]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/gdbtypes.c
gdb: Allow gdbarch to override alignment for method and member pointers
[thirdparty/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
42a4f53d 3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c
SS
23#include "bfd.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "gdbtypes.h"
28#include "expression.h"
29#include "language.h"
30#include "target.h"
31#include "value.h"
32#include "demangle.h"
33#include "complaints.h"
34#include "gdbcmd.h"
015a42b4 35#include "cp-abi.h"
ae5a43e0 36#include "hashtab.h"
8de20a37 37#include "cp-support.h"
ca092b61
DE
38#include "bcache.h"
39#include "dwarf2loc.h"
80180f79 40#include "gdbcore.h"
1841ee5d 41#include "floatformat.h"
ac3aafc7 42
6403aeea
SW
43/* Initialize BADNESS constants. */
44
a9d5ef47 45const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 46
a9d5ef47
SW
47const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 49
a9d5ef47 50const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 51
a9d5ef47
SW
52const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
e15c3eb4 55const struct rank CV_CONVERSION_BADNESS = {1, 0};
a9d5ef47
SW
56const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 60const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
61const struct rank BASE_CONVERSION_BADNESS = {2,0};
62const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
da096638 63const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 64const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 65const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 66
8da61cc4 67/* Floatformat pairs. */
f9e9243a
UW
68const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71};
8da61cc4
DJ
72const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75};
76const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79};
80const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83};
84const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87};
88const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91};
92const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95};
96const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99};
100const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103};
104const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107};
108const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111};
b14d30e1 112const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
b14d30e1 115};
8da61cc4 116
2873700e
KS
117/* Should opaque types be resolved? */
118
119static int opaque_type_resolution = 1;
120
121/* A flag to enable printing of debugging information of C++
122 overloading. */
123
124unsigned int overload_debug = 0;
125
a451cb65
KS
126/* A flag to enable strict type checking. */
127
128static int strict_type_checking = 1;
129
2873700e 130/* A function to show whether opaque types are resolved. */
5212577a 131
920d2a44
AC
132static void
133show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
134 struct cmd_list_element *c,
135 const char *value)
920d2a44 136{
3e43a32a
MS
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
139 value);
140}
141
2873700e 142/* A function to show whether C++ overload debugging is enabled. */
5212577a 143
920d2a44
AC
144static void
145show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147{
7ba81444
MS
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
149 value);
920d2a44 150}
c906108c 151
a451cb65
KS
152/* A function to show the status of strict type checking. */
153
154static void
155show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157{
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159}
160
5212577a 161\f
e9bb382b
UW
162/* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
c906108c
SS
165
166struct type *
fba45db2 167alloc_type (struct objfile *objfile)
c906108c 168{
52f0bd74 169 struct type *type;
c906108c 170
e9bb382b
UW
171 gdb_assert (objfile != NULL);
172
7ba81444 173 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
176 struct main_type);
177 OBJSTAT (objfile, n_types++);
c906108c 178
e9bb382b
UW
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
c906108c 181
7ba81444 182 /* Initialize the fields that might not be zero. */
c906108c
SS
183
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
2fdde8f8 185 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 186
c16abbde 187 return type;
c906108c
SS
188}
189
e9bb382b
UW
190/* Allocate a new GDBARCH-associated type structure and fill it
191 with some defaults. Space for the type structure is allocated
8f57eec2 192 on the obstack associated with GDBARCH. */
e9bb382b
UW
193
194struct type *
195alloc_type_arch (struct gdbarch *gdbarch)
196{
197 struct type *type;
198
199 gdb_assert (gdbarch != NULL);
200
201 /* Alloc the structure and start off with all fields zeroed. */
202
8f57eec2
PP
203 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
204 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
e9bb382b
UW
205
206 TYPE_OBJFILE_OWNED (type) = 0;
207 TYPE_OWNER (type).gdbarch = gdbarch;
208
209 /* Initialize the fields that might not be zero. */
210
211 TYPE_CODE (type) = TYPE_CODE_UNDEF;
e9bb382b
UW
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215}
216
217/* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221struct type *
222alloc_type_copy (const struct type *type)
223{
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228}
229
230/* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233struct gdbarch *
234get_type_arch (const struct type *type)
235{
2fabdf33
AB
236 struct gdbarch *arch;
237
e9bb382b 238 if (TYPE_OBJFILE_OWNED (type))
2fabdf33 239 arch = get_objfile_arch (TYPE_OWNER (type).objfile);
e9bb382b 240 else
2fabdf33
AB
241 arch = TYPE_OWNER (type).gdbarch;
242
243 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
244 a gdbarch, however, this is very rare, and even then, in most cases
245 that get_type_arch is called, we assume that a non-NULL value is
246 returned. */
247 gdb_assert (arch != NULL);
248 return arch;
e9bb382b
UW
249}
250
99ad9427
YQ
251/* See gdbtypes.h. */
252
253struct type *
254get_target_type (struct type *type)
255{
256 if (type != NULL)
257 {
258 type = TYPE_TARGET_TYPE (type);
259 if (type != NULL)
260 type = check_typedef (type);
261 }
262
263 return type;
264}
265
2e056931
SM
266/* See gdbtypes.h. */
267
268unsigned int
269type_length_units (struct type *type)
270{
271 struct gdbarch *arch = get_type_arch (type);
272 int unit_size = gdbarch_addressable_memory_unit_size (arch);
273
274 return TYPE_LENGTH (type) / unit_size;
275}
276
2fdde8f8
DJ
277/* Alloc a new type instance structure, fill it with some defaults,
278 and point it at OLDTYPE. Allocate the new type instance from the
279 same place as OLDTYPE. */
280
281static struct type *
282alloc_type_instance (struct type *oldtype)
283{
284 struct type *type;
285
286 /* Allocate the structure. */
287
e9bb382b 288 if (! TYPE_OBJFILE_OWNED (oldtype))
2fabdf33 289 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
2fdde8f8 290 else
1deafd4e
PA
291 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
292 struct type);
293
2fdde8f8
DJ
294 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
295
296 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
297
c16abbde 298 return type;
2fdde8f8
DJ
299}
300
301/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 302 replacing it with something else. Preserve owner information. */
5212577a 303
2fdde8f8
DJ
304static void
305smash_type (struct type *type)
306{
e9bb382b
UW
307 int objfile_owned = TYPE_OBJFILE_OWNED (type);
308 union type_owner owner = TYPE_OWNER (type);
309
2fdde8f8
DJ
310 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
311
e9bb382b
UW
312 /* Restore owner information. */
313 TYPE_OBJFILE_OWNED (type) = objfile_owned;
314 TYPE_OWNER (type) = owner;
315
2fdde8f8
DJ
316 /* For now, delete the rings. */
317 TYPE_CHAIN (type) = type;
318
319 /* For now, leave the pointer/reference types alone. */
320}
321
c906108c
SS
322/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
323 to a pointer to memory where the pointer type should be stored.
324 If *TYPEPTR is zero, update it to point to the pointer type we return.
325 We allocate new memory if needed. */
326
327struct type *
fba45db2 328make_pointer_type (struct type *type, struct type **typeptr)
c906108c 329{
52f0bd74 330 struct type *ntype; /* New type */
053cb41b 331 struct type *chain;
c906108c
SS
332
333 ntype = TYPE_POINTER_TYPE (type);
334
c5aa993b 335 if (ntype)
c906108c 336 {
c5aa993b 337 if (typeptr == 0)
7ba81444
MS
338 return ntype; /* Don't care about alloc,
339 and have new type. */
c906108c 340 else if (*typeptr == 0)
c5aa993b 341 {
7ba81444 342 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 343 return ntype;
c5aa993b 344 }
c906108c
SS
345 }
346
347 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
348 {
e9bb382b 349 ntype = alloc_type_copy (type);
c906108c
SS
350 if (typeptr)
351 *typeptr = ntype;
352 }
7ba81444 353 else /* We have storage, but need to reset it. */
c906108c
SS
354 {
355 ntype = *typeptr;
053cb41b 356 chain = TYPE_CHAIN (ntype);
2fdde8f8 357 smash_type (ntype);
053cb41b 358 TYPE_CHAIN (ntype) = chain;
c906108c
SS
359 }
360
361 TYPE_TARGET_TYPE (ntype) = type;
362 TYPE_POINTER_TYPE (type) = ntype;
363
5212577a 364 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 365
50810684
UW
366 TYPE_LENGTH (ntype)
367 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
368 TYPE_CODE (ntype) = TYPE_CODE_PTR;
369
67b2adb2 370 /* Mark pointers as unsigned. The target converts between pointers
76e71323 371 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 372 gdbarch_address_to_pointer. */
876cecd0 373 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 374
053cb41b
JB
375 /* Update the length of all the other variants of this type. */
376 chain = TYPE_CHAIN (ntype);
377 while (chain != ntype)
378 {
379 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
380 chain = TYPE_CHAIN (chain);
381 }
382
c906108c
SS
383 return ntype;
384}
385
386/* Given a type TYPE, return a type of pointers to that type.
387 May need to construct such a type if this is the first use. */
388
389struct type *
fba45db2 390lookup_pointer_type (struct type *type)
c906108c 391{
c5aa993b 392 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
393}
394
7ba81444
MS
395/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
396 points to a pointer to memory where the reference type should be
397 stored. If *TYPEPTR is zero, update it to point to the reference
3b224330
AV
398 type we return. We allocate new memory if needed. REFCODE denotes
399 the kind of reference type to lookup (lvalue or rvalue reference). */
c906108c
SS
400
401struct type *
3b224330
AV
402make_reference_type (struct type *type, struct type **typeptr,
403 enum type_code refcode)
c906108c 404{
52f0bd74 405 struct type *ntype; /* New type */
3b224330 406 struct type **reftype;
1e98b326 407 struct type *chain;
c906108c 408
3b224330
AV
409 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
410
411 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
412 : TYPE_RVALUE_REFERENCE_TYPE (type));
c906108c 413
c5aa993b 414 if (ntype)
c906108c 415 {
c5aa993b 416 if (typeptr == 0)
7ba81444
MS
417 return ntype; /* Don't care about alloc,
418 and have new type. */
c906108c 419 else if (*typeptr == 0)
c5aa993b 420 {
7ba81444 421 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 422 return ntype;
c5aa993b 423 }
c906108c
SS
424 }
425
426 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
427 {
e9bb382b 428 ntype = alloc_type_copy (type);
c906108c
SS
429 if (typeptr)
430 *typeptr = ntype;
431 }
7ba81444 432 else /* We have storage, but need to reset it. */
c906108c
SS
433 {
434 ntype = *typeptr;
1e98b326 435 chain = TYPE_CHAIN (ntype);
2fdde8f8 436 smash_type (ntype);
1e98b326 437 TYPE_CHAIN (ntype) = chain;
c906108c
SS
438 }
439
440 TYPE_TARGET_TYPE (ntype) = type;
3b224330
AV
441 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
442 : &TYPE_RVALUE_REFERENCE_TYPE (type));
443
444 *reftype = ntype;
c906108c 445
7ba81444
MS
446 /* FIXME! Assume the machine has only one representation for
447 references, and that it matches the (only) representation for
448 pointers! */
c906108c 449
50810684
UW
450 TYPE_LENGTH (ntype) =
451 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
3b224330 452 TYPE_CODE (ntype) = refcode;
c5aa993b 453
3b224330 454 *reftype = ntype;
c906108c 455
1e98b326
JB
456 /* Update the length of all the other variants of this type. */
457 chain = TYPE_CHAIN (ntype);
458 while (chain != ntype)
459 {
460 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
461 chain = TYPE_CHAIN (chain);
462 }
463
c906108c
SS
464 return ntype;
465}
466
7ba81444
MS
467/* Same as above, but caller doesn't care about memory allocation
468 details. */
c906108c
SS
469
470struct type *
3b224330
AV
471lookup_reference_type (struct type *type, enum type_code refcode)
472{
473 return make_reference_type (type, (struct type **) 0, refcode);
474}
475
476/* Lookup the lvalue reference type for the type TYPE. */
477
478struct type *
479lookup_lvalue_reference_type (struct type *type)
480{
481 return lookup_reference_type (type, TYPE_CODE_REF);
482}
483
484/* Lookup the rvalue reference type for the type TYPE. */
485
486struct type *
487lookup_rvalue_reference_type (struct type *type)
c906108c 488{
3b224330 489 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
c906108c
SS
490}
491
7ba81444
MS
492/* Lookup a function type that returns type TYPE. TYPEPTR, if
493 nonzero, points to a pointer to memory where the function type
494 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 495 function type we return. We allocate new memory if needed. */
c906108c
SS
496
497struct type *
0c8b41f1 498make_function_type (struct type *type, struct type **typeptr)
c906108c 499{
52f0bd74 500 struct type *ntype; /* New type */
c906108c
SS
501
502 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
503 {
e9bb382b 504 ntype = alloc_type_copy (type);
c906108c
SS
505 if (typeptr)
506 *typeptr = ntype;
507 }
7ba81444 508 else /* We have storage, but need to reset it. */
c906108c
SS
509 {
510 ntype = *typeptr;
2fdde8f8 511 smash_type (ntype);
c906108c
SS
512 }
513
514 TYPE_TARGET_TYPE (ntype) = type;
515
516 TYPE_LENGTH (ntype) = 1;
517 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 518
b6cdc2c1
JK
519 INIT_FUNC_SPECIFIC (ntype);
520
c906108c
SS
521 return ntype;
522}
523
c906108c
SS
524/* Given a type TYPE, return a type of functions that return that type.
525 May need to construct such a type if this is the first use. */
526
527struct type *
fba45db2 528lookup_function_type (struct type *type)
c906108c 529{
0c8b41f1 530 return make_function_type (type, (struct type **) 0);
c906108c
SS
531}
532
71918a86 533/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
534 function type. If the final type in PARAM_TYPES is NULL, make a
535 varargs function. */
71918a86
TT
536
537struct type *
538lookup_function_type_with_arguments (struct type *type,
539 int nparams,
540 struct type **param_types)
541{
542 struct type *fn = make_function_type (type, (struct type **) 0);
543 int i;
544
e314d629 545 if (nparams > 0)
a6fb9c08 546 {
e314d629
TT
547 if (param_types[nparams - 1] == NULL)
548 {
549 --nparams;
550 TYPE_VARARGS (fn) = 1;
551 }
552 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
553 == TYPE_CODE_VOID)
554 {
555 --nparams;
556 /* Caller should have ensured this. */
557 gdb_assert (nparams == 0);
558 TYPE_PROTOTYPED (fn) = 1;
559 }
54990598
PA
560 else
561 TYPE_PROTOTYPED (fn) = 1;
a6fb9c08
TT
562 }
563
71918a86 564 TYPE_NFIELDS (fn) = nparams;
224c3ddb
SM
565 TYPE_FIELDS (fn)
566 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
71918a86
TT
567 for (i = 0; i < nparams; ++i)
568 TYPE_FIELD_TYPE (fn, i) = param_types[i];
569
570 return fn;
571}
572
47663de5
MS
573/* Identify address space identifier by name --
574 return the integer flag defined in gdbtypes.h. */
5212577a
DE
575
576int
50810684 577address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 578{
8b2dbe47 579 int type_flags;
d8734c88 580
7ba81444 581 /* Check for known address space delimiters. */
47663de5 582 if (!strcmp (space_identifier, "code"))
876cecd0 583 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 584 else if (!strcmp (space_identifier, "data"))
876cecd0 585 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
586 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
587 && gdbarch_address_class_name_to_type_flags (gdbarch,
588 space_identifier,
589 &type_flags))
8b2dbe47 590 return type_flags;
47663de5 591 else
8a3fe4f8 592 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
593}
594
595/* Identify address space identifier by integer flag as defined in
7ba81444 596 gdbtypes.h -- return the string version of the adress space name. */
47663de5 597
321432c0 598const char *
50810684 599address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 600{
876cecd0 601 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 602 return "code";
876cecd0 603 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 604 return "data";
876cecd0 605 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
606 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
607 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
608 else
609 return NULL;
610}
611
2fdde8f8 612/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
613
614 If STORAGE is non-NULL, create the new type instance there.
615 STORAGE must be in the same obstack as TYPE. */
47663de5 616
b9362cc7 617static struct type *
2fdde8f8
DJ
618make_qualified_type (struct type *type, int new_flags,
619 struct type *storage)
47663de5
MS
620{
621 struct type *ntype;
622
623 ntype = type;
5f61c20e
JK
624 do
625 {
626 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
627 return ntype;
628 ntype = TYPE_CHAIN (ntype);
629 }
630 while (ntype != type);
47663de5 631
2fdde8f8
DJ
632 /* Create a new type instance. */
633 if (storage == NULL)
634 ntype = alloc_type_instance (type);
635 else
636 {
7ba81444
MS
637 /* If STORAGE was provided, it had better be in the same objfile
638 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
639 if one objfile is freed and the other kept, we'd have
640 dangling pointers. */
ad766c0a
JB
641 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
642
2fdde8f8
DJ
643 ntype = storage;
644 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
645 TYPE_CHAIN (ntype) = ntype;
646 }
47663de5
MS
647
648 /* Pointers or references to the original type are not relevant to
2fdde8f8 649 the new type. */
47663de5
MS
650 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
651 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 652
2fdde8f8
DJ
653 /* Chain the new qualified type to the old type. */
654 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
655 TYPE_CHAIN (type) = ntype;
656
657 /* Now set the instance flags and return the new type. */
658 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 659
ab5d3da6
KB
660 /* Set length of new type to that of the original type. */
661 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
662
47663de5
MS
663 return ntype;
664}
665
2fdde8f8
DJ
666/* Make an address-space-delimited variant of a type -- a type that
667 is identical to the one supplied except that it has an address
668 space attribute attached to it (such as "code" or "data").
669
7ba81444
MS
670 The space attributes "code" and "data" are for Harvard
671 architectures. The address space attributes are for architectures
672 which have alternately sized pointers or pointers with alternate
673 representations. */
2fdde8f8
DJ
674
675struct type *
676make_type_with_address_space (struct type *type, int space_flag)
677{
2fdde8f8 678 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
679 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
680 | TYPE_INSTANCE_FLAG_DATA_SPACE
681 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
682 | space_flag);
683
684 return make_qualified_type (type, new_flags, NULL);
685}
c906108c
SS
686
687/* Make a "c-v" variant of a type -- a type that is identical to the
688 one supplied except that it may have const or volatile attributes
689 CNST is a flag for setting the const attribute
690 VOLTL is a flag for setting the volatile attribute
691 TYPE is the base type whose variant we are creating.
c906108c 692
ad766c0a
JB
693 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
694 storage to hold the new qualified type; *TYPEPTR and TYPE must be
695 in the same objfile. Otherwise, allocate fresh memory for the new
696 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
697 new type we construct. */
5212577a 698
c906108c 699struct type *
7ba81444
MS
700make_cv_type (int cnst, int voltl,
701 struct type *type,
702 struct type **typeptr)
c906108c 703{
52f0bd74 704 struct type *ntype; /* New type */
c906108c 705
2fdde8f8 706 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
707 & ~(TYPE_INSTANCE_FLAG_CONST
708 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 709
c906108c 710 if (cnst)
876cecd0 711 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
712
713 if (voltl)
876cecd0 714 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 715
2fdde8f8 716 if (typeptr && *typeptr != NULL)
a02fd225 717 {
ad766c0a
JB
718 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
719 a C-V variant chain that threads across objfiles: if one
720 objfile gets freed, then the other has a broken C-V chain.
721
722 This code used to try to copy over the main type from TYPE to
723 *TYPEPTR if they were in different objfiles, but that's
724 wrong, too: TYPE may have a field list or member function
725 lists, which refer to types of their own, etc. etc. The
726 whole shebang would need to be copied over recursively; you
727 can't have inter-objfile pointers. The only thing to do is
728 to leave stub types as stub types, and look them up afresh by
729 name each time you encounter them. */
730 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
731 }
732
7ba81444
MS
733 ntype = make_qualified_type (type, new_flags,
734 typeptr ? *typeptr : NULL);
c906108c 735
2fdde8f8
DJ
736 if (typeptr != NULL)
737 *typeptr = ntype;
a02fd225 738
2fdde8f8 739 return ntype;
a02fd225 740}
c906108c 741
06d66ee9
TT
742/* Make a 'restrict'-qualified version of TYPE. */
743
744struct type *
745make_restrict_type (struct type *type)
746{
747 return make_qualified_type (type,
748 (TYPE_INSTANCE_FLAGS (type)
749 | TYPE_INSTANCE_FLAG_RESTRICT),
750 NULL);
751}
752
f1660027
TT
753/* Make a type without const, volatile, or restrict. */
754
755struct type *
756make_unqualified_type (struct type *type)
757{
758 return make_qualified_type (type,
759 (TYPE_INSTANCE_FLAGS (type)
760 & ~(TYPE_INSTANCE_FLAG_CONST
761 | TYPE_INSTANCE_FLAG_VOLATILE
762 | TYPE_INSTANCE_FLAG_RESTRICT)),
763 NULL);
764}
765
a2c2acaf
MW
766/* Make a '_Atomic'-qualified version of TYPE. */
767
768struct type *
769make_atomic_type (struct type *type)
770{
771 return make_qualified_type (type,
772 (TYPE_INSTANCE_FLAGS (type)
773 | TYPE_INSTANCE_FLAG_ATOMIC),
774 NULL);
775}
776
2fdde8f8
DJ
777/* Replace the contents of ntype with the type *type. This changes the
778 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
779 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 780
cda6c68a
JB
781 In order to build recursive types, it's inevitable that we'll need
782 to update types in place --- but this sort of indiscriminate
783 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
784 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
785 clear if more steps are needed. */
5212577a 786
dd6bda65
DJ
787void
788replace_type (struct type *ntype, struct type *type)
789{
ab5d3da6 790 struct type *chain;
dd6bda65 791
ad766c0a
JB
792 /* These two types had better be in the same objfile. Otherwise,
793 the assignment of one type's main type structure to the other
794 will produce a type with references to objects (names; field
795 lists; etc.) allocated on an objfile other than its own. */
e46dd0f4 796 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
ad766c0a 797
2fdde8f8 798 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 799
7ba81444
MS
800 /* The type length is not a part of the main type. Update it for
801 each type on the variant chain. */
ab5d3da6 802 chain = ntype;
5f61c20e
JK
803 do
804 {
805 /* Assert that this element of the chain has no address-class bits
806 set in its flags. Such type variants might have type lengths
807 which are supposed to be different from the non-address-class
808 variants. This assertion shouldn't ever be triggered because
809 symbol readers which do construct address-class variants don't
810 call replace_type(). */
811 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
812
813 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
814 chain = TYPE_CHAIN (chain);
815 }
816 while (ntype != chain);
ab5d3da6 817
2fdde8f8
DJ
818 /* Assert that the two types have equivalent instance qualifiers.
819 This should be true for at least all of our debug readers. */
820 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
821}
822
c906108c
SS
823/* Implement direct support for MEMBER_TYPE in GNU C++.
824 May need to construct such a type if this is the first use.
825 The TYPE is the type of the member. The DOMAIN is the type
826 of the aggregate that the member belongs to. */
827
828struct type *
0d5de010 829lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 830{
52f0bd74 831 struct type *mtype;
c906108c 832
e9bb382b 833 mtype = alloc_type_copy (type);
0d5de010 834 smash_to_memberptr_type (mtype, domain, type);
c16abbde 835 return mtype;
c906108c
SS
836}
837
0d5de010
DJ
838/* Return a pointer-to-method type, for a method of type TO_TYPE. */
839
840struct type *
841lookup_methodptr_type (struct type *to_type)
842{
843 struct type *mtype;
844
e9bb382b 845 mtype = alloc_type_copy (to_type);
0b92b5bb 846 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
847 return mtype;
848}
849
7ba81444
MS
850/* Allocate a stub method whose return type is TYPE. This apparently
851 happens for speed of symbol reading, since parsing out the
852 arguments to the method is cpu-intensive, the way we are doing it.
853 So, we will fill in arguments later. This always returns a fresh
854 type. */
c906108c
SS
855
856struct type *
fba45db2 857allocate_stub_method (struct type *type)
c906108c
SS
858{
859 struct type *mtype;
860
e9bb382b
UW
861 mtype = alloc_type_copy (type);
862 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
863 TYPE_LENGTH (mtype) = 1;
864 TYPE_STUB (mtype) = 1;
c906108c 865 TYPE_TARGET_TYPE (mtype) = type;
4bfb94b8 866 /* TYPE_SELF_TYPE (mtype) = unknown yet */
c16abbde 867 return mtype;
c906108c
SS
868}
869
0f59d5fc
PA
870/* See gdbtypes.h. */
871
872bool
873operator== (const dynamic_prop &l, const dynamic_prop &r)
874{
875 if (l.kind != r.kind)
876 return false;
877
878 switch (l.kind)
879 {
880 case PROP_UNDEFINED:
881 return true;
882 case PROP_CONST:
883 return l.data.const_val == r.data.const_val;
884 case PROP_ADDR_OFFSET:
885 case PROP_LOCEXPR:
886 case PROP_LOCLIST:
887 return l.data.baton == r.data.baton;
888 }
889
890 gdb_assert_not_reached ("unhandled dynamic_prop kind");
891}
892
893/* See gdbtypes.h. */
894
895bool
896operator== (const range_bounds &l, const range_bounds &r)
897{
898#define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
899
900 return (FIELD_EQ (low)
901 && FIELD_EQ (high)
902 && FIELD_EQ (flag_upper_bound_is_count)
903 && FIELD_EQ (flag_bound_evaluated));
904
905#undef FIELD_EQ
906}
907
729efb13
SA
908/* Create a range type with a dynamic range from LOW_BOUND to
909 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
910
911struct type *
729efb13
SA
912create_range_type (struct type *result_type, struct type *index_type,
913 const struct dynamic_prop *low_bound,
914 const struct dynamic_prop *high_bound)
c906108c
SS
915{
916 if (result_type == NULL)
e9bb382b 917 result_type = alloc_type_copy (index_type);
c906108c
SS
918 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
919 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 920 if (TYPE_STUB (index_type))
876cecd0 921 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
922 else
923 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 924
43bbcdc2
PH
925 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
926 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
729efb13
SA
927 TYPE_RANGE_DATA (result_type)->low = *low_bound;
928 TYPE_RANGE_DATA (result_type)->high = *high_bound;
c906108c 929
729efb13 930 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
876cecd0 931 TYPE_UNSIGNED (result_type) = 1;
c906108c 932
45e44d27
JB
933 /* Ada allows the declaration of range types whose upper bound is
934 less than the lower bound, so checking the lower bound is not
935 enough. Make sure we do not mark a range type whose upper bound
936 is negative as unsigned. */
937 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
938 TYPE_UNSIGNED (result_type) = 0;
939
262452ec 940 return result_type;
c906108c
SS
941}
942
729efb13
SA
943/* Create a range type using either a blank type supplied in
944 RESULT_TYPE, or creating a new type, inheriting the objfile from
945 INDEX_TYPE.
946
947 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
948 to HIGH_BOUND, inclusive.
949
950 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
951 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
952
953struct type *
954create_static_range_type (struct type *result_type, struct type *index_type,
955 LONGEST low_bound, LONGEST high_bound)
956{
957 struct dynamic_prop low, high;
958
959 low.kind = PROP_CONST;
960 low.data.const_val = low_bound;
961
962 high.kind = PROP_CONST;
963 high.data.const_val = high_bound;
964
965 result_type = create_range_type (result_type, index_type, &low, &high);
966
967 return result_type;
968}
969
80180f79
SA
970/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
971 are static, otherwise returns 0. */
972
973static int
974has_static_range (const struct range_bounds *bounds)
975{
976 return (bounds->low.kind == PROP_CONST
977 && bounds->high.kind == PROP_CONST);
978}
979
980
7ba81444
MS
981/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
982 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
983 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
984
985int
fba45db2 986get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c 987{
f168693b 988 type = check_typedef (type);
c906108c
SS
989 switch (TYPE_CODE (type))
990 {
991 case TYPE_CODE_RANGE:
992 *lowp = TYPE_LOW_BOUND (type);
993 *highp = TYPE_HIGH_BOUND (type);
994 return 1;
995 case TYPE_CODE_ENUM:
996 if (TYPE_NFIELDS (type) > 0)
997 {
998 /* The enums may not be sorted by value, so search all
0963b4bd 999 entries. */
c906108c
SS
1000 int i;
1001
14e75d8e 1002 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
1003 for (i = 0; i < TYPE_NFIELDS (type); i++)
1004 {
14e75d8e
JK
1005 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1006 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1007 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1008 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
1009 }
1010
7ba81444 1011 /* Set unsigned indicator if warranted. */
c5aa993b 1012 if (*lowp >= 0)
c906108c 1013 {
876cecd0 1014 TYPE_UNSIGNED (type) = 1;
c906108c
SS
1015 }
1016 }
1017 else
1018 {
1019 *lowp = 0;
1020 *highp = -1;
1021 }
1022 return 0;
1023 case TYPE_CODE_BOOL:
1024 *lowp = 0;
1025 *highp = 1;
1026 return 0;
1027 case TYPE_CODE_INT:
c5aa993b 1028 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
1029 return -1;
1030 if (!TYPE_UNSIGNED (type))
1031 {
c5aa993b 1032 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
1033 *highp = -*lowp - 1;
1034 return 0;
1035 }
86a73007 1036 /* fall through */
c906108c
SS
1037 case TYPE_CODE_CHAR:
1038 *lowp = 0;
1039 /* This round-about calculation is to avoid shifting by
7b83ea04 1040 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 1041 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
1042 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1043 *highp = (*highp - 1) | *highp;
1044 return 0;
1045 default:
1046 return -1;
1047 }
1048}
1049
dbc98a8b
KW
1050/* Assuming TYPE is a simple, non-empty array type, compute its upper
1051 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1052 Save the high bound into HIGH_BOUND if not NULL.
1053
0963b4bd 1054 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
1055 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1056
1057 We now simply use get_discrete_bounds call to get the values
1058 of the low and high bounds.
1059 get_discrete_bounds can return three values:
1060 1, meaning that index is a range,
1061 0, meaning that index is a discrete type,
1062 or -1 for failure. */
1063
1064int
1065get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1066{
1067 struct type *index = TYPE_INDEX_TYPE (type);
1068 LONGEST low = 0;
1069 LONGEST high = 0;
1070 int res;
1071
1072 if (index == NULL)
1073 return 0;
1074
1075 res = get_discrete_bounds (index, &low, &high);
1076 if (res == -1)
1077 return 0;
1078
1079 /* Check if the array bounds are undefined. */
1080 if (res == 1
1081 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1082 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1083 return 0;
1084
1085 if (low_bound)
1086 *low_bound = low;
1087
1088 if (high_bound)
1089 *high_bound = high;
1090
1091 return 1;
1092}
1093
aa715135
JG
1094/* Assuming that TYPE is a discrete type and VAL is a valid integer
1095 representation of a value of this type, save the corresponding
1096 position number in POS.
1097
1098 Its differs from VAL only in the case of enumeration types. In
1099 this case, the position number of the value of the first listed
1100 enumeration literal is zero; the position number of the value of
1101 each subsequent enumeration literal is one more than that of its
1102 predecessor in the list.
1103
1104 Return 1 if the operation was successful. Return zero otherwise,
1105 in which case the value of POS is unmodified.
1106*/
1107
1108int
1109discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1110{
1111 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1112 {
1113 int i;
1114
1115 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1116 {
1117 if (val == TYPE_FIELD_ENUMVAL (type, i))
1118 {
1119 *pos = i;
1120 return 1;
1121 }
1122 }
1123 /* Invalid enumeration value. */
1124 return 0;
1125 }
1126 else
1127 {
1128 *pos = val;
1129 return 1;
1130 }
1131}
1132
7ba81444
MS
1133/* Create an array type using either a blank type supplied in
1134 RESULT_TYPE, or creating a new type, inheriting the objfile from
1135 RANGE_TYPE.
c906108c
SS
1136
1137 Elements will be of type ELEMENT_TYPE, the indices will be of type
1138 RANGE_TYPE.
1139
a405673c
JB
1140 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1141 This byte stride property is added to the resulting array type
1142 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1143 argument can only be used to create types that are objfile-owned
1144 (see add_dyn_prop), meaning that either this function must be called
1145 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1146
1147 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
dc53a7ad
JB
1148 If BIT_STRIDE is not zero, build a packed array type whose element
1149 size is BIT_STRIDE. Otherwise, ignore this parameter.
1150
7ba81444
MS
1151 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1152 sure it is TYPE_CODE_UNDEF before we bash it into an array
1153 type? */
c906108c
SS
1154
1155struct type *
dc53a7ad
JB
1156create_array_type_with_stride (struct type *result_type,
1157 struct type *element_type,
1158 struct type *range_type,
a405673c 1159 struct dynamic_prop *byte_stride_prop,
dc53a7ad 1160 unsigned int bit_stride)
c906108c 1161{
a405673c
JB
1162 if (byte_stride_prop != NULL
1163 && byte_stride_prop->kind == PROP_CONST)
1164 {
1165 /* The byte stride is actually not dynamic. Pretend we were
1166 called with bit_stride set instead of byte_stride_prop.
1167 This will give us the same result type, while avoiding
1168 the need to handle this as a special case. */
1169 bit_stride = byte_stride_prop->data.const_val * 8;
1170 byte_stride_prop = NULL;
1171 }
1172
c906108c 1173 if (result_type == NULL)
e9bb382b
UW
1174 result_type = alloc_type_copy (range_type);
1175
c906108c
SS
1176 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1177 TYPE_TARGET_TYPE (result_type) = element_type;
a405673c
JB
1178 if (byte_stride_prop == NULL
1179 && has_static_range (TYPE_RANGE_DATA (range_type))
b4a7fcab
JB
1180 && (!type_not_associated (result_type)
1181 && !type_not_allocated (result_type)))
80180f79
SA
1182 {
1183 LONGEST low_bound, high_bound;
1184
1185 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1186 low_bound = high_bound = 0;
f168693b 1187 element_type = check_typedef (element_type);
80180f79
SA
1188 /* Be careful when setting the array length. Ada arrays can be
1189 empty arrays with the high_bound being smaller than the low_bound.
1190 In such cases, the array length should be zero. */
1191 if (high_bound < low_bound)
1192 TYPE_LENGTH (result_type) = 0;
1193 else if (bit_stride > 0)
1194 TYPE_LENGTH (result_type) =
1195 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1196 else
1197 TYPE_LENGTH (result_type) =
1198 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1199 }
ab0d6e0d 1200 else
80180f79
SA
1201 {
1202 /* This type is dynamic and its length needs to be computed
1203 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1204 undefined by setting it to zero. Although we are not expected
1205 to trust TYPE_LENGTH in this case, setting the size to zero
1206 allows us to avoid allocating objects of random sizes in case
1207 we accidently do. */
1208 TYPE_LENGTH (result_type) = 0;
1209 }
1210
c906108c
SS
1211 TYPE_NFIELDS (result_type) = 1;
1212 TYPE_FIELDS (result_type) =
1deafd4e 1213 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 1214 TYPE_INDEX_TYPE (result_type) = range_type;
a405673c 1215 if (byte_stride_prop != NULL)
50a82047 1216 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
a405673c 1217 else if (bit_stride > 0)
dc53a7ad 1218 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
c906108c 1219
a9ff5f12 1220 /* TYPE_TARGET_STUB will take care of zero length arrays. */
c906108c 1221 if (TYPE_LENGTH (result_type) == 0)
876cecd0 1222 TYPE_TARGET_STUB (result_type) = 1;
c906108c 1223
c16abbde 1224 return result_type;
c906108c
SS
1225}
1226
dc53a7ad
JB
1227/* Same as create_array_type_with_stride but with no bit_stride
1228 (BIT_STRIDE = 0), thus building an unpacked array. */
1229
1230struct type *
1231create_array_type (struct type *result_type,
1232 struct type *element_type,
1233 struct type *range_type)
1234{
1235 return create_array_type_with_stride (result_type, element_type,
a405673c 1236 range_type, NULL, 0);
dc53a7ad
JB
1237}
1238
e3506a9f
UW
1239struct type *
1240lookup_array_range_type (struct type *element_type,
63375b74 1241 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1242{
929b5ad4
JB
1243 struct type *index_type;
1244 struct type *range_type;
1245
1246 if (TYPE_OBJFILE_OWNED (element_type))
1247 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1248 else
1249 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1250 range_type = create_static_range_type (NULL, index_type,
1251 low_bound, high_bound);
d8734c88 1252
e3506a9f
UW
1253 return create_array_type (NULL, element_type, range_type);
1254}
1255
7ba81444
MS
1256/* Create a string type using either a blank type supplied in
1257 RESULT_TYPE, or creating a new type. String types are similar
1258 enough to array of char types that we can use create_array_type to
1259 build the basic type and then bash it into a string type.
c906108c
SS
1260
1261 For fixed length strings, the range type contains 0 as the lower
1262 bound and the length of the string minus one as the upper bound.
1263
7ba81444
MS
1264 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1265 sure it is TYPE_CODE_UNDEF before we bash it into a string
1266 type? */
c906108c
SS
1267
1268struct type *
3b7538c0
UW
1269create_string_type (struct type *result_type,
1270 struct type *string_char_type,
7ba81444 1271 struct type *range_type)
c906108c
SS
1272{
1273 result_type = create_array_type (result_type,
f290d38e 1274 string_char_type,
c906108c
SS
1275 range_type);
1276 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 1277 return result_type;
c906108c
SS
1278}
1279
e3506a9f
UW
1280struct type *
1281lookup_string_range_type (struct type *string_char_type,
63375b74 1282 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1283{
1284 struct type *result_type;
d8734c88 1285
e3506a9f
UW
1286 result_type = lookup_array_range_type (string_char_type,
1287 low_bound, high_bound);
1288 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1289 return result_type;
1290}
1291
c906108c 1292struct type *
fba45db2 1293create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1294{
c906108c 1295 if (result_type == NULL)
e9bb382b
UW
1296 result_type = alloc_type_copy (domain_type);
1297
c906108c
SS
1298 TYPE_CODE (result_type) = TYPE_CODE_SET;
1299 TYPE_NFIELDS (result_type) = 1;
224c3ddb
SM
1300 TYPE_FIELDS (result_type)
1301 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1302
74a9bb82 1303 if (!TYPE_STUB (domain_type))
c906108c 1304 {
f9780d5b 1305 LONGEST low_bound, high_bound, bit_length;
d8734c88 1306
c906108c
SS
1307 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1308 low_bound = high_bound = 0;
1309 bit_length = high_bound - low_bound + 1;
1310 TYPE_LENGTH (result_type)
1311 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1312 if (low_bound >= 0)
876cecd0 1313 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1314 }
1315 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1316
c16abbde 1317 return result_type;
c906108c
SS
1318}
1319
ea37ba09
DJ
1320/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1321 and any array types nested inside it. */
1322
1323void
1324make_vector_type (struct type *array_type)
1325{
1326 struct type *inner_array, *elt_type;
1327 int flags;
1328
1329 /* Find the innermost array type, in case the array is
1330 multi-dimensional. */
1331 inner_array = array_type;
1332 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1333 inner_array = TYPE_TARGET_TYPE (inner_array);
1334
1335 elt_type = TYPE_TARGET_TYPE (inner_array);
1336 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1337 {
2844d6b5 1338 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1339 elt_type = make_qualified_type (elt_type, flags, NULL);
1340 TYPE_TARGET_TYPE (inner_array) = elt_type;
1341 }
1342
876cecd0 1343 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1344}
1345
794ac428 1346struct type *
ac3aafc7
EZ
1347init_vector_type (struct type *elt_type, int n)
1348{
1349 struct type *array_type;
d8734c88 1350
e3506a9f 1351 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1352 make_vector_type (array_type);
ac3aafc7
EZ
1353 return array_type;
1354}
1355
09e2d7c7
DE
1356/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1357 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1358 confusing. "self" is a common enough replacement for "this".
1359 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1360 TYPE_CODE_METHOD. */
1361
1362struct type *
1363internal_type_self_type (struct type *type)
1364{
1365 switch (TYPE_CODE (type))
1366 {
1367 case TYPE_CODE_METHODPTR:
1368 case TYPE_CODE_MEMBERPTR:
eaaf76ab
DE
1369 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1370 return NULL;
09e2d7c7
DE
1371 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1372 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1373 case TYPE_CODE_METHOD:
eaaf76ab
DE
1374 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1375 return NULL;
09e2d7c7
DE
1376 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1377 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1378 default:
1379 gdb_assert_not_reached ("bad type");
1380 }
1381}
1382
1383/* Set the type of the class that TYPE belongs to.
1384 In c++ this is the class of "this".
1385 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1386 TYPE_CODE_METHOD. */
1387
1388void
1389set_type_self_type (struct type *type, struct type *self_type)
1390{
1391 switch (TYPE_CODE (type))
1392 {
1393 case TYPE_CODE_METHODPTR:
1394 case TYPE_CODE_MEMBERPTR:
1395 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1396 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1397 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1398 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1399 break;
1400 case TYPE_CODE_METHOD:
1401 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1402 INIT_FUNC_SPECIFIC (type);
1403 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1404 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1405 break;
1406 default:
1407 gdb_assert_not_reached ("bad type");
1408 }
1409}
1410
1411/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
0d5de010
DJ
1412 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1413 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1414 TYPE doesn't include the offset (that's the value of the MEMBER
1415 itself), but does include the structure type into which it points
1416 (for some reason).
c906108c 1417
7ba81444
MS
1418 When "smashing" the type, we preserve the objfile that the old type
1419 pointed to, since we aren't changing where the type is actually
c906108c
SS
1420 allocated. */
1421
1422void
09e2d7c7 1423smash_to_memberptr_type (struct type *type, struct type *self_type,
0d5de010 1424 struct type *to_type)
c906108c 1425{
2fdde8f8 1426 smash_type (type);
09e2d7c7 1427 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c 1428 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1429 set_type_self_type (type, self_type);
0d5de010
DJ
1430 /* Assume that a data member pointer is the same size as a normal
1431 pointer. */
50810684
UW
1432 TYPE_LENGTH (type)
1433 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
c906108c
SS
1434}
1435
0b92b5bb
TT
1436/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1437
1438 When "smashing" the type, we preserve the objfile that the old type
1439 pointed to, since we aren't changing where the type is actually
1440 allocated. */
1441
1442void
1443smash_to_methodptr_type (struct type *type, struct type *to_type)
1444{
1445 smash_type (type);
09e2d7c7 1446 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
0b92b5bb 1447 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1448 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
0b92b5bb 1449 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
0b92b5bb
TT
1450}
1451
09e2d7c7 1452/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
c906108c
SS
1453 METHOD just means `function that gets an extra "this" argument'.
1454
7ba81444
MS
1455 When "smashing" the type, we preserve the objfile that the old type
1456 pointed to, since we aren't changing where the type is actually
c906108c
SS
1457 allocated. */
1458
1459void
09e2d7c7 1460smash_to_method_type (struct type *type, struct type *self_type,
ad2f7632
DJ
1461 struct type *to_type, struct field *args,
1462 int nargs, int varargs)
c906108c 1463{
2fdde8f8 1464 smash_type (type);
09e2d7c7 1465 TYPE_CODE (type) = TYPE_CODE_METHOD;
c906108c 1466 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1467 set_type_self_type (type, self_type);
ad2f7632
DJ
1468 TYPE_FIELDS (type) = args;
1469 TYPE_NFIELDS (type) = nargs;
1470 if (varargs)
876cecd0 1471 TYPE_VARARGS (type) = 1;
c906108c 1472 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
c906108c
SS
1473}
1474
a737d952 1475/* A wrapper of TYPE_NAME which calls error if the type is anonymous.
d8228535
JK
1476 Since GCC PR debug/47510 DWARF provides associated information to detect the
1477 anonymous class linkage name from its typedef.
1478
1479 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1480 apply it itself. */
1481
1482const char *
a737d952 1483type_name_or_error (struct type *type)
d8228535
JK
1484{
1485 struct type *saved_type = type;
1486 const char *name;
1487 struct objfile *objfile;
1488
f168693b 1489 type = check_typedef (type);
d8228535 1490
a737d952 1491 name = TYPE_NAME (type);
d8228535
JK
1492 if (name != NULL)
1493 return name;
1494
a737d952 1495 name = TYPE_NAME (saved_type);
d8228535
JK
1496 objfile = TYPE_OBJFILE (saved_type);
1497 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1498 name ? name : "<anonymous>",
1499 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1500}
1501
7ba81444
MS
1502/* Lookup a typedef or primitive type named NAME, visible in lexical
1503 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1504 suitably defined. */
c906108c
SS
1505
1506struct type *
e6c014f2 1507lookup_typename (const struct language_defn *language,
ddd49eee 1508 struct gdbarch *gdbarch, const char *name,
34eaf542 1509 const struct block *block, int noerr)
c906108c 1510{
52f0bd74 1511 struct symbol *sym;
c906108c 1512
1994afbf 1513 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
d12307c1 1514 language->la_language, NULL).symbol;
c51fe631
DE
1515 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1516 return SYMBOL_TYPE (sym);
1517
c51fe631
DE
1518 if (noerr)
1519 return NULL;
1520 error (_("No type named %s."), name);
c906108c
SS
1521}
1522
1523struct type *
e6c014f2 1524lookup_unsigned_typename (const struct language_defn *language,
0d5cff50 1525 struct gdbarch *gdbarch, const char *name)
c906108c 1526{
224c3ddb 1527 char *uns = (char *) alloca (strlen (name) + 10);
c906108c
SS
1528
1529 strcpy (uns, "unsigned ");
1530 strcpy (uns + 9, name);
e6c014f2 1531 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
c906108c
SS
1532}
1533
1534struct type *
e6c014f2 1535lookup_signed_typename (const struct language_defn *language,
0d5cff50 1536 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1537{
1538 struct type *t;
224c3ddb 1539 char *uns = (char *) alloca (strlen (name) + 8);
c906108c
SS
1540
1541 strcpy (uns, "signed ");
1542 strcpy (uns + 7, name);
e6c014f2 1543 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
7ba81444 1544 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1545 if (t != NULL)
1546 return t;
e6c014f2 1547 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
c906108c
SS
1548}
1549
1550/* Lookup a structure type named "struct NAME",
1551 visible in lexical block BLOCK. */
1552
1553struct type *
270140bd 1554lookup_struct (const char *name, const struct block *block)
c906108c 1555{
52f0bd74 1556 struct symbol *sym;
c906108c 1557
d12307c1 1558 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1559
1560 if (sym == NULL)
1561 {
8a3fe4f8 1562 error (_("No struct type named %s."), name);
c906108c
SS
1563 }
1564 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1565 {
7ba81444
MS
1566 error (_("This context has class, union or enum %s, not a struct."),
1567 name);
c906108c
SS
1568 }
1569 return (SYMBOL_TYPE (sym));
1570}
1571
1572/* Lookup a union type named "union NAME",
1573 visible in lexical block BLOCK. */
1574
1575struct type *
270140bd 1576lookup_union (const char *name, const struct block *block)
c906108c 1577{
52f0bd74 1578 struct symbol *sym;
c5aa993b 1579 struct type *t;
c906108c 1580
d12307c1 1581 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1582
1583 if (sym == NULL)
8a3fe4f8 1584 error (_("No union type named %s."), name);
c906108c 1585
c5aa993b 1586 t = SYMBOL_TYPE (sym);
c906108c
SS
1587
1588 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1589 return t;
c906108c 1590
7ba81444
MS
1591 /* If we get here, it's not a union. */
1592 error (_("This context has class, struct or enum %s, not a union."),
1593 name);
c906108c
SS
1594}
1595
c906108c
SS
1596/* Lookup an enum type named "enum NAME",
1597 visible in lexical block BLOCK. */
1598
1599struct type *
270140bd 1600lookup_enum (const char *name, const struct block *block)
c906108c 1601{
52f0bd74 1602 struct symbol *sym;
c906108c 1603
d12307c1 1604 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1605 if (sym == NULL)
1606 {
8a3fe4f8 1607 error (_("No enum type named %s."), name);
c906108c
SS
1608 }
1609 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1610 {
7ba81444
MS
1611 error (_("This context has class, struct or union %s, not an enum."),
1612 name);
c906108c
SS
1613 }
1614 return (SYMBOL_TYPE (sym));
1615}
1616
1617/* Lookup a template type named "template NAME<TYPE>",
1618 visible in lexical block BLOCK. */
1619
1620struct type *
7ba81444 1621lookup_template_type (char *name, struct type *type,
270140bd 1622 const struct block *block)
c906108c
SS
1623{
1624 struct symbol *sym;
7ba81444
MS
1625 char *nam = (char *)
1626 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1627
c906108c
SS
1628 strcpy (nam, name);
1629 strcat (nam, "<");
0004e5a2 1630 strcat (nam, TYPE_NAME (type));
0963b4bd 1631 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1632
d12307c1 1633 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
c906108c
SS
1634
1635 if (sym == NULL)
1636 {
8a3fe4f8 1637 error (_("No template type named %s."), name);
c906108c
SS
1638 }
1639 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1640 {
7ba81444
MS
1641 error (_("This context has class, union or enum %s, not a struct."),
1642 name);
c906108c
SS
1643 }
1644 return (SYMBOL_TYPE (sym));
1645}
1646
7ba81444
MS
1647/* Given a type TYPE, lookup the type of the component of type named
1648 NAME.
c906108c 1649
7ba81444
MS
1650 TYPE can be either a struct or union, or a pointer or reference to
1651 a struct or union. If it is a pointer or reference, its target
1652 type is automatically used. Thus '.' and '->' are interchangable,
1653 as specified for the definitions of the expression element types
1654 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1655
1656 If NOERR is nonzero, return zero if NAME is not suitably defined.
1657 If NAME is the name of a baseclass type, return that type. */
1658
1659struct type *
d7561cbb 1660lookup_struct_elt_type (struct type *type, const char *name, int noerr)
c906108c
SS
1661{
1662 int i;
1663
1664 for (;;)
1665 {
f168693b 1666 type = check_typedef (type);
c906108c
SS
1667 if (TYPE_CODE (type) != TYPE_CODE_PTR
1668 && TYPE_CODE (type) != TYPE_CODE_REF)
1669 break;
1670 type = TYPE_TARGET_TYPE (type);
1671 }
1672
687d6395
MS
1673 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1674 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1675 {
2f408ecb
PA
1676 std::string type_name = type_to_string (type);
1677 error (_("Type %s is not a structure or union type."),
1678 type_name.c_str ());
c906108c
SS
1679 }
1680
1681#if 0
7ba81444
MS
1682 /* FIXME: This change put in by Michael seems incorrect for the case
1683 where the structure tag name is the same as the member name.
0963b4bd 1684 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
7ba81444 1685 foo; } bell;" Disabled by fnf. */
c906108c 1686 {
fe978cb0 1687 char *type_name;
c906108c 1688
a737d952 1689 type_name = TYPE_NAME (type);
fe978cb0 1690 if (type_name != NULL && strcmp (type_name, name) == 0)
c906108c
SS
1691 return type;
1692 }
1693#endif
1694
1695 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1696 {
0d5cff50 1697 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1698
db577aea 1699 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1700 {
1701 return TYPE_FIELD_TYPE (type, i);
1702 }
f5a010c0
PM
1703 else if (!t_field_name || *t_field_name == '\0')
1704 {
d8734c88
MS
1705 struct type *subtype
1706 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1707
f5a010c0
PM
1708 if (subtype != NULL)
1709 return subtype;
1710 }
c906108c
SS
1711 }
1712
1713 /* OK, it's not in this class. Recursively check the baseclasses. */
1714 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1715 {
1716 struct type *t;
1717
9733fc94 1718 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1719 if (t != NULL)
1720 {
1721 return t;
1722 }
1723 }
1724
1725 if (noerr)
1726 {
1727 return NULL;
1728 }
c5aa993b 1729
2f408ecb
PA
1730 std::string type_name = type_to_string (type);
1731 error (_("Type %s has no component named %s."), type_name.c_str (), name);
c906108c
SS
1732}
1733
ed3ef339
DE
1734/* Store in *MAX the largest number representable by unsigned integer type
1735 TYPE. */
1736
1737void
1738get_unsigned_type_max (struct type *type, ULONGEST *max)
1739{
1740 unsigned int n;
1741
f168693b 1742 type = check_typedef (type);
ed3ef339
DE
1743 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1744 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1745
1746 /* Written this way to avoid overflow. */
1747 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1748 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1749}
1750
1751/* Store in *MIN, *MAX the smallest and largest numbers representable by
1752 signed integer type TYPE. */
1753
1754void
1755get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1756{
1757 unsigned int n;
1758
f168693b 1759 type = check_typedef (type);
ed3ef339
DE
1760 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1761 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1762
1763 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1764 *min = -((ULONGEST) 1 << (n - 1));
1765 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1766}
1767
ae6ae975
DE
1768/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1769 cplus_stuff.vptr_fieldno.
1770
1771 cplus_stuff is initialized to cplus_struct_default which does not
1772 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1773 designated initializers). We cope with that here. */
1774
1775int
1776internal_type_vptr_fieldno (struct type *type)
1777{
f168693b 1778 type = check_typedef (type);
ae6ae975
DE
1779 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1780 || TYPE_CODE (type) == TYPE_CODE_UNION);
1781 if (!HAVE_CPLUS_STRUCT (type))
1782 return -1;
1783 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1784}
1785
1786/* Set the value of cplus_stuff.vptr_fieldno. */
1787
1788void
1789set_type_vptr_fieldno (struct type *type, int fieldno)
1790{
f168693b 1791 type = check_typedef (type);
ae6ae975
DE
1792 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1793 || TYPE_CODE (type) == TYPE_CODE_UNION);
1794 if (!HAVE_CPLUS_STRUCT (type))
1795 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1796 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1797}
1798
1799/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1800 cplus_stuff.vptr_basetype. */
1801
1802struct type *
1803internal_type_vptr_basetype (struct type *type)
1804{
f168693b 1805 type = check_typedef (type);
ae6ae975
DE
1806 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1807 || TYPE_CODE (type) == TYPE_CODE_UNION);
1808 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1809 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1810}
1811
1812/* Set the value of cplus_stuff.vptr_basetype. */
1813
1814void
1815set_type_vptr_basetype (struct type *type, struct type *basetype)
1816{
f168693b 1817 type = check_typedef (type);
ae6ae975
DE
1818 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1819 || TYPE_CODE (type) == TYPE_CODE_UNION);
1820 if (!HAVE_CPLUS_STRUCT (type))
1821 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1822 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1823}
1824
81fe8080
DE
1825/* Lookup the vptr basetype/fieldno values for TYPE.
1826 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1827 vptr_fieldno. Also, if found and basetype is from the same objfile,
1828 cache the results.
1829 If not found, return -1 and ignore BASETYPEP.
1830 Callers should be aware that in some cases (for example,
c906108c 1831 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1832 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1833 this function will not be able to find the
7ba81444 1834 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1835 vptr_basetype will remain NULL or incomplete. */
c906108c 1836
81fe8080
DE
1837int
1838get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c 1839{
f168693b 1840 type = check_typedef (type);
c906108c
SS
1841
1842 if (TYPE_VPTR_FIELDNO (type) < 0)
1843 {
1844 int i;
1845
7ba81444
MS
1846 /* We must start at zero in case the first (and only) baseclass
1847 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1848 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1849 {
81fe8080
DE
1850 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1851 int fieldno;
1852 struct type *basetype;
1853
1854 fieldno = get_vptr_fieldno (baseclass, &basetype);
1855 if (fieldno >= 0)
c906108c 1856 {
81fe8080 1857 /* If the type comes from a different objfile we can't cache
0963b4bd 1858 it, it may have a different lifetime. PR 2384 */
5ef73790 1859 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080 1860 {
ae6ae975
DE
1861 set_type_vptr_fieldno (type, fieldno);
1862 set_type_vptr_basetype (type, basetype);
81fe8080
DE
1863 }
1864 if (basetypep)
1865 *basetypep = basetype;
1866 return fieldno;
c906108c
SS
1867 }
1868 }
81fe8080
DE
1869
1870 /* Not found. */
1871 return -1;
1872 }
1873 else
1874 {
1875 if (basetypep)
1876 *basetypep = TYPE_VPTR_BASETYPE (type);
1877 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1878 }
1879}
1880
44e1a9eb
DJ
1881static void
1882stub_noname_complaint (void)
1883{
b98664d3 1884 complaint (_("stub type has NULL name"));
44e1a9eb
DJ
1885}
1886
a405673c
JB
1887/* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1888 attached to it, and that property has a non-constant value. */
1889
1890static int
1891array_type_has_dynamic_stride (struct type *type)
1892{
1893 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1894
1895 return (prop != NULL && prop->kind != PROP_CONST);
1896}
1897
d98b7a16 1898/* Worker for is_dynamic_type. */
80180f79 1899
d98b7a16 1900static int
ee715b5a 1901is_dynamic_type_internal (struct type *type, int top_level)
80180f79
SA
1902{
1903 type = check_typedef (type);
1904
e771e4be
PMR
1905 /* We only want to recognize references at the outermost level. */
1906 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1907 type = check_typedef (TYPE_TARGET_TYPE (type));
1908
3cdcd0ce
JB
1909 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1910 dynamic, even if the type itself is statically defined.
1911 From a user's point of view, this may appear counter-intuitive;
1912 but it makes sense in this context, because the point is to determine
1913 whether any part of the type needs to be resolved before it can
1914 be exploited. */
1915 if (TYPE_DATA_LOCATION (type) != NULL
1916 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1917 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1918 return 1;
1919
3f2f83dd
KB
1920 if (TYPE_ASSOCIATED_PROP (type))
1921 return 1;
1922
1923 if (TYPE_ALLOCATED_PROP (type))
1924 return 1;
1925
80180f79
SA
1926 switch (TYPE_CODE (type))
1927 {
6f8a3220 1928 case TYPE_CODE_RANGE:
ddb87a81
JB
1929 {
1930 /* A range type is obviously dynamic if it has at least one
1931 dynamic bound. But also consider the range type to be
1932 dynamic when its subtype is dynamic, even if the bounds
1933 of the range type are static. It allows us to assume that
1934 the subtype of a static range type is also static. */
1935 return (!has_static_range (TYPE_RANGE_DATA (type))
ee715b5a 1936 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
ddb87a81 1937 }
6f8a3220 1938
80180f79
SA
1939 case TYPE_CODE_ARRAY:
1940 {
80180f79 1941 gdb_assert (TYPE_NFIELDS (type) == 1);
6f8a3220 1942
a405673c 1943 /* The array is dynamic if either the bounds are dynamic... */
ee715b5a 1944 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
80180f79 1945 return 1;
a405673c
JB
1946 /* ... or the elements it contains have a dynamic contents... */
1947 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1948 return 1;
1949 /* ... or if it has a dynamic stride... */
1950 if (array_type_has_dynamic_stride (type))
1951 return 1;
1952 return 0;
80180f79 1953 }
012370f6
TT
1954
1955 case TYPE_CODE_STRUCT:
1956 case TYPE_CODE_UNION:
1957 {
1958 int i;
1959
1960 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1961 if (!field_is_static (&TYPE_FIELD (type, i))
ee715b5a 1962 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
012370f6
TT
1963 return 1;
1964 }
1965 break;
80180f79 1966 }
92e2a17f
TT
1967
1968 return 0;
80180f79
SA
1969}
1970
d98b7a16
TT
1971/* See gdbtypes.h. */
1972
1973int
1974is_dynamic_type (struct type *type)
1975{
ee715b5a 1976 return is_dynamic_type_internal (type, 1);
d98b7a16
TT
1977}
1978
df25ebbd 1979static struct type *resolve_dynamic_type_internal
ee715b5a 1980 (struct type *type, struct property_addr_info *addr_stack, int top_level);
d98b7a16 1981
df25ebbd
JB
1982/* Given a dynamic range type (dyn_range_type) and a stack of
1983 struct property_addr_info elements, return a static version
1984 of that type. */
d190df30 1985
80180f79 1986static struct type *
df25ebbd
JB
1987resolve_dynamic_range (struct type *dyn_range_type,
1988 struct property_addr_info *addr_stack)
80180f79
SA
1989{
1990 CORE_ADDR value;
ddb87a81 1991 struct type *static_range_type, *static_target_type;
80180f79 1992 const struct dynamic_prop *prop;
80180f79
SA
1993 struct dynamic_prop low_bound, high_bound;
1994
6f8a3220 1995 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
80180f79 1996
6f8a3220 1997 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
63e43d3a 1998 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
1999 {
2000 low_bound.kind = PROP_CONST;
2001 low_bound.data.const_val = value;
2002 }
2003 else
2004 {
2005 low_bound.kind = PROP_UNDEFINED;
2006 low_bound.data.const_val = 0;
2007 }
2008
6f8a3220 2009 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
63e43d3a 2010 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
2011 {
2012 high_bound.kind = PROP_CONST;
2013 high_bound.data.const_val = value;
c451ebe5 2014
6f8a3220 2015 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
c451ebe5
SA
2016 high_bound.data.const_val
2017 = low_bound.data.const_val + high_bound.data.const_val - 1;
80180f79
SA
2018 }
2019 else
2020 {
2021 high_bound.kind = PROP_UNDEFINED;
2022 high_bound.data.const_val = 0;
2023 }
2024
ddb87a81
JB
2025 static_target_type
2026 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
ee715b5a 2027 addr_stack, 0);
6f8a3220 2028 static_range_type = create_range_type (copy_type (dyn_range_type),
ddb87a81 2029 static_target_type,
6f8a3220
JB
2030 &low_bound, &high_bound);
2031 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2032 return static_range_type;
2033}
2034
2035/* Resolves dynamic bound values of an array type TYPE to static ones.
df25ebbd
JB
2036 ADDR_STACK is a stack of struct property_addr_info to be used
2037 if needed during the dynamic resolution. */
6f8a3220
JB
2038
2039static struct type *
df25ebbd
JB
2040resolve_dynamic_array (struct type *type,
2041 struct property_addr_info *addr_stack)
6f8a3220
JB
2042{
2043 CORE_ADDR value;
2044 struct type *elt_type;
2045 struct type *range_type;
2046 struct type *ary_dim;
3f2f83dd 2047 struct dynamic_prop *prop;
a405673c 2048 unsigned int bit_stride = 0;
6f8a3220
JB
2049
2050 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
2051
3f2f83dd
KB
2052 type = copy_type (type);
2053
6f8a3220
JB
2054 elt_type = type;
2055 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
df25ebbd 2056 range_type = resolve_dynamic_range (range_type, addr_stack);
6f8a3220 2057
3f2f83dd
KB
2058 /* Resolve allocated/associated here before creating a new array type, which
2059 will update the length of the array accordingly. */
2060 prop = TYPE_ALLOCATED_PROP (type);
2061 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2062 {
2063 TYPE_DYN_PROP_ADDR (prop) = value;
2064 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2065 }
2066 prop = TYPE_ASSOCIATED_PROP (type);
2067 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2068 {
2069 TYPE_DYN_PROP_ADDR (prop) = value;
2070 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2071 }
2072
80180f79
SA
2073 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2074
2075 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
d0d84780 2076 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
80180f79
SA
2077 else
2078 elt_type = TYPE_TARGET_TYPE (type);
2079
a405673c
JB
2080 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2081 if (prop != NULL)
2082 {
2083 int prop_eval_ok
2084 = dwarf2_evaluate_property (prop, NULL, addr_stack, &value);
2085
2086 if (prop_eval_ok)
2087 {
2088 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2089 bit_stride = (unsigned int) (value * 8);
2090 }
2091 else
2092 {
2093 /* Could be a bug in our code, but it could also happen
2094 if the DWARF info is not correct. Issue a warning,
2095 and assume no byte/bit stride (leave bit_stride = 0). */
2096 warning (_("cannot determine array stride for type %s"),
2097 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2098 }
2099 }
2100 else
2101 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2102
2103 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2104 bit_stride);
80180f79
SA
2105}
2106
012370f6 2107/* Resolve dynamic bounds of members of the union TYPE to static
df25ebbd
JB
2108 bounds. ADDR_STACK is a stack of struct property_addr_info
2109 to be used if needed during the dynamic resolution. */
012370f6
TT
2110
2111static struct type *
df25ebbd
JB
2112resolve_dynamic_union (struct type *type,
2113 struct property_addr_info *addr_stack)
012370f6
TT
2114{
2115 struct type *resolved_type;
2116 int i;
2117 unsigned int max_len = 0;
2118
2119 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2120
2121 resolved_type = copy_type (type);
2122 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2123 = (struct field *) TYPE_ALLOC (resolved_type,
2124 TYPE_NFIELDS (resolved_type)
2125 * sizeof (struct field));
012370f6
TT
2126 memcpy (TYPE_FIELDS (resolved_type),
2127 TYPE_FIELDS (type),
2128 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2129 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2130 {
2131 struct type *t;
2132
2133 if (field_is_static (&TYPE_FIELD (type, i)))
2134 continue;
2135
d98b7a16 2136 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2137 addr_stack, 0);
012370f6
TT
2138 TYPE_FIELD_TYPE (resolved_type, i) = t;
2139 if (TYPE_LENGTH (t) > max_len)
2140 max_len = TYPE_LENGTH (t);
2141 }
2142
2143 TYPE_LENGTH (resolved_type) = max_len;
2144 return resolved_type;
2145}
2146
2147/* Resolve dynamic bounds of members of the struct TYPE to static
df25ebbd
JB
2148 bounds. ADDR_STACK is a stack of struct property_addr_info to
2149 be used if needed during the dynamic resolution. */
012370f6
TT
2150
2151static struct type *
df25ebbd
JB
2152resolve_dynamic_struct (struct type *type,
2153 struct property_addr_info *addr_stack)
012370f6
TT
2154{
2155 struct type *resolved_type;
2156 int i;
6908c509 2157 unsigned resolved_type_bit_length = 0;
012370f6
TT
2158
2159 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2160 gdb_assert (TYPE_NFIELDS (type) > 0);
2161
2162 resolved_type = copy_type (type);
2163 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2164 = (struct field *) TYPE_ALLOC (resolved_type,
2165 TYPE_NFIELDS (resolved_type)
2166 * sizeof (struct field));
012370f6
TT
2167 memcpy (TYPE_FIELDS (resolved_type),
2168 TYPE_FIELDS (type),
2169 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2170 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2171 {
6908c509 2172 unsigned new_bit_length;
df25ebbd 2173 struct property_addr_info pinfo;
012370f6
TT
2174
2175 if (field_is_static (&TYPE_FIELD (type, i)))
2176 continue;
2177
6908c509
JB
2178 /* As we know this field is not a static field, the field's
2179 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2180 this is the case, but only trigger a simple error rather
2181 than an internal error if that fails. While failing
2182 that verification indicates a bug in our code, the error
2183 is not severe enough to suggest to the user he stops
2184 his debugging session because of it. */
df25ebbd 2185 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
6908c509
JB
2186 error (_("Cannot determine struct field location"
2187 " (invalid location kind)"));
df25ebbd
JB
2188
2189 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
c3345124 2190 pinfo.valaddr = addr_stack->valaddr;
9920b434
BH
2191 pinfo.addr
2192 = (addr_stack->addr
2193 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
df25ebbd
JB
2194 pinfo.next = addr_stack;
2195
2196 TYPE_FIELD_TYPE (resolved_type, i)
2197 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2198 &pinfo, 0);
df25ebbd
JB
2199 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2200 == FIELD_LOC_KIND_BITPOS);
2201
6908c509
JB
2202 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2203 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2204 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2205 else
2206 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2207 * TARGET_CHAR_BIT);
2208
2209 /* Normally, we would use the position and size of the last field
2210 to determine the size of the enclosing structure. But GCC seems
2211 to be encoding the position of some fields incorrectly when
2212 the struct contains a dynamic field that is not placed last.
2213 So we compute the struct size based on the field that has
2214 the highest position + size - probably the best we can do. */
2215 if (new_bit_length > resolved_type_bit_length)
2216 resolved_type_bit_length = new_bit_length;
012370f6
TT
2217 }
2218
9920b434
BH
2219 /* The length of a type won't change for fortran, but it does for C and Ada.
2220 For fortran the size of dynamic fields might change over time but not the
2221 type length of the structure. If we adapt it, we run into problems
2222 when calculating the element offset for arrays of structs. */
2223 if (current_language->la_language != language_fortran)
2224 TYPE_LENGTH (resolved_type)
2225 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
6908c509 2226
9e195661
PMR
2227 /* The Ada language uses this field as a cache for static fixed types: reset
2228 it as RESOLVED_TYPE must have its own static fixed type. */
2229 TYPE_TARGET_TYPE (resolved_type) = NULL;
2230
012370f6
TT
2231 return resolved_type;
2232}
2233
d98b7a16 2234/* Worker for resolved_dynamic_type. */
80180f79 2235
d98b7a16 2236static struct type *
df25ebbd 2237resolve_dynamic_type_internal (struct type *type,
ee715b5a
PMR
2238 struct property_addr_info *addr_stack,
2239 int top_level)
80180f79
SA
2240{
2241 struct type *real_type = check_typedef (type);
6f8a3220 2242 struct type *resolved_type = type;
d9823cbb 2243 struct dynamic_prop *prop;
3cdcd0ce 2244 CORE_ADDR value;
80180f79 2245
ee715b5a 2246 if (!is_dynamic_type_internal (real_type, top_level))
80180f79
SA
2247 return type;
2248
5537b577 2249 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
6f8a3220 2250 {
cac9b138
JK
2251 resolved_type = copy_type (type);
2252 TYPE_TARGET_TYPE (resolved_type)
ee715b5a
PMR
2253 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2254 top_level);
5537b577
JK
2255 }
2256 else
2257 {
2258 /* Before trying to resolve TYPE, make sure it is not a stub. */
2259 type = real_type;
012370f6 2260
5537b577
JK
2261 switch (TYPE_CODE (type))
2262 {
e771e4be
PMR
2263 case TYPE_CODE_REF:
2264 {
2265 struct property_addr_info pinfo;
2266
2267 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
c3345124
JB
2268 pinfo.valaddr = NULL;
2269 if (addr_stack->valaddr != NULL)
2270 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2271 else
2272 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
e771e4be
PMR
2273 pinfo.next = addr_stack;
2274
2275 resolved_type = copy_type (type);
2276 TYPE_TARGET_TYPE (resolved_type)
2277 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2278 &pinfo, top_level);
2279 break;
2280 }
2281
5537b577 2282 case TYPE_CODE_ARRAY:
df25ebbd 2283 resolved_type = resolve_dynamic_array (type, addr_stack);
5537b577
JK
2284 break;
2285
2286 case TYPE_CODE_RANGE:
df25ebbd 2287 resolved_type = resolve_dynamic_range (type, addr_stack);
5537b577
JK
2288 break;
2289
2290 case TYPE_CODE_UNION:
df25ebbd 2291 resolved_type = resolve_dynamic_union (type, addr_stack);
5537b577
JK
2292 break;
2293
2294 case TYPE_CODE_STRUCT:
df25ebbd 2295 resolved_type = resolve_dynamic_struct (type, addr_stack);
5537b577
JK
2296 break;
2297 }
6f8a3220 2298 }
80180f79 2299
3cdcd0ce
JB
2300 /* Resolve data_location attribute. */
2301 prop = TYPE_DATA_LOCATION (resolved_type);
63e43d3a
PMR
2302 if (prop != NULL
2303 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
3cdcd0ce 2304 {
d9823cbb
KB
2305 TYPE_DYN_PROP_ADDR (prop) = value;
2306 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
3cdcd0ce 2307 }
3cdcd0ce 2308
80180f79
SA
2309 return resolved_type;
2310}
2311
d98b7a16
TT
2312/* See gdbtypes.h */
2313
2314struct type *
c3345124
JB
2315resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2316 CORE_ADDR addr)
d98b7a16 2317{
c3345124
JB
2318 struct property_addr_info pinfo
2319 = {check_typedef (type), valaddr, addr, NULL};
df25ebbd 2320
ee715b5a 2321 return resolve_dynamic_type_internal (type, &pinfo, 1);
d98b7a16
TT
2322}
2323
d9823cbb
KB
2324/* See gdbtypes.h */
2325
2326struct dynamic_prop *
2327get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2328{
2329 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2330
2331 while (node != NULL)
2332 {
2333 if (node->prop_kind == prop_kind)
283a9958 2334 return &node->prop;
d9823cbb
KB
2335 node = node->next;
2336 }
2337 return NULL;
2338}
2339
2340/* See gdbtypes.h */
2341
2342void
2343add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
50a82047 2344 struct type *type)
d9823cbb
KB
2345{
2346 struct dynamic_prop_list *temp;
2347
2348 gdb_assert (TYPE_OBJFILE_OWNED (type));
2349
50a82047
TT
2350 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2351 struct dynamic_prop_list);
d9823cbb 2352 temp->prop_kind = prop_kind;
283a9958 2353 temp->prop = prop;
d9823cbb
KB
2354 temp->next = TYPE_DYN_PROP_LIST (type);
2355
2356 TYPE_DYN_PROP_LIST (type) = temp;
2357}
2358
9920b434
BH
2359/* Remove dynamic property from TYPE in case it exists. */
2360
2361void
2362remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2363 struct type *type)
2364{
2365 struct dynamic_prop_list *prev_node, *curr_node;
2366
2367 curr_node = TYPE_DYN_PROP_LIST (type);
2368 prev_node = NULL;
2369
2370 while (NULL != curr_node)
2371 {
2372 if (curr_node->prop_kind == prop_kind)
2373 {
2374 /* Update the linked list but don't free anything.
2375 The property was allocated on objstack and it is not known
2376 if we are on top of it. Nevertheless, everything is released
2377 when the complete objstack is freed. */
2378 if (NULL == prev_node)
2379 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2380 else
2381 prev_node->next = curr_node->next;
2382
2383 return;
2384 }
2385
2386 prev_node = curr_node;
2387 curr_node = curr_node->next;
2388 }
2389}
d9823cbb 2390
92163a10
JK
2391/* Find the real type of TYPE. This function returns the real type,
2392 after removing all layers of typedefs, and completing opaque or stub
2393 types. Completion changes the TYPE argument, but stripping of
2394 typedefs does not.
2395
2396 Instance flags (e.g. const/volatile) are preserved as typedefs are
2397 stripped. If necessary a new qualified form of the underlying type
2398 is created.
2399
2400 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2401 not been computed and we're either in the middle of reading symbols, or
2402 there was no name for the typedef in the debug info.
2403
9bc118a5
DE
2404 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2405 QUITs in the symbol reading code can also throw.
2406 Thus this function can throw an exception.
2407
92163a10
JK
2408 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2409 the target type.
c906108c
SS
2410
2411 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 2412 we can find a full definition in some other file. If so, copy this
7ba81444
MS
2413 definition, so we can use it in future. There used to be a comment
2414 (but not any code) that if we don't find a full definition, we'd
2415 set a flag so we don't spend time in the future checking the same
2416 type. That would be a mistake, though--we might load in more
92163a10 2417 symbols which contain a full definition for the type. */
c906108c
SS
2418
2419struct type *
a02fd225 2420check_typedef (struct type *type)
c906108c
SS
2421{
2422 struct type *orig_type = type;
92163a10
JK
2423 /* While we're removing typedefs, we don't want to lose qualifiers.
2424 E.g., const/volatile. */
2425 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 2426
423c0af8
MS
2427 gdb_assert (type);
2428
c906108c
SS
2429 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2430 {
2431 if (!TYPE_TARGET_TYPE (type))
2432 {
0d5cff50 2433 const char *name;
c906108c
SS
2434 struct symbol *sym;
2435
2436 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 2437 reading a symtab. Infinite recursion is one danger. */
c906108c 2438 if (currently_reading_symtab)
92163a10 2439 return make_qualified_type (type, instance_flags, NULL);
c906108c 2440
a737d952 2441 name = TYPE_NAME (type);
e86ca25f
TT
2442 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2443 VAR_DOMAIN as appropriate? */
c906108c
SS
2444 if (name == NULL)
2445 {
23136709 2446 stub_noname_complaint ();
92163a10 2447 return make_qualified_type (type, instance_flags, NULL);
c906108c 2448 }
d12307c1 2449 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
2450 if (sym)
2451 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 2452 else /* TYPE_CODE_UNDEF */
e9bb382b 2453 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
2454 }
2455 type = TYPE_TARGET_TYPE (type);
c906108c 2456
92163a10
JK
2457 /* Preserve the instance flags as we traverse down the typedef chain.
2458
2459 Handling address spaces/classes is nasty, what do we do if there's a
2460 conflict?
2461 E.g., what if an outer typedef marks the type as class_1 and an inner
2462 typedef marks the type as class_2?
2463 This is the wrong place to do such error checking. We leave it to
2464 the code that created the typedef in the first place to flag the
2465 error. We just pick the outer address space (akin to letting the
2466 outer cast in a chain of casting win), instead of assuming
2467 "it can't happen". */
2468 {
2469 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2470 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2471 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2472 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2473
2474 /* Treat code vs data spaces and address classes separately. */
2475 if ((instance_flags & ALL_SPACES) != 0)
2476 new_instance_flags &= ~ALL_SPACES;
2477 if ((instance_flags & ALL_CLASSES) != 0)
2478 new_instance_flags &= ~ALL_CLASSES;
2479
2480 instance_flags |= new_instance_flags;
2481 }
2482 }
a02fd225 2483
7ba81444
MS
2484 /* If this is a struct/class/union with no fields, then check
2485 whether a full definition exists somewhere else. This is for
2486 systems where a type definition with no fields is issued for such
2487 types, instead of identifying them as stub types in the first
2488 place. */
c5aa993b 2489
7ba81444
MS
2490 if (TYPE_IS_OPAQUE (type)
2491 && opaque_type_resolution
2492 && !currently_reading_symtab)
c906108c 2493 {
a737d952 2494 const char *name = TYPE_NAME (type);
c5aa993b 2495 struct type *newtype;
d8734c88 2496
c906108c
SS
2497 if (name == NULL)
2498 {
23136709 2499 stub_noname_complaint ();
92163a10 2500 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2501 }
2502 newtype = lookup_transparent_type (name);
ad766c0a 2503
c906108c 2504 if (newtype)
ad766c0a 2505 {
7ba81444
MS
2506 /* If the resolved type and the stub are in the same
2507 objfile, then replace the stub type with the real deal.
2508 But if they're in separate objfiles, leave the stub
2509 alone; we'll just look up the transparent type every time
2510 we call check_typedef. We can't create pointers between
2511 types allocated to different objfiles, since they may
2512 have different lifetimes. Trying to copy NEWTYPE over to
2513 TYPE's objfile is pointless, too, since you'll have to
2514 move over any other types NEWTYPE refers to, which could
2515 be an unbounded amount of stuff. */
ad766c0a 2516 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
2517 type = make_qualified_type (newtype,
2518 TYPE_INSTANCE_FLAGS (type),
2519 type);
ad766c0a
JB
2520 else
2521 type = newtype;
2522 }
c906108c 2523 }
7ba81444
MS
2524 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2525 types. */
74a9bb82 2526 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 2527 {
a737d952 2528 const char *name = TYPE_NAME (type);
e86ca25f
TT
2529 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2530 as appropriate? */
c906108c 2531 struct symbol *sym;
d8734c88 2532
c906108c
SS
2533 if (name == NULL)
2534 {
23136709 2535 stub_noname_complaint ();
92163a10 2536 return make_qualified_type (type, instance_flags, NULL);
c906108c 2537 }
d12307c1 2538 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c 2539 if (sym)
c26f2453
JB
2540 {
2541 /* Same as above for opaque types, we can replace the stub
92163a10 2542 with the complete type only if they are in the same
c26f2453
JB
2543 objfile. */
2544 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
2545 type = make_qualified_type (SYMBOL_TYPE (sym),
2546 TYPE_INSTANCE_FLAGS (type),
2547 type);
c26f2453
JB
2548 else
2549 type = SYMBOL_TYPE (sym);
2550 }
c906108c
SS
2551 }
2552
74a9bb82 2553 if (TYPE_TARGET_STUB (type))
c906108c 2554 {
c906108c
SS
2555 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2556
74a9bb82 2557 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 2558 {
73e2eb35 2559 /* Nothing we can do. */
c5aa993b 2560 }
c906108c
SS
2561 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2562 {
2563 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 2564 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
2565 }
2566 }
92163a10
JK
2567
2568 type = make_qualified_type (type, instance_flags, NULL);
2569
7ba81444 2570 /* Cache TYPE_LENGTH for future use. */
c906108c 2571 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2572
c906108c
SS
2573 return type;
2574}
2575
7ba81444 2576/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2577 occurs, silently return a void type. */
c91ecb25 2578
b9362cc7 2579static struct type *
48319d1f 2580safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2581{
2582 struct ui_file *saved_gdb_stderr;
34365054 2583 struct type *type = NULL; /* Initialize to keep gcc happy. */
c91ecb25 2584
7ba81444 2585 /* Suppress error messages. */
c91ecb25 2586 saved_gdb_stderr = gdb_stderr;
d7e74731 2587 gdb_stderr = &null_stream;
c91ecb25 2588
7ba81444 2589 /* Call parse_and_eval_type() without fear of longjmp()s. */
492d29ea 2590 TRY
8e7b59a5
KS
2591 {
2592 type = parse_and_eval_type (p, length);
2593 }
492d29ea
PA
2594 CATCH (except, RETURN_MASK_ERROR)
2595 {
2596 type = builtin_type (gdbarch)->builtin_void;
2597 }
2598 END_CATCH
c91ecb25 2599
7ba81444 2600 /* Stop suppressing error messages. */
c91ecb25
ND
2601 gdb_stderr = saved_gdb_stderr;
2602
2603 return type;
2604}
2605
c906108c
SS
2606/* Ugly hack to convert method stubs into method types.
2607
7ba81444
MS
2608 He ain't kiddin'. This demangles the name of the method into a
2609 string including argument types, parses out each argument type,
2610 generates a string casting a zero to that type, evaluates the
2611 string, and stuffs the resulting type into an argtype vector!!!
2612 Then it knows the type of the whole function (including argument
2613 types for overloading), which info used to be in the stab's but was
2614 removed to hack back the space required for them. */
c906108c 2615
de17c821 2616static void
fba45db2 2617check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2618{
50810684 2619 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2620 struct fn_field *f;
2621 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2622 char *demangled_name = gdb_demangle (mangled_name,
2623 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2624 char *argtypetext, *p;
2625 int depth = 0, argcount = 1;
ad2f7632 2626 struct field *argtypes;
c906108c
SS
2627 struct type *mtype;
2628
2629 /* Make sure we got back a function string that we can use. */
2630 if (demangled_name)
2631 p = strchr (demangled_name, '(');
502dcf4e
AC
2632 else
2633 p = NULL;
c906108c
SS
2634
2635 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2636 error (_("Internal: Cannot demangle mangled name `%s'."),
2637 mangled_name);
c906108c
SS
2638
2639 /* Now, read in the parameters that define this type. */
2640 p += 1;
2641 argtypetext = p;
2642 while (*p)
2643 {
070ad9f0 2644 if (*p == '(' || *p == '<')
c906108c
SS
2645 {
2646 depth += 1;
2647 }
070ad9f0 2648 else if (*p == ')' || *p == '>')
c906108c
SS
2649 {
2650 depth -= 1;
2651 }
2652 else if (*p == ',' && depth == 0)
2653 {
2654 argcount += 1;
2655 }
2656
2657 p += 1;
2658 }
2659
ad2f7632 2660 /* If we read one argument and it was ``void'', don't count it. */
61012eef 2661 if (startswith (argtypetext, "(void)"))
ad2f7632 2662 argcount -= 1;
c906108c 2663
ad2f7632
DJ
2664 /* We need one extra slot, for the THIS pointer. */
2665
2666 argtypes = (struct field *)
2667 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2668 p = argtypetext;
4a1970e4
DJ
2669
2670 /* Add THIS pointer for non-static methods. */
2671 f = TYPE_FN_FIELDLIST1 (type, method_id);
2672 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2673 argcount = 0;
2674 else
2675 {
ad2f7632 2676 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
2677 argcount = 1;
2678 }
c906108c 2679
0963b4bd 2680 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
2681 {
2682 depth = 0;
2683 while (*p)
2684 {
2685 if (depth <= 0 && (*p == ',' || *p == ')'))
2686 {
ad2f7632
DJ
2687 /* Avoid parsing of ellipsis, they will be handled below.
2688 Also avoid ``void'' as above. */
2689 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2690 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 2691 {
ad2f7632 2692 argtypes[argcount].type =
48319d1f 2693 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
2694 argcount += 1;
2695 }
2696 argtypetext = p + 1;
2697 }
2698
070ad9f0 2699 if (*p == '(' || *p == '<')
c906108c
SS
2700 {
2701 depth += 1;
2702 }
070ad9f0 2703 else if (*p == ')' || *p == '>')
c906108c
SS
2704 {
2705 depth -= 1;
2706 }
2707
2708 p += 1;
2709 }
2710 }
2711
c906108c
SS
2712 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2713
2714 /* Now update the old "stub" type into a real type. */
2715 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
09e2d7c7
DE
2716 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2717 We want a method (TYPE_CODE_METHOD). */
2718 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2719 argtypes, argcount, p[-2] == '.');
876cecd0 2720 TYPE_STUB (mtype) = 0;
c906108c 2721 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632
DJ
2722
2723 xfree (demangled_name);
c906108c
SS
2724}
2725
7ba81444
MS
2726/* This is the external interface to check_stub_method, above. This
2727 function unstubs all of the signatures for TYPE's METHOD_ID method
2728 name. After calling this function TYPE_FN_FIELD_STUB will be
2729 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2730 correct.
de17c821
DJ
2731
2732 This function unfortunately can not die until stabs do. */
2733
2734void
2735check_stub_method_group (struct type *type, int method_id)
2736{
2737 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2738 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
de17c821 2739
041be526
SM
2740 for (int j = 0; j < len; j++)
2741 {
2742 if (TYPE_FN_FIELD_STUB (f, j))
de17c821 2743 check_stub_method (type, method_id, j);
de17c821
DJ
2744 }
2745}
2746
9655fd1a
JK
2747/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2748const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
2749
2750void
fba45db2 2751allocate_cplus_struct_type (struct type *type)
c906108c 2752{
b4ba55a1
JB
2753 if (HAVE_CPLUS_STRUCT (type))
2754 /* Structure was already allocated. Nothing more to do. */
2755 return;
2756
2757 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2758 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2759 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2760 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
ae6ae975 2761 set_type_vptr_fieldno (type, -1);
c906108c
SS
2762}
2763
b4ba55a1
JB
2764const struct gnat_aux_type gnat_aux_default =
2765 { NULL };
2766
2767/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2768 and allocate the associated gnat-specific data. The gnat-specific
2769 data is also initialized to gnat_aux_default. */
5212577a 2770
b4ba55a1
JB
2771void
2772allocate_gnat_aux_type (struct type *type)
2773{
2774 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2775 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2776 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2777 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2778}
2779
ae438bc5
UW
2780/* Helper function to initialize a newly allocated type. Set type code
2781 to CODE and initialize the type-specific fields accordingly. */
2782
2783static void
2784set_type_code (struct type *type, enum type_code code)
2785{
2786 TYPE_CODE (type) = code;
2787
2788 switch (code)
2789 {
2790 case TYPE_CODE_STRUCT:
2791 case TYPE_CODE_UNION:
2792 case TYPE_CODE_NAMESPACE:
2793 INIT_CPLUS_SPECIFIC (type);
2794 break;
2795 case TYPE_CODE_FLT:
2796 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2797 break;
2798 case TYPE_CODE_FUNC:
2799 INIT_FUNC_SPECIFIC (type);
2800 break;
2801 }
2802}
2803
19f392bc
UW
2804/* Helper function to verify floating-point format and size.
2805 BIT is the type size in bits; if BIT equals -1, the size is
2806 determined by the floatformat. Returns size to be used. */
2807
2808static int
0db7851f 2809verify_floatformat (int bit, const struct floatformat *floatformat)
19f392bc 2810{
0db7851f 2811 gdb_assert (floatformat != NULL);
9b790ce7 2812
19f392bc 2813 if (bit == -1)
0db7851f 2814 bit = floatformat->totalsize;
19f392bc 2815
0db7851f
UW
2816 gdb_assert (bit >= 0);
2817 gdb_assert (bit >= floatformat->totalsize);
19f392bc
UW
2818
2819 return bit;
2820}
2821
0db7851f
UW
2822/* Return the floating-point format for a floating-point variable of
2823 type TYPE. */
2824
2825const struct floatformat *
2826floatformat_from_type (const struct type *type)
2827{
2828 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2829 gdb_assert (TYPE_FLOATFORMAT (type));
2830 return TYPE_FLOATFORMAT (type);
2831}
2832
c906108c
SS
2833/* Helper function to initialize the standard scalar types.
2834
86f62fd7
TT
2835 If NAME is non-NULL, then it is used to initialize the type name.
2836 Note that NAME is not copied; it is required to have a lifetime at
2837 least as long as OBJFILE. */
c906108c
SS
2838
2839struct type *
77b7c781 2840init_type (struct objfile *objfile, enum type_code code, int bit,
19f392bc 2841 const char *name)
c906108c 2842{
52f0bd74 2843 struct type *type;
c906108c
SS
2844
2845 type = alloc_type (objfile);
ae438bc5 2846 set_type_code (type, code);
77b7c781
UW
2847 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2848 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
86f62fd7 2849 TYPE_NAME (type) = name;
c906108c 2850
c16abbde 2851 return type;
c906108c 2852}
19f392bc 2853
46a4882b
PA
2854/* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2855 to use with variables that have no debug info. NAME is the type
2856 name. */
2857
2858static struct type *
2859init_nodebug_var_type (struct objfile *objfile, const char *name)
2860{
2861 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2862}
2863
19f392bc
UW
2864/* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2865 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2866 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2867
2868struct type *
2869init_integer_type (struct objfile *objfile,
2870 int bit, int unsigned_p, const char *name)
2871{
2872 struct type *t;
2873
77b7c781 2874 t = init_type (objfile, TYPE_CODE_INT, bit, name);
19f392bc
UW
2875 if (unsigned_p)
2876 TYPE_UNSIGNED (t) = 1;
2877
2878 return t;
2879}
2880
2881/* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2882 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2883 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2884
2885struct type *
2886init_character_type (struct objfile *objfile,
2887 int bit, int unsigned_p, const char *name)
2888{
2889 struct type *t;
2890
77b7c781 2891 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
19f392bc
UW
2892 if (unsigned_p)
2893 TYPE_UNSIGNED (t) = 1;
2894
2895 return t;
2896}
2897
2898/* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2899 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2900 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2901
2902struct type *
2903init_boolean_type (struct objfile *objfile,
2904 int bit, int unsigned_p, const char *name)
2905{
2906 struct type *t;
2907
77b7c781 2908 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
19f392bc
UW
2909 if (unsigned_p)
2910 TYPE_UNSIGNED (t) = 1;
2911
2912 return t;
2913}
2914
2915/* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2916 BIT is the type size in bits; if BIT equals -1, the size is
2917 determined by the floatformat. NAME is the type name. Set the
2918 TYPE_FLOATFORMAT from FLOATFORMATS. */
2919
2920struct type *
2921init_float_type (struct objfile *objfile,
2922 int bit, const char *name,
2923 const struct floatformat **floatformats)
2924{
0db7851f
UW
2925 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2926 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
19f392bc
UW
2927 struct type *t;
2928
0db7851f 2929 bit = verify_floatformat (bit, fmt);
77b7c781 2930 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
0db7851f 2931 TYPE_FLOATFORMAT (t) = fmt;
19f392bc
UW
2932
2933 return t;
2934}
2935
2936/* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2937 BIT is the type size in bits. NAME is the type name. */
2938
2939struct type *
2940init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2941{
2942 struct type *t;
2943
77b7c781 2944 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
19f392bc
UW
2945 return t;
2946}
2947
2948/* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2949 NAME is the type name. TARGET_TYPE is the component float type. */
2950
2951struct type *
2952init_complex_type (struct objfile *objfile,
2953 const char *name, struct type *target_type)
2954{
2955 struct type *t;
2956
2957 t = init_type (objfile, TYPE_CODE_COMPLEX,
77b7c781 2958 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
19f392bc
UW
2959 TYPE_TARGET_TYPE (t) = target_type;
2960 return t;
2961}
2962
2963/* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2964 BIT is the pointer type size in bits. NAME is the type name.
2965 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2966 TYPE_UNSIGNED flag. */
2967
2968struct type *
2969init_pointer_type (struct objfile *objfile,
2970 int bit, const char *name, struct type *target_type)
2971{
2972 struct type *t;
2973
77b7c781 2974 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
19f392bc
UW
2975 TYPE_TARGET_TYPE (t) = target_type;
2976 TYPE_UNSIGNED (t) = 1;
2977 return t;
2978}
2979
2b4424c3
TT
2980/* See gdbtypes.h. */
2981
2982unsigned
2983type_raw_align (struct type *type)
2984{
2985 if (type->align_log2 != 0)
2986 return 1 << (type->align_log2 - 1);
2987 return 0;
2988}
2989
2990/* See gdbtypes.h. */
2991
2992unsigned
2993type_align (struct type *type)
2994{
2995 unsigned raw_align = type_raw_align (type);
2996 if (raw_align != 0)
2997 return raw_align;
2998
2999 ULONGEST align = 0;
3000 switch (TYPE_CODE (type))
3001 {
3002 case TYPE_CODE_PTR:
3003 case TYPE_CODE_FUNC:
3004 case TYPE_CODE_FLAGS:
3005 case TYPE_CODE_INT:
75ba10dc 3006 case TYPE_CODE_RANGE:
2b4424c3
TT
3007 case TYPE_CODE_FLT:
3008 case TYPE_CODE_ENUM:
3009 case TYPE_CODE_REF:
3010 case TYPE_CODE_RVALUE_REF:
3011 case TYPE_CODE_CHAR:
3012 case TYPE_CODE_BOOL:
3013 case TYPE_CODE_DECFLOAT:
70cd633e
AB
3014 case TYPE_CODE_METHODPTR:
3015 case TYPE_CODE_MEMBERPTR:
2b4424c3
TT
3016 {
3017 struct gdbarch *arch = get_type_arch (type);
3018 align = gdbarch_type_align (arch, type);
3019 }
3020 break;
3021
3022 case TYPE_CODE_ARRAY:
3023 case TYPE_CODE_COMPLEX:
3024 case TYPE_CODE_TYPEDEF:
3025 align = type_align (TYPE_TARGET_TYPE (type));
3026 break;
3027
3028 case TYPE_CODE_STRUCT:
3029 case TYPE_CODE_UNION:
3030 {
3031 if (TYPE_NFIELDS (type) == 0)
3032 {
3033 /* An empty struct has alignment 1. */
3034 align = 1;
3035 break;
3036 }
3037 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3038 {
3039 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3040 if (f_align == 0)
3041 {
3042 /* Don't pretend we know something we don't. */
3043 align = 0;
3044 break;
3045 }
3046 if (f_align > align)
3047 align = f_align;
3048 }
3049 }
3050 break;
3051
3052 case TYPE_CODE_SET:
2b4424c3
TT
3053 case TYPE_CODE_STRING:
3054 /* Not sure what to do here, and these can't appear in C or C++
3055 anyway. */
3056 break;
3057
2b4424c3
TT
3058 case TYPE_CODE_VOID:
3059 align = 1;
3060 break;
3061
3062 case TYPE_CODE_ERROR:
3063 case TYPE_CODE_METHOD:
3064 default:
3065 break;
3066 }
3067
3068 if ((align & (align - 1)) != 0)
3069 {
3070 /* Not a power of 2, so pass. */
3071 align = 0;
3072 }
3073
3074 return align;
3075}
3076
3077/* See gdbtypes.h. */
3078
3079bool
3080set_type_align (struct type *type, ULONGEST align)
3081{
3082 /* Must be a power of 2. Zero is ok. */
3083 gdb_assert ((align & (align - 1)) == 0);
3084
3085 unsigned result = 0;
3086 while (align != 0)
3087 {
3088 ++result;
3089 align >>= 1;
3090 }
3091
3092 if (result >= (1 << TYPE_ALIGN_BITS))
3093 return false;
3094
3095 type->align_log2 = result;
3096 return true;
3097}
3098
5212577a
DE
3099\f
3100/* Queries on types. */
c906108c 3101
c906108c 3102int
fba45db2 3103can_dereference (struct type *t)
c906108c 3104{
7ba81444
MS
3105 /* FIXME: Should we return true for references as well as
3106 pointers? */
f168693b 3107 t = check_typedef (t);
c906108c
SS
3108 return
3109 (t != NULL
3110 && TYPE_CODE (t) == TYPE_CODE_PTR
3111 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3112}
3113
adf40b2e 3114int
fba45db2 3115is_integral_type (struct type *t)
adf40b2e 3116{
f168693b 3117 t = check_typedef (t);
adf40b2e
JM
3118 return
3119 ((t != NULL)
d4f3574e
SS
3120 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3121 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 3122 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
3123 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3124 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3125 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
3126}
3127
70100014
UW
3128int
3129is_floating_type (struct type *t)
3130{
3131 t = check_typedef (t);
3132 return
3133 ((t != NULL)
3134 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3135 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3136}
3137
e09342b5
TJB
3138/* Return true if TYPE is scalar. */
3139
220475ed 3140int
e09342b5
TJB
3141is_scalar_type (struct type *type)
3142{
f168693b 3143 type = check_typedef (type);
e09342b5
TJB
3144
3145 switch (TYPE_CODE (type))
3146 {
3147 case TYPE_CODE_ARRAY:
3148 case TYPE_CODE_STRUCT:
3149 case TYPE_CODE_UNION:
3150 case TYPE_CODE_SET:
3151 case TYPE_CODE_STRING:
e09342b5
TJB
3152 return 0;
3153 default:
3154 return 1;
3155 }
3156}
3157
3158/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
3159 the memory layout of a scalar type. E.g., an array or struct with only
3160 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
3161
3162int
3163is_scalar_type_recursive (struct type *t)
3164{
f168693b 3165 t = check_typedef (t);
e09342b5
TJB
3166
3167 if (is_scalar_type (t))
3168 return 1;
3169 /* Are we dealing with an array or string of known dimensions? */
3170 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3171 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3172 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3173 {
3174 LONGEST low_bound, high_bound;
3175 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3176
3177 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3178
3179 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3180 }
3181 /* Are we dealing with a struct with one element? */
3182 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3183 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3184 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3185 {
3186 int i, n = TYPE_NFIELDS (t);
3187
3188 /* If all elements of the union are scalar, then the union is scalar. */
3189 for (i = 0; i < n; i++)
3190 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3191 return 0;
3192
3193 return 1;
3194 }
3195
3196 return 0;
3197}
3198
6c659fc2
SC
3199/* Return true is T is a class or a union. False otherwise. */
3200
3201int
3202class_or_union_p (const struct type *t)
3203{
3204 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3205 || TYPE_CODE (t) == TYPE_CODE_UNION);
3206}
3207
4e8f195d
TT
3208/* A helper function which returns true if types A and B represent the
3209 "same" class type. This is true if the types have the same main
3210 type, or the same name. */
3211
3212int
3213class_types_same_p (const struct type *a, const struct type *b)
3214{
3215 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3216 || (TYPE_NAME (a) && TYPE_NAME (b)
3217 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3218}
3219
a9d5ef47
SW
3220/* If BASE is an ancestor of DCLASS return the distance between them.
3221 otherwise return -1;
3222 eg:
3223
3224 class A {};
3225 class B: public A {};
3226 class C: public B {};
3227 class D: C {};
3228
3229 distance_to_ancestor (A, A, 0) = 0
3230 distance_to_ancestor (A, B, 0) = 1
3231 distance_to_ancestor (A, C, 0) = 2
3232 distance_to_ancestor (A, D, 0) = 3
3233
3234 If PUBLIC is 1 then only public ancestors are considered,
3235 and the function returns the distance only if BASE is a public ancestor
3236 of DCLASS.
3237 Eg:
3238
0963b4bd 3239 distance_to_ancestor (A, D, 1) = -1. */
c906108c 3240
0526b37a 3241static int
fe978cb0 3242distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
c906108c
SS
3243{
3244 int i;
a9d5ef47 3245 int d;
c5aa993b 3246
f168693b
SM
3247 base = check_typedef (base);
3248 dclass = check_typedef (dclass);
c906108c 3249
4e8f195d 3250 if (class_types_same_p (base, dclass))
a9d5ef47 3251 return 0;
c906108c
SS
3252
3253 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 3254 {
fe978cb0 3255 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
0526b37a
SW
3256 continue;
3257
fe978cb0 3258 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
a9d5ef47
SW
3259 if (d >= 0)
3260 return 1 + d;
4e8f195d 3261 }
c906108c 3262
a9d5ef47 3263 return -1;
c906108c 3264}
4e8f195d 3265
0526b37a
SW
3266/* Check whether BASE is an ancestor or base class or DCLASS
3267 Return 1 if so, and 0 if not.
3268 Note: If BASE and DCLASS are of the same type, this function
3269 will return 1. So for some class A, is_ancestor (A, A) will
3270 return 1. */
3271
3272int
3273is_ancestor (struct type *base, struct type *dclass)
3274{
a9d5ef47 3275 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
3276}
3277
4e8f195d
TT
3278/* Like is_ancestor, but only returns true when BASE is a public
3279 ancestor of DCLASS. */
3280
3281int
3282is_public_ancestor (struct type *base, struct type *dclass)
3283{
a9d5ef47 3284 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
3285}
3286
3287/* A helper function for is_unique_ancestor. */
3288
3289static int
3290is_unique_ancestor_worker (struct type *base, struct type *dclass,
3291 int *offset,
8af8e3bc
PA
3292 const gdb_byte *valaddr, int embedded_offset,
3293 CORE_ADDR address, struct value *val)
4e8f195d
TT
3294{
3295 int i, count = 0;
3296
f168693b
SM
3297 base = check_typedef (base);
3298 dclass = check_typedef (dclass);
4e8f195d
TT
3299
3300 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3301 {
8af8e3bc
PA
3302 struct type *iter;
3303 int this_offset;
4e8f195d 3304
8af8e3bc
PA
3305 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3306
3307 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3308 address, val);
4e8f195d
TT
3309
3310 if (class_types_same_p (base, iter))
3311 {
3312 /* If this is the first subclass, set *OFFSET and set count
3313 to 1. Otherwise, if this is at the same offset as
3314 previous instances, do nothing. Otherwise, increment
3315 count. */
3316 if (*offset == -1)
3317 {
3318 *offset = this_offset;
3319 count = 1;
3320 }
3321 else if (this_offset == *offset)
3322 {
3323 /* Nothing. */
3324 }
3325 else
3326 ++count;
3327 }
3328 else
3329 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
3330 valaddr,
3331 embedded_offset + this_offset,
3332 address, val);
4e8f195d
TT
3333 }
3334
3335 return count;
3336}
3337
3338/* Like is_ancestor, but only returns true if BASE is a unique base
3339 class of the type of VAL. */
3340
3341int
3342is_unique_ancestor (struct type *base, struct value *val)
3343{
3344 int offset = -1;
3345
3346 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
3347 value_contents_for_printing (val),
3348 value_embedded_offset (val),
3349 value_address (val), val) == 1;
4e8f195d
TT
3350}
3351
c906108c 3352\f
5212577a 3353/* Overload resolution. */
c906108c 3354
6403aeea
SW
3355/* Return the sum of the rank of A with the rank of B. */
3356
3357struct rank
3358sum_ranks (struct rank a, struct rank b)
3359{
3360 struct rank c;
3361 c.rank = a.rank + b.rank;
a9d5ef47 3362 c.subrank = a.subrank + b.subrank;
6403aeea
SW
3363 return c;
3364}
3365
3366/* Compare rank A and B and return:
3367 0 if a = b
3368 1 if a is better than b
3369 -1 if b is better than a. */
3370
3371int
3372compare_ranks (struct rank a, struct rank b)
3373{
3374 if (a.rank == b.rank)
a9d5ef47
SW
3375 {
3376 if (a.subrank == b.subrank)
3377 return 0;
3378 if (a.subrank < b.subrank)
3379 return 1;
3380 if (a.subrank > b.subrank)
3381 return -1;
3382 }
6403aeea
SW
3383
3384 if (a.rank < b.rank)
3385 return 1;
3386
0963b4bd 3387 /* a.rank > b.rank */
6403aeea
SW
3388 return -1;
3389}
c5aa993b 3390
0963b4bd 3391/* Functions for overload resolution begin here. */
c906108c
SS
3392
3393/* Compare two badness vectors A and B and return the result.
7ba81444
MS
3394 0 => A and B are identical
3395 1 => A and B are incomparable
3396 2 => A is better than B
3397 3 => A is worse than B */
c906108c
SS
3398
3399int
82ceee50 3400compare_badness (const badness_vector &a, const badness_vector &b)
c906108c
SS
3401{
3402 int i;
3403 int tmp;
c5aa993b
JM
3404 short found_pos = 0; /* any positives in c? */
3405 short found_neg = 0; /* any negatives in c? */
3406
82ceee50
PA
3407 /* differing sizes => incomparable */
3408 if (a.size () != b.size ())
c906108c
SS
3409 return 1;
3410
c5aa993b 3411 /* Subtract b from a */
82ceee50 3412 for (i = 0; i < a.size (); i++)
c906108c 3413 {
82ceee50 3414 tmp = compare_ranks (b[i], a[i]);
c906108c 3415 if (tmp > 0)
c5aa993b 3416 found_pos = 1;
c906108c 3417 else if (tmp < 0)
c5aa993b 3418 found_neg = 1;
c906108c
SS
3419 }
3420
3421 if (found_pos)
3422 {
3423 if (found_neg)
c5aa993b 3424 return 1; /* incomparable */
c906108c 3425 else
c5aa993b 3426 return 3; /* A > B */
c906108c 3427 }
c5aa993b
JM
3428 else
3429 /* no positives */
c906108c
SS
3430 {
3431 if (found_neg)
c5aa993b 3432 return 2; /* A < B */
c906108c 3433 else
c5aa993b 3434 return 0; /* A == B */
c906108c
SS
3435 }
3436}
3437
6b1747cd 3438/* Rank a function by comparing its parameter types (PARMS), to the
82ceee50
PA
3439 types of an argument list (ARGS). Return the badness vector. This
3440 has ARGS.size() + 1 entries. */
c906108c 3441
82ceee50 3442badness_vector
6b1747cd
PA
3443rank_function (gdb::array_view<type *> parms,
3444 gdb::array_view<value *> args)
c906108c 3445{
82ceee50
PA
3446 /* add 1 for the length-match rank. */
3447 badness_vector bv;
3448 bv.reserve (1 + args.size ());
c906108c
SS
3449
3450 /* First compare the lengths of the supplied lists.
7ba81444 3451 If there is a mismatch, set it to a high value. */
c5aa993b 3452
c906108c 3453 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
3454 arguments and ellipsis parameter lists, we should consider those
3455 and rank the length-match more finely. */
c906108c 3456
82ceee50
PA
3457 bv.push_back ((args.size () != parms.size ())
3458 ? LENGTH_MISMATCH_BADNESS
3459 : EXACT_MATCH_BADNESS);
c906108c 3460
0963b4bd 3461 /* Now rank all the parameters of the candidate function. */
82ceee50
PA
3462 size_t min_len = std::min (parms.size (), args.size ());
3463
3464 for (size_t i = 0; i < min_len; i++)
3465 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3466 args[i]));
c906108c 3467
0963b4bd 3468 /* If more arguments than parameters, add dummy entries. */
82ceee50
PA
3469 for (size_t i = min_len; i < args.size (); i++)
3470 bv.push_back (TOO_FEW_PARAMS_BADNESS);
c906108c
SS
3471
3472 return bv;
3473}
3474
973ccf8b
DJ
3475/* Compare the names of two integer types, assuming that any sign
3476 qualifiers have been checked already. We do it this way because
3477 there may be an "int" in the name of one of the types. */
3478
3479static int
3480integer_types_same_name_p (const char *first, const char *second)
3481{
3482 int first_p, second_p;
3483
7ba81444
MS
3484 /* If both are shorts, return 1; if neither is a short, keep
3485 checking. */
973ccf8b
DJ
3486 first_p = (strstr (first, "short") != NULL);
3487 second_p = (strstr (second, "short") != NULL);
3488 if (first_p && second_p)
3489 return 1;
3490 if (first_p || second_p)
3491 return 0;
3492
3493 /* Likewise for long. */
3494 first_p = (strstr (first, "long") != NULL);
3495 second_p = (strstr (second, "long") != NULL);
3496 if (first_p && second_p)
3497 return 1;
3498 if (first_p || second_p)
3499 return 0;
3500
3501 /* Likewise for char. */
3502 first_p = (strstr (first, "char") != NULL);
3503 second_p = (strstr (second, "char") != NULL);
3504 if (first_p && second_p)
3505 return 1;
3506 if (first_p || second_p)
3507 return 0;
3508
3509 /* They must both be ints. */
3510 return 1;
3511}
3512
894882e3
TT
3513/* Compares type A to type B. Returns true if they represent the same
3514 type, false otherwise. */
7062b0a0 3515
894882e3 3516bool
7062b0a0
SW
3517types_equal (struct type *a, struct type *b)
3518{
3519 /* Identical type pointers. */
3520 /* However, this still doesn't catch all cases of same type for b
3521 and a. The reason is that builtin types are different from
3522 the same ones constructed from the object. */
3523 if (a == b)
894882e3 3524 return true;
7062b0a0
SW
3525
3526 /* Resolve typedefs */
3527 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3528 a = check_typedef (a);
3529 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3530 b = check_typedef (b);
3531
3532 /* If after resolving typedefs a and b are not of the same type
3533 code then they are not equal. */
3534 if (TYPE_CODE (a) != TYPE_CODE (b))
894882e3 3535 return false;
7062b0a0
SW
3536
3537 /* If a and b are both pointers types or both reference types then
3538 they are equal of the same type iff the objects they refer to are
3539 of the same type. */
3540 if (TYPE_CODE (a) == TYPE_CODE_PTR
3541 || TYPE_CODE (a) == TYPE_CODE_REF)
3542 return types_equal (TYPE_TARGET_TYPE (a),
3543 TYPE_TARGET_TYPE (b));
3544
0963b4bd 3545 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
3546 are exactly the same. This happens when we generate method
3547 stubs. The types won't point to the same address, but they
0963b4bd 3548 really are the same. */
7062b0a0
SW
3549
3550 if (TYPE_NAME (a) && TYPE_NAME (b)
3551 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
894882e3 3552 return true;
7062b0a0
SW
3553
3554 /* Check if identical after resolving typedefs. */
3555 if (a == b)
894882e3 3556 return true;
7062b0a0 3557
9ce98649
TT
3558 /* Two function types are equal if their argument and return types
3559 are equal. */
3560 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3561 {
3562 int i;
3563
3564 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
894882e3 3565 return false;
9ce98649
TT
3566
3567 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
894882e3 3568 return false;
9ce98649
TT
3569
3570 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3571 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
894882e3 3572 return false;
9ce98649 3573
894882e3 3574 return true;
9ce98649
TT
3575 }
3576
894882e3 3577 return false;
7062b0a0 3578}
ca092b61
DE
3579\f
3580/* Deep comparison of types. */
3581
3582/* An entry in the type-equality bcache. */
3583
894882e3 3584struct type_equality_entry
ca092b61 3585{
894882e3
TT
3586 type_equality_entry (struct type *t1, struct type *t2)
3587 : type1 (t1),
3588 type2 (t2)
3589 {
3590 }
ca092b61 3591
894882e3
TT
3592 struct type *type1, *type2;
3593};
ca092b61 3594
894882e3
TT
3595/* A helper function to compare two strings. Returns true if they are
3596 the same, false otherwise. Handles NULLs properly. */
ca092b61 3597
894882e3 3598static bool
ca092b61
DE
3599compare_maybe_null_strings (const char *s, const char *t)
3600{
894882e3
TT
3601 if (s == NULL || t == NULL)
3602 return s == t;
ca092b61
DE
3603 return strcmp (s, t) == 0;
3604}
3605
3606/* A helper function for check_types_worklist that checks two types for
894882e3
TT
3607 "deep" equality. Returns true if the types are considered the
3608 same, false otherwise. */
ca092b61 3609
894882e3 3610static bool
ca092b61 3611check_types_equal (struct type *type1, struct type *type2,
894882e3 3612 std::vector<type_equality_entry> *worklist)
ca092b61 3613{
f168693b
SM
3614 type1 = check_typedef (type1);
3615 type2 = check_typedef (type2);
ca092b61
DE
3616
3617 if (type1 == type2)
894882e3 3618 return true;
ca092b61
DE
3619
3620 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3621 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3622 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3623 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3624 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3625 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3626 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3627 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3628 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
894882e3 3629 return false;
ca092b61 3630
e86ca25f 3631 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
894882e3 3632 return false;
ca092b61 3633 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
894882e3 3634 return false;
ca092b61
DE
3635
3636 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3637 {
0f59d5fc 3638 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
894882e3 3639 return false;
ca092b61
DE
3640 }
3641 else
3642 {
3643 int i;
3644
3645 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3646 {
3647 const struct field *field1 = &TYPE_FIELD (type1, i);
3648 const struct field *field2 = &TYPE_FIELD (type2, i);
ca092b61
DE
3649
3650 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3651 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3652 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
894882e3 3653 return false;
ca092b61
DE
3654 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3655 FIELD_NAME (*field2)))
894882e3 3656 return false;
ca092b61
DE
3657 switch (FIELD_LOC_KIND (*field1))
3658 {
3659 case FIELD_LOC_KIND_BITPOS:
3660 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
894882e3 3661 return false;
ca092b61
DE
3662 break;
3663 case FIELD_LOC_KIND_ENUMVAL:
3664 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
894882e3 3665 return false;
ca092b61
DE
3666 break;
3667 case FIELD_LOC_KIND_PHYSADDR:
3668 if (FIELD_STATIC_PHYSADDR (*field1)
3669 != FIELD_STATIC_PHYSADDR (*field2))
894882e3 3670 return false;
ca092b61
DE
3671 break;
3672 case FIELD_LOC_KIND_PHYSNAME:
3673 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3674 FIELD_STATIC_PHYSNAME (*field2)))
894882e3 3675 return false;
ca092b61
DE
3676 break;
3677 case FIELD_LOC_KIND_DWARF_BLOCK:
3678 {
3679 struct dwarf2_locexpr_baton *block1, *block2;
3680
3681 block1 = FIELD_DWARF_BLOCK (*field1);
3682 block2 = FIELD_DWARF_BLOCK (*field2);
3683 if (block1->per_cu != block2->per_cu
3684 || block1->size != block2->size
3685 || memcmp (block1->data, block2->data, block1->size) != 0)
894882e3 3686 return false;
ca092b61
DE
3687 }
3688 break;
3689 default:
3690 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3691 "%d by check_types_equal"),
3692 FIELD_LOC_KIND (*field1));
3693 }
3694
894882e3 3695 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
ca092b61
DE
3696 }
3697 }
3698
3699 if (TYPE_TARGET_TYPE (type1) != NULL)
3700 {
ca092b61 3701 if (TYPE_TARGET_TYPE (type2) == NULL)
894882e3 3702 return false;
ca092b61 3703
894882e3
TT
3704 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
3705 TYPE_TARGET_TYPE (type2));
ca092b61
DE
3706 }
3707 else if (TYPE_TARGET_TYPE (type2) != NULL)
894882e3 3708 return false;
ca092b61 3709
894882e3 3710 return true;
ca092b61
DE
3711}
3712
894882e3
TT
3713/* Check types on a worklist for equality. Returns false if any pair
3714 is not equal, true if they are all considered equal. */
ca092b61 3715
894882e3
TT
3716static bool
3717check_types_worklist (std::vector<type_equality_entry> *worklist,
ca092b61
DE
3718 struct bcache *cache)
3719{
894882e3 3720 while (!worklist->empty ())
ca092b61 3721 {
ca092b61
DE
3722 int added;
3723
894882e3
TT
3724 struct type_equality_entry entry = std::move (worklist->back ());
3725 worklist->pop_back ();
ca092b61
DE
3726
3727 /* If the type pair has already been visited, we know it is
3728 ok. */
3729 bcache_full (&entry, sizeof (entry), cache, &added);
3730 if (!added)
3731 continue;
3732
894882e3
TT
3733 if (!check_types_equal (entry.type1, entry.type2, worklist))
3734 return false;
ca092b61 3735 }
7062b0a0 3736
894882e3 3737 return true;
ca092b61
DE
3738}
3739
894882e3
TT
3740/* Return true if types TYPE1 and TYPE2 are equal, as determined by a
3741 "deep comparison". Otherwise return false. */
ca092b61 3742
894882e3 3743bool
ca092b61
DE
3744types_deeply_equal (struct type *type1, struct type *type2)
3745{
6c63c96a 3746 struct gdb_exception except = exception_none;
894882e3 3747 bool result = false;
ca092b61 3748 struct bcache *cache;
894882e3 3749 std::vector<type_equality_entry> worklist;
ca092b61
DE
3750
3751 gdb_assert (type1 != NULL && type2 != NULL);
3752
3753 /* Early exit for the simple case. */
3754 if (type1 == type2)
894882e3 3755 return true;
ca092b61
DE
3756
3757 cache = bcache_xmalloc (NULL, NULL);
3758
894882e3 3759 worklist.emplace_back (type1, type2);
ca092b61 3760
6c63c96a
PA
3761 /* check_types_worklist calls several nested helper functions, some
3762 of which can raise a GDB exception, so we just check and rethrow
3763 here. If there is a GDB exception, a comparison is not capable
3764 (or trusted), so exit. */
492d29ea 3765 TRY
ca092b61
DE
3766 {
3767 result = check_types_worklist (&worklist, cache);
3768 }
6c63c96a 3769 CATCH (ex, RETURN_MASK_ALL)
492d29ea 3770 {
6c63c96a 3771 except = ex;
492d29ea
PA
3772 }
3773 END_CATCH
ca092b61 3774
6c63c96a 3775 bcache_xfree (cache);
6c63c96a
PA
3776
3777 /* Rethrow if there was a problem. */
3778 if (except.reason < 0)
3779 throw_exception (except);
3780
ca092b61
DE
3781 return result;
3782}
3f2f83dd
KB
3783
3784/* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3785 Otherwise return one. */
3786
3787int
3788type_not_allocated (const struct type *type)
3789{
3790 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3791
3792 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3793 && !TYPE_DYN_PROP_ADDR (prop));
3794}
3795
3796/* Associated status of type TYPE. Return zero if type TYPE is associated.
3797 Otherwise return one. */
3798
3799int
3800type_not_associated (const struct type *type)
3801{
3802 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3803
3804 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3805 && !TYPE_DYN_PROP_ADDR (prop));
3806}
ca092b61 3807\f
c906108c
SS
3808/* Compare one type (PARM) for compatibility with another (ARG).
3809 * PARM is intended to be the parameter type of a function; and
3810 * ARG is the supplied argument's type. This function tests if
3811 * the latter can be converted to the former.
da096638 3812 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
3813 *
3814 * Return 0 if they are identical types;
3815 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
3816 * PARM is to ARG. The higher the return value, the worse the match.
3817 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 3818
6403aeea 3819struct rank
da096638 3820rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 3821{
a9d5ef47 3822 struct rank rank = {0,0};
7062b0a0 3823
c906108c
SS
3824 /* Resolve typedefs */
3825 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3826 parm = check_typedef (parm);
3827 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3828 arg = check_typedef (arg);
3829
e15c3eb4 3830 if (TYPE_IS_REFERENCE (parm) && value != NULL)
15c0a2a9 3831 {
e15c3eb4
KS
3832 if (VALUE_LVAL (value) == not_lval)
3833 {
3834 /* Rvalues should preferably bind to rvalue references or const
3835 lvalue references. */
3836 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3837 rank.subrank = REFERENCE_CONVERSION_RVALUE;
3838 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
3839 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
3840 else
3841 return INCOMPATIBLE_TYPE_BADNESS;
3842 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
3843 }
3844 else
3845 {
3846 /* Lvalues should prefer lvalue overloads. */
3847 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3848 {
3849 rank.subrank = REFERENCE_CONVERSION_RVALUE;
3850 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
3851 }
3852 }
15c0a2a9
AV
3853 }
3854
3855 if (types_equal (parm, arg))
15c0a2a9 3856 {
e15c3eb4
KS
3857 struct type *t1 = parm;
3858 struct type *t2 = arg;
15c0a2a9 3859
e15c3eb4
KS
3860 /* For pointers and references, compare target type. */
3861 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
3862 {
3863 t1 = TYPE_TARGET_TYPE (parm);
3864 t2 = TYPE_TARGET_TYPE (arg);
3865 }
15c0a2a9 3866
e15c3eb4
KS
3867 /* Make sure they are CV equal, too. */
3868 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3869 rank.subrank |= CV_CONVERSION_CONST;
3870 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3871 rank.subrank |= CV_CONVERSION_VOLATILE;
3872 if (rank.subrank != 0)
3873 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3874 return EXACT_MATCH_BADNESS;
15c0a2a9
AV
3875 }
3876
db577aea 3877 /* See through references, since we can almost make non-references
7ba81444 3878 references. */
aa006118
AV
3879
3880 if (TYPE_IS_REFERENCE (arg))
da096638 3881 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
6403aeea 3882 REFERENCE_CONVERSION_BADNESS));
aa006118 3883 if (TYPE_IS_REFERENCE (parm))
da096638 3884 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
6403aeea 3885 REFERENCE_CONVERSION_BADNESS));
5d161b24 3886 if (overload_debug)
7ba81444
MS
3887 /* Debugging only. */
3888 fprintf_filtered (gdb_stderr,
3889 "------ Arg is %s [%d], parm is %s [%d]\n",
3890 TYPE_NAME (arg), TYPE_CODE (arg),
3891 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 3892
0963b4bd 3893 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
3894
3895 switch (TYPE_CODE (parm))
3896 {
c5aa993b
JM
3897 case TYPE_CODE_PTR:
3898 switch (TYPE_CODE (arg))
3899 {
3900 case TYPE_CODE_PTR:
7062b0a0
SW
3901
3902 /* Allowed pointer conversions are:
3903 (a) pointer to void-pointer conversion. */
3904 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
c5aa993b 3905 return VOID_PTR_CONVERSION_BADNESS;
7062b0a0
SW
3906
3907 /* (b) pointer to ancestor-pointer conversion. */
a9d5ef47
SW
3908 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3909 TYPE_TARGET_TYPE (arg),
3910 0);
3911 if (rank.subrank >= 0)
3912 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
7062b0a0
SW
3913
3914 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3915 case TYPE_CODE_ARRAY:
e15c3eb4
KS
3916 {
3917 struct type *t1 = TYPE_TARGET_TYPE (parm);
3918 struct type *t2 = TYPE_TARGET_TYPE (arg);
3919
3920 if (types_equal (t1, t2))
3921 {
3922 /* Make sure they are CV equal. */
3923 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3924 rank.subrank |= CV_CONVERSION_CONST;
3925 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3926 rank.subrank |= CV_CONVERSION_VOLATILE;
3927 if (rank.subrank != 0)
3928 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3929 return EXACT_MATCH_BADNESS;
3930 }
3931 return INCOMPATIBLE_TYPE_BADNESS;
3932 }
c5aa993b 3933 case TYPE_CODE_FUNC:
da096638 3934 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
c5aa993b 3935 case TYPE_CODE_INT:
a451cb65 3936 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
da096638 3937 {
a451cb65
KS
3938 if (value_as_long (value) == 0)
3939 {
3940 /* Null pointer conversion: allow it to be cast to a pointer.
3941 [4.10.1 of C++ standard draft n3290] */
3942 return NULL_POINTER_CONVERSION_BADNESS;
3943 }
3944 else
3945 {
3946 /* If type checking is disabled, allow the conversion. */
3947 if (!strict_type_checking)
3948 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3949 }
da096638
KS
3950 }
3951 /* fall through */
c5aa993b 3952 case TYPE_CODE_ENUM:
4f2aea11 3953 case TYPE_CODE_FLAGS:
c5aa993b
JM
3954 case TYPE_CODE_CHAR:
3955 case TYPE_CODE_RANGE:
3956 case TYPE_CODE_BOOL:
c5aa993b
JM
3957 default:
3958 return INCOMPATIBLE_TYPE_BADNESS;
3959 }
3960 case TYPE_CODE_ARRAY:
3961 switch (TYPE_CODE (arg))
3962 {
3963 case TYPE_CODE_PTR:
3964 case TYPE_CODE_ARRAY:
7ba81444 3965 return rank_one_type (TYPE_TARGET_TYPE (parm),
da096638 3966 TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3967 default:
3968 return INCOMPATIBLE_TYPE_BADNESS;
3969 }
3970 case TYPE_CODE_FUNC:
3971 switch (TYPE_CODE (arg))
3972 {
3973 case TYPE_CODE_PTR: /* funcptr -> func */
da096638 3974 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3975 default:
3976 return INCOMPATIBLE_TYPE_BADNESS;
3977 }
3978 case TYPE_CODE_INT:
3979 switch (TYPE_CODE (arg))
3980 {
3981 case TYPE_CODE_INT:
3982 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3983 {
3984 /* Deal with signed, unsigned, and plain chars and
7ba81444 3985 signed and unsigned ints. */
c5aa993b
JM
3986 if (TYPE_NOSIGN (parm))
3987 {
0963b4bd 3988 /* This case only for character types. */
7ba81444 3989 if (TYPE_NOSIGN (arg))
6403aeea 3990 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
7ba81444
MS
3991 else /* signed/unsigned char -> plain char */
3992 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3993 }
3994 else if (TYPE_UNSIGNED (parm))
3995 {
3996 if (TYPE_UNSIGNED (arg))
3997 {
7ba81444
MS
3998 /* unsigned int -> unsigned int, or
3999 unsigned long -> unsigned long */
4000 if (integer_types_same_name_p (TYPE_NAME (parm),
4001 TYPE_NAME (arg)))
6403aeea 4002 return EXACT_MATCH_BADNESS;
7ba81444
MS
4003 else if (integer_types_same_name_p (TYPE_NAME (arg),
4004 "int")
4005 && integer_types_same_name_p (TYPE_NAME (parm),
4006 "long"))
3e43a32a
MS
4007 /* unsigned int -> unsigned long */
4008 return INTEGER_PROMOTION_BADNESS;
c5aa993b 4009 else
3e43a32a
MS
4010 /* unsigned long -> unsigned int */
4011 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
4012 }
4013 else
4014 {
7ba81444
MS
4015 if (integer_types_same_name_p (TYPE_NAME (arg),
4016 "long")
4017 && integer_types_same_name_p (TYPE_NAME (parm),
4018 "int"))
3e43a32a
MS
4019 /* signed long -> unsigned int */
4020 return INTEGER_CONVERSION_BADNESS;
c5aa993b 4021 else
3e43a32a
MS
4022 /* signed int/long -> unsigned int/long */
4023 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
4024 }
4025 }
4026 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4027 {
7ba81444
MS
4028 if (integer_types_same_name_p (TYPE_NAME (parm),
4029 TYPE_NAME (arg)))
6403aeea 4030 return EXACT_MATCH_BADNESS;
7ba81444
MS
4031 else if (integer_types_same_name_p (TYPE_NAME (arg),
4032 "int")
4033 && integer_types_same_name_p (TYPE_NAME (parm),
4034 "long"))
c5aa993b
JM
4035 return INTEGER_PROMOTION_BADNESS;
4036 else
1c5cb38e 4037 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
4038 }
4039 else
1c5cb38e 4040 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
4041 }
4042 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4043 return INTEGER_PROMOTION_BADNESS;
4044 else
1c5cb38e 4045 return INTEGER_CONVERSION_BADNESS;
c5aa993b 4046 case TYPE_CODE_ENUM:
4f2aea11 4047 case TYPE_CODE_FLAGS:
c5aa993b
JM
4048 case TYPE_CODE_CHAR:
4049 case TYPE_CODE_RANGE:
4050 case TYPE_CODE_BOOL:
3d567982
TT
4051 if (TYPE_DECLARED_CLASS (arg))
4052 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b
JM
4053 return INTEGER_PROMOTION_BADNESS;
4054 case TYPE_CODE_FLT:
4055 return INT_FLOAT_CONVERSION_BADNESS;
4056 case TYPE_CODE_PTR:
4057 return NS_POINTER_CONVERSION_BADNESS;
4058 default:
4059 return INCOMPATIBLE_TYPE_BADNESS;
4060 }
4061 break;
4062 case TYPE_CODE_ENUM:
4063 switch (TYPE_CODE (arg))
4064 {
4065 case TYPE_CODE_INT:
4066 case TYPE_CODE_CHAR:
4067 case TYPE_CODE_RANGE:
4068 case TYPE_CODE_BOOL:
4069 case TYPE_CODE_ENUM:
3d567982
TT
4070 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4071 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 4072 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
4073 case TYPE_CODE_FLT:
4074 return INT_FLOAT_CONVERSION_BADNESS;
4075 default:
4076 return INCOMPATIBLE_TYPE_BADNESS;
4077 }
4078 break;
4079 case TYPE_CODE_CHAR:
4080 switch (TYPE_CODE (arg))
4081 {
4082 case TYPE_CODE_RANGE:
4083 case TYPE_CODE_BOOL:
4084 case TYPE_CODE_ENUM:
3d567982
TT
4085 if (TYPE_DECLARED_CLASS (arg))
4086 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 4087 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
4088 case TYPE_CODE_FLT:
4089 return INT_FLOAT_CONVERSION_BADNESS;
4090 case TYPE_CODE_INT:
4091 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 4092 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
4093 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4094 return INTEGER_PROMOTION_BADNESS;
86a73007 4095 /* fall through */
c5aa993b 4096 case TYPE_CODE_CHAR:
7ba81444
MS
4097 /* Deal with signed, unsigned, and plain chars for C++ and
4098 with int cases falling through from previous case. */
c5aa993b
JM
4099 if (TYPE_NOSIGN (parm))
4100 {
4101 if (TYPE_NOSIGN (arg))
6403aeea 4102 return EXACT_MATCH_BADNESS;
c5aa993b 4103 else
1c5cb38e 4104 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
4105 }
4106 else if (TYPE_UNSIGNED (parm))
4107 {
4108 if (TYPE_UNSIGNED (arg))
6403aeea 4109 return EXACT_MATCH_BADNESS;
c5aa993b
JM
4110 else
4111 return INTEGER_PROMOTION_BADNESS;
4112 }
4113 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
6403aeea 4114 return EXACT_MATCH_BADNESS;
c5aa993b 4115 else
1c5cb38e 4116 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
4117 default:
4118 return INCOMPATIBLE_TYPE_BADNESS;
4119 }
4120 break;
4121 case TYPE_CODE_RANGE:
4122 switch (TYPE_CODE (arg))
4123 {
4124 case TYPE_CODE_INT:
4125 case TYPE_CODE_CHAR:
4126 case TYPE_CODE_RANGE:
4127 case TYPE_CODE_BOOL:
4128 case TYPE_CODE_ENUM:
1c5cb38e 4129 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
4130 case TYPE_CODE_FLT:
4131 return INT_FLOAT_CONVERSION_BADNESS;
4132 default:
4133 return INCOMPATIBLE_TYPE_BADNESS;
4134 }
4135 break;
4136 case TYPE_CODE_BOOL:
4137 switch (TYPE_CODE (arg))
4138 {
5b4f6e25
KS
4139 /* n3290 draft, section 4.12.1 (conv.bool):
4140
4141 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4142 pointer to member type can be converted to a prvalue of type
4143 bool. A zero value, null pointer value, or null member pointer
4144 value is converted to false; any other value is converted to
4145 true. A prvalue of type std::nullptr_t can be converted to a
4146 prvalue of type bool; the resulting value is false." */
c5aa993b
JM
4147 case TYPE_CODE_INT:
4148 case TYPE_CODE_CHAR:
c5aa993b
JM
4149 case TYPE_CODE_ENUM:
4150 case TYPE_CODE_FLT:
5b4f6e25 4151 case TYPE_CODE_MEMBERPTR:
c5aa993b 4152 case TYPE_CODE_PTR:
5b4f6e25
KS
4153 return BOOL_CONVERSION_BADNESS;
4154 case TYPE_CODE_RANGE:
4155 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 4156 case TYPE_CODE_BOOL:
6403aeea 4157 return EXACT_MATCH_BADNESS;
c5aa993b
JM
4158 default:
4159 return INCOMPATIBLE_TYPE_BADNESS;
4160 }
4161 break;
4162 case TYPE_CODE_FLT:
4163 switch (TYPE_CODE (arg))
4164 {
4165 case TYPE_CODE_FLT:
4166 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4167 return FLOAT_PROMOTION_BADNESS;
4168 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
6403aeea 4169 return EXACT_MATCH_BADNESS;
c5aa993b
JM
4170 else
4171 return FLOAT_CONVERSION_BADNESS;
4172 case TYPE_CODE_INT:
4173 case TYPE_CODE_BOOL:
4174 case TYPE_CODE_ENUM:
4175 case TYPE_CODE_RANGE:
4176 case TYPE_CODE_CHAR:
4177 return INT_FLOAT_CONVERSION_BADNESS;
4178 default:
4179 return INCOMPATIBLE_TYPE_BADNESS;
4180 }
4181 break;
4182 case TYPE_CODE_COMPLEX:
4183 switch (TYPE_CODE (arg))
7ba81444 4184 { /* Strictly not needed for C++, but... */
c5aa993b
JM
4185 case TYPE_CODE_FLT:
4186 return FLOAT_PROMOTION_BADNESS;
4187 case TYPE_CODE_COMPLEX:
6403aeea 4188 return EXACT_MATCH_BADNESS;
c5aa993b
JM
4189 default:
4190 return INCOMPATIBLE_TYPE_BADNESS;
4191 }
4192 break;
4193 case TYPE_CODE_STRUCT:
c5aa993b
JM
4194 switch (TYPE_CODE (arg))
4195 {
4196 case TYPE_CODE_STRUCT:
4197 /* Check for derivation */
a9d5ef47
SW
4198 rank.subrank = distance_to_ancestor (parm, arg, 0);
4199 if (rank.subrank >= 0)
4200 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
86a73007 4201 /* fall through */
c5aa993b
JM
4202 default:
4203 return INCOMPATIBLE_TYPE_BADNESS;
4204 }
4205 break;
4206 case TYPE_CODE_UNION:
4207 switch (TYPE_CODE (arg))
4208 {
4209 case TYPE_CODE_UNION:
4210 default:
4211 return INCOMPATIBLE_TYPE_BADNESS;
4212 }
4213 break;
0d5de010 4214 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
4215 switch (TYPE_CODE (arg))
4216 {
4217 default:
4218 return INCOMPATIBLE_TYPE_BADNESS;
4219 }
4220 break;
4221 case TYPE_CODE_METHOD:
4222 switch (TYPE_CODE (arg))
4223 {
4224
4225 default:
4226 return INCOMPATIBLE_TYPE_BADNESS;
4227 }
4228 break;
4229 case TYPE_CODE_REF:
4230 switch (TYPE_CODE (arg))
4231 {
4232
4233 default:
4234 return INCOMPATIBLE_TYPE_BADNESS;
4235 }
4236
4237 break;
4238 case TYPE_CODE_SET:
4239 switch (TYPE_CODE (arg))
4240 {
4241 /* Not in C++ */
4242 case TYPE_CODE_SET:
7ba81444 4243 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
da096638 4244 TYPE_FIELD_TYPE (arg, 0), NULL);
c5aa993b
JM
4245 default:
4246 return INCOMPATIBLE_TYPE_BADNESS;
4247 }
4248 break;
4249 case TYPE_CODE_VOID:
4250 default:
4251 return INCOMPATIBLE_TYPE_BADNESS;
4252 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
4253}
4254
0963b4bd 4255/* End of functions for overload resolution. */
5212577a
DE
4256\f
4257/* Routines to pretty-print types. */
c906108c 4258
c906108c 4259static void
fba45db2 4260print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
4261{
4262 int bitno;
4263
4264 for (bitno = 0; bitno < nbits; bitno++)
4265 {
4266 if ((bitno % 8) == 0)
4267 {
4268 puts_filtered (" ");
4269 }
4270 if (B_TST (bits, bitno))
a3f17187 4271 printf_filtered (("1"));
c906108c 4272 else
a3f17187 4273 printf_filtered (("0"));
c906108c
SS
4274 }
4275}
4276
ad2f7632 4277/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
4278 include it since we may get into a infinitely recursive
4279 situation. */
c906108c
SS
4280
4281static void
4c9e8482 4282print_args (struct field *args, int nargs, int spaces)
c906108c
SS
4283{
4284 if (args != NULL)
4285 {
ad2f7632
DJ
4286 int i;
4287
4288 for (i = 0; i < nargs; i++)
4c9e8482
DE
4289 {
4290 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4291 args[i].name != NULL ? args[i].name : "<NULL>");
4292 recursive_dump_type (args[i].type, spaces + 2);
4293 }
c906108c
SS
4294 }
4295}
4296
d6a843b5
JK
4297int
4298field_is_static (struct field *f)
4299{
4300 /* "static" fields are the fields whose location is not relative
4301 to the address of the enclosing struct. It would be nice to
4302 have a dedicated flag that would be set for static fields when
4303 the type is being created. But in practice, checking the field
254e6b9e 4304 loc_kind should give us an accurate answer. */
d6a843b5
JK
4305 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4306 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4307}
4308
c906108c 4309static void
fba45db2 4310dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
4311{
4312 int method_idx;
4313 int overload_idx;
4314 struct fn_field *f;
4315
4316 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 4317 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
4318 printf_filtered ("\n");
4319 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4320 {
4321 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4322 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4323 method_idx,
4324 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
4325 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4326 gdb_stdout);
a3f17187 4327 printf_filtered (_(") length %d\n"),
c906108c
SS
4328 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4329 for (overload_idx = 0;
4330 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4331 overload_idx++)
4332 {
4333 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4334 overload_idx,
4335 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
4336 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4337 gdb_stdout);
c906108c
SS
4338 printf_filtered (")\n");
4339 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
4340 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4341 gdb_stdout);
c906108c
SS
4342 printf_filtered ("\n");
4343
4344 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4345 spaces + 8 + 2);
4346
4347 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
4348 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4349 gdb_stdout);
c906108c 4350 printf_filtered ("\n");
4c9e8482
DE
4351 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4352 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4353 spaces + 8 + 2);
c906108c 4354 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
4355 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4356 gdb_stdout);
c906108c
SS
4357 printf_filtered ("\n");
4358
4359 printfi_filtered (spaces + 8, "is_const %d\n",
4360 TYPE_FN_FIELD_CONST (f, overload_idx));
4361 printfi_filtered (spaces + 8, "is_volatile %d\n",
4362 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4363 printfi_filtered (spaces + 8, "is_private %d\n",
4364 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4365 printfi_filtered (spaces + 8, "is_protected %d\n",
4366 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4367 printfi_filtered (spaces + 8, "is_stub %d\n",
4368 TYPE_FN_FIELD_STUB (f, overload_idx));
4369 printfi_filtered (spaces + 8, "voffset %u\n",
4370 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4371 }
4372 }
4373}
4374
4375static void
fba45db2 4376print_cplus_stuff (struct type *type, int spaces)
c906108c 4377{
ae6ae975
DE
4378 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4379 printfi_filtered (spaces, "vptr_basetype ");
4380 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4381 puts_filtered ("\n");
4382 if (TYPE_VPTR_BASETYPE (type) != NULL)
4383 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4384
c906108c
SS
4385 printfi_filtered (spaces, "n_baseclasses %d\n",
4386 TYPE_N_BASECLASSES (type));
4387 printfi_filtered (spaces, "nfn_fields %d\n",
4388 TYPE_NFN_FIELDS (type));
c906108c
SS
4389 if (TYPE_N_BASECLASSES (type) > 0)
4390 {
4391 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4392 TYPE_N_BASECLASSES (type));
7ba81444
MS
4393 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4394 gdb_stdout);
c906108c
SS
4395 printf_filtered (")");
4396
4397 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4398 TYPE_N_BASECLASSES (type));
4399 puts_filtered ("\n");
4400 }
4401 if (TYPE_NFIELDS (type) > 0)
4402 {
4403 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4404 {
7ba81444
MS
4405 printfi_filtered (spaces,
4406 "private_field_bits (%d bits at *",
c906108c 4407 TYPE_NFIELDS (type));
7ba81444
MS
4408 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4409 gdb_stdout);
c906108c
SS
4410 printf_filtered (")");
4411 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4412 TYPE_NFIELDS (type));
4413 puts_filtered ("\n");
4414 }
4415 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4416 {
7ba81444
MS
4417 printfi_filtered (spaces,
4418 "protected_field_bits (%d bits at *",
c906108c 4419 TYPE_NFIELDS (type));
7ba81444
MS
4420 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4421 gdb_stdout);
c906108c
SS
4422 printf_filtered (")");
4423 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4424 TYPE_NFIELDS (type));
4425 puts_filtered ("\n");
4426 }
4427 }
4428 if (TYPE_NFN_FIELDS (type) > 0)
4429 {
4430 dump_fn_fieldlists (type, spaces);
4431 }
4432}
4433
b4ba55a1
JB
4434/* Print the contents of the TYPE's type_specific union, assuming that
4435 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4436
4437static void
4438print_gnat_stuff (struct type *type, int spaces)
4439{
4440 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4441
8cd00c59
PMR
4442 if (descriptive_type == NULL)
4443 printfi_filtered (spaces + 2, "no descriptive type\n");
4444 else
4445 {
4446 printfi_filtered (spaces + 2, "descriptive type\n");
4447 recursive_dump_type (descriptive_type, spaces + 4);
4448 }
b4ba55a1
JB
4449}
4450
c906108c
SS
4451static struct obstack dont_print_type_obstack;
4452
4453void
fba45db2 4454recursive_dump_type (struct type *type, int spaces)
c906108c
SS
4455{
4456 int idx;
4457
4458 if (spaces == 0)
4459 obstack_begin (&dont_print_type_obstack, 0);
4460
4461 if (TYPE_NFIELDS (type) > 0
b4ba55a1 4462 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
4463 {
4464 struct type **first_dont_print
7ba81444 4465 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 4466
7ba81444
MS
4467 int i = (struct type **)
4468 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
4469
4470 while (--i >= 0)
4471 {
4472 if (type == first_dont_print[i])
4473 {
4474 printfi_filtered (spaces, "type node ");
d4f3574e 4475 gdb_print_host_address (type, gdb_stdout);
a3f17187 4476 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
4477 return;
4478 }
4479 }
4480
4481 obstack_ptr_grow (&dont_print_type_obstack, type);
4482 }
4483
4484 printfi_filtered (spaces, "type node ");
d4f3574e 4485 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
4486 printf_filtered ("\n");
4487 printfi_filtered (spaces, "name '%s' (",
4488 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 4489 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 4490 printf_filtered (")\n");
c906108c
SS
4491 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4492 switch (TYPE_CODE (type))
4493 {
c5aa993b
JM
4494 case TYPE_CODE_UNDEF:
4495 printf_filtered ("(TYPE_CODE_UNDEF)");
4496 break;
4497 case TYPE_CODE_PTR:
4498 printf_filtered ("(TYPE_CODE_PTR)");
4499 break;
4500 case TYPE_CODE_ARRAY:
4501 printf_filtered ("(TYPE_CODE_ARRAY)");
4502 break;
4503 case TYPE_CODE_STRUCT:
4504 printf_filtered ("(TYPE_CODE_STRUCT)");
4505 break;
4506 case TYPE_CODE_UNION:
4507 printf_filtered ("(TYPE_CODE_UNION)");
4508 break;
4509 case TYPE_CODE_ENUM:
4510 printf_filtered ("(TYPE_CODE_ENUM)");
4511 break;
4f2aea11
MK
4512 case TYPE_CODE_FLAGS:
4513 printf_filtered ("(TYPE_CODE_FLAGS)");
4514 break;
c5aa993b
JM
4515 case TYPE_CODE_FUNC:
4516 printf_filtered ("(TYPE_CODE_FUNC)");
4517 break;
4518 case TYPE_CODE_INT:
4519 printf_filtered ("(TYPE_CODE_INT)");
4520 break;
4521 case TYPE_CODE_FLT:
4522 printf_filtered ("(TYPE_CODE_FLT)");
4523 break;
4524 case TYPE_CODE_VOID:
4525 printf_filtered ("(TYPE_CODE_VOID)");
4526 break;
4527 case TYPE_CODE_SET:
4528 printf_filtered ("(TYPE_CODE_SET)");
4529 break;
4530 case TYPE_CODE_RANGE:
4531 printf_filtered ("(TYPE_CODE_RANGE)");
4532 break;
4533 case TYPE_CODE_STRING:
4534 printf_filtered ("(TYPE_CODE_STRING)");
4535 break;
4536 case TYPE_CODE_ERROR:
4537 printf_filtered ("(TYPE_CODE_ERROR)");
4538 break;
0d5de010
DJ
4539 case TYPE_CODE_MEMBERPTR:
4540 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4541 break;
4542 case TYPE_CODE_METHODPTR:
4543 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
4544 break;
4545 case TYPE_CODE_METHOD:
4546 printf_filtered ("(TYPE_CODE_METHOD)");
4547 break;
4548 case TYPE_CODE_REF:
4549 printf_filtered ("(TYPE_CODE_REF)");
4550 break;
4551 case TYPE_CODE_CHAR:
4552 printf_filtered ("(TYPE_CODE_CHAR)");
4553 break;
4554 case TYPE_CODE_BOOL:
4555 printf_filtered ("(TYPE_CODE_BOOL)");
4556 break;
e9e79dd9
FF
4557 case TYPE_CODE_COMPLEX:
4558 printf_filtered ("(TYPE_CODE_COMPLEX)");
4559 break;
c5aa993b
JM
4560 case TYPE_CODE_TYPEDEF:
4561 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4562 break;
5c4e30ca
DC
4563 case TYPE_CODE_NAMESPACE:
4564 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4565 break;
c5aa993b
JM
4566 default:
4567 printf_filtered ("(UNKNOWN TYPE CODE)");
4568 break;
c906108c
SS
4569 }
4570 puts_filtered ("\n");
4571 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9bb382b
UW
4572 if (TYPE_OBJFILE_OWNED (type))
4573 {
4574 printfi_filtered (spaces, "objfile ");
4575 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4576 }
4577 else
4578 {
4579 printfi_filtered (spaces, "gdbarch ");
4580 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4581 }
c906108c
SS
4582 printf_filtered ("\n");
4583 printfi_filtered (spaces, "target_type ");
d4f3574e 4584 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
4585 printf_filtered ("\n");
4586 if (TYPE_TARGET_TYPE (type) != NULL)
4587 {
4588 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4589 }
4590 printfi_filtered (spaces, "pointer_type ");
d4f3574e 4591 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
4592 printf_filtered ("\n");
4593 printfi_filtered (spaces, "reference_type ");
d4f3574e 4594 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 4595 printf_filtered ("\n");
2fdde8f8
DJ
4596 printfi_filtered (spaces, "type_chain ");
4597 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 4598 printf_filtered ("\n");
7ba81444
MS
4599 printfi_filtered (spaces, "instance_flags 0x%x",
4600 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
4601 if (TYPE_CONST (type))
4602 {
a9ff5f12 4603 puts_filtered (" TYPE_CONST");
2fdde8f8
DJ
4604 }
4605 if (TYPE_VOLATILE (type))
4606 {
a9ff5f12 4607 puts_filtered (" TYPE_VOLATILE");
2fdde8f8
DJ
4608 }
4609 if (TYPE_CODE_SPACE (type))
4610 {
a9ff5f12 4611 puts_filtered (" TYPE_CODE_SPACE");
2fdde8f8
DJ
4612 }
4613 if (TYPE_DATA_SPACE (type))
4614 {
a9ff5f12 4615 puts_filtered (" TYPE_DATA_SPACE");
2fdde8f8 4616 }
8b2dbe47
KB
4617 if (TYPE_ADDRESS_CLASS_1 (type))
4618 {
a9ff5f12 4619 puts_filtered (" TYPE_ADDRESS_CLASS_1");
8b2dbe47
KB
4620 }
4621 if (TYPE_ADDRESS_CLASS_2 (type))
4622 {
a9ff5f12 4623 puts_filtered (" TYPE_ADDRESS_CLASS_2");
8b2dbe47 4624 }
06d66ee9
TT
4625 if (TYPE_RESTRICT (type))
4626 {
a9ff5f12 4627 puts_filtered (" TYPE_RESTRICT");
06d66ee9 4628 }
a2c2acaf
MW
4629 if (TYPE_ATOMIC (type))
4630 {
a9ff5f12 4631 puts_filtered (" TYPE_ATOMIC");
a2c2acaf 4632 }
2fdde8f8 4633 puts_filtered ("\n");
876cecd0
TT
4634
4635 printfi_filtered (spaces, "flags");
762a036f 4636 if (TYPE_UNSIGNED (type))
c906108c 4637 {
a9ff5f12 4638 puts_filtered (" TYPE_UNSIGNED");
c906108c 4639 }
762a036f
FF
4640 if (TYPE_NOSIGN (type))
4641 {
a9ff5f12 4642 puts_filtered (" TYPE_NOSIGN");
762a036f
FF
4643 }
4644 if (TYPE_STUB (type))
c906108c 4645 {
a9ff5f12 4646 puts_filtered (" TYPE_STUB");
c906108c 4647 }
762a036f
FF
4648 if (TYPE_TARGET_STUB (type))
4649 {
a9ff5f12 4650 puts_filtered (" TYPE_TARGET_STUB");
762a036f 4651 }
762a036f
FF
4652 if (TYPE_PROTOTYPED (type))
4653 {
a9ff5f12 4654 puts_filtered (" TYPE_PROTOTYPED");
762a036f
FF
4655 }
4656 if (TYPE_INCOMPLETE (type))
4657 {
a9ff5f12 4658 puts_filtered (" TYPE_INCOMPLETE");
762a036f 4659 }
762a036f
FF
4660 if (TYPE_VARARGS (type))
4661 {
a9ff5f12 4662 puts_filtered (" TYPE_VARARGS");
762a036f 4663 }
f5f8a009
EZ
4664 /* This is used for things like AltiVec registers on ppc. Gcc emits
4665 an attribute for the array type, which tells whether or not we
4666 have a vector, instead of a regular array. */
4667 if (TYPE_VECTOR (type))
4668 {
a9ff5f12 4669 puts_filtered (" TYPE_VECTOR");
f5f8a009 4670 }
876cecd0
TT
4671 if (TYPE_FIXED_INSTANCE (type))
4672 {
4673 puts_filtered (" TYPE_FIXED_INSTANCE");
4674 }
4675 if (TYPE_STUB_SUPPORTED (type))
4676 {
4677 puts_filtered (" TYPE_STUB_SUPPORTED");
4678 }
4679 if (TYPE_NOTTEXT (type))
4680 {
4681 puts_filtered (" TYPE_NOTTEXT");
4682 }
c906108c
SS
4683 puts_filtered ("\n");
4684 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 4685 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
4686 puts_filtered ("\n");
4687 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4688 {
14e75d8e
JK
4689 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4690 printfi_filtered (spaces + 2,
4691 "[%d] enumval %s type ",
4692 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4693 else
4694 printfi_filtered (spaces + 2,
6b850546
DT
4695 "[%d] bitpos %s bitsize %d type ",
4696 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
14e75d8e 4697 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 4698 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
4699 printf_filtered (" name '%s' (",
4700 TYPE_FIELD_NAME (type, idx) != NULL
4701 ? TYPE_FIELD_NAME (type, idx)
4702 : "<NULL>");
d4f3574e 4703 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
4704 printf_filtered (")\n");
4705 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4706 {
4707 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4708 }
4709 }
43bbcdc2
PH
4710 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4711 {
4712 printfi_filtered (spaces, "low %s%s high %s%s\n",
4713 plongest (TYPE_LOW_BOUND (type)),
4714 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4715 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
4716 TYPE_HIGH_BOUND_UNDEFINED (type)
4717 ? " (undefined)" : "");
43bbcdc2 4718 }
c906108c 4719
b4ba55a1
JB
4720 switch (TYPE_SPECIFIC_FIELD (type))
4721 {
4722 case TYPE_SPECIFIC_CPLUS_STUFF:
4723 printfi_filtered (spaces, "cplus_stuff ");
4724 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4725 gdb_stdout);
4726 puts_filtered ("\n");
4727 print_cplus_stuff (type, spaces);
4728 break;
8da61cc4 4729
b4ba55a1
JB
4730 case TYPE_SPECIFIC_GNAT_STUFF:
4731 printfi_filtered (spaces, "gnat_stuff ");
4732 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4733 puts_filtered ("\n");
4734 print_gnat_stuff (type, spaces);
4735 break;
701c159d 4736
b4ba55a1
JB
4737 case TYPE_SPECIFIC_FLOATFORMAT:
4738 printfi_filtered (spaces, "floatformat ");
0db7851f
UW
4739 if (TYPE_FLOATFORMAT (type) == NULL
4740 || TYPE_FLOATFORMAT (type)->name == NULL)
b4ba55a1
JB
4741 puts_filtered ("(null)");
4742 else
0db7851f 4743 puts_filtered (TYPE_FLOATFORMAT (type)->name);
b4ba55a1
JB
4744 puts_filtered ("\n");
4745 break;
c906108c 4746
b6cdc2c1 4747 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
4748 printfi_filtered (spaces, "calling_convention %d\n",
4749 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 4750 /* tail_call_list is not printed. */
b4ba55a1 4751 break;
09e2d7c7
DE
4752
4753 case TYPE_SPECIFIC_SELF_TYPE:
4754 printfi_filtered (spaces, "self_type ");
4755 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4756 puts_filtered ("\n");
4757 break;
c906108c 4758 }
b4ba55a1 4759
c906108c
SS
4760 if (spaces == 0)
4761 obstack_free (&dont_print_type_obstack, NULL);
4762}
5212577a 4763\f
ae5a43e0
DJ
4764/* Trivial helpers for the libiberty hash table, for mapping one
4765 type to another. */
4766
fd90ace4 4767struct type_pair : public allocate_on_obstack
ae5a43e0 4768{
fd90ace4
YQ
4769 type_pair (struct type *old_, struct type *newobj_)
4770 : old (old_), newobj (newobj_)
4771 {}
4772
4773 struct type * const old, * const newobj;
ae5a43e0
DJ
4774};
4775
4776static hashval_t
4777type_pair_hash (const void *item)
4778{
9a3c8263 4779 const struct type_pair *pair = (const struct type_pair *) item;
d8734c88 4780
ae5a43e0
DJ
4781 return htab_hash_pointer (pair->old);
4782}
4783
4784static int
4785type_pair_eq (const void *item_lhs, const void *item_rhs)
4786{
9a3c8263
SM
4787 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4788 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
d8734c88 4789
ae5a43e0
DJ
4790 return lhs->old == rhs->old;
4791}
4792
4793/* Allocate the hash table used by copy_type_recursive to walk
4794 types without duplicates. We use OBJFILE's obstack, because
4795 OBJFILE is about to be deleted. */
4796
4797htab_t
4798create_copied_types_hash (struct objfile *objfile)
4799{
4800 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4801 NULL, &objfile->objfile_obstack,
4802 hashtab_obstack_allocate,
4803 dummy_obstack_deallocate);
4804}
4805
d9823cbb
KB
4806/* Recursively copy (deep copy) a dynamic attribute list of a type. */
4807
4808static struct dynamic_prop_list *
4809copy_dynamic_prop_list (struct obstack *objfile_obstack,
4810 struct dynamic_prop_list *list)
4811{
4812 struct dynamic_prop_list *copy = list;
4813 struct dynamic_prop_list **node_ptr = &copy;
4814
4815 while (*node_ptr != NULL)
4816 {
4817 struct dynamic_prop_list *node_copy;
4818
224c3ddb
SM
4819 node_copy = ((struct dynamic_prop_list *)
4820 obstack_copy (objfile_obstack, *node_ptr,
4821 sizeof (struct dynamic_prop_list)));
283a9958 4822 node_copy->prop = (*node_ptr)->prop;
d9823cbb
KB
4823 *node_ptr = node_copy;
4824
4825 node_ptr = &node_copy->next;
4826 }
4827
4828 return copy;
4829}
4830
7ba81444 4831/* Recursively copy (deep copy) TYPE, if it is associated with
eed8b28a
PP
4832 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4833 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4834 it is not associated with OBJFILE. */
ae5a43e0
DJ
4835
4836struct type *
7ba81444
MS
4837copy_type_recursive (struct objfile *objfile,
4838 struct type *type,
ae5a43e0
DJ
4839 htab_t copied_types)
4840{
ae5a43e0
DJ
4841 void **slot;
4842 struct type *new_type;
4843
e9bb382b 4844 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
4845 return type;
4846
7ba81444
MS
4847 /* This type shouldn't be pointing to any types in other objfiles;
4848 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
4849 gdb_assert (TYPE_OBJFILE (type) == objfile);
4850
fd90ace4
YQ
4851 struct type_pair pair (type, nullptr);
4852
ae5a43e0
DJ
4853 slot = htab_find_slot (copied_types, &pair, INSERT);
4854 if (*slot != NULL)
fe978cb0 4855 return ((struct type_pair *) *slot)->newobj;
ae5a43e0 4856
e9bb382b 4857 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
4858
4859 /* We must add the new type to the hash table immediately, in case
4860 we encounter this type again during a recursive call below. */
fd90ace4
YQ
4861 struct type_pair *stored
4862 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
4863
ae5a43e0
DJ
4864 *slot = stored;
4865
876cecd0
TT
4866 /* Copy the common fields of types. For the main type, we simply
4867 copy the entire thing and then update specific fields as needed. */
4868 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
4869 TYPE_OBJFILE_OWNED (new_type) = 0;
4870 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 4871
ae5a43e0
DJ
4872 if (TYPE_NAME (type))
4873 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
ae5a43e0
DJ
4874
4875 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4876 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4877
4878 /* Copy the fields. */
ae5a43e0
DJ
4879 if (TYPE_NFIELDS (type))
4880 {
4881 int i, nfields;
4882
4883 nfields = TYPE_NFIELDS (type);
2fabdf33
AB
4884 TYPE_FIELDS (new_type) = (struct field *)
4885 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
ae5a43e0
DJ
4886 for (i = 0; i < nfields; i++)
4887 {
7ba81444
MS
4888 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4889 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
4890 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4891 if (TYPE_FIELD_TYPE (type, i))
4892 TYPE_FIELD_TYPE (new_type, i)
4893 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4894 copied_types);
4895 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
4896 TYPE_FIELD_NAME (new_type, i) =
4897 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 4898 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 4899 {
d6a843b5
JK
4900 case FIELD_LOC_KIND_BITPOS:
4901 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4902 TYPE_FIELD_BITPOS (type, i));
4903 break;
14e75d8e
JK
4904 case FIELD_LOC_KIND_ENUMVAL:
4905 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4906 TYPE_FIELD_ENUMVAL (type, i));
4907 break;
d6a843b5
JK
4908 case FIELD_LOC_KIND_PHYSADDR:
4909 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4910 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4911 break;
4912 case FIELD_LOC_KIND_PHYSNAME:
4913 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4914 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4915 i)));
4916 break;
4917 default:
4918 internal_error (__FILE__, __LINE__,
4919 _("Unexpected type field location kind: %d"),
4920 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
4921 }
4922 }
4923 }
4924
0963b4bd 4925 /* For range types, copy the bounds information. */
43bbcdc2
PH
4926 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4927 {
2fabdf33
AB
4928 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
4929 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
43bbcdc2
PH
4930 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4931 }
4932
d9823cbb
KB
4933 if (TYPE_DYN_PROP_LIST (type) != NULL)
4934 TYPE_DYN_PROP_LIST (new_type)
4935 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4936 TYPE_DYN_PROP_LIST (type));
4937
3cdcd0ce 4938
ae5a43e0
DJ
4939 /* Copy pointers to other types. */
4940 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
4941 TYPE_TARGET_TYPE (new_type) =
4942 copy_type_recursive (objfile,
4943 TYPE_TARGET_TYPE (type),
4944 copied_types);
f6b3afbf 4945
ae5a43e0
DJ
4946 /* Maybe copy the type_specific bits.
4947
4948 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4949 base classes and methods. There's no fundamental reason why we
4950 can't, but at the moment it is not needed. */
4951
f6b3afbf
DE
4952 switch (TYPE_SPECIFIC_FIELD (type))
4953 {
4954 case TYPE_SPECIFIC_NONE:
4955 break;
4956 case TYPE_SPECIFIC_FUNC:
4957 INIT_FUNC_SPECIFIC (new_type);
4958 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4959 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4960 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4961 break;
4962 case TYPE_SPECIFIC_FLOATFORMAT:
4963 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4964 break;
4965 case TYPE_SPECIFIC_CPLUS_STUFF:
4966 INIT_CPLUS_SPECIFIC (new_type);
4967 break;
4968 case TYPE_SPECIFIC_GNAT_STUFF:
4969 INIT_GNAT_SPECIFIC (new_type);
4970 break;
09e2d7c7
DE
4971 case TYPE_SPECIFIC_SELF_TYPE:
4972 set_type_self_type (new_type,
4973 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4974 copied_types));
4975 break;
f6b3afbf
DE
4976 default:
4977 gdb_assert_not_reached ("bad type_specific_kind");
4978 }
ae5a43e0
DJ
4979
4980 return new_type;
4981}
4982
4af88198
JB
4983/* Make a copy of the given TYPE, except that the pointer & reference
4984 types are not preserved.
4985
4986 This function assumes that the given type has an associated objfile.
4987 This objfile is used to allocate the new type. */
4988
4989struct type *
4990copy_type (const struct type *type)
4991{
4992 struct type *new_type;
4993
e9bb382b 4994 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 4995
e9bb382b 4996 new_type = alloc_type_copy (type);
4af88198
JB
4997 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4998 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4999 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5000 sizeof (struct main_type));
d9823cbb
KB
5001 if (TYPE_DYN_PROP_LIST (type) != NULL)
5002 TYPE_DYN_PROP_LIST (new_type)
5003 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5004 TYPE_DYN_PROP_LIST (type));
4af88198
JB
5005
5006 return new_type;
5007}
5212577a 5008\f
e9bb382b
UW
5009/* Helper functions to initialize architecture-specific types. */
5010
5011/* Allocate a type structure associated with GDBARCH and set its
5012 CODE, LENGTH, and NAME fields. */
5212577a 5013
e9bb382b
UW
5014struct type *
5015arch_type (struct gdbarch *gdbarch,
77b7c781 5016 enum type_code code, int bit, const char *name)
e9bb382b
UW
5017{
5018 struct type *type;
5019
5020 type = alloc_type_arch (gdbarch);
ae438bc5 5021 set_type_code (type, code);
77b7c781
UW
5022 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5023 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
e9bb382b
UW
5024
5025 if (name)
6c214e7c 5026 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
e9bb382b
UW
5027
5028 return type;
5029}
5030
5031/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5032 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5033 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5034
e9bb382b
UW
5035struct type *
5036arch_integer_type (struct gdbarch *gdbarch,
695bfa52 5037 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5038{
5039 struct type *t;
5040
77b7c781 5041 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
e9bb382b
UW
5042 if (unsigned_p)
5043 TYPE_UNSIGNED (t) = 1;
e9bb382b
UW
5044
5045 return t;
5046}
5047
5048/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5049 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5050 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5051
e9bb382b
UW
5052struct type *
5053arch_character_type (struct gdbarch *gdbarch,
695bfa52 5054 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5055{
5056 struct type *t;
5057
77b7c781 5058 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
e9bb382b
UW
5059 if (unsigned_p)
5060 TYPE_UNSIGNED (t) = 1;
5061
5062 return t;
5063}
5064
5065/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5066 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5067 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5068
e9bb382b
UW
5069struct type *
5070arch_boolean_type (struct gdbarch *gdbarch,
695bfa52 5071 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5072{
5073 struct type *t;
5074
77b7c781 5075 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
e9bb382b
UW
5076 if (unsigned_p)
5077 TYPE_UNSIGNED (t) = 1;
5078
5079 return t;
5080}
5081
5082/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5083 BIT is the type size in bits; if BIT equals -1, the size is
5084 determined by the floatformat. NAME is the type name. Set the
5085 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 5086
27067745 5087struct type *
e9bb382b 5088arch_float_type (struct gdbarch *gdbarch,
695bfa52
TT
5089 int bit, const char *name,
5090 const struct floatformat **floatformats)
8da61cc4 5091{
0db7851f 5092 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
8da61cc4
DJ
5093 struct type *t;
5094
0db7851f 5095 bit = verify_floatformat (bit, fmt);
77b7c781 5096 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
0db7851f 5097 TYPE_FLOATFORMAT (t) = fmt;
b79497cb 5098
8da61cc4
DJ
5099 return t;
5100}
5101
88dfca6c
UW
5102/* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5103 BIT is the type size in bits. NAME is the type name. */
5104
5105struct type *
5106arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5107{
5108 struct type *t;
5109
77b7c781 5110 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
88dfca6c
UW
5111 return t;
5112}
5113
e9bb382b
UW
5114/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
5115 NAME is the type name. TARGET_TYPE is the component float type. */
5212577a 5116
27067745 5117struct type *
e9bb382b 5118arch_complex_type (struct gdbarch *gdbarch,
695bfa52 5119 const char *name, struct type *target_type)
27067745
UW
5120{
5121 struct type *t;
d8734c88 5122
e9bb382b 5123 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
77b7c781 5124 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
27067745
UW
5125 TYPE_TARGET_TYPE (t) = target_type;
5126 return t;
5127}
5128
88dfca6c
UW
5129/* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5130 BIT is the pointer type size in bits. NAME is the type name.
5131 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5132 TYPE_UNSIGNED flag. */
5133
5134struct type *
5135arch_pointer_type (struct gdbarch *gdbarch,
5136 int bit, const char *name, struct type *target_type)
5137{
5138 struct type *t;
5139
77b7c781 5140 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
88dfca6c
UW
5141 TYPE_TARGET_TYPE (t) = target_type;
5142 TYPE_UNSIGNED (t) = 1;
5143 return t;
5144}
5145
e9bb382b 5146/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
77b7c781 5147 NAME is the type name. BIT is the size of the flag word in bits. */
5212577a 5148
e9bb382b 5149struct type *
77b7c781 5150arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
e9bb382b 5151{
e9bb382b
UW
5152 struct type *type;
5153
77b7c781 5154 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
e9bb382b 5155 TYPE_UNSIGNED (type) = 1;
81516450
DE
5156 TYPE_NFIELDS (type) = 0;
5157 /* Pre-allocate enough space assuming every field is one bit. */
224c3ddb 5158 TYPE_FIELDS (type)
77b7c781 5159 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
e9bb382b
UW
5160
5161 return type;
5162}
5163
5164/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
81516450
DE
5165 position BITPOS is called NAME. Pass NAME as "" for fields that
5166 should not be printed. */
5167
5168void
5169append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
695bfa52 5170 struct type *field_type, const char *name)
81516450
DE
5171{
5172 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5173 int field_nr = TYPE_NFIELDS (type);
5174
5175 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5176 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5177 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5178 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5179 gdb_assert (name != NULL);
5180
5181 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5182 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5183 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5184 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5185 ++TYPE_NFIELDS (type);
5186}
5187
5188/* Special version of append_flags_type_field to add a flag field.
5189 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
e9bb382b 5190 position BITPOS is called NAME. */
5212577a 5191
e9bb382b 5192void
695bfa52 5193append_flags_type_flag (struct type *type, int bitpos, const char *name)
e9bb382b 5194{
81516450 5195 struct gdbarch *gdbarch = get_type_arch (type);
e9bb382b 5196
81516450
DE
5197 append_flags_type_field (type, bitpos, 1,
5198 builtin_type (gdbarch)->builtin_bool,
5199 name);
e9bb382b
UW
5200}
5201
5202/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5203 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 5204
e9bb382b 5205struct type *
695bfa52
TT
5206arch_composite_type (struct gdbarch *gdbarch, const char *name,
5207 enum type_code code)
e9bb382b
UW
5208{
5209 struct type *t;
d8734c88 5210
e9bb382b
UW
5211 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5212 t = arch_type (gdbarch, code, 0, NULL);
e86ca25f 5213 TYPE_NAME (t) = name;
e9bb382b
UW
5214 INIT_CPLUS_SPECIFIC (t);
5215 return t;
5216}
5217
5218/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
5219 Do not set the field's position or adjust the type's length;
5220 the caller should do so. Return the new field. */
5212577a 5221
f5dff777 5222struct field *
695bfa52 5223append_composite_type_field_raw (struct type *t, const char *name,
f5dff777 5224 struct type *field)
e9bb382b
UW
5225{
5226 struct field *f;
d8734c88 5227
e9bb382b 5228 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
224c3ddb
SM
5229 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5230 TYPE_NFIELDS (t));
e9bb382b
UW
5231 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5232 memset (f, 0, sizeof f[0]);
5233 FIELD_TYPE (f[0]) = field;
5234 FIELD_NAME (f[0]) = name;
f5dff777
DJ
5235 return f;
5236}
5237
5238/* Add new field with name NAME and type FIELD to composite type T.
5239 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 5240
f5dff777 5241void
695bfa52 5242append_composite_type_field_aligned (struct type *t, const char *name,
f5dff777
DJ
5243 struct type *field, int alignment)
5244{
5245 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 5246
e9bb382b
UW
5247 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5248 {
5249 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5250 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5251 }
5252 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5253 {
5254 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5255 if (TYPE_NFIELDS (t) > 1)
5256 {
f41f5e61
PA
5257 SET_FIELD_BITPOS (f[0],
5258 (FIELD_BITPOS (f[-1])
5259 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5260 * TARGET_CHAR_BIT)));
e9bb382b
UW
5261
5262 if (alignment)
5263 {
86c3c1fc
AB
5264 int left;
5265
5266 alignment *= TARGET_CHAR_BIT;
5267 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 5268
e9bb382b
UW
5269 if (left)
5270 {
f41f5e61 5271 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 5272 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
5273 }
5274 }
5275 }
5276 }
5277}
5278
5279/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 5280
e9bb382b 5281void
695bfa52 5282append_composite_type_field (struct type *t, const char *name,
e9bb382b
UW
5283 struct type *field)
5284{
5285 append_composite_type_field_aligned (t, name, field, 0);
5286}
5287
000177f0
AC
5288static struct gdbarch_data *gdbtypes_data;
5289
5290const struct builtin_type *
5291builtin_type (struct gdbarch *gdbarch)
5292{
9a3c8263 5293 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
000177f0
AC
5294}
5295
5296static void *
5297gdbtypes_post_init (struct gdbarch *gdbarch)
5298{
5299 struct builtin_type *builtin_type
5300 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5301
46bf5051 5302 /* Basic types. */
e9bb382b 5303 builtin_type->builtin_void
77b7c781 5304 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
e9bb382b
UW
5305 builtin_type->builtin_char
5306 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5307 !gdbarch_char_signed (gdbarch), "char");
c413c448 5308 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
e9bb382b
UW
5309 builtin_type->builtin_signed_char
5310 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5311 0, "signed char");
5312 builtin_type->builtin_unsigned_char
5313 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5314 1, "unsigned char");
5315 builtin_type->builtin_short
5316 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5317 0, "short");
5318 builtin_type->builtin_unsigned_short
5319 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5320 1, "unsigned short");
5321 builtin_type->builtin_int
5322 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5323 0, "int");
5324 builtin_type->builtin_unsigned_int
5325 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5326 1, "unsigned int");
5327 builtin_type->builtin_long
5328 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5329 0, "long");
5330 builtin_type->builtin_unsigned_long
5331 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5332 1, "unsigned long");
5333 builtin_type->builtin_long_long
5334 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5335 0, "long long");
5336 builtin_type->builtin_unsigned_long_long
5337 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5338 1, "unsigned long long");
70bd8e24 5339 builtin_type->builtin_float
e9bb382b 5340 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 5341 "float", gdbarch_float_format (gdbarch));
70bd8e24 5342 builtin_type->builtin_double
e9bb382b 5343 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 5344 "double", gdbarch_double_format (gdbarch));
70bd8e24 5345 builtin_type->builtin_long_double
e9bb382b 5346 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 5347 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 5348 builtin_type->builtin_complex
e9bb382b
UW
5349 = arch_complex_type (gdbarch, "complex",
5350 builtin_type->builtin_float);
70bd8e24 5351 builtin_type->builtin_double_complex
e9bb382b
UW
5352 = arch_complex_type (gdbarch, "double complex",
5353 builtin_type->builtin_double);
5354 builtin_type->builtin_string
77b7c781 5355 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
e9bb382b 5356 builtin_type->builtin_bool
77b7c781 5357 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
000177f0 5358
7678ef8f
TJB
5359 /* The following three are about decimal floating point types, which
5360 are 32-bits, 64-bits and 128-bits respectively. */
5361 builtin_type->builtin_decfloat
88dfca6c 5362 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
7678ef8f 5363 builtin_type->builtin_decdouble
88dfca6c 5364 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
7678ef8f 5365 builtin_type->builtin_declong
88dfca6c 5366 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
7678ef8f 5367
69feb676 5368 /* "True" character types. */
e9bb382b
UW
5369 builtin_type->builtin_true_char
5370 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5371 builtin_type->builtin_true_unsigned_char
5372 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 5373
df4df182 5374 /* Fixed-size integer types. */
e9bb382b
UW
5375 builtin_type->builtin_int0
5376 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5377 builtin_type->builtin_int8
5378 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5379 builtin_type->builtin_uint8
5380 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5381 builtin_type->builtin_int16
5382 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5383 builtin_type->builtin_uint16
5384 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
d1908f2d
JD
5385 builtin_type->builtin_int24
5386 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5387 builtin_type->builtin_uint24
5388 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
e9bb382b
UW
5389 builtin_type->builtin_int32
5390 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5391 builtin_type->builtin_uint32
5392 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5393 builtin_type->builtin_int64
5394 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5395 builtin_type->builtin_uint64
5396 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5397 builtin_type->builtin_int128
5398 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5399 builtin_type->builtin_uint128
5400 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
5401 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5402 TYPE_INSTANCE_FLAG_NOTTEXT;
5403 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5404 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 5405
9a22f0d0
PM
5406 /* Wide character types. */
5407 builtin_type->builtin_char16
53e710ac 5408 = arch_integer_type (gdbarch, 16, 1, "char16_t");
9a22f0d0 5409 builtin_type->builtin_char32
53e710ac 5410 = arch_integer_type (gdbarch, 32, 1, "char32_t");
53375380
PA
5411 builtin_type->builtin_wchar
5412 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5413 !gdbarch_wchar_signed (gdbarch), "wchar_t");
9a22f0d0 5414
46bf5051 5415 /* Default data/code pointer types. */
e9bb382b
UW
5416 builtin_type->builtin_data_ptr
5417 = lookup_pointer_type (builtin_type->builtin_void);
5418 builtin_type->builtin_func_ptr
5419 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
5420 builtin_type->builtin_func_func
5421 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 5422
78267919 5423 /* This type represents a GDB internal function. */
e9bb382b
UW
5424 builtin_type->internal_fn
5425 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5426 "<internal function>");
78267919 5427
e81e7f5e
SC
5428 /* This type represents an xmethod. */
5429 builtin_type->xmethod
5430 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5431
46bf5051
UW
5432 return builtin_type;
5433}
5434
46bf5051
UW
5435/* This set of objfile-based types is intended to be used by symbol
5436 readers as basic types. */
5437
5438static const struct objfile_data *objfile_type_data;
5439
5440const struct objfile_type *
5441objfile_type (struct objfile *objfile)
5442{
5443 struct gdbarch *gdbarch;
5444 struct objfile_type *objfile_type
9a3c8263 5445 = (struct objfile_type *) objfile_data (objfile, objfile_type_data);
46bf5051
UW
5446
5447 if (objfile_type)
5448 return objfile_type;
5449
5450 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5451 1, struct objfile_type);
5452
5453 /* Use the objfile architecture to determine basic type properties. */
5454 gdbarch = get_objfile_arch (objfile);
5455
5456 /* Basic types. */
5457 objfile_type->builtin_void
77b7c781 5458 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
46bf5051 5459 objfile_type->builtin_char
19f392bc
UW
5460 = init_integer_type (objfile, TARGET_CHAR_BIT,
5461 !gdbarch_char_signed (gdbarch), "char");
c413c448 5462 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
46bf5051 5463 objfile_type->builtin_signed_char
19f392bc
UW
5464 = init_integer_type (objfile, TARGET_CHAR_BIT,
5465 0, "signed char");
46bf5051 5466 objfile_type->builtin_unsigned_char
19f392bc
UW
5467 = init_integer_type (objfile, TARGET_CHAR_BIT,
5468 1, "unsigned char");
46bf5051 5469 objfile_type->builtin_short
19f392bc
UW
5470 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5471 0, "short");
46bf5051 5472 objfile_type->builtin_unsigned_short
19f392bc
UW
5473 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5474 1, "unsigned short");
46bf5051 5475 objfile_type->builtin_int
19f392bc
UW
5476 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5477 0, "int");
46bf5051 5478 objfile_type->builtin_unsigned_int
19f392bc
UW
5479 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5480 1, "unsigned int");
46bf5051 5481 objfile_type->builtin_long
19f392bc
UW
5482 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5483 0, "long");
46bf5051 5484 objfile_type->builtin_unsigned_long
19f392bc
UW
5485 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5486 1, "unsigned long");
46bf5051 5487 objfile_type->builtin_long_long
19f392bc
UW
5488 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5489 0, "long long");
46bf5051 5490 objfile_type->builtin_unsigned_long_long
19f392bc
UW
5491 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5492 1, "unsigned long long");
46bf5051 5493 objfile_type->builtin_float
19f392bc
UW
5494 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5495 "float", gdbarch_float_format (gdbarch));
46bf5051 5496 objfile_type->builtin_double
19f392bc
UW
5497 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5498 "double", gdbarch_double_format (gdbarch));
46bf5051 5499 objfile_type->builtin_long_double
19f392bc
UW
5500 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5501 "long double", gdbarch_long_double_format (gdbarch));
46bf5051
UW
5502
5503 /* This type represents a type that was unrecognized in symbol read-in. */
5504 objfile_type->builtin_error
19f392bc 5505 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
46bf5051
UW
5506
5507 /* The following set of types is used for symbols with no
5508 debug information. */
5509 objfile_type->nodebug_text_symbol
77b7c781 5510 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5511 "<text variable, no debug info>");
0875794a 5512 objfile_type->nodebug_text_gnu_ifunc_symbol
77b7c781 5513 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5514 "<text gnu-indirect-function variable, no debug info>");
19f392bc 5515 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
0875794a 5516 objfile_type->nodebug_got_plt_symbol
19f392bc
UW
5517 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5518 "<text from jump slot in .got.plt, no debug info>",
5519 objfile_type->nodebug_text_symbol);
46bf5051 5520 objfile_type->nodebug_data_symbol
46a4882b 5521 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
46bf5051 5522 objfile_type->nodebug_unknown_symbol
46a4882b 5523 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
46bf5051 5524 objfile_type->nodebug_tls_symbol
46a4882b 5525 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
000177f0
AC
5526
5527 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 5528 the same.
000177f0
AC
5529
5530 The upshot is:
5531 - gdb's `struct type' always describes the target's
5532 representation.
5533 - gdb's `struct value' objects should always hold values in
5534 target form.
5535 - gdb's CORE_ADDR values are addresses in the unified virtual
5536 address space that the assembler and linker work with. Thus,
5537 since target_read_memory takes a CORE_ADDR as an argument, it
5538 can access any memory on the target, even if the processor has
5539 separate code and data address spaces.
5540
46bf5051
UW
5541 In this context, objfile_type->builtin_core_addr is a bit odd:
5542 it's a target type for a value the target will never see. It's
5543 only used to hold the values of (typeless) linker symbols, which
5544 are indeed in the unified virtual address space. */
000177f0 5545
46bf5051 5546 objfile_type->builtin_core_addr
19f392bc
UW
5547 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5548 "__CORE_ADDR");
64c50499 5549
46bf5051
UW
5550 set_objfile_data (objfile, objfile_type_data, objfile_type);
5551 return objfile_type;
000177f0
AC
5552}
5553
c906108c 5554void
fba45db2 5555_initialize_gdbtypes (void)
c906108c 5556{
5674de60 5557 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 5558 objfile_type_data = register_objfile_data ();
5674de60 5559
ccce17b0
YQ
5560 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5561 _("Set debugging of C++ overloading."),
5562 _("Show debugging of C++ overloading."),
5563 _("When enabled, ranking of the "
5564 "functions is displayed."),
5565 NULL,
5566 show_overload_debug,
5567 &setdebuglist, &showdebuglist);
5674de60 5568
7ba81444 5569 /* Add user knob for controlling resolution of opaque types. */
5674de60 5570 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
5571 &opaque_type_resolution,
5572 _("Set resolution of opaque struct/class/union"
5573 " types (if set before loading symbols)."),
5574 _("Show resolution of opaque struct/class/union"
5575 " types (if set before loading symbols)."),
5576 NULL, NULL,
5674de60
UW
5577 show_opaque_type_resolution,
5578 &setlist, &showlist);
a451cb65
KS
5579
5580 /* Add an option to permit non-strict type checking. */
5581 add_setshow_boolean_cmd ("type", class_support,
5582 &strict_type_checking,
5583 _("Set strict type checking."),
5584 _("Show strict type checking."),
5585 NULL, NULL,
5586 show_strict_type_checking,
5587 &setchecklist, &showchecklist);
c906108c 5588}