]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/infrun.c
*** empty log message ***
[thirdparty/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca 4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1 5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
7b6bb8da 6 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
186c406b
TT
48#include "dictionary.h"
49#include "block.h"
9f976b41 50#include "gdb_assert.h"
034dad6f 51#include "mi/mi-common.h"
4f8d22e3 52#include "event-top.h"
96429cc8 53#include "record.h"
edb3359d 54#include "inline-frame.h"
4efc6507 55#include "jit.h"
06cd862c 56#include "tracepoint.h"
c906108c
SS
57
58/* Prototypes for local functions */
59
96baa820 60static void signals_info (char *, int);
c906108c 61
96baa820 62static void handle_command (char *, int);
c906108c 63
96baa820 64static void sig_print_info (enum target_signal);
c906108c 65
96baa820 66static void sig_print_header (void);
c906108c 67
74b7792f 68static void resume_cleanups (void *);
c906108c 69
96baa820 70static int hook_stop_stub (void *);
c906108c 71
96baa820
JM
72static int restore_selected_frame (void *);
73
4ef3f3be 74static int follow_fork (void);
96baa820
JM
75
76static void set_schedlock_func (char *args, int from_tty,
488f131b 77 struct cmd_list_element *c);
96baa820 78
a289b8f6
JK
79static int currently_stepping (struct thread_info *tp);
80
b3444185
PA
81static int currently_stepping_or_nexting_callback (struct thread_info *tp,
82 void *data);
a7212384 83
96baa820
JM
84static void xdb_handle_command (char *args, int from_tty);
85
6a6b96b9 86static int prepare_to_proceed (int);
ea67f13b 87
33d62d64
JK
88static void print_exited_reason (int exitstatus);
89
90static void print_signal_exited_reason (enum target_signal siggnal);
91
92static void print_no_history_reason (void);
93
94static void print_signal_received_reason (enum target_signal siggnal);
95
96static void print_end_stepping_range_reason (void);
97
96baa820 98void _initialize_infrun (void);
43ff13b4 99
e58b0e63
PA
100void nullify_last_target_wait_ptid (void);
101
2484c66b
UW
102static void insert_step_resume_breakpoint_at_frame (struct frame_info *);
103
104static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
105
106static void insert_step_resume_breakpoint_at_sal (struct gdbarch *,
107 struct symtab_and_line ,
108 struct frame_id);
109
110static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
111
5fbbeb29
CF
112/* When set, stop the 'step' command if we enter a function which has
113 no line number information. The normal behavior is that we step
114 over such function. */
115int step_stop_if_no_debug = 0;
920d2a44
AC
116static void
117show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119{
120 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
121}
5fbbeb29 122
1777feb0 123/* In asynchronous mode, but simulating synchronous execution. */
96baa820 124
43ff13b4
JM
125int sync_execution = 0;
126
c906108c
SS
127/* wait_for_inferior and normal_stop use this to notify the user
128 when the inferior stopped in a different thread than it had been
96baa820
JM
129 running in. */
130
39f77062 131static ptid_t previous_inferior_ptid;
7a292a7a 132
6c95b8df
PA
133/* Default behavior is to detach newly forked processes (legacy). */
134int detach_fork = 1;
135
237fc4c9
PA
136int debug_displaced = 0;
137static void
138show_debug_displaced (struct ui_file *file, int from_tty,
139 struct cmd_list_element *c, const char *value)
140{
141 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
142}
143
628fe4e4 144int debug_infrun = 0;
920d2a44
AC
145static void
146show_debug_infrun (struct ui_file *file, int from_tty,
147 struct cmd_list_element *c, const char *value)
148{
149 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
150}
527159b7 151
d4f3574e
SS
152/* If the program uses ELF-style shared libraries, then calls to
153 functions in shared libraries go through stubs, which live in a
154 table called the PLT (Procedure Linkage Table). The first time the
155 function is called, the stub sends control to the dynamic linker,
156 which looks up the function's real address, patches the stub so
157 that future calls will go directly to the function, and then passes
158 control to the function.
159
160 If we are stepping at the source level, we don't want to see any of
161 this --- we just want to skip over the stub and the dynamic linker.
162 The simple approach is to single-step until control leaves the
163 dynamic linker.
164
ca557f44
AC
165 However, on some systems (e.g., Red Hat's 5.2 distribution) the
166 dynamic linker calls functions in the shared C library, so you
167 can't tell from the PC alone whether the dynamic linker is still
168 running. In this case, we use a step-resume breakpoint to get us
169 past the dynamic linker, as if we were using "next" to step over a
170 function call.
d4f3574e 171
cfd8ab24 172 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
173 linker code or not. Normally, this means we single-step. However,
174 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
175 address where we can place a step-resume breakpoint to get past the
176 linker's symbol resolution function.
177
cfd8ab24 178 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
179 pretty portable way, by comparing the PC against the address ranges
180 of the dynamic linker's sections.
181
182 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
183 it depends on internal details of the dynamic linker. It's usually
184 not too hard to figure out where to put a breakpoint, but it
185 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
186 sanity checking. If it can't figure things out, returning zero and
187 getting the (possibly confusing) stepping behavior is better than
188 signalling an error, which will obscure the change in the
189 inferior's state. */
c906108c 190
c906108c
SS
191/* This function returns TRUE if pc is the address of an instruction
192 that lies within the dynamic linker (such as the event hook, or the
193 dld itself).
194
195 This function must be used only when a dynamic linker event has
196 been caught, and the inferior is being stepped out of the hook, or
197 undefined results are guaranteed. */
198
199#ifndef SOLIB_IN_DYNAMIC_LINKER
200#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
201#endif
202
d914c394
SS
203/* "Observer mode" is somewhat like a more extreme version of
204 non-stop, in which all GDB operations that might affect the
205 target's execution have been disabled. */
206
207static int non_stop_1 = 0;
208
209int observer_mode = 0;
210static int observer_mode_1 = 0;
211
212static void
213set_observer_mode (char *args, int from_tty,
214 struct cmd_list_element *c)
215{
216 extern int pagination_enabled;
217
218 if (target_has_execution)
219 {
220 observer_mode_1 = observer_mode;
221 error (_("Cannot change this setting while the inferior is running."));
222 }
223
224 observer_mode = observer_mode_1;
225
226 may_write_registers = !observer_mode;
227 may_write_memory = !observer_mode;
228 may_insert_breakpoints = !observer_mode;
229 may_insert_tracepoints = !observer_mode;
230 /* We can insert fast tracepoints in or out of observer mode,
231 but enable them if we're going into this mode. */
232 if (observer_mode)
233 may_insert_fast_tracepoints = 1;
234 may_stop = !observer_mode;
235 update_target_permissions ();
236
237 /* Going *into* observer mode we must force non-stop, then
238 going out we leave it that way. */
239 if (observer_mode)
240 {
241 target_async_permitted = 1;
242 pagination_enabled = 0;
243 non_stop = non_stop_1 = 1;
244 }
245
246 if (from_tty)
247 printf_filtered (_("Observer mode is now %s.\n"),
248 (observer_mode ? "on" : "off"));
249}
250
251static void
252show_observer_mode (struct ui_file *file, int from_tty,
253 struct cmd_list_element *c, const char *value)
254{
255 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
256}
257
258/* This updates the value of observer mode based on changes in
259 permissions. Note that we are deliberately ignoring the values of
260 may-write-registers and may-write-memory, since the user may have
261 reason to enable these during a session, for instance to turn on a
262 debugging-related global. */
263
264void
265update_observer_mode (void)
266{
267 int newval;
268
269 newval = (!may_insert_breakpoints
270 && !may_insert_tracepoints
271 && may_insert_fast_tracepoints
272 && !may_stop
273 && non_stop);
274
275 /* Let the user know if things change. */
276 if (newval != observer_mode)
277 printf_filtered (_("Observer mode is now %s.\n"),
278 (newval ? "on" : "off"));
279
280 observer_mode = observer_mode_1 = newval;
281}
c2c6d25f 282
c906108c
SS
283/* Tables of how to react to signals; the user sets them. */
284
285static unsigned char *signal_stop;
286static unsigned char *signal_print;
287static unsigned char *signal_program;
288
2455069d
UW
289/* Table of signals that the target may silently handle.
290 This is automatically determined from the flags above,
291 and simply cached here. */
292static unsigned char *signal_pass;
293
c906108c
SS
294#define SET_SIGS(nsigs,sigs,flags) \
295 do { \
296 int signum = (nsigs); \
297 while (signum-- > 0) \
298 if ((sigs)[signum]) \
299 (flags)[signum] = 1; \
300 } while (0)
301
302#define UNSET_SIGS(nsigs,sigs,flags) \
303 do { \
304 int signum = (nsigs); \
305 while (signum-- > 0) \
306 if ((sigs)[signum]) \
307 (flags)[signum] = 0; \
308 } while (0)
309
1777feb0 310/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 311
edb3359d 312#define RESUME_ALL minus_one_ptid
c906108c
SS
313
314/* Command list pointer for the "stop" placeholder. */
315
316static struct cmd_list_element *stop_command;
317
c906108c
SS
318/* Function inferior was in as of last step command. */
319
320static struct symbol *step_start_function;
321
c906108c
SS
322/* Nonzero if we want to give control to the user when we're notified
323 of shared library events by the dynamic linker. */
628fe4e4 324int stop_on_solib_events;
920d2a44
AC
325static void
326show_stop_on_solib_events (struct ui_file *file, int from_tty,
327 struct cmd_list_element *c, const char *value)
328{
329 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
330 value);
331}
c906108c 332
c906108c
SS
333/* Nonzero means expecting a trace trap
334 and should stop the inferior and return silently when it happens. */
335
336int stop_after_trap;
337
642fd101
DE
338/* Save register contents here when executing a "finish" command or are
339 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
340 Thus this contains the return value from the called function (assuming
341 values are returned in a register). */
342
72cec141 343struct regcache *stop_registers;
c906108c 344
c906108c
SS
345/* Nonzero after stop if current stack frame should be printed. */
346
347static int stop_print_frame;
348
e02bc4cc 349/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
350 returned by target_wait()/deprecated_target_wait_hook(). This
351 information is returned by get_last_target_status(). */
39f77062 352static ptid_t target_last_wait_ptid;
e02bc4cc
DS
353static struct target_waitstatus target_last_waitstatus;
354
0d1e5fa7
PA
355static void context_switch (ptid_t ptid);
356
4e1c45ea 357void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
358
359void init_infwait_state (void);
a474d7c2 360
53904c9e
AC
361static const char follow_fork_mode_child[] = "child";
362static const char follow_fork_mode_parent[] = "parent";
363
488f131b 364static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
365 follow_fork_mode_child,
366 follow_fork_mode_parent,
367 NULL
ef346e04 368};
c906108c 369
53904c9e 370static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
371static void
372show_follow_fork_mode_string (struct ui_file *file, int from_tty,
373 struct cmd_list_element *c, const char *value)
374{
3e43a32a
MS
375 fprintf_filtered (file,
376 _("Debugger response to a program "
377 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
378 value);
379}
c906108c
SS
380\f
381
e58b0e63
PA
382/* Tell the target to follow the fork we're stopped at. Returns true
383 if the inferior should be resumed; false, if the target for some
384 reason decided it's best not to resume. */
385
6604731b 386static int
4ef3f3be 387follow_fork (void)
c906108c 388{
ea1dd7bc 389 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
390 int should_resume = 1;
391 struct thread_info *tp;
392
393 /* Copy user stepping state to the new inferior thread. FIXME: the
394 followed fork child thread should have a copy of most of the
4e3990f4
DE
395 parent thread structure's run control related fields, not just these.
396 Initialized to avoid "may be used uninitialized" warnings from gcc. */
397 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 398 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
399 CORE_ADDR step_range_start = 0;
400 CORE_ADDR step_range_end = 0;
401 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
402
403 if (!non_stop)
404 {
405 ptid_t wait_ptid;
406 struct target_waitstatus wait_status;
407
408 /* Get the last target status returned by target_wait(). */
409 get_last_target_status (&wait_ptid, &wait_status);
410
411 /* If not stopped at a fork event, then there's nothing else to
412 do. */
413 if (wait_status.kind != TARGET_WAITKIND_FORKED
414 && wait_status.kind != TARGET_WAITKIND_VFORKED)
415 return 1;
416
417 /* Check if we switched over from WAIT_PTID, since the event was
418 reported. */
419 if (!ptid_equal (wait_ptid, minus_one_ptid)
420 && !ptid_equal (inferior_ptid, wait_ptid))
421 {
422 /* We did. Switch back to WAIT_PTID thread, to tell the
423 target to follow it (in either direction). We'll
424 afterwards refuse to resume, and inform the user what
425 happened. */
426 switch_to_thread (wait_ptid);
427 should_resume = 0;
428 }
429 }
430
431 tp = inferior_thread ();
432
433 /* If there were any forks/vforks that were caught and are now to be
434 followed, then do so now. */
435 switch (tp->pending_follow.kind)
436 {
437 case TARGET_WAITKIND_FORKED:
438 case TARGET_WAITKIND_VFORKED:
439 {
440 ptid_t parent, child;
441
442 /* If the user did a next/step, etc, over a fork call,
443 preserve the stepping state in the fork child. */
444 if (follow_child && should_resume)
445 {
8358c15c
JK
446 step_resume_breakpoint = clone_momentary_breakpoint
447 (tp->control.step_resume_breakpoint);
16c381f0
JK
448 step_range_start = tp->control.step_range_start;
449 step_range_end = tp->control.step_range_end;
450 step_frame_id = tp->control.step_frame_id;
186c406b
TT
451 exception_resume_breakpoint
452 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
e58b0e63
PA
453
454 /* For now, delete the parent's sr breakpoint, otherwise,
455 parent/child sr breakpoints are considered duplicates,
456 and the child version will not be installed. Remove
457 this when the breakpoints module becomes aware of
458 inferiors and address spaces. */
459 delete_step_resume_breakpoint (tp);
16c381f0
JK
460 tp->control.step_range_start = 0;
461 tp->control.step_range_end = 0;
462 tp->control.step_frame_id = null_frame_id;
186c406b 463 delete_exception_resume_breakpoint (tp);
e58b0e63
PA
464 }
465
466 parent = inferior_ptid;
467 child = tp->pending_follow.value.related_pid;
468
469 /* Tell the target to do whatever is necessary to follow
470 either parent or child. */
471 if (target_follow_fork (follow_child))
472 {
473 /* Target refused to follow, or there's some other reason
474 we shouldn't resume. */
475 should_resume = 0;
476 }
477 else
478 {
479 /* This pending follow fork event is now handled, one way
480 or another. The previous selected thread may be gone
481 from the lists by now, but if it is still around, need
482 to clear the pending follow request. */
e09875d4 483 tp = find_thread_ptid (parent);
e58b0e63
PA
484 if (tp)
485 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
486
487 /* This makes sure we don't try to apply the "Switched
488 over from WAIT_PID" logic above. */
489 nullify_last_target_wait_ptid ();
490
1777feb0 491 /* If we followed the child, switch to it... */
e58b0e63
PA
492 if (follow_child)
493 {
494 switch_to_thread (child);
495
496 /* ... and preserve the stepping state, in case the
497 user was stepping over the fork call. */
498 if (should_resume)
499 {
500 tp = inferior_thread ();
8358c15c
JK
501 tp->control.step_resume_breakpoint
502 = step_resume_breakpoint;
16c381f0
JK
503 tp->control.step_range_start = step_range_start;
504 tp->control.step_range_end = step_range_end;
505 tp->control.step_frame_id = step_frame_id;
186c406b
TT
506 tp->control.exception_resume_breakpoint
507 = exception_resume_breakpoint;
e58b0e63
PA
508 }
509 else
510 {
511 /* If we get here, it was because we're trying to
512 resume from a fork catchpoint, but, the user
513 has switched threads away from the thread that
514 forked. In that case, the resume command
515 issued is most likely not applicable to the
516 child, so just warn, and refuse to resume. */
3e43a32a
MS
517 warning (_("Not resuming: switched threads "
518 "before following fork child.\n"));
e58b0e63
PA
519 }
520
521 /* Reset breakpoints in the child as appropriate. */
522 follow_inferior_reset_breakpoints ();
523 }
524 else
525 switch_to_thread (parent);
526 }
527 }
528 break;
529 case TARGET_WAITKIND_SPURIOUS:
530 /* Nothing to follow. */
531 break;
532 default:
533 internal_error (__FILE__, __LINE__,
534 "Unexpected pending_follow.kind %d\n",
535 tp->pending_follow.kind);
536 break;
537 }
c906108c 538
e58b0e63 539 return should_resume;
c906108c
SS
540}
541
6604731b
DJ
542void
543follow_inferior_reset_breakpoints (void)
c906108c 544{
4e1c45ea
PA
545 struct thread_info *tp = inferior_thread ();
546
6604731b
DJ
547 /* Was there a step_resume breakpoint? (There was if the user
548 did a "next" at the fork() call.) If so, explicitly reset its
549 thread number.
550
551 step_resumes are a form of bp that are made to be per-thread.
552 Since we created the step_resume bp when the parent process
553 was being debugged, and now are switching to the child process,
554 from the breakpoint package's viewpoint, that's a switch of
555 "threads". We must update the bp's notion of which thread
556 it is for, or it'll be ignored when it triggers. */
557
8358c15c
JK
558 if (tp->control.step_resume_breakpoint)
559 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
6604731b 560
186c406b
TT
561 if (tp->control.exception_resume_breakpoint)
562 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
563
6604731b
DJ
564 /* Reinsert all breakpoints in the child. The user may have set
565 breakpoints after catching the fork, in which case those
566 were never set in the child, but only in the parent. This makes
567 sure the inserted breakpoints match the breakpoint list. */
568
569 breakpoint_re_set ();
570 insert_breakpoints ();
c906108c 571}
c906108c 572
6c95b8df
PA
573/* The child has exited or execed: resume threads of the parent the
574 user wanted to be executing. */
575
576static int
577proceed_after_vfork_done (struct thread_info *thread,
578 void *arg)
579{
580 int pid = * (int *) arg;
581
582 if (ptid_get_pid (thread->ptid) == pid
583 && is_running (thread->ptid)
584 && !is_executing (thread->ptid)
585 && !thread->stop_requested
16c381f0 586 && thread->suspend.stop_signal == TARGET_SIGNAL_0)
6c95b8df
PA
587 {
588 if (debug_infrun)
589 fprintf_unfiltered (gdb_stdlog,
590 "infrun: resuming vfork parent thread %s\n",
591 target_pid_to_str (thread->ptid));
592
593 switch_to_thread (thread->ptid);
594 clear_proceed_status ();
595 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
596 }
597
598 return 0;
599}
600
601/* Called whenever we notice an exec or exit event, to handle
602 detaching or resuming a vfork parent. */
603
604static void
605handle_vfork_child_exec_or_exit (int exec)
606{
607 struct inferior *inf = current_inferior ();
608
609 if (inf->vfork_parent)
610 {
611 int resume_parent = -1;
612
613 /* This exec or exit marks the end of the shared memory region
614 between the parent and the child. If the user wanted to
615 detach from the parent, now is the time. */
616
617 if (inf->vfork_parent->pending_detach)
618 {
619 struct thread_info *tp;
620 struct cleanup *old_chain;
621 struct program_space *pspace;
622 struct address_space *aspace;
623
1777feb0 624 /* follow-fork child, detach-on-fork on. */
6c95b8df
PA
625
626 old_chain = make_cleanup_restore_current_thread ();
627
628 /* We're letting loose of the parent. */
629 tp = any_live_thread_of_process (inf->vfork_parent->pid);
630 switch_to_thread (tp->ptid);
631
632 /* We're about to detach from the parent, which implicitly
633 removes breakpoints from its address space. There's a
634 catch here: we want to reuse the spaces for the child,
635 but, parent/child are still sharing the pspace at this
636 point, although the exec in reality makes the kernel give
637 the child a fresh set of new pages. The problem here is
638 that the breakpoints module being unaware of this, would
639 likely chose the child process to write to the parent
640 address space. Swapping the child temporarily away from
641 the spaces has the desired effect. Yes, this is "sort
642 of" a hack. */
643
644 pspace = inf->pspace;
645 aspace = inf->aspace;
646 inf->aspace = NULL;
647 inf->pspace = NULL;
648
649 if (debug_infrun || info_verbose)
650 {
651 target_terminal_ours ();
652
653 if (exec)
654 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
655 "Detaching vfork parent process "
656 "%d after child exec.\n",
6c95b8df
PA
657 inf->vfork_parent->pid);
658 else
659 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
660 "Detaching vfork parent process "
661 "%d after child exit.\n",
6c95b8df
PA
662 inf->vfork_parent->pid);
663 }
664
665 target_detach (NULL, 0);
666
667 /* Put it back. */
668 inf->pspace = pspace;
669 inf->aspace = aspace;
670
671 do_cleanups (old_chain);
672 }
673 else if (exec)
674 {
675 /* We're staying attached to the parent, so, really give the
676 child a new address space. */
677 inf->pspace = add_program_space (maybe_new_address_space ());
678 inf->aspace = inf->pspace->aspace;
679 inf->removable = 1;
680 set_current_program_space (inf->pspace);
681
682 resume_parent = inf->vfork_parent->pid;
683
684 /* Break the bonds. */
685 inf->vfork_parent->vfork_child = NULL;
686 }
687 else
688 {
689 struct cleanup *old_chain;
690 struct program_space *pspace;
691
692 /* If this is a vfork child exiting, then the pspace and
693 aspaces were shared with the parent. Since we're
694 reporting the process exit, we'll be mourning all that is
695 found in the address space, and switching to null_ptid,
696 preparing to start a new inferior. But, since we don't
697 want to clobber the parent's address/program spaces, we
698 go ahead and create a new one for this exiting
699 inferior. */
700
701 /* Switch to null_ptid, so that clone_program_space doesn't want
702 to read the selected frame of a dead process. */
703 old_chain = save_inferior_ptid ();
704 inferior_ptid = null_ptid;
705
706 /* This inferior is dead, so avoid giving the breakpoints
707 module the option to write through to it (cloning a
708 program space resets breakpoints). */
709 inf->aspace = NULL;
710 inf->pspace = NULL;
711 pspace = add_program_space (maybe_new_address_space ());
712 set_current_program_space (pspace);
713 inf->removable = 1;
714 clone_program_space (pspace, inf->vfork_parent->pspace);
715 inf->pspace = pspace;
716 inf->aspace = pspace->aspace;
717
718 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 719 inferior. */
6c95b8df
PA
720 do_cleanups (old_chain);
721
722 resume_parent = inf->vfork_parent->pid;
723 /* Break the bonds. */
724 inf->vfork_parent->vfork_child = NULL;
725 }
726
727 inf->vfork_parent = NULL;
728
729 gdb_assert (current_program_space == inf->pspace);
730
731 if (non_stop && resume_parent != -1)
732 {
733 /* If the user wanted the parent to be running, let it go
734 free now. */
735 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
736
737 if (debug_infrun)
3e43a32a
MS
738 fprintf_unfiltered (gdb_stdlog,
739 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
740 resume_parent);
741
742 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
743
744 do_cleanups (old_chain);
745 }
746 }
747}
748
749/* Enum strings for "set|show displaced-stepping". */
750
751static const char follow_exec_mode_new[] = "new";
752static const char follow_exec_mode_same[] = "same";
753static const char *follow_exec_mode_names[] =
754{
755 follow_exec_mode_new,
756 follow_exec_mode_same,
757 NULL,
758};
759
760static const char *follow_exec_mode_string = follow_exec_mode_same;
761static void
762show_follow_exec_mode_string (struct ui_file *file, int from_tty,
763 struct cmd_list_element *c, const char *value)
764{
765 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
766}
767
1777feb0 768/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 769
c906108c 770static void
3a3e9ee3 771follow_exec (ptid_t pid, char *execd_pathname)
c906108c 772{
4e1c45ea 773 struct thread_info *th = inferior_thread ();
6c95b8df 774 struct inferior *inf = current_inferior ();
7a292a7a 775
c906108c
SS
776 /* This is an exec event that we actually wish to pay attention to.
777 Refresh our symbol table to the newly exec'd program, remove any
778 momentary bp's, etc.
779
780 If there are breakpoints, they aren't really inserted now,
781 since the exec() transformed our inferior into a fresh set
782 of instructions.
783
784 We want to preserve symbolic breakpoints on the list, since
785 we have hopes that they can be reset after the new a.out's
786 symbol table is read.
787
788 However, any "raw" breakpoints must be removed from the list
789 (e.g., the solib bp's), since their address is probably invalid
790 now.
791
792 And, we DON'T want to call delete_breakpoints() here, since
793 that may write the bp's "shadow contents" (the instruction
794 value that was overwritten witha TRAP instruction). Since
1777feb0 795 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
796
797 mark_breakpoints_out ();
798
c906108c
SS
799 update_breakpoints_after_exec ();
800
801 /* If there was one, it's gone now. We cannot truly step-to-next
1777feb0 802 statement through an exec(). */
8358c15c 803 th->control.step_resume_breakpoint = NULL;
186c406b 804 th->control.exception_resume_breakpoint = NULL;
16c381f0
JK
805 th->control.step_range_start = 0;
806 th->control.step_range_end = 0;
c906108c 807
a75724bc
PA
808 /* The target reports the exec event to the main thread, even if
809 some other thread does the exec, and even if the main thread was
810 already stopped --- if debugging in non-stop mode, it's possible
811 the user had the main thread held stopped in the previous image
812 --- release it now. This is the same behavior as step-over-exec
813 with scheduler-locking on in all-stop mode. */
814 th->stop_requested = 0;
815
1777feb0 816 /* What is this a.out's name? */
6c95b8df
PA
817 printf_unfiltered (_("%s is executing new program: %s\n"),
818 target_pid_to_str (inferior_ptid),
819 execd_pathname);
c906108c
SS
820
821 /* We've followed the inferior through an exec. Therefore, the
1777feb0 822 inferior has essentially been killed & reborn. */
7a292a7a 823
c906108c 824 gdb_flush (gdb_stdout);
6ca15a4b
PA
825
826 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
827
828 if (gdb_sysroot && *gdb_sysroot)
829 {
830 char *name = alloca (strlen (gdb_sysroot)
831 + strlen (execd_pathname)
832 + 1);
abbb1732 833
e85a822c
DJ
834 strcpy (name, gdb_sysroot);
835 strcat (name, execd_pathname);
836 execd_pathname = name;
837 }
c906108c 838
cce9b6bf
PA
839 /* Reset the shared library package. This ensures that we get a
840 shlib event when the child reaches "_start", at which point the
841 dld will have had a chance to initialize the child. */
842 /* Also, loading a symbol file below may trigger symbol lookups, and
843 we don't want those to be satisfied by the libraries of the
844 previous incarnation of this process. */
845 no_shared_libraries (NULL, 0);
846
6c95b8df
PA
847 if (follow_exec_mode_string == follow_exec_mode_new)
848 {
849 struct program_space *pspace;
6c95b8df
PA
850
851 /* The user wants to keep the old inferior and program spaces
852 around. Create a new fresh one, and switch to it. */
853
854 inf = add_inferior (current_inferior ()->pid);
855 pspace = add_program_space (maybe_new_address_space ());
856 inf->pspace = pspace;
857 inf->aspace = pspace->aspace;
858
859 exit_inferior_num_silent (current_inferior ()->num);
860
861 set_current_inferior (inf);
862 set_current_program_space (pspace);
863 }
864
865 gdb_assert (current_program_space == inf->pspace);
866
1777feb0 867 /* That a.out is now the one to use. */
6c95b8df
PA
868 exec_file_attach (execd_pathname, 0);
869
c1e56572
JK
870 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
871 (Position Independent Executable) main symbol file will get applied by
872 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
873 the breakpoints with the zero displacement. */
874
875 symbol_file_add (execd_pathname, SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET,
876 NULL, 0);
877
878 set_initial_language ();
c906108c 879
7a292a7a 880#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 881 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2 882#else
268a4a75 883 solib_create_inferior_hook (0);
7a292a7a 884#endif
c906108c 885
4efc6507
DE
886 jit_inferior_created_hook ();
887
c1e56572
JK
888 breakpoint_re_set ();
889
c906108c
SS
890 /* Reinsert all breakpoints. (Those which were symbolic have
891 been reset to the proper address in the new a.out, thanks
1777feb0 892 to symbol_file_command...). */
c906108c
SS
893 insert_breakpoints ();
894
895 /* The next resume of this inferior should bring it to the shlib
896 startup breakpoints. (If the user had also set bp's on
897 "main" from the old (parent) process, then they'll auto-
1777feb0 898 matically get reset there in the new process.). */
c906108c
SS
899}
900
901/* Non-zero if we just simulating a single-step. This is needed
902 because we cannot remove the breakpoints in the inferior process
903 until after the `wait' in `wait_for_inferior'. */
904static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
905
906/* The thread we inserted single-step breakpoints for. */
907static ptid_t singlestep_ptid;
908
fd48f117
DJ
909/* PC when we started this single-step. */
910static CORE_ADDR singlestep_pc;
911
9f976b41
DJ
912/* If another thread hit the singlestep breakpoint, we save the original
913 thread here so that we can resume single-stepping it later. */
914static ptid_t saved_singlestep_ptid;
915static int stepping_past_singlestep_breakpoint;
6a6b96b9 916
ca67fcb8
VP
917/* If not equal to null_ptid, this means that after stepping over breakpoint
918 is finished, we need to switch to deferred_step_ptid, and step it.
919
920 The use case is when one thread has hit a breakpoint, and then the user
1777feb0 921 has switched to another thread and issued 'step'. We need to step over
ca67fcb8
VP
922 breakpoint in the thread which hit the breakpoint, but then continue
923 stepping the thread user has selected. */
924static ptid_t deferred_step_ptid;
c906108c 925\f
237fc4c9
PA
926/* Displaced stepping. */
927
928/* In non-stop debugging mode, we must take special care to manage
929 breakpoints properly; in particular, the traditional strategy for
930 stepping a thread past a breakpoint it has hit is unsuitable.
931 'Displaced stepping' is a tactic for stepping one thread past a
932 breakpoint it has hit while ensuring that other threads running
933 concurrently will hit the breakpoint as they should.
934
935 The traditional way to step a thread T off a breakpoint in a
936 multi-threaded program in all-stop mode is as follows:
937
938 a0) Initially, all threads are stopped, and breakpoints are not
939 inserted.
940 a1) We single-step T, leaving breakpoints uninserted.
941 a2) We insert breakpoints, and resume all threads.
942
943 In non-stop debugging, however, this strategy is unsuitable: we
944 don't want to have to stop all threads in the system in order to
945 continue or step T past a breakpoint. Instead, we use displaced
946 stepping:
947
948 n0) Initially, T is stopped, other threads are running, and
949 breakpoints are inserted.
950 n1) We copy the instruction "under" the breakpoint to a separate
951 location, outside the main code stream, making any adjustments
952 to the instruction, register, and memory state as directed by
953 T's architecture.
954 n2) We single-step T over the instruction at its new location.
955 n3) We adjust the resulting register and memory state as directed
956 by T's architecture. This includes resetting T's PC to point
957 back into the main instruction stream.
958 n4) We resume T.
959
960 This approach depends on the following gdbarch methods:
961
962 - gdbarch_max_insn_length and gdbarch_displaced_step_location
963 indicate where to copy the instruction, and how much space must
964 be reserved there. We use these in step n1.
965
966 - gdbarch_displaced_step_copy_insn copies a instruction to a new
967 address, and makes any necessary adjustments to the instruction,
968 register contents, and memory. We use this in step n1.
969
970 - gdbarch_displaced_step_fixup adjusts registers and memory after
971 we have successfuly single-stepped the instruction, to yield the
972 same effect the instruction would have had if we had executed it
973 at its original address. We use this in step n3.
974
975 - gdbarch_displaced_step_free_closure provides cleanup.
976
977 The gdbarch_displaced_step_copy_insn and
978 gdbarch_displaced_step_fixup functions must be written so that
979 copying an instruction with gdbarch_displaced_step_copy_insn,
980 single-stepping across the copied instruction, and then applying
981 gdbarch_displaced_insn_fixup should have the same effects on the
982 thread's memory and registers as stepping the instruction in place
983 would have. Exactly which responsibilities fall to the copy and
984 which fall to the fixup is up to the author of those functions.
985
986 See the comments in gdbarch.sh for details.
987
988 Note that displaced stepping and software single-step cannot
989 currently be used in combination, although with some care I think
990 they could be made to. Software single-step works by placing
991 breakpoints on all possible subsequent instructions; if the
992 displaced instruction is a PC-relative jump, those breakpoints
993 could fall in very strange places --- on pages that aren't
994 executable, or at addresses that are not proper instruction
995 boundaries. (We do generally let other threads run while we wait
996 to hit the software single-step breakpoint, and they might
997 encounter such a corrupted instruction.) One way to work around
998 this would be to have gdbarch_displaced_step_copy_insn fully
999 simulate the effect of PC-relative instructions (and return NULL)
1000 on architectures that use software single-stepping.
1001
1002 In non-stop mode, we can have independent and simultaneous step
1003 requests, so more than one thread may need to simultaneously step
1004 over a breakpoint. The current implementation assumes there is
1005 only one scratch space per process. In this case, we have to
1006 serialize access to the scratch space. If thread A wants to step
1007 over a breakpoint, but we are currently waiting for some other
1008 thread to complete a displaced step, we leave thread A stopped and
1009 place it in the displaced_step_request_queue. Whenever a displaced
1010 step finishes, we pick the next thread in the queue and start a new
1011 displaced step operation on it. See displaced_step_prepare and
1012 displaced_step_fixup for details. */
1013
237fc4c9
PA
1014struct displaced_step_request
1015{
1016 ptid_t ptid;
1017 struct displaced_step_request *next;
1018};
1019
fc1cf338
PA
1020/* Per-inferior displaced stepping state. */
1021struct displaced_step_inferior_state
1022{
1023 /* Pointer to next in linked list. */
1024 struct displaced_step_inferior_state *next;
1025
1026 /* The process this displaced step state refers to. */
1027 int pid;
1028
1029 /* A queue of pending displaced stepping requests. One entry per
1030 thread that needs to do a displaced step. */
1031 struct displaced_step_request *step_request_queue;
1032
1033 /* If this is not null_ptid, this is the thread carrying out a
1034 displaced single-step in process PID. This thread's state will
1035 require fixing up once it has completed its step. */
1036 ptid_t step_ptid;
1037
1038 /* The architecture the thread had when we stepped it. */
1039 struct gdbarch *step_gdbarch;
1040
1041 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1042 for post-step cleanup. */
1043 struct displaced_step_closure *step_closure;
1044
1045 /* The address of the original instruction, and the copy we
1046 made. */
1047 CORE_ADDR step_original, step_copy;
1048
1049 /* Saved contents of copy area. */
1050 gdb_byte *step_saved_copy;
1051};
1052
1053/* The list of states of processes involved in displaced stepping
1054 presently. */
1055static struct displaced_step_inferior_state *displaced_step_inferior_states;
1056
1057/* Get the displaced stepping state of process PID. */
1058
1059static struct displaced_step_inferior_state *
1060get_displaced_stepping_state (int pid)
1061{
1062 struct displaced_step_inferior_state *state;
1063
1064 for (state = displaced_step_inferior_states;
1065 state != NULL;
1066 state = state->next)
1067 if (state->pid == pid)
1068 return state;
1069
1070 return NULL;
1071}
1072
1073/* Add a new displaced stepping state for process PID to the displaced
1074 stepping state list, or return a pointer to an already existing
1075 entry, if it already exists. Never returns NULL. */
1076
1077static struct displaced_step_inferior_state *
1078add_displaced_stepping_state (int pid)
1079{
1080 struct displaced_step_inferior_state *state;
1081
1082 for (state = displaced_step_inferior_states;
1083 state != NULL;
1084 state = state->next)
1085 if (state->pid == pid)
1086 return state;
237fc4c9 1087
fc1cf338
PA
1088 state = xcalloc (1, sizeof (*state));
1089 state->pid = pid;
1090 state->next = displaced_step_inferior_states;
1091 displaced_step_inferior_states = state;
237fc4c9 1092
fc1cf338
PA
1093 return state;
1094}
1095
a42244db
YQ
1096/* If inferior is in displaced stepping, and ADDR equals to starting address
1097 of copy area, return corresponding displaced_step_closure. Otherwise,
1098 return NULL. */
1099
1100struct displaced_step_closure*
1101get_displaced_step_closure_by_addr (CORE_ADDR addr)
1102{
1103 struct displaced_step_inferior_state *displaced
1104 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1105
1106 /* If checking the mode of displaced instruction in copy area. */
1107 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1108 && (displaced->step_copy == addr))
1109 return displaced->step_closure;
1110
1111 return NULL;
1112}
1113
fc1cf338 1114/* Remove the displaced stepping state of process PID. */
237fc4c9 1115
fc1cf338
PA
1116static void
1117remove_displaced_stepping_state (int pid)
1118{
1119 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1120
fc1cf338
PA
1121 gdb_assert (pid != 0);
1122
1123 it = displaced_step_inferior_states;
1124 prev_next_p = &displaced_step_inferior_states;
1125 while (it)
1126 {
1127 if (it->pid == pid)
1128 {
1129 *prev_next_p = it->next;
1130 xfree (it);
1131 return;
1132 }
1133
1134 prev_next_p = &it->next;
1135 it = *prev_next_p;
1136 }
1137}
1138
1139static void
1140infrun_inferior_exit (struct inferior *inf)
1141{
1142 remove_displaced_stepping_state (inf->pid);
1143}
237fc4c9 1144
fff08868
HZ
1145/* Enum strings for "set|show displaced-stepping". */
1146
1147static const char can_use_displaced_stepping_auto[] = "auto";
1148static const char can_use_displaced_stepping_on[] = "on";
1149static const char can_use_displaced_stepping_off[] = "off";
1150static const char *can_use_displaced_stepping_enum[] =
1151{
1152 can_use_displaced_stepping_auto,
1153 can_use_displaced_stepping_on,
1154 can_use_displaced_stepping_off,
1155 NULL,
1156};
1157
1158/* If ON, and the architecture supports it, GDB will use displaced
1159 stepping to step over breakpoints. If OFF, or if the architecture
1160 doesn't support it, GDB will instead use the traditional
1161 hold-and-step approach. If AUTO (which is the default), GDB will
1162 decide which technique to use to step over breakpoints depending on
1163 which of all-stop or non-stop mode is active --- displaced stepping
1164 in non-stop mode; hold-and-step in all-stop mode. */
1165
1166static const char *can_use_displaced_stepping =
1167 can_use_displaced_stepping_auto;
1168
237fc4c9
PA
1169static void
1170show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1171 struct cmd_list_element *c,
1172 const char *value)
1173{
fff08868 1174 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
3e43a32a
MS
1175 fprintf_filtered (file,
1176 _("Debugger's willingness to use displaced stepping "
1177 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1178 value, non_stop ? "on" : "off");
1179 else
3e43a32a
MS
1180 fprintf_filtered (file,
1181 _("Debugger's willingness to use displaced stepping "
1182 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1183}
1184
fff08868
HZ
1185/* Return non-zero if displaced stepping can/should be used to step
1186 over breakpoints. */
1187
237fc4c9
PA
1188static int
1189use_displaced_stepping (struct gdbarch *gdbarch)
1190{
fff08868
HZ
1191 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1192 && non_stop)
1193 || can_use_displaced_stepping == can_use_displaced_stepping_on)
96429cc8
HZ
1194 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1195 && !RECORD_IS_USED);
237fc4c9
PA
1196}
1197
1198/* Clean out any stray displaced stepping state. */
1199static void
fc1cf338 1200displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1201{
1202 /* Indicate that there is no cleanup pending. */
fc1cf338 1203 displaced->step_ptid = null_ptid;
237fc4c9 1204
fc1cf338 1205 if (displaced->step_closure)
237fc4c9 1206 {
fc1cf338
PA
1207 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1208 displaced->step_closure);
1209 displaced->step_closure = NULL;
237fc4c9
PA
1210 }
1211}
1212
1213static void
fc1cf338 1214displaced_step_clear_cleanup (void *arg)
237fc4c9 1215{
fc1cf338
PA
1216 struct displaced_step_inferior_state *state = arg;
1217
1218 displaced_step_clear (state);
237fc4c9
PA
1219}
1220
1221/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1222void
1223displaced_step_dump_bytes (struct ui_file *file,
1224 const gdb_byte *buf,
1225 size_t len)
1226{
1227 int i;
1228
1229 for (i = 0; i < len; i++)
1230 fprintf_unfiltered (file, "%02x ", buf[i]);
1231 fputs_unfiltered ("\n", file);
1232}
1233
1234/* Prepare to single-step, using displaced stepping.
1235
1236 Note that we cannot use displaced stepping when we have a signal to
1237 deliver. If we have a signal to deliver and an instruction to step
1238 over, then after the step, there will be no indication from the
1239 target whether the thread entered a signal handler or ignored the
1240 signal and stepped over the instruction successfully --- both cases
1241 result in a simple SIGTRAP. In the first case we mustn't do a
1242 fixup, and in the second case we must --- but we can't tell which.
1243 Comments in the code for 'random signals' in handle_inferior_event
1244 explain how we handle this case instead.
1245
1246 Returns 1 if preparing was successful -- this thread is going to be
1247 stepped now; or 0 if displaced stepping this thread got queued. */
1248static int
1249displaced_step_prepare (ptid_t ptid)
1250{
ad53cd71 1251 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
1252 struct regcache *regcache = get_thread_regcache (ptid);
1253 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1254 CORE_ADDR original, copy;
1255 ULONGEST len;
1256 struct displaced_step_closure *closure;
fc1cf338 1257 struct displaced_step_inferior_state *displaced;
237fc4c9
PA
1258
1259 /* We should never reach this function if the architecture does not
1260 support displaced stepping. */
1261 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1262
fc1cf338
PA
1263 /* We have to displaced step one thread at a time, as we only have
1264 access to a single scratch space per inferior. */
237fc4c9 1265
fc1cf338
PA
1266 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1267
1268 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1269 {
1270 /* Already waiting for a displaced step to finish. Defer this
1271 request and place in queue. */
1272 struct displaced_step_request *req, *new_req;
1273
1274 if (debug_displaced)
1275 fprintf_unfiltered (gdb_stdlog,
1276 "displaced: defering step of %s\n",
1277 target_pid_to_str (ptid));
1278
1279 new_req = xmalloc (sizeof (*new_req));
1280 new_req->ptid = ptid;
1281 new_req->next = NULL;
1282
fc1cf338 1283 if (displaced->step_request_queue)
237fc4c9 1284 {
fc1cf338 1285 for (req = displaced->step_request_queue;
237fc4c9
PA
1286 req && req->next;
1287 req = req->next)
1288 ;
1289 req->next = new_req;
1290 }
1291 else
fc1cf338 1292 displaced->step_request_queue = new_req;
237fc4c9
PA
1293
1294 return 0;
1295 }
1296 else
1297 {
1298 if (debug_displaced)
1299 fprintf_unfiltered (gdb_stdlog,
1300 "displaced: stepping %s now\n",
1301 target_pid_to_str (ptid));
1302 }
1303
fc1cf338 1304 displaced_step_clear (displaced);
237fc4c9 1305
ad53cd71
PA
1306 old_cleanups = save_inferior_ptid ();
1307 inferior_ptid = ptid;
1308
515630c5 1309 original = regcache_read_pc (regcache);
237fc4c9
PA
1310
1311 copy = gdbarch_displaced_step_location (gdbarch);
1312 len = gdbarch_max_insn_length (gdbarch);
1313
1314 /* Save the original contents of the copy area. */
fc1cf338 1315 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1316 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338
PA
1317 &displaced->step_saved_copy);
1318 read_memory (copy, displaced->step_saved_copy, len);
237fc4c9
PA
1319 if (debug_displaced)
1320 {
5af949e3
UW
1321 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1322 paddress (gdbarch, copy));
fc1cf338
PA
1323 displaced_step_dump_bytes (gdb_stdlog,
1324 displaced->step_saved_copy,
1325 len);
237fc4c9
PA
1326 };
1327
1328 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1329 original, copy, regcache);
237fc4c9
PA
1330
1331 /* We don't support the fully-simulated case at present. */
1332 gdb_assert (closure);
1333
9f5a595d
UW
1334 /* Save the information we need to fix things up if the step
1335 succeeds. */
fc1cf338
PA
1336 displaced->step_ptid = ptid;
1337 displaced->step_gdbarch = gdbarch;
1338 displaced->step_closure = closure;
1339 displaced->step_original = original;
1340 displaced->step_copy = copy;
9f5a595d 1341
fc1cf338 1342 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1343
1344 /* Resume execution at the copy. */
515630c5 1345 regcache_write_pc (regcache, copy);
237fc4c9 1346
ad53cd71
PA
1347 discard_cleanups (ignore_cleanups);
1348
1349 do_cleanups (old_cleanups);
237fc4c9
PA
1350
1351 if (debug_displaced)
5af949e3
UW
1352 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1353 paddress (gdbarch, copy));
237fc4c9 1354
237fc4c9
PA
1355 return 1;
1356}
1357
237fc4c9 1358static void
3e43a32a
MS
1359write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1360 const gdb_byte *myaddr, int len)
237fc4c9
PA
1361{
1362 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1363
237fc4c9
PA
1364 inferior_ptid = ptid;
1365 write_memory (memaddr, myaddr, len);
1366 do_cleanups (ptid_cleanup);
1367}
1368
1369static void
1370displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1371{
1372 struct cleanup *old_cleanups;
fc1cf338
PA
1373 struct displaced_step_inferior_state *displaced
1374 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1375
1376 /* Was any thread of this process doing a displaced step? */
1377 if (displaced == NULL)
1378 return;
237fc4c9
PA
1379
1380 /* Was this event for the pid we displaced? */
fc1cf338
PA
1381 if (ptid_equal (displaced->step_ptid, null_ptid)
1382 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1383 return;
1384
fc1cf338 1385 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1386
1387 /* Restore the contents of the copy area. */
1388 {
fc1cf338 1389 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
abbb1732 1390
fc1cf338
PA
1391 write_memory_ptid (displaced->step_ptid, displaced->step_copy,
1392 displaced->step_saved_copy, len);
237fc4c9 1393 if (debug_displaced)
5af949e3 1394 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s\n",
fc1cf338
PA
1395 paddress (displaced->step_gdbarch,
1396 displaced->step_copy));
237fc4c9
PA
1397 }
1398
1399 /* Did the instruction complete successfully? */
1400 if (signal == TARGET_SIGNAL_TRAP)
1401 {
1402 /* Fix up the resulting state. */
fc1cf338
PA
1403 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1404 displaced->step_closure,
1405 displaced->step_original,
1406 displaced->step_copy,
1407 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1408 }
1409 else
1410 {
1411 /* Since the instruction didn't complete, all we can do is
1412 relocate the PC. */
515630c5
UW
1413 struct regcache *regcache = get_thread_regcache (event_ptid);
1414 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1415
fc1cf338 1416 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1417 regcache_write_pc (regcache, pc);
237fc4c9
PA
1418 }
1419
1420 do_cleanups (old_cleanups);
1421
fc1cf338 1422 displaced->step_ptid = null_ptid;
1c5cfe86 1423
237fc4c9 1424 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1425 one now. Leave the state object around, since we're likely to
1426 need it again soon. */
1427 while (displaced->step_request_queue)
237fc4c9
PA
1428 {
1429 struct displaced_step_request *head;
1430 ptid_t ptid;
5af949e3 1431 struct regcache *regcache;
929dfd4f 1432 struct gdbarch *gdbarch;
1c5cfe86 1433 CORE_ADDR actual_pc;
6c95b8df 1434 struct address_space *aspace;
237fc4c9 1435
fc1cf338 1436 head = displaced->step_request_queue;
237fc4c9 1437 ptid = head->ptid;
fc1cf338 1438 displaced->step_request_queue = head->next;
237fc4c9
PA
1439 xfree (head);
1440
ad53cd71
PA
1441 context_switch (ptid);
1442
5af949e3
UW
1443 regcache = get_thread_regcache (ptid);
1444 actual_pc = regcache_read_pc (regcache);
6c95b8df 1445 aspace = get_regcache_aspace (regcache);
1c5cfe86 1446
6c95b8df 1447 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1448 {
1c5cfe86
PA
1449 if (debug_displaced)
1450 fprintf_unfiltered (gdb_stdlog,
1451 "displaced: stepping queued %s now\n",
1452 target_pid_to_str (ptid));
1453
1454 displaced_step_prepare (ptid);
1455
929dfd4f
JB
1456 gdbarch = get_regcache_arch (regcache);
1457
1c5cfe86
PA
1458 if (debug_displaced)
1459 {
929dfd4f 1460 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1461 gdb_byte buf[4];
1462
5af949e3
UW
1463 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1464 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1465 read_memory (actual_pc, buf, sizeof (buf));
1466 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1467 }
1468
fc1cf338
PA
1469 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1470 displaced->step_closure))
929dfd4f 1471 target_resume (ptid, 1, TARGET_SIGNAL_0);
99e40580
UW
1472 else
1473 target_resume (ptid, 0, TARGET_SIGNAL_0);
1c5cfe86
PA
1474
1475 /* Done, we're stepping a thread. */
1476 break;
ad53cd71 1477 }
1c5cfe86
PA
1478 else
1479 {
1480 int step;
1481 struct thread_info *tp = inferior_thread ();
1482
1483 /* The breakpoint we were sitting under has since been
1484 removed. */
16c381f0 1485 tp->control.trap_expected = 0;
1c5cfe86
PA
1486
1487 /* Go back to what we were trying to do. */
1488 step = currently_stepping (tp);
ad53cd71 1489
1c5cfe86 1490 if (debug_displaced)
3e43a32a
MS
1491 fprintf_unfiltered (gdb_stdlog,
1492 "breakpoint is gone %s: step(%d)\n",
1c5cfe86
PA
1493 target_pid_to_str (tp->ptid), step);
1494
1495 target_resume (ptid, step, TARGET_SIGNAL_0);
16c381f0 1496 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1c5cfe86
PA
1497
1498 /* This request was discarded. See if there's any other
1499 thread waiting for its turn. */
1500 }
237fc4c9
PA
1501 }
1502}
1503
5231c1fd
PA
1504/* Update global variables holding ptids to hold NEW_PTID if they were
1505 holding OLD_PTID. */
1506static void
1507infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1508{
1509 struct displaced_step_request *it;
fc1cf338 1510 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1511
1512 if (ptid_equal (inferior_ptid, old_ptid))
1513 inferior_ptid = new_ptid;
1514
1515 if (ptid_equal (singlestep_ptid, old_ptid))
1516 singlestep_ptid = new_ptid;
1517
5231c1fd
PA
1518 if (ptid_equal (deferred_step_ptid, old_ptid))
1519 deferred_step_ptid = new_ptid;
1520
fc1cf338
PA
1521 for (displaced = displaced_step_inferior_states;
1522 displaced;
1523 displaced = displaced->next)
1524 {
1525 if (ptid_equal (displaced->step_ptid, old_ptid))
1526 displaced->step_ptid = new_ptid;
1527
1528 for (it = displaced->step_request_queue; it; it = it->next)
1529 if (ptid_equal (it->ptid, old_ptid))
1530 it->ptid = new_ptid;
1531 }
5231c1fd
PA
1532}
1533
237fc4c9
PA
1534\f
1535/* Resuming. */
c906108c
SS
1536
1537/* Things to clean up if we QUIT out of resume (). */
c906108c 1538static void
74b7792f 1539resume_cleanups (void *ignore)
c906108c
SS
1540{
1541 normal_stop ();
1542}
1543
53904c9e
AC
1544static const char schedlock_off[] = "off";
1545static const char schedlock_on[] = "on";
1546static const char schedlock_step[] = "step";
488f131b 1547static const char *scheduler_enums[] = {
ef346e04
AC
1548 schedlock_off,
1549 schedlock_on,
1550 schedlock_step,
1551 NULL
1552};
920d2a44
AC
1553static const char *scheduler_mode = schedlock_off;
1554static void
1555show_scheduler_mode (struct ui_file *file, int from_tty,
1556 struct cmd_list_element *c, const char *value)
1557{
3e43a32a
MS
1558 fprintf_filtered (file,
1559 _("Mode for locking scheduler "
1560 "during execution is \"%s\".\n"),
920d2a44
AC
1561 value);
1562}
c906108c
SS
1563
1564static void
96baa820 1565set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1566{
eefe576e
AC
1567 if (!target_can_lock_scheduler)
1568 {
1569 scheduler_mode = schedlock_off;
1570 error (_("Target '%s' cannot support this command."), target_shortname);
1571 }
c906108c
SS
1572}
1573
d4db2f36
PA
1574/* True if execution commands resume all threads of all processes by
1575 default; otherwise, resume only threads of the current inferior
1576 process. */
1577int sched_multi = 0;
1578
2facfe5c
DD
1579/* Try to setup for software single stepping over the specified location.
1580 Return 1 if target_resume() should use hardware single step.
1581
1582 GDBARCH the current gdbarch.
1583 PC the location to step over. */
1584
1585static int
1586maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1587{
1588 int hw_step = 1;
1589
f02253f1
HZ
1590 if (execution_direction == EXEC_FORWARD
1591 && gdbarch_software_single_step_p (gdbarch)
99e40580 1592 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1593 {
99e40580
UW
1594 hw_step = 0;
1595 /* Do not pull these breakpoints until after a `wait' in
1777feb0 1596 `wait_for_inferior'. */
99e40580
UW
1597 singlestep_breakpoints_inserted_p = 1;
1598 singlestep_ptid = inferior_ptid;
1599 singlestep_pc = pc;
2facfe5c
DD
1600 }
1601 return hw_step;
1602}
c906108c
SS
1603
1604/* Resume the inferior, but allow a QUIT. This is useful if the user
1605 wants to interrupt some lengthy single-stepping operation
1606 (for child processes, the SIGINT goes to the inferior, and so
1607 we get a SIGINT random_signal, but for remote debugging and perhaps
1608 other targets, that's not true).
1609
1610 STEP nonzero if we should step (zero to continue instead).
1611 SIG is the signal to give the inferior (zero for none). */
1612void
96baa820 1613resume (int step, enum target_signal sig)
c906108c
SS
1614{
1615 int should_resume = 1;
74b7792f 1616 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1617 struct regcache *regcache = get_current_regcache ();
1618 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1619 struct thread_info *tp = inferior_thread ();
515630c5 1620 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1621 struct address_space *aspace = get_regcache_aspace (regcache);
c7e8a53c 1622
c906108c
SS
1623 QUIT;
1624
74609e71
YQ
1625 if (current_inferior ()->waiting_for_vfork_done)
1626 {
48f9886d
PA
1627 /* Don't try to single-step a vfork parent that is waiting for
1628 the child to get out of the shared memory region (by exec'ing
1629 or exiting). This is particularly important on software
1630 single-step archs, as the child process would trip on the
1631 software single step breakpoint inserted for the parent
1632 process. Since the parent will not actually execute any
1633 instruction until the child is out of the shared region (such
1634 are vfork's semantics), it is safe to simply continue it.
1635 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1636 the parent, and tell it to `keep_going', which automatically
1637 re-sets it stepping. */
74609e71
YQ
1638 if (debug_infrun)
1639 fprintf_unfiltered (gdb_stdlog,
1640 "infrun: resume : clear step\n");
1641 step = 0;
1642 }
1643
527159b7 1644 if (debug_infrun)
237fc4c9
PA
1645 fprintf_unfiltered (gdb_stdlog,
1646 "infrun: resume (step=%d, signal=%d), "
4e1c45ea 1647 "trap_expected=%d\n",
16c381f0 1648 step, sig, tp->control.trap_expected);
c906108c 1649
c2c6d25f
JM
1650 /* Normally, by the time we reach `resume', the breakpoints are either
1651 removed or inserted, as appropriate. The exception is if we're sitting
1652 at a permanent breakpoint; we need to step over it, but permanent
1653 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1654 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1655 {
515630c5
UW
1656 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1657 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5 1658 else
ac74f770
MS
1659 error (_("\
1660The program is stopped at a permanent breakpoint, but GDB does not know\n\
1661how to step past a permanent breakpoint on this architecture. Try using\n\
1662a command like `return' or `jump' to continue execution."));
6d350bb5 1663 }
c2c6d25f 1664
237fc4c9
PA
1665 /* If enabled, step over breakpoints by executing a copy of the
1666 instruction at a different address.
1667
1668 We can't use displaced stepping when we have a signal to deliver;
1669 the comments for displaced_step_prepare explain why. The
1670 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
1671 signals' explain what we do instead.
1672
1673 We can't use displaced stepping when we are waiting for vfork_done
1674 event, displaced stepping breaks the vfork child similarly as single
1675 step software breakpoint. */
515630c5 1676 if (use_displaced_stepping (gdbarch)
16c381f0 1677 && (tp->control.trap_expected
929dfd4f 1678 || (step && gdbarch_software_single_step_p (gdbarch)))
74609e71
YQ
1679 && sig == TARGET_SIGNAL_0
1680 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 1681 {
fc1cf338
PA
1682 struct displaced_step_inferior_state *displaced;
1683
237fc4c9 1684 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1685 {
1686 /* Got placed in displaced stepping queue. Will be resumed
1687 later when all the currently queued displaced stepping
7f7efbd9
VP
1688 requests finish. The thread is not executing at this point,
1689 and the call to set_executing will be made later. But we
1690 need to call set_running here, since from frontend point of view,
1691 the thread is running. */
1692 set_running (inferior_ptid, 1);
d56b7306
VP
1693 discard_cleanups (old_cleanups);
1694 return;
1695 }
99e40580 1696
fc1cf338
PA
1697 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1698 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1699 displaced->step_closure);
237fc4c9
PA
1700 }
1701
2facfe5c 1702 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1703 else if (step)
2facfe5c 1704 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1705
30852783
UW
1706 /* Currently, our software single-step implementation leads to different
1707 results than hardware single-stepping in one situation: when stepping
1708 into delivering a signal which has an associated signal handler,
1709 hardware single-step will stop at the first instruction of the handler,
1710 while software single-step will simply skip execution of the handler.
1711
1712 For now, this difference in behavior is accepted since there is no
1713 easy way to actually implement single-stepping into a signal handler
1714 without kernel support.
1715
1716 However, there is one scenario where this difference leads to follow-on
1717 problems: if we're stepping off a breakpoint by removing all breakpoints
1718 and then single-stepping. In this case, the software single-step
1719 behavior means that even if there is a *breakpoint* in the signal
1720 handler, GDB still would not stop.
1721
1722 Fortunately, we can at least fix this particular issue. We detect
1723 here the case where we are about to deliver a signal while software
1724 single-stepping with breakpoints removed. In this situation, we
1725 revert the decisions to remove all breakpoints and insert single-
1726 step breakpoints, and instead we install a step-resume breakpoint
1727 at the current address, deliver the signal without stepping, and
1728 once we arrive back at the step-resume breakpoint, actually step
1729 over the breakpoint we originally wanted to step over. */
1730 if (singlestep_breakpoints_inserted_p
1731 && tp->control.trap_expected && sig != TARGET_SIGNAL_0)
1732 {
1733 /* If we have nested signals or a pending signal is delivered
1734 immediately after a handler returns, might might already have
1735 a step-resume breakpoint set on the earlier handler. We cannot
1736 set another step-resume breakpoint; just continue on until the
1737 original breakpoint is hit. */
1738 if (tp->control.step_resume_breakpoint == NULL)
1739 {
1740 insert_step_resume_breakpoint_at_frame (get_current_frame ());
1741 tp->step_after_step_resume_breakpoint = 1;
1742 }
1743
1744 remove_single_step_breakpoints ();
1745 singlestep_breakpoints_inserted_p = 0;
1746
1747 insert_breakpoints ();
1748 tp->control.trap_expected = 0;
1749 }
1750
c906108c
SS
1751 if (should_resume)
1752 {
39f77062 1753 ptid_t resume_ptid;
dfcd3bfb 1754
cd76b0b7
VP
1755 /* If STEP is set, it's a request to use hardware stepping
1756 facilities. But in that case, we should never
1757 use singlestep breakpoint. */
1758 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1759
d4db2f36
PA
1760 /* Decide the set of threads to ask the target to resume. Start
1761 by assuming everything will be resumed, than narrow the set
1762 by applying increasingly restricting conditions. */
1763
1764 /* By default, resume all threads of all processes. */
1765 resume_ptid = RESUME_ALL;
1766
1767 /* Maybe resume only all threads of the current process. */
1768 if (!sched_multi && target_supports_multi_process ())
1769 {
1770 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1771 }
1772
1773 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1774 if (singlestep_breakpoints_inserted_p
1775 && stepping_past_singlestep_breakpoint)
c906108c 1776 {
cd76b0b7
VP
1777 /* The situation here is as follows. In thread T1 we wanted to
1778 single-step. Lacking hardware single-stepping we've
1779 set breakpoint at the PC of the next instruction -- call it
1780 P. After resuming, we've hit that breakpoint in thread T2.
1781 Now we've removed original breakpoint, inserted breakpoint
1782 at P+1, and try to step to advance T2 past breakpoint.
1783 We need to step only T2, as if T1 is allowed to freely run,
1784 it can run past P, and if other threads are allowed to run,
1785 they can hit breakpoint at P+1, and nested hits of single-step
1786 breakpoints is not something we'd want -- that's complicated
1787 to support, and has no value. */
1788 resume_ptid = inferior_ptid;
1789 }
d4db2f36 1790 else if ((step || singlestep_breakpoints_inserted_p)
16c381f0 1791 && tp->control.trap_expected)
cd76b0b7 1792 {
74960c60
VP
1793 /* We're allowing a thread to run past a breakpoint it has
1794 hit, by single-stepping the thread with the breakpoint
1795 removed. In which case, we need to single-step only this
1796 thread, and keep others stopped, as they can miss this
1797 breakpoint if allowed to run.
1798
1799 The current code actually removes all breakpoints when
1800 doing this, not just the one being stepped over, so if we
1801 let other threads run, we can actually miss any
1802 breakpoint, not just the one at PC. */
ef5cf84e 1803 resume_ptid = inferior_ptid;
c906108c 1804 }
d4db2f36 1805 else if (non_stop)
94cc34af
PA
1806 {
1807 /* With non-stop mode on, threads are always handled
1808 individually. */
1809 resume_ptid = inferior_ptid;
1810 }
1811 else if ((scheduler_mode == schedlock_on)
1812 || (scheduler_mode == schedlock_step
1813 && (step || singlestep_breakpoints_inserted_p)))
c906108c 1814 {
1777feb0 1815 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 1816 resume_ptid = inferior_ptid;
c906108c 1817 }
ef5cf84e 1818
515630c5 1819 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1820 {
1821 /* Most targets can step a breakpoint instruction, thus
1822 executing it normally. But if this one cannot, just
1823 continue and we will hit it anyway. */
6c95b8df 1824 if (step && breakpoint_inserted_here_p (aspace, pc))
c4ed33b9
AC
1825 step = 0;
1826 }
237fc4c9
PA
1827
1828 if (debug_displaced
515630c5 1829 && use_displaced_stepping (gdbarch)
16c381f0 1830 && tp->control.trap_expected)
237fc4c9 1831 {
515630c5 1832 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1833 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1834 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1835 gdb_byte buf[4];
1836
5af949e3
UW
1837 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1838 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1839 read_memory (actual_pc, buf, sizeof (buf));
1840 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1841 }
1842
e58b0e63
PA
1843 /* Install inferior's terminal modes. */
1844 target_terminal_inferior ();
1845
2020b7ab
PA
1846 /* Avoid confusing the next resume, if the next stop/resume
1847 happens to apply to another thread. */
16c381f0 1848 tp->suspend.stop_signal = TARGET_SIGNAL_0;
607cecd2 1849
2455069d
UW
1850 /* Advise target which signals may be handled silently. If we have
1851 removed breakpoints because we are stepping over one (which can
1852 happen only if we are not using displaced stepping), we need to
1853 receive all signals to avoid accidentally skipping a breakpoint
1854 during execution of a signal handler. */
1855 if ((step || singlestep_breakpoints_inserted_p)
1856 && tp->control.trap_expected
1857 && !use_displaced_stepping (gdbarch))
1858 target_pass_signals (0, NULL);
1859 else
1860 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
1861
607cecd2 1862 target_resume (resume_ptid, step, sig);
c906108c
SS
1863 }
1864
1865 discard_cleanups (old_cleanups);
1866}
1867\f
237fc4c9 1868/* Proceeding. */
c906108c
SS
1869
1870/* Clear out all variables saying what to do when inferior is continued.
1871 First do this, then set the ones you want, then call `proceed'. */
1872
a7212384
UW
1873static void
1874clear_proceed_status_thread (struct thread_info *tp)
c906108c 1875{
a7212384
UW
1876 if (debug_infrun)
1877 fprintf_unfiltered (gdb_stdlog,
1878 "infrun: clear_proceed_status_thread (%s)\n",
1879 target_pid_to_str (tp->ptid));
d6b48e9c 1880
16c381f0
JK
1881 tp->control.trap_expected = 0;
1882 tp->control.step_range_start = 0;
1883 tp->control.step_range_end = 0;
1884 tp->control.step_frame_id = null_frame_id;
1885 tp->control.step_stack_frame_id = null_frame_id;
1886 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 1887 tp->stop_requested = 0;
4e1c45ea 1888
16c381f0 1889 tp->control.stop_step = 0;
32400beb 1890
16c381f0 1891 tp->control.proceed_to_finish = 0;
414c69f7 1892
a7212384 1893 /* Discard any remaining commands or status from previous stop. */
16c381f0 1894 bpstat_clear (&tp->control.stop_bpstat);
a7212384 1895}
32400beb 1896
a7212384
UW
1897static int
1898clear_proceed_status_callback (struct thread_info *tp, void *data)
1899{
1900 if (is_exited (tp->ptid))
1901 return 0;
d6b48e9c 1902
a7212384
UW
1903 clear_proceed_status_thread (tp);
1904 return 0;
1905}
1906
1907void
1908clear_proceed_status (void)
1909{
6c95b8df
PA
1910 if (!non_stop)
1911 {
1912 /* In all-stop mode, delete the per-thread status of all
1913 threads, even if inferior_ptid is null_ptid, there may be
1914 threads on the list. E.g., we may be launching a new
1915 process, while selecting the executable. */
1916 iterate_over_threads (clear_proceed_status_callback, NULL);
1917 }
1918
a7212384
UW
1919 if (!ptid_equal (inferior_ptid, null_ptid))
1920 {
1921 struct inferior *inferior;
1922
1923 if (non_stop)
1924 {
6c95b8df
PA
1925 /* If in non-stop mode, only delete the per-thread status of
1926 the current thread. */
a7212384
UW
1927 clear_proceed_status_thread (inferior_thread ());
1928 }
6c95b8df 1929
d6b48e9c 1930 inferior = current_inferior ();
16c381f0 1931 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
1932 }
1933
c906108c 1934 stop_after_trap = 0;
f3b1572e
PA
1935
1936 observer_notify_about_to_proceed ();
c906108c 1937
d5c31457
UW
1938 if (stop_registers)
1939 {
1940 regcache_xfree (stop_registers);
1941 stop_registers = NULL;
1942 }
c906108c
SS
1943}
1944
5a437975
DE
1945/* Check the current thread against the thread that reported the most recent
1946 event. If a step-over is required return TRUE and set the current thread
1947 to the old thread. Otherwise return FALSE.
1948
1777feb0 1949 This should be suitable for any targets that support threads. */
ea67f13b
DJ
1950
1951static int
6a6b96b9 1952prepare_to_proceed (int step)
ea67f13b
DJ
1953{
1954 ptid_t wait_ptid;
1955 struct target_waitstatus wait_status;
5a437975
DE
1956 int schedlock_enabled;
1957
1958 /* With non-stop mode on, threads are always handled individually. */
1959 gdb_assert (! non_stop);
ea67f13b
DJ
1960
1961 /* Get the last target status returned by target_wait(). */
1962 get_last_target_status (&wait_ptid, &wait_status);
1963
6a6b96b9 1964 /* Make sure we were stopped at a breakpoint. */
ea67f13b 1965 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2b009048
DJ
1966 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
1967 && wait_status.value.sig != TARGET_SIGNAL_ILL
1968 && wait_status.value.sig != TARGET_SIGNAL_SEGV
1969 && wait_status.value.sig != TARGET_SIGNAL_EMT))
ea67f13b
DJ
1970 {
1971 return 0;
1972 }
1973
5a437975
DE
1974 schedlock_enabled = (scheduler_mode == schedlock_on
1975 || (scheduler_mode == schedlock_step
1976 && step));
1977
d4db2f36
PA
1978 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
1979 if (schedlock_enabled)
1980 return 0;
1981
1982 /* Don't switch over if we're about to resume some other process
1983 other than WAIT_PTID's, and schedule-multiple is off. */
1984 if (!sched_multi
1985 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
1986 return 0;
1987
6a6b96b9 1988 /* Switched over from WAIT_PID. */
ea67f13b 1989 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 1990 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 1991 {
515630c5
UW
1992 struct regcache *regcache = get_thread_regcache (wait_ptid);
1993
6c95b8df
PA
1994 if (breakpoint_here_p (get_regcache_aspace (regcache),
1995 regcache_read_pc (regcache)))
ea67f13b 1996 {
515630c5
UW
1997 /* If stepping, remember current thread to switch back to. */
1998 if (step)
1999 deferred_step_ptid = inferior_ptid;
ea67f13b 2000
515630c5
UW
2001 /* Switch back to WAIT_PID thread. */
2002 switch_to_thread (wait_ptid);
6a6b96b9 2003
515630c5
UW
2004 /* We return 1 to indicate that there is a breakpoint here,
2005 so we need to step over it before continuing to avoid
1777feb0 2006 hitting it straight away. */
515630c5
UW
2007 return 1;
2008 }
ea67f13b
DJ
2009 }
2010
2011 return 0;
ea67f13b 2012}
e4846b08 2013
c906108c
SS
2014/* Basic routine for continuing the program in various fashions.
2015
2016 ADDR is the address to resume at, or -1 for resume where stopped.
2017 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2018 or -1 for act according to how it stopped.
c906108c 2019 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2020 -1 means return after that and print nothing.
2021 You should probably set various step_... variables
2022 before calling here, if you are stepping.
c906108c
SS
2023
2024 You should call clear_proceed_status before calling proceed. */
2025
2026void
96baa820 2027proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 2028{
e58b0e63
PA
2029 struct regcache *regcache;
2030 struct gdbarch *gdbarch;
4e1c45ea 2031 struct thread_info *tp;
e58b0e63 2032 CORE_ADDR pc;
6c95b8df 2033 struct address_space *aspace;
c906108c
SS
2034 int oneproc = 0;
2035
e58b0e63
PA
2036 /* If we're stopped at a fork/vfork, follow the branch set by the
2037 "set follow-fork-mode" command; otherwise, we'll just proceed
2038 resuming the current thread. */
2039 if (!follow_fork ())
2040 {
2041 /* The target for some reason decided not to resume. */
2042 normal_stop ();
2043 return;
2044 }
2045
2046 regcache = get_current_regcache ();
2047 gdbarch = get_regcache_arch (regcache);
6c95b8df 2048 aspace = get_regcache_aspace (regcache);
e58b0e63
PA
2049 pc = regcache_read_pc (regcache);
2050
c906108c 2051 if (step > 0)
515630c5 2052 step_start_function = find_pc_function (pc);
c906108c
SS
2053 if (step < 0)
2054 stop_after_trap = 1;
2055
2acceee2 2056 if (addr == (CORE_ADDR) -1)
c906108c 2057 {
6c95b8df 2058 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 2059 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2060 /* There is a breakpoint at the address we will resume at,
2061 step one instruction before inserting breakpoints so that
2062 we do not stop right away (and report a second hit at this
b2175913
MS
2063 breakpoint).
2064
2065 Note, we don't do this in reverse, because we won't
2066 actually be executing the breakpoint insn anyway.
2067 We'll be (un-)executing the previous instruction. */
2068
c906108c 2069 oneproc = 1;
515630c5
UW
2070 else if (gdbarch_single_step_through_delay_p (gdbarch)
2071 && gdbarch_single_step_through_delay (gdbarch,
2072 get_current_frame ()))
3352ef37
AC
2073 /* We stepped onto an instruction that needs to be stepped
2074 again before re-inserting the breakpoint, do so. */
c906108c
SS
2075 oneproc = 1;
2076 }
2077 else
2078 {
515630c5 2079 regcache_write_pc (regcache, addr);
c906108c
SS
2080 }
2081
527159b7 2082 if (debug_infrun)
8a9de0e4 2083 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
2084 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2085 paddress (gdbarch, addr), siggnal, step);
527159b7 2086
94cc34af
PA
2087 if (non_stop)
2088 /* In non-stop, each thread is handled individually. The context
2089 must already be set to the right thread here. */
2090 ;
2091 else
2092 {
2093 /* In a multi-threaded task we may select another thread and
2094 then continue or step.
c906108c 2095
94cc34af
PA
2096 But if the old thread was stopped at a breakpoint, it will
2097 immediately cause another breakpoint stop without any
2098 execution (i.e. it will report a breakpoint hit incorrectly).
2099 So we must step over it first.
c906108c 2100
94cc34af
PA
2101 prepare_to_proceed checks the current thread against the
2102 thread that reported the most recent event. If a step-over
2103 is required it returns TRUE and sets the current thread to
1777feb0 2104 the old thread. */
94cc34af
PA
2105 if (prepare_to_proceed (step))
2106 oneproc = 1;
2107 }
c906108c 2108
4e1c45ea
PA
2109 /* prepare_to_proceed may change the current thread. */
2110 tp = inferior_thread ();
2111
30852783
UW
2112 if (oneproc)
2113 {
2114 tp->control.trap_expected = 1;
2115 /* If displaced stepping is enabled, we can step over the
2116 breakpoint without hitting it, so leave all breakpoints
2117 inserted. Otherwise we need to disable all breakpoints, step
2118 one instruction, and then re-add them when that step is
2119 finished. */
2120 if (!use_displaced_stepping (gdbarch))
2121 remove_breakpoints ();
2122 }
2123
2124 /* We can insert breakpoints if we're not trying to step over one,
2125 or if we are stepping over one but we're using displaced stepping
2126 to do so. */
2127 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2128 insert_breakpoints ();
2129
2020b7ab
PA
2130 if (!non_stop)
2131 {
2132 /* Pass the last stop signal to the thread we're resuming,
2133 irrespective of whether the current thread is the thread that
2134 got the last event or not. This was historically GDB's
2135 behaviour before keeping a stop_signal per thread. */
2136
2137 struct thread_info *last_thread;
2138 ptid_t last_ptid;
2139 struct target_waitstatus last_status;
2140
2141 get_last_target_status (&last_ptid, &last_status);
2142 if (!ptid_equal (inferior_ptid, last_ptid)
2143 && !ptid_equal (last_ptid, null_ptid)
2144 && !ptid_equal (last_ptid, minus_one_ptid))
2145 {
e09875d4 2146 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
2147 if (last_thread)
2148 {
16c381f0
JK
2149 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2150 last_thread->suspend.stop_signal = TARGET_SIGNAL_0;
2020b7ab
PA
2151 }
2152 }
2153 }
2154
c906108c 2155 if (siggnal != TARGET_SIGNAL_DEFAULT)
16c381f0 2156 tp->suspend.stop_signal = siggnal;
c906108c
SS
2157 /* If this signal should not be seen by program,
2158 give it zero. Used for debugging signals. */
16c381f0
JK
2159 else if (!signal_program[tp->suspend.stop_signal])
2160 tp->suspend.stop_signal = TARGET_SIGNAL_0;
c906108c
SS
2161
2162 annotate_starting ();
2163
2164 /* Make sure that output from GDB appears before output from the
2165 inferior. */
2166 gdb_flush (gdb_stdout);
2167
e4846b08
JJ
2168 /* Refresh prev_pc value just prior to resuming. This used to be
2169 done in stop_stepping, however, setting prev_pc there did not handle
2170 scenarios such as inferior function calls or returning from
2171 a function via the return command. In those cases, the prev_pc
2172 value was not set properly for subsequent commands. The prev_pc value
2173 is used to initialize the starting line number in the ecs. With an
2174 invalid value, the gdb next command ends up stopping at the position
2175 represented by the next line table entry past our start position.
2176 On platforms that generate one line table entry per line, this
2177 is not a problem. However, on the ia64, the compiler generates
2178 extraneous line table entries that do not increase the line number.
2179 When we issue the gdb next command on the ia64 after an inferior call
2180 or a return command, we often end up a few instructions forward, still
2181 within the original line we started.
2182
d5cd6034
JB
2183 An attempt was made to refresh the prev_pc at the same time the
2184 execution_control_state is initialized (for instance, just before
2185 waiting for an inferior event). But this approach did not work
2186 because of platforms that use ptrace, where the pc register cannot
2187 be read unless the inferior is stopped. At that point, we are not
2188 guaranteed the inferior is stopped and so the regcache_read_pc() call
2189 can fail. Setting the prev_pc value here ensures the value is updated
2190 correctly when the inferior is stopped. */
4e1c45ea 2191 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2192
59f0d5d9 2193 /* Fill in with reasonable starting values. */
4e1c45ea 2194 init_thread_stepping_state (tp);
59f0d5d9 2195
59f0d5d9
PA
2196 /* Reset to normal state. */
2197 init_infwait_state ();
2198
c906108c 2199 /* Resume inferior. */
16c381f0 2200 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
c906108c
SS
2201
2202 /* Wait for it to stop (if not standalone)
2203 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2204 /* Do this only if we are not using the event loop, or if the target
1777feb0 2205 does not support asynchronous execution. */
362646f5 2206 if (!target_can_async_p ())
43ff13b4 2207 {
e4c8541f 2208 wait_for_inferior ();
43ff13b4
JM
2209 normal_stop ();
2210 }
c906108c 2211}
c906108c
SS
2212\f
2213
2214/* Start remote-debugging of a machine over a serial link. */
96baa820 2215
c906108c 2216void
8621d6a9 2217start_remote (int from_tty)
c906108c 2218{
d6b48e9c 2219 struct inferior *inferior;
d6b48e9c 2220
abbb1732 2221 init_wait_for_inferior ();
d6b48e9c 2222 inferior = current_inferior ();
16c381f0 2223 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2224
1777feb0 2225 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2226 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2227 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2228 nothing is returned (instead of just blocking). Because of this,
2229 targets expecting an immediate response need to, internally, set
2230 things up so that the target_wait() is forced to eventually
1777feb0 2231 timeout. */
6426a772
JM
2232 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2233 differentiate to its caller what the state of the target is after
2234 the initial open has been performed. Here we're assuming that
2235 the target has stopped. It should be possible to eventually have
2236 target_open() return to the caller an indication that the target
2237 is currently running and GDB state should be set to the same as
1777feb0 2238 for an async run. */
e4c8541f 2239 wait_for_inferior ();
8621d6a9
DJ
2240
2241 /* Now that the inferior has stopped, do any bookkeeping like
2242 loading shared libraries. We want to do this before normal_stop,
2243 so that the displayed frame is up to date. */
2244 post_create_inferior (&current_target, from_tty);
2245
6426a772 2246 normal_stop ();
c906108c
SS
2247}
2248
2249/* Initialize static vars when a new inferior begins. */
2250
2251void
96baa820 2252init_wait_for_inferior (void)
c906108c
SS
2253{
2254 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2255
c906108c
SS
2256 breakpoint_init_inferior (inf_starting);
2257
c906108c 2258 clear_proceed_status ();
9f976b41
DJ
2259
2260 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 2261 deferred_step_ptid = null_ptid;
ca005067
DJ
2262
2263 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2264
0d1e5fa7
PA
2265 previous_inferior_ptid = null_ptid;
2266 init_infwait_state ();
2267
edb3359d
DJ
2268 /* Discard any skipped inlined frames. */
2269 clear_inline_frame_state (minus_one_ptid);
c906108c 2270}
237fc4c9 2271
c906108c 2272\f
b83266a0
SS
2273/* This enum encodes possible reasons for doing a target_wait, so that
2274 wfi can call target_wait in one place. (Ultimately the call will be
2275 moved out of the infinite loop entirely.) */
2276
c5aa993b
JM
2277enum infwait_states
2278{
cd0fc7c3
SS
2279 infwait_normal_state,
2280 infwait_thread_hop_state,
d983da9c 2281 infwait_step_watch_state,
cd0fc7c3 2282 infwait_nonstep_watch_state
b83266a0
SS
2283};
2284
0d1e5fa7
PA
2285/* The PTID we'll do a target_wait on.*/
2286ptid_t waiton_ptid;
2287
2288/* Current inferior wait state. */
2289enum infwait_states infwait_state;
cd0fc7c3 2290
0d1e5fa7
PA
2291/* Data to be passed around while handling an event. This data is
2292 discarded between events. */
c5aa993b 2293struct execution_control_state
488f131b 2294{
0d1e5fa7 2295 ptid_t ptid;
4e1c45ea
PA
2296 /* The thread that got the event, if this was a thread event; NULL
2297 otherwise. */
2298 struct thread_info *event_thread;
2299
488f131b 2300 struct target_waitstatus ws;
488f131b
JB
2301 int random_signal;
2302 CORE_ADDR stop_func_start;
2303 CORE_ADDR stop_func_end;
2304 char *stop_func_name;
488f131b 2305 int new_thread_event;
488f131b
JB
2306 int wait_some_more;
2307};
2308
ec9499be 2309static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2310
568d6575
UW
2311static void handle_step_into_function (struct gdbarch *gdbarch,
2312 struct execution_control_state *ecs);
2313static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2314 struct execution_control_state *ecs);
186c406b
TT
2315static void check_exception_resume (struct execution_control_state *,
2316 struct frame_info *, struct symbol *);
611c83ae 2317
104c1213
JM
2318static void stop_stepping (struct execution_control_state *ecs);
2319static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2320static void keep_going (struct execution_control_state *ecs);
104c1213 2321
252fbfc8
PA
2322/* Callback for iterate over threads. If the thread is stopped, but
2323 the user/frontend doesn't know about that yet, go through
2324 normal_stop, as if the thread had just stopped now. ARG points at
2325 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2326 ptid_is_pid(PTID) is true, applies to all threads of the process
2327 pointed at by PTID. Otherwise, apply only to the thread pointed by
2328 PTID. */
2329
2330static int
2331infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2332{
2333 ptid_t ptid = * (ptid_t *) arg;
2334
2335 if ((ptid_equal (info->ptid, ptid)
2336 || ptid_equal (minus_one_ptid, ptid)
2337 || (ptid_is_pid (ptid)
2338 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2339 && is_running (info->ptid)
2340 && !is_executing (info->ptid))
2341 {
2342 struct cleanup *old_chain;
2343 struct execution_control_state ecss;
2344 struct execution_control_state *ecs = &ecss;
2345
2346 memset (ecs, 0, sizeof (*ecs));
2347
2348 old_chain = make_cleanup_restore_current_thread ();
2349
2350 switch_to_thread (info->ptid);
2351
2352 /* Go through handle_inferior_event/normal_stop, so we always
2353 have consistent output as if the stop event had been
2354 reported. */
2355 ecs->ptid = info->ptid;
e09875d4 2356 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8
PA
2357 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2358 ecs->ws.value.sig = TARGET_SIGNAL_0;
2359
2360 handle_inferior_event (ecs);
2361
2362 if (!ecs->wait_some_more)
2363 {
2364 struct thread_info *tp;
2365
2366 normal_stop ();
2367
2368 /* Finish off the continuations. The continations
2369 themselves are responsible for realising the thread
2370 didn't finish what it was supposed to do. */
2371 tp = inferior_thread ();
2372 do_all_intermediate_continuations_thread (tp);
2373 do_all_continuations_thread (tp);
2374 }
2375
2376 do_cleanups (old_chain);
2377 }
2378
2379 return 0;
2380}
2381
2382/* This function is attached as a "thread_stop_requested" observer.
2383 Cleanup local state that assumed the PTID was to be resumed, and
2384 report the stop to the frontend. */
2385
2c0b251b 2386static void
252fbfc8
PA
2387infrun_thread_stop_requested (ptid_t ptid)
2388{
fc1cf338 2389 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2390
2391 /* PTID was requested to stop. Remove it from the displaced
2392 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2393
2394 for (displaced = displaced_step_inferior_states;
2395 displaced;
2396 displaced = displaced->next)
252fbfc8 2397 {
fc1cf338 2398 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2399
fc1cf338
PA
2400 it = displaced->step_request_queue;
2401 prev_next_p = &displaced->step_request_queue;
2402 while (it)
252fbfc8 2403 {
fc1cf338
PA
2404 if (ptid_match (it->ptid, ptid))
2405 {
2406 *prev_next_p = it->next;
2407 it->next = NULL;
2408 xfree (it);
2409 }
252fbfc8 2410 else
fc1cf338
PA
2411 {
2412 prev_next_p = &it->next;
2413 }
252fbfc8 2414
fc1cf338 2415 it = *prev_next_p;
252fbfc8 2416 }
252fbfc8
PA
2417 }
2418
2419 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2420}
2421
a07daef3
PA
2422static void
2423infrun_thread_thread_exit (struct thread_info *tp, int silent)
2424{
2425 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2426 nullify_last_target_wait_ptid ();
2427}
2428
4e1c45ea
PA
2429/* Callback for iterate_over_threads. */
2430
2431static int
2432delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2433{
2434 if (is_exited (info->ptid))
2435 return 0;
2436
2437 delete_step_resume_breakpoint (info);
186c406b 2438 delete_exception_resume_breakpoint (info);
4e1c45ea
PA
2439 return 0;
2440}
2441
2442/* In all-stop, delete the step resume breakpoint of any thread that
2443 had one. In non-stop, delete the step resume breakpoint of the
2444 thread that just stopped. */
2445
2446static void
2447delete_step_thread_step_resume_breakpoint (void)
2448{
2449 if (!target_has_execution
2450 || ptid_equal (inferior_ptid, null_ptid))
2451 /* If the inferior has exited, we have already deleted the step
2452 resume breakpoints out of GDB's lists. */
2453 return;
2454
2455 if (non_stop)
2456 {
2457 /* If in non-stop mode, only delete the step-resume or
2458 longjmp-resume breakpoint of the thread that just stopped
2459 stepping. */
2460 struct thread_info *tp = inferior_thread ();
abbb1732 2461
4e1c45ea 2462 delete_step_resume_breakpoint (tp);
186c406b 2463 delete_exception_resume_breakpoint (tp);
4e1c45ea
PA
2464 }
2465 else
2466 /* In all-stop mode, delete all step-resume and longjmp-resume
2467 breakpoints of any thread that had them. */
2468 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2469}
2470
1777feb0 2471/* A cleanup wrapper. */
4e1c45ea
PA
2472
2473static void
2474delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2475{
2476 delete_step_thread_step_resume_breakpoint ();
2477}
2478
223698f8
DE
2479/* Pretty print the results of target_wait, for debugging purposes. */
2480
2481static void
2482print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2483 const struct target_waitstatus *ws)
2484{
2485 char *status_string = target_waitstatus_to_string (ws);
2486 struct ui_file *tmp_stream = mem_fileopen ();
2487 char *text;
223698f8
DE
2488
2489 /* The text is split over several lines because it was getting too long.
2490 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2491 output as a unit; we want only one timestamp printed if debug_timestamp
2492 is set. */
2493
2494 fprintf_unfiltered (tmp_stream,
2495 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2496 if (PIDGET (waiton_ptid) != -1)
2497 fprintf_unfiltered (tmp_stream,
2498 " [%s]", target_pid_to_str (waiton_ptid));
2499 fprintf_unfiltered (tmp_stream, ", status) =\n");
2500 fprintf_unfiltered (tmp_stream,
2501 "infrun: %d [%s],\n",
2502 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2503 fprintf_unfiltered (tmp_stream,
2504 "infrun: %s\n",
2505 status_string);
2506
759ef836 2507 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2508
2509 /* This uses %s in part to handle %'s in the text, but also to avoid
2510 a gcc error: the format attribute requires a string literal. */
2511 fprintf_unfiltered (gdb_stdlog, "%s", text);
2512
2513 xfree (status_string);
2514 xfree (text);
2515 ui_file_delete (tmp_stream);
2516}
2517
24291992
PA
2518/* Prepare and stabilize the inferior for detaching it. E.g.,
2519 detaching while a thread is displaced stepping is a recipe for
2520 crashing it, as nothing would readjust the PC out of the scratch
2521 pad. */
2522
2523void
2524prepare_for_detach (void)
2525{
2526 struct inferior *inf = current_inferior ();
2527 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2528 struct cleanup *old_chain_1;
2529 struct displaced_step_inferior_state *displaced;
2530
2531 displaced = get_displaced_stepping_state (inf->pid);
2532
2533 /* Is any thread of this process displaced stepping? If not,
2534 there's nothing else to do. */
2535 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2536 return;
2537
2538 if (debug_infrun)
2539 fprintf_unfiltered (gdb_stdlog,
2540 "displaced-stepping in-process while detaching");
2541
2542 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2543 inf->detaching = 1;
2544
2545 while (!ptid_equal (displaced->step_ptid, null_ptid))
2546 {
2547 struct cleanup *old_chain_2;
2548 struct execution_control_state ecss;
2549 struct execution_control_state *ecs;
2550
2551 ecs = &ecss;
2552 memset (ecs, 0, sizeof (*ecs));
2553
2554 overlay_cache_invalid = 1;
2555
2556 /* We have to invalidate the registers BEFORE calling
2557 target_wait because they can be loaded from the target while
2558 in target_wait. This makes remote debugging a bit more
2559 efficient for those targets that provide critical registers
1777feb0 2560 as part of their normal status mechanism. */
24291992
PA
2561
2562 registers_changed ();
2563
2564 if (deprecated_target_wait_hook)
2565 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2566 else
2567 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2568
2569 if (debug_infrun)
2570 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2571
2572 /* If an error happens while handling the event, propagate GDB's
2573 knowledge of the executing state to the frontend/user running
2574 state. */
3e43a32a
MS
2575 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2576 &minus_one_ptid);
24291992 2577
4d533103
PA
2578 /* In non-stop mode, each thread is handled individually.
2579 Switch early, so the global state is set correctly for this
2580 thread. */
2581 if (non_stop
2582 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2583 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2584 context_switch (ecs->ptid);
2585
24291992
PA
2586 /* Now figure out what to do with the result of the result. */
2587 handle_inferior_event (ecs);
2588
2589 /* No error, don't finish the state yet. */
2590 discard_cleanups (old_chain_2);
2591
2592 /* Breakpoints and watchpoints are not installed on the target
2593 at this point, and signals are passed directly to the
2594 inferior, so this must mean the process is gone. */
2595 if (!ecs->wait_some_more)
2596 {
2597 discard_cleanups (old_chain_1);
2598 error (_("Program exited while detaching"));
2599 }
2600 }
2601
2602 discard_cleanups (old_chain_1);
2603}
2604
cd0fc7c3 2605/* Wait for control to return from inferior to debugger.
ae123ec6 2606
cd0fc7c3
SS
2607 If inferior gets a signal, we may decide to start it up again
2608 instead of returning. That is why there is a loop in this function.
2609 When this function actually returns it means the inferior
2610 should be left stopped and GDB should read more commands. */
2611
2612void
e4c8541f 2613wait_for_inferior (void)
cd0fc7c3
SS
2614{
2615 struct cleanup *old_cleanups;
0d1e5fa7 2616 struct execution_control_state ecss;
cd0fc7c3 2617 struct execution_control_state *ecs;
c906108c 2618
527159b7 2619 if (debug_infrun)
ae123ec6 2620 fprintf_unfiltered
e4c8541f 2621 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 2622
4e1c45ea
PA
2623 old_cleanups =
2624 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2625
cd0fc7c3 2626 ecs = &ecss;
0d1e5fa7
PA
2627 memset (ecs, 0, sizeof (*ecs));
2628
e0bb1c1c
PA
2629 /* We'll update this if & when we switch to a new thread. */
2630 previous_inferior_ptid = inferior_ptid;
2631
c906108c
SS
2632 while (1)
2633 {
29f49a6a
PA
2634 struct cleanup *old_chain;
2635
ec9499be
UW
2636 /* We have to invalidate the registers BEFORE calling target_wait
2637 because they can be loaded from the target while in target_wait.
2638 This makes remote debugging a bit more efficient for those
2639 targets that provide critical registers as part of their normal
1777feb0 2640 status mechanism. */
ec9499be
UW
2641
2642 overlay_cache_invalid = 1;
2643 registers_changed ();
2644
9a4105ab 2645 if (deprecated_target_wait_hook)
47608cb1 2646 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2647 else
47608cb1 2648 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2649
f00150c9 2650 if (debug_infrun)
223698f8 2651 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2652
29f49a6a
PA
2653 /* If an error happens while handling the event, propagate GDB's
2654 knowledge of the executing state to the frontend/user running
2655 state. */
2656 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2657
a96d9b2e
SDJ
2658 if (ecs->ws.kind == TARGET_WAITKIND_SYSCALL_ENTRY
2659 || ecs->ws.kind == TARGET_WAITKIND_SYSCALL_RETURN)
2660 ecs->ws.value.syscall_number = UNKNOWN_SYSCALL;
2661
cd0fc7c3
SS
2662 /* Now figure out what to do with the result of the result. */
2663 handle_inferior_event (ecs);
c906108c 2664
29f49a6a
PA
2665 /* No error, don't finish the state yet. */
2666 discard_cleanups (old_chain);
2667
cd0fc7c3
SS
2668 if (!ecs->wait_some_more)
2669 break;
2670 }
4e1c45ea 2671
cd0fc7c3
SS
2672 do_cleanups (old_cleanups);
2673}
c906108c 2674
1777feb0 2675/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 2676 event loop whenever a change of state is detected on the file
1777feb0
MS
2677 descriptor corresponding to the target. It can be called more than
2678 once to complete a single execution command. In such cases we need
2679 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
2680 that this function is called for a single execution command, then
2681 report to the user that the inferior has stopped, and do the
1777feb0 2682 necessary cleanups. */
43ff13b4
JM
2683
2684void
fba45db2 2685fetch_inferior_event (void *client_data)
43ff13b4 2686{
0d1e5fa7 2687 struct execution_control_state ecss;
a474d7c2 2688 struct execution_control_state *ecs = &ecss;
4f8d22e3 2689 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2690 struct cleanup *ts_old_chain;
4f8d22e3 2691 int was_sync = sync_execution;
43ff13b4 2692
0d1e5fa7
PA
2693 memset (ecs, 0, sizeof (*ecs));
2694
ec9499be
UW
2695 /* We'll update this if & when we switch to a new thread. */
2696 previous_inferior_ptid = inferior_ptid;
e0bb1c1c 2697
c5187ac6
PA
2698 /* We're handling a live event, so make sure we're doing live
2699 debugging. If we're looking at traceframes while the target is
2700 running, we're going to need to get back to that mode after
2701 handling the event. */
2702 if (non_stop)
2703 {
2704 make_cleanup_restore_current_traceframe ();
e6e4e701 2705 set_current_traceframe (-1);
c5187ac6
PA
2706 }
2707
4f8d22e3
PA
2708 if (non_stop)
2709 /* In non-stop mode, the user/frontend should not notice a thread
2710 switch due to internal events. Make sure we reverse to the
2711 user selected thread and frame after handling the event and
2712 running any breakpoint commands. */
2713 make_cleanup_restore_current_thread ();
2714
59f0d5d9
PA
2715 /* We have to invalidate the registers BEFORE calling target_wait
2716 because they can be loaded from the target while in target_wait.
2717 This makes remote debugging a bit more efficient for those
2718 targets that provide critical registers as part of their normal
1777feb0 2719 status mechanism. */
43ff13b4 2720
ec9499be 2721 overlay_cache_invalid = 1;
59f0d5d9 2722 registers_changed ();
43ff13b4 2723
9a4105ab 2724 if (deprecated_target_wait_hook)
a474d7c2 2725 ecs->ptid =
47608cb1 2726 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2727 else
47608cb1 2728 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2729
f00150c9 2730 if (debug_infrun)
223698f8 2731 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2732
94cc34af
PA
2733 if (non_stop
2734 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2735 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2736 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2737 /* In non-stop mode, each thread is handled individually. Switch
2738 early, so the global state is set correctly for this
2739 thread. */
2740 context_switch (ecs->ptid);
2741
29f49a6a
PA
2742 /* If an error happens while handling the event, propagate GDB's
2743 knowledge of the executing state to the frontend/user running
2744 state. */
2745 if (!non_stop)
2746 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2747 else
2748 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2749
43ff13b4 2750 /* Now figure out what to do with the result of the result. */
a474d7c2 2751 handle_inferior_event (ecs);
43ff13b4 2752
a474d7c2 2753 if (!ecs->wait_some_more)
43ff13b4 2754 {
d6b48e9c
PA
2755 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2756
4e1c45ea 2757 delete_step_thread_step_resume_breakpoint ();
f107f563 2758
d6b48e9c 2759 /* We may not find an inferior if this was a process exit. */
16c381f0 2760 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2761 normal_stop ();
2762
af679fd0
PA
2763 if (target_has_execution
2764 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2765 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2766 && ecs->event_thread->step_multi
16c381f0 2767 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
2768 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2769 else
2770 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4 2771 }
4f8d22e3 2772
29f49a6a
PA
2773 /* No error, don't finish the thread states yet. */
2774 discard_cleanups (ts_old_chain);
2775
4f8d22e3
PA
2776 /* Revert thread and frame. */
2777 do_cleanups (old_chain);
2778
2779 /* If the inferior was in sync execution mode, and now isn't,
2780 restore the prompt. */
2781 if (was_sync && !sync_execution)
2782 display_gdb_prompt (0);
43ff13b4
JM
2783}
2784
edb3359d
DJ
2785/* Record the frame and location we're currently stepping through. */
2786void
2787set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2788{
2789 struct thread_info *tp = inferior_thread ();
2790
16c381f0
JK
2791 tp->control.step_frame_id = get_frame_id (frame);
2792 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
2793
2794 tp->current_symtab = sal.symtab;
2795 tp->current_line = sal.line;
2796}
2797
0d1e5fa7
PA
2798/* Clear context switchable stepping state. */
2799
2800void
4e1c45ea 2801init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2802{
2803 tss->stepping_over_breakpoint = 0;
2804 tss->step_after_step_resume_breakpoint = 0;
2805 tss->stepping_through_solib_after_catch = 0;
2806 tss->stepping_through_solib_catchpoints = NULL;
cd0fc7c3
SS
2807}
2808
e02bc4cc 2809/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2810 target_wait()/deprecated_target_wait_hook(). The data is actually
2811 cached by handle_inferior_event(), which gets called immediately
2812 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2813
2814void
488f131b 2815get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2816{
39f77062 2817 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2818 *status = target_last_waitstatus;
2819}
2820
ac264b3b
MS
2821void
2822nullify_last_target_wait_ptid (void)
2823{
2824 target_last_wait_ptid = minus_one_ptid;
2825}
2826
dcf4fbde 2827/* Switch thread contexts. */
dd80620e
MS
2828
2829static void
0d1e5fa7 2830context_switch (ptid_t ptid)
dd80620e 2831{
fd48f117
DJ
2832 if (debug_infrun)
2833 {
2834 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2835 target_pid_to_str (inferior_ptid));
2836 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2837 target_pid_to_str (ptid));
fd48f117
DJ
2838 }
2839
0d1e5fa7 2840 switch_to_thread (ptid);
dd80620e
MS
2841}
2842
4fa8626c
DJ
2843static void
2844adjust_pc_after_break (struct execution_control_state *ecs)
2845{
24a73cce
UW
2846 struct regcache *regcache;
2847 struct gdbarch *gdbarch;
6c95b8df 2848 struct address_space *aspace;
8aad930b 2849 CORE_ADDR breakpoint_pc;
4fa8626c 2850
4fa8626c
DJ
2851 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2852 we aren't, just return.
9709f61c
DJ
2853
2854 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2855 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2856 implemented by software breakpoints should be handled through the normal
2857 breakpoint layer.
8fb3e588 2858
4fa8626c
DJ
2859 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2860 different signals (SIGILL or SIGEMT for instance), but it is less
2861 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2862 gdbarch_decr_pc_after_break. I don't know any specific target that
2863 generates these signals at breakpoints (the code has been in GDB since at
2864 least 1992) so I can not guess how to handle them here.
8fb3e588 2865
e6cf7916
UW
2866 In earlier versions of GDB, a target with
2867 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2868 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2869 target with both of these set in GDB history, and it seems unlikely to be
2870 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2871
2872 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2873 return;
2874
2875 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2876 return;
2877
4058b839
PA
2878 /* In reverse execution, when a breakpoint is hit, the instruction
2879 under it has already been de-executed. The reported PC always
2880 points at the breakpoint address, so adjusting it further would
2881 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2882 architecture:
2883
2884 B1 0x08000000 : INSN1
2885 B2 0x08000001 : INSN2
2886 0x08000002 : INSN3
2887 PC -> 0x08000003 : INSN4
2888
2889 Say you're stopped at 0x08000003 as above. Reverse continuing
2890 from that point should hit B2 as below. Reading the PC when the
2891 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2892 been de-executed already.
2893
2894 B1 0x08000000 : INSN1
2895 B2 PC -> 0x08000001 : INSN2
2896 0x08000002 : INSN3
2897 0x08000003 : INSN4
2898
2899 We can't apply the same logic as for forward execution, because
2900 we would wrongly adjust the PC to 0x08000000, since there's a
2901 breakpoint at PC - 1. We'd then report a hit on B1, although
2902 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2903 behaviour. */
2904 if (execution_direction == EXEC_REVERSE)
2905 return;
2906
24a73cce
UW
2907 /* If this target does not decrement the PC after breakpoints, then
2908 we have nothing to do. */
2909 regcache = get_thread_regcache (ecs->ptid);
2910 gdbarch = get_regcache_arch (regcache);
2911 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2912 return;
2913
6c95b8df
PA
2914 aspace = get_regcache_aspace (regcache);
2915
8aad930b
AC
2916 /* Find the location where (if we've hit a breakpoint) the
2917 breakpoint would be. */
515630c5
UW
2918 breakpoint_pc = regcache_read_pc (regcache)
2919 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 2920
1c5cfe86
PA
2921 /* Check whether there actually is a software breakpoint inserted at
2922 that location.
2923
2924 If in non-stop mode, a race condition is possible where we've
2925 removed a breakpoint, but stop events for that breakpoint were
2926 already queued and arrive later. To suppress those spurious
2927 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2928 and retire them after a number of stop events are reported. */
6c95b8df
PA
2929 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2930 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 2931 {
96429cc8 2932 struct cleanup *old_cleanups = NULL;
abbb1732 2933
96429cc8
HZ
2934 if (RECORD_IS_USED)
2935 old_cleanups = record_gdb_operation_disable_set ();
2936
1c0fdd0e
UW
2937 /* When using hardware single-step, a SIGTRAP is reported for both
2938 a completed single-step and a software breakpoint. Need to
2939 differentiate between the two, as the latter needs adjusting
2940 but the former does not.
2941
2942 The SIGTRAP can be due to a completed hardware single-step only if
2943 - we didn't insert software single-step breakpoints
2944 - the thread to be examined is still the current thread
2945 - this thread is currently being stepped
2946
2947 If any of these events did not occur, we must have stopped due
2948 to hitting a software breakpoint, and have to back up to the
2949 breakpoint address.
2950
2951 As a special case, we could have hardware single-stepped a
2952 software breakpoint. In this case (prev_pc == breakpoint_pc),
2953 we also need to back up to the breakpoint address. */
2954
2955 if (singlestep_breakpoints_inserted_p
2956 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
2957 || !currently_stepping (ecs->event_thread)
2958 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 2959 regcache_write_pc (regcache, breakpoint_pc);
96429cc8
HZ
2960
2961 if (RECORD_IS_USED)
2962 do_cleanups (old_cleanups);
8aad930b 2963 }
4fa8626c
DJ
2964}
2965
0d1e5fa7
PA
2966void
2967init_infwait_state (void)
2968{
2969 waiton_ptid = pid_to_ptid (-1);
2970 infwait_state = infwait_normal_state;
2971}
2972
94cc34af
PA
2973void
2974error_is_running (void)
2975{
3e43a32a
MS
2976 error (_("Cannot execute this command while "
2977 "the selected thread is running."));
94cc34af
PA
2978}
2979
2980void
2981ensure_not_running (void)
2982{
2983 if (is_running (inferior_ptid))
2984 error_is_running ();
2985}
2986
edb3359d
DJ
2987static int
2988stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
2989{
2990 for (frame = get_prev_frame (frame);
2991 frame != NULL;
2992 frame = get_prev_frame (frame))
2993 {
2994 if (frame_id_eq (get_frame_id (frame), step_frame_id))
2995 return 1;
2996 if (get_frame_type (frame) != INLINE_FRAME)
2997 break;
2998 }
2999
3000 return 0;
3001}
3002
a96d9b2e
SDJ
3003/* Auxiliary function that handles syscall entry/return events.
3004 It returns 1 if the inferior should keep going (and GDB
3005 should ignore the event), or 0 if the event deserves to be
3006 processed. */
ca2163eb 3007
a96d9b2e 3008static int
ca2163eb 3009handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3010{
ca2163eb
PA
3011 struct regcache *regcache;
3012 struct gdbarch *gdbarch;
3013 int syscall_number;
3014
3015 if (!ptid_equal (ecs->ptid, inferior_ptid))
3016 context_switch (ecs->ptid);
3017
3018 regcache = get_thread_regcache (ecs->ptid);
3019 gdbarch = get_regcache_arch (regcache);
3020 syscall_number = gdbarch_get_syscall_number (gdbarch, ecs->ptid);
3021 stop_pc = regcache_read_pc (regcache);
3022
a96d9b2e
SDJ
3023 target_last_waitstatus.value.syscall_number = syscall_number;
3024
3025 if (catch_syscall_enabled () > 0
3026 && catching_syscall_number (syscall_number) > 0)
3027 {
3028 if (debug_infrun)
3029 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3030 syscall_number);
a96d9b2e 3031
16c381f0 3032 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
3033 = bpstat_stop_status (get_regcache_aspace (regcache),
3034 stop_pc, ecs->ptid);
16c381f0
JK
3035 ecs->random_signal
3036 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
a96d9b2e 3037
ca2163eb
PA
3038 if (!ecs->random_signal)
3039 {
3040 /* Catchpoint hit. */
16c381f0 3041 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
ca2163eb
PA
3042 return 0;
3043 }
a96d9b2e 3044 }
ca2163eb
PA
3045
3046 /* If no catchpoint triggered for this, then keep going. */
16c381f0 3047 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
ca2163eb
PA
3048 keep_going (ecs);
3049 return 1;
a96d9b2e
SDJ
3050}
3051
cd0fc7c3
SS
3052/* Given an execution control state that has been freshly filled in
3053 by an event from the inferior, figure out what it means and take
3054 appropriate action. */
c906108c 3055
ec9499be 3056static void
96baa820 3057handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3058{
568d6575
UW
3059 struct frame_info *frame;
3060 struct gdbarch *gdbarch;
c8edd8b4 3061 int sw_single_step_trap_p = 0;
d983da9c
DJ
3062 int stopped_by_watchpoint;
3063 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 3064 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
3065 enum stop_kind stop_soon;
3066
28736962
PA
3067 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3068 {
3069 /* We had an event in the inferior, but we are not interested in
3070 handling it at this level. The lower layers have already
3071 done what needs to be done, if anything.
3072
3073 One of the possible circumstances for this is when the
3074 inferior produces output for the console. The inferior has
3075 not stopped, and we are ignoring the event. Another possible
3076 circumstance is any event which the lower level knows will be
3077 reported multiple times without an intervening resume. */
3078 if (debug_infrun)
3079 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3080 prepare_to_wait (ecs);
3081 return;
3082 }
3083
d6b48e9c 3084 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
28736962 3085 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
d6b48e9c
PA
3086 {
3087 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
abbb1732 3088
d6b48e9c 3089 gdb_assert (inf);
16c381f0 3090 stop_soon = inf->control.stop_soon;
d6b48e9c
PA
3091 }
3092 else
3093 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 3094
1777feb0 3095 /* Cache the last pid/waitstatus. */
39f77062 3096 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 3097 target_last_waitstatus = ecs->ws;
e02bc4cc 3098
ca005067 3099 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3100 stop_stack_dummy = STOP_NONE;
ca005067 3101
1777feb0 3102 /* If it's a new process, add it to the thread database. */
8c90c137
LM
3103
3104 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
3105 && !ptid_equal (ecs->ptid, minus_one_ptid)
3106 && !in_thread_list (ecs->ptid));
3107
3108 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3109 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
3110 add_thread (ecs->ptid);
3111
e09875d4 3112 ecs->event_thread = find_thread_ptid (ecs->ptid);
88ed393a
JK
3113
3114 /* Dependent on valid ECS->EVENT_THREAD. */
3115 adjust_pc_after_break (ecs);
3116
3117 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3118 reinit_frame_cache ();
3119
28736962
PA
3120 breakpoint_retire_moribund ();
3121
2b009048
DJ
3122 /* First, distinguish signals caused by the debugger from signals
3123 that have to do with the program's own actions. Note that
3124 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3125 on the operating system version. Here we detect when a SIGILL or
3126 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3127 something similar for SIGSEGV, since a SIGSEGV will be generated
3128 when we're trying to execute a breakpoint instruction on a
3129 non-executable stack. This happens for call dummy breakpoints
3130 for architectures like SPARC that place call dummies on the
3131 stack. */
2b009048
DJ
3132 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3133 && (ecs->ws.value.sig == TARGET_SIGNAL_ILL
3134 || ecs->ws.value.sig == TARGET_SIGNAL_SEGV
de0a0249 3135 || ecs->ws.value.sig == TARGET_SIGNAL_EMT))
2b009048 3136 {
de0a0249
UW
3137 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3138
3139 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3140 regcache_read_pc (regcache)))
3141 {
3142 if (debug_infrun)
3143 fprintf_unfiltered (gdb_stdlog,
3144 "infrun: Treating signal as SIGTRAP\n");
3145 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
3146 }
2b009048
DJ
3147 }
3148
28736962
PA
3149 /* Mark the non-executing threads accordingly. In all-stop, all
3150 threads of all processes are stopped when we get any event
3151 reported. In non-stop mode, only the event thread stops. If
3152 we're handling a process exit in non-stop mode, there's nothing
3153 to do, as threads of the dead process are gone, and threads of
3154 any other process were left running. */
3155 if (!non_stop)
3156 set_executing (minus_one_ptid, 0);
3157 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3158 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3159 set_executing (inferior_ptid, 0);
8c90c137 3160
0d1e5fa7 3161 switch (infwait_state)
488f131b
JB
3162 {
3163 case infwait_thread_hop_state:
527159b7 3164 if (debug_infrun)
8a9de0e4 3165 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 3166 break;
b83266a0 3167
488f131b 3168 case infwait_normal_state:
527159b7 3169 if (debug_infrun)
8a9de0e4 3170 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
3171 break;
3172
3173 case infwait_step_watch_state:
3174 if (debug_infrun)
3175 fprintf_unfiltered (gdb_stdlog,
3176 "infrun: infwait_step_watch_state\n");
3177
3178 stepped_after_stopped_by_watchpoint = 1;
488f131b 3179 break;
b83266a0 3180
488f131b 3181 case infwait_nonstep_watch_state:
527159b7 3182 if (debug_infrun)
8a9de0e4
AC
3183 fprintf_unfiltered (gdb_stdlog,
3184 "infrun: infwait_nonstep_watch_state\n");
488f131b 3185 insert_breakpoints ();
c906108c 3186
488f131b
JB
3187 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3188 handle things like signals arriving and other things happening
3189 in combination correctly? */
3190 stepped_after_stopped_by_watchpoint = 1;
3191 break;
65e82032
AC
3192
3193 default:
e2e0b3e5 3194 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 3195 }
ec9499be 3196
0d1e5fa7 3197 infwait_state = infwait_normal_state;
ec9499be 3198 waiton_ptid = pid_to_ptid (-1);
c906108c 3199
488f131b
JB
3200 switch (ecs->ws.kind)
3201 {
3202 case TARGET_WAITKIND_LOADED:
527159b7 3203 if (debug_infrun)
8a9de0e4 3204 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
3205 /* Ignore gracefully during startup of the inferior, as it might
3206 be the shell which has just loaded some objects, otherwise
3207 add the symbols for the newly loaded objects. Also ignore at
3208 the beginning of an attach or remote session; we will query
3209 the full list of libraries once the connection is
3210 established. */
c0236d92 3211 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3212 {
488f131b
JB
3213 /* Check for any newly added shared libraries if we're
3214 supposed to be adding them automatically. Switch
3215 terminal for any messages produced by
3216 breakpoint_re_set. */
3217 target_terminal_ours_for_output ();
aff6338a 3218 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
3219 stack's section table is kept up-to-date. Architectures,
3220 (e.g., PPC64), use the section table to perform
3221 operations such as address => section name and hence
3222 require the table to contain all sections (including
3223 those found in shared libraries). */
b0f4b84b 3224#ifdef SOLIB_ADD
aff6338a 3225 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
3226#else
3227 solib_add (NULL, 0, &current_target, auto_solib_add);
3228#endif
488f131b
JB
3229 target_terminal_inferior ();
3230
b0f4b84b
DJ
3231 /* If requested, stop when the dynamic linker notifies
3232 gdb of events. This allows the user to get control
3233 and place breakpoints in initializer routines for
3234 dynamically loaded objects (among other things). */
3235 if (stop_on_solib_events)
3236 {
55409f9d
DJ
3237 /* Make sure we print "Stopped due to solib-event" in
3238 normal_stop. */
3239 stop_print_frame = 1;
3240
b0f4b84b
DJ
3241 stop_stepping (ecs);
3242 return;
3243 }
3244
3245 /* NOTE drow/2007-05-11: This might be a good place to check
3246 for "catch load". */
488f131b 3247 }
b0f4b84b
DJ
3248
3249 /* If we are skipping through a shell, or through shared library
3250 loading that we aren't interested in, resume the program. If
3251 we're running the program normally, also resume. But stop if
3252 we're attaching or setting up a remote connection. */
3253 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3254 {
74960c60
VP
3255 /* Loading of shared libraries might have changed breakpoint
3256 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
3257 if (stop_soon == NO_STOP_QUIETLY
3258 && !breakpoints_always_inserted_mode ())
74960c60 3259 insert_breakpoints ();
b0f4b84b
DJ
3260 resume (0, TARGET_SIGNAL_0);
3261 prepare_to_wait (ecs);
3262 return;
3263 }
3264
3265 break;
c5aa993b 3266
488f131b 3267 case TARGET_WAITKIND_SPURIOUS:
527159b7 3268 if (debug_infrun)
8a9de0e4 3269 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
3270 resume (0, TARGET_SIGNAL_0);
3271 prepare_to_wait (ecs);
3272 return;
c5aa993b 3273
488f131b 3274 case TARGET_WAITKIND_EXITED:
527159b7 3275 if (debug_infrun)
8a9de0e4 3276 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
fb66883a 3277 inferior_ptid = ecs->ptid;
6c95b8df
PA
3278 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3279 set_current_program_space (current_inferior ()->pspace);
3280 handle_vfork_child_exec_or_exit (0);
1777feb0 3281 target_terminal_ours (); /* Must do this before mourn anyway. */
33d62d64 3282 print_exited_reason (ecs->ws.value.integer);
488f131b
JB
3283
3284 /* Record the exit code in the convenience variable $_exitcode, so
3285 that the user can inspect this again later. */
4fa62494
UW
3286 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3287 (LONGEST) ecs->ws.value.integer);
488f131b
JB
3288 gdb_flush (gdb_stdout);
3289 target_mourn_inferior ();
1c0fdd0e 3290 singlestep_breakpoints_inserted_p = 0;
d03285ec 3291 cancel_single_step_breakpoints ();
488f131b
JB
3292 stop_print_frame = 0;
3293 stop_stepping (ecs);
3294 return;
c5aa993b 3295
488f131b 3296 case TARGET_WAITKIND_SIGNALLED:
527159b7 3297 if (debug_infrun)
8a9de0e4 3298 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
fb66883a 3299 inferior_ptid = ecs->ptid;
6c95b8df
PA
3300 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3301 set_current_program_space (current_inferior ()->pspace);
3302 handle_vfork_child_exec_or_exit (0);
488f131b 3303 stop_print_frame = 0;
1777feb0 3304 target_terminal_ours (); /* Must do this before mourn anyway. */
c5aa993b 3305
488f131b
JB
3306 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3307 reach here unless the inferior is dead. However, for years
3308 target_kill() was called here, which hints that fatal signals aren't
3309 really fatal on some systems. If that's true, then some changes
1777feb0 3310 may be needed. */
488f131b 3311 target_mourn_inferior ();
c906108c 3312
33d62d64 3313 print_signal_exited_reason (ecs->ws.value.sig);
1c0fdd0e 3314 singlestep_breakpoints_inserted_p = 0;
d03285ec 3315 cancel_single_step_breakpoints ();
488f131b
JB
3316 stop_stepping (ecs);
3317 return;
c906108c 3318
488f131b 3319 /* The following are the only cases in which we keep going;
1777feb0 3320 the above cases end in a continue or goto. */
488f131b 3321 case TARGET_WAITKIND_FORKED:
deb3b17b 3322 case TARGET_WAITKIND_VFORKED:
527159b7 3323 if (debug_infrun)
8a9de0e4 3324 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
c906108c 3325
5a2901d9
DJ
3326 if (!ptid_equal (ecs->ptid, inferior_ptid))
3327 {
0d1e5fa7 3328 context_switch (ecs->ptid);
35f196d9 3329 reinit_frame_cache ();
5a2901d9
DJ
3330 }
3331
b242c3c2
PA
3332 /* Immediately detach breakpoints from the child before there's
3333 any chance of letting the user delete breakpoints from the
3334 breakpoint lists. If we don't do this early, it's easy to
3335 leave left over traps in the child, vis: "break foo; catch
3336 fork; c; <fork>; del; c; <child calls foo>". We only follow
3337 the fork on the last `continue', and by that time the
3338 breakpoint at "foo" is long gone from the breakpoint table.
3339 If we vforked, then we don't need to unpatch here, since both
3340 parent and child are sharing the same memory pages; we'll
3341 need to unpatch at follow/detach time instead to be certain
3342 that new breakpoints added between catchpoint hit time and
3343 vfork follow are detached. */
3344 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3345 {
3346 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3347
3348 /* This won't actually modify the breakpoint list, but will
3349 physically remove the breakpoints from the child. */
3350 detach_breakpoints (child_pid);
3351 }
3352
d03285ec
UW
3353 if (singlestep_breakpoints_inserted_p)
3354 {
1777feb0 3355 /* Pull the single step breakpoints out of the target. */
d03285ec
UW
3356 remove_single_step_breakpoints ();
3357 singlestep_breakpoints_inserted_p = 0;
3358 }
3359
e58b0e63
PA
3360 /* In case the event is caught by a catchpoint, remember that
3361 the event is to be followed at the next resume of the thread,
3362 and not immediately. */
3363 ecs->event_thread->pending_follow = ecs->ws;
3364
fb14de7b 3365 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3366
16c381f0 3367 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
3368 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3369 stop_pc, ecs->ptid);
675bf4cb 3370
67822962
PA
3371 /* Note that we're interested in knowing the bpstat actually
3372 causes a stop, not just if it may explain the signal.
3373 Software watchpoints, for example, always appear in the
3374 bpstat. */
16c381f0
JK
3375 ecs->random_signal
3376 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
04e68871
DJ
3377
3378 /* If no catchpoint triggered for this, then keep going. */
3379 if (ecs->random_signal)
3380 {
6c95b8df
PA
3381 ptid_t parent;
3382 ptid_t child;
e58b0e63 3383 int should_resume;
3e43a32a
MS
3384 int follow_child
3385 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3386
16c381f0 3387 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
e58b0e63
PA
3388
3389 should_resume = follow_fork ();
3390
6c95b8df
PA
3391 parent = ecs->ptid;
3392 child = ecs->ws.value.related_pid;
3393
3394 /* In non-stop mode, also resume the other branch. */
3395 if (non_stop && !detach_fork)
3396 {
3397 if (follow_child)
3398 switch_to_thread (parent);
3399 else
3400 switch_to_thread (child);
3401
3402 ecs->event_thread = inferior_thread ();
3403 ecs->ptid = inferior_ptid;
3404 keep_going (ecs);
3405 }
3406
3407 if (follow_child)
3408 switch_to_thread (child);
3409 else
3410 switch_to_thread (parent);
3411
e58b0e63
PA
3412 ecs->event_thread = inferior_thread ();
3413 ecs->ptid = inferior_ptid;
3414
3415 if (should_resume)
3416 keep_going (ecs);
3417 else
3418 stop_stepping (ecs);
04e68871
DJ
3419 return;
3420 }
16c381f0 3421 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3422 goto process_event_stop_test;
3423
6c95b8df
PA
3424 case TARGET_WAITKIND_VFORK_DONE:
3425 /* Done with the shared memory region. Re-insert breakpoints in
3426 the parent, and keep going. */
3427
3428 if (debug_infrun)
3e43a32a
MS
3429 fprintf_unfiltered (gdb_stdlog,
3430 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
3431
3432 if (!ptid_equal (ecs->ptid, inferior_ptid))
3433 context_switch (ecs->ptid);
3434
3435 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3436 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3437 /* This also takes care of reinserting breakpoints in the
3438 previously locked inferior. */
3439 keep_going (ecs);
3440 return;
3441
488f131b 3442 case TARGET_WAITKIND_EXECD:
527159b7 3443 if (debug_infrun)
fc5261f2 3444 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3445
5a2901d9
DJ
3446 if (!ptid_equal (ecs->ptid, inferior_ptid))
3447 {
0d1e5fa7 3448 context_switch (ecs->ptid);
35f196d9 3449 reinit_frame_cache ();
5a2901d9
DJ
3450 }
3451
d03285ec
UW
3452 singlestep_breakpoints_inserted_p = 0;
3453 cancel_single_step_breakpoints ();
3454
fb14de7b 3455 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3456
6c95b8df
PA
3457 /* Do whatever is necessary to the parent branch of the vfork. */
3458 handle_vfork_child_exec_or_exit (1);
3459
795e548f
PA
3460 /* This causes the eventpoints and symbol table to be reset.
3461 Must do this now, before trying to determine whether to
3462 stop. */
71b43ef8 3463 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3464
16c381f0 3465 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
3466 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3467 stop_pc, ecs->ptid);
16c381f0
JK
3468 ecs->random_signal
3469 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
795e548f 3470
71b43ef8
PA
3471 /* Note that this may be referenced from inside
3472 bpstat_stop_status above, through inferior_has_execd. */
3473 xfree (ecs->ws.value.execd_pathname);
3474 ecs->ws.value.execd_pathname = NULL;
3475
04e68871
DJ
3476 /* If no catchpoint triggered for this, then keep going. */
3477 if (ecs->random_signal)
3478 {
16c381f0 3479 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
3480 keep_going (ecs);
3481 return;
3482 }
16c381f0 3483 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3484 goto process_event_stop_test;
3485
b4dc5ffa
MK
3486 /* Be careful not to try to gather much state about a thread
3487 that's in a syscall. It's frequently a losing proposition. */
488f131b 3488 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3489 if (debug_infrun)
3e43a32a
MS
3490 fprintf_unfiltered (gdb_stdlog,
3491 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 3492 /* Getting the current syscall number. */
ca2163eb 3493 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3494 return;
3495 goto process_event_stop_test;
c906108c 3496
488f131b
JB
3497 /* Before examining the threads further, step this thread to
3498 get it entirely out of the syscall. (We get notice of the
3499 event when the thread is just on the verge of exiting a
3500 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3501 into user code.) */
488f131b 3502 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3503 if (debug_infrun)
3e43a32a
MS
3504 fprintf_unfiltered (gdb_stdlog,
3505 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
ca2163eb 3506 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3507 return;
3508 goto process_event_stop_test;
c906108c 3509
488f131b 3510 case TARGET_WAITKIND_STOPPED:
527159b7 3511 if (debug_infrun)
8a9de0e4 3512 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 3513 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
488f131b 3514 break;
c906108c 3515
b2175913
MS
3516 case TARGET_WAITKIND_NO_HISTORY:
3517 /* Reverse execution: target ran out of history info. */
fb14de7b 3518 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
33d62d64 3519 print_no_history_reason ();
b2175913
MS
3520 stop_stepping (ecs);
3521 return;
488f131b 3522 }
c906108c 3523
488f131b
JB
3524 if (ecs->new_thread_event)
3525 {
94cc34af
PA
3526 if (non_stop)
3527 /* Non-stop assumes that the target handles adding new threads
3528 to the thread list. */
3e43a32a
MS
3529 internal_error (__FILE__, __LINE__,
3530 "targets should add new threads to the thread "
3531 "list themselves in non-stop mode.");
94cc34af
PA
3532
3533 /* We may want to consider not doing a resume here in order to
3534 give the user a chance to play with the new thread. It might
3535 be good to make that a user-settable option. */
3536
3537 /* At this point, all threads are stopped (happens automatically
3538 in either the OS or the native code). Therefore we need to
3539 continue all threads in order to make progress. */
3540
173853dc
PA
3541 if (!ptid_equal (ecs->ptid, inferior_ptid))
3542 context_switch (ecs->ptid);
488f131b
JB
3543 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3544 prepare_to_wait (ecs);
3545 return;
3546 }
c906108c 3547
2020b7ab 3548 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
3549 {
3550 /* Do we need to clean up the state of a thread that has
3551 completed a displaced single-step? (Doing so usually affects
3552 the PC, so do it here, before we set stop_pc.) */
16c381f0
JK
3553 displaced_step_fixup (ecs->ptid,
3554 ecs->event_thread->suspend.stop_signal);
252fbfc8
PA
3555
3556 /* If we either finished a single-step or hit a breakpoint, but
3557 the user wanted this thread to be stopped, pretend we got a
3558 SIG0 (generic unsignaled stop). */
3559
3560 if (ecs->event_thread->stop_requested
16c381f0
JK
3561 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3562 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
252fbfc8 3563 }
237fc4c9 3564
515630c5 3565 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3566
527159b7 3567 if (debug_infrun)
237fc4c9 3568 {
5af949e3
UW
3569 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3570 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
3571 struct cleanup *old_chain = save_inferior_ptid ();
3572
3573 inferior_ptid = ecs->ptid;
5af949e3
UW
3574
3575 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3576 paddress (gdbarch, stop_pc));
d92524f1 3577 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3578 {
3579 CORE_ADDR addr;
abbb1732 3580
237fc4c9
PA
3581 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3582
3583 if (target_stopped_data_address (&current_target, &addr))
3584 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3585 "infrun: stopped data address = %s\n",
3586 paddress (gdbarch, addr));
237fc4c9
PA
3587 else
3588 fprintf_unfiltered (gdb_stdlog,
3589 "infrun: (no data address available)\n");
3590 }
7f82dfc7
JK
3591
3592 do_cleanups (old_chain);
237fc4c9 3593 }
527159b7 3594
9f976b41
DJ
3595 if (stepping_past_singlestep_breakpoint)
3596 {
1c0fdd0e 3597 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
3598 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3599 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3600
3601 stepping_past_singlestep_breakpoint = 0;
3602
3603 /* We've either finished single-stepping past the single-step
8fb3e588
AC
3604 breakpoint, or stopped for some other reason. It would be nice if
3605 we could tell, but we can't reliably. */
16c381f0 3606 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 3607 {
527159b7 3608 if (debug_infrun)
3e43a32a
MS
3609 fprintf_unfiltered (gdb_stdlog,
3610 "infrun: stepping_past_"
3611 "singlestep_breakpoint\n");
9f976b41 3612 /* Pull the single step breakpoints out of the target. */
e0cd558a 3613 remove_single_step_breakpoints ();
9f976b41
DJ
3614 singlestep_breakpoints_inserted_p = 0;
3615
3616 ecs->random_signal = 0;
16c381f0 3617 ecs->event_thread->control.trap_expected = 0;
9f976b41 3618
0d1e5fa7 3619 context_switch (saved_singlestep_ptid);
9a4105ab
AC
3620 if (deprecated_context_hook)
3621 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
3622
3623 resume (1, TARGET_SIGNAL_0);
3624 prepare_to_wait (ecs);
3625 return;
3626 }
3627 }
3628
ca67fcb8 3629 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 3630 {
94cc34af
PA
3631 /* In non-stop mode, there's never a deferred_step_ptid set. */
3632 gdb_assert (!non_stop);
3633
6a6b96b9
UW
3634 /* If we stopped for some other reason than single-stepping, ignore
3635 the fact that we were supposed to switch back. */
16c381f0 3636 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
6a6b96b9
UW
3637 {
3638 if (debug_infrun)
3639 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 3640 "infrun: handling deferred step\n");
6a6b96b9
UW
3641
3642 /* Pull the single step breakpoints out of the target. */
3643 if (singlestep_breakpoints_inserted_p)
3644 {
3645 remove_single_step_breakpoints ();
3646 singlestep_breakpoints_inserted_p = 0;
3647 }
3648
3649 /* Note: We do not call context_switch at this point, as the
3650 context is already set up for stepping the original thread. */
ca67fcb8
VP
3651 switch_to_thread (deferred_step_ptid);
3652 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3653 /* Suppress spurious "Switching to ..." message. */
3654 previous_inferior_ptid = inferior_ptid;
3655
3656 resume (1, TARGET_SIGNAL_0);
3657 prepare_to_wait (ecs);
3658 return;
3659 }
ca67fcb8
VP
3660
3661 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3662 }
3663
488f131b
JB
3664 /* See if a thread hit a thread-specific breakpoint that was meant for
3665 another thread. If so, then step that thread past the breakpoint,
3666 and continue it. */
3667
16c381f0 3668 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
488f131b 3669 {
9f976b41 3670 int thread_hop_needed = 0;
cf00dfa7
VP
3671 struct address_space *aspace =
3672 get_regcache_aspace (get_thread_regcache (ecs->ptid));
9f976b41 3673
f8d40ec8 3674 /* Check if a regular breakpoint has been hit before checking
1777feb0 3675 for a potential single step breakpoint. Otherwise, GDB will
f8d40ec8 3676 not see this breakpoint hit when stepping onto breakpoints. */
6c95b8df 3677 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
488f131b 3678 {
c5aa993b 3679 ecs->random_signal = 0;
6c95b8df 3680 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
9f976b41
DJ
3681 thread_hop_needed = 1;
3682 }
1c0fdd0e 3683 else if (singlestep_breakpoints_inserted_p)
9f976b41 3684 {
fd48f117
DJ
3685 /* We have not context switched yet, so this should be true
3686 no matter which thread hit the singlestep breakpoint. */
3687 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3688 if (debug_infrun)
3689 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3690 "trap for %s\n",
3691 target_pid_to_str (ecs->ptid));
3692
9f976b41
DJ
3693 ecs->random_signal = 0;
3694 /* The call to in_thread_list is necessary because PTIDs sometimes
3695 change when we go from single-threaded to multi-threaded. If
3696 the singlestep_ptid is still in the list, assume that it is
3697 really different from ecs->ptid. */
3698 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3699 && in_thread_list (singlestep_ptid))
3700 {
fd48f117
DJ
3701 /* If the PC of the thread we were trying to single-step
3702 has changed, discard this event (which we were going
3703 to ignore anyway), and pretend we saw that thread
3704 trap. This prevents us continuously moving the
3705 single-step breakpoint forward, one instruction at a
3706 time. If the PC has changed, then the thread we were
3707 trying to single-step has trapped or been signalled,
3708 but the event has not been reported to GDB yet.
3709
3710 There might be some cases where this loses signal
3711 information, if a signal has arrived at exactly the
3712 same time that the PC changed, but this is the best
3713 we can do with the information available. Perhaps we
3714 should arrange to report all events for all threads
3715 when they stop, or to re-poll the remote looking for
3716 this particular thread (i.e. temporarily enable
3717 schedlock). */
515630c5
UW
3718
3719 CORE_ADDR new_singlestep_pc
3720 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3721
3722 if (new_singlestep_pc != singlestep_pc)
fd48f117 3723 {
2020b7ab
PA
3724 enum target_signal stop_signal;
3725
fd48f117
DJ
3726 if (debug_infrun)
3727 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3728 " but expected thread advanced also\n");
3729
3730 /* The current context still belongs to
3731 singlestep_ptid. Don't swap here, since that's
3732 the context we want to use. Just fudge our
3733 state and continue. */
16c381f0
JK
3734 stop_signal = ecs->event_thread->suspend.stop_signal;
3735 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
fd48f117 3736 ecs->ptid = singlestep_ptid;
e09875d4 3737 ecs->event_thread = find_thread_ptid (ecs->ptid);
16c381f0 3738 ecs->event_thread->suspend.stop_signal = stop_signal;
515630c5 3739 stop_pc = new_singlestep_pc;
fd48f117
DJ
3740 }
3741 else
3742 {
3743 if (debug_infrun)
3744 fprintf_unfiltered (gdb_stdlog,
3745 "infrun: unexpected thread\n");
3746
3747 thread_hop_needed = 1;
3748 stepping_past_singlestep_breakpoint = 1;
3749 saved_singlestep_ptid = singlestep_ptid;
3750 }
9f976b41
DJ
3751 }
3752 }
3753
3754 if (thread_hop_needed)
8fb3e588 3755 {
9f5a595d 3756 struct regcache *thread_regcache;
237fc4c9 3757 int remove_status = 0;
8fb3e588 3758
527159b7 3759 if (debug_infrun)
8a9de0e4 3760 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 3761
b3444185
PA
3762 /* Switch context before touching inferior memory, the
3763 previous thread may have exited. */
3764 if (!ptid_equal (inferior_ptid, ecs->ptid))
3765 context_switch (ecs->ptid);
3766
8fb3e588 3767 /* Saw a breakpoint, but it was hit by the wrong thread.
1777feb0 3768 Just continue. */
8fb3e588 3769
1c0fdd0e 3770 if (singlestep_breakpoints_inserted_p)
488f131b 3771 {
1777feb0 3772 /* Pull the single step breakpoints out of the target. */
e0cd558a 3773 remove_single_step_breakpoints ();
8fb3e588
AC
3774 singlestep_breakpoints_inserted_p = 0;
3775 }
3776
237fc4c9
PA
3777 /* If the arch can displace step, don't remove the
3778 breakpoints. */
9f5a595d
UW
3779 thread_regcache = get_thread_regcache (ecs->ptid);
3780 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
3781 remove_status = remove_breakpoints ();
3782
8fb3e588
AC
3783 /* Did we fail to remove breakpoints? If so, try
3784 to set the PC past the bp. (There's at least
3785 one situation in which we can fail to remove
3786 the bp's: On HP-UX's that use ttrace, we can't
3787 change the address space of a vforking child
3788 process until the child exits (well, okay, not
1777feb0 3789 then either :-) or execs. */
8fb3e588 3790 if (remove_status != 0)
9d9cd7ac 3791 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
3792 else
3793 { /* Single step */
94cc34af
PA
3794 if (!non_stop)
3795 {
3796 /* Only need to require the next event from this
3797 thread in all-stop mode. */
3798 waiton_ptid = ecs->ptid;
3799 infwait_state = infwait_thread_hop_state;
3800 }
8fb3e588 3801
4e1c45ea 3802 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 3803 keep_going (ecs);
8fb3e588
AC
3804 return;
3805 }
488f131b 3806 }
1c0fdd0e 3807 else if (singlestep_breakpoints_inserted_p)
8fb3e588
AC
3808 {
3809 sw_single_step_trap_p = 1;
3810 ecs->random_signal = 0;
3811 }
488f131b
JB
3812 }
3813 else
3814 ecs->random_signal = 1;
c906108c 3815
488f131b 3816 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
3817 so, then switch to that thread. */
3818 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 3819 {
527159b7 3820 if (debug_infrun)
8a9de0e4 3821 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 3822
0d1e5fa7 3823 context_switch (ecs->ptid);
c5aa993b 3824
9a4105ab
AC
3825 if (deprecated_context_hook)
3826 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 3827 }
c906108c 3828
568d6575
UW
3829 /* At this point, get hold of the now-current thread's frame. */
3830 frame = get_current_frame ();
3831 gdbarch = get_frame_arch (frame);
3832
1c0fdd0e 3833 if (singlestep_breakpoints_inserted_p)
488f131b 3834 {
1777feb0 3835 /* Pull the single step breakpoints out of the target. */
e0cd558a 3836 remove_single_step_breakpoints ();
488f131b
JB
3837 singlestep_breakpoints_inserted_p = 0;
3838 }
c906108c 3839
d983da9c
DJ
3840 if (stepped_after_stopped_by_watchpoint)
3841 stopped_by_watchpoint = 0;
3842 else
3843 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3844
3845 /* If necessary, step over this watchpoint. We'll be back to display
3846 it in a moment. */
3847 if (stopped_by_watchpoint
d92524f1 3848 && (target_have_steppable_watchpoint
568d6575 3849 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 3850 {
488f131b
JB
3851 /* At this point, we are stopped at an instruction which has
3852 attempted to write to a piece of memory under control of
3853 a watchpoint. The instruction hasn't actually executed
3854 yet. If we were to evaluate the watchpoint expression
3855 now, we would get the old value, and therefore no change
3856 would seem to have occurred.
3857
3858 In order to make watchpoints work `right', we really need
3859 to complete the memory write, and then evaluate the
d983da9c
DJ
3860 watchpoint expression. We do this by single-stepping the
3861 target.
3862
3863 It may not be necessary to disable the watchpoint to stop over
3864 it. For example, the PA can (with some kernel cooperation)
3865 single step over a watchpoint without disabling the watchpoint.
3866
3867 It is far more common to need to disable a watchpoint to step
3868 the inferior over it. If we have non-steppable watchpoints,
3869 we must disable the current watchpoint; it's simplest to
3870 disable all watchpoints and breakpoints. */
2facfe5c
DD
3871 int hw_step = 1;
3872
d92524f1 3873 if (!target_have_steppable_watchpoint)
2455069d
UW
3874 {
3875 remove_breakpoints ();
3876 /* See comment in resume why we need to stop bypassing signals
3877 while breakpoints have been removed. */
3878 target_pass_signals (0, NULL);
3879 }
2facfe5c 3880 /* Single step */
568d6575 3881 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
2facfe5c 3882 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
0d1e5fa7 3883 waiton_ptid = ecs->ptid;
d92524f1 3884 if (target_have_steppable_watchpoint)
0d1e5fa7 3885 infwait_state = infwait_step_watch_state;
d983da9c 3886 else
0d1e5fa7 3887 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
3888 prepare_to_wait (ecs);
3889 return;
3890 }
3891
488f131b
JB
3892 ecs->stop_func_start = 0;
3893 ecs->stop_func_end = 0;
3894 ecs->stop_func_name = 0;
3895 /* Don't care about return value; stop_func_start and stop_func_name
3896 will both be 0 if it doesn't work. */
3897 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3898 &ecs->stop_func_start, &ecs->stop_func_end);
cbf3b44a 3899 ecs->stop_func_start
568d6575 3900 += gdbarch_deprecated_function_start_offset (gdbarch);
4e1c45ea 3901 ecs->event_thread->stepping_over_breakpoint = 0;
16c381f0
JK
3902 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
3903 ecs->event_thread->control.stop_step = 0;
488f131b
JB
3904 stop_print_frame = 1;
3905 ecs->random_signal = 0;
3906 stopped_by_random_signal = 0;
488f131b 3907
edb3359d
DJ
3908 /* Hide inlined functions starting here, unless we just performed stepi or
3909 nexti. After stepi and nexti, always show the innermost frame (not any
3910 inline function call sites). */
16c381f0 3911 if (ecs->event_thread->control.step_range_end != 1)
edb3359d
DJ
3912 skip_inline_frames (ecs->ptid);
3913
16c381f0
JK
3914 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3915 && ecs->event_thread->control.trap_expected
568d6575 3916 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 3917 && currently_stepping (ecs->event_thread))
3352ef37 3918 {
b50d7442 3919 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 3920 also on an instruction that needs to be stepped multiple
1777feb0 3921 times before it's been fully executing. E.g., architectures
3352ef37
AC
3922 with a delay slot. It needs to be stepped twice, once for
3923 the instruction and once for the delay slot. */
3924 int step_through_delay
568d6575 3925 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 3926
527159b7 3927 if (debug_infrun && step_through_delay)
8a9de0e4 3928 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
3929 if (ecs->event_thread->control.step_range_end == 0
3930 && step_through_delay)
3352ef37
AC
3931 {
3932 /* The user issued a continue when stopped at a breakpoint.
3933 Set up for another trap and get out of here. */
4e1c45ea 3934 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3935 keep_going (ecs);
3936 return;
3937 }
3938 else if (step_through_delay)
3939 {
3940 /* The user issued a step when stopped at a breakpoint.
3941 Maybe we should stop, maybe we should not - the delay
3942 slot *might* correspond to a line of source. In any
ca67fcb8
VP
3943 case, don't decide that here, just set
3944 ecs->stepping_over_breakpoint, making sure we
3945 single-step again before breakpoints are re-inserted. */
4e1c45ea 3946 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3947 }
3948 }
3949
488f131b
JB
3950 /* Look at the cause of the stop, and decide what to do.
3951 The alternatives are:
0d1e5fa7
PA
3952 1) stop_stepping and return; to really stop and return to the debugger,
3953 2) keep_going and return to start up again
4e1c45ea 3954 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
3955 3) set ecs->random_signal to 1, and the decision between 1 and 2
3956 will be made according to the signal handling tables. */
3957
16c381f0 3958 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
b0f4b84b
DJ
3959 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
3960 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 3961 {
16c381f0
JK
3962 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3963 && stop_after_trap)
488f131b 3964 {
527159b7 3965 if (debug_infrun)
8a9de0e4 3966 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
3967 stop_print_frame = 0;
3968 stop_stepping (ecs);
3969 return;
3970 }
c54cfec8
EZ
3971
3972 /* This is originated from start_remote(), start_inferior() and
3973 shared libraries hook functions. */
b0f4b84b 3974 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 3975 {
527159b7 3976 if (debug_infrun)
8a9de0e4 3977 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
3978 stop_stepping (ecs);
3979 return;
3980 }
3981
c54cfec8 3982 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
3983 the stop_signal here, because some kernels don't ignore a
3984 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3985 See more comments in inferior.h. On the other hand, if we
a0ef4274 3986 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
3987 will handle the SIGSTOP if it should show up later.
3988
3989 Also consider that the attach is complete when we see a
3990 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
3991 target extended-remote report it instead of a SIGSTOP
3992 (e.g. gdbserver). We already rely on SIGTRAP being our
e0ba6746
PA
3993 signal, so this is no exception.
3994
3995 Also consider that the attach is complete when we see a
3996 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
3997 the target to stop all threads of the inferior, in case the
3998 low level attach operation doesn't stop them implicitly. If
3999 they weren't stopped implicitly, then the stub will report a
4000 TARGET_SIGNAL_0, meaning: stopped for no particular reason
4001 other than GDB's request. */
a0ef4274 4002 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
16c381f0
JK
4003 && (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_STOP
4004 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4005 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_0))
c54cfec8
EZ
4006 {
4007 stop_stepping (ecs);
16c381f0 4008 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
4009 return;
4010 }
4011
fba57f8f 4012 /* See if there is a breakpoint at the current PC. */
16c381f0 4013 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
4014 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4015 stop_pc, ecs->ptid);
4016
fba57f8f
VP
4017 /* Following in case break condition called a
4018 function. */
4019 stop_print_frame = 1;
488f131b 4020
db82e815
PA
4021 /* This is where we handle "moribund" watchpoints. Unlike
4022 software breakpoints traps, hardware watchpoint traps are
4023 always distinguishable from random traps. If no high-level
4024 watchpoint is associated with the reported stop data address
4025 anymore, then the bpstat does not explain the signal ---
4026 simply make sure to ignore it if `stopped_by_watchpoint' is
4027 set. */
4028
4029 if (debug_infrun
16c381f0
JK
4030 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4031 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 4032 && stopped_by_watchpoint)
3e43a32a
MS
4033 fprintf_unfiltered (gdb_stdlog,
4034 "infrun: no user watchpoint explains "
4035 "watchpoint SIGTRAP, ignoring\n");
db82e815 4036
73dd234f 4037 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
4038 at one stage in the past included checks for an inferior
4039 function call's call dummy's return breakpoint. The original
4040 comment, that went with the test, read:
73dd234f 4041
8fb3e588
AC
4042 ``End of a stack dummy. Some systems (e.g. Sony news) give
4043 another signal besides SIGTRAP, so check here as well as
4044 above.''
73dd234f 4045
8002d778 4046 If someone ever tries to get call dummys on a
73dd234f 4047 non-executable stack to work (where the target would stop
03cebad2
MK
4048 with something like a SIGSEGV), then those tests might need
4049 to be re-instated. Given, however, that the tests were only
73dd234f 4050 enabled when momentary breakpoints were not being used, I
03cebad2
MK
4051 suspect that it won't be the case.
4052
8fb3e588
AC
4053 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4054 be necessary for call dummies on a non-executable stack on
4055 SPARC. */
73dd234f 4056
16c381f0 4057 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
488f131b 4058 ecs->random_signal
16c381f0 4059 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 4060 || stopped_by_watchpoint
16c381f0
JK
4061 || ecs->event_thread->control.trap_expected
4062 || (ecs->event_thread->control.step_range_end
8358c15c
JK
4063 && (ecs->event_thread->control.step_resume_breakpoint
4064 == NULL)));
488f131b
JB
4065 else
4066 {
16c381f0
JK
4067 ecs->random_signal = !bpstat_explains_signal
4068 (ecs->event_thread->control.stop_bpstat);
488f131b 4069 if (!ecs->random_signal)
16c381f0 4070 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
4071 }
4072 }
4073
4074 /* When we reach this point, we've pretty much decided
4075 that the reason for stopping must've been a random
1777feb0 4076 (unexpected) signal. */
488f131b
JB
4077
4078 else
4079 ecs->random_signal = 1;
488f131b 4080
04e68871 4081process_event_stop_test:
568d6575
UW
4082
4083 /* Re-fetch current thread's frame in case we did a
4084 "goto process_event_stop_test" above. */
4085 frame = get_current_frame ();
4086 gdbarch = get_frame_arch (frame);
4087
488f131b
JB
4088 /* For the program's own signals, act according to
4089 the signal handling tables. */
4090
4091 if (ecs->random_signal)
4092 {
4093 /* Signal not for debugging purposes. */
4094 int printed = 0;
24291992 4095 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
488f131b 4096
527159b7 4097 if (debug_infrun)
2020b7ab 4098 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
16c381f0 4099 ecs->event_thread->suspend.stop_signal);
527159b7 4100
488f131b
JB
4101 stopped_by_random_signal = 1;
4102
16c381f0 4103 if (signal_print[ecs->event_thread->suspend.stop_signal])
488f131b
JB
4104 {
4105 printed = 1;
4106 target_terminal_ours_for_output ();
16c381f0
JK
4107 print_signal_received_reason
4108 (ecs->event_thread->suspend.stop_signal);
488f131b 4109 }
252fbfc8
PA
4110 /* Always stop on signals if we're either just gaining control
4111 of the program, or the user explicitly requested this thread
4112 to remain stopped. */
d6b48e9c 4113 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4114 || ecs->event_thread->stop_requested
24291992 4115 || (!inf->detaching
16c381f0 4116 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b
JB
4117 {
4118 stop_stepping (ecs);
4119 return;
4120 }
4121 /* If not going to stop, give terminal back
4122 if we took it away. */
4123 else if (printed)
4124 target_terminal_inferior ();
4125
4126 /* Clear the signal if it should not be passed. */
16c381f0
JK
4127 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4128 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
488f131b 4129
fb14de7b 4130 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4131 && ecs->event_thread->control.trap_expected
8358c15c 4132 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4133 {
4134 /* We were just starting a new sequence, attempting to
4135 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4136 Instead this signal arrives. This signal will take us out
68f53502
AC
4137 of the stepping range so GDB needs to remember to, when
4138 the signal handler returns, resume stepping off that
4139 breakpoint. */
4140 /* To simplify things, "continue" is forced to use the same
4141 code paths as single-step - set a breakpoint at the
4142 signal return address and then, once hit, step off that
4143 breakpoint. */
237fc4c9
PA
4144 if (debug_infrun)
4145 fprintf_unfiltered (gdb_stdlog,
4146 "infrun: signal arrived while stepping over "
4147 "breakpoint\n");
d3169d93 4148
568d6575 4149 insert_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4150 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4151 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4152 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4153 keep_going (ecs);
4154 return;
68f53502 4155 }
9d799f85 4156
16c381f0
JK
4157 if (ecs->event_thread->control.step_range_end != 0
4158 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_0
4159 && (ecs->event_thread->control.step_range_start <= stop_pc
4160 && stop_pc < ecs->event_thread->control.step_range_end)
edb3359d 4161 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4162 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4163 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4164 {
4165 /* The inferior is about to take a signal that will take it
4166 out of the single step range. Set a breakpoint at the
4167 current PC (which is presumably where the signal handler
4168 will eventually return) and then allow the inferior to
4169 run free.
4170
4171 Note that this is only needed for a signal delivered
4172 while in the single-step range. Nested signals aren't a
4173 problem as they eventually all return. */
237fc4c9
PA
4174 if (debug_infrun)
4175 fprintf_unfiltered (gdb_stdlog,
4176 "infrun: signal may take us out of "
4177 "single-step range\n");
4178
568d6575 4179 insert_step_resume_breakpoint_at_frame (frame);
2455069d
UW
4180 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4181 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4182 keep_going (ecs);
4183 return;
d303a6c7 4184 }
9d799f85
AC
4185
4186 /* Note: step_resume_breakpoint may be non-NULL. This occures
4187 when either there's a nested signal, or when there's a
4188 pending signal enabled just as the signal handler returns
4189 (leaving the inferior at the step-resume-breakpoint without
4190 actually executing it). Either way continue until the
4191 breakpoint is really hit. */
488f131b
JB
4192 keep_going (ecs);
4193 return;
4194 }
4195
4196 /* Handle cases caused by hitting a breakpoint. */
4197 {
4198 CORE_ADDR jmp_buf_pc;
4199 struct bpstat_what what;
4200
16c381f0 4201 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
488f131b
JB
4202
4203 if (what.call_dummy)
4204 {
aa7d318d 4205 stop_stack_dummy = what.call_dummy;
c5aa993b 4206 }
c906108c 4207
628fe4e4
JK
4208 /* If we hit an internal event that triggers symbol changes, the
4209 current frame will be invalidated within bpstat_what (e.g., if
4210 we hit an internal solib event). Re-fetch it. */
4211 frame = get_current_frame ();
4212 gdbarch = get_frame_arch (frame);
4213
488f131b 4214 switch (what.main_action)
c5aa993b 4215 {
488f131b 4216 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
4217 /* If we hit the breakpoint at longjmp while stepping, we
4218 install a momentary breakpoint at the target of the
4219 jmp_buf. */
4220
4221 if (debug_infrun)
4222 fprintf_unfiltered (gdb_stdlog,
4223 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4224
4e1c45ea 4225 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4226
186c406b 4227 if (what.is_longjmp)
c5aa993b 4228 {
186c406b
TT
4229 if (!gdbarch_get_longjmp_target_p (gdbarch)
4230 || !gdbarch_get_longjmp_target (gdbarch,
4231 frame, &jmp_buf_pc))
4232 {
4233 if (debug_infrun)
3e43a32a
MS
4234 fprintf_unfiltered (gdb_stdlog,
4235 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4236 "(!gdbarch_get_longjmp_target)\n");
186c406b
TT
4237 keep_going (ecs);
4238 return;
4239 }
488f131b 4240
186c406b
TT
4241 /* We're going to replace the current step-resume breakpoint
4242 with a longjmp-resume breakpoint. */
4243 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae 4244
186c406b
TT
4245 /* Insert a breakpoint at resume address. */
4246 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4247 }
4248 else
4249 {
4250 struct symbol *func = get_frame_function (frame);
c906108c 4251
186c406b
TT
4252 if (func)
4253 check_exception_resume (ecs, frame, func);
4254 }
488f131b
JB
4255 keep_going (ecs);
4256 return;
c906108c 4257
488f131b 4258 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 4259 if (debug_infrun)
611c83ae
PA
4260 fprintf_unfiltered (gdb_stdlog,
4261 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4262
186c406b
TT
4263 if (what.is_longjmp)
4264 {
4265 gdb_assert (ecs->event_thread->control.step_resume_breakpoint
4266 != NULL);
4267 delete_step_resume_breakpoint (ecs->event_thread);
4268 }
4269 else
4270 {
4271 /* There are several cases to consider.
4272
4273 1. The initiating frame no longer exists. In this case
4274 we must stop, because the exception has gone too far.
4275
4276 2. The initiating frame exists, and is the same as the
4277 current frame. We stop, because the exception has been
4278 caught.
4279
4280 3. The initiating frame exists and is different from
4281 the current frame. This means the exception has been
4282 caught beneath the initiating frame, so keep going. */
4283 struct frame_info *init_frame
4284 = frame_find_by_id (ecs->event_thread->initiating_frame);
4285
4286 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4287 != NULL);
4288 delete_exception_resume_breakpoint (ecs->event_thread);
4289
4290 if (init_frame)
4291 {
4292 struct frame_id current_id
4293 = get_frame_id (get_current_frame ());
4294 if (frame_id_eq (current_id,
4295 ecs->event_thread->initiating_frame))
4296 {
4297 /* Case 2. Fall through. */
4298 }
4299 else
4300 {
4301 /* Case 3. */
4302 keep_going (ecs);
4303 return;
4304 }
4305 }
4306
4307 /* For Cases 1 and 2, remove the step-resume breakpoint,
4308 if it exists. */
4309 delete_step_resume_breakpoint (ecs->event_thread);
4310 }
611c83ae 4311
16c381f0 4312 ecs->event_thread->control.stop_step = 1;
33d62d64 4313 print_end_stepping_range_reason ();
611c83ae
PA
4314 stop_stepping (ecs);
4315 return;
488f131b
JB
4316
4317 case BPSTAT_WHAT_SINGLE:
527159b7 4318 if (debug_infrun)
8802d8ed 4319 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4e1c45ea 4320 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b
JB
4321 /* Still need to check other stuff, at least the case
4322 where we are stepping and step out of the right range. */
4323 break;
c906108c 4324
488f131b 4325 case BPSTAT_WHAT_STOP_NOISY:
527159b7 4326 if (debug_infrun)
8802d8ed 4327 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 4328 stop_print_frame = 1;
c906108c 4329
d303a6c7
AC
4330 /* We are about to nuke the step_resume_breakpointt via the
4331 cleanup chain, so no need to worry about it here. */
c5aa993b 4332
488f131b
JB
4333 stop_stepping (ecs);
4334 return;
c5aa993b 4335
488f131b 4336 case BPSTAT_WHAT_STOP_SILENT:
527159b7 4337 if (debug_infrun)
8802d8ed 4338 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 4339 stop_print_frame = 0;
c5aa993b 4340
d303a6c7
AC
4341 /* We are about to nuke the step_resume_breakpoin via the
4342 cleanup chain, so no need to worry about it here. */
c5aa993b 4343
488f131b 4344 stop_stepping (ecs);
e441088d 4345 return;
c5aa993b 4346
488f131b 4347 case BPSTAT_WHAT_STEP_RESUME:
527159b7 4348 if (debug_infrun)
8802d8ed 4349 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 4350
4e1c45ea
PA
4351 delete_step_resume_breakpoint (ecs->event_thread);
4352 if (ecs->event_thread->step_after_step_resume_breakpoint)
68f53502
AC
4353 {
4354 /* Back when the step-resume breakpoint was inserted, we
4355 were trying to single-step off a breakpoint. Go back
4356 to doing that. */
4e1c45ea
PA
4357 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4358 ecs->event_thread->stepping_over_breakpoint = 1;
68f53502
AC
4359 keep_going (ecs);
4360 return;
4361 }
b2175913
MS
4362 if (stop_pc == ecs->stop_func_start
4363 && execution_direction == EXEC_REVERSE)
4364 {
4365 /* We are stepping over a function call in reverse, and
4366 just hit the step-resume breakpoint at the start
4367 address of the function. Go back to single-stepping,
4368 which should take us back to the function call. */
4369 ecs->event_thread->stepping_over_breakpoint = 1;
4370 keep_going (ecs);
4371 return;
4372 }
488f131b
JB
4373 break;
4374
488f131b
JB
4375 case BPSTAT_WHAT_KEEP_CHECKING:
4376 break;
4377 }
4378 }
c906108c 4379
488f131b
JB
4380 /* We come here if we hit a breakpoint but should not
4381 stop for it. Possibly we also were stepping
4382 and should stop for that. So fall through and
4383 test for stepping. But, if not stepping,
4384 do not stop. */
c906108c 4385
a7212384
UW
4386 /* In all-stop mode, if we're currently stepping but have stopped in
4387 some other thread, we need to switch back to the stepped thread. */
4388 if (!non_stop)
4389 {
4390 struct thread_info *tp;
abbb1732 4391
b3444185 4392 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
4393 ecs->event_thread);
4394 if (tp)
4395 {
4396 /* However, if the current thread is blocked on some internal
4397 breakpoint, and we simply need to step over that breakpoint
4398 to get it going again, do that first. */
16c381f0
JK
4399 if ((ecs->event_thread->control.trap_expected
4400 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
a7212384
UW
4401 || ecs->event_thread->stepping_over_breakpoint)
4402 {
4403 keep_going (ecs);
4404 return;
4405 }
4406
66852e9c
PA
4407 /* If the stepping thread exited, then don't try to switch
4408 back and resume it, which could fail in several different
4409 ways depending on the target. Instead, just keep going.
4410
4411 We can find a stepping dead thread in the thread list in
4412 two cases:
4413
4414 - The target supports thread exit events, and when the
4415 target tries to delete the thread from the thread list,
4416 inferior_ptid pointed at the exiting thread. In such
4417 case, calling delete_thread does not really remove the
4418 thread from the list; instead, the thread is left listed,
4419 with 'exited' state.
4420
4421 - The target's debug interface does not support thread
4422 exit events, and so we have no idea whatsoever if the
4423 previously stepping thread is still alive. For that
4424 reason, we need to synchronously query the target
4425 now. */
b3444185
PA
4426 if (is_exited (tp->ptid)
4427 || !target_thread_alive (tp->ptid))
4428 {
4429 if (debug_infrun)
3e43a32a
MS
4430 fprintf_unfiltered (gdb_stdlog,
4431 "infrun: not switching back to "
4432 "stepped thread, it has vanished\n");
b3444185
PA
4433
4434 delete_thread (tp->ptid);
4435 keep_going (ecs);
4436 return;
4437 }
4438
a7212384
UW
4439 /* Otherwise, we no longer expect a trap in the current thread.
4440 Clear the trap_expected flag before switching back -- this is
4441 what keep_going would do as well, if we called it. */
16c381f0 4442 ecs->event_thread->control.trap_expected = 0;
a7212384
UW
4443
4444 if (debug_infrun)
4445 fprintf_unfiltered (gdb_stdlog,
4446 "infrun: switching back to stepped thread\n");
4447
4448 ecs->event_thread = tp;
4449 ecs->ptid = tp->ptid;
4450 context_switch (ecs->ptid);
4451 keep_going (ecs);
4452 return;
4453 }
4454 }
4455
9d1ff73f
MS
4456 /* Are we stepping to get the inferior out of the dynamic linker's
4457 hook (and possibly the dld itself) after catching a shlib
4458 event? */
4e1c45ea 4459 if (ecs->event_thread->stepping_through_solib_after_catch)
488f131b
JB
4460 {
4461#if defined(SOLIB_ADD)
1777feb0 4462 /* Have we reached our destination? If not, keep going. */
488f131b
JB
4463 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
4464 {
527159b7 4465 if (debug_infrun)
3e43a32a
MS
4466 fprintf_unfiltered (gdb_stdlog,
4467 "infrun: stepping in dynamic linker\n");
4e1c45ea 4468 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 4469 keep_going (ecs);
104c1213 4470 return;
488f131b
JB
4471 }
4472#endif
527159b7 4473 if (debug_infrun)
8a9de0e4 4474 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b 4475 /* Else, stop and report the catchpoint(s) whose triggering
1777feb0 4476 caused us to begin stepping. */
4e1c45ea 4477 ecs->event_thread->stepping_through_solib_after_catch = 0;
16c381f0
JK
4478 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4479 ecs->event_thread->control.stop_bpstat
347bddb7 4480 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4e1c45ea 4481 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
488f131b
JB
4482 stop_print_frame = 1;
4483 stop_stepping (ecs);
4484 return;
4485 }
c906108c 4486
8358c15c 4487 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4488 {
527159b7 4489 if (debug_infrun)
d3169d93
DJ
4490 fprintf_unfiltered (gdb_stdlog,
4491 "infrun: step-resume breakpoint is inserted\n");
527159b7 4492
488f131b
JB
4493 /* Having a step-resume breakpoint overrides anything
4494 else having to do with stepping commands until
4495 that breakpoint is reached. */
488f131b
JB
4496 keep_going (ecs);
4497 return;
4498 }
c5aa993b 4499
16c381f0 4500 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4501 {
527159b7 4502 if (debug_infrun)
8a9de0e4 4503 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4504 /* Likewise if we aren't even stepping. */
488f131b
JB
4505 keep_going (ecs);
4506 return;
4507 }
c5aa993b 4508
4b7703ad
JB
4509 /* Re-fetch current thread's frame in case the code above caused
4510 the frame cache to be re-initialized, making our FRAME variable
4511 a dangling pointer. */
4512 frame = get_current_frame ();
628fe4e4 4513 gdbarch = get_frame_arch (frame);
4b7703ad 4514
488f131b 4515 /* If stepping through a line, keep going if still within it.
c906108c 4516
488f131b
JB
4517 Note that step_range_end is the address of the first instruction
4518 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4519 within it!
4520
4521 Note also that during reverse execution, we may be stepping
4522 through a function epilogue and therefore must detect when
4523 the current-frame changes in the middle of a line. */
4524
16c381f0
JK
4525 if (stop_pc >= ecs->event_thread->control.step_range_start
4526 && stop_pc < ecs->event_thread->control.step_range_end
31410e84 4527 && (execution_direction != EXEC_REVERSE
388a8562 4528 || frame_id_eq (get_frame_id (frame),
16c381f0 4529 ecs->event_thread->control.step_frame_id)))
488f131b 4530 {
527159b7 4531 if (debug_infrun)
5af949e3
UW
4532 fprintf_unfiltered
4533 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4534 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4535 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913
MS
4536
4537 /* When stepping backward, stop at beginning of line range
4538 (unless it's the function entry point, in which case
4539 keep going back to the call point). */
16c381f0 4540 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4541 && stop_pc != ecs->stop_func_start
4542 && execution_direction == EXEC_REVERSE)
4543 {
16c381f0 4544 ecs->event_thread->control.stop_step = 1;
33d62d64 4545 print_end_stepping_range_reason ();
b2175913
MS
4546 stop_stepping (ecs);
4547 }
4548 else
4549 keep_going (ecs);
4550
488f131b
JB
4551 return;
4552 }
c5aa993b 4553
488f131b 4554 /* We stepped out of the stepping range. */
c906108c 4555
488f131b 4556 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4557 loader dynamic symbol resolution code...
4558
4559 EXEC_FORWARD: we keep on single stepping until we exit the run
4560 time loader code and reach the callee's address.
4561
4562 EXEC_REVERSE: we've already executed the callee (backward), and
4563 the runtime loader code is handled just like any other
4564 undebuggable function call. Now we need only keep stepping
4565 backward through the trampoline code, and that's handled further
4566 down, so there is nothing for us to do here. */
4567
4568 if (execution_direction != EXEC_REVERSE
16c381f0 4569 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4570 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4571 {
4c8c40e6 4572 CORE_ADDR pc_after_resolver =
568d6575 4573 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4574
527159b7 4575 if (debug_infrun)
3e43a32a
MS
4576 fprintf_unfiltered (gdb_stdlog,
4577 "infrun: stepped into dynsym resolve code\n");
527159b7 4578
488f131b
JB
4579 if (pc_after_resolver)
4580 {
4581 /* Set up a step-resume breakpoint at the address
4582 indicated by SKIP_SOLIB_RESOLVER. */
4583 struct symtab_and_line sr_sal;
abbb1732 4584
fe39c653 4585 init_sal (&sr_sal);
488f131b 4586 sr_sal.pc = pc_after_resolver;
6c95b8df 4587 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4588
a6d9a66e
UW
4589 insert_step_resume_breakpoint_at_sal (gdbarch,
4590 sr_sal, null_frame_id);
c5aa993b 4591 }
c906108c 4592
488f131b
JB
4593 keep_going (ecs);
4594 return;
4595 }
c906108c 4596
16c381f0
JK
4597 if (ecs->event_thread->control.step_range_end != 1
4598 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4599 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 4600 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4601 {
527159b7 4602 if (debug_infrun)
3e43a32a
MS
4603 fprintf_unfiltered (gdb_stdlog,
4604 "infrun: stepped into signal trampoline\n");
42edda50 4605 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4606 a signal trampoline (either by a signal being delivered or by
4607 the signal handler returning). Just single-step until the
4608 inferior leaves the trampoline (either by calling the handler
4609 or returning). */
488f131b
JB
4610 keep_going (ecs);
4611 return;
4612 }
c906108c 4613
c17eaafe
DJ
4614 /* Check for subroutine calls. The check for the current frame
4615 equalling the step ID is not necessary - the check of the
4616 previous frame's ID is sufficient - but it is a common case and
4617 cheaper than checking the previous frame's ID.
14e60db5
DJ
4618
4619 NOTE: frame_id_eq will never report two invalid frame IDs as
4620 being equal, so to get into this block, both the current and
4621 previous frame must have valid frame IDs. */
005ca36a
JB
4622 /* The outer_frame_id check is a heuristic to detect stepping
4623 through startup code. If we step over an instruction which
4624 sets the stack pointer from an invalid value to a valid value,
4625 we may detect that as a subroutine call from the mythical
4626 "outermost" function. This could be fixed by marking
4627 outermost frames as !stack_p,code_p,special_p. Then the
4628 initial outermost frame, before sp was valid, would
ce6cca6d 4629 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4630 for more. */
edb3359d 4631 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 4632 ecs->event_thread->control.step_stack_frame_id)
005ca36a 4633 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
4634 ecs->event_thread->control.step_stack_frame_id)
4635 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
4636 outer_frame_id)
4637 || step_start_function != find_pc_function (stop_pc))))
488f131b 4638 {
95918acb 4639 CORE_ADDR real_stop_pc;
8fb3e588 4640
527159b7 4641 if (debug_infrun)
8a9de0e4 4642 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4643
16c381f0
JK
4644 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4645 || ((ecs->event_thread->control.step_range_end == 1)
d80b854b 4646 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4647 ecs->stop_func_start)))
95918acb
AC
4648 {
4649 /* I presume that step_over_calls is only 0 when we're
4650 supposed to be stepping at the assembly language level
4651 ("stepi"). Just stop. */
4652 /* Also, maybe we just did a "nexti" inside a prolog, so we
4653 thought it was a subroutine call but it was not. Stop as
4654 well. FENN */
388a8562 4655 /* And this works the same backward as frontward. MVS */
16c381f0 4656 ecs->event_thread->control.stop_step = 1;
33d62d64 4657 print_end_stepping_range_reason ();
95918acb
AC
4658 stop_stepping (ecs);
4659 return;
4660 }
8fb3e588 4661
388a8562
MS
4662 /* Reverse stepping through solib trampolines. */
4663
4664 if (execution_direction == EXEC_REVERSE
16c381f0 4665 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
4666 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4667 || (ecs->stop_func_start == 0
4668 && in_solib_dynsym_resolve_code (stop_pc))))
4669 {
4670 /* Any solib trampoline code can be handled in reverse
4671 by simply continuing to single-step. We have already
4672 executed the solib function (backwards), and a few
4673 steps will take us back through the trampoline to the
4674 caller. */
4675 keep_going (ecs);
4676 return;
4677 }
4678
16c381f0 4679 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 4680 {
b2175913
MS
4681 /* We're doing a "next".
4682
4683 Normal (forward) execution: set a breakpoint at the
4684 callee's return address (the address at which the caller
4685 will resume).
4686
4687 Reverse (backward) execution. set the step-resume
4688 breakpoint at the start of the function that we just
4689 stepped into (backwards), and continue to there. When we
6130d0b7 4690 get there, we'll need to single-step back to the caller. */
b2175913
MS
4691
4692 if (execution_direction == EXEC_REVERSE)
4693 {
4694 struct symtab_and_line sr_sal;
3067f6e5 4695
388a8562
MS
4696 /* Normal function call return (static or dynamic). */
4697 init_sal (&sr_sal);
4698 sr_sal.pc = ecs->stop_func_start;
6c95b8df
PA
4699 sr_sal.pspace = get_frame_program_space (frame);
4700 insert_step_resume_breakpoint_at_sal (gdbarch,
4701 sr_sal, null_frame_id);
b2175913
MS
4702 }
4703 else
568d6575 4704 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4705
8567c30f
AC
4706 keep_going (ecs);
4707 return;
4708 }
a53c66de 4709
95918acb 4710 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
4711 calling routine and the real function), locate the real
4712 function. That's what tells us (a) whether we want to step
4713 into it at all, and (b) what prologue we want to run to the
4714 end of, if we do step into it. */
568d6575 4715 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 4716 if (real_stop_pc == 0)
568d6575 4717 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
4718 if (real_stop_pc != 0)
4719 ecs->stop_func_start = real_stop_pc;
8fb3e588 4720
db5f024e 4721 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
4722 {
4723 struct symtab_and_line sr_sal;
abbb1732 4724
1b2bfbb9
RC
4725 init_sal (&sr_sal);
4726 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4727 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 4728
a6d9a66e
UW
4729 insert_step_resume_breakpoint_at_sal (gdbarch,
4730 sr_sal, null_frame_id);
8fb3e588
AC
4731 keep_going (ecs);
4732 return;
1b2bfbb9
RC
4733 }
4734
95918acb 4735 /* If we have line number information for the function we are
8fb3e588 4736 thinking of stepping into, step into it.
95918acb 4737
8fb3e588
AC
4738 If there are several symtabs at that PC (e.g. with include
4739 files), just want to know whether *any* of them have line
4740 numbers. find_pc_line handles this. */
95918acb
AC
4741 {
4742 struct symtab_and_line tmp_sal;
8fb3e588 4743
95918acb
AC
4744 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4745 if (tmp_sal.line != 0)
4746 {
b2175913 4747 if (execution_direction == EXEC_REVERSE)
568d6575 4748 handle_step_into_function_backward (gdbarch, ecs);
b2175913 4749 else
568d6575 4750 handle_step_into_function (gdbarch, ecs);
95918acb
AC
4751 return;
4752 }
4753 }
4754
4755 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
4756 set, we stop the step so that the user has a chance to switch
4757 in assembly mode. */
16c381f0 4758 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 4759 && step_stop_if_no_debug)
95918acb 4760 {
16c381f0 4761 ecs->event_thread->control.stop_step = 1;
33d62d64 4762 print_end_stepping_range_reason ();
95918acb
AC
4763 stop_stepping (ecs);
4764 return;
4765 }
4766
b2175913
MS
4767 if (execution_direction == EXEC_REVERSE)
4768 {
4769 /* Set a breakpoint at callee's start address.
4770 From there we can step once and be back in the caller. */
4771 struct symtab_and_line sr_sal;
abbb1732 4772
b2175913
MS
4773 init_sal (&sr_sal);
4774 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4775 sr_sal.pspace = get_frame_program_space (frame);
a6d9a66e
UW
4776 insert_step_resume_breakpoint_at_sal (gdbarch,
4777 sr_sal, null_frame_id);
b2175913
MS
4778 }
4779 else
4780 /* Set a breakpoint at callee's return address (the address
4781 at which the caller will resume). */
568d6575 4782 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4783
95918acb 4784 keep_going (ecs);
488f131b 4785 return;
488f131b 4786 }
c906108c 4787
fdd654f3
MS
4788 /* Reverse stepping through solib trampolines. */
4789
4790 if (execution_direction == EXEC_REVERSE
16c381f0 4791 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
4792 {
4793 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4794 || (ecs->stop_func_start == 0
4795 && in_solib_dynsym_resolve_code (stop_pc)))
4796 {
4797 /* Any solib trampoline code can be handled in reverse
4798 by simply continuing to single-step. We have already
4799 executed the solib function (backwards), and a few
4800 steps will take us back through the trampoline to the
4801 caller. */
4802 keep_going (ecs);
4803 return;
4804 }
4805 else if (in_solib_dynsym_resolve_code (stop_pc))
4806 {
4807 /* Stepped backward into the solib dynsym resolver.
4808 Set a breakpoint at its start and continue, then
4809 one more step will take us out. */
4810 struct symtab_and_line sr_sal;
abbb1732 4811
fdd654f3
MS
4812 init_sal (&sr_sal);
4813 sr_sal.pc = ecs->stop_func_start;
9d1807c3 4814 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
4815 insert_step_resume_breakpoint_at_sal (gdbarch,
4816 sr_sal, null_frame_id);
4817 keep_going (ecs);
4818 return;
4819 }
4820 }
4821
488f131b
JB
4822 /* If we're in the return path from a shared library trampoline,
4823 we want to proceed through the trampoline when stepping. */
568d6575 4824 if (gdbarch_in_solib_return_trampoline (gdbarch,
e76f05fa 4825 stop_pc, ecs->stop_func_name))
488f131b 4826 {
488f131b 4827 /* Determine where this trampoline returns. */
52f729a7 4828 CORE_ADDR real_stop_pc;
abbb1732 4829
568d6575 4830 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
c906108c 4831
527159b7 4832 if (debug_infrun)
3e43a32a
MS
4833 fprintf_unfiltered (gdb_stdlog,
4834 "infrun: stepped into solib return tramp\n");
527159b7 4835
488f131b 4836 /* Only proceed through if we know where it's going. */
d764a824 4837 if (real_stop_pc)
488f131b 4838 {
1777feb0 4839 /* And put the step-breakpoint there and go until there. */
488f131b
JB
4840 struct symtab_and_line sr_sal;
4841
fe39c653 4842 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 4843 sr_sal.pc = real_stop_pc;
488f131b 4844 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 4845 sr_sal.pspace = get_frame_program_space (frame);
44cbf7b5
AC
4846
4847 /* Do not specify what the fp should be when we stop since
4848 on some machines the prologue is where the new fp value
4849 is established. */
a6d9a66e
UW
4850 insert_step_resume_breakpoint_at_sal (gdbarch,
4851 sr_sal, null_frame_id);
c906108c 4852
488f131b
JB
4853 /* Restart without fiddling with the step ranges or
4854 other state. */
4855 keep_going (ecs);
4856 return;
4857 }
4858 }
c906108c 4859
2afb61aa 4860 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 4861
1b2bfbb9
RC
4862 /* NOTE: tausq/2004-05-24: This if block used to be done before all
4863 the trampoline processing logic, however, there are some trampolines
4864 that have no names, so we should do trampoline handling first. */
16c381f0 4865 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 4866 && ecs->stop_func_name == NULL
2afb61aa 4867 && stop_pc_sal.line == 0)
1b2bfbb9 4868 {
527159b7 4869 if (debug_infrun)
3e43a32a
MS
4870 fprintf_unfiltered (gdb_stdlog,
4871 "infrun: stepped into undebuggable function\n");
527159b7 4872
1b2bfbb9 4873 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
4874 undebuggable function (where there is no debugging information
4875 and no line number corresponding to the address where the
1b2bfbb9
RC
4876 inferior stopped). Since we want to skip this kind of code,
4877 we keep going until the inferior returns from this
14e60db5
DJ
4878 function - unless the user has asked us not to (via
4879 set step-mode) or we no longer know how to get back
4880 to the call site. */
4881 if (step_stop_if_no_debug
c7ce8faa 4882 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
4883 {
4884 /* If we have no line number and the step-stop-if-no-debug
4885 is set, we stop the step so that the user has a chance to
4886 switch in assembly mode. */
16c381f0 4887 ecs->event_thread->control.stop_step = 1;
33d62d64 4888 print_end_stepping_range_reason ();
1b2bfbb9
RC
4889 stop_stepping (ecs);
4890 return;
4891 }
4892 else
4893 {
4894 /* Set a breakpoint at callee's return address (the address
4895 at which the caller will resume). */
568d6575 4896 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
4897 keep_going (ecs);
4898 return;
4899 }
4900 }
4901
16c381f0 4902 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
4903 {
4904 /* It is stepi or nexti. We always want to stop stepping after
4905 one instruction. */
527159b7 4906 if (debug_infrun)
8a9de0e4 4907 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
16c381f0 4908 ecs->event_thread->control.stop_step = 1;
33d62d64 4909 print_end_stepping_range_reason ();
1b2bfbb9
RC
4910 stop_stepping (ecs);
4911 return;
4912 }
4913
2afb61aa 4914 if (stop_pc_sal.line == 0)
488f131b
JB
4915 {
4916 /* We have no line number information. That means to stop
4917 stepping (does this always happen right after one instruction,
4918 when we do "s" in a function with no line numbers,
4919 or can this happen as a result of a return or longjmp?). */
527159b7 4920 if (debug_infrun)
8a9de0e4 4921 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
16c381f0 4922 ecs->event_thread->control.stop_step = 1;
33d62d64 4923 print_end_stepping_range_reason ();
488f131b
JB
4924 stop_stepping (ecs);
4925 return;
4926 }
c906108c 4927
edb3359d
DJ
4928 /* Look for "calls" to inlined functions, part one. If the inline
4929 frame machinery detected some skipped call sites, we have entered
4930 a new inline function. */
4931
4932 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 4933 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
4934 && inline_skipped_frames (ecs->ptid))
4935 {
4936 struct symtab_and_line call_sal;
4937
4938 if (debug_infrun)
4939 fprintf_unfiltered (gdb_stdlog,
4940 "infrun: stepped into inlined function\n");
4941
4942 find_frame_sal (get_current_frame (), &call_sal);
4943
16c381f0 4944 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
4945 {
4946 /* For "step", we're going to stop. But if the call site
4947 for this inlined function is on the same source line as
4948 we were previously stepping, go down into the function
4949 first. Otherwise stop at the call site. */
4950
4951 if (call_sal.line == ecs->event_thread->current_line
4952 && call_sal.symtab == ecs->event_thread->current_symtab)
4953 step_into_inline_frame (ecs->ptid);
4954
16c381f0 4955 ecs->event_thread->control.stop_step = 1;
33d62d64 4956 print_end_stepping_range_reason ();
edb3359d
DJ
4957 stop_stepping (ecs);
4958 return;
4959 }
4960 else
4961 {
4962 /* For "next", we should stop at the call site if it is on a
4963 different source line. Otherwise continue through the
4964 inlined function. */
4965 if (call_sal.line == ecs->event_thread->current_line
4966 && call_sal.symtab == ecs->event_thread->current_symtab)
4967 keep_going (ecs);
4968 else
4969 {
16c381f0 4970 ecs->event_thread->control.stop_step = 1;
33d62d64 4971 print_end_stepping_range_reason ();
edb3359d
DJ
4972 stop_stepping (ecs);
4973 }
4974 return;
4975 }
4976 }
4977
4978 /* Look for "calls" to inlined functions, part two. If we are still
4979 in the same real function we were stepping through, but we have
4980 to go further up to find the exact frame ID, we are stepping
4981 through a more inlined call beyond its call site. */
4982
4983 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
4984 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 4985 ecs->event_thread->control.step_frame_id)
edb3359d 4986 && stepped_in_from (get_current_frame (),
16c381f0 4987 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
4988 {
4989 if (debug_infrun)
4990 fprintf_unfiltered (gdb_stdlog,
4991 "infrun: stepping through inlined function\n");
4992
16c381f0 4993 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
4994 keep_going (ecs);
4995 else
4996 {
16c381f0 4997 ecs->event_thread->control.stop_step = 1;
33d62d64 4998 print_end_stepping_range_reason ();
edb3359d
DJ
4999 stop_stepping (ecs);
5000 }
5001 return;
5002 }
5003
2afb61aa 5004 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5005 && (ecs->event_thread->current_line != stop_pc_sal.line
5006 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5007 {
5008 /* We are at the start of a different line. So stop. Note that
5009 we don't stop if we step into the middle of a different line.
5010 That is said to make things like for (;;) statements work
5011 better. */
527159b7 5012 if (debug_infrun)
3e43a32a
MS
5013 fprintf_unfiltered (gdb_stdlog,
5014 "infrun: stepped to a different line\n");
16c381f0 5015 ecs->event_thread->control.stop_step = 1;
33d62d64 5016 print_end_stepping_range_reason ();
488f131b
JB
5017 stop_stepping (ecs);
5018 return;
5019 }
c906108c 5020
488f131b 5021 /* We aren't done stepping.
c906108c 5022
488f131b
JB
5023 Optimize by setting the stepping range to the line.
5024 (We might not be in the original line, but if we entered a
5025 new line in mid-statement, we continue stepping. This makes
5026 things like for(;;) statements work better.) */
c906108c 5027
16c381f0
JK
5028 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5029 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
edb3359d 5030 set_step_info (frame, stop_pc_sal);
488f131b 5031
527159b7 5032 if (debug_infrun)
8a9de0e4 5033 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5034 keep_going (ecs);
104c1213
JM
5035}
5036
b3444185 5037/* Is thread TP in the middle of single-stepping? */
104c1213 5038
a289b8f6 5039static int
b3444185 5040currently_stepping (struct thread_info *tp)
a7212384 5041{
8358c15c
JK
5042 return ((tp->control.step_range_end
5043 && tp->control.step_resume_breakpoint == NULL)
5044 || tp->control.trap_expected
5045 || tp->stepping_through_solib_after_catch
5046 || bpstat_should_step ());
a7212384
UW
5047}
5048
b3444185
PA
5049/* Returns true if any thread *but* the one passed in "data" is in the
5050 middle of stepping or of handling a "next". */
a7212384 5051
104c1213 5052static int
b3444185 5053currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 5054{
b3444185
PA
5055 if (tp == data)
5056 return 0;
5057
16c381f0
JK
5058 return (tp->control.step_range_end
5059 || tp->control.trap_expected
b3444185 5060 || tp->stepping_through_solib_after_catch);
104c1213 5061}
c906108c 5062
b2175913
MS
5063/* Inferior has stepped into a subroutine call with source code that
5064 we should not step over. Do step to the first line of code in
5065 it. */
c2c6d25f
JM
5066
5067static void
568d6575
UW
5068handle_step_into_function (struct gdbarch *gdbarch,
5069 struct execution_control_state *ecs)
c2c6d25f
JM
5070{
5071 struct symtab *s;
2afb61aa 5072 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f
JM
5073
5074 s = find_pc_symtab (stop_pc);
5075 if (s && s->language != language_asm)
568d6575 5076 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5077 ecs->stop_func_start);
c2c6d25f 5078
2afb61aa 5079 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5080 /* Use the step_resume_break to step until the end of the prologue,
5081 even if that involves jumps (as it seems to on the vax under
5082 4.2). */
5083 /* If the prologue ends in the middle of a source line, continue to
5084 the end of that source line (if it is still within the function).
5085 Otherwise, just go to end of prologue. */
2afb61aa
PA
5086 if (stop_func_sal.end
5087 && stop_func_sal.pc != ecs->stop_func_start
5088 && stop_func_sal.end < ecs->stop_func_end)
5089 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5090
2dbd5e30
KB
5091 /* Architectures which require breakpoint adjustment might not be able
5092 to place a breakpoint at the computed address. If so, the test
5093 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5094 ecs->stop_func_start to an address at which a breakpoint may be
5095 legitimately placed.
8fb3e588 5096
2dbd5e30
KB
5097 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5098 made, GDB will enter an infinite loop when stepping through
5099 optimized code consisting of VLIW instructions which contain
5100 subinstructions corresponding to different source lines. On
5101 FR-V, it's not permitted to place a breakpoint on any but the
5102 first subinstruction of a VLIW instruction. When a breakpoint is
5103 set, GDB will adjust the breakpoint address to the beginning of
5104 the VLIW instruction. Thus, we need to make the corresponding
5105 adjustment here when computing the stop address. */
8fb3e588 5106
568d6575 5107 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5108 {
5109 ecs->stop_func_start
568d6575 5110 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5111 ecs->stop_func_start);
2dbd5e30
KB
5112 }
5113
c2c6d25f
JM
5114 if (ecs->stop_func_start == stop_pc)
5115 {
5116 /* We are already there: stop now. */
16c381f0 5117 ecs->event_thread->control.stop_step = 1;
33d62d64 5118 print_end_stepping_range_reason ();
c2c6d25f
JM
5119 stop_stepping (ecs);
5120 return;
5121 }
5122 else
5123 {
5124 /* Put the step-breakpoint there and go until there. */
fe39c653 5125 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5126 sr_sal.pc = ecs->stop_func_start;
5127 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5128 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5129
c2c6d25f 5130 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5131 some machines the prologue is where the new fp value is
5132 established. */
a6d9a66e 5133 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5134
5135 /* And make sure stepping stops right away then. */
16c381f0
JK
5136 ecs->event_thread->control.step_range_end
5137 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5138 }
5139 keep_going (ecs);
5140}
d4f3574e 5141
b2175913
MS
5142/* Inferior has stepped backward into a subroutine call with source
5143 code that we should not step over. Do step to the beginning of the
5144 last line of code in it. */
5145
5146static void
568d6575
UW
5147handle_step_into_function_backward (struct gdbarch *gdbarch,
5148 struct execution_control_state *ecs)
b2175913
MS
5149{
5150 struct symtab *s;
167e4384 5151 struct symtab_and_line stop_func_sal;
b2175913
MS
5152
5153 s = find_pc_symtab (stop_pc);
5154 if (s && s->language != language_asm)
568d6575 5155 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5156 ecs->stop_func_start);
5157
5158 stop_func_sal = find_pc_line (stop_pc, 0);
5159
5160 /* OK, we're just going to keep stepping here. */
5161 if (stop_func_sal.pc == stop_pc)
5162 {
5163 /* We're there already. Just stop stepping now. */
16c381f0 5164 ecs->event_thread->control.stop_step = 1;
33d62d64 5165 print_end_stepping_range_reason ();
b2175913
MS
5166 stop_stepping (ecs);
5167 }
5168 else
5169 {
5170 /* Else just reset the step range and keep going.
5171 No step-resume breakpoint, they don't work for
5172 epilogues, which can have multiple entry paths. */
16c381f0
JK
5173 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5174 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5175 keep_going (ecs);
5176 }
5177 return;
5178}
5179
d3169d93 5180/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5181 This is used to both functions and to skip over code. */
5182
5183static void
a6d9a66e
UW
5184insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5185 struct symtab_and_line sr_sal,
44cbf7b5
AC
5186 struct frame_id sr_id)
5187{
611c83ae
PA
5188 /* There should never be more than one step-resume or longjmp-resume
5189 breakpoint per thread, so we should never be setting a new
44cbf7b5 5190 step_resume_breakpoint when one is already active. */
8358c15c 5191 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
d3169d93
DJ
5192
5193 if (debug_infrun)
5194 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5195 "infrun: inserting step-resume breakpoint at %s\n",
5196 paddress (gdbarch, sr_sal.pc));
d3169d93 5197
8358c15c 5198 inferior_thread ()->control.step_resume_breakpoint
a6d9a66e 5199 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, bp_step_resume);
44cbf7b5 5200}
7ce450bd 5201
d3169d93 5202/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
14e60db5 5203 to skip a potential signal handler.
7ce450bd 5204
14e60db5
DJ
5205 This is called with the interrupted function's frame. The signal
5206 handler, when it returns, will resume the interrupted function at
5207 RETURN_FRAME.pc. */
d303a6c7
AC
5208
5209static void
44cbf7b5 5210insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5211{
5212 struct symtab_and_line sr_sal;
a6d9a66e 5213 struct gdbarch *gdbarch;
d303a6c7 5214
f4c1edd8 5215 gdb_assert (return_frame != NULL);
d303a6c7
AC
5216 init_sal (&sr_sal); /* initialize to zeros */
5217
a6d9a66e 5218 gdbarch = get_frame_arch (return_frame);
568d6575 5219 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5220 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5221 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5222
a6d9a66e
UW
5223 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5224 get_stack_frame_id (return_frame));
d303a6c7
AC
5225}
5226
14e60db5
DJ
5227/* Similar to insert_step_resume_breakpoint_at_frame, except
5228 but a breakpoint at the previous frame's PC. This is used to
5229 skip a function after stepping into it (for "next" or if the called
5230 function has no debugging information).
5231
5232 The current function has almost always been reached by single
5233 stepping a call or return instruction. NEXT_FRAME belongs to the
5234 current function, and the breakpoint will be set at the caller's
5235 resume address.
5236
5237 This is a separate function rather than reusing
5238 insert_step_resume_breakpoint_at_frame in order to avoid
5239 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5240 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5241
5242static void
5243insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5244{
5245 struct symtab_and_line sr_sal;
a6d9a66e 5246 struct gdbarch *gdbarch;
14e60db5
DJ
5247
5248 /* We shouldn't have gotten here if we don't know where the call site
5249 is. */
c7ce8faa 5250 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5251
5252 init_sal (&sr_sal); /* initialize to zeros */
5253
a6d9a66e 5254 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5255 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5256 frame_unwind_caller_pc (next_frame));
14e60db5 5257 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5258 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5259
a6d9a66e 5260 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5261 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5262}
5263
611c83ae
PA
5264/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5265 new breakpoint at the target of a jmp_buf. The handling of
5266 longjmp-resume uses the same mechanisms used for handling
5267 "step-resume" breakpoints. */
5268
5269static void
a6d9a66e 5270insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae
PA
5271{
5272 /* There should never be more than one step-resume or longjmp-resume
5273 breakpoint per thread, so we should never be setting a new
5274 longjmp_resume_breakpoint when one is already active. */
8358c15c 5275 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
611c83ae
PA
5276
5277 if (debug_infrun)
5278 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5279 "infrun: inserting longjmp-resume breakpoint at %s\n",
5280 paddress (gdbarch, pc));
611c83ae 5281
8358c15c 5282 inferior_thread ()->control.step_resume_breakpoint =
a6d9a66e 5283 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5284}
5285
186c406b
TT
5286/* Insert an exception resume breakpoint. TP is the thread throwing
5287 the exception. The block B is the block of the unwinder debug hook
5288 function. FRAME is the frame corresponding to the call to this
5289 function. SYM is the symbol of the function argument holding the
5290 target PC of the exception. */
5291
5292static void
5293insert_exception_resume_breakpoint (struct thread_info *tp,
5294 struct block *b,
5295 struct frame_info *frame,
5296 struct symbol *sym)
5297{
5298 struct gdb_exception e;
5299
5300 /* We want to ignore errors here. */
5301 TRY_CATCH (e, RETURN_MASK_ERROR)
5302 {
5303 struct symbol *vsym;
5304 struct value *value;
5305 CORE_ADDR handler;
5306 struct breakpoint *bp;
5307
5308 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5309 value = read_var_value (vsym, frame);
5310 /* If the value was optimized out, revert to the old behavior. */
5311 if (! value_optimized_out (value))
5312 {
5313 handler = value_as_address (value);
5314
5315 if (debug_infrun)
5316 fprintf_unfiltered (gdb_stdlog,
5317 "infrun: exception resume at %lx\n",
5318 (unsigned long) handler);
5319
5320 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5321 handler, bp_exception_resume);
5322 bp->thread = tp->num;
5323 inferior_thread ()->control.exception_resume_breakpoint = bp;
5324 }
5325 }
5326}
5327
5328/* This is called when an exception has been intercepted. Check to
5329 see whether the exception's destination is of interest, and if so,
5330 set an exception resume breakpoint there. */
5331
5332static void
5333check_exception_resume (struct execution_control_state *ecs,
5334 struct frame_info *frame, struct symbol *func)
5335{
5336 struct gdb_exception e;
5337
5338 TRY_CATCH (e, RETURN_MASK_ERROR)
5339 {
5340 struct block *b;
5341 struct dict_iterator iter;
5342 struct symbol *sym;
5343 int argno = 0;
5344
5345 /* The exception breakpoint is a thread-specific breakpoint on
5346 the unwinder's debug hook, declared as:
5347
5348 void _Unwind_DebugHook (void *cfa, void *handler);
5349
5350 The CFA argument indicates the frame to which control is
5351 about to be transferred. HANDLER is the destination PC.
5352
5353 We ignore the CFA and set a temporary breakpoint at HANDLER.
5354 This is not extremely efficient but it avoids issues in gdb
5355 with computing the DWARF CFA, and it also works even in weird
5356 cases such as throwing an exception from inside a signal
5357 handler. */
5358
5359 b = SYMBOL_BLOCK_VALUE (func);
5360 ALL_BLOCK_SYMBOLS (b, iter, sym)
5361 {
5362 if (!SYMBOL_IS_ARGUMENT (sym))
5363 continue;
5364
5365 if (argno == 0)
5366 ++argno;
5367 else
5368 {
5369 insert_exception_resume_breakpoint (ecs->event_thread,
5370 b, frame, sym);
5371 break;
5372 }
5373 }
5374 }
5375}
5376
104c1213
JM
5377static void
5378stop_stepping (struct execution_control_state *ecs)
5379{
527159b7 5380 if (debug_infrun)
8a9de0e4 5381 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 5382
cd0fc7c3
SS
5383 /* Let callers know we don't want to wait for the inferior anymore. */
5384 ecs->wait_some_more = 0;
5385}
5386
d4f3574e
SS
5387/* This function handles various cases where we need to continue
5388 waiting for the inferior. */
1777feb0 5389/* (Used to be the keep_going: label in the old wait_for_inferior). */
d4f3574e
SS
5390
5391static void
5392keep_going (struct execution_control_state *ecs)
5393{
c4dbc9af
PA
5394 /* Make sure normal_stop is called if we get a QUIT handled before
5395 reaching resume. */
5396 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5397
d4f3574e 5398 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5399 ecs->event_thread->prev_pc
5400 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5401
d4f3574e
SS
5402 /* If we did not do break;, it means we should keep running the
5403 inferior and not return to debugger. */
5404
16c381f0
JK
5405 if (ecs->event_thread->control.trap_expected
5406 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
5407 {
5408 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
5409 the inferior, else we'd not get here) and we haven't yet
5410 gotten our trap. Simply continue. */
c4dbc9af
PA
5411
5412 discard_cleanups (old_cleanups);
2020b7ab 5413 resume (currently_stepping (ecs->event_thread),
16c381f0 5414 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5415 }
5416 else
5417 {
5418 /* Either the trap was not expected, but we are continuing
488f131b
JB
5419 anyway (the user asked that this signal be passed to the
5420 child)
5421 -- or --
5422 The signal was SIGTRAP, e.g. it was our signal, but we
5423 decided we should resume from it.
d4f3574e 5424
c36b740a 5425 We're going to run this baby now!
d4f3574e 5426
c36b740a
VP
5427 Note that insert_breakpoints won't try to re-insert
5428 already inserted breakpoints. Therefore, we don't
5429 care if breakpoints were already inserted, or not. */
5430
4e1c45ea 5431 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 5432 {
9f5a595d 5433 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
abbb1732 5434
9f5a595d 5435 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
5436 /* Since we can't do a displaced step, we have to remove
5437 the breakpoint while we step it. To keep things
5438 simple, we remove them all. */
5439 remove_breakpoints ();
45e8c884
VP
5440 }
5441 else
d4f3574e 5442 {
e236ba44 5443 struct gdb_exception e;
abbb1732 5444
569631c6
UW
5445 /* Stop stepping when inserting breakpoints
5446 has failed. */
e236ba44
VP
5447 TRY_CATCH (e, RETURN_MASK_ERROR)
5448 {
5449 insert_breakpoints ();
5450 }
5451 if (e.reason < 0)
d4f3574e 5452 {
97bd5475 5453 exception_print (gdb_stderr, e);
d4f3574e
SS
5454 stop_stepping (ecs);
5455 return;
5456 }
d4f3574e
SS
5457 }
5458
16c381f0
JK
5459 ecs->event_thread->control.trap_expected
5460 = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
5461
5462 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
5463 specifies that such a signal should be delivered to the
5464 target program).
5465
5466 Typically, this would occure when a user is debugging a
5467 target monitor on a simulator: the target monitor sets a
5468 breakpoint; the simulator encounters this break-point and
5469 halts the simulation handing control to GDB; GDB, noteing
5470 that the break-point isn't valid, returns control back to the
5471 simulator; the simulator then delivers the hardware
1777feb0 5472 equivalent of a SIGNAL_TRAP to the program being debugged. */
488f131b 5473
16c381f0
JK
5474 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
5475 && !signal_program[ecs->event_thread->suspend.stop_signal])
5476 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
d4f3574e 5477
c4dbc9af 5478 discard_cleanups (old_cleanups);
2020b7ab 5479 resume (currently_stepping (ecs->event_thread),
16c381f0 5480 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5481 }
5482
488f131b 5483 prepare_to_wait (ecs);
d4f3574e
SS
5484}
5485
104c1213
JM
5486/* This function normally comes after a resume, before
5487 handle_inferior_event exits. It takes care of any last bits of
5488 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 5489
104c1213
JM
5490static void
5491prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 5492{
527159b7 5493 if (debug_infrun)
8a9de0e4 5494 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 5495
104c1213
JM
5496 /* This is the old end of the while loop. Let everybody know we
5497 want to wait for the inferior some more and get called again
5498 soon. */
5499 ecs->wait_some_more = 1;
c906108c 5500}
11cf8741 5501
33d62d64
JK
5502/* Several print_*_reason functions to print why the inferior has stopped.
5503 We always print something when the inferior exits, or receives a signal.
5504 The rest of the cases are dealt with later on in normal_stop and
5505 print_it_typical. Ideally there should be a call to one of these
5506 print_*_reason functions functions from handle_inferior_event each time
5507 stop_stepping is called. */
5508
5509/* Print why the inferior has stopped.
5510 We are done with a step/next/si/ni command, print why the inferior has
5511 stopped. For now print nothing. Print a message only if not in the middle
5512 of doing a "step n" operation for n > 1. */
5513
5514static void
5515print_end_stepping_range_reason (void)
5516{
16c381f0
JK
5517 if ((!inferior_thread ()->step_multi
5518 || !inferior_thread ()->control.stop_step)
33d62d64
JK
5519 && ui_out_is_mi_like_p (uiout))
5520 ui_out_field_string (uiout, "reason",
5521 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5522}
5523
5524/* The inferior was terminated by a signal, print why it stopped. */
5525
11cf8741 5526static void
33d62d64 5527print_signal_exited_reason (enum target_signal siggnal)
11cf8741 5528{
33d62d64
JK
5529 annotate_signalled ();
5530 if (ui_out_is_mi_like_p (uiout))
5531 ui_out_field_string
5532 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5533 ui_out_text (uiout, "\nProgram terminated with signal ");
5534 annotate_signal_name ();
5535 ui_out_field_string (uiout, "signal-name",
5536 target_signal_to_name (siggnal));
5537 annotate_signal_name_end ();
5538 ui_out_text (uiout, ", ");
5539 annotate_signal_string ();
5540 ui_out_field_string (uiout, "signal-meaning",
5541 target_signal_to_string (siggnal));
5542 annotate_signal_string_end ();
5543 ui_out_text (uiout, ".\n");
5544 ui_out_text (uiout, "The program no longer exists.\n");
5545}
5546
5547/* The inferior program is finished, print why it stopped. */
5548
5549static void
5550print_exited_reason (int exitstatus)
5551{
fda326dd
TT
5552 struct inferior *inf = current_inferior ();
5553 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5554
33d62d64
JK
5555 annotate_exited (exitstatus);
5556 if (exitstatus)
5557 {
5558 if (ui_out_is_mi_like_p (uiout))
5559 ui_out_field_string (uiout, "reason",
5560 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
5561 ui_out_text (uiout, "[Inferior ");
5562 ui_out_text (uiout, plongest (inf->num));
5563 ui_out_text (uiout, " (");
5564 ui_out_text (uiout, pidstr);
5565 ui_out_text (uiout, ") exited with code ");
33d62d64 5566 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 5567 ui_out_text (uiout, "]\n");
33d62d64
JK
5568 }
5569 else
11cf8741 5570 {
9dc5e2a9 5571 if (ui_out_is_mi_like_p (uiout))
034dad6f 5572 ui_out_field_string
33d62d64 5573 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
5574 ui_out_text (uiout, "[Inferior ");
5575 ui_out_text (uiout, plongest (inf->num));
5576 ui_out_text (uiout, " (");
5577 ui_out_text (uiout, pidstr);
5578 ui_out_text (uiout, ") exited normally]\n");
33d62d64
JK
5579 }
5580 /* Support the --return-child-result option. */
5581 return_child_result_value = exitstatus;
5582}
5583
5584/* Signal received, print why the inferior has stopped. The signal table
1777feb0 5585 tells us to print about it. */
33d62d64
JK
5586
5587static void
5588print_signal_received_reason (enum target_signal siggnal)
5589{
5590 annotate_signal ();
5591
5592 if (siggnal == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5593 {
5594 struct thread_info *t = inferior_thread ();
5595
5596 ui_out_text (uiout, "\n[");
5597 ui_out_field_string (uiout, "thread-name",
5598 target_pid_to_str (t->ptid));
5599 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5600 ui_out_text (uiout, " stopped");
5601 }
5602 else
5603 {
5604 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 5605 annotate_signal_name ();
33d62d64
JK
5606 if (ui_out_is_mi_like_p (uiout))
5607 ui_out_field_string
5608 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 5609 ui_out_field_string (uiout, "signal-name",
33d62d64 5610 target_signal_to_name (siggnal));
8b93c638
JM
5611 annotate_signal_name_end ();
5612 ui_out_text (uiout, ", ");
5613 annotate_signal_string ();
488f131b 5614 ui_out_field_string (uiout, "signal-meaning",
33d62d64 5615 target_signal_to_string (siggnal));
8b93c638 5616 annotate_signal_string_end ();
33d62d64
JK
5617 }
5618 ui_out_text (uiout, ".\n");
5619}
252fbfc8 5620
33d62d64
JK
5621/* Reverse execution: target ran out of history info, print why the inferior
5622 has stopped. */
252fbfc8 5623
33d62d64
JK
5624static void
5625print_no_history_reason (void)
5626{
5627 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
11cf8741 5628}
43ff13b4 5629
c906108c
SS
5630/* Here to return control to GDB when the inferior stops for real.
5631 Print appropriate messages, remove breakpoints, give terminal our modes.
5632
5633 STOP_PRINT_FRAME nonzero means print the executing frame
5634 (pc, function, args, file, line number and line text).
5635 BREAKPOINTS_FAILED nonzero means stop was due to error
5636 attempting to insert breakpoints. */
5637
5638void
96baa820 5639normal_stop (void)
c906108c 5640{
73b65bb0
DJ
5641 struct target_waitstatus last;
5642 ptid_t last_ptid;
29f49a6a 5643 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
5644
5645 get_last_target_status (&last_ptid, &last);
5646
29f49a6a
PA
5647 /* If an exception is thrown from this point on, make sure to
5648 propagate GDB's knowledge of the executing state to the
5649 frontend/user running state. A QUIT is an easy exception to see
5650 here, so do this before any filtered output. */
c35b1492
PA
5651 if (!non_stop)
5652 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5653 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5654 && last.kind != TARGET_WAITKIND_EXITED)
5655 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 5656
4f8d22e3
PA
5657 /* In non-stop mode, we don't want GDB to switch threads behind the
5658 user's back, to avoid races where the user is typing a command to
5659 apply to thread x, but GDB switches to thread y before the user
5660 finishes entering the command. */
5661
c906108c
SS
5662 /* As with the notification of thread events, we want to delay
5663 notifying the user that we've switched thread context until
5664 the inferior actually stops.
5665
73b65bb0
DJ
5666 There's no point in saying anything if the inferior has exited.
5667 Note that SIGNALLED here means "exited with a signal", not
5668 "received a signal". */
4f8d22e3
PA
5669 if (!non_stop
5670 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
5671 && target_has_execution
5672 && last.kind != TARGET_WAITKIND_SIGNALLED
5673 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
5674 {
5675 target_terminal_ours_for_output ();
a3f17187 5676 printf_filtered (_("[Switching to %s]\n"),
c95310c6 5677 target_pid_to_str (inferior_ptid));
b8fa951a 5678 annotate_thread_changed ();
39f77062 5679 previous_inferior_ptid = inferior_ptid;
c906108c 5680 }
c906108c 5681
74960c60 5682 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
5683 {
5684 if (remove_breakpoints ())
5685 {
5686 target_terminal_ours_for_output ();
3e43a32a
MS
5687 printf_filtered (_("Cannot remove breakpoints because "
5688 "program is no longer writable.\nFurther "
5689 "execution is probably impossible.\n"));
c906108c
SS
5690 }
5691 }
c906108c 5692
c906108c
SS
5693 /* If an auto-display called a function and that got a signal,
5694 delete that auto-display to avoid an infinite recursion. */
5695
5696 if (stopped_by_random_signal)
5697 disable_current_display ();
5698
5699 /* Don't print a message if in the middle of doing a "step n"
5700 operation for n > 1 */
af679fd0
PA
5701 if (target_has_execution
5702 && last.kind != TARGET_WAITKIND_SIGNALLED
5703 && last.kind != TARGET_WAITKIND_EXITED
5704 && inferior_thread ()->step_multi
16c381f0 5705 && inferior_thread ()->control.stop_step)
c906108c
SS
5706 goto done;
5707
5708 target_terminal_ours ();
5709
7abfe014
DJ
5710 /* Set the current source location. This will also happen if we
5711 display the frame below, but the current SAL will be incorrect
5712 during a user hook-stop function. */
d729566a 5713 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
5714 set_current_sal_from_frame (get_current_frame (), 1);
5715
dd7e2d2b
PA
5716 /* Let the user/frontend see the threads as stopped. */
5717 do_cleanups (old_chain);
5718
5719 /* Look up the hook_stop and run it (CLI internally handles problem
5720 of stop_command's pre-hook not existing). */
5721 if (stop_command)
5722 catch_errors (hook_stop_stub, stop_command,
5723 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5724
d729566a 5725 if (!has_stack_frames ())
d51fd4c8 5726 goto done;
c906108c 5727
32400beb
PA
5728 if (last.kind == TARGET_WAITKIND_SIGNALLED
5729 || last.kind == TARGET_WAITKIND_EXITED)
5730 goto done;
5731
c906108c
SS
5732 /* Select innermost stack frame - i.e., current frame is frame 0,
5733 and current location is based on that.
5734 Don't do this on return from a stack dummy routine,
1777feb0 5735 or if the program has exited. */
c906108c
SS
5736
5737 if (!stop_stack_dummy)
5738 {
0f7d239c 5739 select_frame (get_current_frame ());
c906108c
SS
5740
5741 /* Print current location without a level number, if
c5aa993b
JM
5742 we have changed functions or hit a breakpoint.
5743 Print source line if we have one.
5744 bpstat_print() contains the logic deciding in detail
1777feb0 5745 what to print, based on the event(s) that just occurred. */
c906108c 5746
d01a8610
AS
5747 /* If --batch-silent is enabled then there's no need to print the current
5748 source location, and to try risks causing an error message about
5749 missing source files. */
5750 if (stop_print_frame && !batch_silent)
c906108c
SS
5751 {
5752 int bpstat_ret;
5753 int source_flag;
917317f4 5754 int do_frame_printing = 1;
347bddb7 5755 struct thread_info *tp = inferior_thread ();
c906108c 5756
16c381f0 5757 bpstat_ret = bpstat_print (tp->control.stop_bpstat);
917317f4
JM
5758 switch (bpstat_ret)
5759 {
5760 case PRINT_UNKNOWN:
b0f4b84b
DJ
5761 /* If we had hit a shared library event breakpoint,
5762 bpstat_print would print out this message. If we hit
5763 an OS-level shared library event, do the same
5764 thing. */
5765 if (last.kind == TARGET_WAITKIND_LOADED)
5766 {
5767 printf_filtered (_("Stopped due to shared library event\n"));
5768 source_flag = SRC_LINE; /* something bogus */
5769 do_frame_printing = 0;
5770 break;
5771 }
5772
aa0cd9c1 5773 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
5774 (or should) carry around the function and does (or
5775 should) use that when doing a frame comparison. */
16c381f0
JK
5776 if (tp->control.stop_step
5777 && frame_id_eq (tp->control.step_frame_id,
aa0cd9c1 5778 get_frame_id (get_current_frame ()))
917317f4 5779 && step_start_function == find_pc_function (stop_pc))
1777feb0
MS
5780 source_flag = SRC_LINE; /* Finished step, just
5781 print source line. */
917317f4 5782 else
1777feb0
MS
5783 source_flag = SRC_AND_LOC; /* Print location and
5784 source line. */
917317f4
JM
5785 break;
5786 case PRINT_SRC_AND_LOC:
1777feb0
MS
5787 source_flag = SRC_AND_LOC; /* Print location and
5788 source line. */
917317f4
JM
5789 break;
5790 case PRINT_SRC_ONLY:
c5394b80 5791 source_flag = SRC_LINE;
917317f4
JM
5792 break;
5793 case PRINT_NOTHING:
488f131b 5794 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
5795 do_frame_printing = 0;
5796 break;
5797 default:
e2e0b3e5 5798 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 5799 }
c906108c
SS
5800
5801 /* The behavior of this routine with respect to the source
5802 flag is:
c5394b80
JM
5803 SRC_LINE: Print only source line
5804 LOCATION: Print only location
1777feb0 5805 SRC_AND_LOC: Print location and source line. */
917317f4 5806 if (do_frame_printing)
b04f3ab4 5807 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
5808
5809 /* Display the auto-display expressions. */
5810 do_displays ();
5811 }
5812 }
5813
5814 /* Save the function value return registers, if we care.
5815 We might be about to restore their previous contents. */
16c381f0 5816 if (inferior_thread ()->control.proceed_to_finish)
d5c31457
UW
5817 {
5818 /* This should not be necessary. */
5819 if (stop_registers)
5820 regcache_xfree (stop_registers);
5821
5822 /* NB: The copy goes through to the target picking up the value of
5823 all the registers. */
5824 stop_registers = regcache_dup (get_current_regcache ());
5825 }
c906108c 5826
aa7d318d 5827 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 5828 {
b89667eb
DE
5829 /* Pop the empty frame that contains the stack dummy.
5830 This also restores inferior state prior to the call
16c381f0 5831 (struct infcall_suspend_state). */
b89667eb 5832 struct frame_info *frame = get_current_frame ();
abbb1732 5833
b89667eb
DE
5834 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
5835 frame_pop (frame);
3e43a32a
MS
5836 /* frame_pop() calls reinit_frame_cache as the last thing it
5837 does which means there's currently no selected frame. We
5838 don't need to re-establish a selected frame if the dummy call
5839 returns normally, that will be done by
5840 restore_infcall_control_state. However, we do have to handle
5841 the case where the dummy call is returning after being
5842 stopped (e.g. the dummy call previously hit a breakpoint).
5843 We can't know which case we have so just always re-establish
5844 a selected frame here. */
0f7d239c 5845 select_frame (get_current_frame ());
c906108c
SS
5846 }
5847
c906108c
SS
5848done:
5849 annotate_stopped ();
41d2bdb4
PA
5850
5851 /* Suppress the stop observer if we're in the middle of:
5852
5853 - a step n (n > 1), as there still more steps to be done.
5854
5855 - a "finish" command, as the observer will be called in
5856 finish_command_continuation, so it can include the inferior
5857 function's return value.
5858
5859 - calling an inferior function, as we pretend we inferior didn't
5860 run at all. The return value of the call is handled by the
5861 expression evaluator, through call_function_by_hand. */
5862
5863 if (!target_has_execution
5864 || last.kind == TARGET_WAITKIND_SIGNALLED
5865 || last.kind == TARGET_WAITKIND_EXITED
5866 || (!inferior_thread ()->step_multi
16c381f0
JK
5867 && !(inferior_thread ()->control.stop_bpstat
5868 && inferior_thread ()->control.proceed_to_finish)
5869 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
5870 {
5871 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 5872 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 5873 stop_print_frame);
347bddb7 5874 else
1d33d6ba 5875 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 5876 }
347bddb7 5877
48844aa6
PA
5878 if (target_has_execution)
5879 {
5880 if (last.kind != TARGET_WAITKIND_SIGNALLED
5881 && last.kind != TARGET_WAITKIND_EXITED)
5882 /* Delete the breakpoint we stopped at, if it wants to be deleted.
5883 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 5884 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 5885 }
6c95b8df
PA
5886
5887 /* Try to get rid of automatically added inferiors that are no
5888 longer needed. Keeping those around slows down things linearly.
5889 Note that this never removes the current inferior. */
5890 prune_inferiors ();
c906108c
SS
5891}
5892
5893static int
96baa820 5894hook_stop_stub (void *cmd)
c906108c 5895{
5913bcb0 5896 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
5897 return (0);
5898}
5899\f
c5aa993b 5900int
96baa820 5901signal_stop_state (int signo)
c906108c 5902{
d6b48e9c 5903 return signal_stop[signo];
c906108c
SS
5904}
5905
c5aa993b 5906int
96baa820 5907signal_print_state (int signo)
c906108c
SS
5908{
5909 return signal_print[signo];
5910}
5911
c5aa993b 5912int
96baa820 5913signal_pass_state (int signo)
c906108c
SS
5914{
5915 return signal_program[signo];
5916}
5917
2455069d
UW
5918static void
5919signal_cache_update (int signo)
5920{
5921 if (signo == -1)
5922 {
5923 for (signo = 0; signo < (int) TARGET_SIGNAL_LAST; signo++)
5924 signal_cache_update (signo);
5925
5926 return;
5927 }
5928
5929 signal_pass[signo] = (signal_stop[signo] == 0
5930 && signal_print[signo] == 0
5931 && signal_program[signo] == 1);
5932}
5933
488f131b 5934int
7bda5e4a 5935signal_stop_update (int signo, int state)
d4f3574e
SS
5936{
5937 int ret = signal_stop[signo];
abbb1732 5938
d4f3574e 5939 signal_stop[signo] = state;
2455069d 5940 signal_cache_update (signo);
d4f3574e
SS
5941 return ret;
5942}
5943
488f131b 5944int
7bda5e4a 5945signal_print_update (int signo, int state)
d4f3574e
SS
5946{
5947 int ret = signal_print[signo];
abbb1732 5948
d4f3574e 5949 signal_print[signo] = state;
2455069d 5950 signal_cache_update (signo);
d4f3574e
SS
5951 return ret;
5952}
5953
488f131b 5954int
7bda5e4a 5955signal_pass_update (int signo, int state)
d4f3574e
SS
5956{
5957 int ret = signal_program[signo];
abbb1732 5958
d4f3574e 5959 signal_program[signo] = state;
2455069d 5960 signal_cache_update (signo);
d4f3574e
SS
5961 return ret;
5962}
5963
c906108c 5964static void
96baa820 5965sig_print_header (void)
c906108c 5966{
3e43a32a
MS
5967 printf_filtered (_("Signal Stop\tPrint\tPass "
5968 "to program\tDescription\n"));
c906108c
SS
5969}
5970
5971static void
96baa820 5972sig_print_info (enum target_signal oursig)
c906108c 5973{
54363045 5974 const char *name = target_signal_to_name (oursig);
c906108c 5975 int name_padding = 13 - strlen (name);
96baa820 5976
c906108c
SS
5977 if (name_padding <= 0)
5978 name_padding = 0;
5979
5980 printf_filtered ("%s", name);
488f131b 5981 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
5982 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
5983 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
5984 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
5985 printf_filtered ("%s\n", target_signal_to_string (oursig));
5986}
5987
5988/* Specify how various signals in the inferior should be handled. */
5989
5990static void
96baa820 5991handle_command (char *args, int from_tty)
c906108c
SS
5992{
5993 char **argv;
5994 int digits, wordlen;
5995 int sigfirst, signum, siglast;
5996 enum target_signal oursig;
5997 int allsigs;
5998 int nsigs;
5999 unsigned char *sigs;
6000 struct cleanup *old_chain;
6001
6002 if (args == NULL)
6003 {
e2e0b3e5 6004 error_no_arg (_("signal to handle"));
c906108c
SS
6005 }
6006
1777feb0 6007 /* Allocate and zero an array of flags for which signals to handle. */
c906108c
SS
6008
6009 nsigs = (int) TARGET_SIGNAL_LAST;
6010 sigs = (unsigned char *) alloca (nsigs);
6011 memset (sigs, 0, nsigs);
6012
1777feb0 6013 /* Break the command line up into args. */
c906108c 6014
d1a41061 6015 argv = gdb_buildargv (args);
7a292a7a 6016 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6017
6018 /* Walk through the args, looking for signal oursigs, signal names, and
6019 actions. Signal numbers and signal names may be interspersed with
6020 actions, with the actions being performed for all signals cumulatively
1777feb0 6021 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6022
6023 while (*argv != NULL)
6024 {
6025 wordlen = strlen (*argv);
6026 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6027 {;
6028 }
6029 allsigs = 0;
6030 sigfirst = siglast = -1;
6031
6032 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6033 {
6034 /* Apply action to all signals except those used by the
1777feb0 6035 debugger. Silently skip those. */
c906108c
SS
6036 allsigs = 1;
6037 sigfirst = 0;
6038 siglast = nsigs - 1;
6039 }
6040 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6041 {
6042 SET_SIGS (nsigs, sigs, signal_stop);
6043 SET_SIGS (nsigs, sigs, signal_print);
6044 }
6045 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6046 {
6047 UNSET_SIGS (nsigs, sigs, signal_program);
6048 }
6049 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6050 {
6051 SET_SIGS (nsigs, sigs, signal_print);
6052 }
6053 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6054 {
6055 SET_SIGS (nsigs, sigs, signal_program);
6056 }
6057 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6058 {
6059 UNSET_SIGS (nsigs, sigs, signal_stop);
6060 }
6061 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6062 {
6063 SET_SIGS (nsigs, sigs, signal_program);
6064 }
6065 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6066 {
6067 UNSET_SIGS (nsigs, sigs, signal_print);
6068 UNSET_SIGS (nsigs, sigs, signal_stop);
6069 }
6070 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6071 {
6072 UNSET_SIGS (nsigs, sigs, signal_program);
6073 }
6074 else if (digits > 0)
6075 {
6076 /* It is numeric. The numeric signal refers to our own
6077 internal signal numbering from target.h, not to host/target
6078 signal number. This is a feature; users really should be
6079 using symbolic names anyway, and the common ones like
6080 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6081
6082 sigfirst = siglast = (int)
6083 target_signal_from_command (atoi (*argv));
6084 if ((*argv)[digits] == '-')
6085 {
6086 siglast = (int)
6087 target_signal_from_command (atoi ((*argv) + digits + 1));
6088 }
6089 if (sigfirst > siglast)
6090 {
1777feb0 6091 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6092 signum = sigfirst;
6093 sigfirst = siglast;
6094 siglast = signum;
6095 }
6096 }
6097 else
6098 {
6099 oursig = target_signal_from_name (*argv);
6100 if (oursig != TARGET_SIGNAL_UNKNOWN)
6101 {
6102 sigfirst = siglast = (int) oursig;
6103 }
6104 else
6105 {
6106 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6107 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6108 }
6109 }
6110
6111 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6112 which signals to apply actions to. */
c906108c
SS
6113
6114 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6115 {
6116 switch ((enum target_signal) signum)
6117 {
6118 case TARGET_SIGNAL_TRAP:
6119 case TARGET_SIGNAL_INT:
6120 if (!allsigs && !sigs[signum])
6121 {
9e2f0ad4 6122 if (query (_("%s is used by the debugger.\n\
3e43a32a
MS
6123Are you sure you want to change it? "),
6124 target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
6125 {
6126 sigs[signum] = 1;
6127 }
6128 else
6129 {
a3f17187 6130 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6131 gdb_flush (gdb_stdout);
6132 }
6133 }
6134 break;
6135 case TARGET_SIGNAL_0:
6136 case TARGET_SIGNAL_DEFAULT:
6137 case TARGET_SIGNAL_UNKNOWN:
6138 /* Make sure that "all" doesn't print these. */
6139 break;
6140 default:
6141 sigs[signum] = 1;
6142 break;
6143 }
6144 }
6145
6146 argv++;
6147 }
6148
3a031f65
PA
6149 for (signum = 0; signum < nsigs; signum++)
6150 if (sigs[signum])
6151 {
2455069d
UW
6152 signal_cache_update (-1);
6153 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
c906108c 6154
3a031f65
PA
6155 if (from_tty)
6156 {
6157 /* Show the results. */
6158 sig_print_header ();
6159 for (; signum < nsigs; signum++)
6160 if (sigs[signum])
6161 sig_print_info (signum);
6162 }
6163
6164 break;
6165 }
c906108c
SS
6166
6167 do_cleanups (old_chain);
6168}
6169
6170static void
96baa820 6171xdb_handle_command (char *args, int from_tty)
c906108c
SS
6172{
6173 char **argv;
6174 struct cleanup *old_chain;
6175
d1a41061
PP
6176 if (args == NULL)
6177 error_no_arg (_("xdb command"));
6178
1777feb0 6179 /* Break the command line up into args. */
c906108c 6180
d1a41061 6181 argv = gdb_buildargv (args);
7a292a7a 6182 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6183 if (argv[1] != (char *) NULL)
6184 {
6185 char *argBuf;
6186 int bufLen;
6187
6188 bufLen = strlen (argv[0]) + 20;
6189 argBuf = (char *) xmalloc (bufLen);
6190 if (argBuf)
6191 {
6192 int validFlag = 1;
6193 enum target_signal oursig;
6194
6195 oursig = target_signal_from_name (argv[0]);
6196 memset (argBuf, 0, bufLen);
6197 if (strcmp (argv[1], "Q") == 0)
6198 sprintf (argBuf, "%s %s", argv[0], "noprint");
6199 else
6200 {
6201 if (strcmp (argv[1], "s") == 0)
6202 {
6203 if (!signal_stop[oursig])
6204 sprintf (argBuf, "%s %s", argv[0], "stop");
6205 else
6206 sprintf (argBuf, "%s %s", argv[0], "nostop");
6207 }
6208 else if (strcmp (argv[1], "i") == 0)
6209 {
6210 if (!signal_program[oursig])
6211 sprintf (argBuf, "%s %s", argv[0], "pass");
6212 else
6213 sprintf (argBuf, "%s %s", argv[0], "nopass");
6214 }
6215 else if (strcmp (argv[1], "r") == 0)
6216 {
6217 if (!signal_print[oursig])
6218 sprintf (argBuf, "%s %s", argv[0], "print");
6219 else
6220 sprintf (argBuf, "%s %s", argv[0], "noprint");
6221 }
6222 else
6223 validFlag = 0;
6224 }
6225 if (validFlag)
6226 handle_command (argBuf, from_tty);
6227 else
a3f17187 6228 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 6229 if (argBuf)
b8c9b27d 6230 xfree (argBuf);
c906108c
SS
6231 }
6232 }
6233 do_cleanups (old_chain);
6234}
6235
6236/* Print current contents of the tables set by the handle command.
6237 It is possible we should just be printing signals actually used
6238 by the current target (but for things to work right when switching
6239 targets, all signals should be in the signal tables). */
6240
6241static void
96baa820 6242signals_info (char *signum_exp, int from_tty)
c906108c
SS
6243{
6244 enum target_signal oursig;
abbb1732 6245
c906108c
SS
6246 sig_print_header ();
6247
6248 if (signum_exp)
6249 {
6250 /* First see if this is a symbol name. */
6251 oursig = target_signal_from_name (signum_exp);
6252 if (oursig == TARGET_SIGNAL_UNKNOWN)
6253 {
6254 /* No, try numeric. */
6255 oursig =
bb518678 6256 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
6257 }
6258 sig_print_info (oursig);
6259 return;
6260 }
6261
6262 printf_filtered ("\n");
6263 /* These ugly casts brought to you by the native VAX compiler. */
6264 for (oursig = TARGET_SIGNAL_FIRST;
6265 (int) oursig < (int) TARGET_SIGNAL_LAST;
6266 oursig = (enum target_signal) ((int) oursig + 1))
6267 {
6268 QUIT;
6269
6270 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 6271 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
6272 sig_print_info (oursig);
6273 }
6274
3e43a32a
MS
6275 printf_filtered (_("\nUse the \"handle\" command "
6276 "to change these tables.\n"));
c906108c 6277}
4aa995e1
PA
6278
6279/* The $_siginfo convenience variable is a bit special. We don't know
6280 for sure the type of the value until we actually have a chance to
7a9dd1b2 6281 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
6282 also dependent on which thread you have selected.
6283
6284 1. making $_siginfo be an internalvar that creates a new value on
6285 access.
6286
6287 2. making the value of $_siginfo be an lval_computed value. */
6288
6289/* This function implements the lval_computed support for reading a
6290 $_siginfo value. */
6291
6292static void
6293siginfo_value_read (struct value *v)
6294{
6295 LONGEST transferred;
6296
6297 transferred =
6298 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6299 NULL,
6300 value_contents_all_raw (v),
6301 value_offset (v),
6302 TYPE_LENGTH (value_type (v)));
6303
6304 if (transferred != TYPE_LENGTH (value_type (v)))
6305 error (_("Unable to read siginfo"));
6306}
6307
6308/* This function implements the lval_computed support for writing a
6309 $_siginfo value. */
6310
6311static void
6312siginfo_value_write (struct value *v, struct value *fromval)
6313{
6314 LONGEST transferred;
6315
6316 transferred = target_write (&current_target,
6317 TARGET_OBJECT_SIGNAL_INFO,
6318 NULL,
6319 value_contents_all_raw (fromval),
6320 value_offset (v),
6321 TYPE_LENGTH (value_type (fromval)));
6322
6323 if (transferred != TYPE_LENGTH (value_type (fromval)))
6324 error (_("Unable to write siginfo"));
6325}
6326
6327static struct lval_funcs siginfo_value_funcs =
6328 {
6329 siginfo_value_read,
6330 siginfo_value_write
6331 };
6332
6333/* Return a new value with the correct type for the siginfo object of
78267919
UW
6334 the current thread using architecture GDBARCH. Return a void value
6335 if there's no object available. */
4aa995e1 6336
2c0b251b 6337static struct value *
78267919 6338siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
4aa995e1 6339{
4aa995e1 6340 if (target_has_stack
78267919
UW
6341 && !ptid_equal (inferior_ptid, null_ptid)
6342 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 6343 {
78267919 6344 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 6345
78267919 6346 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
6347 }
6348
78267919 6349 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
6350}
6351
c906108c 6352\f
16c381f0
JK
6353/* infcall_suspend_state contains state about the program itself like its
6354 registers and any signal it received when it last stopped.
6355 This state must be restored regardless of how the inferior function call
6356 ends (either successfully, or after it hits a breakpoint or signal)
6357 if the program is to properly continue where it left off. */
6358
6359struct infcall_suspend_state
7a292a7a 6360{
16c381f0
JK
6361 struct thread_suspend_state thread_suspend;
6362 struct inferior_suspend_state inferior_suspend;
6363
6364 /* Other fields: */
7a292a7a 6365 CORE_ADDR stop_pc;
b89667eb 6366 struct regcache *registers;
1736ad11 6367
35515841 6368 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
6369 struct gdbarch *siginfo_gdbarch;
6370
6371 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6372 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6373 content would be invalid. */
6374 gdb_byte *siginfo_data;
b89667eb
DE
6375};
6376
16c381f0
JK
6377struct infcall_suspend_state *
6378save_infcall_suspend_state (void)
b89667eb 6379{
16c381f0 6380 struct infcall_suspend_state *inf_state;
b89667eb 6381 struct thread_info *tp = inferior_thread ();
16c381f0 6382 struct inferior *inf = current_inferior ();
1736ad11
JK
6383 struct regcache *regcache = get_current_regcache ();
6384 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6385 gdb_byte *siginfo_data = NULL;
6386
6387 if (gdbarch_get_siginfo_type_p (gdbarch))
6388 {
6389 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6390 size_t len = TYPE_LENGTH (type);
6391 struct cleanup *back_to;
6392
6393 siginfo_data = xmalloc (len);
6394 back_to = make_cleanup (xfree, siginfo_data);
6395
6396 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6397 siginfo_data, 0, len) == len)
6398 discard_cleanups (back_to);
6399 else
6400 {
6401 /* Errors ignored. */
6402 do_cleanups (back_to);
6403 siginfo_data = NULL;
6404 }
6405 }
6406
16c381f0 6407 inf_state = XZALLOC (struct infcall_suspend_state);
1736ad11
JK
6408
6409 if (siginfo_data)
6410 {
6411 inf_state->siginfo_gdbarch = gdbarch;
6412 inf_state->siginfo_data = siginfo_data;
6413 }
b89667eb 6414
16c381f0
JK
6415 inf_state->thread_suspend = tp->suspend;
6416 inf_state->inferior_suspend = inf->suspend;
6417
35515841
JK
6418 /* run_inferior_call will not use the signal due to its `proceed' call with
6419 TARGET_SIGNAL_0 anyway. */
16c381f0 6420 tp->suspend.stop_signal = TARGET_SIGNAL_0;
35515841 6421
b89667eb
DE
6422 inf_state->stop_pc = stop_pc;
6423
1736ad11 6424 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
6425
6426 return inf_state;
6427}
6428
6429/* Restore inferior session state to INF_STATE. */
6430
6431void
16c381f0 6432restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6433{
6434 struct thread_info *tp = inferior_thread ();
16c381f0 6435 struct inferior *inf = current_inferior ();
1736ad11
JK
6436 struct regcache *regcache = get_current_regcache ();
6437 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 6438
16c381f0
JK
6439 tp->suspend = inf_state->thread_suspend;
6440 inf->suspend = inf_state->inferior_suspend;
6441
b89667eb
DE
6442 stop_pc = inf_state->stop_pc;
6443
1736ad11
JK
6444 if (inf_state->siginfo_gdbarch == gdbarch)
6445 {
6446 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6447 size_t len = TYPE_LENGTH (type);
6448
6449 /* Errors ignored. */
6450 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6451 inf_state->siginfo_data, 0, len);
6452 }
6453
b89667eb
DE
6454 /* The inferior can be gone if the user types "print exit(0)"
6455 (and perhaps other times). */
6456 if (target_has_execution)
6457 /* NB: The register write goes through to the target. */
1736ad11 6458 regcache_cpy (regcache, inf_state->registers);
803b5f95 6459
16c381f0 6460 discard_infcall_suspend_state (inf_state);
b89667eb
DE
6461}
6462
6463static void
16c381f0 6464do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 6465{
16c381f0 6466 restore_infcall_suspend_state (state);
b89667eb
DE
6467}
6468
6469struct cleanup *
16c381f0
JK
6470make_cleanup_restore_infcall_suspend_state
6471 (struct infcall_suspend_state *inf_state)
b89667eb 6472{
16c381f0 6473 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
6474}
6475
6476void
16c381f0 6477discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6478{
6479 regcache_xfree (inf_state->registers);
803b5f95 6480 xfree (inf_state->siginfo_data);
b89667eb
DE
6481 xfree (inf_state);
6482}
6483
6484struct regcache *
16c381f0 6485get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
6486{
6487 return inf_state->registers;
6488}
6489
16c381f0
JK
6490/* infcall_control_state contains state regarding gdb's control of the
6491 inferior itself like stepping control. It also contains session state like
6492 the user's currently selected frame. */
b89667eb 6493
16c381f0 6494struct infcall_control_state
b89667eb 6495{
16c381f0
JK
6496 struct thread_control_state thread_control;
6497 struct inferior_control_state inferior_control;
d82142e2
JK
6498
6499 /* Other fields: */
6500 enum stop_stack_kind stop_stack_dummy;
6501 int stopped_by_random_signal;
7a292a7a 6502 int stop_after_trap;
7a292a7a 6503
b89667eb 6504 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 6505 struct frame_id selected_frame_id;
7a292a7a
SS
6506};
6507
c906108c 6508/* Save all of the information associated with the inferior<==>gdb
b89667eb 6509 connection. */
c906108c 6510
16c381f0
JK
6511struct infcall_control_state *
6512save_infcall_control_state (void)
c906108c 6513{
16c381f0 6514 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 6515 struct thread_info *tp = inferior_thread ();
d6b48e9c 6516 struct inferior *inf = current_inferior ();
7a292a7a 6517
16c381f0
JK
6518 inf_status->thread_control = tp->control;
6519 inf_status->inferior_control = inf->control;
d82142e2 6520
8358c15c 6521 tp->control.step_resume_breakpoint = NULL;
5b79abe7 6522 tp->control.exception_resume_breakpoint = NULL;
8358c15c 6523
16c381f0
JK
6524 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6525 chain. If caller's caller is walking the chain, they'll be happier if we
6526 hand them back the original chain when restore_infcall_control_state is
6527 called. */
6528 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
6529
6530 /* Other fields: */
6531 inf_status->stop_stack_dummy = stop_stack_dummy;
6532 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6533 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 6534
206415a3 6535 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 6536
7a292a7a 6537 return inf_status;
c906108c
SS
6538}
6539
c906108c 6540static int
96baa820 6541restore_selected_frame (void *args)
c906108c 6542{
488f131b 6543 struct frame_id *fid = (struct frame_id *) args;
c906108c 6544 struct frame_info *frame;
c906108c 6545
101dcfbe 6546 frame = frame_find_by_id (*fid);
c906108c 6547
aa0cd9c1
AC
6548 /* If inf_status->selected_frame_id is NULL, there was no previously
6549 selected frame. */
101dcfbe 6550 if (frame == NULL)
c906108c 6551 {
8a3fe4f8 6552 warning (_("Unable to restore previously selected frame."));
c906108c
SS
6553 return 0;
6554 }
6555
0f7d239c 6556 select_frame (frame);
c906108c
SS
6557
6558 return (1);
6559}
6560
b89667eb
DE
6561/* Restore inferior session state to INF_STATUS. */
6562
c906108c 6563void
16c381f0 6564restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 6565{
4e1c45ea 6566 struct thread_info *tp = inferior_thread ();
d6b48e9c 6567 struct inferior *inf = current_inferior ();
4e1c45ea 6568
8358c15c
JK
6569 if (tp->control.step_resume_breakpoint)
6570 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6571
5b79abe7
TT
6572 if (tp->control.exception_resume_breakpoint)
6573 tp->control.exception_resume_breakpoint->disposition
6574 = disp_del_at_next_stop;
6575
d82142e2 6576 /* Handle the bpstat_copy of the chain. */
16c381f0 6577 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 6578
16c381f0
JK
6579 tp->control = inf_status->thread_control;
6580 inf->control = inf_status->inferior_control;
d82142e2
JK
6581
6582 /* Other fields: */
6583 stop_stack_dummy = inf_status->stop_stack_dummy;
6584 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6585 stop_after_trap = inf_status->stop_after_trap;
c906108c 6586
b89667eb 6587 if (target_has_stack)
c906108c 6588 {
c906108c 6589 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
6590 walking the stack might encounter a garbage pointer and
6591 error() trying to dereference it. */
488f131b
JB
6592 if (catch_errors
6593 (restore_selected_frame, &inf_status->selected_frame_id,
6594 "Unable to restore previously selected frame:\n",
6595 RETURN_MASK_ERROR) == 0)
c906108c
SS
6596 /* Error in restoring the selected frame. Select the innermost
6597 frame. */
0f7d239c 6598 select_frame (get_current_frame ());
c906108c 6599 }
c906108c 6600
72cec141 6601 xfree (inf_status);
7a292a7a 6602}
c906108c 6603
74b7792f 6604static void
16c381f0 6605do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 6606{
16c381f0 6607 restore_infcall_control_state (sts);
74b7792f
AC
6608}
6609
6610struct cleanup *
16c381f0
JK
6611make_cleanup_restore_infcall_control_state
6612 (struct infcall_control_state *inf_status)
74b7792f 6613{
16c381f0 6614 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
6615}
6616
c906108c 6617void
16c381f0 6618discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 6619{
8358c15c
JK
6620 if (inf_status->thread_control.step_resume_breakpoint)
6621 inf_status->thread_control.step_resume_breakpoint->disposition
6622 = disp_del_at_next_stop;
6623
5b79abe7
TT
6624 if (inf_status->thread_control.exception_resume_breakpoint)
6625 inf_status->thread_control.exception_resume_breakpoint->disposition
6626 = disp_del_at_next_stop;
6627
1777feb0 6628 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 6629 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 6630
72cec141 6631 xfree (inf_status);
7a292a7a 6632}
b89667eb 6633\f
47932f85 6634int
3a3e9ee3 6635inferior_has_forked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
6636{
6637 struct target_waitstatus last;
6638 ptid_t last_ptid;
6639
6640 get_last_target_status (&last_ptid, &last);
6641
6642 if (last.kind != TARGET_WAITKIND_FORKED)
6643 return 0;
6644
3a3e9ee3 6645 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6646 return 0;
6647
6648 *child_pid = last.value.related_pid;
6649 return 1;
6650}
6651
6652int
3a3e9ee3 6653inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
6654{
6655 struct target_waitstatus last;
6656 ptid_t last_ptid;
6657
6658 get_last_target_status (&last_ptid, &last);
6659
6660 if (last.kind != TARGET_WAITKIND_VFORKED)
6661 return 0;
6662
3a3e9ee3 6663 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6664 return 0;
6665
6666 *child_pid = last.value.related_pid;
6667 return 1;
6668}
6669
6670int
3a3e9ee3 6671inferior_has_execd (ptid_t pid, char **execd_pathname)
47932f85
DJ
6672{
6673 struct target_waitstatus last;
6674 ptid_t last_ptid;
6675
6676 get_last_target_status (&last_ptid, &last);
6677
6678 if (last.kind != TARGET_WAITKIND_EXECD)
6679 return 0;
6680
3a3e9ee3 6681 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6682 return 0;
6683
6684 *execd_pathname = xstrdup (last.value.execd_pathname);
6685 return 1;
6686}
6687
a96d9b2e
SDJ
6688int
6689inferior_has_called_syscall (ptid_t pid, int *syscall_number)
6690{
6691 struct target_waitstatus last;
6692 ptid_t last_ptid;
6693
6694 get_last_target_status (&last_ptid, &last);
6695
6696 if (last.kind != TARGET_WAITKIND_SYSCALL_ENTRY &&
6697 last.kind != TARGET_WAITKIND_SYSCALL_RETURN)
6698 return 0;
6699
6700 if (!ptid_equal (last_ptid, pid))
6701 return 0;
6702
6703 *syscall_number = last.value.syscall_number;
6704 return 1;
6705}
6706
ca6724c1
KB
6707/* Oft used ptids */
6708ptid_t null_ptid;
6709ptid_t minus_one_ptid;
6710
6711/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 6712
ca6724c1
KB
6713ptid_t
6714ptid_build (int pid, long lwp, long tid)
6715{
6716 ptid_t ptid;
6717
6718 ptid.pid = pid;
6719 ptid.lwp = lwp;
6720 ptid.tid = tid;
6721 return ptid;
6722}
6723
6724/* Create a ptid from just a pid. */
6725
6726ptid_t
6727pid_to_ptid (int pid)
6728{
6729 return ptid_build (pid, 0, 0);
6730}
6731
6732/* Fetch the pid (process id) component from a ptid. */
6733
6734int
6735ptid_get_pid (ptid_t ptid)
6736{
6737 return ptid.pid;
6738}
6739
6740/* Fetch the lwp (lightweight process) component from a ptid. */
6741
6742long
6743ptid_get_lwp (ptid_t ptid)
6744{
6745 return ptid.lwp;
6746}
6747
6748/* Fetch the tid (thread id) component from a ptid. */
6749
6750long
6751ptid_get_tid (ptid_t ptid)
6752{
6753 return ptid.tid;
6754}
6755
6756/* ptid_equal() is used to test equality of two ptids. */
6757
6758int
6759ptid_equal (ptid_t ptid1, ptid_t ptid2)
6760{
6761 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 6762 && ptid1.tid == ptid2.tid);
ca6724c1
KB
6763}
6764
252fbfc8
PA
6765/* Returns true if PTID represents a process. */
6766
6767int
6768ptid_is_pid (ptid_t ptid)
6769{
6770 if (ptid_equal (minus_one_ptid, ptid))
6771 return 0;
6772 if (ptid_equal (null_ptid, ptid))
6773 return 0;
6774
6775 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
6776}
6777
0723dbf5
PA
6778int
6779ptid_match (ptid_t ptid, ptid_t filter)
6780{
0723dbf5
PA
6781 if (ptid_equal (filter, minus_one_ptid))
6782 return 1;
6783 if (ptid_is_pid (filter)
6784 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6785 return 1;
6786 else if (ptid_equal (ptid, filter))
6787 return 1;
6788
6789 return 0;
6790}
6791
ca6724c1
KB
6792/* restore_inferior_ptid() will be used by the cleanup machinery
6793 to restore the inferior_ptid value saved in a call to
6794 save_inferior_ptid(). */
ce696e05
KB
6795
6796static void
6797restore_inferior_ptid (void *arg)
6798{
6799 ptid_t *saved_ptid_ptr = arg;
abbb1732 6800
ce696e05
KB
6801 inferior_ptid = *saved_ptid_ptr;
6802 xfree (arg);
6803}
6804
6805/* Save the value of inferior_ptid so that it may be restored by a
6806 later call to do_cleanups(). Returns the struct cleanup pointer
6807 needed for later doing the cleanup. */
6808
6809struct cleanup *
6810save_inferior_ptid (void)
6811{
6812 ptid_t *saved_ptid_ptr;
6813
6814 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6815 *saved_ptid_ptr = inferior_ptid;
6816 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6817}
c5aa993b 6818\f
488f131b 6819
b2175913
MS
6820/* User interface for reverse debugging:
6821 Set exec-direction / show exec-direction commands
6822 (returns error unless target implements to_set_exec_direction method). */
6823
6824enum exec_direction_kind execution_direction = EXEC_FORWARD;
6825static const char exec_forward[] = "forward";
6826static const char exec_reverse[] = "reverse";
6827static const char *exec_direction = exec_forward;
6828static const char *exec_direction_names[] = {
6829 exec_forward,
6830 exec_reverse,
6831 NULL
6832};
6833
6834static void
6835set_exec_direction_func (char *args, int from_tty,
6836 struct cmd_list_element *cmd)
6837{
6838 if (target_can_execute_reverse)
6839 {
6840 if (!strcmp (exec_direction, exec_forward))
6841 execution_direction = EXEC_FORWARD;
6842 else if (!strcmp (exec_direction, exec_reverse))
6843 execution_direction = EXEC_REVERSE;
6844 }
8bbed405
MS
6845 else
6846 {
6847 exec_direction = exec_forward;
6848 error (_("Target does not support this operation."));
6849 }
b2175913
MS
6850}
6851
6852static void
6853show_exec_direction_func (struct ui_file *out, int from_tty,
6854 struct cmd_list_element *cmd, const char *value)
6855{
6856 switch (execution_direction) {
6857 case EXEC_FORWARD:
6858 fprintf_filtered (out, _("Forward.\n"));
6859 break;
6860 case EXEC_REVERSE:
6861 fprintf_filtered (out, _("Reverse.\n"));
6862 break;
6863 case EXEC_ERROR:
6864 default:
3e43a32a
MS
6865 fprintf_filtered (out, _("Forward (target `%s' does not "
6866 "support exec-direction).\n"),
b2175913
MS
6867 target_shortname);
6868 break;
6869 }
6870}
6871
6872/* User interface for non-stop mode. */
6873
ad52ddc6 6874int non_stop = 0;
ad52ddc6
PA
6875
6876static void
6877set_non_stop (char *args, int from_tty,
6878 struct cmd_list_element *c)
6879{
6880 if (target_has_execution)
6881 {
6882 non_stop_1 = non_stop;
6883 error (_("Cannot change this setting while the inferior is running."));
6884 }
6885
6886 non_stop = non_stop_1;
6887}
6888
6889static void
6890show_non_stop (struct ui_file *file, int from_tty,
6891 struct cmd_list_element *c, const char *value)
6892{
6893 fprintf_filtered (file,
6894 _("Controlling the inferior in non-stop mode is %s.\n"),
6895 value);
6896}
6897
d4db2f36
PA
6898static void
6899show_schedule_multiple (struct ui_file *file, int from_tty,
6900 struct cmd_list_element *c, const char *value)
6901{
3e43a32a
MS
6902 fprintf_filtered (file, _("Resuming the execution of threads "
6903 "of all processes is %s.\n"), value);
d4db2f36 6904}
ad52ddc6 6905
c906108c 6906void
96baa820 6907_initialize_infrun (void)
c906108c 6908{
52f0bd74
AC
6909 int i;
6910 int numsigs;
c906108c 6911
1bedd215
AC
6912 add_info ("signals", signals_info, _("\
6913What debugger does when program gets various signals.\n\
6914Specify a signal as argument to print info on that signal only."));
c906108c
SS
6915 add_info_alias ("handle", "signals", 0);
6916
1bedd215
AC
6917 add_com ("handle", class_run, handle_command, _("\
6918Specify how to handle a signal.\n\
c906108c
SS
6919Args are signals and actions to apply to those signals.\n\
6920Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6921from 1-15 are allowed for compatibility with old versions of GDB.\n\
6922Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6923The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
6924used by the debugger, typically SIGTRAP and SIGINT.\n\
6925Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
6926\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
6927Stop means reenter debugger if this signal happens (implies print).\n\
6928Print means print a message if this signal happens.\n\
6929Pass means let program see this signal; otherwise program doesn't know.\n\
6930Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 6931Pass and Stop may be combined."));
c906108c
SS
6932 if (xdb_commands)
6933 {
1bedd215
AC
6934 add_com ("lz", class_info, signals_info, _("\
6935What debugger does when program gets various signals.\n\
6936Specify a signal as argument to print info on that signal only."));
6937 add_com ("z", class_run, xdb_handle_command, _("\
6938Specify how to handle a signal.\n\
c906108c
SS
6939Args are signals and actions to apply to those signals.\n\
6940Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6941from 1-15 are allowed for compatibility with old versions of GDB.\n\
6942Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6943The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 6944used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 6945Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
6946\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
6947nopass), \"Q\" (noprint)\n\
6948Stop means reenter debugger if this signal happens (implies print).\n\
6949Print means print a message if this signal happens.\n\
6950Pass means let program see this signal; otherwise program doesn't know.\n\
6951Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 6952Pass and Stop may be combined."));
c906108c
SS
6953 }
6954
6955 if (!dbx_commands)
1a966eab
AC
6956 stop_command = add_cmd ("stop", class_obscure,
6957 not_just_help_class_command, _("\
6958There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 6959This allows you to set a list of commands to be run each time execution\n\
1a966eab 6960of the program stops."), &cmdlist);
c906108c 6961
85c07804
AC
6962 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
6963Set inferior debugging."), _("\
6964Show inferior debugging."), _("\
6965When non-zero, inferior specific debugging is enabled."),
6966 NULL,
920d2a44 6967 show_debug_infrun,
85c07804 6968 &setdebuglist, &showdebuglist);
527159b7 6969
3e43a32a
MS
6970 add_setshow_boolean_cmd ("displaced", class_maintenance,
6971 &debug_displaced, _("\
237fc4c9
PA
6972Set displaced stepping debugging."), _("\
6973Show displaced stepping debugging."), _("\
6974When non-zero, displaced stepping specific debugging is enabled."),
6975 NULL,
6976 show_debug_displaced,
6977 &setdebuglist, &showdebuglist);
6978
ad52ddc6
PA
6979 add_setshow_boolean_cmd ("non-stop", no_class,
6980 &non_stop_1, _("\
6981Set whether gdb controls the inferior in non-stop mode."), _("\
6982Show whether gdb controls the inferior in non-stop mode."), _("\
6983When debugging a multi-threaded program and this setting is\n\
6984off (the default, also called all-stop mode), when one thread stops\n\
6985(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
6986all other threads in the program while you interact with the thread of\n\
6987interest. When you continue or step a thread, you can allow the other\n\
6988threads to run, or have them remain stopped, but while you inspect any\n\
6989thread's state, all threads stop.\n\
6990\n\
6991In non-stop mode, when one thread stops, other threads can continue\n\
6992to run freely. You'll be able to step each thread independently,\n\
6993leave it stopped or free to run as needed."),
6994 set_non_stop,
6995 show_non_stop,
6996 &setlist,
6997 &showlist);
6998
c906108c 6999 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 7000 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7001 signal_print = (unsigned char *)
7002 xmalloc (sizeof (signal_print[0]) * numsigs);
7003 signal_program = (unsigned char *)
7004 xmalloc (sizeof (signal_program[0]) * numsigs);
2455069d
UW
7005 signal_pass = (unsigned char *)
7006 xmalloc (sizeof (signal_program[0]) * numsigs);
c906108c
SS
7007 for (i = 0; i < numsigs; i++)
7008 {
7009 signal_stop[i] = 1;
7010 signal_print[i] = 1;
7011 signal_program[i] = 1;
7012 }
7013
7014 /* Signals caused by debugger's own actions
7015 should not be given to the program afterwards. */
7016 signal_program[TARGET_SIGNAL_TRAP] = 0;
7017 signal_program[TARGET_SIGNAL_INT] = 0;
7018
7019 /* Signals that are not errors should not normally enter the debugger. */
7020 signal_stop[TARGET_SIGNAL_ALRM] = 0;
7021 signal_print[TARGET_SIGNAL_ALRM] = 0;
7022 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
7023 signal_print[TARGET_SIGNAL_VTALRM] = 0;
7024 signal_stop[TARGET_SIGNAL_PROF] = 0;
7025 signal_print[TARGET_SIGNAL_PROF] = 0;
7026 signal_stop[TARGET_SIGNAL_CHLD] = 0;
7027 signal_print[TARGET_SIGNAL_CHLD] = 0;
7028 signal_stop[TARGET_SIGNAL_IO] = 0;
7029 signal_print[TARGET_SIGNAL_IO] = 0;
7030 signal_stop[TARGET_SIGNAL_POLL] = 0;
7031 signal_print[TARGET_SIGNAL_POLL] = 0;
7032 signal_stop[TARGET_SIGNAL_URG] = 0;
7033 signal_print[TARGET_SIGNAL_URG] = 0;
7034 signal_stop[TARGET_SIGNAL_WINCH] = 0;
7035 signal_print[TARGET_SIGNAL_WINCH] = 0;
16dfc9ce
JB
7036 signal_stop[TARGET_SIGNAL_PRIO] = 0;
7037 signal_print[TARGET_SIGNAL_PRIO] = 0;
c906108c 7038
cd0fc7c3
SS
7039 /* These signals are used internally by user-level thread
7040 implementations. (See signal(5) on Solaris.) Like the above
7041 signals, a healthy program receives and handles them as part of
7042 its normal operation. */
7043 signal_stop[TARGET_SIGNAL_LWP] = 0;
7044 signal_print[TARGET_SIGNAL_LWP] = 0;
7045 signal_stop[TARGET_SIGNAL_WAITING] = 0;
7046 signal_print[TARGET_SIGNAL_WAITING] = 0;
7047 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
7048 signal_print[TARGET_SIGNAL_CANCEL] = 0;
7049
2455069d
UW
7050 /* Update cached state. */
7051 signal_cache_update (-1);
7052
85c07804
AC
7053 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7054 &stop_on_solib_events, _("\
7055Set stopping for shared library events."), _("\
7056Show stopping for shared library events."), _("\
c906108c
SS
7057If nonzero, gdb will give control to the user when the dynamic linker\n\
7058notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
7059to the user would be loading/unloading of a new library."),
7060 NULL,
920d2a44 7061 show_stop_on_solib_events,
85c07804 7062 &setlist, &showlist);
c906108c 7063
7ab04401
AC
7064 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7065 follow_fork_mode_kind_names,
7066 &follow_fork_mode_string, _("\
7067Set debugger response to a program call of fork or vfork."), _("\
7068Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7069A fork or vfork creates a new process. follow-fork-mode can be:\n\
7070 parent - the original process is debugged after a fork\n\
7071 child - the new process is debugged after a fork\n\
ea1dd7bc 7072The unfollowed process will continue to run.\n\
7ab04401
AC
7073By default, the debugger will follow the parent process."),
7074 NULL,
920d2a44 7075 show_follow_fork_mode_string,
7ab04401
AC
7076 &setlist, &showlist);
7077
6c95b8df
PA
7078 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7079 follow_exec_mode_names,
7080 &follow_exec_mode_string, _("\
7081Set debugger response to a program call of exec."), _("\
7082Show debugger response to a program call of exec."), _("\
7083An exec call replaces the program image of a process.\n\
7084\n\
7085follow-exec-mode can be:\n\
7086\n\
cce7e648 7087 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7088to this new inferior. The program the process was running before\n\
7089the exec call can be restarted afterwards by restarting the original\n\
7090inferior.\n\
7091\n\
7092 same - the debugger keeps the process bound to the same inferior.\n\
7093The new executable image replaces the previous executable loaded in\n\
7094the inferior. Restarting the inferior after the exec call restarts\n\
7095the executable the process was running after the exec call.\n\
7096\n\
7097By default, the debugger will use the same inferior."),
7098 NULL,
7099 show_follow_exec_mode_string,
7100 &setlist, &showlist);
7101
7ab04401
AC
7102 add_setshow_enum_cmd ("scheduler-locking", class_run,
7103 scheduler_enums, &scheduler_mode, _("\
7104Set mode for locking scheduler during execution."), _("\
7105Show mode for locking scheduler during execution."), _("\
c906108c
SS
7106off == no locking (threads may preempt at any time)\n\
7107on == full locking (no thread except the current thread may run)\n\
7108step == scheduler locked during every single-step operation.\n\
7109 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7110 Other threads may run while stepping over a function call ('next')."),
7111 set_schedlock_func, /* traps on target vector */
920d2a44 7112 show_scheduler_mode,
7ab04401 7113 &setlist, &showlist);
5fbbeb29 7114
d4db2f36
PA
7115 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7116Set mode for resuming threads of all processes."), _("\
7117Show mode for resuming threads of all processes."), _("\
7118When on, execution commands (such as 'continue' or 'next') resume all\n\
7119threads of all processes. When off (which is the default), execution\n\
7120commands only resume the threads of the current process. The set of\n\
7121threads that are resumed is further refined by the scheduler-locking\n\
7122mode (see help set scheduler-locking)."),
7123 NULL,
7124 show_schedule_multiple,
7125 &setlist, &showlist);
7126
5bf193a2
AC
7127 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7128Set mode of the step operation."), _("\
7129Show mode of the step operation."), _("\
7130When set, doing a step over a function without debug line information\n\
7131will stop at the first instruction of that function. Otherwise, the\n\
7132function is skipped and the step command stops at a different source line."),
7133 NULL,
920d2a44 7134 show_step_stop_if_no_debug,
5bf193a2 7135 &setlist, &showlist);
ca6724c1 7136
fff08868
HZ
7137 add_setshow_enum_cmd ("displaced-stepping", class_run,
7138 can_use_displaced_stepping_enum,
7139 &can_use_displaced_stepping, _("\
237fc4c9
PA
7140Set debugger's willingness to use displaced stepping."), _("\
7141Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7142If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7143supported by the target architecture. If off, gdb will not use displaced\n\
7144stepping to step over breakpoints, even if such is supported by the target\n\
7145architecture. If auto (which is the default), gdb will use displaced stepping\n\
7146if the target architecture supports it and non-stop mode is active, but will not\n\
7147use it in all-stop mode (see help set non-stop)."),
7148 NULL,
7149 show_can_use_displaced_stepping,
7150 &setlist, &showlist);
237fc4c9 7151
b2175913
MS
7152 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7153 &exec_direction, _("Set direction of execution.\n\
7154Options are 'forward' or 'reverse'."),
7155 _("Show direction of execution (forward/reverse)."),
7156 _("Tells gdb whether to execute forward or backward."),
7157 set_exec_direction_func, show_exec_direction_func,
7158 &setlist, &showlist);
7159
6c95b8df
PA
7160 /* Set/show detach-on-fork: user-settable mode. */
7161
7162 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7163Set whether gdb will detach the child of a fork."), _("\
7164Show whether gdb will detach the child of a fork."), _("\
7165Tells gdb whether to detach the child of a fork."),
7166 NULL, NULL, &setlist, &showlist);
7167
ca6724c1
KB
7168 /* ptid initializations */
7169 null_ptid = ptid_build (0, 0, 0);
7170 minus_one_ptid = ptid_build (-1, 0, 0);
7171 inferior_ptid = null_ptid;
7172 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7173
7174 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7175 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7176 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7177 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7178
7179 /* Explicitly create without lookup, since that tries to create a
7180 value with a void typed value, and when we get here, gdbarch
7181 isn't initialized yet. At this point, we're quite sure there
7182 isn't another convenience variable of the same name. */
7183 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
d914c394
SS
7184
7185 add_setshow_boolean_cmd ("observer", no_class,
7186 &observer_mode_1, _("\
7187Set whether gdb controls the inferior in observer mode."), _("\
7188Show whether gdb controls the inferior in observer mode."), _("\
7189In observer mode, GDB can get data from the inferior, but not\n\
7190affect its execution. Registers and memory may not be changed,\n\
7191breakpoints may not be set, and the program cannot be interrupted\n\
7192or signalled."),
7193 set_observer_mode,
7194 show_observer_mode,
7195 &setlist,
7196 &showlist);
c906108c 7197}