]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/f-valprint.c
Protoization.
[thirdparty/binutils-gdb.git] / gdb / f-valprint.c
CommitLineData
c906108c 1/* Support for printing Fortran values for GDB, the GNU debugger.
d9fcf2fb 2 Copyright 1993-1995, 2000 Free Software Foundation, Inc.
c906108c
SS
3 Contributed by Motorola. Adapted from the C definitions by Farooq Butt
4 (fmbutt@engage.sps.mot.com), additionally worked over by Stan Shebs.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "expression.h"
28#include "value.h"
29#include "demangle.h"
30#include "valprint.h"
31#include "language.h"
c5aa993b 32#include "f-lang.h"
c906108c
SS
33#include "frame.h"
34#include "gdbcore.h"
35#include "command.h"
36
37#if 0
a14ed312 38static int there_is_a_visible_common_named (char *);
c906108c
SS
39#endif
40
a14ed312
KB
41extern void _initialize_f_valprint (void);
42static void info_common_command (char *, int);
43static void list_all_visible_commons (char *);
d9fcf2fb
JM
44static void f77_print_array (struct type *, char *, CORE_ADDR,
45 struct ui_file *, int, int, int,
46 enum val_prettyprint);
47static void f77_print_array_1 (int, int, struct type *, char *,
48 CORE_ADDR, struct ui_file *, int, int, int,
49 enum val_prettyprint);
50static void f77_create_arrayprint_offset_tbl (struct type *,
51 struct ui_file *);
a14ed312 52static void f77_get_dynamic_length_of_aggregate (struct type *);
c906108c 53
c5aa993b 54int f77_array_offset_tbl[MAX_FORTRAN_DIMS + 1][2];
c906108c
SS
55
56/* Array which holds offsets to be applied to get a row's elements
57 for a given array. Array also holds the size of each subarray. */
58
59/* The following macro gives us the size of the nth dimension, Where
c5aa993b 60 n is 1 based. */
c906108c
SS
61
62#define F77_DIM_SIZE(n) (f77_array_offset_tbl[n][1])
63
c5aa993b 64/* The following gives us the offset for row n where n is 1-based. */
c906108c
SS
65
66#define F77_DIM_OFFSET(n) (f77_array_offset_tbl[n][0])
67
c5aa993b 68int
fba45db2 69f77_get_dynamic_lowerbound (struct type *type, int *lower_bound)
c906108c 70{
c5aa993b
JM
71 CORE_ADDR current_frame_addr;
72 CORE_ADDR ptr_to_lower_bound;
73
c906108c
SS
74 switch (TYPE_ARRAY_LOWER_BOUND_TYPE (type))
75 {
76 case BOUND_BY_VALUE_ON_STACK:
77 current_frame_addr = selected_frame->frame;
c5aa993b 78 if (current_frame_addr > 0)
c906108c 79 {
c5aa993b
JM
80 *lower_bound =
81 read_memory_integer (current_frame_addr +
c906108c
SS
82 TYPE_ARRAY_LOWER_BOUND_VALUE (type),
83 4);
84 }
85 else
86 {
c5aa993b
JM
87 *lower_bound = DEFAULT_LOWER_BOUND;
88 return BOUND_FETCH_ERROR;
c906108c 89 }
c5aa993b
JM
90 break;
91
c906108c
SS
92 case BOUND_SIMPLE:
93 *lower_bound = TYPE_ARRAY_LOWER_BOUND_VALUE (type);
c5aa993b
JM
94 break;
95
96 case BOUND_CANNOT_BE_DETERMINED:
97 error ("Lower bound may not be '*' in F77");
98 break;
99
c906108c
SS
100 case BOUND_BY_REF_ON_STACK:
101 current_frame_addr = selected_frame->frame;
c5aa993b 102 if (current_frame_addr > 0)
c906108c 103 {
c5aa993b
JM
104 ptr_to_lower_bound =
105 read_memory_integer (current_frame_addr +
c906108c
SS
106 TYPE_ARRAY_LOWER_BOUND_VALUE (type),
107 4);
c5aa993b 108 *lower_bound = read_memory_integer (ptr_to_lower_bound, 4);
c906108c
SS
109 }
110 else
111 {
c5aa993b
JM
112 *lower_bound = DEFAULT_LOWER_BOUND;
113 return BOUND_FETCH_ERROR;
c906108c 114 }
c5aa993b
JM
115 break;
116
117 case BOUND_BY_REF_IN_REG:
118 case BOUND_BY_VALUE_IN_REG:
119 default:
c906108c 120 error ("??? unhandled dynamic array bound type ???");
c5aa993b 121 break;
c906108c
SS
122 }
123 return BOUND_FETCH_OK;
124}
125
c5aa993b 126int
fba45db2 127f77_get_dynamic_upperbound (struct type *type, int *upper_bound)
c906108c
SS
128{
129 CORE_ADDR current_frame_addr = 0;
c5aa993b
JM
130 CORE_ADDR ptr_to_upper_bound;
131
c906108c
SS
132 switch (TYPE_ARRAY_UPPER_BOUND_TYPE (type))
133 {
134 case BOUND_BY_VALUE_ON_STACK:
135 current_frame_addr = selected_frame->frame;
c5aa993b 136 if (current_frame_addr > 0)
c906108c 137 {
c5aa993b
JM
138 *upper_bound =
139 read_memory_integer (current_frame_addr +
c906108c
SS
140 TYPE_ARRAY_UPPER_BOUND_VALUE (type),
141 4);
142 }
143 else
144 {
c5aa993b
JM
145 *upper_bound = DEFAULT_UPPER_BOUND;
146 return BOUND_FETCH_ERROR;
c906108c 147 }
c5aa993b
JM
148 break;
149
c906108c
SS
150 case BOUND_SIMPLE:
151 *upper_bound = TYPE_ARRAY_UPPER_BOUND_VALUE (type);
c5aa993b
JM
152 break;
153
154 case BOUND_CANNOT_BE_DETERMINED:
c906108c 155 /* we have an assumed size array on our hands. Assume that
c5aa993b
JM
156 upper_bound == lower_bound so that we show at least
157 1 element.If the user wants to see more elements, let
158 him manually ask for 'em and we'll subscript the
159 array and show him */
c906108c 160 f77_get_dynamic_lowerbound (type, upper_bound);
c5aa993b
JM
161 break;
162
c906108c
SS
163 case BOUND_BY_REF_ON_STACK:
164 current_frame_addr = selected_frame->frame;
c5aa993b 165 if (current_frame_addr > 0)
c906108c 166 {
c5aa993b
JM
167 ptr_to_upper_bound =
168 read_memory_integer (current_frame_addr +
c906108c
SS
169 TYPE_ARRAY_UPPER_BOUND_VALUE (type),
170 4);
c5aa993b 171 *upper_bound = read_memory_integer (ptr_to_upper_bound, 4);
c906108c
SS
172 }
173 else
174 {
c5aa993b 175 *upper_bound = DEFAULT_UPPER_BOUND;
c906108c
SS
176 return BOUND_FETCH_ERROR;
177 }
c5aa993b
JM
178 break;
179
180 case BOUND_BY_REF_IN_REG:
181 case BOUND_BY_VALUE_IN_REG:
182 default:
c906108c 183 error ("??? unhandled dynamic array bound type ???");
c5aa993b 184 break;
c906108c
SS
185 }
186 return BOUND_FETCH_OK;
187}
188
c5aa993b 189/* Obtain F77 adjustable array dimensions */
c906108c
SS
190
191static void
fba45db2 192f77_get_dynamic_length_of_aggregate (struct type *type)
c906108c
SS
193{
194 int upper_bound = -1;
c5aa993b
JM
195 int lower_bound = 1;
196 int retcode;
197
c906108c
SS
198 /* Recursively go all the way down into a possibly multi-dimensional
199 F77 array and get the bounds. For simple arrays, this is pretty
200 easy but when the bounds are dynamic, we must be very careful
201 to add up all the lengths correctly. Not doing this right
202 will lead to horrendous-looking arrays in parameter lists.
c5aa993b 203
c906108c 204 This function also works for strings which behave very
c5aa993b
JM
205 similarly to arrays. */
206
207 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY
208 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRING)
c906108c 209 f77_get_dynamic_length_of_aggregate (TYPE_TARGET_TYPE (type));
c5aa993b
JM
210
211 /* Recursion ends here, start setting up lengths. */
212 retcode = f77_get_dynamic_lowerbound (type, &lower_bound);
c906108c 213 if (retcode == BOUND_FETCH_ERROR)
c5aa993b
JM
214 error ("Cannot obtain valid array lower bound");
215
216 retcode = f77_get_dynamic_upperbound (type, &upper_bound);
c906108c 217 if (retcode == BOUND_FETCH_ERROR)
c5aa993b
JM
218 error ("Cannot obtain valid array upper bound");
219
220 /* Patch in a valid length value. */
221
c906108c
SS
222 TYPE_LENGTH (type) =
223 (upper_bound - lower_bound + 1) * TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type)));
c5aa993b 224}
c906108c
SS
225
226/* Function that sets up the array offset,size table for the array
c5aa993b 227 type "type". */
c906108c 228
c5aa993b 229static void
fba45db2 230f77_create_arrayprint_offset_tbl (struct type *type, struct ui_file *stream)
c906108c
SS
231{
232 struct type *tmp_type;
233 int eltlen;
234 int ndimen = 1;
c5aa993b
JM
235 int upper, lower, retcode;
236
237 tmp_type = type;
238
239 while ((TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY))
c906108c
SS
240 {
241 if (TYPE_ARRAY_UPPER_BOUND_TYPE (tmp_type) == BOUND_CANNOT_BE_DETERMINED)
c5aa993b
JM
242 fprintf_filtered (stream, "<assumed size array> ");
243
c906108c
SS
244 retcode = f77_get_dynamic_upperbound (tmp_type, &upper);
245 if (retcode == BOUND_FETCH_ERROR)
c5aa993b
JM
246 error ("Cannot obtain dynamic upper bound");
247
248 retcode = f77_get_dynamic_lowerbound (tmp_type, &lower);
c906108c 249 if (retcode == BOUND_FETCH_ERROR)
c5aa993b
JM
250 error ("Cannot obtain dynamic lower bound");
251
c906108c 252 F77_DIM_SIZE (ndimen) = upper - lower + 1;
c5aa993b 253
c906108c 254 tmp_type = TYPE_TARGET_TYPE (tmp_type);
c5aa993b 255 ndimen++;
c906108c 256 }
c5aa993b 257
c906108c
SS
258 /* Now we multiply eltlen by all the offsets, so that later we
259 can print out array elements correctly. Up till now we
260 know an offset to apply to get the item but we also
261 have to know how much to add to get to the next item */
c5aa993b 262
c906108c 263 ndimen--;
c5aa993b 264 eltlen = TYPE_LENGTH (tmp_type);
c906108c
SS
265 F77_DIM_OFFSET (ndimen) = eltlen;
266 while (--ndimen > 0)
267 {
268 eltlen *= F77_DIM_SIZE (ndimen + 1);
269 F77_DIM_OFFSET (ndimen) = eltlen;
270 }
271}
272
273/* Actual function which prints out F77 arrays, Valaddr == address in
274 the superior. Address == the address in the inferior. */
275
c5aa993b 276static void
fba45db2
KB
277f77_print_array_1 (int nss, int ndimensions, struct type *type, char *valaddr,
278 CORE_ADDR address, struct ui_file *stream, int format,
279 int deref_ref, int recurse, enum val_prettyprint pretty)
c906108c
SS
280{
281 int i;
c5aa993b 282
c906108c
SS
283 if (nss != ndimensions)
284 {
c5aa993b 285 for (i = 0; i < F77_DIM_SIZE (nss); i++)
c906108c
SS
286 {
287 fprintf_filtered (stream, "( ");
288 f77_print_array_1 (nss + 1, ndimensions, TYPE_TARGET_TYPE (type),
c5aa993b
JM
289 valaddr + i * F77_DIM_OFFSET (nss),
290 address + i * F77_DIM_OFFSET (nss),
291 stream, format, deref_ref, recurse, pretty);
c906108c
SS
292 fprintf_filtered (stream, ") ");
293 }
294 }
295 else
296 {
297 for (i = 0; (i < F77_DIM_SIZE (nss) && i < print_max); i++)
298 {
299 val_print (TYPE_TARGET_TYPE (type),
300 valaddr + i * F77_DIM_OFFSET (ndimensions),
c5aa993b 301 0,
c906108c 302 address + i * F77_DIM_OFFSET (ndimensions),
c5aa993b 303 stream, format, deref_ref, recurse, pretty);
c906108c
SS
304
305 if (i != (F77_DIM_SIZE (nss) - 1))
c5aa993b
JM
306 fprintf_filtered (stream, ", ");
307
c906108c
SS
308 if (i == print_max - 1)
309 fprintf_filtered (stream, "...");
310 }
311 }
312}
313
314/* This function gets called to print an F77 array, we set up some
315 stuff and then immediately call f77_print_array_1() */
316
c5aa993b 317static void
fba45db2
KB
318f77_print_array (struct type *type, char *valaddr, CORE_ADDR address,
319 struct ui_file *stream, int format, int deref_ref, int recurse,
320 enum val_prettyprint pretty)
c906108c 321{
c5aa993b
JM
322 int ndimensions;
323
324 ndimensions = calc_f77_array_dims (type);
325
c906108c
SS
326 if (ndimensions > MAX_FORTRAN_DIMS || ndimensions < 0)
327 error ("Type node corrupt! F77 arrays cannot have %d subscripts (%d Max)",
328 ndimensions, MAX_FORTRAN_DIMS);
c5aa993b 329
c906108c
SS
330 /* Since F77 arrays are stored column-major, we set up an
331 offset table to get at the various row's elements. The
c5aa993b 332 offset table contains entries for both offset and subarray size. */
c906108c 333
c5aa993b
JM
334 f77_create_arrayprint_offset_tbl (type, stream);
335
336 f77_print_array_1 (1, ndimensions, type, valaddr, address, stream, format,
337 deref_ref, recurse, pretty);
338}
c906108c 339\f
c5aa993b 340
c906108c
SS
341/* Print data of type TYPE located at VALADDR (within GDB), which came from
342 the inferior at address ADDRESS, onto stdio stream STREAM according to
343 FORMAT (a letter or 0 for natural format). The data at VALADDR is in
344 target byte order.
c5aa993b 345
c906108c
SS
346 If the data are a string pointer, returns the number of string characters
347 printed.
c5aa993b 348
c906108c
SS
349 If DEREF_REF is nonzero, then dereference references, otherwise just print
350 them like pointers.
c5aa993b 351
c906108c
SS
352 The PRETTY parameter controls prettyprinting. */
353
354int
fba45db2
KB
355f_val_print (struct type *type, char *valaddr, int embedded_offset,
356 CORE_ADDR address, struct ui_file *stream, int format,
357 int deref_ref, int recurse, enum val_prettyprint pretty)
c906108c 358{
c5aa993b 359 register unsigned int i = 0; /* Number of characters printed */
c906108c
SS
360 struct type *elttype;
361 LONGEST val;
362 CORE_ADDR addr;
c5aa993b 363
c906108c
SS
364 CHECK_TYPEDEF (type);
365 switch (TYPE_CODE (type))
366 {
c5aa993b 367 case TYPE_CODE_STRING:
c906108c
SS
368 f77_get_dynamic_length_of_aggregate (type);
369 LA_PRINT_STRING (stream, valaddr, TYPE_LENGTH (type), 1, 0);
370 break;
c5aa993b 371
c906108c 372 case TYPE_CODE_ARRAY:
c5aa993b
JM
373 fprintf_filtered (stream, "(");
374 f77_print_array (type, valaddr, address, stream, format,
375 deref_ref, recurse, pretty);
c906108c
SS
376 fprintf_filtered (stream, ")");
377 break;
378#if 0
379 /* Array of unspecified length: treat like pointer to first elt. */
380 valaddr = (char *) &address;
381 /* FALL THROUGH */
c5aa993b 382#endif
c906108c
SS
383 case TYPE_CODE_PTR:
384 if (format && format != 's')
385 {
386 print_scalar_formatted (valaddr, type, format, 0, stream);
387 break;
388 }
389 else
390 {
391 addr = unpack_pointer (type, valaddr);
392 elttype = check_typedef (TYPE_TARGET_TYPE (type));
c5aa993b 393
c906108c
SS
394 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
395 {
396 /* Try to print what function it points to. */
397 print_address_demangle (addr, stream, demangle);
398 /* Return value is irrelevant except for string pointers. */
399 return 0;
400 }
c5aa993b 401
c906108c 402 if (addressprint && format != 's')
d4f3574e 403 fprintf_filtered (stream, "0x%s", paddr_nz (addr));
c5aa993b 404
c906108c
SS
405 /* For a pointer to char or unsigned char, also print the string
406 pointed to, unless pointer is null. */
407 if (TYPE_LENGTH (elttype) == 1
408 && TYPE_CODE (elttype) == TYPE_CODE_INT
409 && (format == 0 || format == 's')
410 && addr != 0)
411 i = val_print_string (addr, -1, TYPE_LENGTH (elttype), stream);
c5aa993b 412
c906108c
SS
413 /* Return number of characters printed, plus one for the
414 terminating null if we have "reached the end". */
415 return (i + (print_max && i != print_max));
416 }
417 break;
c5aa993b 418
c906108c
SS
419 case TYPE_CODE_FUNC:
420 if (format)
421 {
422 print_scalar_formatted (valaddr, type, format, 0, stream);
423 break;
424 }
425 /* FIXME, we should consider, at least for ANSI C language, eliminating
c5aa993b 426 the distinction made between FUNCs and POINTERs to FUNCs. */
c906108c
SS
427 fprintf_filtered (stream, "{");
428 type_print (type, "", stream, -1);
429 fprintf_filtered (stream, "} ");
430 /* Try to print what function it points to, and its address. */
431 print_address_demangle (address, stream, demangle);
432 break;
c5aa993b 433
c906108c
SS
434 case TYPE_CODE_INT:
435 format = format ? format : output_format;
436 if (format)
437 print_scalar_formatted (valaddr, type, format, 0, stream);
438 else
439 {
440 val_print_type_code_int (type, valaddr, stream);
441 /* C and C++ has no single byte int type, char is used instead.
442 Since we don't know whether the value is really intended to
443 be used as an integer or a character, print the character
444 equivalent as well. */
445 if (TYPE_LENGTH (type) == 1)
446 {
447 fputs_filtered (" ", stream);
448 LA_PRINT_CHAR ((unsigned char) unpack_long (type, valaddr),
449 stream);
450 }
451 }
452 break;
c5aa993b 453
c906108c
SS
454 case TYPE_CODE_FLT:
455 if (format)
456 print_scalar_formatted (valaddr, type, format, 0, stream);
457 else
458 print_floating (valaddr, type, stream);
459 break;
c5aa993b 460
c906108c
SS
461 case TYPE_CODE_VOID:
462 fprintf_filtered (stream, "VOID");
463 break;
c5aa993b 464
c906108c
SS
465 case TYPE_CODE_ERROR:
466 fprintf_filtered (stream, "<error type>");
467 break;
c5aa993b 468
c906108c
SS
469 case TYPE_CODE_RANGE:
470 /* FIXME, we should not ever have to print one of these yet. */
471 fprintf_filtered (stream, "<range type>");
472 break;
c5aa993b 473
c906108c
SS
474 case TYPE_CODE_BOOL:
475 format = format ? format : output_format;
476 if (format)
477 print_scalar_formatted (valaddr, type, format, 0, stream);
478 else
479 {
c5aa993b
JM
480 val = 0;
481 switch (TYPE_LENGTH (type))
c906108c
SS
482 {
483 case 1:
484 val = unpack_long (builtin_type_f_logical_s1, valaddr);
c5aa993b
JM
485 break;
486
487 case 2:
c906108c 488 val = unpack_long (builtin_type_f_logical_s2, valaddr);
c5aa993b
JM
489 break;
490
491 case 4:
c906108c 492 val = unpack_long (builtin_type_f_logical, valaddr);
c5aa993b
JM
493 break;
494
c906108c
SS
495 default:
496 error ("Logicals of length %d bytes not supported",
497 TYPE_LENGTH (type));
c5aa993b 498
c906108c 499 }
c5aa993b
JM
500
501 if (val == 0)
c906108c 502 fprintf_filtered (stream, ".FALSE.");
c5aa993b
JM
503 else if (val == 1)
504 fprintf_filtered (stream, ".TRUE.");
505 else
506 /* Not a legitimate logical type, print as an integer. */
507 {
508 /* Bash the type code temporarily. */
509 TYPE_CODE (type) = TYPE_CODE_INT;
510 f_val_print (type, valaddr, 0, address, stream, format,
511 deref_ref, recurse, pretty);
512 /* Restore the type code so later uses work as intended. */
513 TYPE_CODE (type) = TYPE_CODE_BOOL;
514 }
c906108c
SS
515 }
516 break;
c5aa993b 517
c906108c
SS
518 case TYPE_CODE_COMPLEX:
519 switch (TYPE_LENGTH (type))
520 {
c5aa993b
JM
521 case 8:
522 type = builtin_type_f_real;
523 break;
524 case 16:
525 type = builtin_type_f_real_s8;
526 break;
527 case 32:
528 type = builtin_type_f_real_s16;
529 break;
c906108c 530 default:
c5aa993b 531 error ("Cannot print out complex*%d variables", TYPE_LENGTH (type));
c906108c
SS
532 }
533 fputs_filtered ("(", stream);
534 print_floating (valaddr, type, stream);
535 fputs_filtered (",", stream);
9af97293 536 print_floating (valaddr + TYPE_LENGTH (type), type, stream);
c906108c
SS
537 fputs_filtered (")", stream);
538 break;
c5aa993b 539
c906108c
SS
540 case TYPE_CODE_UNDEF:
541 /* This happens (without TYPE_FLAG_STUB set) on systems which don't use
c5aa993b
JM
542 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
543 and no complete type for struct foo in that file. */
c906108c
SS
544 fprintf_filtered (stream, "<incomplete type>");
545 break;
c5aa993b 546
c906108c
SS
547 default:
548 error ("Invalid F77 type code %d in symbol table.", TYPE_CODE (type));
549 }
550 gdb_flush (stream);
551 return 0;
552}
553
554static void
fba45db2 555list_all_visible_commons (char *funname)
c906108c 556{
c5aa993b
JM
557 SAVED_F77_COMMON_PTR tmp;
558
c906108c 559 tmp = head_common_list;
c5aa993b 560
c906108c 561 printf_filtered ("All COMMON blocks visible at this level:\n\n");
c5aa993b 562
c906108c
SS
563 while (tmp != NULL)
564 {
c5aa993b
JM
565 if (STREQ (tmp->owning_function, funname))
566 printf_filtered ("%s\n", tmp->name);
567
c906108c
SS
568 tmp = tmp->next;
569 }
570}
571
572/* This function is used to print out the values in a given COMMON
573 block. It will always use the most local common block of the
c5aa993b 574 given name */
c906108c 575
c5aa993b 576static void
fba45db2 577info_common_command (char *comname, int from_tty)
c906108c 578{
c5aa993b
JM
579 SAVED_F77_COMMON_PTR the_common;
580 COMMON_ENTRY_PTR entry;
c906108c
SS
581 struct frame_info *fi;
582 register char *funname = 0;
583 struct symbol *func;
c5aa993b 584
c906108c
SS
585 /* We have been told to display the contents of F77 COMMON
586 block supposedly visible in this function. Let us
587 first make sure that it is visible and if so, let
c5aa993b
JM
588 us display its contents */
589
590 fi = selected_frame;
591
c906108c 592 if (fi == NULL)
c5aa993b
JM
593 error ("No frame selected");
594
c906108c 595 /* The following is generally ripped off from stack.c's routine
c5aa993b
JM
596 print_frame_info() */
597
c906108c
SS
598 func = find_pc_function (fi->pc);
599 if (func)
600 {
601 /* In certain pathological cases, the symtabs give the wrong
c5aa993b
JM
602 function (when we are in the first function in a file which
603 is compiled without debugging symbols, the previous function
604 is compiled with debugging symbols, and the "foo.o" symbol
605 that is supposed to tell us where the file with debugging symbols
606 ends has been truncated by ar because it is longer than 15
607 characters).
608
609 So look in the minimal symbol tables as well, and if it comes
610 up with a larger address for the function use that instead.
611 I don't think this can ever cause any problems; there shouldn't
612 be any minimal symbols in the middle of a function.
613 FIXME: (Not necessarily true. What about text labels) */
614
c906108c 615 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc);
c5aa993b 616
c906108c 617 if (msymbol != NULL
c5aa993b 618 && (SYMBOL_VALUE_ADDRESS (msymbol)
c906108c
SS
619 > BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
620 funname = SYMBOL_NAME (msymbol);
621 else
622 funname = SYMBOL_NAME (func);
623 }
624 else
625 {
626 register struct minimal_symbol *msymbol =
c5aa993b
JM
627 lookup_minimal_symbol_by_pc (fi->pc);
628
c906108c
SS
629 if (msymbol != NULL)
630 funname = SYMBOL_NAME (msymbol);
631 }
c5aa993b 632
c906108c 633 /* If comname is NULL, we assume the user wishes to see the
c5aa993b
JM
634 which COMMON blocks are visible here and then return */
635
c906108c
SS
636 if (comname == 0)
637 {
638 list_all_visible_commons (funname);
c5aa993b 639 return;
c906108c 640 }
c5aa993b
JM
641
642 the_common = find_common_for_function (comname, funname);
643
c906108c
SS
644 if (the_common)
645 {
c5aa993b 646 if (STREQ (comname, BLANK_COMMON_NAME_LOCAL))
c906108c 647 printf_filtered ("Contents of blank COMMON block:\n");
c5aa993b
JM
648 else
649 printf_filtered ("Contents of F77 COMMON block '%s':\n", comname);
650
651 printf_filtered ("\n");
652 entry = the_common->entries;
653
c906108c
SS
654 while (entry != NULL)
655 {
c5aa993b
JM
656 printf_filtered ("%s = ", SYMBOL_NAME (entry->symbol));
657 print_variable_value (entry->symbol, fi, gdb_stdout);
658 printf_filtered ("\n");
659 entry = entry->next;
c906108c
SS
660 }
661 }
c5aa993b 662 else
c906108c 663 printf_filtered ("Cannot locate the common block %s in function '%s'\n",
c5aa993b 664 comname, funname);
c906108c
SS
665}
666
667/* This function is used to determine whether there is a
c5aa993b 668 F77 common block visible at the current scope called 'comname'. */
c906108c
SS
669
670#if 0
671static int
fba45db2 672there_is_a_visible_common_named (char *comname)
c906108c 673{
c5aa993b 674 SAVED_F77_COMMON_PTR the_common;
c906108c
SS
675 struct frame_info *fi;
676 register char *funname = 0;
677 struct symbol *func;
c5aa993b 678
c906108c 679 if (comname == NULL)
c5aa993b
JM
680 error ("Cannot deal with NULL common name!");
681
682 fi = selected_frame;
683
c906108c 684 if (fi == NULL)
c5aa993b
JM
685 error ("No frame selected");
686
c906108c 687 /* The following is generally ripped off from stack.c's routine
c5aa993b
JM
688 print_frame_info() */
689
c906108c
SS
690 func = find_pc_function (fi->pc);
691 if (func)
692 {
693 /* In certain pathological cases, the symtabs give the wrong
c5aa993b
JM
694 function (when we are in the first function in a file which
695 is compiled without debugging symbols, the previous function
696 is compiled with debugging symbols, and the "foo.o" symbol
697 that is supposed to tell us where the file with debugging symbols
698 ends has been truncated by ar because it is longer than 15
699 characters).
700
701 So look in the minimal symbol tables as well, and if it comes
702 up with a larger address for the function use that instead.
703 I don't think this can ever cause any problems; there shouldn't
704 be any minimal symbols in the middle of a function.
705 FIXME: (Not necessarily true. What about text labels) */
706
c906108c 707 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc);
c5aa993b 708
c906108c 709 if (msymbol != NULL
c5aa993b 710 && (SYMBOL_VALUE_ADDRESS (msymbol)
c906108c
SS
711 > BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
712 funname = SYMBOL_NAME (msymbol);
713 else
714 funname = SYMBOL_NAME (func);
715 }
716 else
717 {
c5aa993b
JM
718 register struct minimal_symbol *msymbol =
719 lookup_minimal_symbol_by_pc (fi->pc);
720
c906108c
SS
721 if (msymbol != NULL)
722 funname = SYMBOL_NAME (msymbol);
723 }
c5aa993b
JM
724
725 the_common = find_common_for_function (comname, funname);
726
c906108c
SS
727 return (the_common ? 1 : 0);
728}
729#endif
730
731void
fba45db2 732_initialize_f_valprint (void)
c906108c
SS
733{
734 add_info ("common", info_common_command,
735 "Print out the values contained in a Fortran COMMON block.");
736 if (xdb_commands)
c5aa993b
JM
737 add_com ("lc", class_info, info_common_command,
738 "Print out the values contained in a Fortran COMMON block.");
c906108c 739}