]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/gdbserver/linux-low.c
* gdb.texinfo (Omissions from Ada): Remove incorrect documentation
[thirdparty/binutils-gdb.git] / gdb / gdbserver / linux-low.c
CommitLineData
da6d8c04 1/* Low level interface to ptrace, for the remote server for GDB.
545587ee 2 Copyright (C) 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
9b254dd1 3 2006, 2007, 2008 Free Software Foundation, Inc.
da6d8c04
DJ
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
da6d8c04
DJ
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
da6d8c04
DJ
19
20#include "server.h"
58caa3dc 21#include "linux-low.h"
da6d8c04 22
58caa3dc 23#include <sys/wait.h>
da6d8c04
DJ
24#include <stdio.h>
25#include <sys/param.h>
da6d8c04 26#include <sys/ptrace.h>
da6d8c04
DJ
27#include <signal.h>
28#include <sys/ioctl.h>
29#include <fcntl.h>
d07c63e7 30#include <string.h>
0a30fbc4
DJ
31#include <stdlib.h>
32#include <unistd.h>
fa6a77dc 33#include <errno.h>
fd500816 34#include <sys/syscall.h>
f9387fc3 35#include <sched.h>
07e059b5
VP
36#include <ctype.h>
37#include <pwd.h>
38#include <sys/types.h>
39#include <dirent.h>
da6d8c04 40
32ca6d61
DJ
41#ifndef PTRACE_GETSIGINFO
42# define PTRACE_GETSIGINFO 0x4202
43# define PTRACE_SETSIGINFO 0x4203
44#endif
45
fd462a61
DJ
46#ifndef O_LARGEFILE
47#define O_LARGEFILE 0
48#endif
49
24a09b5f
DJ
50/* If the system headers did not provide the constants, hard-code the normal
51 values. */
52#ifndef PTRACE_EVENT_FORK
53
54#define PTRACE_SETOPTIONS 0x4200
55#define PTRACE_GETEVENTMSG 0x4201
56
57/* options set using PTRACE_SETOPTIONS */
58#define PTRACE_O_TRACESYSGOOD 0x00000001
59#define PTRACE_O_TRACEFORK 0x00000002
60#define PTRACE_O_TRACEVFORK 0x00000004
61#define PTRACE_O_TRACECLONE 0x00000008
62#define PTRACE_O_TRACEEXEC 0x00000010
63#define PTRACE_O_TRACEVFORKDONE 0x00000020
64#define PTRACE_O_TRACEEXIT 0x00000040
65
66/* Wait extended result codes for the above trace options. */
67#define PTRACE_EVENT_FORK 1
68#define PTRACE_EVENT_VFORK 2
69#define PTRACE_EVENT_CLONE 3
70#define PTRACE_EVENT_EXEC 4
71#define PTRACE_EVENT_VFORK_DONE 5
72#define PTRACE_EVENT_EXIT 6
73
74#endif /* PTRACE_EVENT_FORK */
75
76/* We can't always assume that this flag is available, but all systems
77 with the ptrace event handlers also have __WALL, so it's safe to use
78 in some contexts. */
79#ifndef __WALL
80#define __WALL 0x40000000 /* Wait for any child. */
81#endif
82
42c81e2a
DJ
83#ifdef __UCLIBC__
84#if !(defined(__UCLIBC_HAS_MMU__) || defined(__ARCH_HAS_MMU__))
85#define HAS_NOMMU
86#endif
87#endif
88
24a09b5f
DJ
89/* ``all_threads'' is keyed by the LWP ID, which we use as the GDB protocol
90 representation of the thread ID.
611cb4a5 91
0d62e5e8
DJ
92 ``all_processes'' is keyed by the process ID - which on Linux is (presently)
93 the same as the LWP ID. */
94
95struct inferior_list all_processes;
96
24a09b5f
DJ
97/* A list of all unknown processes which receive stop signals. Some other
98 process will presumably claim each of these as forked children
99 momentarily. */
100
101struct inferior_list stopped_pids;
102
0d62e5e8
DJ
103/* FIXME this is a bit of a hack, and could be removed. */
104int stopping_threads;
105
106/* FIXME make into a target method? */
24a09b5f
DJ
107int using_threads = 1;
108static int thread_db_active;
109
110static int must_set_ptrace_flags;
0d62e5e8 111
d61ddec4
UW
112/* This flag is true iff we've just created or attached to a new inferior
113 but it has not stopped yet. As soon as it does, we need to call the
114 low target's arch_setup callback. */
115static int new_inferior;
116
0d62e5e8 117static void linux_resume_one_process (struct inferior_list_entry *entry,
32ca6d61 118 int step, int signal, siginfo_t *info);
64386c31 119static void linux_resume (struct thread_resume *resume_info);
0d62e5e8
DJ
120static void stop_all_processes (void);
121static int linux_wait_for_event (struct thread_info *child);
ae13219e 122static int check_removed_breakpoint (struct process_info *event_child);
24a09b5f 123static void *add_process (unsigned long pid);
97438e3f 124static int my_waitpid (int pid, int *status, int flags);
0d62e5e8
DJ
125
126struct pending_signals
127{
128 int signal;
32ca6d61 129 siginfo_t info;
0d62e5e8
DJ
130 struct pending_signals *prev;
131};
611cb4a5 132
d844cde6 133#define PTRACE_ARG3_TYPE long
c6ecbae5 134#define PTRACE_XFER_TYPE long
da6d8c04 135
58caa3dc 136#ifdef HAVE_LINUX_REGSETS
52fa2412
UW
137static char *disabled_regsets;
138static int num_regsets;
58caa3dc
DJ
139#endif
140
0d62e5e8
DJ
141#define pid_of(proc) ((proc)->head.id)
142
143/* FIXME: Delete eventually. */
144#define inferior_pid (pid_of (get_thread_process (current_inferior)))
145
24a09b5f
DJ
146static void
147handle_extended_wait (struct process_info *event_child, int wstat)
148{
149 int event = wstat >> 16;
150 struct process_info *new_process;
151
152 if (event == PTRACE_EVENT_CLONE)
153 {
154 unsigned long new_pid;
836acd6d 155 int ret, status = W_STOPCODE (SIGSTOP);
24a09b5f
DJ
156
157 ptrace (PTRACE_GETEVENTMSG, inferior_pid, 0, &new_pid);
158
159 /* If we haven't already seen the new PID stop, wait for it now. */
160 if (! pull_pid_from_list (&stopped_pids, new_pid))
161 {
162 /* The new child has a pending SIGSTOP. We can't affect it until it
163 hits the SIGSTOP, but we're already attached. */
164
97438e3f 165 ret = my_waitpid (new_pid, &status, __WALL);
24a09b5f
DJ
166
167 if (ret == -1)
168 perror_with_name ("waiting for new child");
169 else if (ret != new_pid)
170 warning ("wait returned unexpected PID %d", ret);
da5898ce 171 else if (!WIFSTOPPED (status))
24a09b5f
DJ
172 warning ("wait returned unexpected status 0x%x", status);
173 }
174
175 ptrace (PTRACE_SETOPTIONS, new_pid, 0, PTRACE_O_TRACECLONE);
176
177 new_process = (struct process_info *) add_process (new_pid);
178 add_thread (new_pid, new_process, new_pid);
179 new_thread_notify (thread_id_to_gdb_id (new_process->lwpid));
180
da5898ce
DJ
181 /* Normally we will get the pending SIGSTOP. But in some cases
182 we might get another signal delivered to the group first.
183 If we do, be sure not to lose it. */
184 if (WSTOPSIG (status) == SIGSTOP)
185 {
186 if (stopping_threads)
187 new_process->stopped = 1;
188 else
189 ptrace (PTRACE_CONT, new_pid, 0, 0);
190 }
24a09b5f 191 else
da5898ce
DJ
192 {
193 new_process->stop_expected = 1;
194 if (stopping_threads)
195 {
196 new_process->stopped = 1;
197 new_process->status_pending_p = 1;
198 new_process->status_pending = status;
199 }
200 else
201 /* Pass the signal on. This is what GDB does - except
202 shouldn't we really report it instead? */
203 ptrace (PTRACE_CONT, new_pid, 0, WSTOPSIG (status));
204 }
24a09b5f
DJ
205
206 /* Always resume the current thread. If we are stopping
207 threads, it will have a pending SIGSTOP; we may as well
208 collect it now. */
209 linux_resume_one_process (&event_child->head,
210 event_child->stepping, 0, NULL);
211 }
212}
213
0d62e5e8
DJ
214/* This function should only be called if the process got a SIGTRAP.
215 The SIGTRAP could mean several things.
216
217 On i386, where decr_pc_after_break is non-zero:
218 If we were single-stepping this process using PTRACE_SINGLESTEP,
219 we will get only the one SIGTRAP (even if the instruction we
220 stepped over was a breakpoint). The value of $eip will be the
221 next instruction.
222 If we continue the process using PTRACE_CONT, we will get a
223 SIGTRAP when we hit a breakpoint. The value of $eip will be
224 the instruction after the breakpoint (i.e. needs to be
225 decremented). If we report the SIGTRAP to GDB, we must also
226 report the undecremented PC. If we cancel the SIGTRAP, we
227 must resume at the decremented PC.
228
229 (Presumably, not yet tested) On a non-decr_pc_after_break machine
230 with hardware or kernel single-step:
231 If we single-step over a breakpoint instruction, our PC will
232 point at the following instruction. If we continue and hit a
233 breakpoint instruction, our PC will point at the breakpoint
234 instruction. */
235
236static CORE_ADDR
237get_stop_pc (void)
238{
239 CORE_ADDR stop_pc = (*the_low_target.get_pc) ();
240
241 if (get_thread_process (current_inferior)->stepping)
242 return stop_pc;
243 else
244 return stop_pc - the_low_target.decr_pc_after_break;
245}
ce3a066d 246
0d62e5e8 247static void *
a1928bad 248add_process (unsigned long pid)
611cb4a5 249{
0d62e5e8
DJ
250 struct process_info *process;
251
252 process = (struct process_info *) malloc (sizeof (*process));
253 memset (process, 0, sizeof (*process));
254
255 process->head.id = pid;
0d62e5e8
DJ
256 process->lwpid = pid;
257
258 add_inferior_to_list (&all_processes, &process->head);
259
260 return process;
261}
611cb4a5 262
da6d8c04
DJ
263/* Start an inferior process and returns its pid.
264 ALLARGS is a vector of program-name and args. */
265
ce3a066d
DJ
266static int
267linux_create_inferior (char *program, char **allargs)
da6d8c04 268{
0d62e5e8 269 void *new_process;
da6d8c04
DJ
270 int pid;
271
42c81e2a 272#if defined(__UCLIBC__) && defined(HAS_NOMMU)
52fb6437
NS
273 pid = vfork ();
274#else
da6d8c04 275 pid = fork ();
52fb6437 276#endif
da6d8c04
DJ
277 if (pid < 0)
278 perror_with_name ("fork");
279
280 if (pid == 0)
281 {
282 ptrace (PTRACE_TRACEME, 0, 0, 0);
283
254787d4 284 signal (__SIGRTMIN + 1, SIG_DFL);
0d62e5e8 285
a9fa9f7d
DJ
286 setpgid (0, 0);
287
2b876972
DJ
288 execv (program, allargs);
289 if (errno == ENOENT)
290 execvp (program, allargs);
da6d8c04
DJ
291
292 fprintf (stderr, "Cannot exec %s: %s.\n", program,
d07c63e7 293 strerror (errno));
da6d8c04
DJ
294 fflush (stderr);
295 _exit (0177);
296 }
297
0d62e5e8 298 new_process = add_process (pid);
a06660f7 299 add_thread (pid, new_process, pid);
24a09b5f 300 must_set_ptrace_flags = 1;
d61ddec4 301 new_inferior = 1;
611cb4a5 302
a9fa9f7d 303 return pid;
da6d8c04
DJ
304}
305
306/* Attach to an inferior process. */
307
0d62e5e8 308void
24a09b5f 309linux_attach_lwp (unsigned long pid)
da6d8c04 310{
0d62e5e8 311 struct process_info *new_process;
611cb4a5 312
da6d8c04
DJ
313 if (ptrace (PTRACE_ATTACH, pid, 0, 0) != 0)
314 {
2d717e4f
DJ
315 if (all_threads.head != NULL)
316 {
317 /* If we fail to attach to an LWP, just warn. */
318 fprintf (stderr, "Cannot attach to process %ld: %s (%d)\n", pid,
319 strerror (errno), errno);
320 fflush (stderr);
321 return;
322 }
323 else
324 /* If we fail to attach to a process, report an error. */
325 error ("Cannot attach to process %ld: %s (%d)\n", pid,
43d5792c 326 strerror (errno), errno);
da6d8c04
DJ
327 }
328
24a09b5f
DJ
329 ptrace (PTRACE_SETOPTIONS, pid, 0, PTRACE_O_TRACECLONE);
330
0d62e5e8 331 new_process = (struct process_info *) add_process (pid);
24a09b5f
DJ
332 add_thread (pid, new_process, pid);
333 new_thread_notify (thread_id_to_gdb_id (new_process->lwpid));
0d62e5e8
DJ
334
335 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
336 brings it to a halt. We should ignore that SIGSTOP and resume the process
337 (unless this is the first process, in which case the flag will be cleared
338 in linux_attach).
339
340 On the other hand, if we are currently trying to stop all threads, we
341 should treat the new thread as if we had sent it a SIGSTOP. This works
342 because we are guaranteed that add_process added us to the end of the
343 list, and so the new thread has not yet reached wait_for_sigstop (but
344 will). */
345 if (! stopping_threads)
346 new_process->stop_expected = 1;
347}
348
349int
a1928bad 350linux_attach (unsigned long pid)
0d62e5e8
DJ
351{
352 struct process_info *process;
353
24a09b5f 354 linux_attach_lwp (pid);
0d62e5e8 355
ae13219e
DJ
356 /* Don't ignore the initial SIGSTOP if we just attached to this process.
357 It will be collected by wait shortly. */
0d62e5e8
DJ
358 process = (struct process_info *) find_inferior_id (&all_processes, pid);
359 process->stop_expected = 0;
360
d61ddec4
UW
361 new_inferior = 1;
362
da6d8c04
DJ
363 return 0;
364}
365
366/* Kill the inferior process. Make us have no inferior. */
367
ce3a066d 368static void
0d62e5e8 369linux_kill_one_process (struct inferior_list_entry *entry)
da6d8c04 370{
0d62e5e8
DJ
371 struct thread_info *thread = (struct thread_info *) entry;
372 struct process_info *process = get_thread_process (thread);
373 int wstat;
374
fd500816
DJ
375 /* We avoid killing the first thread here, because of a Linux kernel (at
376 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
377 the children get a chance to be reaped, it will remain a zombie
378 forever. */
379 if (entry == all_threads.head)
380 return;
381
0d62e5e8
DJ
382 do
383 {
384 ptrace (PTRACE_KILL, pid_of (process), 0, 0);
385
386 /* Make sure it died. The loop is most likely unnecessary. */
387 wstat = linux_wait_for_event (thread);
388 } while (WIFSTOPPED (wstat));
da6d8c04
DJ
389}
390
0d62e5e8
DJ
391static void
392linux_kill (void)
393{
fd500816 394 struct thread_info *thread = (struct thread_info *) all_threads.head;
9d606399 395 struct process_info *process;
fd500816
DJ
396 int wstat;
397
9d606399
DJ
398 if (thread == NULL)
399 return;
400
0d62e5e8 401 for_each_inferior (&all_threads, linux_kill_one_process);
fd500816
DJ
402
403 /* See the comment in linux_kill_one_process. We did not kill the first
404 thread in the list, so do so now. */
9d606399 405 process = get_thread_process (thread);
fd500816
DJ
406 do
407 {
408 ptrace (PTRACE_KILL, pid_of (process), 0, 0);
409
410 /* Make sure it died. The loop is most likely unnecessary. */
411 wstat = linux_wait_for_event (thread);
412 } while (WIFSTOPPED (wstat));
2d717e4f
DJ
413
414 clear_inferiors ();
415 free (all_processes.head);
416 all_processes.head = all_processes.tail = NULL;
0d62e5e8
DJ
417}
418
6ad8ae5c
DJ
419static void
420linux_detach_one_process (struct inferior_list_entry *entry)
421{
422 struct thread_info *thread = (struct thread_info *) entry;
423 struct process_info *process = get_thread_process (thread);
424
ae13219e
DJ
425 /* Make sure the process isn't stopped at a breakpoint that's
426 no longer there. */
427 check_removed_breakpoint (process);
428
429 /* If this process is stopped but is expecting a SIGSTOP, then make
430 sure we take care of that now. This isn't absolutely guaranteed
431 to collect the SIGSTOP, but is fairly likely to. */
432 if (process->stop_expected)
433 {
434 /* Clear stop_expected, so that the SIGSTOP will be reported. */
435 process->stop_expected = 0;
436 if (process->stopped)
437 linux_resume_one_process (&process->head, 0, 0, NULL);
438 linux_wait_for_event (thread);
439 }
440
441 /* Flush any pending changes to the process's registers. */
442 regcache_invalidate_one ((struct inferior_list_entry *)
443 get_process_thread (process));
444
445 /* Finally, let it resume. */
6ad8ae5c
DJ
446 ptrace (PTRACE_DETACH, pid_of (process), 0, 0);
447}
448
dd6953e1 449static int
6ad8ae5c
DJ
450linux_detach (void)
451{
ae13219e 452 delete_all_breakpoints ();
6ad8ae5c 453 for_each_inferior (&all_threads, linux_detach_one_process);
ae13219e 454 clear_inferiors ();
2d717e4f
DJ
455 free (all_processes.head);
456 all_processes.head = all_processes.tail = NULL;
dd6953e1 457 return 0;
6ad8ae5c
DJ
458}
459
444d6139
PA
460static void
461linux_join (void)
462{
463 extern unsigned long signal_pid;
464 int status, ret;
465
466 do {
467 ret = waitpid (signal_pid, &status, 0);
468 if (WIFEXITED (status) || WIFSIGNALED (status))
469 break;
470 } while (ret != -1 || errno != ECHILD);
471}
472
6ad8ae5c 473/* Return nonzero if the given thread is still alive. */
0d62e5e8 474static int
24a09b5f 475linux_thread_alive (unsigned long lwpid)
0d62e5e8 476{
24a09b5f 477 if (find_inferior_id (&all_threads, lwpid) != NULL)
0d62e5e8
DJ
478 return 1;
479 else
480 return 0;
481}
482
483/* Return nonzero if this process stopped at a breakpoint which
484 no longer appears to be inserted. Also adjust the PC
485 appropriately to resume where the breakpoint used to be. */
ce3a066d 486static int
0d62e5e8 487check_removed_breakpoint (struct process_info *event_child)
da6d8c04 488{
0d62e5e8
DJ
489 CORE_ADDR stop_pc;
490 struct thread_info *saved_inferior;
491
492 if (event_child->pending_is_breakpoint == 0)
493 return 0;
494
495 if (debug_threads)
ae13219e
DJ
496 fprintf (stderr, "Checking for breakpoint in process %ld.\n",
497 event_child->lwpid);
0d62e5e8
DJ
498
499 saved_inferior = current_inferior;
500 current_inferior = get_process_thread (event_child);
501
502 stop_pc = get_stop_pc ();
503
504 /* If the PC has changed since we stopped, then we shouldn't do
505 anything. This happens if, for instance, GDB handled the
506 decr_pc_after_break subtraction itself. */
507 if (stop_pc != event_child->pending_stop_pc)
508 {
509 if (debug_threads)
ae13219e
DJ
510 fprintf (stderr, "Ignoring, PC was changed. Old PC was 0x%08llx\n",
511 event_child->pending_stop_pc);
0d62e5e8
DJ
512
513 event_child->pending_is_breakpoint = 0;
514 current_inferior = saved_inferior;
515 return 0;
516 }
517
518 /* If the breakpoint is still there, we will report hitting it. */
519 if ((*the_low_target.breakpoint_at) (stop_pc))
520 {
521 if (debug_threads)
522 fprintf (stderr, "Ignoring, breakpoint is still present.\n");
523 current_inferior = saved_inferior;
524 return 0;
525 }
526
527 if (debug_threads)
528 fprintf (stderr, "Removed breakpoint.\n");
529
530 /* For decr_pc_after_break targets, here is where we perform the
531 decrement. We go immediately from this function to resuming,
532 and can not safely call get_stop_pc () again. */
533 if (the_low_target.set_pc != NULL)
534 (*the_low_target.set_pc) (stop_pc);
535
536 /* We consumed the pending SIGTRAP. */
5544ad89 537 event_child->pending_is_breakpoint = 0;
0d62e5e8
DJ
538 event_child->status_pending_p = 0;
539 event_child->status_pending = 0;
540
541 current_inferior = saved_inferior;
da6d8c04
DJ
542 return 1;
543}
544
0d62e5e8
DJ
545/* Return 1 if this process has an interesting status pending. This function
546 may silently resume an inferior process. */
611cb4a5 547static int
0d62e5e8
DJ
548status_pending_p (struct inferior_list_entry *entry, void *dummy)
549{
550 struct process_info *process = (struct process_info *) entry;
551
552 if (process->status_pending_p)
553 if (check_removed_breakpoint (process))
554 {
555 /* This thread was stopped at a breakpoint, and the breakpoint
556 is now gone. We were told to continue (or step...) all threads,
557 so GDB isn't trying to single-step past this breakpoint.
558 So instead of reporting the old SIGTRAP, pretend we got to
559 the breakpoint just after it was removed instead of just
560 before; resume the process. */
32ca6d61 561 linux_resume_one_process (&process->head, 0, 0, NULL);
0d62e5e8
DJ
562 return 0;
563 }
564
565 return process->status_pending_p;
566}
567
568static void
569linux_wait_for_process (struct process_info **childp, int *wstatp)
611cb4a5 570{
0d62e5e8
DJ
571 int ret;
572 int to_wait_for = -1;
573
574 if (*childp != NULL)
575 to_wait_for = (*childp)->lwpid;
611cb4a5 576
24a09b5f 577retry:
611cb4a5
DJ
578 while (1)
579 {
0d62e5e8
DJ
580 ret = waitpid (to_wait_for, wstatp, WNOHANG);
581
582 if (ret == -1)
583 {
584 if (errno != ECHILD)
585 perror_with_name ("waitpid");
586 }
587 else if (ret > 0)
588 break;
589
590 ret = waitpid (to_wait_for, wstatp, WNOHANG | __WCLONE);
591
592 if (ret == -1)
593 {
594 if (errno != ECHILD)
595 perror_with_name ("waitpid (WCLONE)");
596 }
597 else if (ret > 0)
598 break;
599
600 usleep (1000);
601 }
602
603 if (debug_threads
604 && (!WIFSTOPPED (*wstatp)
605 || (WSTOPSIG (*wstatp) != 32
606 && WSTOPSIG (*wstatp) != 33)))
607 fprintf (stderr, "Got an event from %d (%x)\n", ret, *wstatp);
608
609 if (to_wait_for == -1)
610 *childp = (struct process_info *) find_inferior_id (&all_processes, ret);
611
24a09b5f
DJ
612 /* If we didn't find a process, one of two things presumably happened:
613 - A process we started and then detached from has exited. Ignore it.
614 - A process we are controlling has forked and the new child's stop
615 was reported to us by the kernel. Save its PID. */
616 if (*childp == NULL && WIFSTOPPED (*wstatp))
617 {
618 add_pid_to_list (&stopped_pids, ret);
619 goto retry;
620 }
621 else if (*childp == NULL)
622 goto retry;
623
0d62e5e8
DJ
624 (*childp)->stopped = 1;
625 (*childp)->pending_is_breakpoint = 0;
626
32ca6d61
DJ
627 (*childp)->last_status = *wstatp;
628
d61ddec4
UW
629 /* Architecture-specific setup after inferior is running.
630 This needs to happen after we have attached to the inferior
631 and it is stopped for the first time, but before we access
632 any inferior registers. */
633 if (new_inferior)
634 {
635 the_low_target.arch_setup ();
52fa2412
UW
636#ifdef HAVE_LINUX_REGSETS
637 memset (disabled_regsets, 0, num_regsets);
638#endif
d61ddec4
UW
639 new_inferior = 0;
640 }
641
0d62e5e8
DJ
642 if (debug_threads
643 && WIFSTOPPED (*wstatp))
644 {
896c7fbb 645 struct thread_info *saved_inferior = current_inferior;
0d62e5e8 646 current_inferior = (struct thread_info *)
24a09b5f 647 find_inferior_id (&all_threads, (*childp)->lwpid);
0d62e5e8
DJ
648 /* For testing only; i386_stop_pc prints out a diagnostic. */
649 if (the_low_target.get_pc != NULL)
650 get_stop_pc ();
896c7fbb 651 current_inferior = saved_inferior;
0d62e5e8
DJ
652 }
653}
611cb4a5 654
0d62e5e8
DJ
655static int
656linux_wait_for_event (struct thread_info *child)
657{
658 CORE_ADDR stop_pc;
659 struct process_info *event_child;
660 int wstat;
b65d95c5 661 int bp_status;
0d62e5e8
DJ
662
663 /* Check for a process with a pending status. */
664 /* It is possible that the user changed the pending task's registers since
665 it stopped. We correctly handle the change of PC if we hit a breakpoint
e5379b03 666 (in check_removed_breakpoint); signals should be reported anyway. */
0d62e5e8
DJ
667 if (child == NULL)
668 {
669 event_child = (struct process_info *)
670 find_inferior (&all_processes, status_pending_p, NULL);
671 if (debug_threads && event_child)
a1928bad 672 fprintf (stderr, "Got a pending child %ld\n", event_child->lwpid);
0d62e5e8
DJ
673 }
674 else
675 {
676 event_child = get_thread_process (child);
677 if (event_child->status_pending_p
678 && check_removed_breakpoint (event_child))
679 event_child = NULL;
680 }
611cb4a5 681
0d62e5e8
DJ
682 if (event_child != NULL)
683 {
684 if (event_child->status_pending_p)
611cb4a5 685 {
0d62e5e8 686 if (debug_threads)
a1928bad 687 fprintf (stderr, "Got an event from pending child %ld (%04x)\n",
0d62e5e8
DJ
688 event_child->lwpid, event_child->status_pending);
689 wstat = event_child->status_pending;
690 event_child->status_pending_p = 0;
691 event_child->status_pending = 0;
692 current_inferior = get_process_thread (event_child);
693 return wstat;
694 }
695 }
696
697 /* We only enter this loop if no process has a pending wait status. Thus
698 any action taken in response to a wait status inside this loop is
699 responding as soon as we detect the status, not after any pending
700 events. */
701 while (1)
702 {
703 if (child == NULL)
704 event_child = NULL;
705 else
706 event_child = get_thread_process (child);
707
708 linux_wait_for_process (&event_child, &wstat);
709
710 if (event_child == NULL)
711 error ("event from unknown child");
611cb4a5 712
0d62e5e8 713 current_inferior = (struct thread_info *)
24a09b5f 714 find_inferior_id (&all_threads, event_child->lwpid);
0d62e5e8 715
89be2091 716 /* Check for thread exit. */
24a09b5f 717 if (! WIFSTOPPED (wstat))
0d62e5e8 718 {
89be2091 719 if (debug_threads)
24a09b5f 720 fprintf (stderr, "LWP %ld exiting\n", event_child->head.id);
89be2091
DJ
721
722 /* If the last thread is exiting, just return. */
723 if (all_threads.head == all_threads.tail)
724 return wstat;
725
24a09b5f 726 dead_thread_notify (thread_id_to_gdb_id (event_child->lwpid));
89be2091
DJ
727
728 remove_inferior (&all_processes, &event_child->head);
729 free (event_child);
730 remove_thread (current_inferior);
731 current_inferior = (struct thread_info *) all_threads.head;
732
733 /* If we were waiting for this particular child to do something...
734 well, it did something. */
735 if (child != NULL)
736 return wstat;
737
738 /* Wait for a more interesting event. */
739 continue;
740 }
741
24a09b5f 742 if (WIFSTOPPED (wstat)
89be2091
DJ
743 && WSTOPSIG (wstat) == SIGSTOP
744 && event_child->stop_expected)
745 {
746 if (debug_threads)
747 fprintf (stderr, "Expected stop.\n");
748 event_child->stop_expected = 0;
749 linux_resume_one_process (&event_child->head,
750 event_child->stepping, 0, NULL);
751 continue;
752 }
753
24a09b5f
DJ
754 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
755 && wstat >> 16 != 0)
756 {
757 handle_extended_wait (event_child, wstat);
758 continue;
759 }
760
89be2091
DJ
761 /* If GDB is not interested in this signal, don't stop other
762 threads, and don't report it to GDB. Just resume the
763 inferior right away. We do this for threading-related
69f223ed
DJ
764 signals as well as any that GDB specifically requested we
765 ignore. But never ignore SIGSTOP if we sent it ourselves,
766 and do not ignore signals when stepping - they may require
767 special handling to skip the signal handler. */
89be2091
DJ
768 /* FIXME drow/2002-06-09: Get signal numbers from the inferior's
769 thread library? */
770 if (WIFSTOPPED (wstat)
69f223ed 771 && !event_child->stepping
24a09b5f
DJ
772 && (
773#ifdef USE_THREAD_DB
774 (thread_db_active && (WSTOPSIG (wstat) == __SIGRTMIN
775 || WSTOPSIG (wstat) == __SIGRTMIN + 1))
776 ||
777#endif
778 (pass_signals[target_signal_from_host (WSTOPSIG (wstat))]
779 && (WSTOPSIG (wstat) != SIGSTOP || !stopping_threads))))
89be2091
DJ
780 {
781 siginfo_t info, *info_p;
782
783 if (debug_threads)
24a09b5f
DJ
784 fprintf (stderr, "Ignored signal %d for LWP %ld.\n",
785 WSTOPSIG (wstat), event_child->head.id);
89be2091
DJ
786
787 if (ptrace (PTRACE_GETSIGINFO, event_child->lwpid, 0, &info) == 0)
788 info_p = &info;
789 else
790 info_p = NULL;
791 linux_resume_one_process (&event_child->head,
792 event_child->stepping,
793 WSTOPSIG (wstat), info_p);
794 continue;
0d62e5e8 795 }
611cb4a5 796
0d62e5e8
DJ
797 /* If this event was not handled above, and is not a SIGTRAP, report
798 it. */
799 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGTRAP)
800 return wstat;
611cb4a5 801
0d62e5e8
DJ
802 /* If this target does not support breakpoints, we simply report the
803 SIGTRAP; it's of no concern to us. */
804 if (the_low_target.get_pc == NULL)
805 return wstat;
806
807 stop_pc = get_stop_pc ();
808
809 /* bp_reinsert will only be set if we were single-stepping.
810 Notice that we will resume the process after hitting
811 a gdbserver breakpoint; single-stepping to/over one
812 is not supported (yet). */
813 if (event_child->bp_reinsert != 0)
814 {
815 if (debug_threads)
816 fprintf (stderr, "Reinserted breakpoint.\n");
817 reinsert_breakpoint (event_child->bp_reinsert);
818 event_child->bp_reinsert = 0;
819
820 /* Clear the single-stepping flag and SIGTRAP as we resume. */
32ca6d61 821 linux_resume_one_process (&event_child->head, 0, 0, NULL);
0d62e5e8
DJ
822 continue;
823 }
824
b65d95c5 825 bp_status = check_breakpoints (stop_pc);
0d62e5e8 826
b65d95c5 827 if (bp_status != 0)
0d62e5e8 828 {
b65d95c5
DJ
829 if (debug_threads)
830 fprintf (stderr, "Hit a gdbserver breakpoint.\n");
831
0d62e5e8 832 /* We hit one of our own breakpoints. We mark it as a pending
e5379b03 833 breakpoint, so that check_removed_breakpoint () will do the PC
0d62e5e8
DJ
834 adjustment for us at the appropriate time. */
835 event_child->pending_is_breakpoint = 1;
836 event_child->pending_stop_pc = stop_pc;
837
b65d95c5 838 /* We may need to put the breakpoint back. We continue in the event
0d62e5e8
DJ
839 loop instead of simply replacing the breakpoint right away,
840 in order to not lose signals sent to the thread that hit the
841 breakpoint. Unfortunately this increases the window where another
842 thread could sneak past the removed breakpoint. For the current
843 use of server-side breakpoints (thread creation) this is
844 acceptable; but it needs to be considered before this breakpoint
845 mechanism can be used in more general ways. For some breakpoints
846 it may be necessary to stop all other threads, but that should
847 be avoided where possible.
848
849 If breakpoint_reinsert_addr is NULL, that means that we can
850 use PTRACE_SINGLESTEP on this platform. Uninsert the breakpoint,
851 mark it for reinsertion, and single-step.
852
853 Otherwise, call the target function to figure out where we need
854 our temporary breakpoint, create it, and continue executing this
855 process. */
b65d95c5
DJ
856 if (bp_status == 2)
857 /* No need to reinsert. */
858 linux_resume_one_process (&event_child->head, 0, 0, NULL);
859 else if (the_low_target.breakpoint_reinsert_addr == NULL)
0d62e5e8
DJ
860 {
861 event_child->bp_reinsert = stop_pc;
862 uninsert_breakpoint (stop_pc);
32ca6d61 863 linux_resume_one_process (&event_child->head, 1, 0, NULL);
0d62e5e8
DJ
864 }
865 else
866 {
867 reinsert_breakpoint_by_bp
868 (stop_pc, (*the_low_target.breakpoint_reinsert_addr) ());
32ca6d61 869 linux_resume_one_process (&event_child->head, 0, 0, NULL);
611cb4a5 870 }
0d62e5e8
DJ
871
872 continue;
873 }
874
b65d95c5
DJ
875 if (debug_threads)
876 fprintf (stderr, "Hit a non-gdbserver breakpoint.\n");
877
0d62e5e8
DJ
878 /* If we were single-stepping, we definitely want to report the
879 SIGTRAP. The single-step operation has completed, so also
aa691b87 880 clear the stepping flag; in general this does not matter,
0d62e5e8
DJ
881 because the SIGTRAP will be reported to the client, which
882 will give us a new action for this thread, but clear it for
883 consistency anyway. It's safe to clear the stepping flag
884 because the only consumer of get_stop_pc () after this point
e5379b03 885 is check_removed_breakpoint, and pending_is_breakpoint is not
0d62e5e8
DJ
886 set. It might be wiser to use a step_completed flag instead. */
887 if (event_child->stepping)
888 {
889 event_child->stepping = 0;
890 return wstat;
891 }
892
893 /* A SIGTRAP that we can't explain. It may have been a breakpoint.
894 Check if it is a breakpoint, and if so mark the process information
895 accordingly. This will handle both the necessary fiddling with the
896 PC on decr_pc_after_break targets and suppressing extra threads
897 hitting a breakpoint if two hit it at once and then GDB removes it
898 after the first is reported. Arguably it would be better to report
899 multiple threads hitting breakpoints simultaneously, but the current
900 remote protocol does not allow this. */
901 if ((*the_low_target.breakpoint_at) (stop_pc))
902 {
903 event_child->pending_is_breakpoint = 1;
904 event_child->pending_stop_pc = stop_pc;
611cb4a5
DJ
905 }
906
907 return wstat;
908 }
0d62e5e8 909
611cb4a5
DJ
910 /* NOTREACHED */
911 return 0;
912}
913
0d62e5e8 914/* Wait for process, returns status. */
da6d8c04 915
ce3a066d
DJ
916static unsigned char
917linux_wait (char *status)
da6d8c04 918{
e5f1222d 919 int w;
0d62e5e8
DJ
920 struct thread_info *child = NULL;
921
922retry:
923 /* If we were only supposed to resume one thread, only wait for
924 that thread - if it's still alive. If it died, however - which
925 can happen if we're coming from the thread death case below -
926 then we need to make sure we restart the other threads. We could
927 pick a thread at random or restart all; restarting all is less
928 arbitrary. */
d592fa2f 929 if (cont_thread != 0 && cont_thread != -1)
0d62e5e8
DJ
930 {
931 child = (struct thread_info *) find_inferior_id (&all_threads,
932 cont_thread);
933
934 /* No stepping, no signal - unless one is pending already, of course. */
935 if (child == NULL)
64386c31
DJ
936 {
937 struct thread_resume resume_info;
938 resume_info.thread = -1;
939 resume_info.step = resume_info.sig = resume_info.leave_stopped = 0;
940 linux_resume (&resume_info);
941 }
0d62e5e8 942 }
da6d8c04 943
0d62e5e8
DJ
944 w = linux_wait_for_event (child);
945 stop_all_processes ();
da6d8c04 946
24a09b5f
DJ
947 if (must_set_ptrace_flags)
948 {
949 ptrace (PTRACE_SETOPTIONS, inferior_pid, 0, PTRACE_O_TRACECLONE);
950 must_set_ptrace_flags = 0;
951 }
952
0d62e5e8
DJ
953 /* If we are waiting for a particular child, and it exited,
954 linux_wait_for_event will return its exit status. Similarly if
955 the last child exited. If this is not the last child, however,
956 do not report it as exited until there is a 'thread exited' response
957 available in the remote protocol. Instead, just wait for another event.
958 This should be safe, because if the thread crashed we will already
959 have reported the termination signal to GDB; that should stop any
960 in-progress stepping operations, etc.
961
962 Report the exit status of the last thread to exit. This matches
963 LinuxThreads' behavior. */
964
965 if (all_threads.head == all_threads.tail)
da6d8c04 966 {
0d62e5e8
DJ
967 if (WIFEXITED (w))
968 {
969 fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w));
970 *status = 'W';
971 clear_inferiors ();
075b3282
DJ
972 free (all_processes.head);
973 all_processes.head = all_processes.tail = NULL;
b80864fb 974 return WEXITSTATUS (w);
0d62e5e8
DJ
975 }
976 else if (!WIFSTOPPED (w))
977 {
978 fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w));
0d62e5e8 979 *status = 'X';
075b3282
DJ
980 clear_inferiors ();
981 free (all_processes.head);
982 all_processes.head = all_processes.tail = NULL;
b80864fb 983 return target_signal_from_host (WTERMSIG (w));
0d62e5e8 984 }
da6d8c04 985 }
0d62e5e8 986 else
da6d8c04 987 {
0d62e5e8
DJ
988 if (!WIFSTOPPED (w))
989 goto retry;
da6d8c04
DJ
990 }
991
da6d8c04 992 *status = 'T';
b80864fb 993 return target_signal_from_host (WSTOPSIG (w));
da6d8c04
DJ
994}
995
fd500816
DJ
996/* Send a signal to an LWP. For LinuxThreads, kill is enough; however, if
997 thread groups are in use, we need to use tkill. */
998
999static int
a1928bad 1000kill_lwp (unsigned long lwpid, int signo)
fd500816
DJ
1001{
1002 static int tkill_failed;
1003
1004 errno = 0;
1005
1006#ifdef SYS_tkill
1007 if (!tkill_failed)
1008 {
1009 int ret = syscall (SYS_tkill, lwpid, signo);
1010 if (errno != ENOSYS)
1011 return ret;
1012 errno = 0;
1013 tkill_failed = 1;
1014 }
1015#endif
1016
1017 return kill (lwpid, signo);
1018}
1019
0d62e5e8
DJ
1020static void
1021send_sigstop (struct inferior_list_entry *entry)
1022{
1023 struct process_info *process = (struct process_info *) entry;
1024
1025 if (process->stopped)
1026 return;
1027
1028 /* If we already have a pending stop signal for this process, don't
1029 send another. */
1030 if (process->stop_expected)
1031 {
ae13219e
DJ
1032 if (debug_threads)
1033 fprintf (stderr, "Have pending sigstop for process %ld\n",
1034 process->lwpid);
1035
1036 /* We clear the stop_expected flag so that wait_for_sigstop
1037 will receive the SIGSTOP event (instead of silently resuming and
1038 waiting again). It'll be reset below. */
0d62e5e8
DJ
1039 process->stop_expected = 0;
1040 return;
1041 }
1042
1043 if (debug_threads)
a1928bad 1044 fprintf (stderr, "Sending sigstop to process %ld\n", process->head.id);
0d62e5e8 1045
fd500816 1046 kill_lwp (process->head.id, SIGSTOP);
0d62e5e8
DJ
1047}
1048
1049static void
1050wait_for_sigstop (struct inferior_list_entry *entry)
1051{
1052 struct process_info *process = (struct process_info *) entry;
1053 struct thread_info *saved_inferior, *thread;
a1928bad
DJ
1054 int wstat;
1055 unsigned long saved_tid;
0d62e5e8
DJ
1056
1057 if (process->stopped)
1058 return;
1059
1060 saved_inferior = current_inferior;
1061 saved_tid = ((struct inferior_list_entry *) saved_inferior)->id;
1062 thread = (struct thread_info *) find_inferior_id (&all_threads,
24a09b5f 1063 process->lwpid);
0d62e5e8
DJ
1064 wstat = linux_wait_for_event (thread);
1065
1066 /* If we stopped with a non-SIGSTOP signal, save it for later
1067 and record the pending SIGSTOP. If the process exited, just
1068 return. */
1069 if (WIFSTOPPED (wstat)
1070 && WSTOPSIG (wstat) != SIGSTOP)
1071 {
1072 if (debug_threads)
24a09b5f
DJ
1073 fprintf (stderr, "LWP %ld stopped with non-sigstop status %06x\n",
1074 process->lwpid, wstat);
0d62e5e8
DJ
1075 process->status_pending_p = 1;
1076 process->status_pending = wstat;
1077 process->stop_expected = 1;
1078 }
1079
1080 if (linux_thread_alive (saved_tid))
1081 current_inferior = saved_inferior;
1082 else
1083 {
1084 if (debug_threads)
1085 fprintf (stderr, "Previously current thread died.\n");
1086
1087 /* Set a valid thread as current. */
1088 set_desired_inferior (0);
1089 }
1090}
1091
1092static void
1093stop_all_processes (void)
1094{
1095 stopping_threads = 1;
1096 for_each_inferior (&all_processes, send_sigstop);
1097 for_each_inferior (&all_processes, wait_for_sigstop);
1098 stopping_threads = 0;
1099}
1100
da6d8c04
DJ
1101/* Resume execution of the inferior process.
1102 If STEP is nonzero, single-step it.
1103 If SIGNAL is nonzero, give it that signal. */
1104
ce3a066d 1105static void
0d62e5e8 1106linux_resume_one_process (struct inferior_list_entry *entry,
32ca6d61 1107 int step, int signal, siginfo_t *info)
da6d8c04 1108{
0d62e5e8
DJ
1109 struct process_info *process = (struct process_info *) entry;
1110 struct thread_info *saved_inferior;
1111
1112 if (process->stopped == 0)
1113 return;
1114
1115 /* If we have pending signals or status, and a new signal, enqueue the
1116 signal. Also enqueue the signal if we are waiting to reinsert a
1117 breakpoint; it will be picked up again below. */
1118 if (signal != 0
1119 && (process->status_pending_p || process->pending_signals != NULL
1120 || process->bp_reinsert != 0))
1121 {
1122 struct pending_signals *p_sig;
1123 p_sig = malloc (sizeof (*p_sig));
1124 p_sig->prev = process->pending_signals;
1125 p_sig->signal = signal;
32ca6d61
DJ
1126 if (info == NULL)
1127 memset (&p_sig->info, 0, sizeof (siginfo_t));
1128 else
1129 memcpy (&p_sig->info, info, sizeof (siginfo_t));
0d62e5e8
DJ
1130 process->pending_signals = p_sig;
1131 }
1132
e5379b03 1133 if (process->status_pending_p && !check_removed_breakpoint (process))
0d62e5e8
DJ
1134 return;
1135
1136 saved_inferior = current_inferior;
1137 current_inferior = get_process_thread (process);
1138
1139 if (debug_threads)
a1928bad 1140 fprintf (stderr, "Resuming process %ld (%s, signal %d, stop %s)\n", inferior_pid,
0d62e5e8
DJ
1141 step ? "step" : "continue", signal,
1142 process->stop_expected ? "expected" : "not expected");
1143
1144 /* This bit needs some thinking about. If we get a signal that
1145 we must report while a single-step reinsert is still pending,
1146 we often end up resuming the thread. It might be better to
1147 (ew) allow a stack of pending events; then we could be sure that
1148 the reinsert happened right away and not lose any signals.
1149
1150 Making this stack would also shrink the window in which breakpoints are
1151 uninserted (see comment in linux_wait_for_process) but not enough for
1152 complete correctness, so it won't solve that problem. It may be
1153 worthwhile just to solve this one, however. */
1154 if (process->bp_reinsert != 0)
1155 {
1156 if (debug_threads)
1157 fprintf (stderr, " pending reinsert at %08lx", (long)process->bp_reinsert);
1158 if (step == 0)
1159 fprintf (stderr, "BAD - reinserting but not stepping.\n");
1160 step = 1;
1161
1162 /* Postpone any pending signal. It was enqueued above. */
1163 signal = 0;
1164 }
1165
1166 check_removed_breakpoint (process);
1167
aa691b87 1168 if (debug_threads && the_low_target.get_pc != NULL)
0d62e5e8
DJ
1169 {
1170 fprintf (stderr, " ");
52fb6437 1171 (*the_low_target.get_pc) ();
0d62e5e8
DJ
1172 }
1173
1174 /* If we have pending signals, consume one unless we are trying to reinsert
1175 a breakpoint. */
1176 if (process->pending_signals != NULL && process->bp_reinsert == 0)
1177 {
1178 struct pending_signals **p_sig;
1179
1180 p_sig = &process->pending_signals;
1181 while ((*p_sig)->prev != NULL)
1182 p_sig = &(*p_sig)->prev;
1183
1184 signal = (*p_sig)->signal;
32ca6d61
DJ
1185 if ((*p_sig)->info.si_signo != 0)
1186 ptrace (PTRACE_SETSIGINFO, process->lwpid, 0, &(*p_sig)->info);
1187
0d62e5e8
DJ
1188 free (*p_sig);
1189 *p_sig = NULL;
1190 }
1191
1192 regcache_invalidate_one ((struct inferior_list_entry *)
1193 get_process_thread (process));
da6d8c04 1194 errno = 0;
0d62e5e8
DJ
1195 process->stopped = 0;
1196 process->stepping = step;
1197 ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, process->lwpid, 0, signal);
1198
1199 current_inferior = saved_inferior;
da6d8c04 1200 if (errno)
3221518c
UW
1201 {
1202 /* ESRCH from ptrace either means that the thread was already
1203 running (an error) or that it is gone (a race condition). If
1204 it's gone, we will get a notification the next time we wait,
1205 so we can ignore the error. We could differentiate these
1206 two, but it's tricky without waiting; the thread still exists
1207 as a zombie, so sending it signal 0 would succeed. So just
1208 ignore ESRCH. */
1209 if (errno == ESRCH)
1210 return;
1211
1212 perror_with_name ("ptrace");
1213 }
da6d8c04
DJ
1214}
1215
64386c31
DJ
1216static struct thread_resume *resume_ptr;
1217
1218/* This function is called once per thread. We look up the thread
5544ad89
DJ
1219 in RESUME_PTR, and mark the thread with a pointer to the appropriate
1220 resume request.
1221
1222 This algorithm is O(threads * resume elements), but resume elements
1223 is small (and will remain small at least until GDB supports thread
1224 suspension). */
0d62e5e8 1225static void
5544ad89 1226linux_set_resume_request (struct inferior_list_entry *entry)
0d62e5e8
DJ
1227{
1228 struct process_info *process;
64386c31 1229 struct thread_info *thread;
5544ad89 1230 int ndx;
64386c31
DJ
1231
1232 thread = (struct thread_info *) entry;
1233 process = get_thread_process (thread);
1234
1235 ndx = 0;
1236 while (resume_ptr[ndx].thread != -1 && resume_ptr[ndx].thread != entry->id)
1237 ndx++;
1238
5544ad89
DJ
1239 process->resume = &resume_ptr[ndx];
1240}
1241
1242/* This function is called once per thread. We check the thread's resume
1243 request, which will tell us whether to resume, step, or leave the thread
1244 stopped; and what signal, if any, it should be sent. For threads which
1245 we aren't explicitly told otherwise, we preserve the stepping flag; this
1246 is used for stepping over gdbserver-placed breakpoints. */
1247
1248static void
1249linux_continue_one_thread (struct inferior_list_entry *entry)
1250{
1251 struct process_info *process;
1252 struct thread_info *thread;
1253 int step;
1254
1255 thread = (struct thread_info *) entry;
1256 process = get_thread_process (thread);
1257
1258 if (process->resume->leave_stopped)
64386c31
DJ
1259 return;
1260
5544ad89
DJ
1261 if (process->resume->thread == -1)
1262 step = process->stepping || process->resume->step;
64386c31 1263 else
5544ad89
DJ
1264 step = process->resume->step;
1265
32ca6d61 1266 linux_resume_one_process (&process->head, step, process->resume->sig, NULL);
c6ecbae5 1267
5544ad89
DJ
1268 process->resume = NULL;
1269}
1270
1271/* This function is called once per thread. We check the thread's resume
1272 request, which will tell us whether to resume, step, or leave the thread
1273 stopped; and what signal, if any, it should be sent. We queue any needed
1274 signals, since we won't actually resume. We already have a pending event
1275 to report, so we don't need to preserve any step requests; they should
1276 be re-issued if necessary. */
1277
1278static void
1279linux_queue_one_thread (struct inferior_list_entry *entry)
1280{
1281 struct process_info *process;
1282 struct thread_info *thread;
1283
1284 thread = (struct thread_info *) entry;
1285 process = get_thread_process (thread);
1286
1287 if (process->resume->leave_stopped)
1288 return;
1289
1290 /* If we have a new signal, enqueue the signal. */
1291 if (process->resume->sig != 0)
1292 {
1293 struct pending_signals *p_sig;
1294 p_sig = malloc (sizeof (*p_sig));
1295 p_sig->prev = process->pending_signals;
1296 p_sig->signal = process->resume->sig;
32ca6d61
DJ
1297 memset (&p_sig->info, 0, sizeof (siginfo_t));
1298
1299 /* If this is the same signal we were previously stopped by,
1300 make sure to queue its siginfo. We can ignore the return
1301 value of ptrace; if it fails, we'll skip
1302 PTRACE_SETSIGINFO. */
1303 if (WIFSTOPPED (process->last_status)
1304 && WSTOPSIG (process->last_status) == process->resume->sig)
1305 ptrace (PTRACE_GETSIGINFO, process->lwpid, 0, &p_sig->info);
1306
5544ad89
DJ
1307 process->pending_signals = p_sig;
1308 }
1309
1310 process->resume = NULL;
1311}
1312
1313/* Set DUMMY if this process has an interesting status pending. */
1314static int
1315resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
1316{
1317 struct process_info *process = (struct process_info *) entry;
1318
1319 /* Processes which will not be resumed are not interesting, because
1320 we might not wait for them next time through linux_wait. */
1321 if (process->resume->leave_stopped)
1322 return 0;
1323
1324 /* If this thread has a removed breakpoint, we won't have any
1325 events to report later, so check now. check_removed_breakpoint
1326 may clear status_pending_p. We avoid calling check_removed_breakpoint
1327 for any thread that we are not otherwise going to resume - this
1328 lets us preserve stopped status when two threads hit a breakpoint.
1329 GDB removes the breakpoint to single-step a particular thread
1330 past it, then re-inserts it and resumes all threads. We want
1331 to report the second thread without resuming it in the interim. */
1332 if (process->status_pending_p)
1333 check_removed_breakpoint (process);
1334
1335 if (process->status_pending_p)
1336 * (int *) flag_p = 1;
1337
1338 return 0;
0d62e5e8
DJ
1339}
1340
1341static void
64386c31 1342linux_resume (struct thread_resume *resume_info)
0d62e5e8 1343{
5544ad89 1344 int pending_flag;
c6ecbae5 1345
5544ad89 1346 /* Yes, the use of a global here is rather ugly. */
64386c31 1347 resume_ptr = resume_info;
5544ad89
DJ
1348
1349 for_each_inferior (&all_threads, linux_set_resume_request);
1350
1351 /* If there is a thread which would otherwise be resumed, which
1352 has a pending status, then don't resume any threads - we can just
1353 report the pending status. Make sure to queue any signals
1354 that would otherwise be sent. */
1355 pending_flag = 0;
1356 find_inferior (&all_processes, resume_status_pending_p, &pending_flag);
1357
1358 if (debug_threads)
1359 {
1360 if (pending_flag)
1361 fprintf (stderr, "Not resuming, pending status\n");
1362 else
1363 fprintf (stderr, "Resuming, no pending status\n");
1364 }
1365
1366 if (pending_flag)
1367 for_each_inferior (&all_threads, linux_queue_one_thread);
1368 else
a20d5e98 1369 for_each_inferior (&all_threads, linux_continue_one_thread);
0d62e5e8
DJ
1370}
1371
1372#ifdef HAVE_LINUX_USRREGS
da6d8c04
DJ
1373
1374int
0a30fbc4 1375register_addr (int regnum)
da6d8c04
DJ
1376{
1377 int addr;
1378
2ec06d2e 1379 if (regnum < 0 || regnum >= the_low_target.num_regs)
da6d8c04
DJ
1380 error ("Invalid register number %d.", regnum);
1381
2ec06d2e 1382 addr = the_low_target.regmap[regnum];
da6d8c04
DJ
1383
1384 return addr;
1385}
1386
58caa3dc 1387/* Fetch one register. */
da6d8c04
DJ
1388static void
1389fetch_register (int regno)
1390{
1391 CORE_ADDR regaddr;
48d93c75 1392 int i, size;
0d62e5e8 1393 char *buf;
da6d8c04 1394
2ec06d2e 1395 if (regno >= the_low_target.num_regs)
0a30fbc4 1396 return;
2ec06d2e 1397 if ((*the_low_target.cannot_fetch_register) (regno))
0a30fbc4 1398 return;
da6d8c04 1399
0a30fbc4
DJ
1400 regaddr = register_addr (regno);
1401 if (regaddr == -1)
1402 return;
48d93c75
UW
1403 size = (register_size (regno) + sizeof (PTRACE_XFER_TYPE) - 1)
1404 & - sizeof (PTRACE_XFER_TYPE);
1405 buf = alloca (size);
1406 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
da6d8c04
DJ
1407 {
1408 errno = 0;
0d62e5e8 1409 *(PTRACE_XFER_TYPE *) (buf + i) =
da6d8c04
DJ
1410 ptrace (PTRACE_PEEKUSER, inferior_pid, (PTRACE_ARG3_TYPE) regaddr, 0);
1411 regaddr += sizeof (PTRACE_XFER_TYPE);
1412 if (errno != 0)
1413 {
1414 /* Warning, not error, in case we are attached; sometimes the
1415 kernel doesn't let us at the registers. */
1416 char *err = strerror (errno);
1417 char *msg = alloca (strlen (err) + 128);
1418 sprintf (msg, "reading register %d: %s", regno, err);
1419 error (msg);
1420 goto error_exit;
1421 }
1422 }
ee1a7ae4
UW
1423
1424 if (the_low_target.supply_ptrace_register)
1425 the_low_target.supply_ptrace_register (regno, buf);
5a1f5858
DJ
1426 else
1427 supply_register (regno, buf);
0d62e5e8 1428
da6d8c04
DJ
1429error_exit:;
1430}
1431
1432/* Fetch all registers, or just one, from the child process. */
58caa3dc
DJ
1433static void
1434usr_fetch_inferior_registers (int regno)
da6d8c04
DJ
1435{
1436 if (regno == -1 || regno == 0)
2ec06d2e 1437 for (regno = 0; regno < the_low_target.num_regs; regno++)
da6d8c04
DJ
1438 fetch_register (regno);
1439 else
1440 fetch_register (regno);
1441}
1442
1443/* Store our register values back into the inferior.
1444 If REGNO is -1, do this for all registers.
1445 Otherwise, REGNO specifies which register (so we can save time). */
58caa3dc
DJ
1446static void
1447usr_store_inferior_registers (int regno)
da6d8c04
DJ
1448{
1449 CORE_ADDR regaddr;
48d93c75 1450 int i, size;
0d62e5e8 1451 char *buf;
da6d8c04
DJ
1452
1453 if (regno >= 0)
1454 {
2ec06d2e 1455 if (regno >= the_low_target.num_regs)
0a30fbc4
DJ
1456 return;
1457
bc1e36ca 1458 if ((*the_low_target.cannot_store_register) (regno) == 1)
0a30fbc4
DJ
1459 return;
1460
1461 regaddr = register_addr (regno);
1462 if (regaddr == -1)
da6d8c04 1463 return;
da6d8c04 1464 errno = 0;
48d93c75
UW
1465 size = (register_size (regno) + sizeof (PTRACE_XFER_TYPE) - 1)
1466 & - sizeof (PTRACE_XFER_TYPE);
1467 buf = alloca (size);
1468 memset (buf, 0, size);
ee1a7ae4
UW
1469
1470 if (the_low_target.collect_ptrace_register)
1471 the_low_target.collect_ptrace_register (regno, buf);
5a1f5858
DJ
1472 else
1473 collect_register (regno, buf);
ee1a7ae4 1474
48d93c75 1475 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
da6d8c04 1476 {
0a30fbc4
DJ
1477 errno = 0;
1478 ptrace (PTRACE_POKEUSER, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
2ff29de4 1479 *(PTRACE_XFER_TYPE *) (buf + i));
da6d8c04
DJ
1480 if (errno != 0)
1481 {
3221518c
UW
1482 /* At this point, ESRCH should mean the process is already gone,
1483 in which case we simply ignore attempts to change its registers.
1484 See also the related comment in linux_resume_one_process. */
1485 if (errno == ESRCH)
1486 return;
1487
bc1e36ca
DJ
1488 if ((*the_low_target.cannot_store_register) (regno) == 0)
1489 {
1490 char *err = strerror (errno);
1491 char *msg = alloca (strlen (err) + 128);
1492 sprintf (msg, "writing register %d: %s",
1493 regno, err);
1494 error (msg);
1495 return;
1496 }
da6d8c04 1497 }
2ff29de4 1498 regaddr += sizeof (PTRACE_XFER_TYPE);
da6d8c04 1499 }
da6d8c04
DJ
1500 }
1501 else
2ec06d2e 1502 for (regno = 0; regno < the_low_target.num_regs; regno++)
0d62e5e8 1503 usr_store_inferior_registers (regno);
da6d8c04 1504}
58caa3dc
DJ
1505#endif /* HAVE_LINUX_USRREGS */
1506
1507
1508
1509#ifdef HAVE_LINUX_REGSETS
1510
1511static int
0d62e5e8 1512regsets_fetch_inferior_registers ()
58caa3dc
DJ
1513{
1514 struct regset_info *regset;
e9d25b98 1515 int saw_general_regs = 0;
58caa3dc
DJ
1516
1517 regset = target_regsets;
1518
1519 while (regset->size >= 0)
1520 {
1521 void *buf;
1522 int res;
1523
52fa2412 1524 if (regset->size == 0 || disabled_regsets[regset - target_regsets])
58caa3dc
DJ
1525 {
1526 regset ++;
1527 continue;
1528 }
1529
1530 buf = malloc (regset->size);
dfb64f85 1531#ifndef __sparc__
d06f167a 1532 res = ptrace (regset->get_request, inferior_pid, 0, buf);
dfb64f85
DJ
1533#else
1534 res = ptrace (regset->get_request, inferior_pid, buf, 0);
1535#endif
58caa3dc
DJ
1536 if (res < 0)
1537 {
1538 if (errno == EIO)
1539 {
52fa2412
UW
1540 /* If we get EIO on a regset, do not try it again for
1541 this process. */
1542 disabled_regsets[regset - target_regsets] = 1;
1543 continue;
58caa3dc
DJ
1544 }
1545 else
1546 {
0d62e5e8 1547 char s[256];
a1928bad 1548 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%ld",
0d62e5e8
DJ
1549 inferior_pid);
1550 perror (s);
58caa3dc
DJ
1551 }
1552 }
e9d25b98
DJ
1553 else if (regset->type == GENERAL_REGS)
1554 saw_general_regs = 1;
58caa3dc
DJ
1555 regset->store_function (buf);
1556 regset ++;
1557 }
e9d25b98
DJ
1558 if (saw_general_regs)
1559 return 0;
1560 else
1561 return 1;
58caa3dc
DJ
1562}
1563
1564static int
0d62e5e8 1565regsets_store_inferior_registers ()
58caa3dc
DJ
1566{
1567 struct regset_info *regset;
e9d25b98 1568 int saw_general_regs = 0;
58caa3dc
DJ
1569
1570 regset = target_regsets;
1571
1572 while (regset->size >= 0)
1573 {
1574 void *buf;
1575 int res;
1576
52fa2412 1577 if (regset->size == 0 || disabled_regsets[regset - target_regsets])
58caa3dc
DJ
1578 {
1579 regset ++;
1580 continue;
1581 }
1582
1583 buf = malloc (regset->size);
545587ee
DJ
1584
1585 /* First fill the buffer with the current register set contents,
1586 in case there are any items in the kernel's regset that are
1587 not in gdbserver's regcache. */
dfb64f85 1588#ifndef __sparc__
545587ee 1589 res = ptrace (regset->get_request, inferior_pid, 0, buf);
dfb64f85
DJ
1590#else
1591 res = ptrace (regset->get_request, inferior_pid, buf, 0);
1592#endif
545587ee
DJ
1593
1594 if (res == 0)
1595 {
1596 /* Then overlay our cached registers on that. */
1597 regset->fill_function (buf);
1598
1599 /* Only now do we write the register set. */
dfb64f85
DJ
1600#ifndef __sparc__
1601 res = ptrace (regset->set_request, inferior_pid, 0, buf);
1602#else
1603 res = ptrace (regset->set_request, inferior_pid, buf, 0);
1604#endif
545587ee
DJ
1605 }
1606
58caa3dc
DJ
1607 if (res < 0)
1608 {
1609 if (errno == EIO)
1610 {
52fa2412
UW
1611 /* If we get EIO on a regset, do not try it again for
1612 this process. */
1613 disabled_regsets[regset - target_regsets] = 1;
1614 continue;
58caa3dc 1615 }
3221518c
UW
1616 else if (errno == ESRCH)
1617 {
1618 /* At this point, ESRCH should mean the process is already gone,
1619 in which case we simply ignore attempts to change its registers.
1620 See also the related comment in linux_resume_one_process. */
1621 return 0;
1622 }
58caa3dc
DJ
1623 else
1624 {
ce3a066d 1625 perror ("Warning: ptrace(regsets_store_inferior_registers)");
58caa3dc
DJ
1626 }
1627 }
e9d25b98
DJ
1628 else if (regset->type == GENERAL_REGS)
1629 saw_general_regs = 1;
58caa3dc 1630 regset ++;
09ec9b38 1631 free (buf);
58caa3dc 1632 }
e9d25b98
DJ
1633 if (saw_general_regs)
1634 return 0;
1635 else
1636 return 1;
ce3a066d 1637 return 0;
58caa3dc
DJ
1638}
1639
1640#endif /* HAVE_LINUX_REGSETS */
1641
1642
1643void
ce3a066d 1644linux_fetch_registers (int regno)
58caa3dc
DJ
1645{
1646#ifdef HAVE_LINUX_REGSETS
52fa2412
UW
1647 if (regsets_fetch_inferior_registers () == 0)
1648 return;
58caa3dc
DJ
1649#endif
1650#ifdef HAVE_LINUX_USRREGS
1651 usr_fetch_inferior_registers (regno);
1652#endif
1653}
1654
1655void
ce3a066d 1656linux_store_registers (int regno)
58caa3dc
DJ
1657{
1658#ifdef HAVE_LINUX_REGSETS
52fa2412
UW
1659 if (regsets_store_inferior_registers () == 0)
1660 return;
58caa3dc
DJ
1661#endif
1662#ifdef HAVE_LINUX_USRREGS
1663 usr_store_inferior_registers (regno);
1664#endif
1665}
1666
da6d8c04 1667
da6d8c04
DJ
1668/* Copy LEN bytes from inferior's memory starting at MEMADDR
1669 to debugger memory starting at MYADDR. */
1670
c3e735a6 1671static int
f450004a 1672linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
da6d8c04
DJ
1673{
1674 register int i;
1675 /* Round starting address down to longword boundary. */
1676 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
1677 /* Round ending address up; get number of longwords that makes. */
aa691b87
RM
1678 register int count
1679 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
da6d8c04
DJ
1680 / sizeof (PTRACE_XFER_TYPE);
1681 /* Allocate buffer of that many longwords. */
aa691b87 1682 register PTRACE_XFER_TYPE *buffer
da6d8c04 1683 = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
fd462a61
DJ
1684 int fd;
1685 char filename[64];
1686
1687 /* Try using /proc. Don't bother for one word. */
1688 if (len >= 3 * sizeof (long))
1689 {
1690 /* We could keep this file open and cache it - possibly one per
1691 thread. That requires some juggling, but is even faster. */
1692 sprintf (filename, "/proc/%ld/mem", inferior_pid);
1693 fd = open (filename, O_RDONLY | O_LARGEFILE);
1694 if (fd == -1)
1695 goto no_proc;
1696
1697 /* If pread64 is available, use it. It's faster if the kernel
1698 supports it (only one syscall), and it's 64-bit safe even on
1699 32-bit platforms (for instance, SPARC debugging a SPARC64
1700 application). */
1701#ifdef HAVE_PREAD64
1702 if (pread64 (fd, myaddr, len, memaddr) != len)
1703#else
1704 if (lseek (fd, memaddr, SEEK_SET) == -1 || read (fd, memaddr, len) != len)
1705#endif
1706 {
1707 close (fd);
1708 goto no_proc;
1709 }
1710
1711 close (fd);
1712 return 0;
1713 }
da6d8c04 1714
fd462a61 1715 no_proc:
da6d8c04
DJ
1716 /* Read all the longwords */
1717 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
1718 {
c3e735a6 1719 errno = 0;
d844cde6 1720 buffer[i] = ptrace (PTRACE_PEEKTEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr, 0);
c3e735a6
DJ
1721 if (errno)
1722 return errno;
da6d8c04
DJ
1723 }
1724
1725 /* Copy appropriate bytes out of the buffer. */
1726 memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), len);
c3e735a6
DJ
1727
1728 return 0;
da6d8c04
DJ
1729}
1730
1731/* Copy LEN bytes of data from debugger memory at MYADDR
1732 to inferior's memory at MEMADDR.
1733 On failure (cannot write the inferior)
1734 returns the value of errno. */
1735
ce3a066d 1736static int
f450004a 1737linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
da6d8c04
DJ
1738{
1739 register int i;
1740 /* Round starting address down to longword boundary. */
1741 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
1742 /* Round ending address up; get number of longwords that makes. */
1743 register int count
1744 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1) / sizeof (PTRACE_XFER_TYPE);
1745 /* Allocate buffer of that many longwords. */
1746 register PTRACE_XFER_TYPE *buffer = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
da6d8c04 1747
0d62e5e8
DJ
1748 if (debug_threads)
1749 {
1750 fprintf (stderr, "Writing %02x to %08lx\n", (unsigned)myaddr[0], (long)memaddr);
1751 }
1752
da6d8c04
DJ
1753 /* Fill start and end extra bytes of buffer with existing memory data. */
1754
d844cde6
DJ
1755 buffer[0] = ptrace (PTRACE_PEEKTEXT, inferior_pid,
1756 (PTRACE_ARG3_TYPE) addr, 0);
da6d8c04
DJ
1757
1758 if (count > 1)
1759 {
1760 buffer[count - 1]
1761 = ptrace (PTRACE_PEEKTEXT, inferior_pid,
d844cde6
DJ
1762 (PTRACE_ARG3_TYPE) (addr + (count - 1)
1763 * sizeof (PTRACE_XFER_TYPE)),
1764 0);
da6d8c04
DJ
1765 }
1766
1767 /* Copy data to be written over corresponding part of buffer */
1768
1769 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), myaddr, len);
1770
1771 /* Write the entire buffer. */
1772
1773 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
1774 {
1775 errno = 0;
d844cde6 1776 ptrace (PTRACE_POKETEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr, buffer[i]);
da6d8c04
DJ
1777 if (errno)
1778 return errno;
1779 }
1780
1781 return 0;
1782}
2f2893d9 1783
24a09b5f
DJ
1784static int linux_supports_tracefork_flag;
1785
51c2684e 1786/* Helper functions for linux_test_for_tracefork, called via clone (). */
24a09b5f 1787
51c2684e
DJ
1788static int
1789linux_tracefork_grandchild (void *arg)
1790{
1791 _exit (0);
1792}
1793
7407e2de
AS
1794#define STACK_SIZE 4096
1795
51c2684e
DJ
1796static int
1797linux_tracefork_child (void *arg)
24a09b5f
DJ
1798{
1799 ptrace (PTRACE_TRACEME, 0, 0, 0);
1800 kill (getpid (), SIGSTOP);
7407e2de
AS
1801#ifdef __ia64__
1802 __clone2 (linux_tracefork_grandchild, arg, STACK_SIZE,
1803 CLONE_VM | SIGCHLD, NULL);
1804#else
1805 clone (linux_tracefork_grandchild, arg + STACK_SIZE,
1806 CLONE_VM | SIGCHLD, NULL);
1807#endif
24a09b5f
DJ
1808 _exit (0);
1809}
1810
1811/* Wrapper function for waitpid which handles EINTR. */
1812
1813static int
1814my_waitpid (int pid, int *status, int flags)
1815{
1816 int ret;
1817 do
1818 {
1819 ret = waitpid (pid, status, flags);
1820 }
1821 while (ret == -1 && errno == EINTR);
1822
1823 return ret;
1824}
1825
1826/* Determine if PTRACE_O_TRACEFORK can be used to follow fork events. Make
1827 sure that we can enable the option, and that it had the desired
1828 effect. */
1829
1830static void
1831linux_test_for_tracefork (void)
1832{
1833 int child_pid, ret, status;
1834 long second_pid;
7407e2de 1835 char *stack = malloc (STACK_SIZE * 4);
24a09b5f
DJ
1836
1837 linux_supports_tracefork_flag = 0;
1838
51c2684e 1839 /* Use CLONE_VM instead of fork, to support uClinux (no MMU). */
7407e2de
AS
1840#ifdef __ia64__
1841 child_pid = __clone2 (linux_tracefork_child, stack, STACK_SIZE,
1842 CLONE_VM | SIGCHLD, stack + STACK_SIZE * 2);
1843#else
1844 child_pid = clone (linux_tracefork_child, stack + STACK_SIZE,
1845 CLONE_VM | SIGCHLD, stack + STACK_SIZE * 2);
1846#endif
24a09b5f 1847 if (child_pid == -1)
51c2684e 1848 perror_with_name ("clone");
24a09b5f
DJ
1849
1850 ret = my_waitpid (child_pid, &status, 0);
1851 if (ret == -1)
1852 perror_with_name ("waitpid");
1853 else if (ret != child_pid)
1854 error ("linux_test_for_tracefork: waitpid: unexpected result %d.", ret);
1855 if (! WIFSTOPPED (status))
1856 error ("linux_test_for_tracefork: waitpid: unexpected status %d.", status);
1857
1858 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
1859 if (ret != 0)
1860 {
1861 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
1862 if (ret != 0)
1863 {
1864 warning ("linux_test_for_tracefork: failed to kill child");
1865 return;
1866 }
1867
1868 ret = my_waitpid (child_pid, &status, 0);
1869 if (ret != child_pid)
1870 warning ("linux_test_for_tracefork: failed to wait for killed child");
1871 else if (!WIFSIGNALED (status))
1872 warning ("linux_test_for_tracefork: unexpected wait status 0x%x from "
1873 "killed child", status);
1874
1875 return;
1876 }
1877
1878 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
1879 if (ret != 0)
1880 warning ("linux_test_for_tracefork: failed to resume child");
1881
1882 ret = my_waitpid (child_pid, &status, 0);
1883
1884 if (ret == child_pid && WIFSTOPPED (status)
1885 && status >> 16 == PTRACE_EVENT_FORK)
1886 {
1887 second_pid = 0;
1888 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
1889 if (ret == 0 && second_pid != 0)
1890 {
1891 int second_status;
1892
1893 linux_supports_tracefork_flag = 1;
1894 my_waitpid (second_pid, &second_status, 0);
1895 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
1896 if (ret != 0)
1897 warning ("linux_test_for_tracefork: failed to kill second child");
1898 my_waitpid (second_pid, &status, 0);
1899 }
1900 }
1901 else
1902 warning ("linux_test_for_tracefork: unexpected result from waitpid "
1903 "(%d, status 0x%x)", ret, status);
1904
1905 do
1906 {
1907 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
1908 if (ret != 0)
1909 warning ("linux_test_for_tracefork: failed to kill child");
1910 my_waitpid (child_pid, &status, 0);
1911 }
1912 while (WIFSTOPPED (status));
51c2684e
DJ
1913
1914 free (stack);
24a09b5f
DJ
1915}
1916
1917
2f2893d9
DJ
1918static void
1919linux_look_up_symbols (void)
1920{
0d62e5e8 1921#ifdef USE_THREAD_DB
24a09b5f 1922 if (thread_db_active)
0d62e5e8
DJ
1923 return;
1924
24a09b5f 1925 thread_db_active = thread_db_init (!linux_supports_tracefork_flag);
0d62e5e8
DJ
1926#endif
1927}
1928
e5379b03 1929static void
ef57601b 1930linux_request_interrupt (void)
e5379b03 1931{
a1928bad 1932 extern unsigned long signal_pid;
e5379b03 1933
d592fa2f 1934 if (cont_thread != 0 && cont_thread != -1)
e5379b03
DJ
1935 {
1936 struct process_info *process;
1937
1938 process = get_thread_process (current_inferior);
ef57601b 1939 kill_lwp (process->lwpid, SIGINT);
e5379b03
DJ
1940 }
1941 else
ef57601b 1942 kill_lwp (signal_pid, SIGINT);
e5379b03
DJ
1943}
1944
aa691b87
RM
1945/* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
1946 to debugger memory starting at MYADDR. */
1947
1948static int
f450004a 1949linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
aa691b87
RM
1950{
1951 char filename[PATH_MAX];
1952 int fd, n;
1953
a1928bad 1954 snprintf (filename, sizeof filename, "/proc/%ld/auxv", inferior_pid);
aa691b87
RM
1955
1956 fd = open (filename, O_RDONLY);
1957 if (fd < 0)
1958 return -1;
1959
1960 if (offset != (CORE_ADDR) 0
1961 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
1962 n = -1;
1963 else
1964 n = read (fd, myaddr, len);
1965
1966 close (fd);
1967
1968 return n;
1969}
1970
e013ee27
OF
1971/* These watchpoint related wrapper functions simply pass on the function call
1972 if the target has registered a corresponding function. */
1973
1974static int
1975linux_insert_watchpoint (char type, CORE_ADDR addr, int len)
1976{
1977 if (the_low_target.insert_watchpoint != NULL)
1978 return the_low_target.insert_watchpoint (type, addr, len);
1979 else
1980 /* Unsupported (see target.h). */
1981 return 1;
1982}
1983
1984static int
1985linux_remove_watchpoint (char type, CORE_ADDR addr, int len)
1986{
1987 if (the_low_target.remove_watchpoint != NULL)
1988 return the_low_target.remove_watchpoint (type, addr, len);
1989 else
1990 /* Unsupported (see target.h). */
1991 return 1;
1992}
1993
1994static int
1995linux_stopped_by_watchpoint (void)
1996{
1997 if (the_low_target.stopped_by_watchpoint != NULL)
1998 return the_low_target.stopped_by_watchpoint ();
1999 else
2000 return 0;
2001}
2002
2003static CORE_ADDR
2004linux_stopped_data_address (void)
2005{
2006 if (the_low_target.stopped_data_address != NULL)
2007 return the_low_target.stopped_data_address ();
2008 else
2009 return 0;
2010}
2011
42c81e2a 2012#if defined(__UCLIBC__) && defined(HAS_NOMMU)
52fb6437
NS
2013#if defined(__mcoldfire__)
2014/* These should really be defined in the kernel's ptrace.h header. */
2015#define PT_TEXT_ADDR 49*4
2016#define PT_DATA_ADDR 50*4
2017#define PT_TEXT_END_ADDR 51*4
2018#endif
2019
2020/* Under uClinux, programs are loaded at non-zero offsets, which we need
2021 to tell gdb about. */
2022
2023static int
2024linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
2025{
2026#if defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) && defined(PT_TEXT_END_ADDR)
2027 unsigned long text, text_end, data;
2028 int pid = get_thread_process (current_inferior)->head.id;
2029
2030 errno = 0;
2031
2032 text = ptrace (PTRACE_PEEKUSER, pid, (long)PT_TEXT_ADDR, 0);
2033 text_end = ptrace (PTRACE_PEEKUSER, pid, (long)PT_TEXT_END_ADDR, 0);
2034 data = ptrace (PTRACE_PEEKUSER, pid, (long)PT_DATA_ADDR, 0);
2035
2036 if (errno == 0)
2037 {
2038 /* Both text and data offsets produced at compile-time (and so
2039 used by gdb) are relative to the beginning of the program,
2040 with the data segment immediately following the text segment.
2041 However, the actual runtime layout in memory may put the data
2042 somewhere else, so when we send gdb a data base-address, we
2043 use the real data base address and subtract the compile-time
2044 data base-address from it (which is just the length of the
2045 text segment). BSS immediately follows data in both
2046 cases. */
2047 *text_p = text;
2048 *data_p = data - (text_end - text);
2049
2050 return 1;
2051 }
2052#endif
2053 return 0;
2054}
2055#endif
2056
07e059b5
VP
2057static int
2058linux_qxfer_osdata (const char *annex,
2059 unsigned char *readbuf, unsigned const char *writebuf,
2060 CORE_ADDR offset, int len)
2061{
2062 /* We make the process list snapshot when the object starts to be
2063 read. */
2064 static const char *buf;
2065 static long len_avail = -1;
2066 static struct buffer buffer;
2067
2068 DIR *dirp;
2069
2070 if (strcmp (annex, "processes") != 0)
2071 return 0;
2072
2073 if (!readbuf || writebuf)
2074 return 0;
2075
2076 if (offset == 0)
2077 {
2078 if (len_avail != -1 && len_avail != 0)
2079 buffer_free (&buffer);
2080 len_avail = 0;
2081 buf = NULL;
2082 buffer_init (&buffer);
2083 buffer_grow_str (&buffer, "<osdata type=\"processes\">");
2084
2085 dirp = opendir ("/proc");
2086 if (dirp)
2087 {
2088 struct dirent *dp;
2089 while ((dp = readdir (dirp)) != NULL)
2090 {
2091 struct stat statbuf;
2092 char procentry[sizeof ("/proc/4294967295")];
2093
2094 if (!isdigit (dp->d_name[0])
2095 || strlen (dp->d_name) > sizeof ("4294967295") - 1)
2096 continue;
2097
2098 sprintf (procentry, "/proc/%s", dp->d_name);
2099 if (stat (procentry, &statbuf) == 0
2100 && S_ISDIR (statbuf.st_mode))
2101 {
2102 char pathname[128];
2103 FILE *f;
2104 char cmd[MAXPATHLEN + 1];
2105 struct passwd *entry;
2106
2107 sprintf (pathname, "/proc/%s/cmdline", dp->d_name);
2108 entry = getpwuid (statbuf.st_uid);
2109
2110 if ((f = fopen (pathname, "r")) != NULL)
2111 {
2112 size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
2113 if (len > 0)
2114 {
2115 int i;
2116 for (i = 0; i < len; i++)
2117 if (cmd[i] == '\0')
2118 cmd[i] = ' ';
2119 cmd[len] = '\0';
2120
2121 buffer_xml_printf (
2122 &buffer,
2123 "<item>"
2124 "<column name=\"pid\">%s</column>"
2125 "<column name=\"user\">%s</column>"
2126 "<column name=\"command\">%s</column>"
2127 "</item>",
2128 dp->d_name,
2129 entry ? entry->pw_name : "?",
2130 cmd);
2131 }
2132 fclose (f);
2133 }
2134 }
2135 }
2136
2137 closedir (dirp);
2138 }
2139 buffer_grow_str0 (&buffer, "</osdata>\n");
2140 buf = buffer_finish (&buffer);
2141 len_avail = strlen (buf);
2142 }
2143
2144 if (offset >= len_avail)
2145 {
2146 /* Done. Get rid of the data. */
2147 buffer_free (&buffer);
2148 buf = NULL;
2149 len_avail = 0;
2150 return 0;
2151 }
2152
2153 if (len > len_avail - offset)
2154 len = len_avail - offset;
2155 memcpy (readbuf, buf + offset, len);
2156
2157 return len;
2158}
2159
ce3a066d
DJ
2160static struct target_ops linux_target_ops = {
2161 linux_create_inferior,
2162 linux_attach,
2163 linux_kill,
6ad8ae5c 2164 linux_detach,
444d6139 2165 linux_join,
ce3a066d
DJ
2166 linux_thread_alive,
2167 linux_resume,
2168 linux_wait,
2169 linux_fetch_registers,
2170 linux_store_registers,
2171 linux_read_memory,
2172 linux_write_memory,
2f2893d9 2173 linux_look_up_symbols,
ef57601b 2174 linux_request_interrupt,
aa691b87 2175 linux_read_auxv,
e013ee27
OF
2176 linux_insert_watchpoint,
2177 linux_remove_watchpoint,
2178 linux_stopped_by_watchpoint,
2179 linux_stopped_data_address,
42c81e2a 2180#if defined(__UCLIBC__) && defined(HAS_NOMMU)
52fb6437 2181 linux_read_offsets,
dae5f5cf
DJ
2182#else
2183 NULL,
2184#endif
2185#ifdef USE_THREAD_DB
2186 thread_db_get_tls_address,
2187#else
2188 NULL,
52fb6437 2189#endif
59a016f0
PA
2190 NULL,
2191 hostio_last_error_from_errno,
07e059b5 2192 linux_qxfer_osdata,
ce3a066d
DJ
2193};
2194
0d62e5e8
DJ
2195static void
2196linux_init_signals ()
2197{
2198 /* FIXME drow/2002-06-09: As above, we should check with LinuxThreads
2199 to find what the cancel signal actually is. */
254787d4 2200 signal (__SIGRTMIN+1, SIG_IGN);
0d62e5e8
DJ
2201}
2202
da6d8c04
DJ
2203void
2204initialize_low (void)
2205{
24a09b5f 2206 thread_db_active = 0;
ce3a066d 2207 set_target_ops (&linux_target_ops);
611cb4a5
DJ
2208 set_breakpoint_data (the_low_target.breakpoint,
2209 the_low_target.breakpoint_len);
0d62e5e8 2210 linux_init_signals ();
24a09b5f 2211 linux_test_for_tracefork ();
52fa2412
UW
2212#ifdef HAVE_LINUX_REGSETS
2213 for (num_regsets = 0; target_regsets[num_regsets].size >= 0; num_regsets++)
2214 ;
2215 disabled_regsets = malloc (num_regsets);
2216#endif
da6d8c04 2217}