]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ia64-linux-nat.c
Target FP: Use target format throughout expression parsing
[thirdparty/binutils-gdb.git] / gdb / ia64-linux-nat.c
CommitLineData
ca557f44
AC
1/* Functions specific to running gdb native on IA-64 running
2 GNU/Linux.
3
61baf725 4 Copyright (C) 1999-2017 Free Software Foundation, Inc.
16461d7d
KB
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
16461d7d
KB
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
16461d7d
KB
20
21#include "defs.h"
22#include "inferior.h"
23#include "target.h"
24#include "gdbcore.h"
4e052eda 25#include "regcache.h"
949df321 26#include "ia64-tdep.h"
10d6c8cd 27#include "linux-nat.h"
16461d7d
KB
28
29#include <signal.h>
5826e159 30#include "nat/gdb_ptrace.h"
2555fe1a 31#include "gdb_wait.h"
16461d7d
KB
32#ifdef HAVE_SYS_REG_H
33#include <sys/reg.h>
34#endif
287a334e 35#include <sys/syscall.h>
16461d7d
KB
36#include <sys/user.h>
37
38#include <asm/ptrace_offsets.h>
39#include <sys/procfs.h>
40
1777feb0 41/* Prototypes for supply_gregset etc. */
c60c0f5f
MS
42#include "gregset.h"
43
bcc0c096
SM
44#include "inf-ptrace.h"
45
16461d7d
KB
46/* These must match the order of the register names.
47
48 Some sort of lookup table is needed because the offsets associated
49 with the registers are all over the board. */
50
51static int u_offsets[] =
52 {
53 /* general registers */
1777feb0 54 -1, /* gr0 not available; i.e, it's always zero. */
16461d7d
KB
55 PT_R1,
56 PT_R2,
57 PT_R3,
58 PT_R4,
59 PT_R5,
60 PT_R6,
61 PT_R7,
62 PT_R8,
63 PT_R9,
64 PT_R10,
65 PT_R11,
66 PT_R12,
67 PT_R13,
68 PT_R14,
69 PT_R15,
70 PT_R16,
71 PT_R17,
72 PT_R18,
73 PT_R19,
74 PT_R20,
75 PT_R21,
76 PT_R22,
77 PT_R23,
78 PT_R24,
79 PT_R25,
80 PT_R26,
81 PT_R27,
82 PT_R28,
83 PT_R29,
84 PT_R30,
85 PT_R31,
1777feb0 86 /* gr32 through gr127 not directly available via the ptrace interface. */
16461d7d
KB
87 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
88 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
89 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
90 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
91 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
92 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
93 /* Floating point registers */
1777feb0 94 -1, -1, /* f0 and f1 not available (f0 is +0.0 and f1 is +1.0). */
16461d7d
KB
95 PT_F2,
96 PT_F3,
97 PT_F4,
98 PT_F5,
99 PT_F6,
100 PT_F7,
101 PT_F8,
102 PT_F9,
103 PT_F10,
104 PT_F11,
105 PT_F12,
106 PT_F13,
107 PT_F14,
108 PT_F15,
109 PT_F16,
110 PT_F17,
111 PT_F18,
112 PT_F19,
113 PT_F20,
114 PT_F21,
115 PT_F22,
116 PT_F23,
117 PT_F24,
118 PT_F25,
119 PT_F26,
120 PT_F27,
121 PT_F28,
122 PT_F29,
123 PT_F30,
124 PT_F31,
125 PT_F32,
126 PT_F33,
127 PT_F34,
128 PT_F35,
129 PT_F36,
130 PT_F37,
131 PT_F38,
132 PT_F39,
133 PT_F40,
134 PT_F41,
135 PT_F42,
136 PT_F43,
137 PT_F44,
138 PT_F45,
139 PT_F46,
140 PT_F47,
141 PT_F48,
142 PT_F49,
143 PT_F50,
144 PT_F51,
145 PT_F52,
146 PT_F53,
147 PT_F54,
148 PT_F55,
149 PT_F56,
150 PT_F57,
151 PT_F58,
152 PT_F59,
153 PT_F60,
154 PT_F61,
155 PT_F62,
156 PT_F63,
157 PT_F64,
158 PT_F65,
159 PT_F66,
160 PT_F67,
161 PT_F68,
162 PT_F69,
163 PT_F70,
164 PT_F71,
165 PT_F72,
166 PT_F73,
167 PT_F74,
168 PT_F75,
169 PT_F76,
170 PT_F77,
171 PT_F78,
172 PT_F79,
173 PT_F80,
174 PT_F81,
175 PT_F82,
176 PT_F83,
177 PT_F84,
178 PT_F85,
179 PT_F86,
180 PT_F87,
181 PT_F88,
182 PT_F89,
183 PT_F90,
184 PT_F91,
185 PT_F92,
186 PT_F93,
187 PT_F94,
188 PT_F95,
189 PT_F96,
190 PT_F97,
191 PT_F98,
192 PT_F99,
193 PT_F100,
194 PT_F101,
195 PT_F102,
196 PT_F103,
197 PT_F104,
198 PT_F105,
199 PT_F106,
200 PT_F107,
201 PT_F108,
202 PT_F109,
203 PT_F110,
204 PT_F111,
205 PT_F112,
206 PT_F113,
207 PT_F114,
208 PT_F115,
209 PT_F116,
210 PT_F117,
211 PT_F118,
212 PT_F119,
213 PT_F120,
214 PT_F121,
215 PT_F122,
216 PT_F123,
217 PT_F124,
218 PT_F125,
219 PT_F126,
220 PT_F127,
1777feb0 221 /* Predicate registers - we don't fetch these individually. */
16461d7d
KB
222 -1, -1, -1, -1, -1, -1, -1, -1,
223 -1, -1, -1, -1, -1, -1, -1, -1,
224 -1, -1, -1, -1, -1, -1, -1, -1,
225 -1, -1, -1, -1, -1, -1, -1, -1,
226 -1, -1, -1, -1, -1, -1, -1, -1,
227 -1, -1, -1, -1, -1, -1, -1, -1,
228 -1, -1, -1, -1, -1, -1, -1, -1,
229 -1, -1, -1, -1, -1, -1, -1, -1,
230 /* branch registers */
231 PT_B0,
232 PT_B1,
233 PT_B2,
234 PT_B3,
235 PT_B4,
236 PT_B5,
237 PT_B6,
238 PT_B7,
1777feb0 239 /* Virtual frame pointer and virtual return address pointer. */
16461d7d
KB
240 -1, -1,
241 /* other registers */
242 PT_PR,
243 PT_CR_IIP, /* ip */
244 PT_CR_IPSR, /* psr */
9ac12c35 245 PT_CFM, /* cfm */
1777feb0 246 /* kernel registers not visible via ptrace interface (?) */
16461d7d
KB
247 -1, -1, -1, -1, -1, -1, -1, -1,
248 /* hole */
249 -1, -1, -1, -1, -1, -1, -1, -1,
250 PT_AR_RSC,
251 PT_AR_BSP,
252 PT_AR_BSPSTORE,
253 PT_AR_RNAT,
254 -1,
1777feb0 255 -1, /* Not available: FCR, IA32 floating control register. */
16461d7d
KB
256 -1, -1,
257 -1, /* Not available: EFLAG */
258 -1, /* Not available: CSD */
259 -1, /* Not available: SSD */
260 -1, /* Not available: CFLG */
261 -1, /* Not available: FSR */
262 -1, /* Not available: FIR */
263 -1, /* Not available: FDR */
264 -1,
265 PT_AR_CCV,
266 -1, -1, -1,
267 PT_AR_UNAT,
268 -1, -1, -1,
269 PT_AR_FPSR,
270 -1, -1, -1,
271 -1, /* Not available: ITC */
272 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
273 -1, -1, -1, -1, -1, -1, -1, -1, -1,
274 PT_AR_PFS,
275 PT_AR_LC,
4a6510ba 276 PT_AR_EC,
16461d7d
KB
277 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
278 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
279 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
280 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
281 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
282 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
283 -1,
284 /* nat bits - not fetched directly; instead we obtain these bits from
1777feb0 285 either rnat or unat or from memory. */
16461d7d
KB
286 -1, -1, -1, -1, -1, -1, -1, -1,
287 -1, -1, -1, -1, -1, -1, -1, -1,
288 -1, -1, -1, -1, -1, -1, -1, -1,
289 -1, -1, -1, -1, -1, -1, -1, -1,
290 -1, -1, -1, -1, -1, -1, -1, -1,
291 -1, -1, -1, -1, -1, -1, -1, -1,
292 -1, -1, -1, -1, -1, -1, -1, -1,
293 -1, -1, -1, -1, -1, -1, -1, -1,
294 -1, -1, -1, -1, -1, -1, -1, -1,
295 -1, -1, -1, -1, -1, -1, -1, -1,
296 -1, -1, -1, -1, -1, -1, -1, -1,
297 -1, -1, -1, -1, -1, -1, -1, -1,
298 -1, -1, -1, -1, -1, -1, -1, -1,
299 -1, -1, -1, -1, -1, -1, -1, -1,
300 -1, -1, -1, -1, -1, -1, -1, -1,
301 -1, -1, -1, -1, -1, -1, -1, -1,
302 };
303
74174d2e 304static CORE_ADDR
2685572f 305ia64_register_addr (struct gdbarch *gdbarch, int regno)
16461d7d
KB
306{
307 CORE_ADDR addr;
308
2685572f 309 if (regno < 0 || regno >= gdbarch_num_regs (gdbarch))
8a3fe4f8 310 error (_("Invalid register number %d."), regno);
16461d7d
KB
311
312 if (u_offsets[regno] == -1)
313 addr = 0;
314 else
315 addr = (CORE_ADDR) u_offsets[regno];
316
317 return addr;
318}
319
74174d2e 320static int
2685572f 321ia64_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
16461d7d 322{
f57d151a 323 return regno < 0
2685572f 324 || regno >= gdbarch_num_regs (gdbarch)
f57d151a 325 || u_offsets[regno] == -1;
16461d7d
KB
326}
327
74174d2e 328static int
2685572f 329ia64_cannot_store_register (struct gdbarch *gdbarch, int regno)
16461d7d
KB
330{
331 /* Rationale behind not permitting stores to bspstore...
332
333 The IA-64 architecture provides bspstore and bsp which refer
334 memory locations in the RSE's backing store. bspstore is the
335 next location which will be written when the RSE needs to write
336 to memory. bsp is the address at which r32 in the current frame
337 would be found if it were written to the backing store.
338
339 The IA-64 architecture provides read-only access to bsp and
340 read/write access to bspstore (but only when the RSE is in
341 the enforced lazy mode). It should be noted that stores
342 to bspstore also affect the value of bsp. Changing bspstore
343 does not affect the number of dirty entries between bspstore
344 and bsp, so changing bspstore by N words will also cause bsp
345 to be changed by (roughly) N as well. (It could be N-1 or N+1
346 depending upon where the NaT collection bits fall.)
347
92362027 348 OTOH, the Linux kernel provides read/write access to bsp (and
16461d7d
KB
349 currently read/write access to bspstore as well). But it
350 is definitely the case that if you change one, the other
351 will change at the same time. It is more useful to gdb to
352 be able to change bsp. So in order to prevent strange and
353 undesirable things from happening when a dummy stack frame
354 is popped (after calling an inferior function), we allow
355 bspstore to be read, but not written. (Note that popping
356 a (generic) dummy stack frame causes all registers that
357 were previously read from the inferior process to be written
358 back.) */
359
f57d151a 360 return regno < 0
2685572f 361 || regno >= gdbarch_num_regs (gdbarch)
f57d151a 362 || u_offsets[regno] == -1
16461d7d
KB
363 || regno == IA64_BSPSTORE_REGNUM;
364}
365
366void
7f7fe91e 367supply_gregset (struct regcache *regcache, const gregset_t *gregsetp)
16461d7d
KB
368{
369 int regi;
7f7fe91e 370 const greg_t *regp = (const greg_t *) gregsetp;
16461d7d
KB
371
372 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
373 {
7f7fe91e 374 regcache_raw_supply (regcache, regi, regp + (regi - IA64_GR0_REGNUM));
16461d7d
KB
375 }
376
377 /* FIXME: NAT collection bits are at index 32; gotta deal with these
1777feb0 378 somehow... */
16461d7d 379
7f7fe91e 380 regcache_raw_supply (regcache, IA64_PR_REGNUM, regp + 33);
16461d7d
KB
381
382 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
383 {
7f7fe91e
UW
384 regcache_raw_supply (regcache, regi,
385 regp + 34 + (regi - IA64_BR0_REGNUM));
16461d7d
KB
386 }
387
7f7fe91e
UW
388 regcache_raw_supply (regcache, IA64_IP_REGNUM, regp + 42);
389 regcache_raw_supply (regcache, IA64_CFM_REGNUM, regp + 43);
390 regcache_raw_supply (regcache, IA64_PSR_REGNUM, regp + 44);
391 regcache_raw_supply (regcache, IA64_RSC_REGNUM, regp + 45);
392 regcache_raw_supply (regcache, IA64_BSP_REGNUM, regp + 46);
393 regcache_raw_supply (regcache, IA64_BSPSTORE_REGNUM, regp + 47);
394 regcache_raw_supply (regcache, IA64_RNAT_REGNUM, regp + 48);
395 regcache_raw_supply (regcache, IA64_CCV_REGNUM, regp + 49);
396 regcache_raw_supply (regcache, IA64_UNAT_REGNUM, regp + 50);
397 regcache_raw_supply (regcache, IA64_FPSR_REGNUM, regp + 51);
398 regcache_raw_supply (regcache, IA64_PFS_REGNUM, regp + 52);
399 regcache_raw_supply (regcache, IA64_LC_REGNUM, regp + 53);
400 regcache_raw_supply (regcache, IA64_EC_REGNUM, regp + 54);
16461d7d
KB
401}
402
403void
7f7fe91e 404fill_gregset (const struct regcache *regcache, gregset_t *gregsetp, int regno)
16461d7d 405{
76d689a6
KB
406 int regi;
407 greg_t *regp = (greg_t *) gregsetp;
408
409#define COPY_REG(_idx_,_regi_) \
410 if ((regno == -1) || regno == _regi_) \
7f7fe91e 411 regcache_raw_collect (regcache, _regi_, regp + _idx_)
76d689a6
KB
412
413 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
414 {
415 COPY_REG (regi - IA64_GR0_REGNUM, regi);
416 }
417
1777feb0 418 /* FIXME: NAT collection bits at index 32? */
76d689a6
KB
419
420 COPY_REG (33, IA64_PR_REGNUM);
421
422 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
423 {
424 COPY_REG (34 + (regi - IA64_BR0_REGNUM), regi);
425 }
426
427 COPY_REG (42, IA64_IP_REGNUM);
428 COPY_REG (43, IA64_CFM_REGNUM);
429 COPY_REG (44, IA64_PSR_REGNUM);
430 COPY_REG (45, IA64_RSC_REGNUM);
431 COPY_REG (46, IA64_BSP_REGNUM);
432 COPY_REG (47, IA64_BSPSTORE_REGNUM);
433 COPY_REG (48, IA64_RNAT_REGNUM);
434 COPY_REG (49, IA64_CCV_REGNUM);
435 COPY_REG (50, IA64_UNAT_REGNUM);
436 COPY_REG (51, IA64_FPSR_REGNUM);
437 COPY_REG (52, IA64_PFS_REGNUM);
438 COPY_REG (53, IA64_LC_REGNUM);
439 COPY_REG (54, IA64_EC_REGNUM);
440}
441
442/* Given a pointer to a floating point register set in /proc format
443 (fpregset_t *), unpack the register contents and supply them as gdb's
1777feb0 444 idea of the current floating point register values. */
76d689a6
KB
445
446void
7f7fe91e 447supply_fpregset (struct regcache *regcache, const fpregset_t *fpregsetp)
76d689a6 448{
52f0bd74 449 int regi;
7f7fe91e 450 const char *from;
ca9b8b9c
PA
451 const gdb_byte f_zero[16] = { 0 };
452 const gdb_byte f_one[16] =
453 { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
76d689a6 454
ca9b8b9c
PA
455 /* Kernel generated cores have fr1==0 instead of 1.0. Older GDBs
456 did the same. So ignore whatever might be recorded in fpregset_t
457 for fr0/fr1 and always supply their expected values. */
458
459 /* fr0 is always read as zero. */
460 regcache_raw_supply (regcache, IA64_FR0_REGNUM, f_zero);
461 /* fr1 is always read as one (1.0). */
462 regcache_raw_supply (regcache, IA64_FR1_REGNUM, f_one);
463
464 for (regi = IA64_FR2_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
76d689a6 465 {
7f7fe91e
UW
466 from = (const char *) &((*fpregsetp)[regi - IA64_FR0_REGNUM]);
467 regcache_raw_supply (regcache, regi, from);
76d689a6
KB
468 }
469}
470
471/* Given a pointer to a floating point register set in /proc format
472 (fpregset_t *), update the register specified by REGNO from gdb's idea
473 of the current floating point register set. If REGNO is -1, update
1777feb0 474 them all. */
76d689a6
KB
475
476void
7f7fe91e
UW
477fill_fpregset (const struct regcache *regcache,
478 fpregset_t *fpregsetp, int regno)
76d689a6
KB
479{
480 int regi;
76d689a6
KB
481
482 for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
483 {
484 if ((regno == -1) || (regno == regi))
7f7fe91e 485 regcache_raw_collect (regcache, regi,
e0e25c6c 486 &((*fpregsetp)[regi - IA64_FR0_REGNUM]));
76d689a6 487 }
16461d7d 488}
acf7b9e1
KB
489
490#define IA64_PSR_DB (1UL << 24)
491#define IA64_PSR_DD (1UL << 39)
492
493static void
9f0bdab8 494enable_watchpoints_in_psr (ptid_t ptid)
acf7b9e1 495{
9f0bdab8 496 struct regcache *regcache = get_thread_regcache (ptid);
7b86a1b8 497 ULONGEST psr;
acf7b9e1 498
7b86a1b8 499 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
acf7b9e1
KB
500 if (!(psr & IA64_PSR_DB))
501 {
502 psr |= IA64_PSR_DB; /* Set the db bit - this enables hardware
1777feb0 503 watchpoints and breakpoints. */
7b86a1b8 504 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
acf7b9e1
KB
505 }
506}
507
9f0bdab8 508static long debug_registers[8];
acf7b9e1
KB
509
510static void
39f77062 511store_debug_register (ptid_t ptid, int idx, long val)
acf7b9e1
KB
512{
513 int tid;
514
dfd4cc63 515 tid = ptid_get_lwp (ptid);
acf7b9e1 516 if (tid == 0)
dfd4cc63 517 tid = ptid_get_pid (ptid);
acf7b9e1 518
c5fa4245 519 (void) ptrace (PT_WRITE_U, tid, (PTRACE_TYPE_ARG3) (PT_DBR + 8 * idx), val);
acf7b9e1
KB
520}
521
acf7b9e1 522static void
1777feb0
MS
523store_debug_register_pair (ptid_t ptid, int idx, long *dbr_addr,
524 long *dbr_mask)
acf7b9e1
KB
525{
526 if (dbr_addr)
39f77062 527 store_debug_register (ptid, 2 * idx, *dbr_addr);
acf7b9e1 528 if (dbr_mask)
39f77062 529 store_debug_register (ptid, 2 * idx + 1, *dbr_mask);
acf7b9e1
KB
530}
531
532static int
533is_power_of_2 (int val)
534{
535 int i, onecount;
536
537 onecount = 0;
538 for (i = 0; i < 8 * sizeof (val); i++)
539 if (val & (1 << i))
540 onecount++;
541
542 return onecount <= 1;
543}
544
74174d2e 545static int
7bb99c53 546ia64_linux_insert_watchpoint (struct target_ops *self,
f486487f
SM
547 CORE_ADDR addr, int len,
548 enum target_hw_bp_type type,
0cf6dd15 549 struct expression *cond)
acf7b9e1 550{
9f0bdab8 551 struct lwp_info *lp;
acf7b9e1
KB
552 int idx;
553 long dbr_addr, dbr_mask;
554 int max_watchpoints = 4;
555
556 if (len <= 0 || !is_power_of_2 (len))
557 return -1;
558
559 for (idx = 0; idx < max_watchpoints; idx++)
560 {
9f0bdab8 561 dbr_mask = debug_registers[idx * 2 + 1];
acf7b9e1
KB
562 if ((dbr_mask & (0x3UL << 62)) == 0)
563 {
1777feb0 564 /* Exit loop if both r and w bits clear. */
acf7b9e1
KB
565 break;
566 }
567 }
568
569 if (idx == max_watchpoints)
570 return -1;
571
572 dbr_addr = (long) addr;
573 dbr_mask = (~(len - 1) & 0x00ffffffffffffffL); /* construct mask to match */
574 dbr_mask |= 0x0800000000000000L; /* Only match privilege level 3 */
f486487f 575 switch (type)
acf7b9e1
KB
576 {
577 case hw_write:
578 dbr_mask |= (1L << 62); /* Set w bit */
579 break;
580 case hw_read:
581 dbr_mask |= (1L << 63); /* Set r bit */
582 break;
583 case hw_access:
584 dbr_mask |= (3L << 62); /* Set both r and w bits */
585 break;
586 default:
587 return -1;
588 }
589
9f0bdab8
DJ
590 debug_registers[2 * idx] = dbr_addr;
591 debug_registers[2 * idx + 1] = dbr_mask;
4c38200f 592 ALL_LWPS (lp)
9f0bdab8 593 {
4c38200f
PA
594 store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
595 enable_watchpoints_in_psr (lp->ptid);
9f0bdab8 596 }
acf7b9e1
KB
597
598 return 0;
599}
600
74174d2e 601static int
11b5219a 602ia64_linux_remove_watchpoint (struct target_ops *self,
f486487f
SM
603 CORE_ADDR addr, int len,
604 enum target_hw_bp_type type,
0cf6dd15 605 struct expression *cond)
acf7b9e1
KB
606{
607 int idx;
608 long dbr_addr, dbr_mask;
609 int max_watchpoints = 4;
610
611 if (len <= 0 || !is_power_of_2 (len))
612 return -1;
613
614 for (idx = 0; idx < max_watchpoints; idx++)
615 {
9f0bdab8
DJ
616 dbr_addr = debug_registers[2 * idx];
617 dbr_mask = debug_registers[2 * idx + 1];
acf7b9e1
KB
618 if ((dbr_mask & (0x3UL << 62)) && addr == (CORE_ADDR) dbr_addr)
619 {
9f0bdab8 620 struct lwp_info *lp;
9f0bdab8
DJ
621
622 debug_registers[2 * idx] = 0;
623 debug_registers[2 * idx + 1] = 0;
acf7b9e1
KB
624 dbr_addr = 0;
625 dbr_mask = 0;
9f0bdab8 626
4c38200f
PA
627 ALL_LWPS (lp)
628 store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
9f0bdab8 629
acf7b9e1
KB
630 return 0;
631 }
632 }
633 return -1;
634}
635
9f0bdab8 636static void
7b50312a 637ia64_linux_new_thread (struct lwp_info *lp)
9f0bdab8
DJ
638{
639 int i, any;
640
641 any = 0;
642 for (i = 0; i < 8; i++)
643 {
644 if (debug_registers[i] != 0)
645 any = 1;
7b50312a 646 store_debug_register (lp->ptid, i, debug_registers[i]);
9f0bdab8
DJ
647 }
648
649 if (any)
7b50312a 650 enable_watchpoints_in_psr (lp->ptid);
9f0bdab8
DJ
651}
652
74174d2e
UW
653static int
654ia64_linux_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
acf7b9e1
KB
655{
656 CORE_ADDR psr;
f865ee35 657 siginfo_t siginfo;
594f7785 658 struct regcache *regcache = get_current_regcache ();
acf7b9e1 659
f865ee35
JK
660 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
661 return 0;
acf7b9e1 662
f865ee35
JK
663 if (siginfo.si_signo != SIGTRAP
664 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
acf7b9e1
KB
665 return 0;
666
7b86a1b8 667 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
acf7b9e1 668 psr |= IA64_PSR_DD; /* Set the dd bit - this will disable the watchpoint
1777feb0 669 for the next instruction. */
7b86a1b8 670 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
acf7b9e1 671
f865ee35 672 *addr_p = (CORE_ADDR) siginfo.si_addr;
4aa7a7f5
JJ
673 return 1;
674}
675
74174d2e 676static int
6a109b6b 677ia64_linux_stopped_by_watchpoint (struct target_ops *ops)
4aa7a7f5
JJ
678{
679 CORE_ADDR addr;
6a109b6b 680 return ia64_linux_stopped_data_address (ops, &addr);
74174d2e
UW
681}
682
683static int
5461485a 684ia64_linux_can_use_hw_breakpoint (struct target_ops *self,
f486487f
SM
685 enum bptype type,
686 int cnt, int othertype)
74174d2e
UW
687{
688 return 1;
689}
690
691
692/* Fetch register REGNUM from the inferior. */
693
694static void
56be3814 695ia64_linux_fetch_register (struct regcache *regcache, int regnum)
74174d2e 696{
088568da 697 struct gdbarch *gdbarch = get_regcache_arch (regcache);
74174d2e
UW
698 CORE_ADDR addr;
699 size_t size;
700 PTRACE_TYPE_RET *buf;
bcc0c096
SM
701 pid_t pid;
702 int i;
74174d2e 703
5a75128f
JB
704 /* r0 cannot be fetched but is always zero. */
705 if (regnum == IA64_GR0_REGNUM)
706 {
707 const gdb_byte zero[8] = { 0 };
708
709 gdb_assert (sizeof (zero) == register_size (gdbarch, regnum));
710 regcache_raw_supply (regcache, regnum, zero);
711 return;
712 }
713
ca9b8b9c
PA
714 /* fr0 cannot be fetched but is always zero. */
715 if (regnum == IA64_FR0_REGNUM)
716 {
717 const gdb_byte f_zero[16] = { 0 };
718
719 gdb_assert (sizeof (f_zero) == register_size (gdbarch, regnum));
720 regcache_raw_supply (regcache, regnum, f_zero);
721 return;
722 }
723
724 /* fr1 cannot be fetched but is always one (1.0). */
725 if (regnum == IA64_FR1_REGNUM)
726 {
727 const gdb_byte f_one[16] =
728 { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
729
730 gdb_assert (sizeof (f_one) == register_size (gdbarch, regnum));
731 regcache_raw_supply (regcache, regnum, f_one);
732 return;
733 }
734
2685572f 735 if (ia64_cannot_fetch_register (gdbarch, regnum))
74174d2e 736 {
56be3814 737 regcache_raw_supply (regcache, regnum, NULL);
74174d2e
UW
738 return;
739 }
740
bcc0c096 741 pid = get_ptrace_pid (regcache_get_ptid (regcache));
74174d2e
UW
742
743 /* This isn't really an address, but ptrace thinks of it as one. */
2685572f 744 addr = ia64_register_addr (gdbarch, regnum);
088568da 745 size = register_size (gdbarch, regnum);
74174d2e
UW
746
747 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
bfb0d950 748 buf = (PTRACE_TYPE_RET *) alloca (size);
74174d2e
UW
749
750 /* Read the register contents from the inferior a chunk at a time. */
751 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
752 {
753 errno = 0;
754 buf[i] = ptrace (PT_READ_U, pid, (PTRACE_TYPE_ARG3)addr, 0);
755 if (errno != 0)
756 error (_("Couldn't read register %s (#%d): %s."),
088568da 757 gdbarch_register_name (gdbarch, regnum),
c9f4d572 758 regnum, safe_strerror (errno));
74174d2e
UW
759
760 addr += sizeof (PTRACE_TYPE_RET);
761 }
56be3814 762 regcache_raw_supply (regcache, regnum, buf);
74174d2e
UW
763}
764
765/* Fetch register REGNUM from the inferior. If REGNUM is -1, do this
766 for all registers. */
767
768static void
28439f5e
PA
769ia64_linux_fetch_registers (struct target_ops *ops,
770 struct regcache *regcache, int regnum)
74174d2e
UW
771{
772 if (regnum == -1)
088568da
UW
773 for (regnum = 0;
774 regnum < gdbarch_num_regs (get_regcache_arch (regcache));
775 regnum++)
56be3814 776 ia64_linux_fetch_register (regcache, regnum);
74174d2e 777 else
56be3814 778 ia64_linux_fetch_register (regcache, regnum);
74174d2e
UW
779}
780
781/* Store register REGNUM into the inferior. */
782
783static void
56be3814 784ia64_linux_store_register (const struct regcache *regcache, int regnum)
74174d2e 785{
088568da 786 struct gdbarch *gdbarch = get_regcache_arch (regcache);
74174d2e
UW
787 CORE_ADDR addr;
788 size_t size;
789 PTRACE_TYPE_RET *buf;
bcc0c096
SM
790 pid_t pid;
791 int i;
74174d2e 792
2685572f 793 if (ia64_cannot_store_register (gdbarch, regnum))
74174d2e
UW
794 return;
795
bcc0c096 796 pid = get_ptrace_pid (regcache_get_ptid (regcache));
74174d2e
UW
797
798 /* This isn't really an address, but ptrace thinks of it as one. */
2685572f 799 addr = ia64_register_addr (gdbarch, regnum);
088568da 800 size = register_size (gdbarch, regnum);
74174d2e
UW
801
802 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
bfb0d950 803 buf = (PTRACE_TYPE_RET *) alloca (size);
74174d2e
UW
804
805 /* Write the register contents into the inferior a chunk at a time. */
56be3814 806 regcache_raw_collect (regcache, regnum, buf);
74174d2e
UW
807 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
808 {
809 errno = 0;
810 ptrace (PT_WRITE_U, pid, (PTRACE_TYPE_ARG3)addr, buf[i]);
811 if (errno != 0)
812 error (_("Couldn't write register %s (#%d): %s."),
088568da 813 gdbarch_register_name (gdbarch, regnum),
c9f4d572 814 regnum, safe_strerror (errno));
74174d2e
UW
815
816 addr += sizeof (PTRACE_TYPE_RET);
817 }
acf7b9e1 818}
287a334e 819
74174d2e
UW
820/* Store register REGNUM back into the inferior. If REGNUM is -1, do
821 this for all registers. */
822
823static void
28439f5e
PA
824ia64_linux_store_registers (struct target_ops *ops,
825 struct regcache *regcache, int regnum)
74174d2e
UW
826{
827 if (regnum == -1)
088568da
UW
828 for (regnum = 0;
829 regnum < gdbarch_num_regs (get_regcache_arch (regcache));
830 regnum++)
56be3814 831 ia64_linux_store_register (regcache, regnum);
74174d2e 832 else
56be3814 833 ia64_linux_store_register (regcache, regnum);
74174d2e
UW
834}
835
836
4ac248ca 837static target_xfer_partial_ftype *super_xfer_partial;
10d6c8cd 838
475109d8
JB
839/* Implement the to_xfer_partial target_ops method. */
840
841static enum target_xfer_status
10d6c8cd
DJ
842ia64_linux_xfer_partial (struct target_ops *ops,
843 enum target_object object,
844 const char *annex,
845 gdb_byte *readbuf, const gdb_byte *writebuf,
475109d8
JB
846 ULONGEST offset, ULONGEST len,
847 ULONGEST *xfered_len)
10d6c8cd 848{
475109d8
JB
849 if (object == TARGET_OBJECT_UNWIND_TABLE && readbuf != NULL)
850 {
d16461ae
PA
851 static long gate_table_size;
852 gdb_byte *tmp_buf;
853 long res;
854
855 /* Probe for the table size once. */
856 if (gate_table_size == 0)
857 gate_table_size = syscall (__NR_getunwind, NULL, 0);
858 if (gate_table_size < 0)
475109d8 859 return TARGET_XFER_E_IO;
d16461ae
PA
860
861 if (offset >= gate_table_size)
475109d8 862 return TARGET_XFER_EOF;
d16461ae 863
bfb0d950 864 tmp_buf = (gdb_byte *) alloca (gate_table_size);
d16461ae
PA
865 res = syscall (__NR_getunwind, tmp_buf, gate_table_size);
866 if (res < 0)
867 return TARGET_XFER_E_IO;
868 gdb_assert (res == gate_table_size);
869
870 if (offset + len > gate_table_size)
871 len = gate_table_size - offset;
872
873 memcpy (readbuf, tmp_buf + offset, len);
874 *xfered_len = len;
875 return TARGET_XFER_OK;
475109d8 876 }
10d6c8cd
DJ
877
878 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
475109d8 879 offset, len, xfered_len);
10d6c8cd
DJ
880}
881
26ab7092
JK
882/* For break.b instruction ia64 CPU forgets the immediate value and generates
883 SIGILL with ILL_ILLOPC instead of more common SIGTRAP with TRAP_BRKPT.
884 ia64 does not use gdbarch_decr_pc_after_break so we do not have to make any
885 difference for the signals here. */
886
887static int
888ia64_linux_status_is_event (int status)
889{
890 return WIFSTOPPED (status) && (WSTOPSIG (status) == SIGTRAP
891 || WSTOPSIG (status) == SIGILL);
892}
893
10d6c8cd
DJ
894void
895_initialize_ia64_linux_nat (void)
287a334e 896{
dde7c0a9 897 struct target_ops *t;
10d6c8cd
DJ
898
899 /* Fill in the generic GNU/Linux methods. */
900 t = linux_target ();
901
74174d2e
UW
902 /* Override the default fetch/store register routines. */
903 t->to_fetch_registers = ia64_linux_fetch_registers;
904 t->to_store_registers = ia64_linux_store_registers;
905
10d6c8cd
DJ
906 /* Override the default to_xfer_partial. */
907 super_xfer_partial = t->to_xfer_partial;
908 t->to_xfer_partial = ia64_linux_xfer_partial;
909
74174d2e
UW
910 /* Override watchpoint routines. */
911
912 /* The IA-64 architecture can step over a watch point (without triggering
913 it again) if the "dd" (data debug fault disable) bit in the processor
914 status word is set.
915
916 This PSR bit is set in ia64_linux_stopped_by_watchpoint when the
917 code there has determined that a hardware watchpoint has indeed
918 been hit. The CPU will then be able to execute one instruction
1777feb0 919 without triggering a watchpoint. */
74174d2e
UW
920
921 t->to_have_steppable_watchpoint = 1;
922 t->to_can_use_hw_breakpoint = ia64_linux_can_use_hw_breakpoint;
923 t->to_stopped_by_watchpoint = ia64_linux_stopped_by_watchpoint;
924 t->to_stopped_data_address = ia64_linux_stopped_data_address;
925 t->to_insert_watchpoint = ia64_linux_insert_watchpoint;
926 t->to_remove_watchpoint = ia64_linux_remove_watchpoint;
927
10d6c8cd 928 /* Register the target. */
f973ed9c 929 linux_nat_add_target (t);
9f0bdab8 930 linux_nat_set_new_thread (t, ia64_linux_new_thread);
26ab7092 931 linux_nat_set_status_is_event (t, ia64_linux_status_is_event);
287a334e 932}