]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/gdbtypes.c
Add missing format for built-in floating-point types
[thirdparty/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
618f726f 3 Copyright (C) 1992-2016 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c
SS
23#include "bfd.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "gdbtypes.h"
28#include "expression.h"
29#include "language.h"
30#include "target.h"
31#include "value.h"
32#include "demangle.h"
33#include "complaints.h"
34#include "gdbcmd.h"
015a42b4 35#include "cp-abi.h"
ae5a43e0 36#include "hashtab.h"
8de20a37 37#include "cp-support.h"
ca092b61
DE
38#include "bcache.h"
39#include "dwarf2loc.h"
80180f79 40#include "gdbcore.h"
ac3aafc7 41
6403aeea
SW
42/* Initialize BADNESS constants. */
43
a9d5ef47 44const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 45
a9d5ef47
SW
46const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 48
a9d5ef47 49const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 50
a9d5ef47
SW
51const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 58const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
59const struct rank BASE_CONVERSION_BADNESS = {2,0};
60const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
da096638 61const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 62const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 63const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 64
8da61cc4 65/* Floatformat pairs. */
f9e9243a
UW
66const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69};
8da61cc4
DJ
70const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73};
74const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77};
78const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81};
82const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85};
86const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89};
90const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93};
94const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97};
98const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101};
102const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105};
106const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109};
b14d30e1 110const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
b14d30e1 113};
8da61cc4 114
2873700e
KS
115/* Should opaque types be resolved? */
116
117static int opaque_type_resolution = 1;
118
119/* A flag to enable printing of debugging information of C++
120 overloading. */
121
122unsigned int overload_debug = 0;
123
a451cb65
KS
124/* A flag to enable strict type checking. */
125
126static int strict_type_checking = 1;
127
2873700e 128/* A function to show whether opaque types are resolved. */
5212577a 129
920d2a44
AC
130static void
131show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
132 struct cmd_list_element *c,
133 const char *value)
920d2a44 134{
3e43a32a
MS
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
137 value);
138}
139
2873700e 140/* A function to show whether C++ overload debugging is enabled. */
5212577a 141
920d2a44
AC
142static void
143show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145{
7ba81444
MS
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
920d2a44 148}
c906108c 149
a451cb65
KS
150/* A function to show the status of strict type checking. */
151
152static void
153show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155{
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157}
158
5212577a 159\f
e9bb382b
UW
160/* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
c906108c
SS
163
164struct type *
fba45db2 165alloc_type (struct objfile *objfile)
c906108c 166{
52f0bd74 167 struct type *type;
c906108c 168
e9bb382b
UW
169 gdb_assert (objfile != NULL);
170
7ba81444 171 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
c906108c 176
e9bb382b
UW
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
c906108c 179
7ba81444 180 /* Initialize the fields that might not be zero. */
c906108c
SS
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
2fdde8f8 183 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 184
c16abbde 185 return type;
c906108c
SS
186}
187
e9bb382b
UW
188/* Allocate a new GDBARCH-associated type structure and fill it
189 with some defaults. Space for the type structure is allocated
8f57eec2 190 on the obstack associated with GDBARCH. */
e9bb382b
UW
191
192struct type *
193alloc_type_arch (struct gdbarch *gdbarch)
194{
195 struct type *type;
196
197 gdb_assert (gdbarch != NULL);
198
199 /* Alloc the structure and start off with all fields zeroed. */
200
8f57eec2
PP
201 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
202 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
e9bb382b
UW
203
204 TYPE_OBJFILE_OWNED (type) = 0;
205 TYPE_OWNER (type).gdbarch = gdbarch;
206
207 /* Initialize the fields that might not be zero. */
208
209 TYPE_CODE (type) = TYPE_CODE_UNDEF;
e9bb382b
UW
210 TYPE_CHAIN (type) = type; /* Chain back to itself. */
211
212 return type;
213}
214
215/* If TYPE is objfile-associated, allocate a new type structure
216 associated with the same objfile. If TYPE is gdbarch-associated,
217 allocate a new type structure associated with the same gdbarch. */
218
219struct type *
220alloc_type_copy (const struct type *type)
221{
222 if (TYPE_OBJFILE_OWNED (type))
223 return alloc_type (TYPE_OWNER (type).objfile);
224 else
225 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
226}
227
228/* If TYPE is gdbarch-associated, return that architecture.
229 If TYPE is objfile-associated, return that objfile's architecture. */
230
231struct gdbarch *
232get_type_arch (const struct type *type)
233{
234 if (TYPE_OBJFILE_OWNED (type))
235 return get_objfile_arch (TYPE_OWNER (type).objfile);
236 else
237 return TYPE_OWNER (type).gdbarch;
238}
239
99ad9427
YQ
240/* See gdbtypes.h. */
241
242struct type *
243get_target_type (struct type *type)
244{
245 if (type != NULL)
246 {
247 type = TYPE_TARGET_TYPE (type);
248 if (type != NULL)
249 type = check_typedef (type);
250 }
251
252 return type;
253}
254
2e056931
SM
255/* See gdbtypes.h. */
256
257unsigned int
258type_length_units (struct type *type)
259{
260 struct gdbarch *arch = get_type_arch (type);
261 int unit_size = gdbarch_addressable_memory_unit_size (arch);
262
263 return TYPE_LENGTH (type) / unit_size;
264}
265
2fdde8f8
DJ
266/* Alloc a new type instance structure, fill it with some defaults,
267 and point it at OLDTYPE. Allocate the new type instance from the
268 same place as OLDTYPE. */
269
270static struct type *
271alloc_type_instance (struct type *oldtype)
272{
273 struct type *type;
274
275 /* Allocate the structure. */
276
e9bb382b 277 if (! TYPE_OBJFILE_OWNED (oldtype))
41bf6aca 278 type = XCNEW (struct type);
2fdde8f8 279 else
1deafd4e
PA
280 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
281 struct type);
282
2fdde8f8
DJ
283 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
284
285 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
286
c16abbde 287 return type;
2fdde8f8
DJ
288}
289
290/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 291 replacing it with something else. Preserve owner information. */
5212577a 292
2fdde8f8
DJ
293static void
294smash_type (struct type *type)
295{
e9bb382b
UW
296 int objfile_owned = TYPE_OBJFILE_OWNED (type);
297 union type_owner owner = TYPE_OWNER (type);
298
2fdde8f8
DJ
299 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
300
e9bb382b
UW
301 /* Restore owner information. */
302 TYPE_OBJFILE_OWNED (type) = objfile_owned;
303 TYPE_OWNER (type) = owner;
304
2fdde8f8
DJ
305 /* For now, delete the rings. */
306 TYPE_CHAIN (type) = type;
307
308 /* For now, leave the pointer/reference types alone. */
309}
310
c906108c
SS
311/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
312 to a pointer to memory where the pointer type should be stored.
313 If *TYPEPTR is zero, update it to point to the pointer type we return.
314 We allocate new memory if needed. */
315
316struct type *
fba45db2 317make_pointer_type (struct type *type, struct type **typeptr)
c906108c 318{
52f0bd74 319 struct type *ntype; /* New type */
053cb41b 320 struct type *chain;
c906108c
SS
321
322 ntype = TYPE_POINTER_TYPE (type);
323
c5aa993b 324 if (ntype)
c906108c 325 {
c5aa993b 326 if (typeptr == 0)
7ba81444
MS
327 return ntype; /* Don't care about alloc,
328 and have new type. */
c906108c 329 else if (*typeptr == 0)
c5aa993b 330 {
7ba81444 331 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 332 return ntype;
c5aa993b 333 }
c906108c
SS
334 }
335
336 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
337 {
e9bb382b 338 ntype = alloc_type_copy (type);
c906108c
SS
339 if (typeptr)
340 *typeptr = ntype;
341 }
7ba81444 342 else /* We have storage, but need to reset it. */
c906108c
SS
343 {
344 ntype = *typeptr;
053cb41b 345 chain = TYPE_CHAIN (ntype);
2fdde8f8 346 smash_type (ntype);
053cb41b 347 TYPE_CHAIN (ntype) = chain;
c906108c
SS
348 }
349
350 TYPE_TARGET_TYPE (ntype) = type;
351 TYPE_POINTER_TYPE (type) = ntype;
352
5212577a 353 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 354
50810684
UW
355 TYPE_LENGTH (ntype)
356 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
357 TYPE_CODE (ntype) = TYPE_CODE_PTR;
358
67b2adb2 359 /* Mark pointers as unsigned. The target converts between pointers
76e71323 360 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 361 gdbarch_address_to_pointer. */
876cecd0 362 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 363
053cb41b
JB
364 /* Update the length of all the other variants of this type. */
365 chain = TYPE_CHAIN (ntype);
366 while (chain != ntype)
367 {
368 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
369 chain = TYPE_CHAIN (chain);
370 }
371
c906108c
SS
372 return ntype;
373}
374
375/* Given a type TYPE, return a type of pointers to that type.
376 May need to construct such a type if this is the first use. */
377
378struct type *
fba45db2 379lookup_pointer_type (struct type *type)
c906108c 380{
c5aa993b 381 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
382}
383
7ba81444
MS
384/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
385 points to a pointer to memory where the reference type should be
386 stored. If *TYPEPTR is zero, update it to point to the reference
387 type we return. We allocate new memory if needed. */
c906108c
SS
388
389struct type *
fba45db2 390make_reference_type (struct type *type, struct type **typeptr)
c906108c 391{
52f0bd74 392 struct type *ntype; /* New type */
1e98b326 393 struct type *chain;
c906108c
SS
394
395 ntype = TYPE_REFERENCE_TYPE (type);
396
c5aa993b 397 if (ntype)
c906108c 398 {
c5aa993b 399 if (typeptr == 0)
7ba81444
MS
400 return ntype; /* Don't care about alloc,
401 and have new type. */
c906108c 402 else if (*typeptr == 0)
c5aa993b 403 {
7ba81444 404 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 405 return ntype;
c5aa993b 406 }
c906108c
SS
407 }
408
409 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
410 {
e9bb382b 411 ntype = alloc_type_copy (type);
c906108c
SS
412 if (typeptr)
413 *typeptr = ntype;
414 }
7ba81444 415 else /* We have storage, but need to reset it. */
c906108c
SS
416 {
417 ntype = *typeptr;
1e98b326 418 chain = TYPE_CHAIN (ntype);
2fdde8f8 419 smash_type (ntype);
1e98b326 420 TYPE_CHAIN (ntype) = chain;
c906108c
SS
421 }
422
423 TYPE_TARGET_TYPE (ntype) = type;
424 TYPE_REFERENCE_TYPE (type) = ntype;
425
7ba81444
MS
426 /* FIXME! Assume the machine has only one representation for
427 references, and that it matches the (only) representation for
428 pointers! */
c906108c 429
50810684
UW
430 TYPE_LENGTH (ntype) =
431 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c 432 TYPE_CODE (ntype) = TYPE_CODE_REF;
c5aa993b 433
c906108c
SS
434 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
435 TYPE_REFERENCE_TYPE (type) = ntype;
436
1e98b326
JB
437 /* Update the length of all the other variants of this type. */
438 chain = TYPE_CHAIN (ntype);
439 while (chain != ntype)
440 {
441 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
442 chain = TYPE_CHAIN (chain);
443 }
444
c906108c
SS
445 return ntype;
446}
447
7ba81444
MS
448/* Same as above, but caller doesn't care about memory allocation
449 details. */
c906108c
SS
450
451struct type *
fba45db2 452lookup_reference_type (struct type *type)
c906108c 453{
c5aa993b 454 return make_reference_type (type, (struct type **) 0);
c906108c
SS
455}
456
7ba81444
MS
457/* Lookup a function type that returns type TYPE. TYPEPTR, if
458 nonzero, points to a pointer to memory where the function type
459 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 460 function type we return. We allocate new memory if needed. */
c906108c
SS
461
462struct type *
0c8b41f1 463make_function_type (struct type *type, struct type **typeptr)
c906108c 464{
52f0bd74 465 struct type *ntype; /* New type */
c906108c
SS
466
467 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
468 {
e9bb382b 469 ntype = alloc_type_copy (type);
c906108c
SS
470 if (typeptr)
471 *typeptr = ntype;
472 }
7ba81444 473 else /* We have storage, but need to reset it. */
c906108c
SS
474 {
475 ntype = *typeptr;
2fdde8f8 476 smash_type (ntype);
c906108c
SS
477 }
478
479 TYPE_TARGET_TYPE (ntype) = type;
480
481 TYPE_LENGTH (ntype) = 1;
482 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 483
b6cdc2c1
JK
484 INIT_FUNC_SPECIFIC (ntype);
485
c906108c
SS
486 return ntype;
487}
488
c906108c
SS
489/* Given a type TYPE, return a type of functions that return that type.
490 May need to construct such a type if this is the first use. */
491
492struct type *
fba45db2 493lookup_function_type (struct type *type)
c906108c 494{
0c8b41f1 495 return make_function_type (type, (struct type **) 0);
c906108c
SS
496}
497
71918a86 498/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
499 function type. If the final type in PARAM_TYPES is NULL, make a
500 varargs function. */
71918a86
TT
501
502struct type *
503lookup_function_type_with_arguments (struct type *type,
504 int nparams,
505 struct type **param_types)
506{
507 struct type *fn = make_function_type (type, (struct type **) 0);
508 int i;
509
e314d629 510 if (nparams > 0)
a6fb9c08 511 {
e314d629
TT
512 if (param_types[nparams - 1] == NULL)
513 {
514 --nparams;
515 TYPE_VARARGS (fn) = 1;
516 }
517 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
518 == TYPE_CODE_VOID)
519 {
520 --nparams;
521 /* Caller should have ensured this. */
522 gdb_assert (nparams == 0);
523 TYPE_PROTOTYPED (fn) = 1;
524 }
a6fb9c08
TT
525 }
526
71918a86 527 TYPE_NFIELDS (fn) = nparams;
224c3ddb
SM
528 TYPE_FIELDS (fn)
529 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
71918a86
TT
530 for (i = 0; i < nparams; ++i)
531 TYPE_FIELD_TYPE (fn, i) = param_types[i];
532
533 return fn;
534}
535
47663de5
MS
536/* Identify address space identifier by name --
537 return the integer flag defined in gdbtypes.h. */
5212577a
DE
538
539int
50810684 540address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 541{
8b2dbe47 542 int type_flags;
d8734c88 543
7ba81444 544 /* Check for known address space delimiters. */
47663de5 545 if (!strcmp (space_identifier, "code"))
876cecd0 546 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 547 else if (!strcmp (space_identifier, "data"))
876cecd0 548 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
549 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
550 && gdbarch_address_class_name_to_type_flags (gdbarch,
551 space_identifier,
552 &type_flags))
8b2dbe47 553 return type_flags;
47663de5 554 else
8a3fe4f8 555 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
556}
557
558/* Identify address space identifier by integer flag as defined in
7ba81444 559 gdbtypes.h -- return the string version of the adress space name. */
47663de5 560
321432c0 561const char *
50810684 562address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 563{
876cecd0 564 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 565 return "code";
876cecd0 566 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 567 return "data";
876cecd0 568 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
569 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
570 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
571 else
572 return NULL;
573}
574
2fdde8f8 575/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
576
577 If STORAGE is non-NULL, create the new type instance there.
578 STORAGE must be in the same obstack as TYPE. */
47663de5 579
b9362cc7 580static struct type *
2fdde8f8
DJ
581make_qualified_type (struct type *type, int new_flags,
582 struct type *storage)
47663de5
MS
583{
584 struct type *ntype;
585
586 ntype = type;
5f61c20e
JK
587 do
588 {
589 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
590 return ntype;
591 ntype = TYPE_CHAIN (ntype);
592 }
593 while (ntype != type);
47663de5 594
2fdde8f8
DJ
595 /* Create a new type instance. */
596 if (storage == NULL)
597 ntype = alloc_type_instance (type);
598 else
599 {
7ba81444
MS
600 /* If STORAGE was provided, it had better be in the same objfile
601 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
602 if one objfile is freed and the other kept, we'd have
603 dangling pointers. */
ad766c0a
JB
604 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
605
2fdde8f8
DJ
606 ntype = storage;
607 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
608 TYPE_CHAIN (ntype) = ntype;
609 }
47663de5
MS
610
611 /* Pointers or references to the original type are not relevant to
2fdde8f8 612 the new type. */
47663de5
MS
613 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
614 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 615
2fdde8f8
DJ
616 /* Chain the new qualified type to the old type. */
617 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
618 TYPE_CHAIN (type) = ntype;
619
620 /* Now set the instance flags and return the new type. */
621 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 622
ab5d3da6
KB
623 /* Set length of new type to that of the original type. */
624 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
625
47663de5
MS
626 return ntype;
627}
628
2fdde8f8
DJ
629/* Make an address-space-delimited variant of a type -- a type that
630 is identical to the one supplied except that it has an address
631 space attribute attached to it (such as "code" or "data").
632
7ba81444
MS
633 The space attributes "code" and "data" are for Harvard
634 architectures. The address space attributes are for architectures
635 which have alternately sized pointers or pointers with alternate
636 representations. */
2fdde8f8
DJ
637
638struct type *
639make_type_with_address_space (struct type *type, int space_flag)
640{
2fdde8f8 641 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
642 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
643 | TYPE_INSTANCE_FLAG_DATA_SPACE
644 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
645 | space_flag);
646
647 return make_qualified_type (type, new_flags, NULL);
648}
c906108c
SS
649
650/* Make a "c-v" variant of a type -- a type that is identical to the
651 one supplied except that it may have const or volatile attributes
652 CNST is a flag for setting the const attribute
653 VOLTL is a flag for setting the volatile attribute
654 TYPE is the base type whose variant we are creating.
c906108c 655
ad766c0a
JB
656 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
657 storage to hold the new qualified type; *TYPEPTR and TYPE must be
658 in the same objfile. Otherwise, allocate fresh memory for the new
659 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
660 new type we construct. */
5212577a 661
c906108c 662struct type *
7ba81444
MS
663make_cv_type (int cnst, int voltl,
664 struct type *type,
665 struct type **typeptr)
c906108c 666{
52f0bd74 667 struct type *ntype; /* New type */
c906108c 668
2fdde8f8 669 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
670 & ~(TYPE_INSTANCE_FLAG_CONST
671 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 672
c906108c 673 if (cnst)
876cecd0 674 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
675
676 if (voltl)
876cecd0 677 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 678
2fdde8f8 679 if (typeptr && *typeptr != NULL)
a02fd225 680 {
ad766c0a
JB
681 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
682 a C-V variant chain that threads across objfiles: if one
683 objfile gets freed, then the other has a broken C-V chain.
684
685 This code used to try to copy over the main type from TYPE to
686 *TYPEPTR if they were in different objfiles, but that's
687 wrong, too: TYPE may have a field list or member function
688 lists, which refer to types of their own, etc. etc. The
689 whole shebang would need to be copied over recursively; you
690 can't have inter-objfile pointers. The only thing to do is
691 to leave stub types as stub types, and look them up afresh by
692 name each time you encounter them. */
693 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
694 }
695
7ba81444
MS
696 ntype = make_qualified_type (type, new_flags,
697 typeptr ? *typeptr : NULL);
c906108c 698
2fdde8f8
DJ
699 if (typeptr != NULL)
700 *typeptr = ntype;
a02fd225 701
2fdde8f8 702 return ntype;
a02fd225 703}
c906108c 704
06d66ee9
TT
705/* Make a 'restrict'-qualified version of TYPE. */
706
707struct type *
708make_restrict_type (struct type *type)
709{
710 return make_qualified_type (type,
711 (TYPE_INSTANCE_FLAGS (type)
712 | TYPE_INSTANCE_FLAG_RESTRICT),
713 NULL);
714}
715
f1660027
TT
716/* Make a type without const, volatile, or restrict. */
717
718struct type *
719make_unqualified_type (struct type *type)
720{
721 return make_qualified_type (type,
722 (TYPE_INSTANCE_FLAGS (type)
723 & ~(TYPE_INSTANCE_FLAG_CONST
724 | TYPE_INSTANCE_FLAG_VOLATILE
725 | TYPE_INSTANCE_FLAG_RESTRICT)),
726 NULL);
727}
728
a2c2acaf
MW
729/* Make a '_Atomic'-qualified version of TYPE. */
730
731struct type *
732make_atomic_type (struct type *type)
733{
734 return make_qualified_type (type,
735 (TYPE_INSTANCE_FLAGS (type)
736 | TYPE_INSTANCE_FLAG_ATOMIC),
737 NULL);
738}
739
2fdde8f8
DJ
740/* Replace the contents of ntype with the type *type. This changes the
741 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
742 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 743
cda6c68a
JB
744 In order to build recursive types, it's inevitable that we'll need
745 to update types in place --- but this sort of indiscriminate
746 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
747 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
748 clear if more steps are needed. */
5212577a 749
dd6bda65
DJ
750void
751replace_type (struct type *ntype, struct type *type)
752{
ab5d3da6 753 struct type *chain;
dd6bda65 754
ad766c0a
JB
755 /* These two types had better be in the same objfile. Otherwise,
756 the assignment of one type's main type structure to the other
757 will produce a type with references to objects (names; field
758 lists; etc.) allocated on an objfile other than its own. */
e46dd0f4 759 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
ad766c0a 760
2fdde8f8 761 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 762
7ba81444
MS
763 /* The type length is not a part of the main type. Update it for
764 each type on the variant chain. */
ab5d3da6 765 chain = ntype;
5f61c20e
JK
766 do
767 {
768 /* Assert that this element of the chain has no address-class bits
769 set in its flags. Such type variants might have type lengths
770 which are supposed to be different from the non-address-class
771 variants. This assertion shouldn't ever be triggered because
772 symbol readers which do construct address-class variants don't
773 call replace_type(). */
774 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
775
776 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
777 chain = TYPE_CHAIN (chain);
778 }
779 while (ntype != chain);
ab5d3da6 780
2fdde8f8
DJ
781 /* Assert that the two types have equivalent instance qualifiers.
782 This should be true for at least all of our debug readers. */
783 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
784}
785
c906108c
SS
786/* Implement direct support for MEMBER_TYPE in GNU C++.
787 May need to construct such a type if this is the first use.
788 The TYPE is the type of the member. The DOMAIN is the type
789 of the aggregate that the member belongs to. */
790
791struct type *
0d5de010 792lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 793{
52f0bd74 794 struct type *mtype;
c906108c 795
e9bb382b 796 mtype = alloc_type_copy (type);
0d5de010 797 smash_to_memberptr_type (mtype, domain, type);
c16abbde 798 return mtype;
c906108c
SS
799}
800
0d5de010
DJ
801/* Return a pointer-to-method type, for a method of type TO_TYPE. */
802
803struct type *
804lookup_methodptr_type (struct type *to_type)
805{
806 struct type *mtype;
807
e9bb382b 808 mtype = alloc_type_copy (to_type);
0b92b5bb 809 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
810 return mtype;
811}
812
7ba81444
MS
813/* Allocate a stub method whose return type is TYPE. This apparently
814 happens for speed of symbol reading, since parsing out the
815 arguments to the method is cpu-intensive, the way we are doing it.
816 So, we will fill in arguments later. This always returns a fresh
817 type. */
c906108c
SS
818
819struct type *
fba45db2 820allocate_stub_method (struct type *type)
c906108c
SS
821{
822 struct type *mtype;
823
e9bb382b
UW
824 mtype = alloc_type_copy (type);
825 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
826 TYPE_LENGTH (mtype) = 1;
827 TYPE_STUB (mtype) = 1;
c906108c 828 TYPE_TARGET_TYPE (mtype) = type;
4bfb94b8 829 /* TYPE_SELF_TYPE (mtype) = unknown yet */
c16abbde 830 return mtype;
c906108c
SS
831}
832
729efb13
SA
833/* Create a range type with a dynamic range from LOW_BOUND to
834 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
835
836struct type *
729efb13
SA
837create_range_type (struct type *result_type, struct type *index_type,
838 const struct dynamic_prop *low_bound,
839 const struct dynamic_prop *high_bound)
c906108c
SS
840{
841 if (result_type == NULL)
e9bb382b 842 result_type = alloc_type_copy (index_type);
c906108c
SS
843 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
844 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 845 if (TYPE_STUB (index_type))
876cecd0 846 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
847 else
848 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 849
43bbcdc2
PH
850 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
851 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
729efb13
SA
852 TYPE_RANGE_DATA (result_type)->low = *low_bound;
853 TYPE_RANGE_DATA (result_type)->high = *high_bound;
c906108c 854
729efb13 855 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
876cecd0 856 TYPE_UNSIGNED (result_type) = 1;
c906108c 857
45e44d27
JB
858 /* Ada allows the declaration of range types whose upper bound is
859 less than the lower bound, so checking the lower bound is not
860 enough. Make sure we do not mark a range type whose upper bound
861 is negative as unsigned. */
862 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
863 TYPE_UNSIGNED (result_type) = 0;
864
262452ec 865 return result_type;
c906108c
SS
866}
867
729efb13
SA
868/* Create a range type using either a blank type supplied in
869 RESULT_TYPE, or creating a new type, inheriting the objfile from
870 INDEX_TYPE.
871
872 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
873 to HIGH_BOUND, inclusive.
874
875 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
876 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
877
878struct type *
879create_static_range_type (struct type *result_type, struct type *index_type,
880 LONGEST low_bound, LONGEST high_bound)
881{
882 struct dynamic_prop low, high;
883
884 low.kind = PROP_CONST;
885 low.data.const_val = low_bound;
886
887 high.kind = PROP_CONST;
888 high.data.const_val = high_bound;
889
890 result_type = create_range_type (result_type, index_type, &low, &high);
891
892 return result_type;
893}
894
80180f79
SA
895/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
896 are static, otherwise returns 0. */
897
898static int
899has_static_range (const struct range_bounds *bounds)
900{
901 return (bounds->low.kind == PROP_CONST
902 && bounds->high.kind == PROP_CONST);
903}
904
905
7ba81444
MS
906/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
907 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
908 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
909
910int
fba45db2 911get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c 912{
f168693b 913 type = check_typedef (type);
c906108c
SS
914 switch (TYPE_CODE (type))
915 {
916 case TYPE_CODE_RANGE:
917 *lowp = TYPE_LOW_BOUND (type);
918 *highp = TYPE_HIGH_BOUND (type);
919 return 1;
920 case TYPE_CODE_ENUM:
921 if (TYPE_NFIELDS (type) > 0)
922 {
923 /* The enums may not be sorted by value, so search all
0963b4bd 924 entries. */
c906108c
SS
925 int i;
926
14e75d8e 927 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
928 for (i = 0; i < TYPE_NFIELDS (type); i++)
929 {
14e75d8e
JK
930 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
931 *lowp = TYPE_FIELD_ENUMVAL (type, i);
932 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
933 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
934 }
935
7ba81444 936 /* Set unsigned indicator if warranted. */
c5aa993b 937 if (*lowp >= 0)
c906108c 938 {
876cecd0 939 TYPE_UNSIGNED (type) = 1;
c906108c
SS
940 }
941 }
942 else
943 {
944 *lowp = 0;
945 *highp = -1;
946 }
947 return 0;
948 case TYPE_CODE_BOOL:
949 *lowp = 0;
950 *highp = 1;
951 return 0;
952 case TYPE_CODE_INT:
c5aa993b 953 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
954 return -1;
955 if (!TYPE_UNSIGNED (type))
956 {
c5aa993b 957 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
958 *highp = -*lowp - 1;
959 return 0;
960 }
7ba81444 961 /* ... fall through for unsigned ints ... */
c906108c
SS
962 case TYPE_CODE_CHAR:
963 *lowp = 0;
964 /* This round-about calculation is to avoid shifting by
7b83ea04 965 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 966 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
967 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
968 *highp = (*highp - 1) | *highp;
969 return 0;
970 default:
971 return -1;
972 }
973}
974
dbc98a8b
KW
975/* Assuming TYPE is a simple, non-empty array type, compute its upper
976 and lower bound. Save the low bound into LOW_BOUND if not NULL.
977 Save the high bound into HIGH_BOUND if not NULL.
978
0963b4bd 979 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
980 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
981
982 We now simply use get_discrete_bounds call to get the values
983 of the low and high bounds.
984 get_discrete_bounds can return three values:
985 1, meaning that index is a range,
986 0, meaning that index is a discrete type,
987 or -1 for failure. */
988
989int
990get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
991{
992 struct type *index = TYPE_INDEX_TYPE (type);
993 LONGEST low = 0;
994 LONGEST high = 0;
995 int res;
996
997 if (index == NULL)
998 return 0;
999
1000 res = get_discrete_bounds (index, &low, &high);
1001 if (res == -1)
1002 return 0;
1003
1004 /* Check if the array bounds are undefined. */
1005 if (res == 1
1006 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1007 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1008 return 0;
1009
1010 if (low_bound)
1011 *low_bound = low;
1012
1013 if (high_bound)
1014 *high_bound = high;
1015
1016 return 1;
1017}
1018
aa715135
JG
1019/* Assuming that TYPE is a discrete type and VAL is a valid integer
1020 representation of a value of this type, save the corresponding
1021 position number in POS.
1022
1023 Its differs from VAL only in the case of enumeration types. In
1024 this case, the position number of the value of the first listed
1025 enumeration literal is zero; the position number of the value of
1026 each subsequent enumeration literal is one more than that of its
1027 predecessor in the list.
1028
1029 Return 1 if the operation was successful. Return zero otherwise,
1030 in which case the value of POS is unmodified.
1031*/
1032
1033int
1034discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1035{
1036 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1037 {
1038 int i;
1039
1040 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1041 {
1042 if (val == TYPE_FIELD_ENUMVAL (type, i))
1043 {
1044 *pos = i;
1045 return 1;
1046 }
1047 }
1048 /* Invalid enumeration value. */
1049 return 0;
1050 }
1051 else
1052 {
1053 *pos = val;
1054 return 1;
1055 }
1056}
1057
7ba81444
MS
1058/* Create an array type using either a blank type supplied in
1059 RESULT_TYPE, or creating a new type, inheriting the objfile from
1060 RANGE_TYPE.
c906108c
SS
1061
1062 Elements will be of type ELEMENT_TYPE, the indices will be of type
1063 RANGE_TYPE.
1064
dc53a7ad
JB
1065 If BIT_STRIDE is not zero, build a packed array type whose element
1066 size is BIT_STRIDE. Otherwise, ignore this parameter.
1067
7ba81444
MS
1068 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1069 sure it is TYPE_CODE_UNDEF before we bash it into an array
1070 type? */
c906108c
SS
1071
1072struct type *
dc53a7ad
JB
1073create_array_type_with_stride (struct type *result_type,
1074 struct type *element_type,
1075 struct type *range_type,
1076 unsigned int bit_stride)
c906108c 1077{
c906108c 1078 if (result_type == NULL)
e9bb382b
UW
1079 result_type = alloc_type_copy (range_type);
1080
c906108c
SS
1081 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1082 TYPE_TARGET_TYPE (result_type) = element_type;
3f2f83dd 1083 if (has_static_range (TYPE_RANGE_DATA (range_type))
b4a7fcab
JB
1084 && (!type_not_associated (result_type)
1085 && !type_not_allocated (result_type)))
80180f79
SA
1086 {
1087 LONGEST low_bound, high_bound;
1088
1089 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1090 low_bound = high_bound = 0;
f168693b 1091 element_type = check_typedef (element_type);
80180f79
SA
1092 /* Be careful when setting the array length. Ada arrays can be
1093 empty arrays with the high_bound being smaller than the low_bound.
1094 In such cases, the array length should be zero. */
1095 if (high_bound < low_bound)
1096 TYPE_LENGTH (result_type) = 0;
1097 else if (bit_stride > 0)
1098 TYPE_LENGTH (result_type) =
1099 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1100 else
1101 TYPE_LENGTH (result_type) =
1102 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1103 }
ab0d6e0d 1104 else
80180f79
SA
1105 {
1106 /* This type is dynamic and its length needs to be computed
1107 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1108 undefined by setting it to zero. Although we are not expected
1109 to trust TYPE_LENGTH in this case, setting the size to zero
1110 allows us to avoid allocating objects of random sizes in case
1111 we accidently do. */
1112 TYPE_LENGTH (result_type) = 0;
1113 }
1114
c906108c
SS
1115 TYPE_NFIELDS (result_type) = 1;
1116 TYPE_FIELDS (result_type) =
1deafd4e 1117 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 1118 TYPE_INDEX_TYPE (result_type) = range_type;
dc53a7ad
JB
1119 if (bit_stride > 0)
1120 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
c906108c 1121
a9ff5f12 1122 /* TYPE_TARGET_STUB will take care of zero length arrays. */
c906108c 1123 if (TYPE_LENGTH (result_type) == 0)
876cecd0 1124 TYPE_TARGET_STUB (result_type) = 1;
c906108c 1125
c16abbde 1126 return result_type;
c906108c
SS
1127}
1128
dc53a7ad
JB
1129/* Same as create_array_type_with_stride but with no bit_stride
1130 (BIT_STRIDE = 0), thus building an unpacked array. */
1131
1132struct type *
1133create_array_type (struct type *result_type,
1134 struct type *element_type,
1135 struct type *range_type)
1136{
1137 return create_array_type_with_stride (result_type, element_type,
1138 range_type, 0);
1139}
1140
e3506a9f
UW
1141struct type *
1142lookup_array_range_type (struct type *element_type,
63375b74 1143 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1144{
50810684 1145 struct gdbarch *gdbarch = get_type_arch (element_type);
e3506a9f
UW
1146 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1147 struct type *range_type
0c9c3474 1148 = create_static_range_type (NULL, index_type, low_bound, high_bound);
d8734c88 1149
e3506a9f
UW
1150 return create_array_type (NULL, element_type, range_type);
1151}
1152
7ba81444
MS
1153/* Create a string type using either a blank type supplied in
1154 RESULT_TYPE, or creating a new type. String types are similar
1155 enough to array of char types that we can use create_array_type to
1156 build the basic type and then bash it into a string type.
c906108c
SS
1157
1158 For fixed length strings, the range type contains 0 as the lower
1159 bound and the length of the string minus one as the upper bound.
1160
7ba81444
MS
1161 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1162 sure it is TYPE_CODE_UNDEF before we bash it into a string
1163 type? */
c906108c
SS
1164
1165struct type *
3b7538c0
UW
1166create_string_type (struct type *result_type,
1167 struct type *string_char_type,
7ba81444 1168 struct type *range_type)
c906108c
SS
1169{
1170 result_type = create_array_type (result_type,
f290d38e 1171 string_char_type,
c906108c
SS
1172 range_type);
1173 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 1174 return result_type;
c906108c
SS
1175}
1176
e3506a9f
UW
1177struct type *
1178lookup_string_range_type (struct type *string_char_type,
63375b74 1179 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1180{
1181 struct type *result_type;
d8734c88 1182
e3506a9f
UW
1183 result_type = lookup_array_range_type (string_char_type,
1184 low_bound, high_bound);
1185 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1186 return result_type;
1187}
1188
c906108c 1189struct type *
fba45db2 1190create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1191{
c906108c 1192 if (result_type == NULL)
e9bb382b
UW
1193 result_type = alloc_type_copy (domain_type);
1194
c906108c
SS
1195 TYPE_CODE (result_type) = TYPE_CODE_SET;
1196 TYPE_NFIELDS (result_type) = 1;
224c3ddb
SM
1197 TYPE_FIELDS (result_type)
1198 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1199
74a9bb82 1200 if (!TYPE_STUB (domain_type))
c906108c 1201 {
f9780d5b 1202 LONGEST low_bound, high_bound, bit_length;
d8734c88 1203
c906108c
SS
1204 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1205 low_bound = high_bound = 0;
1206 bit_length = high_bound - low_bound + 1;
1207 TYPE_LENGTH (result_type)
1208 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1209 if (low_bound >= 0)
876cecd0 1210 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1211 }
1212 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1213
c16abbde 1214 return result_type;
c906108c
SS
1215}
1216
ea37ba09
DJ
1217/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1218 and any array types nested inside it. */
1219
1220void
1221make_vector_type (struct type *array_type)
1222{
1223 struct type *inner_array, *elt_type;
1224 int flags;
1225
1226 /* Find the innermost array type, in case the array is
1227 multi-dimensional. */
1228 inner_array = array_type;
1229 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1230 inner_array = TYPE_TARGET_TYPE (inner_array);
1231
1232 elt_type = TYPE_TARGET_TYPE (inner_array);
1233 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1234 {
2844d6b5 1235 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1236 elt_type = make_qualified_type (elt_type, flags, NULL);
1237 TYPE_TARGET_TYPE (inner_array) = elt_type;
1238 }
1239
876cecd0 1240 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1241}
1242
794ac428 1243struct type *
ac3aafc7
EZ
1244init_vector_type (struct type *elt_type, int n)
1245{
1246 struct type *array_type;
d8734c88 1247
e3506a9f 1248 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1249 make_vector_type (array_type);
ac3aafc7
EZ
1250 return array_type;
1251}
1252
09e2d7c7
DE
1253/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1254 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1255 confusing. "self" is a common enough replacement for "this".
1256 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1257 TYPE_CODE_METHOD. */
1258
1259struct type *
1260internal_type_self_type (struct type *type)
1261{
1262 switch (TYPE_CODE (type))
1263 {
1264 case TYPE_CODE_METHODPTR:
1265 case TYPE_CODE_MEMBERPTR:
eaaf76ab
DE
1266 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1267 return NULL;
09e2d7c7
DE
1268 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1269 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1270 case TYPE_CODE_METHOD:
eaaf76ab
DE
1271 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1272 return NULL;
09e2d7c7
DE
1273 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1274 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1275 default:
1276 gdb_assert_not_reached ("bad type");
1277 }
1278}
1279
1280/* Set the type of the class that TYPE belongs to.
1281 In c++ this is the class of "this".
1282 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1283 TYPE_CODE_METHOD. */
1284
1285void
1286set_type_self_type (struct type *type, struct type *self_type)
1287{
1288 switch (TYPE_CODE (type))
1289 {
1290 case TYPE_CODE_METHODPTR:
1291 case TYPE_CODE_MEMBERPTR:
1292 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1293 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1294 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1295 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1296 break;
1297 case TYPE_CODE_METHOD:
1298 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1299 INIT_FUNC_SPECIFIC (type);
1300 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1301 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1302 break;
1303 default:
1304 gdb_assert_not_reached ("bad type");
1305 }
1306}
1307
1308/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
0d5de010
DJ
1309 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1310 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1311 TYPE doesn't include the offset (that's the value of the MEMBER
1312 itself), but does include the structure type into which it points
1313 (for some reason).
c906108c 1314
7ba81444
MS
1315 When "smashing" the type, we preserve the objfile that the old type
1316 pointed to, since we aren't changing where the type is actually
c906108c
SS
1317 allocated. */
1318
1319void
09e2d7c7 1320smash_to_memberptr_type (struct type *type, struct type *self_type,
0d5de010 1321 struct type *to_type)
c906108c 1322{
2fdde8f8 1323 smash_type (type);
09e2d7c7 1324 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c 1325 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1326 set_type_self_type (type, self_type);
0d5de010
DJ
1327 /* Assume that a data member pointer is the same size as a normal
1328 pointer. */
50810684
UW
1329 TYPE_LENGTH (type)
1330 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
c906108c
SS
1331}
1332
0b92b5bb
TT
1333/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1334
1335 When "smashing" the type, we preserve the objfile that the old type
1336 pointed to, since we aren't changing where the type is actually
1337 allocated. */
1338
1339void
1340smash_to_methodptr_type (struct type *type, struct type *to_type)
1341{
1342 smash_type (type);
09e2d7c7 1343 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
0b92b5bb 1344 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1345 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
0b92b5bb 1346 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
0b92b5bb
TT
1347}
1348
09e2d7c7 1349/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
c906108c
SS
1350 METHOD just means `function that gets an extra "this" argument'.
1351
7ba81444
MS
1352 When "smashing" the type, we preserve the objfile that the old type
1353 pointed to, since we aren't changing where the type is actually
c906108c
SS
1354 allocated. */
1355
1356void
09e2d7c7 1357smash_to_method_type (struct type *type, struct type *self_type,
ad2f7632
DJ
1358 struct type *to_type, struct field *args,
1359 int nargs, int varargs)
c906108c 1360{
2fdde8f8 1361 smash_type (type);
09e2d7c7 1362 TYPE_CODE (type) = TYPE_CODE_METHOD;
c906108c 1363 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1364 set_type_self_type (type, self_type);
ad2f7632
DJ
1365 TYPE_FIELDS (type) = args;
1366 TYPE_NFIELDS (type) = nargs;
1367 if (varargs)
876cecd0 1368 TYPE_VARARGS (type) = 1;
c906108c 1369 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
c906108c
SS
1370}
1371
1372/* Return a typename for a struct/union/enum type without "struct ",
1373 "union ", or "enum ". If the type has a NULL name, return NULL. */
1374
0d5cff50 1375const char *
aa1ee363 1376type_name_no_tag (const struct type *type)
c906108c
SS
1377{
1378 if (TYPE_TAG_NAME (type) != NULL)
1379 return TYPE_TAG_NAME (type);
1380
7ba81444
MS
1381 /* Is there code which expects this to return the name if there is
1382 no tag name? My guess is that this is mainly used for C++ in
1383 cases where the two will always be the same. */
c906108c
SS
1384 return TYPE_NAME (type);
1385}
1386
d8228535
JK
1387/* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1388 Since GCC PR debug/47510 DWARF provides associated information to detect the
1389 anonymous class linkage name from its typedef.
1390
1391 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1392 apply it itself. */
1393
1394const char *
1395type_name_no_tag_or_error (struct type *type)
1396{
1397 struct type *saved_type = type;
1398 const char *name;
1399 struct objfile *objfile;
1400
f168693b 1401 type = check_typedef (type);
d8228535
JK
1402
1403 name = type_name_no_tag (type);
1404 if (name != NULL)
1405 return name;
1406
1407 name = type_name_no_tag (saved_type);
1408 objfile = TYPE_OBJFILE (saved_type);
1409 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1410 name ? name : "<anonymous>",
1411 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1412}
1413
7ba81444
MS
1414/* Lookup a typedef or primitive type named NAME, visible in lexical
1415 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1416 suitably defined. */
c906108c
SS
1417
1418struct type *
e6c014f2 1419lookup_typename (const struct language_defn *language,
ddd49eee 1420 struct gdbarch *gdbarch, const char *name,
34eaf542 1421 const struct block *block, int noerr)
c906108c 1422{
52f0bd74 1423 struct symbol *sym;
c906108c 1424
1994afbf 1425 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
d12307c1 1426 language->la_language, NULL).symbol;
c51fe631
DE
1427 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1428 return SYMBOL_TYPE (sym);
1429
c51fe631
DE
1430 if (noerr)
1431 return NULL;
1432 error (_("No type named %s."), name);
c906108c
SS
1433}
1434
1435struct type *
e6c014f2 1436lookup_unsigned_typename (const struct language_defn *language,
0d5cff50 1437 struct gdbarch *gdbarch, const char *name)
c906108c 1438{
224c3ddb 1439 char *uns = (char *) alloca (strlen (name) + 10);
c906108c
SS
1440
1441 strcpy (uns, "unsigned ");
1442 strcpy (uns + 9, name);
e6c014f2 1443 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
c906108c
SS
1444}
1445
1446struct type *
e6c014f2 1447lookup_signed_typename (const struct language_defn *language,
0d5cff50 1448 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1449{
1450 struct type *t;
224c3ddb 1451 char *uns = (char *) alloca (strlen (name) + 8);
c906108c
SS
1452
1453 strcpy (uns, "signed ");
1454 strcpy (uns + 7, name);
e6c014f2 1455 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
7ba81444 1456 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1457 if (t != NULL)
1458 return t;
e6c014f2 1459 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
c906108c
SS
1460}
1461
1462/* Lookup a structure type named "struct NAME",
1463 visible in lexical block BLOCK. */
1464
1465struct type *
270140bd 1466lookup_struct (const char *name, const struct block *block)
c906108c 1467{
52f0bd74 1468 struct symbol *sym;
c906108c 1469
d12307c1 1470 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1471
1472 if (sym == NULL)
1473 {
8a3fe4f8 1474 error (_("No struct type named %s."), name);
c906108c
SS
1475 }
1476 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1477 {
7ba81444
MS
1478 error (_("This context has class, union or enum %s, not a struct."),
1479 name);
c906108c
SS
1480 }
1481 return (SYMBOL_TYPE (sym));
1482}
1483
1484/* Lookup a union type named "union NAME",
1485 visible in lexical block BLOCK. */
1486
1487struct type *
270140bd 1488lookup_union (const char *name, const struct block *block)
c906108c 1489{
52f0bd74 1490 struct symbol *sym;
c5aa993b 1491 struct type *t;
c906108c 1492
d12307c1 1493 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1494
1495 if (sym == NULL)
8a3fe4f8 1496 error (_("No union type named %s."), name);
c906108c 1497
c5aa993b 1498 t = SYMBOL_TYPE (sym);
c906108c
SS
1499
1500 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1501 return t;
c906108c 1502
7ba81444
MS
1503 /* If we get here, it's not a union. */
1504 error (_("This context has class, struct or enum %s, not a union."),
1505 name);
c906108c
SS
1506}
1507
c906108c
SS
1508/* Lookup an enum type named "enum NAME",
1509 visible in lexical block BLOCK. */
1510
1511struct type *
270140bd 1512lookup_enum (const char *name, const struct block *block)
c906108c 1513{
52f0bd74 1514 struct symbol *sym;
c906108c 1515
d12307c1 1516 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1517 if (sym == NULL)
1518 {
8a3fe4f8 1519 error (_("No enum type named %s."), name);
c906108c
SS
1520 }
1521 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1522 {
7ba81444
MS
1523 error (_("This context has class, struct or union %s, not an enum."),
1524 name);
c906108c
SS
1525 }
1526 return (SYMBOL_TYPE (sym));
1527}
1528
1529/* Lookup a template type named "template NAME<TYPE>",
1530 visible in lexical block BLOCK. */
1531
1532struct type *
7ba81444 1533lookup_template_type (char *name, struct type *type,
270140bd 1534 const struct block *block)
c906108c
SS
1535{
1536 struct symbol *sym;
7ba81444
MS
1537 char *nam = (char *)
1538 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1539
c906108c
SS
1540 strcpy (nam, name);
1541 strcat (nam, "<");
0004e5a2 1542 strcat (nam, TYPE_NAME (type));
0963b4bd 1543 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1544
d12307c1 1545 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
c906108c
SS
1546
1547 if (sym == NULL)
1548 {
8a3fe4f8 1549 error (_("No template type named %s."), name);
c906108c
SS
1550 }
1551 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1552 {
7ba81444
MS
1553 error (_("This context has class, union or enum %s, not a struct."),
1554 name);
c906108c
SS
1555 }
1556 return (SYMBOL_TYPE (sym));
1557}
1558
7ba81444
MS
1559/* Given a type TYPE, lookup the type of the component of type named
1560 NAME.
c906108c 1561
7ba81444
MS
1562 TYPE can be either a struct or union, or a pointer or reference to
1563 a struct or union. If it is a pointer or reference, its target
1564 type is automatically used. Thus '.' and '->' are interchangable,
1565 as specified for the definitions of the expression element types
1566 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1567
1568 If NOERR is nonzero, return zero if NAME is not suitably defined.
1569 If NAME is the name of a baseclass type, return that type. */
1570
1571struct type *
d7561cbb 1572lookup_struct_elt_type (struct type *type, const char *name, int noerr)
c906108c
SS
1573{
1574 int i;
fe978cb0 1575 char *type_name;
c906108c
SS
1576
1577 for (;;)
1578 {
f168693b 1579 type = check_typedef (type);
c906108c
SS
1580 if (TYPE_CODE (type) != TYPE_CODE_PTR
1581 && TYPE_CODE (type) != TYPE_CODE_REF)
1582 break;
1583 type = TYPE_TARGET_TYPE (type);
1584 }
1585
687d6395
MS
1586 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1587 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1588 {
fe978cb0
PA
1589 type_name = type_to_string (type);
1590 make_cleanup (xfree, type_name);
1591 error (_("Type %s is not a structure or union type."), type_name);
c906108c
SS
1592 }
1593
1594#if 0
7ba81444
MS
1595 /* FIXME: This change put in by Michael seems incorrect for the case
1596 where the structure tag name is the same as the member name.
0963b4bd 1597 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
7ba81444 1598 foo; } bell;" Disabled by fnf. */
c906108c 1599 {
fe978cb0 1600 char *type_name;
c906108c 1601
fe978cb0
PA
1602 type_name = type_name_no_tag (type);
1603 if (type_name != NULL && strcmp (type_name, name) == 0)
c906108c
SS
1604 return type;
1605 }
1606#endif
1607
1608 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1609 {
0d5cff50 1610 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1611
db577aea 1612 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1613 {
1614 return TYPE_FIELD_TYPE (type, i);
1615 }
f5a010c0
PM
1616 else if (!t_field_name || *t_field_name == '\0')
1617 {
d8734c88
MS
1618 struct type *subtype
1619 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1620
f5a010c0
PM
1621 if (subtype != NULL)
1622 return subtype;
1623 }
c906108c
SS
1624 }
1625
1626 /* OK, it's not in this class. Recursively check the baseclasses. */
1627 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1628 {
1629 struct type *t;
1630
9733fc94 1631 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1632 if (t != NULL)
1633 {
1634 return t;
1635 }
1636 }
1637
1638 if (noerr)
1639 {
1640 return NULL;
1641 }
c5aa993b 1642
fe978cb0
PA
1643 type_name = type_to_string (type);
1644 make_cleanup (xfree, type_name);
1645 error (_("Type %s has no component named %s."), type_name, name);
c906108c
SS
1646}
1647
ed3ef339
DE
1648/* Store in *MAX the largest number representable by unsigned integer type
1649 TYPE. */
1650
1651void
1652get_unsigned_type_max (struct type *type, ULONGEST *max)
1653{
1654 unsigned int n;
1655
f168693b 1656 type = check_typedef (type);
ed3ef339
DE
1657 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1658 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1659
1660 /* Written this way to avoid overflow. */
1661 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1662 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1663}
1664
1665/* Store in *MIN, *MAX the smallest and largest numbers representable by
1666 signed integer type TYPE. */
1667
1668void
1669get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1670{
1671 unsigned int n;
1672
f168693b 1673 type = check_typedef (type);
ed3ef339
DE
1674 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1675 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1676
1677 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1678 *min = -((ULONGEST) 1 << (n - 1));
1679 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1680}
1681
ae6ae975
DE
1682/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1683 cplus_stuff.vptr_fieldno.
1684
1685 cplus_stuff is initialized to cplus_struct_default which does not
1686 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1687 designated initializers). We cope with that here. */
1688
1689int
1690internal_type_vptr_fieldno (struct type *type)
1691{
f168693b 1692 type = check_typedef (type);
ae6ae975
DE
1693 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1694 || TYPE_CODE (type) == TYPE_CODE_UNION);
1695 if (!HAVE_CPLUS_STRUCT (type))
1696 return -1;
1697 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1698}
1699
1700/* Set the value of cplus_stuff.vptr_fieldno. */
1701
1702void
1703set_type_vptr_fieldno (struct type *type, int fieldno)
1704{
f168693b 1705 type = check_typedef (type);
ae6ae975
DE
1706 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1707 || TYPE_CODE (type) == TYPE_CODE_UNION);
1708 if (!HAVE_CPLUS_STRUCT (type))
1709 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1710 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1711}
1712
1713/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1714 cplus_stuff.vptr_basetype. */
1715
1716struct type *
1717internal_type_vptr_basetype (struct type *type)
1718{
f168693b 1719 type = check_typedef (type);
ae6ae975
DE
1720 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1721 || TYPE_CODE (type) == TYPE_CODE_UNION);
1722 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1723 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1724}
1725
1726/* Set the value of cplus_stuff.vptr_basetype. */
1727
1728void
1729set_type_vptr_basetype (struct type *type, struct type *basetype)
1730{
f168693b 1731 type = check_typedef (type);
ae6ae975
DE
1732 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1733 || TYPE_CODE (type) == TYPE_CODE_UNION);
1734 if (!HAVE_CPLUS_STRUCT (type))
1735 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1736 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1737}
1738
81fe8080
DE
1739/* Lookup the vptr basetype/fieldno values for TYPE.
1740 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1741 vptr_fieldno. Also, if found and basetype is from the same objfile,
1742 cache the results.
1743 If not found, return -1 and ignore BASETYPEP.
1744 Callers should be aware that in some cases (for example,
c906108c 1745 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1746 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1747 this function will not be able to find the
7ba81444 1748 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1749 vptr_basetype will remain NULL or incomplete. */
c906108c 1750
81fe8080
DE
1751int
1752get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c 1753{
f168693b 1754 type = check_typedef (type);
c906108c
SS
1755
1756 if (TYPE_VPTR_FIELDNO (type) < 0)
1757 {
1758 int i;
1759
7ba81444
MS
1760 /* We must start at zero in case the first (and only) baseclass
1761 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1762 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1763 {
81fe8080
DE
1764 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1765 int fieldno;
1766 struct type *basetype;
1767
1768 fieldno = get_vptr_fieldno (baseclass, &basetype);
1769 if (fieldno >= 0)
c906108c 1770 {
81fe8080 1771 /* If the type comes from a different objfile we can't cache
0963b4bd 1772 it, it may have a different lifetime. PR 2384 */
5ef73790 1773 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080 1774 {
ae6ae975
DE
1775 set_type_vptr_fieldno (type, fieldno);
1776 set_type_vptr_basetype (type, basetype);
81fe8080
DE
1777 }
1778 if (basetypep)
1779 *basetypep = basetype;
1780 return fieldno;
c906108c
SS
1781 }
1782 }
81fe8080
DE
1783
1784 /* Not found. */
1785 return -1;
1786 }
1787 else
1788 {
1789 if (basetypep)
1790 *basetypep = TYPE_VPTR_BASETYPE (type);
1791 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1792 }
1793}
1794
44e1a9eb
DJ
1795static void
1796stub_noname_complaint (void)
1797{
e2e0b3e5 1798 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1799}
1800
d98b7a16 1801/* Worker for is_dynamic_type. */
80180f79 1802
d98b7a16 1803static int
ee715b5a 1804is_dynamic_type_internal (struct type *type, int top_level)
80180f79
SA
1805{
1806 type = check_typedef (type);
1807
e771e4be
PMR
1808 /* We only want to recognize references at the outermost level. */
1809 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1810 type = check_typedef (TYPE_TARGET_TYPE (type));
1811
3cdcd0ce
JB
1812 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1813 dynamic, even if the type itself is statically defined.
1814 From a user's point of view, this may appear counter-intuitive;
1815 but it makes sense in this context, because the point is to determine
1816 whether any part of the type needs to be resolved before it can
1817 be exploited. */
1818 if (TYPE_DATA_LOCATION (type) != NULL
1819 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1820 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1821 return 1;
1822
3f2f83dd
KB
1823 if (TYPE_ASSOCIATED_PROP (type))
1824 return 1;
1825
1826 if (TYPE_ALLOCATED_PROP (type))
1827 return 1;
1828
80180f79
SA
1829 switch (TYPE_CODE (type))
1830 {
6f8a3220 1831 case TYPE_CODE_RANGE:
ddb87a81
JB
1832 {
1833 /* A range type is obviously dynamic if it has at least one
1834 dynamic bound. But also consider the range type to be
1835 dynamic when its subtype is dynamic, even if the bounds
1836 of the range type are static. It allows us to assume that
1837 the subtype of a static range type is also static. */
1838 return (!has_static_range (TYPE_RANGE_DATA (type))
ee715b5a 1839 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
ddb87a81 1840 }
6f8a3220 1841
80180f79
SA
1842 case TYPE_CODE_ARRAY:
1843 {
80180f79 1844 gdb_assert (TYPE_NFIELDS (type) == 1);
6f8a3220
JB
1845
1846 /* The array is dynamic if either the bounds are dynamic,
1847 or the elements it contains have a dynamic contents. */
ee715b5a 1848 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
80180f79 1849 return 1;
ee715b5a 1850 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
80180f79 1851 }
012370f6
TT
1852
1853 case TYPE_CODE_STRUCT:
1854 case TYPE_CODE_UNION:
1855 {
1856 int i;
1857
1858 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1859 if (!field_is_static (&TYPE_FIELD (type, i))
ee715b5a 1860 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
012370f6
TT
1861 return 1;
1862 }
1863 break;
80180f79 1864 }
92e2a17f
TT
1865
1866 return 0;
80180f79
SA
1867}
1868
d98b7a16
TT
1869/* See gdbtypes.h. */
1870
1871int
1872is_dynamic_type (struct type *type)
1873{
ee715b5a 1874 return is_dynamic_type_internal (type, 1);
d98b7a16
TT
1875}
1876
df25ebbd 1877static struct type *resolve_dynamic_type_internal
ee715b5a 1878 (struct type *type, struct property_addr_info *addr_stack, int top_level);
d98b7a16 1879
df25ebbd
JB
1880/* Given a dynamic range type (dyn_range_type) and a stack of
1881 struct property_addr_info elements, return a static version
1882 of that type. */
d190df30 1883
80180f79 1884static struct type *
df25ebbd
JB
1885resolve_dynamic_range (struct type *dyn_range_type,
1886 struct property_addr_info *addr_stack)
80180f79
SA
1887{
1888 CORE_ADDR value;
ddb87a81 1889 struct type *static_range_type, *static_target_type;
80180f79 1890 const struct dynamic_prop *prop;
80180f79
SA
1891 struct dynamic_prop low_bound, high_bound;
1892
6f8a3220 1893 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
80180f79 1894
6f8a3220 1895 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
63e43d3a 1896 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
1897 {
1898 low_bound.kind = PROP_CONST;
1899 low_bound.data.const_val = value;
1900 }
1901 else
1902 {
1903 low_bound.kind = PROP_UNDEFINED;
1904 low_bound.data.const_val = 0;
1905 }
1906
6f8a3220 1907 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
63e43d3a 1908 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
1909 {
1910 high_bound.kind = PROP_CONST;
1911 high_bound.data.const_val = value;
c451ebe5 1912
6f8a3220 1913 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
c451ebe5
SA
1914 high_bound.data.const_val
1915 = low_bound.data.const_val + high_bound.data.const_val - 1;
80180f79
SA
1916 }
1917 else
1918 {
1919 high_bound.kind = PROP_UNDEFINED;
1920 high_bound.data.const_val = 0;
1921 }
1922
ddb87a81
JB
1923 static_target_type
1924 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
ee715b5a 1925 addr_stack, 0);
6f8a3220 1926 static_range_type = create_range_type (copy_type (dyn_range_type),
ddb87a81 1927 static_target_type,
6f8a3220
JB
1928 &low_bound, &high_bound);
1929 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1930 return static_range_type;
1931}
1932
1933/* Resolves dynamic bound values of an array type TYPE to static ones.
df25ebbd
JB
1934 ADDR_STACK is a stack of struct property_addr_info to be used
1935 if needed during the dynamic resolution. */
6f8a3220
JB
1936
1937static struct type *
df25ebbd
JB
1938resolve_dynamic_array (struct type *type,
1939 struct property_addr_info *addr_stack)
6f8a3220
JB
1940{
1941 CORE_ADDR value;
1942 struct type *elt_type;
1943 struct type *range_type;
1944 struct type *ary_dim;
3f2f83dd 1945 struct dynamic_prop *prop;
6f8a3220
JB
1946
1947 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1948
3f2f83dd
KB
1949 type = copy_type (type);
1950
6f8a3220
JB
1951 elt_type = type;
1952 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
df25ebbd 1953 range_type = resolve_dynamic_range (range_type, addr_stack);
6f8a3220 1954
3f2f83dd
KB
1955 /* Resolve allocated/associated here before creating a new array type, which
1956 will update the length of the array accordingly. */
1957 prop = TYPE_ALLOCATED_PROP (type);
1958 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1959 {
1960 TYPE_DYN_PROP_ADDR (prop) = value;
1961 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
1962 }
1963 prop = TYPE_ASSOCIATED_PROP (type);
1964 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1965 {
1966 TYPE_DYN_PROP_ADDR (prop) = value;
1967 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
1968 }
1969
80180f79
SA
1970 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1971
1972 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
d0d84780 1973 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
80180f79
SA
1974 else
1975 elt_type = TYPE_TARGET_TYPE (type);
1976
3f2f83dd
KB
1977 return create_array_type_with_stride (type, elt_type, range_type,
1978 TYPE_FIELD_BITSIZE (type, 0));
80180f79
SA
1979}
1980
012370f6 1981/* Resolve dynamic bounds of members of the union TYPE to static
df25ebbd
JB
1982 bounds. ADDR_STACK is a stack of struct property_addr_info
1983 to be used if needed during the dynamic resolution. */
012370f6
TT
1984
1985static struct type *
df25ebbd
JB
1986resolve_dynamic_union (struct type *type,
1987 struct property_addr_info *addr_stack)
012370f6
TT
1988{
1989 struct type *resolved_type;
1990 int i;
1991 unsigned int max_len = 0;
1992
1993 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1994
1995 resolved_type = copy_type (type);
1996 TYPE_FIELDS (resolved_type)
224c3ddb
SM
1997 = (struct field *) TYPE_ALLOC (resolved_type,
1998 TYPE_NFIELDS (resolved_type)
1999 * sizeof (struct field));
012370f6
TT
2000 memcpy (TYPE_FIELDS (resolved_type),
2001 TYPE_FIELDS (type),
2002 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2003 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2004 {
2005 struct type *t;
2006
2007 if (field_is_static (&TYPE_FIELD (type, i)))
2008 continue;
2009
d98b7a16 2010 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2011 addr_stack, 0);
012370f6
TT
2012 TYPE_FIELD_TYPE (resolved_type, i) = t;
2013 if (TYPE_LENGTH (t) > max_len)
2014 max_len = TYPE_LENGTH (t);
2015 }
2016
2017 TYPE_LENGTH (resolved_type) = max_len;
2018 return resolved_type;
2019}
2020
2021/* Resolve dynamic bounds of members of the struct TYPE to static
df25ebbd
JB
2022 bounds. ADDR_STACK is a stack of struct property_addr_info to
2023 be used if needed during the dynamic resolution. */
012370f6
TT
2024
2025static struct type *
df25ebbd
JB
2026resolve_dynamic_struct (struct type *type,
2027 struct property_addr_info *addr_stack)
012370f6
TT
2028{
2029 struct type *resolved_type;
2030 int i;
6908c509 2031 unsigned resolved_type_bit_length = 0;
012370f6
TT
2032
2033 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2034 gdb_assert (TYPE_NFIELDS (type) > 0);
2035
2036 resolved_type = copy_type (type);
2037 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2038 = (struct field *) TYPE_ALLOC (resolved_type,
2039 TYPE_NFIELDS (resolved_type)
2040 * sizeof (struct field));
012370f6
TT
2041 memcpy (TYPE_FIELDS (resolved_type),
2042 TYPE_FIELDS (type),
2043 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2044 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2045 {
6908c509 2046 unsigned new_bit_length;
df25ebbd 2047 struct property_addr_info pinfo;
012370f6
TT
2048
2049 if (field_is_static (&TYPE_FIELD (type, i)))
2050 continue;
2051
6908c509
JB
2052 /* As we know this field is not a static field, the field's
2053 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2054 this is the case, but only trigger a simple error rather
2055 than an internal error if that fails. While failing
2056 that verification indicates a bug in our code, the error
2057 is not severe enough to suggest to the user he stops
2058 his debugging session because of it. */
df25ebbd 2059 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
6908c509
JB
2060 error (_("Cannot determine struct field location"
2061 " (invalid location kind)"));
df25ebbd
JB
2062
2063 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
c3345124 2064 pinfo.valaddr = addr_stack->valaddr;
9920b434
BH
2065 pinfo.addr
2066 = (addr_stack->addr
2067 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
df25ebbd
JB
2068 pinfo.next = addr_stack;
2069
2070 TYPE_FIELD_TYPE (resolved_type, i)
2071 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2072 &pinfo, 0);
df25ebbd
JB
2073 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2074 == FIELD_LOC_KIND_BITPOS);
2075
6908c509
JB
2076 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2077 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2078 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2079 else
2080 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2081 * TARGET_CHAR_BIT);
2082
2083 /* Normally, we would use the position and size of the last field
2084 to determine the size of the enclosing structure. But GCC seems
2085 to be encoding the position of some fields incorrectly when
2086 the struct contains a dynamic field that is not placed last.
2087 So we compute the struct size based on the field that has
2088 the highest position + size - probably the best we can do. */
2089 if (new_bit_length > resolved_type_bit_length)
2090 resolved_type_bit_length = new_bit_length;
012370f6
TT
2091 }
2092
9920b434
BH
2093 /* The length of a type won't change for fortran, but it does for C and Ada.
2094 For fortran the size of dynamic fields might change over time but not the
2095 type length of the structure. If we adapt it, we run into problems
2096 when calculating the element offset for arrays of structs. */
2097 if (current_language->la_language != language_fortran)
2098 TYPE_LENGTH (resolved_type)
2099 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
6908c509 2100
9e195661
PMR
2101 /* The Ada language uses this field as a cache for static fixed types: reset
2102 it as RESOLVED_TYPE must have its own static fixed type. */
2103 TYPE_TARGET_TYPE (resolved_type) = NULL;
2104
012370f6
TT
2105 return resolved_type;
2106}
2107
d98b7a16 2108/* Worker for resolved_dynamic_type. */
80180f79 2109
d98b7a16 2110static struct type *
df25ebbd 2111resolve_dynamic_type_internal (struct type *type,
ee715b5a
PMR
2112 struct property_addr_info *addr_stack,
2113 int top_level)
80180f79
SA
2114{
2115 struct type *real_type = check_typedef (type);
6f8a3220 2116 struct type *resolved_type = type;
d9823cbb 2117 struct dynamic_prop *prop;
3cdcd0ce 2118 CORE_ADDR value;
80180f79 2119
ee715b5a 2120 if (!is_dynamic_type_internal (real_type, top_level))
80180f79
SA
2121 return type;
2122
5537b577 2123 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
6f8a3220 2124 {
cac9b138
JK
2125 resolved_type = copy_type (type);
2126 TYPE_TARGET_TYPE (resolved_type)
ee715b5a
PMR
2127 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2128 top_level);
5537b577
JK
2129 }
2130 else
2131 {
2132 /* Before trying to resolve TYPE, make sure it is not a stub. */
2133 type = real_type;
012370f6 2134
5537b577
JK
2135 switch (TYPE_CODE (type))
2136 {
e771e4be
PMR
2137 case TYPE_CODE_REF:
2138 {
2139 struct property_addr_info pinfo;
2140
2141 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
c3345124
JB
2142 pinfo.valaddr = NULL;
2143 if (addr_stack->valaddr != NULL)
2144 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2145 else
2146 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
e771e4be
PMR
2147 pinfo.next = addr_stack;
2148
2149 resolved_type = copy_type (type);
2150 TYPE_TARGET_TYPE (resolved_type)
2151 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2152 &pinfo, top_level);
2153 break;
2154 }
2155
5537b577 2156 case TYPE_CODE_ARRAY:
df25ebbd 2157 resolved_type = resolve_dynamic_array (type, addr_stack);
5537b577
JK
2158 break;
2159
2160 case TYPE_CODE_RANGE:
df25ebbd 2161 resolved_type = resolve_dynamic_range (type, addr_stack);
5537b577
JK
2162 break;
2163
2164 case TYPE_CODE_UNION:
df25ebbd 2165 resolved_type = resolve_dynamic_union (type, addr_stack);
5537b577
JK
2166 break;
2167
2168 case TYPE_CODE_STRUCT:
df25ebbd 2169 resolved_type = resolve_dynamic_struct (type, addr_stack);
5537b577
JK
2170 break;
2171 }
6f8a3220 2172 }
80180f79 2173
3cdcd0ce
JB
2174 /* Resolve data_location attribute. */
2175 prop = TYPE_DATA_LOCATION (resolved_type);
63e43d3a
PMR
2176 if (prop != NULL
2177 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
3cdcd0ce 2178 {
d9823cbb
KB
2179 TYPE_DYN_PROP_ADDR (prop) = value;
2180 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
3cdcd0ce 2181 }
3cdcd0ce 2182
80180f79
SA
2183 return resolved_type;
2184}
2185
d98b7a16
TT
2186/* See gdbtypes.h */
2187
2188struct type *
c3345124
JB
2189resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2190 CORE_ADDR addr)
d98b7a16 2191{
c3345124
JB
2192 struct property_addr_info pinfo
2193 = {check_typedef (type), valaddr, addr, NULL};
df25ebbd 2194
ee715b5a 2195 return resolve_dynamic_type_internal (type, &pinfo, 1);
d98b7a16
TT
2196}
2197
d9823cbb
KB
2198/* See gdbtypes.h */
2199
2200struct dynamic_prop *
2201get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2202{
2203 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2204
2205 while (node != NULL)
2206 {
2207 if (node->prop_kind == prop_kind)
283a9958 2208 return &node->prop;
d9823cbb
KB
2209 node = node->next;
2210 }
2211 return NULL;
2212}
2213
2214/* See gdbtypes.h */
2215
2216void
2217add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2218 struct type *type, struct objfile *objfile)
2219{
2220 struct dynamic_prop_list *temp;
2221
2222 gdb_assert (TYPE_OBJFILE_OWNED (type));
2223
224c3ddb 2224 temp = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop_list);
d9823cbb 2225 temp->prop_kind = prop_kind;
283a9958 2226 temp->prop = prop;
d9823cbb
KB
2227 temp->next = TYPE_DYN_PROP_LIST (type);
2228
2229 TYPE_DYN_PROP_LIST (type) = temp;
2230}
2231
9920b434
BH
2232/* Remove dynamic property from TYPE in case it exists. */
2233
2234void
2235remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2236 struct type *type)
2237{
2238 struct dynamic_prop_list *prev_node, *curr_node;
2239
2240 curr_node = TYPE_DYN_PROP_LIST (type);
2241 prev_node = NULL;
2242
2243 while (NULL != curr_node)
2244 {
2245 if (curr_node->prop_kind == prop_kind)
2246 {
2247 /* Update the linked list but don't free anything.
2248 The property was allocated on objstack and it is not known
2249 if we are on top of it. Nevertheless, everything is released
2250 when the complete objstack is freed. */
2251 if (NULL == prev_node)
2252 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2253 else
2254 prev_node->next = curr_node->next;
2255
2256 return;
2257 }
2258
2259 prev_node = curr_node;
2260 curr_node = curr_node->next;
2261 }
2262}
d9823cbb 2263
92163a10
JK
2264/* Find the real type of TYPE. This function returns the real type,
2265 after removing all layers of typedefs, and completing opaque or stub
2266 types. Completion changes the TYPE argument, but stripping of
2267 typedefs does not.
2268
2269 Instance flags (e.g. const/volatile) are preserved as typedefs are
2270 stripped. If necessary a new qualified form of the underlying type
2271 is created.
2272
2273 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2274 not been computed and we're either in the middle of reading symbols, or
2275 there was no name for the typedef in the debug info.
2276
9bc118a5
DE
2277 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2278 QUITs in the symbol reading code can also throw.
2279 Thus this function can throw an exception.
2280
92163a10
JK
2281 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2282 the target type.
c906108c
SS
2283
2284 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 2285 we can find a full definition in some other file. If so, copy this
7ba81444
MS
2286 definition, so we can use it in future. There used to be a comment
2287 (but not any code) that if we don't find a full definition, we'd
2288 set a flag so we don't spend time in the future checking the same
2289 type. That would be a mistake, though--we might load in more
92163a10 2290 symbols which contain a full definition for the type. */
c906108c
SS
2291
2292struct type *
a02fd225 2293check_typedef (struct type *type)
c906108c
SS
2294{
2295 struct type *orig_type = type;
92163a10
JK
2296 /* While we're removing typedefs, we don't want to lose qualifiers.
2297 E.g., const/volatile. */
2298 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 2299
423c0af8
MS
2300 gdb_assert (type);
2301
c906108c
SS
2302 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2303 {
2304 if (!TYPE_TARGET_TYPE (type))
2305 {
0d5cff50 2306 const char *name;
c906108c
SS
2307 struct symbol *sym;
2308
2309 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 2310 reading a symtab. Infinite recursion is one danger. */
c906108c 2311 if (currently_reading_symtab)
92163a10 2312 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2313
2314 name = type_name_no_tag (type);
7ba81444
MS
2315 /* FIXME: shouldn't we separately check the TYPE_NAME and
2316 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2317 VAR_DOMAIN as appropriate? (this code was written before
2318 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
2319 if (name == NULL)
2320 {
23136709 2321 stub_noname_complaint ();
92163a10 2322 return make_qualified_type (type, instance_flags, NULL);
c906108c 2323 }
d12307c1 2324 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
2325 if (sym)
2326 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 2327 else /* TYPE_CODE_UNDEF */
e9bb382b 2328 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
2329 }
2330 type = TYPE_TARGET_TYPE (type);
c906108c 2331
92163a10
JK
2332 /* Preserve the instance flags as we traverse down the typedef chain.
2333
2334 Handling address spaces/classes is nasty, what do we do if there's a
2335 conflict?
2336 E.g., what if an outer typedef marks the type as class_1 and an inner
2337 typedef marks the type as class_2?
2338 This is the wrong place to do such error checking. We leave it to
2339 the code that created the typedef in the first place to flag the
2340 error. We just pick the outer address space (akin to letting the
2341 outer cast in a chain of casting win), instead of assuming
2342 "it can't happen". */
2343 {
2344 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2345 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2346 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2347 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2348
2349 /* Treat code vs data spaces and address classes separately. */
2350 if ((instance_flags & ALL_SPACES) != 0)
2351 new_instance_flags &= ~ALL_SPACES;
2352 if ((instance_flags & ALL_CLASSES) != 0)
2353 new_instance_flags &= ~ALL_CLASSES;
2354
2355 instance_flags |= new_instance_flags;
2356 }
2357 }
a02fd225 2358
7ba81444
MS
2359 /* If this is a struct/class/union with no fields, then check
2360 whether a full definition exists somewhere else. This is for
2361 systems where a type definition with no fields is issued for such
2362 types, instead of identifying them as stub types in the first
2363 place. */
c5aa993b 2364
7ba81444
MS
2365 if (TYPE_IS_OPAQUE (type)
2366 && opaque_type_resolution
2367 && !currently_reading_symtab)
c906108c 2368 {
0d5cff50 2369 const char *name = type_name_no_tag (type);
c5aa993b 2370 struct type *newtype;
d8734c88 2371
c906108c
SS
2372 if (name == NULL)
2373 {
23136709 2374 stub_noname_complaint ();
92163a10 2375 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2376 }
2377 newtype = lookup_transparent_type (name);
ad766c0a 2378
c906108c 2379 if (newtype)
ad766c0a 2380 {
7ba81444
MS
2381 /* If the resolved type and the stub are in the same
2382 objfile, then replace the stub type with the real deal.
2383 But if they're in separate objfiles, leave the stub
2384 alone; we'll just look up the transparent type every time
2385 we call check_typedef. We can't create pointers between
2386 types allocated to different objfiles, since they may
2387 have different lifetimes. Trying to copy NEWTYPE over to
2388 TYPE's objfile is pointless, too, since you'll have to
2389 move over any other types NEWTYPE refers to, which could
2390 be an unbounded amount of stuff. */
ad766c0a 2391 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
2392 type = make_qualified_type (newtype,
2393 TYPE_INSTANCE_FLAGS (type),
2394 type);
ad766c0a
JB
2395 else
2396 type = newtype;
2397 }
c906108c 2398 }
7ba81444
MS
2399 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2400 types. */
74a9bb82 2401 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 2402 {
0d5cff50 2403 const char *name = type_name_no_tag (type);
c906108c 2404 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 2405 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
2406 as appropriate? (this code was written before TYPE_NAME and
2407 TYPE_TAG_NAME were separate). */
c906108c 2408 struct symbol *sym;
d8734c88 2409
c906108c
SS
2410 if (name == NULL)
2411 {
23136709 2412 stub_noname_complaint ();
92163a10 2413 return make_qualified_type (type, instance_flags, NULL);
c906108c 2414 }
d12307c1 2415 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c 2416 if (sym)
c26f2453
JB
2417 {
2418 /* Same as above for opaque types, we can replace the stub
92163a10 2419 with the complete type only if they are in the same
c26f2453
JB
2420 objfile. */
2421 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
2422 type = make_qualified_type (SYMBOL_TYPE (sym),
2423 TYPE_INSTANCE_FLAGS (type),
2424 type);
c26f2453
JB
2425 else
2426 type = SYMBOL_TYPE (sym);
2427 }
c906108c
SS
2428 }
2429
74a9bb82 2430 if (TYPE_TARGET_STUB (type))
c906108c 2431 {
c906108c
SS
2432 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2433
74a9bb82 2434 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 2435 {
73e2eb35 2436 /* Nothing we can do. */
c5aa993b 2437 }
c906108c
SS
2438 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2439 {
2440 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 2441 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
2442 }
2443 }
92163a10
JK
2444
2445 type = make_qualified_type (type, instance_flags, NULL);
2446
7ba81444 2447 /* Cache TYPE_LENGTH for future use. */
c906108c 2448 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2449
c906108c
SS
2450 return type;
2451}
2452
7ba81444 2453/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2454 occurs, silently return a void type. */
c91ecb25 2455
b9362cc7 2456static struct type *
48319d1f 2457safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2458{
2459 struct ui_file *saved_gdb_stderr;
34365054 2460 struct type *type = NULL; /* Initialize to keep gcc happy. */
c91ecb25 2461
7ba81444 2462 /* Suppress error messages. */
c91ecb25
ND
2463 saved_gdb_stderr = gdb_stderr;
2464 gdb_stderr = ui_file_new ();
2465
7ba81444 2466 /* Call parse_and_eval_type() without fear of longjmp()s. */
492d29ea 2467 TRY
8e7b59a5
KS
2468 {
2469 type = parse_and_eval_type (p, length);
2470 }
492d29ea
PA
2471 CATCH (except, RETURN_MASK_ERROR)
2472 {
2473 type = builtin_type (gdbarch)->builtin_void;
2474 }
2475 END_CATCH
c91ecb25 2476
7ba81444 2477 /* Stop suppressing error messages. */
c91ecb25
ND
2478 ui_file_delete (gdb_stderr);
2479 gdb_stderr = saved_gdb_stderr;
2480
2481 return type;
2482}
2483
c906108c
SS
2484/* Ugly hack to convert method stubs into method types.
2485
7ba81444
MS
2486 He ain't kiddin'. This demangles the name of the method into a
2487 string including argument types, parses out each argument type,
2488 generates a string casting a zero to that type, evaluates the
2489 string, and stuffs the resulting type into an argtype vector!!!
2490 Then it knows the type of the whole function (including argument
2491 types for overloading), which info used to be in the stab's but was
2492 removed to hack back the space required for them. */
c906108c 2493
de17c821 2494static void
fba45db2 2495check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2496{
50810684 2497 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2498 struct fn_field *f;
2499 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2500 char *demangled_name = gdb_demangle (mangled_name,
2501 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2502 char *argtypetext, *p;
2503 int depth = 0, argcount = 1;
ad2f7632 2504 struct field *argtypes;
c906108c
SS
2505 struct type *mtype;
2506
2507 /* Make sure we got back a function string that we can use. */
2508 if (demangled_name)
2509 p = strchr (demangled_name, '(');
502dcf4e
AC
2510 else
2511 p = NULL;
c906108c
SS
2512
2513 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2514 error (_("Internal: Cannot demangle mangled name `%s'."),
2515 mangled_name);
c906108c
SS
2516
2517 /* Now, read in the parameters that define this type. */
2518 p += 1;
2519 argtypetext = p;
2520 while (*p)
2521 {
070ad9f0 2522 if (*p == '(' || *p == '<')
c906108c
SS
2523 {
2524 depth += 1;
2525 }
070ad9f0 2526 else if (*p == ')' || *p == '>')
c906108c
SS
2527 {
2528 depth -= 1;
2529 }
2530 else if (*p == ',' && depth == 0)
2531 {
2532 argcount += 1;
2533 }
2534
2535 p += 1;
2536 }
2537
ad2f7632 2538 /* If we read one argument and it was ``void'', don't count it. */
61012eef 2539 if (startswith (argtypetext, "(void)"))
ad2f7632 2540 argcount -= 1;
c906108c 2541
ad2f7632
DJ
2542 /* We need one extra slot, for the THIS pointer. */
2543
2544 argtypes = (struct field *)
2545 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2546 p = argtypetext;
4a1970e4
DJ
2547
2548 /* Add THIS pointer for non-static methods. */
2549 f = TYPE_FN_FIELDLIST1 (type, method_id);
2550 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2551 argcount = 0;
2552 else
2553 {
ad2f7632 2554 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
2555 argcount = 1;
2556 }
c906108c 2557
0963b4bd 2558 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
2559 {
2560 depth = 0;
2561 while (*p)
2562 {
2563 if (depth <= 0 && (*p == ',' || *p == ')'))
2564 {
ad2f7632
DJ
2565 /* Avoid parsing of ellipsis, they will be handled below.
2566 Also avoid ``void'' as above. */
2567 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2568 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 2569 {
ad2f7632 2570 argtypes[argcount].type =
48319d1f 2571 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
2572 argcount += 1;
2573 }
2574 argtypetext = p + 1;
2575 }
2576
070ad9f0 2577 if (*p == '(' || *p == '<')
c906108c
SS
2578 {
2579 depth += 1;
2580 }
070ad9f0 2581 else if (*p == ')' || *p == '>')
c906108c
SS
2582 {
2583 depth -= 1;
2584 }
2585
2586 p += 1;
2587 }
2588 }
2589
c906108c
SS
2590 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2591
2592 /* Now update the old "stub" type into a real type. */
2593 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
09e2d7c7
DE
2594 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2595 We want a method (TYPE_CODE_METHOD). */
2596 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2597 argtypes, argcount, p[-2] == '.');
876cecd0 2598 TYPE_STUB (mtype) = 0;
c906108c 2599 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632
DJ
2600
2601 xfree (demangled_name);
c906108c
SS
2602}
2603
7ba81444
MS
2604/* This is the external interface to check_stub_method, above. This
2605 function unstubs all of the signatures for TYPE's METHOD_ID method
2606 name. After calling this function TYPE_FN_FIELD_STUB will be
2607 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2608 correct.
de17c821
DJ
2609
2610 This function unfortunately can not die until stabs do. */
2611
2612void
2613check_stub_method_group (struct type *type, int method_id)
2614{
2615 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2616 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 2617 int j, found_stub = 0;
de17c821
DJ
2618
2619 for (j = 0; j < len; j++)
2620 if (TYPE_FN_FIELD_STUB (f, j))
2621 {
2622 found_stub = 1;
2623 check_stub_method (type, method_id, j);
2624 }
2625
7ba81444
MS
2626 /* GNU v3 methods with incorrect names were corrected when we read
2627 in type information, because it was cheaper to do it then. The
2628 only GNU v2 methods with incorrect method names are operators and
2629 destructors; destructors were also corrected when we read in type
2630 information.
de17c821
DJ
2631
2632 Therefore the only thing we need to handle here are v2 operator
2633 names. */
61012eef 2634 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
de17c821
DJ
2635 {
2636 int ret;
2637 char dem_opname[256];
2638
7ba81444
MS
2639 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2640 method_id),
de17c821
DJ
2641 dem_opname, DMGL_ANSI);
2642 if (!ret)
7ba81444
MS
2643 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2644 method_id),
de17c821
DJ
2645 dem_opname, 0);
2646 if (ret)
2647 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2648 }
2649}
2650
9655fd1a
JK
2651/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2652const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
2653
2654void
fba45db2 2655allocate_cplus_struct_type (struct type *type)
c906108c 2656{
b4ba55a1
JB
2657 if (HAVE_CPLUS_STRUCT (type))
2658 /* Structure was already allocated. Nothing more to do. */
2659 return;
2660
2661 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2662 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2663 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2664 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
ae6ae975 2665 set_type_vptr_fieldno (type, -1);
c906108c
SS
2666}
2667
b4ba55a1
JB
2668const struct gnat_aux_type gnat_aux_default =
2669 { NULL };
2670
2671/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2672 and allocate the associated gnat-specific data. The gnat-specific
2673 data is also initialized to gnat_aux_default. */
5212577a 2674
b4ba55a1
JB
2675void
2676allocate_gnat_aux_type (struct type *type)
2677{
2678 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2679 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2680 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2681 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2682}
2683
ae438bc5
UW
2684/* Helper function to initialize a newly allocated type. Set type code
2685 to CODE and initialize the type-specific fields accordingly. */
2686
2687static void
2688set_type_code (struct type *type, enum type_code code)
2689{
2690 TYPE_CODE (type) = code;
2691
2692 switch (code)
2693 {
2694 case TYPE_CODE_STRUCT:
2695 case TYPE_CODE_UNION:
2696 case TYPE_CODE_NAMESPACE:
2697 INIT_CPLUS_SPECIFIC (type);
2698 break;
2699 case TYPE_CODE_FLT:
2700 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2701 break;
2702 case TYPE_CODE_FUNC:
2703 INIT_FUNC_SPECIFIC (type);
2704 break;
2705 }
2706}
2707
19f392bc
UW
2708/* Helper function to verify floating-point format and size.
2709 BIT is the type size in bits; if BIT equals -1, the size is
2710 determined by the floatformat. Returns size to be used. */
2711
2712static int
2713verify_floatformat (int bit, const struct floatformat **floatformats)
2714{
2715 if (bit == -1)
2716 {
2717 gdb_assert (floatformats != NULL);
2718 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
2719 bit = floatformats[0]->totalsize;
2720 }
2721 gdb_assert (bit >= 0);
2722
2723 if (floatformats != NULL)
2724 {
2725 size_t len = bit / TARGET_CHAR_BIT;
2726
2727 gdb_assert (len >= floatformat_totalsize_bytes (floatformats[0]));
2728 gdb_assert (len >= floatformat_totalsize_bytes (floatformats[1]));
2729 }
2730
2731 return bit;
2732}
2733
c906108c
SS
2734/* Helper function to initialize the standard scalar types.
2735
86f62fd7
TT
2736 If NAME is non-NULL, then it is used to initialize the type name.
2737 Note that NAME is not copied; it is required to have a lifetime at
2738 least as long as OBJFILE. */
c906108c
SS
2739
2740struct type *
19f392bc
UW
2741init_type (struct objfile *objfile, enum type_code code, int length,
2742 const char *name)
c906108c 2743{
52f0bd74 2744 struct type *type;
c906108c
SS
2745
2746 type = alloc_type (objfile);
ae438bc5 2747 set_type_code (type, code);
c906108c 2748 TYPE_LENGTH (type) = length;
86f62fd7 2749 TYPE_NAME (type) = name;
c906108c 2750
c16abbde 2751 return type;
c906108c 2752}
19f392bc
UW
2753
2754/* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2755 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2756 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2757
2758struct type *
2759init_integer_type (struct objfile *objfile,
2760 int bit, int unsigned_p, const char *name)
2761{
2762 struct type *t;
2763
2764 t = init_type (objfile, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
2765 if (unsigned_p)
2766 TYPE_UNSIGNED (t) = 1;
2767
2768 return t;
2769}
2770
2771/* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2772 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2773 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2774
2775struct type *
2776init_character_type (struct objfile *objfile,
2777 int bit, int unsigned_p, const char *name)
2778{
2779 struct type *t;
2780
2781 t = init_type (objfile, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
2782 if (unsigned_p)
2783 TYPE_UNSIGNED (t) = 1;
2784
2785 return t;
2786}
2787
2788/* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2789 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2790 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2791
2792struct type *
2793init_boolean_type (struct objfile *objfile,
2794 int bit, int unsigned_p, const char *name)
2795{
2796 struct type *t;
2797
2798 t = init_type (objfile, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
2799 if (unsigned_p)
2800 TYPE_UNSIGNED (t) = 1;
2801
2802 return t;
2803}
2804
2805/* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2806 BIT is the type size in bits; if BIT equals -1, the size is
2807 determined by the floatformat. NAME is the type name. Set the
2808 TYPE_FLOATFORMAT from FLOATFORMATS. */
2809
2810struct type *
2811init_float_type (struct objfile *objfile,
2812 int bit, const char *name,
2813 const struct floatformat **floatformats)
2814{
2815 struct type *t;
2816
2817 bit = verify_floatformat (bit, floatformats);
2818 t = init_type (objfile, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
2819 TYPE_FLOATFORMAT (t) = floatformats;
2820
2821 return t;
2822}
2823
2824/* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2825 BIT is the type size in bits. NAME is the type name. */
2826
2827struct type *
2828init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2829{
2830 struct type *t;
2831
2832 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit / TARGET_CHAR_BIT, name);
2833 return t;
2834}
2835
2836/* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2837 NAME is the type name. TARGET_TYPE is the component float type. */
2838
2839struct type *
2840init_complex_type (struct objfile *objfile,
2841 const char *name, struct type *target_type)
2842{
2843 struct type *t;
2844
2845 t = init_type (objfile, TYPE_CODE_COMPLEX,
2846 2 * TYPE_LENGTH (target_type), name);
2847 TYPE_TARGET_TYPE (t) = target_type;
2848 return t;
2849}
2850
2851/* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2852 BIT is the pointer type size in bits. NAME is the type name.
2853 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2854 TYPE_UNSIGNED flag. */
2855
2856struct type *
2857init_pointer_type (struct objfile *objfile,
2858 int bit, const char *name, struct type *target_type)
2859{
2860 struct type *t;
2861
2862 t = init_type (objfile, TYPE_CODE_PTR, bit / TARGET_CHAR_BIT, name);
2863 TYPE_TARGET_TYPE (t) = target_type;
2864 TYPE_UNSIGNED (t) = 1;
2865 return t;
2866}
2867
5212577a
DE
2868\f
2869/* Queries on types. */
c906108c 2870
c906108c 2871int
fba45db2 2872can_dereference (struct type *t)
c906108c 2873{
7ba81444
MS
2874 /* FIXME: Should we return true for references as well as
2875 pointers? */
f168693b 2876 t = check_typedef (t);
c906108c
SS
2877 return
2878 (t != NULL
2879 && TYPE_CODE (t) == TYPE_CODE_PTR
2880 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2881}
2882
adf40b2e 2883int
fba45db2 2884is_integral_type (struct type *t)
adf40b2e 2885{
f168693b 2886 t = check_typedef (t);
adf40b2e
JM
2887 return
2888 ((t != NULL)
d4f3574e
SS
2889 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2890 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 2891 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
2892 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2893 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2894 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
2895}
2896
e09342b5
TJB
2897/* Return true if TYPE is scalar. */
2898
220475ed 2899int
e09342b5
TJB
2900is_scalar_type (struct type *type)
2901{
f168693b 2902 type = check_typedef (type);
e09342b5
TJB
2903
2904 switch (TYPE_CODE (type))
2905 {
2906 case TYPE_CODE_ARRAY:
2907 case TYPE_CODE_STRUCT:
2908 case TYPE_CODE_UNION:
2909 case TYPE_CODE_SET:
2910 case TYPE_CODE_STRING:
e09342b5
TJB
2911 return 0;
2912 default:
2913 return 1;
2914 }
2915}
2916
2917/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
2918 the memory layout of a scalar type. E.g., an array or struct with only
2919 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
2920
2921int
2922is_scalar_type_recursive (struct type *t)
2923{
f168693b 2924 t = check_typedef (t);
e09342b5
TJB
2925
2926 if (is_scalar_type (t))
2927 return 1;
2928 /* Are we dealing with an array or string of known dimensions? */
2929 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2930 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2931 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2932 {
2933 LONGEST low_bound, high_bound;
2934 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2935
2936 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2937
2938 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2939 }
2940 /* Are we dealing with a struct with one element? */
2941 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2942 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2943 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2944 {
2945 int i, n = TYPE_NFIELDS (t);
2946
2947 /* If all elements of the union are scalar, then the union is scalar. */
2948 for (i = 0; i < n; i++)
2949 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2950 return 0;
2951
2952 return 1;
2953 }
2954
2955 return 0;
2956}
2957
6c659fc2
SC
2958/* Return true is T is a class or a union. False otherwise. */
2959
2960int
2961class_or_union_p (const struct type *t)
2962{
2963 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2964 || TYPE_CODE (t) == TYPE_CODE_UNION);
2965}
2966
4e8f195d
TT
2967/* A helper function which returns true if types A and B represent the
2968 "same" class type. This is true if the types have the same main
2969 type, or the same name. */
2970
2971int
2972class_types_same_p (const struct type *a, const struct type *b)
2973{
2974 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2975 || (TYPE_NAME (a) && TYPE_NAME (b)
2976 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2977}
2978
a9d5ef47
SW
2979/* If BASE is an ancestor of DCLASS return the distance between them.
2980 otherwise return -1;
2981 eg:
2982
2983 class A {};
2984 class B: public A {};
2985 class C: public B {};
2986 class D: C {};
2987
2988 distance_to_ancestor (A, A, 0) = 0
2989 distance_to_ancestor (A, B, 0) = 1
2990 distance_to_ancestor (A, C, 0) = 2
2991 distance_to_ancestor (A, D, 0) = 3
2992
2993 If PUBLIC is 1 then only public ancestors are considered,
2994 and the function returns the distance only if BASE is a public ancestor
2995 of DCLASS.
2996 Eg:
2997
0963b4bd 2998 distance_to_ancestor (A, D, 1) = -1. */
c906108c 2999
0526b37a 3000static int
fe978cb0 3001distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
c906108c
SS
3002{
3003 int i;
a9d5ef47 3004 int d;
c5aa993b 3005
f168693b
SM
3006 base = check_typedef (base);
3007 dclass = check_typedef (dclass);
c906108c 3008
4e8f195d 3009 if (class_types_same_p (base, dclass))
a9d5ef47 3010 return 0;
c906108c
SS
3011
3012 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 3013 {
fe978cb0 3014 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
0526b37a
SW
3015 continue;
3016
fe978cb0 3017 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
a9d5ef47
SW
3018 if (d >= 0)
3019 return 1 + d;
4e8f195d 3020 }
c906108c 3021
a9d5ef47 3022 return -1;
c906108c 3023}
4e8f195d 3024
0526b37a
SW
3025/* Check whether BASE is an ancestor or base class or DCLASS
3026 Return 1 if so, and 0 if not.
3027 Note: If BASE and DCLASS are of the same type, this function
3028 will return 1. So for some class A, is_ancestor (A, A) will
3029 return 1. */
3030
3031int
3032is_ancestor (struct type *base, struct type *dclass)
3033{
a9d5ef47 3034 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
3035}
3036
4e8f195d
TT
3037/* Like is_ancestor, but only returns true when BASE is a public
3038 ancestor of DCLASS. */
3039
3040int
3041is_public_ancestor (struct type *base, struct type *dclass)
3042{
a9d5ef47 3043 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
3044}
3045
3046/* A helper function for is_unique_ancestor. */
3047
3048static int
3049is_unique_ancestor_worker (struct type *base, struct type *dclass,
3050 int *offset,
8af8e3bc
PA
3051 const gdb_byte *valaddr, int embedded_offset,
3052 CORE_ADDR address, struct value *val)
4e8f195d
TT
3053{
3054 int i, count = 0;
3055
f168693b
SM
3056 base = check_typedef (base);
3057 dclass = check_typedef (dclass);
4e8f195d
TT
3058
3059 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3060 {
8af8e3bc
PA
3061 struct type *iter;
3062 int this_offset;
4e8f195d 3063
8af8e3bc
PA
3064 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3065
3066 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3067 address, val);
4e8f195d
TT
3068
3069 if (class_types_same_p (base, iter))
3070 {
3071 /* If this is the first subclass, set *OFFSET and set count
3072 to 1. Otherwise, if this is at the same offset as
3073 previous instances, do nothing. Otherwise, increment
3074 count. */
3075 if (*offset == -1)
3076 {
3077 *offset = this_offset;
3078 count = 1;
3079 }
3080 else if (this_offset == *offset)
3081 {
3082 /* Nothing. */
3083 }
3084 else
3085 ++count;
3086 }
3087 else
3088 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
3089 valaddr,
3090 embedded_offset + this_offset,
3091 address, val);
4e8f195d
TT
3092 }
3093
3094 return count;
3095}
3096
3097/* Like is_ancestor, but only returns true if BASE is a unique base
3098 class of the type of VAL. */
3099
3100int
3101is_unique_ancestor (struct type *base, struct value *val)
3102{
3103 int offset = -1;
3104
3105 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
3106 value_contents_for_printing (val),
3107 value_embedded_offset (val),
3108 value_address (val), val) == 1;
4e8f195d
TT
3109}
3110
c906108c 3111\f
5212577a 3112/* Overload resolution. */
c906108c 3113
6403aeea
SW
3114/* Return the sum of the rank of A with the rank of B. */
3115
3116struct rank
3117sum_ranks (struct rank a, struct rank b)
3118{
3119 struct rank c;
3120 c.rank = a.rank + b.rank;
a9d5ef47 3121 c.subrank = a.subrank + b.subrank;
6403aeea
SW
3122 return c;
3123}
3124
3125/* Compare rank A and B and return:
3126 0 if a = b
3127 1 if a is better than b
3128 -1 if b is better than a. */
3129
3130int
3131compare_ranks (struct rank a, struct rank b)
3132{
3133 if (a.rank == b.rank)
a9d5ef47
SW
3134 {
3135 if (a.subrank == b.subrank)
3136 return 0;
3137 if (a.subrank < b.subrank)
3138 return 1;
3139 if (a.subrank > b.subrank)
3140 return -1;
3141 }
6403aeea
SW
3142
3143 if (a.rank < b.rank)
3144 return 1;
3145
0963b4bd 3146 /* a.rank > b.rank */
6403aeea
SW
3147 return -1;
3148}
c5aa993b 3149
0963b4bd 3150/* Functions for overload resolution begin here. */
c906108c
SS
3151
3152/* Compare two badness vectors A and B and return the result.
7ba81444
MS
3153 0 => A and B are identical
3154 1 => A and B are incomparable
3155 2 => A is better than B
3156 3 => A is worse than B */
c906108c
SS
3157
3158int
fba45db2 3159compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
3160{
3161 int i;
3162 int tmp;
c5aa993b
JM
3163 short found_pos = 0; /* any positives in c? */
3164 short found_neg = 0; /* any negatives in c? */
3165
3166 /* differing lengths => incomparable */
c906108c
SS
3167 if (a->length != b->length)
3168 return 1;
3169
c5aa993b
JM
3170 /* Subtract b from a */
3171 for (i = 0; i < a->length; i++)
c906108c 3172 {
6403aeea 3173 tmp = compare_ranks (b->rank[i], a->rank[i]);
c906108c 3174 if (tmp > 0)
c5aa993b 3175 found_pos = 1;
c906108c 3176 else if (tmp < 0)
c5aa993b 3177 found_neg = 1;
c906108c
SS
3178 }
3179
3180 if (found_pos)
3181 {
3182 if (found_neg)
c5aa993b 3183 return 1; /* incomparable */
c906108c 3184 else
c5aa993b 3185 return 3; /* A > B */
c906108c 3186 }
c5aa993b
JM
3187 else
3188 /* no positives */
c906108c
SS
3189 {
3190 if (found_neg)
c5aa993b 3191 return 2; /* A < B */
c906108c 3192 else
c5aa993b 3193 return 0; /* A == B */
c906108c
SS
3194 }
3195}
3196
7ba81444
MS
3197/* Rank a function by comparing its parameter types (PARMS, length
3198 NPARMS), to the types of an argument list (ARGS, length NARGS).
3199 Return a pointer to a badness vector. This has NARGS + 1
3200 entries. */
c906108c
SS
3201
3202struct badness_vector *
7ba81444 3203rank_function (struct type **parms, int nparms,
da096638 3204 struct value **args, int nargs)
c906108c
SS
3205{
3206 int i;
8d749320 3207 struct badness_vector *bv = XNEW (struct badness_vector);
c906108c
SS
3208 int min_len = nparms < nargs ? nparms : nargs;
3209
0963b4bd 3210 bv->length = nargs + 1; /* add 1 for the length-match rank. */
c4e54771 3211 bv->rank = XNEWVEC (struct rank, nargs + 1);
c906108c
SS
3212
3213 /* First compare the lengths of the supplied lists.
7ba81444 3214 If there is a mismatch, set it to a high value. */
c5aa993b 3215
c906108c 3216 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
3217 arguments and ellipsis parameter lists, we should consider those
3218 and rank the length-match more finely. */
c906108c 3219
6403aeea
SW
3220 LENGTH_MATCH (bv) = (nargs != nparms)
3221 ? LENGTH_MISMATCH_BADNESS
3222 : EXACT_MATCH_BADNESS;
c906108c 3223
0963b4bd 3224 /* Now rank all the parameters of the candidate function. */
74cc24b0 3225 for (i = 1; i <= min_len; i++)
da096638
KS
3226 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
3227 args[i - 1]);
c906108c 3228
0963b4bd 3229 /* If more arguments than parameters, add dummy entries. */
c5aa993b 3230 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
3231 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
3232
3233 return bv;
3234}
3235
973ccf8b
DJ
3236/* Compare the names of two integer types, assuming that any sign
3237 qualifiers have been checked already. We do it this way because
3238 there may be an "int" in the name of one of the types. */
3239
3240static int
3241integer_types_same_name_p (const char *first, const char *second)
3242{
3243 int first_p, second_p;
3244
7ba81444
MS
3245 /* If both are shorts, return 1; if neither is a short, keep
3246 checking. */
973ccf8b
DJ
3247 first_p = (strstr (first, "short") != NULL);
3248 second_p = (strstr (second, "short") != NULL);
3249 if (first_p && second_p)
3250 return 1;
3251 if (first_p || second_p)
3252 return 0;
3253
3254 /* Likewise for long. */
3255 first_p = (strstr (first, "long") != NULL);
3256 second_p = (strstr (second, "long") != NULL);
3257 if (first_p && second_p)
3258 return 1;
3259 if (first_p || second_p)
3260 return 0;
3261
3262 /* Likewise for char. */
3263 first_p = (strstr (first, "char") != NULL);
3264 second_p = (strstr (second, "char") != NULL);
3265 if (first_p && second_p)
3266 return 1;
3267 if (first_p || second_p)
3268 return 0;
3269
3270 /* They must both be ints. */
3271 return 1;
3272}
3273
7062b0a0
SW
3274/* Compares type A to type B returns 1 if the represent the same type
3275 0 otherwise. */
3276
bd69fc68 3277int
7062b0a0
SW
3278types_equal (struct type *a, struct type *b)
3279{
3280 /* Identical type pointers. */
3281 /* However, this still doesn't catch all cases of same type for b
3282 and a. The reason is that builtin types are different from
3283 the same ones constructed from the object. */
3284 if (a == b)
3285 return 1;
3286
3287 /* Resolve typedefs */
3288 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3289 a = check_typedef (a);
3290 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3291 b = check_typedef (b);
3292
3293 /* If after resolving typedefs a and b are not of the same type
3294 code then they are not equal. */
3295 if (TYPE_CODE (a) != TYPE_CODE (b))
3296 return 0;
3297
3298 /* If a and b are both pointers types or both reference types then
3299 they are equal of the same type iff the objects they refer to are
3300 of the same type. */
3301 if (TYPE_CODE (a) == TYPE_CODE_PTR
3302 || TYPE_CODE (a) == TYPE_CODE_REF)
3303 return types_equal (TYPE_TARGET_TYPE (a),
3304 TYPE_TARGET_TYPE (b));
3305
0963b4bd 3306 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
3307 are exactly the same. This happens when we generate method
3308 stubs. The types won't point to the same address, but they
0963b4bd 3309 really are the same. */
7062b0a0
SW
3310
3311 if (TYPE_NAME (a) && TYPE_NAME (b)
3312 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3313 return 1;
3314
3315 /* Check if identical after resolving typedefs. */
3316 if (a == b)
3317 return 1;
3318
9ce98649
TT
3319 /* Two function types are equal if their argument and return types
3320 are equal. */
3321 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3322 {
3323 int i;
3324
3325 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3326 return 0;
3327
3328 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3329 return 0;
3330
3331 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3332 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3333 return 0;
3334
3335 return 1;
3336 }
3337
7062b0a0
SW
3338 return 0;
3339}
ca092b61
DE
3340\f
3341/* Deep comparison of types. */
3342
3343/* An entry in the type-equality bcache. */
3344
3345typedef struct type_equality_entry
3346{
3347 struct type *type1, *type2;
3348} type_equality_entry_d;
3349
3350DEF_VEC_O (type_equality_entry_d);
3351
3352/* A helper function to compare two strings. Returns 1 if they are
3353 the same, 0 otherwise. Handles NULLs properly. */
3354
3355static int
3356compare_maybe_null_strings (const char *s, const char *t)
3357{
3358 if (s == NULL && t != NULL)
3359 return 0;
3360 else if (s != NULL && t == NULL)
3361 return 0;
3362 else if (s == NULL && t== NULL)
3363 return 1;
3364 return strcmp (s, t) == 0;
3365}
3366
3367/* A helper function for check_types_worklist that checks two types for
3368 "deep" equality. Returns non-zero if the types are considered the
3369 same, zero otherwise. */
3370
3371static int
3372check_types_equal (struct type *type1, struct type *type2,
3373 VEC (type_equality_entry_d) **worklist)
3374{
f168693b
SM
3375 type1 = check_typedef (type1);
3376 type2 = check_typedef (type2);
ca092b61
DE
3377
3378 if (type1 == type2)
3379 return 1;
3380
3381 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3382 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3383 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3384 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3385 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3386 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3387 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3388 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3389 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3390 return 0;
3391
3392 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3393 TYPE_TAG_NAME (type2)))
3394 return 0;
3395 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3396 return 0;
3397
3398 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3399 {
3400 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3401 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3402 return 0;
3403 }
3404 else
3405 {
3406 int i;
3407
3408 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3409 {
3410 const struct field *field1 = &TYPE_FIELD (type1, i);
3411 const struct field *field2 = &TYPE_FIELD (type2, i);
3412 struct type_equality_entry entry;
3413
3414 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3415 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3416 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3417 return 0;
3418 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3419 FIELD_NAME (*field2)))
3420 return 0;
3421 switch (FIELD_LOC_KIND (*field1))
3422 {
3423 case FIELD_LOC_KIND_BITPOS:
3424 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3425 return 0;
3426 break;
3427 case FIELD_LOC_KIND_ENUMVAL:
3428 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3429 return 0;
3430 break;
3431 case FIELD_LOC_KIND_PHYSADDR:
3432 if (FIELD_STATIC_PHYSADDR (*field1)
3433 != FIELD_STATIC_PHYSADDR (*field2))
3434 return 0;
3435 break;
3436 case FIELD_LOC_KIND_PHYSNAME:
3437 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3438 FIELD_STATIC_PHYSNAME (*field2)))
3439 return 0;
3440 break;
3441 case FIELD_LOC_KIND_DWARF_BLOCK:
3442 {
3443 struct dwarf2_locexpr_baton *block1, *block2;
3444
3445 block1 = FIELD_DWARF_BLOCK (*field1);
3446 block2 = FIELD_DWARF_BLOCK (*field2);
3447 if (block1->per_cu != block2->per_cu
3448 || block1->size != block2->size
3449 || memcmp (block1->data, block2->data, block1->size) != 0)
3450 return 0;
3451 }
3452 break;
3453 default:
3454 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3455 "%d by check_types_equal"),
3456 FIELD_LOC_KIND (*field1));
3457 }
3458
3459 entry.type1 = FIELD_TYPE (*field1);
3460 entry.type2 = FIELD_TYPE (*field2);
3461 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3462 }
3463 }
3464
3465 if (TYPE_TARGET_TYPE (type1) != NULL)
3466 {
3467 struct type_equality_entry entry;
3468
3469 if (TYPE_TARGET_TYPE (type2) == NULL)
3470 return 0;
3471
3472 entry.type1 = TYPE_TARGET_TYPE (type1);
3473 entry.type2 = TYPE_TARGET_TYPE (type2);
3474 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3475 }
3476 else if (TYPE_TARGET_TYPE (type2) != NULL)
3477 return 0;
3478
3479 return 1;
3480}
3481
3482/* Check types on a worklist for equality. Returns zero if any pair
3483 is not equal, non-zero if they are all considered equal. */
3484
3485static int
3486check_types_worklist (VEC (type_equality_entry_d) **worklist,
3487 struct bcache *cache)
3488{
3489 while (!VEC_empty (type_equality_entry_d, *worklist))
3490 {
3491 struct type_equality_entry entry;
3492 int added;
3493
3494 entry = *VEC_last (type_equality_entry_d, *worklist);
3495 VEC_pop (type_equality_entry_d, *worklist);
3496
3497 /* If the type pair has already been visited, we know it is
3498 ok. */
3499 bcache_full (&entry, sizeof (entry), cache, &added);
3500 if (!added)
3501 continue;
3502
3503 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3504 return 0;
3505 }
7062b0a0 3506
ca092b61
DE
3507 return 1;
3508}
3509
3510/* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3511 "deep comparison". Otherwise return zero. */
3512
3513int
3514types_deeply_equal (struct type *type1, struct type *type2)
3515{
6c63c96a 3516 struct gdb_exception except = exception_none;
ca092b61
DE
3517 int result = 0;
3518 struct bcache *cache;
3519 VEC (type_equality_entry_d) *worklist = NULL;
3520 struct type_equality_entry entry;
3521
3522 gdb_assert (type1 != NULL && type2 != NULL);
3523
3524 /* Early exit for the simple case. */
3525 if (type1 == type2)
3526 return 1;
3527
3528 cache = bcache_xmalloc (NULL, NULL);
3529
3530 entry.type1 = type1;
3531 entry.type2 = type2;
3532 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3533
6c63c96a
PA
3534 /* check_types_worklist calls several nested helper functions, some
3535 of which can raise a GDB exception, so we just check and rethrow
3536 here. If there is a GDB exception, a comparison is not capable
3537 (or trusted), so exit. */
492d29ea 3538 TRY
ca092b61
DE
3539 {
3540 result = check_types_worklist (&worklist, cache);
3541 }
6c63c96a 3542 CATCH (ex, RETURN_MASK_ALL)
492d29ea 3543 {
6c63c96a 3544 except = ex;
492d29ea
PA
3545 }
3546 END_CATCH
ca092b61 3547
6c63c96a
PA
3548 bcache_xfree (cache);
3549 VEC_free (type_equality_entry_d, worklist);
3550
3551 /* Rethrow if there was a problem. */
3552 if (except.reason < 0)
3553 throw_exception (except);
3554
ca092b61
DE
3555 return result;
3556}
3f2f83dd
KB
3557
3558/* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3559 Otherwise return one. */
3560
3561int
3562type_not_allocated (const struct type *type)
3563{
3564 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3565
3566 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3567 && !TYPE_DYN_PROP_ADDR (prop));
3568}
3569
3570/* Associated status of type TYPE. Return zero if type TYPE is associated.
3571 Otherwise return one. */
3572
3573int
3574type_not_associated (const struct type *type)
3575{
3576 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3577
3578 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3579 && !TYPE_DYN_PROP_ADDR (prop));
3580}
ca092b61 3581\f
c906108c
SS
3582/* Compare one type (PARM) for compatibility with another (ARG).
3583 * PARM is intended to be the parameter type of a function; and
3584 * ARG is the supplied argument's type. This function tests if
3585 * the latter can be converted to the former.
da096638 3586 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
3587 *
3588 * Return 0 if they are identical types;
3589 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
3590 * PARM is to ARG. The higher the return value, the worse the match.
3591 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 3592
6403aeea 3593struct rank
da096638 3594rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 3595{
a9d5ef47 3596 struct rank rank = {0,0};
7062b0a0
SW
3597
3598 if (types_equal (parm, arg))
6403aeea 3599 return EXACT_MATCH_BADNESS;
c906108c
SS
3600
3601 /* Resolve typedefs */
3602 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3603 parm = check_typedef (parm);
3604 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3605 arg = check_typedef (arg);
3606
db577aea 3607 /* See through references, since we can almost make non-references
7ba81444 3608 references. */
db577aea 3609 if (TYPE_CODE (arg) == TYPE_CODE_REF)
da096638 3610 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
6403aeea 3611 REFERENCE_CONVERSION_BADNESS));
db577aea 3612 if (TYPE_CODE (parm) == TYPE_CODE_REF)
da096638 3613 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
6403aeea 3614 REFERENCE_CONVERSION_BADNESS));
5d161b24 3615 if (overload_debug)
7ba81444
MS
3616 /* Debugging only. */
3617 fprintf_filtered (gdb_stderr,
3618 "------ Arg is %s [%d], parm is %s [%d]\n",
3619 TYPE_NAME (arg), TYPE_CODE (arg),
3620 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 3621
0963b4bd 3622 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
3623
3624 switch (TYPE_CODE (parm))
3625 {
c5aa993b
JM
3626 case TYPE_CODE_PTR:
3627 switch (TYPE_CODE (arg))
3628 {
3629 case TYPE_CODE_PTR:
7062b0a0
SW
3630
3631 /* Allowed pointer conversions are:
3632 (a) pointer to void-pointer conversion. */
3633 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
c5aa993b 3634 return VOID_PTR_CONVERSION_BADNESS;
7062b0a0
SW
3635
3636 /* (b) pointer to ancestor-pointer conversion. */
a9d5ef47
SW
3637 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3638 TYPE_TARGET_TYPE (arg),
3639 0);
3640 if (rank.subrank >= 0)
3641 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
7062b0a0
SW
3642
3643 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3644 case TYPE_CODE_ARRAY:
7062b0a0
SW
3645 if (types_equal (TYPE_TARGET_TYPE (parm),
3646 TYPE_TARGET_TYPE (arg)))
6403aeea 3647 return EXACT_MATCH_BADNESS;
7062b0a0 3648 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3649 case TYPE_CODE_FUNC:
da096638 3650 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
c5aa993b 3651 case TYPE_CODE_INT:
a451cb65 3652 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
da096638 3653 {
a451cb65
KS
3654 if (value_as_long (value) == 0)
3655 {
3656 /* Null pointer conversion: allow it to be cast to a pointer.
3657 [4.10.1 of C++ standard draft n3290] */
3658 return NULL_POINTER_CONVERSION_BADNESS;
3659 }
3660 else
3661 {
3662 /* If type checking is disabled, allow the conversion. */
3663 if (!strict_type_checking)
3664 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3665 }
da096638
KS
3666 }
3667 /* fall through */
c5aa993b 3668 case TYPE_CODE_ENUM:
4f2aea11 3669 case TYPE_CODE_FLAGS:
c5aa993b
JM
3670 case TYPE_CODE_CHAR:
3671 case TYPE_CODE_RANGE:
3672 case TYPE_CODE_BOOL:
c5aa993b
JM
3673 default:
3674 return INCOMPATIBLE_TYPE_BADNESS;
3675 }
3676 case TYPE_CODE_ARRAY:
3677 switch (TYPE_CODE (arg))
3678 {
3679 case TYPE_CODE_PTR:
3680 case TYPE_CODE_ARRAY:
7ba81444 3681 return rank_one_type (TYPE_TARGET_TYPE (parm),
da096638 3682 TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3683 default:
3684 return INCOMPATIBLE_TYPE_BADNESS;
3685 }
3686 case TYPE_CODE_FUNC:
3687 switch (TYPE_CODE (arg))
3688 {
3689 case TYPE_CODE_PTR: /* funcptr -> func */
da096638 3690 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3691 default:
3692 return INCOMPATIBLE_TYPE_BADNESS;
3693 }
3694 case TYPE_CODE_INT:
3695 switch (TYPE_CODE (arg))
3696 {
3697 case TYPE_CODE_INT:
3698 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3699 {
3700 /* Deal with signed, unsigned, and plain chars and
7ba81444 3701 signed and unsigned ints. */
c5aa993b
JM
3702 if (TYPE_NOSIGN (parm))
3703 {
0963b4bd 3704 /* This case only for character types. */
7ba81444 3705 if (TYPE_NOSIGN (arg))
6403aeea 3706 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
7ba81444
MS
3707 else /* signed/unsigned char -> plain char */
3708 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3709 }
3710 else if (TYPE_UNSIGNED (parm))
3711 {
3712 if (TYPE_UNSIGNED (arg))
3713 {
7ba81444
MS
3714 /* unsigned int -> unsigned int, or
3715 unsigned long -> unsigned long */
3716 if (integer_types_same_name_p (TYPE_NAME (parm),
3717 TYPE_NAME (arg)))
6403aeea 3718 return EXACT_MATCH_BADNESS;
7ba81444
MS
3719 else if (integer_types_same_name_p (TYPE_NAME (arg),
3720 "int")
3721 && integer_types_same_name_p (TYPE_NAME (parm),
3722 "long"))
3e43a32a
MS
3723 /* unsigned int -> unsigned long */
3724 return INTEGER_PROMOTION_BADNESS;
c5aa993b 3725 else
3e43a32a
MS
3726 /* unsigned long -> unsigned int */
3727 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3728 }
3729 else
3730 {
7ba81444
MS
3731 if (integer_types_same_name_p (TYPE_NAME (arg),
3732 "long")
3733 && integer_types_same_name_p (TYPE_NAME (parm),
3734 "int"))
3e43a32a
MS
3735 /* signed long -> unsigned int */
3736 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3737 else
3e43a32a
MS
3738 /* signed int/long -> unsigned int/long */
3739 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3740 }
3741 }
3742 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3743 {
7ba81444
MS
3744 if (integer_types_same_name_p (TYPE_NAME (parm),
3745 TYPE_NAME (arg)))
6403aeea 3746 return EXACT_MATCH_BADNESS;
7ba81444
MS
3747 else if (integer_types_same_name_p (TYPE_NAME (arg),
3748 "int")
3749 && integer_types_same_name_p (TYPE_NAME (parm),
3750 "long"))
c5aa993b
JM
3751 return INTEGER_PROMOTION_BADNESS;
3752 else
1c5cb38e 3753 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3754 }
3755 else
1c5cb38e 3756 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3757 }
3758 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3759 return INTEGER_PROMOTION_BADNESS;
3760 else
1c5cb38e 3761 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3762 case TYPE_CODE_ENUM:
4f2aea11 3763 case TYPE_CODE_FLAGS:
c5aa993b
JM
3764 case TYPE_CODE_CHAR:
3765 case TYPE_CODE_RANGE:
3766 case TYPE_CODE_BOOL:
3d567982
TT
3767 if (TYPE_DECLARED_CLASS (arg))
3768 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b
JM
3769 return INTEGER_PROMOTION_BADNESS;
3770 case TYPE_CODE_FLT:
3771 return INT_FLOAT_CONVERSION_BADNESS;
3772 case TYPE_CODE_PTR:
3773 return NS_POINTER_CONVERSION_BADNESS;
3774 default:
3775 return INCOMPATIBLE_TYPE_BADNESS;
3776 }
3777 break;
3778 case TYPE_CODE_ENUM:
3779 switch (TYPE_CODE (arg))
3780 {
3781 case TYPE_CODE_INT:
3782 case TYPE_CODE_CHAR:
3783 case TYPE_CODE_RANGE:
3784 case TYPE_CODE_BOOL:
3785 case TYPE_CODE_ENUM:
3d567982
TT
3786 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3787 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 3788 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3789 case TYPE_CODE_FLT:
3790 return INT_FLOAT_CONVERSION_BADNESS;
3791 default:
3792 return INCOMPATIBLE_TYPE_BADNESS;
3793 }
3794 break;
3795 case TYPE_CODE_CHAR:
3796 switch (TYPE_CODE (arg))
3797 {
3798 case TYPE_CODE_RANGE:
3799 case TYPE_CODE_BOOL:
3800 case TYPE_CODE_ENUM:
3d567982
TT
3801 if (TYPE_DECLARED_CLASS (arg))
3802 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 3803 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3804 case TYPE_CODE_FLT:
3805 return INT_FLOAT_CONVERSION_BADNESS;
3806 case TYPE_CODE_INT:
3807 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 3808 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3809 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3810 return INTEGER_PROMOTION_BADNESS;
3811 /* >>> !! else fall through !! <<< */
3812 case TYPE_CODE_CHAR:
7ba81444
MS
3813 /* Deal with signed, unsigned, and plain chars for C++ and
3814 with int cases falling through from previous case. */
c5aa993b
JM
3815 if (TYPE_NOSIGN (parm))
3816 {
3817 if (TYPE_NOSIGN (arg))
6403aeea 3818 return EXACT_MATCH_BADNESS;
c5aa993b 3819 else
1c5cb38e 3820 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3821 }
3822 else if (TYPE_UNSIGNED (parm))
3823 {
3824 if (TYPE_UNSIGNED (arg))
6403aeea 3825 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3826 else
3827 return INTEGER_PROMOTION_BADNESS;
3828 }
3829 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
6403aeea 3830 return EXACT_MATCH_BADNESS;
c5aa993b 3831 else
1c5cb38e 3832 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3833 default:
3834 return INCOMPATIBLE_TYPE_BADNESS;
3835 }
3836 break;
3837 case TYPE_CODE_RANGE:
3838 switch (TYPE_CODE (arg))
3839 {
3840 case TYPE_CODE_INT:
3841 case TYPE_CODE_CHAR:
3842 case TYPE_CODE_RANGE:
3843 case TYPE_CODE_BOOL:
3844 case TYPE_CODE_ENUM:
1c5cb38e 3845 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3846 case TYPE_CODE_FLT:
3847 return INT_FLOAT_CONVERSION_BADNESS;
3848 default:
3849 return INCOMPATIBLE_TYPE_BADNESS;
3850 }
3851 break;
3852 case TYPE_CODE_BOOL:
3853 switch (TYPE_CODE (arg))
3854 {
5b4f6e25
KS
3855 /* n3290 draft, section 4.12.1 (conv.bool):
3856
3857 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3858 pointer to member type can be converted to a prvalue of type
3859 bool. A zero value, null pointer value, or null member pointer
3860 value is converted to false; any other value is converted to
3861 true. A prvalue of type std::nullptr_t can be converted to a
3862 prvalue of type bool; the resulting value is false." */
c5aa993b
JM
3863 case TYPE_CODE_INT:
3864 case TYPE_CODE_CHAR:
c5aa993b
JM
3865 case TYPE_CODE_ENUM:
3866 case TYPE_CODE_FLT:
5b4f6e25 3867 case TYPE_CODE_MEMBERPTR:
c5aa993b 3868 case TYPE_CODE_PTR:
5b4f6e25
KS
3869 return BOOL_CONVERSION_BADNESS;
3870 case TYPE_CODE_RANGE:
3871 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3872 case TYPE_CODE_BOOL:
6403aeea 3873 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3874 default:
3875 return INCOMPATIBLE_TYPE_BADNESS;
3876 }
3877 break;
3878 case TYPE_CODE_FLT:
3879 switch (TYPE_CODE (arg))
3880 {
3881 case TYPE_CODE_FLT:
3882 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3883 return FLOAT_PROMOTION_BADNESS;
3884 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
6403aeea 3885 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3886 else
3887 return FLOAT_CONVERSION_BADNESS;
3888 case TYPE_CODE_INT:
3889 case TYPE_CODE_BOOL:
3890 case TYPE_CODE_ENUM:
3891 case TYPE_CODE_RANGE:
3892 case TYPE_CODE_CHAR:
3893 return INT_FLOAT_CONVERSION_BADNESS;
3894 default:
3895 return INCOMPATIBLE_TYPE_BADNESS;
3896 }
3897 break;
3898 case TYPE_CODE_COMPLEX:
3899 switch (TYPE_CODE (arg))
7ba81444 3900 { /* Strictly not needed for C++, but... */
c5aa993b
JM
3901 case TYPE_CODE_FLT:
3902 return FLOAT_PROMOTION_BADNESS;
3903 case TYPE_CODE_COMPLEX:
6403aeea 3904 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3905 default:
3906 return INCOMPATIBLE_TYPE_BADNESS;
3907 }
3908 break;
3909 case TYPE_CODE_STRUCT:
c5aa993b
JM
3910 switch (TYPE_CODE (arg))
3911 {
3912 case TYPE_CODE_STRUCT:
3913 /* Check for derivation */
a9d5ef47
SW
3914 rank.subrank = distance_to_ancestor (parm, arg, 0);
3915 if (rank.subrank >= 0)
3916 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
c5aa993b
JM
3917 /* else fall through */
3918 default:
3919 return INCOMPATIBLE_TYPE_BADNESS;
3920 }
3921 break;
3922 case TYPE_CODE_UNION:
3923 switch (TYPE_CODE (arg))
3924 {
3925 case TYPE_CODE_UNION:
3926 default:
3927 return INCOMPATIBLE_TYPE_BADNESS;
3928 }
3929 break;
0d5de010 3930 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
3931 switch (TYPE_CODE (arg))
3932 {
3933 default:
3934 return INCOMPATIBLE_TYPE_BADNESS;
3935 }
3936 break;
3937 case TYPE_CODE_METHOD:
3938 switch (TYPE_CODE (arg))
3939 {
3940
3941 default:
3942 return INCOMPATIBLE_TYPE_BADNESS;
3943 }
3944 break;
3945 case TYPE_CODE_REF:
3946 switch (TYPE_CODE (arg))
3947 {
3948
3949 default:
3950 return INCOMPATIBLE_TYPE_BADNESS;
3951 }
3952
3953 break;
3954 case TYPE_CODE_SET:
3955 switch (TYPE_CODE (arg))
3956 {
3957 /* Not in C++ */
3958 case TYPE_CODE_SET:
7ba81444 3959 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
da096638 3960 TYPE_FIELD_TYPE (arg, 0), NULL);
c5aa993b
JM
3961 default:
3962 return INCOMPATIBLE_TYPE_BADNESS;
3963 }
3964 break;
3965 case TYPE_CODE_VOID:
3966 default:
3967 return INCOMPATIBLE_TYPE_BADNESS;
3968 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
3969}
3970
0963b4bd 3971/* End of functions for overload resolution. */
5212577a
DE
3972\f
3973/* Routines to pretty-print types. */
c906108c 3974
c906108c 3975static void
fba45db2 3976print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
3977{
3978 int bitno;
3979
3980 for (bitno = 0; bitno < nbits; bitno++)
3981 {
3982 if ((bitno % 8) == 0)
3983 {
3984 puts_filtered (" ");
3985 }
3986 if (B_TST (bits, bitno))
a3f17187 3987 printf_filtered (("1"));
c906108c 3988 else
a3f17187 3989 printf_filtered (("0"));
c906108c
SS
3990 }
3991}
3992
ad2f7632 3993/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
3994 include it since we may get into a infinitely recursive
3995 situation. */
c906108c
SS
3996
3997static void
4c9e8482 3998print_args (struct field *args, int nargs, int spaces)
c906108c
SS
3999{
4000 if (args != NULL)
4001 {
ad2f7632
DJ
4002 int i;
4003
4004 for (i = 0; i < nargs; i++)
4c9e8482
DE
4005 {
4006 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4007 args[i].name != NULL ? args[i].name : "<NULL>");
4008 recursive_dump_type (args[i].type, spaces + 2);
4009 }
c906108c
SS
4010 }
4011}
4012
d6a843b5
JK
4013int
4014field_is_static (struct field *f)
4015{
4016 /* "static" fields are the fields whose location is not relative
4017 to the address of the enclosing struct. It would be nice to
4018 have a dedicated flag that would be set for static fields when
4019 the type is being created. But in practice, checking the field
254e6b9e 4020 loc_kind should give us an accurate answer. */
d6a843b5
JK
4021 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4022 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4023}
4024
c906108c 4025static void
fba45db2 4026dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
4027{
4028 int method_idx;
4029 int overload_idx;
4030 struct fn_field *f;
4031
4032 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 4033 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
4034 printf_filtered ("\n");
4035 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4036 {
4037 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4038 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4039 method_idx,
4040 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
4041 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4042 gdb_stdout);
a3f17187 4043 printf_filtered (_(") length %d\n"),
c906108c
SS
4044 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4045 for (overload_idx = 0;
4046 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4047 overload_idx++)
4048 {
4049 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4050 overload_idx,
4051 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
4052 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4053 gdb_stdout);
c906108c
SS
4054 printf_filtered (")\n");
4055 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
4056 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4057 gdb_stdout);
c906108c
SS
4058 printf_filtered ("\n");
4059
4060 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4061 spaces + 8 + 2);
4062
4063 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
4064 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4065 gdb_stdout);
c906108c 4066 printf_filtered ("\n");
4c9e8482
DE
4067 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4068 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4069 spaces + 8 + 2);
c906108c 4070 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
4071 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4072 gdb_stdout);
c906108c
SS
4073 printf_filtered ("\n");
4074
4075 printfi_filtered (spaces + 8, "is_const %d\n",
4076 TYPE_FN_FIELD_CONST (f, overload_idx));
4077 printfi_filtered (spaces + 8, "is_volatile %d\n",
4078 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4079 printfi_filtered (spaces + 8, "is_private %d\n",
4080 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4081 printfi_filtered (spaces + 8, "is_protected %d\n",
4082 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4083 printfi_filtered (spaces + 8, "is_stub %d\n",
4084 TYPE_FN_FIELD_STUB (f, overload_idx));
4085 printfi_filtered (spaces + 8, "voffset %u\n",
4086 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4087 }
4088 }
4089}
4090
4091static void
fba45db2 4092print_cplus_stuff (struct type *type, int spaces)
c906108c 4093{
ae6ae975
DE
4094 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4095 printfi_filtered (spaces, "vptr_basetype ");
4096 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4097 puts_filtered ("\n");
4098 if (TYPE_VPTR_BASETYPE (type) != NULL)
4099 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4100
c906108c
SS
4101 printfi_filtered (spaces, "n_baseclasses %d\n",
4102 TYPE_N_BASECLASSES (type));
4103 printfi_filtered (spaces, "nfn_fields %d\n",
4104 TYPE_NFN_FIELDS (type));
c906108c
SS
4105 if (TYPE_N_BASECLASSES (type) > 0)
4106 {
4107 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4108 TYPE_N_BASECLASSES (type));
7ba81444
MS
4109 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4110 gdb_stdout);
c906108c
SS
4111 printf_filtered (")");
4112
4113 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4114 TYPE_N_BASECLASSES (type));
4115 puts_filtered ("\n");
4116 }
4117 if (TYPE_NFIELDS (type) > 0)
4118 {
4119 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4120 {
7ba81444
MS
4121 printfi_filtered (spaces,
4122 "private_field_bits (%d bits at *",
c906108c 4123 TYPE_NFIELDS (type));
7ba81444
MS
4124 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4125 gdb_stdout);
c906108c
SS
4126 printf_filtered (")");
4127 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4128 TYPE_NFIELDS (type));
4129 puts_filtered ("\n");
4130 }
4131 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4132 {
7ba81444
MS
4133 printfi_filtered (spaces,
4134 "protected_field_bits (%d bits at *",
c906108c 4135 TYPE_NFIELDS (type));
7ba81444
MS
4136 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4137 gdb_stdout);
c906108c
SS
4138 printf_filtered (")");
4139 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4140 TYPE_NFIELDS (type));
4141 puts_filtered ("\n");
4142 }
4143 }
4144 if (TYPE_NFN_FIELDS (type) > 0)
4145 {
4146 dump_fn_fieldlists (type, spaces);
4147 }
4148}
4149
b4ba55a1
JB
4150/* Print the contents of the TYPE's type_specific union, assuming that
4151 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4152
4153static void
4154print_gnat_stuff (struct type *type, int spaces)
4155{
4156 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4157
8cd00c59
PMR
4158 if (descriptive_type == NULL)
4159 printfi_filtered (spaces + 2, "no descriptive type\n");
4160 else
4161 {
4162 printfi_filtered (spaces + 2, "descriptive type\n");
4163 recursive_dump_type (descriptive_type, spaces + 4);
4164 }
b4ba55a1
JB
4165}
4166
c906108c
SS
4167static struct obstack dont_print_type_obstack;
4168
4169void
fba45db2 4170recursive_dump_type (struct type *type, int spaces)
c906108c
SS
4171{
4172 int idx;
4173
4174 if (spaces == 0)
4175 obstack_begin (&dont_print_type_obstack, 0);
4176
4177 if (TYPE_NFIELDS (type) > 0
b4ba55a1 4178 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
4179 {
4180 struct type **first_dont_print
7ba81444 4181 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 4182
7ba81444
MS
4183 int i = (struct type **)
4184 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
4185
4186 while (--i >= 0)
4187 {
4188 if (type == first_dont_print[i])
4189 {
4190 printfi_filtered (spaces, "type node ");
d4f3574e 4191 gdb_print_host_address (type, gdb_stdout);
a3f17187 4192 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
4193 return;
4194 }
4195 }
4196
4197 obstack_ptr_grow (&dont_print_type_obstack, type);
4198 }
4199
4200 printfi_filtered (spaces, "type node ");
d4f3574e 4201 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
4202 printf_filtered ("\n");
4203 printfi_filtered (spaces, "name '%s' (",
4204 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 4205 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 4206 printf_filtered (")\n");
e9e79dd9
FF
4207 printfi_filtered (spaces, "tagname '%s' (",
4208 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
4209 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
4210 printf_filtered (")\n");
c906108c
SS
4211 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4212 switch (TYPE_CODE (type))
4213 {
c5aa993b
JM
4214 case TYPE_CODE_UNDEF:
4215 printf_filtered ("(TYPE_CODE_UNDEF)");
4216 break;
4217 case TYPE_CODE_PTR:
4218 printf_filtered ("(TYPE_CODE_PTR)");
4219 break;
4220 case TYPE_CODE_ARRAY:
4221 printf_filtered ("(TYPE_CODE_ARRAY)");
4222 break;
4223 case TYPE_CODE_STRUCT:
4224 printf_filtered ("(TYPE_CODE_STRUCT)");
4225 break;
4226 case TYPE_CODE_UNION:
4227 printf_filtered ("(TYPE_CODE_UNION)");
4228 break;
4229 case TYPE_CODE_ENUM:
4230 printf_filtered ("(TYPE_CODE_ENUM)");
4231 break;
4f2aea11
MK
4232 case TYPE_CODE_FLAGS:
4233 printf_filtered ("(TYPE_CODE_FLAGS)");
4234 break;
c5aa993b
JM
4235 case TYPE_CODE_FUNC:
4236 printf_filtered ("(TYPE_CODE_FUNC)");
4237 break;
4238 case TYPE_CODE_INT:
4239 printf_filtered ("(TYPE_CODE_INT)");
4240 break;
4241 case TYPE_CODE_FLT:
4242 printf_filtered ("(TYPE_CODE_FLT)");
4243 break;
4244 case TYPE_CODE_VOID:
4245 printf_filtered ("(TYPE_CODE_VOID)");
4246 break;
4247 case TYPE_CODE_SET:
4248 printf_filtered ("(TYPE_CODE_SET)");
4249 break;
4250 case TYPE_CODE_RANGE:
4251 printf_filtered ("(TYPE_CODE_RANGE)");
4252 break;
4253 case TYPE_CODE_STRING:
4254 printf_filtered ("(TYPE_CODE_STRING)");
4255 break;
4256 case TYPE_CODE_ERROR:
4257 printf_filtered ("(TYPE_CODE_ERROR)");
4258 break;
0d5de010
DJ
4259 case TYPE_CODE_MEMBERPTR:
4260 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4261 break;
4262 case TYPE_CODE_METHODPTR:
4263 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
4264 break;
4265 case TYPE_CODE_METHOD:
4266 printf_filtered ("(TYPE_CODE_METHOD)");
4267 break;
4268 case TYPE_CODE_REF:
4269 printf_filtered ("(TYPE_CODE_REF)");
4270 break;
4271 case TYPE_CODE_CHAR:
4272 printf_filtered ("(TYPE_CODE_CHAR)");
4273 break;
4274 case TYPE_CODE_BOOL:
4275 printf_filtered ("(TYPE_CODE_BOOL)");
4276 break;
e9e79dd9
FF
4277 case TYPE_CODE_COMPLEX:
4278 printf_filtered ("(TYPE_CODE_COMPLEX)");
4279 break;
c5aa993b
JM
4280 case TYPE_CODE_TYPEDEF:
4281 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4282 break;
5c4e30ca
DC
4283 case TYPE_CODE_NAMESPACE:
4284 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4285 break;
c5aa993b
JM
4286 default:
4287 printf_filtered ("(UNKNOWN TYPE CODE)");
4288 break;
c906108c
SS
4289 }
4290 puts_filtered ("\n");
4291 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9bb382b
UW
4292 if (TYPE_OBJFILE_OWNED (type))
4293 {
4294 printfi_filtered (spaces, "objfile ");
4295 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4296 }
4297 else
4298 {
4299 printfi_filtered (spaces, "gdbarch ");
4300 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4301 }
c906108c
SS
4302 printf_filtered ("\n");
4303 printfi_filtered (spaces, "target_type ");
d4f3574e 4304 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
4305 printf_filtered ("\n");
4306 if (TYPE_TARGET_TYPE (type) != NULL)
4307 {
4308 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4309 }
4310 printfi_filtered (spaces, "pointer_type ");
d4f3574e 4311 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
4312 printf_filtered ("\n");
4313 printfi_filtered (spaces, "reference_type ");
d4f3574e 4314 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 4315 printf_filtered ("\n");
2fdde8f8
DJ
4316 printfi_filtered (spaces, "type_chain ");
4317 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 4318 printf_filtered ("\n");
7ba81444
MS
4319 printfi_filtered (spaces, "instance_flags 0x%x",
4320 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
4321 if (TYPE_CONST (type))
4322 {
a9ff5f12 4323 puts_filtered (" TYPE_CONST");
2fdde8f8
DJ
4324 }
4325 if (TYPE_VOLATILE (type))
4326 {
a9ff5f12 4327 puts_filtered (" TYPE_VOLATILE");
2fdde8f8
DJ
4328 }
4329 if (TYPE_CODE_SPACE (type))
4330 {
a9ff5f12 4331 puts_filtered (" TYPE_CODE_SPACE");
2fdde8f8
DJ
4332 }
4333 if (TYPE_DATA_SPACE (type))
4334 {
a9ff5f12 4335 puts_filtered (" TYPE_DATA_SPACE");
2fdde8f8 4336 }
8b2dbe47
KB
4337 if (TYPE_ADDRESS_CLASS_1 (type))
4338 {
a9ff5f12 4339 puts_filtered (" TYPE_ADDRESS_CLASS_1");
8b2dbe47
KB
4340 }
4341 if (TYPE_ADDRESS_CLASS_2 (type))
4342 {
a9ff5f12 4343 puts_filtered (" TYPE_ADDRESS_CLASS_2");
8b2dbe47 4344 }
06d66ee9
TT
4345 if (TYPE_RESTRICT (type))
4346 {
a9ff5f12 4347 puts_filtered (" TYPE_RESTRICT");
06d66ee9 4348 }
a2c2acaf
MW
4349 if (TYPE_ATOMIC (type))
4350 {
a9ff5f12 4351 puts_filtered (" TYPE_ATOMIC");
a2c2acaf 4352 }
2fdde8f8 4353 puts_filtered ("\n");
876cecd0
TT
4354
4355 printfi_filtered (spaces, "flags");
762a036f 4356 if (TYPE_UNSIGNED (type))
c906108c 4357 {
a9ff5f12 4358 puts_filtered (" TYPE_UNSIGNED");
c906108c 4359 }
762a036f
FF
4360 if (TYPE_NOSIGN (type))
4361 {
a9ff5f12 4362 puts_filtered (" TYPE_NOSIGN");
762a036f
FF
4363 }
4364 if (TYPE_STUB (type))
c906108c 4365 {
a9ff5f12 4366 puts_filtered (" TYPE_STUB");
c906108c 4367 }
762a036f
FF
4368 if (TYPE_TARGET_STUB (type))
4369 {
a9ff5f12 4370 puts_filtered (" TYPE_TARGET_STUB");
762a036f
FF
4371 }
4372 if (TYPE_STATIC (type))
4373 {
a9ff5f12 4374 puts_filtered (" TYPE_STATIC");
762a036f 4375 }
762a036f
FF
4376 if (TYPE_PROTOTYPED (type))
4377 {
a9ff5f12 4378 puts_filtered (" TYPE_PROTOTYPED");
762a036f
FF
4379 }
4380 if (TYPE_INCOMPLETE (type))
4381 {
a9ff5f12 4382 puts_filtered (" TYPE_INCOMPLETE");
762a036f 4383 }
762a036f
FF
4384 if (TYPE_VARARGS (type))
4385 {
a9ff5f12 4386 puts_filtered (" TYPE_VARARGS");
762a036f 4387 }
f5f8a009
EZ
4388 /* This is used for things like AltiVec registers on ppc. Gcc emits
4389 an attribute for the array type, which tells whether or not we
4390 have a vector, instead of a regular array. */
4391 if (TYPE_VECTOR (type))
4392 {
a9ff5f12 4393 puts_filtered (" TYPE_VECTOR");
f5f8a009 4394 }
876cecd0
TT
4395 if (TYPE_FIXED_INSTANCE (type))
4396 {
4397 puts_filtered (" TYPE_FIXED_INSTANCE");
4398 }
4399 if (TYPE_STUB_SUPPORTED (type))
4400 {
4401 puts_filtered (" TYPE_STUB_SUPPORTED");
4402 }
4403 if (TYPE_NOTTEXT (type))
4404 {
4405 puts_filtered (" TYPE_NOTTEXT");
4406 }
c906108c
SS
4407 puts_filtered ("\n");
4408 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 4409 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
4410 puts_filtered ("\n");
4411 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4412 {
14e75d8e
JK
4413 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4414 printfi_filtered (spaces + 2,
4415 "[%d] enumval %s type ",
4416 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4417 else
4418 printfi_filtered (spaces + 2,
6b850546
DT
4419 "[%d] bitpos %s bitsize %d type ",
4420 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
14e75d8e 4421 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 4422 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
4423 printf_filtered (" name '%s' (",
4424 TYPE_FIELD_NAME (type, idx) != NULL
4425 ? TYPE_FIELD_NAME (type, idx)
4426 : "<NULL>");
d4f3574e 4427 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
4428 printf_filtered (")\n");
4429 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4430 {
4431 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4432 }
4433 }
43bbcdc2
PH
4434 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4435 {
4436 printfi_filtered (spaces, "low %s%s high %s%s\n",
4437 plongest (TYPE_LOW_BOUND (type)),
4438 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4439 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
4440 TYPE_HIGH_BOUND_UNDEFINED (type)
4441 ? " (undefined)" : "");
43bbcdc2 4442 }
c906108c 4443
b4ba55a1
JB
4444 switch (TYPE_SPECIFIC_FIELD (type))
4445 {
4446 case TYPE_SPECIFIC_CPLUS_STUFF:
4447 printfi_filtered (spaces, "cplus_stuff ");
4448 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4449 gdb_stdout);
4450 puts_filtered ("\n");
4451 print_cplus_stuff (type, spaces);
4452 break;
8da61cc4 4453
b4ba55a1
JB
4454 case TYPE_SPECIFIC_GNAT_STUFF:
4455 printfi_filtered (spaces, "gnat_stuff ");
4456 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4457 puts_filtered ("\n");
4458 print_gnat_stuff (type, spaces);
4459 break;
701c159d 4460
b4ba55a1
JB
4461 case TYPE_SPECIFIC_FLOATFORMAT:
4462 printfi_filtered (spaces, "floatformat ");
4463 if (TYPE_FLOATFORMAT (type) == NULL)
4464 puts_filtered ("(null)");
4465 else
4466 {
4467 puts_filtered ("{ ");
4468 if (TYPE_FLOATFORMAT (type)[0] == NULL
4469 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4470 puts_filtered ("(null)");
4471 else
4472 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4473
4474 puts_filtered (", ");
4475 if (TYPE_FLOATFORMAT (type)[1] == NULL
4476 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4477 puts_filtered ("(null)");
4478 else
4479 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4480
4481 puts_filtered (" }");
4482 }
4483 puts_filtered ("\n");
4484 break;
c906108c 4485
b6cdc2c1 4486 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
4487 printfi_filtered (spaces, "calling_convention %d\n",
4488 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 4489 /* tail_call_list is not printed. */
b4ba55a1 4490 break;
09e2d7c7
DE
4491
4492 case TYPE_SPECIFIC_SELF_TYPE:
4493 printfi_filtered (spaces, "self_type ");
4494 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4495 puts_filtered ("\n");
4496 break;
c906108c 4497 }
b4ba55a1 4498
c906108c
SS
4499 if (spaces == 0)
4500 obstack_free (&dont_print_type_obstack, NULL);
4501}
5212577a 4502\f
ae5a43e0
DJ
4503/* Trivial helpers for the libiberty hash table, for mapping one
4504 type to another. */
4505
4506struct type_pair
4507{
fe978cb0 4508 struct type *old, *newobj;
ae5a43e0
DJ
4509};
4510
4511static hashval_t
4512type_pair_hash (const void *item)
4513{
9a3c8263 4514 const struct type_pair *pair = (const struct type_pair *) item;
d8734c88 4515
ae5a43e0
DJ
4516 return htab_hash_pointer (pair->old);
4517}
4518
4519static int
4520type_pair_eq (const void *item_lhs, const void *item_rhs)
4521{
9a3c8263
SM
4522 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4523 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
d8734c88 4524
ae5a43e0
DJ
4525 return lhs->old == rhs->old;
4526}
4527
4528/* Allocate the hash table used by copy_type_recursive to walk
4529 types without duplicates. We use OBJFILE's obstack, because
4530 OBJFILE is about to be deleted. */
4531
4532htab_t
4533create_copied_types_hash (struct objfile *objfile)
4534{
4535 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4536 NULL, &objfile->objfile_obstack,
4537 hashtab_obstack_allocate,
4538 dummy_obstack_deallocate);
4539}
4540
d9823cbb
KB
4541/* Recursively copy (deep copy) a dynamic attribute list of a type. */
4542
4543static struct dynamic_prop_list *
4544copy_dynamic_prop_list (struct obstack *objfile_obstack,
4545 struct dynamic_prop_list *list)
4546{
4547 struct dynamic_prop_list *copy = list;
4548 struct dynamic_prop_list **node_ptr = &copy;
4549
4550 while (*node_ptr != NULL)
4551 {
4552 struct dynamic_prop_list *node_copy;
4553
224c3ddb
SM
4554 node_copy = ((struct dynamic_prop_list *)
4555 obstack_copy (objfile_obstack, *node_ptr,
4556 sizeof (struct dynamic_prop_list)));
283a9958 4557 node_copy->prop = (*node_ptr)->prop;
d9823cbb
KB
4558 *node_ptr = node_copy;
4559
4560 node_ptr = &node_copy->next;
4561 }
4562
4563 return copy;
4564}
4565
7ba81444 4566/* Recursively copy (deep copy) TYPE, if it is associated with
eed8b28a
PP
4567 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4568 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4569 it is not associated with OBJFILE. */
ae5a43e0
DJ
4570
4571struct type *
7ba81444
MS
4572copy_type_recursive (struct objfile *objfile,
4573 struct type *type,
ae5a43e0
DJ
4574 htab_t copied_types)
4575{
4576 struct type_pair *stored, pair;
4577 void **slot;
4578 struct type *new_type;
4579
e9bb382b 4580 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
4581 return type;
4582
7ba81444
MS
4583 /* This type shouldn't be pointing to any types in other objfiles;
4584 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
4585 gdb_assert (TYPE_OBJFILE (type) == objfile);
4586
4587 pair.old = type;
4588 slot = htab_find_slot (copied_types, &pair, INSERT);
4589 if (*slot != NULL)
fe978cb0 4590 return ((struct type_pair *) *slot)->newobj;
ae5a43e0 4591
e9bb382b 4592 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
4593
4594 /* We must add the new type to the hash table immediately, in case
4595 we encounter this type again during a recursive call below. */
8d749320 4596 stored = XOBNEW (&objfile->objfile_obstack, struct type_pair);
ae5a43e0 4597 stored->old = type;
fe978cb0 4598 stored->newobj = new_type;
ae5a43e0
DJ
4599 *slot = stored;
4600
876cecd0
TT
4601 /* Copy the common fields of types. For the main type, we simply
4602 copy the entire thing and then update specific fields as needed. */
4603 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
4604 TYPE_OBJFILE_OWNED (new_type) = 0;
4605 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 4606
ae5a43e0
DJ
4607 if (TYPE_NAME (type))
4608 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4609 if (TYPE_TAG_NAME (type))
4610 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
ae5a43e0
DJ
4611
4612 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4613 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4614
4615 /* Copy the fields. */
ae5a43e0
DJ
4616 if (TYPE_NFIELDS (type))
4617 {
4618 int i, nfields;
4619
4620 nfields = TYPE_NFIELDS (type);
fc270c35 4621 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
ae5a43e0
DJ
4622 for (i = 0; i < nfields; i++)
4623 {
7ba81444
MS
4624 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4625 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
4626 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4627 if (TYPE_FIELD_TYPE (type, i))
4628 TYPE_FIELD_TYPE (new_type, i)
4629 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4630 copied_types);
4631 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
4632 TYPE_FIELD_NAME (new_type, i) =
4633 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 4634 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 4635 {
d6a843b5
JK
4636 case FIELD_LOC_KIND_BITPOS:
4637 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4638 TYPE_FIELD_BITPOS (type, i));
4639 break;
14e75d8e
JK
4640 case FIELD_LOC_KIND_ENUMVAL:
4641 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4642 TYPE_FIELD_ENUMVAL (type, i));
4643 break;
d6a843b5
JK
4644 case FIELD_LOC_KIND_PHYSADDR:
4645 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4646 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4647 break;
4648 case FIELD_LOC_KIND_PHYSNAME:
4649 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4650 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4651 i)));
4652 break;
4653 default:
4654 internal_error (__FILE__, __LINE__,
4655 _("Unexpected type field location kind: %d"),
4656 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
4657 }
4658 }
4659 }
4660
0963b4bd 4661 /* For range types, copy the bounds information. */
43bbcdc2
PH
4662 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4663 {
8d749320 4664 TYPE_RANGE_DATA (new_type) = XNEW (struct range_bounds);
43bbcdc2
PH
4665 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4666 }
4667
d9823cbb
KB
4668 if (TYPE_DYN_PROP_LIST (type) != NULL)
4669 TYPE_DYN_PROP_LIST (new_type)
4670 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4671 TYPE_DYN_PROP_LIST (type));
4672
3cdcd0ce 4673
ae5a43e0
DJ
4674 /* Copy pointers to other types. */
4675 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
4676 TYPE_TARGET_TYPE (new_type) =
4677 copy_type_recursive (objfile,
4678 TYPE_TARGET_TYPE (type),
4679 copied_types);
f6b3afbf 4680
ae5a43e0
DJ
4681 /* Maybe copy the type_specific bits.
4682
4683 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4684 base classes and methods. There's no fundamental reason why we
4685 can't, but at the moment it is not needed. */
4686
f6b3afbf
DE
4687 switch (TYPE_SPECIFIC_FIELD (type))
4688 {
4689 case TYPE_SPECIFIC_NONE:
4690 break;
4691 case TYPE_SPECIFIC_FUNC:
4692 INIT_FUNC_SPECIFIC (new_type);
4693 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4694 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4695 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4696 break;
4697 case TYPE_SPECIFIC_FLOATFORMAT:
4698 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4699 break;
4700 case TYPE_SPECIFIC_CPLUS_STUFF:
4701 INIT_CPLUS_SPECIFIC (new_type);
4702 break;
4703 case TYPE_SPECIFIC_GNAT_STUFF:
4704 INIT_GNAT_SPECIFIC (new_type);
4705 break;
09e2d7c7
DE
4706 case TYPE_SPECIFIC_SELF_TYPE:
4707 set_type_self_type (new_type,
4708 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4709 copied_types));
4710 break;
f6b3afbf
DE
4711 default:
4712 gdb_assert_not_reached ("bad type_specific_kind");
4713 }
ae5a43e0
DJ
4714
4715 return new_type;
4716}
4717
4af88198
JB
4718/* Make a copy of the given TYPE, except that the pointer & reference
4719 types are not preserved.
4720
4721 This function assumes that the given type has an associated objfile.
4722 This objfile is used to allocate the new type. */
4723
4724struct type *
4725copy_type (const struct type *type)
4726{
4727 struct type *new_type;
4728
e9bb382b 4729 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 4730
e9bb382b 4731 new_type = alloc_type_copy (type);
4af88198
JB
4732 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4733 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4734 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4735 sizeof (struct main_type));
d9823cbb
KB
4736 if (TYPE_DYN_PROP_LIST (type) != NULL)
4737 TYPE_DYN_PROP_LIST (new_type)
4738 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
4739 TYPE_DYN_PROP_LIST (type));
4af88198
JB
4740
4741 return new_type;
4742}
5212577a 4743\f
e9bb382b
UW
4744/* Helper functions to initialize architecture-specific types. */
4745
4746/* Allocate a type structure associated with GDBARCH and set its
4747 CODE, LENGTH, and NAME fields. */
5212577a 4748
e9bb382b
UW
4749struct type *
4750arch_type (struct gdbarch *gdbarch,
695bfa52 4751 enum type_code code, int length, const char *name)
e9bb382b
UW
4752{
4753 struct type *type;
4754
4755 type = alloc_type_arch (gdbarch);
ae438bc5 4756 set_type_code (type, code);
e9bb382b
UW
4757 TYPE_LENGTH (type) = length;
4758
4759 if (name)
6c214e7c 4760 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
e9bb382b
UW
4761
4762 return type;
4763}
4764
4765/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4766 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4767 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4768
e9bb382b
UW
4769struct type *
4770arch_integer_type (struct gdbarch *gdbarch,
695bfa52 4771 int bit, int unsigned_p, const char *name)
e9bb382b
UW
4772{
4773 struct type *t;
4774
4775 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4776 if (unsigned_p)
4777 TYPE_UNSIGNED (t) = 1;
e9bb382b
UW
4778
4779 return t;
4780}
4781
4782/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4783 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4784 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4785
e9bb382b
UW
4786struct type *
4787arch_character_type (struct gdbarch *gdbarch,
695bfa52 4788 int bit, int unsigned_p, const char *name)
e9bb382b
UW
4789{
4790 struct type *t;
4791
4792 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4793 if (unsigned_p)
4794 TYPE_UNSIGNED (t) = 1;
4795
4796 return t;
4797}
4798
4799/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4800 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4801 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4802
e9bb382b
UW
4803struct type *
4804arch_boolean_type (struct gdbarch *gdbarch,
695bfa52 4805 int bit, int unsigned_p, const char *name)
e9bb382b
UW
4806{
4807 struct type *t;
4808
4809 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4810 if (unsigned_p)
4811 TYPE_UNSIGNED (t) = 1;
4812
4813 return t;
4814}
4815
4816/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4817 BIT is the type size in bits; if BIT equals -1, the size is
4818 determined by the floatformat. NAME is the type name. Set the
4819 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 4820
27067745 4821struct type *
e9bb382b 4822arch_float_type (struct gdbarch *gdbarch,
695bfa52
TT
4823 int bit, const char *name,
4824 const struct floatformat **floatformats)
8da61cc4
DJ
4825{
4826 struct type *t;
4827
19f392bc 4828 bit = verify_floatformat (bit, floatformats);
e9bb382b 4829 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
8da61cc4 4830 TYPE_FLOATFORMAT (t) = floatformats;
b79497cb 4831
8da61cc4
DJ
4832 return t;
4833}
4834
88dfca6c
UW
4835/* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
4836 BIT is the type size in bits. NAME is the type name. */
4837
4838struct type *
4839arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
4840{
4841 struct type *t;
4842
4843 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit / TARGET_CHAR_BIT, name);
4844 return t;
4845}
4846
e9bb382b
UW
4847/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4848 NAME is the type name. TARGET_TYPE is the component float type. */
5212577a 4849
27067745 4850struct type *
e9bb382b 4851arch_complex_type (struct gdbarch *gdbarch,
695bfa52 4852 const char *name, struct type *target_type)
27067745
UW
4853{
4854 struct type *t;
d8734c88 4855
e9bb382b
UW
4856 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4857 2 * TYPE_LENGTH (target_type), name);
27067745
UW
4858 TYPE_TARGET_TYPE (t) = target_type;
4859 return t;
4860}
4861
88dfca6c
UW
4862/* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
4863 BIT is the pointer type size in bits. NAME is the type name.
4864 TARGET_TYPE is the pointer target type. Always sets the pointer type's
4865 TYPE_UNSIGNED flag. */
4866
4867struct type *
4868arch_pointer_type (struct gdbarch *gdbarch,
4869 int bit, const char *name, struct type *target_type)
4870{
4871 struct type *t;
4872
4873 t = arch_type (gdbarch, TYPE_CODE_PTR, bit / TARGET_CHAR_BIT, name);
4874 TYPE_TARGET_TYPE (t) = target_type;
4875 TYPE_UNSIGNED (t) = 1;
4876 return t;
4877}
4878
e9bb382b 4879/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
eb90ce83 4880 NAME is the type name. LENGTH is the size of the flag word in bytes. */
5212577a 4881
e9bb382b 4882struct type *
695bfa52 4883arch_flags_type (struct gdbarch *gdbarch, const char *name, int length)
e9bb382b 4884{
81516450 4885 int max_nfields = length * TARGET_CHAR_BIT;
e9bb382b
UW
4886 struct type *type;
4887
4888 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4889 TYPE_UNSIGNED (type) = 1;
81516450
DE
4890 TYPE_NFIELDS (type) = 0;
4891 /* Pre-allocate enough space assuming every field is one bit. */
224c3ddb 4892 TYPE_FIELDS (type)
81516450 4893 = (struct field *) TYPE_ZALLOC (type, max_nfields * sizeof (struct field));
e9bb382b
UW
4894
4895 return type;
4896}
4897
4898/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
81516450
DE
4899 position BITPOS is called NAME. Pass NAME as "" for fields that
4900 should not be printed. */
4901
4902void
4903append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
695bfa52 4904 struct type *field_type, const char *name)
81516450
DE
4905{
4906 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
4907 int field_nr = TYPE_NFIELDS (type);
4908
4909 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4910 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
4911 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
4912 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
4913 gdb_assert (name != NULL);
4914
4915 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
4916 TYPE_FIELD_TYPE (type, field_nr) = field_type;
4917 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
4918 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
4919 ++TYPE_NFIELDS (type);
4920}
4921
4922/* Special version of append_flags_type_field to add a flag field.
4923 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
e9bb382b 4924 position BITPOS is called NAME. */
5212577a 4925
e9bb382b 4926void
695bfa52 4927append_flags_type_flag (struct type *type, int bitpos, const char *name)
e9bb382b 4928{
81516450 4929 struct gdbarch *gdbarch = get_type_arch (type);
e9bb382b 4930
81516450
DE
4931 append_flags_type_field (type, bitpos, 1,
4932 builtin_type (gdbarch)->builtin_bool,
4933 name);
e9bb382b
UW
4934}
4935
4936/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4937 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 4938
e9bb382b 4939struct type *
695bfa52
TT
4940arch_composite_type (struct gdbarch *gdbarch, const char *name,
4941 enum type_code code)
e9bb382b
UW
4942{
4943 struct type *t;
d8734c88 4944
e9bb382b
UW
4945 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4946 t = arch_type (gdbarch, code, 0, NULL);
4947 TYPE_TAG_NAME (t) = name;
4948 INIT_CPLUS_SPECIFIC (t);
4949 return t;
4950}
4951
4952/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
4953 Do not set the field's position or adjust the type's length;
4954 the caller should do so. Return the new field. */
5212577a 4955
f5dff777 4956struct field *
695bfa52 4957append_composite_type_field_raw (struct type *t, const char *name,
f5dff777 4958 struct type *field)
e9bb382b
UW
4959{
4960 struct field *f;
d8734c88 4961
e9bb382b 4962 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
224c3ddb
SM
4963 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
4964 TYPE_NFIELDS (t));
e9bb382b
UW
4965 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4966 memset (f, 0, sizeof f[0]);
4967 FIELD_TYPE (f[0]) = field;
4968 FIELD_NAME (f[0]) = name;
f5dff777
DJ
4969 return f;
4970}
4971
4972/* Add new field with name NAME and type FIELD to composite type T.
4973 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 4974
f5dff777 4975void
695bfa52 4976append_composite_type_field_aligned (struct type *t, const char *name,
f5dff777
DJ
4977 struct type *field, int alignment)
4978{
4979 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 4980
e9bb382b
UW
4981 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4982 {
4983 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4984 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4985 }
4986 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4987 {
4988 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4989 if (TYPE_NFIELDS (t) > 1)
4990 {
f41f5e61
PA
4991 SET_FIELD_BITPOS (f[0],
4992 (FIELD_BITPOS (f[-1])
4993 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4994 * TARGET_CHAR_BIT)));
e9bb382b
UW
4995
4996 if (alignment)
4997 {
86c3c1fc
AB
4998 int left;
4999
5000 alignment *= TARGET_CHAR_BIT;
5001 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 5002
e9bb382b
UW
5003 if (left)
5004 {
f41f5e61 5005 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 5006 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
5007 }
5008 }
5009 }
5010 }
5011}
5012
5013/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 5014
e9bb382b 5015void
695bfa52 5016append_composite_type_field (struct type *t, const char *name,
e9bb382b
UW
5017 struct type *field)
5018{
5019 append_composite_type_field_aligned (t, name, field, 0);
5020}
5021
000177f0
AC
5022static struct gdbarch_data *gdbtypes_data;
5023
5024const struct builtin_type *
5025builtin_type (struct gdbarch *gdbarch)
5026{
9a3c8263 5027 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
000177f0
AC
5028}
5029
5030static void *
5031gdbtypes_post_init (struct gdbarch *gdbarch)
5032{
5033 struct builtin_type *builtin_type
5034 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5035
46bf5051 5036 /* Basic types. */
e9bb382b
UW
5037 builtin_type->builtin_void
5038 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
5039 builtin_type->builtin_char
5040 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5041 !gdbarch_char_signed (gdbarch), "char");
c413c448 5042 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
e9bb382b
UW
5043 builtin_type->builtin_signed_char
5044 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5045 0, "signed char");
5046 builtin_type->builtin_unsigned_char
5047 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5048 1, "unsigned char");
5049 builtin_type->builtin_short
5050 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5051 0, "short");
5052 builtin_type->builtin_unsigned_short
5053 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5054 1, "unsigned short");
5055 builtin_type->builtin_int
5056 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5057 0, "int");
5058 builtin_type->builtin_unsigned_int
5059 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5060 1, "unsigned int");
5061 builtin_type->builtin_long
5062 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5063 0, "long");
5064 builtin_type->builtin_unsigned_long
5065 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5066 1, "unsigned long");
5067 builtin_type->builtin_long_long
5068 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5069 0, "long long");
5070 builtin_type->builtin_unsigned_long_long
5071 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5072 1, "unsigned long long");
70bd8e24 5073 builtin_type->builtin_float
e9bb382b 5074 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 5075 "float", gdbarch_float_format (gdbarch));
70bd8e24 5076 builtin_type->builtin_double
e9bb382b 5077 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 5078 "double", gdbarch_double_format (gdbarch));
70bd8e24 5079 builtin_type->builtin_long_double
e9bb382b 5080 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 5081 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 5082 builtin_type->builtin_complex
e9bb382b
UW
5083 = arch_complex_type (gdbarch, "complex",
5084 builtin_type->builtin_float);
70bd8e24 5085 builtin_type->builtin_double_complex
e9bb382b
UW
5086 = arch_complex_type (gdbarch, "double complex",
5087 builtin_type->builtin_double);
5088 builtin_type->builtin_string
5089 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
5090 builtin_type->builtin_bool
5091 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
000177f0 5092
7678ef8f
TJB
5093 /* The following three are about decimal floating point types, which
5094 are 32-bits, 64-bits and 128-bits respectively. */
5095 builtin_type->builtin_decfloat
88dfca6c 5096 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
7678ef8f 5097 builtin_type->builtin_decdouble
88dfca6c 5098 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
7678ef8f 5099 builtin_type->builtin_declong
88dfca6c 5100 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
7678ef8f 5101
69feb676 5102 /* "True" character types. */
e9bb382b
UW
5103 builtin_type->builtin_true_char
5104 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5105 builtin_type->builtin_true_unsigned_char
5106 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 5107
df4df182 5108 /* Fixed-size integer types. */
e9bb382b
UW
5109 builtin_type->builtin_int0
5110 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5111 builtin_type->builtin_int8
5112 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5113 builtin_type->builtin_uint8
5114 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5115 builtin_type->builtin_int16
5116 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5117 builtin_type->builtin_uint16
5118 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5119 builtin_type->builtin_int32
5120 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5121 builtin_type->builtin_uint32
5122 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5123 builtin_type->builtin_int64
5124 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5125 builtin_type->builtin_uint64
5126 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5127 builtin_type->builtin_int128
5128 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5129 builtin_type->builtin_uint128
5130 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
5131 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5132 TYPE_INSTANCE_FLAG_NOTTEXT;
5133 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5134 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 5135
9a22f0d0
PM
5136 /* Wide character types. */
5137 builtin_type->builtin_char16
5138 = arch_integer_type (gdbarch, 16, 0, "char16_t");
5139 builtin_type->builtin_char32
5140 = arch_integer_type (gdbarch, 32, 0, "char32_t");
5141
5142
46bf5051 5143 /* Default data/code pointer types. */
e9bb382b
UW
5144 builtin_type->builtin_data_ptr
5145 = lookup_pointer_type (builtin_type->builtin_void);
5146 builtin_type->builtin_func_ptr
5147 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
5148 builtin_type->builtin_func_func
5149 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 5150
78267919 5151 /* This type represents a GDB internal function. */
e9bb382b
UW
5152 builtin_type->internal_fn
5153 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5154 "<internal function>");
78267919 5155
e81e7f5e
SC
5156 /* This type represents an xmethod. */
5157 builtin_type->xmethod
5158 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5159
46bf5051
UW
5160 return builtin_type;
5161}
5162
46bf5051
UW
5163/* This set of objfile-based types is intended to be used by symbol
5164 readers as basic types. */
5165
5166static const struct objfile_data *objfile_type_data;
5167
5168const struct objfile_type *
5169objfile_type (struct objfile *objfile)
5170{
5171 struct gdbarch *gdbarch;
5172 struct objfile_type *objfile_type
9a3c8263 5173 = (struct objfile_type *) objfile_data (objfile, objfile_type_data);
46bf5051
UW
5174
5175 if (objfile_type)
5176 return objfile_type;
5177
5178 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5179 1, struct objfile_type);
5180
5181 /* Use the objfile architecture to determine basic type properties. */
5182 gdbarch = get_objfile_arch (objfile);
5183
5184 /* Basic types. */
5185 objfile_type->builtin_void
19f392bc 5186 = init_type (objfile, TYPE_CODE_VOID, 1, "void");
46bf5051 5187 objfile_type->builtin_char
19f392bc
UW
5188 = init_integer_type (objfile, TARGET_CHAR_BIT,
5189 !gdbarch_char_signed (gdbarch), "char");
c413c448 5190 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
46bf5051 5191 objfile_type->builtin_signed_char
19f392bc
UW
5192 = init_integer_type (objfile, TARGET_CHAR_BIT,
5193 0, "signed char");
46bf5051 5194 objfile_type->builtin_unsigned_char
19f392bc
UW
5195 = init_integer_type (objfile, TARGET_CHAR_BIT,
5196 1, "unsigned char");
46bf5051 5197 objfile_type->builtin_short
19f392bc
UW
5198 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5199 0, "short");
46bf5051 5200 objfile_type->builtin_unsigned_short
19f392bc
UW
5201 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5202 1, "unsigned short");
46bf5051 5203 objfile_type->builtin_int
19f392bc
UW
5204 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5205 0, "int");
46bf5051 5206 objfile_type->builtin_unsigned_int
19f392bc
UW
5207 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5208 1, "unsigned int");
46bf5051 5209 objfile_type->builtin_long
19f392bc
UW
5210 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5211 0, "long");
46bf5051 5212 objfile_type->builtin_unsigned_long
19f392bc
UW
5213 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5214 1, "unsigned long");
46bf5051 5215 objfile_type->builtin_long_long
19f392bc
UW
5216 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5217 0, "long long");
46bf5051 5218 objfile_type->builtin_unsigned_long_long
19f392bc
UW
5219 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5220 1, "unsigned long long");
46bf5051 5221 objfile_type->builtin_float
19f392bc
UW
5222 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5223 "float", gdbarch_float_format (gdbarch));
46bf5051 5224 objfile_type->builtin_double
19f392bc
UW
5225 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5226 "double", gdbarch_double_format (gdbarch));
46bf5051 5227 objfile_type->builtin_long_double
19f392bc
UW
5228 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5229 "long double", gdbarch_long_double_format (gdbarch));
46bf5051
UW
5230
5231 /* This type represents a type that was unrecognized in symbol read-in. */
5232 objfile_type->builtin_error
19f392bc 5233 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
46bf5051
UW
5234
5235 /* The following set of types is used for symbols with no
5236 debug information. */
5237 objfile_type->nodebug_text_symbol
19f392bc
UW
5238 = init_type (objfile, TYPE_CODE_FUNC, 1,
5239 "<text variable, no debug info>");
46bf5051
UW
5240 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
5241 = objfile_type->builtin_int;
0875794a 5242 objfile_type->nodebug_text_gnu_ifunc_symbol
19f392bc
UW
5243 = init_type (objfile, TYPE_CODE_FUNC, 1,
5244 "<text gnu-indirect-function variable, no debug info>");
0875794a
JK
5245 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
5246 = objfile_type->nodebug_text_symbol;
19f392bc 5247 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
0875794a 5248 objfile_type->nodebug_got_plt_symbol
19f392bc
UW
5249 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5250 "<text from jump slot in .got.plt, no debug info>",
5251 objfile_type->nodebug_text_symbol);
46bf5051 5252 objfile_type->nodebug_data_symbol
19f392bc
UW
5253 = init_integer_type (objfile, gdbarch_int_bit (gdbarch), 0,
5254 "<data variable, no debug info>");
46bf5051 5255 objfile_type->nodebug_unknown_symbol
19f392bc
UW
5256 = init_integer_type (objfile, TARGET_CHAR_BIT, 0,
5257 "<variable (not text or data), no debug info>");
46bf5051 5258 objfile_type->nodebug_tls_symbol
19f392bc
UW
5259 = init_integer_type (objfile, gdbarch_int_bit (gdbarch), 0,
5260 "<thread local variable, no debug info>");
000177f0
AC
5261
5262 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 5263 the same.
000177f0
AC
5264
5265 The upshot is:
5266 - gdb's `struct type' always describes the target's
5267 representation.
5268 - gdb's `struct value' objects should always hold values in
5269 target form.
5270 - gdb's CORE_ADDR values are addresses in the unified virtual
5271 address space that the assembler and linker work with. Thus,
5272 since target_read_memory takes a CORE_ADDR as an argument, it
5273 can access any memory on the target, even if the processor has
5274 separate code and data address spaces.
5275
46bf5051
UW
5276 In this context, objfile_type->builtin_core_addr is a bit odd:
5277 it's a target type for a value the target will never see. It's
5278 only used to hold the values of (typeless) linker symbols, which
5279 are indeed in the unified virtual address space. */
000177f0 5280
46bf5051 5281 objfile_type->builtin_core_addr
19f392bc
UW
5282 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5283 "__CORE_ADDR");
64c50499 5284
46bf5051
UW
5285 set_objfile_data (objfile, objfile_type_data, objfile_type);
5286 return objfile_type;
000177f0
AC
5287}
5288
5212577a 5289extern initialize_file_ftype _initialize_gdbtypes;
46bf5051 5290
c906108c 5291void
fba45db2 5292_initialize_gdbtypes (void)
c906108c 5293{
5674de60 5294 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 5295 objfile_type_data = register_objfile_data ();
5674de60 5296
ccce17b0
YQ
5297 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5298 _("Set debugging of C++ overloading."),
5299 _("Show debugging of C++ overloading."),
5300 _("When enabled, ranking of the "
5301 "functions is displayed."),
5302 NULL,
5303 show_overload_debug,
5304 &setdebuglist, &showdebuglist);
5674de60 5305
7ba81444 5306 /* Add user knob for controlling resolution of opaque types. */
5674de60 5307 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
5308 &opaque_type_resolution,
5309 _("Set resolution of opaque struct/class/union"
5310 " types (if set before loading symbols)."),
5311 _("Show resolution of opaque struct/class/union"
5312 " types (if set before loading symbols)."),
5313 NULL, NULL,
5674de60
UW
5314 show_opaque_type_resolution,
5315 &setlist, &showlist);
a451cb65
KS
5316
5317 /* Add an option to permit non-strict type checking. */
5318 add_setshow_boolean_cmd ("type", class_support,
5319 &strict_type_checking,
5320 _("Set strict type checking."),
5321 _("Show strict type checking."),
5322 NULL, NULL,
5323 show_strict_type_checking,
5324 &setchecklist, &showchecklist);
c906108c 5325}