]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/elfread.c
elfNN_c64_resize_section always sets alignment
[thirdparty/binutils-gdb.git] / gdb / elfread.c
CommitLineData
c906108c 1/* Read ELF (Executable and Linking Format) object files for GDB.
1bac305b 2
b811d2c2 3 Copyright (C) 1991-2020 Free Software Foundation, Inc.
1bac305b 4
c906108c
SS
5 Written by Fred Fish at Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "bfd.h"
c906108c 24#include "elf-bfd.h"
31d99776
DJ
25#include "elf/common.h"
26#include "elf/internal.h"
c906108c 27#include "elf/mips.h"
4de283e4
TT
28#include "symtab.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "stabsread.h"
4de283e4
TT
32#include "complaints.h"
33#include "demangle.h"
34#include "psympriv.h"
35#include "filenames.h"
36#include "probe.h"
37#include "arch-utils.h"
07be84bf 38#include "gdbtypes.h"
4de283e4 39#include "value.h"
07be84bf 40#include "infcall.h"
4de283e4 41#include "gdbthread.h"
00431a78 42#include "inferior.h"
4de283e4
TT
43#include "regcache.h"
44#include "bcache.h"
45#include "gdb_bfd.h"
46#include "build-id.h"
f00aae0f 47#include "location.h"
4de283e4 48#include "auxv.h"
0e8f53ba 49#include "mdebugread.h"
30d1f018 50#include "ctfread.h"
31edb802 51#include "gdbsupport/gdb_string_view.h"
0d79cdc4
AM
52#include "gdbsupport/scoped_fd.h"
53#include "debuginfod-support.h"
c906108c 54
3c0aa29a
PA
55/* Forward declarations. */
56extern const struct sym_fns elf_sym_fns_gdb_index;
57extern const struct sym_fns elf_sym_fns_debug_names;
58extern const struct sym_fns elf_sym_fns_lazy_psyms;
59
c906108c 60/* The struct elfinfo is available only during ELF symbol table and
6426a772 61 psymtab reading. It is destroyed at the completion of psymtab-reading.
c906108c
SS
62 It's local to elf_symfile_read. */
63
c5aa993b
JM
64struct elfinfo
65 {
c5aa993b 66 asection *stabsect; /* Section pointer for .stab section */
c5aa993b 67 asection *mdebugsect; /* Section pointer for .mdebug section */
30d1f018 68 asection *ctfsect; /* Section pointer for .ctf section */
c5aa993b 69 };
c906108c 70
814cf43a
TT
71/* Type for per-BFD data. */
72
73typedef std::vector<std::unique_ptr<probe>> elfread_data;
74
5d9cf8a4 75/* Per-BFD data for probe info. */
55aa24fb 76
814cf43a 77static const struct bfd_key<elfread_data> probe_key;
55aa24fb 78
07be84bf
JK
79/* Minimal symbols located at the GOT entries for .plt - that is the real
80 pointer where the given entry will jump to. It gets updated by the real
81 function address during lazy ld.so resolving in the inferior. These
82 minimal symbols are indexed for <tab>-completion. */
83
84#define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
85
31d99776
DJ
86/* Locate the segments in ABFD. */
87
62982abd 88static symfile_segment_data_up
31d99776
DJ
89elf_symfile_segments (bfd *abfd)
90{
91 Elf_Internal_Phdr *phdrs, **segments;
92 long phdrs_size;
93 int num_phdrs, num_segments, num_sections, i;
94 asection *sect;
31d99776
DJ
95
96 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
97 if (phdrs_size == -1)
98 return NULL;
99
224c3ddb 100 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
31d99776
DJ
101 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
102 if (num_phdrs == -1)
103 return NULL;
104
105 num_segments = 0;
8d749320 106 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
31d99776
DJ
107 for (i = 0; i < num_phdrs; i++)
108 if (phdrs[i].p_type == PT_LOAD)
109 segments[num_segments++] = &phdrs[i];
110
111 if (num_segments == 0)
112 return NULL;
113
62982abd 114 symfile_segment_data_up data (new symfile_segment_data);
68b888ff 115 data->segments.reserve (num_segments);
31d99776
DJ
116
117 for (i = 0; i < num_segments; i++)
68b888ff 118 data->segments.emplace_back (segments[i]->p_vaddr, segments[i]->p_memsz);
31d99776
DJ
119
120 num_sections = bfd_count_sections (abfd);
9005fbbb
SM
121
122 /* All elements are initialized to 0 (map to no segment). */
123 data->segment_info.resize (num_sections);
31d99776
DJ
124
125 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
126 {
127 int j;
31d99776 128
fd361982 129 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
31d99776
DJ
130 continue;
131
62b74cb8 132 Elf_Internal_Shdr *this_hdr = &elf_section_data (sect)->this_hdr;
31d99776
DJ
133
134 for (j = 0; j < num_segments; j++)
62b74cb8 135 if (ELF_SECTION_IN_SEGMENT (this_hdr, segments[j]))
31d99776
DJ
136 {
137 data->segment_info[i] = j + 1;
138 break;
139 }
140
ad09a548
DJ
141 /* We should have found a segment for every non-empty section.
142 If we haven't, we will not relocate this section by any
143 offsets we apply to the segments. As an exception, do not
144 warn about SHT_NOBITS sections; in normal ELF execution
145 environments, SHT_NOBITS means zero-initialized and belongs
146 in a segment, but in no-OS environments some tools (e.g. ARM
147 RealView) use SHT_NOBITS for uninitialized data. Since it is
148 uninitialized, it doesn't need a program header. Such
149 binaries are not relocatable. */
fd361982
AM
150 if (bfd_section_size (sect) > 0 && j == num_segments
151 && (bfd_section_flags (sect) & SEC_LOAD) != 0)
28ee876a 152 warning (_("Loadable section \"%s\" outside of ELF segments"),
fd361982 153 bfd_section_name (sect));
31d99776
DJ
154 }
155
156 return data;
157}
158
c906108c
SS
159/* We are called once per section from elf_symfile_read. We
160 need to examine each section we are passed, check to see
161 if it is something we are interested in processing, and
162 if so, stash away some access information for the section.
163
164 For now we recognize the dwarf debug information sections and
165 line number sections from matching their section names. The
166 ELF definition is no real help here since it has no direct
167 knowledge of DWARF (by design, so any debugging format can be
168 used).
169
170 We also recognize the ".stab" sections used by the Sun compilers
171 released with Solaris 2.
172
173 FIXME: The section names should not be hardwired strings (what
174 should they be? I don't think most object file formats have enough
0963b4bd 175 section flags to specify what kind of debug section it is.
c906108c
SS
176 -kingdon). */
177
178static void
08f93a1a 179elf_locate_sections (asection *sectp, struct elfinfo *ei)
c906108c 180{
7ce59000 181 if (strcmp (sectp->name, ".stab") == 0)
c906108c 182 {
c5aa993b 183 ei->stabsect = sectp;
c906108c 184 }
6314a349 185 else if (strcmp (sectp->name, ".mdebug") == 0)
c906108c 186 {
c5aa993b 187 ei->mdebugsect = sectp;
c906108c 188 }
30d1f018
WP
189 else if (strcmp (sectp->name, ".ctf") == 0)
190 {
191 ei->ctfsect = sectp;
192 }
c906108c
SS
193}
194
c906108c 195static struct minimal_symbol *
8dddcb8f 196record_minimal_symbol (minimal_symbol_reader &reader,
31edb802 197 gdb::string_view name, bool copy_name,
04a679b8 198 CORE_ADDR address,
f594e5e9
MC
199 enum minimal_symbol_type ms_type,
200 asection *bfd_section, struct objfile *objfile)
c906108c 201{
08feed99 202 struct gdbarch *gdbarch = objfile->arch ();
5e2b427d 203
0875794a
JK
204 if (ms_type == mst_text || ms_type == mst_file_text
205 || ms_type == mst_text_gnu_ifunc)
85ddcc70 206 address = gdbarch_addr_bits_remove (gdbarch, address);
c906108c 207
44e4c775
AB
208 /* We only setup section information for allocatable sections. Usually
209 we'd only expect to find msymbols for allocatable sections, but if the
210 ELF is malformed then this might not be the case. In that case don't
211 create an msymbol that references an uninitialised section object. */
212 int section_index = 0;
213 if ((bfd_section_flags (bfd_section) & SEC_ALLOC) == SEC_ALLOC)
214 section_index = gdb_bfd_section_index (objfile->obfd, bfd_section);
215
4b610737 216 struct minimal_symbol *result
44e4c775 217 = reader.record_full (name, copy_name, address, ms_type, section_index);
4b610737
TT
218 if ((objfile->flags & OBJF_MAINLINE) == 0
219 && (ms_type == mst_data || ms_type == mst_bss))
220 result->maybe_copied = 1;
221
222 return result;
c906108c
SS
223}
224
7f86f058 225/* Read the symbol table of an ELF file.
c906108c 226
62553543 227 Given an objfile, a symbol table, and a flag indicating whether the
6f610d07
UW
228 symbol table contains regular, dynamic, or synthetic symbols, add all
229 the global function and data symbols to the minimal symbol table.
c906108c 230
c5aa993b
JM
231 In stabs-in-ELF, as implemented by Sun, there are some local symbols
232 defined in the ELF symbol table, which can be used to locate
233 the beginnings of sections from each ".o" file that was linked to
234 form the executable objfile. We gather any such info and record it
7f86f058 235 in data structures hung off the objfile's private data. */
c906108c 236
6f610d07
UW
237#define ST_REGULAR 0
238#define ST_DYNAMIC 1
239#define ST_SYNTHETIC 2
240
c906108c 241static void
8dddcb8f
TT
242elf_symtab_read (minimal_symbol_reader &reader,
243 struct objfile *objfile, int type,
04a679b8 244 long number_of_symbols, asymbol **symbol_table,
ce6c454e 245 bool copy_names)
c906108c 246{
08feed99 247 struct gdbarch *gdbarch = objfile->arch ();
c906108c 248 asymbol *sym;
c906108c 249 long i;
c906108c
SS
250 CORE_ADDR symaddr;
251 enum minimal_symbol_type ms_type;
18a94d75
DE
252 /* Name of the last file symbol. This is either a constant string or is
253 saved on the objfile's filename cache. */
0af1e9a5 254 const char *filesymname = "";
d4f3574e 255 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
3e29f34a
MR
256 int elf_make_msymbol_special_p
257 = gdbarch_elf_make_msymbol_special_p (gdbarch);
c5aa993b 258
0cc7b392 259 for (i = 0; i < number_of_symbols; i++)
c906108c 260 {
0cc7b392
DJ
261 sym = symbol_table[i];
262 if (sym->name == NULL || *sym->name == '\0')
c906108c 263 {
0cc7b392 264 /* Skip names that don't exist (shouldn't happen), or names
0963b4bd 265 that are null strings (may happen). */
0cc7b392
DJ
266 continue;
267 }
c906108c 268
74763737
DJ
269 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
270 symbols which do not correspond to objects in the symbol table,
271 but have some other target-specific meaning. */
272 if (bfd_is_target_special_symbol (objfile->obfd, sym))
60c5725c
DJ
273 {
274 if (gdbarch_record_special_symbol_p (gdbarch))
275 gdbarch_record_special_symbol (gdbarch, objfile, sym);
276 continue;
277 }
74763737 278
6f610d07 279 if (type == ST_DYNAMIC
45dfa85a 280 && sym->section == bfd_und_section_ptr
0cc7b392
DJ
281 && (sym->flags & BSF_FUNCTION))
282 {
283 struct minimal_symbol *msym;
02c75f72 284 bfd *abfd = objfile->obfd;
dea91a5c 285 asection *sect;
0cc7b392
DJ
286
287 /* Symbol is a reference to a function defined in
288 a shared library.
289 If its value is non zero then it is usually the address
290 of the corresponding entry in the procedure linkage table,
291 plus the desired section offset.
292 If its value is zero then the dynamic linker has to resolve
0963b4bd 293 the symbol. We are unable to find any meaningful address
0cc7b392
DJ
294 for this symbol in the executable file, so we skip it. */
295 symaddr = sym->value;
296 if (symaddr == 0)
297 continue;
02c75f72
UW
298
299 /* sym->section is the undefined section. However, we want to
300 record the section where the PLT stub resides with the
301 minimal symbol. Search the section table for the one that
302 covers the stub's address. */
303 for (sect = abfd->sections; sect != NULL; sect = sect->next)
304 {
fd361982 305 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
02c75f72
UW
306 continue;
307
fd361982
AM
308 if (symaddr >= bfd_section_vma (sect)
309 && symaddr < bfd_section_vma (sect)
310 + bfd_section_size (sect))
02c75f72
UW
311 break;
312 }
313 if (!sect)
314 continue;
315
828cfa8d
JB
316 /* On ia64-hpux, we have discovered that the system linker
317 adds undefined symbols with nonzero addresses that cannot
318 be right (their address points inside the code of another
319 function in the .text section). This creates problems
320 when trying to determine which symbol corresponds to
321 a given address.
322
323 We try to detect those buggy symbols by checking which
324 section we think they correspond to. Normally, PLT symbols
325 are stored inside their own section, and the typical name
326 for that section is ".plt". So, if there is a ".plt"
327 section, and yet the section name of our symbol does not
328 start with ".plt", we ignore that symbol. */
61012eef 329 if (!startswith (sect->name, ".plt")
828cfa8d
JB
330 && bfd_get_section_by_name (abfd, ".plt") != NULL)
331 continue;
332
0cc7b392 333 msym = record_minimal_symbol
31edb802 334 (reader, sym->name, copy_names,
04a679b8 335 symaddr, mst_solib_trampoline, sect, objfile);
0cc7b392 336 if (msym != NULL)
9b807e7b
MR
337 {
338 msym->filename = filesymname;
3e29f34a
MR
339 if (elf_make_msymbol_special_p)
340 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
9b807e7b 341 }
0cc7b392
DJ
342 continue;
343 }
c906108c 344
0cc7b392
DJ
345 /* If it is a nonstripped executable, do not enter dynamic
346 symbols, as the dynamic symbol table is usually a subset
347 of the main symbol table. */
6f610d07 348 if (type == ST_DYNAMIC && !stripped)
0cc7b392
DJ
349 continue;
350 if (sym->flags & BSF_FILE)
be1e3d3e 351 filesymname = objfile->intern (sym->name);
0cc7b392
DJ
352 else if (sym->flags & BSF_SECTION_SYM)
353 continue;
bb869963
SDJ
354 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
355 | BSF_GNU_UNIQUE))
0cc7b392
DJ
356 {
357 struct minimal_symbol *msym;
358
359 /* Select global/local/weak symbols. Note that bfd puts abs
360 symbols in their own section, so all symbols we are
0963b4bd
MS
361 interested in will have a section. */
362 /* Bfd symbols are section relative. */
0cc7b392 363 symaddr = sym->value + sym->section->vma;
0cc7b392
DJ
364 /* For non-absolute symbols, use the type of the section
365 they are relative to, to intuit text/data. Bfd provides
0963b4bd 366 no way of figuring this out for absolute symbols. */
45dfa85a 367 if (sym->section == bfd_abs_section_ptr)
c906108c 368 {
0cc7b392
DJ
369 /* This is a hack to get the minimal symbol type
370 right for Irix 5, which has absolute addresses
6f610d07
UW
371 with special section indices for dynamic symbols.
372
373 NOTE: uweigand-20071112: Synthetic symbols do not
374 have an ELF-private part, so do not touch those. */
dea91a5c 375 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
0cc7b392
DJ
376 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
377
378 switch (shndx)
c906108c 379 {
0cc7b392
DJ
380 case SHN_MIPS_TEXT:
381 ms_type = mst_text;
382 break;
383 case SHN_MIPS_DATA:
384 ms_type = mst_data;
385 break;
386 case SHN_MIPS_ACOMMON:
387 ms_type = mst_bss;
388 break;
389 default:
390 ms_type = mst_abs;
391 }
392
393 /* If it is an Irix dynamic symbol, skip section name
0963b4bd 394 symbols, relocate all others by section offset. */
0cc7b392
DJ
395 if (ms_type != mst_abs)
396 {
397 if (sym->name[0] == '.')
398 continue;
c906108c 399 }
0cc7b392
DJ
400 }
401 else if (sym->section->flags & SEC_CODE)
402 {
bb869963 403 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 404 {
0875794a
JK
405 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
406 ms_type = mst_text_gnu_ifunc;
407 else
408 ms_type = mst_text;
0cc7b392 409 }
90359a16
JK
410 /* The BSF_SYNTHETIC check is there to omit ppc64 function
411 descriptors mistaken for static functions starting with 'L'.
412 */
413 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
414 && (sym->flags & BSF_SYNTHETIC) == 0)
0cc7b392
DJ
415 || ((sym->flags & BSF_LOCAL)
416 && sym->name[0] == '$'
417 && sym->name[1] == 'L'))
418 /* Looks like a compiler-generated label. Skip
419 it. The assembler should be skipping these (to
420 keep executables small), but apparently with
421 gcc on the (deleted) delta m88k SVR4, it loses.
422 So to have us check too should be harmless (but
423 I encourage people to fix this in the assembler
424 instead of adding checks here). */
425 continue;
426 else
427 {
428 ms_type = mst_file_text;
c906108c 429 }
0cc7b392
DJ
430 }
431 else if (sym->section->flags & SEC_ALLOC)
432 {
bb869963 433 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 434 {
f50776aa
PA
435 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
436 {
437 ms_type = mst_data_gnu_ifunc;
438 }
439 else if (sym->section->flags & SEC_LOAD)
c906108c 440 {
0cc7b392 441 ms_type = mst_data;
c906108c 442 }
c906108c
SS
443 else
444 {
0cc7b392 445 ms_type = mst_bss;
c906108c
SS
446 }
447 }
0cc7b392 448 else if (sym->flags & BSF_LOCAL)
c906108c 449 {
0cc7b392
DJ
450 if (sym->section->flags & SEC_LOAD)
451 {
452 ms_type = mst_file_data;
c906108c
SS
453 }
454 else
455 {
0cc7b392 456 ms_type = mst_file_bss;
c906108c
SS
457 }
458 }
459 else
460 {
0cc7b392 461 ms_type = mst_unknown;
c906108c 462 }
0cc7b392
DJ
463 }
464 else
465 {
466 /* FIXME: Solaris2 shared libraries include lots of
dea91a5c 467 odd "absolute" and "undefined" symbols, that play
0cc7b392
DJ
468 hob with actions like finding what function the PC
469 is in. Ignore them if they aren't text, data, or bss. */
470 /* ms_type = mst_unknown; */
0963b4bd 471 continue; /* Skip this symbol. */
0cc7b392
DJ
472 }
473 msym = record_minimal_symbol
31edb802 474 (reader, sym->name, copy_names, symaddr,
0cc7b392 475 ms_type, sym->section, objfile);
6f610d07 476
0cc7b392
DJ
477 if (msym)
478 {
6f610d07 479 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
24c274a1 480 ELF-private part. */
6f610d07 481 if (type != ST_SYNTHETIC)
24c274a1
AM
482 {
483 /* Pass symbol size field in via BFD. FIXME!!! */
484 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
485 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
486 }
dea91a5c 487
a103a963 488 msym->filename = filesymname;
3e29f34a
MR
489 if (elf_make_msymbol_special_p)
490 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
0cc7b392 491 }
2eaf8d2a 492
715c6909
TT
493 /* If we see a default versioned symbol, install it under
494 its version-less name. */
495 if (msym != NULL)
496 {
497 const char *atsign = strchr (sym->name, '@');
498
499 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
500 {
501 int len = atsign - sym->name;
502
31edb802
CB
503 record_minimal_symbol (reader,
504 gdb::string_view (sym->name, len),
505 true, symaddr, ms_type, sym->section,
506 objfile);
715c6909
TT
507 }
508 }
509
2eaf8d2a
DJ
510 /* For @plt symbols, also record a trampoline to the
511 destination symbol. The @plt symbol will be used in
512 disassembly, and the trampoline will be used when we are
513 trying to find the target. */
514 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
515 {
516 int len = strlen (sym->name);
517
518 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
519 {
2eaf8d2a
DJ
520 struct minimal_symbol *mtramp;
521
31edb802
CB
522 mtramp = record_minimal_symbol
523 (reader, gdb::string_view (sym->name, len - 4), true,
524 symaddr, mst_solib_trampoline, sym->section, objfile);
2eaf8d2a
DJ
525 if (mtramp)
526 {
d9eaeb59 527 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
422d65e7 528 mtramp->created_by_gdb = 1;
2eaf8d2a 529 mtramp->filename = filesymname;
3e29f34a
MR
530 if (elf_make_msymbol_special_p)
531 gdbarch_elf_make_msymbol_special (gdbarch,
532 sym, mtramp);
2eaf8d2a
DJ
533 }
534 }
535 }
c906108c 536 }
c906108c
SS
537 }
538}
539
07be84bf
JK
540/* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
541 for later look ups of which function to call when user requests
542 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
543 library defining `function' we cannot yet know while reading OBJFILE which
544 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
545 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
546
547static void
8dddcb8f
TT
548elf_rel_plt_read (minimal_symbol_reader &reader,
549 struct objfile *objfile, asymbol **dyn_symbol_table)
07be84bf
JK
550{
551 bfd *obfd = objfile->obfd;
552 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
02e169e2 553 asection *relplt, *got_plt;
07be84bf 554 bfd_size_type reloc_count, reloc;
08feed99 555 struct gdbarch *gdbarch = objfile->arch ();
07be84bf
JK
556 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
557 size_t ptr_size = TYPE_LENGTH (ptr_type);
558
559 if (objfile->separate_debug_objfile_backlink)
560 return;
561
07be84bf
JK
562 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
563 if (got_plt == NULL)
4b7d1f7f
WN
564 {
565 /* For platforms where there is no separate .got.plt. */
566 got_plt = bfd_get_section_by_name (obfd, ".got");
567 if (got_plt == NULL)
568 return;
569 }
07be84bf 570
02e169e2
PA
571 /* Depending on system, we may find jump slots in a relocation
572 section for either .got.plt or .plt. */
573 asection *plt = bfd_get_section_by_name (obfd, ".plt");
574 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
575
576 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
577
07be84bf
JK
578 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
579 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
02e169e2
PA
580 {
581 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
582
583 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
584 {
585 if (this_hdr.sh_info == plt_elf_idx
586 || this_hdr.sh_info == got_plt_elf_idx)
587 break;
588 }
589 }
07be84bf
JK
590 if (relplt == NULL)
591 return;
592
593 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
594 return;
595
26fcd5d7 596 std::string string_buffer;
07be84bf 597
02e169e2
PA
598 /* Does ADDRESS reside in SECTION of OBFD? */
599 auto within_section = [obfd] (asection *section, CORE_ADDR address)
600 {
601 if (section == NULL)
602 return false;
603
fd361982
AM
604 return (bfd_section_vma (section) <= address
605 && (address < bfd_section_vma (section)
606 + bfd_section_size (section)));
02e169e2
PA
607 };
608
07be84bf
JK
609 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
610 for (reloc = 0; reloc < reloc_count; reloc++)
611 {
22e048c9 612 const char *name;
07be84bf
JK
613 struct minimal_symbol *msym;
614 CORE_ADDR address;
26fcd5d7 615 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
07be84bf 616 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
07be84bf
JK
617
618 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
07be84bf
JK
619 address = relplt->relocation[reloc].address;
620
02e169e2
PA
621 asection *msym_section;
622
623 /* Does the pointer reside in either the .got.plt or .plt
624 sections? */
625 if (within_section (got_plt, address))
626 msym_section = got_plt;
627 else if (within_section (plt, address))
628 msym_section = plt;
629 else
07be84bf
JK
630 continue;
631
f50776aa
PA
632 /* We cannot check if NAME is a reference to
633 mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the
634 symbol is undefined and the objfile having NAME defined may
635 not yet have been loaded. */
07be84bf 636
26fcd5d7
TT
637 string_buffer.assign (name);
638 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
07be84bf 639
31edb802 640 msym = record_minimal_symbol (reader, string_buffer,
02e169e2
PA
641 true, address, mst_slot_got_plt,
642 msym_section, objfile);
07be84bf 643 if (msym)
d9eaeb59 644 SET_MSYMBOL_SIZE (msym, ptr_size);
07be84bf 645 }
07be84bf
JK
646}
647
648/* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
649
8127a2fa
TT
650static const struct objfile_key<htab, htab_deleter>
651 elf_objfile_gnu_ifunc_cache_data;
07be84bf
JK
652
653/* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
654
655struct elf_gnu_ifunc_cache
656{
657 /* This is always a function entry address, not a function descriptor. */
658 CORE_ADDR addr;
659
660 char name[1];
661};
662
663/* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
664
665static hashval_t
666elf_gnu_ifunc_cache_hash (const void *a_voidp)
667{
9a3c8263
SM
668 const struct elf_gnu_ifunc_cache *a
669 = (const struct elf_gnu_ifunc_cache *) a_voidp;
07be84bf
JK
670
671 return htab_hash_string (a->name);
672}
673
674/* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
675
676static int
677elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
678{
9a3c8263
SM
679 const struct elf_gnu_ifunc_cache *a
680 = (const struct elf_gnu_ifunc_cache *) a_voidp;
681 const struct elf_gnu_ifunc_cache *b
682 = (const struct elf_gnu_ifunc_cache *) b_voidp;
07be84bf
JK
683
684 return strcmp (a->name, b->name) == 0;
685}
686
687/* Record the target function address of a STT_GNU_IFUNC function NAME is the
688 function entry address ADDR. Return 1 if NAME and ADDR are considered as
689 valid and therefore they were successfully recorded, return 0 otherwise.
690
691 Function does not expect a duplicate entry. Use
692 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
693 exists. */
694
695static int
696elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
697{
7cbd4a93 698 struct bound_minimal_symbol msym;
07be84bf
JK
699 struct objfile *objfile;
700 htab_t htab;
701 struct elf_gnu_ifunc_cache entry_local, *entry_p;
702 void **slot;
703
704 msym = lookup_minimal_symbol_by_pc (addr);
7cbd4a93 705 if (msym.minsym == NULL)
07be84bf 706 return 0;
77e371c0 707 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
07be84bf 708 return 0;
e27d198c 709 objfile = msym.objfile;
07be84bf
JK
710
711 /* If .plt jumps back to .plt the symbol is still deferred for later
1adeb822 712 resolution and it has no use for GDB. */
c9d95fa3 713 const char *target_name = msym.minsym->linkage_name ();
1adeb822
PA
714 size_t len = strlen (target_name);
715
716 /* Note we check the symbol's name instead of checking whether the
717 symbol is in the .plt section because some systems have @plt
718 symbols in the .text section. */
719 if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0)
07be84bf
JK
720 return 0;
721
8127a2fa 722 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
07be84bf
JK
723 if (htab == NULL)
724 {
8127a2fa
TT
725 htab = htab_create_alloc (1, elf_gnu_ifunc_cache_hash,
726 elf_gnu_ifunc_cache_eq,
727 NULL, xcalloc, xfree);
728 elf_objfile_gnu_ifunc_cache_data.set (objfile, htab);
07be84bf
JK
729 }
730
731 entry_local.addr = addr;
732 obstack_grow (&objfile->objfile_obstack, &entry_local,
733 offsetof (struct elf_gnu_ifunc_cache, name));
734 obstack_grow_str0 (&objfile->objfile_obstack, name);
224c3ddb
SM
735 entry_p
736 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
07be84bf
JK
737
738 slot = htab_find_slot (htab, entry_p, INSERT);
739 if (*slot != NULL)
740 {
9a3c8263
SM
741 struct elf_gnu_ifunc_cache *entry_found_p
742 = (struct elf_gnu_ifunc_cache *) *slot;
08feed99 743 struct gdbarch *gdbarch = objfile->arch ();
07be84bf
JK
744
745 if (entry_found_p->addr != addr)
746 {
747 /* This case indicates buggy inferior program, the resolved address
748 should never change. */
749
750 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
751 "function_address from %s to %s"),
752 name, paddress (gdbarch, entry_found_p->addr),
753 paddress (gdbarch, addr));
754 }
755
756 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
757 }
758 *slot = entry_p;
759
760 return 1;
761}
762
763/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
764 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
765 is not NULL) and the function returns 1. It returns 0 otherwise.
766
767 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
768 function. */
769
770static int
771elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
772{
2030c079 773 for (objfile *objfile : current_program_space->objfiles ())
07be84bf
JK
774 {
775 htab_t htab;
776 struct elf_gnu_ifunc_cache *entry_p;
777 void **slot;
778
8127a2fa 779 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
07be84bf
JK
780 if (htab == NULL)
781 continue;
782
224c3ddb
SM
783 entry_p = ((struct elf_gnu_ifunc_cache *)
784 alloca (sizeof (*entry_p) + strlen (name)));
07be84bf
JK
785 strcpy (entry_p->name, name);
786
787 slot = htab_find_slot (htab, entry_p, NO_INSERT);
788 if (slot == NULL)
789 continue;
9a3c8263 790 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
07be84bf
JK
791 gdb_assert (entry_p != NULL);
792
793 if (addr_p)
794 *addr_p = entry_p->addr;
795 return 1;
796 }
797
798 return 0;
799}
800
801/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
802 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
803 is not NULL) and the function returns 1. It returns 0 otherwise.
804
805 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
806 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
807 prevent cache entries duplicates. */
808
809static int
810elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
811{
812 char *name_got_plt;
07be84bf
JK
813 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
814
224c3ddb 815 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
07be84bf
JK
816 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
817
2030c079 818 for (objfile *objfile : current_program_space->objfiles ())
07be84bf
JK
819 {
820 bfd *obfd = objfile->obfd;
08feed99 821 struct gdbarch *gdbarch = objfile->arch ();
07be84bf
JK
822 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
823 size_t ptr_size = TYPE_LENGTH (ptr_type);
824 CORE_ADDR pointer_address, addr;
825 asection *plt;
224c3ddb 826 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
3b7344d5 827 struct bound_minimal_symbol msym;
07be84bf
JK
828
829 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
3b7344d5 830 if (msym.minsym == NULL)
07be84bf 831 continue;
3b7344d5 832 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
07be84bf 833 continue;
77e371c0 834 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
07be84bf
JK
835
836 plt = bfd_get_section_by_name (obfd, ".plt");
837 if (plt == NULL)
838 continue;
839
3b7344d5 840 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
07be84bf
JK
841 continue;
842 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
843 continue;
844 addr = extract_typed_address (buf, ptr_type);
8b88a78e
PA
845 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
846 current_top_target ());
4b7d1f7f 847 addr = gdbarch_addr_bits_remove (gdbarch, addr);
07be84bf 848
07be84bf 849 if (elf_gnu_ifunc_record_cache (name, addr))
28f4fa4d
PA
850 {
851 if (addr_p != NULL)
852 *addr_p = addr;
853 return 1;
854 }
07be84bf
JK
855 }
856
857 return 0;
858}
859
860/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
861 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
ececd218 862 is not NULL) and the function returns true. It returns false otherwise.
07be84bf
JK
863
864 Both the elf_objfile_gnu_ifunc_cache_data hash table and
865 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
866
ececd218 867static bool
07be84bf
JK
868elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
869{
870 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
ececd218 871 return true;
dea91a5c 872
07be84bf 873 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
ececd218 874 return true;
07be84bf 875
ececd218 876 return false;
07be84bf
JK
877}
878
879/* Call STT_GNU_IFUNC - a function returning addresss of a real function to
880 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
881 is the entry point of the resolved STT_GNU_IFUNC target function to call.
882 */
883
884static CORE_ADDR
885elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
886{
2c02bd72 887 const char *name_at_pc;
07be84bf
JK
888 CORE_ADDR start_at_pc, address;
889 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
890 struct value *function, *address_val;
e1b2624a
AA
891 CORE_ADDR hwcap = 0;
892 struct value *hwcap_val;
07be84bf
JK
893
894 /* Try first any non-intrusive methods without an inferior call. */
895
896 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
897 && start_at_pc == pc)
898 {
899 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
900 return address;
901 }
902 else
903 name_at_pc = NULL;
904
905 function = allocate_value (func_func_type);
1a088441 906 VALUE_LVAL (function) = lval_memory;
07be84bf
JK
907 set_value_address (function, pc);
908
e1b2624a
AA
909 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
910 parameter. FUNCTION is the function entry address. ADDRESS may be a
911 function descriptor. */
07be84bf 912
8b88a78e 913 target_auxv_search (current_top_target (), AT_HWCAP, &hwcap);
e1b2624a
AA
914 hwcap_val = value_from_longest (builtin_type (gdbarch)
915 ->builtin_unsigned_long, hwcap);
e71585ff 916 address_val = call_function_by_hand (function, NULL, hwcap_val);
07be84bf 917 address = value_as_address (address_val);
8b88a78e 918 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address, current_top_target ());
4b7d1f7f 919 address = gdbarch_addr_bits_remove (gdbarch, address);
07be84bf
JK
920
921 if (name_at_pc)
922 elf_gnu_ifunc_record_cache (name_at_pc, address);
923
924 return address;
925}
926
0e30163f
JK
927/* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
928
929static void
930elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
931{
932 struct breakpoint *b_return;
933 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
934 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
935 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
00431a78 936 int thread_id = inferior_thread ()->global_num;
0e30163f
JK
937
938 gdb_assert (b->type == bp_gnu_ifunc_resolver);
939
940 for (b_return = b->related_breakpoint; b_return != b;
941 b_return = b_return->related_breakpoint)
942 {
943 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
944 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
945 gdb_assert (frame_id_p (b_return->frame_id));
946
947 if (b_return->thread == thread_id
948 && b_return->loc->requested_address == prev_pc
949 && frame_id_eq (b_return->frame_id, prev_frame_id))
950 break;
951 }
952
953 if (b_return == b)
954 {
0e30163f
JK
955 /* No need to call find_pc_line for symbols resolving as this is only
956 a helper breakpointer never shown to the user. */
957
51abb421 958 symtab_and_line sal;
0e30163f
JK
959 sal.pspace = current_inferior ()->pspace;
960 sal.pc = prev_pc;
961 sal.section = find_pc_overlay (sal.pc);
962 sal.explicit_pc = 1;
454dafbd
TT
963 b_return
964 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
965 prev_frame_id,
966 bp_gnu_ifunc_resolver_return).release ();
0e30163f 967
c70a6932
JK
968 /* set_momentary_breakpoint invalidates PREV_FRAME. */
969 prev_frame = NULL;
970
0e30163f
JK
971 /* Add new b_return to the ring list b->related_breakpoint. */
972 gdb_assert (b_return->related_breakpoint == b_return);
973 b_return->related_breakpoint = b->related_breakpoint;
974 b->related_breakpoint = b_return;
975 }
976}
977
978/* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
979
980static void
981elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
982{
00431a78 983 thread_info *thread = inferior_thread ();
0e30163f
JK
984 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
985 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
986 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
00431a78 987 struct regcache *regcache = get_thread_regcache (thread);
6a3a010b 988 struct value *func_func;
0e30163f
JK
989 struct value *value;
990 CORE_ADDR resolved_address, resolved_pc;
0e30163f
JK
991
992 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
993
0e30163f
JK
994 while (b->related_breakpoint != b)
995 {
996 struct breakpoint *b_next = b->related_breakpoint;
997
998 switch (b->type)
999 {
1000 case bp_gnu_ifunc_resolver:
1001 break;
1002 case bp_gnu_ifunc_resolver_return:
1003 delete_breakpoint (b);
1004 break;
1005 default:
1006 internal_error (__FILE__, __LINE__,
1007 _("handle_inferior_event: Invalid "
1008 "gnu-indirect-function breakpoint type %d"),
1009 (int) b->type);
1010 }
1011 b = b_next;
1012 }
1013 gdb_assert (b->type == bp_gnu_ifunc_resolver);
6a3a010b
MR
1014 gdb_assert (b->loc->next == NULL);
1015
1016 func_func = allocate_value (func_func_type);
1a088441 1017 VALUE_LVAL (func_func) = lval_memory;
6a3a010b
MR
1018 set_value_address (func_func, b->loc->related_address);
1019
1020 value = allocate_value (value_type);
1021 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
ad97a690 1022 value, value_contents_raw (value), NULL);
6a3a010b
MR
1023 resolved_address = value_as_address (value);
1024 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1025 resolved_address,
8b88a78e 1026 current_top_target ());
4b7d1f7f 1027 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
0e30163f 1028
f8eba3c6 1029 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
d28cd78a 1030 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
f00aae0f 1031 resolved_pc);
0e30163f 1032
0e30163f 1033 b->type = bp_breakpoint;
6c5b2ebe 1034 update_breakpoint_locations (b, current_program_space,
79188d8d
PA
1035 find_function_start_sal (resolved_pc, NULL, true),
1036 {});
0e30163f
JK
1037}
1038
2750ef27
TT
1039/* A helper function for elf_symfile_read that reads the minimal
1040 symbols. */
c906108c
SS
1041
1042static void
5f6cac40
TT
1043elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1044 const struct elfinfo *ei)
c906108c 1045{
63524580 1046 bfd *synth_abfd, *abfd = objfile->obfd;
62553543
EZ
1047 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1048 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1049 asymbol *synthsyms;
c906108c 1050
45cfd468
DE
1051 if (symtab_create_debug)
1052 {
1053 fprintf_unfiltered (gdb_stdlog,
1054 "Reading minimal symbols of objfile %s ...\n",
4262abfb 1055 objfile_name (objfile));
45cfd468
DE
1056 }
1057
5f6cac40
TT
1058 /* If we already have minsyms, then we can skip some work here.
1059 However, if there were stabs or mdebug sections, we go ahead and
1060 redo all the work anyway, because the psym readers for those
1061 kinds of debuginfo need extra information found here. This can
1062 go away once all types of symbols are in the per-BFD object. */
1063 if (objfile->per_bfd->minsyms_read
1064 && ei->stabsect == NULL
30d1f018
WP
1065 && ei->mdebugsect == NULL
1066 && ei->ctfsect == NULL)
5f6cac40
TT
1067 {
1068 if (symtab_create_debug)
1069 fprintf_unfiltered (gdb_stdlog,
1070 "... minimal symbols previously read\n");
1071 return;
1072 }
1073
d25e8719 1074 minimal_symbol_reader reader (objfile);
c906108c 1075
18a94d75 1076 /* Process the normal ELF symbol table first. */
c906108c 1077
62553543
EZ
1078 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1079 if (storage_needed < 0)
3e43a32a
MS
1080 error (_("Can't read symbols from %s: %s"),
1081 bfd_get_filename (objfile->obfd),
62553543
EZ
1082 bfd_errmsg (bfd_get_error ()));
1083
1084 if (storage_needed > 0)
1085 {
80c57053
JK
1086 /* Memory gets permanently referenced from ABFD after
1087 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1088
224c3ddb 1089 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
62553543
EZ
1090 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1091
1092 if (symcount < 0)
3e43a32a
MS
1093 error (_("Can't read symbols from %s: %s"),
1094 bfd_get_filename (objfile->obfd),
62553543
EZ
1095 bfd_errmsg (bfd_get_error ()));
1096
ce6c454e
TT
1097 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1098 false);
62553543 1099 }
c906108c
SS
1100
1101 /* Add the dynamic symbols. */
1102
62553543
EZ
1103 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1104
1105 if (storage_needed > 0)
1106 {
3f1eff0a
JK
1107 /* Memory gets permanently referenced from ABFD after
1108 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1109 It happens only in the case when elf_slurp_reloc_table sees
1110 asection->relocation NULL. Determining which section is asection is
1111 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1112 implementation detail, though. */
1113
224c3ddb 1114 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
62553543
EZ
1115 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1116 dyn_symbol_table);
1117
1118 if (dynsymcount < 0)
3e43a32a
MS
1119 error (_("Can't read symbols from %s: %s"),
1120 bfd_get_filename (objfile->obfd),
62553543
EZ
1121 bfd_errmsg (bfd_get_error ()));
1122
8dddcb8f 1123 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
ce6c454e 1124 dyn_symbol_table, false);
07be84bf 1125
8dddcb8f 1126 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
62553543
EZ
1127 }
1128
63524580
JK
1129 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1130 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1131
1132 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1133 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1134 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1135 read the code address from .opd while it reads the .symtab section from
1136 a separate debug info file as the .opd section is SHT_NOBITS there.
1137
1138 With SYNTH_ABFD the .opd section will be read from the original
1139 backlinked binary where it is valid. */
1140
1141 if (objfile->separate_debug_objfile_backlink)
1142 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1143 else
1144 synth_abfd = abfd;
1145
62553543
EZ
1146 /* Add synthetic symbols - for instance, names for any PLT entries. */
1147
63524580 1148 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
62553543
EZ
1149 dynsymcount, dyn_symbol_table,
1150 &synthsyms);
1151 if (synthcount > 0)
1152 {
62553543
EZ
1153 long i;
1154
b22e99fd 1155 std::unique_ptr<asymbol *[]>
d1e4a624 1156 synth_symbol_table (new asymbol *[synthcount]);
62553543 1157 for (i = 0; i < synthcount; i++)
9f20e3da 1158 synth_symbol_table[i] = synthsyms + i;
8dddcb8f 1159 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
ce6c454e 1160 synth_symbol_table.get (), true);
ba713918
AL
1161
1162 xfree (synthsyms);
1163 synthsyms = NULL;
62553543 1164 }
c906108c 1165
7134143f
DJ
1166 /* Install any minimal symbols that have been collected as the current
1167 minimal symbols for this objfile. The debug readers below this point
1168 should not generate new minimal symbols; if they do it's their
1169 responsibility to install them. "mdebug" appears to be the only one
1170 which will do this. */
1171
d25e8719 1172 reader.install ();
7134143f 1173
4f00dda3
DE
1174 if (symtab_create_debug)
1175 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
2750ef27
TT
1176}
1177
1178/* Scan and build partial symbols for a symbol file.
1179 We have been initialized by a call to elf_symfile_init, which
1180 currently does nothing.
1181
2750ef27
TT
1182 This function only does the minimum work necessary for letting the
1183 user "name" things symbolically; it does not read the entire symtab.
1184 Instead, it reads the external and static symbols and puts them in partial
1185 symbol tables. When more extensive information is requested of a
1186 file, the corresponding partial symbol table is mutated into a full
1187 fledged symbol table by going back and reading the symbols
1188 for real.
1189
1190 We look for sections with specific names, to tell us what debug
1191 format to look for: FIXME!!!
1192
1193 elfstab_build_psymtabs() handles STABS symbols;
1194 mdebug_build_psymtabs() handles ECOFF debugging information.
1195
1196 Note that ELF files have a "minimal" symbol table, which looks a lot
1197 like a COFF symbol table, but has only the minimal information necessary
1198 for linking. We process this also, and use the information to
1199 build gdb's minimal symbol table. This gives us some minimal debugging
1200 capability even for files compiled without -g. */
1201
1202static void
b15cc25c 1203elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
2750ef27
TT
1204{
1205 bfd *abfd = objfile->obfd;
1206 struct elfinfo ei;
30d1f018 1207 bool has_dwarf2 = true;
2750ef27 1208
2750ef27 1209 memset ((char *) &ei, 0, sizeof (ei));
97cbe998 1210 if (!(objfile->flags & OBJF_READNEVER))
08f93a1a
TT
1211 {
1212 for (asection *sect : gdb_bfd_sections (abfd))
1213 elf_locate_sections (sect, &ei);
1214 }
c906108c 1215
5f6cac40
TT
1216 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1217
c906108c
SS
1218 /* ELF debugging information is inserted into the psymtab in the
1219 order of least informative first - most informative last. Since
1220 the psymtab table is searched `most recent insertion first' this
1221 increases the probability that more detailed debug information
1222 for a section is found.
1223
1224 For instance, an object file might contain both .mdebug (XCOFF)
1225 and .debug_info (DWARF2) sections then .mdebug is inserted first
1226 (searched last) and DWARF2 is inserted last (searched first). If
1227 we don't do this then the XCOFF info is found first - for code in
0963b4bd 1228 an included file XCOFF info is useless. */
c906108c
SS
1229
1230 if (ei.mdebugsect)
1231 {
1232 const struct ecoff_debug_swap *swap;
1233
1234 /* .mdebug section, presumably holding ECOFF debugging
c5aa993b 1235 information. */
c906108c
SS
1236 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1237 if (swap)
d4f3574e 1238 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
c906108c
SS
1239 }
1240 if (ei.stabsect)
1241 {
1242 asection *str_sect;
1243
1244 /* Stab sections have an associated string table that looks like
c5aa993b 1245 a separate section. */
c906108c
SS
1246 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1247
1248 /* FIXME should probably warn about a stab section without a stabstr. */
1249 if (str_sect)
1250 elfstab_build_psymtabs (objfile,
086df311 1251 ei.stabsect,
c906108c 1252 str_sect->filepos,
fd361982 1253 bfd_section_size (str_sect));
c906108c 1254 }
9291a0cd 1255
4b610737 1256 if (dwarf2_has_info (objfile, NULL, true))
b11896a5 1257 {
3c0aa29a 1258 dw_index_kind index_kind;
3e03848b 1259
3c0aa29a
PA
1260 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF
1261 debug information present in OBJFILE. If there is such debug
1262 info present never use an index. */
1263 if (!objfile_has_partial_symbols (objfile)
1264 && dwarf2_initialize_objfile (objfile, &index_kind))
1265 {
1266 switch (index_kind)
1267 {
1268 case dw_index_kind::GDB_INDEX:
1269 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1270 break;
1271 case dw_index_kind::DEBUG_NAMES:
1272 objfile_set_sym_fns (objfile, &elf_sym_fns_debug_names);
1273 break;
1274 }
1275 }
1276 else
b11896a5
TT
1277 {
1278 /* It is ok to do this even if the stabs reader made some
1279 partial symbols, because OBJF_PSYMTABS_READ has not been
1280 set, and so our lazy reader function will still be called
1281 when needed. */
8fb8eb5c 1282 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
b11896a5
TT
1283 }
1284 }
3e43a32a
MS
1285 /* If the file has its own symbol tables it has no separate debug
1286 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1287 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
8a92335b
JK
1288 `.note.gnu.build-id'.
1289
1290 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1291 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1292 an objfile via find_separate_debug_file_in_section there was no separate
1293 debug info available. Therefore do not attempt to search for another one,
1294 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1295 be NULL and we would possibly violate it. */
1296
1297 else if (!objfile_has_partial_symbols (objfile)
1298 && objfile->separate_debug_objfile == NULL
1299 && objfile->separate_debug_objfile_backlink == NULL)
9cce227f 1300 {
a8dbfd58 1301 std::string debugfile = find_separate_debug_file_by_buildid (objfile);
9cce227f 1302
a8dbfd58
SM
1303 if (debugfile.empty ())
1304 debugfile = find_separate_debug_file_by_debuglink (objfile);
9cce227f 1305
a8dbfd58 1306 if (!debugfile.empty ())
9cce227f 1307 {
b926417a 1308 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (debugfile.c_str ()));
d7f9d729 1309
b926417a 1310 symbol_file_add_separate (debug_bfd.get (), debugfile.c_str (),
192b62ce 1311 symfile_flags, objfile);
9cce227f 1312 }
0d79cdc4
AM
1313 else
1314 {
30d1f018 1315 has_dwarf2 = false;
0d79cdc4
AM
1316 const struct bfd_build_id *build_id = build_id_bfd_get (objfile->obfd);
1317
1318 if (build_id != nullptr)
1319 {
1320 gdb::unique_xmalloc_ptr<char> symfile_path;
1321 scoped_fd fd (debuginfod_debuginfo_query (build_id->data,
1322 build_id->size,
1323 objfile->original_name,
1324 &symfile_path));
1325
1326 if (fd.get () >= 0)
1327 {
1328 /* File successfully retrieved from server. */
1329 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (symfile_path.get ()));
1330
1331 if (debug_bfd == nullptr)
1332 warning (_("File \"%s\" from debuginfod cannot be opened as bfd"),
1333 objfile->original_name);
1334 else if (build_id_verify (debug_bfd.get (), build_id->size, build_id->data))
1335 {
1336 symbol_file_add_separate (debug_bfd.get (), symfile_path.get (),
1337 symfile_flags, objfile);
1338 has_dwarf2 = true;
1339 }
1340 }
1341 }
1342 }
30d1f018
WP
1343 }
1344
1345 /* Read the CTF section only if there is no DWARF info. */
1346 if (!has_dwarf2 && ei.ctfsect)
1347 {
1348 elfctf_build_psymtabs (objfile);
9cce227f 1349 }
c906108c
SS
1350}
1351
b11896a5
TT
1352/* Callback to lazily read psymtabs. */
1353
1354static void
1355read_psyms (struct objfile *objfile)
1356{
251d32d9 1357 if (dwarf2_has_info (objfile, NULL))
b11896a5
TT
1358 dwarf2_build_psymtabs (objfile);
1359}
1360
c906108c
SS
1361/* Initialize anything that needs initializing when a completely new symbol
1362 file is specified (not just adding some symbols from another file, e.g. a
caa429d8 1363 shared library). */
c906108c
SS
1364
1365static void
fba45db2 1366elf_new_init (struct objfile *ignore)
c906108c 1367{
c906108c
SS
1368}
1369
1370/* Perform any local cleanups required when we are done with a particular
1371 objfile. I.E, we are in the process of discarding all symbol information
1372 for an objfile, freeing up all memory held for it, and unlinking the
0963b4bd 1373 objfile struct from the global list of known objfiles. */
c906108c
SS
1374
1375static void
fba45db2 1376elf_symfile_finish (struct objfile *objfile)
c906108c 1377{
c906108c
SS
1378}
1379
db7a9bcd 1380/* ELF specific initialization routine for reading symbols. */
c906108c
SS
1381
1382static void
fba45db2 1383elf_symfile_init (struct objfile *objfile)
c906108c
SS
1384{
1385 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1386 find this causes a significant slowdown in gdb then we could
1387 set it in the debug symbol readers only when necessary. */
1388 objfile->flags |= OBJF_REORDERED;
1389}
1390
55aa24fb
SDJ
1391/* Implementation of `sym_get_probes', as documented in symfile.h. */
1392
814cf43a 1393static const elfread_data &
55aa24fb
SDJ
1394elf_get_probes (struct objfile *objfile)
1395{
814cf43a 1396 elfread_data *probes_per_bfd = probe_key.get (objfile->obfd);
55aa24fb 1397
aaa63a31 1398 if (probes_per_bfd == NULL)
55aa24fb 1399 {
814cf43a 1400 probes_per_bfd = probe_key.emplace (objfile->obfd);
55aa24fb
SDJ
1401
1402 /* Here we try to gather information about all types of probes from the
1403 objfile. */
935676c9 1404 for (const static_probe_ops *ops : all_static_probe_ops)
0782db84 1405 ops->get_probes (probes_per_bfd, objfile);
55aa24fb
SDJ
1406 }
1407
aaa63a31 1408 return *probes_per_bfd;
55aa24fb
SDJ
1409}
1410
c906108c 1411\f
55aa24fb
SDJ
1412
1413/* Implementation `sym_probe_fns', as documented in symfile.h. */
1414
1415static const struct sym_probe_fns elf_probe_fns =
1416{
25f9533e 1417 elf_get_probes, /* sym_get_probes */
55aa24fb
SDJ
1418};
1419
c906108c
SS
1420/* Register that we are able to handle ELF object file formats. */
1421
00b5771c 1422static const struct sym_fns elf_sym_fns =
c906108c 1423{
3e43a32a
MS
1424 elf_new_init, /* init anything gbl to entire symtab */
1425 elf_symfile_init, /* read initial info, setup for sym_read() */
1426 elf_symfile_read, /* read a symbol file into symtab */
b11896a5
TT
1427 NULL, /* sym_read_psymbols */
1428 elf_symfile_finish, /* finished with file, cleanup */
1429 default_symfile_offsets, /* Translate ext. to int. relocation */
1430 elf_symfile_segments, /* Get segment information from a file. */
1431 NULL,
1432 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1433 &elf_probe_fns, /* sym_probe_fns */
b11896a5
TT
1434 &psym_functions
1435};
1436
1437/* The same as elf_sym_fns, but not registered and lazily reads
1438 psymbols. */
1439
e36122e9 1440const struct sym_fns elf_sym_fns_lazy_psyms =
b11896a5 1441{
b11896a5
TT
1442 elf_new_init, /* init anything gbl to entire symtab */
1443 elf_symfile_init, /* read initial info, setup for sym_read() */
1444 elf_symfile_read, /* read a symbol file into symtab */
1445 read_psyms, /* sym_read_psymbols */
3e43a32a
MS
1446 elf_symfile_finish, /* finished with file, cleanup */
1447 default_symfile_offsets, /* Translate ext. to int. relocation */
1448 elf_symfile_segments, /* Get segment information from a file. */
1449 NULL,
1450 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1451 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1452 &psym_functions
c906108c
SS
1453};
1454
9291a0cd
TT
1455/* The same as elf_sym_fns, but not registered and uses the
1456 DWARF-specific GNU index rather than psymtab. */
e36122e9 1457const struct sym_fns elf_sym_fns_gdb_index =
9291a0cd 1458{
3e43a32a
MS
1459 elf_new_init, /* init anything gbl to entire symab */
1460 elf_symfile_init, /* read initial info, setup for sym_red() */
1461 elf_symfile_read, /* read a symbol file into symtab */
b11896a5 1462 NULL, /* sym_read_psymbols */
3e43a32a 1463 elf_symfile_finish, /* finished with file, cleanup */
405feb71 1464 default_symfile_offsets, /* Translate ext. to int. relocation */
3e43a32a
MS
1465 elf_symfile_segments, /* Get segment information from a file. */
1466 NULL,
1467 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1468 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1469 &dwarf2_gdb_index_functions
9291a0cd
TT
1470};
1471
927aa2e7
JK
1472/* The same as elf_sym_fns, but not registered and uses the
1473 DWARF-specific .debug_names index rather than psymtab. */
1474const struct sym_fns elf_sym_fns_debug_names =
1475{
1476 elf_new_init, /* init anything gbl to entire symab */
1477 elf_symfile_init, /* read initial info, setup for sym_red() */
1478 elf_symfile_read, /* read a symbol file into symtab */
1479 NULL, /* sym_read_psymbols */
1480 elf_symfile_finish, /* finished with file, cleanup */
405feb71 1481 default_symfile_offsets, /* Translate ext. to int. relocation */
927aa2e7
JK
1482 elf_symfile_segments, /* Get segment information from a file. */
1483 NULL,
1484 default_symfile_relocate, /* Relocate a debug section. */
1485 &elf_probe_fns, /* sym_probe_fns */
1486 &dwarf2_debug_names_functions
1487};
1488
07be84bf
JK
1489/* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1490
1491static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1492{
1493 elf_gnu_ifunc_resolve_addr,
1494 elf_gnu_ifunc_resolve_name,
0e30163f
JK
1495 elf_gnu_ifunc_resolver_stop,
1496 elf_gnu_ifunc_resolver_return_stop
07be84bf
JK
1497};
1498
6c265988 1499void _initialize_elfread ();
c906108c 1500void
6c265988 1501_initialize_elfread ()
c906108c 1502{
c256e171 1503 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
07be84bf 1504
07be84bf 1505 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
c906108c 1506}