]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/gdbarch.sh
* c-arm.texi: Add tutorial on ARM unwinding pseudo ops.
[thirdparty/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
9b254dd1
DJ
5# Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6# 2008 Free Software Foundation, Inc.
104c1213
JM
7#
8# This file is part of GDB.
9#
10# This program is free software; you can redistribute it and/or modify
11# it under the terms of the GNU General Public License as published by
50efebf8 12# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
13# (at your option) any later version.
14#
15# This program is distributed in the hope that it will be useful,
16# but WITHOUT ANY WARRANTY; without even the implied warranty of
17# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18# GNU General Public License for more details.
19#
20# You should have received a copy of the GNU General Public License
50efebf8 21# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 22
6e2c7fa1 23# Make certain that the script is not running in an internationalized
d8864532
AC
24# environment.
25LANG=c ; export LANG
1bd316f0 26LC_ALL=c ; export LC_ALL
d8864532
AC
27
28
59233f88
AC
29compare_new ()
30{
31 file=$1
66b43ecb 32 if test ! -r ${file}
59233f88
AC
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 35 elif diff -u ${file} new-${file}
59233f88
AC
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41}
42
43
44# Format of the input table
97030eea 45read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
46
47do_read ()
48{
34620563
AC
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 57 then
34620563
AC
58 continue
59 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 60 then
34620563
AC
61 comment="${comment}
62${line}"
f0d4cc9e 63 else
3d9a5942
AC
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
34620563
AC
71 eval read ${read} <<EOF
72${line}
73EOF
74 IFS="${OFS}"
75
283354d8
AC
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
3d9a5942
AC
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
a72293e2
AC
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
06b25f14 98
ae45cd16
AC
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
34620563 102 "" )
f7968451 103 if test -n "${predefault}"
34620563
AC
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 106 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
34620563
AC
113 fi
114 ;;
ae45cd16 115 * )
1e9f55d0 116 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
117 kill $$
118 exit 1
119 ;;
120 esac
34620563
AC
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
72e74a21 130 if [ -n "${postdefault}" ]
34620563
AC
131 then
132 fallbackdefault="${postdefault}"
72e74a21 133 elif [ -n "${predefault}" ]
34620563
AC
134 then
135 fallbackdefault="${predefault}"
136 else
73d3c16e 137 fallbackdefault="0"
34620563
AC
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
f0d4cc9e 144 fi
34620563 145 done
72e74a21 146 if [ -n "${class}" ]
34620563
AC
147 then
148 true
c0e8c252
AC
149 else
150 false
151 fi
152}
153
104c1213 154
f0d4cc9e
AC
155fallback_default_p ()
156{
72e74a21
JB
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
159}
160
161class_is_variable_p ()
162{
4a5c6a1d
AC
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
f0d4cc9e
AC
167}
168
169class_is_function_p ()
170{
4a5c6a1d
AC
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175}
176
177class_is_multiarch_p ()
178{
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
f0d4cc9e
AC
183}
184
185class_is_predicate_p ()
186{
4a5c6a1d
AC
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
f0d4cc9e
AC
191}
192
193class_is_info_p ()
194{
4a5c6a1d
AC
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
f0d4cc9e
AC
199}
200
201
cff3e48b
JM
202# dump out/verify the doco
203for field in ${read}
204do
205 case ${field} in
206
207 class ) : ;;
c4093a6a 208
c0e8c252
AC
209 # # -> line disable
210 # f -> function
211 # hiding a function
2ada493a
AC
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
c0e8c252
AC
214 # v -> variable
215 # hiding a variable
2ada493a
AC
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
c0e8c252
AC
218 # i -> set from info
219 # hiding something from the ``struct info'' object
4a5c6a1d
AC
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
cff3e48b 224
cff3e48b
JM
225 returntype ) : ;;
226
c0e8c252 227 # For functions, the return type; for variables, the data type
cff3e48b
JM
228
229 function ) : ;;
230
c0e8c252
AC
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
234
235 formal ) : ;;
236
c0e8c252
AC
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
cff3e48b
JM
241
242 actual ) : ;;
243
c0e8c252
AC
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
cff3e48b 247
0b8f9e4d 248 staticdefault ) : ;;
c0e8c252
AC
249
250 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
cff3e48b 254
0b8f9e4d 255 # If STATICDEFAULT is empty, zero is used.
c0e8c252 256
0b8f9e4d 257 predefault ) : ;;
cff3e48b 258
10312cc4
AC
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
cff3e48b 263
0b8f9e4d
AC
264 # If PREDEFAULT is empty, zero is used.
265
10312cc4
AC
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
f0d4cc9e
AC
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
0b8f9e4d
AC
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
10312cc4
AC
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
f0d4cc9e
AC
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
be7811ad 295 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
296 # will contain the current architecture. Care should be
297 # taken.
cff3e48b 298
c4093a6a 299 invalid_p ) : ;;
cff3e48b 300
0b8f9e4d 301 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 302 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
f0d4cc9e
AC
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
313
314 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 315
cff3e48b
JM
316 print ) : ;;
317
2f9b146e
AC
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
c0e8c252 320
2f9b146e
AC
321 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
322 # (anything else) is used.
cff3e48b 323
283354d8 324 garbage_at_eol ) : ;;
0b8f9e4d 325
283354d8 326 # Catches stray fields.
cff3e48b 327
50248794
AC
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
cff3e48b
JM
331 esac
332done
333
cff3e48b 334
104c1213
JM
335function_list ()
336{
cff3e48b 337 # See below (DOCO) for description of each field
34620563 338 cat <<EOF
be7811ad 339i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 340#
97030eea 341i:int:byte_order:::BFD_ENDIAN_BIG
9d4fde75 342i:int:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 343#
97030eea 344i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 345#
be7811ad 346i:const struct target_desc *:target_desc:::::::paddr_d ((long) gdbarch->target_desc)
32c9a795
MD
347
348# The bit byte-order has to do just with numbering of bits in debugging symbols
349# and such. Conceptually, it's quite separate from byte/word byte order.
350v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
66b43ecb
AC
352# Number of bits in a char or unsigned char for the target machine.
353# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 354# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
355#
356# Number of bits in a short or unsigned short for the target machine.
97030eea 357v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 358# Number of bits in an int or unsigned int for the target machine.
97030eea 359v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in a long or unsigned long for the target machine.
97030eea 361v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
362# Number of bits in a long long or unsigned long long for the target
363# machine.
be7811ad 364v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94
AC
365
366# The ABI default bit-size and format for "float", "double", and "long
367# double". These bit/format pairs should eventually be combined into
368# a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
369# Each format describes both the big and little endian layouts (if
370# useful).
456fcf94 371
97030eea 372v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 373v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 374v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 375v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 376v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 377v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 378
52204a0b
DT
379# For most targets, a pointer on the target and its representation as an
380# address in GDB have the same size and "look the same". For such a
17a912b6 381# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
382# / addr_bit will be set from it.
383#
17a912b6 384# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
76e71323
UW
385# also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386# as well.
52204a0b
DT
387#
388# ptr_bit is the size of a pointer on the target
be7811ad 389v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 390# addr_bit is the size of a target address as represented in gdb
be7811ad 391v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 392#
4e409299 393# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 394v:int:char_signed:::1:-1:1
4e409299 395#
97030eea
UW
396F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
398# Function for getting target's idea of a frame pointer. FIXME: GDB's
399# whole scheme for dealing with "frames" and "frame pointers" needs a
400# serious shakedown.
a54fba4c 401m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 402#
97030eea
UW
403M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 405#
97030eea 406v:int:num_regs:::0:-1
0aba1244
EZ
407# This macro gives the number of pseudo-registers that live in the
408# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
409# These pseudo-registers may be aliases for other registers,
410# combinations of other registers, or they may be computed by GDB.
97030eea 411v:int:num_pseudo_regs:::0:0::0
c2169756
AC
412
413# GDB's standard (or well known) register numbers. These can map onto
414# a real register or a pseudo (computed) register or not be defined at
1200cd6e 415# all (-1).
3e8c568d 416# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
417v:int:sp_regnum:::-1:-1::0
418v:int:pc_regnum:::-1:-1::0
419v:int:ps_regnum:::-1:-1::0
420v:int:fp0_regnum:::0:-1::0
88c72b7d 421# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 422m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 423# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 424m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 425# Convert from an sdb register number to an internal gdb register number.
d3f73121 426m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 427# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 428m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 429m:const char *:register_name:int regnr:regnr::0
9c04cab7 430
7b9ee6a8
DJ
431# Return the type of a register specified by the architecture. Only
432# the register cache should call this function directly; others should
433# use "register_type".
97030eea 434M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 435
f3be58bc 436# See gdbint.texinfo, and PUSH_DUMMY_CALL.
669fac23
DJ
437M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 439# deprecated_fp_regnum.
97030eea 440v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 441
a86c5fc9 442# See gdbint.texinfo. See infcall.c.
97030eea
UW
443M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444v:int:call_dummy_location::::AT_ENTRY_POINT::0
445M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 446
97030eea
UW
447m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
450# MAP a GDB RAW register number onto a simulator register number. See
451# also include/...-sim.h.
e7faf938 452m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
453m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
9df628e0 455# setjmp/longjmp support.
97030eea 456F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
104c1213 457#
97030eea 458v:int:believe_pcc_promotion:::::::
104c1213 459#
0abe36f5 460m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
97030eea
UW
461f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0
UW
463# Construct a value representing the contents of register REGNUM in
464# frame FRAME, interpreted as type TYPE. The routine needs to
465# allocate and return a struct value with all value attributes
466# (but not the value contents) filled in.
97030eea 467f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
104c1213 468#
97030eea
UW
469f:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470f:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 472
ea42b34a
JB
473# Return the return-value convention that will be used by FUNCTYPE
474# to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475# case the return convention is computed based only on VALTYPE.
476#
477# If READBUF is not NULL, extract the return value and save it in this buffer.
478#
479# If WRITEBUF is not NULL, it contains a return value which will be
480# stored into the appropriate register. This can be used when we want
481# to force the value returned by a function (see the "return" command
482# for instance).
c055b101 483M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
92ad9cd9 484
6093d2eb 485m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 486M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
97030eea 487f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 488m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
97030eea 489M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
490m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
491m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 492v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
493
494# A function can be addressed by either it's "pointer" (possibly a
495# descriptor address) or "entry point" (first executable instruction).
496# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 497# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
498# a simplified subset of that functionality - the function's address
499# corresponds to the "function pointer" and the function's start
500# corresponds to the "function entry point" - and hence is redundant.
501
97030eea 502v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 503
123dc839
DJ
504# Return the remote protocol register number associated with this
505# register. Normally the identity mapping.
97030eea 506m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 507
b2756930 508# Fetch the target specific address used to represent a load module.
97030eea 509F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 510#
97030eea
UW
511v:CORE_ADDR:frame_args_skip:::0:::0
512M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
513M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
514# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
515# frame-base. Enable frame-base before frame-unwind.
97030eea 516F:int:frame_num_args:struct frame_info *frame:frame
104c1213 517#
97030eea
UW
518M:CORE_ADDR:frame_align:CORE_ADDR address:address
519m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
520v:int:frame_red_zone_size
f0d4cc9e 521#
97030eea 522m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
523# On some machines there are bits in addresses which are not really
524# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 525# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
526# we get a "real" address such as one would find in a symbol table.
527# This is used only for addresses of instructions, and even then I'm
528# not sure it's used in all contexts. It exists to deal with there
529# being a few stray bits in the PC which would mislead us, not as some
530# sort of generic thing to handle alignment or segmentation (it's
531# possible it should be in TARGET_READ_PC instead).
97030eea 532f:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
260edbc2 533# It is not at all clear why gdbarch_smash_text_address is not folded into
bf6ae464 534# gdbarch_addr_bits_remove.
97030eea 535f:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
536
537# FIXME/cagney/2001-01-18: This should be split in two. A target method that
538# indicates if the target needs software single step. An ISA method to
539# implement it.
540#
541# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
542# breakpoints using the breakpoint system instead of blatting memory directly
543# (as with rs6000).
64c4637f 544#
e6590a1b
UW
545# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
546# target can single step. If not, then implement single step using breakpoints.
64c4637f 547#
e6590a1b
UW
548# A return value of 1 means that the software_single_step breakpoints
549# were inserted; 0 means they were not.
97030eea 550F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 551
3352ef37
AC
552# Return non-zero if the processor is executing a delay slot and a
553# further single-step is needed before the instruction finishes.
97030eea 554M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 555# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 556# disassembler. Perhaps objdump can handle it?
97030eea
UW
557f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
558f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
559
560
cfd8ab24 561# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
562# evaluates non-zero, this is the address where the debugger will place
563# a step-resume breakpoint to get us past the dynamic linker.
97030eea 564m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 565# Some systems also have trampoline code for returning from shared libs.
97030eea 566f:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 567
c12260ac
CV
568# A target might have problems with watchpoints as soon as the stack
569# frame of the current function has been destroyed. This mostly happens
570# as the first action in a funtion's epilogue. in_function_epilogue_p()
571# is defined to return a non-zero value if either the given addr is one
572# instruction after the stack destroying instruction up to the trailing
573# return instruction or if we can figure out that the stack frame has
574# already been invalidated regardless of the value of addr. Targets
575# which don't suffer from that problem could just let this functionality
576# untouched.
97030eea 577m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
552c04a7
TT
578# Given a vector of command-line arguments, return a newly allocated
579# string which, when passed to the create_inferior function, will be
580# parsed (on Unix systems, by the shell) to yield the same vector.
581# This function should call error() if the argument vector is not
582# representable for this target or if this target does not support
583# command-line arguments.
584# ARGC is the number of elements in the vector.
585# ARGV is an array of strings, one per argument.
97030eea
UW
586m:char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
587f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
588f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
be7811ad 589v:const char *:name_of_malloc:::"malloc":"malloc"::0:gdbarch->name_of_malloc
97030eea
UW
590v:int:cannot_step_breakpoint:::0:0::0
591v:int:have_nonsteppable_watchpoint:::0:0::0
592F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
593M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
594M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 595# Is a register in a group
97030eea 596m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 597# Fetch the pointer to the ith function argument.
97030eea 598F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
599
600# Return the appropriate register set for a core file section with
601# name SECT_NAME and size SECT_SIZE.
97030eea 602M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 603
17ea7499
CES
604# Supported register notes in a core file.
605v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
606
de584861
PA
607# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
608# core file into buffer READBUF with length LEN.
97030eea 609M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
de584861 610
0d5de010
DJ
611# If the elements of C++ vtables are in-place function descriptors rather
612# than normal function pointers (which may point to code or a descriptor),
613# set this to one.
97030eea 614v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
615
616# Set if the least significant bit of the delta is used instead of the least
617# significant bit of the pfn for pointers to virtual member functions.
97030eea 618v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
619
620# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 621F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 622
237fc4c9
PA
623# The maximum length of an instruction on this architecture.
624V:ULONGEST:max_insn_length:::0:0
625
626# Copy the instruction at FROM to TO, and make any adjustments
627# necessary to single-step it at that address.
628#
629# REGS holds the state the thread's registers will have before
630# executing the copied instruction; the PC in REGS will refer to FROM,
631# not the copy at TO. The caller should update it to point at TO later.
632#
633# Return a pointer to data of the architecture's choice to be passed
634# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
635# the instruction's effects have been completely simulated, with the
636# resulting state written back to REGS.
637#
638# For a general explanation of displaced stepping and how GDB uses it,
639# see the comments in infrun.c.
640#
641# The TO area is only guaranteed to have space for
642# gdbarch_max_insn_length (arch) bytes, so this function must not
643# write more bytes than that to that area.
644#
645# If you do not provide this function, GDB assumes that the
646# architecture does not support displaced stepping.
647#
648# If your architecture doesn't need to adjust instructions before
649# single-stepping them, consider using simple_displaced_step_copy_insn
650# here.
651M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
652
653# Fix up the state resulting from successfully single-stepping a
654# displaced instruction, to give the result we would have gotten from
655# stepping the instruction in its original location.
656#
657# REGS is the register state resulting from single-stepping the
658# displaced instruction.
659#
660# CLOSURE is the result from the matching call to
661# gdbarch_displaced_step_copy_insn.
662#
663# If you provide gdbarch_displaced_step_copy_insn.but not this
664# function, then GDB assumes that no fixup is needed after
665# single-stepping the instruction.
666#
667# For a general explanation of displaced stepping and how GDB uses it,
668# see the comments in infrun.c.
669M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
670
671# Free a closure returned by gdbarch_displaced_step_copy_insn.
672#
673# If you provide gdbarch_displaced_step_copy_insn, you must provide
674# this function as well.
675#
676# If your architecture uses closures that don't need to be freed, then
677# you can use simple_displaced_step_free_closure here.
678#
679# For a general explanation of displaced stepping and how GDB uses it,
680# see the comments in infrun.c.
681m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
682
683# Return the address of an appropriate place to put displaced
684# instructions while we step over them. There need only be one such
685# place, since we're only stepping one thread over a breakpoint at a
686# time.
687#
688# For a general explanation of displaced stepping and how GDB uses it,
689# see the comments in infrun.c.
690m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
691
1c772458 692# Refresh overlay mapped state for section OSECT.
97030eea 693F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 694
97030eea 695M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
696
697# Handle special encoding of static variables in stabs debug info.
97030eea 698F:char *:static_transform_name:char *name:name
203c3895 699# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 700v:int:sofun_address_maybe_missing:::0:0::0
1cded358
AR
701
702# Signal translation: translate inferior's signal (host's) number into
703# GDB's representation.
704m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
705# Signal translation: translate GDB's signal number into inferior's host
706# signal number.
707m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
60c5725c
DJ
708
709# Record architecture-specific information from the symbol table.
710M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
104c1213 711EOF
104c1213
JM
712}
713
0b8f9e4d
AC
714#
715# The .log file
716#
717exec > new-gdbarch.log
34620563 718function_list | while do_read
0b8f9e4d
AC
719do
720 cat <<EOF
2f9b146e 721${class} ${returntype} ${function} ($formal)
104c1213 722EOF
3d9a5942
AC
723 for r in ${read}
724 do
725 eval echo \"\ \ \ \ ${r}=\${${r}}\"
726 done
f0d4cc9e 727 if class_is_predicate_p && fallback_default_p
0b8f9e4d 728 then
66d659b1 729 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
730 kill $$
731 exit 1
732 fi
72e74a21 733 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
734 then
735 echo "Error: postdefault is useless when invalid_p=0" 1>&2
736 kill $$
737 exit 1
738 fi
a72293e2
AC
739 if class_is_multiarch_p
740 then
741 if class_is_predicate_p ; then :
742 elif test "x${predefault}" = "x"
743 then
2f9b146e 744 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
745 kill $$
746 exit 1
747 fi
748 fi
3d9a5942 749 echo ""
0b8f9e4d
AC
750done
751
752exec 1>&2
753compare_new gdbarch.log
754
104c1213
JM
755
756copyright ()
757{
758cat <<EOF
59233f88
AC
759/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
760
104c1213 761/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 762
50efebf8 763 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
424163ea 764 Free Software Foundation, Inc.
104c1213
JM
765
766 This file is part of GDB.
767
768 This program is free software; you can redistribute it and/or modify
769 it under the terms of the GNU General Public License as published by
50efebf8 770 the Free Software Foundation; either version 3 of the License, or
104c1213 771 (at your option) any later version.
50efebf8 772
104c1213
JM
773 This program is distributed in the hope that it will be useful,
774 but WITHOUT ANY WARRANTY; without even the implied warranty of
775 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
776 GNU General Public License for more details.
50efebf8 777
104c1213 778 You should have received a copy of the GNU General Public License
50efebf8 779 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 780
104c1213
JM
781/* This file was created with the aid of \`\`gdbarch.sh''.
782
52204a0b 783 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
784 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
785 against the existing \`\`gdbarch.[hc]''. Any differences found
786 being reported.
787
788 If editing this file, please also run gdbarch.sh and merge any
52204a0b 789 changes into that script. Conversely, when making sweeping changes
104c1213
JM
790 to this file, modifying gdbarch.sh and using its output may prove
791 easier. */
792
793EOF
794}
795
796#
797# The .h file
798#
799
800exec > new-gdbarch.h
801copyright
802cat <<EOF
803#ifndef GDBARCH_H
804#define GDBARCH_H
805
da3331ec
AC
806struct floatformat;
807struct ui_file;
104c1213
JM
808struct frame_info;
809struct value;
b6af0555 810struct objfile;
1c772458 811struct obj_section;
a2cf933a 812struct minimal_symbol;
049ee0e4 813struct regcache;
b59ff9d5 814struct reggroup;
6ce6d90f 815struct regset;
a89aa300 816struct disassemble_info;
e2d0e7eb 817struct target_ops;
030f20e1 818struct obstack;
8181d85f 819struct bp_target_info;
424163ea 820struct target_desc;
237fc4c9 821struct displaced_step_closure;
17ea7499 822struct core_regset_section;
104c1213 823
104c1213 824extern struct gdbarch *current_gdbarch;
104c1213
JM
825EOF
826
827# function typedef's
3d9a5942
AC
828printf "\n"
829printf "\n"
830printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 831function_list | while do_read
104c1213 832do
2ada493a
AC
833 if class_is_info_p
834 then
3d9a5942
AC
835 printf "\n"
836 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
837 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 838 fi
104c1213
JM
839done
840
841# function typedef's
3d9a5942
AC
842printf "\n"
843printf "\n"
844printf "/* The following are initialized by the target dependent code. */\n"
34620563 845function_list | while do_read
104c1213 846do
72e74a21 847 if [ -n "${comment}" ]
34620563
AC
848 then
849 echo "${comment}" | sed \
850 -e '2 s,#,/*,' \
851 -e '3,$ s,#, ,' \
852 -e '$ s,$, */,'
853 fi
412d5987
AC
854
855 if class_is_predicate_p
2ada493a 856 then
412d5987
AC
857 printf "\n"
858 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 859 fi
2ada493a
AC
860 if class_is_variable_p
861 then
3d9a5942
AC
862 printf "\n"
863 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
864 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
865 fi
866 if class_is_function_p
867 then
3d9a5942 868 printf "\n"
72e74a21 869 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
870 then
871 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
872 elif class_is_multiarch_p
873 then
874 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
875 else
876 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
877 fi
72e74a21 878 if [ "x${formal}" = "xvoid" ]
104c1213 879 then
3d9a5942 880 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 881 else
3d9a5942 882 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 883 fi
3d9a5942 884 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 885 fi
104c1213
JM
886done
887
888# close it off
889cat <<EOF
890
891extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
892
893
894/* Mechanism for co-ordinating the selection of a specific
895 architecture.
896
897 GDB targets (*-tdep.c) can register an interest in a specific
898 architecture. Other GDB components can register a need to maintain
899 per-architecture data.
900
901 The mechanisms below ensures that there is only a loose connection
902 between the set-architecture command and the various GDB
0fa6923a 903 components. Each component can independently register their need
104c1213
JM
904 to maintain architecture specific data with gdbarch.
905
906 Pragmatics:
907
908 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
909 didn't scale.
910
911 The more traditional mega-struct containing architecture specific
912 data for all the various GDB components was also considered. Since
0fa6923a 913 GDB is built from a variable number of (fairly independent)
104c1213
JM
914 components it was determined that the global aproach was not
915 applicable. */
916
917
918/* Register a new architectural family with GDB.
919
920 Register support for the specified ARCHITECTURE with GDB. When
921 gdbarch determines that the specified architecture has been
922 selected, the corresponding INIT function is called.
923
924 --
925
926 The INIT function takes two parameters: INFO which contains the
927 information available to gdbarch about the (possibly new)
928 architecture; ARCHES which is a list of the previously created
929 \`\`struct gdbarch'' for this architecture.
930
0f79675b 931 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 932 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
933
934 The ARCHES parameter is a linked list (sorted most recently used)
935 of all the previously created architures for this architecture
936 family. The (possibly NULL) ARCHES->gdbarch can used to access
937 values from the previously selected architecture for this
938 architecture family. The global \`\`current_gdbarch'' shall not be
939 used.
104c1213
JM
940
941 The INIT function shall return any of: NULL - indicating that it
ec3d358c 942 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
943 gdbarch'' from the ARCHES list - indicating that the new
944 architecture is just a synonym for an earlier architecture (see
945 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
946 - that describes the selected architecture (see gdbarch_alloc()).
947
948 The DUMP_TDEP function shall print out all target specific values.
949 Care should be taken to ensure that the function works in both the
950 multi-arch and non- multi-arch cases. */
104c1213
JM
951
952struct gdbarch_list
953{
954 struct gdbarch *gdbarch;
955 struct gdbarch_list *next;
956};
957
958struct gdbarch_info
959{
104c1213
JM
960 /* Use default: NULL (ZERO). */
961 const struct bfd_arch_info *bfd_arch_info;
962
428721aa 963 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
964 int byte_order;
965
9d4fde75
SS
966 int byte_order_for_code;
967
104c1213
JM
968 /* Use default: NULL (ZERO). */
969 bfd *abfd;
970
971 /* Use default: NULL (ZERO). */
972 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
973
974 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
975 enum gdb_osabi osabi;
424163ea
DJ
976
977 /* Use default: NULL (ZERO). */
978 const struct target_desc *target_desc;
104c1213
JM
979};
980
981typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 982typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 983
4b9b3959 984/* DEPRECATED - use gdbarch_register() */
104c1213
JM
985extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
986
4b9b3959
AC
987extern void gdbarch_register (enum bfd_architecture architecture,
988 gdbarch_init_ftype *,
989 gdbarch_dump_tdep_ftype *);
990
104c1213 991
b4a20239
AC
992/* Return a freshly allocated, NULL terminated, array of the valid
993 architecture names. Since architectures are registered during the
994 _initialize phase this function only returns useful information
995 once initialization has been completed. */
996
997extern const char **gdbarch_printable_names (void);
998
999
104c1213
JM
1000/* Helper function. Search the list of ARCHES for a GDBARCH that
1001 matches the information provided by INFO. */
1002
424163ea 1003extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1004
1005
1006/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1007 basic initialization using values obtained from the INFO and TDEP
104c1213
JM
1008 parameters. set_gdbarch_*() functions are called to complete the
1009 initialization of the object. */
1010
1011extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1012
1013
4b9b3959
AC
1014/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1015 It is assumed that the caller freeds the \`\`struct
1016 gdbarch_tdep''. */
1017
058f20d5
JB
1018extern void gdbarch_free (struct gdbarch *);
1019
1020
aebd7893
AC
1021/* Helper function. Allocate memory from the \`\`struct gdbarch''
1022 obstack. The memory is freed when the corresponding architecture
1023 is also freed. */
1024
1025extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1026#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1027#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1028
1029
b732d07d 1030/* Helper function. Force an update of the current architecture.
104c1213 1031
b732d07d
AC
1032 The actual architecture selected is determined by INFO, \`\`(gdb) set
1033 architecture'' et.al., the existing architecture and BFD's default
1034 architecture. INFO should be initialized to zero and then selected
1035 fields should be updated.
104c1213 1036
16f33e29
AC
1037 Returns non-zero if the update succeeds */
1038
1039extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1040
1041
ebdba546
AC
1042/* Helper function. Find an architecture matching info.
1043
1044 INFO should be initialized using gdbarch_info_init, relevant fields
1045 set, and then finished using gdbarch_info_fill.
1046
1047 Returns the corresponding architecture, or NULL if no matching
1048 architecture was found. "current_gdbarch" is not updated. */
1049
1050extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1051
1052
1053/* Helper function. Set the global "current_gdbarch" to "gdbarch".
1054
1055 FIXME: kettenis/20031124: Of the functions that follow, only
1056 gdbarch_from_bfd is supposed to survive. The others will
1057 dissappear since in the future GDB will (hopefully) be truly
1058 multi-arch. However, for now we're still stuck with the concept of
1059 a single active architecture. */
1060
1061extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1062
104c1213
JM
1063
1064/* Register per-architecture data-pointer.
1065
1066 Reserve space for a per-architecture data-pointer. An identifier
1067 for the reserved data-pointer is returned. That identifer should
95160752 1068 be saved in a local static variable.
104c1213 1069
fcc1c85c
AC
1070 Memory for the per-architecture data shall be allocated using
1071 gdbarch_obstack_zalloc. That memory will be deleted when the
1072 corresponding architecture object is deleted.
104c1213 1073
95160752
AC
1074 When a previously created architecture is re-selected, the
1075 per-architecture data-pointer for that previous architecture is
76860b5f 1076 restored. INIT() is not re-called.
104c1213
JM
1077
1078 Multiple registrarants for any architecture are allowed (and
1079 strongly encouraged). */
1080
95160752 1081struct gdbarch_data;
104c1213 1082
030f20e1
AC
1083typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1084extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1085typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1086extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1087extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1088 struct gdbarch_data *data,
1089 void *pointer);
104c1213 1090
451fbdda 1091extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1092
1093
0fa6923a 1094/* Set the dynamic target-system-dependent parameters (architecture,
104c1213
JM
1095 byte-order, ...) using information found in the BFD */
1096
1097extern void set_gdbarch_from_file (bfd *);
1098
1099
e514a9d6
JM
1100/* Initialize the current architecture to the "first" one we find on
1101 our list. */
1102
1103extern void initialize_current_architecture (void);
1104
104c1213
JM
1105/* gdbarch trace variable */
1106extern int gdbarch_debug;
1107
4b9b3959 1108extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1109
1110#endif
1111EOF
1112exec 1>&2
1113#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1114compare_new gdbarch.h
104c1213
JM
1115
1116
1117#
1118# C file
1119#
1120
1121exec > new-gdbarch.c
1122copyright
1123cat <<EOF
1124
1125#include "defs.h"
7355ddba 1126#include "arch-utils.h"
104c1213 1127
104c1213 1128#include "gdbcmd.h"
faaf634c 1129#include "inferior.h"
104c1213
JM
1130#include "symcat.h"
1131
f0d4cc9e 1132#include "floatformat.h"
104c1213 1133
95160752 1134#include "gdb_assert.h"
b66d6d2e 1135#include "gdb_string.h"
b59ff9d5 1136#include "reggroups.h"
4be87837 1137#include "osabi.h"
aebd7893 1138#include "gdb_obstack.h"
383f836e 1139#include "observer.h"
a3ecef73 1140#include "regcache.h"
95160752 1141
104c1213
JM
1142/* Static function declarations */
1143
b3cc3077 1144static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1145
104c1213
JM
1146/* Non-zero if we want to trace architecture code. */
1147
1148#ifndef GDBARCH_DEBUG
1149#define GDBARCH_DEBUG 0
1150#endif
1151int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1152static void
1153show_gdbarch_debug (struct ui_file *file, int from_tty,
1154 struct cmd_list_element *c, const char *value)
1155{
1156 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1157}
104c1213 1158
456fcf94 1159static const char *
8da61cc4 1160pformat (const struct floatformat **format)
456fcf94
AC
1161{
1162 if (format == NULL)
1163 return "(null)";
1164 else
8da61cc4
DJ
1165 /* Just print out one of them - this is only for diagnostics. */
1166 return format[0]->name;
456fcf94
AC
1167}
1168
104c1213
JM
1169EOF
1170
1171# gdbarch open the gdbarch object
3d9a5942
AC
1172printf "\n"
1173printf "/* Maintain the struct gdbarch object */\n"
1174printf "\n"
1175printf "struct gdbarch\n"
1176printf "{\n"
76860b5f
AC
1177printf " /* Has this architecture been fully initialized? */\n"
1178printf " int initialized_p;\n"
aebd7893
AC
1179printf "\n"
1180printf " /* An obstack bound to the lifetime of the architecture. */\n"
1181printf " struct obstack *obstack;\n"
1182printf "\n"
3d9a5942 1183printf " /* basic architectural information */\n"
34620563 1184function_list | while do_read
104c1213 1185do
2ada493a
AC
1186 if class_is_info_p
1187 then
3d9a5942 1188 printf " ${returntype} ${function};\n"
2ada493a 1189 fi
104c1213 1190done
3d9a5942
AC
1191printf "\n"
1192printf " /* target specific vector. */\n"
1193printf " struct gdbarch_tdep *tdep;\n"
1194printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1195printf "\n"
1196printf " /* per-architecture data-pointers */\n"
95160752 1197printf " unsigned nr_data;\n"
3d9a5942
AC
1198printf " void **data;\n"
1199printf "\n"
1200printf " /* per-architecture swap-regions */\n"
1201printf " struct gdbarch_swap *swap;\n"
1202printf "\n"
104c1213
JM
1203cat <<EOF
1204 /* Multi-arch values.
1205
1206 When extending this structure you must:
1207
1208 Add the field below.
1209
1210 Declare set/get functions and define the corresponding
1211 macro in gdbarch.h.
1212
1213 gdbarch_alloc(): If zero/NULL is not a suitable default,
1214 initialize the new field.
1215
1216 verify_gdbarch(): Confirm that the target updated the field
1217 correctly.
1218
7e73cedf 1219 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1220 field is dumped out
1221
c0e8c252 1222 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1223 variable (base values on the host's c-type system).
1224
1225 get_gdbarch(): Implement the set/get functions (probably using
1226 the macro's as shortcuts).
1227
1228 */
1229
1230EOF
34620563 1231function_list | while do_read
104c1213 1232do
2ada493a
AC
1233 if class_is_variable_p
1234 then
3d9a5942 1235 printf " ${returntype} ${function};\n"
2ada493a
AC
1236 elif class_is_function_p
1237 then
2f9b146e 1238 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1239 fi
104c1213 1240done
3d9a5942 1241printf "};\n"
104c1213
JM
1242
1243# A pre-initialized vector
3d9a5942
AC
1244printf "\n"
1245printf "\n"
104c1213
JM
1246cat <<EOF
1247/* The default architecture uses host values (for want of a better
1248 choice). */
1249EOF
3d9a5942
AC
1250printf "\n"
1251printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1252printf "\n"
1253printf "struct gdbarch startup_gdbarch =\n"
1254printf "{\n"
76860b5f 1255printf " 1, /* Always initialized. */\n"
aebd7893 1256printf " NULL, /* The obstack. */\n"
3d9a5942 1257printf " /* basic architecture information */\n"
4b9b3959 1258function_list | while do_read
104c1213 1259do
2ada493a
AC
1260 if class_is_info_p
1261 then
ec5cbaec 1262 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1263 fi
104c1213
JM
1264done
1265cat <<EOF
4b9b3959
AC
1266 /* target specific vector and its dump routine */
1267 NULL, NULL,
104c1213
JM
1268 /*per-architecture data-pointers and swap regions */
1269 0, NULL, NULL,
1270 /* Multi-arch values */
1271EOF
34620563 1272function_list | while do_read
104c1213 1273do
2ada493a
AC
1274 if class_is_function_p || class_is_variable_p
1275 then
ec5cbaec 1276 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1277 fi
104c1213
JM
1278done
1279cat <<EOF
c0e8c252 1280 /* startup_gdbarch() */
104c1213 1281};
4b9b3959 1282
c0e8c252 1283struct gdbarch *current_gdbarch = &startup_gdbarch;
104c1213
JM
1284EOF
1285
1286# Create a new gdbarch struct
104c1213 1287cat <<EOF
7de2341d 1288
66b43ecb 1289/* Create a new \`\`struct gdbarch'' based on information provided by
104c1213
JM
1290 \`\`struct gdbarch_info''. */
1291EOF
3d9a5942 1292printf "\n"
104c1213
JM
1293cat <<EOF
1294struct gdbarch *
1295gdbarch_alloc (const struct gdbarch_info *info,
1296 struct gdbarch_tdep *tdep)
1297{
be7811ad 1298 struct gdbarch *gdbarch;
aebd7893
AC
1299
1300 /* Create an obstack for allocating all the per-architecture memory,
1301 then use that to allocate the architecture vector. */
1302 struct obstack *obstack = XMALLOC (struct obstack);
1303 obstack_init (obstack);
be7811ad
MD
1304 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1305 memset (gdbarch, 0, sizeof (*gdbarch));
1306 gdbarch->obstack = obstack;
85de9627 1307
be7811ad 1308 alloc_gdbarch_data (gdbarch);
85de9627 1309
be7811ad 1310 gdbarch->tdep = tdep;
104c1213 1311EOF
3d9a5942 1312printf "\n"
34620563 1313function_list | while do_read
104c1213 1314do
2ada493a
AC
1315 if class_is_info_p
1316 then
be7811ad 1317 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1318 fi
104c1213 1319done
3d9a5942
AC
1320printf "\n"
1321printf " /* Force the explicit initialization of these. */\n"
34620563 1322function_list | while do_read
104c1213 1323do
2ada493a
AC
1324 if class_is_function_p || class_is_variable_p
1325 then
72e74a21 1326 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1327 then
be7811ad 1328 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1329 fi
2ada493a 1330 fi
104c1213
JM
1331done
1332cat <<EOF
1333 /* gdbarch_alloc() */
1334
be7811ad 1335 return gdbarch;
104c1213
JM
1336}
1337EOF
1338
058f20d5 1339# Free a gdbarch struct.
3d9a5942
AC
1340printf "\n"
1341printf "\n"
058f20d5 1342cat <<EOF
aebd7893
AC
1343/* Allocate extra space using the per-architecture obstack. */
1344
1345void *
1346gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1347{
1348 void *data = obstack_alloc (arch->obstack, size);
1349 memset (data, 0, size);
1350 return data;
1351}
1352
1353
058f20d5
JB
1354/* Free a gdbarch struct. This should never happen in normal
1355 operation --- once you've created a gdbarch, you keep it around.
1356 However, if an architecture's init function encounters an error
1357 building the structure, it may need to clean up a partially
1358 constructed gdbarch. */
4b9b3959 1359
058f20d5
JB
1360void
1361gdbarch_free (struct gdbarch *arch)
1362{
aebd7893 1363 struct obstack *obstack;
95160752 1364 gdb_assert (arch != NULL);
aebd7893
AC
1365 gdb_assert (!arch->initialized_p);
1366 obstack = arch->obstack;
1367 obstack_free (obstack, 0); /* Includes the ARCH. */
1368 xfree (obstack);
058f20d5
JB
1369}
1370EOF
1371
104c1213 1372# verify a new architecture
104c1213 1373cat <<EOF
db446970
AC
1374
1375
1376/* Ensure that all values in a GDBARCH are reasonable. */
1377
104c1213 1378static void
be7811ad 1379verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1380{
f16a1923
AC
1381 struct ui_file *log;
1382 struct cleanup *cleanups;
1383 long dummy;
1384 char *buf;
f16a1923
AC
1385 log = mem_fileopen ();
1386 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1387 /* fundamental */
be7811ad 1388 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1389 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1390 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1391 fprintf_unfiltered (log, "\n\tbfd_arch_info");
104c1213
JM
1392 /* Check those that need to be defined for the given multi-arch level. */
1393EOF
34620563 1394function_list | while do_read
104c1213 1395do
2ada493a
AC
1396 if class_is_function_p || class_is_variable_p
1397 then
72e74a21 1398 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1399 then
3d9a5942 1400 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1401 elif class_is_predicate_p
1402 then
3d9a5942 1403 printf " /* Skip verify of ${function}, has predicate */\n"
f0d4cc9e 1404 # FIXME: See do_read for potential simplification
72e74a21 1405 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1406 then
3d9a5942 1407 printf " if (${invalid_p})\n"
be7811ad 1408 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1409 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1410 then
be7811ad
MD
1411 printf " if (gdbarch->${function} == ${predefault})\n"
1412 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1413 elif [ -n "${postdefault}" ]
f0d4cc9e 1414 then
be7811ad
MD
1415 printf " if (gdbarch->${function} == 0)\n"
1416 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1417 elif [ -n "${invalid_p}" ]
104c1213 1418 then
4d60522e 1419 printf " if (${invalid_p})\n"
f16a1923 1420 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1421 elif [ -n "${predefault}" ]
104c1213 1422 then
be7811ad 1423 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1424 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1425 fi
2ada493a 1426 fi
104c1213
JM
1427done
1428cat <<EOF
f16a1923
AC
1429 buf = ui_file_xstrdup (log, &dummy);
1430 make_cleanup (xfree, buf);
1431 if (strlen (buf) > 0)
1432 internal_error (__FILE__, __LINE__,
85c07804 1433 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1434 buf);
1435 do_cleanups (cleanups);
104c1213
JM
1436}
1437EOF
1438
1439# dump the structure
3d9a5942
AC
1440printf "\n"
1441printf "\n"
104c1213 1442cat <<EOF
4b9b3959
AC
1443/* Print out the details of the current architecture. */
1444
104c1213 1445void
be7811ad 1446gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1447{
b78960be 1448 const char *gdb_nm_file = "<not-defined>";
b78960be
AC
1449#if defined (GDB_NM_FILE)
1450 gdb_nm_file = GDB_NM_FILE;
1451#endif
1452 fprintf_unfiltered (file,
1453 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1454 gdb_nm_file);
104c1213 1455EOF
97030eea 1456function_list | sort -t: -k 3 | while do_read
104c1213 1457do
1e9f55d0
AC
1458 # First the predicate
1459 if class_is_predicate_p
1460 then
7996bcec 1461 printf " fprintf_unfiltered (file,\n"
48f7351b 1462 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1463 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1464 fi
48f7351b 1465 # Print the corresponding value.
283354d8 1466 if class_is_function_p
4b9b3959 1467 then
7996bcec 1468 printf " fprintf_unfiltered (file,\n"
48f7351b 1469 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
be7811ad 1470 printf " (long) gdbarch->${function});\n"
4b9b3959 1471 else
48f7351b 1472 # It is a variable
2f9b146e
AC
1473 case "${print}:${returntype}" in
1474 :CORE_ADDR )
48f7351b 1475 fmt="0x%s"
be7811ad 1476 print="paddr_nz (gdbarch->${function})"
48f7351b 1477 ;;
2f9b146e 1478 :* )
48f7351b 1479 fmt="%s"
be7811ad 1480 print="paddr_d (gdbarch->${function})"
48f7351b
AC
1481 ;;
1482 * )
2f9b146e 1483 fmt="%s"
48f7351b
AC
1484 ;;
1485 esac
3d9a5942 1486 printf " fprintf_unfiltered (file,\n"
48f7351b 1487 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1488 printf " ${print});\n"
2ada493a 1489 fi
104c1213 1490done
381323f4 1491cat <<EOF
be7811ad
MD
1492 if (gdbarch->dump_tdep != NULL)
1493 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1494}
1495EOF
104c1213
JM
1496
1497
1498# GET/SET
3d9a5942 1499printf "\n"
104c1213
JM
1500cat <<EOF
1501struct gdbarch_tdep *
1502gdbarch_tdep (struct gdbarch *gdbarch)
1503{
1504 if (gdbarch_debug >= 2)
3d9a5942 1505 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1506 return gdbarch->tdep;
1507}
1508EOF
3d9a5942 1509printf "\n"
34620563 1510function_list | while do_read
104c1213 1511do
2ada493a
AC
1512 if class_is_predicate_p
1513 then
3d9a5942
AC
1514 printf "\n"
1515 printf "int\n"
1516 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1517 printf "{\n"
8de9bdc4 1518 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1519 printf " return ${predicate};\n"
3d9a5942 1520 printf "}\n"
2ada493a
AC
1521 fi
1522 if class_is_function_p
1523 then
3d9a5942
AC
1524 printf "\n"
1525 printf "${returntype}\n"
72e74a21 1526 if [ "x${formal}" = "xvoid" ]
104c1213 1527 then
3d9a5942 1528 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1529 else
3d9a5942 1530 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1531 fi
3d9a5942 1532 printf "{\n"
8de9bdc4 1533 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1534 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1535 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1536 then
1537 # Allow a call to a function with a predicate.
956ac328 1538 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1539 fi
3d9a5942
AC
1540 printf " if (gdbarch_debug >= 2)\n"
1541 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1542 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1543 then
1544 if class_is_multiarch_p
1545 then
1546 params="gdbarch"
1547 else
1548 params=""
1549 fi
1550 else
1551 if class_is_multiarch_p
1552 then
1553 params="gdbarch, ${actual}"
1554 else
1555 params="${actual}"
1556 fi
1557 fi
72e74a21 1558 if [ "x${returntype}" = "xvoid" ]
104c1213 1559 then
4a5c6a1d 1560 printf " gdbarch->${function} (${params});\n"
104c1213 1561 else
4a5c6a1d 1562 printf " return gdbarch->${function} (${params});\n"
104c1213 1563 fi
3d9a5942
AC
1564 printf "}\n"
1565 printf "\n"
1566 printf "void\n"
1567 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1568 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1569 printf "{\n"
1570 printf " gdbarch->${function} = ${function};\n"
1571 printf "}\n"
2ada493a
AC
1572 elif class_is_variable_p
1573 then
3d9a5942
AC
1574 printf "\n"
1575 printf "${returntype}\n"
1576 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1577 printf "{\n"
8de9bdc4 1578 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1579 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1580 then
3d9a5942 1581 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1582 elif [ -n "${invalid_p}" ]
104c1213 1583 then
956ac328
AC
1584 printf " /* Check variable is valid. */\n"
1585 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1586 elif [ -n "${predefault}" ]
104c1213 1587 then
956ac328
AC
1588 printf " /* Check variable changed from pre-default. */\n"
1589 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1590 fi
3d9a5942
AC
1591 printf " if (gdbarch_debug >= 2)\n"
1592 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1593 printf " return gdbarch->${function};\n"
1594 printf "}\n"
1595 printf "\n"
1596 printf "void\n"
1597 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1598 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1599 printf "{\n"
1600 printf " gdbarch->${function} = ${function};\n"
1601 printf "}\n"
2ada493a
AC
1602 elif class_is_info_p
1603 then
3d9a5942
AC
1604 printf "\n"
1605 printf "${returntype}\n"
1606 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1607 printf "{\n"
8de9bdc4 1608 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1609 printf " if (gdbarch_debug >= 2)\n"
1610 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1611 printf " return gdbarch->${function};\n"
1612 printf "}\n"
2ada493a 1613 fi
104c1213
JM
1614done
1615
1616# All the trailing guff
1617cat <<EOF
1618
1619
f44c642f 1620/* Keep a registry of per-architecture data-pointers required by GDB
104c1213
JM
1621 modules. */
1622
1623struct gdbarch_data
1624{
95160752 1625 unsigned index;
76860b5f 1626 int init_p;
030f20e1
AC
1627 gdbarch_data_pre_init_ftype *pre_init;
1628 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1629};
1630
1631struct gdbarch_data_registration
1632{
104c1213
JM
1633 struct gdbarch_data *data;
1634 struct gdbarch_data_registration *next;
1635};
1636
f44c642f 1637struct gdbarch_data_registry
104c1213 1638{
95160752 1639 unsigned nr;
104c1213
JM
1640 struct gdbarch_data_registration *registrations;
1641};
1642
f44c642f 1643struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1644{
1645 0, NULL,
1646};
1647
030f20e1
AC
1648static struct gdbarch_data *
1649gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1650 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1651{
1652 struct gdbarch_data_registration **curr;
76860b5f 1653 /* Append the new registraration. */
f44c642f 1654 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1655 (*curr) != NULL;
1656 curr = &(*curr)->next);
1657 (*curr) = XMALLOC (struct gdbarch_data_registration);
1658 (*curr)->next = NULL;
104c1213 1659 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1660 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
1661 (*curr)->data->pre_init = pre_init;
1662 (*curr)->data->post_init = post_init;
76860b5f 1663 (*curr)->data->init_p = 1;
104c1213
JM
1664 return (*curr)->data;
1665}
1666
030f20e1
AC
1667struct gdbarch_data *
1668gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1669{
1670 return gdbarch_data_register (pre_init, NULL);
1671}
1672
1673struct gdbarch_data *
1674gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1675{
1676 return gdbarch_data_register (NULL, post_init);
1677}
104c1213 1678
b3cc3077 1679/* Create/delete the gdbarch data vector. */
95160752
AC
1680
1681static void
b3cc3077 1682alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1683{
b3cc3077
JB
1684 gdb_assert (gdbarch->data == NULL);
1685 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 1686 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 1687}
3c875b6f 1688
76860b5f 1689/* Initialize the current value of the specified per-architecture
b3cc3077
JB
1690 data-pointer. */
1691
95160752 1692void
030f20e1
AC
1693deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1694 struct gdbarch_data *data,
1695 void *pointer)
95160752
AC
1696{
1697 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 1698 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 1699 gdb_assert (data->pre_init == NULL);
95160752
AC
1700 gdbarch->data[data->index] = pointer;
1701}
1702
104c1213
JM
1703/* Return the current value of the specified per-architecture
1704 data-pointer. */
1705
1706void *
451fbdda 1707gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1708{
451fbdda 1709 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 1710 if (gdbarch->data[data->index] == NULL)
76860b5f 1711 {
030f20e1
AC
1712 /* The data-pointer isn't initialized, call init() to get a
1713 value. */
1714 if (data->pre_init != NULL)
1715 /* Mid architecture creation: pass just the obstack, and not
1716 the entire architecture, as that way it isn't possible for
1717 pre-init code to refer to undefined architecture
1718 fields. */
1719 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1720 else if (gdbarch->initialized_p
1721 && data->post_init != NULL)
1722 /* Post architecture creation: pass the entire architecture
1723 (as all fields are valid), but be careful to also detect
1724 recursive references. */
1725 {
1726 gdb_assert (data->init_p);
1727 data->init_p = 0;
1728 gdbarch->data[data->index] = data->post_init (gdbarch);
1729 data->init_p = 1;
1730 }
1731 else
1732 /* The architecture initialization hasn't completed - punt -
1733 hope that the caller knows what they are doing. Once
1734 deprecated_set_gdbarch_data has been initialized, this can be
1735 changed to an internal error. */
1736 return NULL;
76860b5f
AC
1737 gdb_assert (gdbarch->data[data->index] != NULL);
1738 }
451fbdda 1739 return gdbarch->data[data->index];
104c1213
JM
1740}
1741
1742
f44c642f 1743/* Keep a registry of the architectures known by GDB. */
104c1213 1744
4b9b3959 1745struct gdbarch_registration
104c1213
JM
1746{
1747 enum bfd_architecture bfd_architecture;
1748 gdbarch_init_ftype *init;
4b9b3959 1749 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 1750 struct gdbarch_list *arches;
4b9b3959 1751 struct gdbarch_registration *next;
104c1213
JM
1752};
1753
f44c642f 1754static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 1755
b4a20239
AC
1756static void
1757append_name (const char ***buf, int *nr, const char *name)
1758{
1759 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1760 (*buf)[*nr] = name;
1761 *nr += 1;
1762}
1763
1764const char **
1765gdbarch_printable_names (void)
1766{
7996bcec
AC
1767 /* Accumulate a list of names based on the registed list of
1768 architectures. */
1769 enum bfd_architecture a;
1770 int nr_arches = 0;
1771 const char **arches = NULL;
1772 struct gdbarch_registration *rego;
1773 for (rego = gdbarch_registry;
1774 rego != NULL;
1775 rego = rego->next)
b4a20239 1776 {
7996bcec
AC
1777 const struct bfd_arch_info *ap;
1778 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1779 if (ap == NULL)
1780 internal_error (__FILE__, __LINE__,
85c07804 1781 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
1782 do
1783 {
1784 append_name (&arches, &nr_arches, ap->printable_name);
1785 ap = ap->next;
1786 }
1787 while (ap != NULL);
b4a20239 1788 }
7996bcec
AC
1789 append_name (&arches, &nr_arches, NULL);
1790 return arches;
b4a20239
AC
1791}
1792
1793
104c1213 1794void
4b9b3959
AC
1795gdbarch_register (enum bfd_architecture bfd_architecture,
1796 gdbarch_init_ftype *init,
1797 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 1798{
4b9b3959 1799 struct gdbarch_registration **curr;
104c1213 1800 const struct bfd_arch_info *bfd_arch_info;
ec3d358c 1801 /* Check that BFD recognizes this architecture */
104c1213
JM
1802 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1803 if (bfd_arch_info == NULL)
1804 {
8e65ff28 1805 internal_error (__FILE__, __LINE__,
85c07804 1806 _("gdbarch: Attempt to register unknown architecture (%d)"),
8e65ff28 1807 bfd_architecture);
104c1213
JM
1808 }
1809 /* Check that we haven't seen this architecture before */
f44c642f 1810 for (curr = &gdbarch_registry;
104c1213
JM
1811 (*curr) != NULL;
1812 curr = &(*curr)->next)
1813 {
1814 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 1815 internal_error (__FILE__, __LINE__,
85c07804 1816 _("gdbarch: Duplicate registraration of architecture (%s)"),
8e65ff28 1817 bfd_arch_info->printable_name);
104c1213
JM
1818 }
1819 /* log it */
1820 if (gdbarch_debug)
1821 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1822 bfd_arch_info->printable_name,
1823 (long) init);
1824 /* Append it */
4b9b3959 1825 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
1826 (*curr)->bfd_architecture = bfd_architecture;
1827 (*curr)->init = init;
4b9b3959 1828 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
1829 (*curr)->arches = NULL;
1830 (*curr)->next = NULL;
4b9b3959
AC
1831}
1832
1833void
1834register_gdbarch_init (enum bfd_architecture bfd_architecture,
1835 gdbarch_init_ftype *init)
1836{
1837 gdbarch_register (bfd_architecture, init, NULL);
104c1213 1838}
104c1213
JM
1839
1840
424163ea 1841/* Look for an architecture using gdbarch_info. */
104c1213
JM
1842
1843struct gdbarch_list *
1844gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1845 const struct gdbarch_info *info)
1846{
1847 for (; arches != NULL; arches = arches->next)
1848 {
1849 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1850 continue;
1851 if (info->byte_order != arches->gdbarch->byte_order)
1852 continue;
4be87837
DJ
1853 if (info->osabi != arches->gdbarch->osabi)
1854 continue;
424163ea
DJ
1855 if (info->target_desc != arches->gdbarch->target_desc)
1856 continue;
104c1213
JM
1857 return arches;
1858 }
1859 return NULL;
1860}
1861
1862
ebdba546
AC
1863/* Find an architecture that matches the specified INFO. Create a new
1864 architecture if needed. Return that new architecture. Assumes
1865 that there is no current architecture. */
104c1213 1866
ebdba546 1867static struct gdbarch *
7a107747 1868find_arch_by_info (struct gdbarch_info info)
104c1213
JM
1869{
1870 struct gdbarch *new_gdbarch;
4b9b3959 1871 struct gdbarch_registration *rego;
104c1213 1872
ebdba546
AC
1873 /* The existing architecture has been swapped out - all this code
1874 works from a clean slate. */
1875 gdb_assert (current_gdbarch == NULL);
1876
b732d07d 1877 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
1878 sources: "set ..."; INFOabfd supplied; and the global
1879 defaults. */
1880 gdbarch_info_fill (&info);
4be87837 1881
b732d07d
AC
1882 /* Must have found some sort of architecture. */
1883 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
1884
1885 if (gdbarch_debug)
1886 {
1887 fprintf_unfiltered (gdb_stdlog,
ebdba546 1888 "find_arch_by_info: info.bfd_arch_info %s\n",
104c1213
JM
1889 (info.bfd_arch_info != NULL
1890 ? info.bfd_arch_info->printable_name
1891 : "(null)"));
1892 fprintf_unfiltered (gdb_stdlog,
ebdba546 1893 "find_arch_by_info: info.byte_order %d (%s)\n",
104c1213 1894 info.byte_order,
d7449b42 1895 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 1896 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 1897 : "default"));
4be87837 1898 fprintf_unfiltered (gdb_stdlog,
ebdba546 1899 "find_arch_by_info: info.osabi %d (%s)\n",
4be87837 1900 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 1901 fprintf_unfiltered (gdb_stdlog,
ebdba546 1902 "find_arch_by_info: info.abfd 0x%lx\n",
104c1213
JM
1903 (long) info.abfd);
1904 fprintf_unfiltered (gdb_stdlog,
ebdba546 1905 "find_arch_by_info: info.tdep_info 0x%lx\n",
104c1213
JM
1906 (long) info.tdep_info);
1907 }
1908
ebdba546 1909 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
1910 for (rego = gdbarch_registry;
1911 rego != NULL;
1912 rego = rego->next)
1913 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1914 break;
1915 if (rego == NULL)
1916 {
1917 if (gdbarch_debug)
ebdba546
AC
1918 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1919 "No matching architecture\n");
b732d07d
AC
1920 return 0;
1921 }
1922
ebdba546 1923 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
1924 new_gdbarch = rego->init (info, rego->arches);
1925
ebdba546
AC
1926 /* Did the tdep code like it? No. Reject the change and revert to
1927 the old architecture. */
104c1213
JM
1928 if (new_gdbarch == NULL)
1929 {
1930 if (gdbarch_debug)
ebdba546
AC
1931 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1932 "Target rejected architecture\n");
1933 return NULL;
104c1213
JM
1934 }
1935
ebdba546
AC
1936 /* Is this a pre-existing architecture (as determined by already
1937 being initialized)? Move it to the front of the architecture
1938 list (keeping the list sorted Most Recently Used). */
1939 if (new_gdbarch->initialized_p)
104c1213 1940 {
ebdba546
AC
1941 struct gdbarch_list **list;
1942 struct gdbarch_list *this;
104c1213 1943 if (gdbarch_debug)
ebdba546
AC
1944 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1945 "Previous architecture 0x%08lx (%s) selected\n",
104c1213
JM
1946 (long) new_gdbarch,
1947 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
1948 /* Find the existing arch in the list. */
1949 for (list = &rego->arches;
1950 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
1951 list = &(*list)->next);
1952 /* It had better be in the list of architectures. */
1953 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
1954 /* Unlink THIS. */
1955 this = (*list);
1956 (*list) = this->next;
1957 /* Insert THIS at the front. */
1958 this->next = rego->arches;
1959 rego->arches = this;
1960 /* Return it. */
1961 return new_gdbarch;
104c1213
JM
1962 }
1963
ebdba546
AC
1964 /* It's a new architecture. */
1965 if (gdbarch_debug)
1966 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1967 "New architecture 0x%08lx (%s) selected\n",
1968 (long) new_gdbarch,
1969 new_gdbarch->bfd_arch_info->printable_name);
1970
1971 /* Insert the new architecture into the front of the architecture
1972 list (keep the list sorted Most Recently Used). */
0f79675b
AC
1973 {
1974 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
1975 this->next = rego->arches;
1976 this->gdbarch = new_gdbarch;
1977 rego->arches = this;
1978 }
104c1213 1979
4b9b3959
AC
1980 /* Check that the newly installed architecture is valid. Plug in
1981 any post init values. */
1982 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 1983 verify_gdbarch (new_gdbarch);
ebdba546 1984 new_gdbarch->initialized_p = 1;
104c1213 1985
4b9b3959 1986 if (gdbarch_debug)
ebdba546
AC
1987 gdbarch_dump (new_gdbarch, gdb_stdlog);
1988
1989 return new_gdbarch;
1990}
1991
1992struct gdbarch *
1993gdbarch_find_by_info (struct gdbarch_info info)
1994{
e487cc15
UW
1995 struct gdbarch *new_gdbarch;
1996
ebdba546
AC
1997 /* Save the previously selected architecture, setting the global to
1998 NULL. This stops things like gdbarch->init() trying to use the
1999 previous architecture's configuration. The previous architecture
2000 may not even be of the same architecture family. The most recent
2001 architecture of the same family is found at the head of the
2002 rego->arches list. */
e487cc15
UW
2003 struct gdbarch *old_gdbarch = current_gdbarch;
2004 current_gdbarch = NULL;
ebdba546
AC
2005
2006 /* Find the specified architecture. */
e487cc15 2007 new_gdbarch = find_arch_by_info (info);
ebdba546
AC
2008
2009 /* Restore the existing architecture. */
2010 gdb_assert (current_gdbarch == NULL);
e487cc15 2011 current_gdbarch = old_gdbarch;
4b9b3959 2012
ebdba546 2013 return new_gdbarch;
104c1213
JM
2014}
2015
e487cc15 2016/* Make the specified architecture current. */
ebdba546
AC
2017
2018void
2019deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2020{
2021 gdb_assert (new_gdbarch != NULL);
2022 gdb_assert (current_gdbarch != NULL);
2023 gdb_assert (new_gdbarch->initialized_p);
e487cc15 2024 current_gdbarch = new_gdbarch;
383f836e 2025 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2026 registers_changed ();
ebdba546 2027}
104c1213 2028
104c1213 2029extern void _initialize_gdbarch (void);
b4a20239 2030
104c1213 2031void
34620563 2032_initialize_gdbarch (void)
104c1213 2033{
59233f88
AC
2034 struct cmd_list_element *c;
2035
85c07804
AC
2036 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2037Set architecture debugging."), _("\\
2038Show architecture debugging."), _("\\
2039When non-zero, architecture debugging is enabled."),
2040 NULL,
920d2a44 2041 show_gdbarch_debug,
85c07804 2042 &setdebuglist, &showdebuglist);
104c1213
JM
2043}
2044EOF
2045
2046# close things off
2047exec 1>&2
2048#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2049compare_new gdbarch.c