]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/infrun.c
Add casts to memory allocation related calls
[thirdparty/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
32d0add0 4 Copyright (C) 1986-2015 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
c906108c
SS
66
67/* Prototypes for local functions */
68
96baa820 69static void signals_info (char *, int);
c906108c 70
96baa820 71static void handle_command (char *, int);
c906108c 72
2ea28649 73static void sig_print_info (enum gdb_signal);
c906108c 74
96baa820 75static void sig_print_header (void);
c906108c 76
74b7792f 77static void resume_cleanups (void *);
c906108c 78
96baa820 79static int hook_stop_stub (void *);
c906108c 80
96baa820
JM
81static int restore_selected_frame (void *);
82
4ef3f3be 83static int follow_fork (void);
96baa820 84
d83ad864
DB
85static int follow_fork_inferior (int follow_child, int detach_fork);
86
87static void follow_inferior_reset_breakpoints (void);
88
96baa820 89static void set_schedlock_func (char *args, int from_tty,
488f131b 90 struct cmd_list_element *c);
96baa820 91
a289b8f6
JK
92static int currently_stepping (struct thread_info *tp);
93
96baa820 94void _initialize_infrun (void);
43ff13b4 95
e58b0e63
PA
96void nullify_last_target_wait_ptid (void);
97
2c03e5be 98static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
99
100static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
101
2484c66b
UW
102static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
103
8550d3b3
YQ
104static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
105
372316f1
PA
106/* Asynchronous signal handler registered as event loop source for
107 when we have pending events ready to be passed to the core. */
108static struct async_event_handler *infrun_async_inferior_event_token;
109
110/* Stores whether infrun_async was previously enabled or disabled.
111 Starts off as -1, indicating "never enabled/disabled". */
112static int infrun_is_async = -1;
113
114/* See infrun.h. */
115
116void
117infrun_async (int enable)
118{
119 if (infrun_is_async != enable)
120 {
121 infrun_is_async = enable;
122
123 if (debug_infrun)
124 fprintf_unfiltered (gdb_stdlog,
125 "infrun: infrun_async(%d)\n",
126 enable);
127
128 if (enable)
129 mark_async_event_handler (infrun_async_inferior_event_token);
130 else
131 clear_async_event_handler (infrun_async_inferior_event_token);
132 }
133}
134
0b333c5e
PA
135/* See infrun.h. */
136
137void
138mark_infrun_async_event_handler (void)
139{
140 mark_async_event_handler (infrun_async_inferior_event_token);
141}
142
5fbbeb29
CF
143/* When set, stop the 'step' command if we enter a function which has
144 no line number information. The normal behavior is that we step
145 over such function. */
146int step_stop_if_no_debug = 0;
920d2a44
AC
147static void
148show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
149 struct cmd_list_element *c, const char *value)
150{
151 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
152}
5fbbeb29 153
1777feb0 154/* In asynchronous mode, but simulating synchronous execution. */
96baa820 155
43ff13b4
JM
156int sync_execution = 0;
157
b9f437de
PA
158/* proceed and normal_stop use this to notify the user when the
159 inferior stopped in a different thread than it had been running
160 in. */
96baa820 161
39f77062 162static ptid_t previous_inferior_ptid;
7a292a7a 163
07107ca6
LM
164/* If set (default for legacy reasons), when following a fork, GDB
165 will detach from one of the fork branches, child or parent.
166 Exactly which branch is detached depends on 'set follow-fork-mode'
167 setting. */
168
169static int detach_fork = 1;
6c95b8df 170
237fc4c9
PA
171int debug_displaced = 0;
172static void
173show_debug_displaced (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175{
176 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
177}
178
ccce17b0 179unsigned int debug_infrun = 0;
920d2a44
AC
180static void
181show_debug_infrun (struct ui_file *file, int from_tty,
182 struct cmd_list_element *c, const char *value)
183{
184 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
185}
527159b7 186
03583c20
UW
187
188/* Support for disabling address space randomization. */
189
190int disable_randomization = 1;
191
192static void
193show_disable_randomization (struct ui_file *file, int from_tty,
194 struct cmd_list_element *c, const char *value)
195{
196 if (target_supports_disable_randomization ())
197 fprintf_filtered (file,
198 _("Disabling randomization of debuggee's "
199 "virtual address space is %s.\n"),
200 value);
201 else
202 fputs_filtered (_("Disabling randomization of debuggee's "
203 "virtual address space is unsupported on\n"
204 "this platform.\n"), file);
205}
206
207static void
208set_disable_randomization (char *args, int from_tty,
209 struct cmd_list_element *c)
210{
211 if (!target_supports_disable_randomization ())
212 error (_("Disabling randomization of debuggee's "
213 "virtual address space is unsupported on\n"
214 "this platform."));
215}
216
d32dc48e
PA
217/* User interface for non-stop mode. */
218
219int non_stop = 0;
220static int non_stop_1 = 0;
221
222static void
223set_non_stop (char *args, int from_tty,
224 struct cmd_list_element *c)
225{
226 if (target_has_execution)
227 {
228 non_stop_1 = non_stop;
229 error (_("Cannot change this setting while the inferior is running."));
230 }
231
232 non_stop = non_stop_1;
233}
234
235static void
236show_non_stop (struct ui_file *file, int from_tty,
237 struct cmd_list_element *c, const char *value)
238{
239 fprintf_filtered (file,
240 _("Controlling the inferior in non-stop mode is %s.\n"),
241 value);
242}
243
d914c394
SS
244/* "Observer mode" is somewhat like a more extreme version of
245 non-stop, in which all GDB operations that might affect the
246 target's execution have been disabled. */
247
d914c394
SS
248int observer_mode = 0;
249static int observer_mode_1 = 0;
250
251static void
252set_observer_mode (char *args, int from_tty,
253 struct cmd_list_element *c)
254{
d914c394
SS
255 if (target_has_execution)
256 {
257 observer_mode_1 = observer_mode;
258 error (_("Cannot change this setting while the inferior is running."));
259 }
260
261 observer_mode = observer_mode_1;
262
263 may_write_registers = !observer_mode;
264 may_write_memory = !observer_mode;
265 may_insert_breakpoints = !observer_mode;
266 may_insert_tracepoints = !observer_mode;
267 /* We can insert fast tracepoints in or out of observer mode,
268 but enable them if we're going into this mode. */
269 if (observer_mode)
270 may_insert_fast_tracepoints = 1;
271 may_stop = !observer_mode;
272 update_target_permissions ();
273
274 /* Going *into* observer mode we must force non-stop, then
275 going out we leave it that way. */
276 if (observer_mode)
277 {
d914c394
SS
278 pagination_enabled = 0;
279 non_stop = non_stop_1 = 1;
280 }
281
282 if (from_tty)
283 printf_filtered (_("Observer mode is now %s.\n"),
284 (observer_mode ? "on" : "off"));
285}
286
287static void
288show_observer_mode (struct ui_file *file, int from_tty,
289 struct cmd_list_element *c, const char *value)
290{
291 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
292}
293
294/* This updates the value of observer mode based on changes in
295 permissions. Note that we are deliberately ignoring the values of
296 may-write-registers and may-write-memory, since the user may have
297 reason to enable these during a session, for instance to turn on a
298 debugging-related global. */
299
300void
301update_observer_mode (void)
302{
303 int newval;
304
305 newval = (!may_insert_breakpoints
306 && !may_insert_tracepoints
307 && may_insert_fast_tracepoints
308 && !may_stop
309 && non_stop);
310
311 /* Let the user know if things change. */
312 if (newval != observer_mode)
313 printf_filtered (_("Observer mode is now %s.\n"),
314 (newval ? "on" : "off"));
315
316 observer_mode = observer_mode_1 = newval;
317}
c2c6d25f 318
c906108c
SS
319/* Tables of how to react to signals; the user sets them. */
320
321static unsigned char *signal_stop;
322static unsigned char *signal_print;
323static unsigned char *signal_program;
324
ab04a2af
TT
325/* Table of signals that are registered with "catch signal". A
326 non-zero entry indicates that the signal is caught by some "catch
327 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
328 signals. */
329static unsigned char *signal_catch;
330
2455069d
UW
331/* Table of signals that the target may silently handle.
332 This is automatically determined from the flags above,
333 and simply cached here. */
334static unsigned char *signal_pass;
335
c906108c
SS
336#define SET_SIGS(nsigs,sigs,flags) \
337 do { \
338 int signum = (nsigs); \
339 while (signum-- > 0) \
340 if ((sigs)[signum]) \
341 (flags)[signum] = 1; \
342 } while (0)
343
344#define UNSET_SIGS(nsigs,sigs,flags) \
345 do { \
346 int signum = (nsigs); \
347 while (signum-- > 0) \
348 if ((sigs)[signum]) \
349 (flags)[signum] = 0; \
350 } while (0)
351
9b224c5e
PA
352/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
353 this function is to avoid exporting `signal_program'. */
354
355void
356update_signals_program_target (void)
357{
a493e3e2 358 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
359}
360
1777feb0 361/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 362
edb3359d 363#define RESUME_ALL minus_one_ptid
c906108c
SS
364
365/* Command list pointer for the "stop" placeholder. */
366
367static struct cmd_list_element *stop_command;
368
c906108c
SS
369/* Nonzero if we want to give control to the user when we're notified
370 of shared library events by the dynamic linker. */
628fe4e4 371int stop_on_solib_events;
f9e14852
GB
372
373/* Enable or disable optional shared library event breakpoints
374 as appropriate when the above flag is changed. */
375
376static void
377set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
378{
379 update_solib_breakpoints ();
380}
381
920d2a44
AC
382static void
383show_stop_on_solib_events (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c, const char *value)
385{
386 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
387 value);
388}
c906108c 389
c906108c
SS
390/* Nonzero means expecting a trace trap
391 and should stop the inferior and return silently when it happens. */
392
393int stop_after_trap;
394
c906108c
SS
395/* Nonzero after stop if current stack frame should be printed. */
396
397static int stop_print_frame;
398
e02bc4cc 399/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
400 returned by target_wait()/deprecated_target_wait_hook(). This
401 information is returned by get_last_target_status(). */
39f77062 402static ptid_t target_last_wait_ptid;
e02bc4cc
DS
403static struct target_waitstatus target_last_waitstatus;
404
0d1e5fa7
PA
405static void context_switch (ptid_t ptid);
406
4e1c45ea 407void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 408
53904c9e
AC
409static const char follow_fork_mode_child[] = "child";
410static const char follow_fork_mode_parent[] = "parent";
411
40478521 412static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
413 follow_fork_mode_child,
414 follow_fork_mode_parent,
415 NULL
ef346e04 416};
c906108c 417
53904c9e 418static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
419static void
420show_follow_fork_mode_string (struct ui_file *file, int from_tty,
421 struct cmd_list_element *c, const char *value)
422{
3e43a32a
MS
423 fprintf_filtered (file,
424 _("Debugger response to a program "
425 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
426 value);
427}
c906108c
SS
428\f
429
d83ad864
DB
430/* Handle changes to the inferior list based on the type of fork,
431 which process is being followed, and whether the other process
432 should be detached. On entry inferior_ptid must be the ptid of
433 the fork parent. At return inferior_ptid is the ptid of the
434 followed inferior. */
435
436static int
437follow_fork_inferior (int follow_child, int detach_fork)
438{
439 int has_vforked;
79639e11 440 ptid_t parent_ptid, child_ptid;
d83ad864
DB
441
442 has_vforked = (inferior_thread ()->pending_follow.kind
443 == TARGET_WAITKIND_VFORKED);
79639e11
PA
444 parent_ptid = inferior_ptid;
445 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
446
447 if (has_vforked
448 && !non_stop /* Non-stop always resumes both branches. */
449 && (!target_is_async_p () || sync_execution)
450 && !(follow_child || detach_fork || sched_multi))
451 {
452 /* The parent stays blocked inside the vfork syscall until the
453 child execs or exits. If we don't let the child run, then
454 the parent stays blocked. If we're telling the parent to run
455 in the foreground, the user will not be able to ctrl-c to get
456 back the terminal, effectively hanging the debug session. */
457 fprintf_filtered (gdb_stderr, _("\
458Can not resume the parent process over vfork in the foreground while\n\
459holding the child stopped. Try \"set detach-on-fork\" or \
460\"set schedule-multiple\".\n"));
461 /* FIXME output string > 80 columns. */
462 return 1;
463 }
464
465 if (!follow_child)
466 {
467 /* Detach new forked process? */
468 if (detach_fork)
469 {
470 struct cleanup *old_chain;
471
472 /* Before detaching from the child, remove all breakpoints
473 from it. If we forked, then this has already been taken
474 care of by infrun.c. If we vforked however, any
475 breakpoint inserted in the parent is visible in the
476 child, even those added while stopped in a vfork
477 catchpoint. This will remove the breakpoints from the
478 parent also, but they'll be reinserted below. */
479 if (has_vforked)
480 {
481 /* Keep breakpoints list in sync. */
482 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
483 }
484
485 if (info_verbose || debug_infrun)
486 {
8dd06f7a
DB
487 /* Ensure that we have a process ptid. */
488 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
489
6f259a23 490 target_terminal_ours_for_output ();
d83ad864 491 fprintf_filtered (gdb_stdlog,
79639e11 492 _("Detaching after %s from child %s.\n"),
6f259a23 493 has_vforked ? "vfork" : "fork",
8dd06f7a 494 target_pid_to_str (process_ptid));
d83ad864
DB
495 }
496 }
497 else
498 {
499 struct inferior *parent_inf, *child_inf;
500 struct cleanup *old_chain;
501
502 /* Add process to GDB's tables. */
79639e11 503 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
504
505 parent_inf = current_inferior ();
506 child_inf->attach_flag = parent_inf->attach_flag;
507 copy_terminal_info (child_inf, parent_inf);
508 child_inf->gdbarch = parent_inf->gdbarch;
509 copy_inferior_target_desc_info (child_inf, parent_inf);
510
511 old_chain = save_inferior_ptid ();
512 save_current_program_space ();
513
79639e11 514 inferior_ptid = child_ptid;
d83ad864
DB
515 add_thread (inferior_ptid);
516 child_inf->symfile_flags = SYMFILE_NO_READ;
517
518 /* If this is a vfork child, then the address-space is
519 shared with the parent. */
520 if (has_vforked)
521 {
522 child_inf->pspace = parent_inf->pspace;
523 child_inf->aspace = parent_inf->aspace;
524
525 /* The parent will be frozen until the child is done
526 with the shared region. Keep track of the
527 parent. */
528 child_inf->vfork_parent = parent_inf;
529 child_inf->pending_detach = 0;
530 parent_inf->vfork_child = child_inf;
531 parent_inf->pending_detach = 0;
532 }
533 else
534 {
535 child_inf->aspace = new_address_space ();
536 child_inf->pspace = add_program_space (child_inf->aspace);
537 child_inf->removable = 1;
538 set_current_program_space (child_inf->pspace);
539 clone_program_space (child_inf->pspace, parent_inf->pspace);
540
541 /* Let the shared library layer (e.g., solib-svr4) learn
542 about this new process, relocate the cloned exec, pull
543 in shared libraries, and install the solib event
544 breakpoint. If a "cloned-VM" event was propagated
545 better throughout the core, this wouldn't be
546 required. */
547 solib_create_inferior_hook (0);
548 }
549
550 do_cleanups (old_chain);
551 }
552
553 if (has_vforked)
554 {
555 struct inferior *parent_inf;
556
557 parent_inf = current_inferior ();
558
559 /* If we detached from the child, then we have to be careful
560 to not insert breakpoints in the parent until the child
561 is done with the shared memory region. However, if we're
562 staying attached to the child, then we can and should
563 insert breakpoints, so that we can debug it. A
564 subsequent child exec or exit is enough to know when does
565 the child stops using the parent's address space. */
566 parent_inf->waiting_for_vfork_done = detach_fork;
567 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
568 }
569 }
570 else
571 {
572 /* Follow the child. */
573 struct inferior *parent_inf, *child_inf;
574 struct program_space *parent_pspace;
575
576 if (info_verbose || debug_infrun)
577 {
6f259a23
DB
578 target_terminal_ours_for_output ();
579 fprintf_filtered (gdb_stdlog,
79639e11
PA
580 _("Attaching after %s %s to child %s.\n"),
581 target_pid_to_str (parent_ptid),
6f259a23 582 has_vforked ? "vfork" : "fork",
79639e11 583 target_pid_to_str (child_ptid));
d83ad864
DB
584 }
585
586 /* Add the new inferior first, so that the target_detach below
587 doesn't unpush the target. */
588
79639e11 589 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
590
591 parent_inf = current_inferior ();
592 child_inf->attach_flag = parent_inf->attach_flag;
593 copy_terminal_info (child_inf, parent_inf);
594 child_inf->gdbarch = parent_inf->gdbarch;
595 copy_inferior_target_desc_info (child_inf, parent_inf);
596
597 parent_pspace = parent_inf->pspace;
598
599 /* If we're vforking, we want to hold on to the parent until the
600 child exits or execs. At child exec or exit time we can
601 remove the old breakpoints from the parent and detach or
602 resume debugging it. Otherwise, detach the parent now; we'll
603 want to reuse it's program/address spaces, but we can't set
604 them to the child before removing breakpoints from the
605 parent, otherwise, the breakpoints module could decide to
606 remove breakpoints from the wrong process (since they'd be
607 assigned to the same address space). */
608
609 if (has_vforked)
610 {
611 gdb_assert (child_inf->vfork_parent == NULL);
612 gdb_assert (parent_inf->vfork_child == NULL);
613 child_inf->vfork_parent = parent_inf;
614 child_inf->pending_detach = 0;
615 parent_inf->vfork_child = child_inf;
616 parent_inf->pending_detach = detach_fork;
617 parent_inf->waiting_for_vfork_done = 0;
618 }
619 else if (detach_fork)
6f259a23
DB
620 {
621 if (info_verbose || debug_infrun)
622 {
8dd06f7a
DB
623 /* Ensure that we have a process ptid. */
624 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
625
6f259a23
DB
626 target_terminal_ours_for_output ();
627 fprintf_filtered (gdb_stdlog,
628 _("Detaching after fork from "
79639e11 629 "child %s.\n"),
8dd06f7a 630 target_pid_to_str (process_ptid));
6f259a23
DB
631 }
632
633 target_detach (NULL, 0);
634 }
d83ad864
DB
635
636 /* Note that the detach above makes PARENT_INF dangling. */
637
638 /* Add the child thread to the appropriate lists, and switch to
639 this new thread, before cloning the program space, and
640 informing the solib layer about this new process. */
641
79639e11 642 inferior_ptid = child_ptid;
d83ad864
DB
643 add_thread (inferior_ptid);
644
645 /* If this is a vfork child, then the address-space is shared
646 with the parent. If we detached from the parent, then we can
647 reuse the parent's program/address spaces. */
648 if (has_vforked || detach_fork)
649 {
650 child_inf->pspace = parent_pspace;
651 child_inf->aspace = child_inf->pspace->aspace;
652 }
653 else
654 {
655 child_inf->aspace = new_address_space ();
656 child_inf->pspace = add_program_space (child_inf->aspace);
657 child_inf->removable = 1;
658 child_inf->symfile_flags = SYMFILE_NO_READ;
659 set_current_program_space (child_inf->pspace);
660 clone_program_space (child_inf->pspace, parent_pspace);
661
662 /* Let the shared library layer (e.g., solib-svr4) learn
663 about this new process, relocate the cloned exec, pull in
664 shared libraries, and install the solib event breakpoint.
665 If a "cloned-VM" event was propagated better throughout
666 the core, this wouldn't be required. */
667 solib_create_inferior_hook (0);
668 }
669 }
670
671 return target_follow_fork (follow_child, detach_fork);
672}
673
e58b0e63
PA
674/* Tell the target to follow the fork we're stopped at. Returns true
675 if the inferior should be resumed; false, if the target for some
676 reason decided it's best not to resume. */
677
6604731b 678static int
4ef3f3be 679follow_fork (void)
c906108c 680{
ea1dd7bc 681 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
682 int should_resume = 1;
683 struct thread_info *tp;
684
685 /* Copy user stepping state to the new inferior thread. FIXME: the
686 followed fork child thread should have a copy of most of the
4e3990f4
DE
687 parent thread structure's run control related fields, not just these.
688 Initialized to avoid "may be used uninitialized" warnings from gcc. */
689 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 690 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
691 CORE_ADDR step_range_start = 0;
692 CORE_ADDR step_range_end = 0;
693 struct frame_id step_frame_id = { 0 };
17b2616c 694 struct interp *command_interp = NULL;
e58b0e63
PA
695
696 if (!non_stop)
697 {
698 ptid_t wait_ptid;
699 struct target_waitstatus wait_status;
700
701 /* Get the last target status returned by target_wait(). */
702 get_last_target_status (&wait_ptid, &wait_status);
703
704 /* If not stopped at a fork event, then there's nothing else to
705 do. */
706 if (wait_status.kind != TARGET_WAITKIND_FORKED
707 && wait_status.kind != TARGET_WAITKIND_VFORKED)
708 return 1;
709
710 /* Check if we switched over from WAIT_PTID, since the event was
711 reported. */
712 if (!ptid_equal (wait_ptid, minus_one_ptid)
713 && !ptid_equal (inferior_ptid, wait_ptid))
714 {
715 /* We did. Switch back to WAIT_PTID thread, to tell the
716 target to follow it (in either direction). We'll
717 afterwards refuse to resume, and inform the user what
718 happened. */
719 switch_to_thread (wait_ptid);
720 should_resume = 0;
721 }
722 }
723
724 tp = inferior_thread ();
725
726 /* If there were any forks/vforks that were caught and are now to be
727 followed, then do so now. */
728 switch (tp->pending_follow.kind)
729 {
730 case TARGET_WAITKIND_FORKED:
731 case TARGET_WAITKIND_VFORKED:
732 {
733 ptid_t parent, child;
734
735 /* If the user did a next/step, etc, over a fork call,
736 preserve the stepping state in the fork child. */
737 if (follow_child && should_resume)
738 {
8358c15c
JK
739 step_resume_breakpoint = clone_momentary_breakpoint
740 (tp->control.step_resume_breakpoint);
16c381f0
JK
741 step_range_start = tp->control.step_range_start;
742 step_range_end = tp->control.step_range_end;
743 step_frame_id = tp->control.step_frame_id;
186c406b
TT
744 exception_resume_breakpoint
745 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
17b2616c 746 command_interp = tp->control.command_interp;
e58b0e63
PA
747
748 /* For now, delete the parent's sr breakpoint, otherwise,
749 parent/child sr breakpoints are considered duplicates,
750 and the child version will not be installed. Remove
751 this when the breakpoints module becomes aware of
752 inferiors and address spaces. */
753 delete_step_resume_breakpoint (tp);
16c381f0
JK
754 tp->control.step_range_start = 0;
755 tp->control.step_range_end = 0;
756 tp->control.step_frame_id = null_frame_id;
186c406b 757 delete_exception_resume_breakpoint (tp);
17b2616c 758 tp->control.command_interp = NULL;
e58b0e63
PA
759 }
760
761 parent = inferior_ptid;
762 child = tp->pending_follow.value.related_pid;
763
d83ad864
DB
764 /* Set up inferior(s) as specified by the caller, and tell the
765 target to do whatever is necessary to follow either parent
766 or child. */
767 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
768 {
769 /* Target refused to follow, or there's some other reason
770 we shouldn't resume. */
771 should_resume = 0;
772 }
773 else
774 {
775 /* This pending follow fork event is now handled, one way
776 or another. The previous selected thread may be gone
777 from the lists by now, but if it is still around, need
778 to clear the pending follow request. */
e09875d4 779 tp = find_thread_ptid (parent);
e58b0e63
PA
780 if (tp)
781 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
782
783 /* This makes sure we don't try to apply the "Switched
784 over from WAIT_PID" logic above. */
785 nullify_last_target_wait_ptid ();
786
1777feb0 787 /* If we followed the child, switch to it... */
e58b0e63
PA
788 if (follow_child)
789 {
790 switch_to_thread (child);
791
792 /* ... and preserve the stepping state, in case the
793 user was stepping over the fork call. */
794 if (should_resume)
795 {
796 tp = inferior_thread ();
8358c15c
JK
797 tp->control.step_resume_breakpoint
798 = step_resume_breakpoint;
16c381f0
JK
799 tp->control.step_range_start = step_range_start;
800 tp->control.step_range_end = step_range_end;
801 tp->control.step_frame_id = step_frame_id;
186c406b
TT
802 tp->control.exception_resume_breakpoint
803 = exception_resume_breakpoint;
17b2616c 804 tp->control.command_interp = command_interp;
e58b0e63
PA
805 }
806 else
807 {
808 /* If we get here, it was because we're trying to
809 resume from a fork catchpoint, but, the user
810 has switched threads away from the thread that
811 forked. In that case, the resume command
812 issued is most likely not applicable to the
813 child, so just warn, and refuse to resume. */
3e43a32a 814 warning (_("Not resuming: switched threads "
fd7dcb94 815 "before following fork child."));
e58b0e63
PA
816 }
817
818 /* Reset breakpoints in the child as appropriate. */
819 follow_inferior_reset_breakpoints ();
820 }
821 else
822 switch_to_thread (parent);
823 }
824 }
825 break;
826 case TARGET_WAITKIND_SPURIOUS:
827 /* Nothing to follow. */
828 break;
829 default:
830 internal_error (__FILE__, __LINE__,
831 "Unexpected pending_follow.kind %d\n",
832 tp->pending_follow.kind);
833 break;
834 }
c906108c 835
e58b0e63 836 return should_resume;
c906108c
SS
837}
838
d83ad864 839static void
6604731b 840follow_inferior_reset_breakpoints (void)
c906108c 841{
4e1c45ea
PA
842 struct thread_info *tp = inferior_thread ();
843
6604731b
DJ
844 /* Was there a step_resume breakpoint? (There was if the user
845 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
846 thread number. Cloned step_resume breakpoints are disabled on
847 creation, so enable it here now that it is associated with the
848 correct thread.
6604731b
DJ
849
850 step_resumes are a form of bp that are made to be per-thread.
851 Since we created the step_resume bp when the parent process
852 was being debugged, and now are switching to the child process,
853 from the breakpoint package's viewpoint, that's a switch of
854 "threads". We must update the bp's notion of which thread
855 it is for, or it'll be ignored when it triggers. */
856
8358c15c 857 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
858 {
859 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
860 tp->control.step_resume_breakpoint->loc->enabled = 1;
861 }
6604731b 862
a1aa2221 863 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 864 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
865 {
866 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
867 tp->control.exception_resume_breakpoint->loc->enabled = 1;
868 }
186c406b 869
6604731b
DJ
870 /* Reinsert all breakpoints in the child. The user may have set
871 breakpoints after catching the fork, in which case those
872 were never set in the child, but only in the parent. This makes
873 sure the inserted breakpoints match the breakpoint list. */
874
875 breakpoint_re_set ();
876 insert_breakpoints ();
c906108c 877}
c906108c 878
6c95b8df
PA
879/* The child has exited or execed: resume threads of the parent the
880 user wanted to be executing. */
881
882static int
883proceed_after_vfork_done (struct thread_info *thread,
884 void *arg)
885{
886 int pid = * (int *) arg;
887
888 if (ptid_get_pid (thread->ptid) == pid
889 && is_running (thread->ptid)
890 && !is_executing (thread->ptid)
891 && !thread->stop_requested
a493e3e2 892 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
893 {
894 if (debug_infrun)
895 fprintf_unfiltered (gdb_stdlog,
896 "infrun: resuming vfork parent thread %s\n",
897 target_pid_to_str (thread->ptid));
898
899 switch_to_thread (thread->ptid);
70509625 900 clear_proceed_status (0);
64ce06e4 901 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
902 }
903
904 return 0;
905}
906
907/* Called whenever we notice an exec or exit event, to handle
908 detaching or resuming a vfork parent. */
909
910static void
911handle_vfork_child_exec_or_exit (int exec)
912{
913 struct inferior *inf = current_inferior ();
914
915 if (inf->vfork_parent)
916 {
917 int resume_parent = -1;
918
919 /* This exec or exit marks the end of the shared memory region
920 between the parent and the child. If the user wanted to
921 detach from the parent, now is the time. */
922
923 if (inf->vfork_parent->pending_detach)
924 {
925 struct thread_info *tp;
926 struct cleanup *old_chain;
927 struct program_space *pspace;
928 struct address_space *aspace;
929
1777feb0 930 /* follow-fork child, detach-on-fork on. */
6c95b8df 931
68c9da30
PA
932 inf->vfork_parent->pending_detach = 0;
933
f50f4e56
PA
934 if (!exec)
935 {
936 /* If we're handling a child exit, then inferior_ptid
937 points at the inferior's pid, not to a thread. */
938 old_chain = save_inferior_ptid ();
939 save_current_program_space ();
940 save_current_inferior ();
941 }
942 else
943 old_chain = save_current_space_and_thread ();
6c95b8df
PA
944
945 /* We're letting loose of the parent. */
946 tp = any_live_thread_of_process (inf->vfork_parent->pid);
947 switch_to_thread (tp->ptid);
948
949 /* We're about to detach from the parent, which implicitly
950 removes breakpoints from its address space. There's a
951 catch here: we want to reuse the spaces for the child,
952 but, parent/child are still sharing the pspace at this
953 point, although the exec in reality makes the kernel give
954 the child a fresh set of new pages. The problem here is
955 that the breakpoints module being unaware of this, would
956 likely chose the child process to write to the parent
957 address space. Swapping the child temporarily away from
958 the spaces has the desired effect. Yes, this is "sort
959 of" a hack. */
960
961 pspace = inf->pspace;
962 aspace = inf->aspace;
963 inf->aspace = NULL;
964 inf->pspace = NULL;
965
966 if (debug_infrun || info_verbose)
967 {
6f259a23 968 target_terminal_ours_for_output ();
6c95b8df
PA
969
970 if (exec)
6f259a23
DB
971 {
972 fprintf_filtered (gdb_stdlog,
973 _("Detaching vfork parent process "
974 "%d after child exec.\n"),
975 inf->vfork_parent->pid);
976 }
6c95b8df 977 else
6f259a23
DB
978 {
979 fprintf_filtered (gdb_stdlog,
980 _("Detaching vfork parent process "
981 "%d after child exit.\n"),
982 inf->vfork_parent->pid);
983 }
6c95b8df
PA
984 }
985
986 target_detach (NULL, 0);
987
988 /* Put it back. */
989 inf->pspace = pspace;
990 inf->aspace = aspace;
991
992 do_cleanups (old_chain);
993 }
994 else if (exec)
995 {
996 /* We're staying attached to the parent, so, really give the
997 child a new address space. */
998 inf->pspace = add_program_space (maybe_new_address_space ());
999 inf->aspace = inf->pspace->aspace;
1000 inf->removable = 1;
1001 set_current_program_space (inf->pspace);
1002
1003 resume_parent = inf->vfork_parent->pid;
1004
1005 /* Break the bonds. */
1006 inf->vfork_parent->vfork_child = NULL;
1007 }
1008 else
1009 {
1010 struct cleanup *old_chain;
1011 struct program_space *pspace;
1012
1013 /* If this is a vfork child exiting, then the pspace and
1014 aspaces were shared with the parent. Since we're
1015 reporting the process exit, we'll be mourning all that is
1016 found in the address space, and switching to null_ptid,
1017 preparing to start a new inferior. But, since we don't
1018 want to clobber the parent's address/program spaces, we
1019 go ahead and create a new one for this exiting
1020 inferior. */
1021
1022 /* Switch to null_ptid, so that clone_program_space doesn't want
1023 to read the selected frame of a dead process. */
1024 old_chain = save_inferior_ptid ();
1025 inferior_ptid = null_ptid;
1026
1027 /* This inferior is dead, so avoid giving the breakpoints
1028 module the option to write through to it (cloning a
1029 program space resets breakpoints). */
1030 inf->aspace = NULL;
1031 inf->pspace = NULL;
1032 pspace = add_program_space (maybe_new_address_space ());
1033 set_current_program_space (pspace);
1034 inf->removable = 1;
7dcd53a0 1035 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1036 clone_program_space (pspace, inf->vfork_parent->pspace);
1037 inf->pspace = pspace;
1038 inf->aspace = pspace->aspace;
1039
1040 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 1041 inferior. */
6c95b8df
PA
1042 do_cleanups (old_chain);
1043
1044 resume_parent = inf->vfork_parent->pid;
1045 /* Break the bonds. */
1046 inf->vfork_parent->vfork_child = NULL;
1047 }
1048
1049 inf->vfork_parent = NULL;
1050
1051 gdb_assert (current_program_space == inf->pspace);
1052
1053 if (non_stop && resume_parent != -1)
1054 {
1055 /* If the user wanted the parent to be running, let it go
1056 free now. */
1057 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1058
1059 if (debug_infrun)
3e43a32a
MS
1060 fprintf_unfiltered (gdb_stdlog,
1061 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1062 resume_parent);
1063
1064 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1065
1066 do_cleanups (old_chain);
1067 }
1068 }
1069}
1070
eb6c553b 1071/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1072
1073static const char follow_exec_mode_new[] = "new";
1074static const char follow_exec_mode_same[] = "same";
40478521 1075static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1076{
1077 follow_exec_mode_new,
1078 follow_exec_mode_same,
1079 NULL,
1080};
1081
1082static const char *follow_exec_mode_string = follow_exec_mode_same;
1083static void
1084show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1085 struct cmd_list_element *c, const char *value)
1086{
1087 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1088}
1089
1777feb0 1090/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 1091
c906108c 1092static void
95e50b27 1093follow_exec (ptid_t ptid, char *execd_pathname)
c906108c 1094{
95e50b27 1095 struct thread_info *th, *tmp;
6c95b8df 1096 struct inferior *inf = current_inferior ();
95e50b27 1097 int pid = ptid_get_pid (ptid);
94585166 1098 ptid_t process_ptid;
7a292a7a 1099
c906108c
SS
1100 /* This is an exec event that we actually wish to pay attention to.
1101 Refresh our symbol table to the newly exec'd program, remove any
1102 momentary bp's, etc.
1103
1104 If there are breakpoints, they aren't really inserted now,
1105 since the exec() transformed our inferior into a fresh set
1106 of instructions.
1107
1108 We want to preserve symbolic breakpoints on the list, since
1109 we have hopes that they can be reset after the new a.out's
1110 symbol table is read.
1111
1112 However, any "raw" breakpoints must be removed from the list
1113 (e.g., the solib bp's), since their address is probably invalid
1114 now.
1115
1116 And, we DON'T want to call delete_breakpoints() here, since
1117 that may write the bp's "shadow contents" (the instruction
1118 value that was overwritten witha TRAP instruction). Since
1777feb0 1119 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1120
1121 mark_breakpoints_out ();
1122
95e50b27
PA
1123 /* The target reports the exec event to the main thread, even if
1124 some other thread does the exec, and even if the main thread was
1125 stopped or already gone. We may still have non-leader threads of
1126 the process on our list. E.g., on targets that don't have thread
1127 exit events (like remote); or on native Linux in non-stop mode if
1128 there were only two threads in the inferior and the non-leader
1129 one is the one that execs (and nothing forces an update of the
1130 thread list up to here). When debugging remotely, it's best to
1131 avoid extra traffic, when possible, so avoid syncing the thread
1132 list with the target, and instead go ahead and delete all threads
1133 of the process but one that reported the event. Note this must
1134 be done before calling update_breakpoints_after_exec, as
1135 otherwise clearing the threads' resources would reference stale
1136 thread breakpoints -- it may have been one of these threads that
1137 stepped across the exec. We could just clear their stepping
1138 states, but as long as we're iterating, might as well delete
1139 them. Deleting them now rather than at the next user-visible
1140 stop provides a nicer sequence of events for user and MI
1141 notifications. */
8a06aea7 1142 ALL_THREADS_SAFE (th, tmp)
95e50b27
PA
1143 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1144 delete_thread (th->ptid);
1145
1146 /* We also need to clear any left over stale state for the
1147 leader/event thread. E.g., if there was any step-resume
1148 breakpoint or similar, it's gone now. We cannot truly
1149 step-to-next statement through an exec(). */
1150 th = inferior_thread ();
8358c15c 1151 th->control.step_resume_breakpoint = NULL;
186c406b 1152 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1153 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1154 th->control.step_range_start = 0;
1155 th->control.step_range_end = 0;
c906108c 1156
95e50b27
PA
1157 /* The user may have had the main thread held stopped in the
1158 previous image (e.g., schedlock on, or non-stop). Release
1159 it now. */
a75724bc
PA
1160 th->stop_requested = 0;
1161
95e50b27
PA
1162 update_breakpoints_after_exec ();
1163
1777feb0 1164 /* What is this a.out's name? */
94585166 1165 process_ptid = pid_to_ptid (pid);
6c95b8df 1166 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1167 target_pid_to_str (process_ptid),
6c95b8df 1168 execd_pathname);
c906108c
SS
1169
1170 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1171 inferior has essentially been killed & reborn. */
7a292a7a 1172
c906108c 1173 gdb_flush (gdb_stdout);
6ca15a4b
PA
1174
1175 breakpoint_init_inferior (inf_execd);
e85a822c 1176
a3be80c3 1177 if (*gdb_sysroot != '\0')
e85a822c 1178 {
998d2a3e 1179 char *name = exec_file_find (execd_pathname, NULL);
ff862be4 1180
224c3ddb 1181 execd_pathname = (char *) alloca (strlen (name) + 1);
ff862be4
GB
1182 strcpy (execd_pathname, name);
1183 xfree (name);
e85a822c 1184 }
c906108c 1185
cce9b6bf
PA
1186 /* Reset the shared library package. This ensures that we get a
1187 shlib event when the child reaches "_start", at which point the
1188 dld will have had a chance to initialize the child. */
1189 /* Also, loading a symbol file below may trigger symbol lookups, and
1190 we don't want those to be satisfied by the libraries of the
1191 previous incarnation of this process. */
1192 no_shared_libraries (NULL, 0);
1193
6c95b8df
PA
1194 if (follow_exec_mode_string == follow_exec_mode_new)
1195 {
6c95b8df
PA
1196 /* The user wants to keep the old inferior and program spaces
1197 around. Create a new fresh one, and switch to it. */
1198
17d8546e
DB
1199 /* Do exit processing for the original inferior before adding
1200 the new inferior so we don't have two active inferiors with
1201 the same ptid, which can confuse find_inferior_ptid. */
1202 exit_inferior_num_silent (current_inferior ()->num);
1203
94585166
DB
1204 inf = add_inferior_with_spaces ();
1205 inf->pid = pid;
1206 target_follow_exec (inf, execd_pathname);
6c95b8df
PA
1207
1208 set_current_inferior (inf);
94585166
DB
1209 set_current_program_space (inf->pspace);
1210 add_thread (ptid);
6c95b8df 1211 }
9107fc8d
PA
1212 else
1213 {
1214 /* The old description may no longer be fit for the new image.
1215 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1216 old description; we'll read a new one below. No need to do
1217 this on "follow-exec-mode new", as the old inferior stays
1218 around (its description is later cleared/refetched on
1219 restart). */
1220 target_clear_description ();
1221 }
6c95b8df
PA
1222
1223 gdb_assert (current_program_space == inf->pspace);
1224
1777feb0 1225 /* That a.out is now the one to use. */
6c95b8df
PA
1226 exec_file_attach (execd_pathname, 0);
1227
c1e56572
JK
1228 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1229 (Position Independent Executable) main symbol file will get applied by
1230 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1231 the breakpoints with the zero displacement. */
1232
7dcd53a0
TT
1233 symbol_file_add (execd_pathname,
1234 (inf->symfile_flags
1235 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
1236 NULL, 0);
1237
7dcd53a0
TT
1238 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1239 set_initial_language ();
c906108c 1240
9107fc8d
PA
1241 /* If the target can specify a description, read it. Must do this
1242 after flipping to the new executable (because the target supplied
1243 description must be compatible with the executable's
1244 architecture, and the old executable may e.g., be 32-bit, while
1245 the new one 64-bit), and before anything involving memory or
1246 registers. */
1247 target_find_description ();
1248
268a4a75 1249 solib_create_inferior_hook (0);
c906108c 1250
4efc6507
DE
1251 jit_inferior_created_hook ();
1252
c1e56572
JK
1253 breakpoint_re_set ();
1254
c906108c
SS
1255 /* Reinsert all breakpoints. (Those which were symbolic have
1256 been reset to the proper address in the new a.out, thanks
1777feb0 1257 to symbol_file_command...). */
c906108c
SS
1258 insert_breakpoints ();
1259
1260 /* The next resume of this inferior should bring it to the shlib
1261 startup breakpoints. (If the user had also set bp's on
1262 "main" from the old (parent) process, then they'll auto-
1777feb0 1263 matically get reset there in the new process.). */
c906108c
SS
1264}
1265
c2829269
PA
1266/* The queue of threads that need to do a step-over operation to get
1267 past e.g., a breakpoint. What technique is used to step over the
1268 breakpoint/watchpoint does not matter -- all threads end up in the
1269 same queue, to maintain rough temporal order of execution, in order
1270 to avoid starvation, otherwise, we could e.g., find ourselves
1271 constantly stepping the same couple threads past their breakpoints
1272 over and over, if the single-step finish fast enough. */
1273struct thread_info *step_over_queue_head;
1274
6c4cfb24
PA
1275/* Bit flags indicating what the thread needs to step over. */
1276
1277enum step_over_what
1278 {
1279 /* Step over a breakpoint. */
1280 STEP_OVER_BREAKPOINT = 1,
1281
1282 /* Step past a non-continuable watchpoint, in order to let the
1283 instruction execute so we can evaluate the watchpoint
1284 expression. */
1285 STEP_OVER_WATCHPOINT = 2
1286 };
1287
963f9c80 1288/* Info about an instruction that is being stepped over. */
31e77af2
PA
1289
1290struct step_over_info
1291{
963f9c80
PA
1292 /* If we're stepping past a breakpoint, this is the address space
1293 and address of the instruction the breakpoint is set at. We'll
1294 skip inserting all breakpoints here. Valid iff ASPACE is
1295 non-NULL. */
31e77af2 1296 struct address_space *aspace;
31e77af2 1297 CORE_ADDR address;
963f9c80
PA
1298
1299 /* The instruction being stepped over triggers a nonsteppable
1300 watchpoint. If true, we'll skip inserting watchpoints. */
1301 int nonsteppable_watchpoint_p;
31e77af2
PA
1302};
1303
1304/* The step-over info of the location that is being stepped over.
1305
1306 Note that with async/breakpoint always-inserted mode, a user might
1307 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1308 being stepped over. As setting a new breakpoint inserts all
1309 breakpoints, we need to make sure the breakpoint being stepped over
1310 isn't inserted then. We do that by only clearing the step-over
1311 info when the step-over is actually finished (or aborted).
1312
1313 Presently GDB can only step over one breakpoint at any given time.
1314 Given threads that can't run code in the same address space as the
1315 breakpoint's can't really miss the breakpoint, GDB could be taught
1316 to step-over at most one breakpoint per address space (so this info
1317 could move to the address space object if/when GDB is extended).
1318 The set of breakpoints being stepped over will normally be much
1319 smaller than the set of all breakpoints, so a flag in the
1320 breakpoint location structure would be wasteful. A separate list
1321 also saves complexity and run-time, as otherwise we'd have to go
1322 through all breakpoint locations clearing their flag whenever we
1323 start a new sequence. Similar considerations weigh against storing
1324 this info in the thread object. Plus, not all step overs actually
1325 have breakpoint locations -- e.g., stepping past a single-step
1326 breakpoint, or stepping to complete a non-continuable
1327 watchpoint. */
1328static struct step_over_info step_over_info;
1329
1330/* Record the address of the breakpoint/instruction we're currently
1331 stepping over. */
1332
1333static void
963f9c80
PA
1334set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1335 int nonsteppable_watchpoint_p)
31e77af2
PA
1336{
1337 step_over_info.aspace = aspace;
1338 step_over_info.address = address;
963f9c80 1339 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
31e77af2
PA
1340}
1341
1342/* Called when we're not longer stepping over a breakpoint / an
1343 instruction, so all breakpoints are free to be (re)inserted. */
1344
1345static void
1346clear_step_over_info (void)
1347{
372316f1
PA
1348 if (debug_infrun)
1349 fprintf_unfiltered (gdb_stdlog,
1350 "infrun: clear_step_over_info\n");
31e77af2
PA
1351 step_over_info.aspace = NULL;
1352 step_over_info.address = 0;
963f9c80 1353 step_over_info.nonsteppable_watchpoint_p = 0;
31e77af2
PA
1354}
1355
7f89fd65 1356/* See infrun.h. */
31e77af2
PA
1357
1358int
1359stepping_past_instruction_at (struct address_space *aspace,
1360 CORE_ADDR address)
1361{
1362 return (step_over_info.aspace != NULL
1363 && breakpoint_address_match (aspace, address,
1364 step_over_info.aspace,
1365 step_over_info.address));
1366}
1367
963f9c80
PA
1368/* See infrun.h. */
1369
1370int
1371stepping_past_nonsteppable_watchpoint (void)
1372{
1373 return step_over_info.nonsteppable_watchpoint_p;
1374}
1375
6cc83d2a
PA
1376/* Returns true if step-over info is valid. */
1377
1378static int
1379step_over_info_valid_p (void)
1380{
963f9c80
PA
1381 return (step_over_info.aspace != NULL
1382 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1383}
1384
c906108c 1385\f
237fc4c9
PA
1386/* Displaced stepping. */
1387
1388/* In non-stop debugging mode, we must take special care to manage
1389 breakpoints properly; in particular, the traditional strategy for
1390 stepping a thread past a breakpoint it has hit is unsuitable.
1391 'Displaced stepping' is a tactic for stepping one thread past a
1392 breakpoint it has hit while ensuring that other threads running
1393 concurrently will hit the breakpoint as they should.
1394
1395 The traditional way to step a thread T off a breakpoint in a
1396 multi-threaded program in all-stop mode is as follows:
1397
1398 a0) Initially, all threads are stopped, and breakpoints are not
1399 inserted.
1400 a1) We single-step T, leaving breakpoints uninserted.
1401 a2) We insert breakpoints, and resume all threads.
1402
1403 In non-stop debugging, however, this strategy is unsuitable: we
1404 don't want to have to stop all threads in the system in order to
1405 continue or step T past a breakpoint. Instead, we use displaced
1406 stepping:
1407
1408 n0) Initially, T is stopped, other threads are running, and
1409 breakpoints are inserted.
1410 n1) We copy the instruction "under" the breakpoint to a separate
1411 location, outside the main code stream, making any adjustments
1412 to the instruction, register, and memory state as directed by
1413 T's architecture.
1414 n2) We single-step T over the instruction at its new location.
1415 n3) We adjust the resulting register and memory state as directed
1416 by T's architecture. This includes resetting T's PC to point
1417 back into the main instruction stream.
1418 n4) We resume T.
1419
1420 This approach depends on the following gdbarch methods:
1421
1422 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1423 indicate where to copy the instruction, and how much space must
1424 be reserved there. We use these in step n1.
1425
1426 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1427 address, and makes any necessary adjustments to the instruction,
1428 register contents, and memory. We use this in step n1.
1429
1430 - gdbarch_displaced_step_fixup adjusts registers and memory after
1431 we have successfuly single-stepped the instruction, to yield the
1432 same effect the instruction would have had if we had executed it
1433 at its original address. We use this in step n3.
1434
1435 - gdbarch_displaced_step_free_closure provides cleanup.
1436
1437 The gdbarch_displaced_step_copy_insn and
1438 gdbarch_displaced_step_fixup functions must be written so that
1439 copying an instruction with gdbarch_displaced_step_copy_insn,
1440 single-stepping across the copied instruction, and then applying
1441 gdbarch_displaced_insn_fixup should have the same effects on the
1442 thread's memory and registers as stepping the instruction in place
1443 would have. Exactly which responsibilities fall to the copy and
1444 which fall to the fixup is up to the author of those functions.
1445
1446 See the comments in gdbarch.sh for details.
1447
1448 Note that displaced stepping and software single-step cannot
1449 currently be used in combination, although with some care I think
1450 they could be made to. Software single-step works by placing
1451 breakpoints on all possible subsequent instructions; if the
1452 displaced instruction is a PC-relative jump, those breakpoints
1453 could fall in very strange places --- on pages that aren't
1454 executable, or at addresses that are not proper instruction
1455 boundaries. (We do generally let other threads run while we wait
1456 to hit the software single-step breakpoint, and they might
1457 encounter such a corrupted instruction.) One way to work around
1458 this would be to have gdbarch_displaced_step_copy_insn fully
1459 simulate the effect of PC-relative instructions (and return NULL)
1460 on architectures that use software single-stepping.
1461
1462 In non-stop mode, we can have independent and simultaneous step
1463 requests, so more than one thread may need to simultaneously step
1464 over a breakpoint. The current implementation assumes there is
1465 only one scratch space per process. In this case, we have to
1466 serialize access to the scratch space. If thread A wants to step
1467 over a breakpoint, but we are currently waiting for some other
1468 thread to complete a displaced step, we leave thread A stopped and
1469 place it in the displaced_step_request_queue. Whenever a displaced
1470 step finishes, we pick the next thread in the queue and start a new
1471 displaced step operation on it. See displaced_step_prepare and
1472 displaced_step_fixup for details. */
1473
fc1cf338
PA
1474/* Per-inferior displaced stepping state. */
1475struct displaced_step_inferior_state
1476{
1477 /* Pointer to next in linked list. */
1478 struct displaced_step_inferior_state *next;
1479
1480 /* The process this displaced step state refers to. */
1481 int pid;
1482
3fc8eb30
PA
1483 /* True if preparing a displaced step ever failed. If so, we won't
1484 try displaced stepping for this inferior again. */
1485 int failed_before;
1486
fc1cf338
PA
1487 /* If this is not null_ptid, this is the thread carrying out a
1488 displaced single-step in process PID. This thread's state will
1489 require fixing up once it has completed its step. */
1490 ptid_t step_ptid;
1491
1492 /* The architecture the thread had when we stepped it. */
1493 struct gdbarch *step_gdbarch;
1494
1495 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1496 for post-step cleanup. */
1497 struct displaced_step_closure *step_closure;
1498
1499 /* The address of the original instruction, and the copy we
1500 made. */
1501 CORE_ADDR step_original, step_copy;
1502
1503 /* Saved contents of copy area. */
1504 gdb_byte *step_saved_copy;
1505};
1506
1507/* The list of states of processes involved in displaced stepping
1508 presently. */
1509static struct displaced_step_inferior_state *displaced_step_inferior_states;
1510
1511/* Get the displaced stepping state of process PID. */
1512
1513static struct displaced_step_inferior_state *
1514get_displaced_stepping_state (int pid)
1515{
1516 struct displaced_step_inferior_state *state;
1517
1518 for (state = displaced_step_inferior_states;
1519 state != NULL;
1520 state = state->next)
1521 if (state->pid == pid)
1522 return state;
1523
1524 return NULL;
1525}
1526
372316f1
PA
1527/* Returns true if any inferior has a thread doing a displaced
1528 step. */
1529
1530static int
1531displaced_step_in_progress_any_inferior (void)
1532{
1533 struct displaced_step_inferior_state *state;
1534
1535 for (state = displaced_step_inferior_states;
1536 state != NULL;
1537 state = state->next)
1538 if (!ptid_equal (state->step_ptid, null_ptid))
1539 return 1;
1540
1541 return 0;
1542}
1543
8f572e5c
PA
1544/* Return true if process PID has a thread doing a displaced step. */
1545
1546static int
1547displaced_step_in_progress (int pid)
1548{
1549 struct displaced_step_inferior_state *displaced;
1550
1551 displaced = get_displaced_stepping_state (pid);
1552 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1553 return 1;
1554
1555 return 0;
1556}
1557
fc1cf338
PA
1558/* Add a new displaced stepping state for process PID to the displaced
1559 stepping state list, or return a pointer to an already existing
1560 entry, if it already exists. Never returns NULL. */
1561
1562static struct displaced_step_inferior_state *
1563add_displaced_stepping_state (int pid)
1564{
1565 struct displaced_step_inferior_state *state;
1566
1567 for (state = displaced_step_inferior_states;
1568 state != NULL;
1569 state = state->next)
1570 if (state->pid == pid)
1571 return state;
237fc4c9 1572
8d749320 1573 state = XCNEW (struct displaced_step_inferior_state);
fc1cf338
PA
1574 state->pid = pid;
1575 state->next = displaced_step_inferior_states;
1576 displaced_step_inferior_states = state;
237fc4c9 1577
fc1cf338
PA
1578 return state;
1579}
1580
a42244db
YQ
1581/* If inferior is in displaced stepping, and ADDR equals to starting address
1582 of copy area, return corresponding displaced_step_closure. Otherwise,
1583 return NULL. */
1584
1585struct displaced_step_closure*
1586get_displaced_step_closure_by_addr (CORE_ADDR addr)
1587{
1588 struct displaced_step_inferior_state *displaced
1589 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1590
1591 /* If checking the mode of displaced instruction in copy area. */
1592 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1593 && (displaced->step_copy == addr))
1594 return displaced->step_closure;
1595
1596 return NULL;
1597}
1598
fc1cf338 1599/* Remove the displaced stepping state of process PID. */
237fc4c9 1600
fc1cf338
PA
1601static void
1602remove_displaced_stepping_state (int pid)
1603{
1604 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1605
fc1cf338
PA
1606 gdb_assert (pid != 0);
1607
1608 it = displaced_step_inferior_states;
1609 prev_next_p = &displaced_step_inferior_states;
1610 while (it)
1611 {
1612 if (it->pid == pid)
1613 {
1614 *prev_next_p = it->next;
1615 xfree (it);
1616 return;
1617 }
1618
1619 prev_next_p = &it->next;
1620 it = *prev_next_p;
1621 }
1622}
1623
1624static void
1625infrun_inferior_exit (struct inferior *inf)
1626{
1627 remove_displaced_stepping_state (inf->pid);
1628}
237fc4c9 1629
fff08868
HZ
1630/* If ON, and the architecture supports it, GDB will use displaced
1631 stepping to step over breakpoints. If OFF, or if the architecture
1632 doesn't support it, GDB will instead use the traditional
1633 hold-and-step approach. If AUTO (which is the default), GDB will
1634 decide which technique to use to step over breakpoints depending on
1635 which of all-stop or non-stop mode is active --- displaced stepping
1636 in non-stop mode; hold-and-step in all-stop mode. */
1637
72d0e2c5 1638static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1639
237fc4c9
PA
1640static void
1641show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1642 struct cmd_list_element *c,
1643 const char *value)
1644{
72d0e2c5 1645 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1646 fprintf_filtered (file,
1647 _("Debugger's willingness to use displaced stepping "
1648 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1649 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1650 else
3e43a32a
MS
1651 fprintf_filtered (file,
1652 _("Debugger's willingness to use displaced stepping "
1653 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1654}
1655
fff08868 1656/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1657 over breakpoints of thread TP. */
fff08868 1658
237fc4c9 1659static int
3fc8eb30 1660use_displaced_stepping (struct thread_info *tp)
237fc4c9 1661{
3fc8eb30
PA
1662 struct regcache *regcache = get_thread_regcache (tp->ptid);
1663 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1664 struct displaced_step_inferior_state *displaced_state;
1665
1666 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1667
fbea99ea
PA
1668 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1669 && target_is_non_stop_p ())
72d0e2c5 1670 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1671 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30
PA
1672 && find_record_target () == NULL
1673 && (displaced_state == NULL
1674 || !displaced_state->failed_before));
237fc4c9
PA
1675}
1676
1677/* Clean out any stray displaced stepping state. */
1678static void
fc1cf338 1679displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1680{
1681 /* Indicate that there is no cleanup pending. */
fc1cf338 1682 displaced->step_ptid = null_ptid;
237fc4c9 1683
fc1cf338 1684 if (displaced->step_closure)
237fc4c9 1685 {
fc1cf338
PA
1686 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1687 displaced->step_closure);
1688 displaced->step_closure = NULL;
237fc4c9
PA
1689 }
1690}
1691
1692static void
fc1cf338 1693displaced_step_clear_cleanup (void *arg)
237fc4c9 1694{
fc1cf338
PA
1695 struct displaced_step_inferior_state *state = arg;
1696
1697 displaced_step_clear (state);
237fc4c9
PA
1698}
1699
1700/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1701void
1702displaced_step_dump_bytes (struct ui_file *file,
1703 const gdb_byte *buf,
1704 size_t len)
1705{
1706 int i;
1707
1708 for (i = 0; i < len; i++)
1709 fprintf_unfiltered (file, "%02x ", buf[i]);
1710 fputs_unfiltered ("\n", file);
1711}
1712
1713/* Prepare to single-step, using displaced stepping.
1714
1715 Note that we cannot use displaced stepping when we have a signal to
1716 deliver. If we have a signal to deliver and an instruction to step
1717 over, then after the step, there will be no indication from the
1718 target whether the thread entered a signal handler or ignored the
1719 signal and stepped over the instruction successfully --- both cases
1720 result in a simple SIGTRAP. In the first case we mustn't do a
1721 fixup, and in the second case we must --- but we can't tell which.
1722 Comments in the code for 'random signals' in handle_inferior_event
1723 explain how we handle this case instead.
1724
1725 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1726 stepped now; 0 if displaced stepping this thread got queued; or -1
1727 if this instruction can't be displaced stepped. */
1728
237fc4c9 1729static int
3fc8eb30 1730displaced_step_prepare_throw (ptid_t ptid)
237fc4c9 1731{
ad53cd71 1732 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1733 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1734 struct regcache *regcache = get_thread_regcache (ptid);
1735 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1736 CORE_ADDR original, copy;
1737 ULONGEST len;
1738 struct displaced_step_closure *closure;
fc1cf338 1739 struct displaced_step_inferior_state *displaced;
9e529e1d 1740 int status;
237fc4c9
PA
1741
1742 /* We should never reach this function if the architecture does not
1743 support displaced stepping. */
1744 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1745
c2829269
PA
1746 /* Nor if the thread isn't meant to step over a breakpoint. */
1747 gdb_assert (tp->control.trap_expected);
1748
c1e36e3e
PA
1749 /* Disable range stepping while executing in the scratch pad. We
1750 want a single-step even if executing the displaced instruction in
1751 the scratch buffer lands within the stepping range (e.g., a
1752 jump/branch). */
1753 tp->control.may_range_step = 0;
1754
fc1cf338
PA
1755 /* We have to displaced step one thread at a time, as we only have
1756 access to a single scratch space per inferior. */
237fc4c9 1757
fc1cf338
PA
1758 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1759
1760 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1761 {
1762 /* Already waiting for a displaced step to finish. Defer this
1763 request and place in queue. */
237fc4c9
PA
1764
1765 if (debug_displaced)
1766 fprintf_unfiltered (gdb_stdlog,
c2829269 1767 "displaced: deferring step of %s\n",
237fc4c9
PA
1768 target_pid_to_str (ptid));
1769
c2829269 1770 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1771 return 0;
1772 }
1773 else
1774 {
1775 if (debug_displaced)
1776 fprintf_unfiltered (gdb_stdlog,
1777 "displaced: stepping %s now\n",
1778 target_pid_to_str (ptid));
1779 }
1780
fc1cf338 1781 displaced_step_clear (displaced);
237fc4c9 1782
ad53cd71
PA
1783 old_cleanups = save_inferior_ptid ();
1784 inferior_ptid = ptid;
1785
515630c5 1786 original = regcache_read_pc (regcache);
237fc4c9
PA
1787
1788 copy = gdbarch_displaced_step_location (gdbarch);
1789 len = gdbarch_max_insn_length (gdbarch);
1790
1791 /* Save the original contents of the copy area. */
224c3ddb 1792 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
ad53cd71 1793 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1794 &displaced->step_saved_copy);
9e529e1d
JK
1795 status = target_read_memory (copy, displaced->step_saved_copy, len);
1796 if (status != 0)
1797 throw_error (MEMORY_ERROR,
1798 _("Error accessing memory address %s (%s) for "
1799 "displaced-stepping scratch space."),
1800 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1801 if (debug_displaced)
1802 {
5af949e3
UW
1803 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1804 paddress (gdbarch, copy));
fc1cf338
PA
1805 displaced_step_dump_bytes (gdb_stdlog,
1806 displaced->step_saved_copy,
1807 len);
237fc4c9
PA
1808 };
1809
1810 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1811 original, copy, regcache);
7f03bd92
PA
1812 if (closure == NULL)
1813 {
1814 /* The architecture doesn't know how or want to displaced step
1815 this instruction or instruction sequence. Fallback to
1816 stepping over the breakpoint in-line. */
1817 do_cleanups (old_cleanups);
1818 return -1;
1819 }
237fc4c9 1820
9f5a595d
UW
1821 /* Save the information we need to fix things up if the step
1822 succeeds. */
fc1cf338
PA
1823 displaced->step_ptid = ptid;
1824 displaced->step_gdbarch = gdbarch;
1825 displaced->step_closure = closure;
1826 displaced->step_original = original;
1827 displaced->step_copy = copy;
9f5a595d 1828
fc1cf338 1829 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1830
1831 /* Resume execution at the copy. */
515630c5 1832 regcache_write_pc (regcache, copy);
237fc4c9 1833
ad53cd71
PA
1834 discard_cleanups (ignore_cleanups);
1835
1836 do_cleanups (old_cleanups);
237fc4c9
PA
1837
1838 if (debug_displaced)
5af949e3
UW
1839 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1840 paddress (gdbarch, copy));
237fc4c9 1841
237fc4c9
PA
1842 return 1;
1843}
1844
3fc8eb30
PA
1845/* Wrapper for displaced_step_prepare_throw that disabled further
1846 attempts at displaced stepping if we get a memory error. */
1847
1848static int
1849displaced_step_prepare (ptid_t ptid)
1850{
1851 int prepared = -1;
1852
1853 TRY
1854 {
1855 prepared = displaced_step_prepare_throw (ptid);
1856 }
1857 CATCH (ex, RETURN_MASK_ERROR)
1858 {
1859 struct displaced_step_inferior_state *displaced_state;
1860
1861 if (ex.error != MEMORY_ERROR)
1862 throw_exception (ex);
1863
1864 if (debug_infrun)
1865 {
1866 fprintf_unfiltered (gdb_stdlog,
1867 "infrun: disabling displaced stepping: %s\n",
1868 ex.message);
1869 }
1870
1871 /* Be verbose if "set displaced-stepping" is "on", silent if
1872 "auto". */
1873 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1874 {
fd7dcb94 1875 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1876 ex.message);
1877 }
1878
1879 /* Disable further displaced stepping attempts. */
1880 displaced_state
1881 = get_displaced_stepping_state (ptid_get_pid (ptid));
1882 displaced_state->failed_before = 1;
1883 }
1884 END_CATCH
1885
1886 return prepared;
1887}
1888
237fc4c9 1889static void
3e43a32a
MS
1890write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1891 const gdb_byte *myaddr, int len)
237fc4c9
PA
1892{
1893 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1894
237fc4c9
PA
1895 inferior_ptid = ptid;
1896 write_memory (memaddr, myaddr, len);
1897 do_cleanups (ptid_cleanup);
1898}
1899
e2d96639
YQ
1900/* Restore the contents of the copy area for thread PTID. */
1901
1902static void
1903displaced_step_restore (struct displaced_step_inferior_state *displaced,
1904 ptid_t ptid)
1905{
1906 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1907
1908 write_memory_ptid (ptid, displaced->step_copy,
1909 displaced->step_saved_copy, len);
1910 if (debug_displaced)
1911 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1912 target_pid_to_str (ptid),
1913 paddress (displaced->step_gdbarch,
1914 displaced->step_copy));
1915}
1916
372316f1
PA
1917/* If we displaced stepped an instruction successfully, adjust
1918 registers and memory to yield the same effect the instruction would
1919 have had if we had executed it at its original address, and return
1920 1. If the instruction didn't complete, relocate the PC and return
1921 -1. If the thread wasn't displaced stepping, return 0. */
1922
1923static int
2ea28649 1924displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1925{
1926 struct cleanup *old_cleanups;
fc1cf338
PA
1927 struct displaced_step_inferior_state *displaced
1928 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
372316f1 1929 int ret;
fc1cf338
PA
1930
1931 /* Was any thread of this process doing a displaced step? */
1932 if (displaced == NULL)
372316f1 1933 return 0;
237fc4c9
PA
1934
1935 /* Was this event for the pid we displaced? */
fc1cf338
PA
1936 if (ptid_equal (displaced->step_ptid, null_ptid)
1937 || ! ptid_equal (displaced->step_ptid, event_ptid))
372316f1 1938 return 0;
237fc4c9 1939
fc1cf338 1940 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1941
e2d96639 1942 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9 1943
cb71640d
PA
1944 /* Fixup may need to read memory/registers. Switch to the thread
1945 that we're fixing up. Also, target_stopped_by_watchpoint checks
1946 the current thread. */
1947 switch_to_thread (event_ptid);
1948
237fc4c9 1949 /* Did the instruction complete successfully? */
cb71640d
PA
1950 if (signal == GDB_SIGNAL_TRAP
1951 && !(target_stopped_by_watchpoint ()
1952 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1953 || target_have_steppable_watchpoint)))
237fc4c9
PA
1954 {
1955 /* Fix up the resulting state. */
fc1cf338
PA
1956 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1957 displaced->step_closure,
1958 displaced->step_original,
1959 displaced->step_copy,
1960 get_thread_regcache (displaced->step_ptid));
372316f1 1961 ret = 1;
237fc4c9
PA
1962 }
1963 else
1964 {
1965 /* Since the instruction didn't complete, all we can do is
1966 relocate the PC. */
515630c5
UW
1967 struct regcache *regcache = get_thread_regcache (event_ptid);
1968 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1969
fc1cf338 1970 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1971 regcache_write_pc (regcache, pc);
372316f1 1972 ret = -1;
237fc4c9
PA
1973 }
1974
1975 do_cleanups (old_cleanups);
1976
fc1cf338 1977 displaced->step_ptid = null_ptid;
372316f1
PA
1978
1979 return ret;
c2829269 1980}
1c5cfe86 1981
4d9d9d04
PA
1982/* Data to be passed around while handling an event. This data is
1983 discarded between events. */
1984struct execution_control_state
1985{
1986 ptid_t ptid;
1987 /* The thread that got the event, if this was a thread event; NULL
1988 otherwise. */
1989 struct thread_info *event_thread;
1990
1991 struct target_waitstatus ws;
1992 int stop_func_filled_in;
1993 CORE_ADDR stop_func_start;
1994 CORE_ADDR stop_func_end;
1995 const char *stop_func_name;
1996 int wait_some_more;
1997
1998 /* True if the event thread hit the single-step breakpoint of
1999 another thread. Thus the event doesn't cause a stop, the thread
2000 needs to be single-stepped past the single-step breakpoint before
2001 we can switch back to the original stepping thread. */
2002 int hit_singlestep_breakpoint;
2003};
2004
2005/* Clear ECS and set it to point at TP. */
c2829269
PA
2006
2007static void
4d9d9d04
PA
2008reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2009{
2010 memset (ecs, 0, sizeof (*ecs));
2011 ecs->event_thread = tp;
2012 ecs->ptid = tp->ptid;
2013}
2014
2015static void keep_going_pass_signal (struct execution_control_state *ecs);
2016static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 2017static int keep_going_stepped_thread (struct thread_info *tp);
4d9d9d04 2018static int thread_still_needs_step_over (struct thread_info *tp);
3fc8eb30 2019static void stop_all_threads (void);
4d9d9d04
PA
2020
2021/* Are there any pending step-over requests? If so, run all we can
2022 now and return true. Otherwise, return false. */
2023
2024static int
c2829269
PA
2025start_step_over (void)
2026{
2027 struct thread_info *tp, *next;
2028
372316f1
PA
2029 /* Don't start a new step-over if we already have an in-line
2030 step-over operation ongoing. */
2031 if (step_over_info_valid_p ())
2032 return 0;
2033
c2829269 2034 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 2035 {
4d9d9d04
PA
2036 struct execution_control_state ecss;
2037 struct execution_control_state *ecs = &ecss;
372316f1
PA
2038 enum step_over_what step_what;
2039 int must_be_in_line;
c2829269
PA
2040
2041 next = thread_step_over_chain_next (tp);
237fc4c9 2042
c2829269
PA
2043 /* If this inferior already has a displaced step in process,
2044 don't start a new one. */
4d9d9d04 2045 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
c2829269
PA
2046 continue;
2047
372316f1
PA
2048 step_what = thread_still_needs_step_over (tp);
2049 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2050 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 2051 && !use_displaced_stepping (tp)));
372316f1
PA
2052
2053 /* We currently stop all threads of all processes to step-over
2054 in-line. If we need to start a new in-line step-over, let
2055 any pending displaced steps finish first. */
2056 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2057 return 0;
2058
c2829269
PA
2059 thread_step_over_chain_remove (tp);
2060
2061 if (step_over_queue_head == NULL)
2062 {
2063 if (debug_infrun)
2064 fprintf_unfiltered (gdb_stdlog,
2065 "infrun: step-over queue now empty\n");
2066 }
2067
372316f1
PA
2068 if (tp->control.trap_expected
2069 || tp->resumed
2070 || tp->executing)
ad53cd71 2071 {
4d9d9d04
PA
2072 internal_error (__FILE__, __LINE__,
2073 "[%s] has inconsistent state: "
372316f1 2074 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
2075 target_pid_to_str (tp->ptid),
2076 tp->control.trap_expected,
372316f1 2077 tp->resumed,
4d9d9d04 2078 tp->executing);
ad53cd71 2079 }
1c5cfe86 2080
4d9d9d04
PA
2081 if (debug_infrun)
2082 fprintf_unfiltered (gdb_stdlog,
2083 "infrun: resuming [%s] for step-over\n",
2084 target_pid_to_str (tp->ptid));
2085
2086 /* keep_going_pass_signal skips the step-over if the breakpoint
2087 is no longer inserted. In all-stop, we want to keep looking
2088 for a thread that needs a step-over instead of resuming TP,
2089 because we wouldn't be able to resume anything else until the
2090 target stops again. In non-stop, the resume always resumes
2091 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2092 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2093 continue;
8550d3b3 2094
4d9d9d04
PA
2095 switch_to_thread (tp->ptid);
2096 reset_ecs (ecs, tp);
2097 keep_going_pass_signal (ecs);
1c5cfe86 2098
4d9d9d04
PA
2099 if (!ecs->wait_some_more)
2100 error (_("Command aborted."));
1c5cfe86 2101
372316f1
PA
2102 gdb_assert (tp->resumed);
2103
2104 /* If we started a new in-line step-over, we're done. */
2105 if (step_over_info_valid_p ())
2106 {
2107 gdb_assert (tp->control.trap_expected);
2108 return 1;
2109 }
2110
fbea99ea 2111 if (!target_is_non_stop_p ())
4d9d9d04
PA
2112 {
2113 /* On all-stop, shouldn't have resumed unless we needed a
2114 step over. */
2115 gdb_assert (tp->control.trap_expected
2116 || tp->step_after_step_resume_breakpoint);
2117
2118 /* With remote targets (at least), in all-stop, we can't
2119 issue any further remote commands until the program stops
2120 again. */
2121 return 1;
1c5cfe86 2122 }
c2829269 2123
4d9d9d04
PA
2124 /* Either the thread no longer needed a step-over, or a new
2125 displaced stepping sequence started. Even in the latter
2126 case, continue looking. Maybe we can also start another
2127 displaced step on a thread of other process. */
237fc4c9 2128 }
4d9d9d04
PA
2129
2130 return 0;
237fc4c9
PA
2131}
2132
5231c1fd
PA
2133/* Update global variables holding ptids to hold NEW_PTID if they were
2134 holding OLD_PTID. */
2135static void
2136infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2137{
2138 struct displaced_step_request *it;
fc1cf338 2139 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
2140
2141 if (ptid_equal (inferior_ptid, old_ptid))
2142 inferior_ptid = new_ptid;
2143
fc1cf338
PA
2144 for (displaced = displaced_step_inferior_states;
2145 displaced;
2146 displaced = displaced->next)
2147 {
2148 if (ptid_equal (displaced->step_ptid, old_ptid))
2149 displaced->step_ptid = new_ptid;
fc1cf338 2150 }
5231c1fd
PA
2151}
2152
237fc4c9
PA
2153\f
2154/* Resuming. */
c906108c
SS
2155
2156/* Things to clean up if we QUIT out of resume (). */
c906108c 2157static void
74b7792f 2158resume_cleanups (void *ignore)
c906108c 2159{
34b7e8a6
PA
2160 if (!ptid_equal (inferior_ptid, null_ptid))
2161 delete_single_step_breakpoints (inferior_thread ());
7c16b83e 2162
c906108c
SS
2163 normal_stop ();
2164}
2165
53904c9e
AC
2166static const char schedlock_off[] = "off";
2167static const char schedlock_on[] = "on";
2168static const char schedlock_step[] = "step";
f2665db5 2169static const char schedlock_replay[] = "replay";
40478521 2170static const char *const scheduler_enums[] = {
ef346e04
AC
2171 schedlock_off,
2172 schedlock_on,
2173 schedlock_step,
f2665db5 2174 schedlock_replay,
ef346e04
AC
2175 NULL
2176};
f2665db5 2177static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2178static void
2179show_scheduler_mode (struct ui_file *file, int from_tty,
2180 struct cmd_list_element *c, const char *value)
2181{
3e43a32a
MS
2182 fprintf_filtered (file,
2183 _("Mode for locking scheduler "
2184 "during execution is \"%s\".\n"),
920d2a44
AC
2185 value);
2186}
c906108c
SS
2187
2188static void
96baa820 2189set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2190{
eefe576e
AC
2191 if (!target_can_lock_scheduler)
2192 {
2193 scheduler_mode = schedlock_off;
2194 error (_("Target '%s' cannot support this command."), target_shortname);
2195 }
c906108c
SS
2196}
2197
d4db2f36
PA
2198/* True if execution commands resume all threads of all processes by
2199 default; otherwise, resume only threads of the current inferior
2200 process. */
2201int sched_multi = 0;
2202
2facfe5c
DD
2203/* Try to setup for software single stepping over the specified location.
2204 Return 1 if target_resume() should use hardware single step.
2205
2206 GDBARCH the current gdbarch.
2207 PC the location to step over. */
2208
2209static int
2210maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2211{
2212 int hw_step = 1;
2213
f02253f1
HZ
2214 if (execution_direction == EXEC_FORWARD
2215 && gdbarch_software_single_step_p (gdbarch)
99e40580 2216 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 2217 {
99e40580 2218 hw_step = 0;
2facfe5c
DD
2219 }
2220 return hw_step;
2221}
c906108c 2222
f3263aa4
PA
2223/* See infrun.h. */
2224
09cee04b
PA
2225ptid_t
2226user_visible_resume_ptid (int step)
2227{
f3263aa4 2228 ptid_t resume_ptid;
09cee04b 2229
09cee04b
PA
2230 if (non_stop)
2231 {
2232 /* With non-stop mode on, threads are always handled
2233 individually. */
2234 resume_ptid = inferior_ptid;
2235 }
2236 else if ((scheduler_mode == schedlock_on)
03d46957 2237 || (scheduler_mode == schedlock_step && step))
09cee04b 2238 {
f3263aa4
PA
2239 /* User-settable 'scheduler' mode requires solo thread
2240 resume. */
09cee04b
PA
2241 resume_ptid = inferior_ptid;
2242 }
f2665db5
MM
2243 else if ((scheduler_mode == schedlock_replay)
2244 && target_record_will_replay (minus_one_ptid, execution_direction))
2245 {
2246 /* User-settable 'scheduler' mode requires solo thread resume in replay
2247 mode. */
2248 resume_ptid = inferior_ptid;
2249 }
f3263aa4
PA
2250 else if (!sched_multi && target_supports_multi_process ())
2251 {
2252 /* Resume all threads of the current process (and none of other
2253 processes). */
2254 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2255 }
2256 else
2257 {
2258 /* Resume all threads of all processes. */
2259 resume_ptid = RESUME_ALL;
2260 }
09cee04b
PA
2261
2262 return resume_ptid;
2263}
2264
fbea99ea
PA
2265/* Return a ptid representing the set of threads that we will resume,
2266 in the perspective of the target, assuming run control handling
2267 does not require leaving some threads stopped (e.g., stepping past
2268 breakpoint). USER_STEP indicates whether we're about to start the
2269 target for a stepping command. */
2270
2271static ptid_t
2272internal_resume_ptid (int user_step)
2273{
2274 /* In non-stop, we always control threads individually. Note that
2275 the target may always work in non-stop mode even with "set
2276 non-stop off", in which case user_visible_resume_ptid could
2277 return a wildcard ptid. */
2278 if (target_is_non_stop_p ())
2279 return inferior_ptid;
2280 else
2281 return user_visible_resume_ptid (user_step);
2282}
2283
64ce06e4
PA
2284/* Wrapper for target_resume, that handles infrun-specific
2285 bookkeeping. */
2286
2287static void
2288do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2289{
2290 struct thread_info *tp = inferior_thread ();
2291
2292 /* Install inferior's terminal modes. */
2293 target_terminal_inferior ();
2294
2295 /* Avoid confusing the next resume, if the next stop/resume
2296 happens to apply to another thread. */
2297 tp->suspend.stop_signal = GDB_SIGNAL_0;
2298
8f572e5c
PA
2299 /* Advise target which signals may be handled silently.
2300
2301 If we have removed breakpoints because we are stepping over one
2302 in-line (in any thread), we need to receive all signals to avoid
2303 accidentally skipping a breakpoint during execution of a signal
2304 handler.
2305
2306 Likewise if we're displaced stepping, otherwise a trap for a
2307 breakpoint in a signal handler might be confused with the
2308 displaced step finishing. We don't make the displaced_step_fixup
2309 step distinguish the cases instead, because:
2310
2311 - a backtrace while stopped in the signal handler would show the
2312 scratch pad as frame older than the signal handler, instead of
2313 the real mainline code.
2314
2315 - when the thread is later resumed, the signal handler would
2316 return to the scratch pad area, which would no longer be
2317 valid. */
2318 if (step_over_info_valid_p ()
2319 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
64ce06e4
PA
2320 target_pass_signals (0, NULL);
2321 else
2322 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2323
2324 target_resume (resume_ptid, step, sig);
2325}
2326
c906108c
SS
2327/* Resume the inferior, but allow a QUIT. This is useful if the user
2328 wants to interrupt some lengthy single-stepping operation
2329 (for child processes, the SIGINT goes to the inferior, and so
2330 we get a SIGINT random_signal, but for remote debugging and perhaps
2331 other targets, that's not true).
2332
c906108c
SS
2333 SIG is the signal to give the inferior (zero for none). */
2334void
64ce06e4 2335resume (enum gdb_signal sig)
c906108c 2336{
74b7792f 2337 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
2338 struct regcache *regcache = get_current_regcache ();
2339 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 2340 struct thread_info *tp = inferior_thread ();
515630c5 2341 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 2342 struct address_space *aspace = get_regcache_aspace (regcache);
b0f16a3e 2343 ptid_t resume_ptid;
856e7dd6
PA
2344 /* This represents the user's step vs continue request. When
2345 deciding whether "set scheduler-locking step" applies, it's the
2346 user's intention that counts. */
2347 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2348 /* This represents what we'll actually request the target to do.
2349 This can decay from a step to a continue, if e.g., we need to
2350 implement single-stepping with breakpoints (software
2351 single-step). */
6b403daa 2352 int step;
c7e8a53c 2353
c2829269
PA
2354 gdb_assert (!thread_is_in_step_over_chain (tp));
2355
c906108c
SS
2356 QUIT;
2357
372316f1
PA
2358 if (tp->suspend.waitstatus_pending_p)
2359 {
2360 if (debug_infrun)
2361 {
2362 char *statstr;
2363
2364 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2365 fprintf_unfiltered (gdb_stdlog,
2366 "infrun: resume: thread %s has pending wait status %s "
2367 "(currently_stepping=%d).\n",
2368 target_pid_to_str (tp->ptid), statstr,
2369 currently_stepping (tp));
2370 xfree (statstr);
2371 }
2372
2373 tp->resumed = 1;
2374
2375 /* FIXME: What should we do if we are supposed to resume this
2376 thread with a signal? Maybe we should maintain a queue of
2377 pending signals to deliver. */
2378 if (sig != GDB_SIGNAL_0)
2379 {
fd7dcb94 2380 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2381 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2382 }
2383
2384 tp->suspend.stop_signal = GDB_SIGNAL_0;
2385 discard_cleanups (old_cleanups);
2386
2387 if (target_can_async_p ())
2388 target_async (1);
2389 return;
2390 }
2391
2392 tp->stepped_breakpoint = 0;
2393
6b403daa
PA
2394 /* Depends on stepped_breakpoint. */
2395 step = currently_stepping (tp);
2396
74609e71
YQ
2397 if (current_inferior ()->waiting_for_vfork_done)
2398 {
48f9886d
PA
2399 /* Don't try to single-step a vfork parent that is waiting for
2400 the child to get out of the shared memory region (by exec'ing
2401 or exiting). This is particularly important on software
2402 single-step archs, as the child process would trip on the
2403 software single step breakpoint inserted for the parent
2404 process. Since the parent will not actually execute any
2405 instruction until the child is out of the shared region (such
2406 are vfork's semantics), it is safe to simply continue it.
2407 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2408 the parent, and tell it to `keep_going', which automatically
2409 re-sets it stepping. */
74609e71
YQ
2410 if (debug_infrun)
2411 fprintf_unfiltered (gdb_stdlog,
2412 "infrun: resume : clear step\n");
a09dd441 2413 step = 0;
74609e71
YQ
2414 }
2415
527159b7 2416 if (debug_infrun)
237fc4c9 2417 fprintf_unfiltered (gdb_stdlog,
c9737c08 2418 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2419 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2420 step, gdb_signal_to_symbol_string (sig),
2421 tp->control.trap_expected,
0d9a9a5f
PA
2422 target_pid_to_str (inferior_ptid),
2423 paddress (gdbarch, pc));
c906108c 2424
c2c6d25f
JM
2425 /* Normally, by the time we reach `resume', the breakpoints are either
2426 removed or inserted, as appropriate. The exception is if we're sitting
2427 at a permanent breakpoint; we need to step over it, but permanent
2428 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2429 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2430 {
af48d08f
PA
2431 if (sig != GDB_SIGNAL_0)
2432 {
2433 /* We have a signal to pass to the inferior. The resume
2434 may, or may not take us to the signal handler. If this
2435 is a step, we'll need to stop in the signal handler, if
2436 there's one, (if the target supports stepping into
2437 handlers), or in the next mainline instruction, if
2438 there's no handler. If this is a continue, we need to be
2439 sure to run the handler with all breakpoints inserted.
2440 In all cases, set a breakpoint at the current address
2441 (where the handler returns to), and once that breakpoint
2442 is hit, resume skipping the permanent breakpoint. If
2443 that breakpoint isn't hit, then we've stepped into the
2444 signal handler (or hit some other event). We'll delete
2445 the step-resume breakpoint then. */
2446
2447 if (debug_infrun)
2448 fprintf_unfiltered (gdb_stdlog,
2449 "infrun: resume: skipping permanent breakpoint, "
2450 "deliver signal first\n");
2451
2452 clear_step_over_info ();
2453 tp->control.trap_expected = 0;
2454
2455 if (tp->control.step_resume_breakpoint == NULL)
2456 {
2457 /* Set a "high-priority" step-resume, as we don't want
2458 user breakpoints at PC to trigger (again) when this
2459 hits. */
2460 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2461 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2462
2463 tp->step_after_step_resume_breakpoint = step;
2464 }
2465
2466 insert_breakpoints ();
2467 }
2468 else
2469 {
2470 /* There's no signal to pass, we can go ahead and skip the
2471 permanent breakpoint manually. */
2472 if (debug_infrun)
2473 fprintf_unfiltered (gdb_stdlog,
2474 "infrun: resume: skipping permanent breakpoint\n");
2475 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2476 /* Update pc to reflect the new address from which we will
2477 execute instructions. */
2478 pc = regcache_read_pc (regcache);
2479
2480 if (step)
2481 {
2482 /* We've already advanced the PC, so the stepping part
2483 is done. Now we need to arrange for a trap to be
2484 reported to handle_inferior_event. Set a breakpoint
2485 at the current PC, and run to it. Don't update
2486 prev_pc, because if we end in
44a1ee51
PA
2487 switch_back_to_stepped_thread, we want the "expected
2488 thread advanced also" branch to be taken. IOW, we
2489 don't want this thread to step further from PC
af48d08f 2490 (overstep). */
1ac806b8 2491 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2492 insert_single_step_breakpoint (gdbarch, aspace, pc);
2493 insert_breakpoints ();
2494
fbea99ea 2495 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2496 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
af48d08f 2497 discard_cleanups (old_cleanups);
372316f1 2498 tp->resumed = 1;
af48d08f
PA
2499 return;
2500 }
2501 }
6d350bb5 2502 }
c2c6d25f 2503
c1e36e3e
PA
2504 /* If we have a breakpoint to step over, make sure to do a single
2505 step only. Same if we have software watchpoints. */
2506 if (tp->control.trap_expected || bpstat_should_step ())
2507 tp->control.may_range_step = 0;
2508
237fc4c9
PA
2509 /* If enabled, step over breakpoints by executing a copy of the
2510 instruction at a different address.
2511
2512 We can't use displaced stepping when we have a signal to deliver;
2513 the comments for displaced_step_prepare explain why. The
2514 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2515 signals' explain what we do instead.
2516
2517 We can't use displaced stepping when we are waiting for vfork_done
2518 event, displaced stepping breaks the vfork child similarly as single
2519 step software breakpoint. */
3fc8eb30
PA
2520 if (tp->control.trap_expected
2521 && use_displaced_stepping (tp)
cb71640d 2522 && !step_over_info_valid_p ()
a493e3e2 2523 && sig == GDB_SIGNAL_0
74609e71 2524 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2525 {
3fc8eb30 2526 int prepared = displaced_step_prepare (inferior_ptid);
fc1cf338 2527
3fc8eb30 2528 if (prepared == 0)
d56b7306 2529 {
4d9d9d04
PA
2530 if (debug_infrun)
2531 fprintf_unfiltered (gdb_stdlog,
2532 "Got placed in step-over queue\n");
2533
2534 tp->control.trap_expected = 0;
d56b7306
VP
2535 discard_cleanups (old_cleanups);
2536 return;
2537 }
3fc8eb30
PA
2538 else if (prepared < 0)
2539 {
2540 /* Fallback to stepping over the breakpoint in-line. */
2541
2542 if (target_is_non_stop_p ())
2543 stop_all_threads ();
2544
2545 set_step_over_info (get_regcache_aspace (regcache),
2546 regcache_read_pc (regcache), 0);
2547
2548 step = maybe_software_singlestep (gdbarch, pc);
2549
2550 insert_breakpoints ();
2551 }
2552 else if (prepared > 0)
2553 {
2554 struct displaced_step_inferior_state *displaced;
99e40580 2555
3fc8eb30
PA
2556 /* Update pc to reflect the new address from which we will
2557 execute instructions due to displaced stepping. */
2558 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
ca7781d2 2559
3fc8eb30
PA
2560 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2561 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2562 displaced->step_closure);
2563 }
237fc4c9
PA
2564 }
2565
2facfe5c 2566 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2567 else if (step)
2facfe5c 2568 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2569
30852783
UW
2570 /* Currently, our software single-step implementation leads to different
2571 results than hardware single-stepping in one situation: when stepping
2572 into delivering a signal which has an associated signal handler,
2573 hardware single-step will stop at the first instruction of the handler,
2574 while software single-step will simply skip execution of the handler.
2575
2576 For now, this difference in behavior is accepted since there is no
2577 easy way to actually implement single-stepping into a signal handler
2578 without kernel support.
2579
2580 However, there is one scenario where this difference leads to follow-on
2581 problems: if we're stepping off a breakpoint by removing all breakpoints
2582 and then single-stepping. In this case, the software single-step
2583 behavior means that even if there is a *breakpoint* in the signal
2584 handler, GDB still would not stop.
2585
2586 Fortunately, we can at least fix this particular issue. We detect
2587 here the case where we are about to deliver a signal while software
2588 single-stepping with breakpoints removed. In this situation, we
2589 revert the decisions to remove all breakpoints and insert single-
2590 step breakpoints, and instead we install a step-resume breakpoint
2591 at the current address, deliver the signal without stepping, and
2592 once we arrive back at the step-resume breakpoint, actually step
2593 over the breakpoint we originally wanted to step over. */
34b7e8a6 2594 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2595 && sig != GDB_SIGNAL_0
2596 && step_over_info_valid_p ())
30852783
UW
2597 {
2598 /* If we have nested signals or a pending signal is delivered
2599 immediately after a handler returns, might might already have
2600 a step-resume breakpoint set on the earlier handler. We cannot
2601 set another step-resume breakpoint; just continue on until the
2602 original breakpoint is hit. */
2603 if (tp->control.step_resume_breakpoint == NULL)
2604 {
2c03e5be 2605 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2606 tp->step_after_step_resume_breakpoint = 1;
2607 }
2608
34b7e8a6 2609 delete_single_step_breakpoints (tp);
30852783 2610
31e77af2 2611 clear_step_over_info ();
30852783 2612 tp->control.trap_expected = 0;
31e77af2
PA
2613
2614 insert_breakpoints ();
30852783
UW
2615 }
2616
b0f16a3e
SM
2617 /* If STEP is set, it's a request to use hardware stepping
2618 facilities. But in that case, we should never
2619 use singlestep breakpoint. */
34b7e8a6 2620 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2621
fbea99ea 2622 /* Decide the set of threads to ask the target to resume. */
34b7e8a6 2623 if ((step || thread_has_single_step_breakpoints_set (tp))
b0f16a3e
SM
2624 && tp->control.trap_expected)
2625 {
2626 /* We're allowing a thread to run past a breakpoint it has
2627 hit, by single-stepping the thread with the breakpoint
2628 removed. In which case, we need to single-step only this
2629 thread, and keep others stopped, as they can miss this
2630 breakpoint if allowed to run. */
2631 resume_ptid = inferior_ptid;
2632 }
fbea99ea
PA
2633 else
2634 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2635
7f5ef605
PA
2636 if (execution_direction != EXEC_REVERSE
2637 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2638 {
372316f1
PA
2639 /* There are two cases where we currently need to step a
2640 breakpoint instruction when we have a signal to deliver:
2641
2642 - See handle_signal_stop where we handle random signals that
2643 could take out us out of the stepping range. Normally, in
2644 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2645 signal handler with a breakpoint at PC, but there are cases
2646 where we should _always_ single-step, even if we have a
2647 step-resume breakpoint, like when a software watchpoint is
2648 set. Assuming single-stepping and delivering a signal at the
2649 same time would takes us to the signal handler, then we could
2650 have removed the breakpoint at PC to step over it. However,
2651 some hardware step targets (like e.g., Mac OS) can't step
2652 into signal handlers, and for those, we need to leave the
2653 breakpoint at PC inserted, as otherwise if the handler
2654 recurses and executes PC again, it'll miss the breakpoint.
2655 So we leave the breakpoint inserted anyway, but we need to
2656 record that we tried to step a breakpoint instruction, so
372316f1
PA
2657 that adjust_pc_after_break doesn't end up confused.
2658
2659 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2660 in one thread after another thread that was stepping had been
2661 momentarily paused for a step-over. When we re-resume the
2662 stepping thread, it may be resumed from that address with a
2663 breakpoint that hasn't trapped yet. Seen with
2664 gdb.threads/non-stop-fair-events.exp, on targets that don't
2665 do displaced stepping. */
2666
2667 if (debug_infrun)
2668 fprintf_unfiltered (gdb_stdlog,
2669 "infrun: resume: [%s] stepped breakpoint\n",
2670 target_pid_to_str (tp->ptid));
7f5ef605
PA
2671
2672 tp->stepped_breakpoint = 1;
2673
b0f16a3e
SM
2674 /* Most targets can step a breakpoint instruction, thus
2675 executing it normally. But if this one cannot, just
2676 continue and we will hit it anyway. */
7f5ef605 2677 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2678 step = 0;
2679 }
ef5cf84e 2680
b0f16a3e 2681 if (debug_displaced
cb71640d 2682 && tp->control.trap_expected
3fc8eb30 2683 && use_displaced_stepping (tp)
cb71640d 2684 && !step_over_info_valid_p ())
b0f16a3e 2685 {
d9b67d9f 2686 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
b0f16a3e
SM
2687 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2688 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2689 gdb_byte buf[4];
2690
2691 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2692 paddress (resume_gdbarch, actual_pc));
2693 read_memory (actual_pc, buf, sizeof (buf));
2694 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2695 }
237fc4c9 2696
b0f16a3e
SM
2697 if (tp->control.may_range_step)
2698 {
2699 /* If we're resuming a thread with the PC out of the step
2700 range, then we're doing some nested/finer run control
2701 operation, like stepping the thread out of the dynamic
2702 linker or the displaced stepping scratch pad. We
2703 shouldn't have allowed a range step then. */
2704 gdb_assert (pc_in_thread_step_range (pc, tp));
2705 }
c1e36e3e 2706
64ce06e4 2707 do_target_resume (resume_ptid, step, sig);
372316f1 2708 tp->resumed = 1;
c906108c
SS
2709 discard_cleanups (old_cleanups);
2710}
2711\f
237fc4c9 2712/* Proceeding. */
c906108c 2713
4c2f2a79
PA
2714/* See infrun.h. */
2715
2716/* Counter that tracks number of user visible stops. This can be used
2717 to tell whether a command has proceeded the inferior past the
2718 current location. This allows e.g., inferior function calls in
2719 breakpoint commands to not interrupt the command list. When the
2720 call finishes successfully, the inferior is standing at the same
2721 breakpoint as if nothing happened (and so we don't call
2722 normal_stop). */
2723static ULONGEST current_stop_id;
2724
2725/* See infrun.h. */
2726
2727ULONGEST
2728get_stop_id (void)
2729{
2730 return current_stop_id;
2731}
2732
2733/* Called when we report a user visible stop. */
2734
2735static void
2736new_stop_id (void)
2737{
2738 current_stop_id++;
2739}
2740
c906108c
SS
2741/* Clear out all variables saying what to do when inferior is continued.
2742 First do this, then set the ones you want, then call `proceed'. */
2743
a7212384
UW
2744static void
2745clear_proceed_status_thread (struct thread_info *tp)
c906108c 2746{
a7212384
UW
2747 if (debug_infrun)
2748 fprintf_unfiltered (gdb_stdlog,
2749 "infrun: clear_proceed_status_thread (%s)\n",
2750 target_pid_to_str (tp->ptid));
d6b48e9c 2751
372316f1
PA
2752 /* If we're starting a new sequence, then the previous finished
2753 single-step is no longer relevant. */
2754 if (tp->suspend.waitstatus_pending_p)
2755 {
2756 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2757 {
2758 if (debug_infrun)
2759 fprintf_unfiltered (gdb_stdlog,
2760 "infrun: clear_proceed_status: pending "
2761 "event of %s was a finished step. "
2762 "Discarding.\n",
2763 target_pid_to_str (tp->ptid));
2764
2765 tp->suspend.waitstatus_pending_p = 0;
2766 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2767 }
2768 else if (debug_infrun)
2769 {
2770 char *statstr;
2771
2772 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2773 fprintf_unfiltered (gdb_stdlog,
2774 "infrun: clear_proceed_status_thread: thread %s "
2775 "has pending wait status %s "
2776 "(currently_stepping=%d).\n",
2777 target_pid_to_str (tp->ptid), statstr,
2778 currently_stepping (tp));
2779 xfree (statstr);
2780 }
2781 }
2782
70509625
PA
2783 /* If this signal should not be seen by program, give it zero.
2784 Used for debugging signals. */
2785 if (!signal_pass_state (tp->suspend.stop_signal))
2786 tp->suspend.stop_signal = GDB_SIGNAL_0;
2787
243a9253
PA
2788 thread_fsm_delete (tp->thread_fsm);
2789 tp->thread_fsm = NULL;
2790
16c381f0
JK
2791 tp->control.trap_expected = 0;
2792 tp->control.step_range_start = 0;
2793 tp->control.step_range_end = 0;
c1e36e3e 2794 tp->control.may_range_step = 0;
16c381f0
JK
2795 tp->control.step_frame_id = null_frame_id;
2796 tp->control.step_stack_frame_id = null_frame_id;
2797 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2798 tp->control.step_start_function = NULL;
a7212384 2799 tp->stop_requested = 0;
4e1c45ea 2800
16c381f0 2801 tp->control.stop_step = 0;
32400beb 2802
16c381f0 2803 tp->control.proceed_to_finish = 0;
414c69f7 2804
17b2616c 2805 tp->control.command_interp = NULL;
856e7dd6 2806 tp->control.stepping_command = 0;
17b2616c 2807
a7212384 2808 /* Discard any remaining commands or status from previous stop. */
16c381f0 2809 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2810}
32400beb 2811
a7212384 2812void
70509625 2813clear_proceed_status (int step)
a7212384 2814{
f2665db5
MM
2815 /* With scheduler-locking replay, stop replaying other threads if we're
2816 not replaying the user-visible resume ptid.
2817
2818 This is a convenience feature to not require the user to explicitly
2819 stop replaying the other threads. We're assuming that the user's
2820 intent is to resume tracing the recorded process. */
2821 if (!non_stop && scheduler_mode == schedlock_replay
2822 && target_record_is_replaying (minus_one_ptid)
2823 && !target_record_will_replay (user_visible_resume_ptid (step),
2824 execution_direction))
2825 target_record_stop_replaying ();
2826
6c95b8df
PA
2827 if (!non_stop)
2828 {
70509625
PA
2829 struct thread_info *tp;
2830 ptid_t resume_ptid;
2831
2832 resume_ptid = user_visible_resume_ptid (step);
2833
2834 /* In all-stop mode, delete the per-thread status of all threads
2835 we're about to resume, implicitly and explicitly. */
2836 ALL_NON_EXITED_THREADS (tp)
2837 {
2838 if (!ptid_match (tp->ptid, resume_ptid))
2839 continue;
2840 clear_proceed_status_thread (tp);
2841 }
6c95b8df
PA
2842 }
2843
a7212384
UW
2844 if (!ptid_equal (inferior_ptid, null_ptid))
2845 {
2846 struct inferior *inferior;
2847
2848 if (non_stop)
2849 {
6c95b8df
PA
2850 /* If in non-stop mode, only delete the per-thread status of
2851 the current thread. */
a7212384
UW
2852 clear_proceed_status_thread (inferior_thread ());
2853 }
6c95b8df 2854
d6b48e9c 2855 inferior = current_inferior ();
16c381f0 2856 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2857 }
2858
c906108c 2859 stop_after_trap = 0;
f3b1572e
PA
2860
2861 observer_notify_about_to_proceed ();
c906108c
SS
2862}
2863
99619bea
PA
2864/* Returns true if TP is still stopped at a breakpoint that needs
2865 stepping-over in order to make progress. If the breakpoint is gone
2866 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2867
2868static int
6c4cfb24 2869thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2870{
2871 if (tp->stepping_over_breakpoint)
2872 {
2873 struct regcache *regcache = get_thread_regcache (tp->ptid);
2874
2875 if (breakpoint_here_p (get_regcache_aspace (regcache),
af48d08f
PA
2876 regcache_read_pc (regcache))
2877 == ordinary_breakpoint_here)
99619bea
PA
2878 return 1;
2879
2880 tp->stepping_over_breakpoint = 0;
2881 }
2882
2883 return 0;
2884}
2885
6c4cfb24
PA
2886/* Check whether thread TP still needs to start a step-over in order
2887 to make progress when resumed. Returns an bitwise or of enum
2888 step_over_what bits, indicating what needs to be stepped over. */
2889
2890static int
2891thread_still_needs_step_over (struct thread_info *tp)
2892{
2893 struct inferior *inf = find_inferior_ptid (tp->ptid);
2894 int what = 0;
2895
2896 if (thread_still_needs_step_over_bp (tp))
2897 what |= STEP_OVER_BREAKPOINT;
2898
2899 if (tp->stepping_over_watchpoint
2900 && !target_have_steppable_watchpoint)
2901 what |= STEP_OVER_WATCHPOINT;
2902
2903 return what;
2904}
2905
483805cf
PA
2906/* Returns true if scheduler locking applies. STEP indicates whether
2907 we're about to do a step/next-like command to a thread. */
2908
2909static int
856e7dd6 2910schedlock_applies (struct thread_info *tp)
483805cf
PA
2911{
2912 return (scheduler_mode == schedlock_on
2913 || (scheduler_mode == schedlock_step
f2665db5
MM
2914 && tp->control.stepping_command)
2915 || (scheduler_mode == schedlock_replay
2916 && target_record_will_replay (minus_one_ptid,
2917 execution_direction)));
483805cf
PA
2918}
2919
c906108c
SS
2920/* Basic routine for continuing the program in various fashions.
2921
2922 ADDR is the address to resume at, or -1 for resume where stopped.
2923 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2924 or -1 for act according to how it stopped.
c906108c 2925 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2926 -1 means return after that and print nothing.
2927 You should probably set various step_... variables
2928 before calling here, if you are stepping.
c906108c
SS
2929
2930 You should call clear_proceed_status before calling proceed. */
2931
2932void
64ce06e4 2933proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2934{
e58b0e63
PA
2935 struct regcache *regcache;
2936 struct gdbarch *gdbarch;
4e1c45ea 2937 struct thread_info *tp;
e58b0e63 2938 CORE_ADDR pc;
6c95b8df 2939 struct address_space *aspace;
4d9d9d04
PA
2940 ptid_t resume_ptid;
2941 struct execution_control_state ecss;
2942 struct execution_control_state *ecs = &ecss;
2943 struct cleanup *old_chain;
2944 int started;
c906108c 2945
e58b0e63
PA
2946 /* If we're stopped at a fork/vfork, follow the branch set by the
2947 "set follow-fork-mode" command; otherwise, we'll just proceed
2948 resuming the current thread. */
2949 if (!follow_fork ())
2950 {
2951 /* The target for some reason decided not to resume. */
2952 normal_stop ();
f148b27e
PA
2953 if (target_can_async_p ())
2954 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2955 return;
2956 }
2957
842951eb
PA
2958 /* We'll update this if & when we switch to a new thread. */
2959 previous_inferior_ptid = inferior_ptid;
2960
e58b0e63
PA
2961 regcache = get_current_regcache ();
2962 gdbarch = get_regcache_arch (regcache);
6c95b8df 2963 aspace = get_regcache_aspace (regcache);
e58b0e63 2964 pc = regcache_read_pc (regcache);
2adfaa28 2965 tp = inferior_thread ();
e58b0e63 2966
99619bea
PA
2967 /* Fill in with reasonable starting values. */
2968 init_thread_stepping_state (tp);
2969
c2829269
PA
2970 gdb_assert (!thread_is_in_step_over_chain (tp));
2971
2acceee2 2972 if (addr == (CORE_ADDR) -1)
c906108c 2973 {
af48d08f
PA
2974 if (pc == stop_pc
2975 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2976 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2977 /* There is a breakpoint at the address we will resume at,
2978 step one instruction before inserting breakpoints so that
2979 we do not stop right away (and report a second hit at this
b2175913
MS
2980 breakpoint).
2981
2982 Note, we don't do this in reverse, because we won't
2983 actually be executing the breakpoint insn anyway.
2984 We'll be (un-)executing the previous instruction. */
99619bea 2985 tp->stepping_over_breakpoint = 1;
515630c5
UW
2986 else if (gdbarch_single_step_through_delay_p (gdbarch)
2987 && gdbarch_single_step_through_delay (gdbarch,
2988 get_current_frame ()))
3352ef37
AC
2989 /* We stepped onto an instruction that needs to be stepped
2990 again before re-inserting the breakpoint, do so. */
99619bea 2991 tp->stepping_over_breakpoint = 1;
c906108c
SS
2992 }
2993 else
2994 {
515630c5 2995 regcache_write_pc (regcache, addr);
c906108c
SS
2996 }
2997
70509625
PA
2998 if (siggnal != GDB_SIGNAL_DEFAULT)
2999 tp->suspend.stop_signal = siggnal;
3000
17b2616c
PA
3001 /* Record the interpreter that issued the execution command that
3002 caused this thread to resume. If the top level interpreter is
3003 MI/async, and the execution command was a CLI command
3004 (next/step/etc.), we'll want to print stop event output to the MI
3005 console channel (the stepped-to line, etc.), as if the user
3006 entered the execution command on a real GDB console. */
4d9d9d04
PA
3007 tp->control.command_interp = command_interp ();
3008
3009 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3010
3011 /* If an exception is thrown from this point on, make sure to
3012 propagate GDB's knowledge of the executing state to the
3013 frontend/user running state. */
3014 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3015
3016 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3017 threads (e.g., we might need to set threads stepping over
3018 breakpoints first), from the user/frontend's point of view, all
3019 threads in RESUME_PTID are now running. Unless we're calling an
3020 inferior function, as in that case we pretend the inferior
3021 doesn't run at all. */
3022 if (!tp->control.in_infcall)
3023 set_running (resume_ptid, 1);
17b2616c 3024
527159b7 3025 if (debug_infrun)
8a9de0e4 3026 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3027 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3028 paddress (gdbarch, addr),
64ce06e4 3029 gdb_signal_to_symbol_string (siggnal));
527159b7 3030
4d9d9d04
PA
3031 annotate_starting ();
3032
3033 /* Make sure that output from GDB appears before output from the
3034 inferior. */
3035 gdb_flush (gdb_stdout);
3036
3037 /* In a multi-threaded task we may select another thread and
3038 then continue or step.
3039
3040 But if a thread that we're resuming had stopped at a breakpoint,
3041 it will immediately cause another breakpoint stop without any
3042 execution (i.e. it will report a breakpoint hit incorrectly). So
3043 we must step over it first.
3044
3045 Look for threads other than the current (TP) that reported a
3046 breakpoint hit and haven't been resumed yet since. */
3047
3048 /* If scheduler locking applies, we can avoid iterating over all
3049 threads. */
3050 if (!non_stop && !schedlock_applies (tp))
94cc34af 3051 {
4d9d9d04
PA
3052 struct thread_info *current = tp;
3053
3054 ALL_NON_EXITED_THREADS (tp)
3055 {
3056 /* Ignore the current thread here. It's handled
3057 afterwards. */
3058 if (tp == current)
3059 continue;
99619bea 3060
4d9d9d04
PA
3061 /* Ignore threads of processes we're not resuming. */
3062 if (!ptid_match (tp->ptid, resume_ptid))
3063 continue;
c906108c 3064
4d9d9d04
PA
3065 if (!thread_still_needs_step_over (tp))
3066 continue;
3067
3068 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3069
99619bea
PA
3070 if (debug_infrun)
3071 fprintf_unfiltered (gdb_stdlog,
3072 "infrun: need to step-over [%s] first\n",
4d9d9d04 3073 target_pid_to_str (tp->ptid));
99619bea 3074
4d9d9d04 3075 thread_step_over_chain_enqueue (tp);
2adfaa28 3076 }
31e77af2 3077
4d9d9d04 3078 tp = current;
30852783
UW
3079 }
3080
4d9d9d04
PA
3081 /* Enqueue the current thread last, so that we move all other
3082 threads over their breakpoints first. */
3083 if (tp->stepping_over_breakpoint)
3084 thread_step_over_chain_enqueue (tp);
30852783 3085
4d9d9d04
PA
3086 /* If the thread isn't started, we'll still need to set its prev_pc,
3087 so that switch_back_to_stepped_thread knows the thread hasn't
3088 advanced. Must do this before resuming any thread, as in
3089 all-stop/remote, once we resume we can't send any other packet
3090 until the target stops again. */
3091 tp->prev_pc = regcache_read_pc (regcache);
99619bea 3092
4d9d9d04 3093 started = start_step_over ();
c906108c 3094
4d9d9d04
PA
3095 if (step_over_info_valid_p ())
3096 {
3097 /* Either this thread started a new in-line step over, or some
3098 other thread was already doing one. In either case, don't
3099 resume anything else until the step-over is finished. */
3100 }
fbea99ea 3101 else if (started && !target_is_non_stop_p ())
4d9d9d04
PA
3102 {
3103 /* A new displaced stepping sequence was started. In all-stop,
3104 we can't talk to the target anymore until it next stops. */
3105 }
fbea99ea
PA
3106 else if (!non_stop && target_is_non_stop_p ())
3107 {
3108 /* In all-stop, but the target is always in non-stop mode.
3109 Start all other threads that are implicitly resumed too. */
3110 ALL_NON_EXITED_THREADS (tp)
3111 {
3112 /* Ignore threads of processes we're not resuming. */
3113 if (!ptid_match (tp->ptid, resume_ptid))
3114 continue;
3115
3116 if (tp->resumed)
3117 {
3118 if (debug_infrun)
3119 fprintf_unfiltered (gdb_stdlog,
3120 "infrun: proceed: [%s] resumed\n",
3121 target_pid_to_str (tp->ptid));
3122 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3123 continue;
3124 }
3125
3126 if (thread_is_in_step_over_chain (tp))
3127 {
3128 if (debug_infrun)
3129 fprintf_unfiltered (gdb_stdlog,
3130 "infrun: proceed: [%s] needs step-over\n",
3131 target_pid_to_str (tp->ptid));
3132 continue;
3133 }
3134
3135 if (debug_infrun)
3136 fprintf_unfiltered (gdb_stdlog,
3137 "infrun: proceed: resuming %s\n",
3138 target_pid_to_str (tp->ptid));
3139
3140 reset_ecs (ecs, tp);
3141 switch_to_thread (tp->ptid);
3142 keep_going_pass_signal (ecs);
3143 if (!ecs->wait_some_more)
fd7dcb94 3144 error (_("Command aborted."));
fbea99ea
PA
3145 }
3146 }
372316f1 3147 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
4d9d9d04
PA
3148 {
3149 /* The thread wasn't started, and isn't queued, run it now. */
3150 reset_ecs (ecs, tp);
3151 switch_to_thread (tp->ptid);
3152 keep_going_pass_signal (ecs);
3153 if (!ecs->wait_some_more)
fd7dcb94 3154 error (_("Command aborted."));
4d9d9d04 3155 }
c906108c 3156
4d9d9d04 3157 discard_cleanups (old_chain);
c906108c 3158
0b333c5e
PA
3159 /* Tell the event loop to wait for it to stop. If the target
3160 supports asynchronous execution, it'll do this from within
3161 target_resume. */
362646f5 3162 if (!target_can_async_p ())
0b333c5e 3163 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3164}
c906108c
SS
3165\f
3166
3167/* Start remote-debugging of a machine over a serial link. */
96baa820 3168
c906108c 3169void
8621d6a9 3170start_remote (int from_tty)
c906108c 3171{
d6b48e9c 3172 struct inferior *inferior;
d6b48e9c
PA
3173
3174 inferior = current_inferior ();
16c381f0 3175 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3176
1777feb0 3177 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3178 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3179 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3180 nothing is returned (instead of just blocking). Because of this,
3181 targets expecting an immediate response need to, internally, set
3182 things up so that the target_wait() is forced to eventually
1777feb0 3183 timeout. */
6426a772
JM
3184 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3185 differentiate to its caller what the state of the target is after
3186 the initial open has been performed. Here we're assuming that
3187 the target has stopped. It should be possible to eventually have
3188 target_open() return to the caller an indication that the target
3189 is currently running and GDB state should be set to the same as
1777feb0 3190 for an async run. */
e4c8541f 3191 wait_for_inferior ();
8621d6a9
DJ
3192
3193 /* Now that the inferior has stopped, do any bookkeeping like
3194 loading shared libraries. We want to do this before normal_stop,
3195 so that the displayed frame is up to date. */
3196 post_create_inferior (&current_target, from_tty);
3197
6426a772 3198 normal_stop ();
c906108c
SS
3199}
3200
3201/* Initialize static vars when a new inferior begins. */
3202
3203void
96baa820 3204init_wait_for_inferior (void)
c906108c
SS
3205{
3206 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3207
c906108c
SS
3208 breakpoint_init_inferior (inf_starting);
3209
70509625 3210 clear_proceed_status (0);
9f976b41 3211
ca005067 3212 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3213
842951eb 3214 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 3215
edb3359d
DJ
3216 /* Discard any skipped inlined frames. */
3217 clear_inline_frame_state (minus_one_ptid);
c906108c 3218}
237fc4c9 3219
c906108c 3220\f
488f131b 3221
ec9499be 3222static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3223
568d6575
UW
3224static void handle_step_into_function (struct gdbarch *gdbarch,
3225 struct execution_control_state *ecs);
3226static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3227 struct execution_control_state *ecs);
4f5d7f63 3228static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3229static void check_exception_resume (struct execution_control_state *,
28106bc2 3230 struct frame_info *);
611c83ae 3231
bdc36728 3232static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3233static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3234static void keep_going (struct execution_control_state *ecs);
94c57d6a 3235static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3236static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3237
252fbfc8
PA
3238/* Callback for iterate over threads. If the thread is stopped, but
3239 the user/frontend doesn't know about that yet, go through
3240 normal_stop, as if the thread had just stopped now. ARG points at
3241 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3242 ptid_is_pid(PTID) is true, applies to all threads of the process
3243 pointed at by PTID. Otherwise, apply only to the thread pointed by
3244 PTID. */
3245
3246static int
3247infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3248{
3249 ptid_t ptid = * (ptid_t *) arg;
3250
3251 if ((ptid_equal (info->ptid, ptid)
3252 || ptid_equal (minus_one_ptid, ptid)
3253 || (ptid_is_pid (ptid)
3254 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3255 && is_running (info->ptid)
3256 && !is_executing (info->ptid))
3257 {
3258 struct cleanup *old_chain;
3259 struct execution_control_state ecss;
3260 struct execution_control_state *ecs = &ecss;
3261
3262 memset (ecs, 0, sizeof (*ecs));
3263
3264 old_chain = make_cleanup_restore_current_thread ();
3265
f15cb84a
YQ
3266 overlay_cache_invalid = 1;
3267 /* Flush target cache before starting to handle each event.
3268 Target was running and cache could be stale. This is just a
3269 heuristic. Running threads may modify target memory, but we
3270 don't get any event. */
3271 target_dcache_invalidate ();
3272
252fbfc8
PA
3273 /* Go through handle_inferior_event/normal_stop, so we always
3274 have consistent output as if the stop event had been
3275 reported. */
3276 ecs->ptid = info->ptid;
243a9253 3277 ecs->event_thread = info;
252fbfc8 3278 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 3279 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
3280
3281 handle_inferior_event (ecs);
3282
3283 if (!ecs->wait_some_more)
3284 {
243a9253
PA
3285 /* Cancel any running execution command. */
3286 thread_cancel_execution_command (info);
3287
252fbfc8 3288 normal_stop ();
252fbfc8
PA
3289 }
3290
3291 do_cleanups (old_chain);
3292 }
3293
3294 return 0;
3295}
3296
3297/* This function is attached as a "thread_stop_requested" observer.
3298 Cleanup local state that assumed the PTID was to be resumed, and
3299 report the stop to the frontend. */
3300
2c0b251b 3301static void
252fbfc8
PA
3302infrun_thread_stop_requested (ptid_t ptid)
3303{
c2829269 3304 struct thread_info *tp;
252fbfc8 3305
c2829269
PA
3306 /* PTID was requested to stop. Remove matching threads from the
3307 step-over queue, so we don't try to resume them
3308 automatically. */
3309 ALL_NON_EXITED_THREADS (tp)
3310 if (ptid_match (tp->ptid, ptid))
3311 {
3312 if (thread_is_in_step_over_chain (tp))
3313 thread_step_over_chain_remove (tp);
3314 }
252fbfc8
PA
3315
3316 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3317}
3318
a07daef3
PA
3319static void
3320infrun_thread_thread_exit (struct thread_info *tp, int silent)
3321{
3322 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3323 nullify_last_target_wait_ptid ();
3324}
3325
0cbcdb96
PA
3326/* Delete the step resume, single-step and longjmp/exception resume
3327 breakpoints of TP. */
4e1c45ea 3328
0cbcdb96
PA
3329static void
3330delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3331{
0cbcdb96
PA
3332 delete_step_resume_breakpoint (tp);
3333 delete_exception_resume_breakpoint (tp);
34b7e8a6 3334 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3335}
3336
0cbcdb96
PA
3337/* If the target still has execution, call FUNC for each thread that
3338 just stopped. In all-stop, that's all the non-exited threads; in
3339 non-stop, that's the current thread, only. */
3340
3341typedef void (*for_each_just_stopped_thread_callback_func)
3342 (struct thread_info *tp);
4e1c45ea
PA
3343
3344static void
0cbcdb96 3345for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3346{
0cbcdb96 3347 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
3348 return;
3349
fbea99ea 3350 if (target_is_non_stop_p ())
4e1c45ea 3351 {
0cbcdb96
PA
3352 /* If in non-stop mode, only the current thread stopped. */
3353 func (inferior_thread ());
4e1c45ea
PA
3354 }
3355 else
0cbcdb96
PA
3356 {
3357 struct thread_info *tp;
3358
3359 /* In all-stop mode, all threads have stopped. */
3360 ALL_NON_EXITED_THREADS (tp)
3361 {
3362 func (tp);
3363 }
3364 }
3365}
3366
3367/* Delete the step resume and longjmp/exception resume breakpoints of
3368 the threads that just stopped. */
3369
3370static void
3371delete_just_stopped_threads_infrun_breakpoints (void)
3372{
3373 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3374}
3375
3376/* Delete the single-step breakpoints of the threads that just
3377 stopped. */
7c16b83e 3378
34b7e8a6
PA
3379static void
3380delete_just_stopped_threads_single_step_breakpoints (void)
3381{
3382 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3383}
3384
1777feb0 3385/* A cleanup wrapper. */
4e1c45ea
PA
3386
3387static void
0cbcdb96 3388delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3389{
0cbcdb96 3390 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3391}
3392
221e1a37 3393/* See infrun.h. */
223698f8 3394
221e1a37 3395void
223698f8
DE
3396print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3397 const struct target_waitstatus *ws)
3398{
3399 char *status_string = target_waitstatus_to_string (ws);
3400 struct ui_file *tmp_stream = mem_fileopen ();
3401 char *text;
223698f8
DE
3402
3403 /* The text is split over several lines because it was getting too long.
3404 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3405 output as a unit; we want only one timestamp printed if debug_timestamp
3406 is set. */
3407
3408 fprintf_unfiltered (tmp_stream,
1176ecec
PA
3409 "infrun: target_wait (%d.%ld.%ld",
3410 ptid_get_pid (waiton_ptid),
3411 ptid_get_lwp (waiton_ptid),
3412 ptid_get_tid (waiton_ptid));
dfd4cc63 3413 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
3414 fprintf_unfiltered (tmp_stream,
3415 " [%s]", target_pid_to_str (waiton_ptid));
3416 fprintf_unfiltered (tmp_stream, ", status) =\n");
3417 fprintf_unfiltered (tmp_stream,
1176ecec 3418 "infrun: %d.%ld.%ld [%s],\n",
dfd4cc63 3419 ptid_get_pid (result_ptid),
1176ecec
PA
3420 ptid_get_lwp (result_ptid),
3421 ptid_get_tid (result_ptid),
dfd4cc63 3422 target_pid_to_str (result_ptid));
223698f8
DE
3423 fprintf_unfiltered (tmp_stream,
3424 "infrun: %s\n",
3425 status_string);
3426
759ef836 3427 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
3428
3429 /* This uses %s in part to handle %'s in the text, but also to avoid
3430 a gcc error: the format attribute requires a string literal. */
3431 fprintf_unfiltered (gdb_stdlog, "%s", text);
3432
3433 xfree (status_string);
3434 xfree (text);
3435 ui_file_delete (tmp_stream);
3436}
3437
372316f1
PA
3438/* Select a thread at random, out of those which are resumed and have
3439 had events. */
3440
3441static struct thread_info *
3442random_pending_event_thread (ptid_t waiton_ptid)
3443{
3444 struct thread_info *event_tp;
3445 int num_events = 0;
3446 int random_selector;
3447
3448 /* First see how many events we have. Count only resumed threads
3449 that have an event pending. */
3450 ALL_NON_EXITED_THREADS (event_tp)
3451 if (ptid_match (event_tp->ptid, waiton_ptid)
3452 && event_tp->resumed
3453 && event_tp->suspend.waitstatus_pending_p)
3454 num_events++;
3455
3456 if (num_events == 0)
3457 return NULL;
3458
3459 /* Now randomly pick a thread out of those that have had events. */
3460 random_selector = (int)
3461 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3462
3463 if (debug_infrun && num_events > 1)
3464 fprintf_unfiltered (gdb_stdlog,
3465 "infrun: Found %d events, selecting #%d\n",
3466 num_events, random_selector);
3467
3468 /* Select the Nth thread that has had an event. */
3469 ALL_NON_EXITED_THREADS (event_tp)
3470 if (ptid_match (event_tp->ptid, waiton_ptid)
3471 && event_tp->resumed
3472 && event_tp->suspend.waitstatus_pending_p)
3473 if (random_selector-- == 0)
3474 break;
3475
3476 return event_tp;
3477}
3478
3479/* Wrapper for target_wait that first checks whether threads have
3480 pending statuses to report before actually asking the target for
3481 more events. */
3482
3483static ptid_t
3484do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3485{
3486 ptid_t event_ptid;
3487 struct thread_info *tp;
3488
3489 /* First check if there is a resumed thread with a wait status
3490 pending. */
3491 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3492 {
3493 tp = random_pending_event_thread (ptid);
3494 }
3495 else
3496 {
3497 if (debug_infrun)
3498 fprintf_unfiltered (gdb_stdlog,
3499 "infrun: Waiting for specific thread %s.\n",
3500 target_pid_to_str (ptid));
3501
3502 /* We have a specific thread to check. */
3503 tp = find_thread_ptid (ptid);
3504 gdb_assert (tp != NULL);
3505 if (!tp->suspend.waitstatus_pending_p)
3506 tp = NULL;
3507 }
3508
3509 if (tp != NULL
3510 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3511 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3512 {
3513 struct regcache *regcache = get_thread_regcache (tp->ptid);
3514 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3515 CORE_ADDR pc;
3516 int discard = 0;
3517
3518 pc = regcache_read_pc (regcache);
3519
3520 if (pc != tp->suspend.stop_pc)
3521 {
3522 if (debug_infrun)
3523 fprintf_unfiltered (gdb_stdlog,
3524 "infrun: PC of %s changed. was=%s, now=%s\n",
3525 target_pid_to_str (tp->ptid),
3526 paddress (gdbarch, tp->prev_pc),
3527 paddress (gdbarch, pc));
3528 discard = 1;
3529 }
3530 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3531 {
3532 if (debug_infrun)
3533 fprintf_unfiltered (gdb_stdlog,
3534 "infrun: previous breakpoint of %s, at %s gone\n",
3535 target_pid_to_str (tp->ptid),
3536 paddress (gdbarch, pc));
3537
3538 discard = 1;
3539 }
3540
3541 if (discard)
3542 {
3543 if (debug_infrun)
3544 fprintf_unfiltered (gdb_stdlog,
3545 "infrun: pending event of %s cancelled.\n",
3546 target_pid_to_str (tp->ptid));
3547
3548 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3549 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3550 }
3551 }
3552
3553 if (tp != NULL)
3554 {
3555 if (debug_infrun)
3556 {
3557 char *statstr;
3558
3559 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3560 fprintf_unfiltered (gdb_stdlog,
3561 "infrun: Using pending wait status %s for %s.\n",
3562 statstr,
3563 target_pid_to_str (tp->ptid));
3564 xfree (statstr);
3565 }
3566
3567 /* Now that we've selected our final event LWP, un-adjust its PC
3568 if it was a software breakpoint (and the target doesn't
3569 always adjust the PC itself). */
3570 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3571 && !target_supports_stopped_by_sw_breakpoint ())
3572 {
3573 struct regcache *regcache;
3574 struct gdbarch *gdbarch;
3575 int decr_pc;
3576
3577 regcache = get_thread_regcache (tp->ptid);
3578 gdbarch = get_regcache_arch (regcache);
3579
3580 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3581 if (decr_pc != 0)
3582 {
3583 CORE_ADDR pc;
3584
3585 pc = regcache_read_pc (regcache);
3586 regcache_write_pc (regcache, pc + decr_pc);
3587 }
3588 }
3589
3590 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3591 *status = tp->suspend.waitstatus;
3592 tp->suspend.waitstatus_pending_p = 0;
3593
3594 /* Wake up the event loop again, until all pending events are
3595 processed. */
3596 if (target_is_async_p ())
3597 mark_async_event_handler (infrun_async_inferior_event_token);
3598 return tp->ptid;
3599 }
3600
3601 /* But if we don't find one, we'll have to wait. */
3602
3603 if (deprecated_target_wait_hook)
3604 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3605 else
3606 event_ptid = target_wait (ptid, status, options);
3607
3608 return event_ptid;
3609}
3610
24291992
PA
3611/* Prepare and stabilize the inferior for detaching it. E.g.,
3612 detaching while a thread is displaced stepping is a recipe for
3613 crashing it, as nothing would readjust the PC out of the scratch
3614 pad. */
3615
3616void
3617prepare_for_detach (void)
3618{
3619 struct inferior *inf = current_inferior ();
3620 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3621 struct cleanup *old_chain_1;
3622 struct displaced_step_inferior_state *displaced;
3623
3624 displaced = get_displaced_stepping_state (inf->pid);
3625
3626 /* Is any thread of this process displaced stepping? If not,
3627 there's nothing else to do. */
3628 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3629 return;
3630
3631 if (debug_infrun)
3632 fprintf_unfiltered (gdb_stdlog,
3633 "displaced-stepping in-process while detaching");
3634
3635 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3636 inf->detaching = 1;
3637
3638 while (!ptid_equal (displaced->step_ptid, null_ptid))
3639 {
3640 struct cleanup *old_chain_2;
3641 struct execution_control_state ecss;
3642 struct execution_control_state *ecs;
3643
3644 ecs = &ecss;
3645 memset (ecs, 0, sizeof (*ecs));
3646
3647 overlay_cache_invalid = 1;
f15cb84a
YQ
3648 /* Flush target cache before starting to handle each event.
3649 Target was running and cache could be stale. This is just a
3650 heuristic. Running threads may modify target memory, but we
3651 don't get any event. */
3652 target_dcache_invalidate ();
24291992 3653
372316f1 3654 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3655
3656 if (debug_infrun)
3657 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3658
3659 /* If an error happens while handling the event, propagate GDB's
3660 knowledge of the executing state to the frontend/user running
3661 state. */
3e43a32a
MS
3662 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3663 &minus_one_ptid);
24291992
PA
3664
3665 /* Now figure out what to do with the result of the result. */
3666 handle_inferior_event (ecs);
3667
3668 /* No error, don't finish the state yet. */
3669 discard_cleanups (old_chain_2);
3670
3671 /* Breakpoints and watchpoints are not installed on the target
3672 at this point, and signals are passed directly to the
3673 inferior, so this must mean the process is gone. */
3674 if (!ecs->wait_some_more)
3675 {
3676 discard_cleanups (old_chain_1);
3677 error (_("Program exited while detaching"));
3678 }
3679 }
3680
3681 discard_cleanups (old_chain_1);
3682}
3683
cd0fc7c3 3684/* Wait for control to return from inferior to debugger.
ae123ec6 3685
cd0fc7c3
SS
3686 If inferior gets a signal, we may decide to start it up again
3687 instead of returning. That is why there is a loop in this function.
3688 When this function actually returns it means the inferior
3689 should be left stopped and GDB should read more commands. */
3690
3691void
e4c8541f 3692wait_for_inferior (void)
cd0fc7c3
SS
3693{
3694 struct cleanup *old_cleanups;
e6f5c25b 3695 struct cleanup *thread_state_chain;
c906108c 3696
527159b7 3697 if (debug_infrun)
ae123ec6 3698 fprintf_unfiltered
e4c8541f 3699 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3700
0cbcdb96
PA
3701 old_cleanups
3702 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3703 NULL);
cd0fc7c3 3704
e6f5c25b
PA
3705 /* If an error happens while handling the event, propagate GDB's
3706 knowledge of the executing state to the frontend/user running
3707 state. */
3708 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3709
c906108c
SS
3710 while (1)
3711 {
ae25568b
PA
3712 struct execution_control_state ecss;
3713 struct execution_control_state *ecs = &ecss;
963f9c80 3714 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3715
ae25568b
PA
3716 memset (ecs, 0, sizeof (*ecs));
3717
ec9499be 3718 overlay_cache_invalid = 1;
ec9499be 3719
f15cb84a
YQ
3720 /* Flush target cache before starting to handle each event.
3721 Target was running and cache could be stale. This is just a
3722 heuristic. Running threads may modify target memory, but we
3723 don't get any event. */
3724 target_dcache_invalidate ();
3725
372316f1 3726 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3727
f00150c9 3728 if (debug_infrun)
223698f8 3729 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3730
cd0fc7c3
SS
3731 /* Now figure out what to do with the result of the result. */
3732 handle_inferior_event (ecs);
c906108c 3733
cd0fc7c3
SS
3734 if (!ecs->wait_some_more)
3735 break;
3736 }
4e1c45ea 3737
e6f5c25b
PA
3738 /* No error, don't finish the state yet. */
3739 discard_cleanups (thread_state_chain);
3740
cd0fc7c3
SS
3741 do_cleanups (old_cleanups);
3742}
c906108c 3743
d3d4baed
PA
3744/* Cleanup that reinstalls the readline callback handler, if the
3745 target is running in the background. If while handling the target
3746 event something triggered a secondary prompt, like e.g., a
3747 pagination prompt, we'll have removed the callback handler (see
3748 gdb_readline_wrapper_line). Need to do this as we go back to the
3749 event loop, ready to process further input. Note this has no
3750 effect if the handler hasn't actually been removed, because calling
3751 rl_callback_handler_install resets the line buffer, thus losing
3752 input. */
3753
3754static void
3755reinstall_readline_callback_handler_cleanup (void *arg)
3756{
6c400b59
PA
3757 if (!interpreter_async)
3758 {
3759 /* We're not going back to the top level event loop yet. Don't
3760 install the readline callback, as it'd prep the terminal,
3761 readline-style (raw, noecho) (e.g., --batch). We'll install
3762 it the next time the prompt is displayed, when we're ready
3763 for input. */
3764 return;
3765 }
3766
d3d4baed
PA
3767 if (async_command_editing_p && !sync_execution)
3768 gdb_rl_callback_handler_reinstall ();
3769}
3770
243a9253
PA
3771/* Clean up the FSMs of threads that are now stopped. In non-stop,
3772 that's just the event thread. In all-stop, that's all threads. */
3773
3774static void
3775clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3776{
3777 struct thread_info *thr = ecs->event_thread;
3778
3779 if (thr != NULL && thr->thread_fsm != NULL)
3780 thread_fsm_clean_up (thr->thread_fsm);
3781
3782 if (!non_stop)
3783 {
3784 ALL_NON_EXITED_THREADS (thr)
3785 {
3786 if (thr->thread_fsm == NULL)
3787 continue;
3788 if (thr == ecs->event_thread)
3789 continue;
3790
3791 switch_to_thread (thr->ptid);
3792 thread_fsm_clean_up (thr->thread_fsm);
3793 }
3794
3795 if (ecs->event_thread != NULL)
3796 switch_to_thread (ecs->event_thread->ptid);
3797 }
3798}
3799
1777feb0 3800/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3801 event loop whenever a change of state is detected on the file
1777feb0
MS
3802 descriptor corresponding to the target. It can be called more than
3803 once to complete a single execution command. In such cases we need
3804 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3805 that this function is called for a single execution command, then
3806 report to the user that the inferior has stopped, and do the
1777feb0 3807 necessary cleanups. */
43ff13b4
JM
3808
3809void
fba45db2 3810fetch_inferior_event (void *client_data)
43ff13b4 3811{
0d1e5fa7 3812 struct execution_control_state ecss;
a474d7c2 3813 struct execution_control_state *ecs = &ecss;
4f8d22e3 3814 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3815 struct cleanup *ts_old_chain;
4f8d22e3 3816 int was_sync = sync_execution;
0f641c01 3817 int cmd_done = 0;
963f9c80 3818 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3819
0d1e5fa7
PA
3820 memset (ecs, 0, sizeof (*ecs));
3821
d3d4baed
PA
3822 /* End up with readline processing input, if necessary. */
3823 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3824
c5187ac6
PA
3825 /* We're handling a live event, so make sure we're doing live
3826 debugging. If we're looking at traceframes while the target is
3827 running, we're going to need to get back to that mode after
3828 handling the event. */
3829 if (non_stop)
3830 {
3831 make_cleanup_restore_current_traceframe ();
e6e4e701 3832 set_current_traceframe (-1);
c5187ac6
PA
3833 }
3834
4f8d22e3
PA
3835 if (non_stop)
3836 /* In non-stop mode, the user/frontend should not notice a thread
3837 switch due to internal events. Make sure we reverse to the
3838 user selected thread and frame after handling the event and
3839 running any breakpoint commands. */
3840 make_cleanup_restore_current_thread ();
3841
ec9499be 3842 overlay_cache_invalid = 1;
f15cb84a
YQ
3843 /* Flush target cache before starting to handle each event. Target
3844 was running and cache could be stale. This is just a heuristic.
3845 Running threads may modify target memory, but we don't get any
3846 event. */
3847 target_dcache_invalidate ();
3dd5b83d 3848
32231432
PA
3849 make_cleanup_restore_integer (&execution_direction);
3850 execution_direction = target_execution_direction ();
3851
0b333c5e
PA
3852 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3853 target_can_async_p () ? TARGET_WNOHANG : 0);
43ff13b4 3854
f00150c9 3855 if (debug_infrun)
223698f8 3856 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3857
29f49a6a
PA
3858 /* If an error happens while handling the event, propagate GDB's
3859 knowledge of the executing state to the frontend/user running
3860 state. */
fbea99ea 3861 if (!target_is_non_stop_p ())
29f49a6a
PA
3862 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3863 else
3864 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3865
353d1d73
JK
3866 /* Get executed before make_cleanup_restore_current_thread above to apply
3867 still for the thread which has thrown the exception. */
3868 make_bpstat_clear_actions_cleanup ();
3869
7c16b83e
PA
3870 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3871
43ff13b4 3872 /* Now figure out what to do with the result of the result. */
a474d7c2 3873 handle_inferior_event (ecs);
43ff13b4 3874
a474d7c2 3875 if (!ecs->wait_some_more)
43ff13b4 3876 {
c9657e70 3877 struct inferior *inf = find_inferior_ptid (ecs->ptid);
243a9253
PA
3878 int should_stop = 1;
3879 struct thread_info *thr = ecs->event_thread;
388a7084 3880 int should_notify_stop = 1;
d6b48e9c 3881
0cbcdb96 3882 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3883
243a9253
PA
3884 if (thr != NULL)
3885 {
3886 struct thread_fsm *thread_fsm = thr->thread_fsm;
3887
3888 if (thread_fsm != NULL)
3889 should_stop = thread_fsm_should_stop (thread_fsm);
3890 }
3891
3892 if (!should_stop)
3893 {
3894 keep_going (ecs);
3895 }
c2d11a7d 3896 else
0f641c01 3897 {
243a9253
PA
3898 clean_up_just_stopped_threads_fsms (ecs);
3899
388a7084
PA
3900 if (thr != NULL && thr->thread_fsm != NULL)
3901 {
3902 should_notify_stop
3903 = thread_fsm_should_notify_stop (thr->thread_fsm);
3904 }
3905
3906 if (should_notify_stop)
3907 {
4c2f2a79
PA
3908 int proceeded = 0;
3909
388a7084
PA
3910 /* We may not find an inferior if this was a process exit. */
3911 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4c2f2a79 3912 proceeded = normal_stop ();
243a9253 3913
4c2f2a79
PA
3914 if (!proceeded)
3915 {
3916 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3917 cmd_done = 1;
3918 }
388a7084 3919 }
0f641c01 3920 }
43ff13b4 3921 }
4f8d22e3 3922
29f49a6a
PA
3923 /* No error, don't finish the thread states yet. */
3924 discard_cleanups (ts_old_chain);
3925
4f8d22e3
PA
3926 /* Revert thread and frame. */
3927 do_cleanups (old_chain);
3928
3929 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
3930 restore the prompt (a synchronous execution command has finished,
3931 and we're ready for input). */
b4a14fd0 3932 if (interpreter_async && was_sync && !sync_execution)
92bcb5f9 3933 observer_notify_sync_execution_done ();
0f641c01
PA
3934
3935 if (cmd_done
3936 && !was_sync
3937 && exec_done_display_p
3938 && (ptid_equal (inferior_ptid, null_ptid)
3939 || !is_running (inferior_ptid)))
3940 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3941}
3942
edb3359d
DJ
3943/* Record the frame and location we're currently stepping through. */
3944void
3945set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3946{
3947 struct thread_info *tp = inferior_thread ();
3948
16c381f0
JK
3949 tp->control.step_frame_id = get_frame_id (frame);
3950 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3951
3952 tp->current_symtab = sal.symtab;
3953 tp->current_line = sal.line;
3954}
3955
0d1e5fa7
PA
3956/* Clear context switchable stepping state. */
3957
3958void
4e1c45ea 3959init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 3960{
7f5ef605 3961 tss->stepped_breakpoint = 0;
0d1e5fa7 3962 tss->stepping_over_breakpoint = 0;
963f9c80 3963 tss->stepping_over_watchpoint = 0;
0d1e5fa7 3964 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
3965}
3966
c32c64b7
DE
3967/* Set the cached copy of the last ptid/waitstatus. */
3968
3969static void
3970set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3971{
3972 target_last_wait_ptid = ptid;
3973 target_last_waitstatus = status;
3974}
3975
e02bc4cc 3976/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
3977 target_wait()/deprecated_target_wait_hook(). The data is actually
3978 cached by handle_inferior_event(), which gets called immediately
3979 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
3980
3981void
488f131b 3982get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 3983{
39f77062 3984 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
3985 *status = target_last_waitstatus;
3986}
3987
ac264b3b
MS
3988void
3989nullify_last_target_wait_ptid (void)
3990{
3991 target_last_wait_ptid = minus_one_ptid;
3992}
3993
dcf4fbde 3994/* Switch thread contexts. */
dd80620e
MS
3995
3996static void
0d1e5fa7 3997context_switch (ptid_t ptid)
dd80620e 3998{
4b51d87b 3999 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
4000 {
4001 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4002 target_pid_to_str (inferior_ptid));
4003 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 4004 target_pid_to_str (ptid));
fd48f117
DJ
4005 }
4006
0d1e5fa7 4007 switch_to_thread (ptid);
dd80620e
MS
4008}
4009
d8dd4d5f
PA
4010/* If the target can't tell whether we've hit breakpoints
4011 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4012 check whether that could have been caused by a breakpoint. If so,
4013 adjust the PC, per gdbarch_decr_pc_after_break. */
4014
4fa8626c 4015static void
d8dd4d5f
PA
4016adjust_pc_after_break (struct thread_info *thread,
4017 struct target_waitstatus *ws)
4fa8626c 4018{
24a73cce
UW
4019 struct regcache *regcache;
4020 struct gdbarch *gdbarch;
6c95b8df 4021 struct address_space *aspace;
118e6252 4022 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4023
4fa8626c
DJ
4024 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4025 we aren't, just return.
9709f61c
DJ
4026
4027 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4028 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4029 implemented by software breakpoints should be handled through the normal
4030 breakpoint layer.
8fb3e588 4031
4fa8626c
DJ
4032 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4033 different signals (SIGILL or SIGEMT for instance), but it is less
4034 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4035 gdbarch_decr_pc_after_break. I don't know any specific target that
4036 generates these signals at breakpoints (the code has been in GDB since at
4037 least 1992) so I can not guess how to handle them here.
8fb3e588 4038
e6cf7916
UW
4039 In earlier versions of GDB, a target with
4040 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4041 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4042 target with both of these set in GDB history, and it seems unlikely to be
4043 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4044
d8dd4d5f 4045 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4046 return;
4047
d8dd4d5f 4048 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4049 return;
4050
4058b839
PA
4051 /* In reverse execution, when a breakpoint is hit, the instruction
4052 under it has already been de-executed. The reported PC always
4053 points at the breakpoint address, so adjusting it further would
4054 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4055 architecture:
4056
4057 B1 0x08000000 : INSN1
4058 B2 0x08000001 : INSN2
4059 0x08000002 : INSN3
4060 PC -> 0x08000003 : INSN4
4061
4062 Say you're stopped at 0x08000003 as above. Reverse continuing
4063 from that point should hit B2 as below. Reading the PC when the
4064 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4065 been de-executed already.
4066
4067 B1 0x08000000 : INSN1
4068 B2 PC -> 0x08000001 : INSN2
4069 0x08000002 : INSN3
4070 0x08000003 : INSN4
4071
4072 We can't apply the same logic as for forward execution, because
4073 we would wrongly adjust the PC to 0x08000000, since there's a
4074 breakpoint at PC - 1. We'd then report a hit on B1, although
4075 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4076 behaviour. */
4077 if (execution_direction == EXEC_REVERSE)
4078 return;
4079
1cf4d951
PA
4080 /* If the target can tell whether the thread hit a SW breakpoint,
4081 trust it. Targets that can tell also adjust the PC
4082 themselves. */
4083 if (target_supports_stopped_by_sw_breakpoint ())
4084 return;
4085
4086 /* Note that relying on whether a breakpoint is planted in memory to
4087 determine this can fail. E.g,. the breakpoint could have been
4088 removed since. Or the thread could have been told to step an
4089 instruction the size of a breakpoint instruction, and only
4090 _after_ was a breakpoint inserted at its address. */
4091
24a73cce
UW
4092 /* If this target does not decrement the PC after breakpoints, then
4093 we have nothing to do. */
d8dd4d5f 4094 regcache = get_thread_regcache (thread->ptid);
24a73cce 4095 gdbarch = get_regcache_arch (regcache);
118e6252 4096
527a273a 4097 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4098 if (decr_pc == 0)
24a73cce
UW
4099 return;
4100
6c95b8df
PA
4101 aspace = get_regcache_aspace (regcache);
4102
8aad930b
AC
4103 /* Find the location where (if we've hit a breakpoint) the
4104 breakpoint would be. */
118e6252 4105 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4106
1cf4d951
PA
4107 /* If the target can't tell whether a software breakpoint triggered,
4108 fallback to figuring it out based on breakpoints we think were
4109 inserted in the target, and on whether the thread was stepped or
4110 continued. */
4111
1c5cfe86
PA
4112 /* Check whether there actually is a software breakpoint inserted at
4113 that location.
4114
4115 If in non-stop mode, a race condition is possible where we've
4116 removed a breakpoint, but stop events for that breakpoint were
4117 already queued and arrive later. To suppress those spurious
4118 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4119 and retire them after a number of stop events are reported. Note
4120 this is an heuristic and can thus get confused. The real fix is
4121 to get the "stopped by SW BP and needs adjustment" info out of
4122 the target/kernel (and thus never reach here; see above). */
6c95b8df 4123 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4124 || (target_is_non_stop_p ()
4125 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4126 {
77f9e713 4127 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 4128
8213266a 4129 if (record_full_is_used ())
77f9e713 4130 record_full_gdb_operation_disable_set ();
96429cc8 4131
1c0fdd0e
UW
4132 /* When using hardware single-step, a SIGTRAP is reported for both
4133 a completed single-step and a software breakpoint. Need to
4134 differentiate between the two, as the latter needs adjusting
4135 but the former does not.
4136
4137 The SIGTRAP can be due to a completed hardware single-step only if
4138 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4139 - this thread is currently being stepped
4140
4141 If any of these events did not occur, we must have stopped due
4142 to hitting a software breakpoint, and have to back up to the
4143 breakpoint address.
4144
4145 As a special case, we could have hardware single-stepped a
4146 software breakpoint. In this case (prev_pc == breakpoint_pc),
4147 we also need to back up to the breakpoint address. */
4148
d8dd4d5f
PA
4149 if (thread_has_single_step_breakpoints_set (thread)
4150 || !currently_stepping (thread)
4151 || (thread->stepped_breakpoint
4152 && thread->prev_pc == breakpoint_pc))
515630c5 4153 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 4154
77f9e713 4155 do_cleanups (old_cleanups);
8aad930b 4156 }
4fa8626c
DJ
4157}
4158
edb3359d
DJ
4159static int
4160stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4161{
4162 for (frame = get_prev_frame (frame);
4163 frame != NULL;
4164 frame = get_prev_frame (frame))
4165 {
4166 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4167 return 1;
4168 if (get_frame_type (frame) != INLINE_FRAME)
4169 break;
4170 }
4171
4172 return 0;
4173}
4174
a96d9b2e
SDJ
4175/* Auxiliary function that handles syscall entry/return events.
4176 It returns 1 if the inferior should keep going (and GDB
4177 should ignore the event), or 0 if the event deserves to be
4178 processed. */
ca2163eb 4179
a96d9b2e 4180static int
ca2163eb 4181handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4182{
ca2163eb 4183 struct regcache *regcache;
ca2163eb
PA
4184 int syscall_number;
4185
4186 if (!ptid_equal (ecs->ptid, inferior_ptid))
4187 context_switch (ecs->ptid);
4188
4189 regcache = get_thread_regcache (ecs->ptid);
f90263c1 4190 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
4191 stop_pc = regcache_read_pc (regcache);
4192
a96d9b2e
SDJ
4193 if (catch_syscall_enabled () > 0
4194 && catching_syscall_number (syscall_number) > 0)
4195 {
4196 if (debug_infrun)
4197 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4198 syscall_number);
a96d9b2e 4199
16c381f0 4200 ecs->event_thread->control.stop_bpstat
6c95b8df 4201 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 4202 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4203
ce12b012 4204 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4205 {
4206 /* Catchpoint hit. */
ca2163eb
PA
4207 return 0;
4208 }
a96d9b2e 4209 }
ca2163eb
PA
4210
4211 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4212 keep_going (ecs);
4213 return 1;
a96d9b2e
SDJ
4214}
4215
7e324e48
GB
4216/* Lazily fill in the execution_control_state's stop_func_* fields. */
4217
4218static void
4219fill_in_stop_func (struct gdbarch *gdbarch,
4220 struct execution_control_state *ecs)
4221{
4222 if (!ecs->stop_func_filled_in)
4223 {
4224 /* Don't care about return value; stop_func_start and stop_func_name
4225 will both be 0 if it doesn't work. */
4226 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4227 &ecs->stop_func_start, &ecs->stop_func_end);
4228 ecs->stop_func_start
4229 += gdbarch_deprecated_function_start_offset (gdbarch);
4230
591a12a1
UW
4231 if (gdbarch_skip_entrypoint_p (gdbarch))
4232 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4233 ecs->stop_func_start);
4234
7e324e48
GB
4235 ecs->stop_func_filled_in = 1;
4236 }
4237}
4238
4f5d7f63
PA
4239
4240/* Return the STOP_SOON field of the inferior pointed at by PTID. */
4241
4242static enum stop_kind
4243get_inferior_stop_soon (ptid_t ptid)
4244{
c9657e70 4245 struct inferior *inf = find_inferior_ptid (ptid);
4f5d7f63
PA
4246
4247 gdb_assert (inf != NULL);
4248 return inf->control.stop_soon;
4249}
4250
372316f1
PA
4251/* Wait for one event. Store the resulting waitstatus in WS, and
4252 return the event ptid. */
4253
4254static ptid_t
4255wait_one (struct target_waitstatus *ws)
4256{
4257 ptid_t event_ptid;
4258 ptid_t wait_ptid = minus_one_ptid;
4259
4260 overlay_cache_invalid = 1;
4261
4262 /* Flush target cache before starting to handle each event.
4263 Target was running and cache could be stale. This is just a
4264 heuristic. Running threads may modify target memory, but we
4265 don't get any event. */
4266 target_dcache_invalidate ();
4267
4268 if (deprecated_target_wait_hook)
4269 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4270 else
4271 event_ptid = target_wait (wait_ptid, ws, 0);
4272
4273 if (debug_infrun)
4274 print_target_wait_results (wait_ptid, event_ptid, ws);
4275
4276 return event_ptid;
4277}
4278
4279/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4280 instead of the current thread. */
4281#define THREAD_STOPPED_BY(REASON) \
4282static int \
4283thread_stopped_by_ ## REASON (ptid_t ptid) \
4284{ \
4285 struct cleanup *old_chain; \
4286 int res; \
4287 \
4288 old_chain = save_inferior_ptid (); \
4289 inferior_ptid = ptid; \
4290 \
4291 res = target_stopped_by_ ## REASON (); \
4292 \
4293 do_cleanups (old_chain); \
4294 \
4295 return res; \
4296}
4297
4298/* Generate thread_stopped_by_watchpoint. */
4299THREAD_STOPPED_BY (watchpoint)
4300/* Generate thread_stopped_by_sw_breakpoint. */
4301THREAD_STOPPED_BY (sw_breakpoint)
4302/* Generate thread_stopped_by_hw_breakpoint. */
4303THREAD_STOPPED_BY (hw_breakpoint)
4304
4305/* Cleanups that switches to the PTID pointed at by PTID_P. */
4306
4307static void
4308switch_to_thread_cleanup (void *ptid_p)
4309{
4310 ptid_t ptid = *(ptid_t *) ptid_p;
4311
4312 switch_to_thread (ptid);
4313}
4314
4315/* Save the thread's event and stop reason to process it later. */
4316
4317static void
4318save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4319{
4320 struct regcache *regcache;
4321 struct address_space *aspace;
4322
4323 if (debug_infrun)
4324 {
4325 char *statstr;
4326
4327 statstr = target_waitstatus_to_string (ws);
4328 fprintf_unfiltered (gdb_stdlog,
4329 "infrun: saving status %s for %d.%ld.%ld\n",
4330 statstr,
4331 ptid_get_pid (tp->ptid),
4332 ptid_get_lwp (tp->ptid),
4333 ptid_get_tid (tp->ptid));
4334 xfree (statstr);
4335 }
4336
4337 /* Record for later. */
4338 tp->suspend.waitstatus = *ws;
4339 tp->suspend.waitstatus_pending_p = 1;
4340
4341 regcache = get_thread_regcache (tp->ptid);
4342 aspace = get_regcache_aspace (regcache);
4343
4344 if (ws->kind == TARGET_WAITKIND_STOPPED
4345 && ws->value.sig == GDB_SIGNAL_TRAP)
4346 {
4347 CORE_ADDR pc = regcache_read_pc (regcache);
4348
4349 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4350
4351 if (thread_stopped_by_watchpoint (tp->ptid))
4352 {
4353 tp->suspend.stop_reason
4354 = TARGET_STOPPED_BY_WATCHPOINT;
4355 }
4356 else if (target_supports_stopped_by_sw_breakpoint ()
4357 && thread_stopped_by_sw_breakpoint (tp->ptid))
4358 {
4359 tp->suspend.stop_reason
4360 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4361 }
4362 else if (target_supports_stopped_by_hw_breakpoint ()
4363 && thread_stopped_by_hw_breakpoint (tp->ptid))
4364 {
4365 tp->suspend.stop_reason
4366 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4367 }
4368 else if (!target_supports_stopped_by_hw_breakpoint ()
4369 && hardware_breakpoint_inserted_here_p (aspace,
4370 pc))
4371 {
4372 tp->suspend.stop_reason
4373 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4374 }
4375 else if (!target_supports_stopped_by_sw_breakpoint ()
4376 && software_breakpoint_inserted_here_p (aspace,
4377 pc))
4378 {
4379 tp->suspend.stop_reason
4380 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4381 }
4382 else if (!thread_has_single_step_breakpoints_set (tp)
4383 && currently_stepping (tp))
4384 {
4385 tp->suspend.stop_reason
4386 = TARGET_STOPPED_BY_SINGLE_STEP;
4387 }
4388 }
4389}
4390
4391/* Stop all threads. */
4392
4393static void
4394stop_all_threads (void)
4395{
4396 /* We may need multiple passes to discover all threads. */
4397 int pass;
4398 int iterations = 0;
4399 ptid_t entry_ptid;
4400 struct cleanup *old_chain;
4401
fbea99ea 4402 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4403
4404 if (debug_infrun)
4405 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4406
4407 entry_ptid = inferior_ptid;
4408 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4409
4410 /* Request threads to stop, and then wait for the stops. Because
4411 threads we already know about can spawn more threads while we're
4412 trying to stop them, and we only learn about new threads when we
4413 update the thread list, do this in a loop, and keep iterating
4414 until two passes find no threads that need to be stopped. */
4415 for (pass = 0; pass < 2; pass++, iterations++)
4416 {
4417 if (debug_infrun)
4418 fprintf_unfiltered (gdb_stdlog,
4419 "infrun: stop_all_threads, pass=%d, "
4420 "iterations=%d\n", pass, iterations);
4421 while (1)
4422 {
4423 ptid_t event_ptid;
4424 struct target_waitstatus ws;
4425 int need_wait = 0;
4426 struct thread_info *t;
4427
4428 update_thread_list ();
4429
4430 /* Go through all threads looking for threads that we need
4431 to tell the target to stop. */
4432 ALL_NON_EXITED_THREADS (t)
4433 {
4434 if (t->executing)
4435 {
4436 /* If already stopping, don't request a stop again.
4437 We just haven't seen the notification yet. */
4438 if (!t->stop_requested)
4439 {
4440 if (debug_infrun)
4441 fprintf_unfiltered (gdb_stdlog,
4442 "infrun: %s executing, "
4443 "need stop\n",
4444 target_pid_to_str (t->ptid));
4445 target_stop (t->ptid);
4446 t->stop_requested = 1;
4447 }
4448 else
4449 {
4450 if (debug_infrun)
4451 fprintf_unfiltered (gdb_stdlog,
4452 "infrun: %s executing, "
4453 "already stopping\n",
4454 target_pid_to_str (t->ptid));
4455 }
4456
4457 if (t->stop_requested)
4458 need_wait = 1;
4459 }
4460 else
4461 {
4462 if (debug_infrun)
4463 fprintf_unfiltered (gdb_stdlog,
4464 "infrun: %s not executing\n",
4465 target_pid_to_str (t->ptid));
4466
4467 /* The thread may be not executing, but still be
4468 resumed with a pending status to process. */
4469 t->resumed = 0;
4470 }
4471 }
4472
4473 if (!need_wait)
4474 break;
4475
4476 /* If we find new threads on the second iteration, restart
4477 over. We want to see two iterations in a row with all
4478 threads stopped. */
4479 if (pass > 0)
4480 pass = -1;
4481
4482 event_ptid = wait_one (&ws);
4483 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4484 {
4485 /* All resumed threads exited. */
4486 }
4487 else if (ws.kind == TARGET_WAITKIND_EXITED
4488 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4489 {
4490 if (debug_infrun)
4491 {
4492 ptid_t ptid = pid_to_ptid (ws.value.integer);
4493
4494 fprintf_unfiltered (gdb_stdlog,
4495 "infrun: %s exited while "
4496 "stopping threads\n",
4497 target_pid_to_str (ptid));
4498 }
4499 }
4500 else
4501 {
4502 t = find_thread_ptid (event_ptid);
4503 if (t == NULL)
4504 t = add_thread (event_ptid);
4505
4506 t->stop_requested = 0;
4507 t->executing = 0;
4508 t->resumed = 0;
4509 t->control.may_range_step = 0;
4510
4511 if (ws.kind == TARGET_WAITKIND_STOPPED
4512 && ws.value.sig == GDB_SIGNAL_0)
4513 {
4514 /* We caught the event that we intended to catch, so
4515 there's no event pending. */
4516 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4517 t->suspend.waitstatus_pending_p = 0;
4518
4519 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4520 {
4521 /* Add it back to the step-over queue. */
4522 if (debug_infrun)
4523 {
4524 fprintf_unfiltered (gdb_stdlog,
4525 "infrun: displaced-step of %s "
4526 "canceled: adding back to the "
4527 "step-over queue\n",
4528 target_pid_to_str (t->ptid));
4529 }
4530 t->control.trap_expected = 0;
4531 thread_step_over_chain_enqueue (t);
4532 }
4533 }
4534 else
4535 {
4536 enum gdb_signal sig;
4537 struct regcache *regcache;
4538 struct address_space *aspace;
4539
4540 if (debug_infrun)
4541 {
4542 char *statstr;
4543
4544 statstr = target_waitstatus_to_string (&ws);
4545 fprintf_unfiltered (gdb_stdlog,
4546 "infrun: target_wait %s, saving "
4547 "status for %d.%ld.%ld\n",
4548 statstr,
4549 ptid_get_pid (t->ptid),
4550 ptid_get_lwp (t->ptid),
4551 ptid_get_tid (t->ptid));
4552 xfree (statstr);
4553 }
4554
4555 /* Record for later. */
4556 save_waitstatus (t, &ws);
4557
4558 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4559 ? ws.value.sig : GDB_SIGNAL_0);
4560
4561 if (displaced_step_fixup (t->ptid, sig) < 0)
4562 {
4563 /* Add it back to the step-over queue. */
4564 t->control.trap_expected = 0;
4565 thread_step_over_chain_enqueue (t);
4566 }
4567
4568 regcache = get_thread_regcache (t->ptid);
4569 t->suspend.stop_pc = regcache_read_pc (regcache);
4570
4571 if (debug_infrun)
4572 {
4573 fprintf_unfiltered (gdb_stdlog,
4574 "infrun: saved stop_pc=%s for %s "
4575 "(currently_stepping=%d)\n",
4576 paddress (target_gdbarch (),
4577 t->suspend.stop_pc),
4578 target_pid_to_str (t->ptid),
4579 currently_stepping (t));
4580 }
4581 }
4582 }
4583 }
4584 }
4585
4586 do_cleanups (old_chain);
4587
4588 if (debug_infrun)
4589 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4590}
4591
05ba8510
PA
4592/* Given an execution control state that has been freshly filled in by
4593 an event from the inferior, figure out what it means and take
4594 appropriate action.
4595
4596 The alternatives are:
4597
22bcd14b 4598 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4599 debugger.
4600
4601 2) keep_going and return; to wait for the next event (set
4602 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4603 once). */
c906108c 4604
ec9499be 4605static void
0b6e5e10 4606handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4607{
d6b48e9c
PA
4608 enum stop_kind stop_soon;
4609
28736962
PA
4610 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4611 {
4612 /* We had an event in the inferior, but we are not interested in
4613 handling it at this level. The lower layers have already
4614 done what needs to be done, if anything.
4615
4616 One of the possible circumstances for this is when the
4617 inferior produces output for the console. The inferior has
4618 not stopped, and we are ignoring the event. Another possible
4619 circumstance is any event which the lower level knows will be
4620 reported multiple times without an intervening resume. */
4621 if (debug_infrun)
4622 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4623 prepare_to_wait (ecs);
4624 return;
4625 }
4626
0e5bf2a8
PA
4627 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4628 && target_can_async_p () && !sync_execution)
4629 {
4630 /* There were no unwaited-for children left in the target, but,
4631 we're not synchronously waiting for events either. Just
4632 ignore. Otherwise, if we were running a synchronous
4633 execution command, we need to cancel it and give the user
4634 back the terminal. */
4635 if (debug_infrun)
4636 fprintf_unfiltered (gdb_stdlog,
4637 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
4638 prepare_to_wait (ecs);
4639 return;
4640 }
4641
1777feb0 4642 /* Cache the last pid/waitstatus. */
c32c64b7 4643 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4644
ca005067 4645 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4646 stop_stack_dummy = STOP_NONE;
ca005067 4647
0e5bf2a8
PA
4648 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4649 {
4650 /* No unwaited-for children left. IOW, all resumed children
4651 have exited. */
4652 if (debug_infrun)
4653 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4654
4655 stop_print_frame = 0;
22bcd14b 4656 stop_waiting (ecs);
0e5bf2a8
PA
4657 return;
4658 }
4659
8c90c137 4660 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4661 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4662 {
4663 ecs->event_thread = find_thread_ptid (ecs->ptid);
4664 /* If it's a new thread, add it to the thread database. */
4665 if (ecs->event_thread == NULL)
4666 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4667
4668 /* Disable range stepping. If the next step request could use a
4669 range, this will be end up re-enabled then. */
4670 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4671 }
88ed393a
JK
4672
4673 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4674 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4675
4676 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4677 reinit_frame_cache ();
4678
28736962
PA
4679 breakpoint_retire_moribund ();
4680
2b009048
DJ
4681 /* First, distinguish signals caused by the debugger from signals
4682 that have to do with the program's own actions. Note that
4683 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4684 on the operating system version. Here we detect when a SIGILL or
4685 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4686 something similar for SIGSEGV, since a SIGSEGV will be generated
4687 when we're trying to execute a breakpoint instruction on a
4688 non-executable stack. This happens for call dummy breakpoints
4689 for architectures like SPARC that place call dummies on the
4690 stack. */
2b009048 4691 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4692 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4693 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4694 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4695 {
de0a0249
UW
4696 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4697
4698 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4699 regcache_read_pc (regcache)))
4700 {
4701 if (debug_infrun)
4702 fprintf_unfiltered (gdb_stdlog,
4703 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4704 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4705 }
2b009048
DJ
4706 }
4707
28736962
PA
4708 /* Mark the non-executing threads accordingly. In all-stop, all
4709 threads of all processes are stopped when we get any event
e1316e60 4710 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4711 {
4712 ptid_t mark_ptid;
4713
fbea99ea 4714 if (!target_is_non_stop_p ())
372316f1
PA
4715 mark_ptid = minus_one_ptid;
4716 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4717 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4718 {
4719 /* If we're handling a process exit in non-stop mode, even
4720 though threads haven't been deleted yet, one would think
4721 that there is nothing to do, as threads of the dead process
4722 will be soon deleted, and threads of any other process were
4723 left running. However, on some targets, threads survive a
4724 process exit event. E.g., for the "checkpoint" command,
4725 when the current checkpoint/fork exits, linux-fork.c
4726 automatically switches to another fork from within
4727 target_mourn_inferior, by associating the same
4728 inferior/thread to another fork. We haven't mourned yet at
4729 this point, but we must mark any threads left in the
4730 process as not-executing so that finish_thread_state marks
4731 them stopped (in the user's perspective) if/when we present
4732 the stop to the user. */
4733 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4734 }
4735 else
4736 mark_ptid = ecs->ptid;
4737
4738 set_executing (mark_ptid, 0);
4739
4740 /* Likewise the resumed flag. */
4741 set_resumed (mark_ptid, 0);
4742 }
8c90c137 4743
488f131b
JB
4744 switch (ecs->ws.kind)
4745 {
4746 case TARGET_WAITKIND_LOADED:
527159b7 4747 if (debug_infrun)
8a9de0e4 4748 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
4749 if (!ptid_equal (ecs->ptid, inferior_ptid))
4750 context_switch (ecs->ptid);
b0f4b84b
DJ
4751 /* Ignore gracefully during startup of the inferior, as it might
4752 be the shell which has just loaded some objects, otherwise
4753 add the symbols for the newly loaded objects. Also ignore at
4754 the beginning of an attach or remote session; we will query
4755 the full list of libraries once the connection is
4756 established. */
4f5d7f63
PA
4757
4758 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 4759 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4760 {
edcc5120
TT
4761 struct regcache *regcache;
4762
edcc5120
TT
4763 regcache = get_thread_regcache (ecs->ptid);
4764
4765 handle_solib_event ();
4766
4767 ecs->event_thread->control.stop_bpstat
4768 = bpstat_stop_status (get_regcache_aspace (regcache),
4769 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4770
ce12b012 4771 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4772 {
4773 /* A catchpoint triggered. */
94c57d6a
PA
4774 process_event_stop_test (ecs);
4775 return;
edcc5120 4776 }
488f131b 4777
b0f4b84b
DJ
4778 /* If requested, stop when the dynamic linker notifies
4779 gdb of events. This allows the user to get control
4780 and place breakpoints in initializer routines for
4781 dynamically loaded objects (among other things). */
a493e3e2 4782 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4783 if (stop_on_solib_events)
4784 {
55409f9d
DJ
4785 /* Make sure we print "Stopped due to solib-event" in
4786 normal_stop. */
4787 stop_print_frame = 1;
4788
22bcd14b 4789 stop_waiting (ecs);
b0f4b84b
DJ
4790 return;
4791 }
488f131b 4792 }
b0f4b84b
DJ
4793
4794 /* If we are skipping through a shell, or through shared library
4795 loading that we aren't interested in, resume the program. If
5c09a2c5 4796 we're running the program normally, also resume. */
b0f4b84b
DJ
4797 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4798 {
74960c60
VP
4799 /* Loading of shared libraries might have changed breakpoint
4800 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4801 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4802 insert_breakpoints ();
64ce06e4 4803 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4804 prepare_to_wait (ecs);
4805 return;
4806 }
4807
5c09a2c5
PA
4808 /* But stop if we're attaching or setting up a remote
4809 connection. */
4810 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4811 || stop_soon == STOP_QUIETLY_REMOTE)
4812 {
4813 if (debug_infrun)
4814 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 4815 stop_waiting (ecs);
5c09a2c5
PA
4816 return;
4817 }
4818
4819 internal_error (__FILE__, __LINE__,
4820 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 4821
488f131b 4822 case TARGET_WAITKIND_SPURIOUS:
527159b7 4823 if (debug_infrun)
8a9de0e4 4824 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 4825 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 4826 context_switch (ecs->ptid);
64ce06e4 4827 resume (GDB_SIGNAL_0);
488f131b
JB
4828 prepare_to_wait (ecs);
4829 return;
c5aa993b 4830
488f131b 4831 case TARGET_WAITKIND_EXITED:
940c3c06 4832 case TARGET_WAITKIND_SIGNALLED:
527159b7 4833 if (debug_infrun)
940c3c06
PA
4834 {
4835 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4836 fprintf_unfiltered (gdb_stdlog,
4837 "infrun: TARGET_WAITKIND_EXITED\n");
4838 else
4839 fprintf_unfiltered (gdb_stdlog,
4840 "infrun: TARGET_WAITKIND_SIGNALLED\n");
4841 }
4842
fb66883a 4843 inferior_ptid = ecs->ptid;
c9657e70 4844 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
4845 set_current_program_space (current_inferior ()->pspace);
4846 handle_vfork_child_exec_or_exit (0);
1777feb0 4847 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 4848
0c557179
SDJ
4849 /* Clearing any previous state of convenience variables. */
4850 clear_exit_convenience_vars ();
4851
940c3c06
PA
4852 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4853 {
4854 /* Record the exit code in the convenience variable $_exitcode, so
4855 that the user can inspect this again later. */
4856 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4857 (LONGEST) ecs->ws.value.integer);
4858
4859 /* Also record this in the inferior itself. */
4860 current_inferior ()->has_exit_code = 1;
4861 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 4862
98eb56a4
PA
4863 /* Support the --return-child-result option. */
4864 return_child_result_value = ecs->ws.value.integer;
4865
fd664c91 4866 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
4867 }
4868 else
0c557179
SDJ
4869 {
4870 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4871 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4872
4873 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4874 {
4875 /* Set the value of the internal variable $_exitsignal,
4876 which holds the signal uncaught by the inferior. */
4877 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4878 gdbarch_gdb_signal_to_target (gdbarch,
4879 ecs->ws.value.sig));
4880 }
4881 else
4882 {
4883 /* We don't have access to the target's method used for
4884 converting between signal numbers (GDB's internal
4885 representation <-> target's representation).
4886 Therefore, we cannot do a good job at displaying this
4887 information to the user. It's better to just warn
4888 her about it (if infrun debugging is enabled), and
4889 give up. */
4890 if (debug_infrun)
4891 fprintf_filtered (gdb_stdlog, _("\
4892Cannot fill $_exitsignal with the correct signal number.\n"));
4893 }
4894
fd664c91 4895 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 4896 }
8cf64490 4897
488f131b
JB
4898 gdb_flush (gdb_stdout);
4899 target_mourn_inferior ();
488f131b 4900 stop_print_frame = 0;
22bcd14b 4901 stop_waiting (ecs);
488f131b 4902 return;
c5aa993b 4903
488f131b 4904 /* The following are the only cases in which we keep going;
1777feb0 4905 the above cases end in a continue or goto. */
488f131b 4906 case TARGET_WAITKIND_FORKED:
deb3b17b 4907 case TARGET_WAITKIND_VFORKED:
527159b7 4908 if (debug_infrun)
fed708ed
PA
4909 {
4910 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4911 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
4912 else
4913 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
4914 }
c906108c 4915
e2d96639
YQ
4916 /* Check whether the inferior is displaced stepping. */
4917 {
4918 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4919 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4920 struct displaced_step_inferior_state *displaced
4921 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
4922
4923 /* If checking displaced stepping is supported, and thread
4924 ecs->ptid is displaced stepping. */
4925 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
4926 {
4927 struct inferior *parent_inf
c9657e70 4928 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
4929 struct regcache *child_regcache;
4930 CORE_ADDR parent_pc;
4931
4932 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4933 indicating that the displaced stepping of syscall instruction
4934 has been done. Perform cleanup for parent process here. Note
4935 that this operation also cleans up the child process for vfork,
4936 because their pages are shared. */
a493e3e2 4937 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
c2829269
PA
4938 /* Start a new step-over in another thread if there's one
4939 that needs it. */
4940 start_step_over ();
e2d96639
YQ
4941
4942 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4943 {
4944 /* Restore scratch pad for child process. */
4945 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4946 }
4947
4948 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4949 the child's PC is also within the scratchpad. Set the child's PC
4950 to the parent's PC value, which has already been fixed up.
4951 FIXME: we use the parent's aspace here, although we're touching
4952 the child, because the child hasn't been added to the inferior
4953 list yet at this point. */
4954
4955 child_regcache
4956 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4957 gdbarch,
4958 parent_inf->aspace);
4959 /* Read PC value of parent process. */
4960 parent_pc = regcache_read_pc (regcache);
4961
4962 if (debug_displaced)
4963 fprintf_unfiltered (gdb_stdlog,
4964 "displaced: write child pc from %s to %s\n",
4965 paddress (gdbarch,
4966 regcache_read_pc (child_regcache)),
4967 paddress (gdbarch, parent_pc));
4968
4969 regcache_write_pc (child_regcache, parent_pc);
4970 }
4971 }
4972
5a2901d9 4973 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 4974 context_switch (ecs->ptid);
5a2901d9 4975
b242c3c2
PA
4976 /* Immediately detach breakpoints from the child before there's
4977 any chance of letting the user delete breakpoints from the
4978 breakpoint lists. If we don't do this early, it's easy to
4979 leave left over traps in the child, vis: "break foo; catch
4980 fork; c; <fork>; del; c; <child calls foo>". We only follow
4981 the fork on the last `continue', and by that time the
4982 breakpoint at "foo" is long gone from the breakpoint table.
4983 If we vforked, then we don't need to unpatch here, since both
4984 parent and child are sharing the same memory pages; we'll
4985 need to unpatch at follow/detach time instead to be certain
4986 that new breakpoints added between catchpoint hit time and
4987 vfork follow are detached. */
4988 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4989 {
b242c3c2
PA
4990 /* This won't actually modify the breakpoint list, but will
4991 physically remove the breakpoints from the child. */
d80ee84f 4992 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
4993 }
4994
34b7e8a6 4995 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 4996
e58b0e63
PA
4997 /* In case the event is caught by a catchpoint, remember that
4998 the event is to be followed at the next resume of the thread,
4999 and not immediately. */
5000 ecs->event_thread->pending_follow = ecs->ws;
5001
fb14de7b 5002 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 5003
16c381f0 5004 ecs->event_thread->control.stop_bpstat
6c95b8df 5005 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5006 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 5007
ce12b012
PA
5008 /* If no catchpoint triggered for this, then keep going. Note
5009 that we're interested in knowing the bpstat actually causes a
5010 stop, not just if it may explain the signal. Software
5011 watchpoints, for example, always appear in the bpstat. */
5012 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5013 {
6c95b8df
PA
5014 ptid_t parent;
5015 ptid_t child;
e58b0e63 5016 int should_resume;
3e43a32a
MS
5017 int follow_child
5018 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5019
a493e3e2 5020 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5021
5022 should_resume = follow_fork ();
5023
6c95b8df
PA
5024 parent = ecs->ptid;
5025 child = ecs->ws.value.related_pid;
5026
5027 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5028 if (!detach_fork && (non_stop
5029 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5030 {
5031 if (follow_child)
5032 switch_to_thread (parent);
5033 else
5034 switch_to_thread (child);
5035
5036 ecs->event_thread = inferior_thread ();
5037 ecs->ptid = inferior_ptid;
5038 keep_going (ecs);
5039 }
5040
5041 if (follow_child)
5042 switch_to_thread (child);
5043 else
5044 switch_to_thread (parent);
5045
e58b0e63
PA
5046 ecs->event_thread = inferior_thread ();
5047 ecs->ptid = inferior_ptid;
5048
5049 if (should_resume)
5050 keep_going (ecs);
5051 else
22bcd14b 5052 stop_waiting (ecs);
04e68871
DJ
5053 return;
5054 }
94c57d6a
PA
5055 process_event_stop_test (ecs);
5056 return;
488f131b 5057
6c95b8df
PA
5058 case TARGET_WAITKIND_VFORK_DONE:
5059 /* Done with the shared memory region. Re-insert breakpoints in
5060 the parent, and keep going. */
5061
5062 if (debug_infrun)
3e43a32a
MS
5063 fprintf_unfiltered (gdb_stdlog,
5064 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
5065
5066 if (!ptid_equal (ecs->ptid, inferior_ptid))
5067 context_switch (ecs->ptid);
5068
5069 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5070 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
5071 /* This also takes care of reinserting breakpoints in the
5072 previously locked inferior. */
5073 keep_going (ecs);
5074 return;
5075
488f131b 5076 case TARGET_WAITKIND_EXECD:
527159b7 5077 if (debug_infrun)
fc5261f2 5078 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5079
5a2901d9 5080 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5081 context_switch (ecs->ptid);
5a2901d9 5082
fb14de7b 5083 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 5084
6c95b8df
PA
5085 /* Do whatever is necessary to the parent branch of the vfork. */
5086 handle_vfork_child_exec_or_exit (1);
5087
795e548f
PA
5088 /* This causes the eventpoints and symbol table to be reset.
5089 Must do this now, before trying to determine whether to
5090 stop. */
71b43ef8 5091 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5092
17d8546e
DB
5093 /* In follow_exec we may have deleted the original thread and
5094 created a new one. Make sure that the event thread is the
5095 execd thread for that case (this is a nop otherwise). */
5096 ecs->event_thread = inferior_thread ();
5097
16c381f0 5098 ecs->event_thread->control.stop_bpstat
6c95b8df 5099 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5100 stop_pc, ecs->ptid, &ecs->ws);
795e548f 5101
71b43ef8
PA
5102 /* Note that this may be referenced from inside
5103 bpstat_stop_status above, through inferior_has_execd. */
5104 xfree (ecs->ws.value.execd_pathname);
5105 ecs->ws.value.execd_pathname = NULL;
5106
04e68871 5107 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5108 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5109 {
a493e3e2 5110 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5111 keep_going (ecs);
5112 return;
5113 }
94c57d6a
PA
5114 process_event_stop_test (ecs);
5115 return;
488f131b 5116
b4dc5ffa
MK
5117 /* Be careful not to try to gather much state about a thread
5118 that's in a syscall. It's frequently a losing proposition. */
488f131b 5119 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5120 if (debug_infrun)
3e43a32a
MS
5121 fprintf_unfiltered (gdb_stdlog,
5122 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5123 /* Getting the current syscall number. */
94c57d6a
PA
5124 if (handle_syscall_event (ecs) == 0)
5125 process_event_stop_test (ecs);
5126 return;
c906108c 5127
488f131b
JB
5128 /* Before examining the threads further, step this thread to
5129 get it entirely out of the syscall. (We get notice of the
5130 event when the thread is just on the verge of exiting a
5131 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5132 into user code.) */
488f131b 5133 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5134 if (debug_infrun)
3e43a32a
MS
5135 fprintf_unfiltered (gdb_stdlog,
5136 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5137 if (handle_syscall_event (ecs) == 0)
5138 process_event_stop_test (ecs);
5139 return;
c906108c 5140
488f131b 5141 case TARGET_WAITKIND_STOPPED:
527159b7 5142 if (debug_infrun)
8a9de0e4 5143 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 5144 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4f5d7f63
PA
5145 handle_signal_stop (ecs);
5146 return;
c906108c 5147
b2175913 5148 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5149 if (debug_infrun)
5150 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5151 /* Reverse execution: target ran out of history info. */
eab402df 5152
d1988021
MM
5153 /* Switch to the stopped thread. */
5154 if (!ptid_equal (ecs->ptid, inferior_ptid))
5155 context_switch (ecs->ptid);
5156 if (debug_infrun)
5157 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5158
34b7e8a6 5159 delete_just_stopped_threads_single_step_breakpoints ();
d1988021 5160 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
fd664c91 5161 observer_notify_no_history ();
22bcd14b 5162 stop_waiting (ecs);
b2175913 5163 return;
488f131b 5164 }
4f5d7f63
PA
5165}
5166
0b6e5e10
JB
5167/* A wrapper around handle_inferior_event_1, which also makes sure
5168 that all temporary struct value objects that were created during
5169 the handling of the event get deleted at the end. */
5170
5171static void
5172handle_inferior_event (struct execution_control_state *ecs)
5173{
5174 struct value *mark = value_mark ();
5175
5176 handle_inferior_event_1 (ecs);
5177 /* Purge all temporary values created during the event handling,
5178 as it could be a long time before we return to the command level
5179 where such values would otherwise be purged. */
5180 value_free_to_mark (mark);
5181}
5182
372316f1
PA
5183/* Restart threads back to what they were trying to do back when we
5184 paused them for an in-line step-over. The EVENT_THREAD thread is
5185 ignored. */
4d9d9d04
PA
5186
5187static void
372316f1
PA
5188restart_threads (struct thread_info *event_thread)
5189{
5190 struct thread_info *tp;
5191 struct thread_info *step_over = NULL;
5192
5193 /* In case the instruction just stepped spawned a new thread. */
5194 update_thread_list ();
5195
5196 ALL_NON_EXITED_THREADS (tp)
5197 {
5198 if (tp == event_thread)
5199 {
5200 if (debug_infrun)
5201 fprintf_unfiltered (gdb_stdlog,
5202 "infrun: restart threads: "
5203 "[%s] is event thread\n",
5204 target_pid_to_str (tp->ptid));
5205 continue;
5206 }
5207
5208 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5209 {
5210 if (debug_infrun)
5211 fprintf_unfiltered (gdb_stdlog,
5212 "infrun: restart threads: "
5213 "[%s] not meant to be running\n",
5214 target_pid_to_str (tp->ptid));
5215 continue;
5216 }
5217
5218 if (tp->resumed)
5219 {
5220 if (debug_infrun)
5221 fprintf_unfiltered (gdb_stdlog,
5222 "infrun: restart threads: [%s] resumed\n",
5223 target_pid_to_str (tp->ptid));
5224 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5225 continue;
5226 }
5227
5228 if (thread_is_in_step_over_chain (tp))
5229 {
5230 if (debug_infrun)
5231 fprintf_unfiltered (gdb_stdlog,
5232 "infrun: restart threads: "
5233 "[%s] needs step-over\n",
5234 target_pid_to_str (tp->ptid));
5235 gdb_assert (!tp->resumed);
5236 continue;
5237 }
5238
5239
5240 if (tp->suspend.waitstatus_pending_p)
5241 {
5242 if (debug_infrun)
5243 fprintf_unfiltered (gdb_stdlog,
5244 "infrun: restart threads: "
5245 "[%s] has pending status\n",
5246 target_pid_to_str (tp->ptid));
5247 tp->resumed = 1;
5248 continue;
5249 }
5250
5251 /* If some thread needs to start a step-over at this point, it
5252 should still be in the step-over queue, and thus skipped
5253 above. */
5254 if (thread_still_needs_step_over (tp))
5255 {
5256 internal_error (__FILE__, __LINE__,
5257 "thread [%s] needs a step-over, but not in "
5258 "step-over queue\n",
5259 target_pid_to_str (tp->ptid));
5260 }
5261
5262 if (currently_stepping (tp))
5263 {
5264 if (debug_infrun)
5265 fprintf_unfiltered (gdb_stdlog,
5266 "infrun: restart threads: [%s] was stepping\n",
5267 target_pid_to_str (tp->ptid));
5268 keep_going_stepped_thread (tp);
5269 }
5270 else
5271 {
5272 struct execution_control_state ecss;
5273 struct execution_control_state *ecs = &ecss;
5274
5275 if (debug_infrun)
5276 fprintf_unfiltered (gdb_stdlog,
5277 "infrun: restart threads: [%s] continuing\n",
5278 target_pid_to_str (tp->ptid));
5279 reset_ecs (ecs, tp);
5280 switch_to_thread (tp->ptid);
5281 keep_going_pass_signal (ecs);
5282 }
5283 }
5284}
5285
5286/* Callback for iterate_over_threads. Find a resumed thread that has
5287 a pending waitstatus. */
5288
5289static int
5290resumed_thread_with_pending_status (struct thread_info *tp,
5291 void *arg)
5292{
5293 return (tp->resumed
5294 && tp->suspend.waitstatus_pending_p);
5295}
5296
5297/* Called when we get an event that may finish an in-line or
5298 out-of-line (displaced stepping) step-over started previously.
5299 Return true if the event is processed and we should go back to the
5300 event loop; false if the caller should continue processing the
5301 event. */
5302
5303static int
4d9d9d04
PA
5304finish_step_over (struct execution_control_state *ecs)
5305{
372316f1
PA
5306 int had_step_over_info;
5307
4d9d9d04
PA
5308 displaced_step_fixup (ecs->ptid,
5309 ecs->event_thread->suspend.stop_signal);
5310
372316f1
PA
5311 had_step_over_info = step_over_info_valid_p ();
5312
5313 if (had_step_over_info)
4d9d9d04
PA
5314 {
5315 /* If we're stepping over a breakpoint with all threads locked,
5316 then only the thread that was stepped should be reporting
5317 back an event. */
5318 gdb_assert (ecs->event_thread->control.trap_expected);
5319
5320 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5321 clear_step_over_info ();
5322 }
5323
fbea99ea 5324 if (!target_is_non_stop_p ())
372316f1 5325 return 0;
4d9d9d04
PA
5326
5327 /* Start a new step-over in another thread if there's one that
5328 needs it. */
5329 start_step_over ();
372316f1
PA
5330
5331 /* If we were stepping over a breakpoint before, and haven't started
5332 a new in-line step-over sequence, then restart all other threads
5333 (except the event thread). We can't do this in all-stop, as then
5334 e.g., we wouldn't be able to issue any other remote packet until
5335 these other threads stop. */
5336 if (had_step_over_info && !step_over_info_valid_p ())
5337 {
5338 struct thread_info *pending;
5339
5340 /* If we only have threads with pending statuses, the restart
5341 below won't restart any thread and so nothing re-inserts the
5342 breakpoint we just stepped over. But we need it inserted
5343 when we later process the pending events, otherwise if
5344 another thread has a pending event for this breakpoint too,
5345 we'd discard its event (because the breakpoint that
5346 originally caused the event was no longer inserted). */
5347 context_switch (ecs->ptid);
5348 insert_breakpoints ();
5349
5350 restart_threads (ecs->event_thread);
5351
5352 /* If we have events pending, go through handle_inferior_event
5353 again, picking up a pending event at random. This avoids
5354 thread starvation. */
5355
5356 /* But not if we just stepped over a watchpoint in order to let
5357 the instruction execute so we can evaluate its expression.
5358 The set of watchpoints that triggered is recorded in the
5359 breakpoint objects themselves (see bp->watchpoint_triggered).
5360 If we processed another event first, that other event could
5361 clobber this info. */
5362 if (ecs->event_thread->stepping_over_watchpoint)
5363 return 0;
5364
5365 pending = iterate_over_threads (resumed_thread_with_pending_status,
5366 NULL);
5367 if (pending != NULL)
5368 {
5369 struct thread_info *tp = ecs->event_thread;
5370 struct regcache *regcache;
5371
5372 if (debug_infrun)
5373 {
5374 fprintf_unfiltered (gdb_stdlog,
5375 "infrun: found resumed threads with "
5376 "pending events, saving status\n");
5377 }
5378
5379 gdb_assert (pending != tp);
5380
5381 /* Record the event thread's event for later. */
5382 save_waitstatus (tp, &ecs->ws);
5383 /* This was cleared early, by handle_inferior_event. Set it
5384 so this pending event is considered by
5385 do_target_wait. */
5386 tp->resumed = 1;
5387
5388 gdb_assert (!tp->executing);
5389
5390 regcache = get_thread_regcache (tp->ptid);
5391 tp->suspend.stop_pc = regcache_read_pc (regcache);
5392
5393 if (debug_infrun)
5394 {
5395 fprintf_unfiltered (gdb_stdlog,
5396 "infrun: saved stop_pc=%s for %s "
5397 "(currently_stepping=%d)\n",
5398 paddress (target_gdbarch (),
5399 tp->suspend.stop_pc),
5400 target_pid_to_str (tp->ptid),
5401 currently_stepping (tp));
5402 }
5403
5404 /* This in-line step-over finished; clear this so we won't
5405 start a new one. This is what handle_signal_stop would
5406 do, if we returned false. */
5407 tp->stepping_over_breakpoint = 0;
5408
5409 /* Wake up the event loop again. */
5410 mark_async_event_handler (infrun_async_inferior_event_token);
5411
5412 prepare_to_wait (ecs);
5413 return 1;
5414 }
5415 }
5416
5417 return 0;
4d9d9d04
PA
5418}
5419
4f5d7f63
PA
5420/* Come here when the program has stopped with a signal. */
5421
5422static void
5423handle_signal_stop (struct execution_control_state *ecs)
5424{
5425 struct frame_info *frame;
5426 struct gdbarch *gdbarch;
5427 int stopped_by_watchpoint;
5428 enum stop_kind stop_soon;
5429 int random_signal;
c906108c 5430
f0407826
DE
5431 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5432
5433 /* Do we need to clean up the state of a thread that has
5434 completed a displaced single-step? (Doing so usually affects
5435 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5436 if (finish_step_over (ecs))
5437 return;
f0407826
DE
5438
5439 /* If we either finished a single-step or hit a breakpoint, but
5440 the user wanted this thread to be stopped, pretend we got a
5441 SIG0 (generic unsignaled stop). */
5442 if (ecs->event_thread->stop_requested
5443 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5444 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5445
515630c5 5446 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 5447
527159b7 5448 if (debug_infrun)
237fc4c9 5449 {
5af949e3
UW
5450 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5451 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
5452 struct cleanup *old_chain = save_inferior_ptid ();
5453
5454 inferior_ptid = ecs->ptid;
5af949e3
UW
5455
5456 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5457 paddress (gdbarch, stop_pc));
d92524f1 5458 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5459 {
5460 CORE_ADDR addr;
abbb1732 5461
237fc4c9
PA
5462 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5463
5464 if (target_stopped_data_address (&current_target, &addr))
5465 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5466 "infrun: stopped data address = %s\n",
5467 paddress (gdbarch, addr));
237fc4c9
PA
5468 else
5469 fprintf_unfiltered (gdb_stdlog,
5470 "infrun: (no data address available)\n");
5471 }
7f82dfc7
JK
5472
5473 do_cleanups (old_chain);
237fc4c9 5474 }
527159b7 5475
36fa8042
PA
5476 /* This is originated from start_remote(), start_inferior() and
5477 shared libraries hook functions. */
5478 stop_soon = get_inferior_stop_soon (ecs->ptid);
5479 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5480 {
5481 if (!ptid_equal (ecs->ptid, inferior_ptid))
5482 context_switch (ecs->ptid);
5483 if (debug_infrun)
5484 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5485 stop_print_frame = 1;
22bcd14b 5486 stop_waiting (ecs);
36fa8042
PA
5487 return;
5488 }
5489
5490 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5491 && stop_after_trap)
5492 {
5493 if (!ptid_equal (ecs->ptid, inferior_ptid))
5494 context_switch (ecs->ptid);
5495 if (debug_infrun)
5496 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5497 stop_print_frame = 0;
22bcd14b 5498 stop_waiting (ecs);
36fa8042
PA
5499 return;
5500 }
5501
5502 /* This originates from attach_command(). We need to overwrite
5503 the stop_signal here, because some kernels don't ignore a
5504 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5505 See more comments in inferior.h. On the other hand, if we
5506 get a non-SIGSTOP, report it to the user - assume the backend
5507 will handle the SIGSTOP if it should show up later.
5508
5509 Also consider that the attach is complete when we see a
5510 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5511 target extended-remote report it instead of a SIGSTOP
5512 (e.g. gdbserver). We already rely on SIGTRAP being our
5513 signal, so this is no exception.
5514
5515 Also consider that the attach is complete when we see a
5516 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5517 the target to stop all threads of the inferior, in case the
5518 low level attach operation doesn't stop them implicitly. If
5519 they weren't stopped implicitly, then the stub will report a
5520 GDB_SIGNAL_0, meaning: stopped for no particular reason
5521 other than GDB's request. */
5522 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5523 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5524 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5525 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5526 {
5527 stop_print_frame = 1;
22bcd14b 5528 stop_waiting (ecs);
36fa8042
PA
5529 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5530 return;
5531 }
5532
488f131b 5533 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
5534 so, then switch to that thread. */
5535 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 5536 {
527159b7 5537 if (debug_infrun)
8a9de0e4 5538 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5539
0d1e5fa7 5540 context_switch (ecs->ptid);
c5aa993b 5541
9a4105ab
AC
5542 if (deprecated_context_hook)
5543 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 5544 }
c906108c 5545
568d6575
UW
5546 /* At this point, get hold of the now-current thread's frame. */
5547 frame = get_current_frame ();
5548 gdbarch = get_frame_arch (frame);
5549
2adfaa28 5550 /* Pull the single step breakpoints out of the target. */
af48d08f 5551 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5552 {
af48d08f
PA
5553 struct regcache *regcache;
5554 struct address_space *aspace;
5555 CORE_ADDR pc;
2adfaa28 5556
af48d08f
PA
5557 regcache = get_thread_regcache (ecs->ptid);
5558 aspace = get_regcache_aspace (regcache);
5559 pc = regcache_read_pc (regcache);
34b7e8a6 5560
af48d08f
PA
5561 /* However, before doing so, if this single-step breakpoint was
5562 actually for another thread, set this thread up for moving
5563 past it. */
5564 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5565 aspace, pc))
5566 {
5567 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5568 {
5569 if (debug_infrun)
5570 {
5571 fprintf_unfiltered (gdb_stdlog,
af48d08f 5572 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5573 "single-step breakpoint\n",
5574 target_pid_to_str (ecs->ptid));
2adfaa28 5575 }
af48d08f
PA
5576 ecs->hit_singlestep_breakpoint = 1;
5577 }
5578 }
5579 else
5580 {
5581 if (debug_infrun)
5582 {
5583 fprintf_unfiltered (gdb_stdlog,
5584 "infrun: [%s] hit its "
5585 "single-step breakpoint\n",
5586 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5587 }
5588 }
488f131b 5589 }
af48d08f 5590 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5591
963f9c80
PA
5592 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5593 && ecs->event_thread->control.trap_expected
5594 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5595 stopped_by_watchpoint = 0;
5596 else
5597 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5598
5599 /* If necessary, step over this watchpoint. We'll be back to display
5600 it in a moment. */
5601 if (stopped_by_watchpoint
d92524f1 5602 && (target_have_steppable_watchpoint
568d6575 5603 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5604 {
488f131b
JB
5605 /* At this point, we are stopped at an instruction which has
5606 attempted to write to a piece of memory under control of
5607 a watchpoint. The instruction hasn't actually executed
5608 yet. If we were to evaluate the watchpoint expression
5609 now, we would get the old value, and therefore no change
5610 would seem to have occurred.
5611
5612 In order to make watchpoints work `right', we really need
5613 to complete the memory write, and then evaluate the
d983da9c
DJ
5614 watchpoint expression. We do this by single-stepping the
5615 target.
5616
7f89fd65 5617 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5618 it. For example, the PA can (with some kernel cooperation)
5619 single step over a watchpoint without disabling the watchpoint.
5620
5621 It is far more common to need to disable a watchpoint to step
5622 the inferior over it. If we have non-steppable watchpoints,
5623 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5624 disable all watchpoints.
5625
5626 Any breakpoint at PC must also be stepped over -- if there's
5627 one, it will have already triggered before the watchpoint
5628 triggered, and we either already reported it to the user, or
5629 it didn't cause a stop and we called keep_going. In either
5630 case, if there was a breakpoint at PC, we must be trying to
5631 step past it. */
5632 ecs->event_thread->stepping_over_watchpoint = 1;
5633 keep_going (ecs);
488f131b
JB
5634 return;
5635 }
5636
4e1c45ea 5637 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5638 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5639 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5640 ecs->event_thread->control.stop_step = 0;
488f131b 5641 stop_print_frame = 1;
488f131b 5642 stopped_by_random_signal = 0;
488f131b 5643
edb3359d
DJ
5644 /* Hide inlined functions starting here, unless we just performed stepi or
5645 nexti. After stepi and nexti, always show the innermost frame (not any
5646 inline function call sites). */
16c381f0 5647 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
5648 {
5649 struct address_space *aspace =
5650 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5651
5652 /* skip_inline_frames is expensive, so we avoid it if we can
5653 determine that the address is one where functions cannot have
5654 been inlined. This improves performance with inferiors that
5655 load a lot of shared libraries, because the solib event
5656 breakpoint is defined as the address of a function (i.e. not
5657 inline). Note that we have to check the previous PC as well
5658 as the current one to catch cases when we have just
5659 single-stepped off a breakpoint prior to reinstating it.
5660 Note that we're assuming that the code we single-step to is
5661 not inline, but that's not definitive: there's nothing
5662 preventing the event breakpoint function from containing
5663 inlined code, and the single-step ending up there. If the
5664 user had set a breakpoint on that inlined code, the missing
5665 skip_inline_frames call would break things. Fortunately
5666 that's an extremely unlikely scenario. */
09ac7c10 5667 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
5668 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5669 && ecs->event_thread->control.trap_expected
5670 && pc_at_non_inline_function (aspace,
5671 ecs->event_thread->prev_pc,
09ac7c10 5672 &ecs->ws)))
1c5a993e
MR
5673 {
5674 skip_inline_frames (ecs->ptid);
5675
5676 /* Re-fetch current thread's frame in case that invalidated
5677 the frame cache. */
5678 frame = get_current_frame ();
5679 gdbarch = get_frame_arch (frame);
5680 }
0574c78f 5681 }
edb3359d 5682
a493e3e2 5683 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5684 && ecs->event_thread->control.trap_expected
568d6575 5685 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5686 && currently_stepping (ecs->event_thread))
3352ef37 5687 {
b50d7442 5688 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5689 also on an instruction that needs to be stepped multiple
1777feb0 5690 times before it's been fully executing. E.g., architectures
3352ef37
AC
5691 with a delay slot. It needs to be stepped twice, once for
5692 the instruction and once for the delay slot. */
5693 int step_through_delay
568d6575 5694 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5695
527159b7 5696 if (debug_infrun && step_through_delay)
8a9de0e4 5697 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5698 if (ecs->event_thread->control.step_range_end == 0
5699 && step_through_delay)
3352ef37
AC
5700 {
5701 /* The user issued a continue when stopped at a breakpoint.
5702 Set up for another trap and get out of here. */
4e1c45ea 5703 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5704 keep_going (ecs);
5705 return;
5706 }
5707 else if (step_through_delay)
5708 {
5709 /* The user issued a step when stopped at a breakpoint.
5710 Maybe we should stop, maybe we should not - the delay
5711 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5712 case, don't decide that here, just set
5713 ecs->stepping_over_breakpoint, making sure we
5714 single-step again before breakpoints are re-inserted. */
4e1c45ea 5715 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5716 }
5717 }
5718
ab04a2af
TT
5719 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5720 handles this event. */
5721 ecs->event_thread->control.stop_bpstat
5722 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5723 stop_pc, ecs->ptid, &ecs->ws);
db82e815 5724
ab04a2af
TT
5725 /* Following in case break condition called a
5726 function. */
5727 stop_print_frame = 1;
73dd234f 5728
ab04a2af
TT
5729 /* This is where we handle "moribund" watchpoints. Unlike
5730 software breakpoints traps, hardware watchpoint traps are
5731 always distinguishable from random traps. If no high-level
5732 watchpoint is associated with the reported stop data address
5733 anymore, then the bpstat does not explain the signal ---
5734 simply make sure to ignore it if `stopped_by_watchpoint' is
5735 set. */
5736
5737 if (debug_infrun
5738 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5739 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5740 GDB_SIGNAL_TRAP)
ab04a2af
TT
5741 && stopped_by_watchpoint)
5742 fprintf_unfiltered (gdb_stdlog,
5743 "infrun: no user watchpoint explains "
5744 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5745
bac7d97b 5746 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5747 at one stage in the past included checks for an inferior
5748 function call's call dummy's return breakpoint. The original
5749 comment, that went with the test, read:
03cebad2 5750
ab04a2af
TT
5751 ``End of a stack dummy. Some systems (e.g. Sony news) give
5752 another signal besides SIGTRAP, so check here as well as
5753 above.''
73dd234f 5754
ab04a2af
TT
5755 If someone ever tries to get call dummys on a
5756 non-executable stack to work (where the target would stop
5757 with something like a SIGSEGV), then those tests might need
5758 to be re-instated. Given, however, that the tests were only
5759 enabled when momentary breakpoints were not being used, I
5760 suspect that it won't be the case.
488f131b 5761
ab04a2af
TT
5762 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5763 be necessary for call dummies on a non-executable stack on
5764 SPARC. */
488f131b 5765
bac7d97b 5766 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5767 random_signal
5768 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5769 ecs->event_thread->suspend.stop_signal);
bac7d97b 5770
1cf4d951
PA
5771 /* Maybe this was a trap for a software breakpoint that has since
5772 been removed. */
5773 if (random_signal && target_stopped_by_sw_breakpoint ())
5774 {
5775 if (program_breakpoint_here_p (gdbarch, stop_pc))
5776 {
5777 struct regcache *regcache;
5778 int decr_pc;
5779
5780 /* Re-adjust PC to what the program would see if GDB was not
5781 debugging it. */
5782 regcache = get_thread_regcache (ecs->event_thread->ptid);
527a273a 5783 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
5784 if (decr_pc != 0)
5785 {
5786 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
5787
5788 if (record_full_is_used ())
5789 record_full_gdb_operation_disable_set ();
5790
5791 regcache_write_pc (regcache, stop_pc + decr_pc);
5792
5793 do_cleanups (old_cleanups);
5794 }
5795 }
5796 else
5797 {
5798 /* A delayed software breakpoint event. Ignore the trap. */
5799 if (debug_infrun)
5800 fprintf_unfiltered (gdb_stdlog,
5801 "infrun: delayed software breakpoint "
5802 "trap, ignoring\n");
5803 random_signal = 0;
5804 }
5805 }
5806
5807 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5808 has since been removed. */
5809 if (random_signal && target_stopped_by_hw_breakpoint ())
5810 {
5811 /* A delayed hardware breakpoint event. Ignore the trap. */
5812 if (debug_infrun)
5813 fprintf_unfiltered (gdb_stdlog,
5814 "infrun: delayed hardware breakpoint/watchpoint "
5815 "trap, ignoring\n");
5816 random_signal = 0;
5817 }
5818
bac7d97b
PA
5819 /* If not, perhaps stepping/nexting can. */
5820 if (random_signal)
5821 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5822 && currently_stepping (ecs->event_thread));
ab04a2af 5823
2adfaa28
PA
5824 /* Perhaps the thread hit a single-step breakpoint of _another_
5825 thread. Single-step breakpoints are transparent to the
5826 breakpoints module. */
5827 if (random_signal)
5828 random_signal = !ecs->hit_singlestep_breakpoint;
5829
bac7d97b
PA
5830 /* No? Perhaps we got a moribund watchpoint. */
5831 if (random_signal)
5832 random_signal = !stopped_by_watchpoint;
ab04a2af 5833
488f131b
JB
5834 /* For the program's own signals, act according to
5835 the signal handling tables. */
5836
ce12b012 5837 if (random_signal)
488f131b
JB
5838 {
5839 /* Signal not for debugging purposes. */
c9657e70 5840 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 5841 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 5842
527159b7 5843 if (debug_infrun)
c9737c08
PA
5844 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5845 gdb_signal_to_symbol_string (stop_signal));
527159b7 5846
488f131b
JB
5847 stopped_by_random_signal = 1;
5848
252fbfc8
PA
5849 /* Always stop on signals if we're either just gaining control
5850 of the program, or the user explicitly requested this thread
5851 to remain stopped. */
d6b48e9c 5852 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 5853 || ecs->event_thread->stop_requested
24291992 5854 || (!inf->detaching
16c381f0 5855 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 5856 {
22bcd14b 5857 stop_waiting (ecs);
488f131b
JB
5858 return;
5859 }
b57bacec
PA
5860
5861 /* Notify observers the signal has "handle print" set. Note we
5862 returned early above if stopping; normal_stop handles the
5863 printing in that case. */
5864 if (signal_print[ecs->event_thread->suspend.stop_signal])
5865 {
5866 /* The signal table tells us to print about this signal. */
5867 target_terminal_ours_for_output ();
5868 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
5869 target_terminal_inferior ();
5870 }
488f131b
JB
5871
5872 /* Clear the signal if it should not be passed. */
16c381f0 5873 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 5874 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 5875
fb14de7b 5876 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 5877 && ecs->event_thread->control.trap_expected
8358c15c 5878 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502 5879 {
372316f1
PA
5880 int was_in_line;
5881
68f53502
AC
5882 /* We were just starting a new sequence, attempting to
5883 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 5884 Instead this signal arrives. This signal will take us out
68f53502
AC
5885 of the stepping range so GDB needs to remember to, when
5886 the signal handler returns, resume stepping off that
5887 breakpoint. */
5888 /* To simplify things, "continue" is forced to use the same
5889 code paths as single-step - set a breakpoint at the
5890 signal return address and then, once hit, step off that
5891 breakpoint. */
237fc4c9
PA
5892 if (debug_infrun)
5893 fprintf_unfiltered (gdb_stdlog,
5894 "infrun: signal arrived while stepping over "
5895 "breakpoint\n");
d3169d93 5896
372316f1
PA
5897 was_in_line = step_over_info_valid_p ();
5898 clear_step_over_info ();
2c03e5be 5899 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 5900 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5901 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5902 ecs->event_thread->control.trap_expected = 0;
d137e6dc 5903
fbea99ea 5904 if (target_is_non_stop_p ())
372316f1 5905 {
fbea99ea
PA
5906 /* Either "set non-stop" is "on", or the target is
5907 always in non-stop mode. In this case, we have a bit
5908 more work to do. Resume the current thread, and if
5909 we had paused all threads, restart them while the
5910 signal handler runs. */
372316f1
PA
5911 keep_going (ecs);
5912
372316f1
PA
5913 if (was_in_line)
5914 {
372316f1
PA
5915 restart_threads (ecs->event_thread);
5916 }
5917 else if (debug_infrun)
5918 {
5919 fprintf_unfiltered (gdb_stdlog,
5920 "infrun: no need to restart threads\n");
5921 }
5922 return;
5923 }
5924
d137e6dc
PA
5925 /* If we were nexting/stepping some other thread, switch to
5926 it, so that we don't continue it, losing control. */
5927 if (!switch_back_to_stepped_thread (ecs))
5928 keep_going (ecs);
9d799f85 5929 return;
68f53502 5930 }
9d799f85 5931
e5f8a7cc
PA
5932 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
5933 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
5934 || ecs->event_thread->control.step_range_end == 1)
edb3359d 5935 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 5936 ecs->event_thread->control.step_stack_frame_id)
8358c15c 5937 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
5938 {
5939 /* The inferior is about to take a signal that will take it
5940 out of the single step range. Set a breakpoint at the
5941 current PC (which is presumably where the signal handler
5942 will eventually return) and then allow the inferior to
5943 run free.
5944
5945 Note that this is only needed for a signal delivered
5946 while in the single-step range. Nested signals aren't a
5947 problem as they eventually all return. */
237fc4c9
PA
5948 if (debug_infrun)
5949 fprintf_unfiltered (gdb_stdlog,
5950 "infrun: signal may take us out of "
5951 "single-step range\n");
5952
372316f1 5953 clear_step_over_info ();
2c03e5be 5954 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 5955 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5956 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5957 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
5958 keep_going (ecs);
5959 return;
d303a6c7 5960 }
9d799f85
AC
5961
5962 /* Note: step_resume_breakpoint may be non-NULL. This occures
5963 when either there's a nested signal, or when there's a
5964 pending signal enabled just as the signal handler returns
5965 (leaving the inferior at the step-resume-breakpoint without
5966 actually executing it). Either way continue until the
5967 breakpoint is really hit. */
c447ac0b
PA
5968
5969 if (!switch_back_to_stepped_thread (ecs))
5970 {
5971 if (debug_infrun)
5972 fprintf_unfiltered (gdb_stdlog,
5973 "infrun: random signal, keep going\n");
5974
5975 keep_going (ecs);
5976 }
5977 return;
488f131b 5978 }
94c57d6a
PA
5979
5980 process_event_stop_test (ecs);
5981}
5982
5983/* Come here when we've got some debug event / signal we can explain
5984 (IOW, not a random signal), and test whether it should cause a
5985 stop, or whether we should resume the inferior (transparently).
5986 E.g., could be a breakpoint whose condition evaluates false; we
5987 could be still stepping within the line; etc. */
5988
5989static void
5990process_event_stop_test (struct execution_control_state *ecs)
5991{
5992 struct symtab_and_line stop_pc_sal;
5993 struct frame_info *frame;
5994 struct gdbarch *gdbarch;
cdaa5b73
PA
5995 CORE_ADDR jmp_buf_pc;
5996 struct bpstat_what what;
94c57d6a 5997
cdaa5b73 5998 /* Handle cases caused by hitting a breakpoint. */
611c83ae 5999
cdaa5b73
PA
6000 frame = get_current_frame ();
6001 gdbarch = get_frame_arch (frame);
fcf3daef 6002
cdaa5b73 6003 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6004
cdaa5b73
PA
6005 if (what.call_dummy)
6006 {
6007 stop_stack_dummy = what.call_dummy;
6008 }
186c406b 6009
243a9253
PA
6010 /* A few breakpoint types have callbacks associated (e.g.,
6011 bp_jit_event). Run them now. */
6012 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6013
cdaa5b73
PA
6014 /* If we hit an internal event that triggers symbol changes, the
6015 current frame will be invalidated within bpstat_what (e.g., if we
6016 hit an internal solib event). Re-fetch it. */
6017 frame = get_current_frame ();
6018 gdbarch = get_frame_arch (frame);
e2e4d78b 6019
cdaa5b73
PA
6020 switch (what.main_action)
6021 {
6022 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6023 /* If we hit the breakpoint at longjmp while stepping, we
6024 install a momentary breakpoint at the target of the
6025 jmp_buf. */
186c406b 6026
cdaa5b73
PA
6027 if (debug_infrun)
6028 fprintf_unfiltered (gdb_stdlog,
6029 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6030
cdaa5b73 6031 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6032
cdaa5b73
PA
6033 if (what.is_longjmp)
6034 {
6035 struct value *arg_value;
6036
6037 /* If we set the longjmp breakpoint via a SystemTap probe,
6038 then use it to extract the arguments. The destination PC
6039 is the third argument to the probe. */
6040 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6041 if (arg_value)
8fa0c4f8
AA
6042 {
6043 jmp_buf_pc = value_as_address (arg_value);
6044 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6045 }
cdaa5b73
PA
6046 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6047 || !gdbarch_get_longjmp_target (gdbarch,
6048 frame, &jmp_buf_pc))
e2e4d78b 6049 {
cdaa5b73
PA
6050 if (debug_infrun)
6051 fprintf_unfiltered (gdb_stdlog,
6052 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6053 "(!gdbarch_get_longjmp_target)\n");
6054 keep_going (ecs);
6055 return;
e2e4d78b 6056 }
e2e4d78b 6057
cdaa5b73
PA
6058 /* Insert a breakpoint at resume address. */
6059 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6060 }
6061 else
6062 check_exception_resume (ecs, frame);
6063 keep_going (ecs);
6064 return;
e81a37f7 6065
cdaa5b73
PA
6066 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6067 {
6068 struct frame_info *init_frame;
e81a37f7 6069
cdaa5b73 6070 /* There are several cases to consider.
c906108c 6071
cdaa5b73
PA
6072 1. The initiating frame no longer exists. In this case we
6073 must stop, because the exception or longjmp has gone too
6074 far.
2c03e5be 6075
cdaa5b73
PA
6076 2. The initiating frame exists, and is the same as the
6077 current frame. We stop, because the exception or longjmp
6078 has been caught.
2c03e5be 6079
cdaa5b73
PA
6080 3. The initiating frame exists and is different from the
6081 current frame. This means the exception or longjmp has
6082 been caught beneath the initiating frame, so keep going.
c906108c 6083
cdaa5b73
PA
6084 4. longjmp breakpoint has been placed just to protect
6085 against stale dummy frames and user is not interested in
6086 stopping around longjmps. */
c5aa993b 6087
cdaa5b73
PA
6088 if (debug_infrun)
6089 fprintf_unfiltered (gdb_stdlog,
6090 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6091
cdaa5b73
PA
6092 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6093 != NULL);
6094 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6095
cdaa5b73
PA
6096 if (what.is_longjmp)
6097 {
b67a2c6f 6098 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6099
cdaa5b73 6100 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6101 {
cdaa5b73
PA
6102 /* Case 4. */
6103 keep_going (ecs);
6104 return;
e5ef252a 6105 }
cdaa5b73 6106 }
c5aa993b 6107
cdaa5b73 6108 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6109
cdaa5b73
PA
6110 if (init_frame)
6111 {
6112 struct frame_id current_id
6113 = get_frame_id (get_current_frame ());
6114 if (frame_id_eq (current_id,
6115 ecs->event_thread->initiating_frame))
6116 {
6117 /* Case 2. Fall through. */
6118 }
6119 else
6120 {
6121 /* Case 3. */
6122 keep_going (ecs);
6123 return;
6124 }
68f53502 6125 }
488f131b 6126
cdaa5b73
PA
6127 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6128 exists. */
6129 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6130
bdc36728 6131 end_stepping_range (ecs);
cdaa5b73
PA
6132 }
6133 return;
e5ef252a 6134
cdaa5b73
PA
6135 case BPSTAT_WHAT_SINGLE:
6136 if (debug_infrun)
6137 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6138 ecs->event_thread->stepping_over_breakpoint = 1;
6139 /* Still need to check other stuff, at least the case where we
6140 are stepping and step out of the right range. */
6141 break;
e5ef252a 6142
cdaa5b73
PA
6143 case BPSTAT_WHAT_STEP_RESUME:
6144 if (debug_infrun)
6145 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6146
cdaa5b73
PA
6147 delete_step_resume_breakpoint (ecs->event_thread);
6148 if (ecs->event_thread->control.proceed_to_finish
6149 && execution_direction == EXEC_REVERSE)
6150 {
6151 struct thread_info *tp = ecs->event_thread;
6152
6153 /* We are finishing a function in reverse, and just hit the
6154 step-resume breakpoint at the start address of the
6155 function, and we're almost there -- just need to back up
6156 by one more single-step, which should take us back to the
6157 function call. */
6158 tp->control.step_range_start = tp->control.step_range_end = 1;
6159 keep_going (ecs);
e5ef252a 6160 return;
cdaa5b73
PA
6161 }
6162 fill_in_stop_func (gdbarch, ecs);
6163 if (stop_pc == ecs->stop_func_start
6164 && execution_direction == EXEC_REVERSE)
6165 {
6166 /* We are stepping over a function call in reverse, and just
6167 hit the step-resume breakpoint at the start address of
6168 the function. Go back to single-stepping, which should
6169 take us back to the function call. */
6170 ecs->event_thread->stepping_over_breakpoint = 1;
6171 keep_going (ecs);
6172 return;
6173 }
6174 break;
e5ef252a 6175
cdaa5b73
PA
6176 case BPSTAT_WHAT_STOP_NOISY:
6177 if (debug_infrun)
6178 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6179 stop_print_frame = 1;
e5ef252a 6180
99619bea
PA
6181 /* Assume the thread stopped for a breapoint. We'll still check
6182 whether a/the breakpoint is there when the thread is next
6183 resumed. */
6184 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6185
22bcd14b 6186 stop_waiting (ecs);
cdaa5b73 6187 return;
e5ef252a 6188
cdaa5b73
PA
6189 case BPSTAT_WHAT_STOP_SILENT:
6190 if (debug_infrun)
6191 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6192 stop_print_frame = 0;
e5ef252a 6193
99619bea
PA
6194 /* Assume the thread stopped for a breapoint. We'll still check
6195 whether a/the breakpoint is there when the thread is next
6196 resumed. */
6197 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6198 stop_waiting (ecs);
cdaa5b73
PA
6199 return;
6200
6201 case BPSTAT_WHAT_HP_STEP_RESUME:
6202 if (debug_infrun)
6203 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6204
6205 delete_step_resume_breakpoint (ecs->event_thread);
6206 if (ecs->event_thread->step_after_step_resume_breakpoint)
6207 {
6208 /* Back when the step-resume breakpoint was inserted, we
6209 were trying to single-step off a breakpoint. Go back to
6210 doing that. */
6211 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6212 ecs->event_thread->stepping_over_breakpoint = 1;
6213 keep_going (ecs);
6214 return;
e5ef252a 6215 }
cdaa5b73
PA
6216 break;
6217
6218 case BPSTAT_WHAT_KEEP_CHECKING:
6219 break;
e5ef252a 6220 }
c906108c 6221
af48d08f
PA
6222 /* If we stepped a permanent breakpoint and we had a high priority
6223 step-resume breakpoint for the address we stepped, but we didn't
6224 hit it, then we must have stepped into the signal handler. The
6225 step-resume was only necessary to catch the case of _not_
6226 stepping into the handler, so delete it, and fall through to
6227 checking whether the step finished. */
6228 if (ecs->event_thread->stepped_breakpoint)
6229 {
6230 struct breakpoint *sr_bp
6231 = ecs->event_thread->control.step_resume_breakpoint;
6232
8d707a12
PA
6233 if (sr_bp != NULL
6234 && sr_bp->loc->permanent
af48d08f
PA
6235 && sr_bp->type == bp_hp_step_resume
6236 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6237 {
6238 if (debug_infrun)
6239 fprintf_unfiltered (gdb_stdlog,
6240 "infrun: stepped permanent breakpoint, stopped in "
6241 "handler\n");
6242 delete_step_resume_breakpoint (ecs->event_thread);
6243 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6244 }
6245 }
6246
cdaa5b73
PA
6247 /* We come here if we hit a breakpoint but should not stop for it.
6248 Possibly we also were stepping and should stop for that. So fall
6249 through and test for stepping. But, if not stepping, do not
6250 stop. */
c906108c 6251
a7212384
UW
6252 /* In all-stop mode, if we're currently stepping but have stopped in
6253 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6254 if (switch_back_to_stepped_thread (ecs))
6255 return;
776f04fa 6256
8358c15c 6257 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6258 {
527159b7 6259 if (debug_infrun)
d3169d93
DJ
6260 fprintf_unfiltered (gdb_stdlog,
6261 "infrun: step-resume breakpoint is inserted\n");
527159b7 6262
488f131b
JB
6263 /* Having a step-resume breakpoint overrides anything
6264 else having to do with stepping commands until
6265 that breakpoint is reached. */
488f131b
JB
6266 keep_going (ecs);
6267 return;
6268 }
c5aa993b 6269
16c381f0 6270 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6271 {
527159b7 6272 if (debug_infrun)
8a9de0e4 6273 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6274 /* Likewise if we aren't even stepping. */
488f131b
JB
6275 keep_going (ecs);
6276 return;
6277 }
c5aa993b 6278
4b7703ad
JB
6279 /* Re-fetch current thread's frame in case the code above caused
6280 the frame cache to be re-initialized, making our FRAME variable
6281 a dangling pointer. */
6282 frame = get_current_frame ();
628fe4e4 6283 gdbarch = get_frame_arch (frame);
7e324e48 6284 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6285
488f131b 6286 /* If stepping through a line, keep going if still within it.
c906108c 6287
488f131b
JB
6288 Note that step_range_end is the address of the first instruction
6289 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6290 within it!
6291
6292 Note also that during reverse execution, we may be stepping
6293 through a function epilogue and therefore must detect when
6294 the current-frame changes in the middle of a line. */
6295
ce4c476a 6296 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 6297 && (execution_direction != EXEC_REVERSE
388a8562 6298 || frame_id_eq (get_frame_id (frame),
16c381f0 6299 ecs->event_thread->control.step_frame_id)))
488f131b 6300 {
527159b7 6301 if (debug_infrun)
5af949e3
UW
6302 fprintf_unfiltered
6303 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6304 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6305 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6306
c1e36e3e
PA
6307 /* Tentatively re-enable range stepping; `resume' disables it if
6308 necessary (e.g., if we're stepping over a breakpoint or we
6309 have software watchpoints). */
6310 ecs->event_thread->control.may_range_step = 1;
6311
b2175913
MS
6312 /* When stepping backward, stop at beginning of line range
6313 (unless it's the function entry point, in which case
6314 keep going back to the call point). */
16c381f0 6315 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6316 && stop_pc != ecs->stop_func_start
6317 && execution_direction == EXEC_REVERSE)
bdc36728 6318 end_stepping_range (ecs);
b2175913
MS
6319 else
6320 keep_going (ecs);
6321
488f131b
JB
6322 return;
6323 }
c5aa993b 6324
488f131b 6325 /* We stepped out of the stepping range. */
c906108c 6326
488f131b 6327 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6328 loader dynamic symbol resolution code...
6329
6330 EXEC_FORWARD: we keep on single stepping until we exit the run
6331 time loader code and reach the callee's address.
6332
6333 EXEC_REVERSE: we've already executed the callee (backward), and
6334 the runtime loader code is handled just like any other
6335 undebuggable function call. Now we need only keep stepping
6336 backward through the trampoline code, and that's handled further
6337 down, so there is nothing for us to do here. */
6338
6339 if (execution_direction != EXEC_REVERSE
16c381f0 6340 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 6341 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 6342 {
4c8c40e6 6343 CORE_ADDR pc_after_resolver =
568d6575 6344 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 6345
527159b7 6346 if (debug_infrun)
3e43a32a
MS
6347 fprintf_unfiltered (gdb_stdlog,
6348 "infrun: stepped into dynsym resolve code\n");
527159b7 6349
488f131b
JB
6350 if (pc_after_resolver)
6351 {
6352 /* Set up a step-resume breakpoint at the address
6353 indicated by SKIP_SOLIB_RESOLVER. */
6354 struct symtab_and_line sr_sal;
abbb1732 6355
fe39c653 6356 init_sal (&sr_sal);
488f131b 6357 sr_sal.pc = pc_after_resolver;
6c95b8df 6358 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6359
a6d9a66e
UW
6360 insert_step_resume_breakpoint_at_sal (gdbarch,
6361 sr_sal, null_frame_id);
c5aa993b 6362 }
c906108c 6363
488f131b
JB
6364 keep_going (ecs);
6365 return;
6366 }
c906108c 6367
16c381f0
JK
6368 if (ecs->event_thread->control.step_range_end != 1
6369 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6370 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6371 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6372 {
527159b7 6373 if (debug_infrun)
3e43a32a
MS
6374 fprintf_unfiltered (gdb_stdlog,
6375 "infrun: stepped into signal trampoline\n");
42edda50 6376 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6377 a signal trampoline (either by a signal being delivered or by
6378 the signal handler returning). Just single-step until the
6379 inferior leaves the trampoline (either by calling the handler
6380 or returning). */
488f131b
JB
6381 keep_going (ecs);
6382 return;
6383 }
c906108c 6384
14132e89
MR
6385 /* If we're in the return path from a shared library trampoline,
6386 we want to proceed through the trampoline when stepping. */
6387 /* macro/2012-04-25: This needs to come before the subroutine
6388 call check below as on some targets return trampolines look
6389 like subroutine calls (MIPS16 return thunks). */
6390 if (gdbarch_in_solib_return_trampoline (gdbarch,
6391 stop_pc, ecs->stop_func_name)
6392 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6393 {
6394 /* Determine where this trampoline returns. */
6395 CORE_ADDR real_stop_pc;
6396
6397 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6398
6399 if (debug_infrun)
6400 fprintf_unfiltered (gdb_stdlog,
6401 "infrun: stepped into solib return tramp\n");
6402
6403 /* Only proceed through if we know where it's going. */
6404 if (real_stop_pc)
6405 {
6406 /* And put the step-breakpoint there and go until there. */
6407 struct symtab_and_line sr_sal;
6408
6409 init_sal (&sr_sal); /* initialize to zeroes */
6410 sr_sal.pc = real_stop_pc;
6411 sr_sal.section = find_pc_overlay (sr_sal.pc);
6412 sr_sal.pspace = get_frame_program_space (frame);
6413
6414 /* Do not specify what the fp should be when we stop since
6415 on some machines the prologue is where the new fp value
6416 is established. */
6417 insert_step_resume_breakpoint_at_sal (gdbarch,
6418 sr_sal, null_frame_id);
6419
6420 /* Restart without fiddling with the step ranges or
6421 other state. */
6422 keep_going (ecs);
6423 return;
6424 }
6425 }
6426
c17eaafe
DJ
6427 /* Check for subroutine calls. The check for the current frame
6428 equalling the step ID is not necessary - the check of the
6429 previous frame's ID is sufficient - but it is a common case and
6430 cheaper than checking the previous frame's ID.
14e60db5
DJ
6431
6432 NOTE: frame_id_eq will never report two invalid frame IDs as
6433 being equal, so to get into this block, both the current and
6434 previous frame must have valid frame IDs. */
005ca36a
JB
6435 /* The outer_frame_id check is a heuristic to detect stepping
6436 through startup code. If we step over an instruction which
6437 sets the stack pointer from an invalid value to a valid value,
6438 we may detect that as a subroutine call from the mythical
6439 "outermost" function. This could be fixed by marking
6440 outermost frames as !stack_p,code_p,special_p. Then the
6441 initial outermost frame, before sp was valid, would
ce6cca6d 6442 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6443 for more. */
edb3359d 6444 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6445 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6446 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6447 ecs->event_thread->control.step_stack_frame_id)
6448 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6449 outer_frame_id)
885eeb5b
PA
6450 || (ecs->event_thread->control.step_start_function
6451 != find_pc_function (stop_pc)))))
488f131b 6452 {
95918acb 6453 CORE_ADDR real_stop_pc;
8fb3e588 6454
527159b7 6455 if (debug_infrun)
8a9de0e4 6456 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6457
b7a084be 6458 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6459 {
6460 /* I presume that step_over_calls is only 0 when we're
6461 supposed to be stepping at the assembly language level
6462 ("stepi"). Just stop. */
388a8562 6463 /* And this works the same backward as frontward. MVS */
bdc36728 6464 end_stepping_range (ecs);
95918acb
AC
6465 return;
6466 }
8fb3e588 6467
388a8562
MS
6468 /* Reverse stepping through solib trampolines. */
6469
6470 if (execution_direction == EXEC_REVERSE
16c381f0 6471 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6472 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6473 || (ecs->stop_func_start == 0
6474 && in_solib_dynsym_resolve_code (stop_pc))))
6475 {
6476 /* Any solib trampoline code can be handled in reverse
6477 by simply continuing to single-step. We have already
6478 executed the solib function (backwards), and a few
6479 steps will take us back through the trampoline to the
6480 caller. */
6481 keep_going (ecs);
6482 return;
6483 }
6484
16c381f0 6485 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6486 {
b2175913
MS
6487 /* We're doing a "next".
6488
6489 Normal (forward) execution: set a breakpoint at the
6490 callee's return address (the address at which the caller
6491 will resume).
6492
6493 Reverse (backward) execution. set the step-resume
6494 breakpoint at the start of the function that we just
6495 stepped into (backwards), and continue to there. When we
6130d0b7 6496 get there, we'll need to single-step back to the caller. */
b2175913
MS
6497
6498 if (execution_direction == EXEC_REVERSE)
6499 {
acf9414f
JK
6500 /* If we're already at the start of the function, we've either
6501 just stepped backward into a single instruction function,
6502 or stepped back out of a signal handler to the first instruction
6503 of the function. Just keep going, which will single-step back
6504 to the caller. */
58c48e72 6505 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
6506 {
6507 struct symtab_and_line sr_sal;
6508
6509 /* Normal function call return (static or dynamic). */
6510 init_sal (&sr_sal);
6511 sr_sal.pc = ecs->stop_func_start;
6512 sr_sal.pspace = get_frame_program_space (frame);
6513 insert_step_resume_breakpoint_at_sal (gdbarch,
6514 sr_sal, null_frame_id);
6515 }
b2175913
MS
6516 }
6517 else
568d6575 6518 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6519
8567c30f
AC
6520 keep_going (ecs);
6521 return;
6522 }
a53c66de 6523
95918acb 6524 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6525 calling routine and the real function), locate the real
6526 function. That's what tells us (a) whether we want to step
6527 into it at all, and (b) what prologue we want to run to the
6528 end of, if we do step into it. */
568d6575 6529 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6530 if (real_stop_pc == 0)
568d6575 6531 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6532 if (real_stop_pc != 0)
6533 ecs->stop_func_start = real_stop_pc;
8fb3e588 6534
db5f024e 6535 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
6536 {
6537 struct symtab_and_line sr_sal;
abbb1732 6538
1b2bfbb9
RC
6539 init_sal (&sr_sal);
6540 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6541 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6542
a6d9a66e
UW
6543 insert_step_resume_breakpoint_at_sal (gdbarch,
6544 sr_sal, null_frame_id);
8fb3e588
AC
6545 keep_going (ecs);
6546 return;
1b2bfbb9
RC
6547 }
6548
95918acb 6549 /* If we have line number information for the function we are
1bfeeb0f
JL
6550 thinking of stepping into and the function isn't on the skip
6551 list, step into it.
95918acb 6552
8fb3e588
AC
6553 If there are several symtabs at that PC (e.g. with include
6554 files), just want to know whether *any* of them have line
6555 numbers. find_pc_line handles this. */
95918acb
AC
6556 {
6557 struct symtab_and_line tmp_sal;
8fb3e588 6558
95918acb 6559 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6560 if (tmp_sal.line != 0
85817405
JK
6561 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6562 &tmp_sal))
95918acb 6563 {
b2175913 6564 if (execution_direction == EXEC_REVERSE)
568d6575 6565 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6566 else
568d6575 6567 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6568 return;
6569 }
6570 }
6571
6572 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6573 set, we stop the step so that the user has a chance to switch
6574 in assembly mode. */
16c381f0 6575 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6576 && step_stop_if_no_debug)
95918acb 6577 {
bdc36728 6578 end_stepping_range (ecs);
95918acb
AC
6579 return;
6580 }
6581
b2175913
MS
6582 if (execution_direction == EXEC_REVERSE)
6583 {
acf9414f
JK
6584 /* If we're already at the start of the function, we've either just
6585 stepped backward into a single instruction function without line
6586 number info, or stepped back out of a signal handler to the first
6587 instruction of the function without line number info. Just keep
6588 going, which will single-step back to the caller. */
6589 if (ecs->stop_func_start != stop_pc)
6590 {
6591 /* Set a breakpoint at callee's start address.
6592 From there we can step once and be back in the caller. */
6593 struct symtab_and_line sr_sal;
abbb1732 6594
acf9414f
JK
6595 init_sal (&sr_sal);
6596 sr_sal.pc = ecs->stop_func_start;
6597 sr_sal.pspace = get_frame_program_space (frame);
6598 insert_step_resume_breakpoint_at_sal (gdbarch,
6599 sr_sal, null_frame_id);
6600 }
b2175913
MS
6601 }
6602 else
6603 /* Set a breakpoint at callee's return address (the address
6604 at which the caller will resume). */
568d6575 6605 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6606
95918acb 6607 keep_going (ecs);
488f131b 6608 return;
488f131b 6609 }
c906108c 6610
fdd654f3
MS
6611 /* Reverse stepping through solib trampolines. */
6612
6613 if (execution_direction == EXEC_REVERSE
16c381f0 6614 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
6615 {
6616 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6617 || (ecs->stop_func_start == 0
6618 && in_solib_dynsym_resolve_code (stop_pc)))
6619 {
6620 /* Any solib trampoline code can be handled in reverse
6621 by simply continuing to single-step. We have already
6622 executed the solib function (backwards), and a few
6623 steps will take us back through the trampoline to the
6624 caller. */
6625 keep_going (ecs);
6626 return;
6627 }
6628 else if (in_solib_dynsym_resolve_code (stop_pc))
6629 {
6630 /* Stepped backward into the solib dynsym resolver.
6631 Set a breakpoint at its start and continue, then
6632 one more step will take us out. */
6633 struct symtab_and_line sr_sal;
abbb1732 6634
fdd654f3
MS
6635 init_sal (&sr_sal);
6636 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6637 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6638 insert_step_resume_breakpoint_at_sal (gdbarch,
6639 sr_sal, null_frame_id);
6640 keep_going (ecs);
6641 return;
6642 }
6643 }
6644
2afb61aa 6645 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 6646
1b2bfbb9
RC
6647 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6648 the trampoline processing logic, however, there are some trampolines
6649 that have no names, so we should do trampoline handling first. */
16c381f0 6650 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6651 && ecs->stop_func_name == NULL
2afb61aa 6652 && stop_pc_sal.line == 0)
1b2bfbb9 6653 {
527159b7 6654 if (debug_infrun)
3e43a32a
MS
6655 fprintf_unfiltered (gdb_stdlog,
6656 "infrun: stepped into undebuggable function\n");
527159b7 6657
1b2bfbb9 6658 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6659 undebuggable function (where there is no debugging information
6660 and no line number corresponding to the address where the
1b2bfbb9
RC
6661 inferior stopped). Since we want to skip this kind of code,
6662 we keep going until the inferior returns from this
14e60db5
DJ
6663 function - unless the user has asked us not to (via
6664 set step-mode) or we no longer know how to get back
6665 to the call site. */
6666 if (step_stop_if_no_debug
c7ce8faa 6667 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6668 {
6669 /* If we have no line number and the step-stop-if-no-debug
6670 is set, we stop the step so that the user has a chance to
6671 switch in assembly mode. */
bdc36728 6672 end_stepping_range (ecs);
1b2bfbb9
RC
6673 return;
6674 }
6675 else
6676 {
6677 /* Set a breakpoint at callee's return address (the address
6678 at which the caller will resume). */
568d6575 6679 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6680 keep_going (ecs);
6681 return;
6682 }
6683 }
6684
16c381f0 6685 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6686 {
6687 /* It is stepi or nexti. We always want to stop stepping after
6688 one instruction. */
527159b7 6689 if (debug_infrun)
8a9de0e4 6690 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6691 end_stepping_range (ecs);
1b2bfbb9
RC
6692 return;
6693 }
6694
2afb61aa 6695 if (stop_pc_sal.line == 0)
488f131b
JB
6696 {
6697 /* We have no line number information. That means to stop
6698 stepping (does this always happen right after one instruction,
6699 when we do "s" in a function with no line numbers,
6700 or can this happen as a result of a return or longjmp?). */
527159b7 6701 if (debug_infrun)
8a9de0e4 6702 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6703 end_stepping_range (ecs);
488f131b
JB
6704 return;
6705 }
c906108c 6706
edb3359d
DJ
6707 /* Look for "calls" to inlined functions, part one. If the inline
6708 frame machinery detected some skipped call sites, we have entered
6709 a new inline function. */
6710
6711 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6712 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
6713 && inline_skipped_frames (ecs->ptid))
6714 {
6715 struct symtab_and_line call_sal;
6716
6717 if (debug_infrun)
6718 fprintf_unfiltered (gdb_stdlog,
6719 "infrun: stepped into inlined function\n");
6720
6721 find_frame_sal (get_current_frame (), &call_sal);
6722
16c381f0 6723 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6724 {
6725 /* For "step", we're going to stop. But if the call site
6726 for this inlined function is on the same source line as
6727 we were previously stepping, go down into the function
6728 first. Otherwise stop at the call site. */
6729
6730 if (call_sal.line == ecs->event_thread->current_line
6731 && call_sal.symtab == ecs->event_thread->current_symtab)
6732 step_into_inline_frame (ecs->ptid);
6733
bdc36728 6734 end_stepping_range (ecs);
edb3359d
DJ
6735 return;
6736 }
6737 else
6738 {
6739 /* For "next", we should stop at the call site if it is on a
6740 different source line. Otherwise continue through the
6741 inlined function. */
6742 if (call_sal.line == ecs->event_thread->current_line
6743 && call_sal.symtab == ecs->event_thread->current_symtab)
6744 keep_going (ecs);
6745 else
bdc36728 6746 end_stepping_range (ecs);
edb3359d
DJ
6747 return;
6748 }
6749 }
6750
6751 /* Look for "calls" to inlined functions, part two. If we are still
6752 in the same real function we were stepping through, but we have
6753 to go further up to find the exact frame ID, we are stepping
6754 through a more inlined call beyond its call site. */
6755
6756 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6757 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6758 ecs->event_thread->control.step_frame_id)
edb3359d 6759 && stepped_in_from (get_current_frame (),
16c381f0 6760 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6761 {
6762 if (debug_infrun)
6763 fprintf_unfiltered (gdb_stdlog,
6764 "infrun: stepping through inlined function\n");
6765
16c381f0 6766 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6767 keep_going (ecs);
6768 else
bdc36728 6769 end_stepping_range (ecs);
edb3359d
DJ
6770 return;
6771 }
6772
2afb61aa 6773 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6774 && (ecs->event_thread->current_line != stop_pc_sal.line
6775 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6776 {
6777 /* We are at the start of a different line. So stop. Note that
6778 we don't stop if we step into the middle of a different line.
6779 That is said to make things like for (;;) statements work
6780 better. */
527159b7 6781 if (debug_infrun)
3e43a32a
MS
6782 fprintf_unfiltered (gdb_stdlog,
6783 "infrun: stepped to a different line\n");
bdc36728 6784 end_stepping_range (ecs);
488f131b
JB
6785 return;
6786 }
c906108c 6787
488f131b 6788 /* We aren't done stepping.
c906108c 6789
488f131b
JB
6790 Optimize by setting the stepping range to the line.
6791 (We might not be in the original line, but if we entered a
6792 new line in mid-statement, we continue stepping. This makes
6793 things like for(;;) statements work better.) */
c906108c 6794
16c381f0
JK
6795 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6796 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6797 ecs->event_thread->control.may_range_step = 1;
edb3359d 6798 set_step_info (frame, stop_pc_sal);
488f131b 6799
527159b7 6800 if (debug_infrun)
8a9de0e4 6801 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6802 keep_going (ecs);
104c1213
JM
6803}
6804
c447ac0b
PA
6805/* In all-stop mode, if we're currently stepping but have stopped in
6806 some other thread, we may need to switch back to the stepped
6807 thread. Returns true we set the inferior running, false if we left
6808 it stopped (and the event needs further processing). */
6809
6810static int
6811switch_back_to_stepped_thread (struct execution_control_state *ecs)
6812{
fbea99ea 6813 if (!target_is_non_stop_p ())
c447ac0b
PA
6814 {
6815 struct thread_info *tp;
99619bea
PA
6816 struct thread_info *stepping_thread;
6817
6818 /* If any thread is blocked on some internal breakpoint, and we
6819 simply need to step over that breakpoint to get it going
6820 again, do that first. */
6821
6822 /* However, if we see an event for the stepping thread, then we
6823 know all other threads have been moved past their breakpoints
6824 already. Let the caller check whether the step is finished,
6825 etc., before deciding to move it past a breakpoint. */
6826 if (ecs->event_thread->control.step_range_end != 0)
6827 return 0;
6828
6829 /* Check if the current thread is blocked on an incomplete
6830 step-over, interrupted by a random signal. */
6831 if (ecs->event_thread->control.trap_expected
6832 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 6833 {
99619bea
PA
6834 if (debug_infrun)
6835 {
6836 fprintf_unfiltered (gdb_stdlog,
6837 "infrun: need to finish step-over of [%s]\n",
6838 target_pid_to_str (ecs->event_thread->ptid));
6839 }
6840 keep_going (ecs);
6841 return 1;
6842 }
2adfaa28 6843
99619bea
PA
6844 /* Check if the current thread is blocked by a single-step
6845 breakpoint of another thread. */
6846 if (ecs->hit_singlestep_breakpoint)
6847 {
6848 if (debug_infrun)
6849 {
6850 fprintf_unfiltered (gdb_stdlog,
6851 "infrun: need to step [%s] over single-step "
6852 "breakpoint\n",
6853 target_pid_to_str (ecs->ptid));
6854 }
6855 keep_going (ecs);
6856 return 1;
6857 }
6858
4d9d9d04
PA
6859 /* If this thread needs yet another step-over (e.g., stepping
6860 through a delay slot), do it first before moving on to
6861 another thread. */
6862 if (thread_still_needs_step_over (ecs->event_thread))
6863 {
6864 if (debug_infrun)
6865 {
6866 fprintf_unfiltered (gdb_stdlog,
6867 "infrun: thread [%s] still needs step-over\n",
6868 target_pid_to_str (ecs->event_thread->ptid));
6869 }
6870 keep_going (ecs);
6871 return 1;
6872 }
70509625 6873
483805cf
PA
6874 /* If scheduler locking applies even if not stepping, there's no
6875 need to walk over threads. Above we've checked whether the
6876 current thread is stepping. If some other thread not the
6877 event thread is stepping, then it must be that scheduler
6878 locking is not in effect. */
856e7dd6 6879 if (schedlock_applies (ecs->event_thread))
483805cf
PA
6880 return 0;
6881
4d9d9d04
PA
6882 /* Otherwise, we no longer expect a trap in the current thread.
6883 Clear the trap_expected flag before switching back -- this is
6884 what keep_going does as well, if we call it. */
6885 ecs->event_thread->control.trap_expected = 0;
6886
6887 /* Likewise, clear the signal if it should not be passed. */
6888 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6889 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6890
6891 /* Do all pending step-overs before actually proceeding with
483805cf 6892 step/next/etc. */
4d9d9d04
PA
6893 if (start_step_over ())
6894 {
6895 prepare_to_wait (ecs);
6896 return 1;
6897 }
6898
6899 /* Look for the stepping/nexting thread. */
483805cf 6900 stepping_thread = NULL;
4d9d9d04 6901
034f788c 6902 ALL_NON_EXITED_THREADS (tp)
483805cf 6903 {
fbea99ea
PA
6904 /* Ignore threads of processes the caller is not
6905 resuming. */
483805cf 6906 if (!sched_multi
1afd5965 6907 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
483805cf
PA
6908 continue;
6909
6910 /* When stepping over a breakpoint, we lock all threads
6911 except the one that needs to move past the breakpoint.
6912 If a non-event thread has this set, the "incomplete
6913 step-over" check above should have caught it earlier. */
372316f1
PA
6914 if (tp->control.trap_expected)
6915 {
6916 internal_error (__FILE__, __LINE__,
6917 "[%s] has inconsistent state: "
6918 "trap_expected=%d\n",
6919 target_pid_to_str (tp->ptid),
6920 tp->control.trap_expected);
6921 }
483805cf
PA
6922
6923 /* Did we find the stepping thread? */
6924 if (tp->control.step_range_end)
6925 {
6926 /* Yep. There should only one though. */
6927 gdb_assert (stepping_thread == NULL);
6928
6929 /* The event thread is handled at the top, before we
6930 enter this loop. */
6931 gdb_assert (tp != ecs->event_thread);
6932
6933 /* If some thread other than the event thread is
6934 stepping, then scheduler locking can't be in effect,
6935 otherwise we wouldn't have resumed the current event
6936 thread in the first place. */
856e7dd6 6937 gdb_assert (!schedlock_applies (tp));
483805cf
PA
6938
6939 stepping_thread = tp;
6940 }
99619bea
PA
6941 }
6942
483805cf 6943 if (stepping_thread != NULL)
99619bea 6944 {
c447ac0b
PA
6945 if (debug_infrun)
6946 fprintf_unfiltered (gdb_stdlog,
6947 "infrun: switching back to stepped thread\n");
6948
2ac7589c
PA
6949 if (keep_going_stepped_thread (stepping_thread))
6950 {
6951 prepare_to_wait (ecs);
6952 return 1;
6953 }
6954 }
6955 }
2adfaa28 6956
2ac7589c
PA
6957 return 0;
6958}
2adfaa28 6959
2ac7589c
PA
6960/* Set a previously stepped thread back to stepping. Returns true on
6961 success, false if the resume is not possible (e.g., the thread
6962 vanished). */
6963
6964static int
6965keep_going_stepped_thread (struct thread_info *tp)
6966{
6967 struct frame_info *frame;
6968 struct gdbarch *gdbarch;
6969 struct execution_control_state ecss;
6970 struct execution_control_state *ecs = &ecss;
2adfaa28 6971
2ac7589c
PA
6972 /* If the stepping thread exited, then don't try to switch back and
6973 resume it, which could fail in several different ways depending
6974 on the target. Instead, just keep going.
2adfaa28 6975
2ac7589c
PA
6976 We can find a stepping dead thread in the thread list in two
6977 cases:
2adfaa28 6978
2ac7589c
PA
6979 - The target supports thread exit events, and when the target
6980 tries to delete the thread from the thread list, inferior_ptid
6981 pointed at the exiting thread. In such case, calling
6982 delete_thread does not really remove the thread from the list;
6983 instead, the thread is left listed, with 'exited' state.
64ce06e4 6984
2ac7589c
PA
6985 - The target's debug interface does not support thread exit
6986 events, and so we have no idea whatsoever if the previously
6987 stepping thread is still alive. For that reason, we need to
6988 synchronously query the target now. */
2adfaa28 6989
2ac7589c
PA
6990 if (is_exited (tp->ptid)
6991 || !target_thread_alive (tp->ptid))
6992 {
6993 if (debug_infrun)
6994 fprintf_unfiltered (gdb_stdlog,
6995 "infrun: not resuming previously "
6996 "stepped thread, it has vanished\n");
6997
6998 delete_thread (tp->ptid);
6999 return 0;
c447ac0b 7000 }
2ac7589c
PA
7001
7002 if (debug_infrun)
7003 fprintf_unfiltered (gdb_stdlog,
7004 "infrun: resuming previously stepped thread\n");
7005
7006 reset_ecs (ecs, tp);
7007 switch_to_thread (tp->ptid);
7008
7009 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7010 frame = get_current_frame ();
7011 gdbarch = get_frame_arch (frame);
7012
7013 /* If the PC of the thread we were trying to single-step has
7014 changed, then that thread has trapped or been signaled, but the
7015 event has not been reported to GDB yet. Re-poll the target
7016 looking for this particular thread's event (i.e. temporarily
7017 enable schedlock) by:
7018
7019 - setting a break at the current PC
7020 - resuming that particular thread, only (by setting trap
7021 expected)
7022
7023 This prevents us continuously moving the single-step breakpoint
7024 forward, one instruction at a time, overstepping. */
7025
7026 if (stop_pc != tp->prev_pc)
7027 {
7028 ptid_t resume_ptid;
7029
7030 if (debug_infrun)
7031 fprintf_unfiltered (gdb_stdlog,
7032 "infrun: expected thread advanced also (%s -> %s)\n",
7033 paddress (target_gdbarch (), tp->prev_pc),
7034 paddress (target_gdbarch (), stop_pc));
7035
7036 /* Clear the info of the previous step-over, as it's no longer
7037 valid (if the thread was trying to step over a breakpoint, it
7038 has already succeeded). It's what keep_going would do too,
7039 if we called it. Do this before trying to insert the sss
7040 breakpoint, otherwise if we were previously trying to step
7041 over this exact address in another thread, the breakpoint is
7042 skipped. */
7043 clear_step_over_info ();
7044 tp->control.trap_expected = 0;
7045
7046 insert_single_step_breakpoint (get_frame_arch (frame),
7047 get_frame_address_space (frame),
7048 stop_pc);
7049
372316f1 7050 tp->resumed = 1;
fbea99ea 7051 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7052 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7053 }
7054 else
7055 {
7056 if (debug_infrun)
7057 fprintf_unfiltered (gdb_stdlog,
7058 "infrun: expected thread still hasn't advanced\n");
7059
7060 keep_going_pass_signal (ecs);
7061 }
7062 return 1;
c447ac0b
PA
7063}
7064
8b061563
PA
7065/* Is thread TP in the middle of (software or hardware)
7066 single-stepping? (Note the result of this function must never be
7067 passed directly as target_resume's STEP parameter.) */
104c1213 7068
a289b8f6 7069static int
b3444185 7070currently_stepping (struct thread_info *tp)
a7212384 7071{
8358c15c
JK
7072 return ((tp->control.step_range_end
7073 && tp->control.step_resume_breakpoint == NULL)
7074 || tp->control.trap_expected
af48d08f 7075 || tp->stepped_breakpoint
8358c15c 7076 || bpstat_should_step ());
a7212384
UW
7077}
7078
b2175913
MS
7079/* Inferior has stepped into a subroutine call with source code that
7080 we should not step over. Do step to the first line of code in
7081 it. */
c2c6d25f
JM
7082
7083static void
568d6575
UW
7084handle_step_into_function (struct gdbarch *gdbarch,
7085 struct execution_control_state *ecs)
c2c6d25f 7086{
43f3e411 7087 struct compunit_symtab *cust;
2afb61aa 7088 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 7089
7e324e48
GB
7090 fill_in_stop_func (gdbarch, ecs);
7091
43f3e411
DE
7092 cust = find_pc_compunit_symtab (stop_pc);
7093 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7094 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 7095 ecs->stop_func_start);
c2c6d25f 7096
2afb61aa 7097 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7098 /* Use the step_resume_break to step until the end of the prologue,
7099 even if that involves jumps (as it seems to on the vax under
7100 4.2). */
7101 /* If the prologue ends in the middle of a source line, continue to
7102 the end of that source line (if it is still within the function).
7103 Otherwise, just go to end of prologue. */
2afb61aa
PA
7104 if (stop_func_sal.end
7105 && stop_func_sal.pc != ecs->stop_func_start
7106 && stop_func_sal.end < ecs->stop_func_end)
7107 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7108
2dbd5e30
KB
7109 /* Architectures which require breakpoint adjustment might not be able
7110 to place a breakpoint at the computed address. If so, the test
7111 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7112 ecs->stop_func_start to an address at which a breakpoint may be
7113 legitimately placed.
8fb3e588 7114
2dbd5e30
KB
7115 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7116 made, GDB will enter an infinite loop when stepping through
7117 optimized code consisting of VLIW instructions which contain
7118 subinstructions corresponding to different source lines. On
7119 FR-V, it's not permitted to place a breakpoint on any but the
7120 first subinstruction of a VLIW instruction. When a breakpoint is
7121 set, GDB will adjust the breakpoint address to the beginning of
7122 the VLIW instruction. Thus, we need to make the corresponding
7123 adjustment here when computing the stop address. */
8fb3e588 7124
568d6575 7125 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7126 {
7127 ecs->stop_func_start
568d6575 7128 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7129 ecs->stop_func_start);
2dbd5e30
KB
7130 }
7131
c2c6d25f
JM
7132 if (ecs->stop_func_start == stop_pc)
7133 {
7134 /* We are already there: stop now. */
bdc36728 7135 end_stepping_range (ecs);
c2c6d25f
JM
7136 return;
7137 }
7138 else
7139 {
7140 /* Put the step-breakpoint there and go until there. */
fe39c653 7141 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
7142 sr_sal.pc = ecs->stop_func_start;
7143 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7144 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7145
c2c6d25f 7146 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7147 some machines the prologue is where the new fp value is
7148 established. */
a6d9a66e 7149 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7150
7151 /* And make sure stepping stops right away then. */
16c381f0
JK
7152 ecs->event_thread->control.step_range_end
7153 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7154 }
7155 keep_going (ecs);
7156}
d4f3574e 7157
b2175913
MS
7158/* Inferior has stepped backward into a subroutine call with source
7159 code that we should not step over. Do step to the beginning of the
7160 last line of code in it. */
7161
7162static void
568d6575
UW
7163handle_step_into_function_backward (struct gdbarch *gdbarch,
7164 struct execution_control_state *ecs)
b2175913 7165{
43f3e411 7166 struct compunit_symtab *cust;
167e4384 7167 struct symtab_and_line stop_func_sal;
b2175913 7168
7e324e48
GB
7169 fill_in_stop_func (gdbarch, ecs);
7170
43f3e411
DE
7171 cust = find_pc_compunit_symtab (stop_pc);
7172 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7173 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
7174 ecs->stop_func_start);
7175
7176 stop_func_sal = find_pc_line (stop_pc, 0);
7177
7178 /* OK, we're just going to keep stepping here. */
7179 if (stop_func_sal.pc == stop_pc)
7180 {
7181 /* We're there already. Just stop stepping now. */
bdc36728 7182 end_stepping_range (ecs);
b2175913
MS
7183 }
7184 else
7185 {
7186 /* Else just reset the step range and keep going.
7187 No step-resume breakpoint, they don't work for
7188 epilogues, which can have multiple entry paths. */
16c381f0
JK
7189 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7190 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7191 keep_going (ecs);
7192 }
7193 return;
7194}
7195
d3169d93 7196/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7197 This is used to both functions and to skip over code. */
7198
7199static void
2c03e5be
PA
7200insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7201 struct symtab_and_line sr_sal,
7202 struct frame_id sr_id,
7203 enum bptype sr_type)
44cbf7b5 7204{
611c83ae
PA
7205 /* There should never be more than one step-resume or longjmp-resume
7206 breakpoint per thread, so we should never be setting a new
44cbf7b5 7207 step_resume_breakpoint when one is already active. */
8358c15c 7208 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7209 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7210
7211 if (debug_infrun)
7212 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7213 "infrun: inserting step-resume breakpoint at %s\n",
7214 paddress (gdbarch, sr_sal.pc));
d3169d93 7215
8358c15c 7216 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
7217 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7218}
7219
9da8c2a0 7220void
2c03e5be
PA
7221insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7222 struct symtab_and_line sr_sal,
7223 struct frame_id sr_id)
7224{
7225 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7226 sr_sal, sr_id,
7227 bp_step_resume);
44cbf7b5 7228}
7ce450bd 7229
2c03e5be
PA
7230/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7231 This is used to skip a potential signal handler.
7ce450bd 7232
14e60db5
DJ
7233 This is called with the interrupted function's frame. The signal
7234 handler, when it returns, will resume the interrupted function at
7235 RETURN_FRAME.pc. */
d303a6c7
AC
7236
7237static void
2c03e5be 7238insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
7239{
7240 struct symtab_and_line sr_sal;
a6d9a66e 7241 struct gdbarch *gdbarch;
d303a6c7 7242
f4c1edd8 7243 gdb_assert (return_frame != NULL);
d303a6c7
AC
7244 init_sal (&sr_sal); /* initialize to zeros */
7245
a6d9a66e 7246 gdbarch = get_frame_arch (return_frame);
568d6575 7247 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7248 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7249 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7250
2c03e5be
PA
7251 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7252 get_stack_frame_id (return_frame),
7253 bp_hp_step_resume);
d303a6c7
AC
7254}
7255
2c03e5be
PA
7256/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7257 is used to skip a function after stepping into it (for "next" or if
7258 the called function has no debugging information).
14e60db5
DJ
7259
7260 The current function has almost always been reached by single
7261 stepping a call or return instruction. NEXT_FRAME belongs to the
7262 current function, and the breakpoint will be set at the caller's
7263 resume address.
7264
7265 This is a separate function rather than reusing
2c03e5be 7266 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7267 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7268 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7269
7270static void
7271insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7272{
7273 struct symtab_and_line sr_sal;
a6d9a66e 7274 struct gdbarch *gdbarch;
14e60db5
DJ
7275
7276 /* We shouldn't have gotten here if we don't know where the call site
7277 is. */
c7ce8faa 7278 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
7279
7280 init_sal (&sr_sal); /* initialize to zeros */
7281
a6d9a66e 7282 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
7283 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7284 frame_unwind_caller_pc (next_frame));
14e60db5 7285 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7286 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7287
a6d9a66e 7288 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7289 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7290}
7291
611c83ae
PA
7292/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7293 new breakpoint at the target of a jmp_buf. The handling of
7294 longjmp-resume uses the same mechanisms used for handling
7295 "step-resume" breakpoints. */
7296
7297static void
a6d9a66e 7298insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7299{
e81a37f7
TT
7300 /* There should never be more than one longjmp-resume breakpoint per
7301 thread, so we should never be setting a new
611c83ae 7302 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7303 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7304
7305 if (debug_infrun)
7306 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7307 "infrun: inserting longjmp-resume breakpoint at %s\n",
7308 paddress (gdbarch, pc));
611c83ae 7309
e81a37f7 7310 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 7311 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
7312}
7313
186c406b
TT
7314/* Insert an exception resume breakpoint. TP is the thread throwing
7315 the exception. The block B is the block of the unwinder debug hook
7316 function. FRAME is the frame corresponding to the call to this
7317 function. SYM is the symbol of the function argument holding the
7318 target PC of the exception. */
7319
7320static void
7321insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7322 const struct block *b,
186c406b
TT
7323 struct frame_info *frame,
7324 struct symbol *sym)
7325{
492d29ea 7326 TRY
186c406b 7327 {
63e43d3a 7328 struct block_symbol vsym;
186c406b
TT
7329 struct value *value;
7330 CORE_ADDR handler;
7331 struct breakpoint *bp;
7332
63e43d3a
PMR
7333 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7334 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7335 /* If the value was optimized out, revert to the old behavior. */
7336 if (! value_optimized_out (value))
7337 {
7338 handler = value_as_address (value);
7339
7340 if (debug_infrun)
7341 fprintf_unfiltered (gdb_stdlog,
7342 "infrun: exception resume at %lx\n",
7343 (unsigned long) handler);
7344
7345 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7346 handler, bp_exception_resume);
c70a6932
JK
7347
7348 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7349 frame = NULL;
7350
186c406b
TT
7351 bp->thread = tp->num;
7352 inferior_thread ()->control.exception_resume_breakpoint = bp;
7353 }
7354 }
492d29ea
PA
7355 CATCH (e, RETURN_MASK_ERROR)
7356 {
7357 /* We want to ignore errors here. */
7358 }
7359 END_CATCH
186c406b
TT
7360}
7361
28106bc2
SDJ
7362/* A helper for check_exception_resume that sets an
7363 exception-breakpoint based on a SystemTap probe. */
7364
7365static void
7366insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7367 const struct bound_probe *probe,
28106bc2
SDJ
7368 struct frame_info *frame)
7369{
7370 struct value *arg_value;
7371 CORE_ADDR handler;
7372 struct breakpoint *bp;
7373
7374 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7375 if (!arg_value)
7376 return;
7377
7378 handler = value_as_address (arg_value);
7379
7380 if (debug_infrun)
7381 fprintf_unfiltered (gdb_stdlog,
7382 "infrun: exception resume at %s\n",
6bac7473 7383 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7384 handler));
7385
7386 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7387 handler, bp_exception_resume);
7388 bp->thread = tp->num;
7389 inferior_thread ()->control.exception_resume_breakpoint = bp;
7390}
7391
186c406b
TT
7392/* This is called when an exception has been intercepted. Check to
7393 see whether the exception's destination is of interest, and if so,
7394 set an exception resume breakpoint there. */
7395
7396static void
7397check_exception_resume (struct execution_control_state *ecs,
28106bc2 7398 struct frame_info *frame)
186c406b 7399{
729662a5 7400 struct bound_probe probe;
28106bc2
SDJ
7401 struct symbol *func;
7402
7403 /* First see if this exception unwinding breakpoint was set via a
7404 SystemTap probe point. If so, the probe has two arguments: the
7405 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7406 set a breakpoint there. */
6bac7473 7407 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 7408 if (probe.probe)
28106bc2 7409 {
729662a5 7410 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7411 return;
7412 }
7413
7414 func = get_frame_function (frame);
7415 if (!func)
7416 return;
186c406b 7417
492d29ea 7418 TRY
186c406b 7419 {
3977b71f 7420 const struct block *b;
8157b174 7421 struct block_iterator iter;
186c406b
TT
7422 struct symbol *sym;
7423 int argno = 0;
7424
7425 /* The exception breakpoint is a thread-specific breakpoint on
7426 the unwinder's debug hook, declared as:
7427
7428 void _Unwind_DebugHook (void *cfa, void *handler);
7429
7430 The CFA argument indicates the frame to which control is
7431 about to be transferred. HANDLER is the destination PC.
7432
7433 We ignore the CFA and set a temporary breakpoint at HANDLER.
7434 This is not extremely efficient but it avoids issues in gdb
7435 with computing the DWARF CFA, and it also works even in weird
7436 cases such as throwing an exception from inside a signal
7437 handler. */
7438
7439 b = SYMBOL_BLOCK_VALUE (func);
7440 ALL_BLOCK_SYMBOLS (b, iter, sym)
7441 {
7442 if (!SYMBOL_IS_ARGUMENT (sym))
7443 continue;
7444
7445 if (argno == 0)
7446 ++argno;
7447 else
7448 {
7449 insert_exception_resume_breakpoint (ecs->event_thread,
7450 b, frame, sym);
7451 break;
7452 }
7453 }
7454 }
492d29ea
PA
7455 CATCH (e, RETURN_MASK_ERROR)
7456 {
7457 }
7458 END_CATCH
186c406b
TT
7459}
7460
104c1213 7461static void
22bcd14b 7462stop_waiting (struct execution_control_state *ecs)
104c1213 7463{
527159b7 7464 if (debug_infrun)
22bcd14b 7465 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7466
31e77af2
PA
7467 clear_step_over_info ();
7468
cd0fc7c3
SS
7469 /* Let callers know we don't want to wait for the inferior anymore. */
7470 ecs->wait_some_more = 0;
fbea99ea
PA
7471
7472 /* If all-stop, but the target is always in non-stop mode, stop all
7473 threads now that we're presenting the stop to the user. */
7474 if (!non_stop && target_is_non_stop_p ())
7475 stop_all_threads ();
cd0fc7c3
SS
7476}
7477
4d9d9d04
PA
7478/* Like keep_going, but passes the signal to the inferior, even if the
7479 signal is set to nopass. */
d4f3574e
SS
7480
7481static void
4d9d9d04 7482keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7483{
c4dbc9af
PA
7484 /* Make sure normal_stop is called if we get a QUIT handled before
7485 reaching resume. */
7486 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7487
4d9d9d04 7488 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
372316f1 7489 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7490
d4f3574e 7491 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
7492 ecs->event_thread->prev_pc
7493 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 7494
4d9d9d04 7495 if (ecs->event_thread->control.trap_expected)
d4f3574e 7496 {
4d9d9d04
PA
7497 struct thread_info *tp = ecs->event_thread;
7498
7499 if (debug_infrun)
7500 fprintf_unfiltered (gdb_stdlog,
7501 "infrun: %s has trap_expected set, "
7502 "resuming to collect trap\n",
7503 target_pid_to_str (tp->ptid));
7504
a9ba6bae
PA
7505 /* We haven't yet gotten our trap, and either: intercepted a
7506 non-signal event (e.g., a fork); or took a signal which we
7507 are supposed to pass through to the inferior. Simply
7508 continue. */
c4dbc9af 7509 discard_cleanups (old_cleanups);
64ce06e4 7510 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7511 }
372316f1
PA
7512 else if (step_over_info_valid_p ())
7513 {
7514 /* Another thread is stepping over a breakpoint in-line. If
7515 this thread needs a step-over too, queue the request. In
7516 either case, this resume must be deferred for later. */
7517 struct thread_info *tp = ecs->event_thread;
7518
7519 if (ecs->hit_singlestep_breakpoint
7520 || thread_still_needs_step_over (tp))
7521 {
7522 if (debug_infrun)
7523 fprintf_unfiltered (gdb_stdlog,
7524 "infrun: step-over already in progress: "
7525 "step-over for %s deferred\n",
7526 target_pid_to_str (tp->ptid));
7527 thread_step_over_chain_enqueue (tp);
7528 }
7529 else
7530 {
7531 if (debug_infrun)
7532 fprintf_unfiltered (gdb_stdlog,
7533 "infrun: step-over in progress: "
7534 "resume of %s deferred\n",
7535 target_pid_to_str (tp->ptid));
7536 }
7537
7538 discard_cleanups (old_cleanups);
7539 }
d4f3574e
SS
7540 else
7541 {
31e77af2 7542 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7543 int remove_bp;
7544 int remove_wps;
6c4cfb24 7545 enum step_over_what step_what;
31e77af2 7546
d4f3574e 7547 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7548 anyway (if we got a signal, the user asked it be passed to
7549 the child)
7550 -- or --
7551 We got our expected trap, but decided we should resume from
7552 it.
d4f3574e 7553
a9ba6bae 7554 We're going to run this baby now!
d4f3574e 7555
c36b740a
VP
7556 Note that insert_breakpoints won't try to re-insert
7557 already inserted breakpoints. Therefore, we don't
7558 care if breakpoints were already inserted, or not. */
a9ba6bae 7559
31e77af2
PA
7560 /* If we need to step over a breakpoint, and we're not using
7561 displaced stepping to do so, insert all breakpoints
7562 (watchpoints, etc.) but the one we're stepping over, step one
7563 instruction, and then re-insert the breakpoint when that step
7564 is finished. */
963f9c80 7565
6c4cfb24
PA
7566 step_what = thread_still_needs_step_over (ecs->event_thread);
7567
963f9c80 7568 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7569 || (step_what & STEP_OVER_BREAKPOINT));
7570 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7571
cb71640d
PA
7572 /* We can't use displaced stepping if we need to step past a
7573 watchpoint. The instruction copied to the scratch pad would
7574 still trigger the watchpoint. */
7575 if (remove_bp
3fc8eb30 7576 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7577 {
31e77af2 7578 set_step_over_info (get_regcache_aspace (regcache),
963f9c80 7579 regcache_read_pc (regcache), remove_wps);
45e8c884 7580 }
963f9c80
PA
7581 else if (remove_wps)
7582 set_step_over_info (NULL, 0, remove_wps);
372316f1
PA
7583
7584 /* If we now need to do an in-line step-over, we need to stop
7585 all other threads. Note this must be done before
7586 insert_breakpoints below, because that removes the breakpoint
7587 we're about to step over, otherwise other threads could miss
7588 it. */
fbea99ea 7589 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7590 stop_all_threads ();
abbb1732 7591
31e77af2 7592 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7593 TRY
31e77af2
PA
7594 {
7595 insert_breakpoints ();
7596 }
492d29ea 7597 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7598 {
7599 exception_print (gdb_stderr, e);
22bcd14b 7600 stop_waiting (ecs);
de1fe8c8 7601 discard_cleanups (old_cleanups);
31e77af2 7602 return;
d4f3574e 7603 }
492d29ea 7604 END_CATCH
d4f3574e 7605
963f9c80 7606 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7607
c4dbc9af 7608 discard_cleanups (old_cleanups);
64ce06e4 7609 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7610 }
7611
488f131b 7612 prepare_to_wait (ecs);
d4f3574e
SS
7613}
7614
4d9d9d04
PA
7615/* Called when we should continue running the inferior, because the
7616 current event doesn't cause a user visible stop. This does the
7617 resuming part; waiting for the next event is done elsewhere. */
7618
7619static void
7620keep_going (struct execution_control_state *ecs)
7621{
7622 if (ecs->event_thread->control.trap_expected
7623 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7624 ecs->event_thread->control.trap_expected = 0;
7625
7626 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7627 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7628 keep_going_pass_signal (ecs);
7629}
7630
104c1213
JM
7631/* This function normally comes after a resume, before
7632 handle_inferior_event exits. It takes care of any last bits of
7633 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7634
104c1213
JM
7635static void
7636prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7637{
527159b7 7638 if (debug_infrun)
8a9de0e4 7639 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7640
104c1213 7641 ecs->wait_some_more = 1;
0b333c5e
PA
7642
7643 if (!target_is_async_p ())
7644 mark_infrun_async_event_handler ();
c906108c 7645}
11cf8741 7646
fd664c91 7647/* We are done with the step range of a step/next/si/ni command.
b57bacec 7648 Called once for each n of a "step n" operation. */
fd664c91
PA
7649
7650static void
bdc36728 7651end_stepping_range (struct execution_control_state *ecs)
fd664c91 7652{
bdc36728 7653 ecs->event_thread->control.stop_step = 1;
bdc36728 7654 stop_waiting (ecs);
fd664c91
PA
7655}
7656
33d62d64
JK
7657/* Several print_*_reason functions to print why the inferior has stopped.
7658 We always print something when the inferior exits, or receives a signal.
7659 The rest of the cases are dealt with later on in normal_stop and
7660 print_it_typical. Ideally there should be a call to one of these
7661 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7662 stop_waiting is called.
33d62d64 7663
fd664c91
PA
7664 Note that we don't call these directly, instead we delegate that to
7665 the interpreters, through observers. Interpreters then call these
7666 with whatever uiout is right. */
33d62d64 7667
fd664c91
PA
7668void
7669print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7670{
fd664c91 7671 /* For CLI-like interpreters, print nothing. */
33d62d64 7672
fd664c91
PA
7673 if (ui_out_is_mi_like_p (uiout))
7674 {
7675 ui_out_field_string (uiout, "reason",
7676 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7677 }
7678}
33d62d64 7679
fd664c91
PA
7680void
7681print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7682{
33d62d64
JK
7683 annotate_signalled ();
7684 if (ui_out_is_mi_like_p (uiout))
7685 ui_out_field_string
7686 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7687 ui_out_text (uiout, "\nProgram terminated with signal ");
7688 annotate_signal_name ();
7689 ui_out_field_string (uiout, "signal-name",
2ea28649 7690 gdb_signal_to_name (siggnal));
33d62d64
JK
7691 annotate_signal_name_end ();
7692 ui_out_text (uiout, ", ");
7693 annotate_signal_string ();
7694 ui_out_field_string (uiout, "signal-meaning",
2ea28649 7695 gdb_signal_to_string (siggnal));
33d62d64
JK
7696 annotate_signal_string_end ();
7697 ui_out_text (uiout, ".\n");
7698 ui_out_text (uiout, "The program no longer exists.\n");
7699}
7700
fd664c91
PA
7701void
7702print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7703{
fda326dd
TT
7704 struct inferior *inf = current_inferior ();
7705 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7706
33d62d64
JK
7707 annotate_exited (exitstatus);
7708 if (exitstatus)
7709 {
7710 if (ui_out_is_mi_like_p (uiout))
7711 ui_out_field_string (uiout, "reason",
7712 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
7713 ui_out_text (uiout, "[Inferior ");
7714 ui_out_text (uiout, plongest (inf->num));
7715 ui_out_text (uiout, " (");
7716 ui_out_text (uiout, pidstr);
7717 ui_out_text (uiout, ") exited with code ");
33d62d64 7718 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 7719 ui_out_text (uiout, "]\n");
33d62d64
JK
7720 }
7721 else
11cf8741 7722 {
9dc5e2a9 7723 if (ui_out_is_mi_like_p (uiout))
034dad6f 7724 ui_out_field_string
33d62d64 7725 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
7726 ui_out_text (uiout, "[Inferior ");
7727 ui_out_text (uiout, plongest (inf->num));
7728 ui_out_text (uiout, " (");
7729 ui_out_text (uiout, pidstr);
7730 ui_out_text (uiout, ") exited normally]\n");
33d62d64 7731 }
33d62d64
JK
7732}
7733
fd664c91
PA
7734void
7735print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64
JK
7736{
7737 annotate_signal ();
7738
a493e3e2 7739 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
7740 {
7741 struct thread_info *t = inferior_thread ();
7742
7743 ui_out_text (uiout, "\n[");
7744 ui_out_field_string (uiout, "thread-name",
7745 target_pid_to_str (t->ptid));
7746 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
7747 ui_out_text (uiout, " stopped");
7748 }
7749 else
7750 {
7751 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 7752 annotate_signal_name ();
33d62d64
JK
7753 if (ui_out_is_mi_like_p (uiout))
7754 ui_out_field_string
7755 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 7756 ui_out_field_string (uiout, "signal-name",
2ea28649 7757 gdb_signal_to_name (siggnal));
8b93c638
JM
7758 annotate_signal_name_end ();
7759 ui_out_text (uiout, ", ");
7760 annotate_signal_string ();
488f131b 7761 ui_out_field_string (uiout, "signal-meaning",
2ea28649 7762 gdb_signal_to_string (siggnal));
8b93c638 7763 annotate_signal_string_end ();
33d62d64
JK
7764 }
7765 ui_out_text (uiout, ".\n");
7766}
252fbfc8 7767
fd664c91
PA
7768void
7769print_no_history_reason (struct ui_out *uiout)
33d62d64 7770{
fd664c91 7771 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
11cf8741 7772}
43ff13b4 7773
0c7e1a46
PA
7774/* Print current location without a level number, if we have changed
7775 functions or hit a breakpoint. Print source line if we have one.
7776 bpstat_print contains the logic deciding in detail what to print,
7777 based on the event(s) that just occurred. */
7778
243a9253
PA
7779static void
7780print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7781{
7782 int bpstat_ret;
f486487f 7783 enum print_what source_flag;
0c7e1a46
PA
7784 int do_frame_printing = 1;
7785 struct thread_info *tp = inferior_thread ();
7786
7787 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7788 switch (bpstat_ret)
7789 {
7790 case PRINT_UNKNOWN:
7791 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7792 should) carry around the function and does (or should) use
7793 that when doing a frame comparison. */
7794 if (tp->control.stop_step
7795 && frame_id_eq (tp->control.step_frame_id,
7796 get_frame_id (get_current_frame ()))
885eeb5b 7797 && tp->control.step_start_function == find_pc_function (stop_pc))
0c7e1a46
PA
7798 {
7799 /* Finished step, just print source line. */
7800 source_flag = SRC_LINE;
7801 }
7802 else
7803 {
7804 /* Print location and source line. */
7805 source_flag = SRC_AND_LOC;
7806 }
7807 break;
7808 case PRINT_SRC_AND_LOC:
7809 /* Print location and source line. */
7810 source_flag = SRC_AND_LOC;
7811 break;
7812 case PRINT_SRC_ONLY:
7813 source_flag = SRC_LINE;
7814 break;
7815 case PRINT_NOTHING:
7816 /* Something bogus. */
7817 source_flag = SRC_LINE;
7818 do_frame_printing = 0;
7819 break;
7820 default:
7821 internal_error (__FILE__, __LINE__, _("Unknown value."));
7822 }
7823
7824 /* The behavior of this routine with respect to the source
7825 flag is:
7826 SRC_LINE: Print only source line
7827 LOCATION: Print only location
7828 SRC_AND_LOC: Print location and source line. */
7829 if (do_frame_printing)
7830 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
7831}
7832
7833/* Cleanup that restores a previous current uiout. */
7834
7835static void
7836restore_current_uiout_cleanup (void *arg)
7837{
7838 struct ui_out *saved_uiout = arg;
7839
7840 current_uiout = saved_uiout;
7841}
7842
7843/* See infrun.h. */
7844
7845void
7846print_stop_event (struct ui_out *uiout)
7847{
7848 struct cleanup *old_chain;
7849 struct target_waitstatus last;
7850 ptid_t last_ptid;
7851 struct thread_info *tp;
7852
7853 get_last_target_status (&last_ptid, &last);
7854
7855 old_chain = make_cleanup (restore_current_uiout_cleanup, current_uiout);
7856 current_uiout = uiout;
7857
7858 print_stop_location (&last);
0c7e1a46
PA
7859
7860 /* Display the auto-display expressions. */
7861 do_displays ();
243a9253
PA
7862
7863 do_cleanups (old_chain);
7864
7865 tp = inferior_thread ();
7866 if (tp->thread_fsm != NULL
7867 && thread_fsm_finished_p (tp->thread_fsm))
7868 {
7869 struct return_value_info *rv;
7870
7871 rv = thread_fsm_return_value (tp->thread_fsm);
7872 if (rv != NULL)
7873 print_return_value (uiout, rv);
7874 }
0c7e1a46
PA
7875}
7876
388a7084
PA
7877/* See infrun.h. */
7878
7879void
7880maybe_remove_breakpoints (void)
7881{
7882 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7883 {
7884 if (remove_breakpoints ())
7885 {
7886 target_terminal_ours_for_output ();
7887 printf_filtered (_("Cannot remove breakpoints because "
7888 "program is no longer writable.\nFurther "
7889 "execution is probably impossible.\n"));
7890 }
7891 }
7892}
7893
4c2f2a79
PA
7894/* The execution context that just caused a normal stop. */
7895
7896struct stop_context
7897{
7898 /* The stop ID. */
7899 ULONGEST stop_id;
c906108c 7900
4c2f2a79 7901 /* The event PTID. */
c906108c 7902
4c2f2a79
PA
7903 ptid_t ptid;
7904
7905 /* If stopp for a thread event, this is the thread that caused the
7906 stop. */
7907 struct thread_info *thread;
7908
7909 /* The inferior that caused the stop. */
7910 int inf_num;
7911};
7912
7913/* Returns a new stop context. If stopped for a thread event, this
7914 takes a strong reference to the thread. */
7915
7916static struct stop_context *
7917save_stop_context (void)
7918{
224c3ddb 7919 struct stop_context *sc = XNEW (struct stop_context);
4c2f2a79
PA
7920
7921 sc->stop_id = get_stop_id ();
7922 sc->ptid = inferior_ptid;
7923 sc->inf_num = current_inferior ()->num;
7924
7925 if (!ptid_equal (inferior_ptid, null_ptid))
7926 {
7927 /* Take a strong reference so that the thread can't be deleted
7928 yet. */
7929 sc->thread = inferior_thread ();
7930 sc->thread->refcount++;
7931 }
7932 else
7933 sc->thread = NULL;
7934
7935 return sc;
7936}
7937
7938/* Release a stop context previously created with save_stop_context.
7939 Releases the strong reference to the thread as well. */
7940
7941static void
7942release_stop_context_cleanup (void *arg)
7943{
7944 struct stop_context *sc = arg;
7945
7946 if (sc->thread != NULL)
7947 sc->thread->refcount--;
7948 xfree (sc);
7949}
7950
7951/* Return true if the current context no longer matches the saved stop
7952 context. */
7953
7954static int
7955stop_context_changed (struct stop_context *prev)
7956{
7957 if (!ptid_equal (prev->ptid, inferior_ptid))
7958 return 1;
7959 if (prev->inf_num != current_inferior ()->num)
7960 return 1;
7961 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
7962 return 1;
7963 if (get_stop_id () != prev->stop_id)
7964 return 1;
7965 return 0;
7966}
7967
7968/* See infrun.h. */
7969
7970int
96baa820 7971normal_stop (void)
c906108c 7972{
73b65bb0
DJ
7973 struct target_waitstatus last;
7974 ptid_t last_ptid;
29f49a6a 7975 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
e1316e60 7976 ptid_t pid_ptid;
73b65bb0
DJ
7977
7978 get_last_target_status (&last_ptid, &last);
7979
4c2f2a79
PA
7980 new_stop_id ();
7981
29f49a6a
PA
7982 /* If an exception is thrown from this point on, make sure to
7983 propagate GDB's knowledge of the executing state to the
7984 frontend/user running state. A QUIT is an easy exception to see
7985 here, so do this before any filtered output. */
c35b1492
PA
7986 if (!non_stop)
7987 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
e1316e60
PA
7988 else if (last.kind == TARGET_WAITKIND_SIGNALLED
7989 || last.kind == TARGET_WAITKIND_EXITED)
7990 {
7991 /* On some targets, we may still have live threads in the
7992 inferior when we get a process exit event. E.g., for
7993 "checkpoint", when the current checkpoint/fork exits,
7994 linux-fork.c automatically switches to another fork from
7995 within target_mourn_inferior. */
7996 if (!ptid_equal (inferior_ptid, null_ptid))
7997 {
7998 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
7999 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8000 }
8001 }
8002 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 8003 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 8004
b57bacec
PA
8005 /* As we're presenting a stop, and potentially removing breakpoints,
8006 update the thread list so we can tell whether there are threads
8007 running on the target. With target remote, for example, we can
8008 only learn about new threads when we explicitly update the thread
8009 list. Do this before notifying the interpreters about signal
8010 stops, end of stepping ranges, etc., so that the "new thread"
8011 output is emitted before e.g., "Program received signal FOO",
8012 instead of after. */
8013 update_thread_list ();
8014
8015 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8016 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8017
c906108c
SS
8018 /* As with the notification of thread events, we want to delay
8019 notifying the user that we've switched thread context until
8020 the inferior actually stops.
8021
73b65bb0
DJ
8022 There's no point in saying anything if the inferior has exited.
8023 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8024 "received a signal".
8025
8026 Also skip saying anything in non-stop mode. In that mode, as we
8027 don't want GDB to switch threads behind the user's back, to avoid
8028 races where the user is typing a command to apply to thread x,
8029 but GDB switches to thread y before the user finishes entering
8030 the command, fetch_inferior_event installs a cleanup to restore
8031 the current thread back to the thread the user had selected right
8032 after this event is handled, so we're not really switching, only
8033 informing of a stop. */
4f8d22e3
PA
8034 if (!non_stop
8035 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
8036 && target_has_execution
8037 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8038 && last.kind != TARGET_WAITKIND_EXITED
8039 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
8040 {
8041 target_terminal_ours_for_output ();
a3f17187 8042 printf_filtered (_("[Switching to %s]\n"),
c95310c6 8043 target_pid_to_str (inferior_ptid));
b8fa951a 8044 annotate_thread_changed ();
39f77062 8045 previous_inferior_ptid = inferior_ptid;
c906108c 8046 }
c906108c 8047
0e5bf2a8
PA
8048 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8049 {
8050 gdb_assert (sync_execution || !target_can_async_p ());
8051
8052 target_terminal_ours_for_output ();
8053 printf_filtered (_("No unwaited-for children left.\n"));
8054 }
8055
b57bacec 8056 /* Note: this depends on the update_thread_list call above. */
388a7084 8057 maybe_remove_breakpoints ();
c906108c 8058
c906108c
SS
8059 /* If an auto-display called a function and that got a signal,
8060 delete that auto-display to avoid an infinite recursion. */
8061
8062 if (stopped_by_random_signal)
8063 disable_current_display ();
8064
c906108c 8065 target_terminal_ours ();
0f641c01 8066 async_enable_stdin ();
c906108c 8067
388a7084
PA
8068 /* Let the user/frontend see the threads as stopped. */
8069 do_cleanups (old_chain);
8070
8071 /* Select innermost stack frame - i.e., current frame is frame 0,
8072 and current location is based on that. Handle the case where the
8073 dummy call is returning after being stopped. E.g. the dummy call
8074 previously hit a breakpoint. (If the dummy call returns
8075 normally, we won't reach here.) Do this before the stop hook is
8076 run, so that it doesn't get to see the temporary dummy frame,
8077 which is not where we'll present the stop. */
8078 if (has_stack_frames ())
8079 {
8080 if (stop_stack_dummy == STOP_STACK_DUMMY)
8081 {
8082 /* Pop the empty frame that contains the stack dummy. This
8083 also restores inferior state prior to the call (struct
8084 infcall_suspend_state). */
8085 struct frame_info *frame = get_current_frame ();
8086
8087 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8088 frame_pop (frame);
8089 /* frame_pop calls reinit_frame_cache as the last thing it
8090 does which means there's now no selected frame. */
8091 }
8092
8093 select_frame (get_current_frame ());
8094
8095 /* Set the current source location. */
8096 set_current_sal_from_frame (get_current_frame ());
8097 }
dd7e2d2b
PA
8098
8099 /* Look up the hook_stop and run it (CLI internally handles problem
8100 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8101 if (stop_command != NULL)
8102 {
8103 struct stop_context *saved_context = save_stop_context ();
8104 struct cleanup *old_chain
8105 = make_cleanup (release_stop_context_cleanup, saved_context);
8106
8107 catch_errors (hook_stop_stub, stop_command,
8108 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8109
8110 /* If the stop hook resumes the target, then there's no point in
8111 trying to notify about the previous stop; its context is
8112 gone. Likewise if the command switches thread or inferior --
8113 the observers would print a stop for the wrong
8114 thread/inferior. */
8115 if (stop_context_changed (saved_context))
8116 {
8117 do_cleanups (old_chain);
8118 return 1;
8119 }
8120 do_cleanups (old_chain);
8121 }
dd7e2d2b 8122
388a7084
PA
8123 /* Notify observers about the stop. This is where the interpreters
8124 print the stop event. */
8125 if (!ptid_equal (inferior_ptid, null_ptid))
8126 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8127 stop_print_frame);
8128 else
8129 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 8130
243a9253
PA
8131 annotate_stopped ();
8132
48844aa6
PA
8133 if (target_has_execution)
8134 {
8135 if (last.kind != TARGET_WAITKIND_SIGNALLED
8136 && last.kind != TARGET_WAITKIND_EXITED)
8137 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8138 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8139 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8140 }
6c95b8df
PA
8141
8142 /* Try to get rid of automatically added inferiors that are no
8143 longer needed. Keeping those around slows down things linearly.
8144 Note that this never removes the current inferior. */
8145 prune_inferiors ();
4c2f2a79
PA
8146
8147 return 0;
c906108c
SS
8148}
8149
8150static int
96baa820 8151hook_stop_stub (void *cmd)
c906108c 8152{
5913bcb0 8153 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
8154 return (0);
8155}
8156\f
c5aa993b 8157int
96baa820 8158signal_stop_state (int signo)
c906108c 8159{
d6b48e9c 8160 return signal_stop[signo];
c906108c
SS
8161}
8162
c5aa993b 8163int
96baa820 8164signal_print_state (int signo)
c906108c
SS
8165{
8166 return signal_print[signo];
8167}
8168
c5aa993b 8169int
96baa820 8170signal_pass_state (int signo)
c906108c
SS
8171{
8172 return signal_program[signo];
8173}
8174
2455069d
UW
8175static void
8176signal_cache_update (int signo)
8177{
8178 if (signo == -1)
8179 {
a493e3e2 8180 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8181 signal_cache_update (signo);
8182
8183 return;
8184 }
8185
8186 signal_pass[signo] = (signal_stop[signo] == 0
8187 && signal_print[signo] == 0
ab04a2af
TT
8188 && signal_program[signo] == 1
8189 && signal_catch[signo] == 0);
2455069d
UW
8190}
8191
488f131b 8192int
7bda5e4a 8193signal_stop_update (int signo, int state)
d4f3574e
SS
8194{
8195 int ret = signal_stop[signo];
abbb1732 8196
d4f3574e 8197 signal_stop[signo] = state;
2455069d 8198 signal_cache_update (signo);
d4f3574e
SS
8199 return ret;
8200}
8201
488f131b 8202int
7bda5e4a 8203signal_print_update (int signo, int state)
d4f3574e
SS
8204{
8205 int ret = signal_print[signo];
abbb1732 8206
d4f3574e 8207 signal_print[signo] = state;
2455069d 8208 signal_cache_update (signo);
d4f3574e
SS
8209 return ret;
8210}
8211
488f131b 8212int
7bda5e4a 8213signal_pass_update (int signo, int state)
d4f3574e
SS
8214{
8215 int ret = signal_program[signo];
abbb1732 8216
d4f3574e 8217 signal_program[signo] = state;
2455069d 8218 signal_cache_update (signo);
d4f3574e
SS
8219 return ret;
8220}
8221
ab04a2af
TT
8222/* Update the global 'signal_catch' from INFO and notify the
8223 target. */
8224
8225void
8226signal_catch_update (const unsigned int *info)
8227{
8228 int i;
8229
8230 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8231 signal_catch[i] = info[i] > 0;
8232 signal_cache_update (-1);
8233 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8234}
8235
c906108c 8236static void
96baa820 8237sig_print_header (void)
c906108c 8238{
3e43a32a
MS
8239 printf_filtered (_("Signal Stop\tPrint\tPass "
8240 "to program\tDescription\n"));
c906108c
SS
8241}
8242
8243static void
2ea28649 8244sig_print_info (enum gdb_signal oursig)
c906108c 8245{
2ea28649 8246 const char *name = gdb_signal_to_name (oursig);
c906108c 8247 int name_padding = 13 - strlen (name);
96baa820 8248
c906108c
SS
8249 if (name_padding <= 0)
8250 name_padding = 0;
8251
8252 printf_filtered ("%s", name);
488f131b 8253 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8254 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8255 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8256 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8257 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8258}
8259
8260/* Specify how various signals in the inferior should be handled. */
8261
8262static void
96baa820 8263handle_command (char *args, int from_tty)
c906108c
SS
8264{
8265 char **argv;
8266 int digits, wordlen;
8267 int sigfirst, signum, siglast;
2ea28649 8268 enum gdb_signal oursig;
c906108c
SS
8269 int allsigs;
8270 int nsigs;
8271 unsigned char *sigs;
8272 struct cleanup *old_chain;
8273
8274 if (args == NULL)
8275 {
e2e0b3e5 8276 error_no_arg (_("signal to handle"));
c906108c
SS
8277 }
8278
1777feb0 8279 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8280
a493e3e2 8281 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
8282 sigs = (unsigned char *) alloca (nsigs);
8283 memset (sigs, 0, nsigs);
8284
1777feb0 8285 /* Break the command line up into args. */
c906108c 8286
d1a41061 8287 argv = gdb_buildargv (args);
7a292a7a 8288 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
8289
8290 /* Walk through the args, looking for signal oursigs, signal names, and
8291 actions. Signal numbers and signal names may be interspersed with
8292 actions, with the actions being performed for all signals cumulatively
1777feb0 8293 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
8294
8295 while (*argv != NULL)
8296 {
8297 wordlen = strlen (*argv);
8298 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8299 {;
8300 }
8301 allsigs = 0;
8302 sigfirst = siglast = -1;
8303
8304 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8305 {
8306 /* Apply action to all signals except those used by the
1777feb0 8307 debugger. Silently skip those. */
c906108c
SS
8308 allsigs = 1;
8309 sigfirst = 0;
8310 siglast = nsigs - 1;
8311 }
8312 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8313 {
8314 SET_SIGS (nsigs, sigs, signal_stop);
8315 SET_SIGS (nsigs, sigs, signal_print);
8316 }
8317 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8318 {
8319 UNSET_SIGS (nsigs, sigs, signal_program);
8320 }
8321 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8322 {
8323 SET_SIGS (nsigs, sigs, signal_print);
8324 }
8325 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8326 {
8327 SET_SIGS (nsigs, sigs, signal_program);
8328 }
8329 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8330 {
8331 UNSET_SIGS (nsigs, sigs, signal_stop);
8332 }
8333 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8334 {
8335 SET_SIGS (nsigs, sigs, signal_program);
8336 }
8337 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8338 {
8339 UNSET_SIGS (nsigs, sigs, signal_print);
8340 UNSET_SIGS (nsigs, sigs, signal_stop);
8341 }
8342 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8343 {
8344 UNSET_SIGS (nsigs, sigs, signal_program);
8345 }
8346 else if (digits > 0)
8347 {
8348 /* It is numeric. The numeric signal refers to our own
8349 internal signal numbering from target.h, not to host/target
8350 signal number. This is a feature; users really should be
8351 using symbolic names anyway, and the common ones like
8352 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8353
8354 sigfirst = siglast = (int)
2ea28649 8355 gdb_signal_from_command (atoi (*argv));
c906108c
SS
8356 if ((*argv)[digits] == '-')
8357 {
8358 siglast = (int)
2ea28649 8359 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
8360 }
8361 if (sigfirst > siglast)
8362 {
1777feb0 8363 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
8364 signum = sigfirst;
8365 sigfirst = siglast;
8366 siglast = signum;
8367 }
8368 }
8369 else
8370 {
2ea28649 8371 oursig = gdb_signal_from_name (*argv);
a493e3e2 8372 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8373 {
8374 sigfirst = siglast = (int) oursig;
8375 }
8376 else
8377 {
8378 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 8379 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
8380 }
8381 }
8382
8383 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8384 which signals to apply actions to. */
c906108c
SS
8385
8386 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8387 {
2ea28649 8388 switch ((enum gdb_signal) signum)
c906108c 8389 {
a493e3e2
PA
8390 case GDB_SIGNAL_TRAP:
8391 case GDB_SIGNAL_INT:
c906108c
SS
8392 if (!allsigs && !sigs[signum])
8393 {
9e2f0ad4 8394 if (query (_("%s is used by the debugger.\n\
3e43a32a 8395Are you sure you want to change it? "),
2ea28649 8396 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8397 {
8398 sigs[signum] = 1;
8399 }
8400 else
8401 {
a3f17187 8402 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8403 gdb_flush (gdb_stdout);
8404 }
8405 }
8406 break;
a493e3e2
PA
8407 case GDB_SIGNAL_0:
8408 case GDB_SIGNAL_DEFAULT:
8409 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8410 /* Make sure that "all" doesn't print these. */
8411 break;
8412 default:
8413 sigs[signum] = 1;
8414 break;
8415 }
8416 }
8417
8418 argv++;
8419 }
8420
3a031f65
PA
8421 for (signum = 0; signum < nsigs; signum++)
8422 if (sigs[signum])
8423 {
2455069d 8424 signal_cache_update (-1);
a493e3e2
PA
8425 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8426 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 8427
3a031f65
PA
8428 if (from_tty)
8429 {
8430 /* Show the results. */
8431 sig_print_header ();
8432 for (; signum < nsigs; signum++)
8433 if (sigs[signum])
aead7601 8434 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8435 }
8436
8437 break;
8438 }
c906108c
SS
8439
8440 do_cleanups (old_chain);
8441}
8442
de0bea00
MF
8443/* Complete the "handle" command. */
8444
8445static VEC (char_ptr) *
8446handle_completer (struct cmd_list_element *ignore,
6f937416 8447 const char *text, const char *word)
de0bea00
MF
8448{
8449 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8450 static const char * const keywords[] =
8451 {
8452 "all",
8453 "stop",
8454 "ignore",
8455 "print",
8456 "pass",
8457 "nostop",
8458 "noignore",
8459 "noprint",
8460 "nopass",
8461 NULL,
8462 };
8463
8464 vec_signals = signal_completer (ignore, text, word);
8465 vec_keywords = complete_on_enum (keywords, word, word);
8466
8467 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8468 VEC_free (char_ptr, vec_signals);
8469 VEC_free (char_ptr, vec_keywords);
8470 return return_val;
8471}
8472
2ea28649
PA
8473enum gdb_signal
8474gdb_signal_from_command (int num)
ed01b82c
PA
8475{
8476 if (num >= 1 && num <= 15)
2ea28649 8477 return (enum gdb_signal) num;
ed01b82c
PA
8478 error (_("Only signals 1-15 are valid as numeric signals.\n\
8479Use \"info signals\" for a list of symbolic signals."));
8480}
8481
c906108c
SS
8482/* Print current contents of the tables set by the handle command.
8483 It is possible we should just be printing signals actually used
8484 by the current target (but for things to work right when switching
8485 targets, all signals should be in the signal tables). */
8486
8487static void
96baa820 8488signals_info (char *signum_exp, int from_tty)
c906108c 8489{
2ea28649 8490 enum gdb_signal oursig;
abbb1732 8491
c906108c
SS
8492 sig_print_header ();
8493
8494 if (signum_exp)
8495 {
8496 /* First see if this is a symbol name. */
2ea28649 8497 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8498 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8499 {
8500 /* No, try numeric. */
8501 oursig =
2ea28649 8502 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8503 }
8504 sig_print_info (oursig);
8505 return;
8506 }
8507
8508 printf_filtered ("\n");
8509 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8510 for (oursig = GDB_SIGNAL_FIRST;
8511 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8512 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8513 {
8514 QUIT;
8515
a493e3e2
PA
8516 if (oursig != GDB_SIGNAL_UNKNOWN
8517 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8518 sig_print_info (oursig);
8519 }
8520
3e43a32a
MS
8521 printf_filtered (_("\nUse the \"handle\" command "
8522 "to change these tables.\n"));
c906108c 8523}
4aa995e1 8524
c709acd1
PA
8525/* Check if it makes sense to read $_siginfo from the current thread
8526 at this point. If not, throw an error. */
8527
8528static void
8529validate_siginfo_access (void)
8530{
8531 /* No current inferior, no siginfo. */
8532 if (ptid_equal (inferior_ptid, null_ptid))
8533 error (_("No thread selected."));
8534
8535 /* Don't try to read from a dead thread. */
8536 if (is_exited (inferior_ptid))
8537 error (_("The current thread has terminated"));
8538
8539 /* ... or from a spinning thread. */
8540 if (is_running (inferior_ptid))
8541 error (_("Selected thread is running."));
8542}
8543
4aa995e1
PA
8544/* The $_siginfo convenience variable is a bit special. We don't know
8545 for sure the type of the value until we actually have a chance to
7a9dd1b2 8546 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8547 also dependent on which thread you have selected.
8548
8549 1. making $_siginfo be an internalvar that creates a new value on
8550 access.
8551
8552 2. making the value of $_siginfo be an lval_computed value. */
8553
8554/* This function implements the lval_computed support for reading a
8555 $_siginfo value. */
8556
8557static void
8558siginfo_value_read (struct value *v)
8559{
8560 LONGEST transferred;
8561
c709acd1
PA
8562 validate_siginfo_access ();
8563
4aa995e1
PA
8564 transferred =
8565 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8566 NULL,
8567 value_contents_all_raw (v),
8568 value_offset (v),
8569 TYPE_LENGTH (value_type (v)));
8570
8571 if (transferred != TYPE_LENGTH (value_type (v)))
8572 error (_("Unable to read siginfo"));
8573}
8574
8575/* This function implements the lval_computed support for writing a
8576 $_siginfo value. */
8577
8578static void
8579siginfo_value_write (struct value *v, struct value *fromval)
8580{
8581 LONGEST transferred;
8582
c709acd1
PA
8583 validate_siginfo_access ();
8584
4aa995e1
PA
8585 transferred = target_write (&current_target,
8586 TARGET_OBJECT_SIGNAL_INFO,
8587 NULL,
8588 value_contents_all_raw (fromval),
8589 value_offset (v),
8590 TYPE_LENGTH (value_type (fromval)));
8591
8592 if (transferred != TYPE_LENGTH (value_type (fromval)))
8593 error (_("Unable to write siginfo"));
8594}
8595
c8f2448a 8596static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8597 {
8598 siginfo_value_read,
8599 siginfo_value_write
8600 };
8601
8602/* Return a new value with the correct type for the siginfo object of
78267919
UW
8603 the current thread using architecture GDBARCH. Return a void value
8604 if there's no object available. */
4aa995e1 8605
2c0b251b 8606static struct value *
22d2b532
SDJ
8607siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8608 void *ignore)
4aa995e1 8609{
4aa995e1 8610 if (target_has_stack
78267919
UW
8611 && !ptid_equal (inferior_ptid, null_ptid)
8612 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8613 {
78267919 8614 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8615
78267919 8616 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8617 }
8618
78267919 8619 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8620}
8621
c906108c 8622\f
16c381f0
JK
8623/* infcall_suspend_state contains state about the program itself like its
8624 registers and any signal it received when it last stopped.
8625 This state must be restored regardless of how the inferior function call
8626 ends (either successfully, or after it hits a breakpoint or signal)
8627 if the program is to properly continue where it left off. */
8628
8629struct infcall_suspend_state
7a292a7a 8630{
16c381f0 8631 struct thread_suspend_state thread_suspend;
16c381f0
JK
8632
8633 /* Other fields: */
7a292a7a 8634 CORE_ADDR stop_pc;
b89667eb 8635 struct regcache *registers;
1736ad11 8636
35515841 8637 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
8638 struct gdbarch *siginfo_gdbarch;
8639
8640 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8641 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8642 content would be invalid. */
8643 gdb_byte *siginfo_data;
b89667eb
DE
8644};
8645
16c381f0
JK
8646struct infcall_suspend_state *
8647save_infcall_suspend_state (void)
b89667eb 8648{
16c381f0 8649 struct infcall_suspend_state *inf_state;
b89667eb 8650 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8651 struct regcache *regcache = get_current_regcache ();
8652 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8653 gdb_byte *siginfo_data = NULL;
8654
8655 if (gdbarch_get_siginfo_type_p (gdbarch))
8656 {
8657 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8658 size_t len = TYPE_LENGTH (type);
8659 struct cleanup *back_to;
8660
224c3ddb 8661 siginfo_data = (gdb_byte *) xmalloc (len);
1736ad11
JK
8662 back_to = make_cleanup (xfree, siginfo_data);
8663
8664 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8665 siginfo_data, 0, len) == len)
8666 discard_cleanups (back_to);
8667 else
8668 {
8669 /* Errors ignored. */
8670 do_cleanups (back_to);
8671 siginfo_data = NULL;
8672 }
8673 }
8674
41bf6aca 8675 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
8676
8677 if (siginfo_data)
8678 {
8679 inf_state->siginfo_gdbarch = gdbarch;
8680 inf_state->siginfo_data = siginfo_data;
8681 }
b89667eb 8682
16c381f0 8683 inf_state->thread_suspend = tp->suspend;
16c381f0 8684
35515841 8685 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
8686 GDB_SIGNAL_0 anyway. */
8687 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8688
b89667eb
DE
8689 inf_state->stop_pc = stop_pc;
8690
1736ad11 8691 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
8692
8693 return inf_state;
8694}
8695
8696/* Restore inferior session state to INF_STATE. */
8697
8698void
16c381f0 8699restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8700{
8701 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8702 struct regcache *regcache = get_current_regcache ();
8703 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 8704
16c381f0 8705 tp->suspend = inf_state->thread_suspend;
16c381f0 8706
b89667eb
DE
8707 stop_pc = inf_state->stop_pc;
8708
1736ad11
JK
8709 if (inf_state->siginfo_gdbarch == gdbarch)
8710 {
8711 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
8712
8713 /* Errors ignored. */
8714 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 8715 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
8716 }
8717
b89667eb
DE
8718 /* The inferior can be gone if the user types "print exit(0)"
8719 (and perhaps other times). */
8720 if (target_has_execution)
8721 /* NB: The register write goes through to the target. */
1736ad11 8722 regcache_cpy (regcache, inf_state->registers);
803b5f95 8723
16c381f0 8724 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8725}
8726
8727static void
16c381f0 8728do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 8729{
16c381f0 8730 restore_infcall_suspend_state (state);
b89667eb
DE
8731}
8732
8733struct cleanup *
16c381f0
JK
8734make_cleanup_restore_infcall_suspend_state
8735 (struct infcall_suspend_state *inf_state)
b89667eb 8736{
16c381f0 8737 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
8738}
8739
8740void
16c381f0 8741discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8742{
8743 regcache_xfree (inf_state->registers);
803b5f95 8744 xfree (inf_state->siginfo_data);
b89667eb
DE
8745 xfree (inf_state);
8746}
8747
8748struct regcache *
16c381f0 8749get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
8750{
8751 return inf_state->registers;
8752}
8753
16c381f0
JK
8754/* infcall_control_state contains state regarding gdb's control of the
8755 inferior itself like stepping control. It also contains session state like
8756 the user's currently selected frame. */
b89667eb 8757
16c381f0 8758struct infcall_control_state
b89667eb 8759{
16c381f0
JK
8760 struct thread_control_state thread_control;
8761 struct inferior_control_state inferior_control;
d82142e2
JK
8762
8763 /* Other fields: */
8764 enum stop_stack_kind stop_stack_dummy;
8765 int stopped_by_random_signal;
7a292a7a 8766 int stop_after_trap;
7a292a7a 8767
b89667eb 8768 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 8769 struct frame_id selected_frame_id;
7a292a7a
SS
8770};
8771
c906108c 8772/* Save all of the information associated with the inferior<==>gdb
b89667eb 8773 connection. */
c906108c 8774
16c381f0
JK
8775struct infcall_control_state *
8776save_infcall_control_state (void)
c906108c 8777{
8d749320
SM
8778 struct infcall_control_state *inf_status =
8779 XNEW (struct infcall_control_state);
4e1c45ea 8780 struct thread_info *tp = inferior_thread ();
d6b48e9c 8781 struct inferior *inf = current_inferior ();
7a292a7a 8782
16c381f0
JK
8783 inf_status->thread_control = tp->control;
8784 inf_status->inferior_control = inf->control;
d82142e2 8785
8358c15c 8786 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8787 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8788
16c381f0
JK
8789 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8790 chain. If caller's caller is walking the chain, they'll be happier if we
8791 hand them back the original chain when restore_infcall_control_state is
8792 called. */
8793 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8794
8795 /* Other fields: */
8796 inf_status->stop_stack_dummy = stop_stack_dummy;
8797 inf_status->stopped_by_random_signal = stopped_by_random_signal;
8798 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 8799
206415a3 8800 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8801
7a292a7a 8802 return inf_status;
c906108c
SS
8803}
8804
c906108c 8805static int
96baa820 8806restore_selected_frame (void *args)
c906108c 8807{
488f131b 8808 struct frame_id *fid = (struct frame_id *) args;
c906108c 8809 struct frame_info *frame;
c906108c 8810
101dcfbe 8811 frame = frame_find_by_id (*fid);
c906108c 8812
aa0cd9c1
AC
8813 /* If inf_status->selected_frame_id is NULL, there was no previously
8814 selected frame. */
101dcfbe 8815 if (frame == NULL)
c906108c 8816 {
8a3fe4f8 8817 warning (_("Unable to restore previously selected frame."));
c906108c
SS
8818 return 0;
8819 }
8820
0f7d239c 8821 select_frame (frame);
c906108c
SS
8822
8823 return (1);
8824}
8825
b89667eb
DE
8826/* Restore inferior session state to INF_STATUS. */
8827
c906108c 8828void
16c381f0 8829restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 8830{
4e1c45ea 8831 struct thread_info *tp = inferior_thread ();
d6b48e9c 8832 struct inferior *inf = current_inferior ();
4e1c45ea 8833
8358c15c
JK
8834 if (tp->control.step_resume_breakpoint)
8835 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8836
5b79abe7
TT
8837 if (tp->control.exception_resume_breakpoint)
8838 tp->control.exception_resume_breakpoint->disposition
8839 = disp_del_at_next_stop;
8840
d82142e2 8841 /* Handle the bpstat_copy of the chain. */
16c381f0 8842 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 8843
16c381f0
JK
8844 tp->control = inf_status->thread_control;
8845 inf->control = inf_status->inferior_control;
d82142e2
JK
8846
8847 /* Other fields: */
8848 stop_stack_dummy = inf_status->stop_stack_dummy;
8849 stopped_by_random_signal = inf_status->stopped_by_random_signal;
8850 stop_after_trap = inf_status->stop_after_trap;
c906108c 8851
b89667eb 8852 if (target_has_stack)
c906108c 8853 {
c906108c 8854 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
8855 walking the stack might encounter a garbage pointer and
8856 error() trying to dereference it. */
488f131b
JB
8857 if (catch_errors
8858 (restore_selected_frame, &inf_status->selected_frame_id,
8859 "Unable to restore previously selected frame:\n",
8860 RETURN_MASK_ERROR) == 0)
c906108c
SS
8861 /* Error in restoring the selected frame. Select the innermost
8862 frame. */
0f7d239c 8863 select_frame (get_current_frame ());
c906108c 8864 }
c906108c 8865
72cec141 8866 xfree (inf_status);
7a292a7a 8867}
c906108c 8868
74b7792f 8869static void
16c381f0 8870do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 8871{
16c381f0 8872 restore_infcall_control_state (sts);
74b7792f
AC
8873}
8874
8875struct cleanup *
16c381f0
JK
8876make_cleanup_restore_infcall_control_state
8877 (struct infcall_control_state *inf_status)
74b7792f 8878{
16c381f0 8879 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
8880}
8881
c906108c 8882void
16c381f0 8883discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 8884{
8358c15c
JK
8885 if (inf_status->thread_control.step_resume_breakpoint)
8886 inf_status->thread_control.step_resume_breakpoint->disposition
8887 = disp_del_at_next_stop;
8888
5b79abe7
TT
8889 if (inf_status->thread_control.exception_resume_breakpoint)
8890 inf_status->thread_control.exception_resume_breakpoint->disposition
8891 = disp_del_at_next_stop;
8892
1777feb0 8893 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 8894 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 8895
72cec141 8896 xfree (inf_status);
7a292a7a 8897}
b89667eb 8898\f
ca6724c1
KB
8899/* restore_inferior_ptid() will be used by the cleanup machinery
8900 to restore the inferior_ptid value saved in a call to
8901 save_inferior_ptid(). */
ce696e05
KB
8902
8903static void
8904restore_inferior_ptid (void *arg)
8905{
8906 ptid_t *saved_ptid_ptr = arg;
abbb1732 8907
ce696e05
KB
8908 inferior_ptid = *saved_ptid_ptr;
8909 xfree (arg);
8910}
8911
8912/* Save the value of inferior_ptid so that it may be restored by a
8913 later call to do_cleanups(). Returns the struct cleanup pointer
8914 needed for later doing the cleanup. */
8915
8916struct cleanup *
8917save_inferior_ptid (void)
8918{
8d749320 8919 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
ce696e05 8920
ce696e05
KB
8921 *saved_ptid_ptr = inferior_ptid;
8922 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
8923}
0c557179 8924
7f89fd65 8925/* See infrun.h. */
0c557179
SDJ
8926
8927void
8928clear_exit_convenience_vars (void)
8929{
8930 clear_internalvar (lookup_internalvar ("_exitsignal"));
8931 clear_internalvar (lookup_internalvar ("_exitcode"));
8932}
c5aa993b 8933\f
488f131b 8934
b2175913
MS
8935/* User interface for reverse debugging:
8936 Set exec-direction / show exec-direction commands
8937 (returns error unless target implements to_set_exec_direction method). */
8938
32231432 8939int execution_direction = EXEC_FORWARD;
b2175913
MS
8940static const char exec_forward[] = "forward";
8941static const char exec_reverse[] = "reverse";
8942static const char *exec_direction = exec_forward;
40478521 8943static const char *const exec_direction_names[] = {
b2175913
MS
8944 exec_forward,
8945 exec_reverse,
8946 NULL
8947};
8948
8949static void
8950set_exec_direction_func (char *args, int from_tty,
8951 struct cmd_list_element *cmd)
8952{
8953 if (target_can_execute_reverse)
8954 {
8955 if (!strcmp (exec_direction, exec_forward))
8956 execution_direction = EXEC_FORWARD;
8957 else if (!strcmp (exec_direction, exec_reverse))
8958 execution_direction = EXEC_REVERSE;
8959 }
8bbed405
MS
8960 else
8961 {
8962 exec_direction = exec_forward;
8963 error (_("Target does not support this operation."));
8964 }
b2175913
MS
8965}
8966
8967static void
8968show_exec_direction_func (struct ui_file *out, int from_tty,
8969 struct cmd_list_element *cmd, const char *value)
8970{
8971 switch (execution_direction) {
8972 case EXEC_FORWARD:
8973 fprintf_filtered (out, _("Forward.\n"));
8974 break;
8975 case EXEC_REVERSE:
8976 fprintf_filtered (out, _("Reverse.\n"));
8977 break;
b2175913 8978 default:
d8b34453
PA
8979 internal_error (__FILE__, __LINE__,
8980 _("bogus execution_direction value: %d"),
8981 (int) execution_direction);
b2175913
MS
8982 }
8983}
8984
d4db2f36
PA
8985static void
8986show_schedule_multiple (struct ui_file *file, int from_tty,
8987 struct cmd_list_element *c, const char *value)
8988{
3e43a32a
MS
8989 fprintf_filtered (file, _("Resuming the execution of threads "
8990 "of all processes is %s.\n"), value);
d4db2f36 8991}
ad52ddc6 8992
22d2b532
SDJ
8993/* Implementation of `siginfo' variable. */
8994
8995static const struct internalvar_funcs siginfo_funcs =
8996{
8997 siginfo_make_value,
8998 NULL,
8999 NULL
9000};
9001
372316f1
PA
9002/* Callback for infrun's target events source. This is marked when a
9003 thread has a pending status to process. */
9004
9005static void
9006infrun_async_inferior_event_handler (gdb_client_data data)
9007{
372316f1
PA
9008 inferior_event_handler (INF_REG_EVENT, NULL);
9009}
9010
c906108c 9011void
96baa820 9012_initialize_infrun (void)
c906108c 9013{
52f0bd74
AC
9014 int i;
9015 int numsigs;
de0bea00 9016 struct cmd_list_element *c;
c906108c 9017
372316f1
PA
9018 /* Register extra event sources in the event loop. */
9019 infrun_async_inferior_event_token
9020 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9021
1bedd215
AC
9022 add_info ("signals", signals_info, _("\
9023What debugger does when program gets various signals.\n\
9024Specify a signal as argument to print info on that signal only."));
c906108c
SS
9025 add_info_alias ("handle", "signals", 0);
9026
de0bea00 9027 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9028Specify how to handle signals.\n\
486c7739 9029Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9030Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9031If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9032will be displayed instead.\n\
9033\n\
c906108c
SS
9034Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9035from 1-15 are allowed for compatibility with old versions of GDB.\n\
9036Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9037The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9038used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9039\n\
1bedd215 9040Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9041\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9042Stop means reenter debugger if this signal happens (implies print).\n\
9043Print means print a message if this signal happens.\n\
9044Pass means let program see this signal; otherwise program doesn't know.\n\
9045Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9046Pass and Stop may be combined.\n\
9047\n\
9048Multiple signals may be specified. Signal numbers and signal names\n\
9049may be interspersed with actions, with the actions being performed for\n\
9050all signals cumulatively specified."));
de0bea00 9051 set_cmd_completer (c, handle_completer);
486c7739 9052
c906108c 9053 if (!dbx_commands)
1a966eab
AC
9054 stop_command = add_cmd ("stop", class_obscure,
9055 not_just_help_class_command, _("\
9056There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9057This allows you to set a list of commands to be run each time execution\n\
1a966eab 9058of the program stops."), &cmdlist);
c906108c 9059
ccce17b0 9060 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9061Set inferior debugging."), _("\
9062Show inferior debugging."), _("\
9063When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9064 NULL,
9065 show_debug_infrun,
9066 &setdebuglist, &showdebuglist);
527159b7 9067
3e43a32a
MS
9068 add_setshow_boolean_cmd ("displaced", class_maintenance,
9069 &debug_displaced, _("\
237fc4c9
PA
9070Set displaced stepping debugging."), _("\
9071Show displaced stepping debugging."), _("\
9072When non-zero, displaced stepping specific debugging is enabled."),
9073 NULL,
9074 show_debug_displaced,
9075 &setdebuglist, &showdebuglist);
9076
ad52ddc6
PA
9077 add_setshow_boolean_cmd ("non-stop", no_class,
9078 &non_stop_1, _("\
9079Set whether gdb controls the inferior in non-stop mode."), _("\
9080Show whether gdb controls the inferior in non-stop mode."), _("\
9081When debugging a multi-threaded program and this setting is\n\
9082off (the default, also called all-stop mode), when one thread stops\n\
9083(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9084all other threads in the program while you interact with the thread of\n\
9085interest. When you continue or step a thread, you can allow the other\n\
9086threads to run, or have them remain stopped, but while you inspect any\n\
9087thread's state, all threads stop.\n\
9088\n\
9089In non-stop mode, when one thread stops, other threads can continue\n\
9090to run freely. You'll be able to step each thread independently,\n\
9091leave it stopped or free to run as needed."),
9092 set_non_stop,
9093 show_non_stop,
9094 &setlist,
9095 &showlist);
9096
a493e3e2 9097 numsigs = (int) GDB_SIGNAL_LAST;
8d749320
SM
9098 signal_stop = XNEWVEC (unsigned char, numsigs);
9099 signal_print = XNEWVEC (unsigned char, numsigs);
9100 signal_program = XNEWVEC (unsigned char, numsigs);
9101 signal_catch = XNEWVEC (unsigned char, numsigs);
9102 signal_pass = XNEWVEC (unsigned char, numsigs);
c906108c
SS
9103 for (i = 0; i < numsigs; i++)
9104 {
9105 signal_stop[i] = 1;
9106 signal_print[i] = 1;
9107 signal_program[i] = 1;
ab04a2af 9108 signal_catch[i] = 0;
c906108c
SS
9109 }
9110
4d9d9d04
PA
9111 /* Signals caused by debugger's own actions should not be given to
9112 the program afterwards.
9113
9114 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9115 explicitly specifies that it should be delivered to the target
9116 program. Typically, that would occur when a user is debugging a
9117 target monitor on a simulator: the target monitor sets a
9118 breakpoint; the simulator encounters this breakpoint and halts
9119 the simulation handing control to GDB; GDB, noting that the stop
9120 address doesn't map to any known breakpoint, returns control back
9121 to the simulator; the simulator then delivers the hardware
9122 equivalent of a GDB_SIGNAL_TRAP to the program being
9123 debugged. */
a493e3e2
PA
9124 signal_program[GDB_SIGNAL_TRAP] = 0;
9125 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9126
9127 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9128 signal_stop[GDB_SIGNAL_ALRM] = 0;
9129 signal_print[GDB_SIGNAL_ALRM] = 0;
9130 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9131 signal_print[GDB_SIGNAL_VTALRM] = 0;
9132 signal_stop[GDB_SIGNAL_PROF] = 0;
9133 signal_print[GDB_SIGNAL_PROF] = 0;
9134 signal_stop[GDB_SIGNAL_CHLD] = 0;
9135 signal_print[GDB_SIGNAL_CHLD] = 0;
9136 signal_stop[GDB_SIGNAL_IO] = 0;
9137 signal_print[GDB_SIGNAL_IO] = 0;
9138 signal_stop[GDB_SIGNAL_POLL] = 0;
9139 signal_print[GDB_SIGNAL_POLL] = 0;
9140 signal_stop[GDB_SIGNAL_URG] = 0;
9141 signal_print[GDB_SIGNAL_URG] = 0;
9142 signal_stop[GDB_SIGNAL_WINCH] = 0;
9143 signal_print[GDB_SIGNAL_WINCH] = 0;
9144 signal_stop[GDB_SIGNAL_PRIO] = 0;
9145 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9146
cd0fc7c3
SS
9147 /* These signals are used internally by user-level thread
9148 implementations. (See signal(5) on Solaris.) Like the above
9149 signals, a healthy program receives and handles them as part of
9150 its normal operation. */
a493e3e2
PA
9151 signal_stop[GDB_SIGNAL_LWP] = 0;
9152 signal_print[GDB_SIGNAL_LWP] = 0;
9153 signal_stop[GDB_SIGNAL_WAITING] = 0;
9154 signal_print[GDB_SIGNAL_WAITING] = 0;
9155 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9156 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 9157
2455069d
UW
9158 /* Update cached state. */
9159 signal_cache_update (-1);
9160
85c07804
AC
9161 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9162 &stop_on_solib_events, _("\
9163Set stopping for shared library events."), _("\
9164Show stopping for shared library events."), _("\
c906108c
SS
9165If nonzero, gdb will give control to the user when the dynamic linker\n\
9166notifies gdb of shared library events. The most common event of interest\n\
85c07804 9167to the user would be loading/unloading of a new library."),
f9e14852 9168 set_stop_on_solib_events,
920d2a44 9169 show_stop_on_solib_events,
85c07804 9170 &setlist, &showlist);
c906108c 9171
7ab04401
AC
9172 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9173 follow_fork_mode_kind_names,
9174 &follow_fork_mode_string, _("\
9175Set debugger response to a program call of fork or vfork."), _("\
9176Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9177A fork or vfork creates a new process. follow-fork-mode can be:\n\
9178 parent - the original process is debugged after a fork\n\
9179 child - the new process is debugged after a fork\n\
ea1dd7bc 9180The unfollowed process will continue to run.\n\
7ab04401
AC
9181By default, the debugger will follow the parent process."),
9182 NULL,
920d2a44 9183 show_follow_fork_mode_string,
7ab04401
AC
9184 &setlist, &showlist);
9185
6c95b8df
PA
9186 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9187 follow_exec_mode_names,
9188 &follow_exec_mode_string, _("\
9189Set debugger response to a program call of exec."), _("\
9190Show debugger response to a program call of exec."), _("\
9191An exec call replaces the program image of a process.\n\
9192\n\
9193follow-exec-mode can be:\n\
9194\n\
cce7e648 9195 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9196to this new inferior. The program the process was running before\n\
9197the exec call can be restarted afterwards by restarting the original\n\
9198inferior.\n\
9199\n\
9200 same - the debugger keeps the process bound to the same inferior.\n\
9201The new executable image replaces the previous executable loaded in\n\
9202the inferior. Restarting the inferior after the exec call restarts\n\
9203the executable the process was running after the exec call.\n\
9204\n\
9205By default, the debugger will use the same inferior."),
9206 NULL,
9207 show_follow_exec_mode_string,
9208 &setlist, &showlist);
9209
7ab04401
AC
9210 add_setshow_enum_cmd ("scheduler-locking", class_run,
9211 scheduler_enums, &scheduler_mode, _("\
9212Set mode for locking scheduler during execution."), _("\
9213Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9214off == no locking (threads may preempt at any time)\n\
9215on == full locking (no thread except the current thread may run)\n\
9216 This applies to both normal execution and replay mode.\n\
9217step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9218 In this mode, other threads may run during other commands.\n\
9219 This applies to both normal execution and replay mode.\n\
9220replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9221 set_schedlock_func, /* traps on target vector */
920d2a44 9222 show_scheduler_mode,
7ab04401 9223 &setlist, &showlist);
5fbbeb29 9224
d4db2f36
PA
9225 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9226Set mode for resuming threads of all processes."), _("\
9227Show mode for resuming threads of all processes."), _("\
9228When on, execution commands (such as 'continue' or 'next') resume all\n\
9229threads of all processes. When off (which is the default), execution\n\
9230commands only resume the threads of the current process. The set of\n\
9231threads that are resumed is further refined by the scheduler-locking\n\
9232mode (see help set scheduler-locking)."),
9233 NULL,
9234 show_schedule_multiple,
9235 &setlist, &showlist);
9236
5bf193a2
AC
9237 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9238Set mode of the step operation."), _("\
9239Show mode of the step operation."), _("\
9240When set, doing a step over a function without debug line information\n\
9241will stop at the first instruction of that function. Otherwise, the\n\
9242function is skipped and the step command stops at a different source line."),
9243 NULL,
920d2a44 9244 show_step_stop_if_no_debug,
5bf193a2 9245 &setlist, &showlist);
ca6724c1 9246
72d0e2c5
YQ
9247 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9248 &can_use_displaced_stepping, _("\
237fc4c9
PA
9249Set debugger's willingness to use displaced stepping."), _("\
9250Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9251If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9252supported by the target architecture. If off, gdb will not use displaced\n\
9253stepping to step over breakpoints, even if such is supported by the target\n\
9254architecture. If auto (which is the default), gdb will use displaced stepping\n\
9255if the target architecture supports it and non-stop mode is active, but will not\n\
9256use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9257 NULL,
9258 show_can_use_displaced_stepping,
9259 &setlist, &showlist);
237fc4c9 9260
b2175913
MS
9261 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9262 &exec_direction, _("Set direction of execution.\n\
9263Options are 'forward' or 'reverse'."),
9264 _("Show direction of execution (forward/reverse)."),
9265 _("Tells gdb whether to execute forward or backward."),
9266 set_exec_direction_func, show_exec_direction_func,
9267 &setlist, &showlist);
9268
6c95b8df
PA
9269 /* Set/show detach-on-fork: user-settable mode. */
9270
9271 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9272Set whether gdb will detach the child of a fork."), _("\
9273Show whether gdb will detach the child of a fork."), _("\
9274Tells gdb whether to detach the child of a fork."),
9275 NULL, NULL, &setlist, &showlist);
9276
03583c20
UW
9277 /* Set/show disable address space randomization mode. */
9278
9279 add_setshow_boolean_cmd ("disable-randomization", class_support,
9280 &disable_randomization, _("\
9281Set disabling of debuggee's virtual address space randomization."), _("\
9282Show disabling of debuggee's virtual address space randomization."), _("\
9283When this mode is on (which is the default), randomization of the virtual\n\
9284address space is disabled. Standalone programs run with the randomization\n\
9285enabled by default on some platforms."),
9286 &set_disable_randomization,
9287 &show_disable_randomization,
9288 &setlist, &showlist);
9289
ca6724c1 9290 /* ptid initializations */
ca6724c1
KB
9291 inferior_ptid = null_ptid;
9292 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
9293
9294 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 9295 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 9296 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 9297 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
9298
9299 /* Explicitly create without lookup, since that tries to create a
9300 value with a void typed value, and when we get here, gdbarch
9301 isn't initialized yet. At this point, we're quite sure there
9302 isn't another convenience variable of the same name. */
22d2b532 9303 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9304
9305 add_setshow_boolean_cmd ("observer", no_class,
9306 &observer_mode_1, _("\
9307Set whether gdb controls the inferior in observer mode."), _("\
9308Show whether gdb controls the inferior in observer mode."), _("\
9309In observer mode, GDB can get data from the inferior, but not\n\
9310affect its execution. Registers and memory may not be changed,\n\
9311breakpoints may not be set, and the program cannot be interrupted\n\
9312or signalled."),
9313 set_observer_mode,
9314 show_observer_mode,
9315 &setlist,
9316 &showlist);
c906108c 9317}