]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/gdbarch.sh
* value.c (value_primitive_field): Fetch lazy register values.
[thirdparty/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
9b254dd1
DJ
5# Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6# 2008 Free Software Foundation, Inc.
104c1213
JM
7#
8# This file is part of GDB.
9#
10# This program is free software; you can redistribute it and/or modify
11# it under the terms of the GNU General Public License as published by
50efebf8 12# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
13# (at your option) any later version.
14#
15# This program is distributed in the hope that it will be useful,
16# but WITHOUT ANY WARRANTY; without even the implied warranty of
17# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18# GNU General Public License for more details.
19#
20# You should have received a copy of the GNU General Public License
50efebf8 21# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 22
6e2c7fa1 23# Make certain that the script is not running in an internationalized
d8864532
AC
24# environment.
25LANG=c ; export LANG
1bd316f0 26LC_ALL=c ; export LC_ALL
d8864532
AC
27
28
59233f88
AC
29compare_new ()
30{
31 file=$1
66b43ecb 32 if test ! -r ${file}
59233f88
AC
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 35 elif diff -u ${file} new-${file}
59233f88
AC
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41}
42
43
44# Format of the input table
97030eea 45read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
46
47do_read ()
48{
34620563
AC
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 57 then
34620563
AC
58 continue
59 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 60 then
34620563
AC
61 comment="${comment}
62${line}"
f0d4cc9e 63 else
3d9a5942
AC
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
34620563
AC
71 eval read ${read} <<EOF
72${line}
73EOF
74 IFS="${OFS}"
75
283354d8
AC
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
3d9a5942
AC
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
a72293e2
AC
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
06b25f14 98
ae45cd16
AC
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
34620563 102 "" )
f7968451 103 if test -n "${predefault}"
34620563
AC
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 106 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
34620563
AC
113 fi
114 ;;
ae45cd16 115 * )
1e9f55d0 116 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
117 kill $$
118 exit 1
119 ;;
120 esac
34620563
AC
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
72e74a21 130 if [ -n "${postdefault}" ]
34620563
AC
131 then
132 fallbackdefault="${postdefault}"
72e74a21 133 elif [ -n "${predefault}" ]
34620563
AC
134 then
135 fallbackdefault="${predefault}"
136 else
73d3c16e 137 fallbackdefault="0"
34620563
AC
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
f0d4cc9e 144 fi
34620563 145 done
72e74a21 146 if [ -n "${class}" ]
34620563
AC
147 then
148 true
c0e8c252
AC
149 else
150 false
151 fi
152}
153
104c1213 154
f0d4cc9e
AC
155fallback_default_p ()
156{
72e74a21
JB
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
159}
160
161class_is_variable_p ()
162{
4a5c6a1d
AC
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
f0d4cc9e
AC
167}
168
169class_is_function_p ()
170{
4a5c6a1d
AC
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175}
176
177class_is_multiarch_p ()
178{
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
f0d4cc9e
AC
183}
184
185class_is_predicate_p ()
186{
4a5c6a1d
AC
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
f0d4cc9e
AC
191}
192
193class_is_info_p ()
194{
4a5c6a1d
AC
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
f0d4cc9e
AC
199}
200
201
cff3e48b
JM
202# dump out/verify the doco
203for field in ${read}
204do
205 case ${field} in
206
207 class ) : ;;
c4093a6a 208
c0e8c252
AC
209 # # -> line disable
210 # f -> function
211 # hiding a function
2ada493a
AC
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
c0e8c252
AC
214 # v -> variable
215 # hiding a variable
2ada493a
AC
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
c0e8c252
AC
218 # i -> set from info
219 # hiding something from the ``struct info'' object
4a5c6a1d
AC
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
cff3e48b 224
cff3e48b
JM
225 returntype ) : ;;
226
c0e8c252 227 # For functions, the return type; for variables, the data type
cff3e48b
JM
228
229 function ) : ;;
230
c0e8c252
AC
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
234
235 formal ) : ;;
236
c0e8c252
AC
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
cff3e48b
JM
241
242 actual ) : ;;
243
c0e8c252
AC
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
cff3e48b 247
0b8f9e4d 248 staticdefault ) : ;;
c0e8c252
AC
249
250 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
cff3e48b 254
0b8f9e4d 255 # If STATICDEFAULT is empty, zero is used.
c0e8c252 256
0b8f9e4d 257 predefault ) : ;;
cff3e48b 258
10312cc4
AC
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
cff3e48b 263
0b8f9e4d
AC
264 # If PREDEFAULT is empty, zero is used.
265
10312cc4
AC
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
f0d4cc9e
AC
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
0b8f9e4d
AC
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
10312cc4
AC
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
f0d4cc9e
AC
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
be7811ad 295 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
296 # will contain the current architecture. Care should be
297 # taken.
cff3e48b 298
c4093a6a 299 invalid_p ) : ;;
cff3e48b 300
0b8f9e4d 301 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 302 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
f0d4cc9e
AC
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
313
314 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 315
cff3e48b
JM
316 print ) : ;;
317
2f9b146e
AC
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
c0e8c252 320
2f9b146e
AC
321 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
322 # (anything else) is used.
cff3e48b 323
283354d8 324 garbage_at_eol ) : ;;
0b8f9e4d 325
283354d8 326 # Catches stray fields.
cff3e48b 327
50248794
AC
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
cff3e48b
JM
331 esac
332done
333
cff3e48b 334
104c1213
JM
335function_list ()
336{
cff3e48b 337 # See below (DOCO) for description of each field
34620563 338 cat <<EOF
be7811ad 339i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 340#
97030eea 341i:int:byte_order:::BFD_ENDIAN_BIG
4be87837 342#
97030eea 343i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 344#
be7811ad 345i:const struct target_desc *:target_desc:::::::paddr_d ((long) gdbarch->target_desc)
32c9a795
MD
346
347# The bit byte-order has to do just with numbering of bits in debugging symbols
348# and such. Conceptually, it's quite separate from byte/word byte order.
349v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
350
66b43ecb
AC
351# Number of bits in a char or unsigned char for the target machine.
352# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 353# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
354#
355# Number of bits in a short or unsigned short for the target machine.
97030eea 356v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 357# Number of bits in an int or unsigned int for the target machine.
97030eea 358v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 359# Number of bits in a long or unsigned long for the target machine.
97030eea 360v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
361# Number of bits in a long long or unsigned long long for the target
362# machine.
be7811ad 363v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94
AC
364
365# The ABI default bit-size and format for "float", "double", and "long
366# double". These bit/format pairs should eventually be combined into
367# a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
368# Each format describes both the big and little endian layouts (if
369# useful).
456fcf94 370
97030eea 371v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 372v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 373v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 374v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 375v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 376v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 377
52204a0b
DT
378# For most targets, a pointer on the target and its representation as an
379# address in GDB have the same size and "look the same". For such a
17a912b6 380# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
381# / addr_bit will be set from it.
382#
17a912b6 383# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
76e71323
UW
384# also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
385# as well.
52204a0b
DT
386#
387# ptr_bit is the size of a pointer on the target
be7811ad 388v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 389# addr_bit is the size of a target address as represented in gdb
be7811ad 390v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 391#
4e409299 392# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 393v:int:char_signed:::1:-1:1
4e409299 394#
97030eea
UW
395F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
396F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
397# Function for getting target's idea of a frame pointer. FIXME: GDB's
398# whole scheme for dealing with "frames" and "frame pointers" needs a
399# serious shakedown.
a54fba4c 400m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 401#
97030eea
UW
402M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
403M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 404#
97030eea 405v:int:num_regs:::0:-1
0aba1244
EZ
406# This macro gives the number of pseudo-registers that live in the
407# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
408# These pseudo-registers may be aliases for other registers,
409# combinations of other registers, or they may be computed by GDB.
97030eea 410v:int:num_pseudo_regs:::0:0::0
c2169756
AC
411
412# GDB's standard (or well known) register numbers. These can map onto
413# a real register or a pseudo (computed) register or not be defined at
1200cd6e 414# all (-1).
3e8c568d 415# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
416v:int:sp_regnum:::-1:-1::0
417v:int:pc_regnum:::-1:-1::0
418v:int:ps_regnum:::-1:-1::0
419v:int:fp0_regnum:::0:-1::0
88c72b7d 420# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 421m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 422# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 423m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 424# Convert from an sdb register number to an internal gdb register number.
d3f73121 425m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 426# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 427m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 428m:const char *:register_name:int regnr:regnr::0
9c04cab7 429
7b9ee6a8
DJ
430# Return the type of a register specified by the architecture. Only
431# the register cache should call this function directly; others should
432# use "register_type".
97030eea 433M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 434
f3be58bc 435# See gdbint.texinfo, and PUSH_DUMMY_CALL.
669fac23
DJ
436M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
437# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 438# deprecated_fp_regnum.
97030eea 439v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 440
a86c5fc9 441# See gdbint.texinfo. See infcall.c.
97030eea
UW
442M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
443v:int:call_dummy_location::::AT_ENTRY_POINT::0
444M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 445
97030eea
UW
446m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
447M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
448M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
449# MAP a GDB RAW register number onto a simulator register number. See
450# also include/...-sim.h.
e7faf938 451m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
452m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
453m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
9df628e0 454# setjmp/longjmp support.
97030eea 455F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
104c1213 456#
97030eea 457v:int:believe_pcc_promotion:::::::
104c1213 458#
0abe36f5 459m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
97030eea
UW
460f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
461f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0
UW
462# Construct a value representing the contents of register REGNUM in
463# frame FRAME, interpreted as type TYPE. The routine needs to
464# allocate and return a struct value with all value attributes
465# (but not the value contents) filled in.
97030eea 466f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
104c1213 467#
97030eea
UW
468f:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
469f:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
470M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 471
ea42b34a
JB
472# Return the return-value convention that will be used by FUNCTYPE
473# to return a value of type VALTYPE. FUNCTYPE may be NULL in which
474# case the return convention is computed based only on VALTYPE.
475#
476# If READBUF is not NULL, extract the return value and save it in this buffer.
477#
478# If WRITEBUF is not NULL, it contains a return value which will be
479# stored into the appropriate register. This can be used when we want
480# to force the value returned by a function (see the "return" command
481# for instance).
c055b101 482M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
92ad9cd9 483
6093d2eb 484m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
97030eea 485f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 486m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
97030eea 487M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
488m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
489m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 490v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
491
492# A function can be addressed by either it's "pointer" (possibly a
493# descriptor address) or "entry point" (first executable instruction).
494# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 495# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
496# a simplified subset of that functionality - the function's address
497# corresponds to the "function pointer" and the function's start
498# corresponds to the "function entry point" - and hence is redundant.
499
97030eea 500v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 501
123dc839
DJ
502# Return the remote protocol register number associated with this
503# register. Normally the identity mapping.
97030eea 504m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 505
b2756930 506# Fetch the target specific address used to represent a load module.
97030eea 507F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 508#
97030eea
UW
509v:CORE_ADDR:frame_args_skip:::0:::0
510M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
511M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
512# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
513# frame-base. Enable frame-base before frame-unwind.
97030eea 514F:int:frame_num_args:struct frame_info *frame:frame
104c1213 515#
97030eea
UW
516M:CORE_ADDR:frame_align:CORE_ADDR address:address
517m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
518v:int:frame_red_zone_size
f0d4cc9e 519#
97030eea 520m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
521# On some machines there are bits in addresses which are not really
522# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 523# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
524# we get a "real" address such as one would find in a symbol table.
525# This is used only for addresses of instructions, and even then I'm
526# not sure it's used in all contexts. It exists to deal with there
527# being a few stray bits in the PC which would mislead us, not as some
528# sort of generic thing to handle alignment or segmentation (it's
529# possible it should be in TARGET_READ_PC instead).
97030eea 530f:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
260edbc2 531# It is not at all clear why gdbarch_smash_text_address is not folded into
bf6ae464 532# gdbarch_addr_bits_remove.
97030eea 533f:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
534
535# FIXME/cagney/2001-01-18: This should be split in two. A target method that
536# indicates if the target needs software single step. An ISA method to
537# implement it.
538#
539# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
540# breakpoints using the breakpoint system instead of blatting memory directly
541# (as with rs6000).
64c4637f 542#
e6590a1b
UW
543# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
544# target can single step. If not, then implement single step using breakpoints.
64c4637f 545#
e6590a1b
UW
546# A return value of 1 means that the software_single_step breakpoints
547# were inserted; 0 means they were not.
97030eea 548F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 549
3352ef37
AC
550# Return non-zero if the processor is executing a delay slot and a
551# further single-step is needed before the instruction finishes.
97030eea 552M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 553# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 554# disassembler. Perhaps objdump can handle it?
97030eea
UW
555f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
556f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
557
558
dea0c52f
MK
559# If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
560# evaluates non-zero, this is the address where the debugger will place
561# a step-resume breakpoint to get us past the dynamic linker.
97030eea 562m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 563# Some systems also have trampoline code for returning from shared libs.
97030eea 564f:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 565
c12260ac
CV
566# A target might have problems with watchpoints as soon as the stack
567# frame of the current function has been destroyed. This mostly happens
568# as the first action in a funtion's epilogue. in_function_epilogue_p()
569# is defined to return a non-zero value if either the given addr is one
570# instruction after the stack destroying instruction up to the trailing
571# return instruction or if we can figure out that the stack frame has
572# already been invalidated regardless of the value of addr. Targets
573# which don't suffer from that problem could just let this functionality
574# untouched.
97030eea 575m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
552c04a7
TT
576# Given a vector of command-line arguments, return a newly allocated
577# string which, when passed to the create_inferior function, will be
578# parsed (on Unix systems, by the shell) to yield the same vector.
579# This function should call error() if the argument vector is not
580# representable for this target or if this target does not support
581# command-line arguments.
582# ARGC is the number of elements in the vector.
583# ARGV is an array of strings, one per argument.
97030eea
UW
584m:char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
585f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
586f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
be7811ad 587v:const char *:name_of_malloc:::"malloc":"malloc"::0:gdbarch->name_of_malloc
97030eea
UW
588v:int:cannot_step_breakpoint:::0:0::0
589v:int:have_nonsteppable_watchpoint:::0:0::0
590F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
591M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
592M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 593# Is a register in a group
97030eea 594m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 595# Fetch the pointer to the ith function argument.
97030eea 596F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
597
598# Return the appropriate register set for a core file section with
599# name SECT_NAME and size SECT_SIZE.
97030eea 600M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 601
17ea7499
CES
602# Supported register notes in a core file.
603v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
604
de584861
PA
605# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
606# core file into buffer READBUF with length LEN.
97030eea 607M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
de584861 608
0d5de010
DJ
609# If the elements of C++ vtables are in-place function descriptors rather
610# than normal function pointers (which may point to code or a descriptor),
611# set this to one.
97030eea 612v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
613
614# Set if the least significant bit of the delta is used instead of the least
615# significant bit of the pfn for pointers to virtual member functions.
97030eea 616v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
617
618# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 619F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 620
237fc4c9
PA
621# The maximum length of an instruction on this architecture.
622V:ULONGEST:max_insn_length:::0:0
623
624# Copy the instruction at FROM to TO, and make any adjustments
625# necessary to single-step it at that address.
626#
627# REGS holds the state the thread's registers will have before
628# executing the copied instruction; the PC in REGS will refer to FROM,
629# not the copy at TO. The caller should update it to point at TO later.
630#
631# Return a pointer to data of the architecture's choice to be passed
632# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
633# the instruction's effects have been completely simulated, with the
634# resulting state written back to REGS.
635#
636# For a general explanation of displaced stepping and how GDB uses it,
637# see the comments in infrun.c.
638#
639# The TO area is only guaranteed to have space for
640# gdbarch_max_insn_length (arch) bytes, so this function must not
641# write more bytes than that to that area.
642#
643# If you do not provide this function, GDB assumes that the
644# architecture does not support displaced stepping.
645#
646# If your architecture doesn't need to adjust instructions before
647# single-stepping them, consider using simple_displaced_step_copy_insn
648# here.
649M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
650
651# Fix up the state resulting from successfully single-stepping a
652# displaced instruction, to give the result we would have gotten from
653# stepping the instruction in its original location.
654#
655# REGS is the register state resulting from single-stepping the
656# displaced instruction.
657#
658# CLOSURE is the result from the matching call to
659# gdbarch_displaced_step_copy_insn.
660#
661# If you provide gdbarch_displaced_step_copy_insn.but not this
662# function, then GDB assumes that no fixup is needed after
663# single-stepping the instruction.
664#
665# For a general explanation of displaced stepping and how GDB uses it,
666# see the comments in infrun.c.
667M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
668
669# Free a closure returned by gdbarch_displaced_step_copy_insn.
670#
671# If you provide gdbarch_displaced_step_copy_insn, you must provide
672# this function as well.
673#
674# If your architecture uses closures that don't need to be freed, then
675# you can use simple_displaced_step_free_closure here.
676#
677# For a general explanation of displaced stepping and how GDB uses it,
678# see the comments in infrun.c.
679m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
680
681# Return the address of an appropriate place to put displaced
682# instructions while we step over them. There need only be one such
683# place, since we're only stepping one thread over a breakpoint at a
684# time.
685#
686# For a general explanation of displaced stepping and how GDB uses it,
687# see the comments in infrun.c.
688m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
689
1c772458 690# Refresh overlay mapped state for section OSECT.
97030eea 691F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 692
97030eea 693M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
694
695# Handle special encoding of static variables in stabs debug info.
97030eea 696F:char *:static_transform_name:char *name:name
203c3895 697# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 698v:int:sofun_address_maybe_missing:::0:0::0
1cded358
AR
699
700# Signal translation: translate inferior's signal (host's) number into
701# GDB's representation.
702m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
703# Signal translation: translate GDB's signal number into inferior's host
704# signal number.
705m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
60c5725c
DJ
706
707# Record architecture-specific information from the symbol table.
708M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
104c1213 709EOF
104c1213
JM
710}
711
0b8f9e4d
AC
712#
713# The .log file
714#
715exec > new-gdbarch.log
34620563 716function_list | while do_read
0b8f9e4d
AC
717do
718 cat <<EOF
2f9b146e 719${class} ${returntype} ${function} ($formal)
104c1213 720EOF
3d9a5942
AC
721 for r in ${read}
722 do
723 eval echo \"\ \ \ \ ${r}=\${${r}}\"
724 done
f0d4cc9e 725 if class_is_predicate_p && fallback_default_p
0b8f9e4d 726 then
66d659b1 727 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
728 kill $$
729 exit 1
730 fi
72e74a21 731 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
732 then
733 echo "Error: postdefault is useless when invalid_p=0" 1>&2
734 kill $$
735 exit 1
736 fi
a72293e2
AC
737 if class_is_multiarch_p
738 then
739 if class_is_predicate_p ; then :
740 elif test "x${predefault}" = "x"
741 then
2f9b146e 742 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
743 kill $$
744 exit 1
745 fi
746 fi
3d9a5942 747 echo ""
0b8f9e4d
AC
748done
749
750exec 1>&2
751compare_new gdbarch.log
752
104c1213
JM
753
754copyright ()
755{
756cat <<EOF
59233f88
AC
757/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
758
104c1213 759/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 760
50efebf8 761 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
424163ea 762 Free Software Foundation, Inc.
104c1213
JM
763
764 This file is part of GDB.
765
766 This program is free software; you can redistribute it and/or modify
767 it under the terms of the GNU General Public License as published by
50efebf8 768 the Free Software Foundation; either version 3 of the License, or
104c1213 769 (at your option) any later version.
50efebf8 770
104c1213
JM
771 This program is distributed in the hope that it will be useful,
772 but WITHOUT ANY WARRANTY; without even the implied warranty of
773 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
774 GNU General Public License for more details.
50efebf8 775
104c1213 776 You should have received a copy of the GNU General Public License
50efebf8 777 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 778
104c1213
JM
779/* This file was created with the aid of \`\`gdbarch.sh''.
780
52204a0b 781 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
782 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
783 against the existing \`\`gdbarch.[hc]''. Any differences found
784 being reported.
785
786 If editing this file, please also run gdbarch.sh and merge any
52204a0b 787 changes into that script. Conversely, when making sweeping changes
104c1213
JM
788 to this file, modifying gdbarch.sh and using its output may prove
789 easier. */
790
791EOF
792}
793
794#
795# The .h file
796#
797
798exec > new-gdbarch.h
799copyright
800cat <<EOF
801#ifndef GDBARCH_H
802#define GDBARCH_H
803
da3331ec
AC
804struct floatformat;
805struct ui_file;
104c1213
JM
806struct frame_info;
807struct value;
b6af0555 808struct objfile;
1c772458 809struct obj_section;
a2cf933a 810struct minimal_symbol;
049ee0e4 811struct regcache;
b59ff9d5 812struct reggroup;
6ce6d90f 813struct regset;
a89aa300 814struct disassemble_info;
e2d0e7eb 815struct target_ops;
030f20e1 816struct obstack;
8181d85f 817struct bp_target_info;
424163ea 818struct target_desc;
237fc4c9 819struct displaced_step_closure;
17ea7499 820struct core_regset_section;
104c1213 821
104c1213 822extern struct gdbarch *current_gdbarch;
104c1213
JM
823EOF
824
825# function typedef's
3d9a5942
AC
826printf "\n"
827printf "\n"
828printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 829function_list | while do_read
104c1213 830do
2ada493a
AC
831 if class_is_info_p
832 then
3d9a5942
AC
833 printf "\n"
834 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
835 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 836 fi
104c1213
JM
837done
838
839# function typedef's
3d9a5942
AC
840printf "\n"
841printf "\n"
842printf "/* The following are initialized by the target dependent code. */\n"
34620563 843function_list | while do_read
104c1213 844do
72e74a21 845 if [ -n "${comment}" ]
34620563
AC
846 then
847 echo "${comment}" | sed \
848 -e '2 s,#,/*,' \
849 -e '3,$ s,#, ,' \
850 -e '$ s,$, */,'
851 fi
412d5987
AC
852
853 if class_is_predicate_p
2ada493a 854 then
412d5987
AC
855 printf "\n"
856 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 857 fi
2ada493a
AC
858 if class_is_variable_p
859 then
3d9a5942
AC
860 printf "\n"
861 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
862 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
863 fi
864 if class_is_function_p
865 then
3d9a5942 866 printf "\n"
72e74a21 867 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
868 then
869 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
870 elif class_is_multiarch_p
871 then
872 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
873 else
874 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
875 fi
72e74a21 876 if [ "x${formal}" = "xvoid" ]
104c1213 877 then
3d9a5942 878 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 879 else
3d9a5942 880 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 881 fi
3d9a5942 882 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 883 fi
104c1213
JM
884done
885
886# close it off
887cat <<EOF
888
889extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
890
891
892/* Mechanism for co-ordinating the selection of a specific
893 architecture.
894
895 GDB targets (*-tdep.c) can register an interest in a specific
896 architecture. Other GDB components can register a need to maintain
897 per-architecture data.
898
899 The mechanisms below ensures that there is only a loose connection
900 between the set-architecture command and the various GDB
0fa6923a 901 components. Each component can independently register their need
104c1213
JM
902 to maintain architecture specific data with gdbarch.
903
904 Pragmatics:
905
906 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
907 didn't scale.
908
909 The more traditional mega-struct containing architecture specific
910 data for all the various GDB components was also considered. Since
0fa6923a 911 GDB is built from a variable number of (fairly independent)
104c1213
JM
912 components it was determined that the global aproach was not
913 applicable. */
914
915
916/* Register a new architectural family with GDB.
917
918 Register support for the specified ARCHITECTURE with GDB. When
919 gdbarch determines that the specified architecture has been
920 selected, the corresponding INIT function is called.
921
922 --
923
924 The INIT function takes two parameters: INFO which contains the
925 information available to gdbarch about the (possibly new)
926 architecture; ARCHES which is a list of the previously created
927 \`\`struct gdbarch'' for this architecture.
928
0f79675b 929 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 930 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
931
932 The ARCHES parameter is a linked list (sorted most recently used)
933 of all the previously created architures for this architecture
934 family. The (possibly NULL) ARCHES->gdbarch can used to access
935 values from the previously selected architecture for this
936 architecture family. The global \`\`current_gdbarch'' shall not be
937 used.
104c1213
JM
938
939 The INIT function shall return any of: NULL - indicating that it
ec3d358c 940 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
941 gdbarch'' from the ARCHES list - indicating that the new
942 architecture is just a synonym for an earlier architecture (see
943 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
944 - that describes the selected architecture (see gdbarch_alloc()).
945
946 The DUMP_TDEP function shall print out all target specific values.
947 Care should be taken to ensure that the function works in both the
948 multi-arch and non- multi-arch cases. */
104c1213
JM
949
950struct gdbarch_list
951{
952 struct gdbarch *gdbarch;
953 struct gdbarch_list *next;
954};
955
956struct gdbarch_info
957{
104c1213
JM
958 /* Use default: NULL (ZERO). */
959 const struct bfd_arch_info *bfd_arch_info;
960
428721aa 961 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
962 int byte_order;
963
964 /* Use default: NULL (ZERO). */
965 bfd *abfd;
966
967 /* Use default: NULL (ZERO). */
968 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
969
970 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
971 enum gdb_osabi osabi;
424163ea
DJ
972
973 /* Use default: NULL (ZERO). */
974 const struct target_desc *target_desc;
104c1213
JM
975};
976
977typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 978typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 979
4b9b3959 980/* DEPRECATED - use gdbarch_register() */
104c1213
JM
981extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
982
4b9b3959
AC
983extern void gdbarch_register (enum bfd_architecture architecture,
984 gdbarch_init_ftype *,
985 gdbarch_dump_tdep_ftype *);
986
104c1213 987
b4a20239
AC
988/* Return a freshly allocated, NULL terminated, array of the valid
989 architecture names. Since architectures are registered during the
990 _initialize phase this function only returns useful information
991 once initialization has been completed. */
992
993extern const char **gdbarch_printable_names (void);
994
995
104c1213
JM
996/* Helper function. Search the list of ARCHES for a GDBARCH that
997 matches the information provided by INFO. */
998
424163ea 999extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1000
1001
1002/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1003 basic initialization using values obtained from the INFO and TDEP
104c1213
JM
1004 parameters. set_gdbarch_*() functions are called to complete the
1005 initialization of the object. */
1006
1007extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1008
1009
4b9b3959
AC
1010/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1011 It is assumed that the caller freeds the \`\`struct
1012 gdbarch_tdep''. */
1013
058f20d5
JB
1014extern void gdbarch_free (struct gdbarch *);
1015
1016
aebd7893
AC
1017/* Helper function. Allocate memory from the \`\`struct gdbarch''
1018 obstack. The memory is freed when the corresponding architecture
1019 is also freed. */
1020
1021extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1022#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1023#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1024
1025
b732d07d 1026/* Helper function. Force an update of the current architecture.
104c1213 1027
b732d07d
AC
1028 The actual architecture selected is determined by INFO, \`\`(gdb) set
1029 architecture'' et.al., the existing architecture and BFD's default
1030 architecture. INFO should be initialized to zero and then selected
1031 fields should be updated.
104c1213 1032
16f33e29
AC
1033 Returns non-zero if the update succeeds */
1034
1035extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1036
1037
ebdba546
AC
1038/* Helper function. Find an architecture matching info.
1039
1040 INFO should be initialized using gdbarch_info_init, relevant fields
1041 set, and then finished using gdbarch_info_fill.
1042
1043 Returns the corresponding architecture, or NULL if no matching
1044 architecture was found. "current_gdbarch" is not updated. */
1045
1046extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1047
1048
1049/* Helper function. Set the global "current_gdbarch" to "gdbarch".
1050
1051 FIXME: kettenis/20031124: Of the functions that follow, only
1052 gdbarch_from_bfd is supposed to survive. The others will
1053 dissappear since in the future GDB will (hopefully) be truly
1054 multi-arch. However, for now we're still stuck with the concept of
1055 a single active architecture. */
1056
1057extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1058
104c1213
JM
1059
1060/* Register per-architecture data-pointer.
1061
1062 Reserve space for a per-architecture data-pointer. An identifier
1063 for the reserved data-pointer is returned. That identifer should
95160752 1064 be saved in a local static variable.
104c1213 1065
fcc1c85c
AC
1066 Memory for the per-architecture data shall be allocated using
1067 gdbarch_obstack_zalloc. That memory will be deleted when the
1068 corresponding architecture object is deleted.
104c1213 1069
95160752
AC
1070 When a previously created architecture is re-selected, the
1071 per-architecture data-pointer for that previous architecture is
76860b5f 1072 restored. INIT() is not re-called.
104c1213
JM
1073
1074 Multiple registrarants for any architecture are allowed (and
1075 strongly encouraged). */
1076
95160752 1077struct gdbarch_data;
104c1213 1078
030f20e1
AC
1079typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1080extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1081typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1082extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1083extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1084 struct gdbarch_data *data,
1085 void *pointer);
104c1213 1086
451fbdda 1087extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1088
1089
0fa6923a 1090/* Set the dynamic target-system-dependent parameters (architecture,
104c1213
JM
1091 byte-order, ...) using information found in the BFD */
1092
1093extern void set_gdbarch_from_file (bfd *);
1094
1095
e514a9d6
JM
1096/* Initialize the current architecture to the "first" one we find on
1097 our list. */
1098
1099extern void initialize_current_architecture (void);
1100
104c1213
JM
1101/* gdbarch trace variable */
1102extern int gdbarch_debug;
1103
4b9b3959 1104extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1105
1106#endif
1107EOF
1108exec 1>&2
1109#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1110compare_new gdbarch.h
104c1213
JM
1111
1112
1113#
1114# C file
1115#
1116
1117exec > new-gdbarch.c
1118copyright
1119cat <<EOF
1120
1121#include "defs.h"
7355ddba 1122#include "arch-utils.h"
104c1213 1123
104c1213 1124#include "gdbcmd.h"
faaf634c 1125#include "inferior.h"
104c1213
JM
1126#include "symcat.h"
1127
f0d4cc9e 1128#include "floatformat.h"
104c1213 1129
95160752 1130#include "gdb_assert.h"
b66d6d2e 1131#include "gdb_string.h"
67c2c32c 1132#include "gdb-events.h"
b59ff9d5 1133#include "reggroups.h"
4be87837 1134#include "osabi.h"
aebd7893 1135#include "gdb_obstack.h"
95160752 1136
104c1213
JM
1137/* Static function declarations */
1138
b3cc3077 1139static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1140
104c1213
JM
1141/* Non-zero if we want to trace architecture code. */
1142
1143#ifndef GDBARCH_DEBUG
1144#define GDBARCH_DEBUG 0
1145#endif
1146int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1147static void
1148show_gdbarch_debug (struct ui_file *file, int from_tty,
1149 struct cmd_list_element *c, const char *value)
1150{
1151 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1152}
104c1213 1153
456fcf94 1154static const char *
8da61cc4 1155pformat (const struct floatformat **format)
456fcf94
AC
1156{
1157 if (format == NULL)
1158 return "(null)";
1159 else
8da61cc4
DJ
1160 /* Just print out one of them - this is only for diagnostics. */
1161 return format[0]->name;
456fcf94
AC
1162}
1163
104c1213
JM
1164EOF
1165
1166# gdbarch open the gdbarch object
3d9a5942
AC
1167printf "\n"
1168printf "/* Maintain the struct gdbarch object */\n"
1169printf "\n"
1170printf "struct gdbarch\n"
1171printf "{\n"
76860b5f
AC
1172printf " /* Has this architecture been fully initialized? */\n"
1173printf " int initialized_p;\n"
aebd7893
AC
1174printf "\n"
1175printf " /* An obstack bound to the lifetime of the architecture. */\n"
1176printf " struct obstack *obstack;\n"
1177printf "\n"
3d9a5942 1178printf " /* basic architectural information */\n"
34620563 1179function_list | while do_read
104c1213 1180do
2ada493a
AC
1181 if class_is_info_p
1182 then
3d9a5942 1183 printf " ${returntype} ${function};\n"
2ada493a 1184 fi
104c1213 1185done
3d9a5942
AC
1186printf "\n"
1187printf " /* target specific vector. */\n"
1188printf " struct gdbarch_tdep *tdep;\n"
1189printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1190printf "\n"
1191printf " /* per-architecture data-pointers */\n"
95160752 1192printf " unsigned nr_data;\n"
3d9a5942
AC
1193printf " void **data;\n"
1194printf "\n"
1195printf " /* per-architecture swap-regions */\n"
1196printf " struct gdbarch_swap *swap;\n"
1197printf "\n"
104c1213
JM
1198cat <<EOF
1199 /* Multi-arch values.
1200
1201 When extending this structure you must:
1202
1203 Add the field below.
1204
1205 Declare set/get functions and define the corresponding
1206 macro in gdbarch.h.
1207
1208 gdbarch_alloc(): If zero/NULL is not a suitable default,
1209 initialize the new field.
1210
1211 verify_gdbarch(): Confirm that the target updated the field
1212 correctly.
1213
7e73cedf 1214 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1215 field is dumped out
1216
c0e8c252 1217 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1218 variable (base values on the host's c-type system).
1219
1220 get_gdbarch(): Implement the set/get functions (probably using
1221 the macro's as shortcuts).
1222
1223 */
1224
1225EOF
34620563 1226function_list | while do_read
104c1213 1227do
2ada493a
AC
1228 if class_is_variable_p
1229 then
3d9a5942 1230 printf " ${returntype} ${function};\n"
2ada493a
AC
1231 elif class_is_function_p
1232 then
2f9b146e 1233 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1234 fi
104c1213 1235done
3d9a5942 1236printf "};\n"
104c1213
JM
1237
1238# A pre-initialized vector
3d9a5942
AC
1239printf "\n"
1240printf "\n"
104c1213
JM
1241cat <<EOF
1242/* The default architecture uses host values (for want of a better
1243 choice). */
1244EOF
3d9a5942
AC
1245printf "\n"
1246printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1247printf "\n"
1248printf "struct gdbarch startup_gdbarch =\n"
1249printf "{\n"
76860b5f 1250printf " 1, /* Always initialized. */\n"
aebd7893 1251printf " NULL, /* The obstack. */\n"
3d9a5942 1252printf " /* basic architecture information */\n"
4b9b3959 1253function_list | while do_read
104c1213 1254do
2ada493a
AC
1255 if class_is_info_p
1256 then
ec5cbaec 1257 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1258 fi
104c1213
JM
1259done
1260cat <<EOF
4b9b3959
AC
1261 /* target specific vector and its dump routine */
1262 NULL, NULL,
104c1213
JM
1263 /*per-architecture data-pointers and swap regions */
1264 0, NULL, NULL,
1265 /* Multi-arch values */
1266EOF
34620563 1267function_list | while do_read
104c1213 1268do
2ada493a
AC
1269 if class_is_function_p || class_is_variable_p
1270 then
ec5cbaec 1271 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1272 fi
104c1213
JM
1273done
1274cat <<EOF
c0e8c252 1275 /* startup_gdbarch() */
104c1213 1276};
4b9b3959 1277
c0e8c252 1278struct gdbarch *current_gdbarch = &startup_gdbarch;
104c1213
JM
1279EOF
1280
1281# Create a new gdbarch struct
104c1213 1282cat <<EOF
7de2341d 1283
66b43ecb 1284/* Create a new \`\`struct gdbarch'' based on information provided by
104c1213
JM
1285 \`\`struct gdbarch_info''. */
1286EOF
3d9a5942 1287printf "\n"
104c1213
JM
1288cat <<EOF
1289struct gdbarch *
1290gdbarch_alloc (const struct gdbarch_info *info,
1291 struct gdbarch_tdep *tdep)
1292{
be7811ad 1293 struct gdbarch *gdbarch;
aebd7893
AC
1294
1295 /* Create an obstack for allocating all the per-architecture memory,
1296 then use that to allocate the architecture vector. */
1297 struct obstack *obstack = XMALLOC (struct obstack);
1298 obstack_init (obstack);
be7811ad
MD
1299 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1300 memset (gdbarch, 0, sizeof (*gdbarch));
1301 gdbarch->obstack = obstack;
85de9627 1302
be7811ad 1303 alloc_gdbarch_data (gdbarch);
85de9627 1304
be7811ad 1305 gdbarch->tdep = tdep;
104c1213 1306EOF
3d9a5942 1307printf "\n"
34620563 1308function_list | while do_read
104c1213 1309do
2ada493a
AC
1310 if class_is_info_p
1311 then
be7811ad 1312 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1313 fi
104c1213 1314done
3d9a5942
AC
1315printf "\n"
1316printf " /* Force the explicit initialization of these. */\n"
34620563 1317function_list | while do_read
104c1213 1318do
2ada493a
AC
1319 if class_is_function_p || class_is_variable_p
1320 then
72e74a21 1321 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1322 then
be7811ad 1323 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1324 fi
2ada493a 1325 fi
104c1213
JM
1326done
1327cat <<EOF
1328 /* gdbarch_alloc() */
1329
be7811ad 1330 return gdbarch;
104c1213
JM
1331}
1332EOF
1333
058f20d5 1334# Free a gdbarch struct.
3d9a5942
AC
1335printf "\n"
1336printf "\n"
058f20d5 1337cat <<EOF
aebd7893
AC
1338/* Allocate extra space using the per-architecture obstack. */
1339
1340void *
1341gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1342{
1343 void *data = obstack_alloc (arch->obstack, size);
1344 memset (data, 0, size);
1345 return data;
1346}
1347
1348
058f20d5
JB
1349/* Free a gdbarch struct. This should never happen in normal
1350 operation --- once you've created a gdbarch, you keep it around.
1351 However, if an architecture's init function encounters an error
1352 building the structure, it may need to clean up a partially
1353 constructed gdbarch. */
4b9b3959 1354
058f20d5
JB
1355void
1356gdbarch_free (struct gdbarch *arch)
1357{
aebd7893 1358 struct obstack *obstack;
95160752 1359 gdb_assert (arch != NULL);
aebd7893
AC
1360 gdb_assert (!arch->initialized_p);
1361 obstack = arch->obstack;
1362 obstack_free (obstack, 0); /* Includes the ARCH. */
1363 xfree (obstack);
058f20d5
JB
1364}
1365EOF
1366
104c1213 1367# verify a new architecture
104c1213 1368cat <<EOF
db446970
AC
1369
1370
1371/* Ensure that all values in a GDBARCH are reasonable. */
1372
104c1213 1373static void
be7811ad 1374verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1375{
f16a1923
AC
1376 struct ui_file *log;
1377 struct cleanup *cleanups;
1378 long dummy;
1379 char *buf;
f16a1923
AC
1380 log = mem_fileopen ();
1381 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1382 /* fundamental */
be7811ad 1383 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1384 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1385 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1386 fprintf_unfiltered (log, "\n\tbfd_arch_info");
104c1213
JM
1387 /* Check those that need to be defined for the given multi-arch level. */
1388EOF
34620563 1389function_list | while do_read
104c1213 1390do
2ada493a
AC
1391 if class_is_function_p || class_is_variable_p
1392 then
72e74a21 1393 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1394 then
3d9a5942 1395 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1396 elif class_is_predicate_p
1397 then
3d9a5942 1398 printf " /* Skip verify of ${function}, has predicate */\n"
f0d4cc9e 1399 # FIXME: See do_read for potential simplification
72e74a21 1400 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1401 then
3d9a5942 1402 printf " if (${invalid_p})\n"
be7811ad 1403 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1404 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1405 then
be7811ad
MD
1406 printf " if (gdbarch->${function} == ${predefault})\n"
1407 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1408 elif [ -n "${postdefault}" ]
f0d4cc9e 1409 then
be7811ad
MD
1410 printf " if (gdbarch->${function} == 0)\n"
1411 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1412 elif [ -n "${invalid_p}" ]
104c1213 1413 then
4d60522e 1414 printf " if (${invalid_p})\n"
f16a1923 1415 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1416 elif [ -n "${predefault}" ]
104c1213 1417 then
be7811ad 1418 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1419 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1420 fi
2ada493a 1421 fi
104c1213
JM
1422done
1423cat <<EOF
f16a1923
AC
1424 buf = ui_file_xstrdup (log, &dummy);
1425 make_cleanup (xfree, buf);
1426 if (strlen (buf) > 0)
1427 internal_error (__FILE__, __LINE__,
85c07804 1428 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1429 buf);
1430 do_cleanups (cleanups);
104c1213
JM
1431}
1432EOF
1433
1434# dump the structure
3d9a5942
AC
1435printf "\n"
1436printf "\n"
104c1213 1437cat <<EOF
4b9b3959
AC
1438/* Print out the details of the current architecture. */
1439
104c1213 1440void
be7811ad 1441gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1442{
b78960be 1443 const char *gdb_nm_file = "<not-defined>";
b78960be
AC
1444#if defined (GDB_NM_FILE)
1445 gdb_nm_file = GDB_NM_FILE;
1446#endif
1447 fprintf_unfiltered (file,
1448 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1449 gdb_nm_file);
104c1213 1450EOF
97030eea 1451function_list | sort -t: -k 3 | while do_read
104c1213 1452do
1e9f55d0
AC
1453 # First the predicate
1454 if class_is_predicate_p
1455 then
7996bcec 1456 printf " fprintf_unfiltered (file,\n"
48f7351b 1457 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1458 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1459 fi
48f7351b 1460 # Print the corresponding value.
283354d8 1461 if class_is_function_p
4b9b3959 1462 then
7996bcec 1463 printf " fprintf_unfiltered (file,\n"
48f7351b 1464 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
be7811ad 1465 printf " (long) gdbarch->${function});\n"
4b9b3959 1466 else
48f7351b 1467 # It is a variable
2f9b146e
AC
1468 case "${print}:${returntype}" in
1469 :CORE_ADDR )
48f7351b 1470 fmt="0x%s"
be7811ad 1471 print="paddr_nz (gdbarch->${function})"
48f7351b 1472 ;;
2f9b146e 1473 :* )
48f7351b 1474 fmt="%s"
be7811ad 1475 print="paddr_d (gdbarch->${function})"
48f7351b
AC
1476 ;;
1477 * )
2f9b146e 1478 fmt="%s"
48f7351b
AC
1479 ;;
1480 esac
3d9a5942 1481 printf " fprintf_unfiltered (file,\n"
48f7351b 1482 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1483 printf " ${print});\n"
2ada493a 1484 fi
104c1213 1485done
381323f4 1486cat <<EOF
be7811ad
MD
1487 if (gdbarch->dump_tdep != NULL)
1488 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1489}
1490EOF
104c1213
JM
1491
1492
1493# GET/SET
3d9a5942 1494printf "\n"
104c1213
JM
1495cat <<EOF
1496struct gdbarch_tdep *
1497gdbarch_tdep (struct gdbarch *gdbarch)
1498{
1499 if (gdbarch_debug >= 2)
3d9a5942 1500 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1501 return gdbarch->tdep;
1502}
1503EOF
3d9a5942 1504printf "\n"
34620563 1505function_list | while do_read
104c1213 1506do
2ada493a
AC
1507 if class_is_predicate_p
1508 then
3d9a5942
AC
1509 printf "\n"
1510 printf "int\n"
1511 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1512 printf "{\n"
8de9bdc4 1513 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1514 printf " return ${predicate};\n"
3d9a5942 1515 printf "}\n"
2ada493a
AC
1516 fi
1517 if class_is_function_p
1518 then
3d9a5942
AC
1519 printf "\n"
1520 printf "${returntype}\n"
72e74a21 1521 if [ "x${formal}" = "xvoid" ]
104c1213 1522 then
3d9a5942 1523 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1524 else
3d9a5942 1525 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1526 fi
3d9a5942 1527 printf "{\n"
8de9bdc4 1528 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1529 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1530 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1531 then
1532 # Allow a call to a function with a predicate.
956ac328 1533 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1534 fi
3d9a5942
AC
1535 printf " if (gdbarch_debug >= 2)\n"
1536 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1537 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1538 then
1539 if class_is_multiarch_p
1540 then
1541 params="gdbarch"
1542 else
1543 params=""
1544 fi
1545 else
1546 if class_is_multiarch_p
1547 then
1548 params="gdbarch, ${actual}"
1549 else
1550 params="${actual}"
1551 fi
1552 fi
72e74a21 1553 if [ "x${returntype}" = "xvoid" ]
104c1213 1554 then
4a5c6a1d 1555 printf " gdbarch->${function} (${params});\n"
104c1213 1556 else
4a5c6a1d 1557 printf " return gdbarch->${function} (${params});\n"
104c1213 1558 fi
3d9a5942
AC
1559 printf "}\n"
1560 printf "\n"
1561 printf "void\n"
1562 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1563 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1564 printf "{\n"
1565 printf " gdbarch->${function} = ${function};\n"
1566 printf "}\n"
2ada493a
AC
1567 elif class_is_variable_p
1568 then
3d9a5942
AC
1569 printf "\n"
1570 printf "${returntype}\n"
1571 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1572 printf "{\n"
8de9bdc4 1573 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1574 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1575 then
3d9a5942 1576 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1577 elif [ -n "${invalid_p}" ]
104c1213 1578 then
956ac328
AC
1579 printf " /* Check variable is valid. */\n"
1580 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1581 elif [ -n "${predefault}" ]
104c1213 1582 then
956ac328
AC
1583 printf " /* Check variable changed from pre-default. */\n"
1584 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1585 fi
3d9a5942
AC
1586 printf " if (gdbarch_debug >= 2)\n"
1587 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1588 printf " return gdbarch->${function};\n"
1589 printf "}\n"
1590 printf "\n"
1591 printf "void\n"
1592 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1593 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1594 printf "{\n"
1595 printf " gdbarch->${function} = ${function};\n"
1596 printf "}\n"
2ada493a
AC
1597 elif class_is_info_p
1598 then
3d9a5942
AC
1599 printf "\n"
1600 printf "${returntype}\n"
1601 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1602 printf "{\n"
8de9bdc4 1603 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1604 printf " if (gdbarch_debug >= 2)\n"
1605 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1606 printf " return gdbarch->${function};\n"
1607 printf "}\n"
2ada493a 1608 fi
104c1213
JM
1609done
1610
1611# All the trailing guff
1612cat <<EOF
1613
1614
f44c642f 1615/* Keep a registry of per-architecture data-pointers required by GDB
104c1213
JM
1616 modules. */
1617
1618struct gdbarch_data
1619{
95160752 1620 unsigned index;
76860b5f 1621 int init_p;
030f20e1
AC
1622 gdbarch_data_pre_init_ftype *pre_init;
1623 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1624};
1625
1626struct gdbarch_data_registration
1627{
104c1213
JM
1628 struct gdbarch_data *data;
1629 struct gdbarch_data_registration *next;
1630};
1631
f44c642f 1632struct gdbarch_data_registry
104c1213 1633{
95160752 1634 unsigned nr;
104c1213
JM
1635 struct gdbarch_data_registration *registrations;
1636};
1637
f44c642f 1638struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1639{
1640 0, NULL,
1641};
1642
030f20e1
AC
1643static struct gdbarch_data *
1644gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1645 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1646{
1647 struct gdbarch_data_registration **curr;
76860b5f 1648 /* Append the new registraration. */
f44c642f 1649 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1650 (*curr) != NULL;
1651 curr = &(*curr)->next);
1652 (*curr) = XMALLOC (struct gdbarch_data_registration);
1653 (*curr)->next = NULL;
104c1213 1654 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1655 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
1656 (*curr)->data->pre_init = pre_init;
1657 (*curr)->data->post_init = post_init;
76860b5f 1658 (*curr)->data->init_p = 1;
104c1213
JM
1659 return (*curr)->data;
1660}
1661
030f20e1
AC
1662struct gdbarch_data *
1663gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1664{
1665 return gdbarch_data_register (pre_init, NULL);
1666}
1667
1668struct gdbarch_data *
1669gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1670{
1671 return gdbarch_data_register (NULL, post_init);
1672}
104c1213 1673
b3cc3077 1674/* Create/delete the gdbarch data vector. */
95160752
AC
1675
1676static void
b3cc3077 1677alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1678{
b3cc3077
JB
1679 gdb_assert (gdbarch->data == NULL);
1680 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 1681 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 1682}
3c875b6f 1683
76860b5f 1684/* Initialize the current value of the specified per-architecture
b3cc3077
JB
1685 data-pointer. */
1686
95160752 1687void
030f20e1
AC
1688deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1689 struct gdbarch_data *data,
1690 void *pointer)
95160752
AC
1691{
1692 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 1693 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 1694 gdb_assert (data->pre_init == NULL);
95160752
AC
1695 gdbarch->data[data->index] = pointer;
1696}
1697
104c1213
JM
1698/* Return the current value of the specified per-architecture
1699 data-pointer. */
1700
1701void *
451fbdda 1702gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1703{
451fbdda 1704 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 1705 if (gdbarch->data[data->index] == NULL)
76860b5f 1706 {
030f20e1
AC
1707 /* The data-pointer isn't initialized, call init() to get a
1708 value. */
1709 if (data->pre_init != NULL)
1710 /* Mid architecture creation: pass just the obstack, and not
1711 the entire architecture, as that way it isn't possible for
1712 pre-init code to refer to undefined architecture
1713 fields. */
1714 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1715 else if (gdbarch->initialized_p
1716 && data->post_init != NULL)
1717 /* Post architecture creation: pass the entire architecture
1718 (as all fields are valid), but be careful to also detect
1719 recursive references. */
1720 {
1721 gdb_assert (data->init_p);
1722 data->init_p = 0;
1723 gdbarch->data[data->index] = data->post_init (gdbarch);
1724 data->init_p = 1;
1725 }
1726 else
1727 /* The architecture initialization hasn't completed - punt -
1728 hope that the caller knows what they are doing. Once
1729 deprecated_set_gdbarch_data has been initialized, this can be
1730 changed to an internal error. */
1731 return NULL;
76860b5f
AC
1732 gdb_assert (gdbarch->data[data->index] != NULL);
1733 }
451fbdda 1734 return gdbarch->data[data->index];
104c1213
JM
1735}
1736
1737
f44c642f 1738/* Keep a registry of the architectures known by GDB. */
104c1213 1739
4b9b3959 1740struct gdbarch_registration
104c1213
JM
1741{
1742 enum bfd_architecture bfd_architecture;
1743 gdbarch_init_ftype *init;
4b9b3959 1744 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 1745 struct gdbarch_list *arches;
4b9b3959 1746 struct gdbarch_registration *next;
104c1213
JM
1747};
1748
f44c642f 1749static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 1750
b4a20239
AC
1751static void
1752append_name (const char ***buf, int *nr, const char *name)
1753{
1754 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1755 (*buf)[*nr] = name;
1756 *nr += 1;
1757}
1758
1759const char **
1760gdbarch_printable_names (void)
1761{
7996bcec
AC
1762 /* Accumulate a list of names based on the registed list of
1763 architectures. */
1764 enum bfd_architecture a;
1765 int nr_arches = 0;
1766 const char **arches = NULL;
1767 struct gdbarch_registration *rego;
1768 for (rego = gdbarch_registry;
1769 rego != NULL;
1770 rego = rego->next)
b4a20239 1771 {
7996bcec
AC
1772 const struct bfd_arch_info *ap;
1773 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1774 if (ap == NULL)
1775 internal_error (__FILE__, __LINE__,
85c07804 1776 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
1777 do
1778 {
1779 append_name (&arches, &nr_arches, ap->printable_name);
1780 ap = ap->next;
1781 }
1782 while (ap != NULL);
b4a20239 1783 }
7996bcec
AC
1784 append_name (&arches, &nr_arches, NULL);
1785 return arches;
b4a20239
AC
1786}
1787
1788
104c1213 1789void
4b9b3959
AC
1790gdbarch_register (enum bfd_architecture bfd_architecture,
1791 gdbarch_init_ftype *init,
1792 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 1793{
4b9b3959 1794 struct gdbarch_registration **curr;
104c1213 1795 const struct bfd_arch_info *bfd_arch_info;
ec3d358c 1796 /* Check that BFD recognizes this architecture */
104c1213
JM
1797 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1798 if (bfd_arch_info == NULL)
1799 {
8e65ff28 1800 internal_error (__FILE__, __LINE__,
85c07804 1801 _("gdbarch: Attempt to register unknown architecture (%d)"),
8e65ff28 1802 bfd_architecture);
104c1213
JM
1803 }
1804 /* Check that we haven't seen this architecture before */
f44c642f 1805 for (curr = &gdbarch_registry;
104c1213
JM
1806 (*curr) != NULL;
1807 curr = &(*curr)->next)
1808 {
1809 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 1810 internal_error (__FILE__, __LINE__,
85c07804 1811 _("gdbarch: Duplicate registraration of architecture (%s)"),
8e65ff28 1812 bfd_arch_info->printable_name);
104c1213
JM
1813 }
1814 /* log it */
1815 if (gdbarch_debug)
1816 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1817 bfd_arch_info->printable_name,
1818 (long) init);
1819 /* Append it */
4b9b3959 1820 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
1821 (*curr)->bfd_architecture = bfd_architecture;
1822 (*curr)->init = init;
4b9b3959 1823 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
1824 (*curr)->arches = NULL;
1825 (*curr)->next = NULL;
4b9b3959
AC
1826}
1827
1828void
1829register_gdbarch_init (enum bfd_architecture bfd_architecture,
1830 gdbarch_init_ftype *init)
1831{
1832 gdbarch_register (bfd_architecture, init, NULL);
104c1213 1833}
104c1213
JM
1834
1835
424163ea 1836/* Look for an architecture using gdbarch_info. */
104c1213
JM
1837
1838struct gdbarch_list *
1839gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1840 const struct gdbarch_info *info)
1841{
1842 for (; arches != NULL; arches = arches->next)
1843 {
1844 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1845 continue;
1846 if (info->byte_order != arches->gdbarch->byte_order)
1847 continue;
4be87837
DJ
1848 if (info->osabi != arches->gdbarch->osabi)
1849 continue;
424163ea
DJ
1850 if (info->target_desc != arches->gdbarch->target_desc)
1851 continue;
104c1213
JM
1852 return arches;
1853 }
1854 return NULL;
1855}
1856
1857
ebdba546
AC
1858/* Find an architecture that matches the specified INFO. Create a new
1859 architecture if needed. Return that new architecture. Assumes
1860 that there is no current architecture. */
104c1213 1861
ebdba546 1862static struct gdbarch *
7a107747 1863find_arch_by_info (struct gdbarch_info info)
104c1213
JM
1864{
1865 struct gdbarch *new_gdbarch;
4b9b3959 1866 struct gdbarch_registration *rego;
104c1213 1867
ebdba546
AC
1868 /* The existing architecture has been swapped out - all this code
1869 works from a clean slate. */
1870 gdb_assert (current_gdbarch == NULL);
1871
b732d07d 1872 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
1873 sources: "set ..."; INFOabfd supplied; and the global
1874 defaults. */
1875 gdbarch_info_fill (&info);
4be87837 1876
b732d07d
AC
1877 /* Must have found some sort of architecture. */
1878 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
1879
1880 if (gdbarch_debug)
1881 {
1882 fprintf_unfiltered (gdb_stdlog,
ebdba546 1883 "find_arch_by_info: info.bfd_arch_info %s\n",
104c1213
JM
1884 (info.bfd_arch_info != NULL
1885 ? info.bfd_arch_info->printable_name
1886 : "(null)"));
1887 fprintf_unfiltered (gdb_stdlog,
ebdba546 1888 "find_arch_by_info: info.byte_order %d (%s)\n",
104c1213 1889 info.byte_order,
d7449b42 1890 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 1891 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 1892 : "default"));
4be87837 1893 fprintf_unfiltered (gdb_stdlog,
ebdba546 1894 "find_arch_by_info: info.osabi %d (%s)\n",
4be87837 1895 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 1896 fprintf_unfiltered (gdb_stdlog,
ebdba546 1897 "find_arch_by_info: info.abfd 0x%lx\n",
104c1213
JM
1898 (long) info.abfd);
1899 fprintf_unfiltered (gdb_stdlog,
ebdba546 1900 "find_arch_by_info: info.tdep_info 0x%lx\n",
104c1213
JM
1901 (long) info.tdep_info);
1902 }
1903
ebdba546 1904 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
1905 for (rego = gdbarch_registry;
1906 rego != NULL;
1907 rego = rego->next)
1908 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1909 break;
1910 if (rego == NULL)
1911 {
1912 if (gdbarch_debug)
ebdba546
AC
1913 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1914 "No matching architecture\n");
b732d07d
AC
1915 return 0;
1916 }
1917
ebdba546 1918 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
1919 new_gdbarch = rego->init (info, rego->arches);
1920
ebdba546
AC
1921 /* Did the tdep code like it? No. Reject the change and revert to
1922 the old architecture. */
104c1213
JM
1923 if (new_gdbarch == NULL)
1924 {
1925 if (gdbarch_debug)
ebdba546
AC
1926 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1927 "Target rejected architecture\n");
1928 return NULL;
104c1213
JM
1929 }
1930
ebdba546
AC
1931 /* Is this a pre-existing architecture (as determined by already
1932 being initialized)? Move it to the front of the architecture
1933 list (keeping the list sorted Most Recently Used). */
1934 if (new_gdbarch->initialized_p)
104c1213 1935 {
ebdba546
AC
1936 struct gdbarch_list **list;
1937 struct gdbarch_list *this;
104c1213 1938 if (gdbarch_debug)
ebdba546
AC
1939 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1940 "Previous architecture 0x%08lx (%s) selected\n",
104c1213
JM
1941 (long) new_gdbarch,
1942 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
1943 /* Find the existing arch in the list. */
1944 for (list = &rego->arches;
1945 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
1946 list = &(*list)->next);
1947 /* It had better be in the list of architectures. */
1948 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
1949 /* Unlink THIS. */
1950 this = (*list);
1951 (*list) = this->next;
1952 /* Insert THIS at the front. */
1953 this->next = rego->arches;
1954 rego->arches = this;
1955 /* Return it. */
1956 return new_gdbarch;
104c1213
JM
1957 }
1958
ebdba546
AC
1959 /* It's a new architecture. */
1960 if (gdbarch_debug)
1961 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1962 "New architecture 0x%08lx (%s) selected\n",
1963 (long) new_gdbarch,
1964 new_gdbarch->bfd_arch_info->printable_name);
1965
1966 /* Insert the new architecture into the front of the architecture
1967 list (keep the list sorted Most Recently Used). */
0f79675b
AC
1968 {
1969 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
1970 this->next = rego->arches;
1971 this->gdbarch = new_gdbarch;
1972 rego->arches = this;
1973 }
104c1213 1974
4b9b3959
AC
1975 /* Check that the newly installed architecture is valid. Plug in
1976 any post init values. */
1977 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 1978 verify_gdbarch (new_gdbarch);
ebdba546 1979 new_gdbarch->initialized_p = 1;
104c1213 1980
4b9b3959 1981 if (gdbarch_debug)
ebdba546
AC
1982 gdbarch_dump (new_gdbarch, gdb_stdlog);
1983
1984 return new_gdbarch;
1985}
1986
1987struct gdbarch *
1988gdbarch_find_by_info (struct gdbarch_info info)
1989{
e487cc15
UW
1990 struct gdbarch *new_gdbarch;
1991
ebdba546
AC
1992 /* Save the previously selected architecture, setting the global to
1993 NULL. This stops things like gdbarch->init() trying to use the
1994 previous architecture's configuration. The previous architecture
1995 may not even be of the same architecture family. The most recent
1996 architecture of the same family is found at the head of the
1997 rego->arches list. */
e487cc15
UW
1998 struct gdbarch *old_gdbarch = current_gdbarch;
1999 current_gdbarch = NULL;
ebdba546
AC
2000
2001 /* Find the specified architecture. */
e487cc15 2002 new_gdbarch = find_arch_by_info (info);
ebdba546
AC
2003
2004 /* Restore the existing architecture. */
2005 gdb_assert (current_gdbarch == NULL);
e487cc15 2006 current_gdbarch = old_gdbarch;
4b9b3959 2007
ebdba546 2008 return new_gdbarch;
104c1213
JM
2009}
2010
e487cc15 2011/* Make the specified architecture current. */
ebdba546
AC
2012
2013void
2014deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2015{
2016 gdb_assert (new_gdbarch != NULL);
2017 gdb_assert (current_gdbarch != NULL);
2018 gdb_assert (new_gdbarch->initialized_p);
e487cc15 2019 current_gdbarch = new_gdbarch;
ebdba546 2020 architecture_changed_event ();
35f196d9 2021 reinit_frame_cache ();
ebdba546 2022}
104c1213 2023
104c1213 2024extern void _initialize_gdbarch (void);
b4a20239 2025
104c1213 2026void
34620563 2027_initialize_gdbarch (void)
104c1213 2028{
59233f88
AC
2029 struct cmd_list_element *c;
2030
85c07804
AC
2031 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2032Set architecture debugging."), _("\\
2033Show architecture debugging."), _("\\
2034When non-zero, architecture debugging is enabled."),
2035 NULL,
920d2a44 2036 show_gdbarch_debug,
85c07804 2037 &setdebuglist, &showdebuglist);
104c1213
JM
2038}
2039EOF
2040
2041# close things off
2042exec 1>&2
2043#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2044compare_new gdbarch.c