]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/infrun.c
*** empty log message ***
[thirdparty/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca 4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1
DJ
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
a77053c2 48
9f976b41 49#include "gdb_assert.h"
034dad6f 50#include "mi/mi-common.h"
c906108c
SS
51
52/* Prototypes for local functions */
53
96baa820 54static void signals_info (char *, int);
c906108c 55
96baa820 56static void handle_command (char *, int);
c906108c 57
96baa820 58static void sig_print_info (enum target_signal);
c906108c 59
96baa820 60static void sig_print_header (void);
c906108c 61
74b7792f 62static void resume_cleanups (void *);
c906108c 63
96baa820 64static int hook_stop_stub (void *);
c906108c 65
96baa820
JM
66static int restore_selected_frame (void *);
67
68static void build_infrun (void);
69
4ef3f3be 70static int follow_fork (void);
96baa820
JM
71
72static void set_schedlock_func (char *args, int from_tty,
488f131b 73 struct cmd_list_element *c);
96baa820 74
96baa820
JM
75struct execution_control_state;
76
77static int currently_stepping (struct execution_control_state *ecs);
78
79static void xdb_handle_command (char *args, int from_tty);
80
6a6b96b9 81static int prepare_to_proceed (int);
ea67f13b 82
96baa820 83void _initialize_infrun (void);
43ff13b4 84
5fbbeb29
CF
85/* When set, stop the 'step' command if we enter a function which has
86 no line number information. The normal behavior is that we step
87 over such function. */
88int step_stop_if_no_debug = 0;
920d2a44
AC
89static void
90show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
91 struct cmd_list_element *c, const char *value)
92{
93 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
94}
5fbbeb29 95
43ff13b4 96/* In asynchronous mode, but simulating synchronous execution. */
96baa820 97
43ff13b4
JM
98int sync_execution = 0;
99
c906108c
SS
100/* wait_for_inferior and normal_stop use this to notify the user
101 when the inferior stopped in a different thread than it had been
96baa820
JM
102 running in. */
103
39f77062 104static ptid_t previous_inferior_ptid;
7a292a7a 105
237fc4c9
PA
106int debug_displaced = 0;
107static void
108show_debug_displaced (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110{
111 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
112}
113
527159b7 114static int debug_infrun = 0;
920d2a44
AC
115static void
116show_debug_infrun (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c, const char *value)
118{
119 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
120}
527159b7 121
d4f3574e
SS
122/* If the program uses ELF-style shared libraries, then calls to
123 functions in shared libraries go through stubs, which live in a
124 table called the PLT (Procedure Linkage Table). The first time the
125 function is called, the stub sends control to the dynamic linker,
126 which looks up the function's real address, patches the stub so
127 that future calls will go directly to the function, and then passes
128 control to the function.
129
130 If we are stepping at the source level, we don't want to see any of
131 this --- we just want to skip over the stub and the dynamic linker.
132 The simple approach is to single-step until control leaves the
133 dynamic linker.
134
ca557f44
AC
135 However, on some systems (e.g., Red Hat's 5.2 distribution) the
136 dynamic linker calls functions in the shared C library, so you
137 can't tell from the PC alone whether the dynamic linker is still
138 running. In this case, we use a step-resume breakpoint to get us
139 past the dynamic linker, as if we were using "next" to step over a
140 function call.
d4f3574e
SS
141
142 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
143 linker code or not. Normally, this means we single-step. However,
144 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
145 address where we can place a step-resume breakpoint to get past the
146 linker's symbol resolution function.
147
148 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
149 pretty portable way, by comparing the PC against the address ranges
150 of the dynamic linker's sections.
151
152 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
153 it depends on internal details of the dynamic linker. It's usually
154 not too hard to figure out where to put a breakpoint, but it
155 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
156 sanity checking. If it can't figure things out, returning zero and
157 getting the (possibly confusing) stepping behavior is better than
158 signalling an error, which will obscure the change in the
159 inferior's state. */
c906108c 160
c906108c
SS
161/* This function returns TRUE if pc is the address of an instruction
162 that lies within the dynamic linker (such as the event hook, or the
163 dld itself).
164
165 This function must be used only when a dynamic linker event has
166 been caught, and the inferior is being stepped out of the hook, or
167 undefined results are guaranteed. */
168
169#ifndef SOLIB_IN_DYNAMIC_LINKER
170#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
171#endif
172
c2c6d25f 173
7a292a7a
SS
174/* Convert the #defines into values. This is temporary until wfi control
175 flow is completely sorted out. */
176
692590c1
MS
177#ifndef CANNOT_STEP_HW_WATCHPOINTS
178#define CANNOT_STEP_HW_WATCHPOINTS 0
179#else
180#undef CANNOT_STEP_HW_WATCHPOINTS
181#define CANNOT_STEP_HW_WATCHPOINTS 1
182#endif
183
c906108c
SS
184/* Tables of how to react to signals; the user sets them. */
185
186static unsigned char *signal_stop;
187static unsigned char *signal_print;
188static unsigned char *signal_program;
189
190#define SET_SIGS(nsigs,sigs,flags) \
191 do { \
192 int signum = (nsigs); \
193 while (signum-- > 0) \
194 if ((sigs)[signum]) \
195 (flags)[signum] = 1; \
196 } while (0)
197
198#define UNSET_SIGS(nsigs,sigs,flags) \
199 do { \
200 int signum = (nsigs); \
201 while (signum-- > 0) \
202 if ((sigs)[signum]) \
203 (flags)[signum] = 0; \
204 } while (0)
205
39f77062
KB
206/* Value to pass to target_resume() to cause all threads to resume */
207
208#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
209
210/* Command list pointer for the "stop" placeholder. */
211
212static struct cmd_list_element *stop_command;
213
c906108c
SS
214/* Function inferior was in as of last step command. */
215
216static struct symbol *step_start_function;
217
ca67fcb8 218/* Nonzero if we are presently stepping over a breakpoint.
c906108c 219
ca67fcb8
VP
220 If we hit a breakpoint or watchpoint, and then continue,
221 we need to single step the current thread with breakpoints
222 disabled, to avoid hitting the same breakpoint or
223 watchpoint again. And we should step just a single
224 thread and keep other threads stopped, so that
225 other threads don't miss breakpoints while they are removed.
226
227 So, this variable simultaneously means that we need to single
228 step the current thread, keep other threads stopped, and that
229 breakpoints should be removed while we step.
230
231 This variable is set either:
232 - in proceed, when we resume inferior on user's explicit request
233 - in keep_going, if handle_inferior_event decides we need to
234 step over breakpoint.
235
236 The variable is cleared in clear_proceed_status, called every
237 time before we call proceed. The proceed calls wait_for_inferior,
238 which calls handle_inferior_event in a loop, and until
239 wait_for_inferior exits, this variable is changed only by keep_going. */
240
241static int stepping_over_breakpoint;
c906108c 242
c906108c
SS
243/* Nonzero if we want to give control to the user when we're notified
244 of shared library events by the dynamic linker. */
245static int stop_on_solib_events;
920d2a44
AC
246static void
247show_stop_on_solib_events (struct ui_file *file, int from_tty,
248 struct cmd_list_element *c, const char *value)
249{
250 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
251 value);
252}
c906108c 253
c906108c
SS
254/* Nonzero means expecting a trace trap
255 and should stop the inferior and return silently when it happens. */
256
257int stop_after_trap;
258
259/* Nonzero means expecting a trap and caller will handle it themselves.
260 It is used after attach, due to attaching to a process;
261 when running in the shell before the child program has been exec'd;
262 and when running some kinds of remote stuff (FIXME?). */
263
c0236d92 264enum stop_kind stop_soon;
c906108c
SS
265
266/* Nonzero if proceed is being used for a "finish" command or a similar
267 situation when stop_registers should be saved. */
268
269int proceed_to_finish;
270
271/* Save register contents here when about to pop a stack dummy frame,
272 if-and-only-if proceed_to_finish is set.
273 Thus this contains the return value from the called function (assuming
274 values are returned in a register). */
275
72cec141 276struct regcache *stop_registers;
c906108c 277
c906108c
SS
278/* Nonzero after stop if current stack frame should be printed. */
279
280static int stop_print_frame;
281
611c83ae 282/* Step-resume or longjmp-resume breakpoint. */
c906108c 283static struct breakpoint *step_resume_breakpoint = NULL;
c906108c 284
e02bc4cc 285/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
286 returned by target_wait()/deprecated_target_wait_hook(). This
287 information is returned by get_last_target_status(). */
39f77062 288static ptid_t target_last_wait_ptid;
e02bc4cc
DS
289static struct target_waitstatus target_last_waitstatus;
290
c906108c
SS
291/* This is used to remember when a fork, vfork or exec event
292 was caught by a catchpoint, and thus the event is to be
293 followed at the next resume of the inferior, and not
294 immediately. */
295static struct
488f131b
JB
296{
297 enum target_waitkind kind;
298 struct
c906108c 299 {
488f131b 300 int parent_pid;
488f131b 301 int child_pid;
c906108c 302 }
488f131b
JB
303 fork_event;
304 char *execd_pathname;
305}
c906108c
SS
306pending_follow;
307
53904c9e
AC
308static const char follow_fork_mode_child[] = "child";
309static const char follow_fork_mode_parent[] = "parent";
310
488f131b 311static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
312 follow_fork_mode_child,
313 follow_fork_mode_parent,
314 NULL
ef346e04 315};
c906108c 316
53904c9e 317static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
318static void
319show_follow_fork_mode_string (struct ui_file *file, int from_tty,
320 struct cmd_list_element *c, const char *value)
321{
322 fprintf_filtered (file, _("\
323Debugger response to a program call of fork or vfork is \"%s\".\n"),
324 value);
325}
c906108c
SS
326\f
327
6604731b 328static int
4ef3f3be 329follow_fork (void)
c906108c 330{
ea1dd7bc 331 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
c906108c 332
6604731b 333 return target_follow_fork (follow_child);
c906108c
SS
334}
335
6604731b
DJ
336void
337follow_inferior_reset_breakpoints (void)
c906108c 338{
6604731b
DJ
339 /* Was there a step_resume breakpoint? (There was if the user
340 did a "next" at the fork() call.) If so, explicitly reset its
341 thread number.
342
343 step_resumes are a form of bp that are made to be per-thread.
344 Since we created the step_resume bp when the parent process
345 was being debugged, and now are switching to the child process,
346 from the breakpoint package's viewpoint, that's a switch of
347 "threads". We must update the bp's notion of which thread
348 it is for, or it'll be ignored when it triggers. */
349
350 if (step_resume_breakpoint)
351 breakpoint_re_set_thread (step_resume_breakpoint);
352
353 /* Reinsert all breakpoints in the child. The user may have set
354 breakpoints after catching the fork, in which case those
355 were never set in the child, but only in the parent. This makes
356 sure the inserted breakpoints match the breakpoint list. */
357
358 breakpoint_re_set ();
359 insert_breakpoints ();
c906108c 360}
c906108c 361
1adeb98a
FN
362/* EXECD_PATHNAME is assumed to be non-NULL. */
363
c906108c 364static void
96baa820 365follow_exec (int pid, char *execd_pathname)
c906108c 366{
c906108c 367 int saved_pid = pid;
7a292a7a
SS
368 struct target_ops *tgt;
369
c906108c
SS
370 /* This is an exec event that we actually wish to pay attention to.
371 Refresh our symbol table to the newly exec'd program, remove any
372 momentary bp's, etc.
373
374 If there are breakpoints, they aren't really inserted now,
375 since the exec() transformed our inferior into a fresh set
376 of instructions.
377
378 We want to preserve symbolic breakpoints on the list, since
379 we have hopes that they can be reset after the new a.out's
380 symbol table is read.
381
382 However, any "raw" breakpoints must be removed from the list
383 (e.g., the solib bp's), since their address is probably invalid
384 now.
385
386 And, we DON'T want to call delete_breakpoints() here, since
387 that may write the bp's "shadow contents" (the instruction
388 value that was overwritten witha TRAP instruction). Since
389 we now have a new a.out, those shadow contents aren't valid. */
390 update_breakpoints_after_exec ();
391
392 /* If there was one, it's gone now. We cannot truly step-to-next
393 statement through an exec(). */
394 step_resume_breakpoint = NULL;
395 step_range_start = 0;
396 step_range_end = 0;
397
c906108c 398 /* What is this a.out's name? */
a3f17187 399 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
c906108c
SS
400
401 /* We've followed the inferior through an exec. Therefore, the
402 inferior has essentially been killed & reborn. */
7a292a7a 403
c906108c 404 gdb_flush (gdb_stdout);
e85a822c 405 generic_mourn_inferior ();
488f131b 406 /* Because mourn_inferior resets inferior_ptid. */
e85a822c
DJ
407 inferior_ptid = pid_to_ptid (saved_pid);
408
409 if (gdb_sysroot && *gdb_sysroot)
410 {
411 char *name = alloca (strlen (gdb_sysroot)
412 + strlen (execd_pathname)
413 + 1);
414 strcpy (name, gdb_sysroot);
415 strcat (name, execd_pathname);
416 execd_pathname = name;
417 }
c906108c
SS
418
419 /* That a.out is now the one to use. */
420 exec_file_attach (execd_pathname, 0);
421
422 /* And also is where symbols can be found. */
1adeb98a 423 symbol_file_add_main (execd_pathname, 0);
c906108c
SS
424
425 /* Reset the shared library package. This ensures that we get
426 a shlib event when the child reaches "_start", at which point
427 the dld will have had a chance to initialize the child. */
e85a822c 428 no_shared_libraries (NULL, 0);
7a292a7a 429#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 430 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2
MK
431#else
432 solib_create_inferior_hook ();
7a292a7a 433#endif
c906108c
SS
434
435 /* Reinsert all breakpoints. (Those which were symbolic have
436 been reset to the proper address in the new a.out, thanks
437 to symbol_file_command...) */
438 insert_breakpoints ();
439
440 /* The next resume of this inferior should bring it to the shlib
441 startup breakpoints. (If the user had also set bp's on
442 "main" from the old (parent) process, then they'll auto-
443 matically get reset there in the new process.) */
c906108c
SS
444}
445
446/* Non-zero if we just simulating a single-step. This is needed
447 because we cannot remove the breakpoints in the inferior process
448 until after the `wait' in `wait_for_inferior'. */
449static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
450
451/* The thread we inserted single-step breakpoints for. */
452static ptid_t singlestep_ptid;
453
fd48f117
DJ
454/* PC when we started this single-step. */
455static CORE_ADDR singlestep_pc;
456
9f976b41
DJ
457/* If another thread hit the singlestep breakpoint, we save the original
458 thread here so that we can resume single-stepping it later. */
459static ptid_t saved_singlestep_ptid;
460static int stepping_past_singlestep_breakpoint;
6a6b96b9 461
ca67fcb8
VP
462/* If not equal to null_ptid, this means that after stepping over breakpoint
463 is finished, we need to switch to deferred_step_ptid, and step it.
464
465 The use case is when one thread has hit a breakpoint, and then the user
466 has switched to another thread and issued 'step'. We need to step over
467 breakpoint in the thread which hit the breakpoint, but then continue
468 stepping the thread user has selected. */
469static ptid_t deferred_step_ptid;
c906108c 470\f
237fc4c9
PA
471/* Displaced stepping. */
472
473/* In non-stop debugging mode, we must take special care to manage
474 breakpoints properly; in particular, the traditional strategy for
475 stepping a thread past a breakpoint it has hit is unsuitable.
476 'Displaced stepping' is a tactic for stepping one thread past a
477 breakpoint it has hit while ensuring that other threads running
478 concurrently will hit the breakpoint as they should.
479
480 The traditional way to step a thread T off a breakpoint in a
481 multi-threaded program in all-stop mode is as follows:
482
483 a0) Initially, all threads are stopped, and breakpoints are not
484 inserted.
485 a1) We single-step T, leaving breakpoints uninserted.
486 a2) We insert breakpoints, and resume all threads.
487
488 In non-stop debugging, however, this strategy is unsuitable: we
489 don't want to have to stop all threads in the system in order to
490 continue or step T past a breakpoint. Instead, we use displaced
491 stepping:
492
493 n0) Initially, T is stopped, other threads are running, and
494 breakpoints are inserted.
495 n1) We copy the instruction "under" the breakpoint to a separate
496 location, outside the main code stream, making any adjustments
497 to the instruction, register, and memory state as directed by
498 T's architecture.
499 n2) We single-step T over the instruction at its new location.
500 n3) We adjust the resulting register and memory state as directed
501 by T's architecture. This includes resetting T's PC to point
502 back into the main instruction stream.
503 n4) We resume T.
504
505 This approach depends on the following gdbarch methods:
506
507 - gdbarch_max_insn_length and gdbarch_displaced_step_location
508 indicate where to copy the instruction, and how much space must
509 be reserved there. We use these in step n1.
510
511 - gdbarch_displaced_step_copy_insn copies a instruction to a new
512 address, and makes any necessary adjustments to the instruction,
513 register contents, and memory. We use this in step n1.
514
515 - gdbarch_displaced_step_fixup adjusts registers and memory after
516 we have successfuly single-stepped the instruction, to yield the
517 same effect the instruction would have had if we had executed it
518 at its original address. We use this in step n3.
519
520 - gdbarch_displaced_step_free_closure provides cleanup.
521
522 The gdbarch_displaced_step_copy_insn and
523 gdbarch_displaced_step_fixup functions must be written so that
524 copying an instruction with gdbarch_displaced_step_copy_insn,
525 single-stepping across the copied instruction, and then applying
526 gdbarch_displaced_insn_fixup should have the same effects on the
527 thread's memory and registers as stepping the instruction in place
528 would have. Exactly which responsibilities fall to the copy and
529 which fall to the fixup is up to the author of those functions.
530
531 See the comments in gdbarch.sh for details.
532
533 Note that displaced stepping and software single-step cannot
534 currently be used in combination, although with some care I think
535 they could be made to. Software single-step works by placing
536 breakpoints on all possible subsequent instructions; if the
537 displaced instruction is a PC-relative jump, those breakpoints
538 could fall in very strange places --- on pages that aren't
539 executable, or at addresses that are not proper instruction
540 boundaries. (We do generally let other threads run while we wait
541 to hit the software single-step breakpoint, and they might
542 encounter such a corrupted instruction.) One way to work around
543 this would be to have gdbarch_displaced_step_copy_insn fully
544 simulate the effect of PC-relative instructions (and return NULL)
545 on architectures that use software single-stepping.
546
547 In non-stop mode, we can have independent and simultaneous step
548 requests, so more than one thread may need to simultaneously step
549 over a breakpoint. The current implementation assumes there is
550 only one scratch space per process. In this case, we have to
551 serialize access to the scratch space. If thread A wants to step
552 over a breakpoint, but we are currently waiting for some other
553 thread to complete a displaced step, we leave thread A stopped and
554 place it in the displaced_step_request_queue. Whenever a displaced
555 step finishes, we pick the next thread in the queue and start a new
556 displaced step operation on it. See displaced_step_prepare and
557 displaced_step_fixup for details. */
558
559/* If this is not null_ptid, this is the thread carrying out a
560 displaced single-step. This thread's state will require fixing up
561 once it has completed its step. */
562static ptid_t displaced_step_ptid;
563
564struct displaced_step_request
565{
566 ptid_t ptid;
567 struct displaced_step_request *next;
568};
569
570/* A queue of pending displaced stepping requests. */
571struct displaced_step_request *displaced_step_request_queue;
572
573/* The architecture the thread had when we stepped it. */
574static struct gdbarch *displaced_step_gdbarch;
575
576/* The closure provided gdbarch_displaced_step_copy_insn, to be used
577 for post-step cleanup. */
578static struct displaced_step_closure *displaced_step_closure;
579
580/* The address of the original instruction, and the copy we made. */
581static CORE_ADDR displaced_step_original, displaced_step_copy;
582
583/* Saved contents of copy area. */
584static gdb_byte *displaced_step_saved_copy;
585
586/* When this is non-zero, we are allowed to use displaced stepping, if
587 the architecture supports it. When this is zero, we use
588 traditional the hold-and-step approach. */
589int can_use_displaced_stepping = 1;
590static void
591show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
592 struct cmd_list_element *c,
593 const char *value)
594{
595 fprintf_filtered (file, _("\
596Debugger's willingness to use displaced stepping to step over "
597"breakpoints is %s.\n"), value);
598}
599
600/* Return non-zero if displaced stepping is enabled, and can be used
601 with GDBARCH. */
602static int
603use_displaced_stepping (struct gdbarch *gdbarch)
604{
605 return (can_use_displaced_stepping
606 && gdbarch_displaced_step_copy_insn_p (gdbarch));
607}
608
609/* Clean out any stray displaced stepping state. */
610static void
611displaced_step_clear (void)
612{
613 /* Indicate that there is no cleanup pending. */
614 displaced_step_ptid = null_ptid;
615
616 if (displaced_step_closure)
617 {
618 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
619 displaced_step_closure);
620 displaced_step_closure = NULL;
621 }
622}
623
624static void
625cleanup_displaced_step_closure (void *ptr)
626{
627 struct displaced_step_closure *closure = ptr;
628
629 gdbarch_displaced_step_free_closure (current_gdbarch, closure);
630}
631
632/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
633void
634displaced_step_dump_bytes (struct ui_file *file,
635 const gdb_byte *buf,
636 size_t len)
637{
638 int i;
639
640 for (i = 0; i < len; i++)
641 fprintf_unfiltered (file, "%02x ", buf[i]);
642 fputs_unfiltered ("\n", file);
643}
644
645/* Prepare to single-step, using displaced stepping.
646
647 Note that we cannot use displaced stepping when we have a signal to
648 deliver. If we have a signal to deliver and an instruction to step
649 over, then after the step, there will be no indication from the
650 target whether the thread entered a signal handler or ignored the
651 signal and stepped over the instruction successfully --- both cases
652 result in a simple SIGTRAP. In the first case we mustn't do a
653 fixup, and in the second case we must --- but we can't tell which.
654 Comments in the code for 'random signals' in handle_inferior_event
655 explain how we handle this case instead.
656
657 Returns 1 if preparing was successful -- this thread is going to be
658 stepped now; or 0 if displaced stepping this thread got queued. */
659static int
660displaced_step_prepare (ptid_t ptid)
661{
662 struct cleanup *old_cleanups;
663 struct regcache *regcache = get_thread_regcache (ptid);
664 struct gdbarch *gdbarch = get_regcache_arch (regcache);
665 CORE_ADDR original, copy;
666 ULONGEST len;
667 struct displaced_step_closure *closure;
668
669 /* We should never reach this function if the architecture does not
670 support displaced stepping. */
671 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
672
673 /* For the first cut, we're displaced stepping one thread at a
674 time. */
675
676 if (!ptid_equal (displaced_step_ptid, null_ptid))
677 {
678 /* Already waiting for a displaced step to finish. Defer this
679 request and place in queue. */
680 struct displaced_step_request *req, *new_req;
681
682 if (debug_displaced)
683 fprintf_unfiltered (gdb_stdlog,
684 "displaced: defering step of %s\n",
685 target_pid_to_str (ptid));
686
687 new_req = xmalloc (sizeof (*new_req));
688 new_req->ptid = ptid;
689 new_req->next = NULL;
690
691 if (displaced_step_request_queue)
692 {
693 for (req = displaced_step_request_queue;
694 req && req->next;
695 req = req->next)
696 ;
697 req->next = new_req;
698 }
699 else
700 displaced_step_request_queue = new_req;
701
702 return 0;
703 }
704 else
705 {
706 if (debug_displaced)
707 fprintf_unfiltered (gdb_stdlog,
708 "displaced: stepping %s now\n",
709 target_pid_to_str (ptid));
710 }
711
712 displaced_step_clear ();
713
515630c5 714 original = regcache_read_pc (regcache);
237fc4c9
PA
715
716 copy = gdbarch_displaced_step_location (gdbarch);
717 len = gdbarch_max_insn_length (gdbarch);
718
719 /* Save the original contents of the copy area. */
720 displaced_step_saved_copy = xmalloc (len);
721 old_cleanups = make_cleanup (free_current_contents,
722 &displaced_step_saved_copy);
723 read_memory (copy, displaced_step_saved_copy, len);
724 if (debug_displaced)
725 {
726 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
727 paddr_nz (copy));
728 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
729 };
730
731 closure = gdbarch_displaced_step_copy_insn (gdbarch,
732 original, copy, regcache);
733
734 /* We don't support the fully-simulated case at present. */
735 gdb_assert (closure);
736
737 make_cleanup (cleanup_displaced_step_closure, closure);
738
739 /* Resume execution at the copy. */
515630c5 740 regcache_write_pc (regcache, copy);
237fc4c9
PA
741
742 discard_cleanups (old_cleanups);
743
744 if (debug_displaced)
745 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
746 paddr_nz (copy));
747
748 /* Save the information we need to fix things up if the step
749 succeeds. */
750 displaced_step_ptid = ptid;
751 displaced_step_gdbarch = gdbarch;
752 displaced_step_closure = closure;
753 displaced_step_original = original;
754 displaced_step_copy = copy;
755 return 1;
756}
757
758static void
759displaced_step_clear_cleanup (void *ignore)
760{
761 displaced_step_clear ();
762}
763
764static void
765write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
766{
767 struct cleanup *ptid_cleanup = save_inferior_ptid ();
768 inferior_ptid = ptid;
769 write_memory (memaddr, myaddr, len);
770 do_cleanups (ptid_cleanup);
771}
772
773static void
774displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
775{
776 struct cleanup *old_cleanups;
777
778 /* Was this event for the pid we displaced? */
779 if (ptid_equal (displaced_step_ptid, null_ptid)
780 || ! ptid_equal (displaced_step_ptid, event_ptid))
781 return;
782
783 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
784
785 /* Restore the contents of the copy area. */
786 {
787 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
788 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
789 displaced_step_saved_copy, len);
790 if (debug_displaced)
791 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
792 paddr_nz (displaced_step_copy));
793 }
794
795 /* Did the instruction complete successfully? */
796 if (signal == TARGET_SIGNAL_TRAP)
797 {
798 /* Fix up the resulting state. */
799 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
800 displaced_step_closure,
801 displaced_step_original,
802 displaced_step_copy,
803 get_thread_regcache (displaced_step_ptid));
804 }
805 else
806 {
807 /* Since the instruction didn't complete, all we can do is
808 relocate the PC. */
515630c5
UW
809 struct regcache *regcache = get_thread_regcache (event_ptid);
810 CORE_ADDR pc = regcache_read_pc (regcache);
237fc4c9 811 pc = displaced_step_original + (pc - displaced_step_copy);
515630c5 812 regcache_write_pc (regcache, pc);
237fc4c9
PA
813 }
814
815 do_cleanups (old_cleanups);
816
817 /* Are there any pending displaced stepping requests? If so, run
818 one now. */
819 if (displaced_step_request_queue)
820 {
821 struct displaced_step_request *head;
822 ptid_t ptid;
823
824 head = displaced_step_request_queue;
825 ptid = head->ptid;
826 displaced_step_request_queue = head->next;
827 xfree (head);
828
829 if (debug_displaced)
830 fprintf_unfiltered (gdb_stdlog,
831 "displaced: stepping queued %s now\n",
832 target_pid_to_str (ptid));
833
834
835 displaced_step_ptid = null_ptid;
836 displaced_step_prepare (ptid);
837 target_resume (ptid, 1, TARGET_SIGNAL_0);
838 }
839}
840
841\f
842/* Resuming. */
c906108c
SS
843
844/* Things to clean up if we QUIT out of resume (). */
c906108c 845static void
74b7792f 846resume_cleanups (void *ignore)
c906108c
SS
847{
848 normal_stop ();
849}
850
53904c9e
AC
851static const char schedlock_off[] = "off";
852static const char schedlock_on[] = "on";
853static const char schedlock_step[] = "step";
488f131b 854static const char *scheduler_enums[] = {
ef346e04
AC
855 schedlock_off,
856 schedlock_on,
857 schedlock_step,
858 NULL
859};
920d2a44
AC
860static const char *scheduler_mode = schedlock_off;
861static void
862show_scheduler_mode (struct ui_file *file, int from_tty,
863 struct cmd_list_element *c, const char *value)
864{
865 fprintf_filtered (file, _("\
866Mode for locking scheduler during execution is \"%s\".\n"),
867 value);
868}
c906108c
SS
869
870static void
96baa820 871set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 872{
eefe576e
AC
873 if (!target_can_lock_scheduler)
874 {
875 scheduler_mode = schedlock_off;
876 error (_("Target '%s' cannot support this command."), target_shortname);
877 }
c906108c
SS
878}
879
880
881/* Resume the inferior, but allow a QUIT. This is useful if the user
882 wants to interrupt some lengthy single-stepping operation
883 (for child processes, the SIGINT goes to the inferior, and so
884 we get a SIGINT random_signal, but for remote debugging and perhaps
885 other targets, that's not true).
886
887 STEP nonzero if we should step (zero to continue instead).
888 SIG is the signal to give the inferior (zero for none). */
889void
96baa820 890resume (int step, enum target_signal sig)
c906108c
SS
891{
892 int should_resume = 1;
74b7792f 893 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
894 struct regcache *regcache = get_current_regcache ();
895 struct gdbarch *gdbarch = get_regcache_arch (regcache);
896 CORE_ADDR pc = regcache_read_pc (regcache);
c906108c
SS
897 QUIT;
898
527159b7 899 if (debug_infrun)
237fc4c9
PA
900 fprintf_unfiltered (gdb_stdlog,
901 "infrun: resume (step=%d, signal=%d), "
902 "stepping_over_breakpoint=%d\n",
903 step, sig, stepping_over_breakpoint);
c906108c 904
692590c1
MS
905 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
906 over an instruction that causes a page fault without triggering
907 a hardware watchpoint. The kernel properly notices that it shouldn't
908 stop, because the hardware watchpoint is not triggered, but it forgets
909 the step request and continues the program normally.
910 Work around the problem by removing hardware watchpoints if a step is
911 requested, GDB will check for a hardware watchpoint trigger after the
912 step anyway. */
c36b740a 913 if (CANNOT_STEP_HW_WATCHPOINTS && step)
692590c1 914 remove_hw_watchpoints ();
488f131b 915
692590c1 916
c2c6d25f
JM
917 /* Normally, by the time we reach `resume', the breakpoints are either
918 removed or inserted, as appropriate. The exception is if we're sitting
919 at a permanent breakpoint; we need to step over it, but permanent
920 breakpoints can't be removed. So we have to test for it here. */
237fc4c9 921 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
6d350bb5 922 {
515630c5
UW
923 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
924 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5
UW
925 else
926 error (_("\
927The program is stopped at a permanent breakpoint, but GDB does not know\n\
928how to step past a permanent breakpoint on this architecture. Try using\n\
929a command like `return' or `jump' to continue execution."));
930 }
c2c6d25f 931
237fc4c9
PA
932 /* If enabled, step over breakpoints by executing a copy of the
933 instruction at a different address.
934
935 We can't use displaced stepping when we have a signal to deliver;
936 the comments for displaced_step_prepare explain why. The
937 comments in the handle_inferior event for dealing with 'random
938 signals' explain what we do instead. */
515630c5 939 if (use_displaced_stepping (gdbarch)
237fc4c9
PA
940 && stepping_over_breakpoint
941 && sig == TARGET_SIGNAL_0)
942 {
943 if (!displaced_step_prepare (inferior_ptid))
944 /* Got placed in displaced stepping queue. Will be resumed
945 later when all the currently queued displaced stepping
946 requests finish. */
947 return;
948 }
949
515630c5 950 if (step && gdbarch_software_single_step_p (gdbarch))
c906108c
SS
951 {
952 /* Do it the hard way, w/temp breakpoints */
515630c5 953 if (gdbarch_software_single_step (gdbarch, get_current_frame ()))
e6590a1b
UW
954 {
955 /* ...and don't ask hardware to do it. */
956 step = 0;
957 /* and do not pull these breakpoints until after a `wait' in
958 `wait_for_inferior' */
959 singlestep_breakpoints_inserted_p = 1;
960 singlestep_ptid = inferior_ptid;
237fc4c9 961 singlestep_pc = pc;
e6590a1b 962 }
c906108c
SS
963 }
964
c906108c 965 /* If there were any forks/vforks/execs that were caught and are
6604731b 966 now to be followed, then do so. */
c906108c
SS
967 switch (pending_follow.kind)
968 {
6604731b
DJ
969 case TARGET_WAITKIND_FORKED:
970 case TARGET_WAITKIND_VFORKED:
c906108c 971 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
6604731b
DJ
972 if (follow_fork ())
973 should_resume = 0;
c906108c
SS
974 break;
975
6604731b 976 case TARGET_WAITKIND_EXECD:
c906108c 977 /* follow_exec is called as soon as the exec event is seen. */
6604731b 978 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
c906108c
SS
979 break;
980
981 default:
982 break;
983 }
c906108c
SS
984
985 /* Install inferior's terminal modes. */
986 target_terminal_inferior ();
987
988 if (should_resume)
989 {
39f77062 990 ptid_t resume_ptid;
dfcd3bfb 991
488f131b 992 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e 993
cd76b0b7
VP
994 /* If STEP is set, it's a request to use hardware stepping
995 facilities. But in that case, we should never
996 use singlestep breakpoint. */
997 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
998
999 if (singlestep_breakpoints_inserted_p
1000 && stepping_past_singlestep_breakpoint)
c906108c 1001 {
cd76b0b7
VP
1002 /* The situation here is as follows. In thread T1 we wanted to
1003 single-step. Lacking hardware single-stepping we've
1004 set breakpoint at the PC of the next instruction -- call it
1005 P. After resuming, we've hit that breakpoint in thread T2.
1006 Now we've removed original breakpoint, inserted breakpoint
1007 at P+1, and try to step to advance T2 past breakpoint.
1008 We need to step only T2, as if T1 is allowed to freely run,
1009 it can run past P, and if other threads are allowed to run,
1010 they can hit breakpoint at P+1, and nested hits of single-step
1011 breakpoints is not something we'd want -- that's complicated
1012 to support, and has no value. */
1013 resume_ptid = inferior_ptid;
1014 }
c906108c 1015
e842223a 1016 if ((step || singlestep_breakpoints_inserted_p)
74960c60 1017 && stepping_over_breakpoint)
cd76b0b7 1018 {
74960c60
VP
1019 /* We're allowing a thread to run past a breakpoint it has
1020 hit, by single-stepping the thread with the breakpoint
1021 removed. In which case, we need to single-step only this
1022 thread, and keep others stopped, as they can miss this
1023 breakpoint if allowed to run.
1024
1025 The current code actually removes all breakpoints when
1026 doing this, not just the one being stepped over, so if we
1027 let other threads run, we can actually miss any
1028 breakpoint, not just the one at PC. */
ef5cf84e 1029 resume_ptid = inferior_ptid;
c906108c 1030 }
ef5cf84e 1031
8fb3e588
AC
1032 if ((scheduler_mode == schedlock_on)
1033 || (scheduler_mode == schedlock_step
1034 && (step || singlestep_breakpoints_inserted_p)))
c906108c 1035 {
ef5cf84e 1036 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 1037 resume_ptid = inferior_ptid;
c906108c 1038 }
ef5cf84e 1039
515630c5 1040 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1041 {
1042 /* Most targets can step a breakpoint instruction, thus
1043 executing it normally. But if this one cannot, just
1044 continue and we will hit it anyway. */
237fc4c9 1045 if (step && breakpoint_inserted_here_p (pc))
c4ed33b9
AC
1046 step = 0;
1047 }
237fc4c9
PA
1048
1049 if (debug_displaced
515630c5 1050 && use_displaced_stepping (gdbarch)
237fc4c9
PA
1051 && stepping_over_breakpoint)
1052 {
515630c5
UW
1053 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1054 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1055 gdb_byte buf[4];
1056
1057 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1058 paddr_nz (actual_pc));
1059 read_memory (actual_pc, buf, sizeof (buf));
1060 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1061 }
1062
39f77062 1063 target_resume (resume_ptid, step, sig);
c906108c
SS
1064 }
1065
1066 discard_cleanups (old_cleanups);
1067}
1068\f
237fc4c9 1069/* Proceeding. */
c906108c
SS
1070
1071/* Clear out all variables saying what to do when inferior is continued.
1072 First do this, then set the ones you want, then call `proceed'. */
1073
1074void
96baa820 1075clear_proceed_status (void)
c906108c 1076{
ca67fcb8 1077 stepping_over_breakpoint = 0;
c906108c
SS
1078 step_range_start = 0;
1079 step_range_end = 0;
aa0cd9c1 1080 step_frame_id = null_frame_id;
5fbbeb29 1081 step_over_calls = STEP_OVER_UNDEBUGGABLE;
c906108c 1082 stop_after_trap = 0;
c0236d92 1083 stop_soon = NO_STOP_QUIETLY;
c906108c
SS
1084 proceed_to_finish = 0;
1085 breakpoint_proceeded = 1; /* We're about to proceed... */
1086
d5c31457
UW
1087 if (stop_registers)
1088 {
1089 regcache_xfree (stop_registers);
1090 stop_registers = NULL;
1091 }
1092
c906108c
SS
1093 /* Discard any remaining commands or status from previous stop. */
1094 bpstat_clear (&stop_bpstat);
1095}
1096
ea67f13b
DJ
1097/* This should be suitable for any targets that support threads. */
1098
1099static int
6a6b96b9 1100prepare_to_proceed (int step)
ea67f13b
DJ
1101{
1102 ptid_t wait_ptid;
1103 struct target_waitstatus wait_status;
1104
1105 /* Get the last target status returned by target_wait(). */
1106 get_last_target_status (&wait_ptid, &wait_status);
1107
6a6b96b9 1108 /* Make sure we were stopped at a breakpoint. */
ea67f13b 1109 if (wait_status.kind != TARGET_WAITKIND_STOPPED
6a6b96b9 1110 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
ea67f13b
DJ
1111 {
1112 return 0;
1113 }
1114
6a6b96b9 1115 /* Switched over from WAIT_PID. */
ea67f13b 1116 if (!ptid_equal (wait_ptid, minus_one_ptid)
515630c5 1117 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 1118 {
515630c5
UW
1119 struct regcache *regcache = get_thread_regcache (wait_ptid);
1120
1121 if (breakpoint_here_p (regcache_read_pc (regcache)))
ea67f13b 1122 {
515630c5
UW
1123 /* If stepping, remember current thread to switch back to. */
1124 if (step)
1125 deferred_step_ptid = inferior_ptid;
ea67f13b 1126
515630c5
UW
1127 /* Switch back to WAIT_PID thread. */
1128 switch_to_thread (wait_ptid);
6a6b96b9 1129
515630c5
UW
1130 /* We return 1 to indicate that there is a breakpoint here,
1131 so we need to step over it before continuing to avoid
1132 hitting it straight away. */
1133 return 1;
1134 }
ea67f13b
DJ
1135 }
1136
1137 return 0;
ea67f13b 1138}
e4846b08
JJ
1139
1140/* Record the pc of the program the last time it stopped. This is
1141 just used internally by wait_for_inferior, but need to be preserved
1142 over calls to it and cleared when the inferior is started. */
1143static CORE_ADDR prev_pc;
1144
c906108c
SS
1145/* Basic routine for continuing the program in various fashions.
1146
1147 ADDR is the address to resume at, or -1 for resume where stopped.
1148 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 1149 or -1 for act according to how it stopped.
c906108c 1150 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
1151 -1 means return after that and print nothing.
1152 You should probably set various step_... variables
1153 before calling here, if you are stepping.
c906108c
SS
1154
1155 You should call clear_proceed_status before calling proceed. */
1156
1157void
96baa820 1158proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 1159{
515630c5
UW
1160 struct regcache *regcache = get_current_regcache ();
1161 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1162 CORE_ADDR pc = regcache_read_pc (regcache);
c906108c
SS
1163 int oneproc = 0;
1164
1165 if (step > 0)
515630c5 1166 step_start_function = find_pc_function (pc);
c906108c
SS
1167 if (step < 0)
1168 stop_after_trap = 1;
1169
2acceee2 1170 if (addr == (CORE_ADDR) -1)
c906108c 1171 {
515630c5 1172 if (pc == stop_pc && breakpoint_here_p (pc))
3352ef37
AC
1173 /* There is a breakpoint at the address we will resume at,
1174 step one instruction before inserting breakpoints so that
1175 we do not stop right away (and report a second hit at this
1176 breakpoint). */
c906108c 1177 oneproc = 1;
515630c5
UW
1178 else if (gdbarch_single_step_through_delay_p (gdbarch)
1179 && gdbarch_single_step_through_delay (gdbarch,
1180 get_current_frame ()))
3352ef37
AC
1181 /* We stepped onto an instruction that needs to be stepped
1182 again before re-inserting the breakpoint, do so. */
c906108c
SS
1183 oneproc = 1;
1184 }
1185 else
1186 {
515630c5 1187 regcache_write_pc (regcache, addr);
c906108c
SS
1188 }
1189
527159b7 1190 if (debug_infrun)
8a9de0e4
AC
1191 fprintf_unfiltered (gdb_stdlog,
1192 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1193 paddr_nz (addr), siggnal, step);
527159b7 1194
c906108c
SS
1195 /* In a multi-threaded task we may select another thread
1196 and then continue or step.
1197
1198 But if the old thread was stopped at a breakpoint, it
1199 will immediately cause another breakpoint stop without
1200 any execution (i.e. it will report a breakpoint hit
1201 incorrectly). So we must step over it first.
1202
ea67f13b 1203 prepare_to_proceed checks the current thread against the thread
c906108c
SS
1204 that reported the most recent event. If a step-over is required
1205 it returns TRUE and sets the current thread to the old thread. */
6a6b96b9 1206 if (prepare_to_proceed (step))
ea67f13b 1207 oneproc = 1;
c906108c 1208
c906108c 1209 if (oneproc)
74960c60 1210 {
74960c60 1211 stepping_over_breakpoint = 1;
237fc4c9
PA
1212 /* If displaced stepping is enabled, we can step over the
1213 breakpoint without hitting it, so leave all breakpoints
1214 inserted. Otherwise we need to disable all breakpoints, step
1215 one instruction, and then re-add them when that step is
1216 finished. */
515630c5 1217 if (!use_displaced_stepping (gdbarch))
237fc4c9 1218 remove_breakpoints ();
74960c60 1219 }
237fc4c9
PA
1220
1221 /* We can insert breakpoints if we're not trying to step over one,
1222 or if we are stepping over one but we're using displaced stepping
1223 to do so. */
515630c5 1224 if (! stepping_over_breakpoint || use_displaced_stepping (gdbarch))
c36b740a 1225 insert_breakpoints ();
c906108c
SS
1226
1227 if (siggnal != TARGET_SIGNAL_DEFAULT)
1228 stop_signal = siggnal;
1229 /* If this signal should not be seen by program,
1230 give it zero. Used for debugging signals. */
1231 else if (!signal_program[stop_signal])
1232 stop_signal = TARGET_SIGNAL_0;
1233
1234 annotate_starting ();
1235
1236 /* Make sure that output from GDB appears before output from the
1237 inferior. */
1238 gdb_flush (gdb_stdout);
1239
e4846b08
JJ
1240 /* Refresh prev_pc value just prior to resuming. This used to be
1241 done in stop_stepping, however, setting prev_pc there did not handle
1242 scenarios such as inferior function calls or returning from
1243 a function via the return command. In those cases, the prev_pc
1244 value was not set properly for subsequent commands. The prev_pc value
1245 is used to initialize the starting line number in the ecs. With an
1246 invalid value, the gdb next command ends up stopping at the position
1247 represented by the next line table entry past our start position.
1248 On platforms that generate one line table entry per line, this
1249 is not a problem. However, on the ia64, the compiler generates
1250 extraneous line table entries that do not increase the line number.
1251 When we issue the gdb next command on the ia64 after an inferior call
1252 or a return command, we often end up a few instructions forward, still
1253 within the original line we started.
1254
1255 An attempt was made to have init_execution_control_state () refresh
1256 the prev_pc value before calculating the line number. This approach
1257 did not work because on platforms that use ptrace, the pc register
1258 cannot be read unless the inferior is stopped. At that point, we
515630c5 1259 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
e4846b08 1260 call can fail. Setting the prev_pc value here ensures the value is
8fb3e588 1261 updated correctly when the inferior is stopped. */
515630c5 1262 prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 1263
c906108c
SS
1264 /* Resume inferior. */
1265 resume (oneproc || step || bpstat_should_step (), stop_signal);
1266
1267 /* Wait for it to stop (if not standalone)
1268 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
1269 /* Do this only if we are not using the event loop, or if the target
1270 does not support asynchronous execution. */
362646f5 1271 if (!target_can_async_p ())
43ff13b4 1272 {
ae123ec6 1273 wait_for_inferior (0);
43ff13b4
JM
1274 normal_stop ();
1275 }
c906108c 1276}
c906108c
SS
1277\f
1278
1279/* Start remote-debugging of a machine over a serial link. */
96baa820 1280
c906108c 1281void
8621d6a9 1282start_remote (int from_tty)
c906108c
SS
1283{
1284 init_thread_list ();
1285 init_wait_for_inferior ();
b0f4b84b 1286 stop_soon = STOP_QUIETLY_REMOTE;
ca67fcb8 1287 stepping_over_breakpoint = 0;
43ff13b4 1288
6426a772
JM
1289 /* Always go on waiting for the target, regardless of the mode. */
1290 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 1291 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
1292 nothing is returned (instead of just blocking). Because of this,
1293 targets expecting an immediate response need to, internally, set
1294 things up so that the target_wait() is forced to eventually
1295 timeout. */
1296 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1297 differentiate to its caller what the state of the target is after
1298 the initial open has been performed. Here we're assuming that
1299 the target has stopped. It should be possible to eventually have
1300 target_open() return to the caller an indication that the target
1301 is currently running and GDB state should be set to the same as
1302 for an async run. */
ae123ec6 1303 wait_for_inferior (0);
8621d6a9
DJ
1304
1305 /* Now that the inferior has stopped, do any bookkeeping like
1306 loading shared libraries. We want to do this before normal_stop,
1307 so that the displayed frame is up to date. */
1308 post_create_inferior (&current_target, from_tty);
1309
6426a772 1310 normal_stop ();
c906108c
SS
1311}
1312
1313/* Initialize static vars when a new inferior begins. */
1314
1315void
96baa820 1316init_wait_for_inferior (void)
c906108c
SS
1317{
1318 /* These are meaningless until the first time through wait_for_inferior. */
1319 prev_pc = 0;
c906108c 1320
c906108c
SS
1321 breakpoint_init_inferior (inf_starting);
1322
1323 /* Don't confuse first call to proceed(). */
1324 stop_signal = TARGET_SIGNAL_0;
1325
1326 /* The first resume is not following a fork/vfork/exec. */
1327 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
c906108c 1328
c906108c 1329 clear_proceed_status ();
9f976b41
DJ
1330
1331 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 1332 deferred_step_ptid = null_ptid;
ca005067
DJ
1333
1334 target_last_wait_ptid = minus_one_ptid;
237fc4c9
PA
1335
1336 displaced_step_clear ();
c906108c 1337}
237fc4c9 1338
c906108c 1339\f
b83266a0
SS
1340/* This enum encodes possible reasons for doing a target_wait, so that
1341 wfi can call target_wait in one place. (Ultimately the call will be
1342 moved out of the infinite loop entirely.) */
1343
c5aa993b
JM
1344enum infwait_states
1345{
cd0fc7c3
SS
1346 infwait_normal_state,
1347 infwait_thread_hop_state,
d983da9c 1348 infwait_step_watch_state,
cd0fc7c3 1349 infwait_nonstep_watch_state
b83266a0
SS
1350};
1351
11cf8741
JM
1352/* Why did the inferior stop? Used to print the appropriate messages
1353 to the interface from within handle_inferior_event(). */
1354enum inferior_stop_reason
1355{
11cf8741
JM
1356 /* Step, next, nexti, stepi finished. */
1357 END_STEPPING_RANGE,
11cf8741
JM
1358 /* Inferior terminated by signal. */
1359 SIGNAL_EXITED,
1360 /* Inferior exited. */
1361 EXITED,
1362 /* Inferior received signal, and user asked to be notified. */
1363 SIGNAL_RECEIVED
1364};
1365
cd0fc7c3
SS
1366/* This structure contains what used to be local variables in
1367 wait_for_inferior. Probably many of them can return to being
1368 locals in handle_inferior_event. */
1369
c5aa993b 1370struct execution_control_state
488f131b
JB
1371{
1372 struct target_waitstatus ws;
1373 struct target_waitstatus *wp;
ca67fcb8
VP
1374 /* Should we step over breakpoint next time keep_going
1375 is called? */
1376 int stepping_over_breakpoint;
488f131b
JB
1377 int random_signal;
1378 CORE_ADDR stop_func_start;
1379 CORE_ADDR stop_func_end;
1380 char *stop_func_name;
1381 struct symtab_and_line sal;
488f131b
JB
1382 int current_line;
1383 struct symtab *current_symtab;
488f131b
JB
1384 ptid_t ptid;
1385 ptid_t saved_inferior_ptid;
68f53502 1386 int step_after_step_resume_breakpoint;
488f131b
JB
1387 int stepping_through_solib_after_catch;
1388 bpstat stepping_through_solib_catchpoints;
488f131b
JB
1389 int new_thread_event;
1390 struct target_waitstatus tmpstatus;
1391 enum infwait_states infwait_state;
1392 ptid_t waiton_ptid;
1393 int wait_some_more;
1394};
1395
1396void init_execution_control_state (struct execution_control_state *ecs);
1397
1398void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 1399
c2c6d25f 1400static void step_into_function (struct execution_control_state *ecs);
44cbf7b5 1401static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
14e60db5 1402static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
44cbf7b5
AC
1403static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1404 struct frame_id sr_id);
611c83ae
PA
1405static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1406
104c1213
JM
1407static void stop_stepping (struct execution_control_state *ecs);
1408static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 1409static void keep_going (struct execution_control_state *ecs);
488f131b
JB
1410static void print_stop_reason (enum inferior_stop_reason stop_reason,
1411 int stop_info);
104c1213 1412
cd0fc7c3 1413/* Wait for control to return from inferior to debugger.
ae123ec6
JB
1414
1415 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1416 as if they were SIGTRAP signals. This can be useful during
1417 the startup sequence on some targets such as HP/UX, where
1418 we receive an EXEC event instead of the expected SIGTRAP.
1419
cd0fc7c3
SS
1420 If inferior gets a signal, we may decide to start it up again
1421 instead of returning. That is why there is a loop in this function.
1422 When this function actually returns it means the inferior
1423 should be left stopped and GDB should read more commands. */
1424
1425void
ae123ec6 1426wait_for_inferior (int treat_exec_as_sigtrap)
cd0fc7c3
SS
1427{
1428 struct cleanup *old_cleanups;
1429 struct execution_control_state ecss;
1430 struct execution_control_state *ecs;
c906108c 1431
527159b7 1432 if (debug_infrun)
ae123ec6
JB
1433 fprintf_unfiltered
1434 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1435 treat_exec_as_sigtrap);
527159b7 1436
8601f500 1437 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
c906108c 1438 &step_resume_breakpoint);
cd0fc7c3
SS
1439
1440 /* wfi still stays in a loop, so it's OK just to take the address of
1441 a local to get the ecs pointer. */
1442 ecs = &ecss;
1443
1444 /* Fill in with reasonable starting values. */
1445 init_execution_control_state (ecs);
1446
c906108c 1447 /* We'll update this if & when we switch to a new thread. */
39f77062 1448 previous_inferior_ptid = inferior_ptid;
c906108c 1449
cd0fc7c3
SS
1450 overlay_cache_invalid = 1;
1451
1452 /* We have to invalidate the registers BEFORE calling target_wait
1453 because they can be loaded from the target while in target_wait.
1454 This makes remote debugging a bit more efficient for those
1455 targets that provide critical registers as part of their normal
1456 status mechanism. */
1457
1458 registers_changed ();
b83266a0 1459
c906108c
SS
1460 while (1)
1461 {
9a4105ab
AC
1462 if (deprecated_target_wait_hook)
1463 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
cd0fc7c3 1464 else
39f77062 1465 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
c906108c 1466
ae123ec6
JB
1467 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1468 {
1469 xfree (ecs->ws.value.execd_pathname);
1470 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1471 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1472 }
1473
cd0fc7c3
SS
1474 /* Now figure out what to do with the result of the result. */
1475 handle_inferior_event (ecs);
c906108c 1476
cd0fc7c3
SS
1477 if (!ecs->wait_some_more)
1478 break;
1479 }
1480 do_cleanups (old_cleanups);
1481}
c906108c 1482
43ff13b4
JM
1483/* Asynchronous version of wait_for_inferior. It is called by the
1484 event loop whenever a change of state is detected on the file
1485 descriptor corresponding to the target. It can be called more than
1486 once to complete a single execution command. In such cases we need
1487 to keep the state in a global variable ASYNC_ECSS. If it is the
1488 last time that this function is called for a single execution
1489 command, then report to the user that the inferior has stopped, and
1490 do the necessary cleanups. */
1491
1492struct execution_control_state async_ecss;
1493struct execution_control_state *async_ecs;
1494
1495void
fba45db2 1496fetch_inferior_event (void *client_data)
43ff13b4
JM
1497{
1498 static struct cleanup *old_cleanups;
1499
c5aa993b 1500 async_ecs = &async_ecss;
43ff13b4
JM
1501
1502 if (!async_ecs->wait_some_more)
1503 {
43ff13b4
JM
1504 /* Fill in with reasonable starting values. */
1505 init_execution_control_state (async_ecs);
1506
43ff13b4 1507 /* We'll update this if & when we switch to a new thread. */
39f77062 1508 previous_inferior_ptid = inferior_ptid;
43ff13b4
JM
1509
1510 overlay_cache_invalid = 1;
1511
1512 /* We have to invalidate the registers BEFORE calling target_wait
c5aa993b
JM
1513 because they can be loaded from the target while in target_wait.
1514 This makes remote debugging a bit more efficient for those
1515 targets that provide critical registers as part of their normal
1516 status mechanism. */
43ff13b4
JM
1517
1518 registers_changed ();
1519 }
1520
9a4105ab 1521 if (deprecated_target_wait_hook)
488f131b 1522 async_ecs->ptid =
9a4105ab 1523 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4 1524 else
39f77062 1525 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4
JM
1526
1527 /* Now figure out what to do with the result of the result. */
1528 handle_inferior_event (async_ecs);
1529
1530 if (!async_ecs->wait_some_more)
1531 {
f107f563
VP
1532 delete_step_resume_breakpoint (&step_resume_breakpoint);
1533
43ff13b4 1534 normal_stop ();
c2d11a7d
JM
1535 if (step_multi && stop_step)
1536 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1537 else
1538 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4
JM
1539 }
1540}
1541
cd0fc7c3
SS
1542/* Prepare an execution control state for looping through a
1543 wait_for_inferior-type loop. */
1544
1545void
96baa820 1546init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3 1547{
ca67fcb8 1548 ecs->stepping_over_breakpoint = 0;
cd0fc7c3 1549 ecs->random_signal = 0;
68f53502 1550 ecs->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
1551 ecs->stepping_through_solib_after_catch = 0;
1552 ecs->stepping_through_solib_catchpoints = NULL;
cd0fc7c3
SS
1553 ecs->sal = find_pc_line (prev_pc, 0);
1554 ecs->current_line = ecs->sal.line;
1555 ecs->current_symtab = ecs->sal.symtab;
1556 ecs->infwait_state = infwait_normal_state;
39f77062 1557 ecs->waiton_ptid = pid_to_ptid (-1);
cd0fc7c3
SS
1558 ecs->wp = &(ecs->ws);
1559}
1560
e02bc4cc 1561/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
1562 target_wait()/deprecated_target_wait_hook(). The data is actually
1563 cached by handle_inferior_event(), which gets called immediately
1564 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
1565
1566void
488f131b 1567get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1568{
39f77062 1569 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1570 *status = target_last_waitstatus;
1571}
1572
ac264b3b
MS
1573void
1574nullify_last_target_wait_ptid (void)
1575{
1576 target_last_wait_ptid = minus_one_ptid;
1577}
1578
dd80620e
MS
1579/* Switch thread contexts, maintaining "infrun state". */
1580
1581static void
1582context_switch (struct execution_control_state *ecs)
1583{
1584 /* Caution: it may happen that the new thread (or the old one!)
1585 is not in the thread list. In this case we must not attempt
1586 to "switch context", or we run the risk that our context may
1587 be lost. This may happen as a result of the target module
1588 mishandling thread creation. */
1589
fd48f117
DJ
1590 if (debug_infrun)
1591 {
1592 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1593 target_pid_to_str (inferior_ptid));
1594 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1595 target_pid_to_str (ecs->ptid));
1596 }
1597
dd80620e 1598 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
488f131b 1599 { /* Perform infrun state context switch: */
dd80620e 1600 /* Save infrun state for the old thread. */
0ce3d317 1601 save_infrun_state (inferior_ptid, prev_pc,
ca67fcb8 1602 stepping_over_breakpoint, step_resume_breakpoint,
15960608 1603 step_range_start,
aa0cd9c1 1604 step_range_end, &step_frame_id,
611c83ae 1605 ecs->stepping_over_breakpoint,
dd80620e
MS
1606 ecs->stepping_through_solib_after_catch,
1607 ecs->stepping_through_solib_catchpoints,
f2c9ca08 1608 ecs->current_line, ecs->current_symtab);
dd80620e
MS
1609
1610 /* Load infrun state for the new thread. */
0ce3d317 1611 load_infrun_state (ecs->ptid, &prev_pc,
ca67fcb8 1612 &stepping_over_breakpoint, &step_resume_breakpoint,
15960608 1613 &step_range_start,
aa0cd9c1 1614 &step_range_end, &step_frame_id,
611c83ae 1615 &ecs->stepping_over_breakpoint,
dd80620e
MS
1616 &ecs->stepping_through_solib_after_catch,
1617 &ecs->stepping_through_solib_catchpoints,
f2c9ca08 1618 &ecs->current_line, &ecs->current_symtab);
dd80620e 1619 }
6a6b96b9
UW
1620
1621 switch_to_thread (ecs->ptid);
dd80620e
MS
1622}
1623
4fa8626c
DJ
1624static void
1625adjust_pc_after_break (struct execution_control_state *ecs)
1626{
515630c5
UW
1627 struct regcache *regcache = get_thread_regcache (ecs->ptid);
1628 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8aad930b 1629 CORE_ADDR breakpoint_pc;
4fa8626c
DJ
1630
1631 /* If this target does not decrement the PC after breakpoints, then
1632 we have nothing to do. */
515630c5 1633 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
4fa8626c
DJ
1634 return;
1635
1636 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1637 we aren't, just return.
9709f61c
DJ
1638
1639 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
1640 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1641 implemented by software breakpoints should be handled through the normal
1642 breakpoint layer.
8fb3e588 1643
4fa8626c
DJ
1644 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1645 different signals (SIGILL or SIGEMT for instance), but it is less
1646 clear where the PC is pointing afterwards. It may not match
b798847d
UW
1647 gdbarch_decr_pc_after_break. I don't know any specific target that
1648 generates these signals at breakpoints (the code has been in GDB since at
1649 least 1992) so I can not guess how to handle them here.
8fb3e588 1650
e6cf7916
UW
1651 In earlier versions of GDB, a target with
1652 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
1653 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1654 target with both of these set in GDB history, and it seems unlikely to be
1655 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
1656
1657 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1658 return;
1659
1660 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1661 return;
1662
8aad930b
AC
1663 /* Find the location where (if we've hit a breakpoint) the
1664 breakpoint would be. */
515630c5
UW
1665 breakpoint_pc = regcache_read_pc (regcache)
1666 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 1667
1c0fdd0e
UW
1668 /* Check whether there actually is a software breakpoint inserted
1669 at that location. */
1670 if (software_breakpoint_inserted_here_p (breakpoint_pc))
8aad930b 1671 {
1c0fdd0e
UW
1672 /* When using hardware single-step, a SIGTRAP is reported for both
1673 a completed single-step and a software breakpoint. Need to
1674 differentiate between the two, as the latter needs adjusting
1675 but the former does not.
1676
1677 The SIGTRAP can be due to a completed hardware single-step only if
1678 - we didn't insert software single-step breakpoints
1679 - the thread to be examined is still the current thread
1680 - this thread is currently being stepped
1681
1682 If any of these events did not occur, we must have stopped due
1683 to hitting a software breakpoint, and have to back up to the
1684 breakpoint address.
1685
1686 As a special case, we could have hardware single-stepped a
1687 software breakpoint. In this case (prev_pc == breakpoint_pc),
1688 we also need to back up to the breakpoint address. */
1689
1690 if (singlestep_breakpoints_inserted_p
1691 || !ptid_equal (ecs->ptid, inferior_ptid)
1692 || !currently_stepping (ecs)
1693 || prev_pc == breakpoint_pc)
515630c5 1694 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 1695 }
4fa8626c
DJ
1696}
1697
cd0fc7c3
SS
1698/* Given an execution control state that has been freshly filled in
1699 by an event from the inferior, figure out what it means and take
1700 appropriate action. */
c906108c 1701
cd0fc7c3 1702void
96baa820 1703handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 1704{
c8edd8b4 1705 int sw_single_step_trap_p = 0;
d983da9c
DJ
1706 int stopped_by_watchpoint;
1707 int stepped_after_stopped_by_watchpoint = 0;
cd0fc7c3 1708
e02bc4cc 1709 /* Cache the last pid/waitstatus. */
39f77062 1710 target_last_wait_ptid = ecs->ptid;
e02bc4cc
DS
1711 target_last_waitstatus = *ecs->wp;
1712
ca005067
DJ
1713 /* Always clear state belonging to the previous time we stopped. */
1714 stop_stack_dummy = 0;
1715
4fa8626c
DJ
1716 adjust_pc_after_break (ecs);
1717
488f131b
JB
1718 switch (ecs->infwait_state)
1719 {
1720 case infwait_thread_hop_state:
527159b7 1721 if (debug_infrun)
8a9de0e4 1722 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
488f131b
JB
1723 /* Cancel the waiton_ptid. */
1724 ecs->waiton_ptid = pid_to_ptid (-1);
65e82032 1725 break;
b83266a0 1726
488f131b 1727 case infwait_normal_state:
527159b7 1728 if (debug_infrun)
8a9de0e4 1729 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
1730 break;
1731
1732 case infwait_step_watch_state:
1733 if (debug_infrun)
1734 fprintf_unfiltered (gdb_stdlog,
1735 "infrun: infwait_step_watch_state\n");
1736
1737 stepped_after_stopped_by_watchpoint = 1;
488f131b 1738 break;
b83266a0 1739
488f131b 1740 case infwait_nonstep_watch_state:
527159b7 1741 if (debug_infrun)
8a9de0e4
AC
1742 fprintf_unfiltered (gdb_stdlog,
1743 "infrun: infwait_nonstep_watch_state\n");
488f131b 1744 insert_breakpoints ();
c906108c 1745
488f131b
JB
1746 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1747 handle things like signals arriving and other things happening
1748 in combination correctly? */
1749 stepped_after_stopped_by_watchpoint = 1;
1750 break;
65e82032
AC
1751
1752 default:
e2e0b3e5 1753 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b
JB
1754 }
1755 ecs->infwait_state = infwait_normal_state;
c906108c 1756
35f196d9 1757 reinit_frame_cache ();
c906108c 1758
488f131b 1759 /* If it's a new process, add it to the thread database */
c906108c 1760
488f131b 1761 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
b9b5d7ea 1762 && !ptid_equal (ecs->ptid, minus_one_ptid)
488f131b
JB
1763 && !in_thread_list (ecs->ptid));
1764
1765 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1766 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
93815fbf 1767 add_thread (ecs->ptid);
c906108c 1768
488f131b
JB
1769 switch (ecs->ws.kind)
1770 {
1771 case TARGET_WAITKIND_LOADED:
527159b7 1772 if (debug_infrun)
8a9de0e4 1773 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
1774 /* Ignore gracefully during startup of the inferior, as it might
1775 be the shell which has just loaded some objects, otherwise
1776 add the symbols for the newly loaded objects. Also ignore at
1777 the beginning of an attach or remote session; we will query
1778 the full list of libraries once the connection is
1779 established. */
c0236d92 1780 if (stop_soon == NO_STOP_QUIETLY)
488f131b 1781 {
488f131b
JB
1782 /* Check for any newly added shared libraries if we're
1783 supposed to be adding them automatically. Switch
1784 terminal for any messages produced by
1785 breakpoint_re_set. */
1786 target_terminal_ours_for_output ();
aff6338a 1787 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
1788 stack's section table is kept up-to-date. Architectures,
1789 (e.g., PPC64), use the section table to perform
1790 operations such as address => section name and hence
1791 require the table to contain all sections (including
1792 those found in shared libraries). */
aff6338a 1793 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
1794 exec_ops to SOLIB_ADD. This is because current GDB is
1795 only tooled to propagate section_table changes out from
1796 the "current_target" (see target_resize_to_sections), and
1797 not up from the exec stratum. This, of course, isn't
1798 right. "infrun.c" should only interact with the
1799 exec/process stratum, instead relying on the target stack
1800 to propagate relevant changes (stop, section table
1801 changed, ...) up to other layers. */
b0f4b84b 1802#ifdef SOLIB_ADD
aff6338a 1803 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
1804#else
1805 solib_add (NULL, 0, &current_target, auto_solib_add);
1806#endif
488f131b
JB
1807 target_terminal_inferior ();
1808
b0f4b84b
DJ
1809 /* If requested, stop when the dynamic linker notifies
1810 gdb of events. This allows the user to get control
1811 and place breakpoints in initializer routines for
1812 dynamically loaded objects (among other things). */
1813 if (stop_on_solib_events)
1814 {
1815 stop_stepping (ecs);
1816 return;
1817 }
1818
1819 /* NOTE drow/2007-05-11: This might be a good place to check
1820 for "catch load". */
488f131b 1821 }
b0f4b84b
DJ
1822
1823 /* If we are skipping through a shell, or through shared library
1824 loading that we aren't interested in, resume the program. If
1825 we're running the program normally, also resume. But stop if
1826 we're attaching or setting up a remote connection. */
1827 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1828 {
74960c60
VP
1829 /* Loading of shared libraries might have changed breakpoint
1830 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
1831 if (stop_soon == NO_STOP_QUIETLY
1832 && !breakpoints_always_inserted_mode ())
74960c60 1833 insert_breakpoints ();
b0f4b84b
DJ
1834 resume (0, TARGET_SIGNAL_0);
1835 prepare_to_wait (ecs);
1836 return;
1837 }
1838
1839 break;
c5aa993b 1840
488f131b 1841 case TARGET_WAITKIND_SPURIOUS:
527159b7 1842 if (debug_infrun)
8a9de0e4 1843 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
1844 resume (0, TARGET_SIGNAL_0);
1845 prepare_to_wait (ecs);
1846 return;
c5aa993b 1847
488f131b 1848 case TARGET_WAITKIND_EXITED:
527159b7 1849 if (debug_infrun)
8a9de0e4 1850 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
488f131b
JB
1851 target_terminal_ours (); /* Must do this before mourn anyway */
1852 print_stop_reason (EXITED, ecs->ws.value.integer);
1853
1854 /* Record the exit code in the convenience variable $_exitcode, so
1855 that the user can inspect this again later. */
1856 set_internalvar (lookup_internalvar ("_exitcode"),
1857 value_from_longest (builtin_type_int,
1858 (LONGEST) ecs->ws.value.integer));
1859 gdb_flush (gdb_stdout);
1860 target_mourn_inferior ();
1c0fdd0e 1861 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
1862 stop_print_frame = 0;
1863 stop_stepping (ecs);
1864 return;
c5aa993b 1865
488f131b 1866 case TARGET_WAITKIND_SIGNALLED:
527159b7 1867 if (debug_infrun)
8a9de0e4 1868 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
488f131b
JB
1869 stop_print_frame = 0;
1870 stop_signal = ecs->ws.value.sig;
1871 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 1872
488f131b
JB
1873 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1874 reach here unless the inferior is dead. However, for years
1875 target_kill() was called here, which hints that fatal signals aren't
1876 really fatal on some systems. If that's true, then some changes
1877 may be needed. */
1878 target_mourn_inferior ();
c906108c 1879
488f131b 1880 print_stop_reason (SIGNAL_EXITED, stop_signal);
1c0fdd0e 1881 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
1882 stop_stepping (ecs);
1883 return;
c906108c 1884
488f131b
JB
1885 /* The following are the only cases in which we keep going;
1886 the above cases end in a continue or goto. */
1887 case TARGET_WAITKIND_FORKED:
deb3b17b 1888 case TARGET_WAITKIND_VFORKED:
527159b7 1889 if (debug_infrun)
8a9de0e4 1890 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
488f131b
JB
1891 stop_signal = TARGET_SIGNAL_TRAP;
1892 pending_follow.kind = ecs->ws.kind;
1893
8e7d2c16
DJ
1894 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1895 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
c906108c 1896
5a2901d9
DJ
1897 if (!ptid_equal (ecs->ptid, inferior_ptid))
1898 {
1899 context_switch (ecs);
35f196d9 1900 reinit_frame_cache ();
5a2901d9
DJ
1901 }
1902
488f131b 1903 stop_pc = read_pc ();
675bf4cb 1904
d983da9c 1905 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
675bf4cb 1906
488f131b 1907 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
04e68871
DJ
1908
1909 /* If no catchpoint triggered for this, then keep going. */
1910 if (ecs->random_signal)
1911 {
1912 stop_signal = TARGET_SIGNAL_0;
1913 keep_going (ecs);
1914 return;
1915 }
488f131b
JB
1916 goto process_event_stop_test;
1917
1918 case TARGET_WAITKIND_EXECD:
527159b7 1919 if (debug_infrun)
fc5261f2 1920 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b
JB
1921 stop_signal = TARGET_SIGNAL_TRAP;
1922
488f131b
JB
1923 pending_follow.execd_pathname =
1924 savestring (ecs->ws.value.execd_pathname,
1925 strlen (ecs->ws.value.execd_pathname));
1926
488f131b
JB
1927 /* This causes the eventpoints and symbol table to be reset. Must
1928 do this now, before trying to determine whether to stop. */
1929 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1930 xfree (pending_follow.execd_pathname);
c906108c 1931
515630c5 1932 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b
JB
1933 ecs->saved_inferior_ptid = inferior_ptid;
1934 inferior_ptid = ecs->ptid;
675bf4cb 1935
d983da9c 1936 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
675bf4cb 1937
488f131b
JB
1938 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1939 inferior_ptid = ecs->saved_inferior_ptid;
04e68871 1940
5a2901d9
DJ
1941 if (!ptid_equal (ecs->ptid, inferior_ptid))
1942 {
1943 context_switch (ecs);
35f196d9 1944 reinit_frame_cache ();
5a2901d9
DJ
1945 }
1946
04e68871
DJ
1947 /* If no catchpoint triggered for this, then keep going. */
1948 if (ecs->random_signal)
1949 {
1950 stop_signal = TARGET_SIGNAL_0;
1951 keep_going (ecs);
1952 return;
1953 }
488f131b
JB
1954 goto process_event_stop_test;
1955
b4dc5ffa
MK
1956 /* Be careful not to try to gather much state about a thread
1957 that's in a syscall. It's frequently a losing proposition. */
488f131b 1958 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 1959 if (debug_infrun)
8a9de0e4 1960 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
488f131b
JB
1961 resume (0, TARGET_SIGNAL_0);
1962 prepare_to_wait (ecs);
1963 return;
c906108c 1964
488f131b
JB
1965 /* Before examining the threads further, step this thread to
1966 get it entirely out of the syscall. (We get notice of the
1967 event when the thread is just on the verge of exiting a
1968 syscall. Stepping one instruction seems to get it back
b4dc5ffa 1969 into user code.) */
488f131b 1970 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 1971 if (debug_infrun)
8a9de0e4 1972 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
488f131b 1973 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
488f131b
JB
1974 prepare_to_wait (ecs);
1975 return;
c906108c 1976
488f131b 1977 case TARGET_WAITKIND_STOPPED:
527159b7 1978 if (debug_infrun)
8a9de0e4 1979 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
488f131b
JB
1980 stop_signal = ecs->ws.value.sig;
1981 break;
c906108c 1982
488f131b
JB
1983 /* We had an event in the inferior, but we are not interested
1984 in handling it at this level. The lower layers have already
8e7d2c16 1985 done what needs to be done, if anything.
8fb3e588
AC
1986
1987 One of the possible circumstances for this is when the
1988 inferior produces output for the console. The inferior has
1989 not stopped, and we are ignoring the event. Another possible
1990 circumstance is any event which the lower level knows will be
1991 reported multiple times without an intervening resume. */
488f131b 1992 case TARGET_WAITKIND_IGNORE:
527159b7 1993 if (debug_infrun)
8a9de0e4 1994 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
8e7d2c16 1995 prepare_to_wait (ecs);
488f131b
JB
1996 return;
1997 }
c906108c 1998
488f131b
JB
1999 /* We may want to consider not doing a resume here in order to give
2000 the user a chance to play with the new thread. It might be good
2001 to make that a user-settable option. */
c906108c 2002
488f131b
JB
2003 /* At this point, all threads are stopped (happens automatically in
2004 either the OS or the native code). Therefore we need to continue
2005 all threads in order to make progress. */
2006 if (ecs->new_thread_event)
2007 {
2008 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2009 prepare_to_wait (ecs);
2010 return;
2011 }
c906108c 2012
237fc4c9
PA
2013 /* Do we need to clean up the state of a thread that has completed a
2014 displaced single-step? (Doing so usually affects the PC, so do
2015 it here, before we set stop_pc.) */
2016 displaced_step_fixup (ecs->ptid, stop_signal);
2017
515630c5 2018 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 2019
527159b7 2020 if (debug_infrun)
237fc4c9
PA
2021 {
2022 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2023 paddr_nz (stop_pc));
2024 if (STOPPED_BY_WATCHPOINT (&ecs->ws))
2025 {
2026 CORE_ADDR addr;
2027 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2028
2029 if (target_stopped_data_address (&current_target, &addr))
2030 fprintf_unfiltered (gdb_stdlog,
2031 "infrun: stopped data address = 0x%s\n",
2032 paddr_nz (addr));
2033 else
2034 fprintf_unfiltered (gdb_stdlog,
2035 "infrun: (no data address available)\n");
2036 }
2037 }
527159b7 2038
9f976b41
DJ
2039 if (stepping_past_singlestep_breakpoint)
2040 {
1c0fdd0e 2041 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
2042 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2043 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2044
2045 stepping_past_singlestep_breakpoint = 0;
2046
2047 /* We've either finished single-stepping past the single-step
8fb3e588
AC
2048 breakpoint, or stopped for some other reason. It would be nice if
2049 we could tell, but we can't reliably. */
9f976b41 2050 if (stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 2051 {
527159b7 2052 if (debug_infrun)
8a9de0e4 2053 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41 2054 /* Pull the single step breakpoints out of the target. */
e0cd558a 2055 remove_single_step_breakpoints ();
9f976b41
DJ
2056 singlestep_breakpoints_inserted_p = 0;
2057
2058 ecs->random_signal = 0;
2059
2060 ecs->ptid = saved_singlestep_ptid;
2061 context_switch (ecs);
9a4105ab
AC
2062 if (deprecated_context_hook)
2063 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
2064
2065 resume (1, TARGET_SIGNAL_0);
2066 prepare_to_wait (ecs);
2067 return;
2068 }
2069 }
2070
2071 stepping_past_singlestep_breakpoint = 0;
2072
ca67fcb8 2073 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 2074 {
6a6b96b9
UW
2075 /* If we stopped for some other reason than single-stepping, ignore
2076 the fact that we were supposed to switch back. */
2077 if (stop_signal == TARGET_SIGNAL_TRAP)
2078 {
2079 if (debug_infrun)
2080 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 2081 "infrun: handling deferred step\n");
6a6b96b9
UW
2082
2083 /* Pull the single step breakpoints out of the target. */
2084 if (singlestep_breakpoints_inserted_p)
2085 {
2086 remove_single_step_breakpoints ();
2087 singlestep_breakpoints_inserted_p = 0;
2088 }
2089
2090 /* Note: We do not call context_switch at this point, as the
2091 context is already set up for stepping the original thread. */
ca67fcb8
VP
2092 switch_to_thread (deferred_step_ptid);
2093 deferred_step_ptid = null_ptid;
6a6b96b9
UW
2094 /* Suppress spurious "Switching to ..." message. */
2095 previous_inferior_ptid = inferior_ptid;
2096
2097 resume (1, TARGET_SIGNAL_0);
2098 prepare_to_wait (ecs);
2099 return;
2100 }
ca67fcb8
VP
2101
2102 deferred_step_ptid = null_ptid;
6a6b96b9
UW
2103 }
2104
488f131b
JB
2105 /* See if a thread hit a thread-specific breakpoint that was meant for
2106 another thread. If so, then step that thread past the breakpoint,
2107 and continue it. */
2108
2109 if (stop_signal == TARGET_SIGNAL_TRAP)
2110 {
9f976b41
DJ
2111 int thread_hop_needed = 0;
2112
f8d40ec8
JB
2113 /* Check if a regular breakpoint has been hit before checking
2114 for a potential single step breakpoint. Otherwise, GDB will
2115 not see this breakpoint hit when stepping onto breakpoints. */
c36b740a 2116 if (regular_breakpoint_inserted_here_p (stop_pc))
488f131b 2117 {
c5aa993b 2118 ecs->random_signal = 0;
4fa8626c 2119 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
2120 thread_hop_needed = 1;
2121 }
1c0fdd0e 2122 else if (singlestep_breakpoints_inserted_p)
9f976b41 2123 {
fd48f117
DJ
2124 /* We have not context switched yet, so this should be true
2125 no matter which thread hit the singlestep breakpoint. */
2126 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2127 if (debug_infrun)
2128 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2129 "trap for %s\n",
2130 target_pid_to_str (ecs->ptid));
2131
9f976b41
DJ
2132 ecs->random_signal = 0;
2133 /* The call to in_thread_list is necessary because PTIDs sometimes
2134 change when we go from single-threaded to multi-threaded. If
2135 the singlestep_ptid is still in the list, assume that it is
2136 really different from ecs->ptid. */
2137 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2138 && in_thread_list (singlestep_ptid))
2139 {
fd48f117
DJ
2140 /* If the PC of the thread we were trying to single-step
2141 has changed, discard this event (which we were going
2142 to ignore anyway), and pretend we saw that thread
2143 trap. This prevents us continuously moving the
2144 single-step breakpoint forward, one instruction at a
2145 time. If the PC has changed, then the thread we were
2146 trying to single-step has trapped or been signalled,
2147 but the event has not been reported to GDB yet.
2148
2149 There might be some cases where this loses signal
2150 information, if a signal has arrived at exactly the
2151 same time that the PC changed, but this is the best
2152 we can do with the information available. Perhaps we
2153 should arrange to report all events for all threads
2154 when they stop, or to re-poll the remote looking for
2155 this particular thread (i.e. temporarily enable
2156 schedlock). */
515630c5
UW
2157
2158 CORE_ADDR new_singlestep_pc
2159 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2160
2161 if (new_singlestep_pc != singlestep_pc)
fd48f117
DJ
2162 {
2163 if (debug_infrun)
2164 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2165 " but expected thread advanced also\n");
2166
2167 /* The current context still belongs to
2168 singlestep_ptid. Don't swap here, since that's
2169 the context we want to use. Just fudge our
2170 state and continue. */
2171 ecs->ptid = singlestep_ptid;
515630c5 2172 stop_pc = new_singlestep_pc;
fd48f117
DJ
2173 }
2174 else
2175 {
2176 if (debug_infrun)
2177 fprintf_unfiltered (gdb_stdlog,
2178 "infrun: unexpected thread\n");
2179
2180 thread_hop_needed = 1;
2181 stepping_past_singlestep_breakpoint = 1;
2182 saved_singlestep_ptid = singlestep_ptid;
2183 }
9f976b41
DJ
2184 }
2185 }
2186
2187 if (thread_hop_needed)
8fb3e588 2188 {
237fc4c9 2189 int remove_status = 0;
8fb3e588 2190
527159b7 2191 if (debug_infrun)
8a9de0e4 2192 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 2193
8fb3e588
AC
2194 /* Saw a breakpoint, but it was hit by the wrong thread.
2195 Just continue. */
2196
1c0fdd0e 2197 if (singlestep_breakpoints_inserted_p)
488f131b 2198 {
8fb3e588 2199 /* Pull the single step breakpoints out of the target. */
e0cd558a 2200 remove_single_step_breakpoints ();
8fb3e588
AC
2201 singlestep_breakpoints_inserted_p = 0;
2202 }
2203
237fc4c9
PA
2204 /* If the arch can displace step, don't remove the
2205 breakpoints. */
2206 if (!use_displaced_stepping (current_gdbarch))
2207 remove_status = remove_breakpoints ();
2208
8fb3e588
AC
2209 /* Did we fail to remove breakpoints? If so, try
2210 to set the PC past the bp. (There's at least
2211 one situation in which we can fail to remove
2212 the bp's: On HP-UX's that use ttrace, we can't
2213 change the address space of a vforking child
2214 process until the child exits (well, okay, not
2215 then either :-) or execs. */
2216 if (remove_status != 0)
9d9cd7ac 2217 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
2218 else
2219 { /* Single step */
8fb3e588
AC
2220 if (!ptid_equal (inferior_ptid, ecs->ptid))
2221 context_switch (ecs);
2222 ecs->waiton_ptid = ecs->ptid;
2223 ecs->wp = &(ecs->ws);
ca67fcb8 2224 ecs->stepping_over_breakpoint = 1;
8fb3e588
AC
2225
2226 ecs->infwait_state = infwait_thread_hop_state;
2227 keep_going (ecs);
2228 registers_changed ();
2229 return;
2230 }
488f131b 2231 }
1c0fdd0e 2232 else if (singlestep_breakpoints_inserted_p)
8fb3e588
AC
2233 {
2234 sw_single_step_trap_p = 1;
2235 ecs->random_signal = 0;
2236 }
488f131b
JB
2237 }
2238 else
2239 ecs->random_signal = 1;
c906108c 2240
488f131b 2241 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
2242 so, then switch to that thread. */
2243 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 2244 {
527159b7 2245 if (debug_infrun)
8a9de0e4 2246 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 2247
488f131b 2248 context_switch (ecs);
c5aa993b 2249
9a4105ab
AC
2250 if (deprecated_context_hook)
2251 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 2252 }
c906108c 2253
1c0fdd0e 2254 if (singlestep_breakpoints_inserted_p)
488f131b
JB
2255 {
2256 /* Pull the single step breakpoints out of the target. */
e0cd558a 2257 remove_single_step_breakpoints ();
488f131b
JB
2258 singlestep_breakpoints_inserted_p = 0;
2259 }
c906108c 2260
d983da9c
DJ
2261 if (stepped_after_stopped_by_watchpoint)
2262 stopped_by_watchpoint = 0;
2263 else
2264 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
2265
2266 /* If necessary, step over this watchpoint. We'll be back to display
2267 it in a moment. */
2268 if (stopped_by_watchpoint
2269 && (HAVE_STEPPABLE_WATCHPOINT
2270 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
488f131b 2271 {
488f131b
JB
2272 /* At this point, we are stopped at an instruction which has
2273 attempted to write to a piece of memory under control of
2274 a watchpoint. The instruction hasn't actually executed
2275 yet. If we were to evaluate the watchpoint expression
2276 now, we would get the old value, and therefore no change
2277 would seem to have occurred.
2278
2279 In order to make watchpoints work `right', we really need
2280 to complete the memory write, and then evaluate the
d983da9c
DJ
2281 watchpoint expression. We do this by single-stepping the
2282 target.
2283
2284 It may not be necessary to disable the watchpoint to stop over
2285 it. For example, the PA can (with some kernel cooperation)
2286 single step over a watchpoint without disabling the watchpoint.
2287
2288 It is far more common to need to disable a watchpoint to step
2289 the inferior over it. If we have non-steppable watchpoints,
2290 we must disable the current watchpoint; it's simplest to
2291 disable all watchpoints and breakpoints. */
2292
2293 if (!HAVE_STEPPABLE_WATCHPOINT)
2294 remove_breakpoints ();
488f131b
JB
2295 registers_changed ();
2296 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
488f131b 2297 ecs->waiton_ptid = ecs->ptid;
d983da9c
DJ
2298 if (HAVE_STEPPABLE_WATCHPOINT)
2299 ecs->infwait_state = infwait_step_watch_state;
2300 else
2301 ecs->infwait_state = infwait_nonstep_watch_state;
488f131b
JB
2302 prepare_to_wait (ecs);
2303 return;
2304 }
2305
488f131b
JB
2306 ecs->stop_func_start = 0;
2307 ecs->stop_func_end = 0;
2308 ecs->stop_func_name = 0;
2309 /* Don't care about return value; stop_func_start and stop_func_name
2310 will both be 0 if it doesn't work. */
2311 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2312 &ecs->stop_func_start, &ecs->stop_func_end);
cbf3b44a
UW
2313 ecs->stop_func_start
2314 += gdbarch_deprecated_function_start_offset (current_gdbarch);
ca67fcb8 2315 ecs->stepping_over_breakpoint = 0;
488f131b
JB
2316 bpstat_clear (&stop_bpstat);
2317 stop_step = 0;
488f131b
JB
2318 stop_print_frame = 1;
2319 ecs->random_signal = 0;
2320 stopped_by_random_signal = 0;
488f131b 2321
3352ef37 2322 if (stop_signal == TARGET_SIGNAL_TRAP
ca67fcb8 2323 && stepping_over_breakpoint
3352ef37
AC
2324 && gdbarch_single_step_through_delay_p (current_gdbarch)
2325 && currently_stepping (ecs))
2326 {
b50d7442 2327 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37
AC
2328 also on an instruction that needs to be stepped multiple
2329 times before it's been fully executing. E.g., architectures
2330 with a delay slot. It needs to be stepped twice, once for
2331 the instruction and once for the delay slot. */
2332 int step_through_delay
2333 = gdbarch_single_step_through_delay (current_gdbarch,
2334 get_current_frame ());
527159b7 2335 if (debug_infrun && step_through_delay)
8a9de0e4 2336 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
3352ef37
AC
2337 if (step_range_end == 0 && step_through_delay)
2338 {
2339 /* The user issued a continue when stopped at a breakpoint.
2340 Set up for another trap and get out of here. */
ca67fcb8 2341 ecs->stepping_over_breakpoint = 1;
3352ef37
AC
2342 keep_going (ecs);
2343 return;
2344 }
2345 else if (step_through_delay)
2346 {
2347 /* The user issued a step when stopped at a breakpoint.
2348 Maybe we should stop, maybe we should not - the delay
2349 slot *might* correspond to a line of source. In any
ca67fcb8
VP
2350 case, don't decide that here, just set
2351 ecs->stepping_over_breakpoint, making sure we
2352 single-step again before breakpoints are re-inserted. */
2353 ecs->stepping_over_breakpoint = 1;
3352ef37
AC
2354 }
2355 }
2356
488f131b
JB
2357 /* Look at the cause of the stop, and decide what to do.
2358 The alternatives are:
2359 1) break; to really stop and return to the debugger,
2360 2) drop through to start up again
ca67fcb8 2361 (set ecs->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
2362 3) set ecs->random_signal to 1, and the decision between 1 and 2
2363 will be made according to the signal handling tables. */
2364
2365 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
2366 that have to do with the program's own actions. Note that
2367 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
2368 on the operating system version. Here we detect when a SIGILL or
2369 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
2370 something similar for SIGSEGV, since a SIGSEGV will be generated
2371 when we're trying to execute a breakpoint instruction on a
2372 non-executable stack. This happens for call dummy breakpoints
2373 for architectures like SPARC that place call dummies on the
237fc4c9 2374 stack.
488f131b 2375
237fc4c9
PA
2376 If we're doing a displaced step past a breakpoint, then the
2377 breakpoint is always inserted at the original instruction;
2378 non-standard signals can't be explained by the breakpoint. */
488f131b 2379 if (stop_signal == TARGET_SIGNAL_TRAP
237fc4c9
PA
2380 || (! stepping_over_breakpoint
2381 && breakpoint_inserted_here_p (stop_pc)
8fb3e588
AC
2382 && (stop_signal == TARGET_SIGNAL_ILL
2383 || stop_signal == TARGET_SIGNAL_SEGV
2384 || stop_signal == TARGET_SIGNAL_EMT))
b0f4b84b
DJ
2385 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
2386 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b
JB
2387 {
2388 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
2389 {
527159b7 2390 if (debug_infrun)
8a9de0e4 2391 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
2392 stop_print_frame = 0;
2393 stop_stepping (ecs);
2394 return;
2395 }
c54cfec8
EZ
2396
2397 /* This is originated from start_remote(), start_inferior() and
2398 shared libraries hook functions. */
b0f4b84b 2399 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 2400 {
527159b7 2401 if (debug_infrun)
8a9de0e4 2402 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
2403 stop_stepping (ecs);
2404 return;
2405 }
2406
c54cfec8
EZ
2407 /* This originates from attach_command(). We need to overwrite
2408 the stop_signal here, because some kernels don't ignore a
a0ef4274
DJ
2409 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
2410 See more comments in inferior.h. On the other hand, if we
2411 get a non-SIGSTOP, report it to the user - assume the backend
2412 will handle the SIGSTOP if it should show up later. */
2413 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2414 && stop_signal == TARGET_SIGNAL_STOP)
c54cfec8
EZ
2415 {
2416 stop_stepping (ecs);
a0ef4274 2417 stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
2418 return;
2419 }
2420
fba57f8f
VP
2421 /* See if there is a breakpoint at the current PC. */
2422 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2423
2424 /* Following in case break condition called a
2425 function. */
2426 stop_print_frame = 1;
488f131b 2427
73dd234f 2428 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
2429 at one stage in the past included checks for an inferior
2430 function call's call dummy's return breakpoint. The original
2431 comment, that went with the test, read:
73dd234f 2432
8fb3e588
AC
2433 ``End of a stack dummy. Some systems (e.g. Sony news) give
2434 another signal besides SIGTRAP, so check here as well as
2435 above.''
73dd234f
AC
2436
2437 If someone ever tries to get get call dummys on a
2438 non-executable stack to work (where the target would stop
03cebad2
MK
2439 with something like a SIGSEGV), then those tests might need
2440 to be re-instated. Given, however, that the tests were only
73dd234f 2441 enabled when momentary breakpoints were not being used, I
03cebad2
MK
2442 suspect that it won't be the case.
2443
8fb3e588
AC
2444 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2445 be necessary for call dummies on a non-executable stack on
2446 SPARC. */
73dd234f 2447
488f131b
JB
2448 if (stop_signal == TARGET_SIGNAL_TRAP)
2449 ecs->random_signal
2450 = !(bpstat_explains_signal (stop_bpstat)
ca67fcb8 2451 || stepping_over_breakpoint
488f131b 2452 || (step_range_end && step_resume_breakpoint == NULL));
488f131b
JB
2453 else
2454 {
73dd234f 2455 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
488f131b
JB
2456 if (!ecs->random_signal)
2457 stop_signal = TARGET_SIGNAL_TRAP;
2458 }
2459 }
2460
2461 /* When we reach this point, we've pretty much decided
2462 that the reason for stopping must've been a random
2463 (unexpected) signal. */
2464
2465 else
2466 ecs->random_signal = 1;
488f131b 2467
04e68871 2468process_event_stop_test:
488f131b
JB
2469 /* For the program's own signals, act according to
2470 the signal handling tables. */
2471
2472 if (ecs->random_signal)
2473 {
2474 /* Signal not for debugging purposes. */
2475 int printed = 0;
2476
527159b7 2477 if (debug_infrun)
8a9de0e4 2478 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
527159b7 2479
488f131b
JB
2480 stopped_by_random_signal = 1;
2481
2482 if (signal_print[stop_signal])
2483 {
2484 printed = 1;
2485 target_terminal_ours_for_output ();
2486 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2487 }
a0ef4274 2488 if (signal_stop_state (stop_signal))
488f131b
JB
2489 {
2490 stop_stepping (ecs);
2491 return;
2492 }
2493 /* If not going to stop, give terminal back
2494 if we took it away. */
2495 else if (printed)
2496 target_terminal_inferior ();
2497
2498 /* Clear the signal if it should not be passed. */
2499 if (signal_program[stop_signal] == 0)
2500 stop_signal = TARGET_SIGNAL_0;
2501
68f53502 2502 if (prev_pc == read_pc ()
74960c60 2503 && stepping_over_breakpoint
68f53502
AC
2504 && step_resume_breakpoint == NULL)
2505 {
2506 /* We were just starting a new sequence, attempting to
2507 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 2508 Instead this signal arrives. This signal will take us out
68f53502
AC
2509 of the stepping range so GDB needs to remember to, when
2510 the signal handler returns, resume stepping off that
2511 breakpoint. */
2512 /* To simplify things, "continue" is forced to use the same
2513 code paths as single-step - set a breakpoint at the
2514 signal return address and then, once hit, step off that
2515 breakpoint. */
237fc4c9
PA
2516 if (debug_infrun)
2517 fprintf_unfiltered (gdb_stdlog,
2518 "infrun: signal arrived while stepping over "
2519 "breakpoint\n");
d3169d93 2520
44cbf7b5 2521 insert_step_resume_breakpoint_at_frame (get_current_frame ());
68f53502 2522 ecs->step_after_step_resume_breakpoint = 1;
9d799f85
AC
2523 keep_going (ecs);
2524 return;
68f53502 2525 }
9d799f85
AC
2526
2527 if (step_range_end != 0
2528 && stop_signal != TARGET_SIGNAL_0
2529 && stop_pc >= step_range_start && stop_pc < step_range_end
2530 && frame_id_eq (get_frame_id (get_current_frame ()),
2531 step_frame_id)
2532 && step_resume_breakpoint == NULL)
d303a6c7
AC
2533 {
2534 /* The inferior is about to take a signal that will take it
2535 out of the single step range. Set a breakpoint at the
2536 current PC (which is presumably where the signal handler
2537 will eventually return) and then allow the inferior to
2538 run free.
2539
2540 Note that this is only needed for a signal delivered
2541 while in the single-step range. Nested signals aren't a
2542 problem as they eventually all return. */
237fc4c9
PA
2543 if (debug_infrun)
2544 fprintf_unfiltered (gdb_stdlog,
2545 "infrun: signal may take us out of "
2546 "single-step range\n");
2547
44cbf7b5 2548 insert_step_resume_breakpoint_at_frame (get_current_frame ());
9d799f85
AC
2549 keep_going (ecs);
2550 return;
d303a6c7 2551 }
9d799f85
AC
2552
2553 /* Note: step_resume_breakpoint may be non-NULL. This occures
2554 when either there's a nested signal, or when there's a
2555 pending signal enabled just as the signal handler returns
2556 (leaving the inferior at the step-resume-breakpoint without
2557 actually executing it). Either way continue until the
2558 breakpoint is really hit. */
488f131b
JB
2559 keep_going (ecs);
2560 return;
2561 }
2562
2563 /* Handle cases caused by hitting a breakpoint. */
2564 {
2565 CORE_ADDR jmp_buf_pc;
2566 struct bpstat_what what;
2567
2568 what = bpstat_what (stop_bpstat);
2569
2570 if (what.call_dummy)
2571 {
2572 stop_stack_dummy = 1;
c5aa993b 2573 }
c906108c 2574
488f131b 2575 switch (what.main_action)
c5aa993b 2576 {
488f131b 2577 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
2578 /* If we hit the breakpoint at longjmp while stepping, we
2579 install a momentary breakpoint at the target of the
2580 jmp_buf. */
2581
2582 if (debug_infrun)
2583 fprintf_unfiltered (gdb_stdlog,
2584 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2585
2586 ecs->stepping_over_breakpoint = 1;
2587
91104499 2588 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
60ade65d
UW
2589 || !gdbarch_get_longjmp_target (current_gdbarch,
2590 get_current_frame (), &jmp_buf_pc))
c5aa993b 2591 {
611c83ae
PA
2592 if (debug_infrun)
2593 fprintf_unfiltered (gdb_stdlog, "\
2594infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
488f131b 2595 keep_going (ecs);
104c1213 2596 return;
c5aa993b 2597 }
488f131b 2598
611c83ae
PA
2599 /* We're going to replace the current step-resume breakpoint
2600 with a longjmp-resume breakpoint. */
488f131b 2601 if (step_resume_breakpoint != NULL)
611c83ae
PA
2602 delete_step_resume_breakpoint (&step_resume_breakpoint);
2603
2604 /* Insert a breakpoint at resume address. */
2605 insert_longjmp_resume_breakpoint (jmp_buf_pc);
c906108c 2606
488f131b
JB
2607 keep_going (ecs);
2608 return;
c906108c 2609
488f131b 2610 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 2611 if (debug_infrun)
611c83ae
PA
2612 fprintf_unfiltered (gdb_stdlog,
2613 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2614
2615 gdb_assert (step_resume_breakpoint != NULL);
2616 delete_step_resume_breakpoint (&step_resume_breakpoint);
2617
2618 stop_step = 1;
2619 print_stop_reason (END_STEPPING_RANGE, 0);
2620 stop_stepping (ecs);
2621 return;
488f131b
JB
2622
2623 case BPSTAT_WHAT_SINGLE:
527159b7 2624 if (debug_infrun)
8802d8ed 2625 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
ca67fcb8 2626 ecs->stepping_over_breakpoint = 1;
488f131b
JB
2627 /* Still need to check other stuff, at least the case
2628 where we are stepping and step out of the right range. */
2629 break;
c906108c 2630
488f131b 2631 case BPSTAT_WHAT_STOP_NOISY:
527159b7 2632 if (debug_infrun)
8802d8ed 2633 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 2634 stop_print_frame = 1;
c906108c 2635
d303a6c7
AC
2636 /* We are about to nuke the step_resume_breakpointt via the
2637 cleanup chain, so no need to worry about it here. */
c5aa993b 2638
488f131b
JB
2639 stop_stepping (ecs);
2640 return;
c5aa993b 2641
488f131b 2642 case BPSTAT_WHAT_STOP_SILENT:
527159b7 2643 if (debug_infrun)
8802d8ed 2644 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 2645 stop_print_frame = 0;
c5aa993b 2646
d303a6c7
AC
2647 /* We are about to nuke the step_resume_breakpoin via the
2648 cleanup chain, so no need to worry about it here. */
c5aa993b 2649
488f131b 2650 stop_stepping (ecs);
e441088d 2651 return;
c5aa993b 2652
488f131b
JB
2653 case BPSTAT_WHAT_STEP_RESUME:
2654 /* This proably demands a more elegant solution, but, yeah
2655 right...
c5aa993b 2656
488f131b
JB
2657 This function's use of the simple variable
2658 step_resume_breakpoint doesn't seem to accomodate
2659 simultaneously active step-resume bp's, although the
2660 breakpoint list certainly can.
c5aa993b 2661
488f131b
JB
2662 If we reach here and step_resume_breakpoint is already
2663 NULL, then apparently we have multiple active
2664 step-resume bp's. We'll just delete the breakpoint we
2665 stopped at, and carry on.
2666
2667 Correction: what the code currently does is delete a
2668 step-resume bp, but it makes no effort to ensure that
2669 the one deleted is the one currently stopped at. MVS */
c5aa993b 2670
527159b7 2671 if (debug_infrun)
8802d8ed 2672 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 2673
488f131b
JB
2674 if (step_resume_breakpoint == NULL)
2675 {
2676 step_resume_breakpoint =
2677 bpstat_find_step_resume_breakpoint (stop_bpstat);
2678 }
2679 delete_step_resume_breakpoint (&step_resume_breakpoint);
68f53502
AC
2680 if (ecs->step_after_step_resume_breakpoint)
2681 {
2682 /* Back when the step-resume breakpoint was inserted, we
2683 were trying to single-step off a breakpoint. Go back
2684 to doing that. */
2685 ecs->step_after_step_resume_breakpoint = 0;
ca67fcb8 2686 ecs->stepping_over_breakpoint = 1;
68f53502
AC
2687 keep_going (ecs);
2688 return;
2689 }
488f131b
JB
2690 break;
2691
488f131b
JB
2692 case BPSTAT_WHAT_CHECK_SHLIBS:
2693 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
c906108c 2694 {
527159b7 2695 if (debug_infrun)
8802d8ed 2696 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
488f131b
JB
2697
2698 /* Check for any newly added shared libraries if we're
2699 supposed to be adding them automatically. Switch
2700 terminal for any messages produced by
2701 breakpoint_re_set. */
2702 target_terminal_ours_for_output ();
aff6338a 2703 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
2704 stack's section table is kept up-to-date. Architectures,
2705 (e.g., PPC64), use the section table to perform
2706 operations such as address => section name and hence
2707 require the table to contain all sections (including
2708 those found in shared libraries). */
aff6338a 2709 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
2710 exec_ops to SOLIB_ADD. This is because current GDB is
2711 only tooled to propagate section_table changes out from
2712 the "current_target" (see target_resize_to_sections), and
2713 not up from the exec stratum. This, of course, isn't
2714 right. "infrun.c" should only interact with the
2715 exec/process stratum, instead relying on the target stack
2716 to propagate relevant changes (stop, section table
2717 changed, ...) up to other layers. */
a77053c2 2718#ifdef SOLIB_ADD
aff6338a 2719 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
a77053c2
MK
2720#else
2721 solib_add (NULL, 0, &current_target, auto_solib_add);
2722#endif
488f131b
JB
2723 target_terminal_inferior ();
2724
488f131b
JB
2725 /* If requested, stop when the dynamic linker notifies
2726 gdb of events. This allows the user to get control
2727 and place breakpoints in initializer routines for
2728 dynamically loaded objects (among other things). */
877522db 2729 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 2730 {
488f131b 2731 stop_stepping (ecs);
d4f3574e
SS
2732 return;
2733 }
c5aa993b 2734
488f131b
JB
2735 /* If we stopped due to an explicit catchpoint, then the
2736 (see above) call to SOLIB_ADD pulled in any symbols
2737 from a newly-loaded library, if appropriate.
2738
2739 We do want the inferior to stop, but not where it is
2740 now, which is in the dynamic linker callback. Rather,
2741 we would like it stop in the user's program, just after
2742 the call that caused this catchpoint to trigger. That
2743 gives the user a more useful vantage from which to
2744 examine their program's state. */
8fb3e588
AC
2745 else if (what.main_action
2746 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
c906108c 2747 {
488f131b
JB
2748 /* ??rehrauer: If I could figure out how to get the
2749 right return PC from here, we could just set a temp
2750 breakpoint and resume. I'm not sure we can without
2751 cracking open the dld's shared libraries and sniffing
2752 their unwind tables and text/data ranges, and that's
2753 not a terribly portable notion.
2754
2755 Until that time, we must step the inferior out of the
2756 dld callback, and also out of the dld itself (and any
2757 code or stubs in libdld.sl, such as "shl_load" and
2758 friends) until we reach non-dld code. At that point,
2759 we can stop stepping. */
2760 bpstat_get_triggered_catchpoints (stop_bpstat,
2761 &ecs->
2762 stepping_through_solib_catchpoints);
2763 ecs->stepping_through_solib_after_catch = 1;
2764
2765 /* Be sure to lift all breakpoints, so the inferior does
2766 actually step past this point... */
ca67fcb8 2767 ecs->stepping_over_breakpoint = 1;
488f131b 2768 break;
c906108c 2769 }
c5aa993b 2770 else
c5aa993b 2771 {
488f131b 2772 /* We want to step over this breakpoint, then keep going. */
ca67fcb8 2773 ecs->stepping_over_breakpoint = 1;
488f131b 2774 break;
c5aa993b 2775 }
488f131b 2776 }
488f131b 2777 break;
c906108c 2778
488f131b
JB
2779 case BPSTAT_WHAT_LAST:
2780 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 2781
488f131b
JB
2782 case BPSTAT_WHAT_KEEP_CHECKING:
2783 break;
2784 }
2785 }
c906108c 2786
488f131b
JB
2787 /* We come here if we hit a breakpoint but should not
2788 stop for it. Possibly we also were stepping
2789 and should stop for that. So fall through and
2790 test for stepping. But, if not stepping,
2791 do not stop. */
c906108c 2792
9d1ff73f
MS
2793 /* Are we stepping to get the inferior out of the dynamic linker's
2794 hook (and possibly the dld itself) after catching a shlib
2795 event? */
488f131b
JB
2796 if (ecs->stepping_through_solib_after_catch)
2797 {
2798#if defined(SOLIB_ADD)
2799 /* Have we reached our destination? If not, keep going. */
2800 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2801 {
527159b7 2802 if (debug_infrun)
8a9de0e4 2803 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
ca67fcb8 2804 ecs->stepping_over_breakpoint = 1;
488f131b 2805 keep_going (ecs);
104c1213 2806 return;
488f131b
JB
2807 }
2808#endif
527159b7 2809 if (debug_infrun)
8a9de0e4 2810 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
2811 /* Else, stop and report the catchpoint(s) whose triggering
2812 caused us to begin stepping. */
2813 ecs->stepping_through_solib_after_catch = 0;
2814 bpstat_clear (&stop_bpstat);
2815 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2816 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2817 stop_print_frame = 1;
2818 stop_stepping (ecs);
2819 return;
2820 }
c906108c 2821
488f131b
JB
2822 if (step_resume_breakpoint)
2823 {
527159b7 2824 if (debug_infrun)
d3169d93
DJ
2825 fprintf_unfiltered (gdb_stdlog,
2826 "infrun: step-resume breakpoint is inserted\n");
527159b7 2827
488f131b
JB
2828 /* Having a step-resume breakpoint overrides anything
2829 else having to do with stepping commands until
2830 that breakpoint is reached. */
488f131b
JB
2831 keep_going (ecs);
2832 return;
2833 }
c5aa993b 2834
488f131b
JB
2835 if (step_range_end == 0)
2836 {
527159b7 2837 if (debug_infrun)
8a9de0e4 2838 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 2839 /* Likewise if we aren't even stepping. */
488f131b
JB
2840 keep_going (ecs);
2841 return;
2842 }
c5aa993b 2843
488f131b 2844 /* If stepping through a line, keep going if still within it.
c906108c 2845
488f131b
JB
2846 Note that step_range_end is the address of the first instruction
2847 beyond the step range, and NOT the address of the last instruction
2848 within it! */
2849 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2850 {
527159b7 2851 if (debug_infrun)
8a9de0e4 2852 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
527159b7
RC
2853 paddr_nz (step_range_start),
2854 paddr_nz (step_range_end));
488f131b
JB
2855 keep_going (ecs);
2856 return;
2857 }
c5aa993b 2858
488f131b 2859 /* We stepped out of the stepping range. */
c906108c 2860
488f131b
JB
2861 /* If we are stepping at the source level and entered the runtime
2862 loader dynamic symbol resolution code, we keep on single stepping
2863 until we exit the run time loader code and reach the callee's
2864 address. */
2865 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
a77053c2
MK
2866#ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2867 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2868#else
2869 && in_solib_dynsym_resolve_code (stop_pc)
2870#endif
2871 )
488f131b 2872 {
4c8c40e6
MK
2873 CORE_ADDR pc_after_resolver =
2874 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
c906108c 2875
527159b7 2876 if (debug_infrun)
8a9de0e4 2877 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 2878
488f131b
JB
2879 if (pc_after_resolver)
2880 {
2881 /* Set up a step-resume breakpoint at the address
2882 indicated by SKIP_SOLIB_RESOLVER. */
2883 struct symtab_and_line sr_sal;
fe39c653 2884 init_sal (&sr_sal);
488f131b
JB
2885 sr_sal.pc = pc_after_resolver;
2886
44cbf7b5 2887 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c5aa993b 2888 }
c906108c 2889
488f131b
JB
2890 keep_going (ecs);
2891 return;
2892 }
c906108c 2893
42edda50
AC
2894 if (step_range_end != 1
2895 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2896 || step_over_calls == STEP_OVER_ALL)
2897 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
488f131b 2898 {
527159b7 2899 if (debug_infrun)
8a9de0e4 2900 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 2901 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
2902 a signal trampoline (either by a signal being delivered or by
2903 the signal handler returning). Just single-step until the
2904 inferior leaves the trampoline (either by calling the handler
2905 or returning). */
488f131b
JB
2906 keep_going (ecs);
2907 return;
2908 }
c906108c 2909
c17eaafe
DJ
2910 /* Check for subroutine calls. The check for the current frame
2911 equalling the step ID is not necessary - the check of the
2912 previous frame's ID is sufficient - but it is a common case and
2913 cheaper than checking the previous frame's ID.
14e60db5
DJ
2914
2915 NOTE: frame_id_eq will never report two invalid frame IDs as
2916 being equal, so to get into this block, both the current and
2917 previous frame must have valid frame IDs. */
c17eaafe
DJ
2918 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2919 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
488f131b 2920 {
95918acb 2921 CORE_ADDR real_stop_pc;
8fb3e588 2922
527159b7 2923 if (debug_infrun)
8a9de0e4 2924 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 2925
95918acb
AC
2926 if ((step_over_calls == STEP_OVER_NONE)
2927 || ((step_range_end == 1)
2928 && in_prologue (prev_pc, ecs->stop_func_start)))
2929 {
2930 /* I presume that step_over_calls is only 0 when we're
2931 supposed to be stepping at the assembly language level
2932 ("stepi"). Just stop. */
2933 /* Also, maybe we just did a "nexti" inside a prolog, so we
2934 thought it was a subroutine call but it was not. Stop as
2935 well. FENN */
2936 stop_step = 1;
2937 print_stop_reason (END_STEPPING_RANGE, 0);
2938 stop_stepping (ecs);
2939 return;
2940 }
8fb3e588 2941
8567c30f
AC
2942 if (step_over_calls == STEP_OVER_ALL)
2943 {
2944 /* We're doing a "next", set a breakpoint at callee's return
2945 address (the address at which the caller will
2946 resume). */
14e60db5 2947 insert_step_resume_breakpoint_at_caller (get_current_frame ());
8567c30f
AC
2948 keep_going (ecs);
2949 return;
2950 }
a53c66de 2951
95918acb 2952 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
2953 calling routine and the real function), locate the real
2954 function. That's what tells us (a) whether we want to step
2955 into it at all, and (b) what prologue we want to run to the
2956 end of, if we do step into it. */
52f729a7 2957 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
95918acb 2958 if (real_stop_pc == 0)
52f729a7
UW
2959 real_stop_pc = gdbarch_skip_trampoline_code
2960 (current_gdbarch, get_current_frame (), stop_pc);
95918acb
AC
2961 if (real_stop_pc != 0)
2962 ecs->stop_func_start = real_stop_pc;
8fb3e588 2963
a77053c2
MK
2964 if (
2965#ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2966 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2967#else
2968 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2969#endif
2970)
1b2bfbb9
RC
2971 {
2972 struct symtab_and_line sr_sal;
2973 init_sal (&sr_sal);
2974 sr_sal.pc = ecs->stop_func_start;
2975
44cbf7b5 2976 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
8fb3e588
AC
2977 keep_going (ecs);
2978 return;
1b2bfbb9
RC
2979 }
2980
95918acb 2981 /* If we have line number information for the function we are
8fb3e588 2982 thinking of stepping into, step into it.
95918acb 2983
8fb3e588
AC
2984 If there are several symtabs at that PC (e.g. with include
2985 files), just want to know whether *any* of them have line
2986 numbers. find_pc_line handles this. */
95918acb
AC
2987 {
2988 struct symtab_and_line tmp_sal;
8fb3e588 2989
95918acb
AC
2990 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2991 if (tmp_sal.line != 0)
2992 {
2993 step_into_function (ecs);
2994 return;
2995 }
2996 }
2997
2998 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
2999 set, we stop the step so that the user has a chance to switch
3000 in assembly mode. */
95918acb
AC
3001 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
3002 {
3003 stop_step = 1;
3004 print_stop_reason (END_STEPPING_RANGE, 0);
3005 stop_stepping (ecs);
3006 return;
3007 }
3008
3009 /* Set a breakpoint at callee's return address (the address at
8fb3e588 3010 which the caller will resume). */
14e60db5 3011 insert_step_resume_breakpoint_at_caller (get_current_frame ());
95918acb 3012 keep_going (ecs);
488f131b 3013 return;
488f131b 3014 }
c906108c 3015
488f131b
JB
3016 /* If we're in the return path from a shared library trampoline,
3017 we want to proceed through the trampoline when stepping. */
e76f05fa
UW
3018 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
3019 stop_pc, ecs->stop_func_name))
488f131b 3020 {
488f131b 3021 /* Determine where this trampoline returns. */
52f729a7
UW
3022 CORE_ADDR real_stop_pc;
3023 real_stop_pc = gdbarch_skip_trampoline_code
3024 (current_gdbarch, get_current_frame (), stop_pc);
c906108c 3025
527159b7 3026 if (debug_infrun)
8a9de0e4 3027 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 3028
488f131b 3029 /* Only proceed through if we know where it's going. */
d764a824 3030 if (real_stop_pc)
488f131b
JB
3031 {
3032 /* And put the step-breakpoint there and go until there. */
3033 struct symtab_and_line sr_sal;
3034
fe39c653 3035 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 3036 sr_sal.pc = real_stop_pc;
488f131b 3037 sr_sal.section = find_pc_overlay (sr_sal.pc);
44cbf7b5
AC
3038
3039 /* Do not specify what the fp should be when we stop since
3040 on some machines the prologue is where the new fp value
3041 is established. */
3042 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c906108c 3043
488f131b
JB
3044 /* Restart without fiddling with the step ranges or
3045 other state. */
3046 keep_going (ecs);
3047 return;
3048 }
3049 }
c906108c 3050
7ed0fe66
DJ
3051 ecs->sal = find_pc_line (stop_pc, 0);
3052
1b2bfbb9
RC
3053 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3054 the trampoline processing logic, however, there are some trampolines
3055 that have no names, so we should do trampoline handling first. */
3056 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66
DJ
3057 && ecs->stop_func_name == NULL
3058 && ecs->sal.line == 0)
1b2bfbb9 3059 {
527159b7 3060 if (debug_infrun)
8a9de0e4 3061 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 3062
1b2bfbb9 3063 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
3064 undebuggable function (where there is no debugging information
3065 and no line number corresponding to the address where the
1b2bfbb9
RC
3066 inferior stopped). Since we want to skip this kind of code,
3067 we keep going until the inferior returns from this
14e60db5
DJ
3068 function - unless the user has asked us not to (via
3069 set step-mode) or we no longer know how to get back
3070 to the call site. */
3071 if (step_stop_if_no_debug
3072 || !frame_id_p (frame_unwind_id (get_current_frame ())))
1b2bfbb9
RC
3073 {
3074 /* If we have no line number and the step-stop-if-no-debug
3075 is set, we stop the step so that the user has a chance to
3076 switch in assembly mode. */
3077 stop_step = 1;
3078 print_stop_reason (END_STEPPING_RANGE, 0);
3079 stop_stepping (ecs);
3080 return;
3081 }
3082 else
3083 {
3084 /* Set a breakpoint at callee's return address (the address
3085 at which the caller will resume). */
14e60db5 3086 insert_step_resume_breakpoint_at_caller (get_current_frame ());
1b2bfbb9
RC
3087 keep_going (ecs);
3088 return;
3089 }
3090 }
3091
3092 if (step_range_end == 1)
3093 {
3094 /* It is stepi or nexti. We always want to stop stepping after
3095 one instruction. */
527159b7 3096 if (debug_infrun)
8a9de0e4 3097 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
1b2bfbb9
RC
3098 stop_step = 1;
3099 print_stop_reason (END_STEPPING_RANGE, 0);
3100 stop_stepping (ecs);
3101 return;
3102 }
3103
488f131b
JB
3104 if (ecs->sal.line == 0)
3105 {
3106 /* We have no line number information. That means to stop
3107 stepping (does this always happen right after one instruction,
3108 when we do "s" in a function with no line numbers,
3109 or can this happen as a result of a return or longjmp?). */
527159b7 3110 if (debug_infrun)
8a9de0e4 3111 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
488f131b
JB
3112 stop_step = 1;
3113 print_stop_reason (END_STEPPING_RANGE, 0);
3114 stop_stepping (ecs);
3115 return;
3116 }
c906108c 3117
488f131b
JB
3118 if ((stop_pc == ecs->sal.pc)
3119 && (ecs->current_line != ecs->sal.line
3120 || ecs->current_symtab != ecs->sal.symtab))
3121 {
3122 /* We are at the start of a different line. So stop. Note that
3123 we don't stop if we step into the middle of a different line.
3124 That is said to make things like for (;;) statements work
3125 better. */
527159b7 3126 if (debug_infrun)
8a9de0e4 3127 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
488f131b
JB
3128 stop_step = 1;
3129 print_stop_reason (END_STEPPING_RANGE, 0);
3130 stop_stepping (ecs);
3131 return;
3132 }
c906108c 3133
488f131b 3134 /* We aren't done stepping.
c906108c 3135
488f131b
JB
3136 Optimize by setting the stepping range to the line.
3137 (We might not be in the original line, but if we entered a
3138 new line in mid-statement, we continue stepping. This makes
3139 things like for(;;) statements work better.) */
c906108c 3140
488f131b
JB
3141 step_range_start = ecs->sal.pc;
3142 step_range_end = ecs->sal.end;
aa0cd9c1 3143 step_frame_id = get_frame_id (get_current_frame ());
488f131b
JB
3144 ecs->current_line = ecs->sal.line;
3145 ecs->current_symtab = ecs->sal.symtab;
3146
aa0cd9c1
AC
3147 /* In the case where we just stepped out of a function into the
3148 middle of a line of the caller, continue stepping, but
3149 step_frame_id must be modified to current frame */
65815ea1
AC
3150#if 0
3151 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
3152 generous. It will trigger on things like a step into a frameless
3153 stackless leaf function. I think the logic should instead look
3154 at the unwound frame ID has that should give a more robust
3155 indication of what happened. */
8fb3e588
AC
3156 if (step - ID == current - ID)
3157 still stepping in same function;
3158 else if (step - ID == unwind (current - ID))
3159 stepped into a function;
3160 else
3161 stepped out of a function;
3162 /* Of course this assumes that the frame ID unwind code is robust
3163 and we're willing to introduce frame unwind logic into this
3164 function. Fortunately, those days are nearly upon us. */
65815ea1 3165#endif
488f131b 3166 {
09a7aba8
UW
3167 struct frame_info *frame = get_current_frame ();
3168 struct frame_id current_frame = get_frame_id (frame);
3169 if (!(frame_id_inner (get_frame_arch (frame), current_frame,
3170 step_frame_id)))
aa0cd9c1 3171 step_frame_id = current_frame;
488f131b 3172 }
c906108c 3173
527159b7 3174 if (debug_infrun)
8a9de0e4 3175 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 3176 keep_going (ecs);
104c1213
JM
3177}
3178
3179/* Are we in the middle of stepping? */
3180
3181static int
3182currently_stepping (struct execution_control_state *ecs)
3183{
611c83ae
PA
3184 return (((step_range_end && step_resume_breakpoint == NULL)
3185 || stepping_over_breakpoint)
104c1213
JM
3186 || ecs->stepping_through_solib_after_catch
3187 || bpstat_should_step ());
3188}
c906108c 3189
c2c6d25f
JM
3190/* Subroutine call with source code we should not step over. Do step
3191 to the first line of code in it. */
3192
3193static void
3194step_into_function (struct execution_control_state *ecs)
3195{
3196 struct symtab *s;
3197 struct symtab_and_line sr_sal;
3198
3199 s = find_pc_symtab (stop_pc);
3200 if (s && s->language != language_asm)
a433963d
UW
3201 ecs->stop_func_start = gdbarch_skip_prologue
3202 (current_gdbarch, ecs->stop_func_start);
c2c6d25f
JM
3203
3204 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
3205 /* Use the step_resume_break to step until the end of the prologue,
3206 even if that involves jumps (as it seems to on the vax under
3207 4.2). */
3208 /* If the prologue ends in the middle of a source line, continue to
3209 the end of that source line (if it is still within the function).
3210 Otherwise, just go to end of prologue. */
c2c6d25f
JM
3211 if (ecs->sal.end
3212 && ecs->sal.pc != ecs->stop_func_start
3213 && ecs->sal.end < ecs->stop_func_end)
3214 ecs->stop_func_start = ecs->sal.end;
c2c6d25f 3215
2dbd5e30
KB
3216 /* Architectures which require breakpoint adjustment might not be able
3217 to place a breakpoint at the computed address. If so, the test
3218 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
3219 ecs->stop_func_start to an address at which a breakpoint may be
3220 legitimately placed.
8fb3e588 3221
2dbd5e30
KB
3222 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
3223 made, GDB will enter an infinite loop when stepping through
3224 optimized code consisting of VLIW instructions which contain
3225 subinstructions corresponding to different source lines. On
3226 FR-V, it's not permitted to place a breakpoint on any but the
3227 first subinstruction of a VLIW instruction. When a breakpoint is
3228 set, GDB will adjust the breakpoint address to the beginning of
3229 the VLIW instruction. Thus, we need to make the corresponding
3230 adjustment here when computing the stop address. */
8fb3e588 3231
2dbd5e30
KB
3232 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
3233 {
3234 ecs->stop_func_start
3235 = gdbarch_adjust_breakpoint_address (current_gdbarch,
8fb3e588 3236 ecs->stop_func_start);
2dbd5e30
KB
3237 }
3238
c2c6d25f
JM
3239 if (ecs->stop_func_start == stop_pc)
3240 {
3241 /* We are already there: stop now. */
3242 stop_step = 1;
488f131b 3243 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
3244 stop_stepping (ecs);
3245 return;
3246 }
3247 else
3248 {
3249 /* Put the step-breakpoint there and go until there. */
fe39c653 3250 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
3251 sr_sal.pc = ecs->stop_func_start;
3252 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
44cbf7b5 3253
c2c6d25f 3254 /* Do not specify what the fp should be when we stop since on
488f131b
JB
3255 some machines the prologue is where the new fp value is
3256 established. */
44cbf7b5 3257 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c2c6d25f
JM
3258
3259 /* And make sure stepping stops right away then. */
3260 step_range_end = step_range_start;
3261 }
3262 keep_going (ecs);
3263}
d4f3574e 3264
d3169d93 3265/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
3266 This is used to both functions and to skip over code. */
3267
3268static void
3269insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
3270 struct frame_id sr_id)
3271{
611c83ae
PA
3272 /* There should never be more than one step-resume or longjmp-resume
3273 breakpoint per thread, so we should never be setting a new
44cbf7b5
AC
3274 step_resume_breakpoint when one is already active. */
3275 gdb_assert (step_resume_breakpoint == NULL);
d3169d93
DJ
3276
3277 if (debug_infrun)
3278 fprintf_unfiltered (gdb_stdlog,
3279 "infrun: inserting step-resume breakpoint at 0x%s\n",
3280 paddr_nz (sr_sal.pc));
3281
44cbf7b5
AC
3282 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
3283 bp_step_resume);
44cbf7b5 3284}
7ce450bd 3285
d3169d93 3286/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
14e60db5 3287 to skip a potential signal handler.
7ce450bd 3288
14e60db5
DJ
3289 This is called with the interrupted function's frame. The signal
3290 handler, when it returns, will resume the interrupted function at
3291 RETURN_FRAME.pc. */
d303a6c7
AC
3292
3293static void
44cbf7b5 3294insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
3295{
3296 struct symtab_and_line sr_sal;
3297
f4c1edd8 3298 gdb_assert (return_frame != NULL);
d303a6c7
AC
3299 init_sal (&sr_sal); /* initialize to zeros */
3300
bf6ae464
UW
3301 sr_sal.pc = gdbarch_addr_bits_remove
3302 (current_gdbarch, get_frame_pc (return_frame));
d303a6c7
AC
3303 sr_sal.section = find_pc_overlay (sr_sal.pc);
3304
44cbf7b5 3305 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
d303a6c7
AC
3306}
3307
14e60db5
DJ
3308/* Similar to insert_step_resume_breakpoint_at_frame, except
3309 but a breakpoint at the previous frame's PC. This is used to
3310 skip a function after stepping into it (for "next" or if the called
3311 function has no debugging information).
3312
3313 The current function has almost always been reached by single
3314 stepping a call or return instruction. NEXT_FRAME belongs to the
3315 current function, and the breakpoint will be set at the caller's
3316 resume address.
3317
3318 This is a separate function rather than reusing
3319 insert_step_resume_breakpoint_at_frame in order to avoid
3320 get_prev_frame, which may stop prematurely (see the implementation
3321 of frame_unwind_id for an example). */
3322
3323static void
3324insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
3325{
3326 struct symtab_and_line sr_sal;
3327
3328 /* We shouldn't have gotten here if we don't know where the call site
3329 is. */
3330 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
3331
3332 init_sal (&sr_sal); /* initialize to zeros */
3333
bf6ae464
UW
3334 sr_sal.pc = gdbarch_addr_bits_remove
3335 (current_gdbarch, frame_pc_unwind (next_frame));
14e60db5
DJ
3336 sr_sal.section = find_pc_overlay (sr_sal.pc);
3337
3338 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
3339}
3340
611c83ae
PA
3341/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
3342 new breakpoint at the target of a jmp_buf. The handling of
3343 longjmp-resume uses the same mechanisms used for handling
3344 "step-resume" breakpoints. */
3345
3346static void
3347insert_longjmp_resume_breakpoint (CORE_ADDR pc)
3348{
3349 /* There should never be more than one step-resume or longjmp-resume
3350 breakpoint per thread, so we should never be setting a new
3351 longjmp_resume_breakpoint when one is already active. */
3352 gdb_assert (step_resume_breakpoint == NULL);
3353
3354 if (debug_infrun)
3355 fprintf_unfiltered (gdb_stdlog,
3356 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
3357 paddr_nz (pc));
3358
3359 step_resume_breakpoint =
3360 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
3361}
3362
104c1213
JM
3363static void
3364stop_stepping (struct execution_control_state *ecs)
3365{
527159b7 3366 if (debug_infrun)
8a9de0e4 3367 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 3368
cd0fc7c3
SS
3369 /* Let callers know we don't want to wait for the inferior anymore. */
3370 ecs->wait_some_more = 0;
3371}
3372
d4f3574e
SS
3373/* This function handles various cases where we need to continue
3374 waiting for the inferior. */
3375/* (Used to be the keep_going: label in the old wait_for_inferior) */
3376
3377static void
3378keep_going (struct execution_control_state *ecs)
3379{
d4f3574e 3380 /* Save the pc before execution, to compare with pc after stop. */
488f131b 3381 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e 3382
d4f3574e
SS
3383 /* If we did not do break;, it means we should keep running the
3384 inferior and not return to debugger. */
3385
ca67fcb8 3386 if (stepping_over_breakpoint && stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
3387 {
3388 /* We took a signal (which we are supposed to pass through to
488f131b
JB
3389 the inferior, else we'd have done a break above) and we
3390 haven't yet gotten our trap. Simply continue. */
d4f3574e
SS
3391 resume (currently_stepping (ecs), stop_signal);
3392 }
3393 else
3394 {
3395 /* Either the trap was not expected, but we are continuing
488f131b
JB
3396 anyway (the user asked that this signal be passed to the
3397 child)
3398 -- or --
3399 The signal was SIGTRAP, e.g. it was our signal, but we
3400 decided we should resume from it.
d4f3574e 3401
c36b740a 3402 We're going to run this baby now!
d4f3574e 3403
c36b740a
VP
3404 Note that insert_breakpoints won't try to re-insert
3405 already inserted breakpoints. Therefore, we don't
3406 care if breakpoints were already inserted, or not. */
3407
45e8c884
VP
3408 if (ecs->stepping_over_breakpoint)
3409 {
237fc4c9
PA
3410 if (! use_displaced_stepping (current_gdbarch))
3411 /* Since we can't do a displaced step, we have to remove
3412 the breakpoint while we step it. To keep things
3413 simple, we remove them all. */
3414 remove_breakpoints ();
45e8c884
VP
3415 }
3416 else
d4f3574e 3417 {
e236ba44 3418 struct gdb_exception e;
569631c6
UW
3419 /* Stop stepping when inserting breakpoints
3420 has failed. */
e236ba44
VP
3421 TRY_CATCH (e, RETURN_MASK_ERROR)
3422 {
3423 insert_breakpoints ();
3424 }
3425 if (e.reason < 0)
d4f3574e
SS
3426 {
3427 stop_stepping (ecs);
3428 return;
3429 }
d4f3574e
SS
3430 }
3431
ca67fcb8 3432 stepping_over_breakpoint = ecs->stepping_over_breakpoint;
d4f3574e
SS
3433
3434 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
3435 specifies that such a signal should be delivered to the
3436 target program).
3437
3438 Typically, this would occure when a user is debugging a
3439 target monitor on a simulator: the target monitor sets a
3440 breakpoint; the simulator encounters this break-point and
3441 halts the simulation handing control to GDB; GDB, noteing
3442 that the break-point isn't valid, returns control back to the
3443 simulator; the simulator then delivers the hardware
3444 equivalent of a SIGNAL_TRAP to the program being debugged. */
3445
3446 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
d4f3574e
SS
3447 stop_signal = TARGET_SIGNAL_0;
3448
d4f3574e
SS
3449
3450 resume (currently_stepping (ecs), stop_signal);
3451 }
3452
488f131b 3453 prepare_to_wait (ecs);
d4f3574e
SS
3454}
3455
104c1213
JM
3456/* This function normally comes after a resume, before
3457 handle_inferior_event exits. It takes care of any last bits of
3458 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 3459
104c1213
JM
3460static void
3461prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 3462{
527159b7 3463 if (debug_infrun)
8a9de0e4 3464 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213
JM
3465 if (ecs->infwait_state == infwait_normal_state)
3466 {
3467 overlay_cache_invalid = 1;
3468
3469 /* We have to invalidate the registers BEFORE calling
488f131b
JB
3470 target_wait because they can be loaded from the target while
3471 in target_wait. This makes remote debugging a bit more
3472 efficient for those targets that provide critical registers
3473 as part of their normal status mechanism. */
104c1213
JM
3474
3475 registers_changed ();
39f77062 3476 ecs->waiton_ptid = pid_to_ptid (-1);
104c1213
JM
3477 ecs->wp = &(ecs->ws);
3478 }
3479 /* This is the old end of the while loop. Let everybody know we
3480 want to wait for the inferior some more and get called again
3481 soon. */
3482 ecs->wait_some_more = 1;
c906108c 3483}
11cf8741
JM
3484
3485/* Print why the inferior has stopped. We always print something when
3486 the inferior exits, or receives a signal. The rest of the cases are
3487 dealt with later on in normal_stop() and print_it_typical(). Ideally
3488 there should be a call to this function from handle_inferior_event()
3489 each time stop_stepping() is called.*/
3490static void
3491print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3492{
3493 switch (stop_reason)
3494 {
11cf8741
JM
3495 case END_STEPPING_RANGE:
3496 /* We are done with a step/next/si/ni command. */
3497 /* For now print nothing. */
fb40c209 3498 /* Print a message only if not in the middle of doing a "step n"
488f131b 3499 operation for n > 1 */
fb40c209 3500 if (!step_multi || !stop_step)
9dc5e2a9 3501 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3502 ui_out_field_string
3503 (uiout, "reason",
3504 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
11cf8741 3505 break;
11cf8741
JM
3506 case SIGNAL_EXITED:
3507 /* The inferior was terminated by a signal. */
8b93c638 3508 annotate_signalled ();
9dc5e2a9 3509 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3510 ui_out_field_string
3511 (uiout, "reason",
3512 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8b93c638
JM
3513 ui_out_text (uiout, "\nProgram terminated with signal ");
3514 annotate_signal_name ();
488f131b
JB
3515 ui_out_field_string (uiout, "signal-name",
3516 target_signal_to_name (stop_info));
8b93c638
JM
3517 annotate_signal_name_end ();
3518 ui_out_text (uiout, ", ");
3519 annotate_signal_string ();
488f131b
JB
3520 ui_out_field_string (uiout, "signal-meaning",
3521 target_signal_to_string (stop_info));
8b93c638
JM
3522 annotate_signal_string_end ();
3523 ui_out_text (uiout, ".\n");
3524 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
3525 break;
3526 case EXITED:
3527 /* The inferior program is finished. */
8b93c638
JM
3528 annotate_exited (stop_info);
3529 if (stop_info)
3530 {
9dc5e2a9 3531 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3532 ui_out_field_string (uiout, "reason",
3533 async_reason_lookup (EXEC_ASYNC_EXITED));
8b93c638 3534 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
3535 ui_out_field_fmt (uiout, "exit-code", "0%o",
3536 (unsigned int) stop_info);
8b93c638
JM
3537 ui_out_text (uiout, ".\n");
3538 }
3539 else
3540 {
9dc5e2a9 3541 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3542 ui_out_field_string
3543 (uiout, "reason",
3544 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8b93c638
JM
3545 ui_out_text (uiout, "\nProgram exited normally.\n");
3546 }
f17517ea
AS
3547 /* Support the --return-child-result option. */
3548 return_child_result_value = stop_info;
11cf8741
JM
3549 break;
3550 case SIGNAL_RECEIVED:
3551 /* Signal received. The signal table tells us to print about
3552 it. */
8b93c638
JM
3553 annotate_signal ();
3554 ui_out_text (uiout, "\nProgram received signal ");
3555 annotate_signal_name ();
84c6c83c 3556 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3557 ui_out_field_string
3558 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b
JB
3559 ui_out_field_string (uiout, "signal-name",
3560 target_signal_to_name (stop_info));
8b93c638
JM
3561 annotate_signal_name_end ();
3562 ui_out_text (uiout, ", ");
3563 annotate_signal_string ();
488f131b
JB
3564 ui_out_field_string (uiout, "signal-meaning",
3565 target_signal_to_string (stop_info));
8b93c638
JM
3566 annotate_signal_string_end ();
3567 ui_out_text (uiout, ".\n");
11cf8741
JM
3568 break;
3569 default:
8e65ff28 3570 internal_error (__FILE__, __LINE__,
e2e0b3e5 3571 _("print_stop_reason: unrecognized enum value"));
11cf8741
JM
3572 break;
3573 }
3574}
c906108c 3575\f
43ff13b4 3576
c906108c
SS
3577/* Here to return control to GDB when the inferior stops for real.
3578 Print appropriate messages, remove breakpoints, give terminal our modes.
3579
3580 STOP_PRINT_FRAME nonzero means print the executing frame
3581 (pc, function, args, file, line number and line text).
3582 BREAKPOINTS_FAILED nonzero means stop was due to error
3583 attempting to insert breakpoints. */
3584
3585void
96baa820 3586normal_stop (void)
c906108c 3587{
73b65bb0
DJ
3588 struct target_waitstatus last;
3589 ptid_t last_ptid;
3590
3591 get_last_target_status (&last_ptid, &last);
3592
c906108c
SS
3593 /* As with the notification of thread events, we want to delay
3594 notifying the user that we've switched thread context until
3595 the inferior actually stops.
3596
73b65bb0
DJ
3597 There's no point in saying anything if the inferior has exited.
3598 Note that SIGNALLED here means "exited with a signal", not
3599 "received a signal". */
488f131b 3600 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
3601 && target_has_execution
3602 && last.kind != TARGET_WAITKIND_SIGNALLED
3603 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
3604 {
3605 target_terminal_ours_for_output ();
a3f17187 3606 printf_filtered (_("[Switching to %s]\n"),
c95310c6 3607 target_pid_to_str (inferior_ptid));
39f77062 3608 previous_inferior_ptid = inferior_ptid;
c906108c 3609 }
c906108c 3610
4fa8626c 3611 /* NOTE drow/2004-01-17: Is this still necessary? */
c906108c
SS
3612 /* Make sure that the current_frame's pc is correct. This
3613 is a correction for setting up the frame info before doing
b798847d 3614 gdbarch_decr_pc_after_break */
b87efeee
AC
3615 if (target_has_execution)
3616 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
b798847d 3617 gdbarch_decr_pc_after_break, the program counter can change. Ask the
b87efeee 3618 frame code to check for this and sort out any resultant mess.
b798847d 3619 gdbarch_decr_pc_after_break needs to just go away. */
2f107107 3620 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
c906108c 3621
74960c60 3622 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
3623 {
3624 if (remove_breakpoints ())
3625 {
3626 target_terminal_ours_for_output ();
a3f17187
AC
3627 printf_filtered (_("\
3628Cannot remove breakpoints because program is no longer writable.\n\
3629It might be running in another process.\n\
3630Further execution is probably impossible.\n"));
c906108c
SS
3631 }
3632 }
c906108c 3633
c906108c
SS
3634 /* If an auto-display called a function and that got a signal,
3635 delete that auto-display to avoid an infinite recursion. */
3636
3637 if (stopped_by_random_signal)
3638 disable_current_display ();
3639
3640 /* Don't print a message if in the middle of doing a "step n"
3641 operation for n > 1 */
3642 if (step_multi && stop_step)
3643 goto done;
3644
3645 target_terminal_ours ();
3646
7abfe014
DJ
3647 /* Set the current source location. This will also happen if we
3648 display the frame below, but the current SAL will be incorrect
3649 during a user hook-stop function. */
3650 if (target_has_stack && !stop_stack_dummy)
3651 set_current_sal_from_frame (get_current_frame (), 1);
3652
5913bcb0
AC
3653 /* Look up the hook_stop and run it (CLI internally handles problem
3654 of stop_command's pre-hook not existing). */
3655 if (stop_command)
3656 catch_errors (hook_stop_stub, stop_command,
3657 "Error while running hook_stop:\n", RETURN_MASK_ALL);
c906108c
SS
3658
3659 if (!target_has_stack)
3660 {
3661
3662 goto done;
3663 }
3664
3665 /* Select innermost stack frame - i.e., current frame is frame 0,
3666 and current location is based on that.
3667 Don't do this on return from a stack dummy routine,
3668 or if the program has exited. */
3669
3670 if (!stop_stack_dummy)
3671 {
0f7d239c 3672 select_frame (get_current_frame ());
c906108c
SS
3673
3674 /* Print current location without a level number, if
c5aa993b
JM
3675 we have changed functions or hit a breakpoint.
3676 Print source line if we have one.
3677 bpstat_print() contains the logic deciding in detail
3678 what to print, based on the event(s) that just occurred. */
c906108c 3679
d01a8610
AS
3680 /* If --batch-silent is enabled then there's no need to print the current
3681 source location, and to try risks causing an error message about
3682 missing source files. */
3683 if (stop_print_frame && !batch_silent)
c906108c
SS
3684 {
3685 int bpstat_ret;
3686 int source_flag;
917317f4 3687 int do_frame_printing = 1;
c906108c
SS
3688
3689 bpstat_ret = bpstat_print (stop_bpstat);
917317f4
JM
3690 switch (bpstat_ret)
3691 {
3692 case PRINT_UNKNOWN:
b0f4b84b
DJ
3693 /* If we had hit a shared library event breakpoint,
3694 bpstat_print would print out this message. If we hit
3695 an OS-level shared library event, do the same
3696 thing. */
3697 if (last.kind == TARGET_WAITKIND_LOADED)
3698 {
3699 printf_filtered (_("Stopped due to shared library event\n"));
3700 source_flag = SRC_LINE; /* something bogus */
3701 do_frame_printing = 0;
3702 break;
3703 }
3704
aa0cd9c1 3705 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
3706 (or should) carry around the function and does (or
3707 should) use that when doing a frame comparison. */
917317f4 3708 if (stop_step
aa0cd9c1
AC
3709 && frame_id_eq (step_frame_id,
3710 get_frame_id (get_current_frame ()))
917317f4 3711 && step_start_function == find_pc_function (stop_pc))
488f131b 3712 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 3713 else
488f131b 3714 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3715 break;
3716 case PRINT_SRC_AND_LOC:
488f131b 3717 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3718 break;
3719 case PRINT_SRC_ONLY:
c5394b80 3720 source_flag = SRC_LINE;
917317f4
JM
3721 break;
3722 case PRINT_NOTHING:
488f131b 3723 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
3724 do_frame_printing = 0;
3725 break;
3726 default:
e2e0b3e5 3727 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 3728 }
c906108c 3729
9dc5e2a9 3730 if (ui_out_is_mi_like_p (uiout))
39f77062 3731 ui_out_field_int (uiout, "thread-id",
488f131b 3732 pid_to_thread_id (inferior_ptid));
c906108c
SS
3733 /* The behavior of this routine with respect to the source
3734 flag is:
c5394b80
JM
3735 SRC_LINE: Print only source line
3736 LOCATION: Print only location
3737 SRC_AND_LOC: Print location and source line */
917317f4 3738 if (do_frame_printing)
b04f3ab4 3739 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
3740
3741 /* Display the auto-display expressions. */
3742 do_displays ();
3743 }
3744 }
3745
3746 /* Save the function value return registers, if we care.
3747 We might be about to restore their previous contents. */
3748 if (proceed_to_finish)
d5c31457
UW
3749 {
3750 /* This should not be necessary. */
3751 if (stop_registers)
3752 regcache_xfree (stop_registers);
3753
3754 /* NB: The copy goes through to the target picking up the value of
3755 all the registers. */
3756 stop_registers = regcache_dup (get_current_regcache ());
3757 }
c906108c
SS
3758
3759 if (stop_stack_dummy)
3760 {
dbe9fe58
AC
3761 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3762 ends with a setting of the current frame, so we can use that
3763 next. */
3764 frame_pop (get_current_frame ());
c906108c 3765 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
3766 Can't rely on restore_inferior_status because that only gets
3767 called if we don't stop in the called function. */
c906108c 3768 stop_pc = read_pc ();
0f7d239c 3769 select_frame (get_current_frame ());
c906108c
SS
3770 }
3771
c906108c
SS
3772done:
3773 annotate_stopped ();
7a464420 3774 observer_notify_normal_stop (stop_bpstat);
2cec12e5
AR
3775 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3776 Delete any breakpoint that is to be deleted at the next stop. */
3777 breakpoint_auto_delete (stop_bpstat);
c906108c
SS
3778}
3779
3780static int
96baa820 3781hook_stop_stub (void *cmd)
c906108c 3782{
5913bcb0 3783 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
3784 return (0);
3785}
3786\f
c5aa993b 3787int
96baa820 3788signal_stop_state (int signo)
c906108c 3789{
a0ef4274
DJ
3790 /* Always stop on signals if we're just gaining control of the
3791 program. */
3792 return signal_stop[signo] || stop_soon != NO_STOP_QUIETLY;
c906108c
SS
3793}
3794
c5aa993b 3795int
96baa820 3796signal_print_state (int signo)
c906108c
SS
3797{
3798 return signal_print[signo];
3799}
3800
c5aa993b 3801int
96baa820 3802signal_pass_state (int signo)
c906108c
SS
3803{
3804 return signal_program[signo];
3805}
3806
488f131b 3807int
7bda5e4a 3808signal_stop_update (int signo, int state)
d4f3574e
SS
3809{
3810 int ret = signal_stop[signo];
3811 signal_stop[signo] = state;
3812 return ret;
3813}
3814
488f131b 3815int
7bda5e4a 3816signal_print_update (int signo, int state)
d4f3574e
SS
3817{
3818 int ret = signal_print[signo];
3819 signal_print[signo] = state;
3820 return ret;
3821}
3822
488f131b 3823int
7bda5e4a 3824signal_pass_update (int signo, int state)
d4f3574e
SS
3825{
3826 int ret = signal_program[signo];
3827 signal_program[signo] = state;
3828 return ret;
3829}
3830
c906108c 3831static void
96baa820 3832sig_print_header (void)
c906108c 3833{
a3f17187
AC
3834 printf_filtered (_("\
3835Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
3836}
3837
3838static void
96baa820 3839sig_print_info (enum target_signal oursig)
c906108c
SS
3840{
3841 char *name = target_signal_to_name (oursig);
3842 int name_padding = 13 - strlen (name);
96baa820 3843
c906108c
SS
3844 if (name_padding <= 0)
3845 name_padding = 0;
3846
3847 printf_filtered ("%s", name);
488f131b 3848 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
3849 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3850 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3851 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3852 printf_filtered ("%s\n", target_signal_to_string (oursig));
3853}
3854
3855/* Specify how various signals in the inferior should be handled. */
3856
3857static void
96baa820 3858handle_command (char *args, int from_tty)
c906108c
SS
3859{
3860 char **argv;
3861 int digits, wordlen;
3862 int sigfirst, signum, siglast;
3863 enum target_signal oursig;
3864 int allsigs;
3865 int nsigs;
3866 unsigned char *sigs;
3867 struct cleanup *old_chain;
3868
3869 if (args == NULL)
3870 {
e2e0b3e5 3871 error_no_arg (_("signal to handle"));
c906108c
SS
3872 }
3873
3874 /* Allocate and zero an array of flags for which signals to handle. */
3875
3876 nsigs = (int) TARGET_SIGNAL_LAST;
3877 sigs = (unsigned char *) alloca (nsigs);
3878 memset (sigs, 0, nsigs);
3879
3880 /* Break the command line up into args. */
3881
3882 argv = buildargv (args);
3883 if (argv == NULL)
3884 {
3885 nomem (0);
3886 }
7a292a7a 3887 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3888
3889 /* Walk through the args, looking for signal oursigs, signal names, and
3890 actions. Signal numbers and signal names may be interspersed with
3891 actions, with the actions being performed for all signals cumulatively
3892 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3893
3894 while (*argv != NULL)
3895 {
3896 wordlen = strlen (*argv);
3897 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3898 {;
3899 }
3900 allsigs = 0;
3901 sigfirst = siglast = -1;
3902
3903 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3904 {
3905 /* Apply action to all signals except those used by the
3906 debugger. Silently skip those. */
3907 allsigs = 1;
3908 sigfirst = 0;
3909 siglast = nsigs - 1;
3910 }
3911 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3912 {
3913 SET_SIGS (nsigs, sigs, signal_stop);
3914 SET_SIGS (nsigs, sigs, signal_print);
3915 }
3916 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3917 {
3918 UNSET_SIGS (nsigs, sigs, signal_program);
3919 }
3920 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3921 {
3922 SET_SIGS (nsigs, sigs, signal_print);
3923 }
3924 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3925 {
3926 SET_SIGS (nsigs, sigs, signal_program);
3927 }
3928 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3929 {
3930 UNSET_SIGS (nsigs, sigs, signal_stop);
3931 }
3932 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3933 {
3934 SET_SIGS (nsigs, sigs, signal_program);
3935 }
3936 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3937 {
3938 UNSET_SIGS (nsigs, sigs, signal_print);
3939 UNSET_SIGS (nsigs, sigs, signal_stop);
3940 }
3941 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3942 {
3943 UNSET_SIGS (nsigs, sigs, signal_program);
3944 }
3945 else if (digits > 0)
3946 {
3947 /* It is numeric. The numeric signal refers to our own
3948 internal signal numbering from target.h, not to host/target
3949 signal number. This is a feature; users really should be
3950 using symbolic names anyway, and the common ones like
3951 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3952
3953 sigfirst = siglast = (int)
3954 target_signal_from_command (atoi (*argv));
3955 if ((*argv)[digits] == '-')
3956 {
3957 siglast = (int)
3958 target_signal_from_command (atoi ((*argv) + digits + 1));
3959 }
3960 if (sigfirst > siglast)
3961 {
3962 /* Bet he didn't figure we'd think of this case... */
3963 signum = sigfirst;
3964 sigfirst = siglast;
3965 siglast = signum;
3966 }
3967 }
3968 else
3969 {
3970 oursig = target_signal_from_name (*argv);
3971 if (oursig != TARGET_SIGNAL_UNKNOWN)
3972 {
3973 sigfirst = siglast = (int) oursig;
3974 }
3975 else
3976 {
3977 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 3978 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
3979 }
3980 }
3981
3982 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 3983 which signals to apply actions to. */
c906108c
SS
3984
3985 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3986 {
3987 switch ((enum target_signal) signum)
3988 {
3989 case TARGET_SIGNAL_TRAP:
3990 case TARGET_SIGNAL_INT:
3991 if (!allsigs && !sigs[signum])
3992 {
3993 if (query ("%s is used by the debugger.\n\
488f131b 3994Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
3995 {
3996 sigs[signum] = 1;
3997 }
3998 else
3999 {
a3f17187 4000 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
4001 gdb_flush (gdb_stdout);
4002 }
4003 }
4004 break;
4005 case TARGET_SIGNAL_0:
4006 case TARGET_SIGNAL_DEFAULT:
4007 case TARGET_SIGNAL_UNKNOWN:
4008 /* Make sure that "all" doesn't print these. */
4009 break;
4010 default:
4011 sigs[signum] = 1;
4012 break;
4013 }
4014 }
4015
4016 argv++;
4017 }
4018
39f77062 4019 target_notice_signals (inferior_ptid);
c906108c
SS
4020
4021 if (from_tty)
4022 {
4023 /* Show the results. */
4024 sig_print_header ();
4025 for (signum = 0; signum < nsigs; signum++)
4026 {
4027 if (sigs[signum])
4028 {
4029 sig_print_info (signum);
4030 }
4031 }
4032 }
4033
4034 do_cleanups (old_chain);
4035}
4036
4037static void
96baa820 4038xdb_handle_command (char *args, int from_tty)
c906108c
SS
4039{
4040 char **argv;
4041 struct cleanup *old_chain;
4042
4043 /* Break the command line up into args. */
4044
4045 argv = buildargv (args);
4046 if (argv == NULL)
4047 {
4048 nomem (0);
4049 }
7a292a7a 4050 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
4051 if (argv[1] != (char *) NULL)
4052 {
4053 char *argBuf;
4054 int bufLen;
4055
4056 bufLen = strlen (argv[0]) + 20;
4057 argBuf = (char *) xmalloc (bufLen);
4058 if (argBuf)
4059 {
4060 int validFlag = 1;
4061 enum target_signal oursig;
4062
4063 oursig = target_signal_from_name (argv[0]);
4064 memset (argBuf, 0, bufLen);
4065 if (strcmp (argv[1], "Q") == 0)
4066 sprintf (argBuf, "%s %s", argv[0], "noprint");
4067 else
4068 {
4069 if (strcmp (argv[1], "s") == 0)
4070 {
4071 if (!signal_stop[oursig])
4072 sprintf (argBuf, "%s %s", argv[0], "stop");
4073 else
4074 sprintf (argBuf, "%s %s", argv[0], "nostop");
4075 }
4076 else if (strcmp (argv[1], "i") == 0)
4077 {
4078 if (!signal_program[oursig])
4079 sprintf (argBuf, "%s %s", argv[0], "pass");
4080 else
4081 sprintf (argBuf, "%s %s", argv[0], "nopass");
4082 }
4083 else if (strcmp (argv[1], "r") == 0)
4084 {
4085 if (!signal_print[oursig])
4086 sprintf (argBuf, "%s %s", argv[0], "print");
4087 else
4088 sprintf (argBuf, "%s %s", argv[0], "noprint");
4089 }
4090 else
4091 validFlag = 0;
4092 }
4093 if (validFlag)
4094 handle_command (argBuf, from_tty);
4095 else
a3f17187 4096 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 4097 if (argBuf)
b8c9b27d 4098 xfree (argBuf);
c906108c
SS
4099 }
4100 }
4101 do_cleanups (old_chain);
4102}
4103
4104/* Print current contents of the tables set by the handle command.
4105 It is possible we should just be printing signals actually used
4106 by the current target (but for things to work right when switching
4107 targets, all signals should be in the signal tables). */
4108
4109static void
96baa820 4110signals_info (char *signum_exp, int from_tty)
c906108c
SS
4111{
4112 enum target_signal oursig;
4113 sig_print_header ();
4114
4115 if (signum_exp)
4116 {
4117 /* First see if this is a symbol name. */
4118 oursig = target_signal_from_name (signum_exp);
4119 if (oursig == TARGET_SIGNAL_UNKNOWN)
4120 {
4121 /* No, try numeric. */
4122 oursig =
bb518678 4123 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
4124 }
4125 sig_print_info (oursig);
4126 return;
4127 }
4128
4129 printf_filtered ("\n");
4130 /* These ugly casts brought to you by the native VAX compiler. */
4131 for (oursig = TARGET_SIGNAL_FIRST;
4132 (int) oursig < (int) TARGET_SIGNAL_LAST;
4133 oursig = (enum target_signal) ((int) oursig + 1))
4134 {
4135 QUIT;
4136
4137 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 4138 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
4139 sig_print_info (oursig);
4140 }
4141
a3f17187 4142 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c
SS
4143}
4144\f
7a292a7a
SS
4145struct inferior_status
4146{
4147 enum target_signal stop_signal;
4148 CORE_ADDR stop_pc;
4149 bpstat stop_bpstat;
4150 int stop_step;
4151 int stop_stack_dummy;
4152 int stopped_by_random_signal;
ca67fcb8 4153 int stepping_over_breakpoint;
7a292a7a
SS
4154 CORE_ADDR step_range_start;
4155 CORE_ADDR step_range_end;
aa0cd9c1 4156 struct frame_id step_frame_id;
5fbbeb29 4157 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
4158 CORE_ADDR step_resume_break_address;
4159 int stop_after_trap;
c0236d92 4160 int stop_soon;
7a292a7a
SS
4161
4162 /* These are here because if call_function_by_hand has written some
4163 registers and then decides to call error(), we better not have changed
4164 any registers. */
72cec141 4165 struct regcache *registers;
7a292a7a 4166
101dcfbe
AC
4167 /* A frame unique identifier. */
4168 struct frame_id selected_frame_id;
4169
7a292a7a
SS
4170 int breakpoint_proceeded;
4171 int restore_stack_info;
4172 int proceed_to_finish;
4173};
4174
7a292a7a 4175void
96baa820
JM
4176write_inferior_status_register (struct inferior_status *inf_status, int regno,
4177 LONGEST val)
7a292a7a 4178{
3acba339 4179 int size = register_size (current_gdbarch, regno);
7a292a7a
SS
4180 void *buf = alloca (size);
4181 store_signed_integer (buf, size, val);
0818c12a 4182 regcache_raw_write (inf_status->registers, regno, buf);
7a292a7a
SS
4183}
4184
c906108c
SS
4185/* Save all of the information associated with the inferior<==>gdb
4186 connection. INF_STATUS is a pointer to a "struct inferior_status"
4187 (defined in inferior.h). */
4188
7a292a7a 4189struct inferior_status *
96baa820 4190save_inferior_status (int restore_stack_info)
c906108c 4191{
72cec141 4192 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
7a292a7a 4193
c906108c
SS
4194 inf_status->stop_signal = stop_signal;
4195 inf_status->stop_pc = stop_pc;
4196 inf_status->stop_step = stop_step;
4197 inf_status->stop_stack_dummy = stop_stack_dummy;
4198 inf_status->stopped_by_random_signal = stopped_by_random_signal;
ca67fcb8 4199 inf_status->stepping_over_breakpoint = stepping_over_breakpoint;
c906108c
SS
4200 inf_status->step_range_start = step_range_start;
4201 inf_status->step_range_end = step_range_end;
aa0cd9c1 4202 inf_status->step_frame_id = step_frame_id;
c906108c
SS
4203 inf_status->step_over_calls = step_over_calls;
4204 inf_status->stop_after_trap = stop_after_trap;
c0236d92 4205 inf_status->stop_soon = stop_soon;
c906108c
SS
4206 /* Save original bpstat chain here; replace it with copy of chain.
4207 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
4208 hand them back the original chain when restore_inferior_status is
4209 called. */
c906108c
SS
4210 inf_status->stop_bpstat = stop_bpstat;
4211 stop_bpstat = bpstat_copy (stop_bpstat);
4212 inf_status->breakpoint_proceeded = breakpoint_proceeded;
4213 inf_status->restore_stack_info = restore_stack_info;
4214 inf_status->proceed_to_finish = proceed_to_finish;
c5aa993b 4215
594f7785 4216 inf_status->registers = regcache_dup (get_current_regcache ());
c906108c 4217
206415a3 4218 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
7a292a7a 4219 return inf_status;
c906108c
SS
4220}
4221
c906108c 4222static int
96baa820 4223restore_selected_frame (void *args)
c906108c 4224{
488f131b 4225 struct frame_id *fid = (struct frame_id *) args;
c906108c 4226 struct frame_info *frame;
c906108c 4227
101dcfbe 4228 frame = frame_find_by_id (*fid);
c906108c 4229
aa0cd9c1
AC
4230 /* If inf_status->selected_frame_id is NULL, there was no previously
4231 selected frame. */
101dcfbe 4232 if (frame == NULL)
c906108c 4233 {
8a3fe4f8 4234 warning (_("Unable to restore previously selected frame."));
c906108c
SS
4235 return 0;
4236 }
4237
0f7d239c 4238 select_frame (frame);
c906108c
SS
4239
4240 return (1);
4241}
4242
4243void
96baa820 4244restore_inferior_status (struct inferior_status *inf_status)
c906108c
SS
4245{
4246 stop_signal = inf_status->stop_signal;
4247 stop_pc = inf_status->stop_pc;
4248 stop_step = inf_status->stop_step;
4249 stop_stack_dummy = inf_status->stop_stack_dummy;
4250 stopped_by_random_signal = inf_status->stopped_by_random_signal;
ca67fcb8 4251 stepping_over_breakpoint = inf_status->stepping_over_breakpoint;
c906108c
SS
4252 step_range_start = inf_status->step_range_start;
4253 step_range_end = inf_status->step_range_end;
aa0cd9c1 4254 step_frame_id = inf_status->step_frame_id;
c906108c
SS
4255 step_over_calls = inf_status->step_over_calls;
4256 stop_after_trap = inf_status->stop_after_trap;
c0236d92 4257 stop_soon = inf_status->stop_soon;
c906108c
SS
4258 bpstat_clear (&stop_bpstat);
4259 stop_bpstat = inf_status->stop_bpstat;
4260 breakpoint_proceeded = inf_status->breakpoint_proceeded;
4261 proceed_to_finish = inf_status->proceed_to_finish;
4262
c906108c
SS
4263 /* The inferior can be gone if the user types "print exit(0)"
4264 (and perhaps other times). */
4265 if (target_has_execution)
72cec141 4266 /* NB: The register write goes through to the target. */
594f7785 4267 regcache_cpy (get_current_regcache (), inf_status->registers);
72cec141 4268 regcache_xfree (inf_status->registers);
c906108c 4269
c906108c
SS
4270 /* FIXME: If we are being called after stopping in a function which
4271 is called from gdb, we should not be trying to restore the
4272 selected frame; it just prints a spurious error message (The
4273 message is useful, however, in detecting bugs in gdb (like if gdb
4274 clobbers the stack)). In fact, should we be restoring the
4275 inferior status at all in that case? . */
4276
4277 if (target_has_stack && inf_status->restore_stack_info)
4278 {
c906108c 4279 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
4280 walking the stack might encounter a garbage pointer and
4281 error() trying to dereference it. */
488f131b
JB
4282 if (catch_errors
4283 (restore_selected_frame, &inf_status->selected_frame_id,
4284 "Unable to restore previously selected frame:\n",
4285 RETURN_MASK_ERROR) == 0)
c906108c
SS
4286 /* Error in restoring the selected frame. Select the innermost
4287 frame. */
0f7d239c 4288 select_frame (get_current_frame ());
c906108c
SS
4289
4290 }
c906108c 4291
72cec141 4292 xfree (inf_status);
7a292a7a 4293}
c906108c 4294
74b7792f
AC
4295static void
4296do_restore_inferior_status_cleanup (void *sts)
4297{
4298 restore_inferior_status (sts);
4299}
4300
4301struct cleanup *
4302make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
4303{
4304 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
4305}
4306
c906108c 4307void
96baa820 4308discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
4309{
4310 /* See save_inferior_status for info on stop_bpstat. */
4311 bpstat_clear (&inf_status->stop_bpstat);
72cec141 4312 regcache_xfree (inf_status->registers);
72cec141 4313 xfree (inf_status);
7a292a7a
SS
4314}
4315
47932f85
DJ
4316int
4317inferior_has_forked (int pid, int *child_pid)
4318{
4319 struct target_waitstatus last;
4320 ptid_t last_ptid;
4321
4322 get_last_target_status (&last_ptid, &last);
4323
4324 if (last.kind != TARGET_WAITKIND_FORKED)
4325 return 0;
4326
4327 if (ptid_get_pid (last_ptid) != pid)
4328 return 0;
4329
4330 *child_pid = last.value.related_pid;
4331 return 1;
4332}
4333
4334int
4335inferior_has_vforked (int pid, int *child_pid)
4336{
4337 struct target_waitstatus last;
4338 ptid_t last_ptid;
4339
4340 get_last_target_status (&last_ptid, &last);
4341
4342 if (last.kind != TARGET_WAITKIND_VFORKED)
4343 return 0;
4344
4345 if (ptid_get_pid (last_ptid) != pid)
4346 return 0;
4347
4348 *child_pid = last.value.related_pid;
4349 return 1;
4350}
4351
4352int
4353inferior_has_execd (int pid, char **execd_pathname)
4354{
4355 struct target_waitstatus last;
4356 ptid_t last_ptid;
4357
4358 get_last_target_status (&last_ptid, &last);
4359
4360 if (last.kind != TARGET_WAITKIND_EXECD)
4361 return 0;
4362
4363 if (ptid_get_pid (last_ptid) != pid)
4364 return 0;
4365
4366 *execd_pathname = xstrdup (last.value.execd_pathname);
4367 return 1;
4368}
4369
ca6724c1
KB
4370/* Oft used ptids */
4371ptid_t null_ptid;
4372ptid_t minus_one_ptid;
4373
4374/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 4375
ca6724c1
KB
4376ptid_t
4377ptid_build (int pid, long lwp, long tid)
4378{
4379 ptid_t ptid;
4380
4381 ptid.pid = pid;
4382 ptid.lwp = lwp;
4383 ptid.tid = tid;
4384 return ptid;
4385}
4386
4387/* Create a ptid from just a pid. */
4388
4389ptid_t
4390pid_to_ptid (int pid)
4391{
4392 return ptid_build (pid, 0, 0);
4393}
4394
4395/* Fetch the pid (process id) component from a ptid. */
4396
4397int
4398ptid_get_pid (ptid_t ptid)
4399{
4400 return ptid.pid;
4401}
4402
4403/* Fetch the lwp (lightweight process) component from a ptid. */
4404
4405long
4406ptid_get_lwp (ptid_t ptid)
4407{
4408 return ptid.lwp;
4409}
4410
4411/* Fetch the tid (thread id) component from a ptid. */
4412
4413long
4414ptid_get_tid (ptid_t ptid)
4415{
4416 return ptid.tid;
4417}
4418
4419/* ptid_equal() is used to test equality of two ptids. */
4420
4421int
4422ptid_equal (ptid_t ptid1, ptid_t ptid2)
4423{
4424 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 4425 && ptid1.tid == ptid2.tid);
ca6724c1
KB
4426}
4427
4428/* restore_inferior_ptid() will be used by the cleanup machinery
4429 to restore the inferior_ptid value saved in a call to
4430 save_inferior_ptid(). */
ce696e05
KB
4431
4432static void
4433restore_inferior_ptid (void *arg)
4434{
4435 ptid_t *saved_ptid_ptr = arg;
4436 inferior_ptid = *saved_ptid_ptr;
4437 xfree (arg);
4438}
4439
4440/* Save the value of inferior_ptid so that it may be restored by a
4441 later call to do_cleanups(). Returns the struct cleanup pointer
4442 needed for later doing the cleanup. */
4443
4444struct cleanup *
4445save_inferior_ptid (void)
4446{
4447 ptid_t *saved_ptid_ptr;
4448
4449 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
4450 *saved_ptid_ptr = inferior_ptid;
4451 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
4452}
c5aa993b 4453\f
488f131b 4454
c906108c 4455void
96baa820 4456_initialize_infrun (void)
c906108c 4457{
52f0bd74
AC
4458 int i;
4459 int numsigs;
c906108c
SS
4460 struct cmd_list_element *c;
4461
1bedd215
AC
4462 add_info ("signals", signals_info, _("\
4463What debugger does when program gets various signals.\n\
4464Specify a signal as argument to print info on that signal only."));
c906108c
SS
4465 add_info_alias ("handle", "signals", 0);
4466
1bedd215
AC
4467 add_com ("handle", class_run, handle_command, _("\
4468Specify how to handle a signal.\n\
c906108c
SS
4469Args are signals and actions to apply to those signals.\n\
4470Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4471from 1-15 are allowed for compatibility with old versions of GDB.\n\
4472Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4473The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
4474used by the debugger, typically SIGTRAP and SIGINT.\n\
4475Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
4476\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
4477Stop means reenter debugger if this signal happens (implies print).\n\
4478Print means print a message if this signal happens.\n\
4479Pass means let program see this signal; otherwise program doesn't know.\n\
4480Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 4481Pass and Stop may be combined."));
c906108c
SS
4482 if (xdb_commands)
4483 {
1bedd215
AC
4484 add_com ("lz", class_info, signals_info, _("\
4485What debugger does when program gets various signals.\n\
4486Specify a signal as argument to print info on that signal only."));
4487 add_com ("z", class_run, xdb_handle_command, _("\
4488Specify how to handle a signal.\n\
c906108c
SS
4489Args are signals and actions to apply to those signals.\n\
4490Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4491from 1-15 are allowed for compatibility with old versions of GDB.\n\
4492Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4493The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
4494used by the debugger, typically SIGTRAP and SIGINT.\n\
4495Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
4496\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4497nopass), \"Q\" (noprint)\n\
4498Stop means reenter debugger if this signal happens (implies print).\n\
4499Print means print a message if this signal happens.\n\
4500Pass means let program see this signal; otherwise program doesn't know.\n\
4501Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 4502Pass and Stop may be combined."));
c906108c
SS
4503 }
4504
4505 if (!dbx_commands)
1a966eab
AC
4506 stop_command = add_cmd ("stop", class_obscure,
4507 not_just_help_class_command, _("\
4508There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 4509This allows you to set a list of commands to be run each time execution\n\
1a966eab 4510of the program stops."), &cmdlist);
c906108c 4511
85c07804
AC
4512 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4513Set inferior debugging."), _("\
4514Show inferior debugging."), _("\
4515When non-zero, inferior specific debugging is enabled."),
4516 NULL,
920d2a44 4517 show_debug_infrun,
85c07804 4518 &setdebuglist, &showdebuglist);
527159b7 4519
237fc4c9
PA
4520 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
4521Set displaced stepping debugging."), _("\
4522Show displaced stepping debugging."), _("\
4523When non-zero, displaced stepping specific debugging is enabled."),
4524 NULL,
4525 show_debug_displaced,
4526 &setdebuglist, &showdebuglist);
4527
c906108c 4528 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 4529 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
4530 signal_print = (unsigned char *)
4531 xmalloc (sizeof (signal_print[0]) * numsigs);
4532 signal_program = (unsigned char *)
4533 xmalloc (sizeof (signal_program[0]) * numsigs);
4534 for (i = 0; i < numsigs; i++)
4535 {
4536 signal_stop[i] = 1;
4537 signal_print[i] = 1;
4538 signal_program[i] = 1;
4539 }
4540
4541 /* Signals caused by debugger's own actions
4542 should not be given to the program afterwards. */
4543 signal_program[TARGET_SIGNAL_TRAP] = 0;
4544 signal_program[TARGET_SIGNAL_INT] = 0;
4545
4546 /* Signals that are not errors should not normally enter the debugger. */
4547 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4548 signal_print[TARGET_SIGNAL_ALRM] = 0;
4549 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4550 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4551 signal_stop[TARGET_SIGNAL_PROF] = 0;
4552 signal_print[TARGET_SIGNAL_PROF] = 0;
4553 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4554 signal_print[TARGET_SIGNAL_CHLD] = 0;
4555 signal_stop[TARGET_SIGNAL_IO] = 0;
4556 signal_print[TARGET_SIGNAL_IO] = 0;
4557 signal_stop[TARGET_SIGNAL_POLL] = 0;
4558 signal_print[TARGET_SIGNAL_POLL] = 0;
4559 signal_stop[TARGET_SIGNAL_URG] = 0;
4560 signal_print[TARGET_SIGNAL_URG] = 0;
4561 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4562 signal_print[TARGET_SIGNAL_WINCH] = 0;
4563
cd0fc7c3
SS
4564 /* These signals are used internally by user-level thread
4565 implementations. (See signal(5) on Solaris.) Like the above
4566 signals, a healthy program receives and handles them as part of
4567 its normal operation. */
4568 signal_stop[TARGET_SIGNAL_LWP] = 0;
4569 signal_print[TARGET_SIGNAL_LWP] = 0;
4570 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4571 signal_print[TARGET_SIGNAL_WAITING] = 0;
4572 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4573 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4574
85c07804
AC
4575 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4576 &stop_on_solib_events, _("\
4577Set stopping for shared library events."), _("\
4578Show stopping for shared library events."), _("\
c906108c
SS
4579If nonzero, gdb will give control to the user when the dynamic linker\n\
4580notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
4581to the user would be loading/unloading of a new library."),
4582 NULL,
920d2a44 4583 show_stop_on_solib_events,
85c07804 4584 &setlist, &showlist);
c906108c 4585
7ab04401
AC
4586 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4587 follow_fork_mode_kind_names,
4588 &follow_fork_mode_string, _("\
4589Set debugger response to a program call of fork or vfork."), _("\
4590Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
4591A fork or vfork creates a new process. follow-fork-mode can be:\n\
4592 parent - the original process is debugged after a fork\n\
4593 child - the new process is debugged after a fork\n\
ea1dd7bc 4594The unfollowed process will continue to run.\n\
7ab04401
AC
4595By default, the debugger will follow the parent process."),
4596 NULL,
920d2a44 4597 show_follow_fork_mode_string,
7ab04401
AC
4598 &setlist, &showlist);
4599
4600 add_setshow_enum_cmd ("scheduler-locking", class_run,
4601 scheduler_enums, &scheduler_mode, _("\
4602Set mode for locking scheduler during execution."), _("\
4603Show mode for locking scheduler during execution."), _("\
c906108c
SS
4604off == no locking (threads may preempt at any time)\n\
4605on == full locking (no thread except the current thread may run)\n\
4606step == scheduler locked during every single-step operation.\n\
4607 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
4608 Other threads may run while stepping over a function call ('next')."),
4609 set_schedlock_func, /* traps on target vector */
920d2a44 4610 show_scheduler_mode,
7ab04401 4611 &setlist, &showlist);
5fbbeb29 4612
5bf193a2
AC
4613 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4614Set mode of the step operation."), _("\
4615Show mode of the step operation."), _("\
4616When set, doing a step over a function without debug line information\n\
4617will stop at the first instruction of that function. Otherwise, the\n\
4618function is skipped and the step command stops at a different source line."),
4619 NULL,
920d2a44 4620 show_step_stop_if_no_debug,
5bf193a2 4621 &setlist, &showlist);
ca6724c1 4622
237fc4c9
PA
4623 add_setshow_boolean_cmd ("can-use-displaced-stepping", class_maintenance,
4624 &can_use_displaced_stepping, _("\
4625Set debugger's willingness to use displaced stepping."), _("\
4626Show debugger's willingness to use displaced stepping."), _("\
4627If zero, gdb will not use to use displaced stepping to step over\n\
4628breakpoints, even if such is supported by the target."),
4629 NULL,
4630 show_can_use_displaced_stepping,
4631 &maintenance_set_cmdlist,
4632 &maintenance_show_cmdlist);
4633
4634
ca6724c1
KB
4635 /* ptid initializations */
4636 null_ptid = ptid_build (0, 0, 0);
4637 minus_one_ptid = ptid_build (-1, 0, 0);
4638 inferior_ptid = null_ptid;
4639 target_last_wait_ptid = minus_one_ptid;
237fc4c9 4640 displaced_step_ptid = null_ptid;
c906108c 4641}