]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/elfread.c
Add casts to memory allocation related calls
[thirdparty/binutils-gdb.git] / gdb / elfread.c
CommitLineData
c906108c 1/* Read ELF (Executable and Linking Format) object files for GDB.
1bac305b 2
32d0add0 3 Copyright (C) 1991-2015 Free Software Foundation, Inc.
1bac305b 4
c906108c
SS
5 Written by Fred Fish at Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "bfd.h"
c906108c 24#include "elf-bfd.h"
31d99776
DJ
25#include "elf/common.h"
26#include "elf/internal.h"
c906108c
SS
27#include "elf/mips.h"
28#include "symtab.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "buildsym.h"
32#include "stabsread.h"
33#include "gdb-stabs.h"
34#include "complaints.h"
35#include "demangle.h"
ccefe4c4 36#include "psympriv.h"
0ba1096a 37#include "filenames.h"
55aa24fb
SDJ
38#include "probe.h"
39#include "arch-utils.h"
07be84bf
JK
40#include "gdbtypes.h"
41#include "value.h"
42#include "infcall.h"
0e30163f
JK
43#include "gdbthread.h"
44#include "regcache.h"
0af1e9a5 45#include "bcache.h"
cbb099e8 46#include "gdb_bfd.h"
dc294be5 47#include "build-id.h"
f00aae0f 48#include "location.h"
c906108c 49
a14ed312 50extern void _initialize_elfread (void);
392a587b 51
b11896a5 52/* Forward declarations. */
e36122e9
TT
53extern const struct sym_fns elf_sym_fns_gdb_index;
54extern const struct sym_fns elf_sym_fns_lazy_psyms;
9291a0cd 55
c906108c 56/* The struct elfinfo is available only during ELF symbol table and
6426a772 57 psymtab reading. It is destroyed at the completion of psymtab-reading.
c906108c
SS
58 It's local to elf_symfile_read. */
59
c5aa993b
JM
60struct elfinfo
61 {
c5aa993b 62 asection *stabsect; /* Section pointer for .stab section */
c5aa993b
JM
63 asection *mdebugsect; /* Section pointer for .mdebug section */
64 };
c906108c 65
5d9cf8a4 66/* Per-BFD data for probe info. */
55aa24fb 67
5d9cf8a4 68static const struct bfd_data *probe_key = NULL;
55aa24fb 69
07be84bf
JK
70/* Minimal symbols located at the GOT entries for .plt - that is the real
71 pointer where the given entry will jump to. It gets updated by the real
72 function address during lazy ld.so resolving in the inferior. These
73 minimal symbols are indexed for <tab>-completion. */
74
75#define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
76
31d99776
DJ
77/* Locate the segments in ABFD. */
78
79static struct symfile_segment_data *
80elf_symfile_segments (bfd *abfd)
81{
82 Elf_Internal_Phdr *phdrs, **segments;
83 long phdrs_size;
84 int num_phdrs, num_segments, num_sections, i;
85 asection *sect;
86 struct symfile_segment_data *data;
87
88 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
89 if (phdrs_size == -1)
90 return NULL;
91
224c3ddb 92 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
31d99776
DJ
93 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
94 if (num_phdrs == -1)
95 return NULL;
96
97 num_segments = 0;
8d749320 98 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
31d99776
DJ
99 for (i = 0; i < num_phdrs; i++)
100 if (phdrs[i].p_type == PT_LOAD)
101 segments[num_segments++] = &phdrs[i];
102
103 if (num_segments == 0)
104 return NULL;
105
41bf6aca 106 data = XCNEW (struct symfile_segment_data);
31d99776 107 data->num_segments = num_segments;
fc270c35
TT
108 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
109 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
31d99776
DJ
110
111 for (i = 0; i < num_segments; i++)
112 {
113 data->segment_bases[i] = segments[i]->p_vaddr;
114 data->segment_sizes[i] = segments[i]->p_memsz;
115 }
116
117 num_sections = bfd_count_sections (abfd);
fc270c35 118 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
119
120 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
121 {
122 int j;
123 CORE_ADDR vma;
124
125 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
126 continue;
127
128 vma = bfd_get_section_vma (abfd, sect);
129
130 for (j = 0; j < num_segments; j++)
131 if (segments[j]->p_memsz > 0
132 && vma >= segments[j]->p_vaddr
a366c65a 133 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
31d99776
DJ
134 {
135 data->segment_info[i] = j + 1;
136 break;
137 }
138
ad09a548
DJ
139 /* We should have found a segment for every non-empty section.
140 If we haven't, we will not relocate this section by any
141 offsets we apply to the segments. As an exception, do not
142 warn about SHT_NOBITS sections; in normal ELF execution
143 environments, SHT_NOBITS means zero-initialized and belongs
144 in a segment, but in no-OS environments some tools (e.g. ARM
145 RealView) use SHT_NOBITS for uninitialized data. Since it is
146 uninitialized, it doesn't need a program header. Such
147 binaries are not relocatable. */
148 if (bfd_get_section_size (sect) > 0 && j == num_segments
149 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
28ee876a 150 warning (_("Loadable section \"%s\" outside of ELF segments"),
31d99776
DJ
151 bfd_section_name (abfd, sect));
152 }
153
154 return data;
155}
156
c906108c
SS
157/* We are called once per section from elf_symfile_read. We
158 need to examine each section we are passed, check to see
159 if it is something we are interested in processing, and
160 if so, stash away some access information for the section.
161
162 For now we recognize the dwarf debug information sections and
163 line number sections from matching their section names. The
164 ELF definition is no real help here since it has no direct
165 knowledge of DWARF (by design, so any debugging format can be
166 used).
167
168 We also recognize the ".stab" sections used by the Sun compilers
169 released with Solaris 2.
170
171 FIXME: The section names should not be hardwired strings (what
172 should they be? I don't think most object file formats have enough
0963b4bd 173 section flags to specify what kind of debug section it is.
c906108c
SS
174 -kingdon). */
175
176static void
12b9c64f 177elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
c906108c 178{
52f0bd74 179 struct elfinfo *ei;
c906108c
SS
180
181 ei = (struct elfinfo *) eip;
7ce59000 182 if (strcmp (sectp->name, ".stab") == 0)
c906108c 183 {
c5aa993b 184 ei->stabsect = sectp;
c906108c 185 }
6314a349 186 else if (strcmp (sectp->name, ".mdebug") == 0)
c906108c 187 {
c5aa993b 188 ei->mdebugsect = sectp;
c906108c
SS
189 }
190}
191
c906108c 192static struct minimal_symbol *
04a679b8
TT
193record_minimal_symbol (const char *name, int name_len, int copy_name,
194 CORE_ADDR address,
f594e5e9
MC
195 enum minimal_symbol_type ms_type,
196 asection *bfd_section, struct objfile *objfile)
c906108c 197{
5e2b427d
UW
198 struct gdbarch *gdbarch = get_objfile_arch (objfile);
199
0875794a
JK
200 if (ms_type == mst_text || ms_type == mst_file_text
201 || ms_type == mst_text_gnu_ifunc)
85ddcc70 202 address = gdbarch_addr_bits_remove (gdbarch, address);
c906108c 203
04a679b8 204 return prim_record_minimal_symbol_full (name, name_len, copy_name, address,
65cf3563
TT
205 ms_type,
206 gdb_bfd_section_index (objfile->obfd,
207 bfd_section),
e6dc44a8 208 objfile);
c906108c
SS
209}
210
7f86f058 211/* Read the symbol table of an ELF file.
c906108c 212
62553543 213 Given an objfile, a symbol table, and a flag indicating whether the
6f610d07
UW
214 symbol table contains regular, dynamic, or synthetic symbols, add all
215 the global function and data symbols to the minimal symbol table.
c906108c 216
c5aa993b
JM
217 In stabs-in-ELF, as implemented by Sun, there are some local symbols
218 defined in the ELF symbol table, which can be used to locate
219 the beginnings of sections from each ".o" file that was linked to
220 form the executable objfile. We gather any such info and record it
7f86f058 221 in data structures hung off the objfile's private data. */
c906108c 222
6f610d07
UW
223#define ST_REGULAR 0
224#define ST_DYNAMIC 1
225#define ST_SYNTHETIC 2
226
c906108c 227static void
6f610d07 228elf_symtab_read (struct objfile *objfile, int type,
04a679b8
TT
229 long number_of_symbols, asymbol **symbol_table,
230 int copy_names)
c906108c 231{
5e2b427d 232 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 233 asymbol *sym;
c906108c 234 long i;
c906108c 235 CORE_ADDR symaddr;
d4f3574e 236 CORE_ADDR offset;
c906108c 237 enum minimal_symbol_type ms_type;
18a94d75
DE
238 /* Name of the last file symbol. This is either a constant string or is
239 saved on the objfile's filename cache. */
0af1e9a5 240 const char *filesymname = "";
d2f4b8fe 241 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
d4f3574e 242 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
3e29f34a
MR
243 int elf_make_msymbol_special_p
244 = gdbarch_elf_make_msymbol_special_p (gdbarch);
c5aa993b 245
0cc7b392 246 for (i = 0; i < number_of_symbols; i++)
c906108c 247 {
0cc7b392
DJ
248 sym = symbol_table[i];
249 if (sym->name == NULL || *sym->name == '\0')
c906108c 250 {
0cc7b392 251 /* Skip names that don't exist (shouldn't happen), or names
0963b4bd 252 that are null strings (may happen). */
0cc7b392
DJ
253 continue;
254 }
c906108c 255
74763737
DJ
256 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
257 symbols which do not correspond to objects in the symbol table,
258 but have some other target-specific meaning. */
259 if (bfd_is_target_special_symbol (objfile->obfd, sym))
60c5725c
DJ
260 {
261 if (gdbarch_record_special_symbol_p (gdbarch))
262 gdbarch_record_special_symbol (gdbarch, objfile, sym);
263 continue;
264 }
74763737 265
65cf3563
TT
266 offset = ANOFFSET (objfile->section_offsets,
267 gdb_bfd_section_index (objfile->obfd, sym->section));
6f610d07 268 if (type == ST_DYNAMIC
45dfa85a 269 && sym->section == bfd_und_section_ptr
0cc7b392
DJ
270 && (sym->flags & BSF_FUNCTION))
271 {
272 struct minimal_symbol *msym;
02c75f72 273 bfd *abfd = objfile->obfd;
dea91a5c 274 asection *sect;
0cc7b392
DJ
275
276 /* Symbol is a reference to a function defined in
277 a shared library.
278 If its value is non zero then it is usually the address
279 of the corresponding entry in the procedure linkage table,
280 plus the desired section offset.
281 If its value is zero then the dynamic linker has to resolve
0963b4bd 282 the symbol. We are unable to find any meaningful address
0cc7b392
DJ
283 for this symbol in the executable file, so we skip it. */
284 symaddr = sym->value;
285 if (symaddr == 0)
286 continue;
02c75f72
UW
287
288 /* sym->section is the undefined section. However, we want to
289 record the section where the PLT stub resides with the
290 minimal symbol. Search the section table for the one that
291 covers the stub's address. */
292 for (sect = abfd->sections; sect != NULL; sect = sect->next)
293 {
294 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
295 continue;
296
297 if (symaddr >= bfd_get_section_vma (abfd, sect)
298 && symaddr < bfd_get_section_vma (abfd, sect)
299 + bfd_get_section_size (sect))
300 break;
301 }
302 if (!sect)
303 continue;
304
828cfa8d
JB
305 /* On ia64-hpux, we have discovered that the system linker
306 adds undefined symbols with nonzero addresses that cannot
307 be right (their address points inside the code of another
308 function in the .text section). This creates problems
309 when trying to determine which symbol corresponds to
310 a given address.
311
312 We try to detect those buggy symbols by checking which
313 section we think they correspond to. Normally, PLT symbols
314 are stored inside their own section, and the typical name
315 for that section is ".plt". So, if there is a ".plt"
316 section, and yet the section name of our symbol does not
317 start with ".plt", we ignore that symbol. */
61012eef 318 if (!startswith (sect->name, ".plt")
828cfa8d
JB
319 && bfd_get_section_by_name (abfd, ".plt") != NULL)
320 continue;
321
0cc7b392 322 msym = record_minimal_symbol
04a679b8
TT
323 (sym->name, strlen (sym->name), copy_names,
324 symaddr, mst_solib_trampoline, sect, objfile);
0cc7b392 325 if (msym != NULL)
9b807e7b
MR
326 {
327 msym->filename = filesymname;
3e29f34a
MR
328 if (elf_make_msymbol_special_p)
329 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
9b807e7b 330 }
0cc7b392
DJ
331 continue;
332 }
c906108c 333
0cc7b392
DJ
334 /* If it is a nonstripped executable, do not enter dynamic
335 symbols, as the dynamic symbol table is usually a subset
336 of the main symbol table. */
6f610d07 337 if (type == ST_DYNAMIC && !stripped)
0cc7b392
DJ
338 continue;
339 if (sym->flags & BSF_FILE)
340 {
18a94d75 341 filesymname = bcache (sym->name, strlen (sym->name) + 1,
706e3705 342 objfile->per_bfd->filename_cache);
0cc7b392
DJ
343 }
344 else if (sym->flags & BSF_SECTION_SYM)
345 continue;
bb869963
SDJ
346 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
347 | BSF_GNU_UNIQUE))
0cc7b392
DJ
348 {
349 struct minimal_symbol *msym;
350
351 /* Select global/local/weak symbols. Note that bfd puts abs
352 symbols in their own section, so all symbols we are
0963b4bd
MS
353 interested in will have a section. */
354 /* Bfd symbols are section relative. */
0cc7b392 355 symaddr = sym->value + sym->section->vma;
0cc7b392
DJ
356 /* For non-absolute symbols, use the type of the section
357 they are relative to, to intuit text/data. Bfd provides
0963b4bd 358 no way of figuring this out for absolute symbols. */
45dfa85a 359 if (sym->section == bfd_abs_section_ptr)
c906108c 360 {
0cc7b392
DJ
361 /* This is a hack to get the minimal symbol type
362 right for Irix 5, which has absolute addresses
6f610d07
UW
363 with special section indices for dynamic symbols.
364
365 NOTE: uweigand-20071112: Synthetic symbols do not
366 have an ELF-private part, so do not touch those. */
dea91a5c 367 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
0cc7b392
DJ
368 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
369
370 switch (shndx)
c906108c 371 {
0cc7b392
DJ
372 case SHN_MIPS_TEXT:
373 ms_type = mst_text;
374 break;
375 case SHN_MIPS_DATA:
376 ms_type = mst_data;
377 break;
378 case SHN_MIPS_ACOMMON:
379 ms_type = mst_bss;
380 break;
381 default:
382 ms_type = mst_abs;
383 }
384
385 /* If it is an Irix dynamic symbol, skip section name
0963b4bd 386 symbols, relocate all others by section offset. */
0cc7b392
DJ
387 if (ms_type != mst_abs)
388 {
389 if (sym->name[0] == '.')
390 continue;
c906108c 391 }
0cc7b392
DJ
392 }
393 else if (sym->section->flags & SEC_CODE)
394 {
bb869963 395 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 396 {
0875794a
JK
397 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
398 ms_type = mst_text_gnu_ifunc;
399 else
400 ms_type = mst_text;
0cc7b392 401 }
90359a16
JK
402 /* The BSF_SYNTHETIC check is there to omit ppc64 function
403 descriptors mistaken for static functions starting with 'L'.
404 */
405 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
406 && (sym->flags & BSF_SYNTHETIC) == 0)
0cc7b392
DJ
407 || ((sym->flags & BSF_LOCAL)
408 && sym->name[0] == '$'
409 && sym->name[1] == 'L'))
410 /* Looks like a compiler-generated label. Skip
411 it. The assembler should be skipping these (to
412 keep executables small), but apparently with
413 gcc on the (deleted) delta m88k SVR4, it loses.
414 So to have us check too should be harmless (but
415 I encourage people to fix this in the assembler
416 instead of adding checks here). */
417 continue;
418 else
419 {
420 ms_type = mst_file_text;
c906108c 421 }
0cc7b392
DJ
422 }
423 else if (sym->section->flags & SEC_ALLOC)
424 {
bb869963 425 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 426 {
0cc7b392 427 if (sym->section->flags & SEC_LOAD)
c906108c 428 {
0cc7b392 429 ms_type = mst_data;
c906108c 430 }
c906108c
SS
431 else
432 {
0cc7b392 433 ms_type = mst_bss;
c906108c
SS
434 }
435 }
0cc7b392 436 else if (sym->flags & BSF_LOCAL)
c906108c 437 {
0cc7b392
DJ
438 if (sym->section->flags & SEC_LOAD)
439 {
440 ms_type = mst_file_data;
c906108c
SS
441 }
442 else
443 {
0cc7b392 444 ms_type = mst_file_bss;
c906108c
SS
445 }
446 }
447 else
448 {
0cc7b392 449 ms_type = mst_unknown;
c906108c 450 }
0cc7b392
DJ
451 }
452 else
453 {
454 /* FIXME: Solaris2 shared libraries include lots of
dea91a5c 455 odd "absolute" and "undefined" symbols, that play
0cc7b392
DJ
456 hob with actions like finding what function the PC
457 is in. Ignore them if they aren't text, data, or bss. */
458 /* ms_type = mst_unknown; */
0963b4bd 459 continue; /* Skip this symbol. */
0cc7b392
DJ
460 }
461 msym = record_minimal_symbol
04a679b8 462 (sym->name, strlen (sym->name), copy_names, symaddr,
0cc7b392 463 ms_type, sym->section, objfile);
6f610d07 464
0cc7b392
DJ
465 if (msym)
466 {
6f610d07 467 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
24c274a1 468 ELF-private part. */
6f610d07 469 if (type != ST_SYNTHETIC)
24c274a1
AM
470 {
471 /* Pass symbol size field in via BFD. FIXME!!! */
472 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
473 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
474 }
dea91a5c 475
a103a963 476 msym->filename = filesymname;
3e29f34a
MR
477 if (elf_make_msymbol_special_p)
478 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
0cc7b392 479 }
2eaf8d2a 480
715c6909
TT
481 /* If we see a default versioned symbol, install it under
482 its version-less name. */
483 if (msym != NULL)
484 {
485 const char *atsign = strchr (sym->name, '@');
486
487 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
488 {
489 int len = atsign - sym->name;
490
491 record_minimal_symbol (sym->name, len, 1, symaddr,
492 ms_type, sym->section, objfile);
493 }
494 }
495
2eaf8d2a
DJ
496 /* For @plt symbols, also record a trampoline to the
497 destination symbol. The @plt symbol will be used in
498 disassembly, and the trampoline will be used when we are
499 trying to find the target. */
500 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
501 {
502 int len = strlen (sym->name);
503
504 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
505 {
2eaf8d2a
DJ
506 struct minimal_symbol *mtramp;
507
04a679b8
TT
508 mtramp = record_minimal_symbol (sym->name, len - 4, 1,
509 symaddr,
2eaf8d2a
DJ
510 mst_solib_trampoline,
511 sym->section, objfile);
512 if (mtramp)
513 {
d9eaeb59 514 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
422d65e7 515 mtramp->created_by_gdb = 1;
2eaf8d2a 516 mtramp->filename = filesymname;
3e29f34a
MR
517 if (elf_make_msymbol_special_p)
518 gdbarch_elf_make_msymbol_special (gdbarch,
519 sym, mtramp);
2eaf8d2a
DJ
520 }
521 }
522 }
c906108c 523 }
c906108c
SS
524 }
525}
526
07be84bf
JK
527/* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
528 for later look ups of which function to call when user requests
529 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
530 library defining `function' we cannot yet know while reading OBJFILE which
531 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
532 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
533
534static void
535elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table)
536{
537 bfd *obfd = objfile->obfd;
538 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
539 asection *plt, *relplt, *got_plt;
07be84bf
JK
540 int plt_elf_idx;
541 bfd_size_type reloc_count, reloc;
542 char *string_buffer = NULL;
543 size_t string_buffer_size = 0;
544 struct cleanup *back_to;
df6d5441 545 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
546 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
547 size_t ptr_size = TYPE_LENGTH (ptr_type);
548
549 if (objfile->separate_debug_objfile_backlink)
550 return;
551
552 plt = bfd_get_section_by_name (obfd, ".plt");
553 if (plt == NULL)
554 return;
555 plt_elf_idx = elf_section_data (plt)->this_idx;
556
557 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
558 if (got_plt == NULL)
4b7d1f7f
WN
559 {
560 /* For platforms where there is no separate .got.plt. */
561 got_plt = bfd_get_section_by_name (obfd, ".got");
562 if (got_plt == NULL)
563 return;
564 }
07be84bf
JK
565
566 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
567 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
568 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
569 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
570 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
571 break;
572 if (relplt == NULL)
573 return;
574
575 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
576 return;
577
578 back_to = make_cleanup (free_current_contents, &string_buffer);
579
580 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
581 for (reloc = 0; reloc < reloc_count; reloc++)
582 {
22e048c9 583 const char *name;
07be84bf
JK
584 struct minimal_symbol *msym;
585 CORE_ADDR address;
586 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
587 size_t name_len;
588
589 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
590 name_len = strlen (name);
591 address = relplt->relocation[reloc].address;
592
593 /* Does the pointer reside in the .got.plt section? */
594 if (!(bfd_get_section_vma (obfd, got_plt) <= address
595 && address < bfd_get_section_vma (obfd, got_plt)
596 + bfd_get_section_size (got_plt)))
597 continue;
598
599 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
600 OBJFILE the symbol is undefined and the objfile having NAME defined
601 may not yet have been loaded. */
602
3807f613 603 if (string_buffer_size < name_len + got_suffix_len + 1)
07be84bf
JK
604 {
605 string_buffer_size = 2 * (name_len + got_suffix_len);
224c3ddb 606 string_buffer = (char *) xrealloc (string_buffer, string_buffer_size);
07be84bf
JK
607 }
608 memcpy (string_buffer, name, name_len);
609 memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX,
3807f613 610 got_suffix_len + 1);
07be84bf
JK
611
612 msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len,
613 1, address, mst_slot_got_plt, got_plt,
614 objfile);
615 if (msym)
d9eaeb59 616 SET_MSYMBOL_SIZE (msym, ptr_size);
07be84bf
JK
617 }
618
619 do_cleanups (back_to);
620}
621
622/* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
623
624static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
625
626/* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
627
628struct elf_gnu_ifunc_cache
629{
630 /* This is always a function entry address, not a function descriptor. */
631 CORE_ADDR addr;
632
633 char name[1];
634};
635
636/* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
637
638static hashval_t
639elf_gnu_ifunc_cache_hash (const void *a_voidp)
640{
641 const struct elf_gnu_ifunc_cache *a = a_voidp;
642
643 return htab_hash_string (a->name);
644}
645
646/* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
647
648static int
649elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
650{
651 const struct elf_gnu_ifunc_cache *a = a_voidp;
652 const struct elf_gnu_ifunc_cache *b = b_voidp;
653
654 return strcmp (a->name, b->name) == 0;
655}
656
657/* Record the target function address of a STT_GNU_IFUNC function NAME is the
658 function entry address ADDR. Return 1 if NAME and ADDR are considered as
659 valid and therefore they were successfully recorded, return 0 otherwise.
660
661 Function does not expect a duplicate entry. Use
662 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
663 exists. */
664
665static int
666elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
667{
7cbd4a93 668 struct bound_minimal_symbol msym;
07be84bf
JK
669 asection *sect;
670 struct objfile *objfile;
671 htab_t htab;
672 struct elf_gnu_ifunc_cache entry_local, *entry_p;
673 void **slot;
674
675 msym = lookup_minimal_symbol_by_pc (addr);
7cbd4a93 676 if (msym.minsym == NULL)
07be84bf 677 return 0;
77e371c0 678 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
07be84bf
JK
679 return 0;
680 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
efd66ac6 681 sect = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym)->the_bfd_section;
e27d198c 682 objfile = msym.objfile;
07be84bf
JK
683
684 /* If .plt jumps back to .plt the symbol is still deferred for later
685 resolution and it has no use for GDB. Besides ".text" this symbol can
686 reside also in ".opd" for ppc64 function descriptor. */
687 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
688 return 0;
689
690 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
691 if (htab == NULL)
692 {
693 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
694 elf_gnu_ifunc_cache_eq,
695 NULL, &objfile->objfile_obstack,
696 hashtab_obstack_allocate,
697 dummy_obstack_deallocate);
698 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
699 }
700
701 entry_local.addr = addr;
702 obstack_grow (&objfile->objfile_obstack, &entry_local,
703 offsetof (struct elf_gnu_ifunc_cache, name));
704 obstack_grow_str0 (&objfile->objfile_obstack, name);
224c3ddb
SM
705 entry_p
706 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
07be84bf
JK
707
708 slot = htab_find_slot (htab, entry_p, INSERT);
709 if (*slot != NULL)
710 {
711 struct elf_gnu_ifunc_cache *entry_found_p = *slot;
df6d5441 712 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
713
714 if (entry_found_p->addr != addr)
715 {
716 /* This case indicates buggy inferior program, the resolved address
717 should never change. */
718
719 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
720 "function_address from %s to %s"),
721 name, paddress (gdbarch, entry_found_p->addr),
722 paddress (gdbarch, addr));
723 }
724
725 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
726 }
727 *slot = entry_p;
728
729 return 1;
730}
731
732/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
733 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
734 is not NULL) and the function returns 1. It returns 0 otherwise.
735
736 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
737 function. */
738
739static int
740elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
741{
742 struct objfile *objfile;
743
744 ALL_PSPACE_OBJFILES (current_program_space, objfile)
745 {
746 htab_t htab;
747 struct elf_gnu_ifunc_cache *entry_p;
748 void **slot;
749
750 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
751 if (htab == NULL)
752 continue;
753
224c3ddb
SM
754 entry_p = ((struct elf_gnu_ifunc_cache *)
755 alloca (sizeof (*entry_p) + strlen (name)));
07be84bf
JK
756 strcpy (entry_p->name, name);
757
758 slot = htab_find_slot (htab, entry_p, NO_INSERT);
759 if (slot == NULL)
760 continue;
761 entry_p = *slot;
762 gdb_assert (entry_p != NULL);
763
764 if (addr_p)
765 *addr_p = entry_p->addr;
766 return 1;
767 }
768
769 return 0;
770}
771
772/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
773 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
774 is not NULL) and the function returns 1. It returns 0 otherwise.
775
776 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
777 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
778 prevent cache entries duplicates. */
779
780static int
781elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
782{
783 char *name_got_plt;
784 struct objfile *objfile;
785 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
786
224c3ddb 787 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
07be84bf
JK
788 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
789
790 ALL_PSPACE_OBJFILES (current_program_space, objfile)
791 {
792 bfd *obfd = objfile->obfd;
df6d5441 793 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
794 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
795 size_t ptr_size = TYPE_LENGTH (ptr_type);
796 CORE_ADDR pointer_address, addr;
797 asection *plt;
224c3ddb 798 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
3b7344d5 799 struct bound_minimal_symbol msym;
07be84bf
JK
800
801 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
3b7344d5 802 if (msym.minsym == NULL)
07be84bf 803 continue;
3b7344d5 804 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
07be84bf 805 continue;
77e371c0 806 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
07be84bf
JK
807
808 plt = bfd_get_section_by_name (obfd, ".plt");
809 if (plt == NULL)
810 continue;
811
3b7344d5 812 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
07be84bf
JK
813 continue;
814 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
815 continue;
816 addr = extract_typed_address (buf, ptr_type);
817 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
818 &current_target);
4b7d1f7f 819 addr = gdbarch_addr_bits_remove (gdbarch, addr);
07be84bf
JK
820
821 if (addr_p)
822 *addr_p = addr;
823 if (elf_gnu_ifunc_record_cache (name, addr))
824 return 1;
825 }
826
827 return 0;
828}
829
830/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
831 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
832 is not NULL) and the function returns 1. It returns 0 otherwise.
833
834 Both the elf_objfile_gnu_ifunc_cache_data hash table and
835 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
836
837static int
838elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
839{
840 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
841 return 1;
dea91a5c 842
07be84bf
JK
843 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
844 return 1;
845
846 return 0;
847}
848
849/* Call STT_GNU_IFUNC - a function returning addresss of a real function to
850 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
851 is the entry point of the resolved STT_GNU_IFUNC target function to call.
852 */
853
854static CORE_ADDR
855elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
856{
2c02bd72 857 const char *name_at_pc;
07be84bf
JK
858 CORE_ADDR start_at_pc, address;
859 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
860 struct value *function, *address_val;
861
862 /* Try first any non-intrusive methods without an inferior call. */
863
864 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
865 && start_at_pc == pc)
866 {
867 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
868 return address;
869 }
870 else
871 name_at_pc = NULL;
872
873 function = allocate_value (func_func_type);
874 set_value_address (function, pc);
875
876 /* STT_GNU_IFUNC resolver functions have no parameters. FUNCTION is the
877 function entry address. ADDRESS may be a function descriptor. */
878
879 address_val = call_function_by_hand (function, 0, NULL);
880 address = value_as_address (address_val);
881 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
882 &current_target);
4b7d1f7f 883 address = gdbarch_addr_bits_remove (gdbarch, address);
07be84bf
JK
884
885 if (name_at_pc)
886 elf_gnu_ifunc_record_cache (name_at_pc, address);
887
888 return address;
889}
890
0e30163f
JK
891/* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
892
893static void
894elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
895{
896 struct breakpoint *b_return;
897 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
898 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
899 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
900 int thread_id = pid_to_thread_id (inferior_ptid);
901
902 gdb_assert (b->type == bp_gnu_ifunc_resolver);
903
904 for (b_return = b->related_breakpoint; b_return != b;
905 b_return = b_return->related_breakpoint)
906 {
907 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
908 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
909 gdb_assert (frame_id_p (b_return->frame_id));
910
911 if (b_return->thread == thread_id
912 && b_return->loc->requested_address == prev_pc
913 && frame_id_eq (b_return->frame_id, prev_frame_id))
914 break;
915 }
916
917 if (b_return == b)
918 {
919 struct symtab_and_line sal;
920
921 /* No need to call find_pc_line for symbols resolving as this is only
922 a helper breakpointer never shown to the user. */
923
924 init_sal (&sal);
925 sal.pspace = current_inferior ()->pspace;
926 sal.pc = prev_pc;
927 sal.section = find_pc_overlay (sal.pc);
928 sal.explicit_pc = 1;
929 b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
930 prev_frame_id,
931 bp_gnu_ifunc_resolver_return);
932
c70a6932
JK
933 /* set_momentary_breakpoint invalidates PREV_FRAME. */
934 prev_frame = NULL;
935
0e30163f
JK
936 /* Add new b_return to the ring list b->related_breakpoint. */
937 gdb_assert (b_return->related_breakpoint == b_return);
938 b_return->related_breakpoint = b->related_breakpoint;
939 b->related_breakpoint = b_return;
940 }
941}
942
943/* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
944
945static void
946elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
947{
948 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
949 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
950 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
951 struct regcache *regcache = get_thread_regcache (inferior_ptid);
6a3a010b 952 struct value *func_func;
0e30163f
JK
953 struct value *value;
954 CORE_ADDR resolved_address, resolved_pc;
955 struct symtab_and_line sal;
f1310107 956 struct symtabs_and_lines sals, sals_end;
0e30163f
JK
957
958 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
959
0e30163f
JK
960 while (b->related_breakpoint != b)
961 {
962 struct breakpoint *b_next = b->related_breakpoint;
963
964 switch (b->type)
965 {
966 case bp_gnu_ifunc_resolver:
967 break;
968 case bp_gnu_ifunc_resolver_return:
969 delete_breakpoint (b);
970 break;
971 default:
972 internal_error (__FILE__, __LINE__,
973 _("handle_inferior_event: Invalid "
974 "gnu-indirect-function breakpoint type %d"),
975 (int) b->type);
976 }
977 b = b_next;
978 }
979 gdb_assert (b->type == bp_gnu_ifunc_resolver);
6a3a010b
MR
980 gdb_assert (b->loc->next == NULL);
981
982 func_func = allocate_value (func_func_type);
983 set_value_address (func_func, b->loc->related_address);
984
985 value = allocate_value (value_type);
986 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
987 value_contents_raw (value), NULL);
988 resolved_address = value_as_address (value);
989 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
990 resolved_address,
991 &current_target);
4b7d1f7f 992 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
0e30163f 993
f8eba3c6 994 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
f00aae0f
KS
995 elf_gnu_ifunc_record_cache (event_location_to_string (b->location),
996 resolved_pc);
0e30163f
JK
997
998 sal = find_pc_line (resolved_pc, 0);
999 sals.nelts = 1;
1000 sals.sals = &sal;
f1310107 1001 sals_end.nelts = 0;
0e30163f
JK
1002
1003 b->type = bp_breakpoint;
f1310107 1004 update_breakpoint_locations (b, sals, sals_end);
0e30163f
JK
1005}
1006
2750ef27
TT
1007/* A helper function for elf_symfile_read that reads the minimal
1008 symbols. */
c906108c
SS
1009
1010static void
5f6cac40
TT
1011elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1012 const struct elfinfo *ei)
c906108c 1013{
63524580 1014 bfd *synth_abfd, *abfd = objfile->obfd;
c906108c 1015 struct cleanup *back_to;
62553543
EZ
1016 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1017 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1018 asymbol *synthsyms;
d2f4b8fe 1019 struct dbx_symfile_info *dbx;
c906108c 1020
45cfd468
DE
1021 if (symtab_create_debug)
1022 {
1023 fprintf_unfiltered (gdb_stdlog,
1024 "Reading minimal symbols of objfile %s ...\n",
4262abfb 1025 objfile_name (objfile));
45cfd468
DE
1026 }
1027
5f6cac40
TT
1028 /* If we already have minsyms, then we can skip some work here.
1029 However, if there were stabs or mdebug sections, we go ahead and
1030 redo all the work anyway, because the psym readers for those
1031 kinds of debuginfo need extra information found here. This can
1032 go away once all types of symbols are in the per-BFD object. */
1033 if (objfile->per_bfd->minsyms_read
1034 && ei->stabsect == NULL
1035 && ei->mdebugsect == NULL)
1036 {
1037 if (symtab_create_debug)
1038 fprintf_unfiltered (gdb_stdlog,
1039 "... minimal symbols previously read\n");
1040 return;
1041 }
1042
c906108c 1043 init_minimal_symbol_collection ();
56e290f4 1044 back_to = make_cleanup_discard_minimal_symbols ();
c906108c 1045
0963b4bd 1046 /* Allocate struct to keep track of the symfile. */
d2f4b8fe
TT
1047 dbx = XCNEW (struct dbx_symfile_info);
1048 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
c906108c 1049
18a94d75 1050 /* Process the normal ELF symbol table first. */
c906108c 1051
62553543
EZ
1052 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1053 if (storage_needed < 0)
3e43a32a
MS
1054 error (_("Can't read symbols from %s: %s"),
1055 bfd_get_filename (objfile->obfd),
62553543
EZ
1056 bfd_errmsg (bfd_get_error ()));
1057
1058 if (storage_needed > 0)
1059 {
80c57053
JK
1060 /* Memory gets permanently referenced from ABFD after
1061 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1062
224c3ddb 1063 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
62553543
EZ
1064 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1065
1066 if (symcount < 0)
3e43a32a
MS
1067 error (_("Can't read symbols from %s: %s"),
1068 bfd_get_filename (objfile->obfd),
62553543
EZ
1069 bfd_errmsg (bfd_get_error ()));
1070
04a679b8 1071 elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0);
62553543 1072 }
c906108c
SS
1073
1074 /* Add the dynamic symbols. */
1075
62553543
EZ
1076 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1077
1078 if (storage_needed > 0)
1079 {
3f1eff0a
JK
1080 /* Memory gets permanently referenced from ABFD after
1081 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1082 It happens only in the case when elf_slurp_reloc_table sees
1083 asection->relocation NULL. Determining which section is asection is
1084 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1085 implementation detail, though. */
1086
224c3ddb 1087 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
62553543
EZ
1088 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1089 dyn_symbol_table);
1090
1091 if (dynsymcount < 0)
3e43a32a
MS
1092 error (_("Can't read symbols from %s: %s"),
1093 bfd_get_filename (objfile->obfd),
62553543
EZ
1094 bfd_errmsg (bfd_get_error ()));
1095
04a679b8 1096 elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0);
07be84bf
JK
1097
1098 elf_rel_plt_read (objfile, dyn_symbol_table);
62553543
EZ
1099 }
1100
63524580
JK
1101 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1102 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1103
1104 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1105 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1106 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1107 read the code address from .opd while it reads the .symtab section from
1108 a separate debug info file as the .opd section is SHT_NOBITS there.
1109
1110 With SYNTH_ABFD the .opd section will be read from the original
1111 backlinked binary where it is valid. */
1112
1113 if (objfile->separate_debug_objfile_backlink)
1114 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1115 else
1116 synth_abfd = abfd;
1117
62553543
EZ
1118 /* Add synthetic symbols - for instance, names for any PLT entries. */
1119
63524580 1120 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
62553543
EZ
1121 dynsymcount, dyn_symbol_table,
1122 &synthsyms);
1123 if (synthcount > 0)
1124 {
1125 asymbol **synth_symbol_table;
1126 long i;
1127
1128 make_cleanup (xfree, synthsyms);
8d749320 1129 synth_symbol_table = XNEWVEC (asymbol *, synthcount);
62553543 1130 for (i = 0; i < synthcount; i++)
9f20e3da 1131 synth_symbol_table[i] = synthsyms + i;
62553543 1132 make_cleanup (xfree, synth_symbol_table);
3e43a32a
MS
1133 elf_symtab_read (objfile, ST_SYNTHETIC, synthcount,
1134 synth_symbol_table, 1);
62553543 1135 }
c906108c 1136
7134143f
DJ
1137 /* Install any minimal symbols that have been collected as the current
1138 minimal symbols for this objfile. The debug readers below this point
1139 should not generate new minimal symbols; if they do it's their
1140 responsibility to install them. "mdebug" appears to be the only one
1141 which will do this. */
1142
1143 install_minimal_symbols (objfile);
1144 do_cleanups (back_to);
1145
4f00dda3
DE
1146 if (symtab_create_debug)
1147 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
2750ef27
TT
1148}
1149
1150/* Scan and build partial symbols for a symbol file.
1151 We have been initialized by a call to elf_symfile_init, which
1152 currently does nothing.
1153
2750ef27
TT
1154 This function only does the minimum work necessary for letting the
1155 user "name" things symbolically; it does not read the entire symtab.
1156 Instead, it reads the external and static symbols and puts them in partial
1157 symbol tables. When more extensive information is requested of a
1158 file, the corresponding partial symbol table is mutated into a full
1159 fledged symbol table by going back and reading the symbols
1160 for real.
1161
1162 We look for sections with specific names, to tell us what debug
1163 format to look for: FIXME!!!
1164
1165 elfstab_build_psymtabs() handles STABS symbols;
1166 mdebug_build_psymtabs() handles ECOFF debugging information.
1167
1168 Note that ELF files have a "minimal" symbol table, which looks a lot
1169 like a COFF symbol table, but has only the minimal information necessary
1170 for linking. We process this also, and use the information to
1171 build gdb's minimal symbol table. This gives us some minimal debugging
1172 capability even for files compiled without -g. */
1173
1174static void
1175elf_symfile_read (struct objfile *objfile, int symfile_flags)
1176{
1177 bfd *abfd = objfile->obfd;
1178 struct elfinfo ei;
1179
2750ef27 1180 memset ((char *) &ei, 0, sizeof (ei));
12b9c64f 1181 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
c906108c 1182
5f6cac40
TT
1183 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1184
c906108c
SS
1185 /* ELF debugging information is inserted into the psymtab in the
1186 order of least informative first - most informative last. Since
1187 the psymtab table is searched `most recent insertion first' this
1188 increases the probability that more detailed debug information
1189 for a section is found.
1190
1191 For instance, an object file might contain both .mdebug (XCOFF)
1192 and .debug_info (DWARF2) sections then .mdebug is inserted first
1193 (searched last) and DWARF2 is inserted last (searched first). If
1194 we don't do this then the XCOFF info is found first - for code in
0963b4bd 1195 an included file XCOFF info is useless. */
c906108c
SS
1196
1197 if (ei.mdebugsect)
1198 {
1199 const struct ecoff_debug_swap *swap;
1200
1201 /* .mdebug section, presumably holding ECOFF debugging
c5aa993b 1202 information. */
c906108c
SS
1203 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1204 if (swap)
d4f3574e 1205 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
c906108c
SS
1206 }
1207 if (ei.stabsect)
1208 {
1209 asection *str_sect;
1210
1211 /* Stab sections have an associated string table that looks like
c5aa993b 1212 a separate section. */
c906108c
SS
1213 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1214
1215 /* FIXME should probably warn about a stab section without a stabstr. */
1216 if (str_sect)
1217 elfstab_build_psymtabs (objfile,
086df311 1218 ei.stabsect,
c906108c
SS
1219 str_sect->filepos,
1220 bfd_section_size (abfd, str_sect));
1221 }
9291a0cd 1222
251d32d9 1223 if (dwarf2_has_info (objfile, NULL))
b11896a5 1224 {
3e03848b
JK
1225 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1226 information present in OBJFILE. If there is such debug info present
1227 never use .gdb_index. */
1228
1229 if (!objfile_has_partial_symbols (objfile)
1230 && dwarf2_initialize_objfile (objfile))
8fb8eb5c 1231 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
b11896a5
TT
1232 else
1233 {
1234 /* It is ok to do this even if the stabs reader made some
1235 partial symbols, because OBJF_PSYMTABS_READ has not been
1236 set, and so our lazy reader function will still be called
1237 when needed. */
8fb8eb5c 1238 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
b11896a5
TT
1239 }
1240 }
3e43a32a
MS
1241 /* If the file has its own symbol tables it has no separate debug
1242 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1243 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
8a92335b
JK
1244 `.note.gnu.build-id'.
1245
1246 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1247 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1248 an objfile via find_separate_debug_file_in_section there was no separate
1249 debug info available. Therefore do not attempt to search for another one,
1250 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1251 be NULL and we would possibly violate it. */
1252
1253 else if (!objfile_has_partial_symbols (objfile)
1254 && objfile->separate_debug_objfile == NULL
1255 && objfile->separate_debug_objfile_backlink == NULL)
9cce227f
TG
1256 {
1257 char *debugfile;
1258
1259 debugfile = find_separate_debug_file_by_buildid (objfile);
1260
1261 if (debugfile == NULL)
1262 debugfile = find_separate_debug_file_by_debuglink (objfile);
1263
1264 if (debugfile)
1265 {
8ac244b4 1266 struct cleanup *cleanup = make_cleanup (xfree, debugfile);
9cce227f 1267 bfd *abfd = symfile_bfd_open (debugfile);
d7f9d729 1268
8ac244b4 1269 make_cleanup_bfd_unref (abfd);
24ba069a 1270 symbol_file_add_separate (abfd, debugfile, symfile_flags, objfile);
8ac244b4 1271 do_cleanups (cleanup);
9cce227f
TG
1272 }
1273 }
c906108c
SS
1274}
1275
b11896a5
TT
1276/* Callback to lazily read psymtabs. */
1277
1278static void
1279read_psyms (struct objfile *objfile)
1280{
251d32d9 1281 if (dwarf2_has_info (objfile, NULL))
b11896a5
TT
1282 dwarf2_build_psymtabs (objfile);
1283}
1284
c906108c
SS
1285/* Initialize anything that needs initializing when a completely new symbol
1286 file is specified (not just adding some symbols from another file, e.g. a
1287 shared library).
1288
3e43a32a
MS
1289 We reinitialize buildsym, since we may be reading stabs from an ELF
1290 file. */
c906108c
SS
1291
1292static void
fba45db2 1293elf_new_init (struct objfile *ignore)
c906108c
SS
1294{
1295 stabsread_new_init ();
1296 buildsym_new_init ();
1297}
1298
1299/* Perform any local cleanups required when we are done with a particular
1300 objfile. I.E, we are in the process of discarding all symbol information
1301 for an objfile, freeing up all memory held for it, and unlinking the
0963b4bd 1302 objfile struct from the global list of known objfiles. */
c906108c
SS
1303
1304static void
fba45db2 1305elf_symfile_finish (struct objfile *objfile)
c906108c 1306{
fe3e1990 1307 dwarf2_free_objfile (objfile);
c906108c
SS
1308}
1309
db7a9bcd 1310/* ELF specific initialization routine for reading symbols. */
c906108c
SS
1311
1312static void
fba45db2 1313elf_symfile_init (struct objfile *objfile)
c906108c
SS
1314{
1315 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1316 find this causes a significant slowdown in gdb then we could
1317 set it in the debug symbol readers only when necessary. */
1318 objfile->flags |= OBJF_REORDERED;
1319}
1320
55aa24fb
SDJ
1321/* Implementation of `sym_get_probes', as documented in symfile.h. */
1322
1323static VEC (probe_p) *
1324elf_get_probes (struct objfile *objfile)
1325{
5d9cf8a4 1326 VEC (probe_p) *probes_per_bfd;
55aa24fb
SDJ
1327
1328 /* Have we parsed this objfile's probes already? */
5d9cf8a4 1329 probes_per_bfd = bfd_data (objfile->obfd, probe_key);
55aa24fb 1330
5d9cf8a4 1331 if (!probes_per_bfd)
55aa24fb
SDJ
1332 {
1333 int ix;
1334 const struct probe_ops *probe_ops;
1335
1336 /* Here we try to gather information about all types of probes from the
1337 objfile. */
1338 for (ix = 0; VEC_iterate (probe_ops_cp, all_probe_ops, ix, probe_ops);
1339 ix++)
5d9cf8a4 1340 probe_ops->get_probes (&probes_per_bfd, objfile);
55aa24fb 1341
5d9cf8a4 1342 if (probes_per_bfd == NULL)
55aa24fb 1343 {
5d9cf8a4
TT
1344 VEC_reserve (probe_p, probes_per_bfd, 1);
1345 gdb_assert (probes_per_bfd != NULL);
55aa24fb
SDJ
1346 }
1347
5d9cf8a4 1348 set_bfd_data (objfile->obfd, probe_key, probes_per_bfd);
55aa24fb
SDJ
1349 }
1350
5d9cf8a4 1351 return probes_per_bfd;
55aa24fb
SDJ
1352}
1353
55aa24fb
SDJ
1354/* Helper function used to free the space allocated for storing SystemTap
1355 probe information. */
1356
1357static void
5d9cf8a4 1358probe_key_free (bfd *abfd, void *d)
55aa24fb
SDJ
1359{
1360 int ix;
1361 VEC (probe_p) *probes = d;
1362 struct probe *probe;
1363
1364 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1365 probe->pops->destroy (probe);
1366
1367 VEC_free (probe_p, probes);
1368}
1369
c906108c 1370\f
55aa24fb
SDJ
1371
1372/* Implementation `sym_probe_fns', as documented in symfile.h. */
1373
1374static const struct sym_probe_fns elf_probe_fns =
1375{
25f9533e 1376 elf_get_probes, /* sym_get_probes */
55aa24fb
SDJ
1377};
1378
c906108c
SS
1379/* Register that we are able to handle ELF object file formats. */
1380
00b5771c 1381static const struct sym_fns elf_sym_fns =
c906108c 1382{
3e43a32a
MS
1383 elf_new_init, /* init anything gbl to entire symtab */
1384 elf_symfile_init, /* read initial info, setup for sym_read() */
1385 elf_symfile_read, /* read a symbol file into symtab */
b11896a5
TT
1386 NULL, /* sym_read_psymbols */
1387 elf_symfile_finish, /* finished with file, cleanup */
1388 default_symfile_offsets, /* Translate ext. to int. relocation */
1389 elf_symfile_segments, /* Get segment information from a file. */
1390 NULL,
1391 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1392 &elf_probe_fns, /* sym_probe_fns */
b11896a5
TT
1393 &psym_functions
1394};
1395
1396/* The same as elf_sym_fns, but not registered and lazily reads
1397 psymbols. */
1398
e36122e9 1399const struct sym_fns elf_sym_fns_lazy_psyms =
b11896a5 1400{
b11896a5
TT
1401 elf_new_init, /* init anything gbl to entire symtab */
1402 elf_symfile_init, /* read initial info, setup for sym_read() */
1403 elf_symfile_read, /* read a symbol file into symtab */
1404 read_psyms, /* sym_read_psymbols */
3e43a32a
MS
1405 elf_symfile_finish, /* finished with file, cleanup */
1406 default_symfile_offsets, /* Translate ext. to int. relocation */
1407 elf_symfile_segments, /* Get segment information from a file. */
1408 NULL,
1409 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1410 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1411 &psym_functions
c906108c
SS
1412};
1413
9291a0cd
TT
1414/* The same as elf_sym_fns, but not registered and uses the
1415 DWARF-specific GNU index rather than psymtab. */
e36122e9 1416const struct sym_fns elf_sym_fns_gdb_index =
9291a0cd 1417{
3e43a32a
MS
1418 elf_new_init, /* init anything gbl to entire symab */
1419 elf_symfile_init, /* read initial info, setup for sym_red() */
1420 elf_symfile_read, /* read a symbol file into symtab */
b11896a5 1421 NULL, /* sym_read_psymbols */
3e43a32a
MS
1422 elf_symfile_finish, /* finished with file, cleanup */
1423 default_symfile_offsets, /* Translate ext. to int. relocatin */
1424 elf_symfile_segments, /* Get segment information from a file. */
1425 NULL,
1426 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1427 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1428 &dwarf2_gdb_index_functions
9291a0cd
TT
1429};
1430
07be84bf
JK
1431/* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1432
1433static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1434{
1435 elf_gnu_ifunc_resolve_addr,
1436 elf_gnu_ifunc_resolve_name,
0e30163f
JK
1437 elf_gnu_ifunc_resolver_stop,
1438 elf_gnu_ifunc_resolver_return_stop
07be84bf
JK
1439};
1440
c906108c 1441void
fba45db2 1442_initialize_elfread (void)
c906108c 1443{
5d9cf8a4 1444 probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free);
c256e171 1445 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
07be84bf
JK
1446
1447 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1448 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
c906108c 1449}