]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/elfread.c
Make "gnutarget" const
[thirdparty/binutils-gdb.git] / gdb / elfread.c
CommitLineData
c906108c 1/* Read ELF (Executable and Linking Format) object files for GDB.
1bac305b 2
b811d2c2 3 Copyright (C) 1991-2020 Free Software Foundation, Inc.
1bac305b 4
c906108c
SS
5 Written by Fred Fish at Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "bfd.h"
c906108c 24#include "elf-bfd.h"
31d99776
DJ
25#include "elf/common.h"
26#include "elf/internal.h"
c906108c 27#include "elf/mips.h"
4de283e4
TT
28#include "symtab.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "stabsread.h"
4de283e4
TT
32#include "complaints.h"
33#include "demangle.h"
34#include "psympriv.h"
35#include "filenames.h"
36#include "probe.h"
37#include "arch-utils.h"
07be84bf 38#include "gdbtypes.h"
4de283e4 39#include "value.h"
07be84bf 40#include "infcall.h"
4de283e4 41#include "gdbthread.h"
00431a78 42#include "inferior.h"
4de283e4
TT
43#include "regcache.h"
44#include "bcache.h"
45#include "gdb_bfd.h"
46#include "build-id.h"
f00aae0f 47#include "location.h"
4de283e4 48#include "auxv.h"
0e8f53ba 49#include "mdebugread.h"
30d1f018 50#include "ctfread.h"
31edb802 51#include "gdbsupport/gdb_string_view.h"
0d79cdc4
AM
52#include "gdbsupport/scoped_fd.h"
53#include "debuginfod-support.h"
c906108c 54
3c0aa29a
PA
55/* Forward declarations. */
56extern const struct sym_fns elf_sym_fns_gdb_index;
57extern const struct sym_fns elf_sym_fns_debug_names;
58extern const struct sym_fns elf_sym_fns_lazy_psyms;
59
c906108c 60/* The struct elfinfo is available only during ELF symbol table and
6426a772 61 psymtab reading. It is destroyed at the completion of psymtab-reading.
c906108c
SS
62 It's local to elf_symfile_read. */
63
c5aa993b
JM
64struct elfinfo
65 {
c5aa993b 66 asection *stabsect; /* Section pointer for .stab section */
c5aa993b 67 asection *mdebugsect; /* Section pointer for .mdebug section */
30d1f018 68 asection *ctfsect; /* Section pointer for .ctf section */
c5aa993b 69 };
c906108c 70
814cf43a
TT
71/* Type for per-BFD data. */
72
73typedef std::vector<std::unique_ptr<probe>> elfread_data;
74
5d9cf8a4 75/* Per-BFD data for probe info. */
55aa24fb 76
814cf43a 77static const struct bfd_key<elfread_data> probe_key;
55aa24fb 78
07be84bf
JK
79/* Minimal symbols located at the GOT entries for .plt - that is the real
80 pointer where the given entry will jump to. It gets updated by the real
81 function address during lazy ld.so resolving in the inferior. These
82 minimal symbols are indexed for <tab>-completion. */
83
84#define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
85
31d99776
DJ
86/* Locate the segments in ABFD. */
87
88static struct symfile_segment_data *
89elf_symfile_segments (bfd *abfd)
90{
91 Elf_Internal_Phdr *phdrs, **segments;
92 long phdrs_size;
93 int num_phdrs, num_segments, num_sections, i;
94 asection *sect;
95 struct symfile_segment_data *data;
96
97 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
98 if (phdrs_size == -1)
99 return NULL;
100
224c3ddb 101 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
31d99776
DJ
102 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
103 if (num_phdrs == -1)
104 return NULL;
105
106 num_segments = 0;
8d749320 107 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
31d99776
DJ
108 for (i = 0; i < num_phdrs; i++)
109 if (phdrs[i].p_type == PT_LOAD)
110 segments[num_segments++] = &phdrs[i];
111
112 if (num_segments == 0)
113 return NULL;
114
41bf6aca 115 data = XCNEW (struct symfile_segment_data);
31d99776 116 data->num_segments = num_segments;
fc270c35
TT
117 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
118 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
31d99776
DJ
119
120 for (i = 0; i < num_segments; i++)
121 {
122 data->segment_bases[i] = segments[i]->p_vaddr;
123 data->segment_sizes[i] = segments[i]->p_memsz;
124 }
125
126 num_sections = bfd_count_sections (abfd);
fc270c35 127 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
128
129 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
130 {
131 int j;
31d99776 132
fd361982 133 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
31d99776
DJ
134 continue;
135
62b74cb8 136 Elf_Internal_Shdr *this_hdr = &elf_section_data (sect)->this_hdr;
31d99776
DJ
137
138 for (j = 0; j < num_segments; j++)
62b74cb8 139 if (ELF_SECTION_IN_SEGMENT (this_hdr, segments[j]))
31d99776
DJ
140 {
141 data->segment_info[i] = j + 1;
142 break;
143 }
144
ad09a548
DJ
145 /* We should have found a segment for every non-empty section.
146 If we haven't, we will not relocate this section by any
147 offsets we apply to the segments. As an exception, do not
148 warn about SHT_NOBITS sections; in normal ELF execution
149 environments, SHT_NOBITS means zero-initialized and belongs
150 in a segment, but in no-OS environments some tools (e.g. ARM
151 RealView) use SHT_NOBITS for uninitialized data. Since it is
152 uninitialized, it doesn't need a program header. Such
153 binaries are not relocatable. */
fd361982
AM
154 if (bfd_section_size (sect) > 0 && j == num_segments
155 && (bfd_section_flags (sect) & SEC_LOAD) != 0)
28ee876a 156 warning (_("Loadable section \"%s\" outside of ELF segments"),
fd361982 157 bfd_section_name (sect));
31d99776
DJ
158 }
159
160 return data;
161}
162
c906108c
SS
163/* We are called once per section from elf_symfile_read. We
164 need to examine each section we are passed, check to see
165 if it is something we are interested in processing, and
166 if so, stash away some access information for the section.
167
168 For now we recognize the dwarf debug information sections and
169 line number sections from matching their section names. The
170 ELF definition is no real help here since it has no direct
171 knowledge of DWARF (by design, so any debugging format can be
172 used).
173
174 We also recognize the ".stab" sections used by the Sun compilers
175 released with Solaris 2.
176
177 FIXME: The section names should not be hardwired strings (what
178 should they be? I don't think most object file formats have enough
0963b4bd 179 section flags to specify what kind of debug section it is.
c906108c
SS
180 -kingdon). */
181
182static void
12b9c64f 183elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
c906108c 184{
52f0bd74 185 struct elfinfo *ei;
c906108c
SS
186
187 ei = (struct elfinfo *) eip;
7ce59000 188 if (strcmp (sectp->name, ".stab") == 0)
c906108c 189 {
c5aa993b 190 ei->stabsect = sectp;
c906108c 191 }
6314a349 192 else if (strcmp (sectp->name, ".mdebug") == 0)
c906108c 193 {
c5aa993b 194 ei->mdebugsect = sectp;
c906108c 195 }
30d1f018
WP
196 else if (strcmp (sectp->name, ".ctf") == 0)
197 {
198 ei->ctfsect = sectp;
199 }
c906108c
SS
200}
201
c906108c 202static struct minimal_symbol *
8dddcb8f 203record_minimal_symbol (minimal_symbol_reader &reader,
31edb802 204 gdb::string_view name, bool copy_name,
04a679b8 205 CORE_ADDR address,
f594e5e9
MC
206 enum minimal_symbol_type ms_type,
207 asection *bfd_section, struct objfile *objfile)
c906108c 208{
5e2b427d
UW
209 struct gdbarch *gdbarch = get_objfile_arch (objfile);
210
0875794a
JK
211 if (ms_type == mst_text || ms_type == mst_file_text
212 || ms_type == mst_text_gnu_ifunc)
85ddcc70 213 address = gdbarch_addr_bits_remove (gdbarch, address);
c906108c 214
44e4c775
AB
215 /* We only setup section information for allocatable sections. Usually
216 we'd only expect to find msymbols for allocatable sections, but if the
217 ELF is malformed then this might not be the case. In that case don't
218 create an msymbol that references an uninitialised section object. */
219 int section_index = 0;
220 if ((bfd_section_flags (bfd_section) & SEC_ALLOC) == SEC_ALLOC)
221 section_index = gdb_bfd_section_index (objfile->obfd, bfd_section);
222
4b610737 223 struct minimal_symbol *result
44e4c775 224 = reader.record_full (name, copy_name, address, ms_type, section_index);
4b610737
TT
225 if ((objfile->flags & OBJF_MAINLINE) == 0
226 && (ms_type == mst_data || ms_type == mst_bss))
227 result->maybe_copied = 1;
228
229 return result;
c906108c
SS
230}
231
7f86f058 232/* Read the symbol table of an ELF file.
c906108c 233
62553543 234 Given an objfile, a symbol table, and a flag indicating whether the
6f610d07
UW
235 symbol table contains regular, dynamic, or synthetic symbols, add all
236 the global function and data symbols to the minimal symbol table.
c906108c 237
c5aa993b
JM
238 In stabs-in-ELF, as implemented by Sun, there are some local symbols
239 defined in the ELF symbol table, which can be used to locate
240 the beginnings of sections from each ".o" file that was linked to
241 form the executable objfile. We gather any such info and record it
7f86f058 242 in data structures hung off the objfile's private data. */
c906108c 243
6f610d07
UW
244#define ST_REGULAR 0
245#define ST_DYNAMIC 1
246#define ST_SYNTHETIC 2
247
c906108c 248static void
8dddcb8f
TT
249elf_symtab_read (minimal_symbol_reader &reader,
250 struct objfile *objfile, int type,
04a679b8 251 long number_of_symbols, asymbol **symbol_table,
ce6c454e 252 bool copy_names)
c906108c 253{
5e2b427d 254 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 255 asymbol *sym;
c906108c 256 long i;
c906108c
SS
257 CORE_ADDR symaddr;
258 enum minimal_symbol_type ms_type;
18a94d75
DE
259 /* Name of the last file symbol. This is either a constant string or is
260 saved on the objfile's filename cache. */
0af1e9a5 261 const char *filesymname = "";
d4f3574e 262 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
3e29f34a
MR
263 int elf_make_msymbol_special_p
264 = gdbarch_elf_make_msymbol_special_p (gdbarch);
c5aa993b 265
0cc7b392 266 for (i = 0; i < number_of_symbols; i++)
c906108c 267 {
0cc7b392
DJ
268 sym = symbol_table[i];
269 if (sym->name == NULL || *sym->name == '\0')
c906108c 270 {
0cc7b392 271 /* Skip names that don't exist (shouldn't happen), or names
0963b4bd 272 that are null strings (may happen). */
0cc7b392
DJ
273 continue;
274 }
c906108c 275
74763737
DJ
276 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
277 symbols which do not correspond to objects in the symbol table,
278 but have some other target-specific meaning. */
279 if (bfd_is_target_special_symbol (objfile->obfd, sym))
60c5725c
DJ
280 {
281 if (gdbarch_record_special_symbol_p (gdbarch))
282 gdbarch_record_special_symbol (gdbarch, objfile, sym);
283 continue;
284 }
74763737 285
6f610d07 286 if (type == ST_DYNAMIC
45dfa85a 287 && sym->section == bfd_und_section_ptr
0cc7b392
DJ
288 && (sym->flags & BSF_FUNCTION))
289 {
290 struct minimal_symbol *msym;
02c75f72 291 bfd *abfd = objfile->obfd;
dea91a5c 292 asection *sect;
0cc7b392
DJ
293
294 /* Symbol is a reference to a function defined in
295 a shared library.
296 If its value is non zero then it is usually the address
297 of the corresponding entry in the procedure linkage table,
298 plus the desired section offset.
299 If its value is zero then the dynamic linker has to resolve
0963b4bd 300 the symbol. We are unable to find any meaningful address
0cc7b392
DJ
301 for this symbol in the executable file, so we skip it. */
302 symaddr = sym->value;
303 if (symaddr == 0)
304 continue;
02c75f72
UW
305
306 /* sym->section is the undefined section. However, we want to
307 record the section where the PLT stub resides with the
308 minimal symbol. Search the section table for the one that
309 covers the stub's address. */
310 for (sect = abfd->sections; sect != NULL; sect = sect->next)
311 {
fd361982 312 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
02c75f72
UW
313 continue;
314
fd361982
AM
315 if (symaddr >= bfd_section_vma (sect)
316 && symaddr < bfd_section_vma (sect)
317 + bfd_section_size (sect))
02c75f72
UW
318 break;
319 }
320 if (!sect)
321 continue;
322
828cfa8d
JB
323 /* On ia64-hpux, we have discovered that the system linker
324 adds undefined symbols with nonzero addresses that cannot
325 be right (their address points inside the code of another
326 function in the .text section). This creates problems
327 when trying to determine which symbol corresponds to
328 a given address.
329
330 We try to detect those buggy symbols by checking which
331 section we think they correspond to. Normally, PLT symbols
332 are stored inside their own section, and the typical name
333 for that section is ".plt". So, if there is a ".plt"
334 section, and yet the section name of our symbol does not
335 start with ".plt", we ignore that symbol. */
61012eef 336 if (!startswith (sect->name, ".plt")
828cfa8d
JB
337 && bfd_get_section_by_name (abfd, ".plt") != NULL)
338 continue;
339
0cc7b392 340 msym = record_minimal_symbol
31edb802 341 (reader, sym->name, copy_names,
04a679b8 342 symaddr, mst_solib_trampoline, sect, objfile);
0cc7b392 343 if (msym != NULL)
9b807e7b
MR
344 {
345 msym->filename = filesymname;
3e29f34a
MR
346 if (elf_make_msymbol_special_p)
347 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
9b807e7b 348 }
0cc7b392
DJ
349 continue;
350 }
c906108c 351
0cc7b392
DJ
352 /* If it is a nonstripped executable, do not enter dynamic
353 symbols, as the dynamic symbol table is usually a subset
354 of the main symbol table. */
6f610d07 355 if (type == ST_DYNAMIC && !stripped)
0cc7b392
DJ
356 continue;
357 if (sym->flags & BSF_FILE)
358 {
9a3c8263 359 filesymname
25629dfd
TT
360 = ((const char *) objfile->per_bfd->filename_cache.insert
361 (sym->name, strlen (sym->name) + 1));
0cc7b392
DJ
362 }
363 else if (sym->flags & BSF_SECTION_SYM)
364 continue;
bb869963
SDJ
365 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
366 | BSF_GNU_UNIQUE))
0cc7b392
DJ
367 {
368 struct minimal_symbol *msym;
369
370 /* Select global/local/weak symbols. Note that bfd puts abs
371 symbols in their own section, so all symbols we are
0963b4bd
MS
372 interested in will have a section. */
373 /* Bfd symbols are section relative. */
0cc7b392 374 symaddr = sym->value + sym->section->vma;
0cc7b392
DJ
375 /* For non-absolute symbols, use the type of the section
376 they are relative to, to intuit text/data. Bfd provides
0963b4bd 377 no way of figuring this out for absolute symbols. */
45dfa85a 378 if (sym->section == bfd_abs_section_ptr)
c906108c 379 {
0cc7b392
DJ
380 /* This is a hack to get the minimal symbol type
381 right for Irix 5, which has absolute addresses
6f610d07
UW
382 with special section indices for dynamic symbols.
383
384 NOTE: uweigand-20071112: Synthetic symbols do not
385 have an ELF-private part, so do not touch those. */
dea91a5c 386 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
0cc7b392
DJ
387 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
388
389 switch (shndx)
c906108c 390 {
0cc7b392
DJ
391 case SHN_MIPS_TEXT:
392 ms_type = mst_text;
393 break;
394 case SHN_MIPS_DATA:
395 ms_type = mst_data;
396 break;
397 case SHN_MIPS_ACOMMON:
398 ms_type = mst_bss;
399 break;
400 default:
401 ms_type = mst_abs;
402 }
403
404 /* If it is an Irix dynamic symbol, skip section name
0963b4bd 405 symbols, relocate all others by section offset. */
0cc7b392
DJ
406 if (ms_type != mst_abs)
407 {
408 if (sym->name[0] == '.')
409 continue;
c906108c 410 }
0cc7b392
DJ
411 }
412 else if (sym->section->flags & SEC_CODE)
413 {
bb869963 414 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 415 {
0875794a
JK
416 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
417 ms_type = mst_text_gnu_ifunc;
418 else
419 ms_type = mst_text;
0cc7b392 420 }
90359a16
JK
421 /* The BSF_SYNTHETIC check is there to omit ppc64 function
422 descriptors mistaken for static functions starting with 'L'.
423 */
424 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
425 && (sym->flags & BSF_SYNTHETIC) == 0)
0cc7b392
DJ
426 || ((sym->flags & BSF_LOCAL)
427 && sym->name[0] == '$'
428 && sym->name[1] == 'L'))
429 /* Looks like a compiler-generated label. Skip
430 it. The assembler should be skipping these (to
431 keep executables small), but apparently with
432 gcc on the (deleted) delta m88k SVR4, it loses.
433 So to have us check too should be harmless (but
434 I encourage people to fix this in the assembler
435 instead of adding checks here). */
436 continue;
437 else
438 {
439 ms_type = mst_file_text;
c906108c 440 }
0cc7b392
DJ
441 }
442 else if (sym->section->flags & SEC_ALLOC)
443 {
bb869963 444 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 445 {
f50776aa
PA
446 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
447 {
448 ms_type = mst_data_gnu_ifunc;
449 }
450 else if (sym->section->flags & SEC_LOAD)
c906108c 451 {
0cc7b392 452 ms_type = mst_data;
c906108c 453 }
c906108c
SS
454 else
455 {
0cc7b392 456 ms_type = mst_bss;
c906108c
SS
457 }
458 }
0cc7b392 459 else if (sym->flags & BSF_LOCAL)
c906108c 460 {
0cc7b392
DJ
461 if (sym->section->flags & SEC_LOAD)
462 {
463 ms_type = mst_file_data;
c906108c
SS
464 }
465 else
466 {
0cc7b392 467 ms_type = mst_file_bss;
c906108c
SS
468 }
469 }
470 else
471 {
0cc7b392 472 ms_type = mst_unknown;
c906108c 473 }
0cc7b392
DJ
474 }
475 else
476 {
477 /* FIXME: Solaris2 shared libraries include lots of
dea91a5c 478 odd "absolute" and "undefined" symbols, that play
0cc7b392
DJ
479 hob with actions like finding what function the PC
480 is in. Ignore them if they aren't text, data, or bss. */
481 /* ms_type = mst_unknown; */
0963b4bd 482 continue; /* Skip this symbol. */
0cc7b392
DJ
483 }
484 msym = record_minimal_symbol
31edb802 485 (reader, sym->name, copy_names, symaddr,
0cc7b392 486 ms_type, sym->section, objfile);
6f610d07 487
0cc7b392
DJ
488 if (msym)
489 {
6f610d07 490 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
24c274a1 491 ELF-private part. */
6f610d07 492 if (type != ST_SYNTHETIC)
24c274a1
AM
493 {
494 /* Pass symbol size field in via BFD. FIXME!!! */
495 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
496 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
497 }
dea91a5c 498
a103a963 499 msym->filename = filesymname;
3e29f34a
MR
500 if (elf_make_msymbol_special_p)
501 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
0cc7b392 502 }
2eaf8d2a 503
715c6909
TT
504 /* If we see a default versioned symbol, install it under
505 its version-less name. */
506 if (msym != NULL)
507 {
508 const char *atsign = strchr (sym->name, '@');
509
510 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
511 {
512 int len = atsign - sym->name;
513
31edb802
CB
514 record_minimal_symbol (reader,
515 gdb::string_view (sym->name, len),
516 true, symaddr, ms_type, sym->section,
517 objfile);
715c6909
TT
518 }
519 }
520
2eaf8d2a
DJ
521 /* For @plt symbols, also record a trampoline to the
522 destination symbol. The @plt symbol will be used in
523 disassembly, and the trampoline will be used when we are
524 trying to find the target. */
525 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
526 {
527 int len = strlen (sym->name);
528
529 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
530 {
2eaf8d2a
DJ
531 struct minimal_symbol *mtramp;
532
31edb802
CB
533 mtramp = record_minimal_symbol
534 (reader, gdb::string_view (sym->name, len - 4), true,
535 symaddr, mst_solib_trampoline, sym->section, objfile);
2eaf8d2a
DJ
536 if (mtramp)
537 {
d9eaeb59 538 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
422d65e7 539 mtramp->created_by_gdb = 1;
2eaf8d2a 540 mtramp->filename = filesymname;
3e29f34a
MR
541 if (elf_make_msymbol_special_p)
542 gdbarch_elf_make_msymbol_special (gdbarch,
543 sym, mtramp);
2eaf8d2a
DJ
544 }
545 }
546 }
c906108c 547 }
c906108c
SS
548 }
549}
550
07be84bf
JK
551/* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
552 for later look ups of which function to call when user requests
553 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
554 library defining `function' we cannot yet know while reading OBJFILE which
555 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
556 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
557
558static void
8dddcb8f
TT
559elf_rel_plt_read (minimal_symbol_reader &reader,
560 struct objfile *objfile, asymbol **dyn_symbol_table)
07be84bf
JK
561{
562 bfd *obfd = objfile->obfd;
563 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
02e169e2 564 asection *relplt, *got_plt;
07be84bf 565 bfd_size_type reloc_count, reloc;
df6d5441 566 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
567 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
568 size_t ptr_size = TYPE_LENGTH (ptr_type);
569
570 if (objfile->separate_debug_objfile_backlink)
571 return;
572
07be84bf
JK
573 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
574 if (got_plt == NULL)
4b7d1f7f
WN
575 {
576 /* For platforms where there is no separate .got.plt. */
577 got_plt = bfd_get_section_by_name (obfd, ".got");
578 if (got_plt == NULL)
579 return;
580 }
07be84bf 581
02e169e2
PA
582 /* Depending on system, we may find jump slots in a relocation
583 section for either .got.plt or .plt. */
584 asection *plt = bfd_get_section_by_name (obfd, ".plt");
585 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
586
587 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
588
07be84bf
JK
589 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
590 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
02e169e2
PA
591 {
592 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
593
594 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
595 {
596 if (this_hdr.sh_info == plt_elf_idx
597 || this_hdr.sh_info == got_plt_elf_idx)
598 break;
599 }
600 }
07be84bf
JK
601 if (relplt == NULL)
602 return;
603
604 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
605 return;
606
26fcd5d7 607 std::string string_buffer;
07be84bf 608
02e169e2
PA
609 /* Does ADDRESS reside in SECTION of OBFD? */
610 auto within_section = [obfd] (asection *section, CORE_ADDR address)
611 {
612 if (section == NULL)
613 return false;
614
fd361982
AM
615 return (bfd_section_vma (section) <= address
616 && (address < bfd_section_vma (section)
617 + bfd_section_size (section)));
02e169e2
PA
618 };
619
07be84bf
JK
620 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
621 for (reloc = 0; reloc < reloc_count; reloc++)
622 {
22e048c9 623 const char *name;
07be84bf
JK
624 struct minimal_symbol *msym;
625 CORE_ADDR address;
26fcd5d7 626 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
07be84bf 627 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
07be84bf
JK
628
629 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
07be84bf
JK
630 address = relplt->relocation[reloc].address;
631
02e169e2
PA
632 asection *msym_section;
633
634 /* Does the pointer reside in either the .got.plt or .plt
635 sections? */
636 if (within_section (got_plt, address))
637 msym_section = got_plt;
638 else if (within_section (plt, address))
639 msym_section = plt;
640 else
07be84bf
JK
641 continue;
642
f50776aa
PA
643 /* We cannot check if NAME is a reference to
644 mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the
645 symbol is undefined and the objfile having NAME defined may
646 not yet have been loaded. */
07be84bf 647
26fcd5d7
TT
648 string_buffer.assign (name);
649 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
07be84bf 650
31edb802 651 msym = record_minimal_symbol (reader, string_buffer,
02e169e2
PA
652 true, address, mst_slot_got_plt,
653 msym_section, objfile);
07be84bf 654 if (msym)
d9eaeb59 655 SET_MSYMBOL_SIZE (msym, ptr_size);
07be84bf 656 }
07be84bf
JK
657}
658
659/* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
660
8127a2fa
TT
661static const struct objfile_key<htab, htab_deleter>
662 elf_objfile_gnu_ifunc_cache_data;
07be84bf
JK
663
664/* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
665
666struct elf_gnu_ifunc_cache
667{
668 /* This is always a function entry address, not a function descriptor. */
669 CORE_ADDR addr;
670
671 char name[1];
672};
673
674/* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
675
676static hashval_t
677elf_gnu_ifunc_cache_hash (const void *a_voidp)
678{
9a3c8263
SM
679 const struct elf_gnu_ifunc_cache *a
680 = (const struct elf_gnu_ifunc_cache *) a_voidp;
07be84bf
JK
681
682 return htab_hash_string (a->name);
683}
684
685/* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
686
687static int
688elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
689{
9a3c8263
SM
690 const struct elf_gnu_ifunc_cache *a
691 = (const struct elf_gnu_ifunc_cache *) a_voidp;
692 const struct elf_gnu_ifunc_cache *b
693 = (const struct elf_gnu_ifunc_cache *) b_voidp;
07be84bf
JK
694
695 return strcmp (a->name, b->name) == 0;
696}
697
698/* Record the target function address of a STT_GNU_IFUNC function NAME is the
699 function entry address ADDR. Return 1 if NAME and ADDR are considered as
700 valid and therefore they were successfully recorded, return 0 otherwise.
701
702 Function does not expect a duplicate entry. Use
703 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
704 exists. */
705
706static int
707elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
708{
7cbd4a93 709 struct bound_minimal_symbol msym;
07be84bf
JK
710 struct objfile *objfile;
711 htab_t htab;
712 struct elf_gnu_ifunc_cache entry_local, *entry_p;
713 void **slot;
714
715 msym = lookup_minimal_symbol_by_pc (addr);
7cbd4a93 716 if (msym.minsym == NULL)
07be84bf 717 return 0;
77e371c0 718 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
07be84bf 719 return 0;
e27d198c 720 objfile = msym.objfile;
07be84bf
JK
721
722 /* If .plt jumps back to .plt the symbol is still deferred for later
1adeb822 723 resolution and it has no use for GDB. */
c9d95fa3 724 const char *target_name = msym.minsym->linkage_name ();
1adeb822
PA
725 size_t len = strlen (target_name);
726
727 /* Note we check the symbol's name instead of checking whether the
728 symbol is in the .plt section because some systems have @plt
729 symbols in the .text section. */
730 if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0)
07be84bf
JK
731 return 0;
732
8127a2fa 733 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
07be84bf
JK
734 if (htab == NULL)
735 {
8127a2fa
TT
736 htab = htab_create_alloc (1, elf_gnu_ifunc_cache_hash,
737 elf_gnu_ifunc_cache_eq,
738 NULL, xcalloc, xfree);
739 elf_objfile_gnu_ifunc_cache_data.set (objfile, htab);
07be84bf
JK
740 }
741
742 entry_local.addr = addr;
743 obstack_grow (&objfile->objfile_obstack, &entry_local,
744 offsetof (struct elf_gnu_ifunc_cache, name));
745 obstack_grow_str0 (&objfile->objfile_obstack, name);
224c3ddb
SM
746 entry_p
747 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
07be84bf
JK
748
749 slot = htab_find_slot (htab, entry_p, INSERT);
750 if (*slot != NULL)
751 {
9a3c8263
SM
752 struct elf_gnu_ifunc_cache *entry_found_p
753 = (struct elf_gnu_ifunc_cache *) *slot;
df6d5441 754 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
755
756 if (entry_found_p->addr != addr)
757 {
758 /* This case indicates buggy inferior program, the resolved address
759 should never change. */
760
761 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
762 "function_address from %s to %s"),
763 name, paddress (gdbarch, entry_found_p->addr),
764 paddress (gdbarch, addr));
765 }
766
767 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
768 }
769 *slot = entry_p;
770
771 return 1;
772}
773
774/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
775 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
776 is not NULL) and the function returns 1. It returns 0 otherwise.
777
778 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
779 function. */
780
781static int
782elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
783{
2030c079 784 for (objfile *objfile : current_program_space->objfiles ())
07be84bf
JK
785 {
786 htab_t htab;
787 struct elf_gnu_ifunc_cache *entry_p;
788 void **slot;
789
8127a2fa 790 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
07be84bf
JK
791 if (htab == NULL)
792 continue;
793
224c3ddb
SM
794 entry_p = ((struct elf_gnu_ifunc_cache *)
795 alloca (sizeof (*entry_p) + strlen (name)));
07be84bf
JK
796 strcpy (entry_p->name, name);
797
798 slot = htab_find_slot (htab, entry_p, NO_INSERT);
799 if (slot == NULL)
800 continue;
9a3c8263 801 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
07be84bf
JK
802 gdb_assert (entry_p != NULL);
803
804 if (addr_p)
805 *addr_p = entry_p->addr;
806 return 1;
807 }
808
809 return 0;
810}
811
812/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
813 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
814 is not NULL) and the function returns 1. It returns 0 otherwise.
815
816 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
817 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
818 prevent cache entries duplicates. */
819
820static int
821elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
822{
823 char *name_got_plt;
07be84bf
JK
824 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
825
224c3ddb 826 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
07be84bf
JK
827 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
828
2030c079 829 for (objfile *objfile : current_program_space->objfiles ())
07be84bf
JK
830 {
831 bfd *obfd = objfile->obfd;
df6d5441 832 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
833 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
834 size_t ptr_size = TYPE_LENGTH (ptr_type);
835 CORE_ADDR pointer_address, addr;
836 asection *plt;
224c3ddb 837 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
3b7344d5 838 struct bound_minimal_symbol msym;
07be84bf
JK
839
840 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
3b7344d5 841 if (msym.minsym == NULL)
07be84bf 842 continue;
3b7344d5 843 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
07be84bf 844 continue;
77e371c0 845 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
07be84bf
JK
846
847 plt = bfd_get_section_by_name (obfd, ".plt");
848 if (plt == NULL)
849 continue;
850
3b7344d5 851 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
07be84bf
JK
852 continue;
853 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
854 continue;
855 addr = extract_typed_address (buf, ptr_type);
8b88a78e
PA
856 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
857 current_top_target ());
4b7d1f7f 858 addr = gdbarch_addr_bits_remove (gdbarch, addr);
07be84bf 859
07be84bf 860 if (elf_gnu_ifunc_record_cache (name, addr))
28f4fa4d
PA
861 {
862 if (addr_p != NULL)
863 *addr_p = addr;
864 return 1;
865 }
07be84bf
JK
866 }
867
868 return 0;
869}
870
871/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
872 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
ececd218 873 is not NULL) and the function returns true. It returns false otherwise.
07be84bf
JK
874
875 Both the elf_objfile_gnu_ifunc_cache_data hash table and
876 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
877
ececd218 878static bool
07be84bf
JK
879elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
880{
881 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
ececd218 882 return true;
dea91a5c 883
07be84bf 884 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
ececd218 885 return true;
07be84bf 886
ececd218 887 return false;
07be84bf
JK
888}
889
890/* Call STT_GNU_IFUNC - a function returning addresss of a real function to
891 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
892 is the entry point of the resolved STT_GNU_IFUNC target function to call.
893 */
894
895static CORE_ADDR
896elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
897{
2c02bd72 898 const char *name_at_pc;
07be84bf
JK
899 CORE_ADDR start_at_pc, address;
900 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
901 struct value *function, *address_val;
e1b2624a
AA
902 CORE_ADDR hwcap = 0;
903 struct value *hwcap_val;
07be84bf
JK
904
905 /* Try first any non-intrusive methods without an inferior call. */
906
907 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
908 && start_at_pc == pc)
909 {
910 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
911 return address;
912 }
913 else
914 name_at_pc = NULL;
915
916 function = allocate_value (func_func_type);
1a088441 917 VALUE_LVAL (function) = lval_memory;
07be84bf
JK
918 set_value_address (function, pc);
919
e1b2624a
AA
920 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
921 parameter. FUNCTION is the function entry address. ADDRESS may be a
922 function descriptor. */
07be84bf 923
8b88a78e 924 target_auxv_search (current_top_target (), AT_HWCAP, &hwcap);
e1b2624a
AA
925 hwcap_val = value_from_longest (builtin_type (gdbarch)
926 ->builtin_unsigned_long, hwcap);
e71585ff 927 address_val = call_function_by_hand (function, NULL, hwcap_val);
07be84bf 928 address = value_as_address (address_val);
8b88a78e 929 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address, current_top_target ());
4b7d1f7f 930 address = gdbarch_addr_bits_remove (gdbarch, address);
07be84bf
JK
931
932 if (name_at_pc)
933 elf_gnu_ifunc_record_cache (name_at_pc, address);
934
935 return address;
936}
937
0e30163f
JK
938/* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
939
940static void
941elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
942{
943 struct breakpoint *b_return;
944 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
945 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
946 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
00431a78 947 int thread_id = inferior_thread ()->global_num;
0e30163f
JK
948
949 gdb_assert (b->type == bp_gnu_ifunc_resolver);
950
951 for (b_return = b->related_breakpoint; b_return != b;
952 b_return = b_return->related_breakpoint)
953 {
954 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
955 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
956 gdb_assert (frame_id_p (b_return->frame_id));
957
958 if (b_return->thread == thread_id
959 && b_return->loc->requested_address == prev_pc
960 && frame_id_eq (b_return->frame_id, prev_frame_id))
961 break;
962 }
963
964 if (b_return == b)
965 {
0e30163f
JK
966 /* No need to call find_pc_line for symbols resolving as this is only
967 a helper breakpointer never shown to the user. */
968
51abb421 969 symtab_and_line sal;
0e30163f
JK
970 sal.pspace = current_inferior ()->pspace;
971 sal.pc = prev_pc;
972 sal.section = find_pc_overlay (sal.pc);
973 sal.explicit_pc = 1;
454dafbd
TT
974 b_return
975 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
976 prev_frame_id,
977 bp_gnu_ifunc_resolver_return).release ();
0e30163f 978
c70a6932
JK
979 /* set_momentary_breakpoint invalidates PREV_FRAME. */
980 prev_frame = NULL;
981
0e30163f
JK
982 /* Add new b_return to the ring list b->related_breakpoint. */
983 gdb_assert (b_return->related_breakpoint == b_return);
984 b_return->related_breakpoint = b->related_breakpoint;
985 b->related_breakpoint = b_return;
986 }
987}
988
989/* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
990
991static void
992elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
993{
00431a78 994 thread_info *thread = inferior_thread ();
0e30163f
JK
995 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
996 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
997 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
00431a78 998 struct regcache *regcache = get_thread_regcache (thread);
6a3a010b 999 struct value *func_func;
0e30163f
JK
1000 struct value *value;
1001 CORE_ADDR resolved_address, resolved_pc;
0e30163f
JK
1002
1003 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
1004
0e30163f
JK
1005 while (b->related_breakpoint != b)
1006 {
1007 struct breakpoint *b_next = b->related_breakpoint;
1008
1009 switch (b->type)
1010 {
1011 case bp_gnu_ifunc_resolver:
1012 break;
1013 case bp_gnu_ifunc_resolver_return:
1014 delete_breakpoint (b);
1015 break;
1016 default:
1017 internal_error (__FILE__, __LINE__,
1018 _("handle_inferior_event: Invalid "
1019 "gnu-indirect-function breakpoint type %d"),
1020 (int) b->type);
1021 }
1022 b = b_next;
1023 }
1024 gdb_assert (b->type == bp_gnu_ifunc_resolver);
6a3a010b
MR
1025 gdb_assert (b->loc->next == NULL);
1026
1027 func_func = allocate_value (func_func_type);
1a088441 1028 VALUE_LVAL (func_func) = lval_memory;
6a3a010b
MR
1029 set_value_address (func_func, b->loc->related_address);
1030
1031 value = allocate_value (value_type);
1032 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1033 value_contents_raw (value), NULL);
1034 resolved_address = value_as_address (value);
1035 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1036 resolved_address,
8b88a78e 1037 current_top_target ());
4b7d1f7f 1038 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
0e30163f 1039
f8eba3c6 1040 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
d28cd78a 1041 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
f00aae0f 1042 resolved_pc);
0e30163f 1043
0e30163f 1044 b->type = bp_breakpoint;
6c5b2ebe 1045 update_breakpoint_locations (b, current_program_space,
79188d8d
PA
1046 find_function_start_sal (resolved_pc, NULL, true),
1047 {});
0e30163f
JK
1048}
1049
2750ef27
TT
1050/* A helper function for elf_symfile_read that reads the minimal
1051 symbols. */
c906108c
SS
1052
1053static void
5f6cac40
TT
1054elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1055 const struct elfinfo *ei)
c906108c 1056{
63524580 1057 bfd *synth_abfd, *abfd = objfile->obfd;
62553543
EZ
1058 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1059 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1060 asymbol *synthsyms;
c906108c 1061
45cfd468
DE
1062 if (symtab_create_debug)
1063 {
1064 fprintf_unfiltered (gdb_stdlog,
1065 "Reading minimal symbols of objfile %s ...\n",
4262abfb 1066 objfile_name (objfile));
45cfd468
DE
1067 }
1068
5f6cac40
TT
1069 /* If we already have minsyms, then we can skip some work here.
1070 However, if there were stabs or mdebug sections, we go ahead and
1071 redo all the work anyway, because the psym readers for those
1072 kinds of debuginfo need extra information found here. This can
1073 go away once all types of symbols are in the per-BFD object. */
1074 if (objfile->per_bfd->minsyms_read
1075 && ei->stabsect == NULL
30d1f018
WP
1076 && ei->mdebugsect == NULL
1077 && ei->ctfsect == NULL)
5f6cac40
TT
1078 {
1079 if (symtab_create_debug)
1080 fprintf_unfiltered (gdb_stdlog,
1081 "... minimal symbols previously read\n");
1082 return;
1083 }
1084
d25e8719 1085 minimal_symbol_reader reader (objfile);
c906108c 1086
18a94d75 1087 /* Process the normal ELF symbol table first. */
c906108c 1088
62553543
EZ
1089 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1090 if (storage_needed < 0)
3e43a32a
MS
1091 error (_("Can't read symbols from %s: %s"),
1092 bfd_get_filename (objfile->obfd),
62553543
EZ
1093 bfd_errmsg (bfd_get_error ()));
1094
1095 if (storage_needed > 0)
1096 {
80c57053
JK
1097 /* Memory gets permanently referenced from ABFD after
1098 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1099
224c3ddb 1100 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
62553543
EZ
1101 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1102
1103 if (symcount < 0)
3e43a32a
MS
1104 error (_("Can't read symbols from %s: %s"),
1105 bfd_get_filename (objfile->obfd),
62553543
EZ
1106 bfd_errmsg (bfd_get_error ()));
1107
ce6c454e
TT
1108 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1109 false);
62553543 1110 }
c906108c
SS
1111
1112 /* Add the dynamic symbols. */
1113
62553543
EZ
1114 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1115
1116 if (storage_needed > 0)
1117 {
3f1eff0a
JK
1118 /* Memory gets permanently referenced from ABFD after
1119 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1120 It happens only in the case when elf_slurp_reloc_table sees
1121 asection->relocation NULL. Determining which section is asection is
1122 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1123 implementation detail, though. */
1124
224c3ddb 1125 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
62553543
EZ
1126 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1127 dyn_symbol_table);
1128
1129 if (dynsymcount < 0)
3e43a32a
MS
1130 error (_("Can't read symbols from %s: %s"),
1131 bfd_get_filename (objfile->obfd),
62553543
EZ
1132 bfd_errmsg (bfd_get_error ()));
1133
8dddcb8f 1134 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
ce6c454e 1135 dyn_symbol_table, false);
07be84bf 1136
8dddcb8f 1137 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
62553543
EZ
1138 }
1139
63524580
JK
1140 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1141 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1142
1143 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1144 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1145 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1146 read the code address from .opd while it reads the .symtab section from
1147 a separate debug info file as the .opd section is SHT_NOBITS there.
1148
1149 With SYNTH_ABFD the .opd section will be read from the original
1150 backlinked binary where it is valid. */
1151
1152 if (objfile->separate_debug_objfile_backlink)
1153 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1154 else
1155 synth_abfd = abfd;
1156
62553543
EZ
1157 /* Add synthetic symbols - for instance, names for any PLT entries. */
1158
63524580 1159 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
62553543
EZ
1160 dynsymcount, dyn_symbol_table,
1161 &synthsyms);
1162 if (synthcount > 0)
1163 {
62553543
EZ
1164 long i;
1165
b22e99fd 1166 std::unique_ptr<asymbol *[]>
d1e4a624 1167 synth_symbol_table (new asymbol *[synthcount]);
62553543 1168 for (i = 0; i < synthcount; i++)
9f20e3da 1169 synth_symbol_table[i] = synthsyms + i;
8dddcb8f 1170 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
ce6c454e 1171 synth_symbol_table.get (), true);
ba713918
AL
1172
1173 xfree (synthsyms);
1174 synthsyms = NULL;
62553543 1175 }
c906108c 1176
7134143f
DJ
1177 /* Install any minimal symbols that have been collected as the current
1178 minimal symbols for this objfile. The debug readers below this point
1179 should not generate new minimal symbols; if they do it's their
1180 responsibility to install them. "mdebug" appears to be the only one
1181 which will do this. */
1182
d25e8719 1183 reader.install ();
7134143f 1184
4f00dda3
DE
1185 if (symtab_create_debug)
1186 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
2750ef27
TT
1187}
1188
1189/* Scan and build partial symbols for a symbol file.
1190 We have been initialized by a call to elf_symfile_init, which
1191 currently does nothing.
1192
2750ef27
TT
1193 This function only does the minimum work necessary for letting the
1194 user "name" things symbolically; it does not read the entire symtab.
1195 Instead, it reads the external and static symbols and puts them in partial
1196 symbol tables. When more extensive information is requested of a
1197 file, the corresponding partial symbol table is mutated into a full
1198 fledged symbol table by going back and reading the symbols
1199 for real.
1200
1201 We look for sections with specific names, to tell us what debug
1202 format to look for: FIXME!!!
1203
1204 elfstab_build_psymtabs() handles STABS symbols;
1205 mdebug_build_psymtabs() handles ECOFF debugging information.
1206
1207 Note that ELF files have a "minimal" symbol table, which looks a lot
1208 like a COFF symbol table, but has only the minimal information necessary
1209 for linking. We process this also, and use the information to
1210 build gdb's minimal symbol table. This gives us some minimal debugging
1211 capability even for files compiled without -g. */
1212
1213static void
b15cc25c 1214elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
2750ef27
TT
1215{
1216 bfd *abfd = objfile->obfd;
1217 struct elfinfo ei;
30d1f018 1218 bool has_dwarf2 = true;
2750ef27 1219
2750ef27 1220 memset ((char *) &ei, 0, sizeof (ei));
97cbe998
SDJ
1221 if (!(objfile->flags & OBJF_READNEVER))
1222 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
c906108c 1223
5f6cac40
TT
1224 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1225
c906108c
SS
1226 /* ELF debugging information is inserted into the psymtab in the
1227 order of least informative first - most informative last. Since
1228 the psymtab table is searched `most recent insertion first' this
1229 increases the probability that more detailed debug information
1230 for a section is found.
1231
1232 For instance, an object file might contain both .mdebug (XCOFF)
1233 and .debug_info (DWARF2) sections then .mdebug is inserted first
1234 (searched last) and DWARF2 is inserted last (searched first). If
1235 we don't do this then the XCOFF info is found first - for code in
0963b4bd 1236 an included file XCOFF info is useless. */
c906108c
SS
1237
1238 if (ei.mdebugsect)
1239 {
1240 const struct ecoff_debug_swap *swap;
1241
1242 /* .mdebug section, presumably holding ECOFF debugging
c5aa993b 1243 information. */
c906108c
SS
1244 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1245 if (swap)
d4f3574e 1246 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
c906108c
SS
1247 }
1248 if (ei.stabsect)
1249 {
1250 asection *str_sect;
1251
1252 /* Stab sections have an associated string table that looks like
c5aa993b 1253 a separate section. */
c906108c
SS
1254 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1255
1256 /* FIXME should probably warn about a stab section without a stabstr. */
1257 if (str_sect)
1258 elfstab_build_psymtabs (objfile,
086df311 1259 ei.stabsect,
c906108c 1260 str_sect->filepos,
fd361982 1261 bfd_section_size (str_sect));
c906108c 1262 }
9291a0cd 1263
4b610737 1264 if (dwarf2_has_info (objfile, NULL, true))
b11896a5 1265 {
3c0aa29a 1266 dw_index_kind index_kind;
3e03848b 1267
3c0aa29a
PA
1268 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF
1269 debug information present in OBJFILE. If there is such debug
1270 info present never use an index. */
1271 if (!objfile_has_partial_symbols (objfile)
1272 && dwarf2_initialize_objfile (objfile, &index_kind))
1273 {
1274 switch (index_kind)
1275 {
1276 case dw_index_kind::GDB_INDEX:
1277 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1278 break;
1279 case dw_index_kind::DEBUG_NAMES:
1280 objfile_set_sym_fns (objfile, &elf_sym_fns_debug_names);
1281 break;
1282 }
1283 }
1284 else
b11896a5
TT
1285 {
1286 /* It is ok to do this even if the stabs reader made some
1287 partial symbols, because OBJF_PSYMTABS_READ has not been
1288 set, and so our lazy reader function will still be called
1289 when needed. */
8fb8eb5c 1290 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
b11896a5
TT
1291 }
1292 }
3e43a32a
MS
1293 /* If the file has its own symbol tables it has no separate debug
1294 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1295 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
8a92335b
JK
1296 `.note.gnu.build-id'.
1297
1298 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1299 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1300 an objfile via find_separate_debug_file_in_section there was no separate
1301 debug info available. Therefore do not attempt to search for another one,
1302 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1303 be NULL and we would possibly violate it. */
1304
1305 else if (!objfile_has_partial_symbols (objfile)
1306 && objfile->separate_debug_objfile == NULL
1307 && objfile->separate_debug_objfile_backlink == NULL)
9cce227f 1308 {
a8dbfd58 1309 std::string debugfile = find_separate_debug_file_by_buildid (objfile);
9cce227f 1310
a8dbfd58
SM
1311 if (debugfile.empty ())
1312 debugfile = find_separate_debug_file_by_debuglink (objfile);
9cce227f 1313
a8dbfd58 1314 if (!debugfile.empty ())
9cce227f 1315 {
b926417a 1316 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (debugfile.c_str ()));
d7f9d729 1317
b926417a 1318 symbol_file_add_separate (debug_bfd.get (), debugfile.c_str (),
192b62ce 1319 symfile_flags, objfile);
9cce227f 1320 }
0d79cdc4
AM
1321 else
1322 {
30d1f018 1323 has_dwarf2 = false;
0d79cdc4
AM
1324 const struct bfd_build_id *build_id = build_id_bfd_get (objfile->obfd);
1325
1326 if (build_id != nullptr)
1327 {
1328 gdb::unique_xmalloc_ptr<char> symfile_path;
1329 scoped_fd fd (debuginfod_debuginfo_query (build_id->data,
1330 build_id->size,
1331 objfile->original_name,
1332 &symfile_path));
1333
1334 if (fd.get () >= 0)
1335 {
1336 /* File successfully retrieved from server. */
1337 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (symfile_path.get ()));
1338
1339 if (debug_bfd == nullptr)
1340 warning (_("File \"%s\" from debuginfod cannot be opened as bfd"),
1341 objfile->original_name);
1342 else if (build_id_verify (debug_bfd.get (), build_id->size, build_id->data))
1343 {
1344 symbol_file_add_separate (debug_bfd.get (), symfile_path.get (),
1345 symfile_flags, objfile);
1346 has_dwarf2 = true;
1347 }
1348 }
1349 }
1350 }
30d1f018
WP
1351 }
1352
1353 /* Read the CTF section only if there is no DWARF info. */
1354 if (!has_dwarf2 && ei.ctfsect)
1355 {
1356 elfctf_build_psymtabs (objfile);
9cce227f 1357 }
c906108c
SS
1358}
1359
b11896a5
TT
1360/* Callback to lazily read psymtabs. */
1361
1362static void
1363read_psyms (struct objfile *objfile)
1364{
251d32d9 1365 if (dwarf2_has_info (objfile, NULL))
b11896a5
TT
1366 dwarf2_build_psymtabs (objfile);
1367}
1368
c906108c
SS
1369/* Initialize anything that needs initializing when a completely new symbol
1370 file is specified (not just adding some symbols from another file, e.g. a
caa429d8 1371 shared library). */
c906108c
SS
1372
1373static void
fba45db2 1374elf_new_init (struct objfile *ignore)
c906108c 1375{
c906108c
SS
1376}
1377
1378/* Perform any local cleanups required when we are done with a particular
1379 objfile. I.E, we are in the process of discarding all symbol information
1380 for an objfile, freeing up all memory held for it, and unlinking the
0963b4bd 1381 objfile struct from the global list of known objfiles. */
c906108c
SS
1382
1383static void
fba45db2 1384elf_symfile_finish (struct objfile *objfile)
c906108c 1385{
c906108c
SS
1386}
1387
db7a9bcd 1388/* ELF specific initialization routine for reading symbols. */
c906108c
SS
1389
1390static void
fba45db2 1391elf_symfile_init (struct objfile *objfile)
c906108c
SS
1392{
1393 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1394 find this causes a significant slowdown in gdb then we could
1395 set it in the debug symbol readers only when necessary. */
1396 objfile->flags |= OBJF_REORDERED;
1397}
1398
55aa24fb
SDJ
1399/* Implementation of `sym_get_probes', as documented in symfile.h. */
1400
814cf43a 1401static const elfread_data &
55aa24fb
SDJ
1402elf_get_probes (struct objfile *objfile)
1403{
814cf43a 1404 elfread_data *probes_per_bfd = probe_key.get (objfile->obfd);
55aa24fb 1405
aaa63a31 1406 if (probes_per_bfd == NULL)
55aa24fb 1407 {
814cf43a 1408 probes_per_bfd = probe_key.emplace (objfile->obfd);
55aa24fb
SDJ
1409
1410 /* Here we try to gather information about all types of probes from the
1411 objfile. */
935676c9 1412 for (const static_probe_ops *ops : all_static_probe_ops)
0782db84 1413 ops->get_probes (probes_per_bfd, objfile);
55aa24fb
SDJ
1414 }
1415
aaa63a31 1416 return *probes_per_bfd;
55aa24fb
SDJ
1417}
1418
c906108c 1419\f
55aa24fb
SDJ
1420
1421/* Implementation `sym_probe_fns', as documented in symfile.h. */
1422
1423static const struct sym_probe_fns elf_probe_fns =
1424{
25f9533e 1425 elf_get_probes, /* sym_get_probes */
55aa24fb
SDJ
1426};
1427
c906108c
SS
1428/* Register that we are able to handle ELF object file formats. */
1429
00b5771c 1430static const struct sym_fns elf_sym_fns =
c906108c 1431{
3e43a32a
MS
1432 elf_new_init, /* init anything gbl to entire symtab */
1433 elf_symfile_init, /* read initial info, setup for sym_read() */
1434 elf_symfile_read, /* read a symbol file into symtab */
b11896a5
TT
1435 NULL, /* sym_read_psymbols */
1436 elf_symfile_finish, /* finished with file, cleanup */
1437 default_symfile_offsets, /* Translate ext. to int. relocation */
1438 elf_symfile_segments, /* Get segment information from a file. */
1439 NULL,
1440 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1441 &elf_probe_fns, /* sym_probe_fns */
b11896a5
TT
1442 &psym_functions
1443};
1444
1445/* The same as elf_sym_fns, but not registered and lazily reads
1446 psymbols. */
1447
e36122e9 1448const struct sym_fns elf_sym_fns_lazy_psyms =
b11896a5 1449{
b11896a5
TT
1450 elf_new_init, /* init anything gbl to entire symtab */
1451 elf_symfile_init, /* read initial info, setup for sym_read() */
1452 elf_symfile_read, /* read a symbol file into symtab */
1453 read_psyms, /* sym_read_psymbols */
3e43a32a
MS
1454 elf_symfile_finish, /* finished with file, cleanup */
1455 default_symfile_offsets, /* Translate ext. to int. relocation */
1456 elf_symfile_segments, /* Get segment information from a file. */
1457 NULL,
1458 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1459 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1460 &psym_functions
c906108c
SS
1461};
1462
9291a0cd
TT
1463/* The same as elf_sym_fns, but not registered and uses the
1464 DWARF-specific GNU index rather than psymtab. */
e36122e9 1465const struct sym_fns elf_sym_fns_gdb_index =
9291a0cd 1466{
3e43a32a
MS
1467 elf_new_init, /* init anything gbl to entire symab */
1468 elf_symfile_init, /* read initial info, setup for sym_red() */
1469 elf_symfile_read, /* read a symbol file into symtab */
b11896a5 1470 NULL, /* sym_read_psymbols */
3e43a32a 1471 elf_symfile_finish, /* finished with file, cleanup */
405feb71 1472 default_symfile_offsets, /* Translate ext. to int. relocation */
3e43a32a
MS
1473 elf_symfile_segments, /* Get segment information from a file. */
1474 NULL,
1475 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1476 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1477 &dwarf2_gdb_index_functions
9291a0cd
TT
1478};
1479
927aa2e7
JK
1480/* The same as elf_sym_fns, but not registered and uses the
1481 DWARF-specific .debug_names index rather than psymtab. */
1482const struct sym_fns elf_sym_fns_debug_names =
1483{
1484 elf_new_init, /* init anything gbl to entire symab */
1485 elf_symfile_init, /* read initial info, setup for sym_red() */
1486 elf_symfile_read, /* read a symbol file into symtab */
1487 NULL, /* sym_read_psymbols */
1488 elf_symfile_finish, /* finished with file, cleanup */
405feb71 1489 default_symfile_offsets, /* Translate ext. to int. relocation */
927aa2e7
JK
1490 elf_symfile_segments, /* Get segment information from a file. */
1491 NULL,
1492 default_symfile_relocate, /* Relocate a debug section. */
1493 &elf_probe_fns, /* sym_probe_fns */
1494 &dwarf2_debug_names_functions
1495};
1496
07be84bf
JK
1497/* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1498
1499static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1500{
1501 elf_gnu_ifunc_resolve_addr,
1502 elf_gnu_ifunc_resolve_name,
0e30163f
JK
1503 elf_gnu_ifunc_resolver_stop,
1504 elf_gnu_ifunc_resolver_return_stop
07be84bf
JK
1505};
1506
6c265988 1507void _initialize_elfread ();
c906108c 1508void
6c265988 1509_initialize_elfread ()
c906108c 1510{
c256e171 1511 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
07be84bf 1512
07be84bf 1513 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
c906108c 1514}