]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/elfread.c
Remove buildsym_init
[thirdparty/binutils-gdb.git] / gdb / elfread.c
CommitLineData
c906108c 1/* Read ELF (Executable and Linking Format) object files for GDB.
1bac305b 2
e2882c85 3 Copyright (C) 1991-2018 Free Software Foundation, Inc.
1bac305b 4
c906108c
SS
5 Written by Fred Fish at Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "bfd.h"
c906108c 24#include "elf-bfd.h"
31d99776
DJ
25#include "elf/common.h"
26#include "elf/internal.h"
c906108c
SS
27#include "elf/mips.h"
28#include "symtab.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "buildsym.h"
32#include "stabsread.h"
33#include "gdb-stabs.h"
34#include "complaints.h"
35#include "demangle.h"
ccefe4c4 36#include "psympriv.h"
0ba1096a 37#include "filenames.h"
55aa24fb
SDJ
38#include "probe.h"
39#include "arch-utils.h"
07be84bf
JK
40#include "gdbtypes.h"
41#include "value.h"
42#include "infcall.h"
0e30163f 43#include "gdbthread.h"
00431a78 44#include "inferior.h"
0e30163f 45#include "regcache.h"
0af1e9a5 46#include "bcache.h"
cbb099e8 47#include "gdb_bfd.h"
dc294be5 48#include "build-id.h"
f00aae0f 49#include "location.h"
e1b2624a 50#include "auxv.h"
c906108c 51
3c0aa29a
PA
52/* Forward declarations. */
53extern const struct sym_fns elf_sym_fns_gdb_index;
54extern const struct sym_fns elf_sym_fns_debug_names;
55extern const struct sym_fns elf_sym_fns_lazy_psyms;
56
c906108c 57/* The struct elfinfo is available only during ELF symbol table and
6426a772 58 psymtab reading. It is destroyed at the completion of psymtab-reading.
c906108c
SS
59 It's local to elf_symfile_read. */
60
c5aa993b
JM
61struct elfinfo
62 {
c5aa993b 63 asection *stabsect; /* Section pointer for .stab section */
c5aa993b
JM
64 asection *mdebugsect; /* Section pointer for .mdebug section */
65 };
c906108c 66
5d9cf8a4 67/* Per-BFD data for probe info. */
55aa24fb 68
5d9cf8a4 69static const struct bfd_data *probe_key = NULL;
55aa24fb 70
07be84bf
JK
71/* Minimal symbols located at the GOT entries for .plt - that is the real
72 pointer where the given entry will jump to. It gets updated by the real
73 function address during lazy ld.so resolving in the inferior. These
74 minimal symbols are indexed for <tab>-completion. */
75
76#define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
77
31d99776
DJ
78/* Locate the segments in ABFD. */
79
80static struct symfile_segment_data *
81elf_symfile_segments (bfd *abfd)
82{
83 Elf_Internal_Phdr *phdrs, **segments;
84 long phdrs_size;
85 int num_phdrs, num_segments, num_sections, i;
86 asection *sect;
87 struct symfile_segment_data *data;
88
89 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
90 if (phdrs_size == -1)
91 return NULL;
92
224c3ddb 93 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
31d99776
DJ
94 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
95 if (num_phdrs == -1)
96 return NULL;
97
98 num_segments = 0;
8d749320 99 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
31d99776
DJ
100 for (i = 0; i < num_phdrs; i++)
101 if (phdrs[i].p_type == PT_LOAD)
102 segments[num_segments++] = &phdrs[i];
103
104 if (num_segments == 0)
105 return NULL;
106
41bf6aca 107 data = XCNEW (struct symfile_segment_data);
31d99776 108 data->num_segments = num_segments;
fc270c35
TT
109 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
110 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
31d99776
DJ
111
112 for (i = 0; i < num_segments; i++)
113 {
114 data->segment_bases[i] = segments[i]->p_vaddr;
115 data->segment_sizes[i] = segments[i]->p_memsz;
116 }
117
118 num_sections = bfd_count_sections (abfd);
fc270c35 119 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
120
121 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
122 {
123 int j;
31d99776
DJ
124
125 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
126 continue;
127
62b74cb8 128 Elf_Internal_Shdr *this_hdr = &elf_section_data (sect)->this_hdr;
31d99776
DJ
129
130 for (j = 0; j < num_segments; j++)
62b74cb8 131 if (ELF_SECTION_IN_SEGMENT (this_hdr, segments[j]))
31d99776
DJ
132 {
133 data->segment_info[i] = j + 1;
134 break;
135 }
136
ad09a548
DJ
137 /* We should have found a segment for every non-empty section.
138 If we haven't, we will not relocate this section by any
139 offsets we apply to the segments. As an exception, do not
140 warn about SHT_NOBITS sections; in normal ELF execution
141 environments, SHT_NOBITS means zero-initialized and belongs
142 in a segment, but in no-OS environments some tools (e.g. ARM
143 RealView) use SHT_NOBITS for uninitialized data. Since it is
144 uninitialized, it doesn't need a program header. Such
145 binaries are not relocatable. */
146 if (bfd_get_section_size (sect) > 0 && j == num_segments
147 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
28ee876a 148 warning (_("Loadable section \"%s\" outside of ELF segments"),
31d99776
DJ
149 bfd_section_name (abfd, sect));
150 }
151
152 return data;
153}
154
c906108c
SS
155/* We are called once per section from elf_symfile_read. We
156 need to examine each section we are passed, check to see
157 if it is something we are interested in processing, and
158 if so, stash away some access information for the section.
159
160 For now we recognize the dwarf debug information sections and
161 line number sections from matching their section names. The
162 ELF definition is no real help here since it has no direct
163 knowledge of DWARF (by design, so any debugging format can be
164 used).
165
166 We also recognize the ".stab" sections used by the Sun compilers
167 released with Solaris 2.
168
169 FIXME: The section names should not be hardwired strings (what
170 should they be? I don't think most object file formats have enough
0963b4bd 171 section flags to specify what kind of debug section it is.
c906108c
SS
172 -kingdon). */
173
174static void
12b9c64f 175elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
c906108c 176{
52f0bd74 177 struct elfinfo *ei;
c906108c
SS
178
179 ei = (struct elfinfo *) eip;
7ce59000 180 if (strcmp (sectp->name, ".stab") == 0)
c906108c 181 {
c5aa993b 182 ei->stabsect = sectp;
c906108c 183 }
6314a349 184 else if (strcmp (sectp->name, ".mdebug") == 0)
c906108c 185 {
c5aa993b 186 ei->mdebugsect = sectp;
c906108c
SS
187 }
188}
189
c906108c 190static struct minimal_symbol *
8dddcb8f 191record_minimal_symbol (minimal_symbol_reader &reader,
ce6c454e 192 const char *name, int name_len, bool copy_name,
04a679b8 193 CORE_ADDR address,
f594e5e9
MC
194 enum minimal_symbol_type ms_type,
195 asection *bfd_section, struct objfile *objfile)
c906108c 196{
5e2b427d
UW
197 struct gdbarch *gdbarch = get_objfile_arch (objfile);
198
0875794a
JK
199 if (ms_type == mst_text || ms_type == mst_file_text
200 || ms_type == mst_text_gnu_ifunc)
85ddcc70 201 address = gdbarch_addr_bits_remove (gdbarch, address);
c906108c 202
8dddcb8f
TT
203 return reader.record_full (name, name_len, copy_name, address,
204 ms_type,
205 gdb_bfd_section_index (objfile->obfd,
206 bfd_section));
c906108c
SS
207}
208
7f86f058 209/* Read the symbol table of an ELF file.
c906108c 210
62553543 211 Given an objfile, a symbol table, and a flag indicating whether the
6f610d07
UW
212 symbol table contains regular, dynamic, or synthetic symbols, add all
213 the global function and data symbols to the minimal symbol table.
c906108c 214
c5aa993b
JM
215 In stabs-in-ELF, as implemented by Sun, there are some local symbols
216 defined in the ELF symbol table, which can be used to locate
217 the beginnings of sections from each ".o" file that was linked to
218 form the executable objfile. We gather any such info and record it
7f86f058 219 in data structures hung off the objfile's private data. */
c906108c 220
6f610d07
UW
221#define ST_REGULAR 0
222#define ST_DYNAMIC 1
223#define ST_SYNTHETIC 2
224
c906108c 225static void
8dddcb8f
TT
226elf_symtab_read (minimal_symbol_reader &reader,
227 struct objfile *objfile, int type,
04a679b8 228 long number_of_symbols, asymbol **symbol_table,
ce6c454e 229 bool copy_names)
c906108c 230{
5e2b427d 231 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 232 asymbol *sym;
c906108c 233 long i;
c906108c
SS
234 CORE_ADDR symaddr;
235 enum minimal_symbol_type ms_type;
18a94d75
DE
236 /* Name of the last file symbol. This is either a constant string or is
237 saved on the objfile's filename cache. */
0af1e9a5 238 const char *filesymname = "";
d4f3574e 239 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
3e29f34a
MR
240 int elf_make_msymbol_special_p
241 = gdbarch_elf_make_msymbol_special_p (gdbarch);
c5aa993b 242
0cc7b392 243 for (i = 0; i < number_of_symbols; i++)
c906108c 244 {
0cc7b392
DJ
245 sym = symbol_table[i];
246 if (sym->name == NULL || *sym->name == '\0')
c906108c 247 {
0cc7b392 248 /* Skip names that don't exist (shouldn't happen), or names
0963b4bd 249 that are null strings (may happen). */
0cc7b392
DJ
250 continue;
251 }
c906108c 252
74763737
DJ
253 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
254 symbols which do not correspond to objects in the symbol table,
255 but have some other target-specific meaning. */
256 if (bfd_is_target_special_symbol (objfile->obfd, sym))
60c5725c
DJ
257 {
258 if (gdbarch_record_special_symbol_p (gdbarch))
259 gdbarch_record_special_symbol (gdbarch, objfile, sym);
260 continue;
261 }
74763737 262
6f610d07 263 if (type == ST_DYNAMIC
45dfa85a 264 && sym->section == bfd_und_section_ptr
0cc7b392
DJ
265 && (sym->flags & BSF_FUNCTION))
266 {
267 struct minimal_symbol *msym;
02c75f72 268 bfd *abfd = objfile->obfd;
dea91a5c 269 asection *sect;
0cc7b392
DJ
270
271 /* Symbol is a reference to a function defined in
272 a shared library.
273 If its value is non zero then it is usually the address
274 of the corresponding entry in the procedure linkage table,
275 plus the desired section offset.
276 If its value is zero then the dynamic linker has to resolve
0963b4bd 277 the symbol. We are unable to find any meaningful address
0cc7b392
DJ
278 for this symbol in the executable file, so we skip it. */
279 symaddr = sym->value;
280 if (symaddr == 0)
281 continue;
02c75f72
UW
282
283 /* sym->section is the undefined section. However, we want to
284 record the section where the PLT stub resides with the
285 minimal symbol. Search the section table for the one that
286 covers the stub's address. */
287 for (sect = abfd->sections; sect != NULL; sect = sect->next)
288 {
289 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
290 continue;
291
292 if (symaddr >= bfd_get_section_vma (abfd, sect)
293 && symaddr < bfd_get_section_vma (abfd, sect)
294 + bfd_get_section_size (sect))
295 break;
296 }
297 if (!sect)
298 continue;
299
828cfa8d
JB
300 /* On ia64-hpux, we have discovered that the system linker
301 adds undefined symbols with nonzero addresses that cannot
302 be right (their address points inside the code of another
303 function in the .text section). This creates problems
304 when trying to determine which symbol corresponds to
305 a given address.
306
307 We try to detect those buggy symbols by checking which
308 section we think they correspond to. Normally, PLT symbols
309 are stored inside their own section, and the typical name
310 for that section is ".plt". So, if there is a ".plt"
311 section, and yet the section name of our symbol does not
312 start with ".plt", we ignore that symbol. */
61012eef 313 if (!startswith (sect->name, ".plt")
828cfa8d
JB
314 && bfd_get_section_by_name (abfd, ".plt") != NULL)
315 continue;
316
0cc7b392 317 msym = record_minimal_symbol
8dddcb8f 318 (reader, sym->name, strlen (sym->name), copy_names,
04a679b8 319 symaddr, mst_solib_trampoline, sect, objfile);
0cc7b392 320 if (msym != NULL)
9b807e7b
MR
321 {
322 msym->filename = filesymname;
3e29f34a
MR
323 if (elf_make_msymbol_special_p)
324 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
9b807e7b 325 }
0cc7b392
DJ
326 continue;
327 }
c906108c 328
0cc7b392
DJ
329 /* If it is a nonstripped executable, do not enter dynamic
330 symbols, as the dynamic symbol table is usually a subset
331 of the main symbol table. */
6f610d07 332 if (type == ST_DYNAMIC && !stripped)
0cc7b392
DJ
333 continue;
334 if (sym->flags & BSF_FILE)
335 {
9a3c8263
SM
336 filesymname
337 = (const char *) bcache (sym->name, strlen (sym->name) + 1,
338 objfile->per_bfd->filename_cache);
0cc7b392
DJ
339 }
340 else if (sym->flags & BSF_SECTION_SYM)
341 continue;
bb869963
SDJ
342 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
343 | BSF_GNU_UNIQUE))
0cc7b392
DJ
344 {
345 struct minimal_symbol *msym;
346
347 /* Select global/local/weak symbols. Note that bfd puts abs
348 symbols in their own section, so all symbols we are
0963b4bd
MS
349 interested in will have a section. */
350 /* Bfd symbols are section relative. */
0cc7b392 351 symaddr = sym->value + sym->section->vma;
0cc7b392
DJ
352 /* For non-absolute symbols, use the type of the section
353 they are relative to, to intuit text/data. Bfd provides
0963b4bd 354 no way of figuring this out for absolute symbols. */
45dfa85a 355 if (sym->section == bfd_abs_section_ptr)
c906108c 356 {
0cc7b392
DJ
357 /* This is a hack to get the minimal symbol type
358 right for Irix 5, which has absolute addresses
6f610d07
UW
359 with special section indices for dynamic symbols.
360
361 NOTE: uweigand-20071112: Synthetic symbols do not
362 have an ELF-private part, so do not touch those. */
dea91a5c 363 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
0cc7b392
DJ
364 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
365
366 switch (shndx)
c906108c 367 {
0cc7b392
DJ
368 case SHN_MIPS_TEXT:
369 ms_type = mst_text;
370 break;
371 case SHN_MIPS_DATA:
372 ms_type = mst_data;
373 break;
374 case SHN_MIPS_ACOMMON:
375 ms_type = mst_bss;
376 break;
377 default:
378 ms_type = mst_abs;
379 }
380
381 /* If it is an Irix dynamic symbol, skip section name
0963b4bd 382 symbols, relocate all others by section offset. */
0cc7b392
DJ
383 if (ms_type != mst_abs)
384 {
385 if (sym->name[0] == '.')
386 continue;
c906108c 387 }
0cc7b392
DJ
388 }
389 else if (sym->section->flags & SEC_CODE)
390 {
bb869963 391 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 392 {
0875794a
JK
393 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
394 ms_type = mst_text_gnu_ifunc;
395 else
396 ms_type = mst_text;
0cc7b392 397 }
90359a16
JK
398 /* The BSF_SYNTHETIC check is there to omit ppc64 function
399 descriptors mistaken for static functions starting with 'L'.
400 */
401 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
402 && (sym->flags & BSF_SYNTHETIC) == 0)
0cc7b392
DJ
403 || ((sym->flags & BSF_LOCAL)
404 && sym->name[0] == '$'
405 && sym->name[1] == 'L'))
406 /* Looks like a compiler-generated label. Skip
407 it. The assembler should be skipping these (to
408 keep executables small), but apparently with
409 gcc on the (deleted) delta m88k SVR4, it loses.
410 So to have us check too should be harmless (but
411 I encourage people to fix this in the assembler
412 instead of adding checks here). */
413 continue;
414 else
415 {
416 ms_type = mst_file_text;
c906108c 417 }
0cc7b392
DJ
418 }
419 else if (sym->section->flags & SEC_ALLOC)
420 {
bb869963 421 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 422 {
f50776aa
PA
423 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
424 {
425 ms_type = mst_data_gnu_ifunc;
426 }
427 else if (sym->section->flags & SEC_LOAD)
c906108c 428 {
0cc7b392 429 ms_type = mst_data;
c906108c 430 }
c906108c
SS
431 else
432 {
0cc7b392 433 ms_type = mst_bss;
c906108c
SS
434 }
435 }
0cc7b392 436 else if (sym->flags & BSF_LOCAL)
c906108c 437 {
0cc7b392
DJ
438 if (sym->section->flags & SEC_LOAD)
439 {
440 ms_type = mst_file_data;
c906108c
SS
441 }
442 else
443 {
0cc7b392 444 ms_type = mst_file_bss;
c906108c
SS
445 }
446 }
447 else
448 {
0cc7b392 449 ms_type = mst_unknown;
c906108c 450 }
0cc7b392
DJ
451 }
452 else
453 {
454 /* FIXME: Solaris2 shared libraries include lots of
dea91a5c 455 odd "absolute" and "undefined" symbols, that play
0cc7b392
DJ
456 hob with actions like finding what function the PC
457 is in. Ignore them if they aren't text, data, or bss. */
458 /* ms_type = mst_unknown; */
0963b4bd 459 continue; /* Skip this symbol. */
0cc7b392
DJ
460 }
461 msym = record_minimal_symbol
8dddcb8f 462 (reader, sym->name, strlen (sym->name), copy_names, symaddr,
0cc7b392 463 ms_type, sym->section, objfile);
6f610d07 464
0cc7b392
DJ
465 if (msym)
466 {
6f610d07 467 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
24c274a1 468 ELF-private part. */
6f610d07 469 if (type != ST_SYNTHETIC)
24c274a1
AM
470 {
471 /* Pass symbol size field in via BFD. FIXME!!! */
472 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
473 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
474 }
dea91a5c 475
a103a963 476 msym->filename = filesymname;
3e29f34a
MR
477 if (elf_make_msymbol_special_p)
478 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
0cc7b392 479 }
2eaf8d2a 480
715c6909
TT
481 /* If we see a default versioned symbol, install it under
482 its version-less name. */
483 if (msym != NULL)
484 {
485 const char *atsign = strchr (sym->name, '@');
486
487 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
488 {
489 int len = atsign - sym->name;
490
ce6c454e 491 record_minimal_symbol (reader, sym->name, len, true, symaddr,
715c6909
TT
492 ms_type, sym->section, objfile);
493 }
494 }
495
2eaf8d2a
DJ
496 /* For @plt symbols, also record a trampoline to the
497 destination symbol. The @plt symbol will be used in
498 disassembly, and the trampoline will be used when we are
499 trying to find the target. */
500 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
501 {
502 int len = strlen (sym->name);
503
504 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
505 {
2eaf8d2a
DJ
506 struct minimal_symbol *mtramp;
507
ce6c454e
TT
508 mtramp = record_minimal_symbol (reader, sym->name, len - 4,
509 true, symaddr,
2eaf8d2a
DJ
510 mst_solib_trampoline,
511 sym->section, objfile);
512 if (mtramp)
513 {
d9eaeb59 514 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
422d65e7 515 mtramp->created_by_gdb = 1;
2eaf8d2a 516 mtramp->filename = filesymname;
3e29f34a
MR
517 if (elf_make_msymbol_special_p)
518 gdbarch_elf_make_msymbol_special (gdbarch,
519 sym, mtramp);
2eaf8d2a
DJ
520 }
521 }
522 }
c906108c 523 }
c906108c
SS
524 }
525}
526
07be84bf
JK
527/* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
528 for later look ups of which function to call when user requests
529 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
530 library defining `function' we cannot yet know while reading OBJFILE which
531 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
532 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
533
534static void
8dddcb8f
TT
535elf_rel_plt_read (minimal_symbol_reader &reader,
536 struct objfile *objfile, asymbol **dyn_symbol_table)
07be84bf
JK
537{
538 bfd *obfd = objfile->obfd;
539 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
02e169e2 540 asection *relplt, *got_plt;
07be84bf 541 bfd_size_type reloc_count, reloc;
df6d5441 542 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
543 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
544 size_t ptr_size = TYPE_LENGTH (ptr_type);
545
546 if (objfile->separate_debug_objfile_backlink)
547 return;
548
07be84bf
JK
549 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
550 if (got_plt == NULL)
4b7d1f7f
WN
551 {
552 /* For platforms where there is no separate .got.plt. */
553 got_plt = bfd_get_section_by_name (obfd, ".got");
554 if (got_plt == NULL)
555 return;
556 }
07be84bf 557
02e169e2
PA
558 /* Depending on system, we may find jump slots in a relocation
559 section for either .got.plt or .plt. */
560 asection *plt = bfd_get_section_by_name (obfd, ".plt");
561 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
562
563 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
564
07be84bf
JK
565 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
566 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
02e169e2
PA
567 {
568 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
569
570 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
571 {
572 if (this_hdr.sh_info == plt_elf_idx
573 || this_hdr.sh_info == got_plt_elf_idx)
574 break;
575 }
576 }
07be84bf
JK
577 if (relplt == NULL)
578 return;
579
580 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
581 return;
582
26fcd5d7 583 std::string string_buffer;
07be84bf 584
02e169e2
PA
585 /* Does ADDRESS reside in SECTION of OBFD? */
586 auto within_section = [obfd] (asection *section, CORE_ADDR address)
587 {
588 if (section == NULL)
589 return false;
590
591 return (bfd_get_section_vma (obfd, section) <= address
592 && (address < bfd_get_section_vma (obfd, section)
593 + bfd_get_section_size (section)));
594 };
595
07be84bf
JK
596 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
597 for (reloc = 0; reloc < reloc_count; reloc++)
598 {
22e048c9 599 const char *name;
07be84bf
JK
600 struct minimal_symbol *msym;
601 CORE_ADDR address;
26fcd5d7 602 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
07be84bf 603 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
07be84bf
JK
604
605 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
07be84bf
JK
606 address = relplt->relocation[reloc].address;
607
02e169e2
PA
608 asection *msym_section;
609
610 /* Does the pointer reside in either the .got.plt or .plt
611 sections? */
612 if (within_section (got_plt, address))
613 msym_section = got_plt;
614 else if (within_section (plt, address))
615 msym_section = plt;
616 else
07be84bf
JK
617 continue;
618
f50776aa
PA
619 /* We cannot check if NAME is a reference to
620 mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the
621 symbol is undefined and the objfile having NAME defined may
622 not yet have been loaded. */
07be84bf 623
26fcd5d7
TT
624 string_buffer.assign (name);
625 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
07be84bf 626
26fcd5d7
TT
627 msym = record_minimal_symbol (reader, string_buffer.c_str (),
628 string_buffer.size (),
02e169e2
PA
629 true, address, mst_slot_got_plt,
630 msym_section, objfile);
07be84bf 631 if (msym)
d9eaeb59 632 SET_MSYMBOL_SIZE (msym, ptr_size);
07be84bf 633 }
07be84bf
JK
634}
635
636/* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
637
638static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
639
640/* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
641
642struct elf_gnu_ifunc_cache
643{
644 /* This is always a function entry address, not a function descriptor. */
645 CORE_ADDR addr;
646
647 char name[1];
648};
649
650/* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
651
652static hashval_t
653elf_gnu_ifunc_cache_hash (const void *a_voidp)
654{
9a3c8263
SM
655 const struct elf_gnu_ifunc_cache *a
656 = (const struct elf_gnu_ifunc_cache *) a_voidp;
07be84bf
JK
657
658 return htab_hash_string (a->name);
659}
660
661/* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
662
663static int
664elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
665{
9a3c8263
SM
666 const struct elf_gnu_ifunc_cache *a
667 = (const struct elf_gnu_ifunc_cache *) a_voidp;
668 const struct elf_gnu_ifunc_cache *b
669 = (const struct elf_gnu_ifunc_cache *) b_voidp;
07be84bf
JK
670
671 return strcmp (a->name, b->name) == 0;
672}
673
674/* Record the target function address of a STT_GNU_IFUNC function NAME is the
675 function entry address ADDR. Return 1 if NAME and ADDR are considered as
676 valid and therefore they were successfully recorded, return 0 otherwise.
677
678 Function does not expect a duplicate entry. Use
679 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
680 exists. */
681
682static int
683elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
684{
7cbd4a93 685 struct bound_minimal_symbol msym;
07be84bf
JK
686 struct objfile *objfile;
687 htab_t htab;
688 struct elf_gnu_ifunc_cache entry_local, *entry_p;
689 void **slot;
690
691 msym = lookup_minimal_symbol_by_pc (addr);
7cbd4a93 692 if (msym.minsym == NULL)
07be84bf 693 return 0;
77e371c0 694 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
07be84bf 695 return 0;
e27d198c 696 objfile = msym.objfile;
07be84bf
JK
697
698 /* If .plt jumps back to .plt the symbol is still deferred for later
1adeb822
PA
699 resolution and it has no use for GDB. */
700 const char *target_name = MSYMBOL_LINKAGE_NAME (msym.minsym);
701 size_t len = strlen (target_name);
702
703 /* Note we check the symbol's name instead of checking whether the
704 symbol is in the .plt section because some systems have @plt
705 symbols in the .text section. */
706 if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0)
07be84bf
JK
707 return 0;
708
9a3c8263 709 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
07be84bf
JK
710 if (htab == NULL)
711 {
712 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
713 elf_gnu_ifunc_cache_eq,
714 NULL, &objfile->objfile_obstack,
715 hashtab_obstack_allocate,
716 dummy_obstack_deallocate);
717 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
718 }
719
720 entry_local.addr = addr;
721 obstack_grow (&objfile->objfile_obstack, &entry_local,
722 offsetof (struct elf_gnu_ifunc_cache, name));
723 obstack_grow_str0 (&objfile->objfile_obstack, name);
224c3ddb
SM
724 entry_p
725 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
07be84bf
JK
726
727 slot = htab_find_slot (htab, entry_p, INSERT);
728 if (*slot != NULL)
729 {
9a3c8263
SM
730 struct elf_gnu_ifunc_cache *entry_found_p
731 = (struct elf_gnu_ifunc_cache *) *slot;
df6d5441 732 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
733
734 if (entry_found_p->addr != addr)
735 {
736 /* This case indicates buggy inferior program, the resolved address
737 should never change. */
738
739 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
740 "function_address from %s to %s"),
741 name, paddress (gdbarch, entry_found_p->addr),
742 paddress (gdbarch, addr));
743 }
744
745 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
746 }
747 *slot = entry_p;
748
749 return 1;
750}
751
752/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
753 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
754 is not NULL) and the function returns 1. It returns 0 otherwise.
755
756 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
757 function. */
758
759static int
760elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
761{
762 struct objfile *objfile;
763
764 ALL_PSPACE_OBJFILES (current_program_space, objfile)
765 {
766 htab_t htab;
767 struct elf_gnu_ifunc_cache *entry_p;
768 void **slot;
769
9a3c8263 770 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
07be84bf
JK
771 if (htab == NULL)
772 continue;
773
224c3ddb
SM
774 entry_p = ((struct elf_gnu_ifunc_cache *)
775 alloca (sizeof (*entry_p) + strlen (name)));
07be84bf
JK
776 strcpy (entry_p->name, name);
777
778 slot = htab_find_slot (htab, entry_p, NO_INSERT);
779 if (slot == NULL)
780 continue;
9a3c8263 781 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
07be84bf
JK
782 gdb_assert (entry_p != NULL);
783
784 if (addr_p)
785 *addr_p = entry_p->addr;
786 return 1;
787 }
788
789 return 0;
790}
791
792/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
793 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
794 is not NULL) and the function returns 1. It returns 0 otherwise.
795
796 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
797 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
798 prevent cache entries duplicates. */
799
800static int
801elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
802{
803 char *name_got_plt;
804 struct objfile *objfile;
805 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
806
224c3ddb 807 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
07be84bf
JK
808 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
809
810 ALL_PSPACE_OBJFILES (current_program_space, objfile)
811 {
812 bfd *obfd = objfile->obfd;
df6d5441 813 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
814 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
815 size_t ptr_size = TYPE_LENGTH (ptr_type);
816 CORE_ADDR pointer_address, addr;
817 asection *plt;
224c3ddb 818 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
3b7344d5 819 struct bound_minimal_symbol msym;
07be84bf
JK
820
821 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
3b7344d5 822 if (msym.minsym == NULL)
07be84bf 823 continue;
3b7344d5 824 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
07be84bf 825 continue;
77e371c0 826 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
07be84bf
JK
827
828 plt = bfd_get_section_by_name (obfd, ".plt");
829 if (plt == NULL)
830 continue;
831
3b7344d5 832 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
07be84bf
JK
833 continue;
834 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
835 continue;
836 addr = extract_typed_address (buf, ptr_type);
8b88a78e
PA
837 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
838 current_top_target ());
4b7d1f7f 839 addr = gdbarch_addr_bits_remove (gdbarch, addr);
07be84bf 840
07be84bf 841 if (elf_gnu_ifunc_record_cache (name, addr))
28f4fa4d
PA
842 {
843 if (addr_p != NULL)
844 *addr_p = addr;
845 return 1;
846 }
07be84bf
JK
847 }
848
849 return 0;
850}
851
852/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
853 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
854 is not NULL) and the function returns 1. It returns 0 otherwise.
855
856 Both the elf_objfile_gnu_ifunc_cache_data hash table and
857 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
858
859static int
860elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
861{
862 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
863 return 1;
dea91a5c 864
07be84bf
JK
865 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
866 return 1;
867
868 return 0;
869}
870
871/* Call STT_GNU_IFUNC - a function returning addresss of a real function to
872 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
873 is the entry point of the resolved STT_GNU_IFUNC target function to call.
874 */
875
876static CORE_ADDR
877elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
878{
2c02bd72 879 const char *name_at_pc;
07be84bf
JK
880 CORE_ADDR start_at_pc, address;
881 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
882 struct value *function, *address_val;
e1b2624a
AA
883 CORE_ADDR hwcap = 0;
884 struct value *hwcap_val;
07be84bf
JK
885
886 /* Try first any non-intrusive methods without an inferior call. */
887
888 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
889 && start_at_pc == pc)
890 {
891 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
892 return address;
893 }
894 else
895 name_at_pc = NULL;
896
897 function = allocate_value (func_func_type);
1a088441 898 VALUE_LVAL (function) = lval_memory;
07be84bf
JK
899 set_value_address (function, pc);
900
e1b2624a
AA
901 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
902 parameter. FUNCTION is the function entry address. ADDRESS may be a
903 function descriptor. */
07be84bf 904
8b88a78e 905 target_auxv_search (current_top_target (), AT_HWCAP, &hwcap);
e1b2624a
AA
906 hwcap_val = value_from_longest (builtin_type (gdbarch)
907 ->builtin_unsigned_long, hwcap);
7022349d 908 address_val = call_function_by_hand (function, NULL, 1, &hwcap_val);
07be84bf 909 address = value_as_address (address_val);
8b88a78e 910 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address, current_top_target ());
4b7d1f7f 911 address = gdbarch_addr_bits_remove (gdbarch, address);
07be84bf
JK
912
913 if (name_at_pc)
914 elf_gnu_ifunc_record_cache (name_at_pc, address);
915
916 return address;
917}
918
0e30163f
JK
919/* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
920
921static void
922elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
923{
924 struct breakpoint *b_return;
925 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
926 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
927 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
00431a78 928 int thread_id = inferior_thread ()->global_num;
0e30163f
JK
929
930 gdb_assert (b->type == bp_gnu_ifunc_resolver);
931
932 for (b_return = b->related_breakpoint; b_return != b;
933 b_return = b_return->related_breakpoint)
934 {
935 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
936 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
937 gdb_assert (frame_id_p (b_return->frame_id));
938
939 if (b_return->thread == thread_id
940 && b_return->loc->requested_address == prev_pc
941 && frame_id_eq (b_return->frame_id, prev_frame_id))
942 break;
943 }
944
945 if (b_return == b)
946 {
0e30163f
JK
947 /* No need to call find_pc_line for symbols resolving as this is only
948 a helper breakpointer never shown to the user. */
949
51abb421 950 symtab_and_line sal;
0e30163f
JK
951 sal.pspace = current_inferior ()->pspace;
952 sal.pc = prev_pc;
953 sal.section = find_pc_overlay (sal.pc);
954 sal.explicit_pc = 1;
454dafbd
TT
955 b_return
956 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
957 prev_frame_id,
958 bp_gnu_ifunc_resolver_return).release ();
0e30163f 959
c70a6932
JK
960 /* set_momentary_breakpoint invalidates PREV_FRAME. */
961 prev_frame = NULL;
962
0e30163f
JK
963 /* Add new b_return to the ring list b->related_breakpoint. */
964 gdb_assert (b_return->related_breakpoint == b_return);
965 b_return->related_breakpoint = b->related_breakpoint;
966 b->related_breakpoint = b_return;
967 }
968}
969
970/* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
971
972static void
973elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
974{
00431a78 975 thread_info *thread = inferior_thread ();
0e30163f
JK
976 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
977 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
978 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
00431a78 979 struct regcache *regcache = get_thread_regcache (thread);
6a3a010b 980 struct value *func_func;
0e30163f
JK
981 struct value *value;
982 CORE_ADDR resolved_address, resolved_pc;
0e30163f
JK
983
984 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
985
0e30163f
JK
986 while (b->related_breakpoint != b)
987 {
988 struct breakpoint *b_next = b->related_breakpoint;
989
990 switch (b->type)
991 {
992 case bp_gnu_ifunc_resolver:
993 break;
994 case bp_gnu_ifunc_resolver_return:
995 delete_breakpoint (b);
996 break;
997 default:
998 internal_error (__FILE__, __LINE__,
999 _("handle_inferior_event: Invalid "
1000 "gnu-indirect-function breakpoint type %d"),
1001 (int) b->type);
1002 }
1003 b = b_next;
1004 }
1005 gdb_assert (b->type == bp_gnu_ifunc_resolver);
6a3a010b
MR
1006 gdb_assert (b->loc->next == NULL);
1007
1008 func_func = allocate_value (func_func_type);
1a088441 1009 VALUE_LVAL (func_func) = lval_memory;
6a3a010b
MR
1010 set_value_address (func_func, b->loc->related_address);
1011
1012 value = allocate_value (value_type);
1013 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1014 value_contents_raw (value), NULL);
1015 resolved_address = value_as_address (value);
1016 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1017 resolved_address,
8b88a78e 1018 current_top_target ());
4b7d1f7f 1019 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
0e30163f 1020
f8eba3c6 1021 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
d28cd78a 1022 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
f00aae0f 1023 resolved_pc);
0e30163f 1024
0e30163f 1025 b->type = bp_breakpoint;
6c5b2ebe 1026 update_breakpoint_locations (b, current_program_space,
79188d8d
PA
1027 find_function_start_sal (resolved_pc, NULL, true),
1028 {});
0e30163f
JK
1029}
1030
2750ef27
TT
1031/* A helper function for elf_symfile_read that reads the minimal
1032 symbols. */
c906108c
SS
1033
1034static void
5f6cac40
TT
1035elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1036 const struct elfinfo *ei)
c906108c 1037{
63524580 1038 bfd *synth_abfd, *abfd = objfile->obfd;
62553543
EZ
1039 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1040 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1041 asymbol *synthsyms;
d2f4b8fe 1042 struct dbx_symfile_info *dbx;
c906108c 1043
45cfd468
DE
1044 if (symtab_create_debug)
1045 {
1046 fprintf_unfiltered (gdb_stdlog,
1047 "Reading minimal symbols of objfile %s ...\n",
4262abfb 1048 objfile_name (objfile));
45cfd468
DE
1049 }
1050
5f6cac40
TT
1051 /* If we already have minsyms, then we can skip some work here.
1052 However, if there were stabs or mdebug sections, we go ahead and
1053 redo all the work anyway, because the psym readers for those
1054 kinds of debuginfo need extra information found here. This can
1055 go away once all types of symbols are in the per-BFD object. */
1056 if (objfile->per_bfd->minsyms_read
1057 && ei->stabsect == NULL
1058 && ei->mdebugsect == NULL)
1059 {
1060 if (symtab_create_debug)
1061 fprintf_unfiltered (gdb_stdlog,
1062 "... minimal symbols previously read\n");
1063 return;
1064 }
1065
d25e8719 1066 minimal_symbol_reader reader (objfile);
c906108c 1067
0963b4bd 1068 /* Allocate struct to keep track of the symfile. */
d2f4b8fe
TT
1069 dbx = XCNEW (struct dbx_symfile_info);
1070 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
c906108c 1071
18a94d75 1072 /* Process the normal ELF symbol table first. */
c906108c 1073
62553543
EZ
1074 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1075 if (storage_needed < 0)
3e43a32a
MS
1076 error (_("Can't read symbols from %s: %s"),
1077 bfd_get_filename (objfile->obfd),
62553543
EZ
1078 bfd_errmsg (bfd_get_error ()));
1079
1080 if (storage_needed > 0)
1081 {
80c57053
JK
1082 /* Memory gets permanently referenced from ABFD after
1083 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1084
224c3ddb 1085 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
62553543
EZ
1086 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1087
1088 if (symcount < 0)
3e43a32a
MS
1089 error (_("Can't read symbols from %s: %s"),
1090 bfd_get_filename (objfile->obfd),
62553543
EZ
1091 bfd_errmsg (bfd_get_error ()));
1092
ce6c454e
TT
1093 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1094 false);
62553543 1095 }
c906108c
SS
1096
1097 /* Add the dynamic symbols. */
1098
62553543
EZ
1099 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1100
1101 if (storage_needed > 0)
1102 {
3f1eff0a
JK
1103 /* Memory gets permanently referenced from ABFD after
1104 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1105 It happens only in the case when elf_slurp_reloc_table sees
1106 asection->relocation NULL. Determining which section is asection is
1107 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1108 implementation detail, though. */
1109
224c3ddb 1110 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
62553543
EZ
1111 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1112 dyn_symbol_table);
1113
1114 if (dynsymcount < 0)
3e43a32a
MS
1115 error (_("Can't read symbols from %s: %s"),
1116 bfd_get_filename (objfile->obfd),
62553543
EZ
1117 bfd_errmsg (bfd_get_error ()));
1118
8dddcb8f 1119 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
ce6c454e 1120 dyn_symbol_table, false);
07be84bf 1121
8dddcb8f 1122 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
62553543
EZ
1123 }
1124
63524580
JK
1125 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1126 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1127
1128 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1129 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1130 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1131 read the code address from .opd while it reads the .symtab section from
1132 a separate debug info file as the .opd section is SHT_NOBITS there.
1133
1134 With SYNTH_ABFD the .opd section will be read from the original
1135 backlinked binary where it is valid. */
1136
1137 if (objfile->separate_debug_objfile_backlink)
1138 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1139 else
1140 synth_abfd = abfd;
1141
62553543
EZ
1142 /* Add synthetic symbols - for instance, names for any PLT entries. */
1143
63524580 1144 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
62553543
EZ
1145 dynsymcount, dyn_symbol_table,
1146 &synthsyms);
1147 if (synthcount > 0)
1148 {
62553543
EZ
1149 long i;
1150
b22e99fd 1151 std::unique_ptr<asymbol *[]>
d1e4a624 1152 synth_symbol_table (new asymbol *[synthcount]);
62553543 1153 for (i = 0; i < synthcount; i++)
9f20e3da 1154 synth_symbol_table[i] = synthsyms + i;
8dddcb8f 1155 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
ce6c454e 1156 synth_symbol_table.get (), true);
ba713918
AL
1157
1158 xfree (synthsyms);
1159 synthsyms = NULL;
62553543 1160 }
c906108c 1161
7134143f
DJ
1162 /* Install any minimal symbols that have been collected as the current
1163 minimal symbols for this objfile. The debug readers below this point
1164 should not generate new minimal symbols; if they do it's their
1165 responsibility to install them. "mdebug" appears to be the only one
1166 which will do this. */
1167
d25e8719 1168 reader.install ();
7134143f 1169
4f00dda3
DE
1170 if (symtab_create_debug)
1171 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
2750ef27
TT
1172}
1173
1174/* Scan and build partial symbols for a symbol file.
1175 We have been initialized by a call to elf_symfile_init, which
1176 currently does nothing.
1177
2750ef27
TT
1178 This function only does the minimum work necessary for letting the
1179 user "name" things symbolically; it does not read the entire symtab.
1180 Instead, it reads the external and static symbols and puts them in partial
1181 symbol tables. When more extensive information is requested of a
1182 file, the corresponding partial symbol table is mutated into a full
1183 fledged symbol table by going back and reading the symbols
1184 for real.
1185
1186 We look for sections with specific names, to tell us what debug
1187 format to look for: FIXME!!!
1188
1189 elfstab_build_psymtabs() handles STABS symbols;
1190 mdebug_build_psymtabs() handles ECOFF debugging information.
1191
1192 Note that ELF files have a "minimal" symbol table, which looks a lot
1193 like a COFF symbol table, but has only the minimal information necessary
1194 for linking. We process this also, and use the information to
1195 build gdb's minimal symbol table. This gives us some minimal debugging
1196 capability even for files compiled without -g. */
1197
1198static void
b15cc25c 1199elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
2750ef27
TT
1200{
1201 bfd *abfd = objfile->obfd;
1202 struct elfinfo ei;
1203
2750ef27 1204 memset ((char *) &ei, 0, sizeof (ei));
97cbe998
SDJ
1205 if (!(objfile->flags & OBJF_READNEVER))
1206 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
c906108c 1207
5f6cac40
TT
1208 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1209
c906108c
SS
1210 /* ELF debugging information is inserted into the psymtab in the
1211 order of least informative first - most informative last. Since
1212 the psymtab table is searched `most recent insertion first' this
1213 increases the probability that more detailed debug information
1214 for a section is found.
1215
1216 For instance, an object file might contain both .mdebug (XCOFF)
1217 and .debug_info (DWARF2) sections then .mdebug is inserted first
1218 (searched last) and DWARF2 is inserted last (searched first). If
1219 we don't do this then the XCOFF info is found first - for code in
0963b4bd 1220 an included file XCOFF info is useless. */
c906108c
SS
1221
1222 if (ei.mdebugsect)
1223 {
1224 const struct ecoff_debug_swap *swap;
1225
1226 /* .mdebug section, presumably holding ECOFF debugging
c5aa993b 1227 information. */
c906108c
SS
1228 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1229 if (swap)
d4f3574e 1230 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
c906108c
SS
1231 }
1232 if (ei.stabsect)
1233 {
1234 asection *str_sect;
1235
1236 /* Stab sections have an associated string table that looks like
c5aa993b 1237 a separate section. */
c906108c
SS
1238 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1239
1240 /* FIXME should probably warn about a stab section without a stabstr. */
1241 if (str_sect)
1242 elfstab_build_psymtabs (objfile,
086df311 1243 ei.stabsect,
c906108c
SS
1244 str_sect->filepos,
1245 bfd_section_size (abfd, str_sect));
1246 }
9291a0cd 1247
251d32d9 1248 if (dwarf2_has_info (objfile, NULL))
b11896a5 1249 {
3c0aa29a 1250 dw_index_kind index_kind;
3e03848b 1251
3c0aa29a
PA
1252 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF
1253 debug information present in OBJFILE. If there is such debug
1254 info present never use an index. */
1255 if (!objfile_has_partial_symbols (objfile)
1256 && dwarf2_initialize_objfile (objfile, &index_kind))
1257 {
1258 switch (index_kind)
1259 {
1260 case dw_index_kind::GDB_INDEX:
1261 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1262 break;
1263 case dw_index_kind::DEBUG_NAMES:
1264 objfile_set_sym_fns (objfile, &elf_sym_fns_debug_names);
1265 break;
1266 }
1267 }
1268 else
b11896a5
TT
1269 {
1270 /* It is ok to do this even if the stabs reader made some
1271 partial symbols, because OBJF_PSYMTABS_READ has not been
1272 set, and so our lazy reader function will still be called
1273 when needed. */
8fb8eb5c 1274 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
b11896a5
TT
1275 }
1276 }
3e43a32a
MS
1277 /* If the file has its own symbol tables it has no separate debug
1278 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1279 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
8a92335b
JK
1280 `.note.gnu.build-id'.
1281
1282 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1283 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1284 an objfile via find_separate_debug_file_in_section there was no separate
1285 debug info available. Therefore do not attempt to search for another one,
1286 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1287 be NULL and we would possibly violate it. */
1288
1289 else if (!objfile_has_partial_symbols (objfile)
1290 && objfile->separate_debug_objfile == NULL
1291 && objfile->separate_debug_objfile_backlink == NULL)
9cce227f 1292 {
a8dbfd58 1293 std::string debugfile = find_separate_debug_file_by_buildid (objfile);
9cce227f 1294
a8dbfd58
SM
1295 if (debugfile.empty ())
1296 debugfile = find_separate_debug_file_by_debuglink (objfile);
9cce227f 1297
a8dbfd58 1298 if (!debugfile.empty ())
9cce227f 1299 {
a8dbfd58 1300 gdb_bfd_ref_ptr abfd (symfile_bfd_open (debugfile.c_str ()));
d7f9d729 1301
a8dbfd58 1302 symbol_file_add_separate (abfd.get (), debugfile.c_str (),
192b62ce 1303 symfile_flags, objfile);
9cce227f
TG
1304 }
1305 }
c906108c
SS
1306}
1307
b11896a5
TT
1308/* Callback to lazily read psymtabs. */
1309
1310static void
1311read_psyms (struct objfile *objfile)
1312{
251d32d9 1313 if (dwarf2_has_info (objfile, NULL))
b11896a5
TT
1314 dwarf2_build_psymtabs (objfile);
1315}
1316
c906108c
SS
1317/* Initialize anything that needs initializing when a completely new symbol
1318 file is specified (not just adding some symbols from another file, e.g. a
1319 shared library).
1320
3e43a32a
MS
1321 We reinitialize buildsym, since we may be reading stabs from an ELF
1322 file. */
c906108c
SS
1323
1324static void
fba45db2 1325elf_new_init (struct objfile *ignore)
c906108c
SS
1326{
1327 stabsread_new_init ();
c906108c
SS
1328}
1329
1330/* Perform any local cleanups required when we are done with a particular
1331 objfile. I.E, we are in the process of discarding all symbol information
1332 for an objfile, freeing up all memory held for it, and unlinking the
0963b4bd 1333 objfile struct from the global list of known objfiles. */
c906108c
SS
1334
1335static void
fba45db2 1336elf_symfile_finish (struct objfile *objfile)
c906108c 1337{
c906108c
SS
1338}
1339
db7a9bcd 1340/* ELF specific initialization routine for reading symbols. */
c906108c
SS
1341
1342static void
fba45db2 1343elf_symfile_init (struct objfile *objfile)
c906108c
SS
1344{
1345 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1346 find this causes a significant slowdown in gdb then we could
1347 set it in the debug symbol readers only when necessary. */
1348 objfile->flags |= OBJF_REORDERED;
1349}
1350
55aa24fb
SDJ
1351/* Implementation of `sym_get_probes', as documented in symfile.h. */
1352
aaa63a31 1353static const std::vector<probe *> &
55aa24fb
SDJ
1354elf_get_probes (struct objfile *objfile)
1355{
aaa63a31 1356 std::vector<probe *> *probes_per_bfd;
55aa24fb
SDJ
1357
1358 /* Have we parsed this objfile's probes already? */
aaa63a31 1359 probes_per_bfd = (std::vector<probe *> *) bfd_data (objfile->obfd, probe_key);
55aa24fb 1360
aaa63a31 1361 if (probes_per_bfd == NULL)
55aa24fb 1362 {
aaa63a31 1363 probes_per_bfd = new std::vector<probe *>;
55aa24fb
SDJ
1364
1365 /* Here we try to gather information about all types of probes from the
1366 objfile. */
935676c9 1367 for (const static_probe_ops *ops : all_static_probe_ops)
0782db84 1368 ops->get_probes (probes_per_bfd, objfile);
55aa24fb 1369
5d9cf8a4 1370 set_bfd_data (objfile->obfd, probe_key, probes_per_bfd);
55aa24fb
SDJ
1371 }
1372
aaa63a31 1373 return *probes_per_bfd;
55aa24fb
SDJ
1374}
1375
55aa24fb
SDJ
1376/* Helper function used to free the space allocated for storing SystemTap
1377 probe information. */
1378
1379static void
5d9cf8a4 1380probe_key_free (bfd *abfd, void *d)
55aa24fb 1381{
aaa63a31 1382 std::vector<probe *> *probes = (std::vector<probe *> *) d;
55aa24fb 1383
63f0e930 1384 for (probe *p : *probes)
935676c9 1385 delete p;
55aa24fb 1386
aaa63a31 1387 delete probes;
55aa24fb
SDJ
1388}
1389
c906108c 1390\f
55aa24fb
SDJ
1391
1392/* Implementation `sym_probe_fns', as documented in symfile.h. */
1393
1394static const struct sym_probe_fns elf_probe_fns =
1395{
25f9533e 1396 elf_get_probes, /* sym_get_probes */
55aa24fb
SDJ
1397};
1398
c906108c
SS
1399/* Register that we are able to handle ELF object file formats. */
1400
00b5771c 1401static const struct sym_fns elf_sym_fns =
c906108c 1402{
3e43a32a
MS
1403 elf_new_init, /* init anything gbl to entire symtab */
1404 elf_symfile_init, /* read initial info, setup for sym_read() */
1405 elf_symfile_read, /* read a symbol file into symtab */
b11896a5
TT
1406 NULL, /* sym_read_psymbols */
1407 elf_symfile_finish, /* finished with file, cleanup */
1408 default_symfile_offsets, /* Translate ext. to int. relocation */
1409 elf_symfile_segments, /* Get segment information from a file. */
1410 NULL,
1411 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1412 &elf_probe_fns, /* sym_probe_fns */
b11896a5
TT
1413 &psym_functions
1414};
1415
1416/* The same as elf_sym_fns, but not registered and lazily reads
1417 psymbols. */
1418
e36122e9 1419const struct sym_fns elf_sym_fns_lazy_psyms =
b11896a5 1420{
b11896a5
TT
1421 elf_new_init, /* init anything gbl to entire symtab */
1422 elf_symfile_init, /* read initial info, setup for sym_read() */
1423 elf_symfile_read, /* read a symbol file into symtab */
1424 read_psyms, /* sym_read_psymbols */
3e43a32a
MS
1425 elf_symfile_finish, /* finished with file, cleanup */
1426 default_symfile_offsets, /* Translate ext. to int. relocation */
1427 elf_symfile_segments, /* Get segment information from a file. */
1428 NULL,
1429 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1430 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1431 &psym_functions
c906108c
SS
1432};
1433
9291a0cd
TT
1434/* The same as elf_sym_fns, but not registered and uses the
1435 DWARF-specific GNU index rather than psymtab. */
e36122e9 1436const struct sym_fns elf_sym_fns_gdb_index =
9291a0cd 1437{
3e43a32a
MS
1438 elf_new_init, /* init anything gbl to entire symab */
1439 elf_symfile_init, /* read initial info, setup for sym_red() */
1440 elf_symfile_read, /* read a symbol file into symtab */
b11896a5 1441 NULL, /* sym_read_psymbols */
3e43a32a
MS
1442 elf_symfile_finish, /* finished with file, cleanup */
1443 default_symfile_offsets, /* Translate ext. to int. relocatin */
1444 elf_symfile_segments, /* Get segment information from a file. */
1445 NULL,
1446 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1447 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1448 &dwarf2_gdb_index_functions
9291a0cd
TT
1449};
1450
927aa2e7
JK
1451/* The same as elf_sym_fns, but not registered and uses the
1452 DWARF-specific .debug_names index rather than psymtab. */
1453const struct sym_fns elf_sym_fns_debug_names =
1454{
1455 elf_new_init, /* init anything gbl to entire symab */
1456 elf_symfile_init, /* read initial info, setup for sym_red() */
1457 elf_symfile_read, /* read a symbol file into symtab */
1458 NULL, /* sym_read_psymbols */
1459 elf_symfile_finish, /* finished with file, cleanup */
1460 default_symfile_offsets, /* Translate ext. to int. relocatin */
1461 elf_symfile_segments, /* Get segment information from a file. */
1462 NULL,
1463 default_symfile_relocate, /* Relocate a debug section. */
1464 &elf_probe_fns, /* sym_probe_fns */
1465 &dwarf2_debug_names_functions
1466};
1467
07be84bf
JK
1468/* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1469
1470static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1471{
1472 elf_gnu_ifunc_resolve_addr,
1473 elf_gnu_ifunc_resolve_name,
0e30163f
JK
1474 elf_gnu_ifunc_resolver_stop,
1475 elf_gnu_ifunc_resolver_return_stop
07be84bf
JK
1476};
1477
c906108c 1478void
fba45db2 1479_initialize_elfread (void)
c906108c 1480{
5d9cf8a4 1481 probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free);
c256e171 1482 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
07be84bf
JK
1483
1484 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1485 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
c906108c 1486}