]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/gdbarch.sh
Update FreeBSD system calls for 13.0-CURRENT.
[thirdparty/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
b811d2c2 5# Copyright (C) 1998-2020 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532 26
59233f88 27# Format of the input table
97030eea 28read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
29
30do_read ()
31{
34620563
AC
32 comment=""
33 class=""
c9023fb3
PA
34 # On some SH's, 'read' trims leading and trailing whitespace by
35 # default (e.g., bash), while on others (e.g., dash), it doesn't.
36 # Set IFS to empty to disable the trimming everywhere.
ffc2844e 37 # shellcheck disable=SC2162
c9023fb3 38 while IFS='' read line
34620563
AC
39 do
40 if test "${line}" = ""
41 then
42 continue
43 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 44 then
34620563
AC
45 continue
46 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 47 then
34620563
AC
48 comment="${comment}
49${line}"
f0d4cc9e 50 else
3d9a5942
AC
51
52 # The semantics of IFS varies between different SH's. Some
ea480a30
SM
53 # treat ``;;' as three fields while some treat it as just two.
54 # Work around this by eliminating ``;;'' ....
cb02ab24 55 line="$(echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g')"
3d9a5942 56
ea480a30 57 OFS="${IFS}" ; IFS="[;]"
a6fc5ffc 58 eval read "${read}" <<EOF
34620563
AC
59${line}
60EOF
61 IFS="${OFS}"
62
1207375d 63 if test -n "${garbage_at_eol:-}"
283354d8
AC
64 then
65 echo "Garbage at end-of-line in ${line}" 1>&2
66 kill $$
67 exit 1
68 fi
69
3d9a5942
AC
70 # .... and then going back through each field and strip out those
71 # that ended up with just that space character.
72 for r in ${read}
73 do
a6fc5ffc 74 if eval test "\"\${${r}}\" = ' '"
3d9a5942 75 then
a6fc5ffc 76 eval "${r}="
3d9a5942
AC
77 fi
78 done
79
a72293e2 80 case "${class}" in
1207375d 81 m ) staticdefault="${predefault:-}" ;;
a72293e2
AC
82 M ) staticdefault="0" ;;
83 * ) test "${staticdefault}" || staticdefault=0 ;;
84 esac
06b25f14 85
ae45cd16
AC
86 case "${class}" in
87 F | V | M )
1207375d 88 case "${invalid_p:-}" in
34620563 89 "" )
f7968451 90 if test -n "${predefault}"
34620563
AC
91 then
92 #invalid_p="gdbarch->${function} == ${predefault}"
1207375d 93 predicate="gdbarch->${function:-} != ${predefault}"
f7968451
AC
94 elif class_is_variable_p
95 then
96 predicate="gdbarch->${function} != 0"
97 elif class_is_function_p
98 then
99 predicate="gdbarch->${function} != NULL"
34620563
AC
100 fi
101 ;;
ae45cd16 102 * )
1e9f55d0 103 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
104 kill $$
105 exit 1
106 ;;
107 esac
34620563
AC
108 esac
109
34620563
AC
110 #NOT YET: See gdbarch.log for basic verification of
111 # database
112
113 break
f0d4cc9e 114 fi
34620563 115 done
72e74a21 116 if [ -n "${class}" ]
34620563
AC
117 then
118 true
c0e8c252
AC
119 else
120 false
121 fi
122}
123
104c1213 124
f0d4cc9e
AC
125fallback_default_p ()
126{
1207375d 127 { [ -n "${postdefault:-}" ] && [ "x${invalid_p}" != "x0" ]; } \
9fdb2916 128 || { [ -n "${predefault}" ] && [ "x${invalid_p}" = "x0" ]; }
f0d4cc9e
AC
129}
130
131class_is_variable_p ()
132{
4a5c6a1d
AC
133 case "${class}" in
134 *v* | *V* ) true ;;
135 * ) false ;;
136 esac
f0d4cc9e
AC
137}
138
139class_is_function_p ()
140{
4a5c6a1d
AC
141 case "${class}" in
142 *f* | *F* | *m* | *M* ) true ;;
143 * ) false ;;
144 esac
145}
146
147class_is_multiarch_p ()
148{
149 case "${class}" in
150 *m* | *M* ) true ;;
151 * ) false ;;
152 esac
f0d4cc9e
AC
153}
154
155class_is_predicate_p ()
156{
4a5c6a1d
AC
157 case "${class}" in
158 *F* | *V* | *M* ) true ;;
159 * ) false ;;
160 esac
f0d4cc9e
AC
161}
162
163class_is_info_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *i* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171
cff3e48b
JM
172# dump out/verify the doco
173for field in ${read}
174do
175 case ${field} in
176
177 class ) : ;;
c4093a6a 178
c0e8c252
AC
179 # # -> line disable
180 # f -> function
181 # hiding a function
2ada493a
AC
182 # F -> function + predicate
183 # hiding a function + predicate to test function validity
c0e8c252
AC
184 # v -> variable
185 # hiding a variable
2ada493a
AC
186 # V -> variable + predicate
187 # hiding a variable + predicate to test variables validity
c0e8c252
AC
188 # i -> set from info
189 # hiding something from the ``struct info'' object
4a5c6a1d
AC
190 # m -> multi-arch function
191 # hiding a multi-arch function (parameterised with the architecture)
192 # M -> multi-arch function + predicate
193 # hiding a multi-arch function + predicate to test function validity
cff3e48b 194
cff3e48b
JM
195 returntype ) : ;;
196
c0e8c252 197 # For functions, the return type; for variables, the data type
cff3e48b
JM
198
199 function ) : ;;
200
c0e8c252
AC
201 # For functions, the member function name; for variables, the
202 # variable name. Member function names are always prefixed with
203 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
204
205 formal ) : ;;
206
c0e8c252
AC
207 # The formal argument list. It is assumed that the formal
208 # argument list includes the actual name of each list element.
209 # A function with no arguments shall have ``void'' as the
210 # formal argument list.
cff3e48b
JM
211
212 actual ) : ;;
213
c0e8c252
AC
214 # The list of actual arguments. The arguments specified shall
215 # match the FORMAL list given above. Functions with out
216 # arguments leave this blank.
cff3e48b 217
0b8f9e4d 218 staticdefault ) : ;;
c0e8c252
AC
219
220 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
221 # created. STATICDEFAULT is the value to insert into that
222 # static gdbarch object. Since this a static object only
223 # simple expressions can be used.
cff3e48b 224
0b8f9e4d 225 # If STATICDEFAULT is empty, zero is used.
c0e8c252 226
0b8f9e4d 227 predefault ) : ;;
cff3e48b 228
10312cc4
AC
229 # An initial value to assign to MEMBER of the freshly
230 # malloc()ed gdbarch object. After initialization, the
231 # freshly malloc()ed object is passed to the target
232 # architecture code for further updates.
cff3e48b 233
0b8f9e4d
AC
234 # If PREDEFAULT is empty, zero is used.
235
10312cc4
AC
236 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
237 # INVALID_P are specified, PREDEFAULT will be used as the
238 # default for the non- multi-arch target.
239
240 # A zero PREDEFAULT function will force the fallback to call
241 # internal_error().
f0d4cc9e
AC
242
243 # Variable declarations can refer to ``gdbarch'' which will
244 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
245
246 postdefault ) : ;;
247
248 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
249 # the target architecture code fail to change the PREDEFAULT
250 # value.
0b8f9e4d
AC
251
252 # If POSTDEFAULT is empty, no post update is performed.
253
254 # If both INVALID_P and POSTDEFAULT are non-empty then
255 # INVALID_P will be used to determine if MEMBER should be
256 # changed to POSTDEFAULT.
257
10312cc4
AC
258 # If a non-empty POSTDEFAULT and a zero INVALID_P are
259 # specified, POSTDEFAULT will be used as the default for the
260 # non- multi-arch target (regardless of the value of
261 # PREDEFAULT).
262
f0d4cc9e
AC
263 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
264
be7811ad 265 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
266 # will contain the current architecture. Care should be
267 # taken.
cff3e48b 268
c4093a6a 269 invalid_p ) : ;;
cff3e48b 270
0b8f9e4d 271 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 272 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
273 # initialize MEMBER or the initialized the member is invalid.
274 # If POSTDEFAULT is non-empty then MEMBER will be updated to
275 # that value. If POSTDEFAULT is empty then internal_error()
276 # is called.
277
278 # If INVALID_P is empty, a check that MEMBER is no longer
279 # equal to PREDEFAULT is used.
280
f0d4cc9e
AC
281 # The expression ``0'' disables the INVALID_P check making
282 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
283
284 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 285
cff3e48b
JM
286 print ) : ;;
287
2f9b146e
AC
288 # An optional expression that convers MEMBER to a value
289 # suitable for formatting using %s.
c0e8c252 290
0b1553bc
UW
291 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
292 # or plongest (anything else) is used.
cff3e48b 293
283354d8 294 garbage_at_eol ) : ;;
0b8f9e4d 295
283354d8 296 # Catches stray fields.
cff3e48b 297
50248794
AC
298 *)
299 echo "Bad field ${field}"
300 exit 1;;
cff3e48b
JM
301 esac
302done
303
cff3e48b 304
104c1213
JM
305function_list ()
306{
cff3e48b 307 # See below (DOCO) for description of each field
34620563 308 cat <<EOF
ea480a30 309i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 310#
ea480a30
SM
311i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
312i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
4be87837 313#
ea480a30 314i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
424163ea 315#
ea480a30 316i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
32c9a795 317
66b43ecb 318# Number of bits in a short or unsigned short for the target machine.
ea480a30 319v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
66b43ecb 320# Number of bits in an int or unsigned int for the target machine.
ea480a30 321v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
66b43ecb 322# Number of bits in a long or unsigned long for the target machine.
ea480a30 323v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
66b43ecb
AC
324# Number of bits in a long long or unsigned long long for the target
325# machine.
ea480a30 326v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
456fcf94 327
f9e9243a
UW
328# The ABI default bit-size and format for "half", "float", "double", and
329# "long double". These bit/format pairs should eventually be combined
330# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
331# Each format describes both the big and little endian layouts (if
332# useful).
456fcf94 333
ea480a30
SM
334v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
335v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
336v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
337v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
338v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
339v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
340v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
341v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
456fcf94 342
53375380
PA
343# The ABI default bit-size for "wchar_t". wchar_t is a built-in type
344# starting with C++11.
ea480a30 345v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
53375380 346# One if \`wchar_t' is signed, zero if unsigned.
ea480a30 347v;int;wchar_signed;;;1;-1;1
53375380 348
9b790ce7
UW
349# Returns the floating-point format to be used for values of length LENGTH.
350# NAME, if non-NULL, is the type name, which may be used to distinguish
351# different target formats of the same length.
ea480a30 352m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
9b790ce7 353
52204a0b
DT
354# For most targets, a pointer on the target and its representation as an
355# address in GDB have the same size and "look the same". For such a
17a912b6 356# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
357# / addr_bit will be set from it.
358#
17a912b6 359# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
360# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
361# gdbarch_address_to_pointer as well.
52204a0b
DT
362#
363# ptr_bit is the size of a pointer on the target
ea480a30 364v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
52204a0b 365# addr_bit is the size of a target address as represented in gdb
ea480a30 366v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
104c1213 367#
8da614df
CV
368# dwarf2_addr_size is the target address size as used in the Dwarf debug
369# info. For .debug_frame FDEs, this is supposed to be the target address
370# size from the associated CU header, and which is equivalent to the
371# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
372# Unfortunately there is no good way to determine this value. Therefore
373# dwarf2_addr_size simply defaults to the target pointer size.
374#
375# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
376# defined using the target's pointer size so far.
377#
378# Note that dwarf2_addr_size only needs to be redefined by a target if the
379# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
380# and if Dwarf versions < 4 need to be supported.
ea480a30 381v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
8da614df 382#
4e409299 383# One if \`char' acts like \`signed char', zero if \`unsigned char'.
ea480a30 384v;int;char_signed;;;1;-1;1
4e409299 385#
c113ed0c 386F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
ea480a30 387F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
39d4ef09
AC
388# Function for getting target's idea of a frame pointer. FIXME: GDB's
389# whole scheme for dealing with "frames" and "frame pointers" needs a
390# serious shakedown.
ea480a30 391m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
66b43ecb 392#
849d0ba8 393M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
3543a589
TT
394# Read a register into a new struct value. If the register is wholly
395# or partly unavailable, this should call mark_value_bytes_unavailable
396# as appropriate. If this is defined, then pseudo_register_read will
397# never be called.
849d0ba8 398M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
ea480a30 399M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
61a0eb5b 400#
ea480a30 401v;int;num_regs;;;0;-1
0aba1244
EZ
402# This macro gives the number of pseudo-registers that live in the
403# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
404# These pseudo-registers may be aliases for other registers,
405# combinations of other registers, or they may be computed by GDB.
ea480a30 406v;int;num_pseudo_regs;;;0;0;;0
c2169756 407
175ff332
HZ
408# Assemble agent expression bytecode to collect pseudo-register REG.
409# Return -1 if something goes wrong, 0 otherwise.
ea480a30 410M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
175ff332
HZ
411
412# Assemble agent expression bytecode to push the value of pseudo-register
413# REG on the interpreter stack.
414# Return -1 if something goes wrong, 0 otherwise.
ea480a30 415M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
175ff332 416
272bb05c
JB
417# Some architectures can display additional information for specific
418# signals.
419# UIOUT is the output stream where the handler will place information.
420M;void;report_signal_info;struct ui_out *uiout, enum gdb_signal siggnal;uiout, siggnal
421
c2169756
AC
422# GDB's standard (or well known) register numbers. These can map onto
423# a real register or a pseudo (computed) register or not be defined at
1200cd6e 424# all (-1).
3e8c568d 425# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
ea480a30
SM
426v;int;sp_regnum;;;-1;-1;;0
427v;int;pc_regnum;;;-1;-1;;0
428v;int;ps_regnum;;;-1;-1;;0
429v;int;fp0_regnum;;;0;-1;;0
88c72b7d 430# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
ea480a30 431m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
88c72b7d 432# Provide a default mapping from a ecoff register number to a gdb REGNUM.
ea480a30 433m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
88c72b7d 434# Convert from an sdb register number to an internal gdb register number.
ea480a30 435m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
ba2b1c56 436# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
0fde2c53 437# Return -1 for bad REGNUM. Note: Several targets get this wrong.
ea480a30
SM
438m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
439m;const char *;register_name;int regnr;regnr;;0
9c04cab7 440
7b9ee6a8
DJ
441# Return the type of a register specified by the architecture. Only
442# the register cache should call this function directly; others should
443# use "register_type".
ea480a30 444M;struct type *;register_type;int reg_nr;reg_nr
9c04cab7 445
8bcb5208
AB
446# Generate a dummy frame_id for THIS_FRAME assuming that the frame is
447# a dummy frame. A dummy frame is created before an inferior call,
448# the frame_id returned here must match the frame_id that was built
449# for the inferior call. Usually this means the returned frame_id's
450# stack address should match the address returned by
451# gdbarch_push_dummy_call, and the returned frame_id's code address
452# should match the address at which the breakpoint was set in the dummy
453# frame.
454m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0
669fac23 455# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 456# deprecated_fp_regnum.
ea480a30 457v;int;deprecated_fp_regnum;;;-1;-1;;0
f3be58bc 458
cf84fa6b 459M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr
ea480a30
SM
460v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
461M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 462
7eb89530 463# Return true if the code of FRAME is writable.
ea480a30 464m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
7eb89530 465
ea480a30
SM
466m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
467m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
468M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
7c7651b2
AC
469# MAP a GDB RAW register number onto a simulator register number. See
470# also include/...-sim.h.
ea480a30
SM
471m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
472m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
473m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
eade6471
JB
474
475# Determine the address where a longjmp will land and save this address
476# in PC. Return nonzero on success.
477#
478# FRAME corresponds to the longjmp frame.
ea480a30 479F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
eade6471 480
104c1213 481#
ea480a30 482v;int;believe_pcc_promotion;;;;;;;
104c1213 483#
ea480a30
SM
484m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
485f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
486f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
9acbedc0 487# Construct a value representing the contents of register REGNUM in
2ed3c037 488# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
489# allocate and return a struct value with all value attributes
490# (but not the value contents) filled in.
ea480a30 491m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
104c1213 492#
ea480a30
SM
493m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
494m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
495M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
92ad9cd9 496
6a3a010b
MR
497# Return the return-value convention that will be used by FUNCTION
498# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
499# case the return convention is computed based only on VALTYPE.
500#
501# If READBUF is not NULL, extract the return value and save it in this buffer.
502#
503# If WRITEBUF is not NULL, it contains a return value which will be
504# stored into the appropriate register. This can be used when we want
505# to force the value returned by a function (see the "return" command
506# for instance).
ea480a30 507M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
92ad9cd9 508
18648a37
YQ
509# Return true if the return value of function is stored in the first hidden
510# parameter. In theory, this feature should be language-dependent, specified
511# by language and its ABI, such as C++. Unfortunately, compiler may
512# implement it to a target-dependent feature. So that we need such hook here
513# to be aware of this in GDB.
ea480a30 514m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
18648a37 515
ea480a30
SM
516m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
517M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
591a12a1
UW
518# On some platforms, a single function may provide multiple entry points,
519# e.g. one that is used for function-pointer calls and a different one
520# that is used for direct function calls.
521# In order to ensure that breakpoints set on the function will trigger
522# no matter via which entry point the function is entered, a platform
523# may provide the skip_entrypoint callback. It is called with IP set
524# to the main entry point of a function (as determined by the symbol table),
525# and should return the address of the innermost entry point, where the
526# actual breakpoint needs to be set. Note that skip_entrypoint is used
527# by GDB common code even when debugging optimized code, where skip_prologue
528# is not used.
ea480a30 529M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
591a12a1 530
ea480a30
SM
531f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
532m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
cd6c3b4f
YQ
533
534# Return the breakpoint kind for this target based on *PCPTR.
ea480a30 535m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
cd6c3b4f
YQ
536
537# Return the software breakpoint from KIND. KIND can have target
538# specific meaning like the Z0 kind parameter.
539# SIZE is set to the software breakpoint's length in memory.
ea480a30 540m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
cd6c3b4f 541
833b7ab5
YQ
542# Return the breakpoint kind for this target based on the current
543# processor state (e.g. the current instruction mode on ARM) and the
544# *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
ea480a30 545m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
833b7ab5 546
ea480a30
SM
547M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
548m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
549m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
550v;CORE_ADDR;decr_pc_after_break;;;0;;;0
782263ab
AC
551
552# A function can be addressed by either it's "pointer" (possibly a
553# descriptor address) or "entry point" (first executable instruction).
554# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 555# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
556# a simplified subset of that functionality - the function's address
557# corresponds to the "function pointer" and the function's start
558# corresponds to the "function entry point" - and hence is redundant.
559
ea480a30 560v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
782263ab 561
123dc839
DJ
562# Return the remote protocol register number associated with this
563# register. Normally the identity mapping.
ea480a30 564m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
123dc839 565
b2756930 566# Fetch the target specific address used to represent a load module.
ea480a30 567F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
6e056c81
JB
568
569# Return the thread-local address at OFFSET in the thread-local
570# storage for the thread PTID and the shared library or executable
571# file given by LM_ADDR. If that block of thread-local storage hasn't
572# been allocated yet, this function may throw an error. LM_ADDR may
573# be zero for statically linked multithreaded inferiors.
574
575M;CORE_ADDR;get_thread_local_address;ptid_t ptid, CORE_ADDR lm_addr, CORE_ADDR offset;ptid, lm_addr, offset
104c1213 576#
ea480a30 577v;CORE_ADDR;frame_args_skip;;;0;;;0
8bcb5208
AB
578m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0
579m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0
42efa47a
AC
580# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
581# frame-base. Enable frame-base before frame-unwind.
ea480a30 582F;int;frame_num_args;struct frame_info *frame;frame
104c1213 583#
ea480a30
SM
584M;CORE_ADDR;frame_align;CORE_ADDR address;address
585m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
586v;int;frame_red_zone_size
f0d4cc9e 587#
ea480a30 588m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
875e1767
AC
589# On some machines there are bits in addresses which are not really
590# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 591# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
592# we get a "real" address such as one would find in a symbol table.
593# This is used only for addresses of instructions, and even then I'm
594# not sure it's used in all contexts. It exists to deal with there
595# being a few stray bits in the PC which would mislead us, not as some
596# sort of generic thing to handle alignment or segmentation (it's
597# possible it should be in TARGET_READ_PC instead).
ea480a30 598m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
e6590a1b 599
a738ea1d
YQ
600# On some machines, not all bits of an address word are significant.
601# For example, on AArch64, the top bits of an address known as the "tag"
602# are ignored by the kernel, the hardware, etc. and can be regarded as
603# additional data associated with the address.
5969f0db 604v;int;significant_addr_bit;;;;;;0
a738ea1d 605
e6590a1b
UW
606# FIXME/cagney/2001-01-18: This should be split in two. A target method that
607# indicates if the target needs software single step. An ISA method to
608# implement it.
609#
e6590a1b
UW
610# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
611# target can single step. If not, then implement single step using breakpoints.
64c4637f 612#
93f9a11f
YQ
613# Return a vector of addresses on which the software single step
614# breakpoints should be inserted. NULL means software single step is
615# not used.
616# Multiple breakpoints may be inserted for some instructions such as
617# conditional branch. However, each implementation must always evaluate
618# the condition and only put the breakpoint at the branch destination if
619# the condition is true, so that we ensure forward progress when stepping
620# past a conditional branch to self.
a0ff9e1a 621F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
e6590a1b 622
3352ef37
AC
623# Return non-zero if the processor is executing a delay slot and a
624# further single-step is needed before the instruction finishes.
ea480a30 625M;int;single_step_through_delay;struct frame_info *frame;frame
f6c40618 626# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 627# disassembler. Perhaps objdump can handle it?
39503f82 628f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
ea480a30 629f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
d50355b6
MS
630
631
cfd8ab24 632# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
633# evaluates non-zero, this is the address where the debugger will place
634# a step-resume breakpoint to get us past the dynamic linker.
ea480a30 635m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
d50355b6 636# Some systems also have trampoline code for returning from shared libs.
ea480a30 637m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
d50355b6 638
1d509aa6
MM
639# Return true if PC lies inside an indirect branch thunk.
640m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
641
c12260ac
CV
642# A target might have problems with watchpoints as soon as the stack
643# frame of the current function has been destroyed. This mostly happens
c9cf6e20 644# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
645# is defined to return a non-zero value if either the given addr is one
646# instruction after the stack destroying instruction up to the trailing
647# return instruction or if we can figure out that the stack frame has
648# already been invalidated regardless of the value of addr. Targets
649# which don't suffer from that problem could just let this functionality
650# untouched.
ea480a30 651m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
3e29f34a
MR
652# Process an ELF symbol in the minimal symbol table in a backend-specific
653# way. Normally this hook is supposed to do nothing, however if required,
654# then this hook can be used to apply tranformations to symbols that are
655# considered special in some way. For example the MIPS backend uses it
656# to interpret \`st_other' information to mark compressed code symbols so
657# that they can be treated in the appropriate manner in the processing of
658# the main symbol table and DWARF-2 records.
ea480a30
SM
659F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
660f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
3e29f34a
MR
661# Process a symbol in the main symbol table in a backend-specific way.
662# Normally this hook is supposed to do nothing, however if required,
663# then this hook can be used to apply tranformations to symbols that
664# are considered special in some way. This is currently used by the
665# MIPS backend to make sure compressed code symbols have the ISA bit
666# set. This in turn is needed for symbol values seen in GDB to match
667# the values used at the runtime by the program itself, for function
668# and label references.
ea480a30 669f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
3e29f34a
MR
670# Adjust the address retrieved from a DWARF-2 record other than a line
671# entry in a backend-specific way. Normally this hook is supposed to
672# return the address passed unchanged, however if that is incorrect for
673# any reason, then this hook can be used to fix the address up in the
674# required manner. This is currently used by the MIPS backend to make
675# sure addresses in FDE, range records, etc. referring to compressed
676# code have the ISA bit set, matching line information and the symbol
677# table.
ea480a30 678f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
3e29f34a
MR
679# Adjust the address updated by a line entry in a backend-specific way.
680# Normally this hook is supposed to return the address passed unchanged,
681# however in the case of inconsistencies in these records, this hook can
682# be used to fix them up in the required manner. This is currently used
683# by the MIPS backend to make sure all line addresses in compressed code
684# are presented with the ISA bit set, which is not always the case. This
685# in turn ensures breakpoint addresses are correctly matched against the
686# stop PC.
ea480a30
SM
687f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
688v;int;cannot_step_breakpoint;;;0;0;;0
7ea65f08
PA
689# See comment in target.h about continuable, steppable and
690# non-steppable watchpoints.
ea480a30
SM
691v;int;have_nonsteppable_watchpoint;;;0;0;;0
692F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
693M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
b41c5a85
JW
694# Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
695# FS are passed from the generic execute_cfa_program function.
ea480a30 696m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
69f97648
SM
697
698# Return the appropriate type_flags for the supplied address class.
699# This function should return 1 if the address class was recognized and
700# type_flags was set, zero otherwise.
ea480a30 701M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
b59ff9d5 702# Is a register in a group
ea480a30 703m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
f6214256 704# Fetch the pointer to the ith function argument.
ea480a30 705F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
6ce6d90f 706
5aa82d05
AA
707# Iterate over all supported register notes in a core file. For each
708# supported register note section, the iterator must call CB and pass
709# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
710# the supported register note sections based on the current register
711# values. Otherwise it should enumerate all supported register note
712# sections.
ea480a30 713M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
17ea7499 714
6432734d 715# Create core file notes
ea480a30 716M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
6432734d 717
35c2fab7 718# Find core file memory regions
ea480a30 719M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
35c2fab7 720
de584861 721# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
722# core file into buffer READBUF with length LEN. Return the number of bytes read
723# (zero indicates failure).
724# failed, otherwise, return the red length of READBUF.
ea480a30 725M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
de584861 726
356a5233
JB
727# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
728# libraries list from core file into buffer READBUF with length LEN.
c09f20e4 729# Return the number of bytes read (zero indicates failure).
ea480a30 730M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
356a5233 731
c0edd9ed 732# How the core target converts a PTID from a core file to a string.
a068643d 733M;std::string;core_pid_to_str;ptid_t ptid;ptid
28439f5e 734
4dfc5dbc 735# How the core target extracts the name of a thread from a core file.
ea480a30 736M;const char *;core_thread_name;struct thread_info *thr;thr
4dfc5dbc 737
382b69bb
JB
738# Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
739# from core file into buffer READBUF with length LEN. Return the number
740# of bytes read (zero indicates EOF, a negative value indicates failure).
741M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
742
a78c2d62 743# BFD target to use when generating a core file.
ea480a30 744V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
a78c2d62 745
0d5de010
DJ
746# If the elements of C++ vtables are in-place function descriptors rather
747# than normal function pointers (which may point to code or a descriptor),
748# set this to one.
ea480a30 749v;int;vtable_function_descriptors;;;0;0;;0
0d5de010
DJ
750
751# Set if the least significant bit of the delta is used instead of the least
752# significant bit of the pfn for pointers to virtual member functions.
ea480a30 753v;int;vbit_in_delta;;;0;0;;0
6d350bb5
UW
754
755# Advance PC to next instruction in order to skip a permanent breakpoint.
ea480a30 756f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
1c772458 757
1668ae25 758# The maximum length of an instruction on this architecture in bytes.
ea480a30 759V;ULONGEST;max_insn_length;;;0;0
237fc4c9
PA
760
761# Copy the instruction at FROM to TO, and make any adjustments
762# necessary to single-step it at that address.
763#
764# REGS holds the state the thread's registers will have before
765# executing the copied instruction; the PC in REGS will refer to FROM,
766# not the copy at TO. The caller should update it to point at TO later.
767#
768# Return a pointer to data of the architecture's choice to be passed
19b187a9 769# to gdbarch_displaced_step_fixup.
237fc4c9
PA
770#
771# For a general explanation of displaced stepping and how GDB uses it,
772# see the comments in infrun.c.
773#
774# The TO area is only guaranteed to have space for
775# gdbarch_max_insn_length (arch) bytes, so this function must not
776# write more bytes than that to that area.
777#
778# If you do not provide this function, GDB assumes that the
779# architecture does not support displaced stepping.
780#
7f03bd92
PA
781# If the instruction cannot execute out of line, return NULL. The
782# core falls back to stepping past the instruction in-line instead in
783# that case.
fdb61c6c 784M;displaced_step_closure_up;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
237fc4c9 785
99e40580
UW
786# Return true if GDB should use hardware single-stepping to execute
787# the displaced instruction identified by CLOSURE. If false,
788# GDB will simply restart execution at the displaced instruction
789# location, and it is up to the target to ensure GDB will receive
790# control again (e.g. by placing a software breakpoint instruction
791# into the displaced instruction buffer).
792#
793# The default implementation returns false on all targets that
794# provide a gdbarch_software_single_step routine, and true otherwise.
ea480a30 795m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
99e40580 796
237fc4c9
PA
797# Fix up the state resulting from successfully single-stepping a
798# displaced instruction, to give the result we would have gotten from
799# stepping the instruction in its original location.
800#
801# REGS is the register state resulting from single-stepping the
802# displaced instruction.
803#
804# CLOSURE is the result from the matching call to
805# gdbarch_displaced_step_copy_insn.
806#
807# If you provide gdbarch_displaced_step_copy_insn.but not this
808# function, then GDB assumes that no fixup is needed after
809# single-stepping the instruction.
810#
811# For a general explanation of displaced stepping and how GDB uses it,
812# see the comments in infrun.c.
ea480a30 813M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
237fc4c9 814
237fc4c9
PA
815# Return the address of an appropriate place to put displaced
816# instructions while we step over them. There need only be one such
817# place, since we're only stepping one thread over a breakpoint at a
818# time.
819#
820# For a general explanation of displaced stepping and how GDB uses it,
821# see the comments in infrun.c.
ea480a30 822m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
237fc4c9 823
dde08ee1
PA
824# Relocate an instruction to execute at a different address. OLDLOC
825# is the address in the inferior memory where the instruction to
826# relocate is currently at. On input, TO points to the destination
827# where we want the instruction to be copied (and possibly adjusted)
828# to. On output, it points to one past the end of the resulting
829# instruction(s). The effect of executing the instruction at TO shall
830# be the same as if executing it at FROM. For example, call
831# instructions that implicitly push the return address on the stack
832# should be adjusted to return to the instruction after OLDLOC;
833# relative branches, and other PC-relative instructions need the
834# offset adjusted; etc.
ea480a30 835M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
dde08ee1 836
1c772458 837# Refresh overlay mapped state for section OSECT.
ea480a30 838F;void;overlay_update;struct obj_section *osect;osect
4eb0ad19 839
ea480a30 840M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
149ad273 841
203c3895 842# Set if the address in N_SO or N_FUN stabs may be zero.
ea480a30 843v;int;sofun_address_maybe_missing;;;0;0;;0
1cded358 844
0508c3ec
HZ
845# Parse the instruction at ADDR storing in the record execution log
846# the registers REGCACHE and memory ranges that will be affected when
847# the instruction executes, along with their current values.
848# Return -1 if something goes wrong, 0 otherwise.
ea480a30 849M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
0508c3ec 850
3846b520
HZ
851# Save process state after a signal.
852# Return -1 if something goes wrong, 0 otherwise.
ea480a30 853M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
3846b520 854
22203bbf 855# Signal translation: translate inferior's signal (target's) number
86b49880
PA
856# into GDB's representation. The implementation of this method must
857# be host independent. IOW, don't rely on symbols of the NAT_FILE
858# header (the nm-*.h files), the host <signal.h> header, or similar
859# headers. This is mainly used when cross-debugging core files ---
860# "Live" targets hide the translation behind the target interface
1f8cf220 861# (target_wait, target_resume, etc.).
ea480a30 862M;enum gdb_signal;gdb_signal_from_target;int signo;signo
60c5725c 863
eb14d406
SDJ
864# Signal translation: translate the GDB's internal signal number into
865# the inferior's signal (target's) representation. The implementation
866# of this method must be host independent. IOW, don't rely on symbols
867# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
868# header, or similar headers.
869# Return the target signal number if found, or -1 if the GDB internal
870# signal number is invalid.
ea480a30 871M;int;gdb_signal_to_target;enum gdb_signal signal;signal
eb14d406 872
4aa995e1
PA
873# Extra signal info inspection.
874#
875# Return a type suitable to inspect extra signal information.
ea480a30 876M;struct type *;get_siginfo_type;void;
4aa995e1 877
60c5725c 878# Record architecture-specific information from the symbol table.
ea480a30 879M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
50c71eaf 880
a96d9b2e
SDJ
881# Function for the 'catch syscall' feature.
882
883# Get architecture-specific system calls information from registers.
00431a78 884M;LONGEST;get_syscall_number;thread_info *thread;thread
a96d9b2e 885
458c8db8 886# The filename of the XML syscall for this architecture.
ea480a30 887v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
458c8db8
SDJ
888
889# Information about system calls from this architecture
ea480a30 890v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
458c8db8 891
55aa24fb
SDJ
892# SystemTap related fields and functions.
893
05c0465e
SDJ
894# A NULL-terminated array of prefixes used to mark an integer constant
895# on the architecture's assembly.
55aa24fb
SDJ
896# For example, on x86 integer constants are written as:
897#
898# \$10 ;; integer constant 10
899#
900# in this case, this prefix would be the character \`\$\'.
ea480a30 901v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 902
05c0465e
SDJ
903# A NULL-terminated array of suffixes used to mark an integer constant
904# on the architecture's assembly.
ea480a30 905v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 906
05c0465e
SDJ
907# A NULL-terminated array of prefixes used to mark a register name on
908# the architecture's assembly.
55aa24fb
SDJ
909# For example, on x86 the register name is written as:
910#
911# \%eax ;; register eax
912#
913# in this case, this prefix would be the character \`\%\'.
ea480a30 914v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 915
05c0465e
SDJ
916# A NULL-terminated array of suffixes used to mark a register name on
917# the architecture's assembly.
ea480a30 918v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 919
05c0465e
SDJ
920# A NULL-terminated array of prefixes used to mark a register
921# indirection on the architecture's assembly.
55aa24fb
SDJ
922# For example, on x86 the register indirection is written as:
923#
924# \(\%eax\) ;; indirecting eax
925#
926# in this case, this prefix would be the charater \`\(\'.
927#
928# Please note that we use the indirection prefix also for register
929# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 930v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 931
05c0465e
SDJ
932# A NULL-terminated array of suffixes used to mark a register
933# indirection on the architecture's assembly.
55aa24fb
SDJ
934# For example, on x86 the register indirection is written as:
935#
936# \(\%eax\) ;; indirecting eax
937#
938# in this case, this prefix would be the charater \`\)\'.
939#
940# Please note that we use the indirection suffix also for register
941# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 942v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 943
05c0465e 944# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
945#
946# For example, on PPC a register is represented by a number in the assembly
947# language (e.g., \`10\' is the 10th general-purpose register). However,
948# inside GDB this same register has an \`r\' appended to its name, so the 10th
949# register would be represented as \`r10\' internally.
ea480a30 950v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
951
952# Suffix used to name a register using GDB's nomenclature.
ea480a30 953v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
954
955# Check if S is a single operand.
956#
957# Single operands can be:
958# \- Literal integers, e.g. \`\$10\' on x86
959# \- Register access, e.g. \`\%eax\' on x86
960# \- Register indirection, e.g. \`\(\%eax\)\' on x86
961# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
962#
963# This function should check for these patterns on the string
964# and return 1 if some were found, or zero otherwise. Please try to match
965# as much info as you can from the string, i.e., if you have to match
966# something like \`\(\%\', do not match just the \`\(\'.
ea480a30 967M;int;stap_is_single_operand;const char *s;s
55aa24fb
SDJ
968
969# Function used to handle a "special case" in the parser.
970#
971# A "special case" is considered to be an unknown token, i.e., a token
972# that the parser does not know how to parse. A good example of special
973# case would be ARM's register displacement syntax:
974#
975# [R0, #4] ;; displacing R0 by 4
976#
977# Since the parser assumes that a register displacement is of the form:
978#
979# <number> <indirection_prefix> <register_name> <indirection_suffix>
980#
981# it means that it will not be able to recognize and parse this odd syntax.
982# Therefore, we should add a special case function that will handle this token.
983#
984# This function should generate the proper expression form of the expression
985# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
986# and so on). It should also return 1 if the parsing was successful, or zero
987# if the token was not recognized as a special token (in this case, returning
988# zero means that the special parser is deferring the parsing to the generic
989# parser), and should advance the buffer pointer (p->arg).
ea480a30 990M;int;stap_parse_special_token;struct stap_parse_info *p;p
55aa24fb 991
7d7571f0
SDJ
992# Perform arch-dependent adjustments to a register name.
993#
994# In very specific situations, it may be necessary for the register
995# name present in a SystemTap probe's argument to be handled in a
996# special way. For example, on i386, GCC may over-optimize the
997# register allocation and use smaller registers than necessary. In
998# such cases, the client that is reading and evaluating the SystemTap
999# probe (ourselves) will need to actually fetch values from the wider
1000# version of the register in question.
1001#
1002# To illustrate the example, consider the following probe argument
1003# (i386):
1004#
1005# 4@%ax
1006#
1007# This argument says that its value can be found at the %ax register,
1008# which is a 16-bit register. However, the argument's prefix says
1009# that its type is "uint32_t", which is 32-bit in size. Therefore, in
1010# this case, GDB should actually fetch the probe's value from register
1011# %eax, not %ax. In this scenario, this function would actually
1012# replace the register name from %ax to %eax.
1013#
1014# The rationale for this can be found at PR breakpoints/24541.
6b78c3f8 1015M;std::string;stap_adjust_register;struct stap_parse_info *p, const std::string \&regname, int regnum;p, regname, regnum
7d7571f0 1016
8b367e17
JM
1017# DTrace related functions.
1018
1019# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1020# NARG must be >= 0.
37eedb39 1021M;void;dtrace_parse_probe_argument;struct expr_builder *builder, int narg;builder, narg
8b367e17
JM
1022
1023# True if the given ADDR does not contain the instruction sequence
1024# corresponding to a disabled DTrace is-enabled probe.
ea480a30 1025M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
8b367e17
JM
1026
1027# Enable a DTrace is-enabled probe at ADDR.
ea480a30 1028M;void;dtrace_enable_probe;CORE_ADDR addr;addr
8b367e17
JM
1029
1030# Disable a DTrace is-enabled probe at ADDR.
ea480a30 1031M;void;dtrace_disable_probe;CORE_ADDR addr;addr
55aa24fb 1032
50c71eaf
PA
1033# True if the list of shared libraries is one and only for all
1034# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1035# This usually means that all processes, although may or may not share
1036# an address space, will see the same set of symbols at the same
1037# addresses.
ea480a30 1038v;int;has_global_solist;;;0;0;;0
2567c7d9
PA
1039
1040# On some targets, even though each inferior has its own private
1041# address space, the debug interface takes care of making breakpoints
1042# visible to all address spaces automatically. For such cases,
1043# this property should be set to true.
ea480a30 1044v;int;has_global_breakpoints;;;0;0;;0
6c95b8df
PA
1045
1046# True if inferiors share an address space (e.g., uClinux).
ea480a30 1047m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
7a697b8d
SS
1048
1049# True if a fast tracepoint can be set at an address.
281d762b 1050m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
75cebea9 1051
5f034a78
MK
1052# Guess register state based on tracepoint location. Used for tracepoints
1053# where no registers have been collected, but there's only one location,
1054# allowing us to guess the PC value, and perhaps some other registers.
1055# On entry, regcache has all registers marked as unavailable.
ea480a30 1056m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
5f034a78 1057
f870a310 1058# Return the "auto" target charset.
ea480a30 1059f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
f870a310 1060# Return the "auto" target wide charset.
ea480a30 1061f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
08105857
PA
1062
1063# If non-empty, this is a file extension that will be opened in place
1064# of the file extension reported by the shared library list.
1065#
1066# This is most useful for toolchains that use a post-linker tool,
1067# where the names of the files run on the target differ in extension
1068# compared to the names of the files GDB should load for debug info.
ea480a30 1069v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1070
1071# If true, the target OS has DOS-based file system semantics. That
1072# is, absolute paths include a drive name, and the backslash is
1073# considered a directory separator.
ea480a30 1074v;int;has_dos_based_file_system;;;0;0;;0
6710bf39
SS
1075
1076# Generate bytecodes to collect the return address in a frame.
1077# Since the bytecodes run on the target, possibly with GDB not even
1078# connected, the full unwinding machinery is not available, and
1079# typically this function will issue bytecodes for one or more likely
1080# places that the return address may be found.
ea480a30 1081m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
6710bf39 1082
3030c96e 1083# Implement the "info proc" command.
ea480a30 1084M;void;info_proc;const char *args, enum info_proc_what what;args, what
3030c96e 1085
451b7c33
TT
1086# Implement the "info proc" command for core files. Noe that there
1087# are two "info_proc"-like methods on gdbarch -- one for core files,
1088# one for live targets.
ea480a30 1089M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
451b7c33 1090
19630284
JB
1091# Iterate over all objfiles in the order that makes the most sense
1092# for the architecture to make global symbol searches.
1093#
1094# CB is a callback function where OBJFILE is the objfile to be searched,
1095# and CB_DATA a pointer to user-defined data (the same data that is passed
1096# when calling this gdbarch method). The iteration stops if this function
1097# returns nonzero.
1098#
1099# CB_DATA is a pointer to some user-defined data to be passed to
1100# the callback.
1101#
1102# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1103# inspected when the symbol search was requested.
ea480a30 1104m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
19630284 1105
7e35103a 1106# Ravenscar arch-dependent ops.
ea480a30 1107v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1108
1109# Return non-zero if the instruction at ADDR is a call; zero otherwise.
ea480a30 1110m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
c2170eef
MM
1111
1112# Return non-zero if the instruction at ADDR is a return; zero otherwise.
ea480a30 1113m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
c2170eef
MM
1114
1115# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
ea480a30 1116m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
27a48a92 1117
5133a315
LM
1118# Return true if there's a program/permanent breakpoint planted in
1119# memory at ADDRESS, return false otherwise.
1120m;bool;program_breakpoint_here_p;CORE_ADDR address;address;;default_program_breakpoint_here_p;;0
1121
27a48a92
MK
1122# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1123# Return 0 if *READPTR is already at the end of the buffer.
1124# Return -1 if there is insufficient buffer for a whole entry.
1125# Return 1 if an entry was read into *TYPEP and *VALP.
ea480a30 1126M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
3437254d 1127
2faa3447
JB
1128# Print the description of a single auxv entry described by TYPE and VAL
1129# to FILE.
ea480a30 1130m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
2faa3447 1131
3437254d
PA
1132# Find the address range of the current inferior's vsyscall/vDSO, and
1133# write it to *RANGE. If the vsyscall's length can't be determined, a
1134# range with zero length is returned. Returns true if the vsyscall is
1135# found, false otherwise.
ea480a30 1136m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
f208eee0
JK
1137
1138# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1139# PROT has GDB_MMAP_PROT_* bitmask format.
1140# Throw an error if it is not possible. Returned address is always valid.
ea480a30 1141f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
f208eee0 1142
7f361056
JK
1143# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1144# Print a warning if it is not possible.
ea480a30 1145f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
7f361056 1146
f208eee0
JK
1147# Return string (caller has to use xfree for it) with options for GCC
1148# to produce code for this target, typically "-m64", "-m32" or "-m31".
1149# These options are put before CU's DW_AT_producer compilation options so that
953cff56
TT
1150# they can override it.
1151m;std::string;gcc_target_options;void;;;default_gcc_target_options;;0
ac04f72b
TT
1152
1153# Return a regular expression that matches names used by this
1154# architecture in GNU configury triplets. The result is statically
1155# allocated and must not be freed. The default implementation simply
1156# returns the BFD architecture name, which is correct in nearly every
1157# case.
ea480a30 1158m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
3374165f
SM
1159
1160# Return the size in 8-bit bytes of an addressable memory unit on this
1161# architecture. This corresponds to the number of 8-bit bytes associated to
1162# each address in memory.
ea480a30 1163m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
3374165f 1164
65b48a81 1165# Functions for allowing a target to modify its disassembler options.
471b9d15 1166v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
ea480a30 1167v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
471b9d15 1168v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
65b48a81 1169
5561fc30
AB
1170# Type alignment override method. Return the architecture specific
1171# alignment required for TYPE. If there is no special handling
1172# required for TYPE then return the value 0, GDB will then apply the
1173# default rules as laid out in gdbtypes.c:type_align.
2b4424c3
TT
1174m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1175
aa7ca1bb
AH
1176# Return a string containing any flags for the given PC in the given FRAME.
1177f;std::string;get_pc_address_flags;frame_info *frame, CORE_ADDR pc;frame, pc;;default_get_pc_address_flags;;0
1178
7e183d27
KB
1179# Read core file mappings
1180m;void;read_core_file_mappings;struct bfd *cbfd,gdb::function_view<void (ULONGEST count)> pre_loop_cb,gdb::function_view<void (int num, ULONGEST start, ULONGEST end, ULONGEST file_ofs, const char *filename, const void *other)> loop_cb;cbfd, pre_loop_cb, loop_cb;;default_read_core_file_mappings;;0
1181
104c1213 1182EOF
104c1213
JM
1183}
1184
0b8f9e4d
AC
1185#
1186# The .log file
1187#
41a77cba 1188exec > gdbarch.log
34620563 1189function_list | while do_read
0b8f9e4d
AC
1190do
1191 cat <<EOF
1207375d 1192${class} ${returntype:-} ${function} (${formal:-})
104c1213 1193EOF
3d9a5942
AC
1194 for r in ${read}
1195 do
a6fc5ffc 1196 eval echo "\" ${r}=\${${r}}\""
3d9a5942 1197 done
f0d4cc9e 1198 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1199 then
66d659b1 1200 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1201 kill $$
1202 exit 1
1203 fi
759cea5e 1204 if [ "x${invalid_p}" = "x0" ] && [ -n "${postdefault}" ]
f0d4cc9e
AC
1205 then
1206 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1207 kill $$
1208 exit 1
1209 fi
a72293e2
AC
1210 if class_is_multiarch_p
1211 then
1212 if class_is_predicate_p ; then :
1213 elif test "x${predefault}" = "x"
1214 then
2f9b146e 1215 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1216 kill $$
1217 exit 1
1218 fi
1219 fi
3d9a5942 1220 echo ""
0b8f9e4d
AC
1221done
1222
1223exec 1>&2
0b8f9e4d 1224
104c1213
JM
1225
1226copyright ()
1227{
1228cat <<EOF
c4bfde41
JK
1229/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1230/* vi:set ro: */
59233f88 1231
104c1213 1232/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1233
e5d78223 1234 Copyright (C) 1998-2020 Free Software Foundation, Inc.
104c1213
JM
1235
1236 This file is part of GDB.
1237
1238 This program is free software; you can redistribute it and/or modify
1239 it under the terms of the GNU General Public License as published by
50efebf8 1240 the Free Software Foundation; either version 3 of the License, or
104c1213 1241 (at your option) any later version.
618f726f 1242
104c1213
JM
1243 This program is distributed in the hope that it will be useful,
1244 but WITHOUT ANY WARRANTY; without even the implied warranty of
1245 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1246 GNU General Public License for more details.
618f726f 1247
104c1213 1248 You should have received a copy of the GNU General Public License
50efebf8 1249 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1250
41a77cba 1251/* This file was created with the aid of \`\`gdbarch.sh''. */
104c1213
JM
1252
1253EOF
1254}
1255
1256#
1257# The .h file
1258#
1259
1260exec > new-gdbarch.h
1261copyright
1262cat <<EOF
1263#ifndef GDBARCH_H
1264#define GDBARCH_H
1265
a0ff9e1a 1266#include <vector>
eb7a547a 1267#include "frame.h"
65b48a81 1268#include "dis-asm.h"
284a0e3c 1269#include "gdb_obstack.h"
fdb61c6c 1270#include "infrun.h"
fe4b2ee6 1271#include "osabi.h"
eb7a547a 1272
da3331ec
AC
1273struct floatformat;
1274struct ui_file;
104c1213 1275struct value;
b6af0555 1276struct objfile;
1c772458 1277struct obj_section;
a2cf933a 1278struct minimal_symbol;
049ee0e4 1279struct regcache;
b59ff9d5 1280struct reggroup;
6ce6d90f 1281struct regset;
a89aa300 1282struct disassemble_info;
e2d0e7eb 1283struct target_ops;
030f20e1 1284struct obstack;
8181d85f 1285struct bp_target_info;
424163ea 1286struct target_desc;
3e29f34a 1287struct symbol;
a96d9b2e 1288struct syscall;
175ff332 1289struct agent_expr;
6710bf39 1290struct axs_value;
55aa24fb 1291struct stap_parse_info;
37eedb39 1292struct expr_builder;
7e35103a 1293struct ravenscar_arch_ops;
3437254d 1294struct mem_range;
458c8db8 1295struct syscalls_info;
4dfc5dbc 1296struct thread_info;
012b3a21 1297struct ui_out;
104c1213 1298
8a526fa6
PA
1299#include "regcache.h"
1300
6ecd4729
PA
1301/* The architecture associated with the inferior through the
1302 connection to the target.
1303
1304 The architecture vector provides some information that is really a
1305 property of the inferior, accessed through a particular target:
1306 ptrace operations; the layout of certain RSP packets; the solib_ops
1307 vector; etc. To differentiate architecture accesses to
1308 per-inferior/target properties from
1309 per-thread/per-frame/per-objfile properties, accesses to
1310 per-inferior/target properties should be made through this
1311 gdbarch. */
1312
1313/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1314extern struct gdbarch *target_gdbarch (void);
6ecd4729 1315
19630284
JB
1316/* Callback type for the 'iterate_over_objfiles_in_search_order'
1317 gdbarch method. */
1318
1319typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1320 (struct objfile *objfile, void *cb_data);
5aa82d05 1321
1528345d
AA
1322/* Callback type for regset section iterators. The callback usually
1323 invokes the REGSET's supply or collect method, to which it must
a616bb94
AH
1324 pass a buffer - for collects this buffer will need to be created using
1325 COLLECT_SIZE, for supply the existing buffer being read from should
1326 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1327 is used for diagnostic messages. CB_DATA should have been passed
1328 unchanged through the iterator. */
1528345d 1329
5aa82d05 1330typedef void (iterate_over_regset_sections_cb)
a616bb94
AH
1331 (const char *sect_name, int supply_size, int collect_size,
1332 const struct regset *regset, const char *human_name, void *cb_data);
c5ac5cbb
AH
1333
1334/* For a function call, does the function return a value using a
1335 normal value return or a structure return - passing a hidden
1336 argument pointing to storage. For the latter, there are two
1337 cases: language-mandated structure return and target ABI
1338 structure return. */
1339
1340enum function_call_return_method
1341{
1342 /* Standard value return. */
1343 return_method_normal = 0,
1344
1345 /* Language ABI structure return. This is handled
1346 by passing the return location as the first parameter to
1347 the function, even preceding "this". */
1348 return_method_hidden_param,
1349
1350 /* Target ABI struct return. This is target-specific; for instance,
1351 on ia64 the first argument is passed in out0 but the hidden
1352 structure return pointer would normally be passed in r8. */
1353 return_method_struct,
1354};
1355
104c1213
JM
1356EOF
1357
1358# function typedef's
3d9a5942
AC
1359printf "\n"
1360printf "\n"
0963b4bd 1361printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1362function_list | while do_read
104c1213 1363do
2ada493a
AC
1364 if class_is_info_p
1365 then
3d9a5942 1366 printf "\n"
8d113d13
SM
1367 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1368 printf "/* set_gdbarch_%s() - not applicable - pre-initialized. */\n" "$function"
2ada493a 1369 fi
104c1213
JM
1370done
1371
1372# function typedef's
3d9a5942
AC
1373printf "\n"
1374printf "\n"
0963b4bd 1375printf "/* The following are initialized by the target dependent code. */\n"
34620563 1376function_list | while do_read
104c1213 1377do
72e74a21 1378 if [ -n "${comment}" ]
34620563
AC
1379 then
1380 echo "${comment}" | sed \
1381 -e '2 s,#,/*,' \
1382 -e '3,$ s,#, ,' \
1383 -e '$ s,$, */,'
1384 fi
412d5987
AC
1385
1386 if class_is_predicate_p
2ada493a 1387 then
412d5987 1388 printf "\n"
8d113d13 1389 printf "extern int gdbarch_%s_p (struct gdbarch *gdbarch);\n" "$function"
4a5c6a1d 1390 fi
2ada493a
AC
1391 if class_is_variable_p
1392 then
3d9a5942 1393 printf "\n"
8d113d13
SM
1394 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1395 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, %s %s);\n" "$function" "$returntype" "$function"
2ada493a
AC
1396 fi
1397 if class_is_function_p
1398 then
3d9a5942 1399 printf "\n"
72e74a21 1400 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d 1401 then
8d113d13 1402 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch);\n" "$returntype" "$function"
4a5c6a1d
AC
1403 elif class_is_multiarch_p
1404 then
8d113d13 1405 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
4a5c6a1d 1406 else
8d113d13 1407 printf "typedef %s (gdbarch_%s_ftype) (%s);\n" "$returntype" "$function" "$formal"
4a5c6a1d 1408 fi
72e74a21 1409 if [ "x${formal}" = "xvoid" ]
104c1213 1410 then
8d113d13 1411 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
104c1213 1412 else
8d113d13 1413 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
104c1213 1414 fi
8d113d13 1415 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, gdbarch_%s_ftype *%s);\n" "$function" "$function" "$function"
2ada493a 1416 fi
104c1213
JM
1417done
1418
1419# close it off
1420cat <<EOF
1421
1422extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1423
1424
1425/* Mechanism for co-ordinating the selection of a specific
1426 architecture.
1427
1428 GDB targets (*-tdep.c) can register an interest in a specific
1429 architecture. Other GDB components can register a need to maintain
1430 per-architecture data.
1431
1432 The mechanisms below ensures that there is only a loose connection
1433 between the set-architecture command and the various GDB
0fa6923a 1434 components. Each component can independently register their need
104c1213
JM
1435 to maintain architecture specific data with gdbarch.
1436
1437 Pragmatics:
1438
1439 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1440 didn't scale.
1441
1442 The more traditional mega-struct containing architecture specific
1443 data for all the various GDB components was also considered. Since
0fa6923a 1444 GDB is built from a variable number of (fairly independent)
104c1213 1445 components it was determined that the global aproach was not
0963b4bd 1446 applicable. */
104c1213
JM
1447
1448
1449/* Register a new architectural family with GDB.
1450
1451 Register support for the specified ARCHITECTURE with GDB. When
1452 gdbarch determines that the specified architecture has been
1453 selected, the corresponding INIT function is called.
1454
1455 --
1456
1457 The INIT function takes two parameters: INFO which contains the
1458 information available to gdbarch about the (possibly new)
1459 architecture; ARCHES which is a list of the previously created
1460 \`\`struct gdbarch'' for this architecture.
1461
0f79675b 1462 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1463 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1464
1465 The ARCHES parameter is a linked list (sorted most recently used)
1466 of all the previously created architures for this architecture
1467 family. The (possibly NULL) ARCHES->gdbarch can used to access
1468 values from the previously selected architecture for this
59837fe0 1469 architecture family.
104c1213
JM
1470
1471 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1472 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1473 gdbarch'' from the ARCHES list - indicating that the new
1474 architecture is just a synonym for an earlier architecture (see
1475 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1476 - that describes the selected architecture (see gdbarch_alloc()).
1477
1478 The DUMP_TDEP function shall print out all target specific values.
1479 Care should be taken to ensure that the function works in both the
0963b4bd 1480 multi-arch and non- multi-arch cases. */
104c1213
JM
1481
1482struct gdbarch_list
1483{
1484 struct gdbarch *gdbarch;
1485 struct gdbarch_list *next;
1486};
1487
1488struct gdbarch_info
1489{
0963b4bd 1490 /* Use default: NULL (ZERO). */
104c1213
JM
1491 const struct bfd_arch_info *bfd_arch_info;
1492
428721aa 1493 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1494 enum bfd_endian byte_order;
104c1213 1495
94123b4f 1496 enum bfd_endian byte_order_for_code;
9d4fde75 1497
0963b4bd 1498 /* Use default: NULL (ZERO). */
104c1213
JM
1499 bfd *abfd;
1500
0963b4bd 1501 /* Use default: NULL (ZERO). */
0dba2a6c
MR
1502 union
1503 {
1504 /* Architecture-specific information. The generic form for targets
1505 that have extra requirements. */
1506 struct gdbarch_tdep_info *tdep_info;
1507
1508 /* Architecture-specific target description data. Numerous targets
1509 need only this, so give them an easy way to hold it. */
1510 struct tdesc_arch_data *tdesc_data;
1511
1512 /* SPU file system ID. This is a single integer, so using the
1513 generic form would only complicate code. Other targets may
1514 reuse this member if suitable. */
1515 int *id;
1516 };
4be87837
DJ
1517
1518 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1519 enum gdb_osabi osabi;
424163ea
DJ
1520
1521 /* Use default: NULL (ZERO). */
1522 const struct target_desc *target_desc;
104c1213
JM
1523};
1524
1525typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1526typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1527
4b9b3959 1528/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1529extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1530
4b9b3959
AC
1531extern void gdbarch_register (enum bfd_architecture architecture,
1532 gdbarch_init_ftype *,
1533 gdbarch_dump_tdep_ftype *);
1534
104c1213 1535
b4a20239
AC
1536/* Return a freshly allocated, NULL terminated, array of the valid
1537 architecture names. Since architectures are registered during the
1538 _initialize phase this function only returns useful information
0963b4bd 1539 once initialization has been completed. */
b4a20239
AC
1540
1541extern const char **gdbarch_printable_names (void);
1542
1543
104c1213 1544/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1545 matches the information provided by INFO. */
104c1213 1546
424163ea 1547extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1548
1549
1550/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1551 basic initialization using values obtained from the INFO and TDEP
104c1213 1552 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1553 initialization of the object. */
104c1213
JM
1554
1555extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1556
1557
4b9b3959
AC
1558/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1559 It is assumed that the caller freeds the \`\`struct
0963b4bd 1560 gdbarch_tdep''. */
4b9b3959 1561
058f20d5
JB
1562extern void gdbarch_free (struct gdbarch *);
1563
284a0e3c
SM
1564/* Get the obstack owned by ARCH. */
1565
1566extern obstack *gdbarch_obstack (gdbarch *arch);
058f20d5 1567
aebd7893
AC
1568/* Helper function. Allocate memory from the \`\`struct gdbarch''
1569 obstack. The memory is freed when the corresponding architecture
1570 is also freed. */
1571
284a0e3c
SM
1572#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1573 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1574
1575#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1576 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
aebd7893 1577
6c214e7c
PP
1578/* Duplicate STRING, returning an equivalent string that's allocated on the
1579 obstack associated with GDBARCH. The string is freed when the corresponding
1580 architecture is also freed. */
1581
1582extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
aebd7893 1583
0963b4bd 1584/* Helper function. Force an update of the current architecture.
104c1213 1585
b732d07d
AC
1586 The actual architecture selected is determined by INFO, \`\`(gdb) set
1587 architecture'' et.al., the existing architecture and BFD's default
1588 architecture. INFO should be initialized to zero and then selected
1589 fields should be updated.
104c1213 1590
0963b4bd 1591 Returns non-zero if the update succeeds. */
16f33e29
AC
1592
1593extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1594
1595
ebdba546
AC
1596/* Helper function. Find an architecture matching info.
1597
1598 INFO should be initialized using gdbarch_info_init, relevant fields
1599 set, and then finished using gdbarch_info_fill.
1600
1601 Returns the corresponding architecture, or NULL if no matching
59837fe0 1602 architecture was found. */
ebdba546
AC
1603
1604extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1605
1606
aff68abb 1607/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1608
aff68abb 1609extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1610
104c1213
JM
1611
1612/* Register per-architecture data-pointer.
1613
1614 Reserve space for a per-architecture data-pointer. An identifier
1615 for the reserved data-pointer is returned. That identifer should
95160752 1616 be saved in a local static variable.
104c1213 1617
fcc1c85c
AC
1618 Memory for the per-architecture data shall be allocated using
1619 gdbarch_obstack_zalloc. That memory will be deleted when the
1620 corresponding architecture object is deleted.
104c1213 1621
95160752
AC
1622 When a previously created architecture is re-selected, the
1623 per-architecture data-pointer for that previous architecture is
76860b5f 1624 restored. INIT() is not re-called.
104c1213
JM
1625
1626 Multiple registrarants for any architecture are allowed (and
1627 strongly encouraged). */
1628
95160752 1629struct gdbarch_data;
104c1213 1630
030f20e1
AC
1631typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1632extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1633typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1634extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
104c1213 1635
451fbdda 1636extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1637
1638
0fa6923a 1639/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1640 byte-order, ...) using information found in the BFD. */
104c1213
JM
1641
1642extern void set_gdbarch_from_file (bfd *);
1643
1644
e514a9d6
JM
1645/* Initialize the current architecture to the "first" one we find on
1646 our list. */
1647
1648extern void initialize_current_architecture (void);
1649
104c1213 1650/* gdbarch trace variable */
ccce17b0 1651extern unsigned int gdbarch_debug;
104c1213 1652
4b9b3959 1653extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1654
f6efe3f8
SM
1655/* Return the number of cooked registers (raw + pseudo) for ARCH. */
1656
1657static inline int
1658gdbarch_num_cooked_regs (gdbarch *arch)
1659{
1660 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1661}
1662
104c1213
JM
1663#endif
1664EOF
1665exec 1>&2
41a77cba
SM
1666../move-if-change new-gdbarch.h gdbarch.h
1667rm -f new-gdbarch.h
104c1213
JM
1668
1669
1670#
1671# C file
1672#
1673
1674exec > new-gdbarch.c
1675copyright
1676cat <<EOF
1677
1678#include "defs.h"
7355ddba 1679#include "arch-utils.h"
104c1213 1680
104c1213 1681#include "gdbcmd.h"
faaf634c 1682#include "inferior.h"
104c1213
JM
1683#include "symcat.h"
1684
f0d4cc9e 1685#include "floatformat.h"
b59ff9d5 1686#include "reggroups.h"
4be87837 1687#include "osabi.h"
aebd7893 1688#include "gdb_obstack.h"
0bee6dd4 1689#include "observable.h"
a3ecef73 1690#include "regcache.h"
19630284 1691#include "objfiles.h"
2faa3447 1692#include "auxv.h"
8bcb5208
AB
1693#include "frame-unwind.h"
1694#include "dummy-frame.h"
95160752 1695
104c1213
JM
1696/* Static function declarations */
1697
b3cc3077 1698static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1699
104c1213
JM
1700/* Non-zero if we want to trace architecture code. */
1701
1702#ifndef GDBARCH_DEBUG
1703#define GDBARCH_DEBUG 0
1704#endif
ccce17b0 1705unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1706static void
1707show_gdbarch_debug (struct ui_file *file, int from_tty,
1708 struct cmd_list_element *c, const char *value)
1709{
1710 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1711}
104c1213 1712
456fcf94 1713static const char *
8da61cc4 1714pformat (const struct floatformat **format)
456fcf94
AC
1715{
1716 if (format == NULL)
1717 return "(null)";
1718 else
8da61cc4
DJ
1719 /* Just print out one of them - this is only for diagnostics. */
1720 return format[0]->name;
456fcf94
AC
1721}
1722
08105857
PA
1723static const char *
1724pstring (const char *string)
1725{
1726 if (string == NULL)
1727 return "(null)";
1728 return string;
05c0465e
SDJ
1729}
1730
a121b7c1 1731static const char *
f7bb4e3a
PB
1732pstring_ptr (char **string)
1733{
1734 if (string == NULL || *string == NULL)
1735 return "(null)";
1736 return *string;
1737}
1738
05c0465e
SDJ
1739/* Helper function to print a list of strings, represented as "const
1740 char *const *". The list is printed comma-separated. */
1741
a121b7c1 1742static const char *
05c0465e
SDJ
1743pstring_list (const char *const *list)
1744{
1745 static char ret[100];
1746 const char *const *p;
1747 size_t offset = 0;
1748
1749 if (list == NULL)
1750 return "(null)";
1751
1752 ret[0] = '\0';
1753 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1754 {
1755 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1756 offset += 2 + s;
1757 }
1758
1759 if (offset > 0)
1760 {
1761 gdb_assert (offset - 2 < sizeof (ret));
1762 ret[offset - 2] = '\0';
1763 }
1764
1765 return ret;
08105857
PA
1766}
1767
104c1213
JM
1768EOF
1769
1770# gdbarch open the gdbarch object
3d9a5942 1771printf "\n"
0963b4bd 1772printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1773printf "\n"
1774printf "struct gdbarch\n"
1775printf "{\n"
76860b5f
AC
1776printf " /* Has this architecture been fully initialized? */\n"
1777printf " int initialized_p;\n"
aebd7893
AC
1778printf "\n"
1779printf " /* An obstack bound to the lifetime of the architecture. */\n"
1780printf " struct obstack *obstack;\n"
1781printf "\n"
0963b4bd 1782printf " /* basic architectural information. */\n"
34620563 1783function_list | while do_read
104c1213 1784do
2ada493a
AC
1785 if class_is_info_p
1786 then
8d113d13 1787 printf " %s %s;\n" "$returntype" "$function"
2ada493a 1788 fi
104c1213 1789done
3d9a5942 1790printf "\n"
0963b4bd 1791printf " /* target specific vector. */\n"
3d9a5942
AC
1792printf " struct gdbarch_tdep *tdep;\n"
1793printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1794printf "\n"
0963b4bd 1795printf " /* per-architecture data-pointers. */\n"
95160752 1796printf " unsigned nr_data;\n"
3d9a5942
AC
1797printf " void **data;\n"
1798printf "\n"
104c1213
JM
1799cat <<EOF
1800 /* Multi-arch values.
1801
1802 When extending this structure you must:
1803
1804 Add the field below.
1805
1806 Declare set/get functions and define the corresponding
1807 macro in gdbarch.h.
1808
1809 gdbarch_alloc(): If zero/NULL is not a suitable default,
1810 initialize the new field.
1811
1812 verify_gdbarch(): Confirm that the target updated the field
1813 correctly.
1814
7e73cedf 1815 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1816 field is dumped out
1817
104c1213
JM
1818 get_gdbarch(): Implement the set/get functions (probably using
1819 the macro's as shortcuts).
1820
1821 */
1822
1823EOF
34620563 1824function_list | while do_read
104c1213 1825do
2ada493a
AC
1826 if class_is_variable_p
1827 then
8d113d13 1828 printf " %s %s;\n" "$returntype" "$function"
2ada493a
AC
1829 elif class_is_function_p
1830 then
8d113d13 1831 printf " gdbarch_%s_ftype *%s;\n" "$function" "$function"
2ada493a 1832 fi
104c1213 1833done
3d9a5942 1834printf "};\n"
104c1213 1835
104c1213 1836# Create a new gdbarch struct
104c1213 1837cat <<EOF
7de2341d 1838
66b43ecb 1839/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1840 \`\`struct gdbarch_info''. */
104c1213 1841EOF
3d9a5942 1842printf "\n"
104c1213
JM
1843cat <<EOF
1844struct gdbarch *
1845gdbarch_alloc (const struct gdbarch_info *info,
1846 struct gdbarch_tdep *tdep)
1847{
be7811ad 1848 struct gdbarch *gdbarch;
aebd7893
AC
1849
1850 /* Create an obstack for allocating all the per-architecture memory,
1851 then use that to allocate the architecture vector. */
70ba0933 1852 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1853 obstack_init (obstack);
8d749320 1854 gdbarch = XOBNEW (obstack, struct gdbarch);
be7811ad
MD
1855 memset (gdbarch, 0, sizeof (*gdbarch));
1856 gdbarch->obstack = obstack;
85de9627 1857
be7811ad 1858 alloc_gdbarch_data (gdbarch);
85de9627 1859
be7811ad 1860 gdbarch->tdep = tdep;
104c1213 1861EOF
3d9a5942 1862printf "\n"
34620563 1863function_list | while do_read
104c1213 1864do
2ada493a
AC
1865 if class_is_info_p
1866 then
8d113d13 1867 printf " gdbarch->%s = info->%s;\n" "$function" "$function"
2ada493a 1868 fi
104c1213 1869done
3d9a5942 1870printf "\n"
0963b4bd 1871printf " /* Force the explicit initialization of these. */\n"
34620563 1872function_list | while do_read
104c1213 1873do
2ada493a
AC
1874 if class_is_function_p || class_is_variable_p
1875 then
759cea5e 1876 if [ -n "${predefault}" ] && [ "x${predefault}" != "x0" ]
104c1213 1877 then
8d113d13 1878 printf " gdbarch->%s = %s;\n" "$function" "$predefault"
104c1213 1879 fi
2ada493a 1880 fi
104c1213
JM
1881done
1882cat <<EOF
1883 /* gdbarch_alloc() */
1884
be7811ad 1885 return gdbarch;
104c1213
JM
1886}
1887EOF
1888
058f20d5 1889# Free a gdbarch struct.
3d9a5942
AC
1890printf "\n"
1891printf "\n"
058f20d5 1892cat <<EOF
aebd7893 1893
284a0e3c 1894obstack *gdbarch_obstack (gdbarch *arch)
aebd7893 1895{
284a0e3c 1896 return arch->obstack;
aebd7893
AC
1897}
1898
6c214e7c
PP
1899/* See gdbarch.h. */
1900
1901char *
1902gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1903{
1904 return obstack_strdup (arch->obstack, string);
1905}
1906
aebd7893 1907
058f20d5
JB
1908/* Free a gdbarch struct. This should never happen in normal
1909 operation --- once you've created a gdbarch, you keep it around.
1910 However, if an architecture's init function encounters an error
1911 building the structure, it may need to clean up a partially
1912 constructed gdbarch. */
4b9b3959 1913
058f20d5
JB
1914void
1915gdbarch_free (struct gdbarch *arch)
1916{
aebd7893 1917 struct obstack *obstack;
05c547f6 1918
95160752 1919 gdb_assert (arch != NULL);
aebd7893
AC
1920 gdb_assert (!arch->initialized_p);
1921 obstack = arch->obstack;
1922 obstack_free (obstack, 0); /* Includes the ARCH. */
1923 xfree (obstack);
058f20d5
JB
1924}
1925EOF
1926
104c1213 1927# verify a new architecture
104c1213 1928cat <<EOF
db446970
AC
1929
1930
1931/* Ensure that all values in a GDBARCH are reasonable. */
1932
104c1213 1933static void
be7811ad 1934verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1935{
d7e74731 1936 string_file log;
05c547f6 1937
104c1213 1938 /* fundamental */
be7811ad 1939 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
d7e74731 1940 log.puts ("\n\tbyte-order");
be7811ad 1941 if (gdbarch->bfd_arch_info == NULL)
d7e74731 1942 log.puts ("\n\tbfd_arch_info");
0963b4bd 1943 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1944EOF
34620563 1945function_list | while do_read
104c1213 1946do
2ada493a
AC
1947 if class_is_function_p || class_is_variable_p
1948 then
72e74a21 1949 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1950 then
8d113d13 1951 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
2ada493a
AC
1952 elif class_is_predicate_p
1953 then
8d113d13 1954 printf " /* Skip verify of %s, has predicate. */\n" "$function"
f0d4cc9e 1955 # FIXME: See do_read for potential simplification
759cea5e 1956 elif [ -n "${invalid_p}" ] && [ -n "${postdefault}" ]
f0d4cc9e 1957 then
8d113d13
SM
1958 printf " if (%s)\n" "$invalid_p"
1959 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
759cea5e 1960 elif [ -n "${predefault}" ] && [ -n "${postdefault}" ]
f0d4cc9e 1961 then
8d113d13
SM
1962 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1963 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
72e74a21 1964 elif [ -n "${postdefault}" ]
f0d4cc9e 1965 then
8d113d13
SM
1966 printf " if (gdbarch->%s == 0)\n" "$function"
1967 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
72e74a21 1968 elif [ -n "${invalid_p}" ]
104c1213 1969 then
8d113d13
SM
1970 printf " if (%s)\n" "$invalid_p"
1971 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
72e74a21 1972 elif [ -n "${predefault}" ]
104c1213 1973 then
8d113d13
SM
1974 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1975 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
104c1213 1976 fi
2ada493a 1977 fi
104c1213
JM
1978done
1979cat <<EOF
d7e74731 1980 if (!log.empty ())
f16a1923 1981 internal_error (__FILE__, __LINE__,
85c07804 1982 _("verify_gdbarch: the following are invalid ...%s"),
d7e74731 1983 log.c_str ());
104c1213
JM
1984}
1985EOF
1986
1987# dump the structure
3d9a5942
AC
1988printf "\n"
1989printf "\n"
104c1213 1990cat <<EOF
0963b4bd 1991/* Print out the details of the current architecture. */
4b9b3959 1992
104c1213 1993void
be7811ad 1994gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1995{
b78960be 1996 const char *gdb_nm_file = "<not-defined>";
05c547f6 1997
b78960be
AC
1998#if defined (GDB_NM_FILE)
1999 gdb_nm_file = GDB_NM_FILE;
2000#endif
2001 fprintf_unfiltered (file,
2002 "gdbarch_dump: GDB_NM_FILE = %s\\n",
2003 gdb_nm_file);
104c1213 2004EOF
ea480a30 2005function_list | sort '-t;' -k 3 | while do_read
104c1213 2006do
1e9f55d0
AC
2007 # First the predicate
2008 if class_is_predicate_p
2009 then
7996bcec 2010 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2011 printf " \"gdbarch_dump: gdbarch_%s_p() = %%d\\\\n\",\n" "$function"
2012 printf " gdbarch_%s_p (gdbarch));\n" "$function"
08e45a40 2013 fi
48f7351b 2014 # Print the corresponding value.
283354d8 2015 if class_is_function_p
4b9b3959 2016 then
7996bcec 2017 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2018 printf " \"gdbarch_dump: %s = <%%s>\\\\n\",\n" "$function"
2019 printf " host_address_to_string (gdbarch->%s));\n" "$function"
4b9b3959 2020 else
48f7351b 2021 # It is a variable
2f9b146e
AC
2022 case "${print}:${returntype}" in
2023 :CORE_ADDR )
0b1553bc
UW
2024 fmt="%s"
2025 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 2026 ;;
2f9b146e 2027 :* )
48f7351b 2028 fmt="%s"
623d3eb1 2029 print="plongest (gdbarch->${function})"
48f7351b
AC
2030 ;;
2031 * )
2f9b146e 2032 fmt="%s"
48f7351b
AC
2033 ;;
2034 esac
3d9a5942 2035 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2036 printf " \"gdbarch_dump: %s = %s\\\\n\",\n" "$function" "$fmt"
2037 printf " %s);\n" "$print"
2ada493a 2038 fi
104c1213 2039done
381323f4 2040cat <<EOF
be7811ad
MD
2041 if (gdbarch->dump_tdep != NULL)
2042 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
2043}
2044EOF
104c1213
JM
2045
2046
2047# GET/SET
3d9a5942 2048printf "\n"
104c1213
JM
2049cat <<EOF
2050struct gdbarch_tdep *
2051gdbarch_tdep (struct gdbarch *gdbarch)
2052{
2053 if (gdbarch_debug >= 2)
3d9a5942 2054 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
2055 return gdbarch->tdep;
2056}
2057EOF
3d9a5942 2058printf "\n"
34620563 2059function_list | while do_read
104c1213 2060do
2ada493a
AC
2061 if class_is_predicate_p
2062 then
3d9a5942
AC
2063 printf "\n"
2064 printf "int\n"
8d113d13 2065 printf "gdbarch_%s_p (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2066 printf "{\n"
8de9bdc4 2067 printf " gdb_assert (gdbarch != NULL);\n"
8d113d13 2068 printf " return %s;\n" "$predicate"
3d9a5942 2069 printf "}\n"
2ada493a
AC
2070 fi
2071 if class_is_function_p
2072 then
3d9a5942 2073 printf "\n"
8d113d13 2074 printf "%s\n" "$returntype"
72e74a21 2075 if [ "x${formal}" = "xvoid" ]
104c1213 2076 then
8d113d13 2077 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
104c1213 2078 else
8d113d13 2079 printf "gdbarch_%s (struct gdbarch *gdbarch, %s)\n" "$function" "$formal"
104c1213 2080 fi
3d9a5942 2081 printf "{\n"
8de9bdc4 2082 printf " gdb_assert (gdbarch != NULL);\n"
8d113d13 2083 printf " gdb_assert (gdbarch->%s != NULL);\n" "$function"
f7968451 2084 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
2085 then
2086 # Allow a call to a function with a predicate.
8d113d13 2087 printf " /* Do not check predicate: %s, allow call. */\n" "$predicate"
ae45cd16 2088 fi
3d9a5942 2089 printf " if (gdbarch_debug >= 2)\n"
8d113d13 2090 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
1207375d 2091 if [ "x${actual:-}" = "x-" ] || [ "x${actual:-}" = "x" ]
4a5c6a1d
AC
2092 then
2093 if class_is_multiarch_p
2094 then
2095 params="gdbarch"
2096 else
2097 params=""
2098 fi
2099 else
2100 if class_is_multiarch_p
2101 then
2102 params="gdbarch, ${actual}"
2103 else
2104 params="${actual}"
2105 fi
2106 fi
72e74a21 2107 if [ "x${returntype}" = "xvoid" ]
104c1213 2108 then
8d113d13 2109 printf " gdbarch->%s (%s);\n" "$function" "$params"
104c1213 2110 else
8d113d13 2111 printf " return gdbarch->%s (%s);\n" "$function" "$params"
104c1213 2112 fi
3d9a5942
AC
2113 printf "}\n"
2114 printf "\n"
2115 printf "void\n"
8d113d13 2116 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
cb02ab24 2117 printf " %s gdbarch_%s_ftype %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$function" "$function"
3d9a5942 2118 printf "{\n"
8d113d13 2119 printf " gdbarch->%s = %s;\n" "$function" "$function"
3d9a5942 2120 printf "}\n"
2ada493a
AC
2121 elif class_is_variable_p
2122 then
3d9a5942 2123 printf "\n"
8d113d13
SM
2124 printf "%s\n" "$returntype"
2125 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2126 printf "{\n"
8de9bdc4 2127 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2128 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2129 then
8d113d13 2130 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
72e74a21 2131 elif [ -n "${invalid_p}" ]
104c1213 2132 then
956ac328 2133 printf " /* Check variable is valid. */\n"
8d113d13 2134 printf " gdb_assert (!(%s));\n" "$invalid_p"
72e74a21 2135 elif [ -n "${predefault}" ]
104c1213 2136 then
956ac328 2137 printf " /* Check variable changed from pre-default. */\n"
8d113d13 2138 printf " gdb_assert (gdbarch->%s != %s);\n" "$function" "$predefault"
104c1213 2139 fi
3d9a5942 2140 printf " if (gdbarch_debug >= 2)\n"
8d113d13
SM
2141 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2142 printf " return gdbarch->%s;\n" "$function"
3d9a5942
AC
2143 printf "}\n"
2144 printf "\n"
2145 printf "void\n"
8d113d13 2146 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
cb02ab24 2147 printf " %s %s %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$returntype" "$function"
3d9a5942 2148 printf "{\n"
8d113d13 2149 printf " gdbarch->%s = %s;\n" "$function" "$function"
3d9a5942 2150 printf "}\n"
2ada493a
AC
2151 elif class_is_info_p
2152 then
3d9a5942 2153 printf "\n"
8d113d13
SM
2154 printf "%s\n" "$returntype"
2155 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2156 printf "{\n"
8de9bdc4 2157 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942 2158 printf " if (gdbarch_debug >= 2)\n"
8d113d13
SM
2159 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2160 printf " return gdbarch->%s;\n" "$function"
3d9a5942 2161 printf "}\n"
2ada493a 2162 fi
104c1213
JM
2163done
2164
2165# All the trailing guff
2166cat <<EOF
2167
2168
f44c642f 2169/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2170 modules. */
104c1213
JM
2171
2172struct gdbarch_data
2173{
95160752 2174 unsigned index;
76860b5f 2175 int init_p;
030f20e1
AC
2176 gdbarch_data_pre_init_ftype *pre_init;
2177 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2178};
2179
2180struct gdbarch_data_registration
2181{
104c1213
JM
2182 struct gdbarch_data *data;
2183 struct gdbarch_data_registration *next;
2184};
2185
f44c642f 2186struct gdbarch_data_registry
104c1213 2187{
95160752 2188 unsigned nr;
104c1213
JM
2189 struct gdbarch_data_registration *registrations;
2190};
2191
f44c642f 2192struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2193{
2194 0, NULL,
2195};
2196
030f20e1
AC
2197static struct gdbarch_data *
2198gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2199 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2200{
2201 struct gdbarch_data_registration **curr;
05c547f6
MS
2202
2203 /* Append the new registration. */
f44c642f 2204 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2205 (*curr) != NULL;
2206 curr = &(*curr)->next);
70ba0933 2207 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2208 (*curr)->next = NULL;
70ba0933 2209 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2210 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2211 (*curr)->data->pre_init = pre_init;
2212 (*curr)->data->post_init = post_init;
76860b5f 2213 (*curr)->data->init_p = 1;
104c1213
JM
2214 return (*curr)->data;
2215}
2216
030f20e1
AC
2217struct gdbarch_data *
2218gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2219{
2220 return gdbarch_data_register (pre_init, NULL);
2221}
2222
2223struct gdbarch_data *
2224gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2225{
2226 return gdbarch_data_register (NULL, post_init);
2227}
104c1213 2228
0963b4bd 2229/* Create/delete the gdbarch data vector. */
95160752
AC
2230
2231static void
b3cc3077 2232alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2233{
b3cc3077
JB
2234 gdb_assert (gdbarch->data == NULL);
2235 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2236 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2237}
3c875b6f 2238
104c1213 2239/* Return the current value of the specified per-architecture
0963b4bd 2240 data-pointer. */
104c1213
JM
2241
2242void *
451fbdda 2243gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2244{
451fbdda 2245 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2246 if (gdbarch->data[data->index] == NULL)
76860b5f 2247 {
030f20e1
AC
2248 /* The data-pointer isn't initialized, call init() to get a
2249 value. */
2250 if (data->pre_init != NULL)
2251 /* Mid architecture creation: pass just the obstack, and not
2252 the entire architecture, as that way it isn't possible for
2253 pre-init code to refer to undefined architecture
2254 fields. */
2255 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2256 else if (gdbarch->initialized_p
2257 && data->post_init != NULL)
2258 /* Post architecture creation: pass the entire architecture
2259 (as all fields are valid), but be careful to also detect
2260 recursive references. */
2261 {
2262 gdb_assert (data->init_p);
2263 data->init_p = 0;
2264 gdbarch->data[data->index] = data->post_init (gdbarch);
2265 data->init_p = 1;
2266 }
2267 else
3bc98c0c
AB
2268 internal_error (__FILE__, __LINE__,
2269 _("gdbarch post-init data field can only be used "
2270 "after gdbarch is fully initialised"));
76860b5f
AC
2271 gdb_assert (gdbarch->data[data->index] != NULL);
2272 }
451fbdda 2273 return gdbarch->data[data->index];
104c1213
JM
2274}
2275
2276
0963b4bd 2277/* Keep a registry of the architectures known by GDB. */
104c1213 2278
4b9b3959 2279struct gdbarch_registration
104c1213
JM
2280{
2281 enum bfd_architecture bfd_architecture;
2282 gdbarch_init_ftype *init;
4b9b3959 2283 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2284 struct gdbarch_list *arches;
4b9b3959 2285 struct gdbarch_registration *next;
104c1213
JM
2286};
2287
f44c642f 2288static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2289
b4a20239
AC
2290static void
2291append_name (const char ***buf, int *nr, const char *name)
2292{
1dc7a623 2293 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
b4a20239
AC
2294 (*buf)[*nr] = name;
2295 *nr += 1;
2296}
2297
2298const char **
2299gdbarch_printable_names (void)
2300{
7996bcec 2301 /* Accumulate a list of names based on the registed list of
0963b4bd 2302 architectures. */
7996bcec
AC
2303 int nr_arches = 0;
2304 const char **arches = NULL;
2305 struct gdbarch_registration *rego;
05c547f6 2306
7996bcec
AC
2307 for (rego = gdbarch_registry;
2308 rego != NULL;
2309 rego = rego->next)
b4a20239 2310 {
7996bcec
AC
2311 const struct bfd_arch_info *ap;
2312 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2313 if (ap == NULL)
2314 internal_error (__FILE__, __LINE__,
85c07804 2315 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2316 do
2317 {
2318 append_name (&arches, &nr_arches, ap->printable_name);
2319 ap = ap->next;
2320 }
2321 while (ap != NULL);
b4a20239 2322 }
7996bcec
AC
2323 append_name (&arches, &nr_arches, NULL);
2324 return arches;
b4a20239
AC
2325}
2326
2327
104c1213 2328void
4b9b3959
AC
2329gdbarch_register (enum bfd_architecture bfd_architecture,
2330 gdbarch_init_ftype *init,
2331 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2332{
4b9b3959 2333 struct gdbarch_registration **curr;
104c1213 2334 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2335
ec3d358c 2336 /* Check that BFD recognizes this architecture */
104c1213
JM
2337 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2338 if (bfd_arch_info == NULL)
2339 {
8e65ff28 2340 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2341 _("gdbarch: Attempt to register "
2342 "unknown architecture (%d)"),
8e65ff28 2343 bfd_architecture);
104c1213 2344 }
0963b4bd 2345 /* Check that we haven't seen this architecture before. */
f44c642f 2346 for (curr = &gdbarch_registry;
104c1213
JM
2347 (*curr) != NULL;
2348 curr = &(*curr)->next)
2349 {
2350 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2351 internal_error (__FILE__, __LINE__,
64b9b334 2352 _("gdbarch: Duplicate registration "
0963b4bd 2353 "of architecture (%s)"),
8e65ff28 2354 bfd_arch_info->printable_name);
104c1213
JM
2355 }
2356 /* log it */
2357 if (gdbarch_debug)
30737ed9 2358 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2359 bfd_arch_info->printable_name,
30737ed9 2360 host_address_to_string (init));
104c1213 2361 /* Append it */
70ba0933 2362 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2363 (*curr)->bfd_architecture = bfd_architecture;
2364 (*curr)->init = init;
4b9b3959 2365 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2366 (*curr)->arches = NULL;
2367 (*curr)->next = NULL;
4b9b3959
AC
2368}
2369
2370void
2371register_gdbarch_init (enum bfd_architecture bfd_architecture,
2372 gdbarch_init_ftype *init)
2373{
2374 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2375}
104c1213
JM
2376
2377
424163ea 2378/* Look for an architecture using gdbarch_info. */
104c1213
JM
2379
2380struct gdbarch_list *
2381gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2382 const struct gdbarch_info *info)
2383{
2384 for (; arches != NULL; arches = arches->next)
2385 {
2386 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2387 continue;
2388 if (info->byte_order != arches->gdbarch->byte_order)
2389 continue;
4be87837
DJ
2390 if (info->osabi != arches->gdbarch->osabi)
2391 continue;
424163ea
DJ
2392 if (info->target_desc != arches->gdbarch->target_desc)
2393 continue;
104c1213
JM
2394 return arches;
2395 }
2396 return NULL;
2397}
2398
2399
ebdba546 2400/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2401 architecture if needed. Return that new architecture. */
104c1213 2402
59837fe0
UW
2403struct gdbarch *
2404gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2405{
2406 struct gdbarch *new_gdbarch;
4b9b3959 2407 struct gdbarch_registration *rego;
104c1213 2408
b732d07d 2409 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2410 sources: "set ..."; INFOabfd supplied; and the global
2411 defaults. */
2412 gdbarch_info_fill (&info);
4be87837 2413
0963b4bd 2414 /* Must have found some sort of architecture. */
b732d07d 2415 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2416
2417 if (gdbarch_debug)
2418 {
2419 fprintf_unfiltered (gdb_stdlog,
59837fe0 2420 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2421 (info.bfd_arch_info != NULL
2422 ? info.bfd_arch_info->printable_name
2423 : "(null)"));
2424 fprintf_unfiltered (gdb_stdlog,
59837fe0 2425 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2426 info.byte_order,
d7449b42 2427 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2428 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2429 : "default"));
4be87837 2430 fprintf_unfiltered (gdb_stdlog,
59837fe0 2431 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2432 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2433 fprintf_unfiltered (gdb_stdlog,
59837fe0 2434 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2435 host_address_to_string (info.abfd));
104c1213 2436 fprintf_unfiltered (gdb_stdlog,
59837fe0 2437 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2438 host_address_to_string (info.tdep_info));
104c1213
JM
2439 }
2440
ebdba546 2441 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2442 for (rego = gdbarch_registry;
2443 rego != NULL;
2444 rego = rego->next)
2445 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2446 break;
2447 if (rego == NULL)
2448 {
2449 if (gdbarch_debug)
59837fe0 2450 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2451 "No matching architecture\n");
b732d07d
AC
2452 return 0;
2453 }
2454
ebdba546 2455 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2456 new_gdbarch = rego->init (info, rego->arches);
2457
ebdba546
AC
2458 /* Did the tdep code like it? No. Reject the change and revert to
2459 the old architecture. */
104c1213
JM
2460 if (new_gdbarch == NULL)
2461 {
2462 if (gdbarch_debug)
59837fe0 2463 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2464 "Target rejected architecture\n");
2465 return NULL;
104c1213
JM
2466 }
2467
ebdba546
AC
2468 /* Is this a pre-existing architecture (as determined by already
2469 being initialized)? Move it to the front of the architecture
2470 list (keeping the list sorted Most Recently Used). */
2471 if (new_gdbarch->initialized_p)
104c1213 2472 {
ebdba546 2473 struct gdbarch_list **list;
fe978cb0 2474 struct gdbarch_list *self;
104c1213 2475 if (gdbarch_debug)
59837fe0 2476 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2477 "Previous architecture %s (%s) selected\n",
2478 host_address_to_string (new_gdbarch),
104c1213 2479 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2480 /* Find the existing arch in the list. */
2481 for (list = &rego->arches;
2482 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2483 list = &(*list)->next);
2484 /* It had better be in the list of architectures. */
2485 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2486 /* Unlink SELF. */
2487 self = (*list);
2488 (*list) = self->next;
2489 /* Insert SELF at the front. */
2490 self->next = rego->arches;
2491 rego->arches = self;
ebdba546
AC
2492 /* Return it. */
2493 return new_gdbarch;
104c1213
JM
2494 }
2495
ebdba546
AC
2496 /* It's a new architecture. */
2497 if (gdbarch_debug)
59837fe0 2498 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2499 "New architecture %s (%s) selected\n",
2500 host_address_to_string (new_gdbarch),
ebdba546
AC
2501 new_gdbarch->bfd_arch_info->printable_name);
2502
2503 /* Insert the new architecture into the front of the architecture
2504 list (keep the list sorted Most Recently Used). */
0f79675b 2505 {
fe978cb0
PA
2506 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2507 self->next = rego->arches;
2508 self->gdbarch = new_gdbarch;
2509 rego->arches = self;
0f79675b 2510 }
104c1213 2511
4b9b3959
AC
2512 /* Check that the newly installed architecture is valid. Plug in
2513 any post init values. */
2514 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2515 verify_gdbarch (new_gdbarch);
ebdba546 2516 new_gdbarch->initialized_p = 1;
104c1213 2517
4b9b3959 2518 if (gdbarch_debug)
ebdba546
AC
2519 gdbarch_dump (new_gdbarch, gdb_stdlog);
2520
2521 return new_gdbarch;
2522}
2523
e487cc15 2524/* Make the specified architecture current. */
ebdba546
AC
2525
2526void
aff68abb 2527set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2528{
2529 gdb_assert (new_gdbarch != NULL);
ebdba546 2530 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2531 current_inferior ()->gdbarch = new_gdbarch;
0bee6dd4 2532 gdb::observers::architecture_changed.notify (new_gdbarch);
a3ecef73 2533 registers_changed ();
ebdba546 2534}
104c1213 2535
f5656ead 2536/* Return the current inferior's arch. */
6ecd4729
PA
2537
2538struct gdbarch *
f5656ead 2539target_gdbarch (void)
6ecd4729
PA
2540{
2541 return current_inferior ()->gdbarch;
2542}
2543
a1237872 2544void _initialize_gdbarch ();
104c1213 2545void
a1237872 2546_initialize_gdbarch ()
104c1213 2547{
ccce17b0 2548 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2549Set architecture debugging."), _("\\
2550Show architecture debugging."), _("\\
2551When non-zero, architecture debugging is enabled."),
2552 NULL,
920d2a44 2553 show_gdbarch_debug,
85c07804 2554 &setdebuglist, &showdebuglist);
104c1213
JM
2555}
2556EOF
2557
2558# close things off
2559exec 1>&2
41a77cba
SM
2560../move-if-change new-gdbarch.c gdbarch.c
2561rm -f new-gdbarch.c