]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/i386-linux-tdep.c
Rename target descriptions to reflect actual content of description.
[thirdparty/binutils-gdb.git] / gdb / i386-linux-tdep.c
CommitLineData
871fbe6a 1/* Target-dependent code for GNU/Linux i386.
ca557f44 2
61baf725 3 Copyright (C) 2000-2017 Free Software Foundation, Inc.
e7ee86a9
JB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
e7ee86a9
JB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
e7ee86a9
JB
19
20#include "defs.h"
21#include "gdbcore.h"
22#include "frame.h"
23#include "value.h"
4e052eda 24#include "regcache.h"
c131fcee 25#include "regset.h"
6441c4a0 26#include "inferior.h"
0670c0aa 27#include "osabi.h"
38c968cf 28#include "reggroups.h"
5cb2fe25 29#include "dwarf2-frame.h"
8201327c
MK
30#include "i386-tdep.h"
31#include "i386-linux-tdep.h"
4aa995e1 32#include "linux-tdep.h"
012b3a21 33#include "utils.h"
0670c0aa 34#include "glibc-tdep.h"
871fbe6a 35#include "solib-svr4.h"
982e9687 36#include "symtab.h"
237fc4c9 37#include "arch-utils.h"
a96d9b2e
SDJ
38#include "xml-syscall.h"
39
c131fcee 40#include "i387-tdep.h"
df7e5265 41#include "x86-xstate.h"
c131fcee 42
a96d9b2e
SDJ
43/* The syscall's XML filename for i386. */
44#define XML_SYSCALL_FILENAME_I386 "syscalls/i386-linux.xml"
17ea7499 45
d02ed0bb 46#include "record-full.h"
77fcef51 47#include "linux-record.h"
90884b2b 48#include "features/i386/i386-linux.c"
3a13a53b 49#include "features/i386/i386-mmx-linux.c"
1dbcd68c 50#include "features/i386/i386-mpx-linux.c"
2b863f51 51#include "features/i386/i386-avx-mpx-linux.c"
c131fcee 52#include "features/i386/i386-avx-linux.c"
22049425 53#include "features/i386/i386-avx-mpx-avx512-linux.c"
90884b2b 54
38c968cf
AC
55/* Return non-zero, when the register is in the corresponding register
56 group. Put the LINUX_ORIG_EAX register in the system group. */
57static int
58i386_linux_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
59 struct reggroup *group)
60{
61 if (regnum == I386_LINUX_ORIG_EAX_REGNUM)
62 return (group == system_reggroup
63 || group == save_reggroup
64 || group == restore_reggroup);
65 return i386_register_reggroup_p (gdbarch, regnum, group);
66}
67
e7ee86a9
JB
68\f
69/* Recognizing signal handler frames. */
70
ca557f44 71/* GNU/Linux has two flavors of signals. Normal signal handlers, and
e7ee86a9
JB
72 "realtime" (RT) signals. The RT signals can provide additional
73 information to the signal handler if the SA_SIGINFO flag is set
74 when establishing a signal handler using `sigaction'. It is not
ca557f44
AC
75 unlikely that future versions of GNU/Linux will support SA_SIGINFO
76 for normal signals too. */
e7ee86a9
JB
77
78/* When the i386 Linux kernel calls a signal handler and the
79 SA_RESTORER flag isn't set, the return address points to a bit of
80 code on the stack. This function returns whether the PC appears to
81 be within this bit of code.
82
83 The instruction sequence for normal signals is
84 pop %eax
acd5c798 85 mov $0x77, %eax
e7ee86a9
JB
86 int $0x80
87 or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
88
89 Checking for the code sequence should be somewhat reliable, because
90 the effect is to call the system call sigreturn. This is unlikely
911bc6ee 91 to occur anywhere other than in a signal trampoline.
e7ee86a9
JB
92
93 It kind of sucks that we have to read memory from the process in
94 order to identify a signal trampoline, but there doesn't seem to be
911bc6ee
MK
95 any other way. Therefore we only do the memory reads if no
96 function name could be identified, which should be the case since
97 the code is on the stack.
e7ee86a9
JB
98
99 Detection of signal trampolines for handlers that set the
100 SA_RESTORER flag is in general not possible. Unfortunately this is
101 what the GNU C Library has been doing for quite some time now.
102 However, as of version 2.1.2, the GNU C Library uses signal
103 trampolines (named __restore and __restore_rt) that are identical
104 to the ones used by the kernel. Therefore, these trampolines are
105 supported too. */
106
acd5c798
MK
107#define LINUX_SIGTRAMP_INSN0 0x58 /* pop %eax */
108#define LINUX_SIGTRAMP_OFFSET0 0
109#define LINUX_SIGTRAMP_INSN1 0xb8 /* mov $NNNN, %eax */
110#define LINUX_SIGTRAMP_OFFSET1 1
111#define LINUX_SIGTRAMP_INSN2 0xcd /* int */
112#define LINUX_SIGTRAMP_OFFSET2 6
e7ee86a9 113
4252dc94 114static const gdb_byte linux_sigtramp_code[] =
e7ee86a9
JB
115{
116 LINUX_SIGTRAMP_INSN0, /* pop %eax */
acd5c798 117 LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00, /* mov $0x77, %eax */
e7ee86a9
JB
118 LINUX_SIGTRAMP_INSN2, 0x80 /* int $0x80 */
119};
120
121#define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
122
10458914
DJ
123/* If THIS_FRAME is a sigtramp routine, return the address of the
124 start of the routine. Otherwise, return 0. */
e7ee86a9
JB
125
126static CORE_ADDR
10458914 127i386_linux_sigtramp_start (struct frame_info *this_frame)
e7ee86a9 128{
10458914 129 CORE_ADDR pc = get_frame_pc (this_frame);
4252dc94 130 gdb_byte buf[LINUX_SIGTRAMP_LEN];
e7ee86a9
JB
131
132 /* We only recognize a signal trampoline if PC is at the start of
133 one of the three instructions. We optimize for finding the PC at
134 the start, as will be the case when the trampoline is not the
135 first frame on the stack. We assume that in the case where the
136 PC is not at the start of the instruction sequence, there will be
137 a few trailing readable bytes on the stack. */
138
10458914 139 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_SIGTRAMP_LEN))
e7ee86a9
JB
140 return 0;
141
142 if (buf[0] != LINUX_SIGTRAMP_INSN0)
143 {
144 int adjust;
145
146 switch (buf[0])
147 {
148 case LINUX_SIGTRAMP_INSN1:
149 adjust = LINUX_SIGTRAMP_OFFSET1;
150 break;
151 case LINUX_SIGTRAMP_INSN2:
152 adjust = LINUX_SIGTRAMP_OFFSET2;
153 break;
154 default:
155 return 0;
156 }
157
158 pc -= adjust;
159
10458914 160 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_SIGTRAMP_LEN))
e7ee86a9
JB
161 return 0;
162 }
163
164 if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
165 return 0;
166
167 return pc;
168}
169
170/* This function does the same for RT signals. Here the instruction
171 sequence is
acd5c798 172 mov $0xad, %eax
e7ee86a9
JB
173 int $0x80
174 or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
175
176 The effect is to call the system call rt_sigreturn. */
177
acd5c798
MK
178#define LINUX_RT_SIGTRAMP_INSN0 0xb8 /* mov $NNNN, %eax */
179#define LINUX_RT_SIGTRAMP_OFFSET0 0
180#define LINUX_RT_SIGTRAMP_INSN1 0xcd /* int */
181#define LINUX_RT_SIGTRAMP_OFFSET1 5
e7ee86a9 182
4252dc94 183static const gdb_byte linux_rt_sigtramp_code[] =
e7ee86a9 184{
acd5c798 185 LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00, /* mov $0xad, %eax */
e7ee86a9
JB
186 LINUX_RT_SIGTRAMP_INSN1, 0x80 /* int $0x80 */
187};
188
189#define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
190
10458914
DJ
191/* If THIS_FRAME is an RT sigtramp routine, return the address of the
192 start of the routine. Otherwise, return 0. */
e7ee86a9
JB
193
194static CORE_ADDR
10458914 195i386_linux_rt_sigtramp_start (struct frame_info *this_frame)
e7ee86a9 196{
10458914 197 CORE_ADDR pc = get_frame_pc (this_frame);
4252dc94 198 gdb_byte buf[LINUX_RT_SIGTRAMP_LEN];
e7ee86a9
JB
199
200 /* We only recognize a signal trampoline if PC is at the start of
201 one of the two instructions. We optimize for finding the PC at
202 the start, as will be the case when the trampoline is not the
203 first frame on the stack. We assume that in the case where the
204 PC is not at the start of the instruction sequence, there will be
205 a few trailing readable bytes on the stack. */
206
10458914 207 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_RT_SIGTRAMP_LEN))
e7ee86a9
JB
208 return 0;
209
210 if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
211 {
212 if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
213 return 0;
214
215 pc -= LINUX_RT_SIGTRAMP_OFFSET1;
216
10458914 217 if (!safe_frame_unwind_memory (this_frame, pc, buf,
8e6bed05 218 LINUX_RT_SIGTRAMP_LEN))
e7ee86a9
JB
219 return 0;
220 }
221
222 if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
223 return 0;
224
225 return pc;
226}
227
10458914
DJ
228/* Return whether THIS_FRAME corresponds to a GNU/Linux sigtramp
229 routine. */
e7ee86a9 230
8201327c 231static int
10458914 232i386_linux_sigtramp_p (struct frame_info *this_frame)
e7ee86a9 233{
10458914 234 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 235 const char *name;
911bc6ee
MK
236
237 find_pc_partial_function (pc, &name, NULL, NULL);
238
ef17e74b
DJ
239 /* If we have NAME, we can optimize the search. The trampolines are
240 named __restore and __restore_rt. However, they aren't dynamically
241 exported from the shared C library, so the trampoline may appear to
242 be part of the preceding function. This should always be sigaction,
243 __sigaction, or __libc_sigaction (all aliases to the same function). */
244 if (name == NULL || strstr (name, "sigaction") != NULL)
10458914
DJ
245 return (i386_linux_sigtramp_start (this_frame) != 0
246 || i386_linux_rt_sigtramp_start (this_frame) != 0);
ef17e74b
DJ
247
248 return (strcmp ("__restore", name) == 0
249 || strcmp ("__restore_rt", name) == 0);
e7ee86a9
JB
250}
251
4a4e5149
DJ
252/* Return one if the PC of THIS_FRAME is in a signal trampoline which
253 may have DWARF-2 CFI. */
12b8a2cb
DJ
254
255static int
256i386_linux_dwarf_signal_frame_p (struct gdbarch *gdbarch,
4a4e5149 257 struct frame_info *this_frame)
12b8a2cb 258{
4a4e5149 259 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 260 const char *name;
12b8a2cb
DJ
261
262 find_pc_partial_function (pc, &name, NULL, NULL);
263
264 /* If a vsyscall DSO is in use, the signal trampolines may have these
265 names. */
266 if (name && (strcmp (name, "__kernel_sigreturn") == 0
267 || strcmp (name, "__kernel_rt_sigreturn") == 0))
268 return 1;
269
270 return 0;
271}
272
acd5c798
MK
273/* Offset to struct sigcontext in ucontext, from <asm/ucontext.h>. */
274#define I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET 20
275
10458914
DJ
276/* Assuming THIS_FRAME is a GNU/Linux sigtramp routine, return the
277 address of the associated sigcontext structure. */
e7ee86a9 278
b7d15bf7 279static CORE_ADDR
10458914 280i386_linux_sigcontext_addr (struct frame_info *this_frame)
e7ee86a9 281{
e17a4113
UW
282 struct gdbarch *gdbarch = get_frame_arch (this_frame);
283 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e7ee86a9 284 CORE_ADDR pc;
acd5c798 285 CORE_ADDR sp;
4252dc94 286 gdb_byte buf[4];
acd5c798 287
10458914 288 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 289 sp = extract_unsigned_integer (buf, 4, byte_order);
e7ee86a9 290
10458914 291 pc = i386_linux_sigtramp_start (this_frame);
e7ee86a9
JB
292 if (pc)
293 {
acd5c798
MK
294 /* The sigcontext structure lives on the stack, right after
295 the signum argument. We determine the address of the
296 sigcontext structure by looking at the frame's stack
297 pointer. Keep in mind that the first instruction of the
298 sigtramp code is "pop %eax". If the PC is after this
299 instruction, adjust the returned value accordingly. */
10458914 300 if (pc == get_frame_pc (this_frame))
e7ee86a9
JB
301 return sp + 4;
302 return sp;
303 }
304
10458914 305 pc = i386_linux_rt_sigtramp_start (this_frame);
e7ee86a9
JB
306 if (pc)
307 {
acd5c798
MK
308 CORE_ADDR ucontext_addr;
309
310 /* The sigcontext structure is part of the user context. A
311 pointer to the user context is passed as the third argument
312 to the signal handler. */
313 read_memory (sp + 8, buf, 4);
e17a4113 314 ucontext_addr = extract_unsigned_integer (buf, 4, byte_order);
acd5c798 315 return ucontext_addr + I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET;
e7ee86a9
JB
316 }
317
8a3fe4f8 318 error (_("Couldn't recognize signal trampoline."));
e7ee86a9
JB
319 return 0;
320}
321
6441c4a0
MK
322/* Set the program counter for process PTID to PC. */
323
8201327c 324static void
61a1198a 325i386_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
6441c4a0 326{
61a1198a 327 regcache_cooked_write_unsigned (regcache, I386_EIP_REGNUM, pc);
6441c4a0
MK
328
329 /* We must be careful with modifying the program counter. If we
330 just interrupted a system call, the kernel might try to restart
331 it when we resume the inferior. On restarting the system call,
332 the kernel will try backing up the program counter even though it
333 no longer points at the system call. This typically results in a
334 SIGSEGV or SIGILL. We can prevent this by writing `-1' in the
335 "orig_eax" pseudo-register.
336
337 Note that "orig_eax" is saved when setting up a dummy call frame.
338 This means that it is properly restored when that frame is
339 popped, and that the interrupted system call will be restarted
340 when we resume the inferior on return from a function call from
341 within GDB. In all other cases the system call will not be
342 restarted. */
61a1198a 343 regcache_cooked_write_unsigned (regcache, I386_LINUX_ORIG_EAX_REGNUM, -1);
6441c4a0 344}
77fcef51 345
8a2e0e28
HZ
346/* Record all registers but IP register for process-record. */
347
348static int
349i386_all_but_ip_registers_record (struct regcache *regcache)
350{
25ea693b 351 if (record_full_arch_list_add_reg (regcache, I386_EAX_REGNUM))
8a2e0e28 352 return -1;
25ea693b 353 if (record_full_arch_list_add_reg (regcache, I386_ECX_REGNUM))
8a2e0e28 354 return -1;
25ea693b 355 if (record_full_arch_list_add_reg (regcache, I386_EDX_REGNUM))
8a2e0e28 356 return -1;
25ea693b 357 if (record_full_arch_list_add_reg (regcache, I386_EBX_REGNUM))
8a2e0e28 358 return -1;
25ea693b 359 if (record_full_arch_list_add_reg (regcache, I386_ESP_REGNUM))
8a2e0e28 360 return -1;
25ea693b 361 if (record_full_arch_list_add_reg (regcache, I386_EBP_REGNUM))
8a2e0e28 362 return -1;
25ea693b 363 if (record_full_arch_list_add_reg (regcache, I386_ESI_REGNUM))
8a2e0e28 364 return -1;
25ea693b 365 if (record_full_arch_list_add_reg (regcache, I386_EDI_REGNUM))
8a2e0e28 366 return -1;
25ea693b 367 if (record_full_arch_list_add_reg (regcache, I386_EFLAGS_REGNUM))
8a2e0e28
HZ
368 return -1;
369
370 return 0;
371}
13b6d1d4
MS
372
373/* i386_canonicalize_syscall maps from the native i386 Linux set
374 of syscall ids into a canonical set of syscall ids used by
375 process record (a mostly trivial mapping, since the canonical
376 set was originally taken from the i386 set). */
377
378static enum gdb_syscall
379i386_canonicalize_syscall (int syscall)
380{
381 enum { i386_syscall_max = 499 };
382
383 if (syscall <= i386_syscall_max)
aead7601 384 return (enum gdb_syscall) syscall;
13b6d1d4 385 else
f486487f 386 return gdb_sys_no_syscall;
13b6d1d4
MS
387}
388
012b3a21
WT
389/* Value of the sigcode in case of a boundary fault. */
390
391#define SIG_CODE_BONDARY_FAULT 3
392
393/* i386 GNU/Linux implementation of the handle_segmentation_fault
394 gdbarch hook. Displays information related to MPX bound
395 violations. */
396void
397i386_linux_handle_segmentation_fault (struct gdbarch *gdbarch,
398 struct ui_out *uiout)
399{
166616ce
SM
400 /* -Wmaybe-uninitialized */
401 CORE_ADDR lower_bound = 0, upper_bound = 0, access = 0;
012b3a21
WT
402 int is_upper;
403 long sig_code = 0;
404
405 if (!i386_mpx_enabled ())
406 return;
407
408 TRY
409 {
410 /* Sigcode evaluates if the actual segfault is a boundary violation. */
411 sig_code = parse_and_eval_long ("$_siginfo.si_code\n");
412
413 lower_bound
414 = parse_and_eval_long ("$_siginfo._sifields._sigfault._addr_bnd._lower");
415 upper_bound
416 = parse_and_eval_long ("$_siginfo._sifields._sigfault._addr_bnd._upper");
417 access
418 = parse_and_eval_long ("$_siginfo._sifields._sigfault.si_addr");
419 }
420 CATCH (exception, RETURN_MASK_ALL)
421 {
422 return;
423 }
424 END_CATCH
425
426 /* If this is not a boundary violation just return. */
427 if (sig_code != SIG_CODE_BONDARY_FAULT)
428 return;
429
430 is_upper = (access > upper_bound ? 1 : 0);
431
112e8700 432 uiout->text ("\n");
012b3a21 433 if (is_upper)
112e8700 434 uiout->field_string ("sigcode-meaning", _("Upper bound violation"));
012b3a21 435 else
112e8700 436 uiout->field_string ("sigcode-meaning", _("Lower bound violation"));
012b3a21 437
112e8700
SM
438 uiout->text (_(" while accessing address "));
439 uiout->field_fmt ("bound-access", "%s", paddress (gdbarch, access));
012b3a21 440
112e8700
SM
441 uiout->text (_("\nBounds: [lower = "));
442 uiout->field_fmt ("lower-bound", "%s", paddress (gdbarch, lower_bound));
012b3a21 443
112e8700
SM
444 uiout->text (_(", upper = "));
445 uiout->field_fmt ("upper-bound", "%s", paddress (gdbarch, upper_bound));
012b3a21 446
112e8700 447 uiout->text (_("]"));
012b3a21
WT
448}
449
77fcef51
HZ
450/* Parse the arguments of current system call instruction and record
451 the values of the registers and memory that will be changed into
452 "record_arch_list". This instruction is "int 0x80" (Linux
453 Kernel2.4) or "sysenter" (Linux Kernel 2.6).
454
455 Return -1 if something wrong. */
456
8a2e0e28
HZ
457static struct linux_record_tdep i386_linux_record_tdep;
458
77fcef51 459static int
ffdf6de5 460i386_linux_intx80_sysenter_syscall_record (struct regcache *regcache)
77fcef51
HZ
461{
462 int ret;
13b6d1d4
MS
463 LONGEST syscall_native;
464 enum gdb_syscall syscall_gdb;
465
466 regcache_raw_read_signed (regcache, I386_EAX_REGNUM, &syscall_native);
77fcef51 467
13b6d1d4 468 syscall_gdb = i386_canonicalize_syscall (syscall_native);
2c543fc4 469
13b6d1d4 470 if (syscall_gdb < 0)
2c543fc4
HZ
471 {
472 printf_unfiltered (_("Process record and replay target doesn't "
13b6d1d4
MS
473 "support syscall number %s\n"),
474 plongest (syscall_native));
2c543fc4
HZ
475 return -1;
476 }
77fcef51 477
8a2e0e28
HZ
478 if (syscall_gdb == gdb_sys_sigreturn
479 || syscall_gdb == gdb_sys_rt_sigreturn)
480 {
481 if (i386_all_but_ip_registers_record (regcache))
482 return -1;
483 return 0;
484 }
485
13b6d1d4 486 ret = record_linux_system_call (syscall_gdb, regcache,
77fcef51
HZ
487 &i386_linux_record_tdep);
488 if (ret)
489 return ret;
490
491 /* Record the return value of the system call. */
25ea693b 492 if (record_full_arch_list_add_reg (regcache, I386_EAX_REGNUM))
77fcef51
HZ
493 return -1;
494
495 return 0;
496}
8a2e0e28
HZ
497
498#define I386_LINUX_xstate 270
499#define I386_LINUX_frame_size 732
500
70221824 501static int
8a2e0e28
HZ
502i386_linux_record_signal (struct gdbarch *gdbarch,
503 struct regcache *regcache,
2ea28649 504 enum gdb_signal signal)
8a2e0e28
HZ
505{
506 ULONGEST esp;
507
508 if (i386_all_but_ip_registers_record (regcache))
509 return -1;
510
25ea693b 511 if (record_full_arch_list_add_reg (regcache, I386_EIP_REGNUM))
8a2e0e28
HZ
512 return -1;
513
514 /* Record the change in the stack. */
515 regcache_raw_read_unsigned (regcache, I386_ESP_REGNUM, &esp);
516 /* This is for xstate.
517 sp -= sizeof (struct _fpstate); */
518 esp -= I386_LINUX_xstate;
519 /* This is for frame_size.
520 sp -= sizeof (struct rt_sigframe); */
521 esp -= I386_LINUX_frame_size;
25ea693b
MM
522 if (record_full_arch_list_add_mem (esp,
523 I386_LINUX_xstate + I386_LINUX_frame_size))
8a2e0e28
HZ
524 return -1;
525
25ea693b 526 if (record_full_arch_list_add_end ())
8a2e0e28
HZ
527 return -1;
528
529 return 0;
530}
6441c4a0 531\f
8201327c 532
9a7f938f
JK
533/* Core of the implementation for gdbarch get_syscall_number. Get pending
534 syscall number from REGCACHE. If there is no pending syscall -1 will be
535 returned. Pending syscall means ptrace has stepped into the syscall but
536 another ptrace call will step out. PC is right after the int $0x80
537 / syscall / sysenter instruction in both cases, PC does not change during
538 the second ptrace step. */
539
a96d9b2e 540static LONGEST
9a7f938f 541i386_linux_get_syscall_number_from_regcache (struct regcache *regcache)
a96d9b2e 542{
9a7f938f 543 struct gdbarch *gdbarch = get_regcache_arch (regcache);
a96d9b2e
SDJ
544 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
545 /* The content of a register. */
546 gdb_byte buf[4];
547 /* The result. */
548 LONGEST ret;
549
550 /* Getting the system call number from the register.
551 When dealing with x86 architecture, this information
552 is stored at %eax register. */
553 regcache_cooked_read (regcache, I386_LINUX_ORIG_EAX_REGNUM, buf);
554
555 ret = extract_signed_integer (buf, 4, byte_order);
556
557 return ret;
558}
559
9a7f938f
JK
560/* Wrapper for i386_linux_get_syscall_number_from_regcache to make it
561 compatible with gdbarch get_syscall_number method prototype. */
562
563static LONGEST
564i386_linux_get_syscall_number (struct gdbarch *gdbarch,
565 ptid_t ptid)
566{
567 struct regcache *regcache = get_thread_regcache (ptid);
568
569 return i386_linux_get_syscall_number_from_regcache (regcache);
570}
571
e9f1aad5
MK
572/* The register sets used in GNU/Linux ELF core-dumps are identical to
573 the register sets in `struct user' that are used for a.out
574 core-dumps. These are also used by ptrace(2). The corresponding
575 types are `elf_gregset_t' for the general-purpose registers (with
576 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
577 for the floating-point registers.
578
579 Those types used to be available under the names `gregset_t' and
580 `fpregset_t' too, and GDB used those names in the past. But those
581 names are now used for the register sets used in the `mcontext_t'
582 type, which have a different size and layout. */
583
584/* Mapping between the general-purpose registers in `struct user'
585 format and GDB's register cache layout. */
586
587/* From <sys/reg.h>. */
be0d2954 588int i386_linux_gregset_reg_offset[] =
e9f1aad5
MK
589{
590 6 * 4, /* %eax */
591 1 * 4, /* %ecx */
592 2 * 4, /* %edx */
593 0 * 4, /* %ebx */
594 15 * 4, /* %esp */
595 5 * 4, /* %ebp */
596 3 * 4, /* %esi */
597 4 * 4, /* %edi */
598 12 * 4, /* %eip */
599 14 * 4, /* %eflags */
600 13 * 4, /* %cs */
601 16 * 4, /* %ss */
602 7 * 4, /* %ds */
603 8 * 4, /* %es */
604 9 * 4, /* %fs */
605 10 * 4, /* %gs */
606 -1, -1, -1, -1, -1, -1, -1, -1,
607 -1, -1, -1, -1, -1, -1, -1, -1,
608 -1, -1, -1, -1, -1, -1, -1, -1,
609 -1,
c131fcee 610 -1, -1, -1, -1, -1, -1, -1, -1,
01f9f808
MS
611 -1, -1, -1, -1, /* MPX registers BND0 ... BND3. */
612 -1, -1, /* MPX registers BNDCFGU, BNDSTATUS. */
613 -1, -1, -1, -1, -1, -1, -1, -1, /* k0 ... k7 (AVX512) */
614 -1, -1, -1, -1, -1, -1, -1, -1, /* zmm0 ... zmm7 (AVX512) */
615 11 * 4, /* "orig_eax" */
e9f1aad5
MK
616};
617
618/* Mapping between the general-purpose registers in `struct
619 sigcontext' format and GDB's register cache layout. */
620
a3386186 621/* From <asm/sigcontext.h>. */
bb489b3c 622static int i386_linux_sc_reg_offset[] =
a3386186
MK
623{
624 11 * 4, /* %eax */
625 10 * 4, /* %ecx */
626 9 * 4, /* %edx */
627 8 * 4, /* %ebx */
628 7 * 4, /* %esp */
629 6 * 4, /* %ebp */
630 5 * 4, /* %esi */
631 4 * 4, /* %edi */
632 14 * 4, /* %eip */
633 16 * 4, /* %eflags */
634 15 * 4, /* %cs */
635 18 * 4, /* %ss */
636 3 * 4, /* %ds */
637 2 * 4, /* %es */
638 1 * 4, /* %fs */
639 0 * 4 /* %gs */
640};
641
c131fcee
L
642/* Get XSAVE extended state xcr0 from core dump. */
643
644uint64_t
6df81a63 645i386_linux_core_read_xcr0 (bfd *abfd)
c131fcee
L
646{
647 asection *xstate = bfd_get_section_by_name (abfd, ".reg-xstate");
648 uint64_t xcr0;
649
650 if (xstate)
651 {
652 size_t size = bfd_section_size (abfd, xstate);
653
654 /* Check extended state size. */
df7e5265
GB
655 if (size < X86_XSTATE_AVX_SIZE)
656 xcr0 = X86_XSTATE_SSE_MASK;
c131fcee
L
657 else
658 {
659 char contents[8];
660
661 if (! bfd_get_section_contents (abfd, xstate, contents,
662 I386_LINUX_XSAVE_XCR0_OFFSET,
663 8))
664 {
1777feb0
MS
665 warning (_("Couldn't read `xcr0' bytes from "
666 "`.reg-xstate' section in core file."));
c131fcee
L
667 return 0;
668 }
669
670 xcr0 = bfd_get_64 (abfd, contents);
671 }
672 }
673 else
f335d1b3 674 xcr0 = 0;
c131fcee
L
675
676 return xcr0;
677}
678
90884b2b
L
679/* Get Linux/x86 target description from core dump. */
680
681static const struct target_desc *
682i386_linux_core_read_description (struct gdbarch *gdbarch,
683 struct target_ops *target,
684 bfd *abfd)
685{
90884b2b 686 /* Linux/i386. */
6df81a63 687 uint64_t xcr0 = i386_linux_core_read_xcr0 (abfd);
1dbcd68c 688
df7e5265 689 switch ((xcr0 & X86_XSTATE_ALL_MASK))
f335d1b3 690 {
22049425
MS
691 case X86_XSTATE_AVX_MPX_AVX512_MASK:
692 case X86_XSTATE_AVX_AVX512_MASK:
693 return tdesc_i386_avx_mpx_avx512_linux;
df7e5265 694 case X86_XSTATE_MPX_MASK:
1dbcd68c 695 return tdesc_i386_mpx_linux;
2b863f51
WT
696 case X86_XSTATE_AVX_MPX_MASK:
697 return tdesc_i386_avx_mpx_linux;
df7e5265 698 case X86_XSTATE_AVX_MASK:
f335d1b3 699 return tdesc_i386_avx_linux;
df7e5265 700 case X86_XSTATE_SSE_MASK:
f335d1b3 701 return tdesc_i386_linux;
df7e5265 702 case X86_XSTATE_X87_MASK:
f335d1b3
L
703 return tdesc_i386_mmx_linux;
704 default:
705 break;
706 }
707
708 if (bfd_get_section_by_name (abfd, ".reg-xfp") != NULL)
c131fcee 709 return tdesc_i386_linux;
f335d1b3
L
710 else
711 return tdesc_i386_mmx_linux;
90884b2b
L
712}
713
8f0435f7
AA
714/* Similar to i386_supply_fpregset, but use XSAVE extended state. */
715
716static void
717i386_linux_supply_xstateregset (const struct regset *regset,
718 struct regcache *regcache, int regnum,
719 const void *xstateregs, size_t len)
720{
721 i387_supply_xsave (regcache, regnum, xstateregs);
722}
723
190b495d
WT
724struct type *
725x86_linux_get_siginfo_type (struct gdbarch *gdbarch)
726{
727 return linux_get_siginfo_type_with_fields (gdbarch, LINUX_SIGINFO_FIELD_ADDR_BND);
728}
729
8f0435f7
AA
730/* Similar to i386_collect_fpregset, but use XSAVE extended state. */
731
732static void
733i386_linux_collect_xstateregset (const struct regset *regset,
734 const struct regcache *regcache,
735 int regnum, void *xstateregs, size_t len)
736{
737 i387_collect_xsave (regcache, regnum, xstateregs, 1);
738}
739
740/* Register set definitions. */
741
742static const struct regset i386_linux_xstateregset =
743 {
744 NULL,
745 i386_linux_supply_xstateregset,
746 i386_linux_collect_xstateregset
747 };
748
5aa82d05
AA
749/* Iterate over core file register note sections. */
750
751static void
752i386_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
753 iterate_over_regset_sections_cb *cb,
754 void *cb_data,
755 const struct regcache *regcache)
756{
757 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
758
8f0435f7 759 cb (".reg", 68, &i386_gregset, NULL, cb_data);
5aa82d05
AA
760
761 if (tdep->xcr0 & X86_XSTATE_AVX)
dde9acd6 762 cb (".reg-xstate", X86_XSTATE_SIZE (tdep->xcr0),
8f0435f7 763 &i386_linux_xstateregset, "XSAVE extended state", cb_data);
5aa82d05 764 else if (tdep->xcr0 & X86_XSTATE_SSE)
8f0435f7
AA
765 cb (".reg-xfp", 512, &i386_fpregset, "extended floating-point",
766 cb_data);
5aa82d05 767 else
8f0435f7 768 cb (".reg2", 108, &i386_fpregset, NULL, cb_data);
5aa82d05
AA
769}
770
9a7f938f
JK
771/* Linux kernel shows PC value after the 'int $0x80' instruction even if
772 inferior is still inside the syscall. On next PTRACE_SINGLESTEP it will
773 finish the syscall but PC will not change.
774
775 Some vDSOs contain 'int $0x80; ret' and during stepping out of the syscall
776 i386_displaced_step_fixup would keep PC at the displaced pad location.
777 As PC is pointing to the 'ret' instruction before the step
778 i386_displaced_step_fixup would expect inferior has just executed that 'ret'
779 and PC should not be adjusted. In reality it finished syscall instead and
780 PC should get relocated back to its vDSO address. Hide the 'ret'
781 instruction by 'nop' so that i386_displaced_step_fixup is not confused.
782
783 It is not fully correct as the bytes in struct displaced_step_closure will
784 not match the inferior code. But we would need some new flag in
785 displaced_step_closure otherwise to keep the state that syscall is finishing
786 for the later i386_displaced_step_fixup execution as the syscall execution
787 is already no longer detectable there. The new flag field would mean
788 i386-linux-tdep.c needs to wrap all the displacement methods of i386-tdep.c
789 which does not seem worth it. The same effect is achieved by patching that
790 'nop' instruction there instead. */
791
693be288 792static struct displaced_step_closure *
9a7f938f
JK
793i386_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
794 CORE_ADDR from, CORE_ADDR to,
795 struct regcache *regs)
796{
797 struct displaced_step_closure *closure;
798
799 closure = i386_displaced_step_copy_insn (gdbarch, from, to, regs);
800
801 if (i386_linux_get_syscall_number_from_regcache (regs) != -1)
802 {
803 /* Since we use simple_displaced_step_copy_insn, our closure is a
804 copy of the instruction. */
805 gdb_byte *insn = (gdb_byte *) closure;
806
807 /* Fake nop. */
808 insn[0] = 0x90;
809 }
810
811 return closure;
812}
813
8201327c
MK
814static void
815i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
816{
817 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
90884b2b 818 const struct target_desc *tdesc = info.target_desc;
9a3c8263
SM
819 struct tdesc_arch_data *tdesc_data
820 = (struct tdesc_arch_data *) info.tdep_info;
90884b2b
L
821 const struct tdesc_feature *feature;
822 int valid_p;
823
824 gdb_assert (tdesc_data);
8201327c 825
a5ee0f0c
PA
826 linux_init_abi (info, gdbarch);
827
8201327c
MK
828 /* GNU/Linux uses ELF. */
829 i386_elf_init_abi (info, gdbarch);
830
90884b2b
L
831 /* Reserve a number for orig_eax. */
832 set_gdbarch_num_regs (gdbarch, I386_LINUX_NUM_REGS);
833
834 if (! tdesc_has_registers (tdesc))
835 tdesc = tdesc_i386_linux;
836 tdep->tdesc = tdesc;
837
838 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.linux");
839 if (feature == NULL)
840 return;
8201327c 841
90884b2b
L
842 valid_p = tdesc_numbered_register (feature, tdesc_data,
843 I386_LINUX_ORIG_EAX_REGNUM,
844 "orig_eax");
845 if (!valid_p)
846 return;
847
848 /* Add the %orig_eax register used for syscall restarting. */
8201327c 849 set_gdbarch_write_pc (gdbarch, i386_linux_write_pc);
90884b2b
L
850
851 tdep->register_reggroup_p = i386_linux_register_reggroup_p;
8201327c 852
e9f1aad5
MK
853 tdep->gregset_reg_offset = i386_linux_gregset_reg_offset;
854 tdep->gregset_num_regs = ARRAY_SIZE (i386_linux_gregset_reg_offset);
855 tdep->sizeof_gregset = 17 * 4;
856
8201327c
MK
857 tdep->jb_pc_offset = 20; /* From <bits/setjmp.h>. */
858
911bc6ee 859 tdep->sigtramp_p = i386_linux_sigtramp_p;
b7d15bf7 860 tdep->sigcontext_addr = i386_linux_sigcontext_addr;
a3386186 861 tdep->sc_reg_offset = i386_linux_sc_reg_offset;
bb489b3c 862 tdep->sc_num_regs = ARRAY_SIZE (i386_linux_sc_reg_offset);
8201327c 863
c131fcee
L
864 tdep->xsave_xcr0_offset = I386_LINUX_XSAVE_XCR0_OFFSET;
865
a6b808b4 866 set_gdbarch_process_record (gdbarch, i386_process_record);
8a2e0e28 867 set_gdbarch_process_record_signal (gdbarch, i386_linux_record_signal);
a6b808b4 868
77fcef51 869 /* Initialize the i386_linux_record_tdep. */
5e31abdf
HZ
870 /* These values are the size of the type that will be used in a system
871 call. They are obtained from Linux Kernel source. */
2c543fc4
HZ
872 i386_linux_record_tdep.size_pointer
873 = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
5e31abdf
HZ
874 i386_linux_record_tdep.size__old_kernel_stat = 32;
875 i386_linux_record_tdep.size_tms = 16;
876 i386_linux_record_tdep.size_loff_t = 8;
877 i386_linux_record_tdep.size_flock = 16;
878 i386_linux_record_tdep.size_oldold_utsname = 45;
879 i386_linux_record_tdep.size_ustat = 20;
7571f7f2
MK
880 i386_linux_record_tdep.size_old_sigaction = 16;
881 i386_linux_record_tdep.size_old_sigset_t = 4;
5e31abdf
HZ
882 i386_linux_record_tdep.size_rlimit = 8;
883 i386_linux_record_tdep.size_rusage = 72;
884 i386_linux_record_tdep.size_timeval = 8;
885 i386_linux_record_tdep.size_timezone = 8;
886 i386_linux_record_tdep.size_old_gid_t = 2;
887 i386_linux_record_tdep.size_old_uid_t = 2;
888 i386_linux_record_tdep.size_fd_set = 128;
72aded86 889 i386_linux_record_tdep.size_old_dirent = 268;
5e31abdf
HZ
890 i386_linux_record_tdep.size_statfs = 64;
891 i386_linux_record_tdep.size_statfs64 = 84;
892 i386_linux_record_tdep.size_sockaddr = 16;
2c543fc4
HZ
893 i386_linux_record_tdep.size_int
894 = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
895 i386_linux_record_tdep.size_long
896 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
897 i386_linux_record_tdep.size_ulong
898 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
5e31abdf
HZ
899 i386_linux_record_tdep.size_msghdr = 28;
900 i386_linux_record_tdep.size_itimerval = 16;
901 i386_linux_record_tdep.size_stat = 88;
902 i386_linux_record_tdep.size_old_utsname = 325;
903 i386_linux_record_tdep.size_sysinfo = 64;
904 i386_linux_record_tdep.size_msqid_ds = 88;
905 i386_linux_record_tdep.size_shmid_ds = 84;
906 i386_linux_record_tdep.size_new_utsname = 390;
907 i386_linux_record_tdep.size_timex = 128;
908 i386_linux_record_tdep.size_mem_dqinfo = 24;
909 i386_linux_record_tdep.size_if_dqblk = 68;
910 i386_linux_record_tdep.size_fs_quota_stat = 68;
911 i386_linux_record_tdep.size_timespec = 8;
912 i386_linux_record_tdep.size_pollfd = 8;
913 i386_linux_record_tdep.size_NFS_FHSIZE = 32;
914 i386_linux_record_tdep.size_knfsd_fh = 132;
915 i386_linux_record_tdep.size_TASK_COMM_LEN = 16;
7571f7f2 916 i386_linux_record_tdep.size_sigaction = 20;
5e31abdf
HZ
917 i386_linux_record_tdep.size_sigset_t = 8;
918 i386_linux_record_tdep.size_siginfo_t = 128;
919 i386_linux_record_tdep.size_cap_user_data_t = 12;
920 i386_linux_record_tdep.size_stack_t = 12;
921 i386_linux_record_tdep.size_off_t = i386_linux_record_tdep.size_long;
922 i386_linux_record_tdep.size_stat64 = 96;
d625f9a9
MK
923 i386_linux_record_tdep.size_gid_t = 4;
924 i386_linux_record_tdep.size_uid_t = 4;
5e31abdf
HZ
925 i386_linux_record_tdep.size_PAGE_SIZE = 4096;
926 i386_linux_record_tdep.size_flock64 = 24;
927 i386_linux_record_tdep.size_user_desc = 16;
928 i386_linux_record_tdep.size_io_event = 32;
929 i386_linux_record_tdep.size_iocb = 64;
930 i386_linux_record_tdep.size_epoll_event = 12;
2c543fc4
HZ
931 i386_linux_record_tdep.size_itimerspec
932 = i386_linux_record_tdep.size_timespec * 2;
5e31abdf 933 i386_linux_record_tdep.size_mq_attr = 32;
5e31abdf
HZ
934 i386_linux_record_tdep.size_termios = 36;
935 i386_linux_record_tdep.size_termios2 = 44;
936 i386_linux_record_tdep.size_pid_t = 4;
937 i386_linux_record_tdep.size_winsize = 8;
938 i386_linux_record_tdep.size_serial_struct = 60;
939 i386_linux_record_tdep.size_serial_icounter_struct = 80;
940 i386_linux_record_tdep.size_hayes_esp_config = 12;
2c543fc4
HZ
941 i386_linux_record_tdep.size_size_t = 4;
942 i386_linux_record_tdep.size_iovec = 8;
b80d067f 943 i386_linux_record_tdep.size_time_t = 4;
5e31abdf
HZ
944
945 /* These values are the second argument of system call "sys_ioctl".
946 They are obtained from Linux Kernel source. */
947 i386_linux_record_tdep.ioctl_TCGETS = 0x5401;
948 i386_linux_record_tdep.ioctl_TCSETS = 0x5402;
949 i386_linux_record_tdep.ioctl_TCSETSW = 0x5403;
950 i386_linux_record_tdep.ioctl_TCSETSF = 0x5404;
951 i386_linux_record_tdep.ioctl_TCGETA = 0x5405;
952 i386_linux_record_tdep.ioctl_TCSETA = 0x5406;
953 i386_linux_record_tdep.ioctl_TCSETAW = 0x5407;
954 i386_linux_record_tdep.ioctl_TCSETAF = 0x5408;
955 i386_linux_record_tdep.ioctl_TCSBRK = 0x5409;
956 i386_linux_record_tdep.ioctl_TCXONC = 0x540A;
957 i386_linux_record_tdep.ioctl_TCFLSH = 0x540B;
958 i386_linux_record_tdep.ioctl_TIOCEXCL = 0x540C;
959 i386_linux_record_tdep.ioctl_TIOCNXCL = 0x540D;
960 i386_linux_record_tdep.ioctl_TIOCSCTTY = 0x540E;
961 i386_linux_record_tdep.ioctl_TIOCGPGRP = 0x540F;
962 i386_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
963 i386_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
964 i386_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
965 i386_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
966 i386_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
967 i386_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
968 i386_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
969 i386_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
970 i386_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
971 i386_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
972 i386_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541A;
973 i386_linux_record_tdep.ioctl_FIONREAD = 0x541B;
974 i386_linux_record_tdep.ioctl_TIOCINQ = i386_linux_record_tdep.ioctl_FIONREAD;
975 i386_linux_record_tdep.ioctl_TIOCLINUX = 0x541C;
976 i386_linux_record_tdep.ioctl_TIOCCONS = 0x541D;
977 i386_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541E;
978 i386_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541F;
979 i386_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
980 i386_linux_record_tdep.ioctl_FIONBIO = 0x5421;
981 i386_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
982 i386_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
983 i386_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
984 i386_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
985 i386_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
986 i386_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
987 i386_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
988 i386_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
989 i386_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
990 i386_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
991 i386_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
992 i386_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
993 i386_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
994 i386_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
995 i386_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
996 i386_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
997 i386_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
998 i386_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
999 i386_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
1000 i386_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
1001 i386_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
1002 i386_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
1003 i386_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
1004 i386_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
1005 i386_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545A;
1006 i386_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545B;
1007 i386_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545C;
1008 i386_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545D;
1009 i386_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545E;
1010 i386_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545F;
1011 i386_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;
1012
1013 /* These values are the second argument of system call "sys_fcntl"
1014 and "sys_fcntl64". They are obtained from Linux Kernel source. */
1015 i386_linux_record_tdep.fcntl_F_GETLK = 5;
1016 i386_linux_record_tdep.fcntl_F_GETLK64 = 12;
1017 i386_linux_record_tdep.fcntl_F_SETLK64 = 13;
1018 i386_linux_record_tdep.fcntl_F_SETLKW64 = 14;
50ef67b3 1019
77fcef51
HZ
1020 i386_linux_record_tdep.arg1 = I386_EBX_REGNUM;
1021 i386_linux_record_tdep.arg2 = I386_ECX_REGNUM;
1022 i386_linux_record_tdep.arg3 = I386_EDX_REGNUM;
1023 i386_linux_record_tdep.arg4 = I386_ESI_REGNUM;
1024 i386_linux_record_tdep.arg5 = I386_EDI_REGNUM;
2c543fc4 1025 i386_linux_record_tdep.arg6 = I386_EBP_REGNUM;
77fcef51 1026
ffdf6de5
JK
1027 tdep->i386_intx80_record = i386_linux_intx80_sysenter_syscall_record;
1028 tdep->i386_sysenter_record = i386_linux_intx80_sysenter_syscall_record;
1029 tdep->i386_syscall_record = i386_linux_intx80_sysenter_syscall_record;
77fcef51 1030
203c3895 1031 /* N_FUN symbols in shared libaries have 0 for their values and need
1777feb0 1032 to be relocated. */
203c3895
UW
1033 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
1034
871fbe6a 1035 /* GNU/Linux uses SVR4-style shared libraries. */
982e9687 1036 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
871fbe6a
MK
1037 set_solib_svr4_fetch_link_map_offsets
1038 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1039
1040 /* GNU/Linux uses the dynamic linker included in the GNU C Library. */
bb41a796 1041 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
12b8a2cb
DJ
1042
1043 dwarf2_frame_set_signal_frame_p (gdbarch, i386_linux_dwarf_signal_frame_p);
b2756930
KB
1044
1045 /* Enable TLS support. */
1046 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1047 svr4_fetch_objfile_link_map);
237fc4c9 1048
5aa82d05
AA
1049 /* Core file support. */
1050 set_gdbarch_iterate_over_regset_sections
1051 (gdbarch, i386_linux_iterate_over_regset_sections);
90884b2b
L
1052 set_gdbarch_core_read_description (gdbarch,
1053 i386_linux_core_read_description);
1054
237fc4c9
PA
1055 /* Displaced stepping. */
1056 set_gdbarch_displaced_step_copy_insn (gdbarch,
9a7f938f 1057 i386_linux_displaced_step_copy_insn);
237fc4c9
PA
1058 set_gdbarch_displaced_step_fixup (gdbarch, i386_displaced_step_fixup);
1059 set_gdbarch_displaced_step_free_closure (gdbarch,
1060 simple_displaced_step_free_closure);
1061 set_gdbarch_displaced_step_location (gdbarch,
906d60cf 1062 linux_displaced_step_location);
4aa995e1 1063
a96d9b2e 1064 /* Functions for 'catch syscall'. */
458c8db8 1065 set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_I386);
a96d9b2e
SDJ
1066 set_gdbarch_get_syscall_number (gdbarch,
1067 i386_linux_get_syscall_number);
190b495d
WT
1068
1069 set_gdbarch_get_siginfo_type (gdbarch, x86_linux_get_siginfo_type);
012b3a21
WT
1070 set_gdbarch_handle_segmentation_fault (gdbarch,
1071 i386_linux_handle_segmentation_fault);
8201327c
MK
1072}
1073
1074/* Provide a prototype to silence -Wmissing-prototypes. */
1075extern void _initialize_i386_linux_tdep (void);
1076
1077void
1078_initialize_i386_linux_tdep (void)
1079{
05816f70 1080 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_LINUX,
8201327c 1081 i386_linux_init_abi);
90884b2b 1082
1777feb0 1083 /* Initialize the Linux target description. */
90884b2b 1084 initialize_tdesc_i386_linux ();
3a13a53b 1085 initialize_tdesc_i386_mmx_linux ();
c131fcee 1086 initialize_tdesc_i386_avx_linux ();
1dbcd68c 1087 initialize_tdesc_i386_mpx_linux ();
2b863f51 1088 initialize_tdesc_i386_avx_mpx_linux ();
22049425 1089 initialize_tdesc_i386_avx_mpx_avx512_linux ();
8201327c 1090}