]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/gdbtypes.c
*** empty log message ***
[thirdparty/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
d7f0b9ce 2 Copyright 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002
b6ba6518 3 Free Software Foundation, Inc.
c906108c
SS
4 Contributed by Cygnus Support, using pieces from other GDB modules.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include "bfd.h"
26#include "symtab.h"
27#include "symfile.h"
28#include "objfiles.h"
29#include "gdbtypes.h"
30#include "expression.h"
31#include "language.h"
32#include "target.h"
33#include "value.h"
34#include "demangle.h"
35#include "complaints.h"
36#include "gdbcmd.h"
c91ecb25 37#include "wrapper.h"
015a42b4 38#include "cp-abi.h"
a02fd225 39#include "gdb_assert.h"
c906108c
SS
40
41/* These variables point to the objects
42 representing the predefined C data types. */
43
44struct type *builtin_type_void;
45struct type *builtin_type_char;
9e0b60a8 46struct type *builtin_type_true_char;
c906108c
SS
47struct type *builtin_type_short;
48struct type *builtin_type_int;
49struct type *builtin_type_long;
50struct type *builtin_type_long_long;
51struct type *builtin_type_signed_char;
52struct type *builtin_type_unsigned_char;
53struct type *builtin_type_unsigned_short;
54struct type *builtin_type_unsigned_int;
55struct type *builtin_type_unsigned_long;
56struct type *builtin_type_unsigned_long_long;
57struct type *builtin_type_float;
58struct type *builtin_type_double;
59struct type *builtin_type_long_double;
60struct type *builtin_type_complex;
61struct type *builtin_type_double_complex;
62struct type *builtin_type_string;
63struct type *builtin_type_int8;
64struct type *builtin_type_uint8;
65struct type *builtin_type_int16;
66struct type *builtin_type_uint16;
67struct type *builtin_type_int32;
68struct type *builtin_type_uint32;
69struct type *builtin_type_int64;
70struct type *builtin_type_uint64;
8b982acf
EZ
71struct type *builtin_type_int128;
72struct type *builtin_type_uint128;
c906108c 73struct type *builtin_type_bool;
917317f4 74struct type *builtin_type_v4sf;
c2d11a7d 75struct type *builtin_type_v4si;
08cf96df 76struct type *builtin_type_v16qi;
c2d11a7d 77struct type *builtin_type_v8qi;
08cf96df 78struct type *builtin_type_v8hi;
c2d11a7d
JM
79struct type *builtin_type_v4hi;
80struct type *builtin_type_v2si;
08cf96df 81struct type *builtin_type_vec128;
598f52df
AC
82struct type *builtin_type_ieee_single_big;
83struct type *builtin_type_ieee_single_little;
84struct type *builtin_type_ieee_double_big;
85struct type *builtin_type_ieee_double_little;
86struct type *builtin_type_ieee_double_littlebyte_bigword;
87struct type *builtin_type_i387_ext;
88struct type *builtin_type_m68881_ext;
89struct type *builtin_type_i960_ext;
90struct type *builtin_type_m88110_ext;
91struct type *builtin_type_m88110_harris_ext;
92struct type *builtin_type_arm_ext_big;
93struct type *builtin_type_arm_ext_littlebyte_bigword;
94struct type *builtin_type_ia64_spill_big;
95struct type *builtin_type_ia64_spill_little;
96struct type *builtin_type_ia64_quad_big;
97struct type *builtin_type_ia64_quad_little;
090a2205 98struct type *builtin_type_void_data_ptr;
ee3a7b7f 99struct type *builtin_type_void_func_ptr;
c4093a6a
JM
100struct type *builtin_type_CORE_ADDR;
101struct type *builtin_type_bfd_vma;
c906108c
SS
102
103int opaque_type_resolution = 1;
5d161b24 104int overload_debug = 0;
c906108c 105
c5aa993b
JM
106struct extra
107 {
108 char str[128];
109 int len;
8c990f3c 110 }; /* maximum extension is 128! FIXME */
c906108c 111
a14ed312
KB
112static void add_name (struct extra *, char *);
113static void add_mangled_type (struct extra *, struct type *);
c906108c 114#if 0
a14ed312 115static void cfront_mangle_name (struct type *, int, int);
c906108c 116#endif
a14ed312
KB
117static void print_bit_vector (B_TYPE *, int);
118static void print_arg_types (struct type **, int);
119static void dump_fn_fieldlists (struct type *, int);
120static void print_cplus_stuff (struct type *, int);
121static void virtual_base_list_aux (struct type *dclass);
7a292a7a 122
c906108c
SS
123
124/* Alloc a new type structure and fill it with some defaults. If
125 OBJFILE is non-NULL, then allocate the space for the type structure
126 in that objfile's type_obstack. */
127
128struct type *
fba45db2 129alloc_type (struct objfile *objfile)
c906108c
SS
130{
131 register struct type *type;
132
133 /* Alloc the structure and start off with all fields zeroed. */
134
135 if (objfile == NULL)
136 {
c5aa993b 137 type = (struct type *) xmalloc (sizeof (struct type));
c906108c
SS
138 }
139 else
140 {
c5aa993b
JM
141 type = (struct type *) obstack_alloc (&objfile->type_obstack,
142 sizeof (struct type));
c906108c
SS
143 OBJSTAT (objfile, n_types++);
144 }
145 memset ((char *) type, 0, sizeof (struct type));
146
147 /* Initialize the fields that might not be zero. */
148
149 TYPE_CODE (type) = TYPE_CODE_UNDEF;
150 TYPE_OBJFILE (type) = objfile;
151 TYPE_VPTR_FIELDNO (type) = -1;
c5aa993b 152 TYPE_CV_TYPE (type) = type; /* chain back to itself */
47663de5 153 TYPE_AS_TYPE (type) = type; /* ditto */
c906108c
SS
154
155 return (type);
156}
157
158/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
159 to a pointer to memory where the pointer type should be stored.
160 If *TYPEPTR is zero, update it to point to the pointer type we return.
161 We allocate new memory if needed. */
162
163struct type *
fba45db2 164make_pointer_type (struct type *type, struct type **typeptr)
c906108c 165{
c5aa993b 166 register struct type *ntype; /* New type */
c906108c
SS
167 struct objfile *objfile;
168
169 ntype = TYPE_POINTER_TYPE (type);
170
c5aa993b 171 if (ntype)
c906108c 172 {
c5aa993b
JM
173 if (typeptr == 0)
174 return ntype; /* Don't care about alloc, and have new type. */
c906108c 175 else if (*typeptr == 0)
c5aa993b 176 {
c906108c
SS
177 *typeptr = ntype; /* Tracking alloc, and we have new type. */
178 return ntype;
c5aa993b 179 }
c906108c
SS
180 }
181
182 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
183 {
184 ntype = alloc_type (TYPE_OBJFILE (type));
185 if (typeptr)
186 *typeptr = ntype;
187 }
c5aa993b
JM
188 else
189 /* We have storage, but need to reset it. */
c906108c
SS
190 {
191 ntype = *typeptr;
192 objfile = TYPE_OBJFILE (ntype);
193 memset ((char *) ntype, 0, sizeof (struct type));
194 TYPE_OBJFILE (ntype) = objfile;
195 }
196
197 TYPE_TARGET_TYPE (ntype) = type;
198 TYPE_POINTER_TYPE (type) = ntype;
199
200 /* FIXME! Assume the machine has only one representation for pointers! */
201
202 TYPE_LENGTH (ntype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
203 TYPE_CODE (ntype) = TYPE_CODE_PTR;
204
67b2adb2
AC
205 /* Mark pointers as unsigned. The target converts between pointers
206 and addresses (CORE_ADDRs) using POINTER_TO_ADDRESS() and
207 ADDRESS_TO_POINTER(). */
c906108c 208 TYPE_FLAGS (ntype) |= TYPE_FLAG_UNSIGNED;
c5aa993b 209
c906108c
SS
210 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
211 TYPE_POINTER_TYPE (type) = ntype;
212
213 return ntype;
214}
215
216/* Given a type TYPE, return a type of pointers to that type.
217 May need to construct such a type if this is the first use. */
218
219struct type *
fba45db2 220lookup_pointer_type (struct type *type)
c906108c 221{
c5aa993b 222 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
223}
224
225/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero, points
226 to a pointer to memory where the reference type should be stored.
227 If *TYPEPTR is zero, update it to point to the reference type we return.
228 We allocate new memory if needed. */
229
230struct type *
fba45db2 231make_reference_type (struct type *type, struct type **typeptr)
c906108c 232{
c5aa993b 233 register struct type *ntype; /* New type */
c906108c
SS
234 struct objfile *objfile;
235
236 ntype = TYPE_REFERENCE_TYPE (type);
237
c5aa993b 238 if (ntype)
c906108c 239 {
c5aa993b
JM
240 if (typeptr == 0)
241 return ntype; /* Don't care about alloc, and have new type. */
c906108c 242 else if (*typeptr == 0)
c5aa993b 243 {
c906108c
SS
244 *typeptr = ntype; /* Tracking alloc, and we have new type. */
245 return ntype;
c5aa993b 246 }
c906108c
SS
247 }
248
249 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
250 {
251 ntype = alloc_type (TYPE_OBJFILE (type));
252 if (typeptr)
253 *typeptr = ntype;
254 }
c5aa993b
JM
255 else
256 /* We have storage, but need to reset it. */
c906108c
SS
257 {
258 ntype = *typeptr;
259 objfile = TYPE_OBJFILE (ntype);
260 memset ((char *) ntype, 0, sizeof (struct type));
261 TYPE_OBJFILE (ntype) = objfile;
262 }
263
264 TYPE_TARGET_TYPE (ntype) = type;
265 TYPE_REFERENCE_TYPE (type) = ntype;
266
267 /* FIXME! Assume the machine has only one representation for references,
268 and that it matches the (only) representation for pointers! */
269
270 TYPE_LENGTH (ntype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
271 TYPE_CODE (ntype) = TYPE_CODE_REF;
c5aa993b 272
c906108c
SS
273 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
274 TYPE_REFERENCE_TYPE (type) = ntype;
275
276 return ntype;
277}
278
279/* Same as above, but caller doesn't care about memory allocation details. */
280
281struct type *
fba45db2 282lookup_reference_type (struct type *type)
c906108c 283{
c5aa993b 284 return make_reference_type (type, (struct type **) 0);
c906108c
SS
285}
286
287/* Lookup a function type that returns type TYPE. TYPEPTR, if nonzero, points
288 to a pointer to memory where the function type should be stored.
289 If *TYPEPTR is zero, update it to point to the function type we return.
290 We allocate new memory if needed. */
291
292struct type *
fba45db2 293make_function_type (struct type *type, struct type **typeptr)
c906108c 294{
c5aa993b 295 register struct type *ntype; /* New type */
c906108c
SS
296 struct objfile *objfile;
297
298 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
299 {
300 ntype = alloc_type (TYPE_OBJFILE (type));
301 if (typeptr)
302 *typeptr = ntype;
303 }
c5aa993b
JM
304 else
305 /* We have storage, but need to reset it. */
c906108c
SS
306 {
307 ntype = *typeptr;
308 objfile = TYPE_OBJFILE (ntype);
309 memset ((char *) ntype, 0, sizeof (struct type));
310 TYPE_OBJFILE (ntype) = objfile;
311 }
312
313 TYPE_TARGET_TYPE (ntype) = type;
314
315 TYPE_LENGTH (ntype) = 1;
316 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 317
c906108c
SS
318 return ntype;
319}
320
321
322/* Given a type TYPE, return a type of functions that return that type.
323 May need to construct such a type if this is the first use. */
324
325struct type *
fba45db2 326lookup_function_type (struct type *type)
c906108c 327{
c5aa993b 328 return make_function_type (type, (struct type **) 0);
c906108c
SS
329}
330
47663de5
MS
331/* Identify address space identifier by name --
332 return the integer flag defined in gdbtypes.h. */
333extern int
334address_space_name_to_int (char *space_identifier)
335{
336 /* Check for known address space delimiters. */
337 if (!strcmp (space_identifier, "code"))
338 return TYPE_FLAG_CODE_SPACE;
339 else if (!strcmp (space_identifier, "data"))
340 return TYPE_FLAG_DATA_SPACE;
341 else
342 error ("Unknown address space specifier: \"%s\"", space_identifier);
343}
344
345/* Identify address space identifier by integer flag as defined in
346 gdbtypes.h -- return the string version of the adress space name. */
347
348extern char *
349address_space_int_to_name (int space_flag)
350{
351 if (space_flag & TYPE_FLAG_CODE_SPACE)
352 return "code";
353 else if (space_flag & TYPE_FLAG_DATA_SPACE)
354 return "data";
355 else
356 return NULL;
357}
358
359/* Make an address-space-delimited variant of a type -- a type that
360 is identical to the one supplied except that it has an address
361 space attribute attached to it (such as "code" or "data").
362
363 This is for Harvard architectures. */
364
365struct type *
366make_type_with_address_space (struct type *type, int space_flag)
367{
368 struct type *ntype;
369
370 ntype = type;
371 do {
372 if ((ntype->flags & space_flag) != 0)
373 return ntype;
374 ntype = TYPE_AS_TYPE (ntype);
375 } while (ntype != type);
376
377 /* Create a new, duplicate type. */
378 ntype = alloc_type (TYPE_OBJFILE (type));
379 /* Copy original type. */
380 memcpy ((char *) ntype, (char *) type, sizeof (struct type));
381
382 /* Pointers or references to the original type are not relevant to
383 the new type; but if the original type is a pointer, the new type
384 points to the same thing (so TYPE_TARGET_TYPE remains unchanged). */
385 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
386 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
387 TYPE_CV_TYPE (ntype) = ntype;
388
389 /* Chain the new address-space-specific type to the old type. */
390 ntype->as_type = type->as_type;
391 type->as_type = ntype;
392
393 /* Now set the address-space flag, and return the new type. */
394 ntype->flags |= space_flag;
395 return ntype;
396}
397
c906108c
SS
398
399/* Make a "c-v" variant of a type -- a type that is identical to the
400 one supplied except that it may have const or volatile attributes
401 CNST is a flag for setting the const attribute
402 VOLTL is a flag for setting the volatile attribute
403 TYPE is the base type whose variant we are creating.
404 TYPEPTR, if nonzero, points
405 to a pointer to memory where the reference type should be stored.
406 If *TYPEPTR is zero, update it to point to the reference type we return.
407 We allocate new memory if needed. */
408
409struct type *
fba45db2 410make_cv_type (int cnst, int voltl, struct type *type, struct type **typeptr)
c906108c 411{
c5aa993b
JM
412 register struct type *ntype; /* New type */
413 register struct type *tmp_type = type; /* tmp type */
c906108c
SS
414 struct objfile *objfile;
415
416 ntype = TYPE_CV_TYPE (type);
417
418 while (ntype != type)
419 {
420 if ((TYPE_CONST (ntype) == cnst) &&
c5aa993b
JM
421 (TYPE_VOLATILE (ntype) == voltl))
422 {
423 if (typeptr == 0)
424 return ntype;
425 else if (*typeptr == 0)
426 {
427 *typeptr = ntype; /* Tracking alloc, and we have new type. */
428 return ntype;
429 }
430 }
c906108c
SS
431 tmp_type = ntype;
432 ntype = TYPE_CV_TYPE (ntype);
433 }
434
435 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
436 {
437 ntype = alloc_type (TYPE_OBJFILE (type));
438 if (typeptr)
439 *typeptr = ntype;
440 }
c5aa993b
JM
441 else
442 /* We have storage, but need to reset it. */
c906108c
SS
443 {
444 ntype = *typeptr;
445 objfile = TYPE_OBJFILE (ntype);
446 /* memset ((char *) ntype, 0, sizeof (struct type)); */
447 TYPE_OBJFILE (ntype) = objfile;
448 }
449
c5aa993b 450 /* Copy original type */
c906108c
SS
451 memcpy ((char *) ntype, (char *) type, sizeof (struct type));
452 /* But zero out fields that shouldn't be copied */
c5aa993b
JM
453 TYPE_POINTER_TYPE (ntype) = (struct type *) 0; /* Need new pointer kind */
454 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0; /* Need new referene kind */
47663de5 455 TYPE_AS_TYPE (ntype) = ntype; /* Need new address-space kind. */
c906108c
SS
456 /* Note: TYPE_TARGET_TYPE can be left as is */
457
458 /* Set flags appropriately */
459 if (cnst)
c5aa993b 460 TYPE_FLAGS (ntype) |= TYPE_FLAG_CONST;
c906108c 461 else
c5aa993b 462 TYPE_FLAGS (ntype) &= ~TYPE_FLAG_CONST;
c906108c
SS
463
464 if (voltl)
c5aa993b 465 TYPE_FLAGS (ntype) |= TYPE_FLAG_VOLATILE;
c906108c 466 else
c5aa993b 467 TYPE_FLAGS (ntype) &= ~TYPE_FLAG_VOLATILE;
c906108c
SS
468
469 /* Fix the chain of cv variants */
470 TYPE_CV_TYPE (ntype) = type;
471 TYPE_CV_TYPE (tmp_type) = ntype;
472
473 return ntype;
474}
475
a02fd225
DJ
476/* When reading in a class type, we may have created references to
477 cv-qualified versions of the type (in method arguments, for
478 instance). Update everything on the cv ring from the primary
479 type TYPE.
c906108c 480
a02fd225
DJ
481 The only reason we do not need to do the same thing for address
482 spaces is that type readers do not create address space qualified
483 types. */
484void
485finish_cv_type (struct type *type)
486{
487 struct type *ntype, *cv_type, *ptr_type, *ref_type;
488 int cv_flags;
489
490 gdb_assert (!TYPE_CONST (type) && !TYPE_VOLATILE (type));
491
492 ntype = type;
493 while ((ntype = TYPE_CV_TYPE (ntype)) != type)
494 {
495 /* Save cv_flags. */
496 cv_flags = TYPE_FLAGS (ntype) & (TYPE_FLAG_VOLATILE | TYPE_FLAG_CONST);
497
498 /* If any reference or pointer types were created, save them too. */
499 ptr_type = TYPE_POINTER_TYPE (ntype);
500 ref_type = TYPE_REFERENCE_TYPE (ntype);
501
502 /* Don't disturb the CV chain. */
503 cv_type = TYPE_CV_TYPE (ntype);
504
505 /* Verify that we haven't added any address-space qualified types,
506 for the future. */
507 gdb_assert (ntype == TYPE_AS_TYPE (ntype));
508
509 /* Copy original type */
510 memcpy ((char *) ntype, (char *) type, sizeof (struct type));
c906108c 511
a02fd225
DJ
512 /* Restore everything. */
513 TYPE_POINTER_TYPE (ntype) = ptr_type;
514 TYPE_REFERENCE_TYPE (ntype) = ref_type;
515 TYPE_CV_TYPE (ntype) = cv_type;
516 TYPE_FLAGS (ntype) = TYPE_FLAGS (ntype) | cv_flags;
517
518 TYPE_AS_TYPE (ntype) = ntype;
519 }
520}
c906108c 521
dd6bda65
DJ
522/* Replace the contents of ntype with the type *type.
523
524 This function should not be necessary, but is due to quirks in the stabs
525 reader. This should go away. It does not handle the replacement type
526 being cv-qualified; it could be easily fixed to, but it should go away,
527 remember? */
528void
529replace_type (struct type *ntype, struct type *type)
530{
531 struct type *cv_chain, *as_chain, *ptr, *ref;
532
533 cv_chain = TYPE_CV_TYPE (ntype);
534 as_chain = TYPE_AS_TYPE (ntype);
535 ptr = TYPE_POINTER_TYPE (ntype);
536 ref = TYPE_REFERENCE_TYPE (ntype);
537
538 *ntype = *type;
539
540 TYPE_POINTER_TYPE (ntype) = ptr;
541 TYPE_REFERENCE_TYPE (ntype) = ref;
542 TYPE_CV_TYPE (ntype) = cv_chain;
543 TYPE_AS_TYPE (ntype) = as_chain;
544
545 finish_cv_type (ntype);
546}
547
c906108c
SS
548/* Implement direct support for MEMBER_TYPE in GNU C++.
549 May need to construct such a type if this is the first use.
550 The TYPE is the type of the member. The DOMAIN is the type
551 of the aggregate that the member belongs to. */
552
553struct type *
fba45db2 554lookup_member_type (struct type *type, struct type *domain)
c906108c
SS
555{
556 register struct type *mtype;
557
558 mtype = alloc_type (TYPE_OBJFILE (type));
559 smash_to_member_type (mtype, domain, type);
560 return (mtype);
561}
562
7b83ea04 563/* Allocate a stub method whose return type is TYPE.
c906108c
SS
564 This apparently happens for speed of symbol reading, since parsing
565 out the arguments to the method is cpu-intensive, the way we are doing
566 it. So, we will fill in arguments later.
567 This always returns a fresh type. */
568
569struct type *
fba45db2 570allocate_stub_method (struct type *type)
c906108c
SS
571{
572 struct type *mtype;
573
7e956337
FF
574 mtype = init_type (TYPE_CODE_METHOD, 1, TYPE_FLAG_STUB, NULL,
575 TYPE_OBJFILE (type));
c906108c
SS
576 TYPE_TARGET_TYPE (mtype) = type;
577 /* _DOMAIN_TYPE (mtype) = unknown yet */
578 /* _ARG_TYPES (mtype) = unknown yet */
c906108c
SS
579 return (mtype);
580}
581
582/* Create a range type using either a blank type supplied in RESULT_TYPE,
583 or creating a new type, inheriting the objfile from INDEX_TYPE.
584
585 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND to
586 HIGH_BOUND, inclusive.
587
588 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
589 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
590
591struct type *
fba45db2
KB
592create_range_type (struct type *result_type, struct type *index_type,
593 int low_bound, int high_bound)
c906108c
SS
594{
595 if (result_type == NULL)
596 {
597 result_type = alloc_type (TYPE_OBJFILE (index_type));
598 }
599 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
600 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 601 if (TYPE_STUB (index_type))
c906108c
SS
602 TYPE_FLAGS (result_type) |= TYPE_FLAG_TARGET_STUB;
603 else
604 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
605 TYPE_NFIELDS (result_type) = 2;
606 TYPE_FIELDS (result_type) = (struct field *)
607 TYPE_ALLOC (result_type, 2 * sizeof (struct field));
608 memset (TYPE_FIELDS (result_type), 0, 2 * sizeof (struct field));
609 TYPE_FIELD_BITPOS (result_type, 0) = low_bound;
610 TYPE_FIELD_BITPOS (result_type, 1) = high_bound;
c5aa993b
JM
611 TYPE_FIELD_TYPE (result_type, 0) = builtin_type_int; /* FIXME */
612 TYPE_FIELD_TYPE (result_type, 1) = builtin_type_int; /* FIXME */
c906108c 613
c5aa993b 614 if (low_bound >= 0)
c906108c
SS
615 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
616
617 return (result_type);
618}
619
620/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type TYPE.
621 Return 1 of type is a range type, 0 if it is discrete (and bounds
622 will fit in LONGEST), or -1 otherwise. */
623
624int
fba45db2 625get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c
SS
626{
627 CHECK_TYPEDEF (type);
628 switch (TYPE_CODE (type))
629 {
630 case TYPE_CODE_RANGE:
631 *lowp = TYPE_LOW_BOUND (type);
632 *highp = TYPE_HIGH_BOUND (type);
633 return 1;
634 case TYPE_CODE_ENUM:
635 if (TYPE_NFIELDS (type) > 0)
636 {
637 /* The enums may not be sorted by value, so search all
638 entries */
639 int i;
640
641 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
642 for (i = 0; i < TYPE_NFIELDS (type); i++)
643 {
644 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
645 *lowp = TYPE_FIELD_BITPOS (type, i);
646 if (TYPE_FIELD_BITPOS (type, i) > *highp)
647 *highp = TYPE_FIELD_BITPOS (type, i);
648 }
649
650 /* Set unsigned indicator if warranted. */
c5aa993b 651 if (*lowp >= 0)
c906108c
SS
652 {
653 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
654 }
655 }
656 else
657 {
658 *lowp = 0;
659 *highp = -1;
660 }
661 return 0;
662 case TYPE_CODE_BOOL:
663 *lowp = 0;
664 *highp = 1;
665 return 0;
666 case TYPE_CODE_INT:
c5aa993b 667 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
668 return -1;
669 if (!TYPE_UNSIGNED (type))
670 {
c5aa993b 671 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
672 *highp = -*lowp - 1;
673 return 0;
674 }
675 /* ... fall through for unsigned ints ... */
676 case TYPE_CODE_CHAR:
677 *lowp = 0;
678 /* This round-about calculation is to avoid shifting by
7b83ea04
AC
679 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
680 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
681 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
682 *highp = (*highp - 1) | *highp;
683 return 0;
684 default:
685 return -1;
686 }
687}
688
689/* Create an array type using either a blank type supplied in RESULT_TYPE,
690 or creating a new type, inheriting the objfile from RANGE_TYPE.
691
692 Elements will be of type ELEMENT_TYPE, the indices will be of type
693 RANGE_TYPE.
694
695 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
696 sure it is TYPE_CODE_UNDEF before we bash it into an array type? */
697
698struct type *
fba45db2
KB
699create_array_type (struct type *result_type, struct type *element_type,
700 struct type *range_type)
c906108c
SS
701{
702 LONGEST low_bound, high_bound;
703
704 if (result_type == NULL)
705 {
706 result_type = alloc_type (TYPE_OBJFILE (range_type));
707 }
708 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
709 TYPE_TARGET_TYPE (result_type) = element_type;
710 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
711 low_bound = high_bound = 0;
712 CHECK_TYPEDEF (element_type);
713 TYPE_LENGTH (result_type) =
714 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
715 TYPE_NFIELDS (result_type) = 1;
716 TYPE_FIELDS (result_type) =
717 (struct field *) TYPE_ALLOC (result_type, sizeof (struct field));
718 memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
719 TYPE_FIELD_TYPE (result_type, 0) = range_type;
720 TYPE_VPTR_FIELDNO (result_type) = -1;
721
722 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
723 if (TYPE_LENGTH (result_type) == 0)
724 TYPE_FLAGS (result_type) |= TYPE_FLAG_TARGET_STUB;
725
726 return (result_type);
727}
728
729/* Create a string type using either a blank type supplied in RESULT_TYPE,
730 or creating a new type. String types are similar enough to array of
731 char types that we can use create_array_type to build the basic type
732 and then bash it into a string type.
733
734 For fixed length strings, the range type contains 0 as the lower
735 bound and the length of the string minus one as the upper bound.
736
737 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
738 sure it is TYPE_CODE_UNDEF before we bash it into a string type? */
739
740struct type *
fba45db2 741create_string_type (struct type *result_type, struct type *range_type)
c906108c
SS
742{
743 result_type = create_array_type (result_type,
744 *current_language->string_char_type,
745 range_type);
746 TYPE_CODE (result_type) = TYPE_CODE_STRING;
747 return (result_type);
748}
749
750struct type *
fba45db2 751create_set_type (struct type *result_type, struct type *domain_type)
c906108c
SS
752{
753 LONGEST low_bound, high_bound, bit_length;
754 if (result_type == NULL)
755 {
756 result_type = alloc_type (TYPE_OBJFILE (domain_type));
757 }
758 TYPE_CODE (result_type) = TYPE_CODE_SET;
759 TYPE_NFIELDS (result_type) = 1;
760 TYPE_FIELDS (result_type) = (struct field *)
761 TYPE_ALLOC (result_type, 1 * sizeof (struct field));
762 memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
763
74a9bb82 764 if (!TYPE_STUB (domain_type))
c906108c
SS
765 {
766 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
767 low_bound = high_bound = 0;
768 bit_length = high_bound - low_bound + 1;
769 TYPE_LENGTH (result_type)
770 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
771 }
772 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
773
c5aa993b 774 if (low_bound >= 0)
c906108c
SS
775 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
776
777 return (result_type);
778}
779
917317f4
JM
780
781/* Construct and return a type of the form:
782 struct NAME { ELT_TYPE ELT_NAME[N]; }
783 We use these types for SIMD registers. For example, the type of
784 the SSE registers on the late x86-family processors is:
785 struct __builtin_v4sf { float f[4]; }
786 built by the function call:
787 init_simd_type ("__builtin_v4sf", builtin_type_float, "f", 4)
788 The type returned is a permanent type, allocated using malloc; it
789 doesn't live in any objfile's obstack. */
c2d11a7d 790static struct type *
917317f4
JM
791init_simd_type (char *name,
792 struct type *elt_type,
793 char *elt_name,
794 int n)
795{
796 struct type *t;
797 struct field *f;
798
799 /* Build the field structure. */
800 f = xmalloc (sizeof (*f));
801 memset (f, 0, sizeof (*f));
802 f->loc.bitpos = 0;
803 f->type = create_array_type (0, elt_type,
5c44784c
JM
804 create_range_type (0, builtin_type_int,
805 0, n-1));
917317f4
JM
806 f->name = elt_name;
807
808 /* Build a struct type with that field. */
809 t = init_type (TYPE_CODE_STRUCT, n * TYPE_LENGTH (elt_type), 0, 0, 0);
810 t->nfields = 1;
811 t->fields = f;
493d28d5 812 TYPE_TAG_NAME (t) = name;
917317f4
JM
813
814 return t;
815}
816
08cf96df
EZ
817static struct type *
818build_builtin_type_vec128 (void)
819{
820 /* Construct a type for the 128 bit registers. The type we're
821 building is this: */
822#if 0
823 union __gdb_builtin_type_vec128
824 {
825 struct __builtin_v16qi v16qi;
826 struct __builtin_v8hi v8hi;
827 struct __builtin_v4si v4si;
828 struct __builtin_v4sf v4sf;
829 uint128_t uint128;
830 };
831#endif
832
833 struct type *t;
834 struct field *f;
835
836 f = (struct field *) xcalloc (5, sizeof (*f));
837
838 FIELD_TYPE (f[0]) = builtin_type_int128;
839 FIELD_NAME (f[0]) = "uint128";
840
841 FIELD_TYPE (f[1]) = builtin_type_v4sf;
842 FIELD_NAME (f[1]) = "v4sf";
843
844 FIELD_TYPE (f[2]) = builtin_type_v4si;
845 FIELD_NAME (f[2]) = "v4si";
846
847 FIELD_TYPE (f[3]) = builtin_type_v8hi;
848 FIELD_NAME (f[3]) = "v8hi";
849
850 FIELD_TYPE (f[4]) = builtin_type_v16qi;
851 FIELD_NAME (f[4]) = "v16qi";
852
853 /* Build a union type with those fields. */
854 t = init_type (TYPE_CODE_UNION, 16, 0, 0, 0);
855 TYPE_NFIELDS (t) = 5;
856 TYPE_FIELDS (t) = f;
857 TYPE_TAG_NAME (t) = "__gdb_builtin_type_vec128";
858
859 return t;
860}
917317f4 861
7b83ea04 862/* Smash TYPE to be a type of members of DOMAIN with type TO_TYPE.
c906108c
SS
863 A MEMBER is a wierd thing -- it amounts to a typed offset into
864 a struct, e.g. "an int at offset 8". A MEMBER TYPE doesn't
865 include the offset (that's the value of the MEMBER itself), but does
866 include the structure type into which it points (for some reason).
867
868 When "smashing" the type, we preserve the objfile that the
869 old type pointed to, since we aren't changing where the type is actually
870 allocated. */
871
872void
fba45db2
KB
873smash_to_member_type (struct type *type, struct type *domain,
874 struct type *to_type)
c906108c
SS
875{
876 struct objfile *objfile;
877
878 objfile = TYPE_OBJFILE (type);
879
880 memset ((char *) type, 0, sizeof (struct type));
881 TYPE_OBJFILE (type) = objfile;
882 TYPE_TARGET_TYPE (type) = to_type;
883 TYPE_DOMAIN_TYPE (type) = domain;
884 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
885 TYPE_CODE (type) = TYPE_CODE_MEMBER;
886}
887
888/* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
889 METHOD just means `function that gets an extra "this" argument'.
890
891 When "smashing" the type, we preserve the objfile that the
892 old type pointed to, since we aren't changing where the type is actually
893 allocated. */
894
895void
fba45db2
KB
896smash_to_method_type (struct type *type, struct type *domain,
897 struct type *to_type, struct type **args)
c906108c
SS
898{
899 struct objfile *objfile;
900
901 objfile = TYPE_OBJFILE (type);
902
903 memset ((char *) type, 0, sizeof (struct type));
904 TYPE_OBJFILE (type) = objfile;
905 TYPE_TARGET_TYPE (type) = to_type;
906 TYPE_DOMAIN_TYPE (type) = domain;
907 TYPE_ARG_TYPES (type) = args;
908 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
909 TYPE_CODE (type) = TYPE_CODE_METHOD;
910}
911
912/* Return a typename for a struct/union/enum type without "struct ",
913 "union ", or "enum ". If the type has a NULL name, return NULL. */
914
915char *
fba45db2 916type_name_no_tag (register const struct type *type)
c906108c
SS
917{
918 if (TYPE_TAG_NAME (type) != NULL)
919 return TYPE_TAG_NAME (type);
920
921 /* Is there code which expects this to return the name if there is no
922 tag name? My guess is that this is mainly used for C++ in cases where
923 the two will always be the same. */
924 return TYPE_NAME (type);
925}
926
7b83ea04 927/* Lookup a primitive type named NAME.
c5aa993b 928 Return zero if NAME is not a primitive type. */
c906108c
SS
929
930struct type *
fba45db2 931lookup_primitive_typename (char *name)
c906108c 932{
c5aa993b
JM
933 struct type **const *p;
934
935 for (p = current_language->la_builtin_type_vector; *p != NULL; p++)
936 {
937 if (STREQ ((**p)->name, name))
938 {
939 return (**p);
940 }
941 }
942 return (NULL);
c906108c
SS
943}
944
945/* Lookup a typedef or primitive type named NAME,
946 visible in lexical block BLOCK.
947 If NOERR is nonzero, return zero if NAME is not suitably defined. */
948
949struct type *
fba45db2 950lookup_typename (char *name, struct block *block, int noerr)
c906108c
SS
951{
952 register struct symbol *sym;
953 register struct type *tmp;
954
955 sym = lookup_symbol (name, block, VAR_NAMESPACE, 0, (struct symtab **) NULL);
956 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
957 {
958 tmp = lookup_primitive_typename (name);
959 if (tmp)
960 {
961 return (tmp);
962 }
963 else if (!tmp && noerr)
964 {
965 return (NULL);
966 }
967 else
968 {
969 error ("No type named %s.", name);
970 }
971 }
972 return (SYMBOL_TYPE (sym));
973}
974
975struct type *
fba45db2 976lookup_unsigned_typename (char *name)
c906108c
SS
977{
978 char *uns = alloca (strlen (name) + 10);
979
980 strcpy (uns, "unsigned ");
981 strcpy (uns + 9, name);
982 return (lookup_typename (uns, (struct block *) NULL, 0));
983}
984
985struct type *
fba45db2 986lookup_signed_typename (char *name)
c906108c
SS
987{
988 struct type *t;
989 char *uns = alloca (strlen (name) + 8);
990
991 strcpy (uns, "signed ");
992 strcpy (uns + 7, name);
993 t = lookup_typename (uns, (struct block *) NULL, 1);
994 /* If we don't find "signed FOO" just try again with plain "FOO". */
995 if (t != NULL)
996 return t;
997 return lookup_typename (name, (struct block *) NULL, 0);
998}
999
1000/* Lookup a structure type named "struct NAME",
1001 visible in lexical block BLOCK. */
1002
1003struct type *
fba45db2 1004lookup_struct (char *name, struct block *block)
c906108c
SS
1005{
1006 register struct symbol *sym;
1007
1008 sym = lookup_symbol (name, block, STRUCT_NAMESPACE, 0,
1009 (struct symtab **) NULL);
1010
1011 if (sym == NULL)
1012 {
1013 error ("No struct type named %s.", name);
1014 }
1015 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1016 {
1017 error ("This context has class, union or enum %s, not a struct.", name);
1018 }
1019 return (SYMBOL_TYPE (sym));
1020}
1021
1022/* Lookup a union type named "union NAME",
1023 visible in lexical block BLOCK. */
1024
1025struct type *
fba45db2 1026lookup_union (char *name, struct block *block)
c906108c
SS
1027{
1028 register struct symbol *sym;
c5aa993b 1029 struct type *t;
c906108c
SS
1030
1031 sym = lookup_symbol (name, block, STRUCT_NAMESPACE, 0,
1032 (struct symtab **) NULL);
1033
1034 if (sym == NULL)
1035 error ("No union type named %s.", name);
1036
c5aa993b 1037 t = SYMBOL_TYPE (sym);
c906108c
SS
1038
1039 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1040 return (t);
1041
1042 /* C++ unions may come out with TYPE_CODE_CLASS, but we look at
1043 * a further "declared_type" field to discover it is really a union.
1044 */
c5aa993b
JM
1045 if (HAVE_CPLUS_STRUCT (t))
1046 if (TYPE_DECLARED_TYPE (t) == DECLARED_TYPE_UNION)
c906108c
SS
1047 return (t);
1048
1049 /* If we get here, it's not a union */
1050 error ("This context has class, struct or enum %s, not a union.", name);
1051}
1052
1053
1054/* Lookup an enum type named "enum NAME",
1055 visible in lexical block BLOCK. */
1056
1057struct type *
fba45db2 1058lookup_enum (char *name, struct block *block)
c906108c
SS
1059{
1060 register struct symbol *sym;
1061
c5aa993b 1062 sym = lookup_symbol (name, block, STRUCT_NAMESPACE, 0,
c906108c
SS
1063 (struct symtab **) NULL);
1064 if (sym == NULL)
1065 {
1066 error ("No enum type named %s.", name);
1067 }
1068 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1069 {
1070 error ("This context has class, struct or union %s, not an enum.", name);
1071 }
1072 return (SYMBOL_TYPE (sym));
1073}
1074
1075/* Lookup a template type named "template NAME<TYPE>",
1076 visible in lexical block BLOCK. */
1077
1078struct type *
fba45db2 1079lookup_template_type (char *name, struct type *type, struct block *block)
c906108c
SS
1080{
1081 struct symbol *sym;
c5aa993b 1082 char *nam = (char *) alloca (strlen (name) + strlen (type->name) + 4);
c906108c
SS
1083 strcpy (nam, name);
1084 strcat (nam, "<");
1085 strcat (nam, type->name);
c5aa993b 1086 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1087
c5aa993b 1088 sym = lookup_symbol (nam, block, VAR_NAMESPACE, 0, (struct symtab **) NULL);
c906108c
SS
1089
1090 if (sym == NULL)
1091 {
1092 error ("No template type named %s.", name);
1093 }
1094 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1095 {
1096 error ("This context has class, union or enum %s, not a struct.", name);
1097 }
1098 return (SYMBOL_TYPE (sym));
1099}
1100
7b83ea04 1101/* Given a type TYPE, lookup the type of the component of type named NAME.
c906108c
SS
1102
1103 TYPE can be either a struct or union, or a pointer or reference to a struct or
1104 union. If it is a pointer or reference, its target type is automatically used.
1105 Thus '.' and '->' are interchangable, as specified for the definitions of the
1106 expression element types STRUCTOP_STRUCT and STRUCTOP_PTR.
1107
1108 If NOERR is nonzero, return zero if NAME is not suitably defined.
1109 If NAME is the name of a baseclass type, return that type. */
1110
1111struct type *
fba45db2 1112lookup_struct_elt_type (struct type *type, char *name, int noerr)
c906108c
SS
1113{
1114 int i;
1115
1116 for (;;)
1117 {
1118 CHECK_TYPEDEF (type);
1119 if (TYPE_CODE (type) != TYPE_CODE_PTR
1120 && TYPE_CODE (type) != TYPE_CODE_REF)
1121 break;
1122 type = TYPE_TARGET_TYPE (type);
1123 }
1124
1125 if (TYPE_CODE (type) != TYPE_CODE_STRUCT &&
1126 TYPE_CODE (type) != TYPE_CODE_UNION)
1127 {
1128 target_terminal_ours ();
1129 gdb_flush (gdb_stdout);
1130 fprintf_unfiltered (gdb_stderr, "Type ");
1131 type_print (type, "", gdb_stderr, -1);
1132 error (" is not a structure or union type.");
1133 }
1134
1135#if 0
1136 /* FIXME: This change put in by Michael seems incorrect for the case where
1137 the structure tag name is the same as the member name. I.E. when doing
1138 "ptype bell->bar" for "struct foo { int bar; int foo; } bell;"
1139 Disabled by fnf. */
1140 {
1141 char *typename;
1142
1143 typename = type_name_no_tag (type);
1144 if (typename != NULL && STREQ (typename, name))
1145 return type;
1146 }
1147#endif
1148
1149 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1150 {
1151 char *t_field_name = TYPE_FIELD_NAME (type, i);
1152
db577aea 1153 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1154 {
1155 return TYPE_FIELD_TYPE (type, i);
1156 }
1157 }
1158
1159 /* OK, it's not in this class. Recursively check the baseclasses. */
1160 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1161 {
1162 struct type *t;
1163
1164 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, noerr);
1165 if (t != NULL)
1166 {
1167 return t;
1168 }
1169 }
1170
1171 if (noerr)
1172 {
1173 return NULL;
1174 }
c5aa993b 1175
c906108c
SS
1176 target_terminal_ours ();
1177 gdb_flush (gdb_stdout);
1178 fprintf_unfiltered (gdb_stderr, "Type ");
1179 type_print (type, "", gdb_stderr, -1);
1180 fprintf_unfiltered (gdb_stderr, " has no component named ");
1181 fputs_filtered (name, gdb_stderr);
1182 error (".");
c5aa993b 1183 return (struct type *) -1; /* For lint */
c906108c
SS
1184}
1185
1186/* If possible, make the vptr_fieldno and vptr_basetype fields of TYPE
1187 valid. Callers should be aware that in some cases (for example,
1188 the type or one of its baseclasses is a stub type and we are
1189 debugging a .o file), this function will not be able to find the virtual
1190 function table pointer, and vptr_fieldno will remain -1 and vptr_basetype
1191 will remain NULL. */
1192
1193void
fba45db2 1194fill_in_vptr_fieldno (struct type *type)
c906108c
SS
1195{
1196 CHECK_TYPEDEF (type);
1197
1198 if (TYPE_VPTR_FIELDNO (type) < 0)
1199 {
1200 int i;
1201
1202 /* We must start at zero in case the first (and only) baseclass is
7b83ea04 1203 virtual (and hence we cannot share the table pointer). */
c906108c
SS
1204 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1205 {
1206 fill_in_vptr_fieldno (TYPE_BASECLASS (type, i));
1207 if (TYPE_VPTR_FIELDNO (TYPE_BASECLASS (type, i)) >= 0)
1208 {
1209 TYPE_VPTR_FIELDNO (type)
1210 = TYPE_VPTR_FIELDNO (TYPE_BASECLASS (type, i));
1211 TYPE_VPTR_BASETYPE (type)
1212 = TYPE_VPTR_BASETYPE (TYPE_BASECLASS (type, i));
1213 break;
1214 }
1215 }
1216 }
1217}
1218
1219/* Find the method and field indices for the destructor in class type T.
1220 Return 1 if the destructor was found, otherwise, return 0. */
1221
1222int
fba45db2 1223get_destructor_fn_field (struct type *t, int *method_indexp, int *field_indexp)
c906108c
SS
1224{
1225 int i;
1226
1227 for (i = 0; i < TYPE_NFN_FIELDS (t); i++)
1228 {
1229 int j;
1230 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
1231
1232 for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (t, i); j++)
1233 {
015a42b4 1234 if (is_destructor_name (TYPE_FN_FIELD_PHYSNAME (f, j)) != 0)
c906108c
SS
1235 {
1236 *method_indexp = i;
1237 *field_indexp = j;
1238 return 1;
1239 }
1240 }
1241 }
1242 return 0;
1243}
1244
1245/* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
1246
1247 If this is a stubbed struct (i.e. declared as struct foo *), see if
1248 we can find a full definition in some other file. If so, copy this
1249 definition, so we can use it in future. There used to be a comment (but
1250 not any code) that if we don't find a full definition, we'd set a flag
1251 so we don't spend time in the future checking the same type. That would
1252 be a mistake, though--we might load in more symbols which contain a
1253 full definition for the type.
1254
7b83ea04 1255 This used to be coded as a macro, but I don't think it is called
c906108c
SS
1256 often enough to merit such treatment. */
1257
1258struct complaint stub_noname_complaint =
c5aa993b 1259{"stub type has NULL name", 0, 0};
c906108c
SS
1260
1261struct type *
a02fd225 1262check_typedef (struct type *type)
c906108c
SS
1263{
1264 struct type *orig_type = type;
a02fd225
DJ
1265 int is_const, is_volatile;
1266
c906108c
SS
1267 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1268 {
1269 if (!TYPE_TARGET_TYPE (type))
1270 {
c5aa993b 1271 char *name;
c906108c
SS
1272 struct symbol *sym;
1273
1274 /* It is dangerous to call lookup_symbol if we are currently
1275 reading a symtab. Infinite recursion is one danger. */
1276 if (currently_reading_symtab)
1277 return type;
1278
1279 name = type_name_no_tag (type);
1280 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1281 TYPE_TAG_NAME, and look in STRUCT_NAMESPACE and/or VAR_NAMESPACE
1282 as appropriate? (this code was written before TYPE_NAME and
1283 TYPE_TAG_NAME were separate). */
1284 if (name == NULL)
1285 {
1286 complain (&stub_noname_complaint);
1287 return type;
1288 }
c5aa993b 1289 sym = lookup_symbol (name, 0, STRUCT_NAMESPACE, 0,
c906108c
SS
1290 (struct symtab **) NULL);
1291 if (sym)
1292 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1293 else
c5aa993b 1294 TYPE_TARGET_TYPE (type) = alloc_type (NULL); /* TYPE_CODE_UNDEF */
c906108c
SS
1295 }
1296 type = TYPE_TARGET_TYPE (type);
1297 }
1298
a02fd225
DJ
1299 is_const = TYPE_CONST (type);
1300 is_volatile = TYPE_VOLATILE (type);
1301
c906108c
SS
1302 /* If this is a struct/class/union with no fields, then check whether a
1303 full definition exists somewhere else. This is for systems where a
1304 type definition with no fields is issued for such types, instead of
c5aa993b
JM
1305 identifying them as stub types in the first place */
1306
c906108c
SS
1307 if (TYPE_IS_OPAQUE (type) && opaque_type_resolution && !currently_reading_symtab)
1308 {
c5aa993b
JM
1309 char *name = type_name_no_tag (type);
1310 struct type *newtype;
c906108c
SS
1311 if (name == NULL)
1312 {
1313 complain (&stub_noname_complaint);
1314 return type;
1315 }
1316 newtype = lookup_transparent_type (name);
1317 if (newtype)
a02fd225 1318 make_cv_type (is_const, is_volatile, newtype, &type);
c906108c
SS
1319 }
1320 /* Otherwise, rely on the stub flag being set for opaque/stubbed types */
74a9bb82 1321 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 1322 {
c5aa993b 1323 char *name = type_name_no_tag (type);
c906108c 1324 /* FIXME: shouldn't we separately check the TYPE_NAME and the
7b83ea04
AC
1325 TYPE_TAG_NAME, and look in STRUCT_NAMESPACE and/or VAR_NAMESPACE
1326 as appropriate? (this code was written before TYPE_NAME and
1327 TYPE_TAG_NAME were separate). */
c906108c
SS
1328 struct symbol *sym;
1329 if (name == NULL)
1330 {
1331 complain (&stub_noname_complaint);
1332 return type;
1333 }
1334 sym = lookup_symbol (name, 0, STRUCT_NAMESPACE, 0, (struct symtab **) NULL);
1335 if (sym)
a02fd225 1336 make_cv_type (is_const, is_volatile, SYMBOL_TYPE (sym), &type);
c906108c
SS
1337 }
1338
74a9bb82 1339 if (TYPE_TARGET_STUB (type))
c906108c
SS
1340 {
1341 struct type *range_type;
1342 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1343
74a9bb82 1344 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b
JM
1345 {
1346 }
c906108c
SS
1347 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1348 && TYPE_NFIELDS (type) == 1
1349 && (TYPE_CODE (range_type = TYPE_FIELD_TYPE (type, 0))
1350 == TYPE_CODE_RANGE))
1351 {
1352 /* Now recompute the length of the array type, based on its
1353 number of elements and the target type's length. */
1354 TYPE_LENGTH (type) =
1355 ((TYPE_FIELD_BITPOS (range_type, 1)
1356 - TYPE_FIELD_BITPOS (range_type, 0)
1357 + 1)
1358 * TYPE_LENGTH (target_type));
1359 TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
1360 }
1361 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1362 {
1363 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1364 TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
1365 }
1366 }
1367 /* Cache TYPE_LENGTH for future use. */
1368 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1369 return type;
1370}
1371
1372/* New code added to support parsing of Cfront stabs strings */
c906108c
SS
1373#define INIT_EXTRA { pextras->len=0; pextras->str[0]='\0'; }
1374#define ADD_EXTRA(c) { pextras->str[pextras->len++]=c; }
1375
c5aa993b 1376static void
fba45db2 1377add_name (struct extra *pextras, char *n)
c906108c
SS
1378{
1379 int nlen;
1380
c5aa993b 1381 if ((nlen = (n ? strlen (n) : 0)) == 0)
c906108c 1382 return;
c5aa993b
JM
1383 sprintf (pextras->str + pextras->len, "%d%s", nlen, n);
1384 pextras->len = strlen (pextras->str);
c906108c
SS
1385}
1386
c5aa993b 1387static void
fba45db2 1388add_mangled_type (struct extra *pextras, struct type *t)
c906108c
SS
1389{
1390 enum type_code tcode;
1391 int tlen, tflags;
c5aa993b 1392 char *tname;
c906108c 1393
c5aa993b
JM
1394 tcode = TYPE_CODE (t);
1395 tlen = TYPE_LENGTH (t);
1396 tflags = TYPE_FLAGS (t);
1397 tname = TYPE_NAME (t);
c906108c
SS
1398 /* args of "..." seem to get mangled as "e" */
1399
c5aa993b
JM
1400 switch (tcode)
1401 {
1402 case TYPE_CODE_INT:
1403 if (tflags == 1)
1404 ADD_EXTRA ('U');
1405 switch (tlen)
1406 {
1407 case 1:
1408 ADD_EXTRA ('c');
1409 break;
1410 case 2:
1411 ADD_EXTRA ('s');
1412 break;
1413 case 4:
1414 {
1415 char *pname;
1416 if ((pname = strrchr (tname, 'l'), pname) && !strcmp (pname, "long"))
9846de1b
JM
1417 {
1418 ADD_EXTRA ('l');
1419 }
1420 else
1421 {
1422 ADD_EXTRA ('i');
1423 }
c5aa993b
JM
1424 }
1425 break;
1426 default:
1427 {
1428
1429 static struct complaint msg =
1430 {"Bad int type code length x%x\n", 0, 0};
1431
1432 complain (&msg, tlen);
1433
1434 }
1435 }
1436 break;
1437 case TYPE_CODE_FLT:
1438 switch (tlen)
1439 {
1440 case 4:
1441 ADD_EXTRA ('f');
1442 break;
1443 case 8:
1444 ADD_EXTRA ('d');
1445 break;
1446 case 16:
1447 ADD_EXTRA ('r');
1448 break;
1449 default:
1450 {
1451 static struct complaint msg =
1452 {"Bad float type code length x%x\n", 0, 0};
1453 complain (&msg, tlen);
1454 }
1455 }
1456 break;
1457 case TYPE_CODE_REF:
1458 ADD_EXTRA ('R');
1459 /* followed by what it's a ref to */
1460 break;
1461 case TYPE_CODE_PTR:
1462 ADD_EXTRA ('P');
1463 /* followed by what it's a ptr to */
1464 break;
1465 case TYPE_CODE_TYPEDEF:
1466 {
1467 static struct complaint msg =
1468 {"Typedefs in overloaded functions not yet supported\n", 0, 0};
1469 complain (&msg);
1470 }
c906108c
SS
1471 /* followed by type bytes & name */
1472 break;
1473 case TYPE_CODE_FUNC:
c5aa993b 1474 ADD_EXTRA ('F');
c906108c
SS
1475 /* followed by func's arg '_' & ret types */
1476 break;
1477 case TYPE_CODE_VOID:
c5aa993b 1478 ADD_EXTRA ('v');
c906108c
SS
1479 break;
1480 case TYPE_CODE_METHOD:
c5aa993b 1481 ADD_EXTRA ('M');
c906108c 1482 /* followed by name of class and func's arg '_' & ret types */
c5aa993b
JM
1483 add_name (pextras, tname);
1484 ADD_EXTRA ('F'); /* then mangle function */
c906108c 1485 break;
c5aa993b
JM
1486 case TYPE_CODE_STRUCT: /* C struct */
1487 case TYPE_CODE_UNION: /* C union */
1488 case TYPE_CODE_ENUM: /* Enumeration type */
c906108c 1489 /* followed by name of type */
c5aa993b 1490 add_name (pextras, tname);
c906108c
SS
1491 break;
1492
c5aa993b
JM
1493 /* errors possible types/not supported */
1494 case TYPE_CODE_CHAR:
1495 case TYPE_CODE_ARRAY: /* Array type */
1496 case TYPE_CODE_MEMBER: /* Member type */
c906108c 1497 case TYPE_CODE_BOOL:
c5aa993b 1498 case TYPE_CODE_COMPLEX: /* Complex float */
c906108c 1499 case TYPE_CODE_UNDEF:
c5aa993b
JM
1500 case TYPE_CODE_SET: /* Pascal sets */
1501 case TYPE_CODE_RANGE:
c906108c
SS
1502 case TYPE_CODE_STRING:
1503 case TYPE_CODE_BITSTRING:
1504 case TYPE_CODE_ERROR:
c5aa993b 1505 default:
c906108c 1506 {
c5aa993b
JM
1507 static struct complaint msg =
1508 {"Unknown type code x%x\n", 0, 0};
1509 complain (&msg, tcode);
c906108c
SS
1510 }
1511 }
1512 if (t->target_type)
c5aa993b 1513 add_mangled_type (pextras, t->target_type);
c906108c
SS
1514}
1515
1516#if 0
1517void
fba45db2 1518cfront_mangle_name (struct type *type, int i, int j)
c906108c 1519{
c5aa993b
JM
1520 struct fn_field *f;
1521 char *mangled_name = gdb_mangle_name (type, i, j);
1522
1523 f = TYPE_FN_FIELDLIST1 (type, i); /* moved from below */
1524
7b83ea04 1525 /* kludge to support cfront methods - gdb expects to find "F" for
c5aa993b
JM
1526 ARM_mangled names, so when we mangle, we have to add it here */
1527 if (ARM_DEMANGLING)
1528 {
1529 int k;
1530 char *arm_mangled_name;
1531 struct fn_field *method = &f[j];
1532 char *field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1533 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
1534 char *newname = type_name_no_tag (type);
1535
1536 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1537 int nargs = TYPE_NFIELDS (ftype); /* number of args */
1538 struct extra extras, *pextras = &extras;
1539 INIT_EXTRA
c906108c
SS
1540
1541 if (TYPE_FN_FIELD_STATIC_P (f, j)) /* j for sublist within this list */
c5aa993b
JM
1542 ADD_EXTRA ('S')
1543 ADD_EXTRA ('F')
c906108c 1544 /* add args here! */
c5aa993b
JM
1545 if (nargs <= 1) /* no args besides this */
1546 ADD_EXTRA ('v')
1547 else
1548 {
1549 for (k = 1; k < nargs; k++)
1550 {
1551 struct type *t;
1552 t = TYPE_FIELD_TYPE (ftype, k);
1553 add_mangled_type (pextras, t);
1554 }
1555 }
1556 ADD_EXTRA ('\0')
1557 printf ("add_mangled_type: %s\n", extras.str); /* FIXME */
3c37485b 1558 xasprintf (&arm_mangled_name, "%s%s", mangled_name, extras.str);
b8c9b27d 1559 xfree (mangled_name);
c5aa993b
JM
1560 mangled_name = arm_mangled_name;
1561 }
c906108c 1562}
c5aa993b 1563#endif /* 0 */
c906108c
SS
1564
1565#undef ADD_EXTRA
1566/* End of new code added to support parsing of Cfront stabs strings */
1567
c91ecb25
ND
1568/* Parse a type expression in the string [P..P+LENGTH). If an error occurs,
1569 silently return builtin_type_void. */
1570
1571struct type *
1572safe_parse_type (char *p, int length)
1573{
1574 struct ui_file *saved_gdb_stderr;
1575 struct type *type;
1576
1577 /* Suppress error messages. */
1578 saved_gdb_stderr = gdb_stderr;
1579 gdb_stderr = ui_file_new ();
1580
1581 /* Call parse_and_eval_type() without fear of longjmp()s. */
1582 if (!gdb_parse_and_eval_type (p, length, &type))
1583 type = builtin_type_void;
1584
1585 /* Stop suppressing error messages. */
1586 ui_file_delete (gdb_stderr);
1587 gdb_stderr = saved_gdb_stderr;
1588
1589 return type;
1590}
1591
c906108c
SS
1592/* Ugly hack to convert method stubs into method types.
1593
1594 He ain't kiddin'. This demangles the name of the method into a string
1595 including argument types, parses out each argument type, generates
1596 a string casting a zero to that type, evaluates the string, and stuffs
1597 the resulting type into an argtype vector!!! Then it knows the type
1598 of the whole function (including argument types for overloading),
1599 which info used to be in the stab's but was removed to hack back
1600 the space required for them. */
1601
1602void
fba45db2 1603check_stub_method (struct type *type, int method_id, int signature_id)
c906108c
SS
1604{
1605 struct fn_field *f;
1606 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1607 char *demangled_name = cplus_demangle (mangled_name,
1608 DMGL_PARAMS | DMGL_ANSI);
1609 char *argtypetext, *p;
1610 int depth = 0, argcount = 1;
1611 struct type **argtypes;
1612 struct type *mtype;
1613
1614 /* Make sure we got back a function string that we can use. */
1615 if (demangled_name)
1616 p = strchr (demangled_name, '(');
502dcf4e
AC
1617 else
1618 p = NULL;
c906108c
SS
1619
1620 if (demangled_name == NULL || p == NULL)
1621 error ("Internal: Cannot demangle mangled name `%s'.", mangled_name);
1622
1623 /* Now, read in the parameters that define this type. */
1624 p += 1;
1625 argtypetext = p;
1626 while (*p)
1627 {
070ad9f0 1628 if (*p == '(' || *p == '<')
c906108c
SS
1629 {
1630 depth += 1;
1631 }
070ad9f0 1632 else if (*p == ')' || *p == '>')
c906108c
SS
1633 {
1634 depth -= 1;
1635 }
1636 else if (*p == ',' && depth == 0)
1637 {
1638 argcount += 1;
1639 }
1640
1641 p += 1;
1642 }
1643
1644 /* We need two more slots: one for the THIS pointer, and one for the
1645 NULL [...] or void [end of arglist]. */
1646
1647 argtypes = (struct type **)
1648 TYPE_ALLOC (type, (argcount + 2) * sizeof (struct type *));
1649 p = argtypetext;
1650 /* FIXME: This is wrong for static member functions. */
1651 argtypes[0] = lookup_pointer_type (type);
1652 argcount = 1;
1653
c5aa993b 1654 if (*p != ')') /* () means no args, skip while */
c906108c
SS
1655 {
1656 depth = 0;
1657 while (*p)
1658 {
1659 if (depth <= 0 && (*p == ',' || *p == ')'))
1660 {
1661 /* Avoid parsing of ellipsis, they will be handled below. */
1662 if (strncmp (argtypetext, "...", p - argtypetext) != 0)
1663 {
1664 argtypes[argcount] =
c91ecb25 1665 safe_parse_type (argtypetext, p - argtypetext);
c906108c
SS
1666 argcount += 1;
1667 }
1668 argtypetext = p + 1;
1669 }
1670
070ad9f0 1671 if (*p == '(' || *p == '<')
c906108c
SS
1672 {
1673 depth += 1;
1674 }
070ad9f0 1675 else if (*p == ')' || *p == '>')
c906108c
SS
1676 {
1677 depth -= 1;
1678 }
1679
1680 p += 1;
1681 }
1682 }
1683
c5aa993b 1684 if (p[-2] != '.') /* Not '...' */
c906108c
SS
1685 {
1686 argtypes[argcount] = builtin_type_void; /* List terminator */
1687 }
1688 else
1689 {
c5aa993b 1690 argtypes[argcount] = NULL; /* Ellist terminator */
c906108c
SS
1691 }
1692
b8c9b27d 1693 xfree (demangled_name);
c906108c 1694
c5aa993b 1695 f = TYPE_FN_FIELDLIST1 (type, method_id);
c906108c
SS
1696
1697 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1698
1699 /* Now update the old "stub" type into a real type. */
1700 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1701 TYPE_DOMAIN_TYPE (mtype) = type;
1702 TYPE_ARG_TYPES (mtype) = argtypes;
1703 TYPE_FLAGS (mtype) &= ~TYPE_FLAG_STUB;
1704 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1705}
1706
1707const struct cplus_struct_type cplus_struct_default;
1708
1709void
fba45db2 1710allocate_cplus_struct_type (struct type *type)
c906108c
SS
1711{
1712 if (!HAVE_CPLUS_STRUCT (type))
1713 {
1714 TYPE_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1715 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
c5aa993b 1716 *(TYPE_CPLUS_SPECIFIC (type)) = cplus_struct_default;
c906108c
SS
1717 }
1718}
1719
1720/* Helper function to initialize the standard scalar types.
1721
1722 If NAME is non-NULL and OBJFILE is non-NULL, then we make a copy
1723 of the string pointed to by name in the type_obstack for that objfile,
1724 and initialize the type name to that copy. There are places (mipsread.c
1725 in particular, where init_type is called with a NULL value for NAME). */
1726
1727struct type *
fba45db2
KB
1728init_type (enum type_code code, int length, int flags, char *name,
1729 struct objfile *objfile)
c906108c
SS
1730{
1731 register struct type *type;
1732
1733 type = alloc_type (objfile);
1734 TYPE_CODE (type) = code;
1735 TYPE_LENGTH (type) = length;
1736 TYPE_FLAGS (type) |= flags;
1737 if ((name != NULL) && (objfile != NULL))
1738 {
1739 TYPE_NAME (type) =
c5aa993b 1740 obsavestring (name, strlen (name), &objfile->type_obstack);
c906108c
SS
1741 }
1742 else
1743 {
1744 TYPE_NAME (type) = name;
1745 }
1746
1747 /* C++ fancies. */
1748
1749 if (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
1750 {
1751 INIT_CPLUS_SPECIFIC (type);
1752 }
1753 return (type);
1754}
1755
0e101458
AC
1756/* Helper function. Create an empty composite type. */
1757
1758struct type *
1759init_composite_type (char *name, enum type_code code)
1760{
1761 struct type *t;
1762 gdb_assert (code == TYPE_CODE_STRUCT
1763 || code == TYPE_CODE_UNION);
1764 t = init_type (code, 0, 0, NULL, NULL);
1765 TYPE_TAG_NAME (t) = name;
1766 return t;
1767}
1768
1769/* Helper function. Append a field to a composite type. */
1770
1771void
1772append_composite_type_field (struct type *t, char *name, struct type *field)
1773{
1774 struct field *f;
1775 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
1776 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
1777 sizeof (struct field) * TYPE_NFIELDS (t));
1778 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
1779 memset (f, 0, sizeof f[0]);
1780 FIELD_TYPE (f[0]) = field;
1781 FIELD_NAME (f[0]) = name;
1782 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1783 {
1784 if (TYPE_LENGTH (t) > TYPE_LENGTH (field))
1785 TYPE_LENGTH (t) = TYPE_LENGTH (field);
1786 }
1787 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
1788 {
1789 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
1790 if (TYPE_NFIELDS (t) > 1)
1791 {
1792 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
1793 + TYPE_LENGTH (field) * TARGET_CHAR_BIT);
1794 }
1795 }
1796}
1797
c906108c
SS
1798/* Look up a fundamental type for the specified objfile.
1799 May need to construct such a type if this is the first use.
1800
1801 Some object file formats (ELF, COFF, etc) do not define fundamental
1802 types such as "int" or "double". Others (stabs for example), do
1803 define fundamental types.
1804
1805 For the formats which don't provide fundamental types, gdb can create
1806 such types, using defaults reasonable for the current language and
1807 the current target machine.
1808
1809 NOTE: This routine is obsolescent. Each debugging format reader
1810 should manage it's own fundamental types, either creating them from
1811 suitable defaults or reading them from the debugging information,
1812 whichever is appropriate. The DWARF reader has already been
1813 fixed to do this. Once the other readers are fixed, this routine
1814 will go away. Also note that fundamental types should be managed
1815 on a compilation unit basis in a multi-language environment, not
1816 on a linkage unit basis as is done here. */
1817
1818
1819struct type *
fba45db2 1820lookup_fundamental_type (struct objfile *objfile, int typeid)
c906108c
SS
1821{
1822 register struct type **typep;
1823 register int nbytes;
1824
1825 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
1826 {
1827 error ("internal error - invalid fundamental type id %d", typeid);
1828 }
1829
1830 /* If this is the first time we need a fundamental type for this objfile
1831 then we need to initialize the vector of type pointers. */
c5aa993b
JM
1832
1833 if (objfile->fundamental_types == NULL)
c906108c
SS
1834 {
1835 nbytes = FT_NUM_MEMBERS * sizeof (struct type *);
c5aa993b
JM
1836 objfile->fundamental_types = (struct type **)
1837 obstack_alloc (&objfile->type_obstack, nbytes);
1838 memset ((char *) objfile->fundamental_types, 0, nbytes);
c906108c
SS
1839 OBJSTAT (objfile, n_types += FT_NUM_MEMBERS);
1840 }
1841
1842 /* Look for this particular type in the fundamental type vector. If one is
1843 not found, create and install one appropriate for the current language. */
1844
c5aa993b 1845 typep = objfile->fundamental_types + typeid;
c906108c
SS
1846 if (*typep == NULL)
1847 {
1848 *typep = create_fundamental_type (objfile, typeid);
1849 }
1850
1851 return (*typep);
1852}
1853
1854int
fba45db2 1855can_dereference (struct type *t)
c906108c
SS
1856{
1857 /* FIXME: Should we return true for references as well as pointers? */
1858 CHECK_TYPEDEF (t);
1859 return
1860 (t != NULL
1861 && TYPE_CODE (t) == TYPE_CODE_PTR
1862 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1863}
1864
adf40b2e 1865int
fba45db2 1866is_integral_type (struct type *t)
adf40b2e
JM
1867{
1868 CHECK_TYPEDEF (t);
1869 return
1870 ((t != NULL)
d4f3574e
SS
1871 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1872 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
1873 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1874 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1875 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
1876}
1877
c906108c
SS
1878/* Chill varying string and arrays are represented as follows:
1879
1880 struct { int __var_length; ELEMENT_TYPE[MAX_SIZE] __var_data};
1881
1882 Return true if TYPE is such a Chill varying type. */
1883
1884int
fba45db2 1885chill_varying_type (struct type *type)
c906108c
SS
1886{
1887 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1888 || TYPE_NFIELDS (type) != 2
1889 || strcmp (TYPE_FIELD_NAME (type, 0), "__var_length") != 0)
1890 return 0;
1891 return 1;
1892}
1893
7b83ea04 1894/* Check whether BASE is an ancestor or base class or DCLASS
c906108c
SS
1895 Return 1 if so, and 0 if not.
1896 Note: callers may want to check for identity of the types before
1897 calling this function -- identical types are considered to satisfy
1898 the ancestor relationship even if they're identical */
1899
1900int
fba45db2 1901is_ancestor (struct type *base, struct type *dclass)
c906108c
SS
1902{
1903 int i;
c5aa993b 1904
c906108c
SS
1905 CHECK_TYPEDEF (base);
1906 CHECK_TYPEDEF (dclass);
1907
1908 if (base == dclass)
1909 return 1;
6b1ba9a0
ND
1910 if (TYPE_NAME (base) && TYPE_NAME (dclass) &&
1911 !strcmp (TYPE_NAME (base), TYPE_NAME (dclass)))
1912 return 1;
c906108c
SS
1913
1914 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1915 if (is_ancestor (base, TYPE_BASECLASS (dclass, i)))
1916 return 1;
1917
1918 return 0;
1919}
1920
1921
1922
1923/* See whether DCLASS has a virtual table. This routine is aimed at
1924 the HP/Taligent ANSI C++ runtime model, and may not work with other
1925 runtime models. Return 1 => Yes, 0 => No. */
1926
1927int
fba45db2 1928has_vtable (struct type *dclass)
c906108c
SS
1929{
1930 /* In the HP ANSI C++ runtime model, a class has a vtable only if it
1931 has virtual functions or virtual bases. */
1932
1933 register int i;
1934
c5aa993b 1935 if (TYPE_CODE (dclass) != TYPE_CODE_CLASS)
c906108c 1936 return 0;
c5aa993b 1937
c906108c 1938 /* First check for the presence of virtual bases */
c5aa993b
JM
1939 if (TYPE_FIELD_VIRTUAL_BITS (dclass))
1940 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1941 if (B_TST (TYPE_FIELD_VIRTUAL_BITS (dclass), i))
1942 return 1;
1943
c906108c 1944 /* Next check for virtual functions */
c5aa993b
JM
1945 if (TYPE_FN_FIELDLISTS (dclass))
1946 for (i = 0; i < TYPE_NFN_FIELDS (dclass); i++)
1947 if (TYPE_FN_FIELD_VIRTUAL_P (TYPE_FN_FIELDLIST1 (dclass, i), 0))
c906108c 1948 return 1;
c5aa993b
JM
1949
1950 /* Recurse on non-virtual bases to see if any of them needs a vtable */
1951 if (TYPE_FIELD_VIRTUAL_BITS (dclass))
1952 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1953 if ((!B_TST (TYPE_FIELD_VIRTUAL_BITS (dclass), i)) &&
1954 (has_vtable (TYPE_FIELD_TYPE (dclass, i))))
1955 return 1;
1956
1957 /* Well, maybe we don't need a virtual table */
c906108c
SS
1958 return 0;
1959}
1960
1961/* Return a pointer to the "primary base class" of DCLASS.
c5aa993b 1962
c906108c
SS
1963 A NULL return indicates that DCLASS has no primary base, or that it
1964 couldn't be found (insufficient information).
c5aa993b 1965
c906108c
SS
1966 This routine is aimed at the HP/Taligent ANSI C++ runtime model,
1967 and may not work with other runtime models. */
1968
1969struct type *
fba45db2 1970primary_base_class (struct type *dclass)
c906108c
SS
1971{
1972 /* In HP ANSI C++'s runtime model, a "primary base class" of a class
1973 is the first directly inherited, non-virtual base class that
1974 requires a virtual table */
1975
1976 register int i;
1977
c5aa993b 1978 if (TYPE_CODE (dclass) != TYPE_CODE_CLASS)
c906108c
SS
1979 return NULL;
1980
c5aa993b
JM
1981 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1982 if (!TYPE_FIELD_VIRTUAL (dclass, i) &&
1983 has_vtable (TYPE_FIELD_TYPE (dclass, i)))
1984 return TYPE_FIELD_TYPE (dclass, i);
c906108c
SS
1985
1986 return NULL;
1987}
1988
1989/* Global manipulated by virtual_base_list[_aux]() */
1990
c5aa993b 1991static struct vbase *current_vbase_list = NULL;
c906108c
SS
1992
1993/* Return a pointer to a null-terminated list of struct vbase
1994 items. The vbasetype pointer of each item in the list points to the
1995 type information for a virtual base of the argument DCLASS.
c5aa993b 1996
7b83ea04 1997 Helper function for virtual_base_list().
c906108c
SS
1998 Note: the list goes backward, right-to-left. virtual_base_list()
1999 copies the items out in reverse order. */
2000
7a292a7a 2001static void
fba45db2 2002virtual_base_list_aux (struct type *dclass)
c906108c 2003{
c5aa993b 2004 struct vbase *tmp_vbase;
c906108c
SS
2005 register int i;
2006
c5aa993b 2007 if (TYPE_CODE (dclass) != TYPE_CODE_CLASS)
7a292a7a 2008 return;
c906108c
SS
2009
2010 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2011 {
2012 /* Recurse on this ancestor, first */
c5aa993b 2013 virtual_base_list_aux (TYPE_FIELD_TYPE (dclass, i));
c906108c
SS
2014
2015 /* If this current base is itself virtual, add it to the list */
c5aa993b
JM
2016 if (BASETYPE_VIA_VIRTUAL (dclass, i))
2017 {
2018 struct type *basetype = TYPE_FIELD_TYPE (dclass, i);
2019
2020 /* Check if base already recorded */
2021 tmp_vbase = current_vbase_list;
2022 while (tmp_vbase)
2023 {
2024 if (tmp_vbase->vbasetype == basetype)
2025 break; /* found it */
2026 tmp_vbase = tmp_vbase->next;
2027 }
2028
2029 if (!tmp_vbase) /* normal exit from loop */
2030 {
2031 /* Allocate new item for this virtual base */
2032 tmp_vbase = (struct vbase *) xmalloc (sizeof (struct vbase));
2033
2034 /* Stick it on at the end of the list */
2035 tmp_vbase->vbasetype = basetype;
2036 tmp_vbase->next = current_vbase_list;
2037 current_vbase_list = tmp_vbase;
2038 }
2039 } /* if virtual */
2040 } /* for loop over bases */
c906108c
SS
2041}
2042
2043
2044/* Compute the list of virtual bases in the right order. Virtual
2045 bases are laid out in the object's memory area in order of their
2046 occurrence in a depth-first, left-to-right search through the
2047 ancestors.
c5aa993b 2048
c906108c
SS
2049 Argument DCLASS is the type whose virtual bases are required.
2050 Return value is the address of a null-terminated array of pointers
2051 to struct type items.
c5aa993b 2052
c906108c
SS
2053 This routine is aimed at the HP/Taligent ANSI C++ runtime model,
2054 and may not work with other runtime models.
c5aa993b 2055
c906108c
SS
2056 This routine merely hands off the argument to virtual_base_list_aux()
2057 and then copies the result into an array to save space. */
2058
2059struct type **
fba45db2 2060virtual_base_list (struct type *dclass)
c906108c 2061{
c5aa993b
JM
2062 register struct vbase *tmp_vbase;
2063 register struct vbase *tmp_vbase_2;
c906108c
SS
2064 register int i;
2065 int count;
c5aa993b 2066 struct type **vbase_array;
c906108c
SS
2067
2068 current_vbase_list = NULL;
c5aa993b 2069 virtual_base_list_aux (dclass);
c906108c 2070
c5aa993b 2071 for (i = 0, tmp_vbase = current_vbase_list; tmp_vbase != NULL; i++, tmp_vbase = tmp_vbase->next)
c906108c
SS
2072 /* no body */ ;
2073
2074 count = i;
2075
c5aa993b 2076 vbase_array = (struct type **) xmalloc ((count + 1) * sizeof (struct type *));
c906108c 2077
c5aa993b 2078 for (i = count - 1, tmp_vbase = current_vbase_list; i >= 0; i--, tmp_vbase = tmp_vbase->next)
c906108c
SS
2079 vbase_array[i] = tmp_vbase->vbasetype;
2080
2081 /* Get rid of constructed chain */
2082 tmp_vbase_2 = tmp_vbase = current_vbase_list;
2083 while (tmp_vbase)
2084 {
2085 tmp_vbase = tmp_vbase->next;
b8c9b27d 2086 xfree (tmp_vbase_2);
c906108c
SS
2087 tmp_vbase_2 = tmp_vbase;
2088 }
c5aa993b 2089
c906108c
SS
2090 vbase_array[count] = NULL;
2091 return vbase_array;
2092}
2093
2094/* Return the length of the virtual base list of the type DCLASS. */
2095
2096int
fba45db2 2097virtual_base_list_length (struct type *dclass)
c906108c
SS
2098{
2099 register int i;
c5aa993b
JM
2100 register struct vbase *tmp_vbase;
2101
c906108c 2102 current_vbase_list = NULL;
c5aa993b 2103 virtual_base_list_aux (dclass);
c906108c 2104
c5aa993b 2105 for (i = 0, tmp_vbase = current_vbase_list; tmp_vbase != NULL; i++, tmp_vbase = tmp_vbase->next)
c906108c
SS
2106 /* no body */ ;
2107 return i;
2108}
2109
2110/* Return the number of elements of the virtual base list of the type
2111 DCLASS, ignoring those appearing in the primary base (and its
2112 primary base, recursively). */
2113
2114int
fba45db2 2115virtual_base_list_length_skip_primaries (struct type *dclass)
c906108c
SS
2116{
2117 register int i;
c5aa993b
JM
2118 register struct vbase *tmp_vbase;
2119 struct type *primary;
c906108c
SS
2120
2121 primary = TYPE_RUNTIME_PTR (dclass) ? TYPE_PRIMARY_BASE (dclass) : NULL;
2122
2123 if (!primary)
2124 return virtual_base_list_length (dclass);
2125
2126 current_vbase_list = NULL;
c5aa993b 2127 virtual_base_list_aux (dclass);
c906108c 2128
c5aa993b 2129 for (i = 0, tmp_vbase = current_vbase_list; tmp_vbase != NULL; tmp_vbase = tmp_vbase->next)
c906108c
SS
2130 {
2131 if (virtual_base_index (tmp_vbase->vbasetype, primary) >= 0)
c5aa993b 2132 continue;
c906108c
SS
2133 i++;
2134 }
2135 return i;
2136}
2137
2138
2139/* Return the index (position) of type BASE, which is a virtual base
2140 class of DCLASS, in the latter's virtual base list. A return of -1
2141 indicates "not found" or a problem. */
2142
2143int
fba45db2 2144virtual_base_index (struct type *base, struct type *dclass)
c906108c 2145{
c5aa993b 2146 register struct type *vbase;
c906108c
SS
2147 register int i;
2148
c5aa993b
JM
2149 if ((TYPE_CODE (dclass) != TYPE_CODE_CLASS) ||
2150 (TYPE_CODE (base) != TYPE_CODE_CLASS))
c906108c
SS
2151 return -1;
2152
2153 i = 0;
015a42b4 2154 vbase = virtual_base_list (dclass)[0];
c906108c
SS
2155 while (vbase)
2156 {
2157 if (vbase == base)
c5aa993b 2158 break;
015a42b4 2159 vbase = virtual_base_list (dclass)[++i];
c906108c
SS
2160 }
2161
2162 return vbase ? i : -1;
2163}
2164
2165
2166
2167/* Return the index (position) of type BASE, which is a virtual base
2168 class of DCLASS, in the latter's virtual base list. Skip over all
2169 bases that may appear in the virtual base list of the primary base
2170 class of DCLASS (recursively). A return of -1 indicates "not
2171 found" or a problem. */
2172
2173int
fba45db2 2174virtual_base_index_skip_primaries (struct type *base, struct type *dclass)
c906108c 2175{
c5aa993b 2176 register struct type *vbase;
c906108c 2177 register int i, j;
c5aa993b 2178 struct type *primary;
c906108c 2179
c5aa993b
JM
2180 if ((TYPE_CODE (dclass) != TYPE_CODE_CLASS) ||
2181 (TYPE_CODE (base) != TYPE_CODE_CLASS))
c906108c
SS
2182 return -1;
2183
c5aa993b 2184 primary = TYPE_RUNTIME_PTR (dclass) ? TYPE_PRIMARY_BASE (dclass) : NULL;
c906108c
SS
2185
2186 j = -1;
2187 i = 0;
015a42b4 2188 vbase = virtual_base_list (dclass)[0];
c906108c
SS
2189 while (vbase)
2190 {
c5aa993b
JM
2191 if (!primary || (virtual_base_index_skip_primaries (vbase, primary) < 0))
2192 j++;
c906108c 2193 if (vbase == base)
c5aa993b 2194 break;
015a42b4 2195 vbase = virtual_base_list (dclass)[++i];
c906108c
SS
2196 }
2197
2198 return vbase ? j : -1;
2199}
2200
2201/* Return position of a derived class DCLASS in the list of
2202 * primary bases starting with the remotest ancestor.
2203 * Position returned is 0-based. */
2204
2205int
fba45db2 2206class_index_in_primary_list (struct type *dclass)
c906108c 2207{
c5aa993b 2208 struct type *pbc; /* primary base class */
c906108c 2209
c5aa993b 2210 /* Simply recurse on primary base */
c906108c
SS
2211 pbc = TYPE_PRIMARY_BASE (dclass);
2212 if (pbc)
2213 return 1 + class_index_in_primary_list (pbc);
2214 else
2215 return 0;
2216}
2217
2218/* Return a count of the number of virtual functions a type has.
2219 * This includes all the virtual functions it inherits from its
2220 * base classes too.
2221 */
2222
2223/* pai: FIXME This doesn't do the right thing: count redefined virtual
2224 * functions only once (latest redefinition)
2225 */
2226
2227int
fba45db2 2228count_virtual_fns (struct type *dclass)
c906108c 2229{
c5aa993b 2230 int fn, oi; /* function and overloaded instance indices */
c5aa993b
JM
2231 int vfuncs; /* count to return */
2232
2233 /* recurse on bases that can share virtual table */
2234 struct type *pbc = primary_base_class (dclass);
c906108c
SS
2235 if (pbc)
2236 vfuncs = count_virtual_fns (pbc);
7f7e9482
AC
2237 else
2238 vfuncs = 0;
c5aa993b 2239
c906108c
SS
2240 for (fn = 0; fn < TYPE_NFN_FIELDS (dclass); fn++)
2241 for (oi = 0; oi < TYPE_FN_FIELDLIST_LENGTH (dclass, fn); oi++)
2242 if (TYPE_FN_FIELD_VIRTUAL_P (TYPE_FN_FIELDLIST1 (dclass, fn), oi))
c5aa993b 2243 vfuncs++;
c906108c
SS
2244
2245 return vfuncs;
2246}
c906108c
SS
2247\f
2248
c5aa993b 2249
c906108c
SS
2250/* Functions for overload resolution begin here */
2251
2252/* Compare two badness vectors A and B and return the result.
2253 * 0 => A and B are identical
2254 * 1 => A and B are incomparable
2255 * 2 => A is better than B
2256 * 3 => A is worse than B */
2257
2258int
fba45db2 2259compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
2260{
2261 int i;
2262 int tmp;
c5aa993b
JM
2263 short found_pos = 0; /* any positives in c? */
2264 short found_neg = 0; /* any negatives in c? */
2265
2266 /* differing lengths => incomparable */
c906108c
SS
2267 if (a->length != b->length)
2268 return 1;
2269
c5aa993b
JM
2270 /* Subtract b from a */
2271 for (i = 0; i < a->length; i++)
c906108c
SS
2272 {
2273 tmp = a->rank[i] - b->rank[i];
2274 if (tmp > 0)
c5aa993b 2275 found_pos = 1;
c906108c 2276 else if (tmp < 0)
c5aa993b 2277 found_neg = 1;
c906108c
SS
2278 }
2279
2280 if (found_pos)
2281 {
2282 if (found_neg)
c5aa993b 2283 return 1; /* incomparable */
c906108c 2284 else
c5aa993b 2285 return 3; /* A > B */
c906108c 2286 }
c5aa993b
JM
2287 else
2288 /* no positives */
c906108c
SS
2289 {
2290 if (found_neg)
c5aa993b 2291 return 2; /* A < B */
c906108c 2292 else
c5aa993b 2293 return 0; /* A == B */
c906108c
SS
2294 }
2295}
2296
2297/* Rank a function by comparing its parameter types (PARMS, length NPARMS),
2298 * to the types of an argument list (ARGS, length NARGS).
2299 * Return a pointer to a badness vector. This has NARGS + 1 entries. */
2300
2301struct badness_vector *
fba45db2 2302rank_function (struct type **parms, int nparms, struct type **args, int nargs)
c906108c
SS
2303{
2304 int i;
c5aa993b 2305 struct badness_vector *bv;
c906108c
SS
2306 int min_len = nparms < nargs ? nparms : nargs;
2307
2308 bv = xmalloc (sizeof (struct badness_vector));
c5aa993b 2309 bv->length = nargs + 1; /* add 1 for the length-match rank */
c906108c
SS
2310 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2311
2312 /* First compare the lengths of the supplied lists.
2313 * If there is a mismatch, set it to a high value. */
c5aa993b 2314
c906108c
SS
2315 /* pai/1997-06-03 FIXME: when we have debug info about default
2316 * arguments and ellipsis parameter lists, we should consider those
2317 * and rank the length-match more finely. */
2318
2319 LENGTH_MATCH (bv) = (nargs != nparms) ? LENGTH_MISMATCH_BADNESS : 0;
2320
2321 /* Now rank all the parameters of the candidate function */
74cc24b0
DB
2322 for (i = 1; i <= min_len; i++)
2323 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
c906108c 2324
c5aa993b
JM
2325 /* If more arguments than parameters, add dummy entries */
2326 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
2327 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2328
2329 return bv;
2330}
2331
2332/* Compare one type (PARM) for compatibility with another (ARG).
2333 * PARM is intended to be the parameter type of a function; and
2334 * ARG is the supplied argument's type. This function tests if
2335 * the latter can be converted to the former.
2336 *
2337 * Return 0 if they are identical types;
2338 * Otherwise, return an integer which corresponds to how compatible
2339 * PARM is to ARG. The higher the return value, the worse the match.
2340 * Generally the "bad" conversions are all uniformly assigned a 100 */
2341
2342int
fba45db2 2343rank_one_type (struct type *parm, struct type *arg)
c906108c
SS
2344{
2345 /* Identical type pointers */
2346 /* However, this still doesn't catch all cases of same type for arg
2347 * and param. The reason is that builtin types are different from
2348 * the same ones constructed from the object. */
2349 if (parm == arg)
2350 return 0;
2351
2352 /* Resolve typedefs */
2353 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2354 parm = check_typedef (parm);
2355 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2356 arg = check_typedef (arg);
2357
070ad9f0
DB
2358 /*
2359 Well, damnit, if the names are exactly the same,
2360 i'll say they are exactly the same. This happens when we generate
2361 method stubs. The types won't point to the same address, but they
2362 really are the same.
2363 */
2364
6b1ba9a0
ND
2365 if (TYPE_NAME (parm) && TYPE_NAME (arg) &&
2366 !strcmp (TYPE_NAME (parm), TYPE_NAME (arg)))
070ad9f0
DB
2367 return 0;
2368
c906108c
SS
2369 /* Check if identical after resolving typedefs */
2370 if (parm == arg)
2371 return 0;
2372
db577aea
AC
2373 /* See through references, since we can almost make non-references
2374 references. */
2375 if (TYPE_CODE (arg) == TYPE_CODE_REF)
6b1ba9a0 2376 return (rank_one_type (parm, TYPE_TARGET_TYPE (arg))
db577aea
AC
2377 + REFERENCE_CONVERSION_BADNESS);
2378 if (TYPE_CODE (parm) == TYPE_CODE_REF)
6b1ba9a0 2379 return (rank_one_type (TYPE_TARGET_TYPE (parm), arg)
db577aea 2380 + REFERENCE_CONVERSION_BADNESS);
5d161b24 2381 if (overload_debug)
db577aea 2382 /* Debugging only. */
5d161b24
DB
2383 fprintf_filtered (gdb_stderr,"------ Arg is %s [%d], parm is %s [%d]\n",
2384 TYPE_NAME (arg), TYPE_CODE (arg), TYPE_NAME (parm), TYPE_CODE (parm));
c906108c
SS
2385
2386 /* x -> y means arg of type x being supplied for parameter of type y */
2387
2388 switch (TYPE_CODE (parm))
2389 {
c5aa993b
JM
2390 case TYPE_CODE_PTR:
2391 switch (TYPE_CODE (arg))
2392 {
2393 case TYPE_CODE_PTR:
2394 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2395 return VOID_PTR_CONVERSION_BADNESS;
2396 else
2397 return rank_one_type (TYPE_TARGET_TYPE (parm), TYPE_TARGET_TYPE (arg));
2398 case TYPE_CODE_ARRAY:
2399 return rank_one_type (TYPE_TARGET_TYPE (parm), TYPE_TARGET_TYPE (arg));
2400 case TYPE_CODE_FUNC:
2401 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2402 case TYPE_CODE_INT:
2403 case TYPE_CODE_ENUM:
2404 case TYPE_CODE_CHAR:
2405 case TYPE_CODE_RANGE:
2406 case TYPE_CODE_BOOL:
2407 return POINTER_CONVERSION_BADNESS;
2408 default:
2409 return INCOMPATIBLE_TYPE_BADNESS;
2410 }
2411 case TYPE_CODE_ARRAY:
2412 switch (TYPE_CODE (arg))
2413 {
2414 case TYPE_CODE_PTR:
2415 case TYPE_CODE_ARRAY:
2416 return rank_one_type (TYPE_TARGET_TYPE (parm), TYPE_TARGET_TYPE (arg));
2417 default:
2418 return INCOMPATIBLE_TYPE_BADNESS;
2419 }
2420 case TYPE_CODE_FUNC:
2421 switch (TYPE_CODE (arg))
2422 {
2423 case TYPE_CODE_PTR: /* funcptr -> func */
2424 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2425 default:
2426 return INCOMPATIBLE_TYPE_BADNESS;
2427 }
2428 case TYPE_CODE_INT:
2429 switch (TYPE_CODE (arg))
2430 {
2431 case TYPE_CODE_INT:
2432 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2433 {
2434 /* Deal with signed, unsigned, and plain chars and
7b83ea04 2435 signed and unsigned ints */
c5aa993b
JM
2436 if (TYPE_NOSIGN (parm))
2437 {
2438 /* This case only for character types */
2439 if (TYPE_NOSIGN (arg)) /* plain char -> plain char */
2440 return 0;
2441 else
2442 return INTEGER_COERCION_BADNESS; /* signed/unsigned char -> plain char */
2443 }
2444 else if (TYPE_UNSIGNED (parm))
2445 {
2446 if (TYPE_UNSIGNED (arg))
2447 {
db577aea 2448 if (!strcmp_iw (TYPE_NAME (parm), TYPE_NAME (arg)))
c5aa993b 2449 return 0; /* unsigned int -> unsigned int, or unsigned long -> unsigned long */
db577aea 2450 else if (!strcmp_iw (TYPE_NAME (arg), "int") && !strcmp_iw (TYPE_NAME (parm), "long"))
c5aa993b
JM
2451 return INTEGER_PROMOTION_BADNESS; /* unsigned int -> unsigned long */
2452 else
2453 return INTEGER_COERCION_BADNESS; /* unsigned long -> unsigned int */
2454 }
2455 else
2456 {
db577aea 2457 if (!strcmp_iw (TYPE_NAME (arg), "long") && !strcmp_iw (TYPE_NAME (parm), "int"))
c5aa993b
JM
2458 return INTEGER_COERCION_BADNESS; /* signed long -> unsigned int */
2459 else
2460 return INTEGER_CONVERSION_BADNESS; /* signed int/long -> unsigned int/long */
2461 }
2462 }
2463 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2464 {
db577aea 2465 if (!strcmp_iw (TYPE_NAME (parm), TYPE_NAME (arg)))
c5aa993b 2466 return 0;
db577aea 2467 else if (!strcmp_iw (TYPE_NAME (arg), "int") && !strcmp_iw (TYPE_NAME (parm), "long"))
c5aa993b
JM
2468 return INTEGER_PROMOTION_BADNESS;
2469 else
2470 return INTEGER_COERCION_BADNESS;
2471 }
2472 else
2473 return INTEGER_COERCION_BADNESS;
2474 }
2475 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2476 return INTEGER_PROMOTION_BADNESS;
2477 else
2478 return INTEGER_COERCION_BADNESS;
2479 case TYPE_CODE_ENUM:
2480 case TYPE_CODE_CHAR:
2481 case TYPE_CODE_RANGE:
2482 case TYPE_CODE_BOOL:
2483 return INTEGER_PROMOTION_BADNESS;
2484 case TYPE_CODE_FLT:
2485 return INT_FLOAT_CONVERSION_BADNESS;
2486 case TYPE_CODE_PTR:
2487 return NS_POINTER_CONVERSION_BADNESS;
2488 default:
2489 return INCOMPATIBLE_TYPE_BADNESS;
2490 }
2491 break;
2492 case TYPE_CODE_ENUM:
2493 switch (TYPE_CODE (arg))
2494 {
2495 case TYPE_CODE_INT:
2496 case TYPE_CODE_CHAR:
2497 case TYPE_CODE_RANGE:
2498 case TYPE_CODE_BOOL:
2499 case TYPE_CODE_ENUM:
2500 return INTEGER_COERCION_BADNESS;
2501 case TYPE_CODE_FLT:
2502 return INT_FLOAT_CONVERSION_BADNESS;
2503 default:
2504 return INCOMPATIBLE_TYPE_BADNESS;
2505 }
2506 break;
2507 case TYPE_CODE_CHAR:
2508 switch (TYPE_CODE (arg))
2509 {
2510 case TYPE_CODE_RANGE:
2511 case TYPE_CODE_BOOL:
2512 case TYPE_CODE_ENUM:
2513 return INTEGER_COERCION_BADNESS;
2514 case TYPE_CODE_FLT:
2515 return INT_FLOAT_CONVERSION_BADNESS;
2516 case TYPE_CODE_INT:
2517 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2518 return INTEGER_COERCION_BADNESS;
2519 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2520 return INTEGER_PROMOTION_BADNESS;
2521 /* >>> !! else fall through !! <<< */
2522 case TYPE_CODE_CHAR:
2523 /* Deal with signed, unsigned, and plain chars for C++
2524 and with int cases falling through from previous case */
2525 if (TYPE_NOSIGN (parm))
2526 {
2527 if (TYPE_NOSIGN (arg))
2528 return 0;
2529 else
2530 return INTEGER_COERCION_BADNESS;
2531 }
2532 else if (TYPE_UNSIGNED (parm))
2533 {
2534 if (TYPE_UNSIGNED (arg))
2535 return 0;
2536 else
2537 return INTEGER_PROMOTION_BADNESS;
2538 }
2539 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2540 return 0;
2541 else
2542 return INTEGER_COERCION_BADNESS;
2543 default:
2544 return INCOMPATIBLE_TYPE_BADNESS;
2545 }
2546 break;
2547 case TYPE_CODE_RANGE:
2548 switch (TYPE_CODE (arg))
2549 {
2550 case TYPE_CODE_INT:
2551 case TYPE_CODE_CHAR:
2552 case TYPE_CODE_RANGE:
2553 case TYPE_CODE_BOOL:
2554 case TYPE_CODE_ENUM:
2555 return INTEGER_COERCION_BADNESS;
2556 case TYPE_CODE_FLT:
2557 return INT_FLOAT_CONVERSION_BADNESS;
2558 default:
2559 return INCOMPATIBLE_TYPE_BADNESS;
2560 }
2561 break;
2562 case TYPE_CODE_BOOL:
2563 switch (TYPE_CODE (arg))
2564 {
2565 case TYPE_CODE_INT:
2566 case TYPE_CODE_CHAR:
2567 case TYPE_CODE_RANGE:
2568 case TYPE_CODE_ENUM:
2569 case TYPE_CODE_FLT:
2570 case TYPE_CODE_PTR:
2571 return BOOLEAN_CONVERSION_BADNESS;
2572 case TYPE_CODE_BOOL:
2573 return 0;
2574 default:
2575 return INCOMPATIBLE_TYPE_BADNESS;
2576 }
2577 break;
2578 case TYPE_CODE_FLT:
2579 switch (TYPE_CODE (arg))
2580 {
2581 case TYPE_CODE_FLT:
2582 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2583 return FLOAT_PROMOTION_BADNESS;
2584 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2585 return 0;
2586 else
2587 return FLOAT_CONVERSION_BADNESS;
2588 case TYPE_CODE_INT:
2589 case TYPE_CODE_BOOL:
2590 case TYPE_CODE_ENUM:
2591 case TYPE_CODE_RANGE:
2592 case TYPE_CODE_CHAR:
2593 return INT_FLOAT_CONVERSION_BADNESS;
2594 default:
2595 return INCOMPATIBLE_TYPE_BADNESS;
2596 }
2597 break;
2598 case TYPE_CODE_COMPLEX:
2599 switch (TYPE_CODE (arg))
2600 { /* Strictly not needed for C++, but... */
2601 case TYPE_CODE_FLT:
2602 return FLOAT_PROMOTION_BADNESS;
2603 case TYPE_CODE_COMPLEX:
2604 return 0;
2605 default:
2606 return INCOMPATIBLE_TYPE_BADNESS;
2607 }
2608 break;
2609 case TYPE_CODE_STRUCT:
c906108c 2610 /* currently same as TYPE_CODE_CLASS */
c5aa993b
JM
2611 switch (TYPE_CODE (arg))
2612 {
2613 case TYPE_CODE_STRUCT:
2614 /* Check for derivation */
2615 if (is_ancestor (parm, arg))
2616 return BASE_CONVERSION_BADNESS;
2617 /* else fall through */
2618 default:
2619 return INCOMPATIBLE_TYPE_BADNESS;
2620 }
2621 break;
2622 case TYPE_CODE_UNION:
2623 switch (TYPE_CODE (arg))
2624 {
2625 case TYPE_CODE_UNION:
2626 default:
2627 return INCOMPATIBLE_TYPE_BADNESS;
2628 }
2629 break;
2630 case TYPE_CODE_MEMBER:
2631 switch (TYPE_CODE (arg))
2632 {
2633 default:
2634 return INCOMPATIBLE_TYPE_BADNESS;
2635 }
2636 break;
2637 case TYPE_CODE_METHOD:
2638 switch (TYPE_CODE (arg))
2639 {
2640
2641 default:
2642 return INCOMPATIBLE_TYPE_BADNESS;
2643 }
2644 break;
2645 case TYPE_CODE_REF:
2646 switch (TYPE_CODE (arg))
2647 {
2648
2649 default:
2650 return INCOMPATIBLE_TYPE_BADNESS;
2651 }
2652
2653 break;
2654 case TYPE_CODE_SET:
2655 switch (TYPE_CODE (arg))
2656 {
2657 /* Not in C++ */
2658 case TYPE_CODE_SET:
2659 return rank_one_type (TYPE_FIELD_TYPE (parm, 0), TYPE_FIELD_TYPE (arg, 0));
2660 default:
2661 return INCOMPATIBLE_TYPE_BADNESS;
2662 }
2663 break;
2664 case TYPE_CODE_VOID:
2665 default:
2666 return INCOMPATIBLE_TYPE_BADNESS;
2667 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
2668}
2669
c5aa993b
JM
2670
2671/* End of functions for overload resolution */
c906108c 2672
c906108c 2673static void
fba45db2 2674print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
2675{
2676 int bitno;
2677
2678 for (bitno = 0; bitno < nbits; bitno++)
2679 {
2680 if ((bitno % 8) == 0)
2681 {
2682 puts_filtered (" ");
2683 }
2684 if (B_TST (bits, bitno))
2685 {
2686 printf_filtered ("1");
2687 }
2688 else
2689 {
2690 printf_filtered ("0");
2691 }
2692 }
2693}
2694
2695/* The args list is a strange beast. It is either terminated by a NULL
2696 pointer for varargs functions, or by a pointer to a TYPE_CODE_VOID
2697 type for normal fixed argcount functions. (FIXME someday)
2698 Also note the first arg should be the "this" pointer, we may not want to
2699 include it since we may get into a infinitely recursive situation. */
2700
2701static void
fba45db2 2702print_arg_types (struct type **args, int spaces)
c906108c
SS
2703{
2704 if (args != NULL)
2705 {
2706 while (*args != NULL)
2707 {
2708 recursive_dump_type (*args, spaces + 2);
c5aa993b 2709 if ((*args++)->code == TYPE_CODE_VOID)
c906108c
SS
2710 {
2711 break;
2712 }
2713 }
2714 }
2715}
2716
2717static void
fba45db2 2718dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
2719{
2720 int method_idx;
2721 int overload_idx;
2722 struct fn_field *f;
2723
2724 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 2725 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
2726 printf_filtered ("\n");
2727 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2728 {
2729 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2730 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2731 method_idx,
2732 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
2733 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2734 gdb_stdout);
c906108c
SS
2735 printf_filtered (") length %d\n",
2736 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2737 for (overload_idx = 0;
2738 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2739 overload_idx++)
2740 {
2741 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2742 overload_idx,
2743 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
2744 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2745 gdb_stdout);
c906108c
SS
2746 printf_filtered (")\n");
2747 printfi_filtered (spaces + 8, "type ");
d4f3574e 2748 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx), gdb_stdout);
c906108c
SS
2749 printf_filtered ("\n");
2750
2751 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2752 spaces + 8 + 2);
2753
2754 printfi_filtered (spaces + 8, "args ");
d4f3574e 2755 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx), gdb_stdout);
c906108c
SS
2756 printf_filtered ("\n");
2757
2758 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx), spaces);
2759 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
2760 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2761 gdb_stdout);
c906108c
SS
2762 printf_filtered ("\n");
2763
2764 printfi_filtered (spaces + 8, "is_const %d\n",
2765 TYPE_FN_FIELD_CONST (f, overload_idx));
2766 printfi_filtered (spaces + 8, "is_volatile %d\n",
2767 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2768 printfi_filtered (spaces + 8, "is_private %d\n",
2769 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2770 printfi_filtered (spaces + 8, "is_protected %d\n",
2771 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2772 printfi_filtered (spaces + 8, "is_stub %d\n",
2773 TYPE_FN_FIELD_STUB (f, overload_idx));
2774 printfi_filtered (spaces + 8, "voffset %u\n",
2775 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2776 }
2777 }
2778}
2779
2780static void
fba45db2 2781print_cplus_stuff (struct type *type, int spaces)
c906108c
SS
2782{
2783 printfi_filtered (spaces, "n_baseclasses %d\n",
2784 TYPE_N_BASECLASSES (type));
2785 printfi_filtered (spaces, "nfn_fields %d\n",
2786 TYPE_NFN_FIELDS (type));
2787 printfi_filtered (spaces, "nfn_fields_total %d\n",
2788 TYPE_NFN_FIELDS_TOTAL (type));
2789 if (TYPE_N_BASECLASSES (type) > 0)
2790 {
2791 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2792 TYPE_N_BASECLASSES (type));
d4f3574e 2793 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type), gdb_stdout);
c906108c
SS
2794 printf_filtered (")");
2795
2796 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2797 TYPE_N_BASECLASSES (type));
2798 puts_filtered ("\n");
2799 }
2800 if (TYPE_NFIELDS (type) > 0)
2801 {
2802 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2803 {
2804 printfi_filtered (spaces, "private_field_bits (%d bits at *",
2805 TYPE_NFIELDS (type));
d4f3574e 2806 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type), gdb_stdout);
c906108c
SS
2807 printf_filtered (")");
2808 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2809 TYPE_NFIELDS (type));
2810 puts_filtered ("\n");
2811 }
2812 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2813 {
2814 printfi_filtered (spaces, "protected_field_bits (%d bits at *",
2815 TYPE_NFIELDS (type));
d4f3574e 2816 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type), gdb_stdout);
c906108c
SS
2817 printf_filtered (")");
2818 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2819 TYPE_NFIELDS (type));
2820 puts_filtered ("\n");
2821 }
2822 }
2823 if (TYPE_NFN_FIELDS (type) > 0)
2824 {
2825 dump_fn_fieldlists (type, spaces);
2826 }
2827}
2828
e9e79dd9
FF
2829static void
2830print_bound_type (int bt)
2831{
2832 switch (bt)
2833 {
2834 case BOUND_CANNOT_BE_DETERMINED:
2835 printf_filtered ("(BOUND_CANNOT_BE_DETERMINED)");
2836 break;
2837 case BOUND_BY_REF_ON_STACK:
2838 printf_filtered ("(BOUND_BY_REF_ON_STACK)");
2839 break;
2840 case BOUND_BY_VALUE_ON_STACK:
2841 printf_filtered ("(BOUND_BY_VALUE_ON_STACK)");
2842 break;
2843 case BOUND_BY_REF_IN_REG:
2844 printf_filtered ("(BOUND_BY_REF_IN_REG)");
2845 break;
2846 case BOUND_BY_VALUE_IN_REG:
2847 printf_filtered ("(BOUND_BY_VALUE_IN_REG)");
2848 break;
2849 case BOUND_SIMPLE:
2850 printf_filtered ("(BOUND_SIMPLE)");
2851 break;
2852 default:
2853 printf_filtered ("(unknown bound type)");
2854 break;
2855 }
2856}
2857
c906108c
SS
2858static struct obstack dont_print_type_obstack;
2859
2860void
fba45db2 2861recursive_dump_type (struct type *type, int spaces)
c906108c
SS
2862{
2863 int idx;
2864
2865 if (spaces == 0)
2866 obstack_begin (&dont_print_type_obstack, 0);
2867
2868 if (TYPE_NFIELDS (type) > 0
2869 || (TYPE_CPLUS_SPECIFIC (type) && TYPE_NFN_FIELDS (type) > 0))
2870 {
2871 struct type **first_dont_print
c5aa993b 2872 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 2873
c5aa993b
JM
2874 int i = (struct type **) obstack_next_free (&dont_print_type_obstack)
2875 - first_dont_print;
c906108c
SS
2876
2877 while (--i >= 0)
2878 {
2879 if (type == first_dont_print[i])
2880 {
2881 printfi_filtered (spaces, "type node ");
d4f3574e 2882 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
2883 printf_filtered (" <same as already seen type>\n");
2884 return;
2885 }
2886 }
2887
2888 obstack_ptr_grow (&dont_print_type_obstack, type);
2889 }
2890
2891 printfi_filtered (spaces, "type node ");
d4f3574e 2892 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
2893 printf_filtered ("\n");
2894 printfi_filtered (spaces, "name '%s' (",
2895 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 2896 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 2897 printf_filtered (")\n");
e9e79dd9
FF
2898 printfi_filtered (spaces, "tagname '%s' (",
2899 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2900 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2901 printf_filtered (")\n");
c906108c
SS
2902 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2903 switch (TYPE_CODE (type))
2904 {
c5aa993b
JM
2905 case TYPE_CODE_UNDEF:
2906 printf_filtered ("(TYPE_CODE_UNDEF)");
2907 break;
2908 case TYPE_CODE_PTR:
2909 printf_filtered ("(TYPE_CODE_PTR)");
2910 break;
2911 case TYPE_CODE_ARRAY:
2912 printf_filtered ("(TYPE_CODE_ARRAY)");
2913 break;
2914 case TYPE_CODE_STRUCT:
2915 printf_filtered ("(TYPE_CODE_STRUCT)");
2916 break;
2917 case TYPE_CODE_UNION:
2918 printf_filtered ("(TYPE_CODE_UNION)");
2919 break;
2920 case TYPE_CODE_ENUM:
2921 printf_filtered ("(TYPE_CODE_ENUM)");
2922 break;
2923 case TYPE_CODE_FUNC:
2924 printf_filtered ("(TYPE_CODE_FUNC)");
2925 break;
2926 case TYPE_CODE_INT:
2927 printf_filtered ("(TYPE_CODE_INT)");
2928 break;
2929 case TYPE_CODE_FLT:
2930 printf_filtered ("(TYPE_CODE_FLT)");
2931 break;
2932 case TYPE_CODE_VOID:
2933 printf_filtered ("(TYPE_CODE_VOID)");
2934 break;
2935 case TYPE_CODE_SET:
2936 printf_filtered ("(TYPE_CODE_SET)");
2937 break;
2938 case TYPE_CODE_RANGE:
2939 printf_filtered ("(TYPE_CODE_RANGE)");
2940 break;
2941 case TYPE_CODE_STRING:
2942 printf_filtered ("(TYPE_CODE_STRING)");
2943 break;
e9e79dd9
FF
2944 case TYPE_CODE_BITSTRING:
2945 printf_filtered ("(TYPE_CODE_BITSTRING)");
2946 break;
c5aa993b
JM
2947 case TYPE_CODE_ERROR:
2948 printf_filtered ("(TYPE_CODE_ERROR)");
2949 break;
2950 case TYPE_CODE_MEMBER:
2951 printf_filtered ("(TYPE_CODE_MEMBER)");
2952 break;
2953 case TYPE_CODE_METHOD:
2954 printf_filtered ("(TYPE_CODE_METHOD)");
2955 break;
2956 case TYPE_CODE_REF:
2957 printf_filtered ("(TYPE_CODE_REF)");
2958 break;
2959 case TYPE_CODE_CHAR:
2960 printf_filtered ("(TYPE_CODE_CHAR)");
2961 break;
2962 case TYPE_CODE_BOOL:
2963 printf_filtered ("(TYPE_CODE_BOOL)");
2964 break;
e9e79dd9
FF
2965 case TYPE_CODE_COMPLEX:
2966 printf_filtered ("(TYPE_CODE_COMPLEX)");
2967 break;
c5aa993b
JM
2968 case TYPE_CODE_TYPEDEF:
2969 printf_filtered ("(TYPE_CODE_TYPEDEF)");
2970 break;
e9e79dd9
FF
2971 case TYPE_CODE_TEMPLATE:
2972 printf_filtered ("(TYPE_CODE_TEMPLATE)");
2973 break;
2974 case TYPE_CODE_TEMPLATE_ARG:
2975 printf_filtered ("(TYPE_CODE_TEMPLATE_ARG)");
2976 break;
c5aa993b
JM
2977 default:
2978 printf_filtered ("(UNKNOWN TYPE CODE)");
2979 break;
c906108c
SS
2980 }
2981 puts_filtered ("\n");
2982 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9e79dd9
FF
2983 printfi_filtered (spaces, "upper_bound_type 0x%x ",
2984 TYPE_ARRAY_UPPER_BOUND_TYPE (type));
2985 print_bound_type (TYPE_ARRAY_UPPER_BOUND_TYPE (type));
2986 puts_filtered ("\n");
2987 printfi_filtered (spaces, "lower_bound_type 0x%x ",
2988 TYPE_ARRAY_LOWER_BOUND_TYPE (type));
2989 print_bound_type (TYPE_ARRAY_LOWER_BOUND_TYPE (type));
2990 puts_filtered ("\n");
c906108c 2991 printfi_filtered (spaces, "objfile ");
d4f3574e 2992 gdb_print_host_address (TYPE_OBJFILE (type), gdb_stdout);
c906108c
SS
2993 printf_filtered ("\n");
2994 printfi_filtered (spaces, "target_type ");
d4f3574e 2995 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
2996 printf_filtered ("\n");
2997 if (TYPE_TARGET_TYPE (type) != NULL)
2998 {
2999 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3000 }
3001 printfi_filtered (spaces, "pointer_type ");
d4f3574e 3002 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
3003 printf_filtered ("\n");
3004 printfi_filtered (spaces, "reference_type ");
d4f3574e 3005 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 3006 printf_filtered ("\n");
e9e79dd9
FF
3007 printfi_filtered (spaces, "cv_type ");
3008 gdb_print_host_address (TYPE_CV_TYPE (type), gdb_stdout);
3009 printf_filtered ("\n");
3010 printfi_filtered (spaces, "as_type ");
3011 gdb_print_host_address (TYPE_AS_TYPE (type), gdb_stdout);
3012 printf_filtered ("\n");
c906108c 3013 printfi_filtered (spaces, "flags 0x%x", TYPE_FLAGS (type));
762a036f 3014 if (TYPE_UNSIGNED (type))
c906108c
SS
3015 {
3016 puts_filtered (" TYPE_FLAG_UNSIGNED");
3017 }
762a036f
FF
3018 if (TYPE_NOSIGN (type))
3019 {
3020 puts_filtered (" TYPE_FLAG_NOSIGN");
3021 }
3022 if (TYPE_STUB (type))
c906108c
SS
3023 {
3024 puts_filtered (" TYPE_FLAG_STUB");
3025 }
762a036f
FF
3026 if (TYPE_TARGET_STUB (type))
3027 {
3028 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3029 }
3030 if (TYPE_STATIC (type))
3031 {
3032 puts_filtered (" TYPE_FLAG_STATIC");
3033 }
3034 if (TYPE_CONST (type))
3035 {
3036 puts_filtered (" TYPE_FLAG_CONST");
3037 }
3038 if (TYPE_VOLATILE (type))
3039 {
3040 puts_filtered (" TYPE_FLAG_VOLATILE");
3041 }
3042 if (TYPE_PROTOTYPED (type))
3043 {
3044 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3045 }
3046 if (TYPE_INCOMPLETE (type))
3047 {
3048 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3049 }
3050 if (TYPE_CODE_SPACE (type))
3051 {
3052 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3053 }
3054 if (TYPE_DATA_SPACE (type))
3055 {
3056 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3057 }
3058 if (TYPE_VARARGS (type))
3059 {
3060 puts_filtered (" TYPE_FLAG_VARARGS");
3061 }
c906108c
SS
3062 puts_filtered ("\n");
3063 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 3064 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
3065 puts_filtered ("\n");
3066 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3067 {
3068 printfi_filtered (spaces + 2,
3069 "[%d] bitpos %d bitsize %d type ",
3070 idx, TYPE_FIELD_BITPOS (type, idx),
3071 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 3072 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
3073 printf_filtered (" name '%s' (",
3074 TYPE_FIELD_NAME (type, idx) != NULL
3075 ? TYPE_FIELD_NAME (type, idx)
3076 : "<NULL>");
d4f3574e 3077 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
3078 printf_filtered (")\n");
3079 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3080 {
3081 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3082 }
3083 }
3084 printfi_filtered (spaces, "vptr_basetype ");
d4f3574e 3085 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
c906108c
SS
3086 puts_filtered ("\n");
3087 if (TYPE_VPTR_BASETYPE (type) != NULL)
3088 {
3089 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3090 }
3091 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
3092 switch (TYPE_CODE (type))
3093 {
c5aa993b
JM
3094 case TYPE_CODE_METHOD:
3095 case TYPE_CODE_FUNC:
3096 printfi_filtered (spaces, "arg_types ");
d4f3574e 3097 gdb_print_host_address (TYPE_ARG_TYPES (type), gdb_stdout);
c5aa993b
JM
3098 puts_filtered ("\n");
3099 print_arg_types (TYPE_ARG_TYPES (type), spaces);
3100 break;
c906108c 3101
c5aa993b
JM
3102 case TYPE_CODE_STRUCT:
3103 printfi_filtered (spaces, "cplus_stuff ");
d4f3574e 3104 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout);
c5aa993b
JM
3105 puts_filtered ("\n");
3106 print_cplus_stuff (type, spaces);
3107 break;
c906108c 3108
701c159d
AC
3109 case TYPE_CODE_FLT:
3110 printfi_filtered (spaces, "floatformat ");
3111 if (TYPE_FLOATFORMAT (type) == NULL
3112 || TYPE_FLOATFORMAT (type)->name == NULL)
3113 puts_filtered ("(null)");
3114 else
3115 puts_filtered (TYPE_FLOATFORMAT (type)->name);
3116 puts_filtered ("\n");
3117 break;
3118
c5aa993b
JM
3119 default:
3120 /* We have to pick one of the union types to be able print and test
7b83ea04
AC
3121 the value. Pick cplus_struct_type, even though we know it isn't
3122 any particular one. */
c5aa993b 3123 printfi_filtered (spaces, "type_specific ");
d4f3574e 3124 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout);
c5aa993b
JM
3125 if (TYPE_CPLUS_SPECIFIC (type) != NULL)
3126 {
3127 printf_filtered (" (unknown data form)");
3128 }
3129 printf_filtered ("\n");
3130 break;
c906108c
SS
3131
3132 }
3133 if (spaces == 0)
3134 obstack_free (&dont_print_type_obstack, NULL);
3135}
3136
a14ed312 3137static void build_gdbtypes (void);
c906108c 3138static void
fba45db2 3139build_gdbtypes (void)
c906108c
SS
3140{
3141 builtin_type_void =
3142 init_type (TYPE_CODE_VOID, 1,
3143 0,
3144 "void", (struct objfile *) NULL);
3145 builtin_type_char =
3146 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4e409299
JB
3147 (TYPE_FLAG_NOSIGN
3148 | (TARGET_CHAR_SIGNED ? 0 : TYPE_FLAG_UNSIGNED)),
c906108c 3149 "char", (struct objfile *) NULL);
c5aa993b 3150 builtin_type_true_char =
9e0b60a8
JM
3151 init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3152 0,
3153 "true character", (struct objfile *) NULL);
c906108c
SS
3154 builtin_type_signed_char =
3155 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3156 0,
3157 "signed char", (struct objfile *) NULL);
3158 builtin_type_unsigned_char =
3159 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3160 TYPE_FLAG_UNSIGNED,
3161 "unsigned char", (struct objfile *) NULL);
3162 builtin_type_short =
3163 init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
3164 0,
3165 "short", (struct objfile *) NULL);
3166 builtin_type_unsigned_short =
3167 init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
3168 TYPE_FLAG_UNSIGNED,
3169 "unsigned short", (struct objfile *) NULL);
3170 builtin_type_int =
3171 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3172 0,
3173 "int", (struct objfile *) NULL);
3174 builtin_type_unsigned_int =
3175 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3176 TYPE_FLAG_UNSIGNED,
3177 "unsigned int", (struct objfile *) NULL);
3178 builtin_type_long =
3179 init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
3180 0,
3181 "long", (struct objfile *) NULL);
3182 builtin_type_unsigned_long =
3183 init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
3184 TYPE_FLAG_UNSIGNED,
3185 "unsigned long", (struct objfile *) NULL);
3186 builtin_type_long_long =
3187 init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
3188 0,
3189 "long long", (struct objfile *) NULL);
c5aa993b 3190 builtin_type_unsigned_long_long =
c906108c
SS
3191 init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
3192 TYPE_FLAG_UNSIGNED,
3193 "unsigned long long", (struct objfile *) NULL);
3194 builtin_type_float =
3195 init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
3196 0,
3197 "float", (struct objfile *) NULL);
9c9532c9
CV
3198/* vinschen@redhat.com 2002-02-08:
3199 The below lines are disabled since they are doing the wrong
3200 thing for non-multiarch targets. They are setting the correct
3201 type of floats for the target but while on multiarch targets
3202 this is done everytime the architecture changes, it's done on
3203 non-multiarch targets only on startup, leaving the wrong values
3204 in even if the architecture changes (eg. from big-endian to
3205 little-endian). */
3206#if 0
701c159d 3207 TYPE_FLOATFORMAT (builtin_type_float) = TARGET_FLOAT_FORMAT;
9c9532c9 3208#endif
c906108c
SS
3209 builtin_type_double =
3210 init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
3211 0,
3212 "double", (struct objfile *) NULL);
9c9532c9 3213#if 0
701c159d 3214 TYPE_FLOATFORMAT (builtin_type_double) = TARGET_DOUBLE_FORMAT;
9c9532c9 3215#endif
c906108c
SS
3216 builtin_type_long_double =
3217 init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
3218 0,
3219 "long double", (struct objfile *) NULL);
9c9532c9 3220#if 0
701c159d 3221 TYPE_FLOATFORMAT (builtin_type_long_double) = TARGET_LONG_DOUBLE_FORMAT;
9c9532c9 3222#endif
c906108c
SS
3223 builtin_type_complex =
3224 init_type (TYPE_CODE_COMPLEX, 2 * TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
3225 0,
3226 "complex", (struct objfile *) NULL);
3227 TYPE_TARGET_TYPE (builtin_type_complex) = builtin_type_float;
3228 builtin_type_double_complex =
3229 init_type (TYPE_CODE_COMPLEX, 2 * TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
3230 0,
3231 "double complex", (struct objfile *) NULL);
3232 TYPE_TARGET_TYPE (builtin_type_double_complex) = builtin_type_double;
3233 builtin_type_string =
3234 init_type (TYPE_CODE_STRING, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3235 0,
3236 "string", (struct objfile *) NULL);
3237 builtin_type_int8 =
3238 init_type (TYPE_CODE_INT, 8 / 8,
3239 0,
3240 "int8_t", (struct objfile *) NULL);
3241 builtin_type_uint8 =
3242 init_type (TYPE_CODE_INT, 8 / 8,
3243 TYPE_FLAG_UNSIGNED,
3244 "uint8_t", (struct objfile *) NULL);
3245 builtin_type_int16 =
3246 init_type (TYPE_CODE_INT, 16 / 8,
3247 0,
3248 "int16_t", (struct objfile *) NULL);
3249 builtin_type_uint16 =
3250 init_type (TYPE_CODE_INT, 16 / 8,
3251 TYPE_FLAG_UNSIGNED,
3252 "uint16_t", (struct objfile *) NULL);
3253 builtin_type_int32 =
3254 init_type (TYPE_CODE_INT, 32 / 8,
3255 0,
3256 "int32_t", (struct objfile *) NULL);
3257 builtin_type_uint32 =
3258 init_type (TYPE_CODE_INT, 32 / 8,
3259 TYPE_FLAG_UNSIGNED,
3260 "uint32_t", (struct objfile *) NULL);
3261 builtin_type_int64 =
3262 init_type (TYPE_CODE_INT, 64 / 8,
3263 0,
3264 "int64_t", (struct objfile *) NULL);
3265 builtin_type_uint64 =
3266 init_type (TYPE_CODE_INT, 64 / 8,
3267 TYPE_FLAG_UNSIGNED,
3268 "uint64_t", (struct objfile *) NULL);
8b982acf
EZ
3269 builtin_type_int128 =
3270 init_type (TYPE_CODE_INT, 128 / 8,
3271 0,
3272 "int128_t", (struct objfile *) NULL);
3273 builtin_type_uint128 =
3274 init_type (TYPE_CODE_INT, 128 / 8,
3275 TYPE_FLAG_UNSIGNED,
3276 "uint128_t", (struct objfile *) NULL);
c906108c
SS
3277 builtin_type_bool =
3278 init_type (TYPE_CODE_BOOL, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3279 0,
3280 "bool", (struct objfile *) NULL);
3281
c5aa993b 3282 /* Add user knob for controlling resolution of opaque types */
c906108c 3283 add_show_from_set
c5aa993b 3284 (add_set_cmd ("opaque-type-resolution", class_support, var_boolean, (char *) &opaque_type_resolution,
c906108c
SS
3285 "Set resolution of opaque struct/class/union types (if set before loading symbols).",
3286 &setlist),
3287 &showlist);
3288 opaque_type_resolution = 1;
3289
917317f4
JM
3290 /* Build SIMD types. */
3291 builtin_type_v4sf
3292 = init_simd_type ("__builtin_v4sf", builtin_type_float, "f", 4);
c2d11a7d
JM
3293 builtin_type_v4si
3294 = init_simd_type ("__builtin_v4si", builtin_type_int32, "f", 4);
08cf96df
EZ
3295 builtin_type_v16qi
3296 = init_simd_type ("__builtin_v16qi", builtin_type_int8, "f", 16);
c2d11a7d
JM
3297 builtin_type_v8qi
3298 = init_simd_type ("__builtin_v8qi", builtin_type_int8, "f", 8);
08cf96df
EZ
3299 builtin_type_v8hi
3300 = init_simd_type ("__builtin_v8hi", builtin_type_int16, "f", 8);
c2d11a7d
JM
3301 builtin_type_v4hi
3302 = init_simd_type ("__builtin_v4hi", builtin_type_int16, "f", 4);
3303 builtin_type_v2si
3304 = init_simd_type ("__builtin_v2si", builtin_type_int32, "f", 2);
c4093a6a 3305
08cf96df
EZ
3306 /* Vector types. */
3307 builtin_type_vec128
3308 = build_builtin_type_vec128 ();
3309
c4093a6a 3310 /* Pointer/Address types. */
ee3a7b7f
JB
3311
3312 /* NOTE: on some targets, addresses and pointers are not necessarily
3313 the same --- for example, on the D10V, pointers are 16 bits long,
3314 but addresses are 32 bits long. See doc/gdbint.texinfo,
3315 ``Pointers Are Not Always Addresses''.
3316
3317 The upshot is:
3318 - gdb's `struct type' always describes the target's
3319 representation.
3320 - gdb's `struct value' objects should always hold values in
3321 target form.
3322 - gdb's CORE_ADDR values are addresses in the unified virtual
3323 address space that the assembler and linker work with. Thus,
3324 since target_read_memory takes a CORE_ADDR as an argument, it
3325 can access any memory on the target, even if the processor has
3326 separate code and data address spaces.
3327
3328 So, for example:
3329 - If v is a value holding a D10V code pointer, its contents are
3330 in target form: a big-endian address left-shifted two bits.
3331 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3332 sizeof (void *) == 2 on the target.
3333
3334 In this context, builtin_type_CORE_ADDR is a bit odd: it's a
3335 target type for a value the target will never see. It's only
3336 used to hold the values of (typeless) linker symbols, which are
3337 indeed in the unified virtual address space. */
090a2205 3338 builtin_type_void_data_ptr = make_pointer_type (builtin_type_void, NULL);
ee3a7b7f
JB
3339 builtin_type_void_func_ptr
3340 = lookup_pointer_type (lookup_function_type (builtin_type_void));
c4093a6a 3341 builtin_type_CORE_ADDR =
52204a0b 3342 init_type (TYPE_CODE_INT, TARGET_ADDR_BIT / 8,
c4093a6a
JM
3343 TYPE_FLAG_UNSIGNED,
3344 "__CORE_ADDR", (struct objfile *) NULL);
3345 builtin_type_bfd_vma =
3346 init_type (TYPE_CODE_INT, TARGET_BFD_VMA_BIT / 8,
3347 TYPE_FLAG_UNSIGNED,
3348 "__bfd_vma", (struct objfile *) NULL);
c906108c
SS
3349}
3350
3351
a14ed312 3352extern void _initialize_gdbtypes (void);
c906108c 3353void
fba45db2 3354_initialize_gdbtypes (void)
c906108c 3355{
5d161b24 3356 struct cmd_list_element *c;
c906108c 3357 build_gdbtypes ();
0f71a2f6
JM
3358
3359 /* FIXME - For the moment, handle types by swapping them in and out.
3360 Should be using the per-architecture data-pointer and a large
3361 struct. */
c5aa993b
JM
3362 register_gdbarch_swap (&builtin_type_void, sizeof (struct type *), NULL);
3363 register_gdbarch_swap (&builtin_type_char, sizeof (struct type *), NULL);
3364 register_gdbarch_swap (&builtin_type_short, sizeof (struct type *), NULL);
3365 register_gdbarch_swap (&builtin_type_int, sizeof (struct type *), NULL);
3366 register_gdbarch_swap (&builtin_type_long, sizeof (struct type *), NULL);
3367 register_gdbarch_swap (&builtin_type_long_long, sizeof (struct type *), NULL);
3368 register_gdbarch_swap (&builtin_type_signed_char, sizeof (struct type *), NULL);
3369 register_gdbarch_swap (&builtin_type_unsigned_char, sizeof (struct type *), NULL);
3370 register_gdbarch_swap (&builtin_type_unsigned_short, sizeof (struct type *), NULL);
3371 register_gdbarch_swap (&builtin_type_unsigned_int, sizeof (struct type *), NULL);
3372 register_gdbarch_swap (&builtin_type_unsigned_long, sizeof (struct type *), NULL);
3373 register_gdbarch_swap (&builtin_type_unsigned_long_long, sizeof (struct type *), NULL);
3374 register_gdbarch_swap (&builtin_type_float, sizeof (struct type *), NULL);
3375 register_gdbarch_swap (&builtin_type_double, sizeof (struct type *), NULL);
3376 register_gdbarch_swap (&builtin_type_long_double, sizeof (struct type *), NULL);
3377 register_gdbarch_swap (&builtin_type_complex, sizeof (struct type *), NULL);
3378 register_gdbarch_swap (&builtin_type_double_complex, sizeof (struct type *), NULL);
3379 register_gdbarch_swap (&builtin_type_string, sizeof (struct type *), NULL);
3380 register_gdbarch_swap (&builtin_type_int8, sizeof (struct type *), NULL);
3381 register_gdbarch_swap (&builtin_type_uint8, sizeof (struct type *), NULL);
3382 register_gdbarch_swap (&builtin_type_int16, sizeof (struct type *), NULL);
3383 register_gdbarch_swap (&builtin_type_uint16, sizeof (struct type *), NULL);
3384 register_gdbarch_swap (&builtin_type_int32, sizeof (struct type *), NULL);
3385 register_gdbarch_swap (&builtin_type_uint32, sizeof (struct type *), NULL);
3386 register_gdbarch_swap (&builtin_type_int64, sizeof (struct type *), NULL);
3387 register_gdbarch_swap (&builtin_type_uint64, sizeof (struct type *), NULL);
8b982acf
EZ
3388 register_gdbarch_swap (&builtin_type_int128, sizeof (struct type *), NULL);
3389 register_gdbarch_swap (&builtin_type_uint128, sizeof (struct type *), NULL);
917317f4 3390 register_gdbarch_swap (&builtin_type_v4sf, sizeof (struct type *), NULL);
c2d11a7d 3391 register_gdbarch_swap (&builtin_type_v4si, sizeof (struct type *), NULL);
08cf96df 3392 register_gdbarch_swap (&builtin_type_v16qi, sizeof (struct type *), NULL);
c2d11a7d 3393 register_gdbarch_swap (&builtin_type_v8qi, sizeof (struct type *), NULL);
08cf96df 3394 register_gdbarch_swap (&builtin_type_v8hi, sizeof (struct type *), NULL);
c2d11a7d
JM
3395 register_gdbarch_swap (&builtin_type_v4hi, sizeof (struct type *), NULL);
3396 register_gdbarch_swap (&builtin_type_v2si, sizeof (struct type *), NULL);
08cf96df 3397 register_gdbarch_swap (&builtin_type_vec128, sizeof (struct type *), NULL);
090a2205 3398 REGISTER_GDBARCH_SWAP (builtin_type_void_data_ptr);
ee3a7b7f 3399 REGISTER_GDBARCH_SWAP (builtin_type_void_func_ptr);
c4093a6a
JM
3400 REGISTER_GDBARCH_SWAP (builtin_type_CORE_ADDR);
3401 REGISTER_GDBARCH_SWAP (builtin_type_bfd_vma);
0f71a2f6 3402 register_gdbarch_swap (NULL, 0, build_gdbtypes);
5d161b24 3403
598f52df
AC
3404 /* Note: These types do not need to be swapped - they are target
3405 neutral. */
3406 builtin_type_ieee_single_big =
3407 init_type (TYPE_CODE_FLT, floatformat_ieee_single_big.totalsize / 8,
3408 0, "builtin_type_ieee_single_big", NULL);
3409 TYPE_FLOATFORMAT (builtin_type_ieee_single_big) = &floatformat_ieee_single_big;
3410 builtin_type_ieee_single_little =
3411 init_type (TYPE_CODE_FLT, floatformat_ieee_single_little.totalsize / 8,
3412 0, "builtin_type_ieee_single_little", NULL);
069e84fd 3413 TYPE_FLOATFORMAT (builtin_type_ieee_single_little) = &floatformat_ieee_single_little;
598f52df
AC
3414 builtin_type_ieee_double_big =
3415 init_type (TYPE_CODE_FLT, floatformat_ieee_double_big.totalsize / 8,
3416 0, "builtin_type_ieee_double_big", NULL);
069e84fd 3417 TYPE_FLOATFORMAT (builtin_type_ieee_double_big) = &floatformat_ieee_double_big;
598f52df
AC
3418 builtin_type_ieee_double_little =
3419 init_type (TYPE_CODE_FLT, floatformat_ieee_double_little.totalsize / 8,
3420 0, "builtin_type_ieee_double_little", NULL);
069e84fd 3421 TYPE_FLOATFORMAT (builtin_type_ieee_double_little) = &floatformat_ieee_double_little;
598f52df
AC
3422 builtin_type_ieee_double_littlebyte_bigword =
3423 init_type (TYPE_CODE_FLT, floatformat_ieee_double_littlebyte_bigword.totalsize / 8,
3424 0, "builtin_type_ieee_double_littlebyte_bigword", NULL);
069e84fd 3425 TYPE_FLOATFORMAT (builtin_type_ieee_double_littlebyte_bigword) = &floatformat_ieee_double_littlebyte_bigword;
598f52df
AC
3426 builtin_type_i387_ext =
3427 init_type (TYPE_CODE_FLT, floatformat_i387_ext.totalsize / 8,
3428 0, "builtin_type_i387_ext", NULL);
e371b258 3429 TYPE_FLOATFORMAT (builtin_type_i387_ext) = &floatformat_i387_ext;
598f52df
AC
3430 builtin_type_m68881_ext =
3431 init_type (TYPE_CODE_FLT, floatformat_m68881_ext.totalsize / 8,
3432 0, "builtin_type_m68881_ext", NULL);
069e84fd 3433 TYPE_FLOATFORMAT (builtin_type_m68881_ext) = &floatformat_m68881_ext;
598f52df
AC
3434 builtin_type_i960_ext =
3435 init_type (TYPE_CODE_FLT, floatformat_i960_ext.totalsize / 8,
3436 0, "builtin_type_i960_ext", NULL);
069e84fd 3437 TYPE_FLOATFORMAT (builtin_type_i960_ext) = &floatformat_i960_ext;
598f52df
AC
3438 builtin_type_m88110_ext =
3439 init_type (TYPE_CODE_FLT, floatformat_m88110_ext.totalsize / 8,
3440 0, "builtin_type_m88110_ext", NULL);
069e84fd 3441 TYPE_FLOATFORMAT (builtin_type_m88110_ext) = &floatformat_m88110_ext;
598f52df
AC
3442 builtin_type_m88110_harris_ext =
3443 init_type (TYPE_CODE_FLT, floatformat_m88110_harris_ext.totalsize / 8,
3444 0, "builtin_type_m88110_harris_ext", NULL);
069e84fd 3445 TYPE_FLOATFORMAT (builtin_type_m88110_harris_ext) = &floatformat_m88110_harris_ext;
598f52df
AC
3446 builtin_type_arm_ext_big =
3447 init_type (TYPE_CODE_FLT, floatformat_arm_ext_big.totalsize / 8,
3448 0, "builtin_type_arm_ext_big", NULL);
069e84fd 3449 TYPE_FLOATFORMAT (builtin_type_arm_ext_big) = &floatformat_arm_ext_big;
598f52df
AC
3450 builtin_type_arm_ext_littlebyte_bigword =
3451 init_type (TYPE_CODE_FLT, floatformat_arm_ext_littlebyte_bigword.totalsize / 8,
3452 0, "builtin_type_arm_ext_littlebyte_bigword", NULL);
069e84fd 3453 TYPE_FLOATFORMAT (builtin_type_arm_ext_littlebyte_bigword) = &floatformat_arm_ext_littlebyte_bigword;
598f52df
AC
3454 builtin_type_ia64_spill_big =
3455 init_type (TYPE_CODE_FLT, floatformat_ia64_spill_big.totalsize / 8,
3456 0, "builtin_type_ia64_spill_big", NULL);
069e84fd 3457 TYPE_FLOATFORMAT (builtin_type_ia64_spill_big) = &floatformat_ia64_spill_big;
598f52df
AC
3458 builtin_type_ia64_spill_little =
3459 init_type (TYPE_CODE_FLT, floatformat_ia64_spill_little.totalsize / 8,
3460 0, "builtin_type_ia64_spill_little", NULL);
069e84fd 3461 TYPE_FLOATFORMAT (builtin_type_ia64_spill_little) = &floatformat_ia64_spill_little;
598f52df
AC
3462 builtin_type_ia64_quad_big =
3463 init_type (TYPE_CODE_FLT, floatformat_ia64_quad_big.totalsize / 8,
3464 0, "builtin_type_ia64_quad_big", NULL);
069e84fd 3465 TYPE_FLOATFORMAT (builtin_type_ia64_quad_big) = &floatformat_ia64_quad_big;
598f52df
AC
3466 builtin_type_ia64_quad_little =
3467 init_type (TYPE_CODE_FLT, floatformat_ia64_quad_little.totalsize / 8,
3468 0, "builtin_type_ia64_quad_little", NULL);
069e84fd 3469 TYPE_FLOATFORMAT (builtin_type_ia64_quad_little) = &floatformat_ia64_quad_little;
598f52df 3470
5d161b24
DB
3471 add_show_from_set (
3472 add_set_cmd ("overload", no_class, var_zinteger, (char *) &overload_debug,
3473 "Set debugging of C++ overloading.\n\
3474 When enabled, ranking of the functions\n\
3475 is displayed.", &setdebuglist),
3476 &showdebuglist);
c906108c 3477}