]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/i386-tdep.c
* trad-frame.c (struct trad_frame_cache): Rename next_frame to this_frame.
[thirdparty/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
6aba47ca 3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
9b254dd1 4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5ae96ec1 5 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
acd5c798
MK
23#include "arch-utils.h"
24#include "command.h"
25#include "dummy-frame.h"
6405b0a6 26#include "dwarf2-frame.h"
acd5c798 27#include "doublest.h"
c906108c 28#include "frame.h"
acd5c798
MK
29#include "frame-base.h"
30#include "frame-unwind.h"
c906108c 31#include "inferior.h"
acd5c798 32#include "gdbcmd.h"
c906108c 33#include "gdbcore.h"
e6bb342a 34#include "gdbtypes.h"
dfe01d39 35#include "objfiles.h"
acd5c798
MK
36#include "osabi.h"
37#include "regcache.h"
38#include "reggroups.h"
473f17b0 39#include "regset.h"
c0d1d883 40#include "symfile.h"
c906108c 41#include "symtab.h"
acd5c798 42#include "target.h"
fd0407d6 43#include "value.h"
a89aa300 44#include "dis-asm.h"
acd5c798 45
3d261580 46#include "gdb_assert.h"
acd5c798 47#include "gdb_string.h"
3d261580 48
d2a7c97a 49#include "i386-tdep.h"
61113f8b 50#include "i387-tdep.h"
d2a7c97a 51
c4fc7f1b 52/* Register names. */
c40e1eab 53
fc633446
MK
54static char *i386_register_names[] =
55{
56 "eax", "ecx", "edx", "ebx",
57 "esp", "ebp", "esi", "edi",
58 "eip", "eflags", "cs", "ss",
59 "ds", "es", "fs", "gs",
60 "st0", "st1", "st2", "st3",
61 "st4", "st5", "st6", "st7",
62 "fctrl", "fstat", "ftag", "fiseg",
63 "fioff", "foseg", "fooff", "fop",
64 "xmm0", "xmm1", "xmm2", "xmm3",
65 "xmm4", "xmm5", "xmm6", "xmm7",
66 "mxcsr"
67};
68
1cb97e17 69static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
c40e1eab 70
c4fc7f1b 71/* Register names for MMX pseudo-registers. */
28fc6740
AC
72
73static char *i386_mmx_names[] =
74{
75 "mm0", "mm1", "mm2", "mm3",
76 "mm4", "mm5", "mm6", "mm7"
77};
c40e1eab 78
1cb97e17 79static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
c40e1eab 80
28fc6740 81static int
5716833c 82i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 83{
5716833c
MK
84 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
85
86 if (mm0_regnum < 0)
87 return 0;
88
89 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
28fc6740
AC
90}
91
5716833c 92/* SSE register? */
23a34459 93
5716833c
MK
94static int
95i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 96{
5716833c
MK
97 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
98
20a6ec49 99 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
100 return 0;
101
20a6ec49
MD
102 return (I387_XMM0_REGNUM (tdep) <= regnum
103 && regnum < I387_MXCSR_REGNUM (tdep));
23a34459
AC
104}
105
5716833c
MK
106static int
107i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 108{
5716833c
MK
109 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
110
20a6ec49 111 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
112 return 0;
113
20a6ec49 114 return (regnum == I387_MXCSR_REGNUM (tdep));
23a34459
AC
115}
116
5716833c 117/* FP register? */
23a34459
AC
118
119int
20a6ec49 120i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 121{
20a6ec49
MD
122 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
123
124 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
125 return 0;
126
20a6ec49
MD
127 return (I387_ST0_REGNUM (tdep) <= regnum
128 && regnum < I387_FCTRL_REGNUM (tdep));
23a34459
AC
129}
130
131int
20a6ec49 132i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 133{
20a6ec49
MD
134 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
135
136 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
137 return 0;
138
20a6ec49
MD
139 return (I387_FCTRL_REGNUM (tdep) <= regnum
140 && regnum < I387_XMM0_REGNUM (tdep));
23a34459
AC
141}
142
30b0e2d8 143/* Return the name of register REGNUM. */
fc633446 144
fa88f677 145const char *
d93859e2 146i386_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 147{
d93859e2 148 if (i386_mmx_regnum_p (gdbarch, regnum))
20a6ec49 149 return i386_mmx_names[regnum - I387_MM0_REGNUM (gdbarch_tdep (gdbarch))];
fc633446 150
30b0e2d8
MK
151 if (regnum >= 0 && regnum < i386_num_register_names)
152 return i386_register_names[regnum];
70913449 153
c40e1eab 154 return NULL;
fc633446
MK
155}
156
c4fc7f1b 157/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
158 number used by GDB. */
159
8201327c 160static int
d3f73121 161i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 162{
20a6ec49
MD
163 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
164
c4fc7f1b
MK
165 /* This implements what GCC calls the "default" register map
166 (dbx_register_map[]). */
167
85540d8c
MK
168 if (reg >= 0 && reg <= 7)
169 {
9872ad24
JB
170 /* General-purpose registers. The debug info calls %ebp
171 register 4, and %esp register 5. */
172 if (reg == 4)
173 return 5;
174 else if (reg == 5)
175 return 4;
176 else return reg;
85540d8c
MK
177 }
178 else if (reg >= 12 && reg <= 19)
179 {
180 /* Floating-point registers. */
20a6ec49 181 return reg - 12 + I387_ST0_REGNUM (tdep);
85540d8c
MK
182 }
183 else if (reg >= 21 && reg <= 28)
184 {
185 /* SSE registers. */
20a6ec49 186 return reg - 21 + I387_XMM0_REGNUM (tdep);
85540d8c
MK
187 }
188 else if (reg >= 29 && reg <= 36)
189 {
190 /* MMX registers. */
20a6ec49 191 return reg - 29 + I387_MM0_REGNUM (tdep);
85540d8c
MK
192 }
193
194 /* This will hopefully provoke a warning. */
d3f73121 195 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c
MK
196}
197
c4fc7f1b
MK
198/* Convert SVR4 register number REG to the appropriate register number
199 used by GDB. */
85540d8c 200
8201327c 201static int
d3f73121 202i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 203{
20a6ec49
MD
204 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
205
c4fc7f1b
MK
206 /* This implements the GCC register map that tries to be compatible
207 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
208
209 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
210 numbers the floating point registers differently. */
211 if (reg >= 0 && reg <= 9)
212 {
acd5c798 213 /* General-purpose registers. */
85540d8c
MK
214 return reg;
215 }
216 else if (reg >= 11 && reg <= 18)
217 {
218 /* Floating-point registers. */
20a6ec49 219 return reg - 11 + I387_ST0_REGNUM (tdep);
85540d8c 220 }
c6f4c129 221 else if (reg >= 21 && reg <= 36)
85540d8c 222 {
c4fc7f1b 223 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 224 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
225 }
226
c6f4c129
JB
227 switch (reg)
228 {
20a6ec49
MD
229 case 37: return I387_FCTRL_REGNUM (tdep);
230 case 38: return I387_FSTAT_REGNUM (tdep);
231 case 39: return I387_MXCSR_REGNUM (tdep);
c6f4c129
JB
232 case 40: return I386_ES_REGNUM;
233 case 41: return I386_CS_REGNUM;
234 case 42: return I386_SS_REGNUM;
235 case 43: return I386_DS_REGNUM;
236 case 44: return I386_FS_REGNUM;
237 case 45: return I386_GS_REGNUM;
238 }
239
85540d8c 240 /* This will hopefully provoke a warning. */
d3f73121 241 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c 242}
5716833c 243
fc338970 244\f
917317f4 245
fc338970
MK
246/* This is the variable that is set with "set disassembly-flavor", and
247 its legitimate values. */
53904c9e
AC
248static const char att_flavor[] = "att";
249static const char intel_flavor[] = "intel";
250static const char *valid_flavors[] =
c5aa993b 251{
c906108c
SS
252 att_flavor,
253 intel_flavor,
254 NULL
255};
53904c9e 256static const char *disassembly_flavor = att_flavor;
acd5c798 257\f
c906108c 258
acd5c798
MK
259/* Use the program counter to determine the contents and size of a
260 breakpoint instruction. Return a pointer to a string of bytes that
261 encode a breakpoint instruction, store the length of the string in
262 *LEN and optionally adjust *PC to point to the correct memory
263 location for inserting the breakpoint.
c906108c 264
acd5c798
MK
265 On the i386 we have a single breakpoint that fits in a single byte
266 and can be inserted anywhere.
c906108c 267
acd5c798 268 This function is 64-bit safe. */
63c0089f
MK
269
270static const gdb_byte *
67d57894 271i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
c906108c 272{
63c0089f
MK
273 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
274
acd5c798
MK
275 *len = sizeof (break_insn);
276 return break_insn;
c906108c 277}
fc338970 278\f
acd5c798
MK
279#ifdef I386_REGNO_TO_SYMMETRY
280#error "The Sequent Symmetry is no longer supported."
281#endif
c906108c 282
acd5c798
MK
283/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
284 and %esp "belong" to the calling function. Therefore these
285 registers should be saved if they're going to be modified. */
c906108c 286
acd5c798
MK
287/* The maximum number of saved registers. This should include all
288 registers mentioned above, and %eip. */
a3386186 289#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
290
291struct i386_frame_cache
c906108c 292{
acd5c798
MK
293 /* Base address. */
294 CORE_ADDR base;
772562f8 295 LONGEST sp_offset;
acd5c798
MK
296 CORE_ADDR pc;
297
fd13a04a
AC
298 /* Saved registers. */
299 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 300 CORE_ADDR saved_sp;
92dd43fa 301 int stack_align;
acd5c798
MK
302 int pc_in_eax;
303
304 /* Stack space reserved for local variables. */
305 long locals;
306};
307
308/* Allocate and initialize a frame cache. */
309
310static struct i386_frame_cache *
fd13a04a 311i386_alloc_frame_cache (void)
acd5c798
MK
312{
313 struct i386_frame_cache *cache;
314 int i;
315
316 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
317
318 /* Base address. */
319 cache->base = 0;
320 cache->sp_offset = -4;
321 cache->pc = 0;
322
fd13a04a
AC
323 /* Saved registers. We initialize these to -1 since zero is a valid
324 offset (that's where %ebp is supposed to be stored). */
325 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
326 cache->saved_regs[i] = -1;
acd5c798 327 cache->saved_sp = 0;
92dd43fa 328 cache->stack_align = 0;
acd5c798
MK
329 cache->pc_in_eax = 0;
330
331 /* Frameless until proven otherwise. */
332 cache->locals = -1;
333
334 return cache;
335}
c906108c 336
acd5c798
MK
337/* If the instruction at PC is a jump, return the address of its
338 target. Otherwise, return PC. */
c906108c 339
acd5c798
MK
340static CORE_ADDR
341i386_follow_jump (CORE_ADDR pc)
342{
63c0089f 343 gdb_byte op;
acd5c798
MK
344 long delta = 0;
345 int data16 = 0;
c906108c 346
8defab1a 347 target_read_memory (pc, &op, 1);
acd5c798 348 if (op == 0x66)
c906108c 349 {
c906108c 350 data16 = 1;
acd5c798 351 op = read_memory_unsigned_integer (pc + 1, 1);
c906108c
SS
352 }
353
acd5c798 354 switch (op)
c906108c
SS
355 {
356 case 0xe9:
fc338970 357 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
358 if (data16)
359 {
acd5c798 360 delta = read_memory_integer (pc + 2, 2);
c906108c 361
fc338970
MK
362 /* Include the size of the jmp instruction (including the
363 0x66 prefix). */
acd5c798 364 delta += 4;
c906108c
SS
365 }
366 else
367 {
acd5c798 368 delta = read_memory_integer (pc + 1, 4);
c906108c 369
acd5c798
MK
370 /* Include the size of the jmp instruction. */
371 delta += 5;
c906108c
SS
372 }
373 break;
374 case 0xeb:
fc338970 375 /* Relative jump, disp8 (ignore data16). */
acd5c798 376 delta = read_memory_integer (pc + data16 + 1, 1);
c906108c 377
acd5c798 378 delta += data16 + 2;
c906108c
SS
379 break;
380 }
c906108c 381
acd5c798
MK
382 return pc + delta;
383}
fc338970 384
acd5c798
MK
385/* Check whether PC points at a prologue for a function returning a
386 structure or union. If so, it updates CACHE and returns the
387 address of the first instruction after the code sequence that
388 removes the "hidden" argument from the stack or CURRENT_PC,
389 whichever is smaller. Otherwise, return PC. */
c906108c 390
acd5c798
MK
391static CORE_ADDR
392i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
393 struct i386_frame_cache *cache)
c906108c 394{
acd5c798
MK
395 /* Functions that return a structure or union start with:
396
397 popl %eax 0x58
398 xchgl %eax, (%esp) 0x87 0x04 0x24
399 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
400
401 (the System V compiler puts out the second `xchg' instruction,
402 and the assembler doesn't try to optimize it, so the 'sib' form
403 gets generated). This sequence is used to get the address of the
404 return buffer for a function that returns a structure. */
63c0089f
MK
405 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
406 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
407 gdb_byte buf[4];
408 gdb_byte op;
c906108c 409
acd5c798
MK
410 if (current_pc <= pc)
411 return pc;
412
8defab1a 413 target_read_memory (pc, &op, 1);
c906108c 414
acd5c798
MK
415 if (op != 0x58) /* popl %eax */
416 return pc;
c906108c 417
8defab1a 418 target_read_memory (pc + 1, buf, 4);
acd5c798
MK
419 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
420 return pc;
c906108c 421
acd5c798 422 if (current_pc == pc)
c906108c 423 {
acd5c798
MK
424 cache->sp_offset += 4;
425 return current_pc;
c906108c
SS
426 }
427
acd5c798 428 if (current_pc == pc + 1)
c906108c 429 {
acd5c798
MK
430 cache->pc_in_eax = 1;
431 return current_pc;
432 }
433
434 if (buf[1] == proto1[1])
435 return pc + 4;
436 else
437 return pc + 5;
438}
439
440static CORE_ADDR
441i386_skip_probe (CORE_ADDR pc)
442{
443 /* A function may start with
fc338970 444
acd5c798
MK
445 pushl constant
446 call _probe
447 addl $4, %esp
fc338970 448
acd5c798
MK
449 followed by
450
451 pushl %ebp
fc338970 452
acd5c798 453 etc. */
63c0089f
MK
454 gdb_byte buf[8];
455 gdb_byte op;
fc338970 456
8defab1a 457 target_read_memory (pc, &op, 1);
acd5c798
MK
458
459 if (op == 0x68 || op == 0x6a)
460 {
461 int delta;
c906108c 462
acd5c798
MK
463 /* Skip past the `pushl' instruction; it has either a one-byte or a
464 four-byte operand, depending on the opcode. */
c906108c 465 if (op == 0x68)
acd5c798 466 delta = 5;
c906108c 467 else
acd5c798 468 delta = 2;
c906108c 469
acd5c798
MK
470 /* Read the following 8 bytes, which should be `call _probe' (6
471 bytes) followed by `addl $4,%esp' (2 bytes). */
472 read_memory (pc + delta, buf, sizeof (buf));
c906108c 473 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 474 pc += delta + sizeof (buf);
c906108c
SS
475 }
476
acd5c798
MK
477 return pc;
478}
479
92dd43fa
MK
480/* GCC 4.1 and later, can put code in the prologue to realign the
481 stack pointer. Check whether PC points to such code, and update
482 CACHE accordingly. Return the first instruction after the code
483 sequence or CURRENT_PC, whichever is smaller. If we don't
484 recognize the code, return PC. */
485
486static CORE_ADDR
487i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
488 struct i386_frame_cache *cache)
489{
92a56b20
JB
490 /* The register used by the compiler to perform the stack re-alignment
491 is, in order of preference, either %ecx, %edx, or %eax. GCC should
492 never use %ebx as it always treats it as callee-saved, whereas
493 the compiler can only use caller-saved registers. */
ade52156 494 static const gdb_byte insns_ecx[10] = {
92dd43fa
MK
495 0x8d, 0x4c, 0x24, 0x04, /* leal 4(%esp), %ecx */
496 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
497 0xff, 0x71, 0xfc /* pushl -4(%ecx) */
498 };
ade52156
JB
499 static const gdb_byte insns_edx[10] = {
500 0x8d, 0x54, 0x24, 0x04, /* leal 4(%esp), %edx */
501 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
502 0xff, 0x72, 0xfc /* pushl -4(%edx) */
503 };
504 static const gdb_byte insns_eax[10] = {
505 0x8d, 0x44, 0x24, 0x04, /* leal 4(%esp), %eax */
506 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
507 0xff, 0x70, 0xfc /* pushl -4(%eax) */
508 };
92dd43fa
MK
509 gdb_byte buf[10];
510
511 if (target_read_memory (pc, buf, sizeof buf)
ade52156
JB
512 || (memcmp (buf, insns_ecx, sizeof buf) != 0
513 && memcmp (buf, insns_edx, sizeof buf) != 0
514 && memcmp (buf, insns_eax, sizeof buf) != 0))
92dd43fa
MK
515 return pc;
516
517 if (current_pc > pc + 4)
518 cache->stack_align = 1;
519
520 return min (pc + 10, current_pc);
521}
522
37bdc87e
MK
523/* Maximum instruction length we need to handle. */
524#define I386_MAX_INSN_LEN 6
525
526/* Instruction description. */
527struct i386_insn
528{
529 size_t len;
63c0089f
MK
530 gdb_byte insn[I386_MAX_INSN_LEN];
531 gdb_byte mask[I386_MAX_INSN_LEN];
37bdc87e
MK
532};
533
534/* Search for the instruction at PC in the list SKIP_INSNS. Return
535 the first instruction description that matches. Otherwise, return
536 NULL. */
537
538static struct i386_insn *
539i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
540{
541 struct i386_insn *insn;
63c0089f 542 gdb_byte op;
37bdc87e 543
8defab1a 544 target_read_memory (pc, &op, 1);
37bdc87e
MK
545
546 for (insn = skip_insns; insn->len > 0; insn++)
547 {
548 if ((op & insn->mask[0]) == insn->insn[0])
549 {
613e8135
MK
550 gdb_byte buf[I386_MAX_INSN_LEN - 1];
551 int insn_matched = 1;
37bdc87e
MK
552 size_t i;
553
554 gdb_assert (insn->len > 1);
555 gdb_assert (insn->len <= I386_MAX_INSN_LEN);
556
8defab1a 557 target_read_memory (pc + 1, buf, insn->len - 1);
37bdc87e
MK
558 for (i = 1; i < insn->len; i++)
559 {
560 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
613e8135 561 insn_matched = 0;
37bdc87e 562 }
613e8135
MK
563
564 if (insn_matched)
565 return insn;
37bdc87e
MK
566 }
567 }
568
569 return NULL;
570}
571
572/* Some special instructions that might be migrated by GCC into the
573 part of the prologue that sets up the new stack frame. Because the
574 stack frame hasn't been setup yet, no registers have been saved
575 yet, and only the scratch registers %eax, %ecx and %edx can be
576 touched. */
577
578struct i386_insn i386_frame_setup_skip_insns[] =
579{
580 /* Check for `movb imm8, r' and `movl imm32, r'.
581
582 ??? Should we handle 16-bit operand-sizes here? */
583
584 /* `movb imm8, %al' and `movb imm8, %ah' */
585 /* `movb imm8, %cl' and `movb imm8, %ch' */
586 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
587 /* `movb imm8, %dl' and `movb imm8, %dh' */
588 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
589 /* `movl imm32, %eax' and `movl imm32, %ecx' */
590 { 5, { 0xb8 }, { 0xfe } },
591 /* `movl imm32, %edx' */
592 { 5, { 0xba }, { 0xff } },
593
594 /* Check for `mov imm32, r32'. Note that there is an alternative
595 encoding for `mov m32, %eax'.
596
597 ??? Should we handle SIB adressing here?
598 ??? Should we handle 16-bit operand-sizes here? */
599
600 /* `movl m32, %eax' */
601 { 5, { 0xa1 }, { 0xff } },
602 /* `movl m32, %eax' and `mov; m32, %ecx' */
603 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
604 /* `movl m32, %edx' */
605 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
606
607 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
608 Because of the symmetry, there are actually two ways to encode
609 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
610 opcode bytes 0x31 and 0x33 for `xorl'. */
611
612 /* `subl %eax, %eax' */
613 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
614 /* `subl %ecx, %ecx' */
615 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
616 /* `subl %edx, %edx' */
617 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
618 /* `xorl %eax, %eax' */
619 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
620 /* `xorl %ecx, %ecx' */
621 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
622 /* `xorl %edx, %edx' */
623 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
624 { 0 }
625};
626
e11481da
PM
627
628/* Check whether PC points to a no-op instruction. */
629static CORE_ADDR
630i386_skip_noop (CORE_ADDR pc)
631{
632 gdb_byte op;
633 int check = 1;
634
8defab1a 635 target_read_memory (pc, &op, 1);
e11481da
PM
636
637 while (check)
638 {
639 check = 0;
640 /* Ignore `nop' instruction. */
641 if (op == 0x90)
642 {
643 pc += 1;
8defab1a 644 target_read_memory (pc, &op, 1);
e11481da
PM
645 check = 1;
646 }
647 /* Ignore no-op instruction `mov %edi, %edi'.
648 Microsoft system dlls often start with
649 a `mov %edi,%edi' instruction.
650 The 5 bytes before the function start are
651 filled with `nop' instructions.
652 This pattern can be used for hot-patching:
653 The `mov %edi, %edi' instruction can be replaced by a
654 near jump to the location of the 5 `nop' instructions
655 which can be replaced by a 32-bit jump to anywhere
656 in the 32-bit address space. */
657
658 else if (op == 0x8b)
659 {
8defab1a 660 target_read_memory (pc + 1, &op, 1);
e11481da
PM
661 if (op == 0xff)
662 {
663 pc += 2;
8defab1a 664 target_read_memory (pc, &op, 1);
e11481da
PM
665 check = 1;
666 }
667 }
668 }
669 return pc;
670}
671
acd5c798
MK
672/* Check whether PC points at a code that sets up a new stack frame.
673 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
674 instruction after the sequence that sets up the frame or LIMIT,
675 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
676
677static CORE_ADDR
37bdc87e 678i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
679 struct i386_frame_cache *cache)
680{
37bdc87e 681 struct i386_insn *insn;
63c0089f 682 gdb_byte op;
26604a34 683 int skip = 0;
acd5c798 684
37bdc87e
MK
685 if (limit <= pc)
686 return limit;
acd5c798 687
8defab1a 688 target_read_memory (pc, &op, 1);
acd5c798 689
c906108c 690 if (op == 0x55) /* pushl %ebp */
c5aa993b 691 {
acd5c798
MK
692 /* Take into account that we've executed the `pushl %ebp' that
693 starts this instruction sequence. */
fd13a04a 694 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 695 cache->sp_offset += 4;
37bdc87e 696 pc++;
acd5c798
MK
697
698 /* If that's all, return now. */
37bdc87e
MK
699 if (limit <= pc)
700 return limit;
26604a34 701
b4632131 702 /* Check for some special instructions that might be migrated by
37bdc87e
MK
703 GCC into the prologue and skip them. At this point in the
704 prologue, code should only touch the scratch registers %eax,
705 %ecx and %edx, so while the number of posibilities is sheer,
706 it is limited.
5daa5b4e 707
26604a34
MK
708 Make sure we only skip these instructions if we later see the
709 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 710 while (pc + skip < limit)
26604a34 711 {
37bdc87e
MK
712 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
713 if (insn == NULL)
714 break;
b4632131 715
37bdc87e 716 skip += insn->len;
26604a34
MK
717 }
718
37bdc87e
MK
719 /* If that's all, return now. */
720 if (limit <= pc + skip)
721 return limit;
722
8defab1a 723 target_read_memory (pc + skip, &op, 1);
37bdc87e 724
26604a34 725 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
acd5c798 726 switch (op)
c906108c
SS
727 {
728 case 0x8b:
37bdc87e
MK
729 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xec)
730 return pc;
c906108c
SS
731 break;
732 case 0x89:
37bdc87e
MK
733 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xe5)
734 return pc;
c906108c
SS
735 break;
736 default:
37bdc87e 737 return pc;
c906108c 738 }
acd5c798 739
26604a34
MK
740 /* OK, we actually have a frame. We just don't know how large
741 it is yet. Set its size to zero. We'll adjust it if
742 necessary. We also now commit to skipping the special
743 instructions mentioned before. */
acd5c798 744 cache->locals = 0;
37bdc87e 745 pc += (skip + 2);
acd5c798
MK
746
747 /* If that's all, return now. */
37bdc87e
MK
748 if (limit <= pc)
749 return limit;
acd5c798 750
fc338970
MK
751 /* Check for stack adjustment
752
acd5c798 753 subl $XXX, %esp
fc338970 754
fd35795f 755 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 756 reg, so we don't have to worry about a data16 prefix. */
8defab1a 757 target_read_memory (pc, &op, 1);
c906108c
SS
758 if (op == 0x83)
759 {
fd35795f 760 /* `subl' with 8-bit immediate. */
37bdc87e 761 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
fc338970 762 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 763 return pc;
acd5c798 764
37bdc87e
MK
765 /* `subl' with signed 8-bit immediate (though it wouldn't
766 make sense to be negative). */
767 cache->locals = read_memory_integer (pc + 2, 1);
768 return pc + 3;
c906108c
SS
769 }
770 else if (op == 0x81)
771 {
fd35795f 772 /* Maybe it is `subl' with a 32-bit immediate. */
37bdc87e 773 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
fc338970 774 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 775 return pc;
acd5c798 776
fd35795f 777 /* It is `subl' with a 32-bit immediate. */
37bdc87e
MK
778 cache->locals = read_memory_integer (pc + 2, 4);
779 return pc + 6;
c906108c
SS
780 }
781 else
782 {
acd5c798 783 /* Some instruction other than `subl'. */
37bdc87e 784 return pc;
c906108c
SS
785 }
786 }
37bdc87e 787 else if (op == 0xc8) /* enter */
c906108c 788 {
acd5c798
MK
789 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
790 return pc + 4;
c906108c 791 }
21d0e8a4 792
acd5c798 793 return pc;
21d0e8a4
MK
794}
795
acd5c798
MK
796/* Check whether PC points at code that saves registers on the stack.
797 If so, it updates CACHE and returns the address of the first
798 instruction after the register saves or CURRENT_PC, whichever is
799 smaller. Otherwise, return PC. */
6bff26de
MK
800
801static CORE_ADDR
acd5c798
MK
802i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
803 struct i386_frame_cache *cache)
6bff26de 804{
99ab4326 805 CORE_ADDR offset = 0;
63c0089f 806 gdb_byte op;
99ab4326 807 int i;
c0d1d883 808
99ab4326
MK
809 if (cache->locals > 0)
810 offset -= cache->locals;
811 for (i = 0; i < 8 && pc < current_pc; i++)
812 {
8defab1a 813 target_read_memory (pc, &op, 1);
99ab4326
MK
814 if (op < 0x50 || op > 0x57)
815 break;
0d17c81d 816
99ab4326
MK
817 offset -= 4;
818 cache->saved_regs[op - 0x50] = offset;
819 cache->sp_offset += 4;
820 pc++;
6bff26de
MK
821 }
822
acd5c798 823 return pc;
22797942
AC
824}
825
acd5c798
MK
826/* Do a full analysis of the prologue at PC and update CACHE
827 accordingly. Bail out early if CURRENT_PC is reached. Return the
828 address where the analysis stopped.
ed84f6c1 829
fc338970
MK
830 We handle these cases:
831
832 The startup sequence can be at the start of the function, or the
833 function can start with a branch to startup code at the end.
834
835 %ebp can be set up with either the 'enter' instruction, or "pushl
836 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
837 once used in the System V compiler).
838
839 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
840 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
841 16-bit unsigned argument for space to allocate, and the 'addl'
842 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
843
844 Next, the registers used by this function are pushed. With the
845 System V compiler they will always be in the order: %edi, %esi,
846 %ebx (and sometimes a harmless bug causes it to also save but not
847 restore %eax); however, the code below is willing to see the pushes
848 in any order, and will handle up to 8 of them.
849
850 If the setup sequence is at the end of the function, then the next
851 instruction will be a branch back to the start. */
c906108c 852
acd5c798
MK
853static CORE_ADDR
854i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
855 struct i386_frame_cache *cache)
c906108c 856{
e11481da 857 pc = i386_skip_noop (pc);
acd5c798
MK
858 pc = i386_follow_jump (pc);
859 pc = i386_analyze_struct_return (pc, current_pc, cache);
860 pc = i386_skip_probe (pc);
92dd43fa 861 pc = i386_analyze_stack_align (pc, current_pc, cache);
acd5c798
MK
862 pc = i386_analyze_frame_setup (pc, current_pc, cache);
863 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
864}
865
fc338970 866/* Return PC of first real instruction. */
c906108c 867
3a1e71e3 868static CORE_ADDR
6093d2eb 869i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 870{
63c0089f 871 static gdb_byte pic_pat[6] =
acd5c798
MK
872 {
873 0xe8, 0, 0, 0, 0, /* call 0x0 */
874 0x5b, /* popl %ebx */
c5aa993b 875 };
acd5c798
MK
876 struct i386_frame_cache cache;
877 CORE_ADDR pc;
63c0089f 878 gdb_byte op;
acd5c798 879 int i;
c5aa993b 880
acd5c798
MK
881 cache.locals = -1;
882 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
883 if (cache.locals < 0)
884 return start_pc;
c5aa993b 885
acd5c798 886 /* Found valid frame setup. */
c906108c 887
fc338970
MK
888 /* The native cc on SVR4 in -K PIC mode inserts the following code
889 to get the address of the global offset table (GOT) into register
acd5c798
MK
890 %ebx:
891
fc338970
MK
892 call 0x0
893 popl %ebx
894 movl %ebx,x(%ebp) (optional)
895 addl y,%ebx
896
c906108c
SS
897 This code is with the rest of the prologue (at the end of the
898 function), so we have to skip it to get to the first real
899 instruction at the start of the function. */
c5aa993b 900
c906108c
SS
901 for (i = 0; i < 6; i++)
902 {
8defab1a 903 target_read_memory (pc + i, &op, 1);
c5aa993b 904 if (pic_pat[i] != op)
c906108c
SS
905 break;
906 }
907 if (i == 6)
908 {
acd5c798
MK
909 int delta = 6;
910
8defab1a 911 target_read_memory (pc + delta, &op, 1);
c906108c 912
c5aa993b 913 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 914 {
acd5c798
MK
915 op = read_memory_unsigned_integer (pc + delta + 1, 1);
916
fc338970 917 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 918 delta += 3;
fc338970 919 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 920 delta += 6;
fc338970 921 else /* Unexpected instruction. */
acd5c798
MK
922 delta = 0;
923
8defab1a 924 target_read_memory (pc + delta, &op, 1);
c906108c 925 }
acd5c798 926
c5aa993b 927 /* addl y,%ebx */
acd5c798 928 if (delta > 0 && op == 0x81
d5d6fca5 929 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3)
c906108c 930 {
acd5c798 931 pc += delta + 6;
c906108c
SS
932 }
933 }
c5aa993b 934
e63bbc88
MK
935 /* If the function starts with a branch (to startup code at the end)
936 the last instruction should bring us back to the first
937 instruction of the real code. */
938 if (i386_follow_jump (start_pc) != start_pc)
939 pc = i386_follow_jump (pc);
940
941 return pc;
c906108c
SS
942}
943
acd5c798 944/* This function is 64-bit safe. */
93924b6b 945
acd5c798
MK
946static CORE_ADDR
947i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 948{
63c0089f 949 gdb_byte buf[8];
acd5c798 950
875f8d0e 951 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
acd5c798 952 return extract_typed_address (buf, builtin_type_void_func_ptr);
93924b6b 953}
acd5c798 954\f
93924b6b 955
acd5c798 956/* Normal frames. */
c5aa993b 957
acd5c798
MK
958static struct i386_frame_cache *
959i386_frame_cache (struct frame_info *next_frame, void **this_cache)
a7769679 960{
acd5c798 961 struct i386_frame_cache *cache;
63c0089f 962 gdb_byte buf[4];
acd5c798
MK
963 int i;
964
965 if (*this_cache)
966 return *this_cache;
967
fd13a04a 968 cache = i386_alloc_frame_cache ();
acd5c798
MK
969 *this_cache = cache;
970
971 /* In principle, for normal frames, %ebp holds the frame pointer,
972 which holds the base address for the current stack frame.
973 However, for functions that don't need it, the frame pointer is
974 optional. For these "frameless" functions the frame pointer is
975 actually the frame pointer of the calling frame. Signal
976 trampolines are just a special case of a "frameless" function.
977 They (usually) share their frame pointer with the frame that was
978 in progress when the signal occurred. */
979
980 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
981 cache->base = extract_unsigned_integer (buf, 4);
982 if (cache->base == 0)
983 return cache;
984
985 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 986 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 987
93d42b30 988 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
acd5c798
MK
989 if (cache->pc != 0)
990 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
991
92dd43fa
MK
992 if (cache->stack_align)
993 {
994 /* Saved stack pointer has been saved in %ecx. */
995 frame_unwind_register (next_frame, I386_ECX_REGNUM, buf);
996 cache->saved_sp = extract_unsigned_integer(buf, 4);
997 }
998
acd5c798
MK
999 if (cache->locals < 0)
1000 {
1001 /* We didn't find a valid frame, which means that CACHE->base
1002 currently holds the frame pointer for our calling frame. If
1003 we're at the start of a function, or somewhere half-way its
1004 prologue, the function's frame probably hasn't been fully
1005 setup yet. Try to reconstruct the base address for the stack
1006 frame by looking at the stack pointer. For truly "frameless"
1007 functions this might work too. */
1008
92dd43fa
MK
1009 if (cache->stack_align)
1010 {
1011 /* We're halfway aligning the stack. */
1012 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1013 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1014
1015 /* This will be added back below. */
1016 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1017 }
1018 else
1019 {
1020 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1021 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
1022 }
acd5c798
MK
1023 }
1024
1025 /* Now that we have the base address for the stack frame we can
1026 calculate the value of %esp in the calling frame. */
92dd43fa
MK
1027 if (cache->saved_sp == 0)
1028 cache->saved_sp = cache->base + 8;
a7769679 1029
acd5c798
MK
1030 /* Adjust all the saved registers such that they contain addresses
1031 instead of offsets. */
1032 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
1033 if (cache->saved_regs[i] != -1)
1034 cache->saved_regs[i] += cache->base;
acd5c798
MK
1035
1036 return cache;
a7769679
MK
1037}
1038
3a1e71e3 1039static void
acd5c798
MK
1040i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
1041 struct frame_id *this_id)
c906108c 1042{
acd5c798
MK
1043 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1044
1045 /* This marks the outermost frame. */
1046 if (cache->base == 0)
1047 return;
1048
3e210248 1049 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1050 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1051}
1052
1053static void
1054i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
1055 int regnum, int *optimizedp,
1056 enum lval_type *lvalp, CORE_ADDR *addrp,
c6826062 1057 int *realnump, gdb_byte *valuep)
acd5c798
MK
1058{
1059 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1060
1061 gdb_assert (regnum >= 0);
1062
1063 /* The System V ABI says that:
1064
1065 "The flags register contains the system flags, such as the
1066 direction flag and the carry flag. The direction flag must be
1067 set to the forward (that is, zero) direction before entry and
1068 upon exit from a function. Other user flags have no specified
1069 role in the standard calling sequence and are not preserved."
1070
1071 To guarantee the "upon exit" part of that statement we fake a
1072 saved flags register that has its direction flag cleared.
1073
1074 Note that GCC doesn't seem to rely on the fact that the direction
1075 flag is cleared after a function return; it always explicitly
1076 clears the flag before operations where it matters.
1077
1078 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1079 right thing to do. The way we fake the flags register here makes
1080 it impossible to change it. */
1081
1082 if (regnum == I386_EFLAGS_REGNUM)
1083 {
1084 *optimizedp = 0;
1085 *lvalp = not_lval;
1086 *addrp = 0;
1087 *realnump = -1;
1088 if (valuep)
1089 {
1090 ULONGEST val;
c5aa993b 1091
acd5c798 1092 /* Clear the direction flag. */
f837910f
MK
1093 val = frame_unwind_register_unsigned (next_frame,
1094 I386_EFLAGS_REGNUM);
acd5c798
MK
1095 val &= ~(1 << 10);
1096 store_unsigned_integer (valuep, 4, val);
1097 }
1098
1099 return;
1100 }
1211c4e4 1101
acd5c798 1102 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
c906108c 1103 {
00b25ff3
AC
1104 *optimizedp = 0;
1105 *lvalp = lval_register;
1106 *addrp = 0;
1107 *realnump = I386_EAX_REGNUM;
1108 if (valuep)
1109 frame_unwind_register (next_frame, (*realnump), valuep);
acd5c798
MK
1110 return;
1111 }
1112
1113 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
1114 {
1115 *optimizedp = 0;
1116 *lvalp = not_lval;
1117 *addrp = 0;
1118 *realnump = -1;
1119 if (valuep)
c906108c 1120 {
acd5c798
MK
1121 /* Store the value. */
1122 store_unsigned_integer (valuep, 4, cache->saved_sp);
c906108c 1123 }
acd5c798 1124 return;
c906108c 1125 }
acd5c798 1126
fd13a04a
AC
1127 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1128 {
1129 *optimizedp = 0;
1130 *lvalp = lval_memory;
1131 *addrp = cache->saved_regs[regnum];
1132 *realnump = -1;
1133 if (valuep)
1134 {
1135 /* Read the value in from memory. */
1136 read_memory (*addrp, valuep,
875f8d0e 1137 register_size (get_frame_arch (next_frame), regnum));
fd13a04a
AC
1138 }
1139 return;
1140 }
1141
00b25ff3
AC
1142 *optimizedp = 0;
1143 *lvalp = lval_register;
1144 *addrp = 0;
1145 *realnump = regnum;
1146 if (valuep)
1147 frame_unwind_register (next_frame, (*realnump), valuep);
acd5c798
MK
1148}
1149
1150static const struct frame_unwind i386_frame_unwind =
1151{
1152 NORMAL_FRAME,
1153 i386_frame_this_id,
1154 i386_frame_prev_register
1155};
1156
1157static const struct frame_unwind *
336d1bba 1158i386_frame_sniffer (struct frame_info *next_frame)
acd5c798
MK
1159{
1160 return &i386_frame_unwind;
1161}
1162\f
1163
1164/* Signal trampolines. */
1165
1166static struct i386_frame_cache *
1167i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
1168{
1169 struct i386_frame_cache *cache;
875f8d0e 1170 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
acd5c798 1171 CORE_ADDR addr;
63c0089f 1172 gdb_byte buf[4];
acd5c798
MK
1173
1174 if (*this_cache)
1175 return *this_cache;
1176
fd13a04a 1177 cache = i386_alloc_frame_cache ();
acd5c798
MK
1178
1179 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1180 cache->base = extract_unsigned_integer (buf, 4) - 4;
1181
1182 addr = tdep->sigcontext_addr (next_frame);
a3386186
MK
1183 if (tdep->sc_reg_offset)
1184 {
1185 int i;
1186
1187 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1188
1189 for (i = 0; i < tdep->sc_num_regs; i++)
1190 if (tdep->sc_reg_offset[i] != -1)
fd13a04a 1191 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
a3386186
MK
1192 }
1193 else
1194 {
fd13a04a
AC
1195 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1196 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
a3386186 1197 }
acd5c798
MK
1198
1199 *this_cache = cache;
1200 return cache;
1201}
1202
1203static void
1204i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
1205 struct frame_id *this_id)
1206{
1207 struct i386_frame_cache *cache =
1208 i386_sigtramp_frame_cache (next_frame, this_cache);
1209
3e210248 1210 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1211 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
1212}
1213
1214static void
1215i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
1216 void **this_cache,
1217 int regnum, int *optimizedp,
1218 enum lval_type *lvalp, CORE_ADDR *addrp,
c6826062 1219 int *realnump, gdb_byte *valuep)
acd5c798
MK
1220{
1221 /* Make sure we've initialized the cache. */
1222 i386_sigtramp_frame_cache (next_frame, this_cache);
1223
1224 i386_frame_prev_register (next_frame, this_cache, regnum,
1225 optimizedp, lvalp, addrp, realnump, valuep);
c906108c 1226}
c0d1d883 1227
acd5c798
MK
1228static const struct frame_unwind i386_sigtramp_frame_unwind =
1229{
1230 SIGTRAMP_FRAME,
1231 i386_sigtramp_frame_this_id,
1232 i386_sigtramp_frame_prev_register
1233};
1234
1235static const struct frame_unwind *
336d1bba 1236i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
acd5c798 1237{
911bc6ee 1238 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
acd5c798 1239
911bc6ee
MK
1240 /* We shouldn't even bother if we don't have a sigcontext_addr
1241 handler. */
1242 if (tdep->sigcontext_addr == NULL)
1c3545ae
MK
1243 return NULL;
1244
911bc6ee
MK
1245 if (tdep->sigtramp_p != NULL)
1246 {
1247 if (tdep->sigtramp_p (next_frame))
1248 return &i386_sigtramp_frame_unwind;
1249 }
1250
1251 if (tdep->sigtramp_start != 0)
1252 {
1253 CORE_ADDR pc = frame_pc_unwind (next_frame);
1254
1255 gdb_assert (tdep->sigtramp_end != 0);
1256 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1257 return &i386_sigtramp_frame_unwind;
1258 }
acd5c798
MK
1259
1260 return NULL;
1261}
1262\f
1263
1264static CORE_ADDR
1265i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
1266{
1267 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1268
1269 return cache->base;
1270}
1271
1272static const struct frame_base i386_frame_base =
1273{
1274 &i386_frame_unwind,
1275 i386_frame_base_address,
1276 i386_frame_base_address,
1277 i386_frame_base_address
1278};
1279
acd5c798
MK
1280static struct frame_id
1281i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1282{
63c0089f 1283 gdb_byte buf[4];
acd5c798
MK
1284 CORE_ADDR fp;
1285
1286 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1287 fp = extract_unsigned_integer (buf, 4);
1288
3e210248 1289 /* See the end of i386_push_dummy_call. */
acd5c798 1290 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
c0d1d883 1291}
fc338970 1292\f
c906108c 1293
fc338970
MK
1294/* Figure out where the longjmp will land. Slurp the args out of the
1295 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 1296 structure from which we extract the address that we will land at.
28bcfd30 1297 This address is copied into PC. This routine returns non-zero on
436675d3 1298 success. */
c906108c 1299
8201327c 1300static int
60ade65d 1301i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 1302{
436675d3 1303 gdb_byte buf[4];
c906108c 1304 CORE_ADDR sp, jb_addr;
20a6ec49
MD
1305 struct gdbarch *gdbarch = get_frame_arch (frame);
1306 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
c906108c 1307
8201327c
MK
1308 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1309 longjmp will land. */
1310 if (jb_pc_offset == -1)
c906108c
SS
1311 return 0;
1312
436675d3
PA
1313 get_frame_register (frame, I386_ESP_REGNUM, buf);
1314 sp = extract_unsigned_integer (buf, 4);
1315 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
1316 return 0;
1317
436675d3
PA
1318 jb_addr = extract_unsigned_integer (buf, 4);
1319 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
8201327c 1320 return 0;
c906108c 1321
436675d3 1322 *pc = extract_unsigned_integer (buf, 4);
c906108c
SS
1323 return 1;
1324}
fc338970 1325\f
c906108c 1326
3a1e71e3 1327static CORE_ADDR
7d9b040b 1328i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
1329 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1330 struct value **args, CORE_ADDR sp, int struct_return,
1331 CORE_ADDR struct_addr)
22f8ba57 1332{
63c0089f 1333 gdb_byte buf[4];
acd5c798
MK
1334 int i;
1335
1336 /* Push arguments in reverse order. */
1337 for (i = nargs - 1; i >= 0; i--)
22f8ba57 1338 {
4754a64e 1339 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798
MK
1340
1341 /* The System V ABI says that:
1342
1343 "An argument's size is increased, if necessary, to make it a
1344 multiple of [32-bit] words. This may require tail padding,
1345 depending on the size of the argument."
1346
cf913f37 1347 This makes sure the stack stays word-aligned. */
acd5c798 1348 sp -= (len + 3) & ~3;
46615f07 1349 write_memory (sp, value_contents_all (args[i]), len);
acd5c798 1350 }
22f8ba57 1351
acd5c798
MK
1352 /* Push value address. */
1353 if (struct_return)
1354 {
22f8ba57 1355 sp -= 4;
fbd9dcd3 1356 store_unsigned_integer (buf, 4, struct_addr);
22f8ba57
MK
1357 write_memory (sp, buf, 4);
1358 }
1359
acd5c798
MK
1360 /* Store return address. */
1361 sp -= 4;
6a65450a 1362 store_unsigned_integer (buf, 4, bp_addr);
acd5c798
MK
1363 write_memory (sp, buf, 4);
1364
1365 /* Finally, update the stack pointer... */
1366 store_unsigned_integer (buf, 4, sp);
1367 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1368
1369 /* ...and fake a frame pointer. */
1370 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1371
3e210248
AC
1372 /* MarkK wrote: This "+ 8" is all over the place:
1373 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1374 i386_unwind_dummy_id). It's there, since all frame unwinders for
1375 a given target have to agree (within a certain margin) on the
fd35795f 1376 definition of the stack address of a frame. Otherwise
3e210248
AC
1377 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1378 stack address *before* the function call as a frame's CFA. On
1379 the i386, when %ebp is used as a frame pointer, the offset
1380 between the contents %ebp and the CFA as defined by GCC. */
1381 return sp + 8;
22f8ba57
MK
1382}
1383
1a309862
MK
1384/* These registers are used for returning integers (and on some
1385 targets also for returning `struct' and `union' values when their
ef9dff19 1386 size and alignment match an integer type). */
acd5c798
MK
1387#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1388#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 1389
c5e656c1
MK
1390/* Read, for architecture GDBARCH, a function return value of TYPE
1391 from REGCACHE, and copy that into VALBUF. */
1a309862 1392
3a1e71e3 1393static void
c5e656c1 1394i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 1395 struct regcache *regcache, gdb_byte *valbuf)
c906108c 1396{
c5e656c1 1397 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 1398 int len = TYPE_LENGTH (type);
63c0089f 1399 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 1400
1e8d0a7b 1401 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 1402 {
5716833c 1403 if (tdep->st0_regnum < 0)
1a309862 1404 {
8a3fe4f8 1405 warning (_("Cannot find floating-point return value."));
1a309862 1406 memset (valbuf, 0, len);
ef9dff19 1407 return;
1a309862
MK
1408 }
1409
c6ba6f0d
MK
1410 /* Floating-point return values can be found in %st(0). Convert
1411 its contents to the desired type. This is probably not
1412 exactly how it would happen on the target itself, but it is
1413 the best we can do. */
acd5c798 1414 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
00f8375e 1415 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
c906108c
SS
1416 }
1417 else
c5aa993b 1418 {
875f8d0e
UW
1419 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1420 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
1421
1422 if (len <= low_size)
00f8375e 1423 {
0818c12a 1424 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
1425 memcpy (valbuf, buf, len);
1426 }
d4f3574e
SS
1427 else if (len <= (low_size + high_size))
1428 {
0818c12a 1429 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 1430 memcpy (valbuf, buf, low_size);
0818c12a 1431 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 1432 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
1433 }
1434 else
8e65ff28 1435 internal_error (__FILE__, __LINE__,
e2e0b3e5 1436 _("Cannot extract return value of %d bytes long."), len);
c906108c
SS
1437 }
1438}
1439
c5e656c1
MK
1440/* Write, for architecture GDBARCH, a function return value of TYPE
1441 from VALBUF into REGCACHE. */
ef9dff19 1442
3a1e71e3 1443static void
c5e656c1 1444i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 1445 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 1446{
c5e656c1 1447 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
1448 int len = TYPE_LENGTH (type);
1449
1e8d0a7b 1450 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 1451 {
3d7f4f49 1452 ULONGEST fstat;
63c0089f 1453 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 1454
5716833c 1455 if (tdep->st0_regnum < 0)
ef9dff19 1456 {
8a3fe4f8 1457 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
1458 return;
1459 }
1460
635b0cc1
MK
1461 /* Returning floating-point values is a bit tricky. Apart from
1462 storing the return value in %st(0), we have to simulate the
1463 state of the FPU at function return point. */
1464
c6ba6f0d
MK
1465 /* Convert the value found in VALBUF to the extended
1466 floating-point format used by the FPU. This is probably
1467 not exactly how it would happen on the target itself, but
1468 it is the best we can do. */
1469 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
acd5c798 1470 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 1471
635b0cc1
MK
1472 /* Set the top of the floating-point register stack to 7. The
1473 actual value doesn't really matter, but 7 is what a normal
1474 function return would end up with if the program started out
1475 with a freshly initialized FPU. */
20a6ec49 1476 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
ccb945b8 1477 fstat |= (7 << 11);
20a6ec49 1478 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
ccb945b8 1479
635b0cc1
MK
1480 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1481 the floating-point register stack to 7, the appropriate value
1482 for the tag word is 0x3fff. */
20a6ec49 1483 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
ef9dff19
MK
1484 }
1485 else
1486 {
875f8d0e
UW
1487 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1488 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
1489
1490 if (len <= low_size)
3d7f4f49 1491 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
1492 else if (len <= (low_size + high_size))
1493 {
3d7f4f49
MK
1494 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1495 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 1496 len - low_size, valbuf + low_size);
ef9dff19
MK
1497 }
1498 else
8e65ff28 1499 internal_error (__FILE__, __LINE__,
e2e0b3e5 1500 _("Cannot store return value of %d bytes long."), len);
ef9dff19
MK
1501 }
1502}
fc338970 1503\f
ef9dff19 1504
8201327c
MK
1505/* This is the variable that is set with "set struct-convention", and
1506 its legitimate values. */
1507static const char default_struct_convention[] = "default";
1508static const char pcc_struct_convention[] = "pcc";
1509static const char reg_struct_convention[] = "reg";
1510static const char *valid_conventions[] =
1511{
1512 default_struct_convention,
1513 pcc_struct_convention,
1514 reg_struct_convention,
1515 NULL
1516};
1517static const char *struct_convention = default_struct_convention;
1518
0e4377e1
JB
1519/* Return non-zero if TYPE, which is assumed to be a structure,
1520 a union type, or an array type, should be returned in registers
1521 for architecture GDBARCH. */
c5e656c1 1522
8201327c 1523static int
c5e656c1 1524i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 1525{
c5e656c1
MK
1526 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1527 enum type_code code = TYPE_CODE (type);
1528 int len = TYPE_LENGTH (type);
8201327c 1529
0e4377e1
JB
1530 gdb_assert (code == TYPE_CODE_STRUCT
1531 || code == TYPE_CODE_UNION
1532 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
1533
1534 if (struct_convention == pcc_struct_convention
1535 || (struct_convention == default_struct_convention
1536 && tdep->struct_return == pcc_struct_return))
1537 return 0;
1538
9edde48e
MK
1539 /* Structures consisting of a single `float', `double' or 'long
1540 double' member are returned in %st(0). */
1541 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1542 {
1543 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1544 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1545 return (len == 4 || len == 8 || len == 12);
1546 }
1547
c5e656c1
MK
1548 return (len == 1 || len == 2 || len == 4 || len == 8);
1549}
1550
1551/* Determine, for architecture GDBARCH, how a return value of TYPE
1552 should be returned. If it is supposed to be returned in registers,
1553 and READBUF is non-zero, read the appropriate value from REGCACHE,
1554 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1555 from WRITEBUF into REGCACHE. */
1556
1557static enum return_value_convention
c055b101
CV
1558i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
1559 struct type *type, struct regcache *regcache,
1560 gdb_byte *readbuf, const gdb_byte *writebuf)
c5e656c1
MK
1561{
1562 enum type_code code = TYPE_CODE (type);
1563
5daa78cc
TJB
1564 if (((code == TYPE_CODE_STRUCT
1565 || code == TYPE_CODE_UNION
1566 || code == TYPE_CODE_ARRAY)
1567 && !i386_reg_struct_return_p (gdbarch, type))
1568 /* 128-bit decimal float uses the struct return convention. */
1569 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
1570 {
1571 /* The System V ABI says that:
1572
1573 "A function that returns a structure or union also sets %eax
1574 to the value of the original address of the caller's area
1575 before it returns. Thus when the caller receives control
1576 again, the address of the returned object resides in register
1577 %eax and can be used to access the object."
1578
1579 So the ABI guarantees that we can always find the return
1580 value just after the function has returned. */
1581
0e4377e1
JB
1582 /* Note that the ABI doesn't mention functions returning arrays,
1583 which is something possible in certain languages such as Ada.
1584 In this case, the value is returned as if it was wrapped in
1585 a record, so the convention applied to records also applies
1586 to arrays. */
1587
31db7b6c
MK
1588 if (readbuf)
1589 {
1590 ULONGEST addr;
1591
1592 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1593 read_memory (addr, readbuf, TYPE_LENGTH (type));
1594 }
1595
1596 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1597 }
c5e656c1
MK
1598
1599 /* This special case is for structures consisting of a single
9edde48e
MK
1600 `float', `double' or 'long double' member. These structures are
1601 returned in %st(0). For these structures, we call ourselves
1602 recursively, changing TYPE into the type of the first member of
1603 the structure. Since that should work for all structures that
1604 have only one member, we don't bother to check the member's type
1605 here. */
c5e656c1
MK
1606 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1607 {
1608 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
c055b101
CV
1609 return i386_return_value (gdbarch, func_type, type, regcache,
1610 readbuf, writebuf);
c5e656c1
MK
1611 }
1612
1613 if (readbuf)
1614 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1615 if (writebuf)
1616 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 1617
c5e656c1 1618 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
1619}
1620\f
1621
5ae96ec1
MK
1622/* Type for %eflags. */
1623struct type *i386_eflags_type;
1624
794ac428 1625/* Type for %mxcsr. */
878d9193 1626struct type *i386_mxcsr_type;
5ae96ec1
MK
1627
1628/* Construct types for ISA-specific registers. */
1629static void
1630i386_init_types (void)
1631{
1632 struct type *type;
1633
1634 type = init_flags_type ("builtin_type_i386_eflags", 4);
1635 append_flags_type_flag (type, 0, "CF");
1636 append_flags_type_flag (type, 1, NULL);
1637 append_flags_type_flag (type, 2, "PF");
1638 append_flags_type_flag (type, 4, "AF");
1639 append_flags_type_flag (type, 6, "ZF");
1640 append_flags_type_flag (type, 7, "SF");
1641 append_flags_type_flag (type, 8, "TF");
1642 append_flags_type_flag (type, 9, "IF");
1643 append_flags_type_flag (type, 10, "DF");
1644 append_flags_type_flag (type, 11, "OF");
1645 append_flags_type_flag (type, 14, "NT");
1646 append_flags_type_flag (type, 16, "RF");
1647 append_flags_type_flag (type, 17, "VM");
1648 append_flags_type_flag (type, 18, "AC");
1649 append_flags_type_flag (type, 19, "VIF");
1650 append_flags_type_flag (type, 20, "VIP");
1651 append_flags_type_flag (type, 21, "ID");
1652 i386_eflags_type = type;
21b4b2f2 1653
878d9193
MK
1654 type = init_flags_type ("builtin_type_i386_mxcsr", 4);
1655 append_flags_type_flag (type, 0, "IE");
1656 append_flags_type_flag (type, 1, "DE");
1657 append_flags_type_flag (type, 2, "ZE");
1658 append_flags_type_flag (type, 3, "OE");
1659 append_flags_type_flag (type, 4, "UE");
1660 append_flags_type_flag (type, 5, "PE");
1661 append_flags_type_flag (type, 6, "DAZ");
1662 append_flags_type_flag (type, 7, "IM");
1663 append_flags_type_flag (type, 8, "DM");
1664 append_flags_type_flag (type, 9, "ZM");
1665 append_flags_type_flag (type, 10, "OM");
1666 append_flags_type_flag (type, 11, "UM");
1667 append_flags_type_flag (type, 12, "PM");
1668 append_flags_type_flag (type, 15, "FZ");
1669 i386_mxcsr_type = type;
21b4b2f2
JB
1670}
1671
794ac428
UW
1672/* Construct vector type for MMX registers. */
1673struct type *
1674i386_mmx_type (struct gdbarch *gdbarch)
1675{
1676 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1677
1678 if (!tdep->i386_mmx_type)
1679 {
1680 /* The type we're building is this: */
1681#if 0
1682 union __gdb_builtin_type_vec64i
1683 {
1684 int64_t uint64;
1685 int32_t v2_int32[2];
1686 int16_t v4_int16[4];
1687 int8_t v8_int8[8];
1688 };
1689#endif
1690
1691 struct type *t;
1692
1693 t = init_composite_type ("__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
1694 append_composite_type_field (t, "uint64", builtin_type_int64);
1695 append_composite_type_field (t, "v2_int32",
1696 init_vector_type (builtin_type_int32, 2));
1697 append_composite_type_field (t, "v4_int16",
1698 init_vector_type (builtin_type_int16, 4));
1699 append_composite_type_field (t, "v8_int8",
1700 init_vector_type (builtin_type_int8, 8));
1701
1702 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1703 TYPE_NAME (t) = "builtin_type_vec64i";
1704 tdep->i386_mmx_type = t;
1705 }
1706
1707 return tdep->i386_mmx_type;
1708}
1709
1710struct type *
1711i386_sse_type (struct gdbarch *gdbarch)
1712{
1713 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1714
1715 if (!tdep->i386_sse_type)
1716 {
1717 /* The type we're building is this: */
1718#if 0
1719 union __gdb_builtin_type_vec128i
1720 {
1721 int128_t uint128;
1722 int64_t v2_int64[2];
1723 int32_t v4_int32[4];
1724 int16_t v8_int16[8];
1725 int8_t v16_int8[16];
1726 double v2_double[2];
1727 float v4_float[4];
1728 };
1729#endif
1730
1731 struct type *t;
1732
1733 t = init_composite_type ("__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
1734 append_composite_type_field (t, "v4_float",
1735 init_vector_type (builtin_type_float, 4));
1736 append_composite_type_field (t, "v2_double",
1737 init_vector_type (builtin_type_double, 2));
1738 append_composite_type_field (t, "v16_int8",
1739 init_vector_type (builtin_type_int8, 16));
1740 append_composite_type_field (t, "v8_int16",
1741 init_vector_type (builtin_type_int16, 8));
1742 append_composite_type_field (t, "v4_int32",
1743 init_vector_type (builtin_type_int32, 4));
1744 append_composite_type_field (t, "v2_int64",
1745 init_vector_type (builtin_type_int64, 2));
1746 append_composite_type_field (t, "uint128", builtin_type_int128);
1747
1748 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1749 TYPE_NAME (t) = "builtin_type_vec128i";
1750 tdep->i386_sse_type = t;
1751 }
1752
1753 return tdep->i386_sse_type;
1754}
1755
d7a0d72c
MK
1756/* Return the GDB type object for the "standard" data type of data in
1757 register REGNUM. Perhaps %esi and %edi should go here, but
1758 potentially they could be used for things other than address. */
1759
3a1e71e3 1760static struct type *
4e259f09 1761i386_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 1762{
ab533587
MK
1763 if (regnum == I386_EIP_REGNUM)
1764 return builtin_type_void_func_ptr;
1765
5ae96ec1
MK
1766 if (regnum == I386_EFLAGS_REGNUM)
1767 return i386_eflags_type;
1768
ab533587
MK
1769 if (regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
1770 return builtin_type_void_data_ptr;
d7a0d72c 1771
20a6ec49 1772 if (i386_fp_regnum_p (gdbarch, regnum))
c6ba6f0d 1773 return builtin_type_i387_ext;
d7a0d72c 1774
878d9193 1775 if (i386_mmx_regnum_p (gdbarch, regnum))
794ac428 1776 return i386_mmx_type (gdbarch);
878d9193 1777
5716833c 1778 if (i386_sse_regnum_p (gdbarch, regnum))
794ac428 1779 return i386_sse_type (gdbarch);
d7a0d72c 1780
20a6ec49 1781 if (regnum == I387_MXCSR_REGNUM (gdbarch_tdep (gdbarch)))
878d9193
MK
1782 return i386_mxcsr_type;
1783
d7a0d72c
MK
1784 return builtin_type_int;
1785}
1786
28fc6740 1787/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 1788 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
1789
1790static int
c86c27af 1791i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 1792{
5716833c
MK
1793 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1794 int mmxreg, fpreg;
28fc6740
AC
1795 ULONGEST fstat;
1796 int tos;
c86c27af 1797
5716833c 1798 mmxreg = regnum - tdep->mm0_regnum;
20a6ec49 1799 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
28fc6740 1800 tos = (fstat >> 11) & 0x7;
5716833c
MK
1801 fpreg = (mmxreg + tos) % 8;
1802
20a6ec49 1803 return (I387_ST0_REGNUM (tdep) + fpreg);
28fc6740
AC
1804}
1805
1806static void
1807i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 1808 int regnum, gdb_byte *buf)
28fc6740 1809{
5716833c 1810 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1811 {
63c0089f 1812 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1813 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1814
28fc6740 1815 /* Extract (always little endian). */
c86c27af 1816 regcache_raw_read (regcache, fpnum, mmx_buf);
f837910f 1817 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
28fc6740
AC
1818 }
1819 else
1820 regcache_raw_read (regcache, regnum, buf);
1821}
1822
1823static void
1824i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 1825 int regnum, const gdb_byte *buf)
28fc6740 1826{
5716833c 1827 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1828 {
63c0089f 1829 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1830 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1831
28fc6740
AC
1832 /* Read ... */
1833 regcache_raw_read (regcache, fpnum, mmx_buf);
1834 /* ... Modify ... (always little endian). */
f837910f 1835 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
28fc6740
AC
1836 /* ... Write. */
1837 regcache_raw_write (regcache, fpnum, mmx_buf);
1838 }
1839 else
1840 regcache_raw_write (regcache, regnum, buf);
1841}
ff2e87ac
AC
1842\f
1843
ff2e87ac
AC
1844/* Return the register number of the register allocated by GCC after
1845 REGNUM, or -1 if there is no such register. */
1846
1847static int
1848i386_next_regnum (int regnum)
1849{
1850 /* GCC allocates the registers in the order:
1851
1852 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1853
1854 Since storing a variable in %esp doesn't make any sense we return
1855 -1 for %ebp and for %esp itself. */
1856 static int next_regnum[] =
1857 {
1858 I386_EDX_REGNUM, /* Slot for %eax. */
1859 I386_EBX_REGNUM, /* Slot for %ecx. */
1860 I386_ECX_REGNUM, /* Slot for %edx. */
1861 I386_ESI_REGNUM, /* Slot for %ebx. */
1862 -1, -1, /* Slots for %esp and %ebp. */
1863 I386_EDI_REGNUM, /* Slot for %esi. */
1864 I386_EBP_REGNUM /* Slot for %edi. */
1865 };
1866
de5b9bb9 1867 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 1868 return next_regnum[regnum];
28fc6740 1869
ff2e87ac
AC
1870 return -1;
1871}
1872
1873/* Return nonzero if a value of type TYPE stored in register REGNUM
1874 needs any special handling. */
d7a0d72c 1875
3a1e71e3 1876static int
0abe36f5 1877i386_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
d7a0d72c 1878{
de5b9bb9
MK
1879 int len = TYPE_LENGTH (type);
1880
ff2e87ac
AC
1881 /* Values may be spread across multiple registers. Most debugging
1882 formats aren't expressive enough to specify the locations, so
1883 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
1884 have a length that is a multiple of the word size, since GCC
1885 doesn't seem to put any other types into registers. */
1886 if (len > 4 && len % 4 == 0)
1887 {
1888 int last_regnum = regnum;
1889
1890 while (len > 4)
1891 {
1892 last_regnum = i386_next_regnum (last_regnum);
1893 len -= 4;
1894 }
1895
1896 if (last_regnum != -1)
1897 return 1;
1898 }
ff2e87ac 1899
0abe36f5 1900 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
1901}
1902
ff2e87ac
AC
1903/* Read a value of type TYPE from register REGNUM in frame FRAME, and
1904 return its contents in TO. */
ac27f131 1905
3a1e71e3 1906static void
ff2e87ac 1907i386_register_to_value (struct frame_info *frame, int regnum,
42835c2b 1908 struct type *type, gdb_byte *to)
ac27f131 1909{
20a6ec49 1910 struct gdbarch *gdbarch = get_frame_arch (frame);
de5b9bb9 1911 int len = TYPE_LENGTH (type);
de5b9bb9 1912
ff2e87ac
AC
1913 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1914 available in FRAME (i.e. if it wasn't saved)? */
3d261580 1915
20a6ec49 1916 if (i386_fp_regnum_p (gdbarch, regnum))
8d7f6b4a 1917 {
d532c08f
MK
1918 i387_register_to_value (frame, regnum, type, to);
1919 return;
8d7f6b4a 1920 }
ff2e87ac 1921
fd35795f 1922 /* Read a value spread across multiple registers. */
de5b9bb9
MK
1923
1924 gdb_assert (len > 4 && len % 4 == 0);
3d261580 1925
de5b9bb9
MK
1926 while (len > 0)
1927 {
1928 gdb_assert (regnum != -1);
20a6ec49 1929 gdb_assert (register_size (gdbarch, regnum) == 4);
d532c08f 1930
42835c2b 1931 get_frame_register (frame, regnum, to);
de5b9bb9
MK
1932 regnum = i386_next_regnum (regnum);
1933 len -= 4;
42835c2b 1934 to += 4;
de5b9bb9 1935 }
ac27f131
MK
1936}
1937
ff2e87ac
AC
1938/* Write the contents FROM of a value of type TYPE into register
1939 REGNUM in frame FRAME. */
ac27f131 1940
3a1e71e3 1941static void
ff2e87ac 1942i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 1943 struct type *type, const gdb_byte *from)
ac27f131 1944{
de5b9bb9 1945 int len = TYPE_LENGTH (type);
de5b9bb9 1946
20a6ec49 1947 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
c6ba6f0d 1948 {
d532c08f
MK
1949 i387_value_to_register (frame, regnum, type, from);
1950 return;
1951 }
3d261580 1952
fd35795f 1953 /* Write a value spread across multiple registers. */
de5b9bb9
MK
1954
1955 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 1956
de5b9bb9
MK
1957 while (len > 0)
1958 {
1959 gdb_assert (regnum != -1);
875f8d0e 1960 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 1961
42835c2b 1962 put_frame_register (frame, regnum, from);
de5b9bb9
MK
1963 regnum = i386_next_regnum (regnum);
1964 len -= 4;
42835c2b 1965 from += 4;
de5b9bb9 1966 }
ac27f131 1967}
ff2e87ac 1968\f
7fdafb5a
MK
1969/* Supply register REGNUM from the buffer specified by GREGS and LEN
1970 in the general-purpose register set REGSET to register cache
1971 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 1972
20187ed5 1973void
473f17b0
MK
1974i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
1975 int regnum, const void *gregs, size_t len)
1976{
9ea75c57 1977 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 1978 const gdb_byte *regs = gregs;
473f17b0
MK
1979 int i;
1980
1981 gdb_assert (len == tdep->sizeof_gregset);
1982
1983 for (i = 0; i < tdep->gregset_num_regs; i++)
1984 {
1985 if ((regnum == i || regnum == -1)
1986 && tdep->gregset_reg_offset[i] != -1)
1987 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
1988 }
1989}
1990
7fdafb5a
MK
1991/* Collect register REGNUM from the register cache REGCACHE and store
1992 it in the buffer specified by GREGS and LEN as described by the
1993 general-purpose register set REGSET. If REGNUM is -1, do this for
1994 all registers in REGSET. */
1995
1996void
1997i386_collect_gregset (const struct regset *regset,
1998 const struct regcache *regcache,
1999 int regnum, void *gregs, size_t len)
2000{
2001 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 2002 gdb_byte *regs = gregs;
7fdafb5a
MK
2003 int i;
2004
2005 gdb_assert (len == tdep->sizeof_gregset);
2006
2007 for (i = 0; i < tdep->gregset_num_regs; i++)
2008 {
2009 if ((regnum == i || regnum == -1)
2010 && tdep->gregset_reg_offset[i] != -1)
2011 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
2012 }
2013}
2014
2015/* Supply register REGNUM from the buffer specified by FPREGS and LEN
2016 in the floating-point register set REGSET to register cache
2017 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
2018
2019static void
2020i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2021 int regnum, const void *fpregs, size_t len)
2022{
9ea75c57 2023 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0 2024
66a72d25
MK
2025 if (len == I387_SIZEOF_FXSAVE)
2026 {
2027 i387_supply_fxsave (regcache, regnum, fpregs);
2028 return;
2029 }
2030
473f17b0
MK
2031 gdb_assert (len == tdep->sizeof_fpregset);
2032 i387_supply_fsave (regcache, regnum, fpregs);
2033}
8446b36a 2034
2f305df1
MK
2035/* Collect register REGNUM from the register cache REGCACHE and store
2036 it in the buffer specified by FPREGS and LEN as described by the
2037 floating-point register set REGSET. If REGNUM is -1, do this for
2038 all registers in REGSET. */
7fdafb5a
MK
2039
2040static void
2041i386_collect_fpregset (const struct regset *regset,
2042 const struct regcache *regcache,
2043 int regnum, void *fpregs, size_t len)
2044{
2045 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2046
2047 if (len == I387_SIZEOF_FXSAVE)
2048 {
2049 i387_collect_fxsave (regcache, regnum, fpregs);
2050 return;
2051 }
2052
2053 gdb_assert (len == tdep->sizeof_fpregset);
2054 i387_collect_fsave (regcache, regnum, fpregs);
2055}
2056
8446b36a
MK
2057/* Return the appropriate register set for the core section identified
2058 by SECT_NAME and SECT_SIZE. */
2059
2060const struct regset *
2061i386_regset_from_core_section (struct gdbarch *gdbarch,
2062 const char *sect_name, size_t sect_size)
2063{
2064 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2065
2066 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
2067 {
2068 if (tdep->gregset == NULL)
7fdafb5a
MK
2069 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
2070 i386_collect_gregset);
8446b36a
MK
2071 return tdep->gregset;
2072 }
2073
66a72d25
MK
2074 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2075 || (strcmp (sect_name, ".reg-xfp") == 0
2076 && sect_size == I387_SIZEOF_FXSAVE))
8446b36a
MK
2077 {
2078 if (tdep->fpregset == NULL)
7fdafb5a
MK
2079 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
2080 i386_collect_fpregset);
8446b36a
MK
2081 return tdep->fpregset;
2082 }
2083
2084 return NULL;
2085}
473f17b0 2086\f
fc338970 2087
fc338970 2088/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
2089
2090CORE_ADDR
1cce71eb 2091i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 2092{
fc338970 2093 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 2094 {
c5aa993b 2095 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 2096 struct minimal_symbol *indsym =
fc338970 2097 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
645dd519 2098 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 2099
c5aa993b 2100 if (symname)
c906108c 2101 {
c5aa993b
JM
2102 if (strncmp (symname, "__imp_", 6) == 0
2103 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
2104 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
2105 }
2106 }
fc338970 2107 return 0; /* Not a trampoline. */
c906108c 2108}
fc338970
MK
2109\f
2110
377d9ebd 2111/* Return whether the frame preceding NEXT_FRAME corresponds to a
911bc6ee 2112 sigtramp routine. */
8201327c
MK
2113
2114static int
911bc6ee 2115i386_sigtramp_p (struct frame_info *next_frame)
8201327c 2116{
911bc6ee
MK
2117 CORE_ADDR pc = frame_pc_unwind (next_frame);
2118 char *name;
2119
2120 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
2121 return (name && strcmp ("_sigtramp", name) == 0);
2122}
2123\f
2124
fc338970
MK
2125/* We have two flavours of disassembly. The machinery on this page
2126 deals with switching between those. */
c906108c
SS
2127
2128static int
a89aa300 2129i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 2130{
5e3397bb
MK
2131 gdb_assert (disassembly_flavor == att_flavor
2132 || disassembly_flavor == intel_flavor);
2133
2134 /* FIXME: kettenis/20020915: Until disassembler_options is properly
2135 constified, cast to prevent a compiler warning. */
2136 info->disassembler_options = (char *) disassembly_flavor;
5e3397bb
MK
2137
2138 return print_insn_i386 (pc, info);
7a292a7a 2139}
fc338970 2140\f
3ce1502b 2141
8201327c
MK
2142/* There are a few i386 architecture variants that differ only
2143 slightly from the generic i386 target. For now, we don't give them
2144 their own source file, but include them here. As a consequence,
2145 they'll always be included. */
3ce1502b 2146
8201327c 2147/* System V Release 4 (SVR4). */
3ce1502b 2148
377d9ebd 2149/* Return whether the frame preceding NEXT_FRAME corresponds to a SVR4
911bc6ee
MK
2150 sigtramp routine. */
2151
8201327c 2152static int
911bc6ee 2153i386_svr4_sigtramp_p (struct frame_info *next_frame)
d2a7c97a 2154{
911bc6ee
MK
2155 CORE_ADDR pc = frame_pc_unwind (next_frame);
2156 char *name;
2157
acd5c798
MK
2158 /* UnixWare uses _sigacthandler. The origin of the other symbols is
2159 currently unknown. */
911bc6ee 2160 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
2161 return (name && (strcmp ("_sigreturn", name) == 0
2162 || strcmp ("_sigacthandler", name) == 0
2163 || strcmp ("sigvechandler", name) == 0));
2164}
d2a7c97a 2165
acd5c798
MK
2166/* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
2167 routine, return the address of the associated sigcontext (ucontext)
2168 structure. */
3ce1502b 2169
3a1e71e3 2170static CORE_ADDR
acd5c798 2171i386_svr4_sigcontext_addr (struct frame_info *next_frame)
8201327c 2172{
63c0089f 2173 gdb_byte buf[4];
acd5c798 2174 CORE_ADDR sp;
3ce1502b 2175
acd5c798
MK
2176 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
2177 sp = extract_unsigned_integer (buf, 4);
21d0e8a4 2178
acd5c798 2179 return read_memory_unsigned_integer (sp + 8, 4);
8201327c
MK
2180}
2181\f
3ce1502b 2182
8201327c 2183/* Generic ELF. */
d2a7c97a 2184
8201327c
MK
2185void
2186i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2187{
c4fc7f1b
MK
2188 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
2189 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8201327c 2190}
3ce1502b 2191
8201327c 2192/* System V Release 4 (SVR4). */
3ce1502b 2193
8201327c
MK
2194void
2195i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2196{
2197 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2198
8201327c
MK
2199 /* System V Release 4 uses ELF. */
2200 i386_elf_init_abi (info, gdbarch);
3ce1502b 2201
dfe01d39 2202 /* System V Release 4 has shared libraries. */
dfe01d39
MK
2203 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2204
911bc6ee 2205 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 2206 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
2207 tdep->sc_pc_offset = 36 + 14 * 4;
2208 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 2209
8201327c 2210 tdep->jb_pc_offset = 20;
3ce1502b
MK
2211}
2212
8201327c 2213/* DJGPP. */
3ce1502b 2214
3a1e71e3 2215static void
8201327c 2216i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 2217{
8201327c 2218 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2219
911bc6ee
MK
2220 /* DJGPP doesn't have any special frames for signal handlers. */
2221 tdep->sigtramp_p = NULL;
3ce1502b 2222
8201327c 2223 tdep->jb_pc_offset = 36;
3ce1502b 2224}
8201327c 2225\f
2acceee2 2226
38c968cf
AC
2227/* i386 register groups. In addition to the normal groups, add "mmx"
2228 and "sse". */
2229
2230static struct reggroup *i386_sse_reggroup;
2231static struct reggroup *i386_mmx_reggroup;
2232
2233static void
2234i386_init_reggroups (void)
2235{
2236 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2237 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2238}
2239
2240static void
2241i386_add_reggroups (struct gdbarch *gdbarch)
2242{
2243 reggroup_add (gdbarch, i386_sse_reggroup);
2244 reggroup_add (gdbarch, i386_mmx_reggroup);
2245 reggroup_add (gdbarch, general_reggroup);
2246 reggroup_add (gdbarch, float_reggroup);
2247 reggroup_add (gdbarch, all_reggroup);
2248 reggroup_add (gdbarch, save_reggroup);
2249 reggroup_add (gdbarch, restore_reggroup);
2250 reggroup_add (gdbarch, vector_reggroup);
2251 reggroup_add (gdbarch, system_reggroup);
2252}
2253
2254int
2255i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2256 struct reggroup *group)
2257{
5716833c
MK
2258 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2259 || i386_mxcsr_regnum_p (gdbarch, regnum));
20a6ec49
MD
2260 int fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
2261 || i386_fpc_regnum_p (gdbarch, regnum));
5716833c 2262 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
acd5c798 2263
38c968cf
AC
2264 if (group == i386_mmx_reggroup)
2265 return mmx_regnum_p;
2266 if (group == i386_sse_reggroup)
2267 return sse_regnum_p;
2268 if (group == vector_reggroup)
2269 return (mmx_regnum_p || sse_regnum_p);
2270 if (group == float_reggroup)
2271 return fp_regnum_p;
2272 if (group == general_reggroup)
2273 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
acd5c798 2274
38c968cf
AC
2275 return default_register_reggroup_p (gdbarch, regnum, group);
2276}
38c968cf 2277\f
acd5c798 2278
f837910f
MK
2279/* Get the ARGIth function argument for the current function. */
2280
42c466d7 2281static CORE_ADDR
143985b7
AF
2282i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2283 struct type *type)
2284{
f837910f
MK
2285 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
2286 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
143985b7
AF
2287}
2288
2289\f
3a1e71e3 2290static struct gdbarch *
a62cc96e
AC
2291i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2292{
cd3c07fc 2293 struct gdbarch_tdep *tdep;
a62cc96e
AC
2294 struct gdbarch *gdbarch;
2295
4be87837
DJ
2296 /* If there is already a candidate, use it. */
2297 arches = gdbarch_list_lookup_by_info (arches, &info);
2298 if (arches != NULL)
2299 return arches->gdbarch;
a62cc96e
AC
2300
2301 /* Allocate space for the new architecture. */
794ac428 2302 tdep = XCALLOC (1, struct gdbarch_tdep);
a62cc96e
AC
2303 gdbarch = gdbarch_alloc (&info, tdep);
2304
473f17b0
MK
2305 /* General-purpose registers. */
2306 tdep->gregset = NULL;
2307 tdep->gregset_reg_offset = NULL;
2308 tdep->gregset_num_regs = I386_NUM_GREGS;
2309 tdep->sizeof_gregset = 0;
2310
2311 /* Floating-point registers. */
2312 tdep->fpregset = NULL;
2313 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
2314
5716833c 2315 /* The default settings include the FPU registers, the MMX registers
fd35795f 2316 and the SSE registers. This can be overridden for a specific ABI
5716833c
MK
2317 by adjusting the members `st0_regnum', `mm0_regnum' and
2318 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
2319 will show up in the output of "info all-registers". Ideally we
2320 should try to autodetect whether they are available, such that we
2321 can prevent "info all-registers" from displaying registers that
2322 aren't available.
2323
2324 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2325 [the SSE registers] always (even when they don't exist) or never
2326 showing them to the user (even when they do exist), I prefer the
2327 former over the latter. */
2328
2329 tdep->st0_regnum = I386_ST0_REGNUM;
2330
2331 /* The MMX registers are implemented as pseudo-registers. Put off
fd35795f 2332 calculating the register number for %mm0 until we know the number
5716833c
MK
2333 of raw registers. */
2334 tdep->mm0_regnum = 0;
2335
2336 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
49ed40de 2337 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
d2a7c97a 2338
8201327c
MK
2339 tdep->jb_pc_offset = -1;
2340 tdep->struct_return = pcc_struct_return;
8201327c
MK
2341 tdep->sigtramp_start = 0;
2342 tdep->sigtramp_end = 0;
911bc6ee 2343 tdep->sigtramp_p = i386_sigtramp_p;
21d0e8a4 2344 tdep->sigcontext_addr = NULL;
a3386186 2345 tdep->sc_reg_offset = NULL;
8201327c 2346 tdep->sc_pc_offset = -1;
21d0e8a4 2347 tdep->sc_sp_offset = -1;
8201327c 2348
896fb97d
MK
2349 /* The format used for `long double' on almost all i386 targets is
2350 the i387 extended floating-point format. In fact, of all targets
2351 in the GCC 2.95 tree, only OSF/1 does it different, and insists
2352 on having a `long double' that's not `long' at all. */
8da61cc4 2353 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
21d0e8a4 2354
66da5fd8 2355 /* Although the i387 extended floating-point has only 80 significant
896fb97d
MK
2356 bits, a `long double' actually takes up 96, probably to enforce
2357 alignment. */
2358 set_gdbarch_long_double_bit (gdbarch, 96);
2359
49ed40de
KB
2360 /* The default ABI includes general-purpose registers,
2361 floating-point registers, and the SSE registers. */
2362 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
acd5c798
MK
2363 set_gdbarch_register_name (gdbarch, i386_register_name);
2364 set_gdbarch_register_type (gdbarch, i386_register_type);
21d0e8a4 2365
acd5c798
MK
2366 /* Register numbers of various important registers. */
2367 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2368 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2369 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2370 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
356a6b3e 2371
c4fc7f1b
MK
2372 /* NOTE: kettenis/20040418: GCC does have two possible register
2373 numbering schemes on the i386: dbx and SVR4. These schemes
2374 differ in how they number %ebp, %esp, %eflags, and the
fd35795f 2375 floating-point registers, and are implemented by the arrays
c4fc7f1b
MK
2376 dbx_register_map[] and svr4_dbx_register_map in
2377 gcc/config/i386.c. GCC also defines a third numbering scheme in
2378 gcc/config/i386.c, which it designates as the "default" register
2379 map used in 64bit mode. This last register numbering scheme is
d4dc1a91 2380 implemented in dbx64_register_map, and is used for AMD64; see
c4fc7f1b
MK
2381 amd64-tdep.c.
2382
2383 Currently, each GCC i386 target always uses the same register
2384 numbering scheme across all its supported debugging formats
2385 i.e. SDB (COFF), stabs and DWARF 2. This is because
2386 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2387 DBX_REGISTER_NUMBER macro which is defined by each target's
2388 respective config header in a manner independent of the requested
2389 output debugging format.
2390
2391 This does not match the arrangement below, which presumes that
2392 the SDB and stabs numbering schemes differ from the DWARF and
2393 DWARF 2 ones. The reason for this arrangement is that it is
2394 likely to get the numbering scheme for the target's
2395 default/native debug format right. For targets where GCC is the
2396 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2397 targets where the native toolchain uses a different numbering
2398 scheme for a particular debug format (stabs-in-ELF on Solaris)
d4dc1a91
BF
2399 the defaults below will have to be overridden, like
2400 i386_elf_init_abi() does. */
c4fc7f1b
MK
2401
2402 /* Use the dbx register numbering scheme for stabs and COFF. */
2403 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2404 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2405
2406 /* Use the SVR4 register numbering scheme for DWARF and DWARF 2. */
2407 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2408 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
356a6b3e 2409
055d23b8 2410 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
356a6b3e
MK
2411 be in use on any of the supported i386 targets. */
2412
61113f8b
MK
2413 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2414
8201327c 2415 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
96297dab 2416
a62cc96e 2417 /* Call dummy code. */
acd5c798 2418 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
a62cc96e 2419
ff2e87ac
AC
2420 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2421 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
2422 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
b6197528 2423
c5e656c1 2424 set_gdbarch_return_value (gdbarch, i386_return_value);
8201327c 2425
93924b6b
MK
2426 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2427
2428 /* Stack grows downward. */
2429 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2430
2431 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2432 set_gdbarch_decr_pc_after_break (gdbarch, 1);
42fdc8df 2433
42fdc8df 2434 set_gdbarch_frame_args_skip (gdbarch, 8);
8201327c 2435
28fc6740 2436 /* Wire in the MMX registers. */
0f751ff2 2437 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
28fc6740
AC
2438 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2439 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2440
5e3397bb
MK
2441 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2442
acd5c798 2443 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
acd5c798
MK
2444
2445 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2446
38c968cf
AC
2447 /* Add the i386 register groups. */
2448 i386_add_reggroups (gdbarch);
2449 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2450
143985b7
AF
2451 /* Helper for function argument information. */
2452 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2453
6405b0a6 2454 /* Hook in the DWARF CFI frame unwinder. */
336d1bba 2455 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
6405b0a6 2456
acd5c798 2457 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 2458
3ce1502b 2459 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 2460 gdbarch_init_osabi (info, gdbarch);
3ce1502b 2461
336d1bba
AC
2462 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
2463 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
acd5c798 2464
8446b36a
MK
2465 /* If we have a register mapping, enable the generic core file
2466 support, unless it has already been enabled. */
2467 if (tdep->gregset_reg_offset
2468 && !gdbarch_regset_from_core_section_p (gdbarch))
2469 set_gdbarch_regset_from_core_section (gdbarch,
2470 i386_regset_from_core_section);
2471
5716833c
MK
2472 /* Unless support for MMX has been disabled, make %mm0 the first
2473 pseudo-register. */
2474 if (tdep->mm0_regnum == 0)
2475 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2476
a62cc96e
AC
2477 return gdbarch;
2478}
2479
8201327c
MK
2480static enum gdb_osabi
2481i386_coff_osabi_sniffer (bfd *abfd)
2482{
762c5349
MK
2483 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2484 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
2485 return GDB_OSABI_GO32;
2486
2487 return GDB_OSABI_UNKNOWN;
2488}
8201327c
MK
2489\f
2490
28e9e0f0
MK
2491/* Provide a prototype to silence -Wmissing-prototypes. */
2492void _initialize_i386_tdep (void);
2493
c906108c 2494void
fba45db2 2495_initialize_i386_tdep (void)
c906108c 2496{
a62cc96e
AC
2497 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2498
fc338970 2499 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
2500 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
2501 &disassembly_flavor, _("\
2502Set the disassembly flavor."), _("\
2503Show the disassembly flavor."), _("\
2504The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
2505 NULL,
2506 NULL, /* FIXME: i18n: */
2507 &setlist, &showlist);
8201327c
MK
2508
2509 /* Add the variable that controls the convention for returning
2510 structs. */
7ab04401
AC
2511 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
2512 &struct_convention, _("\
2513Set the convention for returning small structs."), _("\
2514Show the convention for returning small structs."), _("\
2515Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
2516is \"default\"."),
2517 NULL,
2518 NULL, /* FIXME: i18n: */
2519 &setlist, &showlist);
8201327c
MK
2520
2521 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2522 i386_coff_osabi_sniffer);
8201327c 2523
05816f70 2524 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 2525 i386_svr4_init_abi);
05816f70 2526 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 2527 i386_go32_init_abi);
38c968cf 2528
5ae96ec1 2529 /* Initialize the i386-specific register groups & types. */
38c968cf 2530 i386_init_reggroups ();
5ae96ec1 2531 i386_init_types();
c906108c 2532}