]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/infrun.c
* dwarf2read.c (dwarf_attr_name): Rename `DW_AT_stride_size' to its
[thirdparty/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca
DJ
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
8621d6a9 6 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
a77053c2 48
9f976b41 49#include "gdb_assert.h"
034dad6f 50#include "mi/mi-common.h"
c906108c
SS
51
52/* Prototypes for local functions */
53
96baa820 54static void signals_info (char *, int);
c906108c 55
96baa820 56static void handle_command (char *, int);
c906108c 57
96baa820 58static void sig_print_info (enum target_signal);
c906108c 59
96baa820 60static void sig_print_header (void);
c906108c 61
74b7792f 62static void resume_cleanups (void *);
c906108c 63
96baa820 64static int hook_stop_stub (void *);
c906108c 65
96baa820
JM
66static int restore_selected_frame (void *);
67
68static void build_infrun (void);
69
4ef3f3be 70static int follow_fork (void);
96baa820
JM
71
72static void set_schedlock_func (char *args, int from_tty,
488f131b 73 struct cmd_list_element *c);
96baa820 74
96baa820
JM
75struct execution_control_state;
76
77static int currently_stepping (struct execution_control_state *ecs);
78
79static void xdb_handle_command (char *args, int from_tty);
80
6a6b96b9 81static int prepare_to_proceed (int);
ea67f13b 82
96baa820 83void _initialize_infrun (void);
43ff13b4 84
c906108c
SS
85int inferior_ignoring_leading_exec_events = 0;
86
5fbbeb29
CF
87/* When set, stop the 'step' command if we enter a function which has
88 no line number information. The normal behavior is that we step
89 over such function. */
90int step_stop_if_no_debug = 0;
920d2a44
AC
91static void
92show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
93 struct cmd_list_element *c, const char *value)
94{
95 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
96}
5fbbeb29 97
43ff13b4 98/* In asynchronous mode, but simulating synchronous execution. */
96baa820 99
43ff13b4
JM
100int sync_execution = 0;
101
c906108c
SS
102/* wait_for_inferior and normal_stop use this to notify the user
103 when the inferior stopped in a different thread than it had been
96baa820
JM
104 running in. */
105
39f77062 106static ptid_t previous_inferior_ptid;
7a292a7a
SS
107
108/* This is true for configurations that may follow through execl() and
109 similar functions. At present this is only true for HP-UX native. */
110
111#ifndef MAY_FOLLOW_EXEC
112#define MAY_FOLLOW_EXEC (0)
c906108c
SS
113#endif
114
7a292a7a
SS
115static int may_follow_exec = MAY_FOLLOW_EXEC;
116
527159b7 117static int debug_infrun = 0;
920d2a44
AC
118static void
119show_debug_infrun (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121{
122 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
123}
527159b7 124
d4f3574e
SS
125/* If the program uses ELF-style shared libraries, then calls to
126 functions in shared libraries go through stubs, which live in a
127 table called the PLT (Procedure Linkage Table). The first time the
128 function is called, the stub sends control to the dynamic linker,
129 which looks up the function's real address, patches the stub so
130 that future calls will go directly to the function, and then passes
131 control to the function.
132
133 If we are stepping at the source level, we don't want to see any of
134 this --- we just want to skip over the stub and the dynamic linker.
135 The simple approach is to single-step until control leaves the
136 dynamic linker.
137
ca557f44
AC
138 However, on some systems (e.g., Red Hat's 5.2 distribution) the
139 dynamic linker calls functions in the shared C library, so you
140 can't tell from the PC alone whether the dynamic linker is still
141 running. In this case, we use a step-resume breakpoint to get us
142 past the dynamic linker, as if we were using "next" to step over a
143 function call.
d4f3574e
SS
144
145 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
146 linker code or not. Normally, this means we single-step. However,
147 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
148 address where we can place a step-resume breakpoint to get past the
149 linker's symbol resolution function.
150
151 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
152 pretty portable way, by comparing the PC against the address ranges
153 of the dynamic linker's sections.
154
155 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
156 it depends on internal details of the dynamic linker. It's usually
157 not too hard to figure out where to put a breakpoint, but it
158 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
159 sanity checking. If it can't figure things out, returning zero and
160 getting the (possibly confusing) stepping behavior is better than
161 signalling an error, which will obscure the change in the
162 inferior's state. */
c906108c 163
c906108c
SS
164/* This function returns TRUE if pc is the address of an instruction
165 that lies within the dynamic linker (such as the event hook, or the
166 dld itself).
167
168 This function must be used only when a dynamic linker event has
169 been caught, and the inferior is being stepped out of the hook, or
170 undefined results are guaranteed. */
171
172#ifndef SOLIB_IN_DYNAMIC_LINKER
173#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
174#endif
175
c2c6d25f 176
7a292a7a
SS
177/* Convert the #defines into values. This is temporary until wfi control
178 flow is completely sorted out. */
179
692590c1
MS
180#ifndef CANNOT_STEP_HW_WATCHPOINTS
181#define CANNOT_STEP_HW_WATCHPOINTS 0
182#else
183#undef CANNOT_STEP_HW_WATCHPOINTS
184#define CANNOT_STEP_HW_WATCHPOINTS 1
185#endif
186
c906108c
SS
187/* Tables of how to react to signals; the user sets them. */
188
189static unsigned char *signal_stop;
190static unsigned char *signal_print;
191static unsigned char *signal_program;
192
193#define SET_SIGS(nsigs,sigs,flags) \
194 do { \
195 int signum = (nsigs); \
196 while (signum-- > 0) \
197 if ((sigs)[signum]) \
198 (flags)[signum] = 1; \
199 } while (0)
200
201#define UNSET_SIGS(nsigs,sigs,flags) \
202 do { \
203 int signum = (nsigs); \
204 while (signum-- > 0) \
205 if ((sigs)[signum]) \
206 (flags)[signum] = 0; \
207 } while (0)
208
39f77062
KB
209/* Value to pass to target_resume() to cause all threads to resume */
210
211#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
212
213/* Command list pointer for the "stop" placeholder. */
214
215static struct cmd_list_element *stop_command;
216
c906108c
SS
217/* Function inferior was in as of last step command. */
218
219static struct symbol *step_start_function;
220
ca67fcb8 221/* Nonzero if we are presently stepping over a breakpoint.
c906108c 222
ca67fcb8
VP
223 If we hit a breakpoint or watchpoint, and then continue,
224 we need to single step the current thread with breakpoints
225 disabled, to avoid hitting the same breakpoint or
226 watchpoint again. And we should step just a single
227 thread and keep other threads stopped, so that
228 other threads don't miss breakpoints while they are removed.
229
230 So, this variable simultaneously means that we need to single
231 step the current thread, keep other threads stopped, and that
232 breakpoints should be removed while we step.
233
234 This variable is set either:
235 - in proceed, when we resume inferior on user's explicit request
236 - in keep_going, if handle_inferior_event decides we need to
237 step over breakpoint.
238
239 The variable is cleared in clear_proceed_status, called every
240 time before we call proceed. The proceed calls wait_for_inferior,
241 which calls handle_inferior_event in a loop, and until
242 wait_for_inferior exits, this variable is changed only by keep_going. */
243
244static int stepping_over_breakpoint;
c906108c 245
c906108c
SS
246/* Nonzero if we want to give control to the user when we're notified
247 of shared library events by the dynamic linker. */
248static int stop_on_solib_events;
920d2a44
AC
249static void
250show_stop_on_solib_events (struct ui_file *file, int from_tty,
251 struct cmd_list_element *c, const char *value)
252{
253 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
254 value);
255}
c906108c 256
c906108c
SS
257/* Nonzero means expecting a trace trap
258 and should stop the inferior and return silently when it happens. */
259
260int stop_after_trap;
261
262/* Nonzero means expecting a trap and caller will handle it themselves.
263 It is used after attach, due to attaching to a process;
264 when running in the shell before the child program has been exec'd;
265 and when running some kinds of remote stuff (FIXME?). */
266
c0236d92 267enum stop_kind stop_soon;
c906108c
SS
268
269/* Nonzero if proceed is being used for a "finish" command or a similar
270 situation when stop_registers should be saved. */
271
272int proceed_to_finish;
273
274/* Save register contents here when about to pop a stack dummy frame,
275 if-and-only-if proceed_to_finish is set.
276 Thus this contains the return value from the called function (assuming
277 values are returned in a register). */
278
72cec141 279struct regcache *stop_registers;
c906108c 280
c906108c
SS
281/* Nonzero after stop if current stack frame should be printed. */
282
283static int stop_print_frame;
284
285static struct breakpoint *step_resume_breakpoint = NULL;
c906108c 286
e02bc4cc 287/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
288 returned by target_wait()/deprecated_target_wait_hook(). This
289 information is returned by get_last_target_status(). */
39f77062 290static ptid_t target_last_wait_ptid;
e02bc4cc
DS
291static struct target_waitstatus target_last_waitstatus;
292
c906108c
SS
293/* This is used to remember when a fork, vfork or exec event
294 was caught by a catchpoint, and thus the event is to be
295 followed at the next resume of the inferior, and not
296 immediately. */
297static struct
488f131b
JB
298{
299 enum target_waitkind kind;
300 struct
c906108c 301 {
488f131b 302 int parent_pid;
488f131b 303 int child_pid;
c906108c 304 }
488f131b
JB
305 fork_event;
306 char *execd_pathname;
307}
c906108c
SS
308pending_follow;
309
53904c9e
AC
310static const char follow_fork_mode_child[] = "child";
311static const char follow_fork_mode_parent[] = "parent";
312
488f131b 313static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
314 follow_fork_mode_child,
315 follow_fork_mode_parent,
316 NULL
ef346e04 317};
c906108c 318
53904c9e 319static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
320static void
321show_follow_fork_mode_string (struct ui_file *file, int from_tty,
322 struct cmd_list_element *c, const char *value)
323{
324 fprintf_filtered (file, _("\
325Debugger response to a program call of fork or vfork is \"%s\".\n"),
326 value);
327}
c906108c
SS
328\f
329
6604731b 330static int
4ef3f3be 331follow_fork (void)
c906108c 332{
ea1dd7bc 333 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
c906108c 334
6604731b 335 return target_follow_fork (follow_child);
c906108c
SS
336}
337
6604731b
DJ
338void
339follow_inferior_reset_breakpoints (void)
c906108c 340{
6604731b
DJ
341 /* Was there a step_resume breakpoint? (There was if the user
342 did a "next" at the fork() call.) If so, explicitly reset its
343 thread number.
344
345 step_resumes are a form of bp that are made to be per-thread.
346 Since we created the step_resume bp when the parent process
347 was being debugged, and now are switching to the child process,
348 from the breakpoint package's viewpoint, that's a switch of
349 "threads". We must update the bp's notion of which thread
350 it is for, or it'll be ignored when it triggers. */
351
352 if (step_resume_breakpoint)
353 breakpoint_re_set_thread (step_resume_breakpoint);
354
355 /* Reinsert all breakpoints in the child. The user may have set
356 breakpoints after catching the fork, in which case those
357 were never set in the child, but only in the parent. This makes
358 sure the inserted breakpoints match the breakpoint list. */
359
360 breakpoint_re_set ();
361 insert_breakpoints ();
c906108c 362}
c906108c 363
1adeb98a
FN
364/* EXECD_PATHNAME is assumed to be non-NULL. */
365
c906108c 366static void
96baa820 367follow_exec (int pid, char *execd_pathname)
c906108c 368{
c906108c 369 int saved_pid = pid;
7a292a7a
SS
370 struct target_ops *tgt;
371
372 if (!may_follow_exec)
373 return;
c906108c 374
c906108c
SS
375 /* This is an exec event that we actually wish to pay attention to.
376 Refresh our symbol table to the newly exec'd program, remove any
377 momentary bp's, etc.
378
379 If there are breakpoints, they aren't really inserted now,
380 since the exec() transformed our inferior into a fresh set
381 of instructions.
382
383 We want to preserve symbolic breakpoints on the list, since
384 we have hopes that they can be reset after the new a.out's
385 symbol table is read.
386
387 However, any "raw" breakpoints must be removed from the list
388 (e.g., the solib bp's), since their address is probably invalid
389 now.
390
391 And, we DON'T want to call delete_breakpoints() here, since
392 that may write the bp's "shadow contents" (the instruction
393 value that was overwritten witha TRAP instruction). Since
394 we now have a new a.out, those shadow contents aren't valid. */
395 update_breakpoints_after_exec ();
396
397 /* If there was one, it's gone now. We cannot truly step-to-next
398 statement through an exec(). */
399 step_resume_breakpoint = NULL;
400 step_range_start = 0;
401 step_range_end = 0;
402
c906108c 403 /* What is this a.out's name? */
a3f17187 404 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
c906108c
SS
405
406 /* We've followed the inferior through an exec. Therefore, the
407 inferior has essentially been killed & reborn. */
7a292a7a
SS
408
409 /* First collect the run target in effect. */
410 tgt = find_run_target ();
411 /* If we can't find one, things are in a very strange state... */
412 if (tgt == NULL)
8a3fe4f8 413 error (_("Could find run target to save before following exec"));
7a292a7a 414
c906108c
SS
415 gdb_flush (gdb_stdout);
416 target_mourn_inferior ();
39f77062 417 inferior_ptid = pid_to_ptid (saved_pid);
488f131b 418 /* Because mourn_inferior resets inferior_ptid. */
7a292a7a 419 push_target (tgt);
c906108c
SS
420
421 /* That a.out is now the one to use. */
422 exec_file_attach (execd_pathname, 0);
423
424 /* And also is where symbols can be found. */
1adeb98a 425 symbol_file_add_main (execd_pathname, 0);
c906108c
SS
426
427 /* Reset the shared library package. This ensures that we get
428 a shlib event when the child reaches "_start", at which point
429 the dld will have had a chance to initialize the child. */
7a292a7a 430#if defined(SOLIB_RESTART)
c906108c 431 SOLIB_RESTART ();
7a292a7a
SS
432#endif
433#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 434 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2
MK
435#else
436 solib_create_inferior_hook ();
7a292a7a 437#endif
c906108c
SS
438
439 /* Reinsert all breakpoints. (Those which were symbolic have
440 been reset to the proper address in the new a.out, thanks
441 to symbol_file_command...) */
442 insert_breakpoints ();
443
444 /* The next resume of this inferior should bring it to the shlib
445 startup breakpoints. (If the user had also set bp's on
446 "main" from the old (parent) process, then they'll auto-
447 matically get reset there in the new process.) */
c906108c
SS
448}
449
450/* Non-zero if we just simulating a single-step. This is needed
451 because we cannot remove the breakpoints in the inferior process
452 until after the `wait' in `wait_for_inferior'. */
453static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
454
455/* The thread we inserted single-step breakpoints for. */
456static ptid_t singlestep_ptid;
457
fd48f117
DJ
458/* PC when we started this single-step. */
459static CORE_ADDR singlestep_pc;
460
9f976b41
DJ
461/* If another thread hit the singlestep breakpoint, we save the original
462 thread here so that we can resume single-stepping it later. */
463static ptid_t saved_singlestep_ptid;
464static int stepping_past_singlestep_breakpoint;
6a6b96b9 465
ca67fcb8
VP
466/* If not equal to null_ptid, this means that after stepping over breakpoint
467 is finished, we need to switch to deferred_step_ptid, and step it.
468
469 The use case is when one thread has hit a breakpoint, and then the user
470 has switched to another thread and issued 'step'. We need to step over
471 breakpoint in the thread which hit the breakpoint, but then continue
472 stepping the thread user has selected. */
473static ptid_t deferred_step_ptid;
c906108c
SS
474\f
475
476/* Things to clean up if we QUIT out of resume (). */
c906108c 477static void
74b7792f 478resume_cleanups (void *ignore)
c906108c
SS
479{
480 normal_stop ();
481}
482
53904c9e
AC
483static const char schedlock_off[] = "off";
484static const char schedlock_on[] = "on";
485static const char schedlock_step[] = "step";
488f131b 486static const char *scheduler_enums[] = {
ef346e04
AC
487 schedlock_off,
488 schedlock_on,
489 schedlock_step,
490 NULL
491};
920d2a44
AC
492static const char *scheduler_mode = schedlock_off;
493static void
494show_scheduler_mode (struct ui_file *file, int from_tty,
495 struct cmd_list_element *c, const char *value)
496{
497 fprintf_filtered (file, _("\
498Mode for locking scheduler during execution is \"%s\".\n"),
499 value);
500}
c906108c
SS
501
502static void
96baa820 503set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 504{
eefe576e
AC
505 if (!target_can_lock_scheduler)
506 {
507 scheduler_mode = schedlock_off;
508 error (_("Target '%s' cannot support this command."), target_shortname);
509 }
c906108c
SS
510}
511
512
513/* Resume the inferior, but allow a QUIT. This is useful if the user
514 wants to interrupt some lengthy single-stepping operation
515 (for child processes, the SIGINT goes to the inferior, and so
516 we get a SIGINT random_signal, but for remote debugging and perhaps
517 other targets, that's not true).
518
519 STEP nonzero if we should step (zero to continue instead).
520 SIG is the signal to give the inferior (zero for none). */
521void
96baa820 522resume (int step, enum target_signal sig)
c906108c
SS
523{
524 int should_resume = 1;
74b7792f 525 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
c906108c
SS
526 QUIT;
527
527159b7 528 if (debug_infrun)
8a9de0e4
AC
529 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
530 step, sig);
527159b7 531
ef5cf84e
MS
532 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
533
c906108c 534
692590c1
MS
535 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
536 over an instruction that causes a page fault without triggering
537 a hardware watchpoint. The kernel properly notices that it shouldn't
538 stop, because the hardware watchpoint is not triggered, but it forgets
539 the step request and continues the program normally.
540 Work around the problem by removing hardware watchpoints if a step is
541 requested, GDB will check for a hardware watchpoint trigger after the
542 step anyway. */
c36b740a 543 if (CANNOT_STEP_HW_WATCHPOINTS && step)
692590c1 544 remove_hw_watchpoints ();
488f131b 545
692590c1 546
c2c6d25f
JM
547 /* Normally, by the time we reach `resume', the breakpoints are either
548 removed or inserted, as appropriate. The exception is if we're sitting
549 at a permanent breakpoint; we need to step over it, but permanent
550 breakpoints can't be removed. So we have to test for it here. */
551 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
6d350bb5
UW
552 {
553 if (gdbarch_skip_permanent_breakpoint_p (current_gdbarch))
594f7785
UW
554 gdbarch_skip_permanent_breakpoint (current_gdbarch,
555 get_current_regcache ());
6d350bb5
UW
556 else
557 error (_("\
558The program is stopped at a permanent breakpoint, but GDB does not know\n\
559how to step past a permanent breakpoint on this architecture. Try using\n\
560a command like `return' or `jump' to continue execution."));
561 }
c2c6d25f 562
1c0fdd0e 563 if (step && gdbarch_software_single_step_p (current_gdbarch))
c906108c
SS
564 {
565 /* Do it the hard way, w/temp breakpoints */
1c0fdd0e 566 if (gdbarch_software_single_step (current_gdbarch, get_current_frame ()))
e6590a1b
UW
567 {
568 /* ...and don't ask hardware to do it. */
569 step = 0;
570 /* and do not pull these breakpoints until after a `wait' in
571 `wait_for_inferior' */
572 singlestep_breakpoints_inserted_p = 1;
573 singlestep_ptid = inferior_ptid;
574 singlestep_pc = read_pc ();
575 }
c906108c
SS
576 }
577
c906108c 578 /* If there were any forks/vforks/execs that were caught and are
6604731b 579 now to be followed, then do so. */
c906108c
SS
580 switch (pending_follow.kind)
581 {
6604731b
DJ
582 case TARGET_WAITKIND_FORKED:
583 case TARGET_WAITKIND_VFORKED:
c906108c 584 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
6604731b
DJ
585 if (follow_fork ())
586 should_resume = 0;
c906108c
SS
587 break;
588
6604731b 589 case TARGET_WAITKIND_EXECD:
c906108c 590 /* follow_exec is called as soon as the exec event is seen. */
6604731b 591 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
c906108c
SS
592 break;
593
594 default:
595 break;
596 }
c906108c
SS
597
598 /* Install inferior's terminal modes. */
599 target_terminal_inferior ();
600
601 if (should_resume)
602 {
39f77062 603 ptid_t resume_ptid;
dfcd3bfb 604
488f131b 605 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e 606
cd76b0b7
VP
607 /* If STEP is set, it's a request to use hardware stepping
608 facilities. But in that case, we should never
609 use singlestep breakpoint. */
610 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
611
612 if (singlestep_breakpoints_inserted_p
613 && stepping_past_singlestep_breakpoint)
c906108c 614 {
cd76b0b7
VP
615 /* The situation here is as follows. In thread T1 we wanted to
616 single-step. Lacking hardware single-stepping we've
617 set breakpoint at the PC of the next instruction -- call it
618 P. After resuming, we've hit that breakpoint in thread T2.
619 Now we've removed original breakpoint, inserted breakpoint
620 at P+1, and try to step to advance T2 past breakpoint.
621 We need to step only T2, as if T1 is allowed to freely run,
622 it can run past P, and if other threads are allowed to run,
623 they can hit breakpoint at P+1, and nested hits of single-step
624 breakpoints is not something we'd want -- that's complicated
625 to support, and has no value. */
626 resume_ptid = inferior_ptid;
627 }
c906108c 628
e842223a
VP
629 if ((step || singlestep_breakpoints_inserted_p)
630 && breakpoint_here_p (read_pc ())
cd76b0b7
VP
631 && !breakpoint_inserted_here_p (read_pc ()))
632 {
633 /* We're stepping, have breakpoint at PC, and it's
634 not inserted. Most likely, proceed has noticed that
635 we have breakpoint and tries to single-step over it,
636 so that it's not hit. In which case, we need to
637 single-step only this thread, and keep others stopped,
638 as they can miss this breakpoint if allowed to run.
639
640 The current code either has all breakpoints inserted,
641 or all removed, so if we let other threads run,
642 we can actually miss any breakpoint, not the one at PC. */
ef5cf84e 643 resume_ptid = inferior_ptid;
c906108c 644 }
ef5cf84e 645
8fb3e588
AC
646 if ((scheduler_mode == schedlock_on)
647 || (scheduler_mode == schedlock_step
648 && (step || singlestep_breakpoints_inserted_p)))
c906108c 649 {
ef5cf84e 650 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 651 resume_ptid = inferior_ptid;
c906108c 652 }
ef5cf84e 653
e6cf7916 654 if (gdbarch_cannot_step_breakpoint (current_gdbarch))
c4ed33b9
AC
655 {
656 /* Most targets can step a breakpoint instruction, thus
657 executing it normally. But if this one cannot, just
658 continue and we will hit it anyway. */
c36b740a 659 if (step && breakpoint_inserted_here_p (read_pc ()))
c4ed33b9
AC
660 step = 0;
661 }
39f77062 662 target_resume (resume_ptid, step, sig);
c906108c
SS
663 }
664
665 discard_cleanups (old_cleanups);
666}
667\f
668
669/* Clear out all variables saying what to do when inferior is continued.
670 First do this, then set the ones you want, then call `proceed'. */
671
672void
96baa820 673clear_proceed_status (void)
c906108c 674{
ca67fcb8 675 stepping_over_breakpoint = 0;
c906108c
SS
676 step_range_start = 0;
677 step_range_end = 0;
aa0cd9c1 678 step_frame_id = null_frame_id;
5fbbeb29 679 step_over_calls = STEP_OVER_UNDEBUGGABLE;
c906108c 680 stop_after_trap = 0;
c0236d92 681 stop_soon = NO_STOP_QUIETLY;
c906108c
SS
682 proceed_to_finish = 0;
683 breakpoint_proceeded = 1; /* We're about to proceed... */
684
d5c31457
UW
685 if (stop_registers)
686 {
687 regcache_xfree (stop_registers);
688 stop_registers = NULL;
689 }
690
c906108c
SS
691 /* Discard any remaining commands or status from previous stop. */
692 bpstat_clear (&stop_bpstat);
693}
694
ea67f13b
DJ
695/* This should be suitable for any targets that support threads. */
696
697static int
6a6b96b9 698prepare_to_proceed (int step)
ea67f13b
DJ
699{
700 ptid_t wait_ptid;
701 struct target_waitstatus wait_status;
702
703 /* Get the last target status returned by target_wait(). */
704 get_last_target_status (&wait_ptid, &wait_status);
705
6a6b96b9 706 /* Make sure we were stopped at a breakpoint. */
ea67f13b 707 if (wait_status.kind != TARGET_WAITKIND_STOPPED
6a6b96b9 708 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
ea67f13b
DJ
709 {
710 return 0;
711 }
712
6a6b96b9 713 /* Switched over from WAIT_PID. */
ea67f13b 714 if (!ptid_equal (wait_ptid, minus_one_ptid)
6a6b96b9
UW
715 && !ptid_equal (inferior_ptid, wait_ptid)
716 && breakpoint_here_p (read_pc_pid (wait_ptid)))
ea67f13b 717 {
6a6b96b9
UW
718 /* If stepping, remember current thread to switch back to. */
719 if (step)
ea67f13b 720 {
ca67fcb8 721 deferred_step_ptid = inferior_ptid;
ea67f13b
DJ
722 }
723
6a6b96b9
UW
724 /* Switch back to WAIT_PID thread. */
725 switch_to_thread (wait_ptid);
726
8fb3e588 727 /* We return 1 to indicate that there is a breakpoint here,
6a6b96b9
UW
728 so we need to step over it before continuing to avoid
729 hitting it straight away. */
730 return 1;
ea67f13b
DJ
731 }
732
733 return 0;
ea67f13b 734}
e4846b08
JJ
735
736/* Record the pc of the program the last time it stopped. This is
737 just used internally by wait_for_inferior, but need to be preserved
738 over calls to it and cleared when the inferior is started. */
739static CORE_ADDR prev_pc;
740
c906108c
SS
741/* Basic routine for continuing the program in various fashions.
742
743 ADDR is the address to resume at, or -1 for resume where stopped.
744 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 745 or -1 for act according to how it stopped.
c906108c 746 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
747 -1 means return after that and print nothing.
748 You should probably set various step_... variables
749 before calling here, if you are stepping.
c906108c
SS
750
751 You should call clear_proceed_status before calling proceed. */
752
753void
96baa820 754proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c
SS
755{
756 int oneproc = 0;
757
758 if (step > 0)
759 step_start_function = find_pc_function (read_pc ());
760 if (step < 0)
761 stop_after_trap = 1;
762
2acceee2 763 if (addr == (CORE_ADDR) -1)
c906108c 764 {
c906108c 765 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
3352ef37
AC
766 /* There is a breakpoint at the address we will resume at,
767 step one instruction before inserting breakpoints so that
768 we do not stop right away (and report a second hit at this
769 breakpoint). */
c906108c 770 oneproc = 1;
3352ef37
AC
771 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
772 && gdbarch_single_step_through_delay (current_gdbarch,
773 get_current_frame ()))
774 /* We stepped onto an instruction that needs to be stepped
775 again before re-inserting the breakpoint, do so. */
c906108c
SS
776 oneproc = 1;
777 }
778 else
779 {
780 write_pc (addr);
c906108c
SS
781 }
782
527159b7 783 if (debug_infrun)
8a9de0e4
AC
784 fprintf_unfiltered (gdb_stdlog,
785 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
786 paddr_nz (addr), siggnal, step);
527159b7 787
c906108c
SS
788 /* In a multi-threaded task we may select another thread
789 and then continue or step.
790
791 But if the old thread was stopped at a breakpoint, it
792 will immediately cause another breakpoint stop without
793 any execution (i.e. it will report a breakpoint hit
794 incorrectly). So we must step over it first.
795
ea67f13b 796 prepare_to_proceed checks the current thread against the thread
c906108c
SS
797 that reported the most recent event. If a step-over is required
798 it returns TRUE and sets the current thread to the old thread. */
6a6b96b9 799 if (prepare_to_proceed (step))
ea67f13b 800 oneproc = 1;
c906108c 801
c906108c
SS
802 if (oneproc)
803 /* We will get a trace trap after one instruction.
804 Continue it automatically and insert breakpoints then. */
ca67fcb8 805 stepping_over_breakpoint = 1;
c906108c 806 else
c36b740a 807 insert_breakpoints ();
c906108c
SS
808
809 if (siggnal != TARGET_SIGNAL_DEFAULT)
810 stop_signal = siggnal;
811 /* If this signal should not be seen by program,
812 give it zero. Used for debugging signals. */
813 else if (!signal_program[stop_signal])
814 stop_signal = TARGET_SIGNAL_0;
815
816 annotate_starting ();
817
818 /* Make sure that output from GDB appears before output from the
819 inferior. */
820 gdb_flush (gdb_stdout);
821
e4846b08
JJ
822 /* Refresh prev_pc value just prior to resuming. This used to be
823 done in stop_stepping, however, setting prev_pc there did not handle
824 scenarios such as inferior function calls or returning from
825 a function via the return command. In those cases, the prev_pc
826 value was not set properly for subsequent commands. The prev_pc value
827 is used to initialize the starting line number in the ecs. With an
828 invalid value, the gdb next command ends up stopping at the position
829 represented by the next line table entry past our start position.
830 On platforms that generate one line table entry per line, this
831 is not a problem. However, on the ia64, the compiler generates
832 extraneous line table entries that do not increase the line number.
833 When we issue the gdb next command on the ia64 after an inferior call
834 or a return command, we often end up a few instructions forward, still
835 within the original line we started.
836
837 An attempt was made to have init_execution_control_state () refresh
838 the prev_pc value before calculating the line number. This approach
839 did not work because on platforms that use ptrace, the pc register
840 cannot be read unless the inferior is stopped. At that point, we
841 are not guaranteed the inferior is stopped and so the read_pc ()
842 call can fail. Setting the prev_pc value here ensures the value is
8fb3e588 843 updated correctly when the inferior is stopped. */
e4846b08
JJ
844 prev_pc = read_pc ();
845
c906108c
SS
846 /* Resume inferior. */
847 resume (oneproc || step || bpstat_should_step (), stop_signal);
848
849 /* Wait for it to stop (if not standalone)
850 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
851 /* Do this only if we are not using the event loop, or if the target
852 does not support asynchronous execution. */
362646f5 853 if (!target_can_async_p ())
43ff13b4
JM
854 {
855 wait_for_inferior ();
856 normal_stop ();
857 }
c906108c 858}
c906108c
SS
859\f
860
861/* Start remote-debugging of a machine over a serial link. */
96baa820 862
c906108c 863void
8621d6a9 864start_remote (int from_tty)
c906108c
SS
865{
866 init_thread_list ();
867 init_wait_for_inferior ();
b0f4b84b 868 stop_soon = STOP_QUIETLY_REMOTE;
ca67fcb8 869 stepping_over_breakpoint = 0;
43ff13b4 870
6426a772
JM
871 /* Always go on waiting for the target, regardless of the mode. */
872 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 873 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
874 nothing is returned (instead of just blocking). Because of this,
875 targets expecting an immediate response need to, internally, set
876 things up so that the target_wait() is forced to eventually
877 timeout. */
878 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
879 differentiate to its caller what the state of the target is after
880 the initial open has been performed. Here we're assuming that
881 the target has stopped. It should be possible to eventually have
882 target_open() return to the caller an indication that the target
883 is currently running and GDB state should be set to the same as
884 for an async run. */
885 wait_for_inferior ();
8621d6a9
DJ
886
887 /* Now that the inferior has stopped, do any bookkeeping like
888 loading shared libraries. We want to do this before normal_stop,
889 so that the displayed frame is up to date. */
890 post_create_inferior (&current_target, from_tty);
891
6426a772 892 normal_stop ();
c906108c
SS
893}
894
895/* Initialize static vars when a new inferior begins. */
896
897void
96baa820 898init_wait_for_inferior (void)
c906108c
SS
899{
900 /* These are meaningless until the first time through wait_for_inferior. */
901 prev_pc = 0;
c906108c 902
c906108c
SS
903 breakpoint_init_inferior (inf_starting);
904
905 /* Don't confuse first call to proceed(). */
906 stop_signal = TARGET_SIGNAL_0;
907
908 /* The first resume is not following a fork/vfork/exec. */
909 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
c906108c 910
c906108c 911 clear_proceed_status ();
9f976b41
DJ
912
913 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 914 deferred_step_ptid = null_ptid;
ca005067
DJ
915
916 target_last_wait_ptid = minus_one_ptid;
c906108c 917}
c906108c 918\f
b83266a0
SS
919/* This enum encodes possible reasons for doing a target_wait, so that
920 wfi can call target_wait in one place. (Ultimately the call will be
921 moved out of the infinite loop entirely.) */
922
c5aa993b
JM
923enum infwait_states
924{
cd0fc7c3
SS
925 infwait_normal_state,
926 infwait_thread_hop_state,
d983da9c 927 infwait_step_watch_state,
cd0fc7c3 928 infwait_nonstep_watch_state
b83266a0
SS
929};
930
11cf8741
JM
931/* Why did the inferior stop? Used to print the appropriate messages
932 to the interface from within handle_inferior_event(). */
933enum inferior_stop_reason
934{
11cf8741
JM
935 /* Step, next, nexti, stepi finished. */
936 END_STEPPING_RANGE,
11cf8741
JM
937 /* Inferior terminated by signal. */
938 SIGNAL_EXITED,
939 /* Inferior exited. */
940 EXITED,
941 /* Inferior received signal, and user asked to be notified. */
942 SIGNAL_RECEIVED
943};
944
cd0fc7c3
SS
945/* This structure contains what used to be local variables in
946 wait_for_inferior. Probably many of them can return to being
947 locals in handle_inferior_event. */
948
c5aa993b 949struct execution_control_state
488f131b
JB
950{
951 struct target_waitstatus ws;
952 struct target_waitstatus *wp;
ca67fcb8
VP
953 /* Should we step over breakpoint next time keep_going
954 is called? */
955 int stepping_over_breakpoint;
488f131b
JB
956 int random_signal;
957 CORE_ADDR stop_func_start;
958 CORE_ADDR stop_func_end;
959 char *stop_func_name;
960 struct symtab_and_line sal;
488f131b
JB
961 int current_line;
962 struct symtab *current_symtab;
963 int handling_longjmp; /* FIXME */
964 ptid_t ptid;
965 ptid_t saved_inferior_ptid;
68f53502 966 int step_after_step_resume_breakpoint;
488f131b
JB
967 int stepping_through_solib_after_catch;
968 bpstat stepping_through_solib_catchpoints;
488f131b
JB
969 int new_thread_event;
970 struct target_waitstatus tmpstatus;
971 enum infwait_states infwait_state;
972 ptid_t waiton_ptid;
973 int wait_some_more;
974};
975
976void init_execution_control_state (struct execution_control_state *ecs);
977
978void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 979
c2c6d25f 980static void step_into_function (struct execution_control_state *ecs);
44cbf7b5 981static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
14e60db5 982static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
44cbf7b5
AC
983static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
984 struct frame_id sr_id);
104c1213
JM
985static void stop_stepping (struct execution_control_state *ecs);
986static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 987static void keep_going (struct execution_control_state *ecs);
488f131b
JB
988static void print_stop_reason (enum inferior_stop_reason stop_reason,
989 int stop_info);
104c1213 990
cd0fc7c3
SS
991/* Wait for control to return from inferior to debugger.
992 If inferior gets a signal, we may decide to start it up again
993 instead of returning. That is why there is a loop in this function.
994 When this function actually returns it means the inferior
995 should be left stopped and GDB should read more commands. */
996
997void
96baa820 998wait_for_inferior (void)
cd0fc7c3
SS
999{
1000 struct cleanup *old_cleanups;
1001 struct execution_control_state ecss;
1002 struct execution_control_state *ecs;
c906108c 1003
527159b7 1004 if (debug_infrun)
8a9de0e4 1005 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
527159b7 1006
8601f500 1007 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
c906108c 1008 &step_resume_breakpoint);
cd0fc7c3
SS
1009
1010 /* wfi still stays in a loop, so it's OK just to take the address of
1011 a local to get the ecs pointer. */
1012 ecs = &ecss;
1013
1014 /* Fill in with reasonable starting values. */
1015 init_execution_control_state (ecs);
1016
c906108c 1017 /* We'll update this if & when we switch to a new thread. */
39f77062 1018 previous_inferior_ptid = inferior_ptid;
c906108c 1019
cd0fc7c3
SS
1020 overlay_cache_invalid = 1;
1021
1022 /* We have to invalidate the registers BEFORE calling target_wait
1023 because they can be loaded from the target while in target_wait.
1024 This makes remote debugging a bit more efficient for those
1025 targets that provide critical registers as part of their normal
1026 status mechanism. */
1027
1028 registers_changed ();
b83266a0 1029
c906108c
SS
1030 while (1)
1031 {
9a4105ab
AC
1032 if (deprecated_target_wait_hook)
1033 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
cd0fc7c3 1034 else
39f77062 1035 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
c906108c 1036
cd0fc7c3
SS
1037 /* Now figure out what to do with the result of the result. */
1038 handle_inferior_event (ecs);
c906108c 1039
cd0fc7c3
SS
1040 if (!ecs->wait_some_more)
1041 break;
1042 }
1043 do_cleanups (old_cleanups);
1044}
c906108c 1045
43ff13b4
JM
1046/* Asynchronous version of wait_for_inferior. It is called by the
1047 event loop whenever a change of state is detected on the file
1048 descriptor corresponding to the target. It can be called more than
1049 once to complete a single execution command. In such cases we need
1050 to keep the state in a global variable ASYNC_ECSS. If it is the
1051 last time that this function is called for a single execution
1052 command, then report to the user that the inferior has stopped, and
1053 do the necessary cleanups. */
1054
1055struct execution_control_state async_ecss;
1056struct execution_control_state *async_ecs;
1057
1058void
fba45db2 1059fetch_inferior_event (void *client_data)
43ff13b4
JM
1060{
1061 static struct cleanup *old_cleanups;
1062
c5aa993b 1063 async_ecs = &async_ecss;
43ff13b4
JM
1064
1065 if (!async_ecs->wait_some_more)
1066 {
488f131b 1067 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
c5aa993b 1068 &step_resume_breakpoint);
43ff13b4
JM
1069
1070 /* Fill in with reasonable starting values. */
1071 init_execution_control_state (async_ecs);
1072
43ff13b4 1073 /* We'll update this if & when we switch to a new thread. */
39f77062 1074 previous_inferior_ptid = inferior_ptid;
43ff13b4
JM
1075
1076 overlay_cache_invalid = 1;
1077
1078 /* We have to invalidate the registers BEFORE calling target_wait
c5aa993b
JM
1079 because they can be loaded from the target while in target_wait.
1080 This makes remote debugging a bit more efficient for those
1081 targets that provide critical registers as part of their normal
1082 status mechanism. */
43ff13b4
JM
1083
1084 registers_changed ();
1085 }
1086
9a4105ab 1087 if (deprecated_target_wait_hook)
488f131b 1088 async_ecs->ptid =
9a4105ab 1089 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4 1090 else
39f77062 1091 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4
JM
1092
1093 /* Now figure out what to do with the result of the result. */
1094 handle_inferior_event (async_ecs);
1095
1096 if (!async_ecs->wait_some_more)
1097 {
adf40b2e 1098 /* Do only the cleanups that have been added by this
488f131b
JB
1099 function. Let the continuations for the commands do the rest,
1100 if there are any. */
43ff13b4
JM
1101 do_exec_cleanups (old_cleanups);
1102 normal_stop ();
c2d11a7d
JM
1103 if (step_multi && stop_step)
1104 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1105 else
1106 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4
JM
1107 }
1108}
1109
cd0fc7c3
SS
1110/* Prepare an execution control state for looping through a
1111 wait_for_inferior-type loop. */
1112
1113void
96baa820 1114init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3 1115{
ca67fcb8 1116 ecs->stepping_over_breakpoint = 0;
cd0fc7c3 1117 ecs->random_signal = 0;
68f53502 1118 ecs->step_after_step_resume_breakpoint = 0;
cd0fc7c3 1119 ecs->handling_longjmp = 0; /* FIXME */
cd0fc7c3
SS
1120 ecs->stepping_through_solib_after_catch = 0;
1121 ecs->stepping_through_solib_catchpoints = NULL;
cd0fc7c3
SS
1122 ecs->sal = find_pc_line (prev_pc, 0);
1123 ecs->current_line = ecs->sal.line;
1124 ecs->current_symtab = ecs->sal.symtab;
1125 ecs->infwait_state = infwait_normal_state;
39f77062 1126 ecs->waiton_ptid = pid_to_ptid (-1);
cd0fc7c3
SS
1127 ecs->wp = &(ecs->ws);
1128}
1129
e02bc4cc 1130/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
1131 target_wait()/deprecated_target_wait_hook(). The data is actually
1132 cached by handle_inferior_event(), which gets called immediately
1133 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
1134
1135void
488f131b 1136get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1137{
39f77062 1138 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1139 *status = target_last_waitstatus;
1140}
1141
ac264b3b
MS
1142void
1143nullify_last_target_wait_ptid (void)
1144{
1145 target_last_wait_ptid = minus_one_ptid;
1146}
1147
dd80620e
MS
1148/* Switch thread contexts, maintaining "infrun state". */
1149
1150static void
1151context_switch (struct execution_control_state *ecs)
1152{
1153 /* Caution: it may happen that the new thread (or the old one!)
1154 is not in the thread list. In this case we must not attempt
1155 to "switch context", or we run the risk that our context may
1156 be lost. This may happen as a result of the target module
1157 mishandling thread creation. */
1158
fd48f117
DJ
1159 if (debug_infrun)
1160 {
1161 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1162 target_pid_to_str (inferior_ptid));
1163 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1164 target_pid_to_str (ecs->ptid));
1165 }
1166
dd80620e 1167 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
488f131b 1168 { /* Perform infrun state context switch: */
dd80620e 1169 /* Save infrun state for the old thread. */
0ce3d317 1170 save_infrun_state (inferior_ptid, prev_pc,
ca67fcb8 1171 stepping_over_breakpoint, step_resume_breakpoint,
15960608 1172 step_range_start,
aa0cd9c1 1173 step_range_end, &step_frame_id,
ca67fcb8 1174 ecs->handling_longjmp, ecs->stepping_over_breakpoint,
dd80620e
MS
1175 ecs->stepping_through_solib_after_catch,
1176 ecs->stepping_through_solib_catchpoints,
f2c9ca08 1177 ecs->current_line, ecs->current_symtab);
dd80620e
MS
1178
1179 /* Load infrun state for the new thread. */
0ce3d317 1180 load_infrun_state (ecs->ptid, &prev_pc,
ca67fcb8 1181 &stepping_over_breakpoint, &step_resume_breakpoint,
15960608 1182 &step_range_start,
aa0cd9c1 1183 &step_range_end, &step_frame_id,
ca67fcb8 1184 &ecs->handling_longjmp, &ecs->stepping_over_breakpoint,
dd80620e
MS
1185 &ecs->stepping_through_solib_after_catch,
1186 &ecs->stepping_through_solib_catchpoints,
f2c9ca08 1187 &ecs->current_line, &ecs->current_symtab);
dd80620e 1188 }
6a6b96b9
UW
1189
1190 switch_to_thread (ecs->ptid);
dd80620e
MS
1191}
1192
4fa8626c
DJ
1193static void
1194adjust_pc_after_break (struct execution_control_state *ecs)
1195{
8aad930b 1196 CORE_ADDR breakpoint_pc;
4fa8626c
DJ
1197
1198 /* If this target does not decrement the PC after breakpoints, then
1199 we have nothing to do. */
b798847d 1200 if (gdbarch_decr_pc_after_break (current_gdbarch) == 0)
4fa8626c
DJ
1201 return;
1202
1203 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1204 we aren't, just return.
9709f61c
DJ
1205
1206 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
1207 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1208 implemented by software breakpoints should be handled through the normal
1209 breakpoint layer.
8fb3e588 1210
4fa8626c
DJ
1211 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1212 different signals (SIGILL or SIGEMT for instance), but it is less
1213 clear where the PC is pointing afterwards. It may not match
b798847d
UW
1214 gdbarch_decr_pc_after_break. I don't know any specific target that
1215 generates these signals at breakpoints (the code has been in GDB since at
1216 least 1992) so I can not guess how to handle them here.
8fb3e588 1217
e6cf7916
UW
1218 In earlier versions of GDB, a target with
1219 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
1220 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1221 target with both of these set in GDB history, and it seems unlikely to be
1222 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
1223
1224 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1225 return;
1226
1227 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1228 return;
1229
8aad930b
AC
1230 /* Find the location where (if we've hit a breakpoint) the
1231 breakpoint would be. */
b798847d
UW
1232 breakpoint_pc = read_pc_pid (ecs->ptid) - gdbarch_decr_pc_after_break
1233 (current_gdbarch);
8aad930b 1234
1c0fdd0e
UW
1235 /* Check whether there actually is a software breakpoint inserted
1236 at that location. */
1237 if (software_breakpoint_inserted_here_p (breakpoint_pc))
8aad930b 1238 {
1c0fdd0e
UW
1239 /* When using hardware single-step, a SIGTRAP is reported for both
1240 a completed single-step and a software breakpoint. Need to
1241 differentiate between the two, as the latter needs adjusting
1242 but the former does not.
1243
1244 The SIGTRAP can be due to a completed hardware single-step only if
1245 - we didn't insert software single-step breakpoints
1246 - the thread to be examined is still the current thread
1247 - this thread is currently being stepped
1248
1249 If any of these events did not occur, we must have stopped due
1250 to hitting a software breakpoint, and have to back up to the
1251 breakpoint address.
1252
1253 As a special case, we could have hardware single-stepped a
1254 software breakpoint. In this case (prev_pc == breakpoint_pc),
1255 we also need to back up to the breakpoint address. */
1256
1257 if (singlestep_breakpoints_inserted_p
1258 || !ptid_equal (ecs->ptid, inferior_ptid)
1259 || !currently_stepping (ecs)
1260 || prev_pc == breakpoint_pc)
8aad930b
AC
1261 write_pc_pid (breakpoint_pc, ecs->ptid);
1262 }
4fa8626c
DJ
1263}
1264
cd0fc7c3
SS
1265/* Given an execution control state that has been freshly filled in
1266 by an event from the inferior, figure out what it means and take
1267 appropriate action. */
c906108c 1268
cd0fc7c3 1269void
96baa820 1270handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 1271{
c8edd8b4 1272 int sw_single_step_trap_p = 0;
d983da9c
DJ
1273 int stopped_by_watchpoint;
1274 int stepped_after_stopped_by_watchpoint = 0;
cd0fc7c3 1275
e02bc4cc 1276 /* Cache the last pid/waitstatus. */
39f77062 1277 target_last_wait_ptid = ecs->ptid;
e02bc4cc
DS
1278 target_last_waitstatus = *ecs->wp;
1279
ca005067
DJ
1280 /* Always clear state belonging to the previous time we stopped. */
1281 stop_stack_dummy = 0;
1282
4fa8626c
DJ
1283 adjust_pc_after_break (ecs);
1284
488f131b
JB
1285 switch (ecs->infwait_state)
1286 {
1287 case infwait_thread_hop_state:
527159b7 1288 if (debug_infrun)
8a9de0e4 1289 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
488f131b
JB
1290 /* Cancel the waiton_ptid. */
1291 ecs->waiton_ptid = pid_to_ptid (-1);
65e82032 1292 break;
b83266a0 1293
488f131b 1294 case infwait_normal_state:
527159b7 1295 if (debug_infrun)
8a9de0e4 1296 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
1297 break;
1298
1299 case infwait_step_watch_state:
1300 if (debug_infrun)
1301 fprintf_unfiltered (gdb_stdlog,
1302 "infrun: infwait_step_watch_state\n");
1303
1304 stepped_after_stopped_by_watchpoint = 1;
488f131b 1305 break;
b83266a0 1306
488f131b 1307 case infwait_nonstep_watch_state:
527159b7 1308 if (debug_infrun)
8a9de0e4
AC
1309 fprintf_unfiltered (gdb_stdlog,
1310 "infrun: infwait_nonstep_watch_state\n");
488f131b 1311 insert_breakpoints ();
c906108c 1312
488f131b
JB
1313 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1314 handle things like signals arriving and other things happening
1315 in combination correctly? */
1316 stepped_after_stopped_by_watchpoint = 1;
1317 break;
65e82032
AC
1318
1319 default:
e2e0b3e5 1320 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b
JB
1321 }
1322 ecs->infwait_state = infwait_normal_state;
c906108c 1323
35f196d9 1324 reinit_frame_cache ();
c906108c 1325
488f131b 1326 /* If it's a new process, add it to the thread database */
c906108c 1327
488f131b 1328 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
b9b5d7ea 1329 && !ptid_equal (ecs->ptid, minus_one_ptid)
488f131b
JB
1330 && !in_thread_list (ecs->ptid));
1331
1332 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1333 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1334 {
1335 add_thread (ecs->ptid);
c906108c 1336
488f131b
JB
1337 ui_out_text (uiout, "[New ");
1338 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1339 ui_out_text (uiout, "]\n");
488f131b 1340 }
c906108c 1341
488f131b
JB
1342 switch (ecs->ws.kind)
1343 {
1344 case TARGET_WAITKIND_LOADED:
527159b7 1345 if (debug_infrun)
8a9de0e4 1346 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
1347 /* Ignore gracefully during startup of the inferior, as it might
1348 be the shell which has just loaded some objects, otherwise
1349 add the symbols for the newly loaded objects. Also ignore at
1350 the beginning of an attach or remote session; we will query
1351 the full list of libraries once the connection is
1352 established. */
c0236d92 1353 if (stop_soon == NO_STOP_QUIETLY)
488f131b
JB
1354 {
1355 /* Remove breakpoints, SOLIB_ADD might adjust
1356 breakpoint addresses via breakpoint_re_set. */
c36b740a 1357 remove_breakpoints ();
c906108c 1358
488f131b
JB
1359 /* Check for any newly added shared libraries if we're
1360 supposed to be adding them automatically. Switch
1361 terminal for any messages produced by
1362 breakpoint_re_set. */
1363 target_terminal_ours_for_output ();
aff6338a 1364 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
1365 stack's section table is kept up-to-date. Architectures,
1366 (e.g., PPC64), use the section table to perform
1367 operations such as address => section name and hence
1368 require the table to contain all sections (including
1369 those found in shared libraries). */
aff6338a 1370 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
1371 exec_ops to SOLIB_ADD. This is because current GDB is
1372 only tooled to propagate section_table changes out from
1373 the "current_target" (see target_resize_to_sections), and
1374 not up from the exec stratum. This, of course, isn't
1375 right. "infrun.c" should only interact with the
1376 exec/process stratum, instead relying on the target stack
1377 to propagate relevant changes (stop, section table
1378 changed, ...) up to other layers. */
b0f4b84b 1379#ifdef SOLIB_ADD
aff6338a 1380 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
1381#else
1382 solib_add (NULL, 0, &current_target, auto_solib_add);
1383#endif
488f131b
JB
1384 target_terminal_inferior ();
1385
b0f4b84b
DJ
1386 /* If requested, stop when the dynamic linker notifies
1387 gdb of events. This allows the user to get control
1388 and place breakpoints in initializer routines for
1389 dynamically loaded objects (among other things). */
1390 if (stop_on_solib_events)
1391 {
1392 stop_stepping (ecs);
1393 return;
1394 }
1395
1396 /* NOTE drow/2007-05-11: This might be a good place to check
1397 for "catch load". */
1398
488f131b 1399 /* Reinsert breakpoints and continue. */
c36b740a 1400 insert_breakpoints ();
488f131b 1401 }
b0f4b84b
DJ
1402
1403 /* If we are skipping through a shell, or through shared library
1404 loading that we aren't interested in, resume the program. If
1405 we're running the program normally, also resume. But stop if
1406 we're attaching or setting up a remote connection. */
1407 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1408 {
1409 resume (0, TARGET_SIGNAL_0);
1410 prepare_to_wait (ecs);
1411 return;
1412 }
1413
1414 break;
c5aa993b 1415
488f131b 1416 case TARGET_WAITKIND_SPURIOUS:
527159b7 1417 if (debug_infrun)
8a9de0e4 1418 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
1419 resume (0, TARGET_SIGNAL_0);
1420 prepare_to_wait (ecs);
1421 return;
c5aa993b 1422
488f131b 1423 case TARGET_WAITKIND_EXITED:
527159b7 1424 if (debug_infrun)
8a9de0e4 1425 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
488f131b
JB
1426 target_terminal_ours (); /* Must do this before mourn anyway */
1427 print_stop_reason (EXITED, ecs->ws.value.integer);
1428
1429 /* Record the exit code in the convenience variable $_exitcode, so
1430 that the user can inspect this again later. */
1431 set_internalvar (lookup_internalvar ("_exitcode"),
1432 value_from_longest (builtin_type_int,
1433 (LONGEST) ecs->ws.value.integer));
1434 gdb_flush (gdb_stdout);
1435 target_mourn_inferior ();
1c0fdd0e 1436 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
1437 stop_print_frame = 0;
1438 stop_stepping (ecs);
1439 return;
c5aa993b 1440
488f131b 1441 case TARGET_WAITKIND_SIGNALLED:
527159b7 1442 if (debug_infrun)
8a9de0e4 1443 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
488f131b
JB
1444 stop_print_frame = 0;
1445 stop_signal = ecs->ws.value.sig;
1446 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 1447
488f131b
JB
1448 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1449 reach here unless the inferior is dead. However, for years
1450 target_kill() was called here, which hints that fatal signals aren't
1451 really fatal on some systems. If that's true, then some changes
1452 may be needed. */
1453 target_mourn_inferior ();
c906108c 1454
488f131b 1455 print_stop_reason (SIGNAL_EXITED, stop_signal);
1c0fdd0e 1456 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
1457 stop_stepping (ecs);
1458 return;
c906108c 1459
488f131b
JB
1460 /* The following are the only cases in which we keep going;
1461 the above cases end in a continue or goto. */
1462 case TARGET_WAITKIND_FORKED:
deb3b17b 1463 case TARGET_WAITKIND_VFORKED:
527159b7 1464 if (debug_infrun)
8a9de0e4 1465 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
488f131b
JB
1466 stop_signal = TARGET_SIGNAL_TRAP;
1467 pending_follow.kind = ecs->ws.kind;
1468
8e7d2c16
DJ
1469 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1470 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
c906108c 1471
5a2901d9
DJ
1472 if (!ptid_equal (ecs->ptid, inferior_ptid))
1473 {
1474 context_switch (ecs);
35f196d9 1475 reinit_frame_cache ();
5a2901d9
DJ
1476 }
1477
488f131b 1478 stop_pc = read_pc ();
675bf4cb 1479
d983da9c 1480 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
675bf4cb 1481
488f131b 1482 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
04e68871
DJ
1483
1484 /* If no catchpoint triggered for this, then keep going. */
1485 if (ecs->random_signal)
1486 {
1487 stop_signal = TARGET_SIGNAL_0;
1488 keep_going (ecs);
1489 return;
1490 }
488f131b
JB
1491 goto process_event_stop_test;
1492
1493 case TARGET_WAITKIND_EXECD:
527159b7 1494 if (debug_infrun)
fc5261f2 1495 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b
JB
1496 stop_signal = TARGET_SIGNAL_TRAP;
1497
7d2830a3 1498 /* NOTE drow/2002-12-05: This code should be pushed down into the
8fb3e588
AC
1499 target_wait function. Until then following vfork on HP/UX 10.20
1500 is probably broken by this. Of course, it's broken anyway. */
488f131b
JB
1501 /* Is this a target which reports multiple exec events per actual
1502 call to exec()? (HP-UX using ptrace does, for example.) If so,
1503 ignore all but the last one. Just resume the exec'r, and wait
1504 for the next exec event. */
1505 if (inferior_ignoring_leading_exec_events)
1506 {
1507 inferior_ignoring_leading_exec_events--;
488f131b
JB
1508 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1509 prepare_to_wait (ecs);
1510 return;
1511 }
1512 inferior_ignoring_leading_exec_events =
1513 target_reported_exec_events_per_exec_call () - 1;
1514
1515 pending_follow.execd_pathname =
1516 savestring (ecs->ws.value.execd_pathname,
1517 strlen (ecs->ws.value.execd_pathname));
1518
488f131b
JB
1519 /* This causes the eventpoints and symbol table to be reset. Must
1520 do this now, before trying to determine whether to stop. */
1521 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1522 xfree (pending_follow.execd_pathname);
c906108c 1523
488f131b
JB
1524 stop_pc = read_pc_pid (ecs->ptid);
1525 ecs->saved_inferior_ptid = inferior_ptid;
1526 inferior_ptid = ecs->ptid;
675bf4cb 1527
d983da9c 1528 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
675bf4cb 1529
488f131b
JB
1530 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1531 inferior_ptid = ecs->saved_inferior_ptid;
04e68871 1532
5a2901d9
DJ
1533 if (!ptid_equal (ecs->ptid, inferior_ptid))
1534 {
1535 context_switch (ecs);
35f196d9 1536 reinit_frame_cache ();
5a2901d9
DJ
1537 }
1538
04e68871
DJ
1539 /* If no catchpoint triggered for this, then keep going. */
1540 if (ecs->random_signal)
1541 {
1542 stop_signal = TARGET_SIGNAL_0;
1543 keep_going (ecs);
1544 return;
1545 }
488f131b
JB
1546 goto process_event_stop_test;
1547
b4dc5ffa
MK
1548 /* Be careful not to try to gather much state about a thread
1549 that's in a syscall. It's frequently a losing proposition. */
488f131b 1550 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 1551 if (debug_infrun)
8a9de0e4 1552 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
488f131b
JB
1553 resume (0, TARGET_SIGNAL_0);
1554 prepare_to_wait (ecs);
1555 return;
c906108c 1556
488f131b
JB
1557 /* Before examining the threads further, step this thread to
1558 get it entirely out of the syscall. (We get notice of the
1559 event when the thread is just on the verge of exiting a
1560 syscall. Stepping one instruction seems to get it back
b4dc5ffa 1561 into user code.) */
488f131b 1562 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 1563 if (debug_infrun)
8a9de0e4 1564 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
488f131b 1565 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
488f131b
JB
1566 prepare_to_wait (ecs);
1567 return;
c906108c 1568
488f131b 1569 case TARGET_WAITKIND_STOPPED:
527159b7 1570 if (debug_infrun)
8a9de0e4 1571 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
488f131b
JB
1572 stop_signal = ecs->ws.value.sig;
1573 break;
c906108c 1574
488f131b
JB
1575 /* We had an event in the inferior, but we are not interested
1576 in handling it at this level. The lower layers have already
8e7d2c16 1577 done what needs to be done, if anything.
8fb3e588
AC
1578
1579 One of the possible circumstances for this is when the
1580 inferior produces output for the console. The inferior has
1581 not stopped, and we are ignoring the event. Another possible
1582 circumstance is any event which the lower level knows will be
1583 reported multiple times without an intervening resume. */
488f131b 1584 case TARGET_WAITKIND_IGNORE:
527159b7 1585 if (debug_infrun)
8a9de0e4 1586 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
8e7d2c16 1587 prepare_to_wait (ecs);
488f131b
JB
1588 return;
1589 }
c906108c 1590
488f131b
JB
1591 /* We may want to consider not doing a resume here in order to give
1592 the user a chance to play with the new thread. It might be good
1593 to make that a user-settable option. */
c906108c 1594
488f131b
JB
1595 /* At this point, all threads are stopped (happens automatically in
1596 either the OS or the native code). Therefore we need to continue
1597 all threads in order to make progress. */
1598 if (ecs->new_thread_event)
1599 {
1600 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1601 prepare_to_wait (ecs);
1602 return;
1603 }
c906108c 1604
488f131b
JB
1605 stop_pc = read_pc_pid (ecs->ptid);
1606
527159b7 1607 if (debug_infrun)
8a9de0e4 1608 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
527159b7 1609
9f976b41
DJ
1610 if (stepping_past_singlestep_breakpoint)
1611 {
1c0fdd0e 1612 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
1613 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1614 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1615
1616 stepping_past_singlestep_breakpoint = 0;
1617
1618 /* We've either finished single-stepping past the single-step
8fb3e588
AC
1619 breakpoint, or stopped for some other reason. It would be nice if
1620 we could tell, but we can't reliably. */
9f976b41 1621 if (stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 1622 {
527159b7 1623 if (debug_infrun)
8a9de0e4 1624 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41 1625 /* Pull the single step breakpoints out of the target. */
e0cd558a 1626 remove_single_step_breakpoints ();
9f976b41
DJ
1627 singlestep_breakpoints_inserted_p = 0;
1628
1629 ecs->random_signal = 0;
1630
1631 ecs->ptid = saved_singlestep_ptid;
1632 context_switch (ecs);
9a4105ab
AC
1633 if (deprecated_context_hook)
1634 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
1635
1636 resume (1, TARGET_SIGNAL_0);
1637 prepare_to_wait (ecs);
1638 return;
1639 }
1640 }
1641
1642 stepping_past_singlestep_breakpoint = 0;
1643
ca67fcb8 1644 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 1645 {
6a6b96b9
UW
1646 /* If we stopped for some other reason than single-stepping, ignore
1647 the fact that we were supposed to switch back. */
1648 if (stop_signal == TARGET_SIGNAL_TRAP)
1649 {
1650 if (debug_infrun)
1651 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 1652 "infrun: handling deferred step\n");
6a6b96b9
UW
1653
1654 /* Pull the single step breakpoints out of the target. */
1655 if (singlestep_breakpoints_inserted_p)
1656 {
1657 remove_single_step_breakpoints ();
1658 singlestep_breakpoints_inserted_p = 0;
1659 }
1660
1661 /* Note: We do not call context_switch at this point, as the
1662 context is already set up for stepping the original thread. */
ca67fcb8
VP
1663 switch_to_thread (deferred_step_ptid);
1664 deferred_step_ptid = null_ptid;
6a6b96b9
UW
1665 /* Suppress spurious "Switching to ..." message. */
1666 previous_inferior_ptid = inferior_ptid;
1667
1668 resume (1, TARGET_SIGNAL_0);
1669 prepare_to_wait (ecs);
1670 return;
1671 }
ca67fcb8
VP
1672
1673 deferred_step_ptid = null_ptid;
6a6b96b9
UW
1674 }
1675
488f131b
JB
1676 /* See if a thread hit a thread-specific breakpoint that was meant for
1677 another thread. If so, then step that thread past the breakpoint,
1678 and continue it. */
1679
1680 if (stop_signal == TARGET_SIGNAL_TRAP)
1681 {
9f976b41
DJ
1682 int thread_hop_needed = 0;
1683
f8d40ec8
JB
1684 /* Check if a regular breakpoint has been hit before checking
1685 for a potential single step breakpoint. Otherwise, GDB will
1686 not see this breakpoint hit when stepping onto breakpoints. */
c36b740a 1687 if (regular_breakpoint_inserted_here_p (stop_pc))
488f131b 1688 {
c5aa993b 1689 ecs->random_signal = 0;
4fa8626c 1690 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
1691 thread_hop_needed = 1;
1692 }
1c0fdd0e 1693 else if (singlestep_breakpoints_inserted_p)
9f976b41 1694 {
fd48f117
DJ
1695 /* We have not context switched yet, so this should be true
1696 no matter which thread hit the singlestep breakpoint. */
1697 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1698 if (debug_infrun)
1699 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1700 "trap for %s\n",
1701 target_pid_to_str (ecs->ptid));
1702
9f976b41
DJ
1703 ecs->random_signal = 0;
1704 /* The call to in_thread_list is necessary because PTIDs sometimes
1705 change when we go from single-threaded to multi-threaded. If
1706 the singlestep_ptid is still in the list, assume that it is
1707 really different from ecs->ptid. */
1708 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1709 && in_thread_list (singlestep_ptid))
1710 {
fd48f117
DJ
1711 /* If the PC of the thread we were trying to single-step
1712 has changed, discard this event (which we were going
1713 to ignore anyway), and pretend we saw that thread
1714 trap. This prevents us continuously moving the
1715 single-step breakpoint forward, one instruction at a
1716 time. If the PC has changed, then the thread we were
1717 trying to single-step has trapped or been signalled,
1718 but the event has not been reported to GDB yet.
1719
1720 There might be some cases where this loses signal
1721 information, if a signal has arrived at exactly the
1722 same time that the PC changed, but this is the best
1723 we can do with the information available. Perhaps we
1724 should arrange to report all events for all threads
1725 when they stop, or to re-poll the remote looking for
1726 this particular thread (i.e. temporarily enable
1727 schedlock). */
1728 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1729 {
1730 if (debug_infrun)
1731 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1732 " but expected thread advanced also\n");
1733
1734 /* The current context still belongs to
1735 singlestep_ptid. Don't swap here, since that's
1736 the context we want to use. Just fudge our
1737 state and continue. */
1738 ecs->ptid = singlestep_ptid;
1739 stop_pc = read_pc_pid (ecs->ptid);
1740 }
1741 else
1742 {
1743 if (debug_infrun)
1744 fprintf_unfiltered (gdb_stdlog,
1745 "infrun: unexpected thread\n");
1746
1747 thread_hop_needed = 1;
1748 stepping_past_singlestep_breakpoint = 1;
1749 saved_singlestep_ptid = singlestep_ptid;
1750 }
9f976b41
DJ
1751 }
1752 }
1753
1754 if (thread_hop_needed)
8fb3e588
AC
1755 {
1756 int remove_status;
1757
527159b7 1758 if (debug_infrun)
8a9de0e4 1759 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 1760
8fb3e588
AC
1761 /* Saw a breakpoint, but it was hit by the wrong thread.
1762 Just continue. */
1763
1c0fdd0e 1764 if (singlestep_breakpoints_inserted_p)
488f131b 1765 {
8fb3e588 1766 /* Pull the single step breakpoints out of the target. */
e0cd558a 1767 remove_single_step_breakpoints ();
8fb3e588
AC
1768 singlestep_breakpoints_inserted_p = 0;
1769 }
1770
1771 remove_status = remove_breakpoints ();
1772 /* Did we fail to remove breakpoints? If so, try
1773 to set the PC past the bp. (There's at least
1774 one situation in which we can fail to remove
1775 the bp's: On HP-UX's that use ttrace, we can't
1776 change the address space of a vforking child
1777 process until the child exits (well, okay, not
1778 then either :-) or execs. */
1779 if (remove_status != 0)
1780 {
1781 /* FIXME! This is obviously non-portable! */
1782 write_pc_pid (stop_pc + 4, ecs->ptid);
1783 /* We need to restart all the threads now,
1784 * unles we're running in scheduler-locked mode.
1785 * Use currently_stepping to determine whether to
1786 * step or continue.
1787 */
1788 /* FIXME MVS: is there any reason not to call resume()? */
1789 if (scheduler_mode == schedlock_on)
1790 target_resume (ecs->ptid,
1791 currently_stepping (ecs), TARGET_SIGNAL_0);
488f131b 1792 else
8fb3e588
AC
1793 target_resume (RESUME_ALL,
1794 currently_stepping (ecs), TARGET_SIGNAL_0);
1795 prepare_to_wait (ecs);
1796 return;
1797 }
1798 else
1799 { /* Single step */
8fb3e588
AC
1800 if (!ptid_equal (inferior_ptid, ecs->ptid))
1801 context_switch (ecs);
1802 ecs->waiton_ptid = ecs->ptid;
1803 ecs->wp = &(ecs->ws);
ca67fcb8 1804 ecs->stepping_over_breakpoint = 1;
8fb3e588
AC
1805
1806 ecs->infwait_state = infwait_thread_hop_state;
1807 keep_going (ecs);
1808 registers_changed ();
1809 return;
1810 }
488f131b 1811 }
1c0fdd0e 1812 else if (singlestep_breakpoints_inserted_p)
8fb3e588
AC
1813 {
1814 sw_single_step_trap_p = 1;
1815 ecs->random_signal = 0;
1816 }
488f131b
JB
1817 }
1818 else
1819 ecs->random_signal = 1;
c906108c 1820
488f131b 1821 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
1822 so, then switch to that thread. */
1823 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 1824 {
527159b7 1825 if (debug_infrun)
8a9de0e4 1826 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 1827
488f131b 1828 context_switch (ecs);
c5aa993b 1829
9a4105ab
AC
1830 if (deprecated_context_hook)
1831 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 1832 }
c906108c 1833
1c0fdd0e 1834 if (singlestep_breakpoints_inserted_p)
488f131b
JB
1835 {
1836 /* Pull the single step breakpoints out of the target. */
e0cd558a 1837 remove_single_step_breakpoints ();
488f131b
JB
1838 singlestep_breakpoints_inserted_p = 0;
1839 }
c906108c 1840
d983da9c
DJ
1841 if (stepped_after_stopped_by_watchpoint)
1842 stopped_by_watchpoint = 0;
1843 else
1844 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
1845
1846 /* If necessary, step over this watchpoint. We'll be back to display
1847 it in a moment. */
1848 if (stopped_by_watchpoint
1849 && (HAVE_STEPPABLE_WATCHPOINT
1850 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
488f131b 1851 {
527159b7 1852 if (debug_infrun)
8a9de0e4 1853 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
c906108c 1854
488f131b
JB
1855 /* At this point, we are stopped at an instruction which has
1856 attempted to write to a piece of memory under control of
1857 a watchpoint. The instruction hasn't actually executed
1858 yet. If we were to evaluate the watchpoint expression
1859 now, we would get the old value, and therefore no change
1860 would seem to have occurred.
1861
1862 In order to make watchpoints work `right', we really need
1863 to complete the memory write, and then evaluate the
d983da9c
DJ
1864 watchpoint expression. We do this by single-stepping the
1865 target.
1866
1867 It may not be necessary to disable the watchpoint to stop over
1868 it. For example, the PA can (with some kernel cooperation)
1869 single step over a watchpoint without disabling the watchpoint.
1870
1871 It is far more common to need to disable a watchpoint to step
1872 the inferior over it. If we have non-steppable watchpoints,
1873 we must disable the current watchpoint; it's simplest to
1874 disable all watchpoints and breakpoints. */
1875
1876 if (!HAVE_STEPPABLE_WATCHPOINT)
1877 remove_breakpoints ();
488f131b
JB
1878 registers_changed ();
1879 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
488f131b 1880 ecs->waiton_ptid = ecs->ptid;
d983da9c
DJ
1881 if (HAVE_STEPPABLE_WATCHPOINT)
1882 ecs->infwait_state = infwait_step_watch_state;
1883 else
1884 ecs->infwait_state = infwait_nonstep_watch_state;
488f131b
JB
1885 prepare_to_wait (ecs);
1886 return;
1887 }
1888
488f131b
JB
1889 ecs->stop_func_start = 0;
1890 ecs->stop_func_end = 0;
1891 ecs->stop_func_name = 0;
1892 /* Don't care about return value; stop_func_start and stop_func_name
1893 will both be 0 if it doesn't work. */
1894 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1895 &ecs->stop_func_start, &ecs->stop_func_end);
cbf3b44a
UW
1896 ecs->stop_func_start
1897 += gdbarch_deprecated_function_start_offset (current_gdbarch);
ca67fcb8 1898 ecs->stepping_over_breakpoint = 0;
488f131b
JB
1899 bpstat_clear (&stop_bpstat);
1900 stop_step = 0;
488f131b
JB
1901 stop_print_frame = 1;
1902 ecs->random_signal = 0;
1903 stopped_by_random_signal = 0;
488f131b 1904
3352ef37 1905 if (stop_signal == TARGET_SIGNAL_TRAP
ca67fcb8 1906 && stepping_over_breakpoint
3352ef37
AC
1907 && gdbarch_single_step_through_delay_p (current_gdbarch)
1908 && currently_stepping (ecs))
1909 {
1910 /* We're trying to step of a breakpoint. Turns out that we're
1911 also on an instruction that needs to be stepped multiple
1912 times before it's been fully executing. E.g., architectures
1913 with a delay slot. It needs to be stepped twice, once for
1914 the instruction and once for the delay slot. */
1915 int step_through_delay
1916 = gdbarch_single_step_through_delay (current_gdbarch,
1917 get_current_frame ());
527159b7 1918 if (debug_infrun && step_through_delay)
8a9de0e4 1919 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
3352ef37
AC
1920 if (step_range_end == 0 && step_through_delay)
1921 {
1922 /* The user issued a continue when stopped at a breakpoint.
1923 Set up for another trap and get out of here. */
ca67fcb8 1924 ecs->stepping_over_breakpoint = 1;
3352ef37
AC
1925 keep_going (ecs);
1926 return;
1927 }
1928 else if (step_through_delay)
1929 {
1930 /* The user issued a step when stopped at a breakpoint.
1931 Maybe we should stop, maybe we should not - the delay
1932 slot *might* correspond to a line of source. In any
ca67fcb8
VP
1933 case, don't decide that here, just set
1934 ecs->stepping_over_breakpoint, making sure we
1935 single-step again before breakpoints are re-inserted. */
1936 ecs->stepping_over_breakpoint = 1;
3352ef37
AC
1937 }
1938 }
1939
488f131b
JB
1940 /* Look at the cause of the stop, and decide what to do.
1941 The alternatives are:
1942 1) break; to really stop and return to the debugger,
1943 2) drop through to start up again
ca67fcb8 1944 (set ecs->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
1945 3) set ecs->random_signal to 1, and the decision between 1 and 2
1946 will be made according to the signal handling tables. */
1947
1948 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
1949 that have to do with the program's own actions. Note that
1950 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1951 on the operating system version. Here we detect when a SIGILL or
1952 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1953 something similar for SIGSEGV, since a SIGSEGV will be generated
1954 when we're trying to execute a breakpoint instruction on a
1955 non-executable stack. This happens for call dummy breakpoints
1956 for architectures like SPARC that place call dummies on the
1957 stack. */
488f131b
JB
1958
1959 if (stop_signal == TARGET_SIGNAL_TRAP
c36b740a 1960 || (breakpoint_inserted_here_p (stop_pc)
8fb3e588
AC
1961 && (stop_signal == TARGET_SIGNAL_ILL
1962 || stop_signal == TARGET_SIGNAL_SEGV
1963 || stop_signal == TARGET_SIGNAL_EMT))
b0f4b84b
DJ
1964 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
1965 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b
JB
1966 {
1967 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1968 {
527159b7 1969 if (debug_infrun)
8a9de0e4 1970 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
1971 stop_print_frame = 0;
1972 stop_stepping (ecs);
1973 return;
1974 }
c54cfec8
EZ
1975
1976 /* This is originated from start_remote(), start_inferior() and
1977 shared libraries hook functions. */
b0f4b84b 1978 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 1979 {
527159b7 1980 if (debug_infrun)
8a9de0e4 1981 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
1982 stop_stepping (ecs);
1983 return;
1984 }
1985
c54cfec8
EZ
1986 /* This originates from attach_command(). We need to overwrite
1987 the stop_signal here, because some kernels don't ignore a
1988 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1989 See more comments in inferior.h. */
c0236d92 1990 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
c54cfec8
EZ
1991 {
1992 stop_stepping (ecs);
1993 if (stop_signal == TARGET_SIGNAL_STOP)
1994 stop_signal = TARGET_SIGNAL_0;
1995 return;
1996 }
1997
fba57f8f
VP
1998 /* See if there is a breakpoint at the current PC. */
1999 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2000
2001 /* Following in case break condition called a
2002 function. */
2003 stop_print_frame = 1;
488f131b 2004
73dd234f 2005 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
2006 at one stage in the past included checks for an inferior
2007 function call's call dummy's return breakpoint. The original
2008 comment, that went with the test, read:
73dd234f 2009
8fb3e588
AC
2010 ``End of a stack dummy. Some systems (e.g. Sony news) give
2011 another signal besides SIGTRAP, so check here as well as
2012 above.''
73dd234f
AC
2013
2014 If someone ever tries to get get call dummys on a
2015 non-executable stack to work (where the target would stop
03cebad2
MK
2016 with something like a SIGSEGV), then those tests might need
2017 to be re-instated. Given, however, that the tests were only
73dd234f 2018 enabled when momentary breakpoints were not being used, I
03cebad2
MK
2019 suspect that it won't be the case.
2020
8fb3e588
AC
2021 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2022 be necessary for call dummies on a non-executable stack on
2023 SPARC. */
73dd234f 2024
488f131b
JB
2025 if (stop_signal == TARGET_SIGNAL_TRAP)
2026 ecs->random_signal
2027 = !(bpstat_explains_signal (stop_bpstat)
ca67fcb8 2028 || stepping_over_breakpoint
488f131b 2029 || (step_range_end && step_resume_breakpoint == NULL));
488f131b
JB
2030 else
2031 {
73dd234f 2032 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
488f131b
JB
2033 if (!ecs->random_signal)
2034 stop_signal = TARGET_SIGNAL_TRAP;
2035 }
2036 }
2037
2038 /* When we reach this point, we've pretty much decided
2039 that the reason for stopping must've been a random
2040 (unexpected) signal. */
2041
2042 else
2043 ecs->random_signal = 1;
488f131b 2044
04e68871 2045process_event_stop_test:
488f131b
JB
2046 /* For the program's own signals, act according to
2047 the signal handling tables. */
2048
2049 if (ecs->random_signal)
2050 {
2051 /* Signal not for debugging purposes. */
2052 int printed = 0;
2053
527159b7 2054 if (debug_infrun)
8a9de0e4 2055 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
527159b7 2056
488f131b
JB
2057 stopped_by_random_signal = 1;
2058
2059 if (signal_print[stop_signal])
2060 {
2061 printed = 1;
2062 target_terminal_ours_for_output ();
2063 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2064 }
2065 if (signal_stop[stop_signal])
2066 {
2067 stop_stepping (ecs);
2068 return;
2069 }
2070 /* If not going to stop, give terminal back
2071 if we took it away. */
2072 else if (printed)
2073 target_terminal_inferior ();
2074
2075 /* Clear the signal if it should not be passed. */
2076 if (signal_program[stop_signal] == 0)
2077 stop_signal = TARGET_SIGNAL_0;
2078
68f53502 2079 if (prev_pc == read_pc ()
68f53502 2080 && breakpoint_here_p (read_pc ())
c36b740a 2081 && !breakpoint_inserted_here_p (read_pc ())
68f53502
AC
2082 && step_resume_breakpoint == NULL)
2083 {
2084 /* We were just starting a new sequence, attempting to
2085 single-step off of a breakpoint and expecting a SIGTRAP.
2086 Intead this signal arrives. This signal will take us out
2087 of the stepping range so GDB needs to remember to, when
2088 the signal handler returns, resume stepping off that
2089 breakpoint. */
2090 /* To simplify things, "continue" is forced to use the same
2091 code paths as single-step - set a breakpoint at the
2092 signal return address and then, once hit, step off that
2093 breakpoint. */
d3169d93 2094
44cbf7b5 2095 insert_step_resume_breakpoint_at_frame (get_current_frame ());
68f53502 2096 ecs->step_after_step_resume_breakpoint = 1;
9d799f85
AC
2097 keep_going (ecs);
2098 return;
68f53502 2099 }
9d799f85
AC
2100
2101 if (step_range_end != 0
2102 && stop_signal != TARGET_SIGNAL_0
2103 && stop_pc >= step_range_start && stop_pc < step_range_end
2104 && frame_id_eq (get_frame_id (get_current_frame ()),
2105 step_frame_id)
2106 && step_resume_breakpoint == NULL)
d303a6c7
AC
2107 {
2108 /* The inferior is about to take a signal that will take it
2109 out of the single step range. Set a breakpoint at the
2110 current PC (which is presumably where the signal handler
2111 will eventually return) and then allow the inferior to
2112 run free.
2113
2114 Note that this is only needed for a signal delivered
2115 while in the single-step range. Nested signals aren't a
2116 problem as they eventually all return. */
44cbf7b5 2117 insert_step_resume_breakpoint_at_frame (get_current_frame ());
9d799f85
AC
2118 keep_going (ecs);
2119 return;
d303a6c7 2120 }
9d799f85
AC
2121
2122 /* Note: step_resume_breakpoint may be non-NULL. This occures
2123 when either there's a nested signal, or when there's a
2124 pending signal enabled just as the signal handler returns
2125 (leaving the inferior at the step-resume-breakpoint without
2126 actually executing it). Either way continue until the
2127 breakpoint is really hit. */
488f131b
JB
2128 keep_going (ecs);
2129 return;
2130 }
2131
2132 /* Handle cases caused by hitting a breakpoint. */
2133 {
2134 CORE_ADDR jmp_buf_pc;
2135 struct bpstat_what what;
2136
2137 what = bpstat_what (stop_bpstat);
2138
2139 if (what.call_dummy)
2140 {
2141 stop_stack_dummy = 1;
c5aa993b 2142 }
c906108c 2143
488f131b 2144 switch (what.main_action)
c5aa993b 2145 {
488f131b
JB
2146 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2147 /* If we hit the breakpoint at longjmp, disable it for the
2148 duration of this command. Then, install a temporary
2149 breakpoint at the target of the jmp_buf. */
527159b7 2150 if (debug_infrun)
8802d8ed 2151 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
488f131b 2152 disable_longjmp_breakpoint ();
91104499 2153 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
60ade65d
UW
2154 || !gdbarch_get_longjmp_target (current_gdbarch,
2155 get_current_frame (), &jmp_buf_pc))
c5aa993b 2156 {
488f131b 2157 keep_going (ecs);
104c1213 2158 return;
c5aa993b 2159 }
488f131b
JB
2160
2161 /* Need to blow away step-resume breakpoint, as it
2162 interferes with us */
2163 if (step_resume_breakpoint != NULL)
104c1213 2164 {
488f131b 2165 delete_step_resume_breakpoint (&step_resume_breakpoint);
104c1213 2166 }
c906108c 2167
8fb3e588 2168 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
488f131b
JB
2169 ecs->handling_longjmp = 1; /* FIXME */
2170 keep_going (ecs);
2171 return;
c906108c 2172
488f131b
JB
2173 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2174 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
527159b7 2175 if (debug_infrun)
8802d8ed 2176 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
488f131b
JB
2177 disable_longjmp_breakpoint ();
2178 ecs->handling_longjmp = 0; /* FIXME */
2179 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2180 break;
2181 /* else fallthrough */
2182
2183 case BPSTAT_WHAT_SINGLE:
527159b7 2184 if (debug_infrun)
8802d8ed 2185 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
ca67fcb8 2186 ecs->stepping_over_breakpoint = 1;
488f131b
JB
2187 /* Still need to check other stuff, at least the case
2188 where we are stepping and step out of the right range. */
2189 break;
c906108c 2190
488f131b 2191 case BPSTAT_WHAT_STOP_NOISY:
527159b7 2192 if (debug_infrun)
8802d8ed 2193 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 2194 stop_print_frame = 1;
c906108c 2195
d303a6c7
AC
2196 /* We are about to nuke the step_resume_breakpointt via the
2197 cleanup chain, so no need to worry about it here. */
c5aa993b 2198
488f131b
JB
2199 stop_stepping (ecs);
2200 return;
c5aa993b 2201
488f131b 2202 case BPSTAT_WHAT_STOP_SILENT:
527159b7 2203 if (debug_infrun)
8802d8ed 2204 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 2205 stop_print_frame = 0;
c5aa993b 2206
d303a6c7
AC
2207 /* We are about to nuke the step_resume_breakpoin via the
2208 cleanup chain, so no need to worry about it here. */
c5aa993b 2209
488f131b 2210 stop_stepping (ecs);
e441088d 2211 return;
c5aa993b 2212
488f131b
JB
2213 case BPSTAT_WHAT_STEP_RESUME:
2214 /* This proably demands a more elegant solution, but, yeah
2215 right...
c5aa993b 2216
488f131b
JB
2217 This function's use of the simple variable
2218 step_resume_breakpoint doesn't seem to accomodate
2219 simultaneously active step-resume bp's, although the
2220 breakpoint list certainly can.
c5aa993b 2221
488f131b
JB
2222 If we reach here and step_resume_breakpoint is already
2223 NULL, then apparently we have multiple active
2224 step-resume bp's. We'll just delete the breakpoint we
2225 stopped at, and carry on.
2226
2227 Correction: what the code currently does is delete a
2228 step-resume bp, but it makes no effort to ensure that
2229 the one deleted is the one currently stopped at. MVS */
c5aa993b 2230
527159b7 2231 if (debug_infrun)
8802d8ed 2232 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 2233
488f131b
JB
2234 if (step_resume_breakpoint == NULL)
2235 {
2236 step_resume_breakpoint =
2237 bpstat_find_step_resume_breakpoint (stop_bpstat);
2238 }
2239 delete_step_resume_breakpoint (&step_resume_breakpoint);
68f53502
AC
2240 if (ecs->step_after_step_resume_breakpoint)
2241 {
2242 /* Back when the step-resume breakpoint was inserted, we
2243 were trying to single-step off a breakpoint. Go back
2244 to doing that. */
2245 ecs->step_after_step_resume_breakpoint = 0;
ca67fcb8 2246 ecs->stepping_over_breakpoint = 1;
68f53502
AC
2247 keep_going (ecs);
2248 return;
2249 }
488f131b
JB
2250 break;
2251
488f131b
JB
2252 case BPSTAT_WHAT_CHECK_SHLIBS:
2253 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
c906108c 2254 {
527159b7 2255 if (debug_infrun)
8802d8ed 2256 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
488f131b
JB
2257 /* Remove breakpoints, we eventually want to step over the
2258 shlib event breakpoint, and SOLIB_ADD might adjust
2259 breakpoint addresses via breakpoint_re_set. */
c36b740a 2260 remove_breakpoints ();
488f131b
JB
2261
2262 /* Check for any newly added shared libraries if we're
2263 supposed to be adding them automatically. Switch
2264 terminal for any messages produced by
2265 breakpoint_re_set. */
2266 target_terminal_ours_for_output ();
aff6338a 2267 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
2268 stack's section table is kept up-to-date. Architectures,
2269 (e.g., PPC64), use the section table to perform
2270 operations such as address => section name and hence
2271 require the table to contain all sections (including
2272 those found in shared libraries). */
aff6338a 2273 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
2274 exec_ops to SOLIB_ADD. This is because current GDB is
2275 only tooled to propagate section_table changes out from
2276 the "current_target" (see target_resize_to_sections), and
2277 not up from the exec stratum. This, of course, isn't
2278 right. "infrun.c" should only interact with the
2279 exec/process stratum, instead relying on the target stack
2280 to propagate relevant changes (stop, section table
2281 changed, ...) up to other layers. */
a77053c2 2282#ifdef SOLIB_ADD
aff6338a 2283 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
a77053c2
MK
2284#else
2285 solib_add (NULL, 0, &current_target, auto_solib_add);
2286#endif
488f131b
JB
2287 target_terminal_inferior ();
2288
488f131b
JB
2289 /* If requested, stop when the dynamic linker notifies
2290 gdb of events. This allows the user to get control
2291 and place breakpoints in initializer routines for
2292 dynamically loaded objects (among other things). */
877522db 2293 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 2294 {
488f131b 2295 stop_stepping (ecs);
d4f3574e
SS
2296 return;
2297 }
c5aa993b 2298
488f131b
JB
2299 /* If we stopped due to an explicit catchpoint, then the
2300 (see above) call to SOLIB_ADD pulled in any symbols
2301 from a newly-loaded library, if appropriate.
2302
2303 We do want the inferior to stop, but not where it is
2304 now, which is in the dynamic linker callback. Rather,
2305 we would like it stop in the user's program, just after
2306 the call that caused this catchpoint to trigger. That
2307 gives the user a more useful vantage from which to
2308 examine their program's state. */
8fb3e588
AC
2309 else if (what.main_action
2310 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
c906108c 2311 {
488f131b
JB
2312 /* ??rehrauer: If I could figure out how to get the
2313 right return PC from here, we could just set a temp
2314 breakpoint and resume. I'm not sure we can without
2315 cracking open the dld's shared libraries and sniffing
2316 their unwind tables and text/data ranges, and that's
2317 not a terribly portable notion.
2318
2319 Until that time, we must step the inferior out of the
2320 dld callback, and also out of the dld itself (and any
2321 code or stubs in libdld.sl, such as "shl_load" and
2322 friends) until we reach non-dld code. At that point,
2323 we can stop stepping. */
2324 bpstat_get_triggered_catchpoints (stop_bpstat,
2325 &ecs->
2326 stepping_through_solib_catchpoints);
2327 ecs->stepping_through_solib_after_catch = 1;
2328
2329 /* Be sure to lift all breakpoints, so the inferior does
2330 actually step past this point... */
ca67fcb8 2331 ecs->stepping_over_breakpoint = 1;
488f131b 2332 break;
c906108c 2333 }
c5aa993b 2334 else
c5aa993b 2335 {
488f131b 2336 /* We want to step over this breakpoint, then keep going. */
ca67fcb8 2337 ecs->stepping_over_breakpoint = 1;
488f131b 2338 break;
c5aa993b 2339 }
488f131b 2340 }
488f131b 2341 break;
c906108c 2342
488f131b
JB
2343 case BPSTAT_WHAT_LAST:
2344 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 2345
488f131b
JB
2346 case BPSTAT_WHAT_KEEP_CHECKING:
2347 break;
2348 }
2349 }
c906108c 2350
488f131b
JB
2351 /* We come here if we hit a breakpoint but should not
2352 stop for it. Possibly we also were stepping
2353 and should stop for that. So fall through and
2354 test for stepping. But, if not stepping,
2355 do not stop. */
c906108c 2356
9d1ff73f
MS
2357 /* Are we stepping to get the inferior out of the dynamic linker's
2358 hook (and possibly the dld itself) after catching a shlib
2359 event? */
488f131b
JB
2360 if (ecs->stepping_through_solib_after_catch)
2361 {
2362#if defined(SOLIB_ADD)
2363 /* Have we reached our destination? If not, keep going. */
2364 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2365 {
527159b7 2366 if (debug_infrun)
8a9de0e4 2367 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
ca67fcb8 2368 ecs->stepping_over_breakpoint = 1;
488f131b 2369 keep_going (ecs);
104c1213 2370 return;
488f131b
JB
2371 }
2372#endif
527159b7 2373 if (debug_infrun)
8a9de0e4 2374 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
2375 /* Else, stop and report the catchpoint(s) whose triggering
2376 caused us to begin stepping. */
2377 ecs->stepping_through_solib_after_catch = 0;
2378 bpstat_clear (&stop_bpstat);
2379 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2380 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2381 stop_print_frame = 1;
2382 stop_stepping (ecs);
2383 return;
2384 }
c906108c 2385
488f131b
JB
2386 if (step_resume_breakpoint)
2387 {
527159b7 2388 if (debug_infrun)
d3169d93
DJ
2389 fprintf_unfiltered (gdb_stdlog,
2390 "infrun: step-resume breakpoint is inserted\n");
527159b7 2391
488f131b
JB
2392 /* Having a step-resume breakpoint overrides anything
2393 else having to do with stepping commands until
2394 that breakpoint is reached. */
488f131b
JB
2395 keep_going (ecs);
2396 return;
2397 }
c5aa993b 2398
488f131b
JB
2399 if (step_range_end == 0)
2400 {
527159b7 2401 if (debug_infrun)
8a9de0e4 2402 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 2403 /* Likewise if we aren't even stepping. */
488f131b
JB
2404 keep_going (ecs);
2405 return;
2406 }
c5aa993b 2407
488f131b 2408 /* If stepping through a line, keep going if still within it.
c906108c 2409
488f131b
JB
2410 Note that step_range_end is the address of the first instruction
2411 beyond the step range, and NOT the address of the last instruction
2412 within it! */
2413 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2414 {
527159b7 2415 if (debug_infrun)
8a9de0e4 2416 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
527159b7
RC
2417 paddr_nz (step_range_start),
2418 paddr_nz (step_range_end));
488f131b
JB
2419 keep_going (ecs);
2420 return;
2421 }
c5aa993b 2422
488f131b 2423 /* We stepped out of the stepping range. */
c906108c 2424
488f131b
JB
2425 /* If we are stepping at the source level and entered the runtime
2426 loader dynamic symbol resolution code, we keep on single stepping
2427 until we exit the run time loader code and reach the callee's
2428 address. */
2429 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
a77053c2
MK
2430#ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2431 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2432#else
2433 && in_solib_dynsym_resolve_code (stop_pc)
2434#endif
2435 )
488f131b 2436 {
4c8c40e6
MK
2437 CORE_ADDR pc_after_resolver =
2438 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
c906108c 2439
527159b7 2440 if (debug_infrun)
8a9de0e4 2441 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 2442
488f131b
JB
2443 if (pc_after_resolver)
2444 {
2445 /* Set up a step-resume breakpoint at the address
2446 indicated by SKIP_SOLIB_RESOLVER. */
2447 struct symtab_and_line sr_sal;
fe39c653 2448 init_sal (&sr_sal);
488f131b
JB
2449 sr_sal.pc = pc_after_resolver;
2450
44cbf7b5 2451 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c5aa993b 2452 }
c906108c 2453
488f131b
JB
2454 keep_going (ecs);
2455 return;
2456 }
c906108c 2457
42edda50
AC
2458 if (step_range_end != 1
2459 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2460 || step_over_calls == STEP_OVER_ALL)
2461 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
488f131b 2462 {
527159b7 2463 if (debug_infrun)
8a9de0e4 2464 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 2465 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
2466 a signal trampoline (either by a signal being delivered or by
2467 the signal handler returning). Just single-step until the
2468 inferior leaves the trampoline (either by calling the handler
2469 or returning). */
488f131b
JB
2470 keep_going (ecs);
2471 return;
2472 }
c906108c 2473
c17eaafe
DJ
2474 /* Check for subroutine calls. The check for the current frame
2475 equalling the step ID is not necessary - the check of the
2476 previous frame's ID is sufficient - but it is a common case and
2477 cheaper than checking the previous frame's ID.
14e60db5
DJ
2478
2479 NOTE: frame_id_eq will never report two invalid frame IDs as
2480 being equal, so to get into this block, both the current and
2481 previous frame must have valid frame IDs. */
c17eaafe
DJ
2482 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2483 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
488f131b 2484 {
95918acb 2485 CORE_ADDR real_stop_pc;
8fb3e588 2486
527159b7 2487 if (debug_infrun)
8a9de0e4 2488 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 2489
95918acb
AC
2490 if ((step_over_calls == STEP_OVER_NONE)
2491 || ((step_range_end == 1)
2492 && in_prologue (prev_pc, ecs->stop_func_start)))
2493 {
2494 /* I presume that step_over_calls is only 0 when we're
2495 supposed to be stepping at the assembly language level
2496 ("stepi"). Just stop. */
2497 /* Also, maybe we just did a "nexti" inside a prolog, so we
2498 thought it was a subroutine call but it was not. Stop as
2499 well. FENN */
2500 stop_step = 1;
2501 print_stop_reason (END_STEPPING_RANGE, 0);
2502 stop_stepping (ecs);
2503 return;
2504 }
8fb3e588 2505
8567c30f
AC
2506 if (step_over_calls == STEP_OVER_ALL)
2507 {
2508 /* We're doing a "next", set a breakpoint at callee's return
2509 address (the address at which the caller will
2510 resume). */
14e60db5 2511 insert_step_resume_breakpoint_at_caller (get_current_frame ());
8567c30f
AC
2512 keep_going (ecs);
2513 return;
2514 }
a53c66de 2515
95918acb 2516 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
2517 calling routine and the real function), locate the real
2518 function. That's what tells us (a) whether we want to step
2519 into it at all, and (b) what prologue we want to run to the
2520 end of, if we do step into it. */
52f729a7 2521 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
95918acb 2522 if (real_stop_pc == 0)
52f729a7
UW
2523 real_stop_pc = gdbarch_skip_trampoline_code
2524 (current_gdbarch, get_current_frame (), stop_pc);
95918acb
AC
2525 if (real_stop_pc != 0)
2526 ecs->stop_func_start = real_stop_pc;
8fb3e588 2527
a77053c2
MK
2528 if (
2529#ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2530 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2531#else
2532 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2533#endif
2534)
1b2bfbb9
RC
2535 {
2536 struct symtab_and_line sr_sal;
2537 init_sal (&sr_sal);
2538 sr_sal.pc = ecs->stop_func_start;
2539
44cbf7b5 2540 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
8fb3e588
AC
2541 keep_going (ecs);
2542 return;
1b2bfbb9
RC
2543 }
2544
95918acb 2545 /* If we have line number information for the function we are
8fb3e588 2546 thinking of stepping into, step into it.
95918acb 2547
8fb3e588
AC
2548 If there are several symtabs at that PC (e.g. with include
2549 files), just want to know whether *any* of them have line
2550 numbers. find_pc_line handles this. */
95918acb
AC
2551 {
2552 struct symtab_and_line tmp_sal;
8fb3e588 2553
95918acb
AC
2554 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2555 if (tmp_sal.line != 0)
2556 {
2557 step_into_function (ecs);
2558 return;
2559 }
2560 }
2561
2562 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
2563 set, we stop the step so that the user has a chance to switch
2564 in assembly mode. */
95918acb
AC
2565 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2566 {
2567 stop_step = 1;
2568 print_stop_reason (END_STEPPING_RANGE, 0);
2569 stop_stepping (ecs);
2570 return;
2571 }
2572
2573 /* Set a breakpoint at callee's return address (the address at
8fb3e588 2574 which the caller will resume). */
14e60db5 2575 insert_step_resume_breakpoint_at_caller (get_current_frame ());
95918acb 2576 keep_going (ecs);
488f131b 2577 return;
488f131b 2578 }
c906108c 2579
488f131b
JB
2580 /* If we're in the return path from a shared library trampoline,
2581 we want to proceed through the trampoline when stepping. */
e76f05fa
UW
2582 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
2583 stop_pc, ecs->stop_func_name))
488f131b 2584 {
488f131b 2585 /* Determine where this trampoline returns. */
52f729a7
UW
2586 CORE_ADDR real_stop_pc;
2587 real_stop_pc = gdbarch_skip_trampoline_code
2588 (current_gdbarch, get_current_frame (), stop_pc);
c906108c 2589
527159b7 2590 if (debug_infrun)
8a9de0e4 2591 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 2592
488f131b 2593 /* Only proceed through if we know where it's going. */
d764a824 2594 if (real_stop_pc)
488f131b
JB
2595 {
2596 /* And put the step-breakpoint there and go until there. */
2597 struct symtab_and_line sr_sal;
2598
fe39c653 2599 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 2600 sr_sal.pc = real_stop_pc;
488f131b 2601 sr_sal.section = find_pc_overlay (sr_sal.pc);
44cbf7b5
AC
2602
2603 /* Do not specify what the fp should be when we stop since
2604 on some machines the prologue is where the new fp value
2605 is established. */
2606 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c906108c 2607
488f131b
JB
2608 /* Restart without fiddling with the step ranges or
2609 other state. */
2610 keep_going (ecs);
2611 return;
2612 }
2613 }
c906108c 2614
7ed0fe66
DJ
2615 ecs->sal = find_pc_line (stop_pc, 0);
2616
1b2bfbb9
RC
2617 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2618 the trampoline processing logic, however, there are some trampolines
2619 that have no names, so we should do trampoline handling first. */
2620 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66
DJ
2621 && ecs->stop_func_name == NULL
2622 && ecs->sal.line == 0)
1b2bfbb9 2623 {
527159b7 2624 if (debug_infrun)
8a9de0e4 2625 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 2626
1b2bfbb9 2627 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
2628 undebuggable function (where there is no debugging information
2629 and no line number corresponding to the address where the
1b2bfbb9
RC
2630 inferior stopped). Since we want to skip this kind of code,
2631 we keep going until the inferior returns from this
14e60db5
DJ
2632 function - unless the user has asked us not to (via
2633 set step-mode) or we no longer know how to get back
2634 to the call site. */
2635 if (step_stop_if_no_debug
2636 || !frame_id_p (frame_unwind_id (get_current_frame ())))
1b2bfbb9
RC
2637 {
2638 /* If we have no line number and the step-stop-if-no-debug
2639 is set, we stop the step so that the user has a chance to
2640 switch in assembly mode. */
2641 stop_step = 1;
2642 print_stop_reason (END_STEPPING_RANGE, 0);
2643 stop_stepping (ecs);
2644 return;
2645 }
2646 else
2647 {
2648 /* Set a breakpoint at callee's return address (the address
2649 at which the caller will resume). */
14e60db5 2650 insert_step_resume_breakpoint_at_caller (get_current_frame ());
1b2bfbb9
RC
2651 keep_going (ecs);
2652 return;
2653 }
2654 }
2655
2656 if (step_range_end == 1)
2657 {
2658 /* It is stepi or nexti. We always want to stop stepping after
2659 one instruction. */
527159b7 2660 if (debug_infrun)
8a9de0e4 2661 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
1b2bfbb9
RC
2662 stop_step = 1;
2663 print_stop_reason (END_STEPPING_RANGE, 0);
2664 stop_stepping (ecs);
2665 return;
2666 }
2667
488f131b
JB
2668 if (ecs->sal.line == 0)
2669 {
2670 /* We have no line number information. That means to stop
2671 stepping (does this always happen right after one instruction,
2672 when we do "s" in a function with no line numbers,
2673 or can this happen as a result of a return or longjmp?). */
527159b7 2674 if (debug_infrun)
8a9de0e4 2675 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
488f131b
JB
2676 stop_step = 1;
2677 print_stop_reason (END_STEPPING_RANGE, 0);
2678 stop_stepping (ecs);
2679 return;
2680 }
c906108c 2681
488f131b
JB
2682 if ((stop_pc == ecs->sal.pc)
2683 && (ecs->current_line != ecs->sal.line
2684 || ecs->current_symtab != ecs->sal.symtab))
2685 {
2686 /* We are at the start of a different line. So stop. Note that
2687 we don't stop if we step into the middle of a different line.
2688 That is said to make things like for (;;) statements work
2689 better. */
527159b7 2690 if (debug_infrun)
8a9de0e4 2691 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
488f131b
JB
2692 stop_step = 1;
2693 print_stop_reason (END_STEPPING_RANGE, 0);
2694 stop_stepping (ecs);
2695 return;
2696 }
c906108c 2697
488f131b 2698 /* We aren't done stepping.
c906108c 2699
488f131b
JB
2700 Optimize by setting the stepping range to the line.
2701 (We might not be in the original line, but if we entered a
2702 new line in mid-statement, we continue stepping. This makes
2703 things like for(;;) statements work better.) */
c906108c 2704
488f131b 2705 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
c5aa993b 2706 {
488f131b
JB
2707 /* If this is the last line of the function, don't keep stepping
2708 (it would probably step us out of the function).
2709 This is particularly necessary for a one-line function,
2710 in which after skipping the prologue we better stop even though
2711 we will be in mid-line. */
527159b7 2712 if (debug_infrun)
8a9de0e4 2713 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
488f131b
JB
2714 stop_step = 1;
2715 print_stop_reason (END_STEPPING_RANGE, 0);
2716 stop_stepping (ecs);
2717 return;
c5aa993b 2718 }
488f131b
JB
2719 step_range_start = ecs->sal.pc;
2720 step_range_end = ecs->sal.end;
aa0cd9c1 2721 step_frame_id = get_frame_id (get_current_frame ());
488f131b
JB
2722 ecs->current_line = ecs->sal.line;
2723 ecs->current_symtab = ecs->sal.symtab;
2724
aa0cd9c1
AC
2725 /* In the case where we just stepped out of a function into the
2726 middle of a line of the caller, continue stepping, but
2727 step_frame_id must be modified to current frame */
65815ea1
AC
2728#if 0
2729 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2730 generous. It will trigger on things like a step into a frameless
2731 stackless leaf function. I think the logic should instead look
2732 at the unwound frame ID has that should give a more robust
2733 indication of what happened. */
8fb3e588
AC
2734 if (step - ID == current - ID)
2735 still stepping in same function;
2736 else if (step - ID == unwind (current - ID))
2737 stepped into a function;
2738 else
2739 stepped out of a function;
2740 /* Of course this assumes that the frame ID unwind code is robust
2741 and we're willing to introduce frame unwind logic into this
2742 function. Fortunately, those days are nearly upon us. */
65815ea1 2743#endif
488f131b 2744 {
09a7aba8
UW
2745 struct frame_info *frame = get_current_frame ();
2746 struct frame_id current_frame = get_frame_id (frame);
2747 if (!(frame_id_inner (get_frame_arch (frame), current_frame,
2748 step_frame_id)))
aa0cd9c1 2749 step_frame_id = current_frame;
488f131b 2750 }
c906108c 2751
527159b7 2752 if (debug_infrun)
8a9de0e4 2753 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 2754 keep_going (ecs);
104c1213
JM
2755}
2756
2757/* Are we in the middle of stepping? */
2758
2759static int
2760currently_stepping (struct execution_control_state *ecs)
2761{
d303a6c7 2762 return ((!ecs->handling_longjmp
104c1213 2763 && ((step_range_end && step_resume_breakpoint == NULL)
ca67fcb8 2764 || stepping_over_breakpoint))
104c1213
JM
2765 || ecs->stepping_through_solib_after_catch
2766 || bpstat_should_step ());
2767}
c906108c 2768
c2c6d25f
JM
2769/* Subroutine call with source code we should not step over. Do step
2770 to the first line of code in it. */
2771
2772static void
2773step_into_function (struct execution_control_state *ecs)
2774{
2775 struct symtab *s;
2776 struct symtab_and_line sr_sal;
2777
2778 s = find_pc_symtab (stop_pc);
2779 if (s && s->language != language_asm)
a433963d
UW
2780 ecs->stop_func_start = gdbarch_skip_prologue
2781 (current_gdbarch, ecs->stop_func_start);
c2c6d25f
JM
2782
2783 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2784 /* Use the step_resume_break to step until the end of the prologue,
2785 even if that involves jumps (as it seems to on the vax under
2786 4.2). */
2787 /* If the prologue ends in the middle of a source line, continue to
2788 the end of that source line (if it is still within the function).
2789 Otherwise, just go to end of prologue. */
c2c6d25f
JM
2790 if (ecs->sal.end
2791 && ecs->sal.pc != ecs->stop_func_start
2792 && ecs->sal.end < ecs->stop_func_end)
2793 ecs->stop_func_start = ecs->sal.end;
c2c6d25f 2794
2dbd5e30
KB
2795 /* Architectures which require breakpoint adjustment might not be able
2796 to place a breakpoint at the computed address. If so, the test
2797 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2798 ecs->stop_func_start to an address at which a breakpoint may be
2799 legitimately placed.
8fb3e588 2800
2dbd5e30
KB
2801 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2802 made, GDB will enter an infinite loop when stepping through
2803 optimized code consisting of VLIW instructions which contain
2804 subinstructions corresponding to different source lines. On
2805 FR-V, it's not permitted to place a breakpoint on any but the
2806 first subinstruction of a VLIW instruction. When a breakpoint is
2807 set, GDB will adjust the breakpoint address to the beginning of
2808 the VLIW instruction. Thus, we need to make the corresponding
2809 adjustment here when computing the stop address. */
8fb3e588 2810
2dbd5e30
KB
2811 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2812 {
2813 ecs->stop_func_start
2814 = gdbarch_adjust_breakpoint_address (current_gdbarch,
8fb3e588 2815 ecs->stop_func_start);
2dbd5e30
KB
2816 }
2817
c2c6d25f
JM
2818 if (ecs->stop_func_start == stop_pc)
2819 {
2820 /* We are already there: stop now. */
2821 stop_step = 1;
488f131b 2822 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
2823 stop_stepping (ecs);
2824 return;
2825 }
2826 else
2827 {
2828 /* Put the step-breakpoint there and go until there. */
fe39c653 2829 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
2830 sr_sal.pc = ecs->stop_func_start;
2831 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
44cbf7b5 2832
c2c6d25f 2833 /* Do not specify what the fp should be when we stop since on
488f131b
JB
2834 some machines the prologue is where the new fp value is
2835 established. */
44cbf7b5 2836 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c2c6d25f
JM
2837
2838 /* And make sure stepping stops right away then. */
2839 step_range_end = step_range_start;
2840 }
2841 keep_going (ecs);
2842}
d4f3574e 2843
d3169d93 2844/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
2845 This is used to both functions and to skip over code. */
2846
2847static void
2848insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2849 struct frame_id sr_id)
2850{
2851 /* There should never be more than one step-resume breakpoint per
2852 thread, so we should never be setting a new
2853 step_resume_breakpoint when one is already active. */
2854 gdb_assert (step_resume_breakpoint == NULL);
d3169d93
DJ
2855
2856 if (debug_infrun)
2857 fprintf_unfiltered (gdb_stdlog,
2858 "infrun: inserting step-resume breakpoint at 0x%s\n",
2859 paddr_nz (sr_sal.pc));
2860
44cbf7b5
AC
2861 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2862 bp_step_resume);
44cbf7b5 2863}
7ce450bd 2864
d3169d93 2865/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
14e60db5 2866 to skip a potential signal handler.
7ce450bd 2867
14e60db5
DJ
2868 This is called with the interrupted function's frame. The signal
2869 handler, when it returns, will resume the interrupted function at
2870 RETURN_FRAME.pc. */
d303a6c7
AC
2871
2872static void
44cbf7b5 2873insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
2874{
2875 struct symtab_and_line sr_sal;
2876
f4c1edd8 2877 gdb_assert (return_frame != NULL);
d303a6c7
AC
2878 init_sal (&sr_sal); /* initialize to zeros */
2879
bf6ae464
UW
2880 sr_sal.pc = gdbarch_addr_bits_remove
2881 (current_gdbarch, get_frame_pc (return_frame));
d303a6c7
AC
2882 sr_sal.section = find_pc_overlay (sr_sal.pc);
2883
44cbf7b5 2884 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
d303a6c7
AC
2885}
2886
14e60db5
DJ
2887/* Similar to insert_step_resume_breakpoint_at_frame, except
2888 but a breakpoint at the previous frame's PC. This is used to
2889 skip a function after stepping into it (for "next" or if the called
2890 function has no debugging information).
2891
2892 The current function has almost always been reached by single
2893 stepping a call or return instruction. NEXT_FRAME belongs to the
2894 current function, and the breakpoint will be set at the caller's
2895 resume address.
2896
2897 This is a separate function rather than reusing
2898 insert_step_resume_breakpoint_at_frame in order to avoid
2899 get_prev_frame, which may stop prematurely (see the implementation
2900 of frame_unwind_id for an example). */
2901
2902static void
2903insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2904{
2905 struct symtab_and_line sr_sal;
2906
2907 /* We shouldn't have gotten here if we don't know where the call site
2908 is. */
2909 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2910
2911 init_sal (&sr_sal); /* initialize to zeros */
2912
bf6ae464
UW
2913 sr_sal.pc = gdbarch_addr_bits_remove
2914 (current_gdbarch, frame_pc_unwind (next_frame));
14e60db5
DJ
2915 sr_sal.section = find_pc_overlay (sr_sal.pc);
2916
2917 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2918}
2919
104c1213
JM
2920static void
2921stop_stepping (struct execution_control_state *ecs)
2922{
527159b7 2923 if (debug_infrun)
8a9de0e4 2924 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 2925
cd0fc7c3
SS
2926 /* Let callers know we don't want to wait for the inferior anymore. */
2927 ecs->wait_some_more = 0;
2928}
2929
d4f3574e
SS
2930/* This function handles various cases where we need to continue
2931 waiting for the inferior. */
2932/* (Used to be the keep_going: label in the old wait_for_inferior) */
2933
2934static void
2935keep_going (struct execution_control_state *ecs)
2936{
d4f3574e 2937 /* Save the pc before execution, to compare with pc after stop. */
488f131b 2938 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e 2939
d4f3574e
SS
2940 /* If we did not do break;, it means we should keep running the
2941 inferior and not return to debugger. */
2942
ca67fcb8 2943 if (stepping_over_breakpoint && stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
2944 {
2945 /* We took a signal (which we are supposed to pass through to
488f131b
JB
2946 the inferior, else we'd have done a break above) and we
2947 haven't yet gotten our trap. Simply continue. */
d4f3574e
SS
2948 resume (currently_stepping (ecs), stop_signal);
2949 }
2950 else
2951 {
2952 /* Either the trap was not expected, but we are continuing
488f131b
JB
2953 anyway (the user asked that this signal be passed to the
2954 child)
2955 -- or --
2956 The signal was SIGTRAP, e.g. it was our signal, but we
2957 decided we should resume from it.
d4f3574e 2958
c36b740a 2959 We're going to run this baby now!
d4f3574e 2960
c36b740a
VP
2961 Note that insert_breakpoints won't try to re-insert
2962 already inserted breakpoints. Therefore, we don't
2963 care if breakpoints were already inserted, or not. */
2964
45e8c884
VP
2965 if (ecs->stepping_over_breakpoint)
2966 {
2967 remove_breakpoints ();
2968 }
2969 else
d4f3574e 2970 {
e236ba44 2971 struct gdb_exception e;
569631c6
UW
2972 /* Stop stepping when inserting breakpoints
2973 has failed. */
e236ba44
VP
2974 TRY_CATCH (e, RETURN_MASK_ERROR)
2975 {
2976 insert_breakpoints ();
2977 }
2978 if (e.reason < 0)
d4f3574e
SS
2979 {
2980 stop_stepping (ecs);
2981 return;
2982 }
d4f3574e
SS
2983 }
2984
ca67fcb8 2985 stepping_over_breakpoint = ecs->stepping_over_breakpoint;
d4f3574e
SS
2986
2987 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
2988 specifies that such a signal should be delivered to the
2989 target program).
2990
2991 Typically, this would occure when a user is debugging a
2992 target monitor on a simulator: the target monitor sets a
2993 breakpoint; the simulator encounters this break-point and
2994 halts the simulation handing control to GDB; GDB, noteing
2995 that the break-point isn't valid, returns control back to the
2996 simulator; the simulator then delivers the hardware
2997 equivalent of a SIGNAL_TRAP to the program being debugged. */
2998
2999 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
d4f3574e
SS
3000 stop_signal = TARGET_SIGNAL_0;
3001
d4f3574e
SS
3002
3003 resume (currently_stepping (ecs), stop_signal);
3004 }
3005
488f131b 3006 prepare_to_wait (ecs);
d4f3574e
SS
3007}
3008
104c1213
JM
3009/* This function normally comes after a resume, before
3010 handle_inferior_event exits. It takes care of any last bits of
3011 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 3012
104c1213
JM
3013static void
3014prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 3015{
527159b7 3016 if (debug_infrun)
8a9de0e4 3017 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213
JM
3018 if (ecs->infwait_state == infwait_normal_state)
3019 {
3020 overlay_cache_invalid = 1;
3021
3022 /* We have to invalidate the registers BEFORE calling
488f131b
JB
3023 target_wait because they can be loaded from the target while
3024 in target_wait. This makes remote debugging a bit more
3025 efficient for those targets that provide critical registers
3026 as part of their normal status mechanism. */
104c1213
JM
3027
3028 registers_changed ();
39f77062 3029 ecs->waiton_ptid = pid_to_ptid (-1);
104c1213
JM
3030 ecs->wp = &(ecs->ws);
3031 }
3032 /* This is the old end of the while loop. Let everybody know we
3033 want to wait for the inferior some more and get called again
3034 soon. */
3035 ecs->wait_some_more = 1;
c906108c 3036}
11cf8741
JM
3037
3038/* Print why the inferior has stopped. We always print something when
3039 the inferior exits, or receives a signal. The rest of the cases are
3040 dealt with later on in normal_stop() and print_it_typical(). Ideally
3041 there should be a call to this function from handle_inferior_event()
3042 each time stop_stepping() is called.*/
3043static void
3044print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3045{
3046 switch (stop_reason)
3047 {
11cf8741
JM
3048 case END_STEPPING_RANGE:
3049 /* We are done with a step/next/si/ni command. */
3050 /* For now print nothing. */
fb40c209 3051 /* Print a message only if not in the middle of doing a "step n"
488f131b 3052 operation for n > 1 */
fb40c209 3053 if (!step_multi || !stop_step)
9dc5e2a9 3054 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3055 ui_out_field_string
3056 (uiout, "reason",
3057 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
11cf8741 3058 break;
11cf8741
JM
3059 case SIGNAL_EXITED:
3060 /* The inferior was terminated by a signal. */
8b93c638 3061 annotate_signalled ();
9dc5e2a9 3062 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3063 ui_out_field_string
3064 (uiout, "reason",
3065 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8b93c638
JM
3066 ui_out_text (uiout, "\nProgram terminated with signal ");
3067 annotate_signal_name ();
488f131b
JB
3068 ui_out_field_string (uiout, "signal-name",
3069 target_signal_to_name (stop_info));
8b93c638
JM
3070 annotate_signal_name_end ();
3071 ui_out_text (uiout, ", ");
3072 annotate_signal_string ();
488f131b
JB
3073 ui_out_field_string (uiout, "signal-meaning",
3074 target_signal_to_string (stop_info));
8b93c638
JM
3075 annotate_signal_string_end ();
3076 ui_out_text (uiout, ".\n");
3077 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
3078 break;
3079 case EXITED:
3080 /* The inferior program is finished. */
8b93c638
JM
3081 annotate_exited (stop_info);
3082 if (stop_info)
3083 {
9dc5e2a9 3084 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3085 ui_out_field_string (uiout, "reason",
3086 async_reason_lookup (EXEC_ASYNC_EXITED));
8b93c638 3087 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
3088 ui_out_field_fmt (uiout, "exit-code", "0%o",
3089 (unsigned int) stop_info);
8b93c638
JM
3090 ui_out_text (uiout, ".\n");
3091 }
3092 else
3093 {
9dc5e2a9 3094 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3095 ui_out_field_string
3096 (uiout, "reason",
3097 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8b93c638
JM
3098 ui_out_text (uiout, "\nProgram exited normally.\n");
3099 }
f17517ea
AS
3100 /* Support the --return-child-result option. */
3101 return_child_result_value = stop_info;
11cf8741
JM
3102 break;
3103 case SIGNAL_RECEIVED:
3104 /* Signal received. The signal table tells us to print about
3105 it. */
8b93c638
JM
3106 annotate_signal ();
3107 ui_out_text (uiout, "\nProgram received signal ");
3108 annotate_signal_name ();
84c6c83c 3109 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3110 ui_out_field_string
3111 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b
JB
3112 ui_out_field_string (uiout, "signal-name",
3113 target_signal_to_name (stop_info));
8b93c638
JM
3114 annotate_signal_name_end ();
3115 ui_out_text (uiout, ", ");
3116 annotate_signal_string ();
488f131b
JB
3117 ui_out_field_string (uiout, "signal-meaning",
3118 target_signal_to_string (stop_info));
8b93c638
JM
3119 annotate_signal_string_end ();
3120 ui_out_text (uiout, ".\n");
11cf8741
JM
3121 break;
3122 default:
8e65ff28 3123 internal_error (__FILE__, __LINE__,
e2e0b3e5 3124 _("print_stop_reason: unrecognized enum value"));
11cf8741
JM
3125 break;
3126 }
3127}
c906108c 3128\f
43ff13b4 3129
c906108c
SS
3130/* Here to return control to GDB when the inferior stops for real.
3131 Print appropriate messages, remove breakpoints, give terminal our modes.
3132
3133 STOP_PRINT_FRAME nonzero means print the executing frame
3134 (pc, function, args, file, line number and line text).
3135 BREAKPOINTS_FAILED nonzero means stop was due to error
3136 attempting to insert breakpoints. */
3137
3138void
96baa820 3139normal_stop (void)
c906108c 3140{
73b65bb0
DJ
3141 struct target_waitstatus last;
3142 ptid_t last_ptid;
3143
3144 get_last_target_status (&last_ptid, &last);
3145
c906108c
SS
3146 /* As with the notification of thread events, we want to delay
3147 notifying the user that we've switched thread context until
3148 the inferior actually stops.
3149
73b65bb0
DJ
3150 There's no point in saying anything if the inferior has exited.
3151 Note that SIGNALLED here means "exited with a signal", not
3152 "received a signal". */
488f131b 3153 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
3154 && target_has_execution
3155 && last.kind != TARGET_WAITKIND_SIGNALLED
3156 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
3157 {
3158 target_terminal_ours_for_output ();
a3f17187 3159 printf_filtered (_("[Switching to %s]\n"),
39f77062
KB
3160 target_pid_or_tid_to_str (inferior_ptid));
3161 previous_inferior_ptid = inferior_ptid;
c906108c 3162 }
c906108c 3163
4fa8626c 3164 /* NOTE drow/2004-01-17: Is this still necessary? */
c906108c
SS
3165 /* Make sure that the current_frame's pc is correct. This
3166 is a correction for setting up the frame info before doing
b798847d 3167 gdbarch_decr_pc_after_break */
b87efeee
AC
3168 if (target_has_execution)
3169 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
b798847d 3170 gdbarch_decr_pc_after_break, the program counter can change. Ask the
b87efeee 3171 frame code to check for this and sort out any resultant mess.
b798847d 3172 gdbarch_decr_pc_after_break needs to just go away. */
2f107107 3173 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
c906108c 3174
c36b740a 3175 if (target_has_execution)
c906108c
SS
3176 {
3177 if (remove_breakpoints ())
3178 {
3179 target_terminal_ours_for_output ();
a3f17187
AC
3180 printf_filtered (_("\
3181Cannot remove breakpoints because program is no longer writable.\n\
3182It might be running in another process.\n\
3183Further execution is probably impossible.\n"));
c906108c
SS
3184 }
3185 }
c906108c
SS
3186
3187 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3188 Delete any breakpoint that is to be deleted at the next stop. */
3189
3190 breakpoint_auto_delete (stop_bpstat);
3191
3192 /* If an auto-display called a function and that got a signal,
3193 delete that auto-display to avoid an infinite recursion. */
3194
3195 if (stopped_by_random_signal)
3196 disable_current_display ();
3197
3198 /* Don't print a message if in the middle of doing a "step n"
3199 operation for n > 1 */
3200 if (step_multi && stop_step)
3201 goto done;
3202
3203 target_terminal_ours ();
3204
7abfe014
DJ
3205 /* Set the current source location. This will also happen if we
3206 display the frame below, but the current SAL will be incorrect
3207 during a user hook-stop function. */
3208 if (target_has_stack && !stop_stack_dummy)
3209 set_current_sal_from_frame (get_current_frame (), 1);
3210
5913bcb0
AC
3211 /* Look up the hook_stop and run it (CLI internally handles problem
3212 of stop_command's pre-hook not existing). */
3213 if (stop_command)
3214 catch_errors (hook_stop_stub, stop_command,
3215 "Error while running hook_stop:\n", RETURN_MASK_ALL);
c906108c
SS
3216
3217 if (!target_has_stack)
3218 {
3219
3220 goto done;
3221 }
3222
3223 /* Select innermost stack frame - i.e., current frame is frame 0,
3224 and current location is based on that.
3225 Don't do this on return from a stack dummy routine,
3226 or if the program has exited. */
3227
3228 if (!stop_stack_dummy)
3229 {
0f7d239c 3230 select_frame (get_current_frame ());
c906108c
SS
3231
3232 /* Print current location without a level number, if
c5aa993b
JM
3233 we have changed functions or hit a breakpoint.
3234 Print source line if we have one.
3235 bpstat_print() contains the logic deciding in detail
3236 what to print, based on the event(s) that just occurred. */
c906108c 3237
206415a3 3238 if (stop_print_frame)
c906108c
SS
3239 {
3240 int bpstat_ret;
3241 int source_flag;
917317f4 3242 int do_frame_printing = 1;
c906108c
SS
3243
3244 bpstat_ret = bpstat_print (stop_bpstat);
917317f4
JM
3245 switch (bpstat_ret)
3246 {
3247 case PRINT_UNKNOWN:
b0f4b84b
DJ
3248 /* If we had hit a shared library event breakpoint,
3249 bpstat_print would print out this message. If we hit
3250 an OS-level shared library event, do the same
3251 thing. */
3252 if (last.kind == TARGET_WAITKIND_LOADED)
3253 {
3254 printf_filtered (_("Stopped due to shared library event\n"));
3255 source_flag = SRC_LINE; /* something bogus */
3256 do_frame_printing = 0;
3257 break;
3258 }
3259
aa0cd9c1 3260 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
3261 (or should) carry around the function and does (or
3262 should) use that when doing a frame comparison. */
917317f4 3263 if (stop_step
aa0cd9c1
AC
3264 && frame_id_eq (step_frame_id,
3265 get_frame_id (get_current_frame ()))
917317f4 3266 && step_start_function == find_pc_function (stop_pc))
488f131b 3267 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 3268 else
488f131b 3269 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3270 break;
3271 case PRINT_SRC_AND_LOC:
488f131b 3272 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3273 break;
3274 case PRINT_SRC_ONLY:
c5394b80 3275 source_flag = SRC_LINE;
917317f4
JM
3276 break;
3277 case PRINT_NOTHING:
488f131b 3278 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
3279 do_frame_printing = 0;
3280 break;
3281 default:
e2e0b3e5 3282 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 3283 }
c906108c 3284
9dc5e2a9 3285 if (ui_out_is_mi_like_p (uiout))
39f77062 3286 ui_out_field_int (uiout, "thread-id",
488f131b 3287 pid_to_thread_id (inferior_ptid));
c906108c
SS
3288 /* The behavior of this routine with respect to the source
3289 flag is:
c5394b80
JM
3290 SRC_LINE: Print only source line
3291 LOCATION: Print only location
3292 SRC_AND_LOC: Print location and source line */
917317f4 3293 if (do_frame_printing)
b04f3ab4 3294 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
3295
3296 /* Display the auto-display expressions. */
3297 do_displays ();
3298 }
3299 }
3300
3301 /* Save the function value return registers, if we care.
3302 We might be about to restore their previous contents. */
3303 if (proceed_to_finish)
d5c31457
UW
3304 {
3305 /* This should not be necessary. */
3306 if (stop_registers)
3307 regcache_xfree (stop_registers);
3308
3309 /* NB: The copy goes through to the target picking up the value of
3310 all the registers. */
3311 stop_registers = regcache_dup (get_current_regcache ());
3312 }
c906108c
SS
3313
3314 if (stop_stack_dummy)
3315 {
dbe9fe58
AC
3316 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3317 ends with a setting of the current frame, so we can use that
3318 next. */
3319 frame_pop (get_current_frame ());
c906108c 3320 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
3321 Can't rely on restore_inferior_status because that only gets
3322 called if we don't stop in the called function. */
c906108c 3323 stop_pc = read_pc ();
0f7d239c 3324 select_frame (get_current_frame ());
c906108c
SS
3325 }
3326
c906108c
SS
3327done:
3328 annotate_stopped ();
7a464420 3329 observer_notify_normal_stop (stop_bpstat);
c906108c
SS
3330}
3331
3332static int
96baa820 3333hook_stop_stub (void *cmd)
c906108c 3334{
5913bcb0 3335 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
3336 return (0);
3337}
3338\f
c5aa993b 3339int
96baa820 3340signal_stop_state (int signo)
c906108c
SS
3341{
3342 return signal_stop[signo];
3343}
3344
c5aa993b 3345int
96baa820 3346signal_print_state (int signo)
c906108c
SS
3347{
3348 return signal_print[signo];
3349}
3350
c5aa993b 3351int
96baa820 3352signal_pass_state (int signo)
c906108c
SS
3353{
3354 return signal_program[signo];
3355}
3356
488f131b 3357int
7bda5e4a 3358signal_stop_update (int signo, int state)
d4f3574e
SS
3359{
3360 int ret = signal_stop[signo];
3361 signal_stop[signo] = state;
3362 return ret;
3363}
3364
488f131b 3365int
7bda5e4a 3366signal_print_update (int signo, int state)
d4f3574e
SS
3367{
3368 int ret = signal_print[signo];
3369 signal_print[signo] = state;
3370 return ret;
3371}
3372
488f131b 3373int
7bda5e4a 3374signal_pass_update (int signo, int state)
d4f3574e
SS
3375{
3376 int ret = signal_program[signo];
3377 signal_program[signo] = state;
3378 return ret;
3379}
3380
c906108c 3381static void
96baa820 3382sig_print_header (void)
c906108c 3383{
a3f17187
AC
3384 printf_filtered (_("\
3385Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
3386}
3387
3388static void
96baa820 3389sig_print_info (enum target_signal oursig)
c906108c
SS
3390{
3391 char *name = target_signal_to_name (oursig);
3392 int name_padding = 13 - strlen (name);
96baa820 3393
c906108c
SS
3394 if (name_padding <= 0)
3395 name_padding = 0;
3396
3397 printf_filtered ("%s", name);
488f131b 3398 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
3399 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3400 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3401 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3402 printf_filtered ("%s\n", target_signal_to_string (oursig));
3403}
3404
3405/* Specify how various signals in the inferior should be handled. */
3406
3407static void
96baa820 3408handle_command (char *args, int from_tty)
c906108c
SS
3409{
3410 char **argv;
3411 int digits, wordlen;
3412 int sigfirst, signum, siglast;
3413 enum target_signal oursig;
3414 int allsigs;
3415 int nsigs;
3416 unsigned char *sigs;
3417 struct cleanup *old_chain;
3418
3419 if (args == NULL)
3420 {
e2e0b3e5 3421 error_no_arg (_("signal to handle"));
c906108c
SS
3422 }
3423
3424 /* Allocate and zero an array of flags for which signals to handle. */
3425
3426 nsigs = (int) TARGET_SIGNAL_LAST;
3427 sigs = (unsigned char *) alloca (nsigs);
3428 memset (sigs, 0, nsigs);
3429
3430 /* Break the command line up into args. */
3431
3432 argv = buildargv (args);
3433 if (argv == NULL)
3434 {
3435 nomem (0);
3436 }
7a292a7a 3437 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3438
3439 /* Walk through the args, looking for signal oursigs, signal names, and
3440 actions. Signal numbers and signal names may be interspersed with
3441 actions, with the actions being performed for all signals cumulatively
3442 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3443
3444 while (*argv != NULL)
3445 {
3446 wordlen = strlen (*argv);
3447 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3448 {;
3449 }
3450 allsigs = 0;
3451 sigfirst = siglast = -1;
3452
3453 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3454 {
3455 /* Apply action to all signals except those used by the
3456 debugger. Silently skip those. */
3457 allsigs = 1;
3458 sigfirst = 0;
3459 siglast = nsigs - 1;
3460 }
3461 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3462 {
3463 SET_SIGS (nsigs, sigs, signal_stop);
3464 SET_SIGS (nsigs, sigs, signal_print);
3465 }
3466 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3467 {
3468 UNSET_SIGS (nsigs, sigs, signal_program);
3469 }
3470 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3471 {
3472 SET_SIGS (nsigs, sigs, signal_print);
3473 }
3474 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3475 {
3476 SET_SIGS (nsigs, sigs, signal_program);
3477 }
3478 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3479 {
3480 UNSET_SIGS (nsigs, sigs, signal_stop);
3481 }
3482 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3483 {
3484 SET_SIGS (nsigs, sigs, signal_program);
3485 }
3486 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3487 {
3488 UNSET_SIGS (nsigs, sigs, signal_print);
3489 UNSET_SIGS (nsigs, sigs, signal_stop);
3490 }
3491 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3492 {
3493 UNSET_SIGS (nsigs, sigs, signal_program);
3494 }
3495 else if (digits > 0)
3496 {
3497 /* It is numeric. The numeric signal refers to our own
3498 internal signal numbering from target.h, not to host/target
3499 signal number. This is a feature; users really should be
3500 using symbolic names anyway, and the common ones like
3501 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3502
3503 sigfirst = siglast = (int)
3504 target_signal_from_command (atoi (*argv));
3505 if ((*argv)[digits] == '-')
3506 {
3507 siglast = (int)
3508 target_signal_from_command (atoi ((*argv) + digits + 1));
3509 }
3510 if (sigfirst > siglast)
3511 {
3512 /* Bet he didn't figure we'd think of this case... */
3513 signum = sigfirst;
3514 sigfirst = siglast;
3515 siglast = signum;
3516 }
3517 }
3518 else
3519 {
3520 oursig = target_signal_from_name (*argv);
3521 if (oursig != TARGET_SIGNAL_UNKNOWN)
3522 {
3523 sigfirst = siglast = (int) oursig;
3524 }
3525 else
3526 {
3527 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 3528 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
3529 }
3530 }
3531
3532 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 3533 which signals to apply actions to. */
c906108c
SS
3534
3535 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3536 {
3537 switch ((enum target_signal) signum)
3538 {
3539 case TARGET_SIGNAL_TRAP:
3540 case TARGET_SIGNAL_INT:
3541 if (!allsigs && !sigs[signum])
3542 {
3543 if (query ("%s is used by the debugger.\n\
488f131b 3544Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
3545 {
3546 sigs[signum] = 1;
3547 }
3548 else
3549 {
a3f17187 3550 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
3551 gdb_flush (gdb_stdout);
3552 }
3553 }
3554 break;
3555 case TARGET_SIGNAL_0:
3556 case TARGET_SIGNAL_DEFAULT:
3557 case TARGET_SIGNAL_UNKNOWN:
3558 /* Make sure that "all" doesn't print these. */
3559 break;
3560 default:
3561 sigs[signum] = 1;
3562 break;
3563 }
3564 }
3565
3566 argv++;
3567 }
3568
39f77062 3569 target_notice_signals (inferior_ptid);
c906108c
SS
3570
3571 if (from_tty)
3572 {
3573 /* Show the results. */
3574 sig_print_header ();
3575 for (signum = 0; signum < nsigs; signum++)
3576 {
3577 if (sigs[signum])
3578 {
3579 sig_print_info (signum);
3580 }
3581 }
3582 }
3583
3584 do_cleanups (old_chain);
3585}
3586
3587static void
96baa820 3588xdb_handle_command (char *args, int from_tty)
c906108c
SS
3589{
3590 char **argv;
3591 struct cleanup *old_chain;
3592
3593 /* Break the command line up into args. */
3594
3595 argv = buildargv (args);
3596 if (argv == NULL)
3597 {
3598 nomem (0);
3599 }
7a292a7a 3600 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3601 if (argv[1] != (char *) NULL)
3602 {
3603 char *argBuf;
3604 int bufLen;
3605
3606 bufLen = strlen (argv[0]) + 20;
3607 argBuf = (char *) xmalloc (bufLen);
3608 if (argBuf)
3609 {
3610 int validFlag = 1;
3611 enum target_signal oursig;
3612
3613 oursig = target_signal_from_name (argv[0]);
3614 memset (argBuf, 0, bufLen);
3615 if (strcmp (argv[1], "Q") == 0)
3616 sprintf (argBuf, "%s %s", argv[0], "noprint");
3617 else
3618 {
3619 if (strcmp (argv[1], "s") == 0)
3620 {
3621 if (!signal_stop[oursig])
3622 sprintf (argBuf, "%s %s", argv[0], "stop");
3623 else
3624 sprintf (argBuf, "%s %s", argv[0], "nostop");
3625 }
3626 else if (strcmp (argv[1], "i") == 0)
3627 {
3628 if (!signal_program[oursig])
3629 sprintf (argBuf, "%s %s", argv[0], "pass");
3630 else
3631 sprintf (argBuf, "%s %s", argv[0], "nopass");
3632 }
3633 else if (strcmp (argv[1], "r") == 0)
3634 {
3635 if (!signal_print[oursig])
3636 sprintf (argBuf, "%s %s", argv[0], "print");
3637 else
3638 sprintf (argBuf, "%s %s", argv[0], "noprint");
3639 }
3640 else
3641 validFlag = 0;
3642 }
3643 if (validFlag)
3644 handle_command (argBuf, from_tty);
3645 else
a3f17187 3646 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 3647 if (argBuf)
b8c9b27d 3648 xfree (argBuf);
c906108c
SS
3649 }
3650 }
3651 do_cleanups (old_chain);
3652}
3653
3654/* Print current contents of the tables set by the handle command.
3655 It is possible we should just be printing signals actually used
3656 by the current target (but for things to work right when switching
3657 targets, all signals should be in the signal tables). */
3658
3659static void
96baa820 3660signals_info (char *signum_exp, int from_tty)
c906108c
SS
3661{
3662 enum target_signal oursig;
3663 sig_print_header ();
3664
3665 if (signum_exp)
3666 {
3667 /* First see if this is a symbol name. */
3668 oursig = target_signal_from_name (signum_exp);
3669 if (oursig == TARGET_SIGNAL_UNKNOWN)
3670 {
3671 /* No, try numeric. */
3672 oursig =
bb518678 3673 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
3674 }
3675 sig_print_info (oursig);
3676 return;
3677 }
3678
3679 printf_filtered ("\n");
3680 /* These ugly casts brought to you by the native VAX compiler. */
3681 for (oursig = TARGET_SIGNAL_FIRST;
3682 (int) oursig < (int) TARGET_SIGNAL_LAST;
3683 oursig = (enum target_signal) ((int) oursig + 1))
3684 {
3685 QUIT;
3686
3687 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 3688 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
3689 sig_print_info (oursig);
3690 }
3691
a3f17187 3692 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c
SS
3693}
3694\f
7a292a7a
SS
3695struct inferior_status
3696{
3697 enum target_signal stop_signal;
3698 CORE_ADDR stop_pc;
3699 bpstat stop_bpstat;
3700 int stop_step;
3701 int stop_stack_dummy;
3702 int stopped_by_random_signal;
ca67fcb8 3703 int stepping_over_breakpoint;
7a292a7a
SS
3704 CORE_ADDR step_range_start;
3705 CORE_ADDR step_range_end;
aa0cd9c1 3706 struct frame_id step_frame_id;
5fbbeb29 3707 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
3708 CORE_ADDR step_resume_break_address;
3709 int stop_after_trap;
c0236d92 3710 int stop_soon;
7a292a7a
SS
3711
3712 /* These are here because if call_function_by_hand has written some
3713 registers and then decides to call error(), we better not have changed
3714 any registers. */
72cec141 3715 struct regcache *registers;
7a292a7a 3716
101dcfbe
AC
3717 /* A frame unique identifier. */
3718 struct frame_id selected_frame_id;
3719
7a292a7a
SS
3720 int breakpoint_proceeded;
3721 int restore_stack_info;
3722 int proceed_to_finish;
3723};
3724
7a292a7a 3725void
96baa820
JM
3726write_inferior_status_register (struct inferior_status *inf_status, int regno,
3727 LONGEST val)
7a292a7a 3728{
3acba339 3729 int size = register_size (current_gdbarch, regno);
7a292a7a
SS
3730 void *buf = alloca (size);
3731 store_signed_integer (buf, size, val);
0818c12a 3732 regcache_raw_write (inf_status->registers, regno, buf);
7a292a7a
SS
3733}
3734
c906108c
SS
3735/* Save all of the information associated with the inferior<==>gdb
3736 connection. INF_STATUS is a pointer to a "struct inferior_status"
3737 (defined in inferior.h). */
3738
7a292a7a 3739struct inferior_status *
96baa820 3740save_inferior_status (int restore_stack_info)
c906108c 3741{
72cec141 3742 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
7a292a7a 3743
c906108c
SS
3744 inf_status->stop_signal = stop_signal;
3745 inf_status->stop_pc = stop_pc;
3746 inf_status->stop_step = stop_step;
3747 inf_status->stop_stack_dummy = stop_stack_dummy;
3748 inf_status->stopped_by_random_signal = stopped_by_random_signal;
ca67fcb8 3749 inf_status->stepping_over_breakpoint = stepping_over_breakpoint;
c906108c
SS
3750 inf_status->step_range_start = step_range_start;
3751 inf_status->step_range_end = step_range_end;
aa0cd9c1 3752 inf_status->step_frame_id = step_frame_id;
c906108c
SS
3753 inf_status->step_over_calls = step_over_calls;
3754 inf_status->stop_after_trap = stop_after_trap;
c0236d92 3755 inf_status->stop_soon = stop_soon;
c906108c
SS
3756 /* Save original bpstat chain here; replace it with copy of chain.
3757 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
3758 hand them back the original chain when restore_inferior_status is
3759 called. */
c906108c
SS
3760 inf_status->stop_bpstat = stop_bpstat;
3761 stop_bpstat = bpstat_copy (stop_bpstat);
3762 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3763 inf_status->restore_stack_info = restore_stack_info;
3764 inf_status->proceed_to_finish = proceed_to_finish;
c5aa993b 3765
594f7785 3766 inf_status->registers = regcache_dup (get_current_regcache ());
c906108c 3767
206415a3 3768 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
7a292a7a 3769 return inf_status;
c906108c
SS
3770}
3771
c906108c 3772static int
96baa820 3773restore_selected_frame (void *args)
c906108c 3774{
488f131b 3775 struct frame_id *fid = (struct frame_id *) args;
c906108c 3776 struct frame_info *frame;
c906108c 3777
101dcfbe 3778 frame = frame_find_by_id (*fid);
c906108c 3779
aa0cd9c1
AC
3780 /* If inf_status->selected_frame_id is NULL, there was no previously
3781 selected frame. */
101dcfbe 3782 if (frame == NULL)
c906108c 3783 {
8a3fe4f8 3784 warning (_("Unable to restore previously selected frame."));
c906108c
SS
3785 return 0;
3786 }
3787
0f7d239c 3788 select_frame (frame);
c906108c
SS
3789
3790 return (1);
3791}
3792
3793void
96baa820 3794restore_inferior_status (struct inferior_status *inf_status)
c906108c
SS
3795{
3796 stop_signal = inf_status->stop_signal;
3797 stop_pc = inf_status->stop_pc;
3798 stop_step = inf_status->stop_step;
3799 stop_stack_dummy = inf_status->stop_stack_dummy;
3800 stopped_by_random_signal = inf_status->stopped_by_random_signal;
ca67fcb8 3801 stepping_over_breakpoint = inf_status->stepping_over_breakpoint;
c906108c
SS
3802 step_range_start = inf_status->step_range_start;
3803 step_range_end = inf_status->step_range_end;
aa0cd9c1 3804 step_frame_id = inf_status->step_frame_id;
c906108c
SS
3805 step_over_calls = inf_status->step_over_calls;
3806 stop_after_trap = inf_status->stop_after_trap;
c0236d92 3807 stop_soon = inf_status->stop_soon;
c906108c
SS
3808 bpstat_clear (&stop_bpstat);
3809 stop_bpstat = inf_status->stop_bpstat;
3810 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3811 proceed_to_finish = inf_status->proceed_to_finish;
3812
c906108c
SS
3813 /* The inferior can be gone if the user types "print exit(0)"
3814 (and perhaps other times). */
3815 if (target_has_execution)
72cec141 3816 /* NB: The register write goes through to the target. */
594f7785 3817 regcache_cpy (get_current_regcache (), inf_status->registers);
72cec141 3818 regcache_xfree (inf_status->registers);
c906108c 3819
c906108c
SS
3820 /* FIXME: If we are being called after stopping in a function which
3821 is called from gdb, we should not be trying to restore the
3822 selected frame; it just prints a spurious error message (The
3823 message is useful, however, in detecting bugs in gdb (like if gdb
3824 clobbers the stack)). In fact, should we be restoring the
3825 inferior status at all in that case? . */
3826
3827 if (target_has_stack && inf_status->restore_stack_info)
3828 {
c906108c 3829 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
3830 walking the stack might encounter a garbage pointer and
3831 error() trying to dereference it. */
488f131b
JB
3832 if (catch_errors
3833 (restore_selected_frame, &inf_status->selected_frame_id,
3834 "Unable to restore previously selected frame:\n",
3835 RETURN_MASK_ERROR) == 0)
c906108c
SS
3836 /* Error in restoring the selected frame. Select the innermost
3837 frame. */
0f7d239c 3838 select_frame (get_current_frame ());
c906108c
SS
3839
3840 }
c906108c 3841
72cec141 3842 xfree (inf_status);
7a292a7a 3843}
c906108c 3844
74b7792f
AC
3845static void
3846do_restore_inferior_status_cleanup (void *sts)
3847{
3848 restore_inferior_status (sts);
3849}
3850
3851struct cleanup *
3852make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3853{
3854 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3855}
3856
c906108c 3857void
96baa820 3858discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
3859{
3860 /* See save_inferior_status for info on stop_bpstat. */
3861 bpstat_clear (&inf_status->stop_bpstat);
72cec141 3862 regcache_xfree (inf_status->registers);
72cec141 3863 xfree (inf_status);
7a292a7a
SS
3864}
3865
47932f85
DJ
3866int
3867inferior_has_forked (int pid, int *child_pid)
3868{
3869 struct target_waitstatus last;
3870 ptid_t last_ptid;
3871
3872 get_last_target_status (&last_ptid, &last);
3873
3874 if (last.kind != TARGET_WAITKIND_FORKED)
3875 return 0;
3876
3877 if (ptid_get_pid (last_ptid) != pid)
3878 return 0;
3879
3880 *child_pid = last.value.related_pid;
3881 return 1;
3882}
3883
3884int
3885inferior_has_vforked (int pid, int *child_pid)
3886{
3887 struct target_waitstatus last;
3888 ptid_t last_ptid;
3889
3890 get_last_target_status (&last_ptid, &last);
3891
3892 if (last.kind != TARGET_WAITKIND_VFORKED)
3893 return 0;
3894
3895 if (ptid_get_pid (last_ptid) != pid)
3896 return 0;
3897
3898 *child_pid = last.value.related_pid;
3899 return 1;
3900}
3901
3902int
3903inferior_has_execd (int pid, char **execd_pathname)
3904{
3905 struct target_waitstatus last;
3906 ptid_t last_ptid;
3907
3908 get_last_target_status (&last_ptid, &last);
3909
3910 if (last.kind != TARGET_WAITKIND_EXECD)
3911 return 0;
3912
3913 if (ptid_get_pid (last_ptid) != pid)
3914 return 0;
3915
3916 *execd_pathname = xstrdup (last.value.execd_pathname);
3917 return 1;
3918}
3919
ca6724c1
KB
3920/* Oft used ptids */
3921ptid_t null_ptid;
3922ptid_t minus_one_ptid;
3923
3924/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 3925
ca6724c1
KB
3926ptid_t
3927ptid_build (int pid, long lwp, long tid)
3928{
3929 ptid_t ptid;
3930
3931 ptid.pid = pid;
3932 ptid.lwp = lwp;
3933 ptid.tid = tid;
3934 return ptid;
3935}
3936
3937/* Create a ptid from just a pid. */
3938
3939ptid_t
3940pid_to_ptid (int pid)
3941{
3942 return ptid_build (pid, 0, 0);
3943}
3944
3945/* Fetch the pid (process id) component from a ptid. */
3946
3947int
3948ptid_get_pid (ptid_t ptid)
3949{
3950 return ptid.pid;
3951}
3952
3953/* Fetch the lwp (lightweight process) component from a ptid. */
3954
3955long
3956ptid_get_lwp (ptid_t ptid)
3957{
3958 return ptid.lwp;
3959}
3960
3961/* Fetch the tid (thread id) component from a ptid. */
3962
3963long
3964ptid_get_tid (ptid_t ptid)
3965{
3966 return ptid.tid;
3967}
3968
3969/* ptid_equal() is used to test equality of two ptids. */
3970
3971int
3972ptid_equal (ptid_t ptid1, ptid_t ptid2)
3973{
3974 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 3975 && ptid1.tid == ptid2.tid);
ca6724c1
KB
3976}
3977
3978/* restore_inferior_ptid() will be used by the cleanup machinery
3979 to restore the inferior_ptid value saved in a call to
3980 save_inferior_ptid(). */
ce696e05
KB
3981
3982static void
3983restore_inferior_ptid (void *arg)
3984{
3985 ptid_t *saved_ptid_ptr = arg;
3986 inferior_ptid = *saved_ptid_ptr;
3987 xfree (arg);
3988}
3989
3990/* Save the value of inferior_ptid so that it may be restored by a
3991 later call to do_cleanups(). Returns the struct cleanup pointer
3992 needed for later doing the cleanup. */
3993
3994struct cleanup *
3995save_inferior_ptid (void)
3996{
3997 ptid_t *saved_ptid_ptr;
3998
3999 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
4000 *saved_ptid_ptr = inferior_ptid;
4001 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
4002}
c5aa993b 4003\f
488f131b 4004
c906108c 4005void
96baa820 4006_initialize_infrun (void)
c906108c 4007{
52f0bd74
AC
4008 int i;
4009 int numsigs;
c906108c
SS
4010 struct cmd_list_element *c;
4011
1bedd215
AC
4012 add_info ("signals", signals_info, _("\
4013What debugger does when program gets various signals.\n\
4014Specify a signal as argument to print info on that signal only."));
c906108c
SS
4015 add_info_alias ("handle", "signals", 0);
4016
1bedd215
AC
4017 add_com ("handle", class_run, handle_command, _("\
4018Specify how to handle a signal.\n\
c906108c
SS
4019Args are signals and actions to apply to those signals.\n\
4020Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4021from 1-15 are allowed for compatibility with old versions of GDB.\n\
4022Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4023The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
4024used by the debugger, typically SIGTRAP and SIGINT.\n\
4025Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
4026\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
4027Stop means reenter debugger if this signal happens (implies print).\n\
4028Print means print a message if this signal happens.\n\
4029Pass means let program see this signal; otherwise program doesn't know.\n\
4030Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 4031Pass and Stop may be combined."));
c906108c
SS
4032 if (xdb_commands)
4033 {
1bedd215
AC
4034 add_com ("lz", class_info, signals_info, _("\
4035What debugger does when program gets various signals.\n\
4036Specify a signal as argument to print info on that signal only."));
4037 add_com ("z", class_run, xdb_handle_command, _("\
4038Specify how to handle a signal.\n\
c906108c
SS
4039Args are signals and actions to apply to those signals.\n\
4040Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4041from 1-15 are allowed for compatibility with old versions of GDB.\n\
4042Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4043The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
4044used by the debugger, typically SIGTRAP and SIGINT.\n\
4045Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
4046\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4047nopass), \"Q\" (noprint)\n\
4048Stop means reenter debugger if this signal happens (implies print).\n\
4049Print means print a message if this signal happens.\n\
4050Pass means let program see this signal; otherwise program doesn't know.\n\
4051Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 4052Pass and Stop may be combined."));
c906108c
SS
4053 }
4054
4055 if (!dbx_commands)
1a966eab
AC
4056 stop_command = add_cmd ("stop", class_obscure,
4057 not_just_help_class_command, _("\
4058There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 4059This allows you to set a list of commands to be run each time execution\n\
1a966eab 4060of the program stops."), &cmdlist);
c906108c 4061
85c07804
AC
4062 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4063Set inferior debugging."), _("\
4064Show inferior debugging."), _("\
4065When non-zero, inferior specific debugging is enabled."),
4066 NULL,
920d2a44 4067 show_debug_infrun,
85c07804 4068 &setdebuglist, &showdebuglist);
527159b7 4069
c906108c 4070 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 4071 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
4072 signal_print = (unsigned char *)
4073 xmalloc (sizeof (signal_print[0]) * numsigs);
4074 signal_program = (unsigned char *)
4075 xmalloc (sizeof (signal_program[0]) * numsigs);
4076 for (i = 0; i < numsigs; i++)
4077 {
4078 signal_stop[i] = 1;
4079 signal_print[i] = 1;
4080 signal_program[i] = 1;
4081 }
4082
4083 /* Signals caused by debugger's own actions
4084 should not be given to the program afterwards. */
4085 signal_program[TARGET_SIGNAL_TRAP] = 0;
4086 signal_program[TARGET_SIGNAL_INT] = 0;
4087
4088 /* Signals that are not errors should not normally enter the debugger. */
4089 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4090 signal_print[TARGET_SIGNAL_ALRM] = 0;
4091 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4092 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4093 signal_stop[TARGET_SIGNAL_PROF] = 0;
4094 signal_print[TARGET_SIGNAL_PROF] = 0;
4095 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4096 signal_print[TARGET_SIGNAL_CHLD] = 0;
4097 signal_stop[TARGET_SIGNAL_IO] = 0;
4098 signal_print[TARGET_SIGNAL_IO] = 0;
4099 signal_stop[TARGET_SIGNAL_POLL] = 0;
4100 signal_print[TARGET_SIGNAL_POLL] = 0;
4101 signal_stop[TARGET_SIGNAL_URG] = 0;
4102 signal_print[TARGET_SIGNAL_URG] = 0;
4103 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4104 signal_print[TARGET_SIGNAL_WINCH] = 0;
4105
cd0fc7c3
SS
4106 /* These signals are used internally by user-level thread
4107 implementations. (See signal(5) on Solaris.) Like the above
4108 signals, a healthy program receives and handles them as part of
4109 its normal operation. */
4110 signal_stop[TARGET_SIGNAL_LWP] = 0;
4111 signal_print[TARGET_SIGNAL_LWP] = 0;
4112 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4113 signal_print[TARGET_SIGNAL_WAITING] = 0;
4114 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4115 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4116
85c07804
AC
4117 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4118 &stop_on_solib_events, _("\
4119Set stopping for shared library events."), _("\
4120Show stopping for shared library events."), _("\
c906108c
SS
4121If nonzero, gdb will give control to the user when the dynamic linker\n\
4122notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
4123to the user would be loading/unloading of a new library."),
4124 NULL,
920d2a44 4125 show_stop_on_solib_events,
85c07804 4126 &setlist, &showlist);
c906108c 4127
7ab04401
AC
4128 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4129 follow_fork_mode_kind_names,
4130 &follow_fork_mode_string, _("\
4131Set debugger response to a program call of fork or vfork."), _("\
4132Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
4133A fork or vfork creates a new process. follow-fork-mode can be:\n\
4134 parent - the original process is debugged after a fork\n\
4135 child - the new process is debugged after a fork\n\
ea1dd7bc 4136The unfollowed process will continue to run.\n\
7ab04401
AC
4137By default, the debugger will follow the parent process."),
4138 NULL,
920d2a44 4139 show_follow_fork_mode_string,
7ab04401
AC
4140 &setlist, &showlist);
4141
4142 add_setshow_enum_cmd ("scheduler-locking", class_run,
4143 scheduler_enums, &scheduler_mode, _("\
4144Set mode for locking scheduler during execution."), _("\
4145Show mode for locking scheduler during execution."), _("\
c906108c
SS
4146off == no locking (threads may preempt at any time)\n\
4147on == full locking (no thread except the current thread may run)\n\
4148step == scheduler locked during every single-step operation.\n\
4149 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
4150 Other threads may run while stepping over a function call ('next')."),
4151 set_schedlock_func, /* traps on target vector */
920d2a44 4152 show_scheduler_mode,
7ab04401 4153 &setlist, &showlist);
5fbbeb29 4154
5bf193a2
AC
4155 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4156Set mode of the step operation."), _("\
4157Show mode of the step operation."), _("\
4158When set, doing a step over a function without debug line information\n\
4159will stop at the first instruction of that function. Otherwise, the\n\
4160function is skipped and the step command stops at a different source line."),
4161 NULL,
920d2a44 4162 show_step_stop_if_no_debug,
5bf193a2 4163 &setlist, &showlist);
ca6724c1
KB
4164
4165 /* ptid initializations */
4166 null_ptid = ptid_build (0, 0, 0);
4167 minus_one_ptid = ptid_build (-1, 0, 0);
4168 inferior_ptid = null_ptid;
4169 target_last_wait_ptid = minus_one_ptid;
c906108c 4170}