]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/gdbarch.sh
gdb: Add aliases for read_core_file_mappings callbacks
[thirdparty/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
3666a048 5# Copyright (C) 1998-2021 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532 26
59233f88 27# Format of the input table
97030eea 28read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
29
30do_read ()
31{
34620563
AC
32 comment=""
33 class=""
c9023fb3
PA
34 # On some SH's, 'read' trims leading and trailing whitespace by
35 # default (e.g., bash), while on others (e.g., dash), it doesn't.
36 # Set IFS to empty to disable the trimming everywhere.
ffc2844e 37 # shellcheck disable=SC2162
c9023fb3 38 while IFS='' read line
34620563
AC
39 do
40 if test "${line}" = ""
41 then
42 continue
43 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 44 then
34620563
AC
45 continue
46 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 47 then
34620563
AC
48 comment="${comment}
49${line}"
f0d4cc9e 50 else
3d9a5942
AC
51
52 # The semantics of IFS varies between different SH's. Some
ea480a30
SM
53 # treat ``;;' as three fields while some treat it as just two.
54 # Work around this by eliminating ``;;'' ....
cb02ab24 55 line="$(echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g')"
3d9a5942 56
ea480a30 57 OFS="${IFS}" ; IFS="[;]"
a6fc5ffc 58 eval read "${read}" <<EOF
34620563
AC
59${line}
60EOF
61 IFS="${OFS}"
62
1207375d 63 if test -n "${garbage_at_eol:-}"
283354d8
AC
64 then
65 echo "Garbage at end-of-line in ${line}" 1>&2
66 kill $$
67 exit 1
68 fi
69
3d9a5942
AC
70 # .... and then going back through each field and strip out those
71 # that ended up with just that space character.
72 for r in ${read}
73 do
a6fc5ffc 74 if eval test "\"\${${r}}\" = ' '"
3d9a5942 75 then
a6fc5ffc 76 eval "${r}="
3d9a5942
AC
77 fi
78 done
79
a72293e2 80 case "${class}" in
1207375d 81 m ) staticdefault="${predefault:-}" ;;
a72293e2
AC
82 M ) staticdefault="0" ;;
83 * ) test "${staticdefault}" || staticdefault=0 ;;
84 esac
06b25f14 85
ae45cd16
AC
86 case "${class}" in
87 F | V | M )
1207375d 88 case "${invalid_p:-}" in
34620563 89 "" )
f7968451 90 if test -n "${predefault}"
34620563
AC
91 then
92 #invalid_p="gdbarch->${function} == ${predefault}"
1207375d 93 predicate="gdbarch->${function:-} != ${predefault}"
f7968451
AC
94 elif class_is_variable_p
95 then
96 predicate="gdbarch->${function} != 0"
97 elif class_is_function_p
98 then
99 predicate="gdbarch->${function} != NULL"
34620563
AC
100 fi
101 ;;
ae45cd16 102 * )
1e9f55d0 103 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
104 kill $$
105 exit 1
106 ;;
107 esac
34620563
AC
108 esac
109
34620563
AC
110 #NOT YET: See gdbarch.log for basic verification of
111 # database
112
113 break
f0d4cc9e 114 fi
34620563 115 done
72e74a21 116 if [ -n "${class}" ]
34620563
AC
117 then
118 true
c0e8c252
AC
119 else
120 false
121 fi
122}
123
104c1213 124
f0d4cc9e
AC
125fallback_default_p ()
126{
1207375d 127 { [ -n "${postdefault:-}" ] && [ "x${invalid_p}" != "x0" ]; } \
9fdb2916 128 || { [ -n "${predefault}" ] && [ "x${invalid_p}" = "x0" ]; }
f0d4cc9e
AC
129}
130
131class_is_variable_p ()
132{
4a5c6a1d
AC
133 case "${class}" in
134 *v* | *V* ) true ;;
135 * ) false ;;
136 esac
f0d4cc9e
AC
137}
138
139class_is_function_p ()
140{
4a5c6a1d
AC
141 case "${class}" in
142 *f* | *F* | *m* | *M* ) true ;;
143 * ) false ;;
144 esac
145}
146
147class_is_multiarch_p ()
148{
149 case "${class}" in
150 *m* | *M* ) true ;;
151 * ) false ;;
152 esac
f0d4cc9e
AC
153}
154
155class_is_predicate_p ()
156{
4a5c6a1d
AC
157 case "${class}" in
158 *F* | *V* | *M* ) true ;;
159 * ) false ;;
160 esac
f0d4cc9e
AC
161}
162
163class_is_info_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *i* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171
cff3e48b
JM
172# dump out/verify the doco
173for field in ${read}
174do
175 case ${field} in
176
177 class ) : ;;
c4093a6a 178
c0e8c252
AC
179 # # -> line disable
180 # f -> function
181 # hiding a function
2ada493a
AC
182 # F -> function + predicate
183 # hiding a function + predicate to test function validity
c0e8c252
AC
184 # v -> variable
185 # hiding a variable
2ada493a
AC
186 # V -> variable + predicate
187 # hiding a variable + predicate to test variables validity
c0e8c252
AC
188 # i -> set from info
189 # hiding something from the ``struct info'' object
4a5c6a1d
AC
190 # m -> multi-arch function
191 # hiding a multi-arch function (parameterised with the architecture)
dda83cd7 192 # M -> multi-arch function + predicate
4a5c6a1d 193 # hiding a multi-arch function + predicate to test function validity
cff3e48b 194
cff3e48b
JM
195 returntype ) : ;;
196
c0e8c252 197 # For functions, the return type; for variables, the data type
cff3e48b
JM
198
199 function ) : ;;
200
c0e8c252
AC
201 # For functions, the member function name; for variables, the
202 # variable name. Member function names are always prefixed with
203 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
204
205 formal ) : ;;
206
c0e8c252
AC
207 # The formal argument list. It is assumed that the formal
208 # argument list includes the actual name of each list element.
209 # A function with no arguments shall have ``void'' as the
210 # formal argument list.
cff3e48b
JM
211
212 actual ) : ;;
213
c0e8c252
AC
214 # The list of actual arguments. The arguments specified shall
215 # match the FORMAL list given above. Functions with out
216 # arguments leave this blank.
cff3e48b 217
0b8f9e4d 218 staticdefault ) : ;;
c0e8c252
AC
219
220 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
221 # created. STATICDEFAULT is the value to insert into that
222 # static gdbarch object. Since this a static object only
223 # simple expressions can be used.
cff3e48b 224
0b8f9e4d 225 # If STATICDEFAULT is empty, zero is used.
c0e8c252 226
0b8f9e4d 227 predefault ) : ;;
cff3e48b 228
10312cc4
AC
229 # An initial value to assign to MEMBER of the freshly
230 # malloc()ed gdbarch object. After initialization, the
231 # freshly malloc()ed object is passed to the target
232 # architecture code for further updates.
cff3e48b 233
0b8f9e4d
AC
234 # If PREDEFAULT is empty, zero is used.
235
10312cc4
AC
236 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
237 # INVALID_P are specified, PREDEFAULT will be used as the
238 # default for the non- multi-arch target.
239
240 # A zero PREDEFAULT function will force the fallback to call
241 # internal_error().
f0d4cc9e
AC
242
243 # Variable declarations can refer to ``gdbarch'' which will
244 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
245
246 postdefault ) : ;;
247
248 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
249 # the target architecture code fail to change the PREDEFAULT
250 # value.
0b8f9e4d
AC
251
252 # If POSTDEFAULT is empty, no post update is performed.
253
254 # If both INVALID_P and POSTDEFAULT are non-empty then
255 # INVALID_P will be used to determine if MEMBER should be
256 # changed to POSTDEFAULT.
257
10312cc4
AC
258 # If a non-empty POSTDEFAULT and a zero INVALID_P are
259 # specified, POSTDEFAULT will be used as the default for the
260 # non- multi-arch target (regardless of the value of
261 # PREDEFAULT).
262
f0d4cc9e
AC
263 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
264
be7811ad 265 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
266 # will contain the current architecture. Care should be
267 # taken.
cff3e48b 268
c4093a6a 269 invalid_p ) : ;;
cff3e48b 270
0b8f9e4d 271 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 272 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
273 # initialize MEMBER or the initialized the member is invalid.
274 # If POSTDEFAULT is non-empty then MEMBER will be updated to
275 # that value. If POSTDEFAULT is empty then internal_error()
276 # is called.
277
278 # If INVALID_P is empty, a check that MEMBER is no longer
279 # equal to PREDEFAULT is used.
280
f0d4cc9e
AC
281 # The expression ``0'' disables the INVALID_P check making
282 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
283
284 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 285
cff3e48b
JM
286 print ) : ;;
287
2f9b146e
AC
288 # An optional expression that convers MEMBER to a value
289 # suitable for formatting using %s.
c0e8c252 290
0b1553bc
UW
291 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
292 # or plongest (anything else) is used.
cff3e48b 293
283354d8 294 garbage_at_eol ) : ;;
0b8f9e4d 295
283354d8 296 # Catches stray fields.
cff3e48b 297
50248794
AC
298 *)
299 echo "Bad field ${field}"
300 exit 1;;
cff3e48b
JM
301 esac
302done
303
cff3e48b 304
104c1213
JM
305function_list ()
306{
cff3e48b 307 # See below (DOCO) for description of each field
34620563 308 cat <<EOF
ea480a30 309i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 310#
ea480a30
SM
311i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
312i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
4be87837 313#
ea480a30 314i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
424163ea 315#
ea480a30 316i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
32c9a795 317
66b43ecb 318# Number of bits in a short or unsigned short for the target machine.
ea480a30 319v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
66b43ecb 320# Number of bits in an int or unsigned int for the target machine.
ea480a30 321v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
66b43ecb 322# Number of bits in a long or unsigned long for the target machine.
ea480a30 323v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
66b43ecb
AC
324# Number of bits in a long long or unsigned long long for the target
325# machine.
ea480a30 326v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
456fcf94 327
2a67f09d 328# The ABI default bit-size and format for "bfloat16", "half", "float", "double", and
f9e9243a
UW
329# "long double". These bit/format pairs should eventually be combined
330# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
331# Each format describes both the big and little endian layouts (if
332# useful).
456fcf94 333
2a67f09d
FW
334v;int;bfloat16_bit;;;16;2*TARGET_CHAR_BIT;;0
335v;const struct floatformat **;bfloat16_format;;;;;floatformats_bfloat16;;pformat (gdbarch->bfloat16_format)
ea480a30
SM
336v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
337v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
338v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
339v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
340v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
341v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
342v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
343v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
456fcf94 344
53375380
PA
345# The ABI default bit-size for "wchar_t". wchar_t is a built-in type
346# starting with C++11.
ea480a30 347v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
53375380 348# One if \`wchar_t' is signed, zero if unsigned.
ea480a30 349v;int;wchar_signed;;;1;-1;1
53375380 350
9b790ce7
UW
351# Returns the floating-point format to be used for values of length LENGTH.
352# NAME, if non-NULL, is the type name, which may be used to distinguish
353# different target formats of the same length.
ea480a30 354m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
9b790ce7 355
52204a0b
DT
356# For most targets, a pointer on the target and its representation as an
357# address in GDB have the same size and "look the same". For such a
17a912b6 358# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
359# / addr_bit will be set from it.
360#
17a912b6 361# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
362# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
363# gdbarch_address_to_pointer as well.
52204a0b
DT
364#
365# ptr_bit is the size of a pointer on the target
ea480a30 366v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
52204a0b 367# addr_bit is the size of a target address as represented in gdb
ea480a30 368v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
104c1213 369#
8da614df
CV
370# dwarf2_addr_size is the target address size as used in the Dwarf debug
371# info. For .debug_frame FDEs, this is supposed to be the target address
372# size from the associated CU header, and which is equivalent to the
373# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
374# Unfortunately there is no good way to determine this value. Therefore
375# dwarf2_addr_size simply defaults to the target pointer size.
376#
377# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
378# defined using the target's pointer size so far.
379#
380# Note that dwarf2_addr_size only needs to be redefined by a target if the
381# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
382# and if Dwarf versions < 4 need to be supported.
ea480a30 383v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
8da614df 384#
4e409299 385# One if \`char' acts like \`signed char', zero if \`unsigned char'.
ea480a30 386v;int;char_signed;;;1;-1;1
4e409299 387#
c113ed0c 388F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
ea480a30 389F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
39d4ef09
AC
390# Function for getting target's idea of a frame pointer. FIXME: GDB's
391# whole scheme for dealing with "frames" and "frame pointers" needs a
392# serious shakedown.
ea480a30 393m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
66b43ecb 394#
849d0ba8 395M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
3543a589
TT
396# Read a register into a new struct value. If the register is wholly
397# or partly unavailable, this should call mark_value_bytes_unavailable
398# as appropriate. If this is defined, then pseudo_register_read will
399# never be called.
849d0ba8 400M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
ea480a30 401M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
61a0eb5b 402#
ea480a30 403v;int;num_regs;;;0;-1
0aba1244
EZ
404# This macro gives the number of pseudo-registers that live in the
405# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
406# These pseudo-registers may be aliases for other registers,
407# combinations of other registers, or they may be computed by GDB.
ea480a30 408v;int;num_pseudo_regs;;;0;0;;0
c2169756 409
175ff332
HZ
410# Assemble agent expression bytecode to collect pseudo-register REG.
411# Return -1 if something goes wrong, 0 otherwise.
ea480a30 412M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
175ff332
HZ
413
414# Assemble agent expression bytecode to push the value of pseudo-register
415# REG on the interpreter stack.
416# Return -1 if something goes wrong, 0 otherwise.
ea480a30 417M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
175ff332 418
272bb05c
JB
419# Some architectures can display additional information for specific
420# signals.
421# UIOUT is the output stream where the handler will place information.
422M;void;report_signal_info;struct ui_out *uiout, enum gdb_signal siggnal;uiout, siggnal
423
c2169756
AC
424# GDB's standard (or well known) register numbers. These can map onto
425# a real register or a pseudo (computed) register or not be defined at
1200cd6e 426# all (-1).
3e8c568d 427# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
ea480a30
SM
428v;int;sp_regnum;;;-1;-1;;0
429v;int;pc_regnum;;;-1;-1;;0
430v;int;ps_regnum;;;-1;-1;;0
431v;int;fp0_regnum;;;0;-1;;0
88c72b7d 432# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
ea480a30 433m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
88c72b7d 434# Provide a default mapping from a ecoff register number to a gdb REGNUM.
ea480a30 435m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
88c72b7d 436# Convert from an sdb register number to an internal gdb register number.
ea480a30 437m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
ba2b1c56 438# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
0fde2c53 439# Return -1 for bad REGNUM. Note: Several targets get this wrong.
ea480a30
SM
440m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
441m;const char *;register_name;int regnr;regnr;;0
9c04cab7 442
7b9ee6a8
DJ
443# Return the type of a register specified by the architecture. Only
444# the register cache should call this function directly; others should
445# use "register_type".
ea480a30 446M;struct type *;register_type;int reg_nr;reg_nr
9c04cab7 447
8bcb5208
AB
448# Generate a dummy frame_id for THIS_FRAME assuming that the frame is
449# a dummy frame. A dummy frame is created before an inferior call,
450# the frame_id returned here must match the frame_id that was built
451# for the inferior call. Usually this means the returned frame_id's
452# stack address should match the address returned by
453# gdbarch_push_dummy_call, and the returned frame_id's code address
454# should match the address at which the breakpoint was set in the dummy
455# frame.
456m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0
669fac23 457# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 458# deprecated_fp_regnum.
ea480a30 459v;int;deprecated_fp_regnum;;;-1;-1;;0
f3be58bc 460
cf84fa6b 461M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr
ea480a30
SM
462v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
463M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 464
7eb89530 465# Return true if the code of FRAME is writable.
ea480a30 466m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
7eb89530 467
ea480a30
SM
468m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
469m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
470M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
7c7651b2
AC
471# MAP a GDB RAW register number onto a simulator register number. See
472# also include/...-sim.h.
ea480a30
SM
473m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
474m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
475m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
eade6471
JB
476
477# Determine the address where a longjmp will land and save this address
478# in PC. Return nonzero on success.
479#
480# FRAME corresponds to the longjmp frame.
ea480a30 481F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
eade6471 482
104c1213 483#
ea480a30 484v;int;believe_pcc_promotion;;;;;;;
104c1213 485#
ea480a30
SM
486m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
487f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
488f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
9acbedc0 489# Construct a value representing the contents of register REGNUM in
2ed3c037 490# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
491# allocate and return a struct value with all value attributes
492# (but not the value contents) filled in.
ea480a30 493m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
104c1213 494#
ea480a30
SM
495m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
496m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
497M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
92ad9cd9 498
6a3a010b
MR
499# Return the return-value convention that will be used by FUNCTION
500# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
501# case the return convention is computed based only on VALTYPE.
502#
503# If READBUF is not NULL, extract the return value and save it in this buffer.
504#
505# If WRITEBUF is not NULL, it contains a return value which will be
506# stored into the appropriate register. This can be used when we want
507# to force the value returned by a function (see the "return" command
508# for instance).
ea480a30 509M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
92ad9cd9 510
18648a37
YQ
511# Return true if the return value of function is stored in the first hidden
512# parameter. In theory, this feature should be language-dependent, specified
513# by language and its ABI, such as C++. Unfortunately, compiler may
514# implement it to a target-dependent feature. So that we need such hook here
515# to be aware of this in GDB.
ea480a30 516m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
18648a37 517
ea480a30
SM
518m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
519M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
591a12a1
UW
520# On some platforms, a single function may provide multiple entry points,
521# e.g. one that is used for function-pointer calls and a different one
522# that is used for direct function calls.
523# In order to ensure that breakpoints set on the function will trigger
524# no matter via which entry point the function is entered, a platform
525# may provide the skip_entrypoint callback. It is called with IP set
526# to the main entry point of a function (as determined by the symbol table),
527# and should return the address of the innermost entry point, where the
528# actual breakpoint needs to be set. Note that skip_entrypoint is used
529# by GDB common code even when debugging optimized code, where skip_prologue
530# is not used.
ea480a30 531M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
591a12a1 532
ea480a30
SM
533f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
534m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
cd6c3b4f
YQ
535
536# Return the breakpoint kind for this target based on *PCPTR.
ea480a30 537m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
cd6c3b4f
YQ
538
539# Return the software breakpoint from KIND. KIND can have target
540# specific meaning like the Z0 kind parameter.
541# SIZE is set to the software breakpoint's length in memory.
ea480a30 542m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
cd6c3b4f 543
833b7ab5
YQ
544# Return the breakpoint kind for this target based on the current
545# processor state (e.g. the current instruction mode on ARM) and the
546# *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
ea480a30 547m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
833b7ab5 548
ea480a30
SM
549M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
550m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
551m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
552v;CORE_ADDR;decr_pc_after_break;;;0;;;0
782263ab
AC
553
554# A function can be addressed by either it's "pointer" (possibly a
555# descriptor address) or "entry point" (first executable instruction).
556# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 557# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
558# a simplified subset of that functionality - the function's address
559# corresponds to the "function pointer" and the function's start
560# corresponds to the "function entry point" - and hence is redundant.
561
ea480a30 562v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
782263ab 563
123dc839
DJ
564# Return the remote protocol register number associated with this
565# register. Normally the identity mapping.
ea480a30 566m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
123dc839 567
b2756930 568# Fetch the target specific address used to represent a load module.
ea480a30 569F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
6e056c81
JB
570
571# Return the thread-local address at OFFSET in the thread-local
572# storage for the thread PTID and the shared library or executable
573# file given by LM_ADDR. If that block of thread-local storage hasn't
574# been allocated yet, this function may throw an error. LM_ADDR may
575# be zero for statically linked multithreaded inferiors.
576
577M;CORE_ADDR;get_thread_local_address;ptid_t ptid, CORE_ADDR lm_addr, CORE_ADDR offset;ptid, lm_addr, offset
104c1213 578#
ea480a30 579v;CORE_ADDR;frame_args_skip;;;0;;;0
8bcb5208
AB
580m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0
581m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0
42efa47a
AC
582# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
583# frame-base. Enable frame-base before frame-unwind.
ea480a30 584F;int;frame_num_args;struct frame_info *frame;frame
104c1213 585#
ea480a30
SM
586M;CORE_ADDR;frame_align;CORE_ADDR address;address
587m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
588v;int;frame_red_zone_size
f0d4cc9e 589#
ea480a30 590m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
875e1767
AC
591# On some machines there are bits in addresses which are not really
592# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 593# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
594# we get a "real" address such as one would find in a symbol table.
595# This is used only for addresses of instructions, and even then I'm
596# not sure it's used in all contexts. It exists to deal with there
597# being a few stray bits in the PC which would mislead us, not as some
598# sort of generic thing to handle alignment or segmentation (it's
599# possible it should be in TARGET_READ_PC instead).
ea480a30 600m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
e6590a1b 601
a738ea1d
YQ
602# On some machines, not all bits of an address word are significant.
603# For example, on AArch64, the top bits of an address known as the "tag"
604# are ignored by the kernel, the hardware, etc. and can be regarded as
605# additional data associated with the address.
5969f0db 606v;int;significant_addr_bit;;;;;;0
a738ea1d 607
c193949e
LM
608# Return a string representation of the memory tag TAG.
609m;std::string;memtag_to_string;struct value *tag;tag;;default_memtag_to_string;;0
610
05558223
LM
611# Return true if ADDRESS contains a tag and false otherwise. ADDRESS
612# must be either a pointer or a reference type.
c193949e
LM
613m;bool;tagged_address_p;struct value *address;address;;default_tagged_address_p;;0
614
615# Return true if the tag from ADDRESS matches the memory tag for that
616# particular address. Return false otherwise.
617m;bool;memtag_matches_p;struct value *address;address;;default_memtag_matches_p;;0
618
619# Set the tags of type TAG_TYPE, for the memory address range
620# [ADDRESS, ADDRESS + LENGTH) to TAGS.
621# Return true if successful and false otherwise.
622m;bool;set_memtags;struct value *address, size_t length, const gdb::byte_vector \&tags, memtag_type tag_type;address, length, tags, tag_type;;default_set_memtags;;0
623
624# Return the tag of type TAG_TYPE associated with the memory address ADDRESS,
625# assuming ADDRESS is tagged.
626m;struct value *;get_memtag;struct value *address, memtag_type tag_type;address, tag_type;;default_get_memtag;;0
627
628# memtag_granule_size is the size of the allocation tag granule, for
629# architectures that support memory tagging.
630# This is 0 for architectures that do not support memory tagging.
631# For a non-zero value, this represents the number of bytes of memory per tag.
632v;CORE_ADDR;memtag_granule_size;;;;;;0
633
e6590a1b
UW
634# FIXME/cagney/2001-01-18: This should be split in two. A target method that
635# indicates if the target needs software single step. An ISA method to
636# implement it.
637#
e6590a1b
UW
638# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
639# target can single step. If not, then implement single step using breakpoints.
64c4637f 640#
93f9a11f
YQ
641# Return a vector of addresses on which the software single step
642# breakpoints should be inserted. NULL means software single step is
643# not used.
644# Multiple breakpoints may be inserted for some instructions such as
645# conditional branch. However, each implementation must always evaluate
646# the condition and only put the breakpoint at the branch destination if
647# the condition is true, so that we ensure forward progress when stepping
648# past a conditional branch to self.
a0ff9e1a 649F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
e6590a1b 650
3352ef37
AC
651# Return non-zero if the processor is executing a delay slot and a
652# further single-step is needed before the instruction finishes.
ea480a30 653M;int;single_step_through_delay;struct frame_info *frame;frame
f6c40618 654# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 655# disassembler. Perhaps objdump can handle it?
39503f82 656f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
ea480a30 657f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
d50355b6
MS
658
659
cfd8ab24 660# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
661# evaluates non-zero, this is the address where the debugger will place
662# a step-resume breakpoint to get us past the dynamic linker.
ea480a30 663m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
d50355b6 664# Some systems also have trampoline code for returning from shared libs.
ea480a30 665m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
d50355b6 666
1d509aa6
MM
667# Return true if PC lies inside an indirect branch thunk.
668m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
669
c12260ac
CV
670# A target might have problems with watchpoints as soon as the stack
671# frame of the current function has been destroyed. This mostly happens
c9cf6e20 672# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
673# is defined to return a non-zero value if either the given addr is one
674# instruction after the stack destroying instruction up to the trailing
675# return instruction or if we can figure out that the stack frame has
676# already been invalidated regardless of the value of addr. Targets
677# which don't suffer from that problem could just let this functionality
678# untouched.
ea480a30 679m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
3e29f34a
MR
680# Process an ELF symbol in the minimal symbol table in a backend-specific
681# way. Normally this hook is supposed to do nothing, however if required,
682# then this hook can be used to apply tranformations to symbols that are
683# considered special in some way. For example the MIPS backend uses it
684# to interpret \`st_other' information to mark compressed code symbols so
685# that they can be treated in the appropriate manner in the processing of
686# the main symbol table and DWARF-2 records.
ea480a30
SM
687F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
688f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
3e29f34a
MR
689# Process a symbol in the main symbol table in a backend-specific way.
690# Normally this hook is supposed to do nothing, however if required,
691# then this hook can be used to apply tranformations to symbols that
692# are considered special in some way. This is currently used by the
693# MIPS backend to make sure compressed code symbols have the ISA bit
694# set. This in turn is needed for symbol values seen in GDB to match
695# the values used at the runtime by the program itself, for function
696# and label references.
ea480a30 697f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
3e29f34a
MR
698# Adjust the address retrieved from a DWARF-2 record other than a line
699# entry in a backend-specific way. Normally this hook is supposed to
700# return the address passed unchanged, however if that is incorrect for
701# any reason, then this hook can be used to fix the address up in the
702# required manner. This is currently used by the MIPS backend to make
703# sure addresses in FDE, range records, etc. referring to compressed
704# code have the ISA bit set, matching line information and the symbol
705# table.
ea480a30 706f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
3e29f34a
MR
707# Adjust the address updated by a line entry in a backend-specific way.
708# Normally this hook is supposed to return the address passed unchanged,
709# however in the case of inconsistencies in these records, this hook can
710# be used to fix them up in the required manner. This is currently used
711# by the MIPS backend to make sure all line addresses in compressed code
712# are presented with the ISA bit set, which is not always the case. This
713# in turn ensures breakpoint addresses are correctly matched against the
714# stop PC.
ea480a30
SM
715f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
716v;int;cannot_step_breakpoint;;;0;0;;0
7ea65f08
PA
717# See comment in target.h about continuable, steppable and
718# non-steppable watchpoints.
ea480a30 719v;int;have_nonsteppable_watchpoint;;;0;0;;0
314ad88d
PA
720F;type_instance_flags;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
721M;const char *;address_class_type_flags_to_name;type_instance_flags type_flags;type_flags
b41c5a85
JW
722# Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
723# FS are passed from the generic execute_cfa_program function.
ea480a30 724m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
69f97648
SM
725
726# Return the appropriate type_flags for the supplied address class.
314ad88d
PA
727# This function should return true if the address class was recognized and
728# type_flags was set, false otherwise.
729M;bool;address_class_name_to_type_flags;const char *name, type_instance_flags *type_flags_ptr;name, type_flags_ptr
b59ff9d5 730# Is a register in a group
ea480a30 731m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
f6214256 732# Fetch the pointer to the ith function argument.
ea480a30 733F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
6ce6d90f 734
5aa82d05
AA
735# Iterate over all supported register notes in a core file. For each
736# supported register note section, the iterator must call CB and pass
737# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
738# the supported register note sections based on the current register
739# values. Otherwise it should enumerate all supported register note
740# sections.
ea480a30 741M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
17ea7499 742
6432734d 743# Create core file notes
c21f37a8 744M;gdb::unique_xmalloc_ptr<char>;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
6432734d 745
35c2fab7 746# Find core file memory regions
ea480a30 747M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
35c2fab7 748
de584861 749# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
750# core file into buffer READBUF with length LEN. Return the number of bytes read
751# (zero indicates failure).
752# failed, otherwise, return the red length of READBUF.
ea480a30 753M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
de584861 754
356a5233
JB
755# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
756# libraries list from core file into buffer READBUF with length LEN.
c09f20e4 757# Return the number of bytes read (zero indicates failure).
ea480a30 758M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
356a5233 759
c0edd9ed 760# How the core target converts a PTID from a core file to a string.
a068643d 761M;std::string;core_pid_to_str;ptid_t ptid;ptid
28439f5e 762
4dfc5dbc 763# How the core target extracts the name of a thread from a core file.
ea480a30 764M;const char *;core_thread_name;struct thread_info *thr;thr
4dfc5dbc 765
382b69bb
JB
766# Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
767# from core file into buffer READBUF with length LEN. Return the number
768# of bytes read (zero indicates EOF, a negative value indicates failure).
769M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
770
a78c2d62 771# BFD target to use when generating a core file.
ea480a30 772V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
a78c2d62 773
0d5de010
DJ
774# If the elements of C++ vtables are in-place function descriptors rather
775# than normal function pointers (which may point to code or a descriptor),
776# set this to one.
ea480a30 777v;int;vtable_function_descriptors;;;0;0;;0
0d5de010
DJ
778
779# Set if the least significant bit of the delta is used instead of the least
780# significant bit of the pfn for pointers to virtual member functions.
ea480a30 781v;int;vbit_in_delta;;;0;0;;0
6d350bb5
UW
782
783# Advance PC to next instruction in order to skip a permanent breakpoint.
ea480a30 784f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
1c772458 785
1668ae25 786# The maximum length of an instruction on this architecture in bytes.
ea480a30 787V;ULONGEST;max_insn_length;;;0;0
237fc4c9
PA
788
789# Copy the instruction at FROM to TO, and make any adjustments
790# necessary to single-step it at that address.
791#
792# REGS holds the state the thread's registers will have before
793# executing the copied instruction; the PC in REGS will refer to FROM,
794# not the copy at TO. The caller should update it to point at TO later.
795#
796# Return a pointer to data of the architecture's choice to be passed
19b187a9 797# to gdbarch_displaced_step_fixup.
237fc4c9
PA
798#
799# For a general explanation of displaced stepping and how GDB uses it,
800# see the comments in infrun.c.
801#
802# The TO area is only guaranteed to have space for
803# gdbarch_max_insn_length (arch) bytes, so this function must not
804# write more bytes than that to that area.
805#
806# If you do not provide this function, GDB assumes that the
807# architecture does not support displaced stepping.
808#
7f03bd92
PA
809# If the instruction cannot execute out of line, return NULL. The
810# core falls back to stepping past the instruction in-line instead in
811# that case.
1152d984 812M;displaced_step_copy_insn_closure_up;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
237fc4c9 813
58103c33
SM
814# Return true if GDB should use hardware single-stepping to execute a displaced
815# step instruction. If false, GDB will simply restart execution at the
816# displaced instruction location, and it is up to the target to ensure GDB will
817# receive control again (e.g. by placing a software breakpoint instruction into
818# the displaced instruction buffer).
819#
820# The default implementation returns false on all targets that provide a
821# gdbarch_software_single_step routine, and true otherwise.
40a53766 822m;bool;displaced_step_hw_singlestep;void;;;default_displaced_step_hw_singlestep;;0
99e40580 823
237fc4c9
PA
824# Fix up the state resulting from successfully single-stepping a
825# displaced instruction, to give the result we would have gotten from
826# stepping the instruction in its original location.
827#
828# REGS is the register state resulting from single-stepping the
829# displaced instruction.
830#
831# CLOSURE is the result from the matching call to
832# gdbarch_displaced_step_copy_insn.
833#
834# If you provide gdbarch_displaced_step_copy_insn.but not this
835# function, then GDB assumes that no fixup is needed after
836# single-stepping the instruction.
837#
838# For a general explanation of displaced stepping and how GDB uses it,
839# see the comments in infrun.c.
1152d984 840M;void;displaced_step_fixup;struct displaced_step_copy_insn_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
237fc4c9 841
187b041e 842# Prepare THREAD for it to displaced step the instruction at its current PC.
237fc4c9 843#
187b041e
SM
844# Throw an exception if any unexpected error happens.
845M;displaced_step_prepare_status;displaced_step_prepare;thread_info *thread, CORE_ADDR &displaced_pc;thread, displaced_pc
846
847# Clean up after a displaced step of THREAD.
848m;displaced_step_finish_status;displaced_step_finish;thread_info *thread, gdb_signal sig;thread, sig;;NULL;;(! gdbarch->displaced_step_finish) != (! gdbarch->displaced_step_prepare)
849
850# Return the closure associated to the displaced step buffer that is at ADDR.
851F;const displaced_step_copy_insn_closure *;displaced_step_copy_insn_closure_by_addr;inferior *inf, CORE_ADDR addr;inf, addr
852
853# PARENT_INF has forked and CHILD_PTID is the ptid of the child. Restore the
854# contents of all displaced step buffers in the child's address space.
855f;void;displaced_step_restore_all_in_ptid;inferior *parent_inf, ptid_t child_ptid;parent_inf, child_ptid
237fc4c9 856
dde08ee1
PA
857# Relocate an instruction to execute at a different address. OLDLOC
858# is the address in the inferior memory where the instruction to
859# relocate is currently at. On input, TO points to the destination
860# where we want the instruction to be copied (and possibly adjusted)
861# to. On output, it points to one past the end of the resulting
862# instruction(s). The effect of executing the instruction at TO shall
863# be the same as if executing it at FROM. For example, call
864# instructions that implicitly push the return address on the stack
865# should be adjusted to return to the instruction after OLDLOC;
866# relative branches, and other PC-relative instructions need the
867# offset adjusted; etc.
ea480a30 868M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
dde08ee1 869
1c772458 870# Refresh overlay mapped state for section OSECT.
ea480a30 871F;void;overlay_update;struct obj_section *osect;osect
4eb0ad19 872
ea480a30 873M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
149ad273 874
203c3895 875# Set if the address in N_SO or N_FUN stabs may be zero.
ea480a30 876v;int;sofun_address_maybe_missing;;;0;0;;0
1cded358 877
0508c3ec
HZ
878# Parse the instruction at ADDR storing in the record execution log
879# the registers REGCACHE and memory ranges that will be affected when
880# the instruction executes, along with their current values.
881# Return -1 if something goes wrong, 0 otherwise.
ea480a30 882M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
0508c3ec 883
3846b520
HZ
884# Save process state after a signal.
885# Return -1 if something goes wrong, 0 otherwise.
ea480a30 886M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
3846b520 887
22203bbf 888# Signal translation: translate inferior's signal (target's) number
86b49880
PA
889# into GDB's representation. The implementation of this method must
890# be host independent. IOW, don't rely on symbols of the NAT_FILE
891# header (the nm-*.h files), the host <signal.h> header, or similar
892# headers. This is mainly used when cross-debugging core files ---
893# "Live" targets hide the translation behind the target interface
1f8cf220 894# (target_wait, target_resume, etc.).
ea480a30 895M;enum gdb_signal;gdb_signal_from_target;int signo;signo
60c5725c 896
eb14d406
SDJ
897# Signal translation: translate the GDB's internal signal number into
898# the inferior's signal (target's) representation. The implementation
899# of this method must be host independent. IOW, don't rely on symbols
900# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
901# header, or similar headers.
902# Return the target signal number if found, or -1 if the GDB internal
903# signal number is invalid.
ea480a30 904M;int;gdb_signal_to_target;enum gdb_signal signal;signal
eb14d406 905
4aa995e1
PA
906# Extra signal info inspection.
907#
908# Return a type suitable to inspect extra signal information.
ea480a30 909M;struct type *;get_siginfo_type;void;
4aa995e1 910
60c5725c 911# Record architecture-specific information from the symbol table.
ea480a30 912M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
50c71eaf 913
a96d9b2e
SDJ
914# Function for the 'catch syscall' feature.
915
916# Get architecture-specific system calls information from registers.
00431a78 917M;LONGEST;get_syscall_number;thread_info *thread;thread
a96d9b2e 918
458c8db8 919# The filename of the XML syscall for this architecture.
ea480a30 920v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
458c8db8
SDJ
921
922# Information about system calls from this architecture
ea480a30 923v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
458c8db8 924
55aa24fb
SDJ
925# SystemTap related fields and functions.
926
05c0465e
SDJ
927# A NULL-terminated array of prefixes used to mark an integer constant
928# on the architecture's assembly.
55aa24fb
SDJ
929# For example, on x86 integer constants are written as:
930#
931# \$10 ;; integer constant 10
932#
933# in this case, this prefix would be the character \`\$\'.
ea480a30 934v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 935
05c0465e
SDJ
936# A NULL-terminated array of suffixes used to mark an integer constant
937# on the architecture's assembly.
ea480a30 938v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 939
05c0465e
SDJ
940# A NULL-terminated array of prefixes used to mark a register name on
941# the architecture's assembly.
55aa24fb
SDJ
942# For example, on x86 the register name is written as:
943#
944# \%eax ;; register eax
945#
946# in this case, this prefix would be the character \`\%\'.
ea480a30 947v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 948
05c0465e
SDJ
949# A NULL-terminated array of suffixes used to mark a register name on
950# the architecture's assembly.
ea480a30 951v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 952
05c0465e
SDJ
953# A NULL-terminated array of prefixes used to mark a register
954# indirection on the architecture's assembly.
55aa24fb
SDJ
955# For example, on x86 the register indirection is written as:
956#
957# \(\%eax\) ;; indirecting eax
958#
959# in this case, this prefix would be the charater \`\(\'.
960#
961# Please note that we use the indirection prefix also for register
962# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 963v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 964
05c0465e
SDJ
965# A NULL-terminated array of suffixes used to mark a register
966# indirection on the architecture's assembly.
55aa24fb
SDJ
967# For example, on x86 the register indirection is written as:
968#
969# \(\%eax\) ;; indirecting eax
970#
971# in this case, this prefix would be the charater \`\)\'.
972#
973# Please note that we use the indirection suffix also for register
974# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 975v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 976
05c0465e 977# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
978#
979# For example, on PPC a register is represented by a number in the assembly
980# language (e.g., \`10\' is the 10th general-purpose register). However,
981# inside GDB this same register has an \`r\' appended to its name, so the 10th
982# register would be represented as \`r10\' internally.
ea480a30 983v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
984
985# Suffix used to name a register using GDB's nomenclature.
ea480a30 986v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
987
988# Check if S is a single operand.
989#
990# Single operands can be:
991# \- Literal integers, e.g. \`\$10\' on x86
992# \- Register access, e.g. \`\%eax\' on x86
993# \- Register indirection, e.g. \`\(\%eax\)\' on x86
994# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
995#
996# This function should check for these patterns on the string
997# and return 1 if some were found, or zero otherwise. Please try to match
998# as much info as you can from the string, i.e., if you have to match
999# something like \`\(\%\', do not match just the \`\(\'.
ea480a30 1000M;int;stap_is_single_operand;const char *s;s
55aa24fb
SDJ
1001
1002# Function used to handle a "special case" in the parser.
1003#
1004# A "special case" is considered to be an unknown token, i.e., a token
1005# that the parser does not know how to parse. A good example of special
1006# case would be ARM's register displacement syntax:
1007#
1008# [R0, #4] ;; displacing R0 by 4
1009#
1010# Since the parser assumes that a register displacement is of the form:
1011#
1012# <number> <indirection_prefix> <register_name> <indirection_suffix>
1013#
1014# it means that it will not be able to recognize and parse this odd syntax.
1015# Therefore, we should add a special case function that will handle this token.
1016#
1017# This function should generate the proper expression form of the expression
1018# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1019# and so on). It should also return 1 if the parsing was successful, or zero
1020# if the token was not recognized as a special token (in this case, returning
1021# zero means that the special parser is deferring the parsing to the generic
1022# parser), and should advance the buffer pointer (p->arg).
4c5e7a93 1023M;expr::operation_up;stap_parse_special_token;struct stap_parse_info *p;p
55aa24fb 1024
7d7571f0
SDJ
1025# Perform arch-dependent adjustments to a register name.
1026#
1027# In very specific situations, it may be necessary for the register
1028# name present in a SystemTap probe's argument to be handled in a
1029# special way. For example, on i386, GCC may over-optimize the
1030# register allocation and use smaller registers than necessary. In
1031# such cases, the client that is reading and evaluating the SystemTap
1032# probe (ourselves) will need to actually fetch values from the wider
1033# version of the register in question.
1034#
1035# To illustrate the example, consider the following probe argument
1036# (i386):
1037#
1038# 4@%ax
1039#
1040# This argument says that its value can be found at the %ax register,
1041# which is a 16-bit register. However, the argument's prefix says
1042# that its type is "uint32_t", which is 32-bit in size. Therefore, in
1043# this case, GDB should actually fetch the probe's value from register
1044# %eax, not %ax. In this scenario, this function would actually
1045# replace the register name from %ax to %eax.
1046#
1047# The rationale for this can be found at PR breakpoints/24541.
6b78c3f8 1048M;std::string;stap_adjust_register;struct stap_parse_info *p, const std::string \&regname, int regnum;p, regname, regnum
7d7571f0 1049
8b367e17
JM
1050# DTrace related functions.
1051
1052# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1053# NARG must be >= 0.
482ddd69 1054M;expr::operation_up;dtrace_parse_probe_argument;int narg;narg
8b367e17
JM
1055
1056# True if the given ADDR does not contain the instruction sequence
1057# corresponding to a disabled DTrace is-enabled probe.
ea480a30 1058M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
8b367e17
JM
1059
1060# Enable a DTrace is-enabled probe at ADDR.
ea480a30 1061M;void;dtrace_enable_probe;CORE_ADDR addr;addr
8b367e17
JM
1062
1063# Disable a DTrace is-enabled probe at ADDR.
ea480a30 1064M;void;dtrace_disable_probe;CORE_ADDR addr;addr
55aa24fb 1065
50c71eaf
PA
1066# True if the list of shared libraries is one and only for all
1067# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1068# This usually means that all processes, although may or may not share
1069# an address space, will see the same set of symbols at the same
1070# addresses.
ea480a30 1071v;int;has_global_solist;;;0;0;;0
2567c7d9
PA
1072
1073# On some targets, even though each inferior has its own private
1074# address space, the debug interface takes care of making breakpoints
1075# visible to all address spaces automatically. For such cases,
1076# this property should be set to true.
ea480a30 1077v;int;has_global_breakpoints;;;0;0;;0
6c95b8df
PA
1078
1079# True if inferiors share an address space (e.g., uClinux).
ea480a30 1080m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
7a697b8d
SS
1081
1082# True if a fast tracepoint can be set at an address.
281d762b 1083m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
75cebea9 1084
5f034a78
MK
1085# Guess register state based on tracepoint location. Used for tracepoints
1086# where no registers have been collected, but there's only one location,
1087# allowing us to guess the PC value, and perhaps some other registers.
1088# On entry, regcache has all registers marked as unavailable.
ea480a30 1089m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
5f034a78 1090
f870a310 1091# Return the "auto" target charset.
ea480a30 1092f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
f870a310 1093# Return the "auto" target wide charset.
ea480a30 1094f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
08105857
PA
1095
1096# If non-empty, this is a file extension that will be opened in place
1097# of the file extension reported by the shared library list.
1098#
1099# This is most useful for toolchains that use a post-linker tool,
1100# where the names of the files run on the target differ in extension
1101# compared to the names of the files GDB should load for debug info.
ea480a30 1102v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1103
1104# If true, the target OS has DOS-based file system semantics. That
1105# is, absolute paths include a drive name, and the backslash is
1106# considered a directory separator.
ea480a30 1107v;int;has_dos_based_file_system;;;0;0;;0
6710bf39
SS
1108
1109# Generate bytecodes to collect the return address in a frame.
1110# Since the bytecodes run on the target, possibly with GDB not even
1111# connected, the full unwinding machinery is not available, and
1112# typically this function will issue bytecodes for one or more likely
1113# places that the return address may be found.
ea480a30 1114m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
6710bf39 1115
3030c96e 1116# Implement the "info proc" command.
ea480a30 1117M;void;info_proc;const char *args, enum info_proc_what what;args, what
3030c96e 1118
451b7c33
TT
1119# Implement the "info proc" command for core files. Noe that there
1120# are two "info_proc"-like methods on gdbarch -- one for core files,
1121# one for live targets.
ea480a30 1122M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
451b7c33 1123
19630284
JB
1124# Iterate over all objfiles in the order that makes the most sense
1125# for the architecture to make global symbol searches.
1126#
1127# CB is a callback function where OBJFILE is the objfile to be searched,
1128# and CB_DATA a pointer to user-defined data (the same data that is passed
1129# when calling this gdbarch method). The iteration stops if this function
1130# returns nonzero.
1131#
1132# CB_DATA is a pointer to some user-defined data to be passed to
1133# the callback.
1134#
1135# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1136# inspected when the symbol search was requested.
ea480a30 1137m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
19630284 1138
7e35103a 1139# Ravenscar arch-dependent ops.
ea480a30 1140v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1141
1142# Return non-zero if the instruction at ADDR is a call; zero otherwise.
ea480a30 1143m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
c2170eef
MM
1144
1145# Return non-zero if the instruction at ADDR is a return; zero otherwise.
ea480a30 1146m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
c2170eef
MM
1147
1148# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
ea480a30 1149m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
27a48a92 1150
5133a315
LM
1151# Return true if there's a program/permanent breakpoint planted in
1152# memory at ADDRESS, return false otherwise.
1153m;bool;program_breakpoint_here_p;CORE_ADDR address;address;;default_program_breakpoint_here_p;;0
1154
27a48a92
MK
1155# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1156# Return 0 if *READPTR is already at the end of the buffer.
1157# Return -1 if there is insufficient buffer for a whole entry.
1158# Return 1 if an entry was read into *TYPEP and *VALP.
ea480a30 1159M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
3437254d 1160
2faa3447
JB
1161# Print the description of a single auxv entry described by TYPE and VAL
1162# to FILE.
ea480a30 1163m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
2faa3447 1164
3437254d
PA
1165# Find the address range of the current inferior's vsyscall/vDSO, and
1166# write it to *RANGE. If the vsyscall's length can't be determined, a
1167# range with zero length is returned. Returns true if the vsyscall is
1168# found, false otherwise.
ea480a30 1169m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
f208eee0
JK
1170
1171# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1172# PROT has GDB_MMAP_PROT_* bitmask format.
1173# Throw an error if it is not possible. Returned address is always valid.
ea480a30 1174f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
f208eee0 1175
7f361056
JK
1176# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1177# Print a warning if it is not possible.
ea480a30 1178f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
7f361056 1179
f208eee0
JK
1180# Return string (caller has to use xfree for it) with options for GCC
1181# to produce code for this target, typically "-m64", "-m32" or "-m31".
1182# These options are put before CU's DW_AT_producer compilation options so that
953cff56
TT
1183# they can override it.
1184m;std::string;gcc_target_options;void;;;default_gcc_target_options;;0
ac04f72b
TT
1185
1186# Return a regular expression that matches names used by this
1187# architecture in GNU configury triplets. The result is statically
1188# allocated and must not be freed. The default implementation simply
1189# returns the BFD architecture name, which is correct in nearly every
1190# case.
ea480a30 1191m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
3374165f
SM
1192
1193# Return the size in 8-bit bytes of an addressable memory unit on this
1194# architecture. This corresponds to the number of 8-bit bytes associated to
1195# each address in memory.
ea480a30 1196m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
3374165f 1197
65b48a81 1198# Functions for allowing a target to modify its disassembler options.
471b9d15 1199v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
ea480a30 1200v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
471b9d15 1201v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
65b48a81 1202
5561fc30
AB
1203# Type alignment override method. Return the architecture specific
1204# alignment required for TYPE. If there is no special handling
1205# required for TYPE then return the value 0, GDB will then apply the
1206# default rules as laid out in gdbtypes.c:type_align.
2b4424c3
TT
1207m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1208
aa7ca1bb
AH
1209# Return a string containing any flags for the given PC in the given FRAME.
1210f;std::string;get_pc_address_flags;frame_info *frame, CORE_ADDR pc;frame, pc;;default_get_pc_address_flags;;0
1211
7e183d27 1212# Read core file mappings
aa95b2d4 1213m;void;read_core_file_mappings;struct bfd *cbfd, read_core_file_mappings_pre_loop_ftype pre_loop_cb, read_core_file_mappings_loop_ftype loop_cb;cbfd, pre_loop_cb, loop_cb;;default_read_core_file_mappings;;0
7e183d27 1214
104c1213 1215EOF
104c1213
JM
1216}
1217
0b8f9e4d
AC
1218#
1219# The .log file
1220#
41a77cba 1221exec > gdbarch.log
34620563 1222function_list | while do_read
0b8f9e4d
AC
1223do
1224 cat <<EOF
1207375d 1225${class} ${returntype:-} ${function} (${formal:-})
104c1213 1226EOF
3d9a5942
AC
1227 for r in ${read}
1228 do
a6fc5ffc 1229 eval echo "\" ${r}=\${${r}}\""
3d9a5942 1230 done
f0d4cc9e 1231 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1232 then
66d659b1 1233 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1234 kill $$
1235 exit 1
1236 fi
759cea5e 1237 if [ "x${invalid_p}" = "x0" ] && [ -n "${postdefault}" ]
f0d4cc9e
AC
1238 then
1239 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1240 kill $$
1241 exit 1
1242 fi
a72293e2
AC
1243 if class_is_multiarch_p
1244 then
1245 if class_is_predicate_p ; then :
1246 elif test "x${predefault}" = "x"
1247 then
2f9b146e 1248 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1249 kill $$
1250 exit 1
1251 fi
1252 fi
3d9a5942 1253 echo ""
0b8f9e4d
AC
1254done
1255
1256exec 1>&2
0b8f9e4d 1257
104c1213
JM
1258
1259copyright ()
1260{
1261cat <<EOF
c4bfde41
JK
1262/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1263/* vi:set ro: */
59233f88 1264
104c1213 1265/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1266
b5b5650a 1267 Copyright (C) 1998-2021 Free Software Foundation, Inc.
104c1213
JM
1268
1269 This file is part of GDB.
1270
1271 This program is free software; you can redistribute it and/or modify
1272 it under the terms of the GNU General Public License as published by
50efebf8 1273 the Free Software Foundation; either version 3 of the License, or
104c1213 1274 (at your option) any later version.
618f726f 1275
104c1213
JM
1276 This program is distributed in the hope that it will be useful,
1277 but WITHOUT ANY WARRANTY; without even the implied warranty of
1278 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1279 GNU General Public License for more details.
618f726f 1280
104c1213 1281 You should have received a copy of the GNU General Public License
50efebf8 1282 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1283
41a77cba 1284/* This file was created with the aid of \`\`gdbarch.sh''. */
104c1213
JM
1285
1286EOF
1287}
1288
1289#
1290# The .h file
1291#
1292
1293exec > new-gdbarch.h
1294copyright
1295cat <<EOF
1296#ifndef GDBARCH_H
1297#define GDBARCH_H
1298
a0ff9e1a 1299#include <vector>
eb7a547a 1300#include "frame.h"
65b48a81 1301#include "dis-asm.h"
284a0e3c 1302#include "gdb_obstack.h"
fdb61c6c 1303#include "infrun.h"
fe4b2ee6 1304#include "osabi.h"
c7acb87b 1305#include "displaced-stepping.h"
eb7a547a 1306
da3331ec
AC
1307struct floatformat;
1308struct ui_file;
104c1213 1309struct value;
b6af0555 1310struct objfile;
1c772458 1311struct obj_section;
a2cf933a 1312struct minimal_symbol;
049ee0e4 1313struct regcache;
b59ff9d5 1314struct reggroup;
6ce6d90f 1315struct regset;
a89aa300 1316struct disassemble_info;
e2d0e7eb 1317struct target_ops;
030f20e1 1318struct obstack;
8181d85f 1319struct bp_target_info;
424163ea 1320struct target_desc;
3e29f34a 1321struct symbol;
a96d9b2e 1322struct syscall;
175ff332 1323struct agent_expr;
6710bf39 1324struct axs_value;
55aa24fb 1325struct stap_parse_info;
37eedb39 1326struct expr_builder;
7e35103a 1327struct ravenscar_arch_ops;
3437254d 1328struct mem_range;
458c8db8 1329struct syscalls_info;
4dfc5dbc 1330struct thread_info;
012b3a21 1331struct ui_out;
187b041e 1332struct inferior;
104c1213 1333
8a526fa6
PA
1334#include "regcache.h"
1335
345bd07c
SM
1336struct gdbarch_tdep {};
1337
6ecd4729
PA
1338/* The architecture associated with the inferior through the
1339 connection to the target.
1340
1341 The architecture vector provides some information that is really a
1342 property of the inferior, accessed through a particular target:
1343 ptrace operations; the layout of certain RSP packets; the solib_ops
1344 vector; etc. To differentiate architecture accesses to
1345 per-inferior/target properties from
1346 per-thread/per-frame/per-objfile properties, accesses to
1347 per-inferior/target properties should be made through this
1348 gdbarch. */
1349
1350/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1351extern struct gdbarch *target_gdbarch (void);
6ecd4729 1352
19630284
JB
1353/* Callback type for the 'iterate_over_objfiles_in_search_order'
1354 gdbarch method. */
1355
1356typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1357 (struct objfile *objfile, void *cb_data);
5aa82d05 1358
1528345d
AA
1359/* Callback type for regset section iterators. The callback usually
1360 invokes the REGSET's supply or collect method, to which it must
a616bb94
AH
1361 pass a buffer - for collects this buffer will need to be created using
1362 COLLECT_SIZE, for supply the existing buffer being read from should
1363 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1364 is used for diagnostic messages. CB_DATA should have been passed
1365 unchanged through the iterator. */
1528345d 1366
5aa82d05 1367typedef void (iterate_over_regset_sections_cb)
a616bb94
AH
1368 (const char *sect_name, int supply_size, int collect_size,
1369 const struct regset *regset, const char *human_name, void *cb_data);
c5ac5cbb
AH
1370
1371/* For a function call, does the function return a value using a
1372 normal value return or a structure return - passing a hidden
1373 argument pointing to storage. For the latter, there are two
1374 cases: language-mandated structure return and target ABI
1375 structure return. */
1376
1377enum function_call_return_method
1378{
1379 /* Standard value return. */
1380 return_method_normal = 0,
1381
1382 /* Language ABI structure return. This is handled
1383 by passing the return location as the first parameter to
1384 the function, even preceding "this". */
1385 return_method_hidden_param,
1386
1387 /* Target ABI struct return. This is target-specific; for instance,
1388 on ia64 the first argument is passed in out0 but the hidden
1389 structure return pointer would normally be passed in r8. */
1390 return_method_struct,
1391};
1392
c193949e
LM
1393enum class memtag_type
1394{
1395 /* Logical tag, the tag that is stored in unused bits of a pointer to a
1396 virtual address. */
1397 logical = 0,
1398
1399 /* Allocation tag, the tag that is associated with every granule of memory in
1400 the physical address space. Allocation tags are used to validate memory
1401 accesses via pointers containing logical tags. */
1402 allocation,
1403};
1404
aa95b2d4
AM
1405/* Callback types for 'read_core_file_mappings' gdbarch method. */
1406
1407using read_core_file_mappings_pre_loop_ftype =
1408 gdb::function_view<void (ULONGEST count)>;
1409
1410using read_core_file_mappings_loop_ftype =
1411 gdb::function_view<void (int num,
1412 ULONGEST start,
1413 ULONGEST end,
1414 ULONGEST file_ofs,
1415 const char *filename,
1416 const bfd_build_id *build_id)>;
104c1213
JM
1417EOF
1418
1419# function typedef's
3d9a5942
AC
1420printf "\n"
1421printf "\n"
0963b4bd 1422printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1423function_list | while do_read
104c1213 1424do
2ada493a
AC
1425 if class_is_info_p
1426 then
3d9a5942 1427 printf "\n"
8d113d13
SM
1428 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1429 printf "/* set_gdbarch_%s() - not applicable - pre-initialized. */\n" "$function"
2ada493a 1430 fi
104c1213
JM
1431done
1432
1433# function typedef's
3d9a5942
AC
1434printf "\n"
1435printf "\n"
0963b4bd 1436printf "/* The following are initialized by the target dependent code. */\n"
34620563 1437function_list | while do_read
104c1213 1438do
72e74a21 1439 if [ -n "${comment}" ]
34620563
AC
1440 then
1441 echo "${comment}" | sed \
1442 -e '2 s,#,/*,' \
1443 -e '3,$ s,#, ,' \
1444 -e '$ s,$, */,'
1445 fi
412d5987
AC
1446
1447 if class_is_predicate_p
2ada493a 1448 then
412d5987 1449 printf "\n"
39535193 1450 printf "extern bool gdbarch_%s_p (struct gdbarch *gdbarch);\n" "$function"
4a5c6a1d 1451 fi
2ada493a
AC
1452 if class_is_variable_p
1453 then
3d9a5942 1454 printf "\n"
8d113d13
SM
1455 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1456 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, %s %s);\n" "$function" "$returntype" "$function"
2ada493a
AC
1457 fi
1458 if class_is_function_p
1459 then
3d9a5942 1460 printf "\n"
72e74a21 1461 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d 1462 then
8d113d13 1463 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch);\n" "$returntype" "$function"
4a5c6a1d
AC
1464 elif class_is_multiarch_p
1465 then
8d113d13 1466 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
4a5c6a1d 1467 else
8d113d13 1468 printf "typedef %s (gdbarch_%s_ftype) (%s);\n" "$returntype" "$function" "$formal"
4a5c6a1d 1469 fi
72e74a21 1470 if [ "x${formal}" = "xvoid" ]
104c1213 1471 then
8d113d13 1472 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
104c1213 1473 else
8d113d13 1474 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
104c1213 1475 fi
8d113d13 1476 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, gdbarch_%s_ftype *%s);\n" "$function" "$function" "$function"
2ada493a 1477 fi
104c1213
JM
1478done
1479
1480# close it off
1481cat <<EOF
1482
1483extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1484
1485
1486/* Mechanism for co-ordinating the selection of a specific
1487 architecture.
1488
1489 GDB targets (*-tdep.c) can register an interest in a specific
1490 architecture. Other GDB components can register a need to maintain
1491 per-architecture data.
1492
1493 The mechanisms below ensures that there is only a loose connection
1494 between the set-architecture command and the various GDB
0fa6923a 1495 components. Each component can independently register their need
104c1213
JM
1496 to maintain architecture specific data with gdbarch.
1497
1498 Pragmatics:
1499
1500 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1501 didn't scale.
1502
1503 The more traditional mega-struct containing architecture specific
1504 data for all the various GDB components was also considered. Since
0fa6923a 1505 GDB is built from a variable number of (fairly independent)
104c1213 1506 components it was determined that the global aproach was not
0963b4bd 1507 applicable. */
104c1213
JM
1508
1509
1510/* Register a new architectural family with GDB.
1511
1512 Register support for the specified ARCHITECTURE with GDB. When
1513 gdbarch determines that the specified architecture has been
1514 selected, the corresponding INIT function is called.
1515
1516 --
1517
1518 The INIT function takes two parameters: INFO which contains the
1519 information available to gdbarch about the (possibly new)
1520 architecture; ARCHES which is a list of the previously created
1521 \`\`struct gdbarch'' for this architecture.
1522
0f79675b 1523 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1524 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1525
1526 The ARCHES parameter is a linked list (sorted most recently used)
1527 of all the previously created architures for this architecture
1528 family. The (possibly NULL) ARCHES->gdbarch can used to access
1529 values from the previously selected architecture for this
59837fe0 1530 architecture family.
104c1213
JM
1531
1532 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1533 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1534 gdbarch'' from the ARCHES list - indicating that the new
1535 architecture is just a synonym for an earlier architecture (see
1536 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1537 - that describes the selected architecture (see gdbarch_alloc()).
1538
1539 The DUMP_TDEP function shall print out all target specific values.
1540 Care should be taken to ensure that the function works in both the
0963b4bd 1541 multi-arch and non- multi-arch cases. */
104c1213
JM
1542
1543struct gdbarch_list
1544{
1545 struct gdbarch *gdbarch;
1546 struct gdbarch_list *next;
1547};
1548
1549struct gdbarch_info
1550{
b447dd03
SM
1551 gdbarch_info ()
1552 /* Ensure the union is zero-initialized. Relies on the fact that there's
1553 no member larger than TDESC_DATA. */
1554 : tdesc_data ()
1555 {}
104c1213 1556
b447dd03 1557 const struct bfd_arch_info *bfd_arch_info = nullptr;
104c1213 1558
b447dd03 1559 enum bfd_endian byte_order = BFD_ENDIAN_UNKNOWN;
9d4fde75 1560
b447dd03
SM
1561 enum bfd_endian byte_order_for_code = BFD_ENDIAN_UNKNOWN;
1562
1563 bfd *abfd = nullptr;
104c1213 1564
0dba2a6c
MR
1565 union
1566 {
0dba2a6c
MR
1567 /* Architecture-specific target description data. Numerous targets
1568 need only this, so give them an easy way to hold it. */
1569 struct tdesc_arch_data *tdesc_data;
1570
1571 /* SPU file system ID. This is a single integer, so using the
1572 generic form would only complicate code. Other targets may
1573 reuse this member if suitable. */
1574 int *id;
1575 };
4be87837 1576
b447dd03 1577 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
424163ea 1578
b447dd03 1579 const struct target_desc *target_desc = nullptr;
104c1213
JM
1580};
1581
1582typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1583typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1584
4b9b3959 1585/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1586extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1587
4b9b3959 1588extern void gdbarch_register (enum bfd_architecture architecture,
dda83cd7
SM
1589 gdbarch_init_ftype *,
1590 gdbarch_dump_tdep_ftype *);
4b9b3959 1591
104c1213 1592
9b1f59fc
SM
1593/* Return a vector of the valid architecture names. Since architectures are
1594 registered during the _initialize phase this function only returns useful
1595 information once initialization has been completed. */
b4a20239 1596
9b1f59fc 1597extern std::vector<const char *> gdbarch_printable_names ();
b4a20239
AC
1598
1599
104c1213 1600/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1601 matches the information provided by INFO. */
104c1213 1602
424163ea 1603extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1604
1605
1606/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1607 basic initialization using values obtained from the INFO and TDEP
104c1213 1608 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1609 initialization of the object. */
104c1213
JM
1610
1611extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1612
1613
4b9b3959
AC
1614/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1615 It is assumed that the caller freeds the \`\`struct
0963b4bd 1616 gdbarch_tdep''. */
4b9b3959 1617
058f20d5
JB
1618extern void gdbarch_free (struct gdbarch *);
1619
284a0e3c
SM
1620/* Get the obstack owned by ARCH. */
1621
1622extern obstack *gdbarch_obstack (gdbarch *arch);
058f20d5 1623
aebd7893
AC
1624/* Helper function. Allocate memory from the \`\`struct gdbarch''
1625 obstack. The memory is freed when the corresponding architecture
1626 is also freed. */
1627
284a0e3c
SM
1628#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1629 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1630
1631#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1632 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
aebd7893 1633
6c214e7c
PP
1634/* Duplicate STRING, returning an equivalent string that's allocated on the
1635 obstack associated with GDBARCH. The string is freed when the corresponding
1636 architecture is also freed. */
1637
1638extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
aebd7893 1639
0963b4bd 1640/* Helper function. Force an update of the current architecture.
104c1213 1641
b732d07d
AC
1642 The actual architecture selected is determined by INFO, \`\`(gdb) set
1643 architecture'' et.al., the existing architecture and BFD's default
1644 architecture. INFO should be initialized to zero and then selected
1645 fields should be updated.
104c1213 1646
0963b4bd 1647 Returns non-zero if the update succeeds. */
16f33e29
AC
1648
1649extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1650
1651
ebdba546
AC
1652/* Helper function. Find an architecture matching info.
1653
b447dd03
SM
1654 INFO should have relevant fields set, and then finished using
1655 gdbarch_info_fill.
ebdba546
AC
1656
1657 Returns the corresponding architecture, or NULL if no matching
59837fe0 1658 architecture was found. */
ebdba546
AC
1659
1660extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1661
1662
aff68abb 1663/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1664
aff68abb 1665extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1666
104c1213
JM
1667
1668/* Register per-architecture data-pointer.
1669
1670 Reserve space for a per-architecture data-pointer. An identifier
1671 for the reserved data-pointer is returned. That identifer should
95160752 1672 be saved in a local static variable.
104c1213 1673
fcc1c85c
AC
1674 Memory for the per-architecture data shall be allocated using
1675 gdbarch_obstack_zalloc. That memory will be deleted when the
1676 corresponding architecture object is deleted.
104c1213 1677
95160752
AC
1678 When a previously created architecture is re-selected, the
1679 per-architecture data-pointer for that previous architecture is
76860b5f 1680 restored. INIT() is not re-called.
104c1213
JM
1681
1682 Multiple registrarants for any architecture are allowed (and
1683 strongly encouraged). */
1684
95160752 1685struct gdbarch_data;
104c1213 1686
030f20e1
AC
1687typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1688extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1689typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1690extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
104c1213 1691
451fbdda 1692extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1693
1694
0fa6923a 1695/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1696 byte-order, ...) using information found in the BFD. */
104c1213
JM
1697
1698extern void set_gdbarch_from_file (bfd *);
1699
1700
e514a9d6
JM
1701/* Initialize the current architecture to the "first" one we find on
1702 our list. */
1703
1704extern void initialize_current_architecture (void);
1705
104c1213 1706/* gdbarch trace variable */
ccce17b0 1707extern unsigned int gdbarch_debug;
104c1213 1708
4b9b3959 1709extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1710
f6efe3f8
SM
1711/* Return the number of cooked registers (raw + pseudo) for ARCH. */
1712
1713static inline int
1714gdbarch_num_cooked_regs (gdbarch *arch)
1715{
1716 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1717}
1718
104c1213
JM
1719#endif
1720EOF
1721exec 1>&2
41a77cba
SM
1722../move-if-change new-gdbarch.h gdbarch.h
1723rm -f new-gdbarch.h
104c1213
JM
1724
1725
1726#
1727# C file
1728#
1729
1730exec > new-gdbarch.c
1731copyright
1732cat <<EOF
1733
1734#include "defs.h"
7355ddba 1735#include "arch-utils.h"
104c1213 1736
104c1213 1737#include "gdbcmd.h"
faaf634c 1738#include "inferior.h"
104c1213
JM
1739#include "symcat.h"
1740
f0d4cc9e 1741#include "floatformat.h"
b59ff9d5 1742#include "reggroups.h"
4be87837 1743#include "osabi.h"
aebd7893 1744#include "gdb_obstack.h"
0bee6dd4 1745#include "observable.h"
a3ecef73 1746#include "regcache.h"
19630284 1747#include "objfiles.h"
2faa3447 1748#include "auxv.h"
8bcb5208
AB
1749#include "frame-unwind.h"
1750#include "dummy-frame.h"
95160752 1751
104c1213
JM
1752/* Static function declarations */
1753
b3cc3077 1754static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1755
104c1213
JM
1756/* Non-zero if we want to trace architecture code. */
1757
1758#ifndef GDBARCH_DEBUG
1759#define GDBARCH_DEBUG 0
1760#endif
ccce17b0 1761unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1762static void
1763show_gdbarch_debug (struct ui_file *file, int from_tty,
dda83cd7 1764 struct cmd_list_element *c, const char *value)
920d2a44
AC
1765{
1766 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1767}
104c1213 1768
456fcf94 1769static const char *
8da61cc4 1770pformat (const struct floatformat **format)
456fcf94
AC
1771{
1772 if (format == NULL)
1773 return "(null)";
1774 else
8da61cc4
DJ
1775 /* Just print out one of them - this is only for diagnostics. */
1776 return format[0]->name;
456fcf94
AC
1777}
1778
08105857
PA
1779static const char *
1780pstring (const char *string)
1781{
1782 if (string == NULL)
1783 return "(null)";
1784 return string;
05c0465e
SDJ
1785}
1786
a121b7c1 1787static const char *
f7bb4e3a
PB
1788pstring_ptr (char **string)
1789{
1790 if (string == NULL || *string == NULL)
1791 return "(null)";
1792 return *string;
1793}
1794
05c0465e
SDJ
1795/* Helper function to print a list of strings, represented as "const
1796 char *const *". The list is printed comma-separated. */
1797
a121b7c1 1798static const char *
05c0465e
SDJ
1799pstring_list (const char *const *list)
1800{
1801 static char ret[100];
1802 const char *const *p;
1803 size_t offset = 0;
1804
1805 if (list == NULL)
1806 return "(null)";
1807
1808 ret[0] = '\0';
1809 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1810 {
1811 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1812 offset += 2 + s;
1813 }
1814
1815 if (offset > 0)
1816 {
1817 gdb_assert (offset - 2 < sizeof (ret));
1818 ret[offset - 2] = '\0';
1819 }
1820
1821 return ret;
08105857
PA
1822}
1823
104c1213
JM
1824EOF
1825
1826# gdbarch open the gdbarch object
3d9a5942 1827printf "\n"
0963b4bd 1828printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1829printf "\n"
1830printf "struct gdbarch\n"
1831printf "{\n"
76860b5f
AC
1832printf " /* Has this architecture been fully initialized? */\n"
1833printf " int initialized_p;\n"
aebd7893
AC
1834printf "\n"
1835printf " /* An obstack bound to the lifetime of the architecture. */\n"
1836printf " struct obstack *obstack;\n"
1837printf "\n"
0963b4bd 1838printf " /* basic architectural information. */\n"
34620563 1839function_list | while do_read
104c1213 1840do
2ada493a
AC
1841 if class_is_info_p
1842 then
8d113d13 1843 printf " %s %s;\n" "$returntype" "$function"
2ada493a 1844 fi
104c1213 1845done
3d9a5942 1846printf "\n"
0963b4bd 1847printf " /* target specific vector. */\n"
3d9a5942
AC
1848printf " struct gdbarch_tdep *tdep;\n"
1849printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1850printf "\n"
0963b4bd 1851printf " /* per-architecture data-pointers. */\n"
95160752 1852printf " unsigned nr_data;\n"
3d9a5942
AC
1853printf " void **data;\n"
1854printf "\n"
104c1213
JM
1855cat <<EOF
1856 /* Multi-arch values.
1857
1858 When extending this structure you must:
1859
1860 Add the field below.
1861
1862 Declare set/get functions and define the corresponding
1863 macro in gdbarch.h.
1864
1865 gdbarch_alloc(): If zero/NULL is not a suitable default,
1866 initialize the new field.
1867
1868 verify_gdbarch(): Confirm that the target updated the field
1869 correctly.
1870
7e73cedf 1871 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1872 field is dumped out
1873
104c1213
JM
1874 get_gdbarch(): Implement the set/get functions (probably using
1875 the macro's as shortcuts).
1876
1877 */
1878
1879EOF
34620563 1880function_list | while do_read
104c1213 1881do
2ada493a
AC
1882 if class_is_variable_p
1883 then
8d113d13 1884 printf " %s %s;\n" "$returntype" "$function"
2ada493a
AC
1885 elif class_is_function_p
1886 then
8d113d13 1887 printf " gdbarch_%s_ftype *%s;\n" "$function" "$function"
2ada493a 1888 fi
104c1213 1889done
3d9a5942 1890printf "};\n"
104c1213 1891
104c1213 1892# Create a new gdbarch struct
104c1213 1893cat <<EOF
7de2341d 1894
66b43ecb 1895/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1896 \`\`struct gdbarch_info''. */
104c1213 1897EOF
3d9a5942 1898printf "\n"
104c1213
JM
1899cat <<EOF
1900struct gdbarch *
1901gdbarch_alloc (const struct gdbarch_info *info,
dda83cd7 1902 struct gdbarch_tdep *tdep)
104c1213 1903{
be7811ad 1904 struct gdbarch *gdbarch;
aebd7893
AC
1905
1906 /* Create an obstack for allocating all the per-architecture memory,
1907 then use that to allocate the architecture vector. */
70ba0933 1908 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1909 obstack_init (obstack);
8d749320 1910 gdbarch = XOBNEW (obstack, struct gdbarch);
be7811ad
MD
1911 memset (gdbarch, 0, sizeof (*gdbarch));
1912 gdbarch->obstack = obstack;
85de9627 1913
be7811ad 1914 alloc_gdbarch_data (gdbarch);
85de9627 1915
be7811ad 1916 gdbarch->tdep = tdep;
104c1213 1917EOF
3d9a5942 1918printf "\n"
34620563 1919function_list | while do_read
104c1213 1920do
2ada493a
AC
1921 if class_is_info_p
1922 then
8d113d13 1923 printf " gdbarch->%s = info->%s;\n" "$function" "$function"
2ada493a 1924 fi
104c1213 1925done
3d9a5942 1926printf "\n"
0963b4bd 1927printf " /* Force the explicit initialization of these. */\n"
34620563 1928function_list | while do_read
104c1213 1929do
2ada493a
AC
1930 if class_is_function_p || class_is_variable_p
1931 then
759cea5e 1932 if [ -n "${predefault}" ] && [ "x${predefault}" != "x0" ]
104c1213 1933 then
8d113d13 1934 printf " gdbarch->%s = %s;\n" "$function" "$predefault"
104c1213 1935 fi
2ada493a 1936 fi
104c1213
JM
1937done
1938cat <<EOF
1939 /* gdbarch_alloc() */
1940
be7811ad 1941 return gdbarch;
104c1213
JM
1942}
1943EOF
1944
058f20d5 1945# Free a gdbarch struct.
3d9a5942
AC
1946printf "\n"
1947printf "\n"
058f20d5 1948cat <<EOF
aebd7893 1949
284a0e3c 1950obstack *gdbarch_obstack (gdbarch *arch)
aebd7893 1951{
284a0e3c 1952 return arch->obstack;
aebd7893
AC
1953}
1954
6c214e7c
PP
1955/* See gdbarch.h. */
1956
1957char *
1958gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1959{
1960 return obstack_strdup (arch->obstack, string);
1961}
1962
aebd7893 1963
058f20d5
JB
1964/* Free a gdbarch struct. This should never happen in normal
1965 operation --- once you've created a gdbarch, you keep it around.
1966 However, if an architecture's init function encounters an error
1967 building the structure, it may need to clean up a partially
1968 constructed gdbarch. */
4b9b3959 1969
058f20d5
JB
1970void
1971gdbarch_free (struct gdbarch *arch)
1972{
aebd7893 1973 struct obstack *obstack;
05c547f6 1974
95160752 1975 gdb_assert (arch != NULL);
aebd7893
AC
1976 gdb_assert (!arch->initialized_p);
1977 obstack = arch->obstack;
1978 obstack_free (obstack, 0); /* Includes the ARCH. */
1979 xfree (obstack);
058f20d5
JB
1980}
1981EOF
1982
104c1213 1983# verify a new architecture
104c1213 1984cat <<EOF
db446970
AC
1985
1986
1987/* Ensure that all values in a GDBARCH are reasonable. */
1988
104c1213 1989static void
be7811ad 1990verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1991{
d7e74731 1992 string_file log;
05c547f6 1993
104c1213 1994 /* fundamental */
be7811ad 1995 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
d7e74731 1996 log.puts ("\n\tbyte-order");
be7811ad 1997 if (gdbarch->bfd_arch_info == NULL)
d7e74731 1998 log.puts ("\n\tbfd_arch_info");
0963b4bd 1999 /* Check those that need to be defined for the given multi-arch level. */
104c1213 2000EOF
34620563 2001function_list | while do_read
104c1213 2002do
2ada493a
AC
2003 if class_is_function_p || class_is_variable_p
2004 then
72e74a21 2005 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2006 then
8d113d13 2007 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
2ada493a
AC
2008 elif class_is_predicate_p
2009 then
8d113d13 2010 printf " /* Skip verify of %s, has predicate. */\n" "$function"
f0d4cc9e 2011 # FIXME: See do_read for potential simplification
759cea5e 2012 elif [ -n "${invalid_p}" ] && [ -n "${postdefault}" ]
f0d4cc9e 2013 then
8d113d13
SM
2014 printf " if (%s)\n" "$invalid_p"
2015 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
759cea5e 2016 elif [ -n "${predefault}" ] && [ -n "${postdefault}" ]
f0d4cc9e 2017 then
8d113d13
SM
2018 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
2019 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
72e74a21 2020 elif [ -n "${postdefault}" ]
f0d4cc9e 2021 then
8d113d13
SM
2022 printf " if (gdbarch->%s == 0)\n" "$function"
2023 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
72e74a21 2024 elif [ -n "${invalid_p}" ]
104c1213 2025 then
8d113d13
SM
2026 printf " if (%s)\n" "$invalid_p"
2027 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
72e74a21 2028 elif [ -n "${predefault}" ]
104c1213 2029 then
8d113d13
SM
2030 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
2031 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
104c1213 2032 fi
2ada493a 2033 fi
104c1213
JM
2034done
2035cat <<EOF
d7e74731 2036 if (!log.empty ())
f16a1923 2037 internal_error (__FILE__, __LINE__,
dda83cd7
SM
2038 _("verify_gdbarch: the following are invalid ...%s"),
2039 log.c_str ());
104c1213
JM
2040}
2041EOF
2042
2043# dump the structure
3d9a5942
AC
2044printf "\n"
2045printf "\n"
104c1213 2046cat <<EOF
0963b4bd 2047/* Print out the details of the current architecture. */
4b9b3959 2048
104c1213 2049void
be7811ad 2050gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 2051{
b78960be 2052 const char *gdb_nm_file = "<not-defined>";
05c547f6 2053
b78960be
AC
2054#if defined (GDB_NM_FILE)
2055 gdb_nm_file = GDB_NM_FILE;
2056#endif
2057 fprintf_unfiltered (file,
dda83cd7
SM
2058 "gdbarch_dump: GDB_NM_FILE = %s\\n",
2059 gdb_nm_file);
104c1213 2060EOF
ea480a30 2061function_list | sort '-t;' -k 3 | while do_read
104c1213 2062do
1e9f55d0
AC
2063 # First the predicate
2064 if class_is_predicate_p
2065 then
7996bcec 2066 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2067 printf " \"gdbarch_dump: gdbarch_%s_p() = %%d\\\\n\",\n" "$function"
2068 printf " gdbarch_%s_p (gdbarch));\n" "$function"
08e45a40 2069 fi
48f7351b 2070 # Print the corresponding value.
283354d8 2071 if class_is_function_p
4b9b3959 2072 then
7996bcec 2073 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2074 printf " \"gdbarch_dump: %s = <%%s>\\\\n\",\n" "$function"
2075 printf " host_address_to_string (gdbarch->%s));\n" "$function"
4b9b3959 2076 else
48f7351b 2077 # It is a variable
2f9b146e
AC
2078 case "${print}:${returntype}" in
2079 :CORE_ADDR )
0b1553bc
UW
2080 fmt="%s"
2081 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 2082 ;;
2f9b146e 2083 :* )
dda83cd7 2084 fmt="%s"
623d3eb1 2085 print="plongest (gdbarch->${function})"
48f7351b
AC
2086 ;;
2087 * )
dda83cd7 2088 fmt="%s"
48f7351b 2089 ;;
dda83cd7 2090 esac
3d9a5942 2091 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2092 printf " \"gdbarch_dump: %s = %s\\\\n\",\n" "$function" "$fmt"
2093 printf " %s);\n" "$print"
2ada493a 2094 fi
104c1213 2095done
381323f4 2096cat <<EOF
be7811ad
MD
2097 if (gdbarch->dump_tdep != NULL)
2098 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
2099}
2100EOF
104c1213
JM
2101
2102
2103# GET/SET
3d9a5942 2104printf "\n"
104c1213
JM
2105cat <<EOF
2106struct gdbarch_tdep *
2107gdbarch_tdep (struct gdbarch *gdbarch)
2108{
2109 if (gdbarch_debug >= 2)
3d9a5942 2110 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
2111 return gdbarch->tdep;
2112}
2113EOF
3d9a5942 2114printf "\n"
34620563 2115function_list | while do_read
104c1213 2116do
2ada493a
AC
2117 if class_is_predicate_p
2118 then
3d9a5942 2119 printf "\n"
39535193 2120 printf "bool\n"
8d113d13 2121 printf "gdbarch_%s_p (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2122 printf "{\n"
dda83cd7 2123 printf " gdb_assert (gdbarch != NULL);\n"
8d113d13 2124 printf " return %s;\n" "$predicate"
3d9a5942 2125 printf "}\n"
2ada493a
AC
2126 fi
2127 if class_is_function_p
2128 then
3d9a5942 2129 printf "\n"
8d113d13 2130 printf "%s\n" "$returntype"
72e74a21 2131 if [ "x${formal}" = "xvoid" ]
104c1213 2132 then
8d113d13 2133 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
104c1213 2134 else
8d113d13 2135 printf "gdbarch_%s (struct gdbarch *gdbarch, %s)\n" "$function" "$formal"
104c1213 2136 fi
3d9a5942 2137 printf "{\n"
dda83cd7 2138 printf " gdb_assert (gdbarch != NULL);\n"
8d113d13 2139 printf " gdb_assert (gdbarch->%s != NULL);\n" "$function"
f7968451 2140 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
2141 then
2142 # Allow a call to a function with a predicate.
8d113d13 2143 printf " /* Do not check predicate: %s, allow call. */\n" "$predicate"
ae45cd16 2144 fi
3d9a5942 2145 printf " if (gdbarch_debug >= 2)\n"
8d113d13 2146 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
1207375d 2147 if [ "x${actual:-}" = "x-" ] || [ "x${actual:-}" = "x" ]
4a5c6a1d
AC
2148 then
2149 if class_is_multiarch_p
2150 then
2151 params="gdbarch"
2152 else
2153 params=""
2154 fi
2155 else
2156 if class_is_multiarch_p
2157 then
2158 params="gdbarch, ${actual}"
2159 else
2160 params="${actual}"
2161 fi
dda83cd7 2162 fi
72e74a21 2163 if [ "x${returntype}" = "xvoid" ]
104c1213 2164 then
8d113d13 2165 printf " gdbarch->%s (%s);\n" "$function" "$params"
104c1213 2166 else
8d113d13 2167 printf " return gdbarch->%s (%s);\n" "$function" "$params"
104c1213 2168 fi
3d9a5942
AC
2169 printf "}\n"
2170 printf "\n"
2171 printf "void\n"
8d113d13 2172 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
cb02ab24 2173 printf " %s gdbarch_%s_ftype %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$function" "$function"
3d9a5942 2174 printf "{\n"
8d113d13 2175 printf " gdbarch->%s = %s;\n" "$function" "$function"
3d9a5942 2176 printf "}\n"
2ada493a
AC
2177 elif class_is_variable_p
2178 then
3d9a5942 2179 printf "\n"
8d113d13
SM
2180 printf "%s\n" "$returntype"
2181 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2182 printf "{\n"
dda83cd7 2183 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2184 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2185 then
8d113d13 2186 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
72e74a21 2187 elif [ -n "${invalid_p}" ]
104c1213 2188 then
956ac328 2189 printf " /* Check variable is valid. */\n"
8d113d13 2190 printf " gdb_assert (!(%s));\n" "$invalid_p"
72e74a21 2191 elif [ -n "${predefault}" ]
104c1213 2192 then
956ac328 2193 printf " /* Check variable changed from pre-default. */\n"
8d113d13 2194 printf " gdb_assert (gdbarch->%s != %s);\n" "$function" "$predefault"
104c1213 2195 fi
3d9a5942 2196 printf " if (gdbarch_debug >= 2)\n"
8d113d13
SM
2197 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2198 printf " return gdbarch->%s;\n" "$function"
3d9a5942
AC
2199 printf "}\n"
2200 printf "\n"
2201 printf "void\n"
8d113d13 2202 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
cb02ab24 2203 printf " %s %s %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$returntype" "$function"
3d9a5942 2204 printf "{\n"
8d113d13 2205 printf " gdbarch->%s = %s;\n" "$function" "$function"
3d9a5942 2206 printf "}\n"
2ada493a
AC
2207 elif class_is_info_p
2208 then
3d9a5942 2209 printf "\n"
8d113d13
SM
2210 printf "%s\n" "$returntype"
2211 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2212 printf "{\n"
dda83cd7 2213 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942 2214 printf " if (gdbarch_debug >= 2)\n"
8d113d13
SM
2215 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2216 printf " return gdbarch->%s;\n" "$function"
3d9a5942 2217 printf "}\n"
2ada493a 2218 fi
104c1213
JM
2219done
2220
2221# All the trailing guff
2222cat <<EOF
2223
2224
f44c642f 2225/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2226 modules. */
104c1213
JM
2227
2228struct gdbarch_data
2229{
95160752 2230 unsigned index;
76860b5f 2231 int init_p;
030f20e1
AC
2232 gdbarch_data_pre_init_ftype *pre_init;
2233 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2234};
2235
2236struct gdbarch_data_registration
2237{
104c1213
JM
2238 struct gdbarch_data *data;
2239 struct gdbarch_data_registration *next;
2240};
2241
f44c642f 2242struct gdbarch_data_registry
104c1213 2243{
95160752 2244 unsigned nr;
104c1213
JM
2245 struct gdbarch_data_registration *registrations;
2246};
2247
41c0087b 2248static struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2249{
2250 0, NULL,
2251};
2252
030f20e1
AC
2253static struct gdbarch_data *
2254gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2255 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2256{
2257 struct gdbarch_data_registration **curr;
05c547f6
MS
2258
2259 /* Append the new registration. */
f44c642f 2260 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2261 (*curr) != NULL;
2262 curr = &(*curr)->next);
70ba0933 2263 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2264 (*curr)->next = NULL;
70ba0933 2265 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2266 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2267 (*curr)->data->pre_init = pre_init;
2268 (*curr)->data->post_init = post_init;
76860b5f 2269 (*curr)->data->init_p = 1;
104c1213
JM
2270 return (*curr)->data;
2271}
2272
030f20e1
AC
2273struct gdbarch_data *
2274gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2275{
2276 return gdbarch_data_register (pre_init, NULL);
2277}
2278
2279struct gdbarch_data *
2280gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2281{
2282 return gdbarch_data_register (NULL, post_init);
2283}
104c1213 2284
0963b4bd 2285/* Create/delete the gdbarch data vector. */
95160752
AC
2286
2287static void
b3cc3077 2288alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2289{
b3cc3077
JB
2290 gdb_assert (gdbarch->data == NULL);
2291 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2292 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2293}
3c875b6f 2294
104c1213 2295/* Return the current value of the specified per-architecture
0963b4bd 2296 data-pointer. */
104c1213
JM
2297
2298void *
451fbdda 2299gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2300{
451fbdda 2301 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2302 if (gdbarch->data[data->index] == NULL)
76860b5f 2303 {
030f20e1
AC
2304 /* The data-pointer isn't initialized, call init() to get a
2305 value. */
2306 if (data->pre_init != NULL)
2307 /* Mid architecture creation: pass just the obstack, and not
2308 the entire architecture, as that way it isn't possible for
2309 pre-init code to refer to undefined architecture
2310 fields. */
2311 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2312 else if (gdbarch->initialized_p
2313 && data->post_init != NULL)
2314 /* Post architecture creation: pass the entire architecture
2315 (as all fields are valid), but be careful to also detect
2316 recursive references. */
2317 {
2318 gdb_assert (data->init_p);
2319 data->init_p = 0;
2320 gdbarch->data[data->index] = data->post_init (gdbarch);
2321 data->init_p = 1;
2322 }
2323 else
3bc98c0c
AB
2324 internal_error (__FILE__, __LINE__,
2325 _("gdbarch post-init data field can only be used "
2326 "after gdbarch is fully initialised"));
76860b5f
AC
2327 gdb_assert (gdbarch->data[data->index] != NULL);
2328 }
451fbdda 2329 return gdbarch->data[data->index];
104c1213
JM
2330}
2331
2332
0963b4bd 2333/* Keep a registry of the architectures known by GDB. */
104c1213 2334
4b9b3959 2335struct gdbarch_registration
104c1213
JM
2336{
2337 enum bfd_architecture bfd_architecture;
2338 gdbarch_init_ftype *init;
4b9b3959 2339 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2340 struct gdbarch_list *arches;
4b9b3959 2341 struct gdbarch_registration *next;
104c1213
JM
2342};
2343
f44c642f 2344static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2345
9b1f59fc
SM
2346std::vector<const char *>
2347gdbarch_printable_names ()
b4a20239 2348{
7996bcec 2349 /* Accumulate a list of names based on the registed list of
0963b4bd 2350 architectures. */
9b1f59fc 2351 std::vector<const char *> arches;
05c547f6 2352
9b1f59fc
SM
2353 for (gdbarch_registration *rego = gdbarch_registry;
2354 rego != nullptr;
7996bcec 2355 rego = rego->next)
b4a20239 2356 {
9b1f59fc
SM
2357 const struct bfd_arch_info *ap
2358 = bfd_lookup_arch (rego->bfd_architecture, 0);
2359 if (ap == nullptr)
dda83cd7
SM
2360 internal_error (__FILE__, __LINE__,
2361 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec 2362 do
dda83cd7 2363 {
9b1f59fc 2364 arches.push_back (ap->printable_name);
dda83cd7
SM
2365 ap = ap->next;
2366 }
7996bcec 2367 while (ap != NULL);
b4a20239 2368 }
9b1f59fc 2369
7996bcec 2370 return arches;
b4a20239
AC
2371}
2372
2373
104c1213 2374void
4b9b3959 2375gdbarch_register (enum bfd_architecture bfd_architecture,
dda83cd7 2376 gdbarch_init_ftype *init,
4b9b3959 2377 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2378{
4b9b3959 2379 struct gdbarch_registration **curr;
104c1213 2380 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2381
ec3d358c 2382 /* Check that BFD recognizes this architecture */
104c1213
JM
2383 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2384 if (bfd_arch_info == NULL)
2385 {
8e65ff28 2386 internal_error (__FILE__, __LINE__,
dda83cd7 2387 _("gdbarch: Attempt to register "
0963b4bd 2388 "unknown architecture (%d)"),
dda83cd7 2389 bfd_architecture);
104c1213 2390 }
0963b4bd 2391 /* Check that we haven't seen this architecture before. */
f44c642f 2392 for (curr = &gdbarch_registry;
104c1213
JM
2393 (*curr) != NULL;
2394 curr = &(*curr)->next)
2395 {
2396 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2397 internal_error (__FILE__, __LINE__,
dda83cd7 2398 _("gdbarch: Duplicate registration "
0963b4bd 2399 "of architecture (%s)"),
dda83cd7 2400 bfd_arch_info->printable_name);
104c1213
JM
2401 }
2402 /* log it */
2403 if (gdbarch_debug)
30737ed9 2404 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2405 bfd_arch_info->printable_name,
30737ed9 2406 host_address_to_string (init));
104c1213 2407 /* Append it */
70ba0933 2408 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2409 (*curr)->bfd_architecture = bfd_architecture;
2410 (*curr)->init = init;
4b9b3959 2411 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2412 (*curr)->arches = NULL;
2413 (*curr)->next = NULL;
4b9b3959
AC
2414}
2415
2416void
2417register_gdbarch_init (enum bfd_architecture bfd_architecture,
2418 gdbarch_init_ftype *init)
2419{
2420 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2421}
104c1213
JM
2422
2423
424163ea 2424/* Look for an architecture using gdbarch_info. */
104c1213
JM
2425
2426struct gdbarch_list *
2427gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
dda83cd7 2428 const struct gdbarch_info *info)
104c1213
JM
2429{
2430 for (; arches != NULL; arches = arches->next)
2431 {
2432 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2433 continue;
2434 if (info->byte_order != arches->gdbarch->byte_order)
2435 continue;
4be87837
DJ
2436 if (info->osabi != arches->gdbarch->osabi)
2437 continue;
424163ea
DJ
2438 if (info->target_desc != arches->gdbarch->target_desc)
2439 continue;
104c1213
JM
2440 return arches;
2441 }
2442 return NULL;
2443}
2444
2445
ebdba546 2446/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2447 architecture if needed. Return that new architecture. */
104c1213 2448
59837fe0
UW
2449struct gdbarch *
2450gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2451{
2452 struct gdbarch *new_gdbarch;
4b9b3959 2453 struct gdbarch_registration *rego;
104c1213 2454
b732d07d 2455 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2456 sources: "set ..."; INFOabfd supplied; and the global
2457 defaults. */
2458 gdbarch_info_fill (&info);
4be87837 2459
0963b4bd 2460 /* Must have found some sort of architecture. */
b732d07d 2461 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2462
2463 if (gdbarch_debug)
2464 {
2465 fprintf_unfiltered (gdb_stdlog,
59837fe0 2466 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2467 (info.bfd_arch_info != NULL
2468 ? info.bfd_arch_info->printable_name
2469 : "(null)"));
2470 fprintf_unfiltered (gdb_stdlog,
59837fe0 2471 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2472 info.byte_order,
d7449b42 2473 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2474 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2475 : "default"));
4be87837 2476 fprintf_unfiltered (gdb_stdlog,
59837fe0 2477 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2478 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2479 fprintf_unfiltered (gdb_stdlog,
59837fe0 2480 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2481 host_address_to_string (info.abfd));
104c1213
JM
2482 }
2483
ebdba546 2484 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2485 for (rego = gdbarch_registry;
2486 rego != NULL;
2487 rego = rego->next)
2488 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2489 break;
2490 if (rego == NULL)
2491 {
2492 if (gdbarch_debug)
59837fe0 2493 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2494 "No matching architecture\n");
b732d07d
AC
2495 return 0;
2496 }
2497
ebdba546 2498 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2499 new_gdbarch = rego->init (info, rego->arches);
2500
ebdba546
AC
2501 /* Did the tdep code like it? No. Reject the change and revert to
2502 the old architecture. */
104c1213
JM
2503 if (new_gdbarch == NULL)
2504 {
2505 if (gdbarch_debug)
59837fe0 2506 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2507 "Target rejected architecture\n");
2508 return NULL;
104c1213
JM
2509 }
2510
ebdba546
AC
2511 /* Is this a pre-existing architecture (as determined by already
2512 being initialized)? Move it to the front of the architecture
2513 list (keeping the list sorted Most Recently Used). */
2514 if (new_gdbarch->initialized_p)
104c1213 2515 {
ebdba546 2516 struct gdbarch_list **list;
fe978cb0 2517 struct gdbarch_list *self;
104c1213 2518 if (gdbarch_debug)
59837fe0 2519 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2520 "Previous architecture %s (%s) selected\n",
2521 host_address_to_string (new_gdbarch),
104c1213 2522 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2523 /* Find the existing arch in the list. */
2524 for (list = &rego->arches;
2525 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2526 list = &(*list)->next);
2527 /* It had better be in the list of architectures. */
2528 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2529 /* Unlink SELF. */
2530 self = (*list);
2531 (*list) = self->next;
2532 /* Insert SELF at the front. */
2533 self->next = rego->arches;
2534 rego->arches = self;
ebdba546
AC
2535 /* Return it. */
2536 return new_gdbarch;
104c1213
JM
2537 }
2538
ebdba546
AC
2539 /* It's a new architecture. */
2540 if (gdbarch_debug)
59837fe0 2541 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2542 "New architecture %s (%s) selected\n",
2543 host_address_to_string (new_gdbarch),
ebdba546
AC
2544 new_gdbarch->bfd_arch_info->printable_name);
2545
2546 /* Insert the new architecture into the front of the architecture
2547 list (keep the list sorted Most Recently Used). */
0f79675b 2548 {
fe978cb0
PA
2549 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2550 self->next = rego->arches;
2551 self->gdbarch = new_gdbarch;
2552 rego->arches = self;
0f79675b 2553 }
104c1213 2554
4b9b3959
AC
2555 /* Check that the newly installed architecture is valid. Plug in
2556 any post init values. */
2557 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2558 verify_gdbarch (new_gdbarch);
ebdba546 2559 new_gdbarch->initialized_p = 1;
104c1213 2560
4b9b3959 2561 if (gdbarch_debug)
ebdba546
AC
2562 gdbarch_dump (new_gdbarch, gdb_stdlog);
2563
2564 return new_gdbarch;
2565}
2566
e487cc15 2567/* Make the specified architecture current. */
ebdba546
AC
2568
2569void
aff68abb 2570set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2571{
2572 gdb_assert (new_gdbarch != NULL);
ebdba546 2573 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2574 current_inferior ()->gdbarch = new_gdbarch;
0bee6dd4 2575 gdb::observers::architecture_changed.notify (new_gdbarch);
a3ecef73 2576 registers_changed ();
ebdba546 2577}
104c1213 2578
f5656ead 2579/* Return the current inferior's arch. */
6ecd4729
PA
2580
2581struct gdbarch *
f5656ead 2582target_gdbarch (void)
6ecd4729
PA
2583{
2584 return current_inferior ()->gdbarch;
2585}
2586
a1237872 2587void _initialize_gdbarch ();
104c1213 2588void
a1237872 2589_initialize_gdbarch ()
104c1213 2590{
ccce17b0 2591 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2592Set architecture debugging."), _("\\
2593Show architecture debugging."), _("\\
2594When non-zero, architecture debugging is enabled."),
dda83cd7
SM
2595 NULL,
2596 show_gdbarch_debug,
2597 &setdebuglist, &showdebuglist);
104c1213
JM
2598}
2599EOF
2600
2601# close things off
2602exec 1>&2
41a77cba
SM
2603../move-if-change new-gdbarch.c gdbarch.c
2604rm -f new-gdbarch.c