]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/i386-tdep.c
2003-04-01 Andrew Cagney <cagney@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f
AC
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4be87837 4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include "frame.h"
26#include "inferior.h"
27#include "gdbcore.h"
dfe01d39 28#include "objfiles.h"
c906108c
SS
29#include "target.h"
30#include "floatformat.h"
c0d1d883 31#include "symfile.h"
c906108c
SS
32#include "symtab.h"
33#include "gdbcmd.h"
34#include "command.h"
b4a20239 35#include "arch-utils.h"
4e052eda 36#include "regcache.h"
d16aafd8 37#include "doublest.h"
fd0407d6 38#include "value.h"
3d261580 39#include "gdb_assert.h"
38c968cf 40#include "reggroups.h"
5a4d6ff4 41#include "dummy-frame.h"
4be87837 42#include "osabi.h"
3d261580 43
d2a7c97a 44#include "i386-tdep.h"
61113f8b 45#include "i387-tdep.h"
d2a7c97a 46
fc633446
MK
47/* Names of the registers. The first 10 registers match the register
48 numbering scheme used by GCC for stabs and DWARF. */
49static char *i386_register_names[] =
50{
51 "eax", "ecx", "edx", "ebx",
52 "esp", "ebp", "esi", "edi",
53 "eip", "eflags", "cs", "ss",
54 "ds", "es", "fs", "gs",
55 "st0", "st1", "st2", "st3",
56 "st4", "st5", "st6", "st7",
57 "fctrl", "fstat", "ftag", "fiseg",
58 "fioff", "foseg", "fooff", "fop",
59 "xmm0", "xmm1", "xmm2", "xmm3",
60 "xmm4", "xmm5", "xmm6", "xmm7",
61 "mxcsr"
62};
63
28fc6740
AC
64/* MMX registers. */
65
66static char *i386_mmx_names[] =
67{
68 "mm0", "mm1", "mm2", "mm3",
69 "mm4", "mm5", "mm6", "mm7"
70};
71static const int mmx_num_regs = (sizeof (i386_mmx_names)
72 / sizeof (i386_mmx_names[0]));
73#define MM0_REGNUM (NUM_REGS)
74
75static int
23a34459 76i386_mmx_regnum_p (int reg)
28fc6740
AC
77{
78 return (reg >= MM0_REGNUM && reg < MM0_REGNUM + mmx_num_regs);
79}
80
23a34459
AC
81/* FP register? */
82
83int
84i386_fp_regnum_p (int regnum)
85{
86 return (regnum < NUM_REGS
87 && (FP0_REGNUM && FP0_REGNUM <= (regnum) && (regnum) < FPC_REGNUM));
88}
89
90int
91i386_fpc_regnum_p (int regnum)
92{
93 return (regnum < NUM_REGS
94 && (FPC_REGNUM <= (regnum) && (regnum) < XMM0_REGNUM));
95}
96
97/* SSE register? */
98
99int
100i386_sse_regnum_p (int regnum)
101{
102 return (regnum < NUM_REGS
103 && (XMM0_REGNUM <= (regnum) && (regnum) < MXCSR_REGNUM));
104}
105
106int
107i386_mxcsr_regnum_p (int regnum)
108{
109 return (regnum < NUM_REGS
110 && (regnum == MXCSR_REGNUM));
111}
112
fc633446
MK
113/* Return the name of register REG. */
114
fa88f677 115const char *
fc633446
MK
116i386_register_name (int reg)
117{
118 if (reg < 0)
119 return NULL;
23a34459 120 if (i386_mmx_regnum_p (reg))
28fc6740 121 return i386_mmx_names[reg - MM0_REGNUM];
fc633446
MK
122 if (reg >= sizeof (i386_register_names) / sizeof (*i386_register_names))
123 return NULL;
124
125 return i386_register_names[reg];
126}
127
85540d8c
MK
128/* Convert stabs register number REG to the appropriate register
129 number used by GDB. */
130
8201327c 131static int
85540d8c
MK
132i386_stab_reg_to_regnum (int reg)
133{
134 /* This implements what GCC calls the "default" register map. */
135 if (reg >= 0 && reg <= 7)
136 {
137 /* General registers. */
138 return reg;
139 }
140 else if (reg >= 12 && reg <= 19)
141 {
142 /* Floating-point registers. */
143 return reg - 12 + FP0_REGNUM;
144 }
145 else if (reg >= 21 && reg <= 28)
146 {
147 /* SSE registers. */
148 return reg - 21 + XMM0_REGNUM;
149 }
150 else if (reg >= 29 && reg <= 36)
151 {
152 /* MMX registers. */
7d12f766 153 return reg - 29 + MM0_REGNUM;
85540d8c
MK
154 }
155
156 /* This will hopefully provoke a warning. */
157 return NUM_REGS + NUM_PSEUDO_REGS;
158}
159
8201327c 160/* Convert DWARF register number REG to the appropriate register
85540d8c
MK
161 number used by GDB. */
162
8201327c 163static int
85540d8c
MK
164i386_dwarf_reg_to_regnum (int reg)
165{
166 /* The DWARF register numbering includes %eip and %eflags, and
167 numbers the floating point registers differently. */
168 if (reg >= 0 && reg <= 9)
169 {
170 /* General registers. */
171 return reg;
172 }
173 else if (reg >= 11 && reg <= 18)
174 {
175 /* Floating-point registers. */
176 return reg - 11 + FP0_REGNUM;
177 }
178 else if (reg >= 21)
179 {
180 /* The SSE and MMX registers have identical numbers as in stabs. */
181 return i386_stab_reg_to_regnum (reg);
182 }
183
184 /* This will hopefully provoke a warning. */
185 return NUM_REGS + NUM_PSEUDO_REGS;
186}
fc338970 187\f
917317f4 188
fc338970
MK
189/* This is the variable that is set with "set disassembly-flavor", and
190 its legitimate values. */
53904c9e
AC
191static const char att_flavor[] = "att";
192static const char intel_flavor[] = "intel";
193static const char *valid_flavors[] =
c5aa993b 194{
c906108c
SS
195 att_flavor,
196 intel_flavor,
197 NULL
198};
53904c9e 199static const char *disassembly_flavor = att_flavor;
c906108c 200
fc338970
MK
201/* Stdio style buffering was used to minimize calls to ptrace, but
202 this buffering did not take into account that the code section
203 being accessed may not be an even number of buffers long (even if
204 the buffer is only sizeof(int) long). In cases where the code
205 section size happened to be a non-integral number of buffers long,
206 attempting to read the last buffer would fail. Simply using
207 target_read_memory and ignoring errors, rather than read_memory, is
208 not the correct solution, since legitimate access errors would then
209 be totally ignored. To properly handle this situation and continue
210 to use buffering would require that this code be able to determine
211 the minimum code section size granularity (not the alignment of the
212 section itself, since the actual failing case that pointed out this
213 problem had a section alignment of 4 but was not a multiple of 4
214 bytes long), on a target by target basis, and then adjust it's
215 buffer size accordingly. This is messy, but potentially feasible.
216 It probably needs the bfd library's help and support. For now, the
217 buffer size is set to 1. (FIXME -fnf) */
218
219#define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
c906108c
SS
220static CORE_ADDR codestream_next_addr;
221static CORE_ADDR codestream_addr;
222static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
223static int codestream_off;
224static int codestream_cnt;
225
226#define codestream_tell() (codestream_addr + codestream_off)
fc338970
MK
227#define codestream_peek() \
228 (codestream_cnt == 0 ? \
229 codestream_fill(1) : codestream_buf[codestream_off])
230#define codestream_get() \
231 (codestream_cnt-- == 0 ? \
232 codestream_fill(0) : codestream_buf[codestream_off++])
c906108c 233
c5aa993b 234static unsigned char
fba45db2 235codestream_fill (int peek_flag)
c906108c
SS
236{
237 codestream_addr = codestream_next_addr;
238 codestream_next_addr += CODESTREAM_BUFSIZ;
239 codestream_off = 0;
240 codestream_cnt = CODESTREAM_BUFSIZ;
241 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
c5aa993b 242
c906108c 243 if (peek_flag)
c5aa993b 244 return (codestream_peek ());
c906108c 245 else
c5aa993b 246 return (codestream_get ());
c906108c
SS
247}
248
249static void
fba45db2 250codestream_seek (CORE_ADDR place)
c906108c
SS
251{
252 codestream_next_addr = place / CODESTREAM_BUFSIZ;
253 codestream_next_addr *= CODESTREAM_BUFSIZ;
254 codestream_cnt = 0;
255 codestream_fill (1);
c5aa993b 256 while (codestream_tell () != place)
c906108c
SS
257 codestream_get ();
258}
259
260static void
fba45db2 261codestream_read (unsigned char *buf, int count)
c906108c
SS
262{
263 unsigned char *p;
264 int i;
265 p = buf;
266 for (i = 0; i < count; i++)
267 *p++ = codestream_get ();
268}
fc338970 269\f
c906108c 270
fc338970 271/* If the next instruction is a jump, move to its target. */
c906108c
SS
272
273static void
fba45db2 274i386_follow_jump (void)
c906108c
SS
275{
276 unsigned char buf[4];
277 long delta;
278
279 int data16;
280 CORE_ADDR pos;
281
282 pos = codestream_tell ();
283
284 data16 = 0;
285 if (codestream_peek () == 0x66)
286 {
287 codestream_get ();
288 data16 = 1;
289 }
290
291 switch (codestream_get ())
292 {
293 case 0xe9:
fc338970 294 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
295 if (data16)
296 {
297 codestream_read (buf, 2);
298 delta = extract_signed_integer (buf, 2);
299
fc338970
MK
300 /* Include the size of the jmp instruction (including the
301 0x66 prefix). */
c5aa993b 302 pos += delta + 4;
c906108c
SS
303 }
304 else
305 {
306 codestream_read (buf, 4);
307 delta = extract_signed_integer (buf, 4);
308
309 pos += delta + 5;
310 }
311 break;
312 case 0xeb:
fc338970 313 /* Relative jump, disp8 (ignore data16). */
c906108c
SS
314 codestream_read (buf, 1);
315 /* Sign-extend it. */
316 delta = extract_signed_integer (buf, 1);
317
318 pos += delta + 2;
319 break;
320 }
321 codestream_seek (pos);
322}
323
fc338970
MK
324/* Find & return the amount a local space allocated, and advance the
325 codestream to the first register push (if any).
326
327 If the entry sequence doesn't make sense, return -1, and leave
328 codestream pointer at a random spot. */
c906108c
SS
329
330static long
fba45db2 331i386_get_frame_setup (CORE_ADDR pc)
c906108c
SS
332{
333 unsigned char op;
334
335 codestream_seek (pc);
336
337 i386_follow_jump ();
338
339 op = codestream_get ();
340
341 if (op == 0x58) /* popl %eax */
342 {
fc338970
MK
343 /* This function must start with
344
345 popl %eax 0x58
346 xchgl %eax, (%esp) 0x87 0x04 0x24
347 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
348
349 (the System V compiler puts out the second `xchg'
350 instruction, and the assembler doesn't try to optimize it, so
351 the 'sib' form gets generated). This sequence is used to get
352 the address of the return buffer for a function that returns
353 a structure. */
c906108c
SS
354 int pos;
355 unsigned char buf[4];
fc338970
MK
356 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
357 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
358
c906108c
SS
359 pos = codestream_tell ();
360 codestream_read (buf, 4);
361 if (memcmp (buf, proto1, 3) == 0)
362 pos += 3;
363 else if (memcmp (buf, proto2, 4) == 0)
364 pos += 4;
365
366 codestream_seek (pos);
fc338970 367 op = codestream_get (); /* Update next opcode. */
c906108c
SS
368 }
369
370 if (op == 0x68 || op == 0x6a)
371 {
fc338970
MK
372 /* This function may start with
373
374 pushl constant
375 call _probe
376 addl $4, %esp
377
378 followed by
379
380 pushl %ebp
381
382 etc. */
c906108c
SS
383 int pos;
384 unsigned char buf[8];
385
fc338970 386 /* Skip past the `pushl' instruction; it has either a one-byte
c906108c
SS
387 or a four-byte operand, depending on the opcode. */
388 pos = codestream_tell ();
389 if (op == 0x68)
390 pos += 4;
391 else
392 pos += 1;
393 codestream_seek (pos);
394
fc338970
MK
395 /* Read the following 8 bytes, which should be "call _probe" (6
396 bytes) followed by "addl $4,%esp" (2 bytes). */
c906108c
SS
397 codestream_read (buf, sizeof (buf));
398 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
399 pos += sizeof (buf);
400 codestream_seek (pos);
fc338970 401 op = codestream_get (); /* Update next opcode. */
c906108c
SS
402 }
403
404 if (op == 0x55) /* pushl %ebp */
c5aa993b 405 {
fc338970 406 /* Check for "movl %esp, %ebp" -- can be written in two ways. */
c906108c
SS
407 switch (codestream_get ())
408 {
409 case 0x8b:
410 if (codestream_get () != 0xec)
fc338970 411 return -1;
c906108c
SS
412 break;
413 case 0x89:
414 if (codestream_get () != 0xe5)
fc338970 415 return -1;
c906108c
SS
416 break;
417 default:
fc338970 418 return -1;
c906108c 419 }
fc338970
MK
420 /* Check for stack adjustment
421
422 subl $XXX, %esp
423
424 NOTE: You can't subtract a 16 bit immediate from a 32 bit
425 reg, so we don't have to worry about a data16 prefix. */
c906108c
SS
426 op = codestream_peek ();
427 if (op == 0x83)
428 {
fc338970 429 /* `subl' with 8 bit immediate. */
c906108c
SS
430 codestream_get ();
431 if (codestream_get () != 0xec)
fc338970 432 /* Some instruction starting with 0x83 other than `subl'. */
c906108c
SS
433 {
434 codestream_seek (codestream_tell () - 2);
435 return 0;
436 }
fc338970
MK
437 /* `subl' with signed byte immediate (though it wouldn't
438 make sense to be negative). */
c5aa993b 439 return (codestream_get ());
c906108c
SS
440 }
441 else if (op == 0x81)
442 {
443 char buf[4];
fc338970 444 /* Maybe it is `subl' with a 32 bit immedediate. */
c5aa993b 445 codestream_get ();
c906108c 446 if (codestream_get () != 0xec)
fc338970 447 /* Some instruction starting with 0x81 other than `subl'. */
c906108c
SS
448 {
449 codestream_seek (codestream_tell () - 2);
450 return 0;
451 }
fc338970 452 /* It is `subl' with a 32 bit immediate. */
c5aa993b 453 codestream_read ((unsigned char *) buf, 4);
c906108c
SS
454 return extract_signed_integer (buf, 4);
455 }
456 else
457 {
fc338970 458 return 0;
c906108c
SS
459 }
460 }
461 else if (op == 0xc8)
462 {
463 char buf[2];
fc338970 464 /* `enter' with 16 bit unsigned immediate. */
c5aa993b 465 codestream_read ((unsigned char *) buf, 2);
fc338970 466 codestream_get (); /* Flush final byte of enter instruction. */
c906108c
SS
467 return extract_unsigned_integer (buf, 2);
468 }
469 return (-1);
470}
471
6bff26de
MK
472/* Signal trampolines don't have a meaningful frame. The frame
473 pointer value we use is actually the frame pointer of the calling
474 frame -- that is, the frame which was in progress when the signal
475 trampoline was entered. GDB mostly treats this frame pointer value
476 as a magic cookie. We detect the case of a signal trampoline by
5a203e44
AC
477 testing for get_frame_type() == SIGTRAMP_FRAME, which is set based
478 on PC_IN_SIGTRAMP.
6bff26de
MK
479
480 When a signal trampoline is invoked from a frameless function, we
481 essentially have two frameless functions in a row. In this case,
482 we use the same magic cookie for three frames in a row. We detect
5a203e44
AC
483 this case by seeing whether the next frame is a SIGTRAMP_FRAME,
484 and, if it does, checking whether the current frame is actually
485 frameless. In this case, we need to get the PC by looking at the
486 SP register value stored in the signal context.
6bff26de
MK
487
488 This should work in most cases except in horrible situations where
489 a signal occurs just as we enter a function but before the frame
c0d1d883
MK
490 has been set up. Incidentally, that's just what happens when we
491 call a function from GDB with a signal pending (there's a test in
492 the testsuite that makes this happen). Therefore we pretend that
493 we have a frameless function if we're stopped at the start of a
494 function. */
6bff26de
MK
495
496/* Return non-zero if we're dealing with a frameless signal, that is,
497 a signal trampoline invoked from a frameless function. */
498
5512c44a 499int
6bff26de
MK
500i386_frameless_signal_p (struct frame_info *frame)
501{
11c02a10
AC
502 return (get_next_frame (frame)
503 && get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME
c0d1d883 504 && (frameless_look_for_prologue (frame)
50abf9e5 505 || get_frame_pc (frame) == get_pc_function_start (get_frame_pc (frame))));
6bff26de
MK
506}
507
c833a37e
MK
508/* Return the chain-pointer for FRAME. In the case of the i386, the
509 frame's nominal address is the address of a 4-byte word containing
510 the calling frame's address. */
511
8201327c 512static CORE_ADDR
c833a37e
MK
513i386_frame_chain (struct frame_info *frame)
514{
50abf9e5 515 if (pc_in_dummy_frame (get_frame_pc (frame)))
1e2330ba 516 return get_frame_base (frame);
c0d1d883 517
5a203e44 518 if (get_frame_type (frame) == SIGTRAMP_FRAME
6bff26de 519 || i386_frameless_signal_p (frame))
1e2330ba 520 return get_frame_base (frame);
c833a37e 521
50abf9e5 522 if (! inside_entry_file (get_frame_pc (frame)))
1e2330ba 523 return read_memory_unsigned_integer (get_frame_base (frame), 4);
c833a37e
MK
524
525 return 0;
526}
527
539ffe0b
MK
528/* Determine whether the function invocation represented by FRAME does
529 not have a from on the stack associated with it. If it does not,
530 return non-zero, otherwise return zero. */
531
3a1e71e3 532static int
539ffe0b
MK
533i386_frameless_function_invocation (struct frame_info *frame)
534{
5a203e44 535 if (get_frame_type (frame) == SIGTRAMP_FRAME)
539ffe0b
MK
536 return 0;
537
538 return frameless_look_for_prologue (frame);
539}
540
21d0e8a4
MK
541/* Assuming FRAME is for a sigtramp routine, return the saved program
542 counter. */
543
544static CORE_ADDR
545i386_sigtramp_saved_pc (struct frame_info *frame)
546{
547 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
548 CORE_ADDR addr;
549
550 addr = tdep->sigcontext_addr (frame);
551 return read_memory_unsigned_integer (addr + tdep->sc_pc_offset, 4);
552}
553
6bff26de
MK
554/* Assuming FRAME is for a sigtramp routine, return the saved stack
555 pointer. */
556
557static CORE_ADDR
558i386_sigtramp_saved_sp (struct frame_info *frame)
559{
560 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
561 CORE_ADDR addr;
562
563 addr = tdep->sigcontext_addr (frame);
564 return read_memory_unsigned_integer (addr + tdep->sc_sp_offset, 4);
565}
566
0d17c81d
MK
567/* Return the saved program counter for FRAME. */
568
8201327c 569static CORE_ADDR
0d17c81d
MK
570i386_frame_saved_pc (struct frame_info *frame)
571{
50abf9e5 572 if (pc_in_dummy_frame (get_frame_pc (frame)))
267bf4bb
MK
573 {
574 ULONGEST pc;
575
576 frame_unwind_unsigned_register (frame, PC_REGNUM, &pc);
577 return pc;
578 }
c0d1d883 579
5a203e44 580 if (get_frame_type (frame) == SIGTRAMP_FRAME)
21d0e8a4 581 return i386_sigtramp_saved_pc (frame);
0d17c81d 582
6bff26de
MK
583 if (i386_frameless_signal_p (frame))
584 {
11c02a10 585 CORE_ADDR sp = i386_sigtramp_saved_sp (get_next_frame (frame));
6bff26de
MK
586 return read_memory_unsigned_integer (sp, 4);
587 }
588
1e2330ba 589 return read_memory_unsigned_integer (get_frame_base (frame) + 4, 4);
22797942
AC
590}
591
ed84f6c1
MK
592/* Immediately after a function call, return the saved pc. */
593
8201327c 594static CORE_ADDR
ed84f6c1
MK
595i386_saved_pc_after_call (struct frame_info *frame)
596{
5a203e44 597 if (get_frame_type (frame) == SIGTRAMP_FRAME)
6bff26de
MK
598 return i386_sigtramp_saved_pc (frame);
599
ed84f6c1
MK
600 return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
601}
602
c906108c
SS
603/* Return number of args passed to a frame.
604 Can return -1, meaning no way to tell. */
605
3a1e71e3 606static int
fba45db2 607i386_frame_num_args (struct frame_info *fi)
c906108c
SS
608{
609#if 1
610 return -1;
611#else
612 /* This loses because not only might the compiler not be popping the
fc338970
MK
613 args right after the function call, it might be popping args from
614 both this call and a previous one, and we would say there are
615 more args than there really are. */
c906108c 616
c5aa993b
JM
617 int retpc;
618 unsigned char op;
c906108c
SS
619 struct frame_info *pfi;
620
fc338970 621 /* On the i386, the instruction following the call could be:
c906108c
SS
622 popl %ecx - one arg
623 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
fc338970 624 anything else - zero args. */
c906108c
SS
625
626 int frameless;
627
392a587b 628 frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
c906108c 629 if (frameless)
fc338970
MK
630 /* In the absence of a frame pointer, GDB doesn't get correct
631 values for nameless arguments. Return -1, so it doesn't print
632 any nameless arguments. */
c906108c
SS
633 return -1;
634
c5aa993b 635 pfi = get_prev_frame (fi);
c906108c
SS
636 if (pfi == 0)
637 {
fc338970 638 /* NOTE: This can happen if we are looking at the frame for
618ce49f
AC
639 main, because DEPRECATED_FRAME_CHAIN_VALID won't let us go
640 into start. If we have debugging symbols, that's not really
641 a big deal; it just means it will only show as many arguments
642 to main as are declared. */
c906108c
SS
643 return -1;
644 }
645 else
646 {
c5aa993b
JM
647 retpc = pfi->pc;
648 op = read_memory_integer (retpc, 1);
fc338970 649 if (op == 0x59) /* pop %ecx */
c5aa993b 650 return 1;
c906108c
SS
651 else if (op == 0x83)
652 {
c5aa993b
JM
653 op = read_memory_integer (retpc + 1, 1);
654 if (op == 0xc4)
655 /* addl $<signed imm 8 bits>, %esp */
656 return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
c906108c
SS
657 else
658 return 0;
659 }
fc338970
MK
660 else if (op == 0x81) /* `add' with 32 bit immediate. */
661 {
c5aa993b
JM
662 op = read_memory_integer (retpc + 1, 1);
663 if (op == 0xc4)
664 /* addl $<imm 32>, %esp */
665 return read_memory_integer (retpc + 2, 4) / 4;
c906108c
SS
666 else
667 return 0;
668 }
669 else
670 {
671 return 0;
672 }
673 }
674#endif
675}
676
fc338970
MK
677/* Parse the first few instructions the function to see what registers
678 were stored.
679
680 We handle these cases:
681
682 The startup sequence can be at the start of the function, or the
683 function can start with a branch to startup code at the end.
684
685 %ebp can be set up with either the 'enter' instruction, or "pushl
686 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
687 once used in the System V compiler).
688
689 Local space is allocated just below the saved %ebp by either the
690 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
691 bit unsigned argument for space to allocate, and the 'addl'
692 instruction could have either a signed byte, or 32 bit immediate.
693
694 Next, the registers used by this function are pushed. With the
695 System V compiler they will always be in the order: %edi, %esi,
696 %ebx (and sometimes a harmless bug causes it to also save but not
697 restore %eax); however, the code below is willing to see the pushes
698 in any order, and will handle up to 8 of them.
699
700 If the setup sequence is at the end of the function, then the next
701 instruction will be a branch back to the start. */
c906108c 702
3a1e71e3 703static void
fba45db2 704i386_frame_init_saved_regs (struct frame_info *fip)
c906108c
SS
705{
706 long locals = -1;
707 unsigned char op;
fc338970 708 CORE_ADDR addr;
c906108c
SS
709 CORE_ADDR pc;
710 int i;
c5aa993b 711
b2fb4676 712 if (get_frame_saved_regs (fip))
1211c4e4
AC
713 return;
714
715 frame_saved_regs_zalloc (fip);
c5aa993b 716
50abf9e5 717 pc = get_pc_function_start (get_frame_pc (fip));
c906108c
SS
718 if (pc != 0)
719 locals = i386_get_frame_setup (pc);
c5aa993b
JM
720
721 if (locals >= 0)
c906108c 722 {
1e2330ba 723 addr = get_frame_base (fip) - 4 - locals;
c5aa993b 724 for (i = 0; i < 8; i++)
c906108c
SS
725 {
726 op = codestream_get ();
727 if (op < 0x50 || op > 0x57)
728 break;
729#ifdef I386_REGNO_TO_SYMMETRY
730 /* Dynix uses different internal numbering. Ick. */
b2fb4676 731 get_frame_saved_regs (fip)[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr;
c906108c 732#else
b2fb4676 733 get_frame_saved_regs (fip)[op - 0x50] = addr;
c906108c 734#endif
fc338970 735 addr -= 4;
c906108c
SS
736 }
737 }
c5aa993b 738
1e2330ba
AC
739 get_frame_saved_regs (fip)[PC_REGNUM] = get_frame_base (fip) + 4;
740 get_frame_saved_regs (fip)[FP_REGNUM] = get_frame_base (fip);
c906108c
SS
741}
742
fc338970 743/* Return PC of first real instruction. */
c906108c 744
3a1e71e3 745static CORE_ADDR
93924b6b 746i386_skip_prologue (CORE_ADDR pc)
c906108c
SS
747{
748 unsigned char op;
749 int i;
c5aa993b 750 static unsigned char pic_pat[6] =
fc338970
MK
751 { 0xe8, 0, 0, 0, 0, /* call 0x0 */
752 0x5b, /* popl %ebx */
c5aa993b 753 };
c906108c 754 CORE_ADDR pos;
c5aa993b 755
c906108c
SS
756 if (i386_get_frame_setup (pc) < 0)
757 return (pc);
c5aa993b 758
fc338970
MK
759 /* Found valid frame setup -- codestream now points to start of push
760 instructions for saving registers. */
c5aa993b 761
fc338970 762 /* Skip over register saves. */
c906108c
SS
763 for (i = 0; i < 8; i++)
764 {
765 op = codestream_peek ();
fc338970 766 /* Break if not `pushl' instrunction. */
c5aa993b 767 if (op < 0x50 || op > 0x57)
c906108c
SS
768 break;
769 codestream_get ();
770 }
771
fc338970
MK
772 /* The native cc on SVR4 in -K PIC mode inserts the following code
773 to get the address of the global offset table (GOT) into register
774 %ebx
775
776 call 0x0
777 popl %ebx
778 movl %ebx,x(%ebp) (optional)
779 addl y,%ebx
780
c906108c
SS
781 This code is with the rest of the prologue (at the end of the
782 function), so we have to skip it to get to the first real
783 instruction at the start of the function. */
c5aa993b 784
c906108c
SS
785 pos = codestream_tell ();
786 for (i = 0; i < 6; i++)
787 {
788 op = codestream_get ();
c5aa993b 789 if (pic_pat[i] != op)
c906108c
SS
790 break;
791 }
792 if (i == 6)
793 {
794 unsigned char buf[4];
795 long delta = 6;
796
797 op = codestream_get ();
c5aa993b 798 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c
SS
799 {
800 op = codestream_get ();
fc338970 801 if (op == 0x5d) /* One byte offset from %ebp. */
c906108c
SS
802 {
803 delta += 3;
804 codestream_read (buf, 1);
805 }
fc338970 806 else if (op == 0x9d) /* Four byte offset from %ebp. */
c906108c
SS
807 {
808 delta += 6;
809 codestream_read (buf, 4);
810 }
fc338970 811 else /* Unexpected instruction. */
c5aa993b
JM
812 delta = -1;
813 op = codestream_get ();
c906108c 814 }
c5aa993b
JM
815 /* addl y,%ebx */
816 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
c906108c 817 {
c5aa993b 818 pos += delta + 6;
c906108c
SS
819 }
820 }
821 codestream_seek (pos);
c5aa993b 822
c906108c 823 i386_follow_jump ();
c5aa993b 824
c906108c
SS
825 return (codestream_tell ());
826}
827
93924b6b
MK
828/* Use the program counter to determine the contents and size of a
829 breakpoint instruction. Return a pointer to a string of bytes that
830 encode a breakpoint instruction, store the length of the string in
831 *LEN and optionally adjust *PC to point to the correct memory
832 location for inserting the breakpoint.
833
834 On the i386 we have a single breakpoint that fits in a single byte
835 and can be inserted anywhere. */
836
837static const unsigned char *
838i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
839{
840 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
841
842 *len = sizeof (break_insn);
843 return break_insn;
844}
845
c0d1d883
MK
846/* Push the return address (pointing to the call dummy) onto the stack
847 and return the new value for the stack pointer. */
c5aa993b 848
c0d1d883
MK
849static CORE_ADDR
850i386_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
a7769679 851{
c0d1d883 852 char buf[4];
a7769679 853
c0d1d883
MK
854 store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
855 write_memory (sp - 4, buf, 4);
856 return sp - 4;
a7769679
MK
857}
858
3a1e71e3 859static void
c0d1d883 860i386_do_pop_frame (struct frame_info *frame)
c906108c 861{
c906108c
SS
862 CORE_ADDR fp;
863 int regnum;
00f8375e 864 char regbuf[I386_MAX_REGISTER_SIZE];
c5aa993b 865
c193f6ac 866 fp = get_frame_base (frame);
1211c4e4
AC
867 i386_frame_init_saved_regs (frame);
868
c5aa993b 869 for (regnum = 0; regnum < NUM_REGS; regnum++)
c906108c 870 {
fc338970 871 CORE_ADDR addr;
b2fb4676 872 addr = get_frame_saved_regs (frame)[regnum];
fc338970 873 if (addr)
c906108c 874 {
fc338970 875 read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum));
4caf0990 876 deprecated_write_register_gen (regnum, regbuf);
c906108c
SS
877 }
878 }
879 write_register (FP_REGNUM, read_memory_integer (fp, 4));
880 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
881 write_register (SP_REGNUM, fp + 8);
882 flush_cached_frames ();
883}
c0d1d883
MK
884
885static void
886i386_pop_frame (void)
887{
888 generic_pop_current_frame (i386_do_pop_frame);
889}
fc338970 890\f
c906108c 891
fc338970
MK
892/* Figure out where the longjmp will land. Slurp the args out of the
893 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 894 structure from which we extract the address that we will land at.
28bcfd30 895 This address is copied into PC. This routine returns non-zero on
fc338970 896 success. */
c906108c 897
8201327c
MK
898static int
899i386_get_longjmp_target (CORE_ADDR *pc)
c906108c 900{
28bcfd30 901 char buf[8];
c906108c 902 CORE_ADDR sp, jb_addr;
8201327c 903 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
28bcfd30 904 int len = TARGET_PTR_BIT / TARGET_CHAR_BIT;
c906108c 905
8201327c
MK
906 /* If JB_PC_OFFSET is -1, we have no way to find out where the
907 longjmp will land. */
908 if (jb_pc_offset == -1)
c906108c
SS
909 return 0;
910
8201327c 911 sp = read_register (SP_REGNUM);
28bcfd30 912 if (target_read_memory (sp + len, buf, len))
c906108c
SS
913 return 0;
914
28bcfd30
MK
915 jb_addr = extract_address (buf, len);
916 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
8201327c 917 return 0;
c906108c 918
28bcfd30 919 *pc = extract_address (buf, len);
c906108c
SS
920 return 1;
921}
fc338970 922\f
c906108c 923
3a1e71e3 924static CORE_ADDR
ea7c478f 925i386_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
22f8ba57
MK
926 int struct_return, CORE_ADDR struct_addr)
927{
b81774d8 928 sp = legacy_push_arguments (nargs, args, sp, struct_return, struct_addr);
22f8ba57
MK
929
930 if (struct_return)
931 {
932 char buf[4];
933
934 sp -= 4;
935 store_address (buf, 4, struct_addr);
936 write_memory (sp, buf, 4);
937 }
938
939 return sp;
940}
941
1a309862
MK
942/* These registers are used for returning integers (and on some
943 targets also for returning `struct' and `union' values when their
ef9dff19 944 size and alignment match an integer type). */
1a309862
MK
945#define LOW_RETURN_REGNUM 0 /* %eax */
946#define HIGH_RETURN_REGNUM 2 /* %edx */
947
948/* Extract from an array REGBUF containing the (raw) register state, a
949 function return value of TYPE, and copy that, in virtual format,
950 into VALBUF. */
951
3a1e71e3 952static void
00f8375e 953i386_extract_return_value (struct type *type, struct regcache *regcache,
ebba8386 954 void *dst)
c906108c 955{
ebba8386 956 bfd_byte *valbuf = dst;
1a309862 957 int len = TYPE_LENGTH (type);
00f8375e 958 char buf[I386_MAX_REGISTER_SIZE];
1a309862 959
1e8d0a7b
MK
960 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
961 && TYPE_NFIELDS (type) == 1)
3df1b9b4 962 {
00f8375e 963 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
3df1b9b4
MK
964 return;
965 }
1e8d0a7b
MK
966
967 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 968 {
356a6b3e 969 if (FP0_REGNUM == 0)
1a309862
MK
970 {
971 warning ("Cannot find floating-point return value.");
972 memset (valbuf, 0, len);
ef9dff19 973 return;
1a309862
MK
974 }
975
c6ba6f0d
MK
976 /* Floating-point return values can be found in %st(0). Convert
977 its contents to the desired type. This is probably not
978 exactly how it would happen on the target itself, but it is
979 the best we can do. */
0818c12a 980 regcache_raw_read (regcache, FP0_REGNUM, buf);
00f8375e 981 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
c906108c
SS
982 }
983 else
c5aa993b 984 {
d4f3574e
SS
985 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
986 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
987
988 if (len <= low_size)
00f8375e 989 {
0818c12a 990 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
991 memcpy (valbuf, buf, len);
992 }
d4f3574e
SS
993 else if (len <= (low_size + high_size))
994 {
0818c12a 995 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 996 memcpy (valbuf, buf, low_size);
0818c12a 997 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
00f8375e 998 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
999 }
1000 else
8e65ff28
AC
1001 internal_error (__FILE__, __LINE__,
1002 "Cannot extract return value of %d bytes long.", len);
c906108c
SS
1003 }
1004}
1005
ef9dff19
MK
1006/* Write into the appropriate registers a function return value stored
1007 in VALBUF of type TYPE, given in virtual format. */
1008
3a1e71e3 1009static void
3d7f4f49
MK
1010i386_store_return_value (struct type *type, struct regcache *regcache,
1011 const void *valbuf)
ef9dff19
MK
1012{
1013 int len = TYPE_LENGTH (type);
1014
1e8d0a7b
MK
1015 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1016 && TYPE_NFIELDS (type) == 1)
3df1b9b4 1017 {
3d7f4f49 1018 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
3df1b9b4
MK
1019 return;
1020 }
1e8d0a7b
MK
1021
1022 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 1023 {
3d7f4f49 1024 ULONGEST fstat;
c6ba6f0d 1025 char buf[FPU_REG_RAW_SIZE];
ccb945b8 1026
356a6b3e 1027 if (FP0_REGNUM == 0)
ef9dff19
MK
1028 {
1029 warning ("Cannot set floating-point return value.");
1030 return;
1031 }
1032
635b0cc1
MK
1033 /* Returning floating-point values is a bit tricky. Apart from
1034 storing the return value in %st(0), we have to simulate the
1035 state of the FPU at function return point. */
1036
c6ba6f0d
MK
1037 /* Convert the value found in VALBUF to the extended
1038 floating-point format used by the FPU. This is probably
1039 not exactly how it would happen on the target itself, but
1040 it is the best we can do. */
1041 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
3d7f4f49 1042 regcache_raw_write (regcache, FP0_REGNUM, buf);
ccb945b8 1043
635b0cc1
MK
1044 /* Set the top of the floating-point register stack to 7. The
1045 actual value doesn't really matter, but 7 is what a normal
1046 function return would end up with if the program started out
1047 with a freshly initialized FPU. */
3d7f4f49 1048 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
ccb945b8 1049 fstat |= (7 << 11);
3d7f4f49 1050 regcache_raw_write_unsigned (regcache, FSTAT_REGNUM, fstat);
ccb945b8 1051
635b0cc1
MK
1052 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1053 the floating-point register stack to 7, the appropriate value
1054 for the tag word is 0x3fff. */
3d7f4f49 1055 regcache_raw_write_unsigned (regcache, FTAG_REGNUM, 0x3fff);
ef9dff19
MK
1056 }
1057 else
1058 {
1059 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1060 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1061
1062 if (len <= low_size)
3d7f4f49 1063 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
1064 else if (len <= (low_size + high_size))
1065 {
3d7f4f49
MK
1066 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1067 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1068 len - low_size, (char *) valbuf + low_size);
ef9dff19
MK
1069 }
1070 else
8e65ff28
AC
1071 internal_error (__FILE__, __LINE__,
1072 "Cannot store return value of %d bytes long.", len);
ef9dff19
MK
1073 }
1074}
f7af9647 1075
751f1375
MK
1076/* Extract from REGCACHE, which contains the (raw) register state, the
1077 address in which a function should return its structure value, as a
1078 CORE_ADDR. */
f7af9647 1079
3a1e71e3 1080static CORE_ADDR
00f8375e 1081i386_extract_struct_value_address (struct regcache *regcache)
f7af9647 1082{
751f1375
MK
1083 ULONGEST addr;
1084
1085 regcache_raw_read_unsigned (regcache, LOW_RETURN_REGNUM, &addr);
1086 return addr;
f7af9647 1087}
fc338970 1088\f
ef9dff19 1089
8201327c
MK
1090/* This is the variable that is set with "set struct-convention", and
1091 its legitimate values. */
1092static const char default_struct_convention[] = "default";
1093static const char pcc_struct_convention[] = "pcc";
1094static const char reg_struct_convention[] = "reg";
1095static const char *valid_conventions[] =
1096{
1097 default_struct_convention,
1098 pcc_struct_convention,
1099 reg_struct_convention,
1100 NULL
1101};
1102static const char *struct_convention = default_struct_convention;
1103
1104static int
1105i386_use_struct_convention (int gcc_p, struct type *type)
1106{
1107 enum struct_return struct_return;
1108
1109 if (struct_convention == default_struct_convention)
1110 struct_return = gdbarch_tdep (current_gdbarch)->struct_return;
1111 else if (struct_convention == pcc_struct_convention)
1112 struct_return = pcc_struct_return;
1113 else
1114 struct_return = reg_struct_return;
1115
1116 return generic_use_struct_convention (struct_return == reg_struct_return,
1117 type);
1118}
1119\f
1120
d7a0d72c
MK
1121/* Return the GDB type object for the "standard" data type of data in
1122 register REGNUM. Perhaps %esi and %edi should go here, but
1123 potentially they could be used for things other than address. */
1124
3a1e71e3 1125static struct type *
4e259f09 1126i386_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c
MK
1127{
1128 if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
1129 return lookup_pointer_type (builtin_type_void);
1130
23a34459 1131 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1132 return builtin_type_i387_ext;
d7a0d72c 1133
23a34459 1134 if (i386_sse_regnum_p (regnum))
3139facc 1135 return builtin_type_vec128i;
d7a0d72c 1136
23a34459 1137 if (i386_mmx_regnum_p (regnum))
28fc6740
AC
1138 return builtin_type_vec64i;
1139
d7a0d72c
MK
1140 return builtin_type_int;
1141}
1142
28fc6740
AC
1143/* Map a cooked register onto a raw register or memory. For the i386,
1144 the MMX registers need to be mapped onto floating point registers. */
1145
1146static int
1147mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1148{
1149 int mmxi;
1150 ULONGEST fstat;
1151 int tos;
1152 int fpi;
1153 mmxi = regnum - MM0_REGNUM;
1154 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
1155 tos = (fstat >> 11) & 0x7;
1156 fpi = (mmxi + tos) % 8;
1157 return (FP0_REGNUM + fpi);
1158}
1159
1160static void
1161i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1162 int regnum, void *buf)
1163{
23a34459 1164 if (i386_mmx_regnum_p (regnum))
28fc6740
AC
1165 {
1166 char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE);
1167 int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum);
1168 regcache_raw_read (regcache, fpnum, mmx_buf);
1169 /* Extract (always little endian). */
1170 memcpy (buf, mmx_buf, REGISTER_RAW_SIZE (regnum));
1171 }
1172 else
1173 regcache_raw_read (regcache, regnum, buf);
1174}
1175
1176static void
1177i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1178 int regnum, const void *buf)
1179{
23a34459 1180 if (i386_mmx_regnum_p (regnum))
28fc6740
AC
1181 {
1182 char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE);
1183 int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum);
1184 /* Read ... */
1185 regcache_raw_read (regcache, fpnum, mmx_buf);
1186 /* ... Modify ... (always little endian). */
1187 memcpy (mmx_buf, buf, REGISTER_RAW_SIZE (regnum));
1188 /* ... Write. */
1189 regcache_raw_write (regcache, fpnum, mmx_buf);
1190 }
1191 else
1192 regcache_raw_write (regcache, regnum, buf);
1193}
1194
d7a0d72c
MK
1195/* Return true iff register REGNUM's virtual format is different from
1196 its raw format. Note that this definition assumes that the host
1197 supports IEEE 32-bit floats, since it doesn't say that SSE
1198 registers need conversion. Even if we can't find a counterexample,
1199 this is still sloppy. */
1200
3a1e71e3 1201static int
d7a0d72c
MK
1202i386_register_convertible (int regnum)
1203{
23a34459 1204 return i386_fp_regnum_p (regnum);
d7a0d72c
MK
1205}
1206
ac27f131 1207/* Convert data from raw format for register REGNUM in buffer FROM to
3d261580 1208 virtual format with type TYPE in buffer TO. */
ac27f131 1209
3a1e71e3 1210static void
ac27f131
MK
1211i386_register_convert_to_virtual (int regnum, struct type *type,
1212 char *from, char *to)
1213{
23a34459 1214 gdb_assert (i386_fp_regnum_p (regnum));
3d261580
MK
1215
1216 /* We only support floating-point values. */
8d7f6b4a
MK
1217 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1218 {
1219 warning ("Cannot convert floating-point register value "
1220 "to non-floating-point type.");
1221 memset (to, 0, TYPE_LENGTH (type));
1222 return;
1223 }
3d261580 1224
c6ba6f0d
MK
1225 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
1226 the extended floating-point format used by the FPU. */
1227 convert_typed_floating (from, builtin_type_i387_ext, to, type);
ac27f131
MK
1228}
1229
1230/* Convert data from virtual format with type TYPE in buffer FROM to
3d261580 1231 raw format for register REGNUM in buffer TO. */
ac27f131 1232
3a1e71e3 1233static void
ac27f131
MK
1234i386_register_convert_to_raw (struct type *type, int regnum,
1235 char *from, char *to)
1236{
23a34459 1237 gdb_assert (i386_fp_regnum_p (regnum));
c6ba6f0d
MK
1238
1239 /* We only support floating-point values. */
1240 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1241 {
1242 warning ("Cannot convert non-floating-point type "
1243 "to floating-point register value.");
1244 memset (to, 0, TYPE_LENGTH (type));
1245 return;
1246 }
3d261580 1247
c6ba6f0d
MK
1248 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
1249 to the extended floating-point format used by the FPU. */
1250 convert_typed_floating (from, type, to, builtin_type_i387_ext);
ac27f131 1251}
ac27f131 1252\f
fc338970 1253
c906108c 1254#ifdef STATIC_TRANSFORM_NAME
fc338970
MK
1255/* SunPRO encodes the static variables. This is not related to C++
1256 mangling, it is done for C too. */
c906108c
SS
1257
1258char *
fba45db2 1259sunpro_static_transform_name (char *name)
c906108c
SS
1260{
1261 char *p;
1262 if (IS_STATIC_TRANSFORM_NAME (name))
1263 {
fc338970
MK
1264 /* For file-local statics there will be a period, a bunch of
1265 junk (the contents of which match a string given in the
c5aa993b
JM
1266 N_OPT), a period and the name. For function-local statics
1267 there will be a bunch of junk (which seems to change the
1268 second character from 'A' to 'B'), a period, the name of the
1269 function, and the name. So just skip everything before the
1270 last period. */
c906108c
SS
1271 p = strrchr (name, '.');
1272 if (p != NULL)
1273 name = p + 1;
1274 }
1275 return name;
1276}
1277#endif /* STATIC_TRANSFORM_NAME */
fc338970 1278\f
c906108c 1279
fc338970 1280/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
1281
1282CORE_ADDR
1cce71eb 1283i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 1284{
fc338970 1285 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 1286 {
c5aa993b 1287 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 1288 struct minimal_symbol *indsym =
fc338970 1289 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
645dd519 1290 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 1291
c5aa993b 1292 if (symname)
c906108c 1293 {
c5aa993b
JM
1294 if (strncmp (symname, "__imp_", 6) == 0
1295 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
1296 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1297 }
1298 }
fc338970 1299 return 0; /* Not a trampoline. */
c906108c 1300}
fc338970
MK
1301\f
1302
8201327c
MK
1303/* Return non-zero if PC and NAME show that we are in a signal
1304 trampoline. */
1305
1306static int
1307i386_pc_in_sigtramp (CORE_ADDR pc, char *name)
1308{
1309 return (name && strcmp ("_sigtramp", name) == 0);
1310}
1311\f
1312
fc338970
MK
1313/* We have two flavours of disassembly. The machinery on this page
1314 deals with switching between those. */
c906108c
SS
1315
1316static int
5e3397bb 1317i386_print_insn (bfd_vma pc, disassemble_info *info)
c906108c 1318{
5e3397bb
MK
1319 gdb_assert (disassembly_flavor == att_flavor
1320 || disassembly_flavor == intel_flavor);
1321
1322 /* FIXME: kettenis/20020915: Until disassembler_options is properly
1323 constified, cast to prevent a compiler warning. */
1324 info->disassembler_options = (char *) disassembly_flavor;
1325 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1326
1327 return print_insn_i386 (pc, info);
7a292a7a 1328}
fc338970 1329\f
3ce1502b 1330
8201327c
MK
1331/* There are a few i386 architecture variants that differ only
1332 slightly from the generic i386 target. For now, we don't give them
1333 their own source file, but include them here. As a consequence,
1334 they'll always be included. */
3ce1502b 1335
8201327c 1336/* System V Release 4 (SVR4). */
3ce1502b 1337
8201327c
MK
1338static int
1339i386_svr4_pc_in_sigtramp (CORE_ADDR pc, char *name)
d2a7c97a 1340{
8201327c
MK
1341 return (name && (strcmp ("_sigreturn", name) == 0
1342 || strcmp ("_sigacthandler", name) == 0
1343 || strcmp ("sigvechandler", name) == 0));
1344}
d2a7c97a 1345
21d0e8a4
MK
1346/* Get address of the pushed ucontext (sigcontext) on the stack for
1347 all three variants of SVR4 sigtramps. */
3ce1502b 1348
3a1e71e3 1349static CORE_ADDR
21d0e8a4 1350i386_svr4_sigcontext_addr (struct frame_info *frame)
8201327c 1351{
21d0e8a4 1352 int sigcontext_offset = -1;
8201327c
MK
1353 char *name = NULL;
1354
50abf9e5 1355 find_pc_partial_function (get_frame_pc (frame), &name, NULL, NULL);
8201327c 1356 if (name)
d2a7c97a 1357 {
8201327c 1358 if (strcmp (name, "_sigreturn") == 0)
21d0e8a4 1359 sigcontext_offset = 132;
8201327c 1360 else if (strcmp (name, "_sigacthandler") == 0)
21d0e8a4 1361 sigcontext_offset = 80;
8201327c 1362 else if (strcmp (name, "sigvechandler") == 0)
21d0e8a4 1363 sigcontext_offset = 120;
8201327c 1364 }
3ce1502b 1365
21d0e8a4
MK
1366 gdb_assert (sigcontext_offset != -1);
1367
11c02a10
AC
1368 if (get_next_frame (frame))
1369 return get_frame_base (get_next_frame (frame)) + sigcontext_offset;
21d0e8a4 1370 return read_register (SP_REGNUM) + sigcontext_offset;
8201327c
MK
1371}
1372\f
3ce1502b 1373
8201327c 1374/* DJGPP. */
d2a7c97a 1375
8201327c
MK
1376static int
1377i386_go32_pc_in_sigtramp (CORE_ADDR pc, char *name)
1378{
1379 /* DJGPP doesn't have any special frames for signal handlers. */
1380 return 0;
1381}
1382\f
d2a7c97a 1383
8201327c 1384/* Generic ELF. */
d2a7c97a 1385
8201327c
MK
1386void
1387i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1388{
1389 /* We typically use stabs-in-ELF with the DWARF register numbering. */
1390 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1391}
3ce1502b 1392
8201327c 1393/* System V Release 4 (SVR4). */
3ce1502b 1394
8201327c
MK
1395void
1396i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1397{
1398 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1399
8201327c
MK
1400 /* System V Release 4 uses ELF. */
1401 i386_elf_init_abi (info, gdbarch);
3ce1502b 1402
dfe01d39
MK
1403 /* System V Release 4 has shared libraries. */
1404 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1405 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1406
8201327c 1407 set_gdbarch_pc_in_sigtramp (gdbarch, i386_svr4_pc_in_sigtramp);
21d0e8a4
MK
1408 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
1409 tdep->sc_pc_offset = 14 * 4;
1410 tdep->sc_sp_offset = 7 * 4;
3ce1502b 1411
8201327c 1412 tdep->jb_pc_offset = 20;
3ce1502b
MK
1413}
1414
8201327c 1415/* DJGPP. */
3ce1502b 1416
3a1e71e3 1417static void
8201327c 1418i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1419{
8201327c 1420 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1421
8201327c 1422 set_gdbarch_pc_in_sigtramp (gdbarch, i386_go32_pc_in_sigtramp);
3ce1502b 1423
8201327c 1424 tdep->jb_pc_offset = 36;
3ce1502b
MK
1425}
1426
8201327c 1427/* NetWare. */
3ce1502b 1428
3a1e71e3 1429static void
8201327c 1430i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1431{
8201327c 1432 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1433
8201327c 1434 tdep->jb_pc_offset = 24;
d2a7c97a 1435}
8201327c 1436\f
2acceee2 1437
38c968cf
AC
1438/* i386 register groups. In addition to the normal groups, add "mmx"
1439 and "sse". */
1440
1441static struct reggroup *i386_sse_reggroup;
1442static struct reggroup *i386_mmx_reggroup;
1443
1444static void
1445i386_init_reggroups (void)
1446{
1447 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
1448 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
1449}
1450
1451static void
1452i386_add_reggroups (struct gdbarch *gdbarch)
1453{
1454 reggroup_add (gdbarch, i386_sse_reggroup);
1455 reggroup_add (gdbarch, i386_mmx_reggroup);
1456 reggroup_add (gdbarch, general_reggroup);
1457 reggroup_add (gdbarch, float_reggroup);
1458 reggroup_add (gdbarch, all_reggroup);
1459 reggroup_add (gdbarch, save_reggroup);
1460 reggroup_add (gdbarch, restore_reggroup);
1461 reggroup_add (gdbarch, vector_reggroup);
1462 reggroup_add (gdbarch, system_reggroup);
1463}
1464
1465int
1466i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1467 struct reggroup *group)
1468{
1469 int sse_regnum_p = (i386_sse_regnum_p (regnum)
1470 || i386_mxcsr_regnum_p (regnum));
1471 int fp_regnum_p = (i386_fp_regnum_p (regnum)
1472 || i386_fpc_regnum_p (regnum));
1473 int mmx_regnum_p = (i386_mmx_regnum_p (regnum));
1474 if (group == i386_mmx_reggroup)
1475 return mmx_regnum_p;
1476 if (group == i386_sse_reggroup)
1477 return sse_regnum_p;
1478 if (group == vector_reggroup)
1479 return (mmx_regnum_p || sse_regnum_p);
1480 if (group == float_reggroup)
1481 return fp_regnum_p;
1482 if (group == general_reggroup)
1483 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
1484 return default_register_reggroup_p (gdbarch, regnum, group);
1485}
1486
1487\f
3a1e71e3 1488static struct gdbarch *
a62cc96e
AC
1489i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1490{
cd3c07fc 1491 struct gdbarch_tdep *tdep;
a62cc96e
AC
1492 struct gdbarch *gdbarch;
1493
4be87837
DJ
1494 /* If there is already a candidate, use it. */
1495 arches = gdbarch_list_lookup_by_info (arches, &info);
1496 if (arches != NULL)
1497 return arches->gdbarch;
a62cc96e
AC
1498
1499 /* Allocate space for the new architecture. */
1500 tdep = XMALLOC (struct gdbarch_tdep);
1501 gdbarch = gdbarch_alloc (&info, tdep);
1502
a5afb99f
AC
1503 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
1504 ready to unwind the PC first (see frame.c:get_prev_frame()). */
1505 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
1506
8201327c 1507 /* The i386 default settings don't include the SSE registers.
356a6b3e
MK
1508 FIXME: kettenis/20020614: They do include the FPU registers for
1509 now, which probably is not quite right. */
8201327c 1510 tdep->num_xmm_regs = 0;
d2a7c97a 1511
8201327c
MK
1512 tdep->jb_pc_offset = -1;
1513 tdep->struct_return = pcc_struct_return;
8201327c
MK
1514 tdep->sigtramp_start = 0;
1515 tdep->sigtramp_end = 0;
21d0e8a4 1516 tdep->sigcontext_addr = NULL;
8201327c 1517 tdep->sc_pc_offset = -1;
21d0e8a4 1518 tdep->sc_sp_offset = -1;
8201327c 1519
896fb97d
MK
1520 /* The format used for `long double' on almost all i386 targets is
1521 the i387 extended floating-point format. In fact, of all targets
1522 in the GCC 2.95 tree, only OSF/1 does it different, and insists
1523 on having a `long double' that's not `long' at all. */
1524 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
21d0e8a4 1525
66da5fd8 1526 /* Although the i387 extended floating-point has only 80 significant
896fb97d
MK
1527 bits, a `long double' actually takes up 96, probably to enforce
1528 alignment. */
1529 set_gdbarch_long_double_bit (gdbarch, 96);
1530
356a6b3e
MK
1531 /* NOTE: tm-i386aix.h, tm-i386bsd.h, tm-i386os9k.h, tm-ptx.h,
1532 tm-symmetry.h currently override this. Sigh. */
1533 set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I386_NUM_FREGS);
21d0e8a4 1534
66da5fd8
MK
1535 set_gdbarch_sp_regnum (gdbarch, 4); /* %esp */
1536 set_gdbarch_fp_regnum (gdbarch, 5); /* %ebp */
1537 set_gdbarch_pc_regnum (gdbarch, 8); /* %eip */
1538 set_gdbarch_ps_regnum (gdbarch, 9); /* %eflags */
1539 set_gdbarch_fp0_regnum (gdbarch, 16); /* %st(0) */
356a6b3e
MK
1540
1541 /* Use the "default" register numbering scheme for stabs and COFF. */
1542 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1543 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1544
1545 /* Use the DWARF register numbering scheme for DWARF and DWARF 2. */
1546 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1547 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1548
1549 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
1550 be in use on any of the supported i386 targets. */
1551
1552 set_gdbarch_register_name (gdbarch, i386_register_name);
1553 set_gdbarch_register_size (gdbarch, 4);
1554 set_gdbarch_register_bytes (gdbarch, I386_SIZEOF_GREGS + I386_SIZEOF_FREGS);
4e259f09 1555 set_gdbarch_register_type (gdbarch, i386_register_type);
356a6b3e 1556
61113f8b
MK
1557 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
1558
8201327c 1559 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
96297dab 1560
a62cc96e 1561 /* Call dummy code. */
8758dec1 1562 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
c0d1d883 1563 set_gdbarch_call_dummy_length (gdbarch, 0);
c0d1d883
MK
1564 set_gdbarch_call_dummy_words (gdbarch, NULL);
1565 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
a62cc96e 1566
b6197528
MK
1567 set_gdbarch_register_convertible (gdbarch, i386_register_convertible);
1568 set_gdbarch_register_convert_to_virtual (gdbarch,
1569 i386_register_convert_to_virtual);
1570 set_gdbarch_register_convert_to_raw (gdbarch, i386_register_convert_to_raw);
1571
8758dec1
MK
1572 /* "An argument's size is increased, if necessary, to make it a
1573 multiple of [32-bit] words. This may require tail padding,
1574 depending on the size of the argument" -- from the x86 ABI. */
1575 set_gdbarch_parm_boundary (gdbarch, 32);
1576
00f8375e 1577 set_gdbarch_extract_return_value (gdbarch, i386_extract_return_value);
b81774d8 1578 set_gdbarch_deprecated_push_arguments (gdbarch, i386_push_arguments);
28f617b3 1579 set_gdbarch_deprecated_push_return_address (gdbarch, i386_push_return_address);
749b82f6 1580 set_gdbarch_deprecated_pop_frame (gdbarch, i386_pop_frame);
3d7f4f49 1581 set_gdbarch_store_return_value (gdbarch, i386_store_return_value);
00f8375e 1582 set_gdbarch_extract_struct_value_address (gdbarch,
fc08ec52 1583 i386_extract_struct_value_address);
8201327c
MK
1584 set_gdbarch_use_struct_convention (gdbarch, i386_use_struct_convention);
1585
f30ee0bc 1586 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, i386_frame_init_saved_regs);
93924b6b
MK
1587 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
1588
1589 /* Stack grows downward. */
1590 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1591
1592 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
1593 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1594 set_gdbarch_function_start_offset (gdbarch, 0);
42fdc8df 1595
8201327c
MK
1596 /* The following redefines make backtracing through sigtramp work.
1597 They manufacture a fake sigtramp frame and obtain the saved pc in
1598 sigtramp from the sigcontext structure which is pushed by the
1599 kernel on the user stack, along with a pointer to it. */
1600
42fdc8df
MK
1601 set_gdbarch_frame_args_skip (gdbarch, 8);
1602 set_gdbarch_frameless_function_invocation (gdbarch,
1603 i386_frameless_function_invocation);
618ce49f 1604 set_gdbarch_deprecated_frame_chain (gdbarch, i386_frame_chain);
8bedc050 1605 set_gdbarch_deprecated_frame_saved_pc (gdbarch, i386_frame_saved_pc);
8201327c 1606 set_gdbarch_saved_pc_after_call (gdbarch, i386_saved_pc_after_call);
42fdc8df 1607 set_gdbarch_frame_num_args (gdbarch, i386_frame_num_args);
8201327c
MK
1608 set_gdbarch_pc_in_sigtramp (gdbarch, i386_pc_in_sigtramp);
1609
28fc6740
AC
1610 /* Wire in the MMX registers. */
1611 set_gdbarch_num_pseudo_regs (gdbarch, mmx_num_regs);
1612 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
1613 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
1614
5e3397bb
MK
1615 set_gdbarch_print_insn (gdbarch, i386_print_insn);
1616
38c968cf
AC
1617 /* Add the i386 register groups. */
1618 i386_add_reggroups (gdbarch);
1619 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
1620
6c0e89ed
AC
1621 /* Should be using push_dummy_call. */
1622 set_gdbarch_deprecated_dummy_write_sp (gdbarch, generic_target_write_sp);
1623
3ce1502b 1624 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 1625 gdbarch_init_osabi (info, gdbarch);
3ce1502b 1626
a62cc96e
AC
1627 return gdbarch;
1628}
1629
8201327c
MK
1630static enum gdb_osabi
1631i386_coff_osabi_sniffer (bfd *abfd)
1632{
762c5349
MK
1633 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
1634 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
1635 return GDB_OSABI_GO32;
1636
1637 return GDB_OSABI_UNKNOWN;
1638}
1639
1640static enum gdb_osabi
1641i386_nlm_osabi_sniffer (bfd *abfd)
1642{
1643 return GDB_OSABI_NETWARE;
1644}
1645\f
1646
28e9e0f0
MK
1647/* Provide a prototype to silence -Wmissing-prototypes. */
1648void _initialize_i386_tdep (void);
1649
c906108c 1650void
fba45db2 1651_initialize_i386_tdep (void)
c906108c 1652{
a62cc96e
AC
1653 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
1654
fc338970 1655 /* Add the variable that controls the disassembly flavor. */
917317f4
JM
1656 {
1657 struct cmd_list_element *new_cmd;
7a292a7a 1658
917317f4
JM
1659 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1660 valid_flavors,
1ed2a135 1661 &disassembly_flavor,
fc338970
MK
1662 "\
1663Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
c906108c 1664and the default value is \"att\".",
917317f4 1665 &setlist);
917317f4
JM
1666 add_show_from_set (new_cmd, &showlist);
1667 }
8201327c
MK
1668
1669 /* Add the variable that controls the convention for returning
1670 structs. */
1671 {
1672 struct cmd_list_element *new_cmd;
1673
1674 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
5e3397bb 1675 valid_conventions,
8201327c
MK
1676 &struct_convention, "\
1677Set the convention for returning small structs, valid values \
1678are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
1679 &setlist);
1680 add_show_from_set (new_cmd, &showlist);
1681 }
1682
1683 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
1684 i386_coff_osabi_sniffer);
1685 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
1686 i386_nlm_osabi_sniffer);
1687
05816f70 1688 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 1689 i386_svr4_init_abi);
05816f70 1690 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 1691 i386_go32_init_abi);
05816f70 1692 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
8201327c 1693 i386_nw_init_abi);
38c968cf
AC
1694
1695 /* Initialize the i386 specific register groups. */
1696 i386_init_reggroups ();
c906108c 1697}