]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/gdbtypes.c
objcopy: Mention 'entry address' in description
[thirdparty/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
b811d2c2 3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c
SS
23#include "bfd.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "gdbtypes.h"
28#include "expression.h"
29#include "language.h"
30#include "target.h"
31#include "value.h"
32#include "demangle.h"
33#include "complaints.h"
34#include "gdbcmd.h"
015a42b4 35#include "cp-abi.h"
ae5a43e0 36#include "hashtab.h"
8de20a37 37#include "cp-support.h"
ca092b61 38#include "bcache.h"
82ca8957 39#include "dwarf2/loc.h"
80180f79 40#include "gdbcore.h"
1841ee5d 41#include "floatformat.h"
ef83a141 42#include <algorithm>
ac3aafc7 43
6403aeea
SW
44/* Initialize BADNESS constants. */
45
a9d5ef47 46const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 47
a9d5ef47
SW
48const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
49const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 50
a9d5ef47 51const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 52
a9d5ef47
SW
53const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
54const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
55const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
e15c3eb4 56const struct rank CV_CONVERSION_BADNESS = {1, 0};
a9d5ef47
SW
57const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
58const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
59const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
60const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 61const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
62const struct rank BASE_CONVERSION_BADNESS = {2,0};
63const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
06acc08f 64const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1};
da096638 65const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 66const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 67const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 68
8da61cc4 69/* Floatformat pairs. */
f9e9243a
UW
70const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_half_big,
72 &floatformat_ieee_half_little
73};
8da61cc4
DJ
74const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_single_big,
76 &floatformat_ieee_single_little
77};
78const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_little
81};
82const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_ieee_double_big,
84 &floatformat_ieee_double_littlebyte_bigword
85};
86const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_i387_ext,
88 &floatformat_i387_ext
89};
90const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_m68881_ext,
92 &floatformat_m68881_ext
93};
94const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_arm_ext_big,
96 &floatformat_arm_ext_littlebyte_bigword
97};
98const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_spill_big,
100 &floatformat_ia64_spill_little
101};
102const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_ia64_quad_big,
104 &floatformat_ia64_quad_little
105};
106const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_f,
108 &floatformat_vax_f
109};
110const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_vax_d,
112 &floatformat_vax_d
113};
b14d30e1 114const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
115 &floatformat_ibm_long_double_big,
116 &floatformat_ibm_long_double_little
b14d30e1 117};
8da61cc4 118
2873700e
KS
119/* Should opaque types be resolved? */
120
491144b5 121static bool opaque_type_resolution = true;
2873700e 122
79bb1944 123/* See gdbtypes.h. */
2873700e
KS
124
125unsigned int overload_debug = 0;
126
a451cb65
KS
127/* A flag to enable strict type checking. */
128
491144b5 129static bool strict_type_checking = true;
a451cb65 130
2873700e 131/* A function to show whether opaque types are resolved. */
5212577a 132
920d2a44
AC
133static void
134show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
135 struct cmd_list_element *c,
136 const char *value)
920d2a44 137{
3e43a32a
MS
138 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
139 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
140 value);
141}
142
2873700e 143/* A function to show whether C++ overload debugging is enabled. */
5212577a 144
920d2a44
AC
145static void
146show_overload_debug (struct ui_file *file, int from_tty,
147 struct cmd_list_element *c, const char *value)
148{
7ba81444
MS
149 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
150 value);
920d2a44 151}
c906108c 152
a451cb65
KS
153/* A function to show the status of strict type checking. */
154
155static void
156show_strict_type_checking (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158{
159 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
160}
161
5212577a 162\f
e9bb382b
UW
163/* Allocate a new OBJFILE-associated type structure and fill it
164 with some defaults. Space for the type structure is allocated
165 on the objfile's objfile_obstack. */
c906108c
SS
166
167struct type *
fba45db2 168alloc_type (struct objfile *objfile)
c906108c 169{
52f0bd74 170 struct type *type;
c906108c 171
e9bb382b
UW
172 gdb_assert (objfile != NULL);
173
7ba81444 174 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
175 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
176 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
177 struct main_type);
178 OBJSTAT (objfile, n_types++);
c906108c 179
e9bb382b
UW
180 TYPE_OBJFILE_OWNED (type) = 1;
181 TYPE_OWNER (type).objfile = objfile;
c906108c 182
7ba81444 183 /* Initialize the fields that might not be zero. */
c906108c
SS
184
185 TYPE_CODE (type) = TYPE_CODE_UNDEF;
2fdde8f8 186 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 187
c16abbde 188 return type;
c906108c
SS
189}
190
e9bb382b
UW
191/* Allocate a new GDBARCH-associated type structure and fill it
192 with some defaults. Space for the type structure is allocated
8f57eec2 193 on the obstack associated with GDBARCH. */
e9bb382b
UW
194
195struct type *
196alloc_type_arch (struct gdbarch *gdbarch)
197{
198 struct type *type;
199
200 gdb_assert (gdbarch != NULL);
201
202 /* Alloc the structure and start off with all fields zeroed. */
203
8f57eec2
PP
204 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
205 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
e9bb382b
UW
206
207 TYPE_OBJFILE_OWNED (type) = 0;
208 TYPE_OWNER (type).gdbarch = gdbarch;
209
210 /* Initialize the fields that might not be zero. */
211
212 TYPE_CODE (type) = TYPE_CODE_UNDEF;
e9bb382b
UW
213 TYPE_CHAIN (type) = type; /* Chain back to itself. */
214
215 return type;
216}
217
218/* If TYPE is objfile-associated, allocate a new type structure
219 associated with the same objfile. If TYPE is gdbarch-associated,
220 allocate a new type structure associated with the same gdbarch. */
221
222struct type *
223alloc_type_copy (const struct type *type)
224{
225 if (TYPE_OBJFILE_OWNED (type))
226 return alloc_type (TYPE_OWNER (type).objfile);
227 else
228 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
229}
230
231/* If TYPE is gdbarch-associated, return that architecture.
232 If TYPE is objfile-associated, return that objfile's architecture. */
233
234struct gdbarch *
235get_type_arch (const struct type *type)
236{
2fabdf33
AB
237 struct gdbarch *arch;
238
e9bb382b 239 if (TYPE_OBJFILE_OWNED (type))
08feed99 240 arch = TYPE_OWNER (type).objfile->arch ();
e9bb382b 241 else
2fabdf33
AB
242 arch = TYPE_OWNER (type).gdbarch;
243
244 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
245 a gdbarch, however, this is very rare, and even then, in most cases
246 that get_type_arch is called, we assume that a non-NULL value is
247 returned. */
248 gdb_assert (arch != NULL);
249 return arch;
e9bb382b
UW
250}
251
99ad9427
YQ
252/* See gdbtypes.h. */
253
254struct type *
255get_target_type (struct type *type)
256{
257 if (type != NULL)
258 {
259 type = TYPE_TARGET_TYPE (type);
260 if (type != NULL)
261 type = check_typedef (type);
262 }
263
264 return type;
265}
266
2e056931
SM
267/* See gdbtypes.h. */
268
269unsigned int
270type_length_units (struct type *type)
271{
272 struct gdbarch *arch = get_type_arch (type);
273 int unit_size = gdbarch_addressable_memory_unit_size (arch);
274
275 return TYPE_LENGTH (type) / unit_size;
276}
277
2fdde8f8
DJ
278/* Alloc a new type instance structure, fill it with some defaults,
279 and point it at OLDTYPE. Allocate the new type instance from the
280 same place as OLDTYPE. */
281
282static struct type *
283alloc_type_instance (struct type *oldtype)
284{
285 struct type *type;
286
287 /* Allocate the structure. */
288
e9bb382b 289 if (! TYPE_OBJFILE_OWNED (oldtype))
2fabdf33 290 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
2fdde8f8 291 else
1deafd4e
PA
292 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
293 struct type);
294
2fdde8f8
DJ
295 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
296
297 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
298
c16abbde 299 return type;
2fdde8f8
DJ
300}
301
302/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 303 replacing it with something else. Preserve owner information. */
5212577a 304
2fdde8f8
DJ
305static void
306smash_type (struct type *type)
307{
e9bb382b
UW
308 int objfile_owned = TYPE_OBJFILE_OWNED (type);
309 union type_owner owner = TYPE_OWNER (type);
310
2fdde8f8
DJ
311 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
312
e9bb382b
UW
313 /* Restore owner information. */
314 TYPE_OBJFILE_OWNED (type) = objfile_owned;
315 TYPE_OWNER (type) = owner;
316
2fdde8f8
DJ
317 /* For now, delete the rings. */
318 TYPE_CHAIN (type) = type;
319
320 /* For now, leave the pointer/reference types alone. */
321}
322
c906108c
SS
323/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
324 to a pointer to memory where the pointer type should be stored.
325 If *TYPEPTR is zero, update it to point to the pointer type we return.
326 We allocate new memory if needed. */
327
328struct type *
fba45db2 329make_pointer_type (struct type *type, struct type **typeptr)
c906108c 330{
52f0bd74 331 struct type *ntype; /* New type */
053cb41b 332 struct type *chain;
c906108c
SS
333
334 ntype = TYPE_POINTER_TYPE (type);
335
c5aa993b 336 if (ntype)
c906108c 337 {
c5aa993b 338 if (typeptr == 0)
7ba81444
MS
339 return ntype; /* Don't care about alloc,
340 and have new type. */
c906108c 341 else if (*typeptr == 0)
c5aa993b 342 {
7ba81444 343 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 344 return ntype;
c5aa993b 345 }
c906108c
SS
346 }
347
348 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
349 {
e9bb382b 350 ntype = alloc_type_copy (type);
c906108c
SS
351 if (typeptr)
352 *typeptr = ntype;
353 }
7ba81444 354 else /* We have storage, but need to reset it. */
c906108c
SS
355 {
356 ntype = *typeptr;
053cb41b 357 chain = TYPE_CHAIN (ntype);
2fdde8f8 358 smash_type (ntype);
053cb41b 359 TYPE_CHAIN (ntype) = chain;
c906108c
SS
360 }
361
362 TYPE_TARGET_TYPE (ntype) = type;
363 TYPE_POINTER_TYPE (type) = ntype;
364
5212577a 365 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 366
50810684
UW
367 TYPE_LENGTH (ntype)
368 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
369 TYPE_CODE (ntype) = TYPE_CODE_PTR;
370
67b2adb2 371 /* Mark pointers as unsigned. The target converts between pointers
76e71323 372 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 373 gdbarch_address_to_pointer. */
876cecd0 374 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 375
053cb41b
JB
376 /* Update the length of all the other variants of this type. */
377 chain = TYPE_CHAIN (ntype);
378 while (chain != ntype)
379 {
380 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
381 chain = TYPE_CHAIN (chain);
382 }
383
c906108c
SS
384 return ntype;
385}
386
387/* Given a type TYPE, return a type of pointers to that type.
388 May need to construct such a type if this is the first use. */
389
390struct type *
fba45db2 391lookup_pointer_type (struct type *type)
c906108c 392{
c5aa993b 393 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
394}
395
7ba81444
MS
396/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
397 points to a pointer to memory where the reference type should be
398 stored. If *TYPEPTR is zero, update it to point to the reference
3b224330
AV
399 type we return. We allocate new memory if needed. REFCODE denotes
400 the kind of reference type to lookup (lvalue or rvalue reference). */
c906108c
SS
401
402struct type *
3b224330
AV
403make_reference_type (struct type *type, struct type **typeptr,
404 enum type_code refcode)
c906108c 405{
52f0bd74 406 struct type *ntype; /* New type */
3b224330 407 struct type **reftype;
1e98b326 408 struct type *chain;
c906108c 409
3b224330
AV
410 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
411
412 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
413 : TYPE_RVALUE_REFERENCE_TYPE (type));
c906108c 414
c5aa993b 415 if (ntype)
c906108c 416 {
c5aa993b 417 if (typeptr == 0)
7ba81444
MS
418 return ntype; /* Don't care about alloc,
419 and have new type. */
c906108c 420 else if (*typeptr == 0)
c5aa993b 421 {
7ba81444 422 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 423 return ntype;
c5aa993b 424 }
c906108c
SS
425 }
426
427 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
428 {
e9bb382b 429 ntype = alloc_type_copy (type);
c906108c
SS
430 if (typeptr)
431 *typeptr = ntype;
432 }
7ba81444 433 else /* We have storage, but need to reset it. */
c906108c
SS
434 {
435 ntype = *typeptr;
1e98b326 436 chain = TYPE_CHAIN (ntype);
2fdde8f8 437 smash_type (ntype);
1e98b326 438 TYPE_CHAIN (ntype) = chain;
c906108c
SS
439 }
440
441 TYPE_TARGET_TYPE (ntype) = type;
3b224330
AV
442 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
443 : &TYPE_RVALUE_REFERENCE_TYPE (type));
444
445 *reftype = ntype;
c906108c 446
7ba81444
MS
447 /* FIXME! Assume the machine has only one representation for
448 references, and that it matches the (only) representation for
449 pointers! */
c906108c 450
50810684
UW
451 TYPE_LENGTH (ntype) =
452 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
3b224330 453 TYPE_CODE (ntype) = refcode;
c5aa993b 454
3b224330 455 *reftype = ntype;
c906108c 456
1e98b326
JB
457 /* Update the length of all the other variants of this type. */
458 chain = TYPE_CHAIN (ntype);
459 while (chain != ntype)
460 {
461 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
462 chain = TYPE_CHAIN (chain);
463 }
464
c906108c
SS
465 return ntype;
466}
467
7ba81444
MS
468/* Same as above, but caller doesn't care about memory allocation
469 details. */
c906108c
SS
470
471struct type *
3b224330
AV
472lookup_reference_type (struct type *type, enum type_code refcode)
473{
474 return make_reference_type (type, (struct type **) 0, refcode);
475}
476
477/* Lookup the lvalue reference type for the type TYPE. */
478
479struct type *
480lookup_lvalue_reference_type (struct type *type)
481{
482 return lookup_reference_type (type, TYPE_CODE_REF);
483}
484
485/* Lookup the rvalue reference type for the type TYPE. */
486
487struct type *
488lookup_rvalue_reference_type (struct type *type)
c906108c 489{
3b224330 490 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
c906108c
SS
491}
492
7ba81444
MS
493/* Lookup a function type that returns type TYPE. TYPEPTR, if
494 nonzero, points to a pointer to memory where the function type
495 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 496 function type we return. We allocate new memory if needed. */
c906108c
SS
497
498struct type *
0c8b41f1 499make_function_type (struct type *type, struct type **typeptr)
c906108c 500{
52f0bd74 501 struct type *ntype; /* New type */
c906108c
SS
502
503 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
504 {
e9bb382b 505 ntype = alloc_type_copy (type);
c906108c
SS
506 if (typeptr)
507 *typeptr = ntype;
508 }
7ba81444 509 else /* We have storage, but need to reset it. */
c906108c
SS
510 {
511 ntype = *typeptr;
2fdde8f8 512 smash_type (ntype);
c906108c
SS
513 }
514
515 TYPE_TARGET_TYPE (ntype) = type;
516
517 TYPE_LENGTH (ntype) = 1;
518 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 519
b6cdc2c1
JK
520 INIT_FUNC_SPECIFIC (ntype);
521
c906108c
SS
522 return ntype;
523}
524
c906108c
SS
525/* Given a type TYPE, return a type of functions that return that type.
526 May need to construct such a type if this is the first use. */
527
528struct type *
fba45db2 529lookup_function_type (struct type *type)
c906108c 530{
0c8b41f1 531 return make_function_type (type, (struct type **) 0);
c906108c
SS
532}
533
71918a86 534/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
535 function type. If the final type in PARAM_TYPES is NULL, make a
536 varargs function. */
71918a86
TT
537
538struct type *
539lookup_function_type_with_arguments (struct type *type,
540 int nparams,
541 struct type **param_types)
542{
543 struct type *fn = make_function_type (type, (struct type **) 0);
544 int i;
545
e314d629 546 if (nparams > 0)
a6fb9c08 547 {
e314d629
TT
548 if (param_types[nparams - 1] == NULL)
549 {
550 --nparams;
551 TYPE_VARARGS (fn) = 1;
552 }
553 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
554 == TYPE_CODE_VOID)
555 {
556 --nparams;
557 /* Caller should have ensured this. */
558 gdb_assert (nparams == 0);
559 TYPE_PROTOTYPED (fn) = 1;
560 }
54990598
PA
561 else
562 TYPE_PROTOTYPED (fn) = 1;
a6fb9c08
TT
563 }
564
71918a86 565 TYPE_NFIELDS (fn) = nparams;
224c3ddb
SM
566 TYPE_FIELDS (fn)
567 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
71918a86
TT
568 for (i = 0; i < nparams; ++i)
569 TYPE_FIELD_TYPE (fn, i) = param_types[i];
570
571 return fn;
572}
573
47663de5
MS
574/* Identify address space identifier by name --
575 return the integer flag defined in gdbtypes.h. */
5212577a
DE
576
577int
61f4b350
TT
578address_space_name_to_int (struct gdbarch *gdbarch,
579 const char *space_identifier)
47663de5 580{
8b2dbe47 581 int type_flags;
d8734c88 582
7ba81444 583 /* Check for known address space delimiters. */
47663de5 584 if (!strcmp (space_identifier, "code"))
876cecd0 585 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 586 else if (!strcmp (space_identifier, "data"))
876cecd0 587 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
588 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
589 && gdbarch_address_class_name_to_type_flags (gdbarch,
590 space_identifier,
591 &type_flags))
8b2dbe47 592 return type_flags;
47663de5 593 else
8a3fe4f8 594 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
595}
596
597/* Identify address space identifier by integer flag as defined in
7ba81444 598 gdbtypes.h -- return the string version of the adress space name. */
47663de5 599
321432c0 600const char *
50810684 601address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 602{
876cecd0 603 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 604 return "code";
876cecd0 605 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 606 return "data";
876cecd0 607 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
608 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
609 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
610 else
611 return NULL;
612}
613
2fdde8f8 614/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
615
616 If STORAGE is non-NULL, create the new type instance there.
617 STORAGE must be in the same obstack as TYPE. */
47663de5 618
b9362cc7 619static struct type *
2fdde8f8
DJ
620make_qualified_type (struct type *type, int new_flags,
621 struct type *storage)
47663de5
MS
622{
623 struct type *ntype;
624
625 ntype = type;
5f61c20e
JK
626 do
627 {
628 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
629 return ntype;
630 ntype = TYPE_CHAIN (ntype);
631 }
632 while (ntype != type);
47663de5 633
2fdde8f8
DJ
634 /* Create a new type instance. */
635 if (storage == NULL)
636 ntype = alloc_type_instance (type);
637 else
638 {
7ba81444
MS
639 /* If STORAGE was provided, it had better be in the same objfile
640 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
641 if one objfile is freed and the other kept, we'd have
642 dangling pointers. */
ad766c0a
JB
643 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
644
2fdde8f8
DJ
645 ntype = storage;
646 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
647 TYPE_CHAIN (ntype) = ntype;
648 }
47663de5
MS
649
650 /* Pointers or references to the original type are not relevant to
2fdde8f8 651 the new type. */
47663de5
MS
652 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
653 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 654
2fdde8f8
DJ
655 /* Chain the new qualified type to the old type. */
656 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
657 TYPE_CHAIN (type) = ntype;
658
659 /* Now set the instance flags and return the new type. */
660 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 661
ab5d3da6
KB
662 /* Set length of new type to that of the original type. */
663 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
664
47663de5
MS
665 return ntype;
666}
667
2fdde8f8
DJ
668/* Make an address-space-delimited variant of a type -- a type that
669 is identical to the one supplied except that it has an address
670 space attribute attached to it (such as "code" or "data").
671
7ba81444
MS
672 The space attributes "code" and "data" are for Harvard
673 architectures. The address space attributes are for architectures
674 which have alternately sized pointers or pointers with alternate
675 representations. */
2fdde8f8
DJ
676
677struct type *
678make_type_with_address_space (struct type *type, int space_flag)
679{
2fdde8f8 680 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
681 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
682 | TYPE_INSTANCE_FLAG_DATA_SPACE
683 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
684 | space_flag);
685
686 return make_qualified_type (type, new_flags, NULL);
687}
c906108c
SS
688
689/* Make a "c-v" variant of a type -- a type that is identical to the
690 one supplied except that it may have const or volatile attributes
691 CNST is a flag for setting the const attribute
692 VOLTL is a flag for setting the volatile attribute
693 TYPE is the base type whose variant we are creating.
c906108c 694
ad766c0a
JB
695 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
696 storage to hold the new qualified type; *TYPEPTR and TYPE must be
697 in the same objfile. Otherwise, allocate fresh memory for the new
698 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
699 new type we construct. */
5212577a 700
c906108c 701struct type *
7ba81444
MS
702make_cv_type (int cnst, int voltl,
703 struct type *type,
704 struct type **typeptr)
c906108c 705{
52f0bd74 706 struct type *ntype; /* New type */
c906108c 707
2fdde8f8 708 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
709 & ~(TYPE_INSTANCE_FLAG_CONST
710 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 711
c906108c 712 if (cnst)
876cecd0 713 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
714
715 if (voltl)
876cecd0 716 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 717
2fdde8f8 718 if (typeptr && *typeptr != NULL)
a02fd225 719 {
ad766c0a
JB
720 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
721 a C-V variant chain that threads across objfiles: if one
722 objfile gets freed, then the other has a broken C-V chain.
723
724 This code used to try to copy over the main type from TYPE to
725 *TYPEPTR if they were in different objfiles, but that's
726 wrong, too: TYPE may have a field list or member function
727 lists, which refer to types of their own, etc. etc. The
728 whole shebang would need to be copied over recursively; you
729 can't have inter-objfile pointers. The only thing to do is
730 to leave stub types as stub types, and look them up afresh by
731 name each time you encounter them. */
732 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
733 }
734
7ba81444
MS
735 ntype = make_qualified_type (type, new_flags,
736 typeptr ? *typeptr : NULL);
c906108c 737
2fdde8f8
DJ
738 if (typeptr != NULL)
739 *typeptr = ntype;
a02fd225 740
2fdde8f8 741 return ntype;
a02fd225 742}
c906108c 743
06d66ee9
TT
744/* Make a 'restrict'-qualified version of TYPE. */
745
746struct type *
747make_restrict_type (struct type *type)
748{
749 return make_qualified_type (type,
750 (TYPE_INSTANCE_FLAGS (type)
751 | TYPE_INSTANCE_FLAG_RESTRICT),
752 NULL);
753}
754
f1660027
TT
755/* Make a type without const, volatile, or restrict. */
756
757struct type *
758make_unqualified_type (struct type *type)
759{
760 return make_qualified_type (type,
761 (TYPE_INSTANCE_FLAGS (type)
762 & ~(TYPE_INSTANCE_FLAG_CONST
763 | TYPE_INSTANCE_FLAG_VOLATILE
764 | TYPE_INSTANCE_FLAG_RESTRICT)),
765 NULL);
766}
767
a2c2acaf
MW
768/* Make a '_Atomic'-qualified version of TYPE. */
769
770struct type *
771make_atomic_type (struct type *type)
772{
773 return make_qualified_type (type,
774 (TYPE_INSTANCE_FLAGS (type)
775 | TYPE_INSTANCE_FLAG_ATOMIC),
776 NULL);
777}
778
2fdde8f8
DJ
779/* Replace the contents of ntype with the type *type. This changes the
780 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
781 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 782
cda6c68a
JB
783 In order to build recursive types, it's inevitable that we'll need
784 to update types in place --- but this sort of indiscriminate
785 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
786 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
787 clear if more steps are needed. */
5212577a 788
dd6bda65
DJ
789void
790replace_type (struct type *ntype, struct type *type)
791{
ab5d3da6 792 struct type *chain;
dd6bda65 793
ad766c0a
JB
794 /* These two types had better be in the same objfile. Otherwise,
795 the assignment of one type's main type structure to the other
796 will produce a type with references to objects (names; field
797 lists; etc.) allocated on an objfile other than its own. */
e46dd0f4 798 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
ad766c0a 799
2fdde8f8 800 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 801
7ba81444
MS
802 /* The type length is not a part of the main type. Update it for
803 each type on the variant chain. */
ab5d3da6 804 chain = ntype;
5f61c20e
JK
805 do
806 {
807 /* Assert that this element of the chain has no address-class bits
808 set in its flags. Such type variants might have type lengths
809 which are supposed to be different from the non-address-class
810 variants. This assertion shouldn't ever be triggered because
811 symbol readers which do construct address-class variants don't
812 call replace_type(). */
813 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
814
815 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
816 chain = TYPE_CHAIN (chain);
817 }
818 while (ntype != chain);
ab5d3da6 819
2fdde8f8
DJ
820 /* Assert that the two types have equivalent instance qualifiers.
821 This should be true for at least all of our debug readers. */
822 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
823}
824
c906108c
SS
825/* Implement direct support for MEMBER_TYPE in GNU C++.
826 May need to construct such a type if this is the first use.
827 The TYPE is the type of the member. The DOMAIN is the type
828 of the aggregate that the member belongs to. */
829
830struct type *
0d5de010 831lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 832{
52f0bd74 833 struct type *mtype;
c906108c 834
e9bb382b 835 mtype = alloc_type_copy (type);
0d5de010 836 smash_to_memberptr_type (mtype, domain, type);
c16abbde 837 return mtype;
c906108c
SS
838}
839
0d5de010
DJ
840/* Return a pointer-to-method type, for a method of type TO_TYPE. */
841
842struct type *
843lookup_methodptr_type (struct type *to_type)
844{
845 struct type *mtype;
846
e9bb382b 847 mtype = alloc_type_copy (to_type);
0b92b5bb 848 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
849 return mtype;
850}
851
7ba81444
MS
852/* Allocate a stub method whose return type is TYPE. This apparently
853 happens for speed of symbol reading, since parsing out the
854 arguments to the method is cpu-intensive, the way we are doing it.
855 So, we will fill in arguments later. This always returns a fresh
856 type. */
c906108c
SS
857
858struct type *
fba45db2 859allocate_stub_method (struct type *type)
c906108c
SS
860{
861 struct type *mtype;
862
e9bb382b
UW
863 mtype = alloc_type_copy (type);
864 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
865 TYPE_LENGTH (mtype) = 1;
866 TYPE_STUB (mtype) = 1;
c906108c 867 TYPE_TARGET_TYPE (mtype) = type;
4bfb94b8 868 /* TYPE_SELF_TYPE (mtype) = unknown yet */
c16abbde 869 return mtype;
c906108c
SS
870}
871
0f59d5fc
PA
872/* See gdbtypes.h. */
873
874bool
875operator== (const dynamic_prop &l, const dynamic_prop &r)
876{
877 if (l.kind != r.kind)
878 return false;
879
880 switch (l.kind)
881 {
882 case PROP_UNDEFINED:
883 return true;
884 case PROP_CONST:
885 return l.data.const_val == r.data.const_val;
886 case PROP_ADDR_OFFSET:
887 case PROP_LOCEXPR:
888 case PROP_LOCLIST:
889 return l.data.baton == r.data.baton;
ef83a141
TT
890 case PROP_VARIANT_PARTS:
891 return l.data.variant_parts == r.data.variant_parts;
892 case PROP_TYPE:
893 return l.data.original_type == r.data.original_type;
0f59d5fc
PA
894 }
895
896 gdb_assert_not_reached ("unhandled dynamic_prop kind");
897}
898
899/* See gdbtypes.h. */
900
901bool
902operator== (const range_bounds &l, const range_bounds &r)
903{
904#define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
905
906 return (FIELD_EQ (low)
907 && FIELD_EQ (high)
908 && FIELD_EQ (flag_upper_bound_is_count)
4e962e74
TT
909 && FIELD_EQ (flag_bound_evaluated)
910 && FIELD_EQ (bias));
0f59d5fc
PA
911
912#undef FIELD_EQ
913}
914
729efb13
SA
915/* Create a range type with a dynamic range from LOW_BOUND to
916 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
917
918struct type *
729efb13
SA
919create_range_type (struct type *result_type, struct type *index_type,
920 const struct dynamic_prop *low_bound,
4e962e74
TT
921 const struct dynamic_prop *high_bound,
922 LONGEST bias)
c906108c 923{
b86352cf
AB
924 /* The INDEX_TYPE should be a type capable of holding the upper and lower
925 bounds, as such a zero sized, or void type makes no sense. */
926 gdb_assert (TYPE_CODE (index_type) != TYPE_CODE_VOID);
927 gdb_assert (TYPE_LENGTH (index_type) > 0);
928
c906108c 929 if (result_type == NULL)
e9bb382b 930 result_type = alloc_type_copy (index_type);
c906108c
SS
931 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
932 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 933 if (TYPE_STUB (index_type))
876cecd0 934 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
935 else
936 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 937
43bbcdc2
PH
938 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
939 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
729efb13
SA
940 TYPE_RANGE_DATA (result_type)->low = *low_bound;
941 TYPE_RANGE_DATA (result_type)->high = *high_bound;
4e962e74 942 TYPE_RANGE_DATA (result_type)->bias = bias;
c906108c 943
5bbd8269
AB
944 /* Initialize the stride to be a constant, the value will already be zero
945 thanks to the use of TYPE_ZALLOC above. */
946 TYPE_RANGE_DATA (result_type)->stride.kind = PROP_CONST;
947
729efb13 948 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
876cecd0 949 TYPE_UNSIGNED (result_type) = 1;
c906108c 950
45e44d27
JB
951 /* Ada allows the declaration of range types whose upper bound is
952 less than the lower bound, so checking the lower bound is not
953 enough. Make sure we do not mark a range type whose upper bound
954 is negative as unsigned. */
955 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
956 TYPE_UNSIGNED (result_type) = 0;
957
a05cf17a
TT
958 TYPE_ENDIANITY_NOT_DEFAULT (result_type)
959 = TYPE_ENDIANITY_NOT_DEFAULT (index_type);
960
262452ec 961 return result_type;
c906108c
SS
962}
963
5bbd8269
AB
964/* See gdbtypes.h. */
965
966struct type *
967create_range_type_with_stride (struct type *result_type,
968 struct type *index_type,
969 const struct dynamic_prop *low_bound,
970 const struct dynamic_prop *high_bound,
971 LONGEST bias,
972 const struct dynamic_prop *stride,
973 bool byte_stride_p)
974{
975 result_type = create_range_type (result_type, index_type, low_bound,
976 high_bound, bias);
977
978 gdb_assert (stride != nullptr);
979 TYPE_RANGE_DATA (result_type)->stride = *stride;
980 TYPE_RANGE_DATA (result_type)->flag_is_byte_stride = byte_stride_p;
981
982 return result_type;
983}
984
985
986
729efb13
SA
987/* Create a range type using either a blank type supplied in
988 RESULT_TYPE, or creating a new type, inheriting the objfile from
989 INDEX_TYPE.
990
991 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
992 to HIGH_BOUND, inclusive.
993
994 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
995 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
996
997struct type *
998create_static_range_type (struct type *result_type, struct type *index_type,
999 LONGEST low_bound, LONGEST high_bound)
1000{
1001 struct dynamic_prop low, high;
1002
1003 low.kind = PROP_CONST;
1004 low.data.const_val = low_bound;
1005
1006 high.kind = PROP_CONST;
1007 high.data.const_val = high_bound;
1008
4e962e74 1009 result_type = create_range_type (result_type, index_type, &low, &high, 0);
729efb13
SA
1010
1011 return result_type;
1012}
1013
80180f79
SA
1014/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
1015 are static, otherwise returns 0. */
1016
5bbd8269 1017static bool
80180f79
SA
1018has_static_range (const struct range_bounds *bounds)
1019{
5bbd8269
AB
1020 /* If the range doesn't have a defined stride then its stride field will
1021 be initialized to the constant 0. */
80180f79 1022 return (bounds->low.kind == PROP_CONST
5bbd8269
AB
1023 && bounds->high.kind == PROP_CONST
1024 && bounds->stride.kind == PROP_CONST);
80180f79
SA
1025}
1026
1027
7ba81444
MS
1028/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
1029 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
1030 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
1031
1032int
fba45db2 1033get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c 1034{
f168693b 1035 type = check_typedef (type);
c906108c
SS
1036 switch (TYPE_CODE (type))
1037 {
1038 case TYPE_CODE_RANGE:
1039 *lowp = TYPE_LOW_BOUND (type);
1040 *highp = TYPE_HIGH_BOUND (type);
1041 return 1;
1042 case TYPE_CODE_ENUM:
1043 if (TYPE_NFIELDS (type) > 0)
1044 {
1045 /* The enums may not be sorted by value, so search all
0963b4bd 1046 entries. */
c906108c
SS
1047 int i;
1048
14e75d8e 1049 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
1050 for (i = 0; i < TYPE_NFIELDS (type); i++)
1051 {
14e75d8e
JK
1052 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1053 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1054 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1055 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
1056 }
1057
7ba81444 1058 /* Set unsigned indicator if warranted. */
c5aa993b 1059 if (*lowp >= 0)
c906108c 1060 {
876cecd0 1061 TYPE_UNSIGNED (type) = 1;
c906108c
SS
1062 }
1063 }
1064 else
1065 {
1066 *lowp = 0;
1067 *highp = -1;
1068 }
1069 return 0;
1070 case TYPE_CODE_BOOL:
1071 *lowp = 0;
1072 *highp = 1;
1073 return 0;
1074 case TYPE_CODE_INT:
c5aa993b 1075 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
1076 return -1;
1077 if (!TYPE_UNSIGNED (type))
1078 {
c5aa993b 1079 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
1080 *highp = -*lowp - 1;
1081 return 0;
1082 }
86a73007 1083 /* fall through */
c906108c
SS
1084 case TYPE_CODE_CHAR:
1085 *lowp = 0;
1086 /* This round-about calculation is to avoid shifting by
7b83ea04 1087 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 1088 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
1089 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1090 *highp = (*highp - 1) | *highp;
1091 return 0;
1092 default:
1093 return -1;
1094 }
1095}
1096
dbc98a8b
KW
1097/* Assuming TYPE is a simple, non-empty array type, compute its upper
1098 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1099 Save the high bound into HIGH_BOUND if not NULL.
1100
0963b4bd 1101 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
1102 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1103
1104 We now simply use get_discrete_bounds call to get the values
1105 of the low and high bounds.
1106 get_discrete_bounds can return three values:
1107 1, meaning that index is a range,
1108 0, meaning that index is a discrete type,
1109 or -1 for failure. */
1110
1111int
1112get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1113{
1114 struct type *index = TYPE_INDEX_TYPE (type);
1115 LONGEST low = 0;
1116 LONGEST high = 0;
1117 int res;
1118
1119 if (index == NULL)
1120 return 0;
1121
1122 res = get_discrete_bounds (index, &low, &high);
1123 if (res == -1)
1124 return 0;
1125
1126 /* Check if the array bounds are undefined. */
1127 if (res == 1
1128 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1129 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1130 return 0;
1131
1132 if (low_bound)
1133 *low_bound = low;
1134
1135 if (high_bound)
1136 *high_bound = high;
1137
1138 return 1;
1139}
1140
aa715135
JG
1141/* Assuming that TYPE is a discrete type and VAL is a valid integer
1142 representation of a value of this type, save the corresponding
1143 position number in POS.
1144
1145 Its differs from VAL only in the case of enumeration types. In
1146 this case, the position number of the value of the first listed
1147 enumeration literal is zero; the position number of the value of
1148 each subsequent enumeration literal is one more than that of its
1149 predecessor in the list.
1150
1151 Return 1 if the operation was successful. Return zero otherwise,
1152 in which case the value of POS is unmodified.
1153*/
1154
1155int
1156discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1157{
1158 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1159 {
1160 int i;
1161
1162 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1163 {
1164 if (val == TYPE_FIELD_ENUMVAL (type, i))
1165 {
1166 *pos = i;
1167 return 1;
1168 }
1169 }
1170 /* Invalid enumeration value. */
1171 return 0;
1172 }
1173 else
1174 {
1175 *pos = val;
1176 return 1;
1177 }
1178}
1179
8dbb1375
HD
1180/* If the array TYPE has static bounds calculate and update its
1181 size, then return true. Otherwise return false and leave TYPE
1182 unchanged. */
1183
1184static bool
1185update_static_array_size (struct type *type)
1186{
1187 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1188
1189 struct type *range_type = TYPE_INDEX_TYPE (type);
1190
1191 if (get_dyn_prop (DYN_PROP_BYTE_STRIDE, type) == nullptr
1192 && has_static_range (TYPE_RANGE_DATA (range_type))
1193 && (!type_not_associated (type)
1194 && !type_not_allocated (type)))
1195 {
1196 LONGEST low_bound, high_bound;
1197 int stride;
1198 struct type *element_type;
1199
1200 /* If the array itself doesn't provide a stride value then take
1201 whatever stride the range provides. Don't update BIT_STRIDE as
1202 we don't want to place the stride value from the range into this
1203 arrays bit size field. */
1204 stride = TYPE_FIELD_BITSIZE (type, 0);
1205 if (stride == 0)
1206 stride = TYPE_BIT_STRIDE (range_type);
1207
1208 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1209 low_bound = high_bound = 0;
1210 element_type = check_typedef (TYPE_TARGET_TYPE (type));
1211 /* Be careful when setting the array length. Ada arrays can be
1212 empty arrays with the high_bound being smaller than the low_bound.
1213 In such cases, the array length should be zero. */
1214 if (high_bound < low_bound)
1215 TYPE_LENGTH (type) = 0;
1216 else if (stride != 0)
1217 {
1218 /* Ensure that the type length is always positive, even in the
1219 case where (for example in Fortran) we have a negative
1220 stride. It is possible to have a single element array with a
1221 negative stride in Fortran (this doesn't mean anything
1222 special, it's still just a single element array) so do
1223 consider that case when touching this code. */
1224 LONGEST element_count = std::abs (high_bound - low_bound + 1);
1225 TYPE_LENGTH (type)
1226 = ((std::abs (stride) * element_count) + 7) / 8;
1227 }
1228 else
1229 TYPE_LENGTH (type) =
1230 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1231
1232 return true;
1233 }
1234
1235 return false;
1236}
1237
7ba81444
MS
1238/* Create an array type using either a blank type supplied in
1239 RESULT_TYPE, or creating a new type, inheriting the objfile from
1240 RANGE_TYPE.
c906108c
SS
1241
1242 Elements will be of type ELEMENT_TYPE, the indices will be of type
1243 RANGE_TYPE.
1244
a405673c
JB
1245 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1246 This byte stride property is added to the resulting array type
1247 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1248 argument can only be used to create types that are objfile-owned
1249 (see add_dyn_prop), meaning that either this function must be called
1250 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1251
1252 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
dc53a7ad
JB
1253 If BIT_STRIDE is not zero, build a packed array type whose element
1254 size is BIT_STRIDE. Otherwise, ignore this parameter.
1255
7ba81444
MS
1256 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1257 sure it is TYPE_CODE_UNDEF before we bash it into an array
1258 type? */
c906108c
SS
1259
1260struct type *
dc53a7ad
JB
1261create_array_type_with_stride (struct type *result_type,
1262 struct type *element_type,
1263 struct type *range_type,
a405673c 1264 struct dynamic_prop *byte_stride_prop,
dc53a7ad 1265 unsigned int bit_stride)
c906108c 1266{
a405673c
JB
1267 if (byte_stride_prop != NULL
1268 && byte_stride_prop->kind == PROP_CONST)
1269 {
1270 /* The byte stride is actually not dynamic. Pretend we were
1271 called with bit_stride set instead of byte_stride_prop.
1272 This will give us the same result type, while avoiding
1273 the need to handle this as a special case. */
1274 bit_stride = byte_stride_prop->data.const_val * 8;
1275 byte_stride_prop = NULL;
1276 }
1277
c906108c 1278 if (result_type == NULL)
e9bb382b
UW
1279 result_type = alloc_type_copy (range_type);
1280
c906108c
SS
1281 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1282 TYPE_TARGET_TYPE (result_type) = element_type;
5bbd8269 1283
8dbb1375
HD
1284 TYPE_NFIELDS (result_type) = 1;
1285 TYPE_FIELDS (result_type) =
1286 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1287 TYPE_INDEX_TYPE (result_type) = range_type;
1288 if (byte_stride_prop != NULL)
1289 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
1290 else if (bit_stride > 0)
1291 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
80180f79 1292
8dbb1375 1293 if (!update_static_array_size (result_type))
80180f79
SA
1294 {
1295 /* This type is dynamic and its length needs to be computed
1296 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1297 undefined by setting it to zero. Although we are not expected
1298 to trust TYPE_LENGTH in this case, setting the size to zero
1299 allows us to avoid allocating objects of random sizes in case
1300 we accidently do. */
1301 TYPE_LENGTH (result_type) = 0;
1302 }
1303
a9ff5f12 1304 /* TYPE_TARGET_STUB will take care of zero length arrays. */
c906108c 1305 if (TYPE_LENGTH (result_type) == 0)
876cecd0 1306 TYPE_TARGET_STUB (result_type) = 1;
c906108c 1307
c16abbde 1308 return result_type;
c906108c
SS
1309}
1310
dc53a7ad
JB
1311/* Same as create_array_type_with_stride but with no bit_stride
1312 (BIT_STRIDE = 0), thus building an unpacked array. */
1313
1314struct type *
1315create_array_type (struct type *result_type,
1316 struct type *element_type,
1317 struct type *range_type)
1318{
1319 return create_array_type_with_stride (result_type, element_type,
a405673c 1320 range_type, NULL, 0);
dc53a7ad
JB
1321}
1322
e3506a9f
UW
1323struct type *
1324lookup_array_range_type (struct type *element_type,
63375b74 1325 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1326{
929b5ad4
JB
1327 struct type *index_type;
1328 struct type *range_type;
1329
1330 if (TYPE_OBJFILE_OWNED (element_type))
1331 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1332 else
1333 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1334 range_type = create_static_range_type (NULL, index_type,
1335 low_bound, high_bound);
d8734c88 1336
e3506a9f
UW
1337 return create_array_type (NULL, element_type, range_type);
1338}
1339
7ba81444
MS
1340/* Create a string type using either a blank type supplied in
1341 RESULT_TYPE, or creating a new type. String types are similar
1342 enough to array of char types that we can use create_array_type to
1343 build the basic type and then bash it into a string type.
c906108c
SS
1344
1345 For fixed length strings, the range type contains 0 as the lower
1346 bound and the length of the string minus one as the upper bound.
1347
7ba81444
MS
1348 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1349 sure it is TYPE_CODE_UNDEF before we bash it into a string
1350 type? */
c906108c
SS
1351
1352struct type *
3b7538c0
UW
1353create_string_type (struct type *result_type,
1354 struct type *string_char_type,
7ba81444 1355 struct type *range_type)
c906108c
SS
1356{
1357 result_type = create_array_type (result_type,
f290d38e 1358 string_char_type,
c906108c
SS
1359 range_type);
1360 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 1361 return result_type;
c906108c
SS
1362}
1363
e3506a9f
UW
1364struct type *
1365lookup_string_range_type (struct type *string_char_type,
63375b74 1366 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1367{
1368 struct type *result_type;
d8734c88 1369
e3506a9f
UW
1370 result_type = lookup_array_range_type (string_char_type,
1371 low_bound, high_bound);
1372 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1373 return result_type;
1374}
1375
c906108c 1376struct type *
fba45db2 1377create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1378{
c906108c 1379 if (result_type == NULL)
e9bb382b
UW
1380 result_type = alloc_type_copy (domain_type);
1381
c906108c
SS
1382 TYPE_CODE (result_type) = TYPE_CODE_SET;
1383 TYPE_NFIELDS (result_type) = 1;
224c3ddb
SM
1384 TYPE_FIELDS (result_type)
1385 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1386
74a9bb82 1387 if (!TYPE_STUB (domain_type))
c906108c 1388 {
f9780d5b 1389 LONGEST low_bound, high_bound, bit_length;
d8734c88 1390
c906108c
SS
1391 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1392 low_bound = high_bound = 0;
1393 bit_length = high_bound - low_bound + 1;
1394 TYPE_LENGTH (result_type)
1395 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1396 if (low_bound >= 0)
876cecd0 1397 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1398 }
1399 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1400
c16abbde 1401 return result_type;
c906108c
SS
1402}
1403
ea37ba09
DJ
1404/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1405 and any array types nested inside it. */
1406
1407void
1408make_vector_type (struct type *array_type)
1409{
1410 struct type *inner_array, *elt_type;
1411 int flags;
1412
1413 /* Find the innermost array type, in case the array is
1414 multi-dimensional. */
1415 inner_array = array_type;
1416 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1417 inner_array = TYPE_TARGET_TYPE (inner_array);
1418
1419 elt_type = TYPE_TARGET_TYPE (inner_array);
1420 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1421 {
2844d6b5 1422 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1423 elt_type = make_qualified_type (elt_type, flags, NULL);
1424 TYPE_TARGET_TYPE (inner_array) = elt_type;
1425 }
1426
876cecd0 1427 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1428}
1429
794ac428 1430struct type *
ac3aafc7
EZ
1431init_vector_type (struct type *elt_type, int n)
1432{
1433 struct type *array_type;
d8734c88 1434
e3506a9f 1435 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1436 make_vector_type (array_type);
ac3aafc7
EZ
1437 return array_type;
1438}
1439
09e2d7c7
DE
1440/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1441 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1442 confusing. "self" is a common enough replacement for "this".
1443 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1444 TYPE_CODE_METHOD. */
1445
1446struct type *
1447internal_type_self_type (struct type *type)
1448{
1449 switch (TYPE_CODE (type))
1450 {
1451 case TYPE_CODE_METHODPTR:
1452 case TYPE_CODE_MEMBERPTR:
eaaf76ab
DE
1453 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1454 return NULL;
09e2d7c7
DE
1455 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1456 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1457 case TYPE_CODE_METHOD:
eaaf76ab
DE
1458 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1459 return NULL;
09e2d7c7
DE
1460 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1461 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1462 default:
1463 gdb_assert_not_reached ("bad type");
1464 }
1465}
1466
1467/* Set the type of the class that TYPE belongs to.
1468 In c++ this is the class of "this".
1469 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1470 TYPE_CODE_METHOD. */
1471
1472void
1473set_type_self_type (struct type *type, struct type *self_type)
1474{
1475 switch (TYPE_CODE (type))
1476 {
1477 case TYPE_CODE_METHODPTR:
1478 case TYPE_CODE_MEMBERPTR:
1479 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1480 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1481 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1482 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1483 break;
1484 case TYPE_CODE_METHOD:
1485 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1486 INIT_FUNC_SPECIFIC (type);
1487 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1488 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1489 break;
1490 default:
1491 gdb_assert_not_reached ("bad type");
1492 }
1493}
1494
1495/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
0d5de010
DJ
1496 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1497 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1498 TYPE doesn't include the offset (that's the value of the MEMBER
1499 itself), but does include the structure type into which it points
1500 (for some reason).
c906108c 1501
7ba81444
MS
1502 When "smashing" the type, we preserve the objfile that the old type
1503 pointed to, since we aren't changing where the type is actually
c906108c
SS
1504 allocated. */
1505
1506void
09e2d7c7 1507smash_to_memberptr_type (struct type *type, struct type *self_type,
0d5de010 1508 struct type *to_type)
c906108c 1509{
2fdde8f8 1510 smash_type (type);
09e2d7c7 1511 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c 1512 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1513 set_type_self_type (type, self_type);
0d5de010
DJ
1514 /* Assume that a data member pointer is the same size as a normal
1515 pointer. */
50810684
UW
1516 TYPE_LENGTH (type)
1517 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
c906108c
SS
1518}
1519
0b92b5bb
TT
1520/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1521
1522 When "smashing" the type, we preserve the objfile that the old type
1523 pointed to, since we aren't changing where the type is actually
1524 allocated. */
1525
1526void
1527smash_to_methodptr_type (struct type *type, struct type *to_type)
1528{
1529 smash_type (type);
09e2d7c7 1530 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
0b92b5bb 1531 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1532 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
0b92b5bb 1533 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
0b92b5bb
TT
1534}
1535
09e2d7c7 1536/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
c906108c
SS
1537 METHOD just means `function that gets an extra "this" argument'.
1538
7ba81444
MS
1539 When "smashing" the type, we preserve the objfile that the old type
1540 pointed to, since we aren't changing where the type is actually
c906108c
SS
1541 allocated. */
1542
1543void
09e2d7c7 1544smash_to_method_type (struct type *type, struct type *self_type,
ad2f7632
DJ
1545 struct type *to_type, struct field *args,
1546 int nargs, int varargs)
c906108c 1547{
2fdde8f8 1548 smash_type (type);
09e2d7c7 1549 TYPE_CODE (type) = TYPE_CODE_METHOD;
c906108c 1550 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1551 set_type_self_type (type, self_type);
ad2f7632
DJ
1552 TYPE_FIELDS (type) = args;
1553 TYPE_NFIELDS (type) = nargs;
1554 if (varargs)
876cecd0 1555 TYPE_VARARGS (type) = 1;
c906108c 1556 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
c906108c
SS
1557}
1558
a737d952 1559/* A wrapper of TYPE_NAME which calls error if the type is anonymous.
d8228535
JK
1560 Since GCC PR debug/47510 DWARF provides associated information to detect the
1561 anonymous class linkage name from its typedef.
1562
1563 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1564 apply it itself. */
1565
1566const char *
a737d952 1567type_name_or_error (struct type *type)
d8228535
JK
1568{
1569 struct type *saved_type = type;
1570 const char *name;
1571 struct objfile *objfile;
1572
f168693b 1573 type = check_typedef (type);
d8228535 1574
a737d952 1575 name = TYPE_NAME (type);
d8228535
JK
1576 if (name != NULL)
1577 return name;
1578
a737d952 1579 name = TYPE_NAME (saved_type);
d8228535
JK
1580 objfile = TYPE_OBJFILE (saved_type);
1581 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1582 name ? name : "<anonymous>",
1583 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1584}
1585
7ba81444
MS
1586/* Lookup a typedef or primitive type named NAME, visible in lexical
1587 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1588 suitably defined. */
c906108c
SS
1589
1590struct type *
e6c014f2 1591lookup_typename (const struct language_defn *language,
b858499d 1592 const char *name,
34eaf542 1593 const struct block *block, int noerr)
c906108c 1594{
52f0bd74 1595 struct symbol *sym;
c906108c 1596
1994afbf 1597 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
d12307c1 1598 language->la_language, NULL).symbol;
c51fe631
DE
1599 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1600 return SYMBOL_TYPE (sym);
1601
c51fe631
DE
1602 if (noerr)
1603 return NULL;
1604 error (_("No type named %s."), name);
c906108c
SS
1605}
1606
1607struct type *
e6c014f2 1608lookup_unsigned_typename (const struct language_defn *language,
b858499d 1609 const char *name)
c906108c 1610{
224c3ddb 1611 char *uns = (char *) alloca (strlen (name) + 10);
c906108c
SS
1612
1613 strcpy (uns, "unsigned ");
1614 strcpy (uns + 9, name);
b858499d 1615 return lookup_typename (language, uns, NULL, 0);
c906108c
SS
1616}
1617
1618struct type *
b858499d 1619lookup_signed_typename (const struct language_defn *language, const char *name)
c906108c
SS
1620{
1621 struct type *t;
224c3ddb 1622 char *uns = (char *) alloca (strlen (name) + 8);
c906108c
SS
1623
1624 strcpy (uns, "signed ");
1625 strcpy (uns + 7, name);
b858499d 1626 t = lookup_typename (language, uns, NULL, 1);
7ba81444 1627 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1628 if (t != NULL)
1629 return t;
b858499d 1630 return lookup_typename (language, name, NULL, 0);
c906108c
SS
1631}
1632
1633/* Lookup a structure type named "struct NAME",
1634 visible in lexical block BLOCK. */
1635
1636struct type *
270140bd 1637lookup_struct (const char *name, const struct block *block)
c906108c 1638{
52f0bd74 1639 struct symbol *sym;
c906108c 1640
d12307c1 1641 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1642
1643 if (sym == NULL)
1644 {
8a3fe4f8 1645 error (_("No struct type named %s."), name);
c906108c
SS
1646 }
1647 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1648 {
7ba81444
MS
1649 error (_("This context has class, union or enum %s, not a struct."),
1650 name);
c906108c
SS
1651 }
1652 return (SYMBOL_TYPE (sym));
1653}
1654
1655/* Lookup a union type named "union NAME",
1656 visible in lexical block BLOCK. */
1657
1658struct type *
270140bd 1659lookup_union (const char *name, const struct block *block)
c906108c 1660{
52f0bd74 1661 struct symbol *sym;
c5aa993b 1662 struct type *t;
c906108c 1663
d12307c1 1664 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1665
1666 if (sym == NULL)
8a3fe4f8 1667 error (_("No union type named %s."), name);
c906108c 1668
c5aa993b 1669 t = SYMBOL_TYPE (sym);
c906108c
SS
1670
1671 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1672 return t;
c906108c 1673
7ba81444
MS
1674 /* If we get here, it's not a union. */
1675 error (_("This context has class, struct or enum %s, not a union."),
1676 name);
c906108c
SS
1677}
1678
c906108c
SS
1679/* Lookup an enum type named "enum NAME",
1680 visible in lexical block BLOCK. */
1681
1682struct type *
270140bd 1683lookup_enum (const char *name, const struct block *block)
c906108c 1684{
52f0bd74 1685 struct symbol *sym;
c906108c 1686
d12307c1 1687 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1688 if (sym == NULL)
1689 {
8a3fe4f8 1690 error (_("No enum type named %s."), name);
c906108c
SS
1691 }
1692 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1693 {
7ba81444
MS
1694 error (_("This context has class, struct or union %s, not an enum."),
1695 name);
c906108c
SS
1696 }
1697 return (SYMBOL_TYPE (sym));
1698}
1699
1700/* Lookup a template type named "template NAME<TYPE>",
1701 visible in lexical block BLOCK. */
1702
1703struct type *
61f4b350 1704lookup_template_type (const char *name, struct type *type,
270140bd 1705 const struct block *block)
c906108c
SS
1706{
1707 struct symbol *sym;
7ba81444
MS
1708 char *nam = (char *)
1709 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1710
c906108c
SS
1711 strcpy (nam, name);
1712 strcat (nam, "<");
0004e5a2 1713 strcat (nam, TYPE_NAME (type));
0963b4bd 1714 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1715
d12307c1 1716 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
c906108c
SS
1717
1718 if (sym == NULL)
1719 {
8a3fe4f8 1720 error (_("No template type named %s."), name);
c906108c
SS
1721 }
1722 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1723 {
7ba81444
MS
1724 error (_("This context has class, union or enum %s, not a struct."),
1725 name);
c906108c
SS
1726 }
1727 return (SYMBOL_TYPE (sym));
1728}
1729
ef0bd204 1730/* See gdbtypes.h. */
c906108c 1731
ef0bd204
JB
1732struct_elt
1733lookup_struct_elt (struct type *type, const char *name, int noerr)
c906108c
SS
1734{
1735 int i;
1736
1737 for (;;)
1738 {
f168693b 1739 type = check_typedef (type);
c906108c
SS
1740 if (TYPE_CODE (type) != TYPE_CODE_PTR
1741 && TYPE_CODE (type) != TYPE_CODE_REF)
1742 break;
1743 type = TYPE_TARGET_TYPE (type);
1744 }
1745
687d6395
MS
1746 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1747 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1748 {
2f408ecb
PA
1749 std::string type_name = type_to_string (type);
1750 error (_("Type %s is not a structure or union type."),
1751 type_name.c_str ());
c906108c
SS
1752 }
1753
c906108c
SS
1754 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1755 {
0d5cff50 1756 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1757
db577aea 1758 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c 1759 {
ef0bd204 1760 return {&TYPE_FIELD (type, i), TYPE_FIELD_BITPOS (type, i)};
c906108c 1761 }
f5a010c0
PM
1762 else if (!t_field_name || *t_field_name == '\0')
1763 {
ef0bd204
JB
1764 struct_elt elt
1765 = lookup_struct_elt (TYPE_FIELD_TYPE (type, i), name, 1);
1766 if (elt.field != NULL)
1767 {
1768 elt.offset += TYPE_FIELD_BITPOS (type, i);
1769 return elt;
1770 }
f5a010c0 1771 }
c906108c
SS
1772 }
1773
1774 /* OK, it's not in this class. Recursively check the baseclasses. */
1775 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1776 {
ef0bd204
JB
1777 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1778 if (elt.field != NULL)
1779 return elt;
c906108c
SS
1780 }
1781
1782 if (noerr)
ef0bd204 1783 return {nullptr, 0};
c5aa993b 1784
2f408ecb
PA
1785 std::string type_name = type_to_string (type);
1786 error (_("Type %s has no component named %s."), type_name.c_str (), name);
c906108c
SS
1787}
1788
ef0bd204
JB
1789/* See gdbtypes.h. */
1790
1791struct type *
1792lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1793{
1794 struct_elt elt = lookup_struct_elt (type, name, noerr);
1795 if (elt.field != NULL)
1796 return FIELD_TYPE (*elt.field);
1797 else
1798 return NULL;
1799}
1800
ed3ef339
DE
1801/* Store in *MAX the largest number representable by unsigned integer type
1802 TYPE. */
1803
1804void
1805get_unsigned_type_max (struct type *type, ULONGEST *max)
1806{
1807 unsigned int n;
1808
f168693b 1809 type = check_typedef (type);
ed3ef339
DE
1810 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1811 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1812
1813 /* Written this way to avoid overflow. */
1814 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1815 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1816}
1817
1818/* Store in *MIN, *MAX the smallest and largest numbers representable by
1819 signed integer type TYPE. */
1820
1821void
1822get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1823{
1824 unsigned int n;
1825
f168693b 1826 type = check_typedef (type);
ed3ef339
DE
1827 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1828 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1829
1830 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1831 *min = -((ULONGEST) 1 << (n - 1));
1832 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1833}
1834
ae6ae975
DE
1835/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1836 cplus_stuff.vptr_fieldno.
1837
1838 cplus_stuff is initialized to cplus_struct_default which does not
1839 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1840 designated initializers). We cope with that here. */
1841
1842int
1843internal_type_vptr_fieldno (struct type *type)
1844{
f168693b 1845 type = check_typedef (type);
ae6ae975
DE
1846 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1847 || TYPE_CODE (type) == TYPE_CODE_UNION);
1848 if (!HAVE_CPLUS_STRUCT (type))
1849 return -1;
1850 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1851}
1852
1853/* Set the value of cplus_stuff.vptr_fieldno. */
1854
1855void
1856set_type_vptr_fieldno (struct type *type, int fieldno)
1857{
f168693b 1858 type = check_typedef (type);
ae6ae975
DE
1859 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1860 || TYPE_CODE (type) == TYPE_CODE_UNION);
1861 if (!HAVE_CPLUS_STRUCT (type))
1862 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1863 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1864}
1865
1866/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1867 cplus_stuff.vptr_basetype. */
1868
1869struct type *
1870internal_type_vptr_basetype (struct type *type)
1871{
f168693b 1872 type = check_typedef (type);
ae6ae975
DE
1873 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1874 || TYPE_CODE (type) == TYPE_CODE_UNION);
1875 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1876 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1877}
1878
1879/* Set the value of cplus_stuff.vptr_basetype. */
1880
1881void
1882set_type_vptr_basetype (struct type *type, struct type *basetype)
1883{
f168693b 1884 type = check_typedef (type);
ae6ae975
DE
1885 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1886 || TYPE_CODE (type) == TYPE_CODE_UNION);
1887 if (!HAVE_CPLUS_STRUCT (type))
1888 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1889 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1890}
1891
81fe8080
DE
1892/* Lookup the vptr basetype/fieldno values for TYPE.
1893 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1894 vptr_fieldno. Also, if found and basetype is from the same objfile,
1895 cache the results.
1896 If not found, return -1 and ignore BASETYPEP.
1897 Callers should be aware that in some cases (for example,
c906108c 1898 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1899 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1900 this function will not be able to find the
7ba81444 1901 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1902 vptr_basetype will remain NULL or incomplete. */
c906108c 1903
81fe8080
DE
1904int
1905get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c 1906{
f168693b 1907 type = check_typedef (type);
c906108c
SS
1908
1909 if (TYPE_VPTR_FIELDNO (type) < 0)
1910 {
1911 int i;
1912
7ba81444
MS
1913 /* We must start at zero in case the first (and only) baseclass
1914 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1915 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1916 {
81fe8080
DE
1917 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1918 int fieldno;
1919 struct type *basetype;
1920
1921 fieldno = get_vptr_fieldno (baseclass, &basetype);
1922 if (fieldno >= 0)
c906108c 1923 {
81fe8080 1924 /* If the type comes from a different objfile we can't cache
0963b4bd 1925 it, it may have a different lifetime. PR 2384 */
5ef73790 1926 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080 1927 {
ae6ae975
DE
1928 set_type_vptr_fieldno (type, fieldno);
1929 set_type_vptr_basetype (type, basetype);
81fe8080
DE
1930 }
1931 if (basetypep)
1932 *basetypep = basetype;
1933 return fieldno;
c906108c
SS
1934 }
1935 }
81fe8080
DE
1936
1937 /* Not found. */
1938 return -1;
1939 }
1940 else
1941 {
1942 if (basetypep)
1943 *basetypep = TYPE_VPTR_BASETYPE (type);
1944 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1945 }
1946}
1947
44e1a9eb
DJ
1948static void
1949stub_noname_complaint (void)
1950{
b98664d3 1951 complaint (_("stub type has NULL name"));
44e1a9eb
DJ
1952}
1953
a405673c
JB
1954/* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1955 attached to it, and that property has a non-constant value. */
1956
1957static int
1958array_type_has_dynamic_stride (struct type *type)
1959{
1960 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1961
1962 return (prop != NULL && prop->kind != PROP_CONST);
1963}
1964
d98b7a16 1965/* Worker for is_dynamic_type. */
80180f79 1966
d98b7a16 1967static int
ee715b5a 1968is_dynamic_type_internal (struct type *type, int top_level)
80180f79
SA
1969{
1970 type = check_typedef (type);
1971
e771e4be
PMR
1972 /* We only want to recognize references at the outermost level. */
1973 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1974 type = check_typedef (TYPE_TARGET_TYPE (type));
1975
3cdcd0ce
JB
1976 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1977 dynamic, even if the type itself is statically defined.
1978 From a user's point of view, this may appear counter-intuitive;
1979 but it makes sense in this context, because the point is to determine
1980 whether any part of the type needs to be resolved before it can
1981 be exploited. */
1982 if (TYPE_DATA_LOCATION (type) != NULL
1983 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1984 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1985 return 1;
1986
3f2f83dd
KB
1987 if (TYPE_ASSOCIATED_PROP (type))
1988 return 1;
1989
1990 if (TYPE_ALLOCATED_PROP (type))
1991 return 1;
1992
ef83a141
TT
1993 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_VARIANT_PARTS, type);
1994 if (prop != nullptr && prop->kind != PROP_TYPE)
1995 return 1;
1996
f8e89861
TT
1997 if (TYPE_HAS_DYNAMIC_LENGTH (type))
1998 return 1;
1999
80180f79
SA
2000 switch (TYPE_CODE (type))
2001 {
6f8a3220 2002 case TYPE_CODE_RANGE:
ddb87a81
JB
2003 {
2004 /* A range type is obviously dynamic if it has at least one
2005 dynamic bound. But also consider the range type to be
2006 dynamic when its subtype is dynamic, even if the bounds
2007 of the range type are static. It allows us to assume that
2008 the subtype of a static range type is also static. */
2009 return (!has_static_range (TYPE_RANGE_DATA (type))
ee715b5a 2010 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
ddb87a81 2011 }
6f8a3220 2012
216a7e6b
AB
2013 case TYPE_CODE_STRING:
2014 /* Strings are very much like an array of characters, and can be
2015 treated as one here. */
80180f79
SA
2016 case TYPE_CODE_ARRAY:
2017 {
80180f79 2018 gdb_assert (TYPE_NFIELDS (type) == 1);
6f8a3220 2019
a405673c 2020 /* The array is dynamic if either the bounds are dynamic... */
ee715b5a 2021 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
80180f79 2022 return 1;
a405673c
JB
2023 /* ... or the elements it contains have a dynamic contents... */
2024 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
2025 return 1;
2026 /* ... or if it has a dynamic stride... */
2027 if (array_type_has_dynamic_stride (type))
2028 return 1;
2029 return 0;
80180f79 2030 }
012370f6
TT
2031
2032 case TYPE_CODE_STRUCT:
2033 case TYPE_CODE_UNION:
2034 {
2035 int i;
2036
7d79de9a
TT
2037 bool is_cplus = HAVE_CPLUS_STRUCT (type);
2038
012370f6 2039 for (i = 0; i < TYPE_NFIELDS (type); ++i)
7d79de9a
TT
2040 {
2041 /* Static fields can be ignored here. */
2042 if (field_is_static (&TYPE_FIELD (type, i)))
2043 continue;
2044 /* If the field has dynamic type, then so does TYPE. */
2045 if (is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
2046 return 1;
2047 /* If the field is at a fixed offset, then it is not
2048 dynamic. */
2049 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_DWARF_BLOCK)
2050 continue;
2051 /* Do not consider C++ virtual base types to be dynamic
2052 due to the field's offset being dynamic; these are
2053 handled via other means. */
2054 if (is_cplus && BASETYPE_VIA_VIRTUAL (type, i))
2055 continue;
012370f6 2056 return 1;
7d79de9a 2057 }
012370f6
TT
2058 }
2059 break;
80180f79 2060 }
92e2a17f
TT
2061
2062 return 0;
80180f79
SA
2063}
2064
d98b7a16
TT
2065/* See gdbtypes.h. */
2066
2067int
2068is_dynamic_type (struct type *type)
2069{
ee715b5a 2070 return is_dynamic_type_internal (type, 1);
d98b7a16
TT
2071}
2072
df25ebbd 2073static struct type *resolve_dynamic_type_internal
ee715b5a 2074 (struct type *type, struct property_addr_info *addr_stack, int top_level);
d98b7a16 2075
df25ebbd
JB
2076/* Given a dynamic range type (dyn_range_type) and a stack of
2077 struct property_addr_info elements, return a static version
2078 of that type. */
d190df30 2079
80180f79 2080static struct type *
df25ebbd
JB
2081resolve_dynamic_range (struct type *dyn_range_type,
2082 struct property_addr_info *addr_stack)
80180f79
SA
2083{
2084 CORE_ADDR value;
ddb87a81 2085 struct type *static_range_type, *static_target_type;
80180f79 2086 const struct dynamic_prop *prop;
5bbd8269 2087 struct dynamic_prop low_bound, high_bound, stride;
80180f79 2088
6f8a3220 2089 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
80180f79 2090
6f8a3220 2091 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
63e43d3a 2092 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
2093 {
2094 low_bound.kind = PROP_CONST;
2095 low_bound.data.const_val = value;
2096 }
2097 else
2098 {
2099 low_bound.kind = PROP_UNDEFINED;
2100 low_bound.data.const_val = 0;
2101 }
2102
6f8a3220 2103 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
63e43d3a 2104 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
2105 {
2106 high_bound.kind = PROP_CONST;
2107 high_bound.data.const_val = value;
c451ebe5 2108
6f8a3220 2109 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
c451ebe5
SA
2110 high_bound.data.const_val
2111 = low_bound.data.const_val + high_bound.data.const_val - 1;
80180f79
SA
2112 }
2113 else
2114 {
2115 high_bound.kind = PROP_UNDEFINED;
2116 high_bound.data.const_val = 0;
2117 }
2118
5bbd8269
AB
2119 bool byte_stride_p = TYPE_RANGE_DATA (dyn_range_type)->flag_is_byte_stride;
2120 prop = &TYPE_RANGE_DATA (dyn_range_type)->stride;
2121 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2122 {
2123 stride.kind = PROP_CONST;
2124 stride.data.const_val = value;
2125
2126 /* If we have a bit stride that is not an exact number of bytes then
2127 I really don't think this is going to work with current GDB, the
2128 array indexing code in GDB seems to be pretty heavily tied to byte
2129 offsets right now. Assuming 8 bits in a byte. */
2130 struct gdbarch *gdbarch = get_type_arch (dyn_range_type);
2131 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
2132 if (!byte_stride_p && (value % (unit_size * 8)) != 0)
2133 error (_("bit strides that are not a multiple of the byte size "
2134 "are currently not supported"));
2135 }
2136 else
2137 {
2138 stride.kind = PROP_UNDEFINED;
2139 stride.data.const_val = 0;
2140 byte_stride_p = true;
2141 }
2142
ddb87a81
JB
2143 static_target_type
2144 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
ee715b5a 2145 addr_stack, 0);
4e962e74 2146 LONGEST bias = TYPE_RANGE_DATA (dyn_range_type)->bias;
5bbd8269
AB
2147 static_range_type = create_range_type_with_stride
2148 (copy_type (dyn_range_type), static_target_type,
2149 &low_bound, &high_bound, bias, &stride, byte_stride_p);
6f8a3220
JB
2150 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2151 return static_range_type;
2152}
2153
216a7e6b
AB
2154/* Resolves dynamic bound values of an array or string type TYPE to static
2155 ones. ADDR_STACK is a stack of struct property_addr_info to be used if
2156 needed during the dynamic resolution. */
6f8a3220
JB
2157
2158static struct type *
216a7e6b
AB
2159resolve_dynamic_array_or_string (struct type *type,
2160 struct property_addr_info *addr_stack)
6f8a3220
JB
2161{
2162 CORE_ADDR value;
2163 struct type *elt_type;
2164 struct type *range_type;
2165 struct type *ary_dim;
3f2f83dd 2166 struct dynamic_prop *prop;
a405673c 2167 unsigned int bit_stride = 0;
6f8a3220 2168
216a7e6b
AB
2169 /* For dynamic type resolution strings can be treated like arrays of
2170 characters. */
2171 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY
2172 || TYPE_CODE (type) == TYPE_CODE_STRING);
6f8a3220 2173
3f2f83dd
KB
2174 type = copy_type (type);
2175
6f8a3220
JB
2176 elt_type = type;
2177 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
df25ebbd 2178 range_type = resolve_dynamic_range (range_type, addr_stack);
6f8a3220 2179
3f2f83dd
KB
2180 /* Resolve allocated/associated here before creating a new array type, which
2181 will update the length of the array accordingly. */
2182 prop = TYPE_ALLOCATED_PROP (type);
2183 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2184 {
2185 TYPE_DYN_PROP_ADDR (prop) = value;
2186 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2187 }
2188 prop = TYPE_ASSOCIATED_PROP (type);
2189 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2190 {
2191 TYPE_DYN_PROP_ADDR (prop) = value;
2192 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2193 }
2194
80180f79
SA
2195 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2196
2197 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
216a7e6b 2198 elt_type = resolve_dynamic_array_or_string (ary_dim, addr_stack);
80180f79
SA
2199 else
2200 elt_type = TYPE_TARGET_TYPE (type);
2201
a405673c
JB
2202 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2203 if (prop != NULL)
2204 {
603490bf 2205 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
a405673c
JB
2206 {
2207 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2208 bit_stride = (unsigned int) (value * 8);
2209 }
2210 else
2211 {
2212 /* Could be a bug in our code, but it could also happen
2213 if the DWARF info is not correct. Issue a warning,
2214 and assume no byte/bit stride (leave bit_stride = 0). */
2215 warning (_("cannot determine array stride for type %s"),
2216 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2217 }
2218 }
2219 else
2220 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2221
2222 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2223 bit_stride);
80180f79
SA
2224}
2225
012370f6 2226/* Resolve dynamic bounds of members of the union TYPE to static
df25ebbd
JB
2227 bounds. ADDR_STACK is a stack of struct property_addr_info
2228 to be used if needed during the dynamic resolution. */
012370f6
TT
2229
2230static struct type *
df25ebbd
JB
2231resolve_dynamic_union (struct type *type,
2232 struct property_addr_info *addr_stack)
012370f6
TT
2233{
2234 struct type *resolved_type;
2235 int i;
2236 unsigned int max_len = 0;
2237
2238 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2239
2240 resolved_type = copy_type (type);
2241 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2242 = (struct field *) TYPE_ALLOC (resolved_type,
2243 TYPE_NFIELDS (resolved_type)
2244 * sizeof (struct field));
012370f6
TT
2245 memcpy (TYPE_FIELDS (resolved_type),
2246 TYPE_FIELDS (type),
2247 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2248 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2249 {
2250 struct type *t;
2251
2252 if (field_is_static (&TYPE_FIELD (type, i)))
2253 continue;
2254
d98b7a16 2255 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2256 addr_stack, 0);
012370f6
TT
2257 TYPE_FIELD_TYPE (resolved_type, i) = t;
2258 if (TYPE_LENGTH (t) > max_len)
2259 max_len = TYPE_LENGTH (t);
2260 }
2261
2262 TYPE_LENGTH (resolved_type) = max_len;
2263 return resolved_type;
2264}
2265
ef83a141
TT
2266/* See gdbtypes.h. */
2267
2268bool
2269variant::matches (ULONGEST value, bool is_unsigned) const
2270{
2271 for (const discriminant_range &range : discriminants)
2272 if (range.contains (value, is_unsigned))
2273 return true;
2274 return false;
2275}
2276
2277static void
2278compute_variant_fields_inner (struct type *type,
2279 struct property_addr_info *addr_stack,
2280 const variant_part &part,
2281 std::vector<bool> &flags);
2282
2283/* A helper function to determine which variant fields will be active.
2284 This handles both the variant's direct fields, and any variant
2285 parts embedded in this variant. TYPE is the type we're examining.
2286 ADDR_STACK holds information about the concrete object. VARIANT is
2287 the current variant to be handled. FLAGS is where the results are
2288 stored -- this function sets the Nth element in FLAGS if the
2289 corresponding field is enabled. ENABLED is whether this variant is
2290 enabled or not. */
2291
2292static void
2293compute_variant_fields_recurse (struct type *type,
2294 struct property_addr_info *addr_stack,
2295 const variant &variant,
2296 std::vector<bool> &flags,
2297 bool enabled)
2298{
2299 for (int field = variant.first_field; field < variant.last_field; ++field)
2300 flags[field] = enabled;
2301
2302 for (const variant_part &new_part : variant.parts)
2303 {
2304 if (enabled)
2305 compute_variant_fields_inner (type, addr_stack, new_part, flags);
2306 else
2307 {
2308 for (const auto &sub_variant : new_part.variants)
2309 compute_variant_fields_recurse (type, addr_stack, sub_variant,
2310 flags, enabled);
2311 }
2312 }
2313}
2314
2315/* A helper function to determine which variant fields will be active.
2316 This evaluates the discriminant, decides which variant (if any) is
2317 active, and then updates FLAGS to reflect which fields should be
2318 available. TYPE is the type we're examining. ADDR_STACK holds
2319 information about the concrete object. VARIANT is the current
2320 variant to be handled. FLAGS is where the results are stored --
2321 this function sets the Nth element in FLAGS if the corresponding
2322 field is enabled. */
2323
2324static void
2325compute_variant_fields_inner (struct type *type,
2326 struct property_addr_info *addr_stack,
2327 const variant_part &part,
2328 std::vector<bool> &flags)
2329{
2330 /* Evaluate the discriminant. */
2331 gdb::optional<ULONGEST> discr_value;
2332 if (part.discriminant_index != -1)
2333 {
2334 int idx = part.discriminant_index;
2335
2336 if (TYPE_FIELD_LOC_KIND (type, idx) != FIELD_LOC_KIND_BITPOS)
2337 error (_("Cannot determine struct field location"
2338 " (invalid location kind)"));
2339
b249d2c2
TT
2340 if (addr_stack->valaddr.data () != NULL)
2341 discr_value = unpack_field_as_long (type, addr_stack->valaddr.data (),
2342 idx);
ef83a141
TT
2343 else
2344 {
2345 CORE_ADDR addr = (addr_stack->addr
2346 + (TYPE_FIELD_BITPOS (type, idx)
2347 / TARGET_CHAR_BIT));
2348
2349 LONGEST bitsize = TYPE_FIELD_BITSIZE (type, idx);
2350 LONGEST size = bitsize / 8;
2351 if (size == 0)
2352 size = TYPE_LENGTH (TYPE_FIELD_TYPE (type, idx));
2353
2354 gdb_byte bits[sizeof (ULONGEST)];
2355 read_memory (addr, bits, size);
2356
2357 LONGEST bitpos = (TYPE_FIELD_BITPOS (type, idx)
2358 % TARGET_CHAR_BIT);
2359
2360 discr_value = unpack_bits_as_long (TYPE_FIELD_TYPE (type, idx),
2361 bits, bitpos, bitsize);
2362 }
2363 }
2364
2365 /* Go through each variant and see which applies. */
2366 const variant *default_variant = nullptr;
2367 const variant *applied_variant = nullptr;
2368 for (const auto &variant : part.variants)
2369 {
2370 if (variant.is_default ())
2371 default_variant = &variant;
2372 else if (discr_value.has_value ()
2373 && variant.matches (*discr_value, part.is_unsigned))
2374 {
2375 applied_variant = &variant;
2376 break;
2377 }
2378 }
2379 if (applied_variant == nullptr)
2380 applied_variant = default_variant;
2381
2382 for (const auto &variant : part.variants)
2383 compute_variant_fields_recurse (type, addr_stack, variant,
2384 flags, applied_variant == &variant);
2385}
2386
2387/* Determine which variant fields are available in TYPE. The enabled
2388 fields are stored in RESOLVED_TYPE. ADDR_STACK holds information
2389 about the concrete object. PARTS describes the top-level variant
2390 parts for this type. */
2391
2392static void
2393compute_variant_fields (struct type *type,
2394 struct type *resolved_type,
2395 struct property_addr_info *addr_stack,
2396 const gdb::array_view<variant_part> &parts)
2397{
2398 /* Assume all fields are included by default. */
2399 std::vector<bool> flags (TYPE_NFIELDS (resolved_type), true);
2400
2401 /* Now disable fields based on the variants that control them. */
2402 for (const auto &part : parts)
2403 compute_variant_fields_inner (type, addr_stack, part, flags);
2404
2405 TYPE_NFIELDS (resolved_type) = std::count (flags.begin (), flags.end (),
2406 true);
2407 TYPE_FIELDS (resolved_type)
2408 = (struct field *) TYPE_ALLOC (resolved_type,
2409 TYPE_NFIELDS (resolved_type)
2410 * sizeof (struct field));
2411 int out = 0;
2412 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
2413 {
2414 if (!flags[i])
2415 continue;
2416
2417 TYPE_FIELD (resolved_type, out) = TYPE_FIELD (type, i);
2418 ++out;
2419 }
2420}
2421
012370f6 2422/* Resolve dynamic bounds of members of the struct TYPE to static
df25ebbd
JB
2423 bounds. ADDR_STACK is a stack of struct property_addr_info to
2424 be used if needed during the dynamic resolution. */
012370f6
TT
2425
2426static struct type *
df25ebbd
JB
2427resolve_dynamic_struct (struct type *type,
2428 struct property_addr_info *addr_stack)
012370f6
TT
2429{
2430 struct type *resolved_type;
2431 int i;
6908c509 2432 unsigned resolved_type_bit_length = 0;
012370f6
TT
2433
2434 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2435 gdb_assert (TYPE_NFIELDS (type) > 0);
2436
2437 resolved_type = copy_type (type);
ef83a141
TT
2438
2439 struct dynamic_prop *variant_prop = get_dyn_prop (DYN_PROP_VARIANT_PARTS,
2440 resolved_type);
2441 if (variant_prop != nullptr && variant_prop->kind == PROP_VARIANT_PARTS)
2442 {
2443 compute_variant_fields (type, resolved_type, addr_stack,
2444 *variant_prop->data.variant_parts);
2445 /* We want to leave the property attached, so that the Rust code
2446 can tell whether the type was originally an enum. */
2447 variant_prop->kind = PROP_TYPE;
2448 variant_prop->data.original_type = type;
2449 }
2450 else
2451 {
2452 TYPE_FIELDS (resolved_type)
2453 = (struct field *) TYPE_ALLOC (resolved_type,
2454 TYPE_NFIELDS (resolved_type)
2455 * sizeof (struct field));
2456 memcpy (TYPE_FIELDS (resolved_type),
2457 TYPE_FIELDS (type),
2458 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2459 }
2460
012370f6
TT
2461 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2462 {
6908c509 2463 unsigned new_bit_length;
df25ebbd 2464 struct property_addr_info pinfo;
012370f6 2465
ef83a141 2466 if (field_is_static (&TYPE_FIELD (resolved_type, i)))
012370f6
TT
2467 continue;
2468
7d79de9a
TT
2469 if (TYPE_FIELD_LOC_KIND (resolved_type, i) == FIELD_LOC_KIND_DWARF_BLOCK)
2470 {
2471 struct dwarf2_property_baton baton;
2472 baton.property_type
2473 = lookup_pointer_type (TYPE_FIELD_TYPE (resolved_type, i));
2474 baton.locexpr = *TYPE_FIELD_DWARF_BLOCK (resolved_type, i);
2475
2476 struct dynamic_prop prop;
2477 prop.kind = PROP_LOCEXPR;
2478 prop.data.baton = &baton;
2479
2480 CORE_ADDR addr;
2481 if (dwarf2_evaluate_property (&prop, nullptr, addr_stack, &addr,
2482 true))
2483 SET_FIELD_BITPOS (TYPE_FIELD (resolved_type, i),
2484 TARGET_CHAR_BIT * (addr - addr_stack->addr));
2485 }
2486
6908c509
JB
2487 /* As we know this field is not a static field, the field's
2488 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2489 this is the case, but only trigger a simple error rather
2490 than an internal error if that fails. While failing
2491 that verification indicates a bug in our code, the error
2492 is not severe enough to suggest to the user he stops
2493 his debugging session because of it. */
ef83a141 2494 if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
6908c509
JB
2495 error (_("Cannot determine struct field location"
2496 " (invalid location kind)"));
df25ebbd 2497
ef83a141 2498 pinfo.type = check_typedef (TYPE_FIELD_TYPE (resolved_type, i));
c3345124 2499 pinfo.valaddr = addr_stack->valaddr;
9920b434
BH
2500 pinfo.addr
2501 = (addr_stack->addr
2502 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
df25ebbd
JB
2503 pinfo.next = addr_stack;
2504
2505 TYPE_FIELD_TYPE (resolved_type, i)
2506 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2507 &pinfo, 0);
df25ebbd
JB
2508 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2509 == FIELD_LOC_KIND_BITPOS);
2510
6908c509
JB
2511 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2512 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2513 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2514 else
2515 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2516 * TARGET_CHAR_BIT);
2517
2518 /* Normally, we would use the position and size of the last field
2519 to determine the size of the enclosing structure. But GCC seems
2520 to be encoding the position of some fields incorrectly when
2521 the struct contains a dynamic field that is not placed last.
2522 So we compute the struct size based on the field that has
2523 the highest position + size - probably the best we can do. */
2524 if (new_bit_length > resolved_type_bit_length)
2525 resolved_type_bit_length = new_bit_length;
012370f6
TT
2526 }
2527
9920b434
BH
2528 /* The length of a type won't change for fortran, but it does for C and Ada.
2529 For fortran the size of dynamic fields might change over time but not the
2530 type length of the structure. If we adapt it, we run into problems
2531 when calculating the element offset for arrays of structs. */
2532 if (current_language->la_language != language_fortran)
2533 TYPE_LENGTH (resolved_type)
2534 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
6908c509 2535
9e195661
PMR
2536 /* The Ada language uses this field as a cache for static fixed types: reset
2537 it as RESOLVED_TYPE must have its own static fixed type. */
2538 TYPE_TARGET_TYPE (resolved_type) = NULL;
2539
012370f6
TT
2540 return resolved_type;
2541}
2542
d98b7a16 2543/* Worker for resolved_dynamic_type. */
80180f79 2544
d98b7a16 2545static struct type *
df25ebbd 2546resolve_dynamic_type_internal (struct type *type,
ee715b5a
PMR
2547 struct property_addr_info *addr_stack,
2548 int top_level)
80180f79
SA
2549{
2550 struct type *real_type = check_typedef (type);
f8e89861 2551 struct type *resolved_type = nullptr;
d9823cbb 2552 struct dynamic_prop *prop;
3cdcd0ce 2553 CORE_ADDR value;
80180f79 2554
ee715b5a 2555 if (!is_dynamic_type_internal (real_type, top_level))
80180f79
SA
2556 return type;
2557
f8e89861
TT
2558 gdb::optional<CORE_ADDR> type_length;
2559 prop = TYPE_DYNAMIC_LENGTH (type);
2560 if (prop != NULL
2561 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2562 type_length = value;
2563
5537b577 2564 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
6f8a3220 2565 {
cac9b138
JK
2566 resolved_type = copy_type (type);
2567 TYPE_TARGET_TYPE (resolved_type)
ee715b5a
PMR
2568 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2569 top_level);
5537b577
JK
2570 }
2571 else
2572 {
2573 /* Before trying to resolve TYPE, make sure it is not a stub. */
2574 type = real_type;
012370f6 2575
5537b577
JK
2576 switch (TYPE_CODE (type))
2577 {
e771e4be
PMR
2578 case TYPE_CODE_REF:
2579 {
2580 struct property_addr_info pinfo;
2581
2582 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
b249d2c2
TT
2583 pinfo.valaddr = {};
2584 if (addr_stack->valaddr.data () != NULL)
2585 pinfo.addr = extract_typed_address (addr_stack->valaddr.data (),
2586 type);
c3345124
JB
2587 else
2588 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
e771e4be
PMR
2589 pinfo.next = addr_stack;
2590
2591 resolved_type = copy_type (type);
2592 TYPE_TARGET_TYPE (resolved_type)
2593 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2594 &pinfo, top_level);
2595 break;
2596 }
2597
216a7e6b
AB
2598 case TYPE_CODE_STRING:
2599 /* Strings are very much like an array of characters, and can be
2600 treated as one here. */
5537b577 2601 case TYPE_CODE_ARRAY:
216a7e6b 2602 resolved_type = resolve_dynamic_array_or_string (type, addr_stack);
5537b577
JK
2603 break;
2604
2605 case TYPE_CODE_RANGE:
df25ebbd 2606 resolved_type = resolve_dynamic_range (type, addr_stack);
5537b577
JK
2607 break;
2608
2609 case TYPE_CODE_UNION:
df25ebbd 2610 resolved_type = resolve_dynamic_union (type, addr_stack);
5537b577
JK
2611 break;
2612
2613 case TYPE_CODE_STRUCT:
df25ebbd 2614 resolved_type = resolve_dynamic_struct (type, addr_stack);
5537b577
JK
2615 break;
2616 }
6f8a3220 2617 }
80180f79 2618
f8e89861
TT
2619 if (resolved_type == nullptr)
2620 return type;
2621
2622 if (type_length.has_value ())
2623 {
2624 TYPE_LENGTH (resolved_type) = *type_length;
2625 remove_dyn_prop (DYN_PROP_BYTE_SIZE, resolved_type);
2626 }
2627
3cdcd0ce
JB
2628 /* Resolve data_location attribute. */
2629 prop = TYPE_DATA_LOCATION (resolved_type);
63e43d3a
PMR
2630 if (prop != NULL
2631 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
3cdcd0ce 2632 {
d9823cbb
KB
2633 TYPE_DYN_PROP_ADDR (prop) = value;
2634 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
3cdcd0ce 2635 }
3cdcd0ce 2636
80180f79
SA
2637 return resolved_type;
2638}
2639
d98b7a16
TT
2640/* See gdbtypes.h */
2641
2642struct type *
b249d2c2
TT
2643resolve_dynamic_type (struct type *type,
2644 gdb::array_view<const gdb_byte> valaddr,
c3345124 2645 CORE_ADDR addr)
d98b7a16 2646{
c3345124
JB
2647 struct property_addr_info pinfo
2648 = {check_typedef (type), valaddr, addr, NULL};
df25ebbd 2649
ee715b5a 2650 return resolve_dynamic_type_internal (type, &pinfo, 1);
d98b7a16
TT
2651}
2652
d9823cbb
KB
2653/* See gdbtypes.h */
2654
2655struct dynamic_prop *
2656get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2657{
2658 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2659
2660 while (node != NULL)
2661 {
2662 if (node->prop_kind == prop_kind)
283a9958 2663 return &node->prop;
d9823cbb
KB
2664 node = node->next;
2665 }
2666 return NULL;
2667}
2668
2669/* See gdbtypes.h */
2670
2671void
2672add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
50a82047 2673 struct type *type)
d9823cbb
KB
2674{
2675 struct dynamic_prop_list *temp;
2676
2677 gdb_assert (TYPE_OBJFILE_OWNED (type));
2678
50a82047
TT
2679 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2680 struct dynamic_prop_list);
d9823cbb 2681 temp->prop_kind = prop_kind;
283a9958 2682 temp->prop = prop;
d9823cbb
KB
2683 temp->next = TYPE_DYN_PROP_LIST (type);
2684
2685 TYPE_DYN_PROP_LIST (type) = temp;
2686}
2687
9920b434
BH
2688/* Remove dynamic property from TYPE in case it exists. */
2689
2690void
2691remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2692 struct type *type)
2693{
2694 struct dynamic_prop_list *prev_node, *curr_node;
2695
2696 curr_node = TYPE_DYN_PROP_LIST (type);
2697 prev_node = NULL;
2698
2699 while (NULL != curr_node)
2700 {
2701 if (curr_node->prop_kind == prop_kind)
2702 {
2703 /* Update the linked list but don't free anything.
2704 The property was allocated on objstack and it is not known
2705 if we are on top of it. Nevertheless, everything is released
2706 when the complete objstack is freed. */
2707 if (NULL == prev_node)
2708 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2709 else
2710 prev_node->next = curr_node->next;
2711
2712 return;
2713 }
2714
2715 prev_node = curr_node;
2716 curr_node = curr_node->next;
2717 }
2718}
d9823cbb 2719
92163a10
JK
2720/* Find the real type of TYPE. This function returns the real type,
2721 after removing all layers of typedefs, and completing opaque or stub
2722 types. Completion changes the TYPE argument, but stripping of
2723 typedefs does not.
2724
2725 Instance flags (e.g. const/volatile) are preserved as typedefs are
2726 stripped. If necessary a new qualified form of the underlying type
2727 is created.
2728
2729 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2730 not been computed and we're either in the middle of reading symbols, or
2731 there was no name for the typedef in the debug info.
2732
9bc118a5
DE
2733 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2734 QUITs in the symbol reading code can also throw.
2735 Thus this function can throw an exception.
2736
92163a10
JK
2737 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2738 the target type.
c906108c
SS
2739
2740 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 2741 we can find a full definition in some other file. If so, copy this
7ba81444
MS
2742 definition, so we can use it in future. There used to be a comment
2743 (but not any code) that if we don't find a full definition, we'd
2744 set a flag so we don't spend time in the future checking the same
2745 type. That would be a mistake, though--we might load in more
92163a10 2746 symbols which contain a full definition for the type. */
c906108c
SS
2747
2748struct type *
a02fd225 2749check_typedef (struct type *type)
c906108c
SS
2750{
2751 struct type *orig_type = type;
92163a10
JK
2752 /* While we're removing typedefs, we don't want to lose qualifiers.
2753 E.g., const/volatile. */
2754 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 2755
423c0af8
MS
2756 gdb_assert (type);
2757
c906108c
SS
2758 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2759 {
2760 if (!TYPE_TARGET_TYPE (type))
2761 {
0d5cff50 2762 const char *name;
c906108c
SS
2763 struct symbol *sym;
2764
2765 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 2766 reading a symtab. Infinite recursion is one danger. */
c906108c 2767 if (currently_reading_symtab)
92163a10 2768 return make_qualified_type (type, instance_flags, NULL);
c906108c 2769
a737d952 2770 name = TYPE_NAME (type);
e86ca25f
TT
2771 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2772 VAR_DOMAIN as appropriate? */
c906108c
SS
2773 if (name == NULL)
2774 {
23136709 2775 stub_noname_complaint ();
92163a10 2776 return make_qualified_type (type, instance_flags, NULL);
c906108c 2777 }
d12307c1 2778 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
2779 if (sym)
2780 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 2781 else /* TYPE_CODE_UNDEF */
e9bb382b 2782 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
2783 }
2784 type = TYPE_TARGET_TYPE (type);
c906108c 2785
92163a10
JK
2786 /* Preserve the instance flags as we traverse down the typedef chain.
2787
2788 Handling address spaces/classes is nasty, what do we do if there's a
2789 conflict?
2790 E.g., what if an outer typedef marks the type as class_1 and an inner
2791 typedef marks the type as class_2?
2792 This is the wrong place to do such error checking. We leave it to
2793 the code that created the typedef in the first place to flag the
2794 error. We just pick the outer address space (akin to letting the
2795 outer cast in a chain of casting win), instead of assuming
2796 "it can't happen". */
2797 {
2798 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2799 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2800 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2801 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2802
2803 /* Treat code vs data spaces and address classes separately. */
2804 if ((instance_flags & ALL_SPACES) != 0)
2805 new_instance_flags &= ~ALL_SPACES;
2806 if ((instance_flags & ALL_CLASSES) != 0)
2807 new_instance_flags &= ~ALL_CLASSES;
2808
2809 instance_flags |= new_instance_flags;
2810 }
2811 }
a02fd225 2812
7ba81444
MS
2813 /* If this is a struct/class/union with no fields, then check
2814 whether a full definition exists somewhere else. This is for
2815 systems where a type definition with no fields is issued for such
2816 types, instead of identifying them as stub types in the first
2817 place. */
c5aa993b 2818
7ba81444
MS
2819 if (TYPE_IS_OPAQUE (type)
2820 && opaque_type_resolution
2821 && !currently_reading_symtab)
c906108c 2822 {
a737d952 2823 const char *name = TYPE_NAME (type);
c5aa993b 2824 struct type *newtype;
d8734c88 2825
c906108c
SS
2826 if (name == NULL)
2827 {
23136709 2828 stub_noname_complaint ();
92163a10 2829 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2830 }
2831 newtype = lookup_transparent_type (name);
ad766c0a 2832
c906108c 2833 if (newtype)
ad766c0a 2834 {
7ba81444
MS
2835 /* If the resolved type and the stub are in the same
2836 objfile, then replace the stub type with the real deal.
2837 But if they're in separate objfiles, leave the stub
2838 alone; we'll just look up the transparent type every time
2839 we call check_typedef. We can't create pointers between
2840 types allocated to different objfiles, since they may
2841 have different lifetimes. Trying to copy NEWTYPE over to
2842 TYPE's objfile is pointless, too, since you'll have to
2843 move over any other types NEWTYPE refers to, which could
2844 be an unbounded amount of stuff. */
ad766c0a 2845 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
2846 type = make_qualified_type (newtype,
2847 TYPE_INSTANCE_FLAGS (type),
2848 type);
ad766c0a
JB
2849 else
2850 type = newtype;
2851 }
c906108c 2852 }
7ba81444
MS
2853 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2854 types. */
74a9bb82 2855 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 2856 {
a737d952 2857 const char *name = TYPE_NAME (type);
e86ca25f
TT
2858 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2859 as appropriate? */
c906108c 2860 struct symbol *sym;
d8734c88 2861
c906108c
SS
2862 if (name == NULL)
2863 {
23136709 2864 stub_noname_complaint ();
92163a10 2865 return make_qualified_type (type, instance_flags, NULL);
c906108c 2866 }
d12307c1 2867 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c 2868 if (sym)
c26f2453
JB
2869 {
2870 /* Same as above for opaque types, we can replace the stub
92163a10 2871 with the complete type only if they are in the same
c26f2453
JB
2872 objfile. */
2873 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
2874 type = make_qualified_type (SYMBOL_TYPE (sym),
2875 TYPE_INSTANCE_FLAGS (type),
2876 type);
c26f2453
JB
2877 else
2878 type = SYMBOL_TYPE (sym);
2879 }
c906108c
SS
2880 }
2881
74a9bb82 2882 if (TYPE_TARGET_STUB (type))
c906108c 2883 {
c906108c
SS
2884 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2885
74a9bb82 2886 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 2887 {
73e2eb35 2888 /* Nothing we can do. */
c5aa993b 2889 }
c906108c
SS
2890 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2891 {
2892 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 2893 TYPE_TARGET_STUB (type) = 0;
c906108c 2894 }
8dbb1375
HD
2895 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2896 && update_static_array_size (type))
2897 TYPE_TARGET_STUB (type) = 0;
c906108c 2898 }
92163a10
JK
2899
2900 type = make_qualified_type (type, instance_flags, NULL);
2901
7ba81444 2902 /* Cache TYPE_LENGTH for future use. */
c906108c 2903 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2904
c906108c
SS
2905 return type;
2906}
2907
7ba81444 2908/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2909 occurs, silently return a void type. */
c91ecb25 2910
b9362cc7 2911static struct type *
48319d1f 2912safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2913{
2914 struct ui_file *saved_gdb_stderr;
34365054 2915 struct type *type = NULL; /* Initialize to keep gcc happy. */
c91ecb25 2916
7ba81444 2917 /* Suppress error messages. */
c91ecb25 2918 saved_gdb_stderr = gdb_stderr;
d7e74731 2919 gdb_stderr = &null_stream;
c91ecb25 2920
7ba81444 2921 /* Call parse_and_eval_type() without fear of longjmp()s. */
a70b8144 2922 try
8e7b59a5
KS
2923 {
2924 type = parse_and_eval_type (p, length);
2925 }
230d2906 2926 catch (const gdb_exception_error &except)
492d29ea
PA
2927 {
2928 type = builtin_type (gdbarch)->builtin_void;
2929 }
c91ecb25 2930
7ba81444 2931 /* Stop suppressing error messages. */
c91ecb25
ND
2932 gdb_stderr = saved_gdb_stderr;
2933
2934 return type;
2935}
2936
c906108c
SS
2937/* Ugly hack to convert method stubs into method types.
2938
7ba81444
MS
2939 He ain't kiddin'. This demangles the name of the method into a
2940 string including argument types, parses out each argument type,
2941 generates a string casting a zero to that type, evaluates the
2942 string, and stuffs the resulting type into an argtype vector!!!
2943 Then it knows the type of the whole function (including argument
2944 types for overloading), which info used to be in the stab's but was
2945 removed to hack back the space required for them. */
c906108c 2946
de17c821 2947static void
fba45db2 2948check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2949{
50810684 2950 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2951 struct fn_field *f;
2952 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2953 char *demangled_name = gdb_demangle (mangled_name,
2954 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2955 char *argtypetext, *p;
2956 int depth = 0, argcount = 1;
ad2f7632 2957 struct field *argtypes;
c906108c
SS
2958 struct type *mtype;
2959
2960 /* Make sure we got back a function string that we can use. */
2961 if (demangled_name)
2962 p = strchr (demangled_name, '(');
502dcf4e
AC
2963 else
2964 p = NULL;
c906108c
SS
2965
2966 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2967 error (_("Internal: Cannot demangle mangled name `%s'."),
2968 mangled_name);
c906108c
SS
2969
2970 /* Now, read in the parameters that define this type. */
2971 p += 1;
2972 argtypetext = p;
2973 while (*p)
2974 {
070ad9f0 2975 if (*p == '(' || *p == '<')
c906108c
SS
2976 {
2977 depth += 1;
2978 }
070ad9f0 2979 else if (*p == ')' || *p == '>')
c906108c
SS
2980 {
2981 depth -= 1;
2982 }
2983 else if (*p == ',' && depth == 0)
2984 {
2985 argcount += 1;
2986 }
2987
2988 p += 1;
2989 }
2990
ad2f7632 2991 /* If we read one argument and it was ``void'', don't count it. */
61012eef 2992 if (startswith (argtypetext, "(void)"))
ad2f7632 2993 argcount -= 1;
c906108c 2994
ad2f7632
DJ
2995 /* We need one extra slot, for the THIS pointer. */
2996
2997 argtypes = (struct field *)
2998 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2999 p = argtypetext;
4a1970e4
DJ
3000
3001 /* Add THIS pointer for non-static methods. */
3002 f = TYPE_FN_FIELDLIST1 (type, method_id);
3003 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
3004 argcount = 0;
3005 else
3006 {
ad2f7632 3007 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
3008 argcount = 1;
3009 }
c906108c 3010
0963b4bd 3011 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
3012 {
3013 depth = 0;
3014 while (*p)
3015 {
3016 if (depth <= 0 && (*p == ',' || *p == ')'))
3017 {
ad2f7632
DJ
3018 /* Avoid parsing of ellipsis, they will be handled below.
3019 Also avoid ``void'' as above. */
3020 if (strncmp (argtypetext, "...", p - argtypetext) != 0
3021 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 3022 {
ad2f7632 3023 argtypes[argcount].type =
48319d1f 3024 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
3025 argcount += 1;
3026 }
3027 argtypetext = p + 1;
3028 }
3029
070ad9f0 3030 if (*p == '(' || *p == '<')
c906108c
SS
3031 {
3032 depth += 1;
3033 }
070ad9f0 3034 else if (*p == ')' || *p == '>')
c906108c
SS
3035 {
3036 depth -= 1;
3037 }
3038
3039 p += 1;
3040 }
3041 }
3042
c906108c
SS
3043 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
3044
3045 /* Now update the old "stub" type into a real type. */
3046 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
09e2d7c7
DE
3047 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
3048 We want a method (TYPE_CODE_METHOD). */
3049 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
3050 argtypes, argcount, p[-2] == '.');
876cecd0 3051 TYPE_STUB (mtype) = 0;
c906108c 3052 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632
DJ
3053
3054 xfree (demangled_name);
c906108c
SS
3055}
3056
7ba81444
MS
3057/* This is the external interface to check_stub_method, above. This
3058 function unstubs all of the signatures for TYPE's METHOD_ID method
3059 name. After calling this function TYPE_FN_FIELD_STUB will be
3060 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
3061 correct.
de17c821
DJ
3062
3063 This function unfortunately can not die until stabs do. */
3064
3065void
3066check_stub_method_group (struct type *type, int method_id)
3067{
3068 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
3069 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
de17c821 3070
041be526
SM
3071 for (int j = 0; j < len; j++)
3072 {
3073 if (TYPE_FN_FIELD_STUB (f, j))
de17c821 3074 check_stub_method (type, method_id, j);
de17c821
DJ
3075 }
3076}
3077
405feb71 3078/* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
9655fd1a 3079const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
3080
3081void
fba45db2 3082allocate_cplus_struct_type (struct type *type)
c906108c 3083{
b4ba55a1
JB
3084 if (HAVE_CPLUS_STRUCT (type))
3085 /* Structure was already allocated. Nothing more to do. */
3086 return;
3087
3088 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
3089 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
3090 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
3091 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
ae6ae975 3092 set_type_vptr_fieldno (type, -1);
c906108c
SS
3093}
3094
b4ba55a1
JB
3095const struct gnat_aux_type gnat_aux_default =
3096 { NULL };
3097
3098/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
3099 and allocate the associated gnat-specific data. The gnat-specific
3100 data is also initialized to gnat_aux_default. */
5212577a 3101
b4ba55a1
JB
3102void
3103allocate_gnat_aux_type (struct type *type)
3104{
3105 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
3106 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
3107 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
3108 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
3109}
3110
ae438bc5
UW
3111/* Helper function to initialize a newly allocated type. Set type code
3112 to CODE and initialize the type-specific fields accordingly. */
3113
3114static void
3115set_type_code (struct type *type, enum type_code code)
3116{
3117 TYPE_CODE (type) = code;
3118
3119 switch (code)
3120 {
3121 case TYPE_CODE_STRUCT:
3122 case TYPE_CODE_UNION:
3123 case TYPE_CODE_NAMESPACE:
3124 INIT_CPLUS_SPECIFIC (type);
3125 break;
3126 case TYPE_CODE_FLT:
3127 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
3128 break;
3129 case TYPE_CODE_FUNC:
3130 INIT_FUNC_SPECIFIC (type);
3131 break;
3132 }
3133}
3134
19f392bc
UW
3135/* Helper function to verify floating-point format and size.
3136 BIT is the type size in bits; if BIT equals -1, the size is
3137 determined by the floatformat. Returns size to be used. */
3138
3139static int
0db7851f 3140verify_floatformat (int bit, const struct floatformat *floatformat)
19f392bc 3141{
0db7851f 3142 gdb_assert (floatformat != NULL);
9b790ce7 3143
19f392bc 3144 if (bit == -1)
0db7851f 3145 bit = floatformat->totalsize;
19f392bc 3146
0db7851f
UW
3147 gdb_assert (bit >= 0);
3148 gdb_assert (bit >= floatformat->totalsize);
19f392bc
UW
3149
3150 return bit;
3151}
3152
0db7851f
UW
3153/* Return the floating-point format for a floating-point variable of
3154 type TYPE. */
3155
3156const struct floatformat *
3157floatformat_from_type (const struct type *type)
3158{
3159 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
3160 gdb_assert (TYPE_FLOATFORMAT (type));
3161 return TYPE_FLOATFORMAT (type);
3162}
3163
c906108c
SS
3164/* Helper function to initialize the standard scalar types.
3165
86f62fd7
TT
3166 If NAME is non-NULL, then it is used to initialize the type name.
3167 Note that NAME is not copied; it is required to have a lifetime at
3168 least as long as OBJFILE. */
c906108c
SS
3169
3170struct type *
77b7c781 3171init_type (struct objfile *objfile, enum type_code code, int bit,
19f392bc 3172 const char *name)
c906108c 3173{
52f0bd74 3174 struct type *type;
c906108c
SS
3175
3176 type = alloc_type (objfile);
ae438bc5 3177 set_type_code (type, code);
77b7c781
UW
3178 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
3179 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
86f62fd7 3180 TYPE_NAME (type) = name;
c906108c 3181
c16abbde 3182 return type;
c906108c 3183}
19f392bc 3184
46a4882b
PA
3185/* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
3186 to use with variables that have no debug info. NAME is the type
3187 name. */
3188
3189static struct type *
3190init_nodebug_var_type (struct objfile *objfile, const char *name)
3191{
3192 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
3193}
3194
19f392bc
UW
3195/* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
3196 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3197 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3198
3199struct type *
3200init_integer_type (struct objfile *objfile,
3201 int bit, int unsigned_p, const char *name)
3202{
3203 struct type *t;
3204
77b7c781 3205 t = init_type (objfile, TYPE_CODE_INT, bit, name);
19f392bc
UW
3206 if (unsigned_p)
3207 TYPE_UNSIGNED (t) = 1;
3208
3209 return t;
3210}
3211
3212/* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
3213 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3214 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3215
3216struct type *
3217init_character_type (struct objfile *objfile,
3218 int bit, int unsigned_p, const char *name)
3219{
3220 struct type *t;
3221
77b7c781 3222 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
19f392bc
UW
3223 if (unsigned_p)
3224 TYPE_UNSIGNED (t) = 1;
3225
3226 return t;
3227}
3228
3229/* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
3230 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3231 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3232
3233struct type *
3234init_boolean_type (struct objfile *objfile,
3235 int bit, int unsigned_p, const char *name)
3236{
3237 struct type *t;
3238
77b7c781 3239 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
19f392bc
UW
3240 if (unsigned_p)
3241 TYPE_UNSIGNED (t) = 1;
3242
3243 return t;
3244}
3245
3246/* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
3247 BIT is the type size in bits; if BIT equals -1, the size is
3248 determined by the floatformat. NAME is the type name. Set the
103a685e
TT
3249 TYPE_FLOATFORMAT from FLOATFORMATS. BYTE_ORDER is the byte order
3250 to use. If it is BFD_ENDIAN_UNKNOWN (the default), then the byte
3251 order of the objfile's architecture is used. */
19f392bc
UW
3252
3253struct type *
3254init_float_type (struct objfile *objfile,
3255 int bit, const char *name,
103a685e
TT
3256 const struct floatformat **floatformats,
3257 enum bfd_endian byte_order)
19f392bc 3258{
103a685e
TT
3259 if (byte_order == BFD_ENDIAN_UNKNOWN)
3260 {
08feed99 3261 struct gdbarch *gdbarch = objfile->arch ();
103a685e
TT
3262 byte_order = gdbarch_byte_order (gdbarch);
3263 }
3264 const struct floatformat *fmt = floatformats[byte_order];
19f392bc
UW
3265 struct type *t;
3266
0db7851f 3267 bit = verify_floatformat (bit, fmt);
77b7c781 3268 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
0db7851f 3269 TYPE_FLOATFORMAT (t) = fmt;
19f392bc
UW
3270
3271 return t;
3272}
3273
3274/* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
3275 BIT is the type size in bits. NAME is the type name. */
3276
3277struct type *
3278init_decfloat_type (struct objfile *objfile, int bit, const char *name)
3279{
3280 struct type *t;
3281
77b7c781 3282 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
19f392bc
UW
3283 return t;
3284}
3285
5b930b45
TT
3286/* Allocate a TYPE_CODE_COMPLEX type structure. NAME is the type
3287 name. TARGET_TYPE is the component type. */
19f392bc
UW
3288
3289struct type *
5b930b45 3290init_complex_type (const char *name, struct type *target_type)
19f392bc
UW
3291{
3292 struct type *t;
3293
5b930b45
TT
3294 gdb_assert (TYPE_CODE (target_type) == TYPE_CODE_INT
3295 || TYPE_CODE (target_type) == TYPE_CODE_FLT);
3296
3297 if (TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type == nullptr)
3298 {
3299 if (name == nullptr)
3300 {
3301 char *new_name
3302 = (char *) TYPE_ALLOC (target_type,
3303 strlen (TYPE_NAME (target_type))
3304 + strlen ("_Complex ") + 1);
3305 strcpy (new_name, "_Complex ");
3306 strcat (new_name, TYPE_NAME (target_type));
3307 name = new_name;
3308 }
3309
3310 t = alloc_type_copy (target_type);
3311 set_type_code (t, TYPE_CODE_COMPLEX);
3312 TYPE_LENGTH (t) = 2 * TYPE_LENGTH (target_type);
3313 TYPE_NAME (t) = name;
3314
3315 TYPE_TARGET_TYPE (t) = target_type;
3316 TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type = t;
3317 }
3318
3319 return TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type;
19f392bc
UW
3320}
3321
3322/* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3323 BIT is the pointer type size in bits. NAME is the type name.
3324 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3325 TYPE_UNSIGNED flag. */
3326
3327struct type *
3328init_pointer_type (struct objfile *objfile,
3329 int bit, const char *name, struct type *target_type)
3330{
3331 struct type *t;
3332
77b7c781 3333 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
19f392bc
UW
3334 TYPE_TARGET_TYPE (t) = target_type;
3335 TYPE_UNSIGNED (t) = 1;
3336 return t;
3337}
3338
2b4424c3
TT
3339/* See gdbtypes.h. */
3340
3341unsigned
3342type_raw_align (struct type *type)
3343{
3344 if (type->align_log2 != 0)
3345 return 1 << (type->align_log2 - 1);
3346 return 0;
3347}
3348
3349/* See gdbtypes.h. */
3350
3351unsigned
3352type_align (struct type *type)
3353{
5561fc30 3354 /* Check alignment provided in the debug information. */
2b4424c3
TT
3355 unsigned raw_align = type_raw_align (type);
3356 if (raw_align != 0)
3357 return raw_align;
3358
5561fc30
AB
3359 /* Allow the architecture to provide an alignment. */
3360 struct gdbarch *arch = get_type_arch (type);
3361 ULONGEST align = gdbarch_type_align (arch, type);
3362 if (align != 0)
3363 return align;
3364
2b4424c3
TT
3365 switch (TYPE_CODE (type))
3366 {
3367 case TYPE_CODE_PTR:
3368 case TYPE_CODE_FUNC:
3369 case TYPE_CODE_FLAGS:
3370 case TYPE_CODE_INT:
75ba10dc 3371 case TYPE_CODE_RANGE:
2b4424c3
TT
3372 case TYPE_CODE_FLT:
3373 case TYPE_CODE_ENUM:
3374 case TYPE_CODE_REF:
3375 case TYPE_CODE_RVALUE_REF:
3376 case TYPE_CODE_CHAR:
3377 case TYPE_CODE_BOOL:
3378 case TYPE_CODE_DECFLOAT:
70cd633e
AB
3379 case TYPE_CODE_METHODPTR:
3380 case TYPE_CODE_MEMBERPTR:
5561fc30 3381 align = type_length_units (check_typedef (type));
2b4424c3
TT
3382 break;
3383
3384 case TYPE_CODE_ARRAY:
3385 case TYPE_CODE_COMPLEX:
3386 case TYPE_CODE_TYPEDEF:
3387 align = type_align (TYPE_TARGET_TYPE (type));
3388 break;
3389
3390 case TYPE_CODE_STRUCT:
3391 case TYPE_CODE_UNION:
3392 {
41077b66 3393 int number_of_non_static_fields = 0;
2b4424c3
TT
3394 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3395 {
bf9a735e 3396 if (!field_is_static (&TYPE_FIELD (type, i)))
2b4424c3 3397 {
41077b66 3398 number_of_non_static_fields++;
bf9a735e
AB
3399 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3400 if (f_align == 0)
3401 {
3402 /* Don't pretend we know something we don't. */
3403 align = 0;
3404 break;
3405 }
3406 if (f_align > align)
3407 align = f_align;
2b4424c3 3408 }
2b4424c3 3409 }
41077b66
AB
3410 /* A struct with no fields, or with only static fields has an
3411 alignment of 1. */
3412 if (number_of_non_static_fields == 0)
3413 align = 1;
2b4424c3
TT
3414 }
3415 break;
3416
3417 case TYPE_CODE_SET:
2b4424c3
TT
3418 case TYPE_CODE_STRING:
3419 /* Not sure what to do here, and these can't appear in C or C++
3420 anyway. */
3421 break;
3422
2b4424c3
TT
3423 case TYPE_CODE_VOID:
3424 align = 1;
3425 break;
3426
3427 case TYPE_CODE_ERROR:
3428 case TYPE_CODE_METHOD:
3429 default:
3430 break;
3431 }
3432
3433 if ((align & (align - 1)) != 0)
3434 {
3435 /* Not a power of 2, so pass. */
3436 align = 0;
3437 }
3438
3439 return align;
3440}
3441
3442/* See gdbtypes.h. */
3443
3444bool
3445set_type_align (struct type *type, ULONGEST align)
3446{
3447 /* Must be a power of 2. Zero is ok. */
3448 gdb_assert ((align & (align - 1)) == 0);
3449
3450 unsigned result = 0;
3451 while (align != 0)
3452 {
3453 ++result;
3454 align >>= 1;
3455 }
3456
3457 if (result >= (1 << TYPE_ALIGN_BITS))
3458 return false;
3459
3460 type->align_log2 = result;
3461 return true;
3462}
3463
5212577a
DE
3464\f
3465/* Queries on types. */
c906108c 3466
c906108c 3467int
fba45db2 3468can_dereference (struct type *t)
c906108c 3469{
7ba81444
MS
3470 /* FIXME: Should we return true for references as well as
3471 pointers? */
f168693b 3472 t = check_typedef (t);
c906108c
SS
3473 return
3474 (t != NULL
3475 && TYPE_CODE (t) == TYPE_CODE_PTR
3476 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3477}
3478
adf40b2e 3479int
fba45db2 3480is_integral_type (struct type *t)
adf40b2e 3481{
f168693b 3482 t = check_typedef (t);
adf40b2e
JM
3483 return
3484 ((t != NULL)
d4f3574e
SS
3485 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3486 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 3487 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
3488 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3489 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3490 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
3491}
3492
70100014
UW
3493int
3494is_floating_type (struct type *t)
3495{
3496 t = check_typedef (t);
3497 return
3498 ((t != NULL)
3499 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3500 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3501}
3502
e09342b5
TJB
3503/* Return true if TYPE is scalar. */
3504
220475ed 3505int
e09342b5
TJB
3506is_scalar_type (struct type *type)
3507{
f168693b 3508 type = check_typedef (type);
e09342b5
TJB
3509
3510 switch (TYPE_CODE (type))
3511 {
3512 case TYPE_CODE_ARRAY:
3513 case TYPE_CODE_STRUCT:
3514 case TYPE_CODE_UNION:
3515 case TYPE_CODE_SET:
3516 case TYPE_CODE_STRING:
e09342b5
TJB
3517 return 0;
3518 default:
3519 return 1;
3520 }
3521}
3522
3523/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
3524 the memory layout of a scalar type. E.g., an array or struct with only
3525 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
3526
3527int
3528is_scalar_type_recursive (struct type *t)
3529{
f168693b 3530 t = check_typedef (t);
e09342b5
TJB
3531
3532 if (is_scalar_type (t))
3533 return 1;
3534 /* Are we dealing with an array or string of known dimensions? */
3535 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3536 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3537 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3538 {
3539 LONGEST low_bound, high_bound;
3540 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3541
3542 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3543
3544 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3545 }
3546 /* Are we dealing with a struct with one element? */
3547 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3548 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3549 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3550 {
3551 int i, n = TYPE_NFIELDS (t);
3552
3553 /* If all elements of the union are scalar, then the union is scalar. */
3554 for (i = 0; i < n; i++)
3555 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3556 return 0;
3557
3558 return 1;
3559 }
3560
3561 return 0;
3562}
3563
6c659fc2
SC
3564/* Return true is T is a class or a union. False otherwise. */
3565
3566int
3567class_or_union_p (const struct type *t)
3568{
3569 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3570 || TYPE_CODE (t) == TYPE_CODE_UNION);
3571}
3572
4e8f195d
TT
3573/* A helper function which returns true if types A and B represent the
3574 "same" class type. This is true if the types have the same main
3575 type, or the same name. */
3576
3577int
3578class_types_same_p (const struct type *a, const struct type *b)
3579{
3580 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3581 || (TYPE_NAME (a) && TYPE_NAME (b)
3582 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3583}
3584
a9d5ef47
SW
3585/* If BASE is an ancestor of DCLASS return the distance between them.
3586 otherwise return -1;
3587 eg:
3588
3589 class A {};
3590 class B: public A {};
3591 class C: public B {};
3592 class D: C {};
3593
3594 distance_to_ancestor (A, A, 0) = 0
3595 distance_to_ancestor (A, B, 0) = 1
3596 distance_to_ancestor (A, C, 0) = 2
3597 distance_to_ancestor (A, D, 0) = 3
3598
3599 If PUBLIC is 1 then only public ancestors are considered,
3600 and the function returns the distance only if BASE is a public ancestor
3601 of DCLASS.
3602 Eg:
3603
0963b4bd 3604 distance_to_ancestor (A, D, 1) = -1. */
c906108c 3605
0526b37a 3606static int
fe978cb0 3607distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
c906108c
SS
3608{
3609 int i;
a9d5ef47 3610 int d;
c5aa993b 3611
f168693b
SM
3612 base = check_typedef (base);
3613 dclass = check_typedef (dclass);
c906108c 3614
4e8f195d 3615 if (class_types_same_p (base, dclass))
a9d5ef47 3616 return 0;
c906108c
SS
3617
3618 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 3619 {
fe978cb0 3620 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
0526b37a
SW
3621 continue;
3622
fe978cb0 3623 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
a9d5ef47
SW
3624 if (d >= 0)
3625 return 1 + d;
4e8f195d 3626 }
c906108c 3627
a9d5ef47 3628 return -1;
c906108c 3629}
4e8f195d 3630
0526b37a
SW
3631/* Check whether BASE is an ancestor or base class or DCLASS
3632 Return 1 if so, and 0 if not.
3633 Note: If BASE and DCLASS are of the same type, this function
3634 will return 1. So for some class A, is_ancestor (A, A) will
3635 return 1. */
3636
3637int
3638is_ancestor (struct type *base, struct type *dclass)
3639{
a9d5ef47 3640 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
3641}
3642
4e8f195d
TT
3643/* Like is_ancestor, but only returns true when BASE is a public
3644 ancestor of DCLASS. */
3645
3646int
3647is_public_ancestor (struct type *base, struct type *dclass)
3648{
a9d5ef47 3649 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
3650}
3651
3652/* A helper function for is_unique_ancestor. */
3653
3654static int
3655is_unique_ancestor_worker (struct type *base, struct type *dclass,
3656 int *offset,
8af8e3bc
PA
3657 const gdb_byte *valaddr, int embedded_offset,
3658 CORE_ADDR address, struct value *val)
4e8f195d
TT
3659{
3660 int i, count = 0;
3661
f168693b
SM
3662 base = check_typedef (base);
3663 dclass = check_typedef (dclass);
4e8f195d
TT
3664
3665 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3666 {
8af8e3bc
PA
3667 struct type *iter;
3668 int this_offset;
4e8f195d 3669
8af8e3bc
PA
3670 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3671
3672 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3673 address, val);
4e8f195d
TT
3674
3675 if (class_types_same_p (base, iter))
3676 {
3677 /* If this is the first subclass, set *OFFSET and set count
3678 to 1. Otherwise, if this is at the same offset as
3679 previous instances, do nothing. Otherwise, increment
3680 count. */
3681 if (*offset == -1)
3682 {
3683 *offset = this_offset;
3684 count = 1;
3685 }
3686 else if (this_offset == *offset)
3687 {
3688 /* Nothing. */
3689 }
3690 else
3691 ++count;
3692 }
3693 else
3694 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
3695 valaddr,
3696 embedded_offset + this_offset,
3697 address, val);
4e8f195d
TT
3698 }
3699
3700 return count;
3701}
3702
3703/* Like is_ancestor, but only returns true if BASE is a unique base
3704 class of the type of VAL. */
3705
3706int
3707is_unique_ancestor (struct type *base, struct value *val)
3708{
3709 int offset = -1;
3710
3711 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
3712 value_contents_for_printing (val),
3713 value_embedded_offset (val),
3714 value_address (val), val) == 1;
4e8f195d
TT
3715}
3716
7ab4a236
TT
3717/* See gdbtypes.h. */
3718
3719enum bfd_endian
3720type_byte_order (const struct type *type)
3721{
3722 bfd_endian byteorder = gdbarch_byte_order (get_type_arch (type));
3723 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
3724 {
3725 if (byteorder == BFD_ENDIAN_BIG)
3726 return BFD_ENDIAN_LITTLE;
3727 else
3728 {
3729 gdb_assert (byteorder == BFD_ENDIAN_LITTLE);
3730 return BFD_ENDIAN_BIG;
3731 }
3732 }
3733
3734 return byteorder;
3735}
3736
c906108c 3737\f
5212577a 3738/* Overload resolution. */
c906108c 3739
6403aeea
SW
3740/* Return the sum of the rank of A with the rank of B. */
3741
3742struct rank
3743sum_ranks (struct rank a, struct rank b)
3744{
3745 struct rank c;
3746 c.rank = a.rank + b.rank;
a9d5ef47 3747 c.subrank = a.subrank + b.subrank;
6403aeea
SW
3748 return c;
3749}
3750
3751/* Compare rank A and B and return:
3752 0 if a = b
3753 1 if a is better than b
3754 -1 if b is better than a. */
3755
3756int
3757compare_ranks (struct rank a, struct rank b)
3758{
3759 if (a.rank == b.rank)
a9d5ef47
SW
3760 {
3761 if (a.subrank == b.subrank)
3762 return 0;
3763 if (a.subrank < b.subrank)
3764 return 1;
3765 if (a.subrank > b.subrank)
3766 return -1;
3767 }
6403aeea
SW
3768
3769 if (a.rank < b.rank)
3770 return 1;
3771
0963b4bd 3772 /* a.rank > b.rank */
6403aeea
SW
3773 return -1;
3774}
c5aa993b 3775
0963b4bd 3776/* Functions for overload resolution begin here. */
c906108c
SS
3777
3778/* Compare two badness vectors A and B and return the result.
7ba81444
MS
3779 0 => A and B are identical
3780 1 => A and B are incomparable
3781 2 => A is better than B
3782 3 => A is worse than B */
c906108c
SS
3783
3784int
82ceee50 3785compare_badness (const badness_vector &a, const badness_vector &b)
c906108c
SS
3786{
3787 int i;
3788 int tmp;
c5aa993b
JM
3789 short found_pos = 0; /* any positives in c? */
3790 short found_neg = 0; /* any negatives in c? */
3791
82ceee50
PA
3792 /* differing sizes => incomparable */
3793 if (a.size () != b.size ())
c906108c
SS
3794 return 1;
3795
c5aa993b 3796 /* Subtract b from a */
82ceee50 3797 for (i = 0; i < a.size (); i++)
c906108c 3798 {
82ceee50 3799 tmp = compare_ranks (b[i], a[i]);
c906108c 3800 if (tmp > 0)
c5aa993b 3801 found_pos = 1;
c906108c 3802 else if (tmp < 0)
c5aa993b 3803 found_neg = 1;
c906108c
SS
3804 }
3805
3806 if (found_pos)
3807 {
3808 if (found_neg)
c5aa993b 3809 return 1; /* incomparable */
c906108c 3810 else
c5aa993b 3811 return 3; /* A > B */
c906108c 3812 }
c5aa993b
JM
3813 else
3814 /* no positives */
c906108c
SS
3815 {
3816 if (found_neg)
c5aa993b 3817 return 2; /* A < B */
c906108c 3818 else
c5aa993b 3819 return 0; /* A == B */
c906108c
SS
3820 }
3821}
3822
6b1747cd 3823/* Rank a function by comparing its parameter types (PARMS), to the
82ceee50
PA
3824 types of an argument list (ARGS). Return the badness vector. This
3825 has ARGS.size() + 1 entries. */
c906108c 3826
82ceee50 3827badness_vector
6b1747cd
PA
3828rank_function (gdb::array_view<type *> parms,
3829 gdb::array_view<value *> args)
c906108c 3830{
82ceee50
PA
3831 /* add 1 for the length-match rank. */
3832 badness_vector bv;
3833 bv.reserve (1 + args.size ());
c906108c
SS
3834
3835 /* First compare the lengths of the supplied lists.
7ba81444 3836 If there is a mismatch, set it to a high value. */
c5aa993b 3837
c906108c 3838 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
3839 arguments and ellipsis parameter lists, we should consider those
3840 and rank the length-match more finely. */
c906108c 3841
82ceee50
PA
3842 bv.push_back ((args.size () != parms.size ())
3843 ? LENGTH_MISMATCH_BADNESS
3844 : EXACT_MATCH_BADNESS);
c906108c 3845
0963b4bd 3846 /* Now rank all the parameters of the candidate function. */
82ceee50
PA
3847 size_t min_len = std::min (parms.size (), args.size ());
3848
3849 for (size_t i = 0; i < min_len; i++)
3850 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3851 args[i]));
c906108c 3852
0963b4bd 3853 /* If more arguments than parameters, add dummy entries. */
82ceee50
PA
3854 for (size_t i = min_len; i < args.size (); i++)
3855 bv.push_back (TOO_FEW_PARAMS_BADNESS);
c906108c
SS
3856
3857 return bv;
3858}
3859
973ccf8b
DJ
3860/* Compare the names of two integer types, assuming that any sign
3861 qualifiers have been checked already. We do it this way because
3862 there may be an "int" in the name of one of the types. */
3863
3864static int
3865integer_types_same_name_p (const char *first, const char *second)
3866{
3867 int first_p, second_p;
3868
7ba81444
MS
3869 /* If both are shorts, return 1; if neither is a short, keep
3870 checking. */
973ccf8b
DJ
3871 first_p = (strstr (first, "short") != NULL);
3872 second_p = (strstr (second, "short") != NULL);
3873 if (first_p && second_p)
3874 return 1;
3875 if (first_p || second_p)
3876 return 0;
3877
3878 /* Likewise for long. */
3879 first_p = (strstr (first, "long") != NULL);
3880 second_p = (strstr (second, "long") != NULL);
3881 if (first_p && second_p)
3882 return 1;
3883 if (first_p || second_p)
3884 return 0;
3885
3886 /* Likewise for char. */
3887 first_p = (strstr (first, "char") != NULL);
3888 second_p = (strstr (second, "char") != NULL);
3889 if (first_p && second_p)
3890 return 1;
3891 if (first_p || second_p)
3892 return 0;
3893
3894 /* They must both be ints. */
3895 return 1;
3896}
3897
894882e3
TT
3898/* Compares type A to type B. Returns true if they represent the same
3899 type, false otherwise. */
7062b0a0 3900
894882e3 3901bool
7062b0a0
SW
3902types_equal (struct type *a, struct type *b)
3903{
3904 /* Identical type pointers. */
3905 /* However, this still doesn't catch all cases of same type for b
3906 and a. The reason is that builtin types are different from
3907 the same ones constructed from the object. */
3908 if (a == b)
894882e3 3909 return true;
7062b0a0
SW
3910
3911 /* Resolve typedefs */
3912 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3913 a = check_typedef (a);
3914 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3915 b = check_typedef (b);
3916
3917 /* If after resolving typedefs a and b are not of the same type
3918 code then they are not equal. */
3919 if (TYPE_CODE (a) != TYPE_CODE (b))
894882e3 3920 return false;
7062b0a0
SW
3921
3922 /* If a and b are both pointers types or both reference types then
3923 they are equal of the same type iff the objects they refer to are
3924 of the same type. */
3925 if (TYPE_CODE (a) == TYPE_CODE_PTR
3926 || TYPE_CODE (a) == TYPE_CODE_REF)
3927 return types_equal (TYPE_TARGET_TYPE (a),
3928 TYPE_TARGET_TYPE (b));
3929
0963b4bd 3930 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
3931 are exactly the same. This happens when we generate method
3932 stubs. The types won't point to the same address, but they
0963b4bd 3933 really are the same. */
7062b0a0
SW
3934
3935 if (TYPE_NAME (a) && TYPE_NAME (b)
3936 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
894882e3 3937 return true;
7062b0a0
SW
3938
3939 /* Check if identical after resolving typedefs. */
3940 if (a == b)
894882e3 3941 return true;
7062b0a0 3942
9ce98649
TT
3943 /* Two function types are equal if their argument and return types
3944 are equal. */
3945 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3946 {
3947 int i;
3948
3949 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
894882e3 3950 return false;
9ce98649
TT
3951
3952 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
894882e3 3953 return false;
9ce98649
TT
3954
3955 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3956 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
894882e3 3957 return false;
9ce98649 3958
894882e3 3959 return true;
9ce98649
TT
3960 }
3961
894882e3 3962 return false;
7062b0a0 3963}
ca092b61
DE
3964\f
3965/* Deep comparison of types. */
3966
3967/* An entry in the type-equality bcache. */
3968
894882e3 3969struct type_equality_entry
ca092b61 3970{
894882e3
TT
3971 type_equality_entry (struct type *t1, struct type *t2)
3972 : type1 (t1),
3973 type2 (t2)
3974 {
3975 }
ca092b61 3976
894882e3
TT
3977 struct type *type1, *type2;
3978};
ca092b61 3979
894882e3
TT
3980/* A helper function to compare two strings. Returns true if they are
3981 the same, false otherwise. Handles NULLs properly. */
ca092b61 3982
894882e3 3983static bool
ca092b61
DE
3984compare_maybe_null_strings (const char *s, const char *t)
3985{
894882e3
TT
3986 if (s == NULL || t == NULL)
3987 return s == t;
ca092b61
DE
3988 return strcmp (s, t) == 0;
3989}
3990
3991/* A helper function for check_types_worklist that checks two types for
894882e3
TT
3992 "deep" equality. Returns true if the types are considered the
3993 same, false otherwise. */
ca092b61 3994
894882e3 3995static bool
ca092b61 3996check_types_equal (struct type *type1, struct type *type2,
894882e3 3997 std::vector<type_equality_entry> *worklist)
ca092b61 3998{
f168693b
SM
3999 type1 = check_typedef (type1);
4000 type2 = check_typedef (type2);
ca092b61
DE
4001
4002 if (type1 == type2)
894882e3 4003 return true;
ca092b61
DE
4004
4005 if (TYPE_CODE (type1) != TYPE_CODE (type2)
4006 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
4007 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
4008 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
34877895 4009 || TYPE_ENDIANITY_NOT_DEFAULT (type1) != TYPE_ENDIANITY_NOT_DEFAULT (type2)
ca092b61
DE
4010 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
4011 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
4012 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
4013 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
4014 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
894882e3 4015 return false;
ca092b61 4016
e86ca25f 4017 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
894882e3 4018 return false;
ca092b61 4019 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
894882e3 4020 return false;
ca092b61
DE
4021
4022 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
4023 {
0f59d5fc 4024 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
894882e3 4025 return false;
ca092b61
DE
4026 }
4027 else
4028 {
4029 int i;
4030
4031 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
4032 {
4033 const struct field *field1 = &TYPE_FIELD (type1, i);
4034 const struct field *field2 = &TYPE_FIELD (type2, i);
ca092b61
DE
4035
4036 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
4037 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
4038 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
894882e3 4039 return false;
ca092b61
DE
4040 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
4041 FIELD_NAME (*field2)))
894882e3 4042 return false;
ca092b61
DE
4043 switch (FIELD_LOC_KIND (*field1))
4044 {
4045 case FIELD_LOC_KIND_BITPOS:
4046 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
894882e3 4047 return false;
ca092b61
DE
4048 break;
4049 case FIELD_LOC_KIND_ENUMVAL:
4050 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
894882e3 4051 return false;
ca092b61
DE
4052 break;
4053 case FIELD_LOC_KIND_PHYSADDR:
4054 if (FIELD_STATIC_PHYSADDR (*field1)
4055 != FIELD_STATIC_PHYSADDR (*field2))
894882e3 4056 return false;
ca092b61
DE
4057 break;
4058 case FIELD_LOC_KIND_PHYSNAME:
4059 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
4060 FIELD_STATIC_PHYSNAME (*field2)))
894882e3 4061 return false;
ca092b61
DE
4062 break;
4063 case FIELD_LOC_KIND_DWARF_BLOCK:
4064 {
4065 struct dwarf2_locexpr_baton *block1, *block2;
4066
4067 block1 = FIELD_DWARF_BLOCK (*field1);
4068 block2 = FIELD_DWARF_BLOCK (*field2);
4069 if (block1->per_cu != block2->per_cu
4070 || block1->size != block2->size
4071 || memcmp (block1->data, block2->data, block1->size) != 0)
894882e3 4072 return false;
ca092b61
DE
4073 }
4074 break;
4075 default:
4076 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
4077 "%d by check_types_equal"),
4078 FIELD_LOC_KIND (*field1));
4079 }
4080
894882e3 4081 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
ca092b61
DE
4082 }
4083 }
4084
4085 if (TYPE_TARGET_TYPE (type1) != NULL)
4086 {
ca092b61 4087 if (TYPE_TARGET_TYPE (type2) == NULL)
894882e3 4088 return false;
ca092b61 4089
894882e3
TT
4090 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
4091 TYPE_TARGET_TYPE (type2));
ca092b61
DE
4092 }
4093 else if (TYPE_TARGET_TYPE (type2) != NULL)
894882e3 4094 return false;
ca092b61 4095
894882e3 4096 return true;
ca092b61
DE
4097}
4098
894882e3
TT
4099/* Check types on a worklist for equality. Returns false if any pair
4100 is not equal, true if they are all considered equal. */
ca092b61 4101
894882e3
TT
4102static bool
4103check_types_worklist (std::vector<type_equality_entry> *worklist,
dfb65191 4104 gdb::bcache *cache)
ca092b61 4105{
894882e3 4106 while (!worklist->empty ())
ca092b61 4107 {
ca092b61
DE
4108 int added;
4109
894882e3
TT
4110 struct type_equality_entry entry = std::move (worklist->back ());
4111 worklist->pop_back ();
ca092b61
DE
4112
4113 /* If the type pair has already been visited, we know it is
4114 ok. */
25629dfd 4115 cache->insert (&entry, sizeof (entry), &added);
ca092b61
DE
4116 if (!added)
4117 continue;
4118
894882e3
TT
4119 if (!check_types_equal (entry.type1, entry.type2, worklist))
4120 return false;
ca092b61 4121 }
7062b0a0 4122
894882e3 4123 return true;
ca092b61
DE
4124}
4125
894882e3
TT
4126/* Return true if types TYPE1 and TYPE2 are equal, as determined by a
4127 "deep comparison". Otherwise return false. */
ca092b61 4128
894882e3 4129bool
ca092b61
DE
4130types_deeply_equal (struct type *type1, struct type *type2)
4131{
894882e3 4132 std::vector<type_equality_entry> worklist;
ca092b61
DE
4133
4134 gdb_assert (type1 != NULL && type2 != NULL);
4135
4136 /* Early exit for the simple case. */
4137 if (type1 == type2)
894882e3 4138 return true;
ca092b61 4139
dfb65191 4140 gdb::bcache cache (nullptr, nullptr);
894882e3 4141 worklist.emplace_back (type1, type2);
25629dfd 4142 return check_types_worklist (&worklist, &cache);
ca092b61 4143}
3f2f83dd
KB
4144
4145/* Allocated status of type TYPE. Return zero if type TYPE is allocated.
4146 Otherwise return one. */
4147
4148int
4149type_not_allocated (const struct type *type)
4150{
4151 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
4152
4153 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
4154 && !TYPE_DYN_PROP_ADDR (prop));
4155}
4156
4157/* Associated status of type TYPE. Return zero if type TYPE is associated.
4158 Otherwise return one. */
4159
4160int
4161type_not_associated (const struct type *type)
4162{
4163 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
4164
4165 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
4166 && !TYPE_DYN_PROP_ADDR (prop));
4167}
9293fc63
SM
4168
4169/* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
4170
4171static struct rank
4172rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
4173{
4174 struct rank rank = {0,0};
4175
4176 switch (TYPE_CODE (arg))
4177 {
4178 case TYPE_CODE_PTR:
4179
4180 /* Allowed pointer conversions are:
4181 (a) pointer to void-pointer conversion. */
4182 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
4183 return VOID_PTR_CONVERSION_BADNESS;
4184
4185 /* (b) pointer to ancestor-pointer conversion. */
4186 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
4187 TYPE_TARGET_TYPE (arg),
4188 0);
4189 if (rank.subrank >= 0)
4190 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
4191
4192 return INCOMPATIBLE_TYPE_BADNESS;
4193 case TYPE_CODE_ARRAY:
4194 {
4195 struct type *t1 = TYPE_TARGET_TYPE (parm);
4196 struct type *t2 = TYPE_TARGET_TYPE (arg);
4197
4198 if (types_equal (t1, t2))
4199 {
4200 /* Make sure they are CV equal. */
4201 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4202 rank.subrank |= CV_CONVERSION_CONST;
4203 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4204 rank.subrank |= CV_CONVERSION_VOLATILE;
4205 if (rank.subrank != 0)
4206 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4207 return EXACT_MATCH_BADNESS;
4208 }
4209 return INCOMPATIBLE_TYPE_BADNESS;
4210 }
4211 case TYPE_CODE_FUNC:
4212 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
4213 case TYPE_CODE_INT:
4214 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
4215 {
4216 if (value_as_long (value) == 0)
4217 {
4218 /* Null pointer conversion: allow it to be cast to a pointer.
4219 [4.10.1 of C++ standard draft n3290] */
4220 return NULL_POINTER_CONVERSION_BADNESS;
4221 }
4222 else
4223 {
4224 /* If type checking is disabled, allow the conversion. */
4225 if (!strict_type_checking)
4226 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
4227 }
4228 }
4229 /* fall through */
4230 case TYPE_CODE_ENUM:
4231 case TYPE_CODE_FLAGS:
4232 case TYPE_CODE_CHAR:
4233 case TYPE_CODE_RANGE:
4234 case TYPE_CODE_BOOL:
4235 default:
4236 return INCOMPATIBLE_TYPE_BADNESS;
4237 }
4238}
4239
b9f4512f
SM
4240/* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
4241
4242static struct rank
4243rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
4244{
4245 switch (TYPE_CODE (arg))
4246 {
4247 case TYPE_CODE_PTR:
4248 case TYPE_CODE_ARRAY:
4249 return rank_one_type (TYPE_TARGET_TYPE (parm),
4250 TYPE_TARGET_TYPE (arg), NULL);
4251 default:
4252 return INCOMPATIBLE_TYPE_BADNESS;
4253 }
4254}
4255
f1f832d6
SM
4256/* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
4257
4258static struct rank
4259rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
4260{
4261 switch (TYPE_CODE (arg))
4262 {
4263 case TYPE_CODE_PTR: /* funcptr -> func */
4264 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
4265 default:
4266 return INCOMPATIBLE_TYPE_BADNESS;
4267 }
4268}
4269
34910087
SM
4270/* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
4271
4272static struct rank
4273rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
4274{
4275 switch (TYPE_CODE (arg))
4276 {
4277 case TYPE_CODE_INT:
4278 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4279 {
4280 /* Deal with signed, unsigned, and plain chars and
4281 signed and unsigned ints. */
4282 if (TYPE_NOSIGN (parm))
4283 {
4284 /* This case only for character types. */
4285 if (TYPE_NOSIGN (arg))
4286 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
4287 else /* signed/unsigned char -> plain char */
4288 return INTEGER_CONVERSION_BADNESS;
4289 }
4290 else if (TYPE_UNSIGNED (parm))
4291 {
4292 if (TYPE_UNSIGNED (arg))
4293 {
4294 /* unsigned int -> unsigned int, or
4295 unsigned long -> unsigned long */
4296 if (integer_types_same_name_p (TYPE_NAME (parm),
4297 TYPE_NAME (arg)))
4298 return EXACT_MATCH_BADNESS;
4299 else if (integer_types_same_name_p (TYPE_NAME (arg),
4300 "int")
4301 && integer_types_same_name_p (TYPE_NAME (parm),
4302 "long"))
4303 /* unsigned int -> unsigned long */
4304 return INTEGER_PROMOTION_BADNESS;
4305 else
4306 /* unsigned long -> unsigned int */
4307 return INTEGER_CONVERSION_BADNESS;
4308 }
4309 else
4310 {
4311 if (integer_types_same_name_p (TYPE_NAME (arg),
4312 "long")
4313 && integer_types_same_name_p (TYPE_NAME (parm),
4314 "int"))
4315 /* signed long -> unsigned int */
4316 return INTEGER_CONVERSION_BADNESS;
4317 else
4318 /* signed int/long -> unsigned int/long */
4319 return INTEGER_CONVERSION_BADNESS;
4320 }
4321 }
4322 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4323 {
4324 if (integer_types_same_name_p (TYPE_NAME (parm),
4325 TYPE_NAME (arg)))
4326 return EXACT_MATCH_BADNESS;
4327 else if (integer_types_same_name_p (TYPE_NAME (arg),
4328 "int")
4329 && integer_types_same_name_p (TYPE_NAME (parm),
4330 "long"))
4331 return INTEGER_PROMOTION_BADNESS;
4332 else
4333 return INTEGER_CONVERSION_BADNESS;
4334 }
4335 else
4336 return INTEGER_CONVERSION_BADNESS;
4337 }
4338 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4339 return INTEGER_PROMOTION_BADNESS;
4340 else
4341 return INTEGER_CONVERSION_BADNESS;
4342 case TYPE_CODE_ENUM:
4343 case TYPE_CODE_FLAGS:
4344 case TYPE_CODE_CHAR:
4345 case TYPE_CODE_RANGE:
4346 case TYPE_CODE_BOOL:
4347 if (TYPE_DECLARED_CLASS (arg))
4348 return INCOMPATIBLE_TYPE_BADNESS;
4349 return INTEGER_PROMOTION_BADNESS;
4350 case TYPE_CODE_FLT:
4351 return INT_FLOAT_CONVERSION_BADNESS;
4352 case TYPE_CODE_PTR:
4353 return NS_POINTER_CONVERSION_BADNESS;
4354 default:
4355 return INCOMPATIBLE_TYPE_BADNESS;
4356 }
4357}
4358
793cd1d2
SM
4359/* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
4360
4361static struct rank
4362rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
4363{
4364 switch (TYPE_CODE (arg))
4365 {
4366 case TYPE_CODE_INT:
4367 case TYPE_CODE_CHAR:
4368 case TYPE_CODE_RANGE:
4369 case TYPE_CODE_BOOL:
4370 case TYPE_CODE_ENUM:
4371 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4372 return INCOMPATIBLE_TYPE_BADNESS;
4373 return INTEGER_CONVERSION_BADNESS;
4374 case TYPE_CODE_FLT:
4375 return INT_FLOAT_CONVERSION_BADNESS;
4376 default:
4377 return INCOMPATIBLE_TYPE_BADNESS;
4378 }
4379}
4380
41ea4728
SM
4381/* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4382
4383static struct rank
4384rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4385{
4386 switch (TYPE_CODE (arg))
4387 {
4388 case TYPE_CODE_RANGE:
4389 case TYPE_CODE_BOOL:
4390 case TYPE_CODE_ENUM:
4391 if (TYPE_DECLARED_CLASS (arg))
4392 return INCOMPATIBLE_TYPE_BADNESS;
4393 return INTEGER_CONVERSION_BADNESS;
4394 case TYPE_CODE_FLT:
4395 return INT_FLOAT_CONVERSION_BADNESS;
4396 case TYPE_CODE_INT:
4397 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4398 return INTEGER_CONVERSION_BADNESS;
4399 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4400 return INTEGER_PROMOTION_BADNESS;
4401 /* fall through */
4402 case TYPE_CODE_CHAR:
4403 /* Deal with signed, unsigned, and plain chars for C++ and
4404 with int cases falling through from previous case. */
4405 if (TYPE_NOSIGN (parm))
4406 {
4407 if (TYPE_NOSIGN (arg))
4408 return EXACT_MATCH_BADNESS;
4409 else
4410 return INTEGER_CONVERSION_BADNESS;
4411 }
4412 else if (TYPE_UNSIGNED (parm))
4413 {
4414 if (TYPE_UNSIGNED (arg))
4415 return EXACT_MATCH_BADNESS;
4416 else
4417 return INTEGER_PROMOTION_BADNESS;
4418 }
4419 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4420 return EXACT_MATCH_BADNESS;
4421 else
4422 return INTEGER_CONVERSION_BADNESS;
4423 default:
4424 return INCOMPATIBLE_TYPE_BADNESS;
4425 }
4426}
4427
0dd322dc
SM
4428/* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4429
4430static struct rank
4431rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4432{
4433 switch (TYPE_CODE (arg))
4434 {
4435 case TYPE_CODE_INT:
4436 case TYPE_CODE_CHAR:
4437 case TYPE_CODE_RANGE:
4438 case TYPE_CODE_BOOL:
4439 case TYPE_CODE_ENUM:
4440 return INTEGER_CONVERSION_BADNESS;
4441 case TYPE_CODE_FLT:
4442 return INT_FLOAT_CONVERSION_BADNESS;
4443 default:
4444 return INCOMPATIBLE_TYPE_BADNESS;
4445 }
4446}
4447
2c509035
SM
4448/* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4449
4450static struct rank
4451rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4452{
4453 switch (TYPE_CODE (arg))
4454 {
4455 /* n3290 draft, section 4.12.1 (conv.bool):
4456
4457 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4458 pointer to member type can be converted to a prvalue of type
4459 bool. A zero value, null pointer value, or null member pointer
4460 value is converted to false; any other value is converted to
4461 true. A prvalue of type std::nullptr_t can be converted to a
4462 prvalue of type bool; the resulting value is false." */
4463 case TYPE_CODE_INT:
4464 case TYPE_CODE_CHAR:
4465 case TYPE_CODE_ENUM:
4466 case TYPE_CODE_FLT:
4467 case TYPE_CODE_MEMBERPTR:
4468 case TYPE_CODE_PTR:
4469 return BOOL_CONVERSION_BADNESS;
4470 case TYPE_CODE_RANGE:
4471 return INCOMPATIBLE_TYPE_BADNESS;
4472 case TYPE_CODE_BOOL:
4473 return EXACT_MATCH_BADNESS;
4474 default:
4475 return INCOMPATIBLE_TYPE_BADNESS;
4476 }
4477}
4478
7f17b20d
SM
4479/* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4480
4481static struct rank
4482rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4483{
4484 switch (TYPE_CODE (arg))
4485 {
4486 case TYPE_CODE_FLT:
4487 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4488 return FLOAT_PROMOTION_BADNESS;
4489 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4490 return EXACT_MATCH_BADNESS;
4491 else
4492 return FLOAT_CONVERSION_BADNESS;
4493 case TYPE_CODE_INT:
4494 case TYPE_CODE_BOOL:
4495 case TYPE_CODE_ENUM:
4496 case TYPE_CODE_RANGE:
4497 case TYPE_CODE_CHAR:
4498 return INT_FLOAT_CONVERSION_BADNESS;
4499 default:
4500 return INCOMPATIBLE_TYPE_BADNESS;
4501 }
4502}
4503
2598a94b
SM
4504/* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4505
4506static struct rank
4507rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4508{
4509 switch (TYPE_CODE (arg))
4510 { /* Strictly not needed for C++, but... */
4511 case TYPE_CODE_FLT:
4512 return FLOAT_PROMOTION_BADNESS;
4513 case TYPE_CODE_COMPLEX:
4514 return EXACT_MATCH_BADNESS;
4515 default:
4516 return INCOMPATIBLE_TYPE_BADNESS;
4517 }
4518}
4519
595f96a9
SM
4520/* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4521
4522static struct rank
4523rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4524{
4525 struct rank rank = {0, 0};
4526
4527 switch (TYPE_CODE (arg))
4528 {
4529 case TYPE_CODE_STRUCT:
4530 /* Check for derivation */
4531 rank.subrank = distance_to_ancestor (parm, arg, 0);
4532 if (rank.subrank >= 0)
4533 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4534 /* fall through */
4535 default:
4536 return INCOMPATIBLE_TYPE_BADNESS;
4537 }
4538}
4539
f09ce22d
SM
4540/* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4541
4542static struct rank
4543rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4544{
4545 switch (TYPE_CODE (arg))
4546 {
4547 /* Not in C++ */
4548 case TYPE_CODE_SET:
4549 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4550 TYPE_FIELD_TYPE (arg, 0), NULL);
4551 default:
4552 return INCOMPATIBLE_TYPE_BADNESS;
4553 }
4554}
4555
c906108c
SS
4556/* Compare one type (PARM) for compatibility with another (ARG).
4557 * PARM is intended to be the parameter type of a function; and
4558 * ARG is the supplied argument's type. This function tests if
4559 * the latter can be converted to the former.
da096638 4560 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
4561 *
4562 * Return 0 if they are identical types;
4563 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
4564 * PARM is to ARG. The higher the return value, the worse the match.
4565 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 4566
6403aeea 4567struct rank
da096638 4568rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 4569{
a9d5ef47 4570 struct rank rank = {0,0};
7062b0a0 4571
c906108c
SS
4572 /* Resolve typedefs */
4573 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
4574 parm = check_typedef (parm);
4575 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
4576 arg = check_typedef (arg);
4577
e15c3eb4 4578 if (TYPE_IS_REFERENCE (parm) && value != NULL)
15c0a2a9 4579 {
e15c3eb4
KS
4580 if (VALUE_LVAL (value) == not_lval)
4581 {
4582 /* Rvalues should preferably bind to rvalue references or const
4583 lvalue references. */
4584 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4585 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4586 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4587 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4588 else
4589 return INCOMPATIBLE_TYPE_BADNESS;
4590 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4591 }
4592 else
4593 {
330f1d38 4594 /* It's illegal to pass an lvalue as an rvalue. */
e15c3eb4 4595 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
330f1d38 4596 return INCOMPATIBLE_TYPE_BADNESS;
e15c3eb4 4597 }
15c0a2a9
AV
4598 }
4599
4600 if (types_equal (parm, arg))
15c0a2a9 4601 {
e15c3eb4
KS
4602 struct type *t1 = parm;
4603 struct type *t2 = arg;
15c0a2a9 4604
e15c3eb4
KS
4605 /* For pointers and references, compare target type. */
4606 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4607 {
4608 t1 = TYPE_TARGET_TYPE (parm);
4609 t2 = TYPE_TARGET_TYPE (arg);
4610 }
15c0a2a9 4611
e15c3eb4
KS
4612 /* Make sure they are CV equal, too. */
4613 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4614 rank.subrank |= CV_CONVERSION_CONST;
4615 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4616 rank.subrank |= CV_CONVERSION_VOLATILE;
4617 if (rank.subrank != 0)
4618 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4619 return EXACT_MATCH_BADNESS;
15c0a2a9
AV
4620 }
4621
db577aea 4622 /* See through references, since we can almost make non-references
7ba81444 4623 references. */
aa006118
AV
4624
4625 if (TYPE_IS_REFERENCE (arg))
da096638 4626 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
06acc08f 4627 REFERENCE_SEE_THROUGH_BADNESS));
aa006118 4628 if (TYPE_IS_REFERENCE (parm))
da096638 4629 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
06acc08f 4630 REFERENCE_SEE_THROUGH_BADNESS));
5d161b24 4631 if (overload_debug)
7ba81444
MS
4632 /* Debugging only. */
4633 fprintf_filtered (gdb_stderr,
4634 "------ Arg is %s [%d], parm is %s [%d]\n",
4635 TYPE_NAME (arg), TYPE_CODE (arg),
4636 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 4637
0963b4bd 4638 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
4639
4640 switch (TYPE_CODE (parm))
4641 {
c5aa993b 4642 case TYPE_CODE_PTR:
9293fc63 4643 return rank_one_type_parm_ptr (parm, arg, value);
c5aa993b 4644 case TYPE_CODE_ARRAY:
b9f4512f 4645 return rank_one_type_parm_array (parm, arg, value);
c5aa993b 4646 case TYPE_CODE_FUNC:
f1f832d6 4647 return rank_one_type_parm_func (parm, arg, value);
c5aa993b 4648 case TYPE_CODE_INT:
34910087 4649 return rank_one_type_parm_int (parm, arg, value);
c5aa993b 4650 case TYPE_CODE_ENUM:
793cd1d2 4651 return rank_one_type_parm_enum (parm, arg, value);
c5aa993b 4652 case TYPE_CODE_CHAR:
41ea4728 4653 return rank_one_type_parm_char (parm, arg, value);
c5aa993b 4654 case TYPE_CODE_RANGE:
0dd322dc 4655 return rank_one_type_parm_range (parm, arg, value);
c5aa993b 4656 case TYPE_CODE_BOOL:
2c509035 4657 return rank_one_type_parm_bool (parm, arg, value);
c5aa993b 4658 case TYPE_CODE_FLT:
7f17b20d 4659 return rank_one_type_parm_float (parm, arg, value);
c5aa993b 4660 case TYPE_CODE_COMPLEX:
2598a94b 4661 return rank_one_type_parm_complex (parm, arg, value);
c5aa993b 4662 case TYPE_CODE_STRUCT:
595f96a9 4663 return rank_one_type_parm_struct (parm, arg, value);
c5aa993b 4664 case TYPE_CODE_SET:
f09ce22d 4665 return rank_one_type_parm_set (parm, arg, value);
c5aa993b
JM
4666 default:
4667 return INCOMPATIBLE_TYPE_BADNESS;
4668 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
4669}
4670
0963b4bd 4671/* End of functions for overload resolution. */
5212577a
DE
4672\f
4673/* Routines to pretty-print types. */
c906108c 4674
c906108c 4675static void
fba45db2 4676print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
4677{
4678 int bitno;
4679
4680 for (bitno = 0; bitno < nbits; bitno++)
4681 {
4682 if ((bitno % 8) == 0)
4683 {
4684 puts_filtered (" ");
4685 }
4686 if (B_TST (bits, bitno))
a3f17187 4687 printf_filtered (("1"));
c906108c 4688 else
a3f17187 4689 printf_filtered (("0"));
c906108c
SS
4690 }
4691}
4692
ad2f7632 4693/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
4694 include it since we may get into a infinitely recursive
4695 situation. */
c906108c
SS
4696
4697static void
4c9e8482 4698print_args (struct field *args, int nargs, int spaces)
c906108c
SS
4699{
4700 if (args != NULL)
4701 {
ad2f7632
DJ
4702 int i;
4703
4704 for (i = 0; i < nargs; i++)
4c9e8482
DE
4705 {
4706 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4707 args[i].name != NULL ? args[i].name : "<NULL>");
4708 recursive_dump_type (args[i].type, spaces + 2);
4709 }
c906108c
SS
4710 }
4711}
4712
d6a843b5
JK
4713int
4714field_is_static (struct field *f)
4715{
4716 /* "static" fields are the fields whose location is not relative
4717 to the address of the enclosing struct. It would be nice to
4718 have a dedicated flag that would be set for static fields when
4719 the type is being created. But in practice, checking the field
254e6b9e 4720 loc_kind should give us an accurate answer. */
d6a843b5
JK
4721 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4722 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4723}
4724
c906108c 4725static void
fba45db2 4726dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
4727{
4728 int method_idx;
4729 int overload_idx;
4730 struct fn_field *f;
4731
4732 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 4733 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
4734 printf_filtered ("\n");
4735 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4736 {
4737 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4738 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4739 method_idx,
4740 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
4741 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4742 gdb_stdout);
a3f17187 4743 printf_filtered (_(") length %d\n"),
c906108c
SS
4744 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4745 for (overload_idx = 0;
4746 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4747 overload_idx++)
4748 {
4749 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4750 overload_idx,
4751 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
4752 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4753 gdb_stdout);
c906108c
SS
4754 printf_filtered (")\n");
4755 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
4756 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4757 gdb_stdout);
c906108c
SS
4758 printf_filtered ("\n");
4759
4760 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4761 spaces + 8 + 2);
4762
4763 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
4764 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4765 gdb_stdout);
c906108c 4766 printf_filtered ("\n");
4c9e8482
DE
4767 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4768 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4769 spaces + 8 + 2);
c906108c 4770 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
4771 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4772 gdb_stdout);
c906108c
SS
4773 printf_filtered ("\n");
4774
4775 printfi_filtered (spaces + 8, "is_const %d\n",
4776 TYPE_FN_FIELD_CONST (f, overload_idx));
4777 printfi_filtered (spaces + 8, "is_volatile %d\n",
4778 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4779 printfi_filtered (spaces + 8, "is_private %d\n",
4780 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4781 printfi_filtered (spaces + 8, "is_protected %d\n",
4782 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4783 printfi_filtered (spaces + 8, "is_stub %d\n",
4784 TYPE_FN_FIELD_STUB (f, overload_idx));
e35000a7
TBA
4785 printfi_filtered (spaces + 8, "defaulted %d\n",
4786 TYPE_FN_FIELD_DEFAULTED (f, overload_idx));
4787 printfi_filtered (spaces + 8, "is_deleted %d\n",
4788 TYPE_FN_FIELD_DELETED (f, overload_idx));
c906108c
SS
4789 printfi_filtered (spaces + 8, "voffset %u\n",
4790 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4791 }
4792 }
4793}
4794
4795static void
fba45db2 4796print_cplus_stuff (struct type *type, int spaces)
c906108c 4797{
ae6ae975
DE
4798 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4799 printfi_filtered (spaces, "vptr_basetype ");
4800 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4801 puts_filtered ("\n");
4802 if (TYPE_VPTR_BASETYPE (type) != NULL)
4803 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4804
c906108c
SS
4805 printfi_filtered (spaces, "n_baseclasses %d\n",
4806 TYPE_N_BASECLASSES (type));
4807 printfi_filtered (spaces, "nfn_fields %d\n",
4808 TYPE_NFN_FIELDS (type));
c906108c
SS
4809 if (TYPE_N_BASECLASSES (type) > 0)
4810 {
4811 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4812 TYPE_N_BASECLASSES (type));
7ba81444
MS
4813 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4814 gdb_stdout);
c906108c
SS
4815 printf_filtered (")");
4816
4817 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4818 TYPE_N_BASECLASSES (type));
4819 puts_filtered ("\n");
4820 }
4821 if (TYPE_NFIELDS (type) > 0)
4822 {
4823 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4824 {
7ba81444
MS
4825 printfi_filtered (spaces,
4826 "private_field_bits (%d bits at *",
c906108c 4827 TYPE_NFIELDS (type));
7ba81444
MS
4828 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4829 gdb_stdout);
c906108c
SS
4830 printf_filtered (")");
4831 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4832 TYPE_NFIELDS (type));
4833 puts_filtered ("\n");
4834 }
4835 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4836 {
7ba81444
MS
4837 printfi_filtered (spaces,
4838 "protected_field_bits (%d bits at *",
c906108c 4839 TYPE_NFIELDS (type));
7ba81444
MS
4840 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4841 gdb_stdout);
c906108c
SS
4842 printf_filtered (")");
4843 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4844 TYPE_NFIELDS (type));
4845 puts_filtered ("\n");
4846 }
4847 }
4848 if (TYPE_NFN_FIELDS (type) > 0)
4849 {
4850 dump_fn_fieldlists (type, spaces);
4851 }
e35000a7
TBA
4852
4853 printfi_filtered (spaces, "calling_convention %d\n",
4854 TYPE_CPLUS_CALLING_CONVENTION (type));
c906108c
SS
4855}
4856
b4ba55a1
JB
4857/* Print the contents of the TYPE's type_specific union, assuming that
4858 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4859
4860static void
4861print_gnat_stuff (struct type *type, int spaces)
4862{
4863 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4864
8cd00c59
PMR
4865 if (descriptive_type == NULL)
4866 printfi_filtered (spaces + 2, "no descriptive type\n");
4867 else
4868 {
4869 printfi_filtered (spaces + 2, "descriptive type\n");
4870 recursive_dump_type (descriptive_type, spaces + 4);
4871 }
b4ba55a1
JB
4872}
4873
c906108c
SS
4874static struct obstack dont_print_type_obstack;
4875
4876void
fba45db2 4877recursive_dump_type (struct type *type, int spaces)
c906108c
SS
4878{
4879 int idx;
4880
4881 if (spaces == 0)
4882 obstack_begin (&dont_print_type_obstack, 0);
4883
4884 if (TYPE_NFIELDS (type) > 0
b4ba55a1 4885 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
4886 {
4887 struct type **first_dont_print
7ba81444 4888 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 4889
7ba81444
MS
4890 int i = (struct type **)
4891 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
4892
4893 while (--i >= 0)
4894 {
4895 if (type == first_dont_print[i])
4896 {
4897 printfi_filtered (spaces, "type node ");
d4f3574e 4898 gdb_print_host_address (type, gdb_stdout);
a3f17187 4899 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
4900 return;
4901 }
4902 }
4903
4904 obstack_ptr_grow (&dont_print_type_obstack, type);
4905 }
4906
4907 printfi_filtered (spaces, "type node ");
d4f3574e 4908 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
4909 printf_filtered ("\n");
4910 printfi_filtered (spaces, "name '%s' (",
4911 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 4912 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 4913 printf_filtered (")\n");
c906108c
SS
4914 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4915 switch (TYPE_CODE (type))
4916 {
c5aa993b
JM
4917 case TYPE_CODE_UNDEF:
4918 printf_filtered ("(TYPE_CODE_UNDEF)");
4919 break;
4920 case TYPE_CODE_PTR:
4921 printf_filtered ("(TYPE_CODE_PTR)");
4922 break;
4923 case TYPE_CODE_ARRAY:
4924 printf_filtered ("(TYPE_CODE_ARRAY)");
4925 break;
4926 case TYPE_CODE_STRUCT:
4927 printf_filtered ("(TYPE_CODE_STRUCT)");
4928 break;
4929 case TYPE_CODE_UNION:
4930 printf_filtered ("(TYPE_CODE_UNION)");
4931 break;
4932 case TYPE_CODE_ENUM:
4933 printf_filtered ("(TYPE_CODE_ENUM)");
4934 break;
4f2aea11
MK
4935 case TYPE_CODE_FLAGS:
4936 printf_filtered ("(TYPE_CODE_FLAGS)");
4937 break;
c5aa993b
JM
4938 case TYPE_CODE_FUNC:
4939 printf_filtered ("(TYPE_CODE_FUNC)");
4940 break;
4941 case TYPE_CODE_INT:
4942 printf_filtered ("(TYPE_CODE_INT)");
4943 break;
4944 case TYPE_CODE_FLT:
4945 printf_filtered ("(TYPE_CODE_FLT)");
4946 break;
4947 case TYPE_CODE_VOID:
4948 printf_filtered ("(TYPE_CODE_VOID)");
4949 break;
4950 case TYPE_CODE_SET:
4951 printf_filtered ("(TYPE_CODE_SET)");
4952 break;
4953 case TYPE_CODE_RANGE:
4954 printf_filtered ("(TYPE_CODE_RANGE)");
4955 break;
4956 case TYPE_CODE_STRING:
4957 printf_filtered ("(TYPE_CODE_STRING)");
4958 break;
4959 case TYPE_CODE_ERROR:
4960 printf_filtered ("(TYPE_CODE_ERROR)");
4961 break;
0d5de010
DJ
4962 case TYPE_CODE_MEMBERPTR:
4963 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4964 break;
4965 case TYPE_CODE_METHODPTR:
4966 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
4967 break;
4968 case TYPE_CODE_METHOD:
4969 printf_filtered ("(TYPE_CODE_METHOD)");
4970 break;
4971 case TYPE_CODE_REF:
4972 printf_filtered ("(TYPE_CODE_REF)");
4973 break;
4974 case TYPE_CODE_CHAR:
4975 printf_filtered ("(TYPE_CODE_CHAR)");
4976 break;
4977 case TYPE_CODE_BOOL:
4978 printf_filtered ("(TYPE_CODE_BOOL)");
4979 break;
e9e79dd9
FF
4980 case TYPE_CODE_COMPLEX:
4981 printf_filtered ("(TYPE_CODE_COMPLEX)");
4982 break;
c5aa993b
JM
4983 case TYPE_CODE_TYPEDEF:
4984 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4985 break;
5c4e30ca
DC
4986 case TYPE_CODE_NAMESPACE:
4987 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4988 break;
c5aa993b
JM
4989 default:
4990 printf_filtered ("(UNKNOWN TYPE CODE)");
4991 break;
c906108c
SS
4992 }
4993 puts_filtered ("\n");
cc1defb1 4994 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
e9bb382b
UW
4995 if (TYPE_OBJFILE_OWNED (type))
4996 {
4997 printfi_filtered (spaces, "objfile ");
4998 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4999 }
5000 else
5001 {
5002 printfi_filtered (spaces, "gdbarch ");
5003 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
5004 }
c906108c
SS
5005 printf_filtered ("\n");
5006 printfi_filtered (spaces, "target_type ");
d4f3574e 5007 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
5008 printf_filtered ("\n");
5009 if (TYPE_TARGET_TYPE (type) != NULL)
5010 {
5011 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
5012 }
5013 printfi_filtered (spaces, "pointer_type ");
d4f3574e 5014 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
5015 printf_filtered ("\n");
5016 printfi_filtered (spaces, "reference_type ");
d4f3574e 5017 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 5018 printf_filtered ("\n");
2fdde8f8
DJ
5019 printfi_filtered (spaces, "type_chain ");
5020 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 5021 printf_filtered ("\n");
7ba81444
MS
5022 printfi_filtered (spaces, "instance_flags 0x%x",
5023 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
5024 if (TYPE_CONST (type))
5025 {
a9ff5f12 5026 puts_filtered (" TYPE_CONST");
2fdde8f8
DJ
5027 }
5028 if (TYPE_VOLATILE (type))
5029 {
a9ff5f12 5030 puts_filtered (" TYPE_VOLATILE");
2fdde8f8
DJ
5031 }
5032 if (TYPE_CODE_SPACE (type))
5033 {
a9ff5f12 5034 puts_filtered (" TYPE_CODE_SPACE");
2fdde8f8
DJ
5035 }
5036 if (TYPE_DATA_SPACE (type))
5037 {
a9ff5f12 5038 puts_filtered (" TYPE_DATA_SPACE");
2fdde8f8 5039 }
8b2dbe47
KB
5040 if (TYPE_ADDRESS_CLASS_1 (type))
5041 {
a9ff5f12 5042 puts_filtered (" TYPE_ADDRESS_CLASS_1");
8b2dbe47
KB
5043 }
5044 if (TYPE_ADDRESS_CLASS_2 (type))
5045 {
a9ff5f12 5046 puts_filtered (" TYPE_ADDRESS_CLASS_2");
8b2dbe47 5047 }
06d66ee9
TT
5048 if (TYPE_RESTRICT (type))
5049 {
a9ff5f12 5050 puts_filtered (" TYPE_RESTRICT");
06d66ee9 5051 }
a2c2acaf
MW
5052 if (TYPE_ATOMIC (type))
5053 {
a9ff5f12 5054 puts_filtered (" TYPE_ATOMIC");
a2c2acaf 5055 }
2fdde8f8 5056 puts_filtered ("\n");
876cecd0
TT
5057
5058 printfi_filtered (spaces, "flags");
762a036f 5059 if (TYPE_UNSIGNED (type))
c906108c 5060 {
a9ff5f12 5061 puts_filtered (" TYPE_UNSIGNED");
c906108c 5062 }
762a036f
FF
5063 if (TYPE_NOSIGN (type))
5064 {
a9ff5f12 5065 puts_filtered (" TYPE_NOSIGN");
762a036f 5066 }
34877895
PJ
5067 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
5068 {
5069 puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
5070 }
762a036f 5071 if (TYPE_STUB (type))
c906108c 5072 {
a9ff5f12 5073 puts_filtered (" TYPE_STUB");
c906108c 5074 }
762a036f
FF
5075 if (TYPE_TARGET_STUB (type))
5076 {
a9ff5f12 5077 puts_filtered (" TYPE_TARGET_STUB");
762a036f 5078 }
762a036f
FF
5079 if (TYPE_PROTOTYPED (type))
5080 {
a9ff5f12 5081 puts_filtered (" TYPE_PROTOTYPED");
762a036f 5082 }
762a036f
FF
5083 if (TYPE_VARARGS (type))
5084 {
a9ff5f12 5085 puts_filtered (" TYPE_VARARGS");
762a036f 5086 }
f5f8a009
EZ
5087 /* This is used for things like AltiVec registers on ppc. Gcc emits
5088 an attribute for the array type, which tells whether or not we
5089 have a vector, instead of a regular array. */
5090 if (TYPE_VECTOR (type))
5091 {
a9ff5f12 5092 puts_filtered (" TYPE_VECTOR");
f5f8a009 5093 }
876cecd0
TT
5094 if (TYPE_FIXED_INSTANCE (type))
5095 {
5096 puts_filtered (" TYPE_FIXED_INSTANCE");
5097 }
5098 if (TYPE_STUB_SUPPORTED (type))
5099 {
5100 puts_filtered (" TYPE_STUB_SUPPORTED");
5101 }
5102 if (TYPE_NOTTEXT (type))
5103 {
5104 puts_filtered (" TYPE_NOTTEXT");
5105 }
c906108c
SS
5106 puts_filtered ("\n");
5107 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 5108 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
5109 puts_filtered ("\n");
5110 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
5111 {
14e75d8e
JK
5112 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
5113 printfi_filtered (spaces + 2,
5114 "[%d] enumval %s type ",
5115 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
5116 else
5117 printfi_filtered (spaces + 2,
6b850546
DT
5118 "[%d] bitpos %s bitsize %d type ",
5119 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
14e75d8e 5120 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 5121 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
5122 printf_filtered (" name '%s' (",
5123 TYPE_FIELD_NAME (type, idx) != NULL
5124 ? TYPE_FIELD_NAME (type, idx)
5125 : "<NULL>");
d4f3574e 5126 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
5127 printf_filtered (")\n");
5128 if (TYPE_FIELD_TYPE (type, idx) != NULL)
5129 {
5130 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
5131 }
5132 }
43bbcdc2
PH
5133 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
5134 {
5135 printfi_filtered (spaces, "low %s%s high %s%s\n",
5136 plongest (TYPE_LOW_BOUND (type)),
5137 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
5138 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
5139 TYPE_HIGH_BOUND_UNDEFINED (type)
5140 ? " (undefined)" : "");
43bbcdc2 5141 }
c906108c 5142
b4ba55a1
JB
5143 switch (TYPE_SPECIFIC_FIELD (type))
5144 {
5145 case TYPE_SPECIFIC_CPLUS_STUFF:
5146 printfi_filtered (spaces, "cplus_stuff ");
5147 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
5148 gdb_stdout);
5149 puts_filtered ("\n");
5150 print_cplus_stuff (type, spaces);
5151 break;
8da61cc4 5152
b4ba55a1
JB
5153 case TYPE_SPECIFIC_GNAT_STUFF:
5154 printfi_filtered (spaces, "gnat_stuff ");
5155 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
5156 puts_filtered ("\n");
5157 print_gnat_stuff (type, spaces);
5158 break;
701c159d 5159
b4ba55a1
JB
5160 case TYPE_SPECIFIC_FLOATFORMAT:
5161 printfi_filtered (spaces, "floatformat ");
0db7851f
UW
5162 if (TYPE_FLOATFORMAT (type) == NULL
5163 || TYPE_FLOATFORMAT (type)->name == NULL)
b4ba55a1
JB
5164 puts_filtered ("(null)");
5165 else
0db7851f 5166 puts_filtered (TYPE_FLOATFORMAT (type)->name);
b4ba55a1
JB
5167 puts_filtered ("\n");
5168 break;
c906108c 5169
b6cdc2c1 5170 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
5171 printfi_filtered (spaces, "calling_convention %d\n",
5172 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 5173 /* tail_call_list is not printed. */
b4ba55a1 5174 break;
09e2d7c7
DE
5175
5176 case TYPE_SPECIFIC_SELF_TYPE:
5177 printfi_filtered (spaces, "self_type ");
5178 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
5179 puts_filtered ("\n");
5180 break;
c906108c 5181 }
b4ba55a1 5182
c906108c
SS
5183 if (spaces == 0)
5184 obstack_free (&dont_print_type_obstack, NULL);
5185}
5212577a 5186\f
ae5a43e0
DJ
5187/* Trivial helpers for the libiberty hash table, for mapping one
5188 type to another. */
5189
fd90ace4 5190struct type_pair : public allocate_on_obstack
ae5a43e0 5191{
fd90ace4
YQ
5192 type_pair (struct type *old_, struct type *newobj_)
5193 : old (old_), newobj (newobj_)
5194 {}
5195
5196 struct type * const old, * const newobj;
ae5a43e0
DJ
5197};
5198
5199static hashval_t
5200type_pair_hash (const void *item)
5201{
9a3c8263 5202 const struct type_pair *pair = (const struct type_pair *) item;
d8734c88 5203
ae5a43e0
DJ
5204 return htab_hash_pointer (pair->old);
5205}
5206
5207static int
5208type_pair_eq (const void *item_lhs, const void *item_rhs)
5209{
9a3c8263
SM
5210 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
5211 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
d8734c88 5212
ae5a43e0
DJ
5213 return lhs->old == rhs->old;
5214}
5215
5216/* Allocate the hash table used by copy_type_recursive to walk
5217 types without duplicates. We use OBJFILE's obstack, because
5218 OBJFILE is about to be deleted. */
5219
5220htab_t
5221create_copied_types_hash (struct objfile *objfile)
5222{
5223 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
5224 NULL, &objfile->objfile_obstack,
5225 hashtab_obstack_allocate,
5226 dummy_obstack_deallocate);
5227}
5228
d9823cbb
KB
5229/* Recursively copy (deep copy) a dynamic attribute list of a type. */
5230
5231static struct dynamic_prop_list *
5232copy_dynamic_prop_list (struct obstack *objfile_obstack,
5233 struct dynamic_prop_list *list)
5234{
5235 struct dynamic_prop_list *copy = list;
5236 struct dynamic_prop_list **node_ptr = &copy;
5237
5238 while (*node_ptr != NULL)
5239 {
5240 struct dynamic_prop_list *node_copy;
5241
224c3ddb
SM
5242 node_copy = ((struct dynamic_prop_list *)
5243 obstack_copy (objfile_obstack, *node_ptr,
5244 sizeof (struct dynamic_prop_list)));
283a9958 5245 node_copy->prop = (*node_ptr)->prop;
d9823cbb
KB
5246 *node_ptr = node_copy;
5247
5248 node_ptr = &node_copy->next;
5249 }
5250
5251 return copy;
5252}
5253
7ba81444 5254/* Recursively copy (deep copy) TYPE, if it is associated with
eed8b28a
PP
5255 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
5256 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
5257 it is not associated with OBJFILE. */
ae5a43e0
DJ
5258
5259struct type *
7ba81444
MS
5260copy_type_recursive (struct objfile *objfile,
5261 struct type *type,
ae5a43e0
DJ
5262 htab_t copied_types)
5263{
ae5a43e0
DJ
5264 void **slot;
5265 struct type *new_type;
5266
e9bb382b 5267 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
5268 return type;
5269
7ba81444
MS
5270 /* This type shouldn't be pointing to any types in other objfiles;
5271 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
5272 gdb_assert (TYPE_OBJFILE (type) == objfile);
5273
fd90ace4
YQ
5274 struct type_pair pair (type, nullptr);
5275
ae5a43e0
DJ
5276 slot = htab_find_slot (copied_types, &pair, INSERT);
5277 if (*slot != NULL)
fe978cb0 5278 return ((struct type_pair *) *slot)->newobj;
ae5a43e0 5279
e9bb382b 5280 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
5281
5282 /* We must add the new type to the hash table immediately, in case
5283 we encounter this type again during a recursive call below. */
fd90ace4
YQ
5284 struct type_pair *stored
5285 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
5286
ae5a43e0
DJ
5287 *slot = stored;
5288
876cecd0
TT
5289 /* Copy the common fields of types. For the main type, we simply
5290 copy the entire thing and then update specific fields as needed. */
5291 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
5292 TYPE_OBJFILE_OWNED (new_type) = 0;
5293 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 5294
ae5a43e0
DJ
5295 if (TYPE_NAME (type))
5296 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
ae5a43e0
DJ
5297
5298 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5299 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5300
5301 /* Copy the fields. */
ae5a43e0
DJ
5302 if (TYPE_NFIELDS (type))
5303 {
5304 int i, nfields;
5305
5306 nfields = TYPE_NFIELDS (type);
2fabdf33
AB
5307 TYPE_FIELDS (new_type) = (struct field *)
5308 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
ae5a43e0
DJ
5309 for (i = 0; i < nfields; i++)
5310 {
7ba81444
MS
5311 TYPE_FIELD_ARTIFICIAL (new_type, i) =
5312 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
5313 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
5314 if (TYPE_FIELD_TYPE (type, i))
5315 TYPE_FIELD_TYPE (new_type, i)
5316 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
5317 copied_types);
5318 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
5319 TYPE_FIELD_NAME (new_type, i) =
5320 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 5321 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 5322 {
d6a843b5
JK
5323 case FIELD_LOC_KIND_BITPOS:
5324 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
5325 TYPE_FIELD_BITPOS (type, i));
5326 break;
14e75d8e
JK
5327 case FIELD_LOC_KIND_ENUMVAL:
5328 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
5329 TYPE_FIELD_ENUMVAL (type, i));
5330 break;
d6a843b5
JK
5331 case FIELD_LOC_KIND_PHYSADDR:
5332 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
5333 TYPE_FIELD_STATIC_PHYSADDR (type, i));
5334 break;
5335 case FIELD_LOC_KIND_PHYSNAME:
5336 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
5337 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
5338 i)));
5339 break;
5340 default:
5341 internal_error (__FILE__, __LINE__,
5342 _("Unexpected type field location kind: %d"),
5343 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
5344 }
5345 }
5346 }
5347
0963b4bd 5348 /* For range types, copy the bounds information. */
43bbcdc2
PH
5349 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
5350 {
2fabdf33
AB
5351 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
5352 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
43bbcdc2
PH
5353 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
5354 }
5355
d9823cbb
KB
5356 if (TYPE_DYN_PROP_LIST (type) != NULL)
5357 TYPE_DYN_PROP_LIST (new_type)
5358 = copy_dynamic_prop_list (&objfile->objfile_obstack,
5359 TYPE_DYN_PROP_LIST (type));
5360
3cdcd0ce 5361
ae5a43e0
DJ
5362 /* Copy pointers to other types. */
5363 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
5364 TYPE_TARGET_TYPE (new_type) =
5365 copy_type_recursive (objfile,
5366 TYPE_TARGET_TYPE (type),
5367 copied_types);
f6b3afbf 5368
ae5a43e0
DJ
5369 /* Maybe copy the type_specific bits.
5370
5371 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5372 base classes and methods. There's no fundamental reason why we
5373 can't, but at the moment it is not needed. */
5374
f6b3afbf
DE
5375 switch (TYPE_SPECIFIC_FIELD (type))
5376 {
5377 case TYPE_SPECIFIC_NONE:
5378 break;
5379 case TYPE_SPECIFIC_FUNC:
5380 INIT_FUNC_SPECIFIC (new_type);
5381 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5382 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5383 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5384 break;
5385 case TYPE_SPECIFIC_FLOATFORMAT:
5386 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5387 break;
5388 case TYPE_SPECIFIC_CPLUS_STUFF:
5389 INIT_CPLUS_SPECIFIC (new_type);
5390 break;
5391 case TYPE_SPECIFIC_GNAT_STUFF:
5392 INIT_GNAT_SPECIFIC (new_type);
5393 break;
09e2d7c7
DE
5394 case TYPE_SPECIFIC_SELF_TYPE:
5395 set_type_self_type (new_type,
5396 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5397 copied_types));
5398 break;
f6b3afbf
DE
5399 default:
5400 gdb_assert_not_reached ("bad type_specific_kind");
5401 }
ae5a43e0
DJ
5402
5403 return new_type;
5404}
5405
4af88198
JB
5406/* Make a copy of the given TYPE, except that the pointer & reference
5407 types are not preserved.
5408
5409 This function assumes that the given type has an associated objfile.
5410 This objfile is used to allocate the new type. */
5411
5412struct type *
5413copy_type (const struct type *type)
5414{
5415 struct type *new_type;
5416
e9bb382b 5417 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 5418
e9bb382b 5419 new_type = alloc_type_copy (type);
4af88198
JB
5420 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5421 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5422 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5423 sizeof (struct main_type));
d9823cbb
KB
5424 if (TYPE_DYN_PROP_LIST (type) != NULL)
5425 TYPE_DYN_PROP_LIST (new_type)
5426 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5427 TYPE_DYN_PROP_LIST (type));
4af88198
JB
5428
5429 return new_type;
5430}
5212577a 5431\f
e9bb382b
UW
5432/* Helper functions to initialize architecture-specific types. */
5433
5434/* Allocate a type structure associated with GDBARCH and set its
5435 CODE, LENGTH, and NAME fields. */
5212577a 5436
e9bb382b
UW
5437struct type *
5438arch_type (struct gdbarch *gdbarch,
77b7c781 5439 enum type_code code, int bit, const char *name)
e9bb382b
UW
5440{
5441 struct type *type;
5442
5443 type = alloc_type_arch (gdbarch);
ae438bc5 5444 set_type_code (type, code);
77b7c781
UW
5445 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5446 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
e9bb382b
UW
5447
5448 if (name)
6c214e7c 5449 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
e9bb382b
UW
5450
5451 return type;
5452}
5453
5454/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5455 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5456 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5457
e9bb382b
UW
5458struct type *
5459arch_integer_type (struct gdbarch *gdbarch,
695bfa52 5460 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5461{
5462 struct type *t;
5463
77b7c781 5464 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
e9bb382b
UW
5465 if (unsigned_p)
5466 TYPE_UNSIGNED (t) = 1;
e9bb382b
UW
5467
5468 return t;
5469}
5470
5471/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5472 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5473 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5474
e9bb382b
UW
5475struct type *
5476arch_character_type (struct gdbarch *gdbarch,
695bfa52 5477 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5478{
5479 struct type *t;
5480
77b7c781 5481 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
e9bb382b
UW
5482 if (unsigned_p)
5483 TYPE_UNSIGNED (t) = 1;
5484
5485 return t;
5486}
5487
5488/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5489 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5490 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5491
e9bb382b
UW
5492struct type *
5493arch_boolean_type (struct gdbarch *gdbarch,
695bfa52 5494 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5495{
5496 struct type *t;
5497
77b7c781 5498 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
e9bb382b
UW
5499 if (unsigned_p)
5500 TYPE_UNSIGNED (t) = 1;
5501
5502 return t;
5503}
5504
5505/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5506 BIT is the type size in bits; if BIT equals -1, the size is
5507 determined by the floatformat. NAME is the type name. Set the
5508 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 5509
27067745 5510struct type *
e9bb382b 5511arch_float_type (struct gdbarch *gdbarch,
695bfa52
TT
5512 int bit, const char *name,
5513 const struct floatformat **floatformats)
8da61cc4 5514{
0db7851f 5515 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
8da61cc4
DJ
5516 struct type *t;
5517
0db7851f 5518 bit = verify_floatformat (bit, fmt);
77b7c781 5519 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
0db7851f 5520 TYPE_FLOATFORMAT (t) = fmt;
b79497cb 5521
8da61cc4
DJ
5522 return t;
5523}
5524
88dfca6c
UW
5525/* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5526 BIT is the type size in bits. NAME is the type name. */
5527
5528struct type *
5529arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5530{
5531 struct type *t;
5532
77b7c781 5533 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
88dfca6c
UW
5534 return t;
5535}
5536
88dfca6c
UW
5537/* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5538 BIT is the pointer type size in bits. NAME is the type name.
5539 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5540 TYPE_UNSIGNED flag. */
5541
5542struct type *
5543arch_pointer_type (struct gdbarch *gdbarch,
5544 int bit, const char *name, struct type *target_type)
5545{
5546 struct type *t;
5547
77b7c781 5548 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
88dfca6c
UW
5549 TYPE_TARGET_TYPE (t) = target_type;
5550 TYPE_UNSIGNED (t) = 1;
5551 return t;
5552}
5553
e9bb382b 5554/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
77b7c781 5555 NAME is the type name. BIT is the size of the flag word in bits. */
5212577a 5556
e9bb382b 5557struct type *
77b7c781 5558arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
e9bb382b 5559{
e9bb382b
UW
5560 struct type *type;
5561
77b7c781 5562 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
e9bb382b 5563 TYPE_UNSIGNED (type) = 1;
81516450
DE
5564 TYPE_NFIELDS (type) = 0;
5565 /* Pre-allocate enough space assuming every field is one bit. */
224c3ddb 5566 TYPE_FIELDS (type)
77b7c781 5567 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
e9bb382b
UW
5568
5569 return type;
5570}
5571
5572/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
81516450
DE
5573 position BITPOS is called NAME. Pass NAME as "" for fields that
5574 should not be printed. */
5575
5576void
5577append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
695bfa52 5578 struct type *field_type, const char *name)
81516450
DE
5579{
5580 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5581 int field_nr = TYPE_NFIELDS (type);
5582
5583 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5584 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5585 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5586 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5587 gdb_assert (name != NULL);
5588
5589 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5590 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5591 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5592 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5593 ++TYPE_NFIELDS (type);
5594}
5595
5596/* Special version of append_flags_type_field to add a flag field.
5597 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
e9bb382b 5598 position BITPOS is called NAME. */
5212577a 5599
e9bb382b 5600void
695bfa52 5601append_flags_type_flag (struct type *type, int bitpos, const char *name)
e9bb382b 5602{
81516450 5603 struct gdbarch *gdbarch = get_type_arch (type);
e9bb382b 5604
81516450
DE
5605 append_flags_type_field (type, bitpos, 1,
5606 builtin_type (gdbarch)->builtin_bool,
5607 name);
e9bb382b
UW
5608}
5609
5610/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5611 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 5612
e9bb382b 5613struct type *
695bfa52
TT
5614arch_composite_type (struct gdbarch *gdbarch, const char *name,
5615 enum type_code code)
e9bb382b
UW
5616{
5617 struct type *t;
d8734c88 5618
e9bb382b
UW
5619 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5620 t = arch_type (gdbarch, code, 0, NULL);
e86ca25f 5621 TYPE_NAME (t) = name;
e9bb382b
UW
5622 INIT_CPLUS_SPECIFIC (t);
5623 return t;
5624}
5625
5626/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
5627 Do not set the field's position or adjust the type's length;
5628 the caller should do so. Return the new field. */
5212577a 5629
f5dff777 5630struct field *
695bfa52 5631append_composite_type_field_raw (struct type *t, const char *name,
f5dff777 5632 struct type *field)
e9bb382b
UW
5633{
5634 struct field *f;
d8734c88 5635
e9bb382b 5636 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
224c3ddb
SM
5637 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5638 TYPE_NFIELDS (t));
e9bb382b
UW
5639 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5640 memset (f, 0, sizeof f[0]);
5641 FIELD_TYPE (f[0]) = field;
5642 FIELD_NAME (f[0]) = name;
f5dff777
DJ
5643 return f;
5644}
5645
5646/* Add new field with name NAME and type FIELD to composite type T.
5647 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 5648
f5dff777 5649void
695bfa52 5650append_composite_type_field_aligned (struct type *t, const char *name,
f5dff777
DJ
5651 struct type *field, int alignment)
5652{
5653 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 5654
e9bb382b
UW
5655 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5656 {
5657 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5658 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5659 }
5660 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5661 {
5662 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5663 if (TYPE_NFIELDS (t) > 1)
5664 {
f41f5e61
PA
5665 SET_FIELD_BITPOS (f[0],
5666 (FIELD_BITPOS (f[-1])
5667 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5668 * TARGET_CHAR_BIT)));
e9bb382b
UW
5669
5670 if (alignment)
5671 {
86c3c1fc
AB
5672 int left;
5673
5674 alignment *= TARGET_CHAR_BIT;
5675 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 5676
e9bb382b
UW
5677 if (left)
5678 {
f41f5e61 5679 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 5680 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
5681 }
5682 }
5683 }
5684 }
5685}
5686
5687/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 5688
e9bb382b 5689void
695bfa52 5690append_composite_type_field (struct type *t, const char *name,
e9bb382b
UW
5691 struct type *field)
5692{
5693 append_composite_type_field_aligned (t, name, field, 0);
5694}
5695
000177f0
AC
5696static struct gdbarch_data *gdbtypes_data;
5697
5698const struct builtin_type *
5699builtin_type (struct gdbarch *gdbarch)
5700{
9a3c8263 5701 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
000177f0
AC
5702}
5703
5704static void *
5705gdbtypes_post_init (struct gdbarch *gdbarch)
5706{
5707 struct builtin_type *builtin_type
5708 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5709
46bf5051 5710 /* Basic types. */
e9bb382b 5711 builtin_type->builtin_void
77b7c781 5712 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
e9bb382b
UW
5713 builtin_type->builtin_char
5714 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5715 !gdbarch_char_signed (gdbarch), "char");
c413c448 5716 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
e9bb382b
UW
5717 builtin_type->builtin_signed_char
5718 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5719 0, "signed char");
5720 builtin_type->builtin_unsigned_char
5721 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5722 1, "unsigned char");
5723 builtin_type->builtin_short
5724 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5725 0, "short");
5726 builtin_type->builtin_unsigned_short
5727 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5728 1, "unsigned short");
5729 builtin_type->builtin_int
5730 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5731 0, "int");
5732 builtin_type->builtin_unsigned_int
5733 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5734 1, "unsigned int");
5735 builtin_type->builtin_long
5736 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5737 0, "long");
5738 builtin_type->builtin_unsigned_long
5739 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5740 1, "unsigned long");
5741 builtin_type->builtin_long_long
5742 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5743 0, "long long");
5744 builtin_type->builtin_unsigned_long_long
5745 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5746 1, "unsigned long long");
a6d0f249
AH
5747 builtin_type->builtin_half
5748 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5749 "half", gdbarch_half_format (gdbarch));
70bd8e24 5750 builtin_type->builtin_float
e9bb382b 5751 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 5752 "float", gdbarch_float_format (gdbarch));
70bd8e24 5753 builtin_type->builtin_double
e9bb382b 5754 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 5755 "double", gdbarch_double_format (gdbarch));
70bd8e24 5756 builtin_type->builtin_long_double
e9bb382b 5757 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 5758 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 5759 builtin_type->builtin_complex
5b930b45 5760 = init_complex_type ("complex", builtin_type->builtin_float);
70bd8e24 5761 builtin_type->builtin_double_complex
5b930b45 5762 = init_complex_type ("double complex", builtin_type->builtin_double);
e9bb382b 5763 builtin_type->builtin_string
77b7c781 5764 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
e9bb382b 5765 builtin_type->builtin_bool
77b7c781 5766 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
000177f0 5767
7678ef8f
TJB
5768 /* The following three are about decimal floating point types, which
5769 are 32-bits, 64-bits and 128-bits respectively. */
5770 builtin_type->builtin_decfloat
88dfca6c 5771 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
7678ef8f 5772 builtin_type->builtin_decdouble
88dfca6c 5773 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
7678ef8f 5774 builtin_type->builtin_declong
88dfca6c 5775 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
7678ef8f 5776
69feb676 5777 /* "True" character types. */
e9bb382b
UW
5778 builtin_type->builtin_true_char
5779 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5780 builtin_type->builtin_true_unsigned_char
5781 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 5782
df4df182 5783 /* Fixed-size integer types. */
e9bb382b
UW
5784 builtin_type->builtin_int0
5785 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5786 builtin_type->builtin_int8
5787 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5788 builtin_type->builtin_uint8
5789 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5790 builtin_type->builtin_int16
5791 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5792 builtin_type->builtin_uint16
5793 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
d1908f2d
JD
5794 builtin_type->builtin_int24
5795 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5796 builtin_type->builtin_uint24
5797 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
e9bb382b
UW
5798 builtin_type->builtin_int32
5799 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5800 builtin_type->builtin_uint32
5801 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5802 builtin_type->builtin_int64
5803 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5804 builtin_type->builtin_uint64
5805 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5806 builtin_type->builtin_int128
5807 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5808 builtin_type->builtin_uint128
5809 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
5810 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5811 TYPE_INSTANCE_FLAG_NOTTEXT;
5812 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5813 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 5814
9a22f0d0
PM
5815 /* Wide character types. */
5816 builtin_type->builtin_char16
53e710ac 5817 = arch_integer_type (gdbarch, 16, 1, "char16_t");
9a22f0d0 5818 builtin_type->builtin_char32
53e710ac 5819 = arch_integer_type (gdbarch, 32, 1, "char32_t");
53375380
PA
5820 builtin_type->builtin_wchar
5821 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5822 !gdbarch_wchar_signed (gdbarch), "wchar_t");
9a22f0d0 5823
46bf5051 5824 /* Default data/code pointer types. */
e9bb382b
UW
5825 builtin_type->builtin_data_ptr
5826 = lookup_pointer_type (builtin_type->builtin_void);
5827 builtin_type->builtin_func_ptr
5828 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
5829 builtin_type->builtin_func_func
5830 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 5831
78267919 5832 /* This type represents a GDB internal function. */
e9bb382b
UW
5833 builtin_type->internal_fn
5834 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5835 "<internal function>");
78267919 5836
e81e7f5e
SC
5837 /* This type represents an xmethod. */
5838 builtin_type->xmethod
5839 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5840
46bf5051
UW
5841 return builtin_type;
5842}
5843
46bf5051
UW
5844/* This set of objfile-based types is intended to be used by symbol
5845 readers as basic types. */
5846
7a102139
TT
5847static const struct objfile_key<struct objfile_type,
5848 gdb::noop_deleter<struct objfile_type>>
5849 objfile_type_data;
46bf5051
UW
5850
5851const struct objfile_type *
5852objfile_type (struct objfile *objfile)
5853{
5854 struct gdbarch *gdbarch;
7a102139 5855 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
46bf5051
UW
5856
5857 if (objfile_type)
5858 return objfile_type;
5859
5860 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5861 1, struct objfile_type);
5862
5863 /* Use the objfile architecture to determine basic type properties. */
08feed99 5864 gdbarch = objfile->arch ();
46bf5051
UW
5865
5866 /* Basic types. */
5867 objfile_type->builtin_void
77b7c781 5868 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
46bf5051 5869 objfile_type->builtin_char
19f392bc
UW
5870 = init_integer_type (objfile, TARGET_CHAR_BIT,
5871 !gdbarch_char_signed (gdbarch), "char");
c413c448 5872 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
46bf5051 5873 objfile_type->builtin_signed_char
19f392bc
UW
5874 = init_integer_type (objfile, TARGET_CHAR_BIT,
5875 0, "signed char");
46bf5051 5876 objfile_type->builtin_unsigned_char
19f392bc
UW
5877 = init_integer_type (objfile, TARGET_CHAR_BIT,
5878 1, "unsigned char");
46bf5051 5879 objfile_type->builtin_short
19f392bc
UW
5880 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5881 0, "short");
46bf5051 5882 objfile_type->builtin_unsigned_short
19f392bc
UW
5883 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5884 1, "unsigned short");
46bf5051 5885 objfile_type->builtin_int
19f392bc
UW
5886 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5887 0, "int");
46bf5051 5888 objfile_type->builtin_unsigned_int
19f392bc
UW
5889 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5890 1, "unsigned int");
46bf5051 5891 objfile_type->builtin_long
19f392bc
UW
5892 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5893 0, "long");
46bf5051 5894 objfile_type->builtin_unsigned_long
19f392bc
UW
5895 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5896 1, "unsigned long");
46bf5051 5897 objfile_type->builtin_long_long
19f392bc
UW
5898 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5899 0, "long long");
46bf5051 5900 objfile_type->builtin_unsigned_long_long
19f392bc
UW
5901 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5902 1, "unsigned long long");
46bf5051 5903 objfile_type->builtin_float
19f392bc
UW
5904 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5905 "float", gdbarch_float_format (gdbarch));
46bf5051 5906 objfile_type->builtin_double
19f392bc
UW
5907 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5908 "double", gdbarch_double_format (gdbarch));
46bf5051 5909 objfile_type->builtin_long_double
19f392bc
UW
5910 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5911 "long double", gdbarch_long_double_format (gdbarch));
46bf5051
UW
5912
5913 /* This type represents a type that was unrecognized in symbol read-in. */
5914 objfile_type->builtin_error
19f392bc 5915 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
46bf5051
UW
5916
5917 /* The following set of types is used for symbols with no
5918 debug information. */
5919 objfile_type->nodebug_text_symbol
77b7c781 5920 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5921 "<text variable, no debug info>");
0875794a 5922 objfile_type->nodebug_text_gnu_ifunc_symbol
77b7c781 5923 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5924 "<text gnu-indirect-function variable, no debug info>");
19f392bc 5925 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
0875794a 5926 objfile_type->nodebug_got_plt_symbol
19f392bc
UW
5927 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5928 "<text from jump slot in .got.plt, no debug info>",
5929 objfile_type->nodebug_text_symbol);
46bf5051 5930 objfile_type->nodebug_data_symbol
46a4882b 5931 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
46bf5051 5932 objfile_type->nodebug_unknown_symbol
46a4882b 5933 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
46bf5051 5934 objfile_type->nodebug_tls_symbol
46a4882b 5935 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
000177f0
AC
5936
5937 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 5938 the same.
000177f0
AC
5939
5940 The upshot is:
5941 - gdb's `struct type' always describes the target's
5942 representation.
5943 - gdb's `struct value' objects should always hold values in
5944 target form.
5945 - gdb's CORE_ADDR values are addresses in the unified virtual
5946 address space that the assembler and linker work with. Thus,
5947 since target_read_memory takes a CORE_ADDR as an argument, it
5948 can access any memory on the target, even if the processor has
5949 separate code and data address spaces.
5950
46bf5051
UW
5951 In this context, objfile_type->builtin_core_addr is a bit odd:
5952 it's a target type for a value the target will never see. It's
5953 only used to hold the values of (typeless) linker symbols, which
5954 are indeed in the unified virtual address space. */
000177f0 5955
46bf5051 5956 objfile_type->builtin_core_addr
19f392bc
UW
5957 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5958 "__CORE_ADDR");
64c50499 5959
7a102139 5960 objfile_type_data.set (objfile, objfile_type);
46bf5051 5961 return objfile_type;
000177f0
AC
5962}
5963
6c265988 5964void _initialize_gdbtypes ();
c906108c 5965void
6c265988 5966_initialize_gdbtypes ()
c906108c 5967{
5674de60
UW
5968 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5969
ccce17b0
YQ
5970 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5971 _("Set debugging of C++ overloading."),
5972 _("Show debugging of C++ overloading."),
5973 _("When enabled, ranking of the "
5974 "functions is displayed."),
5975 NULL,
5976 show_overload_debug,
5977 &setdebuglist, &showdebuglist);
5674de60 5978
7ba81444 5979 /* Add user knob for controlling resolution of opaque types. */
5674de60 5980 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
5981 &opaque_type_resolution,
5982 _("Set resolution of opaque struct/class/union"
5983 " types (if set before loading symbols)."),
5984 _("Show resolution of opaque struct/class/union"
5985 " types (if set before loading symbols)."),
5986 NULL, NULL,
5674de60
UW
5987 show_opaque_type_resolution,
5988 &setlist, &showlist);
a451cb65
KS
5989
5990 /* Add an option to permit non-strict type checking. */
5991 add_setshow_boolean_cmd ("type", class_support,
5992 &strict_type_checking,
5993 _("Set strict type checking."),
5994 _("Show strict type checking."),
5995 NULL, NULL,
5996 show_strict_type_checking,
5997 &setchecklist, &showchecklist);
c906108c 5998}