* Global Variable.
6948 Don't enter into the minimal symbol tables as there is
6949 a minimal symbol table entry from the ELF symbols already.
6950 Enter into partial symbol table if it has a location
6951 descriptor or a type.
6952 If the location descriptor is missing, new_symbol will create
6953 a LOC_UNRESOLVED symbol, the address of the variable will then
6954 be determined from the minimal symbol table whenever the variable
6955 is referenced.
6956 The address for the partial symbol table entry is not
6957 used by GDB, but it comes in handy for debugging partial symbol
6958 table building. */
6959
95554aad 6960 if (pdi->d.locdesc || pdi->has_type)
f47fb265 6961 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6962 built_actual_name != NULL,
f47fb265
MS
6963 VAR_DOMAIN, LOC_STATIC,
6964 &objfile->global_psymbols,
6965 0, addr + baseaddr,
6966 cu->language, objfile);
c906108c
SS
6967 }
6968 else
6969 {
ff908ebf
AW
6970 int has_loc = pdi->d.locdesc != NULL;
6971
6972 /* Static Variable. Skip symbols whose value we cannot know (those
6973 without location descriptors or constant values). */
6974 if (!has_loc && !pdi->has_const_value)
decbce07 6975 {
15d034d0 6976 xfree (built_actual_name);
decbce07
MS
6977 return;
6978 }
ff908ebf 6979
f47fb265 6980 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 6981 mst_file_data, objfile); */
f47fb265 6982 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6983 built_actual_name != NULL,
f47fb265
MS
6984 VAR_DOMAIN, LOC_STATIC,
6985 &objfile->static_psymbols,
ff908ebf
AW
6986 0,
6987 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
f47fb265 6988 cu->language, objfile);
c906108c
SS
6989 }
6990 break;
6991 case DW_TAG_typedef:
6992 case DW_TAG_base_type:
a02abb62 6993 case DW_TAG_subrange_type:
38d518c9 6994 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6995 built_actual_name != NULL,
176620f1 6996 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 6997 &objfile->static_psymbols,
e142c38c 6998 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6999 break;
74921315 7000 case DW_TAG_imported_declaration:
72bf9492
DJ
7001 case DW_TAG_namespace:
7002 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7003 built_actual_name != NULL,
72bf9492
DJ
7004 VAR_DOMAIN, LOC_TYPEDEF,
7005 &objfile->global_psymbols,
7006 0, (CORE_ADDR) 0, cu->language, objfile);
7007 break;
530e8392
KB
7008 case DW_TAG_module:
7009 add_psymbol_to_list (actual_name, strlen (actual_name),
7010 built_actual_name != NULL,
7011 MODULE_DOMAIN, LOC_TYPEDEF,
7012 &objfile->global_psymbols,
7013 0, (CORE_ADDR) 0, cu->language, objfile);
7014 break;
c906108c 7015 case DW_TAG_class_type:
680b30c7 7016 case DW_TAG_interface_type:
c906108c
SS
7017 case DW_TAG_structure_type:
7018 case DW_TAG_union_type:
7019 case DW_TAG_enumeration_type:
fa4028e9
JB
7020 /* Skip external references. The DWARF standard says in the section
7021 about "Structure, Union, and Class Type Entries": "An incomplete
7022 structure, union or class type is represented by a structure,
7023 union or class entry that does not have a byte size attribute
7024 and that has a DW_AT_declaration attribute." */
7025 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 7026 {
15d034d0 7027 xfree (built_actual_name);
decbce07
MS
7028 return;
7029 }
fa4028e9 7030
63d06c5c
DC
7031 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7032 static vs. global. */
38d518c9 7033 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7034 built_actual_name != NULL,
176620f1 7035 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
7036 (cu->language == language_cplus
7037 || cu->language == language_java)
63d06c5c
DC
7038 ? &objfile->global_psymbols
7039 : &objfile->static_psymbols,
e142c38c 7040 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 7041
c906108c
SS
7042 break;
7043 case DW_TAG_enumerator:
38d518c9 7044 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7045 built_actual_name != NULL,
176620f1 7046 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
7047 (cu->language == language_cplus
7048 || cu->language == language_java)
f6fe98ef
DJ
7049 ? &objfile->global_psymbols
7050 : &objfile->static_psymbols,
e142c38c 7051 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
7052 break;
7053 default:
7054 break;
7055 }
5c4e30ca 7056
15d034d0 7057 xfree (built_actual_name);
c906108c
SS
7058}
7059
5c4e30ca
DC
7060/* Read a partial die corresponding to a namespace; also, add a symbol
7061 corresponding to that namespace to the symbol table. NAMESPACE is
7062 the name of the enclosing namespace. */
91c24f0a 7063
72bf9492
DJ
7064static void
7065add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 7066 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7067 int set_addrmap, struct dwarf2_cu *cu)
91c24f0a 7068{
72bf9492 7069 /* Add a symbol for the namespace. */
e7c27a73 7070
72bf9492 7071 add_partial_symbol (pdi, cu);
5c4e30ca
DC
7072
7073 /* Now scan partial symbols in that namespace. */
7074
91c24f0a 7075 if (pdi->has_children)
cdc07690 7076 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
91c24f0a
DC
7077}
7078
5d7cb8df
JK
7079/* Read a partial die corresponding to a Fortran module. */
7080
7081static void
7082add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 7083 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
5d7cb8df 7084{
530e8392
KB
7085 /* Add a symbol for the namespace. */
7086
7087 add_partial_symbol (pdi, cu);
7088
f55ee35c 7089 /* Now scan partial symbols in that module. */
5d7cb8df
JK
7090
7091 if (pdi->has_children)
cdc07690 7092 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
5d7cb8df
JK
7093}
7094
bc30ff58
JB
7095/* Read a partial die corresponding to a subprogram and create a partial
7096 symbol for that subprogram. When the CU language allows it, this
7097 routine also defines a partial symbol for each nested subprogram
cdc07690 7098 that this subprogram contains. If SET_ADDRMAP is true, record the
428fc5fc
YQ
7099 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7100 and highest PC values found in PDI.
6e70227d 7101
cdc07690
YQ
7102 PDI may also be a lexical block, in which case we simply search
7103 recursively for subprograms defined inside that lexical block.
bc30ff58
JB
7104 Again, this is only performed when the CU language allows this
7105 type of definitions. */
7106
7107static void
7108add_partial_subprogram (struct partial_die_info *pdi,
7109 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7110 int set_addrmap, struct dwarf2_cu *cu)
bc30ff58
JB
7111{
7112 if (pdi->tag == DW_TAG_subprogram)
7113 {
7114 if (pdi->has_pc_info)
7115 {
7116 if (pdi->lowpc < *lowpc)
7117 *lowpc = pdi->lowpc;
7118 if (pdi->highpc > *highpc)
7119 *highpc = pdi->highpc;
cdc07690 7120 if (set_addrmap)
5734ee8b 7121 {
5734ee8b 7122 struct objfile *objfile = cu->objfile;
3e29f34a
MR
7123 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7124 CORE_ADDR baseaddr;
7125 CORE_ADDR highpc;
7126 CORE_ADDR lowpc;
5734ee8b
DJ
7127
7128 baseaddr = ANOFFSET (objfile->section_offsets,
7129 SECT_OFF_TEXT (objfile));
3e29f34a
MR
7130 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7131 pdi->lowpc + baseaddr);
7132 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7133 pdi->highpc + baseaddr);
7134 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9291a0cd 7135 cu->per_cu->v.psymtab);
5734ee8b 7136 }
481860b3
GB
7137 }
7138
7139 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7140 {
bc30ff58 7141 if (!pdi->is_declaration)
e8d05480
JB
7142 /* Ignore subprogram DIEs that do not have a name, they are
7143 illegal. Do not emit a complaint at this point, we will
7144 do so when we convert this psymtab into a symtab. */
7145 if (pdi->name)
7146 add_partial_symbol (pdi, cu);
bc30ff58
JB
7147 }
7148 }
6e70227d 7149
bc30ff58
JB
7150 if (! pdi->has_children)
7151 return;
7152
7153 if (cu->language == language_ada)
7154 {
7155 pdi = pdi->die_child;
7156 while (pdi != NULL)
7157 {
7158 fixup_partial_die (pdi, cu);
7159 if (pdi->tag == DW_TAG_subprogram
7160 || pdi->tag == DW_TAG_lexical_block)
cdc07690 7161 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
bc30ff58
JB
7162 pdi = pdi->die_sibling;
7163 }
7164 }
7165}
7166
91c24f0a
DC
7167/* Read a partial die corresponding to an enumeration type. */
7168
72bf9492
DJ
7169static void
7170add_partial_enumeration (struct partial_die_info *enum_pdi,
7171 struct dwarf2_cu *cu)
91c24f0a 7172{
72bf9492 7173 struct partial_die_info *pdi;
91c24f0a
DC
7174
7175 if (enum_pdi->name != NULL)
72bf9492
DJ
7176 add_partial_symbol (enum_pdi, cu);
7177
7178 pdi = enum_pdi->die_child;
7179 while (pdi)
91c24f0a 7180 {
72bf9492 7181 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 7182 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 7183 else
72bf9492
DJ
7184 add_partial_symbol (pdi, cu);
7185 pdi = pdi->die_sibling;
91c24f0a 7186 }
91c24f0a
DC
7187}
7188
6caca83c
CC
7189/* Return the initial uleb128 in the die at INFO_PTR. */
7190
7191static unsigned int
d521ce57 7192peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
7193{
7194 unsigned int bytes_read;
7195
7196 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7197}
7198
4bb7a0a7
DJ
7199/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7200 Return the corresponding abbrev, or NULL if the number is zero (indicating
7201 an empty DIE). In either case *BYTES_READ will be set to the length of
7202 the initial number. */
7203
7204static struct abbrev_info *
d521ce57 7205peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 7206 struct dwarf2_cu *cu)
4bb7a0a7
DJ
7207{
7208 bfd *abfd = cu->objfile->obfd;
7209 unsigned int abbrev_number;
7210 struct abbrev_info *abbrev;
7211
7212 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7213
7214 if (abbrev_number == 0)
7215 return NULL;
7216
433df2d4 7217 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
7218 if (!abbrev)
7219 {
422b9917
DE
7220 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7221 " at offset 0x%x [in module %s]"),
7222 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7223 cu->header.offset.sect_off, bfd_get_filename (abfd));
4bb7a0a7
DJ
7224 }
7225
7226 return abbrev;
7227}
7228
93311388
DE
7229/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7230 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
7231 DIE. Any children of the skipped DIEs will also be skipped. */
7232
d521ce57
TT
7233static const gdb_byte *
7234skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 7235{
dee91e82 7236 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
7237 struct abbrev_info *abbrev;
7238 unsigned int bytes_read;
7239
7240 while (1)
7241 {
7242 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7243 if (abbrev == NULL)
7244 return info_ptr + bytes_read;
7245 else
dee91e82 7246 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
7247 }
7248}
7249
93311388
DE
7250/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7251 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
7252 abbrev corresponding to that skipped uleb128 should be passed in
7253 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7254 children. */
7255
d521ce57
TT
7256static const gdb_byte *
7257skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 7258 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7259{
7260 unsigned int bytes_read;
7261 struct attribute attr;
dee91e82
DE
7262 bfd *abfd = reader->abfd;
7263 struct dwarf2_cu *cu = reader->cu;
d521ce57 7264 const gdb_byte *buffer = reader->buffer;
f664829e 7265 const gdb_byte *buffer_end = reader->buffer_end;
d521ce57 7266 const gdb_byte *start_info_ptr = info_ptr;
4bb7a0a7
DJ
7267 unsigned int form, i;
7268
7269 for (i = 0; i < abbrev->num_attrs; i++)
7270 {
7271 /* The only abbrev we care about is DW_AT_sibling. */
7272 if (abbrev->attrs[i].name == DW_AT_sibling)
7273 {
dee91e82 7274 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7275 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7276 complaint (&symfile_complaints,
7277 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7278 else
b9502d3f
WN
7279 {
7280 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7281 const gdb_byte *sibling_ptr = buffer + off;
7282
7283 if (sibling_ptr < info_ptr)
7284 complaint (&symfile_complaints,
7285 _("DW_AT_sibling points backwards"));
22869d73
KS
7286 else if (sibling_ptr > reader->buffer_end)
7287 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
7288 else
7289 return sibling_ptr;
7290 }
4bb7a0a7
DJ
7291 }
7292
7293 /* If it isn't DW_AT_sibling, skip this attribute. */
7294 form = abbrev->attrs[i].form;
7295 skip_attribute:
7296 switch (form)
7297 {
4bb7a0a7 7298 case DW_FORM_ref_addr:
ae411497
TT
7299 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7300 and later it is offset sized. */
7301 if (cu->header.version == 2)
7302 info_ptr += cu->header.addr_size;
7303 else
7304 info_ptr += cu->header.offset_size;
7305 break;
36586728
TT
7306 case DW_FORM_GNU_ref_alt:
7307 info_ptr += cu->header.offset_size;
7308 break;
ae411497 7309 case DW_FORM_addr:
4bb7a0a7
DJ
7310 info_ptr += cu->header.addr_size;
7311 break;
7312 case DW_FORM_data1:
7313 case DW_FORM_ref1:
7314 case DW_FORM_flag:
7315 info_ptr += 1;
7316 break;
2dc7f7b3
TT
7317 case DW_FORM_flag_present:
7318 break;
4bb7a0a7
DJ
7319 case DW_FORM_data2:
7320 case DW_FORM_ref2:
7321 info_ptr += 2;
7322 break;
7323 case DW_FORM_data4:
7324 case DW_FORM_ref4:
7325 info_ptr += 4;
7326 break;
7327 case DW_FORM_data8:
7328 case DW_FORM_ref8:
55f1336d 7329 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7330 info_ptr += 8;
7331 break;
7332 case DW_FORM_string:
9b1c24c8 7333 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7334 info_ptr += bytes_read;
7335 break;
2dc7f7b3 7336 case DW_FORM_sec_offset:
4bb7a0a7 7337 case DW_FORM_strp:
36586728 7338 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7339 info_ptr += cu->header.offset_size;
7340 break;
2dc7f7b3 7341 case DW_FORM_exprloc:
4bb7a0a7
DJ
7342 case DW_FORM_block:
7343 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7344 info_ptr += bytes_read;
7345 break;
7346 case DW_FORM_block1:
7347 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7348 break;
7349 case DW_FORM_block2:
7350 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7351 break;
7352 case DW_FORM_block4:
7353 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7354 break;
7355 case DW_FORM_sdata:
7356 case DW_FORM_udata:
7357 case DW_FORM_ref_udata:
3019eac3
DE
7358 case DW_FORM_GNU_addr_index:
7359 case DW_FORM_GNU_str_index:
d521ce57 7360 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7361 break;
7362 case DW_FORM_indirect:
7363 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7364 info_ptr += bytes_read;
7365 /* We need to continue parsing from here, so just go back to
7366 the top. */
7367 goto skip_attribute;
7368
7369 default:
3e43a32a
MS
7370 error (_("Dwarf Error: Cannot handle %s "
7371 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7372 dwarf_form_name (form),
7373 bfd_get_filename (abfd));
7374 }
7375 }
7376
7377 if (abbrev->has_children)
dee91e82 7378 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7379 else
7380 return info_ptr;
7381}
7382
93311388 7383/* Locate ORIG_PDI's sibling.
dee91e82 7384 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7385
d521ce57 7386static const gdb_byte *
dee91e82
DE
7387locate_pdi_sibling (const struct die_reader_specs *reader,
7388 struct partial_die_info *orig_pdi,
d521ce57 7389 const gdb_byte *info_ptr)
91c24f0a
DC
7390{
7391 /* Do we know the sibling already? */
72bf9492 7392
91c24f0a
DC
7393 if (orig_pdi->sibling)
7394 return orig_pdi->sibling;
7395
7396 /* Are there any children to deal with? */
7397
7398 if (!orig_pdi->has_children)
7399 return info_ptr;
7400
4bb7a0a7 7401 /* Skip the children the long way. */
91c24f0a 7402
dee91e82 7403 return skip_children (reader, info_ptr);
91c24f0a
DC
7404}
7405
257e7a09 7406/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7407 not NULL. */
c906108c
SS
7408
7409static void
257e7a09
YQ
7410dwarf2_read_symtab (struct partial_symtab *self,
7411 struct objfile *objfile)
c906108c 7412{
257e7a09 7413 if (self->readin)
c906108c 7414 {
442e4d9c 7415 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7416 self->filename);
442e4d9c
YQ
7417 }
7418 else
7419 {
7420 if (info_verbose)
c906108c 7421 {
442e4d9c 7422 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7423 self->filename);
442e4d9c 7424 gdb_flush (gdb_stdout);
c906108c 7425 }
c906108c 7426
442e4d9c
YQ
7427 /* Restore our global data. */
7428 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
10b3939b 7429
442e4d9c
YQ
7430 /* If this psymtab is constructed from a debug-only objfile, the
7431 has_section_at_zero flag will not necessarily be correct. We
7432 can get the correct value for this flag by looking at the data
7433 associated with the (presumably stripped) associated objfile. */
7434 if (objfile->separate_debug_objfile_backlink)
7435 {
7436 struct dwarf2_per_objfile *dpo_backlink
7437 = objfile_data (objfile->separate_debug_objfile_backlink,
7438 dwarf2_objfile_data_key);
9a619af0 7439
442e4d9c
YQ
7440 dwarf2_per_objfile->has_section_at_zero
7441 = dpo_backlink->has_section_at_zero;
7442 }
b2ab525c 7443
442e4d9c 7444 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7445
257e7a09 7446 psymtab_to_symtab_1 (self);
c906108c 7447
442e4d9c
YQ
7448 /* Finish up the debug error message. */
7449 if (info_verbose)
7450 printf_filtered (_("done.\n"));
c906108c 7451 }
95554aad
TT
7452
7453 process_cu_includes ();
c906108c 7454}
9cdd5dbd
DE
7455\f
7456/* Reading in full CUs. */
c906108c 7457
10b3939b
DJ
7458/* Add PER_CU to the queue. */
7459
7460static void
95554aad
TT
7461queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7462 enum language pretend_language)
10b3939b
DJ
7463{
7464 struct dwarf2_queue_item *item;
7465
7466 per_cu->queued = 1;
7467 item = xmalloc (sizeof (*item));
7468 item->per_cu = per_cu;
95554aad 7469 item->pretend_language = pretend_language;
10b3939b
DJ
7470 item->next = NULL;
7471
7472 if (dwarf2_queue == NULL)
7473 dwarf2_queue = item;
7474 else
7475 dwarf2_queue_tail->next = item;
7476
7477 dwarf2_queue_tail = item;
7478}
7479
89e63ee4
DE
7480/* If PER_CU is not yet queued, add it to the queue.
7481 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7482 dependency.
0907af0c 7483 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7484 meaning either PER_CU is already queued or it is already loaded.
7485
7486 N.B. There is an invariant here that if a CU is queued then it is loaded.
7487 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7488
7489static int
89e63ee4 7490maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7491 struct dwarf2_per_cu_data *per_cu,
7492 enum language pretend_language)
7493{
7494 /* We may arrive here during partial symbol reading, if we need full
7495 DIEs to process an unusual case (e.g. template arguments). Do
7496 not queue PER_CU, just tell our caller to load its DIEs. */
7497 if (dwarf2_per_objfile->reading_partial_symbols)
7498 {
7499 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7500 return 1;
7501 return 0;
7502 }
7503
7504 /* Mark the dependence relation so that we don't flush PER_CU
7505 too early. */
89e63ee4
DE
7506 if (dependent_cu != NULL)
7507 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7508
7509 /* If it's already on the queue, we have nothing to do. */
7510 if (per_cu->queued)
7511 return 0;
7512
7513 /* If the compilation unit is already loaded, just mark it as
7514 used. */
7515 if (per_cu->cu != NULL)
7516 {
7517 per_cu->cu->last_used = 0;
7518 return 0;
7519 }
7520
7521 /* Add it to the queue. */
7522 queue_comp_unit (per_cu, pretend_language);
7523
7524 return 1;
7525}
7526
10b3939b
DJ
7527/* Process the queue. */
7528
7529static void
a0f42c21 7530process_queue (void)
10b3939b
DJ
7531{
7532 struct dwarf2_queue_item *item, *next_item;
7533
b4f54984 7534 if (dwarf_read_debug)
45cfd468
DE
7535 {
7536 fprintf_unfiltered (gdb_stdlog,
7537 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7538 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7539 }
7540
03dd20cc
DJ
7541 /* The queue starts out with one item, but following a DIE reference
7542 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7543 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7544 {
9291a0cd 7545 if (dwarf2_per_objfile->using_index
43f3e411 7546 ? !item->per_cu->v.quick->compunit_symtab
9291a0cd 7547 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
f4dc4d17
DE
7548 {
7549 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7550 unsigned int debug_print_threshold;
247f5c4f 7551 char buf[100];
f4dc4d17 7552
247f5c4f 7553 if (per_cu->is_debug_types)
f4dc4d17 7554 {
247f5c4f
DE
7555 struct signatured_type *sig_type =
7556 (struct signatured_type *) per_cu;
7557
7558 sprintf (buf, "TU %s at offset 0x%x",
73be47f5
DE
7559 hex_string (sig_type->signature),
7560 per_cu->offset.sect_off);
7561 /* There can be 100s of TUs.
7562 Only print them in verbose mode. */
7563 debug_print_threshold = 2;
f4dc4d17 7564 }
247f5c4f 7565 else
73be47f5
DE
7566 {
7567 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7568 debug_print_threshold = 1;
7569 }
247f5c4f 7570
b4f54984 7571 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7572 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7573
7574 if (per_cu->is_debug_types)
7575 process_full_type_unit (per_cu, item->pretend_language);
7576 else
7577 process_full_comp_unit (per_cu, item->pretend_language);
7578
b4f54984 7579 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7580 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7581 }
10b3939b
DJ
7582
7583 item->per_cu->queued = 0;
7584 next_item = item->next;
7585 xfree (item);
7586 }
7587
7588 dwarf2_queue_tail = NULL;
45cfd468 7589
b4f54984 7590 if (dwarf_read_debug)
45cfd468
DE
7591 {
7592 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7593 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7594 }
10b3939b
DJ
7595}
7596
7597/* Free all allocated queue entries. This function only releases anything if
7598 an error was thrown; if the queue was processed then it would have been
7599 freed as we went along. */
7600
7601static void
7602dwarf2_release_queue (void *dummy)
7603{
7604 struct dwarf2_queue_item *item, *last;
7605
7606 item = dwarf2_queue;
7607 while (item)
7608 {
7609 /* Anything still marked queued is likely to be in an
7610 inconsistent state, so discard it. */
7611 if (item->per_cu->queued)
7612 {
7613 if (item->per_cu->cu != NULL)
dee91e82 7614 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7615 item->per_cu->queued = 0;
7616 }
7617
7618 last = item;
7619 item = item->next;
7620 xfree (last);
7621 }
7622
7623 dwarf2_queue = dwarf2_queue_tail = NULL;
7624}
7625
7626/* Read in full symbols for PST, and anything it depends on. */
7627
c906108c 7628static void
fba45db2 7629psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7630{
10b3939b 7631 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7632 int i;
7633
95554aad
TT
7634 if (pst->readin)
7635 return;
7636
aaa75496 7637 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7638 if (!pst->dependencies[i]->readin
7639 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7640 {
7641 /* Inform about additional files that need to be read in. */
7642 if (info_verbose)
7643 {
a3f17187 7644 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7645 fputs_filtered (" ", gdb_stdout);
7646 wrap_here ("");
7647 fputs_filtered ("and ", gdb_stdout);
7648 wrap_here ("");
7649 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7650 wrap_here (""); /* Flush output. */
aaa75496
JB
7651 gdb_flush (gdb_stdout);
7652 }
7653 psymtab_to_symtab_1 (pst->dependencies[i]);
7654 }
7655
e38df1d0 7656 per_cu = pst->read_symtab_private;
10b3939b
DJ
7657
7658 if (per_cu == NULL)
aaa75496
JB
7659 {
7660 /* It's an include file, no symbols to read for it.
7661 Everything is in the parent symtab. */
7662 pst->readin = 1;
7663 return;
7664 }
c906108c 7665
a0f42c21 7666 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7667}
7668
dee91e82
DE
7669/* Trivial hash function for die_info: the hash value of a DIE
7670 is its offset in .debug_info for this objfile. */
10b3939b 7671
dee91e82
DE
7672static hashval_t
7673die_hash (const void *item)
10b3939b 7674{
dee91e82 7675 const struct die_info *die = item;
6502dd73 7676
dee91e82
DE
7677 return die->offset.sect_off;
7678}
63d06c5c 7679
dee91e82
DE
7680/* Trivial comparison function for die_info structures: two DIEs
7681 are equal if they have the same offset. */
98bfdba5 7682
dee91e82
DE
7683static int
7684die_eq (const void *item_lhs, const void *item_rhs)
7685{
7686 const struct die_info *die_lhs = item_lhs;
7687 const struct die_info *die_rhs = item_rhs;
c906108c 7688
dee91e82
DE
7689 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7690}
c906108c 7691
dee91e82
DE
7692/* die_reader_func for load_full_comp_unit.
7693 This is identical to read_signatured_type_reader,
7694 but is kept separate for now. */
c906108c 7695
dee91e82
DE
7696static void
7697load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7698 const gdb_byte *info_ptr,
dee91e82
DE
7699 struct die_info *comp_unit_die,
7700 int has_children,
7701 void *data)
7702{
7703 struct dwarf2_cu *cu = reader->cu;
95554aad 7704 enum language *language_ptr = data;
6caca83c 7705
dee91e82
DE
7706 gdb_assert (cu->die_hash == NULL);
7707 cu->die_hash =
7708 htab_create_alloc_ex (cu->header.length / 12,
7709 die_hash,
7710 die_eq,
7711 NULL,
7712 &cu->comp_unit_obstack,
7713 hashtab_obstack_allocate,
7714 dummy_obstack_deallocate);
e142c38c 7715
dee91e82
DE
7716 if (has_children)
7717 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7718 &info_ptr, comp_unit_die);
7719 cu->dies = comp_unit_die;
7720 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7721
7722 /* We try not to read any attributes in this function, because not
9cdd5dbd 7723 all CUs needed for references have been loaded yet, and symbol
10b3939b 7724 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7725 or we won't be able to build types correctly.
7726 Similarly, if we do not read the producer, we can not apply
7727 producer-specific interpretation. */
95554aad 7728 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7729}
10b3939b 7730
dee91e82 7731/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7732
dee91e82 7733static void
95554aad
TT
7734load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7735 enum language pretend_language)
dee91e82 7736{
3019eac3 7737 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7738
f4dc4d17
DE
7739 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7740 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7741}
7742
3da10d80
KS
7743/* Add a DIE to the delayed physname list. */
7744
7745static void
7746add_to_method_list (struct type *type, int fnfield_index, int index,
7747 const char *name, struct die_info *die,
7748 struct dwarf2_cu *cu)
7749{
7750 struct delayed_method_info mi;
7751 mi.type = type;
7752 mi.fnfield_index = fnfield_index;
7753 mi.index = index;
7754 mi.name = name;
7755 mi.die = die;
7756 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7757}
7758
7759/* A cleanup for freeing the delayed method list. */
7760
7761static void
7762free_delayed_list (void *ptr)
7763{
7764 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7765 if (cu->method_list != NULL)
7766 {
7767 VEC_free (delayed_method_info, cu->method_list);
7768 cu->method_list = NULL;
7769 }
7770}
7771
7772/* Compute the physnames of any methods on the CU's method list.
7773
7774 The computation of method physnames is delayed in order to avoid the
7775 (bad) condition that one of the method's formal parameters is of an as yet
7776 incomplete type. */
7777
7778static void
7779compute_delayed_physnames (struct dwarf2_cu *cu)
7780{
7781 int i;
7782 struct delayed_method_info *mi;
7783 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7784 {
1d06ead6 7785 const char *physname;
3da10d80
KS
7786 struct fn_fieldlist *fn_flp
7787 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 7788 physname = dwarf2_physname (mi->name, mi->die, cu);
005e54bb
DE
7789 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7790 = physname ? physname : "";
3da10d80
KS
7791 }
7792}
7793
a766d390
DE
7794/* Go objects should be embedded in a DW_TAG_module DIE,
7795 and it's not clear if/how imported objects will appear.
7796 To keep Go support simple until that's worked out,
7797 go back through what we've read and create something usable.
7798 We could do this while processing each DIE, and feels kinda cleaner,
7799 but that way is more invasive.
7800 This is to, for example, allow the user to type "p var" or "b main"
7801 without having to specify the package name, and allow lookups
7802 of module.object to work in contexts that use the expression
7803 parser. */
7804
7805static void
7806fixup_go_packaging (struct dwarf2_cu *cu)
7807{
7808 char *package_name = NULL;
7809 struct pending *list;
7810 int i;
7811
7812 for (list = global_symbols; list != NULL; list = list->next)
7813 {
7814 for (i = 0; i < list->nsyms; ++i)
7815 {
7816 struct symbol *sym = list->symbol[i];
7817
7818 if (SYMBOL_LANGUAGE (sym) == language_go
7819 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7820 {
7821 char *this_package_name = go_symbol_package_name (sym);
7822
7823 if (this_package_name == NULL)
7824 continue;
7825 if (package_name == NULL)
7826 package_name = this_package_name;
7827 else
7828 {
7829 if (strcmp (package_name, this_package_name) != 0)
7830 complaint (&symfile_complaints,
7831 _("Symtab %s has objects from two different Go packages: %s and %s"),
08be3fe3
DE
7832 (symbol_symtab (sym) != NULL
7833 ? symtab_to_filename_for_display
7834 (symbol_symtab (sym))
4262abfb 7835 : objfile_name (cu->objfile)),
a766d390
DE
7836 this_package_name, package_name);
7837 xfree (this_package_name);
7838 }
7839 }
7840 }
7841 }
7842
7843 if (package_name != NULL)
7844 {
7845 struct objfile *objfile = cu->objfile;
34a68019
TT
7846 const char *saved_package_name
7847 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7848 package_name,
7849 strlen (package_name));
a766d390 7850 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
86f62fd7 7851 saved_package_name, objfile);
a766d390
DE
7852 struct symbol *sym;
7853
7854 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7855
e623cf5d 7856 sym = allocate_symbol (objfile);
f85f34ed 7857 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
7858 SYMBOL_SET_NAMES (sym, saved_package_name,
7859 strlen (saved_package_name), 0, objfile);
a766d390
DE
7860 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7861 e.g., "main" finds the "main" module and not C's main(). */
7862 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 7863 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
7864 SYMBOL_TYPE (sym) = type;
7865
7866 add_symbol_to_list (sym, &global_symbols);
7867
7868 xfree (package_name);
7869 }
7870}
7871
95554aad
TT
7872/* Return the symtab for PER_CU. This works properly regardless of
7873 whether we're using the index or psymtabs. */
7874
43f3e411
DE
7875static struct compunit_symtab *
7876get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
95554aad
TT
7877{
7878 return (dwarf2_per_objfile->using_index
43f3e411
DE
7879 ? per_cu->v.quick->compunit_symtab
7880 : per_cu->v.psymtab->compunit_symtab);
95554aad
TT
7881}
7882
7883/* A helper function for computing the list of all symbol tables
7884 included by PER_CU. */
7885
7886static void
43f3e411 7887recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
ec94af83 7888 htab_t all_children, htab_t all_type_symtabs,
f9125b6c 7889 struct dwarf2_per_cu_data *per_cu,
43f3e411 7890 struct compunit_symtab *immediate_parent)
95554aad
TT
7891{
7892 void **slot;
7893 int ix;
43f3e411 7894 struct compunit_symtab *cust;
95554aad
TT
7895 struct dwarf2_per_cu_data *iter;
7896
7897 slot = htab_find_slot (all_children, per_cu, INSERT);
7898 if (*slot != NULL)
7899 {
7900 /* This inclusion and its children have been processed. */
7901 return;
7902 }
7903
7904 *slot = per_cu;
7905 /* Only add a CU if it has a symbol table. */
43f3e411
DE
7906 cust = get_compunit_symtab (per_cu);
7907 if (cust != NULL)
ec94af83
DE
7908 {
7909 /* If this is a type unit only add its symbol table if we haven't
7910 seen it yet (type unit per_cu's can share symtabs). */
7911 if (per_cu->is_debug_types)
7912 {
43f3e411 7913 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
ec94af83
DE
7914 if (*slot == NULL)
7915 {
43f3e411
DE
7916 *slot = cust;
7917 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7918 if (cust->user == NULL)
7919 cust->user = immediate_parent;
ec94af83
DE
7920 }
7921 }
7922 else
f9125b6c 7923 {
43f3e411
DE
7924 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7925 if (cust->user == NULL)
7926 cust->user = immediate_parent;
f9125b6c 7927 }
ec94af83 7928 }
95554aad
TT
7929
7930 for (ix = 0;
796a7ff8 7931 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 7932 ++ix)
ec94af83
DE
7933 {
7934 recursively_compute_inclusions (result, all_children,
43f3e411 7935 all_type_symtabs, iter, cust);
ec94af83 7936 }
95554aad
TT
7937}
7938
43f3e411 7939/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
95554aad
TT
7940 PER_CU. */
7941
7942static void
43f3e411 7943compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
95554aad 7944{
f4dc4d17
DE
7945 gdb_assert (! per_cu->is_debug_types);
7946
796a7ff8 7947 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
7948 {
7949 int ix, len;
ec94af83 7950 struct dwarf2_per_cu_data *per_cu_iter;
43f3e411
DE
7951 struct compunit_symtab *compunit_symtab_iter;
7952 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
ec94af83 7953 htab_t all_children, all_type_symtabs;
43f3e411 7954 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
95554aad
TT
7955
7956 /* If we don't have a symtab, we can just skip this case. */
43f3e411 7957 if (cust == NULL)
95554aad
TT
7958 return;
7959
7960 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7961 NULL, xcalloc, xfree);
ec94af83
DE
7962 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7963 NULL, xcalloc, xfree);
95554aad
TT
7964
7965 for (ix = 0;
796a7ff8 7966 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 7967 ix, per_cu_iter);
95554aad 7968 ++ix)
ec94af83
DE
7969 {
7970 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c 7971 all_type_symtabs, per_cu_iter,
43f3e411 7972 cust);
ec94af83 7973 }
95554aad 7974
ec94af83 7975 /* Now we have a transitive closure of all the included symtabs. */
43f3e411
DE
7976 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7977 cust->includes
95554aad
TT
7978 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7979 (len + 1) * sizeof (struct symtab *));
7980 for (ix = 0;
43f3e411
DE
7981 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7982 compunit_symtab_iter);
95554aad 7983 ++ix)
43f3e411
DE
7984 cust->includes[ix] = compunit_symtab_iter;
7985 cust->includes[len] = NULL;
95554aad 7986
43f3e411 7987 VEC_free (compunit_symtab_ptr, result_symtabs);
95554aad 7988 htab_delete (all_children);
ec94af83 7989 htab_delete (all_type_symtabs);
95554aad
TT
7990 }
7991}
7992
7993/* Compute the 'includes' field for the symtabs of all the CUs we just
7994 read. */
7995
7996static void
7997process_cu_includes (void)
7998{
7999 int ix;
8000 struct dwarf2_per_cu_data *iter;
8001
8002 for (ix = 0;
8003 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8004 ix, iter);
8005 ++ix)
f4dc4d17
DE
8006 {
8007 if (! iter->is_debug_types)
43f3e411 8008 compute_compunit_symtab_includes (iter);
f4dc4d17 8009 }
95554aad
TT
8010
8011 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8012}
8013
9cdd5dbd 8014/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
8015 already been loaded into memory. */
8016
8017static void
95554aad
TT
8018process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8019 enum language pretend_language)
10b3939b 8020{
10b3939b 8021 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 8022 struct objfile *objfile = per_cu->objfile;
3e29f34a 8023 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10b3939b 8024 CORE_ADDR lowpc, highpc;
43f3e411 8025 struct compunit_symtab *cust;
3da10d80 8026 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 8027 CORE_ADDR baseaddr;
4359dff1 8028 struct block *static_block;
3e29f34a 8029 CORE_ADDR addr;
10b3939b
DJ
8030
8031 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8032
10b3939b
DJ
8033 buildsym_init ();
8034 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 8035 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
8036
8037 cu->list_in_scope = &file_symbols;
c906108c 8038
95554aad
TT
8039 cu->language = pretend_language;
8040 cu->language_defn = language_def (cu->language);
8041
c906108c 8042 /* Do line number decoding in read_file_scope () */
10b3939b 8043 process_die (cu->dies, cu);
c906108c 8044
a766d390
DE
8045 /* For now fudge the Go package. */
8046 if (cu->language == language_go)
8047 fixup_go_packaging (cu);
8048
3da10d80
KS
8049 /* Now that we have processed all the DIEs in the CU, all the types
8050 should be complete, and it should now be safe to compute all of the
8051 physnames. */
8052 compute_delayed_physnames (cu);
8053 do_cleanups (delayed_list_cleanup);
8054
fae299cd
DC
8055 /* Some compilers don't define a DW_AT_high_pc attribute for the
8056 compilation unit. If the DW_AT_high_pc is missing, synthesize
8057 it, by scanning the DIE's below the compilation unit. */
10b3939b 8058 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 8059
3e29f34a
MR
8060 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8061 static_block = end_symtab_get_static_block (addr, 0, 1);
4359dff1
JK
8062
8063 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8064 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8065 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8066 addrmap to help ensure it has an accurate map of pc values belonging to
8067 this comp unit. */
8068 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8069
43f3e411
DE
8070 cust = end_symtab_from_static_block (static_block,
8071 SECT_OFF_TEXT (objfile), 0);
c906108c 8072
43f3e411 8073 if (cust != NULL)
c906108c 8074 {
df15bd07 8075 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 8076
8be455d7
JK
8077 /* Set symtab language to language from DW_AT_language. If the
8078 compilation is from a C file generated by language preprocessors, do
8079 not set the language if it was already deduced by start_subfile. */
43f3e411
DE
8080 if (!(cu->language == language_c
8081 && COMPUNIT_FILETABS (cust)->language != language_c))
8082 COMPUNIT_FILETABS (cust)->language = cu->language;
8be455d7
JK
8083
8084 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8085 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
8086 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8087 there were bugs in prologue debug info, fixed later in GCC-4.5
8088 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
8089
8090 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8091 needed, it would be wrong due to missing DW_AT_producer there.
8092
8093 Still one can confuse GDB by using non-standard GCC compilation
8094 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8095 */
ab260dad 8096 if (cu->has_loclist && gcc_4_minor >= 5)
43f3e411 8097 cust->locations_valid = 1;
e0d00bc7
JK
8098
8099 if (gcc_4_minor >= 5)
43f3e411 8100 cust->epilogue_unwind_valid = 1;
96408a79 8101
43f3e411 8102 cust->call_site_htab = cu->call_site_htab;
c906108c 8103 }
9291a0cd
TT
8104
8105 if (dwarf2_per_objfile->using_index)
43f3e411 8106 per_cu->v.quick->compunit_symtab = cust;
9291a0cd
TT
8107 else
8108 {
8109 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8110 pst->compunit_symtab = cust;
9291a0cd
TT
8111 pst->readin = 1;
8112 }
c906108c 8113
95554aad
TT
8114 /* Push it for inclusion processing later. */
8115 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8116
c906108c 8117 do_cleanups (back_to);
f4dc4d17 8118}
45cfd468 8119
f4dc4d17
DE
8120/* Generate full symbol information for type unit PER_CU, whose DIEs have
8121 already been loaded into memory. */
8122
8123static void
8124process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8125 enum language pretend_language)
8126{
8127 struct dwarf2_cu *cu = per_cu->cu;
8128 struct objfile *objfile = per_cu->objfile;
43f3e411 8129 struct compunit_symtab *cust;
f4dc4d17 8130 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
8131 struct signatured_type *sig_type;
8132
8133 gdb_assert (per_cu->is_debug_types);
8134 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8135
8136 buildsym_init ();
8137 back_to = make_cleanup (really_free_pendings, NULL);
8138 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8139
8140 cu->list_in_scope = &file_symbols;
8141
8142 cu->language = pretend_language;
8143 cu->language_defn = language_def (cu->language);
8144
8145 /* The symbol tables are set up in read_type_unit_scope. */
8146 process_die (cu->dies, cu);
8147
8148 /* For now fudge the Go package. */
8149 if (cu->language == language_go)
8150 fixup_go_packaging (cu);
8151
8152 /* Now that we have processed all the DIEs in the CU, all the types
8153 should be complete, and it should now be safe to compute all of the
8154 physnames. */
8155 compute_delayed_physnames (cu);
8156 do_cleanups (delayed_list_cleanup);
8157
8158 /* TUs share symbol tables.
8159 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
8160 of it with end_expandable_symtab. Otherwise, complete the addition of
8161 this TU's symbols to the existing symtab. */
43f3e411 8162 if (sig_type->type_unit_group->compunit_symtab == NULL)
45cfd468 8163 {
43f3e411
DE
8164 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8165 sig_type->type_unit_group->compunit_symtab = cust;
f4dc4d17 8166
43f3e411 8167 if (cust != NULL)
f4dc4d17
DE
8168 {
8169 /* Set symtab language to language from DW_AT_language. If the
8170 compilation is from a C file generated by language preprocessors,
8171 do not set the language if it was already deduced by
8172 start_subfile. */
43f3e411
DE
8173 if (!(cu->language == language_c
8174 && COMPUNIT_FILETABS (cust)->language != language_c))
8175 COMPUNIT_FILETABS (cust)->language = cu->language;
f4dc4d17
DE
8176 }
8177 }
8178 else
8179 {
0ab9ce85 8180 augment_type_symtab ();
43f3e411 8181 cust = sig_type->type_unit_group->compunit_symtab;
f4dc4d17
DE
8182 }
8183
8184 if (dwarf2_per_objfile->using_index)
43f3e411 8185 per_cu->v.quick->compunit_symtab = cust;
f4dc4d17
DE
8186 else
8187 {
8188 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8189 pst->compunit_symtab = cust;
f4dc4d17 8190 pst->readin = 1;
45cfd468 8191 }
f4dc4d17
DE
8192
8193 do_cleanups (back_to);
c906108c
SS
8194}
8195
95554aad
TT
8196/* Process an imported unit DIE. */
8197
8198static void
8199process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8200{
8201 struct attribute *attr;
8202
f4dc4d17
DE
8203 /* For now we don't handle imported units in type units. */
8204 if (cu->per_cu->is_debug_types)
8205 {
8206 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8207 " supported in type units [in module %s]"),
4262abfb 8208 objfile_name (cu->objfile));
f4dc4d17
DE
8209 }
8210
95554aad
TT
8211 attr = dwarf2_attr (die, DW_AT_import, cu);
8212 if (attr != NULL)
8213 {
8214 struct dwarf2_per_cu_data *per_cu;
8215 struct symtab *imported_symtab;
8216 sect_offset offset;
36586728 8217 int is_dwz;
95554aad
TT
8218
8219 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
8220 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8221 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad 8222
69d751e3 8223 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
8224 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8225 load_full_comp_unit (per_cu, cu->language);
8226
796a7ff8 8227 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
8228 per_cu);
8229 }
8230}
8231
adde2bff
DE
8232/* Reset the in_process bit of a die. */
8233
8234static void
8235reset_die_in_process (void *arg)
8236{
8237 struct die_info *die = arg;
8c3cb9fa 8238
adde2bff
DE
8239 die->in_process = 0;
8240}
8241
c906108c
SS
8242/* Process a die and its children. */
8243
8244static void
e7c27a73 8245process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8246{
adde2bff
DE
8247 struct cleanup *in_process;
8248
8249 /* We should only be processing those not already in process. */
8250 gdb_assert (!die->in_process);
8251
8252 die->in_process = 1;
8253 in_process = make_cleanup (reset_die_in_process,die);
8254
c906108c
SS
8255 switch (die->tag)
8256 {
8257 case DW_TAG_padding:
8258 break;
8259 case DW_TAG_compile_unit:
95554aad 8260 case DW_TAG_partial_unit:
e7c27a73 8261 read_file_scope (die, cu);
c906108c 8262 break;
348e048f
DE
8263 case DW_TAG_type_unit:
8264 read_type_unit_scope (die, cu);
8265 break;
c906108c 8266 case DW_TAG_subprogram:
c906108c 8267 case DW_TAG_inlined_subroutine:
edb3359d 8268 read_func_scope (die, cu);
c906108c
SS
8269 break;
8270 case DW_TAG_lexical_block:
14898363
L
8271 case DW_TAG_try_block:
8272 case DW_TAG_catch_block:
e7c27a73 8273 read_lexical_block_scope (die, cu);
c906108c 8274 break;
96408a79
SA
8275 case DW_TAG_GNU_call_site:
8276 read_call_site_scope (die, cu);
8277 break;
c906108c 8278 case DW_TAG_class_type:
680b30c7 8279 case DW_TAG_interface_type:
c906108c
SS
8280 case DW_TAG_structure_type:
8281 case DW_TAG_union_type:
134d01f1 8282 process_structure_scope (die, cu);
c906108c
SS
8283 break;
8284 case DW_TAG_enumeration_type:
134d01f1 8285 process_enumeration_scope (die, cu);
c906108c 8286 break;
134d01f1 8287
f792889a
DJ
8288 /* These dies have a type, but processing them does not create
8289 a symbol or recurse to process the children. Therefore we can
8290 read them on-demand through read_type_die. */
c906108c 8291 case DW_TAG_subroutine_type:
72019c9c 8292 case DW_TAG_set_type:
c906108c 8293 case DW_TAG_array_type:
c906108c 8294 case DW_TAG_pointer_type:
c906108c 8295 case DW_TAG_ptr_to_member_type:
c906108c 8296 case DW_TAG_reference_type:
c906108c 8297 case DW_TAG_string_type:
c906108c 8298 break;
134d01f1 8299
c906108c 8300 case DW_TAG_base_type:
a02abb62 8301 case DW_TAG_subrange_type:
cb249c71 8302 case DW_TAG_typedef:
134d01f1
DJ
8303 /* Add a typedef symbol for the type definition, if it has a
8304 DW_AT_name. */
f792889a 8305 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8306 break;
c906108c 8307 case DW_TAG_common_block:
e7c27a73 8308 read_common_block (die, cu);
c906108c
SS
8309 break;
8310 case DW_TAG_common_inclusion:
8311 break;
d9fa45fe 8312 case DW_TAG_namespace:
4d4ec4e5 8313 cu->processing_has_namespace_info = 1;
e7c27a73 8314 read_namespace (die, cu);
d9fa45fe 8315 break;
5d7cb8df 8316 case DW_TAG_module:
4d4ec4e5 8317 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8318 read_module (die, cu);
8319 break;
d9fa45fe 8320 case DW_TAG_imported_declaration:
74921315
KS
8321 cu->processing_has_namespace_info = 1;
8322 if (read_namespace_alias (die, cu))
8323 break;
8324 /* The declaration is not a global namespace alias: fall through. */
d9fa45fe 8325 case DW_TAG_imported_module:
4d4ec4e5 8326 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8327 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8328 || cu->language != language_fortran))
8329 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8330 dwarf_tag_name (die->tag));
8331 read_import_statement (die, cu);
d9fa45fe 8332 break;
95554aad
TT
8333
8334 case DW_TAG_imported_unit:
8335 process_imported_unit_die (die, cu);
8336 break;
8337
c906108c 8338 default:
e7c27a73 8339 new_symbol (die, NULL, cu);
c906108c
SS
8340 break;
8341 }
adde2bff
DE
8342
8343 do_cleanups (in_process);
c906108c 8344}
ca69b9e6
DE
8345\f
8346/* DWARF name computation. */
c906108c 8347
94af9270
KS
8348/* A helper function for dwarf2_compute_name which determines whether DIE
8349 needs to have the name of the scope prepended to the name listed in the
8350 die. */
8351
8352static int
8353die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8354{
1c809c68
TT
8355 struct attribute *attr;
8356
94af9270
KS
8357 switch (die->tag)
8358 {
8359 case DW_TAG_namespace:
8360 case DW_TAG_typedef:
8361 case DW_TAG_class_type:
8362 case DW_TAG_interface_type:
8363 case DW_TAG_structure_type:
8364 case DW_TAG_union_type:
8365 case DW_TAG_enumeration_type:
8366 case DW_TAG_enumerator:
8367 case DW_TAG_subprogram:
08a76f8a 8368 case DW_TAG_inlined_subroutine:
94af9270 8369 case DW_TAG_member:
74921315 8370 case DW_TAG_imported_declaration:
94af9270
KS
8371 return 1;
8372
8373 case DW_TAG_variable:
c2b0a229 8374 case DW_TAG_constant:
94af9270
KS
8375 /* We only need to prefix "globally" visible variables. These include
8376 any variable marked with DW_AT_external or any variable that
8377 lives in a namespace. [Variables in anonymous namespaces
8378 require prefixing, but they are not DW_AT_external.] */
8379
8380 if (dwarf2_attr (die, DW_AT_specification, cu))
8381 {
8382 struct dwarf2_cu *spec_cu = cu;
9a619af0 8383
94af9270
KS
8384 return die_needs_namespace (die_specification (die, &spec_cu),
8385 spec_cu);
8386 }
8387
1c809c68 8388 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8389 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8390 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8391 return 0;
8392 /* A variable in a lexical block of some kind does not need a
8393 namespace, even though in C++ such variables may be external
8394 and have a mangled name. */
8395 if (die->parent->tag == DW_TAG_lexical_block
8396 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8397 || die->parent->tag == DW_TAG_catch_block
8398 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8399 return 0;
8400 return 1;
94af9270
KS
8401
8402 default:
8403 return 0;
8404 }
8405}
8406
98bfdba5
PA
8407/* Retrieve the last character from a mem_file. */
8408
8409static void
8410do_ui_file_peek_last (void *object, const char *buffer, long length)
8411{
8412 char *last_char_p = (char *) object;
8413
8414 if (length > 0)
8415 *last_char_p = buffer[length - 1];
8416}
8417
94af9270 8418/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390
DE
8419 compute the physname for the object, which include a method's:
8420 - formal parameters (C++/Java),
8421 - receiver type (Go),
8422 - return type (Java).
8423
8424 The term "physname" is a bit confusing.
8425 For C++, for example, it is the demangled name.
8426 For Go, for example, it's the mangled name.
94af9270 8427
af6b7be1
JB
8428 For Ada, return the DIE's linkage name rather than the fully qualified
8429 name. PHYSNAME is ignored..
8430
94af9270
KS
8431 The result is allocated on the objfile_obstack and canonicalized. */
8432
8433static const char *
15d034d0
TT
8434dwarf2_compute_name (const char *name,
8435 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8436 int physname)
8437{
bb5ed363
DE
8438 struct objfile *objfile = cu->objfile;
8439
94af9270
KS
8440 if (name == NULL)
8441 name = dwarf2_name (die, cu);
8442
f55ee35c
JK
8443 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8444 compute it by typename_concat inside GDB. */
8445 if (cu->language == language_ada
8446 || (cu->language == language_fortran && physname))
8447 {
8448 /* For Ada unit, we prefer the linkage name over the name, as
8449 the former contains the exported name, which the user expects
8450 to be able to reference. Ideally, we want the user to be able
8451 to reference this entity using either natural or linkage name,
8452 but we haven't started looking at this enhancement yet. */
8453 struct attribute *attr;
8454
8455 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8456 if (attr == NULL)
8457 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8458 if (attr && DW_STRING (attr))
8459 return DW_STRING (attr);
8460 }
8461
94af9270
KS
8462 /* These are the only languages we know how to qualify names in. */
8463 if (name != NULL
f55ee35c
JK
8464 && (cu->language == language_cplus || cu->language == language_java
8465 || cu->language == language_fortran))
94af9270
KS
8466 {
8467 if (die_needs_namespace (die, cu))
8468 {
8469 long length;
0d5cff50 8470 const char *prefix;
94af9270 8471 struct ui_file *buf;
34a68019
TT
8472 char *intermediate_name;
8473 const char *canonical_name = NULL;
94af9270
KS
8474
8475 prefix = determine_prefix (die, cu);
8476 buf = mem_fileopen ();
8477 if (*prefix != '\0')
8478 {
f55ee35c
JK
8479 char *prefixed_name = typename_concat (NULL, prefix, name,
8480 physname, cu);
9a619af0 8481
94af9270
KS
8482 fputs_unfiltered (prefixed_name, buf);
8483 xfree (prefixed_name);
8484 }
8485 else
62d5b8da 8486 fputs_unfiltered (name, buf);
94af9270 8487
98bfdba5
PA
8488 /* Template parameters may be specified in the DIE's DW_AT_name, or
8489 as children with DW_TAG_template_type_param or
8490 DW_TAG_value_type_param. If the latter, add them to the name
8491 here. If the name already has template parameters, then
8492 skip this step; some versions of GCC emit both, and
8493 it is more efficient to use the pre-computed name.
8494
8495 Something to keep in mind about this process: it is very
8496 unlikely, or in some cases downright impossible, to produce
8497 something that will match the mangled name of a function.
8498 If the definition of the function has the same debug info,
8499 we should be able to match up with it anyway. But fallbacks
8500 using the minimal symbol, for instance to find a method
8501 implemented in a stripped copy of libstdc++, will not work.
8502 If we do not have debug info for the definition, we will have to
8503 match them up some other way.
8504
8505 When we do name matching there is a related problem with function
8506 templates; two instantiated function templates are allowed to
8507 differ only by their return types, which we do not add here. */
8508
8509 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8510 {
8511 struct attribute *attr;
8512 struct die_info *child;
8513 int first = 1;
8514
8515 die->building_fullname = 1;
8516
8517 for (child = die->child; child != NULL; child = child->sibling)
8518 {
8519 struct type *type;
12df843f 8520 LONGEST value;
d521ce57 8521 const gdb_byte *bytes;
98bfdba5
PA
8522 struct dwarf2_locexpr_baton *baton;
8523 struct value *v;
8524
8525 if (child->tag != DW_TAG_template_type_param
8526 && child->tag != DW_TAG_template_value_param)
8527 continue;
8528
8529 if (first)
8530 {
8531 fputs_unfiltered ("<", buf);
8532 first = 0;
8533 }
8534 else
8535 fputs_unfiltered (", ", buf);
8536
8537 attr = dwarf2_attr (child, DW_AT_type, cu);
8538 if (attr == NULL)
8539 {
8540 complaint (&symfile_complaints,
8541 _("template parameter missing DW_AT_type"));
8542 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8543 continue;
8544 }
8545 type = die_type (child, cu);
8546
8547 if (child->tag == DW_TAG_template_type_param)
8548 {
79d43c61 8549 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8550 continue;
8551 }
8552
8553 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8554 if (attr == NULL)
8555 {
8556 complaint (&symfile_complaints,
3e43a32a
MS
8557 _("template parameter missing "
8558 "DW_AT_const_value"));
98bfdba5
PA
8559 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8560 continue;
8561 }
8562
8563 dwarf2_const_value_attr (attr, type, name,
8564 &cu->comp_unit_obstack, cu,
8565 &value, &bytes, &baton);
8566
8567 if (TYPE_NOSIGN (type))
8568 /* GDB prints characters as NUMBER 'CHAR'. If that's
8569 changed, this can use value_print instead. */
8570 c_printchar (value, type, buf);
8571 else
8572 {
8573 struct value_print_options opts;
8574
8575 if (baton != NULL)
8576 v = dwarf2_evaluate_loc_desc (type, NULL,
8577 baton->data,
8578 baton->size,
8579 baton->per_cu);
8580 else if (bytes != NULL)
8581 {
8582 v = allocate_value (type);
8583 memcpy (value_contents_writeable (v), bytes,
8584 TYPE_LENGTH (type));
8585 }
8586 else
8587 v = value_from_longest (type, value);
8588
3e43a32a
MS
8589 /* Specify decimal so that we do not depend on
8590 the radix. */
98bfdba5
PA
8591 get_formatted_print_options (&opts, 'd');
8592 opts.raw = 1;
8593 value_print (v, buf, &opts);
8594 release_value (v);
8595 value_free (v);
8596 }
8597 }
8598
8599 die->building_fullname = 0;
8600
8601 if (!first)
8602 {
8603 /* Close the argument list, with a space if necessary
8604 (nested templates). */
8605 char last_char = '\0';
8606 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8607 if (last_char == '>')
8608 fputs_unfiltered (" >", buf);
8609 else
8610 fputs_unfiltered (">", buf);
8611 }
8612 }
8613
94af9270
KS
8614 /* For Java and C++ methods, append formal parameter type
8615 information, if PHYSNAME. */
6e70227d 8616
94af9270
KS
8617 if (physname && die->tag == DW_TAG_subprogram
8618 && (cu->language == language_cplus
8619 || cu->language == language_java))
8620 {
8621 struct type *type = read_type_die (die, cu);
8622
79d43c61
TT
8623 c_type_print_args (type, buf, 1, cu->language,
8624 &type_print_raw_options);
94af9270
KS
8625
8626 if (cu->language == language_java)
8627 {
8628 /* For java, we must append the return type to method
0963b4bd 8629 names. */
94af9270
KS
8630 if (die->tag == DW_TAG_subprogram)
8631 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
79d43c61 8632 0, 0, &type_print_raw_options);
94af9270
KS
8633 }
8634 else if (cu->language == language_cplus)
8635 {
60430eff
DJ
8636 /* Assume that an artificial first parameter is
8637 "this", but do not crash if it is not. RealView
8638 marks unnamed (and thus unused) parameters as
8639 artificial; there is no way to differentiate
8640 the two cases. */
94af9270
KS
8641 if (TYPE_NFIELDS (type) > 0
8642 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8643 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8644 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8645 0))))
94af9270
KS
8646 fputs_unfiltered (" const", buf);
8647 }
8648 }
8649
34a68019 8650 intermediate_name = ui_file_xstrdup (buf, &length);
94af9270
KS
8651 ui_file_delete (buf);
8652
8653 if (cu->language == language_cplus)
34a68019
TT
8654 canonical_name
8655 = dwarf2_canonicalize_name (intermediate_name, cu,
8656 &objfile->per_bfd->storage_obstack);
8657
8658 /* If we only computed INTERMEDIATE_NAME, or if
8659 INTERMEDIATE_NAME is already canonical, then we need to
8660 copy it to the appropriate obstack. */
8661 if (canonical_name == NULL || canonical_name == intermediate_name)
8662 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8663 intermediate_name,
8664 strlen (intermediate_name));
8665 else
8666 name = canonical_name;
9a619af0 8667
34a68019 8668 xfree (intermediate_name);
94af9270
KS
8669 }
8670 }
8671
8672 return name;
8673}
8674
0114d602
DJ
8675/* Return the fully qualified name of DIE, based on its DW_AT_name.
8676 If scope qualifiers are appropriate they will be added. The result
34a68019 8677 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
8678 not have a name. NAME may either be from a previous call to
8679 dwarf2_name or NULL.
8680
0963b4bd 8681 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
8682
8683static const char *
15d034d0 8684dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8685{
94af9270
KS
8686 return dwarf2_compute_name (name, die, cu, 0);
8687}
0114d602 8688
94af9270
KS
8689/* Construct a physname for the given DIE in CU. NAME may either be
8690 from a previous call to dwarf2_name or NULL. The result will be
8691 allocated on the objfile_objstack or NULL if the DIE does not have a
8692 name.
0114d602 8693
94af9270 8694 The output string will be canonicalized (if C++/Java). */
0114d602 8695
94af9270 8696static const char *
15d034d0 8697dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8698{
bb5ed363 8699 struct objfile *objfile = cu->objfile;
900e11f9
JK
8700 struct attribute *attr;
8701 const char *retval, *mangled = NULL, *canon = NULL;
8702 struct cleanup *back_to;
8703 int need_copy = 1;
8704
8705 /* In this case dwarf2_compute_name is just a shortcut not building anything
8706 on its own. */
8707 if (!die_needs_namespace (die, cu))
8708 return dwarf2_compute_name (name, die, cu, 1);
8709
8710 back_to = make_cleanup (null_cleanup, NULL);
8711
8712 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8713 if (!attr)
8714 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8715
8716 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8717 has computed. */
8718 if (attr && DW_STRING (attr))
8719 {
8720 char *demangled;
8721
8722 mangled = DW_STRING (attr);
8723
8724 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8725 type. It is easier for GDB users to search for such functions as
8726 `name(params)' than `long name(params)'. In such case the minimal
8727 symbol names do not match the full symbol names but for template
8728 functions there is never a need to look up their definition from their
8729 declaration so the only disadvantage remains the minimal symbol
8730 variant `long name(params)' does not have the proper inferior type.
8731 */
8732
a766d390
DE
8733 if (cu->language == language_go)
8734 {
8735 /* This is a lie, but we already lie to the caller new_symbol_full.
8736 new_symbol_full assumes we return the mangled name.
8737 This just undoes that lie until things are cleaned up. */
8738 demangled = NULL;
8739 }
8740 else
8741 {
8de20a37
TT
8742 demangled = gdb_demangle (mangled,
8743 (DMGL_PARAMS | DMGL_ANSI
8744 | (cu->language == language_java
8745 ? DMGL_JAVA | DMGL_RET_POSTFIX
8746 : DMGL_RET_DROP)));
a766d390 8747 }
900e11f9
JK
8748 if (demangled)
8749 {
8750 make_cleanup (xfree, demangled);
8751 canon = demangled;
8752 }
8753 else
8754 {
8755 canon = mangled;
8756 need_copy = 0;
8757 }
8758 }
8759
8760 if (canon == NULL || check_physname)
8761 {
8762 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8763
8764 if (canon != NULL && strcmp (physname, canon) != 0)
8765 {
8766 /* It may not mean a bug in GDB. The compiler could also
8767 compute DW_AT_linkage_name incorrectly. But in such case
8768 GDB would need to be bug-to-bug compatible. */
8769
8770 complaint (&symfile_complaints,
8771 _("Computed physname <%s> does not match demangled <%s> "
8772 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
4262abfb
JK
8773 physname, canon, mangled, die->offset.sect_off,
8774 objfile_name (objfile));
900e11f9
JK
8775
8776 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8777 is available here - over computed PHYSNAME. It is safer
8778 against both buggy GDB and buggy compilers. */
8779
8780 retval = canon;
8781 }
8782 else
8783 {
8784 retval = physname;
8785 need_copy = 0;
8786 }
8787 }
8788 else
8789 retval = canon;
8790
8791 if (need_copy)
34a68019
TT
8792 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8793 retval, strlen (retval));
900e11f9
JK
8794
8795 do_cleanups (back_to);
8796 return retval;
0114d602
DJ
8797}
8798
74921315
KS
8799/* Inspect DIE in CU for a namespace alias. If one exists, record
8800 a new symbol for it.
8801
8802 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8803
8804static int
8805read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8806{
8807 struct attribute *attr;
8808
8809 /* If the die does not have a name, this is not a namespace
8810 alias. */
8811 attr = dwarf2_attr (die, DW_AT_name, cu);
8812 if (attr != NULL)
8813 {
8814 int num;
8815 struct die_info *d = die;
8816 struct dwarf2_cu *imported_cu = cu;
8817
8818 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8819 keep inspecting DIEs until we hit the underlying import. */
8820#define MAX_NESTED_IMPORTED_DECLARATIONS 100
8821 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8822 {
8823 attr = dwarf2_attr (d, DW_AT_import, cu);
8824 if (attr == NULL)
8825 break;
8826
8827 d = follow_die_ref (d, attr, &imported_cu);
8828 if (d->tag != DW_TAG_imported_declaration)
8829 break;
8830 }
8831
8832 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8833 {
8834 complaint (&symfile_complaints,
8835 _("DIE at 0x%x has too many recursively imported "
8836 "declarations"), d->offset.sect_off);
8837 return 0;
8838 }
8839
8840 if (attr != NULL)
8841 {
8842 struct type *type;
8843 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8844
8845 type = get_die_type_at_offset (offset, cu->per_cu);
8846 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8847 {
8848 /* This declaration is a global namespace alias. Add
8849 a symbol for it whose type is the aliased namespace. */
8850 new_symbol (die, type, cu);
8851 return 1;
8852 }
8853 }
8854 }
8855
8856 return 0;
8857}
8858
27aa8d6a
SW
8859/* Read the import statement specified by the given die and record it. */
8860
8861static void
8862read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8863{
bb5ed363 8864 struct objfile *objfile = cu->objfile;
27aa8d6a 8865 struct attribute *import_attr;
32019081 8866 struct die_info *imported_die, *child_die;
de4affc9 8867 struct dwarf2_cu *imported_cu;
27aa8d6a 8868 const char *imported_name;
794684b6 8869 const char *imported_name_prefix;
13387711
SW
8870 const char *canonical_name;
8871 const char *import_alias;
8872 const char *imported_declaration = NULL;
794684b6 8873 const char *import_prefix;
32019081
JK
8874 VEC (const_char_ptr) *excludes = NULL;
8875 struct cleanup *cleanups;
13387711 8876
27aa8d6a
SW
8877 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8878 if (import_attr == NULL)
8879 {
8880 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8881 dwarf_tag_name (die->tag));
8882 return;
8883 }
8884
de4affc9
CC
8885 imported_cu = cu;
8886 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8887 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
8888 if (imported_name == NULL)
8889 {
8890 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8891
8892 The import in the following code:
8893 namespace A
8894 {
8895 typedef int B;
8896 }
8897
8898 int main ()
8899 {
8900 using A::B;
8901 B b;
8902 return b;
8903 }
8904
8905 ...
8906 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8907 <52> DW_AT_decl_file : 1
8908 <53> DW_AT_decl_line : 6
8909 <54> DW_AT_import : <0x75>
8910 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8911 <59> DW_AT_name : B
8912 <5b> DW_AT_decl_file : 1
8913 <5c> DW_AT_decl_line : 2
8914 <5d> DW_AT_type : <0x6e>
8915 ...
8916 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8917 <76> DW_AT_byte_size : 4
8918 <77> DW_AT_encoding : 5 (signed)
8919
8920 imports the wrong die ( 0x75 instead of 0x58 ).
8921 This case will be ignored until the gcc bug is fixed. */
8922 return;
8923 }
8924
82856980
SW
8925 /* Figure out the local name after import. */
8926 import_alias = dwarf2_name (die, cu);
27aa8d6a 8927
794684b6
SW
8928 /* Figure out where the statement is being imported to. */
8929 import_prefix = determine_prefix (die, cu);
8930
8931 /* Figure out what the scope of the imported die is and prepend it
8932 to the name of the imported die. */
de4affc9 8933 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 8934
f55ee35c
JK
8935 if (imported_die->tag != DW_TAG_namespace
8936 && imported_die->tag != DW_TAG_module)
794684b6 8937 {
13387711
SW
8938 imported_declaration = imported_name;
8939 canonical_name = imported_name_prefix;
794684b6 8940 }
13387711 8941 else if (strlen (imported_name_prefix) > 0)
12aaed36
TT
8942 canonical_name = obconcat (&objfile->objfile_obstack,
8943 imported_name_prefix, "::", imported_name,
8944 (char *) NULL);
13387711
SW
8945 else
8946 canonical_name = imported_name;
794684b6 8947
32019081
JK
8948 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8949
8950 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8951 for (child_die = die->child; child_die && child_die->tag;
8952 child_die = sibling_die (child_die))
8953 {
8954 /* DWARF-4: A Fortran use statement with a “rename list” may be
8955 represented by an imported module entry with an import attribute
8956 referring to the module and owned entries corresponding to those
8957 entities that are renamed as part of being imported. */
8958
8959 if (child_die->tag != DW_TAG_imported_declaration)
8960 {
8961 complaint (&symfile_complaints,
8962 _("child DW_TAG_imported_declaration expected "
8963 "- DIE at 0x%x [in module %s]"),
4262abfb 8964 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8965 continue;
8966 }
8967
8968 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8969 if (import_attr == NULL)
8970 {
8971 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8972 dwarf_tag_name (child_die->tag));
8973 continue;
8974 }
8975
8976 imported_cu = cu;
8977 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8978 &imported_cu);
8979 imported_name = dwarf2_name (imported_die, imported_cu);
8980 if (imported_name == NULL)
8981 {
8982 complaint (&symfile_complaints,
8983 _("child DW_TAG_imported_declaration has unknown "
8984 "imported name - DIE at 0x%x [in module %s]"),
4262abfb 8985 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8986 continue;
8987 }
8988
8989 VEC_safe_push (const_char_ptr, excludes, imported_name);
8990
8991 process_die (child_die, cu);
8992 }
8993
c0cc3a76
SW
8994 cp_add_using_directive (import_prefix,
8995 canonical_name,
8996 import_alias,
13387711 8997 imported_declaration,
32019081 8998 excludes,
12aaed36 8999 0,
bb5ed363 9000 &objfile->objfile_obstack);
32019081
JK
9001
9002 do_cleanups (cleanups);
27aa8d6a
SW
9003}
9004
f4dc4d17 9005/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 9006
cb1df416
DJ
9007static void
9008free_cu_line_header (void *arg)
9009{
9010 struct dwarf2_cu *cu = arg;
9011
9012 free_line_header (cu->line_header);
9013 cu->line_header = NULL;
9014}
9015
1b80a9fa
JK
9016/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9017 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9018 this, it was first present in GCC release 4.3.0. */
9019
9020static int
9021producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9022{
9023 if (!cu->checked_producer)
9024 check_producer (cu);
9025
9026 return cu->producer_is_gcc_lt_4_3;
9027}
9028
9291a0cd
TT
9029static void
9030find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
15d034d0 9031 const char **name, const char **comp_dir)
9291a0cd
TT
9032{
9033 struct attribute *attr;
9034
9035 *name = NULL;
9036 *comp_dir = NULL;
9037
9038 /* Find the filename. Do not use dwarf2_name here, since the filename
9039 is not a source language identifier. */
9040 attr = dwarf2_attr (die, DW_AT_name, cu);
9041 if (attr)
9042 {
9043 *name = DW_STRING (attr);
9044 }
9045
9046 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
9047 if (attr)
9048 *comp_dir = DW_STRING (attr);
1b80a9fa
JK
9049 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
9050 && IS_ABSOLUTE_PATH (*name))
9291a0cd 9051 {
15d034d0
TT
9052 char *d = ldirname (*name);
9053
9054 *comp_dir = d;
9055 if (d != NULL)
9056 make_cleanup (xfree, d);
9291a0cd
TT
9057 }
9058 if (*comp_dir != NULL)
9059 {
9060 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9061 directory, get rid of it. */
9062 char *cp = strchr (*comp_dir, ':');
9063
9064 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9065 *comp_dir = cp + 1;
9066 }
9067
9068 if (*name == NULL)
9069 *name = "<unknown>";
9070}
9071
f4dc4d17
DE
9072/* Handle DW_AT_stmt_list for a compilation unit.
9073 DIE is the DW_TAG_compile_unit die for CU.
c3b7b696
YQ
9074 COMP_DIR is the compilation directory. LOWPC is passed to
9075 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
2ab95328
TT
9076
9077static void
9078handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
c3b7b696 9079 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
2ab95328 9080{
527f3840 9081 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ab95328 9082 struct attribute *attr;
527f3840
JK
9083 unsigned int line_offset;
9084 struct line_header line_header_local;
9085 hashval_t line_header_local_hash;
9086 unsigned u;
9087 void **slot;
9088 int decode_mapping;
2ab95328 9089
f4dc4d17
DE
9090 gdb_assert (! cu->per_cu->is_debug_types);
9091
2ab95328 9092 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
527f3840
JK
9093 if (attr == NULL)
9094 return;
9095
9096 line_offset = DW_UNSND (attr);
9097
9098 /* The line header hash table is only created if needed (it exists to
9099 prevent redundant reading of the line table for partial_units).
9100 If we're given a partial_unit, we'll need it. If we're given a
9101 compile_unit, then use the line header hash table if it's already
9102 created, but don't create one just yet. */
9103
9104 if (dwarf2_per_objfile->line_header_hash == NULL
9105 && die->tag == DW_TAG_partial_unit)
2ab95328 9106 {
527f3840
JK
9107 dwarf2_per_objfile->line_header_hash
9108 = htab_create_alloc_ex (127, line_header_hash_voidp,
9109 line_header_eq_voidp,
9110 free_line_header_voidp,
9111 &objfile->objfile_obstack,
9112 hashtab_obstack_allocate,
9113 dummy_obstack_deallocate);
9114 }
2ab95328 9115
527f3840
JK
9116 line_header_local.offset.sect_off = line_offset;
9117 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9118 line_header_local_hash = line_header_hash (&line_header_local);
9119 if (dwarf2_per_objfile->line_header_hash != NULL)
9120 {
9121 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9122 &line_header_local,
9123 line_header_local_hash, NO_INSERT);
9124
9125 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9126 is not present in *SLOT (since if there is something in *SLOT then
9127 it will be for a partial_unit). */
9128 if (die->tag == DW_TAG_partial_unit && slot != NULL)
dee91e82 9129 {
527f3840
JK
9130 gdb_assert (*slot != NULL);
9131 cu->line_header = *slot;
9132 return;
dee91e82 9133 }
2ab95328 9134 }
527f3840
JK
9135
9136 /* dwarf_decode_line_header does not yet provide sufficient information.
9137 We always have to call also dwarf_decode_lines for it. */
9138 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9139 if (cu->line_header == NULL)
9140 return;
9141
9142 if (dwarf2_per_objfile->line_header_hash == NULL)
9143 slot = NULL;
9144 else
9145 {
9146 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9147 &line_header_local,
9148 line_header_local_hash, INSERT);
9149 gdb_assert (slot != NULL);
9150 }
9151 if (slot != NULL && *slot == NULL)
9152 {
9153 /* This newly decoded line number information unit will be owned
9154 by line_header_hash hash table. */
9155 *slot = cu->line_header;
9156 }
9157 else
9158 {
9159 /* We cannot free any current entry in (*slot) as that struct line_header
9160 may be already used by multiple CUs. Create only temporary decoded
9161 line_header for this CU - it may happen at most once for each line
9162 number information unit. And if we're not using line_header_hash
9163 then this is what we want as well. */
9164 gdb_assert (die->tag != DW_TAG_partial_unit);
9165 make_cleanup (free_cu_line_header, cu);
9166 }
9167 decode_mapping = (die->tag != DW_TAG_partial_unit);
9168 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9169 decode_mapping);
2ab95328
TT
9170}
9171
95554aad 9172/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 9173
c906108c 9174static void
e7c27a73 9175read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9176{
dee91e82 9177 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 9178 struct gdbarch *gdbarch = get_objfile_arch (objfile);
debd256d 9179 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 9180 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
9181 CORE_ADDR highpc = ((CORE_ADDR) 0);
9182 struct attribute *attr;
15d034d0
TT
9183 const char *name = NULL;
9184 const char *comp_dir = NULL;
c906108c
SS
9185 struct die_info *child_die;
9186 bfd *abfd = objfile->obfd;
e142c38c 9187 CORE_ADDR baseaddr;
6e70227d 9188
e142c38c 9189 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 9190
fae299cd 9191 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
9192
9193 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9194 from finish_block. */
2acceee2 9195 if (lowpc == ((CORE_ADDR) -1))
c906108c 9196 lowpc = highpc;
3e29f34a 9197 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
c906108c 9198
9291a0cd 9199 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 9200
95554aad 9201 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 9202
f4b8a18d
KW
9203 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9204 standardised yet. As a workaround for the language detection we fall
9205 back to the DW_AT_producer string. */
9206 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9207 cu->language = language_opencl;
9208
3019eac3
DE
9209 /* Similar hack for Go. */
9210 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9211 set_cu_language (DW_LANG_Go, cu);
9212
f4dc4d17 9213 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
9214
9215 /* Decode line number information if present. We do this before
9216 processing child DIEs, so that the line header table is available
9217 for DW_AT_decl_file. */
c3b7b696 9218 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
3019eac3
DE
9219
9220 /* Process all dies in compilation unit. */
9221 if (die->child != NULL)
9222 {
9223 child_die = die->child;
9224 while (child_die && child_die->tag)
9225 {
9226 process_die (child_die, cu);
9227 child_die = sibling_die (child_die);
9228 }
9229 }
9230
9231 /* Decode macro information, if present. Dwarf 2 macro information
9232 refers to information in the line number info statement program
9233 header, so we can only read it if we've read the header
9234 successfully. */
9235 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9236 if (attr && cu->line_header)
9237 {
9238 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9239 complaint (&symfile_complaints,
9240 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9241
43f3e411 9242 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
3019eac3
DE
9243 }
9244 else
9245 {
9246 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9247 if (attr && cu->line_header)
9248 {
9249 unsigned int macro_offset = DW_UNSND (attr);
9250
43f3e411 9251 dwarf_decode_macros (cu, macro_offset, 0);
3019eac3
DE
9252 }
9253 }
9254
9255 do_cleanups (back_to);
9256}
9257
f4dc4d17
DE
9258/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9259 Create the set of symtabs used by this TU, or if this TU is sharing
9260 symtabs with another TU and the symtabs have already been created
9261 then restore those symtabs in the line header.
9262 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
9263
9264static void
f4dc4d17 9265setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 9266{
f4dc4d17
DE
9267 struct objfile *objfile = dwarf2_per_objfile->objfile;
9268 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9269 struct type_unit_group *tu_group;
9270 int first_time;
9271 struct line_header *lh;
3019eac3 9272 struct attribute *attr;
f4dc4d17 9273 unsigned int i, line_offset;
0186c6a7 9274 struct signatured_type *sig_type;
3019eac3 9275
f4dc4d17 9276 gdb_assert (per_cu->is_debug_types);
0186c6a7 9277 sig_type = (struct signatured_type *) per_cu;
3019eac3 9278
f4dc4d17 9279 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 9280
f4dc4d17 9281 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 9282 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
9283 if (sig_type->type_unit_group == NULL)
9284 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9285 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
9286
9287 /* If we've already processed this stmt_list there's no real need to
9288 do it again, we could fake it and just recreate the part we need
9289 (file name,index -> symtab mapping). If data shows this optimization
9290 is useful we can do it then. */
43f3e411 9291 first_time = tu_group->compunit_symtab == NULL;
f4dc4d17
DE
9292
9293 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9294 debug info. */
9295 lh = NULL;
9296 if (attr != NULL)
3019eac3 9297 {
f4dc4d17
DE
9298 line_offset = DW_UNSND (attr);
9299 lh = dwarf_decode_line_header (line_offset, cu);
9300 }
9301 if (lh == NULL)
9302 {
9303 if (first_time)
9304 dwarf2_start_symtab (cu, "", NULL, 0);
9305 else
9306 {
9307 gdb_assert (tu_group->symtabs == NULL);
0ab9ce85 9308 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17 9309 }
f4dc4d17 9310 return;
3019eac3
DE
9311 }
9312
f4dc4d17
DE
9313 cu->line_header = lh;
9314 make_cleanup (free_cu_line_header, cu);
3019eac3 9315
f4dc4d17
DE
9316 if (first_time)
9317 {
43f3e411 9318 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 9319
f4dc4d17
DE
9320 tu_group->num_symtabs = lh->num_file_names;
9321 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 9322
f4dc4d17
DE
9323 for (i = 0; i < lh->num_file_names; ++i)
9324 {
d521ce57 9325 const char *dir = NULL;
f4dc4d17 9326 struct file_entry *fe = &lh->file_names[i];
3019eac3 9327
afa6c9ab 9328 if (fe->dir_index && lh->include_dirs != NULL)
f4dc4d17 9329 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 9330 dwarf2_start_subfile (fe->name, dir);
3019eac3 9331
f4dc4d17
DE
9332 if (current_subfile->symtab == NULL)
9333 {
9334 /* NOTE: start_subfile will recognize when it's been passed
9335 a file it has already seen. So we can't assume there's a
43f3e411 9336 simple mapping from lh->file_names to subfiles, plus
f4dc4d17 9337 lh->file_names may contain dups. */
43f3e411
DE
9338 current_subfile->symtab
9339 = allocate_symtab (cust, current_subfile->name);
f4dc4d17
DE
9340 }
9341
9342 fe->symtab = current_subfile->symtab;
9343 tu_group->symtabs[i] = fe->symtab;
9344 }
9345 }
9346 else
3019eac3 9347 {
0ab9ce85 9348 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17
DE
9349
9350 for (i = 0; i < lh->num_file_names; ++i)
9351 {
9352 struct file_entry *fe = &lh->file_names[i];
9353
9354 fe->symtab = tu_group->symtabs[i];
9355 }
3019eac3
DE
9356 }
9357
f4dc4d17
DE
9358 /* The main symtab is allocated last. Type units don't have DW_AT_name
9359 so they don't have a "real" (so to speak) symtab anyway.
9360 There is later code that will assign the main symtab to all symbols
9361 that don't have one. We need to handle the case of a symbol with a
9362 missing symtab (DW_AT_decl_file) anyway. */
9363}
3019eac3 9364
f4dc4d17
DE
9365/* Process DW_TAG_type_unit.
9366 For TUs we want to skip the first top level sibling if it's not the
9367 actual type being defined by this TU. In this case the first top
9368 level sibling is there to provide context only. */
3019eac3 9369
f4dc4d17
DE
9370static void
9371read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9372{
9373 struct die_info *child_die;
3019eac3 9374
f4dc4d17
DE
9375 prepare_one_comp_unit (cu, die, language_minimal);
9376
9377 /* Initialize (or reinitialize) the machinery for building symtabs.
9378 We do this before processing child DIEs, so that the line header table
9379 is available for DW_AT_decl_file. */
9380 setup_type_unit_groups (die, cu);
9381
9382 if (die->child != NULL)
9383 {
9384 child_die = die->child;
9385 while (child_die && child_die->tag)
9386 {
9387 process_die (child_die, cu);
9388 child_die = sibling_die (child_die);
9389 }
9390 }
3019eac3
DE
9391}
9392\f
80626a55
DE
9393/* DWO/DWP files.
9394
9395 http://gcc.gnu.org/wiki/DebugFission
9396 http://gcc.gnu.org/wiki/DebugFissionDWP
9397
9398 To simplify handling of both DWO files ("object" files with the DWARF info)
9399 and DWP files (a file with the DWOs packaged up into one file), we treat
9400 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
9401
9402static hashval_t
9403hash_dwo_file (const void *item)
9404{
9405 const struct dwo_file *dwo_file = item;
a2ce51a0 9406 hashval_t hash;
3019eac3 9407
a2ce51a0
DE
9408 hash = htab_hash_string (dwo_file->dwo_name);
9409 if (dwo_file->comp_dir != NULL)
9410 hash += htab_hash_string (dwo_file->comp_dir);
9411 return hash;
3019eac3
DE
9412}
9413
9414static int
9415eq_dwo_file (const void *item_lhs, const void *item_rhs)
9416{
9417 const struct dwo_file *lhs = item_lhs;
9418 const struct dwo_file *rhs = item_rhs;
9419
a2ce51a0
DE
9420 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9421 return 0;
9422 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9423 return lhs->comp_dir == rhs->comp_dir;
9424 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
9425}
9426
9427/* Allocate a hash table for DWO files. */
9428
9429static htab_t
9430allocate_dwo_file_hash_table (void)
9431{
9432 struct objfile *objfile = dwarf2_per_objfile->objfile;
9433
9434 return htab_create_alloc_ex (41,
9435 hash_dwo_file,
9436 eq_dwo_file,
9437 NULL,
9438 &objfile->objfile_obstack,
9439 hashtab_obstack_allocate,
9440 dummy_obstack_deallocate);
9441}
9442
80626a55
DE
9443/* Lookup DWO file DWO_NAME. */
9444
9445static void **
0ac5b59e 9446lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9447{
9448 struct dwo_file find_entry;
9449 void **slot;
9450
9451 if (dwarf2_per_objfile->dwo_files == NULL)
9452 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9453
9454 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9455 find_entry.dwo_name = dwo_name;
9456 find_entry.comp_dir = comp_dir;
80626a55
DE
9457 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9458
9459 return slot;
9460}
9461
3019eac3
DE
9462static hashval_t
9463hash_dwo_unit (const void *item)
9464{
9465 const struct dwo_unit *dwo_unit = item;
9466
9467 /* This drops the top 32 bits of the id, but is ok for a hash. */
9468 return dwo_unit->signature;
9469}
9470
9471static int
9472eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9473{
9474 const struct dwo_unit *lhs = item_lhs;
9475 const struct dwo_unit *rhs = item_rhs;
9476
9477 /* The signature is assumed to be unique within the DWO file.
9478 So while object file CU dwo_id's always have the value zero,
9479 that's OK, assuming each object file DWO file has only one CU,
9480 and that's the rule for now. */
9481 return lhs->signature == rhs->signature;
9482}
9483
9484/* Allocate a hash table for DWO CUs,TUs.
9485 There is one of these tables for each of CUs,TUs for each DWO file. */
9486
9487static htab_t
9488allocate_dwo_unit_table (struct objfile *objfile)
9489{
9490 /* Start out with a pretty small number.
9491 Generally DWO files contain only one CU and maybe some TUs. */
9492 return htab_create_alloc_ex (3,
9493 hash_dwo_unit,
9494 eq_dwo_unit,
9495 NULL,
9496 &objfile->objfile_obstack,
9497 hashtab_obstack_allocate,
9498 dummy_obstack_deallocate);
9499}
9500
80626a55 9501/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9502
19c3d4c9 9503struct create_dwo_cu_data
3019eac3
DE
9504{
9505 struct dwo_file *dwo_file;
19c3d4c9 9506 struct dwo_unit dwo_unit;
3019eac3
DE
9507};
9508
19c3d4c9 9509/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9510
9511static void
19c3d4c9
DE
9512create_dwo_cu_reader (const struct die_reader_specs *reader,
9513 const gdb_byte *info_ptr,
9514 struct die_info *comp_unit_die,
9515 int has_children,
9516 void *datap)
3019eac3
DE
9517{
9518 struct dwarf2_cu *cu = reader->cu;
9519 struct objfile *objfile = dwarf2_per_objfile->objfile;
9520 sect_offset offset = cu->per_cu->offset;
8a0459fd 9521 struct dwarf2_section_info *section = cu->per_cu->section;
19c3d4c9 9522 struct create_dwo_cu_data *data = datap;
3019eac3 9523 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9524 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9525 struct attribute *attr;
3019eac3
DE
9526
9527 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9528 if (attr == NULL)
9529 {
19c3d4c9
DE
9530 complaint (&symfile_complaints,
9531 _("Dwarf Error: debug entry at offset 0x%x is missing"
9532 " its dwo_id [in module %s]"),
9533 offset.sect_off, dwo_file->dwo_name);
3019eac3
DE
9534 return;
9535 }
9536
3019eac3
DE
9537 dwo_unit->dwo_file = dwo_file;
9538 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9539 dwo_unit->section = section;
3019eac3
DE
9540 dwo_unit->offset = offset;
9541 dwo_unit->length = cu->per_cu->length;
9542
b4f54984 9543 if (dwarf_read_debug)
4031ecc5
DE
9544 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9545 offset.sect_off, hex_string (dwo_unit->signature));
3019eac3
DE
9546}
9547
19c3d4c9
DE
9548/* Create the dwo_unit for the lone CU in DWO_FILE.
9549 Note: This function processes DWO files only, not DWP files. */
3019eac3 9550
19c3d4c9
DE
9551static struct dwo_unit *
9552create_dwo_cu (struct dwo_file *dwo_file)
3019eac3
DE
9553{
9554 struct objfile *objfile = dwarf2_per_objfile->objfile;
9555 struct dwarf2_section_info *section = &dwo_file->sections.info;
9556 bfd *abfd;
9557 htab_t cu_htab;
d521ce57 9558 const gdb_byte *info_ptr, *end_ptr;
19c3d4c9
DE
9559 struct create_dwo_cu_data create_dwo_cu_data;
9560 struct dwo_unit *dwo_unit;
3019eac3
DE
9561
9562 dwarf2_read_section (objfile, section);
9563 info_ptr = section->buffer;
9564
9565 if (info_ptr == NULL)
9566 return NULL;
9567
9568 /* We can't set abfd until now because the section may be empty or
9569 not present, in which case section->asection will be NULL. */
a32a8923 9570 abfd = get_section_bfd_owner (section);
3019eac3 9571
b4f54984 9572 if (dwarf_read_debug)
19c3d4c9
DE
9573 {
9574 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
a32a8923
DE
9575 get_section_name (section),
9576 get_section_file_name (section));
19c3d4c9 9577 }
3019eac3 9578
19c3d4c9
DE
9579 create_dwo_cu_data.dwo_file = dwo_file;
9580 dwo_unit = NULL;
3019eac3
DE
9581
9582 end_ptr = info_ptr + section->size;
9583 while (info_ptr < end_ptr)
9584 {
9585 struct dwarf2_per_cu_data per_cu;
9586
19c3d4c9
DE
9587 memset (&create_dwo_cu_data.dwo_unit, 0,
9588 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9589 memset (&per_cu, 0, sizeof (per_cu));
9590 per_cu.objfile = objfile;
9591 per_cu.is_debug_types = 0;
9592 per_cu.offset.sect_off = info_ptr - section->buffer;
8a0459fd 9593 per_cu.section = section;
3019eac3 9594
33e80786 9595 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
19c3d4c9
DE
9596 create_dwo_cu_reader,
9597 &create_dwo_cu_data);
9598
9599 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9600 {
9601 /* If we've already found one, complain. We only support one
9602 because having more than one requires hacking the dwo_name of
9603 each to match, which is highly unlikely to happen. */
9604 if (dwo_unit != NULL)
9605 {
9606 complaint (&symfile_complaints,
9607 _("Multiple CUs in DWO file %s [in module %s]"),
4262abfb 9608 dwo_file->dwo_name, objfile_name (objfile));
19c3d4c9
DE
9609 break;
9610 }
9611
9612 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9613 *dwo_unit = create_dwo_cu_data.dwo_unit;
9614 }
3019eac3
DE
9615
9616 info_ptr += per_cu.length;
9617 }
9618
19c3d4c9 9619 return dwo_unit;
3019eac3
DE
9620}
9621
80626a55
DE
9622/* DWP file .debug_{cu,tu}_index section format:
9623 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9624
d2415c6c
DE
9625 DWP Version 1:
9626
80626a55
DE
9627 Both index sections have the same format, and serve to map a 64-bit
9628 signature to a set of section numbers. Each section begins with a header,
9629 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9630 indexes, and a pool of 32-bit section numbers. The index sections will be
9631 aligned at 8-byte boundaries in the file.
9632
d2415c6c
DE
9633 The index section header consists of:
9634
9635 V, 32 bit version number
9636 -, 32 bits unused
9637 N, 32 bit number of compilation units or type units in the index
9638 M, 32 bit number of slots in the hash table
80626a55 9639
d2415c6c 9640 Numbers are recorded using the byte order of the application binary.
80626a55 9641
d2415c6c
DE
9642 The hash table begins at offset 16 in the section, and consists of an array
9643 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9644 order of the application binary). Unused slots in the hash table are 0.
9645 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9646
d2415c6c
DE
9647 The parallel table begins immediately after the hash table
9648 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9649 array of 32-bit indexes (using the byte order of the application binary),
9650 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9651 table contains a 32-bit index into the pool of section numbers. For unused
9652 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9653
73869dc2
DE
9654 The pool of section numbers begins immediately following the hash table
9655 (at offset 16 + 12 * M from the beginning of the section). The pool of
9656 section numbers consists of an array of 32-bit words (using the byte order
9657 of the application binary). Each item in the array is indexed starting
9658 from 0. The hash table entry provides the index of the first section
9659 number in the set. Additional section numbers in the set follow, and the
9660 set is terminated by a 0 entry (section number 0 is not used in ELF).
9661
9662 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9663 section must be the first entry in the set, and the .debug_abbrev.dwo must
9664 be the second entry. Other members of the set may follow in any order.
9665
9666 ---
9667
9668 DWP Version 2:
9669
9670 DWP Version 2 combines all the .debug_info, etc. sections into one,
9671 and the entries in the index tables are now offsets into these sections.
9672 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9673 section.
9674
9675 Index Section Contents:
9676 Header
9677 Hash Table of Signatures dwp_hash_table.hash_table
9678 Parallel Table of Indices dwp_hash_table.unit_table
9679 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9680 Table of Section Sizes dwp_hash_table.v2.sizes
9681
9682 The index section header consists of:
9683
9684 V, 32 bit version number
9685 L, 32 bit number of columns in the table of section offsets
9686 N, 32 bit number of compilation units or type units in the index
9687 M, 32 bit number of slots in the hash table
9688
9689 Numbers are recorded using the byte order of the application binary.
9690
9691 The hash table has the same format as version 1.
9692 The parallel table of indices has the same format as version 1,
9693 except that the entries are origin-1 indices into the table of sections
9694 offsets and the table of section sizes.
9695
9696 The table of offsets begins immediately following the parallel table
9697 (at offset 16 + 12 * M from the beginning of the section). The table is
9698 a two-dimensional array of 32-bit words (using the byte order of the
9699 application binary), with L columns and N+1 rows, in row-major order.
9700 Each row in the array is indexed starting from 0. The first row provides
9701 a key to the remaining rows: each column in this row provides an identifier
9702 for a debug section, and the offsets in the same column of subsequent rows
9703 refer to that section. The section identifiers are:
9704
9705 DW_SECT_INFO 1 .debug_info.dwo
9706 DW_SECT_TYPES 2 .debug_types.dwo
9707 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9708 DW_SECT_LINE 4 .debug_line.dwo
9709 DW_SECT_LOC 5 .debug_loc.dwo
9710 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9711 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9712 DW_SECT_MACRO 8 .debug_macro.dwo
9713
9714 The offsets provided by the CU and TU index sections are the base offsets
9715 for the contributions made by each CU or TU to the corresponding section
9716 in the package file. Each CU and TU header contains an abbrev_offset
9717 field, used to find the abbreviations table for that CU or TU within the
9718 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9719 be interpreted as relative to the base offset given in the index section.
9720 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9721 should be interpreted as relative to the base offset for .debug_line.dwo,
9722 and offsets into other debug sections obtained from DWARF attributes should
9723 also be interpreted as relative to the corresponding base offset.
9724
9725 The table of sizes begins immediately following the table of offsets.
9726 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9727 with L columns and N rows, in row-major order. Each row in the array is
9728 indexed starting from 1 (row 0 is shared by the two tables).
9729
9730 ---
9731
9732 Hash table lookup is handled the same in version 1 and 2:
9733
9734 We assume that N and M will not exceed 2^32 - 1.
9735 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9736
d2415c6c
DE
9737 Given a 64-bit compilation unit signature or a type signature S, an entry
9738 in the hash table is located as follows:
80626a55 9739
d2415c6c
DE
9740 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9741 the low-order k bits all set to 1.
80626a55 9742
d2415c6c 9743 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 9744
d2415c6c
DE
9745 3) If the hash table entry at index H matches the signature, use that
9746 entry. If the hash table entry at index H is unused (all zeroes),
9747 terminate the search: the signature is not present in the table.
80626a55 9748
d2415c6c 9749 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 9750
d2415c6c 9751 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 9752 to stop at an unused slot or find the match. */
80626a55
DE
9753
9754/* Create a hash table to map DWO IDs to their CU/TU entry in
9755 .debug_{info,types}.dwo in DWP_FILE.
9756 Returns NULL if there isn't one.
9757 Note: This function processes DWP files only, not DWO files. */
9758
9759static struct dwp_hash_table *
9760create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9761{
9762 struct objfile *objfile = dwarf2_per_objfile->objfile;
9763 bfd *dbfd = dwp_file->dbfd;
948f8e3d 9764 const gdb_byte *index_ptr, *index_end;
80626a55 9765 struct dwarf2_section_info *index;
73869dc2 9766 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
9767 struct dwp_hash_table *htab;
9768
9769 if (is_debug_types)
9770 index = &dwp_file->sections.tu_index;
9771 else
9772 index = &dwp_file->sections.cu_index;
9773
9774 if (dwarf2_section_empty_p (index))
9775 return NULL;
9776 dwarf2_read_section (objfile, index);
9777
9778 index_ptr = index->buffer;
9779 index_end = index_ptr + index->size;
9780
9781 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
9782 index_ptr += 4;
9783 if (version == 2)
9784 nr_columns = read_4_bytes (dbfd, index_ptr);
9785 else
9786 nr_columns = 0;
9787 index_ptr += 4;
80626a55
DE
9788 nr_units = read_4_bytes (dbfd, index_ptr);
9789 index_ptr += 4;
9790 nr_slots = read_4_bytes (dbfd, index_ptr);
9791 index_ptr += 4;
9792
73869dc2 9793 if (version != 1 && version != 2)
80626a55 9794 {
21aa081e 9795 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 9796 " [in module %s]"),
21aa081e 9797 pulongest (version), dwp_file->name);
80626a55
DE
9798 }
9799 if (nr_slots != (nr_slots & -nr_slots))
9800 {
21aa081e 9801 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 9802 " is not power of 2 [in module %s]"),
21aa081e 9803 pulongest (nr_slots), dwp_file->name);
80626a55
DE
9804 }
9805
9806 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
9807 htab->version = version;
9808 htab->nr_columns = nr_columns;
80626a55
DE
9809 htab->nr_units = nr_units;
9810 htab->nr_slots = nr_slots;
9811 htab->hash_table = index_ptr;
9812 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
9813
9814 /* Exit early if the table is empty. */
9815 if (nr_slots == 0 || nr_units == 0
9816 || (version == 2 && nr_columns == 0))
9817 {
9818 /* All must be zero. */
9819 if (nr_slots != 0 || nr_units != 0
9820 || (version == 2 && nr_columns != 0))
9821 {
9822 complaint (&symfile_complaints,
9823 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9824 " all zero [in modules %s]"),
9825 dwp_file->name);
9826 }
9827 return htab;
9828 }
9829
9830 if (version == 1)
9831 {
9832 htab->section_pool.v1.indices =
9833 htab->unit_table + sizeof (uint32_t) * nr_slots;
9834 /* It's harder to decide whether the section is too small in v1.
9835 V1 is deprecated anyway so we punt. */
9836 }
9837 else
9838 {
9839 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9840 int *ids = htab->section_pool.v2.section_ids;
9841 /* Reverse map for error checking. */
9842 int ids_seen[DW_SECT_MAX + 1];
9843 int i;
9844
9845 if (nr_columns < 2)
9846 {
9847 error (_("Dwarf Error: bad DWP hash table, too few columns"
9848 " in section table [in module %s]"),
9849 dwp_file->name);
9850 }
9851 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9852 {
9853 error (_("Dwarf Error: bad DWP hash table, too many columns"
9854 " in section table [in module %s]"),
9855 dwp_file->name);
9856 }
9857 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9858 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9859 for (i = 0; i < nr_columns; ++i)
9860 {
9861 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9862
9863 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9864 {
9865 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9866 " in section table [in module %s]"),
9867 id, dwp_file->name);
9868 }
9869 if (ids_seen[id] != -1)
9870 {
9871 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9872 " id %d in section table [in module %s]"),
9873 id, dwp_file->name);
9874 }
9875 ids_seen[id] = i;
9876 ids[i] = id;
9877 }
9878 /* Must have exactly one info or types section. */
9879 if (((ids_seen[DW_SECT_INFO] != -1)
9880 + (ids_seen[DW_SECT_TYPES] != -1))
9881 != 1)
9882 {
9883 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9884 " DWO info/types section [in module %s]"),
9885 dwp_file->name);
9886 }
9887 /* Must have an abbrev section. */
9888 if (ids_seen[DW_SECT_ABBREV] == -1)
9889 {
9890 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9891 " section [in module %s]"),
9892 dwp_file->name);
9893 }
9894 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9895 htab->section_pool.v2.sizes =
9896 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9897 * nr_units * nr_columns);
9898 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9899 * nr_units * nr_columns))
9900 > index_end)
9901 {
9902 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9903 " [in module %s]"),
9904 dwp_file->name);
9905 }
9906 }
80626a55
DE
9907
9908 return htab;
9909}
9910
9911/* Update SECTIONS with the data from SECTP.
9912
9913 This function is like the other "locate" section routines that are
9914 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 9915 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
9916
9917 The result is non-zero for success, or zero if an error was found. */
9918
9919static int
73869dc2
DE
9920locate_v1_virtual_dwo_sections (asection *sectp,
9921 struct virtual_v1_dwo_sections *sections)
80626a55
DE
9922{
9923 const struct dwop_section_names *names = &dwop_section_names;
9924
9925 if (section_is_p (sectp->name, &names->abbrev_dwo))
9926 {
9927 /* There can be only one. */
73869dc2 9928 if (sections->abbrev.s.asection != NULL)
80626a55 9929 return 0;
73869dc2 9930 sections->abbrev.s.asection = sectp;
80626a55
DE
9931 sections->abbrev.size = bfd_get_section_size (sectp);
9932 }
9933 else if (section_is_p (sectp->name, &names->info_dwo)
9934 || section_is_p (sectp->name, &names->types_dwo))
9935 {
9936 /* There can be only one. */
73869dc2 9937 if (sections->info_or_types.s.asection != NULL)
80626a55 9938 return 0;
73869dc2 9939 sections->info_or_types.s.asection = sectp;
80626a55
DE
9940 sections->info_or_types.size = bfd_get_section_size (sectp);
9941 }
9942 else if (section_is_p (sectp->name, &names->line_dwo))
9943 {
9944 /* There can be only one. */
73869dc2 9945 if (sections->line.s.asection != NULL)
80626a55 9946 return 0;
73869dc2 9947 sections->line.s.asection = sectp;
80626a55
DE
9948 sections->line.size = bfd_get_section_size (sectp);
9949 }
9950 else if (section_is_p (sectp->name, &names->loc_dwo))
9951 {
9952 /* There can be only one. */
73869dc2 9953 if (sections->loc.s.asection != NULL)
80626a55 9954 return 0;
73869dc2 9955 sections->loc.s.asection = sectp;
80626a55
DE
9956 sections->loc.size = bfd_get_section_size (sectp);
9957 }
9958 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9959 {
9960 /* There can be only one. */
73869dc2 9961 if (sections->macinfo.s.asection != NULL)
80626a55 9962 return 0;
73869dc2 9963 sections->macinfo.s.asection = sectp;
80626a55
DE
9964 sections->macinfo.size = bfd_get_section_size (sectp);
9965 }
9966 else if (section_is_p (sectp->name, &names->macro_dwo))
9967 {
9968 /* There can be only one. */
73869dc2 9969 if (sections->macro.s.asection != NULL)
80626a55 9970 return 0;
73869dc2 9971 sections->macro.s.asection = sectp;
80626a55
DE
9972 sections->macro.size = bfd_get_section_size (sectp);
9973 }
9974 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9975 {
9976 /* There can be only one. */
73869dc2 9977 if (sections->str_offsets.s.asection != NULL)
80626a55 9978 return 0;
73869dc2 9979 sections->str_offsets.s.asection = sectp;
80626a55
DE
9980 sections->str_offsets.size = bfd_get_section_size (sectp);
9981 }
9982 else
9983 {
9984 /* No other kind of section is valid. */
9985 return 0;
9986 }
9987
9988 return 1;
9989}
9990
73869dc2
DE
9991/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9992 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9993 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9994 This is for DWP version 1 files. */
80626a55
DE
9995
9996static struct dwo_unit *
73869dc2
DE
9997create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9998 uint32_t unit_index,
9999 const char *comp_dir,
10000 ULONGEST signature, int is_debug_types)
80626a55
DE
10001{
10002 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
10003 const struct dwp_hash_table *dwp_htab =
10004 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
10005 bfd *dbfd = dwp_file->dbfd;
10006 const char *kind = is_debug_types ? "TU" : "CU";
10007 struct dwo_file *dwo_file;
10008 struct dwo_unit *dwo_unit;
73869dc2 10009 struct virtual_v1_dwo_sections sections;
80626a55
DE
10010 void **dwo_file_slot;
10011 char *virtual_dwo_name;
10012 struct dwarf2_section_info *cutu;
10013 struct cleanup *cleanups;
10014 int i;
10015
73869dc2
DE
10016 gdb_assert (dwp_file->version == 1);
10017
b4f54984 10018 if (dwarf_read_debug)
80626a55 10019 {
73869dc2 10020 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 10021 kind,
73869dc2 10022 pulongest (unit_index), hex_string (signature),
80626a55
DE
10023 dwp_file->name);
10024 }
10025
19ac8c2e 10026 /* Fetch the sections of this DWO unit.
80626a55
DE
10027 Put a limit on the number of sections we look for so that bad data
10028 doesn't cause us to loop forever. */
10029
73869dc2 10030#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
10031 (1 /* .debug_info or .debug_types */ \
10032 + 1 /* .debug_abbrev */ \
10033 + 1 /* .debug_line */ \
10034 + 1 /* .debug_loc */ \
10035 + 1 /* .debug_str_offsets */ \
19ac8c2e 10036 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
10037 + 1 /* trailing zero */)
10038
10039 memset (&sections, 0, sizeof (sections));
10040 cleanups = make_cleanup (null_cleanup, 0);
10041
73869dc2 10042 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
10043 {
10044 asection *sectp;
10045 uint32_t section_nr =
10046 read_4_bytes (dbfd,
73869dc2
DE
10047 dwp_htab->section_pool.v1.indices
10048 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
10049
10050 if (section_nr == 0)
10051 break;
10052 if (section_nr >= dwp_file->num_sections)
10053 {
10054 error (_("Dwarf Error: bad DWP hash table, section number too large"
10055 " [in module %s]"),
10056 dwp_file->name);
10057 }
10058
10059 sectp = dwp_file->elf_sections[section_nr];
73869dc2 10060 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
10061 {
10062 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10063 " [in module %s]"),
10064 dwp_file->name);
10065 }
10066 }
10067
10068 if (i < 2
a32a8923
DE
10069 || dwarf2_section_empty_p (&sections.info_or_types)
10070 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
10071 {
10072 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10073 " [in module %s]"),
10074 dwp_file->name);
10075 }
73869dc2 10076 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
10077 {
10078 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10079 " [in module %s]"),
10080 dwp_file->name);
10081 }
10082
10083 /* It's easier for the rest of the code if we fake a struct dwo_file and
10084 have dwo_unit "live" in that. At least for now.
10085
10086 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 10087 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
10088 file, we can combine them back into a virtual DWO file to save space
10089 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
10090 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10091
2792b94d
PM
10092 virtual_dwo_name =
10093 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
a32a8923
DE
10094 get_section_id (&sections.abbrev),
10095 get_section_id (&sections.line),
10096 get_section_id (&sections.loc),
10097 get_section_id (&sections.str_offsets));
80626a55
DE
10098 make_cleanup (xfree, virtual_dwo_name);
10099 /* Can we use an existing virtual DWO file? */
0ac5b59e 10100 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
10101 /* Create one if necessary. */
10102 if (*dwo_file_slot == NULL)
10103 {
b4f54984 10104 if (dwarf_read_debug)
80626a55
DE
10105 {
10106 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10107 virtual_dwo_name);
10108 }
10109 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10110 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10111 virtual_dwo_name,
10112 strlen (virtual_dwo_name));
10113 dwo_file->comp_dir = comp_dir;
80626a55
DE
10114 dwo_file->sections.abbrev = sections.abbrev;
10115 dwo_file->sections.line = sections.line;
10116 dwo_file->sections.loc = sections.loc;
10117 dwo_file->sections.macinfo = sections.macinfo;
10118 dwo_file->sections.macro = sections.macro;
10119 dwo_file->sections.str_offsets = sections.str_offsets;
10120 /* The "str" section is global to the entire DWP file. */
10121 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 10122 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
10123 there's no need to record it in dwo_file.
10124 Also, we can't simply record type sections in dwo_file because
10125 we record a pointer into the vector in dwo_unit. As we collect more
10126 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
10127 for it, invalidating all copies of pointers into the previous
10128 contents. */
80626a55
DE
10129 *dwo_file_slot = dwo_file;
10130 }
10131 else
10132 {
b4f54984 10133 if (dwarf_read_debug)
80626a55
DE
10134 {
10135 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10136 virtual_dwo_name);
10137 }
10138 dwo_file = *dwo_file_slot;
10139 }
10140 do_cleanups (cleanups);
10141
10142 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10143 dwo_unit->dwo_file = dwo_file;
10144 dwo_unit->signature = signature;
8a0459fd
DE
10145 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10146 sizeof (struct dwarf2_section_info));
10147 *dwo_unit->section = sections.info_or_types;
57d63ce2 10148 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
10149
10150 return dwo_unit;
10151}
10152
73869dc2
DE
10153/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10154 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10155 piece within that section used by a TU/CU, return a virtual section
10156 of just that piece. */
10157
10158static struct dwarf2_section_info
10159create_dwp_v2_section (struct dwarf2_section_info *section,
10160 bfd_size_type offset, bfd_size_type size)
10161{
10162 struct dwarf2_section_info result;
10163 asection *sectp;
10164
10165 gdb_assert (section != NULL);
10166 gdb_assert (!section->is_virtual);
10167
10168 memset (&result, 0, sizeof (result));
10169 result.s.containing_section = section;
10170 result.is_virtual = 1;
10171
10172 if (size == 0)
10173 return result;
10174
10175 sectp = get_section_bfd_section (section);
10176
10177 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10178 bounds of the real section. This is a pretty-rare event, so just
10179 flag an error (easier) instead of a warning and trying to cope. */
10180 if (sectp == NULL
10181 || offset + size > bfd_get_section_size (sectp))
10182 {
10183 bfd *abfd = sectp->owner;
10184
10185 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10186 " in section %s [in module %s]"),
10187 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10188 objfile_name (dwarf2_per_objfile->objfile));
10189 }
10190
10191 result.virtual_offset = offset;
10192 result.size = size;
10193 return result;
10194}
10195
10196/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10197 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10198 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10199 This is for DWP version 2 files. */
10200
10201static struct dwo_unit *
10202create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10203 uint32_t unit_index,
10204 const char *comp_dir,
10205 ULONGEST signature, int is_debug_types)
10206{
10207 struct objfile *objfile = dwarf2_per_objfile->objfile;
10208 const struct dwp_hash_table *dwp_htab =
10209 is_debug_types ? dwp_file->tus : dwp_file->cus;
10210 bfd *dbfd = dwp_file->dbfd;
10211 const char *kind = is_debug_types ? "TU" : "CU";
10212 struct dwo_file *dwo_file;
10213 struct dwo_unit *dwo_unit;
10214 struct virtual_v2_dwo_sections sections;
10215 void **dwo_file_slot;
10216 char *virtual_dwo_name;
10217 struct dwarf2_section_info *cutu;
10218 struct cleanup *cleanups;
10219 int i;
10220
10221 gdb_assert (dwp_file->version == 2);
10222
b4f54984 10223 if (dwarf_read_debug)
73869dc2
DE
10224 {
10225 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10226 kind,
10227 pulongest (unit_index), hex_string (signature),
10228 dwp_file->name);
10229 }
10230
10231 /* Fetch the section offsets of this DWO unit. */
10232
10233 memset (&sections, 0, sizeof (sections));
10234 cleanups = make_cleanup (null_cleanup, 0);
10235
10236 for (i = 0; i < dwp_htab->nr_columns; ++i)
10237 {
10238 uint32_t offset = read_4_bytes (dbfd,
10239 dwp_htab->section_pool.v2.offsets
10240 + (((unit_index - 1) * dwp_htab->nr_columns
10241 + i)
10242 * sizeof (uint32_t)));
10243 uint32_t size = read_4_bytes (dbfd,
10244 dwp_htab->section_pool.v2.sizes
10245 + (((unit_index - 1) * dwp_htab->nr_columns
10246 + i)
10247 * sizeof (uint32_t)));
10248
10249 switch (dwp_htab->section_pool.v2.section_ids[i])
10250 {
10251 case DW_SECT_INFO:
10252 case DW_SECT_TYPES:
10253 sections.info_or_types_offset = offset;
10254 sections.info_or_types_size = size;
10255 break;
10256 case DW_SECT_ABBREV:
10257 sections.abbrev_offset = offset;
10258 sections.abbrev_size = size;
10259 break;
10260 case DW_SECT_LINE:
10261 sections.line_offset = offset;
10262 sections.line_size = size;
10263 break;
10264 case DW_SECT_LOC:
10265 sections.loc_offset = offset;
10266 sections.loc_size = size;
10267 break;
10268 case DW_SECT_STR_OFFSETS:
10269 sections.str_offsets_offset = offset;
10270 sections.str_offsets_size = size;
10271 break;
10272 case DW_SECT_MACINFO:
10273 sections.macinfo_offset = offset;
10274 sections.macinfo_size = size;
10275 break;
10276 case DW_SECT_MACRO:
10277 sections.macro_offset = offset;
10278 sections.macro_size = size;
10279 break;
10280 }
10281 }
10282
10283 /* It's easier for the rest of the code if we fake a struct dwo_file and
10284 have dwo_unit "live" in that. At least for now.
10285
10286 The DWP file can be made up of a random collection of CUs and TUs.
10287 However, for each CU + set of TUs that came from the same original DWO
10288 file, we can combine them back into a virtual DWO file to save space
10289 (fewer struct dwo_file objects to allocate). Remember that for really
10290 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10291
10292 virtual_dwo_name =
10293 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10294 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10295 (long) (sections.line_size ? sections.line_offset : 0),
10296 (long) (sections.loc_size ? sections.loc_offset : 0),
10297 (long) (sections.str_offsets_size
10298 ? sections.str_offsets_offset : 0));
10299 make_cleanup (xfree, virtual_dwo_name);
10300 /* Can we use an existing virtual DWO file? */
10301 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10302 /* Create one if necessary. */
10303 if (*dwo_file_slot == NULL)
10304 {
b4f54984 10305 if (dwarf_read_debug)
73869dc2
DE
10306 {
10307 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10308 virtual_dwo_name);
10309 }
10310 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10311 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10312 virtual_dwo_name,
10313 strlen (virtual_dwo_name));
10314 dwo_file->comp_dir = comp_dir;
10315 dwo_file->sections.abbrev =
10316 create_dwp_v2_section (&dwp_file->sections.abbrev,
10317 sections.abbrev_offset, sections.abbrev_size);
10318 dwo_file->sections.line =
10319 create_dwp_v2_section (&dwp_file->sections.line,
10320 sections.line_offset, sections.line_size);
10321 dwo_file->sections.loc =
10322 create_dwp_v2_section (&dwp_file->sections.loc,
10323 sections.loc_offset, sections.loc_size);
10324 dwo_file->sections.macinfo =
10325 create_dwp_v2_section (&dwp_file->sections.macinfo,
10326 sections.macinfo_offset, sections.macinfo_size);
10327 dwo_file->sections.macro =
10328 create_dwp_v2_section (&dwp_file->sections.macro,
10329 sections.macro_offset, sections.macro_size);
10330 dwo_file->sections.str_offsets =
10331 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10332 sections.str_offsets_offset,
10333 sections.str_offsets_size);
10334 /* The "str" section is global to the entire DWP file. */
10335 dwo_file->sections.str = dwp_file->sections.str;
10336 /* The info or types section is assigned below to dwo_unit,
10337 there's no need to record it in dwo_file.
10338 Also, we can't simply record type sections in dwo_file because
10339 we record a pointer into the vector in dwo_unit. As we collect more
10340 types we'll grow the vector and eventually have to reallocate space
10341 for it, invalidating all copies of pointers into the previous
10342 contents. */
10343 *dwo_file_slot = dwo_file;
10344 }
10345 else
10346 {
b4f54984 10347 if (dwarf_read_debug)
73869dc2
DE
10348 {
10349 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10350 virtual_dwo_name);
10351 }
10352 dwo_file = *dwo_file_slot;
10353 }
10354 do_cleanups (cleanups);
10355
10356 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10357 dwo_unit->dwo_file = dwo_file;
10358 dwo_unit->signature = signature;
10359 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10360 sizeof (struct dwarf2_section_info));
10361 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10362 ? &dwp_file->sections.types
10363 : &dwp_file->sections.info,
10364 sections.info_or_types_offset,
10365 sections.info_or_types_size);
10366 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10367
10368 return dwo_unit;
10369}
10370
57d63ce2
DE
10371/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10372 Returns NULL if the signature isn't found. */
80626a55
DE
10373
10374static struct dwo_unit *
57d63ce2
DE
10375lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10376 ULONGEST signature, int is_debug_types)
80626a55 10377{
57d63ce2
DE
10378 const struct dwp_hash_table *dwp_htab =
10379 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 10380 bfd *dbfd = dwp_file->dbfd;
57d63ce2 10381 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
10382 uint32_t hash = signature & mask;
10383 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10384 unsigned int i;
10385 void **slot;
10386 struct dwo_unit find_dwo_cu, *dwo_cu;
10387
10388 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10389 find_dwo_cu.signature = signature;
19ac8c2e
DE
10390 slot = htab_find_slot (is_debug_types
10391 ? dwp_file->loaded_tus
10392 : dwp_file->loaded_cus,
10393 &find_dwo_cu, INSERT);
80626a55
DE
10394
10395 if (*slot != NULL)
10396 return *slot;
10397
10398 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 10399 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
10400 {
10401 ULONGEST signature_in_table;
10402
10403 signature_in_table =
57d63ce2 10404 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
10405 if (signature_in_table == signature)
10406 {
57d63ce2
DE
10407 uint32_t unit_index =
10408 read_4_bytes (dbfd,
10409 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 10410
73869dc2
DE
10411 if (dwp_file->version == 1)
10412 {
10413 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10414 comp_dir, signature,
10415 is_debug_types);
10416 }
10417 else
10418 {
10419 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10420 comp_dir, signature,
10421 is_debug_types);
10422 }
80626a55
DE
10423 return *slot;
10424 }
10425 if (signature_in_table == 0)
10426 return NULL;
10427 hash = (hash + hash2) & mask;
10428 }
10429
10430 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10431 " [in module %s]"),
10432 dwp_file->name);
10433}
10434
ab5088bf 10435/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10436 Open the file specified by FILE_NAME and hand it off to BFD for
10437 preliminary analysis. Return a newly initialized bfd *, which
10438 includes a canonicalized copy of FILE_NAME.
80626a55 10439 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10440 SEARCH_CWD is true if the current directory is to be searched.
10441 It will be searched before debug-file-directory.
13aaf454
DE
10442 If successful, the file is added to the bfd include table of the
10443 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 10444 If unable to find/open the file, return NULL.
3019eac3
DE
10445 NOTE: This function is derived from symfile_bfd_open. */
10446
10447static bfd *
6ac97d4c 10448try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3
DE
10449{
10450 bfd *sym_bfd;
80626a55 10451 int desc, flags;
3019eac3 10452 char *absolute_name;
9c02c129
DE
10453 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10454 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10455 to debug_file_directory. */
10456 char *search_path;
10457 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10458
6ac97d4c
DE
10459 if (search_cwd)
10460 {
10461 if (*debug_file_directory != '\0')
10462 search_path = concat (".", dirname_separator_string,
10463 debug_file_directory, NULL);
10464 else
10465 search_path = xstrdup (".");
10466 }
9c02c129 10467 else
6ac97d4c 10468 search_path = xstrdup (debug_file_directory);
3019eac3 10469
492c0ab7 10470 flags = OPF_RETURN_REALPATH;
80626a55
DE
10471 if (is_dwp)
10472 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10473 desc = openp (search_path, flags, file_name,
3019eac3 10474 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10475 xfree (search_path);
3019eac3
DE
10476 if (desc < 0)
10477 return NULL;
10478
bb397797 10479 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
a4453b7e 10480 xfree (absolute_name);
9c02c129
DE
10481 if (sym_bfd == NULL)
10482 return NULL;
3019eac3
DE
10483 bfd_set_cacheable (sym_bfd, 1);
10484
10485 if (!bfd_check_format (sym_bfd, bfd_object))
10486 {
cbb099e8 10487 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
3019eac3
DE
10488 return NULL;
10489 }
10490
13aaf454
DE
10491 /* Success. Record the bfd as having been included by the objfile's bfd.
10492 This is important because things like demangled_names_hash lives in the
10493 objfile's per_bfd space and may have references to things like symbol
10494 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10495 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10496
3019eac3
DE
10497 return sym_bfd;
10498}
10499
ab5088bf 10500/* Try to open DWO file FILE_NAME.
3019eac3
DE
10501 COMP_DIR is the DW_AT_comp_dir attribute.
10502 The result is the bfd handle of the file.
10503 If there is a problem finding or opening the file, return NULL.
10504 Upon success, the canonicalized path of the file is stored in the bfd,
10505 same as symfile_bfd_open. */
10506
10507static bfd *
ab5088bf 10508open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3
DE
10509{
10510 bfd *abfd;
3019eac3 10511
80626a55 10512 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10513 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10514
10515 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10516
10517 if (comp_dir != NULL)
10518 {
80626a55 10519 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
3019eac3
DE
10520
10521 /* NOTE: If comp_dir is a relative path, this will also try the
10522 search path, which seems useful. */
6ac97d4c 10523 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10524 xfree (path_to_try);
10525 if (abfd != NULL)
10526 return abfd;
10527 }
10528
10529 /* That didn't work, try debug-file-directory, which, despite its name,
10530 is a list of paths. */
10531
10532 if (*debug_file_directory == '\0')
10533 return NULL;
10534
6ac97d4c 10535 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10536}
10537
80626a55
DE
10538/* This function is mapped across the sections and remembers the offset and
10539 size of each of the DWO debugging sections we are interested in. */
10540
10541static void
10542dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10543{
10544 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10545 const struct dwop_section_names *names = &dwop_section_names;
10546
10547 if (section_is_p (sectp->name, &names->abbrev_dwo))
10548 {
73869dc2 10549 dwo_sections->abbrev.s.asection = sectp;
80626a55
DE
10550 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10551 }
10552 else if (section_is_p (sectp->name, &names->info_dwo))
10553 {
73869dc2 10554 dwo_sections->info.s.asection = sectp;
80626a55
DE
10555 dwo_sections->info.size = bfd_get_section_size (sectp);
10556 }
10557 else if (section_is_p (sectp->name, &names->line_dwo))
10558 {
73869dc2 10559 dwo_sections->line.s.asection = sectp;
80626a55
DE
10560 dwo_sections->line.size = bfd_get_section_size (sectp);
10561 }
10562 else if (section_is_p (sectp->name, &names->loc_dwo))
10563 {
73869dc2 10564 dwo_sections->loc.s.asection = sectp;
80626a55
DE
10565 dwo_sections->loc.size = bfd_get_section_size (sectp);
10566 }
10567 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10568 {
73869dc2 10569 dwo_sections->macinfo.s.asection = sectp;
80626a55
DE
10570 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10571 }
10572 else if (section_is_p (sectp->name, &names->macro_dwo))
10573 {
73869dc2 10574 dwo_sections->macro.s.asection = sectp;
80626a55
DE
10575 dwo_sections->macro.size = bfd_get_section_size (sectp);
10576 }
10577 else if (section_is_p (sectp->name, &names->str_dwo))
10578 {
73869dc2 10579 dwo_sections->str.s.asection = sectp;
80626a55
DE
10580 dwo_sections->str.size = bfd_get_section_size (sectp);
10581 }
10582 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10583 {
73869dc2 10584 dwo_sections->str_offsets.s.asection = sectp;
80626a55
DE
10585 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10586 }
10587 else if (section_is_p (sectp->name, &names->types_dwo))
10588 {
10589 struct dwarf2_section_info type_section;
10590
10591 memset (&type_section, 0, sizeof (type_section));
73869dc2 10592 type_section.s.asection = sectp;
80626a55
DE
10593 type_section.size = bfd_get_section_size (sectp);
10594 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10595 &type_section);
10596 }
10597}
10598
ab5088bf 10599/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10600 by PER_CU. This is for the non-DWP case.
80626a55 10601 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10602
10603static struct dwo_file *
0ac5b59e
DE
10604open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10605 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10606{
10607 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10608 struct dwo_file *dwo_file;
10609 bfd *dbfd;
3019eac3
DE
10610 struct cleanup *cleanups;
10611
ab5088bf 10612 dbfd = open_dwo_file (dwo_name, comp_dir);
80626a55
DE
10613 if (dbfd == NULL)
10614 {
b4f54984 10615 if (dwarf_read_debug)
80626a55
DE
10616 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10617 return NULL;
10618 }
10619 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10620 dwo_file->dwo_name = dwo_name;
10621 dwo_file->comp_dir = comp_dir;
80626a55 10622 dwo_file->dbfd = dbfd;
3019eac3
DE
10623
10624 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10625
80626a55 10626 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
3019eac3 10627
19c3d4c9 10628 dwo_file->cu = create_dwo_cu (dwo_file);
3019eac3
DE
10629
10630 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10631 dwo_file->sections.types);
10632
10633 discard_cleanups (cleanups);
10634
b4f54984 10635 if (dwarf_read_debug)
80626a55
DE
10636 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10637
3019eac3
DE
10638 return dwo_file;
10639}
10640
80626a55 10641/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10642 size of each of the DWP debugging sections common to version 1 and 2 that
10643 we are interested in. */
3019eac3 10644
80626a55 10645static void
73869dc2
DE
10646dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10647 void *dwp_file_ptr)
3019eac3 10648{
80626a55
DE
10649 struct dwp_file *dwp_file = dwp_file_ptr;
10650 const struct dwop_section_names *names = &dwop_section_names;
10651 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10652
80626a55 10653 /* Record the ELF section number for later lookup: this is what the
73869dc2 10654 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10655 gdb_assert (elf_section_nr < dwp_file->num_sections);
10656 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10657
80626a55
DE
10658 /* Look for specific sections that we need. */
10659 if (section_is_p (sectp->name, &names->str_dwo))
10660 {
73869dc2 10661 dwp_file->sections.str.s.asection = sectp;
80626a55
DE
10662 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10663 }
10664 else if (section_is_p (sectp->name, &names->cu_index))
10665 {
73869dc2 10666 dwp_file->sections.cu_index.s.asection = sectp;
80626a55
DE
10667 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10668 }
10669 else if (section_is_p (sectp->name, &names->tu_index))
10670 {
73869dc2 10671 dwp_file->sections.tu_index.s.asection = sectp;
80626a55
DE
10672 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10673 }
10674}
3019eac3 10675
73869dc2
DE
10676/* This function is mapped across the sections and remembers the offset and
10677 size of each of the DWP version 2 debugging sections that we are interested
10678 in. This is split into a separate function because we don't know if we
10679 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10680
10681static void
10682dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10683{
10684 struct dwp_file *dwp_file = dwp_file_ptr;
10685 const struct dwop_section_names *names = &dwop_section_names;
10686 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10687
10688 /* Record the ELF section number for later lookup: this is what the
10689 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10690 gdb_assert (elf_section_nr < dwp_file->num_sections);
10691 dwp_file->elf_sections[elf_section_nr] = sectp;
10692
10693 /* Look for specific sections that we need. */
10694 if (section_is_p (sectp->name, &names->abbrev_dwo))
10695 {
10696 dwp_file->sections.abbrev.s.asection = sectp;
10697 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10698 }
10699 else if (section_is_p (sectp->name, &names->info_dwo))
10700 {
10701 dwp_file->sections.info.s.asection = sectp;
10702 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10703 }
10704 else if (section_is_p (sectp->name, &names->line_dwo))
10705 {
10706 dwp_file->sections.line.s.asection = sectp;
10707 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10708 }
10709 else if (section_is_p (sectp->name, &names->loc_dwo))
10710 {
10711 dwp_file->sections.loc.s.asection = sectp;
10712 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10713 }
10714 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10715 {
10716 dwp_file->sections.macinfo.s.asection = sectp;
10717 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10718 }
10719 else if (section_is_p (sectp->name, &names->macro_dwo))
10720 {
10721 dwp_file->sections.macro.s.asection = sectp;
10722 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10723 }
10724 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10725 {
10726 dwp_file->sections.str_offsets.s.asection = sectp;
10727 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10728 }
10729 else if (section_is_p (sectp->name, &names->types_dwo))
10730 {
10731 dwp_file->sections.types.s.asection = sectp;
10732 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10733 }
10734}
10735
80626a55 10736/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 10737
80626a55
DE
10738static hashval_t
10739hash_dwp_loaded_cutus (const void *item)
10740{
10741 const struct dwo_unit *dwo_unit = item;
3019eac3 10742
80626a55
DE
10743 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10744 return dwo_unit->signature;
3019eac3
DE
10745}
10746
80626a55 10747/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 10748
80626a55
DE
10749static int
10750eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 10751{
80626a55
DE
10752 const struct dwo_unit *dua = a;
10753 const struct dwo_unit *dub = b;
3019eac3 10754
80626a55
DE
10755 return dua->signature == dub->signature;
10756}
3019eac3 10757
80626a55 10758/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 10759
80626a55
DE
10760static htab_t
10761allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10762{
10763 return htab_create_alloc_ex (3,
10764 hash_dwp_loaded_cutus,
10765 eq_dwp_loaded_cutus,
10766 NULL,
10767 &objfile->objfile_obstack,
10768 hashtab_obstack_allocate,
10769 dummy_obstack_deallocate);
10770}
3019eac3 10771
ab5088bf
DE
10772/* Try to open DWP file FILE_NAME.
10773 The result is the bfd handle of the file.
10774 If there is a problem finding or opening the file, return NULL.
10775 Upon success, the canonicalized path of the file is stored in the bfd,
10776 same as symfile_bfd_open. */
10777
10778static bfd *
10779open_dwp_file (const char *file_name)
10780{
6ac97d4c
DE
10781 bfd *abfd;
10782
10783 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10784 if (abfd != NULL)
10785 return abfd;
10786
10787 /* Work around upstream bug 15652.
10788 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10789 [Whether that's a "bug" is debatable, but it is getting in our way.]
10790 We have no real idea where the dwp file is, because gdb's realpath-ing
10791 of the executable's path may have discarded the needed info.
10792 [IWBN if the dwp file name was recorded in the executable, akin to
10793 .gnu_debuglink, but that doesn't exist yet.]
10794 Strip the directory from FILE_NAME and search again. */
10795 if (*debug_file_directory != '\0')
10796 {
10797 /* Don't implicitly search the current directory here.
10798 If the user wants to search "." to handle this case,
10799 it must be added to debug-file-directory. */
10800 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10801 0 /*search_cwd*/);
10802 }
10803
10804 return NULL;
ab5088bf
DE
10805}
10806
80626a55
DE
10807/* Initialize the use of the DWP file for the current objfile.
10808 By convention the name of the DWP file is ${objfile}.dwp.
10809 The result is NULL if it can't be found. */
a766d390 10810
80626a55 10811static struct dwp_file *
ab5088bf 10812open_and_init_dwp_file (void)
80626a55
DE
10813{
10814 struct objfile *objfile = dwarf2_per_objfile->objfile;
10815 struct dwp_file *dwp_file;
10816 char *dwp_name;
10817 bfd *dbfd;
10818 struct cleanup *cleanups;
10819
82bf32bc
JK
10820 /* Try to find first .dwp for the binary file before any symbolic links
10821 resolving. */
10822 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
80626a55
DE
10823 cleanups = make_cleanup (xfree, dwp_name);
10824
ab5088bf 10825 dbfd = open_dwp_file (dwp_name);
82bf32bc
JK
10826 if (dbfd == NULL
10827 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10828 {
10829 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10830 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10831 make_cleanup (xfree, dwp_name);
10832 dbfd = open_dwp_file (dwp_name);
10833 }
10834
80626a55
DE
10835 if (dbfd == NULL)
10836 {
b4f54984 10837 if (dwarf_read_debug)
80626a55
DE
10838 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10839 do_cleanups (cleanups);
10840 return NULL;
3019eac3 10841 }
80626a55 10842 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
93417882 10843 dwp_file->name = bfd_get_filename (dbfd);
80626a55
DE
10844 dwp_file->dbfd = dbfd;
10845 do_cleanups (cleanups);
c906108c 10846
80626a55
DE
10847 /* +1: section 0 is unused */
10848 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10849 dwp_file->elf_sections =
10850 OBSTACK_CALLOC (&objfile->objfile_obstack,
10851 dwp_file->num_sections, asection *);
10852
73869dc2 10853 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
80626a55
DE
10854
10855 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10856
10857 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10858
73869dc2
DE
10859 /* The DWP file version is stored in the hash table. Oh well. */
10860 if (dwp_file->cus->version != dwp_file->tus->version)
10861 {
10862 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 10863 pretty bizarre. We use pulongest here because that's the established
4d65956b 10864 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
10865 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10866 " TU version %s [in DWP file %s]"),
10867 pulongest (dwp_file->cus->version),
10868 pulongest (dwp_file->tus->version), dwp_name);
73869dc2
DE
10869 }
10870 dwp_file->version = dwp_file->cus->version;
10871
10872 if (dwp_file->version == 2)
10873 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10874
19ac8c2e
DE
10875 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10876 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 10877
b4f54984 10878 if (dwarf_read_debug)
80626a55
DE
10879 {
10880 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10881 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
10882 " %s CUs, %s TUs\n",
10883 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10884 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
10885 }
10886
10887 return dwp_file;
3019eac3 10888}
c906108c 10889
ab5088bf
DE
10890/* Wrapper around open_and_init_dwp_file, only open it once. */
10891
10892static struct dwp_file *
10893get_dwp_file (void)
10894{
10895 if (! dwarf2_per_objfile->dwp_checked)
10896 {
10897 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10898 dwarf2_per_objfile->dwp_checked = 1;
10899 }
10900 return dwarf2_per_objfile->dwp_file;
10901}
10902
80626a55
DE
10903/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10904 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10905 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 10906 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
10907 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10908
10909 This is called, for example, when wanting to read a variable with a
10910 complex location. Therefore we don't want to do file i/o for every call.
10911 Therefore we don't want to look for a DWO file on every call.
10912 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10913 then we check if we've already seen DWO_NAME, and only THEN do we check
10914 for a DWO file.
10915
1c658ad5 10916 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 10917 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 10918
3019eac3 10919static struct dwo_unit *
80626a55
DE
10920lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10921 const char *dwo_name, const char *comp_dir,
10922 ULONGEST signature, int is_debug_types)
3019eac3
DE
10923{
10924 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10925 const char *kind = is_debug_types ? "TU" : "CU";
10926 void **dwo_file_slot;
3019eac3 10927 struct dwo_file *dwo_file;
80626a55 10928 struct dwp_file *dwp_file;
cb1df416 10929
6a506a2d
DE
10930 /* First see if there's a DWP file.
10931 If we have a DWP file but didn't find the DWO inside it, don't
10932 look for the original DWO file. It makes gdb behave differently
10933 depending on whether one is debugging in the build tree. */
cf2c3c16 10934
ab5088bf 10935 dwp_file = get_dwp_file ();
80626a55 10936 if (dwp_file != NULL)
cf2c3c16 10937 {
80626a55
DE
10938 const struct dwp_hash_table *dwp_htab =
10939 is_debug_types ? dwp_file->tus : dwp_file->cus;
10940
10941 if (dwp_htab != NULL)
10942 {
10943 struct dwo_unit *dwo_cutu =
57d63ce2
DE
10944 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10945 signature, is_debug_types);
80626a55
DE
10946
10947 if (dwo_cutu != NULL)
10948 {
b4f54984 10949 if (dwarf_read_debug)
80626a55
DE
10950 {
10951 fprintf_unfiltered (gdb_stdlog,
10952 "Virtual DWO %s %s found: @%s\n",
10953 kind, hex_string (signature),
10954 host_address_to_string (dwo_cutu));
10955 }
10956 return dwo_cutu;
10957 }
10958 }
10959 }
6a506a2d 10960 else
80626a55 10961 {
6a506a2d 10962 /* No DWP file, look for the DWO file. */
80626a55 10963
6a506a2d
DE
10964 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10965 if (*dwo_file_slot == NULL)
80626a55 10966 {
6a506a2d
DE
10967 /* Read in the file and build a table of the CUs/TUs it contains. */
10968 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 10969 }
6a506a2d
DE
10970 /* NOTE: This will be NULL if unable to open the file. */
10971 dwo_file = *dwo_file_slot;
3019eac3 10972
6a506a2d 10973 if (dwo_file != NULL)
19c3d4c9 10974 {
6a506a2d
DE
10975 struct dwo_unit *dwo_cutu = NULL;
10976
10977 if (is_debug_types && dwo_file->tus)
10978 {
10979 struct dwo_unit find_dwo_cutu;
10980
10981 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10982 find_dwo_cutu.signature = signature;
10983 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10984 }
10985 else if (!is_debug_types && dwo_file->cu)
80626a55 10986 {
6a506a2d
DE
10987 if (signature == dwo_file->cu->signature)
10988 dwo_cutu = dwo_file->cu;
10989 }
10990
10991 if (dwo_cutu != NULL)
10992 {
b4f54984 10993 if (dwarf_read_debug)
6a506a2d
DE
10994 {
10995 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10996 kind, dwo_name, hex_string (signature),
10997 host_address_to_string (dwo_cutu));
10998 }
10999 return dwo_cutu;
80626a55
DE
11000 }
11001 }
2e276125 11002 }
9cdd5dbd 11003
80626a55
DE
11004 /* We didn't find it. This could mean a dwo_id mismatch, or
11005 someone deleted the DWO/DWP file, or the search path isn't set up
11006 correctly to find the file. */
11007
b4f54984 11008 if (dwarf_read_debug)
80626a55
DE
11009 {
11010 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11011 kind, dwo_name, hex_string (signature));
11012 }
3019eac3 11013
6656a72d
DE
11014 /* This is a warning and not a complaint because it can be caused by
11015 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
11016 {
11017 /* Print the name of the DWP file if we looked there, helps the user
11018 better diagnose the problem. */
11019 char *dwp_text = NULL;
11020 struct cleanup *cleanups;
11021
11022 if (dwp_file != NULL)
11023 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11024 cleanups = make_cleanup (xfree, dwp_text);
11025
11026 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11027 " [in module %s]"),
11028 kind, dwo_name, hex_string (signature),
11029 dwp_text != NULL ? dwp_text : "",
11030 this_unit->is_debug_types ? "TU" : "CU",
11031 this_unit->offset.sect_off, objfile_name (objfile));
11032
11033 do_cleanups (cleanups);
11034 }
3019eac3 11035 return NULL;
5fb290d7
DJ
11036}
11037
80626a55
DE
11038/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11039 See lookup_dwo_cutu_unit for details. */
11040
11041static struct dwo_unit *
11042lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11043 const char *dwo_name, const char *comp_dir,
11044 ULONGEST signature)
11045{
11046 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11047}
11048
11049/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11050 See lookup_dwo_cutu_unit for details. */
11051
11052static struct dwo_unit *
11053lookup_dwo_type_unit (struct signatured_type *this_tu,
11054 const char *dwo_name, const char *comp_dir)
11055{
11056 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11057}
11058
89e63ee4
DE
11059/* Traversal function for queue_and_load_all_dwo_tus. */
11060
11061static int
11062queue_and_load_dwo_tu (void **slot, void *info)
11063{
11064 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11065 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11066 ULONGEST signature = dwo_unit->signature;
11067 struct signatured_type *sig_type =
11068 lookup_dwo_signatured_type (per_cu->cu, signature);
11069
11070 if (sig_type != NULL)
11071 {
11072 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11073
11074 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11075 a real dependency of PER_CU on SIG_TYPE. That is detected later
11076 while processing PER_CU. */
11077 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11078 load_full_type_unit (sig_cu);
11079 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11080 }
11081
11082 return 1;
11083}
11084
11085/* Queue all TUs contained in the DWO of PER_CU to be read in.
11086 The DWO may have the only definition of the type, though it may not be
11087 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11088 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11089
11090static void
11091queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11092{
11093 struct dwo_unit *dwo_unit;
11094 struct dwo_file *dwo_file;
11095
11096 gdb_assert (!per_cu->is_debug_types);
11097 gdb_assert (get_dwp_file () == NULL);
11098 gdb_assert (per_cu->cu != NULL);
11099
11100 dwo_unit = per_cu->cu->dwo_unit;
11101 gdb_assert (dwo_unit != NULL);
11102
11103 dwo_file = dwo_unit->dwo_file;
11104 if (dwo_file->tus != NULL)
11105 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11106}
11107
3019eac3
DE
11108/* Free all resources associated with DWO_FILE.
11109 Close the DWO file and munmap the sections.
11110 All memory should be on the objfile obstack. */
348e048f
DE
11111
11112static void
3019eac3 11113free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 11114{
3019eac3
DE
11115 int ix;
11116 struct dwarf2_section_info *section;
348e048f 11117
5c6fa7ab 11118 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 11119 gdb_bfd_unref (dwo_file->dbfd);
348e048f 11120
3019eac3
DE
11121 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11122}
348e048f 11123
3019eac3 11124/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 11125
3019eac3
DE
11126static void
11127free_dwo_file_cleanup (void *arg)
11128{
11129 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11130 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 11131
3019eac3
DE
11132 free_dwo_file (dwo_file, objfile);
11133}
348e048f 11134
3019eac3 11135/* Traversal function for free_dwo_files. */
2ab95328 11136
3019eac3
DE
11137static int
11138free_dwo_file_from_slot (void **slot, void *info)
11139{
11140 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11141 struct objfile *objfile = (struct objfile *) info;
348e048f 11142
3019eac3 11143 free_dwo_file (dwo_file, objfile);
348e048f 11144
3019eac3
DE
11145 return 1;
11146}
348e048f 11147
3019eac3 11148/* Free all resources associated with DWO_FILES. */
348e048f 11149
3019eac3
DE
11150static void
11151free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11152{
11153 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 11154}
3019eac3
DE
11155\f
11156/* Read in various DIEs. */
348e048f 11157
d389af10
JK
11158/* qsort helper for inherit_abstract_dies. */
11159
11160static int
11161unsigned_int_compar (const void *ap, const void *bp)
11162{
11163 unsigned int a = *(unsigned int *) ap;
11164 unsigned int b = *(unsigned int *) bp;
11165
11166 return (a > b) - (b > a);
11167}
11168
11169/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
11170 Inherit only the children of the DW_AT_abstract_origin DIE not being
11171 already referenced by DW_AT_abstract_origin from the children of the
11172 current DIE. */
d389af10
JK
11173
11174static void
11175inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11176{
11177 struct die_info *child_die;
11178 unsigned die_children_count;
11179 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
11180 sect_offset *offsets;
11181 sect_offset *offsets_end, *offsetp;
d389af10
JK
11182 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11183 struct die_info *origin_die;
11184 /* Iterator of the ORIGIN_DIE children. */
11185 struct die_info *origin_child_die;
11186 struct cleanup *cleanups;
11187 struct attribute *attr;
cd02d79d
PA
11188 struct dwarf2_cu *origin_cu;
11189 struct pending **origin_previous_list_in_scope;
d389af10
JK
11190
11191 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11192 if (!attr)
11193 return;
11194
cd02d79d
PA
11195 /* Note that following die references may follow to a die in a
11196 different cu. */
11197
11198 origin_cu = cu;
11199 origin_die = follow_die_ref (die, attr, &origin_cu);
11200
11201 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11202 symbols in. */
11203 origin_previous_list_in_scope = origin_cu->list_in_scope;
11204 origin_cu->list_in_scope = cu->list_in_scope;
11205
edb3359d
DJ
11206 if (die->tag != origin_die->tag
11207 && !(die->tag == DW_TAG_inlined_subroutine
11208 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11209 complaint (&symfile_complaints,
11210 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 11211 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
11212
11213 child_die = die->child;
11214 die_children_count = 0;
11215 while (child_die && child_die->tag)
11216 {
11217 child_die = sibling_die (child_die);
11218 die_children_count++;
11219 }
11220 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11221 cleanups = make_cleanup (xfree, offsets);
11222
11223 offsets_end = offsets;
3ea89b92
PMR
11224 for (child_die = die->child;
11225 child_die && child_die->tag;
11226 child_die = sibling_die (child_die))
11227 {
11228 struct die_info *child_origin_die;
11229 struct dwarf2_cu *child_origin_cu;
11230
11231 /* We are trying to process concrete instance entries:
11232 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11233 it's not relevant to our analysis here. i.e. detecting DIEs that are
11234 present in the abstract instance but not referenced in the concrete
11235 one. */
11236 if (child_die->tag == DW_TAG_GNU_call_site)
11237 continue;
11238
c38f313d
DJ
11239 /* For each CHILD_DIE, find the corresponding child of
11240 ORIGIN_DIE. If there is more than one layer of
11241 DW_AT_abstract_origin, follow them all; there shouldn't be,
11242 but GCC versions at least through 4.4 generate this (GCC PR
11243 40573). */
3ea89b92
PMR
11244 child_origin_die = child_die;
11245 child_origin_cu = cu;
c38f313d
DJ
11246 while (1)
11247 {
cd02d79d
PA
11248 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11249 child_origin_cu);
c38f313d
DJ
11250 if (attr == NULL)
11251 break;
cd02d79d
PA
11252 child_origin_die = follow_die_ref (child_origin_die, attr,
11253 &child_origin_cu);
c38f313d
DJ
11254 }
11255
d389af10
JK
11256 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11257 counterpart may exist. */
c38f313d 11258 if (child_origin_die != child_die)
d389af10 11259 {
edb3359d
DJ
11260 if (child_die->tag != child_origin_die->tag
11261 && !(child_die->tag == DW_TAG_inlined_subroutine
11262 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11263 complaint (&symfile_complaints,
11264 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11265 "different tags"), child_die->offset.sect_off,
11266 child_origin_die->offset.sect_off);
c38f313d
DJ
11267 if (child_origin_die->parent != origin_die)
11268 complaint (&symfile_complaints,
11269 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11270 "different parents"), child_die->offset.sect_off,
11271 child_origin_die->offset.sect_off);
c38f313d
DJ
11272 else
11273 *offsets_end++ = child_origin_die->offset;
d389af10 11274 }
d389af10
JK
11275 }
11276 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11277 unsigned_int_compar);
11278 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 11279 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
11280 complaint (&symfile_complaints,
11281 _("Multiple children of DIE 0x%x refer "
11282 "to DIE 0x%x as their abstract origin"),
b64f50a1 11283 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
11284
11285 offsetp = offsets;
11286 origin_child_die = origin_die->child;
11287 while (origin_child_die && origin_child_die->tag)
11288 {
11289 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
11290 while (offsetp < offsets_end
11291 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 11292 offsetp++;
b64f50a1
JK
11293 if (offsetp >= offsets_end
11294 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10 11295 {
adde2bff
DE
11296 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11297 Check whether we're already processing ORIGIN_CHILD_DIE.
11298 This can happen with mutually referenced abstract_origins.
11299 PR 16581. */
11300 if (!origin_child_die->in_process)
11301 process_die (origin_child_die, origin_cu);
d389af10
JK
11302 }
11303 origin_child_die = sibling_die (origin_child_die);
11304 }
cd02d79d 11305 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
11306
11307 do_cleanups (cleanups);
11308}
11309
c906108c 11310static void
e7c27a73 11311read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11312{
e7c27a73 11313 struct objfile *objfile = cu->objfile;
3e29f34a 11314 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11315 struct context_stack *newobj;
c906108c
SS
11316 CORE_ADDR lowpc;
11317 CORE_ADDR highpc;
11318 struct die_info *child_die;
edb3359d 11319 struct attribute *attr, *call_line, *call_file;
15d034d0 11320 const char *name;
e142c38c 11321 CORE_ADDR baseaddr;
801e3a5b 11322 struct block *block;
edb3359d 11323 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
11324 VEC (symbolp) *template_args = NULL;
11325 struct template_symbol *templ_func = NULL;
edb3359d
DJ
11326
11327 if (inlined_func)
11328 {
11329 /* If we do not have call site information, we can't show the
11330 caller of this inlined function. That's too confusing, so
11331 only use the scope for local variables. */
11332 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11333 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11334 if (call_line == NULL || call_file == NULL)
11335 {
11336 read_lexical_block_scope (die, cu);
11337 return;
11338 }
11339 }
c906108c 11340
e142c38c
DJ
11341 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11342
94af9270 11343 name = dwarf2_name (die, cu);
c906108c 11344
e8d05480
JB
11345 /* Ignore functions with missing or empty names. These are actually
11346 illegal according to the DWARF standard. */
11347 if (name == NULL)
11348 {
11349 complaint (&symfile_complaints,
b64f50a1
JK
11350 _("missing name for subprogram DIE at %d"),
11351 die->offset.sect_off);
e8d05480
JB
11352 return;
11353 }
11354
11355 /* Ignore functions with missing or invalid low and high pc attributes. */
11356 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11357 {
ae4d0c03
PM
11358 attr = dwarf2_attr (die, DW_AT_external, cu);
11359 if (!attr || !DW_UNSND (attr))
11360 complaint (&symfile_complaints,
3e43a32a
MS
11361 _("cannot get low and high bounds "
11362 "for subprogram DIE at %d"),
b64f50a1 11363 die->offset.sect_off);
e8d05480
JB
11364 return;
11365 }
c906108c 11366
3e29f34a
MR
11367 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11368 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 11369
34eaf542
TT
11370 /* If we have any template arguments, then we must allocate a
11371 different sort of symbol. */
11372 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11373 {
11374 if (child_die->tag == DW_TAG_template_type_param
11375 || child_die->tag == DW_TAG_template_value_param)
11376 {
e623cf5d 11377 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
11378 templ_func->base.is_cplus_template_function = 1;
11379 break;
11380 }
11381 }
11382
fe978cb0
PA
11383 newobj = push_context (0, lowpc);
11384 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
34eaf542 11385 (struct symbol *) templ_func);
4c2df51b 11386
4cecd739
DJ
11387 /* If there is a location expression for DW_AT_frame_base, record
11388 it. */
e142c38c 11389 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 11390 if (attr)
fe978cb0 11391 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
4c2df51b 11392
e142c38c 11393 cu->list_in_scope = &local_symbols;
c906108c 11394
639d11d3 11395 if (die->child != NULL)
c906108c 11396 {
639d11d3 11397 child_die = die->child;
c906108c
SS
11398 while (child_die && child_die->tag)
11399 {
34eaf542
TT
11400 if (child_die->tag == DW_TAG_template_type_param
11401 || child_die->tag == DW_TAG_template_value_param)
11402 {
11403 struct symbol *arg = new_symbol (child_die, NULL, cu);
11404
f1078f66
DJ
11405 if (arg != NULL)
11406 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11407 }
11408 else
11409 process_die (child_die, cu);
c906108c
SS
11410 child_die = sibling_die (child_die);
11411 }
11412 }
11413
d389af10
JK
11414 inherit_abstract_dies (die, cu);
11415
4a811a97
UW
11416 /* If we have a DW_AT_specification, we might need to import using
11417 directives from the context of the specification DIE. See the
11418 comment in determine_prefix. */
11419 if (cu->language == language_cplus
11420 && dwarf2_attr (die, DW_AT_specification, cu))
11421 {
11422 struct dwarf2_cu *spec_cu = cu;
11423 struct die_info *spec_die = die_specification (die, &spec_cu);
11424
11425 while (spec_die)
11426 {
11427 child_die = spec_die->child;
11428 while (child_die && child_die->tag)
11429 {
11430 if (child_die->tag == DW_TAG_imported_module)
11431 process_die (child_die, spec_cu);
11432 child_die = sibling_die (child_die);
11433 }
11434
11435 /* In some cases, GCC generates specification DIEs that
11436 themselves contain DW_AT_specification attributes. */
11437 spec_die = die_specification (spec_die, &spec_cu);
11438 }
11439 }
11440
fe978cb0 11441 newobj = pop_context ();
c906108c 11442 /* Make a block for the local symbols within. */
fe978cb0 11443 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
4d663531 11444 lowpc, highpc);
801e3a5b 11445
df8a16a1 11446 /* For C++, set the block's scope. */
195a3f6c 11447 if ((cu->language == language_cplus || cu->language == language_fortran)
4d4ec4e5 11448 && cu->processing_has_namespace_info)
195a3f6c
TT
11449 block_set_scope (block, determine_prefix (die, cu),
11450 &objfile->objfile_obstack);
df8a16a1 11451
801e3a5b
JB
11452 /* If we have address ranges, record them. */
11453 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 11454
fe978cb0 11455 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
3e29f34a 11456
34eaf542
TT
11457 /* Attach template arguments to function. */
11458 if (! VEC_empty (symbolp, template_args))
11459 {
11460 gdb_assert (templ_func != NULL);
11461
11462 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11463 templ_func->template_arguments
11464 = obstack_alloc (&objfile->objfile_obstack,
11465 (templ_func->n_template_arguments
11466 * sizeof (struct symbol *)));
11467 memcpy (templ_func->template_arguments,
11468 VEC_address (symbolp, template_args),
11469 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11470 VEC_free (symbolp, template_args);
11471 }
11472
208d8187
JB
11473 /* In C++, we can have functions nested inside functions (e.g., when
11474 a function declares a class that has methods). This means that
11475 when we finish processing a function scope, we may need to go
11476 back to building a containing block's symbol lists. */
fe978cb0
PA
11477 local_symbols = newobj->locals;
11478 using_directives = newobj->using_directives;
208d8187 11479
921e78cf
JB
11480 /* If we've finished processing a top-level function, subsequent
11481 symbols go in the file symbol list. */
11482 if (outermost_context_p ())
e142c38c 11483 cu->list_in_scope = &file_symbols;
c906108c
SS
11484}
11485
11486/* Process all the DIES contained within a lexical block scope. Start
11487 a new scope, process the dies, and then close the scope. */
11488
11489static void
e7c27a73 11490read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11491{
e7c27a73 11492 struct objfile *objfile = cu->objfile;
3e29f34a 11493 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11494 struct context_stack *newobj;
c906108c
SS
11495 CORE_ADDR lowpc, highpc;
11496 struct die_info *child_die;
e142c38c
DJ
11497 CORE_ADDR baseaddr;
11498
11499 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11500
11501 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11502 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11503 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11504 be nasty. Might be easier to properly extend generic blocks to
af34e669 11505 describe ranges. */
d85a05f0 11506 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c 11507 return;
3e29f34a
MR
11508 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11509 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c
SS
11510
11511 push_context (0, lowpc);
639d11d3 11512 if (die->child != NULL)
c906108c 11513 {
639d11d3 11514 child_die = die->child;
c906108c
SS
11515 while (child_die && child_die->tag)
11516 {
e7c27a73 11517 process_die (child_die, cu);
c906108c
SS
11518 child_die = sibling_die (child_die);
11519 }
11520 }
3ea89b92 11521 inherit_abstract_dies (die, cu);
fe978cb0 11522 newobj = pop_context ();
c906108c 11523
8540c487 11524 if (local_symbols != NULL || using_directives != NULL)
c906108c 11525 {
801e3a5b 11526 struct block *block
fe978cb0
PA
11527 = finish_block (0, &local_symbols, newobj->old_blocks,
11528 newobj->start_addr, highpc);
801e3a5b
JB
11529
11530 /* Note that recording ranges after traversing children, as we
11531 do here, means that recording a parent's ranges entails
11532 walking across all its children's ranges as they appear in
11533 the address map, which is quadratic behavior.
11534
11535 It would be nicer to record the parent's ranges before
11536 traversing its children, simply overriding whatever you find
11537 there. But since we don't even decide whether to create a
11538 block until after we've traversed its children, that's hard
11539 to do. */
11540 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c 11541 }
fe978cb0
PA
11542 local_symbols = newobj->locals;
11543 using_directives = newobj->using_directives;
c906108c
SS
11544}
11545
96408a79
SA
11546/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11547
11548static void
11549read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11550{
11551 struct objfile *objfile = cu->objfile;
11552 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11553 CORE_ADDR pc, baseaddr;
11554 struct attribute *attr;
11555 struct call_site *call_site, call_site_local;
11556 void **slot;
11557 int nparams;
11558 struct die_info *child_die;
11559
11560 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11561
11562 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11563 if (!attr)
11564 {
11565 complaint (&symfile_complaints,
11566 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11567 "DIE 0x%x [in module %s]"),
4262abfb 11568 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11569 return;
11570 }
31aa7e4e 11571 pc = attr_value_as_address (attr) + baseaddr;
3e29f34a 11572 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
96408a79
SA
11573
11574 if (cu->call_site_htab == NULL)
11575 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11576 NULL, &objfile->objfile_obstack,
11577 hashtab_obstack_allocate, NULL);
11578 call_site_local.pc = pc;
11579 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11580 if (*slot != NULL)
11581 {
11582 complaint (&symfile_complaints,
11583 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11584 "DIE 0x%x [in module %s]"),
4262abfb
JK
11585 paddress (gdbarch, pc), die->offset.sect_off,
11586 objfile_name (objfile));
96408a79
SA
11587 return;
11588 }
11589
11590 /* Count parameters at the caller. */
11591
11592 nparams = 0;
11593 for (child_die = die->child; child_die && child_die->tag;
11594 child_die = sibling_die (child_die))
11595 {
11596 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11597 {
11598 complaint (&symfile_complaints,
11599 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11600 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb
JK
11601 child_die->tag, child_die->offset.sect_off,
11602 objfile_name (objfile));
96408a79
SA
11603 continue;
11604 }
11605
11606 nparams++;
11607 }
11608
11609 call_site = obstack_alloc (&objfile->objfile_obstack,
11610 (sizeof (*call_site)
11611 + (sizeof (*call_site->parameter)
11612 * (nparams - 1))));
11613 *slot = call_site;
11614 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11615 call_site->pc = pc;
11616
11617 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11618 {
11619 struct die_info *func_die;
11620
11621 /* Skip also over DW_TAG_inlined_subroutine. */
11622 for (func_die = die->parent;
11623 func_die && func_die->tag != DW_TAG_subprogram
11624 && func_die->tag != DW_TAG_subroutine_type;
11625 func_die = func_die->parent);
11626
11627 /* DW_AT_GNU_all_call_sites is a superset
11628 of DW_AT_GNU_all_tail_call_sites. */
11629 if (func_die
11630 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11631 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11632 {
11633 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11634 not complete. But keep CALL_SITE for look ups via call_site_htab,
11635 both the initial caller containing the real return address PC and
11636 the final callee containing the current PC of a chain of tail
11637 calls do not need to have the tail call list complete. But any
11638 function candidate for a virtual tail call frame searched via
11639 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11640 determined unambiguously. */
11641 }
11642 else
11643 {
11644 struct type *func_type = NULL;
11645
11646 if (func_die)
11647 func_type = get_die_type (func_die, cu);
11648 if (func_type != NULL)
11649 {
11650 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11651
11652 /* Enlist this call site to the function. */
11653 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11654 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11655 }
11656 else
11657 complaint (&symfile_complaints,
11658 _("Cannot find function owning DW_TAG_GNU_call_site "
11659 "DIE 0x%x [in module %s]"),
4262abfb 11660 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11661 }
11662 }
11663
11664 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11665 if (attr == NULL)
11666 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11667 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11668 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11669 /* Keep NULL DWARF_BLOCK. */;
11670 else if (attr_form_is_block (attr))
11671 {
11672 struct dwarf2_locexpr_baton *dlbaton;
11673
11674 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11675 dlbaton->data = DW_BLOCK (attr)->data;
11676 dlbaton->size = DW_BLOCK (attr)->size;
11677 dlbaton->per_cu = cu->per_cu;
11678
11679 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11680 }
7771576e 11681 else if (attr_form_is_ref (attr))
96408a79 11682 {
96408a79
SA
11683 struct dwarf2_cu *target_cu = cu;
11684 struct die_info *target_die;
11685
ac9ec31b 11686 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
11687 gdb_assert (target_cu->objfile == objfile);
11688 if (die_is_declaration (target_die, target_cu))
11689 {
9112db09
JK
11690 const char *target_physname = NULL;
11691 struct attribute *target_attr;
11692
11693 /* Prefer the mangled name; otherwise compute the demangled one. */
11694 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11695 if (target_attr == NULL)
11696 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11697 target_cu);
11698 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11699 target_physname = DW_STRING (target_attr);
11700 else
11701 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
11702 if (target_physname == NULL)
11703 complaint (&symfile_complaints,
11704 _("DW_AT_GNU_call_site_target target DIE has invalid "
11705 "physname, for referencing DIE 0x%x [in module %s]"),
4262abfb 11706 die->offset.sect_off, objfile_name (objfile));
96408a79 11707 else
7d455152 11708 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
11709 }
11710 else
11711 {
11712 CORE_ADDR lowpc;
11713
11714 /* DW_AT_entry_pc should be preferred. */
11715 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11716 complaint (&symfile_complaints,
11717 _("DW_AT_GNU_call_site_target target DIE has invalid "
11718 "low pc, for referencing DIE 0x%x [in module %s]"),
4262abfb 11719 die->offset.sect_off, objfile_name (objfile));
96408a79 11720 else
3e29f34a
MR
11721 {
11722 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11723 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11724 }
96408a79
SA
11725 }
11726 }
11727 else
11728 complaint (&symfile_complaints,
11729 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11730 "block nor reference, for DIE 0x%x [in module %s]"),
4262abfb 11731 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11732
11733 call_site->per_cu = cu->per_cu;
11734
11735 for (child_die = die->child;
11736 child_die && child_die->tag;
11737 child_die = sibling_die (child_die))
11738 {
96408a79 11739 struct call_site_parameter *parameter;
1788b2d3 11740 struct attribute *loc, *origin;
96408a79
SA
11741
11742 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11743 {
11744 /* Already printed the complaint above. */
11745 continue;
11746 }
11747
11748 gdb_assert (call_site->parameter_count < nparams);
11749 parameter = &call_site->parameter[call_site->parameter_count];
11750
1788b2d3
JK
11751 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11752 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11753 register is contained in DW_AT_GNU_call_site_value. */
96408a79 11754
24c5c679 11755 loc = dwarf2_attr (child_die, DW_AT_location, cu);
1788b2d3 11756 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
7771576e 11757 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3
JK
11758 {
11759 sect_offset offset;
11760
11761 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11762 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
11763 if (!offset_in_cu_p (&cu->header, offset))
11764 {
11765 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11766 binding can be done only inside one CU. Such referenced DIE
11767 therefore cannot be even moved to DW_TAG_partial_unit. */
11768 complaint (&symfile_complaints,
11769 _("DW_AT_abstract_origin offset is not in CU for "
11770 "DW_TAG_GNU_call_site child DIE 0x%x "
11771 "[in module %s]"),
4262abfb 11772 child_die->offset.sect_off, objfile_name (objfile));
d76b7dbc
JK
11773 continue;
11774 }
1788b2d3
JK
11775 parameter->u.param_offset.cu_off = (offset.sect_off
11776 - cu->header.offset.sect_off);
11777 }
11778 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
11779 {
11780 complaint (&symfile_complaints,
11781 _("No DW_FORM_block* DW_AT_location for "
11782 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11783 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11784 continue;
11785 }
24c5c679 11786 else
96408a79 11787 {
24c5c679
JK
11788 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11789 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11790 if (parameter->u.dwarf_reg != -1)
11791 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11792 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11793 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11794 &parameter->u.fb_offset))
11795 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11796 else
11797 {
11798 complaint (&symfile_complaints,
11799 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11800 "for DW_FORM_block* DW_AT_location is supported for "
11801 "DW_TAG_GNU_call_site child DIE 0x%x "
11802 "[in module %s]"),
4262abfb 11803 child_die->offset.sect_off, objfile_name (objfile));
24c5c679
JK
11804 continue;
11805 }
96408a79
SA
11806 }
11807
11808 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11809 if (!attr_form_is_block (attr))
11810 {
11811 complaint (&symfile_complaints,
11812 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11813 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11814 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11815 continue;
11816 }
11817 parameter->value = DW_BLOCK (attr)->data;
11818 parameter->value_size = DW_BLOCK (attr)->size;
11819
11820 /* Parameters are not pre-cleared by memset above. */
11821 parameter->data_value = NULL;
11822 parameter->data_value_size = 0;
11823 call_site->parameter_count++;
11824
11825 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11826 if (attr)
11827 {
11828 if (!attr_form_is_block (attr))
11829 complaint (&symfile_complaints,
11830 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11831 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11832 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11833 else
11834 {
11835 parameter->data_value = DW_BLOCK (attr)->data;
11836 parameter->data_value_size = DW_BLOCK (attr)->size;
11837 }
11838 }
11839 }
11840}
11841
43039443 11842/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
11843 Return 1 if the attributes are present and valid, otherwise, return 0.
11844 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
11845
11846static int
11847dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
11848 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11849 struct partial_symtab *ranges_pst)
43039443
JK
11850{
11851 struct objfile *objfile = cu->objfile;
3e29f34a 11852 struct gdbarch *gdbarch = get_objfile_arch (objfile);
43039443
JK
11853 struct comp_unit_head *cu_header = &cu->header;
11854 bfd *obfd = objfile->obfd;
11855 unsigned int addr_size = cu_header->addr_size;
11856 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11857 /* Base address selection entry. */
11858 CORE_ADDR base;
11859 int found_base;
11860 unsigned int dummy;
d521ce57 11861 const gdb_byte *buffer;
43039443
JK
11862 CORE_ADDR marker;
11863 int low_set;
11864 CORE_ADDR low = 0;
11865 CORE_ADDR high = 0;
ff013f42 11866 CORE_ADDR baseaddr;
43039443 11867
d00adf39
DE
11868 found_base = cu->base_known;
11869 base = cu->base_address;
43039443 11870
be391dca 11871 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 11872 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
11873 {
11874 complaint (&symfile_complaints,
11875 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11876 offset);
11877 return 0;
11878 }
dce234bc 11879 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
11880
11881 /* Read in the largest possible address. */
11882 marker = read_address (obfd, buffer, cu, &dummy);
11883 if ((marker & mask) == mask)
11884 {
11885 /* If we found the largest possible address, then
11886 read the base address. */
11887 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11888 buffer += 2 * addr_size;
11889 offset += 2 * addr_size;
11890 found_base = 1;
11891 }
11892
11893 low_set = 0;
11894
e7030f15 11895 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 11896
43039443
JK
11897 while (1)
11898 {
11899 CORE_ADDR range_beginning, range_end;
11900
11901 range_beginning = read_address (obfd, buffer, cu, &dummy);
11902 buffer += addr_size;
11903 range_end = read_address (obfd, buffer, cu, &dummy);
11904 buffer += addr_size;
11905 offset += 2 * addr_size;
11906
11907 /* An end of list marker is a pair of zero addresses. */
11908 if (range_beginning == 0 && range_end == 0)
11909 /* Found the end of list entry. */
11910 break;
11911
11912 /* Each base address selection entry is a pair of 2 values.
11913 The first is the largest possible address, the second is
11914 the base address. Check for a base address here. */
11915 if ((range_beginning & mask) == mask)
11916 {
11917 /* If we found the largest possible address, then
11918 read the base address. */
11919 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11920 found_base = 1;
11921 continue;
11922 }
11923
11924 if (!found_base)
11925 {
11926 /* We have no valid base address for the ranges
11927 data. */
11928 complaint (&symfile_complaints,
11929 _("Invalid .debug_ranges data (no base address)"));
11930 return 0;
11931 }
11932
9277c30c
UW
11933 if (range_beginning > range_end)
11934 {
11935 /* Inverted range entries are invalid. */
11936 complaint (&symfile_complaints,
11937 _("Invalid .debug_ranges data (inverted range)"));
11938 return 0;
11939 }
11940
11941 /* Empty range entries have no effect. */
11942 if (range_beginning == range_end)
11943 continue;
11944
43039443
JK
11945 range_beginning += base;
11946 range_end += base;
11947
01093045
DE
11948 /* A not-uncommon case of bad debug info.
11949 Don't pollute the addrmap with bad data. */
11950 if (range_beginning + baseaddr == 0
11951 && !dwarf2_per_objfile->has_section_at_zero)
11952 {
11953 complaint (&symfile_complaints,
11954 _(".debug_ranges entry has start address of zero"
4262abfb 11955 " [in module %s]"), objfile_name (objfile));
01093045
DE
11956 continue;
11957 }
11958
9277c30c 11959 if (ranges_pst != NULL)
3e29f34a
MR
11960 {
11961 CORE_ADDR lowpc;
11962 CORE_ADDR highpc;
11963
11964 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11965 range_beginning + baseaddr);
11966 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11967 range_end + baseaddr);
11968 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
11969 ranges_pst);
11970 }
ff013f42 11971
43039443
JK
11972 /* FIXME: This is recording everything as a low-high
11973 segment of consecutive addresses. We should have a
11974 data structure for discontiguous block ranges
11975 instead. */
11976 if (! low_set)
11977 {
11978 low = range_beginning;
11979 high = range_end;
11980 low_set = 1;
11981 }
11982 else
11983 {
11984 if (range_beginning < low)
11985 low = range_beginning;
11986 if (range_end > high)
11987 high = range_end;
11988 }
11989 }
11990
11991 if (! low_set)
11992 /* If the first entry is an end-of-list marker, the range
11993 describes an empty scope, i.e. no instructions. */
11994 return 0;
11995
11996 if (low_return)
11997 *low_return = low;
11998 if (high_return)
11999 *high_return = high;
12000 return 1;
12001}
12002
af34e669
DJ
12003/* Get low and high pc attributes from a die. Return 1 if the attributes
12004 are present and valid, otherwise, return 0. Return -1 if the range is
12005 discontinuous, i.e. derived from DW_AT_ranges information. */
380bca97 12006
c906108c 12007static int
af34e669 12008dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
12009 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12010 struct partial_symtab *pst)
c906108c
SS
12011{
12012 struct attribute *attr;
91da1414 12013 struct attribute *attr_high;
af34e669
DJ
12014 CORE_ADDR low = 0;
12015 CORE_ADDR high = 0;
12016 int ret = 0;
c906108c 12017
91da1414
MW
12018 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12019 if (attr_high)
af34e669 12020 {
e142c38c 12021 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 12022 if (attr)
91da1414 12023 {
31aa7e4e
JB
12024 low = attr_value_as_address (attr);
12025 high = attr_value_as_address (attr_high);
12026 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12027 high += low;
91da1414 12028 }
af34e669
DJ
12029 else
12030 /* Found high w/o low attribute. */
12031 return 0;
12032
12033 /* Found consecutive range of addresses. */
12034 ret = 1;
12035 }
c906108c 12036 else
af34e669 12037 {
e142c38c 12038 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
12039 if (attr != NULL)
12040 {
ab435259
DE
12041 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12042 We take advantage of the fact that DW_AT_ranges does not appear
12043 in DW_TAG_compile_unit of DWO files. */
12044 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12045 unsigned int ranges_offset = (DW_UNSND (attr)
12046 + (need_ranges_base
12047 ? cu->ranges_base
12048 : 0));
2e3cf129 12049
af34e669 12050 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 12051 .debug_ranges section. */
2e3cf129 12052 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
af34e669 12053 return 0;
43039443 12054 /* Found discontinuous range of addresses. */
af34e669
DJ
12055 ret = -1;
12056 }
12057 }
c906108c 12058
9373cf26
JK
12059 /* read_partial_die has also the strict LOW < HIGH requirement. */
12060 if (high <= low)
c906108c
SS
12061 return 0;
12062
12063 /* When using the GNU linker, .gnu.linkonce. sections are used to
12064 eliminate duplicate copies of functions and vtables and such.
12065 The linker will arbitrarily choose one and discard the others.
12066 The AT_*_pc values for such functions refer to local labels in
12067 these sections. If the section from that file was discarded, the
12068 labels are not in the output, so the relocs get a value of 0.
12069 If this is a discarded function, mark the pc bounds as invalid,
12070 so that GDB will ignore it. */
72dca2f5 12071 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
12072 return 0;
12073
12074 *lowpc = low;
96408a79
SA
12075 if (highpc)
12076 *highpc = high;
af34e669 12077 return ret;
c906108c
SS
12078}
12079
b084d499
JB
12080/* Assuming that DIE represents a subprogram DIE or a lexical block, get
12081 its low and high PC addresses. Do nothing if these addresses could not
12082 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12083 and HIGHPC to the high address if greater than HIGHPC. */
12084
12085static void
12086dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12087 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12088 struct dwarf2_cu *cu)
12089{
12090 CORE_ADDR low, high;
12091 struct die_info *child = die->child;
12092
d85a05f0 12093 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
12094 {
12095 *lowpc = min (*lowpc, low);
12096 *highpc = max (*highpc, high);
12097 }
12098
12099 /* If the language does not allow nested subprograms (either inside
12100 subprograms or lexical blocks), we're done. */
12101 if (cu->language != language_ada)
12102 return;
6e70227d 12103
b084d499
JB
12104 /* Check all the children of the given DIE. If it contains nested
12105 subprograms, then check their pc bounds. Likewise, we need to
12106 check lexical blocks as well, as they may also contain subprogram
12107 definitions. */
12108 while (child && child->tag)
12109 {
12110 if (child->tag == DW_TAG_subprogram
12111 || child->tag == DW_TAG_lexical_block)
12112 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12113 child = sibling_die (child);
12114 }
12115}
12116
fae299cd
DC
12117/* Get the low and high pc's represented by the scope DIE, and store
12118 them in *LOWPC and *HIGHPC. If the correct values can't be
12119 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12120
12121static void
12122get_scope_pc_bounds (struct die_info *die,
12123 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12124 struct dwarf2_cu *cu)
12125{
12126 CORE_ADDR best_low = (CORE_ADDR) -1;
12127 CORE_ADDR best_high = (CORE_ADDR) 0;
12128 CORE_ADDR current_low, current_high;
12129
d85a05f0 12130 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
12131 {
12132 best_low = current_low;
12133 best_high = current_high;
12134 }
12135 else
12136 {
12137 struct die_info *child = die->child;
12138
12139 while (child && child->tag)
12140 {
12141 switch (child->tag) {
12142 case DW_TAG_subprogram:
b084d499 12143 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
12144 break;
12145 case DW_TAG_namespace:
f55ee35c 12146 case DW_TAG_module:
fae299cd
DC
12147 /* FIXME: carlton/2004-01-16: Should we do this for
12148 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12149 that current GCC's always emit the DIEs corresponding
12150 to definitions of methods of classes as children of a
12151 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12152 the DIEs giving the declarations, which could be
12153 anywhere). But I don't see any reason why the
12154 standards says that they have to be there. */
12155 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12156
12157 if (current_low != ((CORE_ADDR) -1))
12158 {
12159 best_low = min (best_low, current_low);
12160 best_high = max (best_high, current_high);
12161 }
12162 break;
12163 default:
0963b4bd 12164 /* Ignore. */
fae299cd
DC
12165 break;
12166 }
12167
12168 child = sibling_die (child);
12169 }
12170 }
12171
12172 *lowpc = best_low;
12173 *highpc = best_high;
12174}
12175
801e3a5b
JB
12176/* Record the address ranges for BLOCK, offset by BASEADDR, as given
12177 in DIE. */
380bca97 12178
801e3a5b
JB
12179static void
12180dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12181 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12182{
bb5ed363 12183 struct objfile *objfile = cu->objfile;
3e29f34a 12184 struct gdbarch *gdbarch = get_objfile_arch (objfile);
801e3a5b 12185 struct attribute *attr;
91da1414 12186 struct attribute *attr_high;
801e3a5b 12187
91da1414
MW
12188 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12189 if (attr_high)
801e3a5b 12190 {
801e3a5b
JB
12191 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12192 if (attr)
12193 {
31aa7e4e
JB
12194 CORE_ADDR low = attr_value_as_address (attr);
12195 CORE_ADDR high = attr_value_as_address (attr_high);
12196
12197 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12198 high += low;
9a619af0 12199
3e29f34a
MR
12200 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12201 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12202 record_block_range (block, low, high - 1);
801e3a5b
JB
12203 }
12204 }
12205
12206 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12207 if (attr)
12208 {
bb5ed363 12209 bfd *obfd = objfile->obfd;
ab435259
DE
12210 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12211 We take advantage of the fact that DW_AT_ranges does not appear
12212 in DW_TAG_compile_unit of DWO files. */
12213 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
12214
12215 /* The value of the DW_AT_ranges attribute is the offset of the
12216 address range list in the .debug_ranges section. */
ab435259
DE
12217 unsigned long offset = (DW_UNSND (attr)
12218 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 12219 const gdb_byte *buffer;
801e3a5b
JB
12220
12221 /* For some target architectures, but not others, the
12222 read_address function sign-extends the addresses it returns.
12223 To recognize base address selection entries, we need a
12224 mask. */
12225 unsigned int addr_size = cu->header.addr_size;
12226 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12227
12228 /* The base address, to which the next pair is relative. Note
12229 that this 'base' is a DWARF concept: most entries in a range
12230 list are relative, to reduce the number of relocs against the
12231 debugging information. This is separate from this function's
12232 'baseaddr' argument, which GDB uses to relocate debugging
12233 information from a shared library based on the address at
12234 which the library was loaded. */
d00adf39
DE
12235 CORE_ADDR base = cu->base_address;
12236 int base_known = cu->base_known;
801e3a5b 12237
d62bfeaf 12238 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 12239 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
12240 {
12241 complaint (&symfile_complaints,
12242 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12243 offset);
12244 return;
12245 }
d62bfeaf 12246 buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
12247
12248 for (;;)
12249 {
12250 unsigned int bytes_read;
12251 CORE_ADDR start, end;
12252
12253 start = read_address (obfd, buffer, cu, &bytes_read);
12254 buffer += bytes_read;
12255 end = read_address (obfd, buffer, cu, &bytes_read);
12256 buffer += bytes_read;
12257
12258 /* Did we find the end of the range list? */
12259 if (start == 0 && end == 0)
12260 break;
12261
12262 /* Did we find a base address selection entry? */
12263 else if ((start & base_select_mask) == base_select_mask)
12264 {
12265 base = end;
12266 base_known = 1;
12267 }
12268
12269 /* We found an ordinary address range. */
12270 else
12271 {
12272 if (!base_known)
12273 {
12274 complaint (&symfile_complaints,
3e43a32a
MS
12275 _("Invalid .debug_ranges data "
12276 "(no base address)"));
801e3a5b
JB
12277 return;
12278 }
12279
9277c30c
UW
12280 if (start > end)
12281 {
12282 /* Inverted range entries are invalid. */
12283 complaint (&symfile_complaints,
12284 _("Invalid .debug_ranges data "
12285 "(inverted range)"));
12286 return;
12287 }
12288
12289 /* Empty range entries have no effect. */
12290 if (start == end)
12291 continue;
12292
01093045
DE
12293 start += base + baseaddr;
12294 end += base + baseaddr;
12295
12296 /* A not-uncommon case of bad debug info.
12297 Don't pollute the addrmap with bad data. */
12298 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12299 {
12300 complaint (&symfile_complaints,
12301 _(".debug_ranges entry has start address of zero"
4262abfb 12302 " [in module %s]"), objfile_name (objfile));
01093045
DE
12303 continue;
12304 }
12305
3e29f34a
MR
12306 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12307 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
01093045 12308 record_block_range (block, start, end - 1);
801e3a5b
JB
12309 }
12310 }
12311 }
12312}
12313
685b1105
JK
12314/* Check whether the producer field indicates either of GCC < 4.6, or the
12315 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 12316
685b1105
JK
12317static void
12318check_producer (struct dwarf2_cu *cu)
60d5a603
JK
12319{
12320 const char *cs;
38360086 12321 int major, minor;
60d5a603
JK
12322
12323 if (cu->producer == NULL)
12324 {
12325 /* For unknown compilers expect their behavior is DWARF version
12326 compliant.
12327
12328 GCC started to support .debug_types sections by -gdwarf-4 since
12329 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12330 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12331 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12332 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 12333 }
b1ffba5a 12334 else if (producer_is_gcc (cu->producer, &major, &minor))
60d5a603 12335 {
38360086
MW
12336 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12337 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
685b1105 12338 }
61012eef 12339 else if (startswith (cu->producer, "Intel(R) C"))
685b1105
JK
12340 cu->producer_is_icc = 1;
12341 else
12342 {
12343 /* For other non-GCC compilers, expect their behavior is DWARF version
12344 compliant. */
60d5a603
JK
12345 }
12346
ba919b58 12347 cu->checked_producer = 1;
685b1105 12348}
ba919b58 12349
685b1105
JK
12350/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12351 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12352 during 4.6.0 experimental. */
12353
12354static int
12355producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12356{
12357 if (!cu->checked_producer)
12358 check_producer (cu);
12359
12360 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
12361}
12362
12363/* Return the default accessibility type if it is not overriden by
12364 DW_AT_accessibility. */
12365
12366static enum dwarf_access_attribute
12367dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12368{
12369 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12370 {
12371 /* The default DWARF 2 accessibility for members is public, the default
12372 accessibility for inheritance is private. */
12373
12374 if (die->tag != DW_TAG_inheritance)
12375 return DW_ACCESS_public;
12376 else
12377 return DW_ACCESS_private;
12378 }
12379 else
12380 {
12381 /* DWARF 3+ defines the default accessibility a different way. The same
12382 rules apply now for DW_TAG_inheritance as for the members and it only
12383 depends on the container kind. */
12384
12385 if (die->parent->tag == DW_TAG_class_type)
12386 return DW_ACCESS_private;
12387 else
12388 return DW_ACCESS_public;
12389 }
12390}
12391
74ac6d43
TT
12392/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12393 offset. If the attribute was not found return 0, otherwise return
12394 1. If it was found but could not properly be handled, set *OFFSET
12395 to 0. */
12396
12397static int
12398handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12399 LONGEST *offset)
12400{
12401 struct attribute *attr;
12402
12403 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12404 if (attr != NULL)
12405 {
12406 *offset = 0;
12407
12408 /* Note that we do not check for a section offset first here.
12409 This is because DW_AT_data_member_location is new in DWARF 4,
12410 so if we see it, we can assume that a constant form is really
12411 a constant and not a section offset. */
12412 if (attr_form_is_constant (attr))
12413 *offset = dwarf2_get_attr_constant_value (attr, 0);
12414 else if (attr_form_is_section_offset (attr))
12415 dwarf2_complex_location_expr_complaint ();
12416 else if (attr_form_is_block (attr))
12417 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12418 else
12419 dwarf2_complex_location_expr_complaint ();
12420
12421 return 1;
12422 }
12423
12424 return 0;
12425}
12426
c906108c
SS
12427/* Add an aggregate field to the field list. */
12428
12429static void
107d2387 12430dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 12431 struct dwarf2_cu *cu)
6e70227d 12432{
e7c27a73 12433 struct objfile *objfile = cu->objfile;
5e2b427d 12434 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12435 struct nextfield *new_field;
12436 struct attribute *attr;
12437 struct field *fp;
15d034d0 12438 const char *fieldname = "";
c906108c
SS
12439
12440 /* Allocate a new field list entry and link it in. */
12441 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 12442 make_cleanup (xfree, new_field);
c906108c 12443 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
12444
12445 if (die->tag == DW_TAG_inheritance)
12446 {
12447 new_field->next = fip->baseclasses;
12448 fip->baseclasses = new_field;
12449 }
12450 else
12451 {
12452 new_field->next = fip->fields;
12453 fip->fields = new_field;
12454 }
c906108c
SS
12455 fip->nfields++;
12456
e142c38c 12457 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
12458 if (attr)
12459 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
12460 else
12461 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
12462 if (new_field->accessibility != DW_ACCESS_public)
12463 fip->non_public_fields = 1;
60d5a603 12464
e142c38c 12465 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
12466 if (attr)
12467 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
12468 else
12469 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
12470
12471 fp = &new_field->field;
a9a9bd0f 12472
e142c38c 12473 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 12474 {
74ac6d43
TT
12475 LONGEST offset;
12476
a9a9bd0f 12477 /* Data member other than a C++ static data member. */
6e70227d 12478
c906108c 12479 /* Get type of field. */
e7c27a73 12480 fp->type = die_type (die, cu);
c906108c 12481
d6a843b5 12482 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 12483
c906108c 12484 /* Get bit size of field (zero if none). */
e142c38c 12485 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
12486 if (attr)
12487 {
12488 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12489 }
12490 else
12491 {
12492 FIELD_BITSIZE (*fp) = 0;
12493 }
12494
12495 /* Get bit offset of field. */
74ac6d43
TT
12496 if (handle_data_member_location (die, cu, &offset))
12497 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 12498 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
12499 if (attr)
12500 {
5e2b427d 12501 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
12502 {
12503 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
12504 additional bit offset from the MSB of the containing
12505 anonymous object to the MSB of the field. We don't
12506 have to do anything special since we don't need to
12507 know the size of the anonymous object. */
f41f5e61 12508 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
12509 }
12510 else
12511 {
12512 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
12513 MSB of the anonymous object, subtract off the number of
12514 bits from the MSB of the field to the MSB of the
12515 object, and then subtract off the number of bits of
12516 the field itself. The result is the bit offset of
12517 the LSB of the field. */
c906108c
SS
12518 int anonymous_size;
12519 int bit_offset = DW_UNSND (attr);
12520
e142c38c 12521 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12522 if (attr)
12523 {
12524 /* The size of the anonymous object containing
12525 the bit field is explicit, so use the
12526 indicated size (in bytes). */
12527 anonymous_size = DW_UNSND (attr);
12528 }
12529 else
12530 {
12531 /* The size of the anonymous object containing
12532 the bit field must be inferred from the type
12533 attribute of the data member containing the
12534 bit field. */
12535 anonymous_size = TYPE_LENGTH (fp->type);
12536 }
f41f5e61
PA
12537 SET_FIELD_BITPOS (*fp,
12538 (FIELD_BITPOS (*fp)
12539 + anonymous_size * bits_per_byte
12540 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
12541 }
12542 }
12543
12544 /* Get name of field. */
39cbfefa
DJ
12545 fieldname = dwarf2_name (die, cu);
12546 if (fieldname == NULL)
12547 fieldname = "";
d8151005
DJ
12548
12549 /* The name is already allocated along with this objfile, so we don't
12550 need to duplicate it for the type. */
12551 fp->name = fieldname;
c906108c
SS
12552
12553 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 12554 pointer or virtual base class pointer) to private. */
e142c38c 12555 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 12556 {
d48cc9dd 12557 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
12558 new_field->accessibility = DW_ACCESS_private;
12559 fip->non_public_fields = 1;
12560 }
12561 }
a9a9bd0f 12562 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 12563 {
a9a9bd0f
DC
12564 /* C++ static member. */
12565
12566 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12567 is a declaration, but all versions of G++ as of this writing
12568 (so through at least 3.2.1) incorrectly generate
12569 DW_TAG_variable tags. */
6e70227d 12570
ff355380 12571 const char *physname;
c906108c 12572
a9a9bd0f 12573 /* Get name of field. */
39cbfefa
DJ
12574 fieldname = dwarf2_name (die, cu);
12575 if (fieldname == NULL)
c906108c
SS
12576 return;
12577
254e6b9e 12578 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
12579 if (attr
12580 /* Only create a symbol if this is an external value.
12581 new_symbol checks this and puts the value in the global symbol
12582 table, which we want. If it is not external, new_symbol
12583 will try to put the value in cu->list_in_scope which is wrong. */
12584 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
12585 {
12586 /* A static const member, not much different than an enum as far as
12587 we're concerned, except that we can support more types. */
12588 new_symbol (die, NULL, cu);
12589 }
12590
2df3850c 12591 /* Get physical name. */
ff355380 12592 physname = dwarf2_physname (fieldname, die, cu);
c906108c 12593
d8151005
DJ
12594 /* The name is already allocated along with this objfile, so we don't
12595 need to duplicate it for the type. */
12596 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 12597 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 12598 FIELD_NAME (*fp) = fieldname;
c906108c
SS
12599 }
12600 else if (die->tag == DW_TAG_inheritance)
12601 {
74ac6d43 12602 LONGEST offset;
d4b96c9a 12603
74ac6d43
TT
12604 /* C++ base class field. */
12605 if (handle_data_member_location (die, cu, &offset))
12606 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 12607 FIELD_BITSIZE (*fp) = 0;
e7c27a73 12608 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
12609 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12610 fip->nbaseclasses++;
12611 }
12612}
12613
98751a41
JK
12614/* Add a typedef defined in the scope of the FIP's class. */
12615
12616static void
12617dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12618 struct dwarf2_cu *cu)
6e70227d 12619{
98751a41 12620 struct objfile *objfile = cu->objfile;
98751a41
JK
12621 struct typedef_field_list *new_field;
12622 struct attribute *attr;
12623 struct typedef_field *fp;
12624 char *fieldname = "";
12625
12626 /* Allocate a new field list entry and link it in. */
12627 new_field = xzalloc (sizeof (*new_field));
12628 make_cleanup (xfree, new_field);
12629
12630 gdb_assert (die->tag == DW_TAG_typedef);
12631
12632 fp = &new_field->field;
12633
12634 /* Get name of field. */
12635 fp->name = dwarf2_name (die, cu);
12636 if (fp->name == NULL)
12637 return;
12638
12639 fp->type = read_type_die (die, cu);
12640
12641 new_field->next = fip->typedef_field_list;
12642 fip->typedef_field_list = new_field;
12643 fip->typedef_field_list_count++;
12644}
12645
c906108c
SS
12646/* Create the vector of fields, and attach it to the type. */
12647
12648static void
fba45db2 12649dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12650 struct dwarf2_cu *cu)
c906108c
SS
12651{
12652 int nfields = fip->nfields;
12653
12654 /* Record the field count, allocate space for the array of fields,
12655 and create blank accessibility bitfields if necessary. */
12656 TYPE_NFIELDS (type) = nfields;
12657 TYPE_FIELDS (type) = (struct field *)
12658 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12659 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12660
b4ba55a1 12661 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
12662 {
12663 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12664
12665 TYPE_FIELD_PRIVATE_BITS (type) =
12666 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12667 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12668
12669 TYPE_FIELD_PROTECTED_BITS (type) =
12670 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12671 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12672
774b6a14
TT
12673 TYPE_FIELD_IGNORE_BITS (type) =
12674 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12675 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
12676 }
12677
12678 /* If the type has baseclasses, allocate and clear a bit vector for
12679 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 12680 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
12681 {
12682 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 12683 unsigned char *pointer;
c906108c
SS
12684
12685 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
12686 pointer = TYPE_ALLOC (type, num_bytes);
12687 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
12688 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12689 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12690 }
12691
3e43a32a
MS
12692 /* Copy the saved-up fields into the field vector. Start from the head of
12693 the list, adding to the tail of the field array, so that they end up in
12694 the same order in the array in which they were added to the list. */
c906108c
SS
12695 while (nfields-- > 0)
12696 {
7d0ccb61
DJ
12697 struct nextfield *fieldp;
12698
12699 if (fip->fields)
12700 {
12701 fieldp = fip->fields;
12702 fip->fields = fieldp->next;
12703 }
12704 else
12705 {
12706 fieldp = fip->baseclasses;
12707 fip->baseclasses = fieldp->next;
12708 }
12709
12710 TYPE_FIELD (type, nfields) = fieldp->field;
12711 switch (fieldp->accessibility)
c906108c 12712 {
c5aa993b 12713 case DW_ACCESS_private:
b4ba55a1
JB
12714 if (cu->language != language_ada)
12715 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 12716 break;
c906108c 12717
c5aa993b 12718 case DW_ACCESS_protected:
b4ba55a1
JB
12719 if (cu->language != language_ada)
12720 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 12721 break;
c906108c 12722
c5aa993b
JM
12723 case DW_ACCESS_public:
12724 break;
c906108c 12725
c5aa993b
JM
12726 default:
12727 /* Unknown accessibility. Complain and treat it as public. */
12728 {
e2e0b3e5 12729 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 12730 fieldp->accessibility);
c5aa993b
JM
12731 }
12732 break;
c906108c
SS
12733 }
12734 if (nfields < fip->nbaseclasses)
12735 {
7d0ccb61 12736 switch (fieldp->virtuality)
c906108c 12737 {
c5aa993b
JM
12738 case DW_VIRTUALITY_virtual:
12739 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 12740 if (cu->language == language_ada)
a73c6dcd 12741 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
12742 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12743 break;
c906108c
SS
12744 }
12745 }
c906108c
SS
12746 }
12747}
12748
7d27a96d
TT
12749/* Return true if this member function is a constructor, false
12750 otherwise. */
12751
12752static int
12753dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12754{
12755 const char *fieldname;
fe978cb0 12756 const char *type_name;
7d27a96d
TT
12757 int len;
12758
12759 if (die->parent == NULL)
12760 return 0;
12761
12762 if (die->parent->tag != DW_TAG_structure_type
12763 && die->parent->tag != DW_TAG_union_type
12764 && die->parent->tag != DW_TAG_class_type)
12765 return 0;
12766
12767 fieldname = dwarf2_name (die, cu);
fe978cb0
PA
12768 type_name = dwarf2_name (die->parent, cu);
12769 if (fieldname == NULL || type_name == NULL)
7d27a96d
TT
12770 return 0;
12771
12772 len = strlen (fieldname);
fe978cb0
PA
12773 return (strncmp (fieldname, type_name, len) == 0
12774 && (type_name[len] == '\0' || type_name[len] == '<'));
7d27a96d
TT
12775}
12776
c906108c
SS
12777/* Add a member function to the proper fieldlist. */
12778
12779static void
107d2387 12780dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 12781 struct type *type, struct dwarf2_cu *cu)
c906108c 12782{
e7c27a73 12783 struct objfile *objfile = cu->objfile;
c906108c
SS
12784 struct attribute *attr;
12785 struct fnfieldlist *flp;
12786 int i;
12787 struct fn_field *fnp;
15d034d0 12788 const char *fieldname;
c906108c 12789 struct nextfnfield *new_fnfield;
f792889a 12790 struct type *this_type;
60d5a603 12791 enum dwarf_access_attribute accessibility;
c906108c 12792
b4ba55a1 12793 if (cu->language == language_ada)
a73c6dcd 12794 error (_("unexpected member function in Ada type"));
b4ba55a1 12795
2df3850c 12796 /* Get name of member function. */
39cbfefa
DJ
12797 fieldname = dwarf2_name (die, cu);
12798 if (fieldname == NULL)
2df3850c 12799 return;
c906108c 12800
c906108c
SS
12801 /* Look up member function name in fieldlist. */
12802 for (i = 0; i < fip->nfnfields; i++)
12803 {
27bfe10e 12804 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
12805 break;
12806 }
12807
12808 /* Create new list element if necessary. */
12809 if (i < fip->nfnfields)
12810 flp = &fip->fnfieldlists[i];
12811 else
12812 {
12813 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12814 {
12815 fip->fnfieldlists = (struct fnfieldlist *)
12816 xrealloc (fip->fnfieldlists,
12817 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 12818 * sizeof (struct fnfieldlist));
c906108c 12819 if (fip->nfnfields == 0)
c13c43fd 12820 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
12821 }
12822 flp = &fip->fnfieldlists[fip->nfnfields];
12823 flp->name = fieldname;
12824 flp->length = 0;
12825 flp->head = NULL;
3da10d80 12826 i = fip->nfnfields++;
c906108c
SS
12827 }
12828
12829 /* Create a new member function field and chain it to the field list
0963b4bd 12830 entry. */
c906108c 12831 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 12832 make_cleanup (xfree, new_fnfield);
c906108c
SS
12833 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12834 new_fnfield->next = flp->head;
12835 flp->head = new_fnfield;
12836 flp->length++;
12837
12838 /* Fill in the member function field info. */
12839 fnp = &new_fnfield->fnfield;
3da10d80
KS
12840
12841 /* Delay processing of the physname until later. */
12842 if (cu->language == language_cplus || cu->language == language_java)
12843 {
12844 add_to_method_list (type, i, flp->length - 1, fieldname,
12845 die, cu);
12846 }
12847 else
12848 {
1d06ead6 12849 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
12850 fnp->physname = physname ? physname : "";
12851 }
12852
c906108c 12853 fnp->type = alloc_type (objfile);
f792889a
DJ
12854 this_type = read_type_die (die, cu);
12855 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 12856 {
f792889a 12857 int nparams = TYPE_NFIELDS (this_type);
c906108c 12858
f792889a 12859 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
12860 of the method itself (TYPE_CODE_METHOD). */
12861 smash_to_method_type (fnp->type, type,
f792889a
DJ
12862 TYPE_TARGET_TYPE (this_type),
12863 TYPE_FIELDS (this_type),
12864 TYPE_NFIELDS (this_type),
12865 TYPE_VARARGS (this_type));
c906108c
SS
12866
12867 /* Handle static member functions.
c5aa993b 12868 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
12869 member functions. G++ helps GDB by marking the first
12870 parameter for non-static member functions (which is the this
12871 pointer) as artificial. We obtain this information from
12872 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 12873 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
12874 fnp->voffset = VOFFSET_STATIC;
12875 }
12876 else
e2e0b3e5 12877 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 12878 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
12879
12880 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 12881 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 12882 fnp->fcontext = die_containing_type (die, cu);
c906108c 12883
3e43a32a
MS
12884 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12885 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
12886
12887 /* Get accessibility. */
e142c38c 12888 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 12889 if (attr)
60d5a603
JK
12890 accessibility = DW_UNSND (attr);
12891 else
12892 accessibility = dwarf2_default_access_attribute (die, cu);
12893 switch (accessibility)
c906108c 12894 {
60d5a603
JK
12895 case DW_ACCESS_private:
12896 fnp->is_private = 1;
12897 break;
12898 case DW_ACCESS_protected:
12899 fnp->is_protected = 1;
12900 break;
c906108c
SS
12901 }
12902
b02dede2 12903 /* Check for artificial methods. */
e142c38c 12904 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
12905 if (attr && DW_UNSND (attr) != 0)
12906 fnp->is_artificial = 1;
12907
7d27a96d
TT
12908 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12909
0d564a31 12910 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
12911 function. For older versions of GCC, this is an offset in the
12912 appropriate virtual table, as specified by DW_AT_containing_type.
12913 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
12914 to the object address. */
12915
e142c38c 12916 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 12917 if (attr)
8e19ed76 12918 {
aec5aa8b 12919 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 12920 {
aec5aa8b
TT
12921 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12922 {
12923 /* Old-style GCC. */
12924 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12925 }
12926 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12927 || (DW_BLOCK (attr)->size > 1
12928 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12929 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12930 {
12931 struct dwarf_block blk;
12932 int offset;
12933
12934 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12935 ? 1 : 2);
12936 blk.size = DW_BLOCK (attr)->size - offset;
12937 blk.data = DW_BLOCK (attr)->data + offset;
12938 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12939 if ((fnp->voffset % cu->header.addr_size) != 0)
12940 dwarf2_complex_location_expr_complaint ();
12941 else
12942 fnp->voffset /= cu->header.addr_size;
12943 fnp->voffset += 2;
12944 }
12945 else
12946 dwarf2_complex_location_expr_complaint ();
12947
12948 if (!fnp->fcontext)
7e993ebf
KS
12949 {
12950 /* If there is no `this' field and no DW_AT_containing_type,
12951 we cannot actually find a base class context for the
12952 vtable! */
12953 if (TYPE_NFIELDS (this_type) == 0
12954 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12955 {
12956 complaint (&symfile_complaints,
12957 _("cannot determine context for virtual member "
12958 "function \"%s\" (offset %d)"),
12959 fieldname, die->offset.sect_off);
12960 }
12961 else
12962 {
12963 fnp->fcontext
12964 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12965 }
12966 }
aec5aa8b 12967 }
3690dd37 12968 else if (attr_form_is_section_offset (attr))
8e19ed76 12969 {
4d3c2250 12970 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
12971 }
12972 else
12973 {
4d3c2250
KB
12974 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12975 fieldname);
8e19ed76 12976 }
0d564a31 12977 }
d48cc9dd
DJ
12978 else
12979 {
12980 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12981 if (attr && DW_UNSND (attr))
12982 {
12983 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12984 complaint (&symfile_complaints,
3e43a32a
MS
12985 _("Member function \"%s\" (offset %d) is virtual "
12986 "but the vtable offset is not specified"),
b64f50a1 12987 fieldname, die->offset.sect_off);
9655fd1a 12988 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
12989 TYPE_CPLUS_DYNAMIC (type) = 1;
12990 }
12991 }
c906108c
SS
12992}
12993
12994/* Create the vector of member function fields, and attach it to the type. */
12995
12996static void
fba45db2 12997dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12998 struct dwarf2_cu *cu)
c906108c
SS
12999{
13000 struct fnfieldlist *flp;
c906108c
SS
13001 int i;
13002
b4ba55a1 13003 if (cu->language == language_ada)
a73c6dcd 13004 error (_("unexpected member functions in Ada type"));
b4ba55a1 13005
c906108c
SS
13006 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13007 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13008 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13009
13010 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13011 {
13012 struct nextfnfield *nfp = flp->head;
13013 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13014 int k;
13015
13016 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13017 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13018 fn_flp->fn_fields = (struct fn_field *)
13019 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13020 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 13021 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
13022 }
13023
13024 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
13025}
13026
1168df01
JB
13027/* Returns non-zero if NAME is the name of a vtable member in CU's
13028 language, zero otherwise. */
13029static int
13030is_vtable_name (const char *name, struct dwarf2_cu *cu)
13031{
13032 static const char vptr[] = "_vptr";
987504bb 13033 static const char vtable[] = "vtable";
1168df01 13034
987504bb
JJ
13035 /* Look for the C++ and Java forms of the vtable. */
13036 if ((cu->language == language_java
61012eef
GB
13037 && startswith (name, vtable))
13038 || (startswith (name, vptr)
987504bb 13039 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
13040 return 1;
13041
13042 return 0;
13043}
13044
c0dd20ea 13045/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
13046 functions, with the ABI-specified layout. If TYPE describes
13047 such a structure, smash it into a member function type.
61049d3b
DJ
13048
13049 GCC shouldn't do this; it should just output pointer to member DIEs.
13050 This is GCC PR debug/28767. */
c0dd20ea 13051
0b92b5bb
TT
13052static void
13053quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 13054{
09e2d7c7 13055 struct type *pfn_type, *self_type, *new_type;
c0dd20ea
DJ
13056
13057 /* Check for a structure with no name and two children. */
0b92b5bb
TT
13058 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13059 return;
c0dd20ea
DJ
13060
13061 /* Check for __pfn and __delta members. */
0b92b5bb
TT
13062 if (TYPE_FIELD_NAME (type, 0) == NULL
13063 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13064 || TYPE_FIELD_NAME (type, 1) == NULL
13065 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13066 return;
c0dd20ea
DJ
13067
13068 /* Find the type of the method. */
0b92b5bb 13069 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
13070 if (pfn_type == NULL
13071 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13072 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 13073 return;
c0dd20ea
DJ
13074
13075 /* Look for the "this" argument. */
13076 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13077 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 13078 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 13079 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 13080 return;
c0dd20ea 13081
09e2d7c7 13082 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb 13083 new_type = alloc_type (objfile);
09e2d7c7 13084 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
13085 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13086 TYPE_VARARGS (pfn_type));
0b92b5bb 13087 smash_to_methodptr_type (type, new_type);
c0dd20ea 13088}
1168df01 13089
685b1105
JK
13090/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13091 (icc). */
13092
13093static int
13094producer_is_icc (struct dwarf2_cu *cu)
13095{
13096 if (!cu->checked_producer)
13097 check_producer (cu);
13098
13099 return cu->producer_is_icc;
13100}
13101
c906108c 13102/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
13103 (definition) to create a type for the structure or union. Fill in
13104 the type's name and general properties; the members will not be
83655187
DE
13105 processed until process_structure_scope. A symbol table entry for
13106 the type will also not be done until process_structure_scope (assuming
13107 the type has a name).
c906108c 13108
c767944b
DJ
13109 NOTE: we need to call these functions regardless of whether or not the
13110 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 13111 structure or union. This gets the type entered into our set of
83655187 13112 user defined types. */
c906108c 13113
f792889a 13114static struct type *
134d01f1 13115read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13116{
e7c27a73 13117 struct objfile *objfile = cu->objfile;
c906108c
SS
13118 struct type *type;
13119 struct attribute *attr;
15d034d0 13120 const char *name;
c906108c 13121
348e048f
DE
13122 /* If the definition of this type lives in .debug_types, read that type.
13123 Don't follow DW_AT_specification though, that will take us back up
13124 the chain and we want to go down. */
45e58e77 13125 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13126 if (attr)
13127 {
ac9ec31b 13128 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13129
ac9ec31b 13130 /* The type's CU may not be the same as CU.
02142a6c 13131 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13132 return set_die_type (die, type, cu);
13133 }
13134
c0dd20ea 13135 type = alloc_type (objfile);
c906108c 13136 INIT_CPLUS_SPECIFIC (type);
93311388 13137
39cbfefa
DJ
13138 name = dwarf2_name (die, cu);
13139 if (name != NULL)
c906108c 13140 {
987504bb
JJ
13141 if (cu->language == language_cplus
13142 || cu->language == language_java)
63d06c5c 13143 {
15d034d0 13144 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
13145
13146 /* dwarf2_full_name might have already finished building the DIE's
13147 type. If so, there is no need to continue. */
13148 if (get_die_type (die, cu) != NULL)
13149 return get_die_type (die, cu);
13150
13151 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
13152 if (die->tag == DW_TAG_structure_type
13153 || die->tag == DW_TAG_class_type)
13154 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
13155 }
13156 else
13157 {
d8151005
DJ
13158 /* The name is already allocated along with this objfile, so
13159 we don't need to duplicate it for the type. */
7d455152 13160 TYPE_TAG_NAME (type) = name;
94af9270
KS
13161 if (die->tag == DW_TAG_class_type)
13162 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 13163 }
c906108c
SS
13164 }
13165
13166 if (die->tag == DW_TAG_structure_type)
13167 {
13168 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13169 }
13170 else if (die->tag == DW_TAG_union_type)
13171 {
13172 TYPE_CODE (type) = TYPE_CODE_UNION;
13173 }
13174 else
13175 {
4753d33b 13176 TYPE_CODE (type) = TYPE_CODE_STRUCT;
c906108c
SS
13177 }
13178
0cc2414c
TT
13179 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13180 TYPE_DECLARED_CLASS (type) = 1;
13181
e142c38c 13182 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13183 if (attr)
13184 {
13185 TYPE_LENGTH (type) = DW_UNSND (attr);
13186 }
13187 else
13188 {
13189 TYPE_LENGTH (type) = 0;
13190 }
13191
422b1cb0 13192 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
685b1105
JK
13193 {
13194 /* ICC does not output the required DW_AT_declaration
13195 on incomplete types, but gives them a size of zero. */
422b1cb0 13196 TYPE_STUB (type) = 1;
685b1105
JK
13197 }
13198 else
13199 TYPE_STUB_SUPPORTED (type) = 1;
13200
dc718098 13201 if (die_is_declaration (die, cu))
876cecd0 13202 TYPE_STUB (type) = 1;
a6c727b2
DJ
13203 else if (attr == NULL && die->child == NULL
13204 && producer_is_realview (cu->producer))
13205 /* RealView does not output the required DW_AT_declaration
13206 on incomplete types. */
13207 TYPE_STUB (type) = 1;
dc718098 13208
c906108c
SS
13209 /* We need to add the type field to the die immediately so we don't
13210 infinitely recurse when dealing with pointers to the structure
0963b4bd 13211 type within the structure itself. */
1c379e20 13212 set_die_type (die, type, cu);
c906108c 13213
7e314c57
JK
13214 /* set_die_type should be already done. */
13215 set_descriptive_type (type, die, cu);
13216
c767944b
DJ
13217 return type;
13218}
13219
13220/* Finish creating a structure or union type, including filling in
13221 its members and creating a symbol for it. */
13222
13223static void
13224process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13225{
13226 struct objfile *objfile = cu->objfile;
ca040673 13227 struct die_info *child_die;
c767944b
DJ
13228 struct type *type;
13229
13230 type = get_die_type (die, cu);
13231 if (type == NULL)
13232 type = read_structure_type (die, cu);
13233
e142c38c 13234 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
13235 {
13236 struct field_info fi;
34eaf542 13237 VEC (symbolp) *template_args = NULL;
c767944b 13238 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
13239
13240 memset (&fi, 0, sizeof (struct field_info));
13241
639d11d3 13242 child_die = die->child;
c906108c
SS
13243
13244 while (child_die && child_die->tag)
13245 {
a9a9bd0f
DC
13246 if (child_die->tag == DW_TAG_member
13247 || child_die->tag == DW_TAG_variable)
c906108c 13248 {
a9a9bd0f
DC
13249 /* NOTE: carlton/2002-11-05: A C++ static data member
13250 should be a DW_TAG_member that is a declaration, but
13251 all versions of G++ as of this writing (so through at
13252 least 3.2.1) incorrectly generate DW_TAG_variable
13253 tags for them instead. */
e7c27a73 13254 dwarf2_add_field (&fi, child_die, cu);
c906108c 13255 }
8713b1b1 13256 else if (child_die->tag == DW_TAG_subprogram)
c906108c 13257 {
0963b4bd 13258 /* C++ member function. */
e7c27a73 13259 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
13260 }
13261 else if (child_die->tag == DW_TAG_inheritance)
13262 {
13263 /* C++ base class field. */
e7c27a73 13264 dwarf2_add_field (&fi, child_die, cu);
c906108c 13265 }
98751a41
JK
13266 else if (child_die->tag == DW_TAG_typedef)
13267 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
13268 else if (child_die->tag == DW_TAG_template_type_param
13269 || child_die->tag == DW_TAG_template_value_param)
13270 {
13271 struct symbol *arg = new_symbol (child_die, NULL, cu);
13272
f1078f66
DJ
13273 if (arg != NULL)
13274 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
13275 }
13276
c906108c
SS
13277 child_die = sibling_die (child_die);
13278 }
13279
34eaf542
TT
13280 /* Attach template arguments to type. */
13281 if (! VEC_empty (symbolp, template_args))
13282 {
13283 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13284 TYPE_N_TEMPLATE_ARGUMENTS (type)
13285 = VEC_length (symbolp, template_args);
13286 TYPE_TEMPLATE_ARGUMENTS (type)
13287 = obstack_alloc (&objfile->objfile_obstack,
13288 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13289 * sizeof (struct symbol *)));
13290 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13291 VEC_address (symbolp, template_args),
13292 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13293 * sizeof (struct symbol *)));
13294 VEC_free (symbolp, template_args);
13295 }
13296
c906108c
SS
13297 /* Attach fields and member functions to the type. */
13298 if (fi.nfields)
e7c27a73 13299 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
13300 if (fi.nfnfields)
13301 {
e7c27a73 13302 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 13303
c5aa993b 13304 /* Get the type which refers to the base class (possibly this
c906108c 13305 class itself) which contains the vtable pointer for the current
0d564a31
DJ
13306 class from the DW_AT_containing_type attribute. This use of
13307 DW_AT_containing_type is a GNU extension. */
c906108c 13308
e142c38c 13309 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 13310 {
e7c27a73 13311 struct type *t = die_containing_type (die, cu);
c906108c 13312
ae6ae975 13313 set_type_vptr_basetype (type, t);
c906108c
SS
13314 if (type == t)
13315 {
c906108c
SS
13316 int i;
13317
13318 /* Our own class provides vtbl ptr. */
13319 for (i = TYPE_NFIELDS (t) - 1;
13320 i >= TYPE_N_BASECLASSES (t);
13321 --i)
13322 {
0d5cff50 13323 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 13324
1168df01 13325 if (is_vtable_name (fieldname, cu))
c906108c 13326 {
ae6ae975 13327 set_type_vptr_fieldno (type, i);
c906108c
SS
13328 break;
13329 }
13330 }
13331
13332 /* Complain if virtual function table field not found. */
13333 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 13334 complaint (&symfile_complaints,
3e43a32a
MS
13335 _("virtual function table pointer "
13336 "not found when defining class '%s'"),
4d3c2250
KB
13337 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13338 "");
c906108c
SS
13339 }
13340 else
13341 {
ae6ae975 13342 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
13343 }
13344 }
f6235d4c 13345 else if (cu->producer
61012eef 13346 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
f6235d4c
EZ
13347 {
13348 /* The IBM XLC compiler does not provide direct indication
13349 of the containing type, but the vtable pointer is
13350 always named __vfp. */
13351
13352 int i;
13353
13354 for (i = TYPE_NFIELDS (type) - 1;
13355 i >= TYPE_N_BASECLASSES (type);
13356 --i)
13357 {
13358 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13359 {
ae6ae975
DE
13360 set_type_vptr_fieldno (type, i);
13361 set_type_vptr_basetype (type, type);
f6235d4c
EZ
13362 break;
13363 }
13364 }
13365 }
c906108c 13366 }
98751a41
JK
13367
13368 /* Copy fi.typedef_field_list linked list elements content into the
13369 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13370 if (fi.typedef_field_list)
13371 {
13372 int i = fi.typedef_field_list_count;
13373
a0d7a4ff 13374 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41
JK
13375 TYPE_TYPEDEF_FIELD_ARRAY (type)
13376 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13377 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13378
13379 /* Reverse the list order to keep the debug info elements order. */
13380 while (--i >= 0)
13381 {
13382 struct typedef_field *dest, *src;
6e70227d 13383
98751a41
JK
13384 dest = &TYPE_TYPEDEF_FIELD (type, i);
13385 src = &fi.typedef_field_list->field;
13386 fi.typedef_field_list = fi.typedef_field_list->next;
13387 *dest = *src;
13388 }
13389 }
c767944b
DJ
13390
13391 do_cleanups (back_to);
eb2a6f42
TT
13392
13393 if (HAVE_CPLUS_STRUCT (type))
13394 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
c906108c 13395 }
63d06c5c 13396
bb5ed363 13397 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 13398
90aeadfc
DC
13399 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13400 snapshots) has been known to create a die giving a declaration
13401 for a class that has, as a child, a die giving a definition for a
13402 nested class. So we have to process our children even if the
13403 current die is a declaration. Normally, of course, a declaration
13404 won't have any children at all. */
134d01f1 13405
ca040673
DE
13406 child_die = die->child;
13407
90aeadfc
DC
13408 while (child_die != NULL && child_die->tag)
13409 {
13410 if (child_die->tag == DW_TAG_member
13411 || child_die->tag == DW_TAG_variable
34eaf542
TT
13412 || child_die->tag == DW_TAG_inheritance
13413 || child_die->tag == DW_TAG_template_value_param
13414 || child_die->tag == DW_TAG_template_type_param)
134d01f1 13415 {
90aeadfc 13416 /* Do nothing. */
134d01f1 13417 }
90aeadfc
DC
13418 else
13419 process_die (child_die, cu);
134d01f1 13420
90aeadfc 13421 child_die = sibling_die (child_die);
134d01f1
DJ
13422 }
13423
fa4028e9
JB
13424 /* Do not consider external references. According to the DWARF standard,
13425 these DIEs are identified by the fact that they have no byte_size
13426 attribute, and a declaration attribute. */
13427 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13428 || !die_is_declaration (die, cu))
c767944b 13429 new_symbol (die, type, cu);
134d01f1
DJ
13430}
13431
55426c9d
JB
13432/* Assuming DIE is an enumeration type, and TYPE is its associated type,
13433 update TYPE using some information only available in DIE's children. */
13434
13435static void
13436update_enumeration_type_from_children (struct die_info *die,
13437 struct type *type,
13438 struct dwarf2_cu *cu)
13439{
13440 struct obstack obstack;
60f7655a 13441 struct die_info *child_die;
55426c9d
JB
13442 int unsigned_enum = 1;
13443 int flag_enum = 1;
13444 ULONGEST mask = 0;
13445 struct cleanup *old_chain;
13446
13447 obstack_init (&obstack);
13448 old_chain = make_cleanup_obstack_free (&obstack);
13449
60f7655a
DE
13450 for (child_die = die->child;
13451 child_die != NULL && child_die->tag;
13452 child_die = sibling_die (child_die))
55426c9d
JB
13453 {
13454 struct attribute *attr;
13455 LONGEST value;
13456 const gdb_byte *bytes;
13457 struct dwarf2_locexpr_baton *baton;
13458 const char *name;
60f7655a 13459
55426c9d
JB
13460 if (child_die->tag != DW_TAG_enumerator)
13461 continue;
13462
13463 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13464 if (attr == NULL)
13465 continue;
13466
13467 name = dwarf2_name (child_die, cu);
13468 if (name == NULL)
13469 name = "<anonymous enumerator>";
13470
13471 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13472 &value, &bytes, &baton);
13473 if (value < 0)
13474 {
13475 unsigned_enum = 0;
13476 flag_enum = 0;
13477 }
13478 else if ((mask & value) != 0)
13479 flag_enum = 0;
13480 else
13481 mask |= value;
13482
13483 /* If we already know that the enum type is neither unsigned, nor
13484 a flag type, no need to look at the rest of the enumerates. */
13485 if (!unsigned_enum && !flag_enum)
13486 break;
55426c9d
JB
13487 }
13488
13489 if (unsigned_enum)
13490 TYPE_UNSIGNED (type) = 1;
13491 if (flag_enum)
13492 TYPE_FLAG_ENUM (type) = 1;
13493
13494 do_cleanups (old_chain);
13495}
13496
134d01f1
DJ
13497/* Given a DW_AT_enumeration_type die, set its type. We do not
13498 complete the type's fields yet, or create any symbols. */
c906108c 13499
f792889a 13500static struct type *
134d01f1 13501read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13502{
e7c27a73 13503 struct objfile *objfile = cu->objfile;
c906108c 13504 struct type *type;
c906108c 13505 struct attribute *attr;
0114d602 13506 const char *name;
134d01f1 13507
348e048f
DE
13508 /* If the definition of this type lives in .debug_types, read that type.
13509 Don't follow DW_AT_specification though, that will take us back up
13510 the chain and we want to go down. */
45e58e77 13511 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13512 if (attr)
13513 {
ac9ec31b 13514 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13515
ac9ec31b 13516 /* The type's CU may not be the same as CU.
02142a6c 13517 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13518 return set_die_type (die, type, cu);
13519 }
13520
c906108c
SS
13521 type = alloc_type (objfile);
13522
13523 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 13524 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 13525 if (name != NULL)
7d455152 13526 TYPE_TAG_NAME (type) = name;
c906108c 13527
0626fc76
TT
13528 attr = dwarf2_attr (die, DW_AT_type, cu);
13529 if (attr != NULL)
13530 {
13531 struct type *underlying_type = die_type (die, cu);
13532
13533 TYPE_TARGET_TYPE (type) = underlying_type;
13534 }
13535
e142c38c 13536 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13537 if (attr)
13538 {
13539 TYPE_LENGTH (type) = DW_UNSND (attr);
13540 }
13541 else
13542 {
13543 TYPE_LENGTH (type) = 0;
13544 }
13545
137033e9
JB
13546 /* The enumeration DIE can be incomplete. In Ada, any type can be
13547 declared as private in the package spec, and then defined only
13548 inside the package body. Such types are known as Taft Amendment
13549 Types. When another package uses such a type, an incomplete DIE
13550 may be generated by the compiler. */
02eb380e 13551 if (die_is_declaration (die, cu))
876cecd0 13552 TYPE_STUB (type) = 1;
02eb380e 13553
0626fc76
TT
13554 /* Finish the creation of this type by using the enum's children.
13555 We must call this even when the underlying type has been provided
13556 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
13557 update_enumeration_type_from_children (die, type, cu);
13558
0626fc76
TT
13559 /* If this type has an underlying type that is not a stub, then we
13560 may use its attributes. We always use the "unsigned" attribute
13561 in this situation, because ordinarily we guess whether the type
13562 is unsigned -- but the guess can be wrong and the underlying type
13563 can tell us the reality. However, we defer to a local size
13564 attribute if one exists, because this lets the compiler override
13565 the underlying type if needed. */
13566 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13567 {
13568 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13569 if (TYPE_LENGTH (type) == 0)
13570 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13571 }
13572
3d567982
TT
13573 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13574
f792889a 13575 return set_die_type (die, type, cu);
134d01f1
DJ
13576}
13577
13578/* Given a pointer to a die which begins an enumeration, process all
13579 the dies that define the members of the enumeration, and create the
13580 symbol for the enumeration type.
13581
13582 NOTE: We reverse the order of the element list. */
13583
13584static void
13585process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13586{
f792889a 13587 struct type *this_type;
134d01f1 13588
f792889a
DJ
13589 this_type = get_die_type (die, cu);
13590 if (this_type == NULL)
13591 this_type = read_enumeration_type (die, cu);
9dc481d3 13592
639d11d3 13593 if (die->child != NULL)
c906108c 13594 {
9dc481d3
DE
13595 struct die_info *child_die;
13596 struct symbol *sym;
13597 struct field *fields = NULL;
13598 int num_fields = 0;
15d034d0 13599 const char *name;
9dc481d3 13600
639d11d3 13601 child_die = die->child;
c906108c
SS
13602 while (child_die && child_die->tag)
13603 {
13604 if (child_die->tag != DW_TAG_enumerator)
13605 {
e7c27a73 13606 process_die (child_die, cu);
c906108c
SS
13607 }
13608 else
13609 {
39cbfefa
DJ
13610 name = dwarf2_name (child_die, cu);
13611 if (name)
c906108c 13612 {
f792889a 13613 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
13614
13615 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13616 {
13617 fields = (struct field *)
13618 xrealloc (fields,
13619 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13620 * sizeof (struct field));
c906108c
SS
13621 }
13622
3567439c 13623 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 13624 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 13625 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
13626 FIELD_BITSIZE (fields[num_fields]) = 0;
13627
13628 num_fields++;
13629 }
13630 }
13631
13632 child_die = sibling_die (child_die);
13633 }
13634
13635 if (num_fields)
13636 {
f792889a
DJ
13637 TYPE_NFIELDS (this_type) = num_fields;
13638 TYPE_FIELDS (this_type) = (struct field *)
13639 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13640 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 13641 sizeof (struct field) * num_fields);
b8c9b27d 13642 xfree (fields);
c906108c 13643 }
c906108c 13644 }
134d01f1 13645
6c83ed52
TT
13646 /* If we are reading an enum from a .debug_types unit, and the enum
13647 is a declaration, and the enum is not the signatured type in the
13648 unit, then we do not want to add a symbol for it. Adding a
13649 symbol would in some cases obscure the true definition of the
13650 enum, giving users an incomplete type when the definition is
13651 actually available. Note that we do not want to do this for all
13652 enums which are just declarations, because C++0x allows forward
13653 enum declarations. */
3019eac3 13654 if (cu->per_cu->is_debug_types
6c83ed52
TT
13655 && die_is_declaration (die, cu))
13656 {
52dc124a 13657 struct signatured_type *sig_type;
6c83ed52 13658
c0f78cd4 13659 sig_type = (struct signatured_type *) cu->per_cu;
3019eac3
DE
13660 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13661 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
13662 return;
13663 }
13664
f792889a 13665 new_symbol (die, this_type, cu);
c906108c
SS
13666}
13667
13668/* Extract all information from a DW_TAG_array_type DIE and put it in
13669 the DIE's type field. For now, this only handles one dimensional
13670 arrays. */
13671
f792889a 13672static struct type *
e7c27a73 13673read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13674{
e7c27a73 13675 struct objfile *objfile = cu->objfile;
c906108c 13676 struct die_info *child_die;
7e314c57 13677 struct type *type;
c906108c
SS
13678 struct type *element_type, *range_type, *index_type;
13679 struct type **range_types = NULL;
13680 struct attribute *attr;
13681 int ndim = 0;
13682 struct cleanup *back_to;
15d034d0 13683 const char *name;
dc53a7ad 13684 unsigned int bit_stride = 0;
c906108c 13685
e7c27a73 13686 element_type = die_type (die, cu);
c906108c 13687
7e314c57
JK
13688 /* The die_type call above may have already set the type for this DIE. */
13689 type = get_die_type (die, cu);
13690 if (type)
13691 return type;
13692
dc53a7ad
JB
13693 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13694 if (attr != NULL)
13695 bit_stride = DW_UNSND (attr) * 8;
13696
13697 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13698 if (attr != NULL)
13699 bit_stride = DW_UNSND (attr);
13700
c906108c
SS
13701 /* Irix 6.2 native cc creates array types without children for
13702 arrays with unspecified length. */
639d11d3 13703 if (die->child == NULL)
c906108c 13704 {
46bf5051 13705 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 13706 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad
JB
13707 type = create_array_type_with_stride (NULL, element_type, range_type,
13708 bit_stride);
f792889a 13709 return set_die_type (die, type, cu);
c906108c
SS
13710 }
13711
13712 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 13713 child_die = die->child;
c906108c
SS
13714 while (child_die && child_die->tag)
13715 {
13716 if (child_die->tag == DW_TAG_subrange_type)
13717 {
f792889a 13718 struct type *child_type = read_type_die (child_die, cu);
9a619af0 13719
f792889a 13720 if (child_type != NULL)
a02abb62 13721 {
0963b4bd
MS
13722 /* The range type was succesfully read. Save it for the
13723 array type creation. */
a02abb62
JB
13724 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13725 {
13726 range_types = (struct type **)
13727 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13728 * sizeof (struct type *));
13729 if (ndim == 0)
13730 make_cleanup (free_current_contents, &range_types);
13731 }
f792889a 13732 range_types[ndim++] = child_type;
a02abb62 13733 }
c906108c
SS
13734 }
13735 child_die = sibling_die (child_die);
13736 }
13737
13738 /* Dwarf2 dimensions are output from left to right, create the
13739 necessary array types in backwards order. */
7ca2d3a3 13740
c906108c 13741 type = element_type;
7ca2d3a3
DL
13742
13743 if (read_array_order (die, cu) == DW_ORD_col_major)
13744 {
13745 int i = 0;
9a619af0 13746
7ca2d3a3 13747 while (i < ndim)
dc53a7ad
JB
13748 type = create_array_type_with_stride (NULL, type, range_types[i++],
13749 bit_stride);
7ca2d3a3
DL
13750 }
13751 else
13752 {
13753 while (ndim-- > 0)
dc53a7ad
JB
13754 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13755 bit_stride);
7ca2d3a3 13756 }
c906108c 13757
f5f8a009
EZ
13758 /* Understand Dwarf2 support for vector types (like they occur on
13759 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13760 array type. This is not part of the Dwarf2/3 standard yet, but a
13761 custom vendor extension. The main difference between a regular
13762 array and the vector variant is that vectors are passed by value
13763 to functions. */
e142c38c 13764 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 13765 if (attr)
ea37ba09 13766 make_vector_type (type);
f5f8a009 13767
dbc98a8b
KW
13768 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13769 implementation may choose to implement triple vectors using this
13770 attribute. */
13771 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13772 if (attr)
13773 {
13774 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13775 TYPE_LENGTH (type) = DW_UNSND (attr);
13776 else
3e43a32a
MS
13777 complaint (&symfile_complaints,
13778 _("DW_AT_byte_size for array type smaller "
13779 "than the total size of elements"));
dbc98a8b
KW
13780 }
13781
39cbfefa
DJ
13782 name = dwarf2_name (die, cu);
13783 if (name)
13784 TYPE_NAME (type) = name;
6e70227d 13785
0963b4bd 13786 /* Install the type in the die. */
7e314c57
JK
13787 set_die_type (die, type, cu);
13788
13789 /* set_die_type should be already done. */
b4ba55a1
JB
13790 set_descriptive_type (type, die, cu);
13791
c906108c
SS
13792 do_cleanups (back_to);
13793
7e314c57 13794 return type;
c906108c
SS
13795}
13796
7ca2d3a3 13797static enum dwarf_array_dim_ordering
6e70227d 13798read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
13799{
13800 struct attribute *attr;
13801
13802 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13803
13804 if (attr) return DW_SND (attr);
13805
0963b4bd
MS
13806 /* GNU F77 is a special case, as at 08/2004 array type info is the
13807 opposite order to the dwarf2 specification, but data is still
13808 laid out as per normal fortran.
7ca2d3a3 13809
0963b4bd
MS
13810 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13811 version checking. */
7ca2d3a3 13812
905e0470
PM
13813 if (cu->language == language_fortran
13814 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
13815 {
13816 return DW_ORD_row_major;
13817 }
13818
6e70227d 13819 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
13820 {
13821 case array_column_major:
13822 return DW_ORD_col_major;
13823 case array_row_major:
13824 default:
13825 return DW_ORD_row_major;
13826 };
13827}
13828
72019c9c 13829/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 13830 the DIE's type field. */
72019c9c 13831
f792889a 13832static struct type *
72019c9c
GM
13833read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13834{
7e314c57
JK
13835 struct type *domain_type, *set_type;
13836 struct attribute *attr;
f792889a 13837
7e314c57
JK
13838 domain_type = die_type (die, cu);
13839
13840 /* The die_type call above may have already set the type for this DIE. */
13841 set_type = get_die_type (die, cu);
13842 if (set_type)
13843 return set_type;
13844
13845 set_type = create_set_type (NULL, domain_type);
13846
13847 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
13848 if (attr)
13849 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 13850
f792889a 13851 return set_die_type (die, set_type, cu);
72019c9c 13852}
7ca2d3a3 13853
0971de02
TT
13854/* A helper for read_common_block that creates a locexpr baton.
13855 SYM is the symbol which we are marking as computed.
13856 COMMON_DIE is the DIE for the common block.
13857 COMMON_LOC is the location expression attribute for the common
13858 block itself.
13859 MEMBER_LOC is the location expression attribute for the particular
13860 member of the common block that we are processing.
13861 CU is the CU from which the above come. */
13862
13863static void
13864mark_common_block_symbol_computed (struct symbol *sym,
13865 struct die_info *common_die,
13866 struct attribute *common_loc,
13867 struct attribute *member_loc,
13868 struct dwarf2_cu *cu)
13869{
13870 struct objfile *objfile = dwarf2_per_objfile->objfile;
13871 struct dwarf2_locexpr_baton *baton;
13872 gdb_byte *ptr;
13873 unsigned int cu_off;
13874 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13875 LONGEST offset = 0;
13876
13877 gdb_assert (common_loc && member_loc);
13878 gdb_assert (attr_form_is_block (common_loc));
13879 gdb_assert (attr_form_is_block (member_loc)
13880 || attr_form_is_constant (member_loc));
13881
13882 baton = obstack_alloc (&objfile->objfile_obstack,
13883 sizeof (struct dwarf2_locexpr_baton));
13884 baton->per_cu = cu->per_cu;
13885 gdb_assert (baton->per_cu);
13886
13887 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13888
13889 if (attr_form_is_constant (member_loc))
13890 {
13891 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13892 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13893 }
13894 else
13895 baton->size += DW_BLOCK (member_loc)->size;
13896
13897 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13898 baton->data = ptr;
13899
13900 *ptr++ = DW_OP_call4;
13901 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13902 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13903 ptr += 4;
13904
13905 if (attr_form_is_constant (member_loc))
13906 {
13907 *ptr++ = DW_OP_addr;
13908 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13909 ptr += cu->header.addr_size;
13910 }
13911 else
13912 {
13913 /* We have to copy the data here, because DW_OP_call4 will only
13914 use a DW_AT_location attribute. */
13915 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13916 ptr += DW_BLOCK (member_loc)->size;
13917 }
13918
13919 *ptr++ = DW_OP_plus;
13920 gdb_assert (ptr - baton->data == baton->size);
13921
0971de02 13922 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 13923 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
13924}
13925
4357ac6c
TT
13926/* Create appropriate locally-scoped variables for all the
13927 DW_TAG_common_block entries. Also create a struct common_block
13928 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13929 is used to sepate the common blocks name namespace from regular
13930 variable names. */
c906108c
SS
13931
13932static void
e7c27a73 13933read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13934{
0971de02
TT
13935 struct attribute *attr;
13936
13937 attr = dwarf2_attr (die, DW_AT_location, cu);
13938 if (attr)
13939 {
13940 /* Support the .debug_loc offsets. */
13941 if (attr_form_is_block (attr))
13942 {
13943 /* Ok. */
13944 }
13945 else if (attr_form_is_section_offset (attr))
13946 {
13947 dwarf2_complex_location_expr_complaint ();
13948 attr = NULL;
13949 }
13950 else
13951 {
13952 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13953 "common block member");
13954 attr = NULL;
13955 }
13956 }
13957
639d11d3 13958 if (die->child != NULL)
c906108c 13959 {
4357ac6c
TT
13960 struct objfile *objfile = cu->objfile;
13961 struct die_info *child_die;
13962 size_t n_entries = 0, size;
13963 struct common_block *common_block;
13964 struct symbol *sym;
74ac6d43 13965
4357ac6c
TT
13966 for (child_die = die->child;
13967 child_die && child_die->tag;
13968 child_die = sibling_die (child_die))
13969 ++n_entries;
13970
13971 size = (sizeof (struct common_block)
13972 + (n_entries - 1) * sizeof (struct symbol *));
13973 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13974 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13975 common_block->n_entries = 0;
13976
13977 for (child_die = die->child;
13978 child_die && child_die->tag;
13979 child_die = sibling_die (child_die))
13980 {
13981 /* Create the symbol in the DW_TAG_common_block block in the current
13982 symbol scope. */
e7c27a73 13983 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
13984 if (sym != NULL)
13985 {
13986 struct attribute *member_loc;
13987
13988 common_block->contents[common_block->n_entries++] = sym;
13989
13990 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13991 cu);
13992 if (member_loc)
13993 {
13994 /* GDB has handled this for a long time, but it is
13995 not specified by DWARF. It seems to have been
13996 emitted by gfortran at least as recently as:
13997 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13998 complaint (&symfile_complaints,
13999 _("Variable in common block has "
14000 "DW_AT_data_member_location "
14001 "- DIE at 0x%x [in module %s]"),
4262abfb
JK
14002 child_die->offset.sect_off,
14003 objfile_name (cu->objfile));
0971de02
TT
14004
14005 if (attr_form_is_section_offset (member_loc))
14006 dwarf2_complex_location_expr_complaint ();
14007 else if (attr_form_is_constant (member_loc)
14008 || attr_form_is_block (member_loc))
14009 {
14010 if (attr)
14011 mark_common_block_symbol_computed (sym, die, attr,
14012 member_loc, cu);
14013 }
14014 else
14015 dwarf2_complex_location_expr_complaint ();
14016 }
14017 }
c906108c 14018 }
4357ac6c
TT
14019
14020 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14021 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
14022 }
14023}
14024
0114d602 14025/* Create a type for a C++ namespace. */
d9fa45fe 14026
0114d602
DJ
14027static struct type *
14028read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 14029{
e7c27a73 14030 struct objfile *objfile = cu->objfile;
0114d602 14031 const char *previous_prefix, *name;
9219021c 14032 int is_anonymous;
0114d602
DJ
14033 struct type *type;
14034
14035 /* For extensions, reuse the type of the original namespace. */
14036 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14037 {
14038 struct die_info *ext_die;
14039 struct dwarf2_cu *ext_cu = cu;
9a619af0 14040
0114d602
DJ
14041 ext_die = dwarf2_extension (die, &ext_cu);
14042 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
14043
14044 /* EXT_CU may not be the same as CU.
02142a6c 14045 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
14046 return set_die_type (die, type, cu);
14047 }
9219021c 14048
e142c38c 14049 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
14050
14051 /* Now build the name of the current namespace. */
14052
0114d602
DJ
14053 previous_prefix = determine_prefix (die, cu);
14054 if (previous_prefix[0] != '\0')
14055 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 14056 previous_prefix, name, 0, cu);
0114d602
DJ
14057
14058 /* Create the type. */
14059 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14060 objfile);
abee88f2 14061 TYPE_NAME (type) = name;
0114d602
DJ
14062 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14063
60531b24 14064 return set_die_type (die, type, cu);
0114d602
DJ
14065}
14066
14067/* Read a C++ namespace. */
14068
14069static void
14070read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14071{
14072 struct objfile *objfile = cu->objfile;
0114d602 14073 int is_anonymous;
9219021c 14074
5c4e30ca
DC
14075 /* Add a symbol associated to this if we haven't seen the namespace
14076 before. Also, add a using directive if it's an anonymous
14077 namespace. */
9219021c 14078
f2f0e013 14079 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
14080 {
14081 struct type *type;
14082
0114d602 14083 type = read_type_die (die, cu);
e7c27a73 14084 new_symbol (die, type, cu);
5c4e30ca 14085
e8e80198 14086 namespace_name (die, &is_anonymous, cu);
5c4e30ca 14087 if (is_anonymous)
0114d602
DJ
14088 {
14089 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 14090
c0cc3a76 14091 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12aaed36 14092 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 14093 }
5c4e30ca 14094 }
9219021c 14095
639d11d3 14096 if (die->child != NULL)
d9fa45fe 14097 {
639d11d3 14098 struct die_info *child_die = die->child;
6e70227d 14099
d9fa45fe
DC
14100 while (child_die && child_die->tag)
14101 {
e7c27a73 14102 process_die (child_die, cu);
d9fa45fe
DC
14103 child_die = sibling_die (child_die);
14104 }
14105 }
38d518c9
EZ
14106}
14107
f55ee35c
JK
14108/* Read a Fortran module as type. This DIE can be only a declaration used for
14109 imported module. Still we need that type as local Fortran "use ... only"
14110 declaration imports depend on the created type in determine_prefix. */
14111
14112static struct type *
14113read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14114{
14115 struct objfile *objfile = cu->objfile;
15d034d0 14116 const char *module_name;
f55ee35c
JK
14117 struct type *type;
14118
14119 module_name = dwarf2_name (die, cu);
14120 if (!module_name)
3e43a32a
MS
14121 complaint (&symfile_complaints,
14122 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 14123 die->offset.sect_off);
f55ee35c
JK
14124 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14125
14126 /* determine_prefix uses TYPE_TAG_NAME. */
14127 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14128
14129 return set_die_type (die, type, cu);
14130}
14131
5d7cb8df
JK
14132/* Read a Fortran module. */
14133
14134static void
14135read_module (struct die_info *die, struct dwarf2_cu *cu)
14136{
14137 struct die_info *child_die = die->child;
530e8392
KB
14138 struct type *type;
14139
14140 type = read_type_die (die, cu);
14141 new_symbol (die, type, cu);
5d7cb8df 14142
5d7cb8df
JK
14143 while (child_die && child_die->tag)
14144 {
14145 process_die (child_die, cu);
14146 child_die = sibling_die (child_die);
14147 }
14148}
14149
38d518c9
EZ
14150/* Return the name of the namespace represented by DIE. Set
14151 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14152 namespace. */
14153
14154static const char *
e142c38c 14155namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
14156{
14157 struct die_info *current_die;
14158 const char *name = NULL;
14159
14160 /* Loop through the extensions until we find a name. */
14161
14162 for (current_die = die;
14163 current_die != NULL;
f2f0e013 14164 current_die = dwarf2_extension (die, &cu))
38d518c9 14165 {
96553a0c
DE
14166 /* We don't use dwarf2_name here so that we can detect the absence
14167 of a name -> anonymous namespace. */
14168 struct attribute *attr = dwarf2_attr (die, DW_AT_name, cu);
14169
14170 if (attr != NULL)
14171 name = DW_STRING (attr);
38d518c9
EZ
14172 if (name != NULL)
14173 break;
14174 }
14175
14176 /* Is it an anonymous namespace? */
14177
14178 *is_anonymous = (name == NULL);
14179 if (*is_anonymous)
2b1dbab0 14180 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
14181
14182 return name;
d9fa45fe
DC
14183}
14184
c906108c
SS
14185/* Extract all information from a DW_TAG_pointer_type DIE and add to
14186 the user defined type vector. */
14187
f792889a 14188static struct type *
e7c27a73 14189read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14190{
5e2b427d 14191 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 14192 struct comp_unit_head *cu_header = &cu->header;
c906108c 14193 struct type *type;
8b2dbe47
KB
14194 struct attribute *attr_byte_size;
14195 struct attribute *attr_address_class;
14196 int byte_size, addr_class;
7e314c57
JK
14197 struct type *target_type;
14198
14199 target_type = die_type (die, cu);
c906108c 14200
7e314c57
JK
14201 /* The die_type call above may have already set the type for this DIE. */
14202 type = get_die_type (die, cu);
14203 if (type)
14204 return type;
14205
14206 type = lookup_pointer_type (target_type);
8b2dbe47 14207
e142c38c 14208 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
14209 if (attr_byte_size)
14210 byte_size = DW_UNSND (attr_byte_size);
c906108c 14211 else
8b2dbe47
KB
14212 byte_size = cu_header->addr_size;
14213
e142c38c 14214 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
14215 if (attr_address_class)
14216 addr_class = DW_UNSND (attr_address_class);
14217 else
14218 addr_class = DW_ADDR_none;
14219
14220 /* If the pointer size or address class is different than the
14221 default, create a type variant marked as such and set the
14222 length accordingly. */
14223 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 14224 {
5e2b427d 14225 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
14226 {
14227 int type_flags;
14228
849957d9 14229 type_flags = gdbarch_address_class_type_flags
5e2b427d 14230 (gdbarch, byte_size, addr_class);
876cecd0
TT
14231 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14232 == 0);
8b2dbe47
KB
14233 type = make_type_with_address_space (type, type_flags);
14234 }
14235 else if (TYPE_LENGTH (type) != byte_size)
14236 {
3e43a32a
MS
14237 complaint (&symfile_complaints,
14238 _("invalid pointer size %d"), byte_size);
8b2dbe47 14239 }
6e70227d 14240 else
9a619af0
MS
14241 {
14242 /* Should we also complain about unhandled address classes? */
14243 }
c906108c 14244 }
8b2dbe47
KB
14245
14246 TYPE_LENGTH (type) = byte_size;
f792889a 14247 return set_die_type (die, type, cu);
c906108c
SS
14248}
14249
14250/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14251 the user defined type vector. */
14252
f792889a 14253static struct type *
e7c27a73 14254read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
14255{
14256 struct type *type;
14257 struct type *to_type;
14258 struct type *domain;
14259
e7c27a73
DJ
14260 to_type = die_type (die, cu);
14261 domain = die_containing_type (die, cu);
0d5de010 14262
7e314c57
JK
14263 /* The calls above may have already set the type for this DIE. */
14264 type = get_die_type (die, cu);
14265 if (type)
14266 return type;
14267
0d5de010
DJ
14268 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14269 type = lookup_methodptr_type (to_type);
7078baeb
TT
14270 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14271 {
14272 struct type *new_type = alloc_type (cu->objfile);
14273
14274 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14275 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14276 TYPE_VARARGS (to_type));
14277 type = lookup_methodptr_type (new_type);
14278 }
0d5de010
DJ
14279 else
14280 type = lookup_memberptr_type (to_type, domain);
c906108c 14281
f792889a 14282 return set_die_type (die, type, cu);
c906108c
SS
14283}
14284
14285/* Extract all information from a DW_TAG_reference_type DIE and add to
14286 the user defined type vector. */
14287
f792889a 14288static struct type *
e7c27a73 14289read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14290{
e7c27a73 14291 struct comp_unit_head *cu_header = &cu->header;
7e314c57 14292 struct type *type, *target_type;
c906108c
SS
14293 struct attribute *attr;
14294
7e314c57
JK
14295 target_type = die_type (die, cu);
14296
14297 /* The die_type call above may have already set the type for this DIE. */
14298 type = get_die_type (die, cu);
14299 if (type)
14300 return type;
14301
14302 type = lookup_reference_type (target_type);
e142c38c 14303 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14304 if (attr)
14305 {
14306 TYPE_LENGTH (type) = DW_UNSND (attr);
14307 }
14308 else
14309 {
107d2387 14310 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 14311 }
f792889a 14312 return set_die_type (die, type, cu);
c906108c
SS
14313}
14314
cf363f18
MW
14315/* Add the given cv-qualifiers to the element type of the array. GCC
14316 outputs DWARF type qualifiers that apply to an array, not the
14317 element type. But GDB relies on the array element type to carry
14318 the cv-qualifiers. This mimics section 6.7.3 of the C99
14319 specification. */
14320
14321static struct type *
14322add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14323 struct type *base_type, int cnst, int voltl)
14324{
14325 struct type *el_type, *inner_array;
14326
14327 base_type = copy_type (base_type);
14328 inner_array = base_type;
14329
14330 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14331 {
14332 TYPE_TARGET_TYPE (inner_array) =
14333 copy_type (TYPE_TARGET_TYPE (inner_array));
14334 inner_array = TYPE_TARGET_TYPE (inner_array);
14335 }
14336
14337 el_type = TYPE_TARGET_TYPE (inner_array);
14338 cnst |= TYPE_CONST (el_type);
14339 voltl |= TYPE_VOLATILE (el_type);
14340 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14341
14342 return set_die_type (die, base_type, cu);
14343}
14344
f792889a 14345static struct type *
e7c27a73 14346read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14347{
f792889a 14348 struct type *base_type, *cv_type;
c906108c 14349
e7c27a73 14350 base_type = die_type (die, cu);
7e314c57
JK
14351
14352 /* The die_type call above may have already set the type for this DIE. */
14353 cv_type = get_die_type (die, cu);
14354 if (cv_type)
14355 return cv_type;
14356
2f608a3a
KW
14357 /* In case the const qualifier is applied to an array type, the element type
14358 is so qualified, not the array type (section 6.7.3 of C99). */
14359 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 14360 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 14361
f792889a
DJ
14362 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14363 return set_die_type (die, cv_type, cu);
c906108c
SS
14364}
14365
f792889a 14366static struct type *
e7c27a73 14367read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14368{
f792889a 14369 struct type *base_type, *cv_type;
c906108c 14370
e7c27a73 14371 base_type = die_type (die, cu);
7e314c57
JK
14372
14373 /* The die_type call above may have already set the type for this DIE. */
14374 cv_type = get_die_type (die, cu);
14375 if (cv_type)
14376 return cv_type;
14377
cf363f18
MW
14378 /* In case the volatile qualifier is applied to an array type, the
14379 element type is so qualified, not the array type (section 6.7.3
14380 of C99). */
14381 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14382 return add_array_cv_type (die, cu, base_type, 0, 1);
14383
f792889a
DJ
14384 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14385 return set_die_type (die, cv_type, cu);
c906108c
SS
14386}
14387
06d66ee9
TT
14388/* Handle DW_TAG_restrict_type. */
14389
14390static struct type *
14391read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14392{
14393 struct type *base_type, *cv_type;
14394
14395 base_type = die_type (die, cu);
14396
14397 /* The die_type call above may have already set the type for this DIE. */
14398 cv_type = get_die_type (die, cu);
14399 if (cv_type)
14400 return cv_type;
14401
14402 cv_type = make_restrict_type (base_type);
14403 return set_die_type (die, cv_type, cu);
14404}
14405
a2c2acaf
MW
14406/* Handle DW_TAG_atomic_type. */
14407
14408static struct type *
14409read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14410{
14411 struct type *base_type, *cv_type;
14412
14413 base_type = die_type (die, cu);
14414
14415 /* The die_type call above may have already set the type for this DIE. */
14416 cv_type = get_die_type (die, cu);
14417 if (cv_type)
14418 return cv_type;
14419
14420 cv_type = make_atomic_type (base_type);
14421 return set_die_type (die, cv_type, cu);
14422}
14423
c906108c
SS
14424/* Extract all information from a DW_TAG_string_type DIE and add to
14425 the user defined type vector. It isn't really a user defined type,
14426 but it behaves like one, with other DIE's using an AT_user_def_type
14427 attribute to reference it. */
14428
f792889a 14429static struct type *
e7c27a73 14430read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14431{
e7c27a73 14432 struct objfile *objfile = cu->objfile;
3b7538c0 14433 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
14434 struct type *type, *range_type, *index_type, *char_type;
14435 struct attribute *attr;
14436 unsigned int length;
14437
e142c38c 14438 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
14439 if (attr)
14440 {
14441 length = DW_UNSND (attr);
14442 }
14443 else
14444 {
0963b4bd 14445 /* Check for the DW_AT_byte_size attribute. */
e142c38c 14446 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
14447 if (attr)
14448 {
14449 length = DW_UNSND (attr);
14450 }
14451 else
14452 {
14453 length = 1;
14454 }
c906108c 14455 }
6ccb9162 14456
46bf5051 14457 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14458 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
14459 char_type = language_string_char_type (cu->language_defn, gdbarch);
14460 type = create_string_type (NULL, char_type, range_type);
6ccb9162 14461
f792889a 14462 return set_die_type (die, type, cu);
c906108c
SS
14463}
14464
4d804846
JB
14465/* Assuming that DIE corresponds to a function, returns nonzero
14466 if the function is prototyped. */
14467
14468static int
14469prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14470{
14471 struct attribute *attr;
14472
14473 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14474 if (attr && (DW_UNSND (attr) != 0))
14475 return 1;
14476
14477 /* The DWARF standard implies that the DW_AT_prototyped attribute
14478 is only meaninful for C, but the concept also extends to other
14479 languages that allow unprototyped functions (Eg: Objective C).
14480 For all other languages, assume that functions are always
14481 prototyped. */
14482 if (cu->language != language_c
14483 && cu->language != language_objc
14484 && cu->language != language_opencl)
14485 return 1;
14486
14487 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14488 prototyped and unprototyped functions; default to prototyped,
14489 since that is more common in modern code (and RealView warns
14490 about unprototyped functions). */
14491 if (producer_is_realview (cu->producer))
14492 return 1;
14493
14494 return 0;
14495}
14496
c906108c
SS
14497/* Handle DIES due to C code like:
14498
14499 struct foo
c5aa993b
JM
14500 {
14501 int (*funcp)(int a, long l);
14502 int b;
14503 };
c906108c 14504
0963b4bd 14505 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 14506
f792889a 14507static struct type *
e7c27a73 14508read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14509{
bb5ed363 14510 struct objfile *objfile = cu->objfile;
0963b4bd
MS
14511 struct type *type; /* Type that this function returns. */
14512 struct type *ftype; /* Function that returns above type. */
c906108c
SS
14513 struct attribute *attr;
14514
e7c27a73 14515 type = die_type (die, cu);
7e314c57
JK
14516
14517 /* The die_type call above may have already set the type for this DIE. */
14518 ftype = get_die_type (die, cu);
14519 if (ftype)
14520 return ftype;
14521
0c8b41f1 14522 ftype = lookup_function_type (type);
c906108c 14523
4d804846 14524 if (prototyped_function_p (die, cu))
a6c727b2 14525 TYPE_PROTOTYPED (ftype) = 1;
c906108c 14526
c055b101
CV
14527 /* Store the calling convention in the type if it's available in
14528 the subroutine die. Otherwise set the calling convention to
14529 the default value DW_CC_normal. */
14530 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
14531 if (attr)
14532 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14533 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14534 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14535 else
14536 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2 14537
743649fd
MW
14538 /* Record whether the function returns normally to its caller or not
14539 if the DWARF producer set that information. */
14540 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14541 if (attr && (DW_UNSND (attr) != 0))
14542 TYPE_NO_RETURN (ftype) = 1;
14543
76c10ea2
GM
14544 /* We need to add the subroutine type to the die immediately so
14545 we don't infinitely recurse when dealing with parameters
0963b4bd 14546 declared as the same subroutine type. */
76c10ea2 14547 set_die_type (die, ftype, cu);
6e70227d 14548
639d11d3 14549 if (die->child != NULL)
c906108c 14550 {
bb5ed363 14551 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 14552 struct die_info *child_die;
8072405b 14553 int nparams, iparams;
c906108c
SS
14554
14555 /* Count the number of parameters.
14556 FIXME: GDB currently ignores vararg functions, but knows about
14557 vararg member functions. */
8072405b 14558 nparams = 0;
639d11d3 14559 child_die = die->child;
c906108c
SS
14560 while (child_die && child_die->tag)
14561 {
14562 if (child_die->tag == DW_TAG_formal_parameter)
14563 nparams++;
14564 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 14565 TYPE_VARARGS (ftype) = 1;
c906108c
SS
14566 child_die = sibling_die (child_die);
14567 }
14568
14569 /* Allocate storage for parameters and fill them in. */
14570 TYPE_NFIELDS (ftype) = nparams;
14571 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 14572 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 14573
8072405b
JK
14574 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14575 even if we error out during the parameters reading below. */
14576 for (iparams = 0; iparams < nparams; iparams++)
14577 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14578
14579 iparams = 0;
639d11d3 14580 child_die = die->child;
c906108c
SS
14581 while (child_die && child_die->tag)
14582 {
14583 if (child_die->tag == DW_TAG_formal_parameter)
14584 {
3ce3b1ba
PA
14585 struct type *arg_type;
14586
14587 /* DWARF version 2 has no clean way to discern C++
14588 static and non-static member functions. G++ helps
14589 GDB by marking the first parameter for non-static
14590 member functions (which is the this pointer) as
14591 artificial. We pass this information to
14592 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14593
14594 DWARF version 3 added DW_AT_object_pointer, which GCC
14595 4.5 does not yet generate. */
e142c38c 14596 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
14597 if (attr)
14598 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14599 else
418835cc
KS
14600 {
14601 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14602
14603 /* GCC/43521: In java, the formal parameter
14604 "this" is sometimes not marked with DW_AT_artificial. */
14605 if (cu->language == language_java)
14606 {
14607 const char *name = dwarf2_name (child_die, cu);
9a619af0 14608
418835cc
KS
14609 if (name && !strcmp (name, "this"))
14610 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14611 }
14612 }
3ce3b1ba
PA
14613 arg_type = die_type (child_die, cu);
14614
14615 /* RealView does not mark THIS as const, which the testsuite
14616 expects. GCC marks THIS as const in method definitions,
14617 but not in the class specifications (GCC PR 43053). */
14618 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14619 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14620 {
14621 int is_this = 0;
14622 struct dwarf2_cu *arg_cu = cu;
14623 const char *name = dwarf2_name (child_die, cu);
14624
14625 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14626 if (attr)
14627 {
14628 /* If the compiler emits this, use it. */
14629 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14630 is_this = 1;
14631 }
14632 else if (name && strcmp (name, "this") == 0)
14633 /* Function definitions will have the argument names. */
14634 is_this = 1;
14635 else if (name == NULL && iparams == 0)
14636 /* Declarations may not have the names, so like
14637 elsewhere in GDB, assume an artificial first
14638 argument is "this". */
14639 is_this = 1;
14640
14641 if (is_this)
14642 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14643 arg_type, 0);
14644 }
14645
14646 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
14647 iparams++;
14648 }
14649 child_die = sibling_die (child_die);
14650 }
14651 }
14652
76c10ea2 14653 return ftype;
c906108c
SS
14654}
14655
f792889a 14656static struct type *
e7c27a73 14657read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14658{
e7c27a73 14659 struct objfile *objfile = cu->objfile;
0114d602 14660 const char *name = NULL;
3c8e0968 14661 struct type *this_type, *target_type;
c906108c 14662
94af9270 14663 name = dwarf2_full_name (NULL, die, cu);
f792889a 14664 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602 14665 TYPE_FLAG_TARGET_STUB, NULL, objfile);
abee88f2 14666 TYPE_NAME (this_type) = name;
f792889a 14667 set_die_type (die, this_type, cu);
3c8e0968
DE
14668 target_type = die_type (die, cu);
14669 if (target_type != this_type)
14670 TYPE_TARGET_TYPE (this_type) = target_type;
14671 else
14672 {
14673 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14674 spec and cause infinite loops in GDB. */
14675 complaint (&symfile_complaints,
14676 _("Self-referential DW_TAG_typedef "
14677 "- DIE at 0x%x [in module %s]"),
4262abfb 14678 die->offset.sect_off, objfile_name (objfile));
3c8e0968
DE
14679 TYPE_TARGET_TYPE (this_type) = NULL;
14680 }
f792889a 14681 return this_type;
c906108c
SS
14682}
14683
14684/* Find a representation of a given base type and install
14685 it in the TYPE field of the die. */
14686
f792889a 14687static struct type *
e7c27a73 14688read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14689{
e7c27a73 14690 struct objfile *objfile = cu->objfile;
c906108c
SS
14691 struct type *type;
14692 struct attribute *attr;
14693 int encoding = 0, size = 0;
15d034d0 14694 const char *name;
6ccb9162
UW
14695 enum type_code code = TYPE_CODE_INT;
14696 int type_flags = 0;
14697 struct type *target_type = NULL;
c906108c 14698
e142c38c 14699 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
14700 if (attr)
14701 {
14702 encoding = DW_UNSND (attr);
14703 }
e142c38c 14704 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14705 if (attr)
14706 {
14707 size = DW_UNSND (attr);
14708 }
39cbfefa 14709 name = dwarf2_name (die, cu);
6ccb9162 14710 if (!name)
c906108c 14711 {
6ccb9162
UW
14712 complaint (&symfile_complaints,
14713 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 14714 }
6ccb9162
UW
14715
14716 switch (encoding)
c906108c 14717 {
6ccb9162
UW
14718 case DW_ATE_address:
14719 /* Turn DW_ATE_address into a void * pointer. */
14720 code = TYPE_CODE_PTR;
14721 type_flags |= TYPE_FLAG_UNSIGNED;
14722 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14723 break;
14724 case DW_ATE_boolean:
14725 code = TYPE_CODE_BOOL;
14726 type_flags |= TYPE_FLAG_UNSIGNED;
14727 break;
14728 case DW_ATE_complex_float:
14729 code = TYPE_CODE_COMPLEX;
14730 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14731 break;
14732 case DW_ATE_decimal_float:
14733 code = TYPE_CODE_DECFLOAT;
14734 break;
14735 case DW_ATE_float:
14736 code = TYPE_CODE_FLT;
14737 break;
14738 case DW_ATE_signed:
14739 break;
14740 case DW_ATE_unsigned:
14741 type_flags |= TYPE_FLAG_UNSIGNED;
3b2b8fea
TT
14742 if (cu->language == language_fortran
14743 && name
61012eef 14744 && startswith (name, "character("))
3b2b8fea 14745 code = TYPE_CODE_CHAR;
6ccb9162
UW
14746 break;
14747 case DW_ATE_signed_char:
6e70227d 14748 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14749 || cu->language == language_pascal
14750 || cu->language == language_fortran)
6ccb9162
UW
14751 code = TYPE_CODE_CHAR;
14752 break;
14753 case DW_ATE_unsigned_char:
868a0084 14754 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14755 || cu->language == language_pascal
14756 || cu->language == language_fortran)
6ccb9162
UW
14757 code = TYPE_CODE_CHAR;
14758 type_flags |= TYPE_FLAG_UNSIGNED;
14759 break;
75079b2b
TT
14760 case DW_ATE_UTF:
14761 /* We just treat this as an integer and then recognize the
14762 type by name elsewhere. */
14763 break;
14764
6ccb9162
UW
14765 default:
14766 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14767 dwarf_type_encoding_name (encoding));
14768 break;
c906108c 14769 }
6ccb9162 14770
0114d602
DJ
14771 type = init_type (code, size, type_flags, NULL, objfile);
14772 TYPE_NAME (type) = name;
6ccb9162
UW
14773 TYPE_TARGET_TYPE (type) = target_type;
14774
0114d602 14775 if (name && strcmp (name, "char") == 0)
876cecd0 14776 TYPE_NOSIGN (type) = 1;
0114d602 14777
f792889a 14778 return set_die_type (die, type, cu);
c906108c
SS
14779}
14780
80180f79
SA
14781/* Parse dwarf attribute if it's a block, reference or constant and put the
14782 resulting value of the attribute into struct bound_prop.
14783 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14784
14785static int
14786attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14787 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14788{
14789 struct dwarf2_property_baton *baton;
14790 struct obstack *obstack = &cu->objfile->objfile_obstack;
14791
14792 if (attr == NULL || prop == NULL)
14793 return 0;
14794
14795 if (attr_form_is_block (attr))
14796 {
14797 baton = obstack_alloc (obstack, sizeof (*baton));
14798 baton->referenced_type = NULL;
14799 baton->locexpr.per_cu = cu->per_cu;
14800 baton->locexpr.size = DW_BLOCK (attr)->size;
14801 baton->locexpr.data = DW_BLOCK (attr)->data;
14802 prop->data.baton = baton;
14803 prop->kind = PROP_LOCEXPR;
14804 gdb_assert (prop->data.baton != NULL);
14805 }
14806 else if (attr_form_is_ref (attr))
14807 {
14808 struct dwarf2_cu *target_cu = cu;
14809 struct die_info *target_die;
14810 struct attribute *target_attr;
14811
14812 target_die = follow_die_ref (die, attr, &target_cu);
14813 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
df25ebbd
JB
14814 if (target_attr == NULL)
14815 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14816 target_cu);
80180f79
SA
14817 if (target_attr == NULL)
14818 return 0;
14819
df25ebbd 14820 switch (target_attr->name)
80180f79 14821 {
df25ebbd
JB
14822 case DW_AT_location:
14823 if (attr_form_is_section_offset (target_attr))
14824 {
14825 baton = obstack_alloc (obstack, sizeof (*baton));
14826 baton->referenced_type = die_type (target_die, target_cu);
14827 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14828 prop->data.baton = baton;
14829 prop->kind = PROP_LOCLIST;
14830 gdb_assert (prop->data.baton != NULL);
14831 }
14832 else if (attr_form_is_block (target_attr))
14833 {
14834 baton = obstack_alloc (obstack, sizeof (*baton));
14835 baton->referenced_type = die_type (target_die, target_cu);
14836 baton->locexpr.per_cu = cu->per_cu;
14837 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14838 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14839 prop->data.baton = baton;
14840 prop->kind = PROP_LOCEXPR;
14841 gdb_assert (prop->data.baton != NULL);
14842 }
14843 else
14844 {
14845 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14846 "dynamic property");
14847 return 0;
14848 }
14849 break;
14850 case DW_AT_data_member_location:
14851 {
14852 LONGEST offset;
14853
14854 if (!handle_data_member_location (target_die, target_cu,
14855 &offset))
14856 return 0;
14857
14858 baton = obstack_alloc (obstack, sizeof (*baton));
6ad395a7
JB
14859 baton->referenced_type = read_type_die (target_die->parent,
14860 target_cu);
df25ebbd
JB
14861 baton->offset_info.offset = offset;
14862 baton->offset_info.type = die_type (target_die, target_cu);
14863 prop->data.baton = baton;
14864 prop->kind = PROP_ADDR_OFFSET;
14865 break;
14866 }
80180f79
SA
14867 }
14868 }
14869 else if (attr_form_is_constant (attr))
14870 {
14871 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14872 prop->kind = PROP_CONST;
14873 }
14874 else
14875 {
14876 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14877 dwarf2_name (die, cu));
14878 return 0;
14879 }
14880
14881 return 1;
14882}
14883
a02abb62
JB
14884/* Read the given DW_AT_subrange DIE. */
14885
f792889a 14886static struct type *
a02abb62
JB
14887read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14888{
4c9ad8c2 14889 struct type *base_type, *orig_base_type;
a02abb62
JB
14890 struct type *range_type;
14891 struct attribute *attr;
729efb13 14892 struct dynamic_prop low, high;
4fae6e18 14893 int low_default_is_valid;
c451ebe5 14894 int high_bound_is_count = 0;
15d034d0 14895 const char *name;
43bbcdc2 14896 LONGEST negative_mask;
e77813c8 14897
4c9ad8c2
TT
14898 orig_base_type = die_type (die, cu);
14899 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14900 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14901 creating the range type, but we use the result of check_typedef
14902 when examining properties of the type. */
14903 base_type = check_typedef (orig_base_type);
a02abb62 14904
7e314c57
JK
14905 /* The die_type call above may have already set the type for this DIE. */
14906 range_type = get_die_type (die, cu);
14907 if (range_type)
14908 return range_type;
14909
729efb13
SA
14910 low.kind = PROP_CONST;
14911 high.kind = PROP_CONST;
14912 high.data.const_val = 0;
14913
4fae6e18
JK
14914 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14915 omitting DW_AT_lower_bound. */
14916 switch (cu->language)
6e70227d 14917 {
4fae6e18
JK
14918 case language_c:
14919 case language_cplus:
729efb13 14920 low.data.const_val = 0;
4fae6e18
JK
14921 low_default_is_valid = 1;
14922 break;
14923 case language_fortran:
729efb13 14924 low.data.const_val = 1;
4fae6e18
JK
14925 low_default_is_valid = 1;
14926 break;
14927 case language_d:
14928 case language_java:
14929 case language_objc:
729efb13 14930 low.data.const_val = 0;
4fae6e18
JK
14931 low_default_is_valid = (cu->header.version >= 4);
14932 break;
14933 case language_ada:
14934 case language_m2:
14935 case language_pascal:
729efb13 14936 low.data.const_val = 1;
4fae6e18
JK
14937 low_default_is_valid = (cu->header.version >= 4);
14938 break;
14939 default:
729efb13 14940 low.data.const_val = 0;
4fae6e18
JK
14941 low_default_is_valid = 0;
14942 break;
a02abb62
JB
14943 }
14944
e142c38c 14945 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 14946 if (attr)
11c1ba78 14947 attr_to_dynamic_prop (attr, die, cu, &low);
4fae6e18
JK
14948 else if (!low_default_is_valid)
14949 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14950 "- DIE at 0x%x [in module %s]"),
4262abfb 14951 die->offset.sect_off, objfile_name (cu->objfile));
a02abb62 14952
e142c38c 14953 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
80180f79 14954 if (!attr_to_dynamic_prop (attr, die, cu, &high))
e77813c8
PM
14955 {
14956 attr = dwarf2_attr (die, DW_AT_count, cu);
c451ebe5 14957 if (attr_to_dynamic_prop (attr, die, cu, &high))
6b662e19 14958 {
c451ebe5
SA
14959 /* If bounds are constant do the final calculation here. */
14960 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14961 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14962 else
14963 high_bound_is_count = 1;
c2ff108b 14964 }
e77813c8
PM
14965 }
14966
14967 /* Dwarf-2 specifications explicitly allows to create subrange types
14968 without specifying a base type.
14969 In that case, the base type must be set to the type of
14970 the lower bound, upper bound or count, in that order, if any of these
14971 three attributes references an object that has a type.
14972 If no base type is found, the Dwarf-2 specifications say that
14973 a signed integer type of size equal to the size of an address should
14974 be used.
14975 For the following C code: `extern char gdb_int [];'
14976 GCC produces an empty range DIE.
14977 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 14978 high bound or count are not yet handled by this code. */
e77813c8
PM
14979 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14980 {
14981 struct objfile *objfile = cu->objfile;
14982 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14983 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14984 struct type *int_type = objfile_type (objfile)->builtin_int;
14985
14986 /* Test "int", "long int", and "long long int" objfile types,
14987 and select the first one having a size above or equal to the
14988 architecture address size. */
14989 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14990 base_type = int_type;
14991 else
14992 {
14993 int_type = objfile_type (objfile)->builtin_long;
14994 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14995 base_type = int_type;
14996 else
14997 {
14998 int_type = objfile_type (objfile)->builtin_long_long;
14999 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15000 base_type = int_type;
15001 }
15002 }
15003 }
a02abb62 15004
dbb9c2b1
JB
15005 /* Normally, the DWARF producers are expected to use a signed
15006 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15007 But this is unfortunately not always the case, as witnessed
15008 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15009 is used instead. To work around that ambiguity, we treat
15010 the bounds as signed, and thus sign-extend their values, when
15011 the base type is signed. */
6e70227d 15012 negative_mask =
43bbcdc2 15013 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
729efb13
SA
15014 if (low.kind == PROP_CONST
15015 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15016 low.data.const_val |= negative_mask;
15017 if (high.kind == PROP_CONST
15018 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15019 high.data.const_val |= negative_mask;
43bbcdc2 15020
729efb13 15021 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 15022
c451ebe5
SA
15023 if (high_bound_is_count)
15024 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15025
c2ff108b
JK
15026 /* Ada expects an empty array on no boundary attributes. */
15027 if (attr == NULL && cu->language != language_ada)
729efb13 15028 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 15029
39cbfefa
DJ
15030 name = dwarf2_name (die, cu);
15031 if (name)
15032 TYPE_NAME (range_type) = name;
6e70227d 15033
e142c38c 15034 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
15035 if (attr)
15036 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15037
7e314c57
JK
15038 set_die_type (die, range_type, cu);
15039
15040 /* set_die_type should be already done. */
b4ba55a1
JB
15041 set_descriptive_type (range_type, die, cu);
15042
7e314c57 15043 return range_type;
a02abb62 15044}
6e70227d 15045
f792889a 15046static struct type *
81a17f79
JB
15047read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15048{
15049 struct type *type;
81a17f79 15050
81a17f79
JB
15051 /* For now, we only support the C meaning of an unspecified type: void. */
15052
0114d602
DJ
15053 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
15054 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 15055
f792889a 15056 return set_die_type (die, type, cu);
81a17f79 15057}
a02abb62 15058
639d11d3
DC
15059/* Read a single die and all its descendents. Set the die's sibling
15060 field to NULL; set other fields in the die correctly, and set all
15061 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15062 location of the info_ptr after reading all of those dies. PARENT
15063 is the parent of the die in question. */
15064
15065static struct die_info *
dee91e82 15066read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
15067 const gdb_byte *info_ptr,
15068 const gdb_byte **new_info_ptr,
dee91e82 15069 struct die_info *parent)
639d11d3
DC
15070{
15071 struct die_info *die;
d521ce57 15072 const gdb_byte *cur_ptr;
639d11d3
DC
15073 int has_children;
15074
bf6af496 15075 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
15076 if (die == NULL)
15077 {
15078 *new_info_ptr = cur_ptr;
15079 return NULL;
15080 }
93311388 15081 store_in_ref_table (die, reader->cu);
639d11d3
DC
15082
15083 if (has_children)
bf6af496 15084 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
15085 else
15086 {
15087 die->child = NULL;
15088 *new_info_ptr = cur_ptr;
15089 }
15090
15091 die->sibling = NULL;
15092 die->parent = parent;
15093 return die;
15094}
15095
15096/* Read a die, all of its descendents, and all of its siblings; set
15097 all of the fields of all of the dies correctly. Arguments are as
15098 in read_die_and_children. */
15099
15100static struct die_info *
bf6af496 15101read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
15102 const gdb_byte *info_ptr,
15103 const gdb_byte **new_info_ptr,
bf6af496 15104 struct die_info *parent)
639d11d3
DC
15105{
15106 struct die_info *first_die, *last_sibling;
d521ce57 15107 const gdb_byte *cur_ptr;
639d11d3 15108
c906108c 15109 cur_ptr = info_ptr;
639d11d3
DC
15110 first_die = last_sibling = NULL;
15111
15112 while (1)
c906108c 15113 {
639d11d3 15114 struct die_info *die
dee91e82 15115 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 15116
1d325ec1 15117 if (die == NULL)
c906108c 15118 {
639d11d3
DC
15119 *new_info_ptr = cur_ptr;
15120 return first_die;
c906108c 15121 }
1d325ec1
DJ
15122
15123 if (!first_die)
15124 first_die = die;
c906108c 15125 else
1d325ec1
DJ
15126 last_sibling->sibling = die;
15127
15128 last_sibling = die;
c906108c 15129 }
c906108c
SS
15130}
15131
bf6af496
DE
15132/* Read a die, all of its descendents, and all of its siblings; set
15133 all of the fields of all of the dies correctly. Arguments are as
15134 in read_die_and_children.
15135 This the main entry point for reading a DIE and all its children. */
15136
15137static struct die_info *
15138read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
15139 const gdb_byte *info_ptr,
15140 const gdb_byte **new_info_ptr,
bf6af496
DE
15141 struct die_info *parent)
15142{
15143 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15144 new_info_ptr, parent);
15145
b4f54984 15146 if (dwarf_die_debug)
bf6af496
DE
15147 {
15148 fprintf_unfiltered (gdb_stdlog,
15149 "Read die from %s@0x%x of %s:\n",
a32a8923 15150 get_section_name (reader->die_section),
bf6af496
DE
15151 (unsigned) (info_ptr - reader->die_section->buffer),
15152 bfd_get_filename (reader->abfd));
b4f54984 15153 dump_die (die, dwarf_die_debug);
bf6af496
DE
15154 }
15155
15156 return die;
15157}
15158
3019eac3
DE
15159/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15160 attributes.
15161 The caller is responsible for filling in the extra attributes
15162 and updating (*DIEP)->num_attrs.
15163 Set DIEP to point to a newly allocated die with its information,
15164 except for its child, sibling, and parent fields.
15165 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 15166
d521ce57 15167static const gdb_byte *
3019eac3 15168read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 15169 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 15170 int *has_children, int num_extra_attrs)
93311388 15171{
b64f50a1
JK
15172 unsigned int abbrev_number, bytes_read, i;
15173 sect_offset offset;
93311388
DE
15174 struct abbrev_info *abbrev;
15175 struct die_info *die;
15176 struct dwarf2_cu *cu = reader->cu;
15177 bfd *abfd = reader->abfd;
15178
b64f50a1 15179 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
15180 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15181 info_ptr += bytes_read;
15182 if (!abbrev_number)
15183 {
15184 *diep = NULL;
15185 *has_children = 0;
15186 return info_ptr;
15187 }
15188
433df2d4 15189 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 15190 if (!abbrev)
348e048f
DE
15191 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15192 abbrev_number,
15193 bfd_get_filename (abfd));
15194
3019eac3 15195 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
15196 die->offset = offset;
15197 die->tag = abbrev->tag;
15198 die->abbrev = abbrev_number;
15199
3019eac3
DE
15200 /* Make the result usable.
15201 The caller needs to update num_attrs after adding the extra
15202 attributes. */
93311388
DE
15203 die->num_attrs = abbrev->num_attrs;
15204
15205 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
15206 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15207 info_ptr);
93311388
DE
15208
15209 *diep = die;
15210 *has_children = abbrev->has_children;
15211 return info_ptr;
15212}
15213
3019eac3
DE
15214/* Read a die and all its attributes.
15215 Set DIEP to point to a newly allocated die with its information,
15216 except for its child, sibling, and parent fields.
15217 Set HAS_CHILDREN to tell whether the die has children or not. */
15218
d521ce57 15219static const gdb_byte *
3019eac3 15220read_full_die (const struct die_reader_specs *reader,
d521ce57 15221 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
15222 int *has_children)
15223{
d521ce57 15224 const gdb_byte *result;
bf6af496
DE
15225
15226 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15227
b4f54984 15228 if (dwarf_die_debug)
bf6af496
DE
15229 {
15230 fprintf_unfiltered (gdb_stdlog,
15231 "Read die from %s@0x%x of %s:\n",
a32a8923 15232 get_section_name (reader->die_section),
bf6af496
DE
15233 (unsigned) (info_ptr - reader->die_section->buffer),
15234 bfd_get_filename (reader->abfd));
b4f54984 15235 dump_die (*diep, dwarf_die_debug);
bf6af496
DE
15236 }
15237
15238 return result;
3019eac3 15239}
433df2d4
DE
15240\f
15241/* Abbreviation tables.
3019eac3 15242
433df2d4 15243 In DWARF version 2, the description of the debugging information is
c906108c
SS
15244 stored in a separate .debug_abbrev section. Before we read any
15245 dies from a section we read in all abbreviations and install them
433df2d4
DE
15246 in a hash table. */
15247
15248/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15249
15250static struct abbrev_info *
15251abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15252{
15253 struct abbrev_info *abbrev;
15254
15255 abbrev = (struct abbrev_info *)
15256 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
15257 memset (abbrev, 0, sizeof (struct abbrev_info));
15258 return abbrev;
15259}
15260
15261/* Add an abbreviation to the table. */
c906108c
SS
15262
15263static void
433df2d4
DE
15264abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15265 unsigned int abbrev_number,
15266 struct abbrev_info *abbrev)
15267{
15268 unsigned int hash_number;
15269
15270 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15271 abbrev->next = abbrev_table->abbrevs[hash_number];
15272 abbrev_table->abbrevs[hash_number] = abbrev;
15273}
dee91e82 15274
433df2d4
DE
15275/* Look up an abbrev in the table.
15276 Returns NULL if the abbrev is not found. */
15277
15278static struct abbrev_info *
15279abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15280 unsigned int abbrev_number)
c906108c 15281{
433df2d4
DE
15282 unsigned int hash_number;
15283 struct abbrev_info *abbrev;
15284
15285 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15286 abbrev = abbrev_table->abbrevs[hash_number];
15287
15288 while (abbrev)
15289 {
15290 if (abbrev->number == abbrev_number)
15291 return abbrev;
15292 abbrev = abbrev->next;
15293 }
15294 return NULL;
15295}
15296
15297/* Read in an abbrev table. */
15298
15299static struct abbrev_table *
15300abbrev_table_read_table (struct dwarf2_section_info *section,
15301 sect_offset offset)
15302{
15303 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 15304 bfd *abfd = get_section_bfd_owner (section);
433df2d4 15305 struct abbrev_table *abbrev_table;
d521ce57 15306 const gdb_byte *abbrev_ptr;
c906108c
SS
15307 struct abbrev_info *cur_abbrev;
15308 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 15309 unsigned int abbrev_form;
f3dd6933
DJ
15310 struct attr_abbrev *cur_attrs;
15311 unsigned int allocated_attrs;
c906108c 15312
70ba0933 15313 abbrev_table = XNEW (struct abbrev_table);
f4dc4d17 15314 abbrev_table->offset = offset;
433df2d4
DE
15315 obstack_init (&abbrev_table->abbrev_obstack);
15316 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15317 (ABBREV_HASH_SIZE
15318 * sizeof (struct abbrev_info *)));
15319 memset (abbrev_table->abbrevs, 0,
15320 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 15321
433df2d4
DE
15322 dwarf2_read_section (objfile, section);
15323 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
15324 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15325 abbrev_ptr += bytes_read;
15326
f3dd6933
DJ
15327 allocated_attrs = ATTR_ALLOC_CHUNK;
15328 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6e70227d 15329
0963b4bd 15330 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
15331 while (abbrev_number)
15332 {
433df2d4 15333 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
15334
15335 /* read in abbrev header */
15336 cur_abbrev->number = abbrev_number;
15337 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15338 abbrev_ptr += bytes_read;
15339 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15340 abbrev_ptr += 1;
15341
15342 /* now read in declarations */
15343 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15344 abbrev_ptr += bytes_read;
15345 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15346 abbrev_ptr += bytes_read;
15347 while (abbrev_name)
15348 {
f3dd6933 15349 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 15350 {
f3dd6933
DJ
15351 allocated_attrs += ATTR_ALLOC_CHUNK;
15352 cur_attrs
15353 = xrealloc (cur_attrs, (allocated_attrs
15354 * sizeof (struct attr_abbrev)));
c906108c 15355 }
ae038cb0 15356
f3dd6933
DJ
15357 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15358 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
15359 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15360 abbrev_ptr += bytes_read;
15361 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15362 abbrev_ptr += bytes_read;
15363 }
15364
433df2d4 15365 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
f3dd6933
DJ
15366 (cur_abbrev->num_attrs
15367 * sizeof (struct attr_abbrev)));
15368 memcpy (cur_abbrev->attrs, cur_attrs,
15369 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15370
433df2d4 15371 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
15372
15373 /* Get next abbreviation.
15374 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
15375 always properly terminated with an abbrev number of 0.
15376 Exit loop if we encounter an abbreviation which we have
15377 already read (which means we are about to read the abbreviations
15378 for the next compile unit) or if the end of the abbreviation
15379 table is reached. */
433df2d4 15380 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
15381 break;
15382 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15383 abbrev_ptr += bytes_read;
433df2d4 15384 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
15385 break;
15386 }
f3dd6933
DJ
15387
15388 xfree (cur_attrs);
433df2d4 15389 return abbrev_table;
c906108c
SS
15390}
15391
433df2d4 15392/* Free the resources held by ABBREV_TABLE. */
c906108c 15393
c906108c 15394static void
433df2d4 15395abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 15396{
433df2d4
DE
15397 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15398 xfree (abbrev_table);
c906108c
SS
15399}
15400
f4dc4d17
DE
15401/* Same as abbrev_table_free but as a cleanup.
15402 We pass in a pointer to the pointer to the table so that we can
15403 set the pointer to NULL when we're done. It also simplifies
73051182 15404 build_type_psymtabs_1. */
f4dc4d17
DE
15405
15406static void
15407abbrev_table_free_cleanup (void *table_ptr)
15408{
15409 struct abbrev_table **abbrev_table_ptr = table_ptr;
15410
15411 if (*abbrev_table_ptr != NULL)
15412 abbrev_table_free (*abbrev_table_ptr);
15413 *abbrev_table_ptr = NULL;
15414}
15415
433df2d4
DE
15416/* Read the abbrev table for CU from ABBREV_SECTION. */
15417
15418static void
15419dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15420 struct dwarf2_section_info *abbrev_section)
c906108c 15421{
433df2d4
DE
15422 cu->abbrev_table =
15423 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15424}
c906108c 15425
433df2d4 15426/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 15427
433df2d4
DE
15428static void
15429dwarf2_free_abbrev_table (void *ptr_to_cu)
15430{
15431 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 15432
a2ce51a0
DE
15433 if (cu->abbrev_table != NULL)
15434 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
15435 /* Set this to NULL so that we SEGV if we try to read it later,
15436 and also because free_comp_unit verifies this is NULL. */
15437 cu->abbrev_table = NULL;
15438}
15439\f
72bf9492
DJ
15440/* Returns nonzero if TAG represents a type that we might generate a partial
15441 symbol for. */
15442
15443static int
15444is_type_tag_for_partial (int tag)
15445{
15446 switch (tag)
15447 {
15448#if 0
15449 /* Some types that would be reasonable to generate partial symbols for,
15450 that we don't at present. */
15451 case DW_TAG_array_type:
15452 case DW_TAG_file_type:
15453 case DW_TAG_ptr_to_member_type:
15454 case DW_TAG_set_type:
15455 case DW_TAG_string_type:
15456 case DW_TAG_subroutine_type:
15457#endif
15458 case DW_TAG_base_type:
15459 case DW_TAG_class_type:
680b30c7 15460 case DW_TAG_interface_type:
72bf9492
DJ
15461 case DW_TAG_enumeration_type:
15462 case DW_TAG_structure_type:
15463 case DW_TAG_subrange_type:
15464 case DW_TAG_typedef:
15465 case DW_TAG_union_type:
15466 return 1;
15467 default:
15468 return 0;
15469 }
15470}
15471
15472/* Load all DIEs that are interesting for partial symbols into memory. */
15473
15474static struct partial_die_info *
dee91e82 15475load_partial_dies (const struct die_reader_specs *reader,
d521ce57 15476 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 15477{
dee91e82 15478 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15479 struct objfile *objfile = cu->objfile;
72bf9492
DJ
15480 struct partial_die_info *part_die;
15481 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15482 struct abbrev_info *abbrev;
15483 unsigned int bytes_read;
5afb4e99 15484 unsigned int load_all = 0;
72bf9492
DJ
15485 int nesting_level = 1;
15486
15487 parent_die = NULL;
15488 last_die = NULL;
15489
7adf1e79
DE
15490 gdb_assert (cu->per_cu != NULL);
15491 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
15492 load_all = 1;
15493
72bf9492
DJ
15494 cu->partial_dies
15495 = htab_create_alloc_ex (cu->header.length / 12,
15496 partial_die_hash,
15497 partial_die_eq,
15498 NULL,
15499 &cu->comp_unit_obstack,
15500 hashtab_obstack_allocate,
15501 dummy_obstack_deallocate);
15502
15503 part_die = obstack_alloc (&cu->comp_unit_obstack,
15504 sizeof (struct partial_die_info));
15505
15506 while (1)
15507 {
15508 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15509
15510 /* A NULL abbrev means the end of a series of children. */
15511 if (abbrev == NULL)
15512 {
15513 if (--nesting_level == 0)
15514 {
15515 /* PART_DIE was probably the last thing allocated on the
15516 comp_unit_obstack, so we could call obstack_free
15517 here. We don't do that because the waste is small,
15518 and will be cleaned up when we're done with this
15519 compilation unit. This way, we're also more robust
15520 against other users of the comp_unit_obstack. */
15521 return first_die;
15522 }
15523 info_ptr += bytes_read;
15524 last_die = parent_die;
15525 parent_die = parent_die->die_parent;
15526 continue;
15527 }
15528
98bfdba5
PA
15529 /* Check for template arguments. We never save these; if
15530 they're seen, we just mark the parent, and go on our way. */
15531 if (parent_die != NULL
15532 && cu->language == language_cplus
15533 && (abbrev->tag == DW_TAG_template_type_param
15534 || abbrev->tag == DW_TAG_template_value_param))
15535 {
15536 parent_die->has_template_arguments = 1;
15537
15538 if (!load_all)
15539 {
15540 /* We don't need a partial DIE for the template argument. */
dee91e82 15541 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15542 continue;
15543 }
15544 }
15545
0d99eb77 15546 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
15547 Skip their other children. */
15548 if (!load_all
15549 && cu->language == language_cplus
15550 && parent_die != NULL
15551 && parent_die->tag == DW_TAG_subprogram)
15552 {
dee91e82 15553 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15554 continue;
15555 }
15556
5afb4e99
DJ
15557 /* Check whether this DIE is interesting enough to save. Normally
15558 we would not be interested in members here, but there may be
15559 later variables referencing them via DW_AT_specification (for
15560 static members). */
15561 if (!load_all
15562 && !is_type_tag_for_partial (abbrev->tag)
72929c62 15563 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
15564 && abbrev->tag != DW_TAG_enumerator
15565 && abbrev->tag != DW_TAG_subprogram
bc30ff58 15566 && abbrev->tag != DW_TAG_lexical_block
72bf9492 15567 && abbrev->tag != DW_TAG_variable
5afb4e99 15568 && abbrev->tag != DW_TAG_namespace
f55ee35c 15569 && abbrev->tag != DW_TAG_module
95554aad 15570 && abbrev->tag != DW_TAG_member
74921315
KS
15571 && abbrev->tag != DW_TAG_imported_unit
15572 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
15573 {
15574 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15575 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
15576 continue;
15577 }
15578
dee91e82
DE
15579 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15580 info_ptr);
72bf9492
DJ
15581
15582 /* This two-pass algorithm for processing partial symbols has a
15583 high cost in cache pressure. Thus, handle some simple cases
15584 here which cover the majority of C partial symbols. DIEs
15585 which neither have specification tags in them, nor could have
15586 specification tags elsewhere pointing at them, can simply be
15587 processed and discarded.
15588
15589 This segment is also optional; scan_partial_symbols and
15590 add_partial_symbol will handle these DIEs if we chain
15591 them in normally. When compilers which do not emit large
15592 quantities of duplicate debug information are more common,
15593 this code can probably be removed. */
15594
15595 /* Any complete simple types at the top level (pretty much all
15596 of them, for a language without namespaces), can be processed
15597 directly. */
15598 if (parent_die == NULL
15599 && part_die->has_specification == 0
15600 && part_die->is_declaration == 0
d8228535 15601 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
15602 || part_die->tag == DW_TAG_base_type
15603 || part_die->tag == DW_TAG_subrange_type))
15604 {
15605 if (building_psymtab && part_die->name != NULL)
04a679b8 15606 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15607 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363
DE
15608 &objfile->static_psymbols,
15609 0, (CORE_ADDR) 0, cu->language, objfile);
dee91e82 15610 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15611 continue;
15612 }
15613
d8228535
JK
15614 /* The exception for DW_TAG_typedef with has_children above is
15615 a workaround of GCC PR debug/47510. In the case of this complaint
15616 type_name_no_tag_or_error will error on such types later.
15617
15618 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15619 it could not find the child DIEs referenced later, this is checked
15620 above. In correct DWARF DW_TAG_typedef should have no children. */
15621
15622 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15623 complaint (&symfile_complaints,
15624 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15625 "- DIE at 0x%x [in module %s]"),
4262abfb 15626 part_die->offset.sect_off, objfile_name (objfile));
d8228535 15627
72bf9492
DJ
15628 /* If we're at the second level, and we're an enumerator, and
15629 our parent has no specification (meaning possibly lives in a
15630 namespace elsewhere), then we can add the partial symbol now
15631 instead of queueing it. */
15632 if (part_die->tag == DW_TAG_enumerator
15633 && parent_die != NULL
15634 && parent_die->die_parent == NULL
15635 && parent_die->tag == DW_TAG_enumeration_type
15636 && parent_die->has_specification == 0)
15637 {
15638 if (part_die->name == NULL)
3e43a32a
MS
15639 complaint (&symfile_complaints,
15640 _("malformed enumerator DIE ignored"));
72bf9492 15641 else if (building_psymtab)
04a679b8 15642 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15643 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
15644 (cu->language == language_cplus
15645 || cu->language == language_java)
bb5ed363
DE
15646 ? &objfile->global_psymbols
15647 : &objfile->static_psymbols,
15648 0, (CORE_ADDR) 0, cu->language, objfile);
72bf9492 15649
dee91e82 15650 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15651 continue;
15652 }
15653
15654 /* We'll save this DIE so link it in. */
15655 part_die->die_parent = parent_die;
15656 part_die->die_sibling = NULL;
15657 part_die->die_child = NULL;
15658
15659 if (last_die && last_die == parent_die)
15660 last_die->die_child = part_die;
15661 else if (last_die)
15662 last_die->die_sibling = part_die;
15663
15664 last_die = part_die;
15665
15666 if (first_die == NULL)
15667 first_die = part_die;
15668
15669 /* Maybe add the DIE to the hash table. Not all DIEs that we
15670 find interesting need to be in the hash table, because we
15671 also have the parent/sibling/child chains; only those that we
15672 might refer to by offset later during partial symbol reading.
15673
15674 For now this means things that might have be the target of a
15675 DW_AT_specification, DW_AT_abstract_origin, or
15676 DW_AT_extension. DW_AT_extension will refer only to
15677 namespaces; DW_AT_abstract_origin refers to functions (and
15678 many things under the function DIE, but we do not recurse
15679 into function DIEs during partial symbol reading) and
15680 possibly variables as well; DW_AT_specification refers to
15681 declarations. Declarations ought to have the DW_AT_declaration
15682 flag. It happens that GCC forgets to put it in sometimes, but
15683 only for functions, not for types.
15684
15685 Adding more things than necessary to the hash table is harmless
15686 except for the performance cost. Adding too few will result in
5afb4e99
DJ
15687 wasted time in find_partial_die, when we reread the compilation
15688 unit with load_all_dies set. */
72bf9492 15689
5afb4e99 15690 if (load_all
72929c62 15691 || abbrev->tag == DW_TAG_constant
5afb4e99 15692 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
15693 || abbrev->tag == DW_TAG_variable
15694 || abbrev->tag == DW_TAG_namespace
15695 || part_die->is_declaration)
15696 {
15697 void **slot;
15698
15699 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 15700 part_die->offset.sect_off, INSERT);
72bf9492
DJ
15701 *slot = part_die;
15702 }
15703
15704 part_die = obstack_alloc (&cu->comp_unit_obstack,
15705 sizeof (struct partial_die_info));
15706
15707 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 15708 we have no reason to follow the children of structures; for other
98bfdba5
PA
15709 languages we have to, so that we can get at method physnames
15710 to infer fully qualified class names, for DW_AT_specification,
15711 and for C++ template arguments. For C++, we also look one level
15712 inside functions to find template arguments (if the name of the
15713 function does not already contain the template arguments).
bc30ff58
JB
15714
15715 For Ada, we need to scan the children of subprograms and lexical
15716 blocks as well because Ada allows the definition of nested
15717 entities that could be interesting for the debugger, such as
15718 nested subprograms for instance. */
72bf9492 15719 if (last_die->has_children
5afb4e99
DJ
15720 && (load_all
15721 || last_die->tag == DW_TAG_namespace
f55ee35c 15722 || last_die->tag == DW_TAG_module
72bf9492 15723 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
15724 || (cu->language == language_cplus
15725 && last_die->tag == DW_TAG_subprogram
15726 && (last_die->name == NULL
15727 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
15728 || (cu->language != language_c
15729 && (last_die->tag == DW_TAG_class_type
680b30c7 15730 || last_die->tag == DW_TAG_interface_type
72bf9492 15731 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
15732 || last_die->tag == DW_TAG_union_type))
15733 || (cu->language == language_ada
15734 && (last_die->tag == DW_TAG_subprogram
15735 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
15736 {
15737 nesting_level++;
15738 parent_die = last_die;
15739 continue;
15740 }
15741
15742 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15743 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
15744
15745 /* Back to the top, do it again. */
15746 }
15747}
15748
c906108c
SS
15749/* Read a minimal amount of information into the minimal die structure. */
15750
d521ce57 15751static const gdb_byte *
dee91e82
DE
15752read_partial_die (const struct die_reader_specs *reader,
15753 struct partial_die_info *part_die,
15754 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 15755 const gdb_byte *info_ptr)
c906108c 15756{
dee91e82 15757 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15758 struct objfile *objfile = cu->objfile;
d521ce57 15759 const gdb_byte *buffer = reader->buffer;
fa238c03 15760 unsigned int i;
c906108c 15761 struct attribute attr;
c5aa993b 15762 int has_low_pc_attr = 0;
c906108c 15763 int has_high_pc_attr = 0;
91da1414 15764 int high_pc_relative = 0;
c906108c 15765
72bf9492 15766 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 15767
b64f50a1 15768 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
15769
15770 info_ptr += abbrev_len;
15771
15772 if (abbrev == NULL)
15773 return info_ptr;
15774
c906108c
SS
15775 part_die->tag = abbrev->tag;
15776 part_die->has_children = abbrev->has_children;
c906108c
SS
15777
15778 for (i = 0; i < abbrev->num_attrs; ++i)
15779 {
dee91e82 15780 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
15781
15782 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 15783 partial symbol table. */
c906108c
SS
15784 switch (attr.name)
15785 {
15786 case DW_AT_name:
71c25dea
TT
15787 switch (part_die->tag)
15788 {
15789 case DW_TAG_compile_unit:
95554aad 15790 case DW_TAG_partial_unit:
348e048f 15791 case DW_TAG_type_unit:
71c25dea
TT
15792 /* Compilation units have a DW_AT_name that is a filename, not
15793 a source language identifier. */
15794 case DW_TAG_enumeration_type:
15795 case DW_TAG_enumerator:
15796 /* These tags always have simple identifiers already; no need
15797 to canonicalize them. */
15798 part_die->name = DW_STRING (&attr);
15799 break;
15800 default:
15801 part_die->name
15802 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
34a68019 15803 &objfile->per_bfd->storage_obstack);
71c25dea
TT
15804 break;
15805 }
c906108c 15806 break;
31ef98ae 15807 case DW_AT_linkage_name:
c906108c 15808 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
15809 /* Note that both forms of linkage name might appear. We
15810 assume they will be the same, and we only store the last
15811 one we see. */
94af9270
KS
15812 if (cu->language == language_ada)
15813 part_die->name = DW_STRING (&attr);
abc72ce4 15814 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
15815 break;
15816 case DW_AT_low_pc:
15817 has_low_pc_attr = 1;
31aa7e4e 15818 part_die->lowpc = attr_value_as_address (&attr);
c906108c
SS
15819 break;
15820 case DW_AT_high_pc:
15821 has_high_pc_attr = 1;
31aa7e4e
JB
15822 part_die->highpc = attr_value_as_address (&attr);
15823 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15824 high_pc_relative = 1;
c906108c
SS
15825 break;
15826 case DW_AT_location:
0963b4bd 15827 /* Support the .debug_loc offsets. */
8e19ed76
PS
15828 if (attr_form_is_block (&attr))
15829 {
95554aad 15830 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 15831 }
3690dd37 15832 else if (attr_form_is_section_offset (&attr))
8e19ed76 15833 {
4d3c2250 15834 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
15835 }
15836 else
15837 {
4d3c2250
KB
15838 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15839 "partial symbol information");
8e19ed76 15840 }
c906108c 15841 break;
c906108c
SS
15842 case DW_AT_external:
15843 part_die->is_external = DW_UNSND (&attr);
15844 break;
15845 case DW_AT_declaration:
15846 part_die->is_declaration = DW_UNSND (&attr);
15847 break;
15848 case DW_AT_type:
15849 part_die->has_type = 1;
15850 break;
15851 case DW_AT_abstract_origin:
15852 case DW_AT_specification:
72bf9492
DJ
15853 case DW_AT_extension:
15854 part_die->has_specification = 1;
c764a876 15855 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
15856 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15857 || cu->per_cu->is_dwz);
c906108c
SS
15858 break;
15859 case DW_AT_sibling:
15860 /* Ignore absolute siblings, they might point outside of
15861 the current compile unit. */
15862 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
15863 complaint (&symfile_complaints,
15864 _("ignoring absolute DW_AT_sibling"));
c906108c 15865 else
b9502d3f
WN
15866 {
15867 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15868 const gdb_byte *sibling_ptr = buffer + off;
15869
15870 if (sibling_ptr < info_ptr)
15871 complaint (&symfile_complaints,
15872 _("DW_AT_sibling points backwards"));
22869d73
KS
15873 else if (sibling_ptr > reader->buffer_end)
15874 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
15875 else
15876 part_die->sibling = sibling_ptr;
15877 }
c906108c 15878 break;
fa4028e9
JB
15879 case DW_AT_byte_size:
15880 part_die->has_byte_size = 1;
15881 break;
ff908ebf
AW
15882 case DW_AT_const_value:
15883 part_die->has_const_value = 1;
15884 break;
68511cec
CES
15885 case DW_AT_calling_convention:
15886 /* DWARF doesn't provide a way to identify a program's source-level
15887 entry point. DW_AT_calling_convention attributes are only meant
15888 to describe functions' calling conventions.
15889
15890 However, because it's a necessary piece of information in
15891 Fortran, and because DW_CC_program is the only piece of debugging
15892 information whose definition refers to a 'main program' at all,
15893 several compilers have begun marking Fortran main programs with
15894 DW_CC_program --- even when those functions use the standard
15895 calling conventions.
15896
15897 So until DWARF specifies a way to provide this information and
15898 compilers pick up the new representation, we'll support this
15899 practice. */
15900 if (DW_UNSND (&attr) == DW_CC_program
15901 && cu->language == language_fortran)
3d548a53 15902 set_objfile_main_name (objfile, part_die->name, language_fortran);
68511cec 15903 break;
481860b3
GB
15904 case DW_AT_inline:
15905 if (DW_UNSND (&attr) == DW_INL_inlined
15906 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15907 part_die->may_be_inlined = 1;
15908 break;
95554aad
TT
15909
15910 case DW_AT_import:
15911 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
15912 {
15913 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15914 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15915 || cu->per_cu->is_dwz);
15916 }
95554aad
TT
15917 break;
15918
c906108c
SS
15919 default:
15920 break;
15921 }
15922 }
15923
91da1414
MW
15924 if (high_pc_relative)
15925 part_die->highpc += part_die->lowpc;
15926
9373cf26
JK
15927 if (has_low_pc_attr && has_high_pc_attr)
15928 {
15929 /* When using the GNU linker, .gnu.linkonce. sections are used to
15930 eliminate duplicate copies of functions and vtables and such.
15931 The linker will arbitrarily choose one and discard the others.
15932 The AT_*_pc values for such functions refer to local labels in
15933 these sections. If the section from that file was discarded, the
15934 labels are not in the output, so the relocs get a value of 0.
15935 If this is a discarded function, mark the pc bounds as invalid,
15936 so that GDB will ignore it. */
15937 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15938 {
bb5ed363 15939 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15940
15941 complaint (&symfile_complaints,
15942 _("DW_AT_low_pc %s is zero "
15943 "for DIE at 0x%x [in module %s]"),
15944 paddress (gdbarch, part_die->lowpc),
4262abfb 15945 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15946 }
15947 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15948 else if (part_die->lowpc >= part_die->highpc)
15949 {
bb5ed363 15950 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15951
15952 complaint (&symfile_complaints,
15953 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15954 "for DIE at 0x%x [in module %s]"),
15955 paddress (gdbarch, part_die->lowpc),
15956 paddress (gdbarch, part_die->highpc),
4262abfb 15957 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15958 }
15959 else
15960 part_die->has_pc_info = 1;
15961 }
85cbf3d3 15962
c906108c
SS
15963 return info_ptr;
15964}
15965
72bf9492
DJ
15966/* Find a cached partial DIE at OFFSET in CU. */
15967
15968static struct partial_die_info *
b64f50a1 15969find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
15970{
15971 struct partial_die_info *lookup_die = NULL;
15972 struct partial_die_info part_die;
15973
15974 part_die.offset = offset;
b64f50a1
JK
15975 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15976 offset.sect_off);
72bf9492 15977
72bf9492
DJ
15978 return lookup_die;
15979}
15980
348e048f
DE
15981/* Find a partial DIE at OFFSET, which may or may not be in CU,
15982 except in the case of .debug_types DIEs which do not reference
15983 outside their CU (they do however referencing other types via
55f1336d 15984 DW_FORM_ref_sig8). */
72bf9492
DJ
15985
15986static struct partial_die_info *
36586728 15987find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 15988{
bb5ed363 15989 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
15990 struct dwarf2_per_cu_data *per_cu = NULL;
15991 struct partial_die_info *pd = NULL;
72bf9492 15992
36586728
TT
15993 if (offset_in_dwz == cu->per_cu->is_dwz
15994 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
15995 {
15996 pd = find_partial_die_in_comp_unit (offset, cu);
15997 if (pd != NULL)
15998 return pd;
0d99eb77
DE
15999 /* We missed recording what we needed.
16000 Load all dies and try again. */
16001 per_cu = cu->per_cu;
5afb4e99 16002 }
0d99eb77
DE
16003 else
16004 {
16005 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 16006 if (cu->per_cu->is_debug_types)
0d99eb77
DE
16007 {
16008 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16009 " external reference to offset 0x%lx [in module %s].\n"),
16010 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16011 bfd_get_filename (objfile->obfd));
16012 }
36586728
TT
16013 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16014 objfile);
72bf9492 16015
0d99eb77
DE
16016 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16017 load_partial_comp_unit (per_cu);
ae038cb0 16018
0d99eb77
DE
16019 per_cu->cu->last_used = 0;
16020 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16021 }
5afb4e99 16022
dee91e82
DE
16023 /* If we didn't find it, and not all dies have been loaded,
16024 load them all and try again. */
16025
5afb4e99
DJ
16026 if (pd == NULL && per_cu->load_all_dies == 0)
16027 {
5afb4e99 16028 per_cu->load_all_dies = 1;
fd820528
DE
16029
16030 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16031 THIS_CU->cu may already be in use. So we can't just free it and
16032 replace its DIEs with the ones we read in. Instead, we leave those
16033 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16034 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16035 set. */
dee91e82 16036 load_partial_comp_unit (per_cu);
5afb4e99
DJ
16037
16038 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16039 }
16040
16041 if (pd == NULL)
16042 internal_error (__FILE__, __LINE__,
3e43a32a
MS
16043 _("could not find partial DIE 0x%x "
16044 "in cache [from module %s]\n"),
b64f50a1 16045 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 16046 return pd;
72bf9492
DJ
16047}
16048
abc72ce4
DE
16049/* See if we can figure out if the class lives in a namespace. We do
16050 this by looking for a member function; its demangled name will
16051 contain namespace info, if there is any. */
16052
16053static void
16054guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16055 struct dwarf2_cu *cu)
16056{
16057 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16058 what template types look like, because the demangler
16059 frequently doesn't give the same name as the debug info. We
16060 could fix this by only using the demangled name to get the
16061 prefix (but see comment in read_structure_type). */
16062
16063 struct partial_die_info *real_pdi;
16064 struct partial_die_info *child_pdi;
16065
16066 /* If this DIE (this DIE's specification, if any) has a parent, then
16067 we should not do this. We'll prepend the parent's fully qualified
16068 name when we create the partial symbol. */
16069
16070 real_pdi = struct_pdi;
16071 while (real_pdi->has_specification)
36586728
TT
16072 real_pdi = find_partial_die (real_pdi->spec_offset,
16073 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
16074
16075 if (real_pdi->die_parent != NULL)
16076 return;
16077
16078 for (child_pdi = struct_pdi->die_child;
16079 child_pdi != NULL;
16080 child_pdi = child_pdi->die_sibling)
16081 {
16082 if (child_pdi->tag == DW_TAG_subprogram
16083 && child_pdi->linkage_name != NULL)
16084 {
16085 char *actual_class_name
16086 = language_class_name_from_physname (cu->language_defn,
16087 child_pdi->linkage_name);
16088 if (actual_class_name != NULL)
16089 {
16090 struct_pdi->name
34a68019 16091 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
10f0c4bb
TT
16092 actual_class_name,
16093 strlen (actual_class_name));
abc72ce4
DE
16094 xfree (actual_class_name);
16095 }
16096 break;
16097 }
16098 }
16099}
16100
72bf9492
DJ
16101/* Adjust PART_DIE before generating a symbol for it. This function
16102 may set the is_external flag or change the DIE's name. */
16103
16104static void
16105fixup_partial_die (struct partial_die_info *part_die,
16106 struct dwarf2_cu *cu)
16107{
abc72ce4
DE
16108 /* Once we've fixed up a die, there's no point in doing so again.
16109 This also avoids a memory leak if we were to call
16110 guess_partial_die_structure_name multiple times. */
16111 if (part_die->fixup_called)
16112 return;
16113
72bf9492
DJ
16114 /* If we found a reference attribute and the DIE has no name, try
16115 to find a name in the referred to DIE. */
16116
16117 if (part_die->name == NULL && part_die->has_specification)
16118 {
16119 struct partial_die_info *spec_die;
72bf9492 16120
36586728
TT
16121 spec_die = find_partial_die (part_die->spec_offset,
16122 part_die->spec_is_dwz, cu);
72bf9492 16123
10b3939b 16124 fixup_partial_die (spec_die, cu);
72bf9492
DJ
16125
16126 if (spec_die->name)
16127 {
16128 part_die->name = spec_die->name;
16129
16130 /* Copy DW_AT_external attribute if it is set. */
16131 if (spec_die->is_external)
16132 part_die->is_external = spec_die->is_external;
16133 }
16134 }
16135
16136 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
16137
16138 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 16139 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 16140
abc72ce4
DE
16141 /* If there is no parent die to provide a namespace, and there are
16142 children, see if we can determine the namespace from their linkage
122d1940 16143 name. */
abc72ce4 16144 if (cu->language == language_cplus
8b70b953 16145 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
16146 && part_die->die_parent == NULL
16147 && part_die->has_children
16148 && (part_die->tag == DW_TAG_class_type
16149 || part_die->tag == DW_TAG_structure_type
16150 || part_die->tag == DW_TAG_union_type))
16151 guess_partial_die_structure_name (part_die, cu);
16152
53832f31
TT
16153 /* GCC might emit a nameless struct or union that has a linkage
16154 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16155 if (part_die->name == NULL
96408a79
SA
16156 && (part_die->tag == DW_TAG_class_type
16157 || part_die->tag == DW_TAG_interface_type
16158 || part_die->tag == DW_TAG_structure_type
16159 || part_die->tag == DW_TAG_union_type)
53832f31
TT
16160 && part_die->linkage_name != NULL)
16161 {
16162 char *demangled;
16163
8de20a37 16164 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
16165 if (demangled)
16166 {
96408a79
SA
16167 const char *base;
16168
16169 /* Strip any leading namespaces/classes, keep only the base name.
16170 DW_AT_name for named DIEs does not contain the prefixes. */
16171 base = strrchr (demangled, ':');
16172 if (base && base > demangled && base[-1] == ':')
16173 base++;
16174 else
16175 base = demangled;
16176
34a68019
TT
16177 part_die->name
16178 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16179 base, strlen (base));
53832f31
TT
16180 xfree (demangled);
16181 }
16182 }
16183
abc72ce4 16184 part_die->fixup_called = 1;
72bf9492
DJ
16185}
16186
a8329558 16187/* Read an attribute value described by an attribute form. */
c906108c 16188
d521ce57 16189static const gdb_byte *
dee91e82
DE
16190read_attribute_value (const struct die_reader_specs *reader,
16191 struct attribute *attr, unsigned form,
d521ce57 16192 const gdb_byte *info_ptr)
c906108c 16193{
dee91e82 16194 struct dwarf2_cu *cu = reader->cu;
3e29f34a
MR
16195 struct objfile *objfile = cu->objfile;
16196 struct gdbarch *gdbarch = get_objfile_arch (objfile);
dee91e82 16197 bfd *abfd = reader->abfd;
e7c27a73 16198 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16199 unsigned int bytes_read;
16200 struct dwarf_block *blk;
16201
a8329558
KW
16202 attr->form = form;
16203 switch (form)
c906108c 16204 {
c906108c 16205 case DW_FORM_ref_addr:
ae411497 16206 if (cu->header.version == 2)
4568ecf9 16207 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 16208 else
4568ecf9
DE
16209 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16210 &cu->header, &bytes_read);
ae411497
TT
16211 info_ptr += bytes_read;
16212 break;
36586728
TT
16213 case DW_FORM_GNU_ref_alt:
16214 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16215 info_ptr += bytes_read;
16216 break;
ae411497 16217 case DW_FORM_addr:
e7c27a73 16218 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
3e29f34a 16219 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
107d2387 16220 info_ptr += bytes_read;
c906108c
SS
16221 break;
16222 case DW_FORM_block2:
7b5a2f43 16223 blk = dwarf_alloc_block (cu);
c906108c
SS
16224 blk->size = read_2_bytes (abfd, info_ptr);
16225 info_ptr += 2;
16226 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16227 info_ptr += blk->size;
16228 DW_BLOCK (attr) = blk;
16229 break;
16230 case DW_FORM_block4:
7b5a2f43 16231 blk = dwarf_alloc_block (cu);
c906108c
SS
16232 blk->size = read_4_bytes (abfd, info_ptr);
16233 info_ptr += 4;
16234 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16235 info_ptr += blk->size;
16236 DW_BLOCK (attr) = blk;
16237 break;
16238 case DW_FORM_data2:
16239 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16240 info_ptr += 2;
16241 break;
16242 case DW_FORM_data4:
16243 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16244 info_ptr += 4;
16245 break;
16246 case DW_FORM_data8:
16247 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16248 info_ptr += 8;
16249 break;
2dc7f7b3
TT
16250 case DW_FORM_sec_offset:
16251 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16252 info_ptr += bytes_read;
16253 break;
c906108c 16254 case DW_FORM_string:
9b1c24c8 16255 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 16256 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
16257 info_ptr += bytes_read;
16258 break;
4bdf3d34 16259 case DW_FORM_strp:
36586728
TT
16260 if (!cu->per_cu->is_dwz)
16261 {
16262 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16263 &bytes_read);
16264 DW_STRING_IS_CANONICAL (attr) = 0;
16265 info_ptr += bytes_read;
16266 break;
16267 }
16268 /* FALLTHROUGH */
16269 case DW_FORM_GNU_strp_alt:
16270 {
16271 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16272 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16273 &bytes_read);
16274
16275 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16276 DW_STRING_IS_CANONICAL (attr) = 0;
16277 info_ptr += bytes_read;
16278 }
4bdf3d34 16279 break;
2dc7f7b3 16280 case DW_FORM_exprloc:
c906108c 16281 case DW_FORM_block:
7b5a2f43 16282 blk = dwarf_alloc_block (cu);
c906108c
SS
16283 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16284 info_ptr += bytes_read;
16285 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16286 info_ptr += blk->size;
16287 DW_BLOCK (attr) = blk;
16288 break;
16289 case DW_FORM_block1:
7b5a2f43 16290 blk = dwarf_alloc_block (cu);
c906108c
SS
16291 blk->size = read_1_byte (abfd, info_ptr);
16292 info_ptr += 1;
16293 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16294 info_ptr += blk->size;
16295 DW_BLOCK (attr) = blk;
16296 break;
16297 case DW_FORM_data1:
16298 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16299 info_ptr += 1;
16300 break;
16301 case DW_FORM_flag:
16302 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16303 info_ptr += 1;
16304 break;
2dc7f7b3
TT
16305 case DW_FORM_flag_present:
16306 DW_UNSND (attr) = 1;
16307 break;
c906108c
SS
16308 case DW_FORM_sdata:
16309 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16310 info_ptr += bytes_read;
16311 break;
16312 case DW_FORM_udata:
16313 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16314 info_ptr += bytes_read;
16315 break;
16316 case DW_FORM_ref1:
4568ecf9
DE
16317 DW_UNSND (attr) = (cu->header.offset.sect_off
16318 + read_1_byte (abfd, info_ptr));
c906108c
SS
16319 info_ptr += 1;
16320 break;
16321 case DW_FORM_ref2:
4568ecf9
DE
16322 DW_UNSND (attr) = (cu->header.offset.sect_off
16323 + read_2_bytes (abfd, info_ptr));
c906108c
SS
16324 info_ptr += 2;
16325 break;
16326 case DW_FORM_ref4:
4568ecf9
DE
16327 DW_UNSND (attr) = (cu->header.offset.sect_off
16328 + read_4_bytes (abfd, info_ptr));
c906108c
SS
16329 info_ptr += 4;
16330 break;
613e1657 16331 case DW_FORM_ref8:
4568ecf9
DE
16332 DW_UNSND (attr) = (cu->header.offset.sect_off
16333 + read_8_bytes (abfd, info_ptr));
613e1657
KB
16334 info_ptr += 8;
16335 break;
55f1336d 16336 case DW_FORM_ref_sig8:
ac9ec31b 16337 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
16338 info_ptr += 8;
16339 break;
c906108c 16340 case DW_FORM_ref_udata:
4568ecf9
DE
16341 DW_UNSND (attr) = (cu->header.offset.sect_off
16342 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
16343 info_ptr += bytes_read;
16344 break;
c906108c 16345 case DW_FORM_indirect:
a8329558
KW
16346 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16347 info_ptr += bytes_read;
dee91e82 16348 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
a8329558 16349 break;
3019eac3
DE
16350 case DW_FORM_GNU_addr_index:
16351 if (reader->dwo_file == NULL)
16352 {
16353 /* For now flag a hard error.
16354 Later we can turn this into a complaint. */
16355 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16356 dwarf_form_name (form),
16357 bfd_get_filename (abfd));
16358 }
16359 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16360 info_ptr += bytes_read;
16361 break;
16362 case DW_FORM_GNU_str_index:
16363 if (reader->dwo_file == NULL)
16364 {
16365 /* For now flag a hard error.
16366 Later we can turn this into a complaint if warranted. */
16367 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16368 dwarf_form_name (form),
16369 bfd_get_filename (abfd));
16370 }
16371 {
16372 ULONGEST str_index =
16373 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16374
342587c4 16375 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
16376 DW_STRING_IS_CANONICAL (attr) = 0;
16377 info_ptr += bytes_read;
16378 }
16379 break;
c906108c 16380 default:
8a3fe4f8 16381 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
16382 dwarf_form_name (form),
16383 bfd_get_filename (abfd));
c906108c 16384 }
28e94949 16385
36586728 16386 /* Super hack. */
7771576e 16387 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
16388 attr->form = DW_FORM_GNU_ref_alt;
16389
28e94949
JB
16390 /* We have seen instances where the compiler tried to emit a byte
16391 size attribute of -1 which ended up being encoded as an unsigned
16392 0xffffffff. Although 0xffffffff is technically a valid size value,
16393 an object of this size seems pretty unlikely so we can relatively
16394 safely treat these cases as if the size attribute was invalid and
16395 treat them as zero by default. */
16396 if (attr->name == DW_AT_byte_size
16397 && form == DW_FORM_data4
16398 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
16399 {
16400 complaint
16401 (&symfile_complaints,
43bbcdc2
PH
16402 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16403 hex_string (DW_UNSND (attr)));
01c66ae6
JB
16404 DW_UNSND (attr) = 0;
16405 }
28e94949 16406
c906108c
SS
16407 return info_ptr;
16408}
16409
a8329558
KW
16410/* Read an attribute described by an abbreviated attribute. */
16411
d521ce57 16412static const gdb_byte *
dee91e82
DE
16413read_attribute (const struct die_reader_specs *reader,
16414 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 16415 const gdb_byte *info_ptr)
a8329558
KW
16416{
16417 attr->name = abbrev->name;
dee91e82 16418 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
a8329558
KW
16419}
16420
0963b4bd 16421/* Read dwarf information from a buffer. */
c906108c
SS
16422
16423static unsigned int
a1855c1d 16424read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16425{
fe1b8b76 16426 return bfd_get_8 (abfd, buf);
c906108c
SS
16427}
16428
16429static int
a1855c1d 16430read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16431{
fe1b8b76 16432 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
16433}
16434
16435static unsigned int
a1855c1d 16436read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16437{
fe1b8b76 16438 return bfd_get_16 (abfd, buf);
c906108c
SS
16439}
16440
21ae7a4d 16441static int
a1855c1d 16442read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16443{
16444 return bfd_get_signed_16 (abfd, buf);
16445}
16446
c906108c 16447static unsigned int
a1855c1d 16448read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16449{
fe1b8b76 16450 return bfd_get_32 (abfd, buf);
c906108c
SS
16451}
16452
21ae7a4d 16453static int
a1855c1d 16454read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16455{
16456 return bfd_get_signed_32 (abfd, buf);
16457}
16458
93311388 16459static ULONGEST
a1855c1d 16460read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16461{
fe1b8b76 16462 return bfd_get_64 (abfd, buf);
c906108c
SS
16463}
16464
16465static CORE_ADDR
d521ce57 16466read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 16467 unsigned int *bytes_read)
c906108c 16468{
e7c27a73 16469 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16470 CORE_ADDR retval = 0;
16471
107d2387 16472 if (cu_header->signed_addr_p)
c906108c 16473 {
107d2387
AC
16474 switch (cu_header->addr_size)
16475 {
16476 case 2:
fe1b8b76 16477 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
16478 break;
16479 case 4:
fe1b8b76 16480 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
16481 break;
16482 case 8:
fe1b8b76 16483 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
16484 break;
16485 default:
8e65ff28 16486 internal_error (__FILE__, __LINE__,
e2e0b3e5 16487 _("read_address: bad switch, signed [in module %s]"),
659b0389 16488 bfd_get_filename (abfd));
107d2387
AC
16489 }
16490 }
16491 else
16492 {
16493 switch (cu_header->addr_size)
16494 {
16495 case 2:
fe1b8b76 16496 retval = bfd_get_16 (abfd, buf);
107d2387
AC
16497 break;
16498 case 4:
fe1b8b76 16499 retval = bfd_get_32 (abfd, buf);
107d2387
AC
16500 break;
16501 case 8:
fe1b8b76 16502 retval = bfd_get_64 (abfd, buf);
107d2387
AC
16503 break;
16504 default:
8e65ff28 16505 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
16506 _("read_address: bad switch, "
16507 "unsigned [in module %s]"),
659b0389 16508 bfd_get_filename (abfd));
107d2387 16509 }
c906108c 16510 }
64367e0a 16511
107d2387
AC
16512 *bytes_read = cu_header->addr_size;
16513 return retval;
c906108c
SS
16514}
16515
f7ef9339 16516/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
16517 specification allows the initial length to take up either 4 bytes
16518 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16519 bytes describe the length and all offsets will be 8 bytes in length
16520 instead of 4.
16521
f7ef9339
KB
16522 An older, non-standard 64-bit format is also handled by this
16523 function. The older format in question stores the initial length
16524 as an 8-byte quantity without an escape value. Lengths greater
16525 than 2^32 aren't very common which means that the initial 4 bytes
16526 is almost always zero. Since a length value of zero doesn't make
16527 sense for the 32-bit format, this initial zero can be considered to
16528 be an escape value which indicates the presence of the older 64-bit
16529 format. As written, the code can't detect (old format) lengths
917c78fc
MK
16530 greater than 4GB. If it becomes necessary to handle lengths
16531 somewhat larger than 4GB, we could allow other small values (such
16532 as the non-sensical values of 1, 2, and 3) to also be used as
16533 escape values indicating the presence of the old format.
f7ef9339 16534
917c78fc
MK
16535 The value returned via bytes_read should be used to increment the
16536 relevant pointer after calling read_initial_length().
c764a876 16537
613e1657
KB
16538 [ Note: read_initial_length() and read_offset() are based on the
16539 document entitled "DWARF Debugging Information Format", revision
f7ef9339 16540 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
16541 from:
16542
f7ef9339 16543 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 16544
613e1657
KB
16545 This document is only a draft and is subject to change. (So beware.)
16546
f7ef9339 16547 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
16548 determined empirically by examining 64-bit ELF files produced by
16549 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
16550
16551 - Kevin, July 16, 2002
613e1657
KB
16552 ] */
16553
16554static LONGEST
d521ce57 16555read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 16556{
fe1b8b76 16557 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 16558
dd373385 16559 if (length == 0xffffffff)
613e1657 16560 {
fe1b8b76 16561 length = bfd_get_64 (abfd, buf + 4);
613e1657 16562 *bytes_read = 12;
613e1657 16563 }
dd373385 16564 else if (length == 0)
f7ef9339 16565 {
dd373385 16566 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 16567 length = bfd_get_64 (abfd, buf);
f7ef9339 16568 *bytes_read = 8;
f7ef9339 16569 }
613e1657
KB
16570 else
16571 {
16572 *bytes_read = 4;
613e1657
KB
16573 }
16574
c764a876
DE
16575 return length;
16576}
dd373385 16577
c764a876
DE
16578/* Cover function for read_initial_length.
16579 Returns the length of the object at BUF, and stores the size of the
16580 initial length in *BYTES_READ and stores the size that offsets will be in
16581 *OFFSET_SIZE.
16582 If the initial length size is not equivalent to that specified in
16583 CU_HEADER then issue a complaint.
16584 This is useful when reading non-comp-unit headers. */
dd373385 16585
c764a876 16586static LONGEST
d521ce57 16587read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
16588 const struct comp_unit_head *cu_header,
16589 unsigned int *bytes_read,
16590 unsigned int *offset_size)
16591{
16592 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16593
16594 gdb_assert (cu_header->initial_length_size == 4
16595 || cu_header->initial_length_size == 8
16596 || cu_header->initial_length_size == 12);
16597
16598 if (cu_header->initial_length_size != *bytes_read)
16599 complaint (&symfile_complaints,
16600 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 16601
c764a876 16602 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 16603 return length;
613e1657
KB
16604}
16605
16606/* Read an offset from the data stream. The size of the offset is
917c78fc 16607 given by cu_header->offset_size. */
613e1657
KB
16608
16609static LONGEST
d521ce57
TT
16610read_offset (bfd *abfd, const gdb_byte *buf,
16611 const struct comp_unit_head *cu_header,
891d2f0b 16612 unsigned int *bytes_read)
c764a876
DE
16613{
16614 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 16615
c764a876
DE
16616 *bytes_read = cu_header->offset_size;
16617 return offset;
16618}
16619
16620/* Read an offset from the data stream. */
16621
16622static LONGEST
d521ce57 16623read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
16624{
16625 LONGEST retval = 0;
16626
c764a876 16627 switch (offset_size)
613e1657
KB
16628 {
16629 case 4:
fe1b8b76 16630 retval = bfd_get_32 (abfd, buf);
613e1657
KB
16631 break;
16632 case 8:
fe1b8b76 16633 retval = bfd_get_64 (abfd, buf);
613e1657
KB
16634 break;
16635 default:
8e65ff28 16636 internal_error (__FILE__, __LINE__,
c764a876 16637 _("read_offset_1: bad switch [in module %s]"),
659b0389 16638 bfd_get_filename (abfd));
613e1657
KB
16639 }
16640
917c78fc 16641 return retval;
613e1657
KB
16642}
16643
d521ce57
TT
16644static const gdb_byte *
16645read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
16646{
16647 /* If the size of a host char is 8 bits, we can return a pointer
16648 to the buffer, otherwise we have to copy the data to a buffer
16649 allocated on the temporary obstack. */
4bdf3d34 16650 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 16651 return buf;
c906108c
SS
16652}
16653
d521ce57
TT
16654static const char *
16655read_direct_string (bfd *abfd, const gdb_byte *buf,
16656 unsigned int *bytes_read_ptr)
c906108c
SS
16657{
16658 /* If the size of a host char is 8 bits, we can return a pointer
16659 to the string, otherwise we have to copy the string to a buffer
16660 allocated on the temporary obstack. */
4bdf3d34 16661 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
16662 if (*buf == '\0')
16663 {
16664 *bytes_read_ptr = 1;
16665 return NULL;
16666 }
d521ce57
TT
16667 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16668 return (const char *) buf;
4bdf3d34
JJ
16669}
16670
d521ce57 16671static const char *
cf2c3c16 16672read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 16673{
be391dca 16674 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 16675 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
16676 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16677 bfd_get_filename (abfd));
dce234bc 16678 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
16679 error (_("DW_FORM_strp pointing outside of "
16680 ".debug_str section [in module %s]"),
16681 bfd_get_filename (abfd));
4bdf3d34 16682 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 16683 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 16684 return NULL;
d521ce57 16685 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
16686}
16687
36586728
TT
16688/* Read a string at offset STR_OFFSET in the .debug_str section from
16689 the .dwz file DWZ. Throw an error if the offset is too large. If
16690 the string consists of a single NUL byte, return NULL; otherwise
16691 return a pointer to the string. */
16692
d521ce57 16693static const char *
36586728
TT
16694read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16695{
16696 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16697
16698 if (dwz->str.buffer == NULL)
16699 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16700 "section [in module %s]"),
16701 bfd_get_filename (dwz->dwz_bfd));
16702 if (str_offset >= dwz->str.size)
16703 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16704 ".debug_str section [in module %s]"),
16705 bfd_get_filename (dwz->dwz_bfd));
16706 gdb_assert (HOST_CHAR_BIT == 8);
16707 if (dwz->str.buffer[str_offset] == '\0')
16708 return NULL;
d521ce57 16709 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
16710}
16711
d521ce57
TT
16712static const char *
16713read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
16714 const struct comp_unit_head *cu_header,
16715 unsigned int *bytes_read_ptr)
16716{
16717 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16718
16719 return read_indirect_string_at_offset (abfd, str_offset);
16720}
16721
12df843f 16722static ULONGEST
d521ce57
TT
16723read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16724 unsigned int *bytes_read_ptr)
c906108c 16725{
12df843f 16726 ULONGEST result;
ce5d95e1 16727 unsigned int num_read;
c906108c
SS
16728 int i, shift;
16729 unsigned char byte;
16730
16731 result = 0;
16732 shift = 0;
16733 num_read = 0;
16734 i = 0;
16735 while (1)
16736 {
fe1b8b76 16737 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16738 buf++;
16739 num_read++;
12df843f 16740 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
16741 if ((byte & 128) == 0)
16742 {
16743 break;
16744 }
16745 shift += 7;
16746 }
16747 *bytes_read_ptr = num_read;
16748 return result;
16749}
16750
12df843f 16751static LONGEST
d521ce57
TT
16752read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16753 unsigned int *bytes_read_ptr)
c906108c 16754{
12df843f 16755 LONGEST result;
77e0b926 16756 int i, shift, num_read;
c906108c
SS
16757 unsigned char byte;
16758
16759 result = 0;
16760 shift = 0;
c906108c
SS
16761 num_read = 0;
16762 i = 0;
16763 while (1)
16764 {
fe1b8b76 16765 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16766 buf++;
16767 num_read++;
12df843f 16768 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
16769 shift += 7;
16770 if ((byte & 128) == 0)
16771 {
16772 break;
16773 }
16774 }
77e0b926 16775 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 16776 result |= -(((LONGEST) 1) << shift);
c906108c
SS
16777 *bytes_read_ptr = num_read;
16778 return result;
16779}
16780
3019eac3
DE
16781/* Given index ADDR_INDEX in .debug_addr, fetch the value.
16782 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16783 ADDR_SIZE is the size of addresses from the CU header. */
16784
16785static CORE_ADDR
16786read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16787{
16788 struct objfile *objfile = dwarf2_per_objfile->objfile;
16789 bfd *abfd = objfile->obfd;
16790 const gdb_byte *info_ptr;
16791
16792 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16793 if (dwarf2_per_objfile->addr.buffer == NULL)
16794 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 16795 objfile_name (objfile));
3019eac3
DE
16796 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16797 error (_("DW_FORM_addr_index pointing outside of "
16798 ".debug_addr section [in module %s]"),
4262abfb 16799 objfile_name (objfile));
3019eac3
DE
16800 info_ptr = (dwarf2_per_objfile->addr.buffer
16801 + addr_base + addr_index * addr_size);
16802 if (addr_size == 4)
16803 return bfd_get_32 (abfd, info_ptr);
16804 else
16805 return bfd_get_64 (abfd, info_ptr);
16806}
16807
16808/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16809
16810static CORE_ADDR
16811read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16812{
16813 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16814}
16815
16816/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16817
16818static CORE_ADDR
d521ce57 16819read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
16820 unsigned int *bytes_read)
16821{
16822 bfd *abfd = cu->objfile->obfd;
16823 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16824
16825 return read_addr_index (cu, addr_index);
16826}
16827
16828/* Data structure to pass results from dwarf2_read_addr_index_reader
16829 back to dwarf2_read_addr_index. */
16830
16831struct dwarf2_read_addr_index_data
16832{
16833 ULONGEST addr_base;
16834 int addr_size;
16835};
16836
16837/* die_reader_func for dwarf2_read_addr_index. */
16838
16839static void
16840dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 16841 const gdb_byte *info_ptr,
3019eac3
DE
16842 struct die_info *comp_unit_die,
16843 int has_children,
16844 void *data)
16845{
16846 struct dwarf2_cu *cu = reader->cu;
16847 struct dwarf2_read_addr_index_data *aidata =
16848 (struct dwarf2_read_addr_index_data *) data;
16849
16850 aidata->addr_base = cu->addr_base;
16851 aidata->addr_size = cu->header.addr_size;
16852}
16853
16854/* Given an index in .debug_addr, fetch the value.
16855 NOTE: This can be called during dwarf expression evaluation,
16856 long after the debug information has been read, and thus per_cu->cu
16857 may no longer exist. */
16858
16859CORE_ADDR
16860dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16861 unsigned int addr_index)
16862{
16863 struct objfile *objfile = per_cu->objfile;
16864 struct dwarf2_cu *cu = per_cu->cu;
16865 ULONGEST addr_base;
16866 int addr_size;
16867
16868 /* This is intended to be called from outside this file. */
16869 dw2_setup (objfile);
16870
16871 /* We need addr_base and addr_size.
16872 If we don't have PER_CU->cu, we have to get it.
16873 Nasty, but the alternative is storing the needed info in PER_CU,
16874 which at this point doesn't seem justified: it's not clear how frequently
16875 it would get used and it would increase the size of every PER_CU.
16876 Entry points like dwarf2_per_cu_addr_size do a similar thing
16877 so we're not in uncharted territory here.
16878 Alas we need to be a bit more complicated as addr_base is contained
16879 in the DIE.
16880
16881 We don't need to read the entire CU(/TU).
16882 We just need the header and top level die.
a1b64ce1 16883
3019eac3 16884 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 16885 For now we skip this optimization. */
3019eac3
DE
16886
16887 if (cu != NULL)
16888 {
16889 addr_base = cu->addr_base;
16890 addr_size = cu->header.addr_size;
16891 }
16892 else
16893 {
16894 struct dwarf2_read_addr_index_data aidata;
16895
a1b64ce1
DE
16896 /* Note: We can't use init_cutu_and_read_dies_simple here,
16897 we need addr_base. */
16898 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16899 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
16900 addr_base = aidata.addr_base;
16901 addr_size = aidata.addr_size;
16902 }
16903
16904 return read_addr_index_1 (addr_index, addr_base, addr_size);
16905}
16906
57d63ce2
DE
16907/* Given a DW_FORM_GNU_str_index, fetch the string.
16908 This is only used by the Fission support. */
3019eac3 16909
d521ce57 16910static const char *
342587c4 16911read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3
DE
16912{
16913 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 16914 const char *objf_name = objfile_name (objfile);
3019eac3 16915 bfd *abfd = objfile->obfd;
342587c4 16916 struct dwarf2_cu *cu = reader->cu;
73869dc2
DE
16917 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16918 struct dwarf2_section_info *str_offsets_section =
16919 &reader->dwo_file->sections.str_offsets;
d521ce57 16920 const gdb_byte *info_ptr;
3019eac3 16921 ULONGEST str_offset;
57d63ce2 16922 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 16923
73869dc2
DE
16924 dwarf2_read_section (objfile, str_section);
16925 dwarf2_read_section (objfile, str_offsets_section);
16926 if (str_section->buffer == NULL)
57d63ce2 16927 error (_("%s used without .debug_str.dwo section"
3019eac3 16928 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16929 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16930 if (str_offsets_section->buffer == NULL)
57d63ce2 16931 error (_("%s used without .debug_str_offsets.dwo section"
3019eac3 16932 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16933 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16934 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 16935 error (_("%s pointing outside of .debug_str_offsets.dwo"
3019eac3 16936 " section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16937 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16938 info_ptr = (str_offsets_section->buffer
3019eac3
DE
16939 + str_index * cu->header.offset_size);
16940 if (cu->header.offset_size == 4)
16941 str_offset = bfd_get_32 (abfd, info_ptr);
16942 else
16943 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 16944 if (str_offset >= str_section->size)
57d63ce2 16945 error (_("Offset from %s pointing outside of"
3019eac3 16946 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16947 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16948 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
16949}
16950
3019eac3
DE
16951/* Return the length of an LEB128 number in BUF. */
16952
16953static int
16954leb128_size (const gdb_byte *buf)
16955{
16956 const gdb_byte *begin = buf;
16957 gdb_byte byte;
16958
16959 while (1)
16960 {
16961 byte = *buf++;
16962 if ((byte & 128) == 0)
16963 return buf - begin;
16964 }
16965}
16966
c906108c 16967static void
e142c38c 16968set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
16969{
16970 switch (lang)
16971 {
16972 case DW_LANG_C89:
76bee0cc 16973 case DW_LANG_C99:
0cfd832f 16974 case DW_LANG_C11:
c906108c 16975 case DW_LANG_C:
d1be3247 16976 case DW_LANG_UPC:
e142c38c 16977 cu->language = language_c;
c906108c
SS
16978 break;
16979 case DW_LANG_C_plus_plus:
0cfd832f
MW
16980 case DW_LANG_C_plus_plus_11:
16981 case DW_LANG_C_plus_plus_14:
e142c38c 16982 cu->language = language_cplus;
c906108c 16983 break;
6aecb9c2
JB
16984 case DW_LANG_D:
16985 cu->language = language_d;
16986 break;
c906108c
SS
16987 case DW_LANG_Fortran77:
16988 case DW_LANG_Fortran90:
b21b22e0 16989 case DW_LANG_Fortran95:
f7de9aab
MW
16990 case DW_LANG_Fortran03:
16991 case DW_LANG_Fortran08:
e142c38c 16992 cu->language = language_fortran;
c906108c 16993 break;
a766d390
DE
16994 case DW_LANG_Go:
16995 cu->language = language_go;
16996 break;
c906108c 16997 case DW_LANG_Mips_Assembler:
e142c38c 16998 cu->language = language_asm;
c906108c 16999 break;
bebd888e 17000 case DW_LANG_Java:
e142c38c 17001 cu->language = language_java;
bebd888e 17002 break;
c906108c 17003 case DW_LANG_Ada83:
8aaf0b47 17004 case DW_LANG_Ada95:
bc5f45f8
JB
17005 cu->language = language_ada;
17006 break;
72019c9c
GM
17007 case DW_LANG_Modula2:
17008 cu->language = language_m2;
17009 break;
fe8e67fd
PM
17010 case DW_LANG_Pascal83:
17011 cu->language = language_pascal;
17012 break;
22566fbd
DJ
17013 case DW_LANG_ObjC:
17014 cu->language = language_objc;
17015 break;
c906108c
SS
17016 case DW_LANG_Cobol74:
17017 case DW_LANG_Cobol85:
c906108c 17018 default:
e142c38c 17019 cu->language = language_minimal;
c906108c
SS
17020 break;
17021 }
e142c38c 17022 cu->language_defn = language_def (cu->language);
c906108c
SS
17023}
17024
17025/* Return the named attribute or NULL if not there. */
17026
17027static struct attribute *
e142c38c 17028dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 17029{
a48e046c 17030 for (;;)
c906108c 17031 {
a48e046c
TT
17032 unsigned int i;
17033 struct attribute *spec = NULL;
17034
17035 for (i = 0; i < die->num_attrs; ++i)
17036 {
17037 if (die->attrs[i].name == name)
17038 return &die->attrs[i];
17039 if (die->attrs[i].name == DW_AT_specification
17040 || die->attrs[i].name == DW_AT_abstract_origin)
17041 spec = &die->attrs[i];
17042 }
17043
17044 if (!spec)
17045 break;
c906108c 17046
f2f0e013 17047 die = follow_die_ref (die, spec, &cu);
f2f0e013 17048 }
c5aa993b 17049
c906108c
SS
17050 return NULL;
17051}
17052
348e048f
DE
17053/* Return the named attribute or NULL if not there,
17054 but do not follow DW_AT_specification, etc.
17055 This is for use in contexts where we're reading .debug_types dies.
17056 Following DW_AT_specification, DW_AT_abstract_origin will take us
17057 back up the chain, and we want to go down. */
17058
17059static struct attribute *
45e58e77 17060dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
17061{
17062 unsigned int i;
17063
17064 for (i = 0; i < die->num_attrs; ++i)
17065 if (die->attrs[i].name == name)
17066 return &die->attrs[i];
17067
17068 return NULL;
17069}
17070
05cf31d1
JB
17071/* Return non-zero iff the attribute NAME is defined for the given DIE,
17072 and holds a non-zero value. This function should only be used for
2dc7f7b3 17073 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
17074
17075static int
17076dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17077{
17078 struct attribute *attr = dwarf2_attr (die, name, cu);
17079
17080 return (attr && DW_UNSND (attr));
17081}
17082
3ca72b44 17083static int
e142c38c 17084die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 17085{
05cf31d1
JB
17086 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17087 which value is non-zero. However, we have to be careful with
17088 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17089 (via dwarf2_flag_true_p) follows this attribute. So we may
17090 end up accidently finding a declaration attribute that belongs
17091 to a different DIE referenced by the specification attribute,
17092 even though the given DIE does not have a declaration attribute. */
17093 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17094 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
17095}
17096
63d06c5c 17097/* Return the die giving the specification for DIE, if there is
f2f0e013 17098 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
17099 containing the return value on output. If there is no
17100 specification, but there is an abstract origin, that is
17101 returned. */
63d06c5c
DC
17102
17103static struct die_info *
f2f0e013 17104die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 17105{
f2f0e013
DJ
17106 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17107 *spec_cu);
63d06c5c 17108
edb3359d
DJ
17109 if (spec_attr == NULL)
17110 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17111
63d06c5c
DC
17112 if (spec_attr == NULL)
17113 return NULL;
17114 else
f2f0e013 17115 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 17116}
c906108c 17117
debd256d 17118/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
17119 refers to.
17120 NOTE: This is also used as a "cleanup" function. */
17121
debd256d
JB
17122static void
17123free_line_header (struct line_header *lh)
17124{
17125 if (lh->standard_opcode_lengths)
a8bc7b56 17126 xfree (lh->standard_opcode_lengths);
debd256d
JB
17127
17128 /* Remember that all the lh->file_names[i].name pointers are
17129 pointers into debug_line_buffer, and don't need to be freed. */
17130 if (lh->file_names)
a8bc7b56 17131 xfree (lh->file_names);
debd256d
JB
17132
17133 /* Similarly for the include directory names. */
17134 if (lh->include_dirs)
a8bc7b56 17135 xfree (lh->include_dirs);
debd256d 17136
a8bc7b56 17137 xfree (lh);
debd256d
JB
17138}
17139
527f3840
JK
17140/* Stub for free_line_header to match void * callback types. */
17141
17142static void
17143free_line_header_voidp (void *arg)
17144{
17145 struct line_header *lh = arg;
17146
17147 free_line_header (lh);
17148}
17149
debd256d 17150/* Add an entry to LH's include directory table. */
ae2de4f8 17151
debd256d 17152static void
d521ce57 17153add_include_dir (struct line_header *lh, const char *include_dir)
c906108c 17154{
debd256d
JB
17155 /* Grow the array if necessary. */
17156 if (lh->include_dirs_size == 0)
c5aa993b 17157 {
debd256d
JB
17158 lh->include_dirs_size = 1; /* for testing */
17159 lh->include_dirs = xmalloc (lh->include_dirs_size
17160 * sizeof (*lh->include_dirs));
17161 }
17162 else if (lh->num_include_dirs >= lh->include_dirs_size)
17163 {
17164 lh->include_dirs_size *= 2;
17165 lh->include_dirs = xrealloc (lh->include_dirs,
17166 (lh->include_dirs_size
17167 * sizeof (*lh->include_dirs)));
c5aa993b 17168 }
c906108c 17169
debd256d
JB
17170 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17171}
6e70227d 17172
debd256d 17173/* Add an entry to LH's file name table. */
ae2de4f8 17174
debd256d
JB
17175static void
17176add_file_name (struct line_header *lh,
d521ce57 17177 const char *name,
debd256d
JB
17178 unsigned int dir_index,
17179 unsigned int mod_time,
17180 unsigned int length)
17181{
17182 struct file_entry *fe;
17183
17184 /* Grow the array if necessary. */
17185 if (lh->file_names_size == 0)
17186 {
17187 lh->file_names_size = 1; /* for testing */
17188 lh->file_names = xmalloc (lh->file_names_size
17189 * sizeof (*lh->file_names));
17190 }
17191 else if (lh->num_file_names >= lh->file_names_size)
17192 {
17193 lh->file_names_size *= 2;
17194 lh->file_names = xrealloc (lh->file_names,
17195 (lh->file_names_size
17196 * sizeof (*lh->file_names)));
17197 }
17198
17199 fe = &lh->file_names[lh->num_file_names++];
17200 fe->name = name;
17201 fe->dir_index = dir_index;
17202 fe->mod_time = mod_time;
17203 fe->length = length;
aaa75496 17204 fe->included_p = 0;
cb1df416 17205 fe->symtab = NULL;
debd256d 17206}
6e70227d 17207
83769d0b 17208/* A convenience function to find the proper .debug_line section for a CU. */
36586728
TT
17209
17210static struct dwarf2_section_info *
17211get_debug_line_section (struct dwarf2_cu *cu)
17212{
17213 struct dwarf2_section_info *section;
17214
17215 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17216 DWO file. */
17217 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17218 section = &cu->dwo_unit->dwo_file->sections.line;
17219 else if (cu->per_cu->is_dwz)
17220 {
17221 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17222
17223 section = &dwz->line;
17224 }
17225 else
17226 section = &dwarf2_per_objfile->line;
17227
17228 return section;
17229}
17230
debd256d 17231/* Read the statement program header starting at OFFSET in
3019eac3 17232 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 17233 to a struct line_header, allocated using xmalloc.
cd366ee8
DE
17234 Returns NULL if there is a problem reading the header, e.g., if it
17235 has a version we don't understand.
debd256d
JB
17236
17237 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
17238 the returned object point into the dwarf line section buffer,
17239 and must not be freed. */
ae2de4f8 17240
debd256d 17241static struct line_header *
3019eac3 17242dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
17243{
17244 struct cleanup *back_to;
17245 struct line_header *lh;
d521ce57 17246 const gdb_byte *line_ptr;
c764a876 17247 unsigned int bytes_read, offset_size;
debd256d 17248 int i;
d521ce57 17249 const char *cur_dir, *cur_file;
3019eac3
DE
17250 struct dwarf2_section_info *section;
17251 bfd *abfd;
17252
36586728 17253 section = get_debug_line_section (cu);
3019eac3
DE
17254 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17255 if (section->buffer == NULL)
debd256d 17256 {
3019eac3
DE
17257 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17258 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17259 else
17260 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
17261 return 0;
17262 }
17263
fceca515
DE
17264 /* We can't do this until we know the section is non-empty.
17265 Only then do we know we have such a section. */
a32a8923 17266 abfd = get_section_bfd_owner (section);
fceca515 17267
a738430d
MK
17268 /* Make sure that at least there's room for the total_length field.
17269 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 17270 if (offset + 4 >= section->size)
debd256d 17271 {
4d3c2250 17272 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
17273 return 0;
17274 }
17275
17276 lh = xmalloc (sizeof (*lh));
17277 memset (lh, 0, sizeof (*lh));
17278 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17279 (void *) lh);
17280
527f3840
JK
17281 lh->offset.sect_off = offset;
17282 lh->offset_in_dwz = cu->per_cu->is_dwz;
17283
3019eac3 17284 line_ptr = section->buffer + offset;
debd256d 17285
a738430d 17286 /* Read in the header. */
6e70227d 17287 lh->total_length =
c764a876
DE
17288 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17289 &bytes_read, &offset_size);
debd256d 17290 line_ptr += bytes_read;
3019eac3 17291 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 17292 {
4d3c2250 17293 dwarf2_statement_list_fits_in_line_number_section_complaint ();
2f324bf6 17294 do_cleanups (back_to);
debd256d
JB
17295 return 0;
17296 }
17297 lh->statement_program_end = line_ptr + lh->total_length;
17298 lh->version = read_2_bytes (abfd, line_ptr);
17299 line_ptr += 2;
cd366ee8
DE
17300 if (lh->version > 4)
17301 {
17302 /* This is a version we don't understand. The format could have
17303 changed in ways we don't handle properly so just punt. */
17304 complaint (&symfile_complaints,
17305 _("unsupported version in .debug_line section"));
17306 return NULL;
17307 }
c764a876
DE
17308 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17309 line_ptr += offset_size;
debd256d
JB
17310 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17311 line_ptr += 1;
2dc7f7b3
TT
17312 if (lh->version >= 4)
17313 {
17314 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17315 line_ptr += 1;
17316 }
17317 else
17318 lh->maximum_ops_per_instruction = 1;
17319
17320 if (lh->maximum_ops_per_instruction == 0)
17321 {
17322 lh->maximum_ops_per_instruction = 1;
17323 complaint (&symfile_complaints,
3e43a32a
MS
17324 _("invalid maximum_ops_per_instruction "
17325 "in `.debug_line' section"));
2dc7f7b3
TT
17326 }
17327
debd256d
JB
17328 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17329 line_ptr += 1;
17330 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17331 line_ptr += 1;
17332 lh->line_range = read_1_byte (abfd, line_ptr);
17333 line_ptr += 1;
17334 lh->opcode_base = read_1_byte (abfd, line_ptr);
17335 line_ptr += 1;
17336 lh->standard_opcode_lengths
fe1b8b76 17337 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
17338
17339 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17340 for (i = 1; i < lh->opcode_base; ++i)
17341 {
17342 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17343 line_ptr += 1;
17344 }
17345
a738430d 17346 /* Read directory table. */
9b1c24c8 17347 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17348 {
17349 line_ptr += bytes_read;
17350 add_include_dir (lh, cur_dir);
17351 }
17352 line_ptr += bytes_read;
17353
a738430d 17354 /* Read file name table. */
9b1c24c8 17355 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17356 {
17357 unsigned int dir_index, mod_time, length;
17358
17359 line_ptr += bytes_read;
17360 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17361 line_ptr += bytes_read;
17362 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17363 line_ptr += bytes_read;
17364 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17365 line_ptr += bytes_read;
17366
17367 add_file_name (lh, cur_file, dir_index, mod_time, length);
17368 }
17369 line_ptr += bytes_read;
6e70227d 17370 lh->statement_program_start = line_ptr;
debd256d 17371
3019eac3 17372 if (line_ptr > (section->buffer + section->size))
4d3c2250 17373 complaint (&symfile_complaints,
3e43a32a
MS
17374 _("line number info header doesn't "
17375 "fit in `.debug_line' section"));
debd256d
JB
17376
17377 discard_cleanups (back_to);
17378 return lh;
17379}
c906108c 17380
c6da4cef
DE
17381/* Subroutine of dwarf_decode_lines to simplify it.
17382 Return the file name of the psymtab for included file FILE_INDEX
17383 in line header LH of PST.
17384 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17385 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
17386 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17387
17388 The function creates dangling cleanup registration. */
c6da4cef 17389
d521ce57 17390static const char *
c6da4cef
DE
17391psymtab_include_file_name (const struct line_header *lh, int file_index,
17392 const struct partial_symtab *pst,
17393 const char *comp_dir)
17394{
17395 const struct file_entry fe = lh->file_names [file_index];
d521ce57
TT
17396 const char *include_name = fe.name;
17397 const char *include_name_to_compare = include_name;
17398 const char *dir_name = NULL;
72b9f47f
TT
17399 const char *pst_filename;
17400 char *copied_name = NULL;
c6da4cef
DE
17401 int file_is_pst;
17402
afa6c9ab 17403 if (fe.dir_index && lh->include_dirs != NULL)
c6da4cef
DE
17404 dir_name = lh->include_dirs[fe.dir_index - 1];
17405
17406 if (!IS_ABSOLUTE_PATH (include_name)
17407 && (dir_name != NULL || comp_dir != NULL))
17408 {
17409 /* Avoid creating a duplicate psymtab for PST.
17410 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17411 Before we do the comparison, however, we need to account
17412 for DIR_NAME and COMP_DIR.
17413 First prepend dir_name (if non-NULL). If we still don't
17414 have an absolute path prepend comp_dir (if non-NULL).
17415 However, the directory we record in the include-file's
17416 psymtab does not contain COMP_DIR (to match the
17417 corresponding symtab(s)).
17418
17419 Example:
17420
17421 bash$ cd /tmp
17422 bash$ gcc -g ./hello.c
17423 include_name = "hello.c"
17424 dir_name = "."
17425 DW_AT_comp_dir = comp_dir = "/tmp"
5f52445b
YQ
17426 DW_AT_name = "./hello.c"
17427
17428 */
c6da4cef
DE
17429
17430 if (dir_name != NULL)
17431 {
d521ce57
TT
17432 char *tem = concat (dir_name, SLASH_STRING,
17433 include_name, (char *)NULL);
17434
17435 make_cleanup (xfree, tem);
17436 include_name = tem;
c6da4cef 17437 include_name_to_compare = include_name;
c6da4cef
DE
17438 }
17439 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17440 {
d521ce57
TT
17441 char *tem = concat (comp_dir, SLASH_STRING,
17442 include_name, (char *)NULL);
17443
17444 make_cleanup (xfree, tem);
17445 include_name_to_compare = tem;
c6da4cef
DE
17446 }
17447 }
17448
17449 pst_filename = pst->filename;
17450 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17451 {
72b9f47f
TT
17452 copied_name = concat (pst->dirname, SLASH_STRING,
17453 pst_filename, (char *)NULL);
17454 pst_filename = copied_name;
c6da4cef
DE
17455 }
17456
1e3fad37 17457 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 17458
72b9f47f
TT
17459 if (copied_name != NULL)
17460 xfree (copied_name);
c6da4cef
DE
17461
17462 if (file_is_pst)
17463 return NULL;
17464 return include_name;
17465}
17466
c91513d8
PP
17467/* Ignore this record_line request. */
17468
17469static void
17470noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17471{
17472 return;
17473}
17474
a05a36a5
DE
17475/* Return non-zero if we should add LINE to the line number table.
17476 LINE is the line to add, LAST_LINE is the last line that was added,
17477 LAST_SUBFILE is the subfile for LAST_LINE.
17478 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17479 had a non-zero discriminator.
17480
17481 We have to be careful in the presence of discriminators.
17482 E.g., for this line:
17483
17484 for (i = 0; i < 100000; i++);
17485
17486 clang can emit four line number entries for that one line,
17487 each with a different discriminator.
17488 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17489
17490 However, we want gdb to coalesce all four entries into one.
17491 Otherwise the user could stepi into the middle of the line and
17492 gdb would get confused about whether the pc really was in the
17493 middle of the line.
17494
17495 Things are further complicated by the fact that two consecutive
17496 line number entries for the same line is a heuristic used by gcc
17497 to denote the end of the prologue. So we can't just discard duplicate
17498 entries, we have to be selective about it. The heuristic we use is
17499 that we only collapse consecutive entries for the same line if at least
17500 one of those entries has a non-zero discriminator. PR 17276.
17501
17502 Note: Addresses in the line number state machine can never go backwards
17503 within one sequence, thus this coalescing is ok. */
17504
17505static int
17506dwarf_record_line_p (unsigned int line, unsigned int last_line,
17507 int line_has_non_zero_discriminator,
17508 struct subfile *last_subfile)
17509{
17510 if (current_subfile != last_subfile)
17511 return 1;
17512 if (line != last_line)
17513 return 1;
17514 /* Same line for the same file that we've seen already.
17515 As a last check, for pr 17276, only record the line if the line
17516 has never had a non-zero discriminator. */
17517 if (!line_has_non_zero_discriminator)
17518 return 1;
17519 return 0;
17520}
17521
252a6764
DE
17522/* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17523 in the line table of subfile SUBFILE. */
17524
17525static void
17526dwarf_record_line (struct gdbarch *gdbarch, struct subfile *subfile,
17527 unsigned int line, CORE_ADDR address,
17528 record_line_ftype p_record_line)
17529{
17530 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17531
d5962de5 17532 (*p_record_line) (subfile, line, addr);
252a6764
DE
17533}
17534
17535/* Subroutine of dwarf_decode_lines_1 to simplify it.
17536 Mark the end of a set of line number records.
17537 The arguments are the same as for dwarf_record_line.
17538 If SUBFILE is NULL the request is ignored. */
17539
17540static void
17541dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17542 CORE_ADDR address, record_line_ftype p_record_line)
17543{
17544 if (subfile != NULL)
17545 dwarf_record_line (gdbarch, subfile, 0, address, p_record_line);
17546}
17547
f3f5162e
DE
17548/* Subroutine of dwarf_decode_lines to simplify it.
17549 Process the line number information in LH. */
debd256d 17550
c906108c 17551static void
43f3e411
DE
17552dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17553 const int decode_for_pst_p, CORE_ADDR lowpc)
c906108c 17554{
d521ce57
TT
17555 const gdb_byte *line_ptr, *extended_end;
17556 const gdb_byte *line_end;
a8c50c1f 17557 unsigned int bytes_read, extended_len;
699ca60a 17558 unsigned char op_code, extended_op;
e142c38c
DJ
17559 CORE_ADDR baseaddr;
17560 struct objfile *objfile = cu->objfile;
f3f5162e 17561 bfd *abfd = objfile->obfd;
fbf65064 17562 struct gdbarch *gdbarch = get_objfile_arch (objfile);
f3f5162e 17563 struct subfile *last_subfile = NULL;
c91513d8
PP
17564 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17565 = record_line;
e142c38c
DJ
17566
17567 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17568
debd256d
JB
17569 line_ptr = lh->statement_program_start;
17570 line_end = lh->statement_program_end;
c906108c
SS
17571
17572 /* Read the statement sequences until there's nothing left. */
17573 while (line_ptr < line_end)
17574 {
3e29f34a
MR
17575 /* State machine registers. Call `gdbarch_adjust_dwarf2_line'
17576 on the initial 0 address as if there was a line entry for it
17577 so that the backend has a chance to adjust it and also record
17578 it in case it needs it. This is currently used by MIPS code,
17579 cf. `mips_adjust_dwarf2_line'. */
17580 CORE_ADDR address = gdbarch_adjust_dwarf2_line (gdbarch, 0, 0);
c906108c
SS
17581 unsigned int file = 1;
17582 unsigned int line = 1;
debd256d 17583 int is_stmt = lh->default_is_stmt;
c906108c 17584 int end_sequence = 0;
2dc7f7b3 17585 unsigned char op_index = 0;
a05a36a5
DE
17586 unsigned int discriminator = 0;
17587 /* The last line number that was recorded, used to coalesce
17588 consecutive entries for the same line. This can happen, for
17589 example, when discriminators are present. PR 17276. */
17590 unsigned int last_line = 0;
17591 int line_has_non_zero_discriminator = 0;
c906108c 17592
aaa75496 17593 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 17594 {
aaa75496 17595 /* Start a subfile for the current file of the state machine. */
debd256d
JB
17596 /* lh->include_dirs and lh->file_names are 0-based, but the
17597 directory and file name numbers in the statement program
17598 are 1-based. */
17599 struct file_entry *fe = &lh->file_names[file - 1];
d521ce57 17600 const char *dir = NULL;
a738430d 17601
afa6c9ab 17602 if (fe->dir_index && lh->include_dirs != NULL)
debd256d 17603 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb 17604
4d663531 17605 dwarf2_start_subfile (fe->name, dir);
c906108c
SS
17606 }
17607
a738430d 17608 /* Decode the table. */
c5aa993b 17609 while (!end_sequence)
c906108c
SS
17610 {
17611 op_code = read_1_byte (abfd, line_ptr);
17612 line_ptr += 1;
59205f5a
JB
17613 if (line_ptr > line_end)
17614 {
17615 dwarf2_debug_line_missing_end_sequence_complaint ();
17616 break;
17617 }
9aa1fe7e 17618
debd256d 17619 if (op_code >= lh->opcode_base)
6e70227d 17620 {
8e07a239 17621 /* Special opcode. */
699ca60a 17622 unsigned char adj_opcode;
3e29f34a 17623 CORE_ADDR addr_adj;
a05a36a5 17624 int line_delta;
8e07a239 17625
debd256d 17626 adj_opcode = op_code - lh->opcode_base;
3e29f34a 17627 addr_adj = (((op_index + (adj_opcode / lh->line_range))
2dc7f7b3
TT
17628 / lh->maximum_ops_per_instruction)
17629 * lh->minimum_instruction_length);
3e29f34a 17630 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
2dc7f7b3
TT
17631 op_index = ((op_index + (adj_opcode / lh->line_range))
17632 % lh->maximum_ops_per_instruction);
a05a36a5
DE
17633 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17634 line += line_delta;
17635 if (line_delta != 0)
17636 line_has_non_zero_discriminator = discriminator != 0;
59205f5a 17637 if (lh->num_file_names < file || file == 0)
25e43795 17638 dwarf2_debug_line_missing_file_complaint ();
2dc7f7b3
TT
17639 /* For now we ignore lines not starting on an
17640 instruction boundary. */
17641 else if (op_index == 0)
25e43795
DJ
17642 {
17643 lh->file_names[file - 1].included_p = 1;
ca5f395d 17644 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
17645 {
17646 if (last_subfile != current_subfile)
17647 {
252a6764
DE
17648 dwarf_finish_line (gdbarch, last_subfile,
17649 address, p_record_line);
fbf65064 17650 }
a05a36a5
DE
17651 if (dwarf_record_line_p (line, last_line,
17652 line_has_non_zero_discriminator,
17653 last_subfile))
17654 {
17655 dwarf_record_line (gdbarch, current_subfile,
17656 line, address, p_record_line);
17657 }
17658 last_subfile = current_subfile;
17659 last_line = line;
366da635 17660 }
25e43795 17661 }
a05a36a5 17662 discriminator = 0;
9aa1fe7e
GK
17663 }
17664 else switch (op_code)
c906108c
SS
17665 {
17666 case DW_LNS_extended_op:
3e43a32a
MS
17667 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17668 &bytes_read);
473b7be6 17669 line_ptr += bytes_read;
a8c50c1f 17670 extended_end = line_ptr + extended_len;
c906108c
SS
17671 extended_op = read_1_byte (abfd, line_ptr);
17672 line_ptr += 1;
17673 switch (extended_op)
17674 {
17675 case DW_LNE_end_sequence:
c91513d8 17676 p_record_line = record_line;
c906108c 17677 end_sequence = 1;
c906108c
SS
17678 break;
17679 case DW_LNE_set_address:
e7c27a73 17680 address = read_address (abfd, line_ptr, cu, &bytes_read);
c91513d8 17681
c3b7b696
YQ
17682 /* If address < lowpc then it's not a usable value, it's
17683 outside the pc range of the CU. However, we restrict
17684 the test to only address values of zero to preserve
17685 GDB's previous behaviour which is to handle the specific
17686 case of a function being GC'd by the linker. */
17687 if (address == 0 && address < lowpc)
c91513d8
PP
17688 {
17689 /* This line table is for a function which has been
17690 GCd by the linker. Ignore it. PR gdb/12528 */
17691
17692 long line_offset
36586728 17693 = line_ptr - get_debug_line_section (cu)->buffer;
c91513d8
PP
17694
17695 complaint (&symfile_complaints,
17696 _(".debug_line address at offset 0x%lx is 0 "
17697 "[in module %s]"),
4262abfb 17698 line_offset, objfile_name (objfile));
c91513d8 17699 p_record_line = noop_record_line;
37780ee5
DE
17700 /* Note: p_record_line is left as noop_record_line
17701 until we see DW_LNE_end_sequence. */
c91513d8
PP
17702 }
17703
2dc7f7b3 17704 op_index = 0;
107d2387
AC
17705 line_ptr += bytes_read;
17706 address += baseaddr;
3e29f34a 17707 address = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
c906108c
SS
17708 break;
17709 case DW_LNE_define_file:
debd256d 17710 {
d521ce57 17711 const char *cur_file;
debd256d 17712 unsigned int dir_index, mod_time, length;
6e70227d 17713
3e43a32a
MS
17714 cur_file = read_direct_string (abfd, line_ptr,
17715 &bytes_read);
debd256d
JB
17716 line_ptr += bytes_read;
17717 dir_index =
17718 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17719 line_ptr += bytes_read;
17720 mod_time =
17721 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17722 line_ptr += bytes_read;
17723 length =
17724 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17725 line_ptr += bytes_read;
17726 add_file_name (lh, cur_file, dir_index, mod_time, length);
17727 }
c906108c 17728 break;
d0c6ba3d
CC
17729 case DW_LNE_set_discriminator:
17730 /* The discriminator is not interesting to the debugger;
a05a36a5
DE
17731 just ignore it. We still need to check its value though:
17732 if there are consecutive entries for the same
17733 (non-prologue) line we want to coalesce them.
17734 PR 17276. */
17735 discriminator = read_unsigned_leb128 (abfd, line_ptr,
17736 &bytes_read);
17737 line_has_non_zero_discriminator |= discriminator != 0;
17738 line_ptr += bytes_read;
d0c6ba3d 17739 break;
c906108c 17740 default:
4d3c2250 17741 complaint (&symfile_complaints,
e2e0b3e5 17742 _("mangled .debug_line section"));
debd256d 17743 return;
c906108c 17744 }
a8c50c1f
DJ
17745 /* Make sure that we parsed the extended op correctly. If e.g.
17746 we expected a different address size than the producer used,
17747 we may have read the wrong number of bytes. */
17748 if (line_ptr != extended_end)
17749 {
17750 complaint (&symfile_complaints,
17751 _("mangled .debug_line section"));
17752 return;
17753 }
c906108c
SS
17754 break;
17755 case DW_LNS_copy:
59205f5a 17756 if (lh->num_file_names < file || file == 0)
25e43795
DJ
17757 dwarf2_debug_line_missing_file_complaint ();
17758 else
366da635 17759 {
25e43795 17760 lh->file_names[file - 1].included_p = 1;
ca5f395d 17761 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
17762 {
17763 if (last_subfile != current_subfile)
17764 {
252a6764
DE
17765 dwarf_finish_line (gdbarch, last_subfile,
17766 address, p_record_line);
fbf65064 17767 }
a05a36a5
DE
17768 if (dwarf_record_line_p (line, last_line,
17769 line_has_non_zero_discriminator,
17770 last_subfile))
17771 {
17772 dwarf_record_line (gdbarch, current_subfile,
17773 line, address, p_record_line);
17774 }
17775 last_subfile = current_subfile;
17776 last_line = line;
fbf65064 17777 }
366da635 17778 }
a05a36a5 17779 discriminator = 0;
c906108c
SS
17780 break;
17781 case DW_LNS_advance_pc:
2dc7f7b3
TT
17782 {
17783 CORE_ADDR adjust
17784 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
3e29f34a 17785 CORE_ADDR addr_adj;
2dc7f7b3 17786
3e29f34a 17787 addr_adj = (((op_index + adjust)
2dc7f7b3
TT
17788 / lh->maximum_ops_per_instruction)
17789 * lh->minimum_instruction_length);
3e29f34a 17790 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
2dc7f7b3
TT
17791 op_index = ((op_index + adjust)
17792 % lh->maximum_ops_per_instruction);
17793 line_ptr += bytes_read;
17794 }
c906108c
SS
17795 break;
17796 case DW_LNS_advance_line:
a05a36a5
DE
17797 {
17798 int line_delta
17799 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17800
17801 line += line_delta;
17802 if (line_delta != 0)
17803 line_has_non_zero_discriminator = discriminator != 0;
17804 line_ptr += bytes_read;
17805 }
c906108c
SS
17806 break;
17807 case DW_LNS_set_file:
debd256d 17808 {
a738430d
MK
17809 /* The arrays lh->include_dirs and lh->file_names are
17810 0-based, but the directory and file name numbers in
17811 the statement program are 1-based. */
debd256d 17812 struct file_entry *fe;
d521ce57 17813 const char *dir = NULL;
a738430d 17814
debd256d
JB
17815 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17816 line_ptr += bytes_read;
59205f5a 17817 if (lh->num_file_names < file || file == 0)
25e43795
DJ
17818 dwarf2_debug_line_missing_file_complaint ();
17819 else
17820 {
17821 fe = &lh->file_names[file - 1];
afa6c9ab 17822 if (fe->dir_index && lh->include_dirs != NULL)
25e43795
DJ
17823 dir = lh->include_dirs[fe->dir_index - 1];
17824 if (!decode_for_pst_p)
17825 {
17826 last_subfile = current_subfile;
a05a36a5 17827 line_has_non_zero_discriminator = discriminator != 0;
4d663531 17828 dwarf2_start_subfile (fe->name, dir);
25e43795
DJ
17829 }
17830 }
debd256d 17831 }
c906108c
SS
17832 break;
17833 case DW_LNS_set_column:
0ad93d4f 17834 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
c906108c
SS
17835 line_ptr += bytes_read;
17836 break;
17837 case DW_LNS_negate_stmt:
17838 is_stmt = (!is_stmt);
17839 break;
17840 case DW_LNS_set_basic_block:
c906108c 17841 break;
c2c6d25f
JM
17842 /* Add to the address register of the state machine the
17843 address increment value corresponding to special opcode
a738430d
MK
17844 255. I.e., this value is scaled by the minimum
17845 instruction length since special opcode 255 would have
b021a221 17846 scaled the increment. */
c906108c 17847 case DW_LNS_const_add_pc:
2dc7f7b3
TT
17848 {
17849 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
3e29f34a 17850 CORE_ADDR addr_adj;
2dc7f7b3 17851
3e29f34a 17852 addr_adj = (((op_index + adjust)
2dc7f7b3
TT
17853 / lh->maximum_ops_per_instruction)
17854 * lh->minimum_instruction_length);
3e29f34a 17855 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
2dc7f7b3
TT
17856 op_index = ((op_index + adjust)
17857 % lh->maximum_ops_per_instruction);
17858 }
c906108c
SS
17859 break;
17860 case DW_LNS_fixed_advance_pc:
3e29f34a
MR
17861 {
17862 CORE_ADDR addr_adj;
17863
17864 addr_adj = read_2_bytes (abfd, line_ptr);
17865 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17866 op_index = 0;
17867 line_ptr += 2;
17868 }
c906108c 17869 break;
9aa1fe7e 17870 default:
a738430d
MK
17871 {
17872 /* Unknown standard opcode, ignore it. */
9aa1fe7e 17873 int i;
a738430d 17874
debd256d 17875 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
17876 {
17877 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17878 line_ptr += bytes_read;
17879 }
17880 }
c906108c
SS
17881 }
17882 }
59205f5a
JB
17883 if (lh->num_file_names < file || file == 0)
17884 dwarf2_debug_line_missing_file_complaint ();
17885 else
17886 {
17887 lh->file_names[file - 1].included_p = 1;
17888 if (!decode_for_pst_p)
fbf65064 17889 {
252a6764
DE
17890 dwarf_finish_line (gdbarch, current_subfile, address,
17891 p_record_line);
fbf65064 17892 }
59205f5a 17893 }
c906108c 17894 }
f3f5162e
DE
17895}
17896
17897/* Decode the Line Number Program (LNP) for the given line_header
17898 structure and CU. The actual information extracted and the type
17899 of structures created from the LNP depends on the value of PST.
17900
17901 1. If PST is NULL, then this procedure uses the data from the program
17902 to create all necessary symbol tables, and their linetables.
17903
17904 2. If PST is not NULL, this procedure reads the program to determine
17905 the list of files included by the unit represented by PST, and
17906 builds all the associated partial symbol tables.
17907
17908 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17909 It is used for relative paths in the line table.
17910 NOTE: When processing partial symtabs (pst != NULL),
17911 comp_dir == pst->dirname.
17912
17913 NOTE: It is important that psymtabs have the same file name (via strcmp)
17914 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17915 symtab we don't use it in the name of the psymtabs we create.
17916 E.g. expand_line_sal requires this when finding psymtabs to expand.
c3b7b696
YQ
17917 A good testcase for this is mb-inline.exp.
17918
527f3840
JK
17919 LOWPC is the lowest address in CU (or 0 if not known).
17920
17921 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
17922 for its PC<->lines mapping information. Otherwise only the filename
17923 table is read in. */
f3f5162e
DE
17924
17925static void
17926dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
c3b7b696 17927 struct dwarf2_cu *cu, struct partial_symtab *pst,
527f3840 17928 CORE_ADDR lowpc, int decode_mapping)
f3f5162e
DE
17929{
17930 struct objfile *objfile = cu->objfile;
17931 const int decode_for_pst_p = (pst != NULL);
f3f5162e 17932
527f3840
JK
17933 if (decode_mapping)
17934 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
aaa75496
JB
17935
17936 if (decode_for_pst_p)
17937 {
17938 int file_index;
17939
17940 /* Now that we're done scanning the Line Header Program, we can
17941 create the psymtab of each included file. */
17942 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17943 if (lh->file_names[file_index].included_p == 1)
17944 {
d521ce57 17945 const char *include_name =
c6da4cef
DE
17946 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17947 if (include_name != NULL)
aaa75496
JB
17948 dwarf2_create_include_psymtab (include_name, pst, objfile);
17949 }
17950 }
cb1df416
DJ
17951 else
17952 {
17953 /* Make sure a symtab is created for every file, even files
17954 which contain only variables (i.e. no code with associated
17955 line numbers). */
43f3e411 17956 struct compunit_symtab *cust = buildsym_compunit_symtab ();
cb1df416 17957 int i;
cb1df416
DJ
17958
17959 for (i = 0; i < lh->num_file_names; i++)
17960 {
d521ce57 17961 const char *dir = NULL;
f3f5162e 17962 struct file_entry *fe;
9a619af0 17963
cb1df416 17964 fe = &lh->file_names[i];
afa6c9ab 17965 if (fe->dir_index && lh->include_dirs != NULL)
cb1df416 17966 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 17967 dwarf2_start_subfile (fe->name, dir);
cb1df416 17968
cb1df416 17969 if (current_subfile->symtab == NULL)
43f3e411
DE
17970 {
17971 current_subfile->symtab
17972 = allocate_symtab (cust, current_subfile->name);
17973 }
cb1df416
DJ
17974 fe->symtab = current_subfile->symtab;
17975 }
17976 }
c906108c
SS
17977}
17978
17979/* Start a subfile for DWARF. FILENAME is the name of the file and
17980 DIRNAME the name of the source directory which contains FILENAME
4d663531 17981 or NULL if not known.
c906108c
SS
17982 This routine tries to keep line numbers from identical absolute and
17983 relative file names in a common subfile.
17984
17985 Using the `list' example from the GDB testsuite, which resides in
17986 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17987 of /srcdir/list0.c yields the following debugging information for list0.c:
17988
c5aa993b 17989 DW_AT_name: /srcdir/list0.c
4d663531 17990 DW_AT_comp_dir: /compdir
357e46e7 17991 files.files[0].name: list0.h
c5aa993b 17992 files.files[0].dir: /srcdir
357e46e7 17993 files.files[1].name: list0.c
c5aa993b 17994 files.files[1].dir: /srcdir
c906108c
SS
17995
17996 The line number information for list0.c has to end up in a single
4f1520fb
FR
17997 subfile, so that `break /srcdir/list0.c:1' works as expected.
17998 start_subfile will ensure that this happens provided that we pass the
17999 concatenation of files.files[1].dir and files.files[1].name as the
18000 subfile's name. */
c906108c
SS
18001
18002static void
4d663531 18003dwarf2_start_subfile (const char *filename, const char *dirname)
c906108c 18004{
d521ce57 18005 char *copy = NULL;
4f1520fb 18006
4d663531 18007 /* In order not to lose the line information directory,
4f1520fb
FR
18008 we concatenate it to the filename when it makes sense.
18009 Note that the Dwarf3 standard says (speaking of filenames in line
18010 information): ``The directory index is ignored for file names
18011 that represent full path names''. Thus ignoring dirname in the
18012 `else' branch below isn't an issue. */
c906108c 18013
d5166ae1 18014 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
18015 {
18016 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18017 filename = copy;
18018 }
c906108c 18019
4d663531 18020 start_subfile (filename);
4f1520fb 18021
d521ce57
TT
18022 if (copy != NULL)
18023 xfree (copy);
c906108c
SS
18024}
18025
f4dc4d17
DE
18026/* Start a symtab for DWARF.
18027 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18028
43f3e411 18029static struct compunit_symtab *
f4dc4d17 18030dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 18031 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17 18032{
43f3e411
DE
18033 struct compunit_symtab *cust
18034 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18035
f4dc4d17
DE
18036 record_debugformat ("DWARF 2");
18037 record_producer (cu->producer);
18038
18039 /* We assume that we're processing GCC output. */
18040 processing_gcc_compilation = 2;
18041
4d4ec4e5 18042 cu->processing_has_namespace_info = 0;
43f3e411
DE
18043
18044 return cust;
f4dc4d17
DE
18045}
18046
4c2df51b
DJ
18047static void
18048var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 18049 struct dwarf2_cu *cu)
4c2df51b 18050{
e7c27a73
DJ
18051 struct objfile *objfile = cu->objfile;
18052 struct comp_unit_head *cu_header = &cu->header;
18053
4c2df51b
DJ
18054 /* NOTE drow/2003-01-30: There used to be a comment and some special
18055 code here to turn a symbol with DW_AT_external and a
18056 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18057 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18058 with some versions of binutils) where shared libraries could have
18059 relocations against symbols in their debug information - the
18060 minimal symbol would have the right address, but the debug info
18061 would not. It's no longer necessary, because we will explicitly
18062 apply relocations when we read in the debug information now. */
18063
18064 /* A DW_AT_location attribute with no contents indicates that a
18065 variable has been optimized away. */
18066 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18067 {
f1e6e072 18068 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
18069 return;
18070 }
18071
18072 /* Handle one degenerate form of location expression specially, to
18073 preserve GDB's previous behavior when section offsets are
3019eac3
DE
18074 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18075 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
18076
18077 if (attr_form_is_block (attr)
3019eac3
DE
18078 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18079 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18080 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18081 && (DW_BLOCK (attr)->size
18082 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 18083 {
891d2f0b 18084 unsigned int dummy;
4c2df51b 18085
3019eac3
DE
18086 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18087 SYMBOL_VALUE_ADDRESS (sym) =
18088 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18089 else
18090 SYMBOL_VALUE_ADDRESS (sym) =
18091 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 18092 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
18093 fixup_symbol_section (sym, objfile);
18094 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18095 SYMBOL_SECTION (sym));
4c2df51b
DJ
18096 return;
18097 }
18098
18099 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18100 expression evaluator, and use LOC_COMPUTED only when necessary
18101 (i.e. when the value of a register or memory location is
18102 referenced, or a thread-local block, etc.). Then again, it might
18103 not be worthwhile. I'm assuming that it isn't unless performance
18104 or memory numbers show me otherwise. */
18105
f1e6e072 18106 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 18107
f1e6e072 18108 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 18109 cu->has_loclist = 1;
4c2df51b
DJ
18110}
18111
c906108c
SS
18112/* Given a pointer to a DWARF information entry, figure out if we need
18113 to make a symbol table entry for it, and if so, create a new entry
18114 and return a pointer to it.
18115 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
18116 used the passed type.
18117 If SPACE is not NULL, use it to hold the new symbol. If it is
18118 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
18119
18120static struct symbol *
34eaf542
TT
18121new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18122 struct symbol *space)
c906108c 18123{
e7c27a73 18124 struct objfile *objfile = cu->objfile;
3e29f34a 18125 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 18126 struct symbol *sym = NULL;
15d034d0 18127 const char *name;
c906108c
SS
18128 struct attribute *attr = NULL;
18129 struct attribute *attr2 = NULL;
e142c38c 18130 CORE_ADDR baseaddr;
e37fd15a
SW
18131 struct pending **list_to_add = NULL;
18132
edb3359d 18133 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
18134
18135 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 18136
94af9270 18137 name = dwarf2_name (die, cu);
c906108c
SS
18138 if (name)
18139 {
94af9270 18140 const char *linkagename;
34eaf542 18141 int suppress_add = 0;
94af9270 18142
34eaf542
TT
18143 if (space)
18144 sym = space;
18145 else
e623cf5d 18146 sym = allocate_symbol (objfile);
c906108c 18147 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
18148
18149 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 18150 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
18151 linkagename = dwarf2_physname (name, die, cu);
18152 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 18153
f55ee35c
JK
18154 /* Fortran does not have mangling standard and the mangling does differ
18155 between gfortran, iFort etc. */
18156 if (cu->language == language_fortran
b250c185 18157 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 18158 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 18159 dwarf2_full_name (name, die, cu),
29df156d 18160 NULL);
f55ee35c 18161
c906108c 18162 /* Default assumptions.
c5aa993b 18163 Use the passed type or decode it from the die. */
176620f1 18164 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 18165 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
18166 if (type != NULL)
18167 SYMBOL_TYPE (sym) = type;
18168 else
e7c27a73 18169 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
18170 attr = dwarf2_attr (die,
18171 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18172 cu);
c906108c
SS
18173 if (attr)
18174 {
18175 SYMBOL_LINE (sym) = DW_UNSND (attr);
18176 }
cb1df416 18177
edb3359d
DJ
18178 attr = dwarf2_attr (die,
18179 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18180 cu);
cb1df416
DJ
18181 if (attr)
18182 {
18183 int file_index = DW_UNSND (attr);
9a619af0 18184
cb1df416
DJ
18185 if (cu->line_header == NULL
18186 || file_index > cu->line_header->num_file_names)
18187 complaint (&symfile_complaints,
18188 _("file index out of range"));
1c3d648d 18189 else if (file_index > 0)
cb1df416
DJ
18190 {
18191 struct file_entry *fe;
9a619af0 18192
cb1df416 18193 fe = &cu->line_header->file_names[file_index - 1];
08be3fe3 18194 symbol_set_symtab (sym, fe->symtab);
cb1df416
DJ
18195 }
18196 }
18197
c906108c
SS
18198 switch (die->tag)
18199 {
18200 case DW_TAG_label:
e142c38c 18201 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 18202 if (attr)
3e29f34a
MR
18203 {
18204 CORE_ADDR addr;
18205
18206 addr = attr_value_as_address (attr);
18207 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18208 SYMBOL_VALUE_ADDRESS (sym) = addr;
18209 }
0f5238ed
TT
18210 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18211 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 18212 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 18213 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
18214 break;
18215 case DW_TAG_subprogram:
18216 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18217 finish_block. */
f1e6e072 18218 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 18219 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
18220 if ((attr2 && (DW_UNSND (attr2) != 0))
18221 || cu->language == language_ada)
c906108c 18222 {
2cfa0c8d
JB
18223 /* Subprograms marked external are stored as a global symbol.
18224 Ada subprograms, whether marked external or not, are always
18225 stored as a global symbol, because we want to be able to
18226 access them globally. For instance, we want to be able
18227 to break on a nested subprogram without having to
18228 specify the context. */
e37fd15a 18229 list_to_add = &global_symbols;
c906108c
SS
18230 }
18231 else
18232 {
e37fd15a 18233 list_to_add = cu->list_in_scope;
c906108c
SS
18234 }
18235 break;
edb3359d
DJ
18236 case DW_TAG_inlined_subroutine:
18237 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18238 finish_block. */
f1e6e072 18239 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 18240 SYMBOL_INLINED (sym) = 1;
481860b3 18241 list_to_add = cu->list_in_scope;
edb3359d 18242 break;
34eaf542
TT
18243 case DW_TAG_template_value_param:
18244 suppress_add = 1;
18245 /* Fall through. */
72929c62 18246 case DW_TAG_constant:
c906108c 18247 case DW_TAG_variable:
254e6b9e 18248 case DW_TAG_member:
0963b4bd
MS
18249 /* Compilation with minimal debug info may result in
18250 variables with missing type entries. Change the
18251 misleading `void' type to something sensible. */
c906108c 18252 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 18253 SYMBOL_TYPE (sym)
46bf5051 18254 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 18255
e142c38c 18256 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
18257 /* In the case of DW_TAG_member, we should only be called for
18258 static const members. */
18259 if (die->tag == DW_TAG_member)
18260 {
3863f96c
DE
18261 /* dwarf2_add_field uses die_is_declaration,
18262 so we do the same. */
254e6b9e
DE
18263 gdb_assert (die_is_declaration (die, cu));
18264 gdb_assert (attr);
18265 }
c906108c
SS
18266 if (attr)
18267 {
e7c27a73 18268 dwarf2_const_value (attr, sym, cu);
e142c38c 18269 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 18270 if (!suppress_add)
34eaf542
TT
18271 {
18272 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 18273 list_to_add = &global_symbols;
34eaf542 18274 else
e37fd15a 18275 list_to_add = cu->list_in_scope;
34eaf542 18276 }
c906108c
SS
18277 break;
18278 }
e142c38c 18279 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18280 if (attr)
18281 {
e7c27a73 18282 var_decode_location (attr, sym, cu);
e142c38c 18283 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
18284
18285 /* Fortran explicitly imports any global symbols to the local
18286 scope by DW_TAG_common_block. */
18287 if (cu->language == language_fortran && die->parent
18288 && die->parent->tag == DW_TAG_common_block)
18289 attr2 = NULL;
18290
caac4577
JG
18291 if (SYMBOL_CLASS (sym) == LOC_STATIC
18292 && SYMBOL_VALUE_ADDRESS (sym) == 0
18293 && !dwarf2_per_objfile->has_section_at_zero)
18294 {
18295 /* When a static variable is eliminated by the linker,
18296 the corresponding debug information is not stripped
18297 out, but the variable address is set to null;
18298 do not add such variables into symbol table. */
18299 }
18300 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 18301 {
f55ee35c
JK
18302 /* Workaround gfortran PR debug/40040 - it uses
18303 DW_AT_location for variables in -fPIC libraries which may
18304 get overriden by other libraries/executable and get
18305 a different address. Resolve it by the minimal symbol
18306 which may come from inferior's executable using copy
18307 relocation. Make this workaround only for gfortran as for
18308 other compilers GDB cannot guess the minimal symbol
18309 Fortran mangling kind. */
18310 if (cu->language == language_fortran && die->parent
18311 && die->parent->tag == DW_TAG_module
18312 && cu->producer
61012eef 18313 && startswith (cu->producer, "GNU Fortran "))
f1e6e072 18314 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 18315
1c809c68
TT
18316 /* A variable with DW_AT_external is never static,
18317 but it may be block-scoped. */
18318 list_to_add = (cu->list_in_scope == &file_symbols
18319 ? &global_symbols : cu->list_in_scope);
1c809c68 18320 }
c906108c 18321 else
e37fd15a 18322 list_to_add = cu->list_in_scope;
c906108c
SS
18323 }
18324 else
18325 {
18326 /* We do not know the address of this symbol.
c5aa993b
JM
18327 If it is an external symbol and we have type information
18328 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18329 The address of the variable will then be determined from
18330 the minimal symbol table whenever the variable is
18331 referenced. */
e142c38c 18332 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
18333
18334 /* Fortran explicitly imports any global symbols to the local
18335 scope by DW_TAG_common_block. */
18336 if (cu->language == language_fortran && die->parent
18337 && die->parent->tag == DW_TAG_common_block)
18338 {
18339 /* SYMBOL_CLASS doesn't matter here because
18340 read_common_block is going to reset it. */
18341 if (!suppress_add)
18342 list_to_add = cu->list_in_scope;
18343 }
18344 else if (attr2 && (DW_UNSND (attr2) != 0)
18345 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 18346 {
0fe7935b
DJ
18347 /* A variable with DW_AT_external is never static, but it
18348 may be block-scoped. */
18349 list_to_add = (cu->list_in_scope == &file_symbols
18350 ? &global_symbols : cu->list_in_scope);
18351
f1e6e072 18352 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 18353 }
442ddf59
JK
18354 else if (!die_is_declaration (die, cu))
18355 {
18356 /* Use the default LOC_OPTIMIZED_OUT class. */
18357 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
18358 if (!suppress_add)
18359 list_to_add = cu->list_in_scope;
442ddf59 18360 }
c906108c
SS
18361 }
18362 break;
18363 case DW_TAG_formal_parameter:
edb3359d
DJ
18364 /* If we are inside a function, mark this as an argument. If
18365 not, we might be looking at an argument to an inlined function
18366 when we do not have enough information to show inlined frames;
18367 pretend it's a local variable in that case so that the user can
18368 still see it. */
18369 if (context_stack_depth > 0
18370 && context_stack[context_stack_depth - 1].name != NULL)
18371 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 18372 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18373 if (attr)
18374 {
e7c27a73 18375 var_decode_location (attr, sym, cu);
c906108c 18376 }
e142c38c 18377 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18378 if (attr)
18379 {
e7c27a73 18380 dwarf2_const_value (attr, sym, cu);
c906108c 18381 }
f346a30d 18382
e37fd15a 18383 list_to_add = cu->list_in_scope;
c906108c
SS
18384 break;
18385 case DW_TAG_unspecified_parameters:
18386 /* From varargs functions; gdb doesn't seem to have any
18387 interest in this information, so just ignore it for now.
18388 (FIXME?) */
18389 break;
34eaf542
TT
18390 case DW_TAG_template_type_param:
18391 suppress_add = 1;
18392 /* Fall through. */
c906108c 18393 case DW_TAG_class_type:
680b30c7 18394 case DW_TAG_interface_type:
c906108c
SS
18395 case DW_TAG_structure_type:
18396 case DW_TAG_union_type:
72019c9c 18397 case DW_TAG_set_type:
c906108c 18398 case DW_TAG_enumeration_type:
f1e6e072 18399 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18400 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 18401
63d06c5c 18402 {
987504bb 18403 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
18404 really ever be static objects: otherwise, if you try
18405 to, say, break of a class's method and you're in a file
18406 which doesn't mention that class, it won't work unless
18407 the check for all static symbols in lookup_symbol_aux
18408 saves you. See the OtherFileClass tests in
18409 gdb.c++/namespace.exp. */
18410
e37fd15a 18411 if (!suppress_add)
34eaf542 18412 {
34eaf542
TT
18413 list_to_add = (cu->list_in_scope == &file_symbols
18414 && (cu->language == language_cplus
18415 || cu->language == language_java)
18416 ? &global_symbols : cu->list_in_scope);
63d06c5c 18417
64382290
TT
18418 /* The semantics of C++ state that "struct foo {
18419 ... }" also defines a typedef for "foo". A Java
18420 class declaration also defines a typedef for the
18421 class. */
18422 if (cu->language == language_cplus
18423 || cu->language == language_java
18424 || cu->language == language_ada)
18425 {
18426 /* The symbol's name is already allocated along
18427 with this objfile, so we don't need to
18428 duplicate it for the type. */
18429 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18430 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18431 }
63d06c5c
DC
18432 }
18433 }
c906108c
SS
18434 break;
18435 case DW_TAG_typedef:
f1e6e072 18436 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 18437 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18438 list_to_add = cu->list_in_scope;
63d06c5c 18439 break;
c906108c 18440 case DW_TAG_base_type:
a02abb62 18441 case DW_TAG_subrange_type:
f1e6e072 18442 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18443 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18444 list_to_add = cu->list_in_scope;
c906108c
SS
18445 break;
18446 case DW_TAG_enumerator:
e142c38c 18447 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18448 if (attr)
18449 {
e7c27a73 18450 dwarf2_const_value (attr, sym, cu);
c906108c 18451 }
63d06c5c
DC
18452 {
18453 /* NOTE: carlton/2003-11-10: See comment above in the
18454 DW_TAG_class_type, etc. block. */
18455
e142c38c 18456 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
18457 && (cu->language == language_cplus
18458 || cu->language == language_java)
e142c38c 18459 ? &global_symbols : cu->list_in_scope);
63d06c5c 18460 }
c906108c 18461 break;
74921315 18462 case DW_TAG_imported_declaration:
5c4e30ca 18463 case DW_TAG_namespace:
f1e6e072 18464 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 18465 list_to_add = &global_symbols;
5c4e30ca 18466 break;
530e8392
KB
18467 case DW_TAG_module:
18468 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18469 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18470 list_to_add = &global_symbols;
18471 break;
4357ac6c 18472 case DW_TAG_common_block:
f1e6e072 18473 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
18474 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18475 add_symbol_to_list (sym, cu->list_in_scope);
18476 break;
c906108c
SS
18477 default:
18478 /* Not a tag we recognize. Hopefully we aren't processing
18479 trash data, but since we must specifically ignore things
18480 we don't recognize, there is nothing else we should do at
0963b4bd 18481 this point. */
e2e0b3e5 18482 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 18483 dwarf_tag_name (die->tag));
c906108c
SS
18484 break;
18485 }
df8a16a1 18486
e37fd15a
SW
18487 if (suppress_add)
18488 {
18489 sym->hash_next = objfile->template_symbols;
18490 objfile->template_symbols = sym;
18491 list_to_add = NULL;
18492 }
18493
18494 if (list_to_add != NULL)
18495 add_symbol_to_list (sym, list_to_add);
18496
df8a16a1
DJ
18497 /* For the benefit of old versions of GCC, check for anonymous
18498 namespaces based on the demangled name. */
4d4ec4e5 18499 if (!cu->processing_has_namespace_info
94af9270 18500 && cu->language == language_cplus)
a10964d1 18501 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
18502 }
18503 return (sym);
18504}
18505
34eaf542
TT
18506/* A wrapper for new_symbol_full that always allocates a new symbol. */
18507
18508static struct symbol *
18509new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18510{
18511 return new_symbol_full (die, type, cu, NULL);
18512}
18513
98bfdba5
PA
18514/* Given an attr with a DW_FORM_dataN value in host byte order,
18515 zero-extend it as appropriate for the symbol's type. The DWARF
18516 standard (v4) is not entirely clear about the meaning of using
18517 DW_FORM_dataN for a constant with a signed type, where the type is
18518 wider than the data. The conclusion of a discussion on the DWARF
18519 list was that this is unspecified. We choose to always zero-extend
18520 because that is the interpretation long in use by GCC. */
c906108c 18521
98bfdba5 18522static gdb_byte *
ff39bb5e 18523dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 18524 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 18525{
e7c27a73 18526 struct objfile *objfile = cu->objfile;
e17a4113
UW
18527 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18528 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
18529 LONGEST l = DW_UNSND (attr);
18530
18531 if (bits < sizeof (*value) * 8)
18532 {
18533 l &= ((LONGEST) 1 << bits) - 1;
18534 *value = l;
18535 }
18536 else if (bits == sizeof (*value) * 8)
18537 *value = l;
18538 else
18539 {
18540 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18541 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18542 return bytes;
18543 }
18544
18545 return NULL;
18546}
18547
18548/* Read a constant value from an attribute. Either set *VALUE, or if
18549 the value does not fit in *VALUE, set *BYTES - either already
18550 allocated on the objfile obstack, or newly allocated on OBSTACK,
18551 or, set *BATON, if we translated the constant to a location
18552 expression. */
18553
18554static void
ff39bb5e 18555dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
18556 const char *name, struct obstack *obstack,
18557 struct dwarf2_cu *cu,
d521ce57 18558 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
18559 struct dwarf2_locexpr_baton **baton)
18560{
18561 struct objfile *objfile = cu->objfile;
18562 struct comp_unit_head *cu_header = &cu->header;
c906108c 18563 struct dwarf_block *blk;
98bfdba5
PA
18564 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18565 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18566
18567 *value = 0;
18568 *bytes = NULL;
18569 *baton = NULL;
c906108c
SS
18570
18571 switch (attr->form)
18572 {
18573 case DW_FORM_addr:
3019eac3 18574 case DW_FORM_GNU_addr_index:
ac56253d 18575 {
ac56253d
TT
18576 gdb_byte *data;
18577
98bfdba5
PA
18578 if (TYPE_LENGTH (type) != cu_header->addr_size)
18579 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 18580 cu_header->addr_size,
98bfdba5 18581 TYPE_LENGTH (type));
ac56253d
TT
18582 /* Symbols of this form are reasonably rare, so we just
18583 piggyback on the existing location code rather than writing
18584 a new implementation of symbol_computed_ops. */
7919a973 18585 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
98bfdba5
PA
18586 (*baton)->per_cu = cu->per_cu;
18587 gdb_assert ((*baton)->per_cu);
ac56253d 18588
98bfdba5 18589 (*baton)->size = 2 + cu_header->addr_size;
7919a973 18590 data = obstack_alloc (obstack, (*baton)->size);
98bfdba5 18591 (*baton)->data = data;
ac56253d
TT
18592
18593 data[0] = DW_OP_addr;
18594 store_unsigned_integer (&data[1], cu_header->addr_size,
18595 byte_order, DW_ADDR (attr));
18596 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 18597 }
c906108c 18598 break;
4ac36638 18599 case DW_FORM_string:
93b5768b 18600 case DW_FORM_strp:
3019eac3 18601 case DW_FORM_GNU_str_index:
36586728 18602 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
18603 /* DW_STRING is already allocated on the objfile obstack, point
18604 directly to it. */
d521ce57 18605 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 18606 break;
c906108c
SS
18607 case DW_FORM_block1:
18608 case DW_FORM_block2:
18609 case DW_FORM_block4:
18610 case DW_FORM_block:
2dc7f7b3 18611 case DW_FORM_exprloc:
c906108c 18612 blk = DW_BLOCK (attr);
98bfdba5
PA
18613 if (TYPE_LENGTH (type) != blk->size)
18614 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18615 TYPE_LENGTH (type));
18616 *bytes = blk->data;
c906108c 18617 break;
2df3850c
JM
18618
18619 /* The DW_AT_const_value attributes are supposed to carry the
18620 symbol's value "represented as it would be on the target
18621 architecture." By the time we get here, it's already been
18622 converted to host endianness, so we just need to sign- or
18623 zero-extend it as appropriate. */
18624 case DW_FORM_data1:
3aef2284 18625 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 18626 break;
c906108c 18627 case DW_FORM_data2:
3aef2284 18628 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 18629 break;
c906108c 18630 case DW_FORM_data4:
3aef2284 18631 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 18632 break;
c906108c 18633 case DW_FORM_data8:
3aef2284 18634 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
18635 break;
18636
c906108c 18637 case DW_FORM_sdata:
98bfdba5 18638 *value = DW_SND (attr);
2df3850c
JM
18639 break;
18640
c906108c 18641 case DW_FORM_udata:
98bfdba5 18642 *value = DW_UNSND (attr);
c906108c 18643 break;
2df3850c 18644
c906108c 18645 default:
4d3c2250 18646 complaint (&symfile_complaints,
e2e0b3e5 18647 _("unsupported const value attribute form: '%s'"),
4d3c2250 18648 dwarf_form_name (attr->form));
98bfdba5 18649 *value = 0;
c906108c
SS
18650 break;
18651 }
18652}
18653
2df3850c 18654
98bfdba5
PA
18655/* Copy constant value from an attribute to a symbol. */
18656
2df3850c 18657static void
ff39bb5e 18658dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 18659 struct dwarf2_cu *cu)
2df3850c 18660{
98bfdba5
PA
18661 struct objfile *objfile = cu->objfile;
18662 struct comp_unit_head *cu_header = &cu->header;
12df843f 18663 LONGEST value;
d521ce57 18664 const gdb_byte *bytes;
98bfdba5 18665 struct dwarf2_locexpr_baton *baton;
2df3850c 18666
98bfdba5
PA
18667 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18668 SYMBOL_PRINT_NAME (sym),
18669 &objfile->objfile_obstack, cu,
18670 &value, &bytes, &baton);
2df3850c 18671
98bfdba5
PA
18672 if (baton != NULL)
18673 {
98bfdba5 18674 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 18675 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
18676 }
18677 else if (bytes != NULL)
18678 {
18679 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 18680 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
18681 }
18682 else
18683 {
18684 SYMBOL_VALUE (sym) = value;
f1e6e072 18685 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 18686 }
2df3850c
JM
18687}
18688
c906108c
SS
18689/* Return the type of the die in question using its DW_AT_type attribute. */
18690
18691static struct type *
e7c27a73 18692die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18693{
c906108c 18694 struct attribute *type_attr;
c906108c 18695
e142c38c 18696 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
18697 if (!type_attr)
18698 {
18699 /* A missing DW_AT_type represents a void type. */
46bf5051 18700 return objfile_type (cu->objfile)->builtin_void;
c906108c 18701 }
348e048f 18702
673bfd45 18703 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18704}
18705
b4ba55a1
JB
18706/* True iff CU's producer generates GNAT Ada auxiliary information
18707 that allows to find parallel types through that information instead
18708 of having to do expensive parallel lookups by type name. */
18709
18710static int
18711need_gnat_info (struct dwarf2_cu *cu)
18712{
18713 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18714 of GNAT produces this auxiliary information, without any indication
18715 that it is produced. Part of enhancing the FSF version of GNAT
18716 to produce that information will be to put in place an indicator
18717 that we can use in order to determine whether the descriptive type
18718 info is available or not. One suggestion that has been made is
18719 to use a new attribute, attached to the CU die. For now, assume
18720 that the descriptive type info is not available. */
18721 return 0;
18722}
18723
b4ba55a1
JB
18724/* Return the auxiliary type of the die in question using its
18725 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18726 attribute is not present. */
18727
18728static struct type *
18729die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18730{
b4ba55a1 18731 struct attribute *type_attr;
b4ba55a1
JB
18732
18733 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18734 if (!type_attr)
18735 return NULL;
18736
673bfd45 18737 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
18738}
18739
18740/* If DIE has a descriptive_type attribute, then set the TYPE's
18741 descriptive type accordingly. */
18742
18743static void
18744set_descriptive_type (struct type *type, struct die_info *die,
18745 struct dwarf2_cu *cu)
18746{
18747 struct type *descriptive_type = die_descriptive_type (die, cu);
18748
18749 if (descriptive_type)
18750 {
18751 ALLOCATE_GNAT_AUX_TYPE (type);
18752 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18753 }
18754}
18755
c906108c
SS
18756/* Return the containing type of the die in question using its
18757 DW_AT_containing_type attribute. */
18758
18759static struct type *
e7c27a73 18760die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18761{
c906108c 18762 struct attribute *type_attr;
c906108c 18763
e142c38c 18764 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
18765 if (!type_attr)
18766 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 18767 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 18768
673bfd45 18769 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18770}
18771
ac9ec31b
DE
18772/* Return an error marker type to use for the ill formed type in DIE/CU. */
18773
18774static struct type *
18775build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18776{
18777 struct objfile *objfile = dwarf2_per_objfile->objfile;
18778 char *message, *saved;
18779
18780 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 18781 objfile_name (objfile),
ac9ec31b
DE
18782 cu->header.offset.sect_off,
18783 die->offset.sect_off);
18784 saved = obstack_copy0 (&objfile->objfile_obstack,
18785 message, strlen (message));
18786 xfree (message);
18787
18788 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18789}
18790
673bfd45 18791/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
18792 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18793 DW_AT_containing_type.
673bfd45
DE
18794 If there is no type substitute an error marker. */
18795
c906108c 18796static struct type *
ff39bb5e 18797lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 18798 struct dwarf2_cu *cu)
c906108c 18799{
bb5ed363 18800 struct objfile *objfile = cu->objfile;
f792889a
DJ
18801 struct type *this_type;
18802
ac9ec31b
DE
18803 gdb_assert (attr->name == DW_AT_type
18804 || attr->name == DW_AT_GNAT_descriptive_type
18805 || attr->name == DW_AT_containing_type);
18806
673bfd45
DE
18807 /* First see if we have it cached. */
18808
36586728
TT
18809 if (attr->form == DW_FORM_GNU_ref_alt)
18810 {
18811 struct dwarf2_per_cu_data *per_cu;
18812 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18813
18814 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18815 this_type = get_die_type_at_offset (offset, per_cu);
18816 }
7771576e 18817 else if (attr_form_is_ref (attr))
673bfd45 18818 {
b64f50a1 18819 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
18820
18821 this_type = get_die_type_at_offset (offset, cu->per_cu);
18822 }
55f1336d 18823 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 18824 {
ac9ec31b 18825 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 18826
ac9ec31b 18827 return get_signatured_type (die, signature, cu);
673bfd45
DE
18828 }
18829 else
18830 {
ac9ec31b
DE
18831 complaint (&symfile_complaints,
18832 _("Dwarf Error: Bad type attribute %s in DIE"
18833 " at 0x%x [in module %s]"),
18834 dwarf_attr_name (attr->name), die->offset.sect_off,
4262abfb 18835 objfile_name (objfile));
ac9ec31b 18836 return build_error_marker_type (cu, die);
673bfd45
DE
18837 }
18838
18839 /* If not cached we need to read it in. */
18840
18841 if (this_type == NULL)
18842 {
ac9ec31b 18843 struct die_info *type_die = NULL;
673bfd45
DE
18844 struct dwarf2_cu *type_cu = cu;
18845
7771576e 18846 if (attr_form_is_ref (attr))
ac9ec31b
DE
18847 type_die = follow_die_ref (die, attr, &type_cu);
18848 if (type_die == NULL)
18849 return build_error_marker_type (cu, die);
18850 /* If we find the type now, it's probably because the type came
3019eac3
DE
18851 from an inter-CU reference and the type's CU got expanded before
18852 ours. */
ac9ec31b 18853 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
18854 }
18855
18856 /* If we still don't have a type use an error marker. */
18857
18858 if (this_type == NULL)
ac9ec31b 18859 return build_error_marker_type (cu, die);
673bfd45 18860
f792889a 18861 return this_type;
c906108c
SS
18862}
18863
673bfd45
DE
18864/* Return the type in DIE, CU.
18865 Returns NULL for invalid types.
18866
02142a6c 18867 This first does a lookup in die_type_hash,
673bfd45
DE
18868 and only reads the die in if necessary.
18869
18870 NOTE: This can be called when reading in partial or full symbols. */
18871
f792889a 18872static struct type *
e7c27a73 18873read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18874{
f792889a
DJ
18875 struct type *this_type;
18876
18877 this_type = get_die_type (die, cu);
18878 if (this_type)
18879 return this_type;
18880
673bfd45
DE
18881 return read_type_die_1 (die, cu);
18882}
18883
18884/* Read the type in DIE, CU.
18885 Returns NULL for invalid types. */
18886
18887static struct type *
18888read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18889{
18890 struct type *this_type = NULL;
18891
c906108c
SS
18892 switch (die->tag)
18893 {
18894 case DW_TAG_class_type:
680b30c7 18895 case DW_TAG_interface_type:
c906108c
SS
18896 case DW_TAG_structure_type:
18897 case DW_TAG_union_type:
f792889a 18898 this_type = read_structure_type (die, cu);
c906108c
SS
18899 break;
18900 case DW_TAG_enumeration_type:
f792889a 18901 this_type = read_enumeration_type (die, cu);
c906108c
SS
18902 break;
18903 case DW_TAG_subprogram:
18904 case DW_TAG_subroutine_type:
edb3359d 18905 case DW_TAG_inlined_subroutine:
f792889a 18906 this_type = read_subroutine_type (die, cu);
c906108c
SS
18907 break;
18908 case DW_TAG_array_type:
f792889a 18909 this_type = read_array_type (die, cu);
c906108c 18910 break;
72019c9c 18911 case DW_TAG_set_type:
f792889a 18912 this_type = read_set_type (die, cu);
72019c9c 18913 break;
c906108c 18914 case DW_TAG_pointer_type:
f792889a 18915 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
18916 break;
18917 case DW_TAG_ptr_to_member_type:
f792889a 18918 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
18919 break;
18920 case DW_TAG_reference_type:
f792889a 18921 this_type = read_tag_reference_type (die, cu);
c906108c
SS
18922 break;
18923 case DW_TAG_const_type:
f792889a 18924 this_type = read_tag_const_type (die, cu);
c906108c
SS
18925 break;
18926 case DW_TAG_volatile_type:
f792889a 18927 this_type = read_tag_volatile_type (die, cu);
c906108c 18928 break;
06d66ee9
TT
18929 case DW_TAG_restrict_type:
18930 this_type = read_tag_restrict_type (die, cu);
18931 break;
c906108c 18932 case DW_TAG_string_type:
f792889a 18933 this_type = read_tag_string_type (die, cu);
c906108c
SS
18934 break;
18935 case DW_TAG_typedef:
f792889a 18936 this_type = read_typedef (die, cu);
c906108c 18937 break;
a02abb62 18938 case DW_TAG_subrange_type:
f792889a 18939 this_type = read_subrange_type (die, cu);
a02abb62 18940 break;
c906108c 18941 case DW_TAG_base_type:
f792889a 18942 this_type = read_base_type (die, cu);
c906108c 18943 break;
81a17f79 18944 case DW_TAG_unspecified_type:
f792889a 18945 this_type = read_unspecified_type (die, cu);
81a17f79 18946 break;
0114d602
DJ
18947 case DW_TAG_namespace:
18948 this_type = read_namespace_type (die, cu);
18949 break;
f55ee35c
JK
18950 case DW_TAG_module:
18951 this_type = read_module_type (die, cu);
18952 break;
a2c2acaf
MW
18953 case DW_TAG_atomic_type:
18954 this_type = read_tag_atomic_type (die, cu);
18955 break;
c906108c 18956 default:
3e43a32a
MS
18957 complaint (&symfile_complaints,
18958 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 18959 dwarf_tag_name (die->tag));
c906108c
SS
18960 break;
18961 }
63d06c5c 18962
f792889a 18963 return this_type;
63d06c5c
DC
18964}
18965
abc72ce4
DE
18966/* See if we can figure out if the class lives in a namespace. We do
18967 this by looking for a member function; its demangled name will
18968 contain namespace info, if there is any.
18969 Return the computed name or NULL.
18970 Space for the result is allocated on the objfile's obstack.
18971 This is the full-die version of guess_partial_die_structure_name.
18972 In this case we know DIE has no useful parent. */
18973
18974static char *
18975guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18976{
18977 struct die_info *spec_die;
18978 struct dwarf2_cu *spec_cu;
18979 struct die_info *child;
18980
18981 spec_cu = cu;
18982 spec_die = die_specification (die, &spec_cu);
18983 if (spec_die != NULL)
18984 {
18985 die = spec_die;
18986 cu = spec_cu;
18987 }
18988
18989 for (child = die->child;
18990 child != NULL;
18991 child = child->sibling)
18992 {
18993 if (child->tag == DW_TAG_subprogram)
18994 {
18995 struct attribute *attr;
18996
18997 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18998 if (attr == NULL)
18999 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
19000 if (attr != NULL)
19001 {
19002 char *actual_name
19003 = language_class_name_from_physname (cu->language_defn,
19004 DW_STRING (attr));
19005 char *name = NULL;
19006
19007 if (actual_name != NULL)
19008 {
15d034d0 19009 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
19010
19011 if (die_name != NULL
19012 && strcmp (die_name, actual_name) != 0)
19013 {
19014 /* Strip off the class name from the full name.
19015 We want the prefix. */
19016 int die_name_len = strlen (die_name);
19017 int actual_name_len = strlen (actual_name);
19018
19019 /* Test for '::' as a sanity check. */
19020 if (actual_name_len > die_name_len + 2
3e43a32a
MS
19021 && actual_name[actual_name_len
19022 - die_name_len - 1] == ':')
abc72ce4 19023 name =
34a68019 19024 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
10f0c4bb
TT
19025 actual_name,
19026 actual_name_len - die_name_len - 2);
abc72ce4
DE
19027 }
19028 }
19029 xfree (actual_name);
19030 return name;
19031 }
19032 }
19033 }
19034
19035 return NULL;
19036}
19037
96408a79
SA
19038/* GCC might emit a nameless typedef that has a linkage name. Determine the
19039 prefix part in such case. See
19040 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19041
19042static char *
19043anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19044{
19045 struct attribute *attr;
19046 char *base;
19047
19048 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19049 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19050 return NULL;
19051
19052 attr = dwarf2_attr (die, DW_AT_name, cu);
19053 if (attr != NULL && DW_STRING (attr) != NULL)
19054 return NULL;
19055
19056 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19057 if (attr == NULL)
19058 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19059 if (attr == NULL || DW_STRING (attr) == NULL)
19060 return NULL;
19061
19062 /* dwarf2_name had to be already called. */
19063 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19064
19065 /* Strip the base name, keep any leading namespaces/classes. */
19066 base = strrchr (DW_STRING (attr), ':');
19067 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19068 return "";
19069
34a68019 19070 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
10f0c4bb 19071 DW_STRING (attr), &base[-1] - DW_STRING (attr));
96408a79
SA
19072}
19073
fdde2d81 19074/* Return the name of the namespace/class that DIE is defined within,
0114d602 19075 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 19076
0114d602
DJ
19077 For example, if we're within the method foo() in the following
19078 code:
19079
19080 namespace N {
19081 class C {
19082 void foo () {
19083 }
19084 };
19085 }
19086
19087 then determine_prefix on foo's die will return "N::C". */
fdde2d81 19088
0d5cff50 19089static const char *
e142c38c 19090determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 19091{
0114d602
DJ
19092 struct die_info *parent, *spec_die;
19093 struct dwarf2_cu *spec_cu;
19094 struct type *parent_type;
96408a79 19095 char *retval;
63d06c5c 19096
f55ee35c
JK
19097 if (cu->language != language_cplus && cu->language != language_java
19098 && cu->language != language_fortran)
0114d602
DJ
19099 return "";
19100
96408a79
SA
19101 retval = anonymous_struct_prefix (die, cu);
19102 if (retval)
19103 return retval;
19104
0114d602
DJ
19105 /* We have to be careful in the presence of DW_AT_specification.
19106 For example, with GCC 3.4, given the code
19107
19108 namespace N {
19109 void foo() {
19110 // Definition of N::foo.
19111 }
19112 }
19113
19114 then we'll have a tree of DIEs like this:
19115
19116 1: DW_TAG_compile_unit
19117 2: DW_TAG_namespace // N
19118 3: DW_TAG_subprogram // declaration of N::foo
19119 4: DW_TAG_subprogram // definition of N::foo
19120 DW_AT_specification // refers to die #3
19121
19122 Thus, when processing die #4, we have to pretend that we're in
19123 the context of its DW_AT_specification, namely the contex of die
19124 #3. */
19125 spec_cu = cu;
19126 spec_die = die_specification (die, &spec_cu);
19127 if (spec_die == NULL)
19128 parent = die->parent;
19129 else
63d06c5c 19130 {
0114d602
DJ
19131 parent = spec_die->parent;
19132 cu = spec_cu;
63d06c5c 19133 }
0114d602
DJ
19134
19135 if (parent == NULL)
19136 return "";
98bfdba5
PA
19137 else if (parent->building_fullname)
19138 {
19139 const char *name;
19140 const char *parent_name;
19141
19142 /* It has been seen on RealView 2.2 built binaries,
19143 DW_TAG_template_type_param types actually _defined_ as
19144 children of the parent class:
19145
19146 enum E {};
19147 template class <class Enum> Class{};
19148 Class<enum E> class_e;
19149
19150 1: DW_TAG_class_type (Class)
19151 2: DW_TAG_enumeration_type (E)
19152 3: DW_TAG_enumerator (enum1:0)
19153 3: DW_TAG_enumerator (enum2:1)
19154 ...
19155 2: DW_TAG_template_type_param
19156 DW_AT_type DW_FORM_ref_udata (E)
19157
19158 Besides being broken debug info, it can put GDB into an
19159 infinite loop. Consider:
19160
19161 When we're building the full name for Class<E>, we'll start
19162 at Class, and go look over its template type parameters,
19163 finding E. We'll then try to build the full name of E, and
19164 reach here. We're now trying to build the full name of E,
19165 and look over the parent DIE for containing scope. In the
19166 broken case, if we followed the parent DIE of E, we'd again
19167 find Class, and once again go look at its template type
19168 arguments, etc., etc. Simply don't consider such parent die
19169 as source-level parent of this die (it can't be, the language
19170 doesn't allow it), and break the loop here. */
19171 name = dwarf2_name (die, cu);
19172 parent_name = dwarf2_name (parent, cu);
19173 complaint (&symfile_complaints,
19174 _("template param type '%s' defined within parent '%s'"),
19175 name ? name : "<unknown>",
19176 parent_name ? parent_name : "<unknown>");
19177 return "";
19178 }
63d06c5c 19179 else
0114d602
DJ
19180 switch (parent->tag)
19181 {
63d06c5c 19182 case DW_TAG_namespace:
0114d602 19183 parent_type = read_type_die (parent, cu);
acebe513
UW
19184 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19185 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19186 Work around this problem here. */
19187 if (cu->language == language_cplus
19188 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19189 return "";
0114d602
DJ
19190 /* We give a name to even anonymous namespaces. */
19191 return TYPE_TAG_NAME (parent_type);
63d06c5c 19192 case DW_TAG_class_type:
680b30c7 19193 case DW_TAG_interface_type:
63d06c5c 19194 case DW_TAG_structure_type:
0114d602 19195 case DW_TAG_union_type:
f55ee35c 19196 case DW_TAG_module:
0114d602
DJ
19197 parent_type = read_type_die (parent, cu);
19198 if (TYPE_TAG_NAME (parent_type) != NULL)
19199 return TYPE_TAG_NAME (parent_type);
19200 else
19201 /* An anonymous structure is only allowed non-static data
19202 members; no typedefs, no member functions, et cetera.
19203 So it does not need a prefix. */
19204 return "";
abc72ce4 19205 case DW_TAG_compile_unit:
95554aad 19206 case DW_TAG_partial_unit:
abc72ce4
DE
19207 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19208 if (cu->language == language_cplus
8b70b953 19209 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
19210 && die->child != NULL
19211 && (die->tag == DW_TAG_class_type
19212 || die->tag == DW_TAG_structure_type
19213 || die->tag == DW_TAG_union_type))
19214 {
19215 char *name = guess_full_die_structure_name (die, cu);
19216 if (name != NULL)
19217 return name;
19218 }
19219 return "";
3d567982
TT
19220 case DW_TAG_enumeration_type:
19221 parent_type = read_type_die (parent, cu);
19222 if (TYPE_DECLARED_CLASS (parent_type))
19223 {
19224 if (TYPE_TAG_NAME (parent_type) != NULL)
19225 return TYPE_TAG_NAME (parent_type);
19226 return "";
19227 }
19228 /* Fall through. */
63d06c5c 19229 default:
8176b9b8 19230 return determine_prefix (parent, cu);
63d06c5c 19231 }
63d06c5c
DC
19232}
19233
3e43a32a
MS
19234/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19235 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19236 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19237 an obconcat, otherwise allocate storage for the result. The CU argument is
19238 used to determine the language and hence, the appropriate separator. */
987504bb 19239
f55ee35c 19240#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
19241
19242static char *
f55ee35c
JK
19243typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19244 int physname, struct dwarf2_cu *cu)
63d06c5c 19245{
f55ee35c 19246 const char *lead = "";
5c315b68 19247 const char *sep;
63d06c5c 19248
3e43a32a
MS
19249 if (suffix == NULL || suffix[0] == '\0'
19250 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
19251 sep = "";
19252 else if (cu->language == language_java)
19253 sep = ".";
f55ee35c
JK
19254 else if (cu->language == language_fortran && physname)
19255 {
19256 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19257 DW_AT_MIPS_linkage_name is preferred and used instead. */
19258
19259 lead = "__";
19260 sep = "_MOD_";
19261 }
987504bb
JJ
19262 else
19263 sep = "::";
63d06c5c 19264
6dd47d34
DE
19265 if (prefix == NULL)
19266 prefix = "";
19267 if (suffix == NULL)
19268 suffix = "";
19269
987504bb
JJ
19270 if (obs == NULL)
19271 {
3e43a32a
MS
19272 char *retval
19273 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9a619af0 19274
f55ee35c
JK
19275 strcpy (retval, lead);
19276 strcat (retval, prefix);
6dd47d34
DE
19277 strcat (retval, sep);
19278 strcat (retval, suffix);
63d06c5c
DC
19279 return retval;
19280 }
987504bb
JJ
19281 else
19282 {
19283 /* We have an obstack. */
f55ee35c 19284 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 19285 }
63d06c5c
DC
19286}
19287
c906108c
SS
19288/* Return sibling of die, NULL if no sibling. */
19289
f9aca02d 19290static struct die_info *
fba45db2 19291sibling_die (struct die_info *die)
c906108c 19292{
639d11d3 19293 return die->sibling;
c906108c
SS
19294}
19295
71c25dea
TT
19296/* Get name of a die, return NULL if not found. */
19297
15d034d0
TT
19298static const char *
19299dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
19300 struct obstack *obstack)
19301{
19302 if (name && cu->language == language_cplus)
19303 {
19304 char *canon_name = cp_canonicalize_string (name);
19305
19306 if (canon_name != NULL)
19307 {
19308 if (strcmp (canon_name, name) != 0)
10f0c4bb 19309 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
71c25dea
TT
19310 xfree (canon_name);
19311 }
19312 }
19313
19314 return name;
c906108c
SS
19315}
19316
96553a0c
DE
19317/* Get name of a die, return NULL if not found.
19318 Anonymous namespaces are converted to their magic string. */
9219021c 19319
15d034d0 19320static const char *
e142c38c 19321dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
19322{
19323 struct attribute *attr;
19324
e142c38c 19325 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31 19326 if ((!attr || !DW_STRING (attr))
96553a0c 19327 && die->tag != DW_TAG_namespace
53832f31
TT
19328 && die->tag != DW_TAG_class_type
19329 && die->tag != DW_TAG_interface_type
19330 && die->tag != DW_TAG_structure_type
19331 && die->tag != DW_TAG_union_type)
71c25dea
TT
19332 return NULL;
19333
19334 switch (die->tag)
19335 {
19336 case DW_TAG_compile_unit:
95554aad 19337 case DW_TAG_partial_unit:
71c25dea
TT
19338 /* Compilation units have a DW_AT_name that is a filename, not
19339 a source language identifier. */
19340 case DW_TAG_enumeration_type:
19341 case DW_TAG_enumerator:
19342 /* These tags always have simple identifiers already; no need
19343 to canonicalize them. */
19344 return DW_STRING (attr);
907af001 19345
96553a0c
DE
19346 case DW_TAG_namespace:
19347 if (attr != NULL && DW_STRING (attr) != NULL)
19348 return DW_STRING (attr);
19349 return CP_ANONYMOUS_NAMESPACE_STR;
19350
418835cc
KS
19351 case DW_TAG_subprogram:
19352 /* Java constructors will all be named "<init>", so return
19353 the class name when we see this special case. */
19354 if (cu->language == language_java
19355 && DW_STRING (attr) != NULL
19356 && strcmp (DW_STRING (attr), "<init>") == 0)
19357 {
19358 struct dwarf2_cu *spec_cu = cu;
19359 struct die_info *spec_die;
19360
19361 /* GCJ will output '<init>' for Java constructor names.
19362 For this special case, return the name of the parent class. */
19363
cdc07690 19364 /* GCJ may output subprogram DIEs with AT_specification set.
418835cc
KS
19365 If so, use the name of the specified DIE. */
19366 spec_die = die_specification (die, &spec_cu);
19367 if (spec_die != NULL)
19368 return dwarf2_name (spec_die, spec_cu);
19369
19370 do
19371 {
19372 die = die->parent;
19373 if (die->tag == DW_TAG_class_type)
19374 return dwarf2_name (die, cu);
19375 }
95554aad
TT
19376 while (die->tag != DW_TAG_compile_unit
19377 && die->tag != DW_TAG_partial_unit);
418835cc 19378 }
907af001
UW
19379 break;
19380
19381 case DW_TAG_class_type:
19382 case DW_TAG_interface_type:
19383 case DW_TAG_structure_type:
19384 case DW_TAG_union_type:
19385 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19386 structures or unions. These were of the form "._%d" in GCC 4.1,
19387 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19388 and GCC 4.4. We work around this problem by ignoring these. */
53832f31 19389 if (attr && DW_STRING (attr)
61012eef
GB
19390 && (startswith (DW_STRING (attr), "._")
19391 || startswith (DW_STRING (attr), "<anonymous")))
907af001 19392 return NULL;
53832f31
TT
19393
19394 /* GCC might emit a nameless typedef that has a linkage name. See
19395 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19396 if (!attr || DW_STRING (attr) == NULL)
19397 {
df5c6c50 19398 char *demangled = NULL;
53832f31
TT
19399
19400 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19401 if (attr == NULL)
19402 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19403
19404 if (attr == NULL || DW_STRING (attr) == NULL)
19405 return NULL;
19406
df5c6c50
JK
19407 /* Avoid demangling DW_STRING (attr) the second time on a second
19408 call for the same DIE. */
19409 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 19410 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
19411
19412 if (demangled)
19413 {
96408a79
SA
19414 char *base;
19415
53832f31 19416 /* FIXME: we already did this for the partial symbol... */
34a68019
TT
19417 DW_STRING (attr)
19418 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19419 demangled, strlen (demangled));
53832f31
TT
19420 DW_STRING_IS_CANONICAL (attr) = 1;
19421 xfree (demangled);
96408a79
SA
19422
19423 /* Strip any leading namespaces/classes, keep only the base name.
19424 DW_AT_name for named DIEs does not contain the prefixes. */
19425 base = strrchr (DW_STRING (attr), ':');
19426 if (base && base > DW_STRING (attr) && base[-1] == ':')
19427 return &base[1];
19428 else
19429 return DW_STRING (attr);
53832f31
TT
19430 }
19431 }
907af001
UW
19432 break;
19433
71c25dea 19434 default:
907af001
UW
19435 break;
19436 }
19437
19438 if (!DW_STRING_IS_CANONICAL (attr))
19439 {
19440 DW_STRING (attr)
19441 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
34a68019 19442 &cu->objfile->per_bfd->storage_obstack);
907af001 19443 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 19444 }
907af001 19445 return DW_STRING (attr);
9219021c
DC
19446}
19447
19448/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
19449 is none. *EXT_CU is the CU containing DIE on input, and the CU
19450 containing the return value on output. */
9219021c
DC
19451
19452static struct die_info *
f2f0e013 19453dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
19454{
19455 struct attribute *attr;
9219021c 19456
f2f0e013 19457 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
19458 if (attr == NULL)
19459 return NULL;
19460
f2f0e013 19461 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
19462}
19463
c906108c
SS
19464/* Convert a DIE tag into its string name. */
19465
f39c6ffd 19466static const char *
aa1ee363 19467dwarf_tag_name (unsigned tag)
c906108c 19468{
f39c6ffd
TT
19469 const char *name = get_DW_TAG_name (tag);
19470
19471 if (name == NULL)
19472 return "DW_TAG_<unknown>";
19473
19474 return name;
c906108c
SS
19475}
19476
19477/* Convert a DWARF attribute code into its string name. */
19478
f39c6ffd 19479static const char *
aa1ee363 19480dwarf_attr_name (unsigned attr)
c906108c 19481{
f39c6ffd
TT
19482 const char *name;
19483
c764a876 19484#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
19485 if (attr == DW_AT_MIPS_fde)
19486 return "DW_AT_MIPS_fde";
19487#else
19488 if (attr == DW_AT_HP_block_index)
19489 return "DW_AT_HP_block_index";
c764a876 19490#endif
f39c6ffd
TT
19491
19492 name = get_DW_AT_name (attr);
19493
19494 if (name == NULL)
19495 return "DW_AT_<unknown>";
19496
19497 return name;
c906108c
SS
19498}
19499
19500/* Convert a DWARF value form code into its string name. */
19501
f39c6ffd 19502static const char *
aa1ee363 19503dwarf_form_name (unsigned form)
c906108c 19504{
f39c6ffd
TT
19505 const char *name = get_DW_FORM_name (form);
19506
19507 if (name == NULL)
19508 return "DW_FORM_<unknown>";
19509
19510 return name;
c906108c
SS
19511}
19512
19513static char *
fba45db2 19514dwarf_bool_name (unsigned mybool)
c906108c
SS
19515{
19516 if (mybool)
19517 return "TRUE";
19518 else
19519 return "FALSE";
19520}
19521
19522/* Convert a DWARF type code into its string name. */
19523
f39c6ffd 19524static const char *
aa1ee363 19525dwarf_type_encoding_name (unsigned enc)
c906108c 19526{
f39c6ffd 19527 const char *name = get_DW_ATE_name (enc);
c906108c 19528
f39c6ffd
TT
19529 if (name == NULL)
19530 return "DW_ATE_<unknown>";
c906108c 19531
f39c6ffd 19532 return name;
c906108c 19533}
c906108c 19534
f9aca02d 19535static void
d97bc12b 19536dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
19537{
19538 unsigned int i;
19539
d97bc12b
DE
19540 print_spaces (indent, f);
19541 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 19542 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
19543
19544 if (die->parent != NULL)
19545 {
19546 print_spaces (indent, f);
19547 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 19548 die->parent->offset.sect_off);
d97bc12b
DE
19549 }
19550
19551 print_spaces (indent, f);
19552 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 19553 dwarf_bool_name (die->child != NULL));
c906108c 19554
d97bc12b
DE
19555 print_spaces (indent, f);
19556 fprintf_unfiltered (f, " attributes:\n");
19557
c906108c
SS
19558 for (i = 0; i < die->num_attrs; ++i)
19559 {
d97bc12b
DE
19560 print_spaces (indent, f);
19561 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
19562 dwarf_attr_name (die->attrs[i].name),
19563 dwarf_form_name (die->attrs[i].form));
d97bc12b 19564
c906108c
SS
19565 switch (die->attrs[i].form)
19566 {
c906108c 19567 case DW_FORM_addr:
3019eac3 19568 case DW_FORM_GNU_addr_index:
d97bc12b 19569 fprintf_unfiltered (f, "address: ");
5af949e3 19570 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
19571 break;
19572 case DW_FORM_block2:
19573 case DW_FORM_block4:
19574 case DW_FORM_block:
19575 case DW_FORM_block1:
56eb65bd
SP
19576 fprintf_unfiltered (f, "block: size %s",
19577 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 19578 break;
2dc7f7b3 19579 case DW_FORM_exprloc:
56eb65bd
SP
19580 fprintf_unfiltered (f, "expression: size %s",
19581 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 19582 break;
4568ecf9
DE
19583 case DW_FORM_ref_addr:
19584 fprintf_unfiltered (f, "ref address: ");
19585 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19586 break;
36586728
TT
19587 case DW_FORM_GNU_ref_alt:
19588 fprintf_unfiltered (f, "alt ref address: ");
19589 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19590 break;
10b3939b
DJ
19591 case DW_FORM_ref1:
19592 case DW_FORM_ref2:
19593 case DW_FORM_ref4:
4568ecf9
DE
19594 case DW_FORM_ref8:
19595 case DW_FORM_ref_udata:
d97bc12b 19596 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 19597 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 19598 break;
c906108c
SS
19599 case DW_FORM_data1:
19600 case DW_FORM_data2:
19601 case DW_FORM_data4:
ce5d95e1 19602 case DW_FORM_data8:
c906108c
SS
19603 case DW_FORM_udata:
19604 case DW_FORM_sdata:
43bbcdc2
PH
19605 fprintf_unfiltered (f, "constant: %s",
19606 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 19607 break;
2dc7f7b3
TT
19608 case DW_FORM_sec_offset:
19609 fprintf_unfiltered (f, "section offset: %s",
19610 pulongest (DW_UNSND (&die->attrs[i])));
19611 break;
55f1336d 19612 case DW_FORM_ref_sig8:
ac9ec31b
DE
19613 fprintf_unfiltered (f, "signature: %s",
19614 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 19615 break;
c906108c 19616 case DW_FORM_string:
4bdf3d34 19617 case DW_FORM_strp:
3019eac3 19618 case DW_FORM_GNU_str_index:
36586728 19619 case DW_FORM_GNU_strp_alt:
8285870a 19620 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 19621 DW_STRING (&die->attrs[i])
8285870a
JK
19622 ? DW_STRING (&die->attrs[i]) : "",
19623 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
19624 break;
19625 case DW_FORM_flag:
19626 if (DW_UNSND (&die->attrs[i]))
d97bc12b 19627 fprintf_unfiltered (f, "flag: TRUE");
c906108c 19628 else
d97bc12b 19629 fprintf_unfiltered (f, "flag: FALSE");
c906108c 19630 break;
2dc7f7b3
TT
19631 case DW_FORM_flag_present:
19632 fprintf_unfiltered (f, "flag: TRUE");
19633 break;
a8329558 19634 case DW_FORM_indirect:
0963b4bd
MS
19635 /* The reader will have reduced the indirect form to
19636 the "base form" so this form should not occur. */
3e43a32a
MS
19637 fprintf_unfiltered (f,
19638 "unexpected attribute form: DW_FORM_indirect");
a8329558 19639 break;
c906108c 19640 default:
d97bc12b 19641 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 19642 die->attrs[i].form);
d97bc12b 19643 break;
c906108c 19644 }
d97bc12b 19645 fprintf_unfiltered (f, "\n");
c906108c
SS
19646 }
19647}
19648
f9aca02d 19649static void
d97bc12b 19650dump_die_for_error (struct die_info *die)
c906108c 19651{
d97bc12b
DE
19652 dump_die_shallow (gdb_stderr, 0, die);
19653}
19654
19655static void
19656dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19657{
19658 int indent = level * 4;
19659
19660 gdb_assert (die != NULL);
19661
19662 if (level >= max_level)
19663 return;
19664
19665 dump_die_shallow (f, indent, die);
19666
19667 if (die->child != NULL)
c906108c 19668 {
d97bc12b
DE
19669 print_spaces (indent, f);
19670 fprintf_unfiltered (f, " Children:");
19671 if (level + 1 < max_level)
19672 {
19673 fprintf_unfiltered (f, "\n");
19674 dump_die_1 (f, level + 1, max_level, die->child);
19675 }
19676 else
19677 {
3e43a32a
MS
19678 fprintf_unfiltered (f,
19679 " [not printed, max nesting level reached]\n");
d97bc12b
DE
19680 }
19681 }
19682
19683 if (die->sibling != NULL && level > 0)
19684 {
19685 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
19686 }
19687}
19688
d97bc12b
DE
19689/* This is called from the pdie macro in gdbinit.in.
19690 It's not static so gcc will keep a copy callable from gdb. */
19691
19692void
19693dump_die (struct die_info *die, int max_level)
19694{
19695 dump_die_1 (gdb_stdlog, 0, max_level, die);
19696}
19697
f9aca02d 19698static void
51545339 19699store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19700{
51545339 19701 void **slot;
c906108c 19702
b64f50a1
JK
19703 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19704 INSERT);
51545339
DJ
19705
19706 *slot = die;
c906108c
SS
19707}
19708
b64f50a1
JK
19709/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19710 required kind. */
19711
19712static sect_offset
ff39bb5e 19713dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 19714{
4568ecf9 19715 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 19716
7771576e 19717 if (attr_form_is_ref (attr))
b64f50a1 19718 return retval;
93311388 19719
b64f50a1 19720 retval.sect_off = 0;
93311388
DE
19721 complaint (&symfile_complaints,
19722 _("unsupported die ref attribute form: '%s'"),
19723 dwarf_form_name (attr->form));
b64f50a1 19724 return retval;
c906108c
SS
19725}
19726
43bbcdc2
PH
19727/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19728 * the value held by the attribute is not constant. */
a02abb62 19729
43bbcdc2 19730static LONGEST
ff39bb5e 19731dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62
JB
19732{
19733 if (attr->form == DW_FORM_sdata)
19734 return DW_SND (attr);
19735 else if (attr->form == DW_FORM_udata
19736 || attr->form == DW_FORM_data1
19737 || attr->form == DW_FORM_data2
19738 || attr->form == DW_FORM_data4
19739 || attr->form == DW_FORM_data8)
19740 return DW_UNSND (attr);
19741 else
19742 {
3e43a32a
MS
19743 complaint (&symfile_complaints,
19744 _("Attribute value is not a constant (%s)"),
a02abb62
JB
19745 dwarf_form_name (attr->form));
19746 return default_value;
19747 }
19748}
19749
348e048f
DE
19750/* Follow reference or signature attribute ATTR of SRC_DIE.
19751 On entry *REF_CU is the CU of SRC_DIE.
19752 On exit *REF_CU is the CU of the result. */
19753
19754static struct die_info *
ff39bb5e 19755follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
19756 struct dwarf2_cu **ref_cu)
19757{
19758 struct die_info *die;
19759
7771576e 19760 if (attr_form_is_ref (attr))
348e048f 19761 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 19762 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
19763 die = follow_die_sig (src_die, attr, ref_cu);
19764 else
19765 {
19766 dump_die_for_error (src_die);
19767 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 19768 objfile_name ((*ref_cu)->objfile));
348e048f
DE
19769 }
19770
19771 return die;
03dd20cc
DJ
19772}
19773
5c631832 19774/* Follow reference OFFSET.
673bfd45
DE
19775 On entry *REF_CU is the CU of the source die referencing OFFSET.
19776 On exit *REF_CU is the CU of the result.
19777 Returns NULL if OFFSET is invalid. */
f504f079 19778
f9aca02d 19779static struct die_info *
36586728
TT
19780follow_die_offset (sect_offset offset, int offset_in_dwz,
19781 struct dwarf2_cu **ref_cu)
c906108c 19782{
10b3939b 19783 struct die_info temp_die;
f2f0e013 19784 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 19785
348e048f
DE
19786 gdb_assert (cu->per_cu != NULL);
19787
98bfdba5
PA
19788 target_cu = cu;
19789
3019eac3 19790 if (cu->per_cu->is_debug_types)
348e048f
DE
19791 {
19792 /* .debug_types CUs cannot reference anything outside their CU.
19793 If they need to, they have to reference a signatured type via
55f1336d 19794 DW_FORM_ref_sig8. */
348e048f 19795 if (! offset_in_cu_p (&cu->header, offset))
5c631832 19796 return NULL;
348e048f 19797 }
36586728
TT
19798 else if (offset_in_dwz != cu->per_cu->is_dwz
19799 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
19800 {
19801 struct dwarf2_per_cu_data *per_cu;
9a619af0 19802
36586728
TT
19803 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19804 cu->objfile);
03dd20cc
DJ
19805
19806 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
19807 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19808 load_full_comp_unit (per_cu, cu->language);
03dd20cc 19809
10b3939b
DJ
19810 target_cu = per_cu->cu;
19811 }
98bfdba5
PA
19812 else if (cu->dies == NULL)
19813 {
19814 /* We're loading full DIEs during partial symbol reading. */
19815 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 19816 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 19817 }
c906108c 19818
f2f0e013 19819 *ref_cu = target_cu;
51545339 19820 temp_die.offset = offset;
b64f50a1 19821 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
5c631832 19822}
10b3939b 19823
5c631832
JK
19824/* Follow reference attribute ATTR of SRC_DIE.
19825 On entry *REF_CU is the CU of SRC_DIE.
19826 On exit *REF_CU is the CU of the result. */
19827
19828static struct die_info *
ff39bb5e 19829follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
19830 struct dwarf2_cu **ref_cu)
19831{
b64f50a1 19832 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
19833 struct dwarf2_cu *cu = *ref_cu;
19834 struct die_info *die;
19835
36586728
TT
19836 die = follow_die_offset (offset,
19837 (attr->form == DW_FORM_GNU_ref_alt
19838 || cu->per_cu->is_dwz),
19839 ref_cu);
5c631832
JK
19840 if (!die)
19841 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19842 "at 0x%x [in module %s]"),
4262abfb
JK
19843 offset.sect_off, src_die->offset.sect_off,
19844 objfile_name (cu->objfile));
348e048f 19845
5c631832
JK
19846 return die;
19847}
19848
d83e736b
JK
19849/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19850 Returned value is intended for DW_OP_call*. Returned
19851 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
19852
19853struct dwarf2_locexpr_baton
8b9737bf
TT
19854dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19855 struct dwarf2_per_cu_data *per_cu,
19856 CORE_ADDR (*get_frame_pc) (void *baton),
19857 void *baton)
5c631832 19858{
918dd910 19859 struct dwarf2_cu *cu;
5c631832
JK
19860 struct die_info *die;
19861 struct attribute *attr;
19862 struct dwarf2_locexpr_baton retval;
19863
8cf6f0b1
TT
19864 dw2_setup (per_cu->objfile);
19865
918dd910
JK
19866 if (per_cu->cu == NULL)
19867 load_cu (per_cu);
19868 cu = per_cu->cu;
19869
36586728 19870 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
19871 if (!die)
19872 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 19873 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
19874
19875 attr = dwarf2_attr (die, DW_AT_location, cu);
19876 if (!attr)
19877 {
e103e986
JK
19878 /* DWARF: "If there is no such attribute, then there is no effect.".
19879 DATA is ignored if SIZE is 0. */
5c631832 19880
e103e986 19881 retval.data = NULL;
5c631832
JK
19882 retval.size = 0;
19883 }
8cf6f0b1
TT
19884 else if (attr_form_is_section_offset (attr))
19885 {
19886 struct dwarf2_loclist_baton loclist_baton;
19887 CORE_ADDR pc = (*get_frame_pc) (baton);
19888 size_t size;
19889
19890 fill_in_loclist_baton (cu, &loclist_baton, attr);
19891
19892 retval.data = dwarf2_find_location_expression (&loclist_baton,
19893 &size, pc);
19894 retval.size = size;
19895 }
5c631832
JK
19896 else
19897 {
19898 if (!attr_form_is_block (attr))
19899 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19900 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
4262abfb 19901 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
19902
19903 retval.data = DW_BLOCK (attr)->data;
19904 retval.size = DW_BLOCK (attr)->size;
19905 }
19906 retval.per_cu = cu->per_cu;
918dd910 19907
918dd910
JK
19908 age_cached_comp_units ();
19909
5c631832 19910 return retval;
348e048f
DE
19911}
19912
8b9737bf
TT
19913/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19914 offset. */
19915
19916struct dwarf2_locexpr_baton
19917dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19918 struct dwarf2_per_cu_data *per_cu,
19919 CORE_ADDR (*get_frame_pc) (void *baton),
19920 void *baton)
19921{
19922 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19923
19924 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19925}
19926
b6807d98
TT
19927/* Write a constant of a given type as target-ordered bytes into
19928 OBSTACK. */
19929
19930static const gdb_byte *
19931write_constant_as_bytes (struct obstack *obstack,
19932 enum bfd_endian byte_order,
19933 struct type *type,
19934 ULONGEST value,
19935 LONGEST *len)
19936{
19937 gdb_byte *result;
19938
19939 *len = TYPE_LENGTH (type);
19940 result = obstack_alloc (obstack, *len);
19941 store_unsigned_integer (result, *len, byte_order, value);
19942
19943 return result;
19944}
19945
19946/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19947 pointer to the constant bytes and set LEN to the length of the
19948 data. If memory is needed, allocate it on OBSTACK. If the DIE
19949 does not have a DW_AT_const_value, return NULL. */
19950
19951const gdb_byte *
19952dwarf2_fetch_constant_bytes (sect_offset offset,
19953 struct dwarf2_per_cu_data *per_cu,
19954 struct obstack *obstack,
19955 LONGEST *len)
19956{
19957 struct dwarf2_cu *cu;
19958 struct die_info *die;
19959 struct attribute *attr;
19960 const gdb_byte *result = NULL;
19961 struct type *type;
19962 LONGEST value;
19963 enum bfd_endian byte_order;
19964
19965 dw2_setup (per_cu->objfile);
19966
19967 if (per_cu->cu == NULL)
19968 load_cu (per_cu);
19969 cu = per_cu->cu;
19970
19971 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19972 if (!die)
19973 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 19974 offset.sect_off, objfile_name (per_cu->objfile));
b6807d98
TT
19975
19976
19977 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19978 if (attr == NULL)
19979 return NULL;
19980
19981 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19982 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19983
19984 switch (attr->form)
19985 {
19986 case DW_FORM_addr:
19987 case DW_FORM_GNU_addr_index:
19988 {
19989 gdb_byte *tem;
19990
19991 *len = cu->header.addr_size;
19992 tem = obstack_alloc (obstack, *len);
19993 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19994 result = tem;
19995 }
19996 break;
19997 case DW_FORM_string:
19998 case DW_FORM_strp:
19999 case DW_FORM_GNU_str_index:
20000 case DW_FORM_GNU_strp_alt:
20001 /* DW_STRING is already allocated on the objfile obstack, point
20002 directly to it. */
20003 result = (const gdb_byte *) DW_STRING (attr);
20004 *len = strlen (DW_STRING (attr));
20005 break;
20006 case DW_FORM_block1:
20007 case DW_FORM_block2:
20008 case DW_FORM_block4:
20009 case DW_FORM_block:
20010 case DW_FORM_exprloc:
20011 result = DW_BLOCK (attr)->data;
20012 *len = DW_BLOCK (attr)->size;
20013 break;
20014
20015 /* The DW_AT_const_value attributes are supposed to carry the
20016 symbol's value "represented as it would be on the target
20017 architecture." By the time we get here, it's already been
20018 converted to host endianness, so we just need to sign- or
20019 zero-extend it as appropriate. */
20020 case DW_FORM_data1:
20021 type = die_type (die, cu);
20022 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20023 if (result == NULL)
20024 result = write_constant_as_bytes (obstack, byte_order,
20025 type, value, len);
20026 break;
20027 case DW_FORM_data2:
20028 type = die_type (die, cu);
20029 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20030 if (result == NULL)
20031 result = write_constant_as_bytes (obstack, byte_order,
20032 type, value, len);
20033 break;
20034 case DW_FORM_data4:
20035 type = die_type (die, cu);
20036 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20037 if (result == NULL)
20038 result = write_constant_as_bytes (obstack, byte_order,
20039 type, value, len);
20040 break;
20041 case DW_FORM_data8:
20042 type = die_type (die, cu);
20043 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20044 if (result == NULL)
20045 result = write_constant_as_bytes (obstack, byte_order,
20046 type, value, len);
20047 break;
20048
20049 case DW_FORM_sdata:
20050 type = die_type (die, cu);
20051 result = write_constant_as_bytes (obstack, byte_order,
20052 type, DW_SND (attr), len);
20053 break;
20054
20055 case DW_FORM_udata:
20056 type = die_type (die, cu);
20057 result = write_constant_as_bytes (obstack, byte_order,
20058 type, DW_UNSND (attr), len);
20059 break;
20060
20061 default:
20062 complaint (&symfile_complaints,
20063 _("unsupported const value attribute form: '%s'"),
20064 dwarf_form_name (attr->form));
20065 break;
20066 }
20067
20068 return result;
20069}
20070
8a9b8146
TT
20071/* Return the type of the DIE at DIE_OFFSET in the CU named by
20072 PER_CU. */
20073
20074struct type *
b64f50a1 20075dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
20076 struct dwarf2_per_cu_data *per_cu)
20077{
b64f50a1
JK
20078 sect_offset die_offset_sect;
20079
8a9b8146 20080 dw2_setup (per_cu->objfile);
b64f50a1
JK
20081
20082 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20083 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
20084}
20085
ac9ec31b 20086/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 20087 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
20088 On exit *REF_CU is the CU of the result.
20089 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
20090
20091static struct die_info *
ac9ec31b
DE
20092follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20093 struct dwarf2_cu **ref_cu)
348e048f
DE
20094{
20095 struct objfile *objfile = (*ref_cu)->objfile;
20096 struct die_info temp_die;
348e048f
DE
20097 struct dwarf2_cu *sig_cu;
20098 struct die_info *die;
20099
ac9ec31b
DE
20100 /* While it might be nice to assert sig_type->type == NULL here,
20101 we can get here for DW_AT_imported_declaration where we need
20102 the DIE not the type. */
348e048f
DE
20103
20104 /* If necessary, add it to the queue and load its DIEs. */
20105
95554aad 20106 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 20107 read_signatured_type (sig_type);
348e048f 20108
348e048f 20109 sig_cu = sig_type->per_cu.cu;
69d751e3 20110 gdb_assert (sig_cu != NULL);
3019eac3
DE
20111 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20112 temp_die.offset = sig_type->type_offset_in_section;
b64f50a1
JK
20113 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
20114 temp_die.offset.sect_off);
348e048f
DE
20115 if (die)
20116 {
796a7ff8
DE
20117 /* For .gdb_index version 7 keep track of included TUs.
20118 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20119 if (dwarf2_per_objfile->index_table != NULL
20120 && dwarf2_per_objfile->index_table->version <= 7)
20121 {
20122 VEC_safe_push (dwarf2_per_cu_ptr,
20123 (*ref_cu)->per_cu->imported_symtabs,
20124 sig_cu->per_cu);
20125 }
20126
348e048f
DE
20127 *ref_cu = sig_cu;
20128 return die;
20129 }
20130
ac9ec31b
DE
20131 return NULL;
20132}
20133
20134/* Follow signatured type referenced by ATTR in SRC_DIE.
20135 On entry *REF_CU is the CU of SRC_DIE.
20136 On exit *REF_CU is the CU of the result.
20137 The result is the DIE of the type.
20138 If the referenced type cannot be found an error is thrown. */
20139
20140static struct die_info *
ff39bb5e 20141follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
20142 struct dwarf2_cu **ref_cu)
20143{
20144 ULONGEST signature = DW_SIGNATURE (attr);
20145 struct signatured_type *sig_type;
20146 struct die_info *die;
20147
20148 gdb_assert (attr->form == DW_FORM_ref_sig8);
20149
a2ce51a0 20150 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
20151 /* sig_type will be NULL if the signatured type is missing from
20152 the debug info. */
20153 if (sig_type == NULL)
20154 {
20155 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20156 " from DIE at 0x%x [in module %s]"),
20157 hex_string (signature), src_die->offset.sect_off,
4262abfb 20158 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20159 }
20160
20161 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20162 if (die == NULL)
20163 {
20164 dump_die_for_error (src_die);
20165 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20166 " from DIE at 0x%x [in module %s]"),
20167 hex_string (signature), src_die->offset.sect_off,
4262abfb 20168 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20169 }
20170
20171 return die;
20172}
20173
20174/* Get the type specified by SIGNATURE referenced in DIE/CU,
20175 reading in and processing the type unit if necessary. */
20176
20177static struct type *
20178get_signatured_type (struct die_info *die, ULONGEST signature,
20179 struct dwarf2_cu *cu)
20180{
20181 struct signatured_type *sig_type;
20182 struct dwarf2_cu *type_cu;
20183 struct die_info *type_die;
20184 struct type *type;
20185
a2ce51a0 20186 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
20187 /* sig_type will be NULL if the signatured type is missing from
20188 the debug info. */
20189 if (sig_type == NULL)
20190 {
20191 complaint (&symfile_complaints,
20192 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20193 " from DIE at 0x%x [in module %s]"),
20194 hex_string (signature), die->offset.sect_off,
4262abfb 20195 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20196 return build_error_marker_type (cu, die);
20197 }
20198
20199 /* If we already know the type we're done. */
20200 if (sig_type->type != NULL)
20201 return sig_type->type;
20202
20203 type_cu = cu;
20204 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20205 if (type_die != NULL)
20206 {
20207 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20208 is created. This is important, for example, because for c++ classes
20209 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20210 type = read_type_die (type_die, type_cu);
20211 if (type == NULL)
20212 {
20213 complaint (&symfile_complaints,
20214 _("Dwarf Error: Cannot build signatured type %s"
20215 " referenced from DIE at 0x%x [in module %s]"),
20216 hex_string (signature), die->offset.sect_off,
4262abfb 20217 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20218 type = build_error_marker_type (cu, die);
20219 }
20220 }
20221 else
20222 {
20223 complaint (&symfile_complaints,
20224 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20225 " from DIE at 0x%x [in module %s]"),
20226 hex_string (signature), die->offset.sect_off,
4262abfb 20227 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20228 type = build_error_marker_type (cu, die);
20229 }
20230 sig_type->type = type;
20231
20232 return type;
20233}
20234
20235/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20236 reading in and processing the type unit if necessary. */
20237
20238static struct type *
ff39bb5e 20239get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 20240 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
20241{
20242 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 20243 if (attr_form_is_ref (attr))
ac9ec31b
DE
20244 {
20245 struct dwarf2_cu *type_cu = cu;
20246 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20247
20248 return read_type_die (type_die, type_cu);
20249 }
20250 else if (attr->form == DW_FORM_ref_sig8)
20251 {
20252 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20253 }
20254 else
20255 {
20256 complaint (&symfile_complaints,
20257 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20258 " at 0x%x [in module %s]"),
20259 dwarf_form_name (attr->form), die->offset.sect_off,
4262abfb 20260 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20261 return build_error_marker_type (cu, die);
20262 }
348e048f
DE
20263}
20264
e5fe5e75 20265/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
20266
20267static void
e5fe5e75 20268load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 20269{
52dc124a 20270 struct signatured_type *sig_type;
348e048f 20271
f4dc4d17
DE
20272 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20273 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20274
6721b2ec
DE
20275 /* We have the per_cu, but we need the signatured_type.
20276 Fortunately this is an easy translation. */
20277 gdb_assert (per_cu->is_debug_types);
20278 sig_type = (struct signatured_type *) per_cu;
348e048f 20279
6721b2ec 20280 gdb_assert (per_cu->cu == NULL);
348e048f 20281
52dc124a 20282 read_signatured_type (sig_type);
348e048f 20283
6721b2ec 20284 gdb_assert (per_cu->cu != NULL);
348e048f
DE
20285}
20286
dee91e82
DE
20287/* die_reader_func for read_signatured_type.
20288 This is identical to load_full_comp_unit_reader,
20289 but is kept separate for now. */
348e048f
DE
20290
20291static void
dee91e82 20292read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 20293 const gdb_byte *info_ptr,
dee91e82
DE
20294 struct die_info *comp_unit_die,
20295 int has_children,
20296 void *data)
348e048f 20297{
dee91e82 20298 struct dwarf2_cu *cu = reader->cu;
348e048f 20299
dee91e82
DE
20300 gdb_assert (cu->die_hash == NULL);
20301 cu->die_hash =
20302 htab_create_alloc_ex (cu->header.length / 12,
20303 die_hash,
20304 die_eq,
20305 NULL,
20306 &cu->comp_unit_obstack,
20307 hashtab_obstack_allocate,
20308 dummy_obstack_deallocate);
348e048f 20309
dee91e82
DE
20310 if (has_children)
20311 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20312 &info_ptr, comp_unit_die);
20313 cu->dies = comp_unit_die;
20314 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
20315
20316 /* We try not to read any attributes in this function, because not
9cdd5dbd 20317 all CUs needed for references have been loaded yet, and symbol
348e048f 20318 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
20319 or we won't be able to build types correctly.
20320 Similarly, if we do not read the producer, we can not apply
20321 producer-specific interpretation. */
95554aad 20322 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 20323}
348e048f 20324
3019eac3
DE
20325/* Read in a signatured type and build its CU and DIEs.
20326 If the type is a stub for the real type in a DWO file,
20327 read in the real type from the DWO file as well. */
dee91e82
DE
20328
20329static void
20330read_signatured_type (struct signatured_type *sig_type)
20331{
20332 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 20333
3019eac3 20334 gdb_assert (per_cu->is_debug_types);
dee91e82 20335 gdb_assert (per_cu->cu == NULL);
348e048f 20336
f4dc4d17
DE
20337 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20338 read_signatured_type_reader, NULL);
7ee85ab1 20339 sig_type->per_cu.tu_read = 1;
c906108c
SS
20340}
20341
c906108c
SS
20342/* Decode simple location descriptions.
20343 Given a pointer to a dwarf block that defines a location, compute
20344 the location and return the value.
20345
4cecd739
DJ
20346 NOTE drow/2003-11-18: This function is called in two situations
20347 now: for the address of static or global variables (partial symbols
20348 only) and for offsets into structures which are expected to be
20349 (more or less) constant. The partial symbol case should go away,
20350 and only the constant case should remain. That will let this
20351 function complain more accurately. A few special modes are allowed
20352 without complaint for global variables (for instance, global
20353 register values and thread-local values).
c906108c
SS
20354
20355 A location description containing no operations indicates that the
4cecd739 20356 object is optimized out. The return value is 0 for that case.
6b992462
DJ
20357 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20358 callers will only want a very basic result and this can become a
21ae7a4d
JK
20359 complaint.
20360
20361 Note that stack[0] is unused except as a default error return. */
c906108c
SS
20362
20363static CORE_ADDR
e7c27a73 20364decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 20365{
e7c27a73 20366 struct objfile *objfile = cu->objfile;
56eb65bd
SP
20367 size_t i;
20368 size_t size = blk->size;
d521ce57 20369 const gdb_byte *data = blk->data;
21ae7a4d
JK
20370 CORE_ADDR stack[64];
20371 int stacki;
20372 unsigned int bytes_read, unsnd;
20373 gdb_byte op;
c906108c 20374
21ae7a4d
JK
20375 i = 0;
20376 stacki = 0;
20377 stack[stacki] = 0;
20378 stack[++stacki] = 0;
20379
20380 while (i < size)
20381 {
20382 op = data[i++];
20383 switch (op)
20384 {
20385 case DW_OP_lit0:
20386 case DW_OP_lit1:
20387 case DW_OP_lit2:
20388 case DW_OP_lit3:
20389 case DW_OP_lit4:
20390 case DW_OP_lit5:
20391 case DW_OP_lit6:
20392 case DW_OP_lit7:
20393 case DW_OP_lit8:
20394 case DW_OP_lit9:
20395 case DW_OP_lit10:
20396 case DW_OP_lit11:
20397 case DW_OP_lit12:
20398 case DW_OP_lit13:
20399 case DW_OP_lit14:
20400 case DW_OP_lit15:
20401 case DW_OP_lit16:
20402 case DW_OP_lit17:
20403 case DW_OP_lit18:
20404 case DW_OP_lit19:
20405 case DW_OP_lit20:
20406 case DW_OP_lit21:
20407 case DW_OP_lit22:
20408 case DW_OP_lit23:
20409 case DW_OP_lit24:
20410 case DW_OP_lit25:
20411 case DW_OP_lit26:
20412 case DW_OP_lit27:
20413 case DW_OP_lit28:
20414 case DW_OP_lit29:
20415 case DW_OP_lit30:
20416 case DW_OP_lit31:
20417 stack[++stacki] = op - DW_OP_lit0;
20418 break;
f1bea926 20419
21ae7a4d
JK
20420 case DW_OP_reg0:
20421 case DW_OP_reg1:
20422 case DW_OP_reg2:
20423 case DW_OP_reg3:
20424 case DW_OP_reg4:
20425 case DW_OP_reg5:
20426 case DW_OP_reg6:
20427 case DW_OP_reg7:
20428 case DW_OP_reg8:
20429 case DW_OP_reg9:
20430 case DW_OP_reg10:
20431 case DW_OP_reg11:
20432 case DW_OP_reg12:
20433 case DW_OP_reg13:
20434 case DW_OP_reg14:
20435 case DW_OP_reg15:
20436 case DW_OP_reg16:
20437 case DW_OP_reg17:
20438 case DW_OP_reg18:
20439 case DW_OP_reg19:
20440 case DW_OP_reg20:
20441 case DW_OP_reg21:
20442 case DW_OP_reg22:
20443 case DW_OP_reg23:
20444 case DW_OP_reg24:
20445 case DW_OP_reg25:
20446 case DW_OP_reg26:
20447 case DW_OP_reg27:
20448 case DW_OP_reg28:
20449 case DW_OP_reg29:
20450 case DW_OP_reg30:
20451 case DW_OP_reg31:
20452 stack[++stacki] = op - DW_OP_reg0;
20453 if (i < size)
20454 dwarf2_complex_location_expr_complaint ();
20455 break;
c906108c 20456
21ae7a4d
JK
20457 case DW_OP_regx:
20458 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20459 i += bytes_read;
20460 stack[++stacki] = unsnd;
20461 if (i < size)
20462 dwarf2_complex_location_expr_complaint ();
20463 break;
c906108c 20464
21ae7a4d
JK
20465 case DW_OP_addr:
20466 stack[++stacki] = read_address (objfile->obfd, &data[i],
20467 cu, &bytes_read);
20468 i += bytes_read;
20469 break;
d53d4ac5 20470
21ae7a4d
JK
20471 case DW_OP_const1u:
20472 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20473 i += 1;
20474 break;
20475
20476 case DW_OP_const1s:
20477 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20478 i += 1;
20479 break;
20480
20481 case DW_OP_const2u:
20482 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20483 i += 2;
20484 break;
20485
20486 case DW_OP_const2s:
20487 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20488 i += 2;
20489 break;
d53d4ac5 20490
21ae7a4d
JK
20491 case DW_OP_const4u:
20492 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20493 i += 4;
20494 break;
20495
20496 case DW_OP_const4s:
20497 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20498 i += 4;
20499 break;
20500
585861ea
JK
20501 case DW_OP_const8u:
20502 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20503 i += 8;
20504 break;
20505
21ae7a4d
JK
20506 case DW_OP_constu:
20507 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20508 &bytes_read);
20509 i += bytes_read;
20510 break;
20511
20512 case DW_OP_consts:
20513 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20514 i += bytes_read;
20515 break;
20516
20517 case DW_OP_dup:
20518 stack[stacki + 1] = stack[stacki];
20519 stacki++;
20520 break;
20521
20522 case DW_OP_plus:
20523 stack[stacki - 1] += stack[stacki];
20524 stacki--;
20525 break;
20526
20527 case DW_OP_plus_uconst:
20528 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20529 &bytes_read);
20530 i += bytes_read;
20531 break;
20532
20533 case DW_OP_minus:
20534 stack[stacki - 1] -= stack[stacki];
20535 stacki--;
20536 break;
20537
20538 case DW_OP_deref:
20539 /* If we're not the last op, then we definitely can't encode
20540 this using GDB's address_class enum. This is valid for partial
20541 global symbols, although the variable's address will be bogus
20542 in the psymtab. */
20543 if (i < size)
20544 dwarf2_complex_location_expr_complaint ();
20545 break;
20546
20547 case DW_OP_GNU_push_tls_address:
20548 /* The top of the stack has the offset from the beginning
20549 of the thread control block at which the variable is located. */
20550 /* Nothing should follow this operator, so the top of stack would
20551 be returned. */
20552 /* This is valid for partial global symbols, but the variable's
585861ea
JK
20553 address will be bogus in the psymtab. Make it always at least
20554 non-zero to not look as a variable garbage collected by linker
20555 which have DW_OP_addr 0. */
21ae7a4d
JK
20556 if (i < size)
20557 dwarf2_complex_location_expr_complaint ();
585861ea 20558 stack[stacki]++;
21ae7a4d
JK
20559 break;
20560
20561 case DW_OP_GNU_uninit:
20562 break;
20563
3019eac3 20564 case DW_OP_GNU_addr_index:
49f6c839 20565 case DW_OP_GNU_const_index:
3019eac3
DE
20566 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20567 &bytes_read);
20568 i += bytes_read;
20569 break;
20570
21ae7a4d
JK
20571 default:
20572 {
f39c6ffd 20573 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
20574
20575 if (name)
20576 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20577 name);
20578 else
20579 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20580 op);
20581 }
20582
20583 return (stack[stacki]);
d53d4ac5 20584 }
3c6e0cb3 20585
21ae7a4d
JK
20586 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20587 outside of the allocated space. Also enforce minimum>0. */
20588 if (stacki >= ARRAY_SIZE (stack) - 1)
20589 {
20590 complaint (&symfile_complaints,
20591 _("location description stack overflow"));
20592 return 0;
20593 }
20594
20595 if (stacki <= 0)
20596 {
20597 complaint (&symfile_complaints,
20598 _("location description stack underflow"));
20599 return 0;
20600 }
20601 }
20602 return (stack[stacki]);
c906108c
SS
20603}
20604
20605/* memory allocation interface */
20606
c906108c 20607static struct dwarf_block *
7b5a2f43 20608dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
20609{
20610 struct dwarf_block *blk;
20611
20612 blk = (struct dwarf_block *)
7b5a2f43 20613 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
20614 return (blk);
20615}
20616
c906108c 20617static struct die_info *
b60c80d6 20618dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
20619{
20620 struct die_info *die;
b60c80d6
DJ
20621 size_t size = sizeof (struct die_info);
20622
20623 if (num_attrs > 1)
20624 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 20625
b60c80d6 20626 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
20627 memset (die, 0, sizeof (struct die_info));
20628 return (die);
20629}
2e276125
JB
20630
20631\f
20632/* Macro support. */
20633
233d95b5
JK
20634/* Return file name relative to the compilation directory of file number I in
20635 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 20636 responsible for freeing it. */
233d95b5 20637
2e276125 20638static char *
233d95b5 20639file_file_name (int file, struct line_header *lh)
2e276125 20640{
6a83a1e6
EZ
20641 /* Is the file number a valid index into the line header's file name
20642 table? Remember that file numbers start with one, not zero. */
20643 if (1 <= file && file <= lh->num_file_names)
20644 {
20645 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 20646
afa6c9ab
SL
20647 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20648 || lh->include_dirs == NULL)
6a83a1e6 20649 return xstrdup (fe->name);
233d95b5
JK
20650 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20651 fe->name, NULL);
6a83a1e6 20652 }
2e276125
JB
20653 else
20654 {
6a83a1e6
EZ
20655 /* The compiler produced a bogus file number. We can at least
20656 record the macro definitions made in the file, even if we
20657 won't be able to find the file by name. */
20658 char fake_name[80];
9a619af0 20659
8c042590
PM
20660 xsnprintf (fake_name, sizeof (fake_name),
20661 "<bad macro file number %d>", file);
2e276125 20662
6e70227d 20663 complaint (&symfile_complaints,
6a83a1e6
EZ
20664 _("bad file number in macro information (%d)"),
20665 file);
2e276125 20666
6a83a1e6 20667 return xstrdup (fake_name);
2e276125
JB
20668 }
20669}
20670
233d95b5
JK
20671/* Return the full name of file number I in *LH's file name table.
20672 Use COMP_DIR as the name of the current directory of the
20673 compilation. The result is allocated using xmalloc; the caller is
20674 responsible for freeing it. */
20675static char *
20676file_full_name (int file, struct line_header *lh, const char *comp_dir)
20677{
20678 /* Is the file number a valid index into the line header's file name
20679 table? Remember that file numbers start with one, not zero. */
20680 if (1 <= file && file <= lh->num_file_names)
20681 {
20682 char *relative = file_file_name (file, lh);
20683
20684 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20685 return relative;
20686 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20687 }
20688 else
20689 return file_file_name (file, lh);
20690}
20691
2e276125
JB
20692
20693static struct macro_source_file *
20694macro_start_file (int file, int line,
20695 struct macro_source_file *current_file,
43f3e411 20696 struct line_header *lh)
2e276125 20697{
233d95b5
JK
20698 /* File name relative to the compilation directory of this source file. */
20699 char *file_name = file_file_name (file, lh);
2e276125 20700
2e276125 20701 if (! current_file)
abc9d0dc 20702 {
fc474241
DE
20703 /* Note: We don't create a macro table for this compilation unit
20704 at all until we actually get a filename. */
43f3e411 20705 struct macro_table *macro_table = get_macro_table ();
fc474241 20706
abc9d0dc
TT
20707 /* If we have no current file, then this must be the start_file
20708 directive for the compilation unit's main source file. */
fc474241
DE
20709 current_file = macro_set_main (macro_table, file_name);
20710 macro_define_special (macro_table);
abc9d0dc 20711 }
2e276125 20712 else
233d95b5 20713 current_file = macro_include (current_file, line, file_name);
2e276125 20714
233d95b5 20715 xfree (file_name);
6e70227d 20716
2e276125
JB
20717 return current_file;
20718}
20719
20720
20721/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20722 followed by a null byte. */
20723static char *
20724copy_string (const char *buf, int len)
20725{
20726 char *s = xmalloc (len + 1);
9a619af0 20727
2e276125
JB
20728 memcpy (s, buf, len);
20729 s[len] = '\0';
2e276125
JB
20730 return s;
20731}
20732
20733
20734static const char *
20735consume_improper_spaces (const char *p, const char *body)
20736{
20737 if (*p == ' ')
20738 {
4d3c2250 20739 complaint (&symfile_complaints,
3e43a32a
MS
20740 _("macro definition contains spaces "
20741 "in formal argument list:\n`%s'"),
4d3c2250 20742 body);
2e276125
JB
20743
20744 while (*p == ' ')
20745 p++;
20746 }
20747
20748 return p;
20749}
20750
20751
20752static void
20753parse_macro_definition (struct macro_source_file *file, int line,
20754 const char *body)
20755{
20756 const char *p;
20757
20758 /* The body string takes one of two forms. For object-like macro
20759 definitions, it should be:
20760
20761 <macro name> " " <definition>
20762
20763 For function-like macro definitions, it should be:
20764
20765 <macro name> "() " <definition>
20766 or
20767 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20768
20769 Spaces may appear only where explicitly indicated, and in the
20770 <definition>.
20771
20772 The Dwarf 2 spec says that an object-like macro's name is always
20773 followed by a space, but versions of GCC around March 2002 omit
6e70227d 20774 the space when the macro's definition is the empty string.
2e276125
JB
20775
20776 The Dwarf 2 spec says that there should be no spaces between the
20777 formal arguments in a function-like macro's formal argument list,
20778 but versions of GCC around March 2002 include spaces after the
20779 commas. */
20780
20781
20782 /* Find the extent of the macro name. The macro name is terminated
20783 by either a space or null character (for an object-like macro) or
20784 an opening paren (for a function-like macro). */
20785 for (p = body; *p; p++)
20786 if (*p == ' ' || *p == '(')
20787 break;
20788
20789 if (*p == ' ' || *p == '\0')
20790 {
20791 /* It's an object-like macro. */
20792 int name_len = p - body;
20793 char *name = copy_string (body, name_len);
20794 const char *replacement;
20795
20796 if (*p == ' ')
20797 replacement = body + name_len + 1;
20798 else
20799 {
4d3c2250 20800 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20801 replacement = body + name_len;
20802 }
6e70227d 20803
2e276125
JB
20804 macro_define_object (file, line, name, replacement);
20805
20806 xfree (name);
20807 }
20808 else if (*p == '(')
20809 {
20810 /* It's a function-like macro. */
20811 char *name = copy_string (body, p - body);
20812 int argc = 0;
20813 int argv_size = 1;
20814 char **argv = xmalloc (argv_size * sizeof (*argv));
20815
20816 p++;
20817
20818 p = consume_improper_spaces (p, body);
20819
20820 /* Parse the formal argument list. */
20821 while (*p && *p != ')')
20822 {
20823 /* Find the extent of the current argument name. */
20824 const char *arg_start = p;
20825
20826 while (*p && *p != ',' && *p != ')' && *p != ' ')
20827 p++;
20828
20829 if (! *p || p == arg_start)
4d3c2250 20830 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20831 else
20832 {
20833 /* Make sure argv has room for the new argument. */
20834 if (argc >= argv_size)
20835 {
20836 argv_size *= 2;
20837 argv = xrealloc (argv, argv_size * sizeof (*argv));
20838 }
20839
20840 argv[argc++] = copy_string (arg_start, p - arg_start);
20841 }
20842
20843 p = consume_improper_spaces (p, body);
20844
20845 /* Consume the comma, if present. */
20846 if (*p == ',')
20847 {
20848 p++;
20849
20850 p = consume_improper_spaces (p, body);
20851 }
20852 }
20853
20854 if (*p == ')')
20855 {
20856 p++;
20857
20858 if (*p == ' ')
20859 /* Perfectly formed definition, no complaints. */
20860 macro_define_function (file, line, name,
6e70227d 20861 argc, (const char **) argv,
2e276125
JB
20862 p + 1);
20863 else if (*p == '\0')
20864 {
20865 /* Complain, but do define it. */
4d3c2250 20866 dwarf2_macro_malformed_definition_complaint (body);
2e276125 20867 macro_define_function (file, line, name,
6e70227d 20868 argc, (const char **) argv,
2e276125
JB
20869 p);
20870 }
20871 else
20872 /* Just complain. */
4d3c2250 20873 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20874 }
20875 else
20876 /* Just complain. */
4d3c2250 20877 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20878
20879 xfree (name);
20880 {
20881 int i;
20882
20883 for (i = 0; i < argc; i++)
20884 xfree (argv[i]);
20885 }
20886 xfree (argv);
20887 }
20888 else
4d3c2250 20889 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20890}
20891
cf2c3c16
TT
20892/* Skip some bytes from BYTES according to the form given in FORM.
20893 Returns the new pointer. */
2e276125 20894
d521ce57
TT
20895static const gdb_byte *
20896skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
20897 enum dwarf_form form,
20898 unsigned int offset_size,
20899 struct dwarf2_section_info *section)
2e276125 20900{
cf2c3c16 20901 unsigned int bytes_read;
2e276125 20902
cf2c3c16 20903 switch (form)
2e276125 20904 {
cf2c3c16
TT
20905 case DW_FORM_data1:
20906 case DW_FORM_flag:
20907 ++bytes;
20908 break;
20909
20910 case DW_FORM_data2:
20911 bytes += 2;
20912 break;
20913
20914 case DW_FORM_data4:
20915 bytes += 4;
20916 break;
20917
20918 case DW_FORM_data8:
20919 bytes += 8;
20920 break;
20921
20922 case DW_FORM_string:
20923 read_direct_string (abfd, bytes, &bytes_read);
20924 bytes += bytes_read;
20925 break;
20926
20927 case DW_FORM_sec_offset:
20928 case DW_FORM_strp:
36586728 20929 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
20930 bytes += offset_size;
20931 break;
20932
20933 case DW_FORM_block:
20934 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20935 bytes += bytes_read;
20936 break;
20937
20938 case DW_FORM_block1:
20939 bytes += 1 + read_1_byte (abfd, bytes);
20940 break;
20941 case DW_FORM_block2:
20942 bytes += 2 + read_2_bytes (abfd, bytes);
20943 break;
20944 case DW_FORM_block4:
20945 bytes += 4 + read_4_bytes (abfd, bytes);
20946 break;
20947
20948 case DW_FORM_sdata:
20949 case DW_FORM_udata:
3019eac3
DE
20950 case DW_FORM_GNU_addr_index:
20951 case DW_FORM_GNU_str_index:
d521ce57 20952 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
20953 if (bytes == NULL)
20954 {
20955 dwarf2_section_buffer_overflow_complaint (section);
20956 return NULL;
20957 }
cf2c3c16
TT
20958 break;
20959
20960 default:
20961 {
20962 complain:
20963 complaint (&symfile_complaints,
20964 _("invalid form 0x%x in `%s'"),
a32a8923 20965 form, get_section_name (section));
cf2c3c16
TT
20966 return NULL;
20967 }
2e276125
JB
20968 }
20969
cf2c3c16
TT
20970 return bytes;
20971}
757a13d0 20972
cf2c3c16
TT
20973/* A helper for dwarf_decode_macros that handles skipping an unknown
20974 opcode. Returns an updated pointer to the macro data buffer; or,
20975 on error, issues a complaint and returns NULL. */
757a13d0 20976
d521ce57 20977static const gdb_byte *
cf2c3c16 20978skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
20979 const gdb_byte **opcode_definitions,
20980 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
20981 bfd *abfd,
20982 unsigned int offset_size,
20983 struct dwarf2_section_info *section)
20984{
20985 unsigned int bytes_read, i;
20986 unsigned long arg;
d521ce57 20987 const gdb_byte *defn;
2e276125 20988
cf2c3c16 20989 if (opcode_definitions[opcode] == NULL)
2e276125 20990 {
cf2c3c16
TT
20991 complaint (&symfile_complaints,
20992 _("unrecognized DW_MACFINO opcode 0x%x"),
20993 opcode);
20994 return NULL;
20995 }
2e276125 20996
cf2c3c16
TT
20997 defn = opcode_definitions[opcode];
20998 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20999 defn += bytes_read;
2e276125 21000
cf2c3c16
TT
21001 for (i = 0; i < arg; ++i)
21002 {
f664829e
DE
21003 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
21004 section);
cf2c3c16
TT
21005 if (mac_ptr == NULL)
21006 {
21007 /* skip_form_bytes already issued the complaint. */
21008 return NULL;
21009 }
21010 }
757a13d0 21011
cf2c3c16
TT
21012 return mac_ptr;
21013}
757a13d0 21014
cf2c3c16
TT
21015/* A helper function which parses the header of a macro section.
21016 If the macro section is the extended (for now called "GNU") type,
21017 then this updates *OFFSET_SIZE. Returns a pointer to just after
21018 the header, or issues a complaint and returns NULL on error. */
757a13d0 21019
d521ce57
TT
21020static const gdb_byte *
21021dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 21022 bfd *abfd,
d521ce57 21023 const gdb_byte *mac_ptr,
cf2c3c16
TT
21024 unsigned int *offset_size,
21025 int section_is_gnu)
21026{
21027 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 21028
cf2c3c16
TT
21029 if (section_is_gnu)
21030 {
21031 unsigned int version, flags;
757a13d0 21032
cf2c3c16
TT
21033 version = read_2_bytes (abfd, mac_ptr);
21034 if (version != 4)
21035 {
21036 complaint (&symfile_complaints,
21037 _("unrecognized version `%d' in .debug_macro section"),
21038 version);
21039 return NULL;
21040 }
21041 mac_ptr += 2;
757a13d0 21042
cf2c3c16
TT
21043 flags = read_1_byte (abfd, mac_ptr);
21044 ++mac_ptr;
21045 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 21046
cf2c3c16
TT
21047 if ((flags & 2) != 0)
21048 /* We don't need the line table offset. */
21049 mac_ptr += *offset_size;
757a13d0 21050
cf2c3c16
TT
21051 /* Vendor opcode descriptions. */
21052 if ((flags & 4) != 0)
21053 {
21054 unsigned int i, count;
757a13d0 21055
cf2c3c16
TT
21056 count = read_1_byte (abfd, mac_ptr);
21057 ++mac_ptr;
21058 for (i = 0; i < count; ++i)
21059 {
21060 unsigned int opcode, bytes_read;
21061 unsigned long arg;
21062
21063 opcode = read_1_byte (abfd, mac_ptr);
21064 ++mac_ptr;
21065 opcode_definitions[opcode] = mac_ptr;
21066 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21067 mac_ptr += bytes_read;
21068 mac_ptr += arg;
21069 }
757a13d0 21070 }
cf2c3c16 21071 }
757a13d0 21072
cf2c3c16
TT
21073 return mac_ptr;
21074}
757a13d0 21075
cf2c3c16 21076/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 21077 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
21078
21079static void
d521ce57
TT
21080dwarf_decode_macro_bytes (bfd *abfd,
21081 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 21082 struct macro_source_file *current_file,
43f3e411 21083 struct line_header *lh,
cf2c3c16 21084 struct dwarf2_section_info *section,
36586728 21085 int section_is_gnu, int section_is_dwz,
cf2c3c16 21086 unsigned int offset_size,
8fc3fc34 21087 htab_t include_hash)
cf2c3c16 21088{
4d663531 21089 struct objfile *objfile = dwarf2_per_objfile->objfile;
cf2c3c16
TT
21090 enum dwarf_macro_record_type macinfo_type;
21091 int at_commandline;
d521ce57 21092 const gdb_byte *opcode_definitions[256];
757a13d0 21093
cf2c3c16
TT
21094 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21095 &offset_size, section_is_gnu);
21096 if (mac_ptr == NULL)
21097 {
21098 /* We already issued a complaint. */
21099 return;
21100 }
757a13d0
JK
21101
21102 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21103 GDB is still reading the definitions from command line. First
21104 DW_MACINFO_start_file will need to be ignored as it was already executed
21105 to create CURRENT_FILE for the main source holding also the command line
21106 definitions. On first met DW_MACINFO_start_file this flag is reset to
21107 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21108
21109 at_commandline = 1;
21110
21111 do
21112 {
21113 /* Do we at least have room for a macinfo type byte? */
21114 if (mac_ptr >= mac_end)
21115 {
f664829e 21116 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
21117 break;
21118 }
21119
21120 macinfo_type = read_1_byte (abfd, mac_ptr);
21121 mac_ptr++;
21122
cf2c3c16
TT
21123 /* Note that we rely on the fact that the corresponding GNU and
21124 DWARF constants are the same. */
757a13d0
JK
21125 switch (macinfo_type)
21126 {
21127 /* A zero macinfo type indicates the end of the macro
21128 information. */
21129 case 0:
21130 break;
2e276125 21131
cf2c3c16
TT
21132 case DW_MACRO_GNU_define:
21133 case DW_MACRO_GNU_undef:
21134 case DW_MACRO_GNU_define_indirect:
21135 case DW_MACRO_GNU_undef_indirect:
36586728
TT
21136 case DW_MACRO_GNU_define_indirect_alt:
21137 case DW_MACRO_GNU_undef_indirect_alt:
2e276125 21138 {
891d2f0b 21139 unsigned int bytes_read;
2e276125 21140 int line;
d521ce57 21141 const char *body;
cf2c3c16 21142 int is_define;
2e276125 21143
cf2c3c16
TT
21144 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21145 mac_ptr += bytes_read;
21146
21147 if (macinfo_type == DW_MACRO_GNU_define
21148 || macinfo_type == DW_MACRO_GNU_undef)
21149 {
21150 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21151 mac_ptr += bytes_read;
21152 }
21153 else
21154 {
21155 LONGEST str_offset;
21156
21157 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21158 mac_ptr += offset_size;
2e276125 21159
36586728 21160 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
f7a35f02
TT
21161 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21162 || section_is_dwz)
36586728
TT
21163 {
21164 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21165
21166 body = read_indirect_string_from_dwz (dwz, str_offset);
21167 }
21168 else
21169 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
21170 }
21171
21172 is_define = (macinfo_type == DW_MACRO_GNU_define
36586728
TT
21173 || macinfo_type == DW_MACRO_GNU_define_indirect
21174 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
2e276125 21175 if (! current_file)
757a13d0
JK
21176 {
21177 /* DWARF violation as no main source is present. */
21178 complaint (&symfile_complaints,
21179 _("debug info with no main source gives macro %s "
21180 "on line %d: %s"),
cf2c3c16
TT
21181 is_define ? _("definition") : _("undefinition"),
21182 line, body);
757a13d0
JK
21183 break;
21184 }
3e43a32a
MS
21185 if ((line == 0 && !at_commandline)
21186 || (line != 0 && at_commandline))
4d3c2250 21187 complaint (&symfile_complaints,
757a13d0
JK
21188 _("debug info gives %s macro %s with %s line %d: %s"),
21189 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 21190 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
21191 line == 0 ? _("zero") : _("non-zero"), line, body);
21192
cf2c3c16 21193 if (is_define)
757a13d0 21194 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
21195 else
21196 {
21197 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
36586728
TT
21198 || macinfo_type == DW_MACRO_GNU_undef_indirect
21199 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
cf2c3c16
TT
21200 macro_undef (current_file, line, body);
21201 }
2e276125
JB
21202 }
21203 break;
21204
cf2c3c16 21205 case DW_MACRO_GNU_start_file:
2e276125 21206 {
891d2f0b 21207 unsigned int bytes_read;
2e276125
JB
21208 int line, file;
21209
21210 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21211 mac_ptr += bytes_read;
21212 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21213 mac_ptr += bytes_read;
21214
3e43a32a
MS
21215 if ((line == 0 && !at_commandline)
21216 || (line != 0 && at_commandline))
757a13d0
JK
21217 complaint (&symfile_complaints,
21218 _("debug info gives source %d included "
21219 "from %s at %s line %d"),
21220 file, at_commandline ? _("command-line") : _("file"),
21221 line == 0 ? _("zero") : _("non-zero"), line);
21222
21223 if (at_commandline)
21224 {
cf2c3c16
TT
21225 /* This DW_MACRO_GNU_start_file was executed in the
21226 pass one. */
757a13d0
JK
21227 at_commandline = 0;
21228 }
21229 else
43f3e411 21230 current_file = macro_start_file (file, line, current_file, lh);
2e276125
JB
21231 }
21232 break;
21233
cf2c3c16 21234 case DW_MACRO_GNU_end_file:
2e276125 21235 if (! current_file)
4d3c2250 21236 complaint (&symfile_complaints,
3e43a32a
MS
21237 _("macro debug info has an unmatched "
21238 "`close_file' directive"));
2e276125
JB
21239 else
21240 {
21241 current_file = current_file->included_by;
21242 if (! current_file)
21243 {
cf2c3c16 21244 enum dwarf_macro_record_type next_type;
2e276125
JB
21245
21246 /* GCC circa March 2002 doesn't produce the zero
21247 type byte marking the end of the compilation
21248 unit. Complain if it's not there, but exit no
21249 matter what. */
21250
21251 /* Do we at least have room for a macinfo type byte? */
21252 if (mac_ptr >= mac_end)
21253 {
f664829e 21254 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
21255 return;
21256 }
21257
21258 /* We don't increment mac_ptr here, so this is just
21259 a look-ahead. */
21260 next_type = read_1_byte (abfd, mac_ptr);
21261 if (next_type != 0)
4d3c2250 21262 complaint (&symfile_complaints,
3e43a32a
MS
21263 _("no terminating 0-type entry for "
21264 "macros in `.debug_macinfo' section"));
2e276125
JB
21265
21266 return;
21267 }
21268 }
21269 break;
21270
cf2c3c16 21271 case DW_MACRO_GNU_transparent_include:
36586728 21272 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21273 {
21274 LONGEST offset;
8fc3fc34 21275 void **slot;
a036ba48
TT
21276 bfd *include_bfd = abfd;
21277 struct dwarf2_section_info *include_section = section;
21278 struct dwarf2_section_info alt_section;
d521ce57 21279 const gdb_byte *include_mac_end = mac_end;
a036ba48 21280 int is_dwz = section_is_dwz;
d521ce57 21281 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
21282
21283 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21284 mac_ptr += offset_size;
21285
a036ba48
TT
21286 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21287 {
21288 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21289
4d663531 21290 dwarf2_read_section (objfile, &dwz->macro);
a036ba48 21291
a036ba48 21292 include_section = &dwz->macro;
a32a8923 21293 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
21294 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21295 is_dwz = 1;
21296 }
21297
21298 new_mac_ptr = include_section->buffer + offset;
21299 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21300
8fc3fc34
TT
21301 if (*slot != NULL)
21302 {
21303 /* This has actually happened; see
21304 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21305 complaint (&symfile_complaints,
21306 _("recursive DW_MACRO_GNU_transparent_include in "
21307 ".debug_macro section"));
21308 }
21309 else
21310 {
d521ce57 21311 *slot = (void *) new_mac_ptr;
36586728 21312
a036ba48 21313 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
43f3e411 21314 include_mac_end, current_file, lh,
36586728 21315 section, section_is_gnu, is_dwz,
4d663531 21316 offset_size, include_hash);
8fc3fc34 21317
d521ce57 21318 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 21319 }
cf2c3c16
TT
21320 }
21321 break;
21322
2e276125 21323 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
21324 if (!section_is_gnu)
21325 {
21326 unsigned int bytes_read;
21327 int constant;
2e276125 21328
cf2c3c16
TT
21329 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21330 mac_ptr += bytes_read;
21331 read_direct_string (abfd, mac_ptr, &bytes_read);
21332 mac_ptr += bytes_read;
2e276125 21333
cf2c3c16
TT
21334 /* We don't recognize any vendor extensions. */
21335 break;
21336 }
21337 /* FALLTHROUGH */
21338
21339 default:
21340 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21341 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21342 section);
21343 if (mac_ptr == NULL)
21344 return;
21345 break;
2e276125 21346 }
757a13d0 21347 } while (macinfo_type != 0);
2e276125 21348}
8e19ed76 21349
cf2c3c16 21350static void
09262596 21351dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
43f3e411 21352 int section_is_gnu)
cf2c3c16 21353{
bb5ed363 21354 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
21355 struct line_header *lh = cu->line_header;
21356 bfd *abfd;
d521ce57 21357 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
21358 struct macro_source_file *current_file = 0;
21359 enum dwarf_macro_record_type macinfo_type;
21360 unsigned int offset_size = cu->header.offset_size;
d521ce57 21361 const gdb_byte *opcode_definitions[256];
8fc3fc34
TT
21362 struct cleanup *cleanup;
21363 htab_t include_hash;
21364 void **slot;
09262596
DE
21365 struct dwarf2_section_info *section;
21366 const char *section_name;
21367
21368 if (cu->dwo_unit != NULL)
21369 {
21370 if (section_is_gnu)
21371 {
21372 section = &cu->dwo_unit->dwo_file->sections.macro;
21373 section_name = ".debug_macro.dwo";
21374 }
21375 else
21376 {
21377 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21378 section_name = ".debug_macinfo.dwo";
21379 }
21380 }
21381 else
21382 {
21383 if (section_is_gnu)
21384 {
21385 section = &dwarf2_per_objfile->macro;
21386 section_name = ".debug_macro";
21387 }
21388 else
21389 {
21390 section = &dwarf2_per_objfile->macinfo;
21391 section_name = ".debug_macinfo";
21392 }
21393 }
cf2c3c16 21394
bb5ed363 21395 dwarf2_read_section (objfile, section);
cf2c3c16
TT
21396 if (section->buffer == NULL)
21397 {
fceca515 21398 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
21399 return;
21400 }
a32a8923 21401 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
21402
21403 /* First pass: Find the name of the base filename.
21404 This filename is needed in order to process all macros whose definition
21405 (or undefinition) comes from the command line. These macros are defined
21406 before the first DW_MACINFO_start_file entry, and yet still need to be
21407 associated to the base file.
21408
21409 To determine the base file name, we scan the macro definitions until we
21410 reach the first DW_MACINFO_start_file entry. We then initialize
21411 CURRENT_FILE accordingly so that any macro definition found before the
21412 first DW_MACINFO_start_file can still be associated to the base file. */
21413
21414 mac_ptr = section->buffer + offset;
21415 mac_end = section->buffer + section->size;
21416
21417 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21418 &offset_size, section_is_gnu);
21419 if (mac_ptr == NULL)
21420 {
21421 /* We already issued a complaint. */
21422 return;
21423 }
21424
21425 do
21426 {
21427 /* Do we at least have room for a macinfo type byte? */
21428 if (mac_ptr >= mac_end)
21429 {
21430 /* Complaint is printed during the second pass as GDB will probably
21431 stop the first pass earlier upon finding
21432 DW_MACINFO_start_file. */
21433 break;
21434 }
21435
21436 macinfo_type = read_1_byte (abfd, mac_ptr);
21437 mac_ptr++;
21438
21439 /* Note that we rely on the fact that the corresponding GNU and
21440 DWARF constants are the same. */
21441 switch (macinfo_type)
21442 {
21443 /* A zero macinfo type indicates the end of the macro
21444 information. */
21445 case 0:
21446 break;
21447
21448 case DW_MACRO_GNU_define:
21449 case DW_MACRO_GNU_undef:
21450 /* Only skip the data by MAC_PTR. */
21451 {
21452 unsigned int bytes_read;
21453
21454 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21455 mac_ptr += bytes_read;
21456 read_direct_string (abfd, mac_ptr, &bytes_read);
21457 mac_ptr += bytes_read;
21458 }
21459 break;
21460
21461 case DW_MACRO_GNU_start_file:
21462 {
21463 unsigned int bytes_read;
21464 int line, file;
21465
21466 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21467 mac_ptr += bytes_read;
21468 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21469 mac_ptr += bytes_read;
21470
43f3e411 21471 current_file = macro_start_file (file, line, current_file, lh);
cf2c3c16
TT
21472 }
21473 break;
21474
21475 case DW_MACRO_GNU_end_file:
21476 /* No data to skip by MAC_PTR. */
21477 break;
21478
21479 case DW_MACRO_GNU_define_indirect:
21480 case DW_MACRO_GNU_undef_indirect:
f7a35f02
TT
21481 case DW_MACRO_GNU_define_indirect_alt:
21482 case DW_MACRO_GNU_undef_indirect_alt:
cf2c3c16
TT
21483 {
21484 unsigned int bytes_read;
21485
21486 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21487 mac_ptr += bytes_read;
21488 mac_ptr += offset_size;
21489 }
21490 break;
21491
21492 case DW_MACRO_GNU_transparent_include:
f7a35f02 21493 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21494 /* Note that, according to the spec, a transparent include
21495 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21496 skip this opcode. */
21497 mac_ptr += offset_size;
21498 break;
21499
21500 case DW_MACINFO_vendor_ext:
21501 /* Only skip the data by MAC_PTR. */
21502 if (!section_is_gnu)
21503 {
21504 unsigned int bytes_read;
21505
21506 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21507 mac_ptr += bytes_read;
21508 read_direct_string (abfd, mac_ptr, &bytes_read);
21509 mac_ptr += bytes_read;
21510 }
21511 /* FALLTHROUGH */
21512
21513 default:
21514 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21515 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21516 section);
21517 if (mac_ptr == NULL)
21518 return;
21519 break;
21520 }
21521 } while (macinfo_type != 0 && current_file == NULL);
21522
21523 /* Second pass: Process all entries.
21524
21525 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21526 command-line macro definitions/undefinitions. This flag is unset when we
21527 reach the first DW_MACINFO_start_file entry. */
21528
8fc3fc34
TT
21529 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21530 NULL, xcalloc, xfree);
21531 cleanup = make_cleanup_htab_delete (include_hash);
21532 mac_ptr = section->buffer + offset;
21533 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
d521ce57 21534 *slot = (void *) mac_ptr;
8fc3fc34 21535 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
43f3e411 21536 current_file, lh, section,
4d663531 21537 section_is_gnu, 0, offset_size, include_hash);
8fc3fc34 21538 do_cleanups (cleanup);
cf2c3c16
TT
21539}
21540
8e19ed76 21541/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 21542 if so return true else false. */
380bca97 21543
8e19ed76 21544static int
6e5a29e1 21545attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
21546{
21547 return (attr == NULL ? 0 :
21548 attr->form == DW_FORM_block1
21549 || attr->form == DW_FORM_block2
21550 || attr->form == DW_FORM_block4
2dc7f7b3
TT
21551 || attr->form == DW_FORM_block
21552 || attr->form == DW_FORM_exprloc);
8e19ed76 21553}
4c2df51b 21554
c6a0999f
JB
21555/* Return non-zero if ATTR's value is a section offset --- classes
21556 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21557 You may use DW_UNSND (attr) to retrieve such offsets.
21558
21559 Section 7.5.4, "Attribute Encodings", explains that no attribute
21560 may have a value that belongs to more than one of these classes; it
21561 would be ambiguous if we did, because we use the same forms for all
21562 of them. */
380bca97 21563
3690dd37 21564static int
6e5a29e1 21565attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
21566{
21567 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
21568 || attr->form == DW_FORM_data8
21569 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
21570}
21571
3690dd37
JB
21572/* Return non-zero if ATTR's value falls in the 'constant' class, or
21573 zero otherwise. When this function returns true, you can apply
21574 dwarf2_get_attr_constant_value to it.
21575
21576 However, note that for some attributes you must check
21577 attr_form_is_section_offset before using this test. DW_FORM_data4
21578 and DW_FORM_data8 are members of both the constant class, and of
21579 the classes that contain offsets into other debug sections
21580 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21581 that, if an attribute's can be either a constant or one of the
21582 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21583 taken as section offsets, not constants. */
380bca97 21584
3690dd37 21585static int
6e5a29e1 21586attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
21587{
21588 switch (attr->form)
21589 {
21590 case DW_FORM_sdata:
21591 case DW_FORM_udata:
21592 case DW_FORM_data1:
21593 case DW_FORM_data2:
21594 case DW_FORM_data4:
21595 case DW_FORM_data8:
21596 return 1;
21597 default:
21598 return 0;
21599 }
21600}
21601
7771576e
SA
21602
21603/* DW_ADDR is always stored already as sect_offset; despite for the forms
21604 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21605
21606static int
6e5a29e1 21607attr_form_is_ref (const struct attribute *attr)
7771576e
SA
21608{
21609 switch (attr->form)
21610 {
21611 case DW_FORM_ref_addr:
21612 case DW_FORM_ref1:
21613 case DW_FORM_ref2:
21614 case DW_FORM_ref4:
21615 case DW_FORM_ref8:
21616 case DW_FORM_ref_udata:
21617 case DW_FORM_GNU_ref_alt:
21618 return 1;
21619 default:
21620 return 0;
21621 }
21622}
21623
3019eac3
DE
21624/* Return the .debug_loc section to use for CU.
21625 For DWO files use .debug_loc.dwo. */
21626
21627static struct dwarf2_section_info *
21628cu_debug_loc_section (struct dwarf2_cu *cu)
21629{
21630 if (cu->dwo_unit)
21631 return &cu->dwo_unit->dwo_file->sections.loc;
21632 return &dwarf2_per_objfile->loc;
21633}
21634
8cf6f0b1
TT
21635/* A helper function that fills in a dwarf2_loclist_baton. */
21636
21637static void
21638fill_in_loclist_baton (struct dwarf2_cu *cu,
21639 struct dwarf2_loclist_baton *baton,
ff39bb5e 21640 const struct attribute *attr)
8cf6f0b1 21641{
3019eac3
DE
21642 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21643
21644 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
21645
21646 baton->per_cu = cu->per_cu;
21647 gdb_assert (baton->per_cu);
21648 /* We don't know how long the location list is, but make sure we
21649 don't run off the edge of the section. */
3019eac3
DE
21650 baton->size = section->size - DW_UNSND (attr);
21651 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 21652 baton->base_address = cu->base_address;
f664829e 21653 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
21654}
21655
4c2df51b 21656static void
ff39bb5e 21657dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 21658 struct dwarf2_cu *cu, int is_block)
4c2df51b 21659{
bb5ed363 21660 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 21661 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 21662
3690dd37 21663 if (attr_form_is_section_offset (attr)
3019eac3 21664 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
21665 the section. If so, fall through to the complaint in the
21666 other branch. */
3019eac3 21667 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 21668 {
0d53c4c4 21669 struct dwarf2_loclist_baton *baton;
4c2df51b 21670
bb5ed363 21671 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 21672 sizeof (struct dwarf2_loclist_baton));
4c2df51b 21673
8cf6f0b1 21674 fill_in_loclist_baton (cu, baton, attr);
be391dca 21675
d00adf39 21676 if (cu->base_known == 0)
0d53c4c4 21677 complaint (&symfile_complaints,
3e43a32a
MS
21678 _("Location list used without "
21679 "specifying the CU base address."));
4c2df51b 21680
f1e6e072
TT
21681 SYMBOL_ACLASS_INDEX (sym) = (is_block
21682 ? dwarf2_loclist_block_index
21683 : dwarf2_loclist_index);
0d53c4c4
DJ
21684 SYMBOL_LOCATION_BATON (sym) = baton;
21685 }
21686 else
21687 {
21688 struct dwarf2_locexpr_baton *baton;
21689
bb5ed363 21690 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 21691 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
21692 baton->per_cu = cu->per_cu;
21693 gdb_assert (baton->per_cu);
0d53c4c4
DJ
21694
21695 if (attr_form_is_block (attr))
21696 {
21697 /* Note that we're just copying the block's data pointer
21698 here, not the actual data. We're still pointing into the
6502dd73
DJ
21699 info_buffer for SYM's objfile; right now we never release
21700 that buffer, but when we do clean up properly this may
21701 need to change. */
0d53c4c4
DJ
21702 baton->size = DW_BLOCK (attr)->size;
21703 baton->data = DW_BLOCK (attr)->data;
21704 }
21705 else
21706 {
21707 dwarf2_invalid_attrib_class_complaint ("location description",
21708 SYMBOL_NATURAL_NAME (sym));
21709 baton->size = 0;
0d53c4c4 21710 }
6e70227d 21711
f1e6e072
TT
21712 SYMBOL_ACLASS_INDEX (sym) = (is_block
21713 ? dwarf2_locexpr_block_index
21714 : dwarf2_locexpr_index);
0d53c4c4
DJ
21715 SYMBOL_LOCATION_BATON (sym) = baton;
21716 }
4c2df51b 21717}
6502dd73 21718
9aa1f1e3
TT
21719/* Return the OBJFILE associated with the compilation unit CU. If CU
21720 came from a separate debuginfo file, then the master objfile is
21721 returned. */
ae0d2f24
UW
21722
21723struct objfile *
21724dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21725{
9291a0cd 21726 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
21727
21728 /* Return the master objfile, so that we can report and look up the
21729 correct file containing this variable. */
21730 if (objfile->separate_debug_objfile_backlink)
21731 objfile = objfile->separate_debug_objfile_backlink;
21732
21733 return objfile;
21734}
21735
96408a79
SA
21736/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21737 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21738 CU_HEADERP first. */
21739
21740static const struct comp_unit_head *
21741per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21742 struct dwarf2_per_cu_data *per_cu)
21743{
d521ce57 21744 const gdb_byte *info_ptr;
96408a79
SA
21745
21746 if (per_cu->cu)
21747 return &per_cu->cu->header;
21748
8a0459fd 21749 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
96408a79
SA
21750
21751 memset (cu_headerp, 0, sizeof (*cu_headerp));
0bc3a05c 21752 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
96408a79
SA
21753
21754 return cu_headerp;
21755}
21756
ae0d2f24
UW
21757/* Return the address size given in the compilation unit header for CU. */
21758
98714339 21759int
ae0d2f24
UW
21760dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21761{
96408a79
SA
21762 struct comp_unit_head cu_header_local;
21763 const struct comp_unit_head *cu_headerp;
c471e790 21764
96408a79
SA
21765 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21766
21767 return cu_headerp->addr_size;
ae0d2f24
UW
21768}
21769
9eae7c52
TT
21770/* Return the offset size given in the compilation unit header for CU. */
21771
21772int
21773dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21774{
96408a79
SA
21775 struct comp_unit_head cu_header_local;
21776 const struct comp_unit_head *cu_headerp;
9c6c53f7 21777
96408a79
SA
21778 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21779
21780 return cu_headerp->offset_size;
21781}
21782
21783/* See its dwarf2loc.h declaration. */
21784
21785int
21786dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21787{
21788 struct comp_unit_head cu_header_local;
21789 const struct comp_unit_head *cu_headerp;
21790
21791 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21792
21793 if (cu_headerp->version == 2)
21794 return cu_headerp->addr_size;
21795 else
21796 return cu_headerp->offset_size;
181cebd4
JK
21797}
21798
9aa1f1e3
TT
21799/* Return the text offset of the CU. The returned offset comes from
21800 this CU's objfile. If this objfile came from a separate debuginfo
21801 file, then the offset may be different from the corresponding
21802 offset in the parent objfile. */
21803
21804CORE_ADDR
21805dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21806{
bb3fa9d0 21807 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
21808
21809 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21810}
21811
348e048f
DE
21812/* Locate the .debug_info compilation unit from CU's objfile which contains
21813 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
21814
21815static struct dwarf2_per_cu_data *
b64f50a1 21816dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 21817 unsigned int offset_in_dwz,
ae038cb0
DJ
21818 struct objfile *objfile)
21819{
21820 struct dwarf2_per_cu_data *this_cu;
21821 int low, high;
36586728 21822 const sect_offset *cu_off;
ae038cb0 21823
ae038cb0
DJ
21824 low = 0;
21825 high = dwarf2_per_objfile->n_comp_units - 1;
21826 while (high > low)
21827 {
36586728 21828 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 21829 int mid = low + (high - low) / 2;
9a619af0 21830
36586728
TT
21831 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21832 cu_off = &mid_cu->offset;
21833 if (mid_cu->is_dwz > offset_in_dwz
21834 || (mid_cu->is_dwz == offset_in_dwz
21835 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
21836 high = mid;
21837 else
21838 low = mid + 1;
21839 }
21840 gdb_assert (low == high);
36586728
TT
21841 this_cu = dwarf2_per_objfile->all_comp_units[low];
21842 cu_off = &this_cu->offset;
21843 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 21844 {
36586728 21845 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
21846 error (_("Dwarf Error: could not find partial DIE containing "
21847 "offset 0x%lx [in module %s]"),
b64f50a1 21848 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 21849
b64f50a1
JK
21850 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21851 <= offset.sect_off);
ae038cb0
DJ
21852 return dwarf2_per_objfile->all_comp_units[low-1];
21853 }
21854 else
21855 {
21856 this_cu = dwarf2_per_objfile->all_comp_units[low];
21857 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
21858 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21859 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21860 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
21861 return this_cu;
21862 }
21863}
21864
23745b47 21865/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 21866
9816fde3 21867static void
23745b47 21868init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 21869{
9816fde3 21870 memset (cu, 0, sizeof (*cu));
23745b47
DE
21871 per_cu->cu = cu;
21872 cu->per_cu = per_cu;
21873 cu->objfile = per_cu->objfile;
93311388 21874 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
21875}
21876
21877/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21878
21879static void
95554aad
TT
21880prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21881 enum language pretend_language)
9816fde3
JK
21882{
21883 struct attribute *attr;
21884
21885 /* Set the language we're debugging. */
21886 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21887 if (attr)
21888 set_cu_language (DW_UNSND (attr), cu);
21889 else
9cded63f 21890 {
95554aad 21891 cu->language = pretend_language;
9cded63f
TT
21892 cu->language_defn = language_def (cu->language);
21893 }
dee91e82
DE
21894
21895 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21896 if (attr)
21897 cu->producer = DW_STRING (attr);
93311388
DE
21898}
21899
ae038cb0
DJ
21900/* Release one cached compilation unit, CU. We unlink it from the tree
21901 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
21902 the caller is responsible for that.
21903 NOTE: DATA is a void * because this function is also used as a
21904 cleanup routine. */
ae038cb0
DJ
21905
21906static void
68dc6402 21907free_heap_comp_unit (void *data)
ae038cb0
DJ
21908{
21909 struct dwarf2_cu *cu = data;
21910
23745b47
DE
21911 gdb_assert (cu->per_cu != NULL);
21912 cu->per_cu->cu = NULL;
ae038cb0
DJ
21913 cu->per_cu = NULL;
21914
21915 obstack_free (&cu->comp_unit_obstack, NULL);
21916
21917 xfree (cu);
21918}
21919
72bf9492 21920/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 21921 when we're finished with it. We can't free the pointer itself, but be
dee91e82 21922 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
21923
21924static void
21925free_stack_comp_unit (void *data)
21926{
21927 struct dwarf2_cu *cu = data;
21928
23745b47
DE
21929 gdb_assert (cu->per_cu != NULL);
21930 cu->per_cu->cu = NULL;
21931 cu->per_cu = NULL;
21932
72bf9492
DJ
21933 obstack_free (&cu->comp_unit_obstack, NULL);
21934 cu->partial_dies = NULL;
ae038cb0
DJ
21935}
21936
21937/* Free all cached compilation units. */
21938
21939static void
21940free_cached_comp_units (void *data)
21941{
21942 struct dwarf2_per_cu_data *per_cu, **last_chain;
21943
21944 per_cu = dwarf2_per_objfile->read_in_chain;
21945 last_chain = &dwarf2_per_objfile->read_in_chain;
21946 while (per_cu != NULL)
21947 {
21948 struct dwarf2_per_cu_data *next_cu;
21949
21950 next_cu = per_cu->cu->read_in_chain;
21951
68dc6402 21952 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
21953 *last_chain = next_cu;
21954
21955 per_cu = next_cu;
21956 }
21957}
21958
21959/* Increase the age counter on each cached compilation unit, and free
21960 any that are too old. */
21961
21962static void
21963age_cached_comp_units (void)
21964{
21965 struct dwarf2_per_cu_data *per_cu, **last_chain;
21966
21967 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21968 per_cu = dwarf2_per_objfile->read_in_chain;
21969 while (per_cu != NULL)
21970 {
21971 per_cu->cu->last_used ++;
b4f54984 21972 if (per_cu->cu->last_used <= dwarf_max_cache_age)
ae038cb0
DJ
21973 dwarf2_mark (per_cu->cu);
21974 per_cu = per_cu->cu->read_in_chain;
21975 }
21976
21977 per_cu = dwarf2_per_objfile->read_in_chain;
21978 last_chain = &dwarf2_per_objfile->read_in_chain;
21979 while (per_cu != NULL)
21980 {
21981 struct dwarf2_per_cu_data *next_cu;
21982
21983 next_cu = per_cu->cu->read_in_chain;
21984
21985 if (!per_cu->cu->mark)
21986 {
68dc6402 21987 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
21988 *last_chain = next_cu;
21989 }
21990 else
21991 last_chain = &per_cu->cu->read_in_chain;
21992
21993 per_cu = next_cu;
21994 }
21995}
21996
21997/* Remove a single compilation unit from the cache. */
21998
21999static void
dee91e82 22000free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
22001{
22002 struct dwarf2_per_cu_data *per_cu, **last_chain;
22003
22004 per_cu = dwarf2_per_objfile->read_in_chain;
22005 last_chain = &dwarf2_per_objfile->read_in_chain;
22006 while (per_cu != NULL)
22007 {
22008 struct dwarf2_per_cu_data *next_cu;
22009
22010 next_cu = per_cu->cu->read_in_chain;
22011
dee91e82 22012 if (per_cu == target_per_cu)
ae038cb0 22013 {
68dc6402 22014 free_heap_comp_unit (per_cu->cu);
dee91e82 22015 per_cu->cu = NULL;
ae038cb0
DJ
22016 *last_chain = next_cu;
22017 break;
22018 }
22019 else
22020 last_chain = &per_cu->cu->read_in_chain;
22021
22022 per_cu = next_cu;
22023 }
22024}
22025
fe3e1990
DJ
22026/* Release all extra memory associated with OBJFILE. */
22027
22028void
22029dwarf2_free_objfile (struct objfile *objfile)
22030{
22031 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22032
22033 if (dwarf2_per_objfile == NULL)
22034 return;
22035
22036 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22037 free_cached_comp_units (NULL);
22038
7b9f3c50
DE
22039 if (dwarf2_per_objfile->quick_file_names_table)
22040 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 22041
527f3840
JK
22042 if (dwarf2_per_objfile->line_header_hash)
22043 htab_delete (dwarf2_per_objfile->line_header_hash);
22044
fe3e1990
DJ
22045 /* Everything else should be on the objfile obstack. */
22046}
22047
dee91e82
DE
22048/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22049 We store these in a hash table separate from the DIEs, and preserve them
22050 when the DIEs are flushed out of cache.
22051
22052 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 22053 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
22054 or the type may come from a DWO file. Furthermore, while it's more logical
22055 to use per_cu->section+offset, with Fission the section with the data is in
22056 the DWO file but we don't know that section at the point we need it.
22057 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22058 because we can enter the lookup routine, get_die_type_at_offset, from
22059 outside this file, and thus won't necessarily have PER_CU->cu.
22060 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 22061
dee91e82 22062struct dwarf2_per_cu_offset_and_type
1c379e20 22063{
dee91e82 22064 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 22065 sect_offset offset;
1c379e20
DJ
22066 struct type *type;
22067};
22068
dee91e82 22069/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22070
22071static hashval_t
dee91e82 22072per_cu_offset_and_type_hash (const void *item)
1c379e20 22073{
dee91e82 22074 const struct dwarf2_per_cu_offset_and_type *ofs = item;
9a619af0 22075
dee91e82 22076 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
22077}
22078
dee91e82 22079/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22080
22081static int
dee91e82 22082per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 22083{
dee91e82
DE
22084 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
22085 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
9a619af0 22086
dee91e82
DE
22087 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22088 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
22089}
22090
22091/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
22092 table if necessary. For convenience, return TYPE.
22093
22094 The DIEs reading must have careful ordering to:
22095 * Not cause infite loops trying to read in DIEs as a prerequisite for
22096 reading current DIE.
22097 * Not trying to dereference contents of still incompletely read in types
22098 while reading in other DIEs.
22099 * Enable referencing still incompletely read in types just by a pointer to
22100 the type without accessing its fields.
22101
22102 Therefore caller should follow these rules:
22103 * Try to fetch any prerequisite types we may need to build this DIE type
22104 before building the type and calling set_die_type.
e71ec853 22105 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
22106 possible before fetching more types to complete the current type.
22107 * Make the type as complete as possible before fetching more types. */
1c379e20 22108
f792889a 22109static struct type *
1c379e20
DJ
22110set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22111{
dee91e82 22112 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 22113 struct objfile *objfile = cu->objfile;
3cdcd0ce
JB
22114 struct attribute *attr;
22115 struct dynamic_prop prop;
1c379e20 22116
b4ba55a1
JB
22117 /* For Ada types, make sure that the gnat-specific data is always
22118 initialized (if not already set). There are a few types where
22119 we should not be doing so, because the type-specific area is
22120 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22121 where the type-specific area is used to store the floatformat).
22122 But this is not a problem, because the gnat-specific information
22123 is actually not needed for these types. */
22124 if (need_gnat_info (cu)
22125 && TYPE_CODE (type) != TYPE_CODE_FUNC
22126 && TYPE_CODE (type) != TYPE_CODE_FLT
09e2d7c7
DE
22127 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22128 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22129 && TYPE_CODE (type) != TYPE_CODE_METHOD
b4ba55a1
JB
22130 && !HAVE_GNAT_AUX_INFO (type))
22131 INIT_GNAT_SPECIFIC (type);
22132
3cdcd0ce
JB
22133 /* Read DW_AT_data_location and set in type. */
22134 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22135 if (attr_to_dynamic_prop (attr, die, cu, &prop))
93a8e227 22136 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
3cdcd0ce 22137
dee91e82 22138 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22139 {
dee91e82
DE
22140 dwarf2_per_objfile->die_type_hash =
22141 htab_create_alloc_ex (127,
22142 per_cu_offset_and_type_hash,
22143 per_cu_offset_and_type_eq,
22144 NULL,
22145 &objfile->objfile_obstack,
22146 hashtab_obstack_allocate,
22147 dummy_obstack_deallocate);
f792889a 22148 }
1c379e20 22149
dee91e82 22150 ofs.per_cu = cu->per_cu;
1c379e20
DJ
22151 ofs.offset = die->offset;
22152 ofs.type = type;
dee91e82
DE
22153 slot = (struct dwarf2_per_cu_offset_and_type **)
22154 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
22155 if (*slot)
22156 complaint (&symfile_complaints,
22157 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 22158 die->offset.sect_off);
673bfd45 22159 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
1c379e20 22160 **slot = ofs;
f792889a 22161 return type;
1c379e20
DJ
22162}
22163
02142a6c
DE
22164/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22165 or return NULL if the die does not have a saved type. */
1c379e20
DJ
22166
22167static struct type *
b64f50a1 22168get_die_type_at_offset (sect_offset offset,
673bfd45 22169 struct dwarf2_per_cu_data *per_cu)
1c379e20 22170{
dee91e82 22171 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 22172
dee91e82 22173 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22174 return NULL;
1c379e20 22175
dee91e82 22176 ofs.per_cu = per_cu;
673bfd45 22177 ofs.offset = offset;
dee91e82 22178 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
1c379e20
DJ
22179 if (slot)
22180 return slot->type;
22181 else
22182 return NULL;
22183}
22184
02142a6c 22185/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
22186 or return NULL if DIE does not have a saved type. */
22187
22188static struct type *
22189get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22190{
22191 return get_die_type_at_offset (die->offset, cu->per_cu);
22192}
22193
10b3939b
DJ
22194/* Add a dependence relationship from CU to REF_PER_CU. */
22195
22196static void
22197dwarf2_add_dependence (struct dwarf2_cu *cu,
22198 struct dwarf2_per_cu_data *ref_per_cu)
22199{
22200 void **slot;
22201
22202 if (cu->dependencies == NULL)
22203 cu->dependencies
22204 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22205 NULL, &cu->comp_unit_obstack,
22206 hashtab_obstack_allocate,
22207 dummy_obstack_deallocate);
22208
22209 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22210 if (*slot == NULL)
22211 *slot = ref_per_cu;
22212}
1c379e20 22213
f504f079
DE
22214/* Subroutine of dwarf2_mark to pass to htab_traverse.
22215 Set the mark field in every compilation unit in the
ae038cb0
DJ
22216 cache that we must keep because we are keeping CU. */
22217
10b3939b
DJ
22218static int
22219dwarf2_mark_helper (void **slot, void *data)
22220{
22221 struct dwarf2_per_cu_data *per_cu;
22222
22223 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
22224
22225 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22226 reading of the chain. As such dependencies remain valid it is not much
22227 useful to track and undo them during QUIT cleanups. */
22228 if (per_cu->cu == NULL)
22229 return 1;
22230
10b3939b
DJ
22231 if (per_cu->cu->mark)
22232 return 1;
22233 per_cu->cu->mark = 1;
22234
22235 if (per_cu->cu->dependencies != NULL)
22236 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22237
22238 return 1;
22239}
22240
f504f079
DE
22241/* Set the mark field in CU and in every other compilation unit in the
22242 cache that we must keep because we are keeping CU. */
22243
ae038cb0
DJ
22244static void
22245dwarf2_mark (struct dwarf2_cu *cu)
22246{
22247 if (cu->mark)
22248 return;
22249 cu->mark = 1;
10b3939b
DJ
22250 if (cu->dependencies != NULL)
22251 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
22252}
22253
22254static void
22255dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22256{
22257 while (per_cu)
22258 {
22259 per_cu->cu->mark = 0;
22260 per_cu = per_cu->cu->read_in_chain;
22261 }
72bf9492
DJ
22262}
22263
72bf9492
DJ
22264/* Trivial hash function for partial_die_info: the hash value of a DIE
22265 is its offset in .debug_info for this objfile. */
22266
22267static hashval_t
22268partial_die_hash (const void *item)
22269{
22270 const struct partial_die_info *part_die = item;
9a619af0 22271
b64f50a1 22272 return part_die->offset.sect_off;
72bf9492
DJ
22273}
22274
22275/* Trivial comparison function for partial_die_info structures: two DIEs
22276 are equal if they have the same offset. */
22277
22278static int
22279partial_die_eq (const void *item_lhs, const void *item_rhs)
22280{
22281 const struct partial_die_info *part_die_lhs = item_lhs;
22282 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 22283
b64f50a1 22284 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
22285}
22286
b4f54984
DE
22287static struct cmd_list_element *set_dwarf_cmdlist;
22288static struct cmd_list_element *show_dwarf_cmdlist;
ae038cb0
DJ
22289
22290static void
b4f54984 22291set_dwarf_cmd (char *args, int from_tty)
ae038cb0 22292{
b4f54984 22293 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
635c7e8a 22294 gdb_stdout);
ae038cb0
DJ
22295}
22296
22297static void
b4f54984 22298show_dwarf_cmd (char *args, int from_tty)
6e70227d 22299{
b4f54984 22300 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
ae038cb0
DJ
22301}
22302
4bf44c1c 22303/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
22304
22305static void
c1bd65d0 22306dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
22307{
22308 struct dwarf2_per_objfile *data = d;
8b70b953 22309 int ix;
8b70b953 22310
626f2d1c
TT
22311 /* Make sure we don't accidentally use dwarf2_per_objfile while
22312 cleaning up. */
22313 dwarf2_per_objfile = NULL;
22314
59b0c7c1
JB
22315 for (ix = 0; ix < data->n_comp_units; ++ix)
22316 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 22317
59b0c7c1 22318 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 22319 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
22320 data->all_type_units[ix]->per_cu.imported_symtabs);
22321 xfree (data->all_type_units);
95554aad 22322
8b70b953 22323 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
22324
22325 if (data->dwo_files)
22326 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
22327 if (data->dwp_file)
22328 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
22329
22330 if (data->dwz_file && data->dwz_file->dwz_bfd)
22331 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
22332}
22333
22334\f
ae2de4f8 22335/* The "save gdb-index" command. */
9291a0cd
TT
22336
22337/* The contents of the hash table we create when building the string
22338 table. */
22339struct strtab_entry
22340{
22341 offset_type offset;
22342 const char *str;
22343};
22344
559a7a62
JK
22345/* Hash function for a strtab_entry.
22346
22347 Function is used only during write_hash_table so no index format backward
22348 compatibility is needed. */
b89be57b 22349
9291a0cd
TT
22350static hashval_t
22351hash_strtab_entry (const void *e)
22352{
22353 const struct strtab_entry *entry = e;
559a7a62 22354 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
22355}
22356
22357/* Equality function for a strtab_entry. */
b89be57b 22358
9291a0cd
TT
22359static int
22360eq_strtab_entry (const void *a, const void *b)
22361{
22362 const struct strtab_entry *ea = a;
22363 const struct strtab_entry *eb = b;
22364 return !strcmp (ea->str, eb->str);
22365}
22366
22367/* Create a strtab_entry hash table. */
b89be57b 22368
9291a0cd
TT
22369static htab_t
22370create_strtab (void)
22371{
22372 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22373 xfree, xcalloc, xfree);
22374}
22375
22376/* Add a string to the constant pool. Return the string's offset in
22377 host order. */
b89be57b 22378
9291a0cd
TT
22379static offset_type
22380add_string (htab_t table, struct obstack *cpool, const char *str)
22381{
22382 void **slot;
22383 struct strtab_entry entry;
22384 struct strtab_entry *result;
22385
22386 entry.str = str;
22387 slot = htab_find_slot (table, &entry, INSERT);
22388 if (*slot)
22389 result = *slot;
22390 else
22391 {
22392 result = XNEW (struct strtab_entry);
22393 result->offset = obstack_object_size (cpool);
22394 result->str = str;
22395 obstack_grow_str0 (cpool, str);
22396 *slot = result;
22397 }
22398 return result->offset;
22399}
22400
22401/* An entry in the symbol table. */
22402struct symtab_index_entry
22403{
22404 /* The name of the symbol. */
22405 const char *name;
22406 /* The offset of the name in the constant pool. */
22407 offset_type index_offset;
22408 /* A sorted vector of the indices of all the CUs that hold an object
22409 of this name. */
22410 VEC (offset_type) *cu_indices;
22411};
22412
22413/* The symbol table. This is a power-of-2-sized hash table. */
22414struct mapped_symtab
22415{
22416 offset_type n_elements;
22417 offset_type size;
22418 struct symtab_index_entry **data;
22419};
22420
22421/* Hash function for a symtab_index_entry. */
b89be57b 22422
9291a0cd
TT
22423static hashval_t
22424hash_symtab_entry (const void *e)
22425{
22426 const struct symtab_index_entry *entry = e;
22427 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22428 sizeof (offset_type) * VEC_length (offset_type,
22429 entry->cu_indices),
22430 0);
22431}
22432
22433/* Equality function for a symtab_index_entry. */
b89be57b 22434
9291a0cd
TT
22435static int
22436eq_symtab_entry (const void *a, const void *b)
22437{
22438 const struct symtab_index_entry *ea = a;
22439 const struct symtab_index_entry *eb = b;
22440 int len = VEC_length (offset_type, ea->cu_indices);
22441 if (len != VEC_length (offset_type, eb->cu_indices))
22442 return 0;
22443 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22444 VEC_address (offset_type, eb->cu_indices),
22445 sizeof (offset_type) * len);
22446}
22447
22448/* Destroy a symtab_index_entry. */
b89be57b 22449
9291a0cd
TT
22450static void
22451delete_symtab_entry (void *p)
22452{
22453 struct symtab_index_entry *entry = p;
22454 VEC_free (offset_type, entry->cu_indices);
22455 xfree (entry);
22456}
22457
22458/* Create a hash table holding symtab_index_entry objects. */
b89be57b 22459
9291a0cd 22460static htab_t
3876f04e 22461create_symbol_hash_table (void)
9291a0cd
TT
22462{
22463 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22464 delete_symtab_entry, xcalloc, xfree);
22465}
22466
22467/* Create a new mapped symtab object. */
b89be57b 22468
9291a0cd
TT
22469static struct mapped_symtab *
22470create_mapped_symtab (void)
22471{
22472 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22473 symtab->n_elements = 0;
22474 symtab->size = 1024;
22475 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22476 return symtab;
22477}
22478
22479/* Destroy a mapped_symtab. */
b89be57b 22480
9291a0cd
TT
22481static void
22482cleanup_mapped_symtab (void *p)
22483{
22484 struct mapped_symtab *symtab = p;
22485 /* The contents of the array are freed when the other hash table is
22486 destroyed. */
22487 xfree (symtab->data);
22488 xfree (symtab);
22489}
22490
22491/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
22492 the slot.
22493
22494 Function is used only during write_hash_table so no index format backward
22495 compatibility is needed. */
b89be57b 22496
9291a0cd
TT
22497static struct symtab_index_entry **
22498find_slot (struct mapped_symtab *symtab, const char *name)
22499{
559a7a62 22500 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
22501
22502 index = hash & (symtab->size - 1);
22503 step = ((hash * 17) & (symtab->size - 1)) | 1;
22504
22505 for (;;)
22506 {
22507 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22508 return &symtab->data[index];
22509 index = (index + step) & (symtab->size - 1);
22510 }
22511}
22512
22513/* Expand SYMTAB's hash table. */
b89be57b 22514
9291a0cd
TT
22515static void
22516hash_expand (struct mapped_symtab *symtab)
22517{
22518 offset_type old_size = symtab->size;
22519 offset_type i;
22520 struct symtab_index_entry **old_entries = symtab->data;
22521
22522 symtab->size *= 2;
22523 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22524
22525 for (i = 0; i < old_size; ++i)
22526 {
22527 if (old_entries[i])
22528 {
22529 struct symtab_index_entry **slot = find_slot (symtab,
22530 old_entries[i]->name);
22531 *slot = old_entries[i];
22532 }
22533 }
22534
22535 xfree (old_entries);
22536}
22537
156942c7
DE
22538/* Add an entry to SYMTAB. NAME is the name of the symbol.
22539 CU_INDEX is the index of the CU in which the symbol appears.
22540 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 22541
9291a0cd
TT
22542static void
22543add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 22544 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
22545 offset_type cu_index)
22546{
22547 struct symtab_index_entry **slot;
156942c7 22548 offset_type cu_index_and_attrs;
9291a0cd
TT
22549
22550 ++symtab->n_elements;
22551 if (4 * symtab->n_elements / 3 >= symtab->size)
22552 hash_expand (symtab);
22553
22554 slot = find_slot (symtab, name);
22555 if (!*slot)
22556 {
22557 *slot = XNEW (struct symtab_index_entry);
22558 (*slot)->name = name;
156942c7 22559 /* index_offset is set later. */
9291a0cd
TT
22560 (*slot)->cu_indices = NULL;
22561 }
156942c7
DE
22562
22563 cu_index_and_attrs = 0;
22564 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22565 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22566 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22567
22568 /* We don't want to record an index value twice as we want to avoid the
22569 duplication.
22570 We process all global symbols and then all static symbols
22571 (which would allow us to avoid the duplication by only having to check
22572 the last entry pushed), but a symbol could have multiple kinds in one CU.
22573 To keep things simple we don't worry about the duplication here and
22574 sort and uniqufy the list after we've processed all symbols. */
22575 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22576}
22577
22578/* qsort helper routine for uniquify_cu_indices. */
22579
22580static int
22581offset_type_compare (const void *ap, const void *bp)
22582{
22583 offset_type a = *(offset_type *) ap;
22584 offset_type b = *(offset_type *) bp;
22585
22586 return (a > b) - (b > a);
22587}
22588
22589/* Sort and remove duplicates of all symbols' cu_indices lists. */
22590
22591static void
22592uniquify_cu_indices (struct mapped_symtab *symtab)
22593{
22594 int i;
22595
22596 for (i = 0; i < symtab->size; ++i)
22597 {
22598 struct symtab_index_entry *entry = symtab->data[i];
22599
22600 if (entry
22601 && entry->cu_indices != NULL)
22602 {
22603 unsigned int next_to_insert, next_to_check;
22604 offset_type last_value;
22605
22606 qsort (VEC_address (offset_type, entry->cu_indices),
22607 VEC_length (offset_type, entry->cu_indices),
22608 sizeof (offset_type), offset_type_compare);
22609
22610 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22611 next_to_insert = 1;
22612 for (next_to_check = 1;
22613 next_to_check < VEC_length (offset_type, entry->cu_indices);
22614 ++next_to_check)
22615 {
22616 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22617 != last_value)
22618 {
22619 last_value = VEC_index (offset_type, entry->cu_indices,
22620 next_to_check);
22621 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22622 last_value);
22623 ++next_to_insert;
22624 }
22625 }
22626 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22627 }
22628 }
9291a0cd
TT
22629}
22630
22631/* Add a vector of indices to the constant pool. */
b89be57b 22632
9291a0cd 22633static offset_type
3876f04e 22634add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
22635 struct symtab_index_entry *entry)
22636{
22637 void **slot;
22638
3876f04e 22639 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
22640 if (!*slot)
22641 {
22642 offset_type len = VEC_length (offset_type, entry->cu_indices);
22643 offset_type val = MAYBE_SWAP (len);
22644 offset_type iter;
22645 int i;
22646
22647 *slot = entry;
22648 entry->index_offset = obstack_object_size (cpool);
22649
22650 obstack_grow (cpool, &val, sizeof (val));
22651 for (i = 0;
22652 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22653 ++i)
22654 {
22655 val = MAYBE_SWAP (iter);
22656 obstack_grow (cpool, &val, sizeof (val));
22657 }
22658 }
22659 else
22660 {
22661 struct symtab_index_entry *old_entry = *slot;
22662 entry->index_offset = old_entry->index_offset;
22663 entry = old_entry;
22664 }
22665 return entry->index_offset;
22666}
22667
22668/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22669 constant pool entries going into the obstack CPOOL. */
b89be57b 22670
9291a0cd
TT
22671static void
22672write_hash_table (struct mapped_symtab *symtab,
22673 struct obstack *output, struct obstack *cpool)
22674{
22675 offset_type i;
3876f04e 22676 htab_t symbol_hash_table;
9291a0cd
TT
22677 htab_t str_table;
22678
3876f04e 22679 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 22680 str_table = create_strtab ();
3876f04e 22681
9291a0cd
TT
22682 /* We add all the index vectors to the constant pool first, to
22683 ensure alignment is ok. */
22684 for (i = 0; i < symtab->size; ++i)
22685 {
22686 if (symtab->data[i])
3876f04e 22687 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
22688 }
22689
22690 /* Now write out the hash table. */
22691 for (i = 0; i < symtab->size; ++i)
22692 {
22693 offset_type str_off, vec_off;
22694
22695 if (symtab->data[i])
22696 {
22697 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22698 vec_off = symtab->data[i]->index_offset;
22699 }
22700 else
22701 {
22702 /* While 0 is a valid constant pool index, it is not valid
22703 to have 0 for both offsets. */
22704 str_off = 0;
22705 vec_off = 0;
22706 }
22707
22708 str_off = MAYBE_SWAP (str_off);
22709 vec_off = MAYBE_SWAP (vec_off);
22710
22711 obstack_grow (output, &str_off, sizeof (str_off));
22712 obstack_grow (output, &vec_off, sizeof (vec_off));
22713 }
22714
22715 htab_delete (str_table);
3876f04e 22716 htab_delete (symbol_hash_table);
9291a0cd
TT
22717}
22718
0a5429f6
DE
22719/* Struct to map psymtab to CU index in the index file. */
22720struct psymtab_cu_index_map
22721{
22722 struct partial_symtab *psymtab;
22723 unsigned int cu_index;
22724};
22725
22726static hashval_t
22727hash_psymtab_cu_index (const void *item)
22728{
22729 const struct psymtab_cu_index_map *map = item;
22730
22731 return htab_hash_pointer (map->psymtab);
22732}
22733
22734static int
22735eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22736{
22737 const struct psymtab_cu_index_map *lhs = item_lhs;
22738 const struct psymtab_cu_index_map *rhs = item_rhs;
22739
22740 return lhs->psymtab == rhs->psymtab;
22741}
22742
22743/* Helper struct for building the address table. */
22744struct addrmap_index_data
22745{
22746 struct objfile *objfile;
22747 struct obstack *addr_obstack;
22748 htab_t cu_index_htab;
22749
22750 /* Non-zero if the previous_* fields are valid.
22751 We can't write an entry until we see the next entry (since it is only then
22752 that we know the end of the entry). */
22753 int previous_valid;
22754 /* Index of the CU in the table of all CUs in the index file. */
22755 unsigned int previous_cu_index;
0963b4bd 22756 /* Start address of the CU. */
0a5429f6
DE
22757 CORE_ADDR previous_cu_start;
22758};
22759
22760/* Write an address entry to OBSTACK. */
b89be57b 22761
9291a0cd 22762static void
0a5429f6
DE
22763add_address_entry (struct objfile *objfile, struct obstack *obstack,
22764 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 22765{
0a5429f6 22766 offset_type cu_index_to_write;
948f8e3d 22767 gdb_byte addr[8];
9291a0cd
TT
22768 CORE_ADDR baseaddr;
22769
22770 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22771
0a5429f6
DE
22772 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22773 obstack_grow (obstack, addr, 8);
22774 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22775 obstack_grow (obstack, addr, 8);
22776 cu_index_to_write = MAYBE_SWAP (cu_index);
22777 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22778}
22779
22780/* Worker function for traversing an addrmap to build the address table. */
22781
22782static int
22783add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22784{
22785 struct addrmap_index_data *data = datap;
22786 struct partial_symtab *pst = obj;
0a5429f6
DE
22787
22788 if (data->previous_valid)
22789 add_address_entry (data->objfile, data->addr_obstack,
22790 data->previous_cu_start, start_addr,
22791 data->previous_cu_index);
22792
22793 data->previous_cu_start = start_addr;
22794 if (pst != NULL)
22795 {
22796 struct psymtab_cu_index_map find_map, *map;
22797 find_map.psymtab = pst;
22798 map = htab_find (data->cu_index_htab, &find_map);
22799 gdb_assert (map != NULL);
22800 data->previous_cu_index = map->cu_index;
22801 data->previous_valid = 1;
22802 }
22803 else
22804 data->previous_valid = 0;
22805
22806 return 0;
22807}
22808
22809/* Write OBJFILE's address map to OBSTACK.
22810 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22811 in the index file. */
22812
22813static void
22814write_address_map (struct objfile *objfile, struct obstack *obstack,
22815 htab_t cu_index_htab)
22816{
22817 struct addrmap_index_data addrmap_index_data;
22818
22819 /* When writing the address table, we have to cope with the fact that
22820 the addrmap iterator only provides the start of a region; we have to
22821 wait until the next invocation to get the start of the next region. */
22822
22823 addrmap_index_data.objfile = objfile;
22824 addrmap_index_data.addr_obstack = obstack;
22825 addrmap_index_data.cu_index_htab = cu_index_htab;
22826 addrmap_index_data.previous_valid = 0;
22827
22828 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22829 &addrmap_index_data);
22830
22831 /* It's highly unlikely the last entry (end address = 0xff...ff)
22832 is valid, but we should still handle it.
22833 The end address is recorded as the start of the next region, but that
22834 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22835 anyway. */
22836 if (addrmap_index_data.previous_valid)
22837 add_address_entry (objfile, obstack,
22838 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22839 addrmap_index_data.previous_cu_index);
9291a0cd
TT
22840}
22841
156942c7
DE
22842/* Return the symbol kind of PSYM. */
22843
22844static gdb_index_symbol_kind
22845symbol_kind (struct partial_symbol *psym)
22846{
22847 domain_enum domain = PSYMBOL_DOMAIN (psym);
22848 enum address_class aclass = PSYMBOL_CLASS (psym);
22849
22850 switch (domain)
22851 {
22852 case VAR_DOMAIN:
22853 switch (aclass)
22854 {
22855 case LOC_BLOCK:
22856 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22857 case LOC_TYPEDEF:
22858 return GDB_INDEX_SYMBOL_KIND_TYPE;
22859 case LOC_COMPUTED:
22860 case LOC_CONST_BYTES:
22861 case LOC_OPTIMIZED_OUT:
22862 case LOC_STATIC:
22863 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22864 case LOC_CONST:
22865 /* Note: It's currently impossible to recognize psyms as enum values
22866 short of reading the type info. For now punt. */
22867 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22868 default:
22869 /* There are other LOC_FOO values that one might want to classify
22870 as variables, but dwarf2read.c doesn't currently use them. */
22871 return GDB_INDEX_SYMBOL_KIND_OTHER;
22872 }
22873 case STRUCT_DOMAIN:
22874 return GDB_INDEX_SYMBOL_KIND_TYPE;
22875 default:
22876 return GDB_INDEX_SYMBOL_KIND_OTHER;
22877 }
22878}
22879
9291a0cd 22880/* Add a list of partial symbols to SYMTAB. */
b89be57b 22881
9291a0cd
TT
22882static void
22883write_psymbols (struct mapped_symtab *symtab,
987d643c 22884 htab_t psyms_seen,
9291a0cd
TT
22885 struct partial_symbol **psymp,
22886 int count,
987d643c
TT
22887 offset_type cu_index,
22888 int is_static)
9291a0cd
TT
22889{
22890 for (; count-- > 0; ++psymp)
22891 {
156942c7
DE
22892 struct partial_symbol *psym = *psymp;
22893 void **slot;
987d643c 22894
156942c7 22895 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 22896 error (_("Ada is not currently supported by the index"));
987d643c 22897
987d643c 22898 /* Only add a given psymbol once. */
156942c7 22899 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
22900 if (!*slot)
22901 {
156942c7
DE
22902 gdb_index_symbol_kind kind = symbol_kind (psym);
22903
22904 *slot = psym;
22905 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22906 is_static, kind, cu_index);
987d643c 22907 }
9291a0cd
TT
22908 }
22909}
22910
22911/* Write the contents of an ("unfinished") obstack to FILE. Throw an
22912 exception if there is an error. */
b89be57b 22913
9291a0cd
TT
22914static void
22915write_obstack (FILE *file, struct obstack *obstack)
22916{
22917 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22918 file)
22919 != obstack_object_size (obstack))
22920 error (_("couldn't data write to file"));
22921}
22922
22923/* Unlink a file if the argument is not NULL. */
b89be57b 22924
9291a0cd
TT
22925static void
22926unlink_if_set (void *p)
22927{
22928 char **filename = p;
22929 if (*filename)
22930 unlink (*filename);
22931}
22932
1fd400ff
TT
22933/* A helper struct used when iterating over debug_types. */
22934struct signatured_type_index_data
22935{
22936 struct objfile *objfile;
22937 struct mapped_symtab *symtab;
22938 struct obstack *types_list;
987d643c 22939 htab_t psyms_seen;
1fd400ff
TT
22940 int cu_index;
22941};
22942
22943/* A helper function that writes a single signatured_type to an
22944 obstack. */
b89be57b 22945
1fd400ff
TT
22946static int
22947write_one_signatured_type (void **slot, void *d)
22948{
22949 struct signatured_type_index_data *info = d;
22950 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 22951 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
22952 gdb_byte val[8];
22953
22954 write_psymbols (info->symtab,
987d643c 22955 info->psyms_seen,
3e43a32a
MS
22956 info->objfile->global_psymbols.list
22957 + psymtab->globals_offset,
987d643c
TT
22958 psymtab->n_global_syms, info->cu_index,
22959 0);
1fd400ff 22960 write_psymbols (info->symtab,
987d643c 22961 info->psyms_seen,
3e43a32a
MS
22962 info->objfile->static_psymbols.list
22963 + psymtab->statics_offset,
987d643c
TT
22964 psymtab->n_static_syms, info->cu_index,
22965 1);
1fd400ff 22966
b64f50a1
JK
22967 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22968 entry->per_cu.offset.sect_off);
1fd400ff 22969 obstack_grow (info->types_list, val, 8);
3019eac3
DE
22970 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22971 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
22972 obstack_grow (info->types_list, val, 8);
22973 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22974 obstack_grow (info->types_list, val, 8);
22975
22976 ++info->cu_index;
22977
22978 return 1;
22979}
22980
95554aad
TT
22981/* Recurse into all "included" dependencies and write their symbols as
22982 if they appeared in this psymtab. */
22983
22984static void
22985recursively_write_psymbols (struct objfile *objfile,
22986 struct partial_symtab *psymtab,
22987 struct mapped_symtab *symtab,
22988 htab_t psyms_seen,
22989 offset_type cu_index)
22990{
22991 int i;
22992
22993 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22994 if (psymtab->dependencies[i]->user != NULL)
22995 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22996 symtab, psyms_seen, cu_index);
22997
22998 write_psymbols (symtab,
22999 psyms_seen,
23000 objfile->global_psymbols.list + psymtab->globals_offset,
23001 psymtab->n_global_syms, cu_index,
23002 0);
23003 write_psymbols (symtab,
23004 psyms_seen,
23005 objfile->static_psymbols.list + psymtab->statics_offset,
23006 psymtab->n_static_syms, cu_index,
23007 1);
23008}
23009
9291a0cd 23010/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 23011
9291a0cd
TT
23012static void
23013write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23014{
23015 struct cleanup *cleanup;
23016 char *filename, *cleanup_filename;
1fd400ff
TT
23017 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23018 struct obstack cu_list, types_cu_list;
9291a0cd
TT
23019 int i;
23020 FILE *out_file;
23021 struct mapped_symtab *symtab;
23022 offset_type val, size_of_contents, total_len;
23023 struct stat st;
987d643c 23024 htab_t psyms_seen;
0a5429f6
DE
23025 htab_t cu_index_htab;
23026 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 23027
9291a0cd
TT
23028 if (dwarf2_per_objfile->using_index)
23029 error (_("Cannot use an index to create the index"));
23030
8b70b953
TT
23031 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23032 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23033
260b681b
DE
23034 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23035 return;
23036
4262abfb
JK
23037 if (stat (objfile_name (objfile), &st) < 0)
23038 perror_with_name (objfile_name (objfile));
9291a0cd 23039
4262abfb 23040 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
9291a0cd
TT
23041 INDEX_SUFFIX, (char *) NULL);
23042 cleanup = make_cleanup (xfree, filename);
23043
614c279d 23044 out_file = gdb_fopen_cloexec (filename, "wb");
9291a0cd
TT
23045 if (!out_file)
23046 error (_("Can't open `%s' for writing"), filename);
23047
23048 cleanup_filename = filename;
23049 make_cleanup (unlink_if_set, &cleanup_filename);
23050
23051 symtab = create_mapped_symtab ();
23052 make_cleanup (cleanup_mapped_symtab, symtab);
23053
23054 obstack_init (&addr_obstack);
23055 make_cleanup_obstack_free (&addr_obstack);
23056
23057 obstack_init (&cu_list);
23058 make_cleanup_obstack_free (&cu_list);
23059
1fd400ff
TT
23060 obstack_init (&types_cu_list);
23061 make_cleanup_obstack_free (&types_cu_list);
23062
987d643c
TT
23063 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23064 NULL, xcalloc, xfree);
96408a79 23065 make_cleanup_htab_delete (psyms_seen);
987d643c 23066
0a5429f6
DE
23067 /* While we're scanning CU's create a table that maps a psymtab pointer
23068 (which is what addrmap records) to its index (which is what is recorded
23069 in the index file). This will later be needed to write the address
23070 table. */
23071 cu_index_htab = htab_create_alloc (100,
23072 hash_psymtab_cu_index,
23073 eq_psymtab_cu_index,
23074 NULL, xcalloc, xfree);
96408a79 23075 make_cleanup_htab_delete (cu_index_htab);
0a5429f6
DE
23076 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
23077 xmalloc (sizeof (struct psymtab_cu_index_map)
23078 * dwarf2_per_objfile->n_comp_units);
23079 make_cleanup (xfree, psymtab_cu_index_map);
23080
23081 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
23082 work here. Also, the debug_types entries do not appear in
23083 all_comp_units, but only in their own hash table. */
9291a0cd
TT
23084 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23085 {
3e43a32a
MS
23086 struct dwarf2_per_cu_data *per_cu
23087 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 23088 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 23089 gdb_byte val[8];
0a5429f6
DE
23090 struct psymtab_cu_index_map *map;
23091 void **slot;
9291a0cd 23092
92fac807
JK
23093 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23094 It may be referenced from a local scope but in such case it does not
23095 need to be present in .gdb_index. */
23096 if (psymtab == NULL)
23097 continue;
23098
95554aad
TT
23099 if (psymtab->user == NULL)
23100 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
9291a0cd 23101
0a5429f6
DE
23102 map = &psymtab_cu_index_map[i];
23103 map->psymtab = psymtab;
23104 map->cu_index = i;
23105 slot = htab_find_slot (cu_index_htab, map, INSERT);
23106 gdb_assert (slot != NULL);
23107 gdb_assert (*slot == NULL);
23108 *slot = map;
9291a0cd 23109
b64f50a1
JK
23110 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23111 per_cu->offset.sect_off);
9291a0cd 23112 obstack_grow (&cu_list, val, 8);
e254ef6a 23113 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
23114 obstack_grow (&cu_list, val, 8);
23115 }
23116
0a5429f6
DE
23117 /* Dump the address map. */
23118 write_address_map (objfile, &addr_obstack, cu_index_htab);
23119
1fd400ff
TT
23120 /* Write out the .debug_type entries, if any. */
23121 if (dwarf2_per_objfile->signatured_types)
23122 {
23123 struct signatured_type_index_data sig_data;
23124
23125 sig_data.objfile = objfile;
23126 sig_data.symtab = symtab;
23127 sig_data.types_list = &types_cu_list;
987d643c 23128 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
23129 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23130 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23131 write_one_signatured_type, &sig_data);
23132 }
23133
156942c7
DE
23134 /* Now that we've processed all symbols we can shrink their cu_indices
23135 lists. */
23136 uniquify_cu_indices (symtab);
23137
9291a0cd
TT
23138 obstack_init (&constant_pool);
23139 make_cleanup_obstack_free (&constant_pool);
23140 obstack_init (&symtab_obstack);
23141 make_cleanup_obstack_free (&symtab_obstack);
23142 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23143
23144 obstack_init (&contents);
23145 make_cleanup_obstack_free (&contents);
1fd400ff 23146 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
23147 total_len = size_of_contents;
23148
23149 /* The version number. */
796a7ff8 23150 val = MAYBE_SWAP (8);
9291a0cd
TT
23151 obstack_grow (&contents, &val, sizeof (val));
23152
23153 /* The offset of the CU list from the start of the file. */
23154 val = MAYBE_SWAP (total_len);
23155 obstack_grow (&contents, &val, sizeof (val));
23156 total_len += obstack_object_size (&cu_list);
23157
1fd400ff
TT
23158 /* The offset of the types CU list from the start of the file. */
23159 val = MAYBE_SWAP (total_len);
23160 obstack_grow (&contents, &val, sizeof (val));
23161 total_len += obstack_object_size (&types_cu_list);
23162
9291a0cd
TT
23163 /* The offset of the address table from the start of the file. */
23164 val = MAYBE_SWAP (total_len);
23165 obstack_grow (&contents, &val, sizeof (val));
23166 total_len += obstack_object_size (&addr_obstack);
23167
23168 /* The offset of the symbol table from the start of the file. */
23169 val = MAYBE_SWAP (total_len);
23170 obstack_grow (&contents, &val, sizeof (val));
23171 total_len += obstack_object_size (&symtab_obstack);
23172
23173 /* The offset of the constant pool from the start of the file. */
23174 val = MAYBE_SWAP (total_len);
23175 obstack_grow (&contents, &val, sizeof (val));
23176 total_len += obstack_object_size (&constant_pool);
23177
23178 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23179
23180 write_obstack (out_file, &contents);
23181 write_obstack (out_file, &cu_list);
1fd400ff 23182 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
23183 write_obstack (out_file, &addr_obstack);
23184 write_obstack (out_file, &symtab_obstack);
23185 write_obstack (out_file, &constant_pool);
23186
23187 fclose (out_file);
23188
23189 /* We want to keep the file, so we set cleanup_filename to NULL
23190 here. See unlink_if_set. */
23191 cleanup_filename = NULL;
23192
23193 do_cleanups (cleanup);
23194}
23195
90476074
TT
23196/* Implementation of the `save gdb-index' command.
23197
23198 Note that the file format used by this command is documented in the
23199 GDB manual. Any changes here must be documented there. */
11570e71 23200
9291a0cd
TT
23201static void
23202save_gdb_index_command (char *arg, int from_tty)
23203{
23204 struct objfile *objfile;
23205
23206 if (!arg || !*arg)
96d19272 23207 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
23208
23209 ALL_OBJFILES (objfile)
23210 {
23211 struct stat st;
23212
23213 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 23214 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
23215 continue;
23216
23217 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
23218 if (dwarf2_per_objfile)
23219 {
9291a0cd 23220
492d29ea 23221 TRY
9291a0cd
TT
23222 {
23223 write_psymtabs_to_index (objfile, arg);
23224 }
492d29ea
PA
23225 CATCH (except, RETURN_MASK_ERROR)
23226 {
23227 exception_fprintf (gdb_stderr, except,
23228 _("Error while writing index for `%s': "),
23229 objfile_name (objfile));
23230 }
23231 END_CATCH
9291a0cd
TT
23232 }
23233 }
dce234bc
PP
23234}
23235
9291a0cd
TT
23236\f
23237
b4f54984 23238int dwarf_always_disassemble;
9eae7c52
TT
23239
23240static void
b4f54984
DE
23241show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23242 struct cmd_list_element *c, const char *value)
9eae7c52 23243{
3e43a32a
MS
23244 fprintf_filtered (file,
23245 _("Whether to always disassemble "
23246 "DWARF expressions is %s.\n"),
9eae7c52
TT
23247 value);
23248}
23249
900e11f9
JK
23250static void
23251show_check_physname (struct ui_file *file, int from_tty,
23252 struct cmd_list_element *c, const char *value)
23253{
23254 fprintf_filtered (file,
23255 _("Whether to check \"physname\" is %s.\n"),
23256 value);
23257}
23258
6502dd73
DJ
23259void _initialize_dwarf2_read (void);
23260
23261void
23262_initialize_dwarf2_read (void)
23263{
96d19272
JK
23264 struct cmd_list_element *c;
23265
dce234bc 23266 dwarf2_objfile_data_key
c1bd65d0 23267 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 23268
b4f54984
DE
23269 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23270Set DWARF specific variables.\n\
23271Configure DWARF variables such as the cache size"),
23272 &set_dwarf_cmdlist, "maintenance set dwarf ",
ae038cb0
DJ
23273 0/*allow-unknown*/, &maintenance_set_cmdlist);
23274
b4f54984
DE
23275 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23276Show DWARF specific variables\n\
23277Show DWARF variables such as the cache size"),
23278 &show_dwarf_cmdlist, "maintenance show dwarf ",
ae038cb0
DJ
23279 0/*allow-unknown*/, &maintenance_show_cmdlist);
23280
23281 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
b4f54984
DE
23282 &dwarf_max_cache_age, _("\
23283Set the upper bound on the age of cached DWARF compilation units."), _("\
23284Show the upper bound on the age of cached DWARF compilation units."), _("\
7915a72c
AC
23285A higher limit means that cached compilation units will be stored\n\
23286in memory longer, and more total memory will be used. Zero disables\n\
23287caching, which can slow down startup."),
2c5b56ce 23288 NULL,
b4f54984
DE
23289 show_dwarf_max_cache_age,
23290 &set_dwarf_cmdlist,
23291 &show_dwarf_cmdlist);
d97bc12b 23292
9eae7c52 23293 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
b4f54984 23294 &dwarf_always_disassemble, _("\
9eae7c52
TT
23295Set whether `info address' always disassembles DWARF expressions."), _("\
23296Show whether `info address' always disassembles DWARF expressions."), _("\
23297When enabled, DWARF expressions are always printed in an assembly-like\n\
23298syntax. When disabled, expressions will be printed in a more\n\
23299conversational style, when possible."),
23300 NULL,
b4f54984
DE
23301 show_dwarf_always_disassemble,
23302 &set_dwarf_cmdlist,
23303 &show_dwarf_cmdlist);
23304
23305 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23306Set debugging of the DWARF reader."), _("\
23307Show debugging of the DWARF reader."), _("\
23308When enabled (non-zero), debugging messages are printed during DWARF\n\
73be47f5
DE
23309reading and symtab expansion. A value of 1 (one) provides basic\n\
23310information. A value greater than 1 provides more verbose information."),
45cfd468
DE
23311 NULL,
23312 NULL,
23313 &setdebuglist, &showdebuglist);
23314
b4f54984
DE
23315 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23316Set debugging of the DWARF DIE reader."), _("\
23317Show debugging of the DWARF DIE reader."), _("\
d97bc12b
DE
23318When enabled (non-zero), DIEs are dumped after they are read in.\n\
23319The value is the maximum depth to print."),
ccce17b0
YQ
23320 NULL,
23321 NULL,
23322 &setdebuglist, &showdebuglist);
9291a0cd 23323
900e11f9
JK
23324 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23325Set cross-checking of \"physname\" code against demangler."), _("\
23326Show cross-checking of \"physname\" code against demangler."), _("\
23327When enabled, GDB's internal \"physname\" code is checked against\n\
23328the demangler."),
23329 NULL, show_check_physname,
23330 &setdebuglist, &showdebuglist);
23331
e615022a
DE
23332 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23333 no_class, &use_deprecated_index_sections, _("\
23334Set whether to use deprecated gdb_index sections."), _("\
23335Show whether to use deprecated gdb_index sections."), _("\
23336When enabled, deprecated .gdb_index sections are used anyway.\n\
23337Normally they are ignored either because of a missing feature or\n\
23338performance issue.\n\
23339Warning: This option must be enabled before gdb reads the file."),
23340 NULL,
23341 NULL,
23342 &setlist, &showlist);
23343
96d19272 23344 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 23345 _("\
fc1a9d6e 23346Save a gdb-index file.\n\
11570e71 23347Usage: save gdb-index DIRECTORY"),
96d19272
JK
23348 &save_cmdlist);
23349 set_cmd_completer (c, filename_completer);
f1e6e072
TT
23350
23351 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23352 &dwarf2_locexpr_funcs);
23353 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23354 &dwarf2_loclist_funcs);
23355
23356 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23357 &dwarf2_block_frame_base_locexpr_funcs);
23358 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23359 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 23360}