]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/i386-linux-tdep.c
Constify execute_command
[thirdparty/binutils-gdb.git] / gdb / i386-linux-tdep.c
CommitLineData
871fbe6a 1/* Target-dependent code for GNU/Linux i386.
ca557f44 2
61baf725 3 Copyright (C) 2000-2017 Free Software Foundation, Inc.
e7ee86a9
JB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
e7ee86a9
JB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
e7ee86a9
JB
19
20#include "defs.h"
21#include "gdbcore.h"
22#include "frame.h"
23#include "value.h"
4e052eda 24#include "regcache.h"
c131fcee 25#include "regset.h"
6441c4a0 26#include "inferior.h"
0670c0aa 27#include "osabi.h"
38c968cf 28#include "reggroups.h"
5cb2fe25 29#include "dwarf2-frame.h"
8201327c
MK
30#include "i386-tdep.h"
31#include "i386-linux-tdep.h"
4aa995e1 32#include "linux-tdep.h"
012b3a21 33#include "utils.h"
0670c0aa 34#include "glibc-tdep.h"
871fbe6a 35#include "solib-svr4.h"
982e9687 36#include "symtab.h"
237fc4c9 37#include "arch-utils.h"
a96d9b2e
SDJ
38#include "xml-syscall.h"
39
c131fcee 40#include "i387-tdep.h"
df7e5265 41#include "x86-xstate.h"
c131fcee 42
a96d9b2e
SDJ
43/* The syscall's XML filename for i386. */
44#define XML_SYSCALL_FILENAME_I386 "syscalls/i386-linux.xml"
17ea7499 45
d02ed0bb 46#include "record-full.h"
77fcef51 47#include "linux-record.h"
ea03d0d3 48
5f035c07 49#include "arch/i386.h"
f49ff000 50#include "target-descriptions.h"
90884b2b 51
38c968cf
AC
52/* Return non-zero, when the register is in the corresponding register
53 group. Put the LINUX_ORIG_EAX register in the system group. */
54static int
55i386_linux_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
56 struct reggroup *group)
57{
58 if (regnum == I386_LINUX_ORIG_EAX_REGNUM)
59 return (group == system_reggroup
60 || group == save_reggroup
61 || group == restore_reggroup);
62 return i386_register_reggroup_p (gdbarch, regnum, group);
63}
64
e7ee86a9
JB
65\f
66/* Recognizing signal handler frames. */
67
ca557f44 68/* GNU/Linux has two flavors of signals. Normal signal handlers, and
e7ee86a9
JB
69 "realtime" (RT) signals. The RT signals can provide additional
70 information to the signal handler if the SA_SIGINFO flag is set
71 when establishing a signal handler using `sigaction'. It is not
ca557f44
AC
72 unlikely that future versions of GNU/Linux will support SA_SIGINFO
73 for normal signals too. */
e7ee86a9
JB
74
75/* When the i386 Linux kernel calls a signal handler and the
76 SA_RESTORER flag isn't set, the return address points to a bit of
77 code on the stack. This function returns whether the PC appears to
78 be within this bit of code.
79
80 The instruction sequence for normal signals is
81 pop %eax
acd5c798 82 mov $0x77, %eax
e7ee86a9
JB
83 int $0x80
84 or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
85
86 Checking for the code sequence should be somewhat reliable, because
87 the effect is to call the system call sigreturn. This is unlikely
911bc6ee 88 to occur anywhere other than in a signal trampoline.
e7ee86a9
JB
89
90 It kind of sucks that we have to read memory from the process in
91 order to identify a signal trampoline, but there doesn't seem to be
911bc6ee
MK
92 any other way. Therefore we only do the memory reads if no
93 function name could be identified, which should be the case since
94 the code is on the stack.
e7ee86a9
JB
95
96 Detection of signal trampolines for handlers that set the
97 SA_RESTORER flag is in general not possible. Unfortunately this is
98 what the GNU C Library has been doing for quite some time now.
99 However, as of version 2.1.2, the GNU C Library uses signal
100 trampolines (named __restore and __restore_rt) that are identical
101 to the ones used by the kernel. Therefore, these trampolines are
102 supported too. */
103
acd5c798
MK
104#define LINUX_SIGTRAMP_INSN0 0x58 /* pop %eax */
105#define LINUX_SIGTRAMP_OFFSET0 0
106#define LINUX_SIGTRAMP_INSN1 0xb8 /* mov $NNNN, %eax */
107#define LINUX_SIGTRAMP_OFFSET1 1
108#define LINUX_SIGTRAMP_INSN2 0xcd /* int */
109#define LINUX_SIGTRAMP_OFFSET2 6
e7ee86a9 110
4252dc94 111static const gdb_byte linux_sigtramp_code[] =
e7ee86a9
JB
112{
113 LINUX_SIGTRAMP_INSN0, /* pop %eax */
acd5c798 114 LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00, /* mov $0x77, %eax */
e7ee86a9
JB
115 LINUX_SIGTRAMP_INSN2, 0x80 /* int $0x80 */
116};
117
118#define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
119
10458914
DJ
120/* If THIS_FRAME is a sigtramp routine, return the address of the
121 start of the routine. Otherwise, return 0. */
e7ee86a9
JB
122
123static CORE_ADDR
10458914 124i386_linux_sigtramp_start (struct frame_info *this_frame)
e7ee86a9 125{
10458914 126 CORE_ADDR pc = get_frame_pc (this_frame);
4252dc94 127 gdb_byte buf[LINUX_SIGTRAMP_LEN];
e7ee86a9
JB
128
129 /* We only recognize a signal trampoline if PC is at the start of
130 one of the three instructions. We optimize for finding the PC at
131 the start, as will be the case when the trampoline is not the
132 first frame on the stack. We assume that in the case where the
133 PC is not at the start of the instruction sequence, there will be
134 a few trailing readable bytes on the stack. */
135
10458914 136 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_SIGTRAMP_LEN))
e7ee86a9
JB
137 return 0;
138
139 if (buf[0] != LINUX_SIGTRAMP_INSN0)
140 {
141 int adjust;
142
143 switch (buf[0])
144 {
145 case LINUX_SIGTRAMP_INSN1:
146 adjust = LINUX_SIGTRAMP_OFFSET1;
147 break;
148 case LINUX_SIGTRAMP_INSN2:
149 adjust = LINUX_SIGTRAMP_OFFSET2;
150 break;
151 default:
152 return 0;
153 }
154
155 pc -= adjust;
156
10458914 157 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_SIGTRAMP_LEN))
e7ee86a9
JB
158 return 0;
159 }
160
161 if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
162 return 0;
163
164 return pc;
165}
166
167/* This function does the same for RT signals. Here the instruction
168 sequence is
acd5c798 169 mov $0xad, %eax
e7ee86a9
JB
170 int $0x80
171 or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
172
173 The effect is to call the system call rt_sigreturn. */
174
acd5c798
MK
175#define LINUX_RT_SIGTRAMP_INSN0 0xb8 /* mov $NNNN, %eax */
176#define LINUX_RT_SIGTRAMP_OFFSET0 0
177#define LINUX_RT_SIGTRAMP_INSN1 0xcd /* int */
178#define LINUX_RT_SIGTRAMP_OFFSET1 5
e7ee86a9 179
4252dc94 180static const gdb_byte linux_rt_sigtramp_code[] =
e7ee86a9 181{
acd5c798 182 LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00, /* mov $0xad, %eax */
e7ee86a9
JB
183 LINUX_RT_SIGTRAMP_INSN1, 0x80 /* int $0x80 */
184};
185
186#define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
187
10458914
DJ
188/* If THIS_FRAME is an RT sigtramp routine, return the address of the
189 start of the routine. Otherwise, return 0. */
e7ee86a9
JB
190
191static CORE_ADDR
10458914 192i386_linux_rt_sigtramp_start (struct frame_info *this_frame)
e7ee86a9 193{
10458914 194 CORE_ADDR pc = get_frame_pc (this_frame);
4252dc94 195 gdb_byte buf[LINUX_RT_SIGTRAMP_LEN];
e7ee86a9
JB
196
197 /* We only recognize a signal trampoline if PC is at the start of
198 one of the two instructions. We optimize for finding the PC at
199 the start, as will be the case when the trampoline is not the
200 first frame on the stack. We assume that in the case where the
201 PC is not at the start of the instruction sequence, there will be
202 a few trailing readable bytes on the stack. */
203
10458914 204 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_RT_SIGTRAMP_LEN))
e7ee86a9
JB
205 return 0;
206
207 if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
208 {
209 if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
210 return 0;
211
212 pc -= LINUX_RT_SIGTRAMP_OFFSET1;
213
10458914 214 if (!safe_frame_unwind_memory (this_frame, pc, buf,
8e6bed05 215 LINUX_RT_SIGTRAMP_LEN))
e7ee86a9
JB
216 return 0;
217 }
218
219 if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
220 return 0;
221
222 return pc;
223}
224
10458914
DJ
225/* Return whether THIS_FRAME corresponds to a GNU/Linux sigtramp
226 routine. */
e7ee86a9 227
8201327c 228static int
10458914 229i386_linux_sigtramp_p (struct frame_info *this_frame)
e7ee86a9 230{
10458914 231 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 232 const char *name;
911bc6ee
MK
233
234 find_pc_partial_function (pc, &name, NULL, NULL);
235
ef17e74b
DJ
236 /* If we have NAME, we can optimize the search. The trampolines are
237 named __restore and __restore_rt. However, they aren't dynamically
238 exported from the shared C library, so the trampoline may appear to
239 be part of the preceding function. This should always be sigaction,
240 __sigaction, or __libc_sigaction (all aliases to the same function). */
241 if (name == NULL || strstr (name, "sigaction") != NULL)
10458914
DJ
242 return (i386_linux_sigtramp_start (this_frame) != 0
243 || i386_linux_rt_sigtramp_start (this_frame) != 0);
ef17e74b
DJ
244
245 return (strcmp ("__restore", name) == 0
246 || strcmp ("__restore_rt", name) == 0);
e7ee86a9
JB
247}
248
4a4e5149
DJ
249/* Return one if the PC of THIS_FRAME is in a signal trampoline which
250 may have DWARF-2 CFI. */
12b8a2cb
DJ
251
252static int
253i386_linux_dwarf_signal_frame_p (struct gdbarch *gdbarch,
4a4e5149 254 struct frame_info *this_frame)
12b8a2cb 255{
4a4e5149 256 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 257 const char *name;
12b8a2cb
DJ
258
259 find_pc_partial_function (pc, &name, NULL, NULL);
260
261 /* If a vsyscall DSO is in use, the signal trampolines may have these
262 names. */
263 if (name && (strcmp (name, "__kernel_sigreturn") == 0
264 || strcmp (name, "__kernel_rt_sigreturn") == 0))
265 return 1;
266
267 return 0;
268}
269
acd5c798
MK
270/* Offset to struct sigcontext in ucontext, from <asm/ucontext.h>. */
271#define I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET 20
272
10458914
DJ
273/* Assuming THIS_FRAME is a GNU/Linux sigtramp routine, return the
274 address of the associated sigcontext structure. */
e7ee86a9 275
b7d15bf7 276static CORE_ADDR
10458914 277i386_linux_sigcontext_addr (struct frame_info *this_frame)
e7ee86a9 278{
e17a4113
UW
279 struct gdbarch *gdbarch = get_frame_arch (this_frame);
280 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e7ee86a9 281 CORE_ADDR pc;
acd5c798 282 CORE_ADDR sp;
4252dc94 283 gdb_byte buf[4];
acd5c798 284
10458914 285 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 286 sp = extract_unsigned_integer (buf, 4, byte_order);
e7ee86a9 287
10458914 288 pc = i386_linux_sigtramp_start (this_frame);
e7ee86a9
JB
289 if (pc)
290 {
acd5c798
MK
291 /* The sigcontext structure lives on the stack, right after
292 the signum argument. We determine the address of the
293 sigcontext structure by looking at the frame's stack
294 pointer. Keep in mind that the first instruction of the
295 sigtramp code is "pop %eax". If the PC is after this
296 instruction, adjust the returned value accordingly. */
10458914 297 if (pc == get_frame_pc (this_frame))
e7ee86a9
JB
298 return sp + 4;
299 return sp;
300 }
301
10458914 302 pc = i386_linux_rt_sigtramp_start (this_frame);
e7ee86a9
JB
303 if (pc)
304 {
acd5c798
MK
305 CORE_ADDR ucontext_addr;
306
307 /* The sigcontext structure is part of the user context. A
308 pointer to the user context is passed as the third argument
309 to the signal handler. */
310 read_memory (sp + 8, buf, 4);
e17a4113 311 ucontext_addr = extract_unsigned_integer (buf, 4, byte_order);
acd5c798 312 return ucontext_addr + I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET;
e7ee86a9
JB
313 }
314
8a3fe4f8 315 error (_("Couldn't recognize signal trampoline."));
e7ee86a9
JB
316 return 0;
317}
318
6441c4a0
MK
319/* Set the program counter for process PTID to PC. */
320
8201327c 321static void
61a1198a 322i386_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
6441c4a0 323{
61a1198a 324 regcache_cooked_write_unsigned (regcache, I386_EIP_REGNUM, pc);
6441c4a0
MK
325
326 /* We must be careful with modifying the program counter. If we
327 just interrupted a system call, the kernel might try to restart
328 it when we resume the inferior. On restarting the system call,
329 the kernel will try backing up the program counter even though it
330 no longer points at the system call. This typically results in a
331 SIGSEGV or SIGILL. We can prevent this by writing `-1' in the
332 "orig_eax" pseudo-register.
333
334 Note that "orig_eax" is saved when setting up a dummy call frame.
335 This means that it is properly restored when that frame is
336 popped, and that the interrupted system call will be restarted
337 when we resume the inferior on return from a function call from
338 within GDB. In all other cases the system call will not be
339 restarted. */
61a1198a 340 regcache_cooked_write_unsigned (regcache, I386_LINUX_ORIG_EAX_REGNUM, -1);
6441c4a0 341}
77fcef51 342
8a2e0e28
HZ
343/* Record all registers but IP register for process-record. */
344
345static int
346i386_all_but_ip_registers_record (struct regcache *regcache)
347{
25ea693b 348 if (record_full_arch_list_add_reg (regcache, I386_EAX_REGNUM))
8a2e0e28 349 return -1;
25ea693b 350 if (record_full_arch_list_add_reg (regcache, I386_ECX_REGNUM))
8a2e0e28 351 return -1;
25ea693b 352 if (record_full_arch_list_add_reg (regcache, I386_EDX_REGNUM))
8a2e0e28 353 return -1;
25ea693b 354 if (record_full_arch_list_add_reg (regcache, I386_EBX_REGNUM))
8a2e0e28 355 return -1;
25ea693b 356 if (record_full_arch_list_add_reg (regcache, I386_ESP_REGNUM))
8a2e0e28 357 return -1;
25ea693b 358 if (record_full_arch_list_add_reg (regcache, I386_EBP_REGNUM))
8a2e0e28 359 return -1;
25ea693b 360 if (record_full_arch_list_add_reg (regcache, I386_ESI_REGNUM))
8a2e0e28 361 return -1;
25ea693b 362 if (record_full_arch_list_add_reg (regcache, I386_EDI_REGNUM))
8a2e0e28 363 return -1;
25ea693b 364 if (record_full_arch_list_add_reg (regcache, I386_EFLAGS_REGNUM))
8a2e0e28
HZ
365 return -1;
366
367 return 0;
368}
13b6d1d4
MS
369
370/* i386_canonicalize_syscall maps from the native i386 Linux set
371 of syscall ids into a canonical set of syscall ids used by
372 process record (a mostly trivial mapping, since the canonical
373 set was originally taken from the i386 set). */
374
375static enum gdb_syscall
376i386_canonicalize_syscall (int syscall)
377{
378 enum { i386_syscall_max = 499 };
379
380 if (syscall <= i386_syscall_max)
aead7601 381 return (enum gdb_syscall) syscall;
13b6d1d4 382 else
f486487f 383 return gdb_sys_no_syscall;
13b6d1d4
MS
384}
385
012b3a21
WT
386/* Value of the sigcode in case of a boundary fault. */
387
388#define SIG_CODE_BONDARY_FAULT 3
389
390/* i386 GNU/Linux implementation of the handle_segmentation_fault
391 gdbarch hook. Displays information related to MPX bound
392 violations. */
393void
394i386_linux_handle_segmentation_fault (struct gdbarch *gdbarch,
395 struct ui_out *uiout)
396{
166616ce
SM
397 /* -Wmaybe-uninitialized */
398 CORE_ADDR lower_bound = 0, upper_bound = 0, access = 0;
012b3a21
WT
399 int is_upper;
400 long sig_code = 0;
401
402 if (!i386_mpx_enabled ())
403 return;
404
405 TRY
406 {
407 /* Sigcode evaluates if the actual segfault is a boundary violation. */
408 sig_code = parse_and_eval_long ("$_siginfo.si_code\n");
409
410 lower_bound
411 = parse_and_eval_long ("$_siginfo._sifields._sigfault._addr_bnd._lower");
412 upper_bound
413 = parse_and_eval_long ("$_siginfo._sifields._sigfault._addr_bnd._upper");
414 access
415 = parse_and_eval_long ("$_siginfo._sifields._sigfault.si_addr");
416 }
417 CATCH (exception, RETURN_MASK_ALL)
418 {
419 return;
420 }
421 END_CATCH
422
423 /* If this is not a boundary violation just return. */
424 if (sig_code != SIG_CODE_BONDARY_FAULT)
425 return;
426
427 is_upper = (access > upper_bound ? 1 : 0);
428
112e8700 429 uiout->text ("\n");
012b3a21 430 if (is_upper)
112e8700 431 uiout->field_string ("sigcode-meaning", _("Upper bound violation"));
012b3a21 432 else
112e8700 433 uiout->field_string ("sigcode-meaning", _("Lower bound violation"));
012b3a21 434
112e8700
SM
435 uiout->text (_(" while accessing address "));
436 uiout->field_fmt ("bound-access", "%s", paddress (gdbarch, access));
012b3a21 437
112e8700
SM
438 uiout->text (_("\nBounds: [lower = "));
439 uiout->field_fmt ("lower-bound", "%s", paddress (gdbarch, lower_bound));
012b3a21 440
112e8700
SM
441 uiout->text (_(", upper = "));
442 uiout->field_fmt ("upper-bound", "%s", paddress (gdbarch, upper_bound));
012b3a21 443
112e8700 444 uiout->text (_("]"));
012b3a21
WT
445}
446
77fcef51
HZ
447/* Parse the arguments of current system call instruction and record
448 the values of the registers and memory that will be changed into
449 "record_arch_list". This instruction is "int 0x80" (Linux
450 Kernel2.4) or "sysenter" (Linux Kernel 2.6).
451
452 Return -1 if something wrong. */
453
8a2e0e28
HZ
454static struct linux_record_tdep i386_linux_record_tdep;
455
77fcef51 456static int
ffdf6de5 457i386_linux_intx80_sysenter_syscall_record (struct regcache *regcache)
77fcef51
HZ
458{
459 int ret;
13b6d1d4
MS
460 LONGEST syscall_native;
461 enum gdb_syscall syscall_gdb;
462
463 regcache_raw_read_signed (regcache, I386_EAX_REGNUM, &syscall_native);
77fcef51 464
13b6d1d4 465 syscall_gdb = i386_canonicalize_syscall (syscall_native);
2c543fc4 466
13b6d1d4 467 if (syscall_gdb < 0)
2c543fc4
HZ
468 {
469 printf_unfiltered (_("Process record and replay target doesn't "
13b6d1d4
MS
470 "support syscall number %s\n"),
471 plongest (syscall_native));
2c543fc4
HZ
472 return -1;
473 }
77fcef51 474
8a2e0e28
HZ
475 if (syscall_gdb == gdb_sys_sigreturn
476 || syscall_gdb == gdb_sys_rt_sigreturn)
477 {
478 if (i386_all_but_ip_registers_record (regcache))
479 return -1;
480 return 0;
481 }
482
13b6d1d4 483 ret = record_linux_system_call (syscall_gdb, regcache,
77fcef51
HZ
484 &i386_linux_record_tdep);
485 if (ret)
486 return ret;
487
488 /* Record the return value of the system call. */
25ea693b 489 if (record_full_arch_list_add_reg (regcache, I386_EAX_REGNUM))
77fcef51
HZ
490 return -1;
491
492 return 0;
493}
8a2e0e28
HZ
494
495#define I386_LINUX_xstate 270
496#define I386_LINUX_frame_size 732
497
70221824 498static int
8a2e0e28
HZ
499i386_linux_record_signal (struct gdbarch *gdbarch,
500 struct regcache *regcache,
2ea28649 501 enum gdb_signal signal)
8a2e0e28
HZ
502{
503 ULONGEST esp;
504
505 if (i386_all_but_ip_registers_record (regcache))
506 return -1;
507
25ea693b 508 if (record_full_arch_list_add_reg (regcache, I386_EIP_REGNUM))
8a2e0e28
HZ
509 return -1;
510
511 /* Record the change in the stack. */
512 regcache_raw_read_unsigned (regcache, I386_ESP_REGNUM, &esp);
513 /* This is for xstate.
514 sp -= sizeof (struct _fpstate); */
515 esp -= I386_LINUX_xstate;
516 /* This is for frame_size.
517 sp -= sizeof (struct rt_sigframe); */
518 esp -= I386_LINUX_frame_size;
25ea693b
MM
519 if (record_full_arch_list_add_mem (esp,
520 I386_LINUX_xstate + I386_LINUX_frame_size))
8a2e0e28
HZ
521 return -1;
522
25ea693b 523 if (record_full_arch_list_add_end ())
8a2e0e28
HZ
524 return -1;
525
526 return 0;
527}
6441c4a0 528\f
8201327c 529
9a7f938f
JK
530/* Core of the implementation for gdbarch get_syscall_number. Get pending
531 syscall number from REGCACHE. If there is no pending syscall -1 will be
532 returned. Pending syscall means ptrace has stepped into the syscall but
533 another ptrace call will step out. PC is right after the int $0x80
534 / syscall / sysenter instruction in both cases, PC does not change during
535 the second ptrace step. */
536
a96d9b2e 537static LONGEST
9a7f938f 538i386_linux_get_syscall_number_from_regcache (struct regcache *regcache)
a96d9b2e 539{
ac7936df 540 struct gdbarch *gdbarch = regcache->arch ();
a96d9b2e
SDJ
541 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
542 /* The content of a register. */
543 gdb_byte buf[4];
544 /* The result. */
545 LONGEST ret;
546
547 /* Getting the system call number from the register.
548 When dealing with x86 architecture, this information
549 is stored at %eax register. */
550 regcache_cooked_read (regcache, I386_LINUX_ORIG_EAX_REGNUM, buf);
551
552 ret = extract_signed_integer (buf, 4, byte_order);
553
554 return ret;
555}
556
9a7f938f
JK
557/* Wrapper for i386_linux_get_syscall_number_from_regcache to make it
558 compatible with gdbarch get_syscall_number method prototype. */
559
560static LONGEST
561i386_linux_get_syscall_number (struct gdbarch *gdbarch,
562 ptid_t ptid)
563{
564 struct regcache *regcache = get_thread_regcache (ptid);
565
566 return i386_linux_get_syscall_number_from_regcache (regcache);
567}
568
e9f1aad5
MK
569/* The register sets used in GNU/Linux ELF core-dumps are identical to
570 the register sets in `struct user' that are used for a.out
571 core-dumps. These are also used by ptrace(2). The corresponding
572 types are `elf_gregset_t' for the general-purpose registers (with
573 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
574 for the floating-point registers.
575
576 Those types used to be available under the names `gregset_t' and
577 `fpregset_t' too, and GDB used those names in the past. But those
578 names are now used for the register sets used in the `mcontext_t'
579 type, which have a different size and layout. */
580
581/* Mapping between the general-purpose registers in `struct user'
582 format and GDB's register cache layout. */
583
584/* From <sys/reg.h>. */
be0d2954 585int i386_linux_gregset_reg_offset[] =
e9f1aad5
MK
586{
587 6 * 4, /* %eax */
588 1 * 4, /* %ecx */
589 2 * 4, /* %edx */
590 0 * 4, /* %ebx */
591 15 * 4, /* %esp */
592 5 * 4, /* %ebp */
593 3 * 4, /* %esi */
594 4 * 4, /* %edi */
595 12 * 4, /* %eip */
596 14 * 4, /* %eflags */
597 13 * 4, /* %cs */
598 16 * 4, /* %ss */
599 7 * 4, /* %ds */
600 8 * 4, /* %es */
601 9 * 4, /* %fs */
602 10 * 4, /* %gs */
603 -1, -1, -1, -1, -1, -1, -1, -1,
604 -1, -1, -1, -1, -1, -1, -1, -1,
605 -1, -1, -1, -1, -1, -1, -1, -1,
606 -1,
c131fcee 607 -1, -1, -1, -1, -1, -1, -1, -1,
01f9f808
MS
608 -1, -1, -1, -1, /* MPX registers BND0 ... BND3. */
609 -1, -1, /* MPX registers BNDCFGU, BNDSTATUS. */
610 -1, -1, -1, -1, -1, -1, -1, -1, /* k0 ... k7 (AVX512) */
611 -1, -1, -1, -1, -1, -1, -1, -1, /* zmm0 ... zmm7 (AVX512) */
51547df6 612 -1, /* PKRU register */
01f9f808 613 11 * 4, /* "orig_eax" */
e9f1aad5
MK
614};
615
616/* Mapping between the general-purpose registers in `struct
617 sigcontext' format and GDB's register cache layout. */
618
a3386186 619/* From <asm/sigcontext.h>. */
bb489b3c 620static int i386_linux_sc_reg_offset[] =
a3386186
MK
621{
622 11 * 4, /* %eax */
623 10 * 4, /* %ecx */
624 9 * 4, /* %edx */
625 8 * 4, /* %ebx */
626 7 * 4, /* %esp */
627 6 * 4, /* %ebp */
628 5 * 4, /* %esi */
629 4 * 4, /* %edi */
630 14 * 4, /* %eip */
631 16 * 4, /* %eflags */
632 15 * 4, /* %cs */
633 18 * 4, /* %ss */
634 3 * 4, /* %ds */
635 2 * 4, /* %es */
636 1 * 4, /* %fs */
637 0 * 4 /* %gs */
638};
639
c131fcee
L
640/* Get XSAVE extended state xcr0 from core dump. */
641
642uint64_t
6df81a63 643i386_linux_core_read_xcr0 (bfd *abfd)
c131fcee
L
644{
645 asection *xstate = bfd_get_section_by_name (abfd, ".reg-xstate");
646 uint64_t xcr0;
647
648 if (xstate)
649 {
650 size_t size = bfd_section_size (abfd, xstate);
651
652 /* Check extended state size. */
df7e5265
GB
653 if (size < X86_XSTATE_AVX_SIZE)
654 xcr0 = X86_XSTATE_SSE_MASK;
c131fcee
L
655 else
656 {
657 char contents[8];
658
659 if (! bfd_get_section_contents (abfd, xstate, contents,
660 I386_LINUX_XSAVE_XCR0_OFFSET,
661 8))
662 {
1777feb0
MS
663 warning (_("Couldn't read `xcr0' bytes from "
664 "`.reg-xstate' section in core file."));
c131fcee
L
665 return 0;
666 }
667
668 xcr0 = bfd_get_64 (abfd, contents);
669 }
670 }
671 else
f335d1b3 672 xcr0 = 0;
c131fcee
L
673
674 return xcr0;
675}
676
35b4818d 677/* See i386-linux-tdep.h. */
90884b2b 678
35b4818d
YQ
679const struct target_desc *
680i386_linux_read_description (uint64_t xcr0)
90884b2b 681{
ea03d0d3
YQ
682 if (xcr0 == 0)
683 return NULL;
684
685 static struct target_desc *i386_linux_tdescs \
686 [2/*X87*/][2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/] = {};
687 struct target_desc **tdesc;
688
689 tdesc = &i386_linux_tdescs[(xcr0 & X86_XSTATE_X87) ? 1 : 0]
690 [(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
691 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
692 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
693 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
694 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0];
695
696 if (*tdesc == NULL)
22916b07 697 *tdesc = i386_create_target_description (xcr0, true);
f335d1b3 698
ea03d0d3 699 return *tdesc;
35b4818d
YQ
700}
701
702/* Get Linux/x86 target description from core dump. */
703
704static const struct target_desc *
705i386_linux_core_read_description (struct gdbarch *gdbarch,
706 struct target_ops *target,
707 bfd *abfd)
708{
709 /* Linux/i386. */
710 uint64_t xcr0 = i386_linux_core_read_xcr0 (abfd);
711 const struct target_desc *tdesc = i386_linux_read_description (xcr0);
712
713 if (tdesc != NULL)
714 return tdesc;
715
f335d1b3 716 if (bfd_get_section_by_name (abfd, ".reg-xfp") != NULL)
35b4818d 717 return i386_linux_read_description (X86_XSTATE_SSE_MASK);
f335d1b3 718 else
35b4818d 719 return i386_linux_read_description (X86_XSTATE_X87_MASK);
90884b2b
L
720}
721
8f0435f7
AA
722/* Similar to i386_supply_fpregset, but use XSAVE extended state. */
723
724static void
725i386_linux_supply_xstateregset (const struct regset *regset,
726 struct regcache *regcache, int regnum,
727 const void *xstateregs, size_t len)
728{
729 i387_supply_xsave (regcache, regnum, xstateregs);
730}
731
190b495d
WT
732struct type *
733x86_linux_get_siginfo_type (struct gdbarch *gdbarch)
734{
735 return linux_get_siginfo_type_with_fields (gdbarch, LINUX_SIGINFO_FIELD_ADDR_BND);
736}
737
8f0435f7
AA
738/* Similar to i386_collect_fpregset, but use XSAVE extended state. */
739
740static void
741i386_linux_collect_xstateregset (const struct regset *regset,
742 const struct regcache *regcache,
743 int regnum, void *xstateregs, size_t len)
744{
745 i387_collect_xsave (regcache, regnum, xstateregs, 1);
746}
747
748/* Register set definitions. */
749
750static const struct regset i386_linux_xstateregset =
751 {
752 NULL,
753 i386_linux_supply_xstateregset,
754 i386_linux_collect_xstateregset
755 };
756
5aa82d05
AA
757/* Iterate over core file register note sections. */
758
759static void
760i386_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
761 iterate_over_regset_sections_cb *cb,
762 void *cb_data,
763 const struct regcache *regcache)
764{
765 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
766
8f0435f7 767 cb (".reg", 68, &i386_gregset, NULL, cb_data);
5aa82d05
AA
768
769 if (tdep->xcr0 & X86_XSTATE_AVX)
dde9acd6 770 cb (".reg-xstate", X86_XSTATE_SIZE (tdep->xcr0),
8f0435f7 771 &i386_linux_xstateregset, "XSAVE extended state", cb_data);
5aa82d05 772 else if (tdep->xcr0 & X86_XSTATE_SSE)
8f0435f7
AA
773 cb (".reg-xfp", 512, &i386_fpregset, "extended floating-point",
774 cb_data);
5aa82d05 775 else
8f0435f7 776 cb (".reg2", 108, &i386_fpregset, NULL, cb_data);
5aa82d05
AA
777}
778
9a7f938f
JK
779/* Linux kernel shows PC value after the 'int $0x80' instruction even if
780 inferior is still inside the syscall. On next PTRACE_SINGLESTEP it will
781 finish the syscall but PC will not change.
782
783 Some vDSOs contain 'int $0x80; ret' and during stepping out of the syscall
784 i386_displaced_step_fixup would keep PC at the displaced pad location.
785 As PC is pointing to the 'ret' instruction before the step
786 i386_displaced_step_fixup would expect inferior has just executed that 'ret'
787 and PC should not be adjusted. In reality it finished syscall instead and
788 PC should get relocated back to its vDSO address. Hide the 'ret'
789 instruction by 'nop' so that i386_displaced_step_fixup is not confused.
790
791 It is not fully correct as the bytes in struct displaced_step_closure will
792 not match the inferior code. But we would need some new flag in
793 displaced_step_closure otherwise to keep the state that syscall is finishing
794 for the later i386_displaced_step_fixup execution as the syscall execution
795 is already no longer detectable there. The new flag field would mean
796 i386-linux-tdep.c needs to wrap all the displacement methods of i386-tdep.c
797 which does not seem worth it. The same effect is achieved by patching that
798 'nop' instruction there instead. */
799
693be288 800static struct displaced_step_closure *
9a7f938f
JK
801i386_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
802 CORE_ADDR from, CORE_ADDR to,
803 struct regcache *regs)
804{
cfba9872
SM
805 displaced_step_closure *closure_
806 = i386_displaced_step_copy_insn (gdbarch, from, to, regs);
9a7f938f
JK
807
808 if (i386_linux_get_syscall_number_from_regcache (regs) != -1)
809 {
c2508e90 810 /* The closure returned by i386_displaced_step_copy_insn is simply a
cfba9872
SM
811 buffer with a copy of the instruction. */
812 i386_displaced_step_closure *closure
813 = (i386_displaced_step_closure *) closure_;
9a7f938f
JK
814
815 /* Fake nop. */
cfba9872 816 closure->buf[0] = 0x90;
9a7f938f
JK
817 }
818
cfba9872 819 return closure_;
9a7f938f
JK
820}
821
8201327c
MK
822static void
823i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
824{
825 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
90884b2b 826 const struct target_desc *tdesc = info.target_desc;
0dba2a6c 827 struct tdesc_arch_data *tdesc_data = info.tdesc_data;
90884b2b
L
828 const struct tdesc_feature *feature;
829 int valid_p;
830
831 gdb_assert (tdesc_data);
8201327c 832
a5ee0f0c
PA
833 linux_init_abi (info, gdbarch);
834
8201327c
MK
835 /* GNU/Linux uses ELF. */
836 i386_elf_init_abi (info, gdbarch);
837
90884b2b
L
838 /* Reserve a number for orig_eax. */
839 set_gdbarch_num_regs (gdbarch, I386_LINUX_NUM_REGS);
840
841 if (! tdesc_has_registers (tdesc))
35b4818d 842 tdesc = i386_linux_read_description (X86_XSTATE_SSE_MASK);
90884b2b
L
843 tdep->tdesc = tdesc;
844
845 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.linux");
846 if (feature == NULL)
847 return;
8201327c 848
90884b2b
L
849 valid_p = tdesc_numbered_register (feature, tdesc_data,
850 I386_LINUX_ORIG_EAX_REGNUM,
851 "orig_eax");
852 if (!valid_p)
853 return;
854
855 /* Add the %orig_eax register used for syscall restarting. */
8201327c 856 set_gdbarch_write_pc (gdbarch, i386_linux_write_pc);
90884b2b
L
857
858 tdep->register_reggroup_p = i386_linux_register_reggroup_p;
8201327c 859
e9f1aad5
MK
860 tdep->gregset_reg_offset = i386_linux_gregset_reg_offset;
861 tdep->gregset_num_regs = ARRAY_SIZE (i386_linux_gregset_reg_offset);
862 tdep->sizeof_gregset = 17 * 4;
863
8201327c
MK
864 tdep->jb_pc_offset = 20; /* From <bits/setjmp.h>. */
865
911bc6ee 866 tdep->sigtramp_p = i386_linux_sigtramp_p;
b7d15bf7 867 tdep->sigcontext_addr = i386_linux_sigcontext_addr;
a3386186 868 tdep->sc_reg_offset = i386_linux_sc_reg_offset;
bb489b3c 869 tdep->sc_num_regs = ARRAY_SIZE (i386_linux_sc_reg_offset);
8201327c 870
c131fcee
L
871 tdep->xsave_xcr0_offset = I386_LINUX_XSAVE_XCR0_OFFSET;
872
a6b808b4 873 set_gdbarch_process_record (gdbarch, i386_process_record);
8a2e0e28 874 set_gdbarch_process_record_signal (gdbarch, i386_linux_record_signal);
a6b808b4 875
77fcef51 876 /* Initialize the i386_linux_record_tdep. */
5e31abdf
HZ
877 /* These values are the size of the type that will be used in a system
878 call. They are obtained from Linux Kernel source. */
2c543fc4
HZ
879 i386_linux_record_tdep.size_pointer
880 = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
5e31abdf
HZ
881 i386_linux_record_tdep.size__old_kernel_stat = 32;
882 i386_linux_record_tdep.size_tms = 16;
883 i386_linux_record_tdep.size_loff_t = 8;
884 i386_linux_record_tdep.size_flock = 16;
885 i386_linux_record_tdep.size_oldold_utsname = 45;
886 i386_linux_record_tdep.size_ustat = 20;
7571f7f2
MK
887 i386_linux_record_tdep.size_old_sigaction = 16;
888 i386_linux_record_tdep.size_old_sigset_t = 4;
5e31abdf
HZ
889 i386_linux_record_tdep.size_rlimit = 8;
890 i386_linux_record_tdep.size_rusage = 72;
891 i386_linux_record_tdep.size_timeval = 8;
892 i386_linux_record_tdep.size_timezone = 8;
893 i386_linux_record_tdep.size_old_gid_t = 2;
894 i386_linux_record_tdep.size_old_uid_t = 2;
895 i386_linux_record_tdep.size_fd_set = 128;
72aded86 896 i386_linux_record_tdep.size_old_dirent = 268;
5e31abdf
HZ
897 i386_linux_record_tdep.size_statfs = 64;
898 i386_linux_record_tdep.size_statfs64 = 84;
899 i386_linux_record_tdep.size_sockaddr = 16;
2c543fc4
HZ
900 i386_linux_record_tdep.size_int
901 = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
902 i386_linux_record_tdep.size_long
903 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
904 i386_linux_record_tdep.size_ulong
905 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
5e31abdf
HZ
906 i386_linux_record_tdep.size_msghdr = 28;
907 i386_linux_record_tdep.size_itimerval = 16;
908 i386_linux_record_tdep.size_stat = 88;
909 i386_linux_record_tdep.size_old_utsname = 325;
910 i386_linux_record_tdep.size_sysinfo = 64;
911 i386_linux_record_tdep.size_msqid_ds = 88;
912 i386_linux_record_tdep.size_shmid_ds = 84;
913 i386_linux_record_tdep.size_new_utsname = 390;
914 i386_linux_record_tdep.size_timex = 128;
915 i386_linux_record_tdep.size_mem_dqinfo = 24;
916 i386_linux_record_tdep.size_if_dqblk = 68;
917 i386_linux_record_tdep.size_fs_quota_stat = 68;
918 i386_linux_record_tdep.size_timespec = 8;
919 i386_linux_record_tdep.size_pollfd = 8;
920 i386_linux_record_tdep.size_NFS_FHSIZE = 32;
921 i386_linux_record_tdep.size_knfsd_fh = 132;
922 i386_linux_record_tdep.size_TASK_COMM_LEN = 16;
7571f7f2 923 i386_linux_record_tdep.size_sigaction = 20;
5e31abdf
HZ
924 i386_linux_record_tdep.size_sigset_t = 8;
925 i386_linux_record_tdep.size_siginfo_t = 128;
926 i386_linux_record_tdep.size_cap_user_data_t = 12;
927 i386_linux_record_tdep.size_stack_t = 12;
928 i386_linux_record_tdep.size_off_t = i386_linux_record_tdep.size_long;
929 i386_linux_record_tdep.size_stat64 = 96;
d625f9a9
MK
930 i386_linux_record_tdep.size_gid_t = 4;
931 i386_linux_record_tdep.size_uid_t = 4;
5e31abdf
HZ
932 i386_linux_record_tdep.size_PAGE_SIZE = 4096;
933 i386_linux_record_tdep.size_flock64 = 24;
934 i386_linux_record_tdep.size_user_desc = 16;
935 i386_linux_record_tdep.size_io_event = 32;
936 i386_linux_record_tdep.size_iocb = 64;
937 i386_linux_record_tdep.size_epoll_event = 12;
2c543fc4
HZ
938 i386_linux_record_tdep.size_itimerspec
939 = i386_linux_record_tdep.size_timespec * 2;
5e31abdf 940 i386_linux_record_tdep.size_mq_attr = 32;
5e31abdf
HZ
941 i386_linux_record_tdep.size_termios = 36;
942 i386_linux_record_tdep.size_termios2 = 44;
943 i386_linux_record_tdep.size_pid_t = 4;
944 i386_linux_record_tdep.size_winsize = 8;
945 i386_linux_record_tdep.size_serial_struct = 60;
946 i386_linux_record_tdep.size_serial_icounter_struct = 80;
947 i386_linux_record_tdep.size_hayes_esp_config = 12;
2c543fc4
HZ
948 i386_linux_record_tdep.size_size_t = 4;
949 i386_linux_record_tdep.size_iovec = 8;
b80d067f 950 i386_linux_record_tdep.size_time_t = 4;
5e31abdf
HZ
951
952 /* These values are the second argument of system call "sys_ioctl".
953 They are obtained from Linux Kernel source. */
954 i386_linux_record_tdep.ioctl_TCGETS = 0x5401;
955 i386_linux_record_tdep.ioctl_TCSETS = 0x5402;
956 i386_linux_record_tdep.ioctl_TCSETSW = 0x5403;
957 i386_linux_record_tdep.ioctl_TCSETSF = 0x5404;
958 i386_linux_record_tdep.ioctl_TCGETA = 0x5405;
959 i386_linux_record_tdep.ioctl_TCSETA = 0x5406;
960 i386_linux_record_tdep.ioctl_TCSETAW = 0x5407;
961 i386_linux_record_tdep.ioctl_TCSETAF = 0x5408;
962 i386_linux_record_tdep.ioctl_TCSBRK = 0x5409;
963 i386_linux_record_tdep.ioctl_TCXONC = 0x540A;
964 i386_linux_record_tdep.ioctl_TCFLSH = 0x540B;
965 i386_linux_record_tdep.ioctl_TIOCEXCL = 0x540C;
966 i386_linux_record_tdep.ioctl_TIOCNXCL = 0x540D;
967 i386_linux_record_tdep.ioctl_TIOCSCTTY = 0x540E;
968 i386_linux_record_tdep.ioctl_TIOCGPGRP = 0x540F;
969 i386_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
970 i386_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
971 i386_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
972 i386_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
973 i386_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
974 i386_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
975 i386_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
976 i386_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
977 i386_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
978 i386_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
979 i386_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541A;
980 i386_linux_record_tdep.ioctl_FIONREAD = 0x541B;
981 i386_linux_record_tdep.ioctl_TIOCINQ = i386_linux_record_tdep.ioctl_FIONREAD;
982 i386_linux_record_tdep.ioctl_TIOCLINUX = 0x541C;
983 i386_linux_record_tdep.ioctl_TIOCCONS = 0x541D;
984 i386_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541E;
985 i386_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541F;
986 i386_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
987 i386_linux_record_tdep.ioctl_FIONBIO = 0x5421;
988 i386_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
989 i386_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
990 i386_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
991 i386_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
992 i386_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
993 i386_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
994 i386_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
995 i386_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
996 i386_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
997 i386_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
998 i386_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
999 i386_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
1000 i386_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
1001 i386_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
1002 i386_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
1003 i386_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
1004 i386_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
1005 i386_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
1006 i386_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
1007 i386_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
1008 i386_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
1009 i386_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
1010 i386_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
1011 i386_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
1012 i386_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545A;
1013 i386_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545B;
1014 i386_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545C;
1015 i386_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545D;
1016 i386_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545E;
1017 i386_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545F;
1018 i386_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;
1019
1020 /* These values are the second argument of system call "sys_fcntl"
1021 and "sys_fcntl64". They are obtained from Linux Kernel source. */
1022 i386_linux_record_tdep.fcntl_F_GETLK = 5;
1023 i386_linux_record_tdep.fcntl_F_GETLK64 = 12;
1024 i386_linux_record_tdep.fcntl_F_SETLK64 = 13;
1025 i386_linux_record_tdep.fcntl_F_SETLKW64 = 14;
50ef67b3 1026
77fcef51
HZ
1027 i386_linux_record_tdep.arg1 = I386_EBX_REGNUM;
1028 i386_linux_record_tdep.arg2 = I386_ECX_REGNUM;
1029 i386_linux_record_tdep.arg3 = I386_EDX_REGNUM;
1030 i386_linux_record_tdep.arg4 = I386_ESI_REGNUM;
1031 i386_linux_record_tdep.arg5 = I386_EDI_REGNUM;
2c543fc4 1032 i386_linux_record_tdep.arg6 = I386_EBP_REGNUM;
77fcef51 1033
ffdf6de5
JK
1034 tdep->i386_intx80_record = i386_linux_intx80_sysenter_syscall_record;
1035 tdep->i386_sysenter_record = i386_linux_intx80_sysenter_syscall_record;
1036 tdep->i386_syscall_record = i386_linux_intx80_sysenter_syscall_record;
77fcef51 1037
203c3895 1038 /* N_FUN symbols in shared libaries have 0 for their values and need
1777feb0 1039 to be relocated. */
203c3895
UW
1040 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
1041
871fbe6a 1042 /* GNU/Linux uses SVR4-style shared libraries. */
982e9687 1043 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
871fbe6a
MK
1044 set_solib_svr4_fetch_link_map_offsets
1045 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1046
1047 /* GNU/Linux uses the dynamic linker included in the GNU C Library. */
bb41a796 1048 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
12b8a2cb
DJ
1049
1050 dwarf2_frame_set_signal_frame_p (gdbarch, i386_linux_dwarf_signal_frame_p);
b2756930
KB
1051
1052 /* Enable TLS support. */
1053 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1054 svr4_fetch_objfile_link_map);
237fc4c9 1055
5aa82d05
AA
1056 /* Core file support. */
1057 set_gdbarch_iterate_over_regset_sections
1058 (gdbarch, i386_linux_iterate_over_regset_sections);
90884b2b
L
1059 set_gdbarch_core_read_description (gdbarch,
1060 i386_linux_core_read_description);
1061
237fc4c9
PA
1062 /* Displaced stepping. */
1063 set_gdbarch_displaced_step_copy_insn (gdbarch,
9a7f938f 1064 i386_linux_displaced_step_copy_insn);
237fc4c9 1065 set_gdbarch_displaced_step_fixup (gdbarch, i386_displaced_step_fixup);
237fc4c9 1066 set_gdbarch_displaced_step_location (gdbarch,
906d60cf 1067 linux_displaced_step_location);
4aa995e1 1068
a96d9b2e 1069 /* Functions for 'catch syscall'. */
458c8db8 1070 set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_I386);
a96d9b2e
SDJ
1071 set_gdbarch_get_syscall_number (gdbarch,
1072 i386_linux_get_syscall_number);
190b495d
WT
1073
1074 set_gdbarch_get_siginfo_type (gdbarch, x86_linux_get_siginfo_type);
012b3a21
WT
1075 set_gdbarch_handle_segmentation_fault (gdbarch,
1076 i386_linux_handle_segmentation_fault);
8201327c
MK
1077}
1078
8201327c
MK
1079void
1080_initialize_i386_linux_tdep (void)
1081{
05816f70 1082 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_LINUX,
8201327c 1083 i386_linux_init_abi);
27d41eac
YQ
1084
1085#if GDB_SELF_TEST
1086 struct
1087 {
1088 const char *xml;
1089 uint64_t mask;
1090 } xml_masks[] = {
1091 { "i386/i386-linux.xml", X86_XSTATE_SSE_MASK },
1092 { "i386/i386-mmx-linux.xml", X86_XSTATE_X87_MASK },
1093 { "i386/i386-avx-linux.xml", X86_XSTATE_AVX_MASK },
1094 { "i386/i386-mpx-linux.xml", X86_XSTATE_MPX_MASK },
1095 { "i386/i386-avx-mpx-linux.xml", X86_XSTATE_AVX_MPX_MASK },
1096 { "i386/i386-avx-avx512-linux.xml", X86_XSTATE_AVX_AVX512_MASK },
1097 { "i386/i386-avx-mpx-avx512-pku-linux.xml",
1098 X86_XSTATE_AVX_MPX_AVX512_PKU_MASK },
1099 };
1100
1101 for (auto &a : xml_masks)
1102 {
1103 auto tdesc = i386_linux_read_description (a.mask);
1104
1105 selftests::record_xml_tdesc (a.xml, tdesc);
1106 }
1107#endif /* GDB_SELF_TEST */
8201327c 1108}