]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/gdbarch.sh
gdb: remove parameter of gdbarch_displaced_step_hw_singlestep
[thirdparty/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
b811d2c2 5# Copyright (C) 1998-2020 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532 26
59233f88 27# Format of the input table
97030eea 28read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
29
30do_read ()
31{
34620563
AC
32 comment=""
33 class=""
c9023fb3
PA
34 # On some SH's, 'read' trims leading and trailing whitespace by
35 # default (e.g., bash), while on others (e.g., dash), it doesn't.
36 # Set IFS to empty to disable the trimming everywhere.
ffc2844e 37 # shellcheck disable=SC2162
c9023fb3 38 while IFS='' read line
34620563
AC
39 do
40 if test "${line}" = ""
41 then
42 continue
43 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 44 then
34620563
AC
45 continue
46 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 47 then
34620563
AC
48 comment="${comment}
49${line}"
f0d4cc9e 50 else
3d9a5942
AC
51
52 # The semantics of IFS varies between different SH's. Some
ea480a30
SM
53 # treat ``;;' as three fields while some treat it as just two.
54 # Work around this by eliminating ``;;'' ....
cb02ab24 55 line="$(echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g')"
3d9a5942 56
ea480a30 57 OFS="${IFS}" ; IFS="[;]"
a6fc5ffc 58 eval read "${read}" <<EOF
34620563
AC
59${line}
60EOF
61 IFS="${OFS}"
62
1207375d 63 if test -n "${garbage_at_eol:-}"
283354d8
AC
64 then
65 echo "Garbage at end-of-line in ${line}" 1>&2
66 kill $$
67 exit 1
68 fi
69
3d9a5942
AC
70 # .... and then going back through each field and strip out those
71 # that ended up with just that space character.
72 for r in ${read}
73 do
a6fc5ffc 74 if eval test "\"\${${r}}\" = ' '"
3d9a5942 75 then
a6fc5ffc 76 eval "${r}="
3d9a5942
AC
77 fi
78 done
79
a72293e2 80 case "${class}" in
1207375d 81 m ) staticdefault="${predefault:-}" ;;
a72293e2
AC
82 M ) staticdefault="0" ;;
83 * ) test "${staticdefault}" || staticdefault=0 ;;
84 esac
06b25f14 85
ae45cd16
AC
86 case "${class}" in
87 F | V | M )
1207375d 88 case "${invalid_p:-}" in
34620563 89 "" )
f7968451 90 if test -n "${predefault}"
34620563
AC
91 then
92 #invalid_p="gdbarch->${function} == ${predefault}"
1207375d 93 predicate="gdbarch->${function:-} != ${predefault}"
f7968451
AC
94 elif class_is_variable_p
95 then
96 predicate="gdbarch->${function} != 0"
97 elif class_is_function_p
98 then
99 predicate="gdbarch->${function} != NULL"
34620563
AC
100 fi
101 ;;
ae45cd16 102 * )
1e9f55d0 103 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
104 kill $$
105 exit 1
106 ;;
107 esac
34620563
AC
108 esac
109
34620563
AC
110 #NOT YET: See gdbarch.log for basic verification of
111 # database
112
113 break
f0d4cc9e 114 fi
34620563 115 done
72e74a21 116 if [ -n "${class}" ]
34620563
AC
117 then
118 true
c0e8c252
AC
119 else
120 false
121 fi
122}
123
104c1213 124
f0d4cc9e
AC
125fallback_default_p ()
126{
1207375d 127 { [ -n "${postdefault:-}" ] && [ "x${invalid_p}" != "x0" ]; } \
9fdb2916 128 || { [ -n "${predefault}" ] && [ "x${invalid_p}" = "x0" ]; }
f0d4cc9e
AC
129}
130
131class_is_variable_p ()
132{
4a5c6a1d
AC
133 case "${class}" in
134 *v* | *V* ) true ;;
135 * ) false ;;
136 esac
f0d4cc9e
AC
137}
138
139class_is_function_p ()
140{
4a5c6a1d
AC
141 case "${class}" in
142 *f* | *F* | *m* | *M* ) true ;;
143 * ) false ;;
144 esac
145}
146
147class_is_multiarch_p ()
148{
149 case "${class}" in
150 *m* | *M* ) true ;;
151 * ) false ;;
152 esac
f0d4cc9e
AC
153}
154
155class_is_predicate_p ()
156{
4a5c6a1d
AC
157 case "${class}" in
158 *F* | *V* | *M* ) true ;;
159 * ) false ;;
160 esac
f0d4cc9e
AC
161}
162
163class_is_info_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *i* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171
cff3e48b
JM
172# dump out/verify the doco
173for field in ${read}
174do
175 case ${field} in
176
177 class ) : ;;
c4093a6a 178
c0e8c252
AC
179 # # -> line disable
180 # f -> function
181 # hiding a function
2ada493a
AC
182 # F -> function + predicate
183 # hiding a function + predicate to test function validity
c0e8c252
AC
184 # v -> variable
185 # hiding a variable
2ada493a
AC
186 # V -> variable + predicate
187 # hiding a variable + predicate to test variables validity
c0e8c252
AC
188 # i -> set from info
189 # hiding something from the ``struct info'' object
4a5c6a1d
AC
190 # m -> multi-arch function
191 # hiding a multi-arch function (parameterised with the architecture)
192 # M -> multi-arch function + predicate
193 # hiding a multi-arch function + predicate to test function validity
cff3e48b 194
cff3e48b
JM
195 returntype ) : ;;
196
c0e8c252 197 # For functions, the return type; for variables, the data type
cff3e48b
JM
198
199 function ) : ;;
200
c0e8c252
AC
201 # For functions, the member function name; for variables, the
202 # variable name. Member function names are always prefixed with
203 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
204
205 formal ) : ;;
206
c0e8c252
AC
207 # The formal argument list. It is assumed that the formal
208 # argument list includes the actual name of each list element.
209 # A function with no arguments shall have ``void'' as the
210 # formal argument list.
cff3e48b
JM
211
212 actual ) : ;;
213
c0e8c252
AC
214 # The list of actual arguments. The arguments specified shall
215 # match the FORMAL list given above. Functions with out
216 # arguments leave this blank.
cff3e48b 217
0b8f9e4d 218 staticdefault ) : ;;
c0e8c252
AC
219
220 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
221 # created. STATICDEFAULT is the value to insert into that
222 # static gdbarch object. Since this a static object only
223 # simple expressions can be used.
cff3e48b 224
0b8f9e4d 225 # If STATICDEFAULT is empty, zero is used.
c0e8c252 226
0b8f9e4d 227 predefault ) : ;;
cff3e48b 228
10312cc4
AC
229 # An initial value to assign to MEMBER of the freshly
230 # malloc()ed gdbarch object. After initialization, the
231 # freshly malloc()ed object is passed to the target
232 # architecture code for further updates.
cff3e48b 233
0b8f9e4d
AC
234 # If PREDEFAULT is empty, zero is used.
235
10312cc4
AC
236 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
237 # INVALID_P are specified, PREDEFAULT will be used as the
238 # default for the non- multi-arch target.
239
240 # A zero PREDEFAULT function will force the fallback to call
241 # internal_error().
f0d4cc9e
AC
242
243 # Variable declarations can refer to ``gdbarch'' which will
244 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
245
246 postdefault ) : ;;
247
248 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
249 # the target architecture code fail to change the PREDEFAULT
250 # value.
0b8f9e4d
AC
251
252 # If POSTDEFAULT is empty, no post update is performed.
253
254 # If both INVALID_P and POSTDEFAULT are non-empty then
255 # INVALID_P will be used to determine if MEMBER should be
256 # changed to POSTDEFAULT.
257
10312cc4
AC
258 # If a non-empty POSTDEFAULT and a zero INVALID_P are
259 # specified, POSTDEFAULT will be used as the default for the
260 # non- multi-arch target (regardless of the value of
261 # PREDEFAULT).
262
f0d4cc9e
AC
263 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
264
be7811ad 265 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
266 # will contain the current architecture. Care should be
267 # taken.
cff3e48b 268
c4093a6a 269 invalid_p ) : ;;
cff3e48b 270
0b8f9e4d 271 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 272 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
273 # initialize MEMBER or the initialized the member is invalid.
274 # If POSTDEFAULT is non-empty then MEMBER will be updated to
275 # that value. If POSTDEFAULT is empty then internal_error()
276 # is called.
277
278 # If INVALID_P is empty, a check that MEMBER is no longer
279 # equal to PREDEFAULT is used.
280
f0d4cc9e
AC
281 # The expression ``0'' disables the INVALID_P check making
282 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
283
284 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 285
cff3e48b
JM
286 print ) : ;;
287
2f9b146e
AC
288 # An optional expression that convers MEMBER to a value
289 # suitable for formatting using %s.
c0e8c252 290
0b1553bc
UW
291 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
292 # or plongest (anything else) is used.
cff3e48b 293
283354d8 294 garbage_at_eol ) : ;;
0b8f9e4d 295
283354d8 296 # Catches stray fields.
cff3e48b 297
50248794
AC
298 *)
299 echo "Bad field ${field}"
300 exit 1;;
cff3e48b
JM
301 esac
302done
303
cff3e48b 304
104c1213
JM
305function_list ()
306{
cff3e48b 307 # See below (DOCO) for description of each field
34620563 308 cat <<EOF
ea480a30 309i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 310#
ea480a30
SM
311i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
312i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
4be87837 313#
ea480a30 314i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
424163ea 315#
ea480a30 316i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
32c9a795 317
66b43ecb 318# Number of bits in a short or unsigned short for the target machine.
ea480a30 319v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
66b43ecb 320# Number of bits in an int or unsigned int for the target machine.
ea480a30 321v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
66b43ecb 322# Number of bits in a long or unsigned long for the target machine.
ea480a30 323v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
66b43ecb
AC
324# Number of bits in a long long or unsigned long long for the target
325# machine.
ea480a30 326v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
456fcf94 327
2a67f09d 328# The ABI default bit-size and format for "bfloat16", "half", "float", "double", and
f9e9243a
UW
329# "long double". These bit/format pairs should eventually be combined
330# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
331# Each format describes both the big and little endian layouts (if
332# useful).
456fcf94 333
2a67f09d
FW
334v;int;bfloat16_bit;;;16;2*TARGET_CHAR_BIT;;0
335v;const struct floatformat **;bfloat16_format;;;;;floatformats_bfloat16;;pformat (gdbarch->bfloat16_format)
ea480a30
SM
336v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
337v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
338v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
339v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
340v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
341v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
342v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
343v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
456fcf94 344
53375380
PA
345# The ABI default bit-size for "wchar_t". wchar_t is a built-in type
346# starting with C++11.
ea480a30 347v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
53375380 348# One if \`wchar_t' is signed, zero if unsigned.
ea480a30 349v;int;wchar_signed;;;1;-1;1
53375380 350
9b790ce7
UW
351# Returns the floating-point format to be used for values of length LENGTH.
352# NAME, if non-NULL, is the type name, which may be used to distinguish
353# different target formats of the same length.
ea480a30 354m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
9b790ce7 355
52204a0b
DT
356# For most targets, a pointer on the target and its representation as an
357# address in GDB have the same size and "look the same". For such a
17a912b6 358# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
359# / addr_bit will be set from it.
360#
17a912b6 361# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
362# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
363# gdbarch_address_to_pointer as well.
52204a0b
DT
364#
365# ptr_bit is the size of a pointer on the target
ea480a30 366v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
52204a0b 367# addr_bit is the size of a target address as represented in gdb
ea480a30 368v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
104c1213 369#
8da614df
CV
370# dwarf2_addr_size is the target address size as used in the Dwarf debug
371# info. For .debug_frame FDEs, this is supposed to be the target address
372# size from the associated CU header, and which is equivalent to the
373# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
374# Unfortunately there is no good way to determine this value. Therefore
375# dwarf2_addr_size simply defaults to the target pointer size.
376#
377# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
378# defined using the target's pointer size so far.
379#
380# Note that dwarf2_addr_size only needs to be redefined by a target if the
381# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
382# and if Dwarf versions < 4 need to be supported.
ea480a30 383v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
8da614df 384#
4e409299 385# One if \`char' acts like \`signed char', zero if \`unsigned char'.
ea480a30 386v;int;char_signed;;;1;-1;1
4e409299 387#
c113ed0c 388F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
ea480a30 389F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
39d4ef09
AC
390# Function for getting target's idea of a frame pointer. FIXME: GDB's
391# whole scheme for dealing with "frames" and "frame pointers" needs a
392# serious shakedown.
ea480a30 393m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
66b43ecb 394#
849d0ba8 395M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
3543a589
TT
396# Read a register into a new struct value. If the register is wholly
397# or partly unavailable, this should call mark_value_bytes_unavailable
398# as appropriate. If this is defined, then pseudo_register_read will
399# never be called.
849d0ba8 400M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
ea480a30 401M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
61a0eb5b 402#
ea480a30 403v;int;num_regs;;;0;-1
0aba1244
EZ
404# This macro gives the number of pseudo-registers that live in the
405# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
406# These pseudo-registers may be aliases for other registers,
407# combinations of other registers, or they may be computed by GDB.
ea480a30 408v;int;num_pseudo_regs;;;0;0;;0
c2169756 409
175ff332
HZ
410# Assemble agent expression bytecode to collect pseudo-register REG.
411# Return -1 if something goes wrong, 0 otherwise.
ea480a30 412M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
175ff332
HZ
413
414# Assemble agent expression bytecode to push the value of pseudo-register
415# REG on the interpreter stack.
416# Return -1 if something goes wrong, 0 otherwise.
ea480a30 417M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
175ff332 418
272bb05c
JB
419# Some architectures can display additional information for specific
420# signals.
421# UIOUT is the output stream where the handler will place information.
422M;void;report_signal_info;struct ui_out *uiout, enum gdb_signal siggnal;uiout, siggnal
423
c2169756
AC
424# GDB's standard (or well known) register numbers. These can map onto
425# a real register or a pseudo (computed) register or not be defined at
1200cd6e 426# all (-1).
3e8c568d 427# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
ea480a30
SM
428v;int;sp_regnum;;;-1;-1;;0
429v;int;pc_regnum;;;-1;-1;;0
430v;int;ps_regnum;;;-1;-1;;0
431v;int;fp0_regnum;;;0;-1;;0
88c72b7d 432# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
ea480a30 433m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
88c72b7d 434# Provide a default mapping from a ecoff register number to a gdb REGNUM.
ea480a30 435m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
88c72b7d 436# Convert from an sdb register number to an internal gdb register number.
ea480a30 437m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
ba2b1c56 438# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
0fde2c53 439# Return -1 for bad REGNUM. Note: Several targets get this wrong.
ea480a30
SM
440m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
441m;const char *;register_name;int regnr;regnr;;0
9c04cab7 442
7b9ee6a8
DJ
443# Return the type of a register specified by the architecture. Only
444# the register cache should call this function directly; others should
445# use "register_type".
ea480a30 446M;struct type *;register_type;int reg_nr;reg_nr
9c04cab7 447
8bcb5208
AB
448# Generate a dummy frame_id for THIS_FRAME assuming that the frame is
449# a dummy frame. A dummy frame is created before an inferior call,
450# the frame_id returned here must match the frame_id that was built
451# for the inferior call. Usually this means the returned frame_id's
452# stack address should match the address returned by
453# gdbarch_push_dummy_call, and the returned frame_id's code address
454# should match the address at which the breakpoint was set in the dummy
455# frame.
456m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0
669fac23 457# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 458# deprecated_fp_regnum.
ea480a30 459v;int;deprecated_fp_regnum;;;-1;-1;;0
f3be58bc 460
cf84fa6b 461M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr
ea480a30
SM
462v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
463M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 464
7eb89530 465# Return true if the code of FRAME is writable.
ea480a30 466m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
7eb89530 467
ea480a30
SM
468m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
469m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
470M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
7c7651b2
AC
471# MAP a GDB RAW register number onto a simulator register number. See
472# also include/...-sim.h.
ea480a30
SM
473m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
474m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
475m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
eade6471
JB
476
477# Determine the address where a longjmp will land and save this address
478# in PC. Return nonzero on success.
479#
480# FRAME corresponds to the longjmp frame.
ea480a30 481F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
eade6471 482
104c1213 483#
ea480a30 484v;int;believe_pcc_promotion;;;;;;;
104c1213 485#
ea480a30
SM
486m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
487f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
488f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
9acbedc0 489# Construct a value representing the contents of register REGNUM in
2ed3c037 490# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
491# allocate and return a struct value with all value attributes
492# (but not the value contents) filled in.
ea480a30 493m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
104c1213 494#
ea480a30
SM
495m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
496m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
497M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
92ad9cd9 498
6a3a010b
MR
499# Return the return-value convention that will be used by FUNCTION
500# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
501# case the return convention is computed based only on VALTYPE.
502#
503# If READBUF is not NULL, extract the return value and save it in this buffer.
504#
505# If WRITEBUF is not NULL, it contains a return value which will be
506# stored into the appropriate register. This can be used when we want
507# to force the value returned by a function (see the "return" command
508# for instance).
ea480a30 509M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
92ad9cd9 510
18648a37
YQ
511# Return true if the return value of function is stored in the first hidden
512# parameter. In theory, this feature should be language-dependent, specified
513# by language and its ABI, such as C++. Unfortunately, compiler may
514# implement it to a target-dependent feature. So that we need such hook here
515# to be aware of this in GDB.
ea480a30 516m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
18648a37 517
ea480a30
SM
518m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
519M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
591a12a1
UW
520# On some platforms, a single function may provide multiple entry points,
521# e.g. one that is used for function-pointer calls and a different one
522# that is used for direct function calls.
523# In order to ensure that breakpoints set on the function will trigger
524# no matter via which entry point the function is entered, a platform
525# may provide the skip_entrypoint callback. It is called with IP set
526# to the main entry point of a function (as determined by the symbol table),
527# and should return the address of the innermost entry point, where the
528# actual breakpoint needs to be set. Note that skip_entrypoint is used
529# by GDB common code even when debugging optimized code, where skip_prologue
530# is not used.
ea480a30 531M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
591a12a1 532
ea480a30
SM
533f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
534m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
cd6c3b4f
YQ
535
536# Return the breakpoint kind for this target based on *PCPTR.
ea480a30 537m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
cd6c3b4f
YQ
538
539# Return the software breakpoint from KIND. KIND can have target
540# specific meaning like the Z0 kind parameter.
541# SIZE is set to the software breakpoint's length in memory.
ea480a30 542m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
cd6c3b4f 543
833b7ab5
YQ
544# Return the breakpoint kind for this target based on the current
545# processor state (e.g. the current instruction mode on ARM) and the
546# *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
ea480a30 547m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
833b7ab5 548
ea480a30
SM
549M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
550m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
551m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
552v;CORE_ADDR;decr_pc_after_break;;;0;;;0
782263ab
AC
553
554# A function can be addressed by either it's "pointer" (possibly a
555# descriptor address) or "entry point" (first executable instruction).
556# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 557# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
558# a simplified subset of that functionality - the function's address
559# corresponds to the "function pointer" and the function's start
560# corresponds to the "function entry point" - and hence is redundant.
561
ea480a30 562v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
782263ab 563
123dc839
DJ
564# Return the remote protocol register number associated with this
565# register. Normally the identity mapping.
ea480a30 566m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
123dc839 567
b2756930 568# Fetch the target specific address used to represent a load module.
ea480a30 569F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
6e056c81
JB
570
571# Return the thread-local address at OFFSET in the thread-local
572# storage for the thread PTID and the shared library or executable
573# file given by LM_ADDR. If that block of thread-local storage hasn't
574# been allocated yet, this function may throw an error. LM_ADDR may
575# be zero for statically linked multithreaded inferiors.
576
577M;CORE_ADDR;get_thread_local_address;ptid_t ptid, CORE_ADDR lm_addr, CORE_ADDR offset;ptid, lm_addr, offset
104c1213 578#
ea480a30 579v;CORE_ADDR;frame_args_skip;;;0;;;0
8bcb5208
AB
580m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0
581m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0
42efa47a
AC
582# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
583# frame-base. Enable frame-base before frame-unwind.
ea480a30 584F;int;frame_num_args;struct frame_info *frame;frame
104c1213 585#
ea480a30
SM
586M;CORE_ADDR;frame_align;CORE_ADDR address;address
587m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
588v;int;frame_red_zone_size
f0d4cc9e 589#
ea480a30 590m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
875e1767
AC
591# On some machines there are bits in addresses which are not really
592# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 593# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
594# we get a "real" address such as one would find in a symbol table.
595# This is used only for addresses of instructions, and even then I'm
596# not sure it's used in all contexts. It exists to deal with there
597# being a few stray bits in the PC which would mislead us, not as some
598# sort of generic thing to handle alignment or segmentation (it's
599# possible it should be in TARGET_READ_PC instead).
ea480a30 600m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
e6590a1b 601
a738ea1d
YQ
602# On some machines, not all bits of an address word are significant.
603# For example, on AArch64, the top bits of an address known as the "tag"
604# are ignored by the kernel, the hardware, etc. and can be regarded as
605# additional data associated with the address.
5969f0db 606v;int;significant_addr_bit;;;;;;0
a738ea1d 607
e6590a1b
UW
608# FIXME/cagney/2001-01-18: This should be split in two. A target method that
609# indicates if the target needs software single step. An ISA method to
610# implement it.
611#
e6590a1b
UW
612# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
613# target can single step. If not, then implement single step using breakpoints.
64c4637f 614#
93f9a11f
YQ
615# Return a vector of addresses on which the software single step
616# breakpoints should be inserted. NULL means software single step is
617# not used.
618# Multiple breakpoints may be inserted for some instructions such as
619# conditional branch. However, each implementation must always evaluate
620# the condition and only put the breakpoint at the branch destination if
621# the condition is true, so that we ensure forward progress when stepping
622# past a conditional branch to self.
a0ff9e1a 623F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
e6590a1b 624
3352ef37
AC
625# Return non-zero if the processor is executing a delay slot and a
626# further single-step is needed before the instruction finishes.
ea480a30 627M;int;single_step_through_delay;struct frame_info *frame;frame
f6c40618 628# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 629# disassembler. Perhaps objdump can handle it?
39503f82 630f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
ea480a30 631f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
d50355b6
MS
632
633
cfd8ab24 634# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
635# evaluates non-zero, this is the address where the debugger will place
636# a step-resume breakpoint to get us past the dynamic linker.
ea480a30 637m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
d50355b6 638# Some systems also have trampoline code for returning from shared libs.
ea480a30 639m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
d50355b6 640
1d509aa6
MM
641# Return true if PC lies inside an indirect branch thunk.
642m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
643
c12260ac
CV
644# A target might have problems with watchpoints as soon as the stack
645# frame of the current function has been destroyed. This mostly happens
c9cf6e20 646# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
647# is defined to return a non-zero value if either the given addr is one
648# instruction after the stack destroying instruction up to the trailing
649# return instruction or if we can figure out that the stack frame has
650# already been invalidated regardless of the value of addr. Targets
651# which don't suffer from that problem could just let this functionality
652# untouched.
ea480a30 653m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
3e29f34a
MR
654# Process an ELF symbol in the minimal symbol table in a backend-specific
655# way. Normally this hook is supposed to do nothing, however if required,
656# then this hook can be used to apply tranformations to symbols that are
657# considered special in some way. For example the MIPS backend uses it
658# to interpret \`st_other' information to mark compressed code symbols so
659# that they can be treated in the appropriate manner in the processing of
660# the main symbol table and DWARF-2 records.
ea480a30
SM
661F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
662f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
3e29f34a
MR
663# Process a symbol in the main symbol table in a backend-specific way.
664# Normally this hook is supposed to do nothing, however if required,
665# then this hook can be used to apply tranformations to symbols that
666# are considered special in some way. This is currently used by the
667# MIPS backend to make sure compressed code symbols have the ISA bit
668# set. This in turn is needed for symbol values seen in GDB to match
669# the values used at the runtime by the program itself, for function
670# and label references.
ea480a30 671f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
3e29f34a
MR
672# Adjust the address retrieved from a DWARF-2 record other than a line
673# entry in a backend-specific way. Normally this hook is supposed to
674# return the address passed unchanged, however if that is incorrect for
675# any reason, then this hook can be used to fix the address up in the
676# required manner. This is currently used by the MIPS backend to make
677# sure addresses in FDE, range records, etc. referring to compressed
678# code have the ISA bit set, matching line information and the symbol
679# table.
ea480a30 680f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
3e29f34a
MR
681# Adjust the address updated by a line entry in a backend-specific way.
682# Normally this hook is supposed to return the address passed unchanged,
683# however in the case of inconsistencies in these records, this hook can
684# be used to fix them up in the required manner. This is currently used
685# by the MIPS backend to make sure all line addresses in compressed code
686# are presented with the ISA bit set, which is not always the case. This
687# in turn ensures breakpoint addresses are correctly matched against the
688# stop PC.
ea480a30
SM
689f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
690v;int;cannot_step_breakpoint;;;0;0;;0
7ea65f08
PA
691# See comment in target.h about continuable, steppable and
692# non-steppable watchpoints.
ea480a30 693v;int;have_nonsteppable_watchpoint;;;0;0;;0
314ad88d
PA
694F;type_instance_flags;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
695M;const char *;address_class_type_flags_to_name;type_instance_flags type_flags;type_flags
b41c5a85
JW
696# Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
697# FS are passed from the generic execute_cfa_program function.
ea480a30 698m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
69f97648
SM
699
700# Return the appropriate type_flags for the supplied address class.
314ad88d
PA
701# This function should return true if the address class was recognized and
702# type_flags was set, false otherwise.
703M;bool;address_class_name_to_type_flags;const char *name, type_instance_flags *type_flags_ptr;name, type_flags_ptr
b59ff9d5 704# Is a register in a group
ea480a30 705m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
f6214256 706# Fetch the pointer to the ith function argument.
ea480a30 707F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
6ce6d90f 708
5aa82d05
AA
709# Iterate over all supported register notes in a core file. For each
710# supported register note section, the iterator must call CB and pass
711# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
712# the supported register note sections based on the current register
713# values. Otherwise it should enumerate all supported register note
714# sections.
ea480a30 715M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
17ea7499 716
6432734d 717# Create core file notes
c21f37a8 718M;gdb::unique_xmalloc_ptr<char>;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
6432734d 719
35c2fab7 720# Find core file memory regions
ea480a30 721M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
35c2fab7 722
de584861 723# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
724# core file into buffer READBUF with length LEN. Return the number of bytes read
725# (zero indicates failure).
726# failed, otherwise, return the red length of READBUF.
ea480a30 727M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
de584861 728
356a5233
JB
729# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
730# libraries list from core file into buffer READBUF with length LEN.
c09f20e4 731# Return the number of bytes read (zero indicates failure).
ea480a30 732M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
356a5233 733
c0edd9ed 734# How the core target converts a PTID from a core file to a string.
a068643d 735M;std::string;core_pid_to_str;ptid_t ptid;ptid
28439f5e 736
4dfc5dbc 737# How the core target extracts the name of a thread from a core file.
ea480a30 738M;const char *;core_thread_name;struct thread_info *thr;thr
4dfc5dbc 739
382b69bb
JB
740# Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
741# from core file into buffer READBUF with length LEN. Return the number
742# of bytes read (zero indicates EOF, a negative value indicates failure).
743M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
744
a78c2d62 745# BFD target to use when generating a core file.
ea480a30 746V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
a78c2d62 747
0d5de010
DJ
748# If the elements of C++ vtables are in-place function descriptors rather
749# than normal function pointers (which may point to code or a descriptor),
750# set this to one.
ea480a30 751v;int;vtable_function_descriptors;;;0;0;;0
0d5de010
DJ
752
753# Set if the least significant bit of the delta is used instead of the least
754# significant bit of the pfn for pointers to virtual member functions.
ea480a30 755v;int;vbit_in_delta;;;0;0;;0
6d350bb5
UW
756
757# Advance PC to next instruction in order to skip a permanent breakpoint.
ea480a30 758f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
1c772458 759
1668ae25 760# The maximum length of an instruction on this architecture in bytes.
ea480a30 761V;ULONGEST;max_insn_length;;;0;0
237fc4c9
PA
762
763# Copy the instruction at FROM to TO, and make any adjustments
764# necessary to single-step it at that address.
765#
766# REGS holds the state the thread's registers will have before
767# executing the copied instruction; the PC in REGS will refer to FROM,
768# not the copy at TO. The caller should update it to point at TO later.
769#
770# Return a pointer to data of the architecture's choice to be passed
19b187a9 771# to gdbarch_displaced_step_fixup.
237fc4c9
PA
772#
773# For a general explanation of displaced stepping and how GDB uses it,
774# see the comments in infrun.c.
775#
776# The TO area is only guaranteed to have space for
777# gdbarch_max_insn_length (arch) bytes, so this function must not
778# write more bytes than that to that area.
779#
780# If you do not provide this function, GDB assumes that the
781# architecture does not support displaced stepping.
782#
7f03bd92
PA
783# If the instruction cannot execute out of line, return NULL. The
784# core falls back to stepping past the instruction in-line instead in
785# that case.
fdb61c6c 786M;displaced_step_closure_up;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
237fc4c9 787
99e40580
UW
788# Return true if GDB should use hardware single-stepping to execute
789# the displaced instruction identified by CLOSURE. If false,
790# GDB will simply restart execution at the displaced instruction
791# location, and it is up to the target to ensure GDB will receive
792# control again (e.g. by placing a software breakpoint instruction
793# into the displaced instruction buffer).
794#
795# The default implementation returns false on all targets that
796# provide a gdbarch_software_single_step routine, and true otherwise.
40a53766 797m;bool;displaced_step_hw_singlestep;void;;;default_displaced_step_hw_singlestep;;0
99e40580 798
237fc4c9
PA
799# Fix up the state resulting from successfully single-stepping a
800# displaced instruction, to give the result we would have gotten from
801# stepping the instruction in its original location.
802#
803# REGS is the register state resulting from single-stepping the
804# displaced instruction.
805#
806# CLOSURE is the result from the matching call to
807# gdbarch_displaced_step_copy_insn.
808#
809# If you provide gdbarch_displaced_step_copy_insn.but not this
810# function, then GDB assumes that no fixup is needed after
811# single-stepping the instruction.
812#
813# For a general explanation of displaced stepping and how GDB uses it,
814# see the comments in infrun.c.
ea480a30 815M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
237fc4c9 816
237fc4c9
PA
817# Return the address of an appropriate place to put displaced
818# instructions while we step over them. There need only be one such
819# place, since we're only stepping one thread over a breakpoint at a
820# time.
821#
822# For a general explanation of displaced stepping and how GDB uses it,
823# see the comments in infrun.c.
ea480a30 824m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
237fc4c9 825
dde08ee1
PA
826# Relocate an instruction to execute at a different address. OLDLOC
827# is the address in the inferior memory where the instruction to
828# relocate is currently at. On input, TO points to the destination
829# where we want the instruction to be copied (and possibly adjusted)
830# to. On output, it points to one past the end of the resulting
831# instruction(s). The effect of executing the instruction at TO shall
832# be the same as if executing it at FROM. For example, call
833# instructions that implicitly push the return address on the stack
834# should be adjusted to return to the instruction after OLDLOC;
835# relative branches, and other PC-relative instructions need the
836# offset adjusted; etc.
ea480a30 837M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
dde08ee1 838
1c772458 839# Refresh overlay mapped state for section OSECT.
ea480a30 840F;void;overlay_update;struct obj_section *osect;osect
4eb0ad19 841
ea480a30 842M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
149ad273 843
203c3895 844# Set if the address in N_SO or N_FUN stabs may be zero.
ea480a30 845v;int;sofun_address_maybe_missing;;;0;0;;0
1cded358 846
0508c3ec
HZ
847# Parse the instruction at ADDR storing in the record execution log
848# the registers REGCACHE and memory ranges that will be affected when
849# the instruction executes, along with their current values.
850# Return -1 if something goes wrong, 0 otherwise.
ea480a30 851M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
0508c3ec 852
3846b520
HZ
853# Save process state after a signal.
854# Return -1 if something goes wrong, 0 otherwise.
ea480a30 855M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
3846b520 856
22203bbf 857# Signal translation: translate inferior's signal (target's) number
86b49880
PA
858# into GDB's representation. The implementation of this method must
859# be host independent. IOW, don't rely on symbols of the NAT_FILE
860# header (the nm-*.h files), the host <signal.h> header, or similar
861# headers. This is mainly used when cross-debugging core files ---
862# "Live" targets hide the translation behind the target interface
1f8cf220 863# (target_wait, target_resume, etc.).
ea480a30 864M;enum gdb_signal;gdb_signal_from_target;int signo;signo
60c5725c 865
eb14d406
SDJ
866# Signal translation: translate the GDB's internal signal number into
867# the inferior's signal (target's) representation. The implementation
868# of this method must be host independent. IOW, don't rely on symbols
869# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
870# header, or similar headers.
871# Return the target signal number if found, or -1 if the GDB internal
872# signal number is invalid.
ea480a30 873M;int;gdb_signal_to_target;enum gdb_signal signal;signal
eb14d406 874
4aa995e1
PA
875# Extra signal info inspection.
876#
877# Return a type suitable to inspect extra signal information.
ea480a30 878M;struct type *;get_siginfo_type;void;
4aa995e1 879
60c5725c 880# Record architecture-specific information from the symbol table.
ea480a30 881M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
50c71eaf 882
a96d9b2e
SDJ
883# Function for the 'catch syscall' feature.
884
885# Get architecture-specific system calls information from registers.
00431a78 886M;LONGEST;get_syscall_number;thread_info *thread;thread
a96d9b2e 887
458c8db8 888# The filename of the XML syscall for this architecture.
ea480a30 889v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
458c8db8
SDJ
890
891# Information about system calls from this architecture
ea480a30 892v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
458c8db8 893
55aa24fb
SDJ
894# SystemTap related fields and functions.
895
05c0465e
SDJ
896# A NULL-terminated array of prefixes used to mark an integer constant
897# on the architecture's assembly.
55aa24fb
SDJ
898# For example, on x86 integer constants are written as:
899#
900# \$10 ;; integer constant 10
901#
902# in this case, this prefix would be the character \`\$\'.
ea480a30 903v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 904
05c0465e
SDJ
905# A NULL-terminated array of suffixes used to mark an integer constant
906# on the architecture's assembly.
ea480a30 907v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 908
05c0465e
SDJ
909# A NULL-terminated array of prefixes used to mark a register name on
910# the architecture's assembly.
55aa24fb
SDJ
911# For example, on x86 the register name is written as:
912#
913# \%eax ;; register eax
914#
915# in this case, this prefix would be the character \`\%\'.
ea480a30 916v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 917
05c0465e
SDJ
918# A NULL-terminated array of suffixes used to mark a register name on
919# the architecture's assembly.
ea480a30 920v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 921
05c0465e
SDJ
922# A NULL-terminated array of prefixes used to mark a register
923# indirection on the architecture's assembly.
55aa24fb
SDJ
924# For example, on x86 the register indirection is written as:
925#
926# \(\%eax\) ;; indirecting eax
927#
928# in this case, this prefix would be the charater \`\(\'.
929#
930# Please note that we use the indirection prefix also for register
931# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 932v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 933
05c0465e
SDJ
934# A NULL-terminated array of suffixes used to mark a register
935# indirection on the architecture's assembly.
55aa24fb
SDJ
936# For example, on x86 the register indirection is written as:
937#
938# \(\%eax\) ;; indirecting eax
939#
940# in this case, this prefix would be the charater \`\)\'.
941#
942# Please note that we use the indirection suffix also for register
943# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 944v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 945
05c0465e 946# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
947#
948# For example, on PPC a register is represented by a number in the assembly
949# language (e.g., \`10\' is the 10th general-purpose register). However,
950# inside GDB this same register has an \`r\' appended to its name, so the 10th
951# register would be represented as \`r10\' internally.
ea480a30 952v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
953
954# Suffix used to name a register using GDB's nomenclature.
ea480a30 955v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
956
957# Check if S is a single operand.
958#
959# Single operands can be:
960# \- Literal integers, e.g. \`\$10\' on x86
961# \- Register access, e.g. \`\%eax\' on x86
962# \- Register indirection, e.g. \`\(\%eax\)\' on x86
963# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
964#
965# This function should check for these patterns on the string
966# and return 1 if some were found, or zero otherwise. Please try to match
967# as much info as you can from the string, i.e., if you have to match
968# something like \`\(\%\', do not match just the \`\(\'.
ea480a30 969M;int;stap_is_single_operand;const char *s;s
55aa24fb
SDJ
970
971# Function used to handle a "special case" in the parser.
972#
973# A "special case" is considered to be an unknown token, i.e., a token
974# that the parser does not know how to parse. A good example of special
975# case would be ARM's register displacement syntax:
976#
977# [R0, #4] ;; displacing R0 by 4
978#
979# Since the parser assumes that a register displacement is of the form:
980#
981# <number> <indirection_prefix> <register_name> <indirection_suffix>
982#
983# it means that it will not be able to recognize and parse this odd syntax.
984# Therefore, we should add a special case function that will handle this token.
985#
986# This function should generate the proper expression form of the expression
987# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
988# and so on). It should also return 1 if the parsing was successful, or zero
989# if the token was not recognized as a special token (in this case, returning
990# zero means that the special parser is deferring the parsing to the generic
991# parser), and should advance the buffer pointer (p->arg).
ea480a30 992M;int;stap_parse_special_token;struct stap_parse_info *p;p
55aa24fb 993
7d7571f0
SDJ
994# Perform arch-dependent adjustments to a register name.
995#
996# In very specific situations, it may be necessary for the register
997# name present in a SystemTap probe's argument to be handled in a
998# special way. For example, on i386, GCC may over-optimize the
999# register allocation and use smaller registers than necessary. In
1000# such cases, the client that is reading and evaluating the SystemTap
1001# probe (ourselves) will need to actually fetch values from the wider
1002# version of the register in question.
1003#
1004# To illustrate the example, consider the following probe argument
1005# (i386):
1006#
1007# 4@%ax
1008#
1009# This argument says that its value can be found at the %ax register,
1010# which is a 16-bit register. However, the argument's prefix says
1011# that its type is "uint32_t", which is 32-bit in size. Therefore, in
1012# this case, GDB should actually fetch the probe's value from register
1013# %eax, not %ax. In this scenario, this function would actually
1014# replace the register name from %ax to %eax.
1015#
1016# The rationale for this can be found at PR breakpoints/24541.
6b78c3f8 1017M;std::string;stap_adjust_register;struct stap_parse_info *p, const std::string \&regname, int regnum;p, regname, regnum
7d7571f0 1018
8b367e17
JM
1019# DTrace related functions.
1020
1021# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1022# NARG must be >= 0.
37eedb39 1023M;void;dtrace_parse_probe_argument;struct expr_builder *builder, int narg;builder, narg
8b367e17
JM
1024
1025# True if the given ADDR does not contain the instruction sequence
1026# corresponding to a disabled DTrace is-enabled probe.
ea480a30 1027M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
8b367e17
JM
1028
1029# Enable a DTrace is-enabled probe at ADDR.
ea480a30 1030M;void;dtrace_enable_probe;CORE_ADDR addr;addr
8b367e17
JM
1031
1032# Disable a DTrace is-enabled probe at ADDR.
ea480a30 1033M;void;dtrace_disable_probe;CORE_ADDR addr;addr
55aa24fb 1034
50c71eaf
PA
1035# True if the list of shared libraries is one and only for all
1036# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1037# This usually means that all processes, although may or may not share
1038# an address space, will see the same set of symbols at the same
1039# addresses.
ea480a30 1040v;int;has_global_solist;;;0;0;;0
2567c7d9
PA
1041
1042# On some targets, even though each inferior has its own private
1043# address space, the debug interface takes care of making breakpoints
1044# visible to all address spaces automatically. For such cases,
1045# this property should be set to true.
ea480a30 1046v;int;has_global_breakpoints;;;0;0;;0
6c95b8df
PA
1047
1048# True if inferiors share an address space (e.g., uClinux).
ea480a30 1049m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
7a697b8d
SS
1050
1051# True if a fast tracepoint can be set at an address.
281d762b 1052m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
75cebea9 1053
5f034a78
MK
1054# Guess register state based on tracepoint location. Used for tracepoints
1055# where no registers have been collected, but there's only one location,
1056# allowing us to guess the PC value, and perhaps some other registers.
1057# On entry, regcache has all registers marked as unavailable.
ea480a30 1058m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
5f034a78 1059
f870a310 1060# Return the "auto" target charset.
ea480a30 1061f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
f870a310 1062# Return the "auto" target wide charset.
ea480a30 1063f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
08105857
PA
1064
1065# If non-empty, this is a file extension that will be opened in place
1066# of the file extension reported by the shared library list.
1067#
1068# This is most useful for toolchains that use a post-linker tool,
1069# where the names of the files run on the target differ in extension
1070# compared to the names of the files GDB should load for debug info.
ea480a30 1071v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1072
1073# If true, the target OS has DOS-based file system semantics. That
1074# is, absolute paths include a drive name, and the backslash is
1075# considered a directory separator.
ea480a30 1076v;int;has_dos_based_file_system;;;0;0;;0
6710bf39
SS
1077
1078# Generate bytecodes to collect the return address in a frame.
1079# Since the bytecodes run on the target, possibly with GDB not even
1080# connected, the full unwinding machinery is not available, and
1081# typically this function will issue bytecodes for one or more likely
1082# places that the return address may be found.
ea480a30 1083m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
6710bf39 1084
3030c96e 1085# Implement the "info proc" command.
ea480a30 1086M;void;info_proc;const char *args, enum info_proc_what what;args, what
3030c96e 1087
451b7c33
TT
1088# Implement the "info proc" command for core files. Noe that there
1089# are two "info_proc"-like methods on gdbarch -- one for core files,
1090# one for live targets.
ea480a30 1091M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
451b7c33 1092
19630284
JB
1093# Iterate over all objfiles in the order that makes the most sense
1094# for the architecture to make global symbol searches.
1095#
1096# CB is a callback function where OBJFILE is the objfile to be searched,
1097# and CB_DATA a pointer to user-defined data (the same data that is passed
1098# when calling this gdbarch method). The iteration stops if this function
1099# returns nonzero.
1100#
1101# CB_DATA is a pointer to some user-defined data to be passed to
1102# the callback.
1103#
1104# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1105# inspected when the symbol search was requested.
ea480a30 1106m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
19630284 1107
7e35103a 1108# Ravenscar arch-dependent ops.
ea480a30 1109v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1110
1111# Return non-zero if the instruction at ADDR is a call; zero otherwise.
ea480a30 1112m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
c2170eef
MM
1113
1114# Return non-zero if the instruction at ADDR is a return; zero otherwise.
ea480a30 1115m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
c2170eef
MM
1116
1117# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
ea480a30 1118m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
27a48a92 1119
5133a315
LM
1120# Return true if there's a program/permanent breakpoint planted in
1121# memory at ADDRESS, return false otherwise.
1122m;bool;program_breakpoint_here_p;CORE_ADDR address;address;;default_program_breakpoint_here_p;;0
1123
27a48a92
MK
1124# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1125# Return 0 if *READPTR is already at the end of the buffer.
1126# Return -1 if there is insufficient buffer for a whole entry.
1127# Return 1 if an entry was read into *TYPEP and *VALP.
ea480a30 1128M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
3437254d 1129
2faa3447
JB
1130# Print the description of a single auxv entry described by TYPE and VAL
1131# to FILE.
ea480a30 1132m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
2faa3447 1133
3437254d
PA
1134# Find the address range of the current inferior's vsyscall/vDSO, and
1135# write it to *RANGE. If the vsyscall's length can't be determined, a
1136# range with zero length is returned. Returns true if the vsyscall is
1137# found, false otherwise.
ea480a30 1138m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
f208eee0
JK
1139
1140# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1141# PROT has GDB_MMAP_PROT_* bitmask format.
1142# Throw an error if it is not possible. Returned address is always valid.
ea480a30 1143f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
f208eee0 1144
7f361056
JK
1145# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1146# Print a warning if it is not possible.
ea480a30 1147f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
7f361056 1148
f208eee0
JK
1149# Return string (caller has to use xfree for it) with options for GCC
1150# to produce code for this target, typically "-m64", "-m32" or "-m31".
1151# These options are put before CU's DW_AT_producer compilation options so that
953cff56
TT
1152# they can override it.
1153m;std::string;gcc_target_options;void;;;default_gcc_target_options;;0
ac04f72b
TT
1154
1155# Return a regular expression that matches names used by this
1156# architecture in GNU configury triplets. The result is statically
1157# allocated and must not be freed. The default implementation simply
1158# returns the BFD architecture name, which is correct in nearly every
1159# case.
ea480a30 1160m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
3374165f
SM
1161
1162# Return the size in 8-bit bytes of an addressable memory unit on this
1163# architecture. This corresponds to the number of 8-bit bytes associated to
1164# each address in memory.
ea480a30 1165m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
3374165f 1166
65b48a81 1167# Functions for allowing a target to modify its disassembler options.
471b9d15 1168v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
ea480a30 1169v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
471b9d15 1170v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
65b48a81 1171
5561fc30
AB
1172# Type alignment override method. Return the architecture specific
1173# alignment required for TYPE. If there is no special handling
1174# required for TYPE then return the value 0, GDB will then apply the
1175# default rules as laid out in gdbtypes.c:type_align.
2b4424c3
TT
1176m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1177
aa7ca1bb
AH
1178# Return a string containing any flags for the given PC in the given FRAME.
1179f;std::string;get_pc_address_flags;frame_info *frame, CORE_ADDR pc;frame, pc;;default_get_pc_address_flags;;0
1180
7e183d27
KB
1181# Read core file mappings
1182m;void;read_core_file_mappings;struct bfd *cbfd,gdb::function_view<void (ULONGEST count)> pre_loop_cb,gdb::function_view<void (int num, ULONGEST start, ULONGEST end, ULONGEST file_ofs, const char *filename, const void *other)> loop_cb;cbfd, pre_loop_cb, loop_cb;;default_read_core_file_mappings;;0
1183
104c1213 1184EOF
104c1213
JM
1185}
1186
0b8f9e4d
AC
1187#
1188# The .log file
1189#
41a77cba 1190exec > gdbarch.log
34620563 1191function_list | while do_read
0b8f9e4d
AC
1192do
1193 cat <<EOF
1207375d 1194${class} ${returntype:-} ${function} (${formal:-})
104c1213 1195EOF
3d9a5942
AC
1196 for r in ${read}
1197 do
a6fc5ffc 1198 eval echo "\" ${r}=\${${r}}\""
3d9a5942 1199 done
f0d4cc9e 1200 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1201 then
66d659b1 1202 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1203 kill $$
1204 exit 1
1205 fi
759cea5e 1206 if [ "x${invalid_p}" = "x0" ] && [ -n "${postdefault}" ]
f0d4cc9e
AC
1207 then
1208 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1209 kill $$
1210 exit 1
1211 fi
a72293e2
AC
1212 if class_is_multiarch_p
1213 then
1214 if class_is_predicate_p ; then :
1215 elif test "x${predefault}" = "x"
1216 then
2f9b146e 1217 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1218 kill $$
1219 exit 1
1220 fi
1221 fi
3d9a5942 1222 echo ""
0b8f9e4d
AC
1223done
1224
1225exec 1>&2
0b8f9e4d 1226
104c1213
JM
1227
1228copyright ()
1229{
1230cat <<EOF
c4bfde41
JK
1231/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1232/* vi:set ro: */
59233f88 1233
104c1213 1234/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1235
e5d78223 1236 Copyright (C) 1998-2020 Free Software Foundation, Inc.
104c1213
JM
1237
1238 This file is part of GDB.
1239
1240 This program is free software; you can redistribute it and/or modify
1241 it under the terms of the GNU General Public License as published by
50efebf8 1242 the Free Software Foundation; either version 3 of the License, or
104c1213 1243 (at your option) any later version.
618f726f 1244
104c1213
JM
1245 This program is distributed in the hope that it will be useful,
1246 but WITHOUT ANY WARRANTY; without even the implied warranty of
1247 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1248 GNU General Public License for more details.
618f726f 1249
104c1213 1250 You should have received a copy of the GNU General Public License
50efebf8 1251 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1252
41a77cba 1253/* This file was created with the aid of \`\`gdbarch.sh''. */
104c1213
JM
1254
1255EOF
1256}
1257
1258#
1259# The .h file
1260#
1261
1262exec > new-gdbarch.h
1263copyright
1264cat <<EOF
1265#ifndef GDBARCH_H
1266#define GDBARCH_H
1267
a0ff9e1a 1268#include <vector>
eb7a547a 1269#include "frame.h"
65b48a81 1270#include "dis-asm.h"
284a0e3c 1271#include "gdb_obstack.h"
fdb61c6c 1272#include "infrun.h"
fe4b2ee6 1273#include "osabi.h"
eb7a547a 1274
da3331ec
AC
1275struct floatformat;
1276struct ui_file;
104c1213 1277struct value;
b6af0555 1278struct objfile;
1c772458 1279struct obj_section;
a2cf933a 1280struct minimal_symbol;
049ee0e4 1281struct regcache;
b59ff9d5 1282struct reggroup;
6ce6d90f 1283struct regset;
a89aa300 1284struct disassemble_info;
e2d0e7eb 1285struct target_ops;
030f20e1 1286struct obstack;
8181d85f 1287struct bp_target_info;
424163ea 1288struct target_desc;
3e29f34a 1289struct symbol;
a96d9b2e 1290struct syscall;
175ff332 1291struct agent_expr;
6710bf39 1292struct axs_value;
55aa24fb 1293struct stap_parse_info;
37eedb39 1294struct expr_builder;
7e35103a 1295struct ravenscar_arch_ops;
3437254d 1296struct mem_range;
458c8db8 1297struct syscalls_info;
4dfc5dbc 1298struct thread_info;
012b3a21 1299struct ui_out;
104c1213 1300
8a526fa6
PA
1301#include "regcache.h"
1302
6ecd4729
PA
1303/* The architecture associated with the inferior through the
1304 connection to the target.
1305
1306 The architecture vector provides some information that is really a
1307 property of the inferior, accessed through a particular target:
1308 ptrace operations; the layout of certain RSP packets; the solib_ops
1309 vector; etc. To differentiate architecture accesses to
1310 per-inferior/target properties from
1311 per-thread/per-frame/per-objfile properties, accesses to
1312 per-inferior/target properties should be made through this
1313 gdbarch. */
1314
1315/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1316extern struct gdbarch *target_gdbarch (void);
6ecd4729 1317
19630284
JB
1318/* Callback type for the 'iterate_over_objfiles_in_search_order'
1319 gdbarch method. */
1320
1321typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1322 (struct objfile *objfile, void *cb_data);
5aa82d05 1323
1528345d
AA
1324/* Callback type for regset section iterators. The callback usually
1325 invokes the REGSET's supply or collect method, to which it must
a616bb94
AH
1326 pass a buffer - for collects this buffer will need to be created using
1327 COLLECT_SIZE, for supply the existing buffer being read from should
1328 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1329 is used for diagnostic messages. CB_DATA should have been passed
1330 unchanged through the iterator. */
1528345d 1331
5aa82d05 1332typedef void (iterate_over_regset_sections_cb)
a616bb94
AH
1333 (const char *sect_name, int supply_size, int collect_size,
1334 const struct regset *regset, const char *human_name, void *cb_data);
c5ac5cbb
AH
1335
1336/* For a function call, does the function return a value using a
1337 normal value return or a structure return - passing a hidden
1338 argument pointing to storage. For the latter, there are two
1339 cases: language-mandated structure return and target ABI
1340 structure return. */
1341
1342enum function_call_return_method
1343{
1344 /* Standard value return. */
1345 return_method_normal = 0,
1346
1347 /* Language ABI structure return. This is handled
1348 by passing the return location as the first parameter to
1349 the function, even preceding "this". */
1350 return_method_hidden_param,
1351
1352 /* Target ABI struct return. This is target-specific; for instance,
1353 on ia64 the first argument is passed in out0 but the hidden
1354 structure return pointer would normally be passed in r8. */
1355 return_method_struct,
1356};
1357
104c1213
JM
1358EOF
1359
1360# function typedef's
3d9a5942
AC
1361printf "\n"
1362printf "\n"
0963b4bd 1363printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1364function_list | while do_read
104c1213 1365do
2ada493a
AC
1366 if class_is_info_p
1367 then
3d9a5942 1368 printf "\n"
8d113d13
SM
1369 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1370 printf "/* set_gdbarch_%s() - not applicable - pre-initialized. */\n" "$function"
2ada493a 1371 fi
104c1213
JM
1372done
1373
1374# function typedef's
3d9a5942
AC
1375printf "\n"
1376printf "\n"
0963b4bd 1377printf "/* The following are initialized by the target dependent code. */\n"
34620563 1378function_list | while do_read
104c1213 1379do
72e74a21 1380 if [ -n "${comment}" ]
34620563
AC
1381 then
1382 echo "${comment}" | sed \
1383 -e '2 s,#,/*,' \
1384 -e '3,$ s,#, ,' \
1385 -e '$ s,$, */,'
1386 fi
412d5987
AC
1387
1388 if class_is_predicate_p
2ada493a 1389 then
412d5987 1390 printf "\n"
39535193 1391 printf "extern bool gdbarch_%s_p (struct gdbarch *gdbarch);\n" "$function"
4a5c6a1d 1392 fi
2ada493a
AC
1393 if class_is_variable_p
1394 then
3d9a5942 1395 printf "\n"
8d113d13
SM
1396 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1397 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, %s %s);\n" "$function" "$returntype" "$function"
2ada493a
AC
1398 fi
1399 if class_is_function_p
1400 then
3d9a5942 1401 printf "\n"
72e74a21 1402 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d 1403 then
8d113d13 1404 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch);\n" "$returntype" "$function"
4a5c6a1d
AC
1405 elif class_is_multiarch_p
1406 then
8d113d13 1407 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
4a5c6a1d 1408 else
8d113d13 1409 printf "typedef %s (gdbarch_%s_ftype) (%s);\n" "$returntype" "$function" "$formal"
4a5c6a1d 1410 fi
72e74a21 1411 if [ "x${formal}" = "xvoid" ]
104c1213 1412 then
8d113d13 1413 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
104c1213 1414 else
8d113d13 1415 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
104c1213 1416 fi
8d113d13 1417 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, gdbarch_%s_ftype *%s);\n" "$function" "$function" "$function"
2ada493a 1418 fi
104c1213
JM
1419done
1420
1421# close it off
1422cat <<EOF
1423
1424extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1425
1426
1427/* Mechanism for co-ordinating the selection of a specific
1428 architecture.
1429
1430 GDB targets (*-tdep.c) can register an interest in a specific
1431 architecture. Other GDB components can register a need to maintain
1432 per-architecture data.
1433
1434 The mechanisms below ensures that there is only a loose connection
1435 between the set-architecture command and the various GDB
0fa6923a 1436 components. Each component can independently register their need
104c1213
JM
1437 to maintain architecture specific data with gdbarch.
1438
1439 Pragmatics:
1440
1441 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1442 didn't scale.
1443
1444 The more traditional mega-struct containing architecture specific
1445 data for all the various GDB components was also considered. Since
0fa6923a 1446 GDB is built from a variable number of (fairly independent)
104c1213 1447 components it was determined that the global aproach was not
0963b4bd 1448 applicable. */
104c1213
JM
1449
1450
1451/* Register a new architectural family with GDB.
1452
1453 Register support for the specified ARCHITECTURE with GDB. When
1454 gdbarch determines that the specified architecture has been
1455 selected, the corresponding INIT function is called.
1456
1457 --
1458
1459 The INIT function takes two parameters: INFO which contains the
1460 information available to gdbarch about the (possibly new)
1461 architecture; ARCHES which is a list of the previously created
1462 \`\`struct gdbarch'' for this architecture.
1463
0f79675b 1464 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1465 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1466
1467 The ARCHES parameter is a linked list (sorted most recently used)
1468 of all the previously created architures for this architecture
1469 family. The (possibly NULL) ARCHES->gdbarch can used to access
1470 values from the previously selected architecture for this
59837fe0 1471 architecture family.
104c1213
JM
1472
1473 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1474 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1475 gdbarch'' from the ARCHES list - indicating that the new
1476 architecture is just a synonym for an earlier architecture (see
1477 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1478 - that describes the selected architecture (see gdbarch_alloc()).
1479
1480 The DUMP_TDEP function shall print out all target specific values.
1481 Care should be taken to ensure that the function works in both the
0963b4bd 1482 multi-arch and non- multi-arch cases. */
104c1213
JM
1483
1484struct gdbarch_list
1485{
1486 struct gdbarch *gdbarch;
1487 struct gdbarch_list *next;
1488};
1489
1490struct gdbarch_info
1491{
0963b4bd 1492 /* Use default: NULL (ZERO). */
104c1213
JM
1493 const struct bfd_arch_info *bfd_arch_info;
1494
428721aa 1495 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1496 enum bfd_endian byte_order;
104c1213 1497
94123b4f 1498 enum bfd_endian byte_order_for_code;
9d4fde75 1499
0963b4bd 1500 /* Use default: NULL (ZERO). */
104c1213
JM
1501 bfd *abfd;
1502
0963b4bd 1503 /* Use default: NULL (ZERO). */
0dba2a6c
MR
1504 union
1505 {
1506 /* Architecture-specific information. The generic form for targets
1507 that have extra requirements. */
1508 struct gdbarch_tdep_info *tdep_info;
1509
1510 /* Architecture-specific target description data. Numerous targets
1511 need only this, so give them an easy way to hold it. */
1512 struct tdesc_arch_data *tdesc_data;
1513
1514 /* SPU file system ID. This is a single integer, so using the
1515 generic form would only complicate code. Other targets may
1516 reuse this member if suitable. */
1517 int *id;
1518 };
4be87837
DJ
1519
1520 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1521 enum gdb_osabi osabi;
424163ea
DJ
1522
1523 /* Use default: NULL (ZERO). */
1524 const struct target_desc *target_desc;
104c1213
JM
1525};
1526
1527typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1528typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1529
4b9b3959 1530/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1531extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1532
4b9b3959
AC
1533extern void gdbarch_register (enum bfd_architecture architecture,
1534 gdbarch_init_ftype *,
1535 gdbarch_dump_tdep_ftype *);
1536
104c1213 1537
b4a20239
AC
1538/* Return a freshly allocated, NULL terminated, array of the valid
1539 architecture names. Since architectures are registered during the
1540 _initialize phase this function only returns useful information
0963b4bd 1541 once initialization has been completed. */
b4a20239
AC
1542
1543extern const char **gdbarch_printable_names (void);
1544
1545
104c1213 1546/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1547 matches the information provided by INFO. */
104c1213 1548
424163ea 1549extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1550
1551
1552/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1553 basic initialization using values obtained from the INFO and TDEP
104c1213 1554 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1555 initialization of the object. */
104c1213
JM
1556
1557extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1558
1559
4b9b3959
AC
1560/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1561 It is assumed that the caller freeds the \`\`struct
0963b4bd 1562 gdbarch_tdep''. */
4b9b3959 1563
058f20d5
JB
1564extern void gdbarch_free (struct gdbarch *);
1565
284a0e3c
SM
1566/* Get the obstack owned by ARCH. */
1567
1568extern obstack *gdbarch_obstack (gdbarch *arch);
058f20d5 1569
aebd7893
AC
1570/* Helper function. Allocate memory from the \`\`struct gdbarch''
1571 obstack. The memory is freed when the corresponding architecture
1572 is also freed. */
1573
284a0e3c
SM
1574#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1575 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1576
1577#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1578 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
aebd7893 1579
6c214e7c
PP
1580/* Duplicate STRING, returning an equivalent string that's allocated on the
1581 obstack associated with GDBARCH. The string is freed when the corresponding
1582 architecture is also freed. */
1583
1584extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
aebd7893 1585
0963b4bd 1586/* Helper function. Force an update of the current architecture.
104c1213 1587
b732d07d
AC
1588 The actual architecture selected is determined by INFO, \`\`(gdb) set
1589 architecture'' et.al., the existing architecture and BFD's default
1590 architecture. INFO should be initialized to zero and then selected
1591 fields should be updated.
104c1213 1592
0963b4bd 1593 Returns non-zero if the update succeeds. */
16f33e29
AC
1594
1595extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1596
1597
ebdba546
AC
1598/* Helper function. Find an architecture matching info.
1599
1600 INFO should be initialized using gdbarch_info_init, relevant fields
1601 set, and then finished using gdbarch_info_fill.
1602
1603 Returns the corresponding architecture, or NULL if no matching
59837fe0 1604 architecture was found. */
ebdba546
AC
1605
1606extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1607
1608
aff68abb 1609/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1610
aff68abb 1611extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1612
104c1213
JM
1613
1614/* Register per-architecture data-pointer.
1615
1616 Reserve space for a per-architecture data-pointer. An identifier
1617 for the reserved data-pointer is returned. That identifer should
95160752 1618 be saved in a local static variable.
104c1213 1619
fcc1c85c
AC
1620 Memory for the per-architecture data shall be allocated using
1621 gdbarch_obstack_zalloc. That memory will be deleted when the
1622 corresponding architecture object is deleted.
104c1213 1623
95160752
AC
1624 When a previously created architecture is re-selected, the
1625 per-architecture data-pointer for that previous architecture is
76860b5f 1626 restored. INIT() is not re-called.
104c1213
JM
1627
1628 Multiple registrarants for any architecture are allowed (and
1629 strongly encouraged). */
1630
95160752 1631struct gdbarch_data;
104c1213 1632
030f20e1
AC
1633typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1634extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1635typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1636extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
104c1213 1637
451fbdda 1638extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1639
1640
0fa6923a 1641/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1642 byte-order, ...) using information found in the BFD. */
104c1213
JM
1643
1644extern void set_gdbarch_from_file (bfd *);
1645
1646
e514a9d6
JM
1647/* Initialize the current architecture to the "first" one we find on
1648 our list. */
1649
1650extern void initialize_current_architecture (void);
1651
104c1213 1652/* gdbarch trace variable */
ccce17b0 1653extern unsigned int gdbarch_debug;
104c1213 1654
4b9b3959 1655extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1656
f6efe3f8
SM
1657/* Return the number of cooked registers (raw + pseudo) for ARCH. */
1658
1659static inline int
1660gdbarch_num_cooked_regs (gdbarch *arch)
1661{
1662 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1663}
1664
104c1213
JM
1665#endif
1666EOF
1667exec 1>&2
41a77cba
SM
1668../move-if-change new-gdbarch.h gdbarch.h
1669rm -f new-gdbarch.h
104c1213
JM
1670
1671
1672#
1673# C file
1674#
1675
1676exec > new-gdbarch.c
1677copyright
1678cat <<EOF
1679
1680#include "defs.h"
7355ddba 1681#include "arch-utils.h"
104c1213 1682
104c1213 1683#include "gdbcmd.h"
faaf634c 1684#include "inferior.h"
104c1213
JM
1685#include "symcat.h"
1686
f0d4cc9e 1687#include "floatformat.h"
b59ff9d5 1688#include "reggroups.h"
4be87837 1689#include "osabi.h"
aebd7893 1690#include "gdb_obstack.h"
0bee6dd4 1691#include "observable.h"
a3ecef73 1692#include "regcache.h"
19630284 1693#include "objfiles.h"
2faa3447 1694#include "auxv.h"
8bcb5208
AB
1695#include "frame-unwind.h"
1696#include "dummy-frame.h"
95160752 1697
104c1213
JM
1698/* Static function declarations */
1699
b3cc3077 1700static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1701
104c1213
JM
1702/* Non-zero if we want to trace architecture code. */
1703
1704#ifndef GDBARCH_DEBUG
1705#define GDBARCH_DEBUG 0
1706#endif
ccce17b0 1707unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1708static void
1709show_gdbarch_debug (struct ui_file *file, int from_tty,
1710 struct cmd_list_element *c, const char *value)
1711{
1712 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1713}
104c1213 1714
456fcf94 1715static const char *
8da61cc4 1716pformat (const struct floatformat **format)
456fcf94
AC
1717{
1718 if (format == NULL)
1719 return "(null)";
1720 else
8da61cc4
DJ
1721 /* Just print out one of them - this is only for diagnostics. */
1722 return format[0]->name;
456fcf94
AC
1723}
1724
08105857
PA
1725static const char *
1726pstring (const char *string)
1727{
1728 if (string == NULL)
1729 return "(null)";
1730 return string;
05c0465e
SDJ
1731}
1732
a121b7c1 1733static const char *
f7bb4e3a
PB
1734pstring_ptr (char **string)
1735{
1736 if (string == NULL || *string == NULL)
1737 return "(null)";
1738 return *string;
1739}
1740
05c0465e
SDJ
1741/* Helper function to print a list of strings, represented as "const
1742 char *const *". The list is printed comma-separated. */
1743
a121b7c1 1744static const char *
05c0465e
SDJ
1745pstring_list (const char *const *list)
1746{
1747 static char ret[100];
1748 const char *const *p;
1749 size_t offset = 0;
1750
1751 if (list == NULL)
1752 return "(null)";
1753
1754 ret[0] = '\0';
1755 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1756 {
1757 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1758 offset += 2 + s;
1759 }
1760
1761 if (offset > 0)
1762 {
1763 gdb_assert (offset - 2 < sizeof (ret));
1764 ret[offset - 2] = '\0';
1765 }
1766
1767 return ret;
08105857
PA
1768}
1769
104c1213
JM
1770EOF
1771
1772# gdbarch open the gdbarch object
3d9a5942 1773printf "\n"
0963b4bd 1774printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1775printf "\n"
1776printf "struct gdbarch\n"
1777printf "{\n"
76860b5f
AC
1778printf " /* Has this architecture been fully initialized? */\n"
1779printf " int initialized_p;\n"
aebd7893
AC
1780printf "\n"
1781printf " /* An obstack bound to the lifetime of the architecture. */\n"
1782printf " struct obstack *obstack;\n"
1783printf "\n"
0963b4bd 1784printf " /* basic architectural information. */\n"
34620563 1785function_list | while do_read
104c1213 1786do
2ada493a
AC
1787 if class_is_info_p
1788 then
8d113d13 1789 printf " %s %s;\n" "$returntype" "$function"
2ada493a 1790 fi
104c1213 1791done
3d9a5942 1792printf "\n"
0963b4bd 1793printf " /* target specific vector. */\n"
3d9a5942
AC
1794printf " struct gdbarch_tdep *tdep;\n"
1795printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1796printf "\n"
0963b4bd 1797printf " /* per-architecture data-pointers. */\n"
95160752 1798printf " unsigned nr_data;\n"
3d9a5942
AC
1799printf " void **data;\n"
1800printf "\n"
104c1213
JM
1801cat <<EOF
1802 /* Multi-arch values.
1803
1804 When extending this structure you must:
1805
1806 Add the field below.
1807
1808 Declare set/get functions and define the corresponding
1809 macro in gdbarch.h.
1810
1811 gdbarch_alloc(): If zero/NULL is not a suitable default,
1812 initialize the new field.
1813
1814 verify_gdbarch(): Confirm that the target updated the field
1815 correctly.
1816
7e73cedf 1817 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1818 field is dumped out
1819
104c1213
JM
1820 get_gdbarch(): Implement the set/get functions (probably using
1821 the macro's as shortcuts).
1822
1823 */
1824
1825EOF
34620563 1826function_list | while do_read
104c1213 1827do
2ada493a
AC
1828 if class_is_variable_p
1829 then
8d113d13 1830 printf " %s %s;\n" "$returntype" "$function"
2ada493a
AC
1831 elif class_is_function_p
1832 then
8d113d13 1833 printf " gdbarch_%s_ftype *%s;\n" "$function" "$function"
2ada493a 1834 fi
104c1213 1835done
3d9a5942 1836printf "};\n"
104c1213 1837
104c1213 1838# Create a new gdbarch struct
104c1213 1839cat <<EOF
7de2341d 1840
66b43ecb 1841/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1842 \`\`struct gdbarch_info''. */
104c1213 1843EOF
3d9a5942 1844printf "\n"
104c1213
JM
1845cat <<EOF
1846struct gdbarch *
1847gdbarch_alloc (const struct gdbarch_info *info,
1848 struct gdbarch_tdep *tdep)
1849{
be7811ad 1850 struct gdbarch *gdbarch;
aebd7893
AC
1851
1852 /* Create an obstack for allocating all the per-architecture memory,
1853 then use that to allocate the architecture vector. */
70ba0933 1854 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1855 obstack_init (obstack);
8d749320 1856 gdbarch = XOBNEW (obstack, struct gdbarch);
be7811ad
MD
1857 memset (gdbarch, 0, sizeof (*gdbarch));
1858 gdbarch->obstack = obstack;
85de9627 1859
be7811ad 1860 alloc_gdbarch_data (gdbarch);
85de9627 1861
be7811ad 1862 gdbarch->tdep = tdep;
104c1213 1863EOF
3d9a5942 1864printf "\n"
34620563 1865function_list | while do_read
104c1213 1866do
2ada493a
AC
1867 if class_is_info_p
1868 then
8d113d13 1869 printf " gdbarch->%s = info->%s;\n" "$function" "$function"
2ada493a 1870 fi
104c1213 1871done
3d9a5942 1872printf "\n"
0963b4bd 1873printf " /* Force the explicit initialization of these. */\n"
34620563 1874function_list | while do_read
104c1213 1875do
2ada493a
AC
1876 if class_is_function_p || class_is_variable_p
1877 then
759cea5e 1878 if [ -n "${predefault}" ] && [ "x${predefault}" != "x0" ]
104c1213 1879 then
8d113d13 1880 printf " gdbarch->%s = %s;\n" "$function" "$predefault"
104c1213 1881 fi
2ada493a 1882 fi
104c1213
JM
1883done
1884cat <<EOF
1885 /* gdbarch_alloc() */
1886
be7811ad 1887 return gdbarch;
104c1213
JM
1888}
1889EOF
1890
058f20d5 1891# Free a gdbarch struct.
3d9a5942
AC
1892printf "\n"
1893printf "\n"
058f20d5 1894cat <<EOF
aebd7893 1895
284a0e3c 1896obstack *gdbarch_obstack (gdbarch *arch)
aebd7893 1897{
284a0e3c 1898 return arch->obstack;
aebd7893
AC
1899}
1900
6c214e7c
PP
1901/* See gdbarch.h. */
1902
1903char *
1904gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1905{
1906 return obstack_strdup (arch->obstack, string);
1907}
1908
aebd7893 1909
058f20d5
JB
1910/* Free a gdbarch struct. This should never happen in normal
1911 operation --- once you've created a gdbarch, you keep it around.
1912 However, if an architecture's init function encounters an error
1913 building the structure, it may need to clean up a partially
1914 constructed gdbarch. */
4b9b3959 1915
058f20d5
JB
1916void
1917gdbarch_free (struct gdbarch *arch)
1918{
aebd7893 1919 struct obstack *obstack;
05c547f6 1920
95160752 1921 gdb_assert (arch != NULL);
aebd7893
AC
1922 gdb_assert (!arch->initialized_p);
1923 obstack = arch->obstack;
1924 obstack_free (obstack, 0); /* Includes the ARCH. */
1925 xfree (obstack);
058f20d5
JB
1926}
1927EOF
1928
104c1213 1929# verify a new architecture
104c1213 1930cat <<EOF
db446970
AC
1931
1932
1933/* Ensure that all values in a GDBARCH are reasonable. */
1934
104c1213 1935static void
be7811ad 1936verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1937{
d7e74731 1938 string_file log;
05c547f6 1939
104c1213 1940 /* fundamental */
be7811ad 1941 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
d7e74731 1942 log.puts ("\n\tbyte-order");
be7811ad 1943 if (gdbarch->bfd_arch_info == NULL)
d7e74731 1944 log.puts ("\n\tbfd_arch_info");
0963b4bd 1945 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1946EOF
34620563 1947function_list | while do_read
104c1213 1948do
2ada493a
AC
1949 if class_is_function_p || class_is_variable_p
1950 then
72e74a21 1951 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1952 then
8d113d13 1953 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
2ada493a
AC
1954 elif class_is_predicate_p
1955 then
8d113d13 1956 printf " /* Skip verify of %s, has predicate. */\n" "$function"
f0d4cc9e 1957 # FIXME: See do_read for potential simplification
759cea5e 1958 elif [ -n "${invalid_p}" ] && [ -n "${postdefault}" ]
f0d4cc9e 1959 then
8d113d13
SM
1960 printf " if (%s)\n" "$invalid_p"
1961 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
759cea5e 1962 elif [ -n "${predefault}" ] && [ -n "${postdefault}" ]
f0d4cc9e 1963 then
8d113d13
SM
1964 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1965 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
72e74a21 1966 elif [ -n "${postdefault}" ]
f0d4cc9e 1967 then
8d113d13
SM
1968 printf " if (gdbarch->%s == 0)\n" "$function"
1969 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
72e74a21 1970 elif [ -n "${invalid_p}" ]
104c1213 1971 then
8d113d13
SM
1972 printf " if (%s)\n" "$invalid_p"
1973 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
72e74a21 1974 elif [ -n "${predefault}" ]
104c1213 1975 then
8d113d13
SM
1976 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1977 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
104c1213 1978 fi
2ada493a 1979 fi
104c1213
JM
1980done
1981cat <<EOF
d7e74731 1982 if (!log.empty ())
f16a1923 1983 internal_error (__FILE__, __LINE__,
85c07804 1984 _("verify_gdbarch: the following are invalid ...%s"),
d7e74731 1985 log.c_str ());
104c1213
JM
1986}
1987EOF
1988
1989# dump the structure
3d9a5942
AC
1990printf "\n"
1991printf "\n"
104c1213 1992cat <<EOF
0963b4bd 1993/* Print out the details of the current architecture. */
4b9b3959 1994
104c1213 1995void
be7811ad 1996gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1997{
b78960be 1998 const char *gdb_nm_file = "<not-defined>";
05c547f6 1999
b78960be
AC
2000#if defined (GDB_NM_FILE)
2001 gdb_nm_file = GDB_NM_FILE;
2002#endif
2003 fprintf_unfiltered (file,
2004 "gdbarch_dump: GDB_NM_FILE = %s\\n",
2005 gdb_nm_file);
104c1213 2006EOF
ea480a30 2007function_list | sort '-t;' -k 3 | while do_read
104c1213 2008do
1e9f55d0
AC
2009 # First the predicate
2010 if class_is_predicate_p
2011 then
7996bcec 2012 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2013 printf " \"gdbarch_dump: gdbarch_%s_p() = %%d\\\\n\",\n" "$function"
2014 printf " gdbarch_%s_p (gdbarch));\n" "$function"
08e45a40 2015 fi
48f7351b 2016 # Print the corresponding value.
283354d8 2017 if class_is_function_p
4b9b3959 2018 then
7996bcec 2019 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2020 printf " \"gdbarch_dump: %s = <%%s>\\\\n\",\n" "$function"
2021 printf " host_address_to_string (gdbarch->%s));\n" "$function"
4b9b3959 2022 else
48f7351b 2023 # It is a variable
2f9b146e
AC
2024 case "${print}:${returntype}" in
2025 :CORE_ADDR )
0b1553bc
UW
2026 fmt="%s"
2027 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 2028 ;;
2f9b146e 2029 :* )
48f7351b 2030 fmt="%s"
623d3eb1 2031 print="plongest (gdbarch->${function})"
48f7351b
AC
2032 ;;
2033 * )
2f9b146e 2034 fmt="%s"
48f7351b
AC
2035 ;;
2036 esac
3d9a5942 2037 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2038 printf " \"gdbarch_dump: %s = %s\\\\n\",\n" "$function" "$fmt"
2039 printf " %s);\n" "$print"
2ada493a 2040 fi
104c1213 2041done
381323f4 2042cat <<EOF
be7811ad
MD
2043 if (gdbarch->dump_tdep != NULL)
2044 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
2045}
2046EOF
104c1213
JM
2047
2048
2049# GET/SET
3d9a5942 2050printf "\n"
104c1213
JM
2051cat <<EOF
2052struct gdbarch_tdep *
2053gdbarch_tdep (struct gdbarch *gdbarch)
2054{
2055 if (gdbarch_debug >= 2)
3d9a5942 2056 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
2057 return gdbarch->tdep;
2058}
2059EOF
3d9a5942 2060printf "\n"
34620563 2061function_list | while do_read
104c1213 2062do
2ada493a
AC
2063 if class_is_predicate_p
2064 then
3d9a5942 2065 printf "\n"
39535193 2066 printf "bool\n"
8d113d13 2067 printf "gdbarch_%s_p (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2068 printf "{\n"
8de9bdc4 2069 printf " gdb_assert (gdbarch != NULL);\n"
8d113d13 2070 printf " return %s;\n" "$predicate"
3d9a5942 2071 printf "}\n"
2ada493a
AC
2072 fi
2073 if class_is_function_p
2074 then
3d9a5942 2075 printf "\n"
8d113d13 2076 printf "%s\n" "$returntype"
72e74a21 2077 if [ "x${formal}" = "xvoid" ]
104c1213 2078 then
8d113d13 2079 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
104c1213 2080 else
8d113d13 2081 printf "gdbarch_%s (struct gdbarch *gdbarch, %s)\n" "$function" "$formal"
104c1213 2082 fi
3d9a5942 2083 printf "{\n"
8de9bdc4 2084 printf " gdb_assert (gdbarch != NULL);\n"
8d113d13 2085 printf " gdb_assert (gdbarch->%s != NULL);\n" "$function"
f7968451 2086 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
2087 then
2088 # Allow a call to a function with a predicate.
8d113d13 2089 printf " /* Do not check predicate: %s, allow call. */\n" "$predicate"
ae45cd16 2090 fi
3d9a5942 2091 printf " if (gdbarch_debug >= 2)\n"
8d113d13 2092 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
1207375d 2093 if [ "x${actual:-}" = "x-" ] || [ "x${actual:-}" = "x" ]
4a5c6a1d
AC
2094 then
2095 if class_is_multiarch_p
2096 then
2097 params="gdbarch"
2098 else
2099 params=""
2100 fi
2101 else
2102 if class_is_multiarch_p
2103 then
2104 params="gdbarch, ${actual}"
2105 else
2106 params="${actual}"
2107 fi
2108 fi
72e74a21 2109 if [ "x${returntype}" = "xvoid" ]
104c1213 2110 then
8d113d13 2111 printf " gdbarch->%s (%s);\n" "$function" "$params"
104c1213 2112 else
8d113d13 2113 printf " return gdbarch->%s (%s);\n" "$function" "$params"
104c1213 2114 fi
3d9a5942
AC
2115 printf "}\n"
2116 printf "\n"
2117 printf "void\n"
8d113d13 2118 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
cb02ab24 2119 printf " %s gdbarch_%s_ftype %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$function" "$function"
3d9a5942 2120 printf "{\n"
8d113d13 2121 printf " gdbarch->%s = %s;\n" "$function" "$function"
3d9a5942 2122 printf "}\n"
2ada493a
AC
2123 elif class_is_variable_p
2124 then
3d9a5942 2125 printf "\n"
8d113d13
SM
2126 printf "%s\n" "$returntype"
2127 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2128 printf "{\n"
8de9bdc4 2129 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2130 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2131 then
8d113d13 2132 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
72e74a21 2133 elif [ -n "${invalid_p}" ]
104c1213 2134 then
956ac328 2135 printf " /* Check variable is valid. */\n"
8d113d13 2136 printf " gdb_assert (!(%s));\n" "$invalid_p"
72e74a21 2137 elif [ -n "${predefault}" ]
104c1213 2138 then
956ac328 2139 printf " /* Check variable changed from pre-default. */\n"
8d113d13 2140 printf " gdb_assert (gdbarch->%s != %s);\n" "$function" "$predefault"
104c1213 2141 fi
3d9a5942 2142 printf " if (gdbarch_debug >= 2)\n"
8d113d13
SM
2143 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2144 printf " return gdbarch->%s;\n" "$function"
3d9a5942
AC
2145 printf "}\n"
2146 printf "\n"
2147 printf "void\n"
8d113d13 2148 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
cb02ab24 2149 printf " %s %s %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$returntype" "$function"
3d9a5942 2150 printf "{\n"
8d113d13 2151 printf " gdbarch->%s = %s;\n" "$function" "$function"
3d9a5942 2152 printf "}\n"
2ada493a
AC
2153 elif class_is_info_p
2154 then
3d9a5942 2155 printf "\n"
8d113d13
SM
2156 printf "%s\n" "$returntype"
2157 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2158 printf "{\n"
8de9bdc4 2159 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942 2160 printf " if (gdbarch_debug >= 2)\n"
8d113d13
SM
2161 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2162 printf " return gdbarch->%s;\n" "$function"
3d9a5942 2163 printf "}\n"
2ada493a 2164 fi
104c1213
JM
2165done
2166
2167# All the trailing guff
2168cat <<EOF
2169
2170
f44c642f 2171/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2172 modules. */
104c1213
JM
2173
2174struct gdbarch_data
2175{
95160752 2176 unsigned index;
76860b5f 2177 int init_p;
030f20e1
AC
2178 gdbarch_data_pre_init_ftype *pre_init;
2179 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2180};
2181
2182struct gdbarch_data_registration
2183{
104c1213
JM
2184 struct gdbarch_data *data;
2185 struct gdbarch_data_registration *next;
2186};
2187
f44c642f 2188struct gdbarch_data_registry
104c1213 2189{
95160752 2190 unsigned nr;
104c1213
JM
2191 struct gdbarch_data_registration *registrations;
2192};
2193
f44c642f 2194struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2195{
2196 0, NULL,
2197};
2198
030f20e1
AC
2199static struct gdbarch_data *
2200gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2201 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2202{
2203 struct gdbarch_data_registration **curr;
05c547f6
MS
2204
2205 /* Append the new registration. */
f44c642f 2206 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2207 (*curr) != NULL;
2208 curr = &(*curr)->next);
70ba0933 2209 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2210 (*curr)->next = NULL;
70ba0933 2211 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2212 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2213 (*curr)->data->pre_init = pre_init;
2214 (*curr)->data->post_init = post_init;
76860b5f 2215 (*curr)->data->init_p = 1;
104c1213
JM
2216 return (*curr)->data;
2217}
2218
030f20e1
AC
2219struct gdbarch_data *
2220gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2221{
2222 return gdbarch_data_register (pre_init, NULL);
2223}
2224
2225struct gdbarch_data *
2226gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2227{
2228 return gdbarch_data_register (NULL, post_init);
2229}
104c1213 2230
0963b4bd 2231/* Create/delete the gdbarch data vector. */
95160752
AC
2232
2233static void
b3cc3077 2234alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2235{
b3cc3077
JB
2236 gdb_assert (gdbarch->data == NULL);
2237 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2238 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2239}
3c875b6f 2240
104c1213 2241/* Return the current value of the specified per-architecture
0963b4bd 2242 data-pointer. */
104c1213
JM
2243
2244void *
451fbdda 2245gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2246{
451fbdda 2247 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2248 if (gdbarch->data[data->index] == NULL)
76860b5f 2249 {
030f20e1
AC
2250 /* The data-pointer isn't initialized, call init() to get a
2251 value. */
2252 if (data->pre_init != NULL)
2253 /* Mid architecture creation: pass just the obstack, and not
2254 the entire architecture, as that way it isn't possible for
2255 pre-init code to refer to undefined architecture
2256 fields. */
2257 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2258 else if (gdbarch->initialized_p
2259 && data->post_init != NULL)
2260 /* Post architecture creation: pass the entire architecture
2261 (as all fields are valid), but be careful to also detect
2262 recursive references. */
2263 {
2264 gdb_assert (data->init_p);
2265 data->init_p = 0;
2266 gdbarch->data[data->index] = data->post_init (gdbarch);
2267 data->init_p = 1;
2268 }
2269 else
3bc98c0c
AB
2270 internal_error (__FILE__, __LINE__,
2271 _("gdbarch post-init data field can only be used "
2272 "after gdbarch is fully initialised"));
76860b5f
AC
2273 gdb_assert (gdbarch->data[data->index] != NULL);
2274 }
451fbdda 2275 return gdbarch->data[data->index];
104c1213
JM
2276}
2277
2278
0963b4bd 2279/* Keep a registry of the architectures known by GDB. */
104c1213 2280
4b9b3959 2281struct gdbarch_registration
104c1213
JM
2282{
2283 enum bfd_architecture bfd_architecture;
2284 gdbarch_init_ftype *init;
4b9b3959 2285 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2286 struct gdbarch_list *arches;
4b9b3959 2287 struct gdbarch_registration *next;
104c1213
JM
2288};
2289
f44c642f 2290static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2291
b4a20239
AC
2292static void
2293append_name (const char ***buf, int *nr, const char *name)
2294{
1dc7a623 2295 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
b4a20239
AC
2296 (*buf)[*nr] = name;
2297 *nr += 1;
2298}
2299
2300const char **
2301gdbarch_printable_names (void)
2302{
7996bcec 2303 /* Accumulate a list of names based on the registed list of
0963b4bd 2304 architectures. */
7996bcec
AC
2305 int nr_arches = 0;
2306 const char **arches = NULL;
2307 struct gdbarch_registration *rego;
05c547f6 2308
7996bcec
AC
2309 for (rego = gdbarch_registry;
2310 rego != NULL;
2311 rego = rego->next)
b4a20239 2312 {
7996bcec
AC
2313 const struct bfd_arch_info *ap;
2314 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2315 if (ap == NULL)
2316 internal_error (__FILE__, __LINE__,
85c07804 2317 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2318 do
2319 {
2320 append_name (&arches, &nr_arches, ap->printable_name);
2321 ap = ap->next;
2322 }
2323 while (ap != NULL);
b4a20239 2324 }
7996bcec
AC
2325 append_name (&arches, &nr_arches, NULL);
2326 return arches;
b4a20239
AC
2327}
2328
2329
104c1213 2330void
4b9b3959
AC
2331gdbarch_register (enum bfd_architecture bfd_architecture,
2332 gdbarch_init_ftype *init,
2333 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2334{
4b9b3959 2335 struct gdbarch_registration **curr;
104c1213 2336 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2337
ec3d358c 2338 /* Check that BFD recognizes this architecture */
104c1213
JM
2339 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2340 if (bfd_arch_info == NULL)
2341 {
8e65ff28 2342 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2343 _("gdbarch: Attempt to register "
2344 "unknown architecture (%d)"),
8e65ff28 2345 bfd_architecture);
104c1213 2346 }
0963b4bd 2347 /* Check that we haven't seen this architecture before. */
f44c642f 2348 for (curr = &gdbarch_registry;
104c1213
JM
2349 (*curr) != NULL;
2350 curr = &(*curr)->next)
2351 {
2352 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2353 internal_error (__FILE__, __LINE__,
64b9b334 2354 _("gdbarch: Duplicate registration "
0963b4bd 2355 "of architecture (%s)"),
8e65ff28 2356 bfd_arch_info->printable_name);
104c1213
JM
2357 }
2358 /* log it */
2359 if (gdbarch_debug)
30737ed9 2360 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2361 bfd_arch_info->printable_name,
30737ed9 2362 host_address_to_string (init));
104c1213 2363 /* Append it */
70ba0933 2364 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2365 (*curr)->bfd_architecture = bfd_architecture;
2366 (*curr)->init = init;
4b9b3959 2367 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2368 (*curr)->arches = NULL;
2369 (*curr)->next = NULL;
4b9b3959
AC
2370}
2371
2372void
2373register_gdbarch_init (enum bfd_architecture bfd_architecture,
2374 gdbarch_init_ftype *init)
2375{
2376 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2377}
104c1213
JM
2378
2379
424163ea 2380/* Look for an architecture using gdbarch_info. */
104c1213
JM
2381
2382struct gdbarch_list *
2383gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2384 const struct gdbarch_info *info)
2385{
2386 for (; arches != NULL; arches = arches->next)
2387 {
2388 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2389 continue;
2390 if (info->byte_order != arches->gdbarch->byte_order)
2391 continue;
4be87837
DJ
2392 if (info->osabi != arches->gdbarch->osabi)
2393 continue;
424163ea
DJ
2394 if (info->target_desc != arches->gdbarch->target_desc)
2395 continue;
104c1213
JM
2396 return arches;
2397 }
2398 return NULL;
2399}
2400
2401
ebdba546 2402/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2403 architecture if needed. Return that new architecture. */
104c1213 2404
59837fe0
UW
2405struct gdbarch *
2406gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2407{
2408 struct gdbarch *new_gdbarch;
4b9b3959 2409 struct gdbarch_registration *rego;
104c1213 2410
b732d07d 2411 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2412 sources: "set ..."; INFOabfd supplied; and the global
2413 defaults. */
2414 gdbarch_info_fill (&info);
4be87837 2415
0963b4bd 2416 /* Must have found some sort of architecture. */
b732d07d 2417 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2418
2419 if (gdbarch_debug)
2420 {
2421 fprintf_unfiltered (gdb_stdlog,
59837fe0 2422 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2423 (info.bfd_arch_info != NULL
2424 ? info.bfd_arch_info->printable_name
2425 : "(null)"));
2426 fprintf_unfiltered (gdb_stdlog,
59837fe0 2427 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2428 info.byte_order,
d7449b42 2429 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2430 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2431 : "default"));
4be87837 2432 fprintf_unfiltered (gdb_stdlog,
59837fe0 2433 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2434 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2435 fprintf_unfiltered (gdb_stdlog,
59837fe0 2436 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2437 host_address_to_string (info.abfd));
104c1213 2438 fprintf_unfiltered (gdb_stdlog,
59837fe0 2439 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2440 host_address_to_string (info.tdep_info));
104c1213
JM
2441 }
2442
ebdba546 2443 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2444 for (rego = gdbarch_registry;
2445 rego != NULL;
2446 rego = rego->next)
2447 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2448 break;
2449 if (rego == NULL)
2450 {
2451 if (gdbarch_debug)
59837fe0 2452 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2453 "No matching architecture\n");
b732d07d
AC
2454 return 0;
2455 }
2456
ebdba546 2457 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2458 new_gdbarch = rego->init (info, rego->arches);
2459
ebdba546
AC
2460 /* Did the tdep code like it? No. Reject the change and revert to
2461 the old architecture. */
104c1213
JM
2462 if (new_gdbarch == NULL)
2463 {
2464 if (gdbarch_debug)
59837fe0 2465 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2466 "Target rejected architecture\n");
2467 return NULL;
104c1213
JM
2468 }
2469
ebdba546
AC
2470 /* Is this a pre-existing architecture (as determined by already
2471 being initialized)? Move it to the front of the architecture
2472 list (keeping the list sorted Most Recently Used). */
2473 if (new_gdbarch->initialized_p)
104c1213 2474 {
ebdba546 2475 struct gdbarch_list **list;
fe978cb0 2476 struct gdbarch_list *self;
104c1213 2477 if (gdbarch_debug)
59837fe0 2478 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2479 "Previous architecture %s (%s) selected\n",
2480 host_address_to_string (new_gdbarch),
104c1213 2481 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2482 /* Find the existing arch in the list. */
2483 for (list = &rego->arches;
2484 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2485 list = &(*list)->next);
2486 /* It had better be in the list of architectures. */
2487 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2488 /* Unlink SELF. */
2489 self = (*list);
2490 (*list) = self->next;
2491 /* Insert SELF at the front. */
2492 self->next = rego->arches;
2493 rego->arches = self;
ebdba546
AC
2494 /* Return it. */
2495 return new_gdbarch;
104c1213
JM
2496 }
2497
ebdba546
AC
2498 /* It's a new architecture. */
2499 if (gdbarch_debug)
59837fe0 2500 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2501 "New architecture %s (%s) selected\n",
2502 host_address_to_string (new_gdbarch),
ebdba546
AC
2503 new_gdbarch->bfd_arch_info->printable_name);
2504
2505 /* Insert the new architecture into the front of the architecture
2506 list (keep the list sorted Most Recently Used). */
0f79675b 2507 {
fe978cb0
PA
2508 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2509 self->next = rego->arches;
2510 self->gdbarch = new_gdbarch;
2511 rego->arches = self;
0f79675b 2512 }
104c1213 2513
4b9b3959
AC
2514 /* Check that the newly installed architecture is valid. Plug in
2515 any post init values. */
2516 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2517 verify_gdbarch (new_gdbarch);
ebdba546 2518 new_gdbarch->initialized_p = 1;
104c1213 2519
4b9b3959 2520 if (gdbarch_debug)
ebdba546
AC
2521 gdbarch_dump (new_gdbarch, gdb_stdlog);
2522
2523 return new_gdbarch;
2524}
2525
e487cc15 2526/* Make the specified architecture current. */
ebdba546
AC
2527
2528void
aff68abb 2529set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2530{
2531 gdb_assert (new_gdbarch != NULL);
ebdba546 2532 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2533 current_inferior ()->gdbarch = new_gdbarch;
0bee6dd4 2534 gdb::observers::architecture_changed.notify (new_gdbarch);
a3ecef73 2535 registers_changed ();
ebdba546 2536}
104c1213 2537
f5656ead 2538/* Return the current inferior's arch. */
6ecd4729
PA
2539
2540struct gdbarch *
f5656ead 2541target_gdbarch (void)
6ecd4729
PA
2542{
2543 return current_inferior ()->gdbarch;
2544}
2545
a1237872 2546void _initialize_gdbarch ();
104c1213 2547void
a1237872 2548_initialize_gdbarch ()
104c1213 2549{
ccce17b0 2550 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2551Set architecture debugging."), _("\\
2552Show architecture debugging."), _("\\
2553When non-zero, architecture debugging is enabled."),
2554 NULL,
920d2a44 2555 show_gdbarch_debug,
85c07804 2556 &setdebuglist, &showdebuglist);
104c1213
JM
2557}
2558EOF
2559
2560# close things off
2561exec 1>&2
41a77cba
SM
2562../move-if-change new-gdbarch.c gdbarch.c
2563rm -f new-gdbarch.c