]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/i386-tdep.c
Fix conditional assembly listings when more than one .else/.elsif
[thirdparty/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
b6ba6518
KB
2 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001
c906108c
SS
4 Free Software Foundation, Inc.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include "frame.h"
26#include "inferior.h"
27#include "gdbcore.h"
28#include "target.h"
29#include "floatformat.h"
30#include "symtab.h"
31#include "gdbcmd.h"
32#include "command.h"
b4a20239 33#include "arch-utils.h"
4e052eda 34#include "regcache.h"
c906108c 35
917317f4
JM
36/* i386_register_byte[i] is the offset into the register file of the
37 start of register number i. We initialize this from
38 i386_register_raw_size. */
39int i386_register_byte[MAX_NUM_REGS];
40
ceb4951f
JB
41/* i386_register_raw_size[i] is the number of bytes of storage in
42 GDB's register array occupied by register i. */
917317f4
JM
43int i386_register_raw_size[MAX_NUM_REGS] = {
44 4, 4, 4, 4,
45 4, 4, 4, 4,
46 4, 4, 4, 4,
47 4, 4, 4, 4,
48 10, 10, 10, 10,
49 10, 10, 10, 10,
50 4, 4, 4, 4,
51 4, 4, 4, 4,
52 16, 16, 16, 16,
53 16, 16, 16, 16,
54 4
55};
56
57/* i386_register_virtual_size[i] is the size in bytes of the virtual
58 type of register i. */
59int i386_register_virtual_size[MAX_NUM_REGS];
fc338970 60\f
917317f4 61
fc338970
MK
62/* This is the variable that is set with "set disassembly-flavor", and
63 its legitimate values. */
53904c9e
AC
64static const char att_flavor[] = "att";
65static const char intel_flavor[] = "intel";
66static const char *valid_flavors[] =
c5aa993b 67{
c906108c
SS
68 att_flavor,
69 intel_flavor,
70 NULL
71};
53904c9e 72static const char *disassembly_flavor = att_flavor;
c906108c 73
fc338970
MK
74/* This is used to keep the bfd arch_info in sync with the disassembly
75 flavor. */
a14ed312
KB
76static void set_disassembly_flavor_sfunc (char *, int,
77 struct cmd_list_element *);
78static void set_disassembly_flavor (void);
fc338970
MK
79\f
80
81/* Stdio style buffering was used to minimize calls to ptrace, but
82 this buffering did not take into account that the code section
83 being accessed may not be an even number of buffers long (even if
84 the buffer is only sizeof(int) long). In cases where the code
85 section size happened to be a non-integral number of buffers long,
86 attempting to read the last buffer would fail. Simply using
87 target_read_memory and ignoring errors, rather than read_memory, is
88 not the correct solution, since legitimate access errors would then
89 be totally ignored. To properly handle this situation and continue
90 to use buffering would require that this code be able to determine
91 the minimum code section size granularity (not the alignment of the
92 section itself, since the actual failing case that pointed out this
93 problem had a section alignment of 4 but was not a multiple of 4
94 bytes long), on a target by target basis, and then adjust it's
95 buffer size accordingly. This is messy, but potentially feasible.
96 It probably needs the bfd library's help and support. For now, the
97 buffer size is set to 1. (FIXME -fnf) */
98
99#define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
c906108c
SS
100static CORE_ADDR codestream_next_addr;
101static CORE_ADDR codestream_addr;
102static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
103static int codestream_off;
104static int codestream_cnt;
105
106#define codestream_tell() (codestream_addr + codestream_off)
fc338970
MK
107#define codestream_peek() \
108 (codestream_cnt == 0 ? \
109 codestream_fill(1) : codestream_buf[codestream_off])
110#define codestream_get() \
111 (codestream_cnt-- == 0 ? \
112 codestream_fill(0) : codestream_buf[codestream_off++])
c906108c 113
c5aa993b 114static unsigned char
fba45db2 115codestream_fill (int peek_flag)
c906108c
SS
116{
117 codestream_addr = codestream_next_addr;
118 codestream_next_addr += CODESTREAM_BUFSIZ;
119 codestream_off = 0;
120 codestream_cnt = CODESTREAM_BUFSIZ;
121 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
c5aa993b 122
c906108c 123 if (peek_flag)
c5aa993b 124 return (codestream_peek ());
c906108c 125 else
c5aa993b 126 return (codestream_get ());
c906108c
SS
127}
128
129static void
fba45db2 130codestream_seek (CORE_ADDR place)
c906108c
SS
131{
132 codestream_next_addr = place / CODESTREAM_BUFSIZ;
133 codestream_next_addr *= CODESTREAM_BUFSIZ;
134 codestream_cnt = 0;
135 codestream_fill (1);
c5aa993b 136 while (codestream_tell () != place)
c906108c
SS
137 codestream_get ();
138}
139
140static void
fba45db2 141codestream_read (unsigned char *buf, int count)
c906108c
SS
142{
143 unsigned char *p;
144 int i;
145 p = buf;
146 for (i = 0; i < count; i++)
147 *p++ = codestream_get ();
148}
fc338970 149\f
c906108c 150
fc338970 151/* If the next instruction is a jump, move to its target. */
c906108c
SS
152
153static void
fba45db2 154i386_follow_jump (void)
c906108c
SS
155{
156 unsigned char buf[4];
157 long delta;
158
159 int data16;
160 CORE_ADDR pos;
161
162 pos = codestream_tell ();
163
164 data16 = 0;
165 if (codestream_peek () == 0x66)
166 {
167 codestream_get ();
168 data16 = 1;
169 }
170
171 switch (codestream_get ())
172 {
173 case 0xe9:
fc338970 174 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
175 if (data16)
176 {
177 codestream_read (buf, 2);
178 delta = extract_signed_integer (buf, 2);
179
fc338970
MK
180 /* Include the size of the jmp instruction (including the
181 0x66 prefix). */
c5aa993b 182 pos += delta + 4;
c906108c
SS
183 }
184 else
185 {
186 codestream_read (buf, 4);
187 delta = extract_signed_integer (buf, 4);
188
189 pos += delta + 5;
190 }
191 break;
192 case 0xeb:
fc338970 193 /* Relative jump, disp8 (ignore data16). */
c906108c
SS
194 codestream_read (buf, 1);
195 /* Sign-extend it. */
196 delta = extract_signed_integer (buf, 1);
197
198 pos += delta + 2;
199 break;
200 }
201 codestream_seek (pos);
202}
203
fc338970
MK
204/* Find & return the amount a local space allocated, and advance the
205 codestream to the first register push (if any).
206
207 If the entry sequence doesn't make sense, return -1, and leave
208 codestream pointer at a random spot. */
c906108c
SS
209
210static long
fba45db2 211i386_get_frame_setup (CORE_ADDR pc)
c906108c
SS
212{
213 unsigned char op;
214
215 codestream_seek (pc);
216
217 i386_follow_jump ();
218
219 op = codestream_get ();
220
221 if (op == 0x58) /* popl %eax */
222 {
fc338970
MK
223 /* This function must start with
224
225 popl %eax 0x58
226 xchgl %eax, (%esp) 0x87 0x04 0x24
227 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
228
229 (the System V compiler puts out the second `xchg'
230 instruction, and the assembler doesn't try to optimize it, so
231 the 'sib' form gets generated). This sequence is used to get
232 the address of the return buffer for a function that returns
233 a structure. */
c906108c
SS
234 int pos;
235 unsigned char buf[4];
fc338970
MK
236 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
237 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
238
c906108c
SS
239 pos = codestream_tell ();
240 codestream_read (buf, 4);
241 if (memcmp (buf, proto1, 3) == 0)
242 pos += 3;
243 else if (memcmp (buf, proto2, 4) == 0)
244 pos += 4;
245
246 codestream_seek (pos);
fc338970 247 op = codestream_get (); /* Update next opcode. */
c906108c
SS
248 }
249
250 if (op == 0x68 || op == 0x6a)
251 {
fc338970
MK
252 /* This function may start with
253
254 pushl constant
255 call _probe
256 addl $4, %esp
257
258 followed by
259
260 pushl %ebp
261
262 etc. */
c906108c
SS
263 int pos;
264 unsigned char buf[8];
265
fc338970 266 /* Skip past the `pushl' instruction; it has either a one-byte
c906108c
SS
267 or a four-byte operand, depending on the opcode. */
268 pos = codestream_tell ();
269 if (op == 0x68)
270 pos += 4;
271 else
272 pos += 1;
273 codestream_seek (pos);
274
fc338970
MK
275 /* Read the following 8 bytes, which should be "call _probe" (6
276 bytes) followed by "addl $4,%esp" (2 bytes). */
c906108c
SS
277 codestream_read (buf, sizeof (buf));
278 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
279 pos += sizeof (buf);
280 codestream_seek (pos);
fc338970 281 op = codestream_get (); /* Update next opcode. */
c906108c
SS
282 }
283
284 if (op == 0x55) /* pushl %ebp */
c5aa993b 285 {
fc338970 286 /* Check for "movl %esp, %ebp" -- can be written in two ways. */
c906108c
SS
287 switch (codestream_get ())
288 {
289 case 0x8b:
290 if (codestream_get () != 0xec)
fc338970 291 return -1;
c906108c
SS
292 break;
293 case 0x89:
294 if (codestream_get () != 0xe5)
fc338970 295 return -1;
c906108c
SS
296 break;
297 default:
fc338970 298 return -1;
c906108c 299 }
fc338970
MK
300 /* Check for stack adjustment
301
302 subl $XXX, %esp
303
304 NOTE: You can't subtract a 16 bit immediate from a 32 bit
305 reg, so we don't have to worry about a data16 prefix. */
c906108c
SS
306 op = codestream_peek ();
307 if (op == 0x83)
308 {
fc338970 309 /* `subl' with 8 bit immediate. */
c906108c
SS
310 codestream_get ();
311 if (codestream_get () != 0xec)
fc338970 312 /* Some instruction starting with 0x83 other than `subl'. */
c906108c
SS
313 {
314 codestream_seek (codestream_tell () - 2);
315 return 0;
316 }
fc338970
MK
317 /* `subl' with signed byte immediate (though it wouldn't
318 make sense to be negative). */
c5aa993b 319 return (codestream_get ());
c906108c
SS
320 }
321 else if (op == 0x81)
322 {
323 char buf[4];
fc338970 324 /* Maybe it is `subl' with a 32 bit immedediate. */
c5aa993b 325 codestream_get ();
c906108c 326 if (codestream_get () != 0xec)
fc338970 327 /* Some instruction starting with 0x81 other than `subl'. */
c906108c
SS
328 {
329 codestream_seek (codestream_tell () - 2);
330 return 0;
331 }
fc338970 332 /* It is `subl' with a 32 bit immediate. */
c5aa993b 333 codestream_read ((unsigned char *) buf, 4);
c906108c
SS
334 return extract_signed_integer (buf, 4);
335 }
336 else
337 {
fc338970 338 return 0;
c906108c
SS
339 }
340 }
341 else if (op == 0xc8)
342 {
343 char buf[2];
fc338970 344 /* `enter' with 16 bit unsigned immediate. */
c5aa993b 345 codestream_read ((unsigned char *) buf, 2);
fc338970 346 codestream_get (); /* Flush final byte of enter instruction. */
c906108c
SS
347 return extract_unsigned_integer (buf, 2);
348 }
349 return (-1);
350}
351
352/* Return number of args passed to a frame.
353 Can return -1, meaning no way to tell. */
354
355int
fba45db2 356i386_frame_num_args (struct frame_info *fi)
c906108c
SS
357{
358#if 1
359 return -1;
360#else
361 /* This loses because not only might the compiler not be popping the
fc338970
MK
362 args right after the function call, it might be popping args from
363 both this call and a previous one, and we would say there are
364 more args than there really are. */
c906108c 365
c5aa993b
JM
366 int retpc;
367 unsigned char op;
c906108c
SS
368 struct frame_info *pfi;
369
fc338970 370 /* On the i386, the instruction following the call could be:
c906108c
SS
371 popl %ecx - one arg
372 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
fc338970 373 anything else - zero args. */
c906108c
SS
374
375 int frameless;
376
392a587b 377 frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
c906108c 378 if (frameless)
fc338970
MK
379 /* In the absence of a frame pointer, GDB doesn't get correct
380 values for nameless arguments. Return -1, so it doesn't print
381 any nameless arguments. */
c906108c
SS
382 return -1;
383
c5aa993b 384 pfi = get_prev_frame (fi);
c906108c
SS
385 if (pfi == 0)
386 {
fc338970
MK
387 /* NOTE: This can happen if we are looking at the frame for
388 main, because FRAME_CHAIN_VALID won't let us go into start.
389 If we have debugging symbols, that's not really a big deal;
390 it just means it will only show as many arguments to main as
391 are declared. */
c906108c
SS
392 return -1;
393 }
394 else
395 {
c5aa993b
JM
396 retpc = pfi->pc;
397 op = read_memory_integer (retpc, 1);
fc338970 398 if (op == 0x59) /* pop %ecx */
c5aa993b 399 return 1;
c906108c
SS
400 else if (op == 0x83)
401 {
c5aa993b
JM
402 op = read_memory_integer (retpc + 1, 1);
403 if (op == 0xc4)
404 /* addl $<signed imm 8 bits>, %esp */
405 return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
c906108c
SS
406 else
407 return 0;
408 }
fc338970
MK
409 else if (op == 0x81) /* `add' with 32 bit immediate. */
410 {
c5aa993b
JM
411 op = read_memory_integer (retpc + 1, 1);
412 if (op == 0xc4)
413 /* addl $<imm 32>, %esp */
414 return read_memory_integer (retpc + 2, 4) / 4;
c906108c
SS
415 else
416 return 0;
417 }
418 else
419 {
420 return 0;
421 }
422 }
423#endif
424}
425
fc338970
MK
426/* Parse the first few instructions the function to see what registers
427 were stored.
428
429 We handle these cases:
430
431 The startup sequence can be at the start of the function, or the
432 function can start with a branch to startup code at the end.
433
434 %ebp can be set up with either the 'enter' instruction, or "pushl
435 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
436 once used in the System V compiler).
437
438 Local space is allocated just below the saved %ebp by either the
439 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
440 bit unsigned argument for space to allocate, and the 'addl'
441 instruction could have either a signed byte, or 32 bit immediate.
442
443 Next, the registers used by this function are pushed. With the
444 System V compiler they will always be in the order: %edi, %esi,
445 %ebx (and sometimes a harmless bug causes it to also save but not
446 restore %eax); however, the code below is willing to see the pushes
447 in any order, and will handle up to 8 of them.
448
449 If the setup sequence is at the end of the function, then the next
450 instruction will be a branch back to the start. */
c906108c
SS
451
452void
fba45db2 453i386_frame_init_saved_regs (struct frame_info *fip)
c906108c
SS
454{
455 long locals = -1;
456 unsigned char op;
457 CORE_ADDR dummy_bottom;
fc338970 458 CORE_ADDR addr;
c906108c
SS
459 CORE_ADDR pc;
460 int i;
c5aa993b 461
1211c4e4
AC
462 if (fip->saved_regs)
463 return;
464
465 frame_saved_regs_zalloc (fip);
c5aa993b 466
fc338970
MK
467 /* If the frame is the end of a dummy, compute where the beginning
468 would be. */
c906108c 469 dummy_bottom = fip->frame - 4 - REGISTER_BYTES - CALL_DUMMY_LENGTH;
c5aa993b 470
fc338970 471 /* Check if the PC points in the stack, in a dummy frame. */
c5aa993b 472 if (dummy_bottom <= fip->pc && fip->pc <= fip->frame)
c906108c 473 {
fc338970
MK
474 /* All registers were saved by push_call_dummy. */
475 addr = fip->frame;
c5aa993b 476 for (i = 0; i < NUM_REGS; i++)
c906108c 477 {
fc338970
MK
478 addr -= REGISTER_RAW_SIZE (i);
479 fip->saved_regs[i] = addr;
c906108c
SS
480 }
481 return;
482 }
c5aa993b 483
c906108c
SS
484 pc = get_pc_function_start (fip->pc);
485 if (pc != 0)
486 locals = i386_get_frame_setup (pc);
c5aa993b
JM
487
488 if (locals >= 0)
c906108c 489 {
fc338970 490 addr = fip->frame - 4 - locals;
c5aa993b 491 for (i = 0; i < 8; i++)
c906108c
SS
492 {
493 op = codestream_get ();
494 if (op < 0x50 || op > 0x57)
495 break;
496#ifdef I386_REGNO_TO_SYMMETRY
497 /* Dynix uses different internal numbering. Ick. */
fc338970 498 fip->saved_regs[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr;
c906108c 499#else
fc338970 500 fip->saved_regs[op - 0x50] = addr;
c906108c 501#endif
fc338970 502 addr -= 4;
c906108c
SS
503 }
504 }
c5aa993b 505
1211c4e4
AC
506 fip->saved_regs[PC_REGNUM] = fip->frame + 4;
507 fip->saved_regs[FP_REGNUM] = fip->frame;
c906108c
SS
508}
509
fc338970 510/* Return PC of first real instruction. */
c906108c
SS
511
512int
fba45db2 513i386_skip_prologue (int pc)
c906108c
SS
514{
515 unsigned char op;
516 int i;
c5aa993b 517 static unsigned char pic_pat[6] =
fc338970
MK
518 { 0xe8, 0, 0, 0, 0, /* call 0x0 */
519 0x5b, /* popl %ebx */
c5aa993b 520 };
c906108c 521 CORE_ADDR pos;
c5aa993b 522
c906108c
SS
523 if (i386_get_frame_setup (pc) < 0)
524 return (pc);
c5aa993b 525
fc338970
MK
526 /* Found valid frame setup -- codestream now points to start of push
527 instructions for saving registers. */
c5aa993b 528
fc338970 529 /* Skip over register saves. */
c906108c
SS
530 for (i = 0; i < 8; i++)
531 {
532 op = codestream_peek ();
fc338970 533 /* Break if not `pushl' instrunction. */
c5aa993b 534 if (op < 0x50 || op > 0x57)
c906108c
SS
535 break;
536 codestream_get ();
537 }
538
fc338970
MK
539 /* The native cc on SVR4 in -K PIC mode inserts the following code
540 to get the address of the global offset table (GOT) into register
541 %ebx
542
543 call 0x0
544 popl %ebx
545 movl %ebx,x(%ebp) (optional)
546 addl y,%ebx
547
c906108c
SS
548 This code is with the rest of the prologue (at the end of the
549 function), so we have to skip it to get to the first real
550 instruction at the start of the function. */
c5aa993b 551
c906108c
SS
552 pos = codestream_tell ();
553 for (i = 0; i < 6; i++)
554 {
555 op = codestream_get ();
c5aa993b 556 if (pic_pat[i] != op)
c906108c
SS
557 break;
558 }
559 if (i == 6)
560 {
561 unsigned char buf[4];
562 long delta = 6;
563
564 op = codestream_get ();
c5aa993b 565 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c
SS
566 {
567 op = codestream_get ();
fc338970 568 if (op == 0x5d) /* One byte offset from %ebp. */
c906108c
SS
569 {
570 delta += 3;
571 codestream_read (buf, 1);
572 }
fc338970 573 else if (op == 0x9d) /* Four byte offset from %ebp. */
c906108c
SS
574 {
575 delta += 6;
576 codestream_read (buf, 4);
577 }
fc338970 578 else /* Unexpected instruction. */
c5aa993b
JM
579 delta = -1;
580 op = codestream_get ();
c906108c 581 }
c5aa993b
JM
582 /* addl y,%ebx */
583 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
c906108c 584 {
c5aa993b 585 pos += delta + 6;
c906108c
SS
586 }
587 }
588 codestream_seek (pos);
c5aa993b 589
c906108c 590 i386_follow_jump ();
c5aa993b 591
c906108c
SS
592 return (codestream_tell ());
593}
594
595void
fba45db2 596i386_push_dummy_frame (void)
c906108c
SS
597{
598 CORE_ADDR sp = read_register (SP_REGNUM);
599 int regnum;
600 char regbuf[MAX_REGISTER_RAW_SIZE];
c5aa993b 601
c906108c
SS
602 sp = push_word (sp, read_register (PC_REGNUM));
603 sp = push_word (sp, read_register (FP_REGNUM));
604 write_register (FP_REGNUM, sp);
605 for (regnum = 0; regnum < NUM_REGS; regnum++)
606 {
607 read_register_gen (regnum, regbuf);
608 sp = push_bytes (sp, regbuf, REGISTER_RAW_SIZE (regnum));
609 }
610 write_register (SP_REGNUM, sp);
611}
612
a7769679
MK
613/* Insert the (relative) function address into the call sequence
614 stored at DYMMY. */
615
616void
617i386_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
618 value_ptr *args, struct type *type, int gcc_p)
619{
620 int from, to, delta, loc;
621
622 loc = (int)(read_register (SP_REGNUM) - CALL_DUMMY_LENGTH);
623 from = loc + 5;
624 to = (int)(fun);
625 delta = to - from;
626
627 *((char *)(dummy) + 1) = (delta & 0xff);
628 *((char *)(dummy) + 2) = ((delta >> 8) & 0xff);
629 *((char *)(dummy) + 3) = ((delta >> 16) & 0xff);
630 *((char *)(dummy) + 4) = ((delta >> 24) & 0xff);
631}
632
c906108c 633void
fba45db2 634i386_pop_frame (void)
c906108c
SS
635{
636 struct frame_info *frame = get_current_frame ();
637 CORE_ADDR fp;
638 int regnum;
c906108c 639 char regbuf[MAX_REGISTER_RAW_SIZE];
c5aa993b 640
c906108c 641 fp = FRAME_FP (frame);
1211c4e4
AC
642 i386_frame_init_saved_regs (frame);
643
c5aa993b 644 for (regnum = 0; regnum < NUM_REGS; regnum++)
c906108c 645 {
fc338970
MK
646 CORE_ADDR addr;
647 addr = frame->saved_regs[regnum];
648 if (addr)
c906108c 649 {
fc338970 650 read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum));
c906108c
SS
651 write_register_bytes (REGISTER_BYTE (regnum), regbuf,
652 REGISTER_RAW_SIZE (regnum));
653 }
654 }
655 write_register (FP_REGNUM, read_memory_integer (fp, 4));
656 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
657 write_register (SP_REGNUM, fp + 8);
658 flush_cached_frames ();
659}
fc338970 660\f
c906108c
SS
661
662#ifdef GET_LONGJMP_TARGET
663
fc338970
MK
664/* Figure out where the longjmp will land. Slurp the args out of the
665 stack. We expect the first arg to be a pointer to the jmp_buf
666 structure from which we extract the pc (JB_PC) that we will land
667 at. The pc is copied into PC. This routine returns true on
668 success. */
c906108c
SS
669
670int
fba45db2 671get_longjmp_target (CORE_ADDR *pc)
c906108c
SS
672{
673 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
674 CORE_ADDR sp, jb_addr;
675
676 sp = read_register (SP_REGNUM);
677
fc338970 678 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack. */
c906108c
SS
679 buf,
680 TARGET_PTR_BIT / TARGET_CHAR_BIT))
681 return 0;
682
683 jb_addr = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
684
685 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
686 TARGET_PTR_BIT / TARGET_CHAR_BIT))
687 return 0;
688
689 *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
690
691 return 1;
692}
693
694#endif /* GET_LONGJMP_TARGET */
fc338970 695\f
c906108c 696
22f8ba57
MK
697CORE_ADDR
698i386_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
699 int struct_return, CORE_ADDR struct_addr)
700{
701 sp = default_push_arguments (nargs, args, sp, struct_return, struct_addr);
702
703 if (struct_return)
704 {
705 char buf[4];
706
707 sp -= 4;
708 store_address (buf, 4, struct_addr);
709 write_memory (sp, buf, 4);
710 }
711
712 return sp;
713}
714
715void
716i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
717{
718 /* Do nothing. Everything was already done by i386_push_arguments. */
719}
720
1a309862
MK
721/* These registers are used for returning integers (and on some
722 targets also for returning `struct' and `union' values when their
ef9dff19 723 size and alignment match an integer type). */
1a309862
MK
724#define LOW_RETURN_REGNUM 0 /* %eax */
725#define HIGH_RETURN_REGNUM 2 /* %edx */
726
727/* Extract from an array REGBUF containing the (raw) register state, a
728 function return value of TYPE, and copy that, in virtual format,
729 into VALBUF. */
730
c906108c 731void
1a309862 732i386_extract_return_value (struct type *type, char *regbuf, char *valbuf)
c906108c 733{
1a309862
MK
734 int len = TYPE_LENGTH (type);
735
c5aa993b 736 if (TYPE_CODE_FLT == TYPE_CODE (type))
c906108c 737 {
1a309862
MK
738 if (NUM_FREGS == 0)
739 {
740 warning ("Cannot find floating-point return value.");
741 memset (valbuf, 0, len);
ef9dff19 742 return;
1a309862
MK
743 }
744
745 /* Floating-point return values can be found in %st(0). */
746 if (len == TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT
747 && TARGET_LONG_DOUBLE_FORMAT == &floatformat_i387_ext)
748 {
749 /* Copy straight over, but take care of the padding. */
750 memcpy (valbuf, &regbuf[REGISTER_BYTE (FP0_REGNUM)],
751 FPU_REG_RAW_SIZE);
752 memset (valbuf + FPU_REG_RAW_SIZE, 0, len - FPU_REG_RAW_SIZE);
753 }
754 else
755 {
756 /* Convert the extended floating-point number found in
757 %st(0) to the desired type. This is probably not exactly
758 how it would happen on the target itself, but it is the
759 best we can do. */
760 DOUBLEST val;
761 floatformat_to_doublest (&floatformat_i387_ext,
762 &regbuf[REGISTER_BYTE (FP0_REGNUM)], &val);
763 store_floating (valbuf, TYPE_LENGTH (type), val);
764 }
c906108c
SS
765 }
766 else
c5aa993b 767 {
d4f3574e
SS
768 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
769 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
770
771 if (len <= low_size)
1a309862 772 memcpy (valbuf, &regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)], len);
d4f3574e
SS
773 else if (len <= (low_size + high_size))
774 {
775 memcpy (valbuf,
1a309862 776 &regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)], low_size);
d4f3574e 777 memcpy (valbuf + low_size,
1a309862 778 &regbuf[REGISTER_BYTE (HIGH_RETURN_REGNUM)], len - low_size);
d4f3574e
SS
779 }
780 else
8e65ff28
AC
781 internal_error (__FILE__, __LINE__,
782 "Cannot extract return value of %d bytes long.", len);
c906108c
SS
783 }
784}
785
ef9dff19
MK
786/* Write into the appropriate registers a function return value stored
787 in VALBUF of type TYPE, given in virtual format. */
788
789void
790i386_store_return_value (struct type *type, char *valbuf)
791{
792 int len = TYPE_LENGTH (type);
793
794 if (TYPE_CODE_FLT == TYPE_CODE (type))
795 {
796 if (NUM_FREGS == 0)
797 {
798 warning ("Cannot set floating-point return value.");
799 return;
800 }
801
802 /* Floating-point return values can be found in %st(0). */
803 if (len == TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT
804 && TARGET_LONG_DOUBLE_FORMAT == &floatformat_i387_ext)
805 {
806 /* Copy straight over. */
807 write_register_bytes (REGISTER_BYTE (FP0_REGNUM), valbuf,
808 FPU_REG_RAW_SIZE);
809 }
810 else
811 {
812 char buf[FPU_REG_RAW_SIZE];
813 DOUBLEST val;
814
815 /* Convert the value found in VALBUF to the extended
816 floating point format used by the FPU. This is probably
817 not exactly how it would happen on the target itself, but
818 it is the best we can do. */
819 val = extract_floating (valbuf, TYPE_LENGTH (type));
820 floatformat_from_doublest (&floatformat_i387_ext, &val, buf);
821 write_register_bytes (REGISTER_BYTE (FP0_REGNUM), buf,
822 FPU_REG_RAW_SIZE);
823 }
824 }
825 else
826 {
827 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
828 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
829
830 if (len <= low_size)
831 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM), valbuf, len);
832 else if (len <= (low_size + high_size))
833 {
834 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM),
835 valbuf, low_size);
836 write_register_bytes (REGISTER_BYTE (HIGH_RETURN_REGNUM),
837 valbuf + low_size, len - low_size);
838 }
839 else
8e65ff28
AC
840 internal_error (__FILE__, __LINE__,
841 "Cannot store return value of %d bytes long.", len);
ef9dff19
MK
842 }
843}
fc338970 844\f
ef9dff19 845
ac27f131
MK
846/* Convert data from raw format for register REGNUM in buffer FROM to
847 virtual format with type TYPE in buffer TO. In principle both
848 formats are identical except that the virtual format has two extra
849 bytes appended that aren't used. We set these to zero. */
850
851void
852i386_register_convert_to_virtual (int regnum, struct type *type,
853 char *from, char *to)
854{
855 /* Copy straight over, but take care of the padding. */
856 memcpy (to, from, FPU_REG_RAW_SIZE);
857 memset (to + FPU_REG_RAW_SIZE, 0, TYPE_LENGTH (type) - FPU_REG_RAW_SIZE);
858}
859
860/* Convert data from virtual format with type TYPE in buffer FROM to
861 raw format for register REGNUM in buffer TO. Simply omit the two
862 unused bytes. */
863
864void
865i386_register_convert_to_raw (struct type *type, int regnum,
866 char *from, char *to)
867{
868 memcpy (to, from, FPU_REG_RAW_SIZE);
869}
ac27f131 870\f
fc338970 871
c906108c 872#ifdef I386V4_SIGTRAMP_SAVED_PC
fc338970
MK
873/* Get saved user PC for sigtramp from the pushed ucontext on the
874 stack for all three variants of SVR4 sigtramps. */
c906108c
SS
875
876CORE_ADDR
fba45db2 877i386v4_sigtramp_saved_pc (struct frame_info *frame)
c906108c
SS
878{
879 CORE_ADDR saved_pc_offset = 4;
880 char *name = NULL;
881
882 find_pc_partial_function (frame->pc, &name, NULL, NULL);
883 if (name)
884 {
885 if (STREQ (name, "_sigreturn"))
886 saved_pc_offset = 132 + 14 * 4;
887 else if (STREQ (name, "_sigacthandler"))
888 saved_pc_offset = 80 + 14 * 4;
889 else if (STREQ (name, "sigvechandler"))
890 saved_pc_offset = 120 + 14 * 4;
891 }
892
893 if (frame->next)
894 return read_memory_integer (frame->next->frame + saved_pc_offset, 4);
895 return read_memory_integer (read_register (SP_REGNUM) + saved_pc_offset, 4);
896}
897#endif /* I386V4_SIGTRAMP_SAVED_PC */
fc338970 898\f
a0b3c4fd 899
c906108c 900#ifdef STATIC_TRANSFORM_NAME
fc338970
MK
901/* SunPRO encodes the static variables. This is not related to C++
902 mangling, it is done for C too. */
c906108c
SS
903
904char *
fba45db2 905sunpro_static_transform_name (char *name)
c906108c
SS
906{
907 char *p;
908 if (IS_STATIC_TRANSFORM_NAME (name))
909 {
fc338970
MK
910 /* For file-local statics there will be a period, a bunch of
911 junk (the contents of which match a string given in the
c5aa993b
JM
912 N_OPT), a period and the name. For function-local statics
913 there will be a bunch of junk (which seems to change the
914 second character from 'A' to 'B'), a period, the name of the
915 function, and the name. So just skip everything before the
916 last period. */
c906108c
SS
917 p = strrchr (name, '.');
918 if (p != NULL)
919 name = p + 1;
920 }
921 return name;
922}
923#endif /* STATIC_TRANSFORM_NAME */
fc338970 924\f
c906108c 925
fc338970 926/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
927
928CORE_ADDR
fba45db2 929skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 930{
fc338970 931 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 932 {
c5aa993b 933 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 934 struct minimal_symbol *indsym =
fc338970 935 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
c5aa993b 936 char *symname = indsym ? SYMBOL_NAME (indsym) : 0;
c906108c 937
c5aa993b 938 if (symname)
c906108c 939 {
c5aa993b
JM
940 if (strncmp (symname, "__imp_", 6) == 0
941 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
942 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
943 }
944 }
fc338970 945 return 0; /* Not a trampoline. */
c906108c 946}
fc338970
MK
947\f
948
949/* We have two flavours of disassembly. The machinery on this page
950 deals with switching between those. */
c906108c
SS
951
952static int
fba45db2 953gdb_print_insn_i386 (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
954{
955 if (disassembly_flavor == att_flavor)
956 return print_insn_i386_att (memaddr, info);
957 else if (disassembly_flavor == intel_flavor)
958 return print_insn_i386_intel (memaddr, info);
fc338970
MK
959 /* Never reached -- disassembly_flavour is always either att_flavor
960 or intel_flavor. */
e1e9e218 961 internal_error (__FILE__, __LINE__, "failed internal consistency check");
7a292a7a
SS
962}
963
fc338970
MK
964/* If the disassembly mode is intel, we have to also switch the bfd
965 mach_type. This function is run in the set disassembly_flavor
7a292a7a
SS
966 command, and does that. */
967
968static void
fba45db2
KB
969set_disassembly_flavor_sfunc (char *args, int from_tty,
970 struct cmd_list_element *c)
7a292a7a
SS
971{
972 set_disassembly_flavor ();
7a292a7a
SS
973}
974
975static void
fba45db2 976set_disassembly_flavor (void)
7a292a7a
SS
977{
978 if (disassembly_flavor == att_flavor)
979 set_architecture_from_arch_mach (bfd_arch_i386, bfd_mach_i386_i386);
980 else if (disassembly_flavor == intel_flavor)
fc338970
MK
981 set_architecture_from_arch_mach (bfd_arch_i386,
982 bfd_mach_i386_i386_intel_syntax);
c906108c 983}
fc338970 984\f
2acceee2 985
28e9e0f0
MK
986/* Provide a prototype to silence -Wmissing-prototypes. */
987void _initialize_i386_tdep (void);
988
c906108c 989void
fba45db2 990_initialize_i386_tdep (void)
c906108c 991{
917317f4
JM
992 /* Initialize the table saying where each register starts in the
993 register file. */
994 {
995 int i, offset;
996
997 offset = 0;
998 for (i = 0; i < MAX_NUM_REGS; i++)
999 {
1000 i386_register_byte[i] = offset;
1001 offset += i386_register_raw_size[i];
1002 }
1003 }
1004
1005 /* Initialize the table of virtual register sizes. */
1006 {
1007 int i;
1008
1009 for (i = 0; i < MAX_NUM_REGS; i++)
1010 i386_register_virtual_size[i] = TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (i));
1011 }
c5aa993b 1012
c906108c
SS
1013 tm_print_insn = gdb_print_insn_i386;
1014 tm_print_insn_info.mach = bfd_lookup_arch (bfd_arch_i386, 0)->mach;
1015
fc338970 1016 /* Add the variable that controls the disassembly flavor. */
917317f4
JM
1017 {
1018 struct cmd_list_element *new_cmd;
7a292a7a 1019
917317f4
JM
1020 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1021 valid_flavors,
1ed2a135 1022 &disassembly_flavor,
fc338970
MK
1023 "\
1024Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
c906108c 1025and the default value is \"att\".",
917317f4
JM
1026 &setlist);
1027 new_cmd->function.sfunc = set_disassembly_flavor_sfunc;
1028 add_show_from_set (new_cmd, &showlist);
1029 }
c5aa993b 1030
7a292a7a 1031 /* Finally, initialize the disassembly flavor to the default given
fc338970 1032 in the disassembly_flavor variable. */
7a292a7a 1033 set_disassembly_flavor ();
c906108c 1034}