]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/gdbarch.sh
core_xfer_shared_libraries and core_xfer_shared_libraries_aix returns ULONGEST
[thirdparty/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
ecd75fc8 5# Copyright (C) 1998-2014 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
be7811ad 341i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
94123b4f
YQ
343i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 345#
97030eea 346i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 347#
30737ed9 348i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
352v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
66b43ecb
AC
354# Number of bits in a char or unsigned char for the target machine.
355# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 356# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
357#
358# Number of bits in a short or unsigned short for the target machine.
97030eea 359v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in an int or unsigned int for the target machine.
97030eea 361v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 362# Number of bits in a long or unsigned long for the target machine.
97030eea 363v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
364# Number of bits in a long long or unsigned long long for the target
365# machine.
be7811ad 366v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
367# Alignment of a long long or unsigned long long for the target
368# machine.
369v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 370
f9e9243a
UW
371# The ABI default bit-size and format for "half", "float", "double", and
372# "long double". These bit/format pairs should eventually be combined
373# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
374# Each format describes both the big and little endian layouts (if
375# useful).
456fcf94 376
f9e9243a
UW
377v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 379v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 380v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 381v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 382v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 383v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 384v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 385
52204a0b
DT
386# For most targets, a pointer on the target and its representation as an
387# address in GDB have the same size and "look the same". For such a
17a912b6 388# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
389# / addr_bit will be set from it.
390#
17a912b6 391# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
392# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393# gdbarch_address_to_pointer as well.
52204a0b
DT
394#
395# ptr_bit is the size of a pointer on the target
be7811ad 396v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 397# addr_bit is the size of a target address as represented in gdb
be7811ad 398v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 399#
8da614df
CV
400# dwarf2_addr_size is the target address size as used in the Dwarf debug
401# info. For .debug_frame FDEs, this is supposed to be the target address
402# size from the associated CU header, and which is equivalent to the
403# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404# Unfortunately there is no good way to determine this value. Therefore
405# dwarf2_addr_size simply defaults to the target pointer size.
406#
407# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408# defined using the target's pointer size so far.
409#
410# Note that dwarf2_addr_size only needs to be redefined by a target if the
411# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412# and if Dwarf versions < 4 need to be supported.
413v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414#
4e409299 415# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 416v:int:char_signed:::1:-1:1
4e409299 417#
97030eea
UW
418F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
420# Function for getting target's idea of a frame pointer. FIXME: GDB's
421# whole scheme for dealing with "frames" and "frame pointers" needs a
422# serious shakedown.
a54fba4c 423m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 424#
05d1431c 425M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
426# Read a register into a new struct value. If the register is wholly
427# or partly unavailable, this should call mark_value_bytes_unavailable
428# as appropriate. If this is defined, then pseudo_register_read will
429# never be called.
430M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 431M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 432#
97030eea 433v:int:num_regs:::0:-1
0aba1244
EZ
434# This macro gives the number of pseudo-registers that live in the
435# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
436# These pseudo-registers may be aliases for other registers,
437# combinations of other registers, or they may be computed by GDB.
97030eea 438v:int:num_pseudo_regs:::0:0::0
c2169756 439
175ff332
HZ
440# Assemble agent expression bytecode to collect pseudo-register REG.
441# Return -1 if something goes wrong, 0 otherwise.
442M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444# Assemble agent expression bytecode to push the value of pseudo-register
445# REG on the interpreter stack.
446# Return -1 if something goes wrong, 0 otherwise.
447M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
c2169756
AC
449# GDB's standard (or well known) register numbers. These can map onto
450# a real register or a pseudo (computed) register or not be defined at
1200cd6e 451# all (-1).
3e8c568d 452# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
453v:int:sp_regnum:::-1:-1::0
454v:int:pc_regnum:::-1:-1::0
455v:int:ps_regnum:::-1:-1::0
456v:int:fp0_regnum:::0:-1::0
88c72b7d 457# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 458m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 459# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 460m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 461# Convert from an sdb register number to an internal gdb register number.
d3f73121 462m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 463# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 464m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 465m:const char *:register_name:int regnr:regnr::0
9c04cab7 466
7b9ee6a8
DJ
467# Return the type of a register specified by the architecture. Only
468# the register cache should call this function directly; others should
469# use "register_type".
97030eea 470M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 471
669fac23
DJ
472M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 474# deprecated_fp_regnum.
97030eea 475v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 476
97030eea
UW
477M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478v:int:call_dummy_location::::AT_ENTRY_POINT::0
479M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 480
97030eea
UW
481m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
484# MAP a GDB RAW register number onto a simulator register number. See
485# also include/...-sim.h.
e7faf938 486m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
487m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
eade6471
JB
489
490# Determine the address where a longjmp will land and save this address
491# in PC. Return nonzero on success.
492#
493# FRAME corresponds to the longjmp frame.
97030eea 494F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
eade6471 495
104c1213 496#
97030eea 497v:int:believe_pcc_promotion:::::::
104c1213 498#
0abe36f5 499m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 500f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 501f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0
UW
502# Construct a value representing the contents of register REGNUM in
503# frame FRAME, interpreted as type TYPE. The routine needs to
504# allocate and return a struct value with all value attributes
505# (but not the value contents) filled in.
97030eea 506f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
104c1213 507#
9898f801
UW
508m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 510M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 511
6a3a010b
MR
512# Return the return-value convention that will be used by FUNCTION
513# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
514# case the return convention is computed based only on VALTYPE.
515#
516# If READBUF is not NULL, extract the return value and save it in this buffer.
517#
518# If WRITEBUF is not NULL, it contains a return value which will be
519# stored into the appropriate register. This can be used when we want
520# to force the value returned by a function (see the "return" command
521# for instance).
6a3a010b 522M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 523
18648a37
YQ
524# Return true if the return value of function is stored in the first hidden
525# parameter. In theory, this feature should be language-dependent, specified
526# by language and its ABI, such as C++. Unfortunately, compiler may
527# implement it to a target-dependent feature. So that we need such hook here
528# to be aware of this in GDB.
529m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
6093d2eb 531m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 532M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
591a12a1
UW
533# On some platforms, a single function may provide multiple entry points,
534# e.g. one that is used for function-pointer calls and a different one
535# that is used for direct function calls.
536# In order to ensure that breakpoints set on the function will trigger
537# no matter via which entry point the function is entered, a platform
538# may provide the skip_entrypoint callback. It is called with IP set
539# to the main entry point of a function (as determined by the symbol table),
540# and should return the address of the innermost entry point, where the
541# actual breakpoint needs to be set. Note that skip_entrypoint is used
542# by GDB common code even when debugging optimized code, where skip_prologue
543# is not used.
544M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
545
97030eea 546f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 547m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
548# Return the adjusted address and kind to use for Z0/Z1 packets.
549# KIND is usually the memory length of the breakpoint, but may have a
550# different target-specific meaning.
0e05dfcb 551m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 552M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
553m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
554m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 555v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
556
557# A function can be addressed by either it's "pointer" (possibly a
558# descriptor address) or "entry point" (first executable instruction).
559# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 560# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
561# a simplified subset of that functionality - the function's address
562# corresponds to the "function pointer" and the function's start
563# corresponds to the "function entry point" - and hence is redundant.
564
97030eea 565v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 566
123dc839
DJ
567# Return the remote protocol register number associated with this
568# register. Normally the identity mapping.
97030eea 569m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 570
b2756930 571# Fetch the target specific address used to represent a load module.
97030eea 572F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 573#
97030eea
UW
574v:CORE_ADDR:frame_args_skip:::0:::0
575M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
576M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
577# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
578# frame-base. Enable frame-base before frame-unwind.
97030eea 579F:int:frame_num_args:struct frame_info *frame:frame
104c1213 580#
97030eea
UW
581M:CORE_ADDR:frame_align:CORE_ADDR address:address
582m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
583v:int:frame_red_zone_size
f0d4cc9e 584#
97030eea 585m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
586# On some machines there are bits in addresses which are not really
587# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 588# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
589# we get a "real" address such as one would find in a symbol table.
590# This is used only for addresses of instructions, and even then I'm
591# not sure it's used in all contexts. It exists to deal with there
592# being a few stray bits in the PC which would mislead us, not as some
593# sort of generic thing to handle alignment or segmentation (it's
594# possible it should be in TARGET_READ_PC instead).
24568a2c 595m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
596
597# FIXME/cagney/2001-01-18: This should be split in two. A target method that
598# indicates if the target needs software single step. An ISA method to
599# implement it.
600#
601# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
602# breakpoints using the breakpoint system instead of blatting memory directly
603# (as with rs6000).
64c4637f 604#
e6590a1b
UW
605# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
606# target can single step. If not, then implement single step using breakpoints.
64c4637f 607#
6f112b18 608# A return value of 1 means that the software_single_step breakpoints
e6590a1b 609# were inserted; 0 means they were not.
97030eea 610F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 611
3352ef37
AC
612# Return non-zero if the processor is executing a delay slot and a
613# further single-step is needed before the instruction finishes.
97030eea 614M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 615# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 616# disassembler. Perhaps objdump can handle it?
97030eea
UW
617f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
618f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
619
620
cfd8ab24 621# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
622# evaluates non-zero, this is the address where the debugger will place
623# a step-resume breakpoint to get us past the dynamic linker.
97030eea 624m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 625# Some systems also have trampoline code for returning from shared libs.
2c02bd72 626m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 627
c12260ac
CV
628# A target might have problems with watchpoints as soon as the stack
629# frame of the current function has been destroyed. This mostly happens
630# as the first action in a funtion's epilogue. in_function_epilogue_p()
631# is defined to return a non-zero value if either the given addr is one
632# instruction after the stack destroying instruction up to the trailing
633# return instruction or if we can figure out that the stack frame has
634# already been invalidated regardless of the value of addr. Targets
635# which don't suffer from that problem could just let this functionality
636# untouched.
97030eea 637m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
97030eea
UW
638f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
639f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
640v:int:cannot_step_breakpoint:::0:0::0
641v:int:have_nonsteppable_watchpoint:::0:0::0
642F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
643M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
69f97648
SM
644
645# Return the appropriate type_flags for the supplied address class.
646# This function should return 1 if the address class was recognized and
647# type_flags was set, zero otherwise.
97030eea 648M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 649# Is a register in a group
97030eea 650m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 651# Fetch the pointer to the ith function argument.
97030eea 652F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
653
654# Return the appropriate register set for a core file section with
655# name SECT_NAME and size SECT_SIZE.
97030eea 656M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 657
17ea7499
CES
658# Supported register notes in a core file.
659v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
660
6432734d
UW
661# Create core file notes
662M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
663
b3ac9c77
SDJ
664# The elfcore writer hook to use to write Linux prpsinfo notes to core
665# files. Most Linux architectures use the same prpsinfo32 or
666# prpsinfo64 layouts, and so won't need to provide this hook, as we
667# call the Linux generic routines in bfd to write prpsinfo notes by
668# default.
669F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
670
35c2fab7
UW
671# Find core file memory regions
672M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
673
de584861 674# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
675# core file into buffer READBUF with length LEN. Return the number of bytes read
676# (zero indicates failure).
677# failed, otherwise, return the red length of READBUF.
678M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
de584861 679
356a5233
JB
680# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
681# libraries list from core file into buffer READBUF with length LEN.
c09f20e4
YQ
682# Return the number of bytes read (zero indicates failure).
683M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
356a5233 684
c0edd9ed 685# How the core target converts a PTID from a core file to a string.
28439f5e
PA
686M:char *:core_pid_to_str:ptid_t ptid:ptid
687
a78c2d62 688# BFD target to use when generating a core file.
86ba1042 689V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 690
0d5de010
DJ
691# If the elements of C++ vtables are in-place function descriptors rather
692# than normal function pointers (which may point to code or a descriptor),
693# set this to one.
97030eea 694v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
695
696# Set if the least significant bit of the delta is used instead of the least
697# significant bit of the pfn for pointers to virtual member functions.
97030eea 698v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
699
700# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 701F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 702
1668ae25 703# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
704V:ULONGEST:max_insn_length:::0:0
705
706# Copy the instruction at FROM to TO, and make any adjustments
707# necessary to single-step it at that address.
708#
709# REGS holds the state the thread's registers will have before
710# executing the copied instruction; the PC in REGS will refer to FROM,
711# not the copy at TO. The caller should update it to point at TO later.
712#
713# Return a pointer to data of the architecture's choice to be passed
714# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
715# the instruction's effects have been completely simulated, with the
716# resulting state written back to REGS.
717#
718# For a general explanation of displaced stepping and how GDB uses it,
719# see the comments in infrun.c.
720#
721# The TO area is only guaranteed to have space for
722# gdbarch_max_insn_length (arch) bytes, so this function must not
723# write more bytes than that to that area.
724#
725# If you do not provide this function, GDB assumes that the
726# architecture does not support displaced stepping.
727#
728# If your architecture doesn't need to adjust instructions before
729# single-stepping them, consider using simple_displaced_step_copy_insn
730# here.
731M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
732
99e40580
UW
733# Return true if GDB should use hardware single-stepping to execute
734# the displaced instruction identified by CLOSURE. If false,
735# GDB will simply restart execution at the displaced instruction
736# location, and it is up to the target to ensure GDB will receive
737# control again (e.g. by placing a software breakpoint instruction
738# into the displaced instruction buffer).
739#
740# The default implementation returns false on all targets that
741# provide a gdbarch_software_single_step routine, and true otherwise.
742m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
743
237fc4c9
PA
744# Fix up the state resulting from successfully single-stepping a
745# displaced instruction, to give the result we would have gotten from
746# stepping the instruction in its original location.
747#
748# REGS is the register state resulting from single-stepping the
749# displaced instruction.
750#
751# CLOSURE is the result from the matching call to
752# gdbarch_displaced_step_copy_insn.
753#
754# If you provide gdbarch_displaced_step_copy_insn.but not this
755# function, then GDB assumes that no fixup is needed after
756# single-stepping the instruction.
757#
758# For a general explanation of displaced stepping and how GDB uses it,
759# see the comments in infrun.c.
760M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
761
762# Free a closure returned by gdbarch_displaced_step_copy_insn.
763#
764# If you provide gdbarch_displaced_step_copy_insn, you must provide
765# this function as well.
766#
767# If your architecture uses closures that don't need to be freed, then
768# you can use simple_displaced_step_free_closure here.
769#
770# For a general explanation of displaced stepping and how GDB uses it,
771# see the comments in infrun.c.
772m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
773
774# Return the address of an appropriate place to put displaced
775# instructions while we step over them. There need only be one such
776# place, since we're only stepping one thread over a breakpoint at a
777# time.
778#
779# For a general explanation of displaced stepping and how GDB uses it,
780# see the comments in infrun.c.
781m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
782
dde08ee1
PA
783# Relocate an instruction to execute at a different address. OLDLOC
784# is the address in the inferior memory where the instruction to
785# relocate is currently at. On input, TO points to the destination
786# where we want the instruction to be copied (and possibly adjusted)
787# to. On output, it points to one past the end of the resulting
788# instruction(s). The effect of executing the instruction at TO shall
789# be the same as if executing it at FROM. For example, call
790# instructions that implicitly push the return address on the stack
791# should be adjusted to return to the instruction after OLDLOC;
792# relative branches, and other PC-relative instructions need the
793# offset adjusted; etc.
794M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
795
1c772458 796# Refresh overlay mapped state for section OSECT.
97030eea 797F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 798
97030eea 799M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
800
801# Handle special encoding of static variables in stabs debug info.
0d5cff50 802F:const char *:static_transform_name:const char *name:name
203c3895 803# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 804v:int:sofun_address_maybe_missing:::0:0::0
1cded358 805
0508c3ec
HZ
806# Parse the instruction at ADDR storing in the record execution log
807# the registers REGCACHE and memory ranges that will be affected when
808# the instruction executes, along with their current values.
809# Return -1 if something goes wrong, 0 otherwise.
810M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
811
3846b520
HZ
812# Save process state after a signal.
813# Return -1 if something goes wrong, 0 otherwise.
2ea28649 814M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 815
22203bbf 816# Signal translation: translate inferior's signal (target's) number
86b49880
PA
817# into GDB's representation. The implementation of this method must
818# be host independent. IOW, don't rely on symbols of the NAT_FILE
819# header (the nm-*.h files), the host <signal.h> header, or similar
820# headers. This is mainly used when cross-debugging core files ---
821# "Live" targets hide the translation behind the target interface
1f8cf220
PA
822# (target_wait, target_resume, etc.).
823M:enum gdb_signal:gdb_signal_from_target:int signo:signo
60c5725c 824
eb14d406
SDJ
825# Signal translation: translate the GDB's internal signal number into
826# the inferior's signal (target's) representation. The implementation
827# of this method must be host independent. IOW, don't rely on symbols
828# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
829# header, or similar headers.
830# Return the target signal number if found, or -1 if the GDB internal
831# signal number is invalid.
832M:int:gdb_signal_to_target:enum gdb_signal signal:signal
833
4aa995e1
PA
834# Extra signal info inspection.
835#
836# Return a type suitable to inspect extra signal information.
837M:struct type *:get_siginfo_type:void:
838
60c5725c
DJ
839# Record architecture-specific information from the symbol table.
840M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 841
a96d9b2e
SDJ
842# Function for the 'catch syscall' feature.
843
844# Get architecture-specific system calls information from registers.
845M:LONGEST:get_syscall_number:ptid_t ptid:ptid
846
55aa24fb
SDJ
847# SystemTap related fields and functions.
848
05c0465e
SDJ
849# A NULL-terminated array of prefixes used to mark an integer constant
850# on the architecture's assembly.
55aa24fb
SDJ
851# For example, on x86 integer constants are written as:
852#
853# \$10 ;; integer constant 10
854#
855# in this case, this prefix would be the character \`\$\'.
05c0465e 856v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 857
05c0465e
SDJ
858# A NULL-terminated array of suffixes used to mark an integer constant
859# on the architecture's assembly.
860v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 861
05c0465e
SDJ
862# A NULL-terminated array of prefixes used to mark a register name on
863# the architecture's assembly.
55aa24fb
SDJ
864# For example, on x86 the register name is written as:
865#
866# \%eax ;; register eax
867#
868# in this case, this prefix would be the character \`\%\'.
05c0465e 869v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 870
05c0465e
SDJ
871# A NULL-terminated array of suffixes used to mark a register name on
872# the architecture's assembly.
873v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 874
05c0465e
SDJ
875# A NULL-terminated array of prefixes used to mark a register
876# indirection on the architecture's assembly.
55aa24fb
SDJ
877# For example, on x86 the register indirection is written as:
878#
879# \(\%eax\) ;; indirecting eax
880#
881# in this case, this prefix would be the charater \`\(\'.
882#
883# Please note that we use the indirection prefix also for register
884# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 885v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 886
05c0465e
SDJ
887# A NULL-terminated array of suffixes used to mark a register
888# indirection on the architecture's assembly.
55aa24fb
SDJ
889# For example, on x86 the register indirection is written as:
890#
891# \(\%eax\) ;; indirecting eax
892#
893# in this case, this prefix would be the charater \`\)\'.
894#
895# Please note that we use the indirection suffix also for register
896# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 897v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 898
05c0465e 899# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
900#
901# For example, on PPC a register is represented by a number in the assembly
902# language (e.g., \`10\' is the 10th general-purpose register). However,
903# inside GDB this same register has an \`r\' appended to its name, so the 10th
904# register would be represented as \`r10\' internally.
08af7a40 905v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
906
907# Suffix used to name a register using GDB's nomenclature.
08af7a40 908v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
909
910# Check if S is a single operand.
911#
912# Single operands can be:
913# \- Literal integers, e.g. \`\$10\' on x86
914# \- Register access, e.g. \`\%eax\' on x86
915# \- Register indirection, e.g. \`\(\%eax\)\' on x86
916# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
917#
918# This function should check for these patterns on the string
919# and return 1 if some were found, or zero otherwise. Please try to match
920# as much info as you can from the string, i.e., if you have to match
921# something like \`\(\%\', do not match just the \`\(\'.
922M:int:stap_is_single_operand:const char *s:s
923
924# Function used to handle a "special case" in the parser.
925#
926# A "special case" is considered to be an unknown token, i.e., a token
927# that the parser does not know how to parse. A good example of special
928# case would be ARM's register displacement syntax:
929#
930# [R0, #4] ;; displacing R0 by 4
931#
932# Since the parser assumes that a register displacement is of the form:
933#
934# <number> <indirection_prefix> <register_name> <indirection_suffix>
935#
936# it means that it will not be able to recognize and parse this odd syntax.
937# Therefore, we should add a special case function that will handle this token.
938#
939# This function should generate the proper expression form of the expression
940# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
941# and so on). It should also return 1 if the parsing was successful, or zero
942# if the token was not recognized as a special token (in this case, returning
943# zero means that the special parser is deferring the parsing to the generic
944# parser), and should advance the buffer pointer (p->arg).
945M:int:stap_parse_special_token:struct stap_parse_info *p:p
946
947
50c71eaf
PA
948# True if the list of shared libraries is one and only for all
949# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
950# This usually means that all processes, although may or may not share
951# an address space, will see the same set of symbols at the same
952# addresses.
50c71eaf 953v:int:has_global_solist:::0:0::0
2567c7d9
PA
954
955# On some targets, even though each inferior has its own private
956# address space, the debug interface takes care of making breakpoints
957# visible to all address spaces automatically. For such cases,
958# this property should be set to true.
959v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
960
961# True if inferiors share an address space (e.g., uClinux).
962m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
963
964# True if a fast tracepoint can be set at an address.
965m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
75cebea9 966
f870a310
TT
967# Return the "auto" target charset.
968f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
969# Return the "auto" target wide charset.
970f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
971
972# If non-empty, this is a file extension that will be opened in place
973# of the file extension reported by the shared library list.
974#
975# This is most useful for toolchains that use a post-linker tool,
976# where the names of the files run on the target differ in extension
977# compared to the names of the files GDB should load for debug info.
978v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
979
980# If true, the target OS has DOS-based file system semantics. That
981# is, absolute paths include a drive name, and the backslash is
982# considered a directory separator.
983v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
984
985# Generate bytecodes to collect the return address in a frame.
986# Since the bytecodes run on the target, possibly with GDB not even
987# connected, the full unwinding machinery is not available, and
988# typically this function will issue bytecodes for one or more likely
989# places that the return address may be found.
990m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
991
3030c96e
UW
992# Implement the "info proc" command.
993M:void:info_proc:char *args, enum info_proc_what what:args, what
994
451b7c33
TT
995# Implement the "info proc" command for core files. Noe that there
996# are two "info_proc"-like methods on gdbarch -- one for core files,
997# one for live targets.
998M:void:core_info_proc:char *args, enum info_proc_what what:args, what
999
19630284
JB
1000# Iterate over all objfiles in the order that makes the most sense
1001# for the architecture to make global symbol searches.
1002#
1003# CB is a callback function where OBJFILE is the objfile to be searched,
1004# and CB_DATA a pointer to user-defined data (the same data that is passed
1005# when calling this gdbarch method). The iteration stops if this function
1006# returns nonzero.
1007#
1008# CB_DATA is a pointer to some user-defined data to be passed to
1009# the callback.
1010#
1011# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1012# inspected when the symbol search was requested.
1013m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1014
7e35103a
JB
1015# Ravenscar arch-dependent ops.
1016v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1017
1018# Return non-zero if the instruction at ADDR is a call; zero otherwise.
1019m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1020
1021# Return non-zero if the instruction at ADDR is a return; zero otherwise.
1022m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1023
1024# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1025m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
104c1213 1026EOF
104c1213
JM
1027}
1028
0b8f9e4d
AC
1029#
1030# The .log file
1031#
1032exec > new-gdbarch.log
34620563 1033function_list | while do_read
0b8f9e4d
AC
1034do
1035 cat <<EOF
2f9b146e 1036${class} ${returntype} ${function} ($formal)
104c1213 1037EOF
3d9a5942
AC
1038 for r in ${read}
1039 do
1040 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1041 done
f0d4cc9e 1042 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1043 then
66d659b1 1044 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1045 kill $$
1046 exit 1
1047 fi
72e74a21 1048 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1049 then
1050 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1051 kill $$
1052 exit 1
1053 fi
a72293e2
AC
1054 if class_is_multiarch_p
1055 then
1056 if class_is_predicate_p ; then :
1057 elif test "x${predefault}" = "x"
1058 then
2f9b146e 1059 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1060 kill $$
1061 exit 1
1062 fi
1063 fi
3d9a5942 1064 echo ""
0b8f9e4d
AC
1065done
1066
1067exec 1>&2
1068compare_new gdbarch.log
1069
104c1213
JM
1070
1071copyright ()
1072{
1073cat <<EOF
c4bfde41
JK
1074/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1075/* vi:set ro: */
59233f88 1076
104c1213 1077/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1078
ecd75fc8 1079 Copyright (C) 1998-2014 Free Software Foundation, Inc.
104c1213
JM
1080
1081 This file is part of GDB.
1082
1083 This program is free software; you can redistribute it and/or modify
1084 it under the terms of the GNU General Public License as published by
50efebf8 1085 the Free Software Foundation; either version 3 of the License, or
104c1213 1086 (at your option) any later version.
50efebf8 1087
104c1213
JM
1088 This program is distributed in the hope that it will be useful,
1089 but WITHOUT ANY WARRANTY; without even the implied warranty of
1090 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1091 GNU General Public License for more details.
50efebf8 1092
104c1213 1093 You should have received a copy of the GNU General Public License
50efebf8 1094 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1095
104c1213
JM
1096/* This file was created with the aid of \`\`gdbarch.sh''.
1097
52204a0b 1098 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1099 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1100 against the existing \`\`gdbarch.[hc]''. Any differences found
1101 being reported.
1102
1103 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1104 changes into that script. Conversely, when making sweeping changes
104c1213 1105 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1106 easier. */
104c1213
JM
1107
1108EOF
1109}
1110
1111#
1112# The .h file
1113#
1114
1115exec > new-gdbarch.h
1116copyright
1117cat <<EOF
1118#ifndef GDBARCH_H
1119#define GDBARCH_H
1120
da3331ec
AC
1121struct floatformat;
1122struct ui_file;
104c1213
JM
1123struct frame_info;
1124struct value;
b6af0555 1125struct objfile;
1c772458 1126struct obj_section;
a2cf933a 1127struct minimal_symbol;
049ee0e4 1128struct regcache;
b59ff9d5 1129struct reggroup;
6ce6d90f 1130struct regset;
a89aa300 1131struct disassemble_info;
e2d0e7eb 1132struct target_ops;
030f20e1 1133struct obstack;
8181d85f 1134struct bp_target_info;
424163ea 1135struct target_desc;
237fc4c9 1136struct displaced_step_closure;
17ea7499 1137struct core_regset_section;
a96d9b2e 1138struct syscall;
175ff332 1139struct agent_expr;
6710bf39 1140struct axs_value;
55aa24fb 1141struct stap_parse_info;
7e35103a 1142struct ravenscar_arch_ops;
b3ac9c77 1143struct elf_internal_linux_prpsinfo;
104c1213 1144
6ecd4729
PA
1145/* The architecture associated with the inferior through the
1146 connection to the target.
1147
1148 The architecture vector provides some information that is really a
1149 property of the inferior, accessed through a particular target:
1150 ptrace operations; the layout of certain RSP packets; the solib_ops
1151 vector; etc. To differentiate architecture accesses to
1152 per-inferior/target properties from
1153 per-thread/per-frame/per-objfile properties, accesses to
1154 per-inferior/target properties should be made through this
1155 gdbarch. */
1156
1157/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1158extern struct gdbarch *target_gdbarch (void);
6ecd4729
PA
1159
1160/* The initial, default architecture. It uses host values (for want of a better
1161 choice). */
1162extern struct gdbarch startup_gdbarch;
1163
19630284
JB
1164
1165/* Callback type for the 'iterate_over_objfiles_in_search_order'
1166 gdbarch method. */
1167
1168typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1169 (struct objfile *objfile, void *cb_data);
104c1213
JM
1170EOF
1171
1172# function typedef's
3d9a5942
AC
1173printf "\n"
1174printf "\n"
0963b4bd 1175printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1176function_list | while do_read
104c1213 1177do
2ada493a
AC
1178 if class_is_info_p
1179 then
3d9a5942
AC
1180 printf "\n"
1181 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1182 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1183 fi
104c1213
JM
1184done
1185
1186# function typedef's
3d9a5942
AC
1187printf "\n"
1188printf "\n"
0963b4bd 1189printf "/* The following are initialized by the target dependent code. */\n"
34620563 1190function_list | while do_read
104c1213 1191do
72e74a21 1192 if [ -n "${comment}" ]
34620563
AC
1193 then
1194 echo "${comment}" | sed \
1195 -e '2 s,#,/*,' \
1196 -e '3,$ s,#, ,' \
1197 -e '$ s,$, */,'
1198 fi
412d5987
AC
1199
1200 if class_is_predicate_p
2ada493a 1201 then
412d5987
AC
1202 printf "\n"
1203 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1204 fi
2ada493a
AC
1205 if class_is_variable_p
1206 then
3d9a5942
AC
1207 printf "\n"
1208 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1209 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1210 fi
1211 if class_is_function_p
1212 then
3d9a5942 1213 printf "\n"
72e74a21 1214 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1215 then
1216 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1217 elif class_is_multiarch_p
1218 then
1219 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1220 else
1221 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1222 fi
72e74a21 1223 if [ "x${formal}" = "xvoid" ]
104c1213 1224 then
3d9a5942 1225 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1226 else
3d9a5942 1227 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1228 fi
3d9a5942 1229 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1230 fi
104c1213
JM
1231done
1232
1233# close it off
1234cat <<EOF
1235
a96d9b2e
SDJ
1236/* Definition for an unknown syscall, used basically in error-cases. */
1237#define UNKNOWN_SYSCALL (-1)
1238
104c1213
JM
1239extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1240
1241
1242/* Mechanism for co-ordinating the selection of a specific
1243 architecture.
1244
1245 GDB targets (*-tdep.c) can register an interest in a specific
1246 architecture. Other GDB components can register a need to maintain
1247 per-architecture data.
1248
1249 The mechanisms below ensures that there is only a loose connection
1250 between the set-architecture command and the various GDB
0fa6923a 1251 components. Each component can independently register their need
104c1213
JM
1252 to maintain architecture specific data with gdbarch.
1253
1254 Pragmatics:
1255
1256 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1257 didn't scale.
1258
1259 The more traditional mega-struct containing architecture specific
1260 data for all the various GDB components was also considered. Since
0fa6923a 1261 GDB is built from a variable number of (fairly independent)
104c1213 1262 components it was determined that the global aproach was not
0963b4bd 1263 applicable. */
104c1213
JM
1264
1265
1266/* Register a new architectural family with GDB.
1267
1268 Register support for the specified ARCHITECTURE with GDB. When
1269 gdbarch determines that the specified architecture has been
1270 selected, the corresponding INIT function is called.
1271
1272 --
1273
1274 The INIT function takes two parameters: INFO which contains the
1275 information available to gdbarch about the (possibly new)
1276 architecture; ARCHES which is a list of the previously created
1277 \`\`struct gdbarch'' for this architecture.
1278
0f79675b 1279 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1280 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1281
1282 The ARCHES parameter is a linked list (sorted most recently used)
1283 of all the previously created architures for this architecture
1284 family. The (possibly NULL) ARCHES->gdbarch can used to access
1285 values from the previously selected architecture for this
59837fe0 1286 architecture family.
104c1213
JM
1287
1288 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1289 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1290 gdbarch'' from the ARCHES list - indicating that the new
1291 architecture is just a synonym for an earlier architecture (see
1292 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1293 - that describes the selected architecture (see gdbarch_alloc()).
1294
1295 The DUMP_TDEP function shall print out all target specific values.
1296 Care should be taken to ensure that the function works in both the
0963b4bd 1297 multi-arch and non- multi-arch cases. */
104c1213
JM
1298
1299struct gdbarch_list
1300{
1301 struct gdbarch *gdbarch;
1302 struct gdbarch_list *next;
1303};
1304
1305struct gdbarch_info
1306{
0963b4bd 1307 /* Use default: NULL (ZERO). */
104c1213
JM
1308 const struct bfd_arch_info *bfd_arch_info;
1309
428721aa 1310 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1311 enum bfd_endian byte_order;
104c1213 1312
94123b4f 1313 enum bfd_endian byte_order_for_code;
9d4fde75 1314
0963b4bd 1315 /* Use default: NULL (ZERO). */
104c1213
JM
1316 bfd *abfd;
1317
0963b4bd 1318 /* Use default: NULL (ZERO). */
104c1213 1319 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1320
1321 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1322 enum gdb_osabi osabi;
424163ea
DJ
1323
1324 /* Use default: NULL (ZERO). */
1325 const struct target_desc *target_desc;
104c1213
JM
1326};
1327
1328typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1329typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1330
4b9b3959 1331/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1332extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1333
4b9b3959
AC
1334extern void gdbarch_register (enum bfd_architecture architecture,
1335 gdbarch_init_ftype *,
1336 gdbarch_dump_tdep_ftype *);
1337
104c1213 1338
b4a20239
AC
1339/* Return a freshly allocated, NULL terminated, array of the valid
1340 architecture names. Since architectures are registered during the
1341 _initialize phase this function only returns useful information
0963b4bd 1342 once initialization has been completed. */
b4a20239
AC
1343
1344extern const char **gdbarch_printable_names (void);
1345
1346
104c1213 1347/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1348 matches the information provided by INFO. */
104c1213 1349
424163ea 1350extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1351
1352
1353/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1354 basic initialization using values obtained from the INFO and TDEP
104c1213 1355 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1356 initialization of the object. */
104c1213
JM
1357
1358extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1359
1360
4b9b3959
AC
1361/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1362 It is assumed that the caller freeds the \`\`struct
0963b4bd 1363 gdbarch_tdep''. */
4b9b3959 1364
058f20d5
JB
1365extern void gdbarch_free (struct gdbarch *);
1366
1367
aebd7893
AC
1368/* Helper function. Allocate memory from the \`\`struct gdbarch''
1369 obstack. The memory is freed when the corresponding architecture
1370 is also freed. */
1371
1372extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1373#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1374#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1375
1376
0963b4bd 1377/* Helper function. Force an update of the current architecture.
104c1213 1378
b732d07d
AC
1379 The actual architecture selected is determined by INFO, \`\`(gdb) set
1380 architecture'' et.al., the existing architecture and BFD's default
1381 architecture. INFO should be initialized to zero and then selected
1382 fields should be updated.
104c1213 1383
0963b4bd 1384 Returns non-zero if the update succeeds. */
16f33e29
AC
1385
1386extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1387
1388
ebdba546
AC
1389/* Helper function. Find an architecture matching info.
1390
1391 INFO should be initialized using gdbarch_info_init, relevant fields
1392 set, and then finished using gdbarch_info_fill.
1393
1394 Returns the corresponding architecture, or NULL if no matching
59837fe0 1395 architecture was found. */
ebdba546
AC
1396
1397extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1398
1399
aff68abb 1400/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1401
aff68abb 1402extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1403
104c1213
JM
1404
1405/* Register per-architecture data-pointer.
1406
1407 Reserve space for a per-architecture data-pointer. An identifier
1408 for the reserved data-pointer is returned. That identifer should
95160752 1409 be saved in a local static variable.
104c1213 1410
fcc1c85c
AC
1411 Memory for the per-architecture data shall be allocated using
1412 gdbarch_obstack_zalloc. That memory will be deleted when the
1413 corresponding architecture object is deleted.
104c1213 1414
95160752
AC
1415 When a previously created architecture is re-selected, the
1416 per-architecture data-pointer for that previous architecture is
76860b5f 1417 restored. INIT() is not re-called.
104c1213
JM
1418
1419 Multiple registrarants for any architecture are allowed (and
1420 strongly encouraged). */
1421
95160752 1422struct gdbarch_data;
104c1213 1423
030f20e1
AC
1424typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1425extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1426typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1427extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1428extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1429 struct gdbarch_data *data,
1430 void *pointer);
104c1213 1431
451fbdda 1432extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1433
1434
0fa6923a 1435/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1436 byte-order, ...) using information found in the BFD. */
104c1213
JM
1437
1438extern void set_gdbarch_from_file (bfd *);
1439
1440
e514a9d6
JM
1441/* Initialize the current architecture to the "first" one we find on
1442 our list. */
1443
1444extern void initialize_current_architecture (void);
1445
104c1213 1446/* gdbarch trace variable */
ccce17b0 1447extern unsigned int gdbarch_debug;
104c1213 1448
4b9b3959 1449extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1450
1451#endif
1452EOF
1453exec 1>&2
1454#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1455compare_new gdbarch.h
104c1213
JM
1456
1457
1458#
1459# C file
1460#
1461
1462exec > new-gdbarch.c
1463copyright
1464cat <<EOF
1465
1466#include "defs.h"
7355ddba 1467#include "arch-utils.h"
104c1213 1468
104c1213 1469#include "gdbcmd.h"
faaf634c 1470#include "inferior.h"
104c1213
JM
1471#include "symcat.h"
1472
f0d4cc9e 1473#include "floatformat.h"
104c1213 1474
95160752 1475#include "gdb_assert.h"
e7b12392 1476#include <string.h>
b59ff9d5 1477#include "reggroups.h"
4be87837 1478#include "osabi.h"
aebd7893 1479#include "gdb_obstack.h"
383f836e 1480#include "observer.h"
a3ecef73 1481#include "regcache.h"
19630284 1482#include "objfiles.h"
95160752 1483
104c1213
JM
1484/* Static function declarations */
1485
b3cc3077 1486static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1487
104c1213
JM
1488/* Non-zero if we want to trace architecture code. */
1489
1490#ifndef GDBARCH_DEBUG
1491#define GDBARCH_DEBUG 0
1492#endif
ccce17b0 1493unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1494static void
1495show_gdbarch_debug (struct ui_file *file, int from_tty,
1496 struct cmd_list_element *c, const char *value)
1497{
1498 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1499}
104c1213 1500
456fcf94 1501static const char *
8da61cc4 1502pformat (const struct floatformat **format)
456fcf94
AC
1503{
1504 if (format == NULL)
1505 return "(null)";
1506 else
8da61cc4
DJ
1507 /* Just print out one of them - this is only for diagnostics. */
1508 return format[0]->name;
456fcf94
AC
1509}
1510
08105857
PA
1511static const char *
1512pstring (const char *string)
1513{
1514 if (string == NULL)
1515 return "(null)";
1516 return string;
05c0465e
SDJ
1517}
1518
1519/* Helper function to print a list of strings, represented as "const
1520 char *const *". The list is printed comma-separated. */
1521
1522static char *
1523pstring_list (const char *const *list)
1524{
1525 static char ret[100];
1526 const char *const *p;
1527 size_t offset = 0;
1528
1529 if (list == NULL)
1530 return "(null)";
1531
1532 ret[0] = '\0';
1533 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1534 {
1535 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1536 offset += 2 + s;
1537 }
1538
1539 if (offset > 0)
1540 {
1541 gdb_assert (offset - 2 < sizeof (ret));
1542 ret[offset - 2] = '\0';
1543 }
1544
1545 return ret;
08105857
PA
1546}
1547
104c1213
JM
1548EOF
1549
1550# gdbarch open the gdbarch object
3d9a5942 1551printf "\n"
0963b4bd 1552printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1553printf "\n"
1554printf "struct gdbarch\n"
1555printf "{\n"
76860b5f
AC
1556printf " /* Has this architecture been fully initialized? */\n"
1557printf " int initialized_p;\n"
aebd7893
AC
1558printf "\n"
1559printf " /* An obstack bound to the lifetime of the architecture. */\n"
1560printf " struct obstack *obstack;\n"
1561printf "\n"
0963b4bd 1562printf " /* basic architectural information. */\n"
34620563 1563function_list | while do_read
104c1213 1564do
2ada493a
AC
1565 if class_is_info_p
1566 then
3d9a5942 1567 printf " ${returntype} ${function};\n"
2ada493a 1568 fi
104c1213 1569done
3d9a5942 1570printf "\n"
0963b4bd 1571printf " /* target specific vector. */\n"
3d9a5942
AC
1572printf " struct gdbarch_tdep *tdep;\n"
1573printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1574printf "\n"
0963b4bd 1575printf " /* per-architecture data-pointers. */\n"
95160752 1576printf " unsigned nr_data;\n"
3d9a5942
AC
1577printf " void **data;\n"
1578printf "\n"
104c1213
JM
1579cat <<EOF
1580 /* Multi-arch values.
1581
1582 When extending this structure you must:
1583
1584 Add the field below.
1585
1586 Declare set/get functions and define the corresponding
1587 macro in gdbarch.h.
1588
1589 gdbarch_alloc(): If zero/NULL is not a suitable default,
1590 initialize the new field.
1591
1592 verify_gdbarch(): Confirm that the target updated the field
1593 correctly.
1594
7e73cedf 1595 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1596 field is dumped out
1597
c0e8c252 1598 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1599 variable (base values on the host's c-type system).
1600
1601 get_gdbarch(): Implement the set/get functions (probably using
1602 the macro's as shortcuts).
1603
1604 */
1605
1606EOF
34620563 1607function_list | while do_read
104c1213 1608do
2ada493a
AC
1609 if class_is_variable_p
1610 then
3d9a5942 1611 printf " ${returntype} ${function};\n"
2ada493a
AC
1612 elif class_is_function_p
1613 then
2f9b146e 1614 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1615 fi
104c1213 1616done
3d9a5942 1617printf "};\n"
104c1213
JM
1618
1619# A pre-initialized vector
3d9a5942
AC
1620printf "\n"
1621printf "\n"
104c1213
JM
1622cat <<EOF
1623/* The default architecture uses host values (for want of a better
0963b4bd 1624 choice). */
104c1213 1625EOF
3d9a5942
AC
1626printf "\n"
1627printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1628printf "\n"
1629printf "struct gdbarch startup_gdbarch =\n"
1630printf "{\n"
76860b5f 1631printf " 1, /* Always initialized. */\n"
aebd7893 1632printf " NULL, /* The obstack. */\n"
0963b4bd 1633printf " /* basic architecture information. */\n"
4b9b3959 1634function_list | while do_read
104c1213 1635do
2ada493a
AC
1636 if class_is_info_p
1637 then
ec5cbaec 1638 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1639 fi
104c1213
JM
1640done
1641cat <<EOF
0963b4bd 1642 /* target specific vector and its dump routine. */
4b9b3959 1643 NULL, NULL,
c66fb220
TT
1644 /*per-architecture data-pointers. */
1645 0, NULL,
104c1213
JM
1646 /* Multi-arch values */
1647EOF
34620563 1648function_list | while do_read
104c1213 1649do
2ada493a
AC
1650 if class_is_function_p || class_is_variable_p
1651 then
ec5cbaec 1652 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1653 fi
104c1213
JM
1654done
1655cat <<EOF
c0e8c252 1656 /* startup_gdbarch() */
104c1213 1657};
4b9b3959 1658
104c1213
JM
1659EOF
1660
1661# Create a new gdbarch struct
104c1213 1662cat <<EOF
7de2341d 1663
66b43ecb 1664/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1665 \`\`struct gdbarch_info''. */
104c1213 1666EOF
3d9a5942 1667printf "\n"
104c1213
JM
1668cat <<EOF
1669struct gdbarch *
1670gdbarch_alloc (const struct gdbarch_info *info,
1671 struct gdbarch_tdep *tdep)
1672{
be7811ad 1673 struct gdbarch *gdbarch;
aebd7893
AC
1674
1675 /* Create an obstack for allocating all the per-architecture memory,
1676 then use that to allocate the architecture vector. */
70ba0933 1677 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1678 obstack_init (obstack);
be7811ad
MD
1679 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1680 memset (gdbarch, 0, sizeof (*gdbarch));
1681 gdbarch->obstack = obstack;
85de9627 1682
be7811ad 1683 alloc_gdbarch_data (gdbarch);
85de9627 1684
be7811ad 1685 gdbarch->tdep = tdep;
104c1213 1686EOF
3d9a5942 1687printf "\n"
34620563 1688function_list | while do_read
104c1213 1689do
2ada493a
AC
1690 if class_is_info_p
1691 then
be7811ad 1692 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1693 fi
104c1213 1694done
3d9a5942 1695printf "\n"
0963b4bd 1696printf " /* Force the explicit initialization of these. */\n"
34620563 1697function_list | while do_read
104c1213 1698do
2ada493a
AC
1699 if class_is_function_p || class_is_variable_p
1700 then
72e74a21 1701 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1702 then
be7811ad 1703 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1704 fi
2ada493a 1705 fi
104c1213
JM
1706done
1707cat <<EOF
1708 /* gdbarch_alloc() */
1709
be7811ad 1710 return gdbarch;
104c1213
JM
1711}
1712EOF
1713
058f20d5 1714# Free a gdbarch struct.
3d9a5942
AC
1715printf "\n"
1716printf "\n"
058f20d5 1717cat <<EOF
aebd7893
AC
1718/* Allocate extra space using the per-architecture obstack. */
1719
1720void *
1721gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1722{
1723 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1724
aebd7893
AC
1725 memset (data, 0, size);
1726 return data;
1727}
1728
1729
058f20d5
JB
1730/* Free a gdbarch struct. This should never happen in normal
1731 operation --- once you've created a gdbarch, you keep it around.
1732 However, if an architecture's init function encounters an error
1733 building the structure, it may need to clean up a partially
1734 constructed gdbarch. */
4b9b3959 1735
058f20d5
JB
1736void
1737gdbarch_free (struct gdbarch *arch)
1738{
aebd7893 1739 struct obstack *obstack;
05c547f6 1740
95160752 1741 gdb_assert (arch != NULL);
aebd7893
AC
1742 gdb_assert (!arch->initialized_p);
1743 obstack = arch->obstack;
1744 obstack_free (obstack, 0); /* Includes the ARCH. */
1745 xfree (obstack);
058f20d5
JB
1746}
1747EOF
1748
104c1213 1749# verify a new architecture
104c1213 1750cat <<EOF
db446970
AC
1751
1752
1753/* Ensure that all values in a GDBARCH are reasonable. */
1754
104c1213 1755static void
be7811ad 1756verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1757{
f16a1923
AC
1758 struct ui_file *log;
1759 struct cleanup *cleanups;
759ef836 1760 long length;
f16a1923 1761 char *buf;
05c547f6 1762
f16a1923
AC
1763 log = mem_fileopen ();
1764 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1765 /* fundamental */
be7811ad 1766 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1767 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1768 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1769 fprintf_unfiltered (log, "\n\tbfd_arch_info");
0963b4bd 1770 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1771EOF
34620563 1772function_list | while do_read
104c1213 1773do
2ada493a
AC
1774 if class_is_function_p || class_is_variable_p
1775 then
72e74a21 1776 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1777 then
3d9a5942 1778 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1779 elif class_is_predicate_p
1780 then
0963b4bd 1781 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1782 # FIXME: See do_read for potential simplification
72e74a21 1783 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1784 then
3d9a5942 1785 printf " if (${invalid_p})\n"
be7811ad 1786 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1787 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1788 then
be7811ad
MD
1789 printf " if (gdbarch->${function} == ${predefault})\n"
1790 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1791 elif [ -n "${postdefault}" ]
f0d4cc9e 1792 then
be7811ad
MD
1793 printf " if (gdbarch->${function} == 0)\n"
1794 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1795 elif [ -n "${invalid_p}" ]
104c1213 1796 then
4d60522e 1797 printf " if (${invalid_p})\n"
f16a1923 1798 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1799 elif [ -n "${predefault}" ]
104c1213 1800 then
be7811ad 1801 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1802 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1803 fi
2ada493a 1804 fi
104c1213
JM
1805done
1806cat <<EOF
759ef836 1807 buf = ui_file_xstrdup (log, &length);
f16a1923 1808 make_cleanup (xfree, buf);
759ef836 1809 if (length > 0)
f16a1923 1810 internal_error (__FILE__, __LINE__,
85c07804 1811 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1812 buf);
1813 do_cleanups (cleanups);
104c1213
JM
1814}
1815EOF
1816
1817# dump the structure
3d9a5942
AC
1818printf "\n"
1819printf "\n"
104c1213 1820cat <<EOF
0963b4bd 1821/* Print out the details of the current architecture. */
4b9b3959 1822
104c1213 1823void
be7811ad 1824gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1825{
b78960be 1826 const char *gdb_nm_file = "<not-defined>";
05c547f6 1827
b78960be
AC
1828#if defined (GDB_NM_FILE)
1829 gdb_nm_file = GDB_NM_FILE;
1830#endif
1831 fprintf_unfiltered (file,
1832 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1833 gdb_nm_file);
104c1213 1834EOF
97030eea 1835function_list | sort -t: -k 3 | while do_read
104c1213 1836do
1e9f55d0
AC
1837 # First the predicate
1838 if class_is_predicate_p
1839 then
7996bcec 1840 printf " fprintf_unfiltered (file,\n"
48f7351b 1841 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1842 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1843 fi
48f7351b 1844 # Print the corresponding value.
283354d8 1845 if class_is_function_p
4b9b3959 1846 then
7996bcec 1847 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1848 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1849 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1850 else
48f7351b 1851 # It is a variable
2f9b146e
AC
1852 case "${print}:${returntype}" in
1853 :CORE_ADDR )
0b1553bc
UW
1854 fmt="%s"
1855 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1856 ;;
2f9b146e 1857 :* )
48f7351b 1858 fmt="%s"
623d3eb1 1859 print="plongest (gdbarch->${function})"
48f7351b
AC
1860 ;;
1861 * )
2f9b146e 1862 fmt="%s"
48f7351b
AC
1863 ;;
1864 esac
3d9a5942 1865 printf " fprintf_unfiltered (file,\n"
48f7351b 1866 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1867 printf " ${print});\n"
2ada493a 1868 fi
104c1213 1869done
381323f4 1870cat <<EOF
be7811ad
MD
1871 if (gdbarch->dump_tdep != NULL)
1872 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1873}
1874EOF
104c1213
JM
1875
1876
1877# GET/SET
3d9a5942 1878printf "\n"
104c1213
JM
1879cat <<EOF
1880struct gdbarch_tdep *
1881gdbarch_tdep (struct gdbarch *gdbarch)
1882{
1883 if (gdbarch_debug >= 2)
3d9a5942 1884 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1885 return gdbarch->tdep;
1886}
1887EOF
3d9a5942 1888printf "\n"
34620563 1889function_list | while do_read
104c1213 1890do
2ada493a
AC
1891 if class_is_predicate_p
1892 then
3d9a5942
AC
1893 printf "\n"
1894 printf "int\n"
1895 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1896 printf "{\n"
8de9bdc4 1897 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1898 printf " return ${predicate};\n"
3d9a5942 1899 printf "}\n"
2ada493a
AC
1900 fi
1901 if class_is_function_p
1902 then
3d9a5942
AC
1903 printf "\n"
1904 printf "${returntype}\n"
72e74a21 1905 if [ "x${formal}" = "xvoid" ]
104c1213 1906 then
3d9a5942 1907 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1908 else
3d9a5942 1909 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1910 fi
3d9a5942 1911 printf "{\n"
8de9bdc4 1912 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1913 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1914 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1915 then
1916 # Allow a call to a function with a predicate.
956ac328 1917 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1918 fi
3d9a5942
AC
1919 printf " if (gdbarch_debug >= 2)\n"
1920 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1921 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1922 then
1923 if class_is_multiarch_p
1924 then
1925 params="gdbarch"
1926 else
1927 params=""
1928 fi
1929 else
1930 if class_is_multiarch_p
1931 then
1932 params="gdbarch, ${actual}"
1933 else
1934 params="${actual}"
1935 fi
1936 fi
72e74a21 1937 if [ "x${returntype}" = "xvoid" ]
104c1213 1938 then
4a5c6a1d 1939 printf " gdbarch->${function} (${params});\n"
104c1213 1940 else
4a5c6a1d 1941 printf " return gdbarch->${function} (${params});\n"
104c1213 1942 fi
3d9a5942
AC
1943 printf "}\n"
1944 printf "\n"
1945 printf "void\n"
1946 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1947 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1948 printf "{\n"
1949 printf " gdbarch->${function} = ${function};\n"
1950 printf "}\n"
2ada493a
AC
1951 elif class_is_variable_p
1952 then
3d9a5942
AC
1953 printf "\n"
1954 printf "${returntype}\n"
1955 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1956 printf "{\n"
8de9bdc4 1957 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1958 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1959 then
3d9a5942 1960 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1961 elif [ -n "${invalid_p}" ]
104c1213 1962 then
956ac328
AC
1963 printf " /* Check variable is valid. */\n"
1964 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1965 elif [ -n "${predefault}" ]
104c1213 1966 then
956ac328
AC
1967 printf " /* Check variable changed from pre-default. */\n"
1968 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1969 fi
3d9a5942
AC
1970 printf " if (gdbarch_debug >= 2)\n"
1971 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1972 printf " return gdbarch->${function};\n"
1973 printf "}\n"
1974 printf "\n"
1975 printf "void\n"
1976 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1977 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1978 printf "{\n"
1979 printf " gdbarch->${function} = ${function};\n"
1980 printf "}\n"
2ada493a
AC
1981 elif class_is_info_p
1982 then
3d9a5942
AC
1983 printf "\n"
1984 printf "${returntype}\n"
1985 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1986 printf "{\n"
8de9bdc4 1987 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1988 printf " if (gdbarch_debug >= 2)\n"
1989 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1990 printf " return gdbarch->${function};\n"
1991 printf "}\n"
2ada493a 1992 fi
104c1213
JM
1993done
1994
1995# All the trailing guff
1996cat <<EOF
1997
1998
f44c642f 1999/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2000 modules. */
104c1213
JM
2001
2002struct gdbarch_data
2003{
95160752 2004 unsigned index;
76860b5f 2005 int init_p;
030f20e1
AC
2006 gdbarch_data_pre_init_ftype *pre_init;
2007 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2008};
2009
2010struct gdbarch_data_registration
2011{
104c1213
JM
2012 struct gdbarch_data *data;
2013 struct gdbarch_data_registration *next;
2014};
2015
f44c642f 2016struct gdbarch_data_registry
104c1213 2017{
95160752 2018 unsigned nr;
104c1213
JM
2019 struct gdbarch_data_registration *registrations;
2020};
2021
f44c642f 2022struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2023{
2024 0, NULL,
2025};
2026
030f20e1
AC
2027static struct gdbarch_data *
2028gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2029 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2030{
2031 struct gdbarch_data_registration **curr;
05c547f6
MS
2032
2033 /* Append the new registration. */
f44c642f 2034 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2035 (*curr) != NULL;
2036 curr = &(*curr)->next);
70ba0933 2037 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2038 (*curr)->next = NULL;
70ba0933 2039 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2040 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2041 (*curr)->data->pre_init = pre_init;
2042 (*curr)->data->post_init = post_init;
76860b5f 2043 (*curr)->data->init_p = 1;
104c1213
JM
2044 return (*curr)->data;
2045}
2046
030f20e1
AC
2047struct gdbarch_data *
2048gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2049{
2050 return gdbarch_data_register (pre_init, NULL);
2051}
2052
2053struct gdbarch_data *
2054gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2055{
2056 return gdbarch_data_register (NULL, post_init);
2057}
104c1213 2058
0963b4bd 2059/* Create/delete the gdbarch data vector. */
95160752
AC
2060
2061static void
b3cc3077 2062alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2063{
b3cc3077
JB
2064 gdb_assert (gdbarch->data == NULL);
2065 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2066 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2067}
3c875b6f 2068
76860b5f 2069/* Initialize the current value of the specified per-architecture
0963b4bd 2070 data-pointer. */
b3cc3077 2071
95160752 2072void
030f20e1
AC
2073deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2074 struct gdbarch_data *data,
2075 void *pointer)
95160752
AC
2076{
2077 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2078 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2079 gdb_assert (data->pre_init == NULL);
95160752
AC
2080 gdbarch->data[data->index] = pointer;
2081}
2082
104c1213 2083/* Return the current value of the specified per-architecture
0963b4bd 2084 data-pointer. */
104c1213
JM
2085
2086void *
451fbdda 2087gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2088{
451fbdda 2089 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2090 if (gdbarch->data[data->index] == NULL)
76860b5f 2091 {
030f20e1
AC
2092 /* The data-pointer isn't initialized, call init() to get a
2093 value. */
2094 if (data->pre_init != NULL)
2095 /* Mid architecture creation: pass just the obstack, and not
2096 the entire architecture, as that way it isn't possible for
2097 pre-init code to refer to undefined architecture
2098 fields. */
2099 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2100 else if (gdbarch->initialized_p
2101 && data->post_init != NULL)
2102 /* Post architecture creation: pass the entire architecture
2103 (as all fields are valid), but be careful to also detect
2104 recursive references. */
2105 {
2106 gdb_assert (data->init_p);
2107 data->init_p = 0;
2108 gdbarch->data[data->index] = data->post_init (gdbarch);
2109 data->init_p = 1;
2110 }
2111 else
2112 /* The architecture initialization hasn't completed - punt -
2113 hope that the caller knows what they are doing. Once
2114 deprecated_set_gdbarch_data has been initialized, this can be
2115 changed to an internal error. */
2116 return NULL;
76860b5f
AC
2117 gdb_assert (gdbarch->data[data->index] != NULL);
2118 }
451fbdda 2119 return gdbarch->data[data->index];
104c1213
JM
2120}
2121
2122
0963b4bd 2123/* Keep a registry of the architectures known by GDB. */
104c1213 2124
4b9b3959 2125struct gdbarch_registration
104c1213
JM
2126{
2127 enum bfd_architecture bfd_architecture;
2128 gdbarch_init_ftype *init;
4b9b3959 2129 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2130 struct gdbarch_list *arches;
4b9b3959 2131 struct gdbarch_registration *next;
104c1213
JM
2132};
2133
f44c642f 2134static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2135
b4a20239
AC
2136static void
2137append_name (const char ***buf, int *nr, const char *name)
2138{
2139 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2140 (*buf)[*nr] = name;
2141 *nr += 1;
2142}
2143
2144const char **
2145gdbarch_printable_names (void)
2146{
7996bcec 2147 /* Accumulate a list of names based on the registed list of
0963b4bd 2148 architectures. */
7996bcec
AC
2149 int nr_arches = 0;
2150 const char **arches = NULL;
2151 struct gdbarch_registration *rego;
05c547f6 2152
7996bcec
AC
2153 for (rego = gdbarch_registry;
2154 rego != NULL;
2155 rego = rego->next)
b4a20239 2156 {
7996bcec
AC
2157 const struct bfd_arch_info *ap;
2158 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2159 if (ap == NULL)
2160 internal_error (__FILE__, __LINE__,
85c07804 2161 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2162 do
2163 {
2164 append_name (&arches, &nr_arches, ap->printable_name);
2165 ap = ap->next;
2166 }
2167 while (ap != NULL);
b4a20239 2168 }
7996bcec
AC
2169 append_name (&arches, &nr_arches, NULL);
2170 return arches;
b4a20239
AC
2171}
2172
2173
104c1213 2174void
4b9b3959
AC
2175gdbarch_register (enum bfd_architecture bfd_architecture,
2176 gdbarch_init_ftype *init,
2177 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2178{
4b9b3959 2179 struct gdbarch_registration **curr;
104c1213 2180 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2181
ec3d358c 2182 /* Check that BFD recognizes this architecture */
104c1213
JM
2183 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2184 if (bfd_arch_info == NULL)
2185 {
8e65ff28 2186 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2187 _("gdbarch: Attempt to register "
2188 "unknown architecture (%d)"),
8e65ff28 2189 bfd_architecture);
104c1213 2190 }
0963b4bd 2191 /* Check that we haven't seen this architecture before. */
f44c642f 2192 for (curr = &gdbarch_registry;
104c1213
JM
2193 (*curr) != NULL;
2194 curr = &(*curr)->next)
2195 {
2196 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2197 internal_error (__FILE__, __LINE__,
64b9b334 2198 _("gdbarch: Duplicate registration "
0963b4bd 2199 "of architecture (%s)"),
8e65ff28 2200 bfd_arch_info->printable_name);
104c1213
JM
2201 }
2202 /* log it */
2203 if (gdbarch_debug)
30737ed9 2204 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2205 bfd_arch_info->printable_name,
30737ed9 2206 host_address_to_string (init));
104c1213 2207 /* Append it */
70ba0933 2208 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2209 (*curr)->bfd_architecture = bfd_architecture;
2210 (*curr)->init = init;
4b9b3959 2211 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2212 (*curr)->arches = NULL;
2213 (*curr)->next = NULL;
4b9b3959
AC
2214}
2215
2216void
2217register_gdbarch_init (enum bfd_architecture bfd_architecture,
2218 gdbarch_init_ftype *init)
2219{
2220 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2221}
104c1213
JM
2222
2223
424163ea 2224/* Look for an architecture using gdbarch_info. */
104c1213
JM
2225
2226struct gdbarch_list *
2227gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2228 const struct gdbarch_info *info)
2229{
2230 for (; arches != NULL; arches = arches->next)
2231 {
2232 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2233 continue;
2234 if (info->byte_order != arches->gdbarch->byte_order)
2235 continue;
4be87837
DJ
2236 if (info->osabi != arches->gdbarch->osabi)
2237 continue;
424163ea
DJ
2238 if (info->target_desc != arches->gdbarch->target_desc)
2239 continue;
104c1213
JM
2240 return arches;
2241 }
2242 return NULL;
2243}
2244
2245
ebdba546 2246/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2247 architecture if needed. Return that new architecture. */
104c1213 2248
59837fe0
UW
2249struct gdbarch *
2250gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2251{
2252 struct gdbarch *new_gdbarch;
4b9b3959 2253 struct gdbarch_registration *rego;
104c1213 2254
b732d07d 2255 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2256 sources: "set ..."; INFOabfd supplied; and the global
2257 defaults. */
2258 gdbarch_info_fill (&info);
4be87837 2259
0963b4bd 2260 /* Must have found some sort of architecture. */
b732d07d 2261 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2262
2263 if (gdbarch_debug)
2264 {
2265 fprintf_unfiltered (gdb_stdlog,
59837fe0 2266 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2267 (info.bfd_arch_info != NULL
2268 ? info.bfd_arch_info->printable_name
2269 : "(null)"));
2270 fprintf_unfiltered (gdb_stdlog,
59837fe0 2271 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2272 info.byte_order,
d7449b42 2273 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2274 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2275 : "default"));
4be87837 2276 fprintf_unfiltered (gdb_stdlog,
59837fe0 2277 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2278 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2279 fprintf_unfiltered (gdb_stdlog,
59837fe0 2280 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2281 host_address_to_string (info.abfd));
104c1213 2282 fprintf_unfiltered (gdb_stdlog,
59837fe0 2283 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2284 host_address_to_string (info.tdep_info));
104c1213
JM
2285 }
2286
ebdba546 2287 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2288 for (rego = gdbarch_registry;
2289 rego != NULL;
2290 rego = rego->next)
2291 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2292 break;
2293 if (rego == NULL)
2294 {
2295 if (gdbarch_debug)
59837fe0 2296 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2297 "No matching architecture\n");
b732d07d
AC
2298 return 0;
2299 }
2300
ebdba546 2301 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2302 new_gdbarch = rego->init (info, rego->arches);
2303
ebdba546
AC
2304 /* Did the tdep code like it? No. Reject the change and revert to
2305 the old architecture. */
104c1213
JM
2306 if (new_gdbarch == NULL)
2307 {
2308 if (gdbarch_debug)
59837fe0 2309 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2310 "Target rejected architecture\n");
2311 return NULL;
104c1213
JM
2312 }
2313
ebdba546
AC
2314 /* Is this a pre-existing architecture (as determined by already
2315 being initialized)? Move it to the front of the architecture
2316 list (keeping the list sorted Most Recently Used). */
2317 if (new_gdbarch->initialized_p)
104c1213 2318 {
ebdba546
AC
2319 struct gdbarch_list **list;
2320 struct gdbarch_list *this;
104c1213 2321 if (gdbarch_debug)
59837fe0 2322 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2323 "Previous architecture %s (%s) selected\n",
2324 host_address_to_string (new_gdbarch),
104c1213 2325 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2326 /* Find the existing arch in the list. */
2327 for (list = &rego->arches;
2328 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2329 list = &(*list)->next);
2330 /* It had better be in the list of architectures. */
2331 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2332 /* Unlink THIS. */
2333 this = (*list);
2334 (*list) = this->next;
2335 /* Insert THIS at the front. */
2336 this->next = rego->arches;
2337 rego->arches = this;
2338 /* Return it. */
2339 return new_gdbarch;
104c1213
JM
2340 }
2341
ebdba546
AC
2342 /* It's a new architecture. */
2343 if (gdbarch_debug)
59837fe0 2344 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2345 "New architecture %s (%s) selected\n",
2346 host_address_to_string (new_gdbarch),
ebdba546
AC
2347 new_gdbarch->bfd_arch_info->printable_name);
2348
2349 /* Insert the new architecture into the front of the architecture
2350 list (keep the list sorted Most Recently Used). */
0f79675b 2351 {
70ba0933 2352 struct gdbarch_list *this = XNEW (struct gdbarch_list);
0f79675b
AC
2353 this->next = rego->arches;
2354 this->gdbarch = new_gdbarch;
2355 rego->arches = this;
2356 }
104c1213 2357
4b9b3959
AC
2358 /* Check that the newly installed architecture is valid. Plug in
2359 any post init values. */
2360 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2361 verify_gdbarch (new_gdbarch);
ebdba546 2362 new_gdbarch->initialized_p = 1;
104c1213 2363
4b9b3959 2364 if (gdbarch_debug)
ebdba546
AC
2365 gdbarch_dump (new_gdbarch, gdb_stdlog);
2366
2367 return new_gdbarch;
2368}
2369
e487cc15 2370/* Make the specified architecture current. */
ebdba546
AC
2371
2372void
aff68abb 2373set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2374{
2375 gdb_assert (new_gdbarch != NULL);
ebdba546 2376 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2377 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2378 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2379 registers_changed ();
ebdba546 2380}
104c1213 2381
f5656ead 2382/* Return the current inferior's arch. */
6ecd4729
PA
2383
2384struct gdbarch *
f5656ead 2385target_gdbarch (void)
6ecd4729
PA
2386{
2387 return current_inferior ()->gdbarch;
2388}
2389
104c1213 2390extern void _initialize_gdbarch (void);
b4a20239 2391
104c1213 2392void
34620563 2393_initialize_gdbarch (void)
104c1213 2394{
ccce17b0 2395 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2396Set architecture debugging."), _("\\
2397Show architecture debugging."), _("\\
2398When non-zero, architecture debugging is enabled."),
2399 NULL,
920d2a44 2400 show_gdbarch_debug,
85c07804 2401 &setdebuglist, &showdebuglist);
104c1213
JM
2402}
2403EOF
2404
2405# close things off
2406exec 1>&2
2407#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2408compare_new gdbarch.c