]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/gdbtypes.c
Add missing changelog entry
[thirdparty/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
42a4f53d 3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c
SS
23#include "bfd.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "gdbtypes.h"
28#include "expression.h"
29#include "language.h"
30#include "target.h"
31#include "value.h"
32#include "demangle.h"
33#include "complaints.h"
34#include "gdbcmd.h"
015a42b4 35#include "cp-abi.h"
ae5a43e0 36#include "hashtab.h"
8de20a37 37#include "cp-support.h"
ca092b61
DE
38#include "bcache.h"
39#include "dwarf2loc.h"
80180f79 40#include "gdbcore.h"
1841ee5d 41#include "floatformat.h"
ac3aafc7 42
6403aeea
SW
43/* Initialize BADNESS constants. */
44
a9d5ef47 45const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 46
a9d5ef47
SW
47const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 49
a9d5ef47 50const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 51
a9d5ef47
SW
52const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
e15c3eb4 55const struct rank CV_CONVERSION_BADNESS = {1, 0};
a9d5ef47
SW
56const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 60const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
61const struct rank BASE_CONVERSION_BADNESS = {2,0};
62const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
da096638 63const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 64const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 65const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 66
8da61cc4 67/* Floatformat pairs. */
f9e9243a
UW
68const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71};
8da61cc4
DJ
72const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75};
76const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79};
80const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83};
84const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87};
88const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91};
92const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95};
96const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99};
100const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103};
104const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107};
108const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111};
b14d30e1 112const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
b14d30e1 115};
8da61cc4 116
2873700e
KS
117/* Should opaque types be resolved? */
118
119static int opaque_type_resolution = 1;
120
121/* A flag to enable printing of debugging information of C++
122 overloading. */
123
124unsigned int overload_debug = 0;
125
a451cb65
KS
126/* A flag to enable strict type checking. */
127
128static int strict_type_checking = 1;
129
2873700e 130/* A function to show whether opaque types are resolved. */
5212577a 131
920d2a44
AC
132static void
133show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
134 struct cmd_list_element *c,
135 const char *value)
920d2a44 136{
3e43a32a
MS
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
139 value);
140}
141
2873700e 142/* A function to show whether C++ overload debugging is enabled. */
5212577a 143
920d2a44
AC
144static void
145show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147{
7ba81444
MS
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
149 value);
920d2a44 150}
c906108c 151
a451cb65
KS
152/* A function to show the status of strict type checking. */
153
154static void
155show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157{
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159}
160
5212577a 161\f
e9bb382b
UW
162/* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
c906108c
SS
165
166struct type *
fba45db2 167alloc_type (struct objfile *objfile)
c906108c 168{
52f0bd74 169 struct type *type;
c906108c 170
e9bb382b
UW
171 gdb_assert (objfile != NULL);
172
7ba81444 173 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
176 struct main_type);
177 OBJSTAT (objfile, n_types++);
c906108c 178
e9bb382b
UW
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
c906108c 181
7ba81444 182 /* Initialize the fields that might not be zero. */
c906108c
SS
183
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
2fdde8f8 185 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 186
c16abbde 187 return type;
c906108c
SS
188}
189
e9bb382b
UW
190/* Allocate a new GDBARCH-associated type structure and fill it
191 with some defaults. Space for the type structure is allocated
8f57eec2 192 on the obstack associated with GDBARCH. */
e9bb382b
UW
193
194struct type *
195alloc_type_arch (struct gdbarch *gdbarch)
196{
197 struct type *type;
198
199 gdb_assert (gdbarch != NULL);
200
201 /* Alloc the structure and start off with all fields zeroed. */
202
8f57eec2
PP
203 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
204 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
e9bb382b
UW
205
206 TYPE_OBJFILE_OWNED (type) = 0;
207 TYPE_OWNER (type).gdbarch = gdbarch;
208
209 /* Initialize the fields that might not be zero. */
210
211 TYPE_CODE (type) = TYPE_CODE_UNDEF;
e9bb382b
UW
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215}
216
217/* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221struct type *
222alloc_type_copy (const struct type *type)
223{
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228}
229
230/* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233struct gdbarch *
234get_type_arch (const struct type *type)
235{
2fabdf33
AB
236 struct gdbarch *arch;
237
e9bb382b 238 if (TYPE_OBJFILE_OWNED (type))
2fabdf33 239 arch = get_objfile_arch (TYPE_OWNER (type).objfile);
e9bb382b 240 else
2fabdf33
AB
241 arch = TYPE_OWNER (type).gdbarch;
242
243 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
244 a gdbarch, however, this is very rare, and even then, in most cases
245 that get_type_arch is called, we assume that a non-NULL value is
246 returned. */
247 gdb_assert (arch != NULL);
248 return arch;
e9bb382b
UW
249}
250
99ad9427
YQ
251/* See gdbtypes.h. */
252
253struct type *
254get_target_type (struct type *type)
255{
256 if (type != NULL)
257 {
258 type = TYPE_TARGET_TYPE (type);
259 if (type != NULL)
260 type = check_typedef (type);
261 }
262
263 return type;
264}
265
2e056931
SM
266/* See gdbtypes.h. */
267
268unsigned int
269type_length_units (struct type *type)
270{
271 struct gdbarch *arch = get_type_arch (type);
272 int unit_size = gdbarch_addressable_memory_unit_size (arch);
273
274 return TYPE_LENGTH (type) / unit_size;
275}
276
2fdde8f8
DJ
277/* Alloc a new type instance structure, fill it with some defaults,
278 and point it at OLDTYPE. Allocate the new type instance from the
279 same place as OLDTYPE. */
280
281static struct type *
282alloc_type_instance (struct type *oldtype)
283{
284 struct type *type;
285
286 /* Allocate the structure. */
287
e9bb382b 288 if (! TYPE_OBJFILE_OWNED (oldtype))
2fabdf33 289 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
2fdde8f8 290 else
1deafd4e
PA
291 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
292 struct type);
293
2fdde8f8
DJ
294 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
295
296 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
297
c16abbde 298 return type;
2fdde8f8
DJ
299}
300
301/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 302 replacing it with something else. Preserve owner information. */
5212577a 303
2fdde8f8
DJ
304static void
305smash_type (struct type *type)
306{
e9bb382b
UW
307 int objfile_owned = TYPE_OBJFILE_OWNED (type);
308 union type_owner owner = TYPE_OWNER (type);
309
2fdde8f8
DJ
310 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
311
e9bb382b
UW
312 /* Restore owner information. */
313 TYPE_OBJFILE_OWNED (type) = objfile_owned;
314 TYPE_OWNER (type) = owner;
315
2fdde8f8
DJ
316 /* For now, delete the rings. */
317 TYPE_CHAIN (type) = type;
318
319 /* For now, leave the pointer/reference types alone. */
320}
321
c906108c
SS
322/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
323 to a pointer to memory where the pointer type should be stored.
324 If *TYPEPTR is zero, update it to point to the pointer type we return.
325 We allocate new memory if needed. */
326
327struct type *
fba45db2 328make_pointer_type (struct type *type, struct type **typeptr)
c906108c 329{
52f0bd74 330 struct type *ntype; /* New type */
053cb41b 331 struct type *chain;
c906108c
SS
332
333 ntype = TYPE_POINTER_TYPE (type);
334
c5aa993b 335 if (ntype)
c906108c 336 {
c5aa993b 337 if (typeptr == 0)
7ba81444
MS
338 return ntype; /* Don't care about alloc,
339 and have new type. */
c906108c 340 else if (*typeptr == 0)
c5aa993b 341 {
7ba81444 342 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 343 return ntype;
c5aa993b 344 }
c906108c
SS
345 }
346
347 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
348 {
e9bb382b 349 ntype = alloc_type_copy (type);
c906108c
SS
350 if (typeptr)
351 *typeptr = ntype;
352 }
7ba81444 353 else /* We have storage, but need to reset it. */
c906108c
SS
354 {
355 ntype = *typeptr;
053cb41b 356 chain = TYPE_CHAIN (ntype);
2fdde8f8 357 smash_type (ntype);
053cb41b 358 TYPE_CHAIN (ntype) = chain;
c906108c
SS
359 }
360
361 TYPE_TARGET_TYPE (ntype) = type;
362 TYPE_POINTER_TYPE (type) = ntype;
363
5212577a 364 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 365
50810684
UW
366 TYPE_LENGTH (ntype)
367 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
368 TYPE_CODE (ntype) = TYPE_CODE_PTR;
369
67b2adb2 370 /* Mark pointers as unsigned. The target converts between pointers
76e71323 371 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 372 gdbarch_address_to_pointer. */
876cecd0 373 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 374
053cb41b
JB
375 /* Update the length of all the other variants of this type. */
376 chain = TYPE_CHAIN (ntype);
377 while (chain != ntype)
378 {
379 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
380 chain = TYPE_CHAIN (chain);
381 }
382
c906108c
SS
383 return ntype;
384}
385
386/* Given a type TYPE, return a type of pointers to that type.
387 May need to construct such a type if this is the first use. */
388
389struct type *
fba45db2 390lookup_pointer_type (struct type *type)
c906108c 391{
c5aa993b 392 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
393}
394
7ba81444
MS
395/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
396 points to a pointer to memory where the reference type should be
397 stored. If *TYPEPTR is zero, update it to point to the reference
3b224330
AV
398 type we return. We allocate new memory if needed. REFCODE denotes
399 the kind of reference type to lookup (lvalue or rvalue reference). */
c906108c
SS
400
401struct type *
3b224330
AV
402make_reference_type (struct type *type, struct type **typeptr,
403 enum type_code refcode)
c906108c 404{
52f0bd74 405 struct type *ntype; /* New type */
3b224330 406 struct type **reftype;
1e98b326 407 struct type *chain;
c906108c 408
3b224330
AV
409 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
410
411 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
412 : TYPE_RVALUE_REFERENCE_TYPE (type));
c906108c 413
c5aa993b 414 if (ntype)
c906108c 415 {
c5aa993b 416 if (typeptr == 0)
7ba81444
MS
417 return ntype; /* Don't care about alloc,
418 and have new type. */
c906108c 419 else if (*typeptr == 0)
c5aa993b 420 {
7ba81444 421 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 422 return ntype;
c5aa993b 423 }
c906108c
SS
424 }
425
426 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
427 {
e9bb382b 428 ntype = alloc_type_copy (type);
c906108c
SS
429 if (typeptr)
430 *typeptr = ntype;
431 }
7ba81444 432 else /* We have storage, but need to reset it. */
c906108c
SS
433 {
434 ntype = *typeptr;
1e98b326 435 chain = TYPE_CHAIN (ntype);
2fdde8f8 436 smash_type (ntype);
1e98b326 437 TYPE_CHAIN (ntype) = chain;
c906108c
SS
438 }
439
440 TYPE_TARGET_TYPE (ntype) = type;
3b224330
AV
441 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
442 : &TYPE_RVALUE_REFERENCE_TYPE (type));
443
444 *reftype = ntype;
c906108c 445
7ba81444
MS
446 /* FIXME! Assume the machine has only one representation for
447 references, and that it matches the (only) representation for
448 pointers! */
c906108c 449
50810684
UW
450 TYPE_LENGTH (ntype) =
451 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
3b224330 452 TYPE_CODE (ntype) = refcode;
c5aa993b 453
3b224330 454 *reftype = ntype;
c906108c 455
1e98b326
JB
456 /* Update the length of all the other variants of this type. */
457 chain = TYPE_CHAIN (ntype);
458 while (chain != ntype)
459 {
460 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
461 chain = TYPE_CHAIN (chain);
462 }
463
c906108c
SS
464 return ntype;
465}
466
7ba81444
MS
467/* Same as above, but caller doesn't care about memory allocation
468 details. */
c906108c
SS
469
470struct type *
3b224330
AV
471lookup_reference_type (struct type *type, enum type_code refcode)
472{
473 return make_reference_type (type, (struct type **) 0, refcode);
474}
475
476/* Lookup the lvalue reference type for the type TYPE. */
477
478struct type *
479lookup_lvalue_reference_type (struct type *type)
480{
481 return lookup_reference_type (type, TYPE_CODE_REF);
482}
483
484/* Lookup the rvalue reference type for the type TYPE. */
485
486struct type *
487lookup_rvalue_reference_type (struct type *type)
c906108c 488{
3b224330 489 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
c906108c
SS
490}
491
7ba81444
MS
492/* Lookup a function type that returns type TYPE. TYPEPTR, if
493 nonzero, points to a pointer to memory where the function type
494 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 495 function type we return. We allocate new memory if needed. */
c906108c
SS
496
497struct type *
0c8b41f1 498make_function_type (struct type *type, struct type **typeptr)
c906108c 499{
52f0bd74 500 struct type *ntype; /* New type */
c906108c
SS
501
502 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
503 {
e9bb382b 504 ntype = alloc_type_copy (type);
c906108c
SS
505 if (typeptr)
506 *typeptr = ntype;
507 }
7ba81444 508 else /* We have storage, but need to reset it. */
c906108c
SS
509 {
510 ntype = *typeptr;
2fdde8f8 511 smash_type (ntype);
c906108c
SS
512 }
513
514 TYPE_TARGET_TYPE (ntype) = type;
515
516 TYPE_LENGTH (ntype) = 1;
517 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 518
b6cdc2c1
JK
519 INIT_FUNC_SPECIFIC (ntype);
520
c906108c
SS
521 return ntype;
522}
523
c906108c
SS
524/* Given a type TYPE, return a type of functions that return that type.
525 May need to construct such a type if this is the first use. */
526
527struct type *
fba45db2 528lookup_function_type (struct type *type)
c906108c 529{
0c8b41f1 530 return make_function_type (type, (struct type **) 0);
c906108c
SS
531}
532
71918a86 533/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
534 function type. If the final type in PARAM_TYPES is NULL, make a
535 varargs function. */
71918a86
TT
536
537struct type *
538lookup_function_type_with_arguments (struct type *type,
539 int nparams,
540 struct type **param_types)
541{
542 struct type *fn = make_function_type (type, (struct type **) 0);
543 int i;
544
e314d629 545 if (nparams > 0)
a6fb9c08 546 {
e314d629
TT
547 if (param_types[nparams - 1] == NULL)
548 {
549 --nparams;
550 TYPE_VARARGS (fn) = 1;
551 }
552 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
553 == TYPE_CODE_VOID)
554 {
555 --nparams;
556 /* Caller should have ensured this. */
557 gdb_assert (nparams == 0);
558 TYPE_PROTOTYPED (fn) = 1;
559 }
54990598
PA
560 else
561 TYPE_PROTOTYPED (fn) = 1;
a6fb9c08
TT
562 }
563
71918a86 564 TYPE_NFIELDS (fn) = nparams;
224c3ddb
SM
565 TYPE_FIELDS (fn)
566 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
71918a86
TT
567 for (i = 0; i < nparams; ++i)
568 TYPE_FIELD_TYPE (fn, i) = param_types[i];
569
570 return fn;
571}
572
47663de5
MS
573/* Identify address space identifier by name --
574 return the integer flag defined in gdbtypes.h. */
5212577a
DE
575
576int
61f4b350
TT
577address_space_name_to_int (struct gdbarch *gdbarch,
578 const char *space_identifier)
47663de5 579{
8b2dbe47 580 int type_flags;
d8734c88 581
7ba81444 582 /* Check for known address space delimiters. */
47663de5 583 if (!strcmp (space_identifier, "code"))
876cecd0 584 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 585 else if (!strcmp (space_identifier, "data"))
876cecd0 586 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
587 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
588 && gdbarch_address_class_name_to_type_flags (gdbarch,
589 space_identifier,
590 &type_flags))
8b2dbe47 591 return type_flags;
47663de5 592 else
8a3fe4f8 593 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
594}
595
596/* Identify address space identifier by integer flag as defined in
7ba81444 597 gdbtypes.h -- return the string version of the adress space name. */
47663de5 598
321432c0 599const char *
50810684 600address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 601{
876cecd0 602 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 603 return "code";
876cecd0 604 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 605 return "data";
876cecd0 606 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
607 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
608 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
609 else
610 return NULL;
611}
612
2fdde8f8 613/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
614
615 If STORAGE is non-NULL, create the new type instance there.
616 STORAGE must be in the same obstack as TYPE. */
47663de5 617
b9362cc7 618static struct type *
2fdde8f8
DJ
619make_qualified_type (struct type *type, int new_flags,
620 struct type *storage)
47663de5
MS
621{
622 struct type *ntype;
623
624 ntype = type;
5f61c20e
JK
625 do
626 {
627 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
628 return ntype;
629 ntype = TYPE_CHAIN (ntype);
630 }
631 while (ntype != type);
47663de5 632
2fdde8f8
DJ
633 /* Create a new type instance. */
634 if (storage == NULL)
635 ntype = alloc_type_instance (type);
636 else
637 {
7ba81444
MS
638 /* If STORAGE was provided, it had better be in the same objfile
639 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
640 if one objfile is freed and the other kept, we'd have
641 dangling pointers. */
ad766c0a
JB
642 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
643
2fdde8f8
DJ
644 ntype = storage;
645 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
646 TYPE_CHAIN (ntype) = ntype;
647 }
47663de5
MS
648
649 /* Pointers or references to the original type are not relevant to
2fdde8f8 650 the new type. */
47663de5
MS
651 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
652 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 653
2fdde8f8
DJ
654 /* Chain the new qualified type to the old type. */
655 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
656 TYPE_CHAIN (type) = ntype;
657
658 /* Now set the instance flags and return the new type. */
659 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 660
ab5d3da6
KB
661 /* Set length of new type to that of the original type. */
662 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
663
47663de5
MS
664 return ntype;
665}
666
2fdde8f8
DJ
667/* Make an address-space-delimited variant of a type -- a type that
668 is identical to the one supplied except that it has an address
669 space attribute attached to it (such as "code" or "data").
670
7ba81444
MS
671 The space attributes "code" and "data" are for Harvard
672 architectures. The address space attributes are for architectures
673 which have alternately sized pointers or pointers with alternate
674 representations. */
2fdde8f8
DJ
675
676struct type *
677make_type_with_address_space (struct type *type, int space_flag)
678{
2fdde8f8 679 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
680 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
681 | TYPE_INSTANCE_FLAG_DATA_SPACE
682 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
683 | space_flag);
684
685 return make_qualified_type (type, new_flags, NULL);
686}
c906108c
SS
687
688/* Make a "c-v" variant of a type -- a type that is identical to the
689 one supplied except that it may have const or volatile attributes
690 CNST is a flag for setting the const attribute
691 VOLTL is a flag for setting the volatile attribute
692 TYPE is the base type whose variant we are creating.
c906108c 693
ad766c0a
JB
694 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
695 storage to hold the new qualified type; *TYPEPTR and TYPE must be
696 in the same objfile. Otherwise, allocate fresh memory for the new
697 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
698 new type we construct. */
5212577a 699
c906108c 700struct type *
7ba81444
MS
701make_cv_type (int cnst, int voltl,
702 struct type *type,
703 struct type **typeptr)
c906108c 704{
52f0bd74 705 struct type *ntype; /* New type */
c906108c 706
2fdde8f8 707 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
708 & ~(TYPE_INSTANCE_FLAG_CONST
709 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 710
c906108c 711 if (cnst)
876cecd0 712 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
713
714 if (voltl)
876cecd0 715 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 716
2fdde8f8 717 if (typeptr && *typeptr != NULL)
a02fd225 718 {
ad766c0a
JB
719 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
720 a C-V variant chain that threads across objfiles: if one
721 objfile gets freed, then the other has a broken C-V chain.
722
723 This code used to try to copy over the main type from TYPE to
724 *TYPEPTR if they were in different objfiles, but that's
725 wrong, too: TYPE may have a field list or member function
726 lists, which refer to types of their own, etc. etc. The
727 whole shebang would need to be copied over recursively; you
728 can't have inter-objfile pointers. The only thing to do is
729 to leave stub types as stub types, and look them up afresh by
730 name each time you encounter them. */
731 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
732 }
733
7ba81444
MS
734 ntype = make_qualified_type (type, new_flags,
735 typeptr ? *typeptr : NULL);
c906108c 736
2fdde8f8
DJ
737 if (typeptr != NULL)
738 *typeptr = ntype;
a02fd225 739
2fdde8f8 740 return ntype;
a02fd225 741}
c906108c 742
06d66ee9
TT
743/* Make a 'restrict'-qualified version of TYPE. */
744
745struct type *
746make_restrict_type (struct type *type)
747{
748 return make_qualified_type (type,
749 (TYPE_INSTANCE_FLAGS (type)
750 | TYPE_INSTANCE_FLAG_RESTRICT),
751 NULL);
752}
753
f1660027
TT
754/* Make a type without const, volatile, or restrict. */
755
756struct type *
757make_unqualified_type (struct type *type)
758{
759 return make_qualified_type (type,
760 (TYPE_INSTANCE_FLAGS (type)
761 & ~(TYPE_INSTANCE_FLAG_CONST
762 | TYPE_INSTANCE_FLAG_VOLATILE
763 | TYPE_INSTANCE_FLAG_RESTRICT)),
764 NULL);
765}
766
a2c2acaf
MW
767/* Make a '_Atomic'-qualified version of TYPE. */
768
769struct type *
770make_atomic_type (struct type *type)
771{
772 return make_qualified_type (type,
773 (TYPE_INSTANCE_FLAGS (type)
774 | TYPE_INSTANCE_FLAG_ATOMIC),
775 NULL);
776}
777
2fdde8f8
DJ
778/* Replace the contents of ntype with the type *type. This changes the
779 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
780 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 781
cda6c68a
JB
782 In order to build recursive types, it's inevitable that we'll need
783 to update types in place --- but this sort of indiscriminate
784 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
785 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
786 clear if more steps are needed. */
5212577a 787
dd6bda65
DJ
788void
789replace_type (struct type *ntype, struct type *type)
790{
ab5d3da6 791 struct type *chain;
dd6bda65 792
ad766c0a
JB
793 /* These two types had better be in the same objfile. Otherwise,
794 the assignment of one type's main type structure to the other
795 will produce a type with references to objects (names; field
796 lists; etc.) allocated on an objfile other than its own. */
e46dd0f4 797 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
ad766c0a 798
2fdde8f8 799 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 800
7ba81444
MS
801 /* The type length is not a part of the main type. Update it for
802 each type on the variant chain. */
ab5d3da6 803 chain = ntype;
5f61c20e
JK
804 do
805 {
806 /* Assert that this element of the chain has no address-class bits
807 set in its flags. Such type variants might have type lengths
808 which are supposed to be different from the non-address-class
809 variants. This assertion shouldn't ever be triggered because
810 symbol readers which do construct address-class variants don't
811 call replace_type(). */
812 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
813
814 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
815 chain = TYPE_CHAIN (chain);
816 }
817 while (ntype != chain);
ab5d3da6 818
2fdde8f8
DJ
819 /* Assert that the two types have equivalent instance qualifiers.
820 This should be true for at least all of our debug readers. */
821 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
822}
823
c906108c
SS
824/* Implement direct support for MEMBER_TYPE in GNU C++.
825 May need to construct such a type if this is the first use.
826 The TYPE is the type of the member. The DOMAIN is the type
827 of the aggregate that the member belongs to. */
828
829struct type *
0d5de010 830lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 831{
52f0bd74 832 struct type *mtype;
c906108c 833
e9bb382b 834 mtype = alloc_type_copy (type);
0d5de010 835 smash_to_memberptr_type (mtype, domain, type);
c16abbde 836 return mtype;
c906108c
SS
837}
838
0d5de010
DJ
839/* Return a pointer-to-method type, for a method of type TO_TYPE. */
840
841struct type *
842lookup_methodptr_type (struct type *to_type)
843{
844 struct type *mtype;
845
e9bb382b 846 mtype = alloc_type_copy (to_type);
0b92b5bb 847 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
848 return mtype;
849}
850
7ba81444
MS
851/* Allocate a stub method whose return type is TYPE. This apparently
852 happens for speed of symbol reading, since parsing out the
853 arguments to the method is cpu-intensive, the way we are doing it.
854 So, we will fill in arguments later. This always returns a fresh
855 type. */
c906108c
SS
856
857struct type *
fba45db2 858allocate_stub_method (struct type *type)
c906108c
SS
859{
860 struct type *mtype;
861
e9bb382b
UW
862 mtype = alloc_type_copy (type);
863 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
864 TYPE_LENGTH (mtype) = 1;
865 TYPE_STUB (mtype) = 1;
c906108c 866 TYPE_TARGET_TYPE (mtype) = type;
4bfb94b8 867 /* TYPE_SELF_TYPE (mtype) = unknown yet */
c16abbde 868 return mtype;
c906108c
SS
869}
870
0f59d5fc
PA
871/* See gdbtypes.h. */
872
873bool
874operator== (const dynamic_prop &l, const dynamic_prop &r)
875{
876 if (l.kind != r.kind)
877 return false;
878
879 switch (l.kind)
880 {
881 case PROP_UNDEFINED:
882 return true;
883 case PROP_CONST:
884 return l.data.const_val == r.data.const_val;
885 case PROP_ADDR_OFFSET:
886 case PROP_LOCEXPR:
887 case PROP_LOCLIST:
888 return l.data.baton == r.data.baton;
889 }
890
891 gdb_assert_not_reached ("unhandled dynamic_prop kind");
892}
893
894/* See gdbtypes.h. */
895
896bool
897operator== (const range_bounds &l, const range_bounds &r)
898{
899#define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
900
901 return (FIELD_EQ (low)
902 && FIELD_EQ (high)
903 && FIELD_EQ (flag_upper_bound_is_count)
904 && FIELD_EQ (flag_bound_evaluated));
905
906#undef FIELD_EQ
907}
908
729efb13
SA
909/* Create a range type with a dynamic range from LOW_BOUND to
910 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
911
912struct type *
729efb13
SA
913create_range_type (struct type *result_type, struct type *index_type,
914 const struct dynamic_prop *low_bound,
915 const struct dynamic_prop *high_bound)
c906108c 916{
b86352cf
AB
917 /* The INDEX_TYPE should be a type capable of holding the upper and lower
918 bounds, as such a zero sized, or void type makes no sense. */
919 gdb_assert (TYPE_CODE (index_type) != TYPE_CODE_VOID);
920 gdb_assert (TYPE_LENGTH (index_type) > 0);
921
c906108c 922 if (result_type == NULL)
e9bb382b 923 result_type = alloc_type_copy (index_type);
c906108c
SS
924 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
925 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 926 if (TYPE_STUB (index_type))
876cecd0 927 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
928 else
929 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 930
43bbcdc2
PH
931 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
932 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
729efb13
SA
933 TYPE_RANGE_DATA (result_type)->low = *low_bound;
934 TYPE_RANGE_DATA (result_type)->high = *high_bound;
c906108c 935
729efb13 936 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
876cecd0 937 TYPE_UNSIGNED (result_type) = 1;
c906108c 938
45e44d27
JB
939 /* Ada allows the declaration of range types whose upper bound is
940 less than the lower bound, so checking the lower bound is not
941 enough. Make sure we do not mark a range type whose upper bound
942 is negative as unsigned. */
943 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
944 TYPE_UNSIGNED (result_type) = 0;
945
262452ec 946 return result_type;
c906108c
SS
947}
948
729efb13
SA
949/* Create a range type using either a blank type supplied in
950 RESULT_TYPE, or creating a new type, inheriting the objfile from
951 INDEX_TYPE.
952
953 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
954 to HIGH_BOUND, inclusive.
955
956 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
957 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
958
959struct type *
960create_static_range_type (struct type *result_type, struct type *index_type,
961 LONGEST low_bound, LONGEST high_bound)
962{
963 struct dynamic_prop low, high;
964
965 low.kind = PROP_CONST;
966 low.data.const_val = low_bound;
967
968 high.kind = PROP_CONST;
969 high.data.const_val = high_bound;
970
971 result_type = create_range_type (result_type, index_type, &low, &high);
972
973 return result_type;
974}
975
80180f79
SA
976/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
977 are static, otherwise returns 0. */
978
979static int
980has_static_range (const struct range_bounds *bounds)
981{
982 return (bounds->low.kind == PROP_CONST
983 && bounds->high.kind == PROP_CONST);
984}
985
986
7ba81444
MS
987/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
988 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
989 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
990
991int
fba45db2 992get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c 993{
f168693b 994 type = check_typedef (type);
c906108c
SS
995 switch (TYPE_CODE (type))
996 {
997 case TYPE_CODE_RANGE:
998 *lowp = TYPE_LOW_BOUND (type);
999 *highp = TYPE_HIGH_BOUND (type);
1000 return 1;
1001 case TYPE_CODE_ENUM:
1002 if (TYPE_NFIELDS (type) > 0)
1003 {
1004 /* The enums may not be sorted by value, so search all
0963b4bd 1005 entries. */
c906108c
SS
1006 int i;
1007
14e75d8e 1008 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
1009 for (i = 0; i < TYPE_NFIELDS (type); i++)
1010 {
14e75d8e
JK
1011 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1012 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1013 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1014 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
1015 }
1016
7ba81444 1017 /* Set unsigned indicator if warranted. */
c5aa993b 1018 if (*lowp >= 0)
c906108c 1019 {
876cecd0 1020 TYPE_UNSIGNED (type) = 1;
c906108c
SS
1021 }
1022 }
1023 else
1024 {
1025 *lowp = 0;
1026 *highp = -1;
1027 }
1028 return 0;
1029 case TYPE_CODE_BOOL:
1030 *lowp = 0;
1031 *highp = 1;
1032 return 0;
1033 case TYPE_CODE_INT:
c5aa993b 1034 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
1035 return -1;
1036 if (!TYPE_UNSIGNED (type))
1037 {
c5aa993b 1038 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
1039 *highp = -*lowp - 1;
1040 return 0;
1041 }
86a73007 1042 /* fall through */
c906108c
SS
1043 case TYPE_CODE_CHAR:
1044 *lowp = 0;
1045 /* This round-about calculation is to avoid shifting by
7b83ea04 1046 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 1047 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
1048 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1049 *highp = (*highp - 1) | *highp;
1050 return 0;
1051 default:
1052 return -1;
1053 }
1054}
1055
dbc98a8b
KW
1056/* Assuming TYPE is a simple, non-empty array type, compute its upper
1057 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1058 Save the high bound into HIGH_BOUND if not NULL.
1059
0963b4bd 1060 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
1061 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1062
1063 We now simply use get_discrete_bounds call to get the values
1064 of the low and high bounds.
1065 get_discrete_bounds can return three values:
1066 1, meaning that index is a range,
1067 0, meaning that index is a discrete type,
1068 or -1 for failure. */
1069
1070int
1071get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1072{
1073 struct type *index = TYPE_INDEX_TYPE (type);
1074 LONGEST low = 0;
1075 LONGEST high = 0;
1076 int res;
1077
1078 if (index == NULL)
1079 return 0;
1080
1081 res = get_discrete_bounds (index, &low, &high);
1082 if (res == -1)
1083 return 0;
1084
1085 /* Check if the array bounds are undefined. */
1086 if (res == 1
1087 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1088 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1089 return 0;
1090
1091 if (low_bound)
1092 *low_bound = low;
1093
1094 if (high_bound)
1095 *high_bound = high;
1096
1097 return 1;
1098}
1099
aa715135
JG
1100/* Assuming that TYPE is a discrete type and VAL is a valid integer
1101 representation of a value of this type, save the corresponding
1102 position number in POS.
1103
1104 Its differs from VAL only in the case of enumeration types. In
1105 this case, the position number of the value of the first listed
1106 enumeration literal is zero; the position number of the value of
1107 each subsequent enumeration literal is one more than that of its
1108 predecessor in the list.
1109
1110 Return 1 if the operation was successful. Return zero otherwise,
1111 in which case the value of POS is unmodified.
1112*/
1113
1114int
1115discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1116{
1117 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1118 {
1119 int i;
1120
1121 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1122 {
1123 if (val == TYPE_FIELD_ENUMVAL (type, i))
1124 {
1125 *pos = i;
1126 return 1;
1127 }
1128 }
1129 /* Invalid enumeration value. */
1130 return 0;
1131 }
1132 else
1133 {
1134 *pos = val;
1135 return 1;
1136 }
1137}
1138
7ba81444
MS
1139/* Create an array type using either a blank type supplied in
1140 RESULT_TYPE, or creating a new type, inheriting the objfile from
1141 RANGE_TYPE.
c906108c
SS
1142
1143 Elements will be of type ELEMENT_TYPE, the indices will be of type
1144 RANGE_TYPE.
1145
a405673c
JB
1146 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1147 This byte stride property is added to the resulting array type
1148 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1149 argument can only be used to create types that are objfile-owned
1150 (see add_dyn_prop), meaning that either this function must be called
1151 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1152
1153 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
dc53a7ad
JB
1154 If BIT_STRIDE is not zero, build a packed array type whose element
1155 size is BIT_STRIDE. Otherwise, ignore this parameter.
1156
7ba81444
MS
1157 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1158 sure it is TYPE_CODE_UNDEF before we bash it into an array
1159 type? */
c906108c
SS
1160
1161struct type *
dc53a7ad
JB
1162create_array_type_with_stride (struct type *result_type,
1163 struct type *element_type,
1164 struct type *range_type,
a405673c 1165 struct dynamic_prop *byte_stride_prop,
dc53a7ad 1166 unsigned int bit_stride)
c906108c 1167{
a405673c
JB
1168 if (byte_stride_prop != NULL
1169 && byte_stride_prop->kind == PROP_CONST)
1170 {
1171 /* The byte stride is actually not dynamic. Pretend we were
1172 called with bit_stride set instead of byte_stride_prop.
1173 This will give us the same result type, while avoiding
1174 the need to handle this as a special case. */
1175 bit_stride = byte_stride_prop->data.const_val * 8;
1176 byte_stride_prop = NULL;
1177 }
1178
c906108c 1179 if (result_type == NULL)
e9bb382b
UW
1180 result_type = alloc_type_copy (range_type);
1181
c906108c
SS
1182 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1183 TYPE_TARGET_TYPE (result_type) = element_type;
a405673c
JB
1184 if (byte_stride_prop == NULL
1185 && has_static_range (TYPE_RANGE_DATA (range_type))
b4a7fcab
JB
1186 && (!type_not_associated (result_type)
1187 && !type_not_allocated (result_type)))
80180f79
SA
1188 {
1189 LONGEST low_bound, high_bound;
1190
1191 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1192 low_bound = high_bound = 0;
f168693b 1193 element_type = check_typedef (element_type);
80180f79
SA
1194 /* Be careful when setting the array length. Ada arrays can be
1195 empty arrays with the high_bound being smaller than the low_bound.
1196 In such cases, the array length should be zero. */
1197 if (high_bound < low_bound)
1198 TYPE_LENGTH (result_type) = 0;
1199 else if (bit_stride > 0)
1200 TYPE_LENGTH (result_type) =
1201 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1202 else
1203 TYPE_LENGTH (result_type) =
1204 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1205 }
ab0d6e0d 1206 else
80180f79
SA
1207 {
1208 /* This type is dynamic and its length needs to be computed
1209 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1210 undefined by setting it to zero. Although we are not expected
1211 to trust TYPE_LENGTH in this case, setting the size to zero
1212 allows us to avoid allocating objects of random sizes in case
1213 we accidently do. */
1214 TYPE_LENGTH (result_type) = 0;
1215 }
1216
c906108c
SS
1217 TYPE_NFIELDS (result_type) = 1;
1218 TYPE_FIELDS (result_type) =
1deafd4e 1219 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 1220 TYPE_INDEX_TYPE (result_type) = range_type;
a405673c 1221 if (byte_stride_prop != NULL)
50a82047 1222 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
a405673c 1223 else if (bit_stride > 0)
dc53a7ad 1224 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
c906108c 1225
a9ff5f12 1226 /* TYPE_TARGET_STUB will take care of zero length arrays. */
c906108c 1227 if (TYPE_LENGTH (result_type) == 0)
876cecd0 1228 TYPE_TARGET_STUB (result_type) = 1;
c906108c 1229
c16abbde 1230 return result_type;
c906108c
SS
1231}
1232
dc53a7ad
JB
1233/* Same as create_array_type_with_stride but with no bit_stride
1234 (BIT_STRIDE = 0), thus building an unpacked array. */
1235
1236struct type *
1237create_array_type (struct type *result_type,
1238 struct type *element_type,
1239 struct type *range_type)
1240{
1241 return create_array_type_with_stride (result_type, element_type,
a405673c 1242 range_type, NULL, 0);
dc53a7ad
JB
1243}
1244
e3506a9f
UW
1245struct type *
1246lookup_array_range_type (struct type *element_type,
63375b74 1247 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1248{
929b5ad4
JB
1249 struct type *index_type;
1250 struct type *range_type;
1251
1252 if (TYPE_OBJFILE_OWNED (element_type))
1253 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1254 else
1255 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1256 range_type = create_static_range_type (NULL, index_type,
1257 low_bound, high_bound);
d8734c88 1258
e3506a9f
UW
1259 return create_array_type (NULL, element_type, range_type);
1260}
1261
7ba81444
MS
1262/* Create a string type using either a blank type supplied in
1263 RESULT_TYPE, or creating a new type. String types are similar
1264 enough to array of char types that we can use create_array_type to
1265 build the basic type and then bash it into a string type.
c906108c
SS
1266
1267 For fixed length strings, the range type contains 0 as the lower
1268 bound and the length of the string minus one as the upper bound.
1269
7ba81444
MS
1270 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1271 sure it is TYPE_CODE_UNDEF before we bash it into a string
1272 type? */
c906108c
SS
1273
1274struct type *
3b7538c0
UW
1275create_string_type (struct type *result_type,
1276 struct type *string_char_type,
7ba81444 1277 struct type *range_type)
c906108c
SS
1278{
1279 result_type = create_array_type (result_type,
f290d38e 1280 string_char_type,
c906108c
SS
1281 range_type);
1282 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 1283 return result_type;
c906108c
SS
1284}
1285
e3506a9f
UW
1286struct type *
1287lookup_string_range_type (struct type *string_char_type,
63375b74 1288 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1289{
1290 struct type *result_type;
d8734c88 1291
e3506a9f
UW
1292 result_type = lookup_array_range_type (string_char_type,
1293 low_bound, high_bound);
1294 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1295 return result_type;
1296}
1297
c906108c 1298struct type *
fba45db2 1299create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1300{
c906108c 1301 if (result_type == NULL)
e9bb382b
UW
1302 result_type = alloc_type_copy (domain_type);
1303
c906108c
SS
1304 TYPE_CODE (result_type) = TYPE_CODE_SET;
1305 TYPE_NFIELDS (result_type) = 1;
224c3ddb
SM
1306 TYPE_FIELDS (result_type)
1307 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1308
74a9bb82 1309 if (!TYPE_STUB (domain_type))
c906108c 1310 {
f9780d5b 1311 LONGEST low_bound, high_bound, bit_length;
d8734c88 1312
c906108c
SS
1313 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1314 low_bound = high_bound = 0;
1315 bit_length = high_bound - low_bound + 1;
1316 TYPE_LENGTH (result_type)
1317 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1318 if (low_bound >= 0)
876cecd0 1319 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1320 }
1321 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1322
c16abbde 1323 return result_type;
c906108c
SS
1324}
1325
ea37ba09
DJ
1326/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1327 and any array types nested inside it. */
1328
1329void
1330make_vector_type (struct type *array_type)
1331{
1332 struct type *inner_array, *elt_type;
1333 int flags;
1334
1335 /* Find the innermost array type, in case the array is
1336 multi-dimensional. */
1337 inner_array = array_type;
1338 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1339 inner_array = TYPE_TARGET_TYPE (inner_array);
1340
1341 elt_type = TYPE_TARGET_TYPE (inner_array);
1342 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1343 {
2844d6b5 1344 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1345 elt_type = make_qualified_type (elt_type, flags, NULL);
1346 TYPE_TARGET_TYPE (inner_array) = elt_type;
1347 }
1348
876cecd0 1349 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1350}
1351
794ac428 1352struct type *
ac3aafc7
EZ
1353init_vector_type (struct type *elt_type, int n)
1354{
1355 struct type *array_type;
d8734c88 1356
e3506a9f 1357 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1358 make_vector_type (array_type);
ac3aafc7
EZ
1359 return array_type;
1360}
1361
09e2d7c7
DE
1362/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1363 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1364 confusing. "self" is a common enough replacement for "this".
1365 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1366 TYPE_CODE_METHOD. */
1367
1368struct type *
1369internal_type_self_type (struct type *type)
1370{
1371 switch (TYPE_CODE (type))
1372 {
1373 case TYPE_CODE_METHODPTR:
1374 case TYPE_CODE_MEMBERPTR:
eaaf76ab
DE
1375 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1376 return NULL;
09e2d7c7
DE
1377 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1378 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1379 case TYPE_CODE_METHOD:
eaaf76ab
DE
1380 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1381 return NULL;
09e2d7c7
DE
1382 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1383 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1384 default:
1385 gdb_assert_not_reached ("bad type");
1386 }
1387}
1388
1389/* Set the type of the class that TYPE belongs to.
1390 In c++ this is the class of "this".
1391 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1392 TYPE_CODE_METHOD. */
1393
1394void
1395set_type_self_type (struct type *type, struct type *self_type)
1396{
1397 switch (TYPE_CODE (type))
1398 {
1399 case TYPE_CODE_METHODPTR:
1400 case TYPE_CODE_MEMBERPTR:
1401 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1402 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1403 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1404 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1405 break;
1406 case TYPE_CODE_METHOD:
1407 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1408 INIT_FUNC_SPECIFIC (type);
1409 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1410 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1411 break;
1412 default:
1413 gdb_assert_not_reached ("bad type");
1414 }
1415}
1416
1417/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
0d5de010
DJ
1418 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1419 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1420 TYPE doesn't include the offset (that's the value of the MEMBER
1421 itself), but does include the structure type into which it points
1422 (for some reason).
c906108c 1423
7ba81444
MS
1424 When "smashing" the type, we preserve the objfile that the old type
1425 pointed to, since we aren't changing where the type is actually
c906108c
SS
1426 allocated. */
1427
1428void
09e2d7c7 1429smash_to_memberptr_type (struct type *type, struct type *self_type,
0d5de010 1430 struct type *to_type)
c906108c 1431{
2fdde8f8 1432 smash_type (type);
09e2d7c7 1433 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c 1434 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1435 set_type_self_type (type, self_type);
0d5de010
DJ
1436 /* Assume that a data member pointer is the same size as a normal
1437 pointer. */
50810684
UW
1438 TYPE_LENGTH (type)
1439 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
c906108c
SS
1440}
1441
0b92b5bb
TT
1442/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1443
1444 When "smashing" the type, we preserve the objfile that the old type
1445 pointed to, since we aren't changing where the type is actually
1446 allocated. */
1447
1448void
1449smash_to_methodptr_type (struct type *type, struct type *to_type)
1450{
1451 smash_type (type);
09e2d7c7 1452 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
0b92b5bb 1453 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1454 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
0b92b5bb 1455 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
0b92b5bb
TT
1456}
1457
09e2d7c7 1458/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
c906108c
SS
1459 METHOD just means `function that gets an extra "this" argument'.
1460
7ba81444
MS
1461 When "smashing" the type, we preserve the objfile that the old type
1462 pointed to, since we aren't changing where the type is actually
c906108c
SS
1463 allocated. */
1464
1465void
09e2d7c7 1466smash_to_method_type (struct type *type, struct type *self_type,
ad2f7632
DJ
1467 struct type *to_type, struct field *args,
1468 int nargs, int varargs)
c906108c 1469{
2fdde8f8 1470 smash_type (type);
09e2d7c7 1471 TYPE_CODE (type) = TYPE_CODE_METHOD;
c906108c 1472 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1473 set_type_self_type (type, self_type);
ad2f7632
DJ
1474 TYPE_FIELDS (type) = args;
1475 TYPE_NFIELDS (type) = nargs;
1476 if (varargs)
876cecd0 1477 TYPE_VARARGS (type) = 1;
c906108c 1478 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
c906108c
SS
1479}
1480
a737d952 1481/* A wrapper of TYPE_NAME which calls error if the type is anonymous.
d8228535
JK
1482 Since GCC PR debug/47510 DWARF provides associated information to detect the
1483 anonymous class linkage name from its typedef.
1484
1485 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1486 apply it itself. */
1487
1488const char *
a737d952 1489type_name_or_error (struct type *type)
d8228535
JK
1490{
1491 struct type *saved_type = type;
1492 const char *name;
1493 struct objfile *objfile;
1494
f168693b 1495 type = check_typedef (type);
d8228535 1496
a737d952 1497 name = TYPE_NAME (type);
d8228535
JK
1498 if (name != NULL)
1499 return name;
1500
a737d952 1501 name = TYPE_NAME (saved_type);
d8228535
JK
1502 objfile = TYPE_OBJFILE (saved_type);
1503 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1504 name ? name : "<anonymous>",
1505 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1506}
1507
7ba81444
MS
1508/* Lookup a typedef or primitive type named NAME, visible in lexical
1509 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1510 suitably defined. */
c906108c
SS
1511
1512struct type *
e6c014f2 1513lookup_typename (const struct language_defn *language,
ddd49eee 1514 struct gdbarch *gdbarch, const char *name,
34eaf542 1515 const struct block *block, int noerr)
c906108c 1516{
52f0bd74 1517 struct symbol *sym;
c906108c 1518
1994afbf 1519 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
d12307c1 1520 language->la_language, NULL).symbol;
c51fe631
DE
1521 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1522 return SYMBOL_TYPE (sym);
1523
c51fe631
DE
1524 if (noerr)
1525 return NULL;
1526 error (_("No type named %s."), name);
c906108c
SS
1527}
1528
1529struct type *
e6c014f2 1530lookup_unsigned_typename (const struct language_defn *language,
0d5cff50 1531 struct gdbarch *gdbarch, const char *name)
c906108c 1532{
224c3ddb 1533 char *uns = (char *) alloca (strlen (name) + 10);
c906108c
SS
1534
1535 strcpy (uns, "unsigned ");
1536 strcpy (uns + 9, name);
582942f4 1537 return lookup_typename (language, gdbarch, uns, NULL, 0);
c906108c
SS
1538}
1539
1540struct type *
e6c014f2 1541lookup_signed_typename (const struct language_defn *language,
0d5cff50 1542 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1543{
1544 struct type *t;
224c3ddb 1545 char *uns = (char *) alloca (strlen (name) + 8);
c906108c
SS
1546
1547 strcpy (uns, "signed ");
1548 strcpy (uns + 7, name);
582942f4 1549 t = lookup_typename (language, gdbarch, uns, NULL, 1);
7ba81444 1550 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1551 if (t != NULL)
1552 return t;
582942f4 1553 return lookup_typename (language, gdbarch, name, NULL, 0);
c906108c
SS
1554}
1555
1556/* Lookup a structure type named "struct NAME",
1557 visible in lexical block BLOCK. */
1558
1559struct type *
270140bd 1560lookup_struct (const char *name, const struct block *block)
c906108c 1561{
52f0bd74 1562 struct symbol *sym;
c906108c 1563
d12307c1 1564 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1565
1566 if (sym == NULL)
1567 {
8a3fe4f8 1568 error (_("No struct type named %s."), name);
c906108c
SS
1569 }
1570 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1571 {
7ba81444
MS
1572 error (_("This context has class, union or enum %s, not a struct."),
1573 name);
c906108c
SS
1574 }
1575 return (SYMBOL_TYPE (sym));
1576}
1577
1578/* Lookup a union type named "union NAME",
1579 visible in lexical block BLOCK. */
1580
1581struct type *
270140bd 1582lookup_union (const char *name, const struct block *block)
c906108c 1583{
52f0bd74 1584 struct symbol *sym;
c5aa993b 1585 struct type *t;
c906108c 1586
d12307c1 1587 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1588
1589 if (sym == NULL)
8a3fe4f8 1590 error (_("No union type named %s."), name);
c906108c 1591
c5aa993b 1592 t = SYMBOL_TYPE (sym);
c906108c
SS
1593
1594 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1595 return t;
c906108c 1596
7ba81444
MS
1597 /* If we get here, it's not a union. */
1598 error (_("This context has class, struct or enum %s, not a union."),
1599 name);
c906108c
SS
1600}
1601
c906108c
SS
1602/* Lookup an enum type named "enum NAME",
1603 visible in lexical block BLOCK. */
1604
1605struct type *
270140bd 1606lookup_enum (const char *name, const struct block *block)
c906108c 1607{
52f0bd74 1608 struct symbol *sym;
c906108c 1609
d12307c1 1610 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1611 if (sym == NULL)
1612 {
8a3fe4f8 1613 error (_("No enum type named %s."), name);
c906108c
SS
1614 }
1615 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1616 {
7ba81444
MS
1617 error (_("This context has class, struct or union %s, not an enum."),
1618 name);
c906108c
SS
1619 }
1620 return (SYMBOL_TYPE (sym));
1621}
1622
1623/* Lookup a template type named "template NAME<TYPE>",
1624 visible in lexical block BLOCK. */
1625
1626struct type *
61f4b350 1627lookup_template_type (const char *name, struct type *type,
270140bd 1628 const struct block *block)
c906108c
SS
1629{
1630 struct symbol *sym;
7ba81444
MS
1631 char *nam = (char *)
1632 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1633
c906108c
SS
1634 strcpy (nam, name);
1635 strcat (nam, "<");
0004e5a2 1636 strcat (nam, TYPE_NAME (type));
0963b4bd 1637 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1638
d12307c1 1639 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
c906108c
SS
1640
1641 if (sym == NULL)
1642 {
8a3fe4f8 1643 error (_("No template type named %s."), name);
c906108c
SS
1644 }
1645 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1646 {
7ba81444
MS
1647 error (_("This context has class, union or enum %s, not a struct."),
1648 name);
c906108c
SS
1649 }
1650 return (SYMBOL_TYPE (sym));
1651}
1652
ef0bd204 1653/* See gdbtypes.h. */
c906108c 1654
ef0bd204
JB
1655struct_elt
1656lookup_struct_elt (struct type *type, const char *name, int noerr)
c906108c
SS
1657{
1658 int i;
1659
1660 for (;;)
1661 {
f168693b 1662 type = check_typedef (type);
c906108c
SS
1663 if (TYPE_CODE (type) != TYPE_CODE_PTR
1664 && TYPE_CODE (type) != TYPE_CODE_REF)
1665 break;
1666 type = TYPE_TARGET_TYPE (type);
1667 }
1668
687d6395
MS
1669 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1670 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1671 {
2f408ecb
PA
1672 std::string type_name = type_to_string (type);
1673 error (_("Type %s is not a structure or union type."),
1674 type_name.c_str ());
c906108c
SS
1675 }
1676
c906108c
SS
1677 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1678 {
0d5cff50 1679 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1680
db577aea 1681 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c 1682 {
ef0bd204 1683 return {&TYPE_FIELD (type, i), TYPE_FIELD_BITPOS (type, i)};
c906108c 1684 }
f5a010c0
PM
1685 else if (!t_field_name || *t_field_name == '\0')
1686 {
ef0bd204
JB
1687 struct_elt elt
1688 = lookup_struct_elt (TYPE_FIELD_TYPE (type, i), name, 1);
1689 if (elt.field != NULL)
1690 {
1691 elt.offset += TYPE_FIELD_BITPOS (type, i);
1692 return elt;
1693 }
f5a010c0 1694 }
c906108c
SS
1695 }
1696
1697 /* OK, it's not in this class. Recursively check the baseclasses. */
1698 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1699 {
ef0bd204
JB
1700 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1701 if (elt.field != NULL)
1702 return elt;
c906108c
SS
1703 }
1704
1705 if (noerr)
ef0bd204 1706 return {nullptr, 0};
c5aa993b 1707
2f408ecb
PA
1708 std::string type_name = type_to_string (type);
1709 error (_("Type %s has no component named %s."), type_name.c_str (), name);
c906108c
SS
1710}
1711
ef0bd204
JB
1712/* See gdbtypes.h. */
1713
1714struct type *
1715lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1716{
1717 struct_elt elt = lookup_struct_elt (type, name, noerr);
1718 if (elt.field != NULL)
1719 return FIELD_TYPE (*elt.field);
1720 else
1721 return NULL;
1722}
1723
ed3ef339
DE
1724/* Store in *MAX the largest number representable by unsigned integer type
1725 TYPE. */
1726
1727void
1728get_unsigned_type_max (struct type *type, ULONGEST *max)
1729{
1730 unsigned int n;
1731
f168693b 1732 type = check_typedef (type);
ed3ef339
DE
1733 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1734 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1735
1736 /* Written this way to avoid overflow. */
1737 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1738 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1739}
1740
1741/* Store in *MIN, *MAX the smallest and largest numbers representable by
1742 signed integer type TYPE. */
1743
1744void
1745get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1746{
1747 unsigned int n;
1748
f168693b 1749 type = check_typedef (type);
ed3ef339
DE
1750 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1751 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1752
1753 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1754 *min = -((ULONGEST) 1 << (n - 1));
1755 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1756}
1757
ae6ae975
DE
1758/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1759 cplus_stuff.vptr_fieldno.
1760
1761 cplus_stuff is initialized to cplus_struct_default which does not
1762 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1763 designated initializers). We cope with that here. */
1764
1765int
1766internal_type_vptr_fieldno (struct type *type)
1767{
f168693b 1768 type = check_typedef (type);
ae6ae975
DE
1769 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1770 || TYPE_CODE (type) == TYPE_CODE_UNION);
1771 if (!HAVE_CPLUS_STRUCT (type))
1772 return -1;
1773 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1774}
1775
1776/* Set the value of cplus_stuff.vptr_fieldno. */
1777
1778void
1779set_type_vptr_fieldno (struct type *type, int fieldno)
1780{
f168693b 1781 type = check_typedef (type);
ae6ae975
DE
1782 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1783 || TYPE_CODE (type) == TYPE_CODE_UNION);
1784 if (!HAVE_CPLUS_STRUCT (type))
1785 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1786 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1787}
1788
1789/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1790 cplus_stuff.vptr_basetype. */
1791
1792struct type *
1793internal_type_vptr_basetype (struct type *type)
1794{
f168693b 1795 type = check_typedef (type);
ae6ae975
DE
1796 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1797 || TYPE_CODE (type) == TYPE_CODE_UNION);
1798 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1799 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1800}
1801
1802/* Set the value of cplus_stuff.vptr_basetype. */
1803
1804void
1805set_type_vptr_basetype (struct type *type, struct type *basetype)
1806{
f168693b 1807 type = check_typedef (type);
ae6ae975
DE
1808 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1809 || TYPE_CODE (type) == TYPE_CODE_UNION);
1810 if (!HAVE_CPLUS_STRUCT (type))
1811 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1812 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1813}
1814
81fe8080
DE
1815/* Lookup the vptr basetype/fieldno values for TYPE.
1816 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1817 vptr_fieldno. Also, if found and basetype is from the same objfile,
1818 cache the results.
1819 If not found, return -1 and ignore BASETYPEP.
1820 Callers should be aware that in some cases (for example,
c906108c 1821 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1822 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1823 this function will not be able to find the
7ba81444 1824 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1825 vptr_basetype will remain NULL or incomplete. */
c906108c 1826
81fe8080
DE
1827int
1828get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c 1829{
f168693b 1830 type = check_typedef (type);
c906108c
SS
1831
1832 if (TYPE_VPTR_FIELDNO (type) < 0)
1833 {
1834 int i;
1835
7ba81444
MS
1836 /* We must start at zero in case the first (and only) baseclass
1837 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1838 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1839 {
81fe8080
DE
1840 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1841 int fieldno;
1842 struct type *basetype;
1843
1844 fieldno = get_vptr_fieldno (baseclass, &basetype);
1845 if (fieldno >= 0)
c906108c 1846 {
81fe8080 1847 /* If the type comes from a different objfile we can't cache
0963b4bd 1848 it, it may have a different lifetime. PR 2384 */
5ef73790 1849 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080 1850 {
ae6ae975
DE
1851 set_type_vptr_fieldno (type, fieldno);
1852 set_type_vptr_basetype (type, basetype);
81fe8080
DE
1853 }
1854 if (basetypep)
1855 *basetypep = basetype;
1856 return fieldno;
c906108c
SS
1857 }
1858 }
81fe8080
DE
1859
1860 /* Not found. */
1861 return -1;
1862 }
1863 else
1864 {
1865 if (basetypep)
1866 *basetypep = TYPE_VPTR_BASETYPE (type);
1867 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1868 }
1869}
1870
44e1a9eb
DJ
1871static void
1872stub_noname_complaint (void)
1873{
b98664d3 1874 complaint (_("stub type has NULL name"));
44e1a9eb
DJ
1875}
1876
a405673c
JB
1877/* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1878 attached to it, and that property has a non-constant value. */
1879
1880static int
1881array_type_has_dynamic_stride (struct type *type)
1882{
1883 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1884
1885 return (prop != NULL && prop->kind != PROP_CONST);
1886}
1887
d98b7a16 1888/* Worker for is_dynamic_type. */
80180f79 1889
d98b7a16 1890static int
ee715b5a 1891is_dynamic_type_internal (struct type *type, int top_level)
80180f79
SA
1892{
1893 type = check_typedef (type);
1894
e771e4be
PMR
1895 /* We only want to recognize references at the outermost level. */
1896 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1897 type = check_typedef (TYPE_TARGET_TYPE (type));
1898
3cdcd0ce
JB
1899 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1900 dynamic, even if the type itself is statically defined.
1901 From a user's point of view, this may appear counter-intuitive;
1902 but it makes sense in this context, because the point is to determine
1903 whether any part of the type needs to be resolved before it can
1904 be exploited. */
1905 if (TYPE_DATA_LOCATION (type) != NULL
1906 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1907 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1908 return 1;
1909
3f2f83dd
KB
1910 if (TYPE_ASSOCIATED_PROP (type))
1911 return 1;
1912
1913 if (TYPE_ALLOCATED_PROP (type))
1914 return 1;
1915
80180f79
SA
1916 switch (TYPE_CODE (type))
1917 {
6f8a3220 1918 case TYPE_CODE_RANGE:
ddb87a81
JB
1919 {
1920 /* A range type is obviously dynamic if it has at least one
1921 dynamic bound. But also consider the range type to be
1922 dynamic when its subtype is dynamic, even if the bounds
1923 of the range type are static. It allows us to assume that
1924 the subtype of a static range type is also static. */
1925 return (!has_static_range (TYPE_RANGE_DATA (type))
ee715b5a 1926 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
ddb87a81 1927 }
6f8a3220 1928
80180f79
SA
1929 case TYPE_CODE_ARRAY:
1930 {
80180f79 1931 gdb_assert (TYPE_NFIELDS (type) == 1);
6f8a3220 1932
a405673c 1933 /* The array is dynamic if either the bounds are dynamic... */
ee715b5a 1934 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
80180f79 1935 return 1;
a405673c
JB
1936 /* ... or the elements it contains have a dynamic contents... */
1937 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1938 return 1;
1939 /* ... or if it has a dynamic stride... */
1940 if (array_type_has_dynamic_stride (type))
1941 return 1;
1942 return 0;
80180f79 1943 }
012370f6
TT
1944
1945 case TYPE_CODE_STRUCT:
1946 case TYPE_CODE_UNION:
1947 {
1948 int i;
1949
1950 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1951 if (!field_is_static (&TYPE_FIELD (type, i))
ee715b5a 1952 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
012370f6
TT
1953 return 1;
1954 }
1955 break;
80180f79 1956 }
92e2a17f
TT
1957
1958 return 0;
80180f79
SA
1959}
1960
d98b7a16
TT
1961/* See gdbtypes.h. */
1962
1963int
1964is_dynamic_type (struct type *type)
1965{
ee715b5a 1966 return is_dynamic_type_internal (type, 1);
d98b7a16
TT
1967}
1968
df25ebbd 1969static struct type *resolve_dynamic_type_internal
ee715b5a 1970 (struct type *type, struct property_addr_info *addr_stack, int top_level);
d98b7a16 1971
df25ebbd
JB
1972/* Given a dynamic range type (dyn_range_type) and a stack of
1973 struct property_addr_info elements, return a static version
1974 of that type. */
d190df30 1975
80180f79 1976static struct type *
df25ebbd
JB
1977resolve_dynamic_range (struct type *dyn_range_type,
1978 struct property_addr_info *addr_stack)
80180f79
SA
1979{
1980 CORE_ADDR value;
ddb87a81 1981 struct type *static_range_type, *static_target_type;
80180f79 1982 const struct dynamic_prop *prop;
80180f79
SA
1983 struct dynamic_prop low_bound, high_bound;
1984
6f8a3220 1985 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
80180f79 1986
6f8a3220 1987 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
63e43d3a 1988 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
1989 {
1990 low_bound.kind = PROP_CONST;
1991 low_bound.data.const_val = value;
1992 }
1993 else
1994 {
1995 low_bound.kind = PROP_UNDEFINED;
1996 low_bound.data.const_val = 0;
1997 }
1998
6f8a3220 1999 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
63e43d3a 2000 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
2001 {
2002 high_bound.kind = PROP_CONST;
2003 high_bound.data.const_val = value;
c451ebe5 2004
6f8a3220 2005 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
c451ebe5
SA
2006 high_bound.data.const_val
2007 = low_bound.data.const_val + high_bound.data.const_val - 1;
80180f79
SA
2008 }
2009 else
2010 {
2011 high_bound.kind = PROP_UNDEFINED;
2012 high_bound.data.const_val = 0;
2013 }
2014
ddb87a81
JB
2015 static_target_type
2016 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
ee715b5a 2017 addr_stack, 0);
6f8a3220 2018 static_range_type = create_range_type (copy_type (dyn_range_type),
ddb87a81 2019 static_target_type,
6f8a3220
JB
2020 &low_bound, &high_bound);
2021 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2022 return static_range_type;
2023}
2024
2025/* Resolves dynamic bound values of an array type TYPE to static ones.
df25ebbd
JB
2026 ADDR_STACK is a stack of struct property_addr_info to be used
2027 if needed during the dynamic resolution. */
6f8a3220
JB
2028
2029static struct type *
df25ebbd
JB
2030resolve_dynamic_array (struct type *type,
2031 struct property_addr_info *addr_stack)
6f8a3220
JB
2032{
2033 CORE_ADDR value;
2034 struct type *elt_type;
2035 struct type *range_type;
2036 struct type *ary_dim;
3f2f83dd 2037 struct dynamic_prop *prop;
a405673c 2038 unsigned int bit_stride = 0;
6f8a3220
JB
2039
2040 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
2041
3f2f83dd
KB
2042 type = copy_type (type);
2043
6f8a3220
JB
2044 elt_type = type;
2045 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
df25ebbd 2046 range_type = resolve_dynamic_range (range_type, addr_stack);
6f8a3220 2047
3f2f83dd
KB
2048 /* Resolve allocated/associated here before creating a new array type, which
2049 will update the length of the array accordingly. */
2050 prop = TYPE_ALLOCATED_PROP (type);
2051 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2052 {
2053 TYPE_DYN_PROP_ADDR (prop) = value;
2054 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2055 }
2056 prop = TYPE_ASSOCIATED_PROP (type);
2057 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2058 {
2059 TYPE_DYN_PROP_ADDR (prop) = value;
2060 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2061 }
2062
80180f79
SA
2063 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2064
2065 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
d0d84780 2066 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
80180f79
SA
2067 else
2068 elt_type = TYPE_TARGET_TYPE (type);
2069
a405673c
JB
2070 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2071 if (prop != NULL)
2072 {
603490bf 2073 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
a405673c
JB
2074 {
2075 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2076 bit_stride = (unsigned int) (value * 8);
2077 }
2078 else
2079 {
2080 /* Could be a bug in our code, but it could also happen
2081 if the DWARF info is not correct. Issue a warning,
2082 and assume no byte/bit stride (leave bit_stride = 0). */
2083 warning (_("cannot determine array stride for type %s"),
2084 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2085 }
2086 }
2087 else
2088 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2089
2090 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2091 bit_stride);
80180f79
SA
2092}
2093
012370f6 2094/* Resolve dynamic bounds of members of the union TYPE to static
df25ebbd
JB
2095 bounds. ADDR_STACK is a stack of struct property_addr_info
2096 to be used if needed during the dynamic resolution. */
012370f6
TT
2097
2098static struct type *
df25ebbd
JB
2099resolve_dynamic_union (struct type *type,
2100 struct property_addr_info *addr_stack)
012370f6
TT
2101{
2102 struct type *resolved_type;
2103 int i;
2104 unsigned int max_len = 0;
2105
2106 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2107
2108 resolved_type = copy_type (type);
2109 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2110 = (struct field *) TYPE_ALLOC (resolved_type,
2111 TYPE_NFIELDS (resolved_type)
2112 * sizeof (struct field));
012370f6
TT
2113 memcpy (TYPE_FIELDS (resolved_type),
2114 TYPE_FIELDS (type),
2115 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2116 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2117 {
2118 struct type *t;
2119
2120 if (field_is_static (&TYPE_FIELD (type, i)))
2121 continue;
2122
d98b7a16 2123 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2124 addr_stack, 0);
012370f6
TT
2125 TYPE_FIELD_TYPE (resolved_type, i) = t;
2126 if (TYPE_LENGTH (t) > max_len)
2127 max_len = TYPE_LENGTH (t);
2128 }
2129
2130 TYPE_LENGTH (resolved_type) = max_len;
2131 return resolved_type;
2132}
2133
2134/* Resolve dynamic bounds of members of the struct TYPE to static
df25ebbd
JB
2135 bounds. ADDR_STACK is a stack of struct property_addr_info to
2136 be used if needed during the dynamic resolution. */
012370f6
TT
2137
2138static struct type *
df25ebbd
JB
2139resolve_dynamic_struct (struct type *type,
2140 struct property_addr_info *addr_stack)
012370f6
TT
2141{
2142 struct type *resolved_type;
2143 int i;
6908c509 2144 unsigned resolved_type_bit_length = 0;
012370f6
TT
2145
2146 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2147 gdb_assert (TYPE_NFIELDS (type) > 0);
2148
2149 resolved_type = copy_type (type);
2150 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2151 = (struct field *) TYPE_ALLOC (resolved_type,
2152 TYPE_NFIELDS (resolved_type)
2153 * sizeof (struct field));
012370f6
TT
2154 memcpy (TYPE_FIELDS (resolved_type),
2155 TYPE_FIELDS (type),
2156 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2157 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2158 {
6908c509 2159 unsigned new_bit_length;
df25ebbd 2160 struct property_addr_info pinfo;
012370f6
TT
2161
2162 if (field_is_static (&TYPE_FIELD (type, i)))
2163 continue;
2164
6908c509
JB
2165 /* As we know this field is not a static field, the field's
2166 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2167 this is the case, but only trigger a simple error rather
2168 than an internal error if that fails. While failing
2169 that verification indicates a bug in our code, the error
2170 is not severe enough to suggest to the user he stops
2171 his debugging session because of it. */
df25ebbd 2172 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
6908c509
JB
2173 error (_("Cannot determine struct field location"
2174 " (invalid location kind)"));
df25ebbd
JB
2175
2176 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
c3345124 2177 pinfo.valaddr = addr_stack->valaddr;
9920b434
BH
2178 pinfo.addr
2179 = (addr_stack->addr
2180 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
df25ebbd
JB
2181 pinfo.next = addr_stack;
2182
2183 TYPE_FIELD_TYPE (resolved_type, i)
2184 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2185 &pinfo, 0);
df25ebbd
JB
2186 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2187 == FIELD_LOC_KIND_BITPOS);
2188
6908c509
JB
2189 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2190 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2191 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2192 else
2193 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2194 * TARGET_CHAR_BIT);
2195
2196 /* Normally, we would use the position and size of the last field
2197 to determine the size of the enclosing structure. But GCC seems
2198 to be encoding the position of some fields incorrectly when
2199 the struct contains a dynamic field that is not placed last.
2200 So we compute the struct size based on the field that has
2201 the highest position + size - probably the best we can do. */
2202 if (new_bit_length > resolved_type_bit_length)
2203 resolved_type_bit_length = new_bit_length;
012370f6
TT
2204 }
2205
9920b434
BH
2206 /* The length of a type won't change for fortran, but it does for C and Ada.
2207 For fortran the size of dynamic fields might change over time but not the
2208 type length of the structure. If we adapt it, we run into problems
2209 when calculating the element offset for arrays of structs. */
2210 if (current_language->la_language != language_fortran)
2211 TYPE_LENGTH (resolved_type)
2212 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
6908c509 2213
9e195661
PMR
2214 /* The Ada language uses this field as a cache for static fixed types: reset
2215 it as RESOLVED_TYPE must have its own static fixed type. */
2216 TYPE_TARGET_TYPE (resolved_type) = NULL;
2217
012370f6
TT
2218 return resolved_type;
2219}
2220
d98b7a16 2221/* Worker for resolved_dynamic_type. */
80180f79 2222
d98b7a16 2223static struct type *
df25ebbd 2224resolve_dynamic_type_internal (struct type *type,
ee715b5a
PMR
2225 struct property_addr_info *addr_stack,
2226 int top_level)
80180f79
SA
2227{
2228 struct type *real_type = check_typedef (type);
6f8a3220 2229 struct type *resolved_type = type;
d9823cbb 2230 struct dynamic_prop *prop;
3cdcd0ce 2231 CORE_ADDR value;
80180f79 2232
ee715b5a 2233 if (!is_dynamic_type_internal (real_type, top_level))
80180f79
SA
2234 return type;
2235
5537b577 2236 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
6f8a3220 2237 {
cac9b138
JK
2238 resolved_type = copy_type (type);
2239 TYPE_TARGET_TYPE (resolved_type)
ee715b5a
PMR
2240 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2241 top_level);
5537b577
JK
2242 }
2243 else
2244 {
2245 /* Before trying to resolve TYPE, make sure it is not a stub. */
2246 type = real_type;
012370f6 2247
5537b577
JK
2248 switch (TYPE_CODE (type))
2249 {
e771e4be
PMR
2250 case TYPE_CODE_REF:
2251 {
2252 struct property_addr_info pinfo;
2253
2254 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
c3345124
JB
2255 pinfo.valaddr = NULL;
2256 if (addr_stack->valaddr != NULL)
2257 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2258 else
2259 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
e771e4be
PMR
2260 pinfo.next = addr_stack;
2261
2262 resolved_type = copy_type (type);
2263 TYPE_TARGET_TYPE (resolved_type)
2264 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2265 &pinfo, top_level);
2266 break;
2267 }
2268
5537b577 2269 case TYPE_CODE_ARRAY:
df25ebbd 2270 resolved_type = resolve_dynamic_array (type, addr_stack);
5537b577
JK
2271 break;
2272
2273 case TYPE_CODE_RANGE:
df25ebbd 2274 resolved_type = resolve_dynamic_range (type, addr_stack);
5537b577
JK
2275 break;
2276
2277 case TYPE_CODE_UNION:
df25ebbd 2278 resolved_type = resolve_dynamic_union (type, addr_stack);
5537b577
JK
2279 break;
2280
2281 case TYPE_CODE_STRUCT:
df25ebbd 2282 resolved_type = resolve_dynamic_struct (type, addr_stack);
5537b577
JK
2283 break;
2284 }
6f8a3220 2285 }
80180f79 2286
3cdcd0ce
JB
2287 /* Resolve data_location attribute. */
2288 prop = TYPE_DATA_LOCATION (resolved_type);
63e43d3a
PMR
2289 if (prop != NULL
2290 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
3cdcd0ce 2291 {
d9823cbb
KB
2292 TYPE_DYN_PROP_ADDR (prop) = value;
2293 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
3cdcd0ce 2294 }
3cdcd0ce 2295
80180f79
SA
2296 return resolved_type;
2297}
2298
d98b7a16
TT
2299/* See gdbtypes.h */
2300
2301struct type *
c3345124
JB
2302resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2303 CORE_ADDR addr)
d98b7a16 2304{
c3345124
JB
2305 struct property_addr_info pinfo
2306 = {check_typedef (type), valaddr, addr, NULL};
df25ebbd 2307
ee715b5a 2308 return resolve_dynamic_type_internal (type, &pinfo, 1);
d98b7a16
TT
2309}
2310
d9823cbb
KB
2311/* See gdbtypes.h */
2312
2313struct dynamic_prop *
2314get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2315{
2316 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2317
2318 while (node != NULL)
2319 {
2320 if (node->prop_kind == prop_kind)
283a9958 2321 return &node->prop;
d9823cbb
KB
2322 node = node->next;
2323 }
2324 return NULL;
2325}
2326
2327/* See gdbtypes.h */
2328
2329void
2330add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
50a82047 2331 struct type *type)
d9823cbb
KB
2332{
2333 struct dynamic_prop_list *temp;
2334
2335 gdb_assert (TYPE_OBJFILE_OWNED (type));
2336
50a82047
TT
2337 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2338 struct dynamic_prop_list);
d9823cbb 2339 temp->prop_kind = prop_kind;
283a9958 2340 temp->prop = prop;
d9823cbb
KB
2341 temp->next = TYPE_DYN_PROP_LIST (type);
2342
2343 TYPE_DYN_PROP_LIST (type) = temp;
2344}
2345
9920b434
BH
2346/* Remove dynamic property from TYPE in case it exists. */
2347
2348void
2349remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2350 struct type *type)
2351{
2352 struct dynamic_prop_list *prev_node, *curr_node;
2353
2354 curr_node = TYPE_DYN_PROP_LIST (type);
2355 prev_node = NULL;
2356
2357 while (NULL != curr_node)
2358 {
2359 if (curr_node->prop_kind == prop_kind)
2360 {
2361 /* Update the linked list but don't free anything.
2362 The property was allocated on objstack and it is not known
2363 if we are on top of it. Nevertheless, everything is released
2364 when the complete objstack is freed. */
2365 if (NULL == prev_node)
2366 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2367 else
2368 prev_node->next = curr_node->next;
2369
2370 return;
2371 }
2372
2373 prev_node = curr_node;
2374 curr_node = curr_node->next;
2375 }
2376}
d9823cbb 2377
92163a10
JK
2378/* Find the real type of TYPE. This function returns the real type,
2379 after removing all layers of typedefs, and completing opaque or stub
2380 types. Completion changes the TYPE argument, but stripping of
2381 typedefs does not.
2382
2383 Instance flags (e.g. const/volatile) are preserved as typedefs are
2384 stripped. If necessary a new qualified form of the underlying type
2385 is created.
2386
2387 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2388 not been computed and we're either in the middle of reading symbols, or
2389 there was no name for the typedef in the debug info.
2390
9bc118a5
DE
2391 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2392 QUITs in the symbol reading code can also throw.
2393 Thus this function can throw an exception.
2394
92163a10
JK
2395 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2396 the target type.
c906108c
SS
2397
2398 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 2399 we can find a full definition in some other file. If so, copy this
7ba81444
MS
2400 definition, so we can use it in future. There used to be a comment
2401 (but not any code) that if we don't find a full definition, we'd
2402 set a flag so we don't spend time in the future checking the same
2403 type. That would be a mistake, though--we might load in more
92163a10 2404 symbols which contain a full definition for the type. */
c906108c
SS
2405
2406struct type *
a02fd225 2407check_typedef (struct type *type)
c906108c
SS
2408{
2409 struct type *orig_type = type;
92163a10
JK
2410 /* While we're removing typedefs, we don't want to lose qualifiers.
2411 E.g., const/volatile. */
2412 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 2413
423c0af8
MS
2414 gdb_assert (type);
2415
c906108c
SS
2416 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2417 {
2418 if (!TYPE_TARGET_TYPE (type))
2419 {
0d5cff50 2420 const char *name;
c906108c
SS
2421 struct symbol *sym;
2422
2423 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 2424 reading a symtab. Infinite recursion is one danger. */
c906108c 2425 if (currently_reading_symtab)
92163a10 2426 return make_qualified_type (type, instance_flags, NULL);
c906108c 2427
a737d952 2428 name = TYPE_NAME (type);
e86ca25f
TT
2429 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2430 VAR_DOMAIN as appropriate? */
c906108c
SS
2431 if (name == NULL)
2432 {
23136709 2433 stub_noname_complaint ();
92163a10 2434 return make_qualified_type (type, instance_flags, NULL);
c906108c 2435 }
d12307c1 2436 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
2437 if (sym)
2438 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 2439 else /* TYPE_CODE_UNDEF */
e9bb382b 2440 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
2441 }
2442 type = TYPE_TARGET_TYPE (type);
c906108c 2443
92163a10
JK
2444 /* Preserve the instance flags as we traverse down the typedef chain.
2445
2446 Handling address spaces/classes is nasty, what do we do if there's a
2447 conflict?
2448 E.g., what if an outer typedef marks the type as class_1 and an inner
2449 typedef marks the type as class_2?
2450 This is the wrong place to do such error checking. We leave it to
2451 the code that created the typedef in the first place to flag the
2452 error. We just pick the outer address space (akin to letting the
2453 outer cast in a chain of casting win), instead of assuming
2454 "it can't happen". */
2455 {
2456 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2457 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2458 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2459 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2460
2461 /* Treat code vs data spaces and address classes separately. */
2462 if ((instance_flags & ALL_SPACES) != 0)
2463 new_instance_flags &= ~ALL_SPACES;
2464 if ((instance_flags & ALL_CLASSES) != 0)
2465 new_instance_flags &= ~ALL_CLASSES;
2466
2467 instance_flags |= new_instance_flags;
2468 }
2469 }
a02fd225 2470
7ba81444
MS
2471 /* If this is a struct/class/union with no fields, then check
2472 whether a full definition exists somewhere else. This is for
2473 systems where a type definition with no fields is issued for such
2474 types, instead of identifying them as stub types in the first
2475 place. */
c5aa993b 2476
7ba81444
MS
2477 if (TYPE_IS_OPAQUE (type)
2478 && opaque_type_resolution
2479 && !currently_reading_symtab)
c906108c 2480 {
a737d952 2481 const char *name = TYPE_NAME (type);
c5aa993b 2482 struct type *newtype;
d8734c88 2483
c906108c
SS
2484 if (name == NULL)
2485 {
23136709 2486 stub_noname_complaint ();
92163a10 2487 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2488 }
2489 newtype = lookup_transparent_type (name);
ad766c0a 2490
c906108c 2491 if (newtype)
ad766c0a 2492 {
7ba81444
MS
2493 /* If the resolved type and the stub are in the same
2494 objfile, then replace the stub type with the real deal.
2495 But if they're in separate objfiles, leave the stub
2496 alone; we'll just look up the transparent type every time
2497 we call check_typedef. We can't create pointers between
2498 types allocated to different objfiles, since they may
2499 have different lifetimes. Trying to copy NEWTYPE over to
2500 TYPE's objfile is pointless, too, since you'll have to
2501 move over any other types NEWTYPE refers to, which could
2502 be an unbounded amount of stuff. */
ad766c0a 2503 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
2504 type = make_qualified_type (newtype,
2505 TYPE_INSTANCE_FLAGS (type),
2506 type);
ad766c0a
JB
2507 else
2508 type = newtype;
2509 }
c906108c 2510 }
7ba81444
MS
2511 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2512 types. */
74a9bb82 2513 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 2514 {
a737d952 2515 const char *name = TYPE_NAME (type);
e86ca25f
TT
2516 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2517 as appropriate? */
c906108c 2518 struct symbol *sym;
d8734c88 2519
c906108c
SS
2520 if (name == NULL)
2521 {
23136709 2522 stub_noname_complaint ();
92163a10 2523 return make_qualified_type (type, instance_flags, NULL);
c906108c 2524 }
d12307c1 2525 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c 2526 if (sym)
c26f2453
JB
2527 {
2528 /* Same as above for opaque types, we can replace the stub
92163a10 2529 with the complete type only if they are in the same
c26f2453
JB
2530 objfile. */
2531 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
2532 type = make_qualified_type (SYMBOL_TYPE (sym),
2533 TYPE_INSTANCE_FLAGS (type),
2534 type);
c26f2453
JB
2535 else
2536 type = SYMBOL_TYPE (sym);
2537 }
c906108c
SS
2538 }
2539
74a9bb82 2540 if (TYPE_TARGET_STUB (type))
c906108c 2541 {
c906108c
SS
2542 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2543
74a9bb82 2544 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 2545 {
73e2eb35 2546 /* Nothing we can do. */
c5aa993b 2547 }
c906108c
SS
2548 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2549 {
2550 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 2551 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
2552 }
2553 }
92163a10
JK
2554
2555 type = make_qualified_type (type, instance_flags, NULL);
2556
7ba81444 2557 /* Cache TYPE_LENGTH for future use. */
c906108c 2558 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2559
c906108c
SS
2560 return type;
2561}
2562
7ba81444 2563/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2564 occurs, silently return a void type. */
c91ecb25 2565
b9362cc7 2566static struct type *
48319d1f 2567safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2568{
2569 struct ui_file *saved_gdb_stderr;
34365054 2570 struct type *type = NULL; /* Initialize to keep gcc happy. */
c91ecb25 2571
7ba81444 2572 /* Suppress error messages. */
c91ecb25 2573 saved_gdb_stderr = gdb_stderr;
d7e74731 2574 gdb_stderr = &null_stream;
c91ecb25 2575
7ba81444 2576 /* Call parse_and_eval_type() without fear of longjmp()s. */
a70b8144 2577 try
8e7b59a5
KS
2578 {
2579 type = parse_and_eval_type (p, length);
2580 }
230d2906 2581 catch (const gdb_exception_error &except)
492d29ea
PA
2582 {
2583 type = builtin_type (gdbarch)->builtin_void;
2584 }
c91ecb25 2585
7ba81444 2586 /* Stop suppressing error messages. */
c91ecb25
ND
2587 gdb_stderr = saved_gdb_stderr;
2588
2589 return type;
2590}
2591
c906108c
SS
2592/* Ugly hack to convert method stubs into method types.
2593
7ba81444
MS
2594 He ain't kiddin'. This demangles the name of the method into a
2595 string including argument types, parses out each argument type,
2596 generates a string casting a zero to that type, evaluates the
2597 string, and stuffs the resulting type into an argtype vector!!!
2598 Then it knows the type of the whole function (including argument
2599 types for overloading), which info used to be in the stab's but was
2600 removed to hack back the space required for them. */
c906108c 2601
de17c821 2602static void
fba45db2 2603check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2604{
50810684 2605 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2606 struct fn_field *f;
2607 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2608 char *demangled_name = gdb_demangle (mangled_name,
2609 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2610 char *argtypetext, *p;
2611 int depth = 0, argcount = 1;
ad2f7632 2612 struct field *argtypes;
c906108c
SS
2613 struct type *mtype;
2614
2615 /* Make sure we got back a function string that we can use. */
2616 if (demangled_name)
2617 p = strchr (demangled_name, '(');
502dcf4e
AC
2618 else
2619 p = NULL;
c906108c
SS
2620
2621 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2622 error (_("Internal: Cannot demangle mangled name `%s'."),
2623 mangled_name);
c906108c
SS
2624
2625 /* Now, read in the parameters that define this type. */
2626 p += 1;
2627 argtypetext = p;
2628 while (*p)
2629 {
070ad9f0 2630 if (*p == '(' || *p == '<')
c906108c
SS
2631 {
2632 depth += 1;
2633 }
070ad9f0 2634 else if (*p == ')' || *p == '>')
c906108c
SS
2635 {
2636 depth -= 1;
2637 }
2638 else if (*p == ',' && depth == 0)
2639 {
2640 argcount += 1;
2641 }
2642
2643 p += 1;
2644 }
2645
ad2f7632 2646 /* If we read one argument and it was ``void'', don't count it. */
61012eef 2647 if (startswith (argtypetext, "(void)"))
ad2f7632 2648 argcount -= 1;
c906108c 2649
ad2f7632
DJ
2650 /* We need one extra slot, for the THIS pointer. */
2651
2652 argtypes = (struct field *)
2653 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2654 p = argtypetext;
4a1970e4
DJ
2655
2656 /* Add THIS pointer for non-static methods. */
2657 f = TYPE_FN_FIELDLIST1 (type, method_id);
2658 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2659 argcount = 0;
2660 else
2661 {
ad2f7632 2662 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
2663 argcount = 1;
2664 }
c906108c 2665
0963b4bd 2666 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
2667 {
2668 depth = 0;
2669 while (*p)
2670 {
2671 if (depth <= 0 && (*p == ',' || *p == ')'))
2672 {
ad2f7632
DJ
2673 /* Avoid parsing of ellipsis, they will be handled below.
2674 Also avoid ``void'' as above. */
2675 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2676 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 2677 {
ad2f7632 2678 argtypes[argcount].type =
48319d1f 2679 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
2680 argcount += 1;
2681 }
2682 argtypetext = p + 1;
2683 }
2684
070ad9f0 2685 if (*p == '(' || *p == '<')
c906108c
SS
2686 {
2687 depth += 1;
2688 }
070ad9f0 2689 else if (*p == ')' || *p == '>')
c906108c
SS
2690 {
2691 depth -= 1;
2692 }
2693
2694 p += 1;
2695 }
2696 }
2697
c906108c
SS
2698 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2699
2700 /* Now update the old "stub" type into a real type. */
2701 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
09e2d7c7
DE
2702 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2703 We want a method (TYPE_CODE_METHOD). */
2704 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2705 argtypes, argcount, p[-2] == '.');
876cecd0 2706 TYPE_STUB (mtype) = 0;
c906108c 2707 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632
DJ
2708
2709 xfree (demangled_name);
c906108c
SS
2710}
2711
7ba81444
MS
2712/* This is the external interface to check_stub_method, above. This
2713 function unstubs all of the signatures for TYPE's METHOD_ID method
2714 name. After calling this function TYPE_FN_FIELD_STUB will be
2715 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2716 correct.
de17c821
DJ
2717
2718 This function unfortunately can not die until stabs do. */
2719
2720void
2721check_stub_method_group (struct type *type, int method_id)
2722{
2723 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2724 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
de17c821 2725
041be526
SM
2726 for (int j = 0; j < len; j++)
2727 {
2728 if (TYPE_FN_FIELD_STUB (f, j))
de17c821 2729 check_stub_method (type, method_id, j);
de17c821
DJ
2730 }
2731}
2732
9655fd1a
JK
2733/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2734const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
2735
2736void
fba45db2 2737allocate_cplus_struct_type (struct type *type)
c906108c 2738{
b4ba55a1
JB
2739 if (HAVE_CPLUS_STRUCT (type))
2740 /* Structure was already allocated. Nothing more to do. */
2741 return;
2742
2743 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2744 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2745 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2746 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
ae6ae975 2747 set_type_vptr_fieldno (type, -1);
c906108c
SS
2748}
2749
b4ba55a1
JB
2750const struct gnat_aux_type gnat_aux_default =
2751 { NULL };
2752
2753/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2754 and allocate the associated gnat-specific data. The gnat-specific
2755 data is also initialized to gnat_aux_default. */
5212577a 2756
b4ba55a1
JB
2757void
2758allocate_gnat_aux_type (struct type *type)
2759{
2760 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2761 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2762 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2763 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2764}
2765
ae438bc5
UW
2766/* Helper function to initialize a newly allocated type. Set type code
2767 to CODE and initialize the type-specific fields accordingly. */
2768
2769static void
2770set_type_code (struct type *type, enum type_code code)
2771{
2772 TYPE_CODE (type) = code;
2773
2774 switch (code)
2775 {
2776 case TYPE_CODE_STRUCT:
2777 case TYPE_CODE_UNION:
2778 case TYPE_CODE_NAMESPACE:
2779 INIT_CPLUS_SPECIFIC (type);
2780 break;
2781 case TYPE_CODE_FLT:
2782 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2783 break;
2784 case TYPE_CODE_FUNC:
2785 INIT_FUNC_SPECIFIC (type);
2786 break;
2787 }
2788}
2789
19f392bc
UW
2790/* Helper function to verify floating-point format and size.
2791 BIT is the type size in bits; if BIT equals -1, the size is
2792 determined by the floatformat. Returns size to be used. */
2793
2794static int
0db7851f 2795verify_floatformat (int bit, const struct floatformat *floatformat)
19f392bc 2796{
0db7851f 2797 gdb_assert (floatformat != NULL);
9b790ce7 2798
19f392bc 2799 if (bit == -1)
0db7851f 2800 bit = floatformat->totalsize;
19f392bc 2801
0db7851f
UW
2802 gdb_assert (bit >= 0);
2803 gdb_assert (bit >= floatformat->totalsize);
19f392bc
UW
2804
2805 return bit;
2806}
2807
0db7851f
UW
2808/* Return the floating-point format for a floating-point variable of
2809 type TYPE. */
2810
2811const struct floatformat *
2812floatformat_from_type (const struct type *type)
2813{
2814 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2815 gdb_assert (TYPE_FLOATFORMAT (type));
2816 return TYPE_FLOATFORMAT (type);
2817}
2818
c906108c
SS
2819/* Helper function to initialize the standard scalar types.
2820
86f62fd7
TT
2821 If NAME is non-NULL, then it is used to initialize the type name.
2822 Note that NAME is not copied; it is required to have a lifetime at
2823 least as long as OBJFILE. */
c906108c
SS
2824
2825struct type *
77b7c781 2826init_type (struct objfile *objfile, enum type_code code, int bit,
19f392bc 2827 const char *name)
c906108c 2828{
52f0bd74 2829 struct type *type;
c906108c
SS
2830
2831 type = alloc_type (objfile);
ae438bc5 2832 set_type_code (type, code);
77b7c781
UW
2833 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2834 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
86f62fd7 2835 TYPE_NAME (type) = name;
c906108c 2836
c16abbde 2837 return type;
c906108c 2838}
19f392bc 2839
46a4882b
PA
2840/* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2841 to use with variables that have no debug info. NAME is the type
2842 name. */
2843
2844static struct type *
2845init_nodebug_var_type (struct objfile *objfile, const char *name)
2846{
2847 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2848}
2849
19f392bc
UW
2850/* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2851 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2852 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2853
2854struct type *
2855init_integer_type (struct objfile *objfile,
2856 int bit, int unsigned_p, const char *name)
2857{
2858 struct type *t;
2859
77b7c781 2860 t = init_type (objfile, TYPE_CODE_INT, bit, name);
19f392bc
UW
2861 if (unsigned_p)
2862 TYPE_UNSIGNED (t) = 1;
2863
2864 return t;
2865}
2866
2867/* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2868 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2869 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2870
2871struct type *
2872init_character_type (struct objfile *objfile,
2873 int bit, int unsigned_p, const char *name)
2874{
2875 struct type *t;
2876
77b7c781 2877 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
19f392bc
UW
2878 if (unsigned_p)
2879 TYPE_UNSIGNED (t) = 1;
2880
2881 return t;
2882}
2883
2884/* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2885 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2886 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2887
2888struct type *
2889init_boolean_type (struct objfile *objfile,
2890 int bit, int unsigned_p, const char *name)
2891{
2892 struct type *t;
2893
77b7c781 2894 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
19f392bc
UW
2895 if (unsigned_p)
2896 TYPE_UNSIGNED (t) = 1;
2897
2898 return t;
2899}
2900
2901/* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2902 BIT is the type size in bits; if BIT equals -1, the size is
2903 determined by the floatformat. NAME is the type name. Set the
2904 TYPE_FLOATFORMAT from FLOATFORMATS. */
2905
2906struct type *
2907init_float_type (struct objfile *objfile,
2908 int bit, const char *name,
2909 const struct floatformat **floatformats)
2910{
0db7851f
UW
2911 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2912 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
19f392bc
UW
2913 struct type *t;
2914
0db7851f 2915 bit = verify_floatformat (bit, fmt);
77b7c781 2916 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
0db7851f 2917 TYPE_FLOATFORMAT (t) = fmt;
19f392bc
UW
2918
2919 return t;
2920}
2921
2922/* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2923 BIT is the type size in bits. NAME is the type name. */
2924
2925struct type *
2926init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2927{
2928 struct type *t;
2929
77b7c781 2930 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
19f392bc
UW
2931 return t;
2932}
2933
2934/* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2935 NAME is the type name. TARGET_TYPE is the component float type. */
2936
2937struct type *
2938init_complex_type (struct objfile *objfile,
2939 const char *name, struct type *target_type)
2940{
2941 struct type *t;
2942
2943 t = init_type (objfile, TYPE_CODE_COMPLEX,
77b7c781 2944 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
19f392bc
UW
2945 TYPE_TARGET_TYPE (t) = target_type;
2946 return t;
2947}
2948
2949/* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2950 BIT is the pointer type size in bits. NAME is the type name.
2951 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2952 TYPE_UNSIGNED flag. */
2953
2954struct type *
2955init_pointer_type (struct objfile *objfile,
2956 int bit, const char *name, struct type *target_type)
2957{
2958 struct type *t;
2959
77b7c781 2960 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
19f392bc
UW
2961 TYPE_TARGET_TYPE (t) = target_type;
2962 TYPE_UNSIGNED (t) = 1;
2963 return t;
2964}
2965
2b4424c3
TT
2966/* See gdbtypes.h. */
2967
2968unsigned
2969type_raw_align (struct type *type)
2970{
2971 if (type->align_log2 != 0)
2972 return 1 << (type->align_log2 - 1);
2973 return 0;
2974}
2975
2976/* See gdbtypes.h. */
2977
2978unsigned
2979type_align (struct type *type)
2980{
5561fc30 2981 /* Check alignment provided in the debug information. */
2b4424c3
TT
2982 unsigned raw_align = type_raw_align (type);
2983 if (raw_align != 0)
2984 return raw_align;
2985
5561fc30
AB
2986 /* Allow the architecture to provide an alignment. */
2987 struct gdbarch *arch = get_type_arch (type);
2988 ULONGEST align = gdbarch_type_align (arch, type);
2989 if (align != 0)
2990 return align;
2991
2b4424c3
TT
2992 switch (TYPE_CODE (type))
2993 {
2994 case TYPE_CODE_PTR:
2995 case TYPE_CODE_FUNC:
2996 case TYPE_CODE_FLAGS:
2997 case TYPE_CODE_INT:
75ba10dc 2998 case TYPE_CODE_RANGE:
2b4424c3
TT
2999 case TYPE_CODE_FLT:
3000 case TYPE_CODE_ENUM:
3001 case TYPE_CODE_REF:
3002 case TYPE_CODE_RVALUE_REF:
3003 case TYPE_CODE_CHAR:
3004 case TYPE_CODE_BOOL:
3005 case TYPE_CODE_DECFLOAT:
70cd633e
AB
3006 case TYPE_CODE_METHODPTR:
3007 case TYPE_CODE_MEMBERPTR:
5561fc30 3008 align = type_length_units (check_typedef (type));
2b4424c3
TT
3009 break;
3010
3011 case TYPE_CODE_ARRAY:
3012 case TYPE_CODE_COMPLEX:
3013 case TYPE_CODE_TYPEDEF:
3014 align = type_align (TYPE_TARGET_TYPE (type));
3015 break;
3016
3017 case TYPE_CODE_STRUCT:
3018 case TYPE_CODE_UNION:
3019 {
41077b66 3020 int number_of_non_static_fields = 0;
2b4424c3
TT
3021 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3022 {
bf9a735e 3023 if (!field_is_static (&TYPE_FIELD (type, i)))
2b4424c3 3024 {
41077b66 3025 number_of_non_static_fields++;
bf9a735e
AB
3026 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3027 if (f_align == 0)
3028 {
3029 /* Don't pretend we know something we don't. */
3030 align = 0;
3031 break;
3032 }
3033 if (f_align > align)
3034 align = f_align;
2b4424c3 3035 }
2b4424c3 3036 }
41077b66
AB
3037 /* A struct with no fields, or with only static fields has an
3038 alignment of 1. */
3039 if (number_of_non_static_fields == 0)
3040 align = 1;
2b4424c3
TT
3041 }
3042 break;
3043
3044 case TYPE_CODE_SET:
2b4424c3
TT
3045 case TYPE_CODE_STRING:
3046 /* Not sure what to do here, and these can't appear in C or C++
3047 anyway. */
3048 break;
3049
2b4424c3
TT
3050 case TYPE_CODE_VOID:
3051 align = 1;
3052 break;
3053
3054 case TYPE_CODE_ERROR:
3055 case TYPE_CODE_METHOD:
3056 default:
3057 break;
3058 }
3059
3060 if ((align & (align - 1)) != 0)
3061 {
3062 /* Not a power of 2, so pass. */
3063 align = 0;
3064 }
3065
3066 return align;
3067}
3068
3069/* See gdbtypes.h. */
3070
3071bool
3072set_type_align (struct type *type, ULONGEST align)
3073{
3074 /* Must be a power of 2. Zero is ok. */
3075 gdb_assert ((align & (align - 1)) == 0);
3076
3077 unsigned result = 0;
3078 while (align != 0)
3079 {
3080 ++result;
3081 align >>= 1;
3082 }
3083
3084 if (result >= (1 << TYPE_ALIGN_BITS))
3085 return false;
3086
3087 type->align_log2 = result;
3088 return true;
3089}
3090
5212577a
DE
3091\f
3092/* Queries on types. */
c906108c 3093
c906108c 3094int
fba45db2 3095can_dereference (struct type *t)
c906108c 3096{
7ba81444
MS
3097 /* FIXME: Should we return true for references as well as
3098 pointers? */
f168693b 3099 t = check_typedef (t);
c906108c
SS
3100 return
3101 (t != NULL
3102 && TYPE_CODE (t) == TYPE_CODE_PTR
3103 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3104}
3105
adf40b2e 3106int
fba45db2 3107is_integral_type (struct type *t)
adf40b2e 3108{
f168693b 3109 t = check_typedef (t);
adf40b2e
JM
3110 return
3111 ((t != NULL)
d4f3574e
SS
3112 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3113 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 3114 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
3115 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3116 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3117 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
3118}
3119
70100014
UW
3120int
3121is_floating_type (struct type *t)
3122{
3123 t = check_typedef (t);
3124 return
3125 ((t != NULL)
3126 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3127 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3128}
3129
e09342b5
TJB
3130/* Return true if TYPE is scalar. */
3131
220475ed 3132int
e09342b5
TJB
3133is_scalar_type (struct type *type)
3134{
f168693b 3135 type = check_typedef (type);
e09342b5
TJB
3136
3137 switch (TYPE_CODE (type))
3138 {
3139 case TYPE_CODE_ARRAY:
3140 case TYPE_CODE_STRUCT:
3141 case TYPE_CODE_UNION:
3142 case TYPE_CODE_SET:
3143 case TYPE_CODE_STRING:
e09342b5
TJB
3144 return 0;
3145 default:
3146 return 1;
3147 }
3148}
3149
3150/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
3151 the memory layout of a scalar type. E.g., an array or struct with only
3152 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
3153
3154int
3155is_scalar_type_recursive (struct type *t)
3156{
f168693b 3157 t = check_typedef (t);
e09342b5
TJB
3158
3159 if (is_scalar_type (t))
3160 return 1;
3161 /* Are we dealing with an array or string of known dimensions? */
3162 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3163 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3164 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3165 {
3166 LONGEST low_bound, high_bound;
3167 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3168
3169 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3170
3171 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3172 }
3173 /* Are we dealing with a struct with one element? */
3174 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3175 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3176 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3177 {
3178 int i, n = TYPE_NFIELDS (t);
3179
3180 /* If all elements of the union are scalar, then the union is scalar. */
3181 for (i = 0; i < n; i++)
3182 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3183 return 0;
3184
3185 return 1;
3186 }
3187
3188 return 0;
3189}
3190
6c659fc2
SC
3191/* Return true is T is a class or a union. False otherwise. */
3192
3193int
3194class_or_union_p (const struct type *t)
3195{
3196 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3197 || TYPE_CODE (t) == TYPE_CODE_UNION);
3198}
3199
4e8f195d
TT
3200/* A helper function which returns true if types A and B represent the
3201 "same" class type. This is true if the types have the same main
3202 type, or the same name. */
3203
3204int
3205class_types_same_p (const struct type *a, const struct type *b)
3206{
3207 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3208 || (TYPE_NAME (a) && TYPE_NAME (b)
3209 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3210}
3211
a9d5ef47
SW
3212/* If BASE is an ancestor of DCLASS return the distance between them.
3213 otherwise return -1;
3214 eg:
3215
3216 class A {};
3217 class B: public A {};
3218 class C: public B {};
3219 class D: C {};
3220
3221 distance_to_ancestor (A, A, 0) = 0
3222 distance_to_ancestor (A, B, 0) = 1
3223 distance_to_ancestor (A, C, 0) = 2
3224 distance_to_ancestor (A, D, 0) = 3
3225
3226 If PUBLIC is 1 then only public ancestors are considered,
3227 and the function returns the distance only if BASE is a public ancestor
3228 of DCLASS.
3229 Eg:
3230
0963b4bd 3231 distance_to_ancestor (A, D, 1) = -1. */
c906108c 3232
0526b37a 3233static int
fe978cb0 3234distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
c906108c
SS
3235{
3236 int i;
a9d5ef47 3237 int d;
c5aa993b 3238
f168693b
SM
3239 base = check_typedef (base);
3240 dclass = check_typedef (dclass);
c906108c 3241
4e8f195d 3242 if (class_types_same_p (base, dclass))
a9d5ef47 3243 return 0;
c906108c
SS
3244
3245 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 3246 {
fe978cb0 3247 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
0526b37a
SW
3248 continue;
3249
fe978cb0 3250 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
a9d5ef47
SW
3251 if (d >= 0)
3252 return 1 + d;
4e8f195d 3253 }
c906108c 3254
a9d5ef47 3255 return -1;
c906108c 3256}
4e8f195d 3257
0526b37a
SW
3258/* Check whether BASE is an ancestor or base class or DCLASS
3259 Return 1 if so, and 0 if not.
3260 Note: If BASE and DCLASS are of the same type, this function
3261 will return 1. So for some class A, is_ancestor (A, A) will
3262 return 1. */
3263
3264int
3265is_ancestor (struct type *base, struct type *dclass)
3266{
a9d5ef47 3267 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
3268}
3269
4e8f195d
TT
3270/* Like is_ancestor, but only returns true when BASE is a public
3271 ancestor of DCLASS. */
3272
3273int
3274is_public_ancestor (struct type *base, struct type *dclass)
3275{
a9d5ef47 3276 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
3277}
3278
3279/* A helper function for is_unique_ancestor. */
3280
3281static int
3282is_unique_ancestor_worker (struct type *base, struct type *dclass,
3283 int *offset,
8af8e3bc
PA
3284 const gdb_byte *valaddr, int embedded_offset,
3285 CORE_ADDR address, struct value *val)
4e8f195d
TT
3286{
3287 int i, count = 0;
3288
f168693b
SM
3289 base = check_typedef (base);
3290 dclass = check_typedef (dclass);
4e8f195d
TT
3291
3292 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3293 {
8af8e3bc
PA
3294 struct type *iter;
3295 int this_offset;
4e8f195d 3296
8af8e3bc
PA
3297 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3298
3299 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3300 address, val);
4e8f195d
TT
3301
3302 if (class_types_same_p (base, iter))
3303 {
3304 /* If this is the first subclass, set *OFFSET and set count
3305 to 1. Otherwise, if this is at the same offset as
3306 previous instances, do nothing. Otherwise, increment
3307 count. */
3308 if (*offset == -1)
3309 {
3310 *offset = this_offset;
3311 count = 1;
3312 }
3313 else if (this_offset == *offset)
3314 {
3315 /* Nothing. */
3316 }
3317 else
3318 ++count;
3319 }
3320 else
3321 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
3322 valaddr,
3323 embedded_offset + this_offset,
3324 address, val);
4e8f195d
TT
3325 }
3326
3327 return count;
3328}
3329
3330/* Like is_ancestor, but only returns true if BASE is a unique base
3331 class of the type of VAL. */
3332
3333int
3334is_unique_ancestor (struct type *base, struct value *val)
3335{
3336 int offset = -1;
3337
3338 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
3339 value_contents_for_printing (val),
3340 value_embedded_offset (val),
3341 value_address (val), val) == 1;
4e8f195d
TT
3342}
3343
c906108c 3344\f
5212577a 3345/* Overload resolution. */
c906108c 3346
6403aeea
SW
3347/* Return the sum of the rank of A with the rank of B. */
3348
3349struct rank
3350sum_ranks (struct rank a, struct rank b)
3351{
3352 struct rank c;
3353 c.rank = a.rank + b.rank;
a9d5ef47 3354 c.subrank = a.subrank + b.subrank;
6403aeea
SW
3355 return c;
3356}
3357
3358/* Compare rank A and B and return:
3359 0 if a = b
3360 1 if a is better than b
3361 -1 if b is better than a. */
3362
3363int
3364compare_ranks (struct rank a, struct rank b)
3365{
3366 if (a.rank == b.rank)
a9d5ef47
SW
3367 {
3368 if (a.subrank == b.subrank)
3369 return 0;
3370 if (a.subrank < b.subrank)
3371 return 1;
3372 if (a.subrank > b.subrank)
3373 return -1;
3374 }
6403aeea
SW
3375
3376 if (a.rank < b.rank)
3377 return 1;
3378
0963b4bd 3379 /* a.rank > b.rank */
6403aeea
SW
3380 return -1;
3381}
c5aa993b 3382
0963b4bd 3383/* Functions for overload resolution begin here. */
c906108c
SS
3384
3385/* Compare two badness vectors A and B and return the result.
7ba81444
MS
3386 0 => A and B are identical
3387 1 => A and B are incomparable
3388 2 => A is better than B
3389 3 => A is worse than B */
c906108c
SS
3390
3391int
82ceee50 3392compare_badness (const badness_vector &a, const badness_vector &b)
c906108c
SS
3393{
3394 int i;
3395 int tmp;
c5aa993b
JM
3396 short found_pos = 0; /* any positives in c? */
3397 short found_neg = 0; /* any negatives in c? */
3398
82ceee50
PA
3399 /* differing sizes => incomparable */
3400 if (a.size () != b.size ())
c906108c
SS
3401 return 1;
3402
c5aa993b 3403 /* Subtract b from a */
82ceee50 3404 for (i = 0; i < a.size (); i++)
c906108c 3405 {
82ceee50 3406 tmp = compare_ranks (b[i], a[i]);
c906108c 3407 if (tmp > 0)
c5aa993b 3408 found_pos = 1;
c906108c 3409 else if (tmp < 0)
c5aa993b 3410 found_neg = 1;
c906108c
SS
3411 }
3412
3413 if (found_pos)
3414 {
3415 if (found_neg)
c5aa993b 3416 return 1; /* incomparable */
c906108c 3417 else
c5aa993b 3418 return 3; /* A > B */
c906108c 3419 }
c5aa993b
JM
3420 else
3421 /* no positives */
c906108c
SS
3422 {
3423 if (found_neg)
c5aa993b 3424 return 2; /* A < B */
c906108c 3425 else
c5aa993b 3426 return 0; /* A == B */
c906108c
SS
3427 }
3428}
3429
6b1747cd 3430/* Rank a function by comparing its parameter types (PARMS), to the
82ceee50
PA
3431 types of an argument list (ARGS). Return the badness vector. This
3432 has ARGS.size() + 1 entries. */
c906108c 3433
82ceee50 3434badness_vector
6b1747cd
PA
3435rank_function (gdb::array_view<type *> parms,
3436 gdb::array_view<value *> args)
c906108c 3437{
82ceee50
PA
3438 /* add 1 for the length-match rank. */
3439 badness_vector bv;
3440 bv.reserve (1 + args.size ());
c906108c
SS
3441
3442 /* First compare the lengths of the supplied lists.
7ba81444 3443 If there is a mismatch, set it to a high value. */
c5aa993b 3444
c906108c 3445 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
3446 arguments and ellipsis parameter lists, we should consider those
3447 and rank the length-match more finely. */
c906108c 3448
82ceee50
PA
3449 bv.push_back ((args.size () != parms.size ())
3450 ? LENGTH_MISMATCH_BADNESS
3451 : EXACT_MATCH_BADNESS);
c906108c 3452
0963b4bd 3453 /* Now rank all the parameters of the candidate function. */
82ceee50
PA
3454 size_t min_len = std::min (parms.size (), args.size ());
3455
3456 for (size_t i = 0; i < min_len; i++)
3457 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3458 args[i]));
c906108c 3459
0963b4bd 3460 /* If more arguments than parameters, add dummy entries. */
82ceee50
PA
3461 for (size_t i = min_len; i < args.size (); i++)
3462 bv.push_back (TOO_FEW_PARAMS_BADNESS);
c906108c
SS
3463
3464 return bv;
3465}
3466
973ccf8b
DJ
3467/* Compare the names of two integer types, assuming that any sign
3468 qualifiers have been checked already. We do it this way because
3469 there may be an "int" in the name of one of the types. */
3470
3471static int
3472integer_types_same_name_p (const char *first, const char *second)
3473{
3474 int first_p, second_p;
3475
7ba81444
MS
3476 /* If both are shorts, return 1; if neither is a short, keep
3477 checking. */
973ccf8b
DJ
3478 first_p = (strstr (first, "short") != NULL);
3479 second_p = (strstr (second, "short") != NULL);
3480 if (first_p && second_p)
3481 return 1;
3482 if (first_p || second_p)
3483 return 0;
3484
3485 /* Likewise for long. */
3486 first_p = (strstr (first, "long") != NULL);
3487 second_p = (strstr (second, "long") != NULL);
3488 if (first_p && second_p)
3489 return 1;
3490 if (first_p || second_p)
3491 return 0;
3492
3493 /* Likewise for char. */
3494 first_p = (strstr (first, "char") != NULL);
3495 second_p = (strstr (second, "char") != NULL);
3496 if (first_p && second_p)
3497 return 1;
3498 if (first_p || second_p)
3499 return 0;
3500
3501 /* They must both be ints. */
3502 return 1;
3503}
3504
894882e3
TT
3505/* Compares type A to type B. Returns true if they represent the same
3506 type, false otherwise. */
7062b0a0 3507
894882e3 3508bool
7062b0a0
SW
3509types_equal (struct type *a, struct type *b)
3510{
3511 /* Identical type pointers. */
3512 /* However, this still doesn't catch all cases of same type for b
3513 and a. The reason is that builtin types are different from
3514 the same ones constructed from the object. */
3515 if (a == b)
894882e3 3516 return true;
7062b0a0
SW
3517
3518 /* Resolve typedefs */
3519 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3520 a = check_typedef (a);
3521 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3522 b = check_typedef (b);
3523
3524 /* If after resolving typedefs a and b are not of the same type
3525 code then they are not equal. */
3526 if (TYPE_CODE (a) != TYPE_CODE (b))
894882e3 3527 return false;
7062b0a0
SW
3528
3529 /* If a and b are both pointers types or both reference types then
3530 they are equal of the same type iff the objects they refer to are
3531 of the same type. */
3532 if (TYPE_CODE (a) == TYPE_CODE_PTR
3533 || TYPE_CODE (a) == TYPE_CODE_REF)
3534 return types_equal (TYPE_TARGET_TYPE (a),
3535 TYPE_TARGET_TYPE (b));
3536
0963b4bd 3537 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
3538 are exactly the same. This happens when we generate method
3539 stubs. The types won't point to the same address, but they
0963b4bd 3540 really are the same. */
7062b0a0
SW
3541
3542 if (TYPE_NAME (a) && TYPE_NAME (b)
3543 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
894882e3 3544 return true;
7062b0a0
SW
3545
3546 /* Check if identical after resolving typedefs. */
3547 if (a == b)
894882e3 3548 return true;
7062b0a0 3549
9ce98649
TT
3550 /* Two function types are equal if their argument and return types
3551 are equal. */
3552 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3553 {
3554 int i;
3555
3556 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
894882e3 3557 return false;
9ce98649
TT
3558
3559 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
894882e3 3560 return false;
9ce98649
TT
3561
3562 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3563 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
894882e3 3564 return false;
9ce98649 3565
894882e3 3566 return true;
9ce98649
TT
3567 }
3568
894882e3 3569 return false;
7062b0a0 3570}
ca092b61
DE
3571\f
3572/* Deep comparison of types. */
3573
3574/* An entry in the type-equality bcache. */
3575
894882e3 3576struct type_equality_entry
ca092b61 3577{
894882e3
TT
3578 type_equality_entry (struct type *t1, struct type *t2)
3579 : type1 (t1),
3580 type2 (t2)
3581 {
3582 }
ca092b61 3583
894882e3
TT
3584 struct type *type1, *type2;
3585};
ca092b61 3586
894882e3
TT
3587/* A helper function to compare two strings. Returns true if they are
3588 the same, false otherwise. Handles NULLs properly. */
ca092b61 3589
894882e3 3590static bool
ca092b61
DE
3591compare_maybe_null_strings (const char *s, const char *t)
3592{
894882e3
TT
3593 if (s == NULL || t == NULL)
3594 return s == t;
ca092b61
DE
3595 return strcmp (s, t) == 0;
3596}
3597
3598/* A helper function for check_types_worklist that checks two types for
894882e3
TT
3599 "deep" equality. Returns true if the types are considered the
3600 same, false otherwise. */
ca092b61 3601
894882e3 3602static bool
ca092b61 3603check_types_equal (struct type *type1, struct type *type2,
894882e3 3604 std::vector<type_equality_entry> *worklist)
ca092b61 3605{
f168693b
SM
3606 type1 = check_typedef (type1);
3607 type2 = check_typedef (type2);
ca092b61
DE
3608
3609 if (type1 == type2)
894882e3 3610 return true;
ca092b61
DE
3611
3612 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3613 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3614 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3615 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3616 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3617 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3618 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3619 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3620 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
894882e3 3621 return false;
ca092b61 3622
e86ca25f 3623 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
894882e3 3624 return false;
ca092b61 3625 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
894882e3 3626 return false;
ca092b61
DE
3627
3628 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3629 {
0f59d5fc 3630 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
894882e3 3631 return false;
ca092b61
DE
3632 }
3633 else
3634 {
3635 int i;
3636
3637 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3638 {
3639 const struct field *field1 = &TYPE_FIELD (type1, i);
3640 const struct field *field2 = &TYPE_FIELD (type2, i);
ca092b61
DE
3641
3642 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3643 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3644 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
894882e3 3645 return false;
ca092b61
DE
3646 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3647 FIELD_NAME (*field2)))
894882e3 3648 return false;
ca092b61
DE
3649 switch (FIELD_LOC_KIND (*field1))
3650 {
3651 case FIELD_LOC_KIND_BITPOS:
3652 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
894882e3 3653 return false;
ca092b61
DE
3654 break;
3655 case FIELD_LOC_KIND_ENUMVAL:
3656 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
894882e3 3657 return false;
ca092b61
DE
3658 break;
3659 case FIELD_LOC_KIND_PHYSADDR:
3660 if (FIELD_STATIC_PHYSADDR (*field1)
3661 != FIELD_STATIC_PHYSADDR (*field2))
894882e3 3662 return false;
ca092b61
DE
3663 break;
3664 case FIELD_LOC_KIND_PHYSNAME:
3665 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3666 FIELD_STATIC_PHYSNAME (*field2)))
894882e3 3667 return false;
ca092b61
DE
3668 break;
3669 case FIELD_LOC_KIND_DWARF_BLOCK:
3670 {
3671 struct dwarf2_locexpr_baton *block1, *block2;
3672
3673 block1 = FIELD_DWARF_BLOCK (*field1);
3674 block2 = FIELD_DWARF_BLOCK (*field2);
3675 if (block1->per_cu != block2->per_cu
3676 || block1->size != block2->size
3677 || memcmp (block1->data, block2->data, block1->size) != 0)
894882e3 3678 return false;
ca092b61
DE
3679 }
3680 break;
3681 default:
3682 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3683 "%d by check_types_equal"),
3684 FIELD_LOC_KIND (*field1));
3685 }
3686
894882e3 3687 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
ca092b61
DE
3688 }
3689 }
3690
3691 if (TYPE_TARGET_TYPE (type1) != NULL)
3692 {
ca092b61 3693 if (TYPE_TARGET_TYPE (type2) == NULL)
894882e3 3694 return false;
ca092b61 3695
894882e3
TT
3696 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
3697 TYPE_TARGET_TYPE (type2));
ca092b61
DE
3698 }
3699 else if (TYPE_TARGET_TYPE (type2) != NULL)
894882e3 3700 return false;
ca092b61 3701
894882e3 3702 return true;
ca092b61
DE
3703}
3704
894882e3
TT
3705/* Check types on a worklist for equality. Returns false if any pair
3706 is not equal, true if they are all considered equal. */
ca092b61 3707
894882e3
TT
3708static bool
3709check_types_worklist (std::vector<type_equality_entry> *worklist,
ca092b61
DE
3710 struct bcache *cache)
3711{
894882e3 3712 while (!worklist->empty ())
ca092b61 3713 {
ca092b61
DE
3714 int added;
3715
894882e3
TT
3716 struct type_equality_entry entry = std::move (worklist->back ());
3717 worklist->pop_back ();
ca092b61
DE
3718
3719 /* If the type pair has already been visited, we know it is
3720 ok. */
25629dfd 3721 cache->insert (&entry, sizeof (entry), &added);
ca092b61
DE
3722 if (!added)
3723 continue;
3724
894882e3
TT
3725 if (!check_types_equal (entry.type1, entry.type2, worklist))
3726 return false;
ca092b61 3727 }
7062b0a0 3728
894882e3 3729 return true;
ca092b61
DE
3730}
3731
894882e3
TT
3732/* Return true if types TYPE1 and TYPE2 are equal, as determined by a
3733 "deep comparison". Otherwise return false. */
ca092b61 3734
894882e3 3735bool
ca092b61
DE
3736types_deeply_equal (struct type *type1, struct type *type2)
3737{
894882e3 3738 std::vector<type_equality_entry> worklist;
ca092b61
DE
3739
3740 gdb_assert (type1 != NULL && type2 != NULL);
3741
3742 /* Early exit for the simple case. */
3743 if (type1 == type2)
894882e3 3744 return true;
ca092b61 3745
25629dfd 3746 struct bcache cache (nullptr, nullptr);
894882e3 3747 worklist.emplace_back (type1, type2);
25629dfd 3748 return check_types_worklist (&worklist, &cache);
ca092b61 3749}
3f2f83dd
KB
3750
3751/* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3752 Otherwise return one. */
3753
3754int
3755type_not_allocated (const struct type *type)
3756{
3757 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3758
3759 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3760 && !TYPE_DYN_PROP_ADDR (prop));
3761}
3762
3763/* Associated status of type TYPE. Return zero if type TYPE is associated.
3764 Otherwise return one. */
3765
3766int
3767type_not_associated (const struct type *type)
3768{
3769 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3770
3771 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3772 && !TYPE_DYN_PROP_ADDR (prop));
3773}
9293fc63
SM
3774
3775/* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
3776
3777static struct rank
3778rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
3779{
3780 struct rank rank = {0,0};
3781
3782 switch (TYPE_CODE (arg))
3783 {
3784 case TYPE_CODE_PTR:
3785
3786 /* Allowed pointer conversions are:
3787 (a) pointer to void-pointer conversion. */
3788 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3789 return VOID_PTR_CONVERSION_BADNESS;
3790
3791 /* (b) pointer to ancestor-pointer conversion. */
3792 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3793 TYPE_TARGET_TYPE (arg),
3794 0);
3795 if (rank.subrank >= 0)
3796 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3797
3798 return INCOMPATIBLE_TYPE_BADNESS;
3799 case TYPE_CODE_ARRAY:
3800 {
3801 struct type *t1 = TYPE_TARGET_TYPE (parm);
3802 struct type *t2 = TYPE_TARGET_TYPE (arg);
3803
3804 if (types_equal (t1, t2))
3805 {
3806 /* Make sure they are CV equal. */
3807 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3808 rank.subrank |= CV_CONVERSION_CONST;
3809 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3810 rank.subrank |= CV_CONVERSION_VOLATILE;
3811 if (rank.subrank != 0)
3812 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3813 return EXACT_MATCH_BADNESS;
3814 }
3815 return INCOMPATIBLE_TYPE_BADNESS;
3816 }
3817 case TYPE_CODE_FUNC:
3818 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3819 case TYPE_CODE_INT:
3820 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3821 {
3822 if (value_as_long (value) == 0)
3823 {
3824 /* Null pointer conversion: allow it to be cast to a pointer.
3825 [4.10.1 of C++ standard draft n3290] */
3826 return NULL_POINTER_CONVERSION_BADNESS;
3827 }
3828 else
3829 {
3830 /* If type checking is disabled, allow the conversion. */
3831 if (!strict_type_checking)
3832 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3833 }
3834 }
3835 /* fall through */
3836 case TYPE_CODE_ENUM:
3837 case TYPE_CODE_FLAGS:
3838 case TYPE_CODE_CHAR:
3839 case TYPE_CODE_RANGE:
3840 case TYPE_CODE_BOOL:
3841 default:
3842 return INCOMPATIBLE_TYPE_BADNESS;
3843 }
3844}
3845
b9f4512f
SM
3846/* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
3847
3848static struct rank
3849rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
3850{
3851 switch (TYPE_CODE (arg))
3852 {
3853 case TYPE_CODE_PTR:
3854 case TYPE_CODE_ARRAY:
3855 return rank_one_type (TYPE_TARGET_TYPE (parm),
3856 TYPE_TARGET_TYPE (arg), NULL);
3857 default:
3858 return INCOMPATIBLE_TYPE_BADNESS;
3859 }
3860}
3861
f1f832d6
SM
3862/* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
3863
3864static struct rank
3865rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
3866{
3867 switch (TYPE_CODE (arg))
3868 {
3869 case TYPE_CODE_PTR: /* funcptr -> func */
3870 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3871 default:
3872 return INCOMPATIBLE_TYPE_BADNESS;
3873 }
3874}
3875
34910087
SM
3876/* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
3877
3878static struct rank
3879rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
3880{
3881 switch (TYPE_CODE (arg))
3882 {
3883 case TYPE_CODE_INT:
3884 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3885 {
3886 /* Deal with signed, unsigned, and plain chars and
3887 signed and unsigned ints. */
3888 if (TYPE_NOSIGN (parm))
3889 {
3890 /* This case only for character types. */
3891 if (TYPE_NOSIGN (arg))
3892 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3893 else /* signed/unsigned char -> plain char */
3894 return INTEGER_CONVERSION_BADNESS;
3895 }
3896 else if (TYPE_UNSIGNED (parm))
3897 {
3898 if (TYPE_UNSIGNED (arg))
3899 {
3900 /* unsigned int -> unsigned int, or
3901 unsigned long -> unsigned long */
3902 if (integer_types_same_name_p (TYPE_NAME (parm),
3903 TYPE_NAME (arg)))
3904 return EXACT_MATCH_BADNESS;
3905 else if (integer_types_same_name_p (TYPE_NAME (arg),
3906 "int")
3907 && integer_types_same_name_p (TYPE_NAME (parm),
3908 "long"))
3909 /* unsigned int -> unsigned long */
3910 return INTEGER_PROMOTION_BADNESS;
3911 else
3912 /* unsigned long -> unsigned int */
3913 return INTEGER_CONVERSION_BADNESS;
3914 }
3915 else
3916 {
3917 if (integer_types_same_name_p (TYPE_NAME (arg),
3918 "long")
3919 && integer_types_same_name_p (TYPE_NAME (parm),
3920 "int"))
3921 /* signed long -> unsigned int */
3922 return INTEGER_CONVERSION_BADNESS;
3923 else
3924 /* signed int/long -> unsigned int/long */
3925 return INTEGER_CONVERSION_BADNESS;
3926 }
3927 }
3928 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3929 {
3930 if (integer_types_same_name_p (TYPE_NAME (parm),
3931 TYPE_NAME (arg)))
3932 return EXACT_MATCH_BADNESS;
3933 else if (integer_types_same_name_p (TYPE_NAME (arg),
3934 "int")
3935 && integer_types_same_name_p (TYPE_NAME (parm),
3936 "long"))
3937 return INTEGER_PROMOTION_BADNESS;
3938 else
3939 return INTEGER_CONVERSION_BADNESS;
3940 }
3941 else
3942 return INTEGER_CONVERSION_BADNESS;
3943 }
3944 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3945 return INTEGER_PROMOTION_BADNESS;
3946 else
3947 return INTEGER_CONVERSION_BADNESS;
3948 case TYPE_CODE_ENUM:
3949 case TYPE_CODE_FLAGS:
3950 case TYPE_CODE_CHAR:
3951 case TYPE_CODE_RANGE:
3952 case TYPE_CODE_BOOL:
3953 if (TYPE_DECLARED_CLASS (arg))
3954 return INCOMPATIBLE_TYPE_BADNESS;
3955 return INTEGER_PROMOTION_BADNESS;
3956 case TYPE_CODE_FLT:
3957 return INT_FLOAT_CONVERSION_BADNESS;
3958 case TYPE_CODE_PTR:
3959 return NS_POINTER_CONVERSION_BADNESS;
3960 default:
3961 return INCOMPATIBLE_TYPE_BADNESS;
3962 }
3963}
3964
793cd1d2
SM
3965/* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
3966
3967static struct rank
3968rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
3969{
3970 switch (TYPE_CODE (arg))
3971 {
3972 case TYPE_CODE_INT:
3973 case TYPE_CODE_CHAR:
3974 case TYPE_CODE_RANGE:
3975 case TYPE_CODE_BOOL:
3976 case TYPE_CODE_ENUM:
3977 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3978 return INCOMPATIBLE_TYPE_BADNESS;
3979 return INTEGER_CONVERSION_BADNESS;
3980 case TYPE_CODE_FLT:
3981 return INT_FLOAT_CONVERSION_BADNESS;
3982 default:
3983 return INCOMPATIBLE_TYPE_BADNESS;
3984 }
3985}
3986
41ea4728
SM
3987/* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
3988
3989static struct rank
3990rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
3991{
3992 switch (TYPE_CODE (arg))
3993 {
3994 case TYPE_CODE_RANGE:
3995 case TYPE_CODE_BOOL:
3996 case TYPE_CODE_ENUM:
3997 if (TYPE_DECLARED_CLASS (arg))
3998 return INCOMPATIBLE_TYPE_BADNESS;
3999 return INTEGER_CONVERSION_BADNESS;
4000 case TYPE_CODE_FLT:
4001 return INT_FLOAT_CONVERSION_BADNESS;
4002 case TYPE_CODE_INT:
4003 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4004 return INTEGER_CONVERSION_BADNESS;
4005 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4006 return INTEGER_PROMOTION_BADNESS;
4007 /* fall through */
4008 case TYPE_CODE_CHAR:
4009 /* Deal with signed, unsigned, and plain chars for C++ and
4010 with int cases falling through from previous case. */
4011 if (TYPE_NOSIGN (parm))
4012 {
4013 if (TYPE_NOSIGN (arg))
4014 return EXACT_MATCH_BADNESS;
4015 else
4016 return INTEGER_CONVERSION_BADNESS;
4017 }
4018 else if (TYPE_UNSIGNED (parm))
4019 {
4020 if (TYPE_UNSIGNED (arg))
4021 return EXACT_MATCH_BADNESS;
4022 else
4023 return INTEGER_PROMOTION_BADNESS;
4024 }
4025 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4026 return EXACT_MATCH_BADNESS;
4027 else
4028 return INTEGER_CONVERSION_BADNESS;
4029 default:
4030 return INCOMPATIBLE_TYPE_BADNESS;
4031 }
4032}
4033
0dd322dc
SM
4034/* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4035
4036static struct rank
4037rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4038{
4039 switch (TYPE_CODE (arg))
4040 {
4041 case TYPE_CODE_INT:
4042 case TYPE_CODE_CHAR:
4043 case TYPE_CODE_RANGE:
4044 case TYPE_CODE_BOOL:
4045 case TYPE_CODE_ENUM:
4046 return INTEGER_CONVERSION_BADNESS;
4047 case TYPE_CODE_FLT:
4048 return INT_FLOAT_CONVERSION_BADNESS;
4049 default:
4050 return INCOMPATIBLE_TYPE_BADNESS;
4051 }
4052}
4053
2c509035
SM
4054/* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4055
4056static struct rank
4057rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4058{
4059 switch (TYPE_CODE (arg))
4060 {
4061 /* n3290 draft, section 4.12.1 (conv.bool):
4062
4063 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4064 pointer to member type can be converted to a prvalue of type
4065 bool. A zero value, null pointer value, or null member pointer
4066 value is converted to false; any other value is converted to
4067 true. A prvalue of type std::nullptr_t can be converted to a
4068 prvalue of type bool; the resulting value is false." */
4069 case TYPE_CODE_INT:
4070 case TYPE_CODE_CHAR:
4071 case TYPE_CODE_ENUM:
4072 case TYPE_CODE_FLT:
4073 case TYPE_CODE_MEMBERPTR:
4074 case TYPE_CODE_PTR:
4075 return BOOL_CONVERSION_BADNESS;
4076 case TYPE_CODE_RANGE:
4077 return INCOMPATIBLE_TYPE_BADNESS;
4078 case TYPE_CODE_BOOL:
4079 return EXACT_MATCH_BADNESS;
4080 default:
4081 return INCOMPATIBLE_TYPE_BADNESS;
4082 }
4083}
4084
7f17b20d
SM
4085/* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4086
4087static struct rank
4088rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4089{
4090 switch (TYPE_CODE (arg))
4091 {
4092 case TYPE_CODE_FLT:
4093 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4094 return FLOAT_PROMOTION_BADNESS;
4095 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4096 return EXACT_MATCH_BADNESS;
4097 else
4098 return FLOAT_CONVERSION_BADNESS;
4099 case TYPE_CODE_INT:
4100 case TYPE_CODE_BOOL:
4101 case TYPE_CODE_ENUM:
4102 case TYPE_CODE_RANGE:
4103 case TYPE_CODE_CHAR:
4104 return INT_FLOAT_CONVERSION_BADNESS;
4105 default:
4106 return INCOMPATIBLE_TYPE_BADNESS;
4107 }
4108}
4109
2598a94b
SM
4110/* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4111
4112static struct rank
4113rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4114{
4115 switch (TYPE_CODE (arg))
4116 { /* Strictly not needed for C++, but... */
4117 case TYPE_CODE_FLT:
4118 return FLOAT_PROMOTION_BADNESS;
4119 case TYPE_CODE_COMPLEX:
4120 return EXACT_MATCH_BADNESS;
4121 default:
4122 return INCOMPATIBLE_TYPE_BADNESS;
4123 }
4124}
4125
595f96a9
SM
4126/* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4127
4128static struct rank
4129rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4130{
4131 struct rank rank = {0, 0};
4132
4133 switch (TYPE_CODE (arg))
4134 {
4135 case TYPE_CODE_STRUCT:
4136 /* Check for derivation */
4137 rank.subrank = distance_to_ancestor (parm, arg, 0);
4138 if (rank.subrank >= 0)
4139 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4140 /* fall through */
4141 default:
4142 return INCOMPATIBLE_TYPE_BADNESS;
4143 }
4144}
4145
f09ce22d
SM
4146/* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4147
4148static struct rank
4149rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4150{
4151 switch (TYPE_CODE (arg))
4152 {
4153 /* Not in C++ */
4154 case TYPE_CODE_SET:
4155 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4156 TYPE_FIELD_TYPE (arg, 0), NULL);
4157 default:
4158 return INCOMPATIBLE_TYPE_BADNESS;
4159 }
4160}
4161
c906108c
SS
4162/* Compare one type (PARM) for compatibility with another (ARG).
4163 * PARM is intended to be the parameter type of a function; and
4164 * ARG is the supplied argument's type. This function tests if
4165 * the latter can be converted to the former.
da096638 4166 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
4167 *
4168 * Return 0 if they are identical types;
4169 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
4170 * PARM is to ARG. The higher the return value, the worse the match.
4171 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 4172
6403aeea 4173struct rank
da096638 4174rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 4175{
a9d5ef47 4176 struct rank rank = {0,0};
7062b0a0 4177
c906108c
SS
4178 /* Resolve typedefs */
4179 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
4180 parm = check_typedef (parm);
4181 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
4182 arg = check_typedef (arg);
4183
e15c3eb4 4184 if (TYPE_IS_REFERENCE (parm) && value != NULL)
15c0a2a9 4185 {
e15c3eb4
KS
4186 if (VALUE_LVAL (value) == not_lval)
4187 {
4188 /* Rvalues should preferably bind to rvalue references or const
4189 lvalue references. */
4190 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4191 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4192 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4193 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4194 else
4195 return INCOMPATIBLE_TYPE_BADNESS;
4196 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4197 }
4198 else
4199 {
4200 /* Lvalues should prefer lvalue overloads. */
4201 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4202 {
4203 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4204 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4205 }
4206 }
15c0a2a9
AV
4207 }
4208
4209 if (types_equal (parm, arg))
15c0a2a9 4210 {
e15c3eb4
KS
4211 struct type *t1 = parm;
4212 struct type *t2 = arg;
15c0a2a9 4213
e15c3eb4
KS
4214 /* For pointers and references, compare target type. */
4215 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4216 {
4217 t1 = TYPE_TARGET_TYPE (parm);
4218 t2 = TYPE_TARGET_TYPE (arg);
4219 }
15c0a2a9 4220
e15c3eb4
KS
4221 /* Make sure they are CV equal, too. */
4222 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4223 rank.subrank |= CV_CONVERSION_CONST;
4224 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4225 rank.subrank |= CV_CONVERSION_VOLATILE;
4226 if (rank.subrank != 0)
4227 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4228 return EXACT_MATCH_BADNESS;
15c0a2a9
AV
4229 }
4230
db577aea 4231 /* See through references, since we can almost make non-references
7ba81444 4232 references. */
aa006118
AV
4233
4234 if (TYPE_IS_REFERENCE (arg))
da096638 4235 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
6403aeea 4236 REFERENCE_CONVERSION_BADNESS));
aa006118 4237 if (TYPE_IS_REFERENCE (parm))
da096638 4238 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
6403aeea 4239 REFERENCE_CONVERSION_BADNESS));
5d161b24 4240 if (overload_debug)
7ba81444
MS
4241 /* Debugging only. */
4242 fprintf_filtered (gdb_stderr,
4243 "------ Arg is %s [%d], parm is %s [%d]\n",
4244 TYPE_NAME (arg), TYPE_CODE (arg),
4245 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 4246
0963b4bd 4247 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
4248
4249 switch (TYPE_CODE (parm))
4250 {
c5aa993b 4251 case TYPE_CODE_PTR:
9293fc63 4252 return rank_one_type_parm_ptr (parm, arg, value);
c5aa993b 4253 case TYPE_CODE_ARRAY:
b9f4512f 4254 return rank_one_type_parm_array (parm, arg, value);
c5aa993b 4255 case TYPE_CODE_FUNC:
f1f832d6 4256 return rank_one_type_parm_func (parm, arg, value);
c5aa993b 4257 case TYPE_CODE_INT:
34910087 4258 return rank_one_type_parm_int (parm, arg, value);
c5aa993b 4259 case TYPE_CODE_ENUM:
793cd1d2 4260 return rank_one_type_parm_enum (parm, arg, value);
c5aa993b 4261 case TYPE_CODE_CHAR:
41ea4728 4262 return rank_one_type_parm_char (parm, arg, value);
c5aa993b 4263 case TYPE_CODE_RANGE:
0dd322dc 4264 return rank_one_type_parm_range (parm, arg, value);
c5aa993b 4265 case TYPE_CODE_BOOL:
2c509035 4266 return rank_one_type_parm_bool (parm, arg, value);
c5aa993b 4267 case TYPE_CODE_FLT:
7f17b20d 4268 return rank_one_type_parm_float (parm, arg, value);
c5aa993b 4269 case TYPE_CODE_COMPLEX:
2598a94b 4270 return rank_one_type_parm_complex (parm, arg, value);
c5aa993b 4271 case TYPE_CODE_STRUCT:
595f96a9 4272 return rank_one_type_parm_struct (parm, arg, value);
c5aa993b 4273 case TYPE_CODE_SET:
f09ce22d 4274 return rank_one_type_parm_set (parm, arg, value);
c5aa993b
JM
4275 default:
4276 return INCOMPATIBLE_TYPE_BADNESS;
4277 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
4278}
4279
0963b4bd 4280/* End of functions for overload resolution. */
5212577a
DE
4281\f
4282/* Routines to pretty-print types. */
c906108c 4283
c906108c 4284static void
fba45db2 4285print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
4286{
4287 int bitno;
4288
4289 for (bitno = 0; bitno < nbits; bitno++)
4290 {
4291 if ((bitno % 8) == 0)
4292 {
4293 puts_filtered (" ");
4294 }
4295 if (B_TST (bits, bitno))
a3f17187 4296 printf_filtered (("1"));
c906108c 4297 else
a3f17187 4298 printf_filtered (("0"));
c906108c
SS
4299 }
4300}
4301
ad2f7632 4302/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
4303 include it since we may get into a infinitely recursive
4304 situation. */
c906108c
SS
4305
4306static void
4c9e8482 4307print_args (struct field *args, int nargs, int spaces)
c906108c
SS
4308{
4309 if (args != NULL)
4310 {
ad2f7632
DJ
4311 int i;
4312
4313 for (i = 0; i < nargs; i++)
4c9e8482
DE
4314 {
4315 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4316 args[i].name != NULL ? args[i].name : "<NULL>");
4317 recursive_dump_type (args[i].type, spaces + 2);
4318 }
c906108c
SS
4319 }
4320}
4321
d6a843b5
JK
4322int
4323field_is_static (struct field *f)
4324{
4325 /* "static" fields are the fields whose location is not relative
4326 to the address of the enclosing struct. It would be nice to
4327 have a dedicated flag that would be set for static fields when
4328 the type is being created. But in practice, checking the field
254e6b9e 4329 loc_kind should give us an accurate answer. */
d6a843b5
JK
4330 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4331 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4332}
4333
c906108c 4334static void
fba45db2 4335dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
4336{
4337 int method_idx;
4338 int overload_idx;
4339 struct fn_field *f;
4340
4341 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 4342 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
4343 printf_filtered ("\n");
4344 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4345 {
4346 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4347 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4348 method_idx,
4349 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
4350 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4351 gdb_stdout);
a3f17187 4352 printf_filtered (_(") length %d\n"),
c906108c
SS
4353 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4354 for (overload_idx = 0;
4355 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4356 overload_idx++)
4357 {
4358 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4359 overload_idx,
4360 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
4361 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4362 gdb_stdout);
c906108c
SS
4363 printf_filtered (")\n");
4364 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
4365 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4366 gdb_stdout);
c906108c
SS
4367 printf_filtered ("\n");
4368
4369 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4370 spaces + 8 + 2);
4371
4372 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
4373 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4374 gdb_stdout);
c906108c 4375 printf_filtered ("\n");
4c9e8482
DE
4376 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4377 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4378 spaces + 8 + 2);
c906108c 4379 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
4380 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4381 gdb_stdout);
c906108c
SS
4382 printf_filtered ("\n");
4383
4384 printfi_filtered (spaces + 8, "is_const %d\n",
4385 TYPE_FN_FIELD_CONST (f, overload_idx));
4386 printfi_filtered (spaces + 8, "is_volatile %d\n",
4387 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4388 printfi_filtered (spaces + 8, "is_private %d\n",
4389 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4390 printfi_filtered (spaces + 8, "is_protected %d\n",
4391 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4392 printfi_filtered (spaces + 8, "is_stub %d\n",
4393 TYPE_FN_FIELD_STUB (f, overload_idx));
4394 printfi_filtered (spaces + 8, "voffset %u\n",
4395 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4396 }
4397 }
4398}
4399
4400static void
fba45db2 4401print_cplus_stuff (struct type *type, int spaces)
c906108c 4402{
ae6ae975
DE
4403 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4404 printfi_filtered (spaces, "vptr_basetype ");
4405 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4406 puts_filtered ("\n");
4407 if (TYPE_VPTR_BASETYPE (type) != NULL)
4408 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4409
c906108c
SS
4410 printfi_filtered (spaces, "n_baseclasses %d\n",
4411 TYPE_N_BASECLASSES (type));
4412 printfi_filtered (spaces, "nfn_fields %d\n",
4413 TYPE_NFN_FIELDS (type));
c906108c
SS
4414 if (TYPE_N_BASECLASSES (type) > 0)
4415 {
4416 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4417 TYPE_N_BASECLASSES (type));
7ba81444
MS
4418 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4419 gdb_stdout);
c906108c
SS
4420 printf_filtered (")");
4421
4422 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4423 TYPE_N_BASECLASSES (type));
4424 puts_filtered ("\n");
4425 }
4426 if (TYPE_NFIELDS (type) > 0)
4427 {
4428 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4429 {
7ba81444
MS
4430 printfi_filtered (spaces,
4431 "private_field_bits (%d bits at *",
c906108c 4432 TYPE_NFIELDS (type));
7ba81444
MS
4433 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4434 gdb_stdout);
c906108c
SS
4435 printf_filtered (")");
4436 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4437 TYPE_NFIELDS (type));
4438 puts_filtered ("\n");
4439 }
4440 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4441 {
7ba81444
MS
4442 printfi_filtered (spaces,
4443 "protected_field_bits (%d bits at *",
c906108c 4444 TYPE_NFIELDS (type));
7ba81444
MS
4445 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4446 gdb_stdout);
c906108c
SS
4447 printf_filtered (")");
4448 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4449 TYPE_NFIELDS (type));
4450 puts_filtered ("\n");
4451 }
4452 }
4453 if (TYPE_NFN_FIELDS (type) > 0)
4454 {
4455 dump_fn_fieldlists (type, spaces);
4456 }
4457}
4458
b4ba55a1
JB
4459/* Print the contents of the TYPE's type_specific union, assuming that
4460 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4461
4462static void
4463print_gnat_stuff (struct type *type, int spaces)
4464{
4465 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4466
8cd00c59
PMR
4467 if (descriptive_type == NULL)
4468 printfi_filtered (spaces + 2, "no descriptive type\n");
4469 else
4470 {
4471 printfi_filtered (spaces + 2, "descriptive type\n");
4472 recursive_dump_type (descriptive_type, spaces + 4);
4473 }
b4ba55a1
JB
4474}
4475
c906108c
SS
4476static struct obstack dont_print_type_obstack;
4477
4478void
fba45db2 4479recursive_dump_type (struct type *type, int spaces)
c906108c
SS
4480{
4481 int idx;
4482
4483 if (spaces == 0)
4484 obstack_begin (&dont_print_type_obstack, 0);
4485
4486 if (TYPE_NFIELDS (type) > 0
b4ba55a1 4487 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
4488 {
4489 struct type **first_dont_print
7ba81444 4490 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 4491
7ba81444
MS
4492 int i = (struct type **)
4493 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
4494
4495 while (--i >= 0)
4496 {
4497 if (type == first_dont_print[i])
4498 {
4499 printfi_filtered (spaces, "type node ");
d4f3574e 4500 gdb_print_host_address (type, gdb_stdout);
a3f17187 4501 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
4502 return;
4503 }
4504 }
4505
4506 obstack_ptr_grow (&dont_print_type_obstack, type);
4507 }
4508
4509 printfi_filtered (spaces, "type node ");
d4f3574e 4510 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
4511 printf_filtered ("\n");
4512 printfi_filtered (spaces, "name '%s' (",
4513 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 4514 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 4515 printf_filtered (")\n");
c906108c
SS
4516 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4517 switch (TYPE_CODE (type))
4518 {
c5aa993b
JM
4519 case TYPE_CODE_UNDEF:
4520 printf_filtered ("(TYPE_CODE_UNDEF)");
4521 break;
4522 case TYPE_CODE_PTR:
4523 printf_filtered ("(TYPE_CODE_PTR)");
4524 break;
4525 case TYPE_CODE_ARRAY:
4526 printf_filtered ("(TYPE_CODE_ARRAY)");
4527 break;
4528 case TYPE_CODE_STRUCT:
4529 printf_filtered ("(TYPE_CODE_STRUCT)");
4530 break;
4531 case TYPE_CODE_UNION:
4532 printf_filtered ("(TYPE_CODE_UNION)");
4533 break;
4534 case TYPE_CODE_ENUM:
4535 printf_filtered ("(TYPE_CODE_ENUM)");
4536 break;
4f2aea11
MK
4537 case TYPE_CODE_FLAGS:
4538 printf_filtered ("(TYPE_CODE_FLAGS)");
4539 break;
c5aa993b
JM
4540 case TYPE_CODE_FUNC:
4541 printf_filtered ("(TYPE_CODE_FUNC)");
4542 break;
4543 case TYPE_CODE_INT:
4544 printf_filtered ("(TYPE_CODE_INT)");
4545 break;
4546 case TYPE_CODE_FLT:
4547 printf_filtered ("(TYPE_CODE_FLT)");
4548 break;
4549 case TYPE_CODE_VOID:
4550 printf_filtered ("(TYPE_CODE_VOID)");
4551 break;
4552 case TYPE_CODE_SET:
4553 printf_filtered ("(TYPE_CODE_SET)");
4554 break;
4555 case TYPE_CODE_RANGE:
4556 printf_filtered ("(TYPE_CODE_RANGE)");
4557 break;
4558 case TYPE_CODE_STRING:
4559 printf_filtered ("(TYPE_CODE_STRING)");
4560 break;
4561 case TYPE_CODE_ERROR:
4562 printf_filtered ("(TYPE_CODE_ERROR)");
4563 break;
0d5de010
DJ
4564 case TYPE_CODE_MEMBERPTR:
4565 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4566 break;
4567 case TYPE_CODE_METHODPTR:
4568 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
4569 break;
4570 case TYPE_CODE_METHOD:
4571 printf_filtered ("(TYPE_CODE_METHOD)");
4572 break;
4573 case TYPE_CODE_REF:
4574 printf_filtered ("(TYPE_CODE_REF)");
4575 break;
4576 case TYPE_CODE_CHAR:
4577 printf_filtered ("(TYPE_CODE_CHAR)");
4578 break;
4579 case TYPE_CODE_BOOL:
4580 printf_filtered ("(TYPE_CODE_BOOL)");
4581 break;
e9e79dd9
FF
4582 case TYPE_CODE_COMPLEX:
4583 printf_filtered ("(TYPE_CODE_COMPLEX)");
4584 break;
c5aa993b
JM
4585 case TYPE_CODE_TYPEDEF:
4586 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4587 break;
5c4e30ca
DC
4588 case TYPE_CODE_NAMESPACE:
4589 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4590 break;
c5aa993b
JM
4591 default:
4592 printf_filtered ("(UNKNOWN TYPE CODE)");
4593 break;
c906108c
SS
4594 }
4595 puts_filtered ("\n");
cc1defb1 4596 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
e9bb382b
UW
4597 if (TYPE_OBJFILE_OWNED (type))
4598 {
4599 printfi_filtered (spaces, "objfile ");
4600 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4601 }
4602 else
4603 {
4604 printfi_filtered (spaces, "gdbarch ");
4605 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4606 }
c906108c
SS
4607 printf_filtered ("\n");
4608 printfi_filtered (spaces, "target_type ");
d4f3574e 4609 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
4610 printf_filtered ("\n");
4611 if (TYPE_TARGET_TYPE (type) != NULL)
4612 {
4613 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4614 }
4615 printfi_filtered (spaces, "pointer_type ");
d4f3574e 4616 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
4617 printf_filtered ("\n");
4618 printfi_filtered (spaces, "reference_type ");
d4f3574e 4619 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 4620 printf_filtered ("\n");
2fdde8f8
DJ
4621 printfi_filtered (spaces, "type_chain ");
4622 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 4623 printf_filtered ("\n");
7ba81444
MS
4624 printfi_filtered (spaces, "instance_flags 0x%x",
4625 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
4626 if (TYPE_CONST (type))
4627 {
a9ff5f12 4628 puts_filtered (" TYPE_CONST");
2fdde8f8
DJ
4629 }
4630 if (TYPE_VOLATILE (type))
4631 {
a9ff5f12 4632 puts_filtered (" TYPE_VOLATILE");
2fdde8f8
DJ
4633 }
4634 if (TYPE_CODE_SPACE (type))
4635 {
a9ff5f12 4636 puts_filtered (" TYPE_CODE_SPACE");
2fdde8f8
DJ
4637 }
4638 if (TYPE_DATA_SPACE (type))
4639 {
a9ff5f12 4640 puts_filtered (" TYPE_DATA_SPACE");
2fdde8f8 4641 }
8b2dbe47
KB
4642 if (TYPE_ADDRESS_CLASS_1 (type))
4643 {
a9ff5f12 4644 puts_filtered (" TYPE_ADDRESS_CLASS_1");
8b2dbe47
KB
4645 }
4646 if (TYPE_ADDRESS_CLASS_2 (type))
4647 {
a9ff5f12 4648 puts_filtered (" TYPE_ADDRESS_CLASS_2");
8b2dbe47 4649 }
06d66ee9
TT
4650 if (TYPE_RESTRICT (type))
4651 {
a9ff5f12 4652 puts_filtered (" TYPE_RESTRICT");
06d66ee9 4653 }
a2c2acaf
MW
4654 if (TYPE_ATOMIC (type))
4655 {
a9ff5f12 4656 puts_filtered (" TYPE_ATOMIC");
a2c2acaf 4657 }
2fdde8f8 4658 puts_filtered ("\n");
876cecd0
TT
4659
4660 printfi_filtered (spaces, "flags");
762a036f 4661 if (TYPE_UNSIGNED (type))
c906108c 4662 {
a9ff5f12 4663 puts_filtered (" TYPE_UNSIGNED");
c906108c 4664 }
762a036f
FF
4665 if (TYPE_NOSIGN (type))
4666 {
a9ff5f12 4667 puts_filtered (" TYPE_NOSIGN");
762a036f
FF
4668 }
4669 if (TYPE_STUB (type))
c906108c 4670 {
a9ff5f12 4671 puts_filtered (" TYPE_STUB");
c906108c 4672 }
762a036f
FF
4673 if (TYPE_TARGET_STUB (type))
4674 {
a9ff5f12 4675 puts_filtered (" TYPE_TARGET_STUB");
762a036f 4676 }
762a036f
FF
4677 if (TYPE_PROTOTYPED (type))
4678 {
a9ff5f12 4679 puts_filtered (" TYPE_PROTOTYPED");
762a036f
FF
4680 }
4681 if (TYPE_INCOMPLETE (type))
4682 {
a9ff5f12 4683 puts_filtered (" TYPE_INCOMPLETE");
762a036f 4684 }
762a036f
FF
4685 if (TYPE_VARARGS (type))
4686 {
a9ff5f12 4687 puts_filtered (" TYPE_VARARGS");
762a036f 4688 }
f5f8a009
EZ
4689 /* This is used for things like AltiVec registers on ppc. Gcc emits
4690 an attribute for the array type, which tells whether or not we
4691 have a vector, instead of a regular array. */
4692 if (TYPE_VECTOR (type))
4693 {
a9ff5f12 4694 puts_filtered (" TYPE_VECTOR");
f5f8a009 4695 }
876cecd0
TT
4696 if (TYPE_FIXED_INSTANCE (type))
4697 {
4698 puts_filtered (" TYPE_FIXED_INSTANCE");
4699 }
4700 if (TYPE_STUB_SUPPORTED (type))
4701 {
4702 puts_filtered (" TYPE_STUB_SUPPORTED");
4703 }
4704 if (TYPE_NOTTEXT (type))
4705 {
4706 puts_filtered (" TYPE_NOTTEXT");
4707 }
c906108c
SS
4708 puts_filtered ("\n");
4709 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 4710 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
4711 puts_filtered ("\n");
4712 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4713 {
14e75d8e
JK
4714 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4715 printfi_filtered (spaces + 2,
4716 "[%d] enumval %s type ",
4717 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4718 else
4719 printfi_filtered (spaces + 2,
6b850546
DT
4720 "[%d] bitpos %s bitsize %d type ",
4721 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
14e75d8e 4722 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 4723 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
4724 printf_filtered (" name '%s' (",
4725 TYPE_FIELD_NAME (type, idx) != NULL
4726 ? TYPE_FIELD_NAME (type, idx)
4727 : "<NULL>");
d4f3574e 4728 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
4729 printf_filtered (")\n");
4730 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4731 {
4732 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4733 }
4734 }
43bbcdc2
PH
4735 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4736 {
4737 printfi_filtered (spaces, "low %s%s high %s%s\n",
4738 plongest (TYPE_LOW_BOUND (type)),
4739 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4740 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
4741 TYPE_HIGH_BOUND_UNDEFINED (type)
4742 ? " (undefined)" : "");
43bbcdc2 4743 }
c906108c 4744
b4ba55a1
JB
4745 switch (TYPE_SPECIFIC_FIELD (type))
4746 {
4747 case TYPE_SPECIFIC_CPLUS_STUFF:
4748 printfi_filtered (spaces, "cplus_stuff ");
4749 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4750 gdb_stdout);
4751 puts_filtered ("\n");
4752 print_cplus_stuff (type, spaces);
4753 break;
8da61cc4 4754
b4ba55a1
JB
4755 case TYPE_SPECIFIC_GNAT_STUFF:
4756 printfi_filtered (spaces, "gnat_stuff ");
4757 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4758 puts_filtered ("\n");
4759 print_gnat_stuff (type, spaces);
4760 break;
701c159d 4761
b4ba55a1
JB
4762 case TYPE_SPECIFIC_FLOATFORMAT:
4763 printfi_filtered (spaces, "floatformat ");
0db7851f
UW
4764 if (TYPE_FLOATFORMAT (type) == NULL
4765 || TYPE_FLOATFORMAT (type)->name == NULL)
b4ba55a1
JB
4766 puts_filtered ("(null)");
4767 else
0db7851f 4768 puts_filtered (TYPE_FLOATFORMAT (type)->name);
b4ba55a1
JB
4769 puts_filtered ("\n");
4770 break;
c906108c 4771
b6cdc2c1 4772 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
4773 printfi_filtered (spaces, "calling_convention %d\n",
4774 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 4775 /* tail_call_list is not printed. */
b4ba55a1 4776 break;
09e2d7c7
DE
4777
4778 case TYPE_SPECIFIC_SELF_TYPE:
4779 printfi_filtered (spaces, "self_type ");
4780 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4781 puts_filtered ("\n");
4782 break;
c906108c 4783 }
b4ba55a1 4784
c906108c
SS
4785 if (spaces == 0)
4786 obstack_free (&dont_print_type_obstack, NULL);
4787}
5212577a 4788\f
ae5a43e0
DJ
4789/* Trivial helpers for the libiberty hash table, for mapping one
4790 type to another. */
4791
fd90ace4 4792struct type_pair : public allocate_on_obstack
ae5a43e0 4793{
fd90ace4
YQ
4794 type_pair (struct type *old_, struct type *newobj_)
4795 : old (old_), newobj (newobj_)
4796 {}
4797
4798 struct type * const old, * const newobj;
ae5a43e0
DJ
4799};
4800
4801static hashval_t
4802type_pair_hash (const void *item)
4803{
9a3c8263 4804 const struct type_pair *pair = (const struct type_pair *) item;
d8734c88 4805
ae5a43e0
DJ
4806 return htab_hash_pointer (pair->old);
4807}
4808
4809static int
4810type_pair_eq (const void *item_lhs, const void *item_rhs)
4811{
9a3c8263
SM
4812 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4813 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
d8734c88 4814
ae5a43e0
DJ
4815 return lhs->old == rhs->old;
4816}
4817
4818/* Allocate the hash table used by copy_type_recursive to walk
4819 types without duplicates. We use OBJFILE's obstack, because
4820 OBJFILE is about to be deleted. */
4821
4822htab_t
4823create_copied_types_hash (struct objfile *objfile)
4824{
4825 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4826 NULL, &objfile->objfile_obstack,
4827 hashtab_obstack_allocate,
4828 dummy_obstack_deallocate);
4829}
4830
d9823cbb
KB
4831/* Recursively copy (deep copy) a dynamic attribute list of a type. */
4832
4833static struct dynamic_prop_list *
4834copy_dynamic_prop_list (struct obstack *objfile_obstack,
4835 struct dynamic_prop_list *list)
4836{
4837 struct dynamic_prop_list *copy = list;
4838 struct dynamic_prop_list **node_ptr = &copy;
4839
4840 while (*node_ptr != NULL)
4841 {
4842 struct dynamic_prop_list *node_copy;
4843
224c3ddb
SM
4844 node_copy = ((struct dynamic_prop_list *)
4845 obstack_copy (objfile_obstack, *node_ptr,
4846 sizeof (struct dynamic_prop_list)));
283a9958 4847 node_copy->prop = (*node_ptr)->prop;
d9823cbb
KB
4848 *node_ptr = node_copy;
4849
4850 node_ptr = &node_copy->next;
4851 }
4852
4853 return copy;
4854}
4855
7ba81444 4856/* Recursively copy (deep copy) TYPE, if it is associated with
eed8b28a
PP
4857 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4858 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4859 it is not associated with OBJFILE. */
ae5a43e0
DJ
4860
4861struct type *
7ba81444
MS
4862copy_type_recursive (struct objfile *objfile,
4863 struct type *type,
ae5a43e0
DJ
4864 htab_t copied_types)
4865{
ae5a43e0
DJ
4866 void **slot;
4867 struct type *new_type;
4868
e9bb382b 4869 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
4870 return type;
4871
7ba81444
MS
4872 /* This type shouldn't be pointing to any types in other objfiles;
4873 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
4874 gdb_assert (TYPE_OBJFILE (type) == objfile);
4875
fd90ace4
YQ
4876 struct type_pair pair (type, nullptr);
4877
ae5a43e0
DJ
4878 slot = htab_find_slot (copied_types, &pair, INSERT);
4879 if (*slot != NULL)
fe978cb0 4880 return ((struct type_pair *) *slot)->newobj;
ae5a43e0 4881
e9bb382b 4882 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
4883
4884 /* We must add the new type to the hash table immediately, in case
4885 we encounter this type again during a recursive call below. */
fd90ace4
YQ
4886 struct type_pair *stored
4887 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
4888
ae5a43e0
DJ
4889 *slot = stored;
4890
876cecd0
TT
4891 /* Copy the common fields of types. For the main type, we simply
4892 copy the entire thing and then update specific fields as needed. */
4893 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
4894 TYPE_OBJFILE_OWNED (new_type) = 0;
4895 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 4896
ae5a43e0
DJ
4897 if (TYPE_NAME (type))
4898 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
ae5a43e0
DJ
4899
4900 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4901 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4902
4903 /* Copy the fields. */
ae5a43e0
DJ
4904 if (TYPE_NFIELDS (type))
4905 {
4906 int i, nfields;
4907
4908 nfields = TYPE_NFIELDS (type);
2fabdf33
AB
4909 TYPE_FIELDS (new_type) = (struct field *)
4910 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
ae5a43e0
DJ
4911 for (i = 0; i < nfields; i++)
4912 {
7ba81444
MS
4913 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4914 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
4915 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4916 if (TYPE_FIELD_TYPE (type, i))
4917 TYPE_FIELD_TYPE (new_type, i)
4918 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4919 copied_types);
4920 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
4921 TYPE_FIELD_NAME (new_type, i) =
4922 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 4923 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 4924 {
d6a843b5
JK
4925 case FIELD_LOC_KIND_BITPOS:
4926 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4927 TYPE_FIELD_BITPOS (type, i));
4928 break;
14e75d8e
JK
4929 case FIELD_LOC_KIND_ENUMVAL:
4930 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4931 TYPE_FIELD_ENUMVAL (type, i));
4932 break;
d6a843b5
JK
4933 case FIELD_LOC_KIND_PHYSADDR:
4934 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4935 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4936 break;
4937 case FIELD_LOC_KIND_PHYSNAME:
4938 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4939 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4940 i)));
4941 break;
4942 default:
4943 internal_error (__FILE__, __LINE__,
4944 _("Unexpected type field location kind: %d"),
4945 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
4946 }
4947 }
4948 }
4949
0963b4bd 4950 /* For range types, copy the bounds information. */
43bbcdc2
PH
4951 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4952 {
2fabdf33
AB
4953 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
4954 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
43bbcdc2
PH
4955 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4956 }
4957
d9823cbb
KB
4958 if (TYPE_DYN_PROP_LIST (type) != NULL)
4959 TYPE_DYN_PROP_LIST (new_type)
4960 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4961 TYPE_DYN_PROP_LIST (type));
4962
3cdcd0ce 4963
ae5a43e0
DJ
4964 /* Copy pointers to other types. */
4965 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
4966 TYPE_TARGET_TYPE (new_type) =
4967 copy_type_recursive (objfile,
4968 TYPE_TARGET_TYPE (type),
4969 copied_types);
f6b3afbf 4970
ae5a43e0
DJ
4971 /* Maybe copy the type_specific bits.
4972
4973 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4974 base classes and methods. There's no fundamental reason why we
4975 can't, but at the moment it is not needed. */
4976
f6b3afbf
DE
4977 switch (TYPE_SPECIFIC_FIELD (type))
4978 {
4979 case TYPE_SPECIFIC_NONE:
4980 break;
4981 case TYPE_SPECIFIC_FUNC:
4982 INIT_FUNC_SPECIFIC (new_type);
4983 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4984 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4985 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4986 break;
4987 case TYPE_SPECIFIC_FLOATFORMAT:
4988 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4989 break;
4990 case TYPE_SPECIFIC_CPLUS_STUFF:
4991 INIT_CPLUS_SPECIFIC (new_type);
4992 break;
4993 case TYPE_SPECIFIC_GNAT_STUFF:
4994 INIT_GNAT_SPECIFIC (new_type);
4995 break;
09e2d7c7
DE
4996 case TYPE_SPECIFIC_SELF_TYPE:
4997 set_type_self_type (new_type,
4998 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4999 copied_types));
5000 break;
f6b3afbf
DE
5001 default:
5002 gdb_assert_not_reached ("bad type_specific_kind");
5003 }
ae5a43e0
DJ
5004
5005 return new_type;
5006}
5007
4af88198
JB
5008/* Make a copy of the given TYPE, except that the pointer & reference
5009 types are not preserved.
5010
5011 This function assumes that the given type has an associated objfile.
5012 This objfile is used to allocate the new type. */
5013
5014struct type *
5015copy_type (const struct type *type)
5016{
5017 struct type *new_type;
5018
e9bb382b 5019 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 5020
e9bb382b 5021 new_type = alloc_type_copy (type);
4af88198
JB
5022 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5023 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5024 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5025 sizeof (struct main_type));
d9823cbb
KB
5026 if (TYPE_DYN_PROP_LIST (type) != NULL)
5027 TYPE_DYN_PROP_LIST (new_type)
5028 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5029 TYPE_DYN_PROP_LIST (type));
4af88198
JB
5030
5031 return new_type;
5032}
5212577a 5033\f
e9bb382b
UW
5034/* Helper functions to initialize architecture-specific types. */
5035
5036/* Allocate a type structure associated with GDBARCH and set its
5037 CODE, LENGTH, and NAME fields. */
5212577a 5038
e9bb382b
UW
5039struct type *
5040arch_type (struct gdbarch *gdbarch,
77b7c781 5041 enum type_code code, int bit, const char *name)
e9bb382b
UW
5042{
5043 struct type *type;
5044
5045 type = alloc_type_arch (gdbarch);
ae438bc5 5046 set_type_code (type, code);
77b7c781
UW
5047 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5048 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
e9bb382b
UW
5049
5050 if (name)
6c214e7c 5051 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
e9bb382b
UW
5052
5053 return type;
5054}
5055
5056/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5057 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5058 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5059
e9bb382b
UW
5060struct type *
5061arch_integer_type (struct gdbarch *gdbarch,
695bfa52 5062 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5063{
5064 struct type *t;
5065
77b7c781 5066 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
e9bb382b
UW
5067 if (unsigned_p)
5068 TYPE_UNSIGNED (t) = 1;
e9bb382b
UW
5069
5070 return t;
5071}
5072
5073/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5074 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5075 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5076
e9bb382b
UW
5077struct type *
5078arch_character_type (struct gdbarch *gdbarch,
695bfa52 5079 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5080{
5081 struct type *t;
5082
77b7c781 5083 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
e9bb382b
UW
5084 if (unsigned_p)
5085 TYPE_UNSIGNED (t) = 1;
5086
5087 return t;
5088}
5089
5090/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5091 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5092 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5093
e9bb382b
UW
5094struct type *
5095arch_boolean_type (struct gdbarch *gdbarch,
695bfa52 5096 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5097{
5098 struct type *t;
5099
77b7c781 5100 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
e9bb382b
UW
5101 if (unsigned_p)
5102 TYPE_UNSIGNED (t) = 1;
5103
5104 return t;
5105}
5106
5107/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5108 BIT is the type size in bits; if BIT equals -1, the size is
5109 determined by the floatformat. NAME is the type name. Set the
5110 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 5111
27067745 5112struct type *
e9bb382b 5113arch_float_type (struct gdbarch *gdbarch,
695bfa52
TT
5114 int bit, const char *name,
5115 const struct floatformat **floatformats)
8da61cc4 5116{
0db7851f 5117 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
8da61cc4
DJ
5118 struct type *t;
5119
0db7851f 5120 bit = verify_floatformat (bit, fmt);
77b7c781 5121 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
0db7851f 5122 TYPE_FLOATFORMAT (t) = fmt;
b79497cb 5123
8da61cc4
DJ
5124 return t;
5125}
5126
88dfca6c
UW
5127/* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5128 BIT is the type size in bits. NAME is the type name. */
5129
5130struct type *
5131arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5132{
5133 struct type *t;
5134
77b7c781 5135 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
88dfca6c
UW
5136 return t;
5137}
5138
e9bb382b
UW
5139/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
5140 NAME is the type name. TARGET_TYPE is the component float type. */
5212577a 5141
27067745 5142struct type *
e9bb382b 5143arch_complex_type (struct gdbarch *gdbarch,
695bfa52 5144 const char *name, struct type *target_type)
27067745
UW
5145{
5146 struct type *t;
d8734c88 5147
e9bb382b 5148 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
77b7c781 5149 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
27067745
UW
5150 TYPE_TARGET_TYPE (t) = target_type;
5151 return t;
5152}
5153
88dfca6c
UW
5154/* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5155 BIT is the pointer type size in bits. NAME is the type name.
5156 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5157 TYPE_UNSIGNED flag. */
5158
5159struct type *
5160arch_pointer_type (struct gdbarch *gdbarch,
5161 int bit, const char *name, struct type *target_type)
5162{
5163 struct type *t;
5164
77b7c781 5165 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
88dfca6c
UW
5166 TYPE_TARGET_TYPE (t) = target_type;
5167 TYPE_UNSIGNED (t) = 1;
5168 return t;
5169}
5170
e9bb382b 5171/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
77b7c781 5172 NAME is the type name. BIT is the size of the flag word in bits. */
5212577a 5173
e9bb382b 5174struct type *
77b7c781 5175arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
e9bb382b 5176{
e9bb382b
UW
5177 struct type *type;
5178
77b7c781 5179 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
e9bb382b 5180 TYPE_UNSIGNED (type) = 1;
81516450
DE
5181 TYPE_NFIELDS (type) = 0;
5182 /* Pre-allocate enough space assuming every field is one bit. */
224c3ddb 5183 TYPE_FIELDS (type)
77b7c781 5184 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
e9bb382b
UW
5185
5186 return type;
5187}
5188
5189/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
81516450
DE
5190 position BITPOS is called NAME. Pass NAME as "" for fields that
5191 should not be printed. */
5192
5193void
5194append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
695bfa52 5195 struct type *field_type, const char *name)
81516450
DE
5196{
5197 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5198 int field_nr = TYPE_NFIELDS (type);
5199
5200 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5201 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5202 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5203 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5204 gdb_assert (name != NULL);
5205
5206 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5207 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5208 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5209 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5210 ++TYPE_NFIELDS (type);
5211}
5212
5213/* Special version of append_flags_type_field to add a flag field.
5214 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
e9bb382b 5215 position BITPOS is called NAME. */
5212577a 5216
e9bb382b 5217void
695bfa52 5218append_flags_type_flag (struct type *type, int bitpos, const char *name)
e9bb382b 5219{
81516450 5220 struct gdbarch *gdbarch = get_type_arch (type);
e9bb382b 5221
81516450
DE
5222 append_flags_type_field (type, bitpos, 1,
5223 builtin_type (gdbarch)->builtin_bool,
5224 name);
e9bb382b
UW
5225}
5226
5227/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5228 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 5229
e9bb382b 5230struct type *
695bfa52
TT
5231arch_composite_type (struct gdbarch *gdbarch, const char *name,
5232 enum type_code code)
e9bb382b
UW
5233{
5234 struct type *t;
d8734c88 5235
e9bb382b
UW
5236 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5237 t = arch_type (gdbarch, code, 0, NULL);
e86ca25f 5238 TYPE_NAME (t) = name;
e9bb382b
UW
5239 INIT_CPLUS_SPECIFIC (t);
5240 return t;
5241}
5242
5243/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
5244 Do not set the field's position or adjust the type's length;
5245 the caller should do so. Return the new field. */
5212577a 5246
f5dff777 5247struct field *
695bfa52 5248append_composite_type_field_raw (struct type *t, const char *name,
f5dff777 5249 struct type *field)
e9bb382b
UW
5250{
5251 struct field *f;
d8734c88 5252
e9bb382b 5253 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
224c3ddb
SM
5254 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5255 TYPE_NFIELDS (t));
e9bb382b
UW
5256 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5257 memset (f, 0, sizeof f[0]);
5258 FIELD_TYPE (f[0]) = field;
5259 FIELD_NAME (f[0]) = name;
f5dff777
DJ
5260 return f;
5261}
5262
5263/* Add new field with name NAME and type FIELD to composite type T.
5264 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 5265
f5dff777 5266void
695bfa52 5267append_composite_type_field_aligned (struct type *t, const char *name,
f5dff777
DJ
5268 struct type *field, int alignment)
5269{
5270 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 5271
e9bb382b
UW
5272 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5273 {
5274 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5275 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5276 }
5277 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5278 {
5279 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5280 if (TYPE_NFIELDS (t) > 1)
5281 {
f41f5e61
PA
5282 SET_FIELD_BITPOS (f[0],
5283 (FIELD_BITPOS (f[-1])
5284 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5285 * TARGET_CHAR_BIT)));
e9bb382b
UW
5286
5287 if (alignment)
5288 {
86c3c1fc
AB
5289 int left;
5290
5291 alignment *= TARGET_CHAR_BIT;
5292 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 5293
e9bb382b
UW
5294 if (left)
5295 {
f41f5e61 5296 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 5297 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
5298 }
5299 }
5300 }
5301 }
5302}
5303
5304/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 5305
e9bb382b 5306void
695bfa52 5307append_composite_type_field (struct type *t, const char *name,
e9bb382b
UW
5308 struct type *field)
5309{
5310 append_composite_type_field_aligned (t, name, field, 0);
5311}
5312
000177f0
AC
5313static struct gdbarch_data *gdbtypes_data;
5314
5315const struct builtin_type *
5316builtin_type (struct gdbarch *gdbarch)
5317{
9a3c8263 5318 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
000177f0
AC
5319}
5320
5321static void *
5322gdbtypes_post_init (struct gdbarch *gdbarch)
5323{
5324 struct builtin_type *builtin_type
5325 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5326
46bf5051 5327 /* Basic types. */
e9bb382b 5328 builtin_type->builtin_void
77b7c781 5329 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
e9bb382b
UW
5330 builtin_type->builtin_char
5331 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5332 !gdbarch_char_signed (gdbarch), "char");
c413c448 5333 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
e9bb382b
UW
5334 builtin_type->builtin_signed_char
5335 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5336 0, "signed char");
5337 builtin_type->builtin_unsigned_char
5338 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5339 1, "unsigned char");
5340 builtin_type->builtin_short
5341 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5342 0, "short");
5343 builtin_type->builtin_unsigned_short
5344 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5345 1, "unsigned short");
5346 builtin_type->builtin_int
5347 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5348 0, "int");
5349 builtin_type->builtin_unsigned_int
5350 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5351 1, "unsigned int");
5352 builtin_type->builtin_long
5353 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5354 0, "long");
5355 builtin_type->builtin_unsigned_long
5356 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5357 1, "unsigned long");
5358 builtin_type->builtin_long_long
5359 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5360 0, "long long");
5361 builtin_type->builtin_unsigned_long_long
5362 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5363 1, "unsigned long long");
a6d0f249
AH
5364 builtin_type->builtin_half
5365 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5366 "half", gdbarch_half_format (gdbarch));
70bd8e24 5367 builtin_type->builtin_float
e9bb382b 5368 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 5369 "float", gdbarch_float_format (gdbarch));
70bd8e24 5370 builtin_type->builtin_double
e9bb382b 5371 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 5372 "double", gdbarch_double_format (gdbarch));
70bd8e24 5373 builtin_type->builtin_long_double
e9bb382b 5374 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 5375 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 5376 builtin_type->builtin_complex
e9bb382b
UW
5377 = arch_complex_type (gdbarch, "complex",
5378 builtin_type->builtin_float);
70bd8e24 5379 builtin_type->builtin_double_complex
e9bb382b
UW
5380 = arch_complex_type (gdbarch, "double complex",
5381 builtin_type->builtin_double);
5382 builtin_type->builtin_string
77b7c781 5383 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
e9bb382b 5384 builtin_type->builtin_bool
77b7c781 5385 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
000177f0 5386
7678ef8f
TJB
5387 /* The following three are about decimal floating point types, which
5388 are 32-bits, 64-bits and 128-bits respectively. */
5389 builtin_type->builtin_decfloat
88dfca6c 5390 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
7678ef8f 5391 builtin_type->builtin_decdouble
88dfca6c 5392 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
7678ef8f 5393 builtin_type->builtin_declong
88dfca6c 5394 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
7678ef8f 5395
69feb676 5396 /* "True" character types. */
e9bb382b
UW
5397 builtin_type->builtin_true_char
5398 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5399 builtin_type->builtin_true_unsigned_char
5400 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 5401
df4df182 5402 /* Fixed-size integer types. */
e9bb382b
UW
5403 builtin_type->builtin_int0
5404 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5405 builtin_type->builtin_int8
5406 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5407 builtin_type->builtin_uint8
5408 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5409 builtin_type->builtin_int16
5410 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5411 builtin_type->builtin_uint16
5412 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
d1908f2d
JD
5413 builtin_type->builtin_int24
5414 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5415 builtin_type->builtin_uint24
5416 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
e9bb382b
UW
5417 builtin_type->builtin_int32
5418 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5419 builtin_type->builtin_uint32
5420 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5421 builtin_type->builtin_int64
5422 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5423 builtin_type->builtin_uint64
5424 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5425 builtin_type->builtin_int128
5426 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5427 builtin_type->builtin_uint128
5428 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
5429 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5430 TYPE_INSTANCE_FLAG_NOTTEXT;
5431 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5432 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 5433
9a22f0d0
PM
5434 /* Wide character types. */
5435 builtin_type->builtin_char16
53e710ac 5436 = arch_integer_type (gdbarch, 16, 1, "char16_t");
9a22f0d0 5437 builtin_type->builtin_char32
53e710ac 5438 = arch_integer_type (gdbarch, 32, 1, "char32_t");
53375380
PA
5439 builtin_type->builtin_wchar
5440 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5441 !gdbarch_wchar_signed (gdbarch), "wchar_t");
9a22f0d0 5442
46bf5051 5443 /* Default data/code pointer types. */
e9bb382b
UW
5444 builtin_type->builtin_data_ptr
5445 = lookup_pointer_type (builtin_type->builtin_void);
5446 builtin_type->builtin_func_ptr
5447 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
5448 builtin_type->builtin_func_func
5449 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 5450
78267919 5451 /* This type represents a GDB internal function. */
e9bb382b
UW
5452 builtin_type->internal_fn
5453 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5454 "<internal function>");
78267919 5455
e81e7f5e
SC
5456 /* This type represents an xmethod. */
5457 builtin_type->xmethod
5458 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5459
46bf5051
UW
5460 return builtin_type;
5461}
5462
46bf5051
UW
5463/* This set of objfile-based types is intended to be used by symbol
5464 readers as basic types. */
5465
7a102139
TT
5466static const struct objfile_key<struct objfile_type,
5467 gdb::noop_deleter<struct objfile_type>>
5468 objfile_type_data;
46bf5051
UW
5469
5470const struct objfile_type *
5471objfile_type (struct objfile *objfile)
5472{
5473 struct gdbarch *gdbarch;
7a102139 5474 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
46bf5051
UW
5475
5476 if (objfile_type)
5477 return objfile_type;
5478
5479 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5480 1, struct objfile_type);
5481
5482 /* Use the objfile architecture to determine basic type properties. */
5483 gdbarch = get_objfile_arch (objfile);
5484
5485 /* Basic types. */
5486 objfile_type->builtin_void
77b7c781 5487 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
46bf5051 5488 objfile_type->builtin_char
19f392bc
UW
5489 = init_integer_type (objfile, TARGET_CHAR_BIT,
5490 !gdbarch_char_signed (gdbarch), "char");
c413c448 5491 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
46bf5051 5492 objfile_type->builtin_signed_char
19f392bc
UW
5493 = init_integer_type (objfile, TARGET_CHAR_BIT,
5494 0, "signed char");
46bf5051 5495 objfile_type->builtin_unsigned_char
19f392bc
UW
5496 = init_integer_type (objfile, TARGET_CHAR_BIT,
5497 1, "unsigned char");
46bf5051 5498 objfile_type->builtin_short
19f392bc
UW
5499 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5500 0, "short");
46bf5051 5501 objfile_type->builtin_unsigned_short
19f392bc
UW
5502 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5503 1, "unsigned short");
46bf5051 5504 objfile_type->builtin_int
19f392bc
UW
5505 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5506 0, "int");
46bf5051 5507 objfile_type->builtin_unsigned_int
19f392bc
UW
5508 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5509 1, "unsigned int");
46bf5051 5510 objfile_type->builtin_long
19f392bc
UW
5511 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5512 0, "long");
46bf5051 5513 objfile_type->builtin_unsigned_long
19f392bc
UW
5514 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5515 1, "unsigned long");
46bf5051 5516 objfile_type->builtin_long_long
19f392bc
UW
5517 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5518 0, "long long");
46bf5051 5519 objfile_type->builtin_unsigned_long_long
19f392bc
UW
5520 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5521 1, "unsigned long long");
46bf5051 5522 objfile_type->builtin_float
19f392bc
UW
5523 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5524 "float", gdbarch_float_format (gdbarch));
46bf5051 5525 objfile_type->builtin_double
19f392bc
UW
5526 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5527 "double", gdbarch_double_format (gdbarch));
46bf5051 5528 objfile_type->builtin_long_double
19f392bc
UW
5529 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5530 "long double", gdbarch_long_double_format (gdbarch));
46bf5051
UW
5531
5532 /* This type represents a type that was unrecognized in symbol read-in. */
5533 objfile_type->builtin_error
19f392bc 5534 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
46bf5051
UW
5535
5536 /* The following set of types is used for symbols with no
5537 debug information. */
5538 objfile_type->nodebug_text_symbol
77b7c781 5539 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5540 "<text variable, no debug info>");
0875794a 5541 objfile_type->nodebug_text_gnu_ifunc_symbol
77b7c781 5542 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5543 "<text gnu-indirect-function variable, no debug info>");
19f392bc 5544 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
0875794a 5545 objfile_type->nodebug_got_plt_symbol
19f392bc
UW
5546 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5547 "<text from jump slot in .got.plt, no debug info>",
5548 objfile_type->nodebug_text_symbol);
46bf5051 5549 objfile_type->nodebug_data_symbol
46a4882b 5550 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
46bf5051 5551 objfile_type->nodebug_unknown_symbol
46a4882b 5552 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
46bf5051 5553 objfile_type->nodebug_tls_symbol
46a4882b 5554 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
000177f0
AC
5555
5556 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 5557 the same.
000177f0
AC
5558
5559 The upshot is:
5560 - gdb's `struct type' always describes the target's
5561 representation.
5562 - gdb's `struct value' objects should always hold values in
5563 target form.
5564 - gdb's CORE_ADDR values are addresses in the unified virtual
5565 address space that the assembler and linker work with. Thus,
5566 since target_read_memory takes a CORE_ADDR as an argument, it
5567 can access any memory on the target, even if the processor has
5568 separate code and data address spaces.
5569
46bf5051
UW
5570 In this context, objfile_type->builtin_core_addr is a bit odd:
5571 it's a target type for a value the target will never see. It's
5572 only used to hold the values of (typeless) linker symbols, which
5573 are indeed in the unified virtual address space. */
000177f0 5574
46bf5051 5575 objfile_type->builtin_core_addr
19f392bc
UW
5576 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5577 "__CORE_ADDR");
64c50499 5578
7a102139 5579 objfile_type_data.set (objfile, objfile_type);
46bf5051 5580 return objfile_type;
000177f0
AC
5581}
5582
c906108c 5583void
fba45db2 5584_initialize_gdbtypes (void)
c906108c 5585{
5674de60
UW
5586 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5587
ccce17b0
YQ
5588 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5589 _("Set debugging of C++ overloading."),
5590 _("Show debugging of C++ overloading."),
5591 _("When enabled, ranking of the "
5592 "functions is displayed."),
5593 NULL,
5594 show_overload_debug,
5595 &setdebuglist, &showdebuglist);
5674de60 5596
7ba81444 5597 /* Add user knob for controlling resolution of opaque types. */
5674de60 5598 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
5599 &opaque_type_resolution,
5600 _("Set resolution of opaque struct/class/union"
5601 " types (if set before loading symbols)."),
5602 _("Show resolution of opaque struct/class/union"
5603 " types (if set before loading symbols)."),
5604 NULL, NULL,
5674de60
UW
5605 show_opaque_type_resolution,
5606 &setlist, &showlist);
a451cb65
KS
5607
5608 /* Add an option to permit non-strict type checking. */
5609 add_setshow_boolean_cmd ("type", class_support,
5610 &strict_type_checking,
5611 _("Set strict type checking."),
5612 _("Show strict type checking."),
5613 NULL, NULL,
5614 show_strict_type_checking,
5615 &setchecklist, &showchecklist);
c906108c 5616}