]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/infrun.c
* elfxx-mips.c (_bfd_mips_elf_symbol_processing): Remove
[thirdparty/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca 4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1 5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
7b6bb8da 6 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
186c406b
TT
48#include "dictionary.h"
49#include "block.h"
9f976b41 50#include "gdb_assert.h"
034dad6f 51#include "mi/mi-common.h"
4f8d22e3 52#include "event-top.h"
96429cc8 53#include "record.h"
edb3359d 54#include "inline-frame.h"
4efc6507 55#include "jit.h"
06cd862c 56#include "tracepoint.h"
be34f849 57#include "continuations.h"
b4a14fd0 58#include "interps.h"
c906108c
SS
59
60/* Prototypes for local functions */
61
96baa820 62static void signals_info (char *, int);
c906108c 63
96baa820 64static void handle_command (char *, int);
c906108c 65
96baa820 66static void sig_print_info (enum target_signal);
c906108c 67
96baa820 68static void sig_print_header (void);
c906108c 69
74b7792f 70static void resume_cleanups (void *);
c906108c 71
96baa820 72static int hook_stop_stub (void *);
c906108c 73
96baa820
JM
74static int restore_selected_frame (void *);
75
4ef3f3be 76static int follow_fork (void);
96baa820
JM
77
78static void set_schedlock_func (char *args, int from_tty,
488f131b 79 struct cmd_list_element *c);
96baa820 80
a289b8f6
JK
81static int currently_stepping (struct thread_info *tp);
82
b3444185
PA
83static int currently_stepping_or_nexting_callback (struct thread_info *tp,
84 void *data);
a7212384 85
96baa820
JM
86static void xdb_handle_command (char *args, int from_tty);
87
6a6b96b9 88static int prepare_to_proceed (int);
ea67f13b 89
33d62d64
JK
90static void print_exited_reason (int exitstatus);
91
92static void print_signal_exited_reason (enum target_signal siggnal);
93
94static void print_no_history_reason (void);
95
96static void print_signal_received_reason (enum target_signal siggnal);
97
98static void print_end_stepping_range_reason (void);
99
96baa820 100void _initialize_infrun (void);
43ff13b4 101
e58b0e63
PA
102void nullify_last_target_wait_ptid (void);
103
2c03e5be 104static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
105
106static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
107
2484c66b
UW
108static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
109
5fbbeb29
CF
110/* When set, stop the 'step' command if we enter a function which has
111 no line number information. The normal behavior is that we step
112 over such function. */
113int step_stop_if_no_debug = 0;
920d2a44
AC
114static void
115show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
116 struct cmd_list_element *c, const char *value)
117{
118 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
119}
5fbbeb29 120
1777feb0 121/* In asynchronous mode, but simulating synchronous execution. */
96baa820 122
43ff13b4
JM
123int sync_execution = 0;
124
c906108c
SS
125/* wait_for_inferior and normal_stop use this to notify the user
126 when the inferior stopped in a different thread than it had been
96baa820
JM
127 running in. */
128
39f77062 129static ptid_t previous_inferior_ptid;
7a292a7a 130
6c95b8df
PA
131/* Default behavior is to detach newly forked processes (legacy). */
132int detach_fork = 1;
133
237fc4c9
PA
134int debug_displaced = 0;
135static void
136show_debug_displaced (struct ui_file *file, int from_tty,
137 struct cmd_list_element *c, const char *value)
138{
139 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
140}
141
628fe4e4 142int debug_infrun = 0;
920d2a44
AC
143static void
144show_debug_infrun (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146{
147 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
148}
527159b7 149
03583c20
UW
150
151/* Support for disabling address space randomization. */
152
153int disable_randomization = 1;
154
155static void
156show_disable_randomization (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158{
159 if (target_supports_disable_randomization ())
160 fprintf_filtered (file,
161 _("Disabling randomization of debuggee's "
162 "virtual address space is %s.\n"),
163 value);
164 else
165 fputs_filtered (_("Disabling randomization of debuggee's "
166 "virtual address space is unsupported on\n"
167 "this platform.\n"), file);
168}
169
170static void
171set_disable_randomization (char *args, int from_tty,
172 struct cmd_list_element *c)
173{
174 if (!target_supports_disable_randomization ())
175 error (_("Disabling randomization of debuggee's "
176 "virtual address space is unsupported on\n"
177 "this platform."));
178}
179
180
d4f3574e
SS
181/* If the program uses ELF-style shared libraries, then calls to
182 functions in shared libraries go through stubs, which live in a
183 table called the PLT (Procedure Linkage Table). The first time the
184 function is called, the stub sends control to the dynamic linker,
185 which looks up the function's real address, patches the stub so
186 that future calls will go directly to the function, and then passes
187 control to the function.
188
189 If we are stepping at the source level, we don't want to see any of
190 this --- we just want to skip over the stub and the dynamic linker.
191 The simple approach is to single-step until control leaves the
192 dynamic linker.
193
ca557f44
AC
194 However, on some systems (e.g., Red Hat's 5.2 distribution) the
195 dynamic linker calls functions in the shared C library, so you
196 can't tell from the PC alone whether the dynamic linker is still
197 running. In this case, we use a step-resume breakpoint to get us
198 past the dynamic linker, as if we were using "next" to step over a
199 function call.
d4f3574e 200
cfd8ab24 201 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
202 linker code or not. Normally, this means we single-step. However,
203 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
204 address where we can place a step-resume breakpoint to get past the
205 linker's symbol resolution function.
206
cfd8ab24 207 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
208 pretty portable way, by comparing the PC against the address ranges
209 of the dynamic linker's sections.
210
211 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
212 it depends on internal details of the dynamic linker. It's usually
213 not too hard to figure out where to put a breakpoint, but it
214 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
215 sanity checking. If it can't figure things out, returning zero and
216 getting the (possibly confusing) stepping behavior is better than
217 signalling an error, which will obscure the change in the
218 inferior's state. */
c906108c 219
c906108c
SS
220/* This function returns TRUE if pc is the address of an instruction
221 that lies within the dynamic linker (such as the event hook, or the
222 dld itself).
223
224 This function must be used only when a dynamic linker event has
225 been caught, and the inferior is being stepped out of the hook, or
226 undefined results are guaranteed. */
227
228#ifndef SOLIB_IN_DYNAMIC_LINKER
229#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
230#endif
231
d914c394
SS
232/* "Observer mode" is somewhat like a more extreme version of
233 non-stop, in which all GDB operations that might affect the
234 target's execution have been disabled. */
235
236static int non_stop_1 = 0;
237
238int observer_mode = 0;
239static int observer_mode_1 = 0;
240
241static void
242set_observer_mode (char *args, int from_tty,
243 struct cmd_list_element *c)
244{
245 extern int pagination_enabled;
246
247 if (target_has_execution)
248 {
249 observer_mode_1 = observer_mode;
250 error (_("Cannot change this setting while the inferior is running."));
251 }
252
253 observer_mode = observer_mode_1;
254
255 may_write_registers = !observer_mode;
256 may_write_memory = !observer_mode;
257 may_insert_breakpoints = !observer_mode;
258 may_insert_tracepoints = !observer_mode;
259 /* We can insert fast tracepoints in or out of observer mode,
260 but enable them if we're going into this mode. */
261 if (observer_mode)
262 may_insert_fast_tracepoints = 1;
263 may_stop = !observer_mode;
264 update_target_permissions ();
265
266 /* Going *into* observer mode we must force non-stop, then
267 going out we leave it that way. */
268 if (observer_mode)
269 {
270 target_async_permitted = 1;
271 pagination_enabled = 0;
272 non_stop = non_stop_1 = 1;
273 }
274
275 if (from_tty)
276 printf_filtered (_("Observer mode is now %s.\n"),
277 (observer_mode ? "on" : "off"));
278}
279
280static void
281show_observer_mode (struct ui_file *file, int from_tty,
282 struct cmd_list_element *c, const char *value)
283{
284 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
285}
286
287/* This updates the value of observer mode based on changes in
288 permissions. Note that we are deliberately ignoring the values of
289 may-write-registers and may-write-memory, since the user may have
290 reason to enable these during a session, for instance to turn on a
291 debugging-related global. */
292
293void
294update_observer_mode (void)
295{
296 int newval;
297
298 newval = (!may_insert_breakpoints
299 && !may_insert_tracepoints
300 && may_insert_fast_tracepoints
301 && !may_stop
302 && non_stop);
303
304 /* Let the user know if things change. */
305 if (newval != observer_mode)
306 printf_filtered (_("Observer mode is now %s.\n"),
307 (newval ? "on" : "off"));
308
309 observer_mode = observer_mode_1 = newval;
310}
c2c6d25f 311
c906108c
SS
312/* Tables of how to react to signals; the user sets them. */
313
314static unsigned char *signal_stop;
315static unsigned char *signal_print;
316static unsigned char *signal_program;
317
2455069d
UW
318/* Table of signals that the target may silently handle.
319 This is automatically determined from the flags above,
320 and simply cached here. */
321static unsigned char *signal_pass;
322
c906108c
SS
323#define SET_SIGS(nsigs,sigs,flags) \
324 do { \
325 int signum = (nsigs); \
326 while (signum-- > 0) \
327 if ((sigs)[signum]) \
328 (flags)[signum] = 1; \
329 } while (0)
330
331#define UNSET_SIGS(nsigs,sigs,flags) \
332 do { \
333 int signum = (nsigs); \
334 while (signum-- > 0) \
335 if ((sigs)[signum]) \
336 (flags)[signum] = 0; \
337 } while (0)
338
1777feb0 339/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 340
edb3359d 341#define RESUME_ALL minus_one_ptid
c906108c
SS
342
343/* Command list pointer for the "stop" placeholder. */
344
345static struct cmd_list_element *stop_command;
346
c906108c
SS
347/* Function inferior was in as of last step command. */
348
349static struct symbol *step_start_function;
350
c906108c
SS
351/* Nonzero if we want to give control to the user when we're notified
352 of shared library events by the dynamic linker. */
628fe4e4 353int stop_on_solib_events;
920d2a44
AC
354static void
355show_stop_on_solib_events (struct ui_file *file, int from_tty,
356 struct cmd_list_element *c, const char *value)
357{
358 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
359 value);
360}
c906108c 361
c906108c
SS
362/* Nonzero means expecting a trace trap
363 and should stop the inferior and return silently when it happens. */
364
365int stop_after_trap;
366
642fd101
DE
367/* Save register contents here when executing a "finish" command or are
368 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
369 Thus this contains the return value from the called function (assuming
370 values are returned in a register). */
371
72cec141 372struct regcache *stop_registers;
c906108c 373
c906108c
SS
374/* Nonzero after stop if current stack frame should be printed. */
375
376static int stop_print_frame;
377
e02bc4cc 378/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
379 returned by target_wait()/deprecated_target_wait_hook(). This
380 information is returned by get_last_target_status(). */
39f77062 381static ptid_t target_last_wait_ptid;
e02bc4cc
DS
382static struct target_waitstatus target_last_waitstatus;
383
0d1e5fa7
PA
384static void context_switch (ptid_t ptid);
385
4e1c45ea 386void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
387
388void init_infwait_state (void);
a474d7c2 389
53904c9e
AC
390static const char follow_fork_mode_child[] = "child";
391static const char follow_fork_mode_parent[] = "parent";
392
488f131b 393static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
394 follow_fork_mode_child,
395 follow_fork_mode_parent,
396 NULL
ef346e04 397};
c906108c 398
53904c9e 399static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
400static void
401show_follow_fork_mode_string (struct ui_file *file, int from_tty,
402 struct cmd_list_element *c, const char *value)
403{
3e43a32a
MS
404 fprintf_filtered (file,
405 _("Debugger response to a program "
406 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
407 value);
408}
c906108c
SS
409\f
410
e58b0e63
PA
411/* Tell the target to follow the fork we're stopped at. Returns true
412 if the inferior should be resumed; false, if the target for some
413 reason decided it's best not to resume. */
414
6604731b 415static int
4ef3f3be 416follow_fork (void)
c906108c 417{
ea1dd7bc 418 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
419 int should_resume = 1;
420 struct thread_info *tp;
421
422 /* Copy user stepping state to the new inferior thread. FIXME: the
423 followed fork child thread should have a copy of most of the
4e3990f4
DE
424 parent thread structure's run control related fields, not just these.
425 Initialized to avoid "may be used uninitialized" warnings from gcc. */
426 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 427 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
428 CORE_ADDR step_range_start = 0;
429 CORE_ADDR step_range_end = 0;
430 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
431
432 if (!non_stop)
433 {
434 ptid_t wait_ptid;
435 struct target_waitstatus wait_status;
436
437 /* Get the last target status returned by target_wait(). */
438 get_last_target_status (&wait_ptid, &wait_status);
439
440 /* If not stopped at a fork event, then there's nothing else to
441 do. */
442 if (wait_status.kind != TARGET_WAITKIND_FORKED
443 && wait_status.kind != TARGET_WAITKIND_VFORKED)
444 return 1;
445
446 /* Check if we switched over from WAIT_PTID, since the event was
447 reported. */
448 if (!ptid_equal (wait_ptid, minus_one_ptid)
449 && !ptid_equal (inferior_ptid, wait_ptid))
450 {
451 /* We did. Switch back to WAIT_PTID thread, to tell the
452 target to follow it (in either direction). We'll
453 afterwards refuse to resume, and inform the user what
454 happened. */
455 switch_to_thread (wait_ptid);
456 should_resume = 0;
457 }
458 }
459
460 tp = inferior_thread ();
461
462 /* If there were any forks/vforks that were caught and are now to be
463 followed, then do so now. */
464 switch (tp->pending_follow.kind)
465 {
466 case TARGET_WAITKIND_FORKED:
467 case TARGET_WAITKIND_VFORKED:
468 {
469 ptid_t parent, child;
470
471 /* If the user did a next/step, etc, over a fork call,
472 preserve the stepping state in the fork child. */
473 if (follow_child && should_resume)
474 {
8358c15c
JK
475 step_resume_breakpoint = clone_momentary_breakpoint
476 (tp->control.step_resume_breakpoint);
16c381f0
JK
477 step_range_start = tp->control.step_range_start;
478 step_range_end = tp->control.step_range_end;
479 step_frame_id = tp->control.step_frame_id;
186c406b
TT
480 exception_resume_breakpoint
481 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
e58b0e63
PA
482
483 /* For now, delete the parent's sr breakpoint, otherwise,
484 parent/child sr breakpoints are considered duplicates,
485 and the child version will not be installed. Remove
486 this when the breakpoints module becomes aware of
487 inferiors and address spaces. */
488 delete_step_resume_breakpoint (tp);
16c381f0
JK
489 tp->control.step_range_start = 0;
490 tp->control.step_range_end = 0;
491 tp->control.step_frame_id = null_frame_id;
186c406b 492 delete_exception_resume_breakpoint (tp);
e58b0e63
PA
493 }
494
495 parent = inferior_ptid;
496 child = tp->pending_follow.value.related_pid;
497
498 /* Tell the target to do whatever is necessary to follow
499 either parent or child. */
500 if (target_follow_fork (follow_child))
501 {
502 /* Target refused to follow, or there's some other reason
503 we shouldn't resume. */
504 should_resume = 0;
505 }
506 else
507 {
508 /* This pending follow fork event is now handled, one way
509 or another. The previous selected thread may be gone
510 from the lists by now, but if it is still around, need
511 to clear the pending follow request. */
e09875d4 512 tp = find_thread_ptid (parent);
e58b0e63
PA
513 if (tp)
514 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
515
516 /* This makes sure we don't try to apply the "Switched
517 over from WAIT_PID" logic above. */
518 nullify_last_target_wait_ptid ();
519
1777feb0 520 /* If we followed the child, switch to it... */
e58b0e63
PA
521 if (follow_child)
522 {
523 switch_to_thread (child);
524
525 /* ... and preserve the stepping state, in case the
526 user was stepping over the fork call. */
527 if (should_resume)
528 {
529 tp = inferior_thread ();
8358c15c
JK
530 tp->control.step_resume_breakpoint
531 = step_resume_breakpoint;
16c381f0
JK
532 tp->control.step_range_start = step_range_start;
533 tp->control.step_range_end = step_range_end;
534 tp->control.step_frame_id = step_frame_id;
186c406b
TT
535 tp->control.exception_resume_breakpoint
536 = exception_resume_breakpoint;
e58b0e63
PA
537 }
538 else
539 {
540 /* If we get here, it was because we're trying to
541 resume from a fork catchpoint, but, the user
542 has switched threads away from the thread that
543 forked. In that case, the resume command
544 issued is most likely not applicable to the
545 child, so just warn, and refuse to resume. */
3e43a32a
MS
546 warning (_("Not resuming: switched threads "
547 "before following fork child.\n"));
e58b0e63
PA
548 }
549
550 /* Reset breakpoints in the child as appropriate. */
551 follow_inferior_reset_breakpoints ();
552 }
553 else
554 switch_to_thread (parent);
555 }
556 }
557 break;
558 case TARGET_WAITKIND_SPURIOUS:
559 /* Nothing to follow. */
560 break;
561 default:
562 internal_error (__FILE__, __LINE__,
563 "Unexpected pending_follow.kind %d\n",
564 tp->pending_follow.kind);
565 break;
566 }
c906108c 567
e58b0e63 568 return should_resume;
c906108c
SS
569}
570
6604731b
DJ
571void
572follow_inferior_reset_breakpoints (void)
c906108c 573{
4e1c45ea
PA
574 struct thread_info *tp = inferior_thread ();
575
6604731b
DJ
576 /* Was there a step_resume breakpoint? (There was if the user
577 did a "next" at the fork() call.) If so, explicitly reset its
578 thread number.
579
580 step_resumes are a form of bp that are made to be per-thread.
581 Since we created the step_resume bp when the parent process
582 was being debugged, and now are switching to the child process,
583 from the breakpoint package's viewpoint, that's a switch of
584 "threads". We must update the bp's notion of which thread
585 it is for, or it'll be ignored when it triggers. */
586
8358c15c
JK
587 if (tp->control.step_resume_breakpoint)
588 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
6604731b 589
186c406b
TT
590 if (tp->control.exception_resume_breakpoint)
591 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
592
6604731b
DJ
593 /* Reinsert all breakpoints in the child. The user may have set
594 breakpoints after catching the fork, in which case those
595 were never set in the child, but only in the parent. This makes
596 sure the inserted breakpoints match the breakpoint list. */
597
598 breakpoint_re_set ();
599 insert_breakpoints ();
c906108c 600}
c906108c 601
6c95b8df
PA
602/* The child has exited or execed: resume threads of the parent the
603 user wanted to be executing. */
604
605static int
606proceed_after_vfork_done (struct thread_info *thread,
607 void *arg)
608{
609 int pid = * (int *) arg;
610
611 if (ptid_get_pid (thread->ptid) == pid
612 && is_running (thread->ptid)
613 && !is_executing (thread->ptid)
614 && !thread->stop_requested
16c381f0 615 && thread->suspend.stop_signal == TARGET_SIGNAL_0)
6c95b8df
PA
616 {
617 if (debug_infrun)
618 fprintf_unfiltered (gdb_stdlog,
619 "infrun: resuming vfork parent thread %s\n",
620 target_pid_to_str (thread->ptid));
621
622 switch_to_thread (thread->ptid);
623 clear_proceed_status ();
624 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
625 }
626
627 return 0;
628}
629
630/* Called whenever we notice an exec or exit event, to handle
631 detaching or resuming a vfork parent. */
632
633static void
634handle_vfork_child_exec_or_exit (int exec)
635{
636 struct inferior *inf = current_inferior ();
637
638 if (inf->vfork_parent)
639 {
640 int resume_parent = -1;
641
642 /* This exec or exit marks the end of the shared memory region
643 between the parent and the child. If the user wanted to
644 detach from the parent, now is the time. */
645
646 if (inf->vfork_parent->pending_detach)
647 {
648 struct thread_info *tp;
649 struct cleanup *old_chain;
650 struct program_space *pspace;
651 struct address_space *aspace;
652
1777feb0 653 /* follow-fork child, detach-on-fork on. */
6c95b8df
PA
654
655 old_chain = make_cleanup_restore_current_thread ();
656
657 /* We're letting loose of the parent. */
658 tp = any_live_thread_of_process (inf->vfork_parent->pid);
659 switch_to_thread (tp->ptid);
660
661 /* We're about to detach from the parent, which implicitly
662 removes breakpoints from its address space. There's a
663 catch here: we want to reuse the spaces for the child,
664 but, parent/child are still sharing the pspace at this
665 point, although the exec in reality makes the kernel give
666 the child a fresh set of new pages. The problem here is
667 that the breakpoints module being unaware of this, would
668 likely chose the child process to write to the parent
669 address space. Swapping the child temporarily away from
670 the spaces has the desired effect. Yes, this is "sort
671 of" a hack. */
672
673 pspace = inf->pspace;
674 aspace = inf->aspace;
675 inf->aspace = NULL;
676 inf->pspace = NULL;
677
678 if (debug_infrun || info_verbose)
679 {
680 target_terminal_ours ();
681
682 if (exec)
683 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
684 "Detaching vfork parent process "
685 "%d after child exec.\n",
6c95b8df
PA
686 inf->vfork_parent->pid);
687 else
688 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
689 "Detaching vfork parent process "
690 "%d after child exit.\n",
6c95b8df
PA
691 inf->vfork_parent->pid);
692 }
693
694 target_detach (NULL, 0);
695
696 /* Put it back. */
697 inf->pspace = pspace;
698 inf->aspace = aspace;
699
700 do_cleanups (old_chain);
701 }
702 else if (exec)
703 {
704 /* We're staying attached to the parent, so, really give the
705 child a new address space. */
706 inf->pspace = add_program_space (maybe_new_address_space ());
707 inf->aspace = inf->pspace->aspace;
708 inf->removable = 1;
709 set_current_program_space (inf->pspace);
710
711 resume_parent = inf->vfork_parent->pid;
712
713 /* Break the bonds. */
714 inf->vfork_parent->vfork_child = NULL;
715 }
716 else
717 {
718 struct cleanup *old_chain;
719 struct program_space *pspace;
720
721 /* If this is a vfork child exiting, then the pspace and
722 aspaces were shared with the parent. Since we're
723 reporting the process exit, we'll be mourning all that is
724 found in the address space, and switching to null_ptid,
725 preparing to start a new inferior. But, since we don't
726 want to clobber the parent's address/program spaces, we
727 go ahead and create a new one for this exiting
728 inferior. */
729
730 /* Switch to null_ptid, so that clone_program_space doesn't want
731 to read the selected frame of a dead process. */
732 old_chain = save_inferior_ptid ();
733 inferior_ptid = null_ptid;
734
735 /* This inferior is dead, so avoid giving the breakpoints
736 module the option to write through to it (cloning a
737 program space resets breakpoints). */
738 inf->aspace = NULL;
739 inf->pspace = NULL;
740 pspace = add_program_space (maybe_new_address_space ());
741 set_current_program_space (pspace);
742 inf->removable = 1;
743 clone_program_space (pspace, inf->vfork_parent->pspace);
744 inf->pspace = pspace;
745 inf->aspace = pspace->aspace;
746
747 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 748 inferior. */
6c95b8df
PA
749 do_cleanups (old_chain);
750
751 resume_parent = inf->vfork_parent->pid;
752 /* Break the bonds. */
753 inf->vfork_parent->vfork_child = NULL;
754 }
755
756 inf->vfork_parent = NULL;
757
758 gdb_assert (current_program_space == inf->pspace);
759
760 if (non_stop && resume_parent != -1)
761 {
762 /* If the user wanted the parent to be running, let it go
763 free now. */
764 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
765
766 if (debug_infrun)
3e43a32a
MS
767 fprintf_unfiltered (gdb_stdlog,
768 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
769 resume_parent);
770
771 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
772
773 do_cleanups (old_chain);
774 }
775 }
776}
777
778/* Enum strings for "set|show displaced-stepping". */
779
780static const char follow_exec_mode_new[] = "new";
781static const char follow_exec_mode_same[] = "same";
782static const char *follow_exec_mode_names[] =
783{
784 follow_exec_mode_new,
785 follow_exec_mode_same,
786 NULL,
787};
788
789static const char *follow_exec_mode_string = follow_exec_mode_same;
790static void
791show_follow_exec_mode_string (struct ui_file *file, int from_tty,
792 struct cmd_list_element *c, const char *value)
793{
794 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
795}
796
1777feb0 797/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 798
c906108c 799static void
3a3e9ee3 800follow_exec (ptid_t pid, char *execd_pathname)
c906108c 801{
4e1c45ea 802 struct thread_info *th = inferior_thread ();
6c95b8df 803 struct inferior *inf = current_inferior ();
7a292a7a 804
c906108c
SS
805 /* This is an exec event that we actually wish to pay attention to.
806 Refresh our symbol table to the newly exec'd program, remove any
807 momentary bp's, etc.
808
809 If there are breakpoints, they aren't really inserted now,
810 since the exec() transformed our inferior into a fresh set
811 of instructions.
812
813 We want to preserve symbolic breakpoints on the list, since
814 we have hopes that they can be reset after the new a.out's
815 symbol table is read.
816
817 However, any "raw" breakpoints must be removed from the list
818 (e.g., the solib bp's), since their address is probably invalid
819 now.
820
821 And, we DON'T want to call delete_breakpoints() here, since
822 that may write the bp's "shadow contents" (the instruction
823 value that was overwritten witha TRAP instruction). Since
1777feb0 824 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
825
826 mark_breakpoints_out ();
827
c906108c
SS
828 update_breakpoints_after_exec ();
829
830 /* If there was one, it's gone now. We cannot truly step-to-next
1777feb0 831 statement through an exec(). */
8358c15c 832 th->control.step_resume_breakpoint = NULL;
186c406b 833 th->control.exception_resume_breakpoint = NULL;
16c381f0
JK
834 th->control.step_range_start = 0;
835 th->control.step_range_end = 0;
c906108c 836
a75724bc
PA
837 /* The target reports the exec event to the main thread, even if
838 some other thread does the exec, and even if the main thread was
839 already stopped --- if debugging in non-stop mode, it's possible
840 the user had the main thread held stopped in the previous image
841 --- release it now. This is the same behavior as step-over-exec
842 with scheduler-locking on in all-stop mode. */
843 th->stop_requested = 0;
844
1777feb0 845 /* What is this a.out's name? */
6c95b8df
PA
846 printf_unfiltered (_("%s is executing new program: %s\n"),
847 target_pid_to_str (inferior_ptid),
848 execd_pathname);
c906108c
SS
849
850 /* We've followed the inferior through an exec. Therefore, the
1777feb0 851 inferior has essentially been killed & reborn. */
7a292a7a 852
c906108c 853 gdb_flush (gdb_stdout);
6ca15a4b
PA
854
855 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
856
857 if (gdb_sysroot && *gdb_sysroot)
858 {
859 char *name = alloca (strlen (gdb_sysroot)
860 + strlen (execd_pathname)
861 + 1);
abbb1732 862
e85a822c
DJ
863 strcpy (name, gdb_sysroot);
864 strcat (name, execd_pathname);
865 execd_pathname = name;
866 }
c906108c 867
cce9b6bf
PA
868 /* Reset the shared library package. This ensures that we get a
869 shlib event when the child reaches "_start", at which point the
870 dld will have had a chance to initialize the child. */
871 /* Also, loading a symbol file below may trigger symbol lookups, and
872 we don't want those to be satisfied by the libraries of the
873 previous incarnation of this process. */
874 no_shared_libraries (NULL, 0);
875
6c95b8df
PA
876 if (follow_exec_mode_string == follow_exec_mode_new)
877 {
878 struct program_space *pspace;
6c95b8df
PA
879
880 /* The user wants to keep the old inferior and program spaces
881 around. Create a new fresh one, and switch to it. */
882
883 inf = add_inferior (current_inferior ()->pid);
884 pspace = add_program_space (maybe_new_address_space ());
885 inf->pspace = pspace;
886 inf->aspace = pspace->aspace;
887
888 exit_inferior_num_silent (current_inferior ()->num);
889
890 set_current_inferior (inf);
891 set_current_program_space (pspace);
892 }
893
894 gdb_assert (current_program_space == inf->pspace);
895
1777feb0 896 /* That a.out is now the one to use. */
6c95b8df
PA
897 exec_file_attach (execd_pathname, 0);
898
c1e56572
JK
899 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
900 (Position Independent Executable) main symbol file will get applied by
901 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
902 the breakpoints with the zero displacement. */
903
904 symbol_file_add (execd_pathname, SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET,
905 NULL, 0);
906
907 set_initial_language ();
c906108c 908
7a292a7a 909#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 910 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2 911#else
268a4a75 912 solib_create_inferior_hook (0);
7a292a7a 913#endif
c906108c 914
4efc6507
DE
915 jit_inferior_created_hook ();
916
c1e56572
JK
917 breakpoint_re_set ();
918
c906108c
SS
919 /* Reinsert all breakpoints. (Those which were symbolic have
920 been reset to the proper address in the new a.out, thanks
1777feb0 921 to symbol_file_command...). */
c906108c
SS
922 insert_breakpoints ();
923
924 /* The next resume of this inferior should bring it to the shlib
925 startup breakpoints. (If the user had also set bp's on
926 "main" from the old (parent) process, then they'll auto-
1777feb0 927 matically get reset there in the new process.). */
c906108c
SS
928}
929
930/* Non-zero if we just simulating a single-step. This is needed
931 because we cannot remove the breakpoints in the inferior process
932 until after the `wait' in `wait_for_inferior'. */
933static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
934
935/* The thread we inserted single-step breakpoints for. */
936static ptid_t singlestep_ptid;
937
fd48f117
DJ
938/* PC when we started this single-step. */
939static CORE_ADDR singlestep_pc;
940
9f976b41
DJ
941/* If another thread hit the singlestep breakpoint, we save the original
942 thread here so that we can resume single-stepping it later. */
943static ptid_t saved_singlestep_ptid;
944static int stepping_past_singlestep_breakpoint;
6a6b96b9 945
ca67fcb8
VP
946/* If not equal to null_ptid, this means that after stepping over breakpoint
947 is finished, we need to switch to deferred_step_ptid, and step it.
948
949 The use case is when one thread has hit a breakpoint, and then the user
1777feb0 950 has switched to another thread and issued 'step'. We need to step over
ca67fcb8
VP
951 breakpoint in the thread which hit the breakpoint, but then continue
952 stepping the thread user has selected. */
953static ptid_t deferred_step_ptid;
c906108c 954\f
237fc4c9
PA
955/* Displaced stepping. */
956
957/* In non-stop debugging mode, we must take special care to manage
958 breakpoints properly; in particular, the traditional strategy for
959 stepping a thread past a breakpoint it has hit is unsuitable.
960 'Displaced stepping' is a tactic for stepping one thread past a
961 breakpoint it has hit while ensuring that other threads running
962 concurrently will hit the breakpoint as they should.
963
964 The traditional way to step a thread T off a breakpoint in a
965 multi-threaded program in all-stop mode is as follows:
966
967 a0) Initially, all threads are stopped, and breakpoints are not
968 inserted.
969 a1) We single-step T, leaving breakpoints uninserted.
970 a2) We insert breakpoints, and resume all threads.
971
972 In non-stop debugging, however, this strategy is unsuitable: we
973 don't want to have to stop all threads in the system in order to
974 continue or step T past a breakpoint. Instead, we use displaced
975 stepping:
976
977 n0) Initially, T is stopped, other threads are running, and
978 breakpoints are inserted.
979 n1) We copy the instruction "under" the breakpoint to a separate
980 location, outside the main code stream, making any adjustments
981 to the instruction, register, and memory state as directed by
982 T's architecture.
983 n2) We single-step T over the instruction at its new location.
984 n3) We adjust the resulting register and memory state as directed
985 by T's architecture. This includes resetting T's PC to point
986 back into the main instruction stream.
987 n4) We resume T.
988
989 This approach depends on the following gdbarch methods:
990
991 - gdbarch_max_insn_length and gdbarch_displaced_step_location
992 indicate where to copy the instruction, and how much space must
993 be reserved there. We use these in step n1.
994
995 - gdbarch_displaced_step_copy_insn copies a instruction to a new
996 address, and makes any necessary adjustments to the instruction,
997 register contents, and memory. We use this in step n1.
998
999 - gdbarch_displaced_step_fixup adjusts registers and memory after
1000 we have successfuly single-stepped the instruction, to yield the
1001 same effect the instruction would have had if we had executed it
1002 at its original address. We use this in step n3.
1003
1004 - gdbarch_displaced_step_free_closure provides cleanup.
1005
1006 The gdbarch_displaced_step_copy_insn and
1007 gdbarch_displaced_step_fixup functions must be written so that
1008 copying an instruction with gdbarch_displaced_step_copy_insn,
1009 single-stepping across the copied instruction, and then applying
1010 gdbarch_displaced_insn_fixup should have the same effects on the
1011 thread's memory and registers as stepping the instruction in place
1012 would have. Exactly which responsibilities fall to the copy and
1013 which fall to the fixup is up to the author of those functions.
1014
1015 See the comments in gdbarch.sh for details.
1016
1017 Note that displaced stepping and software single-step cannot
1018 currently be used in combination, although with some care I think
1019 they could be made to. Software single-step works by placing
1020 breakpoints on all possible subsequent instructions; if the
1021 displaced instruction is a PC-relative jump, those breakpoints
1022 could fall in very strange places --- on pages that aren't
1023 executable, or at addresses that are not proper instruction
1024 boundaries. (We do generally let other threads run while we wait
1025 to hit the software single-step breakpoint, and they might
1026 encounter such a corrupted instruction.) One way to work around
1027 this would be to have gdbarch_displaced_step_copy_insn fully
1028 simulate the effect of PC-relative instructions (and return NULL)
1029 on architectures that use software single-stepping.
1030
1031 In non-stop mode, we can have independent and simultaneous step
1032 requests, so more than one thread may need to simultaneously step
1033 over a breakpoint. The current implementation assumes there is
1034 only one scratch space per process. In this case, we have to
1035 serialize access to the scratch space. If thread A wants to step
1036 over a breakpoint, but we are currently waiting for some other
1037 thread to complete a displaced step, we leave thread A stopped and
1038 place it in the displaced_step_request_queue. Whenever a displaced
1039 step finishes, we pick the next thread in the queue and start a new
1040 displaced step operation on it. See displaced_step_prepare and
1041 displaced_step_fixup for details. */
1042
237fc4c9
PA
1043struct displaced_step_request
1044{
1045 ptid_t ptid;
1046 struct displaced_step_request *next;
1047};
1048
fc1cf338
PA
1049/* Per-inferior displaced stepping state. */
1050struct displaced_step_inferior_state
1051{
1052 /* Pointer to next in linked list. */
1053 struct displaced_step_inferior_state *next;
1054
1055 /* The process this displaced step state refers to. */
1056 int pid;
1057
1058 /* A queue of pending displaced stepping requests. One entry per
1059 thread that needs to do a displaced step. */
1060 struct displaced_step_request *step_request_queue;
1061
1062 /* If this is not null_ptid, this is the thread carrying out a
1063 displaced single-step in process PID. This thread's state will
1064 require fixing up once it has completed its step. */
1065 ptid_t step_ptid;
1066
1067 /* The architecture the thread had when we stepped it. */
1068 struct gdbarch *step_gdbarch;
1069
1070 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1071 for post-step cleanup. */
1072 struct displaced_step_closure *step_closure;
1073
1074 /* The address of the original instruction, and the copy we
1075 made. */
1076 CORE_ADDR step_original, step_copy;
1077
1078 /* Saved contents of copy area. */
1079 gdb_byte *step_saved_copy;
1080};
1081
1082/* The list of states of processes involved in displaced stepping
1083 presently. */
1084static struct displaced_step_inferior_state *displaced_step_inferior_states;
1085
1086/* Get the displaced stepping state of process PID. */
1087
1088static struct displaced_step_inferior_state *
1089get_displaced_stepping_state (int pid)
1090{
1091 struct displaced_step_inferior_state *state;
1092
1093 for (state = displaced_step_inferior_states;
1094 state != NULL;
1095 state = state->next)
1096 if (state->pid == pid)
1097 return state;
1098
1099 return NULL;
1100}
1101
1102/* Add a new displaced stepping state for process PID to the displaced
1103 stepping state list, or return a pointer to an already existing
1104 entry, if it already exists. Never returns NULL. */
1105
1106static struct displaced_step_inferior_state *
1107add_displaced_stepping_state (int pid)
1108{
1109 struct displaced_step_inferior_state *state;
1110
1111 for (state = displaced_step_inferior_states;
1112 state != NULL;
1113 state = state->next)
1114 if (state->pid == pid)
1115 return state;
237fc4c9 1116
fc1cf338
PA
1117 state = xcalloc (1, sizeof (*state));
1118 state->pid = pid;
1119 state->next = displaced_step_inferior_states;
1120 displaced_step_inferior_states = state;
237fc4c9 1121
fc1cf338
PA
1122 return state;
1123}
1124
a42244db
YQ
1125/* If inferior is in displaced stepping, and ADDR equals to starting address
1126 of copy area, return corresponding displaced_step_closure. Otherwise,
1127 return NULL. */
1128
1129struct displaced_step_closure*
1130get_displaced_step_closure_by_addr (CORE_ADDR addr)
1131{
1132 struct displaced_step_inferior_state *displaced
1133 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1134
1135 /* If checking the mode of displaced instruction in copy area. */
1136 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1137 && (displaced->step_copy == addr))
1138 return displaced->step_closure;
1139
1140 return NULL;
1141}
1142
fc1cf338 1143/* Remove the displaced stepping state of process PID. */
237fc4c9 1144
fc1cf338
PA
1145static void
1146remove_displaced_stepping_state (int pid)
1147{
1148 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1149
fc1cf338
PA
1150 gdb_assert (pid != 0);
1151
1152 it = displaced_step_inferior_states;
1153 prev_next_p = &displaced_step_inferior_states;
1154 while (it)
1155 {
1156 if (it->pid == pid)
1157 {
1158 *prev_next_p = it->next;
1159 xfree (it);
1160 return;
1161 }
1162
1163 prev_next_p = &it->next;
1164 it = *prev_next_p;
1165 }
1166}
1167
1168static void
1169infrun_inferior_exit (struct inferior *inf)
1170{
1171 remove_displaced_stepping_state (inf->pid);
1172}
237fc4c9 1173
fff08868
HZ
1174/* Enum strings for "set|show displaced-stepping". */
1175
1176static const char can_use_displaced_stepping_auto[] = "auto";
1177static const char can_use_displaced_stepping_on[] = "on";
1178static const char can_use_displaced_stepping_off[] = "off";
1179static const char *can_use_displaced_stepping_enum[] =
1180{
1181 can_use_displaced_stepping_auto,
1182 can_use_displaced_stepping_on,
1183 can_use_displaced_stepping_off,
1184 NULL,
1185};
1186
1187/* If ON, and the architecture supports it, GDB will use displaced
1188 stepping to step over breakpoints. If OFF, or if the architecture
1189 doesn't support it, GDB will instead use the traditional
1190 hold-and-step approach. If AUTO (which is the default), GDB will
1191 decide which technique to use to step over breakpoints depending on
1192 which of all-stop or non-stop mode is active --- displaced stepping
1193 in non-stop mode; hold-and-step in all-stop mode. */
1194
1195static const char *can_use_displaced_stepping =
1196 can_use_displaced_stepping_auto;
1197
237fc4c9
PA
1198static void
1199show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1200 struct cmd_list_element *c,
1201 const char *value)
1202{
fff08868 1203 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
3e43a32a
MS
1204 fprintf_filtered (file,
1205 _("Debugger's willingness to use displaced stepping "
1206 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1207 value, non_stop ? "on" : "off");
1208 else
3e43a32a
MS
1209 fprintf_filtered (file,
1210 _("Debugger's willingness to use displaced stepping "
1211 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1212}
1213
fff08868
HZ
1214/* Return non-zero if displaced stepping can/should be used to step
1215 over breakpoints. */
1216
237fc4c9
PA
1217static int
1218use_displaced_stepping (struct gdbarch *gdbarch)
1219{
fff08868
HZ
1220 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1221 && non_stop)
1222 || can_use_displaced_stepping == can_use_displaced_stepping_on)
96429cc8
HZ
1223 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1224 && !RECORD_IS_USED);
237fc4c9
PA
1225}
1226
1227/* Clean out any stray displaced stepping state. */
1228static void
fc1cf338 1229displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1230{
1231 /* Indicate that there is no cleanup pending. */
fc1cf338 1232 displaced->step_ptid = null_ptid;
237fc4c9 1233
fc1cf338 1234 if (displaced->step_closure)
237fc4c9 1235 {
fc1cf338
PA
1236 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1237 displaced->step_closure);
1238 displaced->step_closure = NULL;
237fc4c9
PA
1239 }
1240}
1241
1242static void
fc1cf338 1243displaced_step_clear_cleanup (void *arg)
237fc4c9 1244{
fc1cf338
PA
1245 struct displaced_step_inferior_state *state = arg;
1246
1247 displaced_step_clear (state);
237fc4c9
PA
1248}
1249
1250/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1251void
1252displaced_step_dump_bytes (struct ui_file *file,
1253 const gdb_byte *buf,
1254 size_t len)
1255{
1256 int i;
1257
1258 for (i = 0; i < len; i++)
1259 fprintf_unfiltered (file, "%02x ", buf[i]);
1260 fputs_unfiltered ("\n", file);
1261}
1262
1263/* Prepare to single-step, using displaced stepping.
1264
1265 Note that we cannot use displaced stepping when we have a signal to
1266 deliver. If we have a signal to deliver and an instruction to step
1267 over, then after the step, there will be no indication from the
1268 target whether the thread entered a signal handler or ignored the
1269 signal and stepped over the instruction successfully --- both cases
1270 result in a simple SIGTRAP. In the first case we mustn't do a
1271 fixup, and in the second case we must --- but we can't tell which.
1272 Comments in the code for 'random signals' in handle_inferior_event
1273 explain how we handle this case instead.
1274
1275 Returns 1 if preparing was successful -- this thread is going to be
1276 stepped now; or 0 if displaced stepping this thread got queued. */
1277static int
1278displaced_step_prepare (ptid_t ptid)
1279{
ad53cd71 1280 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
1281 struct regcache *regcache = get_thread_regcache (ptid);
1282 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1283 CORE_ADDR original, copy;
1284 ULONGEST len;
1285 struct displaced_step_closure *closure;
fc1cf338 1286 struct displaced_step_inferior_state *displaced;
237fc4c9
PA
1287
1288 /* We should never reach this function if the architecture does not
1289 support displaced stepping. */
1290 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1291
fc1cf338
PA
1292 /* We have to displaced step one thread at a time, as we only have
1293 access to a single scratch space per inferior. */
237fc4c9 1294
fc1cf338
PA
1295 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1296
1297 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1298 {
1299 /* Already waiting for a displaced step to finish. Defer this
1300 request and place in queue. */
1301 struct displaced_step_request *req, *new_req;
1302
1303 if (debug_displaced)
1304 fprintf_unfiltered (gdb_stdlog,
1305 "displaced: defering step of %s\n",
1306 target_pid_to_str (ptid));
1307
1308 new_req = xmalloc (sizeof (*new_req));
1309 new_req->ptid = ptid;
1310 new_req->next = NULL;
1311
fc1cf338 1312 if (displaced->step_request_queue)
237fc4c9 1313 {
fc1cf338 1314 for (req = displaced->step_request_queue;
237fc4c9
PA
1315 req && req->next;
1316 req = req->next)
1317 ;
1318 req->next = new_req;
1319 }
1320 else
fc1cf338 1321 displaced->step_request_queue = new_req;
237fc4c9
PA
1322
1323 return 0;
1324 }
1325 else
1326 {
1327 if (debug_displaced)
1328 fprintf_unfiltered (gdb_stdlog,
1329 "displaced: stepping %s now\n",
1330 target_pid_to_str (ptid));
1331 }
1332
fc1cf338 1333 displaced_step_clear (displaced);
237fc4c9 1334
ad53cd71
PA
1335 old_cleanups = save_inferior_ptid ();
1336 inferior_ptid = ptid;
1337
515630c5 1338 original = regcache_read_pc (regcache);
237fc4c9
PA
1339
1340 copy = gdbarch_displaced_step_location (gdbarch);
1341 len = gdbarch_max_insn_length (gdbarch);
1342
1343 /* Save the original contents of the copy area. */
fc1cf338 1344 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1345 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338
PA
1346 &displaced->step_saved_copy);
1347 read_memory (copy, displaced->step_saved_copy, len);
237fc4c9
PA
1348 if (debug_displaced)
1349 {
5af949e3
UW
1350 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1351 paddress (gdbarch, copy));
fc1cf338
PA
1352 displaced_step_dump_bytes (gdb_stdlog,
1353 displaced->step_saved_copy,
1354 len);
237fc4c9
PA
1355 };
1356
1357 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1358 original, copy, regcache);
237fc4c9
PA
1359
1360 /* We don't support the fully-simulated case at present. */
1361 gdb_assert (closure);
1362
9f5a595d
UW
1363 /* Save the information we need to fix things up if the step
1364 succeeds. */
fc1cf338
PA
1365 displaced->step_ptid = ptid;
1366 displaced->step_gdbarch = gdbarch;
1367 displaced->step_closure = closure;
1368 displaced->step_original = original;
1369 displaced->step_copy = copy;
9f5a595d 1370
fc1cf338 1371 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1372
1373 /* Resume execution at the copy. */
515630c5 1374 regcache_write_pc (regcache, copy);
237fc4c9 1375
ad53cd71
PA
1376 discard_cleanups (ignore_cleanups);
1377
1378 do_cleanups (old_cleanups);
237fc4c9
PA
1379
1380 if (debug_displaced)
5af949e3
UW
1381 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1382 paddress (gdbarch, copy));
237fc4c9 1383
237fc4c9
PA
1384 return 1;
1385}
1386
237fc4c9 1387static void
3e43a32a
MS
1388write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1389 const gdb_byte *myaddr, int len)
237fc4c9
PA
1390{
1391 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1392
237fc4c9
PA
1393 inferior_ptid = ptid;
1394 write_memory (memaddr, myaddr, len);
1395 do_cleanups (ptid_cleanup);
1396}
1397
e2d96639
YQ
1398/* Restore the contents of the copy area for thread PTID. */
1399
1400static void
1401displaced_step_restore (struct displaced_step_inferior_state *displaced,
1402 ptid_t ptid)
1403{
1404 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1405
1406 write_memory_ptid (ptid, displaced->step_copy,
1407 displaced->step_saved_copy, len);
1408 if (debug_displaced)
1409 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1410 target_pid_to_str (ptid),
1411 paddress (displaced->step_gdbarch,
1412 displaced->step_copy));
1413}
1414
237fc4c9
PA
1415static void
1416displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1417{
1418 struct cleanup *old_cleanups;
fc1cf338
PA
1419 struct displaced_step_inferior_state *displaced
1420 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1421
1422 /* Was any thread of this process doing a displaced step? */
1423 if (displaced == NULL)
1424 return;
237fc4c9
PA
1425
1426 /* Was this event for the pid we displaced? */
fc1cf338
PA
1427 if (ptid_equal (displaced->step_ptid, null_ptid)
1428 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1429 return;
1430
fc1cf338 1431 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1432
e2d96639 1433 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9
PA
1434
1435 /* Did the instruction complete successfully? */
1436 if (signal == TARGET_SIGNAL_TRAP)
1437 {
1438 /* Fix up the resulting state. */
fc1cf338
PA
1439 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1440 displaced->step_closure,
1441 displaced->step_original,
1442 displaced->step_copy,
1443 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1444 }
1445 else
1446 {
1447 /* Since the instruction didn't complete, all we can do is
1448 relocate the PC. */
515630c5
UW
1449 struct regcache *regcache = get_thread_regcache (event_ptid);
1450 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1451
fc1cf338 1452 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1453 regcache_write_pc (regcache, pc);
237fc4c9
PA
1454 }
1455
1456 do_cleanups (old_cleanups);
1457
fc1cf338 1458 displaced->step_ptid = null_ptid;
1c5cfe86 1459
237fc4c9 1460 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1461 one now. Leave the state object around, since we're likely to
1462 need it again soon. */
1463 while (displaced->step_request_queue)
237fc4c9
PA
1464 {
1465 struct displaced_step_request *head;
1466 ptid_t ptid;
5af949e3 1467 struct regcache *regcache;
929dfd4f 1468 struct gdbarch *gdbarch;
1c5cfe86 1469 CORE_ADDR actual_pc;
6c95b8df 1470 struct address_space *aspace;
237fc4c9 1471
fc1cf338 1472 head = displaced->step_request_queue;
237fc4c9 1473 ptid = head->ptid;
fc1cf338 1474 displaced->step_request_queue = head->next;
237fc4c9
PA
1475 xfree (head);
1476
ad53cd71
PA
1477 context_switch (ptid);
1478
5af949e3
UW
1479 regcache = get_thread_regcache (ptid);
1480 actual_pc = regcache_read_pc (regcache);
6c95b8df 1481 aspace = get_regcache_aspace (regcache);
1c5cfe86 1482
6c95b8df 1483 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1484 {
1c5cfe86
PA
1485 if (debug_displaced)
1486 fprintf_unfiltered (gdb_stdlog,
1487 "displaced: stepping queued %s now\n",
1488 target_pid_to_str (ptid));
1489
1490 displaced_step_prepare (ptid);
1491
929dfd4f
JB
1492 gdbarch = get_regcache_arch (regcache);
1493
1c5cfe86
PA
1494 if (debug_displaced)
1495 {
929dfd4f 1496 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1497 gdb_byte buf[4];
1498
5af949e3
UW
1499 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1500 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1501 read_memory (actual_pc, buf, sizeof (buf));
1502 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1503 }
1504
fc1cf338
PA
1505 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1506 displaced->step_closure))
929dfd4f 1507 target_resume (ptid, 1, TARGET_SIGNAL_0);
99e40580
UW
1508 else
1509 target_resume (ptid, 0, TARGET_SIGNAL_0);
1c5cfe86
PA
1510
1511 /* Done, we're stepping a thread. */
1512 break;
ad53cd71 1513 }
1c5cfe86
PA
1514 else
1515 {
1516 int step;
1517 struct thread_info *tp = inferior_thread ();
1518
1519 /* The breakpoint we were sitting under has since been
1520 removed. */
16c381f0 1521 tp->control.trap_expected = 0;
1c5cfe86
PA
1522
1523 /* Go back to what we were trying to do. */
1524 step = currently_stepping (tp);
ad53cd71 1525
1c5cfe86 1526 if (debug_displaced)
3e43a32a
MS
1527 fprintf_unfiltered (gdb_stdlog,
1528 "breakpoint is gone %s: step(%d)\n",
1c5cfe86
PA
1529 target_pid_to_str (tp->ptid), step);
1530
1531 target_resume (ptid, step, TARGET_SIGNAL_0);
16c381f0 1532 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1c5cfe86
PA
1533
1534 /* This request was discarded. See if there's any other
1535 thread waiting for its turn. */
1536 }
237fc4c9
PA
1537 }
1538}
1539
5231c1fd
PA
1540/* Update global variables holding ptids to hold NEW_PTID if they were
1541 holding OLD_PTID. */
1542static void
1543infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1544{
1545 struct displaced_step_request *it;
fc1cf338 1546 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1547
1548 if (ptid_equal (inferior_ptid, old_ptid))
1549 inferior_ptid = new_ptid;
1550
1551 if (ptid_equal (singlestep_ptid, old_ptid))
1552 singlestep_ptid = new_ptid;
1553
5231c1fd
PA
1554 if (ptid_equal (deferred_step_ptid, old_ptid))
1555 deferred_step_ptid = new_ptid;
1556
fc1cf338
PA
1557 for (displaced = displaced_step_inferior_states;
1558 displaced;
1559 displaced = displaced->next)
1560 {
1561 if (ptid_equal (displaced->step_ptid, old_ptid))
1562 displaced->step_ptid = new_ptid;
1563
1564 for (it = displaced->step_request_queue; it; it = it->next)
1565 if (ptid_equal (it->ptid, old_ptid))
1566 it->ptid = new_ptid;
1567 }
5231c1fd
PA
1568}
1569
237fc4c9
PA
1570\f
1571/* Resuming. */
c906108c
SS
1572
1573/* Things to clean up if we QUIT out of resume (). */
c906108c 1574static void
74b7792f 1575resume_cleanups (void *ignore)
c906108c
SS
1576{
1577 normal_stop ();
1578}
1579
53904c9e
AC
1580static const char schedlock_off[] = "off";
1581static const char schedlock_on[] = "on";
1582static const char schedlock_step[] = "step";
488f131b 1583static const char *scheduler_enums[] = {
ef346e04
AC
1584 schedlock_off,
1585 schedlock_on,
1586 schedlock_step,
1587 NULL
1588};
920d2a44
AC
1589static const char *scheduler_mode = schedlock_off;
1590static void
1591show_scheduler_mode (struct ui_file *file, int from_tty,
1592 struct cmd_list_element *c, const char *value)
1593{
3e43a32a
MS
1594 fprintf_filtered (file,
1595 _("Mode for locking scheduler "
1596 "during execution is \"%s\".\n"),
920d2a44
AC
1597 value);
1598}
c906108c
SS
1599
1600static void
96baa820 1601set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1602{
eefe576e
AC
1603 if (!target_can_lock_scheduler)
1604 {
1605 scheduler_mode = schedlock_off;
1606 error (_("Target '%s' cannot support this command."), target_shortname);
1607 }
c906108c
SS
1608}
1609
d4db2f36
PA
1610/* True if execution commands resume all threads of all processes by
1611 default; otherwise, resume only threads of the current inferior
1612 process. */
1613int sched_multi = 0;
1614
2facfe5c
DD
1615/* Try to setup for software single stepping over the specified location.
1616 Return 1 if target_resume() should use hardware single step.
1617
1618 GDBARCH the current gdbarch.
1619 PC the location to step over. */
1620
1621static int
1622maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1623{
1624 int hw_step = 1;
1625
f02253f1
HZ
1626 if (execution_direction == EXEC_FORWARD
1627 && gdbarch_software_single_step_p (gdbarch)
99e40580 1628 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1629 {
99e40580
UW
1630 hw_step = 0;
1631 /* Do not pull these breakpoints until after a `wait' in
1777feb0 1632 `wait_for_inferior'. */
99e40580
UW
1633 singlestep_breakpoints_inserted_p = 1;
1634 singlestep_ptid = inferior_ptid;
1635 singlestep_pc = pc;
2facfe5c
DD
1636 }
1637 return hw_step;
1638}
c906108c 1639
09cee04b
PA
1640/* Return a ptid representing the set of threads that we will proceed,
1641 in the perspective of the user/frontend. We may actually resume
1642 fewer threads at first, e.g., if a thread is stopped at a
b136cd05
PA
1643 breakpoint that needs stepping-off, but that should not be visible
1644 to the user/frontend, and neither should the frontend/user be
1645 allowed to proceed any of the threads that happen to be stopped for
09cee04b
PA
1646 internal run control handling, if a previous command wanted them
1647 resumed. */
1648
1649ptid_t
1650user_visible_resume_ptid (int step)
1651{
1652 /* By default, resume all threads of all processes. */
1653 ptid_t resume_ptid = RESUME_ALL;
1654
1655 /* Maybe resume only all threads of the current process. */
1656 if (!sched_multi && target_supports_multi_process ())
1657 {
1658 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1659 }
1660
1661 /* Maybe resume a single thread after all. */
1662 if (non_stop)
1663 {
1664 /* With non-stop mode on, threads are always handled
1665 individually. */
1666 resume_ptid = inferior_ptid;
1667 }
1668 else if ((scheduler_mode == schedlock_on)
1669 || (scheduler_mode == schedlock_step
1670 && (step || singlestep_breakpoints_inserted_p)))
1671 {
1672 /* User-settable 'scheduler' mode requires solo thread resume. */
1673 resume_ptid = inferior_ptid;
1674 }
1675
1676 return resume_ptid;
1677}
1678
c906108c
SS
1679/* Resume the inferior, but allow a QUIT. This is useful if the user
1680 wants to interrupt some lengthy single-stepping operation
1681 (for child processes, the SIGINT goes to the inferior, and so
1682 we get a SIGINT random_signal, but for remote debugging and perhaps
1683 other targets, that's not true).
1684
1685 STEP nonzero if we should step (zero to continue instead).
1686 SIG is the signal to give the inferior (zero for none). */
1687void
96baa820 1688resume (int step, enum target_signal sig)
c906108c
SS
1689{
1690 int should_resume = 1;
74b7792f 1691 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1692 struct regcache *regcache = get_current_regcache ();
1693 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1694 struct thread_info *tp = inferior_thread ();
515630c5 1695 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1696 struct address_space *aspace = get_regcache_aspace (regcache);
c7e8a53c 1697
c906108c
SS
1698 QUIT;
1699
74609e71
YQ
1700 if (current_inferior ()->waiting_for_vfork_done)
1701 {
48f9886d
PA
1702 /* Don't try to single-step a vfork parent that is waiting for
1703 the child to get out of the shared memory region (by exec'ing
1704 or exiting). This is particularly important on software
1705 single-step archs, as the child process would trip on the
1706 software single step breakpoint inserted for the parent
1707 process. Since the parent will not actually execute any
1708 instruction until the child is out of the shared region (such
1709 are vfork's semantics), it is safe to simply continue it.
1710 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1711 the parent, and tell it to `keep_going', which automatically
1712 re-sets it stepping. */
74609e71
YQ
1713 if (debug_infrun)
1714 fprintf_unfiltered (gdb_stdlog,
1715 "infrun: resume : clear step\n");
1716 step = 0;
1717 }
1718
527159b7 1719 if (debug_infrun)
237fc4c9
PA
1720 fprintf_unfiltered (gdb_stdlog,
1721 "infrun: resume (step=%d, signal=%d), "
0d9a9a5f
PA
1722 "trap_expected=%d, current thread [%s] at %s\n",
1723 step, sig, tp->control.trap_expected,
1724 target_pid_to_str (inferior_ptid),
1725 paddress (gdbarch, pc));
c906108c 1726
c2c6d25f
JM
1727 /* Normally, by the time we reach `resume', the breakpoints are either
1728 removed or inserted, as appropriate. The exception is if we're sitting
1729 at a permanent breakpoint; we need to step over it, but permanent
1730 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1731 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1732 {
515630c5
UW
1733 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1734 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5 1735 else
ac74f770
MS
1736 error (_("\
1737The program is stopped at a permanent breakpoint, but GDB does not know\n\
1738how to step past a permanent breakpoint on this architecture. Try using\n\
1739a command like `return' or `jump' to continue execution."));
6d350bb5 1740 }
c2c6d25f 1741
237fc4c9
PA
1742 /* If enabled, step over breakpoints by executing a copy of the
1743 instruction at a different address.
1744
1745 We can't use displaced stepping when we have a signal to deliver;
1746 the comments for displaced_step_prepare explain why. The
1747 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
1748 signals' explain what we do instead.
1749
1750 We can't use displaced stepping when we are waiting for vfork_done
1751 event, displaced stepping breaks the vfork child similarly as single
1752 step software breakpoint. */
515630c5 1753 if (use_displaced_stepping (gdbarch)
16c381f0 1754 && (tp->control.trap_expected
929dfd4f 1755 || (step && gdbarch_software_single_step_p (gdbarch)))
74609e71
YQ
1756 && sig == TARGET_SIGNAL_0
1757 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 1758 {
fc1cf338
PA
1759 struct displaced_step_inferior_state *displaced;
1760
237fc4c9 1761 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1762 {
1763 /* Got placed in displaced stepping queue. Will be resumed
1764 later when all the currently queued displaced stepping
7f7efbd9
VP
1765 requests finish. The thread is not executing at this point,
1766 and the call to set_executing will be made later. But we
1767 need to call set_running here, since from frontend point of view,
1768 the thread is running. */
1769 set_running (inferior_ptid, 1);
d56b7306
VP
1770 discard_cleanups (old_cleanups);
1771 return;
1772 }
99e40580 1773
fc1cf338
PA
1774 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1775 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1776 displaced->step_closure);
237fc4c9
PA
1777 }
1778
2facfe5c 1779 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1780 else if (step)
2facfe5c 1781 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1782
30852783
UW
1783 /* Currently, our software single-step implementation leads to different
1784 results than hardware single-stepping in one situation: when stepping
1785 into delivering a signal which has an associated signal handler,
1786 hardware single-step will stop at the first instruction of the handler,
1787 while software single-step will simply skip execution of the handler.
1788
1789 For now, this difference in behavior is accepted since there is no
1790 easy way to actually implement single-stepping into a signal handler
1791 without kernel support.
1792
1793 However, there is one scenario where this difference leads to follow-on
1794 problems: if we're stepping off a breakpoint by removing all breakpoints
1795 and then single-stepping. In this case, the software single-step
1796 behavior means that even if there is a *breakpoint* in the signal
1797 handler, GDB still would not stop.
1798
1799 Fortunately, we can at least fix this particular issue. We detect
1800 here the case where we are about to deliver a signal while software
1801 single-stepping with breakpoints removed. In this situation, we
1802 revert the decisions to remove all breakpoints and insert single-
1803 step breakpoints, and instead we install a step-resume breakpoint
1804 at the current address, deliver the signal without stepping, and
1805 once we arrive back at the step-resume breakpoint, actually step
1806 over the breakpoint we originally wanted to step over. */
1807 if (singlestep_breakpoints_inserted_p
1808 && tp->control.trap_expected && sig != TARGET_SIGNAL_0)
1809 {
1810 /* If we have nested signals or a pending signal is delivered
1811 immediately after a handler returns, might might already have
1812 a step-resume breakpoint set on the earlier handler. We cannot
1813 set another step-resume breakpoint; just continue on until the
1814 original breakpoint is hit. */
1815 if (tp->control.step_resume_breakpoint == NULL)
1816 {
2c03e5be 1817 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
1818 tp->step_after_step_resume_breakpoint = 1;
1819 }
1820
1821 remove_single_step_breakpoints ();
1822 singlestep_breakpoints_inserted_p = 0;
1823
1824 insert_breakpoints ();
1825 tp->control.trap_expected = 0;
1826 }
1827
c906108c
SS
1828 if (should_resume)
1829 {
39f77062 1830 ptid_t resume_ptid;
dfcd3bfb 1831
cd76b0b7
VP
1832 /* If STEP is set, it's a request to use hardware stepping
1833 facilities. But in that case, we should never
1834 use singlestep breakpoint. */
1835 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1836
d4db2f36
PA
1837 /* Decide the set of threads to ask the target to resume. Start
1838 by assuming everything will be resumed, than narrow the set
1839 by applying increasingly restricting conditions. */
09cee04b 1840 resume_ptid = user_visible_resume_ptid (step);
d4db2f36
PA
1841
1842 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1843 if (singlestep_breakpoints_inserted_p
1844 && stepping_past_singlestep_breakpoint)
c906108c 1845 {
cd76b0b7
VP
1846 /* The situation here is as follows. In thread T1 we wanted to
1847 single-step. Lacking hardware single-stepping we've
1848 set breakpoint at the PC of the next instruction -- call it
1849 P. After resuming, we've hit that breakpoint in thread T2.
1850 Now we've removed original breakpoint, inserted breakpoint
1851 at P+1, and try to step to advance T2 past breakpoint.
1852 We need to step only T2, as if T1 is allowed to freely run,
1853 it can run past P, and if other threads are allowed to run,
1854 they can hit breakpoint at P+1, and nested hits of single-step
1855 breakpoints is not something we'd want -- that's complicated
1856 to support, and has no value. */
1857 resume_ptid = inferior_ptid;
1858 }
d4db2f36 1859 else if ((step || singlestep_breakpoints_inserted_p)
16c381f0 1860 && tp->control.trap_expected)
cd76b0b7 1861 {
74960c60
VP
1862 /* We're allowing a thread to run past a breakpoint it has
1863 hit, by single-stepping the thread with the breakpoint
1864 removed. In which case, we need to single-step only this
1865 thread, and keep others stopped, as they can miss this
1866 breakpoint if allowed to run.
1867
1868 The current code actually removes all breakpoints when
1869 doing this, not just the one being stepped over, so if we
1870 let other threads run, we can actually miss any
1871 breakpoint, not just the one at PC. */
ef5cf84e 1872 resume_ptid = inferior_ptid;
c906108c 1873 }
ef5cf84e 1874
515630c5 1875 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1876 {
1877 /* Most targets can step a breakpoint instruction, thus
1878 executing it normally. But if this one cannot, just
1879 continue and we will hit it anyway. */
6c95b8df 1880 if (step && breakpoint_inserted_here_p (aspace, pc))
c4ed33b9
AC
1881 step = 0;
1882 }
237fc4c9
PA
1883
1884 if (debug_displaced
515630c5 1885 && use_displaced_stepping (gdbarch)
16c381f0 1886 && tp->control.trap_expected)
237fc4c9 1887 {
515630c5 1888 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1889 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1890 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1891 gdb_byte buf[4];
1892
5af949e3
UW
1893 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1894 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1895 read_memory (actual_pc, buf, sizeof (buf));
1896 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1897 }
1898
e58b0e63
PA
1899 /* Install inferior's terminal modes. */
1900 target_terminal_inferior ();
1901
2020b7ab
PA
1902 /* Avoid confusing the next resume, if the next stop/resume
1903 happens to apply to another thread. */
16c381f0 1904 tp->suspend.stop_signal = TARGET_SIGNAL_0;
607cecd2 1905
2455069d
UW
1906 /* Advise target which signals may be handled silently. If we have
1907 removed breakpoints because we are stepping over one (which can
1908 happen only if we are not using displaced stepping), we need to
1909 receive all signals to avoid accidentally skipping a breakpoint
1910 during execution of a signal handler. */
1911 if ((step || singlestep_breakpoints_inserted_p)
1912 && tp->control.trap_expected
1913 && !use_displaced_stepping (gdbarch))
1914 target_pass_signals (0, NULL);
1915 else
1916 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
1917
607cecd2 1918 target_resume (resume_ptid, step, sig);
c906108c
SS
1919 }
1920
1921 discard_cleanups (old_cleanups);
1922}
1923\f
237fc4c9 1924/* Proceeding. */
c906108c
SS
1925
1926/* Clear out all variables saying what to do when inferior is continued.
1927 First do this, then set the ones you want, then call `proceed'. */
1928
a7212384
UW
1929static void
1930clear_proceed_status_thread (struct thread_info *tp)
c906108c 1931{
a7212384
UW
1932 if (debug_infrun)
1933 fprintf_unfiltered (gdb_stdlog,
1934 "infrun: clear_proceed_status_thread (%s)\n",
1935 target_pid_to_str (tp->ptid));
d6b48e9c 1936
16c381f0
JK
1937 tp->control.trap_expected = 0;
1938 tp->control.step_range_start = 0;
1939 tp->control.step_range_end = 0;
1940 tp->control.step_frame_id = null_frame_id;
1941 tp->control.step_stack_frame_id = null_frame_id;
1942 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 1943 tp->stop_requested = 0;
4e1c45ea 1944
16c381f0 1945 tp->control.stop_step = 0;
32400beb 1946
16c381f0 1947 tp->control.proceed_to_finish = 0;
414c69f7 1948
a7212384 1949 /* Discard any remaining commands or status from previous stop. */
16c381f0 1950 bpstat_clear (&tp->control.stop_bpstat);
a7212384 1951}
32400beb 1952
a7212384
UW
1953static int
1954clear_proceed_status_callback (struct thread_info *tp, void *data)
1955{
1956 if (is_exited (tp->ptid))
1957 return 0;
d6b48e9c 1958
a7212384
UW
1959 clear_proceed_status_thread (tp);
1960 return 0;
1961}
1962
1963void
1964clear_proceed_status (void)
1965{
6c95b8df
PA
1966 if (!non_stop)
1967 {
1968 /* In all-stop mode, delete the per-thread status of all
1969 threads, even if inferior_ptid is null_ptid, there may be
1970 threads on the list. E.g., we may be launching a new
1971 process, while selecting the executable. */
1972 iterate_over_threads (clear_proceed_status_callback, NULL);
1973 }
1974
a7212384
UW
1975 if (!ptid_equal (inferior_ptid, null_ptid))
1976 {
1977 struct inferior *inferior;
1978
1979 if (non_stop)
1980 {
6c95b8df
PA
1981 /* If in non-stop mode, only delete the per-thread status of
1982 the current thread. */
a7212384
UW
1983 clear_proceed_status_thread (inferior_thread ());
1984 }
6c95b8df 1985
d6b48e9c 1986 inferior = current_inferior ();
16c381f0 1987 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
1988 }
1989
c906108c 1990 stop_after_trap = 0;
f3b1572e
PA
1991
1992 observer_notify_about_to_proceed ();
c906108c 1993
d5c31457
UW
1994 if (stop_registers)
1995 {
1996 regcache_xfree (stop_registers);
1997 stop_registers = NULL;
1998 }
c906108c
SS
1999}
2000
5a437975
DE
2001/* Check the current thread against the thread that reported the most recent
2002 event. If a step-over is required return TRUE and set the current thread
2003 to the old thread. Otherwise return FALSE.
2004
1777feb0 2005 This should be suitable for any targets that support threads. */
ea67f13b
DJ
2006
2007static int
6a6b96b9 2008prepare_to_proceed (int step)
ea67f13b
DJ
2009{
2010 ptid_t wait_ptid;
2011 struct target_waitstatus wait_status;
5a437975
DE
2012 int schedlock_enabled;
2013
2014 /* With non-stop mode on, threads are always handled individually. */
2015 gdb_assert (! non_stop);
ea67f13b
DJ
2016
2017 /* Get the last target status returned by target_wait(). */
2018 get_last_target_status (&wait_ptid, &wait_status);
2019
6a6b96b9 2020 /* Make sure we were stopped at a breakpoint. */
ea67f13b 2021 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2b009048
DJ
2022 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
2023 && wait_status.value.sig != TARGET_SIGNAL_ILL
2024 && wait_status.value.sig != TARGET_SIGNAL_SEGV
2025 && wait_status.value.sig != TARGET_SIGNAL_EMT))
ea67f13b
DJ
2026 {
2027 return 0;
2028 }
2029
5a437975
DE
2030 schedlock_enabled = (scheduler_mode == schedlock_on
2031 || (scheduler_mode == schedlock_step
2032 && step));
2033
d4db2f36
PA
2034 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2035 if (schedlock_enabled)
2036 return 0;
2037
2038 /* Don't switch over if we're about to resume some other process
2039 other than WAIT_PTID's, and schedule-multiple is off. */
2040 if (!sched_multi
2041 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2042 return 0;
2043
6a6b96b9 2044 /* Switched over from WAIT_PID. */
ea67f13b 2045 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 2046 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 2047 {
515630c5
UW
2048 struct regcache *regcache = get_thread_regcache (wait_ptid);
2049
6c95b8df
PA
2050 if (breakpoint_here_p (get_regcache_aspace (regcache),
2051 regcache_read_pc (regcache)))
ea67f13b 2052 {
515630c5
UW
2053 /* If stepping, remember current thread to switch back to. */
2054 if (step)
2055 deferred_step_ptid = inferior_ptid;
ea67f13b 2056
515630c5
UW
2057 /* Switch back to WAIT_PID thread. */
2058 switch_to_thread (wait_ptid);
6a6b96b9 2059
0d9a9a5f
PA
2060 if (debug_infrun)
2061 fprintf_unfiltered (gdb_stdlog,
2062 "infrun: prepare_to_proceed (step=%d), "
2063 "switched to [%s]\n",
2064 step, target_pid_to_str (inferior_ptid));
2065
515630c5
UW
2066 /* We return 1 to indicate that there is a breakpoint here,
2067 so we need to step over it before continuing to avoid
1777feb0 2068 hitting it straight away. */
515630c5
UW
2069 return 1;
2070 }
ea67f13b
DJ
2071 }
2072
2073 return 0;
ea67f13b 2074}
e4846b08 2075
c906108c
SS
2076/* Basic routine for continuing the program in various fashions.
2077
2078 ADDR is the address to resume at, or -1 for resume where stopped.
2079 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2080 or -1 for act according to how it stopped.
c906108c 2081 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2082 -1 means return after that and print nothing.
2083 You should probably set various step_... variables
2084 before calling here, if you are stepping.
c906108c
SS
2085
2086 You should call clear_proceed_status before calling proceed. */
2087
2088void
96baa820 2089proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 2090{
e58b0e63
PA
2091 struct regcache *regcache;
2092 struct gdbarch *gdbarch;
4e1c45ea 2093 struct thread_info *tp;
e58b0e63 2094 CORE_ADDR pc;
6c95b8df 2095 struct address_space *aspace;
c906108c
SS
2096 int oneproc = 0;
2097
e58b0e63
PA
2098 /* If we're stopped at a fork/vfork, follow the branch set by the
2099 "set follow-fork-mode" command; otherwise, we'll just proceed
2100 resuming the current thread. */
2101 if (!follow_fork ())
2102 {
2103 /* The target for some reason decided not to resume. */
2104 normal_stop ();
f148b27e
PA
2105 if (target_can_async_p ())
2106 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2107 return;
2108 }
2109
842951eb
PA
2110 /* We'll update this if & when we switch to a new thread. */
2111 previous_inferior_ptid = inferior_ptid;
2112
e58b0e63
PA
2113 regcache = get_current_regcache ();
2114 gdbarch = get_regcache_arch (regcache);
6c95b8df 2115 aspace = get_regcache_aspace (regcache);
e58b0e63
PA
2116 pc = regcache_read_pc (regcache);
2117
c906108c 2118 if (step > 0)
515630c5 2119 step_start_function = find_pc_function (pc);
c906108c
SS
2120 if (step < 0)
2121 stop_after_trap = 1;
2122
2acceee2 2123 if (addr == (CORE_ADDR) -1)
c906108c 2124 {
6c95b8df 2125 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 2126 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2127 /* There is a breakpoint at the address we will resume at,
2128 step one instruction before inserting breakpoints so that
2129 we do not stop right away (and report a second hit at this
b2175913
MS
2130 breakpoint).
2131
2132 Note, we don't do this in reverse, because we won't
2133 actually be executing the breakpoint insn anyway.
2134 We'll be (un-)executing the previous instruction. */
2135
c906108c 2136 oneproc = 1;
515630c5
UW
2137 else if (gdbarch_single_step_through_delay_p (gdbarch)
2138 && gdbarch_single_step_through_delay (gdbarch,
2139 get_current_frame ()))
3352ef37
AC
2140 /* We stepped onto an instruction that needs to be stepped
2141 again before re-inserting the breakpoint, do so. */
c906108c
SS
2142 oneproc = 1;
2143 }
2144 else
2145 {
515630c5 2146 regcache_write_pc (regcache, addr);
c906108c
SS
2147 }
2148
527159b7 2149 if (debug_infrun)
8a9de0e4 2150 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
2151 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2152 paddress (gdbarch, addr), siggnal, step);
527159b7 2153
94cc34af
PA
2154 if (non_stop)
2155 /* In non-stop, each thread is handled individually. The context
2156 must already be set to the right thread here. */
2157 ;
2158 else
2159 {
2160 /* In a multi-threaded task we may select another thread and
2161 then continue or step.
c906108c 2162
94cc34af
PA
2163 But if the old thread was stopped at a breakpoint, it will
2164 immediately cause another breakpoint stop without any
2165 execution (i.e. it will report a breakpoint hit incorrectly).
2166 So we must step over it first.
c906108c 2167
94cc34af
PA
2168 prepare_to_proceed checks the current thread against the
2169 thread that reported the most recent event. If a step-over
2170 is required it returns TRUE and sets the current thread to
1777feb0 2171 the old thread. */
94cc34af
PA
2172 if (prepare_to_proceed (step))
2173 oneproc = 1;
2174 }
c906108c 2175
4e1c45ea
PA
2176 /* prepare_to_proceed may change the current thread. */
2177 tp = inferior_thread ();
2178
30852783
UW
2179 if (oneproc)
2180 {
2181 tp->control.trap_expected = 1;
2182 /* If displaced stepping is enabled, we can step over the
2183 breakpoint without hitting it, so leave all breakpoints
2184 inserted. Otherwise we need to disable all breakpoints, step
2185 one instruction, and then re-add them when that step is
2186 finished. */
2187 if (!use_displaced_stepping (gdbarch))
2188 remove_breakpoints ();
2189 }
2190
2191 /* We can insert breakpoints if we're not trying to step over one,
2192 or if we are stepping over one but we're using displaced stepping
2193 to do so. */
2194 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2195 insert_breakpoints ();
2196
2020b7ab
PA
2197 if (!non_stop)
2198 {
2199 /* Pass the last stop signal to the thread we're resuming,
2200 irrespective of whether the current thread is the thread that
2201 got the last event or not. This was historically GDB's
2202 behaviour before keeping a stop_signal per thread. */
2203
2204 struct thread_info *last_thread;
2205 ptid_t last_ptid;
2206 struct target_waitstatus last_status;
2207
2208 get_last_target_status (&last_ptid, &last_status);
2209 if (!ptid_equal (inferior_ptid, last_ptid)
2210 && !ptid_equal (last_ptid, null_ptid)
2211 && !ptid_equal (last_ptid, minus_one_ptid))
2212 {
e09875d4 2213 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
2214 if (last_thread)
2215 {
16c381f0
JK
2216 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2217 last_thread->suspend.stop_signal = TARGET_SIGNAL_0;
2020b7ab
PA
2218 }
2219 }
2220 }
2221
c906108c 2222 if (siggnal != TARGET_SIGNAL_DEFAULT)
16c381f0 2223 tp->suspend.stop_signal = siggnal;
c906108c
SS
2224 /* If this signal should not be seen by program,
2225 give it zero. Used for debugging signals. */
16c381f0
JK
2226 else if (!signal_program[tp->suspend.stop_signal])
2227 tp->suspend.stop_signal = TARGET_SIGNAL_0;
c906108c
SS
2228
2229 annotate_starting ();
2230
2231 /* Make sure that output from GDB appears before output from the
2232 inferior. */
2233 gdb_flush (gdb_stdout);
2234
e4846b08
JJ
2235 /* Refresh prev_pc value just prior to resuming. This used to be
2236 done in stop_stepping, however, setting prev_pc there did not handle
2237 scenarios such as inferior function calls or returning from
2238 a function via the return command. In those cases, the prev_pc
2239 value was not set properly for subsequent commands. The prev_pc value
2240 is used to initialize the starting line number in the ecs. With an
2241 invalid value, the gdb next command ends up stopping at the position
2242 represented by the next line table entry past our start position.
2243 On platforms that generate one line table entry per line, this
2244 is not a problem. However, on the ia64, the compiler generates
2245 extraneous line table entries that do not increase the line number.
2246 When we issue the gdb next command on the ia64 after an inferior call
2247 or a return command, we often end up a few instructions forward, still
2248 within the original line we started.
2249
d5cd6034
JB
2250 An attempt was made to refresh the prev_pc at the same time the
2251 execution_control_state is initialized (for instance, just before
2252 waiting for an inferior event). But this approach did not work
2253 because of platforms that use ptrace, where the pc register cannot
2254 be read unless the inferior is stopped. At that point, we are not
2255 guaranteed the inferior is stopped and so the regcache_read_pc() call
2256 can fail. Setting the prev_pc value here ensures the value is updated
2257 correctly when the inferior is stopped. */
4e1c45ea 2258 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2259
59f0d5d9 2260 /* Fill in with reasonable starting values. */
4e1c45ea 2261 init_thread_stepping_state (tp);
59f0d5d9 2262
59f0d5d9
PA
2263 /* Reset to normal state. */
2264 init_infwait_state ();
2265
c906108c 2266 /* Resume inferior. */
16c381f0 2267 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
c906108c
SS
2268
2269 /* Wait for it to stop (if not standalone)
2270 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2271 /* Do this only if we are not using the event loop, or if the target
1777feb0 2272 does not support asynchronous execution. */
362646f5 2273 if (!target_can_async_p ())
43ff13b4 2274 {
e4c8541f 2275 wait_for_inferior ();
43ff13b4
JM
2276 normal_stop ();
2277 }
c906108c 2278}
c906108c
SS
2279\f
2280
2281/* Start remote-debugging of a machine over a serial link. */
96baa820 2282
c906108c 2283void
8621d6a9 2284start_remote (int from_tty)
c906108c 2285{
d6b48e9c 2286 struct inferior *inferior;
d6b48e9c
PA
2287
2288 inferior = current_inferior ();
16c381f0 2289 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2290
1777feb0 2291 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2292 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2293 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2294 nothing is returned (instead of just blocking). Because of this,
2295 targets expecting an immediate response need to, internally, set
2296 things up so that the target_wait() is forced to eventually
1777feb0 2297 timeout. */
6426a772
JM
2298 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2299 differentiate to its caller what the state of the target is after
2300 the initial open has been performed. Here we're assuming that
2301 the target has stopped. It should be possible to eventually have
2302 target_open() return to the caller an indication that the target
2303 is currently running and GDB state should be set to the same as
1777feb0 2304 for an async run. */
e4c8541f 2305 wait_for_inferior ();
8621d6a9
DJ
2306
2307 /* Now that the inferior has stopped, do any bookkeeping like
2308 loading shared libraries. We want to do this before normal_stop,
2309 so that the displayed frame is up to date. */
2310 post_create_inferior (&current_target, from_tty);
2311
6426a772 2312 normal_stop ();
c906108c
SS
2313}
2314
2315/* Initialize static vars when a new inferior begins. */
2316
2317void
96baa820 2318init_wait_for_inferior (void)
c906108c
SS
2319{
2320 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2321
c906108c
SS
2322 breakpoint_init_inferior (inf_starting);
2323
c906108c 2324 clear_proceed_status ();
9f976b41
DJ
2325
2326 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 2327 deferred_step_ptid = null_ptid;
ca005067
DJ
2328
2329 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2330
842951eb 2331 previous_inferior_ptid = inferior_ptid;
0d1e5fa7
PA
2332 init_infwait_state ();
2333
edb3359d
DJ
2334 /* Discard any skipped inlined frames. */
2335 clear_inline_frame_state (minus_one_ptid);
c906108c 2336}
237fc4c9 2337
c906108c 2338\f
b83266a0
SS
2339/* This enum encodes possible reasons for doing a target_wait, so that
2340 wfi can call target_wait in one place. (Ultimately the call will be
2341 moved out of the infinite loop entirely.) */
2342
c5aa993b
JM
2343enum infwait_states
2344{
cd0fc7c3
SS
2345 infwait_normal_state,
2346 infwait_thread_hop_state,
d983da9c 2347 infwait_step_watch_state,
cd0fc7c3 2348 infwait_nonstep_watch_state
b83266a0
SS
2349};
2350
0d1e5fa7
PA
2351/* The PTID we'll do a target_wait on.*/
2352ptid_t waiton_ptid;
2353
2354/* Current inferior wait state. */
2355enum infwait_states infwait_state;
cd0fc7c3 2356
0d1e5fa7
PA
2357/* Data to be passed around while handling an event. This data is
2358 discarded between events. */
c5aa993b 2359struct execution_control_state
488f131b 2360{
0d1e5fa7 2361 ptid_t ptid;
4e1c45ea
PA
2362 /* The thread that got the event, if this was a thread event; NULL
2363 otherwise. */
2364 struct thread_info *event_thread;
2365
488f131b 2366 struct target_waitstatus ws;
488f131b 2367 int random_signal;
7e324e48 2368 int stop_func_filled_in;
488f131b
JB
2369 CORE_ADDR stop_func_start;
2370 CORE_ADDR stop_func_end;
2371 char *stop_func_name;
488f131b 2372 int new_thread_event;
488f131b
JB
2373 int wait_some_more;
2374};
2375
ec9499be 2376static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2377
568d6575
UW
2378static void handle_step_into_function (struct gdbarch *gdbarch,
2379 struct execution_control_state *ecs);
2380static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2381 struct execution_control_state *ecs);
186c406b
TT
2382static void check_exception_resume (struct execution_control_state *,
2383 struct frame_info *, struct symbol *);
611c83ae 2384
104c1213
JM
2385static void stop_stepping (struct execution_control_state *ecs);
2386static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2387static void keep_going (struct execution_control_state *ecs);
104c1213 2388
252fbfc8
PA
2389/* Callback for iterate over threads. If the thread is stopped, but
2390 the user/frontend doesn't know about that yet, go through
2391 normal_stop, as if the thread had just stopped now. ARG points at
2392 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2393 ptid_is_pid(PTID) is true, applies to all threads of the process
2394 pointed at by PTID. Otherwise, apply only to the thread pointed by
2395 PTID. */
2396
2397static int
2398infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2399{
2400 ptid_t ptid = * (ptid_t *) arg;
2401
2402 if ((ptid_equal (info->ptid, ptid)
2403 || ptid_equal (minus_one_ptid, ptid)
2404 || (ptid_is_pid (ptid)
2405 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2406 && is_running (info->ptid)
2407 && !is_executing (info->ptid))
2408 {
2409 struct cleanup *old_chain;
2410 struct execution_control_state ecss;
2411 struct execution_control_state *ecs = &ecss;
2412
2413 memset (ecs, 0, sizeof (*ecs));
2414
2415 old_chain = make_cleanup_restore_current_thread ();
2416
2417 switch_to_thread (info->ptid);
2418
2419 /* Go through handle_inferior_event/normal_stop, so we always
2420 have consistent output as if the stop event had been
2421 reported. */
2422 ecs->ptid = info->ptid;
e09875d4 2423 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8
PA
2424 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2425 ecs->ws.value.sig = TARGET_SIGNAL_0;
2426
2427 handle_inferior_event (ecs);
2428
2429 if (!ecs->wait_some_more)
2430 {
2431 struct thread_info *tp;
2432
2433 normal_stop ();
2434
fa4cd53f 2435 /* Finish off the continuations. */
252fbfc8 2436 tp = inferior_thread ();
fa4cd53f
PA
2437 do_all_intermediate_continuations_thread (tp, 1);
2438 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2439 }
2440
2441 do_cleanups (old_chain);
2442 }
2443
2444 return 0;
2445}
2446
2447/* This function is attached as a "thread_stop_requested" observer.
2448 Cleanup local state that assumed the PTID was to be resumed, and
2449 report the stop to the frontend. */
2450
2c0b251b 2451static void
252fbfc8
PA
2452infrun_thread_stop_requested (ptid_t ptid)
2453{
fc1cf338 2454 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2455
2456 /* PTID was requested to stop. Remove it from the displaced
2457 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2458
2459 for (displaced = displaced_step_inferior_states;
2460 displaced;
2461 displaced = displaced->next)
252fbfc8 2462 {
fc1cf338 2463 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2464
fc1cf338
PA
2465 it = displaced->step_request_queue;
2466 prev_next_p = &displaced->step_request_queue;
2467 while (it)
252fbfc8 2468 {
fc1cf338
PA
2469 if (ptid_match (it->ptid, ptid))
2470 {
2471 *prev_next_p = it->next;
2472 it->next = NULL;
2473 xfree (it);
2474 }
252fbfc8 2475 else
fc1cf338
PA
2476 {
2477 prev_next_p = &it->next;
2478 }
252fbfc8 2479
fc1cf338 2480 it = *prev_next_p;
252fbfc8 2481 }
252fbfc8
PA
2482 }
2483
2484 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2485}
2486
a07daef3
PA
2487static void
2488infrun_thread_thread_exit (struct thread_info *tp, int silent)
2489{
2490 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2491 nullify_last_target_wait_ptid ();
2492}
2493
4e1c45ea
PA
2494/* Callback for iterate_over_threads. */
2495
2496static int
2497delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2498{
2499 if (is_exited (info->ptid))
2500 return 0;
2501
2502 delete_step_resume_breakpoint (info);
186c406b 2503 delete_exception_resume_breakpoint (info);
4e1c45ea
PA
2504 return 0;
2505}
2506
2507/* In all-stop, delete the step resume breakpoint of any thread that
2508 had one. In non-stop, delete the step resume breakpoint of the
2509 thread that just stopped. */
2510
2511static void
2512delete_step_thread_step_resume_breakpoint (void)
2513{
2514 if (!target_has_execution
2515 || ptid_equal (inferior_ptid, null_ptid))
2516 /* If the inferior has exited, we have already deleted the step
2517 resume breakpoints out of GDB's lists. */
2518 return;
2519
2520 if (non_stop)
2521 {
2522 /* If in non-stop mode, only delete the step-resume or
2523 longjmp-resume breakpoint of the thread that just stopped
2524 stepping. */
2525 struct thread_info *tp = inferior_thread ();
abbb1732 2526
4e1c45ea 2527 delete_step_resume_breakpoint (tp);
186c406b 2528 delete_exception_resume_breakpoint (tp);
4e1c45ea
PA
2529 }
2530 else
2531 /* In all-stop mode, delete all step-resume and longjmp-resume
2532 breakpoints of any thread that had them. */
2533 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2534}
2535
1777feb0 2536/* A cleanup wrapper. */
4e1c45ea
PA
2537
2538static void
2539delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2540{
2541 delete_step_thread_step_resume_breakpoint ();
2542}
2543
223698f8
DE
2544/* Pretty print the results of target_wait, for debugging purposes. */
2545
2546static void
2547print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2548 const struct target_waitstatus *ws)
2549{
2550 char *status_string = target_waitstatus_to_string (ws);
2551 struct ui_file *tmp_stream = mem_fileopen ();
2552 char *text;
223698f8
DE
2553
2554 /* The text is split over several lines because it was getting too long.
2555 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2556 output as a unit; we want only one timestamp printed if debug_timestamp
2557 is set. */
2558
2559 fprintf_unfiltered (tmp_stream,
2560 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2561 if (PIDGET (waiton_ptid) != -1)
2562 fprintf_unfiltered (tmp_stream,
2563 " [%s]", target_pid_to_str (waiton_ptid));
2564 fprintf_unfiltered (tmp_stream, ", status) =\n");
2565 fprintf_unfiltered (tmp_stream,
2566 "infrun: %d [%s],\n",
2567 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2568 fprintf_unfiltered (tmp_stream,
2569 "infrun: %s\n",
2570 status_string);
2571
759ef836 2572 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2573
2574 /* This uses %s in part to handle %'s in the text, but also to avoid
2575 a gcc error: the format attribute requires a string literal. */
2576 fprintf_unfiltered (gdb_stdlog, "%s", text);
2577
2578 xfree (status_string);
2579 xfree (text);
2580 ui_file_delete (tmp_stream);
2581}
2582
24291992
PA
2583/* Prepare and stabilize the inferior for detaching it. E.g.,
2584 detaching while a thread is displaced stepping is a recipe for
2585 crashing it, as nothing would readjust the PC out of the scratch
2586 pad. */
2587
2588void
2589prepare_for_detach (void)
2590{
2591 struct inferior *inf = current_inferior ();
2592 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2593 struct cleanup *old_chain_1;
2594 struct displaced_step_inferior_state *displaced;
2595
2596 displaced = get_displaced_stepping_state (inf->pid);
2597
2598 /* Is any thread of this process displaced stepping? If not,
2599 there's nothing else to do. */
2600 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2601 return;
2602
2603 if (debug_infrun)
2604 fprintf_unfiltered (gdb_stdlog,
2605 "displaced-stepping in-process while detaching");
2606
2607 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2608 inf->detaching = 1;
2609
2610 while (!ptid_equal (displaced->step_ptid, null_ptid))
2611 {
2612 struct cleanup *old_chain_2;
2613 struct execution_control_state ecss;
2614 struct execution_control_state *ecs;
2615
2616 ecs = &ecss;
2617 memset (ecs, 0, sizeof (*ecs));
2618
2619 overlay_cache_invalid = 1;
2620
24291992
PA
2621 if (deprecated_target_wait_hook)
2622 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2623 else
2624 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2625
2626 if (debug_infrun)
2627 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2628
2629 /* If an error happens while handling the event, propagate GDB's
2630 knowledge of the executing state to the frontend/user running
2631 state. */
3e43a32a
MS
2632 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2633 &minus_one_ptid);
24291992 2634
4d533103
PA
2635 /* In non-stop mode, each thread is handled individually.
2636 Switch early, so the global state is set correctly for this
2637 thread. */
2638 if (non_stop
2639 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2640 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2641 context_switch (ecs->ptid);
2642
24291992
PA
2643 /* Now figure out what to do with the result of the result. */
2644 handle_inferior_event (ecs);
2645
2646 /* No error, don't finish the state yet. */
2647 discard_cleanups (old_chain_2);
2648
2649 /* Breakpoints and watchpoints are not installed on the target
2650 at this point, and signals are passed directly to the
2651 inferior, so this must mean the process is gone. */
2652 if (!ecs->wait_some_more)
2653 {
2654 discard_cleanups (old_chain_1);
2655 error (_("Program exited while detaching"));
2656 }
2657 }
2658
2659 discard_cleanups (old_chain_1);
2660}
2661
cd0fc7c3 2662/* Wait for control to return from inferior to debugger.
ae123ec6 2663
cd0fc7c3
SS
2664 If inferior gets a signal, we may decide to start it up again
2665 instead of returning. That is why there is a loop in this function.
2666 When this function actually returns it means the inferior
2667 should be left stopped and GDB should read more commands. */
2668
2669void
e4c8541f 2670wait_for_inferior (void)
cd0fc7c3
SS
2671{
2672 struct cleanup *old_cleanups;
0d1e5fa7 2673 struct execution_control_state ecss;
cd0fc7c3 2674 struct execution_control_state *ecs;
c906108c 2675
527159b7 2676 if (debug_infrun)
ae123ec6 2677 fprintf_unfiltered
e4c8541f 2678 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 2679
4e1c45ea
PA
2680 old_cleanups =
2681 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2682
cd0fc7c3 2683 ecs = &ecss;
0d1e5fa7
PA
2684 memset (ecs, 0, sizeof (*ecs));
2685
c906108c
SS
2686 while (1)
2687 {
29f49a6a
PA
2688 struct cleanup *old_chain;
2689
ec9499be 2690 overlay_cache_invalid = 1;
ec9499be 2691
9a4105ab 2692 if (deprecated_target_wait_hook)
47608cb1 2693 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2694 else
47608cb1 2695 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2696
f00150c9 2697 if (debug_infrun)
223698f8 2698 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2699
29f49a6a
PA
2700 /* If an error happens while handling the event, propagate GDB's
2701 knowledge of the executing state to the frontend/user running
2702 state. */
2703 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2704
a96d9b2e
SDJ
2705 if (ecs->ws.kind == TARGET_WAITKIND_SYSCALL_ENTRY
2706 || ecs->ws.kind == TARGET_WAITKIND_SYSCALL_RETURN)
2707 ecs->ws.value.syscall_number = UNKNOWN_SYSCALL;
2708
cd0fc7c3
SS
2709 /* Now figure out what to do with the result of the result. */
2710 handle_inferior_event (ecs);
c906108c 2711
29f49a6a
PA
2712 /* No error, don't finish the state yet. */
2713 discard_cleanups (old_chain);
2714
cd0fc7c3
SS
2715 if (!ecs->wait_some_more)
2716 break;
2717 }
4e1c45ea 2718
cd0fc7c3
SS
2719 do_cleanups (old_cleanups);
2720}
c906108c 2721
1777feb0 2722/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 2723 event loop whenever a change of state is detected on the file
1777feb0
MS
2724 descriptor corresponding to the target. It can be called more than
2725 once to complete a single execution command. In such cases we need
2726 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
2727 that this function is called for a single execution command, then
2728 report to the user that the inferior has stopped, and do the
1777feb0 2729 necessary cleanups. */
43ff13b4
JM
2730
2731void
fba45db2 2732fetch_inferior_event (void *client_data)
43ff13b4 2733{
0d1e5fa7 2734 struct execution_control_state ecss;
a474d7c2 2735 struct execution_control_state *ecs = &ecss;
4f8d22e3 2736 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2737 struct cleanup *ts_old_chain;
4f8d22e3 2738 int was_sync = sync_execution;
0f641c01 2739 int cmd_done = 0;
43ff13b4 2740
0d1e5fa7
PA
2741 memset (ecs, 0, sizeof (*ecs));
2742
c5187ac6
PA
2743 /* We're handling a live event, so make sure we're doing live
2744 debugging. If we're looking at traceframes while the target is
2745 running, we're going to need to get back to that mode after
2746 handling the event. */
2747 if (non_stop)
2748 {
2749 make_cleanup_restore_current_traceframe ();
e6e4e701 2750 set_current_traceframe (-1);
c5187ac6
PA
2751 }
2752
4f8d22e3
PA
2753 if (non_stop)
2754 /* In non-stop mode, the user/frontend should not notice a thread
2755 switch due to internal events. Make sure we reverse to the
2756 user selected thread and frame after handling the event and
2757 running any breakpoint commands. */
2758 make_cleanup_restore_current_thread ();
2759
ec9499be 2760 overlay_cache_invalid = 1;
3dd5b83d 2761
32231432
PA
2762 make_cleanup_restore_integer (&execution_direction);
2763 execution_direction = target_execution_direction ();
2764
9a4105ab 2765 if (deprecated_target_wait_hook)
a474d7c2 2766 ecs->ptid =
47608cb1 2767 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2768 else
47608cb1 2769 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2770
f00150c9 2771 if (debug_infrun)
223698f8 2772 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2773
94cc34af
PA
2774 if (non_stop
2775 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2776 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2777 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2778 /* In non-stop mode, each thread is handled individually. Switch
2779 early, so the global state is set correctly for this
2780 thread. */
2781 context_switch (ecs->ptid);
2782
29f49a6a
PA
2783 /* If an error happens while handling the event, propagate GDB's
2784 knowledge of the executing state to the frontend/user running
2785 state. */
2786 if (!non_stop)
2787 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2788 else
2789 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2790
353d1d73
JK
2791 /* Get executed before make_cleanup_restore_current_thread above to apply
2792 still for the thread which has thrown the exception. */
2793 make_bpstat_clear_actions_cleanup ();
2794
43ff13b4 2795 /* Now figure out what to do with the result of the result. */
a474d7c2 2796 handle_inferior_event (ecs);
43ff13b4 2797
a474d7c2 2798 if (!ecs->wait_some_more)
43ff13b4 2799 {
d6b48e9c
PA
2800 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2801
4e1c45ea 2802 delete_step_thread_step_resume_breakpoint ();
f107f563 2803
d6b48e9c 2804 /* We may not find an inferior if this was a process exit. */
16c381f0 2805 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2806 normal_stop ();
2807
af679fd0
PA
2808 if (target_has_execution
2809 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2810 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2811 && ecs->event_thread->step_multi
16c381f0 2812 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
2813 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2814 else
0f641c01
PA
2815 {
2816 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2817 cmd_done = 1;
2818 }
43ff13b4 2819 }
4f8d22e3 2820
29f49a6a
PA
2821 /* No error, don't finish the thread states yet. */
2822 discard_cleanups (ts_old_chain);
2823
4f8d22e3
PA
2824 /* Revert thread and frame. */
2825 do_cleanups (old_chain);
2826
2827 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
2828 restore the prompt (a synchronous execution command has finished,
2829 and we're ready for input). */
b4a14fd0 2830 if (interpreter_async && was_sync && !sync_execution)
4f8d22e3 2831 display_gdb_prompt (0);
0f641c01
PA
2832
2833 if (cmd_done
2834 && !was_sync
2835 && exec_done_display_p
2836 && (ptid_equal (inferior_ptid, null_ptid)
2837 || !is_running (inferior_ptid)))
2838 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
2839}
2840
edb3359d
DJ
2841/* Record the frame and location we're currently stepping through. */
2842void
2843set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2844{
2845 struct thread_info *tp = inferior_thread ();
2846
16c381f0
JK
2847 tp->control.step_frame_id = get_frame_id (frame);
2848 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
2849
2850 tp->current_symtab = sal.symtab;
2851 tp->current_line = sal.line;
2852}
2853
0d1e5fa7
PA
2854/* Clear context switchable stepping state. */
2855
2856void
4e1c45ea 2857init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2858{
2859 tss->stepping_over_breakpoint = 0;
2860 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
2861}
2862
e02bc4cc 2863/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2864 target_wait()/deprecated_target_wait_hook(). The data is actually
2865 cached by handle_inferior_event(), which gets called immediately
2866 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2867
2868void
488f131b 2869get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2870{
39f77062 2871 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2872 *status = target_last_waitstatus;
2873}
2874
ac264b3b
MS
2875void
2876nullify_last_target_wait_ptid (void)
2877{
2878 target_last_wait_ptid = minus_one_ptid;
2879}
2880
dcf4fbde 2881/* Switch thread contexts. */
dd80620e
MS
2882
2883static void
0d1e5fa7 2884context_switch (ptid_t ptid)
dd80620e 2885{
4b51d87b 2886 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
2887 {
2888 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2889 target_pid_to_str (inferior_ptid));
2890 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2891 target_pid_to_str (ptid));
fd48f117
DJ
2892 }
2893
0d1e5fa7 2894 switch_to_thread (ptid);
dd80620e
MS
2895}
2896
4fa8626c
DJ
2897static void
2898adjust_pc_after_break (struct execution_control_state *ecs)
2899{
24a73cce
UW
2900 struct regcache *regcache;
2901 struct gdbarch *gdbarch;
6c95b8df 2902 struct address_space *aspace;
8aad930b 2903 CORE_ADDR breakpoint_pc;
4fa8626c 2904
4fa8626c
DJ
2905 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2906 we aren't, just return.
9709f61c
DJ
2907
2908 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2909 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2910 implemented by software breakpoints should be handled through the normal
2911 breakpoint layer.
8fb3e588 2912
4fa8626c
DJ
2913 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2914 different signals (SIGILL or SIGEMT for instance), but it is less
2915 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2916 gdbarch_decr_pc_after_break. I don't know any specific target that
2917 generates these signals at breakpoints (the code has been in GDB since at
2918 least 1992) so I can not guess how to handle them here.
8fb3e588 2919
e6cf7916
UW
2920 In earlier versions of GDB, a target with
2921 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2922 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2923 target with both of these set in GDB history, and it seems unlikely to be
2924 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2925
2926 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2927 return;
2928
2929 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2930 return;
2931
4058b839
PA
2932 /* In reverse execution, when a breakpoint is hit, the instruction
2933 under it has already been de-executed. The reported PC always
2934 points at the breakpoint address, so adjusting it further would
2935 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2936 architecture:
2937
2938 B1 0x08000000 : INSN1
2939 B2 0x08000001 : INSN2
2940 0x08000002 : INSN3
2941 PC -> 0x08000003 : INSN4
2942
2943 Say you're stopped at 0x08000003 as above. Reverse continuing
2944 from that point should hit B2 as below. Reading the PC when the
2945 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2946 been de-executed already.
2947
2948 B1 0x08000000 : INSN1
2949 B2 PC -> 0x08000001 : INSN2
2950 0x08000002 : INSN3
2951 0x08000003 : INSN4
2952
2953 We can't apply the same logic as for forward execution, because
2954 we would wrongly adjust the PC to 0x08000000, since there's a
2955 breakpoint at PC - 1. We'd then report a hit on B1, although
2956 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2957 behaviour. */
2958 if (execution_direction == EXEC_REVERSE)
2959 return;
2960
24a73cce
UW
2961 /* If this target does not decrement the PC after breakpoints, then
2962 we have nothing to do. */
2963 regcache = get_thread_regcache (ecs->ptid);
2964 gdbarch = get_regcache_arch (regcache);
2965 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2966 return;
2967
6c95b8df
PA
2968 aspace = get_regcache_aspace (regcache);
2969
8aad930b
AC
2970 /* Find the location where (if we've hit a breakpoint) the
2971 breakpoint would be. */
515630c5
UW
2972 breakpoint_pc = regcache_read_pc (regcache)
2973 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 2974
1c5cfe86
PA
2975 /* Check whether there actually is a software breakpoint inserted at
2976 that location.
2977
2978 If in non-stop mode, a race condition is possible where we've
2979 removed a breakpoint, but stop events for that breakpoint were
2980 already queued and arrive later. To suppress those spurious
2981 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2982 and retire them after a number of stop events are reported. */
6c95b8df
PA
2983 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2984 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 2985 {
96429cc8 2986 struct cleanup *old_cleanups = NULL;
abbb1732 2987
96429cc8
HZ
2988 if (RECORD_IS_USED)
2989 old_cleanups = record_gdb_operation_disable_set ();
2990
1c0fdd0e
UW
2991 /* When using hardware single-step, a SIGTRAP is reported for both
2992 a completed single-step and a software breakpoint. Need to
2993 differentiate between the two, as the latter needs adjusting
2994 but the former does not.
2995
2996 The SIGTRAP can be due to a completed hardware single-step only if
2997 - we didn't insert software single-step breakpoints
2998 - the thread to be examined is still the current thread
2999 - this thread is currently being stepped
3000
3001 If any of these events did not occur, we must have stopped due
3002 to hitting a software breakpoint, and have to back up to the
3003 breakpoint address.
3004
3005 As a special case, we could have hardware single-stepped a
3006 software breakpoint. In this case (prev_pc == breakpoint_pc),
3007 we also need to back up to the breakpoint address. */
3008
3009 if (singlestep_breakpoints_inserted_p
3010 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
3011 || !currently_stepping (ecs->event_thread)
3012 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 3013 regcache_write_pc (regcache, breakpoint_pc);
96429cc8
HZ
3014
3015 if (RECORD_IS_USED)
3016 do_cleanups (old_cleanups);
8aad930b 3017 }
4fa8626c
DJ
3018}
3019
0d1e5fa7
PA
3020void
3021init_infwait_state (void)
3022{
3023 waiton_ptid = pid_to_ptid (-1);
3024 infwait_state = infwait_normal_state;
3025}
3026
94cc34af
PA
3027void
3028error_is_running (void)
3029{
3e43a32a
MS
3030 error (_("Cannot execute this command while "
3031 "the selected thread is running."));
94cc34af
PA
3032}
3033
3034void
3035ensure_not_running (void)
3036{
3037 if (is_running (inferior_ptid))
3038 error_is_running ();
3039}
3040
edb3359d
DJ
3041static int
3042stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3043{
3044 for (frame = get_prev_frame (frame);
3045 frame != NULL;
3046 frame = get_prev_frame (frame))
3047 {
3048 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3049 return 1;
3050 if (get_frame_type (frame) != INLINE_FRAME)
3051 break;
3052 }
3053
3054 return 0;
3055}
3056
a96d9b2e
SDJ
3057/* Auxiliary function that handles syscall entry/return events.
3058 It returns 1 if the inferior should keep going (and GDB
3059 should ignore the event), or 0 if the event deserves to be
3060 processed. */
ca2163eb 3061
a96d9b2e 3062static int
ca2163eb 3063handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3064{
ca2163eb
PA
3065 struct regcache *regcache;
3066 struct gdbarch *gdbarch;
3067 int syscall_number;
3068
3069 if (!ptid_equal (ecs->ptid, inferior_ptid))
3070 context_switch (ecs->ptid);
3071
3072 regcache = get_thread_regcache (ecs->ptid);
3073 gdbarch = get_regcache_arch (regcache);
3074 syscall_number = gdbarch_get_syscall_number (gdbarch, ecs->ptid);
3075 stop_pc = regcache_read_pc (regcache);
3076
a96d9b2e
SDJ
3077 target_last_waitstatus.value.syscall_number = syscall_number;
3078
3079 if (catch_syscall_enabled () > 0
3080 && catching_syscall_number (syscall_number) > 0)
3081 {
3082 if (debug_infrun)
3083 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3084 syscall_number);
a96d9b2e 3085
16c381f0 3086 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
3087 = bpstat_stop_status (get_regcache_aspace (regcache),
3088 stop_pc, ecs->ptid);
16c381f0
JK
3089 ecs->random_signal
3090 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
a96d9b2e 3091
ca2163eb
PA
3092 if (!ecs->random_signal)
3093 {
3094 /* Catchpoint hit. */
16c381f0 3095 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
ca2163eb
PA
3096 return 0;
3097 }
a96d9b2e 3098 }
ca2163eb
PA
3099
3100 /* If no catchpoint triggered for this, then keep going. */
16c381f0 3101 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
ca2163eb
PA
3102 keep_going (ecs);
3103 return 1;
a96d9b2e
SDJ
3104}
3105
7e324e48
GB
3106/* Clear the supplied execution_control_state's stop_func_* fields. */
3107
3108static void
3109clear_stop_func (struct execution_control_state *ecs)
3110{
3111 ecs->stop_func_filled_in = 0;
3112 ecs->stop_func_start = 0;
3113 ecs->stop_func_end = 0;
3114 ecs->stop_func_name = NULL;
3115}
3116
3117/* Lazily fill in the execution_control_state's stop_func_* fields. */
3118
3119static void
3120fill_in_stop_func (struct gdbarch *gdbarch,
3121 struct execution_control_state *ecs)
3122{
3123 if (!ecs->stop_func_filled_in)
3124 {
3125 /* Don't care about return value; stop_func_start and stop_func_name
3126 will both be 0 if it doesn't work. */
3127 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3128 &ecs->stop_func_start, &ecs->stop_func_end);
3129 ecs->stop_func_start
3130 += gdbarch_deprecated_function_start_offset (gdbarch);
3131
3132 ecs->stop_func_filled_in = 1;
3133 }
3134}
3135
cd0fc7c3
SS
3136/* Given an execution control state that has been freshly filled in
3137 by an event from the inferior, figure out what it means and take
3138 appropriate action. */
c906108c 3139
ec9499be 3140static void
96baa820 3141handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3142{
568d6575
UW
3143 struct frame_info *frame;
3144 struct gdbarch *gdbarch;
d983da9c
DJ
3145 int stopped_by_watchpoint;
3146 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 3147 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
3148 enum stop_kind stop_soon;
3149
28736962
PA
3150 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3151 {
3152 /* We had an event in the inferior, but we are not interested in
3153 handling it at this level. The lower layers have already
3154 done what needs to be done, if anything.
3155
3156 One of the possible circumstances for this is when the
3157 inferior produces output for the console. The inferior has
3158 not stopped, and we are ignoring the event. Another possible
3159 circumstance is any event which the lower level knows will be
3160 reported multiple times without an intervening resume. */
3161 if (debug_infrun)
3162 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3163 prepare_to_wait (ecs);
3164 return;
3165 }
3166
d6b48e9c 3167 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
28736962 3168 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
d6b48e9c
PA
3169 {
3170 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
abbb1732 3171
d6b48e9c 3172 gdb_assert (inf);
16c381f0 3173 stop_soon = inf->control.stop_soon;
d6b48e9c
PA
3174 }
3175 else
3176 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 3177
1777feb0 3178 /* Cache the last pid/waitstatus. */
39f77062 3179 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 3180 target_last_waitstatus = ecs->ws;
e02bc4cc 3181
ca005067 3182 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3183 stop_stack_dummy = STOP_NONE;
ca005067 3184
1777feb0 3185 /* If it's a new process, add it to the thread database. */
8c90c137
LM
3186
3187 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
3188 && !ptid_equal (ecs->ptid, minus_one_ptid)
3189 && !in_thread_list (ecs->ptid));
3190
3191 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3192 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
3193 add_thread (ecs->ptid);
3194
e09875d4 3195 ecs->event_thread = find_thread_ptid (ecs->ptid);
88ed393a
JK
3196
3197 /* Dependent on valid ECS->EVENT_THREAD. */
3198 adjust_pc_after_break (ecs);
3199
3200 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3201 reinit_frame_cache ();
3202
28736962
PA
3203 breakpoint_retire_moribund ();
3204
2b009048
DJ
3205 /* First, distinguish signals caused by the debugger from signals
3206 that have to do with the program's own actions. Note that
3207 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3208 on the operating system version. Here we detect when a SIGILL or
3209 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3210 something similar for SIGSEGV, since a SIGSEGV will be generated
3211 when we're trying to execute a breakpoint instruction on a
3212 non-executable stack. This happens for call dummy breakpoints
3213 for architectures like SPARC that place call dummies on the
3214 stack. */
2b009048
DJ
3215 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3216 && (ecs->ws.value.sig == TARGET_SIGNAL_ILL
3217 || ecs->ws.value.sig == TARGET_SIGNAL_SEGV
de0a0249 3218 || ecs->ws.value.sig == TARGET_SIGNAL_EMT))
2b009048 3219 {
de0a0249
UW
3220 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3221
3222 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3223 regcache_read_pc (regcache)))
3224 {
3225 if (debug_infrun)
3226 fprintf_unfiltered (gdb_stdlog,
3227 "infrun: Treating signal as SIGTRAP\n");
3228 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
3229 }
2b009048
DJ
3230 }
3231
28736962
PA
3232 /* Mark the non-executing threads accordingly. In all-stop, all
3233 threads of all processes are stopped when we get any event
3234 reported. In non-stop mode, only the event thread stops. If
3235 we're handling a process exit in non-stop mode, there's nothing
3236 to do, as threads of the dead process are gone, and threads of
3237 any other process were left running. */
3238 if (!non_stop)
3239 set_executing (minus_one_ptid, 0);
3240 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3241 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3242 set_executing (inferior_ptid, 0);
8c90c137 3243
0d1e5fa7 3244 switch (infwait_state)
488f131b
JB
3245 {
3246 case infwait_thread_hop_state:
527159b7 3247 if (debug_infrun)
8a9de0e4 3248 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 3249 break;
b83266a0 3250
488f131b 3251 case infwait_normal_state:
527159b7 3252 if (debug_infrun)
8a9de0e4 3253 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
3254 break;
3255
3256 case infwait_step_watch_state:
3257 if (debug_infrun)
3258 fprintf_unfiltered (gdb_stdlog,
3259 "infrun: infwait_step_watch_state\n");
3260
3261 stepped_after_stopped_by_watchpoint = 1;
488f131b 3262 break;
b83266a0 3263
488f131b 3264 case infwait_nonstep_watch_state:
527159b7 3265 if (debug_infrun)
8a9de0e4
AC
3266 fprintf_unfiltered (gdb_stdlog,
3267 "infrun: infwait_nonstep_watch_state\n");
488f131b 3268 insert_breakpoints ();
c906108c 3269
488f131b
JB
3270 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3271 handle things like signals arriving and other things happening
3272 in combination correctly? */
3273 stepped_after_stopped_by_watchpoint = 1;
3274 break;
65e82032
AC
3275
3276 default:
e2e0b3e5 3277 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 3278 }
ec9499be 3279
0d1e5fa7 3280 infwait_state = infwait_normal_state;
ec9499be 3281 waiton_ptid = pid_to_ptid (-1);
c906108c 3282
488f131b
JB
3283 switch (ecs->ws.kind)
3284 {
3285 case TARGET_WAITKIND_LOADED:
527159b7 3286 if (debug_infrun)
8a9de0e4 3287 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
3288 /* Ignore gracefully during startup of the inferior, as it might
3289 be the shell which has just loaded some objects, otherwise
3290 add the symbols for the newly loaded objects. Also ignore at
3291 the beginning of an attach or remote session; we will query
3292 the full list of libraries once the connection is
3293 established. */
c0236d92 3294 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3295 {
488f131b
JB
3296 /* Check for any newly added shared libraries if we're
3297 supposed to be adding them automatically. Switch
3298 terminal for any messages produced by
3299 breakpoint_re_set. */
3300 target_terminal_ours_for_output ();
aff6338a 3301 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
3302 stack's section table is kept up-to-date. Architectures,
3303 (e.g., PPC64), use the section table to perform
3304 operations such as address => section name and hence
3305 require the table to contain all sections (including
3306 those found in shared libraries). */
b0f4b84b 3307#ifdef SOLIB_ADD
aff6338a 3308 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
3309#else
3310 solib_add (NULL, 0, &current_target, auto_solib_add);
3311#endif
488f131b
JB
3312 target_terminal_inferior ();
3313
b0f4b84b
DJ
3314 /* If requested, stop when the dynamic linker notifies
3315 gdb of events. This allows the user to get control
3316 and place breakpoints in initializer routines for
3317 dynamically loaded objects (among other things). */
3318 if (stop_on_solib_events)
3319 {
55409f9d
DJ
3320 /* Make sure we print "Stopped due to solib-event" in
3321 normal_stop. */
3322 stop_print_frame = 1;
3323
b0f4b84b
DJ
3324 stop_stepping (ecs);
3325 return;
3326 }
3327
3328 /* NOTE drow/2007-05-11: This might be a good place to check
3329 for "catch load". */
488f131b 3330 }
b0f4b84b
DJ
3331
3332 /* If we are skipping through a shell, or through shared library
3333 loading that we aren't interested in, resume the program. If
3334 we're running the program normally, also resume. But stop if
3335 we're attaching or setting up a remote connection. */
3336 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3337 {
74960c60
VP
3338 /* Loading of shared libraries might have changed breakpoint
3339 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
3340 if (stop_soon == NO_STOP_QUIETLY
3341 && !breakpoints_always_inserted_mode ())
74960c60 3342 insert_breakpoints ();
b0f4b84b
DJ
3343 resume (0, TARGET_SIGNAL_0);
3344 prepare_to_wait (ecs);
3345 return;
3346 }
3347
3348 break;
c5aa993b 3349
488f131b 3350 case TARGET_WAITKIND_SPURIOUS:
527159b7 3351 if (debug_infrun)
8a9de0e4 3352 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
3353 resume (0, TARGET_SIGNAL_0);
3354 prepare_to_wait (ecs);
3355 return;
c5aa993b 3356
488f131b 3357 case TARGET_WAITKIND_EXITED:
527159b7 3358 if (debug_infrun)
8a9de0e4 3359 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
fb66883a 3360 inferior_ptid = ecs->ptid;
6c95b8df
PA
3361 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3362 set_current_program_space (current_inferior ()->pspace);
3363 handle_vfork_child_exec_or_exit (0);
1777feb0 3364 target_terminal_ours (); /* Must do this before mourn anyway. */
33d62d64 3365 print_exited_reason (ecs->ws.value.integer);
488f131b
JB
3366
3367 /* Record the exit code in the convenience variable $_exitcode, so
3368 that the user can inspect this again later. */
4fa62494
UW
3369 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3370 (LONGEST) ecs->ws.value.integer);
8cf64490
TT
3371
3372 /* Also record this in the inferior itself. */
3373 current_inferior ()->has_exit_code = 1;
3374 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3375
488f131b
JB
3376 gdb_flush (gdb_stdout);
3377 target_mourn_inferior ();
1c0fdd0e 3378 singlestep_breakpoints_inserted_p = 0;
d03285ec 3379 cancel_single_step_breakpoints ();
488f131b
JB
3380 stop_print_frame = 0;
3381 stop_stepping (ecs);
3382 return;
c5aa993b 3383
488f131b 3384 case TARGET_WAITKIND_SIGNALLED:
527159b7 3385 if (debug_infrun)
8a9de0e4 3386 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
fb66883a 3387 inferior_ptid = ecs->ptid;
6c95b8df
PA
3388 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3389 set_current_program_space (current_inferior ()->pspace);
3390 handle_vfork_child_exec_or_exit (0);
488f131b 3391 stop_print_frame = 0;
1777feb0 3392 target_terminal_ours (); /* Must do this before mourn anyway. */
c5aa993b 3393
488f131b
JB
3394 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3395 reach here unless the inferior is dead. However, for years
3396 target_kill() was called here, which hints that fatal signals aren't
3397 really fatal on some systems. If that's true, then some changes
1777feb0 3398 may be needed. */
488f131b 3399 target_mourn_inferior ();
c906108c 3400
33d62d64 3401 print_signal_exited_reason (ecs->ws.value.sig);
1c0fdd0e 3402 singlestep_breakpoints_inserted_p = 0;
d03285ec 3403 cancel_single_step_breakpoints ();
488f131b
JB
3404 stop_stepping (ecs);
3405 return;
c906108c 3406
488f131b 3407 /* The following are the only cases in which we keep going;
1777feb0 3408 the above cases end in a continue or goto. */
488f131b 3409 case TARGET_WAITKIND_FORKED:
deb3b17b 3410 case TARGET_WAITKIND_VFORKED:
527159b7 3411 if (debug_infrun)
8a9de0e4 3412 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
c906108c 3413
e2d96639
YQ
3414 /* Check whether the inferior is displaced stepping. */
3415 {
3416 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3417 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3418 struct displaced_step_inferior_state *displaced
3419 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3420
3421 /* If checking displaced stepping is supported, and thread
3422 ecs->ptid is displaced stepping. */
3423 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3424 {
3425 struct inferior *parent_inf
3426 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3427 struct regcache *child_regcache;
3428 CORE_ADDR parent_pc;
3429
3430 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3431 indicating that the displaced stepping of syscall instruction
3432 has been done. Perform cleanup for parent process here. Note
3433 that this operation also cleans up the child process for vfork,
3434 because their pages are shared. */
3435 displaced_step_fixup (ecs->ptid, TARGET_SIGNAL_TRAP);
3436
3437 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3438 {
3439 /* Restore scratch pad for child process. */
3440 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3441 }
3442
3443 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3444 the child's PC is also within the scratchpad. Set the child's PC
3445 to the parent's PC value, which has already been fixed up.
3446 FIXME: we use the parent's aspace here, although we're touching
3447 the child, because the child hasn't been added to the inferior
3448 list yet at this point. */
3449
3450 child_regcache
3451 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3452 gdbarch,
3453 parent_inf->aspace);
3454 /* Read PC value of parent process. */
3455 parent_pc = regcache_read_pc (regcache);
3456
3457 if (debug_displaced)
3458 fprintf_unfiltered (gdb_stdlog,
3459 "displaced: write child pc from %s to %s\n",
3460 paddress (gdbarch,
3461 regcache_read_pc (child_regcache)),
3462 paddress (gdbarch, parent_pc));
3463
3464 regcache_write_pc (child_regcache, parent_pc);
3465 }
3466 }
3467
5a2901d9
DJ
3468 if (!ptid_equal (ecs->ptid, inferior_ptid))
3469 {
0d1e5fa7 3470 context_switch (ecs->ptid);
35f196d9 3471 reinit_frame_cache ();
5a2901d9
DJ
3472 }
3473
b242c3c2
PA
3474 /* Immediately detach breakpoints from the child before there's
3475 any chance of letting the user delete breakpoints from the
3476 breakpoint lists. If we don't do this early, it's easy to
3477 leave left over traps in the child, vis: "break foo; catch
3478 fork; c; <fork>; del; c; <child calls foo>". We only follow
3479 the fork on the last `continue', and by that time the
3480 breakpoint at "foo" is long gone from the breakpoint table.
3481 If we vforked, then we don't need to unpatch here, since both
3482 parent and child are sharing the same memory pages; we'll
3483 need to unpatch at follow/detach time instead to be certain
3484 that new breakpoints added between catchpoint hit time and
3485 vfork follow are detached. */
3486 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3487 {
3488 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3489
3490 /* This won't actually modify the breakpoint list, but will
3491 physically remove the breakpoints from the child. */
3492 detach_breakpoints (child_pid);
3493 }
3494
d03285ec
UW
3495 if (singlestep_breakpoints_inserted_p)
3496 {
1777feb0 3497 /* Pull the single step breakpoints out of the target. */
d03285ec
UW
3498 remove_single_step_breakpoints ();
3499 singlestep_breakpoints_inserted_p = 0;
3500 }
3501
e58b0e63
PA
3502 /* In case the event is caught by a catchpoint, remember that
3503 the event is to be followed at the next resume of the thread,
3504 and not immediately. */
3505 ecs->event_thread->pending_follow = ecs->ws;
3506
fb14de7b 3507 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3508
16c381f0 3509 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
3510 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3511 stop_pc, ecs->ptid);
675bf4cb 3512
67822962
PA
3513 /* Note that we're interested in knowing the bpstat actually
3514 causes a stop, not just if it may explain the signal.
3515 Software watchpoints, for example, always appear in the
3516 bpstat. */
16c381f0
JK
3517 ecs->random_signal
3518 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
04e68871
DJ
3519
3520 /* If no catchpoint triggered for this, then keep going. */
3521 if (ecs->random_signal)
3522 {
6c95b8df
PA
3523 ptid_t parent;
3524 ptid_t child;
e58b0e63 3525 int should_resume;
3e43a32a
MS
3526 int follow_child
3527 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3528
16c381f0 3529 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
e58b0e63
PA
3530
3531 should_resume = follow_fork ();
3532
6c95b8df
PA
3533 parent = ecs->ptid;
3534 child = ecs->ws.value.related_pid;
3535
3536 /* In non-stop mode, also resume the other branch. */
3537 if (non_stop && !detach_fork)
3538 {
3539 if (follow_child)
3540 switch_to_thread (parent);
3541 else
3542 switch_to_thread (child);
3543
3544 ecs->event_thread = inferior_thread ();
3545 ecs->ptid = inferior_ptid;
3546 keep_going (ecs);
3547 }
3548
3549 if (follow_child)
3550 switch_to_thread (child);
3551 else
3552 switch_to_thread (parent);
3553
e58b0e63
PA
3554 ecs->event_thread = inferior_thread ();
3555 ecs->ptid = inferior_ptid;
3556
3557 if (should_resume)
3558 keep_going (ecs);
3559 else
3560 stop_stepping (ecs);
04e68871
DJ
3561 return;
3562 }
16c381f0 3563 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3564 goto process_event_stop_test;
3565
6c95b8df
PA
3566 case TARGET_WAITKIND_VFORK_DONE:
3567 /* Done with the shared memory region. Re-insert breakpoints in
3568 the parent, and keep going. */
3569
3570 if (debug_infrun)
3e43a32a
MS
3571 fprintf_unfiltered (gdb_stdlog,
3572 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
3573
3574 if (!ptid_equal (ecs->ptid, inferior_ptid))
3575 context_switch (ecs->ptid);
3576
3577 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3578 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3579 /* This also takes care of reinserting breakpoints in the
3580 previously locked inferior. */
3581 keep_going (ecs);
3582 return;
3583
488f131b 3584 case TARGET_WAITKIND_EXECD:
527159b7 3585 if (debug_infrun)
fc5261f2 3586 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3587
5a2901d9
DJ
3588 if (!ptid_equal (ecs->ptid, inferior_ptid))
3589 {
0d1e5fa7 3590 context_switch (ecs->ptid);
35f196d9 3591 reinit_frame_cache ();
5a2901d9
DJ
3592 }
3593
d03285ec
UW
3594 singlestep_breakpoints_inserted_p = 0;
3595 cancel_single_step_breakpoints ();
3596
fb14de7b 3597 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3598
6c95b8df
PA
3599 /* Do whatever is necessary to the parent branch of the vfork. */
3600 handle_vfork_child_exec_or_exit (1);
3601
795e548f
PA
3602 /* This causes the eventpoints and symbol table to be reset.
3603 Must do this now, before trying to determine whether to
3604 stop. */
71b43ef8 3605 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3606
16c381f0 3607 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
3608 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3609 stop_pc, ecs->ptid);
16c381f0
JK
3610 ecs->random_signal
3611 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
795e548f 3612
71b43ef8
PA
3613 /* Note that this may be referenced from inside
3614 bpstat_stop_status above, through inferior_has_execd. */
3615 xfree (ecs->ws.value.execd_pathname);
3616 ecs->ws.value.execd_pathname = NULL;
3617
04e68871
DJ
3618 /* If no catchpoint triggered for this, then keep going. */
3619 if (ecs->random_signal)
3620 {
16c381f0 3621 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
3622 keep_going (ecs);
3623 return;
3624 }
16c381f0 3625 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3626 goto process_event_stop_test;
3627
b4dc5ffa
MK
3628 /* Be careful not to try to gather much state about a thread
3629 that's in a syscall. It's frequently a losing proposition. */
488f131b 3630 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3631 if (debug_infrun)
3e43a32a
MS
3632 fprintf_unfiltered (gdb_stdlog,
3633 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 3634 /* Getting the current syscall number. */
ca2163eb 3635 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3636 return;
3637 goto process_event_stop_test;
c906108c 3638
488f131b
JB
3639 /* Before examining the threads further, step this thread to
3640 get it entirely out of the syscall. (We get notice of the
3641 event when the thread is just on the verge of exiting a
3642 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3643 into user code.) */
488f131b 3644 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3645 if (debug_infrun)
3e43a32a
MS
3646 fprintf_unfiltered (gdb_stdlog,
3647 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
ca2163eb 3648 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3649 return;
3650 goto process_event_stop_test;
c906108c 3651
488f131b 3652 case TARGET_WAITKIND_STOPPED:
527159b7 3653 if (debug_infrun)
8a9de0e4 3654 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 3655 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
488f131b 3656 break;
c906108c 3657
b2175913
MS
3658 case TARGET_WAITKIND_NO_HISTORY:
3659 /* Reverse execution: target ran out of history info. */
fb14de7b 3660 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
33d62d64 3661 print_no_history_reason ();
b2175913
MS
3662 stop_stepping (ecs);
3663 return;
488f131b 3664 }
c906108c 3665
488f131b
JB
3666 if (ecs->new_thread_event)
3667 {
94cc34af
PA
3668 if (non_stop)
3669 /* Non-stop assumes that the target handles adding new threads
3670 to the thread list. */
3e43a32a
MS
3671 internal_error (__FILE__, __LINE__,
3672 "targets should add new threads to the thread "
3673 "list themselves in non-stop mode.");
94cc34af
PA
3674
3675 /* We may want to consider not doing a resume here in order to
3676 give the user a chance to play with the new thread. It might
3677 be good to make that a user-settable option. */
3678
3679 /* At this point, all threads are stopped (happens automatically
3680 in either the OS or the native code). Therefore we need to
3681 continue all threads in order to make progress. */
3682
173853dc
PA
3683 if (!ptid_equal (ecs->ptid, inferior_ptid))
3684 context_switch (ecs->ptid);
488f131b
JB
3685 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3686 prepare_to_wait (ecs);
3687 return;
3688 }
c906108c 3689
2020b7ab 3690 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
3691 {
3692 /* Do we need to clean up the state of a thread that has
3693 completed a displaced single-step? (Doing so usually affects
3694 the PC, so do it here, before we set stop_pc.) */
16c381f0
JK
3695 displaced_step_fixup (ecs->ptid,
3696 ecs->event_thread->suspend.stop_signal);
252fbfc8
PA
3697
3698 /* If we either finished a single-step or hit a breakpoint, but
3699 the user wanted this thread to be stopped, pretend we got a
3700 SIG0 (generic unsignaled stop). */
3701
3702 if (ecs->event_thread->stop_requested
16c381f0
JK
3703 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3704 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
252fbfc8 3705 }
237fc4c9 3706
515630c5 3707 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3708
527159b7 3709 if (debug_infrun)
237fc4c9 3710 {
5af949e3
UW
3711 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3712 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
3713 struct cleanup *old_chain = save_inferior_ptid ();
3714
3715 inferior_ptid = ecs->ptid;
5af949e3
UW
3716
3717 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3718 paddress (gdbarch, stop_pc));
d92524f1 3719 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3720 {
3721 CORE_ADDR addr;
abbb1732 3722
237fc4c9
PA
3723 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3724
3725 if (target_stopped_data_address (&current_target, &addr))
3726 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3727 "infrun: stopped data address = %s\n",
3728 paddress (gdbarch, addr));
237fc4c9
PA
3729 else
3730 fprintf_unfiltered (gdb_stdlog,
3731 "infrun: (no data address available)\n");
3732 }
7f82dfc7
JK
3733
3734 do_cleanups (old_chain);
237fc4c9 3735 }
527159b7 3736
9f976b41
DJ
3737 if (stepping_past_singlestep_breakpoint)
3738 {
1c0fdd0e 3739 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
3740 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3741 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3742
3743 stepping_past_singlestep_breakpoint = 0;
3744
3745 /* We've either finished single-stepping past the single-step
8fb3e588
AC
3746 breakpoint, or stopped for some other reason. It would be nice if
3747 we could tell, but we can't reliably. */
16c381f0 3748 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 3749 {
527159b7 3750 if (debug_infrun)
3e43a32a
MS
3751 fprintf_unfiltered (gdb_stdlog,
3752 "infrun: stepping_past_"
3753 "singlestep_breakpoint\n");
9f976b41 3754 /* Pull the single step breakpoints out of the target. */
e0cd558a 3755 remove_single_step_breakpoints ();
9f976b41
DJ
3756 singlestep_breakpoints_inserted_p = 0;
3757
3758 ecs->random_signal = 0;
16c381f0 3759 ecs->event_thread->control.trap_expected = 0;
9f976b41 3760
0d1e5fa7 3761 context_switch (saved_singlestep_ptid);
9a4105ab
AC
3762 if (deprecated_context_hook)
3763 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
3764
3765 resume (1, TARGET_SIGNAL_0);
3766 prepare_to_wait (ecs);
3767 return;
3768 }
3769 }
3770
ca67fcb8 3771 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 3772 {
94cc34af
PA
3773 /* In non-stop mode, there's never a deferred_step_ptid set. */
3774 gdb_assert (!non_stop);
3775
6a6b96b9
UW
3776 /* If we stopped for some other reason than single-stepping, ignore
3777 the fact that we were supposed to switch back. */
16c381f0 3778 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
6a6b96b9
UW
3779 {
3780 if (debug_infrun)
3781 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 3782 "infrun: handling deferred step\n");
6a6b96b9
UW
3783
3784 /* Pull the single step breakpoints out of the target. */
3785 if (singlestep_breakpoints_inserted_p)
3786 {
3787 remove_single_step_breakpoints ();
3788 singlestep_breakpoints_inserted_p = 0;
3789 }
3790
cd3da28e
PA
3791 ecs->event_thread->control.trap_expected = 0;
3792
6a6b96b9
UW
3793 /* Note: We do not call context_switch at this point, as the
3794 context is already set up for stepping the original thread. */
ca67fcb8
VP
3795 switch_to_thread (deferred_step_ptid);
3796 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3797 /* Suppress spurious "Switching to ..." message. */
3798 previous_inferior_ptid = inferior_ptid;
3799
3800 resume (1, TARGET_SIGNAL_0);
3801 prepare_to_wait (ecs);
3802 return;
3803 }
ca67fcb8
VP
3804
3805 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3806 }
3807
488f131b
JB
3808 /* See if a thread hit a thread-specific breakpoint that was meant for
3809 another thread. If so, then step that thread past the breakpoint,
3810 and continue it. */
3811
16c381f0 3812 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
488f131b 3813 {
9f976b41 3814 int thread_hop_needed = 0;
cf00dfa7
VP
3815 struct address_space *aspace =
3816 get_regcache_aspace (get_thread_regcache (ecs->ptid));
9f976b41 3817
f8d40ec8 3818 /* Check if a regular breakpoint has been hit before checking
1777feb0 3819 for a potential single step breakpoint. Otherwise, GDB will
f8d40ec8 3820 not see this breakpoint hit when stepping onto breakpoints. */
6c95b8df 3821 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
488f131b 3822 {
c5aa993b 3823 ecs->random_signal = 0;
6c95b8df 3824 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
9f976b41
DJ
3825 thread_hop_needed = 1;
3826 }
1c0fdd0e 3827 else if (singlestep_breakpoints_inserted_p)
9f976b41 3828 {
fd48f117
DJ
3829 /* We have not context switched yet, so this should be true
3830 no matter which thread hit the singlestep breakpoint. */
3831 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3832 if (debug_infrun)
3833 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3834 "trap for %s\n",
3835 target_pid_to_str (ecs->ptid));
3836
9f976b41
DJ
3837 ecs->random_signal = 0;
3838 /* The call to in_thread_list is necessary because PTIDs sometimes
3839 change when we go from single-threaded to multi-threaded. If
3840 the singlestep_ptid is still in the list, assume that it is
3841 really different from ecs->ptid. */
3842 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3843 && in_thread_list (singlestep_ptid))
3844 {
fd48f117
DJ
3845 /* If the PC of the thread we were trying to single-step
3846 has changed, discard this event (which we were going
3847 to ignore anyway), and pretend we saw that thread
3848 trap. This prevents us continuously moving the
3849 single-step breakpoint forward, one instruction at a
3850 time. If the PC has changed, then the thread we were
3851 trying to single-step has trapped or been signalled,
3852 but the event has not been reported to GDB yet.
3853
3854 There might be some cases where this loses signal
3855 information, if a signal has arrived at exactly the
3856 same time that the PC changed, but this is the best
3857 we can do with the information available. Perhaps we
3858 should arrange to report all events for all threads
3859 when they stop, or to re-poll the remote looking for
3860 this particular thread (i.e. temporarily enable
3861 schedlock). */
515630c5
UW
3862
3863 CORE_ADDR new_singlestep_pc
3864 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3865
3866 if (new_singlestep_pc != singlestep_pc)
fd48f117 3867 {
2020b7ab
PA
3868 enum target_signal stop_signal;
3869
fd48f117
DJ
3870 if (debug_infrun)
3871 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3872 " but expected thread advanced also\n");
3873
3874 /* The current context still belongs to
3875 singlestep_ptid. Don't swap here, since that's
3876 the context we want to use. Just fudge our
3877 state and continue. */
16c381f0
JK
3878 stop_signal = ecs->event_thread->suspend.stop_signal;
3879 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
fd48f117 3880 ecs->ptid = singlestep_ptid;
e09875d4 3881 ecs->event_thread = find_thread_ptid (ecs->ptid);
16c381f0 3882 ecs->event_thread->suspend.stop_signal = stop_signal;
515630c5 3883 stop_pc = new_singlestep_pc;
fd48f117
DJ
3884 }
3885 else
3886 {
3887 if (debug_infrun)
3888 fprintf_unfiltered (gdb_stdlog,
3889 "infrun: unexpected thread\n");
3890
3891 thread_hop_needed = 1;
3892 stepping_past_singlestep_breakpoint = 1;
3893 saved_singlestep_ptid = singlestep_ptid;
3894 }
9f976b41
DJ
3895 }
3896 }
3897
3898 if (thread_hop_needed)
8fb3e588 3899 {
9f5a595d 3900 struct regcache *thread_regcache;
237fc4c9 3901 int remove_status = 0;
8fb3e588 3902
527159b7 3903 if (debug_infrun)
8a9de0e4 3904 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 3905
b3444185
PA
3906 /* Switch context before touching inferior memory, the
3907 previous thread may have exited. */
3908 if (!ptid_equal (inferior_ptid, ecs->ptid))
3909 context_switch (ecs->ptid);
3910
8fb3e588 3911 /* Saw a breakpoint, but it was hit by the wrong thread.
1777feb0 3912 Just continue. */
8fb3e588 3913
1c0fdd0e 3914 if (singlestep_breakpoints_inserted_p)
488f131b 3915 {
1777feb0 3916 /* Pull the single step breakpoints out of the target. */
e0cd558a 3917 remove_single_step_breakpoints ();
8fb3e588
AC
3918 singlestep_breakpoints_inserted_p = 0;
3919 }
3920
237fc4c9
PA
3921 /* If the arch can displace step, don't remove the
3922 breakpoints. */
9f5a595d
UW
3923 thread_regcache = get_thread_regcache (ecs->ptid);
3924 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
3925 remove_status = remove_breakpoints ();
3926
8fb3e588
AC
3927 /* Did we fail to remove breakpoints? If so, try
3928 to set the PC past the bp. (There's at least
3929 one situation in which we can fail to remove
3930 the bp's: On HP-UX's that use ttrace, we can't
3931 change the address space of a vforking child
3932 process until the child exits (well, okay, not
1777feb0 3933 then either :-) or execs. */
8fb3e588 3934 if (remove_status != 0)
9d9cd7ac 3935 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
3936 else
3937 { /* Single step */
94cc34af
PA
3938 if (!non_stop)
3939 {
3940 /* Only need to require the next event from this
3941 thread in all-stop mode. */
3942 waiton_ptid = ecs->ptid;
3943 infwait_state = infwait_thread_hop_state;
3944 }
8fb3e588 3945
4e1c45ea 3946 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 3947 keep_going (ecs);
8fb3e588
AC
3948 return;
3949 }
488f131b 3950 }
1c0fdd0e 3951 else if (singlestep_breakpoints_inserted_p)
8fb3e588 3952 {
8fb3e588
AC
3953 ecs->random_signal = 0;
3954 }
488f131b
JB
3955 }
3956 else
3957 ecs->random_signal = 1;
c906108c 3958
488f131b 3959 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
3960 so, then switch to that thread. */
3961 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 3962 {
527159b7 3963 if (debug_infrun)
8a9de0e4 3964 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 3965
0d1e5fa7 3966 context_switch (ecs->ptid);
c5aa993b 3967
9a4105ab
AC
3968 if (deprecated_context_hook)
3969 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 3970 }
c906108c 3971
568d6575
UW
3972 /* At this point, get hold of the now-current thread's frame. */
3973 frame = get_current_frame ();
3974 gdbarch = get_frame_arch (frame);
3975
1c0fdd0e 3976 if (singlestep_breakpoints_inserted_p)
488f131b 3977 {
1777feb0 3978 /* Pull the single step breakpoints out of the target. */
e0cd558a 3979 remove_single_step_breakpoints ();
488f131b
JB
3980 singlestep_breakpoints_inserted_p = 0;
3981 }
c906108c 3982
d983da9c
DJ
3983 if (stepped_after_stopped_by_watchpoint)
3984 stopped_by_watchpoint = 0;
3985 else
3986 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3987
3988 /* If necessary, step over this watchpoint. We'll be back to display
3989 it in a moment. */
3990 if (stopped_by_watchpoint
d92524f1 3991 && (target_have_steppable_watchpoint
568d6575 3992 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 3993 {
488f131b
JB
3994 /* At this point, we are stopped at an instruction which has
3995 attempted to write to a piece of memory under control of
3996 a watchpoint. The instruction hasn't actually executed
3997 yet. If we were to evaluate the watchpoint expression
3998 now, we would get the old value, and therefore no change
3999 would seem to have occurred.
4000
4001 In order to make watchpoints work `right', we really need
4002 to complete the memory write, and then evaluate the
d983da9c
DJ
4003 watchpoint expression. We do this by single-stepping the
4004 target.
4005
4006 It may not be necessary to disable the watchpoint to stop over
4007 it. For example, the PA can (with some kernel cooperation)
4008 single step over a watchpoint without disabling the watchpoint.
4009
4010 It is far more common to need to disable a watchpoint to step
4011 the inferior over it. If we have non-steppable watchpoints,
4012 we must disable the current watchpoint; it's simplest to
4013 disable all watchpoints and breakpoints. */
2facfe5c
DD
4014 int hw_step = 1;
4015
d92524f1 4016 if (!target_have_steppable_watchpoint)
2455069d
UW
4017 {
4018 remove_breakpoints ();
4019 /* See comment in resume why we need to stop bypassing signals
4020 while breakpoints have been removed. */
4021 target_pass_signals (0, NULL);
4022 }
2facfe5c 4023 /* Single step */
568d6575 4024 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
2facfe5c 4025 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
0d1e5fa7 4026 waiton_ptid = ecs->ptid;
d92524f1 4027 if (target_have_steppable_watchpoint)
0d1e5fa7 4028 infwait_state = infwait_step_watch_state;
d983da9c 4029 else
0d1e5fa7 4030 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
4031 prepare_to_wait (ecs);
4032 return;
4033 }
4034
7e324e48 4035 clear_stop_func (ecs);
4e1c45ea 4036 ecs->event_thread->stepping_over_breakpoint = 0;
16c381f0
JK
4037 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4038 ecs->event_thread->control.stop_step = 0;
488f131b
JB
4039 stop_print_frame = 1;
4040 ecs->random_signal = 0;
4041 stopped_by_random_signal = 0;
488f131b 4042
edb3359d
DJ
4043 /* Hide inlined functions starting here, unless we just performed stepi or
4044 nexti. After stepi and nexti, always show the innermost frame (not any
4045 inline function call sites). */
16c381f0 4046 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
4047 {
4048 struct address_space *aspace =
4049 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4050
4051 /* skip_inline_frames is expensive, so we avoid it if we can
4052 determine that the address is one where functions cannot have
4053 been inlined. This improves performance with inferiors that
4054 load a lot of shared libraries, because the solib event
4055 breakpoint is defined as the address of a function (i.e. not
4056 inline). Note that we have to check the previous PC as well
4057 as the current one to catch cases when we have just
4058 single-stepped off a breakpoint prior to reinstating it.
4059 Note that we're assuming that the code we single-step to is
4060 not inline, but that's not definitive: there's nothing
4061 preventing the event breakpoint function from containing
4062 inlined code, and the single-step ending up there. If the
4063 user had set a breakpoint on that inlined code, the missing
4064 skip_inline_frames call would break things. Fortunately
4065 that's an extremely unlikely scenario. */
4066 if (!pc_at_non_inline_function (aspace, stop_pc)
4067 && !(ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4068 && ecs->event_thread->control.trap_expected
4069 && pc_at_non_inline_function (aspace,
4070 ecs->event_thread->prev_pc)))
4071 skip_inline_frames (ecs->ptid);
4072 }
edb3359d 4073
16c381f0
JK
4074 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4075 && ecs->event_thread->control.trap_expected
568d6575 4076 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 4077 && currently_stepping (ecs->event_thread))
3352ef37 4078 {
b50d7442 4079 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 4080 also on an instruction that needs to be stepped multiple
1777feb0 4081 times before it's been fully executing. E.g., architectures
3352ef37
AC
4082 with a delay slot. It needs to be stepped twice, once for
4083 the instruction and once for the delay slot. */
4084 int step_through_delay
568d6575 4085 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 4086
527159b7 4087 if (debug_infrun && step_through_delay)
8a9de0e4 4088 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
4089 if (ecs->event_thread->control.step_range_end == 0
4090 && step_through_delay)
3352ef37
AC
4091 {
4092 /* The user issued a continue when stopped at a breakpoint.
4093 Set up for another trap and get out of here. */
4e1c45ea 4094 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4095 keep_going (ecs);
4096 return;
4097 }
4098 else if (step_through_delay)
4099 {
4100 /* The user issued a step when stopped at a breakpoint.
4101 Maybe we should stop, maybe we should not - the delay
4102 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4103 case, don't decide that here, just set
4104 ecs->stepping_over_breakpoint, making sure we
4105 single-step again before breakpoints are re-inserted. */
4e1c45ea 4106 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4107 }
4108 }
4109
488f131b
JB
4110 /* Look at the cause of the stop, and decide what to do.
4111 The alternatives are:
0d1e5fa7
PA
4112 1) stop_stepping and return; to really stop and return to the debugger,
4113 2) keep_going and return to start up again
4e1c45ea 4114 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
4115 3) set ecs->random_signal to 1, and the decision between 1 and 2
4116 will be made according to the signal handling tables. */
4117
16c381f0 4118 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
b0f4b84b
DJ
4119 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
4120 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 4121 {
16c381f0
JK
4122 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4123 && stop_after_trap)
488f131b 4124 {
527159b7 4125 if (debug_infrun)
8a9de0e4 4126 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
4127 stop_print_frame = 0;
4128 stop_stepping (ecs);
4129 return;
4130 }
c54cfec8
EZ
4131
4132 /* This is originated from start_remote(), start_inferior() and
4133 shared libraries hook functions. */
b0f4b84b 4134 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 4135 {
527159b7 4136 if (debug_infrun)
8a9de0e4 4137 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
4138 stop_stepping (ecs);
4139 return;
4140 }
4141
c54cfec8 4142 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
4143 the stop_signal here, because some kernels don't ignore a
4144 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4145 See more comments in inferior.h. On the other hand, if we
a0ef4274 4146 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
4147 will handle the SIGSTOP if it should show up later.
4148
4149 Also consider that the attach is complete when we see a
4150 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4151 target extended-remote report it instead of a SIGSTOP
4152 (e.g. gdbserver). We already rely on SIGTRAP being our
e0ba6746
PA
4153 signal, so this is no exception.
4154
4155 Also consider that the attach is complete when we see a
4156 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4157 the target to stop all threads of the inferior, in case the
4158 low level attach operation doesn't stop them implicitly. If
4159 they weren't stopped implicitly, then the stub will report a
4160 TARGET_SIGNAL_0, meaning: stopped for no particular reason
4161 other than GDB's request. */
a0ef4274 4162 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
16c381f0
JK
4163 && (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_STOP
4164 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4165 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_0))
c54cfec8
EZ
4166 {
4167 stop_stepping (ecs);
16c381f0 4168 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
4169 return;
4170 }
4171
fba57f8f 4172 /* See if there is a breakpoint at the current PC. */
16c381f0 4173 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
4174 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4175 stop_pc, ecs->ptid);
4176
fba57f8f
VP
4177 /* Following in case break condition called a
4178 function. */
4179 stop_print_frame = 1;
488f131b 4180
db82e815
PA
4181 /* This is where we handle "moribund" watchpoints. Unlike
4182 software breakpoints traps, hardware watchpoint traps are
4183 always distinguishable from random traps. If no high-level
4184 watchpoint is associated with the reported stop data address
4185 anymore, then the bpstat does not explain the signal ---
4186 simply make sure to ignore it if `stopped_by_watchpoint' is
4187 set. */
4188
4189 if (debug_infrun
16c381f0
JK
4190 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4191 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 4192 && stopped_by_watchpoint)
3e43a32a
MS
4193 fprintf_unfiltered (gdb_stdlog,
4194 "infrun: no user watchpoint explains "
4195 "watchpoint SIGTRAP, ignoring\n");
db82e815 4196
73dd234f 4197 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
4198 at one stage in the past included checks for an inferior
4199 function call's call dummy's return breakpoint. The original
4200 comment, that went with the test, read:
73dd234f 4201
8fb3e588
AC
4202 ``End of a stack dummy. Some systems (e.g. Sony news) give
4203 another signal besides SIGTRAP, so check here as well as
4204 above.''
73dd234f 4205
8002d778 4206 If someone ever tries to get call dummys on a
73dd234f 4207 non-executable stack to work (where the target would stop
03cebad2
MK
4208 with something like a SIGSEGV), then those tests might need
4209 to be re-instated. Given, however, that the tests were only
73dd234f 4210 enabled when momentary breakpoints were not being used, I
03cebad2
MK
4211 suspect that it won't be the case.
4212
8fb3e588
AC
4213 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4214 be necessary for call dummies on a non-executable stack on
4215 SPARC. */
73dd234f 4216
16c381f0 4217 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
488f131b 4218 ecs->random_signal
16c381f0 4219 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 4220 || stopped_by_watchpoint
16c381f0
JK
4221 || ecs->event_thread->control.trap_expected
4222 || (ecs->event_thread->control.step_range_end
8358c15c
JK
4223 && (ecs->event_thread->control.step_resume_breakpoint
4224 == NULL)));
488f131b
JB
4225 else
4226 {
16c381f0
JK
4227 ecs->random_signal = !bpstat_explains_signal
4228 (ecs->event_thread->control.stop_bpstat);
488f131b 4229 if (!ecs->random_signal)
16c381f0 4230 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
4231 }
4232 }
4233
4234 /* When we reach this point, we've pretty much decided
4235 that the reason for stopping must've been a random
1777feb0 4236 (unexpected) signal. */
488f131b
JB
4237
4238 else
4239 ecs->random_signal = 1;
488f131b 4240
04e68871 4241process_event_stop_test:
568d6575
UW
4242
4243 /* Re-fetch current thread's frame in case we did a
4244 "goto process_event_stop_test" above. */
4245 frame = get_current_frame ();
4246 gdbarch = get_frame_arch (frame);
4247
488f131b
JB
4248 /* For the program's own signals, act according to
4249 the signal handling tables. */
4250
4251 if (ecs->random_signal)
4252 {
4253 /* Signal not for debugging purposes. */
4254 int printed = 0;
24291992 4255 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
488f131b 4256
527159b7 4257 if (debug_infrun)
2020b7ab 4258 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
16c381f0 4259 ecs->event_thread->suspend.stop_signal);
527159b7 4260
488f131b
JB
4261 stopped_by_random_signal = 1;
4262
16c381f0 4263 if (signal_print[ecs->event_thread->suspend.stop_signal])
488f131b
JB
4264 {
4265 printed = 1;
4266 target_terminal_ours_for_output ();
16c381f0
JK
4267 print_signal_received_reason
4268 (ecs->event_thread->suspend.stop_signal);
488f131b 4269 }
252fbfc8
PA
4270 /* Always stop on signals if we're either just gaining control
4271 of the program, or the user explicitly requested this thread
4272 to remain stopped. */
d6b48e9c 4273 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4274 || ecs->event_thread->stop_requested
24291992 4275 || (!inf->detaching
16c381f0 4276 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b
JB
4277 {
4278 stop_stepping (ecs);
4279 return;
4280 }
4281 /* If not going to stop, give terminal back
4282 if we took it away. */
4283 else if (printed)
4284 target_terminal_inferior ();
4285
4286 /* Clear the signal if it should not be passed. */
16c381f0
JK
4287 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4288 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
488f131b 4289
fb14de7b 4290 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4291 && ecs->event_thread->control.trap_expected
8358c15c 4292 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4293 {
4294 /* We were just starting a new sequence, attempting to
4295 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4296 Instead this signal arrives. This signal will take us out
68f53502
AC
4297 of the stepping range so GDB needs to remember to, when
4298 the signal handler returns, resume stepping off that
4299 breakpoint. */
4300 /* To simplify things, "continue" is forced to use the same
4301 code paths as single-step - set a breakpoint at the
4302 signal return address and then, once hit, step off that
4303 breakpoint. */
237fc4c9
PA
4304 if (debug_infrun)
4305 fprintf_unfiltered (gdb_stdlog,
4306 "infrun: signal arrived while stepping over "
4307 "breakpoint\n");
d3169d93 4308
2c03e5be 4309 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4310 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4311 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4312 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4313 keep_going (ecs);
4314 return;
68f53502 4315 }
9d799f85 4316
16c381f0
JK
4317 if (ecs->event_thread->control.step_range_end != 0
4318 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_0
4319 && (ecs->event_thread->control.step_range_start <= stop_pc
4320 && stop_pc < ecs->event_thread->control.step_range_end)
edb3359d 4321 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4322 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4323 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4324 {
4325 /* The inferior is about to take a signal that will take it
4326 out of the single step range. Set a breakpoint at the
4327 current PC (which is presumably where the signal handler
4328 will eventually return) and then allow the inferior to
4329 run free.
4330
4331 Note that this is only needed for a signal delivered
4332 while in the single-step range. Nested signals aren't a
4333 problem as they eventually all return. */
237fc4c9
PA
4334 if (debug_infrun)
4335 fprintf_unfiltered (gdb_stdlog,
4336 "infrun: signal may take us out of "
4337 "single-step range\n");
4338
2c03e5be 4339 insert_hp_step_resume_breakpoint_at_frame (frame);
2455069d
UW
4340 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4341 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4342 keep_going (ecs);
4343 return;
d303a6c7 4344 }
9d799f85
AC
4345
4346 /* Note: step_resume_breakpoint may be non-NULL. This occures
4347 when either there's a nested signal, or when there's a
4348 pending signal enabled just as the signal handler returns
4349 (leaving the inferior at the step-resume-breakpoint without
4350 actually executing it). Either way continue until the
4351 breakpoint is really hit. */
488f131b
JB
4352 keep_going (ecs);
4353 return;
4354 }
4355
4356 /* Handle cases caused by hitting a breakpoint. */
4357 {
4358 CORE_ADDR jmp_buf_pc;
4359 struct bpstat_what what;
4360
16c381f0 4361 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
488f131b
JB
4362
4363 if (what.call_dummy)
4364 {
aa7d318d 4365 stop_stack_dummy = what.call_dummy;
c5aa993b 4366 }
c906108c 4367
628fe4e4
JK
4368 /* If we hit an internal event that triggers symbol changes, the
4369 current frame will be invalidated within bpstat_what (e.g., if
4370 we hit an internal solib event). Re-fetch it. */
4371 frame = get_current_frame ();
4372 gdbarch = get_frame_arch (frame);
4373
488f131b 4374 switch (what.main_action)
c5aa993b 4375 {
488f131b 4376 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
4377 /* If we hit the breakpoint at longjmp while stepping, we
4378 install a momentary breakpoint at the target of the
4379 jmp_buf. */
4380
4381 if (debug_infrun)
4382 fprintf_unfiltered (gdb_stdlog,
4383 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4384
4e1c45ea 4385 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4386
186c406b 4387 if (what.is_longjmp)
c5aa993b 4388 {
186c406b
TT
4389 if (!gdbarch_get_longjmp_target_p (gdbarch)
4390 || !gdbarch_get_longjmp_target (gdbarch,
4391 frame, &jmp_buf_pc))
4392 {
4393 if (debug_infrun)
3e43a32a
MS
4394 fprintf_unfiltered (gdb_stdlog,
4395 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4396 "(!gdbarch_get_longjmp_target)\n");
186c406b
TT
4397 keep_going (ecs);
4398 return;
4399 }
488f131b 4400
186c406b
TT
4401 /* We're going to replace the current step-resume breakpoint
4402 with a longjmp-resume breakpoint. */
4403 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae 4404
186c406b
TT
4405 /* Insert a breakpoint at resume address. */
4406 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4407 }
4408 else
4409 {
4410 struct symbol *func = get_frame_function (frame);
c906108c 4411
186c406b
TT
4412 if (func)
4413 check_exception_resume (ecs, frame, func);
4414 }
488f131b
JB
4415 keep_going (ecs);
4416 return;
c906108c 4417
488f131b 4418 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 4419 if (debug_infrun)
611c83ae
PA
4420 fprintf_unfiltered (gdb_stdlog,
4421 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4422
186c406b
TT
4423 if (what.is_longjmp)
4424 {
4425 gdb_assert (ecs->event_thread->control.step_resume_breakpoint
4426 != NULL);
4427 delete_step_resume_breakpoint (ecs->event_thread);
4428 }
4429 else
4430 {
4431 /* There are several cases to consider.
4432
4433 1. The initiating frame no longer exists. In this case
4434 we must stop, because the exception has gone too far.
4435
4436 2. The initiating frame exists, and is the same as the
4437 current frame. We stop, because the exception has been
4438 caught.
4439
4440 3. The initiating frame exists and is different from
4441 the current frame. This means the exception has been
4442 caught beneath the initiating frame, so keep going. */
4443 struct frame_info *init_frame
4444 = frame_find_by_id (ecs->event_thread->initiating_frame);
4445
4446 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4447 != NULL);
4448 delete_exception_resume_breakpoint (ecs->event_thread);
4449
4450 if (init_frame)
4451 {
4452 struct frame_id current_id
4453 = get_frame_id (get_current_frame ());
4454 if (frame_id_eq (current_id,
4455 ecs->event_thread->initiating_frame))
4456 {
4457 /* Case 2. Fall through. */
4458 }
4459 else
4460 {
4461 /* Case 3. */
4462 keep_going (ecs);
4463 return;
4464 }
4465 }
4466
4467 /* For Cases 1 and 2, remove the step-resume breakpoint,
4468 if it exists. */
4469 delete_step_resume_breakpoint (ecs->event_thread);
4470 }
611c83ae 4471
16c381f0 4472 ecs->event_thread->control.stop_step = 1;
33d62d64 4473 print_end_stepping_range_reason ();
611c83ae
PA
4474 stop_stepping (ecs);
4475 return;
488f131b
JB
4476
4477 case BPSTAT_WHAT_SINGLE:
527159b7 4478 if (debug_infrun)
8802d8ed 4479 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4e1c45ea 4480 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b
JB
4481 /* Still need to check other stuff, at least the case
4482 where we are stepping and step out of the right range. */
4483 break;
c906108c 4484
2c03e5be
PA
4485 case BPSTAT_WHAT_STEP_RESUME:
4486 if (debug_infrun)
4487 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4488
4489 delete_step_resume_breakpoint (ecs->event_thread);
9da8c2a0
PA
4490 if (ecs->event_thread->control.proceed_to_finish
4491 && execution_direction == EXEC_REVERSE)
4492 {
4493 struct thread_info *tp = ecs->event_thread;
4494
4495 /* We are finishing a function in reverse, and just hit
4496 the step-resume breakpoint at the start address of the
4497 function, and we're almost there -- just need to back
4498 up by one more single-step, which should take us back
4499 to the function call. */
4500 tp->control.step_range_start = tp->control.step_range_end = 1;
4501 keep_going (ecs);
4502 return;
4503 }
7e324e48 4504 fill_in_stop_func (gdbarch, ecs);
2c03e5be
PA
4505 if (stop_pc == ecs->stop_func_start
4506 && execution_direction == EXEC_REVERSE)
4507 {
4508 /* We are stepping over a function call in reverse, and
4509 just hit the step-resume breakpoint at the start
4510 address of the function. Go back to single-stepping,
4511 which should take us back to the function call. */
4512 ecs->event_thread->stepping_over_breakpoint = 1;
4513 keep_going (ecs);
4514 return;
4515 }
4516 break;
4517
488f131b 4518 case BPSTAT_WHAT_STOP_NOISY:
527159b7 4519 if (debug_infrun)
8802d8ed 4520 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 4521 stop_print_frame = 1;
c906108c 4522
d303a6c7
AC
4523 /* We are about to nuke the step_resume_breakpointt via the
4524 cleanup chain, so no need to worry about it here. */
c5aa993b 4525
488f131b
JB
4526 stop_stepping (ecs);
4527 return;
c5aa993b 4528
488f131b 4529 case BPSTAT_WHAT_STOP_SILENT:
527159b7 4530 if (debug_infrun)
8802d8ed 4531 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 4532 stop_print_frame = 0;
c5aa993b 4533
d303a6c7
AC
4534 /* We are about to nuke the step_resume_breakpoin via the
4535 cleanup chain, so no need to worry about it here. */
c5aa993b 4536
488f131b 4537 stop_stepping (ecs);
e441088d 4538 return;
c5aa993b 4539
2c03e5be 4540 case BPSTAT_WHAT_HP_STEP_RESUME:
527159b7 4541 if (debug_infrun)
2c03e5be 4542 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
527159b7 4543
4e1c45ea
PA
4544 delete_step_resume_breakpoint (ecs->event_thread);
4545 if (ecs->event_thread->step_after_step_resume_breakpoint)
68f53502
AC
4546 {
4547 /* Back when the step-resume breakpoint was inserted, we
4548 were trying to single-step off a breakpoint. Go back
4549 to doing that. */
4e1c45ea
PA
4550 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4551 ecs->event_thread->stepping_over_breakpoint = 1;
68f53502
AC
4552 keep_going (ecs);
4553 return;
4554 }
488f131b
JB
4555 break;
4556
488f131b
JB
4557 case BPSTAT_WHAT_KEEP_CHECKING:
4558 break;
4559 }
4560 }
c906108c 4561
488f131b
JB
4562 /* We come here if we hit a breakpoint but should not
4563 stop for it. Possibly we also were stepping
4564 and should stop for that. So fall through and
4565 test for stepping. But, if not stepping,
4566 do not stop. */
c906108c 4567
a7212384
UW
4568 /* In all-stop mode, if we're currently stepping but have stopped in
4569 some other thread, we need to switch back to the stepped thread. */
4570 if (!non_stop)
4571 {
4572 struct thread_info *tp;
abbb1732 4573
b3444185 4574 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
4575 ecs->event_thread);
4576 if (tp)
4577 {
4578 /* However, if the current thread is blocked on some internal
4579 breakpoint, and we simply need to step over that breakpoint
4580 to get it going again, do that first. */
16c381f0
JK
4581 if ((ecs->event_thread->control.trap_expected
4582 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
a7212384
UW
4583 || ecs->event_thread->stepping_over_breakpoint)
4584 {
4585 keep_going (ecs);
4586 return;
4587 }
4588
66852e9c
PA
4589 /* If the stepping thread exited, then don't try to switch
4590 back and resume it, which could fail in several different
4591 ways depending on the target. Instead, just keep going.
4592
4593 We can find a stepping dead thread in the thread list in
4594 two cases:
4595
4596 - The target supports thread exit events, and when the
4597 target tries to delete the thread from the thread list,
4598 inferior_ptid pointed at the exiting thread. In such
4599 case, calling delete_thread does not really remove the
4600 thread from the list; instead, the thread is left listed,
4601 with 'exited' state.
4602
4603 - The target's debug interface does not support thread
4604 exit events, and so we have no idea whatsoever if the
4605 previously stepping thread is still alive. For that
4606 reason, we need to synchronously query the target
4607 now. */
b3444185
PA
4608 if (is_exited (tp->ptid)
4609 || !target_thread_alive (tp->ptid))
4610 {
4611 if (debug_infrun)
3e43a32a
MS
4612 fprintf_unfiltered (gdb_stdlog,
4613 "infrun: not switching back to "
4614 "stepped thread, it has vanished\n");
b3444185
PA
4615
4616 delete_thread (tp->ptid);
4617 keep_going (ecs);
4618 return;
4619 }
4620
a7212384
UW
4621 /* Otherwise, we no longer expect a trap in the current thread.
4622 Clear the trap_expected flag before switching back -- this is
4623 what keep_going would do as well, if we called it. */
16c381f0 4624 ecs->event_thread->control.trap_expected = 0;
a7212384
UW
4625
4626 if (debug_infrun)
4627 fprintf_unfiltered (gdb_stdlog,
4628 "infrun: switching back to stepped thread\n");
4629
4630 ecs->event_thread = tp;
4631 ecs->ptid = tp->ptid;
4632 context_switch (ecs->ptid);
4633 keep_going (ecs);
4634 return;
4635 }
4636 }
4637
8358c15c 4638 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4639 {
527159b7 4640 if (debug_infrun)
d3169d93
DJ
4641 fprintf_unfiltered (gdb_stdlog,
4642 "infrun: step-resume breakpoint is inserted\n");
527159b7 4643
488f131b
JB
4644 /* Having a step-resume breakpoint overrides anything
4645 else having to do with stepping commands until
4646 that breakpoint is reached. */
488f131b
JB
4647 keep_going (ecs);
4648 return;
4649 }
c5aa993b 4650
16c381f0 4651 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4652 {
527159b7 4653 if (debug_infrun)
8a9de0e4 4654 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4655 /* Likewise if we aren't even stepping. */
488f131b
JB
4656 keep_going (ecs);
4657 return;
4658 }
c5aa993b 4659
4b7703ad
JB
4660 /* Re-fetch current thread's frame in case the code above caused
4661 the frame cache to be re-initialized, making our FRAME variable
4662 a dangling pointer. */
4663 frame = get_current_frame ();
628fe4e4 4664 gdbarch = get_frame_arch (frame);
7e324e48 4665 fill_in_stop_func (gdbarch, ecs);
4b7703ad 4666
488f131b 4667 /* If stepping through a line, keep going if still within it.
c906108c 4668
488f131b
JB
4669 Note that step_range_end is the address of the first instruction
4670 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4671 within it!
4672
4673 Note also that during reverse execution, we may be stepping
4674 through a function epilogue and therefore must detect when
4675 the current-frame changes in the middle of a line. */
4676
16c381f0
JK
4677 if (stop_pc >= ecs->event_thread->control.step_range_start
4678 && stop_pc < ecs->event_thread->control.step_range_end
31410e84 4679 && (execution_direction != EXEC_REVERSE
388a8562 4680 || frame_id_eq (get_frame_id (frame),
16c381f0 4681 ecs->event_thread->control.step_frame_id)))
488f131b 4682 {
527159b7 4683 if (debug_infrun)
5af949e3
UW
4684 fprintf_unfiltered
4685 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4686 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4687 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913
MS
4688
4689 /* When stepping backward, stop at beginning of line range
4690 (unless it's the function entry point, in which case
4691 keep going back to the call point). */
16c381f0 4692 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4693 && stop_pc != ecs->stop_func_start
4694 && execution_direction == EXEC_REVERSE)
4695 {
16c381f0 4696 ecs->event_thread->control.stop_step = 1;
33d62d64 4697 print_end_stepping_range_reason ();
b2175913
MS
4698 stop_stepping (ecs);
4699 }
4700 else
4701 keep_going (ecs);
4702
488f131b
JB
4703 return;
4704 }
c5aa993b 4705
488f131b 4706 /* We stepped out of the stepping range. */
c906108c 4707
488f131b 4708 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4709 loader dynamic symbol resolution code...
4710
4711 EXEC_FORWARD: we keep on single stepping until we exit the run
4712 time loader code and reach the callee's address.
4713
4714 EXEC_REVERSE: we've already executed the callee (backward), and
4715 the runtime loader code is handled just like any other
4716 undebuggable function call. Now we need only keep stepping
4717 backward through the trampoline code, and that's handled further
4718 down, so there is nothing for us to do here. */
4719
4720 if (execution_direction != EXEC_REVERSE
16c381f0 4721 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4722 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4723 {
4c8c40e6 4724 CORE_ADDR pc_after_resolver =
568d6575 4725 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4726
527159b7 4727 if (debug_infrun)
3e43a32a
MS
4728 fprintf_unfiltered (gdb_stdlog,
4729 "infrun: stepped into dynsym resolve code\n");
527159b7 4730
488f131b
JB
4731 if (pc_after_resolver)
4732 {
4733 /* Set up a step-resume breakpoint at the address
4734 indicated by SKIP_SOLIB_RESOLVER. */
4735 struct symtab_and_line sr_sal;
abbb1732 4736
fe39c653 4737 init_sal (&sr_sal);
488f131b 4738 sr_sal.pc = pc_after_resolver;
6c95b8df 4739 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4740
a6d9a66e
UW
4741 insert_step_resume_breakpoint_at_sal (gdbarch,
4742 sr_sal, null_frame_id);
c5aa993b 4743 }
c906108c 4744
488f131b
JB
4745 keep_going (ecs);
4746 return;
4747 }
c906108c 4748
16c381f0
JK
4749 if (ecs->event_thread->control.step_range_end != 1
4750 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4751 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 4752 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4753 {
527159b7 4754 if (debug_infrun)
3e43a32a
MS
4755 fprintf_unfiltered (gdb_stdlog,
4756 "infrun: stepped into signal trampoline\n");
42edda50 4757 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4758 a signal trampoline (either by a signal being delivered or by
4759 the signal handler returning). Just single-step until the
4760 inferior leaves the trampoline (either by calling the handler
4761 or returning). */
488f131b
JB
4762 keep_going (ecs);
4763 return;
4764 }
c906108c 4765
c17eaafe
DJ
4766 /* Check for subroutine calls. The check for the current frame
4767 equalling the step ID is not necessary - the check of the
4768 previous frame's ID is sufficient - but it is a common case and
4769 cheaper than checking the previous frame's ID.
14e60db5
DJ
4770
4771 NOTE: frame_id_eq will never report two invalid frame IDs as
4772 being equal, so to get into this block, both the current and
4773 previous frame must have valid frame IDs. */
005ca36a
JB
4774 /* The outer_frame_id check is a heuristic to detect stepping
4775 through startup code. If we step over an instruction which
4776 sets the stack pointer from an invalid value to a valid value,
4777 we may detect that as a subroutine call from the mythical
4778 "outermost" function. This could be fixed by marking
4779 outermost frames as !stack_p,code_p,special_p. Then the
4780 initial outermost frame, before sp was valid, would
ce6cca6d 4781 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4782 for more. */
edb3359d 4783 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 4784 ecs->event_thread->control.step_stack_frame_id)
005ca36a 4785 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
4786 ecs->event_thread->control.step_stack_frame_id)
4787 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
4788 outer_frame_id)
4789 || step_start_function != find_pc_function (stop_pc))))
488f131b 4790 {
95918acb 4791 CORE_ADDR real_stop_pc;
8fb3e588 4792
527159b7 4793 if (debug_infrun)
8a9de0e4 4794 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4795
16c381f0
JK
4796 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4797 || ((ecs->event_thread->control.step_range_end == 1)
d80b854b 4798 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4799 ecs->stop_func_start)))
95918acb
AC
4800 {
4801 /* I presume that step_over_calls is only 0 when we're
4802 supposed to be stepping at the assembly language level
4803 ("stepi"). Just stop. */
4804 /* Also, maybe we just did a "nexti" inside a prolog, so we
4805 thought it was a subroutine call but it was not. Stop as
4806 well. FENN */
388a8562 4807 /* And this works the same backward as frontward. MVS */
16c381f0 4808 ecs->event_thread->control.stop_step = 1;
33d62d64 4809 print_end_stepping_range_reason ();
95918acb
AC
4810 stop_stepping (ecs);
4811 return;
4812 }
8fb3e588 4813
388a8562
MS
4814 /* Reverse stepping through solib trampolines. */
4815
4816 if (execution_direction == EXEC_REVERSE
16c381f0 4817 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
4818 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4819 || (ecs->stop_func_start == 0
4820 && in_solib_dynsym_resolve_code (stop_pc))))
4821 {
4822 /* Any solib trampoline code can be handled in reverse
4823 by simply continuing to single-step. We have already
4824 executed the solib function (backwards), and a few
4825 steps will take us back through the trampoline to the
4826 caller. */
4827 keep_going (ecs);
4828 return;
4829 }
4830
16c381f0 4831 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 4832 {
b2175913
MS
4833 /* We're doing a "next".
4834
4835 Normal (forward) execution: set a breakpoint at the
4836 callee's return address (the address at which the caller
4837 will resume).
4838
4839 Reverse (backward) execution. set the step-resume
4840 breakpoint at the start of the function that we just
4841 stepped into (backwards), and continue to there. When we
6130d0b7 4842 get there, we'll need to single-step back to the caller. */
b2175913
MS
4843
4844 if (execution_direction == EXEC_REVERSE)
4845 {
4846 struct symtab_and_line sr_sal;
3067f6e5 4847
388a8562
MS
4848 /* Normal function call return (static or dynamic). */
4849 init_sal (&sr_sal);
4850 sr_sal.pc = ecs->stop_func_start;
6c95b8df
PA
4851 sr_sal.pspace = get_frame_program_space (frame);
4852 insert_step_resume_breakpoint_at_sal (gdbarch,
4853 sr_sal, null_frame_id);
b2175913
MS
4854 }
4855 else
568d6575 4856 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4857
8567c30f
AC
4858 keep_going (ecs);
4859 return;
4860 }
a53c66de 4861
95918acb 4862 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
4863 calling routine and the real function), locate the real
4864 function. That's what tells us (a) whether we want to step
4865 into it at all, and (b) what prologue we want to run to the
4866 end of, if we do step into it. */
568d6575 4867 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 4868 if (real_stop_pc == 0)
568d6575 4869 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
4870 if (real_stop_pc != 0)
4871 ecs->stop_func_start = real_stop_pc;
8fb3e588 4872
db5f024e 4873 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
4874 {
4875 struct symtab_and_line sr_sal;
abbb1732 4876
1b2bfbb9
RC
4877 init_sal (&sr_sal);
4878 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4879 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 4880
a6d9a66e
UW
4881 insert_step_resume_breakpoint_at_sal (gdbarch,
4882 sr_sal, null_frame_id);
8fb3e588
AC
4883 keep_going (ecs);
4884 return;
1b2bfbb9
RC
4885 }
4886
95918acb 4887 /* If we have line number information for the function we are
8fb3e588 4888 thinking of stepping into, step into it.
95918acb 4889
8fb3e588
AC
4890 If there are several symtabs at that PC (e.g. with include
4891 files), just want to know whether *any* of them have line
4892 numbers. find_pc_line handles this. */
95918acb
AC
4893 {
4894 struct symtab_and_line tmp_sal;
8fb3e588 4895
95918acb
AC
4896 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4897 if (tmp_sal.line != 0)
4898 {
b2175913 4899 if (execution_direction == EXEC_REVERSE)
568d6575 4900 handle_step_into_function_backward (gdbarch, ecs);
b2175913 4901 else
568d6575 4902 handle_step_into_function (gdbarch, ecs);
95918acb
AC
4903 return;
4904 }
4905 }
4906
4907 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
4908 set, we stop the step so that the user has a chance to switch
4909 in assembly mode. */
16c381f0 4910 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 4911 && step_stop_if_no_debug)
95918acb 4912 {
16c381f0 4913 ecs->event_thread->control.stop_step = 1;
33d62d64 4914 print_end_stepping_range_reason ();
95918acb
AC
4915 stop_stepping (ecs);
4916 return;
4917 }
4918
b2175913
MS
4919 if (execution_direction == EXEC_REVERSE)
4920 {
4921 /* Set a breakpoint at callee's start address.
4922 From there we can step once and be back in the caller. */
4923 struct symtab_and_line sr_sal;
abbb1732 4924
b2175913
MS
4925 init_sal (&sr_sal);
4926 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4927 sr_sal.pspace = get_frame_program_space (frame);
a6d9a66e
UW
4928 insert_step_resume_breakpoint_at_sal (gdbarch,
4929 sr_sal, null_frame_id);
b2175913
MS
4930 }
4931 else
4932 /* Set a breakpoint at callee's return address (the address
4933 at which the caller will resume). */
568d6575 4934 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4935
95918acb 4936 keep_going (ecs);
488f131b 4937 return;
488f131b 4938 }
c906108c 4939
fdd654f3
MS
4940 /* Reverse stepping through solib trampolines. */
4941
4942 if (execution_direction == EXEC_REVERSE
16c381f0 4943 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
4944 {
4945 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4946 || (ecs->stop_func_start == 0
4947 && in_solib_dynsym_resolve_code (stop_pc)))
4948 {
4949 /* Any solib trampoline code can be handled in reverse
4950 by simply continuing to single-step. We have already
4951 executed the solib function (backwards), and a few
4952 steps will take us back through the trampoline to the
4953 caller. */
4954 keep_going (ecs);
4955 return;
4956 }
4957 else if (in_solib_dynsym_resolve_code (stop_pc))
4958 {
4959 /* Stepped backward into the solib dynsym resolver.
4960 Set a breakpoint at its start and continue, then
4961 one more step will take us out. */
4962 struct symtab_and_line sr_sal;
abbb1732 4963
fdd654f3
MS
4964 init_sal (&sr_sal);
4965 sr_sal.pc = ecs->stop_func_start;
9d1807c3 4966 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
4967 insert_step_resume_breakpoint_at_sal (gdbarch,
4968 sr_sal, null_frame_id);
4969 keep_going (ecs);
4970 return;
4971 }
4972 }
4973
488f131b
JB
4974 /* If we're in the return path from a shared library trampoline,
4975 we want to proceed through the trampoline when stepping. */
568d6575 4976 if (gdbarch_in_solib_return_trampoline (gdbarch,
e76f05fa 4977 stop_pc, ecs->stop_func_name))
488f131b 4978 {
488f131b 4979 /* Determine where this trampoline returns. */
52f729a7 4980 CORE_ADDR real_stop_pc;
abbb1732 4981
568d6575 4982 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
c906108c 4983
527159b7 4984 if (debug_infrun)
3e43a32a
MS
4985 fprintf_unfiltered (gdb_stdlog,
4986 "infrun: stepped into solib return tramp\n");
527159b7 4987
488f131b 4988 /* Only proceed through if we know where it's going. */
d764a824 4989 if (real_stop_pc)
488f131b 4990 {
1777feb0 4991 /* And put the step-breakpoint there and go until there. */
488f131b
JB
4992 struct symtab_and_line sr_sal;
4993
fe39c653 4994 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 4995 sr_sal.pc = real_stop_pc;
488f131b 4996 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 4997 sr_sal.pspace = get_frame_program_space (frame);
44cbf7b5
AC
4998
4999 /* Do not specify what the fp should be when we stop since
5000 on some machines the prologue is where the new fp value
5001 is established. */
a6d9a66e
UW
5002 insert_step_resume_breakpoint_at_sal (gdbarch,
5003 sr_sal, null_frame_id);
c906108c 5004
488f131b
JB
5005 /* Restart without fiddling with the step ranges or
5006 other state. */
5007 keep_going (ecs);
5008 return;
5009 }
5010 }
c906108c 5011
2afb61aa 5012 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 5013
1b2bfbb9
RC
5014 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5015 the trampoline processing logic, however, there are some trampolines
5016 that have no names, so we should do trampoline handling first. */
16c381f0 5017 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 5018 && ecs->stop_func_name == NULL
2afb61aa 5019 && stop_pc_sal.line == 0)
1b2bfbb9 5020 {
527159b7 5021 if (debug_infrun)
3e43a32a
MS
5022 fprintf_unfiltered (gdb_stdlog,
5023 "infrun: stepped into undebuggable function\n");
527159b7 5024
1b2bfbb9 5025 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
5026 undebuggable function (where there is no debugging information
5027 and no line number corresponding to the address where the
1b2bfbb9
RC
5028 inferior stopped). Since we want to skip this kind of code,
5029 we keep going until the inferior returns from this
14e60db5
DJ
5030 function - unless the user has asked us not to (via
5031 set step-mode) or we no longer know how to get back
5032 to the call site. */
5033 if (step_stop_if_no_debug
c7ce8faa 5034 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
5035 {
5036 /* If we have no line number and the step-stop-if-no-debug
5037 is set, we stop the step so that the user has a chance to
5038 switch in assembly mode. */
16c381f0 5039 ecs->event_thread->control.stop_step = 1;
33d62d64 5040 print_end_stepping_range_reason ();
1b2bfbb9
RC
5041 stop_stepping (ecs);
5042 return;
5043 }
5044 else
5045 {
5046 /* Set a breakpoint at callee's return address (the address
5047 at which the caller will resume). */
568d6575 5048 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
5049 keep_going (ecs);
5050 return;
5051 }
5052 }
5053
16c381f0 5054 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
5055 {
5056 /* It is stepi or nexti. We always want to stop stepping after
5057 one instruction. */
527159b7 5058 if (debug_infrun)
8a9de0e4 5059 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
16c381f0 5060 ecs->event_thread->control.stop_step = 1;
33d62d64 5061 print_end_stepping_range_reason ();
1b2bfbb9
RC
5062 stop_stepping (ecs);
5063 return;
5064 }
5065
2afb61aa 5066 if (stop_pc_sal.line == 0)
488f131b
JB
5067 {
5068 /* We have no line number information. That means to stop
5069 stepping (does this always happen right after one instruction,
5070 when we do "s" in a function with no line numbers,
5071 or can this happen as a result of a return or longjmp?). */
527159b7 5072 if (debug_infrun)
8a9de0e4 5073 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
16c381f0 5074 ecs->event_thread->control.stop_step = 1;
33d62d64 5075 print_end_stepping_range_reason ();
488f131b
JB
5076 stop_stepping (ecs);
5077 return;
5078 }
c906108c 5079
edb3359d
DJ
5080 /* Look for "calls" to inlined functions, part one. If the inline
5081 frame machinery detected some skipped call sites, we have entered
5082 a new inline function. */
5083
5084 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5085 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5086 && inline_skipped_frames (ecs->ptid))
5087 {
5088 struct symtab_and_line call_sal;
5089
5090 if (debug_infrun)
5091 fprintf_unfiltered (gdb_stdlog,
5092 "infrun: stepped into inlined function\n");
5093
5094 find_frame_sal (get_current_frame (), &call_sal);
5095
16c381f0 5096 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5097 {
5098 /* For "step", we're going to stop. But if the call site
5099 for this inlined function is on the same source line as
5100 we were previously stepping, go down into the function
5101 first. Otherwise stop at the call site. */
5102
5103 if (call_sal.line == ecs->event_thread->current_line
5104 && call_sal.symtab == ecs->event_thread->current_symtab)
5105 step_into_inline_frame (ecs->ptid);
5106
16c381f0 5107 ecs->event_thread->control.stop_step = 1;
33d62d64 5108 print_end_stepping_range_reason ();
edb3359d
DJ
5109 stop_stepping (ecs);
5110 return;
5111 }
5112 else
5113 {
5114 /* For "next", we should stop at the call site if it is on a
5115 different source line. Otherwise continue through the
5116 inlined function. */
5117 if (call_sal.line == ecs->event_thread->current_line
5118 && call_sal.symtab == ecs->event_thread->current_symtab)
5119 keep_going (ecs);
5120 else
5121 {
16c381f0 5122 ecs->event_thread->control.stop_step = 1;
33d62d64 5123 print_end_stepping_range_reason ();
edb3359d
DJ
5124 stop_stepping (ecs);
5125 }
5126 return;
5127 }
5128 }
5129
5130 /* Look for "calls" to inlined functions, part two. If we are still
5131 in the same real function we were stepping through, but we have
5132 to go further up to find the exact frame ID, we are stepping
5133 through a more inlined call beyond its call site. */
5134
5135 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5136 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5137 ecs->event_thread->control.step_frame_id)
edb3359d 5138 && stepped_in_from (get_current_frame (),
16c381f0 5139 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5140 {
5141 if (debug_infrun)
5142 fprintf_unfiltered (gdb_stdlog,
5143 "infrun: stepping through inlined function\n");
5144
16c381f0 5145 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5146 keep_going (ecs);
5147 else
5148 {
16c381f0 5149 ecs->event_thread->control.stop_step = 1;
33d62d64 5150 print_end_stepping_range_reason ();
edb3359d
DJ
5151 stop_stepping (ecs);
5152 }
5153 return;
5154 }
5155
2afb61aa 5156 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5157 && (ecs->event_thread->current_line != stop_pc_sal.line
5158 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5159 {
5160 /* We are at the start of a different line. So stop. Note that
5161 we don't stop if we step into the middle of a different line.
5162 That is said to make things like for (;;) statements work
5163 better. */
527159b7 5164 if (debug_infrun)
3e43a32a
MS
5165 fprintf_unfiltered (gdb_stdlog,
5166 "infrun: stepped to a different line\n");
16c381f0 5167 ecs->event_thread->control.stop_step = 1;
33d62d64 5168 print_end_stepping_range_reason ();
488f131b
JB
5169 stop_stepping (ecs);
5170 return;
5171 }
c906108c 5172
488f131b 5173 /* We aren't done stepping.
c906108c 5174
488f131b
JB
5175 Optimize by setting the stepping range to the line.
5176 (We might not be in the original line, but if we entered a
5177 new line in mid-statement, we continue stepping. This makes
5178 things like for(;;) statements work better.) */
c906108c 5179
16c381f0
JK
5180 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5181 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
edb3359d 5182 set_step_info (frame, stop_pc_sal);
488f131b 5183
527159b7 5184 if (debug_infrun)
8a9de0e4 5185 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5186 keep_going (ecs);
104c1213
JM
5187}
5188
b3444185 5189/* Is thread TP in the middle of single-stepping? */
104c1213 5190
a289b8f6 5191static int
b3444185 5192currently_stepping (struct thread_info *tp)
a7212384 5193{
8358c15c
JK
5194 return ((tp->control.step_range_end
5195 && tp->control.step_resume_breakpoint == NULL)
5196 || tp->control.trap_expected
8358c15c 5197 || bpstat_should_step ());
a7212384
UW
5198}
5199
b3444185
PA
5200/* Returns true if any thread *but* the one passed in "data" is in the
5201 middle of stepping or of handling a "next". */
a7212384 5202
104c1213 5203static int
b3444185 5204currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 5205{
b3444185
PA
5206 if (tp == data)
5207 return 0;
5208
16c381f0 5209 return (tp->control.step_range_end
ede1849f 5210 || tp->control.trap_expected);
104c1213 5211}
c906108c 5212
b2175913
MS
5213/* Inferior has stepped into a subroutine call with source code that
5214 we should not step over. Do step to the first line of code in
5215 it. */
c2c6d25f
JM
5216
5217static void
568d6575
UW
5218handle_step_into_function (struct gdbarch *gdbarch,
5219 struct execution_control_state *ecs)
c2c6d25f
JM
5220{
5221 struct symtab *s;
2afb61aa 5222 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5223
7e324e48
GB
5224 fill_in_stop_func (gdbarch, ecs);
5225
c2c6d25f
JM
5226 s = find_pc_symtab (stop_pc);
5227 if (s && s->language != language_asm)
568d6575 5228 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5229 ecs->stop_func_start);
c2c6d25f 5230
2afb61aa 5231 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5232 /* Use the step_resume_break to step until the end of the prologue,
5233 even if that involves jumps (as it seems to on the vax under
5234 4.2). */
5235 /* If the prologue ends in the middle of a source line, continue to
5236 the end of that source line (if it is still within the function).
5237 Otherwise, just go to end of prologue. */
2afb61aa
PA
5238 if (stop_func_sal.end
5239 && stop_func_sal.pc != ecs->stop_func_start
5240 && stop_func_sal.end < ecs->stop_func_end)
5241 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5242
2dbd5e30
KB
5243 /* Architectures which require breakpoint adjustment might not be able
5244 to place a breakpoint at the computed address. If so, the test
5245 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5246 ecs->stop_func_start to an address at which a breakpoint may be
5247 legitimately placed.
8fb3e588 5248
2dbd5e30
KB
5249 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5250 made, GDB will enter an infinite loop when stepping through
5251 optimized code consisting of VLIW instructions which contain
5252 subinstructions corresponding to different source lines. On
5253 FR-V, it's not permitted to place a breakpoint on any but the
5254 first subinstruction of a VLIW instruction. When a breakpoint is
5255 set, GDB will adjust the breakpoint address to the beginning of
5256 the VLIW instruction. Thus, we need to make the corresponding
5257 adjustment here when computing the stop address. */
8fb3e588 5258
568d6575 5259 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5260 {
5261 ecs->stop_func_start
568d6575 5262 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5263 ecs->stop_func_start);
2dbd5e30
KB
5264 }
5265
c2c6d25f
JM
5266 if (ecs->stop_func_start == stop_pc)
5267 {
5268 /* We are already there: stop now. */
16c381f0 5269 ecs->event_thread->control.stop_step = 1;
33d62d64 5270 print_end_stepping_range_reason ();
c2c6d25f
JM
5271 stop_stepping (ecs);
5272 return;
5273 }
5274 else
5275 {
5276 /* Put the step-breakpoint there and go until there. */
fe39c653 5277 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5278 sr_sal.pc = ecs->stop_func_start;
5279 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5280 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5281
c2c6d25f 5282 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5283 some machines the prologue is where the new fp value is
5284 established. */
a6d9a66e 5285 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5286
5287 /* And make sure stepping stops right away then. */
16c381f0
JK
5288 ecs->event_thread->control.step_range_end
5289 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5290 }
5291 keep_going (ecs);
5292}
d4f3574e 5293
b2175913
MS
5294/* Inferior has stepped backward into a subroutine call with source
5295 code that we should not step over. Do step to the beginning of the
5296 last line of code in it. */
5297
5298static void
568d6575
UW
5299handle_step_into_function_backward (struct gdbarch *gdbarch,
5300 struct execution_control_state *ecs)
b2175913
MS
5301{
5302 struct symtab *s;
167e4384 5303 struct symtab_and_line stop_func_sal;
b2175913 5304
7e324e48
GB
5305 fill_in_stop_func (gdbarch, ecs);
5306
b2175913
MS
5307 s = find_pc_symtab (stop_pc);
5308 if (s && s->language != language_asm)
568d6575 5309 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5310 ecs->stop_func_start);
5311
5312 stop_func_sal = find_pc_line (stop_pc, 0);
5313
5314 /* OK, we're just going to keep stepping here. */
5315 if (stop_func_sal.pc == stop_pc)
5316 {
5317 /* We're there already. Just stop stepping now. */
16c381f0 5318 ecs->event_thread->control.stop_step = 1;
33d62d64 5319 print_end_stepping_range_reason ();
b2175913
MS
5320 stop_stepping (ecs);
5321 }
5322 else
5323 {
5324 /* Else just reset the step range and keep going.
5325 No step-resume breakpoint, they don't work for
5326 epilogues, which can have multiple entry paths. */
16c381f0
JK
5327 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5328 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5329 keep_going (ecs);
5330 }
5331 return;
5332}
5333
d3169d93 5334/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5335 This is used to both functions and to skip over code. */
5336
5337static void
2c03e5be
PA
5338insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5339 struct symtab_and_line sr_sal,
5340 struct frame_id sr_id,
5341 enum bptype sr_type)
44cbf7b5 5342{
611c83ae
PA
5343 /* There should never be more than one step-resume or longjmp-resume
5344 breakpoint per thread, so we should never be setting a new
44cbf7b5 5345 step_resume_breakpoint when one is already active. */
8358c15c 5346 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 5347 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
5348
5349 if (debug_infrun)
5350 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5351 "infrun: inserting step-resume breakpoint at %s\n",
5352 paddress (gdbarch, sr_sal.pc));
d3169d93 5353
8358c15c 5354 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
5355 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5356}
5357
9da8c2a0 5358void
2c03e5be
PA
5359insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5360 struct symtab_and_line sr_sal,
5361 struct frame_id sr_id)
5362{
5363 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5364 sr_sal, sr_id,
5365 bp_step_resume);
44cbf7b5 5366}
7ce450bd 5367
2c03e5be
PA
5368/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5369 This is used to skip a potential signal handler.
7ce450bd 5370
14e60db5
DJ
5371 This is called with the interrupted function's frame. The signal
5372 handler, when it returns, will resume the interrupted function at
5373 RETURN_FRAME.pc. */
d303a6c7
AC
5374
5375static void
2c03e5be 5376insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5377{
5378 struct symtab_and_line sr_sal;
a6d9a66e 5379 struct gdbarch *gdbarch;
d303a6c7 5380
f4c1edd8 5381 gdb_assert (return_frame != NULL);
d303a6c7
AC
5382 init_sal (&sr_sal); /* initialize to zeros */
5383
a6d9a66e 5384 gdbarch = get_frame_arch (return_frame);
568d6575 5385 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5386 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5387 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5388
2c03e5be
PA
5389 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5390 get_stack_frame_id (return_frame),
5391 bp_hp_step_resume);
d303a6c7
AC
5392}
5393
2c03e5be
PA
5394/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5395 is used to skip a function after stepping into it (for "next" or if
5396 the called function has no debugging information).
14e60db5
DJ
5397
5398 The current function has almost always been reached by single
5399 stepping a call or return instruction. NEXT_FRAME belongs to the
5400 current function, and the breakpoint will be set at the caller's
5401 resume address.
5402
5403 This is a separate function rather than reusing
2c03e5be 5404 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 5405 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5406 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5407
5408static void
5409insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5410{
5411 struct symtab_and_line sr_sal;
a6d9a66e 5412 struct gdbarch *gdbarch;
14e60db5
DJ
5413
5414 /* We shouldn't have gotten here if we don't know where the call site
5415 is. */
c7ce8faa 5416 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5417
5418 init_sal (&sr_sal); /* initialize to zeros */
5419
a6d9a66e 5420 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5421 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5422 frame_unwind_caller_pc (next_frame));
14e60db5 5423 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5424 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5425
a6d9a66e 5426 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5427 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5428}
5429
611c83ae
PA
5430/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5431 new breakpoint at the target of a jmp_buf. The handling of
5432 longjmp-resume uses the same mechanisms used for handling
5433 "step-resume" breakpoints. */
5434
5435static void
a6d9a66e 5436insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae
PA
5437{
5438 /* There should never be more than one step-resume or longjmp-resume
5439 breakpoint per thread, so we should never be setting a new
5440 longjmp_resume_breakpoint when one is already active. */
8358c15c 5441 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
611c83ae
PA
5442
5443 if (debug_infrun)
5444 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5445 "infrun: inserting longjmp-resume breakpoint at %s\n",
5446 paddress (gdbarch, pc));
611c83ae 5447
8358c15c 5448 inferior_thread ()->control.step_resume_breakpoint =
a6d9a66e 5449 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5450}
5451
186c406b
TT
5452/* Insert an exception resume breakpoint. TP is the thread throwing
5453 the exception. The block B is the block of the unwinder debug hook
5454 function. FRAME is the frame corresponding to the call to this
5455 function. SYM is the symbol of the function argument holding the
5456 target PC of the exception. */
5457
5458static void
5459insert_exception_resume_breakpoint (struct thread_info *tp,
5460 struct block *b,
5461 struct frame_info *frame,
5462 struct symbol *sym)
5463{
5464 struct gdb_exception e;
5465
5466 /* We want to ignore errors here. */
5467 TRY_CATCH (e, RETURN_MASK_ERROR)
5468 {
5469 struct symbol *vsym;
5470 struct value *value;
5471 CORE_ADDR handler;
5472 struct breakpoint *bp;
5473
5474 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5475 value = read_var_value (vsym, frame);
5476 /* If the value was optimized out, revert to the old behavior. */
5477 if (! value_optimized_out (value))
5478 {
5479 handler = value_as_address (value);
5480
5481 if (debug_infrun)
5482 fprintf_unfiltered (gdb_stdlog,
5483 "infrun: exception resume at %lx\n",
5484 (unsigned long) handler);
5485
5486 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5487 handler, bp_exception_resume);
5488 bp->thread = tp->num;
5489 inferior_thread ()->control.exception_resume_breakpoint = bp;
5490 }
5491 }
5492}
5493
5494/* This is called when an exception has been intercepted. Check to
5495 see whether the exception's destination is of interest, and if so,
5496 set an exception resume breakpoint there. */
5497
5498static void
5499check_exception_resume (struct execution_control_state *ecs,
5500 struct frame_info *frame, struct symbol *func)
5501{
5502 struct gdb_exception e;
5503
5504 TRY_CATCH (e, RETURN_MASK_ERROR)
5505 {
5506 struct block *b;
5507 struct dict_iterator iter;
5508 struct symbol *sym;
5509 int argno = 0;
5510
5511 /* The exception breakpoint is a thread-specific breakpoint on
5512 the unwinder's debug hook, declared as:
5513
5514 void _Unwind_DebugHook (void *cfa, void *handler);
5515
5516 The CFA argument indicates the frame to which control is
5517 about to be transferred. HANDLER is the destination PC.
5518
5519 We ignore the CFA and set a temporary breakpoint at HANDLER.
5520 This is not extremely efficient but it avoids issues in gdb
5521 with computing the DWARF CFA, and it also works even in weird
5522 cases such as throwing an exception from inside a signal
5523 handler. */
5524
5525 b = SYMBOL_BLOCK_VALUE (func);
5526 ALL_BLOCK_SYMBOLS (b, iter, sym)
5527 {
5528 if (!SYMBOL_IS_ARGUMENT (sym))
5529 continue;
5530
5531 if (argno == 0)
5532 ++argno;
5533 else
5534 {
5535 insert_exception_resume_breakpoint (ecs->event_thread,
5536 b, frame, sym);
5537 break;
5538 }
5539 }
5540 }
5541}
5542
104c1213
JM
5543static void
5544stop_stepping (struct execution_control_state *ecs)
5545{
527159b7 5546 if (debug_infrun)
8a9de0e4 5547 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 5548
cd0fc7c3
SS
5549 /* Let callers know we don't want to wait for the inferior anymore. */
5550 ecs->wait_some_more = 0;
5551}
5552
d4f3574e
SS
5553/* This function handles various cases where we need to continue
5554 waiting for the inferior. */
1777feb0 5555/* (Used to be the keep_going: label in the old wait_for_inferior). */
d4f3574e
SS
5556
5557static void
5558keep_going (struct execution_control_state *ecs)
5559{
c4dbc9af
PA
5560 /* Make sure normal_stop is called if we get a QUIT handled before
5561 reaching resume. */
5562 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5563
d4f3574e 5564 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5565 ecs->event_thread->prev_pc
5566 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5567
d4f3574e
SS
5568 /* If we did not do break;, it means we should keep running the
5569 inferior and not return to debugger. */
5570
16c381f0
JK
5571 if (ecs->event_thread->control.trap_expected
5572 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
5573 {
5574 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
5575 the inferior, else we'd not get here) and we haven't yet
5576 gotten our trap. Simply continue. */
c4dbc9af
PA
5577
5578 discard_cleanups (old_cleanups);
2020b7ab 5579 resume (currently_stepping (ecs->event_thread),
16c381f0 5580 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5581 }
5582 else
5583 {
5584 /* Either the trap was not expected, but we are continuing
488f131b
JB
5585 anyway (the user asked that this signal be passed to the
5586 child)
5587 -- or --
5588 The signal was SIGTRAP, e.g. it was our signal, but we
5589 decided we should resume from it.
d4f3574e 5590
c36b740a 5591 We're going to run this baby now!
d4f3574e 5592
c36b740a
VP
5593 Note that insert_breakpoints won't try to re-insert
5594 already inserted breakpoints. Therefore, we don't
5595 care if breakpoints were already inserted, or not. */
5596
4e1c45ea 5597 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 5598 {
9f5a595d 5599 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
abbb1732 5600
9f5a595d 5601 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
5602 /* Since we can't do a displaced step, we have to remove
5603 the breakpoint while we step it. To keep things
5604 simple, we remove them all. */
5605 remove_breakpoints ();
45e8c884
VP
5606 }
5607 else
d4f3574e 5608 {
e236ba44 5609 struct gdb_exception e;
abbb1732 5610
569631c6
UW
5611 /* Stop stepping when inserting breakpoints
5612 has failed. */
e236ba44
VP
5613 TRY_CATCH (e, RETURN_MASK_ERROR)
5614 {
5615 insert_breakpoints ();
5616 }
5617 if (e.reason < 0)
d4f3574e 5618 {
97bd5475 5619 exception_print (gdb_stderr, e);
d4f3574e
SS
5620 stop_stepping (ecs);
5621 return;
5622 }
d4f3574e
SS
5623 }
5624
16c381f0
JK
5625 ecs->event_thread->control.trap_expected
5626 = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
5627
5628 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
5629 specifies that such a signal should be delivered to the
5630 target program).
5631
5632 Typically, this would occure when a user is debugging a
5633 target monitor on a simulator: the target monitor sets a
5634 breakpoint; the simulator encounters this break-point and
5635 halts the simulation handing control to GDB; GDB, noteing
5636 that the break-point isn't valid, returns control back to the
5637 simulator; the simulator then delivers the hardware
1777feb0 5638 equivalent of a SIGNAL_TRAP to the program being debugged. */
488f131b 5639
16c381f0
JK
5640 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
5641 && !signal_program[ecs->event_thread->suspend.stop_signal])
5642 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
d4f3574e 5643
c4dbc9af 5644 discard_cleanups (old_cleanups);
2020b7ab 5645 resume (currently_stepping (ecs->event_thread),
16c381f0 5646 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5647 }
5648
488f131b 5649 prepare_to_wait (ecs);
d4f3574e
SS
5650}
5651
104c1213
JM
5652/* This function normally comes after a resume, before
5653 handle_inferior_event exits. It takes care of any last bits of
5654 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 5655
104c1213
JM
5656static void
5657prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 5658{
527159b7 5659 if (debug_infrun)
8a9de0e4 5660 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 5661
104c1213
JM
5662 /* This is the old end of the while loop. Let everybody know we
5663 want to wait for the inferior some more and get called again
5664 soon. */
5665 ecs->wait_some_more = 1;
c906108c 5666}
11cf8741 5667
33d62d64
JK
5668/* Several print_*_reason functions to print why the inferior has stopped.
5669 We always print something when the inferior exits, or receives a signal.
5670 The rest of the cases are dealt with later on in normal_stop and
5671 print_it_typical. Ideally there should be a call to one of these
5672 print_*_reason functions functions from handle_inferior_event each time
5673 stop_stepping is called. */
5674
5675/* Print why the inferior has stopped.
5676 We are done with a step/next/si/ni command, print why the inferior has
5677 stopped. For now print nothing. Print a message only if not in the middle
5678 of doing a "step n" operation for n > 1. */
5679
5680static void
5681print_end_stepping_range_reason (void)
5682{
16c381f0
JK
5683 if ((!inferior_thread ()->step_multi
5684 || !inferior_thread ()->control.stop_step)
79a45e25
PA
5685 && ui_out_is_mi_like_p (current_uiout))
5686 ui_out_field_string (current_uiout, "reason",
33d62d64
JK
5687 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5688}
5689
5690/* The inferior was terminated by a signal, print why it stopped. */
5691
11cf8741 5692static void
33d62d64 5693print_signal_exited_reason (enum target_signal siggnal)
11cf8741 5694{
79a45e25
PA
5695 struct ui_out *uiout = current_uiout;
5696
33d62d64
JK
5697 annotate_signalled ();
5698 if (ui_out_is_mi_like_p (uiout))
5699 ui_out_field_string
5700 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5701 ui_out_text (uiout, "\nProgram terminated with signal ");
5702 annotate_signal_name ();
5703 ui_out_field_string (uiout, "signal-name",
5704 target_signal_to_name (siggnal));
5705 annotate_signal_name_end ();
5706 ui_out_text (uiout, ", ");
5707 annotate_signal_string ();
5708 ui_out_field_string (uiout, "signal-meaning",
5709 target_signal_to_string (siggnal));
5710 annotate_signal_string_end ();
5711 ui_out_text (uiout, ".\n");
5712 ui_out_text (uiout, "The program no longer exists.\n");
5713}
5714
5715/* The inferior program is finished, print why it stopped. */
5716
5717static void
5718print_exited_reason (int exitstatus)
5719{
fda326dd
TT
5720 struct inferior *inf = current_inferior ();
5721 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
79a45e25 5722 struct ui_out *uiout = current_uiout;
fda326dd 5723
33d62d64
JK
5724 annotate_exited (exitstatus);
5725 if (exitstatus)
5726 {
5727 if (ui_out_is_mi_like_p (uiout))
5728 ui_out_field_string (uiout, "reason",
5729 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
5730 ui_out_text (uiout, "[Inferior ");
5731 ui_out_text (uiout, plongest (inf->num));
5732 ui_out_text (uiout, " (");
5733 ui_out_text (uiout, pidstr);
5734 ui_out_text (uiout, ") exited with code ");
33d62d64 5735 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 5736 ui_out_text (uiout, "]\n");
33d62d64
JK
5737 }
5738 else
11cf8741 5739 {
9dc5e2a9 5740 if (ui_out_is_mi_like_p (uiout))
034dad6f 5741 ui_out_field_string
33d62d64 5742 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
5743 ui_out_text (uiout, "[Inferior ");
5744 ui_out_text (uiout, plongest (inf->num));
5745 ui_out_text (uiout, " (");
5746 ui_out_text (uiout, pidstr);
5747 ui_out_text (uiout, ") exited normally]\n");
33d62d64
JK
5748 }
5749 /* Support the --return-child-result option. */
5750 return_child_result_value = exitstatus;
5751}
5752
5753/* Signal received, print why the inferior has stopped. The signal table
1777feb0 5754 tells us to print about it. */
33d62d64
JK
5755
5756static void
5757print_signal_received_reason (enum target_signal siggnal)
5758{
79a45e25
PA
5759 struct ui_out *uiout = current_uiout;
5760
33d62d64
JK
5761 annotate_signal ();
5762
5763 if (siggnal == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5764 {
5765 struct thread_info *t = inferior_thread ();
5766
5767 ui_out_text (uiout, "\n[");
5768 ui_out_field_string (uiout, "thread-name",
5769 target_pid_to_str (t->ptid));
5770 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5771 ui_out_text (uiout, " stopped");
5772 }
5773 else
5774 {
5775 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 5776 annotate_signal_name ();
33d62d64
JK
5777 if (ui_out_is_mi_like_p (uiout))
5778 ui_out_field_string
5779 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 5780 ui_out_field_string (uiout, "signal-name",
33d62d64 5781 target_signal_to_name (siggnal));
8b93c638
JM
5782 annotate_signal_name_end ();
5783 ui_out_text (uiout, ", ");
5784 annotate_signal_string ();
488f131b 5785 ui_out_field_string (uiout, "signal-meaning",
33d62d64 5786 target_signal_to_string (siggnal));
8b93c638 5787 annotate_signal_string_end ();
33d62d64
JK
5788 }
5789 ui_out_text (uiout, ".\n");
5790}
252fbfc8 5791
33d62d64
JK
5792/* Reverse execution: target ran out of history info, print why the inferior
5793 has stopped. */
252fbfc8 5794
33d62d64
JK
5795static void
5796print_no_history_reason (void)
5797{
79a45e25 5798 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
11cf8741 5799}
43ff13b4 5800
c906108c
SS
5801/* Here to return control to GDB when the inferior stops for real.
5802 Print appropriate messages, remove breakpoints, give terminal our modes.
5803
5804 STOP_PRINT_FRAME nonzero means print the executing frame
5805 (pc, function, args, file, line number and line text).
5806 BREAKPOINTS_FAILED nonzero means stop was due to error
5807 attempting to insert breakpoints. */
5808
5809void
96baa820 5810normal_stop (void)
c906108c 5811{
73b65bb0
DJ
5812 struct target_waitstatus last;
5813 ptid_t last_ptid;
29f49a6a 5814 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
5815
5816 get_last_target_status (&last_ptid, &last);
5817
29f49a6a
PA
5818 /* If an exception is thrown from this point on, make sure to
5819 propagate GDB's knowledge of the executing state to the
5820 frontend/user running state. A QUIT is an easy exception to see
5821 here, so do this before any filtered output. */
c35b1492
PA
5822 if (!non_stop)
5823 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5824 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5825 && last.kind != TARGET_WAITKIND_EXITED)
5826 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 5827
4f8d22e3
PA
5828 /* In non-stop mode, we don't want GDB to switch threads behind the
5829 user's back, to avoid races where the user is typing a command to
5830 apply to thread x, but GDB switches to thread y before the user
5831 finishes entering the command. */
5832
c906108c
SS
5833 /* As with the notification of thread events, we want to delay
5834 notifying the user that we've switched thread context until
5835 the inferior actually stops.
5836
73b65bb0
DJ
5837 There's no point in saying anything if the inferior has exited.
5838 Note that SIGNALLED here means "exited with a signal", not
5839 "received a signal". */
4f8d22e3
PA
5840 if (!non_stop
5841 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
5842 && target_has_execution
5843 && last.kind != TARGET_WAITKIND_SIGNALLED
5844 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
5845 {
5846 target_terminal_ours_for_output ();
a3f17187 5847 printf_filtered (_("[Switching to %s]\n"),
c95310c6 5848 target_pid_to_str (inferior_ptid));
b8fa951a 5849 annotate_thread_changed ();
39f77062 5850 previous_inferior_ptid = inferior_ptid;
c906108c 5851 }
c906108c 5852
74960c60 5853 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
5854 {
5855 if (remove_breakpoints ())
5856 {
5857 target_terminal_ours_for_output ();
3e43a32a
MS
5858 printf_filtered (_("Cannot remove breakpoints because "
5859 "program is no longer writable.\nFurther "
5860 "execution is probably impossible.\n"));
c906108c
SS
5861 }
5862 }
c906108c 5863
c906108c
SS
5864 /* If an auto-display called a function and that got a signal,
5865 delete that auto-display to avoid an infinite recursion. */
5866
5867 if (stopped_by_random_signal)
5868 disable_current_display ();
5869
5870 /* Don't print a message if in the middle of doing a "step n"
5871 operation for n > 1 */
af679fd0
PA
5872 if (target_has_execution
5873 && last.kind != TARGET_WAITKIND_SIGNALLED
5874 && last.kind != TARGET_WAITKIND_EXITED
5875 && inferior_thread ()->step_multi
16c381f0 5876 && inferior_thread ()->control.stop_step)
c906108c
SS
5877 goto done;
5878
5879 target_terminal_ours ();
0f641c01 5880 async_enable_stdin ();
c906108c 5881
7abfe014
DJ
5882 /* Set the current source location. This will also happen if we
5883 display the frame below, but the current SAL will be incorrect
5884 during a user hook-stop function. */
d729566a 5885 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
5886 set_current_sal_from_frame (get_current_frame (), 1);
5887
dd7e2d2b
PA
5888 /* Let the user/frontend see the threads as stopped. */
5889 do_cleanups (old_chain);
5890
5891 /* Look up the hook_stop and run it (CLI internally handles problem
5892 of stop_command's pre-hook not existing). */
5893 if (stop_command)
5894 catch_errors (hook_stop_stub, stop_command,
5895 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5896
d729566a 5897 if (!has_stack_frames ())
d51fd4c8 5898 goto done;
c906108c 5899
32400beb
PA
5900 if (last.kind == TARGET_WAITKIND_SIGNALLED
5901 || last.kind == TARGET_WAITKIND_EXITED)
5902 goto done;
5903
c906108c
SS
5904 /* Select innermost stack frame - i.e., current frame is frame 0,
5905 and current location is based on that.
5906 Don't do this on return from a stack dummy routine,
1777feb0 5907 or if the program has exited. */
c906108c
SS
5908
5909 if (!stop_stack_dummy)
5910 {
0f7d239c 5911 select_frame (get_current_frame ());
c906108c
SS
5912
5913 /* Print current location without a level number, if
c5aa993b
JM
5914 we have changed functions or hit a breakpoint.
5915 Print source line if we have one.
5916 bpstat_print() contains the logic deciding in detail
1777feb0 5917 what to print, based on the event(s) that just occurred. */
c906108c 5918
d01a8610
AS
5919 /* If --batch-silent is enabled then there's no need to print the current
5920 source location, and to try risks causing an error message about
5921 missing source files. */
5922 if (stop_print_frame && !batch_silent)
c906108c
SS
5923 {
5924 int bpstat_ret;
5925 int source_flag;
917317f4 5926 int do_frame_printing = 1;
347bddb7 5927 struct thread_info *tp = inferior_thread ();
c906108c 5928
16c381f0 5929 bpstat_ret = bpstat_print (tp->control.stop_bpstat);
917317f4
JM
5930 switch (bpstat_ret)
5931 {
5932 case PRINT_UNKNOWN:
b0f4b84b
DJ
5933 /* If we had hit a shared library event breakpoint,
5934 bpstat_print would print out this message. If we hit
5935 an OS-level shared library event, do the same
5936 thing. */
5937 if (last.kind == TARGET_WAITKIND_LOADED)
5938 {
5939 printf_filtered (_("Stopped due to shared library event\n"));
5940 source_flag = SRC_LINE; /* something bogus */
5941 do_frame_printing = 0;
5942 break;
5943 }
5944
aa0cd9c1 5945 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
5946 (or should) carry around the function and does (or
5947 should) use that when doing a frame comparison. */
16c381f0
JK
5948 if (tp->control.stop_step
5949 && frame_id_eq (tp->control.step_frame_id,
aa0cd9c1 5950 get_frame_id (get_current_frame ()))
917317f4 5951 && step_start_function == find_pc_function (stop_pc))
1777feb0
MS
5952 source_flag = SRC_LINE; /* Finished step, just
5953 print source line. */
917317f4 5954 else
1777feb0
MS
5955 source_flag = SRC_AND_LOC; /* Print location and
5956 source line. */
917317f4
JM
5957 break;
5958 case PRINT_SRC_AND_LOC:
1777feb0
MS
5959 source_flag = SRC_AND_LOC; /* Print location and
5960 source line. */
917317f4
JM
5961 break;
5962 case PRINT_SRC_ONLY:
c5394b80 5963 source_flag = SRC_LINE;
917317f4
JM
5964 break;
5965 case PRINT_NOTHING:
488f131b 5966 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
5967 do_frame_printing = 0;
5968 break;
5969 default:
e2e0b3e5 5970 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 5971 }
c906108c
SS
5972
5973 /* The behavior of this routine with respect to the source
5974 flag is:
c5394b80
JM
5975 SRC_LINE: Print only source line
5976 LOCATION: Print only location
1777feb0 5977 SRC_AND_LOC: Print location and source line. */
917317f4 5978 if (do_frame_printing)
b04f3ab4 5979 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
5980
5981 /* Display the auto-display expressions. */
5982 do_displays ();
5983 }
5984 }
5985
5986 /* Save the function value return registers, if we care.
5987 We might be about to restore their previous contents. */
9da8c2a0
PA
5988 if (inferior_thread ()->control.proceed_to_finish
5989 && execution_direction != EXEC_REVERSE)
d5c31457
UW
5990 {
5991 /* This should not be necessary. */
5992 if (stop_registers)
5993 regcache_xfree (stop_registers);
5994
5995 /* NB: The copy goes through to the target picking up the value of
5996 all the registers. */
5997 stop_registers = regcache_dup (get_current_regcache ());
5998 }
c906108c 5999
aa7d318d 6000 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 6001 {
b89667eb
DE
6002 /* Pop the empty frame that contains the stack dummy.
6003 This also restores inferior state prior to the call
16c381f0 6004 (struct infcall_suspend_state). */
b89667eb 6005 struct frame_info *frame = get_current_frame ();
abbb1732 6006
b89667eb
DE
6007 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6008 frame_pop (frame);
3e43a32a
MS
6009 /* frame_pop() calls reinit_frame_cache as the last thing it
6010 does which means there's currently no selected frame. We
6011 don't need to re-establish a selected frame if the dummy call
6012 returns normally, that will be done by
6013 restore_infcall_control_state. However, we do have to handle
6014 the case where the dummy call is returning after being
6015 stopped (e.g. the dummy call previously hit a breakpoint).
6016 We can't know which case we have so just always re-establish
6017 a selected frame here. */
0f7d239c 6018 select_frame (get_current_frame ());
c906108c
SS
6019 }
6020
c906108c
SS
6021done:
6022 annotate_stopped ();
41d2bdb4
PA
6023
6024 /* Suppress the stop observer if we're in the middle of:
6025
6026 - a step n (n > 1), as there still more steps to be done.
6027
6028 - a "finish" command, as the observer will be called in
6029 finish_command_continuation, so it can include the inferior
6030 function's return value.
6031
6032 - calling an inferior function, as we pretend we inferior didn't
6033 run at all. The return value of the call is handled by the
6034 expression evaluator, through call_function_by_hand. */
6035
6036 if (!target_has_execution
6037 || last.kind == TARGET_WAITKIND_SIGNALLED
6038 || last.kind == TARGET_WAITKIND_EXITED
6039 || (!inferior_thread ()->step_multi
16c381f0
JK
6040 && !(inferior_thread ()->control.stop_bpstat
6041 && inferior_thread ()->control.proceed_to_finish)
6042 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
6043 {
6044 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 6045 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 6046 stop_print_frame);
347bddb7 6047 else
1d33d6ba 6048 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 6049 }
347bddb7 6050
48844aa6
PA
6051 if (target_has_execution)
6052 {
6053 if (last.kind != TARGET_WAITKIND_SIGNALLED
6054 && last.kind != TARGET_WAITKIND_EXITED)
6055 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6056 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 6057 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 6058 }
6c95b8df
PA
6059
6060 /* Try to get rid of automatically added inferiors that are no
6061 longer needed. Keeping those around slows down things linearly.
6062 Note that this never removes the current inferior. */
6063 prune_inferiors ();
c906108c
SS
6064}
6065
6066static int
96baa820 6067hook_stop_stub (void *cmd)
c906108c 6068{
5913bcb0 6069 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
6070 return (0);
6071}
6072\f
c5aa993b 6073int
96baa820 6074signal_stop_state (int signo)
c906108c 6075{
d6b48e9c 6076 return signal_stop[signo];
c906108c
SS
6077}
6078
c5aa993b 6079int
96baa820 6080signal_print_state (int signo)
c906108c
SS
6081{
6082 return signal_print[signo];
6083}
6084
c5aa993b 6085int
96baa820 6086signal_pass_state (int signo)
c906108c
SS
6087{
6088 return signal_program[signo];
6089}
6090
2455069d
UW
6091static void
6092signal_cache_update (int signo)
6093{
6094 if (signo == -1)
6095 {
6096 for (signo = 0; signo < (int) TARGET_SIGNAL_LAST; signo++)
6097 signal_cache_update (signo);
6098
6099 return;
6100 }
6101
6102 signal_pass[signo] = (signal_stop[signo] == 0
6103 && signal_print[signo] == 0
6104 && signal_program[signo] == 1);
6105}
6106
488f131b 6107int
7bda5e4a 6108signal_stop_update (int signo, int state)
d4f3574e
SS
6109{
6110 int ret = signal_stop[signo];
abbb1732 6111
d4f3574e 6112 signal_stop[signo] = state;
2455069d 6113 signal_cache_update (signo);
d4f3574e
SS
6114 return ret;
6115}
6116
488f131b 6117int
7bda5e4a 6118signal_print_update (int signo, int state)
d4f3574e
SS
6119{
6120 int ret = signal_print[signo];
abbb1732 6121
d4f3574e 6122 signal_print[signo] = state;
2455069d 6123 signal_cache_update (signo);
d4f3574e
SS
6124 return ret;
6125}
6126
488f131b 6127int
7bda5e4a 6128signal_pass_update (int signo, int state)
d4f3574e
SS
6129{
6130 int ret = signal_program[signo];
abbb1732 6131
d4f3574e 6132 signal_program[signo] = state;
2455069d 6133 signal_cache_update (signo);
d4f3574e
SS
6134 return ret;
6135}
6136
c906108c 6137static void
96baa820 6138sig_print_header (void)
c906108c 6139{
3e43a32a
MS
6140 printf_filtered (_("Signal Stop\tPrint\tPass "
6141 "to program\tDescription\n"));
c906108c
SS
6142}
6143
6144static void
96baa820 6145sig_print_info (enum target_signal oursig)
c906108c 6146{
54363045 6147 const char *name = target_signal_to_name (oursig);
c906108c 6148 int name_padding = 13 - strlen (name);
96baa820 6149
c906108c
SS
6150 if (name_padding <= 0)
6151 name_padding = 0;
6152
6153 printf_filtered ("%s", name);
488f131b 6154 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6155 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6156 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6157 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6158 printf_filtered ("%s\n", target_signal_to_string (oursig));
6159}
6160
6161/* Specify how various signals in the inferior should be handled. */
6162
6163static void
96baa820 6164handle_command (char *args, int from_tty)
c906108c
SS
6165{
6166 char **argv;
6167 int digits, wordlen;
6168 int sigfirst, signum, siglast;
6169 enum target_signal oursig;
6170 int allsigs;
6171 int nsigs;
6172 unsigned char *sigs;
6173 struct cleanup *old_chain;
6174
6175 if (args == NULL)
6176 {
e2e0b3e5 6177 error_no_arg (_("signal to handle"));
c906108c
SS
6178 }
6179
1777feb0 6180 /* Allocate and zero an array of flags for which signals to handle. */
c906108c
SS
6181
6182 nsigs = (int) TARGET_SIGNAL_LAST;
6183 sigs = (unsigned char *) alloca (nsigs);
6184 memset (sigs, 0, nsigs);
6185
1777feb0 6186 /* Break the command line up into args. */
c906108c 6187
d1a41061 6188 argv = gdb_buildargv (args);
7a292a7a 6189 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6190
6191 /* Walk through the args, looking for signal oursigs, signal names, and
6192 actions. Signal numbers and signal names may be interspersed with
6193 actions, with the actions being performed for all signals cumulatively
1777feb0 6194 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6195
6196 while (*argv != NULL)
6197 {
6198 wordlen = strlen (*argv);
6199 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6200 {;
6201 }
6202 allsigs = 0;
6203 sigfirst = siglast = -1;
6204
6205 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6206 {
6207 /* Apply action to all signals except those used by the
1777feb0 6208 debugger. Silently skip those. */
c906108c
SS
6209 allsigs = 1;
6210 sigfirst = 0;
6211 siglast = nsigs - 1;
6212 }
6213 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6214 {
6215 SET_SIGS (nsigs, sigs, signal_stop);
6216 SET_SIGS (nsigs, sigs, signal_print);
6217 }
6218 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6219 {
6220 UNSET_SIGS (nsigs, sigs, signal_program);
6221 }
6222 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6223 {
6224 SET_SIGS (nsigs, sigs, signal_print);
6225 }
6226 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6227 {
6228 SET_SIGS (nsigs, sigs, signal_program);
6229 }
6230 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6231 {
6232 UNSET_SIGS (nsigs, sigs, signal_stop);
6233 }
6234 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6235 {
6236 SET_SIGS (nsigs, sigs, signal_program);
6237 }
6238 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6239 {
6240 UNSET_SIGS (nsigs, sigs, signal_print);
6241 UNSET_SIGS (nsigs, sigs, signal_stop);
6242 }
6243 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6244 {
6245 UNSET_SIGS (nsigs, sigs, signal_program);
6246 }
6247 else if (digits > 0)
6248 {
6249 /* It is numeric. The numeric signal refers to our own
6250 internal signal numbering from target.h, not to host/target
6251 signal number. This is a feature; users really should be
6252 using symbolic names anyway, and the common ones like
6253 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6254
6255 sigfirst = siglast = (int)
6256 target_signal_from_command (atoi (*argv));
6257 if ((*argv)[digits] == '-')
6258 {
6259 siglast = (int)
6260 target_signal_from_command (atoi ((*argv) + digits + 1));
6261 }
6262 if (sigfirst > siglast)
6263 {
1777feb0 6264 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6265 signum = sigfirst;
6266 sigfirst = siglast;
6267 siglast = signum;
6268 }
6269 }
6270 else
6271 {
6272 oursig = target_signal_from_name (*argv);
6273 if (oursig != TARGET_SIGNAL_UNKNOWN)
6274 {
6275 sigfirst = siglast = (int) oursig;
6276 }
6277 else
6278 {
6279 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6280 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6281 }
6282 }
6283
6284 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6285 which signals to apply actions to. */
c906108c
SS
6286
6287 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6288 {
6289 switch ((enum target_signal) signum)
6290 {
6291 case TARGET_SIGNAL_TRAP:
6292 case TARGET_SIGNAL_INT:
6293 if (!allsigs && !sigs[signum])
6294 {
9e2f0ad4 6295 if (query (_("%s is used by the debugger.\n\
3e43a32a
MS
6296Are you sure you want to change it? "),
6297 target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
6298 {
6299 sigs[signum] = 1;
6300 }
6301 else
6302 {
a3f17187 6303 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6304 gdb_flush (gdb_stdout);
6305 }
6306 }
6307 break;
6308 case TARGET_SIGNAL_0:
6309 case TARGET_SIGNAL_DEFAULT:
6310 case TARGET_SIGNAL_UNKNOWN:
6311 /* Make sure that "all" doesn't print these. */
6312 break;
6313 default:
6314 sigs[signum] = 1;
6315 break;
6316 }
6317 }
6318
6319 argv++;
6320 }
6321
3a031f65
PA
6322 for (signum = 0; signum < nsigs; signum++)
6323 if (sigs[signum])
6324 {
2455069d
UW
6325 signal_cache_update (-1);
6326 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
c906108c 6327
3a031f65
PA
6328 if (from_tty)
6329 {
6330 /* Show the results. */
6331 sig_print_header ();
6332 for (; signum < nsigs; signum++)
6333 if (sigs[signum])
6334 sig_print_info (signum);
6335 }
6336
6337 break;
6338 }
c906108c
SS
6339
6340 do_cleanups (old_chain);
6341}
6342
6343static void
96baa820 6344xdb_handle_command (char *args, int from_tty)
c906108c
SS
6345{
6346 char **argv;
6347 struct cleanup *old_chain;
6348
d1a41061
PP
6349 if (args == NULL)
6350 error_no_arg (_("xdb command"));
6351
1777feb0 6352 /* Break the command line up into args. */
c906108c 6353
d1a41061 6354 argv = gdb_buildargv (args);
7a292a7a 6355 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6356 if (argv[1] != (char *) NULL)
6357 {
6358 char *argBuf;
6359 int bufLen;
6360
6361 bufLen = strlen (argv[0]) + 20;
6362 argBuf = (char *) xmalloc (bufLen);
6363 if (argBuf)
6364 {
6365 int validFlag = 1;
6366 enum target_signal oursig;
6367
6368 oursig = target_signal_from_name (argv[0]);
6369 memset (argBuf, 0, bufLen);
6370 if (strcmp (argv[1], "Q") == 0)
6371 sprintf (argBuf, "%s %s", argv[0], "noprint");
6372 else
6373 {
6374 if (strcmp (argv[1], "s") == 0)
6375 {
6376 if (!signal_stop[oursig])
6377 sprintf (argBuf, "%s %s", argv[0], "stop");
6378 else
6379 sprintf (argBuf, "%s %s", argv[0], "nostop");
6380 }
6381 else if (strcmp (argv[1], "i") == 0)
6382 {
6383 if (!signal_program[oursig])
6384 sprintf (argBuf, "%s %s", argv[0], "pass");
6385 else
6386 sprintf (argBuf, "%s %s", argv[0], "nopass");
6387 }
6388 else if (strcmp (argv[1], "r") == 0)
6389 {
6390 if (!signal_print[oursig])
6391 sprintf (argBuf, "%s %s", argv[0], "print");
6392 else
6393 sprintf (argBuf, "%s %s", argv[0], "noprint");
6394 }
6395 else
6396 validFlag = 0;
6397 }
6398 if (validFlag)
6399 handle_command (argBuf, from_tty);
6400 else
a3f17187 6401 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 6402 if (argBuf)
b8c9b27d 6403 xfree (argBuf);
c906108c
SS
6404 }
6405 }
6406 do_cleanups (old_chain);
6407}
6408
6409/* Print current contents of the tables set by the handle command.
6410 It is possible we should just be printing signals actually used
6411 by the current target (but for things to work right when switching
6412 targets, all signals should be in the signal tables). */
6413
6414static void
96baa820 6415signals_info (char *signum_exp, int from_tty)
c906108c
SS
6416{
6417 enum target_signal oursig;
abbb1732 6418
c906108c
SS
6419 sig_print_header ();
6420
6421 if (signum_exp)
6422 {
6423 /* First see if this is a symbol name. */
6424 oursig = target_signal_from_name (signum_exp);
6425 if (oursig == TARGET_SIGNAL_UNKNOWN)
6426 {
6427 /* No, try numeric. */
6428 oursig =
bb518678 6429 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
6430 }
6431 sig_print_info (oursig);
6432 return;
6433 }
6434
6435 printf_filtered ("\n");
6436 /* These ugly casts brought to you by the native VAX compiler. */
6437 for (oursig = TARGET_SIGNAL_FIRST;
6438 (int) oursig < (int) TARGET_SIGNAL_LAST;
6439 oursig = (enum target_signal) ((int) oursig + 1))
6440 {
6441 QUIT;
6442
6443 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 6444 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
6445 sig_print_info (oursig);
6446 }
6447
3e43a32a
MS
6448 printf_filtered (_("\nUse the \"handle\" command "
6449 "to change these tables.\n"));
c906108c 6450}
4aa995e1 6451
c709acd1
PA
6452/* Check if it makes sense to read $_siginfo from the current thread
6453 at this point. If not, throw an error. */
6454
6455static void
6456validate_siginfo_access (void)
6457{
6458 /* No current inferior, no siginfo. */
6459 if (ptid_equal (inferior_ptid, null_ptid))
6460 error (_("No thread selected."));
6461
6462 /* Don't try to read from a dead thread. */
6463 if (is_exited (inferior_ptid))
6464 error (_("The current thread has terminated"));
6465
6466 /* ... or from a spinning thread. */
6467 if (is_running (inferior_ptid))
6468 error (_("Selected thread is running."));
6469}
6470
4aa995e1
PA
6471/* The $_siginfo convenience variable is a bit special. We don't know
6472 for sure the type of the value until we actually have a chance to
7a9dd1b2 6473 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
6474 also dependent on which thread you have selected.
6475
6476 1. making $_siginfo be an internalvar that creates a new value on
6477 access.
6478
6479 2. making the value of $_siginfo be an lval_computed value. */
6480
6481/* This function implements the lval_computed support for reading a
6482 $_siginfo value. */
6483
6484static void
6485siginfo_value_read (struct value *v)
6486{
6487 LONGEST transferred;
6488
c709acd1
PA
6489 validate_siginfo_access ();
6490
4aa995e1
PA
6491 transferred =
6492 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6493 NULL,
6494 value_contents_all_raw (v),
6495 value_offset (v),
6496 TYPE_LENGTH (value_type (v)));
6497
6498 if (transferred != TYPE_LENGTH (value_type (v)))
6499 error (_("Unable to read siginfo"));
6500}
6501
6502/* This function implements the lval_computed support for writing a
6503 $_siginfo value. */
6504
6505static void
6506siginfo_value_write (struct value *v, struct value *fromval)
6507{
6508 LONGEST transferred;
6509
c709acd1
PA
6510 validate_siginfo_access ();
6511
4aa995e1
PA
6512 transferred = target_write (&current_target,
6513 TARGET_OBJECT_SIGNAL_INFO,
6514 NULL,
6515 value_contents_all_raw (fromval),
6516 value_offset (v),
6517 TYPE_LENGTH (value_type (fromval)));
6518
6519 if (transferred != TYPE_LENGTH (value_type (fromval)))
6520 error (_("Unable to write siginfo"));
6521}
6522
c8f2448a 6523static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
6524 {
6525 siginfo_value_read,
6526 siginfo_value_write
6527 };
6528
6529/* Return a new value with the correct type for the siginfo object of
78267919
UW
6530 the current thread using architecture GDBARCH. Return a void value
6531 if there's no object available. */
4aa995e1 6532
2c0b251b 6533static struct value *
78267919 6534siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
4aa995e1 6535{
4aa995e1 6536 if (target_has_stack
78267919
UW
6537 && !ptid_equal (inferior_ptid, null_ptid)
6538 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 6539 {
78267919 6540 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 6541
78267919 6542 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
6543 }
6544
78267919 6545 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
6546}
6547
c906108c 6548\f
16c381f0
JK
6549/* infcall_suspend_state contains state about the program itself like its
6550 registers and any signal it received when it last stopped.
6551 This state must be restored regardless of how the inferior function call
6552 ends (either successfully, or after it hits a breakpoint or signal)
6553 if the program is to properly continue where it left off. */
6554
6555struct infcall_suspend_state
7a292a7a 6556{
16c381f0
JK
6557 struct thread_suspend_state thread_suspend;
6558 struct inferior_suspend_state inferior_suspend;
6559
6560 /* Other fields: */
7a292a7a 6561 CORE_ADDR stop_pc;
b89667eb 6562 struct regcache *registers;
1736ad11 6563
35515841 6564 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
6565 struct gdbarch *siginfo_gdbarch;
6566
6567 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6568 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6569 content would be invalid. */
6570 gdb_byte *siginfo_data;
b89667eb
DE
6571};
6572
16c381f0
JK
6573struct infcall_suspend_state *
6574save_infcall_suspend_state (void)
b89667eb 6575{
16c381f0 6576 struct infcall_suspend_state *inf_state;
b89667eb 6577 struct thread_info *tp = inferior_thread ();
16c381f0 6578 struct inferior *inf = current_inferior ();
1736ad11
JK
6579 struct regcache *regcache = get_current_regcache ();
6580 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6581 gdb_byte *siginfo_data = NULL;
6582
6583 if (gdbarch_get_siginfo_type_p (gdbarch))
6584 {
6585 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6586 size_t len = TYPE_LENGTH (type);
6587 struct cleanup *back_to;
6588
6589 siginfo_data = xmalloc (len);
6590 back_to = make_cleanup (xfree, siginfo_data);
6591
6592 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6593 siginfo_data, 0, len) == len)
6594 discard_cleanups (back_to);
6595 else
6596 {
6597 /* Errors ignored. */
6598 do_cleanups (back_to);
6599 siginfo_data = NULL;
6600 }
6601 }
6602
16c381f0 6603 inf_state = XZALLOC (struct infcall_suspend_state);
1736ad11
JK
6604
6605 if (siginfo_data)
6606 {
6607 inf_state->siginfo_gdbarch = gdbarch;
6608 inf_state->siginfo_data = siginfo_data;
6609 }
b89667eb 6610
16c381f0
JK
6611 inf_state->thread_suspend = tp->suspend;
6612 inf_state->inferior_suspend = inf->suspend;
6613
35515841
JK
6614 /* run_inferior_call will not use the signal due to its `proceed' call with
6615 TARGET_SIGNAL_0 anyway. */
16c381f0 6616 tp->suspend.stop_signal = TARGET_SIGNAL_0;
35515841 6617
b89667eb
DE
6618 inf_state->stop_pc = stop_pc;
6619
1736ad11 6620 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
6621
6622 return inf_state;
6623}
6624
6625/* Restore inferior session state to INF_STATE. */
6626
6627void
16c381f0 6628restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6629{
6630 struct thread_info *tp = inferior_thread ();
16c381f0 6631 struct inferior *inf = current_inferior ();
1736ad11
JK
6632 struct regcache *regcache = get_current_regcache ();
6633 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 6634
16c381f0
JK
6635 tp->suspend = inf_state->thread_suspend;
6636 inf->suspend = inf_state->inferior_suspend;
6637
b89667eb
DE
6638 stop_pc = inf_state->stop_pc;
6639
1736ad11
JK
6640 if (inf_state->siginfo_gdbarch == gdbarch)
6641 {
6642 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6643 size_t len = TYPE_LENGTH (type);
6644
6645 /* Errors ignored. */
6646 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6647 inf_state->siginfo_data, 0, len);
6648 }
6649
b89667eb
DE
6650 /* The inferior can be gone if the user types "print exit(0)"
6651 (and perhaps other times). */
6652 if (target_has_execution)
6653 /* NB: The register write goes through to the target. */
1736ad11 6654 regcache_cpy (regcache, inf_state->registers);
803b5f95 6655
16c381f0 6656 discard_infcall_suspend_state (inf_state);
b89667eb
DE
6657}
6658
6659static void
16c381f0 6660do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 6661{
16c381f0 6662 restore_infcall_suspend_state (state);
b89667eb
DE
6663}
6664
6665struct cleanup *
16c381f0
JK
6666make_cleanup_restore_infcall_suspend_state
6667 (struct infcall_suspend_state *inf_state)
b89667eb 6668{
16c381f0 6669 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
6670}
6671
6672void
16c381f0 6673discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6674{
6675 regcache_xfree (inf_state->registers);
803b5f95 6676 xfree (inf_state->siginfo_data);
b89667eb
DE
6677 xfree (inf_state);
6678}
6679
6680struct regcache *
16c381f0 6681get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
6682{
6683 return inf_state->registers;
6684}
6685
16c381f0
JK
6686/* infcall_control_state contains state regarding gdb's control of the
6687 inferior itself like stepping control. It also contains session state like
6688 the user's currently selected frame. */
b89667eb 6689
16c381f0 6690struct infcall_control_state
b89667eb 6691{
16c381f0
JK
6692 struct thread_control_state thread_control;
6693 struct inferior_control_state inferior_control;
d82142e2
JK
6694
6695 /* Other fields: */
6696 enum stop_stack_kind stop_stack_dummy;
6697 int stopped_by_random_signal;
7a292a7a 6698 int stop_after_trap;
7a292a7a 6699
b89667eb 6700 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 6701 struct frame_id selected_frame_id;
7a292a7a
SS
6702};
6703
c906108c 6704/* Save all of the information associated with the inferior<==>gdb
b89667eb 6705 connection. */
c906108c 6706
16c381f0
JK
6707struct infcall_control_state *
6708save_infcall_control_state (void)
c906108c 6709{
16c381f0 6710 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 6711 struct thread_info *tp = inferior_thread ();
d6b48e9c 6712 struct inferior *inf = current_inferior ();
7a292a7a 6713
16c381f0
JK
6714 inf_status->thread_control = tp->control;
6715 inf_status->inferior_control = inf->control;
d82142e2 6716
8358c15c 6717 tp->control.step_resume_breakpoint = NULL;
5b79abe7 6718 tp->control.exception_resume_breakpoint = NULL;
8358c15c 6719
16c381f0
JK
6720 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6721 chain. If caller's caller is walking the chain, they'll be happier if we
6722 hand them back the original chain when restore_infcall_control_state is
6723 called. */
6724 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
6725
6726 /* Other fields: */
6727 inf_status->stop_stack_dummy = stop_stack_dummy;
6728 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6729 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 6730
206415a3 6731 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 6732
7a292a7a 6733 return inf_status;
c906108c
SS
6734}
6735
c906108c 6736static int
96baa820 6737restore_selected_frame (void *args)
c906108c 6738{
488f131b 6739 struct frame_id *fid = (struct frame_id *) args;
c906108c 6740 struct frame_info *frame;
c906108c 6741
101dcfbe 6742 frame = frame_find_by_id (*fid);
c906108c 6743
aa0cd9c1
AC
6744 /* If inf_status->selected_frame_id is NULL, there was no previously
6745 selected frame. */
101dcfbe 6746 if (frame == NULL)
c906108c 6747 {
8a3fe4f8 6748 warning (_("Unable to restore previously selected frame."));
c906108c
SS
6749 return 0;
6750 }
6751
0f7d239c 6752 select_frame (frame);
c906108c
SS
6753
6754 return (1);
6755}
6756
b89667eb
DE
6757/* Restore inferior session state to INF_STATUS. */
6758
c906108c 6759void
16c381f0 6760restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 6761{
4e1c45ea 6762 struct thread_info *tp = inferior_thread ();
d6b48e9c 6763 struct inferior *inf = current_inferior ();
4e1c45ea 6764
8358c15c
JK
6765 if (tp->control.step_resume_breakpoint)
6766 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6767
5b79abe7
TT
6768 if (tp->control.exception_resume_breakpoint)
6769 tp->control.exception_resume_breakpoint->disposition
6770 = disp_del_at_next_stop;
6771
d82142e2 6772 /* Handle the bpstat_copy of the chain. */
16c381f0 6773 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 6774
16c381f0
JK
6775 tp->control = inf_status->thread_control;
6776 inf->control = inf_status->inferior_control;
d82142e2
JK
6777
6778 /* Other fields: */
6779 stop_stack_dummy = inf_status->stop_stack_dummy;
6780 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6781 stop_after_trap = inf_status->stop_after_trap;
c906108c 6782
b89667eb 6783 if (target_has_stack)
c906108c 6784 {
c906108c 6785 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
6786 walking the stack might encounter a garbage pointer and
6787 error() trying to dereference it. */
488f131b
JB
6788 if (catch_errors
6789 (restore_selected_frame, &inf_status->selected_frame_id,
6790 "Unable to restore previously selected frame:\n",
6791 RETURN_MASK_ERROR) == 0)
c906108c
SS
6792 /* Error in restoring the selected frame. Select the innermost
6793 frame. */
0f7d239c 6794 select_frame (get_current_frame ());
c906108c 6795 }
c906108c 6796
72cec141 6797 xfree (inf_status);
7a292a7a 6798}
c906108c 6799
74b7792f 6800static void
16c381f0 6801do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 6802{
16c381f0 6803 restore_infcall_control_state (sts);
74b7792f
AC
6804}
6805
6806struct cleanup *
16c381f0
JK
6807make_cleanup_restore_infcall_control_state
6808 (struct infcall_control_state *inf_status)
74b7792f 6809{
16c381f0 6810 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
6811}
6812
c906108c 6813void
16c381f0 6814discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 6815{
8358c15c
JK
6816 if (inf_status->thread_control.step_resume_breakpoint)
6817 inf_status->thread_control.step_resume_breakpoint->disposition
6818 = disp_del_at_next_stop;
6819
5b79abe7
TT
6820 if (inf_status->thread_control.exception_resume_breakpoint)
6821 inf_status->thread_control.exception_resume_breakpoint->disposition
6822 = disp_del_at_next_stop;
6823
1777feb0 6824 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 6825 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 6826
72cec141 6827 xfree (inf_status);
7a292a7a 6828}
b89667eb 6829\f
47932f85 6830int
3a3e9ee3 6831inferior_has_forked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
6832{
6833 struct target_waitstatus last;
6834 ptid_t last_ptid;
6835
6836 get_last_target_status (&last_ptid, &last);
6837
6838 if (last.kind != TARGET_WAITKIND_FORKED)
6839 return 0;
6840
3a3e9ee3 6841 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6842 return 0;
6843
6844 *child_pid = last.value.related_pid;
6845 return 1;
6846}
6847
6848int
3a3e9ee3 6849inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
6850{
6851 struct target_waitstatus last;
6852 ptid_t last_ptid;
6853
6854 get_last_target_status (&last_ptid, &last);
6855
6856 if (last.kind != TARGET_WAITKIND_VFORKED)
6857 return 0;
6858
3a3e9ee3 6859 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6860 return 0;
6861
6862 *child_pid = last.value.related_pid;
6863 return 1;
6864}
6865
6866int
3a3e9ee3 6867inferior_has_execd (ptid_t pid, char **execd_pathname)
47932f85
DJ
6868{
6869 struct target_waitstatus last;
6870 ptid_t last_ptid;
6871
6872 get_last_target_status (&last_ptid, &last);
6873
6874 if (last.kind != TARGET_WAITKIND_EXECD)
6875 return 0;
6876
3a3e9ee3 6877 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6878 return 0;
6879
6880 *execd_pathname = xstrdup (last.value.execd_pathname);
6881 return 1;
6882}
6883
a96d9b2e
SDJ
6884int
6885inferior_has_called_syscall (ptid_t pid, int *syscall_number)
6886{
6887 struct target_waitstatus last;
6888 ptid_t last_ptid;
6889
6890 get_last_target_status (&last_ptid, &last);
6891
6892 if (last.kind != TARGET_WAITKIND_SYSCALL_ENTRY &&
6893 last.kind != TARGET_WAITKIND_SYSCALL_RETURN)
6894 return 0;
6895
6896 if (!ptid_equal (last_ptid, pid))
6897 return 0;
6898
6899 *syscall_number = last.value.syscall_number;
6900 return 1;
6901}
6902
0723dbf5
PA
6903int
6904ptid_match (ptid_t ptid, ptid_t filter)
6905{
0723dbf5
PA
6906 if (ptid_equal (filter, minus_one_ptid))
6907 return 1;
6908 if (ptid_is_pid (filter)
6909 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6910 return 1;
6911 else if (ptid_equal (ptid, filter))
6912 return 1;
6913
6914 return 0;
6915}
6916
ca6724c1
KB
6917/* restore_inferior_ptid() will be used by the cleanup machinery
6918 to restore the inferior_ptid value saved in a call to
6919 save_inferior_ptid(). */
ce696e05
KB
6920
6921static void
6922restore_inferior_ptid (void *arg)
6923{
6924 ptid_t *saved_ptid_ptr = arg;
abbb1732 6925
ce696e05
KB
6926 inferior_ptid = *saved_ptid_ptr;
6927 xfree (arg);
6928}
6929
6930/* Save the value of inferior_ptid so that it may be restored by a
6931 later call to do_cleanups(). Returns the struct cleanup pointer
6932 needed for later doing the cleanup. */
6933
6934struct cleanup *
6935save_inferior_ptid (void)
6936{
6937 ptid_t *saved_ptid_ptr;
6938
6939 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6940 *saved_ptid_ptr = inferior_ptid;
6941 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6942}
c5aa993b 6943\f
488f131b 6944
b2175913
MS
6945/* User interface for reverse debugging:
6946 Set exec-direction / show exec-direction commands
6947 (returns error unless target implements to_set_exec_direction method). */
6948
32231432 6949int execution_direction = EXEC_FORWARD;
b2175913
MS
6950static const char exec_forward[] = "forward";
6951static const char exec_reverse[] = "reverse";
6952static const char *exec_direction = exec_forward;
6953static const char *exec_direction_names[] = {
6954 exec_forward,
6955 exec_reverse,
6956 NULL
6957};
6958
6959static void
6960set_exec_direction_func (char *args, int from_tty,
6961 struct cmd_list_element *cmd)
6962{
6963 if (target_can_execute_reverse)
6964 {
6965 if (!strcmp (exec_direction, exec_forward))
6966 execution_direction = EXEC_FORWARD;
6967 else if (!strcmp (exec_direction, exec_reverse))
6968 execution_direction = EXEC_REVERSE;
6969 }
8bbed405
MS
6970 else
6971 {
6972 exec_direction = exec_forward;
6973 error (_("Target does not support this operation."));
6974 }
b2175913
MS
6975}
6976
6977static void
6978show_exec_direction_func (struct ui_file *out, int from_tty,
6979 struct cmd_list_element *cmd, const char *value)
6980{
6981 switch (execution_direction) {
6982 case EXEC_FORWARD:
6983 fprintf_filtered (out, _("Forward.\n"));
6984 break;
6985 case EXEC_REVERSE:
6986 fprintf_filtered (out, _("Reverse.\n"));
6987 break;
b2175913 6988 default:
d8b34453
PA
6989 internal_error (__FILE__, __LINE__,
6990 _("bogus execution_direction value: %d"),
6991 (int) execution_direction);
b2175913
MS
6992 }
6993}
6994
6995/* User interface for non-stop mode. */
6996
ad52ddc6 6997int non_stop = 0;
ad52ddc6
PA
6998
6999static void
7000set_non_stop (char *args, int from_tty,
7001 struct cmd_list_element *c)
7002{
7003 if (target_has_execution)
7004 {
7005 non_stop_1 = non_stop;
7006 error (_("Cannot change this setting while the inferior is running."));
7007 }
7008
7009 non_stop = non_stop_1;
7010}
7011
7012static void
7013show_non_stop (struct ui_file *file, int from_tty,
7014 struct cmd_list_element *c, const char *value)
7015{
7016 fprintf_filtered (file,
7017 _("Controlling the inferior in non-stop mode is %s.\n"),
7018 value);
7019}
7020
d4db2f36
PA
7021static void
7022show_schedule_multiple (struct ui_file *file, int from_tty,
7023 struct cmd_list_element *c, const char *value)
7024{
3e43a32a
MS
7025 fprintf_filtered (file, _("Resuming the execution of threads "
7026 "of all processes is %s.\n"), value);
d4db2f36 7027}
ad52ddc6 7028
c906108c 7029void
96baa820 7030_initialize_infrun (void)
c906108c 7031{
52f0bd74
AC
7032 int i;
7033 int numsigs;
c906108c 7034
1bedd215
AC
7035 add_info ("signals", signals_info, _("\
7036What debugger does when program gets various signals.\n\
7037Specify a signal as argument to print info on that signal only."));
c906108c
SS
7038 add_info_alias ("handle", "signals", 0);
7039
1bedd215
AC
7040 add_com ("handle", class_run, handle_command, _("\
7041Specify how to handle a signal.\n\
c906108c
SS
7042Args are signals and actions to apply to those signals.\n\
7043Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7044from 1-15 are allowed for compatibility with old versions of GDB.\n\
7045Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7046The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
7047used by the debugger, typically SIGTRAP and SIGINT.\n\
7048Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
7049\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7050Stop means reenter debugger if this signal happens (implies print).\n\
7051Print means print a message if this signal happens.\n\
7052Pass means let program see this signal; otherwise program doesn't know.\n\
7053Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7054Pass and Stop may be combined."));
c906108c
SS
7055 if (xdb_commands)
7056 {
1bedd215
AC
7057 add_com ("lz", class_info, signals_info, _("\
7058What debugger does when program gets various signals.\n\
7059Specify a signal as argument to print info on that signal only."));
7060 add_com ("z", class_run, xdb_handle_command, _("\
7061Specify how to handle a signal.\n\
c906108c
SS
7062Args are signals and actions to apply to those signals.\n\
7063Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7064from 1-15 are allowed for compatibility with old versions of GDB.\n\
7065Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7066The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7067used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 7068Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
7069\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7070nopass), \"Q\" (noprint)\n\
7071Stop means reenter debugger if this signal happens (implies print).\n\
7072Print means print a message if this signal happens.\n\
7073Pass means let program see this signal; otherwise program doesn't know.\n\
7074Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7075Pass and Stop may be combined."));
c906108c
SS
7076 }
7077
7078 if (!dbx_commands)
1a966eab
AC
7079 stop_command = add_cmd ("stop", class_obscure,
7080 not_just_help_class_command, _("\
7081There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 7082This allows you to set a list of commands to be run each time execution\n\
1a966eab 7083of the program stops."), &cmdlist);
c906108c 7084
85c07804
AC
7085 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7086Set inferior debugging."), _("\
7087Show inferior debugging."), _("\
7088When non-zero, inferior specific debugging is enabled."),
7089 NULL,
920d2a44 7090 show_debug_infrun,
85c07804 7091 &setdebuglist, &showdebuglist);
527159b7 7092
3e43a32a
MS
7093 add_setshow_boolean_cmd ("displaced", class_maintenance,
7094 &debug_displaced, _("\
237fc4c9
PA
7095Set displaced stepping debugging."), _("\
7096Show displaced stepping debugging."), _("\
7097When non-zero, displaced stepping specific debugging is enabled."),
7098 NULL,
7099 show_debug_displaced,
7100 &setdebuglist, &showdebuglist);
7101
ad52ddc6
PA
7102 add_setshow_boolean_cmd ("non-stop", no_class,
7103 &non_stop_1, _("\
7104Set whether gdb controls the inferior in non-stop mode."), _("\
7105Show whether gdb controls the inferior in non-stop mode."), _("\
7106When debugging a multi-threaded program and this setting is\n\
7107off (the default, also called all-stop mode), when one thread stops\n\
7108(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7109all other threads in the program while you interact with the thread of\n\
7110interest. When you continue or step a thread, you can allow the other\n\
7111threads to run, or have them remain stopped, but while you inspect any\n\
7112thread's state, all threads stop.\n\
7113\n\
7114In non-stop mode, when one thread stops, other threads can continue\n\
7115to run freely. You'll be able to step each thread independently,\n\
7116leave it stopped or free to run as needed."),
7117 set_non_stop,
7118 show_non_stop,
7119 &setlist,
7120 &showlist);
7121
c906108c 7122 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 7123 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7124 signal_print = (unsigned char *)
7125 xmalloc (sizeof (signal_print[0]) * numsigs);
7126 signal_program = (unsigned char *)
7127 xmalloc (sizeof (signal_program[0]) * numsigs);
2455069d
UW
7128 signal_pass = (unsigned char *)
7129 xmalloc (sizeof (signal_program[0]) * numsigs);
c906108c
SS
7130 for (i = 0; i < numsigs; i++)
7131 {
7132 signal_stop[i] = 1;
7133 signal_print[i] = 1;
7134 signal_program[i] = 1;
7135 }
7136
7137 /* Signals caused by debugger's own actions
7138 should not be given to the program afterwards. */
7139 signal_program[TARGET_SIGNAL_TRAP] = 0;
7140 signal_program[TARGET_SIGNAL_INT] = 0;
7141
7142 /* Signals that are not errors should not normally enter the debugger. */
7143 signal_stop[TARGET_SIGNAL_ALRM] = 0;
7144 signal_print[TARGET_SIGNAL_ALRM] = 0;
7145 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
7146 signal_print[TARGET_SIGNAL_VTALRM] = 0;
7147 signal_stop[TARGET_SIGNAL_PROF] = 0;
7148 signal_print[TARGET_SIGNAL_PROF] = 0;
7149 signal_stop[TARGET_SIGNAL_CHLD] = 0;
7150 signal_print[TARGET_SIGNAL_CHLD] = 0;
7151 signal_stop[TARGET_SIGNAL_IO] = 0;
7152 signal_print[TARGET_SIGNAL_IO] = 0;
7153 signal_stop[TARGET_SIGNAL_POLL] = 0;
7154 signal_print[TARGET_SIGNAL_POLL] = 0;
7155 signal_stop[TARGET_SIGNAL_URG] = 0;
7156 signal_print[TARGET_SIGNAL_URG] = 0;
7157 signal_stop[TARGET_SIGNAL_WINCH] = 0;
7158 signal_print[TARGET_SIGNAL_WINCH] = 0;
16dfc9ce
JB
7159 signal_stop[TARGET_SIGNAL_PRIO] = 0;
7160 signal_print[TARGET_SIGNAL_PRIO] = 0;
c906108c 7161
cd0fc7c3
SS
7162 /* These signals are used internally by user-level thread
7163 implementations. (See signal(5) on Solaris.) Like the above
7164 signals, a healthy program receives and handles them as part of
7165 its normal operation. */
7166 signal_stop[TARGET_SIGNAL_LWP] = 0;
7167 signal_print[TARGET_SIGNAL_LWP] = 0;
7168 signal_stop[TARGET_SIGNAL_WAITING] = 0;
7169 signal_print[TARGET_SIGNAL_WAITING] = 0;
7170 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
7171 signal_print[TARGET_SIGNAL_CANCEL] = 0;
7172
2455069d
UW
7173 /* Update cached state. */
7174 signal_cache_update (-1);
7175
85c07804
AC
7176 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7177 &stop_on_solib_events, _("\
7178Set stopping for shared library events."), _("\
7179Show stopping for shared library events."), _("\
c906108c
SS
7180If nonzero, gdb will give control to the user when the dynamic linker\n\
7181notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
7182to the user would be loading/unloading of a new library."),
7183 NULL,
920d2a44 7184 show_stop_on_solib_events,
85c07804 7185 &setlist, &showlist);
c906108c 7186
7ab04401
AC
7187 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7188 follow_fork_mode_kind_names,
7189 &follow_fork_mode_string, _("\
7190Set debugger response to a program call of fork or vfork."), _("\
7191Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7192A fork or vfork creates a new process. follow-fork-mode can be:\n\
7193 parent - the original process is debugged after a fork\n\
7194 child - the new process is debugged after a fork\n\
ea1dd7bc 7195The unfollowed process will continue to run.\n\
7ab04401
AC
7196By default, the debugger will follow the parent process."),
7197 NULL,
920d2a44 7198 show_follow_fork_mode_string,
7ab04401
AC
7199 &setlist, &showlist);
7200
6c95b8df
PA
7201 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7202 follow_exec_mode_names,
7203 &follow_exec_mode_string, _("\
7204Set debugger response to a program call of exec."), _("\
7205Show debugger response to a program call of exec."), _("\
7206An exec call replaces the program image of a process.\n\
7207\n\
7208follow-exec-mode can be:\n\
7209\n\
cce7e648 7210 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7211to this new inferior. The program the process was running before\n\
7212the exec call can be restarted afterwards by restarting the original\n\
7213inferior.\n\
7214\n\
7215 same - the debugger keeps the process bound to the same inferior.\n\
7216The new executable image replaces the previous executable loaded in\n\
7217the inferior. Restarting the inferior after the exec call restarts\n\
7218the executable the process was running after the exec call.\n\
7219\n\
7220By default, the debugger will use the same inferior."),
7221 NULL,
7222 show_follow_exec_mode_string,
7223 &setlist, &showlist);
7224
7ab04401
AC
7225 add_setshow_enum_cmd ("scheduler-locking", class_run,
7226 scheduler_enums, &scheduler_mode, _("\
7227Set mode for locking scheduler during execution."), _("\
7228Show mode for locking scheduler during execution."), _("\
c906108c
SS
7229off == no locking (threads may preempt at any time)\n\
7230on == full locking (no thread except the current thread may run)\n\
7231step == scheduler locked during every single-step operation.\n\
7232 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7233 Other threads may run while stepping over a function call ('next')."),
7234 set_schedlock_func, /* traps on target vector */
920d2a44 7235 show_scheduler_mode,
7ab04401 7236 &setlist, &showlist);
5fbbeb29 7237
d4db2f36
PA
7238 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7239Set mode for resuming threads of all processes."), _("\
7240Show mode for resuming threads of all processes."), _("\
7241When on, execution commands (such as 'continue' or 'next') resume all\n\
7242threads of all processes. When off (which is the default), execution\n\
7243commands only resume the threads of the current process. The set of\n\
7244threads that are resumed is further refined by the scheduler-locking\n\
7245mode (see help set scheduler-locking)."),
7246 NULL,
7247 show_schedule_multiple,
7248 &setlist, &showlist);
7249
5bf193a2
AC
7250 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7251Set mode of the step operation."), _("\
7252Show mode of the step operation."), _("\
7253When set, doing a step over a function without debug line information\n\
7254will stop at the first instruction of that function. Otherwise, the\n\
7255function is skipped and the step command stops at a different source line."),
7256 NULL,
920d2a44 7257 show_step_stop_if_no_debug,
5bf193a2 7258 &setlist, &showlist);
ca6724c1 7259
fff08868
HZ
7260 add_setshow_enum_cmd ("displaced-stepping", class_run,
7261 can_use_displaced_stepping_enum,
7262 &can_use_displaced_stepping, _("\
237fc4c9
PA
7263Set debugger's willingness to use displaced stepping."), _("\
7264Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7265If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7266supported by the target architecture. If off, gdb will not use displaced\n\
7267stepping to step over breakpoints, even if such is supported by the target\n\
7268architecture. If auto (which is the default), gdb will use displaced stepping\n\
7269if the target architecture supports it and non-stop mode is active, but will not\n\
7270use it in all-stop mode (see help set non-stop)."),
7271 NULL,
7272 show_can_use_displaced_stepping,
7273 &setlist, &showlist);
237fc4c9 7274
b2175913
MS
7275 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7276 &exec_direction, _("Set direction of execution.\n\
7277Options are 'forward' or 'reverse'."),
7278 _("Show direction of execution (forward/reverse)."),
7279 _("Tells gdb whether to execute forward or backward."),
7280 set_exec_direction_func, show_exec_direction_func,
7281 &setlist, &showlist);
7282
6c95b8df
PA
7283 /* Set/show detach-on-fork: user-settable mode. */
7284
7285 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7286Set whether gdb will detach the child of a fork."), _("\
7287Show whether gdb will detach the child of a fork."), _("\
7288Tells gdb whether to detach the child of a fork."),
7289 NULL, NULL, &setlist, &showlist);
7290
03583c20
UW
7291 /* Set/show disable address space randomization mode. */
7292
7293 add_setshow_boolean_cmd ("disable-randomization", class_support,
7294 &disable_randomization, _("\
7295Set disabling of debuggee's virtual address space randomization."), _("\
7296Show disabling of debuggee's virtual address space randomization."), _("\
7297When this mode is on (which is the default), randomization of the virtual\n\
7298address space is disabled. Standalone programs run with the randomization\n\
7299enabled by default on some platforms."),
7300 &set_disable_randomization,
7301 &show_disable_randomization,
7302 &setlist, &showlist);
7303
ca6724c1 7304 /* ptid initializations */
ca6724c1
KB
7305 inferior_ptid = null_ptid;
7306 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7307
7308 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7309 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7310 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7311 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7312
7313 /* Explicitly create without lookup, since that tries to create a
7314 value with a void typed value, and when we get here, gdbarch
7315 isn't initialized yet. At this point, we're quite sure there
7316 isn't another convenience variable of the same name. */
7317 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
d914c394
SS
7318
7319 add_setshow_boolean_cmd ("observer", no_class,
7320 &observer_mode_1, _("\
7321Set whether gdb controls the inferior in observer mode."), _("\
7322Show whether gdb controls the inferior in observer mode."), _("\
7323In observer mode, GDB can get data from the inferior, but not\n\
7324affect its execution. Registers and memory may not be changed,\n\
7325breakpoints may not be set, and the program cannot be interrupted\n\
7326or signalled."),
7327 set_observer_mode,
7328 show_observer_mode,
7329 &setlist,
7330 &showlist);
c906108c 7331}