]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ia64-linux-nat.c
* arch-utils.c (legacy_pc_in_sigtramp): Remove.
[thirdparty/binutils-gdb.git] / gdb / ia64-linux-nat.c
CommitLineData
ca557f44
AC
1/* Functions specific to running gdb native on IA-64 running
2 GNU/Linux.
3
6aba47ca 4 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
c5fa4245 5 Free Software Foundation, Inc.
16461d7d
KB
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
197e01b6
EZ
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
16461d7d
KB
23
24#include "defs.h"
e162d11b 25#include "gdb_string.h"
16461d7d
KB
26#include "inferior.h"
27#include "target.h"
28#include "gdbcore.h"
4e052eda 29#include "regcache.h"
949df321 30#include "ia64-tdep.h"
10d6c8cd 31#include "linux-nat.h"
16461d7d
KB
32
33#include <signal.h>
34#include <sys/ptrace.h>
2555fe1a 35#include "gdb_wait.h"
16461d7d
KB
36#ifdef HAVE_SYS_REG_H
37#include <sys/reg.h>
38#endif
287a334e 39#include <sys/syscall.h>
16461d7d
KB
40#include <sys/user.h>
41
42#include <asm/ptrace_offsets.h>
43#include <sys/procfs.h>
44
c60c0f5f
MS
45/* Prototypes for supply_gregset etc. */
46#include "gregset.h"
47
16461d7d
KB
48/* These must match the order of the register names.
49
50 Some sort of lookup table is needed because the offsets associated
51 with the registers are all over the board. */
52
53static int u_offsets[] =
54 {
55 /* general registers */
56 -1, /* gr0 not available; i.e, it's always zero */
57 PT_R1,
58 PT_R2,
59 PT_R3,
60 PT_R4,
61 PT_R5,
62 PT_R6,
63 PT_R7,
64 PT_R8,
65 PT_R9,
66 PT_R10,
67 PT_R11,
68 PT_R12,
69 PT_R13,
70 PT_R14,
71 PT_R15,
72 PT_R16,
73 PT_R17,
74 PT_R18,
75 PT_R19,
76 PT_R20,
77 PT_R21,
78 PT_R22,
79 PT_R23,
80 PT_R24,
81 PT_R25,
82 PT_R26,
83 PT_R27,
84 PT_R28,
85 PT_R29,
86 PT_R30,
87 PT_R31,
88 /* gr32 through gr127 not directly available via the ptrace interface */
89 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
90 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
91 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
92 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
93 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
94 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
95 /* Floating point registers */
96 -1, -1, /* f0 and f1 not available (f0 is +0.0 and f1 is +1.0) */
97 PT_F2,
98 PT_F3,
99 PT_F4,
100 PT_F5,
101 PT_F6,
102 PT_F7,
103 PT_F8,
104 PT_F9,
105 PT_F10,
106 PT_F11,
107 PT_F12,
108 PT_F13,
109 PT_F14,
110 PT_F15,
111 PT_F16,
112 PT_F17,
113 PT_F18,
114 PT_F19,
115 PT_F20,
116 PT_F21,
117 PT_F22,
118 PT_F23,
119 PT_F24,
120 PT_F25,
121 PT_F26,
122 PT_F27,
123 PT_F28,
124 PT_F29,
125 PT_F30,
126 PT_F31,
127 PT_F32,
128 PT_F33,
129 PT_F34,
130 PT_F35,
131 PT_F36,
132 PT_F37,
133 PT_F38,
134 PT_F39,
135 PT_F40,
136 PT_F41,
137 PT_F42,
138 PT_F43,
139 PT_F44,
140 PT_F45,
141 PT_F46,
142 PT_F47,
143 PT_F48,
144 PT_F49,
145 PT_F50,
146 PT_F51,
147 PT_F52,
148 PT_F53,
149 PT_F54,
150 PT_F55,
151 PT_F56,
152 PT_F57,
153 PT_F58,
154 PT_F59,
155 PT_F60,
156 PT_F61,
157 PT_F62,
158 PT_F63,
159 PT_F64,
160 PT_F65,
161 PT_F66,
162 PT_F67,
163 PT_F68,
164 PT_F69,
165 PT_F70,
166 PT_F71,
167 PT_F72,
168 PT_F73,
169 PT_F74,
170 PT_F75,
171 PT_F76,
172 PT_F77,
173 PT_F78,
174 PT_F79,
175 PT_F80,
176 PT_F81,
177 PT_F82,
178 PT_F83,
179 PT_F84,
180 PT_F85,
181 PT_F86,
182 PT_F87,
183 PT_F88,
184 PT_F89,
185 PT_F90,
186 PT_F91,
187 PT_F92,
188 PT_F93,
189 PT_F94,
190 PT_F95,
191 PT_F96,
192 PT_F97,
193 PT_F98,
194 PT_F99,
195 PT_F100,
196 PT_F101,
197 PT_F102,
198 PT_F103,
199 PT_F104,
200 PT_F105,
201 PT_F106,
202 PT_F107,
203 PT_F108,
204 PT_F109,
205 PT_F110,
206 PT_F111,
207 PT_F112,
208 PT_F113,
209 PT_F114,
210 PT_F115,
211 PT_F116,
212 PT_F117,
213 PT_F118,
214 PT_F119,
215 PT_F120,
216 PT_F121,
217 PT_F122,
218 PT_F123,
219 PT_F124,
220 PT_F125,
221 PT_F126,
222 PT_F127,
223 /* predicate registers - we don't fetch these individually */
224 -1, -1, -1, -1, -1, -1, -1, -1,
225 -1, -1, -1, -1, -1, -1, -1, -1,
226 -1, -1, -1, -1, -1, -1, -1, -1,
227 -1, -1, -1, -1, -1, -1, -1, -1,
228 -1, -1, -1, -1, -1, -1, -1, -1,
229 -1, -1, -1, -1, -1, -1, -1, -1,
230 -1, -1, -1, -1, -1, -1, -1, -1,
231 -1, -1, -1, -1, -1, -1, -1, -1,
232 /* branch registers */
233 PT_B0,
234 PT_B1,
235 PT_B2,
236 PT_B3,
237 PT_B4,
238 PT_B5,
239 PT_B6,
240 PT_B7,
241 /* virtual frame pointer and virtual return address pointer */
242 -1, -1,
243 /* other registers */
244 PT_PR,
245 PT_CR_IIP, /* ip */
246 PT_CR_IPSR, /* psr */
9ac12c35 247 PT_CFM, /* cfm */
16461d7d
KB
248 /* kernel registers not visible via ptrace interface (?) */
249 -1, -1, -1, -1, -1, -1, -1, -1,
250 /* hole */
251 -1, -1, -1, -1, -1, -1, -1, -1,
252 PT_AR_RSC,
253 PT_AR_BSP,
254 PT_AR_BSPSTORE,
255 PT_AR_RNAT,
256 -1,
257 -1, /* Not available: FCR, IA32 floating control register */
258 -1, -1,
259 -1, /* Not available: EFLAG */
260 -1, /* Not available: CSD */
261 -1, /* Not available: SSD */
262 -1, /* Not available: CFLG */
263 -1, /* Not available: FSR */
264 -1, /* Not available: FIR */
265 -1, /* Not available: FDR */
266 -1,
267 PT_AR_CCV,
268 -1, -1, -1,
269 PT_AR_UNAT,
270 -1, -1, -1,
271 PT_AR_FPSR,
272 -1, -1, -1,
273 -1, /* Not available: ITC */
274 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
275 -1, -1, -1, -1, -1, -1, -1, -1, -1,
276 PT_AR_PFS,
277 PT_AR_LC,
278 -1, /* Not available: EC, the Epilog Count register */
279 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
280 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
281 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
282 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
283 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
284 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
285 -1,
286 /* nat bits - not fetched directly; instead we obtain these bits from
287 either rnat or unat or from memory. */
288 -1, -1, -1, -1, -1, -1, -1, -1,
289 -1, -1, -1, -1, -1, -1, -1, -1,
290 -1, -1, -1, -1, -1, -1, -1, -1,
291 -1, -1, -1, -1, -1, -1, -1, -1,
292 -1, -1, -1, -1, -1, -1, -1, -1,
293 -1, -1, -1, -1, -1, -1, -1, -1,
294 -1, -1, -1, -1, -1, -1, -1, -1,
295 -1, -1, -1, -1, -1, -1, -1, -1,
296 -1, -1, -1, -1, -1, -1, -1, -1,
297 -1, -1, -1, -1, -1, -1, -1, -1,
298 -1, -1, -1, -1, -1, -1, -1, -1,
299 -1, -1, -1, -1, -1, -1, -1, -1,
300 -1, -1, -1, -1, -1, -1, -1, -1,
301 -1, -1, -1, -1, -1, -1, -1, -1,
302 -1, -1, -1, -1, -1, -1, -1, -1,
303 -1, -1, -1, -1, -1, -1, -1, -1,
304 };
305
74174d2e
UW
306static CORE_ADDR
307ia64_register_addr (int regno)
16461d7d
KB
308{
309 CORE_ADDR addr;
310
311 if (regno < 0 || regno >= NUM_REGS)
8a3fe4f8 312 error (_("Invalid register number %d."), regno);
16461d7d
KB
313
314 if (u_offsets[regno] == -1)
315 addr = 0;
316 else
317 addr = (CORE_ADDR) u_offsets[regno];
318
319 return addr;
320}
321
74174d2e
UW
322static int
323ia64_cannot_fetch_register (int regno)
16461d7d
KB
324{
325 return regno < 0 || regno >= NUM_REGS || u_offsets[regno] == -1;
326}
327
74174d2e
UW
328static int
329ia64_cannot_store_register (int regno)
16461d7d
KB
330{
331 /* Rationale behind not permitting stores to bspstore...
332
333 The IA-64 architecture provides bspstore and bsp which refer
334 memory locations in the RSE's backing store. bspstore is the
335 next location which will be written when the RSE needs to write
336 to memory. bsp is the address at which r32 in the current frame
337 would be found if it were written to the backing store.
338
339 The IA-64 architecture provides read-only access to bsp and
340 read/write access to bspstore (but only when the RSE is in
341 the enforced lazy mode). It should be noted that stores
342 to bspstore also affect the value of bsp. Changing bspstore
343 does not affect the number of dirty entries between bspstore
344 and bsp, so changing bspstore by N words will also cause bsp
345 to be changed by (roughly) N as well. (It could be N-1 or N+1
346 depending upon where the NaT collection bits fall.)
347
92362027 348 OTOH, the Linux kernel provides read/write access to bsp (and
16461d7d
KB
349 currently read/write access to bspstore as well). But it
350 is definitely the case that if you change one, the other
351 will change at the same time. It is more useful to gdb to
352 be able to change bsp. So in order to prevent strange and
353 undesirable things from happening when a dummy stack frame
354 is popped (after calling an inferior function), we allow
355 bspstore to be read, but not written. (Note that popping
356 a (generic) dummy stack frame causes all registers that
357 were previously read from the inferior process to be written
358 back.) */
359
360 return regno < 0 || regno >= NUM_REGS || u_offsets[regno] == -1
361 || regno == IA64_BSPSTORE_REGNUM;
362}
363
364void
fba45db2 365supply_gregset (gregset_t *gregsetp)
16461d7d
KB
366{
367 int regi;
368 greg_t *regp = (greg_t *) gregsetp;
369
370 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
371 {
23a6d369
AC
372 regcache_raw_supply (current_regcache, regi,
373 (char *) (regp + (regi - IA64_GR0_REGNUM)));
16461d7d
KB
374 }
375
376 /* FIXME: NAT collection bits are at index 32; gotta deal with these
377 somehow... */
378
23a6d369 379 regcache_raw_supply (current_regcache, IA64_PR_REGNUM, (char *) (regp + 33));
16461d7d
KB
380
381 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
382 {
23a6d369
AC
383 regcache_raw_supply (current_regcache, regi,
384 (char *) (regp + 34 + (regi - IA64_BR0_REGNUM)));
16461d7d
KB
385 }
386
23a6d369
AC
387 regcache_raw_supply (current_regcache, IA64_IP_REGNUM,
388 (char *) (regp + 42));
389 regcache_raw_supply (current_regcache, IA64_CFM_REGNUM,
390 (char *) (regp + 43));
391 regcache_raw_supply (current_regcache, IA64_PSR_REGNUM,
392 (char *) (regp + 44));
393 regcache_raw_supply (current_regcache, IA64_RSC_REGNUM,
394 (char *) (regp + 45));
395 regcache_raw_supply (current_regcache, IA64_BSP_REGNUM,
396 (char *) (regp + 46));
397 regcache_raw_supply (current_regcache, IA64_BSPSTORE_REGNUM,
398 (char *) (regp + 47));
399 regcache_raw_supply (current_regcache, IA64_RNAT_REGNUM,
400 (char *) (regp + 48));
401 regcache_raw_supply (current_regcache, IA64_CCV_REGNUM,
402 (char *) (regp + 49));
403 regcache_raw_supply (current_regcache, IA64_UNAT_REGNUM,
404 (char *) (regp + 50));
405 regcache_raw_supply (current_regcache, IA64_FPSR_REGNUM,
406 (char *) (regp + 51));
407 regcache_raw_supply (current_regcache, IA64_PFS_REGNUM,
408 (char *) (regp + 52));
409 regcache_raw_supply (current_regcache, IA64_LC_REGNUM,
410 (char *) (regp + 53));
411 regcache_raw_supply (current_regcache, IA64_EC_REGNUM,
412 (char *) (regp + 54));
16461d7d
KB
413}
414
415void
fba45db2 416fill_gregset (gregset_t *gregsetp, int regno)
16461d7d 417{
76d689a6
KB
418 int regi;
419 greg_t *regp = (greg_t *) gregsetp;
420
421#define COPY_REG(_idx_,_regi_) \
422 if ((regno == -1) || regno == _regi_) \
e0e25c6c 423 regcache_raw_collect (current_regcache, _regi_, regp + _idx_)
76d689a6
KB
424
425 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
426 {
427 COPY_REG (regi - IA64_GR0_REGNUM, regi);
428 }
429
430 /* FIXME: NAT collection bits at index 32? */
431
432 COPY_REG (33, IA64_PR_REGNUM);
433
434 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
435 {
436 COPY_REG (34 + (regi - IA64_BR0_REGNUM), regi);
437 }
438
439 COPY_REG (42, IA64_IP_REGNUM);
440 COPY_REG (43, IA64_CFM_REGNUM);
441 COPY_REG (44, IA64_PSR_REGNUM);
442 COPY_REG (45, IA64_RSC_REGNUM);
443 COPY_REG (46, IA64_BSP_REGNUM);
444 COPY_REG (47, IA64_BSPSTORE_REGNUM);
445 COPY_REG (48, IA64_RNAT_REGNUM);
446 COPY_REG (49, IA64_CCV_REGNUM);
447 COPY_REG (50, IA64_UNAT_REGNUM);
448 COPY_REG (51, IA64_FPSR_REGNUM);
449 COPY_REG (52, IA64_PFS_REGNUM);
450 COPY_REG (53, IA64_LC_REGNUM);
451 COPY_REG (54, IA64_EC_REGNUM);
452}
453
454/* Given a pointer to a floating point register set in /proc format
455 (fpregset_t *), unpack the register contents and supply them as gdb's
456 idea of the current floating point register values. */
457
458void
fba45db2 459supply_fpregset (fpregset_t *fpregsetp)
76d689a6 460{
52f0bd74 461 int regi;
76d689a6
KB
462 char *from;
463
464 for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
465 {
466 from = (char *) &((*fpregsetp)[regi - IA64_FR0_REGNUM]);
23a6d369 467 regcache_raw_supply (current_regcache, regi, from);
76d689a6
KB
468 }
469}
470
471/* Given a pointer to a floating point register set in /proc format
472 (fpregset_t *), update the register specified by REGNO from gdb's idea
473 of the current floating point register set. If REGNO is -1, update
474 them all. */
475
476void
fba45db2 477fill_fpregset (fpregset_t *fpregsetp, int regno)
76d689a6
KB
478{
479 int regi;
76d689a6
KB
480
481 for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
482 {
483 if ((regno == -1) || (regno == regi))
e0e25c6c
KB
484 regcache_raw_collect (current_regcache, regi,
485 &((*fpregsetp)[regi - IA64_FR0_REGNUM]));
76d689a6 486 }
16461d7d 487}
acf7b9e1
KB
488
489#define IA64_PSR_DB (1UL << 24)
490#define IA64_PSR_DD (1UL << 39)
491
492static void
39f77062 493enable_watchpoints_in_psr (ptid_t ptid)
acf7b9e1
KB
494{
495 CORE_ADDR psr;
496
39f77062 497 psr = read_register_pid (IA64_PSR_REGNUM, ptid);
acf7b9e1
KB
498 if (!(psr & IA64_PSR_DB))
499 {
500 psr |= IA64_PSR_DB; /* Set the db bit - this enables hardware
501 watchpoints and breakpoints. */
39f77062 502 write_register_pid (IA64_PSR_REGNUM, psr, ptid);
acf7b9e1
KB
503 }
504}
505
506static long
39f77062 507fetch_debug_register (ptid_t ptid, int idx)
acf7b9e1
KB
508{
509 long val;
510 int tid;
511
39f77062 512 tid = TIDGET (ptid);
acf7b9e1 513 if (tid == 0)
39f77062 514 tid = PIDGET (ptid);
acf7b9e1 515
c5fa4245 516 val = ptrace (PT_READ_U, tid, (PTRACE_TYPE_ARG3) (PT_DBR + 8 * idx), 0);
acf7b9e1
KB
517
518 return val;
519}
520
521static void
39f77062 522store_debug_register (ptid_t ptid, int idx, long val)
acf7b9e1
KB
523{
524 int tid;
525
39f77062 526 tid = TIDGET (ptid);
acf7b9e1 527 if (tid == 0)
39f77062 528 tid = PIDGET (ptid);
acf7b9e1 529
c5fa4245 530 (void) ptrace (PT_WRITE_U, tid, (PTRACE_TYPE_ARG3) (PT_DBR + 8 * idx), val);
acf7b9e1
KB
531}
532
533static void
39f77062 534fetch_debug_register_pair (ptid_t ptid, int idx, long *dbr_addr, long *dbr_mask)
acf7b9e1
KB
535{
536 if (dbr_addr)
39f77062 537 *dbr_addr = fetch_debug_register (ptid, 2 * idx);
acf7b9e1 538 if (dbr_mask)
39f77062 539 *dbr_mask = fetch_debug_register (ptid, 2 * idx + 1);
acf7b9e1
KB
540}
541
542static void
39f77062 543store_debug_register_pair (ptid_t ptid, int idx, long *dbr_addr, long *dbr_mask)
acf7b9e1
KB
544{
545 if (dbr_addr)
39f77062 546 store_debug_register (ptid, 2 * idx, *dbr_addr);
acf7b9e1 547 if (dbr_mask)
39f77062 548 store_debug_register (ptid, 2 * idx + 1, *dbr_mask);
acf7b9e1
KB
549}
550
551static int
552is_power_of_2 (int val)
553{
554 int i, onecount;
555
556 onecount = 0;
557 for (i = 0; i < 8 * sizeof (val); i++)
558 if (val & (1 << i))
559 onecount++;
560
561 return onecount <= 1;
562}
563
74174d2e
UW
564static int
565ia64_linux_insert_watchpoint (CORE_ADDR addr, int len, int rw)
acf7b9e1 566{
74174d2e 567 ptid_t ptid = inferior_ptid;
acf7b9e1
KB
568 int idx;
569 long dbr_addr, dbr_mask;
570 int max_watchpoints = 4;
571
572 if (len <= 0 || !is_power_of_2 (len))
573 return -1;
574
575 for (idx = 0; idx < max_watchpoints; idx++)
576 {
39f77062 577 fetch_debug_register_pair (ptid, idx, NULL, &dbr_mask);
acf7b9e1
KB
578 if ((dbr_mask & (0x3UL << 62)) == 0)
579 {
580 /* Exit loop if both r and w bits clear */
581 break;
582 }
583 }
584
585 if (idx == max_watchpoints)
586 return -1;
587
588 dbr_addr = (long) addr;
589 dbr_mask = (~(len - 1) & 0x00ffffffffffffffL); /* construct mask to match */
590 dbr_mask |= 0x0800000000000000L; /* Only match privilege level 3 */
591 switch (rw)
592 {
593 case hw_write:
594 dbr_mask |= (1L << 62); /* Set w bit */
595 break;
596 case hw_read:
597 dbr_mask |= (1L << 63); /* Set r bit */
598 break;
599 case hw_access:
600 dbr_mask |= (3L << 62); /* Set both r and w bits */
601 break;
602 default:
603 return -1;
604 }
605
39f77062
KB
606 store_debug_register_pair (ptid, idx, &dbr_addr, &dbr_mask);
607 enable_watchpoints_in_psr (ptid);
acf7b9e1
KB
608
609 return 0;
610}
611
74174d2e
UW
612static int
613ia64_linux_remove_watchpoint (CORE_ADDR addr, int len, int type)
acf7b9e1 614{
74174d2e 615 ptid_t ptid = inferior_ptid;
acf7b9e1
KB
616 int idx;
617 long dbr_addr, dbr_mask;
618 int max_watchpoints = 4;
619
620 if (len <= 0 || !is_power_of_2 (len))
621 return -1;
622
623 for (idx = 0; idx < max_watchpoints; idx++)
624 {
39f77062 625 fetch_debug_register_pair (ptid, idx, &dbr_addr, &dbr_mask);
acf7b9e1
KB
626 if ((dbr_mask & (0x3UL << 62)) && addr == (CORE_ADDR) dbr_addr)
627 {
628 dbr_addr = 0;
629 dbr_mask = 0;
39f77062 630 store_debug_register_pair (ptid, idx, &dbr_addr, &dbr_mask);
acf7b9e1
KB
631 return 0;
632 }
633 }
634 return -1;
635}
636
74174d2e
UW
637static int
638ia64_linux_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
acf7b9e1
KB
639{
640 CORE_ADDR psr;
641 int tid;
642 struct siginfo siginfo;
4aa7a7f5 643 ptid_t ptid = inferior_ptid;
acf7b9e1 644
39f77062 645 tid = TIDGET(ptid);
acf7b9e1 646 if (tid == 0)
39f77062 647 tid = PIDGET (ptid);
acf7b9e1
KB
648
649 errno = 0;
c5fa4245 650 ptrace (PTRACE_GETSIGINFO, tid, (PTRACE_TYPE_ARG3) 0, &siginfo);
acf7b9e1 651
705b278b
JJ
652 if (errno != 0 || siginfo.si_signo != SIGTRAP ||
653 (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
acf7b9e1
KB
654 return 0;
655
39f77062 656 psr = read_register_pid (IA64_PSR_REGNUM, ptid);
acf7b9e1
KB
657 psr |= IA64_PSR_DD; /* Set the dd bit - this will disable the watchpoint
658 for the next instruction */
39f77062 659 write_register_pid (IA64_PSR_REGNUM, psr, ptid);
acf7b9e1 660
4aa7a7f5
JJ
661 *addr_p = (CORE_ADDR)siginfo.si_addr;
662 return 1;
663}
664
74174d2e 665static int
4aa7a7f5
JJ
666ia64_linux_stopped_by_watchpoint (void)
667{
668 CORE_ADDR addr;
74174d2e
UW
669 return ia64_linux_stopped_data_address (&current_target, &addr);
670}
671
672static int
673ia64_linux_can_use_hw_breakpoint (int type, int cnt, int othertype)
674{
675 return 1;
676}
677
678
679/* Fetch register REGNUM from the inferior. */
680
681static void
682ia64_linux_fetch_register (int regnum)
683{
684 CORE_ADDR addr;
685 size_t size;
686 PTRACE_TYPE_RET *buf;
687 int pid, i;
688
689 if (ia64_cannot_fetch_register (regnum))
690 {
691 regcache_raw_supply (current_regcache, regnum, NULL);
692 return;
693 }
694
695 /* Cater for systems like GNU/Linux, that implement threads as
696 separate processes. */
697 pid = ptid_get_lwp (inferior_ptid);
698 if (pid == 0)
699 pid = ptid_get_pid (inferior_ptid);
700
701 /* This isn't really an address, but ptrace thinks of it as one. */
702 addr = ia64_register_addr (regnum);
703 size = register_size (current_gdbarch, regnum);
704
705 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
706 buf = alloca (size);
707
708 /* Read the register contents from the inferior a chunk at a time. */
709 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
710 {
711 errno = 0;
712 buf[i] = ptrace (PT_READ_U, pid, (PTRACE_TYPE_ARG3)addr, 0);
713 if (errno != 0)
714 error (_("Couldn't read register %s (#%d): %s."),
715 REGISTER_NAME (regnum), regnum, safe_strerror (errno));
716
717 addr += sizeof (PTRACE_TYPE_RET);
718 }
719 regcache_raw_supply (current_regcache, regnum, buf);
720}
721
722/* Fetch register REGNUM from the inferior. If REGNUM is -1, do this
723 for all registers. */
724
725static void
726ia64_linux_fetch_registers (int regnum)
727{
728 if (regnum == -1)
729 for (regnum = 0; regnum < NUM_REGS; regnum++)
730 ia64_linux_fetch_register (regnum);
731 else
732 ia64_linux_fetch_register (regnum);
733}
734
735/* Store register REGNUM into the inferior. */
736
737static void
738ia64_linux_store_register (int regnum)
739{
740 CORE_ADDR addr;
741 size_t size;
742 PTRACE_TYPE_RET *buf;
743 int pid, i;
744
745 if (ia64_cannot_store_register (regnum))
746 return;
747
748 /* Cater for systems like GNU/Linux, that implement threads as
749 separate processes. */
750 pid = ptid_get_lwp (inferior_ptid);
751 if (pid == 0)
752 pid = ptid_get_pid (inferior_ptid);
753
754 /* This isn't really an address, but ptrace thinks of it as one. */
755 addr = ia64_register_addr (regnum);
756 size = register_size (current_gdbarch, regnum);
757
758 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
759 buf = alloca (size);
760
761 /* Write the register contents into the inferior a chunk at a time. */
762 regcache_raw_collect (current_regcache, regnum, buf);
763 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
764 {
765 errno = 0;
766 ptrace (PT_WRITE_U, pid, (PTRACE_TYPE_ARG3)addr, buf[i]);
767 if (errno != 0)
768 error (_("Couldn't write register %s (#%d): %s."),
769 REGISTER_NAME (regnum), regnum, safe_strerror (errno));
770
771 addr += sizeof (PTRACE_TYPE_RET);
772 }
acf7b9e1 773}
287a334e 774
74174d2e
UW
775/* Store register REGNUM back into the inferior. If REGNUM is -1, do
776 this for all registers. */
777
778static void
779ia64_linux_store_registers (int regnum)
780{
781 if (regnum == -1)
782 for (regnum = 0; regnum < NUM_REGS; regnum++)
783 ia64_linux_store_register (regnum);
784 else
785 ia64_linux_store_register (regnum);
786}
787
788
10d6c8cd
DJ
789static LONGEST (*super_xfer_partial) (struct target_ops *, enum target_object,
790 const char *, gdb_byte *, const gdb_byte *,
791 ULONGEST, LONGEST);
792
793static LONGEST
794ia64_linux_xfer_partial (struct target_ops *ops,
795 enum target_object object,
796 const char *annex,
797 gdb_byte *readbuf, const gdb_byte *writebuf,
798 ULONGEST offset, LONGEST len)
799{
800 if (object == TARGET_OBJECT_UNWIND_TABLE && writebuf == NULL && offset == 0)
801 return syscall (__NR_getunwind, readbuf, len);
802
803 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
804 offset, len);
805}
806
807void _initialize_ia64_linux_nat (void);
808
809void
810_initialize_ia64_linux_nat (void)
287a334e 811{
10d6c8cd
DJ
812 struct target_ops *t = linux_target ();
813
814 /* Fill in the generic GNU/Linux methods. */
815 t = linux_target ();
816
74174d2e
UW
817 /* Override the default fetch/store register routines. */
818 t->to_fetch_registers = ia64_linux_fetch_registers;
819 t->to_store_registers = ia64_linux_store_registers;
820
10d6c8cd
DJ
821 /* Override the default to_xfer_partial. */
822 super_xfer_partial = t->to_xfer_partial;
823 t->to_xfer_partial = ia64_linux_xfer_partial;
824
74174d2e
UW
825 /* Override watchpoint routines. */
826
827 /* The IA-64 architecture can step over a watch point (without triggering
828 it again) if the "dd" (data debug fault disable) bit in the processor
829 status word is set.
830
831 This PSR bit is set in ia64_linux_stopped_by_watchpoint when the
832 code there has determined that a hardware watchpoint has indeed
833 been hit. The CPU will then be able to execute one instruction
834 without triggering a watchpoint. */
835
836 t->to_have_steppable_watchpoint = 1;
837 t->to_can_use_hw_breakpoint = ia64_linux_can_use_hw_breakpoint;
838 t->to_stopped_by_watchpoint = ia64_linux_stopped_by_watchpoint;
839 t->to_stopped_data_address = ia64_linux_stopped_data_address;
840 t->to_insert_watchpoint = ia64_linux_insert_watchpoint;
841 t->to_remove_watchpoint = ia64_linux_remove_watchpoint;
842
10d6c8cd 843 /* Register the target. */
f973ed9c 844 linux_nat_add_target (t);
287a334e 845}