]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/infrun.c
* ld-elfcomm/elfcomm.exp: Add appropriate emulation option
[thirdparty/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca 4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1 5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
0fb0cc75 6 2008, 2009 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
9f976b41 48#include "gdb_assert.h"
034dad6f 49#include "mi/mi-common.h"
4f8d22e3 50#include "event-top.h"
96429cc8 51#include "record.h"
edb3359d 52#include "inline-frame.h"
4efc6507 53#include "jit.h"
c906108c
SS
54
55/* Prototypes for local functions */
56
96baa820 57static void signals_info (char *, int);
c906108c 58
96baa820 59static void handle_command (char *, int);
c906108c 60
96baa820 61static void sig_print_info (enum target_signal);
c906108c 62
96baa820 63static void sig_print_header (void);
c906108c 64
74b7792f 65static void resume_cleanups (void *);
c906108c 66
96baa820 67static int hook_stop_stub (void *);
c906108c 68
96baa820
JM
69static int restore_selected_frame (void *);
70
71static void build_infrun (void);
72
4ef3f3be 73static int follow_fork (void);
96baa820
JM
74
75static void set_schedlock_func (char *args, int from_tty,
488f131b 76 struct cmd_list_element *c);
96baa820 77
4e1c45ea 78static int currently_stepping (struct thread_info *tp);
96baa820 79
b3444185
PA
80static int currently_stepping_or_nexting_callback (struct thread_info *tp,
81 void *data);
a7212384 82
96baa820
JM
83static void xdb_handle_command (char *args, int from_tty);
84
6a6b96b9 85static int prepare_to_proceed (int);
ea67f13b 86
96baa820 87void _initialize_infrun (void);
43ff13b4 88
e58b0e63
PA
89void nullify_last_target_wait_ptid (void);
90
5fbbeb29
CF
91/* When set, stop the 'step' command if we enter a function which has
92 no line number information. The normal behavior is that we step
93 over such function. */
94int step_stop_if_no_debug = 0;
920d2a44
AC
95static void
96show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
97 struct cmd_list_element *c, const char *value)
98{
99 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
100}
5fbbeb29 101
43ff13b4 102/* In asynchronous mode, but simulating synchronous execution. */
96baa820 103
43ff13b4
JM
104int sync_execution = 0;
105
c906108c
SS
106/* wait_for_inferior and normal_stop use this to notify the user
107 when the inferior stopped in a different thread than it had been
96baa820
JM
108 running in. */
109
39f77062 110static ptid_t previous_inferior_ptid;
7a292a7a 111
237fc4c9
PA
112int debug_displaced = 0;
113static void
114show_debug_displaced (struct ui_file *file, int from_tty,
115 struct cmd_list_element *c, const char *value)
116{
117 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
118}
119
527159b7 120static int debug_infrun = 0;
920d2a44
AC
121static void
122show_debug_infrun (struct ui_file *file, int from_tty,
123 struct cmd_list_element *c, const char *value)
124{
125 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
126}
527159b7 127
d4f3574e
SS
128/* If the program uses ELF-style shared libraries, then calls to
129 functions in shared libraries go through stubs, which live in a
130 table called the PLT (Procedure Linkage Table). The first time the
131 function is called, the stub sends control to the dynamic linker,
132 which looks up the function's real address, patches the stub so
133 that future calls will go directly to the function, and then passes
134 control to the function.
135
136 If we are stepping at the source level, we don't want to see any of
137 this --- we just want to skip over the stub and the dynamic linker.
138 The simple approach is to single-step until control leaves the
139 dynamic linker.
140
ca557f44
AC
141 However, on some systems (e.g., Red Hat's 5.2 distribution) the
142 dynamic linker calls functions in the shared C library, so you
143 can't tell from the PC alone whether the dynamic linker is still
144 running. In this case, we use a step-resume breakpoint to get us
145 past the dynamic linker, as if we were using "next" to step over a
146 function call.
d4f3574e 147
cfd8ab24 148 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
149 linker code or not. Normally, this means we single-step. However,
150 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
151 address where we can place a step-resume breakpoint to get past the
152 linker's symbol resolution function.
153
cfd8ab24 154 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
155 pretty portable way, by comparing the PC against the address ranges
156 of the dynamic linker's sections.
157
158 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
159 it depends on internal details of the dynamic linker. It's usually
160 not too hard to figure out where to put a breakpoint, but it
161 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
162 sanity checking. If it can't figure things out, returning zero and
163 getting the (possibly confusing) stepping behavior is better than
164 signalling an error, which will obscure the change in the
165 inferior's state. */
c906108c 166
c906108c
SS
167/* This function returns TRUE if pc is the address of an instruction
168 that lies within the dynamic linker (such as the event hook, or the
169 dld itself).
170
171 This function must be used only when a dynamic linker event has
172 been caught, and the inferior is being stepped out of the hook, or
173 undefined results are guaranteed. */
174
175#ifndef SOLIB_IN_DYNAMIC_LINKER
176#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
177#endif
178
c2c6d25f 179
7a292a7a
SS
180/* Convert the #defines into values. This is temporary until wfi control
181 flow is completely sorted out. */
182
692590c1
MS
183#ifndef CANNOT_STEP_HW_WATCHPOINTS
184#define CANNOT_STEP_HW_WATCHPOINTS 0
185#else
186#undef CANNOT_STEP_HW_WATCHPOINTS
187#define CANNOT_STEP_HW_WATCHPOINTS 1
188#endif
189
c906108c
SS
190/* Tables of how to react to signals; the user sets them. */
191
192static unsigned char *signal_stop;
193static unsigned char *signal_print;
194static unsigned char *signal_program;
195
196#define SET_SIGS(nsigs,sigs,flags) \
197 do { \
198 int signum = (nsigs); \
199 while (signum-- > 0) \
200 if ((sigs)[signum]) \
201 (flags)[signum] = 1; \
202 } while (0)
203
204#define UNSET_SIGS(nsigs,sigs,flags) \
205 do { \
206 int signum = (nsigs); \
207 while (signum-- > 0) \
208 if ((sigs)[signum]) \
209 (flags)[signum] = 0; \
210 } while (0)
211
39f77062
KB
212/* Value to pass to target_resume() to cause all threads to resume */
213
edb3359d 214#define RESUME_ALL minus_one_ptid
c906108c
SS
215
216/* Command list pointer for the "stop" placeholder. */
217
218static struct cmd_list_element *stop_command;
219
c906108c
SS
220/* Function inferior was in as of last step command. */
221
222static struct symbol *step_start_function;
223
c906108c
SS
224/* Nonzero if we want to give control to the user when we're notified
225 of shared library events by the dynamic linker. */
226static int stop_on_solib_events;
920d2a44
AC
227static void
228show_stop_on_solib_events (struct ui_file *file, int from_tty,
229 struct cmd_list_element *c, const char *value)
230{
231 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
232 value);
233}
c906108c 234
c906108c
SS
235/* Nonzero means expecting a trace trap
236 and should stop the inferior and return silently when it happens. */
237
238int stop_after_trap;
239
642fd101
DE
240/* Save register contents here when executing a "finish" command or are
241 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
242 Thus this contains the return value from the called function (assuming
243 values are returned in a register). */
244
72cec141 245struct regcache *stop_registers;
c906108c 246
c906108c
SS
247/* Nonzero after stop if current stack frame should be printed. */
248
249static int stop_print_frame;
250
e02bc4cc 251/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
252 returned by target_wait()/deprecated_target_wait_hook(). This
253 information is returned by get_last_target_status(). */
39f77062 254static ptid_t target_last_wait_ptid;
e02bc4cc
DS
255static struct target_waitstatus target_last_waitstatus;
256
0d1e5fa7
PA
257static void context_switch (ptid_t ptid);
258
4e1c45ea 259void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
260
261void init_infwait_state (void);
a474d7c2 262
53904c9e
AC
263static const char follow_fork_mode_child[] = "child";
264static const char follow_fork_mode_parent[] = "parent";
265
488f131b 266static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
267 follow_fork_mode_child,
268 follow_fork_mode_parent,
269 NULL
ef346e04 270};
c906108c 271
53904c9e 272static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
273static void
274show_follow_fork_mode_string (struct ui_file *file, int from_tty,
275 struct cmd_list_element *c, const char *value)
276{
277 fprintf_filtered (file, _("\
278Debugger response to a program call of fork or vfork is \"%s\".\n"),
279 value);
280}
c906108c
SS
281\f
282
e58b0e63
PA
283/* Tell the target to follow the fork we're stopped at. Returns true
284 if the inferior should be resumed; false, if the target for some
285 reason decided it's best not to resume. */
286
6604731b 287static int
4ef3f3be 288follow_fork (void)
c906108c 289{
ea1dd7bc 290 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
291 int should_resume = 1;
292 struct thread_info *tp;
293
294 /* Copy user stepping state to the new inferior thread. FIXME: the
295 followed fork child thread should have a copy of most of the
4e3990f4
DE
296 parent thread structure's run control related fields, not just these.
297 Initialized to avoid "may be used uninitialized" warnings from gcc. */
298 struct breakpoint *step_resume_breakpoint = NULL;
299 CORE_ADDR step_range_start = 0;
300 CORE_ADDR step_range_end = 0;
301 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
302
303 if (!non_stop)
304 {
305 ptid_t wait_ptid;
306 struct target_waitstatus wait_status;
307
308 /* Get the last target status returned by target_wait(). */
309 get_last_target_status (&wait_ptid, &wait_status);
310
311 /* If not stopped at a fork event, then there's nothing else to
312 do. */
313 if (wait_status.kind != TARGET_WAITKIND_FORKED
314 && wait_status.kind != TARGET_WAITKIND_VFORKED)
315 return 1;
316
317 /* Check if we switched over from WAIT_PTID, since the event was
318 reported. */
319 if (!ptid_equal (wait_ptid, minus_one_ptid)
320 && !ptid_equal (inferior_ptid, wait_ptid))
321 {
322 /* We did. Switch back to WAIT_PTID thread, to tell the
323 target to follow it (in either direction). We'll
324 afterwards refuse to resume, and inform the user what
325 happened. */
326 switch_to_thread (wait_ptid);
327 should_resume = 0;
328 }
329 }
330
331 tp = inferior_thread ();
332
333 /* If there were any forks/vforks that were caught and are now to be
334 followed, then do so now. */
335 switch (tp->pending_follow.kind)
336 {
337 case TARGET_WAITKIND_FORKED:
338 case TARGET_WAITKIND_VFORKED:
339 {
340 ptid_t parent, child;
341
342 /* If the user did a next/step, etc, over a fork call,
343 preserve the stepping state in the fork child. */
344 if (follow_child && should_resume)
345 {
346 step_resume_breakpoint
347 = clone_momentary_breakpoint (tp->step_resume_breakpoint);
348 step_range_start = tp->step_range_start;
349 step_range_end = tp->step_range_end;
350 step_frame_id = tp->step_frame_id;
351
352 /* For now, delete the parent's sr breakpoint, otherwise,
353 parent/child sr breakpoints are considered duplicates,
354 and the child version will not be installed. Remove
355 this when the breakpoints module becomes aware of
356 inferiors and address spaces. */
357 delete_step_resume_breakpoint (tp);
358 tp->step_range_start = 0;
359 tp->step_range_end = 0;
360 tp->step_frame_id = null_frame_id;
361 }
362
363 parent = inferior_ptid;
364 child = tp->pending_follow.value.related_pid;
365
366 /* Tell the target to do whatever is necessary to follow
367 either parent or child. */
368 if (target_follow_fork (follow_child))
369 {
370 /* Target refused to follow, or there's some other reason
371 we shouldn't resume. */
372 should_resume = 0;
373 }
374 else
375 {
376 /* This pending follow fork event is now handled, one way
377 or another. The previous selected thread may be gone
378 from the lists by now, but if it is still around, need
379 to clear the pending follow request. */
e09875d4 380 tp = find_thread_ptid (parent);
e58b0e63
PA
381 if (tp)
382 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
383
384 /* This makes sure we don't try to apply the "Switched
385 over from WAIT_PID" logic above. */
386 nullify_last_target_wait_ptid ();
387
388 /* If we followed the child, switch to it... */
389 if (follow_child)
390 {
391 switch_to_thread (child);
392
393 /* ... and preserve the stepping state, in case the
394 user was stepping over the fork call. */
395 if (should_resume)
396 {
397 tp = inferior_thread ();
398 tp->step_resume_breakpoint = step_resume_breakpoint;
399 tp->step_range_start = step_range_start;
400 tp->step_range_end = step_range_end;
401 tp->step_frame_id = step_frame_id;
402 }
403 else
404 {
405 /* If we get here, it was because we're trying to
406 resume from a fork catchpoint, but, the user
407 has switched threads away from the thread that
408 forked. In that case, the resume command
409 issued is most likely not applicable to the
410 child, so just warn, and refuse to resume. */
411 warning (_("\
412Not resuming: switched threads before following fork child.\n"));
413 }
414
415 /* Reset breakpoints in the child as appropriate. */
416 follow_inferior_reset_breakpoints ();
417 }
418 else
419 switch_to_thread (parent);
420 }
421 }
422 break;
423 case TARGET_WAITKIND_SPURIOUS:
424 /* Nothing to follow. */
425 break;
426 default:
427 internal_error (__FILE__, __LINE__,
428 "Unexpected pending_follow.kind %d\n",
429 tp->pending_follow.kind);
430 break;
431 }
c906108c 432
e58b0e63 433 return should_resume;
c906108c
SS
434}
435
6604731b
DJ
436void
437follow_inferior_reset_breakpoints (void)
c906108c 438{
4e1c45ea
PA
439 struct thread_info *tp = inferior_thread ();
440
6604731b
DJ
441 /* Was there a step_resume breakpoint? (There was if the user
442 did a "next" at the fork() call.) If so, explicitly reset its
443 thread number.
444
445 step_resumes are a form of bp that are made to be per-thread.
446 Since we created the step_resume bp when the parent process
447 was being debugged, and now are switching to the child process,
448 from the breakpoint package's viewpoint, that's a switch of
449 "threads". We must update the bp's notion of which thread
450 it is for, or it'll be ignored when it triggers. */
451
4e1c45ea
PA
452 if (tp->step_resume_breakpoint)
453 breakpoint_re_set_thread (tp->step_resume_breakpoint);
6604731b
DJ
454
455 /* Reinsert all breakpoints in the child. The user may have set
456 breakpoints after catching the fork, in which case those
457 were never set in the child, but only in the parent. This makes
458 sure the inserted breakpoints match the breakpoint list. */
459
460 breakpoint_re_set ();
461 insert_breakpoints ();
c906108c 462}
c906108c 463
1adeb98a
FN
464/* EXECD_PATHNAME is assumed to be non-NULL. */
465
c906108c 466static void
3a3e9ee3 467follow_exec (ptid_t pid, char *execd_pathname)
c906108c 468{
7a292a7a 469 struct target_ops *tgt;
4e1c45ea 470 struct thread_info *th = inferior_thread ();
7a292a7a 471
c906108c
SS
472 /* This is an exec event that we actually wish to pay attention to.
473 Refresh our symbol table to the newly exec'd program, remove any
474 momentary bp's, etc.
475
476 If there are breakpoints, they aren't really inserted now,
477 since the exec() transformed our inferior into a fresh set
478 of instructions.
479
480 We want to preserve symbolic breakpoints on the list, since
481 we have hopes that they can be reset after the new a.out's
482 symbol table is read.
483
484 However, any "raw" breakpoints must be removed from the list
485 (e.g., the solib bp's), since their address is probably invalid
486 now.
487
488 And, we DON'T want to call delete_breakpoints() here, since
489 that may write the bp's "shadow contents" (the instruction
490 value that was overwritten witha TRAP instruction). Since
491 we now have a new a.out, those shadow contents aren't valid. */
492 update_breakpoints_after_exec ();
493
494 /* If there was one, it's gone now. We cannot truly step-to-next
495 statement through an exec(). */
4e1c45ea
PA
496 th->step_resume_breakpoint = NULL;
497 th->step_range_start = 0;
498 th->step_range_end = 0;
c906108c 499
a75724bc
PA
500 /* The target reports the exec event to the main thread, even if
501 some other thread does the exec, and even if the main thread was
502 already stopped --- if debugging in non-stop mode, it's possible
503 the user had the main thread held stopped in the previous image
504 --- release it now. This is the same behavior as step-over-exec
505 with scheduler-locking on in all-stop mode. */
506 th->stop_requested = 0;
507
c906108c 508 /* What is this a.out's name? */
a3f17187 509 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
c906108c
SS
510
511 /* We've followed the inferior through an exec. Therefore, the
512 inferior has essentially been killed & reborn. */
7a292a7a 513
c906108c 514 gdb_flush (gdb_stdout);
6ca15a4b
PA
515
516 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
517
518 if (gdb_sysroot && *gdb_sysroot)
519 {
520 char *name = alloca (strlen (gdb_sysroot)
521 + strlen (execd_pathname)
522 + 1);
523 strcpy (name, gdb_sysroot);
524 strcat (name, execd_pathname);
525 execd_pathname = name;
526 }
c906108c
SS
527
528 /* That a.out is now the one to use. */
529 exec_file_attach (execd_pathname, 0);
530
cce9b6bf
PA
531 /* Reset the shared library package. This ensures that we get a
532 shlib event when the child reaches "_start", at which point the
533 dld will have had a chance to initialize the child. */
534 /* Also, loading a symbol file below may trigger symbol lookups, and
535 we don't want those to be satisfied by the libraries of the
536 previous incarnation of this process. */
537 no_shared_libraries (NULL, 0);
538
539 /* Load the main file's symbols. */
1adeb98a 540 symbol_file_add_main (execd_pathname, 0);
c906108c 541
7a292a7a 542#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 543 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2
MK
544#else
545 solib_create_inferior_hook ();
7a292a7a 546#endif
c906108c 547
4efc6507
DE
548 jit_inferior_created_hook ();
549
c906108c
SS
550 /* Reinsert all breakpoints. (Those which were symbolic have
551 been reset to the proper address in the new a.out, thanks
552 to symbol_file_command...) */
553 insert_breakpoints ();
554
555 /* The next resume of this inferior should bring it to the shlib
556 startup breakpoints. (If the user had also set bp's on
557 "main" from the old (parent) process, then they'll auto-
558 matically get reset there in the new process.) */
c906108c
SS
559}
560
561/* Non-zero if we just simulating a single-step. This is needed
562 because we cannot remove the breakpoints in the inferior process
563 until after the `wait' in `wait_for_inferior'. */
564static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
565
566/* The thread we inserted single-step breakpoints for. */
567static ptid_t singlestep_ptid;
568
fd48f117
DJ
569/* PC when we started this single-step. */
570static CORE_ADDR singlestep_pc;
571
9f976b41
DJ
572/* If another thread hit the singlestep breakpoint, we save the original
573 thread here so that we can resume single-stepping it later. */
574static ptid_t saved_singlestep_ptid;
575static int stepping_past_singlestep_breakpoint;
6a6b96b9 576
ca67fcb8
VP
577/* If not equal to null_ptid, this means that after stepping over breakpoint
578 is finished, we need to switch to deferred_step_ptid, and step it.
579
580 The use case is when one thread has hit a breakpoint, and then the user
581 has switched to another thread and issued 'step'. We need to step over
582 breakpoint in the thread which hit the breakpoint, but then continue
583 stepping the thread user has selected. */
584static ptid_t deferred_step_ptid;
c906108c 585\f
237fc4c9
PA
586/* Displaced stepping. */
587
588/* In non-stop debugging mode, we must take special care to manage
589 breakpoints properly; in particular, the traditional strategy for
590 stepping a thread past a breakpoint it has hit is unsuitable.
591 'Displaced stepping' is a tactic for stepping one thread past a
592 breakpoint it has hit while ensuring that other threads running
593 concurrently will hit the breakpoint as they should.
594
595 The traditional way to step a thread T off a breakpoint in a
596 multi-threaded program in all-stop mode is as follows:
597
598 a0) Initially, all threads are stopped, and breakpoints are not
599 inserted.
600 a1) We single-step T, leaving breakpoints uninserted.
601 a2) We insert breakpoints, and resume all threads.
602
603 In non-stop debugging, however, this strategy is unsuitable: we
604 don't want to have to stop all threads in the system in order to
605 continue or step T past a breakpoint. Instead, we use displaced
606 stepping:
607
608 n0) Initially, T is stopped, other threads are running, and
609 breakpoints are inserted.
610 n1) We copy the instruction "under" the breakpoint to a separate
611 location, outside the main code stream, making any adjustments
612 to the instruction, register, and memory state as directed by
613 T's architecture.
614 n2) We single-step T over the instruction at its new location.
615 n3) We adjust the resulting register and memory state as directed
616 by T's architecture. This includes resetting T's PC to point
617 back into the main instruction stream.
618 n4) We resume T.
619
620 This approach depends on the following gdbarch methods:
621
622 - gdbarch_max_insn_length and gdbarch_displaced_step_location
623 indicate where to copy the instruction, and how much space must
624 be reserved there. We use these in step n1.
625
626 - gdbarch_displaced_step_copy_insn copies a instruction to a new
627 address, and makes any necessary adjustments to the instruction,
628 register contents, and memory. We use this in step n1.
629
630 - gdbarch_displaced_step_fixup adjusts registers and memory after
631 we have successfuly single-stepped the instruction, to yield the
632 same effect the instruction would have had if we had executed it
633 at its original address. We use this in step n3.
634
635 - gdbarch_displaced_step_free_closure provides cleanup.
636
637 The gdbarch_displaced_step_copy_insn and
638 gdbarch_displaced_step_fixup functions must be written so that
639 copying an instruction with gdbarch_displaced_step_copy_insn,
640 single-stepping across the copied instruction, and then applying
641 gdbarch_displaced_insn_fixup should have the same effects on the
642 thread's memory and registers as stepping the instruction in place
643 would have. Exactly which responsibilities fall to the copy and
644 which fall to the fixup is up to the author of those functions.
645
646 See the comments in gdbarch.sh for details.
647
648 Note that displaced stepping and software single-step cannot
649 currently be used in combination, although with some care I think
650 they could be made to. Software single-step works by placing
651 breakpoints on all possible subsequent instructions; if the
652 displaced instruction is a PC-relative jump, those breakpoints
653 could fall in very strange places --- on pages that aren't
654 executable, or at addresses that are not proper instruction
655 boundaries. (We do generally let other threads run while we wait
656 to hit the software single-step breakpoint, and they might
657 encounter such a corrupted instruction.) One way to work around
658 this would be to have gdbarch_displaced_step_copy_insn fully
659 simulate the effect of PC-relative instructions (and return NULL)
660 on architectures that use software single-stepping.
661
662 In non-stop mode, we can have independent and simultaneous step
663 requests, so more than one thread may need to simultaneously step
664 over a breakpoint. The current implementation assumes there is
665 only one scratch space per process. In this case, we have to
666 serialize access to the scratch space. If thread A wants to step
667 over a breakpoint, but we are currently waiting for some other
668 thread to complete a displaced step, we leave thread A stopped and
669 place it in the displaced_step_request_queue. Whenever a displaced
670 step finishes, we pick the next thread in the queue and start a new
671 displaced step operation on it. See displaced_step_prepare and
672 displaced_step_fixup for details. */
673
674/* If this is not null_ptid, this is the thread carrying out a
675 displaced single-step. This thread's state will require fixing up
676 once it has completed its step. */
677static ptid_t displaced_step_ptid;
678
679struct displaced_step_request
680{
681 ptid_t ptid;
682 struct displaced_step_request *next;
683};
684
685/* A queue of pending displaced stepping requests. */
686struct displaced_step_request *displaced_step_request_queue;
687
688/* The architecture the thread had when we stepped it. */
689static struct gdbarch *displaced_step_gdbarch;
690
691/* The closure provided gdbarch_displaced_step_copy_insn, to be used
692 for post-step cleanup. */
693static struct displaced_step_closure *displaced_step_closure;
694
695/* The address of the original instruction, and the copy we made. */
696static CORE_ADDR displaced_step_original, displaced_step_copy;
697
698/* Saved contents of copy area. */
699static gdb_byte *displaced_step_saved_copy;
700
fff08868
HZ
701/* Enum strings for "set|show displaced-stepping". */
702
703static const char can_use_displaced_stepping_auto[] = "auto";
704static const char can_use_displaced_stepping_on[] = "on";
705static const char can_use_displaced_stepping_off[] = "off";
706static const char *can_use_displaced_stepping_enum[] =
707{
708 can_use_displaced_stepping_auto,
709 can_use_displaced_stepping_on,
710 can_use_displaced_stepping_off,
711 NULL,
712};
713
714/* If ON, and the architecture supports it, GDB will use displaced
715 stepping to step over breakpoints. If OFF, or if the architecture
716 doesn't support it, GDB will instead use the traditional
717 hold-and-step approach. If AUTO (which is the default), GDB will
718 decide which technique to use to step over breakpoints depending on
719 which of all-stop or non-stop mode is active --- displaced stepping
720 in non-stop mode; hold-and-step in all-stop mode. */
721
722static const char *can_use_displaced_stepping =
723 can_use_displaced_stepping_auto;
724
237fc4c9
PA
725static void
726show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
727 struct cmd_list_element *c,
728 const char *value)
729{
fff08868
HZ
730 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
731 fprintf_filtered (file, _("\
732Debugger's willingness to use displaced stepping to step over \
733breakpoints is %s (currently %s).\n"),
734 value, non_stop ? "on" : "off");
735 else
736 fprintf_filtered (file, _("\
737Debugger's willingness to use displaced stepping to step over \
738breakpoints is %s.\n"), value);
237fc4c9
PA
739}
740
fff08868
HZ
741/* Return non-zero if displaced stepping can/should be used to step
742 over breakpoints. */
743
237fc4c9
PA
744static int
745use_displaced_stepping (struct gdbarch *gdbarch)
746{
fff08868
HZ
747 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
748 && non_stop)
749 || can_use_displaced_stepping == can_use_displaced_stepping_on)
96429cc8
HZ
750 && gdbarch_displaced_step_copy_insn_p (gdbarch)
751 && !RECORD_IS_USED);
237fc4c9
PA
752}
753
754/* Clean out any stray displaced stepping state. */
755static void
756displaced_step_clear (void)
757{
758 /* Indicate that there is no cleanup pending. */
759 displaced_step_ptid = null_ptid;
760
761 if (displaced_step_closure)
762 {
763 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
764 displaced_step_closure);
765 displaced_step_closure = NULL;
766 }
767}
768
769static void
9f5a595d 770displaced_step_clear_cleanup (void *ignore)
237fc4c9 771{
9f5a595d 772 displaced_step_clear ();
237fc4c9
PA
773}
774
775/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
776void
777displaced_step_dump_bytes (struct ui_file *file,
778 const gdb_byte *buf,
779 size_t len)
780{
781 int i;
782
783 for (i = 0; i < len; i++)
784 fprintf_unfiltered (file, "%02x ", buf[i]);
785 fputs_unfiltered ("\n", file);
786}
787
788/* Prepare to single-step, using displaced stepping.
789
790 Note that we cannot use displaced stepping when we have a signal to
791 deliver. If we have a signal to deliver and an instruction to step
792 over, then after the step, there will be no indication from the
793 target whether the thread entered a signal handler or ignored the
794 signal and stepped over the instruction successfully --- both cases
795 result in a simple SIGTRAP. In the first case we mustn't do a
796 fixup, and in the second case we must --- but we can't tell which.
797 Comments in the code for 'random signals' in handle_inferior_event
798 explain how we handle this case instead.
799
800 Returns 1 if preparing was successful -- this thread is going to be
801 stepped now; or 0 if displaced stepping this thread got queued. */
802static int
803displaced_step_prepare (ptid_t ptid)
804{
ad53cd71 805 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
806 struct regcache *regcache = get_thread_regcache (ptid);
807 struct gdbarch *gdbarch = get_regcache_arch (regcache);
808 CORE_ADDR original, copy;
809 ULONGEST len;
810 struct displaced_step_closure *closure;
811
812 /* We should never reach this function if the architecture does not
813 support displaced stepping. */
814 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
815
816 /* For the first cut, we're displaced stepping one thread at a
817 time. */
818
819 if (!ptid_equal (displaced_step_ptid, null_ptid))
820 {
821 /* Already waiting for a displaced step to finish. Defer this
822 request and place in queue. */
823 struct displaced_step_request *req, *new_req;
824
825 if (debug_displaced)
826 fprintf_unfiltered (gdb_stdlog,
827 "displaced: defering step of %s\n",
828 target_pid_to_str (ptid));
829
830 new_req = xmalloc (sizeof (*new_req));
831 new_req->ptid = ptid;
832 new_req->next = NULL;
833
834 if (displaced_step_request_queue)
835 {
836 for (req = displaced_step_request_queue;
837 req && req->next;
838 req = req->next)
839 ;
840 req->next = new_req;
841 }
842 else
843 displaced_step_request_queue = new_req;
844
845 return 0;
846 }
847 else
848 {
849 if (debug_displaced)
850 fprintf_unfiltered (gdb_stdlog,
851 "displaced: stepping %s now\n",
852 target_pid_to_str (ptid));
853 }
854
855 displaced_step_clear ();
856
ad53cd71
PA
857 old_cleanups = save_inferior_ptid ();
858 inferior_ptid = ptid;
859
515630c5 860 original = regcache_read_pc (regcache);
237fc4c9
PA
861
862 copy = gdbarch_displaced_step_location (gdbarch);
863 len = gdbarch_max_insn_length (gdbarch);
864
865 /* Save the original contents of the copy area. */
866 displaced_step_saved_copy = xmalloc (len);
ad53cd71
PA
867 ignore_cleanups = make_cleanup (free_current_contents,
868 &displaced_step_saved_copy);
237fc4c9
PA
869 read_memory (copy, displaced_step_saved_copy, len);
870 if (debug_displaced)
871 {
5af949e3
UW
872 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
873 paddress (gdbarch, copy));
237fc4c9
PA
874 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
875 };
876
877 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 878 original, copy, regcache);
237fc4c9
PA
879
880 /* We don't support the fully-simulated case at present. */
881 gdb_assert (closure);
882
9f5a595d
UW
883 /* Save the information we need to fix things up if the step
884 succeeds. */
885 displaced_step_ptid = ptid;
886 displaced_step_gdbarch = gdbarch;
887 displaced_step_closure = closure;
888 displaced_step_original = original;
889 displaced_step_copy = copy;
890
891 make_cleanup (displaced_step_clear_cleanup, 0);
237fc4c9
PA
892
893 /* Resume execution at the copy. */
515630c5 894 regcache_write_pc (regcache, copy);
237fc4c9 895
ad53cd71
PA
896 discard_cleanups (ignore_cleanups);
897
898 do_cleanups (old_cleanups);
237fc4c9
PA
899
900 if (debug_displaced)
5af949e3
UW
901 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
902 paddress (gdbarch, copy));
237fc4c9 903
237fc4c9
PA
904 return 1;
905}
906
237fc4c9
PA
907static void
908write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
909{
910 struct cleanup *ptid_cleanup = save_inferior_ptid ();
911 inferior_ptid = ptid;
912 write_memory (memaddr, myaddr, len);
913 do_cleanups (ptid_cleanup);
914}
915
916static void
917displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
918{
919 struct cleanup *old_cleanups;
920
921 /* Was this event for the pid we displaced? */
922 if (ptid_equal (displaced_step_ptid, null_ptid)
923 || ! ptid_equal (displaced_step_ptid, event_ptid))
924 return;
925
926 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
927
928 /* Restore the contents of the copy area. */
929 {
930 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
931 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
932 displaced_step_saved_copy, len);
933 if (debug_displaced)
5af949e3
UW
934 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s\n",
935 paddress (displaced_step_gdbarch,
936 displaced_step_copy));
237fc4c9
PA
937 }
938
939 /* Did the instruction complete successfully? */
940 if (signal == TARGET_SIGNAL_TRAP)
941 {
942 /* Fix up the resulting state. */
943 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
944 displaced_step_closure,
945 displaced_step_original,
946 displaced_step_copy,
947 get_thread_regcache (displaced_step_ptid));
948 }
949 else
950 {
951 /* Since the instruction didn't complete, all we can do is
952 relocate the PC. */
515630c5
UW
953 struct regcache *regcache = get_thread_regcache (event_ptid);
954 CORE_ADDR pc = regcache_read_pc (regcache);
237fc4c9 955 pc = displaced_step_original + (pc - displaced_step_copy);
515630c5 956 regcache_write_pc (regcache, pc);
237fc4c9
PA
957 }
958
959 do_cleanups (old_cleanups);
960
1c5cfe86
PA
961 displaced_step_ptid = null_ptid;
962
237fc4c9
PA
963 /* Are there any pending displaced stepping requests? If so, run
964 one now. */
1c5cfe86 965 while (displaced_step_request_queue)
237fc4c9
PA
966 {
967 struct displaced_step_request *head;
968 ptid_t ptid;
5af949e3 969 struct regcache *regcache;
929dfd4f 970 struct gdbarch *gdbarch;
1c5cfe86 971 CORE_ADDR actual_pc;
237fc4c9
PA
972
973 head = displaced_step_request_queue;
974 ptid = head->ptid;
975 displaced_step_request_queue = head->next;
976 xfree (head);
977
ad53cd71
PA
978 context_switch (ptid);
979
5af949e3
UW
980 regcache = get_thread_regcache (ptid);
981 actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
982
983 if (breakpoint_here_p (actual_pc))
ad53cd71 984 {
1c5cfe86
PA
985 if (debug_displaced)
986 fprintf_unfiltered (gdb_stdlog,
987 "displaced: stepping queued %s now\n",
988 target_pid_to_str (ptid));
989
990 displaced_step_prepare (ptid);
991
929dfd4f
JB
992 gdbarch = get_regcache_arch (regcache);
993
1c5cfe86
PA
994 if (debug_displaced)
995 {
929dfd4f 996 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
997 gdb_byte buf[4];
998
5af949e3
UW
999 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1000 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1001 read_memory (actual_pc, buf, sizeof (buf));
1002 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1003 }
1004
929dfd4f
JB
1005 if (gdbarch_software_single_step_p (gdbarch))
1006 target_resume (ptid, 0, TARGET_SIGNAL_0);
1007 else
1008 target_resume (ptid, 1, TARGET_SIGNAL_0);
1c5cfe86
PA
1009
1010 /* Done, we're stepping a thread. */
1011 break;
ad53cd71 1012 }
1c5cfe86
PA
1013 else
1014 {
1015 int step;
1016 struct thread_info *tp = inferior_thread ();
1017
1018 /* The breakpoint we were sitting under has since been
1019 removed. */
1020 tp->trap_expected = 0;
1021
1022 /* Go back to what we were trying to do. */
1023 step = currently_stepping (tp);
ad53cd71 1024
1c5cfe86
PA
1025 if (debug_displaced)
1026 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
1027 target_pid_to_str (tp->ptid), step);
1028
1029 target_resume (ptid, step, TARGET_SIGNAL_0);
1030 tp->stop_signal = TARGET_SIGNAL_0;
1031
1032 /* This request was discarded. See if there's any other
1033 thread waiting for its turn. */
1034 }
237fc4c9
PA
1035 }
1036}
1037
5231c1fd
PA
1038/* Update global variables holding ptids to hold NEW_PTID if they were
1039 holding OLD_PTID. */
1040static void
1041infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1042{
1043 struct displaced_step_request *it;
1044
1045 if (ptid_equal (inferior_ptid, old_ptid))
1046 inferior_ptid = new_ptid;
1047
1048 if (ptid_equal (singlestep_ptid, old_ptid))
1049 singlestep_ptid = new_ptid;
1050
1051 if (ptid_equal (displaced_step_ptid, old_ptid))
1052 displaced_step_ptid = new_ptid;
1053
1054 if (ptid_equal (deferred_step_ptid, old_ptid))
1055 deferred_step_ptid = new_ptid;
1056
1057 for (it = displaced_step_request_queue; it; it = it->next)
1058 if (ptid_equal (it->ptid, old_ptid))
1059 it->ptid = new_ptid;
1060}
1061
237fc4c9
PA
1062\f
1063/* Resuming. */
c906108c
SS
1064
1065/* Things to clean up if we QUIT out of resume (). */
c906108c 1066static void
74b7792f 1067resume_cleanups (void *ignore)
c906108c
SS
1068{
1069 normal_stop ();
1070}
1071
53904c9e
AC
1072static const char schedlock_off[] = "off";
1073static const char schedlock_on[] = "on";
1074static const char schedlock_step[] = "step";
488f131b 1075static const char *scheduler_enums[] = {
ef346e04
AC
1076 schedlock_off,
1077 schedlock_on,
1078 schedlock_step,
1079 NULL
1080};
920d2a44
AC
1081static const char *scheduler_mode = schedlock_off;
1082static void
1083show_scheduler_mode (struct ui_file *file, int from_tty,
1084 struct cmd_list_element *c, const char *value)
1085{
1086 fprintf_filtered (file, _("\
1087Mode for locking scheduler during execution is \"%s\".\n"),
1088 value);
1089}
c906108c
SS
1090
1091static void
96baa820 1092set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1093{
eefe576e
AC
1094 if (!target_can_lock_scheduler)
1095 {
1096 scheduler_mode = schedlock_off;
1097 error (_("Target '%s' cannot support this command."), target_shortname);
1098 }
c906108c
SS
1099}
1100
d4db2f36
PA
1101/* True if execution commands resume all threads of all processes by
1102 default; otherwise, resume only threads of the current inferior
1103 process. */
1104int sched_multi = 0;
1105
2facfe5c
DD
1106/* Try to setup for software single stepping over the specified location.
1107 Return 1 if target_resume() should use hardware single step.
1108
1109 GDBARCH the current gdbarch.
1110 PC the location to step over. */
1111
1112static int
1113maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1114{
1115 int hw_step = 1;
1116
929dfd4f 1117 if (gdbarch_software_single_step_p (gdbarch))
2facfe5c 1118 {
929dfd4f
JB
1119 if (use_displaced_stepping (gdbarch))
1120 hw_step = 0;
1121 else if (gdbarch_software_single_step (gdbarch, get_current_frame ()))
1122 {
1123 hw_step = 0;
1124 /* Do not pull these breakpoints until after a `wait' in
1125 `wait_for_inferior' */
1126 singlestep_breakpoints_inserted_p = 1;
1127 singlestep_ptid = inferior_ptid;
1128 singlestep_pc = pc;
1129 }
2facfe5c
DD
1130 }
1131 return hw_step;
1132}
c906108c
SS
1133
1134/* Resume the inferior, but allow a QUIT. This is useful if the user
1135 wants to interrupt some lengthy single-stepping operation
1136 (for child processes, the SIGINT goes to the inferior, and so
1137 we get a SIGINT random_signal, but for remote debugging and perhaps
1138 other targets, that's not true).
1139
1140 STEP nonzero if we should step (zero to continue instead).
1141 SIG is the signal to give the inferior (zero for none). */
1142void
96baa820 1143resume (int step, enum target_signal sig)
c906108c
SS
1144{
1145 int should_resume = 1;
74b7792f 1146 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1147 struct regcache *regcache = get_current_regcache ();
1148 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1149 struct thread_info *tp = inferior_thread ();
515630c5 1150 CORE_ADDR pc = regcache_read_pc (regcache);
c7e8a53c 1151
c906108c
SS
1152 QUIT;
1153
527159b7 1154 if (debug_infrun)
237fc4c9
PA
1155 fprintf_unfiltered (gdb_stdlog,
1156 "infrun: resume (step=%d, signal=%d), "
4e1c45ea
PA
1157 "trap_expected=%d\n",
1158 step, sig, tp->trap_expected);
c906108c 1159
692590c1
MS
1160 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
1161 over an instruction that causes a page fault without triggering
1162 a hardware watchpoint. The kernel properly notices that it shouldn't
1163 stop, because the hardware watchpoint is not triggered, but it forgets
1164 the step request and continues the program normally.
1165 Work around the problem by removing hardware watchpoints if a step is
1166 requested, GDB will check for a hardware watchpoint trigger after the
1167 step anyway. */
c36b740a 1168 if (CANNOT_STEP_HW_WATCHPOINTS && step)
692590c1 1169 remove_hw_watchpoints ();
488f131b 1170
692590c1 1171
c2c6d25f
JM
1172 /* Normally, by the time we reach `resume', the breakpoints are either
1173 removed or inserted, as appropriate. The exception is if we're sitting
1174 at a permanent breakpoint; we need to step over it, but permanent
1175 breakpoints can't be removed. So we have to test for it here. */
237fc4c9 1176 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
6d350bb5 1177 {
515630c5
UW
1178 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1179 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5
UW
1180 else
1181 error (_("\
1182The program is stopped at a permanent breakpoint, but GDB does not know\n\
1183how to step past a permanent breakpoint on this architecture. Try using\n\
1184a command like `return' or `jump' to continue execution."));
1185 }
c2c6d25f 1186
237fc4c9
PA
1187 /* If enabled, step over breakpoints by executing a copy of the
1188 instruction at a different address.
1189
1190 We can't use displaced stepping when we have a signal to deliver;
1191 the comments for displaced_step_prepare explain why. The
1192 comments in the handle_inferior event for dealing with 'random
1193 signals' explain what we do instead. */
515630c5 1194 if (use_displaced_stepping (gdbarch)
929dfd4f
JB
1195 && (tp->trap_expected
1196 || (step && gdbarch_software_single_step_p (gdbarch)))
237fc4c9
PA
1197 && sig == TARGET_SIGNAL_0)
1198 {
1199 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1200 {
1201 /* Got placed in displaced stepping queue. Will be resumed
1202 later when all the currently queued displaced stepping
7f7efbd9
VP
1203 requests finish. The thread is not executing at this point,
1204 and the call to set_executing will be made later. But we
1205 need to call set_running here, since from frontend point of view,
1206 the thread is running. */
1207 set_running (inferior_ptid, 1);
d56b7306
VP
1208 discard_cleanups (old_cleanups);
1209 return;
1210 }
237fc4c9
PA
1211 }
1212
2facfe5c
DD
1213 /* Do we need to do it the hard way, w/temp breakpoints? */
1214 if (step)
1215 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1216
c906108c
SS
1217 if (should_resume)
1218 {
39f77062 1219 ptid_t resume_ptid;
dfcd3bfb 1220
cd76b0b7
VP
1221 /* If STEP is set, it's a request to use hardware stepping
1222 facilities. But in that case, we should never
1223 use singlestep breakpoint. */
1224 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1225
d4db2f36
PA
1226 /* Decide the set of threads to ask the target to resume. Start
1227 by assuming everything will be resumed, than narrow the set
1228 by applying increasingly restricting conditions. */
1229
1230 /* By default, resume all threads of all processes. */
1231 resume_ptid = RESUME_ALL;
1232
1233 /* Maybe resume only all threads of the current process. */
1234 if (!sched_multi && target_supports_multi_process ())
1235 {
1236 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1237 }
1238
1239 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1240 if (singlestep_breakpoints_inserted_p
1241 && stepping_past_singlestep_breakpoint)
c906108c 1242 {
cd76b0b7
VP
1243 /* The situation here is as follows. In thread T1 we wanted to
1244 single-step. Lacking hardware single-stepping we've
1245 set breakpoint at the PC of the next instruction -- call it
1246 P. After resuming, we've hit that breakpoint in thread T2.
1247 Now we've removed original breakpoint, inserted breakpoint
1248 at P+1, and try to step to advance T2 past breakpoint.
1249 We need to step only T2, as if T1 is allowed to freely run,
1250 it can run past P, and if other threads are allowed to run,
1251 they can hit breakpoint at P+1, and nested hits of single-step
1252 breakpoints is not something we'd want -- that's complicated
1253 to support, and has no value. */
1254 resume_ptid = inferior_ptid;
1255 }
d4db2f36
PA
1256 else if ((step || singlestep_breakpoints_inserted_p)
1257 && tp->trap_expected)
cd76b0b7 1258 {
74960c60
VP
1259 /* We're allowing a thread to run past a breakpoint it has
1260 hit, by single-stepping the thread with the breakpoint
1261 removed. In which case, we need to single-step only this
1262 thread, and keep others stopped, as they can miss this
1263 breakpoint if allowed to run.
1264
1265 The current code actually removes all breakpoints when
1266 doing this, not just the one being stepped over, so if we
1267 let other threads run, we can actually miss any
1268 breakpoint, not just the one at PC. */
ef5cf84e 1269 resume_ptid = inferior_ptid;
c906108c 1270 }
d4db2f36 1271 else if (non_stop)
94cc34af
PA
1272 {
1273 /* With non-stop mode on, threads are always handled
1274 individually. */
1275 resume_ptid = inferior_ptid;
1276 }
1277 else if ((scheduler_mode == schedlock_on)
1278 || (scheduler_mode == schedlock_step
1279 && (step || singlestep_breakpoints_inserted_p)))
c906108c 1280 {
ef5cf84e 1281 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 1282 resume_ptid = inferior_ptid;
c906108c 1283 }
ef5cf84e 1284
515630c5 1285 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1286 {
1287 /* Most targets can step a breakpoint instruction, thus
1288 executing it normally. But if this one cannot, just
1289 continue and we will hit it anyway. */
237fc4c9 1290 if (step && breakpoint_inserted_here_p (pc))
c4ed33b9
AC
1291 step = 0;
1292 }
237fc4c9
PA
1293
1294 if (debug_displaced
515630c5 1295 && use_displaced_stepping (gdbarch)
4e1c45ea 1296 && tp->trap_expected)
237fc4c9 1297 {
515630c5 1298 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1299 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1300 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1301 gdb_byte buf[4];
1302
5af949e3
UW
1303 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1304 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1305 read_memory (actual_pc, buf, sizeof (buf));
1306 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1307 }
1308
e58b0e63
PA
1309 /* Install inferior's terminal modes. */
1310 target_terminal_inferior ();
1311
2020b7ab
PA
1312 /* Avoid confusing the next resume, if the next stop/resume
1313 happens to apply to another thread. */
1314 tp->stop_signal = TARGET_SIGNAL_0;
607cecd2
PA
1315
1316 target_resume (resume_ptid, step, sig);
c906108c
SS
1317 }
1318
1319 discard_cleanups (old_cleanups);
1320}
1321\f
237fc4c9 1322/* Proceeding. */
c906108c
SS
1323
1324/* Clear out all variables saying what to do when inferior is continued.
1325 First do this, then set the ones you want, then call `proceed'. */
1326
a7212384
UW
1327static void
1328clear_proceed_status_thread (struct thread_info *tp)
c906108c 1329{
a7212384
UW
1330 if (debug_infrun)
1331 fprintf_unfiltered (gdb_stdlog,
1332 "infrun: clear_proceed_status_thread (%s)\n",
1333 target_pid_to_str (tp->ptid));
d6b48e9c 1334
a7212384
UW
1335 tp->trap_expected = 0;
1336 tp->step_range_start = 0;
1337 tp->step_range_end = 0;
1338 tp->step_frame_id = null_frame_id;
edb3359d 1339 tp->step_stack_frame_id = null_frame_id;
a7212384
UW
1340 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1341 tp->stop_requested = 0;
4e1c45ea 1342
a7212384 1343 tp->stop_step = 0;
32400beb 1344
a7212384 1345 tp->proceed_to_finish = 0;
414c69f7 1346
a7212384
UW
1347 /* Discard any remaining commands or status from previous stop. */
1348 bpstat_clear (&tp->stop_bpstat);
1349}
32400beb 1350
a7212384
UW
1351static int
1352clear_proceed_status_callback (struct thread_info *tp, void *data)
1353{
1354 if (is_exited (tp->ptid))
1355 return 0;
d6b48e9c 1356
a7212384
UW
1357 clear_proceed_status_thread (tp);
1358 return 0;
1359}
1360
1361void
1362clear_proceed_status (void)
1363{
1364 if (!ptid_equal (inferior_ptid, null_ptid))
1365 {
1366 struct inferior *inferior;
1367
1368 if (non_stop)
1369 {
1370 /* If in non-stop mode, only delete the per-thread status
1371 of the current thread. */
1372 clear_proceed_status_thread (inferior_thread ());
1373 }
1374 else
1375 {
1376 /* In all-stop mode, delete the per-thread status of
1377 *all* threads. */
1378 iterate_over_threads (clear_proceed_status_callback, NULL);
1379 }
1380
d6b48e9c
PA
1381 inferior = current_inferior ();
1382 inferior->stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
1383 }
1384
c906108c 1385 stop_after_trap = 0;
f3b1572e
PA
1386
1387 observer_notify_about_to_proceed ();
c906108c 1388
d5c31457
UW
1389 if (stop_registers)
1390 {
1391 regcache_xfree (stop_registers);
1392 stop_registers = NULL;
1393 }
c906108c
SS
1394}
1395
5a437975
DE
1396/* Check the current thread against the thread that reported the most recent
1397 event. If a step-over is required return TRUE and set the current thread
1398 to the old thread. Otherwise return FALSE.
1399
1400 This should be suitable for any targets that support threads. */
ea67f13b
DJ
1401
1402static int
6a6b96b9 1403prepare_to_proceed (int step)
ea67f13b
DJ
1404{
1405 ptid_t wait_ptid;
1406 struct target_waitstatus wait_status;
5a437975
DE
1407 int schedlock_enabled;
1408
1409 /* With non-stop mode on, threads are always handled individually. */
1410 gdb_assert (! non_stop);
ea67f13b
DJ
1411
1412 /* Get the last target status returned by target_wait(). */
1413 get_last_target_status (&wait_ptid, &wait_status);
1414
6a6b96b9 1415 /* Make sure we were stopped at a breakpoint. */
ea67f13b 1416 if (wait_status.kind != TARGET_WAITKIND_STOPPED
6a6b96b9 1417 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
ea67f13b
DJ
1418 {
1419 return 0;
1420 }
1421
5a437975
DE
1422 schedlock_enabled = (scheduler_mode == schedlock_on
1423 || (scheduler_mode == schedlock_step
1424 && step));
1425
d4db2f36
PA
1426 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
1427 if (schedlock_enabled)
1428 return 0;
1429
1430 /* Don't switch over if we're about to resume some other process
1431 other than WAIT_PTID's, and schedule-multiple is off. */
1432 if (!sched_multi
1433 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
1434 return 0;
1435
6a6b96b9 1436 /* Switched over from WAIT_PID. */
ea67f13b 1437 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 1438 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 1439 {
515630c5
UW
1440 struct regcache *regcache = get_thread_regcache (wait_ptid);
1441
1442 if (breakpoint_here_p (regcache_read_pc (regcache)))
ea67f13b 1443 {
515630c5
UW
1444 /* If stepping, remember current thread to switch back to. */
1445 if (step)
1446 deferred_step_ptid = inferior_ptid;
ea67f13b 1447
515630c5
UW
1448 /* Switch back to WAIT_PID thread. */
1449 switch_to_thread (wait_ptid);
6a6b96b9 1450
515630c5
UW
1451 /* We return 1 to indicate that there is a breakpoint here,
1452 so we need to step over it before continuing to avoid
1453 hitting it straight away. */
1454 return 1;
1455 }
ea67f13b
DJ
1456 }
1457
1458 return 0;
ea67f13b 1459}
e4846b08 1460
c906108c
SS
1461/* Basic routine for continuing the program in various fashions.
1462
1463 ADDR is the address to resume at, or -1 for resume where stopped.
1464 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 1465 or -1 for act according to how it stopped.
c906108c 1466 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
1467 -1 means return after that and print nothing.
1468 You should probably set various step_... variables
1469 before calling here, if you are stepping.
c906108c
SS
1470
1471 You should call clear_proceed_status before calling proceed. */
1472
1473void
96baa820 1474proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 1475{
e58b0e63
PA
1476 struct regcache *regcache;
1477 struct gdbarch *gdbarch;
4e1c45ea 1478 struct thread_info *tp;
e58b0e63 1479 CORE_ADDR pc;
c906108c
SS
1480 int oneproc = 0;
1481
e58b0e63
PA
1482 /* If we're stopped at a fork/vfork, follow the branch set by the
1483 "set follow-fork-mode" command; otherwise, we'll just proceed
1484 resuming the current thread. */
1485 if (!follow_fork ())
1486 {
1487 /* The target for some reason decided not to resume. */
1488 normal_stop ();
1489 return;
1490 }
1491
1492 regcache = get_current_regcache ();
1493 gdbarch = get_regcache_arch (regcache);
1494 pc = regcache_read_pc (regcache);
1495
c906108c 1496 if (step > 0)
515630c5 1497 step_start_function = find_pc_function (pc);
c906108c
SS
1498 if (step < 0)
1499 stop_after_trap = 1;
1500
2acceee2 1501 if (addr == (CORE_ADDR) -1)
c906108c 1502 {
b2175913
MS
1503 if (pc == stop_pc && breakpoint_here_p (pc)
1504 && execution_direction != EXEC_REVERSE)
3352ef37
AC
1505 /* There is a breakpoint at the address we will resume at,
1506 step one instruction before inserting breakpoints so that
1507 we do not stop right away (and report a second hit at this
b2175913
MS
1508 breakpoint).
1509
1510 Note, we don't do this in reverse, because we won't
1511 actually be executing the breakpoint insn anyway.
1512 We'll be (un-)executing the previous instruction. */
1513
c906108c 1514 oneproc = 1;
515630c5
UW
1515 else if (gdbarch_single_step_through_delay_p (gdbarch)
1516 && gdbarch_single_step_through_delay (gdbarch,
1517 get_current_frame ()))
3352ef37
AC
1518 /* We stepped onto an instruction that needs to be stepped
1519 again before re-inserting the breakpoint, do so. */
c906108c
SS
1520 oneproc = 1;
1521 }
1522 else
1523 {
515630c5 1524 regcache_write_pc (regcache, addr);
c906108c
SS
1525 }
1526
527159b7 1527 if (debug_infrun)
8a9de0e4 1528 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
1529 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
1530 paddress (gdbarch, addr), siggnal, step);
527159b7 1531
94cc34af
PA
1532 if (non_stop)
1533 /* In non-stop, each thread is handled individually. The context
1534 must already be set to the right thread here. */
1535 ;
1536 else
1537 {
1538 /* In a multi-threaded task we may select another thread and
1539 then continue or step.
c906108c 1540
94cc34af
PA
1541 But if the old thread was stopped at a breakpoint, it will
1542 immediately cause another breakpoint stop without any
1543 execution (i.e. it will report a breakpoint hit incorrectly).
1544 So we must step over it first.
c906108c 1545
94cc34af
PA
1546 prepare_to_proceed checks the current thread against the
1547 thread that reported the most recent event. If a step-over
1548 is required it returns TRUE and sets the current thread to
1549 the old thread. */
1550 if (prepare_to_proceed (step))
1551 oneproc = 1;
1552 }
c906108c 1553
4e1c45ea
PA
1554 /* prepare_to_proceed may change the current thread. */
1555 tp = inferior_thread ();
1556
c906108c 1557 if (oneproc)
74960c60 1558 {
4e1c45ea 1559 tp->trap_expected = 1;
237fc4c9
PA
1560 /* If displaced stepping is enabled, we can step over the
1561 breakpoint without hitting it, so leave all breakpoints
1562 inserted. Otherwise we need to disable all breakpoints, step
1563 one instruction, and then re-add them when that step is
1564 finished. */
515630c5 1565 if (!use_displaced_stepping (gdbarch))
237fc4c9 1566 remove_breakpoints ();
74960c60 1567 }
237fc4c9
PA
1568
1569 /* We can insert breakpoints if we're not trying to step over one,
1570 or if we are stepping over one but we're using displaced stepping
1571 to do so. */
4e1c45ea 1572 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
c36b740a 1573 insert_breakpoints ();
c906108c 1574
2020b7ab
PA
1575 if (!non_stop)
1576 {
1577 /* Pass the last stop signal to the thread we're resuming,
1578 irrespective of whether the current thread is the thread that
1579 got the last event or not. This was historically GDB's
1580 behaviour before keeping a stop_signal per thread. */
1581
1582 struct thread_info *last_thread;
1583 ptid_t last_ptid;
1584 struct target_waitstatus last_status;
1585
1586 get_last_target_status (&last_ptid, &last_status);
1587 if (!ptid_equal (inferior_ptid, last_ptid)
1588 && !ptid_equal (last_ptid, null_ptid)
1589 && !ptid_equal (last_ptid, minus_one_ptid))
1590 {
e09875d4 1591 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
1592 if (last_thread)
1593 {
1594 tp->stop_signal = last_thread->stop_signal;
1595 last_thread->stop_signal = TARGET_SIGNAL_0;
1596 }
1597 }
1598 }
1599
c906108c 1600 if (siggnal != TARGET_SIGNAL_DEFAULT)
2020b7ab 1601 tp->stop_signal = siggnal;
c906108c
SS
1602 /* If this signal should not be seen by program,
1603 give it zero. Used for debugging signals. */
2020b7ab
PA
1604 else if (!signal_program[tp->stop_signal])
1605 tp->stop_signal = TARGET_SIGNAL_0;
c906108c
SS
1606
1607 annotate_starting ();
1608
1609 /* Make sure that output from GDB appears before output from the
1610 inferior. */
1611 gdb_flush (gdb_stdout);
1612
e4846b08
JJ
1613 /* Refresh prev_pc value just prior to resuming. This used to be
1614 done in stop_stepping, however, setting prev_pc there did not handle
1615 scenarios such as inferior function calls or returning from
1616 a function via the return command. In those cases, the prev_pc
1617 value was not set properly for subsequent commands. The prev_pc value
1618 is used to initialize the starting line number in the ecs. With an
1619 invalid value, the gdb next command ends up stopping at the position
1620 represented by the next line table entry past our start position.
1621 On platforms that generate one line table entry per line, this
1622 is not a problem. However, on the ia64, the compiler generates
1623 extraneous line table entries that do not increase the line number.
1624 When we issue the gdb next command on the ia64 after an inferior call
1625 or a return command, we often end up a few instructions forward, still
1626 within the original line we started.
1627
1628 An attempt was made to have init_execution_control_state () refresh
1629 the prev_pc value before calculating the line number. This approach
1630 did not work because on platforms that use ptrace, the pc register
1631 cannot be read unless the inferior is stopped. At that point, we
515630c5 1632 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
e4846b08 1633 call can fail. Setting the prev_pc value here ensures the value is
8fb3e588 1634 updated correctly when the inferior is stopped. */
4e1c45ea 1635 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 1636
59f0d5d9 1637 /* Fill in with reasonable starting values. */
4e1c45ea 1638 init_thread_stepping_state (tp);
59f0d5d9 1639
59f0d5d9
PA
1640 /* Reset to normal state. */
1641 init_infwait_state ();
1642
c906108c 1643 /* Resume inferior. */
2020b7ab 1644 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
c906108c
SS
1645
1646 /* Wait for it to stop (if not standalone)
1647 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
1648 /* Do this only if we are not using the event loop, or if the target
1649 does not support asynchronous execution. */
362646f5 1650 if (!target_can_async_p ())
43ff13b4 1651 {
ae123ec6 1652 wait_for_inferior (0);
43ff13b4
JM
1653 normal_stop ();
1654 }
c906108c 1655}
c906108c
SS
1656\f
1657
1658/* Start remote-debugging of a machine over a serial link. */
96baa820 1659
c906108c 1660void
8621d6a9 1661start_remote (int from_tty)
c906108c 1662{
d6b48e9c 1663 struct inferior *inferior;
c906108c 1664 init_wait_for_inferior ();
d6b48e9c
PA
1665
1666 inferior = current_inferior ();
1667 inferior->stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 1668
6426a772
JM
1669 /* Always go on waiting for the target, regardless of the mode. */
1670 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 1671 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
1672 nothing is returned (instead of just blocking). Because of this,
1673 targets expecting an immediate response need to, internally, set
1674 things up so that the target_wait() is forced to eventually
1675 timeout. */
1676 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1677 differentiate to its caller what the state of the target is after
1678 the initial open has been performed. Here we're assuming that
1679 the target has stopped. It should be possible to eventually have
1680 target_open() return to the caller an indication that the target
1681 is currently running and GDB state should be set to the same as
1682 for an async run. */
ae123ec6 1683 wait_for_inferior (0);
8621d6a9
DJ
1684
1685 /* Now that the inferior has stopped, do any bookkeeping like
1686 loading shared libraries. We want to do this before normal_stop,
1687 so that the displayed frame is up to date. */
1688 post_create_inferior (&current_target, from_tty);
1689
6426a772 1690 normal_stop ();
c906108c
SS
1691}
1692
1693/* Initialize static vars when a new inferior begins. */
1694
1695void
96baa820 1696init_wait_for_inferior (void)
c906108c
SS
1697{
1698 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 1699
c906108c
SS
1700 breakpoint_init_inferior (inf_starting);
1701
c906108c 1702 clear_proceed_status ();
9f976b41
DJ
1703
1704 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 1705 deferred_step_ptid = null_ptid;
ca005067
DJ
1706
1707 target_last_wait_ptid = minus_one_ptid;
237fc4c9 1708
0d1e5fa7
PA
1709 previous_inferior_ptid = null_ptid;
1710 init_infwait_state ();
1711
237fc4c9 1712 displaced_step_clear ();
edb3359d
DJ
1713
1714 /* Discard any skipped inlined frames. */
1715 clear_inline_frame_state (minus_one_ptid);
c906108c 1716}
237fc4c9 1717
c906108c 1718\f
b83266a0
SS
1719/* This enum encodes possible reasons for doing a target_wait, so that
1720 wfi can call target_wait in one place. (Ultimately the call will be
1721 moved out of the infinite loop entirely.) */
1722
c5aa993b
JM
1723enum infwait_states
1724{
cd0fc7c3
SS
1725 infwait_normal_state,
1726 infwait_thread_hop_state,
d983da9c 1727 infwait_step_watch_state,
cd0fc7c3 1728 infwait_nonstep_watch_state
b83266a0
SS
1729};
1730
11cf8741
JM
1731/* Why did the inferior stop? Used to print the appropriate messages
1732 to the interface from within handle_inferior_event(). */
1733enum inferior_stop_reason
1734{
11cf8741
JM
1735 /* Step, next, nexti, stepi finished. */
1736 END_STEPPING_RANGE,
11cf8741
JM
1737 /* Inferior terminated by signal. */
1738 SIGNAL_EXITED,
1739 /* Inferior exited. */
1740 EXITED,
1741 /* Inferior received signal, and user asked to be notified. */
b2175913
MS
1742 SIGNAL_RECEIVED,
1743 /* Reverse execution -- target ran out of history info. */
1744 NO_HISTORY
11cf8741
JM
1745};
1746
0d1e5fa7
PA
1747/* The PTID we'll do a target_wait on.*/
1748ptid_t waiton_ptid;
1749
1750/* Current inferior wait state. */
1751enum infwait_states infwait_state;
cd0fc7c3 1752
0d1e5fa7
PA
1753/* Data to be passed around while handling an event. This data is
1754 discarded between events. */
c5aa993b 1755struct execution_control_state
488f131b 1756{
0d1e5fa7 1757 ptid_t ptid;
4e1c45ea
PA
1758 /* The thread that got the event, if this was a thread event; NULL
1759 otherwise. */
1760 struct thread_info *event_thread;
1761
488f131b 1762 struct target_waitstatus ws;
488f131b
JB
1763 int random_signal;
1764 CORE_ADDR stop_func_start;
1765 CORE_ADDR stop_func_end;
1766 char *stop_func_name;
488f131b 1767 int new_thread_event;
488f131b
JB
1768 int wait_some_more;
1769};
1770
edb3359d 1771static void init_execution_control_state (struct execution_control_state *ecs);
488f131b 1772
ec9499be 1773static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 1774
568d6575
UW
1775static void handle_step_into_function (struct gdbarch *gdbarch,
1776 struct execution_control_state *ecs);
1777static void handle_step_into_function_backward (struct gdbarch *gdbarch,
1778 struct execution_control_state *ecs);
44cbf7b5 1779static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
14e60db5 1780static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
a6d9a66e
UW
1781static void insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
1782 struct symtab_and_line sr_sal,
44cbf7b5 1783 struct frame_id sr_id);
a6d9a66e 1784static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
611c83ae 1785
104c1213
JM
1786static void stop_stepping (struct execution_control_state *ecs);
1787static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 1788static void keep_going (struct execution_control_state *ecs);
488f131b
JB
1789static void print_stop_reason (enum inferior_stop_reason stop_reason,
1790 int stop_info);
104c1213 1791
252fbfc8
PA
1792/* Callback for iterate over threads. If the thread is stopped, but
1793 the user/frontend doesn't know about that yet, go through
1794 normal_stop, as if the thread had just stopped now. ARG points at
1795 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
1796 ptid_is_pid(PTID) is true, applies to all threads of the process
1797 pointed at by PTID. Otherwise, apply only to the thread pointed by
1798 PTID. */
1799
1800static int
1801infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
1802{
1803 ptid_t ptid = * (ptid_t *) arg;
1804
1805 if ((ptid_equal (info->ptid, ptid)
1806 || ptid_equal (minus_one_ptid, ptid)
1807 || (ptid_is_pid (ptid)
1808 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
1809 && is_running (info->ptid)
1810 && !is_executing (info->ptid))
1811 {
1812 struct cleanup *old_chain;
1813 struct execution_control_state ecss;
1814 struct execution_control_state *ecs = &ecss;
1815
1816 memset (ecs, 0, sizeof (*ecs));
1817
1818 old_chain = make_cleanup_restore_current_thread ();
1819
1820 switch_to_thread (info->ptid);
1821
1822 /* Go through handle_inferior_event/normal_stop, so we always
1823 have consistent output as if the stop event had been
1824 reported. */
1825 ecs->ptid = info->ptid;
e09875d4 1826 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8
PA
1827 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1828 ecs->ws.value.sig = TARGET_SIGNAL_0;
1829
1830 handle_inferior_event (ecs);
1831
1832 if (!ecs->wait_some_more)
1833 {
1834 struct thread_info *tp;
1835
1836 normal_stop ();
1837
1838 /* Finish off the continuations. The continations
1839 themselves are responsible for realising the thread
1840 didn't finish what it was supposed to do. */
1841 tp = inferior_thread ();
1842 do_all_intermediate_continuations_thread (tp);
1843 do_all_continuations_thread (tp);
1844 }
1845
1846 do_cleanups (old_chain);
1847 }
1848
1849 return 0;
1850}
1851
1852/* This function is attached as a "thread_stop_requested" observer.
1853 Cleanup local state that assumed the PTID was to be resumed, and
1854 report the stop to the frontend. */
1855
2c0b251b 1856static void
252fbfc8
PA
1857infrun_thread_stop_requested (ptid_t ptid)
1858{
1859 struct displaced_step_request *it, *next, *prev = NULL;
1860
1861 /* PTID was requested to stop. Remove it from the displaced
1862 stepping queue, so we don't try to resume it automatically. */
1863 for (it = displaced_step_request_queue; it; it = next)
1864 {
1865 next = it->next;
1866
1867 if (ptid_equal (it->ptid, ptid)
1868 || ptid_equal (minus_one_ptid, ptid)
1869 || (ptid_is_pid (ptid)
1870 && ptid_get_pid (ptid) == ptid_get_pid (it->ptid)))
1871 {
1872 if (displaced_step_request_queue == it)
1873 displaced_step_request_queue = it->next;
1874 else
1875 prev->next = it->next;
1876
1877 xfree (it);
1878 }
1879 else
1880 prev = it;
1881 }
1882
1883 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
1884}
1885
a07daef3
PA
1886static void
1887infrun_thread_thread_exit (struct thread_info *tp, int silent)
1888{
1889 if (ptid_equal (target_last_wait_ptid, tp->ptid))
1890 nullify_last_target_wait_ptid ();
1891}
1892
4e1c45ea
PA
1893/* Callback for iterate_over_threads. */
1894
1895static int
1896delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
1897{
1898 if (is_exited (info->ptid))
1899 return 0;
1900
1901 delete_step_resume_breakpoint (info);
1902 return 0;
1903}
1904
1905/* In all-stop, delete the step resume breakpoint of any thread that
1906 had one. In non-stop, delete the step resume breakpoint of the
1907 thread that just stopped. */
1908
1909static void
1910delete_step_thread_step_resume_breakpoint (void)
1911{
1912 if (!target_has_execution
1913 || ptid_equal (inferior_ptid, null_ptid))
1914 /* If the inferior has exited, we have already deleted the step
1915 resume breakpoints out of GDB's lists. */
1916 return;
1917
1918 if (non_stop)
1919 {
1920 /* If in non-stop mode, only delete the step-resume or
1921 longjmp-resume breakpoint of the thread that just stopped
1922 stepping. */
1923 struct thread_info *tp = inferior_thread ();
1924 delete_step_resume_breakpoint (tp);
1925 }
1926 else
1927 /* In all-stop mode, delete all step-resume and longjmp-resume
1928 breakpoints of any thread that had them. */
1929 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
1930}
1931
1932/* A cleanup wrapper. */
1933
1934static void
1935delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
1936{
1937 delete_step_thread_step_resume_breakpoint ();
1938}
1939
223698f8
DE
1940/* Pretty print the results of target_wait, for debugging purposes. */
1941
1942static void
1943print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
1944 const struct target_waitstatus *ws)
1945{
1946 char *status_string = target_waitstatus_to_string (ws);
1947 struct ui_file *tmp_stream = mem_fileopen ();
1948 char *text;
223698f8
DE
1949
1950 /* The text is split over several lines because it was getting too long.
1951 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
1952 output as a unit; we want only one timestamp printed if debug_timestamp
1953 is set. */
1954
1955 fprintf_unfiltered (tmp_stream,
1956 "infrun: target_wait (%d", PIDGET (waiton_ptid));
1957 if (PIDGET (waiton_ptid) != -1)
1958 fprintf_unfiltered (tmp_stream,
1959 " [%s]", target_pid_to_str (waiton_ptid));
1960 fprintf_unfiltered (tmp_stream, ", status) =\n");
1961 fprintf_unfiltered (tmp_stream,
1962 "infrun: %d [%s],\n",
1963 PIDGET (result_ptid), target_pid_to_str (result_ptid));
1964 fprintf_unfiltered (tmp_stream,
1965 "infrun: %s\n",
1966 status_string);
1967
759ef836 1968 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
1969
1970 /* This uses %s in part to handle %'s in the text, but also to avoid
1971 a gcc error: the format attribute requires a string literal. */
1972 fprintf_unfiltered (gdb_stdlog, "%s", text);
1973
1974 xfree (status_string);
1975 xfree (text);
1976 ui_file_delete (tmp_stream);
1977}
1978
cd0fc7c3 1979/* Wait for control to return from inferior to debugger.
ae123ec6
JB
1980
1981 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1982 as if they were SIGTRAP signals. This can be useful during
1983 the startup sequence on some targets such as HP/UX, where
1984 we receive an EXEC event instead of the expected SIGTRAP.
1985
cd0fc7c3
SS
1986 If inferior gets a signal, we may decide to start it up again
1987 instead of returning. That is why there is a loop in this function.
1988 When this function actually returns it means the inferior
1989 should be left stopped and GDB should read more commands. */
1990
1991void
ae123ec6 1992wait_for_inferior (int treat_exec_as_sigtrap)
cd0fc7c3
SS
1993{
1994 struct cleanup *old_cleanups;
0d1e5fa7 1995 struct execution_control_state ecss;
cd0fc7c3 1996 struct execution_control_state *ecs;
c906108c 1997
527159b7 1998 if (debug_infrun)
ae123ec6
JB
1999 fprintf_unfiltered
2000 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
2001 treat_exec_as_sigtrap);
527159b7 2002
4e1c45ea
PA
2003 old_cleanups =
2004 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2005
cd0fc7c3 2006 ecs = &ecss;
0d1e5fa7
PA
2007 memset (ecs, 0, sizeof (*ecs));
2008
e0bb1c1c
PA
2009 /* We'll update this if & when we switch to a new thread. */
2010 previous_inferior_ptid = inferior_ptid;
2011
c906108c
SS
2012 while (1)
2013 {
29f49a6a
PA
2014 struct cleanup *old_chain;
2015
ec9499be
UW
2016 /* We have to invalidate the registers BEFORE calling target_wait
2017 because they can be loaded from the target while in target_wait.
2018 This makes remote debugging a bit more efficient for those
2019 targets that provide critical registers as part of their normal
2020 status mechanism. */
2021
2022 overlay_cache_invalid = 1;
2023 registers_changed ();
2024
9a4105ab 2025 if (deprecated_target_wait_hook)
47608cb1 2026 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2027 else
47608cb1 2028 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2029
f00150c9 2030 if (debug_infrun)
223698f8 2031 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2032
ae123ec6
JB
2033 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
2034 {
2035 xfree (ecs->ws.value.execd_pathname);
2036 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2037 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
2038 }
2039
29f49a6a
PA
2040 /* If an error happens while handling the event, propagate GDB's
2041 knowledge of the executing state to the frontend/user running
2042 state. */
2043 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2044
cd0fc7c3
SS
2045 /* Now figure out what to do with the result of the result. */
2046 handle_inferior_event (ecs);
c906108c 2047
29f49a6a
PA
2048 /* No error, don't finish the state yet. */
2049 discard_cleanups (old_chain);
2050
cd0fc7c3
SS
2051 if (!ecs->wait_some_more)
2052 break;
2053 }
4e1c45ea 2054
cd0fc7c3
SS
2055 do_cleanups (old_cleanups);
2056}
c906108c 2057
43ff13b4
JM
2058/* Asynchronous version of wait_for_inferior. It is called by the
2059 event loop whenever a change of state is detected on the file
2060 descriptor corresponding to the target. It can be called more than
2061 once to complete a single execution command. In such cases we need
a474d7c2
PA
2062 to keep the state in a global variable ECSS. If it is the last time
2063 that this function is called for a single execution command, then
2064 report to the user that the inferior has stopped, and do the
2065 necessary cleanups. */
43ff13b4
JM
2066
2067void
fba45db2 2068fetch_inferior_event (void *client_data)
43ff13b4 2069{
0d1e5fa7 2070 struct execution_control_state ecss;
a474d7c2 2071 struct execution_control_state *ecs = &ecss;
4f8d22e3 2072 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2073 struct cleanup *ts_old_chain;
4f8d22e3 2074 int was_sync = sync_execution;
43ff13b4 2075
0d1e5fa7
PA
2076 memset (ecs, 0, sizeof (*ecs));
2077
ec9499be
UW
2078 /* We'll update this if & when we switch to a new thread. */
2079 previous_inferior_ptid = inferior_ptid;
e0bb1c1c 2080
4f8d22e3
PA
2081 if (non_stop)
2082 /* In non-stop mode, the user/frontend should not notice a thread
2083 switch due to internal events. Make sure we reverse to the
2084 user selected thread and frame after handling the event and
2085 running any breakpoint commands. */
2086 make_cleanup_restore_current_thread ();
2087
59f0d5d9
PA
2088 /* We have to invalidate the registers BEFORE calling target_wait
2089 because they can be loaded from the target while in target_wait.
2090 This makes remote debugging a bit more efficient for those
2091 targets that provide critical registers as part of their normal
2092 status mechanism. */
43ff13b4 2093
ec9499be 2094 overlay_cache_invalid = 1;
59f0d5d9 2095 registers_changed ();
43ff13b4 2096
9a4105ab 2097 if (deprecated_target_wait_hook)
a474d7c2 2098 ecs->ptid =
47608cb1 2099 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2100 else
47608cb1 2101 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2102
f00150c9 2103 if (debug_infrun)
223698f8 2104 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2105
94cc34af
PA
2106 if (non_stop
2107 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2108 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2109 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2110 /* In non-stop mode, each thread is handled individually. Switch
2111 early, so the global state is set correctly for this
2112 thread. */
2113 context_switch (ecs->ptid);
2114
29f49a6a
PA
2115 /* If an error happens while handling the event, propagate GDB's
2116 knowledge of the executing state to the frontend/user running
2117 state. */
2118 if (!non_stop)
2119 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2120 else
2121 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2122
43ff13b4 2123 /* Now figure out what to do with the result of the result. */
a474d7c2 2124 handle_inferior_event (ecs);
43ff13b4 2125
a474d7c2 2126 if (!ecs->wait_some_more)
43ff13b4 2127 {
d6b48e9c
PA
2128 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2129
4e1c45ea 2130 delete_step_thread_step_resume_breakpoint ();
f107f563 2131
d6b48e9c
PA
2132 /* We may not find an inferior if this was a process exit. */
2133 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2134 normal_stop ();
2135
af679fd0
PA
2136 if (target_has_execution
2137 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2138 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2139 && ecs->event_thread->step_multi
414c69f7 2140 && ecs->event_thread->stop_step)
c2d11a7d
JM
2141 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2142 else
2143 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4 2144 }
4f8d22e3 2145
29f49a6a
PA
2146 /* No error, don't finish the thread states yet. */
2147 discard_cleanups (ts_old_chain);
2148
4f8d22e3
PA
2149 /* Revert thread and frame. */
2150 do_cleanups (old_chain);
2151
2152 /* If the inferior was in sync execution mode, and now isn't,
2153 restore the prompt. */
2154 if (was_sync && !sync_execution)
2155 display_gdb_prompt (0);
43ff13b4
JM
2156}
2157
edb3359d
DJ
2158/* Record the frame and location we're currently stepping through. */
2159void
2160set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2161{
2162 struct thread_info *tp = inferior_thread ();
2163
2164 tp->step_frame_id = get_frame_id (frame);
2165 tp->step_stack_frame_id = get_stack_frame_id (frame);
2166
2167 tp->current_symtab = sal.symtab;
2168 tp->current_line = sal.line;
2169}
2170
cd0fc7c3
SS
2171/* Prepare an execution control state for looping through a
2172 wait_for_inferior-type loop. */
2173
edb3359d 2174static void
96baa820 2175init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3
SS
2176{
2177 ecs->random_signal = 0;
0d1e5fa7
PA
2178}
2179
2180/* Clear context switchable stepping state. */
2181
2182void
4e1c45ea 2183init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2184{
2185 tss->stepping_over_breakpoint = 0;
2186 tss->step_after_step_resume_breakpoint = 0;
2187 tss->stepping_through_solib_after_catch = 0;
2188 tss->stepping_through_solib_catchpoints = NULL;
cd0fc7c3
SS
2189}
2190
e02bc4cc 2191/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2192 target_wait()/deprecated_target_wait_hook(). The data is actually
2193 cached by handle_inferior_event(), which gets called immediately
2194 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2195
2196void
488f131b 2197get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2198{
39f77062 2199 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2200 *status = target_last_waitstatus;
2201}
2202
ac264b3b
MS
2203void
2204nullify_last_target_wait_ptid (void)
2205{
2206 target_last_wait_ptid = minus_one_ptid;
2207}
2208
dcf4fbde 2209/* Switch thread contexts. */
dd80620e
MS
2210
2211static void
0d1e5fa7 2212context_switch (ptid_t ptid)
dd80620e 2213{
fd48f117
DJ
2214 if (debug_infrun)
2215 {
2216 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2217 target_pid_to_str (inferior_ptid));
2218 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2219 target_pid_to_str (ptid));
fd48f117
DJ
2220 }
2221
0d1e5fa7 2222 switch_to_thread (ptid);
dd80620e
MS
2223}
2224
4fa8626c
DJ
2225static void
2226adjust_pc_after_break (struct execution_control_state *ecs)
2227{
24a73cce
UW
2228 struct regcache *regcache;
2229 struct gdbarch *gdbarch;
8aad930b 2230 CORE_ADDR breakpoint_pc;
4fa8626c 2231
4fa8626c
DJ
2232 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2233 we aren't, just return.
9709f61c
DJ
2234
2235 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2236 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2237 implemented by software breakpoints should be handled through the normal
2238 breakpoint layer.
8fb3e588 2239
4fa8626c
DJ
2240 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2241 different signals (SIGILL or SIGEMT for instance), but it is less
2242 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2243 gdbarch_decr_pc_after_break. I don't know any specific target that
2244 generates these signals at breakpoints (the code has been in GDB since at
2245 least 1992) so I can not guess how to handle them here.
8fb3e588 2246
e6cf7916
UW
2247 In earlier versions of GDB, a target with
2248 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2249 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2250 target with both of these set in GDB history, and it seems unlikely to be
2251 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2252
2253 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2254 return;
2255
2256 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2257 return;
2258
4058b839
PA
2259 /* In reverse execution, when a breakpoint is hit, the instruction
2260 under it has already been de-executed. The reported PC always
2261 points at the breakpoint address, so adjusting it further would
2262 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2263 architecture:
2264
2265 B1 0x08000000 : INSN1
2266 B2 0x08000001 : INSN2
2267 0x08000002 : INSN3
2268 PC -> 0x08000003 : INSN4
2269
2270 Say you're stopped at 0x08000003 as above. Reverse continuing
2271 from that point should hit B2 as below. Reading the PC when the
2272 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2273 been de-executed already.
2274
2275 B1 0x08000000 : INSN1
2276 B2 PC -> 0x08000001 : INSN2
2277 0x08000002 : INSN3
2278 0x08000003 : INSN4
2279
2280 We can't apply the same logic as for forward execution, because
2281 we would wrongly adjust the PC to 0x08000000, since there's a
2282 breakpoint at PC - 1. We'd then report a hit on B1, although
2283 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2284 behaviour. */
2285 if (execution_direction == EXEC_REVERSE)
2286 return;
2287
24a73cce
UW
2288 /* If this target does not decrement the PC after breakpoints, then
2289 we have nothing to do. */
2290 regcache = get_thread_regcache (ecs->ptid);
2291 gdbarch = get_regcache_arch (regcache);
2292 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2293 return;
2294
8aad930b
AC
2295 /* Find the location where (if we've hit a breakpoint) the
2296 breakpoint would be. */
515630c5
UW
2297 breakpoint_pc = regcache_read_pc (regcache)
2298 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 2299
1c5cfe86
PA
2300 /* Check whether there actually is a software breakpoint inserted at
2301 that location.
2302
2303 If in non-stop mode, a race condition is possible where we've
2304 removed a breakpoint, but stop events for that breakpoint were
2305 already queued and arrive later. To suppress those spurious
2306 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2307 and retire them after a number of stop events are reported. */
2308 if (software_breakpoint_inserted_here_p (breakpoint_pc)
2309 || (non_stop && moribund_breakpoint_here_p (breakpoint_pc)))
8aad930b 2310 {
96429cc8
HZ
2311 struct cleanup *old_cleanups = NULL;
2312 if (RECORD_IS_USED)
2313 old_cleanups = record_gdb_operation_disable_set ();
2314
1c0fdd0e
UW
2315 /* When using hardware single-step, a SIGTRAP is reported for both
2316 a completed single-step and a software breakpoint. Need to
2317 differentiate between the two, as the latter needs adjusting
2318 but the former does not.
2319
2320 The SIGTRAP can be due to a completed hardware single-step only if
2321 - we didn't insert software single-step breakpoints
2322 - the thread to be examined is still the current thread
2323 - this thread is currently being stepped
2324
2325 If any of these events did not occur, we must have stopped due
2326 to hitting a software breakpoint, and have to back up to the
2327 breakpoint address.
2328
2329 As a special case, we could have hardware single-stepped a
2330 software breakpoint. In this case (prev_pc == breakpoint_pc),
2331 we also need to back up to the breakpoint address. */
2332
2333 if (singlestep_breakpoints_inserted_p
2334 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
2335 || !currently_stepping (ecs->event_thread)
2336 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 2337 regcache_write_pc (regcache, breakpoint_pc);
96429cc8
HZ
2338
2339 if (RECORD_IS_USED)
2340 do_cleanups (old_cleanups);
8aad930b 2341 }
4fa8626c
DJ
2342}
2343
0d1e5fa7
PA
2344void
2345init_infwait_state (void)
2346{
2347 waiton_ptid = pid_to_ptid (-1);
2348 infwait_state = infwait_normal_state;
2349}
2350
94cc34af
PA
2351void
2352error_is_running (void)
2353{
2354 error (_("\
2355Cannot execute this command while the selected thread is running."));
2356}
2357
2358void
2359ensure_not_running (void)
2360{
2361 if (is_running (inferior_ptid))
2362 error_is_running ();
2363}
2364
edb3359d
DJ
2365static int
2366stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
2367{
2368 for (frame = get_prev_frame (frame);
2369 frame != NULL;
2370 frame = get_prev_frame (frame))
2371 {
2372 if (frame_id_eq (get_frame_id (frame), step_frame_id))
2373 return 1;
2374 if (get_frame_type (frame) != INLINE_FRAME)
2375 break;
2376 }
2377
2378 return 0;
2379}
2380
cd0fc7c3
SS
2381/* Given an execution control state that has been freshly filled in
2382 by an event from the inferior, figure out what it means and take
2383 appropriate action. */
c906108c 2384
ec9499be 2385static void
96baa820 2386handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 2387{
568d6575
UW
2388 struct frame_info *frame;
2389 struct gdbarch *gdbarch;
c8edd8b4 2390 int sw_single_step_trap_p = 0;
d983da9c
DJ
2391 int stopped_by_watchpoint;
2392 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 2393 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
2394 enum stop_kind stop_soon;
2395
2396 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2397 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2398 && ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2399 {
2400 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2401 gdb_assert (inf);
2402 stop_soon = inf->stop_soon;
2403 }
2404 else
2405 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 2406
e02bc4cc 2407 /* Cache the last pid/waitstatus. */
39f77062 2408 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 2409 target_last_waitstatus = ecs->ws;
e02bc4cc 2410
ca005067
DJ
2411 /* Always clear state belonging to the previous time we stopped. */
2412 stop_stack_dummy = 0;
2413
8c90c137
LM
2414 /* If it's a new process, add it to the thread database */
2415
2416 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
2417 && !ptid_equal (ecs->ptid, minus_one_ptid)
2418 && !in_thread_list (ecs->ptid));
2419
2420 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2421 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
2422 add_thread (ecs->ptid);
2423
e09875d4 2424 ecs->event_thread = find_thread_ptid (ecs->ptid);
88ed393a
JK
2425
2426 /* Dependent on valid ECS->EVENT_THREAD. */
2427 adjust_pc_after_break (ecs);
2428
2429 /* Dependent on the current PC value modified by adjust_pc_after_break. */
2430 reinit_frame_cache ();
2431
8c90c137
LM
2432 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2433 {
1c5cfe86
PA
2434 breakpoint_retire_moribund ();
2435
48844aa6
PA
2436 /* Mark the non-executing threads accordingly. In all-stop, all
2437 threads of all processes are stopped when we get any event
2438 reported. In non-stop mode, only the event thread stops. If
2439 we're handling a process exit in non-stop mode, there's
2440 nothing to do, as threads of the dead process are gone, and
2441 threads of any other process were left running. */
2442 if (!non_stop)
2443 set_executing (minus_one_ptid, 0);
2444 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2445 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
2446 set_executing (inferior_ptid, 0);
8c90c137
LM
2447 }
2448
0d1e5fa7 2449 switch (infwait_state)
488f131b
JB
2450 {
2451 case infwait_thread_hop_state:
527159b7 2452 if (debug_infrun)
8a9de0e4 2453 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 2454 break;
b83266a0 2455
488f131b 2456 case infwait_normal_state:
527159b7 2457 if (debug_infrun)
8a9de0e4 2458 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
2459 break;
2460
2461 case infwait_step_watch_state:
2462 if (debug_infrun)
2463 fprintf_unfiltered (gdb_stdlog,
2464 "infrun: infwait_step_watch_state\n");
2465
2466 stepped_after_stopped_by_watchpoint = 1;
488f131b 2467 break;
b83266a0 2468
488f131b 2469 case infwait_nonstep_watch_state:
527159b7 2470 if (debug_infrun)
8a9de0e4
AC
2471 fprintf_unfiltered (gdb_stdlog,
2472 "infrun: infwait_nonstep_watch_state\n");
488f131b 2473 insert_breakpoints ();
c906108c 2474
488f131b
JB
2475 /* FIXME-maybe: is this cleaner than setting a flag? Does it
2476 handle things like signals arriving and other things happening
2477 in combination correctly? */
2478 stepped_after_stopped_by_watchpoint = 1;
2479 break;
65e82032
AC
2480
2481 default:
e2e0b3e5 2482 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 2483 }
ec9499be 2484
0d1e5fa7 2485 infwait_state = infwait_normal_state;
ec9499be 2486 waiton_ptid = pid_to_ptid (-1);
c906108c 2487
488f131b
JB
2488 switch (ecs->ws.kind)
2489 {
2490 case TARGET_WAITKIND_LOADED:
527159b7 2491 if (debug_infrun)
8a9de0e4 2492 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
2493 /* Ignore gracefully during startup of the inferior, as it might
2494 be the shell which has just loaded some objects, otherwise
2495 add the symbols for the newly loaded objects. Also ignore at
2496 the beginning of an attach or remote session; we will query
2497 the full list of libraries once the connection is
2498 established. */
c0236d92 2499 if (stop_soon == NO_STOP_QUIETLY)
488f131b 2500 {
488f131b
JB
2501 /* Check for any newly added shared libraries if we're
2502 supposed to be adding them automatically. Switch
2503 terminal for any messages produced by
2504 breakpoint_re_set. */
2505 target_terminal_ours_for_output ();
aff6338a 2506 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
2507 stack's section table is kept up-to-date. Architectures,
2508 (e.g., PPC64), use the section table to perform
2509 operations such as address => section name and hence
2510 require the table to contain all sections (including
2511 those found in shared libraries). */
b0f4b84b 2512#ifdef SOLIB_ADD
aff6338a 2513 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
2514#else
2515 solib_add (NULL, 0, &current_target, auto_solib_add);
2516#endif
488f131b
JB
2517 target_terminal_inferior ();
2518
b0f4b84b
DJ
2519 /* If requested, stop when the dynamic linker notifies
2520 gdb of events. This allows the user to get control
2521 and place breakpoints in initializer routines for
2522 dynamically loaded objects (among other things). */
2523 if (stop_on_solib_events)
2524 {
2525 stop_stepping (ecs);
2526 return;
2527 }
2528
2529 /* NOTE drow/2007-05-11: This might be a good place to check
2530 for "catch load". */
488f131b 2531 }
b0f4b84b
DJ
2532
2533 /* If we are skipping through a shell, or through shared library
2534 loading that we aren't interested in, resume the program. If
2535 we're running the program normally, also resume. But stop if
2536 we're attaching or setting up a remote connection. */
2537 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
2538 {
74960c60
VP
2539 /* Loading of shared libraries might have changed breakpoint
2540 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
2541 if (stop_soon == NO_STOP_QUIETLY
2542 && !breakpoints_always_inserted_mode ())
74960c60 2543 insert_breakpoints ();
b0f4b84b
DJ
2544 resume (0, TARGET_SIGNAL_0);
2545 prepare_to_wait (ecs);
2546 return;
2547 }
2548
2549 break;
c5aa993b 2550
488f131b 2551 case TARGET_WAITKIND_SPURIOUS:
527159b7 2552 if (debug_infrun)
8a9de0e4 2553 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
2554 resume (0, TARGET_SIGNAL_0);
2555 prepare_to_wait (ecs);
2556 return;
c5aa993b 2557
488f131b 2558 case TARGET_WAITKIND_EXITED:
527159b7 2559 if (debug_infrun)
8a9de0e4 2560 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
fb66883a 2561 inferior_ptid = ecs->ptid;
488f131b
JB
2562 target_terminal_ours (); /* Must do this before mourn anyway */
2563 print_stop_reason (EXITED, ecs->ws.value.integer);
2564
2565 /* Record the exit code in the convenience variable $_exitcode, so
2566 that the user can inspect this again later. */
4fa62494
UW
2567 set_internalvar_integer (lookup_internalvar ("_exitcode"),
2568 (LONGEST) ecs->ws.value.integer);
488f131b
JB
2569 gdb_flush (gdb_stdout);
2570 target_mourn_inferior ();
1c0fdd0e 2571 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
2572 stop_print_frame = 0;
2573 stop_stepping (ecs);
2574 return;
c5aa993b 2575
488f131b 2576 case TARGET_WAITKIND_SIGNALLED:
527159b7 2577 if (debug_infrun)
8a9de0e4 2578 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
fb66883a 2579 inferior_ptid = ecs->ptid;
488f131b 2580 stop_print_frame = 0;
488f131b 2581 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 2582
488f131b
JB
2583 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2584 reach here unless the inferior is dead. However, for years
2585 target_kill() was called here, which hints that fatal signals aren't
2586 really fatal on some systems. If that's true, then some changes
2587 may be needed. */
2588 target_mourn_inferior ();
c906108c 2589
2020b7ab 2590 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
1c0fdd0e 2591 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
2592 stop_stepping (ecs);
2593 return;
c906108c 2594
488f131b
JB
2595 /* The following are the only cases in which we keep going;
2596 the above cases end in a continue or goto. */
2597 case TARGET_WAITKIND_FORKED:
deb3b17b 2598 case TARGET_WAITKIND_VFORKED:
527159b7 2599 if (debug_infrun)
8a9de0e4 2600 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
c906108c 2601
5a2901d9
DJ
2602 if (!ptid_equal (ecs->ptid, inferior_ptid))
2603 {
0d1e5fa7 2604 context_switch (ecs->ptid);
35f196d9 2605 reinit_frame_cache ();
5a2901d9
DJ
2606 }
2607
b242c3c2
PA
2608 /* Immediately detach breakpoints from the child before there's
2609 any chance of letting the user delete breakpoints from the
2610 breakpoint lists. If we don't do this early, it's easy to
2611 leave left over traps in the child, vis: "break foo; catch
2612 fork; c; <fork>; del; c; <child calls foo>". We only follow
2613 the fork on the last `continue', and by that time the
2614 breakpoint at "foo" is long gone from the breakpoint table.
2615 If we vforked, then we don't need to unpatch here, since both
2616 parent and child are sharing the same memory pages; we'll
2617 need to unpatch at follow/detach time instead to be certain
2618 that new breakpoints added between catchpoint hit time and
2619 vfork follow are detached. */
2620 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
2621 {
2622 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
2623
2624 /* This won't actually modify the breakpoint list, but will
2625 physically remove the breakpoints from the child. */
2626 detach_breakpoints (child_pid);
2627 }
2628
e58b0e63
PA
2629 /* In case the event is caught by a catchpoint, remember that
2630 the event is to be followed at the next resume of the thread,
2631 and not immediately. */
2632 ecs->event_thread->pending_follow = ecs->ws;
2633
fb14de7b 2634 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 2635
347bddb7 2636 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
675bf4cb 2637
347bddb7 2638 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
04e68871
DJ
2639
2640 /* If no catchpoint triggered for this, then keep going. */
2641 if (ecs->random_signal)
2642 {
e58b0e63
PA
2643 int should_resume;
2644
2020b7ab 2645 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
e58b0e63
PA
2646
2647 should_resume = follow_fork ();
2648
2649 ecs->event_thread = inferior_thread ();
2650 ecs->ptid = inferior_ptid;
2651
2652 if (should_resume)
2653 keep_going (ecs);
2654 else
2655 stop_stepping (ecs);
04e68871
DJ
2656 return;
2657 }
2020b7ab 2658 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
2659 goto process_event_stop_test;
2660
2661 case TARGET_WAITKIND_EXECD:
527159b7 2662 if (debug_infrun)
fc5261f2 2663 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 2664
5a2901d9
DJ
2665 if (!ptid_equal (ecs->ptid, inferior_ptid))
2666 {
0d1e5fa7 2667 context_switch (ecs->ptid);
35f196d9 2668 reinit_frame_cache ();
5a2901d9
DJ
2669 }
2670
fb14de7b 2671 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f
PA
2672
2673 /* This causes the eventpoints and symbol table to be reset.
2674 Must do this now, before trying to determine whether to
2675 stop. */
71b43ef8 2676 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f
PA
2677
2678 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2679 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2680
71b43ef8
PA
2681 /* Note that this may be referenced from inside
2682 bpstat_stop_status above, through inferior_has_execd. */
2683 xfree (ecs->ws.value.execd_pathname);
2684 ecs->ws.value.execd_pathname = NULL;
2685
04e68871
DJ
2686 /* If no catchpoint triggered for this, then keep going. */
2687 if (ecs->random_signal)
2688 {
2020b7ab 2689 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
2690 keep_going (ecs);
2691 return;
2692 }
2020b7ab 2693 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
2694 goto process_event_stop_test;
2695
b4dc5ffa
MK
2696 /* Be careful not to try to gather much state about a thread
2697 that's in a syscall. It's frequently a losing proposition. */
488f131b 2698 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 2699 if (debug_infrun)
8a9de0e4 2700 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
488f131b
JB
2701 resume (0, TARGET_SIGNAL_0);
2702 prepare_to_wait (ecs);
2703 return;
c906108c 2704
488f131b
JB
2705 /* Before examining the threads further, step this thread to
2706 get it entirely out of the syscall. (We get notice of the
2707 event when the thread is just on the verge of exiting a
2708 syscall. Stepping one instruction seems to get it back
b4dc5ffa 2709 into user code.) */
488f131b 2710 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 2711 if (debug_infrun)
8a9de0e4 2712 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
488f131b 2713 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
488f131b
JB
2714 prepare_to_wait (ecs);
2715 return;
c906108c 2716
488f131b 2717 case TARGET_WAITKIND_STOPPED:
527159b7 2718 if (debug_infrun)
8a9de0e4 2719 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2020b7ab 2720 ecs->event_thread->stop_signal = ecs->ws.value.sig;
488f131b 2721 break;
c906108c 2722
b2175913
MS
2723 case TARGET_WAITKIND_NO_HISTORY:
2724 /* Reverse execution: target ran out of history info. */
fb14de7b 2725 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
b2175913
MS
2726 print_stop_reason (NO_HISTORY, 0);
2727 stop_stepping (ecs);
2728 return;
2729
488f131b
JB
2730 /* We had an event in the inferior, but we are not interested
2731 in handling it at this level. The lower layers have already
8e7d2c16 2732 done what needs to be done, if anything.
8fb3e588
AC
2733
2734 One of the possible circumstances for this is when the
2735 inferior produces output for the console. The inferior has
2736 not stopped, and we are ignoring the event. Another possible
2737 circumstance is any event which the lower level knows will be
2738 reported multiple times without an intervening resume. */
488f131b 2739 case TARGET_WAITKIND_IGNORE:
527159b7 2740 if (debug_infrun)
8a9de0e4 2741 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
8e7d2c16 2742 prepare_to_wait (ecs);
488f131b
JB
2743 return;
2744 }
c906108c 2745
488f131b
JB
2746 if (ecs->new_thread_event)
2747 {
94cc34af
PA
2748 if (non_stop)
2749 /* Non-stop assumes that the target handles adding new threads
2750 to the thread list. */
2751 internal_error (__FILE__, __LINE__, "\
2752targets should add new threads to the thread list themselves in non-stop mode.");
2753
2754 /* We may want to consider not doing a resume here in order to
2755 give the user a chance to play with the new thread. It might
2756 be good to make that a user-settable option. */
2757
2758 /* At this point, all threads are stopped (happens automatically
2759 in either the OS or the native code). Therefore we need to
2760 continue all threads in order to make progress. */
2761
173853dc
PA
2762 if (!ptid_equal (ecs->ptid, inferior_ptid))
2763 context_switch (ecs->ptid);
488f131b
JB
2764 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2765 prepare_to_wait (ecs);
2766 return;
2767 }
c906108c 2768
2020b7ab 2769 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
2770 {
2771 /* Do we need to clean up the state of a thread that has
2772 completed a displaced single-step? (Doing so usually affects
2773 the PC, so do it here, before we set stop_pc.) */
2774 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
2775
2776 /* If we either finished a single-step or hit a breakpoint, but
2777 the user wanted this thread to be stopped, pretend we got a
2778 SIG0 (generic unsignaled stop). */
2779
2780 if (ecs->event_thread->stop_requested
2781 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2782 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2783 }
237fc4c9 2784
515630c5 2785 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 2786
527159b7 2787 if (debug_infrun)
237fc4c9 2788 {
5af949e3
UW
2789 struct regcache *regcache = get_thread_regcache (ecs->ptid);
2790 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2791
2792 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
2793 paddress (gdbarch, stop_pc));
d92524f1 2794 if (target_stopped_by_watchpoint ())
237fc4c9
PA
2795 {
2796 CORE_ADDR addr;
2797 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2798
2799 if (target_stopped_data_address (&current_target, &addr))
2800 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
2801 "infrun: stopped data address = %s\n",
2802 paddress (gdbarch, addr));
237fc4c9
PA
2803 else
2804 fprintf_unfiltered (gdb_stdlog,
2805 "infrun: (no data address available)\n");
2806 }
2807 }
527159b7 2808
9f976b41
DJ
2809 if (stepping_past_singlestep_breakpoint)
2810 {
1c0fdd0e 2811 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
2812 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2813 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2814
2815 stepping_past_singlestep_breakpoint = 0;
2816
2817 /* We've either finished single-stepping past the single-step
8fb3e588
AC
2818 breakpoint, or stopped for some other reason. It would be nice if
2819 we could tell, but we can't reliably. */
2020b7ab 2820 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 2821 {
527159b7 2822 if (debug_infrun)
8a9de0e4 2823 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41 2824 /* Pull the single step breakpoints out of the target. */
e0cd558a 2825 remove_single_step_breakpoints ();
9f976b41
DJ
2826 singlestep_breakpoints_inserted_p = 0;
2827
2828 ecs->random_signal = 0;
79626f8a 2829 ecs->event_thread->trap_expected = 0;
9f976b41 2830
0d1e5fa7 2831 context_switch (saved_singlestep_ptid);
9a4105ab
AC
2832 if (deprecated_context_hook)
2833 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
2834
2835 resume (1, TARGET_SIGNAL_0);
2836 prepare_to_wait (ecs);
2837 return;
2838 }
2839 }
2840
ca67fcb8 2841 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 2842 {
94cc34af
PA
2843 /* In non-stop mode, there's never a deferred_step_ptid set. */
2844 gdb_assert (!non_stop);
2845
6a6b96b9
UW
2846 /* If we stopped for some other reason than single-stepping, ignore
2847 the fact that we were supposed to switch back. */
2020b7ab 2848 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
6a6b96b9
UW
2849 {
2850 if (debug_infrun)
2851 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 2852 "infrun: handling deferred step\n");
6a6b96b9
UW
2853
2854 /* Pull the single step breakpoints out of the target. */
2855 if (singlestep_breakpoints_inserted_p)
2856 {
2857 remove_single_step_breakpoints ();
2858 singlestep_breakpoints_inserted_p = 0;
2859 }
2860
2861 /* Note: We do not call context_switch at this point, as the
2862 context is already set up for stepping the original thread. */
ca67fcb8
VP
2863 switch_to_thread (deferred_step_ptid);
2864 deferred_step_ptid = null_ptid;
6a6b96b9
UW
2865 /* Suppress spurious "Switching to ..." message. */
2866 previous_inferior_ptid = inferior_ptid;
2867
2868 resume (1, TARGET_SIGNAL_0);
2869 prepare_to_wait (ecs);
2870 return;
2871 }
ca67fcb8
VP
2872
2873 deferred_step_ptid = null_ptid;
6a6b96b9
UW
2874 }
2875
488f131b
JB
2876 /* See if a thread hit a thread-specific breakpoint that was meant for
2877 another thread. If so, then step that thread past the breakpoint,
2878 and continue it. */
2879
2020b7ab 2880 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 2881 {
9f976b41
DJ
2882 int thread_hop_needed = 0;
2883
f8d40ec8
JB
2884 /* Check if a regular breakpoint has been hit before checking
2885 for a potential single step breakpoint. Otherwise, GDB will
2886 not see this breakpoint hit when stepping onto breakpoints. */
c36b740a 2887 if (regular_breakpoint_inserted_here_p (stop_pc))
488f131b 2888 {
c5aa993b 2889 ecs->random_signal = 0;
4fa8626c 2890 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
2891 thread_hop_needed = 1;
2892 }
1c0fdd0e 2893 else if (singlestep_breakpoints_inserted_p)
9f976b41 2894 {
fd48f117
DJ
2895 /* We have not context switched yet, so this should be true
2896 no matter which thread hit the singlestep breakpoint. */
2897 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2898 if (debug_infrun)
2899 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2900 "trap for %s\n",
2901 target_pid_to_str (ecs->ptid));
2902
9f976b41
DJ
2903 ecs->random_signal = 0;
2904 /* The call to in_thread_list is necessary because PTIDs sometimes
2905 change when we go from single-threaded to multi-threaded. If
2906 the singlestep_ptid is still in the list, assume that it is
2907 really different from ecs->ptid. */
2908 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2909 && in_thread_list (singlestep_ptid))
2910 {
fd48f117
DJ
2911 /* If the PC of the thread we were trying to single-step
2912 has changed, discard this event (which we were going
2913 to ignore anyway), and pretend we saw that thread
2914 trap. This prevents us continuously moving the
2915 single-step breakpoint forward, one instruction at a
2916 time. If the PC has changed, then the thread we were
2917 trying to single-step has trapped or been signalled,
2918 but the event has not been reported to GDB yet.
2919
2920 There might be some cases where this loses signal
2921 information, if a signal has arrived at exactly the
2922 same time that the PC changed, but this is the best
2923 we can do with the information available. Perhaps we
2924 should arrange to report all events for all threads
2925 when they stop, or to re-poll the remote looking for
2926 this particular thread (i.e. temporarily enable
2927 schedlock). */
515630c5
UW
2928
2929 CORE_ADDR new_singlestep_pc
2930 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2931
2932 if (new_singlestep_pc != singlestep_pc)
fd48f117 2933 {
2020b7ab
PA
2934 enum target_signal stop_signal;
2935
fd48f117
DJ
2936 if (debug_infrun)
2937 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2938 " but expected thread advanced also\n");
2939
2940 /* The current context still belongs to
2941 singlestep_ptid. Don't swap here, since that's
2942 the context we want to use. Just fudge our
2943 state and continue. */
2020b7ab
PA
2944 stop_signal = ecs->event_thread->stop_signal;
2945 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
fd48f117 2946 ecs->ptid = singlestep_ptid;
e09875d4 2947 ecs->event_thread = find_thread_ptid (ecs->ptid);
2020b7ab 2948 ecs->event_thread->stop_signal = stop_signal;
515630c5 2949 stop_pc = new_singlestep_pc;
fd48f117
DJ
2950 }
2951 else
2952 {
2953 if (debug_infrun)
2954 fprintf_unfiltered (gdb_stdlog,
2955 "infrun: unexpected thread\n");
2956
2957 thread_hop_needed = 1;
2958 stepping_past_singlestep_breakpoint = 1;
2959 saved_singlestep_ptid = singlestep_ptid;
2960 }
9f976b41
DJ
2961 }
2962 }
2963
2964 if (thread_hop_needed)
8fb3e588 2965 {
9f5a595d 2966 struct regcache *thread_regcache;
237fc4c9 2967 int remove_status = 0;
8fb3e588 2968
527159b7 2969 if (debug_infrun)
8a9de0e4 2970 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 2971
b3444185
PA
2972 /* Switch context before touching inferior memory, the
2973 previous thread may have exited. */
2974 if (!ptid_equal (inferior_ptid, ecs->ptid))
2975 context_switch (ecs->ptid);
2976
8fb3e588
AC
2977 /* Saw a breakpoint, but it was hit by the wrong thread.
2978 Just continue. */
2979
1c0fdd0e 2980 if (singlestep_breakpoints_inserted_p)
488f131b 2981 {
8fb3e588 2982 /* Pull the single step breakpoints out of the target. */
e0cd558a 2983 remove_single_step_breakpoints ();
8fb3e588
AC
2984 singlestep_breakpoints_inserted_p = 0;
2985 }
2986
237fc4c9
PA
2987 /* If the arch can displace step, don't remove the
2988 breakpoints. */
9f5a595d
UW
2989 thread_regcache = get_thread_regcache (ecs->ptid);
2990 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
2991 remove_status = remove_breakpoints ();
2992
8fb3e588
AC
2993 /* Did we fail to remove breakpoints? If so, try
2994 to set the PC past the bp. (There's at least
2995 one situation in which we can fail to remove
2996 the bp's: On HP-UX's that use ttrace, we can't
2997 change the address space of a vforking child
2998 process until the child exits (well, okay, not
2999 then either :-) or execs. */
3000 if (remove_status != 0)
9d9cd7ac 3001 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
3002 else
3003 { /* Single step */
94cc34af
PA
3004 if (!non_stop)
3005 {
3006 /* Only need to require the next event from this
3007 thread in all-stop mode. */
3008 waiton_ptid = ecs->ptid;
3009 infwait_state = infwait_thread_hop_state;
3010 }
8fb3e588 3011
4e1c45ea 3012 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 3013 keep_going (ecs);
8fb3e588
AC
3014 return;
3015 }
488f131b 3016 }
1c0fdd0e 3017 else if (singlestep_breakpoints_inserted_p)
8fb3e588
AC
3018 {
3019 sw_single_step_trap_p = 1;
3020 ecs->random_signal = 0;
3021 }
488f131b
JB
3022 }
3023 else
3024 ecs->random_signal = 1;
c906108c 3025
488f131b 3026 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
3027 so, then switch to that thread. */
3028 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 3029 {
527159b7 3030 if (debug_infrun)
8a9de0e4 3031 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 3032
0d1e5fa7 3033 context_switch (ecs->ptid);
c5aa993b 3034
9a4105ab
AC
3035 if (deprecated_context_hook)
3036 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 3037 }
c906108c 3038
568d6575
UW
3039 /* At this point, get hold of the now-current thread's frame. */
3040 frame = get_current_frame ();
3041 gdbarch = get_frame_arch (frame);
3042
1c0fdd0e 3043 if (singlestep_breakpoints_inserted_p)
488f131b
JB
3044 {
3045 /* Pull the single step breakpoints out of the target. */
e0cd558a 3046 remove_single_step_breakpoints ();
488f131b
JB
3047 singlestep_breakpoints_inserted_p = 0;
3048 }
c906108c 3049
d983da9c
DJ
3050 if (stepped_after_stopped_by_watchpoint)
3051 stopped_by_watchpoint = 0;
3052 else
3053 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3054
3055 /* If necessary, step over this watchpoint. We'll be back to display
3056 it in a moment. */
3057 if (stopped_by_watchpoint
d92524f1 3058 && (target_have_steppable_watchpoint
568d6575 3059 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 3060 {
488f131b
JB
3061 /* At this point, we are stopped at an instruction which has
3062 attempted to write to a piece of memory under control of
3063 a watchpoint. The instruction hasn't actually executed
3064 yet. If we were to evaluate the watchpoint expression
3065 now, we would get the old value, and therefore no change
3066 would seem to have occurred.
3067
3068 In order to make watchpoints work `right', we really need
3069 to complete the memory write, and then evaluate the
d983da9c
DJ
3070 watchpoint expression. We do this by single-stepping the
3071 target.
3072
3073 It may not be necessary to disable the watchpoint to stop over
3074 it. For example, the PA can (with some kernel cooperation)
3075 single step over a watchpoint without disabling the watchpoint.
3076
3077 It is far more common to need to disable a watchpoint to step
3078 the inferior over it. If we have non-steppable watchpoints,
3079 we must disable the current watchpoint; it's simplest to
3080 disable all watchpoints and breakpoints. */
2facfe5c
DD
3081 int hw_step = 1;
3082
d92524f1 3083 if (!target_have_steppable_watchpoint)
d983da9c 3084 remove_breakpoints ();
2facfe5c 3085 /* Single step */
568d6575 3086 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
2facfe5c 3087 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
0d1e5fa7 3088 waiton_ptid = ecs->ptid;
d92524f1 3089 if (target_have_steppable_watchpoint)
0d1e5fa7 3090 infwait_state = infwait_step_watch_state;
d983da9c 3091 else
0d1e5fa7 3092 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
3093 prepare_to_wait (ecs);
3094 return;
3095 }
3096
488f131b
JB
3097 ecs->stop_func_start = 0;
3098 ecs->stop_func_end = 0;
3099 ecs->stop_func_name = 0;
3100 /* Don't care about return value; stop_func_start and stop_func_name
3101 will both be 0 if it doesn't work. */
3102 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3103 &ecs->stop_func_start, &ecs->stop_func_end);
cbf3b44a 3104 ecs->stop_func_start
568d6575 3105 += gdbarch_deprecated_function_start_offset (gdbarch);
4e1c45ea 3106 ecs->event_thread->stepping_over_breakpoint = 0;
347bddb7 3107 bpstat_clear (&ecs->event_thread->stop_bpstat);
414c69f7 3108 ecs->event_thread->stop_step = 0;
488f131b
JB
3109 stop_print_frame = 1;
3110 ecs->random_signal = 0;
3111 stopped_by_random_signal = 0;
488f131b 3112
edb3359d
DJ
3113 /* Hide inlined functions starting here, unless we just performed stepi or
3114 nexti. After stepi and nexti, always show the innermost frame (not any
3115 inline function call sites). */
3116 if (ecs->event_thread->step_range_end != 1)
3117 skip_inline_frames (ecs->ptid);
3118
2020b7ab 3119 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4e1c45ea 3120 && ecs->event_thread->trap_expected
568d6575 3121 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 3122 && currently_stepping (ecs->event_thread))
3352ef37 3123 {
b50d7442 3124 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37
AC
3125 also on an instruction that needs to be stepped multiple
3126 times before it's been fully executing. E.g., architectures
3127 with a delay slot. It needs to be stepped twice, once for
3128 the instruction and once for the delay slot. */
3129 int step_through_delay
568d6575 3130 = gdbarch_single_step_through_delay (gdbarch, frame);
527159b7 3131 if (debug_infrun && step_through_delay)
8a9de0e4 3132 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4e1c45ea 3133 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
3352ef37
AC
3134 {
3135 /* The user issued a continue when stopped at a breakpoint.
3136 Set up for another trap and get out of here. */
4e1c45ea 3137 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3138 keep_going (ecs);
3139 return;
3140 }
3141 else if (step_through_delay)
3142 {
3143 /* The user issued a step when stopped at a breakpoint.
3144 Maybe we should stop, maybe we should not - the delay
3145 slot *might* correspond to a line of source. In any
ca67fcb8
VP
3146 case, don't decide that here, just set
3147 ecs->stepping_over_breakpoint, making sure we
3148 single-step again before breakpoints are re-inserted. */
4e1c45ea 3149 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3150 }
3151 }
3152
488f131b
JB
3153 /* Look at the cause of the stop, and decide what to do.
3154 The alternatives are:
0d1e5fa7
PA
3155 1) stop_stepping and return; to really stop and return to the debugger,
3156 2) keep_going and return to start up again
4e1c45ea 3157 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
3158 3) set ecs->random_signal to 1, and the decision between 1 and 2
3159 will be made according to the signal handling tables. */
3160
3161 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
3162 that have to do with the program's own actions. Note that
3163 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3164 on the operating system version. Here we detect when a SIGILL or
3165 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3166 something similar for SIGSEGV, since a SIGSEGV will be generated
3167 when we're trying to execute a breakpoint instruction on a
3168 non-executable stack. This happens for call dummy breakpoints
3169 for architectures like SPARC that place call dummies on the
237fc4c9 3170 stack.
488f131b 3171
237fc4c9
PA
3172 If we're doing a displaced step past a breakpoint, then the
3173 breakpoint is always inserted at the original instruction;
3174 non-standard signals can't be explained by the breakpoint. */
2020b7ab 3175 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4e1c45ea 3176 || (! ecs->event_thread->trap_expected
237fc4c9 3177 && breakpoint_inserted_here_p (stop_pc)
2020b7ab
PA
3178 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_ILL
3179 || ecs->event_thread->stop_signal == TARGET_SIGNAL_SEGV
3180 || ecs->event_thread->stop_signal == TARGET_SIGNAL_EMT))
b0f4b84b
DJ
3181 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
3182 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 3183 {
2020b7ab 3184 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
488f131b 3185 {
527159b7 3186 if (debug_infrun)
8a9de0e4 3187 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
3188 stop_print_frame = 0;
3189 stop_stepping (ecs);
3190 return;
3191 }
c54cfec8
EZ
3192
3193 /* This is originated from start_remote(), start_inferior() and
3194 shared libraries hook functions. */
b0f4b84b 3195 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 3196 {
527159b7 3197 if (debug_infrun)
8a9de0e4 3198 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
3199 stop_stepping (ecs);
3200 return;
3201 }
3202
c54cfec8 3203 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
3204 the stop_signal here, because some kernels don't ignore a
3205 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3206 See more comments in inferior.h. On the other hand, if we
a0ef4274 3207 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
3208 will handle the SIGSTOP if it should show up later.
3209
3210 Also consider that the attach is complete when we see a
3211 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
3212 target extended-remote report it instead of a SIGSTOP
3213 (e.g. gdbserver). We already rely on SIGTRAP being our
e0ba6746
PA
3214 signal, so this is no exception.
3215
3216 Also consider that the attach is complete when we see a
3217 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
3218 the target to stop all threads of the inferior, in case the
3219 low level attach operation doesn't stop them implicitly. If
3220 they weren't stopped implicitly, then the stub will report a
3221 TARGET_SIGNAL_0, meaning: stopped for no particular reason
3222 other than GDB's request. */
a0ef4274 3223 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2020b7ab 3224 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
e0ba6746
PA
3225 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3226 || ecs->event_thread->stop_signal == TARGET_SIGNAL_0))
c54cfec8
EZ
3227 {
3228 stop_stepping (ecs);
2020b7ab 3229 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
3230 return;
3231 }
3232
fba57f8f 3233 /* See if there is a breakpoint at the current PC. */
347bddb7 3234 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
fba57f8f
VP
3235
3236 /* Following in case break condition called a
3237 function. */
3238 stop_print_frame = 1;
488f131b 3239
73dd234f 3240 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
3241 at one stage in the past included checks for an inferior
3242 function call's call dummy's return breakpoint. The original
3243 comment, that went with the test, read:
73dd234f 3244
8fb3e588
AC
3245 ``End of a stack dummy. Some systems (e.g. Sony news) give
3246 another signal besides SIGTRAP, so check here as well as
3247 above.''
73dd234f 3248
8002d778 3249 If someone ever tries to get call dummys on a
73dd234f 3250 non-executable stack to work (where the target would stop
03cebad2
MK
3251 with something like a SIGSEGV), then those tests might need
3252 to be re-instated. Given, however, that the tests were only
73dd234f 3253 enabled when momentary breakpoints were not being used, I
03cebad2
MK
3254 suspect that it won't be the case.
3255
8fb3e588
AC
3256 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
3257 be necessary for call dummies on a non-executable stack on
3258 SPARC. */
73dd234f 3259
2020b7ab 3260 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 3261 ecs->random_signal
347bddb7 3262 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
4e1c45ea
PA
3263 || ecs->event_thread->trap_expected
3264 || (ecs->event_thread->step_range_end
3265 && ecs->event_thread->step_resume_breakpoint == NULL));
488f131b
JB
3266 else
3267 {
347bddb7 3268 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
488f131b 3269 if (!ecs->random_signal)
2020b7ab 3270 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3271 }
3272 }
3273
3274 /* When we reach this point, we've pretty much decided
3275 that the reason for stopping must've been a random
3276 (unexpected) signal. */
3277
3278 else
3279 ecs->random_signal = 1;
488f131b 3280
04e68871 3281process_event_stop_test:
568d6575
UW
3282
3283 /* Re-fetch current thread's frame in case we did a
3284 "goto process_event_stop_test" above. */
3285 frame = get_current_frame ();
3286 gdbarch = get_frame_arch (frame);
3287
488f131b
JB
3288 /* For the program's own signals, act according to
3289 the signal handling tables. */
3290
3291 if (ecs->random_signal)
3292 {
3293 /* Signal not for debugging purposes. */
3294 int printed = 0;
3295
527159b7 3296 if (debug_infrun)
2020b7ab
PA
3297 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
3298 ecs->event_thread->stop_signal);
527159b7 3299
488f131b
JB
3300 stopped_by_random_signal = 1;
3301
2020b7ab 3302 if (signal_print[ecs->event_thread->stop_signal])
488f131b
JB
3303 {
3304 printed = 1;
3305 target_terminal_ours_for_output ();
2020b7ab 3306 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
488f131b 3307 }
252fbfc8
PA
3308 /* Always stop on signals if we're either just gaining control
3309 of the program, or the user explicitly requested this thread
3310 to remain stopped. */
d6b48e9c 3311 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 3312 || ecs->event_thread->stop_requested
d6b48e9c 3313 || signal_stop_state (ecs->event_thread->stop_signal))
488f131b
JB
3314 {
3315 stop_stepping (ecs);
3316 return;
3317 }
3318 /* If not going to stop, give terminal back
3319 if we took it away. */
3320 else if (printed)
3321 target_terminal_inferior ();
3322
3323 /* Clear the signal if it should not be passed. */
2020b7ab
PA
3324 if (signal_program[ecs->event_thread->stop_signal] == 0)
3325 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
488f131b 3326
fb14de7b 3327 if (ecs->event_thread->prev_pc == stop_pc
4e1c45ea
PA
3328 && ecs->event_thread->trap_expected
3329 && ecs->event_thread->step_resume_breakpoint == NULL)
68f53502
AC
3330 {
3331 /* We were just starting a new sequence, attempting to
3332 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 3333 Instead this signal arrives. This signal will take us out
68f53502
AC
3334 of the stepping range so GDB needs to remember to, when
3335 the signal handler returns, resume stepping off that
3336 breakpoint. */
3337 /* To simplify things, "continue" is forced to use the same
3338 code paths as single-step - set a breakpoint at the
3339 signal return address and then, once hit, step off that
3340 breakpoint. */
237fc4c9
PA
3341 if (debug_infrun)
3342 fprintf_unfiltered (gdb_stdlog,
3343 "infrun: signal arrived while stepping over "
3344 "breakpoint\n");
d3169d93 3345
568d6575 3346 insert_step_resume_breakpoint_at_frame (frame);
4e1c45ea 3347 ecs->event_thread->step_after_step_resume_breakpoint = 1;
9d799f85
AC
3348 keep_going (ecs);
3349 return;
68f53502 3350 }
9d799f85 3351
4e1c45ea 3352 if (ecs->event_thread->step_range_end != 0
2020b7ab 3353 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
4e1c45ea
PA
3354 && (ecs->event_thread->step_range_start <= stop_pc
3355 && stop_pc < ecs->event_thread->step_range_end)
edb3359d
DJ
3356 && frame_id_eq (get_stack_frame_id (frame),
3357 ecs->event_thread->step_stack_frame_id)
4e1c45ea 3358 && ecs->event_thread->step_resume_breakpoint == NULL)
d303a6c7
AC
3359 {
3360 /* The inferior is about to take a signal that will take it
3361 out of the single step range. Set a breakpoint at the
3362 current PC (which is presumably where the signal handler
3363 will eventually return) and then allow the inferior to
3364 run free.
3365
3366 Note that this is only needed for a signal delivered
3367 while in the single-step range. Nested signals aren't a
3368 problem as they eventually all return. */
237fc4c9
PA
3369 if (debug_infrun)
3370 fprintf_unfiltered (gdb_stdlog,
3371 "infrun: signal may take us out of "
3372 "single-step range\n");
3373
568d6575 3374 insert_step_resume_breakpoint_at_frame (frame);
9d799f85
AC
3375 keep_going (ecs);
3376 return;
d303a6c7 3377 }
9d799f85
AC
3378
3379 /* Note: step_resume_breakpoint may be non-NULL. This occures
3380 when either there's a nested signal, or when there's a
3381 pending signal enabled just as the signal handler returns
3382 (leaving the inferior at the step-resume-breakpoint without
3383 actually executing it). Either way continue until the
3384 breakpoint is really hit. */
488f131b
JB
3385 keep_going (ecs);
3386 return;
3387 }
3388
3389 /* Handle cases caused by hitting a breakpoint. */
3390 {
3391 CORE_ADDR jmp_buf_pc;
3392 struct bpstat_what what;
3393
347bddb7 3394 what = bpstat_what (ecs->event_thread->stop_bpstat);
488f131b
JB
3395
3396 if (what.call_dummy)
3397 {
3398 stop_stack_dummy = 1;
c5aa993b 3399 }
c906108c 3400
488f131b 3401 switch (what.main_action)
c5aa993b 3402 {
488f131b 3403 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
3404 /* If we hit the breakpoint at longjmp while stepping, we
3405 install a momentary breakpoint at the target of the
3406 jmp_buf. */
3407
3408 if (debug_infrun)
3409 fprintf_unfiltered (gdb_stdlog,
3410 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
3411
4e1c45ea 3412 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 3413
568d6575
UW
3414 if (!gdbarch_get_longjmp_target_p (gdbarch)
3415 || !gdbarch_get_longjmp_target (gdbarch, frame, &jmp_buf_pc))
c5aa993b 3416 {
611c83ae
PA
3417 if (debug_infrun)
3418 fprintf_unfiltered (gdb_stdlog, "\
3419infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
488f131b 3420 keep_going (ecs);
104c1213 3421 return;
c5aa993b 3422 }
488f131b 3423
611c83ae
PA
3424 /* We're going to replace the current step-resume breakpoint
3425 with a longjmp-resume breakpoint. */
4e1c45ea 3426 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae
PA
3427
3428 /* Insert a breakpoint at resume address. */
a6d9a66e 3429 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
c906108c 3430
488f131b
JB
3431 keep_going (ecs);
3432 return;
c906108c 3433
488f131b 3434 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 3435 if (debug_infrun)
611c83ae
PA
3436 fprintf_unfiltered (gdb_stdlog,
3437 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
3438
4e1c45ea
PA
3439 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
3440 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae 3441
414c69f7 3442 ecs->event_thread->stop_step = 1;
611c83ae
PA
3443 print_stop_reason (END_STEPPING_RANGE, 0);
3444 stop_stepping (ecs);
3445 return;
488f131b
JB
3446
3447 case BPSTAT_WHAT_SINGLE:
527159b7 3448 if (debug_infrun)
8802d8ed 3449 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4e1c45ea 3450 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b
JB
3451 /* Still need to check other stuff, at least the case
3452 where we are stepping and step out of the right range. */
3453 break;
c906108c 3454
488f131b 3455 case BPSTAT_WHAT_STOP_NOISY:
527159b7 3456 if (debug_infrun)
8802d8ed 3457 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 3458 stop_print_frame = 1;
c906108c 3459
d303a6c7
AC
3460 /* We are about to nuke the step_resume_breakpointt via the
3461 cleanup chain, so no need to worry about it here. */
c5aa993b 3462
488f131b
JB
3463 stop_stepping (ecs);
3464 return;
c5aa993b 3465
488f131b 3466 case BPSTAT_WHAT_STOP_SILENT:
527159b7 3467 if (debug_infrun)
8802d8ed 3468 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 3469 stop_print_frame = 0;
c5aa993b 3470
d303a6c7
AC
3471 /* We are about to nuke the step_resume_breakpoin via the
3472 cleanup chain, so no need to worry about it here. */
c5aa993b 3473
488f131b 3474 stop_stepping (ecs);
e441088d 3475 return;
c5aa993b 3476
488f131b 3477 case BPSTAT_WHAT_STEP_RESUME:
527159b7 3478 if (debug_infrun)
8802d8ed 3479 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 3480
4e1c45ea
PA
3481 delete_step_resume_breakpoint (ecs->event_thread);
3482 if (ecs->event_thread->step_after_step_resume_breakpoint)
68f53502
AC
3483 {
3484 /* Back when the step-resume breakpoint was inserted, we
3485 were trying to single-step off a breakpoint. Go back
3486 to doing that. */
4e1c45ea
PA
3487 ecs->event_thread->step_after_step_resume_breakpoint = 0;
3488 ecs->event_thread->stepping_over_breakpoint = 1;
68f53502
AC
3489 keep_going (ecs);
3490 return;
3491 }
b2175913
MS
3492 if (stop_pc == ecs->stop_func_start
3493 && execution_direction == EXEC_REVERSE)
3494 {
3495 /* We are stepping over a function call in reverse, and
3496 just hit the step-resume breakpoint at the start
3497 address of the function. Go back to single-stepping,
3498 which should take us back to the function call. */
3499 ecs->event_thread->stepping_over_breakpoint = 1;
3500 keep_going (ecs);
3501 return;
3502 }
488f131b
JB
3503 break;
3504
488f131b 3505 case BPSTAT_WHAT_CHECK_SHLIBS:
c906108c 3506 {
527159b7 3507 if (debug_infrun)
8802d8ed 3508 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
488f131b
JB
3509
3510 /* Check for any newly added shared libraries if we're
3511 supposed to be adding them automatically. Switch
3512 terminal for any messages produced by
3513 breakpoint_re_set. */
3514 target_terminal_ours_for_output ();
aff6338a 3515 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
3516 stack's section table is kept up-to-date. Architectures,
3517 (e.g., PPC64), use the section table to perform
3518 operations such as address => section name and hence
3519 require the table to contain all sections (including
3520 those found in shared libraries). */
a77053c2 3521#ifdef SOLIB_ADD
aff6338a 3522 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
a77053c2
MK
3523#else
3524 solib_add (NULL, 0, &current_target, auto_solib_add);
3525#endif
488f131b
JB
3526 target_terminal_inferior ();
3527
488f131b
JB
3528 /* If requested, stop when the dynamic linker notifies
3529 gdb of events. This allows the user to get control
3530 and place breakpoints in initializer routines for
3531 dynamically loaded objects (among other things). */
877522db 3532 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 3533 {
488f131b 3534 stop_stepping (ecs);
d4f3574e
SS
3535 return;
3536 }
c5aa993b 3537 else
c5aa993b 3538 {
488f131b 3539 /* We want to step over this breakpoint, then keep going. */
4e1c45ea 3540 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 3541 break;
c5aa993b 3542 }
488f131b 3543 }
488f131b 3544 break;
4efc6507
DE
3545
3546 case BPSTAT_WHAT_CHECK_JIT:
3547 if (debug_infrun)
3548 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_JIT\n");
3549
3550 /* Switch terminal for any messages produced by breakpoint_re_set. */
3551 target_terminal_ours_for_output ();
3552
0756c555 3553 jit_event_handler (gdbarch);
4efc6507
DE
3554
3555 target_terminal_inferior ();
3556
3557 /* We want to step over this breakpoint, then keep going. */
3558 ecs->event_thread->stepping_over_breakpoint = 1;
3559
3560 break;
c906108c 3561
488f131b
JB
3562 case BPSTAT_WHAT_LAST:
3563 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 3564
488f131b
JB
3565 case BPSTAT_WHAT_KEEP_CHECKING:
3566 break;
3567 }
3568 }
c906108c 3569
488f131b
JB
3570 /* We come here if we hit a breakpoint but should not
3571 stop for it. Possibly we also were stepping
3572 and should stop for that. So fall through and
3573 test for stepping. But, if not stepping,
3574 do not stop. */
c906108c 3575
a7212384
UW
3576 /* In all-stop mode, if we're currently stepping but have stopped in
3577 some other thread, we need to switch back to the stepped thread. */
3578 if (!non_stop)
3579 {
3580 struct thread_info *tp;
b3444185 3581 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
3582 ecs->event_thread);
3583 if (tp)
3584 {
3585 /* However, if the current thread is blocked on some internal
3586 breakpoint, and we simply need to step over that breakpoint
3587 to get it going again, do that first. */
3588 if ((ecs->event_thread->trap_expected
3589 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3590 || ecs->event_thread->stepping_over_breakpoint)
3591 {
3592 keep_going (ecs);
3593 return;
3594 }
3595
66852e9c
PA
3596 /* If the stepping thread exited, then don't try to switch
3597 back and resume it, which could fail in several different
3598 ways depending on the target. Instead, just keep going.
3599
3600 We can find a stepping dead thread in the thread list in
3601 two cases:
3602
3603 - The target supports thread exit events, and when the
3604 target tries to delete the thread from the thread list,
3605 inferior_ptid pointed at the exiting thread. In such
3606 case, calling delete_thread does not really remove the
3607 thread from the list; instead, the thread is left listed,
3608 with 'exited' state.
3609
3610 - The target's debug interface does not support thread
3611 exit events, and so we have no idea whatsoever if the
3612 previously stepping thread is still alive. For that
3613 reason, we need to synchronously query the target
3614 now. */
b3444185
PA
3615 if (is_exited (tp->ptid)
3616 || !target_thread_alive (tp->ptid))
3617 {
3618 if (debug_infrun)
3619 fprintf_unfiltered (gdb_stdlog, "\
3620infrun: not switching back to stepped thread, it has vanished\n");
3621
3622 delete_thread (tp->ptid);
3623 keep_going (ecs);
3624 return;
3625 }
3626
a7212384
UW
3627 /* Otherwise, we no longer expect a trap in the current thread.
3628 Clear the trap_expected flag before switching back -- this is
3629 what keep_going would do as well, if we called it. */
3630 ecs->event_thread->trap_expected = 0;
3631
3632 if (debug_infrun)
3633 fprintf_unfiltered (gdb_stdlog,
3634 "infrun: switching back to stepped thread\n");
3635
3636 ecs->event_thread = tp;
3637 ecs->ptid = tp->ptid;
3638 context_switch (ecs->ptid);
3639 keep_going (ecs);
3640 return;
3641 }
3642 }
3643
9d1ff73f
MS
3644 /* Are we stepping to get the inferior out of the dynamic linker's
3645 hook (and possibly the dld itself) after catching a shlib
3646 event? */
4e1c45ea 3647 if (ecs->event_thread->stepping_through_solib_after_catch)
488f131b
JB
3648 {
3649#if defined(SOLIB_ADD)
3650 /* Have we reached our destination? If not, keep going. */
3651 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
3652 {
527159b7 3653 if (debug_infrun)
8a9de0e4 3654 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
4e1c45ea 3655 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 3656 keep_going (ecs);
104c1213 3657 return;
488f131b
JB
3658 }
3659#endif
527159b7 3660 if (debug_infrun)
8a9de0e4 3661 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
3662 /* Else, stop and report the catchpoint(s) whose triggering
3663 caused us to begin stepping. */
4e1c45ea 3664 ecs->event_thread->stepping_through_solib_after_catch = 0;
347bddb7
PA
3665 bpstat_clear (&ecs->event_thread->stop_bpstat);
3666 ecs->event_thread->stop_bpstat
3667 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4e1c45ea 3668 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
488f131b
JB
3669 stop_print_frame = 1;
3670 stop_stepping (ecs);
3671 return;
3672 }
c906108c 3673
4e1c45ea 3674 if (ecs->event_thread->step_resume_breakpoint)
488f131b 3675 {
527159b7 3676 if (debug_infrun)
d3169d93
DJ
3677 fprintf_unfiltered (gdb_stdlog,
3678 "infrun: step-resume breakpoint is inserted\n");
527159b7 3679
488f131b
JB
3680 /* Having a step-resume breakpoint overrides anything
3681 else having to do with stepping commands until
3682 that breakpoint is reached. */
488f131b
JB
3683 keep_going (ecs);
3684 return;
3685 }
c5aa993b 3686
4e1c45ea 3687 if (ecs->event_thread->step_range_end == 0)
488f131b 3688 {
527159b7 3689 if (debug_infrun)
8a9de0e4 3690 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 3691 /* Likewise if we aren't even stepping. */
488f131b
JB
3692 keep_going (ecs);
3693 return;
3694 }
c5aa993b 3695
488f131b 3696 /* If stepping through a line, keep going if still within it.
c906108c 3697
488f131b
JB
3698 Note that step_range_end is the address of the first instruction
3699 beyond the step range, and NOT the address of the last instruction
31410e84
MS
3700 within it!
3701
3702 Note also that during reverse execution, we may be stepping
3703 through a function epilogue and therefore must detect when
3704 the current-frame changes in the middle of a line. */
3705
4e1c45ea 3706 if (stop_pc >= ecs->event_thread->step_range_start
31410e84
MS
3707 && stop_pc < ecs->event_thread->step_range_end
3708 && (execution_direction != EXEC_REVERSE
388a8562 3709 || frame_id_eq (get_frame_id (frame),
31410e84 3710 ecs->event_thread->step_frame_id)))
488f131b 3711 {
527159b7 3712 if (debug_infrun)
5af949e3
UW
3713 fprintf_unfiltered
3714 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
3715 paddress (gdbarch, ecs->event_thread->step_range_start),
3716 paddress (gdbarch, ecs->event_thread->step_range_end));
b2175913
MS
3717
3718 /* When stepping backward, stop at beginning of line range
3719 (unless it's the function entry point, in which case
3720 keep going back to the call point). */
3721 if (stop_pc == ecs->event_thread->step_range_start
3722 && stop_pc != ecs->stop_func_start
3723 && execution_direction == EXEC_REVERSE)
3724 {
3725 ecs->event_thread->stop_step = 1;
3726 print_stop_reason (END_STEPPING_RANGE, 0);
3727 stop_stepping (ecs);
3728 }
3729 else
3730 keep_going (ecs);
3731
488f131b
JB
3732 return;
3733 }
c5aa993b 3734
488f131b 3735 /* We stepped out of the stepping range. */
c906108c 3736
488f131b 3737 /* If we are stepping at the source level and entered the runtime
388a8562
MS
3738 loader dynamic symbol resolution code...
3739
3740 EXEC_FORWARD: we keep on single stepping until we exit the run
3741 time loader code and reach the callee's address.
3742
3743 EXEC_REVERSE: we've already executed the callee (backward), and
3744 the runtime loader code is handled just like any other
3745 undebuggable function call. Now we need only keep stepping
3746 backward through the trampoline code, and that's handled further
3747 down, so there is nothing for us to do here. */
3748
3749 if (execution_direction != EXEC_REVERSE
3750 && ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 3751 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 3752 {
4c8c40e6 3753 CORE_ADDR pc_after_resolver =
568d6575 3754 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 3755
527159b7 3756 if (debug_infrun)
8a9de0e4 3757 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 3758
488f131b
JB
3759 if (pc_after_resolver)
3760 {
3761 /* Set up a step-resume breakpoint at the address
3762 indicated by SKIP_SOLIB_RESOLVER. */
3763 struct symtab_and_line sr_sal;
fe39c653 3764 init_sal (&sr_sal);
488f131b
JB
3765 sr_sal.pc = pc_after_resolver;
3766
a6d9a66e
UW
3767 insert_step_resume_breakpoint_at_sal (gdbarch,
3768 sr_sal, null_frame_id);
c5aa993b 3769 }
c906108c 3770
488f131b
JB
3771 keep_going (ecs);
3772 return;
3773 }
c906108c 3774
4e1c45ea 3775 if (ecs->event_thread->step_range_end != 1
078130d0
PA
3776 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3777 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
568d6575 3778 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 3779 {
527159b7 3780 if (debug_infrun)
8a9de0e4 3781 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 3782 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
3783 a signal trampoline (either by a signal being delivered or by
3784 the signal handler returning). Just single-step until the
3785 inferior leaves the trampoline (either by calling the handler
3786 or returning). */
488f131b
JB
3787 keep_going (ecs);
3788 return;
3789 }
c906108c 3790
c17eaafe
DJ
3791 /* Check for subroutine calls. The check for the current frame
3792 equalling the step ID is not necessary - the check of the
3793 previous frame's ID is sufficient - but it is a common case and
3794 cheaper than checking the previous frame's ID.
14e60db5
DJ
3795
3796 NOTE: frame_id_eq will never report two invalid frame IDs as
3797 being equal, so to get into this block, both the current and
3798 previous frame must have valid frame IDs. */
005ca36a
JB
3799 /* The outer_frame_id check is a heuristic to detect stepping
3800 through startup code. If we step over an instruction which
3801 sets the stack pointer from an invalid value to a valid value,
3802 we may detect that as a subroutine call from the mythical
3803 "outermost" function. This could be fixed by marking
3804 outermost frames as !stack_p,code_p,special_p. Then the
3805 initial outermost frame, before sp was valid, would
3806 have code_addr == &_start. See the commend in frame_id_eq
3807 for more. */
edb3359d
DJ
3808 if (!frame_id_eq (get_stack_frame_id (frame),
3809 ecs->event_thread->step_stack_frame_id)
005ca36a
JB
3810 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
3811 ecs->event_thread->step_stack_frame_id)
3812 && (!frame_id_eq (ecs->event_thread->step_stack_frame_id,
3813 outer_frame_id)
3814 || step_start_function != find_pc_function (stop_pc))))
488f131b 3815 {
95918acb 3816 CORE_ADDR real_stop_pc;
8fb3e588 3817
527159b7 3818 if (debug_infrun)
8a9de0e4 3819 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 3820
078130d0 3821 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
4e1c45ea 3822 || ((ecs->event_thread->step_range_end == 1)
d80b854b 3823 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 3824 ecs->stop_func_start)))
95918acb
AC
3825 {
3826 /* I presume that step_over_calls is only 0 when we're
3827 supposed to be stepping at the assembly language level
3828 ("stepi"). Just stop. */
3829 /* Also, maybe we just did a "nexti" inside a prolog, so we
3830 thought it was a subroutine call but it was not. Stop as
3831 well. FENN */
388a8562 3832 /* And this works the same backward as frontward. MVS */
414c69f7 3833 ecs->event_thread->stop_step = 1;
95918acb
AC
3834 print_stop_reason (END_STEPPING_RANGE, 0);
3835 stop_stepping (ecs);
3836 return;
3837 }
8fb3e588 3838
388a8562
MS
3839 /* Reverse stepping through solib trampolines. */
3840
3841 if (execution_direction == EXEC_REVERSE
fdd654f3 3842 && ecs->event_thread->step_over_calls != STEP_OVER_NONE
388a8562
MS
3843 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
3844 || (ecs->stop_func_start == 0
3845 && in_solib_dynsym_resolve_code (stop_pc))))
3846 {
3847 /* Any solib trampoline code can be handled in reverse
3848 by simply continuing to single-step. We have already
3849 executed the solib function (backwards), and a few
3850 steps will take us back through the trampoline to the
3851 caller. */
3852 keep_going (ecs);
3853 return;
3854 }
3855
078130d0 3856 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
8567c30f 3857 {
b2175913
MS
3858 /* We're doing a "next".
3859
3860 Normal (forward) execution: set a breakpoint at the
3861 callee's return address (the address at which the caller
3862 will resume).
3863
3864 Reverse (backward) execution. set the step-resume
3865 breakpoint at the start of the function that we just
3866 stepped into (backwards), and continue to there. When we
6130d0b7 3867 get there, we'll need to single-step back to the caller. */
b2175913
MS
3868
3869 if (execution_direction == EXEC_REVERSE)
3870 {
3871 struct symtab_and_line sr_sal;
3067f6e5 3872
388a8562
MS
3873 /* Normal function call return (static or dynamic). */
3874 init_sal (&sr_sal);
3875 sr_sal.pc = ecs->stop_func_start;
a6d9a66e
UW
3876 insert_step_resume_breakpoint_at_sal (gdbarch,
3877 sr_sal, null_frame_id);
b2175913
MS
3878 }
3879 else
568d6575 3880 insert_step_resume_breakpoint_at_caller (frame);
b2175913 3881
8567c30f
AC
3882 keep_going (ecs);
3883 return;
3884 }
a53c66de 3885
95918acb 3886 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
3887 calling routine and the real function), locate the real
3888 function. That's what tells us (a) whether we want to step
3889 into it at all, and (b) what prologue we want to run to the
3890 end of, if we do step into it. */
568d6575 3891 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 3892 if (real_stop_pc == 0)
568d6575 3893 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
3894 if (real_stop_pc != 0)
3895 ecs->stop_func_start = real_stop_pc;
8fb3e588 3896
db5f024e 3897 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
3898 {
3899 struct symtab_and_line sr_sal;
3900 init_sal (&sr_sal);
3901 sr_sal.pc = ecs->stop_func_start;
3902
a6d9a66e
UW
3903 insert_step_resume_breakpoint_at_sal (gdbarch,
3904 sr_sal, null_frame_id);
8fb3e588
AC
3905 keep_going (ecs);
3906 return;
1b2bfbb9
RC
3907 }
3908
95918acb 3909 /* If we have line number information for the function we are
8fb3e588 3910 thinking of stepping into, step into it.
95918acb 3911
8fb3e588
AC
3912 If there are several symtabs at that PC (e.g. with include
3913 files), just want to know whether *any* of them have line
3914 numbers. find_pc_line handles this. */
95918acb
AC
3915 {
3916 struct symtab_and_line tmp_sal;
8fb3e588 3917
95918acb
AC
3918 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3919 if (tmp_sal.line != 0)
3920 {
b2175913 3921 if (execution_direction == EXEC_REVERSE)
568d6575 3922 handle_step_into_function_backward (gdbarch, ecs);
b2175913 3923 else
568d6575 3924 handle_step_into_function (gdbarch, ecs);
95918acb
AC
3925 return;
3926 }
3927 }
3928
3929 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
3930 set, we stop the step so that the user has a chance to switch
3931 in assembly mode. */
078130d0
PA
3932 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3933 && step_stop_if_no_debug)
95918acb 3934 {
414c69f7 3935 ecs->event_thread->stop_step = 1;
95918acb
AC
3936 print_stop_reason (END_STEPPING_RANGE, 0);
3937 stop_stepping (ecs);
3938 return;
3939 }
3940
b2175913
MS
3941 if (execution_direction == EXEC_REVERSE)
3942 {
3943 /* Set a breakpoint at callee's start address.
3944 From there we can step once and be back in the caller. */
3945 struct symtab_and_line sr_sal;
3946 init_sal (&sr_sal);
3947 sr_sal.pc = ecs->stop_func_start;
a6d9a66e
UW
3948 insert_step_resume_breakpoint_at_sal (gdbarch,
3949 sr_sal, null_frame_id);
b2175913
MS
3950 }
3951 else
3952 /* Set a breakpoint at callee's return address (the address
3953 at which the caller will resume). */
568d6575 3954 insert_step_resume_breakpoint_at_caller (frame);
b2175913 3955
95918acb 3956 keep_going (ecs);
488f131b 3957 return;
488f131b 3958 }
c906108c 3959
fdd654f3
MS
3960 /* Reverse stepping through solib trampolines. */
3961
3962 if (execution_direction == EXEC_REVERSE
3963 && ecs->event_thread->step_over_calls != STEP_OVER_NONE)
3964 {
3965 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
3966 || (ecs->stop_func_start == 0
3967 && in_solib_dynsym_resolve_code (stop_pc)))
3968 {
3969 /* Any solib trampoline code can be handled in reverse
3970 by simply continuing to single-step. We have already
3971 executed the solib function (backwards), and a few
3972 steps will take us back through the trampoline to the
3973 caller. */
3974 keep_going (ecs);
3975 return;
3976 }
3977 else if (in_solib_dynsym_resolve_code (stop_pc))
3978 {
3979 /* Stepped backward into the solib dynsym resolver.
3980 Set a breakpoint at its start and continue, then
3981 one more step will take us out. */
3982 struct symtab_and_line sr_sal;
3983 init_sal (&sr_sal);
3984 sr_sal.pc = ecs->stop_func_start;
3985 insert_step_resume_breakpoint_at_sal (gdbarch,
3986 sr_sal, null_frame_id);
3987 keep_going (ecs);
3988 return;
3989 }
3990 }
3991
488f131b
JB
3992 /* If we're in the return path from a shared library trampoline,
3993 we want to proceed through the trampoline when stepping. */
568d6575 3994 if (gdbarch_in_solib_return_trampoline (gdbarch,
e76f05fa 3995 stop_pc, ecs->stop_func_name))
488f131b 3996 {
488f131b 3997 /* Determine where this trampoline returns. */
52f729a7 3998 CORE_ADDR real_stop_pc;
568d6575 3999 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
c906108c 4000
527159b7 4001 if (debug_infrun)
8a9de0e4 4002 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 4003
488f131b 4004 /* Only proceed through if we know where it's going. */
d764a824 4005 if (real_stop_pc)
488f131b
JB
4006 {
4007 /* And put the step-breakpoint there and go until there. */
4008 struct symtab_and_line sr_sal;
4009
fe39c653 4010 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 4011 sr_sal.pc = real_stop_pc;
488f131b 4012 sr_sal.section = find_pc_overlay (sr_sal.pc);
44cbf7b5
AC
4013
4014 /* Do not specify what the fp should be when we stop since
4015 on some machines the prologue is where the new fp value
4016 is established. */
a6d9a66e
UW
4017 insert_step_resume_breakpoint_at_sal (gdbarch,
4018 sr_sal, null_frame_id);
c906108c 4019
488f131b
JB
4020 /* Restart without fiddling with the step ranges or
4021 other state. */
4022 keep_going (ecs);
4023 return;
4024 }
4025 }
c906108c 4026
2afb61aa 4027 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 4028
1b2bfbb9
RC
4029 /* NOTE: tausq/2004-05-24: This if block used to be done before all
4030 the trampoline processing logic, however, there are some trampolines
4031 that have no names, so we should do trampoline handling first. */
078130d0 4032 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 4033 && ecs->stop_func_name == NULL
2afb61aa 4034 && stop_pc_sal.line == 0)
1b2bfbb9 4035 {
527159b7 4036 if (debug_infrun)
8a9de0e4 4037 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 4038
1b2bfbb9 4039 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
4040 undebuggable function (where there is no debugging information
4041 and no line number corresponding to the address where the
1b2bfbb9
RC
4042 inferior stopped). Since we want to skip this kind of code,
4043 we keep going until the inferior returns from this
14e60db5
DJ
4044 function - unless the user has asked us not to (via
4045 set step-mode) or we no longer know how to get back
4046 to the call site. */
4047 if (step_stop_if_no_debug
c7ce8faa 4048 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
4049 {
4050 /* If we have no line number and the step-stop-if-no-debug
4051 is set, we stop the step so that the user has a chance to
4052 switch in assembly mode. */
414c69f7 4053 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
4054 print_stop_reason (END_STEPPING_RANGE, 0);
4055 stop_stepping (ecs);
4056 return;
4057 }
4058 else
4059 {
4060 /* Set a breakpoint at callee's return address (the address
4061 at which the caller will resume). */
568d6575 4062 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
4063 keep_going (ecs);
4064 return;
4065 }
4066 }
4067
4e1c45ea 4068 if (ecs->event_thread->step_range_end == 1)
1b2bfbb9
RC
4069 {
4070 /* It is stepi or nexti. We always want to stop stepping after
4071 one instruction. */
527159b7 4072 if (debug_infrun)
8a9de0e4 4073 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
414c69f7 4074 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
4075 print_stop_reason (END_STEPPING_RANGE, 0);
4076 stop_stepping (ecs);
4077 return;
4078 }
4079
2afb61aa 4080 if (stop_pc_sal.line == 0)
488f131b
JB
4081 {
4082 /* We have no line number information. That means to stop
4083 stepping (does this always happen right after one instruction,
4084 when we do "s" in a function with no line numbers,
4085 or can this happen as a result of a return or longjmp?). */
527159b7 4086 if (debug_infrun)
8a9de0e4 4087 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
414c69f7 4088 ecs->event_thread->stop_step = 1;
488f131b
JB
4089 print_stop_reason (END_STEPPING_RANGE, 0);
4090 stop_stepping (ecs);
4091 return;
4092 }
c906108c 4093
edb3359d
DJ
4094 /* Look for "calls" to inlined functions, part one. If the inline
4095 frame machinery detected some skipped call sites, we have entered
4096 a new inline function. */
4097
4098 if (frame_id_eq (get_frame_id (get_current_frame ()),
4099 ecs->event_thread->step_frame_id)
4100 && inline_skipped_frames (ecs->ptid))
4101 {
4102 struct symtab_and_line call_sal;
4103
4104 if (debug_infrun)
4105 fprintf_unfiltered (gdb_stdlog,
4106 "infrun: stepped into inlined function\n");
4107
4108 find_frame_sal (get_current_frame (), &call_sal);
4109
4110 if (ecs->event_thread->step_over_calls != STEP_OVER_ALL)
4111 {
4112 /* For "step", we're going to stop. But if the call site
4113 for this inlined function is on the same source line as
4114 we were previously stepping, go down into the function
4115 first. Otherwise stop at the call site. */
4116
4117 if (call_sal.line == ecs->event_thread->current_line
4118 && call_sal.symtab == ecs->event_thread->current_symtab)
4119 step_into_inline_frame (ecs->ptid);
4120
4121 ecs->event_thread->stop_step = 1;
4122 print_stop_reason (END_STEPPING_RANGE, 0);
4123 stop_stepping (ecs);
4124 return;
4125 }
4126 else
4127 {
4128 /* For "next", we should stop at the call site if it is on a
4129 different source line. Otherwise continue through the
4130 inlined function. */
4131 if (call_sal.line == ecs->event_thread->current_line
4132 && call_sal.symtab == ecs->event_thread->current_symtab)
4133 keep_going (ecs);
4134 else
4135 {
4136 ecs->event_thread->stop_step = 1;
4137 print_stop_reason (END_STEPPING_RANGE, 0);
4138 stop_stepping (ecs);
4139 }
4140 return;
4141 }
4142 }
4143
4144 /* Look for "calls" to inlined functions, part two. If we are still
4145 in the same real function we were stepping through, but we have
4146 to go further up to find the exact frame ID, we are stepping
4147 through a more inlined call beyond its call site. */
4148
4149 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
4150 && !frame_id_eq (get_frame_id (get_current_frame ()),
4151 ecs->event_thread->step_frame_id)
4152 && stepped_in_from (get_current_frame (),
4153 ecs->event_thread->step_frame_id))
4154 {
4155 if (debug_infrun)
4156 fprintf_unfiltered (gdb_stdlog,
4157 "infrun: stepping through inlined function\n");
4158
4159 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
4160 keep_going (ecs);
4161 else
4162 {
4163 ecs->event_thread->stop_step = 1;
4164 print_stop_reason (END_STEPPING_RANGE, 0);
4165 stop_stepping (ecs);
4166 }
4167 return;
4168 }
4169
2afb61aa 4170 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
4171 && (ecs->event_thread->current_line != stop_pc_sal.line
4172 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
4173 {
4174 /* We are at the start of a different line. So stop. Note that
4175 we don't stop if we step into the middle of a different line.
4176 That is said to make things like for (;;) statements work
4177 better. */
527159b7 4178 if (debug_infrun)
8a9de0e4 4179 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
414c69f7 4180 ecs->event_thread->stop_step = 1;
488f131b
JB
4181 print_stop_reason (END_STEPPING_RANGE, 0);
4182 stop_stepping (ecs);
4183 return;
4184 }
c906108c 4185
488f131b 4186 /* We aren't done stepping.
c906108c 4187
488f131b
JB
4188 Optimize by setting the stepping range to the line.
4189 (We might not be in the original line, but if we entered a
4190 new line in mid-statement, we continue stepping. This makes
4191 things like for(;;) statements work better.) */
c906108c 4192
4e1c45ea
PA
4193 ecs->event_thread->step_range_start = stop_pc_sal.pc;
4194 ecs->event_thread->step_range_end = stop_pc_sal.end;
edb3359d 4195 set_step_info (frame, stop_pc_sal);
488f131b 4196
527159b7 4197 if (debug_infrun)
8a9de0e4 4198 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 4199 keep_going (ecs);
104c1213
JM
4200}
4201
b3444185 4202/* Is thread TP in the middle of single-stepping? */
104c1213 4203
a7212384 4204static int
b3444185 4205currently_stepping (struct thread_info *tp)
a7212384 4206{
b3444185
PA
4207 return ((tp->step_range_end && tp->step_resume_breakpoint == NULL)
4208 || tp->trap_expected
4209 || tp->stepping_through_solib_after_catch
4210 || bpstat_should_step ());
a7212384
UW
4211}
4212
b3444185
PA
4213/* Returns true if any thread *but* the one passed in "data" is in the
4214 middle of stepping or of handling a "next". */
a7212384 4215
104c1213 4216static int
b3444185 4217currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 4218{
b3444185
PA
4219 if (tp == data)
4220 return 0;
4221
4222 return (tp->step_range_end
4223 || tp->trap_expected
4224 || tp->stepping_through_solib_after_catch);
104c1213 4225}
c906108c 4226
b2175913
MS
4227/* Inferior has stepped into a subroutine call with source code that
4228 we should not step over. Do step to the first line of code in
4229 it. */
c2c6d25f
JM
4230
4231static void
568d6575
UW
4232handle_step_into_function (struct gdbarch *gdbarch,
4233 struct execution_control_state *ecs)
c2c6d25f
JM
4234{
4235 struct symtab *s;
2afb61aa 4236 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f
JM
4237
4238 s = find_pc_symtab (stop_pc);
4239 if (s && s->language != language_asm)
568d6575 4240 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 4241 ecs->stop_func_start);
c2c6d25f 4242
2afb61aa 4243 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
4244 /* Use the step_resume_break to step until the end of the prologue,
4245 even if that involves jumps (as it seems to on the vax under
4246 4.2). */
4247 /* If the prologue ends in the middle of a source line, continue to
4248 the end of that source line (if it is still within the function).
4249 Otherwise, just go to end of prologue. */
2afb61aa
PA
4250 if (stop_func_sal.end
4251 && stop_func_sal.pc != ecs->stop_func_start
4252 && stop_func_sal.end < ecs->stop_func_end)
4253 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 4254
2dbd5e30
KB
4255 /* Architectures which require breakpoint adjustment might not be able
4256 to place a breakpoint at the computed address. If so, the test
4257 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
4258 ecs->stop_func_start to an address at which a breakpoint may be
4259 legitimately placed.
8fb3e588 4260
2dbd5e30
KB
4261 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
4262 made, GDB will enter an infinite loop when stepping through
4263 optimized code consisting of VLIW instructions which contain
4264 subinstructions corresponding to different source lines. On
4265 FR-V, it's not permitted to place a breakpoint on any but the
4266 first subinstruction of a VLIW instruction. When a breakpoint is
4267 set, GDB will adjust the breakpoint address to the beginning of
4268 the VLIW instruction. Thus, we need to make the corresponding
4269 adjustment here when computing the stop address. */
8fb3e588 4270
568d6575 4271 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
4272 {
4273 ecs->stop_func_start
568d6575 4274 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 4275 ecs->stop_func_start);
2dbd5e30
KB
4276 }
4277
c2c6d25f
JM
4278 if (ecs->stop_func_start == stop_pc)
4279 {
4280 /* We are already there: stop now. */
414c69f7 4281 ecs->event_thread->stop_step = 1;
488f131b 4282 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
4283 stop_stepping (ecs);
4284 return;
4285 }
4286 else
4287 {
4288 /* Put the step-breakpoint there and go until there. */
fe39c653 4289 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
4290 sr_sal.pc = ecs->stop_func_start;
4291 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
44cbf7b5 4292
c2c6d25f 4293 /* Do not specify what the fp should be when we stop since on
488f131b
JB
4294 some machines the prologue is where the new fp value is
4295 established. */
a6d9a66e 4296 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
4297
4298 /* And make sure stepping stops right away then. */
4e1c45ea 4299 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
c2c6d25f
JM
4300 }
4301 keep_going (ecs);
4302}
d4f3574e 4303
b2175913
MS
4304/* Inferior has stepped backward into a subroutine call with source
4305 code that we should not step over. Do step to the beginning of the
4306 last line of code in it. */
4307
4308static void
568d6575
UW
4309handle_step_into_function_backward (struct gdbarch *gdbarch,
4310 struct execution_control_state *ecs)
b2175913
MS
4311{
4312 struct symtab *s;
4313 struct symtab_and_line stop_func_sal, sr_sal;
4314
4315 s = find_pc_symtab (stop_pc);
4316 if (s && s->language != language_asm)
568d6575 4317 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
4318 ecs->stop_func_start);
4319
4320 stop_func_sal = find_pc_line (stop_pc, 0);
4321
4322 /* OK, we're just going to keep stepping here. */
4323 if (stop_func_sal.pc == stop_pc)
4324 {
4325 /* We're there already. Just stop stepping now. */
4326 ecs->event_thread->stop_step = 1;
4327 print_stop_reason (END_STEPPING_RANGE, 0);
4328 stop_stepping (ecs);
4329 }
4330 else
4331 {
4332 /* Else just reset the step range and keep going.
4333 No step-resume breakpoint, they don't work for
4334 epilogues, which can have multiple entry paths. */
4335 ecs->event_thread->step_range_start = stop_func_sal.pc;
4336 ecs->event_thread->step_range_end = stop_func_sal.end;
4337 keep_going (ecs);
4338 }
4339 return;
4340}
4341
d3169d93 4342/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
4343 This is used to both functions and to skip over code. */
4344
4345static void
a6d9a66e
UW
4346insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
4347 struct symtab_and_line sr_sal,
44cbf7b5
AC
4348 struct frame_id sr_id)
4349{
611c83ae
PA
4350 /* There should never be more than one step-resume or longjmp-resume
4351 breakpoint per thread, so we should never be setting a new
44cbf7b5 4352 step_resume_breakpoint when one is already active. */
4e1c45ea 4353 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
d3169d93
DJ
4354
4355 if (debug_infrun)
4356 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4357 "infrun: inserting step-resume breakpoint at %s\n",
4358 paddress (gdbarch, sr_sal.pc));
d3169d93 4359
4e1c45ea 4360 inferior_thread ()->step_resume_breakpoint
a6d9a66e 4361 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, bp_step_resume);
44cbf7b5 4362}
7ce450bd 4363
d3169d93 4364/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
14e60db5 4365 to skip a potential signal handler.
7ce450bd 4366
14e60db5
DJ
4367 This is called with the interrupted function's frame. The signal
4368 handler, when it returns, will resume the interrupted function at
4369 RETURN_FRAME.pc. */
d303a6c7
AC
4370
4371static void
44cbf7b5 4372insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
4373{
4374 struct symtab_and_line sr_sal;
a6d9a66e 4375 struct gdbarch *gdbarch;
d303a6c7 4376
f4c1edd8 4377 gdb_assert (return_frame != NULL);
d303a6c7
AC
4378 init_sal (&sr_sal); /* initialize to zeros */
4379
a6d9a66e 4380 gdbarch = get_frame_arch (return_frame);
568d6575 4381 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7
AC
4382 sr_sal.section = find_pc_overlay (sr_sal.pc);
4383
a6d9a66e
UW
4384 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
4385 get_stack_frame_id (return_frame));
d303a6c7
AC
4386}
4387
14e60db5
DJ
4388/* Similar to insert_step_resume_breakpoint_at_frame, except
4389 but a breakpoint at the previous frame's PC. This is used to
4390 skip a function after stepping into it (for "next" or if the called
4391 function has no debugging information).
4392
4393 The current function has almost always been reached by single
4394 stepping a call or return instruction. NEXT_FRAME belongs to the
4395 current function, and the breakpoint will be set at the caller's
4396 resume address.
4397
4398 This is a separate function rather than reusing
4399 insert_step_resume_breakpoint_at_frame in order to avoid
4400 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 4401 of frame_unwind_caller_id for an example). */
14e60db5
DJ
4402
4403static void
4404insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
4405{
4406 struct symtab_and_line sr_sal;
a6d9a66e 4407 struct gdbarch *gdbarch;
14e60db5
DJ
4408
4409 /* We shouldn't have gotten here if we don't know where the call site
4410 is. */
c7ce8faa 4411 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
4412
4413 init_sal (&sr_sal); /* initialize to zeros */
4414
a6d9a66e 4415 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
4416 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
4417 frame_unwind_caller_pc (next_frame));
14e60db5
DJ
4418 sr_sal.section = find_pc_overlay (sr_sal.pc);
4419
a6d9a66e 4420 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 4421 frame_unwind_caller_id (next_frame));
14e60db5
DJ
4422}
4423
611c83ae
PA
4424/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
4425 new breakpoint at the target of a jmp_buf. The handling of
4426 longjmp-resume uses the same mechanisms used for handling
4427 "step-resume" breakpoints. */
4428
4429static void
a6d9a66e 4430insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae
PA
4431{
4432 /* There should never be more than one step-resume or longjmp-resume
4433 breakpoint per thread, so we should never be setting a new
4434 longjmp_resume_breakpoint when one is already active. */
4e1c45ea 4435 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
611c83ae
PA
4436
4437 if (debug_infrun)
4438 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4439 "infrun: inserting longjmp-resume breakpoint at %s\n",
4440 paddress (gdbarch, pc));
611c83ae 4441
4e1c45ea 4442 inferior_thread ()->step_resume_breakpoint =
a6d9a66e 4443 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
4444}
4445
104c1213
JM
4446static void
4447stop_stepping (struct execution_control_state *ecs)
4448{
527159b7 4449 if (debug_infrun)
8a9de0e4 4450 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 4451
cd0fc7c3
SS
4452 /* Let callers know we don't want to wait for the inferior anymore. */
4453 ecs->wait_some_more = 0;
4454}
4455
d4f3574e
SS
4456/* This function handles various cases where we need to continue
4457 waiting for the inferior. */
4458/* (Used to be the keep_going: label in the old wait_for_inferior) */
4459
4460static void
4461keep_going (struct execution_control_state *ecs)
4462{
d4f3574e 4463 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
4464 ecs->event_thread->prev_pc
4465 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 4466
d4f3574e
SS
4467 /* If we did not do break;, it means we should keep running the
4468 inferior and not return to debugger. */
4469
2020b7ab
PA
4470 if (ecs->event_thread->trap_expected
4471 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
4472 {
4473 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
4474 the inferior, else we'd not get here) and we haven't yet
4475 gotten our trap. Simply continue. */
2020b7ab
PA
4476 resume (currently_stepping (ecs->event_thread),
4477 ecs->event_thread->stop_signal);
d4f3574e
SS
4478 }
4479 else
4480 {
4481 /* Either the trap was not expected, but we are continuing
488f131b
JB
4482 anyway (the user asked that this signal be passed to the
4483 child)
4484 -- or --
4485 The signal was SIGTRAP, e.g. it was our signal, but we
4486 decided we should resume from it.
d4f3574e 4487
c36b740a 4488 We're going to run this baby now!
d4f3574e 4489
c36b740a
VP
4490 Note that insert_breakpoints won't try to re-insert
4491 already inserted breakpoints. Therefore, we don't
4492 care if breakpoints were already inserted, or not. */
4493
4e1c45ea 4494 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 4495 {
9f5a595d
UW
4496 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
4497 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
4498 /* Since we can't do a displaced step, we have to remove
4499 the breakpoint while we step it. To keep things
4500 simple, we remove them all. */
4501 remove_breakpoints ();
45e8c884
VP
4502 }
4503 else
d4f3574e 4504 {
e236ba44 4505 struct gdb_exception e;
569631c6
UW
4506 /* Stop stepping when inserting breakpoints
4507 has failed. */
e236ba44
VP
4508 TRY_CATCH (e, RETURN_MASK_ERROR)
4509 {
4510 insert_breakpoints ();
4511 }
4512 if (e.reason < 0)
d4f3574e
SS
4513 {
4514 stop_stepping (ecs);
4515 return;
4516 }
d4f3574e
SS
4517 }
4518
4e1c45ea 4519 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
4520
4521 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
4522 specifies that such a signal should be delivered to the
4523 target program).
4524
4525 Typically, this would occure when a user is debugging a
4526 target monitor on a simulator: the target monitor sets a
4527 breakpoint; the simulator encounters this break-point and
4528 halts the simulation handing control to GDB; GDB, noteing
4529 that the break-point isn't valid, returns control back to the
4530 simulator; the simulator then delivers the hardware
4531 equivalent of a SIGNAL_TRAP to the program being debugged. */
4532
2020b7ab
PA
4533 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4534 && !signal_program[ecs->event_thread->stop_signal])
4535 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
d4f3574e 4536
2020b7ab
PA
4537 resume (currently_stepping (ecs->event_thread),
4538 ecs->event_thread->stop_signal);
d4f3574e
SS
4539 }
4540
488f131b 4541 prepare_to_wait (ecs);
d4f3574e
SS
4542}
4543
104c1213
JM
4544/* This function normally comes after a resume, before
4545 handle_inferior_event exits. It takes care of any last bits of
4546 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 4547
104c1213
JM
4548static void
4549prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 4550{
527159b7 4551 if (debug_infrun)
8a9de0e4 4552 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 4553
104c1213
JM
4554 /* This is the old end of the while loop. Let everybody know we
4555 want to wait for the inferior some more and get called again
4556 soon. */
4557 ecs->wait_some_more = 1;
c906108c 4558}
11cf8741
JM
4559
4560/* Print why the inferior has stopped. We always print something when
4561 the inferior exits, or receives a signal. The rest of the cases are
4562 dealt with later on in normal_stop() and print_it_typical(). Ideally
4563 there should be a call to this function from handle_inferior_event()
4564 each time stop_stepping() is called.*/
4565static void
4566print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
4567{
4568 switch (stop_reason)
4569 {
11cf8741
JM
4570 case END_STEPPING_RANGE:
4571 /* We are done with a step/next/si/ni command. */
4572 /* For now print nothing. */
fb40c209 4573 /* Print a message only if not in the middle of doing a "step n"
488f131b 4574 operation for n > 1 */
414c69f7
PA
4575 if (!inferior_thread ()->step_multi
4576 || !inferior_thread ()->stop_step)
9dc5e2a9 4577 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4578 ui_out_field_string
4579 (uiout, "reason",
4580 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
11cf8741 4581 break;
11cf8741
JM
4582 case SIGNAL_EXITED:
4583 /* The inferior was terminated by a signal. */
8b93c638 4584 annotate_signalled ();
9dc5e2a9 4585 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4586 ui_out_field_string
4587 (uiout, "reason",
4588 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8b93c638
JM
4589 ui_out_text (uiout, "\nProgram terminated with signal ");
4590 annotate_signal_name ();
488f131b
JB
4591 ui_out_field_string (uiout, "signal-name",
4592 target_signal_to_name (stop_info));
8b93c638
JM
4593 annotate_signal_name_end ();
4594 ui_out_text (uiout, ", ");
4595 annotate_signal_string ();
488f131b
JB
4596 ui_out_field_string (uiout, "signal-meaning",
4597 target_signal_to_string (stop_info));
8b93c638
JM
4598 annotate_signal_string_end ();
4599 ui_out_text (uiout, ".\n");
4600 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
4601 break;
4602 case EXITED:
4603 /* The inferior program is finished. */
8b93c638
JM
4604 annotate_exited (stop_info);
4605 if (stop_info)
4606 {
9dc5e2a9 4607 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4608 ui_out_field_string (uiout, "reason",
4609 async_reason_lookup (EXEC_ASYNC_EXITED));
8b93c638 4610 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
4611 ui_out_field_fmt (uiout, "exit-code", "0%o",
4612 (unsigned int) stop_info);
8b93c638
JM
4613 ui_out_text (uiout, ".\n");
4614 }
4615 else
4616 {
9dc5e2a9 4617 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4618 ui_out_field_string
4619 (uiout, "reason",
4620 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8b93c638
JM
4621 ui_out_text (uiout, "\nProgram exited normally.\n");
4622 }
f17517ea
AS
4623 /* Support the --return-child-result option. */
4624 return_child_result_value = stop_info;
11cf8741
JM
4625 break;
4626 case SIGNAL_RECEIVED:
252fbfc8
PA
4627 /* Signal received. The signal table tells us to print about
4628 it. */
8b93c638 4629 annotate_signal ();
252fbfc8
PA
4630
4631 if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
4632 {
4633 struct thread_info *t = inferior_thread ();
4634
4635 ui_out_text (uiout, "\n[");
4636 ui_out_field_string (uiout, "thread-name",
4637 target_pid_to_str (t->ptid));
4638 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
4639 ui_out_text (uiout, " stopped");
4640 }
4641 else
4642 {
4643 ui_out_text (uiout, "\nProgram received signal ");
4644 annotate_signal_name ();
4645 if (ui_out_is_mi_like_p (uiout))
4646 ui_out_field_string
4647 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
4648 ui_out_field_string (uiout, "signal-name",
4649 target_signal_to_name (stop_info));
4650 annotate_signal_name_end ();
4651 ui_out_text (uiout, ", ");
4652 annotate_signal_string ();
4653 ui_out_field_string (uiout, "signal-meaning",
4654 target_signal_to_string (stop_info));
4655 annotate_signal_string_end ();
4656 }
8b93c638 4657 ui_out_text (uiout, ".\n");
11cf8741 4658 break;
b2175913
MS
4659 case NO_HISTORY:
4660 /* Reverse execution: target ran out of history info. */
4661 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
4662 break;
11cf8741 4663 default:
8e65ff28 4664 internal_error (__FILE__, __LINE__,
e2e0b3e5 4665 _("print_stop_reason: unrecognized enum value"));
11cf8741
JM
4666 break;
4667 }
4668}
c906108c 4669\f
43ff13b4 4670
c906108c
SS
4671/* Here to return control to GDB when the inferior stops for real.
4672 Print appropriate messages, remove breakpoints, give terminal our modes.
4673
4674 STOP_PRINT_FRAME nonzero means print the executing frame
4675 (pc, function, args, file, line number and line text).
4676 BREAKPOINTS_FAILED nonzero means stop was due to error
4677 attempting to insert breakpoints. */
4678
4679void
96baa820 4680normal_stop (void)
c906108c 4681{
73b65bb0
DJ
4682 struct target_waitstatus last;
4683 ptid_t last_ptid;
29f49a6a 4684 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
4685
4686 get_last_target_status (&last_ptid, &last);
4687
29f49a6a
PA
4688 /* If an exception is thrown from this point on, make sure to
4689 propagate GDB's knowledge of the executing state to the
4690 frontend/user running state. A QUIT is an easy exception to see
4691 here, so do this before any filtered output. */
c35b1492
PA
4692 if (!non_stop)
4693 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
4694 else if (last.kind != TARGET_WAITKIND_SIGNALLED
4695 && last.kind != TARGET_WAITKIND_EXITED)
4696 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 4697
4f8d22e3
PA
4698 /* In non-stop mode, we don't want GDB to switch threads behind the
4699 user's back, to avoid races where the user is typing a command to
4700 apply to thread x, but GDB switches to thread y before the user
4701 finishes entering the command. */
4702
c906108c
SS
4703 /* As with the notification of thread events, we want to delay
4704 notifying the user that we've switched thread context until
4705 the inferior actually stops.
4706
73b65bb0
DJ
4707 There's no point in saying anything if the inferior has exited.
4708 Note that SIGNALLED here means "exited with a signal", not
4709 "received a signal". */
4f8d22e3
PA
4710 if (!non_stop
4711 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
4712 && target_has_execution
4713 && last.kind != TARGET_WAITKIND_SIGNALLED
4714 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
4715 {
4716 target_terminal_ours_for_output ();
a3f17187 4717 printf_filtered (_("[Switching to %s]\n"),
c95310c6 4718 target_pid_to_str (inferior_ptid));
b8fa951a 4719 annotate_thread_changed ();
39f77062 4720 previous_inferior_ptid = inferior_ptid;
c906108c 4721 }
c906108c 4722
74960c60 4723 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
4724 {
4725 if (remove_breakpoints ())
4726 {
4727 target_terminal_ours_for_output ();
a3f17187
AC
4728 printf_filtered (_("\
4729Cannot remove breakpoints because program is no longer writable.\n\
a3f17187 4730Further execution is probably impossible.\n"));
c906108c
SS
4731 }
4732 }
c906108c 4733
c906108c
SS
4734 /* If an auto-display called a function and that got a signal,
4735 delete that auto-display to avoid an infinite recursion. */
4736
4737 if (stopped_by_random_signal)
4738 disable_current_display ();
4739
4740 /* Don't print a message if in the middle of doing a "step n"
4741 operation for n > 1 */
af679fd0
PA
4742 if (target_has_execution
4743 && last.kind != TARGET_WAITKIND_SIGNALLED
4744 && last.kind != TARGET_WAITKIND_EXITED
4745 && inferior_thread ()->step_multi
414c69f7 4746 && inferior_thread ()->stop_step)
c906108c
SS
4747 goto done;
4748
4749 target_terminal_ours ();
4750
7abfe014
DJ
4751 /* Set the current source location. This will also happen if we
4752 display the frame below, but the current SAL will be incorrect
4753 during a user hook-stop function. */
d729566a 4754 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
4755 set_current_sal_from_frame (get_current_frame (), 1);
4756
dd7e2d2b
PA
4757 /* Let the user/frontend see the threads as stopped. */
4758 do_cleanups (old_chain);
4759
4760 /* Look up the hook_stop and run it (CLI internally handles problem
4761 of stop_command's pre-hook not existing). */
4762 if (stop_command)
4763 catch_errors (hook_stop_stub, stop_command,
4764 "Error while running hook_stop:\n", RETURN_MASK_ALL);
4765
d729566a 4766 if (!has_stack_frames ())
d51fd4c8 4767 goto done;
c906108c 4768
32400beb
PA
4769 if (last.kind == TARGET_WAITKIND_SIGNALLED
4770 || last.kind == TARGET_WAITKIND_EXITED)
4771 goto done;
4772
c906108c
SS
4773 /* Select innermost stack frame - i.e., current frame is frame 0,
4774 and current location is based on that.
4775 Don't do this on return from a stack dummy routine,
4776 or if the program has exited. */
4777
4778 if (!stop_stack_dummy)
4779 {
0f7d239c 4780 select_frame (get_current_frame ());
c906108c
SS
4781
4782 /* Print current location without a level number, if
c5aa993b
JM
4783 we have changed functions or hit a breakpoint.
4784 Print source line if we have one.
4785 bpstat_print() contains the logic deciding in detail
4786 what to print, based on the event(s) that just occurred. */
c906108c 4787
d01a8610
AS
4788 /* If --batch-silent is enabled then there's no need to print the current
4789 source location, and to try risks causing an error message about
4790 missing source files. */
4791 if (stop_print_frame && !batch_silent)
c906108c
SS
4792 {
4793 int bpstat_ret;
4794 int source_flag;
917317f4 4795 int do_frame_printing = 1;
347bddb7 4796 struct thread_info *tp = inferior_thread ();
c906108c 4797
347bddb7 4798 bpstat_ret = bpstat_print (tp->stop_bpstat);
917317f4
JM
4799 switch (bpstat_ret)
4800 {
4801 case PRINT_UNKNOWN:
b0f4b84b
DJ
4802 /* If we had hit a shared library event breakpoint,
4803 bpstat_print would print out this message. If we hit
4804 an OS-level shared library event, do the same
4805 thing. */
4806 if (last.kind == TARGET_WAITKIND_LOADED)
4807 {
4808 printf_filtered (_("Stopped due to shared library event\n"));
4809 source_flag = SRC_LINE; /* something bogus */
4810 do_frame_printing = 0;
4811 break;
4812 }
4813
aa0cd9c1 4814 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
4815 (or should) carry around the function and does (or
4816 should) use that when doing a frame comparison. */
414c69f7 4817 if (tp->stop_step
347bddb7 4818 && frame_id_eq (tp->step_frame_id,
aa0cd9c1 4819 get_frame_id (get_current_frame ()))
917317f4 4820 && step_start_function == find_pc_function (stop_pc))
488f131b 4821 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 4822 else
488f131b 4823 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
4824 break;
4825 case PRINT_SRC_AND_LOC:
488f131b 4826 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
4827 break;
4828 case PRINT_SRC_ONLY:
c5394b80 4829 source_flag = SRC_LINE;
917317f4
JM
4830 break;
4831 case PRINT_NOTHING:
488f131b 4832 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
4833 do_frame_printing = 0;
4834 break;
4835 default:
e2e0b3e5 4836 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 4837 }
c906108c
SS
4838
4839 /* The behavior of this routine with respect to the source
4840 flag is:
c5394b80
JM
4841 SRC_LINE: Print only source line
4842 LOCATION: Print only location
4843 SRC_AND_LOC: Print location and source line */
917317f4 4844 if (do_frame_printing)
b04f3ab4 4845 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
4846
4847 /* Display the auto-display expressions. */
4848 do_displays ();
4849 }
4850 }
4851
4852 /* Save the function value return registers, if we care.
4853 We might be about to restore their previous contents. */
32400beb 4854 if (inferior_thread ()->proceed_to_finish)
d5c31457
UW
4855 {
4856 /* This should not be necessary. */
4857 if (stop_registers)
4858 regcache_xfree (stop_registers);
4859
4860 /* NB: The copy goes through to the target picking up the value of
4861 all the registers. */
4862 stop_registers = regcache_dup (get_current_regcache ());
4863 }
c906108c
SS
4864
4865 if (stop_stack_dummy)
4866 {
b89667eb
DE
4867 /* Pop the empty frame that contains the stack dummy.
4868 This also restores inferior state prior to the call
4869 (struct inferior_thread_state). */
4870 struct frame_info *frame = get_current_frame ();
4871 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
4872 frame_pop (frame);
4873 /* frame_pop() calls reinit_frame_cache as the last thing it does
4874 which means there's currently no selected frame. We don't need
4875 to re-establish a selected frame if the dummy call returns normally,
4876 that will be done by restore_inferior_status. However, we do have
4877 to handle the case where the dummy call is returning after being
4878 stopped (e.g. the dummy call previously hit a breakpoint). We
4879 can't know which case we have so just always re-establish a
4880 selected frame here. */
0f7d239c 4881 select_frame (get_current_frame ());
c906108c
SS
4882 }
4883
c906108c
SS
4884done:
4885 annotate_stopped ();
41d2bdb4
PA
4886
4887 /* Suppress the stop observer if we're in the middle of:
4888
4889 - a step n (n > 1), as there still more steps to be done.
4890
4891 - a "finish" command, as the observer will be called in
4892 finish_command_continuation, so it can include the inferior
4893 function's return value.
4894
4895 - calling an inferior function, as we pretend we inferior didn't
4896 run at all. The return value of the call is handled by the
4897 expression evaluator, through call_function_by_hand. */
4898
4899 if (!target_has_execution
4900 || last.kind == TARGET_WAITKIND_SIGNALLED
4901 || last.kind == TARGET_WAITKIND_EXITED
4902 || (!inferior_thread ()->step_multi
4903 && !(inferior_thread ()->stop_bpstat
c5a4d20b
PA
4904 && inferior_thread ()->proceed_to_finish)
4905 && !inferior_thread ()->in_infcall))
347bddb7
PA
4906 {
4907 if (!ptid_equal (inferior_ptid, null_ptid))
1d33d6ba
VP
4908 observer_notify_normal_stop (inferior_thread ()->stop_bpstat,
4909 stop_print_frame);
347bddb7 4910 else
1d33d6ba 4911 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 4912 }
347bddb7 4913
48844aa6
PA
4914 if (target_has_execution)
4915 {
4916 if (last.kind != TARGET_WAITKIND_SIGNALLED
4917 && last.kind != TARGET_WAITKIND_EXITED)
4918 /* Delete the breakpoint we stopped at, if it wants to be deleted.
4919 Delete any breakpoint that is to be deleted at the next stop. */
4920 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
94cc34af 4921 }
c906108c
SS
4922}
4923
4924static int
96baa820 4925hook_stop_stub (void *cmd)
c906108c 4926{
5913bcb0 4927 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
4928 return (0);
4929}
4930\f
c5aa993b 4931int
96baa820 4932signal_stop_state (int signo)
c906108c 4933{
d6b48e9c 4934 return signal_stop[signo];
c906108c
SS
4935}
4936
c5aa993b 4937int
96baa820 4938signal_print_state (int signo)
c906108c
SS
4939{
4940 return signal_print[signo];
4941}
4942
c5aa993b 4943int
96baa820 4944signal_pass_state (int signo)
c906108c
SS
4945{
4946 return signal_program[signo];
4947}
4948
488f131b 4949int
7bda5e4a 4950signal_stop_update (int signo, int state)
d4f3574e
SS
4951{
4952 int ret = signal_stop[signo];
4953 signal_stop[signo] = state;
4954 return ret;
4955}
4956
488f131b 4957int
7bda5e4a 4958signal_print_update (int signo, int state)
d4f3574e
SS
4959{
4960 int ret = signal_print[signo];
4961 signal_print[signo] = state;
4962 return ret;
4963}
4964
488f131b 4965int
7bda5e4a 4966signal_pass_update (int signo, int state)
d4f3574e
SS
4967{
4968 int ret = signal_program[signo];
4969 signal_program[signo] = state;
4970 return ret;
4971}
4972
c906108c 4973static void
96baa820 4974sig_print_header (void)
c906108c 4975{
a3f17187
AC
4976 printf_filtered (_("\
4977Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
4978}
4979
4980static void
96baa820 4981sig_print_info (enum target_signal oursig)
c906108c 4982{
54363045 4983 const char *name = target_signal_to_name (oursig);
c906108c 4984 int name_padding = 13 - strlen (name);
96baa820 4985
c906108c
SS
4986 if (name_padding <= 0)
4987 name_padding = 0;
4988
4989 printf_filtered ("%s", name);
488f131b 4990 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
4991 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4992 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4993 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4994 printf_filtered ("%s\n", target_signal_to_string (oursig));
4995}
4996
4997/* Specify how various signals in the inferior should be handled. */
4998
4999static void
96baa820 5000handle_command (char *args, int from_tty)
c906108c
SS
5001{
5002 char **argv;
5003 int digits, wordlen;
5004 int sigfirst, signum, siglast;
5005 enum target_signal oursig;
5006 int allsigs;
5007 int nsigs;
5008 unsigned char *sigs;
5009 struct cleanup *old_chain;
5010
5011 if (args == NULL)
5012 {
e2e0b3e5 5013 error_no_arg (_("signal to handle"));
c906108c
SS
5014 }
5015
5016 /* Allocate and zero an array of flags for which signals to handle. */
5017
5018 nsigs = (int) TARGET_SIGNAL_LAST;
5019 sigs = (unsigned char *) alloca (nsigs);
5020 memset (sigs, 0, nsigs);
5021
5022 /* Break the command line up into args. */
5023
d1a41061 5024 argv = gdb_buildargv (args);
7a292a7a 5025 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
5026
5027 /* Walk through the args, looking for signal oursigs, signal names, and
5028 actions. Signal numbers and signal names may be interspersed with
5029 actions, with the actions being performed for all signals cumulatively
5030 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
5031
5032 while (*argv != NULL)
5033 {
5034 wordlen = strlen (*argv);
5035 for (digits = 0; isdigit ((*argv)[digits]); digits++)
5036 {;
5037 }
5038 allsigs = 0;
5039 sigfirst = siglast = -1;
5040
5041 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
5042 {
5043 /* Apply action to all signals except those used by the
5044 debugger. Silently skip those. */
5045 allsigs = 1;
5046 sigfirst = 0;
5047 siglast = nsigs - 1;
5048 }
5049 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
5050 {
5051 SET_SIGS (nsigs, sigs, signal_stop);
5052 SET_SIGS (nsigs, sigs, signal_print);
5053 }
5054 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
5055 {
5056 UNSET_SIGS (nsigs, sigs, signal_program);
5057 }
5058 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
5059 {
5060 SET_SIGS (nsigs, sigs, signal_print);
5061 }
5062 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
5063 {
5064 SET_SIGS (nsigs, sigs, signal_program);
5065 }
5066 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
5067 {
5068 UNSET_SIGS (nsigs, sigs, signal_stop);
5069 }
5070 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
5071 {
5072 SET_SIGS (nsigs, sigs, signal_program);
5073 }
5074 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
5075 {
5076 UNSET_SIGS (nsigs, sigs, signal_print);
5077 UNSET_SIGS (nsigs, sigs, signal_stop);
5078 }
5079 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
5080 {
5081 UNSET_SIGS (nsigs, sigs, signal_program);
5082 }
5083 else if (digits > 0)
5084 {
5085 /* It is numeric. The numeric signal refers to our own
5086 internal signal numbering from target.h, not to host/target
5087 signal number. This is a feature; users really should be
5088 using symbolic names anyway, and the common ones like
5089 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
5090
5091 sigfirst = siglast = (int)
5092 target_signal_from_command (atoi (*argv));
5093 if ((*argv)[digits] == '-')
5094 {
5095 siglast = (int)
5096 target_signal_from_command (atoi ((*argv) + digits + 1));
5097 }
5098 if (sigfirst > siglast)
5099 {
5100 /* Bet he didn't figure we'd think of this case... */
5101 signum = sigfirst;
5102 sigfirst = siglast;
5103 siglast = signum;
5104 }
5105 }
5106 else
5107 {
5108 oursig = target_signal_from_name (*argv);
5109 if (oursig != TARGET_SIGNAL_UNKNOWN)
5110 {
5111 sigfirst = siglast = (int) oursig;
5112 }
5113 else
5114 {
5115 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 5116 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
5117 }
5118 }
5119
5120 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 5121 which signals to apply actions to. */
c906108c
SS
5122
5123 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
5124 {
5125 switch ((enum target_signal) signum)
5126 {
5127 case TARGET_SIGNAL_TRAP:
5128 case TARGET_SIGNAL_INT:
5129 if (!allsigs && !sigs[signum])
5130 {
9e2f0ad4
HZ
5131 if (query (_("%s is used by the debugger.\n\
5132Are you sure you want to change it? "), target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
5133 {
5134 sigs[signum] = 1;
5135 }
5136 else
5137 {
a3f17187 5138 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
5139 gdb_flush (gdb_stdout);
5140 }
5141 }
5142 break;
5143 case TARGET_SIGNAL_0:
5144 case TARGET_SIGNAL_DEFAULT:
5145 case TARGET_SIGNAL_UNKNOWN:
5146 /* Make sure that "all" doesn't print these. */
5147 break;
5148 default:
5149 sigs[signum] = 1;
5150 break;
5151 }
5152 }
5153
5154 argv++;
5155 }
5156
3a031f65
PA
5157 for (signum = 0; signum < nsigs; signum++)
5158 if (sigs[signum])
5159 {
5160 target_notice_signals (inferior_ptid);
c906108c 5161
3a031f65
PA
5162 if (from_tty)
5163 {
5164 /* Show the results. */
5165 sig_print_header ();
5166 for (; signum < nsigs; signum++)
5167 if (sigs[signum])
5168 sig_print_info (signum);
5169 }
5170
5171 break;
5172 }
c906108c
SS
5173
5174 do_cleanups (old_chain);
5175}
5176
5177static void
96baa820 5178xdb_handle_command (char *args, int from_tty)
c906108c
SS
5179{
5180 char **argv;
5181 struct cleanup *old_chain;
5182
d1a41061
PP
5183 if (args == NULL)
5184 error_no_arg (_("xdb command"));
5185
c906108c
SS
5186 /* Break the command line up into args. */
5187
d1a41061 5188 argv = gdb_buildargv (args);
7a292a7a 5189 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
5190 if (argv[1] != (char *) NULL)
5191 {
5192 char *argBuf;
5193 int bufLen;
5194
5195 bufLen = strlen (argv[0]) + 20;
5196 argBuf = (char *) xmalloc (bufLen);
5197 if (argBuf)
5198 {
5199 int validFlag = 1;
5200 enum target_signal oursig;
5201
5202 oursig = target_signal_from_name (argv[0]);
5203 memset (argBuf, 0, bufLen);
5204 if (strcmp (argv[1], "Q") == 0)
5205 sprintf (argBuf, "%s %s", argv[0], "noprint");
5206 else
5207 {
5208 if (strcmp (argv[1], "s") == 0)
5209 {
5210 if (!signal_stop[oursig])
5211 sprintf (argBuf, "%s %s", argv[0], "stop");
5212 else
5213 sprintf (argBuf, "%s %s", argv[0], "nostop");
5214 }
5215 else if (strcmp (argv[1], "i") == 0)
5216 {
5217 if (!signal_program[oursig])
5218 sprintf (argBuf, "%s %s", argv[0], "pass");
5219 else
5220 sprintf (argBuf, "%s %s", argv[0], "nopass");
5221 }
5222 else if (strcmp (argv[1], "r") == 0)
5223 {
5224 if (!signal_print[oursig])
5225 sprintf (argBuf, "%s %s", argv[0], "print");
5226 else
5227 sprintf (argBuf, "%s %s", argv[0], "noprint");
5228 }
5229 else
5230 validFlag = 0;
5231 }
5232 if (validFlag)
5233 handle_command (argBuf, from_tty);
5234 else
a3f17187 5235 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 5236 if (argBuf)
b8c9b27d 5237 xfree (argBuf);
c906108c
SS
5238 }
5239 }
5240 do_cleanups (old_chain);
5241}
5242
5243/* Print current contents of the tables set by the handle command.
5244 It is possible we should just be printing signals actually used
5245 by the current target (but for things to work right when switching
5246 targets, all signals should be in the signal tables). */
5247
5248static void
96baa820 5249signals_info (char *signum_exp, int from_tty)
c906108c
SS
5250{
5251 enum target_signal oursig;
5252 sig_print_header ();
5253
5254 if (signum_exp)
5255 {
5256 /* First see if this is a symbol name. */
5257 oursig = target_signal_from_name (signum_exp);
5258 if (oursig == TARGET_SIGNAL_UNKNOWN)
5259 {
5260 /* No, try numeric. */
5261 oursig =
bb518678 5262 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
5263 }
5264 sig_print_info (oursig);
5265 return;
5266 }
5267
5268 printf_filtered ("\n");
5269 /* These ugly casts brought to you by the native VAX compiler. */
5270 for (oursig = TARGET_SIGNAL_FIRST;
5271 (int) oursig < (int) TARGET_SIGNAL_LAST;
5272 oursig = (enum target_signal) ((int) oursig + 1))
5273 {
5274 QUIT;
5275
5276 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 5277 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
5278 sig_print_info (oursig);
5279 }
5280
a3f17187 5281 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c 5282}
4aa995e1
PA
5283
5284/* The $_siginfo convenience variable is a bit special. We don't know
5285 for sure the type of the value until we actually have a chance to
5286 fetch the data. The type can change depending on gdbarch, so it it
5287 also dependent on which thread you have selected.
5288
5289 1. making $_siginfo be an internalvar that creates a new value on
5290 access.
5291
5292 2. making the value of $_siginfo be an lval_computed value. */
5293
5294/* This function implements the lval_computed support for reading a
5295 $_siginfo value. */
5296
5297static void
5298siginfo_value_read (struct value *v)
5299{
5300 LONGEST transferred;
5301
5302 transferred =
5303 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
5304 NULL,
5305 value_contents_all_raw (v),
5306 value_offset (v),
5307 TYPE_LENGTH (value_type (v)));
5308
5309 if (transferred != TYPE_LENGTH (value_type (v)))
5310 error (_("Unable to read siginfo"));
5311}
5312
5313/* This function implements the lval_computed support for writing a
5314 $_siginfo value. */
5315
5316static void
5317siginfo_value_write (struct value *v, struct value *fromval)
5318{
5319 LONGEST transferred;
5320
5321 transferred = target_write (&current_target,
5322 TARGET_OBJECT_SIGNAL_INFO,
5323 NULL,
5324 value_contents_all_raw (fromval),
5325 value_offset (v),
5326 TYPE_LENGTH (value_type (fromval)));
5327
5328 if (transferred != TYPE_LENGTH (value_type (fromval)))
5329 error (_("Unable to write siginfo"));
5330}
5331
5332static struct lval_funcs siginfo_value_funcs =
5333 {
5334 siginfo_value_read,
5335 siginfo_value_write
5336 };
5337
5338/* Return a new value with the correct type for the siginfo object of
78267919
UW
5339 the current thread using architecture GDBARCH. Return a void value
5340 if there's no object available. */
4aa995e1 5341
2c0b251b 5342static struct value *
78267919 5343siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
4aa995e1 5344{
4aa995e1 5345 if (target_has_stack
78267919
UW
5346 && !ptid_equal (inferior_ptid, null_ptid)
5347 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 5348 {
78267919
UW
5349 struct type *type = gdbarch_get_siginfo_type (gdbarch);
5350 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
5351 }
5352
78267919 5353 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
5354}
5355
c906108c 5356\f
b89667eb
DE
5357/* Inferior thread state.
5358 These are details related to the inferior itself, and don't include
5359 things like what frame the user had selected or what gdb was doing
5360 with the target at the time.
5361 For inferior function calls these are things we want to restore
5362 regardless of whether the function call successfully completes
5363 or the dummy frame has to be manually popped. */
5364
5365struct inferior_thread_state
7a292a7a
SS
5366{
5367 enum target_signal stop_signal;
5368 CORE_ADDR stop_pc;
b89667eb
DE
5369 struct regcache *registers;
5370};
5371
5372struct inferior_thread_state *
5373save_inferior_thread_state (void)
5374{
5375 struct inferior_thread_state *inf_state = XMALLOC (struct inferior_thread_state);
5376 struct thread_info *tp = inferior_thread ();
5377
5378 inf_state->stop_signal = tp->stop_signal;
5379 inf_state->stop_pc = stop_pc;
5380
5381 inf_state->registers = regcache_dup (get_current_regcache ());
5382
5383 return inf_state;
5384}
5385
5386/* Restore inferior session state to INF_STATE. */
5387
5388void
5389restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5390{
5391 struct thread_info *tp = inferior_thread ();
5392
5393 tp->stop_signal = inf_state->stop_signal;
5394 stop_pc = inf_state->stop_pc;
5395
5396 /* The inferior can be gone if the user types "print exit(0)"
5397 (and perhaps other times). */
5398 if (target_has_execution)
5399 /* NB: The register write goes through to the target. */
5400 regcache_cpy (get_current_regcache (), inf_state->registers);
5401 regcache_xfree (inf_state->registers);
5402 xfree (inf_state);
5403}
5404
5405static void
5406do_restore_inferior_thread_state_cleanup (void *state)
5407{
5408 restore_inferior_thread_state (state);
5409}
5410
5411struct cleanup *
5412make_cleanup_restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5413{
5414 return make_cleanup (do_restore_inferior_thread_state_cleanup, inf_state);
5415}
5416
5417void
5418discard_inferior_thread_state (struct inferior_thread_state *inf_state)
5419{
5420 regcache_xfree (inf_state->registers);
5421 xfree (inf_state);
5422}
5423
5424struct regcache *
5425get_inferior_thread_state_regcache (struct inferior_thread_state *inf_state)
5426{
5427 return inf_state->registers;
5428}
5429
5430/* Session related state for inferior function calls.
5431 These are the additional bits of state that need to be restored
5432 when an inferior function call successfully completes. */
5433
5434struct inferior_status
5435{
7a292a7a
SS
5436 bpstat stop_bpstat;
5437 int stop_step;
5438 int stop_stack_dummy;
5439 int stopped_by_random_signal;
ca67fcb8 5440 int stepping_over_breakpoint;
7a292a7a
SS
5441 CORE_ADDR step_range_start;
5442 CORE_ADDR step_range_end;
aa0cd9c1 5443 struct frame_id step_frame_id;
edb3359d 5444 struct frame_id step_stack_frame_id;
5fbbeb29 5445 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
5446 CORE_ADDR step_resume_break_address;
5447 int stop_after_trap;
c0236d92 5448 int stop_soon;
7a292a7a 5449
b89667eb 5450 /* ID if the selected frame when the inferior function call was made. */
101dcfbe
AC
5451 struct frame_id selected_frame_id;
5452
7a292a7a 5453 int proceed_to_finish;
c5a4d20b 5454 int in_infcall;
7a292a7a
SS
5455};
5456
c906108c 5457/* Save all of the information associated with the inferior<==>gdb
b89667eb 5458 connection. */
c906108c 5459
7a292a7a 5460struct inferior_status *
b89667eb 5461save_inferior_status (void)
c906108c 5462{
72cec141 5463 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4e1c45ea 5464 struct thread_info *tp = inferior_thread ();
d6b48e9c 5465 struct inferior *inf = current_inferior ();
7a292a7a 5466
414c69f7 5467 inf_status->stop_step = tp->stop_step;
c906108c
SS
5468 inf_status->stop_stack_dummy = stop_stack_dummy;
5469 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4e1c45ea
PA
5470 inf_status->stepping_over_breakpoint = tp->trap_expected;
5471 inf_status->step_range_start = tp->step_range_start;
5472 inf_status->step_range_end = tp->step_range_end;
5473 inf_status->step_frame_id = tp->step_frame_id;
edb3359d 5474 inf_status->step_stack_frame_id = tp->step_stack_frame_id;
078130d0 5475 inf_status->step_over_calls = tp->step_over_calls;
c906108c 5476 inf_status->stop_after_trap = stop_after_trap;
d6b48e9c 5477 inf_status->stop_soon = inf->stop_soon;
c906108c
SS
5478 /* Save original bpstat chain here; replace it with copy of chain.
5479 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
5480 hand them back the original chain when restore_inferior_status is
5481 called. */
347bddb7
PA
5482 inf_status->stop_bpstat = tp->stop_bpstat;
5483 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
32400beb 5484 inf_status->proceed_to_finish = tp->proceed_to_finish;
c5a4d20b 5485 inf_status->in_infcall = tp->in_infcall;
c5aa993b 5486
206415a3 5487 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 5488
7a292a7a 5489 return inf_status;
c906108c
SS
5490}
5491
c906108c 5492static int
96baa820 5493restore_selected_frame (void *args)
c906108c 5494{
488f131b 5495 struct frame_id *fid = (struct frame_id *) args;
c906108c 5496 struct frame_info *frame;
c906108c 5497
101dcfbe 5498 frame = frame_find_by_id (*fid);
c906108c 5499
aa0cd9c1
AC
5500 /* If inf_status->selected_frame_id is NULL, there was no previously
5501 selected frame. */
101dcfbe 5502 if (frame == NULL)
c906108c 5503 {
8a3fe4f8 5504 warning (_("Unable to restore previously selected frame."));
c906108c
SS
5505 return 0;
5506 }
5507
0f7d239c 5508 select_frame (frame);
c906108c
SS
5509
5510 return (1);
5511}
5512
b89667eb
DE
5513/* Restore inferior session state to INF_STATUS. */
5514
c906108c 5515void
96baa820 5516restore_inferior_status (struct inferior_status *inf_status)
c906108c 5517{
4e1c45ea 5518 struct thread_info *tp = inferior_thread ();
d6b48e9c 5519 struct inferior *inf = current_inferior ();
4e1c45ea 5520
414c69f7 5521 tp->stop_step = inf_status->stop_step;
c906108c
SS
5522 stop_stack_dummy = inf_status->stop_stack_dummy;
5523 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4e1c45ea
PA
5524 tp->trap_expected = inf_status->stepping_over_breakpoint;
5525 tp->step_range_start = inf_status->step_range_start;
5526 tp->step_range_end = inf_status->step_range_end;
5527 tp->step_frame_id = inf_status->step_frame_id;
edb3359d 5528 tp->step_stack_frame_id = inf_status->step_stack_frame_id;
078130d0 5529 tp->step_over_calls = inf_status->step_over_calls;
c906108c 5530 stop_after_trap = inf_status->stop_after_trap;
d6b48e9c 5531 inf->stop_soon = inf_status->stop_soon;
347bddb7
PA
5532 bpstat_clear (&tp->stop_bpstat);
5533 tp->stop_bpstat = inf_status->stop_bpstat;
b89667eb 5534 inf_status->stop_bpstat = NULL;
32400beb 5535 tp->proceed_to_finish = inf_status->proceed_to_finish;
c5a4d20b 5536 tp->in_infcall = inf_status->in_infcall;
c906108c 5537
b89667eb 5538 if (target_has_stack)
c906108c 5539 {
c906108c 5540 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
5541 walking the stack might encounter a garbage pointer and
5542 error() trying to dereference it. */
488f131b
JB
5543 if (catch_errors
5544 (restore_selected_frame, &inf_status->selected_frame_id,
5545 "Unable to restore previously selected frame:\n",
5546 RETURN_MASK_ERROR) == 0)
c906108c
SS
5547 /* Error in restoring the selected frame. Select the innermost
5548 frame. */
0f7d239c 5549 select_frame (get_current_frame ());
c906108c 5550 }
c906108c 5551
72cec141 5552 xfree (inf_status);
7a292a7a 5553}
c906108c 5554
74b7792f
AC
5555static void
5556do_restore_inferior_status_cleanup (void *sts)
5557{
5558 restore_inferior_status (sts);
5559}
5560
5561struct cleanup *
5562make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
5563{
5564 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
5565}
5566
c906108c 5567void
96baa820 5568discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
5569{
5570 /* See save_inferior_status for info on stop_bpstat. */
5571 bpstat_clear (&inf_status->stop_bpstat);
72cec141 5572 xfree (inf_status);
7a292a7a 5573}
b89667eb 5574\f
47932f85 5575int
3a3e9ee3 5576inferior_has_forked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
5577{
5578 struct target_waitstatus last;
5579 ptid_t last_ptid;
5580
5581 get_last_target_status (&last_ptid, &last);
5582
5583 if (last.kind != TARGET_WAITKIND_FORKED)
5584 return 0;
5585
3a3e9ee3 5586 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
5587 return 0;
5588
5589 *child_pid = last.value.related_pid;
5590 return 1;
5591}
5592
5593int
3a3e9ee3 5594inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
5595{
5596 struct target_waitstatus last;
5597 ptid_t last_ptid;
5598
5599 get_last_target_status (&last_ptid, &last);
5600
5601 if (last.kind != TARGET_WAITKIND_VFORKED)
5602 return 0;
5603
3a3e9ee3 5604 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
5605 return 0;
5606
5607 *child_pid = last.value.related_pid;
5608 return 1;
5609}
5610
5611int
3a3e9ee3 5612inferior_has_execd (ptid_t pid, char **execd_pathname)
47932f85
DJ
5613{
5614 struct target_waitstatus last;
5615 ptid_t last_ptid;
5616
5617 get_last_target_status (&last_ptid, &last);
5618
5619 if (last.kind != TARGET_WAITKIND_EXECD)
5620 return 0;
5621
3a3e9ee3 5622 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
5623 return 0;
5624
5625 *execd_pathname = xstrdup (last.value.execd_pathname);
5626 return 1;
5627}
5628
ca6724c1
KB
5629/* Oft used ptids */
5630ptid_t null_ptid;
5631ptid_t minus_one_ptid;
5632
5633/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 5634
ca6724c1
KB
5635ptid_t
5636ptid_build (int pid, long lwp, long tid)
5637{
5638 ptid_t ptid;
5639
5640 ptid.pid = pid;
5641 ptid.lwp = lwp;
5642 ptid.tid = tid;
5643 return ptid;
5644}
5645
5646/* Create a ptid from just a pid. */
5647
5648ptid_t
5649pid_to_ptid (int pid)
5650{
5651 return ptid_build (pid, 0, 0);
5652}
5653
5654/* Fetch the pid (process id) component from a ptid. */
5655
5656int
5657ptid_get_pid (ptid_t ptid)
5658{
5659 return ptid.pid;
5660}
5661
5662/* Fetch the lwp (lightweight process) component from a ptid. */
5663
5664long
5665ptid_get_lwp (ptid_t ptid)
5666{
5667 return ptid.lwp;
5668}
5669
5670/* Fetch the tid (thread id) component from a ptid. */
5671
5672long
5673ptid_get_tid (ptid_t ptid)
5674{
5675 return ptid.tid;
5676}
5677
5678/* ptid_equal() is used to test equality of two ptids. */
5679
5680int
5681ptid_equal (ptid_t ptid1, ptid_t ptid2)
5682{
5683 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 5684 && ptid1.tid == ptid2.tid);
ca6724c1
KB
5685}
5686
252fbfc8
PA
5687/* Returns true if PTID represents a process. */
5688
5689int
5690ptid_is_pid (ptid_t ptid)
5691{
5692 if (ptid_equal (minus_one_ptid, ptid))
5693 return 0;
5694 if (ptid_equal (null_ptid, ptid))
5695 return 0;
5696
5697 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
5698}
5699
ca6724c1
KB
5700/* restore_inferior_ptid() will be used by the cleanup machinery
5701 to restore the inferior_ptid value saved in a call to
5702 save_inferior_ptid(). */
ce696e05
KB
5703
5704static void
5705restore_inferior_ptid (void *arg)
5706{
5707 ptid_t *saved_ptid_ptr = arg;
5708 inferior_ptid = *saved_ptid_ptr;
5709 xfree (arg);
5710}
5711
5712/* Save the value of inferior_ptid so that it may be restored by a
5713 later call to do_cleanups(). Returns the struct cleanup pointer
5714 needed for later doing the cleanup. */
5715
5716struct cleanup *
5717save_inferior_ptid (void)
5718{
5719 ptid_t *saved_ptid_ptr;
5720
5721 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
5722 *saved_ptid_ptr = inferior_ptid;
5723 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
5724}
c5aa993b 5725\f
488f131b 5726
b2175913
MS
5727/* User interface for reverse debugging:
5728 Set exec-direction / show exec-direction commands
5729 (returns error unless target implements to_set_exec_direction method). */
5730
5731enum exec_direction_kind execution_direction = EXEC_FORWARD;
5732static const char exec_forward[] = "forward";
5733static const char exec_reverse[] = "reverse";
5734static const char *exec_direction = exec_forward;
5735static const char *exec_direction_names[] = {
5736 exec_forward,
5737 exec_reverse,
5738 NULL
5739};
5740
5741static void
5742set_exec_direction_func (char *args, int from_tty,
5743 struct cmd_list_element *cmd)
5744{
5745 if (target_can_execute_reverse)
5746 {
5747 if (!strcmp (exec_direction, exec_forward))
5748 execution_direction = EXEC_FORWARD;
5749 else if (!strcmp (exec_direction, exec_reverse))
5750 execution_direction = EXEC_REVERSE;
5751 }
5752}
5753
5754static void
5755show_exec_direction_func (struct ui_file *out, int from_tty,
5756 struct cmd_list_element *cmd, const char *value)
5757{
5758 switch (execution_direction) {
5759 case EXEC_FORWARD:
5760 fprintf_filtered (out, _("Forward.\n"));
5761 break;
5762 case EXEC_REVERSE:
5763 fprintf_filtered (out, _("Reverse.\n"));
5764 break;
5765 case EXEC_ERROR:
5766 default:
5767 fprintf_filtered (out,
5768 _("Forward (target `%s' does not support exec-direction).\n"),
5769 target_shortname);
5770 break;
5771 }
5772}
5773
5774/* User interface for non-stop mode. */
5775
ad52ddc6
PA
5776int non_stop = 0;
5777static int non_stop_1 = 0;
5778
5779static void
5780set_non_stop (char *args, int from_tty,
5781 struct cmd_list_element *c)
5782{
5783 if (target_has_execution)
5784 {
5785 non_stop_1 = non_stop;
5786 error (_("Cannot change this setting while the inferior is running."));
5787 }
5788
5789 non_stop = non_stop_1;
5790}
5791
5792static void
5793show_non_stop (struct ui_file *file, int from_tty,
5794 struct cmd_list_element *c, const char *value)
5795{
5796 fprintf_filtered (file,
5797 _("Controlling the inferior in non-stop mode is %s.\n"),
5798 value);
5799}
5800
d4db2f36
PA
5801static void
5802show_schedule_multiple (struct ui_file *file, int from_tty,
5803 struct cmd_list_element *c, const char *value)
5804{
5805 fprintf_filtered (file, _("\
5806Resuming the execution of threads of all processes is %s.\n"), value);
5807}
ad52ddc6 5808
c906108c 5809void
96baa820 5810_initialize_infrun (void)
c906108c 5811{
52f0bd74
AC
5812 int i;
5813 int numsigs;
c906108c
SS
5814 struct cmd_list_element *c;
5815
1bedd215
AC
5816 add_info ("signals", signals_info, _("\
5817What debugger does when program gets various signals.\n\
5818Specify a signal as argument to print info on that signal only."));
c906108c
SS
5819 add_info_alias ("handle", "signals", 0);
5820
1bedd215
AC
5821 add_com ("handle", class_run, handle_command, _("\
5822Specify how to handle a signal.\n\
c906108c
SS
5823Args are signals and actions to apply to those signals.\n\
5824Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5825from 1-15 are allowed for compatibility with old versions of GDB.\n\
5826Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5827The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
5828used by the debugger, typically SIGTRAP and SIGINT.\n\
5829Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
5830\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
5831Stop means reenter debugger if this signal happens (implies print).\n\
5832Print means print a message if this signal happens.\n\
5833Pass means let program see this signal; otherwise program doesn't know.\n\
5834Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 5835Pass and Stop may be combined."));
c906108c
SS
5836 if (xdb_commands)
5837 {
1bedd215
AC
5838 add_com ("lz", class_info, signals_info, _("\
5839What debugger does when program gets various signals.\n\
5840Specify a signal as argument to print info on that signal only."));
5841 add_com ("z", class_run, xdb_handle_command, _("\
5842Specify how to handle a signal.\n\
c906108c
SS
5843Args are signals and actions to apply to those signals.\n\
5844Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5845from 1-15 are allowed for compatibility with old versions of GDB.\n\
5846Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5847The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
5848used by the debugger, typically SIGTRAP and SIGINT.\n\
5849Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
5850\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
5851nopass), \"Q\" (noprint)\n\
5852Stop means reenter debugger if this signal happens (implies print).\n\
5853Print means print a message if this signal happens.\n\
5854Pass means let program see this signal; otherwise program doesn't know.\n\
5855Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 5856Pass and Stop may be combined."));
c906108c
SS
5857 }
5858
5859 if (!dbx_commands)
1a966eab
AC
5860 stop_command = add_cmd ("stop", class_obscure,
5861 not_just_help_class_command, _("\
5862There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 5863This allows you to set a list of commands to be run each time execution\n\
1a966eab 5864of the program stops."), &cmdlist);
c906108c 5865
85c07804
AC
5866 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
5867Set inferior debugging."), _("\
5868Show inferior debugging."), _("\
5869When non-zero, inferior specific debugging is enabled."),
5870 NULL,
920d2a44 5871 show_debug_infrun,
85c07804 5872 &setdebuglist, &showdebuglist);
527159b7 5873
237fc4c9
PA
5874 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
5875Set displaced stepping debugging."), _("\
5876Show displaced stepping debugging."), _("\
5877When non-zero, displaced stepping specific debugging is enabled."),
5878 NULL,
5879 show_debug_displaced,
5880 &setdebuglist, &showdebuglist);
5881
ad52ddc6
PA
5882 add_setshow_boolean_cmd ("non-stop", no_class,
5883 &non_stop_1, _("\
5884Set whether gdb controls the inferior in non-stop mode."), _("\
5885Show whether gdb controls the inferior in non-stop mode."), _("\
5886When debugging a multi-threaded program and this setting is\n\
5887off (the default, also called all-stop mode), when one thread stops\n\
5888(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
5889all other threads in the program while you interact with the thread of\n\
5890interest. When you continue or step a thread, you can allow the other\n\
5891threads to run, or have them remain stopped, but while you inspect any\n\
5892thread's state, all threads stop.\n\
5893\n\
5894In non-stop mode, when one thread stops, other threads can continue\n\
5895to run freely. You'll be able to step each thread independently,\n\
5896leave it stopped or free to run as needed."),
5897 set_non_stop,
5898 show_non_stop,
5899 &setlist,
5900 &showlist);
5901
c906108c 5902 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 5903 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
5904 signal_print = (unsigned char *)
5905 xmalloc (sizeof (signal_print[0]) * numsigs);
5906 signal_program = (unsigned char *)
5907 xmalloc (sizeof (signal_program[0]) * numsigs);
5908 for (i = 0; i < numsigs; i++)
5909 {
5910 signal_stop[i] = 1;
5911 signal_print[i] = 1;
5912 signal_program[i] = 1;
5913 }
5914
5915 /* Signals caused by debugger's own actions
5916 should not be given to the program afterwards. */
5917 signal_program[TARGET_SIGNAL_TRAP] = 0;
5918 signal_program[TARGET_SIGNAL_INT] = 0;
5919
5920 /* Signals that are not errors should not normally enter the debugger. */
5921 signal_stop[TARGET_SIGNAL_ALRM] = 0;
5922 signal_print[TARGET_SIGNAL_ALRM] = 0;
5923 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
5924 signal_print[TARGET_SIGNAL_VTALRM] = 0;
5925 signal_stop[TARGET_SIGNAL_PROF] = 0;
5926 signal_print[TARGET_SIGNAL_PROF] = 0;
5927 signal_stop[TARGET_SIGNAL_CHLD] = 0;
5928 signal_print[TARGET_SIGNAL_CHLD] = 0;
5929 signal_stop[TARGET_SIGNAL_IO] = 0;
5930 signal_print[TARGET_SIGNAL_IO] = 0;
5931 signal_stop[TARGET_SIGNAL_POLL] = 0;
5932 signal_print[TARGET_SIGNAL_POLL] = 0;
5933 signal_stop[TARGET_SIGNAL_URG] = 0;
5934 signal_print[TARGET_SIGNAL_URG] = 0;
5935 signal_stop[TARGET_SIGNAL_WINCH] = 0;
5936 signal_print[TARGET_SIGNAL_WINCH] = 0;
5937
cd0fc7c3
SS
5938 /* These signals are used internally by user-level thread
5939 implementations. (See signal(5) on Solaris.) Like the above
5940 signals, a healthy program receives and handles them as part of
5941 its normal operation. */
5942 signal_stop[TARGET_SIGNAL_LWP] = 0;
5943 signal_print[TARGET_SIGNAL_LWP] = 0;
5944 signal_stop[TARGET_SIGNAL_WAITING] = 0;
5945 signal_print[TARGET_SIGNAL_WAITING] = 0;
5946 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
5947 signal_print[TARGET_SIGNAL_CANCEL] = 0;
5948
85c07804
AC
5949 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
5950 &stop_on_solib_events, _("\
5951Set stopping for shared library events."), _("\
5952Show stopping for shared library events."), _("\
c906108c
SS
5953If nonzero, gdb will give control to the user when the dynamic linker\n\
5954notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
5955to the user would be loading/unloading of a new library."),
5956 NULL,
920d2a44 5957 show_stop_on_solib_events,
85c07804 5958 &setlist, &showlist);
c906108c 5959
7ab04401
AC
5960 add_setshow_enum_cmd ("follow-fork-mode", class_run,
5961 follow_fork_mode_kind_names,
5962 &follow_fork_mode_string, _("\
5963Set debugger response to a program call of fork or vfork."), _("\
5964Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
5965A fork or vfork creates a new process. follow-fork-mode can be:\n\
5966 parent - the original process is debugged after a fork\n\
5967 child - the new process is debugged after a fork\n\
ea1dd7bc 5968The unfollowed process will continue to run.\n\
7ab04401
AC
5969By default, the debugger will follow the parent process."),
5970 NULL,
920d2a44 5971 show_follow_fork_mode_string,
7ab04401
AC
5972 &setlist, &showlist);
5973
5974 add_setshow_enum_cmd ("scheduler-locking", class_run,
5975 scheduler_enums, &scheduler_mode, _("\
5976Set mode for locking scheduler during execution."), _("\
5977Show mode for locking scheduler during execution."), _("\
c906108c
SS
5978off == no locking (threads may preempt at any time)\n\
5979on == full locking (no thread except the current thread may run)\n\
5980step == scheduler locked during every single-step operation.\n\
5981 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
5982 Other threads may run while stepping over a function call ('next')."),
5983 set_schedlock_func, /* traps on target vector */
920d2a44 5984 show_scheduler_mode,
7ab04401 5985 &setlist, &showlist);
5fbbeb29 5986
d4db2f36
PA
5987 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
5988Set mode for resuming threads of all processes."), _("\
5989Show mode for resuming threads of all processes."), _("\
5990When on, execution commands (such as 'continue' or 'next') resume all\n\
5991threads of all processes. When off (which is the default), execution\n\
5992commands only resume the threads of the current process. The set of\n\
5993threads that are resumed is further refined by the scheduler-locking\n\
5994mode (see help set scheduler-locking)."),
5995 NULL,
5996 show_schedule_multiple,
5997 &setlist, &showlist);
5998
5bf193a2
AC
5999 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
6000Set mode of the step operation."), _("\
6001Show mode of the step operation."), _("\
6002When set, doing a step over a function without debug line information\n\
6003will stop at the first instruction of that function. Otherwise, the\n\
6004function is skipped and the step command stops at a different source line."),
6005 NULL,
920d2a44 6006 show_step_stop_if_no_debug,
5bf193a2 6007 &setlist, &showlist);
ca6724c1 6008
fff08868
HZ
6009 add_setshow_enum_cmd ("displaced-stepping", class_run,
6010 can_use_displaced_stepping_enum,
6011 &can_use_displaced_stepping, _("\
237fc4c9
PA
6012Set debugger's willingness to use displaced stepping."), _("\
6013Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
6014If on, gdb will use displaced stepping to step over breakpoints if it is\n\
6015supported by the target architecture. If off, gdb will not use displaced\n\
6016stepping to step over breakpoints, even if such is supported by the target\n\
6017architecture. If auto (which is the default), gdb will use displaced stepping\n\
6018if the target architecture supports it and non-stop mode is active, but will not\n\
6019use it in all-stop mode (see help set non-stop)."),
6020 NULL,
6021 show_can_use_displaced_stepping,
6022 &setlist, &showlist);
237fc4c9 6023
b2175913
MS
6024 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
6025 &exec_direction, _("Set direction of execution.\n\
6026Options are 'forward' or 'reverse'."),
6027 _("Show direction of execution (forward/reverse)."),
6028 _("Tells gdb whether to execute forward or backward."),
6029 set_exec_direction_func, show_exec_direction_func,
6030 &setlist, &showlist);
6031
ca6724c1
KB
6032 /* ptid initializations */
6033 null_ptid = ptid_build (0, 0, 0);
6034 minus_one_ptid = ptid_build (-1, 0, 0);
6035 inferior_ptid = null_ptid;
6036 target_last_wait_ptid = minus_one_ptid;
237fc4c9 6037 displaced_step_ptid = null_ptid;
5231c1fd
PA
6038
6039 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 6040 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 6041 observer_attach_thread_exit (infrun_thread_thread_exit);
4aa995e1
PA
6042
6043 /* Explicitly create without lookup, since that tries to create a
6044 value with a void typed value, and when we get here, gdbarch
6045 isn't initialized yet. At this point, we're quite sure there
6046 isn't another convenience variable of the same name. */
6047 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
c906108c 6048}