]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/infrun.c
gdb/testsuite: Merge whatis.exp and ctf-whatis.exp
[thirdparty/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
42a4f53d 4 Copyright (C) 1986-2019 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
c906108c
SS
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "target.h"
31#include "gdbthread.h"
32#include "annotate.h"
1adeb98a 33#include "symfile.h"
7a292a7a 34#include "top.h"
2acceee2 35#include "inf-loop.h"
4e052eda 36#include "regcache.h"
fd0407d6 37#include "value.h"
76727919 38#include "observable.h"
f636b87d 39#include "language.h"
a77053c2 40#include "solib.h"
f17517ea 41#include "main.h"
186c406b 42#include "block.h"
034dad6f 43#include "mi/mi-common.h"
4f8d22e3 44#include "event-top.h"
96429cc8 45#include "record.h"
d02ed0bb 46#include "record-full.h"
edb3359d 47#include "inline-frame.h"
4efc6507 48#include "jit.h"
06cd862c 49#include "tracepoint.h"
1bfeeb0f 50#include "skip.h"
28106bc2
SDJ
51#include "probe.h"
52#include "objfiles.h"
de0bea00 53#include "completer.h"
9107fc8d 54#include "target-descriptions.h"
f15cb84a 55#include "target-dcache.h"
d83ad864 56#include "terminal.h"
ff862be4 57#include "solist.h"
372316f1 58#include "event-loop.h"
243a9253 59#include "thread-fsm.h"
268a13a5 60#include "gdbsupport/enum-flags.h"
5ed8105e 61#include "progspace-and-thread.h"
268a13a5 62#include "gdbsupport/gdb_optional.h"
46a62268 63#include "arch-utils.h"
268a13a5
TT
64#include "gdbsupport/scope-exit.h"
65#include "gdbsupport/forward-scope-exit.h"
c906108c
SS
66
67/* Prototypes for local functions */
68
2ea28649 69static void sig_print_info (enum gdb_signal);
c906108c 70
96baa820 71static void sig_print_header (void);
c906108c 72
4ef3f3be 73static int follow_fork (void);
96baa820 74
d83ad864
DB
75static int follow_fork_inferior (int follow_child, int detach_fork);
76
77static void follow_inferior_reset_breakpoints (void);
78
a289b8f6
JK
79static int currently_stepping (struct thread_info *tp);
80
e58b0e63
PA
81void nullify_last_target_wait_ptid (void);
82
2c03e5be 83static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
84
85static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
86
2484c66b
UW
87static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
88
8550d3b3
YQ
89static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
90
aff4e175
AB
91static void resume (gdb_signal sig);
92
372316f1
PA
93/* Asynchronous signal handler registered as event loop source for
94 when we have pending events ready to be passed to the core. */
95static struct async_event_handler *infrun_async_inferior_event_token;
96
97/* Stores whether infrun_async was previously enabled or disabled.
98 Starts off as -1, indicating "never enabled/disabled". */
99static int infrun_is_async = -1;
100
101/* See infrun.h. */
102
103void
104infrun_async (int enable)
105{
106 if (infrun_is_async != enable)
107 {
108 infrun_is_async = enable;
109
110 if (debug_infrun)
111 fprintf_unfiltered (gdb_stdlog,
112 "infrun: infrun_async(%d)\n",
113 enable);
114
115 if (enable)
116 mark_async_event_handler (infrun_async_inferior_event_token);
117 else
118 clear_async_event_handler (infrun_async_inferior_event_token);
119 }
120}
121
0b333c5e
PA
122/* See infrun.h. */
123
124void
125mark_infrun_async_event_handler (void)
126{
127 mark_async_event_handler (infrun_async_inferior_event_token);
128}
129
5fbbeb29
CF
130/* When set, stop the 'step' command if we enter a function which has
131 no line number information. The normal behavior is that we step
132 over such function. */
491144b5 133bool step_stop_if_no_debug = false;
920d2a44
AC
134static void
135show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
136 struct cmd_list_element *c, const char *value)
137{
138 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
139}
5fbbeb29 140
b9f437de
PA
141/* proceed and normal_stop use this to notify the user when the
142 inferior stopped in a different thread than it had been running
143 in. */
96baa820 144
39f77062 145static ptid_t previous_inferior_ptid;
7a292a7a 146
07107ca6
LM
147/* If set (default for legacy reasons), when following a fork, GDB
148 will detach from one of the fork branches, child or parent.
149 Exactly which branch is detached depends on 'set follow-fork-mode'
150 setting. */
151
491144b5 152static bool detach_fork = true;
6c95b8df 153
491144b5 154bool debug_displaced = false;
237fc4c9
PA
155static void
156show_debug_displaced (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158{
159 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
160}
161
ccce17b0 162unsigned int debug_infrun = 0;
920d2a44
AC
163static void
164show_debug_infrun (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166{
167 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
168}
527159b7 169
03583c20
UW
170
171/* Support for disabling address space randomization. */
172
491144b5 173bool disable_randomization = true;
03583c20
UW
174
175static void
176show_disable_randomization (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178{
179 if (target_supports_disable_randomization ())
180 fprintf_filtered (file,
181 _("Disabling randomization of debuggee's "
182 "virtual address space is %s.\n"),
183 value);
184 else
185 fputs_filtered (_("Disabling randomization of debuggee's "
186 "virtual address space is unsupported on\n"
187 "this platform.\n"), file);
188}
189
190static void
eb4c3f4a 191set_disable_randomization (const char *args, int from_tty,
03583c20
UW
192 struct cmd_list_element *c)
193{
194 if (!target_supports_disable_randomization ())
195 error (_("Disabling randomization of debuggee's "
196 "virtual address space is unsupported on\n"
197 "this platform."));
198}
199
d32dc48e
PA
200/* User interface for non-stop mode. */
201
491144b5
CB
202bool non_stop = false;
203static bool non_stop_1 = false;
d32dc48e
PA
204
205static void
eb4c3f4a 206set_non_stop (const char *args, int from_tty,
d32dc48e
PA
207 struct cmd_list_element *c)
208{
209 if (target_has_execution)
210 {
211 non_stop_1 = non_stop;
212 error (_("Cannot change this setting while the inferior is running."));
213 }
214
215 non_stop = non_stop_1;
216}
217
218static void
219show_non_stop (struct ui_file *file, int from_tty,
220 struct cmd_list_element *c, const char *value)
221{
222 fprintf_filtered (file,
223 _("Controlling the inferior in non-stop mode is %s.\n"),
224 value);
225}
226
d914c394
SS
227/* "Observer mode" is somewhat like a more extreme version of
228 non-stop, in which all GDB operations that might affect the
229 target's execution have been disabled. */
230
491144b5
CB
231bool observer_mode = false;
232static bool observer_mode_1 = false;
d914c394
SS
233
234static void
eb4c3f4a 235set_observer_mode (const char *args, int from_tty,
d914c394
SS
236 struct cmd_list_element *c)
237{
d914c394
SS
238 if (target_has_execution)
239 {
240 observer_mode_1 = observer_mode;
241 error (_("Cannot change this setting while the inferior is running."));
242 }
243
244 observer_mode = observer_mode_1;
245
246 may_write_registers = !observer_mode;
247 may_write_memory = !observer_mode;
248 may_insert_breakpoints = !observer_mode;
249 may_insert_tracepoints = !observer_mode;
250 /* We can insert fast tracepoints in or out of observer mode,
251 but enable them if we're going into this mode. */
252 if (observer_mode)
491144b5 253 may_insert_fast_tracepoints = true;
d914c394
SS
254 may_stop = !observer_mode;
255 update_target_permissions ();
256
257 /* Going *into* observer mode we must force non-stop, then
258 going out we leave it that way. */
259 if (observer_mode)
260 {
d914c394 261 pagination_enabled = 0;
491144b5 262 non_stop = non_stop_1 = true;
d914c394
SS
263 }
264
265 if (from_tty)
266 printf_filtered (_("Observer mode is now %s.\n"),
267 (observer_mode ? "on" : "off"));
268}
269
270static void
271show_observer_mode (struct ui_file *file, int from_tty,
272 struct cmd_list_element *c, const char *value)
273{
274 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
275}
276
277/* This updates the value of observer mode based on changes in
278 permissions. Note that we are deliberately ignoring the values of
279 may-write-registers and may-write-memory, since the user may have
280 reason to enable these during a session, for instance to turn on a
281 debugging-related global. */
282
283void
284update_observer_mode (void)
285{
491144b5
CB
286 bool newval = (!may_insert_breakpoints
287 && !may_insert_tracepoints
288 && may_insert_fast_tracepoints
289 && !may_stop
290 && non_stop);
d914c394
SS
291
292 /* Let the user know if things change. */
293 if (newval != observer_mode)
294 printf_filtered (_("Observer mode is now %s.\n"),
295 (newval ? "on" : "off"));
296
297 observer_mode = observer_mode_1 = newval;
298}
c2c6d25f 299
c906108c
SS
300/* Tables of how to react to signals; the user sets them. */
301
adc6a863
PA
302static unsigned char signal_stop[GDB_SIGNAL_LAST];
303static unsigned char signal_print[GDB_SIGNAL_LAST];
304static unsigned char signal_program[GDB_SIGNAL_LAST];
c906108c 305
ab04a2af
TT
306/* Table of signals that are registered with "catch signal". A
307 non-zero entry indicates that the signal is caught by some "catch
adc6a863
PA
308 signal" command. */
309static unsigned char signal_catch[GDB_SIGNAL_LAST];
ab04a2af 310
2455069d
UW
311/* Table of signals that the target may silently handle.
312 This is automatically determined from the flags above,
313 and simply cached here. */
adc6a863 314static unsigned char signal_pass[GDB_SIGNAL_LAST];
2455069d 315
c906108c
SS
316#define SET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 1; \
322 } while (0)
323
324#define UNSET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 0; \
330 } while (0)
331
9b224c5e
PA
332/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
333 this function is to avoid exporting `signal_program'. */
334
335void
336update_signals_program_target (void)
337{
adc6a863 338 target_program_signals (signal_program);
9b224c5e
PA
339}
340
1777feb0 341/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 342
edb3359d 343#define RESUME_ALL minus_one_ptid
c906108c
SS
344
345/* Command list pointer for the "stop" placeholder. */
346
347static struct cmd_list_element *stop_command;
348
c906108c
SS
349/* Nonzero if we want to give control to the user when we're notified
350 of shared library events by the dynamic linker. */
628fe4e4 351int stop_on_solib_events;
f9e14852
GB
352
353/* Enable or disable optional shared library event breakpoints
354 as appropriate when the above flag is changed. */
355
356static void
eb4c3f4a
TT
357set_stop_on_solib_events (const char *args,
358 int from_tty, struct cmd_list_element *c)
f9e14852
GB
359{
360 update_solib_breakpoints ();
361}
362
920d2a44
AC
363static void
364show_stop_on_solib_events (struct ui_file *file, int from_tty,
365 struct cmd_list_element *c, const char *value)
366{
367 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
368 value);
369}
c906108c 370
c906108c
SS
371/* Nonzero after stop if current stack frame should be printed. */
372
373static int stop_print_frame;
374
e02bc4cc 375/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
376 returned by target_wait()/deprecated_target_wait_hook(). This
377 information is returned by get_last_target_status(). */
39f77062 378static ptid_t target_last_wait_ptid;
e02bc4cc
DS
379static struct target_waitstatus target_last_waitstatus;
380
4e1c45ea 381void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 382
53904c9e
AC
383static const char follow_fork_mode_child[] = "child";
384static const char follow_fork_mode_parent[] = "parent";
385
40478521 386static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
387 follow_fork_mode_child,
388 follow_fork_mode_parent,
389 NULL
ef346e04 390};
c906108c 391
53904c9e 392static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
393static void
394show_follow_fork_mode_string (struct ui_file *file, int from_tty,
395 struct cmd_list_element *c, const char *value)
396{
3e43a32a
MS
397 fprintf_filtered (file,
398 _("Debugger response to a program "
399 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
400 value);
401}
c906108c
SS
402\f
403
d83ad864
DB
404/* Handle changes to the inferior list based on the type of fork,
405 which process is being followed, and whether the other process
406 should be detached. On entry inferior_ptid must be the ptid of
407 the fork parent. At return inferior_ptid is the ptid of the
408 followed inferior. */
409
410static int
411follow_fork_inferior (int follow_child, int detach_fork)
412{
413 int has_vforked;
79639e11 414 ptid_t parent_ptid, child_ptid;
d83ad864
DB
415
416 has_vforked = (inferior_thread ()->pending_follow.kind
417 == TARGET_WAITKIND_VFORKED);
79639e11
PA
418 parent_ptid = inferior_ptid;
419 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
420
421 if (has_vforked
422 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 423 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
424 && !(follow_child || detach_fork || sched_multi))
425 {
426 /* The parent stays blocked inside the vfork syscall until the
427 child execs or exits. If we don't let the child run, then
428 the parent stays blocked. If we're telling the parent to run
429 in the foreground, the user will not be able to ctrl-c to get
430 back the terminal, effectively hanging the debug session. */
431 fprintf_filtered (gdb_stderr, _("\
432Can not resume the parent process over vfork in the foreground while\n\
433holding the child stopped. Try \"set detach-on-fork\" or \
434\"set schedule-multiple\".\n"));
435 /* FIXME output string > 80 columns. */
436 return 1;
437 }
438
439 if (!follow_child)
440 {
441 /* Detach new forked process? */
442 if (detach_fork)
443 {
d83ad864
DB
444 /* Before detaching from the child, remove all breakpoints
445 from it. If we forked, then this has already been taken
446 care of by infrun.c. If we vforked however, any
447 breakpoint inserted in the parent is visible in the
448 child, even those added while stopped in a vfork
449 catchpoint. This will remove the breakpoints from the
450 parent also, but they'll be reinserted below. */
451 if (has_vforked)
452 {
453 /* Keep breakpoints list in sync. */
00431a78 454 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
455 }
456
f67c0c91 457 if (print_inferior_events)
d83ad864 458 {
8dd06f7a 459 /* Ensure that we have a process ptid. */
e99b03dc 460 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 461
223ffa71 462 target_terminal::ours_for_output ();
d83ad864 463 fprintf_filtered (gdb_stdlog,
f67c0c91 464 _("[Detaching after %s from child %s]\n"),
6f259a23 465 has_vforked ? "vfork" : "fork",
a068643d 466 target_pid_to_str (process_ptid).c_str ());
d83ad864
DB
467 }
468 }
469 else
470 {
471 struct inferior *parent_inf, *child_inf;
d83ad864
DB
472
473 /* Add process to GDB's tables. */
e99b03dc 474 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
475
476 parent_inf = current_inferior ();
477 child_inf->attach_flag = parent_inf->attach_flag;
478 copy_terminal_info (child_inf, parent_inf);
479 child_inf->gdbarch = parent_inf->gdbarch;
480 copy_inferior_target_desc_info (child_inf, parent_inf);
481
5ed8105e 482 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 483
79639e11 484 inferior_ptid = child_ptid;
f67c0c91 485 add_thread_silent (inferior_ptid);
2a00d7ce 486 set_current_inferior (child_inf);
d83ad864
DB
487 child_inf->symfile_flags = SYMFILE_NO_READ;
488
489 /* If this is a vfork child, then the address-space is
490 shared with the parent. */
491 if (has_vforked)
492 {
493 child_inf->pspace = parent_inf->pspace;
494 child_inf->aspace = parent_inf->aspace;
495
496 /* The parent will be frozen until the child is done
497 with the shared region. Keep track of the
498 parent. */
499 child_inf->vfork_parent = parent_inf;
500 child_inf->pending_detach = 0;
501 parent_inf->vfork_child = child_inf;
502 parent_inf->pending_detach = 0;
503 }
504 else
505 {
506 child_inf->aspace = new_address_space ();
564b1e3f 507 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
508 child_inf->removable = 1;
509 set_current_program_space (child_inf->pspace);
510 clone_program_space (child_inf->pspace, parent_inf->pspace);
511
512 /* Let the shared library layer (e.g., solib-svr4) learn
513 about this new process, relocate the cloned exec, pull
514 in shared libraries, and install the solib event
515 breakpoint. If a "cloned-VM" event was propagated
516 better throughout the core, this wouldn't be
517 required. */
518 solib_create_inferior_hook (0);
519 }
d83ad864
DB
520 }
521
522 if (has_vforked)
523 {
524 struct inferior *parent_inf;
525
526 parent_inf = current_inferior ();
527
528 /* If we detached from the child, then we have to be careful
529 to not insert breakpoints in the parent until the child
530 is done with the shared memory region. However, if we're
531 staying attached to the child, then we can and should
532 insert breakpoints, so that we can debug it. A
533 subsequent child exec or exit is enough to know when does
534 the child stops using the parent's address space. */
535 parent_inf->waiting_for_vfork_done = detach_fork;
536 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
537 }
538 }
539 else
540 {
541 /* Follow the child. */
542 struct inferior *parent_inf, *child_inf;
543 struct program_space *parent_pspace;
544
f67c0c91 545 if (print_inferior_events)
d83ad864 546 {
f67c0c91
SDJ
547 std::string parent_pid = target_pid_to_str (parent_ptid);
548 std::string child_pid = target_pid_to_str (child_ptid);
549
223ffa71 550 target_terminal::ours_for_output ();
6f259a23 551 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
552 _("[Attaching after %s %s to child %s]\n"),
553 parent_pid.c_str (),
6f259a23 554 has_vforked ? "vfork" : "fork",
f67c0c91 555 child_pid.c_str ());
d83ad864
DB
556 }
557
558 /* Add the new inferior first, so that the target_detach below
559 doesn't unpush the target. */
560
e99b03dc 561 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
562
563 parent_inf = current_inferior ();
564 child_inf->attach_flag = parent_inf->attach_flag;
565 copy_terminal_info (child_inf, parent_inf);
566 child_inf->gdbarch = parent_inf->gdbarch;
567 copy_inferior_target_desc_info (child_inf, parent_inf);
568
569 parent_pspace = parent_inf->pspace;
570
571 /* If we're vforking, we want to hold on to the parent until the
572 child exits or execs. At child exec or exit time we can
573 remove the old breakpoints from the parent and detach or
574 resume debugging it. Otherwise, detach the parent now; we'll
575 want to reuse it's program/address spaces, but we can't set
576 them to the child before removing breakpoints from the
577 parent, otherwise, the breakpoints module could decide to
578 remove breakpoints from the wrong process (since they'd be
579 assigned to the same address space). */
580
581 if (has_vforked)
582 {
583 gdb_assert (child_inf->vfork_parent == NULL);
584 gdb_assert (parent_inf->vfork_child == NULL);
585 child_inf->vfork_parent = parent_inf;
586 child_inf->pending_detach = 0;
587 parent_inf->vfork_child = child_inf;
588 parent_inf->pending_detach = detach_fork;
589 parent_inf->waiting_for_vfork_done = 0;
590 }
591 else if (detach_fork)
6f259a23 592 {
f67c0c91 593 if (print_inferior_events)
6f259a23 594 {
8dd06f7a 595 /* Ensure that we have a process ptid. */
e99b03dc 596 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
8dd06f7a 597
223ffa71 598 target_terminal::ours_for_output ();
6f259a23 599 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
600 _("[Detaching after fork from "
601 "parent %s]\n"),
a068643d 602 target_pid_to_str (process_ptid).c_str ());
6f259a23
DB
603 }
604
6e1e1966 605 target_detach (parent_inf, 0);
6f259a23 606 }
d83ad864
DB
607
608 /* Note that the detach above makes PARENT_INF dangling. */
609
610 /* Add the child thread to the appropriate lists, and switch to
611 this new thread, before cloning the program space, and
612 informing the solib layer about this new process. */
613
79639e11 614 inferior_ptid = child_ptid;
f67c0c91 615 add_thread_silent (inferior_ptid);
2a00d7ce 616 set_current_inferior (child_inf);
d83ad864
DB
617
618 /* If this is a vfork child, then the address-space is shared
619 with the parent. If we detached from the parent, then we can
620 reuse the parent's program/address spaces. */
621 if (has_vforked || detach_fork)
622 {
623 child_inf->pspace = parent_pspace;
624 child_inf->aspace = child_inf->pspace->aspace;
625 }
626 else
627 {
628 child_inf->aspace = new_address_space ();
564b1e3f 629 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
630 child_inf->removable = 1;
631 child_inf->symfile_flags = SYMFILE_NO_READ;
632 set_current_program_space (child_inf->pspace);
633 clone_program_space (child_inf->pspace, parent_pspace);
634
635 /* Let the shared library layer (e.g., solib-svr4) learn
636 about this new process, relocate the cloned exec, pull in
637 shared libraries, and install the solib event breakpoint.
638 If a "cloned-VM" event was propagated better throughout
639 the core, this wouldn't be required. */
640 solib_create_inferior_hook (0);
641 }
642 }
643
644 return target_follow_fork (follow_child, detach_fork);
645}
646
e58b0e63
PA
647/* Tell the target to follow the fork we're stopped at. Returns true
648 if the inferior should be resumed; false, if the target for some
649 reason decided it's best not to resume. */
650
6604731b 651static int
4ef3f3be 652follow_fork (void)
c906108c 653{
ea1dd7bc 654 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
655 int should_resume = 1;
656 struct thread_info *tp;
657
658 /* Copy user stepping state to the new inferior thread. FIXME: the
659 followed fork child thread should have a copy of most of the
4e3990f4
DE
660 parent thread structure's run control related fields, not just these.
661 Initialized to avoid "may be used uninitialized" warnings from gcc. */
662 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 663 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
664 CORE_ADDR step_range_start = 0;
665 CORE_ADDR step_range_end = 0;
666 struct frame_id step_frame_id = { 0 };
8980e177 667 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
668
669 if (!non_stop)
670 {
671 ptid_t wait_ptid;
672 struct target_waitstatus wait_status;
673
674 /* Get the last target status returned by target_wait(). */
675 get_last_target_status (&wait_ptid, &wait_status);
676
677 /* If not stopped at a fork event, then there's nothing else to
678 do. */
679 if (wait_status.kind != TARGET_WAITKIND_FORKED
680 && wait_status.kind != TARGET_WAITKIND_VFORKED)
681 return 1;
682
683 /* Check if we switched over from WAIT_PTID, since the event was
684 reported. */
00431a78
PA
685 if (wait_ptid != minus_one_ptid
686 && inferior_ptid != wait_ptid)
e58b0e63
PA
687 {
688 /* We did. Switch back to WAIT_PTID thread, to tell the
689 target to follow it (in either direction). We'll
690 afterwards refuse to resume, and inform the user what
691 happened. */
00431a78
PA
692 thread_info *wait_thread
693 = find_thread_ptid (wait_ptid);
694 switch_to_thread (wait_thread);
e58b0e63
PA
695 should_resume = 0;
696 }
697 }
698
699 tp = inferior_thread ();
700
701 /* If there were any forks/vforks that were caught and are now to be
702 followed, then do so now. */
703 switch (tp->pending_follow.kind)
704 {
705 case TARGET_WAITKIND_FORKED:
706 case TARGET_WAITKIND_VFORKED:
707 {
708 ptid_t parent, child;
709
710 /* If the user did a next/step, etc, over a fork call,
711 preserve the stepping state in the fork child. */
712 if (follow_child && should_resume)
713 {
8358c15c
JK
714 step_resume_breakpoint = clone_momentary_breakpoint
715 (tp->control.step_resume_breakpoint);
16c381f0
JK
716 step_range_start = tp->control.step_range_start;
717 step_range_end = tp->control.step_range_end;
718 step_frame_id = tp->control.step_frame_id;
186c406b
TT
719 exception_resume_breakpoint
720 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 721 thread_fsm = tp->thread_fsm;
e58b0e63
PA
722
723 /* For now, delete the parent's sr breakpoint, otherwise,
724 parent/child sr breakpoints are considered duplicates,
725 and the child version will not be installed. Remove
726 this when the breakpoints module becomes aware of
727 inferiors and address spaces. */
728 delete_step_resume_breakpoint (tp);
16c381f0
JK
729 tp->control.step_range_start = 0;
730 tp->control.step_range_end = 0;
731 tp->control.step_frame_id = null_frame_id;
186c406b 732 delete_exception_resume_breakpoint (tp);
8980e177 733 tp->thread_fsm = NULL;
e58b0e63
PA
734 }
735
736 parent = inferior_ptid;
737 child = tp->pending_follow.value.related_pid;
738
d83ad864
DB
739 /* Set up inferior(s) as specified by the caller, and tell the
740 target to do whatever is necessary to follow either parent
741 or child. */
742 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
743 {
744 /* Target refused to follow, or there's some other reason
745 we shouldn't resume. */
746 should_resume = 0;
747 }
748 else
749 {
750 /* This pending follow fork event is now handled, one way
751 or another. The previous selected thread may be gone
752 from the lists by now, but if it is still around, need
753 to clear the pending follow request. */
e09875d4 754 tp = find_thread_ptid (parent);
e58b0e63
PA
755 if (tp)
756 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
757
758 /* This makes sure we don't try to apply the "Switched
759 over from WAIT_PID" logic above. */
760 nullify_last_target_wait_ptid ();
761
1777feb0 762 /* If we followed the child, switch to it... */
e58b0e63
PA
763 if (follow_child)
764 {
00431a78
PA
765 thread_info *child_thr = find_thread_ptid (child);
766 switch_to_thread (child_thr);
e58b0e63
PA
767
768 /* ... and preserve the stepping state, in case the
769 user was stepping over the fork call. */
770 if (should_resume)
771 {
772 tp = inferior_thread ();
8358c15c
JK
773 tp->control.step_resume_breakpoint
774 = step_resume_breakpoint;
16c381f0
JK
775 tp->control.step_range_start = step_range_start;
776 tp->control.step_range_end = step_range_end;
777 tp->control.step_frame_id = step_frame_id;
186c406b
TT
778 tp->control.exception_resume_breakpoint
779 = exception_resume_breakpoint;
8980e177 780 tp->thread_fsm = thread_fsm;
e58b0e63
PA
781 }
782 else
783 {
784 /* If we get here, it was because we're trying to
785 resume from a fork catchpoint, but, the user
786 has switched threads away from the thread that
787 forked. In that case, the resume command
788 issued is most likely not applicable to the
789 child, so just warn, and refuse to resume. */
3e43a32a 790 warning (_("Not resuming: switched threads "
fd7dcb94 791 "before following fork child."));
e58b0e63
PA
792 }
793
794 /* Reset breakpoints in the child as appropriate. */
795 follow_inferior_reset_breakpoints ();
796 }
e58b0e63
PA
797 }
798 }
799 break;
800 case TARGET_WAITKIND_SPURIOUS:
801 /* Nothing to follow. */
802 break;
803 default:
804 internal_error (__FILE__, __LINE__,
805 "Unexpected pending_follow.kind %d\n",
806 tp->pending_follow.kind);
807 break;
808 }
c906108c 809
e58b0e63 810 return should_resume;
c906108c
SS
811}
812
d83ad864 813static void
6604731b 814follow_inferior_reset_breakpoints (void)
c906108c 815{
4e1c45ea
PA
816 struct thread_info *tp = inferior_thread ();
817
6604731b
DJ
818 /* Was there a step_resume breakpoint? (There was if the user
819 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
820 thread number. Cloned step_resume breakpoints are disabled on
821 creation, so enable it here now that it is associated with the
822 correct thread.
6604731b
DJ
823
824 step_resumes are a form of bp that are made to be per-thread.
825 Since we created the step_resume bp when the parent process
826 was being debugged, and now are switching to the child process,
827 from the breakpoint package's viewpoint, that's a switch of
828 "threads". We must update the bp's notion of which thread
829 it is for, or it'll be ignored when it triggers. */
830
8358c15c 831 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
832 {
833 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
834 tp->control.step_resume_breakpoint->loc->enabled = 1;
835 }
6604731b 836
a1aa2221 837 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 838 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
839 {
840 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
841 tp->control.exception_resume_breakpoint->loc->enabled = 1;
842 }
186c406b 843
6604731b
DJ
844 /* Reinsert all breakpoints in the child. The user may have set
845 breakpoints after catching the fork, in which case those
846 were never set in the child, but only in the parent. This makes
847 sure the inserted breakpoints match the breakpoint list. */
848
849 breakpoint_re_set ();
850 insert_breakpoints ();
c906108c 851}
c906108c 852
6c95b8df
PA
853/* The child has exited or execed: resume threads of the parent the
854 user wanted to be executing. */
855
856static int
857proceed_after_vfork_done (struct thread_info *thread,
858 void *arg)
859{
860 int pid = * (int *) arg;
861
00431a78
PA
862 if (thread->ptid.pid () == pid
863 && thread->state == THREAD_RUNNING
864 && !thread->executing
6c95b8df 865 && !thread->stop_requested
a493e3e2 866 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
867 {
868 if (debug_infrun)
869 fprintf_unfiltered (gdb_stdlog,
870 "infrun: resuming vfork parent thread %s\n",
a068643d 871 target_pid_to_str (thread->ptid).c_str ());
6c95b8df 872
00431a78 873 switch_to_thread (thread);
70509625 874 clear_proceed_status (0);
64ce06e4 875 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
876 }
877
878 return 0;
879}
880
5ed8105e
PA
881/* Save/restore inferior_ptid, current program space and current
882 inferior. Only use this if the current context points at an exited
883 inferior (and therefore there's no current thread to save). */
884class scoped_restore_exited_inferior
885{
886public:
887 scoped_restore_exited_inferior ()
888 : m_saved_ptid (&inferior_ptid)
889 {}
890
891private:
892 scoped_restore_tmpl<ptid_t> m_saved_ptid;
893 scoped_restore_current_program_space m_pspace;
894 scoped_restore_current_inferior m_inferior;
895};
896
6c95b8df
PA
897/* Called whenever we notice an exec or exit event, to handle
898 detaching or resuming a vfork parent. */
899
900static void
901handle_vfork_child_exec_or_exit (int exec)
902{
903 struct inferior *inf = current_inferior ();
904
905 if (inf->vfork_parent)
906 {
907 int resume_parent = -1;
908
909 /* This exec or exit marks the end of the shared memory region
b73715df
TV
910 between the parent and the child. Break the bonds. */
911 inferior *vfork_parent = inf->vfork_parent;
912 inf->vfork_parent->vfork_child = NULL;
913 inf->vfork_parent = NULL;
6c95b8df 914
b73715df
TV
915 /* If the user wanted to detach from the parent, now is the
916 time. */
917 if (vfork_parent->pending_detach)
6c95b8df
PA
918 {
919 struct thread_info *tp;
6c95b8df
PA
920 struct program_space *pspace;
921 struct address_space *aspace;
922
1777feb0 923 /* follow-fork child, detach-on-fork on. */
6c95b8df 924
b73715df 925 vfork_parent->pending_detach = 0;
68c9da30 926
5ed8105e
PA
927 gdb::optional<scoped_restore_exited_inferior>
928 maybe_restore_inferior;
929 gdb::optional<scoped_restore_current_pspace_and_thread>
930 maybe_restore_thread;
931
932 /* If we're handling a child exit, then inferior_ptid points
933 at the inferior's pid, not to a thread. */
f50f4e56 934 if (!exec)
5ed8105e 935 maybe_restore_inferior.emplace ();
f50f4e56 936 else
5ed8105e 937 maybe_restore_thread.emplace ();
6c95b8df
PA
938
939 /* We're letting loose of the parent. */
b73715df 940 tp = any_live_thread_of_inferior (vfork_parent);
00431a78 941 switch_to_thread (tp);
6c95b8df
PA
942
943 /* We're about to detach from the parent, which implicitly
944 removes breakpoints from its address space. There's a
945 catch here: we want to reuse the spaces for the child,
946 but, parent/child are still sharing the pspace at this
947 point, although the exec in reality makes the kernel give
948 the child a fresh set of new pages. The problem here is
949 that the breakpoints module being unaware of this, would
950 likely chose the child process to write to the parent
951 address space. Swapping the child temporarily away from
952 the spaces has the desired effect. Yes, this is "sort
953 of" a hack. */
954
955 pspace = inf->pspace;
956 aspace = inf->aspace;
957 inf->aspace = NULL;
958 inf->pspace = NULL;
959
f67c0c91 960 if (print_inferior_events)
6c95b8df 961 {
a068643d 962 std::string pidstr
b73715df 963 = target_pid_to_str (ptid_t (vfork_parent->pid));
f67c0c91 964
223ffa71 965 target_terminal::ours_for_output ();
6c95b8df
PA
966
967 if (exec)
6f259a23
DB
968 {
969 fprintf_filtered (gdb_stdlog,
f67c0c91 970 _("[Detaching vfork parent %s "
a068643d 971 "after child exec]\n"), pidstr.c_str ());
6f259a23 972 }
6c95b8df 973 else
6f259a23
DB
974 {
975 fprintf_filtered (gdb_stdlog,
f67c0c91 976 _("[Detaching vfork parent %s "
a068643d 977 "after child exit]\n"), pidstr.c_str ());
6f259a23 978 }
6c95b8df
PA
979 }
980
b73715df 981 target_detach (vfork_parent, 0);
6c95b8df
PA
982
983 /* Put it back. */
984 inf->pspace = pspace;
985 inf->aspace = aspace;
6c95b8df
PA
986 }
987 else if (exec)
988 {
989 /* We're staying attached to the parent, so, really give the
990 child a new address space. */
564b1e3f 991 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
992 inf->aspace = inf->pspace->aspace;
993 inf->removable = 1;
994 set_current_program_space (inf->pspace);
995
b73715df 996 resume_parent = vfork_parent->pid;
6c95b8df
PA
997 }
998 else
999 {
6c95b8df
PA
1000 struct program_space *pspace;
1001
1002 /* If this is a vfork child exiting, then the pspace and
1003 aspaces were shared with the parent. Since we're
1004 reporting the process exit, we'll be mourning all that is
1005 found in the address space, and switching to null_ptid,
1006 preparing to start a new inferior. But, since we don't
1007 want to clobber the parent's address/program spaces, we
1008 go ahead and create a new one for this exiting
1009 inferior. */
1010
5ed8105e
PA
1011 /* Switch to null_ptid while running clone_program_space, so
1012 that clone_program_space doesn't want to read the
1013 selected frame of a dead process. */
1014 scoped_restore restore_ptid
1015 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df
PA
1016
1017 /* This inferior is dead, so avoid giving the breakpoints
1018 module the option to write through to it (cloning a
1019 program space resets breakpoints). */
1020 inf->aspace = NULL;
1021 inf->pspace = NULL;
564b1e3f 1022 pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1023 set_current_program_space (pspace);
1024 inf->removable = 1;
7dcd53a0 1025 inf->symfile_flags = SYMFILE_NO_READ;
b73715df 1026 clone_program_space (pspace, vfork_parent->pspace);
6c95b8df
PA
1027 inf->pspace = pspace;
1028 inf->aspace = pspace->aspace;
1029
b73715df 1030 resume_parent = vfork_parent->pid;
6c95b8df
PA
1031 }
1032
6c95b8df
PA
1033 gdb_assert (current_program_space == inf->pspace);
1034
1035 if (non_stop && resume_parent != -1)
1036 {
1037 /* If the user wanted the parent to be running, let it go
1038 free now. */
5ed8105e 1039 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1040
1041 if (debug_infrun)
3e43a32a
MS
1042 fprintf_unfiltered (gdb_stdlog,
1043 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1044 resume_parent);
1045
1046 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1047 }
1048 }
1049}
1050
eb6c553b 1051/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1052
1053static const char follow_exec_mode_new[] = "new";
1054static const char follow_exec_mode_same[] = "same";
40478521 1055static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1056{
1057 follow_exec_mode_new,
1058 follow_exec_mode_same,
1059 NULL,
1060};
1061
1062static const char *follow_exec_mode_string = follow_exec_mode_same;
1063static void
1064show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1065 struct cmd_list_element *c, const char *value)
1066{
1067 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1068}
1069
ecf45d2c 1070/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1071
c906108c 1072static void
4ca51187 1073follow_exec (ptid_t ptid, const char *exec_file_target)
c906108c 1074{
6c95b8df 1075 struct inferior *inf = current_inferior ();
e99b03dc 1076 int pid = ptid.pid ();
94585166 1077 ptid_t process_ptid;
7a292a7a 1078
65d2b333
PW
1079 /* Switch terminal for any messages produced e.g. by
1080 breakpoint_re_set. */
1081 target_terminal::ours_for_output ();
1082
c906108c
SS
1083 /* This is an exec event that we actually wish to pay attention to.
1084 Refresh our symbol table to the newly exec'd program, remove any
1085 momentary bp's, etc.
1086
1087 If there are breakpoints, they aren't really inserted now,
1088 since the exec() transformed our inferior into a fresh set
1089 of instructions.
1090
1091 We want to preserve symbolic breakpoints on the list, since
1092 we have hopes that they can be reset after the new a.out's
1093 symbol table is read.
1094
1095 However, any "raw" breakpoints must be removed from the list
1096 (e.g., the solib bp's), since their address is probably invalid
1097 now.
1098
1099 And, we DON'T want to call delete_breakpoints() here, since
1100 that may write the bp's "shadow contents" (the instruction
85102364 1101 value that was overwritten with a TRAP instruction). Since
1777feb0 1102 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1103
1104 mark_breakpoints_out ();
1105
95e50b27
PA
1106 /* The target reports the exec event to the main thread, even if
1107 some other thread does the exec, and even if the main thread was
1108 stopped or already gone. We may still have non-leader threads of
1109 the process on our list. E.g., on targets that don't have thread
1110 exit events (like remote); or on native Linux in non-stop mode if
1111 there were only two threads in the inferior and the non-leader
1112 one is the one that execs (and nothing forces an update of the
1113 thread list up to here). When debugging remotely, it's best to
1114 avoid extra traffic, when possible, so avoid syncing the thread
1115 list with the target, and instead go ahead and delete all threads
1116 of the process but one that reported the event. Note this must
1117 be done before calling update_breakpoints_after_exec, as
1118 otherwise clearing the threads' resources would reference stale
1119 thread breakpoints -- it may have been one of these threads that
1120 stepped across the exec. We could just clear their stepping
1121 states, but as long as we're iterating, might as well delete
1122 them. Deleting them now rather than at the next user-visible
1123 stop provides a nicer sequence of events for user and MI
1124 notifications. */
08036331 1125 for (thread_info *th : all_threads_safe ())
d7e15655 1126 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1127 delete_thread (th);
95e50b27
PA
1128
1129 /* We also need to clear any left over stale state for the
1130 leader/event thread. E.g., if there was any step-resume
1131 breakpoint or similar, it's gone now. We cannot truly
1132 step-to-next statement through an exec(). */
08036331 1133 thread_info *th = inferior_thread ();
8358c15c 1134 th->control.step_resume_breakpoint = NULL;
186c406b 1135 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1136 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1137 th->control.step_range_start = 0;
1138 th->control.step_range_end = 0;
c906108c 1139
95e50b27
PA
1140 /* The user may have had the main thread held stopped in the
1141 previous image (e.g., schedlock on, or non-stop). Release
1142 it now. */
a75724bc
PA
1143 th->stop_requested = 0;
1144
95e50b27
PA
1145 update_breakpoints_after_exec ();
1146
1777feb0 1147 /* What is this a.out's name? */
f2907e49 1148 process_ptid = ptid_t (pid);
6c95b8df 1149 printf_unfiltered (_("%s is executing new program: %s\n"),
a068643d 1150 target_pid_to_str (process_ptid).c_str (),
ecf45d2c 1151 exec_file_target);
c906108c
SS
1152
1153 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1154 inferior has essentially been killed & reborn. */
7a292a7a 1155
6ca15a4b 1156 breakpoint_init_inferior (inf_execd);
e85a822c 1157
797bc1cb
TT
1158 gdb::unique_xmalloc_ptr<char> exec_file_host
1159 = exec_file_find (exec_file_target, NULL);
ff862be4 1160
ecf45d2c
SL
1161 /* If we were unable to map the executable target pathname onto a host
1162 pathname, tell the user that. Otherwise GDB's subsequent behavior
1163 is confusing. Maybe it would even be better to stop at this point
1164 so that the user can specify a file manually before continuing. */
1165 if (exec_file_host == NULL)
1166 warning (_("Could not load symbols for executable %s.\n"
1167 "Do you need \"set sysroot\"?"),
1168 exec_file_target);
c906108c 1169
cce9b6bf
PA
1170 /* Reset the shared library package. This ensures that we get a
1171 shlib event when the child reaches "_start", at which point the
1172 dld will have had a chance to initialize the child. */
1173 /* Also, loading a symbol file below may trigger symbol lookups, and
1174 we don't want those to be satisfied by the libraries of the
1175 previous incarnation of this process. */
1176 no_shared_libraries (NULL, 0);
1177
6c95b8df
PA
1178 if (follow_exec_mode_string == follow_exec_mode_new)
1179 {
6c95b8df
PA
1180 /* The user wants to keep the old inferior and program spaces
1181 around. Create a new fresh one, and switch to it. */
1182
35ed81d4
SM
1183 /* Do exit processing for the original inferior before setting the new
1184 inferior's pid. Having two inferiors with the same pid would confuse
1185 find_inferior_p(t)id. Transfer the terminal state and info from the
1186 old to the new inferior. */
1187 inf = add_inferior_with_spaces ();
1188 swap_terminal_info (inf, current_inferior ());
057302ce 1189 exit_inferior_silent (current_inferior ());
17d8546e 1190
94585166 1191 inf->pid = pid;
ecf45d2c 1192 target_follow_exec (inf, exec_file_target);
6c95b8df
PA
1193
1194 set_current_inferior (inf);
94585166 1195 set_current_program_space (inf->pspace);
c4c17fb0 1196 add_thread (ptid);
6c95b8df 1197 }
9107fc8d
PA
1198 else
1199 {
1200 /* The old description may no longer be fit for the new image.
1201 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1202 old description; we'll read a new one below. No need to do
1203 this on "follow-exec-mode new", as the old inferior stays
1204 around (its description is later cleared/refetched on
1205 restart). */
1206 target_clear_description ();
1207 }
6c95b8df
PA
1208
1209 gdb_assert (current_program_space == inf->pspace);
1210
ecf45d2c
SL
1211 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1212 because the proper displacement for a PIE (Position Independent
1213 Executable) main symbol file will only be computed by
1214 solib_create_inferior_hook below. breakpoint_re_set would fail
1215 to insert the breakpoints with the zero displacement. */
797bc1cb 1216 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1217
9107fc8d
PA
1218 /* If the target can specify a description, read it. Must do this
1219 after flipping to the new executable (because the target supplied
1220 description must be compatible with the executable's
1221 architecture, and the old executable may e.g., be 32-bit, while
1222 the new one 64-bit), and before anything involving memory or
1223 registers. */
1224 target_find_description ();
1225
268a4a75 1226 solib_create_inferior_hook (0);
c906108c 1227
4efc6507
DE
1228 jit_inferior_created_hook ();
1229
c1e56572
JK
1230 breakpoint_re_set ();
1231
c906108c
SS
1232 /* Reinsert all breakpoints. (Those which were symbolic have
1233 been reset to the proper address in the new a.out, thanks
1777feb0 1234 to symbol_file_command...). */
c906108c
SS
1235 insert_breakpoints ();
1236
1237 /* The next resume of this inferior should bring it to the shlib
1238 startup breakpoints. (If the user had also set bp's on
1239 "main" from the old (parent) process, then they'll auto-
1777feb0 1240 matically get reset there in the new process.). */
c906108c
SS
1241}
1242
c2829269
PA
1243/* The queue of threads that need to do a step-over operation to get
1244 past e.g., a breakpoint. What technique is used to step over the
1245 breakpoint/watchpoint does not matter -- all threads end up in the
1246 same queue, to maintain rough temporal order of execution, in order
1247 to avoid starvation, otherwise, we could e.g., find ourselves
1248 constantly stepping the same couple threads past their breakpoints
1249 over and over, if the single-step finish fast enough. */
1250struct thread_info *step_over_queue_head;
1251
6c4cfb24
PA
1252/* Bit flags indicating what the thread needs to step over. */
1253
8d297bbf 1254enum step_over_what_flag
6c4cfb24
PA
1255 {
1256 /* Step over a breakpoint. */
1257 STEP_OVER_BREAKPOINT = 1,
1258
1259 /* Step past a non-continuable watchpoint, in order to let the
1260 instruction execute so we can evaluate the watchpoint
1261 expression. */
1262 STEP_OVER_WATCHPOINT = 2
1263 };
8d297bbf 1264DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1265
963f9c80 1266/* Info about an instruction that is being stepped over. */
31e77af2
PA
1267
1268struct step_over_info
1269{
963f9c80
PA
1270 /* If we're stepping past a breakpoint, this is the address space
1271 and address of the instruction the breakpoint is set at. We'll
1272 skip inserting all breakpoints here. Valid iff ASPACE is
1273 non-NULL. */
8b86c959 1274 const address_space *aspace;
31e77af2 1275 CORE_ADDR address;
963f9c80
PA
1276
1277 /* The instruction being stepped over triggers a nonsteppable
1278 watchpoint. If true, we'll skip inserting watchpoints. */
1279 int nonsteppable_watchpoint_p;
21edc42f
YQ
1280
1281 /* The thread's global number. */
1282 int thread;
31e77af2
PA
1283};
1284
1285/* The step-over info of the location that is being stepped over.
1286
1287 Note that with async/breakpoint always-inserted mode, a user might
1288 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1289 being stepped over. As setting a new breakpoint inserts all
1290 breakpoints, we need to make sure the breakpoint being stepped over
1291 isn't inserted then. We do that by only clearing the step-over
1292 info when the step-over is actually finished (or aborted).
1293
1294 Presently GDB can only step over one breakpoint at any given time.
1295 Given threads that can't run code in the same address space as the
1296 breakpoint's can't really miss the breakpoint, GDB could be taught
1297 to step-over at most one breakpoint per address space (so this info
1298 could move to the address space object if/when GDB is extended).
1299 The set of breakpoints being stepped over will normally be much
1300 smaller than the set of all breakpoints, so a flag in the
1301 breakpoint location structure would be wasteful. A separate list
1302 also saves complexity and run-time, as otherwise we'd have to go
1303 through all breakpoint locations clearing their flag whenever we
1304 start a new sequence. Similar considerations weigh against storing
1305 this info in the thread object. Plus, not all step overs actually
1306 have breakpoint locations -- e.g., stepping past a single-step
1307 breakpoint, or stepping to complete a non-continuable
1308 watchpoint. */
1309static struct step_over_info step_over_info;
1310
1311/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1312 stepping over.
1313 N.B. We record the aspace and address now, instead of say just the thread,
1314 because when we need the info later the thread may be running. */
31e77af2
PA
1315
1316static void
8b86c959 1317set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1318 int nonsteppable_watchpoint_p,
1319 int thread)
31e77af2
PA
1320{
1321 step_over_info.aspace = aspace;
1322 step_over_info.address = address;
963f9c80 1323 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1324 step_over_info.thread = thread;
31e77af2
PA
1325}
1326
1327/* Called when we're not longer stepping over a breakpoint / an
1328 instruction, so all breakpoints are free to be (re)inserted. */
1329
1330static void
1331clear_step_over_info (void)
1332{
372316f1
PA
1333 if (debug_infrun)
1334 fprintf_unfiltered (gdb_stdlog,
1335 "infrun: clear_step_over_info\n");
31e77af2
PA
1336 step_over_info.aspace = NULL;
1337 step_over_info.address = 0;
963f9c80 1338 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1339 step_over_info.thread = -1;
31e77af2
PA
1340}
1341
7f89fd65 1342/* See infrun.h. */
31e77af2
PA
1343
1344int
1345stepping_past_instruction_at (struct address_space *aspace,
1346 CORE_ADDR address)
1347{
1348 return (step_over_info.aspace != NULL
1349 && breakpoint_address_match (aspace, address,
1350 step_over_info.aspace,
1351 step_over_info.address));
1352}
1353
963f9c80
PA
1354/* See infrun.h. */
1355
21edc42f
YQ
1356int
1357thread_is_stepping_over_breakpoint (int thread)
1358{
1359 return (step_over_info.thread != -1
1360 && thread == step_over_info.thread);
1361}
1362
1363/* See infrun.h. */
1364
963f9c80
PA
1365int
1366stepping_past_nonsteppable_watchpoint (void)
1367{
1368 return step_over_info.nonsteppable_watchpoint_p;
1369}
1370
6cc83d2a
PA
1371/* Returns true if step-over info is valid. */
1372
1373static int
1374step_over_info_valid_p (void)
1375{
963f9c80
PA
1376 return (step_over_info.aspace != NULL
1377 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1378}
1379
c906108c 1380\f
237fc4c9
PA
1381/* Displaced stepping. */
1382
1383/* In non-stop debugging mode, we must take special care to manage
1384 breakpoints properly; in particular, the traditional strategy for
1385 stepping a thread past a breakpoint it has hit is unsuitable.
1386 'Displaced stepping' is a tactic for stepping one thread past a
1387 breakpoint it has hit while ensuring that other threads running
1388 concurrently will hit the breakpoint as they should.
1389
1390 The traditional way to step a thread T off a breakpoint in a
1391 multi-threaded program in all-stop mode is as follows:
1392
1393 a0) Initially, all threads are stopped, and breakpoints are not
1394 inserted.
1395 a1) We single-step T, leaving breakpoints uninserted.
1396 a2) We insert breakpoints, and resume all threads.
1397
1398 In non-stop debugging, however, this strategy is unsuitable: we
1399 don't want to have to stop all threads in the system in order to
1400 continue or step T past a breakpoint. Instead, we use displaced
1401 stepping:
1402
1403 n0) Initially, T is stopped, other threads are running, and
1404 breakpoints are inserted.
1405 n1) We copy the instruction "under" the breakpoint to a separate
1406 location, outside the main code stream, making any adjustments
1407 to the instruction, register, and memory state as directed by
1408 T's architecture.
1409 n2) We single-step T over the instruction at its new location.
1410 n3) We adjust the resulting register and memory state as directed
1411 by T's architecture. This includes resetting T's PC to point
1412 back into the main instruction stream.
1413 n4) We resume T.
1414
1415 This approach depends on the following gdbarch methods:
1416
1417 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1418 indicate where to copy the instruction, and how much space must
1419 be reserved there. We use these in step n1.
1420
1421 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1422 address, and makes any necessary adjustments to the instruction,
1423 register contents, and memory. We use this in step n1.
1424
1425 - gdbarch_displaced_step_fixup adjusts registers and memory after
85102364 1426 we have successfully single-stepped the instruction, to yield the
237fc4c9
PA
1427 same effect the instruction would have had if we had executed it
1428 at its original address. We use this in step n3.
1429
237fc4c9
PA
1430 The gdbarch_displaced_step_copy_insn and
1431 gdbarch_displaced_step_fixup functions must be written so that
1432 copying an instruction with gdbarch_displaced_step_copy_insn,
1433 single-stepping across the copied instruction, and then applying
1434 gdbarch_displaced_insn_fixup should have the same effects on the
1435 thread's memory and registers as stepping the instruction in place
1436 would have. Exactly which responsibilities fall to the copy and
1437 which fall to the fixup is up to the author of those functions.
1438
1439 See the comments in gdbarch.sh for details.
1440
1441 Note that displaced stepping and software single-step cannot
1442 currently be used in combination, although with some care I think
1443 they could be made to. Software single-step works by placing
1444 breakpoints on all possible subsequent instructions; if the
1445 displaced instruction is a PC-relative jump, those breakpoints
1446 could fall in very strange places --- on pages that aren't
1447 executable, or at addresses that are not proper instruction
1448 boundaries. (We do generally let other threads run while we wait
1449 to hit the software single-step breakpoint, and they might
1450 encounter such a corrupted instruction.) One way to work around
1451 this would be to have gdbarch_displaced_step_copy_insn fully
1452 simulate the effect of PC-relative instructions (and return NULL)
1453 on architectures that use software single-stepping.
1454
1455 In non-stop mode, we can have independent and simultaneous step
1456 requests, so more than one thread may need to simultaneously step
1457 over a breakpoint. The current implementation assumes there is
1458 only one scratch space per process. In this case, we have to
1459 serialize access to the scratch space. If thread A wants to step
1460 over a breakpoint, but we are currently waiting for some other
1461 thread to complete a displaced step, we leave thread A stopped and
1462 place it in the displaced_step_request_queue. Whenever a displaced
1463 step finishes, we pick the next thread in the queue and start a new
1464 displaced step operation on it. See displaced_step_prepare and
1465 displaced_step_fixup for details. */
1466
cfba9872
SM
1467/* Default destructor for displaced_step_closure. */
1468
1469displaced_step_closure::~displaced_step_closure () = default;
1470
fc1cf338
PA
1471/* Get the displaced stepping state of process PID. */
1472
39a36629 1473static displaced_step_inferior_state *
00431a78 1474get_displaced_stepping_state (inferior *inf)
fc1cf338 1475{
d20172fc 1476 return &inf->displaced_step_state;
fc1cf338
PA
1477}
1478
372316f1
PA
1479/* Returns true if any inferior has a thread doing a displaced
1480 step. */
1481
39a36629
SM
1482static bool
1483displaced_step_in_progress_any_inferior ()
372316f1 1484{
d20172fc 1485 for (inferior *i : all_inferiors ())
39a36629 1486 {
d20172fc 1487 if (i->displaced_step_state.step_thread != nullptr)
39a36629
SM
1488 return true;
1489 }
372316f1 1490
39a36629 1491 return false;
372316f1
PA
1492}
1493
c0987663
YQ
1494/* Return true if thread represented by PTID is doing a displaced
1495 step. */
1496
1497static int
00431a78 1498displaced_step_in_progress_thread (thread_info *thread)
c0987663 1499{
00431a78 1500 gdb_assert (thread != NULL);
c0987663 1501
d20172fc 1502 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
c0987663
YQ
1503}
1504
8f572e5c
PA
1505/* Return true if process PID has a thread doing a displaced step. */
1506
1507static int
00431a78 1508displaced_step_in_progress (inferior *inf)
8f572e5c 1509{
d20172fc 1510 return get_displaced_stepping_state (inf)->step_thread != nullptr;
fc1cf338
PA
1511}
1512
a42244db
YQ
1513/* If inferior is in displaced stepping, and ADDR equals to starting address
1514 of copy area, return corresponding displaced_step_closure. Otherwise,
1515 return NULL. */
1516
1517struct displaced_step_closure*
1518get_displaced_step_closure_by_addr (CORE_ADDR addr)
1519{
d20172fc 1520 displaced_step_inferior_state *displaced
00431a78 1521 = get_displaced_stepping_state (current_inferior ());
a42244db
YQ
1522
1523 /* If checking the mode of displaced instruction in copy area. */
d20172fc 1524 if (displaced->step_thread != nullptr
00431a78 1525 && displaced->step_copy == addr)
a42244db
YQ
1526 return displaced->step_closure;
1527
1528 return NULL;
1529}
1530
fc1cf338
PA
1531static void
1532infrun_inferior_exit (struct inferior *inf)
1533{
d20172fc 1534 inf->displaced_step_state.reset ();
fc1cf338 1535}
237fc4c9 1536
fff08868
HZ
1537/* If ON, and the architecture supports it, GDB will use displaced
1538 stepping to step over breakpoints. If OFF, or if the architecture
1539 doesn't support it, GDB will instead use the traditional
1540 hold-and-step approach. If AUTO (which is the default), GDB will
1541 decide which technique to use to step over breakpoints depending on
1542 which of all-stop or non-stop mode is active --- displaced stepping
1543 in non-stop mode; hold-and-step in all-stop mode. */
1544
72d0e2c5 1545static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1546
237fc4c9
PA
1547static void
1548show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1549 struct cmd_list_element *c,
1550 const char *value)
1551{
72d0e2c5 1552 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1553 fprintf_filtered (file,
1554 _("Debugger's willingness to use displaced stepping "
1555 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1556 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1557 else
3e43a32a
MS
1558 fprintf_filtered (file,
1559 _("Debugger's willingness to use displaced stepping "
1560 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1561}
1562
fff08868 1563/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1564 over breakpoints of thread TP. */
fff08868 1565
237fc4c9 1566static int
3fc8eb30 1567use_displaced_stepping (struct thread_info *tp)
237fc4c9 1568{
00431a78 1569 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 1570 struct gdbarch *gdbarch = regcache->arch ();
d20172fc
SM
1571 displaced_step_inferior_state *displaced_state
1572 = get_displaced_stepping_state (tp->inf);
3fc8eb30 1573
fbea99ea
PA
1574 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1575 && target_is_non_stop_p ())
72d0e2c5 1576 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1577 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30 1578 && find_record_target () == NULL
d20172fc 1579 && !displaced_state->failed_before);
237fc4c9
PA
1580}
1581
1582/* Clean out any stray displaced stepping state. */
1583static void
fc1cf338 1584displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1585{
1586 /* Indicate that there is no cleanup pending. */
00431a78 1587 displaced->step_thread = nullptr;
237fc4c9 1588
cfba9872 1589 delete displaced->step_closure;
6d45d4b4 1590 displaced->step_closure = NULL;
237fc4c9
PA
1591}
1592
9799571e
TT
1593/* A cleanup that wraps displaced_step_clear. */
1594using displaced_step_clear_cleanup
1595 = FORWARD_SCOPE_EXIT (displaced_step_clear);
237fc4c9
PA
1596
1597/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1598void
1599displaced_step_dump_bytes (struct ui_file *file,
1600 const gdb_byte *buf,
1601 size_t len)
1602{
1603 int i;
1604
1605 for (i = 0; i < len; i++)
1606 fprintf_unfiltered (file, "%02x ", buf[i]);
1607 fputs_unfiltered ("\n", file);
1608}
1609
1610/* Prepare to single-step, using displaced stepping.
1611
1612 Note that we cannot use displaced stepping when we have a signal to
1613 deliver. If we have a signal to deliver and an instruction to step
1614 over, then after the step, there will be no indication from the
1615 target whether the thread entered a signal handler or ignored the
1616 signal and stepped over the instruction successfully --- both cases
1617 result in a simple SIGTRAP. In the first case we mustn't do a
1618 fixup, and in the second case we must --- but we can't tell which.
1619 Comments in the code for 'random signals' in handle_inferior_event
1620 explain how we handle this case instead.
1621
1622 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1623 stepped now; 0 if displaced stepping this thread got queued; or -1
1624 if this instruction can't be displaced stepped. */
1625
237fc4c9 1626static int
00431a78 1627displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1628{
00431a78 1629 regcache *regcache = get_thread_regcache (tp);
ac7936df 1630 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1631 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1632 CORE_ADDR original, copy;
1633 ULONGEST len;
1634 struct displaced_step_closure *closure;
9e529e1d 1635 int status;
237fc4c9
PA
1636
1637 /* We should never reach this function if the architecture does not
1638 support displaced stepping. */
1639 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1640
c2829269
PA
1641 /* Nor if the thread isn't meant to step over a breakpoint. */
1642 gdb_assert (tp->control.trap_expected);
1643
c1e36e3e
PA
1644 /* Disable range stepping while executing in the scratch pad. We
1645 want a single-step even if executing the displaced instruction in
1646 the scratch buffer lands within the stepping range (e.g., a
1647 jump/branch). */
1648 tp->control.may_range_step = 0;
1649
fc1cf338
PA
1650 /* We have to displaced step one thread at a time, as we only have
1651 access to a single scratch space per inferior. */
237fc4c9 1652
d20172fc
SM
1653 displaced_step_inferior_state *displaced
1654 = get_displaced_stepping_state (tp->inf);
fc1cf338 1655
00431a78 1656 if (displaced->step_thread != nullptr)
237fc4c9
PA
1657 {
1658 /* Already waiting for a displaced step to finish. Defer this
1659 request and place in queue. */
237fc4c9
PA
1660
1661 if (debug_displaced)
1662 fprintf_unfiltered (gdb_stdlog,
c2829269 1663 "displaced: deferring step of %s\n",
a068643d 1664 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1665
c2829269 1666 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1667 return 0;
1668 }
1669 else
1670 {
1671 if (debug_displaced)
1672 fprintf_unfiltered (gdb_stdlog,
1673 "displaced: stepping %s now\n",
a068643d 1674 target_pid_to_str (tp->ptid).c_str ());
237fc4c9
PA
1675 }
1676
fc1cf338 1677 displaced_step_clear (displaced);
237fc4c9 1678
00431a78
PA
1679 scoped_restore_current_thread restore_thread;
1680
1681 switch_to_thread (tp);
ad53cd71 1682
515630c5 1683 original = regcache_read_pc (regcache);
237fc4c9
PA
1684
1685 copy = gdbarch_displaced_step_location (gdbarch);
1686 len = gdbarch_max_insn_length (gdbarch);
1687
d35ae833
PA
1688 if (breakpoint_in_range_p (aspace, copy, len))
1689 {
1690 /* There's a breakpoint set in the scratch pad location range
1691 (which is usually around the entry point). We'd either
1692 install it before resuming, which would overwrite/corrupt the
1693 scratch pad, or if it was already inserted, this displaced
1694 step would overwrite it. The latter is OK in the sense that
1695 we already assume that no thread is going to execute the code
1696 in the scratch pad range (after initial startup) anyway, but
1697 the former is unacceptable. Simply punt and fallback to
1698 stepping over this breakpoint in-line. */
1699 if (debug_displaced)
1700 {
1701 fprintf_unfiltered (gdb_stdlog,
1702 "displaced: breakpoint set in scratch pad. "
1703 "Stepping over breakpoint in-line instead.\n");
1704 }
1705
d35ae833
PA
1706 return -1;
1707 }
1708
237fc4c9 1709 /* Save the original contents of the copy area. */
d20172fc
SM
1710 displaced->step_saved_copy.resize (len);
1711 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
9e529e1d
JK
1712 if (status != 0)
1713 throw_error (MEMORY_ERROR,
1714 _("Error accessing memory address %s (%s) for "
1715 "displaced-stepping scratch space."),
1716 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1717 if (debug_displaced)
1718 {
5af949e3
UW
1719 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1720 paddress (gdbarch, copy));
fc1cf338 1721 displaced_step_dump_bytes (gdb_stdlog,
d20172fc 1722 displaced->step_saved_copy.data (),
fc1cf338 1723 len);
237fc4c9
PA
1724 };
1725
1726 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1727 original, copy, regcache);
7f03bd92
PA
1728 if (closure == NULL)
1729 {
1730 /* The architecture doesn't know how or want to displaced step
1731 this instruction or instruction sequence. Fallback to
1732 stepping over the breakpoint in-line. */
7f03bd92
PA
1733 return -1;
1734 }
237fc4c9 1735
9f5a595d
UW
1736 /* Save the information we need to fix things up if the step
1737 succeeds. */
00431a78 1738 displaced->step_thread = tp;
fc1cf338
PA
1739 displaced->step_gdbarch = gdbarch;
1740 displaced->step_closure = closure;
1741 displaced->step_original = original;
1742 displaced->step_copy = copy;
9f5a595d 1743
9799571e
TT
1744 {
1745 displaced_step_clear_cleanup cleanup (displaced);
237fc4c9 1746
9799571e
TT
1747 /* Resume execution at the copy. */
1748 regcache_write_pc (regcache, copy);
237fc4c9 1749
9799571e
TT
1750 cleanup.release ();
1751 }
ad53cd71 1752
237fc4c9 1753 if (debug_displaced)
5af949e3
UW
1754 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1755 paddress (gdbarch, copy));
237fc4c9 1756
237fc4c9
PA
1757 return 1;
1758}
1759
3fc8eb30
PA
1760/* Wrapper for displaced_step_prepare_throw that disabled further
1761 attempts at displaced stepping if we get a memory error. */
1762
1763static int
00431a78 1764displaced_step_prepare (thread_info *thread)
3fc8eb30
PA
1765{
1766 int prepared = -1;
1767
a70b8144 1768 try
3fc8eb30 1769 {
00431a78 1770 prepared = displaced_step_prepare_throw (thread);
3fc8eb30 1771 }
230d2906 1772 catch (const gdb_exception_error &ex)
3fc8eb30
PA
1773 {
1774 struct displaced_step_inferior_state *displaced_state;
1775
16b41842
PA
1776 if (ex.error != MEMORY_ERROR
1777 && ex.error != NOT_SUPPORTED_ERROR)
eedc3f4f 1778 throw;
3fc8eb30
PA
1779
1780 if (debug_infrun)
1781 {
1782 fprintf_unfiltered (gdb_stdlog,
1783 "infrun: disabling displaced stepping: %s\n",
3d6e9d23 1784 ex.what ());
3fc8eb30
PA
1785 }
1786
1787 /* Be verbose if "set displaced-stepping" is "on", silent if
1788 "auto". */
1789 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1790 {
fd7dcb94 1791 warning (_("disabling displaced stepping: %s"),
3d6e9d23 1792 ex.what ());
3fc8eb30
PA
1793 }
1794
1795 /* Disable further displaced stepping attempts. */
1796 displaced_state
00431a78 1797 = get_displaced_stepping_state (thread->inf);
3fc8eb30
PA
1798 displaced_state->failed_before = 1;
1799 }
3fc8eb30
PA
1800
1801 return prepared;
1802}
1803
237fc4c9 1804static void
3e43a32a
MS
1805write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1806 const gdb_byte *myaddr, int len)
237fc4c9 1807{
2989a365 1808 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1809
237fc4c9
PA
1810 inferior_ptid = ptid;
1811 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1812}
1813
e2d96639
YQ
1814/* Restore the contents of the copy area for thread PTID. */
1815
1816static void
1817displaced_step_restore (struct displaced_step_inferior_state *displaced,
1818 ptid_t ptid)
1819{
1820 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1821
1822 write_memory_ptid (ptid, displaced->step_copy,
d20172fc 1823 displaced->step_saved_copy.data (), len);
e2d96639
YQ
1824 if (debug_displaced)
1825 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
a068643d 1826 target_pid_to_str (ptid).c_str (),
e2d96639
YQ
1827 paddress (displaced->step_gdbarch,
1828 displaced->step_copy));
1829}
1830
372316f1
PA
1831/* If we displaced stepped an instruction successfully, adjust
1832 registers and memory to yield the same effect the instruction would
1833 have had if we had executed it at its original address, and return
1834 1. If the instruction didn't complete, relocate the PC and return
1835 -1. If the thread wasn't displaced stepping, return 0. */
1836
1837static int
00431a78 1838displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
237fc4c9 1839{
fc1cf338 1840 struct displaced_step_inferior_state *displaced
00431a78 1841 = get_displaced_stepping_state (event_thread->inf);
372316f1 1842 int ret;
fc1cf338 1843
00431a78
PA
1844 /* Was this event for the thread we displaced? */
1845 if (displaced->step_thread != event_thread)
372316f1 1846 return 0;
237fc4c9 1847
9799571e 1848 displaced_step_clear_cleanup cleanup (displaced);
237fc4c9 1849
00431a78 1850 displaced_step_restore (displaced, displaced->step_thread->ptid);
237fc4c9 1851
cb71640d
PA
1852 /* Fixup may need to read memory/registers. Switch to the thread
1853 that we're fixing up. Also, target_stopped_by_watchpoint checks
1854 the current thread. */
00431a78 1855 switch_to_thread (event_thread);
cb71640d 1856
237fc4c9 1857 /* Did the instruction complete successfully? */
cb71640d
PA
1858 if (signal == GDB_SIGNAL_TRAP
1859 && !(target_stopped_by_watchpoint ()
1860 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1861 || target_have_steppable_watchpoint)))
237fc4c9
PA
1862 {
1863 /* Fix up the resulting state. */
fc1cf338
PA
1864 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1865 displaced->step_closure,
1866 displaced->step_original,
1867 displaced->step_copy,
00431a78 1868 get_thread_regcache (displaced->step_thread));
372316f1 1869 ret = 1;
237fc4c9
PA
1870 }
1871 else
1872 {
1873 /* Since the instruction didn't complete, all we can do is
1874 relocate the PC. */
00431a78 1875 struct regcache *regcache = get_thread_regcache (event_thread);
515630c5 1876 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1877
fc1cf338 1878 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1879 regcache_write_pc (regcache, pc);
372316f1 1880 ret = -1;
237fc4c9
PA
1881 }
1882
372316f1 1883 return ret;
c2829269 1884}
1c5cfe86 1885
4d9d9d04
PA
1886/* Data to be passed around while handling an event. This data is
1887 discarded between events. */
1888struct execution_control_state
1889{
1890 ptid_t ptid;
1891 /* The thread that got the event, if this was a thread event; NULL
1892 otherwise. */
1893 struct thread_info *event_thread;
1894
1895 struct target_waitstatus ws;
1896 int stop_func_filled_in;
1897 CORE_ADDR stop_func_start;
1898 CORE_ADDR stop_func_end;
1899 const char *stop_func_name;
1900 int wait_some_more;
1901
1902 /* True if the event thread hit the single-step breakpoint of
1903 another thread. Thus the event doesn't cause a stop, the thread
1904 needs to be single-stepped past the single-step breakpoint before
1905 we can switch back to the original stepping thread. */
1906 int hit_singlestep_breakpoint;
1907};
1908
1909/* Clear ECS and set it to point at TP. */
c2829269
PA
1910
1911static void
4d9d9d04
PA
1912reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1913{
1914 memset (ecs, 0, sizeof (*ecs));
1915 ecs->event_thread = tp;
1916 ecs->ptid = tp->ptid;
1917}
1918
1919static void keep_going_pass_signal (struct execution_control_state *ecs);
1920static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 1921static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1922static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1923
1924/* Are there any pending step-over requests? If so, run all we can
1925 now and return true. Otherwise, return false. */
1926
1927static int
c2829269
PA
1928start_step_over (void)
1929{
1930 struct thread_info *tp, *next;
1931
372316f1
PA
1932 /* Don't start a new step-over if we already have an in-line
1933 step-over operation ongoing. */
1934 if (step_over_info_valid_p ())
1935 return 0;
1936
c2829269 1937 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 1938 {
4d9d9d04
PA
1939 struct execution_control_state ecss;
1940 struct execution_control_state *ecs = &ecss;
8d297bbf 1941 step_over_what step_what;
372316f1 1942 int must_be_in_line;
c2829269 1943
c65d6b55
PA
1944 gdb_assert (!tp->stop_requested);
1945
c2829269 1946 next = thread_step_over_chain_next (tp);
237fc4c9 1947
c2829269
PA
1948 /* If this inferior already has a displaced step in process,
1949 don't start a new one. */
00431a78 1950 if (displaced_step_in_progress (tp->inf))
c2829269
PA
1951 continue;
1952
372316f1
PA
1953 step_what = thread_still_needs_step_over (tp);
1954 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1955 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 1956 && !use_displaced_stepping (tp)));
372316f1
PA
1957
1958 /* We currently stop all threads of all processes to step-over
1959 in-line. If we need to start a new in-line step-over, let
1960 any pending displaced steps finish first. */
1961 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1962 return 0;
1963
c2829269
PA
1964 thread_step_over_chain_remove (tp);
1965
1966 if (step_over_queue_head == NULL)
1967 {
1968 if (debug_infrun)
1969 fprintf_unfiltered (gdb_stdlog,
1970 "infrun: step-over queue now empty\n");
1971 }
1972
372316f1
PA
1973 if (tp->control.trap_expected
1974 || tp->resumed
1975 || tp->executing)
ad53cd71 1976 {
4d9d9d04
PA
1977 internal_error (__FILE__, __LINE__,
1978 "[%s] has inconsistent state: "
372316f1 1979 "trap_expected=%d, resumed=%d, executing=%d\n",
a068643d 1980 target_pid_to_str (tp->ptid).c_str (),
4d9d9d04 1981 tp->control.trap_expected,
372316f1 1982 tp->resumed,
4d9d9d04 1983 tp->executing);
ad53cd71 1984 }
1c5cfe86 1985
4d9d9d04
PA
1986 if (debug_infrun)
1987 fprintf_unfiltered (gdb_stdlog,
1988 "infrun: resuming [%s] for step-over\n",
a068643d 1989 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04
PA
1990
1991 /* keep_going_pass_signal skips the step-over if the breakpoint
1992 is no longer inserted. In all-stop, we want to keep looking
1993 for a thread that needs a step-over instead of resuming TP,
1994 because we wouldn't be able to resume anything else until the
1995 target stops again. In non-stop, the resume always resumes
1996 only TP, so it's OK to let the thread resume freely. */
fbea99ea 1997 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 1998 continue;
8550d3b3 1999
00431a78 2000 switch_to_thread (tp);
4d9d9d04
PA
2001 reset_ecs (ecs, tp);
2002 keep_going_pass_signal (ecs);
1c5cfe86 2003
4d9d9d04
PA
2004 if (!ecs->wait_some_more)
2005 error (_("Command aborted."));
1c5cfe86 2006
372316f1
PA
2007 gdb_assert (tp->resumed);
2008
2009 /* If we started a new in-line step-over, we're done. */
2010 if (step_over_info_valid_p ())
2011 {
2012 gdb_assert (tp->control.trap_expected);
2013 return 1;
2014 }
2015
fbea99ea 2016 if (!target_is_non_stop_p ())
4d9d9d04
PA
2017 {
2018 /* On all-stop, shouldn't have resumed unless we needed a
2019 step over. */
2020 gdb_assert (tp->control.trap_expected
2021 || tp->step_after_step_resume_breakpoint);
2022
2023 /* With remote targets (at least), in all-stop, we can't
2024 issue any further remote commands until the program stops
2025 again. */
2026 return 1;
1c5cfe86 2027 }
c2829269 2028
4d9d9d04
PA
2029 /* Either the thread no longer needed a step-over, or a new
2030 displaced stepping sequence started. Even in the latter
2031 case, continue looking. Maybe we can also start another
2032 displaced step on a thread of other process. */
237fc4c9 2033 }
4d9d9d04
PA
2034
2035 return 0;
237fc4c9
PA
2036}
2037
5231c1fd
PA
2038/* Update global variables holding ptids to hold NEW_PTID if they were
2039 holding OLD_PTID. */
2040static void
2041infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2042{
d7e15655 2043 if (inferior_ptid == old_ptid)
5231c1fd 2044 inferior_ptid = new_ptid;
5231c1fd
PA
2045}
2046
237fc4c9 2047\f
c906108c 2048
53904c9e
AC
2049static const char schedlock_off[] = "off";
2050static const char schedlock_on[] = "on";
2051static const char schedlock_step[] = "step";
f2665db5 2052static const char schedlock_replay[] = "replay";
40478521 2053static const char *const scheduler_enums[] = {
ef346e04
AC
2054 schedlock_off,
2055 schedlock_on,
2056 schedlock_step,
f2665db5 2057 schedlock_replay,
ef346e04
AC
2058 NULL
2059};
f2665db5 2060static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2061static void
2062show_scheduler_mode (struct ui_file *file, int from_tty,
2063 struct cmd_list_element *c, const char *value)
2064{
3e43a32a
MS
2065 fprintf_filtered (file,
2066 _("Mode for locking scheduler "
2067 "during execution is \"%s\".\n"),
920d2a44
AC
2068 value);
2069}
c906108c
SS
2070
2071static void
eb4c3f4a 2072set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2073{
eefe576e
AC
2074 if (!target_can_lock_scheduler)
2075 {
2076 scheduler_mode = schedlock_off;
2077 error (_("Target '%s' cannot support this command."), target_shortname);
2078 }
c906108c
SS
2079}
2080
d4db2f36
PA
2081/* True if execution commands resume all threads of all processes by
2082 default; otherwise, resume only threads of the current inferior
2083 process. */
491144b5 2084bool sched_multi = false;
d4db2f36 2085
2facfe5c
DD
2086/* Try to setup for software single stepping over the specified location.
2087 Return 1 if target_resume() should use hardware single step.
2088
2089 GDBARCH the current gdbarch.
2090 PC the location to step over. */
2091
2092static int
2093maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2094{
2095 int hw_step = 1;
2096
f02253f1 2097 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2098 && gdbarch_software_single_step_p (gdbarch))
2099 hw_step = !insert_single_step_breakpoints (gdbarch);
2100
2facfe5c
DD
2101 return hw_step;
2102}
c906108c 2103
f3263aa4
PA
2104/* See infrun.h. */
2105
09cee04b
PA
2106ptid_t
2107user_visible_resume_ptid (int step)
2108{
f3263aa4 2109 ptid_t resume_ptid;
09cee04b 2110
09cee04b
PA
2111 if (non_stop)
2112 {
2113 /* With non-stop mode on, threads are always handled
2114 individually. */
2115 resume_ptid = inferior_ptid;
2116 }
2117 else if ((scheduler_mode == schedlock_on)
03d46957 2118 || (scheduler_mode == schedlock_step && step))
09cee04b 2119 {
f3263aa4
PA
2120 /* User-settable 'scheduler' mode requires solo thread
2121 resume. */
09cee04b
PA
2122 resume_ptid = inferior_ptid;
2123 }
f2665db5
MM
2124 else if ((scheduler_mode == schedlock_replay)
2125 && target_record_will_replay (minus_one_ptid, execution_direction))
2126 {
2127 /* User-settable 'scheduler' mode requires solo thread resume in replay
2128 mode. */
2129 resume_ptid = inferior_ptid;
2130 }
f3263aa4
PA
2131 else if (!sched_multi && target_supports_multi_process ())
2132 {
2133 /* Resume all threads of the current process (and none of other
2134 processes). */
e99b03dc 2135 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2136 }
2137 else
2138 {
2139 /* Resume all threads of all processes. */
2140 resume_ptid = RESUME_ALL;
2141 }
09cee04b
PA
2142
2143 return resume_ptid;
2144}
2145
fbea99ea
PA
2146/* Return a ptid representing the set of threads that we will resume,
2147 in the perspective of the target, assuming run control handling
2148 does not require leaving some threads stopped (e.g., stepping past
2149 breakpoint). USER_STEP indicates whether we're about to start the
2150 target for a stepping command. */
2151
2152static ptid_t
2153internal_resume_ptid (int user_step)
2154{
2155 /* In non-stop, we always control threads individually. Note that
2156 the target may always work in non-stop mode even with "set
2157 non-stop off", in which case user_visible_resume_ptid could
2158 return a wildcard ptid. */
2159 if (target_is_non_stop_p ())
2160 return inferior_ptid;
2161 else
2162 return user_visible_resume_ptid (user_step);
2163}
2164
64ce06e4
PA
2165/* Wrapper for target_resume, that handles infrun-specific
2166 bookkeeping. */
2167
2168static void
2169do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2170{
2171 struct thread_info *tp = inferior_thread ();
2172
c65d6b55
PA
2173 gdb_assert (!tp->stop_requested);
2174
64ce06e4 2175 /* Install inferior's terminal modes. */
223ffa71 2176 target_terminal::inferior ();
64ce06e4
PA
2177
2178 /* Avoid confusing the next resume, if the next stop/resume
2179 happens to apply to another thread. */
2180 tp->suspend.stop_signal = GDB_SIGNAL_0;
2181
8f572e5c
PA
2182 /* Advise target which signals may be handled silently.
2183
2184 If we have removed breakpoints because we are stepping over one
2185 in-line (in any thread), we need to receive all signals to avoid
2186 accidentally skipping a breakpoint during execution of a signal
2187 handler.
2188
2189 Likewise if we're displaced stepping, otherwise a trap for a
2190 breakpoint in a signal handler might be confused with the
2191 displaced step finishing. We don't make the displaced_step_fixup
2192 step distinguish the cases instead, because:
2193
2194 - a backtrace while stopped in the signal handler would show the
2195 scratch pad as frame older than the signal handler, instead of
2196 the real mainline code.
2197
2198 - when the thread is later resumed, the signal handler would
2199 return to the scratch pad area, which would no longer be
2200 valid. */
2201 if (step_over_info_valid_p ()
00431a78 2202 || displaced_step_in_progress (tp->inf))
adc6a863 2203 target_pass_signals ({});
64ce06e4 2204 else
adc6a863 2205 target_pass_signals (signal_pass);
64ce06e4
PA
2206
2207 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2208
2209 target_commit_resume ();
64ce06e4
PA
2210}
2211
d930703d 2212/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2213 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2214 call 'resume', which handles exceptions. */
c906108c 2215
71d378ae
PA
2216static void
2217resume_1 (enum gdb_signal sig)
c906108c 2218{
515630c5 2219 struct regcache *regcache = get_current_regcache ();
ac7936df 2220 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2221 struct thread_info *tp = inferior_thread ();
515630c5 2222 CORE_ADDR pc = regcache_read_pc (regcache);
8b86c959 2223 const address_space *aspace = regcache->aspace ();
b0f16a3e 2224 ptid_t resume_ptid;
856e7dd6
PA
2225 /* This represents the user's step vs continue request. When
2226 deciding whether "set scheduler-locking step" applies, it's the
2227 user's intention that counts. */
2228 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2229 /* This represents what we'll actually request the target to do.
2230 This can decay from a step to a continue, if e.g., we need to
2231 implement single-stepping with breakpoints (software
2232 single-step). */
6b403daa 2233 int step;
c7e8a53c 2234
c65d6b55 2235 gdb_assert (!tp->stop_requested);
c2829269
PA
2236 gdb_assert (!thread_is_in_step_over_chain (tp));
2237
372316f1
PA
2238 if (tp->suspend.waitstatus_pending_p)
2239 {
2240 if (debug_infrun)
2241 {
23fdd69e
SM
2242 std::string statstr
2243 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2244
372316f1 2245 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2246 "infrun: resume: thread %s has pending wait "
2247 "status %s (currently_stepping=%d).\n",
a068643d
TT
2248 target_pid_to_str (tp->ptid).c_str (),
2249 statstr.c_str (),
372316f1 2250 currently_stepping (tp));
372316f1
PA
2251 }
2252
2253 tp->resumed = 1;
2254
2255 /* FIXME: What should we do if we are supposed to resume this
2256 thread with a signal? Maybe we should maintain a queue of
2257 pending signals to deliver. */
2258 if (sig != GDB_SIGNAL_0)
2259 {
fd7dcb94 2260 warning (_("Couldn't deliver signal %s to %s."),
a068643d
TT
2261 gdb_signal_to_name (sig),
2262 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2263 }
2264
2265 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2266
2267 if (target_can_async_p ())
9516f85a
AB
2268 {
2269 target_async (1);
2270 /* Tell the event loop we have an event to process. */
2271 mark_async_event_handler (infrun_async_inferior_event_token);
2272 }
372316f1
PA
2273 return;
2274 }
2275
2276 tp->stepped_breakpoint = 0;
2277
6b403daa
PA
2278 /* Depends on stepped_breakpoint. */
2279 step = currently_stepping (tp);
2280
74609e71
YQ
2281 if (current_inferior ()->waiting_for_vfork_done)
2282 {
48f9886d
PA
2283 /* Don't try to single-step a vfork parent that is waiting for
2284 the child to get out of the shared memory region (by exec'ing
2285 or exiting). This is particularly important on software
2286 single-step archs, as the child process would trip on the
2287 software single step breakpoint inserted for the parent
2288 process. Since the parent will not actually execute any
2289 instruction until the child is out of the shared region (such
2290 are vfork's semantics), it is safe to simply continue it.
2291 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2292 the parent, and tell it to `keep_going', which automatically
2293 re-sets it stepping. */
74609e71
YQ
2294 if (debug_infrun)
2295 fprintf_unfiltered (gdb_stdlog,
2296 "infrun: resume : clear step\n");
a09dd441 2297 step = 0;
74609e71
YQ
2298 }
2299
527159b7 2300 if (debug_infrun)
237fc4c9 2301 fprintf_unfiltered (gdb_stdlog,
c9737c08 2302 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2303 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2304 step, gdb_signal_to_symbol_string (sig),
2305 tp->control.trap_expected,
a068643d 2306 target_pid_to_str (inferior_ptid).c_str (),
0d9a9a5f 2307 paddress (gdbarch, pc));
c906108c 2308
c2c6d25f
JM
2309 /* Normally, by the time we reach `resume', the breakpoints are either
2310 removed or inserted, as appropriate. The exception is if we're sitting
2311 at a permanent breakpoint; we need to step over it, but permanent
2312 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2313 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2314 {
af48d08f
PA
2315 if (sig != GDB_SIGNAL_0)
2316 {
2317 /* We have a signal to pass to the inferior. The resume
2318 may, or may not take us to the signal handler. If this
2319 is a step, we'll need to stop in the signal handler, if
2320 there's one, (if the target supports stepping into
2321 handlers), or in the next mainline instruction, if
2322 there's no handler. If this is a continue, we need to be
2323 sure to run the handler with all breakpoints inserted.
2324 In all cases, set a breakpoint at the current address
2325 (where the handler returns to), and once that breakpoint
2326 is hit, resume skipping the permanent breakpoint. If
2327 that breakpoint isn't hit, then we've stepped into the
2328 signal handler (or hit some other event). We'll delete
2329 the step-resume breakpoint then. */
2330
2331 if (debug_infrun)
2332 fprintf_unfiltered (gdb_stdlog,
2333 "infrun: resume: skipping permanent breakpoint, "
2334 "deliver signal first\n");
2335
2336 clear_step_over_info ();
2337 tp->control.trap_expected = 0;
2338
2339 if (tp->control.step_resume_breakpoint == NULL)
2340 {
2341 /* Set a "high-priority" step-resume, as we don't want
2342 user breakpoints at PC to trigger (again) when this
2343 hits. */
2344 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2345 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2346
2347 tp->step_after_step_resume_breakpoint = step;
2348 }
2349
2350 insert_breakpoints ();
2351 }
2352 else
2353 {
2354 /* There's no signal to pass, we can go ahead and skip the
2355 permanent breakpoint manually. */
2356 if (debug_infrun)
2357 fprintf_unfiltered (gdb_stdlog,
2358 "infrun: resume: skipping permanent breakpoint\n");
2359 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2360 /* Update pc to reflect the new address from which we will
2361 execute instructions. */
2362 pc = regcache_read_pc (regcache);
2363
2364 if (step)
2365 {
2366 /* We've already advanced the PC, so the stepping part
2367 is done. Now we need to arrange for a trap to be
2368 reported to handle_inferior_event. Set a breakpoint
2369 at the current PC, and run to it. Don't update
2370 prev_pc, because if we end in
44a1ee51
PA
2371 switch_back_to_stepped_thread, we want the "expected
2372 thread advanced also" branch to be taken. IOW, we
2373 don't want this thread to step further from PC
af48d08f 2374 (overstep). */
1ac806b8 2375 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2376 insert_single_step_breakpoint (gdbarch, aspace, pc);
2377 insert_breakpoints ();
2378
fbea99ea 2379 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2380 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
372316f1 2381 tp->resumed = 1;
af48d08f
PA
2382 return;
2383 }
2384 }
6d350bb5 2385 }
c2c6d25f 2386
c1e36e3e
PA
2387 /* If we have a breakpoint to step over, make sure to do a single
2388 step only. Same if we have software watchpoints. */
2389 if (tp->control.trap_expected || bpstat_should_step ())
2390 tp->control.may_range_step = 0;
2391
237fc4c9
PA
2392 /* If enabled, step over breakpoints by executing a copy of the
2393 instruction at a different address.
2394
2395 We can't use displaced stepping when we have a signal to deliver;
2396 the comments for displaced_step_prepare explain why. The
2397 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2398 signals' explain what we do instead.
2399
2400 We can't use displaced stepping when we are waiting for vfork_done
2401 event, displaced stepping breaks the vfork child similarly as single
2402 step software breakpoint. */
3fc8eb30
PA
2403 if (tp->control.trap_expected
2404 && use_displaced_stepping (tp)
cb71640d 2405 && !step_over_info_valid_p ()
a493e3e2 2406 && sig == GDB_SIGNAL_0
74609e71 2407 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2408 {
00431a78 2409 int prepared = displaced_step_prepare (tp);
fc1cf338 2410
3fc8eb30 2411 if (prepared == 0)
d56b7306 2412 {
4d9d9d04
PA
2413 if (debug_infrun)
2414 fprintf_unfiltered (gdb_stdlog,
2415 "Got placed in step-over queue\n");
2416
2417 tp->control.trap_expected = 0;
d56b7306
VP
2418 return;
2419 }
3fc8eb30
PA
2420 else if (prepared < 0)
2421 {
2422 /* Fallback to stepping over the breakpoint in-line. */
2423
2424 if (target_is_non_stop_p ())
2425 stop_all_threads ();
2426
a01bda52 2427 set_step_over_info (regcache->aspace (),
21edc42f 2428 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2429
2430 step = maybe_software_singlestep (gdbarch, pc);
2431
2432 insert_breakpoints ();
2433 }
2434 else if (prepared > 0)
2435 {
2436 struct displaced_step_inferior_state *displaced;
99e40580 2437
3fc8eb30
PA
2438 /* Update pc to reflect the new address from which we will
2439 execute instructions due to displaced stepping. */
00431a78 2440 pc = regcache_read_pc (get_thread_regcache (tp));
ca7781d2 2441
00431a78 2442 displaced = get_displaced_stepping_state (tp->inf);
3fc8eb30
PA
2443 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2444 displaced->step_closure);
2445 }
237fc4c9
PA
2446 }
2447
2facfe5c 2448 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2449 else if (step)
2facfe5c 2450 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2451
30852783
UW
2452 /* Currently, our software single-step implementation leads to different
2453 results than hardware single-stepping in one situation: when stepping
2454 into delivering a signal which has an associated signal handler,
2455 hardware single-step will stop at the first instruction of the handler,
2456 while software single-step will simply skip execution of the handler.
2457
2458 For now, this difference in behavior is accepted since there is no
2459 easy way to actually implement single-stepping into a signal handler
2460 without kernel support.
2461
2462 However, there is one scenario where this difference leads to follow-on
2463 problems: if we're stepping off a breakpoint by removing all breakpoints
2464 and then single-stepping. In this case, the software single-step
2465 behavior means that even if there is a *breakpoint* in the signal
2466 handler, GDB still would not stop.
2467
2468 Fortunately, we can at least fix this particular issue. We detect
2469 here the case where we are about to deliver a signal while software
2470 single-stepping with breakpoints removed. In this situation, we
2471 revert the decisions to remove all breakpoints and insert single-
2472 step breakpoints, and instead we install a step-resume breakpoint
2473 at the current address, deliver the signal without stepping, and
2474 once we arrive back at the step-resume breakpoint, actually step
2475 over the breakpoint we originally wanted to step over. */
34b7e8a6 2476 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2477 && sig != GDB_SIGNAL_0
2478 && step_over_info_valid_p ())
30852783
UW
2479 {
2480 /* If we have nested signals or a pending signal is delivered
2481 immediately after a handler returns, might might already have
2482 a step-resume breakpoint set on the earlier handler. We cannot
2483 set another step-resume breakpoint; just continue on until the
2484 original breakpoint is hit. */
2485 if (tp->control.step_resume_breakpoint == NULL)
2486 {
2c03e5be 2487 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2488 tp->step_after_step_resume_breakpoint = 1;
2489 }
2490
34b7e8a6 2491 delete_single_step_breakpoints (tp);
30852783 2492
31e77af2 2493 clear_step_over_info ();
30852783 2494 tp->control.trap_expected = 0;
31e77af2
PA
2495
2496 insert_breakpoints ();
30852783
UW
2497 }
2498
b0f16a3e
SM
2499 /* If STEP is set, it's a request to use hardware stepping
2500 facilities. But in that case, we should never
2501 use singlestep breakpoint. */
34b7e8a6 2502 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2503
fbea99ea 2504 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2505 if (tp->control.trap_expected)
b0f16a3e
SM
2506 {
2507 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2508 hit, either by single-stepping the thread with the breakpoint
2509 removed, or by displaced stepping, with the breakpoint inserted.
2510 In the former case, we need to single-step only this thread,
2511 and keep others stopped, as they can miss this breakpoint if
2512 allowed to run. That's not really a problem for displaced
2513 stepping, but, we still keep other threads stopped, in case
2514 another thread is also stopped for a breakpoint waiting for
2515 its turn in the displaced stepping queue. */
b0f16a3e
SM
2516 resume_ptid = inferior_ptid;
2517 }
fbea99ea
PA
2518 else
2519 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2520
7f5ef605
PA
2521 if (execution_direction != EXEC_REVERSE
2522 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2523 {
372316f1
PA
2524 /* There are two cases where we currently need to step a
2525 breakpoint instruction when we have a signal to deliver:
2526
2527 - See handle_signal_stop where we handle random signals that
2528 could take out us out of the stepping range. Normally, in
2529 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2530 signal handler with a breakpoint at PC, but there are cases
2531 where we should _always_ single-step, even if we have a
2532 step-resume breakpoint, like when a software watchpoint is
2533 set. Assuming single-stepping and delivering a signal at the
2534 same time would takes us to the signal handler, then we could
2535 have removed the breakpoint at PC to step over it. However,
2536 some hardware step targets (like e.g., Mac OS) can't step
2537 into signal handlers, and for those, we need to leave the
2538 breakpoint at PC inserted, as otherwise if the handler
2539 recurses and executes PC again, it'll miss the breakpoint.
2540 So we leave the breakpoint inserted anyway, but we need to
2541 record that we tried to step a breakpoint instruction, so
372316f1
PA
2542 that adjust_pc_after_break doesn't end up confused.
2543
2544 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2545 in one thread after another thread that was stepping had been
2546 momentarily paused for a step-over. When we re-resume the
2547 stepping thread, it may be resumed from that address with a
2548 breakpoint that hasn't trapped yet. Seen with
2549 gdb.threads/non-stop-fair-events.exp, on targets that don't
2550 do displaced stepping. */
2551
2552 if (debug_infrun)
2553 fprintf_unfiltered (gdb_stdlog,
2554 "infrun: resume: [%s] stepped breakpoint\n",
a068643d 2555 target_pid_to_str (tp->ptid).c_str ());
7f5ef605
PA
2556
2557 tp->stepped_breakpoint = 1;
2558
b0f16a3e
SM
2559 /* Most targets can step a breakpoint instruction, thus
2560 executing it normally. But if this one cannot, just
2561 continue and we will hit it anyway. */
7f5ef605 2562 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2563 step = 0;
2564 }
ef5cf84e 2565
b0f16a3e 2566 if (debug_displaced
cb71640d 2567 && tp->control.trap_expected
3fc8eb30 2568 && use_displaced_stepping (tp)
cb71640d 2569 && !step_over_info_valid_p ())
b0f16a3e 2570 {
00431a78 2571 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2572 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2573 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2574 gdb_byte buf[4];
2575
2576 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2577 paddress (resume_gdbarch, actual_pc));
2578 read_memory (actual_pc, buf, sizeof (buf));
2579 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2580 }
237fc4c9 2581
b0f16a3e
SM
2582 if (tp->control.may_range_step)
2583 {
2584 /* If we're resuming a thread with the PC out of the step
2585 range, then we're doing some nested/finer run control
2586 operation, like stepping the thread out of the dynamic
2587 linker or the displaced stepping scratch pad. We
2588 shouldn't have allowed a range step then. */
2589 gdb_assert (pc_in_thread_step_range (pc, tp));
2590 }
c1e36e3e 2591
64ce06e4 2592 do_target_resume (resume_ptid, step, sig);
372316f1 2593 tp->resumed = 1;
c906108c 2594}
71d378ae
PA
2595
2596/* Resume the inferior. SIG is the signal to give the inferior
2597 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2598 rolls back state on error. */
2599
aff4e175 2600static void
71d378ae
PA
2601resume (gdb_signal sig)
2602{
a70b8144 2603 try
71d378ae
PA
2604 {
2605 resume_1 (sig);
2606 }
230d2906 2607 catch (const gdb_exception &ex)
71d378ae
PA
2608 {
2609 /* If resuming is being aborted for any reason, delete any
2610 single-step breakpoint resume_1 may have created, to avoid
2611 confusing the following resumption, and to avoid leaving
2612 single-step breakpoints perturbing other threads, in case
2613 we're running in non-stop mode. */
2614 if (inferior_ptid != null_ptid)
2615 delete_single_step_breakpoints (inferior_thread ());
eedc3f4f 2616 throw;
71d378ae 2617 }
71d378ae
PA
2618}
2619
c906108c 2620\f
237fc4c9 2621/* Proceeding. */
c906108c 2622
4c2f2a79
PA
2623/* See infrun.h. */
2624
2625/* Counter that tracks number of user visible stops. This can be used
2626 to tell whether a command has proceeded the inferior past the
2627 current location. This allows e.g., inferior function calls in
2628 breakpoint commands to not interrupt the command list. When the
2629 call finishes successfully, the inferior is standing at the same
2630 breakpoint as if nothing happened (and so we don't call
2631 normal_stop). */
2632static ULONGEST current_stop_id;
2633
2634/* See infrun.h. */
2635
2636ULONGEST
2637get_stop_id (void)
2638{
2639 return current_stop_id;
2640}
2641
2642/* Called when we report a user visible stop. */
2643
2644static void
2645new_stop_id (void)
2646{
2647 current_stop_id++;
2648}
2649
c906108c
SS
2650/* Clear out all variables saying what to do when inferior is continued.
2651 First do this, then set the ones you want, then call `proceed'. */
2652
a7212384
UW
2653static void
2654clear_proceed_status_thread (struct thread_info *tp)
c906108c 2655{
a7212384
UW
2656 if (debug_infrun)
2657 fprintf_unfiltered (gdb_stdlog,
2658 "infrun: clear_proceed_status_thread (%s)\n",
a068643d 2659 target_pid_to_str (tp->ptid).c_str ());
d6b48e9c 2660
372316f1
PA
2661 /* If we're starting a new sequence, then the previous finished
2662 single-step is no longer relevant. */
2663 if (tp->suspend.waitstatus_pending_p)
2664 {
2665 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2666 {
2667 if (debug_infrun)
2668 fprintf_unfiltered (gdb_stdlog,
2669 "infrun: clear_proceed_status: pending "
2670 "event of %s was a finished step. "
2671 "Discarding.\n",
a068643d 2672 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2673
2674 tp->suspend.waitstatus_pending_p = 0;
2675 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2676 }
2677 else if (debug_infrun)
2678 {
23fdd69e
SM
2679 std::string statstr
2680 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2681
372316f1
PA
2682 fprintf_unfiltered (gdb_stdlog,
2683 "infrun: clear_proceed_status_thread: thread %s "
2684 "has pending wait status %s "
2685 "(currently_stepping=%d).\n",
a068643d
TT
2686 target_pid_to_str (tp->ptid).c_str (),
2687 statstr.c_str (),
372316f1 2688 currently_stepping (tp));
372316f1
PA
2689 }
2690 }
2691
70509625
PA
2692 /* If this signal should not be seen by program, give it zero.
2693 Used for debugging signals. */
2694 if (!signal_pass_state (tp->suspend.stop_signal))
2695 tp->suspend.stop_signal = GDB_SIGNAL_0;
2696
46e3ed7f 2697 delete tp->thread_fsm;
243a9253
PA
2698 tp->thread_fsm = NULL;
2699
16c381f0
JK
2700 tp->control.trap_expected = 0;
2701 tp->control.step_range_start = 0;
2702 tp->control.step_range_end = 0;
c1e36e3e 2703 tp->control.may_range_step = 0;
16c381f0
JK
2704 tp->control.step_frame_id = null_frame_id;
2705 tp->control.step_stack_frame_id = null_frame_id;
2706 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2707 tp->control.step_start_function = NULL;
a7212384 2708 tp->stop_requested = 0;
4e1c45ea 2709
16c381f0 2710 tp->control.stop_step = 0;
32400beb 2711
16c381f0 2712 tp->control.proceed_to_finish = 0;
414c69f7 2713
856e7dd6 2714 tp->control.stepping_command = 0;
17b2616c 2715
a7212384 2716 /* Discard any remaining commands or status from previous stop. */
16c381f0 2717 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2718}
32400beb 2719
a7212384 2720void
70509625 2721clear_proceed_status (int step)
a7212384 2722{
f2665db5
MM
2723 /* With scheduler-locking replay, stop replaying other threads if we're
2724 not replaying the user-visible resume ptid.
2725
2726 This is a convenience feature to not require the user to explicitly
2727 stop replaying the other threads. We're assuming that the user's
2728 intent is to resume tracing the recorded process. */
2729 if (!non_stop && scheduler_mode == schedlock_replay
2730 && target_record_is_replaying (minus_one_ptid)
2731 && !target_record_will_replay (user_visible_resume_ptid (step),
2732 execution_direction))
2733 target_record_stop_replaying ();
2734
08036331 2735 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2736 {
08036331 2737 ptid_t resume_ptid = user_visible_resume_ptid (step);
70509625
PA
2738
2739 /* In all-stop mode, delete the per-thread status of all threads
2740 we're about to resume, implicitly and explicitly. */
08036331
PA
2741 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2742 clear_proceed_status_thread (tp);
6c95b8df
PA
2743 }
2744
d7e15655 2745 if (inferior_ptid != null_ptid)
a7212384
UW
2746 {
2747 struct inferior *inferior;
2748
2749 if (non_stop)
2750 {
6c95b8df
PA
2751 /* If in non-stop mode, only delete the per-thread status of
2752 the current thread. */
a7212384
UW
2753 clear_proceed_status_thread (inferior_thread ());
2754 }
6c95b8df 2755
d6b48e9c 2756 inferior = current_inferior ();
16c381f0 2757 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2758 }
2759
76727919 2760 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2761}
2762
99619bea
PA
2763/* Returns true if TP is still stopped at a breakpoint that needs
2764 stepping-over in order to make progress. If the breakpoint is gone
2765 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2766
2767static int
6c4cfb24 2768thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2769{
2770 if (tp->stepping_over_breakpoint)
2771 {
00431a78 2772 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2773
a01bda52 2774 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2775 regcache_read_pc (regcache))
2776 == ordinary_breakpoint_here)
99619bea
PA
2777 return 1;
2778
2779 tp->stepping_over_breakpoint = 0;
2780 }
2781
2782 return 0;
2783}
2784
6c4cfb24
PA
2785/* Check whether thread TP still needs to start a step-over in order
2786 to make progress when resumed. Returns an bitwise or of enum
2787 step_over_what bits, indicating what needs to be stepped over. */
2788
8d297bbf 2789static step_over_what
6c4cfb24
PA
2790thread_still_needs_step_over (struct thread_info *tp)
2791{
8d297bbf 2792 step_over_what what = 0;
6c4cfb24
PA
2793
2794 if (thread_still_needs_step_over_bp (tp))
2795 what |= STEP_OVER_BREAKPOINT;
2796
2797 if (tp->stepping_over_watchpoint
2798 && !target_have_steppable_watchpoint)
2799 what |= STEP_OVER_WATCHPOINT;
2800
2801 return what;
2802}
2803
483805cf
PA
2804/* Returns true if scheduler locking applies. STEP indicates whether
2805 we're about to do a step/next-like command to a thread. */
2806
2807static int
856e7dd6 2808schedlock_applies (struct thread_info *tp)
483805cf
PA
2809{
2810 return (scheduler_mode == schedlock_on
2811 || (scheduler_mode == schedlock_step
f2665db5
MM
2812 && tp->control.stepping_command)
2813 || (scheduler_mode == schedlock_replay
2814 && target_record_will_replay (minus_one_ptid,
2815 execution_direction)));
483805cf
PA
2816}
2817
c906108c
SS
2818/* Basic routine for continuing the program in various fashions.
2819
2820 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
2821 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2822 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
2823
2824 You should call clear_proceed_status before calling proceed. */
2825
2826void
64ce06e4 2827proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2828{
e58b0e63
PA
2829 struct regcache *regcache;
2830 struct gdbarch *gdbarch;
e58b0e63 2831 CORE_ADDR pc;
4d9d9d04
PA
2832 ptid_t resume_ptid;
2833 struct execution_control_state ecss;
2834 struct execution_control_state *ecs = &ecss;
4d9d9d04 2835 int started;
c906108c 2836
e58b0e63
PA
2837 /* If we're stopped at a fork/vfork, follow the branch set by the
2838 "set follow-fork-mode" command; otherwise, we'll just proceed
2839 resuming the current thread. */
2840 if (!follow_fork ())
2841 {
2842 /* The target for some reason decided not to resume. */
2843 normal_stop ();
f148b27e
PA
2844 if (target_can_async_p ())
2845 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2846 return;
2847 }
2848
842951eb
PA
2849 /* We'll update this if & when we switch to a new thread. */
2850 previous_inferior_ptid = inferior_ptid;
2851
e58b0e63 2852 regcache = get_current_regcache ();
ac7936df 2853 gdbarch = regcache->arch ();
8b86c959
YQ
2854 const address_space *aspace = regcache->aspace ();
2855
e58b0e63 2856 pc = regcache_read_pc (regcache);
08036331 2857 thread_info *cur_thr = inferior_thread ();
e58b0e63 2858
99619bea 2859 /* Fill in with reasonable starting values. */
08036331 2860 init_thread_stepping_state (cur_thr);
99619bea 2861
08036331 2862 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 2863
2acceee2 2864 if (addr == (CORE_ADDR) -1)
c906108c 2865 {
08036331 2866 if (pc == cur_thr->suspend.stop_pc
af48d08f 2867 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2868 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2869 /* There is a breakpoint at the address we will resume at,
2870 step one instruction before inserting breakpoints so that
2871 we do not stop right away (and report a second hit at this
b2175913
MS
2872 breakpoint).
2873
2874 Note, we don't do this in reverse, because we won't
2875 actually be executing the breakpoint insn anyway.
2876 We'll be (un-)executing the previous instruction. */
08036331 2877 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
2878 else if (gdbarch_single_step_through_delay_p (gdbarch)
2879 && gdbarch_single_step_through_delay (gdbarch,
2880 get_current_frame ()))
3352ef37
AC
2881 /* We stepped onto an instruction that needs to be stepped
2882 again before re-inserting the breakpoint, do so. */
08036331 2883 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
2884 }
2885 else
2886 {
515630c5 2887 regcache_write_pc (regcache, addr);
c906108c
SS
2888 }
2889
70509625 2890 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 2891 cur_thr->suspend.stop_signal = siggnal;
70509625 2892
08036331 2893 resume_ptid = user_visible_resume_ptid (cur_thr->control.stepping_command);
4d9d9d04
PA
2894
2895 /* If an exception is thrown from this point on, make sure to
2896 propagate GDB's knowledge of the executing state to the
2897 frontend/user running state. */
731f534f 2898 scoped_finish_thread_state finish_state (resume_ptid);
4d9d9d04
PA
2899
2900 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2901 threads (e.g., we might need to set threads stepping over
2902 breakpoints first), from the user/frontend's point of view, all
2903 threads in RESUME_PTID are now running. Unless we're calling an
2904 inferior function, as in that case we pretend the inferior
2905 doesn't run at all. */
08036331 2906 if (!cur_thr->control.in_infcall)
4d9d9d04 2907 set_running (resume_ptid, 1);
17b2616c 2908
527159b7 2909 if (debug_infrun)
8a9de0e4 2910 fprintf_unfiltered (gdb_stdlog,
64ce06e4 2911 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 2912 paddress (gdbarch, addr),
64ce06e4 2913 gdb_signal_to_symbol_string (siggnal));
527159b7 2914
4d9d9d04
PA
2915 annotate_starting ();
2916
2917 /* Make sure that output from GDB appears before output from the
2918 inferior. */
2919 gdb_flush (gdb_stdout);
2920
d930703d
PA
2921 /* Since we've marked the inferior running, give it the terminal. A
2922 QUIT/Ctrl-C from here on is forwarded to the target (which can
2923 still detect attempts to unblock a stuck connection with repeated
2924 Ctrl-C from within target_pass_ctrlc). */
2925 target_terminal::inferior ();
2926
4d9d9d04
PA
2927 /* In a multi-threaded task we may select another thread and
2928 then continue or step.
2929
2930 But if a thread that we're resuming had stopped at a breakpoint,
2931 it will immediately cause another breakpoint stop without any
2932 execution (i.e. it will report a breakpoint hit incorrectly). So
2933 we must step over it first.
2934
2935 Look for threads other than the current (TP) that reported a
2936 breakpoint hit and haven't been resumed yet since. */
2937
2938 /* If scheduler locking applies, we can avoid iterating over all
2939 threads. */
08036331 2940 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 2941 {
08036331
PA
2942 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2943 {
4d9d9d04
PA
2944 /* Ignore the current thread here. It's handled
2945 afterwards. */
08036331 2946 if (tp == cur_thr)
4d9d9d04 2947 continue;
c906108c 2948
4d9d9d04
PA
2949 if (!thread_still_needs_step_over (tp))
2950 continue;
2951
2952 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 2953
99619bea
PA
2954 if (debug_infrun)
2955 fprintf_unfiltered (gdb_stdlog,
2956 "infrun: need to step-over [%s] first\n",
a068643d 2957 target_pid_to_str (tp->ptid).c_str ());
99619bea 2958
4d9d9d04 2959 thread_step_over_chain_enqueue (tp);
2adfaa28 2960 }
30852783
UW
2961 }
2962
4d9d9d04
PA
2963 /* Enqueue the current thread last, so that we move all other
2964 threads over their breakpoints first. */
08036331
PA
2965 if (cur_thr->stepping_over_breakpoint)
2966 thread_step_over_chain_enqueue (cur_thr);
30852783 2967
4d9d9d04
PA
2968 /* If the thread isn't started, we'll still need to set its prev_pc,
2969 so that switch_back_to_stepped_thread knows the thread hasn't
2970 advanced. Must do this before resuming any thread, as in
2971 all-stop/remote, once we resume we can't send any other packet
2972 until the target stops again. */
08036331 2973 cur_thr->prev_pc = regcache_read_pc (regcache);
99619bea 2974
a9bc57b9
TT
2975 {
2976 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 2977
a9bc57b9 2978 started = start_step_over ();
c906108c 2979
a9bc57b9
TT
2980 if (step_over_info_valid_p ())
2981 {
2982 /* Either this thread started a new in-line step over, or some
2983 other thread was already doing one. In either case, don't
2984 resume anything else until the step-over is finished. */
2985 }
2986 else if (started && !target_is_non_stop_p ())
2987 {
2988 /* A new displaced stepping sequence was started. In all-stop,
2989 we can't talk to the target anymore until it next stops. */
2990 }
2991 else if (!non_stop && target_is_non_stop_p ())
2992 {
2993 /* In all-stop, but the target is always in non-stop mode.
2994 Start all other threads that are implicitly resumed too. */
08036331 2995 for (thread_info *tp : all_non_exited_threads (resume_ptid))
fbea99ea 2996 {
fbea99ea
PA
2997 if (tp->resumed)
2998 {
2999 if (debug_infrun)
3000 fprintf_unfiltered (gdb_stdlog,
3001 "infrun: proceed: [%s] resumed\n",
a068643d 3002 target_pid_to_str (tp->ptid).c_str ());
fbea99ea
PA
3003 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3004 continue;
3005 }
3006
3007 if (thread_is_in_step_over_chain (tp))
3008 {
3009 if (debug_infrun)
3010 fprintf_unfiltered (gdb_stdlog,
3011 "infrun: proceed: [%s] needs step-over\n",
a068643d 3012 target_pid_to_str (tp->ptid).c_str ());
fbea99ea
PA
3013 continue;
3014 }
3015
3016 if (debug_infrun)
3017 fprintf_unfiltered (gdb_stdlog,
3018 "infrun: proceed: resuming %s\n",
a068643d 3019 target_pid_to_str (tp->ptid).c_str ());
fbea99ea
PA
3020
3021 reset_ecs (ecs, tp);
00431a78 3022 switch_to_thread (tp);
fbea99ea
PA
3023 keep_going_pass_signal (ecs);
3024 if (!ecs->wait_some_more)
fd7dcb94 3025 error (_("Command aborted."));
fbea99ea 3026 }
a9bc57b9 3027 }
08036331 3028 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3029 {
3030 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3031 reset_ecs (ecs, cur_thr);
3032 switch_to_thread (cur_thr);
a9bc57b9
TT
3033 keep_going_pass_signal (ecs);
3034 if (!ecs->wait_some_more)
3035 error (_("Command aborted."));
3036 }
3037 }
c906108c 3038
85ad3aaf
PA
3039 target_commit_resume ();
3040
731f534f 3041 finish_state.release ();
c906108c 3042
0b333c5e
PA
3043 /* Tell the event loop to wait for it to stop. If the target
3044 supports asynchronous execution, it'll do this from within
3045 target_resume. */
362646f5 3046 if (!target_can_async_p ())
0b333c5e 3047 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3048}
c906108c
SS
3049\f
3050
3051/* Start remote-debugging of a machine over a serial link. */
96baa820 3052
c906108c 3053void
8621d6a9 3054start_remote (int from_tty)
c906108c 3055{
d6b48e9c 3056 struct inferior *inferior;
d6b48e9c
PA
3057
3058 inferior = current_inferior ();
16c381f0 3059 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3060
1777feb0 3061 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3062 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3063 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3064 nothing is returned (instead of just blocking). Because of this,
3065 targets expecting an immediate response need to, internally, set
3066 things up so that the target_wait() is forced to eventually
1777feb0 3067 timeout. */
6426a772
JM
3068 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3069 differentiate to its caller what the state of the target is after
3070 the initial open has been performed. Here we're assuming that
3071 the target has stopped. It should be possible to eventually have
3072 target_open() return to the caller an indication that the target
3073 is currently running and GDB state should be set to the same as
1777feb0 3074 for an async run. */
e4c8541f 3075 wait_for_inferior ();
8621d6a9
DJ
3076
3077 /* Now that the inferior has stopped, do any bookkeeping like
3078 loading shared libraries. We want to do this before normal_stop,
3079 so that the displayed frame is up to date. */
8b88a78e 3080 post_create_inferior (current_top_target (), from_tty);
8621d6a9 3081
6426a772 3082 normal_stop ();
c906108c
SS
3083}
3084
3085/* Initialize static vars when a new inferior begins. */
3086
3087void
96baa820 3088init_wait_for_inferior (void)
c906108c
SS
3089{
3090 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3091
c906108c
SS
3092 breakpoint_init_inferior (inf_starting);
3093
70509625 3094 clear_proceed_status (0);
9f976b41 3095
ca005067 3096 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3097
842951eb 3098 previous_inferior_ptid = inferior_ptid;
c906108c 3099}
237fc4c9 3100
c906108c 3101\f
488f131b 3102
ec9499be 3103static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3104
568d6575
UW
3105static void handle_step_into_function (struct gdbarch *gdbarch,
3106 struct execution_control_state *ecs);
3107static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3108 struct execution_control_state *ecs);
4f5d7f63 3109static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3110static void check_exception_resume (struct execution_control_state *,
28106bc2 3111 struct frame_info *);
611c83ae 3112
bdc36728 3113static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3114static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3115static void keep_going (struct execution_control_state *ecs);
94c57d6a 3116static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3117static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3118
252fbfc8
PA
3119/* This function is attached as a "thread_stop_requested" observer.
3120 Cleanup local state that assumed the PTID was to be resumed, and
3121 report the stop to the frontend. */
3122
2c0b251b 3123static void
252fbfc8
PA
3124infrun_thread_stop_requested (ptid_t ptid)
3125{
c65d6b55
PA
3126 /* PTID was requested to stop. If the thread was already stopped,
3127 but the user/frontend doesn't know about that yet (e.g., the
3128 thread had been temporarily paused for some step-over), set up
3129 for reporting the stop now. */
08036331
PA
3130 for (thread_info *tp : all_threads (ptid))
3131 {
3132 if (tp->state != THREAD_RUNNING)
3133 continue;
3134 if (tp->executing)
3135 continue;
c65d6b55 3136
08036331
PA
3137 /* Remove matching threads from the step-over queue, so
3138 start_step_over doesn't try to resume them
3139 automatically. */
3140 if (thread_is_in_step_over_chain (tp))
3141 thread_step_over_chain_remove (tp);
c65d6b55 3142
08036331
PA
3143 /* If the thread is stopped, but the user/frontend doesn't
3144 know about that yet, queue a pending event, as if the
3145 thread had just stopped now. Unless the thread already had
3146 a pending event. */
3147 if (!tp->suspend.waitstatus_pending_p)
3148 {
3149 tp->suspend.waitstatus_pending_p = 1;
3150 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3151 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3152 }
c65d6b55 3153
08036331
PA
3154 /* Clear the inline-frame state, since we're re-processing the
3155 stop. */
3156 clear_inline_frame_state (tp->ptid);
c65d6b55 3157
08036331
PA
3158 /* If this thread was paused because some other thread was
3159 doing an inline-step over, let that finish first. Once
3160 that happens, we'll restart all threads and consume pending
3161 stop events then. */
3162 if (step_over_info_valid_p ())
3163 continue;
3164
3165 /* Otherwise we can process the (new) pending event now. Set
3166 it so this pending event is considered by
3167 do_target_wait. */
3168 tp->resumed = 1;
3169 }
252fbfc8
PA
3170}
3171
a07daef3
PA
3172static void
3173infrun_thread_thread_exit (struct thread_info *tp, int silent)
3174{
d7e15655 3175 if (target_last_wait_ptid == tp->ptid)
a07daef3
PA
3176 nullify_last_target_wait_ptid ();
3177}
3178
0cbcdb96
PA
3179/* Delete the step resume, single-step and longjmp/exception resume
3180 breakpoints of TP. */
4e1c45ea 3181
0cbcdb96
PA
3182static void
3183delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3184{
0cbcdb96
PA
3185 delete_step_resume_breakpoint (tp);
3186 delete_exception_resume_breakpoint (tp);
34b7e8a6 3187 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3188}
3189
0cbcdb96
PA
3190/* If the target still has execution, call FUNC for each thread that
3191 just stopped. In all-stop, that's all the non-exited threads; in
3192 non-stop, that's the current thread, only. */
3193
3194typedef void (*for_each_just_stopped_thread_callback_func)
3195 (struct thread_info *tp);
4e1c45ea
PA
3196
3197static void
0cbcdb96 3198for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3199{
d7e15655 3200 if (!target_has_execution || inferior_ptid == null_ptid)
4e1c45ea
PA
3201 return;
3202
fbea99ea 3203 if (target_is_non_stop_p ())
4e1c45ea 3204 {
0cbcdb96
PA
3205 /* If in non-stop mode, only the current thread stopped. */
3206 func (inferior_thread ());
4e1c45ea
PA
3207 }
3208 else
0cbcdb96 3209 {
0cbcdb96 3210 /* In all-stop mode, all threads have stopped. */
08036331
PA
3211 for (thread_info *tp : all_non_exited_threads ())
3212 func (tp);
0cbcdb96
PA
3213 }
3214}
3215
3216/* Delete the step resume and longjmp/exception resume breakpoints of
3217 the threads that just stopped. */
3218
3219static void
3220delete_just_stopped_threads_infrun_breakpoints (void)
3221{
3222 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3223}
3224
3225/* Delete the single-step breakpoints of the threads that just
3226 stopped. */
7c16b83e 3227
34b7e8a6
PA
3228static void
3229delete_just_stopped_threads_single_step_breakpoints (void)
3230{
3231 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3232}
3233
221e1a37 3234/* See infrun.h. */
223698f8 3235
221e1a37 3236void
223698f8
DE
3237print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3238 const struct target_waitstatus *ws)
3239{
23fdd69e 3240 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3241 string_file stb;
223698f8
DE
3242
3243 /* The text is split over several lines because it was getting too long.
3244 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3245 output as a unit; we want only one timestamp printed if debug_timestamp
3246 is set. */
3247
d7e74731 3248 stb.printf ("infrun: target_wait (%d.%ld.%ld",
e99b03dc 3249 waiton_ptid.pid (),
e38504b3 3250 waiton_ptid.lwp (),
cc6bcb54 3251 waiton_ptid.tid ());
e99b03dc 3252 if (waiton_ptid.pid () != -1)
a068643d 3253 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
d7e74731
PA
3254 stb.printf (", status) =\n");
3255 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
e99b03dc 3256 result_ptid.pid (),
e38504b3 3257 result_ptid.lwp (),
cc6bcb54 3258 result_ptid.tid (),
a068643d 3259 target_pid_to_str (result_ptid).c_str ());
23fdd69e 3260 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3261
3262 /* This uses %s in part to handle %'s in the text, but also to avoid
3263 a gcc error: the format attribute requires a string literal. */
d7e74731 3264 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3265}
3266
372316f1
PA
3267/* Select a thread at random, out of those which are resumed and have
3268 had events. */
3269
3270static struct thread_info *
3271random_pending_event_thread (ptid_t waiton_ptid)
3272{
372316f1 3273 int num_events = 0;
08036331
PA
3274
3275 auto has_event = [] (thread_info *tp)
3276 {
3277 return (tp->resumed
3278 && tp->suspend.waitstatus_pending_p);
3279 };
372316f1
PA
3280
3281 /* First see how many events we have. Count only resumed threads
3282 that have an event pending. */
08036331
PA
3283 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3284 if (has_event (tp))
372316f1
PA
3285 num_events++;
3286
3287 if (num_events == 0)
3288 return NULL;
3289
3290 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3291 int random_selector = (int) ((num_events * (double) rand ())
3292 / (RAND_MAX + 1.0));
372316f1
PA
3293
3294 if (debug_infrun && num_events > 1)
3295 fprintf_unfiltered (gdb_stdlog,
3296 "infrun: Found %d events, selecting #%d\n",
3297 num_events, random_selector);
3298
3299 /* Select the Nth thread that has had an event. */
08036331
PA
3300 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3301 if (has_event (tp))
372316f1 3302 if (random_selector-- == 0)
08036331 3303 return tp;
372316f1 3304
08036331 3305 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3306}
3307
3308/* Wrapper for target_wait that first checks whether threads have
3309 pending statuses to report before actually asking the target for
3310 more events. */
3311
3312static ptid_t
3313do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3314{
3315 ptid_t event_ptid;
3316 struct thread_info *tp;
3317
3318 /* First check if there is a resumed thread with a wait status
3319 pending. */
d7e15655 3320 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1
PA
3321 {
3322 tp = random_pending_event_thread (ptid);
3323 }
3324 else
3325 {
3326 if (debug_infrun)
3327 fprintf_unfiltered (gdb_stdlog,
3328 "infrun: Waiting for specific thread %s.\n",
a068643d 3329 target_pid_to_str (ptid).c_str ());
372316f1
PA
3330
3331 /* We have a specific thread to check. */
3332 tp = find_thread_ptid (ptid);
3333 gdb_assert (tp != NULL);
3334 if (!tp->suspend.waitstatus_pending_p)
3335 tp = NULL;
3336 }
3337
3338 if (tp != NULL
3339 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3340 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3341 {
00431a78 3342 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3343 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3344 CORE_ADDR pc;
3345 int discard = 0;
3346
3347 pc = regcache_read_pc (regcache);
3348
3349 if (pc != tp->suspend.stop_pc)
3350 {
3351 if (debug_infrun)
3352 fprintf_unfiltered (gdb_stdlog,
3353 "infrun: PC of %s changed. was=%s, now=%s\n",
a068643d 3354 target_pid_to_str (tp->ptid).c_str (),
defd2172 3355 paddress (gdbarch, tp->suspend.stop_pc),
372316f1
PA
3356 paddress (gdbarch, pc));
3357 discard = 1;
3358 }
a01bda52 3359 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1
PA
3360 {
3361 if (debug_infrun)
3362 fprintf_unfiltered (gdb_stdlog,
3363 "infrun: previous breakpoint of %s, at %s gone\n",
a068643d 3364 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
3365 paddress (gdbarch, pc));
3366
3367 discard = 1;
3368 }
3369
3370 if (discard)
3371 {
3372 if (debug_infrun)
3373 fprintf_unfiltered (gdb_stdlog,
3374 "infrun: pending event of %s cancelled.\n",
a068643d 3375 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3376
3377 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3378 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3379 }
3380 }
3381
3382 if (tp != NULL)
3383 {
3384 if (debug_infrun)
3385 {
23fdd69e
SM
3386 std::string statstr
3387 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3388
372316f1
PA
3389 fprintf_unfiltered (gdb_stdlog,
3390 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3391 statstr.c_str (),
a068643d 3392 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3393 }
3394
3395 /* Now that we've selected our final event LWP, un-adjust its PC
3396 if it was a software breakpoint (and the target doesn't
3397 always adjust the PC itself). */
3398 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3399 && !target_supports_stopped_by_sw_breakpoint ())
3400 {
3401 struct regcache *regcache;
3402 struct gdbarch *gdbarch;
3403 int decr_pc;
3404
00431a78 3405 regcache = get_thread_regcache (tp);
ac7936df 3406 gdbarch = regcache->arch ();
372316f1
PA
3407
3408 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3409 if (decr_pc != 0)
3410 {
3411 CORE_ADDR pc;
3412
3413 pc = regcache_read_pc (regcache);
3414 regcache_write_pc (regcache, pc + decr_pc);
3415 }
3416 }
3417
3418 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3419 *status = tp->suspend.waitstatus;
3420 tp->suspend.waitstatus_pending_p = 0;
3421
3422 /* Wake up the event loop again, until all pending events are
3423 processed. */
3424 if (target_is_async_p ())
3425 mark_async_event_handler (infrun_async_inferior_event_token);
3426 return tp->ptid;
3427 }
3428
3429 /* But if we don't find one, we'll have to wait. */
3430
3431 if (deprecated_target_wait_hook)
3432 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3433 else
3434 event_ptid = target_wait (ptid, status, options);
3435
3436 return event_ptid;
3437}
3438
24291992
PA
3439/* Prepare and stabilize the inferior for detaching it. E.g.,
3440 detaching while a thread is displaced stepping is a recipe for
3441 crashing it, as nothing would readjust the PC out of the scratch
3442 pad. */
3443
3444void
3445prepare_for_detach (void)
3446{
3447 struct inferior *inf = current_inferior ();
f2907e49 3448 ptid_t pid_ptid = ptid_t (inf->pid);
24291992 3449
00431a78 3450 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
24291992
PA
3451
3452 /* Is any thread of this process displaced stepping? If not,
3453 there's nothing else to do. */
d20172fc 3454 if (displaced->step_thread == nullptr)
24291992
PA
3455 return;
3456
3457 if (debug_infrun)
3458 fprintf_unfiltered (gdb_stdlog,
3459 "displaced-stepping in-process while detaching");
3460
9bcb1f16 3461 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3462
00431a78 3463 while (displaced->step_thread != nullptr)
24291992 3464 {
24291992
PA
3465 struct execution_control_state ecss;
3466 struct execution_control_state *ecs;
3467
3468 ecs = &ecss;
3469 memset (ecs, 0, sizeof (*ecs));
3470
3471 overlay_cache_invalid = 1;
f15cb84a
YQ
3472 /* Flush target cache before starting to handle each event.
3473 Target was running and cache could be stale. This is just a
3474 heuristic. Running threads may modify target memory, but we
3475 don't get any event. */
3476 target_dcache_invalidate ();
24291992 3477
372316f1 3478 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3479
3480 if (debug_infrun)
3481 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3482
3483 /* If an error happens while handling the event, propagate GDB's
3484 knowledge of the executing state to the frontend/user running
3485 state. */
731f534f 3486 scoped_finish_thread_state finish_state (minus_one_ptid);
24291992
PA
3487
3488 /* Now figure out what to do with the result of the result. */
3489 handle_inferior_event (ecs);
3490
3491 /* No error, don't finish the state yet. */
731f534f 3492 finish_state.release ();
24291992
PA
3493
3494 /* Breakpoints and watchpoints are not installed on the target
3495 at this point, and signals are passed directly to the
3496 inferior, so this must mean the process is gone. */
3497 if (!ecs->wait_some_more)
3498 {
9bcb1f16 3499 restore_detaching.release ();
24291992
PA
3500 error (_("Program exited while detaching"));
3501 }
3502 }
3503
9bcb1f16 3504 restore_detaching.release ();
24291992
PA
3505}
3506
cd0fc7c3 3507/* Wait for control to return from inferior to debugger.
ae123ec6 3508
cd0fc7c3
SS
3509 If inferior gets a signal, we may decide to start it up again
3510 instead of returning. That is why there is a loop in this function.
3511 When this function actually returns it means the inferior
3512 should be left stopped and GDB should read more commands. */
3513
3514void
e4c8541f 3515wait_for_inferior (void)
cd0fc7c3 3516{
527159b7 3517 if (debug_infrun)
ae123ec6 3518 fprintf_unfiltered
e4c8541f 3519 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3520
4c41382a 3521 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
cd0fc7c3 3522
e6f5c25b
PA
3523 /* If an error happens while handling the event, propagate GDB's
3524 knowledge of the executing state to the frontend/user running
3525 state. */
731f534f 3526 scoped_finish_thread_state finish_state (minus_one_ptid);
e6f5c25b 3527
c906108c
SS
3528 while (1)
3529 {
ae25568b
PA
3530 struct execution_control_state ecss;
3531 struct execution_control_state *ecs = &ecss;
963f9c80 3532 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3533
ae25568b
PA
3534 memset (ecs, 0, sizeof (*ecs));
3535
ec9499be 3536 overlay_cache_invalid = 1;
ec9499be 3537
f15cb84a
YQ
3538 /* Flush target cache before starting to handle each event.
3539 Target was running and cache could be stale. This is just a
3540 heuristic. Running threads may modify target memory, but we
3541 don't get any event. */
3542 target_dcache_invalidate ();
3543
372316f1 3544 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3545
f00150c9 3546 if (debug_infrun)
223698f8 3547 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3548
cd0fc7c3
SS
3549 /* Now figure out what to do with the result of the result. */
3550 handle_inferior_event (ecs);
c906108c 3551
cd0fc7c3
SS
3552 if (!ecs->wait_some_more)
3553 break;
3554 }
4e1c45ea 3555
e6f5c25b 3556 /* No error, don't finish the state yet. */
731f534f 3557 finish_state.release ();
cd0fc7c3 3558}
c906108c 3559
d3d4baed
PA
3560/* Cleanup that reinstalls the readline callback handler, if the
3561 target is running in the background. If while handling the target
3562 event something triggered a secondary prompt, like e.g., a
3563 pagination prompt, we'll have removed the callback handler (see
3564 gdb_readline_wrapper_line). Need to do this as we go back to the
3565 event loop, ready to process further input. Note this has no
3566 effect if the handler hasn't actually been removed, because calling
3567 rl_callback_handler_install resets the line buffer, thus losing
3568 input. */
3569
3570static void
d238133d 3571reinstall_readline_callback_handler_cleanup ()
d3d4baed 3572{
3b12939d
PA
3573 struct ui *ui = current_ui;
3574
3575 if (!ui->async)
6c400b59
PA
3576 {
3577 /* We're not going back to the top level event loop yet. Don't
3578 install the readline callback, as it'd prep the terminal,
3579 readline-style (raw, noecho) (e.g., --batch). We'll install
3580 it the next time the prompt is displayed, when we're ready
3581 for input. */
3582 return;
3583 }
3584
3b12939d 3585 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3586 gdb_rl_callback_handler_reinstall ();
3587}
3588
243a9253
PA
3589/* Clean up the FSMs of threads that are now stopped. In non-stop,
3590 that's just the event thread. In all-stop, that's all threads. */
3591
3592static void
3593clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3594{
08036331
PA
3595 if (ecs->event_thread != NULL
3596 && ecs->event_thread->thread_fsm != NULL)
46e3ed7f 3597 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
243a9253
PA
3598
3599 if (!non_stop)
3600 {
08036331 3601 for (thread_info *thr : all_non_exited_threads ())
243a9253
PA
3602 {
3603 if (thr->thread_fsm == NULL)
3604 continue;
3605 if (thr == ecs->event_thread)
3606 continue;
3607
00431a78 3608 switch_to_thread (thr);
46e3ed7f 3609 thr->thread_fsm->clean_up (thr);
243a9253
PA
3610 }
3611
3612 if (ecs->event_thread != NULL)
00431a78 3613 switch_to_thread (ecs->event_thread);
243a9253
PA
3614 }
3615}
3616
3b12939d
PA
3617/* Helper for all_uis_check_sync_execution_done that works on the
3618 current UI. */
3619
3620static void
3621check_curr_ui_sync_execution_done (void)
3622{
3623 struct ui *ui = current_ui;
3624
3625 if (ui->prompt_state == PROMPT_NEEDED
3626 && ui->async
3627 && !gdb_in_secondary_prompt_p (ui))
3628 {
223ffa71 3629 target_terminal::ours ();
76727919 3630 gdb::observers::sync_execution_done.notify ();
3eb7562a 3631 ui_register_input_event_handler (ui);
3b12939d
PA
3632 }
3633}
3634
3635/* See infrun.h. */
3636
3637void
3638all_uis_check_sync_execution_done (void)
3639{
0e454242 3640 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3641 {
3642 check_curr_ui_sync_execution_done ();
3643 }
3644}
3645
a8836c93
PA
3646/* See infrun.h. */
3647
3648void
3649all_uis_on_sync_execution_starting (void)
3650{
0e454242 3651 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3652 {
3653 if (current_ui->prompt_state == PROMPT_NEEDED)
3654 async_disable_stdin ();
3655 }
3656}
3657
1777feb0 3658/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3659 event loop whenever a change of state is detected on the file
1777feb0
MS
3660 descriptor corresponding to the target. It can be called more than
3661 once to complete a single execution command. In such cases we need
3662 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3663 that this function is called for a single execution command, then
3664 report to the user that the inferior has stopped, and do the
1777feb0 3665 necessary cleanups. */
43ff13b4
JM
3666
3667void
fba45db2 3668fetch_inferior_event (void *client_data)
43ff13b4 3669{
0d1e5fa7 3670 struct execution_control_state ecss;
a474d7c2 3671 struct execution_control_state *ecs = &ecss;
0f641c01 3672 int cmd_done = 0;
963f9c80 3673 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3674
0d1e5fa7
PA
3675 memset (ecs, 0, sizeof (*ecs));
3676
c61db772
PA
3677 /* Events are always processed with the main UI as current UI. This
3678 way, warnings, debug output, etc. are always consistently sent to
3679 the main console. */
4b6749b9 3680 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3681
d3d4baed 3682 /* End up with readline processing input, if necessary. */
d238133d
TT
3683 {
3684 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3685
3686 /* We're handling a live event, so make sure we're doing live
3687 debugging. If we're looking at traceframes while the target is
3688 running, we're going to need to get back to that mode after
3689 handling the event. */
3690 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3691 if (non_stop)
3692 {
3693 maybe_restore_traceframe.emplace ();
3694 set_current_traceframe (-1);
3695 }
43ff13b4 3696
d238133d
TT
3697 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3698
3699 if (non_stop)
3700 /* In non-stop mode, the user/frontend should not notice a thread
3701 switch due to internal events. Make sure we reverse to the
3702 user selected thread and frame after handling the event and
3703 running any breakpoint commands. */
3704 maybe_restore_thread.emplace ();
3705
3706 overlay_cache_invalid = 1;
3707 /* Flush target cache before starting to handle each event. Target
3708 was running and cache could be stale. This is just a heuristic.
3709 Running threads may modify target memory, but we don't get any
3710 event. */
3711 target_dcache_invalidate ();
3712
3713 scoped_restore save_exec_dir
3714 = make_scoped_restore (&execution_direction,
3715 target_execution_direction ());
3716
3717 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3718 target_can_async_p () ? TARGET_WNOHANG : 0);
3719
3720 if (debug_infrun)
3721 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3722
3723 /* If an error happens while handling the event, propagate GDB's
3724 knowledge of the executing state to the frontend/user running
3725 state. */
3726 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3727 scoped_finish_thread_state finish_state (finish_ptid);
3728
979a0d13 3729 /* Get executed before scoped_restore_current_thread above to apply
d238133d
TT
3730 still for the thread which has thrown the exception. */
3731 auto defer_bpstat_clear
3732 = make_scope_exit (bpstat_clear_actions);
3733 auto defer_delete_threads
3734 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3735
3736 /* Now figure out what to do with the result of the result. */
3737 handle_inferior_event (ecs);
3738
3739 if (!ecs->wait_some_more)
3740 {
3741 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3742 int should_stop = 1;
3743 struct thread_info *thr = ecs->event_thread;
d6b48e9c 3744
d238133d 3745 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3746
d238133d
TT
3747 if (thr != NULL)
3748 {
3749 struct thread_fsm *thread_fsm = thr->thread_fsm;
243a9253 3750
d238133d 3751 if (thread_fsm != NULL)
46e3ed7f 3752 should_stop = thread_fsm->should_stop (thr);
d238133d 3753 }
243a9253 3754
d238133d
TT
3755 if (!should_stop)
3756 {
3757 keep_going (ecs);
3758 }
3759 else
3760 {
46e3ed7f 3761 bool should_notify_stop = true;
d238133d 3762 int proceeded = 0;
1840d81a 3763
d238133d 3764 clean_up_just_stopped_threads_fsms (ecs);
243a9253 3765
d238133d 3766 if (thr != NULL && thr->thread_fsm != NULL)
46e3ed7f 3767 should_notify_stop = thr->thread_fsm->should_notify_stop ();
388a7084 3768
d238133d
TT
3769 if (should_notify_stop)
3770 {
3771 /* We may not find an inferior if this was a process exit. */
3772 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3773 proceeded = normal_stop ();
3774 }
243a9253 3775
d238133d
TT
3776 if (!proceeded)
3777 {
3778 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3779 cmd_done = 1;
3780 }
3781 }
3782 }
4f8d22e3 3783
d238133d
TT
3784 defer_delete_threads.release ();
3785 defer_bpstat_clear.release ();
29f49a6a 3786
d238133d
TT
3787 /* No error, don't finish the thread states yet. */
3788 finish_state.release ();
731f534f 3789
d238133d
TT
3790 /* This scope is used to ensure that readline callbacks are
3791 reinstalled here. */
3792 }
4f8d22e3 3793
3b12939d
PA
3794 /* If a UI was in sync execution mode, and now isn't, restore its
3795 prompt (a synchronous execution command has finished, and we're
3796 ready for input). */
3797 all_uis_check_sync_execution_done ();
0f641c01
PA
3798
3799 if (cmd_done
0f641c01 3800 && exec_done_display_p
00431a78
PA
3801 && (inferior_ptid == null_ptid
3802 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 3803 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3804}
3805
edb3359d
DJ
3806/* Record the frame and location we're currently stepping through. */
3807void
3808set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3809{
3810 struct thread_info *tp = inferior_thread ();
3811
16c381f0
JK
3812 tp->control.step_frame_id = get_frame_id (frame);
3813 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3814
3815 tp->current_symtab = sal.symtab;
3816 tp->current_line = sal.line;
3817}
3818
0d1e5fa7
PA
3819/* Clear context switchable stepping state. */
3820
3821void
4e1c45ea 3822init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 3823{
7f5ef605 3824 tss->stepped_breakpoint = 0;
0d1e5fa7 3825 tss->stepping_over_breakpoint = 0;
963f9c80 3826 tss->stepping_over_watchpoint = 0;
0d1e5fa7 3827 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
3828}
3829
c32c64b7
DE
3830/* Set the cached copy of the last ptid/waitstatus. */
3831
6efcd9a8 3832void
c32c64b7
DE
3833set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3834{
3835 target_last_wait_ptid = ptid;
3836 target_last_waitstatus = status;
3837}
3838
e02bc4cc 3839/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
3840 target_wait()/deprecated_target_wait_hook(). The data is actually
3841 cached by handle_inferior_event(), which gets called immediately
3842 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
3843
3844void
488f131b 3845get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 3846{
39f77062 3847 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
3848 *status = target_last_waitstatus;
3849}
3850
ac264b3b
MS
3851void
3852nullify_last_target_wait_ptid (void)
3853{
3854 target_last_wait_ptid = minus_one_ptid;
3855}
3856
dcf4fbde 3857/* Switch thread contexts. */
dd80620e
MS
3858
3859static void
00431a78 3860context_switch (execution_control_state *ecs)
dd80620e 3861{
00431a78
PA
3862 if (debug_infrun
3863 && ecs->ptid != inferior_ptid
3864 && ecs->event_thread != inferior_thread ())
fd48f117
DJ
3865 {
3866 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
a068643d 3867 target_pid_to_str (inferior_ptid).c_str ());
fd48f117 3868 fprintf_unfiltered (gdb_stdlog, "to %s\n",
a068643d 3869 target_pid_to_str (ecs->ptid).c_str ());
fd48f117
DJ
3870 }
3871
00431a78 3872 switch_to_thread (ecs->event_thread);
dd80620e
MS
3873}
3874
d8dd4d5f
PA
3875/* If the target can't tell whether we've hit breakpoints
3876 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
3877 check whether that could have been caused by a breakpoint. If so,
3878 adjust the PC, per gdbarch_decr_pc_after_break. */
3879
4fa8626c 3880static void
d8dd4d5f
PA
3881adjust_pc_after_break (struct thread_info *thread,
3882 struct target_waitstatus *ws)
4fa8626c 3883{
24a73cce
UW
3884 struct regcache *regcache;
3885 struct gdbarch *gdbarch;
118e6252 3886 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 3887
4fa8626c
DJ
3888 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3889 we aren't, just return.
9709f61c
DJ
3890
3891 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
3892 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3893 implemented by software breakpoints should be handled through the normal
3894 breakpoint layer.
8fb3e588 3895
4fa8626c
DJ
3896 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3897 different signals (SIGILL or SIGEMT for instance), but it is less
3898 clear where the PC is pointing afterwards. It may not match
b798847d
UW
3899 gdbarch_decr_pc_after_break. I don't know any specific target that
3900 generates these signals at breakpoints (the code has been in GDB since at
3901 least 1992) so I can not guess how to handle them here.
8fb3e588 3902
e6cf7916
UW
3903 In earlier versions of GDB, a target with
3904 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
3905 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3906 target with both of these set in GDB history, and it seems unlikely to be
3907 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 3908
d8dd4d5f 3909 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
3910 return;
3911
d8dd4d5f 3912 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
3913 return;
3914
4058b839
PA
3915 /* In reverse execution, when a breakpoint is hit, the instruction
3916 under it has already been de-executed. The reported PC always
3917 points at the breakpoint address, so adjusting it further would
3918 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3919 architecture:
3920
3921 B1 0x08000000 : INSN1
3922 B2 0x08000001 : INSN2
3923 0x08000002 : INSN3
3924 PC -> 0x08000003 : INSN4
3925
3926 Say you're stopped at 0x08000003 as above. Reverse continuing
3927 from that point should hit B2 as below. Reading the PC when the
3928 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3929 been de-executed already.
3930
3931 B1 0x08000000 : INSN1
3932 B2 PC -> 0x08000001 : INSN2
3933 0x08000002 : INSN3
3934 0x08000003 : INSN4
3935
3936 We can't apply the same logic as for forward execution, because
3937 we would wrongly adjust the PC to 0x08000000, since there's a
3938 breakpoint at PC - 1. We'd then report a hit on B1, although
3939 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3940 behaviour. */
3941 if (execution_direction == EXEC_REVERSE)
3942 return;
3943
1cf4d951
PA
3944 /* If the target can tell whether the thread hit a SW breakpoint,
3945 trust it. Targets that can tell also adjust the PC
3946 themselves. */
3947 if (target_supports_stopped_by_sw_breakpoint ())
3948 return;
3949
3950 /* Note that relying on whether a breakpoint is planted in memory to
3951 determine this can fail. E.g,. the breakpoint could have been
3952 removed since. Or the thread could have been told to step an
3953 instruction the size of a breakpoint instruction, and only
3954 _after_ was a breakpoint inserted at its address. */
3955
24a73cce
UW
3956 /* If this target does not decrement the PC after breakpoints, then
3957 we have nothing to do. */
00431a78 3958 regcache = get_thread_regcache (thread);
ac7936df 3959 gdbarch = regcache->arch ();
118e6252 3960
527a273a 3961 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 3962 if (decr_pc == 0)
24a73cce
UW
3963 return;
3964
8b86c959 3965 const address_space *aspace = regcache->aspace ();
6c95b8df 3966
8aad930b
AC
3967 /* Find the location where (if we've hit a breakpoint) the
3968 breakpoint would be. */
118e6252 3969 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 3970
1cf4d951
PA
3971 /* If the target can't tell whether a software breakpoint triggered,
3972 fallback to figuring it out based on breakpoints we think were
3973 inserted in the target, and on whether the thread was stepped or
3974 continued. */
3975
1c5cfe86
PA
3976 /* Check whether there actually is a software breakpoint inserted at
3977 that location.
3978
3979 If in non-stop mode, a race condition is possible where we've
3980 removed a breakpoint, but stop events for that breakpoint were
3981 already queued and arrive later. To suppress those spurious
3982 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
3983 and retire them after a number of stop events are reported. Note
3984 this is an heuristic and can thus get confused. The real fix is
3985 to get the "stopped by SW BP and needs adjustment" info out of
3986 the target/kernel (and thus never reach here; see above). */
6c95b8df 3987 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
3988 || (target_is_non_stop_p ()
3989 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 3990 {
07036511 3991 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 3992
8213266a 3993 if (record_full_is_used ())
07036511
TT
3994 restore_operation_disable.emplace
3995 (record_full_gdb_operation_disable_set ());
96429cc8 3996
1c0fdd0e
UW
3997 /* When using hardware single-step, a SIGTRAP is reported for both
3998 a completed single-step and a software breakpoint. Need to
3999 differentiate between the two, as the latter needs adjusting
4000 but the former does not.
4001
4002 The SIGTRAP can be due to a completed hardware single-step only if
4003 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4004 - this thread is currently being stepped
4005
4006 If any of these events did not occur, we must have stopped due
4007 to hitting a software breakpoint, and have to back up to the
4008 breakpoint address.
4009
4010 As a special case, we could have hardware single-stepped a
4011 software breakpoint. In this case (prev_pc == breakpoint_pc),
4012 we also need to back up to the breakpoint address. */
4013
d8dd4d5f
PA
4014 if (thread_has_single_step_breakpoints_set (thread)
4015 || !currently_stepping (thread)
4016 || (thread->stepped_breakpoint
4017 && thread->prev_pc == breakpoint_pc))
515630c5 4018 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4019 }
4fa8626c
DJ
4020}
4021
edb3359d
DJ
4022static int
4023stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4024{
4025 for (frame = get_prev_frame (frame);
4026 frame != NULL;
4027 frame = get_prev_frame (frame))
4028 {
4029 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4030 return 1;
4031 if (get_frame_type (frame) != INLINE_FRAME)
4032 break;
4033 }
4034
4035 return 0;
4036}
4037
c65d6b55
PA
4038/* If the event thread has the stop requested flag set, pretend it
4039 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4040 target_stop). */
4041
4042static bool
4043handle_stop_requested (struct execution_control_state *ecs)
4044{
4045 if (ecs->event_thread->stop_requested)
4046 {
4047 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4048 ecs->ws.value.sig = GDB_SIGNAL_0;
4049 handle_signal_stop (ecs);
4050 return true;
4051 }
4052 return false;
4053}
4054
a96d9b2e
SDJ
4055/* Auxiliary function that handles syscall entry/return events.
4056 It returns 1 if the inferior should keep going (and GDB
4057 should ignore the event), or 0 if the event deserves to be
4058 processed. */
ca2163eb 4059
a96d9b2e 4060static int
ca2163eb 4061handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4062{
ca2163eb 4063 struct regcache *regcache;
ca2163eb
PA
4064 int syscall_number;
4065
00431a78 4066 context_switch (ecs);
ca2163eb 4067
00431a78 4068 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4069 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4070 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4071
a96d9b2e
SDJ
4072 if (catch_syscall_enabled () > 0
4073 && catching_syscall_number (syscall_number) > 0)
4074 {
4075 if (debug_infrun)
4076 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4077 syscall_number);
a96d9b2e 4078
16c381f0 4079 ecs->event_thread->control.stop_bpstat
a01bda52 4080 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4081 ecs->event_thread->suspend.stop_pc,
4082 ecs->event_thread, &ecs->ws);
ab04a2af 4083
c65d6b55
PA
4084 if (handle_stop_requested (ecs))
4085 return 0;
4086
ce12b012 4087 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4088 {
4089 /* Catchpoint hit. */
ca2163eb
PA
4090 return 0;
4091 }
a96d9b2e 4092 }
ca2163eb 4093
c65d6b55
PA
4094 if (handle_stop_requested (ecs))
4095 return 0;
4096
ca2163eb 4097 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4098 keep_going (ecs);
4099 return 1;
a96d9b2e
SDJ
4100}
4101
7e324e48
GB
4102/* Lazily fill in the execution_control_state's stop_func_* fields. */
4103
4104static void
4105fill_in_stop_func (struct gdbarch *gdbarch,
4106 struct execution_control_state *ecs)
4107{
4108 if (!ecs->stop_func_filled_in)
4109 {
98a617f8
KB
4110 const block *block;
4111
7e324e48
GB
4112 /* Don't care about return value; stop_func_start and stop_func_name
4113 will both be 0 if it doesn't work. */
98a617f8
KB
4114 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4115 &ecs->stop_func_name,
4116 &ecs->stop_func_start,
4117 &ecs->stop_func_end,
4118 &block);
4119
4120 /* The call to find_pc_partial_function, above, will set
4121 stop_func_start and stop_func_end to the start and end
4122 of the range containing the stop pc. If this range
4123 contains the entry pc for the block (which is always the
4124 case for contiguous blocks), advance stop_func_start past
4125 the function's start offset and entrypoint. Note that
4126 stop_func_start is NOT advanced when in a range of a
4127 non-contiguous block that does not contain the entry pc. */
4128 if (block != nullptr
4129 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4130 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4131 {
4132 ecs->stop_func_start
4133 += gdbarch_deprecated_function_start_offset (gdbarch);
4134
4135 if (gdbarch_skip_entrypoint_p (gdbarch))
4136 ecs->stop_func_start
4137 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4138 }
591a12a1 4139
7e324e48
GB
4140 ecs->stop_func_filled_in = 1;
4141 }
4142}
4143
4f5d7f63 4144
00431a78 4145/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4146
4147static enum stop_kind
00431a78 4148get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4149{
00431a78 4150 struct inferior *inf = find_inferior_ptid (ecs->ptid);
4f5d7f63
PA
4151
4152 gdb_assert (inf != NULL);
4153 return inf->control.stop_soon;
4154}
4155
372316f1
PA
4156/* Wait for one event. Store the resulting waitstatus in WS, and
4157 return the event ptid. */
4158
4159static ptid_t
4160wait_one (struct target_waitstatus *ws)
4161{
4162 ptid_t event_ptid;
4163 ptid_t wait_ptid = minus_one_ptid;
4164
4165 overlay_cache_invalid = 1;
4166
4167 /* Flush target cache before starting to handle each event.
4168 Target was running and cache could be stale. This is just a
4169 heuristic. Running threads may modify target memory, but we
4170 don't get any event. */
4171 target_dcache_invalidate ();
4172
4173 if (deprecated_target_wait_hook)
4174 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4175 else
4176 event_ptid = target_wait (wait_ptid, ws, 0);
4177
4178 if (debug_infrun)
4179 print_target_wait_results (wait_ptid, event_ptid, ws);
4180
4181 return event_ptid;
4182}
4183
4184/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4185 instead of the current thread. */
4186#define THREAD_STOPPED_BY(REASON) \
4187static int \
4188thread_stopped_by_ ## REASON (ptid_t ptid) \
4189{ \
2989a365 4190 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
372316f1
PA
4191 inferior_ptid = ptid; \
4192 \
2989a365 4193 return target_stopped_by_ ## REASON (); \
372316f1
PA
4194}
4195
4196/* Generate thread_stopped_by_watchpoint. */
4197THREAD_STOPPED_BY (watchpoint)
4198/* Generate thread_stopped_by_sw_breakpoint. */
4199THREAD_STOPPED_BY (sw_breakpoint)
4200/* Generate thread_stopped_by_hw_breakpoint. */
4201THREAD_STOPPED_BY (hw_breakpoint)
4202
372316f1
PA
4203/* Save the thread's event and stop reason to process it later. */
4204
4205static void
4206save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4207{
372316f1
PA
4208 if (debug_infrun)
4209 {
23fdd69e 4210 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4211
372316f1
PA
4212 fprintf_unfiltered (gdb_stdlog,
4213 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4214 statstr.c_str (),
e99b03dc 4215 tp->ptid.pid (),
e38504b3 4216 tp->ptid.lwp (),
cc6bcb54 4217 tp->ptid.tid ());
372316f1
PA
4218 }
4219
4220 /* Record for later. */
4221 tp->suspend.waitstatus = *ws;
4222 tp->suspend.waitstatus_pending_p = 1;
4223
00431a78 4224 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4225 const address_space *aspace = regcache->aspace ();
372316f1
PA
4226
4227 if (ws->kind == TARGET_WAITKIND_STOPPED
4228 && ws->value.sig == GDB_SIGNAL_TRAP)
4229 {
4230 CORE_ADDR pc = regcache_read_pc (regcache);
4231
4232 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4233
4234 if (thread_stopped_by_watchpoint (tp->ptid))
4235 {
4236 tp->suspend.stop_reason
4237 = TARGET_STOPPED_BY_WATCHPOINT;
4238 }
4239 else if (target_supports_stopped_by_sw_breakpoint ()
4240 && thread_stopped_by_sw_breakpoint (tp->ptid))
4241 {
4242 tp->suspend.stop_reason
4243 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4244 }
4245 else if (target_supports_stopped_by_hw_breakpoint ()
4246 && thread_stopped_by_hw_breakpoint (tp->ptid))
4247 {
4248 tp->suspend.stop_reason
4249 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4250 }
4251 else if (!target_supports_stopped_by_hw_breakpoint ()
4252 && hardware_breakpoint_inserted_here_p (aspace,
4253 pc))
4254 {
4255 tp->suspend.stop_reason
4256 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4257 }
4258 else if (!target_supports_stopped_by_sw_breakpoint ()
4259 && software_breakpoint_inserted_here_p (aspace,
4260 pc))
4261 {
4262 tp->suspend.stop_reason
4263 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4264 }
4265 else if (!thread_has_single_step_breakpoints_set (tp)
4266 && currently_stepping (tp))
4267 {
4268 tp->suspend.stop_reason
4269 = TARGET_STOPPED_BY_SINGLE_STEP;
4270 }
4271 }
4272}
4273
6efcd9a8 4274/* See infrun.h. */
372316f1 4275
6efcd9a8 4276void
372316f1
PA
4277stop_all_threads (void)
4278{
4279 /* We may need multiple passes to discover all threads. */
4280 int pass;
4281 int iterations = 0;
372316f1 4282
fbea99ea 4283 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4284
4285 if (debug_infrun)
4286 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4287
00431a78 4288 scoped_restore_current_thread restore_thread;
372316f1 4289
65706a29 4290 target_thread_events (1);
9885e6bb 4291 SCOPE_EXIT { target_thread_events (0); };
65706a29 4292
372316f1
PA
4293 /* Request threads to stop, and then wait for the stops. Because
4294 threads we already know about can spawn more threads while we're
4295 trying to stop them, and we only learn about new threads when we
4296 update the thread list, do this in a loop, and keep iterating
4297 until two passes find no threads that need to be stopped. */
4298 for (pass = 0; pass < 2; pass++, iterations++)
4299 {
4300 if (debug_infrun)
4301 fprintf_unfiltered (gdb_stdlog,
4302 "infrun: stop_all_threads, pass=%d, "
4303 "iterations=%d\n", pass, iterations);
4304 while (1)
4305 {
4306 ptid_t event_ptid;
4307 struct target_waitstatus ws;
4308 int need_wait = 0;
372316f1
PA
4309
4310 update_thread_list ();
4311
4312 /* Go through all threads looking for threads that we need
4313 to tell the target to stop. */
08036331 4314 for (thread_info *t : all_non_exited_threads ())
372316f1
PA
4315 {
4316 if (t->executing)
4317 {
4318 /* If already stopping, don't request a stop again.
4319 We just haven't seen the notification yet. */
4320 if (!t->stop_requested)
4321 {
4322 if (debug_infrun)
4323 fprintf_unfiltered (gdb_stdlog,
4324 "infrun: %s executing, "
4325 "need stop\n",
a068643d 4326 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4327 target_stop (t->ptid);
4328 t->stop_requested = 1;
4329 }
4330 else
4331 {
4332 if (debug_infrun)
4333 fprintf_unfiltered (gdb_stdlog,
4334 "infrun: %s executing, "
4335 "already stopping\n",
a068643d 4336 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4337 }
4338
4339 if (t->stop_requested)
4340 need_wait = 1;
4341 }
4342 else
4343 {
4344 if (debug_infrun)
4345 fprintf_unfiltered (gdb_stdlog,
4346 "infrun: %s not executing\n",
a068643d 4347 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4348
4349 /* The thread may be not executing, but still be
4350 resumed with a pending status to process. */
4351 t->resumed = 0;
4352 }
4353 }
4354
4355 if (!need_wait)
4356 break;
4357
4358 /* If we find new threads on the second iteration, restart
4359 over. We want to see two iterations in a row with all
4360 threads stopped. */
4361 if (pass > 0)
4362 pass = -1;
4363
4364 event_ptid = wait_one (&ws);
c29705b7 4365 if (debug_infrun)
372316f1 4366 {
c29705b7
PW
4367 fprintf_unfiltered (gdb_stdlog,
4368 "infrun: stop_all_threads %s %s\n",
4369 target_waitstatus_to_string (&ws).c_str (),
4370 target_pid_to_str (event_ptid).c_str ());
372316f1 4371 }
372316f1 4372
c29705b7
PW
4373 if (ws.kind == TARGET_WAITKIND_NO_RESUMED
4374 || ws.kind == TARGET_WAITKIND_THREAD_EXITED
4375 || ws.kind == TARGET_WAITKIND_EXITED
4376 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4377 {
4378 /* All resumed threads exited
4379 or one thread/process exited/signalled. */
372316f1
PA
4380 }
4381 else
4382 {
08036331 4383 thread_info *t = find_thread_ptid (event_ptid);
372316f1
PA
4384 if (t == NULL)
4385 t = add_thread (event_ptid);
4386
4387 t->stop_requested = 0;
4388 t->executing = 0;
4389 t->resumed = 0;
4390 t->control.may_range_step = 0;
4391
6efcd9a8
PA
4392 /* This may be the first time we see the inferior report
4393 a stop. */
08036331 4394 inferior *inf = find_inferior_ptid (event_ptid);
6efcd9a8
PA
4395 if (inf->needs_setup)
4396 {
4397 switch_to_thread_no_regs (t);
4398 setup_inferior (0);
4399 }
4400
372316f1
PA
4401 if (ws.kind == TARGET_WAITKIND_STOPPED
4402 && ws.value.sig == GDB_SIGNAL_0)
4403 {
4404 /* We caught the event that we intended to catch, so
4405 there's no event pending. */
4406 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4407 t->suspend.waitstatus_pending_p = 0;
4408
00431a78 4409 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
372316f1
PA
4410 {
4411 /* Add it back to the step-over queue. */
4412 if (debug_infrun)
4413 {
4414 fprintf_unfiltered (gdb_stdlog,
4415 "infrun: displaced-step of %s "
4416 "canceled: adding back to the "
4417 "step-over queue\n",
a068643d 4418 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4419 }
4420 t->control.trap_expected = 0;
4421 thread_step_over_chain_enqueue (t);
4422 }
4423 }
4424 else
4425 {
4426 enum gdb_signal sig;
4427 struct regcache *regcache;
372316f1
PA
4428
4429 if (debug_infrun)
4430 {
23fdd69e 4431 std::string statstr = target_waitstatus_to_string (&ws);
372316f1 4432
372316f1
PA
4433 fprintf_unfiltered (gdb_stdlog,
4434 "infrun: target_wait %s, saving "
4435 "status for %d.%ld.%ld\n",
23fdd69e 4436 statstr.c_str (),
e99b03dc 4437 t->ptid.pid (),
e38504b3 4438 t->ptid.lwp (),
cc6bcb54 4439 t->ptid.tid ());
372316f1
PA
4440 }
4441
4442 /* Record for later. */
4443 save_waitstatus (t, &ws);
4444
4445 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4446 ? ws.value.sig : GDB_SIGNAL_0);
4447
00431a78 4448 if (displaced_step_fixup (t, sig) < 0)
372316f1
PA
4449 {
4450 /* Add it back to the step-over queue. */
4451 t->control.trap_expected = 0;
4452 thread_step_over_chain_enqueue (t);
4453 }
4454
00431a78 4455 regcache = get_thread_regcache (t);
372316f1
PA
4456 t->suspend.stop_pc = regcache_read_pc (regcache);
4457
4458 if (debug_infrun)
4459 {
4460 fprintf_unfiltered (gdb_stdlog,
4461 "infrun: saved stop_pc=%s for %s "
4462 "(currently_stepping=%d)\n",
4463 paddress (target_gdbarch (),
4464 t->suspend.stop_pc),
a068643d 4465 target_pid_to_str (t->ptid).c_str (),
372316f1
PA
4466 currently_stepping (t));
4467 }
4468 }
4469 }
4470 }
4471 }
4472
372316f1
PA
4473 if (debug_infrun)
4474 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4475}
4476
f4836ba9
PA
4477/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4478
4479static int
4480handle_no_resumed (struct execution_control_state *ecs)
4481{
3b12939d 4482 if (target_can_async_p ())
f4836ba9 4483 {
3b12939d
PA
4484 struct ui *ui;
4485 int any_sync = 0;
f4836ba9 4486
3b12939d
PA
4487 ALL_UIS (ui)
4488 {
4489 if (ui->prompt_state == PROMPT_BLOCKED)
4490 {
4491 any_sync = 1;
4492 break;
4493 }
4494 }
4495 if (!any_sync)
4496 {
4497 /* There were no unwaited-for children left in the target, but,
4498 we're not synchronously waiting for events either. Just
4499 ignore. */
4500
4501 if (debug_infrun)
4502 fprintf_unfiltered (gdb_stdlog,
4503 "infrun: TARGET_WAITKIND_NO_RESUMED "
4504 "(ignoring: bg)\n");
4505 prepare_to_wait (ecs);
4506 return 1;
4507 }
f4836ba9
PA
4508 }
4509
4510 /* Otherwise, if we were running a synchronous execution command, we
4511 may need to cancel it and give the user back the terminal.
4512
4513 In non-stop mode, the target can't tell whether we've already
4514 consumed previous stop events, so it can end up sending us a
4515 no-resumed event like so:
4516
4517 #0 - thread 1 is left stopped
4518
4519 #1 - thread 2 is resumed and hits breakpoint
4520 -> TARGET_WAITKIND_STOPPED
4521
4522 #2 - thread 3 is resumed and exits
4523 this is the last resumed thread, so
4524 -> TARGET_WAITKIND_NO_RESUMED
4525
4526 #3 - gdb processes stop for thread 2 and decides to re-resume
4527 it.
4528
4529 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4530 thread 2 is now resumed, so the event should be ignored.
4531
4532 IOW, if the stop for thread 2 doesn't end a foreground command,
4533 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4534 event. But it could be that the event meant that thread 2 itself
4535 (or whatever other thread was the last resumed thread) exited.
4536
4537 To address this we refresh the thread list and check whether we
4538 have resumed threads _now_. In the example above, this removes
4539 thread 3 from the thread list. If thread 2 was re-resumed, we
4540 ignore this event. If we find no thread resumed, then we cancel
4541 the synchronous command show "no unwaited-for " to the user. */
4542 update_thread_list ();
4543
08036331 4544 for (thread_info *thread : all_non_exited_threads ())
f4836ba9
PA
4545 {
4546 if (thread->executing
4547 || thread->suspend.waitstatus_pending_p)
4548 {
4549 /* There were no unwaited-for children left in the target at
4550 some point, but there are now. Just ignore. */
4551 if (debug_infrun)
4552 fprintf_unfiltered (gdb_stdlog,
4553 "infrun: TARGET_WAITKIND_NO_RESUMED "
4554 "(ignoring: found resumed)\n");
4555 prepare_to_wait (ecs);
4556 return 1;
4557 }
4558 }
4559
4560 /* Note however that we may find no resumed thread because the whole
4561 process exited meanwhile (thus updating the thread list results
4562 in an empty thread list). In this case we know we'll be getting
4563 a process exit event shortly. */
08036331 4564 for (inferior *inf : all_inferiors ())
f4836ba9
PA
4565 {
4566 if (inf->pid == 0)
4567 continue;
4568
08036331 4569 thread_info *thread = any_live_thread_of_inferior (inf);
f4836ba9
PA
4570 if (thread == NULL)
4571 {
4572 if (debug_infrun)
4573 fprintf_unfiltered (gdb_stdlog,
4574 "infrun: TARGET_WAITKIND_NO_RESUMED "
4575 "(expect process exit)\n");
4576 prepare_to_wait (ecs);
4577 return 1;
4578 }
4579 }
4580
4581 /* Go ahead and report the event. */
4582 return 0;
4583}
4584
05ba8510
PA
4585/* Given an execution control state that has been freshly filled in by
4586 an event from the inferior, figure out what it means and take
4587 appropriate action.
4588
4589 The alternatives are:
4590
22bcd14b 4591 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4592 debugger.
4593
4594 2) keep_going and return; to wait for the next event (set
4595 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4596 once). */
c906108c 4597
ec9499be 4598static void
595915c1 4599handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 4600{
595915c1
TT
4601 /* Make sure that all temporary struct value objects that were
4602 created during the handling of the event get deleted at the
4603 end. */
4604 scoped_value_mark free_values;
4605
d6b48e9c
PA
4606 enum stop_kind stop_soon;
4607
c29705b7
PW
4608 if (debug_infrun)
4609 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
4610 target_waitstatus_to_string (&ecs->ws).c_str ());
4611
28736962
PA
4612 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4613 {
4614 /* We had an event in the inferior, but we are not interested in
4615 handling it at this level. The lower layers have already
4616 done what needs to be done, if anything.
4617
4618 One of the possible circumstances for this is when the
4619 inferior produces output for the console. The inferior has
4620 not stopped, and we are ignoring the event. Another possible
4621 circumstance is any event which the lower level knows will be
4622 reported multiple times without an intervening resume. */
28736962
PA
4623 prepare_to_wait (ecs);
4624 return;
4625 }
4626
65706a29
PA
4627 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4628 {
65706a29
PA
4629 prepare_to_wait (ecs);
4630 return;
4631 }
4632
0e5bf2a8 4633 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4634 && handle_no_resumed (ecs))
4635 return;
0e5bf2a8 4636
1777feb0 4637 /* Cache the last pid/waitstatus. */
c32c64b7 4638 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4639
ca005067 4640 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4641 stop_stack_dummy = STOP_NONE;
ca005067 4642
0e5bf2a8
PA
4643 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4644 {
4645 /* No unwaited-for children left. IOW, all resumed children
4646 have exited. */
0e5bf2a8 4647 stop_print_frame = 0;
22bcd14b 4648 stop_waiting (ecs);
0e5bf2a8
PA
4649 return;
4650 }
4651
8c90c137 4652 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4653 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4654 {
4655 ecs->event_thread = find_thread_ptid (ecs->ptid);
4656 /* If it's a new thread, add it to the thread database. */
4657 if (ecs->event_thread == NULL)
4658 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4659
4660 /* Disable range stepping. If the next step request could use a
4661 range, this will be end up re-enabled then. */
4662 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4663 }
88ed393a
JK
4664
4665 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4666 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4667
4668 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4669 reinit_frame_cache ();
4670
28736962
PA
4671 breakpoint_retire_moribund ();
4672
2b009048
DJ
4673 /* First, distinguish signals caused by the debugger from signals
4674 that have to do with the program's own actions. Note that
4675 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4676 on the operating system version. Here we detect when a SIGILL or
4677 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4678 something similar for SIGSEGV, since a SIGSEGV will be generated
4679 when we're trying to execute a breakpoint instruction on a
4680 non-executable stack. This happens for call dummy breakpoints
4681 for architectures like SPARC that place call dummies on the
4682 stack. */
2b009048 4683 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4684 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4685 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4686 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4687 {
00431a78 4688 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 4689
a01bda52 4690 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
4691 regcache_read_pc (regcache)))
4692 {
4693 if (debug_infrun)
4694 fprintf_unfiltered (gdb_stdlog,
4695 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4696 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4697 }
2b009048
DJ
4698 }
4699
28736962
PA
4700 /* Mark the non-executing threads accordingly. In all-stop, all
4701 threads of all processes are stopped when we get any event
e1316e60 4702 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4703 {
4704 ptid_t mark_ptid;
4705
fbea99ea 4706 if (!target_is_non_stop_p ())
372316f1
PA
4707 mark_ptid = minus_one_ptid;
4708 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4709 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4710 {
4711 /* If we're handling a process exit in non-stop mode, even
4712 though threads haven't been deleted yet, one would think
4713 that there is nothing to do, as threads of the dead process
4714 will be soon deleted, and threads of any other process were
4715 left running. However, on some targets, threads survive a
4716 process exit event. E.g., for the "checkpoint" command,
4717 when the current checkpoint/fork exits, linux-fork.c
4718 automatically switches to another fork from within
4719 target_mourn_inferior, by associating the same
4720 inferior/thread to another fork. We haven't mourned yet at
4721 this point, but we must mark any threads left in the
4722 process as not-executing so that finish_thread_state marks
4723 them stopped (in the user's perspective) if/when we present
4724 the stop to the user. */
e99b03dc 4725 mark_ptid = ptid_t (ecs->ptid.pid ());
372316f1
PA
4726 }
4727 else
4728 mark_ptid = ecs->ptid;
4729
4730 set_executing (mark_ptid, 0);
4731
4732 /* Likewise the resumed flag. */
4733 set_resumed (mark_ptid, 0);
4734 }
8c90c137 4735
488f131b
JB
4736 switch (ecs->ws.kind)
4737 {
4738 case TARGET_WAITKIND_LOADED:
00431a78 4739 context_switch (ecs);
b0f4b84b
DJ
4740 /* Ignore gracefully during startup of the inferior, as it might
4741 be the shell which has just loaded some objects, otherwise
4742 add the symbols for the newly loaded objects. Also ignore at
4743 the beginning of an attach or remote session; we will query
4744 the full list of libraries once the connection is
4745 established. */
4f5d7f63 4746
00431a78 4747 stop_soon = get_inferior_stop_soon (ecs);
c0236d92 4748 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4749 {
edcc5120
TT
4750 struct regcache *regcache;
4751
00431a78 4752 regcache = get_thread_regcache (ecs->event_thread);
edcc5120
TT
4753
4754 handle_solib_event ();
4755
4756 ecs->event_thread->control.stop_bpstat
a01bda52 4757 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4758 ecs->event_thread->suspend.stop_pc,
4759 ecs->event_thread, &ecs->ws);
ab04a2af 4760
c65d6b55
PA
4761 if (handle_stop_requested (ecs))
4762 return;
4763
ce12b012 4764 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4765 {
4766 /* A catchpoint triggered. */
94c57d6a
PA
4767 process_event_stop_test (ecs);
4768 return;
edcc5120 4769 }
488f131b 4770
b0f4b84b
DJ
4771 /* If requested, stop when the dynamic linker notifies
4772 gdb of events. This allows the user to get control
4773 and place breakpoints in initializer routines for
4774 dynamically loaded objects (among other things). */
a493e3e2 4775 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4776 if (stop_on_solib_events)
4777 {
55409f9d
DJ
4778 /* Make sure we print "Stopped due to solib-event" in
4779 normal_stop. */
4780 stop_print_frame = 1;
4781
22bcd14b 4782 stop_waiting (ecs);
b0f4b84b
DJ
4783 return;
4784 }
488f131b 4785 }
b0f4b84b
DJ
4786
4787 /* If we are skipping through a shell, or through shared library
4788 loading that we aren't interested in, resume the program. If
5c09a2c5 4789 we're running the program normally, also resume. */
b0f4b84b
DJ
4790 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4791 {
74960c60
VP
4792 /* Loading of shared libraries might have changed breakpoint
4793 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4794 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4795 insert_breakpoints ();
64ce06e4 4796 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4797 prepare_to_wait (ecs);
4798 return;
4799 }
4800
5c09a2c5
PA
4801 /* But stop if we're attaching or setting up a remote
4802 connection. */
4803 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4804 || stop_soon == STOP_QUIETLY_REMOTE)
4805 {
4806 if (debug_infrun)
4807 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 4808 stop_waiting (ecs);
5c09a2c5
PA
4809 return;
4810 }
4811
4812 internal_error (__FILE__, __LINE__,
4813 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 4814
488f131b 4815 case TARGET_WAITKIND_SPURIOUS:
c65d6b55
PA
4816 if (handle_stop_requested (ecs))
4817 return;
00431a78 4818 context_switch (ecs);
64ce06e4 4819 resume (GDB_SIGNAL_0);
488f131b
JB
4820 prepare_to_wait (ecs);
4821 return;
c5aa993b 4822
65706a29 4823 case TARGET_WAITKIND_THREAD_CREATED:
c65d6b55
PA
4824 if (handle_stop_requested (ecs))
4825 return;
00431a78 4826 context_switch (ecs);
65706a29
PA
4827 if (!switch_back_to_stepped_thread (ecs))
4828 keep_going (ecs);
4829 return;
4830
488f131b 4831 case TARGET_WAITKIND_EXITED:
940c3c06 4832 case TARGET_WAITKIND_SIGNALLED:
fb66883a 4833 inferior_ptid = ecs->ptid;
c9657e70 4834 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
4835 set_current_program_space (current_inferior ()->pspace);
4836 handle_vfork_child_exec_or_exit (0);
223ffa71 4837 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 4838
0c557179
SDJ
4839 /* Clearing any previous state of convenience variables. */
4840 clear_exit_convenience_vars ();
4841
940c3c06
PA
4842 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4843 {
4844 /* Record the exit code in the convenience variable $_exitcode, so
4845 that the user can inspect this again later. */
4846 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4847 (LONGEST) ecs->ws.value.integer);
4848
4849 /* Also record this in the inferior itself. */
4850 current_inferior ()->has_exit_code = 1;
4851 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 4852
98eb56a4
PA
4853 /* Support the --return-child-result option. */
4854 return_child_result_value = ecs->ws.value.integer;
4855
76727919 4856 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
4857 }
4858 else
0c557179 4859 {
00431a78 4860 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
4861
4862 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4863 {
4864 /* Set the value of the internal variable $_exitsignal,
4865 which holds the signal uncaught by the inferior. */
4866 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4867 gdbarch_gdb_signal_to_target (gdbarch,
4868 ecs->ws.value.sig));
4869 }
4870 else
4871 {
4872 /* We don't have access to the target's method used for
4873 converting between signal numbers (GDB's internal
4874 representation <-> target's representation).
4875 Therefore, we cannot do a good job at displaying this
4876 information to the user. It's better to just warn
4877 her about it (if infrun debugging is enabled), and
4878 give up. */
4879 if (debug_infrun)
4880 fprintf_filtered (gdb_stdlog, _("\
4881Cannot fill $_exitsignal with the correct signal number.\n"));
4882 }
4883
76727919 4884 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 4885 }
8cf64490 4886
488f131b 4887 gdb_flush (gdb_stdout);
bc1e6c81 4888 target_mourn_inferior (inferior_ptid);
488f131b 4889 stop_print_frame = 0;
22bcd14b 4890 stop_waiting (ecs);
488f131b 4891 return;
c5aa993b 4892
488f131b 4893 /* The following are the only cases in which we keep going;
1777feb0 4894 the above cases end in a continue or goto. */
488f131b 4895 case TARGET_WAITKIND_FORKED:
deb3b17b 4896 case TARGET_WAITKIND_VFORKED:
e2d96639
YQ
4897 /* Check whether the inferior is displaced stepping. */
4898 {
00431a78 4899 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 4900 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
4901
4902 /* If checking displaced stepping is supported, and thread
4903 ecs->ptid is displaced stepping. */
00431a78 4904 if (displaced_step_in_progress_thread (ecs->event_thread))
e2d96639
YQ
4905 {
4906 struct inferior *parent_inf
c9657e70 4907 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
4908 struct regcache *child_regcache;
4909 CORE_ADDR parent_pc;
4910
4911 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4912 indicating that the displaced stepping of syscall instruction
4913 has been done. Perform cleanup for parent process here. Note
4914 that this operation also cleans up the child process for vfork,
4915 because their pages are shared. */
00431a78 4916 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
4917 /* Start a new step-over in another thread if there's one
4918 that needs it. */
4919 start_step_over ();
e2d96639
YQ
4920
4921 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4922 {
c0987663 4923 struct displaced_step_inferior_state *displaced
00431a78 4924 = get_displaced_stepping_state (parent_inf);
c0987663 4925
e2d96639
YQ
4926 /* Restore scratch pad for child process. */
4927 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4928 }
4929
4930 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4931 the child's PC is also within the scratchpad. Set the child's PC
4932 to the parent's PC value, which has already been fixed up.
4933 FIXME: we use the parent's aspace here, although we're touching
4934 the child, because the child hasn't been added to the inferior
4935 list yet at this point. */
4936
4937 child_regcache
4938 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4939 gdbarch,
4940 parent_inf->aspace);
4941 /* Read PC value of parent process. */
4942 parent_pc = regcache_read_pc (regcache);
4943
4944 if (debug_displaced)
4945 fprintf_unfiltered (gdb_stdlog,
4946 "displaced: write child pc from %s to %s\n",
4947 paddress (gdbarch,
4948 regcache_read_pc (child_regcache)),
4949 paddress (gdbarch, parent_pc));
4950
4951 regcache_write_pc (child_regcache, parent_pc);
4952 }
4953 }
4954
00431a78 4955 context_switch (ecs);
5a2901d9 4956
b242c3c2
PA
4957 /* Immediately detach breakpoints from the child before there's
4958 any chance of letting the user delete breakpoints from the
4959 breakpoint lists. If we don't do this early, it's easy to
4960 leave left over traps in the child, vis: "break foo; catch
4961 fork; c; <fork>; del; c; <child calls foo>". We only follow
4962 the fork on the last `continue', and by that time the
4963 breakpoint at "foo" is long gone from the breakpoint table.
4964 If we vforked, then we don't need to unpatch here, since both
4965 parent and child are sharing the same memory pages; we'll
4966 need to unpatch at follow/detach time instead to be certain
4967 that new breakpoints added between catchpoint hit time and
4968 vfork follow are detached. */
4969 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4970 {
b242c3c2
PA
4971 /* This won't actually modify the breakpoint list, but will
4972 physically remove the breakpoints from the child. */
d80ee84f 4973 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
4974 }
4975
34b7e8a6 4976 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 4977
e58b0e63
PA
4978 /* In case the event is caught by a catchpoint, remember that
4979 the event is to be followed at the next resume of the thread,
4980 and not immediately. */
4981 ecs->event_thread->pending_follow = ecs->ws;
4982
f2ffa92b
PA
4983 ecs->event_thread->suspend.stop_pc
4984 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 4985
16c381f0 4986 ecs->event_thread->control.stop_bpstat
a01bda52 4987 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
4988 ecs->event_thread->suspend.stop_pc,
4989 ecs->event_thread, &ecs->ws);
675bf4cb 4990
c65d6b55
PA
4991 if (handle_stop_requested (ecs))
4992 return;
4993
ce12b012
PA
4994 /* If no catchpoint triggered for this, then keep going. Note
4995 that we're interested in knowing the bpstat actually causes a
4996 stop, not just if it may explain the signal. Software
4997 watchpoints, for example, always appear in the bpstat. */
4998 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 4999 {
e58b0e63 5000 int should_resume;
3e43a32a
MS
5001 int follow_child
5002 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5003
a493e3e2 5004 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5005
5006 should_resume = follow_fork ();
5007
00431a78
PA
5008 thread_info *parent = ecs->event_thread;
5009 thread_info *child = find_thread_ptid (ecs->ws.value.related_pid);
6c95b8df 5010
a2077e25
PA
5011 /* At this point, the parent is marked running, and the
5012 child is marked stopped. */
5013
5014 /* If not resuming the parent, mark it stopped. */
5015 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5016 parent->set_running (false);
a2077e25
PA
5017
5018 /* If resuming the child, mark it running. */
5019 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5020 child->set_running (true);
a2077e25 5021
6c95b8df 5022 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5023 if (!detach_fork && (non_stop
5024 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5025 {
5026 if (follow_child)
5027 switch_to_thread (parent);
5028 else
5029 switch_to_thread (child);
5030
5031 ecs->event_thread = inferior_thread ();
5032 ecs->ptid = inferior_ptid;
5033 keep_going (ecs);
5034 }
5035
5036 if (follow_child)
5037 switch_to_thread (child);
5038 else
5039 switch_to_thread (parent);
5040
e58b0e63
PA
5041 ecs->event_thread = inferior_thread ();
5042 ecs->ptid = inferior_ptid;
5043
5044 if (should_resume)
5045 keep_going (ecs);
5046 else
22bcd14b 5047 stop_waiting (ecs);
04e68871
DJ
5048 return;
5049 }
94c57d6a
PA
5050 process_event_stop_test (ecs);
5051 return;
488f131b 5052
6c95b8df
PA
5053 case TARGET_WAITKIND_VFORK_DONE:
5054 /* Done with the shared memory region. Re-insert breakpoints in
5055 the parent, and keep going. */
5056
00431a78 5057 context_switch (ecs);
6c95b8df
PA
5058
5059 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5060 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5061
5062 if (handle_stop_requested (ecs))
5063 return;
5064
6c95b8df
PA
5065 /* This also takes care of reinserting breakpoints in the
5066 previously locked inferior. */
5067 keep_going (ecs);
5068 return;
5069
488f131b 5070 case TARGET_WAITKIND_EXECD:
488f131b 5071
cbd2b4e3
PA
5072 /* Note we can't read registers yet (the stop_pc), because we
5073 don't yet know the inferior's post-exec architecture.
5074 'stop_pc' is explicitly read below instead. */
00431a78 5075 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5076
6c95b8df
PA
5077 /* Do whatever is necessary to the parent branch of the vfork. */
5078 handle_vfork_child_exec_or_exit (1);
5079
795e548f
PA
5080 /* This causes the eventpoints and symbol table to be reset.
5081 Must do this now, before trying to determine whether to
5082 stop. */
71b43ef8 5083 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5084
17d8546e
DB
5085 /* In follow_exec we may have deleted the original thread and
5086 created a new one. Make sure that the event thread is the
5087 execd thread for that case (this is a nop otherwise). */
5088 ecs->event_thread = inferior_thread ();
5089
f2ffa92b
PA
5090 ecs->event_thread->suspend.stop_pc
5091 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5092
16c381f0 5093 ecs->event_thread->control.stop_bpstat
a01bda52 5094 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5095 ecs->event_thread->suspend.stop_pc,
5096 ecs->event_thread, &ecs->ws);
795e548f 5097
71b43ef8
PA
5098 /* Note that this may be referenced from inside
5099 bpstat_stop_status above, through inferior_has_execd. */
5100 xfree (ecs->ws.value.execd_pathname);
5101 ecs->ws.value.execd_pathname = NULL;
5102
c65d6b55
PA
5103 if (handle_stop_requested (ecs))
5104 return;
5105
04e68871 5106 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5107 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5108 {
a493e3e2 5109 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5110 keep_going (ecs);
5111 return;
5112 }
94c57d6a
PA
5113 process_event_stop_test (ecs);
5114 return;
488f131b 5115
b4dc5ffa
MK
5116 /* Be careful not to try to gather much state about a thread
5117 that's in a syscall. It's frequently a losing proposition. */
488f131b 5118 case TARGET_WAITKIND_SYSCALL_ENTRY:
1777feb0 5119 /* Getting the current syscall number. */
94c57d6a
PA
5120 if (handle_syscall_event (ecs) == 0)
5121 process_event_stop_test (ecs);
5122 return;
c906108c 5123
488f131b
JB
5124 /* Before examining the threads further, step this thread to
5125 get it entirely out of the syscall. (We get notice of the
5126 event when the thread is just on the verge of exiting a
5127 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5128 into user code.) */
488f131b 5129 case TARGET_WAITKIND_SYSCALL_RETURN:
94c57d6a
PA
5130 if (handle_syscall_event (ecs) == 0)
5131 process_event_stop_test (ecs);
5132 return;
c906108c 5133
488f131b 5134 case TARGET_WAITKIND_STOPPED:
4f5d7f63
PA
5135 handle_signal_stop (ecs);
5136 return;
c906108c 5137
b2175913
MS
5138 case TARGET_WAITKIND_NO_HISTORY:
5139 /* Reverse execution: target ran out of history info. */
eab402df 5140
d1988021 5141 /* Switch to the stopped thread. */
00431a78 5142 context_switch (ecs);
d1988021
MM
5143 if (debug_infrun)
5144 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5145
34b7e8a6 5146 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5147 ecs->event_thread->suspend.stop_pc
5148 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5149
5150 if (handle_stop_requested (ecs))
5151 return;
5152
76727919 5153 gdb::observers::no_history.notify ();
22bcd14b 5154 stop_waiting (ecs);
b2175913 5155 return;
488f131b 5156 }
4f5d7f63
PA
5157}
5158
372316f1
PA
5159/* Restart threads back to what they were trying to do back when we
5160 paused them for an in-line step-over. The EVENT_THREAD thread is
5161 ignored. */
4d9d9d04
PA
5162
5163static void
372316f1
PA
5164restart_threads (struct thread_info *event_thread)
5165{
372316f1
PA
5166 /* In case the instruction just stepped spawned a new thread. */
5167 update_thread_list ();
5168
08036331 5169 for (thread_info *tp : all_non_exited_threads ())
372316f1
PA
5170 {
5171 if (tp == event_thread)
5172 {
5173 if (debug_infrun)
5174 fprintf_unfiltered (gdb_stdlog,
5175 "infrun: restart threads: "
5176 "[%s] is event thread\n",
a068643d 5177 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5178 continue;
5179 }
5180
5181 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5182 {
5183 if (debug_infrun)
5184 fprintf_unfiltered (gdb_stdlog,
5185 "infrun: restart threads: "
5186 "[%s] not meant to be running\n",
a068643d 5187 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5188 continue;
5189 }
5190
5191 if (tp->resumed)
5192 {
5193 if (debug_infrun)
5194 fprintf_unfiltered (gdb_stdlog,
5195 "infrun: restart threads: [%s] resumed\n",
a068643d 5196 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5197 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5198 continue;
5199 }
5200
5201 if (thread_is_in_step_over_chain (tp))
5202 {
5203 if (debug_infrun)
5204 fprintf_unfiltered (gdb_stdlog,
5205 "infrun: restart threads: "
5206 "[%s] needs step-over\n",
a068643d 5207 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5208 gdb_assert (!tp->resumed);
5209 continue;
5210 }
5211
5212
5213 if (tp->suspend.waitstatus_pending_p)
5214 {
5215 if (debug_infrun)
5216 fprintf_unfiltered (gdb_stdlog,
5217 "infrun: restart threads: "
5218 "[%s] has pending status\n",
a068643d 5219 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5220 tp->resumed = 1;
5221 continue;
5222 }
5223
c65d6b55
PA
5224 gdb_assert (!tp->stop_requested);
5225
372316f1
PA
5226 /* If some thread needs to start a step-over at this point, it
5227 should still be in the step-over queue, and thus skipped
5228 above. */
5229 if (thread_still_needs_step_over (tp))
5230 {
5231 internal_error (__FILE__, __LINE__,
5232 "thread [%s] needs a step-over, but not in "
5233 "step-over queue\n",
a068643d 5234 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5235 }
5236
5237 if (currently_stepping (tp))
5238 {
5239 if (debug_infrun)
5240 fprintf_unfiltered (gdb_stdlog,
5241 "infrun: restart threads: [%s] was stepping\n",
a068643d 5242 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5243 keep_going_stepped_thread (tp);
5244 }
5245 else
5246 {
5247 struct execution_control_state ecss;
5248 struct execution_control_state *ecs = &ecss;
5249
5250 if (debug_infrun)
5251 fprintf_unfiltered (gdb_stdlog,
5252 "infrun: restart threads: [%s] continuing\n",
a068643d 5253 target_pid_to_str (tp->ptid).c_str ());
372316f1 5254 reset_ecs (ecs, tp);
00431a78 5255 switch_to_thread (tp);
372316f1
PA
5256 keep_going_pass_signal (ecs);
5257 }
5258 }
5259}
5260
5261/* Callback for iterate_over_threads. Find a resumed thread that has
5262 a pending waitstatus. */
5263
5264static int
5265resumed_thread_with_pending_status (struct thread_info *tp,
5266 void *arg)
5267{
5268 return (tp->resumed
5269 && tp->suspend.waitstatus_pending_p);
5270}
5271
5272/* Called when we get an event that may finish an in-line or
5273 out-of-line (displaced stepping) step-over started previously.
5274 Return true if the event is processed and we should go back to the
5275 event loop; false if the caller should continue processing the
5276 event. */
5277
5278static int
4d9d9d04
PA
5279finish_step_over (struct execution_control_state *ecs)
5280{
372316f1
PA
5281 int had_step_over_info;
5282
00431a78 5283 displaced_step_fixup (ecs->event_thread,
4d9d9d04
PA
5284 ecs->event_thread->suspend.stop_signal);
5285
372316f1
PA
5286 had_step_over_info = step_over_info_valid_p ();
5287
5288 if (had_step_over_info)
4d9d9d04
PA
5289 {
5290 /* If we're stepping over a breakpoint with all threads locked,
5291 then only the thread that was stepped should be reporting
5292 back an event. */
5293 gdb_assert (ecs->event_thread->control.trap_expected);
5294
c65d6b55 5295 clear_step_over_info ();
4d9d9d04
PA
5296 }
5297
fbea99ea 5298 if (!target_is_non_stop_p ())
372316f1 5299 return 0;
4d9d9d04
PA
5300
5301 /* Start a new step-over in another thread if there's one that
5302 needs it. */
5303 start_step_over ();
372316f1
PA
5304
5305 /* If we were stepping over a breakpoint before, and haven't started
5306 a new in-line step-over sequence, then restart all other threads
5307 (except the event thread). We can't do this in all-stop, as then
5308 e.g., we wouldn't be able to issue any other remote packet until
5309 these other threads stop. */
5310 if (had_step_over_info && !step_over_info_valid_p ())
5311 {
5312 struct thread_info *pending;
5313
5314 /* If we only have threads with pending statuses, the restart
5315 below won't restart any thread and so nothing re-inserts the
5316 breakpoint we just stepped over. But we need it inserted
5317 when we later process the pending events, otherwise if
5318 another thread has a pending event for this breakpoint too,
5319 we'd discard its event (because the breakpoint that
5320 originally caused the event was no longer inserted). */
00431a78 5321 context_switch (ecs);
372316f1
PA
5322 insert_breakpoints ();
5323
5324 restart_threads (ecs->event_thread);
5325
5326 /* If we have events pending, go through handle_inferior_event
5327 again, picking up a pending event at random. This avoids
5328 thread starvation. */
5329
5330 /* But not if we just stepped over a watchpoint in order to let
5331 the instruction execute so we can evaluate its expression.
5332 The set of watchpoints that triggered is recorded in the
5333 breakpoint objects themselves (see bp->watchpoint_triggered).
5334 If we processed another event first, that other event could
5335 clobber this info. */
5336 if (ecs->event_thread->stepping_over_watchpoint)
5337 return 0;
5338
5339 pending = iterate_over_threads (resumed_thread_with_pending_status,
5340 NULL);
5341 if (pending != NULL)
5342 {
5343 struct thread_info *tp = ecs->event_thread;
5344 struct regcache *regcache;
5345
5346 if (debug_infrun)
5347 {
5348 fprintf_unfiltered (gdb_stdlog,
5349 "infrun: found resumed threads with "
5350 "pending events, saving status\n");
5351 }
5352
5353 gdb_assert (pending != tp);
5354
5355 /* Record the event thread's event for later. */
5356 save_waitstatus (tp, &ecs->ws);
5357 /* This was cleared early, by handle_inferior_event. Set it
5358 so this pending event is considered by
5359 do_target_wait. */
5360 tp->resumed = 1;
5361
5362 gdb_assert (!tp->executing);
5363
00431a78 5364 regcache = get_thread_regcache (tp);
372316f1
PA
5365 tp->suspend.stop_pc = regcache_read_pc (regcache);
5366
5367 if (debug_infrun)
5368 {
5369 fprintf_unfiltered (gdb_stdlog,
5370 "infrun: saved stop_pc=%s for %s "
5371 "(currently_stepping=%d)\n",
5372 paddress (target_gdbarch (),
5373 tp->suspend.stop_pc),
a068643d 5374 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
5375 currently_stepping (tp));
5376 }
5377
5378 /* This in-line step-over finished; clear this so we won't
5379 start a new one. This is what handle_signal_stop would
5380 do, if we returned false. */
5381 tp->stepping_over_breakpoint = 0;
5382
5383 /* Wake up the event loop again. */
5384 mark_async_event_handler (infrun_async_inferior_event_token);
5385
5386 prepare_to_wait (ecs);
5387 return 1;
5388 }
5389 }
5390
5391 return 0;
4d9d9d04
PA
5392}
5393
4f5d7f63
PA
5394/* Come here when the program has stopped with a signal. */
5395
5396static void
5397handle_signal_stop (struct execution_control_state *ecs)
5398{
5399 struct frame_info *frame;
5400 struct gdbarch *gdbarch;
5401 int stopped_by_watchpoint;
5402 enum stop_kind stop_soon;
5403 int random_signal;
c906108c 5404
f0407826
DE
5405 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5406
c65d6b55
PA
5407 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5408
f0407826
DE
5409 /* Do we need to clean up the state of a thread that has
5410 completed a displaced single-step? (Doing so usually affects
5411 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5412 if (finish_step_over (ecs))
5413 return;
f0407826
DE
5414
5415 /* If we either finished a single-step or hit a breakpoint, but
5416 the user wanted this thread to be stopped, pretend we got a
5417 SIG0 (generic unsignaled stop). */
5418 if (ecs->event_thread->stop_requested
5419 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5420 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5421
f2ffa92b
PA
5422 ecs->event_thread->suspend.stop_pc
5423 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5424
527159b7 5425 if (debug_infrun)
237fc4c9 5426 {
00431a78 5427 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 5428 struct gdbarch *reg_gdbarch = regcache->arch ();
2989a365 5429 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
7f82dfc7
JK
5430
5431 inferior_ptid = ecs->ptid;
5af949e3
UW
5432
5433 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
b926417a 5434 paddress (reg_gdbarch,
f2ffa92b 5435 ecs->event_thread->suspend.stop_pc));
d92524f1 5436 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5437 {
5438 CORE_ADDR addr;
abbb1732 5439
237fc4c9
PA
5440 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5441
8b88a78e 5442 if (target_stopped_data_address (current_top_target (), &addr))
237fc4c9 5443 fprintf_unfiltered (gdb_stdlog,
5af949e3 5444 "infrun: stopped data address = %s\n",
b926417a 5445 paddress (reg_gdbarch, addr));
237fc4c9
PA
5446 else
5447 fprintf_unfiltered (gdb_stdlog,
5448 "infrun: (no data address available)\n");
5449 }
5450 }
527159b7 5451
36fa8042
PA
5452 /* This is originated from start_remote(), start_inferior() and
5453 shared libraries hook functions. */
00431a78 5454 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
5455 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5456 {
00431a78 5457 context_switch (ecs);
36fa8042
PA
5458 if (debug_infrun)
5459 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5460 stop_print_frame = 1;
22bcd14b 5461 stop_waiting (ecs);
36fa8042
PA
5462 return;
5463 }
5464
36fa8042
PA
5465 /* This originates from attach_command(). We need to overwrite
5466 the stop_signal here, because some kernels don't ignore a
5467 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5468 See more comments in inferior.h. On the other hand, if we
5469 get a non-SIGSTOP, report it to the user - assume the backend
5470 will handle the SIGSTOP if it should show up later.
5471
5472 Also consider that the attach is complete when we see a
5473 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5474 target extended-remote report it instead of a SIGSTOP
5475 (e.g. gdbserver). We already rely on SIGTRAP being our
5476 signal, so this is no exception.
5477
5478 Also consider that the attach is complete when we see a
5479 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5480 the target to stop all threads of the inferior, in case the
5481 low level attach operation doesn't stop them implicitly. If
5482 they weren't stopped implicitly, then the stub will report a
5483 GDB_SIGNAL_0, meaning: stopped for no particular reason
5484 other than GDB's request. */
5485 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5486 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5487 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5488 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5489 {
5490 stop_print_frame = 1;
22bcd14b 5491 stop_waiting (ecs);
36fa8042
PA
5492 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5493 return;
5494 }
5495
488f131b 5496 /* See if something interesting happened to the non-current thread. If
b40c7d58 5497 so, then switch to that thread. */
d7e15655 5498 if (ecs->ptid != inferior_ptid)
488f131b 5499 {
527159b7 5500 if (debug_infrun)
8a9de0e4 5501 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5502
00431a78 5503 context_switch (ecs);
c5aa993b 5504
9a4105ab 5505 if (deprecated_context_hook)
00431a78 5506 deprecated_context_hook (ecs->event_thread->global_num);
488f131b 5507 }
c906108c 5508
568d6575
UW
5509 /* At this point, get hold of the now-current thread's frame. */
5510 frame = get_current_frame ();
5511 gdbarch = get_frame_arch (frame);
5512
2adfaa28 5513 /* Pull the single step breakpoints out of the target. */
af48d08f 5514 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5515 {
af48d08f 5516 struct regcache *regcache;
af48d08f 5517 CORE_ADDR pc;
2adfaa28 5518
00431a78 5519 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
5520 const address_space *aspace = regcache->aspace ();
5521
af48d08f 5522 pc = regcache_read_pc (regcache);
34b7e8a6 5523
af48d08f
PA
5524 /* However, before doing so, if this single-step breakpoint was
5525 actually for another thread, set this thread up for moving
5526 past it. */
5527 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5528 aspace, pc))
5529 {
5530 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5531 {
5532 if (debug_infrun)
5533 {
5534 fprintf_unfiltered (gdb_stdlog,
af48d08f 5535 "infrun: [%s] hit another thread's "
34b7e8a6 5536 "single-step breakpoint\n",
a068643d 5537 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28 5538 }
af48d08f
PA
5539 ecs->hit_singlestep_breakpoint = 1;
5540 }
5541 }
5542 else
5543 {
5544 if (debug_infrun)
5545 {
5546 fprintf_unfiltered (gdb_stdlog,
5547 "infrun: [%s] hit its "
5548 "single-step breakpoint\n",
a068643d 5549 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28
PA
5550 }
5551 }
488f131b 5552 }
af48d08f 5553 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5554
963f9c80
PA
5555 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5556 && ecs->event_thread->control.trap_expected
5557 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5558 stopped_by_watchpoint = 0;
5559 else
5560 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5561
5562 /* If necessary, step over this watchpoint. We'll be back to display
5563 it in a moment. */
5564 if (stopped_by_watchpoint
d92524f1 5565 && (target_have_steppable_watchpoint
568d6575 5566 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5567 {
488f131b
JB
5568 /* At this point, we are stopped at an instruction which has
5569 attempted to write to a piece of memory under control of
5570 a watchpoint. The instruction hasn't actually executed
5571 yet. If we were to evaluate the watchpoint expression
5572 now, we would get the old value, and therefore no change
5573 would seem to have occurred.
5574
5575 In order to make watchpoints work `right', we really need
5576 to complete the memory write, and then evaluate the
d983da9c
DJ
5577 watchpoint expression. We do this by single-stepping the
5578 target.
5579
7f89fd65 5580 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5581 it. For example, the PA can (with some kernel cooperation)
5582 single step over a watchpoint without disabling the watchpoint.
5583
5584 It is far more common to need to disable a watchpoint to step
5585 the inferior over it. If we have non-steppable watchpoints,
5586 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5587 disable all watchpoints.
5588
5589 Any breakpoint at PC must also be stepped over -- if there's
5590 one, it will have already triggered before the watchpoint
5591 triggered, and we either already reported it to the user, or
5592 it didn't cause a stop and we called keep_going. In either
5593 case, if there was a breakpoint at PC, we must be trying to
5594 step past it. */
5595 ecs->event_thread->stepping_over_watchpoint = 1;
5596 keep_going (ecs);
488f131b
JB
5597 return;
5598 }
5599
4e1c45ea 5600 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5601 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5602 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5603 ecs->event_thread->control.stop_step = 0;
488f131b 5604 stop_print_frame = 1;
488f131b 5605 stopped_by_random_signal = 0;
ddfe970e 5606 bpstat stop_chain = NULL;
488f131b 5607
edb3359d
DJ
5608 /* Hide inlined functions starting here, unless we just performed stepi or
5609 nexti. After stepi and nexti, always show the innermost frame (not any
5610 inline function call sites). */
16c381f0 5611 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 5612 {
00431a78
PA
5613 const address_space *aspace
5614 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
5615
5616 /* skip_inline_frames is expensive, so we avoid it if we can
5617 determine that the address is one where functions cannot have
5618 been inlined. This improves performance with inferiors that
5619 load a lot of shared libraries, because the solib event
5620 breakpoint is defined as the address of a function (i.e. not
5621 inline). Note that we have to check the previous PC as well
5622 as the current one to catch cases when we have just
5623 single-stepped off a breakpoint prior to reinstating it.
5624 Note that we're assuming that the code we single-step to is
5625 not inline, but that's not definitive: there's nothing
5626 preventing the event breakpoint function from containing
5627 inlined code, and the single-step ending up there. If the
5628 user had set a breakpoint on that inlined code, the missing
5629 skip_inline_frames call would break things. Fortunately
5630 that's an extremely unlikely scenario. */
f2ffa92b
PA
5631 if (!pc_at_non_inline_function (aspace,
5632 ecs->event_thread->suspend.stop_pc,
5633 &ecs->ws)
a210c238
MR
5634 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5635 && ecs->event_thread->control.trap_expected
5636 && pc_at_non_inline_function (aspace,
5637 ecs->event_thread->prev_pc,
09ac7c10 5638 &ecs->ws)))
1c5a993e 5639 {
f2ffa92b
PA
5640 stop_chain = build_bpstat_chain (aspace,
5641 ecs->event_thread->suspend.stop_pc,
5642 &ecs->ws);
00431a78 5643 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
5644
5645 /* Re-fetch current thread's frame in case that invalidated
5646 the frame cache. */
5647 frame = get_current_frame ();
5648 gdbarch = get_frame_arch (frame);
5649 }
0574c78f 5650 }
edb3359d 5651
a493e3e2 5652 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5653 && ecs->event_thread->control.trap_expected
568d6575 5654 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5655 && currently_stepping (ecs->event_thread))
3352ef37 5656 {
b50d7442 5657 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5658 also on an instruction that needs to be stepped multiple
1777feb0 5659 times before it's been fully executing. E.g., architectures
3352ef37
AC
5660 with a delay slot. It needs to be stepped twice, once for
5661 the instruction and once for the delay slot. */
5662 int step_through_delay
568d6575 5663 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5664
527159b7 5665 if (debug_infrun && step_through_delay)
8a9de0e4 5666 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5667 if (ecs->event_thread->control.step_range_end == 0
5668 && step_through_delay)
3352ef37
AC
5669 {
5670 /* The user issued a continue when stopped at a breakpoint.
5671 Set up for another trap and get out of here. */
4e1c45ea 5672 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5673 keep_going (ecs);
5674 return;
5675 }
5676 else if (step_through_delay)
5677 {
5678 /* The user issued a step when stopped at a breakpoint.
5679 Maybe we should stop, maybe we should not - the delay
5680 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5681 case, don't decide that here, just set
5682 ecs->stepping_over_breakpoint, making sure we
5683 single-step again before breakpoints are re-inserted. */
4e1c45ea 5684 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5685 }
5686 }
5687
ab04a2af
TT
5688 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5689 handles this event. */
5690 ecs->event_thread->control.stop_bpstat
a01bda52 5691 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5692 ecs->event_thread->suspend.stop_pc,
5693 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 5694
ab04a2af
TT
5695 /* Following in case break condition called a
5696 function. */
5697 stop_print_frame = 1;
73dd234f 5698
ab04a2af
TT
5699 /* This is where we handle "moribund" watchpoints. Unlike
5700 software breakpoints traps, hardware watchpoint traps are
5701 always distinguishable from random traps. If no high-level
5702 watchpoint is associated with the reported stop data address
5703 anymore, then the bpstat does not explain the signal ---
5704 simply make sure to ignore it if `stopped_by_watchpoint' is
5705 set. */
5706
5707 if (debug_infrun
5708 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5709 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5710 GDB_SIGNAL_TRAP)
ab04a2af
TT
5711 && stopped_by_watchpoint)
5712 fprintf_unfiltered (gdb_stdlog,
5713 "infrun: no user watchpoint explains "
5714 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5715
bac7d97b 5716 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5717 at one stage in the past included checks for an inferior
5718 function call's call dummy's return breakpoint. The original
5719 comment, that went with the test, read:
03cebad2 5720
ab04a2af
TT
5721 ``End of a stack dummy. Some systems (e.g. Sony news) give
5722 another signal besides SIGTRAP, so check here as well as
5723 above.''
73dd234f 5724
ab04a2af
TT
5725 If someone ever tries to get call dummys on a
5726 non-executable stack to work (where the target would stop
5727 with something like a SIGSEGV), then those tests might need
5728 to be re-instated. Given, however, that the tests were only
5729 enabled when momentary breakpoints were not being used, I
5730 suspect that it won't be the case.
488f131b 5731
ab04a2af
TT
5732 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5733 be necessary for call dummies on a non-executable stack on
5734 SPARC. */
488f131b 5735
bac7d97b 5736 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5737 random_signal
5738 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5739 ecs->event_thread->suspend.stop_signal);
bac7d97b 5740
1cf4d951
PA
5741 /* Maybe this was a trap for a software breakpoint that has since
5742 been removed. */
5743 if (random_signal && target_stopped_by_sw_breakpoint ())
5744 {
f2ffa92b
PA
5745 if (program_breakpoint_here_p (gdbarch,
5746 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
5747 {
5748 struct regcache *regcache;
5749 int decr_pc;
5750
5751 /* Re-adjust PC to what the program would see if GDB was not
5752 debugging it. */
00431a78 5753 regcache = get_thread_regcache (ecs->event_thread);
527a273a 5754 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
5755 if (decr_pc != 0)
5756 {
07036511
TT
5757 gdb::optional<scoped_restore_tmpl<int>>
5758 restore_operation_disable;
1cf4d951
PA
5759
5760 if (record_full_is_used ())
07036511
TT
5761 restore_operation_disable.emplace
5762 (record_full_gdb_operation_disable_set ());
1cf4d951 5763
f2ffa92b
PA
5764 regcache_write_pc (regcache,
5765 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
5766 }
5767 }
5768 else
5769 {
5770 /* A delayed software breakpoint event. Ignore the trap. */
5771 if (debug_infrun)
5772 fprintf_unfiltered (gdb_stdlog,
5773 "infrun: delayed software breakpoint "
5774 "trap, ignoring\n");
5775 random_signal = 0;
5776 }
5777 }
5778
5779 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5780 has since been removed. */
5781 if (random_signal && target_stopped_by_hw_breakpoint ())
5782 {
5783 /* A delayed hardware breakpoint event. Ignore the trap. */
5784 if (debug_infrun)
5785 fprintf_unfiltered (gdb_stdlog,
5786 "infrun: delayed hardware breakpoint/watchpoint "
5787 "trap, ignoring\n");
5788 random_signal = 0;
5789 }
5790
bac7d97b
PA
5791 /* If not, perhaps stepping/nexting can. */
5792 if (random_signal)
5793 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5794 && currently_stepping (ecs->event_thread));
ab04a2af 5795
2adfaa28
PA
5796 /* Perhaps the thread hit a single-step breakpoint of _another_
5797 thread. Single-step breakpoints are transparent to the
5798 breakpoints module. */
5799 if (random_signal)
5800 random_signal = !ecs->hit_singlestep_breakpoint;
5801
bac7d97b
PA
5802 /* No? Perhaps we got a moribund watchpoint. */
5803 if (random_signal)
5804 random_signal = !stopped_by_watchpoint;
ab04a2af 5805
c65d6b55
PA
5806 /* Always stop if the user explicitly requested this thread to
5807 remain stopped. */
5808 if (ecs->event_thread->stop_requested)
5809 {
5810 random_signal = 1;
5811 if (debug_infrun)
5812 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
5813 }
5814
488f131b
JB
5815 /* For the program's own signals, act according to
5816 the signal handling tables. */
5817
ce12b012 5818 if (random_signal)
488f131b
JB
5819 {
5820 /* Signal not for debugging purposes. */
c9657e70 5821 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 5822 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 5823
527159b7 5824 if (debug_infrun)
c9737c08
PA
5825 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5826 gdb_signal_to_symbol_string (stop_signal));
527159b7 5827
488f131b
JB
5828 stopped_by_random_signal = 1;
5829
252fbfc8
PA
5830 /* Always stop on signals if we're either just gaining control
5831 of the program, or the user explicitly requested this thread
5832 to remain stopped. */
d6b48e9c 5833 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 5834 || ecs->event_thread->stop_requested
24291992 5835 || (!inf->detaching
16c381f0 5836 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 5837 {
22bcd14b 5838 stop_waiting (ecs);
488f131b
JB
5839 return;
5840 }
b57bacec
PA
5841
5842 /* Notify observers the signal has "handle print" set. Note we
5843 returned early above if stopping; normal_stop handles the
5844 printing in that case. */
5845 if (signal_print[ecs->event_thread->suspend.stop_signal])
5846 {
5847 /* The signal table tells us to print about this signal. */
223ffa71 5848 target_terminal::ours_for_output ();
76727919 5849 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 5850 target_terminal::inferior ();
b57bacec 5851 }
488f131b
JB
5852
5853 /* Clear the signal if it should not be passed. */
16c381f0 5854 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 5855 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 5856
f2ffa92b 5857 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 5858 && ecs->event_thread->control.trap_expected
8358c15c 5859 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
5860 {
5861 /* We were just starting a new sequence, attempting to
5862 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 5863 Instead this signal arrives. This signal will take us out
68f53502
AC
5864 of the stepping range so GDB needs to remember to, when
5865 the signal handler returns, resume stepping off that
5866 breakpoint. */
5867 /* To simplify things, "continue" is forced to use the same
5868 code paths as single-step - set a breakpoint at the
5869 signal return address and then, once hit, step off that
5870 breakpoint. */
237fc4c9
PA
5871 if (debug_infrun)
5872 fprintf_unfiltered (gdb_stdlog,
5873 "infrun: signal arrived while stepping over "
5874 "breakpoint\n");
d3169d93 5875
2c03e5be 5876 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 5877 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5878 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5879 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
5880
5881 /* If we were nexting/stepping some other thread, switch to
5882 it, so that we don't continue it, losing control. */
5883 if (!switch_back_to_stepped_thread (ecs))
5884 keep_going (ecs);
9d799f85 5885 return;
68f53502 5886 }
9d799f85 5887
e5f8a7cc 5888 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
5889 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
5890 ecs->event_thread)
e5f8a7cc 5891 || ecs->event_thread->control.step_range_end == 1)
edb3359d 5892 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 5893 ecs->event_thread->control.step_stack_frame_id)
8358c15c 5894 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
5895 {
5896 /* The inferior is about to take a signal that will take it
5897 out of the single step range. Set a breakpoint at the
5898 current PC (which is presumably where the signal handler
5899 will eventually return) and then allow the inferior to
5900 run free.
5901
5902 Note that this is only needed for a signal delivered
5903 while in the single-step range. Nested signals aren't a
5904 problem as they eventually all return. */
237fc4c9
PA
5905 if (debug_infrun)
5906 fprintf_unfiltered (gdb_stdlog,
5907 "infrun: signal may take us out of "
5908 "single-step range\n");
5909
372316f1 5910 clear_step_over_info ();
2c03e5be 5911 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 5912 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5913 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5914 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
5915 keep_going (ecs);
5916 return;
d303a6c7 5917 }
9d799f85 5918
85102364 5919 /* Note: step_resume_breakpoint may be non-NULL. This occurs
9d799f85
AC
5920 when either there's a nested signal, or when there's a
5921 pending signal enabled just as the signal handler returns
5922 (leaving the inferior at the step-resume-breakpoint without
5923 actually executing it). Either way continue until the
5924 breakpoint is really hit. */
c447ac0b
PA
5925
5926 if (!switch_back_to_stepped_thread (ecs))
5927 {
5928 if (debug_infrun)
5929 fprintf_unfiltered (gdb_stdlog,
5930 "infrun: random signal, keep going\n");
5931
5932 keep_going (ecs);
5933 }
5934 return;
488f131b 5935 }
94c57d6a
PA
5936
5937 process_event_stop_test (ecs);
5938}
5939
5940/* Come here when we've got some debug event / signal we can explain
5941 (IOW, not a random signal), and test whether it should cause a
5942 stop, or whether we should resume the inferior (transparently).
5943 E.g., could be a breakpoint whose condition evaluates false; we
5944 could be still stepping within the line; etc. */
5945
5946static void
5947process_event_stop_test (struct execution_control_state *ecs)
5948{
5949 struct symtab_and_line stop_pc_sal;
5950 struct frame_info *frame;
5951 struct gdbarch *gdbarch;
cdaa5b73
PA
5952 CORE_ADDR jmp_buf_pc;
5953 struct bpstat_what what;
94c57d6a 5954
cdaa5b73 5955 /* Handle cases caused by hitting a breakpoint. */
611c83ae 5956
cdaa5b73
PA
5957 frame = get_current_frame ();
5958 gdbarch = get_frame_arch (frame);
fcf3daef 5959
cdaa5b73 5960 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 5961
cdaa5b73
PA
5962 if (what.call_dummy)
5963 {
5964 stop_stack_dummy = what.call_dummy;
5965 }
186c406b 5966
243a9253
PA
5967 /* A few breakpoint types have callbacks associated (e.g.,
5968 bp_jit_event). Run them now. */
5969 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
5970
cdaa5b73
PA
5971 /* If we hit an internal event that triggers symbol changes, the
5972 current frame will be invalidated within bpstat_what (e.g., if we
5973 hit an internal solib event). Re-fetch it. */
5974 frame = get_current_frame ();
5975 gdbarch = get_frame_arch (frame);
e2e4d78b 5976
cdaa5b73
PA
5977 switch (what.main_action)
5978 {
5979 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
5980 /* If we hit the breakpoint at longjmp while stepping, we
5981 install a momentary breakpoint at the target of the
5982 jmp_buf. */
186c406b 5983
cdaa5b73
PA
5984 if (debug_infrun)
5985 fprintf_unfiltered (gdb_stdlog,
5986 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 5987
cdaa5b73 5988 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 5989
cdaa5b73
PA
5990 if (what.is_longjmp)
5991 {
5992 struct value *arg_value;
5993
5994 /* If we set the longjmp breakpoint via a SystemTap probe,
5995 then use it to extract the arguments. The destination PC
5996 is the third argument to the probe. */
5997 arg_value = probe_safe_evaluate_at_pc (frame, 2);
5998 if (arg_value)
8fa0c4f8
AA
5999 {
6000 jmp_buf_pc = value_as_address (arg_value);
6001 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6002 }
cdaa5b73
PA
6003 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6004 || !gdbarch_get_longjmp_target (gdbarch,
6005 frame, &jmp_buf_pc))
e2e4d78b 6006 {
cdaa5b73
PA
6007 if (debug_infrun)
6008 fprintf_unfiltered (gdb_stdlog,
6009 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6010 "(!gdbarch_get_longjmp_target)\n");
6011 keep_going (ecs);
6012 return;
e2e4d78b 6013 }
e2e4d78b 6014
cdaa5b73
PA
6015 /* Insert a breakpoint at resume address. */
6016 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6017 }
6018 else
6019 check_exception_resume (ecs, frame);
6020 keep_going (ecs);
6021 return;
e81a37f7 6022
cdaa5b73
PA
6023 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6024 {
6025 struct frame_info *init_frame;
e81a37f7 6026
cdaa5b73 6027 /* There are several cases to consider.
c906108c 6028
cdaa5b73
PA
6029 1. The initiating frame no longer exists. In this case we
6030 must stop, because the exception or longjmp has gone too
6031 far.
2c03e5be 6032
cdaa5b73
PA
6033 2. The initiating frame exists, and is the same as the
6034 current frame. We stop, because the exception or longjmp
6035 has been caught.
2c03e5be 6036
cdaa5b73
PA
6037 3. The initiating frame exists and is different from the
6038 current frame. This means the exception or longjmp has
6039 been caught beneath the initiating frame, so keep going.
c906108c 6040
cdaa5b73
PA
6041 4. longjmp breakpoint has been placed just to protect
6042 against stale dummy frames and user is not interested in
6043 stopping around longjmps. */
c5aa993b 6044
cdaa5b73
PA
6045 if (debug_infrun)
6046 fprintf_unfiltered (gdb_stdlog,
6047 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6048
cdaa5b73
PA
6049 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6050 != NULL);
6051 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6052
cdaa5b73
PA
6053 if (what.is_longjmp)
6054 {
b67a2c6f 6055 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6056
cdaa5b73 6057 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6058 {
cdaa5b73
PA
6059 /* Case 4. */
6060 keep_going (ecs);
6061 return;
e5ef252a 6062 }
cdaa5b73 6063 }
c5aa993b 6064
cdaa5b73 6065 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6066
cdaa5b73
PA
6067 if (init_frame)
6068 {
6069 struct frame_id current_id
6070 = get_frame_id (get_current_frame ());
6071 if (frame_id_eq (current_id,
6072 ecs->event_thread->initiating_frame))
6073 {
6074 /* Case 2. Fall through. */
6075 }
6076 else
6077 {
6078 /* Case 3. */
6079 keep_going (ecs);
6080 return;
6081 }
68f53502 6082 }
488f131b 6083
cdaa5b73
PA
6084 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6085 exists. */
6086 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6087
bdc36728 6088 end_stepping_range (ecs);
cdaa5b73
PA
6089 }
6090 return;
e5ef252a 6091
cdaa5b73
PA
6092 case BPSTAT_WHAT_SINGLE:
6093 if (debug_infrun)
6094 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6095 ecs->event_thread->stepping_over_breakpoint = 1;
6096 /* Still need to check other stuff, at least the case where we
6097 are stepping and step out of the right range. */
6098 break;
e5ef252a 6099
cdaa5b73
PA
6100 case BPSTAT_WHAT_STEP_RESUME:
6101 if (debug_infrun)
6102 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6103
cdaa5b73
PA
6104 delete_step_resume_breakpoint (ecs->event_thread);
6105 if (ecs->event_thread->control.proceed_to_finish
6106 && execution_direction == EXEC_REVERSE)
6107 {
6108 struct thread_info *tp = ecs->event_thread;
6109
6110 /* We are finishing a function in reverse, and just hit the
6111 step-resume breakpoint at the start address of the
6112 function, and we're almost there -- just need to back up
6113 by one more single-step, which should take us back to the
6114 function call. */
6115 tp->control.step_range_start = tp->control.step_range_end = 1;
6116 keep_going (ecs);
e5ef252a 6117 return;
cdaa5b73
PA
6118 }
6119 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6120 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6121 && execution_direction == EXEC_REVERSE)
6122 {
6123 /* We are stepping over a function call in reverse, and just
6124 hit the step-resume breakpoint at the start address of
6125 the function. Go back to single-stepping, which should
6126 take us back to the function call. */
6127 ecs->event_thread->stepping_over_breakpoint = 1;
6128 keep_going (ecs);
6129 return;
6130 }
6131 break;
e5ef252a 6132
cdaa5b73
PA
6133 case BPSTAT_WHAT_STOP_NOISY:
6134 if (debug_infrun)
6135 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6136 stop_print_frame = 1;
e5ef252a 6137
99619bea
PA
6138 /* Assume the thread stopped for a breapoint. We'll still check
6139 whether a/the breakpoint is there when the thread is next
6140 resumed. */
6141 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6142
22bcd14b 6143 stop_waiting (ecs);
cdaa5b73 6144 return;
e5ef252a 6145
cdaa5b73
PA
6146 case BPSTAT_WHAT_STOP_SILENT:
6147 if (debug_infrun)
6148 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6149 stop_print_frame = 0;
e5ef252a 6150
99619bea
PA
6151 /* Assume the thread stopped for a breapoint. We'll still check
6152 whether a/the breakpoint is there when the thread is next
6153 resumed. */
6154 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6155 stop_waiting (ecs);
cdaa5b73
PA
6156 return;
6157
6158 case BPSTAT_WHAT_HP_STEP_RESUME:
6159 if (debug_infrun)
6160 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6161
6162 delete_step_resume_breakpoint (ecs->event_thread);
6163 if (ecs->event_thread->step_after_step_resume_breakpoint)
6164 {
6165 /* Back when the step-resume breakpoint was inserted, we
6166 were trying to single-step off a breakpoint. Go back to
6167 doing that. */
6168 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6169 ecs->event_thread->stepping_over_breakpoint = 1;
6170 keep_going (ecs);
6171 return;
e5ef252a 6172 }
cdaa5b73
PA
6173 break;
6174
6175 case BPSTAT_WHAT_KEEP_CHECKING:
6176 break;
e5ef252a 6177 }
c906108c 6178
af48d08f
PA
6179 /* If we stepped a permanent breakpoint and we had a high priority
6180 step-resume breakpoint for the address we stepped, but we didn't
6181 hit it, then we must have stepped into the signal handler. The
6182 step-resume was only necessary to catch the case of _not_
6183 stepping into the handler, so delete it, and fall through to
6184 checking whether the step finished. */
6185 if (ecs->event_thread->stepped_breakpoint)
6186 {
6187 struct breakpoint *sr_bp
6188 = ecs->event_thread->control.step_resume_breakpoint;
6189
8d707a12
PA
6190 if (sr_bp != NULL
6191 && sr_bp->loc->permanent
af48d08f
PA
6192 && sr_bp->type == bp_hp_step_resume
6193 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6194 {
6195 if (debug_infrun)
6196 fprintf_unfiltered (gdb_stdlog,
6197 "infrun: stepped permanent breakpoint, stopped in "
6198 "handler\n");
6199 delete_step_resume_breakpoint (ecs->event_thread);
6200 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6201 }
6202 }
6203
cdaa5b73
PA
6204 /* We come here if we hit a breakpoint but should not stop for it.
6205 Possibly we also were stepping and should stop for that. So fall
6206 through and test for stepping. But, if not stepping, do not
6207 stop. */
c906108c 6208
a7212384
UW
6209 /* In all-stop mode, if we're currently stepping but have stopped in
6210 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6211 if (switch_back_to_stepped_thread (ecs))
6212 return;
776f04fa 6213
8358c15c 6214 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6215 {
527159b7 6216 if (debug_infrun)
d3169d93
DJ
6217 fprintf_unfiltered (gdb_stdlog,
6218 "infrun: step-resume breakpoint is inserted\n");
527159b7 6219
488f131b
JB
6220 /* Having a step-resume breakpoint overrides anything
6221 else having to do with stepping commands until
6222 that breakpoint is reached. */
488f131b
JB
6223 keep_going (ecs);
6224 return;
6225 }
c5aa993b 6226
16c381f0 6227 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6228 {
527159b7 6229 if (debug_infrun)
8a9de0e4 6230 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6231 /* Likewise if we aren't even stepping. */
488f131b
JB
6232 keep_going (ecs);
6233 return;
6234 }
c5aa993b 6235
4b7703ad
JB
6236 /* Re-fetch current thread's frame in case the code above caused
6237 the frame cache to be re-initialized, making our FRAME variable
6238 a dangling pointer. */
6239 frame = get_current_frame ();
628fe4e4 6240 gdbarch = get_frame_arch (frame);
7e324e48 6241 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6242
488f131b 6243 /* If stepping through a line, keep going if still within it.
c906108c 6244
488f131b
JB
6245 Note that step_range_end is the address of the first instruction
6246 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6247 within it!
6248
6249 Note also that during reverse execution, we may be stepping
6250 through a function epilogue and therefore must detect when
6251 the current-frame changes in the middle of a line. */
6252
f2ffa92b
PA
6253 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6254 ecs->event_thread)
31410e84 6255 && (execution_direction != EXEC_REVERSE
388a8562 6256 || frame_id_eq (get_frame_id (frame),
16c381f0 6257 ecs->event_thread->control.step_frame_id)))
488f131b 6258 {
527159b7 6259 if (debug_infrun)
5af949e3
UW
6260 fprintf_unfiltered
6261 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6262 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6263 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6264
c1e36e3e
PA
6265 /* Tentatively re-enable range stepping; `resume' disables it if
6266 necessary (e.g., if we're stepping over a breakpoint or we
6267 have software watchpoints). */
6268 ecs->event_thread->control.may_range_step = 1;
6269
b2175913
MS
6270 /* When stepping backward, stop at beginning of line range
6271 (unless it's the function entry point, in which case
6272 keep going back to the call point). */
f2ffa92b 6273 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6274 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6275 && stop_pc != ecs->stop_func_start
6276 && execution_direction == EXEC_REVERSE)
bdc36728 6277 end_stepping_range (ecs);
b2175913
MS
6278 else
6279 keep_going (ecs);
6280
488f131b
JB
6281 return;
6282 }
c5aa993b 6283
488f131b 6284 /* We stepped out of the stepping range. */
c906108c 6285
488f131b 6286 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6287 loader dynamic symbol resolution code...
6288
6289 EXEC_FORWARD: we keep on single stepping until we exit the run
6290 time loader code and reach the callee's address.
6291
6292 EXEC_REVERSE: we've already executed the callee (backward), and
6293 the runtime loader code is handled just like any other
6294 undebuggable function call. Now we need only keep stepping
6295 backward through the trampoline code, and that's handled further
6296 down, so there is nothing for us to do here. */
6297
6298 if (execution_direction != EXEC_REVERSE
16c381f0 6299 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6300 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6301 {
4c8c40e6 6302 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6303 gdbarch_skip_solib_resolver (gdbarch,
6304 ecs->event_thread->suspend.stop_pc);
c906108c 6305
527159b7 6306 if (debug_infrun)
3e43a32a
MS
6307 fprintf_unfiltered (gdb_stdlog,
6308 "infrun: stepped into dynsym resolve code\n");
527159b7 6309
488f131b
JB
6310 if (pc_after_resolver)
6311 {
6312 /* Set up a step-resume breakpoint at the address
6313 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6314 symtab_and_line sr_sal;
488f131b 6315 sr_sal.pc = pc_after_resolver;
6c95b8df 6316 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6317
a6d9a66e
UW
6318 insert_step_resume_breakpoint_at_sal (gdbarch,
6319 sr_sal, null_frame_id);
c5aa993b 6320 }
c906108c 6321
488f131b
JB
6322 keep_going (ecs);
6323 return;
6324 }
c906108c 6325
1d509aa6
MM
6326 /* Step through an indirect branch thunk. */
6327 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6328 && gdbarch_in_indirect_branch_thunk (gdbarch,
6329 ecs->event_thread->suspend.stop_pc))
1d509aa6
MM
6330 {
6331 if (debug_infrun)
6332 fprintf_unfiltered (gdb_stdlog,
6333 "infrun: stepped into indirect branch thunk\n");
6334 keep_going (ecs);
6335 return;
6336 }
6337
16c381f0
JK
6338 if (ecs->event_thread->control.step_range_end != 1
6339 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6340 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6341 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6342 {
527159b7 6343 if (debug_infrun)
3e43a32a
MS
6344 fprintf_unfiltered (gdb_stdlog,
6345 "infrun: stepped into signal trampoline\n");
42edda50 6346 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6347 a signal trampoline (either by a signal being delivered or by
6348 the signal handler returning). Just single-step until the
6349 inferior leaves the trampoline (either by calling the handler
6350 or returning). */
488f131b
JB
6351 keep_going (ecs);
6352 return;
6353 }
c906108c 6354
14132e89
MR
6355 /* If we're in the return path from a shared library trampoline,
6356 we want to proceed through the trampoline when stepping. */
6357 /* macro/2012-04-25: This needs to come before the subroutine
6358 call check below as on some targets return trampolines look
6359 like subroutine calls (MIPS16 return thunks). */
6360 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6361 ecs->event_thread->suspend.stop_pc,
6362 ecs->stop_func_name)
14132e89
MR
6363 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6364 {
6365 /* Determine where this trampoline returns. */
f2ffa92b
PA
6366 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6367 CORE_ADDR real_stop_pc
6368 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89
MR
6369
6370 if (debug_infrun)
6371 fprintf_unfiltered (gdb_stdlog,
6372 "infrun: stepped into solib return tramp\n");
6373
6374 /* Only proceed through if we know where it's going. */
6375 if (real_stop_pc)
6376 {
6377 /* And put the step-breakpoint there and go until there. */
51abb421 6378 symtab_and_line sr_sal;
14132e89
MR
6379 sr_sal.pc = real_stop_pc;
6380 sr_sal.section = find_pc_overlay (sr_sal.pc);
6381 sr_sal.pspace = get_frame_program_space (frame);
6382
6383 /* Do not specify what the fp should be when we stop since
6384 on some machines the prologue is where the new fp value
6385 is established. */
6386 insert_step_resume_breakpoint_at_sal (gdbarch,
6387 sr_sal, null_frame_id);
6388
6389 /* Restart without fiddling with the step ranges or
6390 other state. */
6391 keep_going (ecs);
6392 return;
6393 }
6394 }
6395
c17eaafe
DJ
6396 /* Check for subroutine calls. The check for the current frame
6397 equalling the step ID is not necessary - the check of the
6398 previous frame's ID is sufficient - but it is a common case and
6399 cheaper than checking the previous frame's ID.
14e60db5
DJ
6400
6401 NOTE: frame_id_eq will never report two invalid frame IDs as
6402 being equal, so to get into this block, both the current and
6403 previous frame must have valid frame IDs. */
005ca36a
JB
6404 /* The outer_frame_id check is a heuristic to detect stepping
6405 through startup code. If we step over an instruction which
6406 sets the stack pointer from an invalid value to a valid value,
6407 we may detect that as a subroutine call from the mythical
6408 "outermost" function. This could be fixed by marking
6409 outermost frames as !stack_p,code_p,special_p. Then the
6410 initial outermost frame, before sp was valid, would
ce6cca6d 6411 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6412 for more. */
edb3359d 6413 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6414 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6415 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6416 ecs->event_thread->control.step_stack_frame_id)
6417 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6418 outer_frame_id)
885eeb5b 6419 || (ecs->event_thread->control.step_start_function
f2ffa92b 6420 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6421 {
f2ffa92b 6422 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6423 CORE_ADDR real_stop_pc;
8fb3e588 6424
527159b7 6425 if (debug_infrun)
8a9de0e4 6426 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6427
b7a084be 6428 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6429 {
6430 /* I presume that step_over_calls is only 0 when we're
6431 supposed to be stepping at the assembly language level
6432 ("stepi"). Just stop. */
388a8562 6433 /* And this works the same backward as frontward. MVS */
bdc36728 6434 end_stepping_range (ecs);
95918acb
AC
6435 return;
6436 }
8fb3e588 6437
388a8562
MS
6438 /* Reverse stepping through solib trampolines. */
6439
6440 if (execution_direction == EXEC_REVERSE
16c381f0 6441 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6442 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6443 || (ecs->stop_func_start == 0
6444 && in_solib_dynsym_resolve_code (stop_pc))))
6445 {
6446 /* Any solib trampoline code can be handled in reverse
6447 by simply continuing to single-step. We have already
6448 executed the solib function (backwards), and a few
6449 steps will take us back through the trampoline to the
6450 caller. */
6451 keep_going (ecs);
6452 return;
6453 }
6454
16c381f0 6455 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6456 {
b2175913
MS
6457 /* We're doing a "next".
6458
6459 Normal (forward) execution: set a breakpoint at the
6460 callee's return address (the address at which the caller
6461 will resume).
6462
6463 Reverse (backward) execution. set the step-resume
6464 breakpoint at the start of the function that we just
6465 stepped into (backwards), and continue to there. When we
6130d0b7 6466 get there, we'll need to single-step back to the caller. */
b2175913
MS
6467
6468 if (execution_direction == EXEC_REVERSE)
6469 {
acf9414f
JK
6470 /* If we're already at the start of the function, we've either
6471 just stepped backward into a single instruction function,
6472 or stepped back out of a signal handler to the first instruction
6473 of the function. Just keep going, which will single-step back
6474 to the caller. */
58c48e72 6475 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6476 {
acf9414f 6477 /* Normal function call return (static or dynamic). */
51abb421 6478 symtab_and_line sr_sal;
acf9414f
JK
6479 sr_sal.pc = ecs->stop_func_start;
6480 sr_sal.pspace = get_frame_program_space (frame);
6481 insert_step_resume_breakpoint_at_sal (gdbarch,
6482 sr_sal, null_frame_id);
6483 }
b2175913
MS
6484 }
6485 else
568d6575 6486 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6487
8567c30f
AC
6488 keep_going (ecs);
6489 return;
6490 }
a53c66de 6491
95918acb 6492 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6493 calling routine and the real function), locate the real
6494 function. That's what tells us (a) whether we want to step
6495 into it at all, and (b) what prologue we want to run to the
6496 end of, if we do step into it. */
568d6575 6497 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6498 if (real_stop_pc == 0)
568d6575 6499 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6500 if (real_stop_pc != 0)
6501 ecs->stop_func_start = real_stop_pc;
8fb3e588 6502
db5f024e 6503 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6504 {
51abb421 6505 symtab_and_line sr_sal;
1b2bfbb9 6506 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6507 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6508
a6d9a66e
UW
6509 insert_step_resume_breakpoint_at_sal (gdbarch,
6510 sr_sal, null_frame_id);
8fb3e588
AC
6511 keep_going (ecs);
6512 return;
1b2bfbb9
RC
6513 }
6514
95918acb 6515 /* If we have line number information for the function we are
1bfeeb0f
JL
6516 thinking of stepping into and the function isn't on the skip
6517 list, step into it.
95918acb 6518
8fb3e588
AC
6519 If there are several symtabs at that PC (e.g. with include
6520 files), just want to know whether *any* of them have line
6521 numbers. find_pc_line handles this. */
95918acb
AC
6522 {
6523 struct symtab_and_line tmp_sal;
8fb3e588 6524
95918acb 6525 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6526 if (tmp_sal.line != 0
85817405 6527 && !function_name_is_marked_for_skip (ecs->stop_func_name,
de7985c3 6528 tmp_sal))
95918acb 6529 {
b2175913 6530 if (execution_direction == EXEC_REVERSE)
568d6575 6531 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6532 else
568d6575 6533 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6534 return;
6535 }
6536 }
6537
6538 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6539 set, we stop the step so that the user has a chance to switch
6540 in assembly mode. */
16c381f0 6541 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6542 && step_stop_if_no_debug)
95918acb 6543 {
bdc36728 6544 end_stepping_range (ecs);
95918acb
AC
6545 return;
6546 }
6547
b2175913
MS
6548 if (execution_direction == EXEC_REVERSE)
6549 {
acf9414f
JK
6550 /* If we're already at the start of the function, we've either just
6551 stepped backward into a single instruction function without line
6552 number info, or stepped back out of a signal handler to the first
6553 instruction of the function without line number info. Just keep
6554 going, which will single-step back to the caller. */
6555 if (ecs->stop_func_start != stop_pc)
6556 {
6557 /* Set a breakpoint at callee's start address.
6558 From there we can step once and be back in the caller. */
51abb421 6559 symtab_and_line sr_sal;
acf9414f
JK
6560 sr_sal.pc = ecs->stop_func_start;
6561 sr_sal.pspace = get_frame_program_space (frame);
6562 insert_step_resume_breakpoint_at_sal (gdbarch,
6563 sr_sal, null_frame_id);
6564 }
b2175913
MS
6565 }
6566 else
6567 /* Set a breakpoint at callee's return address (the address
6568 at which the caller will resume). */
568d6575 6569 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6570
95918acb 6571 keep_going (ecs);
488f131b 6572 return;
488f131b 6573 }
c906108c 6574
fdd654f3
MS
6575 /* Reverse stepping through solib trampolines. */
6576
6577 if (execution_direction == EXEC_REVERSE
16c381f0 6578 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 6579 {
f2ffa92b
PA
6580 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6581
fdd654f3
MS
6582 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6583 || (ecs->stop_func_start == 0
6584 && in_solib_dynsym_resolve_code (stop_pc)))
6585 {
6586 /* Any solib trampoline code can be handled in reverse
6587 by simply continuing to single-step. We have already
6588 executed the solib function (backwards), and a few
6589 steps will take us back through the trampoline to the
6590 caller. */
6591 keep_going (ecs);
6592 return;
6593 }
6594 else if (in_solib_dynsym_resolve_code (stop_pc))
6595 {
6596 /* Stepped backward into the solib dynsym resolver.
6597 Set a breakpoint at its start and continue, then
6598 one more step will take us out. */
51abb421 6599 symtab_and_line sr_sal;
fdd654f3 6600 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6601 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6602 insert_step_resume_breakpoint_at_sal (gdbarch,
6603 sr_sal, null_frame_id);
6604 keep_going (ecs);
6605 return;
6606 }
6607 }
6608
f2ffa92b 6609 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 6610
1b2bfbb9
RC
6611 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6612 the trampoline processing logic, however, there are some trampolines
6613 that have no names, so we should do trampoline handling first. */
16c381f0 6614 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6615 && ecs->stop_func_name == NULL
2afb61aa 6616 && stop_pc_sal.line == 0)
1b2bfbb9 6617 {
527159b7 6618 if (debug_infrun)
3e43a32a
MS
6619 fprintf_unfiltered (gdb_stdlog,
6620 "infrun: stepped into undebuggable function\n");
527159b7 6621
1b2bfbb9 6622 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6623 undebuggable function (where there is no debugging information
6624 and no line number corresponding to the address where the
1b2bfbb9
RC
6625 inferior stopped). Since we want to skip this kind of code,
6626 we keep going until the inferior returns from this
14e60db5
DJ
6627 function - unless the user has asked us not to (via
6628 set step-mode) or we no longer know how to get back
6629 to the call site. */
6630 if (step_stop_if_no_debug
c7ce8faa 6631 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6632 {
6633 /* If we have no line number and the step-stop-if-no-debug
6634 is set, we stop the step so that the user has a chance to
6635 switch in assembly mode. */
bdc36728 6636 end_stepping_range (ecs);
1b2bfbb9
RC
6637 return;
6638 }
6639 else
6640 {
6641 /* Set a breakpoint at callee's return address (the address
6642 at which the caller will resume). */
568d6575 6643 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6644 keep_going (ecs);
6645 return;
6646 }
6647 }
6648
16c381f0 6649 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6650 {
6651 /* It is stepi or nexti. We always want to stop stepping after
6652 one instruction. */
527159b7 6653 if (debug_infrun)
8a9de0e4 6654 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6655 end_stepping_range (ecs);
1b2bfbb9
RC
6656 return;
6657 }
6658
2afb61aa 6659 if (stop_pc_sal.line == 0)
488f131b
JB
6660 {
6661 /* We have no line number information. That means to stop
6662 stepping (does this always happen right after one instruction,
6663 when we do "s" in a function with no line numbers,
6664 or can this happen as a result of a return or longjmp?). */
527159b7 6665 if (debug_infrun)
8a9de0e4 6666 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6667 end_stepping_range (ecs);
488f131b
JB
6668 return;
6669 }
c906108c 6670
edb3359d
DJ
6671 /* Look for "calls" to inlined functions, part one. If the inline
6672 frame machinery detected some skipped call sites, we have entered
6673 a new inline function. */
6674
6675 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6676 ecs->event_thread->control.step_frame_id)
00431a78 6677 && inline_skipped_frames (ecs->event_thread))
edb3359d 6678 {
edb3359d
DJ
6679 if (debug_infrun)
6680 fprintf_unfiltered (gdb_stdlog,
6681 "infrun: stepped into inlined function\n");
6682
51abb421 6683 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 6684
16c381f0 6685 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6686 {
6687 /* For "step", we're going to stop. But if the call site
6688 for this inlined function is on the same source line as
6689 we were previously stepping, go down into the function
6690 first. Otherwise stop at the call site. */
6691
6692 if (call_sal.line == ecs->event_thread->current_line
6693 && call_sal.symtab == ecs->event_thread->current_symtab)
00431a78 6694 step_into_inline_frame (ecs->event_thread);
edb3359d 6695
bdc36728 6696 end_stepping_range (ecs);
edb3359d
DJ
6697 return;
6698 }
6699 else
6700 {
6701 /* For "next", we should stop at the call site if it is on a
6702 different source line. Otherwise continue through the
6703 inlined function. */
6704 if (call_sal.line == ecs->event_thread->current_line
6705 && call_sal.symtab == ecs->event_thread->current_symtab)
6706 keep_going (ecs);
6707 else
bdc36728 6708 end_stepping_range (ecs);
edb3359d
DJ
6709 return;
6710 }
6711 }
6712
6713 /* Look for "calls" to inlined functions, part two. If we are still
6714 in the same real function we were stepping through, but we have
6715 to go further up to find the exact frame ID, we are stepping
6716 through a more inlined call beyond its call site. */
6717
6718 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6719 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6720 ecs->event_thread->control.step_frame_id)
edb3359d 6721 && stepped_in_from (get_current_frame (),
16c381f0 6722 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6723 {
6724 if (debug_infrun)
6725 fprintf_unfiltered (gdb_stdlog,
6726 "infrun: stepping through inlined function\n");
6727
16c381f0 6728 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6729 keep_going (ecs);
6730 else
bdc36728 6731 end_stepping_range (ecs);
edb3359d
DJ
6732 return;
6733 }
6734
f2ffa92b 6735 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6736 && (ecs->event_thread->current_line != stop_pc_sal.line
6737 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6738 {
6739 /* We are at the start of a different line. So stop. Note that
6740 we don't stop if we step into the middle of a different line.
6741 That is said to make things like for (;;) statements work
6742 better. */
527159b7 6743 if (debug_infrun)
3e43a32a
MS
6744 fprintf_unfiltered (gdb_stdlog,
6745 "infrun: stepped to a different line\n");
bdc36728 6746 end_stepping_range (ecs);
488f131b
JB
6747 return;
6748 }
c906108c 6749
488f131b 6750 /* We aren't done stepping.
c906108c 6751
488f131b
JB
6752 Optimize by setting the stepping range to the line.
6753 (We might not be in the original line, but if we entered a
6754 new line in mid-statement, we continue stepping. This makes
6755 things like for(;;) statements work better.) */
c906108c 6756
16c381f0
JK
6757 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6758 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6759 ecs->event_thread->control.may_range_step = 1;
edb3359d 6760 set_step_info (frame, stop_pc_sal);
488f131b 6761
527159b7 6762 if (debug_infrun)
8a9de0e4 6763 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6764 keep_going (ecs);
104c1213
JM
6765}
6766
c447ac0b
PA
6767/* In all-stop mode, if we're currently stepping but have stopped in
6768 some other thread, we may need to switch back to the stepped
6769 thread. Returns true we set the inferior running, false if we left
6770 it stopped (and the event needs further processing). */
6771
6772static int
6773switch_back_to_stepped_thread (struct execution_control_state *ecs)
6774{
fbea99ea 6775 if (!target_is_non_stop_p ())
c447ac0b 6776 {
99619bea
PA
6777 struct thread_info *stepping_thread;
6778
6779 /* If any thread is blocked on some internal breakpoint, and we
6780 simply need to step over that breakpoint to get it going
6781 again, do that first. */
6782
6783 /* However, if we see an event for the stepping thread, then we
6784 know all other threads have been moved past their breakpoints
6785 already. Let the caller check whether the step is finished,
6786 etc., before deciding to move it past a breakpoint. */
6787 if (ecs->event_thread->control.step_range_end != 0)
6788 return 0;
6789
6790 /* Check if the current thread is blocked on an incomplete
6791 step-over, interrupted by a random signal. */
6792 if (ecs->event_thread->control.trap_expected
6793 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 6794 {
99619bea
PA
6795 if (debug_infrun)
6796 {
6797 fprintf_unfiltered (gdb_stdlog,
6798 "infrun: need to finish step-over of [%s]\n",
a068643d 6799 target_pid_to_str (ecs->event_thread->ptid).c_str ());
99619bea
PA
6800 }
6801 keep_going (ecs);
6802 return 1;
6803 }
2adfaa28 6804
99619bea
PA
6805 /* Check if the current thread is blocked by a single-step
6806 breakpoint of another thread. */
6807 if (ecs->hit_singlestep_breakpoint)
6808 {
6809 if (debug_infrun)
6810 {
6811 fprintf_unfiltered (gdb_stdlog,
6812 "infrun: need to step [%s] over single-step "
6813 "breakpoint\n",
a068643d 6814 target_pid_to_str (ecs->ptid).c_str ());
99619bea
PA
6815 }
6816 keep_going (ecs);
6817 return 1;
6818 }
6819
4d9d9d04
PA
6820 /* If this thread needs yet another step-over (e.g., stepping
6821 through a delay slot), do it first before moving on to
6822 another thread. */
6823 if (thread_still_needs_step_over (ecs->event_thread))
6824 {
6825 if (debug_infrun)
6826 {
6827 fprintf_unfiltered (gdb_stdlog,
6828 "infrun: thread [%s] still needs step-over\n",
a068643d 6829 target_pid_to_str (ecs->event_thread->ptid).c_str ());
4d9d9d04
PA
6830 }
6831 keep_going (ecs);
6832 return 1;
6833 }
70509625 6834
483805cf
PA
6835 /* If scheduler locking applies even if not stepping, there's no
6836 need to walk over threads. Above we've checked whether the
6837 current thread is stepping. If some other thread not the
6838 event thread is stepping, then it must be that scheduler
6839 locking is not in effect. */
856e7dd6 6840 if (schedlock_applies (ecs->event_thread))
483805cf
PA
6841 return 0;
6842
4d9d9d04
PA
6843 /* Otherwise, we no longer expect a trap in the current thread.
6844 Clear the trap_expected flag before switching back -- this is
6845 what keep_going does as well, if we call it. */
6846 ecs->event_thread->control.trap_expected = 0;
6847
6848 /* Likewise, clear the signal if it should not be passed. */
6849 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6850 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6851
6852 /* Do all pending step-overs before actually proceeding with
483805cf 6853 step/next/etc. */
4d9d9d04
PA
6854 if (start_step_over ())
6855 {
6856 prepare_to_wait (ecs);
6857 return 1;
6858 }
6859
6860 /* Look for the stepping/nexting thread. */
483805cf 6861 stepping_thread = NULL;
4d9d9d04 6862
08036331 6863 for (thread_info *tp : all_non_exited_threads ())
483805cf 6864 {
fbea99ea
PA
6865 /* Ignore threads of processes the caller is not
6866 resuming. */
483805cf 6867 if (!sched_multi
e99b03dc 6868 && tp->ptid.pid () != ecs->ptid.pid ())
483805cf
PA
6869 continue;
6870
6871 /* When stepping over a breakpoint, we lock all threads
6872 except the one that needs to move past the breakpoint.
6873 If a non-event thread has this set, the "incomplete
6874 step-over" check above should have caught it earlier. */
372316f1
PA
6875 if (tp->control.trap_expected)
6876 {
6877 internal_error (__FILE__, __LINE__,
6878 "[%s] has inconsistent state: "
6879 "trap_expected=%d\n",
a068643d 6880 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
6881 tp->control.trap_expected);
6882 }
483805cf
PA
6883
6884 /* Did we find the stepping thread? */
6885 if (tp->control.step_range_end)
6886 {
6887 /* Yep. There should only one though. */
6888 gdb_assert (stepping_thread == NULL);
6889
6890 /* The event thread is handled at the top, before we
6891 enter this loop. */
6892 gdb_assert (tp != ecs->event_thread);
6893
6894 /* If some thread other than the event thread is
6895 stepping, then scheduler locking can't be in effect,
6896 otherwise we wouldn't have resumed the current event
6897 thread in the first place. */
856e7dd6 6898 gdb_assert (!schedlock_applies (tp));
483805cf
PA
6899
6900 stepping_thread = tp;
6901 }
99619bea
PA
6902 }
6903
483805cf 6904 if (stepping_thread != NULL)
99619bea 6905 {
c447ac0b
PA
6906 if (debug_infrun)
6907 fprintf_unfiltered (gdb_stdlog,
6908 "infrun: switching back to stepped thread\n");
6909
2ac7589c
PA
6910 if (keep_going_stepped_thread (stepping_thread))
6911 {
6912 prepare_to_wait (ecs);
6913 return 1;
6914 }
6915 }
6916 }
2adfaa28 6917
2ac7589c
PA
6918 return 0;
6919}
2adfaa28 6920
2ac7589c
PA
6921/* Set a previously stepped thread back to stepping. Returns true on
6922 success, false if the resume is not possible (e.g., the thread
6923 vanished). */
6924
6925static int
6926keep_going_stepped_thread (struct thread_info *tp)
6927{
6928 struct frame_info *frame;
2ac7589c
PA
6929 struct execution_control_state ecss;
6930 struct execution_control_state *ecs = &ecss;
2adfaa28 6931
2ac7589c
PA
6932 /* If the stepping thread exited, then don't try to switch back and
6933 resume it, which could fail in several different ways depending
6934 on the target. Instead, just keep going.
2adfaa28 6935
2ac7589c
PA
6936 We can find a stepping dead thread in the thread list in two
6937 cases:
2adfaa28 6938
2ac7589c
PA
6939 - The target supports thread exit events, and when the target
6940 tries to delete the thread from the thread list, inferior_ptid
6941 pointed at the exiting thread. In such case, calling
6942 delete_thread does not really remove the thread from the list;
6943 instead, the thread is left listed, with 'exited' state.
64ce06e4 6944
2ac7589c
PA
6945 - The target's debug interface does not support thread exit
6946 events, and so we have no idea whatsoever if the previously
6947 stepping thread is still alive. For that reason, we need to
6948 synchronously query the target now. */
2adfaa28 6949
00431a78 6950 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c
PA
6951 {
6952 if (debug_infrun)
6953 fprintf_unfiltered (gdb_stdlog,
6954 "infrun: not resuming previously "
6955 "stepped thread, it has vanished\n");
6956
00431a78 6957 delete_thread (tp);
2ac7589c 6958 return 0;
c447ac0b 6959 }
2ac7589c
PA
6960
6961 if (debug_infrun)
6962 fprintf_unfiltered (gdb_stdlog,
6963 "infrun: resuming previously stepped thread\n");
6964
6965 reset_ecs (ecs, tp);
00431a78 6966 switch_to_thread (tp);
2ac7589c 6967
f2ffa92b 6968 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 6969 frame = get_current_frame ();
2ac7589c
PA
6970
6971 /* If the PC of the thread we were trying to single-step has
6972 changed, then that thread has trapped or been signaled, but the
6973 event has not been reported to GDB yet. Re-poll the target
6974 looking for this particular thread's event (i.e. temporarily
6975 enable schedlock) by:
6976
6977 - setting a break at the current PC
6978 - resuming that particular thread, only (by setting trap
6979 expected)
6980
6981 This prevents us continuously moving the single-step breakpoint
6982 forward, one instruction at a time, overstepping. */
6983
f2ffa92b 6984 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
6985 {
6986 ptid_t resume_ptid;
6987
6988 if (debug_infrun)
6989 fprintf_unfiltered (gdb_stdlog,
6990 "infrun: expected thread advanced also (%s -> %s)\n",
6991 paddress (target_gdbarch (), tp->prev_pc),
f2ffa92b 6992 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
6993
6994 /* Clear the info of the previous step-over, as it's no longer
6995 valid (if the thread was trying to step over a breakpoint, it
6996 has already succeeded). It's what keep_going would do too,
6997 if we called it. Do this before trying to insert the sss
6998 breakpoint, otherwise if we were previously trying to step
6999 over this exact address in another thread, the breakpoint is
7000 skipped. */
7001 clear_step_over_info ();
7002 tp->control.trap_expected = 0;
7003
7004 insert_single_step_breakpoint (get_frame_arch (frame),
7005 get_frame_address_space (frame),
f2ffa92b 7006 tp->suspend.stop_pc);
2ac7589c 7007
372316f1 7008 tp->resumed = 1;
fbea99ea 7009 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7010 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7011 }
7012 else
7013 {
7014 if (debug_infrun)
7015 fprintf_unfiltered (gdb_stdlog,
7016 "infrun: expected thread still hasn't advanced\n");
7017
7018 keep_going_pass_signal (ecs);
7019 }
7020 return 1;
c447ac0b
PA
7021}
7022
8b061563
PA
7023/* Is thread TP in the middle of (software or hardware)
7024 single-stepping? (Note the result of this function must never be
7025 passed directly as target_resume's STEP parameter.) */
104c1213 7026
a289b8f6 7027static int
b3444185 7028currently_stepping (struct thread_info *tp)
a7212384 7029{
8358c15c
JK
7030 return ((tp->control.step_range_end
7031 && tp->control.step_resume_breakpoint == NULL)
7032 || tp->control.trap_expected
af48d08f 7033 || tp->stepped_breakpoint
8358c15c 7034 || bpstat_should_step ());
a7212384
UW
7035}
7036
b2175913
MS
7037/* Inferior has stepped into a subroutine call with source code that
7038 we should not step over. Do step to the first line of code in
7039 it. */
c2c6d25f
JM
7040
7041static void
568d6575
UW
7042handle_step_into_function (struct gdbarch *gdbarch,
7043 struct execution_control_state *ecs)
c2c6d25f 7044{
7e324e48
GB
7045 fill_in_stop_func (gdbarch, ecs);
7046
f2ffa92b
PA
7047 compunit_symtab *cust
7048 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7049 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7050 ecs->stop_func_start
7051 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7052
51abb421 7053 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7054 /* Use the step_resume_break to step until the end of the prologue,
7055 even if that involves jumps (as it seems to on the vax under
7056 4.2). */
7057 /* If the prologue ends in the middle of a source line, continue to
7058 the end of that source line (if it is still within the function).
7059 Otherwise, just go to end of prologue. */
2afb61aa
PA
7060 if (stop_func_sal.end
7061 && stop_func_sal.pc != ecs->stop_func_start
7062 && stop_func_sal.end < ecs->stop_func_end)
7063 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7064
2dbd5e30
KB
7065 /* Architectures which require breakpoint adjustment might not be able
7066 to place a breakpoint at the computed address. If so, the test
7067 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7068 ecs->stop_func_start to an address at which a breakpoint may be
7069 legitimately placed.
8fb3e588 7070
2dbd5e30
KB
7071 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7072 made, GDB will enter an infinite loop when stepping through
7073 optimized code consisting of VLIW instructions which contain
7074 subinstructions corresponding to different source lines. On
7075 FR-V, it's not permitted to place a breakpoint on any but the
7076 first subinstruction of a VLIW instruction. When a breakpoint is
7077 set, GDB will adjust the breakpoint address to the beginning of
7078 the VLIW instruction. Thus, we need to make the corresponding
7079 adjustment here when computing the stop address. */
8fb3e588 7080
568d6575 7081 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7082 {
7083 ecs->stop_func_start
568d6575 7084 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7085 ecs->stop_func_start);
2dbd5e30
KB
7086 }
7087
f2ffa92b 7088 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7089 {
7090 /* We are already there: stop now. */
bdc36728 7091 end_stepping_range (ecs);
c2c6d25f
JM
7092 return;
7093 }
7094 else
7095 {
7096 /* Put the step-breakpoint there and go until there. */
51abb421 7097 symtab_and_line sr_sal;
c2c6d25f
JM
7098 sr_sal.pc = ecs->stop_func_start;
7099 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7100 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7101
c2c6d25f 7102 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7103 some machines the prologue is where the new fp value is
7104 established. */
a6d9a66e 7105 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7106
7107 /* And make sure stepping stops right away then. */
16c381f0
JK
7108 ecs->event_thread->control.step_range_end
7109 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7110 }
7111 keep_going (ecs);
7112}
d4f3574e 7113
b2175913
MS
7114/* Inferior has stepped backward into a subroutine call with source
7115 code that we should not step over. Do step to the beginning of the
7116 last line of code in it. */
7117
7118static void
568d6575
UW
7119handle_step_into_function_backward (struct gdbarch *gdbarch,
7120 struct execution_control_state *ecs)
b2175913 7121{
43f3e411 7122 struct compunit_symtab *cust;
167e4384 7123 struct symtab_and_line stop_func_sal;
b2175913 7124
7e324e48
GB
7125 fill_in_stop_func (gdbarch, ecs);
7126
f2ffa92b 7127 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7128 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7129 ecs->stop_func_start
7130 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7131
f2ffa92b 7132 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7133
7134 /* OK, we're just going to keep stepping here. */
f2ffa92b 7135 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7136 {
7137 /* We're there already. Just stop stepping now. */
bdc36728 7138 end_stepping_range (ecs);
b2175913
MS
7139 }
7140 else
7141 {
7142 /* Else just reset the step range and keep going.
7143 No step-resume breakpoint, they don't work for
7144 epilogues, which can have multiple entry paths. */
16c381f0
JK
7145 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7146 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7147 keep_going (ecs);
7148 }
7149 return;
7150}
7151
d3169d93 7152/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7153 This is used to both functions and to skip over code. */
7154
7155static void
2c03e5be
PA
7156insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7157 struct symtab_and_line sr_sal,
7158 struct frame_id sr_id,
7159 enum bptype sr_type)
44cbf7b5 7160{
611c83ae
PA
7161 /* There should never be more than one step-resume or longjmp-resume
7162 breakpoint per thread, so we should never be setting a new
44cbf7b5 7163 step_resume_breakpoint when one is already active. */
8358c15c 7164 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7165 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7166
7167 if (debug_infrun)
7168 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7169 "infrun: inserting step-resume breakpoint at %s\n",
7170 paddress (gdbarch, sr_sal.pc));
d3169d93 7171
8358c15c 7172 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7173 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7174}
7175
9da8c2a0 7176void
2c03e5be
PA
7177insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7178 struct symtab_and_line sr_sal,
7179 struct frame_id sr_id)
7180{
7181 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7182 sr_sal, sr_id,
7183 bp_step_resume);
44cbf7b5 7184}
7ce450bd 7185
2c03e5be
PA
7186/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7187 This is used to skip a potential signal handler.
7ce450bd 7188
14e60db5
DJ
7189 This is called with the interrupted function's frame. The signal
7190 handler, when it returns, will resume the interrupted function at
7191 RETURN_FRAME.pc. */
d303a6c7
AC
7192
7193static void
2c03e5be 7194insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7195{
f4c1edd8 7196 gdb_assert (return_frame != NULL);
d303a6c7 7197
51abb421
PA
7198 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7199
7200 symtab_and_line sr_sal;
568d6575 7201 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7202 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7203 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7204
2c03e5be
PA
7205 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7206 get_stack_frame_id (return_frame),
7207 bp_hp_step_resume);
d303a6c7
AC
7208}
7209
2c03e5be
PA
7210/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7211 is used to skip a function after stepping into it (for "next" or if
7212 the called function has no debugging information).
14e60db5
DJ
7213
7214 The current function has almost always been reached by single
7215 stepping a call or return instruction. NEXT_FRAME belongs to the
7216 current function, and the breakpoint will be set at the caller's
7217 resume address.
7218
7219 This is a separate function rather than reusing
2c03e5be 7220 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7221 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7222 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7223
7224static void
7225insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7226{
14e60db5
DJ
7227 /* We shouldn't have gotten here if we don't know where the call site
7228 is. */
c7ce8faa 7229 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7230
51abb421 7231 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7232
51abb421 7233 symtab_and_line sr_sal;
c7ce8faa
DJ
7234 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7235 frame_unwind_caller_pc (next_frame));
14e60db5 7236 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7237 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7238
a6d9a66e 7239 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7240 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7241}
7242
611c83ae
PA
7243/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7244 new breakpoint at the target of a jmp_buf. The handling of
7245 longjmp-resume uses the same mechanisms used for handling
7246 "step-resume" breakpoints. */
7247
7248static void
a6d9a66e 7249insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7250{
e81a37f7
TT
7251 /* There should never be more than one longjmp-resume breakpoint per
7252 thread, so we should never be setting a new
611c83ae 7253 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7254 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7255
7256 if (debug_infrun)
7257 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7258 "infrun: inserting longjmp-resume breakpoint at %s\n",
7259 paddress (gdbarch, pc));
611c83ae 7260
e81a37f7 7261 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7262 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7263}
7264
186c406b
TT
7265/* Insert an exception resume breakpoint. TP is the thread throwing
7266 the exception. The block B is the block of the unwinder debug hook
7267 function. FRAME is the frame corresponding to the call to this
7268 function. SYM is the symbol of the function argument holding the
7269 target PC of the exception. */
7270
7271static void
7272insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7273 const struct block *b,
186c406b
TT
7274 struct frame_info *frame,
7275 struct symbol *sym)
7276{
a70b8144 7277 try
186c406b 7278 {
63e43d3a 7279 struct block_symbol vsym;
186c406b
TT
7280 struct value *value;
7281 CORE_ADDR handler;
7282 struct breakpoint *bp;
7283
de63c46b
PA
7284 vsym = lookup_symbol_search_name (SYMBOL_SEARCH_NAME (sym),
7285 b, VAR_DOMAIN);
63e43d3a 7286 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7287 /* If the value was optimized out, revert to the old behavior. */
7288 if (! value_optimized_out (value))
7289 {
7290 handler = value_as_address (value);
7291
7292 if (debug_infrun)
7293 fprintf_unfiltered (gdb_stdlog,
7294 "infrun: exception resume at %lx\n",
7295 (unsigned long) handler);
7296
7297 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7298 handler,
7299 bp_exception_resume).release ();
c70a6932
JK
7300
7301 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7302 frame = NULL;
7303
5d5658a1 7304 bp->thread = tp->global_num;
186c406b
TT
7305 inferior_thread ()->control.exception_resume_breakpoint = bp;
7306 }
7307 }
230d2906 7308 catch (const gdb_exception_error &e)
492d29ea
PA
7309 {
7310 /* We want to ignore errors here. */
7311 }
186c406b
TT
7312}
7313
28106bc2
SDJ
7314/* A helper for check_exception_resume that sets an
7315 exception-breakpoint based on a SystemTap probe. */
7316
7317static void
7318insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7319 const struct bound_probe *probe,
28106bc2
SDJ
7320 struct frame_info *frame)
7321{
7322 struct value *arg_value;
7323 CORE_ADDR handler;
7324 struct breakpoint *bp;
7325
7326 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7327 if (!arg_value)
7328 return;
7329
7330 handler = value_as_address (arg_value);
7331
7332 if (debug_infrun)
7333 fprintf_unfiltered (gdb_stdlog,
7334 "infrun: exception resume at %s\n",
6bac7473 7335 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7336 handler));
7337
7338 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7339 handler, bp_exception_resume).release ();
5d5658a1 7340 bp->thread = tp->global_num;
28106bc2
SDJ
7341 inferior_thread ()->control.exception_resume_breakpoint = bp;
7342}
7343
186c406b
TT
7344/* This is called when an exception has been intercepted. Check to
7345 see whether the exception's destination is of interest, and if so,
7346 set an exception resume breakpoint there. */
7347
7348static void
7349check_exception_resume (struct execution_control_state *ecs,
28106bc2 7350 struct frame_info *frame)
186c406b 7351{
729662a5 7352 struct bound_probe probe;
28106bc2
SDJ
7353 struct symbol *func;
7354
7355 /* First see if this exception unwinding breakpoint was set via a
7356 SystemTap probe point. If so, the probe has two arguments: the
7357 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7358 set a breakpoint there. */
6bac7473 7359 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7360 if (probe.prob)
28106bc2 7361 {
729662a5 7362 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7363 return;
7364 }
7365
7366 func = get_frame_function (frame);
7367 if (!func)
7368 return;
186c406b 7369
a70b8144 7370 try
186c406b 7371 {
3977b71f 7372 const struct block *b;
8157b174 7373 struct block_iterator iter;
186c406b
TT
7374 struct symbol *sym;
7375 int argno = 0;
7376
7377 /* The exception breakpoint is a thread-specific breakpoint on
7378 the unwinder's debug hook, declared as:
7379
7380 void _Unwind_DebugHook (void *cfa, void *handler);
7381
7382 The CFA argument indicates the frame to which control is
7383 about to be transferred. HANDLER is the destination PC.
7384
7385 We ignore the CFA and set a temporary breakpoint at HANDLER.
7386 This is not extremely efficient but it avoids issues in gdb
7387 with computing the DWARF CFA, and it also works even in weird
7388 cases such as throwing an exception from inside a signal
7389 handler. */
7390
7391 b = SYMBOL_BLOCK_VALUE (func);
7392 ALL_BLOCK_SYMBOLS (b, iter, sym)
7393 {
7394 if (!SYMBOL_IS_ARGUMENT (sym))
7395 continue;
7396
7397 if (argno == 0)
7398 ++argno;
7399 else
7400 {
7401 insert_exception_resume_breakpoint (ecs->event_thread,
7402 b, frame, sym);
7403 break;
7404 }
7405 }
7406 }
230d2906 7407 catch (const gdb_exception_error &e)
492d29ea
PA
7408 {
7409 }
186c406b
TT
7410}
7411
104c1213 7412static void
22bcd14b 7413stop_waiting (struct execution_control_state *ecs)
104c1213 7414{
527159b7 7415 if (debug_infrun)
22bcd14b 7416 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7417
cd0fc7c3
SS
7418 /* Let callers know we don't want to wait for the inferior anymore. */
7419 ecs->wait_some_more = 0;
fbea99ea
PA
7420
7421 /* If all-stop, but the target is always in non-stop mode, stop all
7422 threads now that we're presenting the stop to the user. */
7423 if (!non_stop && target_is_non_stop_p ())
7424 stop_all_threads ();
cd0fc7c3
SS
7425}
7426
4d9d9d04
PA
7427/* Like keep_going, but passes the signal to the inferior, even if the
7428 signal is set to nopass. */
d4f3574e
SS
7429
7430static void
4d9d9d04 7431keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7432{
d7e15655 7433 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 7434 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7435
d4f3574e 7436 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 7437 ecs->event_thread->prev_pc
00431a78 7438 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
d4f3574e 7439
4d9d9d04 7440 if (ecs->event_thread->control.trap_expected)
d4f3574e 7441 {
4d9d9d04
PA
7442 struct thread_info *tp = ecs->event_thread;
7443
7444 if (debug_infrun)
7445 fprintf_unfiltered (gdb_stdlog,
7446 "infrun: %s has trap_expected set, "
7447 "resuming to collect trap\n",
a068643d 7448 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04 7449
a9ba6bae
PA
7450 /* We haven't yet gotten our trap, and either: intercepted a
7451 non-signal event (e.g., a fork); or took a signal which we
7452 are supposed to pass through to the inferior. Simply
7453 continue. */
64ce06e4 7454 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7455 }
372316f1
PA
7456 else if (step_over_info_valid_p ())
7457 {
7458 /* Another thread is stepping over a breakpoint in-line. If
7459 this thread needs a step-over too, queue the request. In
7460 either case, this resume must be deferred for later. */
7461 struct thread_info *tp = ecs->event_thread;
7462
7463 if (ecs->hit_singlestep_breakpoint
7464 || thread_still_needs_step_over (tp))
7465 {
7466 if (debug_infrun)
7467 fprintf_unfiltered (gdb_stdlog,
7468 "infrun: step-over already in progress: "
7469 "step-over for %s deferred\n",
a068643d 7470 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
7471 thread_step_over_chain_enqueue (tp);
7472 }
7473 else
7474 {
7475 if (debug_infrun)
7476 fprintf_unfiltered (gdb_stdlog,
7477 "infrun: step-over in progress: "
7478 "resume of %s deferred\n",
a068643d 7479 target_pid_to_str (tp->ptid).c_str ());
372316f1 7480 }
372316f1 7481 }
d4f3574e
SS
7482 else
7483 {
31e77af2 7484 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7485 int remove_bp;
7486 int remove_wps;
8d297bbf 7487 step_over_what step_what;
31e77af2 7488
d4f3574e 7489 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7490 anyway (if we got a signal, the user asked it be passed to
7491 the child)
7492 -- or --
7493 We got our expected trap, but decided we should resume from
7494 it.
d4f3574e 7495
a9ba6bae 7496 We're going to run this baby now!
d4f3574e 7497
c36b740a
VP
7498 Note that insert_breakpoints won't try to re-insert
7499 already inserted breakpoints. Therefore, we don't
7500 care if breakpoints were already inserted, or not. */
a9ba6bae 7501
31e77af2
PA
7502 /* If we need to step over a breakpoint, and we're not using
7503 displaced stepping to do so, insert all breakpoints
7504 (watchpoints, etc.) but the one we're stepping over, step one
7505 instruction, and then re-insert the breakpoint when that step
7506 is finished. */
963f9c80 7507
6c4cfb24
PA
7508 step_what = thread_still_needs_step_over (ecs->event_thread);
7509
963f9c80 7510 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7511 || (step_what & STEP_OVER_BREAKPOINT));
7512 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7513
cb71640d
PA
7514 /* We can't use displaced stepping if we need to step past a
7515 watchpoint. The instruction copied to the scratch pad would
7516 still trigger the watchpoint. */
7517 if (remove_bp
3fc8eb30 7518 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7519 {
a01bda52 7520 set_step_over_info (regcache->aspace (),
21edc42f
YQ
7521 regcache_read_pc (regcache), remove_wps,
7522 ecs->event_thread->global_num);
45e8c884 7523 }
963f9c80 7524 else if (remove_wps)
21edc42f 7525 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7526
7527 /* If we now need to do an in-line step-over, we need to stop
7528 all other threads. Note this must be done before
7529 insert_breakpoints below, because that removes the breakpoint
7530 we're about to step over, otherwise other threads could miss
7531 it. */
fbea99ea 7532 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7533 stop_all_threads ();
abbb1732 7534
31e77af2 7535 /* Stop stepping if inserting breakpoints fails. */
a70b8144 7536 try
31e77af2
PA
7537 {
7538 insert_breakpoints ();
7539 }
230d2906 7540 catch (const gdb_exception_error &e)
31e77af2
PA
7541 {
7542 exception_print (gdb_stderr, e);
22bcd14b 7543 stop_waiting (ecs);
bdf2a94a 7544 clear_step_over_info ();
31e77af2 7545 return;
d4f3574e
SS
7546 }
7547
963f9c80 7548 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7549
64ce06e4 7550 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7551 }
7552
488f131b 7553 prepare_to_wait (ecs);
d4f3574e
SS
7554}
7555
4d9d9d04
PA
7556/* Called when we should continue running the inferior, because the
7557 current event doesn't cause a user visible stop. This does the
7558 resuming part; waiting for the next event is done elsewhere. */
7559
7560static void
7561keep_going (struct execution_control_state *ecs)
7562{
7563 if (ecs->event_thread->control.trap_expected
7564 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7565 ecs->event_thread->control.trap_expected = 0;
7566
7567 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7568 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7569 keep_going_pass_signal (ecs);
7570}
7571
104c1213
JM
7572/* This function normally comes after a resume, before
7573 handle_inferior_event exits. It takes care of any last bits of
7574 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7575
104c1213
JM
7576static void
7577prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7578{
527159b7 7579 if (debug_infrun)
8a9de0e4 7580 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7581
104c1213 7582 ecs->wait_some_more = 1;
0b333c5e
PA
7583
7584 if (!target_is_async_p ())
7585 mark_infrun_async_event_handler ();
c906108c 7586}
11cf8741 7587
fd664c91 7588/* We are done with the step range of a step/next/si/ni command.
b57bacec 7589 Called once for each n of a "step n" operation. */
fd664c91
PA
7590
7591static void
bdc36728 7592end_stepping_range (struct execution_control_state *ecs)
fd664c91 7593{
bdc36728 7594 ecs->event_thread->control.stop_step = 1;
bdc36728 7595 stop_waiting (ecs);
fd664c91
PA
7596}
7597
33d62d64
JK
7598/* Several print_*_reason functions to print why the inferior has stopped.
7599 We always print something when the inferior exits, or receives a signal.
7600 The rest of the cases are dealt with later on in normal_stop and
7601 print_it_typical. Ideally there should be a call to one of these
7602 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7603 stop_waiting is called.
33d62d64 7604
fd664c91
PA
7605 Note that we don't call these directly, instead we delegate that to
7606 the interpreters, through observers. Interpreters then call these
7607 with whatever uiout is right. */
33d62d64 7608
fd664c91
PA
7609void
7610print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7611{
fd664c91 7612 /* For CLI-like interpreters, print nothing. */
33d62d64 7613
112e8700 7614 if (uiout->is_mi_like_p ())
fd664c91 7615 {
112e8700 7616 uiout->field_string ("reason",
fd664c91
PA
7617 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7618 }
7619}
33d62d64 7620
fd664c91
PA
7621void
7622print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7623{
33d62d64 7624 annotate_signalled ();
112e8700
SM
7625 if (uiout->is_mi_like_p ())
7626 uiout->field_string
7627 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7628 uiout->text ("\nProgram terminated with signal ");
33d62d64 7629 annotate_signal_name ();
112e8700 7630 uiout->field_string ("signal-name",
2ea28649 7631 gdb_signal_to_name (siggnal));
33d62d64 7632 annotate_signal_name_end ();
112e8700 7633 uiout->text (", ");
33d62d64 7634 annotate_signal_string ();
112e8700 7635 uiout->field_string ("signal-meaning",
2ea28649 7636 gdb_signal_to_string (siggnal));
33d62d64 7637 annotate_signal_string_end ();
112e8700
SM
7638 uiout->text (".\n");
7639 uiout->text ("The program no longer exists.\n");
33d62d64
JK
7640}
7641
fd664c91
PA
7642void
7643print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7644{
fda326dd 7645 struct inferior *inf = current_inferior ();
a068643d 7646 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 7647
33d62d64
JK
7648 annotate_exited (exitstatus);
7649 if (exitstatus)
7650 {
112e8700
SM
7651 if (uiout->is_mi_like_p ())
7652 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
6a831f06
PA
7653 std::string exit_code_str
7654 = string_printf ("0%o", (unsigned int) exitstatus);
7655 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
7656 plongest (inf->num), pidstr.c_str (),
7657 string_field ("exit-code", exit_code_str.c_str ()));
33d62d64
JK
7658 }
7659 else
11cf8741 7660 {
112e8700
SM
7661 if (uiout->is_mi_like_p ())
7662 uiout->field_string
7663 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6a831f06
PA
7664 uiout->message ("[Inferior %s (%s) exited normally]\n",
7665 plongest (inf->num), pidstr.c_str ());
33d62d64 7666 }
33d62d64
JK
7667}
7668
012b3a21
WT
7669/* Some targets/architectures can do extra processing/display of
7670 segmentation faults. E.g., Intel MPX boundary faults.
7671 Call the architecture dependent function to handle the fault. */
7672
7673static void
7674handle_segmentation_fault (struct ui_out *uiout)
7675{
7676 struct regcache *regcache = get_current_regcache ();
ac7936df 7677 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
7678
7679 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7680 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7681}
7682
fd664c91
PA
7683void
7684print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7685{
f303dbd6
PA
7686 struct thread_info *thr = inferior_thread ();
7687
33d62d64
JK
7688 annotate_signal ();
7689
112e8700 7690 if (uiout->is_mi_like_p ())
f303dbd6
PA
7691 ;
7692 else if (show_thread_that_caused_stop ())
33d62d64 7693 {
f303dbd6 7694 const char *name;
33d62d64 7695
112e8700 7696 uiout->text ("\nThread ");
33eca680 7697 uiout->field_string ("thread-id", print_thread_id (thr));
f303dbd6
PA
7698
7699 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7700 if (name != NULL)
7701 {
112e8700 7702 uiout->text (" \"");
33eca680 7703 uiout->field_string ("name", name);
112e8700 7704 uiout->text ("\"");
f303dbd6 7705 }
33d62d64 7706 }
f303dbd6 7707 else
112e8700 7708 uiout->text ("\nProgram");
f303dbd6 7709
112e8700
SM
7710 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7711 uiout->text (" stopped");
33d62d64
JK
7712 else
7713 {
112e8700 7714 uiout->text (" received signal ");
8b93c638 7715 annotate_signal_name ();
112e8700
SM
7716 if (uiout->is_mi_like_p ())
7717 uiout->field_string
7718 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7719 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 7720 annotate_signal_name_end ();
112e8700 7721 uiout->text (", ");
8b93c638 7722 annotate_signal_string ();
112e8700 7723 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
7724
7725 if (siggnal == GDB_SIGNAL_SEGV)
7726 handle_segmentation_fault (uiout);
7727
8b93c638 7728 annotate_signal_string_end ();
33d62d64 7729 }
112e8700 7730 uiout->text (".\n");
33d62d64 7731}
252fbfc8 7732
fd664c91
PA
7733void
7734print_no_history_reason (struct ui_out *uiout)
33d62d64 7735{
112e8700 7736 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 7737}
43ff13b4 7738
0c7e1a46
PA
7739/* Print current location without a level number, if we have changed
7740 functions or hit a breakpoint. Print source line if we have one.
7741 bpstat_print contains the logic deciding in detail what to print,
7742 based on the event(s) that just occurred. */
7743
243a9253
PA
7744static void
7745print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7746{
7747 int bpstat_ret;
f486487f 7748 enum print_what source_flag;
0c7e1a46
PA
7749 int do_frame_printing = 1;
7750 struct thread_info *tp = inferior_thread ();
7751
7752 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7753 switch (bpstat_ret)
7754 {
7755 case PRINT_UNKNOWN:
7756 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7757 should) carry around the function and does (or should) use
7758 that when doing a frame comparison. */
7759 if (tp->control.stop_step
7760 && frame_id_eq (tp->control.step_frame_id,
7761 get_frame_id (get_current_frame ()))
f2ffa92b
PA
7762 && (tp->control.step_start_function
7763 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
7764 {
7765 /* Finished step, just print source line. */
7766 source_flag = SRC_LINE;
7767 }
7768 else
7769 {
7770 /* Print location and source line. */
7771 source_flag = SRC_AND_LOC;
7772 }
7773 break;
7774 case PRINT_SRC_AND_LOC:
7775 /* Print location and source line. */
7776 source_flag = SRC_AND_LOC;
7777 break;
7778 case PRINT_SRC_ONLY:
7779 source_flag = SRC_LINE;
7780 break;
7781 case PRINT_NOTHING:
7782 /* Something bogus. */
7783 source_flag = SRC_LINE;
7784 do_frame_printing = 0;
7785 break;
7786 default:
7787 internal_error (__FILE__, __LINE__, _("Unknown value."));
7788 }
7789
7790 /* The behavior of this routine with respect to the source
7791 flag is:
7792 SRC_LINE: Print only source line
7793 LOCATION: Print only location
7794 SRC_AND_LOC: Print location and source line. */
7795 if (do_frame_printing)
7796 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
7797}
7798
243a9253
PA
7799/* See infrun.h. */
7800
7801void
4c7d57e7 7802print_stop_event (struct ui_out *uiout, bool displays)
243a9253 7803{
243a9253
PA
7804 struct target_waitstatus last;
7805 ptid_t last_ptid;
7806 struct thread_info *tp;
7807
7808 get_last_target_status (&last_ptid, &last);
7809
67ad9399
TT
7810 {
7811 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 7812
67ad9399 7813 print_stop_location (&last);
243a9253 7814
67ad9399 7815 /* Display the auto-display expressions. */
4c7d57e7
TT
7816 if (displays)
7817 do_displays ();
67ad9399 7818 }
243a9253
PA
7819
7820 tp = inferior_thread ();
7821 if (tp->thread_fsm != NULL
46e3ed7f 7822 && tp->thread_fsm->finished_p ())
243a9253
PA
7823 {
7824 struct return_value_info *rv;
7825
46e3ed7f 7826 rv = tp->thread_fsm->return_value ();
243a9253
PA
7827 if (rv != NULL)
7828 print_return_value (uiout, rv);
7829 }
0c7e1a46
PA
7830}
7831
388a7084
PA
7832/* See infrun.h. */
7833
7834void
7835maybe_remove_breakpoints (void)
7836{
7837 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7838 {
7839 if (remove_breakpoints ())
7840 {
223ffa71 7841 target_terminal::ours_for_output ();
388a7084
PA
7842 printf_filtered (_("Cannot remove breakpoints because "
7843 "program is no longer writable.\nFurther "
7844 "execution is probably impossible.\n"));
7845 }
7846 }
7847}
7848
4c2f2a79
PA
7849/* The execution context that just caused a normal stop. */
7850
7851struct stop_context
7852{
2d844eaf
TT
7853 stop_context ();
7854 ~stop_context ();
7855
7856 DISABLE_COPY_AND_ASSIGN (stop_context);
7857
7858 bool changed () const;
7859
4c2f2a79
PA
7860 /* The stop ID. */
7861 ULONGEST stop_id;
c906108c 7862
4c2f2a79 7863 /* The event PTID. */
c906108c 7864
4c2f2a79
PA
7865 ptid_t ptid;
7866
7867 /* If stopp for a thread event, this is the thread that caused the
7868 stop. */
7869 struct thread_info *thread;
7870
7871 /* The inferior that caused the stop. */
7872 int inf_num;
7873};
7874
2d844eaf 7875/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
7876 takes a strong reference to the thread. */
7877
2d844eaf 7878stop_context::stop_context ()
4c2f2a79 7879{
2d844eaf
TT
7880 stop_id = get_stop_id ();
7881 ptid = inferior_ptid;
7882 inf_num = current_inferior ()->num;
4c2f2a79 7883
d7e15655 7884 if (inferior_ptid != null_ptid)
4c2f2a79
PA
7885 {
7886 /* Take a strong reference so that the thread can't be deleted
7887 yet. */
2d844eaf
TT
7888 thread = inferior_thread ();
7889 thread->incref ();
4c2f2a79
PA
7890 }
7891 else
2d844eaf 7892 thread = NULL;
4c2f2a79
PA
7893}
7894
7895/* Release a stop context previously created with save_stop_context.
7896 Releases the strong reference to the thread as well. */
7897
2d844eaf 7898stop_context::~stop_context ()
4c2f2a79 7899{
2d844eaf
TT
7900 if (thread != NULL)
7901 thread->decref ();
4c2f2a79
PA
7902}
7903
7904/* Return true if the current context no longer matches the saved stop
7905 context. */
7906
2d844eaf
TT
7907bool
7908stop_context::changed () const
7909{
7910 if (ptid != inferior_ptid)
7911 return true;
7912 if (inf_num != current_inferior ()->num)
7913 return true;
7914 if (thread != NULL && thread->state != THREAD_STOPPED)
7915 return true;
7916 if (get_stop_id () != stop_id)
7917 return true;
7918 return false;
4c2f2a79
PA
7919}
7920
7921/* See infrun.h. */
7922
7923int
96baa820 7924normal_stop (void)
c906108c 7925{
73b65bb0
DJ
7926 struct target_waitstatus last;
7927 ptid_t last_ptid;
7928
7929 get_last_target_status (&last_ptid, &last);
7930
4c2f2a79
PA
7931 new_stop_id ();
7932
29f49a6a
PA
7933 /* If an exception is thrown from this point on, make sure to
7934 propagate GDB's knowledge of the executing state to the
7935 frontend/user running state. A QUIT is an easy exception to see
7936 here, so do this before any filtered output. */
731f534f
PA
7937
7938 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
7939
c35b1492 7940 if (!non_stop)
731f534f 7941 maybe_finish_thread_state.emplace (minus_one_ptid);
e1316e60
PA
7942 else if (last.kind == TARGET_WAITKIND_SIGNALLED
7943 || last.kind == TARGET_WAITKIND_EXITED)
7944 {
7945 /* On some targets, we may still have live threads in the
7946 inferior when we get a process exit event. E.g., for
7947 "checkpoint", when the current checkpoint/fork exits,
7948 linux-fork.c automatically switches to another fork from
7949 within target_mourn_inferior. */
731f534f
PA
7950 if (inferior_ptid != null_ptid)
7951 maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ()));
e1316e60
PA
7952 }
7953 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
731f534f 7954 maybe_finish_thread_state.emplace (inferior_ptid);
29f49a6a 7955
b57bacec
PA
7956 /* As we're presenting a stop, and potentially removing breakpoints,
7957 update the thread list so we can tell whether there are threads
7958 running on the target. With target remote, for example, we can
7959 only learn about new threads when we explicitly update the thread
7960 list. Do this before notifying the interpreters about signal
7961 stops, end of stepping ranges, etc., so that the "new thread"
7962 output is emitted before e.g., "Program received signal FOO",
7963 instead of after. */
7964 update_thread_list ();
7965
7966 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 7967 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 7968
c906108c
SS
7969 /* As with the notification of thread events, we want to delay
7970 notifying the user that we've switched thread context until
7971 the inferior actually stops.
7972
73b65bb0
DJ
7973 There's no point in saying anything if the inferior has exited.
7974 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
7975 "received a signal".
7976
7977 Also skip saying anything in non-stop mode. In that mode, as we
7978 don't want GDB to switch threads behind the user's back, to avoid
7979 races where the user is typing a command to apply to thread x,
7980 but GDB switches to thread y before the user finishes entering
7981 the command, fetch_inferior_event installs a cleanup to restore
7982 the current thread back to the thread the user had selected right
7983 after this event is handled, so we're not really switching, only
7984 informing of a stop. */
4f8d22e3 7985 if (!non_stop
731f534f 7986 && previous_inferior_ptid != inferior_ptid
73b65bb0
DJ
7987 && target_has_execution
7988 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
7989 && last.kind != TARGET_WAITKIND_EXITED
7990 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 7991 {
0e454242 7992 SWITCH_THRU_ALL_UIS ()
3b12939d 7993 {
223ffa71 7994 target_terminal::ours_for_output ();
3b12939d 7995 printf_filtered (_("[Switching to %s]\n"),
a068643d 7996 target_pid_to_str (inferior_ptid).c_str ());
3b12939d
PA
7997 annotate_thread_changed ();
7998 }
39f77062 7999 previous_inferior_ptid = inferior_ptid;
c906108c 8000 }
c906108c 8001
0e5bf2a8
PA
8002 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8003 {
0e454242 8004 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8005 if (current_ui->prompt_state == PROMPT_BLOCKED)
8006 {
223ffa71 8007 target_terminal::ours_for_output ();
3b12939d
PA
8008 printf_filtered (_("No unwaited-for children left.\n"));
8009 }
0e5bf2a8
PA
8010 }
8011
b57bacec 8012 /* Note: this depends on the update_thread_list call above. */
388a7084 8013 maybe_remove_breakpoints ();
c906108c 8014
c906108c
SS
8015 /* If an auto-display called a function and that got a signal,
8016 delete that auto-display to avoid an infinite recursion. */
8017
8018 if (stopped_by_random_signal)
8019 disable_current_display ();
8020
0e454242 8021 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8022 {
8023 async_enable_stdin ();
8024 }
c906108c 8025
388a7084 8026 /* Let the user/frontend see the threads as stopped. */
731f534f 8027 maybe_finish_thread_state.reset ();
388a7084
PA
8028
8029 /* Select innermost stack frame - i.e., current frame is frame 0,
8030 and current location is based on that. Handle the case where the
8031 dummy call is returning after being stopped. E.g. the dummy call
8032 previously hit a breakpoint. (If the dummy call returns
8033 normally, we won't reach here.) Do this before the stop hook is
8034 run, so that it doesn't get to see the temporary dummy frame,
8035 which is not where we'll present the stop. */
8036 if (has_stack_frames ())
8037 {
8038 if (stop_stack_dummy == STOP_STACK_DUMMY)
8039 {
8040 /* Pop the empty frame that contains the stack dummy. This
8041 also restores inferior state prior to the call (struct
8042 infcall_suspend_state). */
8043 struct frame_info *frame = get_current_frame ();
8044
8045 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8046 frame_pop (frame);
8047 /* frame_pop calls reinit_frame_cache as the last thing it
8048 does which means there's now no selected frame. */
8049 }
8050
8051 select_frame (get_current_frame ());
8052
8053 /* Set the current source location. */
8054 set_current_sal_from_frame (get_current_frame ());
8055 }
dd7e2d2b
PA
8056
8057 /* Look up the hook_stop and run it (CLI internally handles problem
8058 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8059 if (stop_command != NULL)
8060 {
2d844eaf 8061 stop_context saved_context;
4c2f2a79 8062
a70b8144 8063 try
bf469271
PA
8064 {
8065 execute_cmd_pre_hook (stop_command);
8066 }
230d2906 8067 catch (const gdb_exception &ex)
bf469271
PA
8068 {
8069 exception_fprintf (gdb_stderr, ex,
8070 "Error while running hook_stop:\n");
8071 }
4c2f2a79
PA
8072
8073 /* If the stop hook resumes the target, then there's no point in
8074 trying to notify about the previous stop; its context is
8075 gone. Likewise if the command switches thread or inferior --
8076 the observers would print a stop for the wrong
8077 thread/inferior. */
2d844eaf
TT
8078 if (saved_context.changed ())
8079 return 1;
4c2f2a79 8080 }
dd7e2d2b 8081
388a7084
PA
8082 /* Notify observers about the stop. This is where the interpreters
8083 print the stop event. */
d7e15655 8084 if (inferior_ptid != null_ptid)
76727919 8085 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8086 stop_print_frame);
8087 else
76727919 8088 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8089
243a9253
PA
8090 annotate_stopped ();
8091
48844aa6
PA
8092 if (target_has_execution)
8093 {
8094 if (last.kind != TARGET_WAITKIND_SIGNALLED
fe726667
PA
8095 && last.kind != TARGET_WAITKIND_EXITED
8096 && last.kind != TARGET_WAITKIND_NO_RESUMED)
48844aa6
PA
8097 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8098 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8099 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8100 }
6c95b8df
PA
8101
8102 /* Try to get rid of automatically added inferiors that are no
8103 longer needed. Keeping those around slows down things linearly.
8104 Note that this never removes the current inferior. */
8105 prune_inferiors ();
4c2f2a79
PA
8106
8107 return 0;
c906108c 8108}
c906108c 8109\f
c5aa993b 8110int
96baa820 8111signal_stop_state (int signo)
c906108c 8112{
d6b48e9c 8113 return signal_stop[signo];
c906108c
SS
8114}
8115
c5aa993b 8116int
96baa820 8117signal_print_state (int signo)
c906108c
SS
8118{
8119 return signal_print[signo];
8120}
8121
c5aa993b 8122int
96baa820 8123signal_pass_state (int signo)
c906108c
SS
8124{
8125 return signal_program[signo];
8126}
8127
2455069d
UW
8128static void
8129signal_cache_update (int signo)
8130{
8131 if (signo == -1)
8132 {
a493e3e2 8133 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8134 signal_cache_update (signo);
8135
8136 return;
8137 }
8138
8139 signal_pass[signo] = (signal_stop[signo] == 0
8140 && signal_print[signo] == 0
ab04a2af
TT
8141 && signal_program[signo] == 1
8142 && signal_catch[signo] == 0);
2455069d
UW
8143}
8144
488f131b 8145int
7bda5e4a 8146signal_stop_update (int signo, int state)
d4f3574e
SS
8147{
8148 int ret = signal_stop[signo];
abbb1732 8149
d4f3574e 8150 signal_stop[signo] = state;
2455069d 8151 signal_cache_update (signo);
d4f3574e
SS
8152 return ret;
8153}
8154
488f131b 8155int
7bda5e4a 8156signal_print_update (int signo, int state)
d4f3574e
SS
8157{
8158 int ret = signal_print[signo];
abbb1732 8159
d4f3574e 8160 signal_print[signo] = state;
2455069d 8161 signal_cache_update (signo);
d4f3574e
SS
8162 return ret;
8163}
8164
488f131b 8165int
7bda5e4a 8166signal_pass_update (int signo, int state)
d4f3574e
SS
8167{
8168 int ret = signal_program[signo];
abbb1732 8169
d4f3574e 8170 signal_program[signo] = state;
2455069d 8171 signal_cache_update (signo);
d4f3574e
SS
8172 return ret;
8173}
8174
ab04a2af
TT
8175/* Update the global 'signal_catch' from INFO and notify the
8176 target. */
8177
8178void
8179signal_catch_update (const unsigned int *info)
8180{
8181 int i;
8182
8183 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8184 signal_catch[i] = info[i] > 0;
8185 signal_cache_update (-1);
adc6a863 8186 target_pass_signals (signal_pass);
ab04a2af
TT
8187}
8188
c906108c 8189static void
96baa820 8190sig_print_header (void)
c906108c 8191{
3e43a32a
MS
8192 printf_filtered (_("Signal Stop\tPrint\tPass "
8193 "to program\tDescription\n"));
c906108c
SS
8194}
8195
8196static void
2ea28649 8197sig_print_info (enum gdb_signal oursig)
c906108c 8198{
2ea28649 8199 const char *name = gdb_signal_to_name (oursig);
c906108c 8200 int name_padding = 13 - strlen (name);
96baa820 8201
c906108c
SS
8202 if (name_padding <= 0)
8203 name_padding = 0;
8204
8205 printf_filtered ("%s", name);
488f131b 8206 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8207 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8208 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8209 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8210 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8211}
8212
8213/* Specify how various signals in the inferior should be handled. */
8214
8215static void
0b39b52e 8216handle_command (const char *args, int from_tty)
c906108c 8217{
c906108c 8218 int digits, wordlen;
b926417a 8219 int sigfirst, siglast;
2ea28649 8220 enum gdb_signal oursig;
c906108c 8221 int allsigs;
c906108c
SS
8222
8223 if (args == NULL)
8224 {
e2e0b3e5 8225 error_no_arg (_("signal to handle"));
c906108c
SS
8226 }
8227
1777feb0 8228 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8229
adc6a863
PA
8230 const size_t nsigs = GDB_SIGNAL_LAST;
8231 unsigned char sigs[nsigs] {};
c906108c 8232
1777feb0 8233 /* Break the command line up into args. */
c906108c 8234
773a1edc 8235 gdb_argv built_argv (args);
c906108c
SS
8236
8237 /* Walk through the args, looking for signal oursigs, signal names, and
8238 actions. Signal numbers and signal names may be interspersed with
8239 actions, with the actions being performed for all signals cumulatively
1777feb0 8240 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8241
773a1edc 8242 for (char *arg : built_argv)
c906108c 8243 {
773a1edc
TT
8244 wordlen = strlen (arg);
8245 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8246 {;
8247 }
8248 allsigs = 0;
8249 sigfirst = siglast = -1;
8250
773a1edc 8251 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8252 {
8253 /* Apply action to all signals except those used by the
1777feb0 8254 debugger. Silently skip those. */
c906108c
SS
8255 allsigs = 1;
8256 sigfirst = 0;
8257 siglast = nsigs - 1;
8258 }
773a1edc 8259 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8260 {
8261 SET_SIGS (nsigs, sigs, signal_stop);
8262 SET_SIGS (nsigs, sigs, signal_print);
8263 }
773a1edc 8264 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8265 {
8266 UNSET_SIGS (nsigs, sigs, signal_program);
8267 }
773a1edc 8268 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8269 {
8270 SET_SIGS (nsigs, sigs, signal_print);
8271 }
773a1edc 8272 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8273 {
8274 SET_SIGS (nsigs, sigs, signal_program);
8275 }
773a1edc 8276 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8277 {
8278 UNSET_SIGS (nsigs, sigs, signal_stop);
8279 }
773a1edc 8280 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8281 {
8282 SET_SIGS (nsigs, sigs, signal_program);
8283 }
773a1edc 8284 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8285 {
8286 UNSET_SIGS (nsigs, sigs, signal_print);
8287 UNSET_SIGS (nsigs, sigs, signal_stop);
8288 }
773a1edc 8289 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8290 {
8291 UNSET_SIGS (nsigs, sigs, signal_program);
8292 }
8293 else if (digits > 0)
8294 {
8295 /* It is numeric. The numeric signal refers to our own
8296 internal signal numbering from target.h, not to host/target
8297 signal number. This is a feature; users really should be
8298 using symbolic names anyway, and the common ones like
8299 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8300
8301 sigfirst = siglast = (int)
773a1edc
TT
8302 gdb_signal_from_command (atoi (arg));
8303 if (arg[digits] == '-')
c906108c
SS
8304 {
8305 siglast = (int)
773a1edc 8306 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8307 }
8308 if (sigfirst > siglast)
8309 {
1777feb0 8310 /* Bet he didn't figure we'd think of this case... */
b926417a 8311 std::swap (sigfirst, siglast);
c906108c
SS
8312 }
8313 }
8314 else
8315 {
773a1edc 8316 oursig = gdb_signal_from_name (arg);
a493e3e2 8317 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8318 {
8319 sigfirst = siglast = (int) oursig;
8320 }
8321 else
8322 {
8323 /* Not a number and not a recognized flag word => complain. */
773a1edc 8324 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8325 }
8326 }
8327
8328 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8329 which signals to apply actions to. */
c906108c 8330
b926417a 8331 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8332 {
2ea28649 8333 switch ((enum gdb_signal) signum)
c906108c 8334 {
a493e3e2
PA
8335 case GDB_SIGNAL_TRAP:
8336 case GDB_SIGNAL_INT:
c906108c
SS
8337 if (!allsigs && !sigs[signum])
8338 {
9e2f0ad4 8339 if (query (_("%s is used by the debugger.\n\
3e43a32a 8340Are you sure you want to change it? "),
2ea28649 8341 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8342 {
8343 sigs[signum] = 1;
8344 }
8345 else
c119e040 8346 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8347 }
8348 break;
a493e3e2
PA
8349 case GDB_SIGNAL_0:
8350 case GDB_SIGNAL_DEFAULT:
8351 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8352 /* Make sure that "all" doesn't print these. */
8353 break;
8354 default:
8355 sigs[signum] = 1;
8356 break;
8357 }
8358 }
c906108c
SS
8359 }
8360
b926417a 8361 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8362 if (sigs[signum])
8363 {
2455069d 8364 signal_cache_update (-1);
adc6a863
PA
8365 target_pass_signals (signal_pass);
8366 target_program_signals (signal_program);
c906108c 8367
3a031f65
PA
8368 if (from_tty)
8369 {
8370 /* Show the results. */
8371 sig_print_header ();
8372 for (; signum < nsigs; signum++)
8373 if (sigs[signum])
aead7601 8374 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8375 }
8376
8377 break;
8378 }
c906108c
SS
8379}
8380
de0bea00
MF
8381/* Complete the "handle" command. */
8382
eb3ff9a5 8383static void
de0bea00 8384handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8385 completion_tracker &tracker,
6f937416 8386 const char *text, const char *word)
de0bea00 8387{
de0bea00
MF
8388 static const char * const keywords[] =
8389 {
8390 "all",
8391 "stop",
8392 "ignore",
8393 "print",
8394 "pass",
8395 "nostop",
8396 "noignore",
8397 "noprint",
8398 "nopass",
8399 NULL,
8400 };
8401
eb3ff9a5
PA
8402 signal_completer (ignore, tracker, text, word);
8403 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8404}
8405
2ea28649
PA
8406enum gdb_signal
8407gdb_signal_from_command (int num)
ed01b82c
PA
8408{
8409 if (num >= 1 && num <= 15)
2ea28649 8410 return (enum gdb_signal) num;
ed01b82c
PA
8411 error (_("Only signals 1-15 are valid as numeric signals.\n\
8412Use \"info signals\" for a list of symbolic signals."));
8413}
8414
c906108c
SS
8415/* Print current contents of the tables set by the handle command.
8416 It is possible we should just be printing signals actually used
8417 by the current target (but for things to work right when switching
8418 targets, all signals should be in the signal tables). */
8419
8420static void
1d12d88f 8421info_signals_command (const char *signum_exp, int from_tty)
c906108c 8422{
2ea28649 8423 enum gdb_signal oursig;
abbb1732 8424
c906108c
SS
8425 sig_print_header ();
8426
8427 if (signum_exp)
8428 {
8429 /* First see if this is a symbol name. */
2ea28649 8430 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8431 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8432 {
8433 /* No, try numeric. */
8434 oursig =
2ea28649 8435 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8436 }
8437 sig_print_info (oursig);
8438 return;
8439 }
8440
8441 printf_filtered ("\n");
8442 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8443 for (oursig = GDB_SIGNAL_FIRST;
8444 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8445 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8446 {
8447 QUIT;
8448
a493e3e2
PA
8449 if (oursig != GDB_SIGNAL_UNKNOWN
8450 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8451 sig_print_info (oursig);
8452 }
8453
3e43a32a
MS
8454 printf_filtered (_("\nUse the \"handle\" command "
8455 "to change these tables.\n"));
c906108c 8456}
4aa995e1
PA
8457
8458/* The $_siginfo convenience variable is a bit special. We don't know
8459 for sure the type of the value until we actually have a chance to
7a9dd1b2 8460 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8461 also dependent on which thread you have selected.
8462
8463 1. making $_siginfo be an internalvar that creates a new value on
8464 access.
8465
8466 2. making the value of $_siginfo be an lval_computed value. */
8467
8468/* This function implements the lval_computed support for reading a
8469 $_siginfo value. */
8470
8471static void
8472siginfo_value_read (struct value *v)
8473{
8474 LONGEST transferred;
8475
a911d87a
PA
8476 /* If we can access registers, so can we access $_siginfo. Likewise
8477 vice versa. */
8478 validate_registers_access ();
c709acd1 8479
4aa995e1 8480 transferred =
8b88a78e 8481 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
8482 NULL,
8483 value_contents_all_raw (v),
8484 value_offset (v),
8485 TYPE_LENGTH (value_type (v)));
8486
8487 if (transferred != TYPE_LENGTH (value_type (v)))
8488 error (_("Unable to read siginfo"));
8489}
8490
8491/* This function implements the lval_computed support for writing a
8492 $_siginfo value. */
8493
8494static void
8495siginfo_value_write (struct value *v, struct value *fromval)
8496{
8497 LONGEST transferred;
8498
a911d87a
PA
8499 /* If we can access registers, so can we access $_siginfo. Likewise
8500 vice versa. */
8501 validate_registers_access ();
c709acd1 8502
8b88a78e 8503 transferred = target_write (current_top_target (),
4aa995e1
PA
8504 TARGET_OBJECT_SIGNAL_INFO,
8505 NULL,
8506 value_contents_all_raw (fromval),
8507 value_offset (v),
8508 TYPE_LENGTH (value_type (fromval)));
8509
8510 if (transferred != TYPE_LENGTH (value_type (fromval)))
8511 error (_("Unable to write siginfo"));
8512}
8513
c8f2448a 8514static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8515 {
8516 siginfo_value_read,
8517 siginfo_value_write
8518 };
8519
8520/* Return a new value with the correct type for the siginfo object of
78267919
UW
8521 the current thread using architecture GDBARCH. Return a void value
8522 if there's no object available. */
4aa995e1 8523
2c0b251b 8524static struct value *
22d2b532
SDJ
8525siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8526 void *ignore)
4aa995e1 8527{
4aa995e1 8528 if (target_has_stack
d7e15655 8529 && inferior_ptid != null_ptid
78267919 8530 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8531 {
78267919 8532 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8533
78267919 8534 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8535 }
8536
78267919 8537 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8538}
8539
c906108c 8540\f
16c381f0
JK
8541/* infcall_suspend_state contains state about the program itself like its
8542 registers and any signal it received when it last stopped.
8543 This state must be restored regardless of how the inferior function call
8544 ends (either successfully, or after it hits a breakpoint or signal)
8545 if the program is to properly continue where it left off. */
8546
6bf78e29 8547class infcall_suspend_state
7a292a7a 8548{
6bf78e29
AB
8549public:
8550 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8551 once the inferior function call has finished. */
8552 infcall_suspend_state (struct gdbarch *gdbarch,
8553 const struct thread_info *tp,
8554 struct regcache *regcache)
8555 : m_thread_suspend (tp->suspend),
8556 m_registers (new readonly_detached_regcache (*regcache))
8557 {
8558 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8559
8560 if (gdbarch_get_siginfo_type_p (gdbarch))
8561 {
8562 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8563 size_t len = TYPE_LENGTH (type);
8564
8565 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8566
8567 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8568 siginfo_data.get (), 0, len) != len)
8569 {
8570 /* Errors ignored. */
8571 siginfo_data.reset (nullptr);
8572 }
8573 }
8574
8575 if (siginfo_data)
8576 {
8577 m_siginfo_gdbarch = gdbarch;
8578 m_siginfo_data = std::move (siginfo_data);
8579 }
8580 }
8581
8582 /* Return a pointer to the stored register state. */
16c381f0 8583
6bf78e29
AB
8584 readonly_detached_regcache *registers () const
8585 {
8586 return m_registers.get ();
8587 }
8588
8589 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8590
8591 void restore (struct gdbarch *gdbarch,
8592 struct thread_info *tp,
8593 struct regcache *regcache) const
8594 {
8595 tp->suspend = m_thread_suspend;
8596
8597 if (m_siginfo_gdbarch == gdbarch)
8598 {
8599 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8600
8601 /* Errors ignored. */
8602 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8603 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8604 }
8605
8606 /* The inferior can be gone if the user types "print exit(0)"
8607 (and perhaps other times). */
8608 if (target_has_execution)
8609 /* NB: The register write goes through to the target. */
8610 regcache->restore (registers ());
8611 }
8612
8613private:
8614 /* How the current thread stopped before the inferior function call was
8615 executed. */
8616 struct thread_suspend_state m_thread_suspend;
8617
8618 /* The registers before the inferior function call was executed. */
8619 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 8620
35515841 8621 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 8622 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
8623
8624 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8625 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8626 content would be invalid. */
6bf78e29 8627 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
8628};
8629
cb524840
TT
8630infcall_suspend_state_up
8631save_infcall_suspend_state ()
b89667eb 8632{
b89667eb 8633 struct thread_info *tp = inferior_thread ();
1736ad11 8634 struct regcache *regcache = get_current_regcache ();
ac7936df 8635 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 8636
6bf78e29
AB
8637 infcall_suspend_state_up inf_state
8638 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 8639
6bf78e29
AB
8640 /* Having saved the current state, adjust the thread state, discarding
8641 any stop signal information. The stop signal is not useful when
8642 starting an inferior function call, and run_inferior_call will not use
8643 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 8644 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8645
b89667eb
DE
8646 return inf_state;
8647}
8648
8649/* Restore inferior session state to INF_STATE. */
8650
8651void
16c381f0 8652restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8653{
8654 struct thread_info *tp = inferior_thread ();
1736ad11 8655 struct regcache *regcache = get_current_regcache ();
ac7936df 8656 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 8657
6bf78e29 8658 inf_state->restore (gdbarch, tp, regcache);
16c381f0 8659 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8660}
8661
b89667eb 8662void
16c381f0 8663discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 8664{
dd848631 8665 delete inf_state;
b89667eb
DE
8666}
8667
daf6667d 8668readonly_detached_regcache *
16c381f0 8669get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 8670{
6bf78e29 8671 return inf_state->registers ();
b89667eb
DE
8672}
8673
16c381f0
JK
8674/* infcall_control_state contains state regarding gdb's control of the
8675 inferior itself like stepping control. It also contains session state like
8676 the user's currently selected frame. */
b89667eb 8677
16c381f0 8678struct infcall_control_state
b89667eb 8679{
16c381f0
JK
8680 struct thread_control_state thread_control;
8681 struct inferior_control_state inferior_control;
d82142e2
JK
8682
8683 /* Other fields: */
ee841dd8
TT
8684 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
8685 int stopped_by_random_signal = 0;
7a292a7a 8686
b89667eb 8687 /* ID if the selected frame when the inferior function call was made. */
ee841dd8 8688 struct frame_id selected_frame_id {};
7a292a7a
SS
8689};
8690
c906108c 8691/* Save all of the information associated with the inferior<==>gdb
b89667eb 8692 connection. */
c906108c 8693
cb524840
TT
8694infcall_control_state_up
8695save_infcall_control_state ()
c906108c 8696{
cb524840 8697 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 8698 struct thread_info *tp = inferior_thread ();
d6b48e9c 8699 struct inferior *inf = current_inferior ();
7a292a7a 8700
16c381f0
JK
8701 inf_status->thread_control = tp->control;
8702 inf_status->inferior_control = inf->control;
d82142e2 8703
8358c15c 8704 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8705 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8706
16c381f0
JK
8707 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8708 chain. If caller's caller is walking the chain, they'll be happier if we
8709 hand them back the original chain when restore_infcall_control_state is
8710 called. */
8711 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8712
8713 /* Other fields: */
8714 inf_status->stop_stack_dummy = stop_stack_dummy;
8715 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 8716
206415a3 8717 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8718
7a292a7a 8719 return inf_status;
c906108c
SS
8720}
8721
bf469271
PA
8722static void
8723restore_selected_frame (const frame_id &fid)
c906108c 8724{
bf469271 8725 frame_info *frame = frame_find_by_id (fid);
c906108c 8726
aa0cd9c1
AC
8727 /* If inf_status->selected_frame_id is NULL, there was no previously
8728 selected frame. */
101dcfbe 8729 if (frame == NULL)
c906108c 8730 {
8a3fe4f8 8731 warning (_("Unable to restore previously selected frame."));
bf469271 8732 return;
c906108c
SS
8733 }
8734
0f7d239c 8735 select_frame (frame);
c906108c
SS
8736}
8737
b89667eb
DE
8738/* Restore inferior session state to INF_STATUS. */
8739
c906108c 8740void
16c381f0 8741restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 8742{
4e1c45ea 8743 struct thread_info *tp = inferior_thread ();
d6b48e9c 8744 struct inferior *inf = current_inferior ();
4e1c45ea 8745
8358c15c
JK
8746 if (tp->control.step_resume_breakpoint)
8747 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8748
5b79abe7
TT
8749 if (tp->control.exception_resume_breakpoint)
8750 tp->control.exception_resume_breakpoint->disposition
8751 = disp_del_at_next_stop;
8752
d82142e2 8753 /* Handle the bpstat_copy of the chain. */
16c381f0 8754 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 8755
16c381f0
JK
8756 tp->control = inf_status->thread_control;
8757 inf->control = inf_status->inferior_control;
d82142e2
JK
8758
8759 /* Other fields: */
8760 stop_stack_dummy = inf_status->stop_stack_dummy;
8761 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 8762
b89667eb 8763 if (target_has_stack)
c906108c 8764 {
bf469271 8765 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
8766 walking the stack might encounter a garbage pointer and
8767 error() trying to dereference it. */
a70b8144 8768 try
bf469271
PA
8769 {
8770 restore_selected_frame (inf_status->selected_frame_id);
8771 }
230d2906 8772 catch (const gdb_exception_error &ex)
bf469271
PA
8773 {
8774 exception_fprintf (gdb_stderr, ex,
8775 "Unable to restore previously selected frame:\n");
8776 /* Error in restoring the selected frame. Select the
8777 innermost frame. */
8778 select_frame (get_current_frame ());
8779 }
c906108c 8780 }
c906108c 8781
ee841dd8 8782 delete inf_status;
7a292a7a 8783}
c906108c
SS
8784
8785void
16c381f0 8786discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 8787{
8358c15c
JK
8788 if (inf_status->thread_control.step_resume_breakpoint)
8789 inf_status->thread_control.step_resume_breakpoint->disposition
8790 = disp_del_at_next_stop;
8791
5b79abe7
TT
8792 if (inf_status->thread_control.exception_resume_breakpoint)
8793 inf_status->thread_control.exception_resume_breakpoint->disposition
8794 = disp_del_at_next_stop;
8795
1777feb0 8796 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 8797 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 8798
ee841dd8 8799 delete inf_status;
7a292a7a 8800}
b89667eb 8801\f
7f89fd65 8802/* See infrun.h. */
0c557179
SDJ
8803
8804void
8805clear_exit_convenience_vars (void)
8806{
8807 clear_internalvar (lookup_internalvar ("_exitsignal"));
8808 clear_internalvar (lookup_internalvar ("_exitcode"));
8809}
c5aa993b 8810\f
488f131b 8811
b2175913
MS
8812/* User interface for reverse debugging:
8813 Set exec-direction / show exec-direction commands
8814 (returns error unless target implements to_set_exec_direction method). */
8815
170742de 8816enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
8817static const char exec_forward[] = "forward";
8818static const char exec_reverse[] = "reverse";
8819static const char *exec_direction = exec_forward;
40478521 8820static const char *const exec_direction_names[] = {
b2175913
MS
8821 exec_forward,
8822 exec_reverse,
8823 NULL
8824};
8825
8826static void
eb4c3f4a 8827set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
8828 struct cmd_list_element *cmd)
8829{
8830 if (target_can_execute_reverse)
8831 {
8832 if (!strcmp (exec_direction, exec_forward))
8833 execution_direction = EXEC_FORWARD;
8834 else if (!strcmp (exec_direction, exec_reverse))
8835 execution_direction = EXEC_REVERSE;
8836 }
8bbed405
MS
8837 else
8838 {
8839 exec_direction = exec_forward;
8840 error (_("Target does not support this operation."));
8841 }
b2175913
MS
8842}
8843
8844static void
8845show_exec_direction_func (struct ui_file *out, int from_tty,
8846 struct cmd_list_element *cmd, const char *value)
8847{
8848 switch (execution_direction) {
8849 case EXEC_FORWARD:
8850 fprintf_filtered (out, _("Forward.\n"));
8851 break;
8852 case EXEC_REVERSE:
8853 fprintf_filtered (out, _("Reverse.\n"));
8854 break;
b2175913 8855 default:
d8b34453
PA
8856 internal_error (__FILE__, __LINE__,
8857 _("bogus execution_direction value: %d"),
8858 (int) execution_direction);
b2175913
MS
8859 }
8860}
8861
d4db2f36
PA
8862static void
8863show_schedule_multiple (struct ui_file *file, int from_tty,
8864 struct cmd_list_element *c, const char *value)
8865{
3e43a32a
MS
8866 fprintf_filtered (file, _("Resuming the execution of threads "
8867 "of all processes is %s.\n"), value);
d4db2f36 8868}
ad52ddc6 8869
22d2b532
SDJ
8870/* Implementation of `siginfo' variable. */
8871
8872static const struct internalvar_funcs siginfo_funcs =
8873{
8874 siginfo_make_value,
8875 NULL,
8876 NULL
8877};
8878
372316f1
PA
8879/* Callback for infrun's target events source. This is marked when a
8880 thread has a pending status to process. */
8881
8882static void
8883infrun_async_inferior_event_handler (gdb_client_data data)
8884{
372316f1
PA
8885 inferior_event_handler (INF_REG_EVENT, NULL);
8886}
8887
c906108c 8888void
96baa820 8889_initialize_infrun (void)
c906108c 8890{
de0bea00 8891 struct cmd_list_element *c;
c906108c 8892
372316f1
PA
8893 /* Register extra event sources in the event loop. */
8894 infrun_async_inferior_event_token
8895 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
8896
11db9430 8897 add_info ("signals", info_signals_command, _("\
1bedd215
AC
8898What debugger does when program gets various signals.\n\
8899Specify a signal as argument to print info on that signal only."));
c906108c
SS
8900 add_info_alias ("handle", "signals", 0);
8901
de0bea00 8902 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 8903Specify how to handle signals.\n\
486c7739 8904Usage: handle SIGNAL [ACTIONS]\n\
c906108c 8905Args are signals and actions to apply to those signals.\n\
dfbd5e7b 8906If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
8907will be displayed instead.\n\
8908\n\
c906108c
SS
8909Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
8910from 1-15 are allowed for compatibility with old versions of GDB.\n\
8911Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
8912The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 8913used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 8914\n\
1bedd215 8915Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
8916\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
8917Stop means reenter debugger if this signal happens (implies print).\n\
8918Print means print a message if this signal happens.\n\
8919Pass means let program see this signal; otherwise program doesn't know.\n\
8920Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
8921Pass and Stop may be combined.\n\
8922\n\
8923Multiple signals may be specified. Signal numbers and signal names\n\
8924may be interspersed with actions, with the actions being performed for\n\
8925all signals cumulatively specified."));
de0bea00 8926 set_cmd_completer (c, handle_completer);
486c7739 8927
c906108c 8928 if (!dbx_commands)
1a966eab
AC
8929 stop_command = add_cmd ("stop", class_obscure,
8930 not_just_help_class_command, _("\
8931There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 8932This allows you to set a list of commands to be run each time execution\n\
1a966eab 8933of the program stops."), &cmdlist);
c906108c 8934
ccce17b0 8935 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
8936Set inferior debugging."), _("\
8937Show inferior debugging."), _("\
8938When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
8939 NULL,
8940 show_debug_infrun,
8941 &setdebuglist, &showdebuglist);
527159b7 8942
3e43a32a
MS
8943 add_setshow_boolean_cmd ("displaced", class_maintenance,
8944 &debug_displaced, _("\
237fc4c9
PA
8945Set displaced stepping debugging."), _("\
8946Show displaced stepping debugging."), _("\
8947When non-zero, displaced stepping specific debugging is enabled."),
8948 NULL,
8949 show_debug_displaced,
8950 &setdebuglist, &showdebuglist);
8951
ad52ddc6
PA
8952 add_setshow_boolean_cmd ("non-stop", no_class,
8953 &non_stop_1, _("\
8954Set whether gdb controls the inferior in non-stop mode."), _("\
8955Show whether gdb controls the inferior in non-stop mode."), _("\
8956When debugging a multi-threaded program and this setting is\n\
8957off (the default, also called all-stop mode), when one thread stops\n\
8958(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
8959all other threads in the program while you interact with the thread of\n\
8960interest. When you continue or step a thread, you can allow the other\n\
8961threads to run, or have them remain stopped, but while you inspect any\n\
8962thread's state, all threads stop.\n\
8963\n\
8964In non-stop mode, when one thread stops, other threads can continue\n\
8965to run freely. You'll be able to step each thread independently,\n\
8966leave it stopped or free to run as needed."),
8967 set_non_stop,
8968 show_non_stop,
8969 &setlist,
8970 &showlist);
8971
adc6a863 8972 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
c906108c
SS
8973 {
8974 signal_stop[i] = 1;
8975 signal_print[i] = 1;
8976 signal_program[i] = 1;
ab04a2af 8977 signal_catch[i] = 0;
c906108c
SS
8978 }
8979
4d9d9d04
PA
8980 /* Signals caused by debugger's own actions should not be given to
8981 the program afterwards.
8982
8983 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
8984 explicitly specifies that it should be delivered to the target
8985 program. Typically, that would occur when a user is debugging a
8986 target monitor on a simulator: the target monitor sets a
8987 breakpoint; the simulator encounters this breakpoint and halts
8988 the simulation handing control to GDB; GDB, noting that the stop
8989 address doesn't map to any known breakpoint, returns control back
8990 to the simulator; the simulator then delivers the hardware
8991 equivalent of a GDB_SIGNAL_TRAP to the program being
8992 debugged. */
a493e3e2
PA
8993 signal_program[GDB_SIGNAL_TRAP] = 0;
8994 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
8995
8996 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
8997 signal_stop[GDB_SIGNAL_ALRM] = 0;
8998 signal_print[GDB_SIGNAL_ALRM] = 0;
8999 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9000 signal_print[GDB_SIGNAL_VTALRM] = 0;
9001 signal_stop[GDB_SIGNAL_PROF] = 0;
9002 signal_print[GDB_SIGNAL_PROF] = 0;
9003 signal_stop[GDB_SIGNAL_CHLD] = 0;
9004 signal_print[GDB_SIGNAL_CHLD] = 0;
9005 signal_stop[GDB_SIGNAL_IO] = 0;
9006 signal_print[GDB_SIGNAL_IO] = 0;
9007 signal_stop[GDB_SIGNAL_POLL] = 0;
9008 signal_print[GDB_SIGNAL_POLL] = 0;
9009 signal_stop[GDB_SIGNAL_URG] = 0;
9010 signal_print[GDB_SIGNAL_URG] = 0;
9011 signal_stop[GDB_SIGNAL_WINCH] = 0;
9012 signal_print[GDB_SIGNAL_WINCH] = 0;
9013 signal_stop[GDB_SIGNAL_PRIO] = 0;
9014 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9015
cd0fc7c3
SS
9016 /* These signals are used internally by user-level thread
9017 implementations. (See signal(5) on Solaris.) Like the above
9018 signals, a healthy program receives and handles them as part of
9019 its normal operation. */
a493e3e2
PA
9020 signal_stop[GDB_SIGNAL_LWP] = 0;
9021 signal_print[GDB_SIGNAL_LWP] = 0;
9022 signal_stop[GDB_SIGNAL_WAITING] = 0;
9023 signal_print[GDB_SIGNAL_WAITING] = 0;
9024 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9025 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9026 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9027 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9028
2455069d
UW
9029 /* Update cached state. */
9030 signal_cache_update (-1);
9031
85c07804
AC
9032 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9033 &stop_on_solib_events, _("\
9034Set stopping for shared library events."), _("\
9035Show stopping for shared library events."), _("\
c906108c
SS
9036If nonzero, gdb will give control to the user when the dynamic linker\n\
9037notifies gdb of shared library events. The most common event of interest\n\
85c07804 9038to the user would be loading/unloading of a new library."),
f9e14852 9039 set_stop_on_solib_events,
920d2a44 9040 show_stop_on_solib_events,
85c07804 9041 &setlist, &showlist);
c906108c 9042
7ab04401
AC
9043 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9044 follow_fork_mode_kind_names,
9045 &follow_fork_mode_string, _("\
9046Set debugger response to a program call of fork or vfork."), _("\
9047Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9048A fork or vfork creates a new process. follow-fork-mode can be:\n\
9049 parent - the original process is debugged after a fork\n\
9050 child - the new process is debugged after a fork\n\
ea1dd7bc 9051The unfollowed process will continue to run.\n\
7ab04401
AC
9052By default, the debugger will follow the parent process."),
9053 NULL,
920d2a44 9054 show_follow_fork_mode_string,
7ab04401
AC
9055 &setlist, &showlist);
9056
6c95b8df
PA
9057 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9058 follow_exec_mode_names,
9059 &follow_exec_mode_string, _("\
9060Set debugger response to a program call of exec."), _("\
9061Show debugger response to a program call of exec."), _("\
9062An exec call replaces the program image of a process.\n\
9063\n\
9064follow-exec-mode can be:\n\
9065\n\
cce7e648 9066 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9067to this new inferior. The program the process was running before\n\
9068the exec call can be restarted afterwards by restarting the original\n\
9069inferior.\n\
9070\n\
9071 same - the debugger keeps the process bound to the same inferior.\n\
9072The new executable image replaces the previous executable loaded in\n\
9073the inferior. Restarting the inferior after the exec call restarts\n\
9074the executable the process was running after the exec call.\n\
9075\n\
9076By default, the debugger will use the same inferior."),
9077 NULL,
9078 show_follow_exec_mode_string,
9079 &setlist, &showlist);
9080
7ab04401
AC
9081 add_setshow_enum_cmd ("scheduler-locking", class_run,
9082 scheduler_enums, &scheduler_mode, _("\
9083Set mode for locking scheduler during execution."), _("\
9084Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9085off == no locking (threads may preempt at any time)\n\
9086on == full locking (no thread except the current thread may run)\n\
9087 This applies to both normal execution and replay mode.\n\
9088step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9089 In this mode, other threads may run during other commands.\n\
9090 This applies to both normal execution and replay mode.\n\
9091replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9092 set_schedlock_func, /* traps on target vector */
920d2a44 9093 show_scheduler_mode,
7ab04401 9094 &setlist, &showlist);
5fbbeb29 9095
d4db2f36
PA
9096 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9097Set mode for resuming threads of all processes."), _("\
9098Show mode for resuming threads of all processes."), _("\
9099When on, execution commands (such as 'continue' or 'next') resume all\n\
9100threads of all processes. When off (which is the default), execution\n\
9101commands only resume the threads of the current process. The set of\n\
9102threads that are resumed is further refined by the scheduler-locking\n\
9103mode (see help set scheduler-locking)."),
9104 NULL,
9105 show_schedule_multiple,
9106 &setlist, &showlist);
9107
5bf193a2
AC
9108 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9109Set mode of the step operation."), _("\
9110Show mode of the step operation."), _("\
9111When set, doing a step over a function without debug line information\n\
9112will stop at the first instruction of that function. Otherwise, the\n\
9113function is skipped and the step command stops at a different source line."),
9114 NULL,
920d2a44 9115 show_step_stop_if_no_debug,
5bf193a2 9116 &setlist, &showlist);
ca6724c1 9117
72d0e2c5
YQ
9118 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9119 &can_use_displaced_stepping, _("\
237fc4c9
PA
9120Set debugger's willingness to use displaced stepping."), _("\
9121Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9122If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9123supported by the target architecture. If off, gdb will not use displaced\n\
9124stepping to step over breakpoints, even if such is supported by the target\n\
9125architecture. If auto (which is the default), gdb will use displaced stepping\n\
9126if the target architecture supports it and non-stop mode is active, but will not\n\
9127use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9128 NULL,
9129 show_can_use_displaced_stepping,
9130 &setlist, &showlist);
237fc4c9 9131
b2175913
MS
9132 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9133 &exec_direction, _("Set direction of execution.\n\
9134Options are 'forward' or 'reverse'."),
9135 _("Show direction of execution (forward/reverse)."),
9136 _("Tells gdb whether to execute forward or backward."),
9137 set_exec_direction_func, show_exec_direction_func,
9138 &setlist, &showlist);
9139
6c95b8df
PA
9140 /* Set/show detach-on-fork: user-settable mode. */
9141
9142 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9143Set whether gdb will detach the child of a fork."), _("\
9144Show whether gdb will detach the child of a fork."), _("\
9145Tells gdb whether to detach the child of a fork."),
9146 NULL, NULL, &setlist, &showlist);
9147
03583c20
UW
9148 /* Set/show disable address space randomization mode. */
9149
9150 add_setshow_boolean_cmd ("disable-randomization", class_support,
9151 &disable_randomization, _("\
9152Set disabling of debuggee's virtual address space randomization."), _("\
9153Show disabling of debuggee's virtual address space randomization."), _("\
9154When this mode is on (which is the default), randomization of the virtual\n\
9155address space is disabled. Standalone programs run with the randomization\n\
9156enabled by default on some platforms."),
9157 &set_disable_randomization,
9158 &show_disable_randomization,
9159 &setlist, &showlist);
9160
ca6724c1 9161 /* ptid initializations */
ca6724c1
KB
9162 inferior_ptid = null_ptid;
9163 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9164
76727919
TT
9165 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9166 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9167 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9168 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9169
9170 /* Explicitly create without lookup, since that tries to create a
9171 value with a void typed value, and when we get here, gdbarch
9172 isn't initialized yet. At this point, we're quite sure there
9173 isn't another convenience variable of the same name. */
22d2b532 9174 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9175
9176 add_setshow_boolean_cmd ("observer", no_class,
9177 &observer_mode_1, _("\
9178Set whether gdb controls the inferior in observer mode."), _("\
9179Show whether gdb controls the inferior in observer mode."), _("\
9180In observer mode, GDB can get data from the inferior, but not\n\
9181affect its execution. Registers and memory may not be changed,\n\
9182breakpoints may not be set, and the program cannot be interrupted\n\
9183or signalled."),
9184 set_observer_mode,
9185 show_observer_mode,
9186 &setlist,
9187 &showlist);
c906108c 9188}