]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/infrun.c
infrun.c:keep_going: update comments.
[thirdparty/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
28e7fd62 4 Copyright (C) 1986-2013 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
22#include "gdb_string.h"
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
60250e8b 27#include "exceptions.h"
c906108c 28#include "breakpoint.h"
03f2053f 29#include "gdb_wait.h"
c906108c
SS
30#include "gdbcore.h"
31#include "gdbcmd.h"
210661e7 32#include "cli/cli-script.h"
c906108c
SS
33#include "target.h"
34#include "gdbthread.h"
35#include "annotate.h"
1adeb98a 36#include "symfile.h"
7a292a7a 37#include "top.h"
c906108c 38#include <signal.h>
2acceee2 39#include "inf-loop.h"
4e052eda 40#include "regcache.h"
fd0407d6 41#include "value.h"
06600e06 42#include "observer.h"
f636b87d 43#include "language.h"
a77053c2 44#include "solib.h"
f17517ea 45#include "main.h"
186c406b
TT
46#include "dictionary.h"
47#include "block.h"
9f976b41 48#include "gdb_assert.h"
034dad6f 49#include "mi/mi-common.h"
4f8d22e3 50#include "event-top.h"
96429cc8 51#include "record.h"
d02ed0bb 52#include "record-full.h"
edb3359d 53#include "inline-frame.h"
4efc6507 54#include "jit.h"
06cd862c 55#include "tracepoint.h"
be34f849 56#include "continuations.h"
b4a14fd0 57#include "interps.h"
1bfeeb0f 58#include "skip.h"
28106bc2
SDJ
59#include "probe.h"
60#include "objfiles.h"
de0bea00 61#include "completer.h"
9107fc8d 62#include "target-descriptions.h"
c906108c
SS
63
64/* Prototypes for local functions */
65
96baa820 66static void signals_info (char *, int);
c906108c 67
96baa820 68static void handle_command (char *, int);
c906108c 69
2ea28649 70static void sig_print_info (enum gdb_signal);
c906108c 71
96baa820 72static void sig_print_header (void);
c906108c 73
74b7792f 74static void resume_cleanups (void *);
c906108c 75
96baa820 76static int hook_stop_stub (void *);
c906108c 77
96baa820
JM
78static int restore_selected_frame (void *);
79
4ef3f3be 80static int follow_fork (void);
96baa820
JM
81
82static void set_schedlock_func (char *args, int from_tty,
488f131b 83 struct cmd_list_element *c);
96baa820 84
a289b8f6
JK
85static int currently_stepping (struct thread_info *tp);
86
b3444185
PA
87static int currently_stepping_or_nexting_callback (struct thread_info *tp,
88 void *data);
a7212384 89
96baa820
JM
90static void xdb_handle_command (char *args, int from_tty);
91
6a6b96b9 92static int prepare_to_proceed (int);
ea67f13b 93
33d62d64
JK
94static void print_exited_reason (int exitstatus);
95
2ea28649 96static void print_signal_exited_reason (enum gdb_signal siggnal);
33d62d64
JK
97
98static void print_no_history_reason (void);
99
2ea28649 100static void print_signal_received_reason (enum gdb_signal siggnal);
33d62d64
JK
101
102static void print_end_stepping_range_reason (void);
103
96baa820 104void _initialize_infrun (void);
43ff13b4 105
e58b0e63
PA
106void nullify_last_target_wait_ptid (void);
107
2c03e5be 108static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
109
110static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
111
2484c66b
UW
112static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
113
5fbbeb29
CF
114/* When set, stop the 'step' command if we enter a function which has
115 no line number information. The normal behavior is that we step
116 over such function. */
117int step_stop_if_no_debug = 0;
920d2a44
AC
118static void
119show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121{
122 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
123}
5fbbeb29 124
1777feb0 125/* In asynchronous mode, but simulating synchronous execution. */
96baa820 126
43ff13b4
JM
127int sync_execution = 0;
128
c906108c
SS
129/* wait_for_inferior and normal_stop use this to notify the user
130 when the inferior stopped in a different thread than it had been
96baa820
JM
131 running in. */
132
39f77062 133static ptid_t previous_inferior_ptid;
7a292a7a 134
07107ca6
LM
135/* If set (default for legacy reasons), when following a fork, GDB
136 will detach from one of the fork branches, child or parent.
137 Exactly which branch is detached depends on 'set follow-fork-mode'
138 setting. */
139
140static int detach_fork = 1;
6c95b8df 141
237fc4c9
PA
142int debug_displaced = 0;
143static void
144show_debug_displaced (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146{
147 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
148}
149
ccce17b0 150unsigned int debug_infrun = 0;
920d2a44
AC
151static void
152show_debug_infrun (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
154{
155 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
156}
527159b7 157
03583c20
UW
158
159/* Support for disabling address space randomization. */
160
161int disable_randomization = 1;
162
163static void
164show_disable_randomization (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166{
167 if (target_supports_disable_randomization ())
168 fprintf_filtered (file,
169 _("Disabling randomization of debuggee's "
170 "virtual address space is %s.\n"),
171 value);
172 else
173 fputs_filtered (_("Disabling randomization of debuggee's "
174 "virtual address space is unsupported on\n"
175 "this platform.\n"), file);
176}
177
178static void
179set_disable_randomization (char *args, int from_tty,
180 struct cmd_list_element *c)
181{
182 if (!target_supports_disable_randomization ())
183 error (_("Disabling randomization of debuggee's "
184 "virtual address space is unsupported on\n"
185 "this platform."));
186}
187
d32dc48e
PA
188/* User interface for non-stop mode. */
189
190int non_stop = 0;
191static int non_stop_1 = 0;
192
193static void
194set_non_stop (char *args, int from_tty,
195 struct cmd_list_element *c)
196{
197 if (target_has_execution)
198 {
199 non_stop_1 = non_stop;
200 error (_("Cannot change this setting while the inferior is running."));
201 }
202
203 non_stop = non_stop_1;
204}
205
206static void
207show_non_stop (struct ui_file *file, int from_tty,
208 struct cmd_list_element *c, const char *value)
209{
210 fprintf_filtered (file,
211 _("Controlling the inferior in non-stop mode is %s.\n"),
212 value);
213}
214
d914c394
SS
215/* "Observer mode" is somewhat like a more extreme version of
216 non-stop, in which all GDB operations that might affect the
217 target's execution have been disabled. */
218
d914c394
SS
219int observer_mode = 0;
220static int observer_mode_1 = 0;
221
222static void
223set_observer_mode (char *args, int from_tty,
224 struct cmd_list_element *c)
225{
d914c394
SS
226 if (target_has_execution)
227 {
228 observer_mode_1 = observer_mode;
229 error (_("Cannot change this setting while the inferior is running."));
230 }
231
232 observer_mode = observer_mode_1;
233
234 may_write_registers = !observer_mode;
235 may_write_memory = !observer_mode;
236 may_insert_breakpoints = !observer_mode;
237 may_insert_tracepoints = !observer_mode;
238 /* We can insert fast tracepoints in or out of observer mode,
239 but enable them if we're going into this mode. */
240 if (observer_mode)
241 may_insert_fast_tracepoints = 1;
242 may_stop = !observer_mode;
243 update_target_permissions ();
244
245 /* Going *into* observer mode we must force non-stop, then
246 going out we leave it that way. */
247 if (observer_mode)
248 {
249 target_async_permitted = 1;
250 pagination_enabled = 0;
251 non_stop = non_stop_1 = 1;
252 }
253
254 if (from_tty)
255 printf_filtered (_("Observer mode is now %s.\n"),
256 (observer_mode ? "on" : "off"));
257}
258
259static void
260show_observer_mode (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262{
263 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
264}
265
266/* This updates the value of observer mode based on changes in
267 permissions. Note that we are deliberately ignoring the values of
268 may-write-registers and may-write-memory, since the user may have
269 reason to enable these during a session, for instance to turn on a
270 debugging-related global. */
271
272void
273update_observer_mode (void)
274{
275 int newval;
276
277 newval = (!may_insert_breakpoints
278 && !may_insert_tracepoints
279 && may_insert_fast_tracepoints
280 && !may_stop
281 && non_stop);
282
283 /* Let the user know if things change. */
284 if (newval != observer_mode)
285 printf_filtered (_("Observer mode is now %s.\n"),
286 (newval ? "on" : "off"));
287
288 observer_mode = observer_mode_1 = newval;
289}
c2c6d25f 290
c906108c
SS
291/* Tables of how to react to signals; the user sets them. */
292
293static unsigned char *signal_stop;
294static unsigned char *signal_print;
295static unsigned char *signal_program;
296
ab04a2af
TT
297/* Table of signals that are registered with "catch signal". A
298 non-zero entry indicates that the signal is caught by some "catch
299 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
300 signals. */
301static unsigned char *signal_catch;
302
2455069d
UW
303/* Table of signals that the target may silently handle.
304 This is automatically determined from the flags above,
305 and simply cached here. */
306static unsigned char *signal_pass;
307
c906108c
SS
308#define SET_SIGS(nsigs,sigs,flags) \
309 do { \
310 int signum = (nsigs); \
311 while (signum-- > 0) \
312 if ((sigs)[signum]) \
313 (flags)[signum] = 1; \
314 } while (0)
315
316#define UNSET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 0; \
322 } while (0)
323
9b224c5e
PA
324/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
325 this function is to avoid exporting `signal_program'. */
326
327void
328update_signals_program_target (void)
329{
a493e3e2 330 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
331}
332
1777feb0 333/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 334
edb3359d 335#define RESUME_ALL minus_one_ptid
c906108c
SS
336
337/* Command list pointer for the "stop" placeholder. */
338
339static struct cmd_list_element *stop_command;
340
c906108c
SS
341/* Function inferior was in as of last step command. */
342
343static struct symbol *step_start_function;
344
c906108c
SS
345/* Nonzero if we want to give control to the user when we're notified
346 of shared library events by the dynamic linker. */
628fe4e4 347int stop_on_solib_events;
f9e14852
GB
348
349/* Enable or disable optional shared library event breakpoints
350 as appropriate when the above flag is changed. */
351
352static void
353set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
354{
355 update_solib_breakpoints ();
356}
357
920d2a44
AC
358static void
359show_stop_on_solib_events (struct ui_file *file, int from_tty,
360 struct cmd_list_element *c, const char *value)
361{
362 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
363 value);
364}
c906108c 365
c906108c
SS
366/* Nonzero means expecting a trace trap
367 and should stop the inferior and return silently when it happens. */
368
369int stop_after_trap;
370
642fd101
DE
371/* Save register contents here when executing a "finish" command or are
372 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
373 Thus this contains the return value from the called function (assuming
374 values are returned in a register). */
375
72cec141 376struct regcache *stop_registers;
c906108c 377
c906108c
SS
378/* Nonzero after stop if current stack frame should be printed. */
379
380static int stop_print_frame;
381
e02bc4cc 382/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
383 returned by target_wait()/deprecated_target_wait_hook(). This
384 information is returned by get_last_target_status(). */
39f77062 385static ptid_t target_last_wait_ptid;
e02bc4cc
DS
386static struct target_waitstatus target_last_waitstatus;
387
0d1e5fa7
PA
388static void context_switch (ptid_t ptid);
389
4e1c45ea 390void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 391
7a76f5b8 392static void init_infwait_state (void);
a474d7c2 393
53904c9e
AC
394static const char follow_fork_mode_child[] = "child";
395static const char follow_fork_mode_parent[] = "parent";
396
40478521 397static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
398 follow_fork_mode_child,
399 follow_fork_mode_parent,
400 NULL
ef346e04 401};
c906108c 402
53904c9e 403static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
404static void
405show_follow_fork_mode_string (struct ui_file *file, int from_tty,
406 struct cmd_list_element *c, const char *value)
407{
3e43a32a
MS
408 fprintf_filtered (file,
409 _("Debugger response to a program "
410 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
411 value);
412}
c906108c
SS
413\f
414
e58b0e63
PA
415/* Tell the target to follow the fork we're stopped at. Returns true
416 if the inferior should be resumed; false, if the target for some
417 reason decided it's best not to resume. */
418
6604731b 419static int
4ef3f3be 420follow_fork (void)
c906108c 421{
ea1dd7bc 422 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
423 int should_resume = 1;
424 struct thread_info *tp;
425
426 /* Copy user stepping state to the new inferior thread. FIXME: the
427 followed fork child thread should have a copy of most of the
4e3990f4
DE
428 parent thread structure's run control related fields, not just these.
429 Initialized to avoid "may be used uninitialized" warnings from gcc. */
430 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 431 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
432 CORE_ADDR step_range_start = 0;
433 CORE_ADDR step_range_end = 0;
434 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
435
436 if (!non_stop)
437 {
438 ptid_t wait_ptid;
439 struct target_waitstatus wait_status;
440
441 /* Get the last target status returned by target_wait(). */
442 get_last_target_status (&wait_ptid, &wait_status);
443
444 /* If not stopped at a fork event, then there's nothing else to
445 do. */
446 if (wait_status.kind != TARGET_WAITKIND_FORKED
447 && wait_status.kind != TARGET_WAITKIND_VFORKED)
448 return 1;
449
450 /* Check if we switched over from WAIT_PTID, since the event was
451 reported. */
452 if (!ptid_equal (wait_ptid, minus_one_ptid)
453 && !ptid_equal (inferior_ptid, wait_ptid))
454 {
455 /* We did. Switch back to WAIT_PTID thread, to tell the
456 target to follow it (in either direction). We'll
457 afterwards refuse to resume, and inform the user what
458 happened. */
459 switch_to_thread (wait_ptid);
460 should_resume = 0;
461 }
462 }
463
464 tp = inferior_thread ();
465
466 /* If there were any forks/vforks that were caught and are now to be
467 followed, then do so now. */
468 switch (tp->pending_follow.kind)
469 {
470 case TARGET_WAITKIND_FORKED:
471 case TARGET_WAITKIND_VFORKED:
472 {
473 ptid_t parent, child;
474
475 /* If the user did a next/step, etc, over a fork call,
476 preserve the stepping state in the fork child. */
477 if (follow_child && should_resume)
478 {
8358c15c
JK
479 step_resume_breakpoint = clone_momentary_breakpoint
480 (tp->control.step_resume_breakpoint);
16c381f0
JK
481 step_range_start = tp->control.step_range_start;
482 step_range_end = tp->control.step_range_end;
483 step_frame_id = tp->control.step_frame_id;
186c406b
TT
484 exception_resume_breakpoint
485 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
e58b0e63
PA
486
487 /* For now, delete the parent's sr breakpoint, otherwise,
488 parent/child sr breakpoints are considered duplicates,
489 and the child version will not be installed. Remove
490 this when the breakpoints module becomes aware of
491 inferiors and address spaces. */
492 delete_step_resume_breakpoint (tp);
16c381f0
JK
493 tp->control.step_range_start = 0;
494 tp->control.step_range_end = 0;
495 tp->control.step_frame_id = null_frame_id;
186c406b 496 delete_exception_resume_breakpoint (tp);
e58b0e63
PA
497 }
498
499 parent = inferior_ptid;
500 child = tp->pending_follow.value.related_pid;
501
502 /* Tell the target to do whatever is necessary to follow
503 either parent or child. */
07107ca6 504 if (target_follow_fork (follow_child, detach_fork))
e58b0e63
PA
505 {
506 /* Target refused to follow, or there's some other reason
507 we shouldn't resume. */
508 should_resume = 0;
509 }
510 else
511 {
512 /* This pending follow fork event is now handled, one way
513 or another. The previous selected thread may be gone
514 from the lists by now, but if it is still around, need
515 to clear the pending follow request. */
e09875d4 516 tp = find_thread_ptid (parent);
e58b0e63
PA
517 if (tp)
518 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
519
520 /* This makes sure we don't try to apply the "Switched
521 over from WAIT_PID" logic above. */
522 nullify_last_target_wait_ptid ();
523
1777feb0 524 /* If we followed the child, switch to it... */
e58b0e63
PA
525 if (follow_child)
526 {
527 switch_to_thread (child);
528
529 /* ... and preserve the stepping state, in case the
530 user was stepping over the fork call. */
531 if (should_resume)
532 {
533 tp = inferior_thread ();
8358c15c
JK
534 tp->control.step_resume_breakpoint
535 = step_resume_breakpoint;
16c381f0
JK
536 tp->control.step_range_start = step_range_start;
537 tp->control.step_range_end = step_range_end;
538 tp->control.step_frame_id = step_frame_id;
186c406b
TT
539 tp->control.exception_resume_breakpoint
540 = exception_resume_breakpoint;
e58b0e63
PA
541 }
542 else
543 {
544 /* If we get here, it was because we're trying to
545 resume from a fork catchpoint, but, the user
546 has switched threads away from the thread that
547 forked. In that case, the resume command
548 issued is most likely not applicable to the
549 child, so just warn, and refuse to resume. */
3e43a32a
MS
550 warning (_("Not resuming: switched threads "
551 "before following fork child.\n"));
e58b0e63
PA
552 }
553
554 /* Reset breakpoints in the child as appropriate. */
555 follow_inferior_reset_breakpoints ();
556 }
557 else
558 switch_to_thread (parent);
559 }
560 }
561 break;
562 case TARGET_WAITKIND_SPURIOUS:
563 /* Nothing to follow. */
564 break;
565 default:
566 internal_error (__FILE__, __LINE__,
567 "Unexpected pending_follow.kind %d\n",
568 tp->pending_follow.kind);
569 break;
570 }
c906108c 571
e58b0e63 572 return should_resume;
c906108c
SS
573}
574
6604731b
DJ
575void
576follow_inferior_reset_breakpoints (void)
c906108c 577{
4e1c45ea
PA
578 struct thread_info *tp = inferior_thread ();
579
6604731b
DJ
580 /* Was there a step_resume breakpoint? (There was if the user
581 did a "next" at the fork() call.) If so, explicitly reset its
582 thread number.
583
584 step_resumes are a form of bp that are made to be per-thread.
585 Since we created the step_resume bp when the parent process
586 was being debugged, and now are switching to the child process,
587 from the breakpoint package's viewpoint, that's a switch of
588 "threads". We must update the bp's notion of which thread
589 it is for, or it'll be ignored when it triggers. */
590
8358c15c
JK
591 if (tp->control.step_resume_breakpoint)
592 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
6604731b 593
186c406b
TT
594 if (tp->control.exception_resume_breakpoint)
595 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
596
6604731b
DJ
597 /* Reinsert all breakpoints in the child. The user may have set
598 breakpoints after catching the fork, in which case those
599 were never set in the child, but only in the parent. This makes
600 sure the inserted breakpoints match the breakpoint list. */
601
602 breakpoint_re_set ();
603 insert_breakpoints ();
c906108c 604}
c906108c 605
6c95b8df
PA
606/* The child has exited or execed: resume threads of the parent the
607 user wanted to be executing. */
608
609static int
610proceed_after_vfork_done (struct thread_info *thread,
611 void *arg)
612{
613 int pid = * (int *) arg;
614
615 if (ptid_get_pid (thread->ptid) == pid
616 && is_running (thread->ptid)
617 && !is_executing (thread->ptid)
618 && !thread->stop_requested
a493e3e2 619 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
620 {
621 if (debug_infrun)
622 fprintf_unfiltered (gdb_stdlog,
623 "infrun: resuming vfork parent thread %s\n",
624 target_pid_to_str (thread->ptid));
625
626 switch_to_thread (thread->ptid);
627 clear_proceed_status ();
a493e3e2 628 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
6c95b8df
PA
629 }
630
631 return 0;
632}
633
634/* Called whenever we notice an exec or exit event, to handle
635 detaching or resuming a vfork parent. */
636
637static void
638handle_vfork_child_exec_or_exit (int exec)
639{
640 struct inferior *inf = current_inferior ();
641
642 if (inf->vfork_parent)
643 {
644 int resume_parent = -1;
645
646 /* This exec or exit marks the end of the shared memory region
647 between the parent and the child. If the user wanted to
648 detach from the parent, now is the time. */
649
650 if (inf->vfork_parent->pending_detach)
651 {
652 struct thread_info *tp;
653 struct cleanup *old_chain;
654 struct program_space *pspace;
655 struct address_space *aspace;
656
1777feb0 657 /* follow-fork child, detach-on-fork on. */
6c95b8df 658
68c9da30
PA
659 inf->vfork_parent->pending_detach = 0;
660
f50f4e56
PA
661 if (!exec)
662 {
663 /* If we're handling a child exit, then inferior_ptid
664 points at the inferior's pid, not to a thread. */
665 old_chain = save_inferior_ptid ();
666 save_current_program_space ();
667 save_current_inferior ();
668 }
669 else
670 old_chain = save_current_space_and_thread ();
6c95b8df
PA
671
672 /* We're letting loose of the parent. */
673 tp = any_live_thread_of_process (inf->vfork_parent->pid);
674 switch_to_thread (tp->ptid);
675
676 /* We're about to detach from the parent, which implicitly
677 removes breakpoints from its address space. There's a
678 catch here: we want to reuse the spaces for the child,
679 but, parent/child are still sharing the pspace at this
680 point, although the exec in reality makes the kernel give
681 the child a fresh set of new pages. The problem here is
682 that the breakpoints module being unaware of this, would
683 likely chose the child process to write to the parent
684 address space. Swapping the child temporarily away from
685 the spaces has the desired effect. Yes, this is "sort
686 of" a hack. */
687
688 pspace = inf->pspace;
689 aspace = inf->aspace;
690 inf->aspace = NULL;
691 inf->pspace = NULL;
692
693 if (debug_infrun || info_verbose)
694 {
695 target_terminal_ours ();
696
697 if (exec)
698 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
699 "Detaching vfork parent process "
700 "%d after child exec.\n",
6c95b8df
PA
701 inf->vfork_parent->pid);
702 else
703 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
704 "Detaching vfork parent process "
705 "%d after child exit.\n",
6c95b8df
PA
706 inf->vfork_parent->pid);
707 }
708
709 target_detach (NULL, 0);
710
711 /* Put it back. */
712 inf->pspace = pspace;
713 inf->aspace = aspace;
714
715 do_cleanups (old_chain);
716 }
717 else if (exec)
718 {
719 /* We're staying attached to the parent, so, really give the
720 child a new address space. */
721 inf->pspace = add_program_space (maybe_new_address_space ());
722 inf->aspace = inf->pspace->aspace;
723 inf->removable = 1;
724 set_current_program_space (inf->pspace);
725
726 resume_parent = inf->vfork_parent->pid;
727
728 /* Break the bonds. */
729 inf->vfork_parent->vfork_child = NULL;
730 }
731 else
732 {
733 struct cleanup *old_chain;
734 struct program_space *pspace;
735
736 /* If this is a vfork child exiting, then the pspace and
737 aspaces were shared with the parent. Since we're
738 reporting the process exit, we'll be mourning all that is
739 found in the address space, and switching to null_ptid,
740 preparing to start a new inferior. But, since we don't
741 want to clobber the parent's address/program spaces, we
742 go ahead and create a new one for this exiting
743 inferior. */
744
745 /* Switch to null_ptid, so that clone_program_space doesn't want
746 to read the selected frame of a dead process. */
747 old_chain = save_inferior_ptid ();
748 inferior_ptid = null_ptid;
749
750 /* This inferior is dead, so avoid giving the breakpoints
751 module the option to write through to it (cloning a
752 program space resets breakpoints). */
753 inf->aspace = NULL;
754 inf->pspace = NULL;
755 pspace = add_program_space (maybe_new_address_space ());
756 set_current_program_space (pspace);
757 inf->removable = 1;
7dcd53a0 758 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
759 clone_program_space (pspace, inf->vfork_parent->pspace);
760 inf->pspace = pspace;
761 inf->aspace = pspace->aspace;
762
763 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 764 inferior. */
6c95b8df
PA
765 do_cleanups (old_chain);
766
767 resume_parent = inf->vfork_parent->pid;
768 /* Break the bonds. */
769 inf->vfork_parent->vfork_child = NULL;
770 }
771
772 inf->vfork_parent = NULL;
773
774 gdb_assert (current_program_space == inf->pspace);
775
776 if (non_stop && resume_parent != -1)
777 {
778 /* If the user wanted the parent to be running, let it go
779 free now. */
780 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
781
782 if (debug_infrun)
3e43a32a
MS
783 fprintf_unfiltered (gdb_stdlog,
784 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
785 resume_parent);
786
787 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
788
789 do_cleanups (old_chain);
790 }
791 }
792}
793
eb6c553b 794/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
795
796static const char follow_exec_mode_new[] = "new";
797static const char follow_exec_mode_same[] = "same";
40478521 798static const char *const follow_exec_mode_names[] =
6c95b8df
PA
799{
800 follow_exec_mode_new,
801 follow_exec_mode_same,
802 NULL,
803};
804
805static const char *follow_exec_mode_string = follow_exec_mode_same;
806static void
807show_follow_exec_mode_string (struct ui_file *file, int from_tty,
808 struct cmd_list_element *c, const char *value)
809{
810 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
811}
812
1777feb0 813/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 814
c906108c 815static void
3a3e9ee3 816follow_exec (ptid_t pid, char *execd_pathname)
c906108c 817{
4e1c45ea 818 struct thread_info *th = inferior_thread ();
6c95b8df 819 struct inferior *inf = current_inferior ();
7a292a7a 820
c906108c
SS
821 /* This is an exec event that we actually wish to pay attention to.
822 Refresh our symbol table to the newly exec'd program, remove any
823 momentary bp's, etc.
824
825 If there are breakpoints, they aren't really inserted now,
826 since the exec() transformed our inferior into a fresh set
827 of instructions.
828
829 We want to preserve symbolic breakpoints on the list, since
830 we have hopes that they can be reset after the new a.out's
831 symbol table is read.
832
833 However, any "raw" breakpoints must be removed from the list
834 (e.g., the solib bp's), since their address is probably invalid
835 now.
836
837 And, we DON'T want to call delete_breakpoints() here, since
838 that may write the bp's "shadow contents" (the instruction
839 value that was overwritten witha TRAP instruction). Since
1777feb0 840 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
841
842 mark_breakpoints_out ();
843
c906108c
SS
844 update_breakpoints_after_exec ();
845
846 /* If there was one, it's gone now. We cannot truly step-to-next
1777feb0 847 statement through an exec(). */
8358c15c 848 th->control.step_resume_breakpoint = NULL;
186c406b 849 th->control.exception_resume_breakpoint = NULL;
16c381f0
JK
850 th->control.step_range_start = 0;
851 th->control.step_range_end = 0;
c906108c 852
a75724bc
PA
853 /* The target reports the exec event to the main thread, even if
854 some other thread does the exec, and even if the main thread was
855 already stopped --- if debugging in non-stop mode, it's possible
856 the user had the main thread held stopped in the previous image
857 --- release it now. This is the same behavior as step-over-exec
858 with scheduler-locking on in all-stop mode. */
859 th->stop_requested = 0;
860
1777feb0 861 /* What is this a.out's name? */
6c95b8df
PA
862 printf_unfiltered (_("%s is executing new program: %s\n"),
863 target_pid_to_str (inferior_ptid),
864 execd_pathname);
c906108c
SS
865
866 /* We've followed the inferior through an exec. Therefore, the
1777feb0 867 inferior has essentially been killed & reborn. */
7a292a7a 868
c906108c 869 gdb_flush (gdb_stdout);
6ca15a4b
PA
870
871 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
872
873 if (gdb_sysroot && *gdb_sysroot)
874 {
875 char *name = alloca (strlen (gdb_sysroot)
876 + strlen (execd_pathname)
877 + 1);
abbb1732 878
e85a822c
DJ
879 strcpy (name, gdb_sysroot);
880 strcat (name, execd_pathname);
881 execd_pathname = name;
882 }
c906108c 883
cce9b6bf
PA
884 /* Reset the shared library package. This ensures that we get a
885 shlib event when the child reaches "_start", at which point the
886 dld will have had a chance to initialize the child. */
887 /* Also, loading a symbol file below may trigger symbol lookups, and
888 we don't want those to be satisfied by the libraries of the
889 previous incarnation of this process. */
890 no_shared_libraries (NULL, 0);
891
6c95b8df
PA
892 if (follow_exec_mode_string == follow_exec_mode_new)
893 {
894 struct program_space *pspace;
6c95b8df
PA
895
896 /* The user wants to keep the old inferior and program spaces
897 around. Create a new fresh one, and switch to it. */
898
899 inf = add_inferior (current_inferior ()->pid);
900 pspace = add_program_space (maybe_new_address_space ());
901 inf->pspace = pspace;
902 inf->aspace = pspace->aspace;
903
904 exit_inferior_num_silent (current_inferior ()->num);
905
906 set_current_inferior (inf);
907 set_current_program_space (pspace);
908 }
9107fc8d
PA
909 else
910 {
911 /* The old description may no longer be fit for the new image.
912 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
913 old description; we'll read a new one below. No need to do
914 this on "follow-exec-mode new", as the old inferior stays
915 around (its description is later cleared/refetched on
916 restart). */
917 target_clear_description ();
918 }
6c95b8df
PA
919
920 gdb_assert (current_program_space == inf->pspace);
921
1777feb0 922 /* That a.out is now the one to use. */
6c95b8df
PA
923 exec_file_attach (execd_pathname, 0);
924
c1e56572
JK
925 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
926 (Position Independent Executable) main symbol file will get applied by
927 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
928 the breakpoints with the zero displacement. */
929
7dcd53a0
TT
930 symbol_file_add (execd_pathname,
931 (inf->symfile_flags
932 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
933 NULL, 0);
934
7dcd53a0
TT
935 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
936 set_initial_language ();
c906108c 937
9107fc8d
PA
938 /* If the target can specify a description, read it. Must do this
939 after flipping to the new executable (because the target supplied
940 description must be compatible with the executable's
941 architecture, and the old executable may e.g., be 32-bit, while
942 the new one 64-bit), and before anything involving memory or
943 registers. */
944 target_find_description ();
945
268a4a75 946 solib_create_inferior_hook (0);
c906108c 947
4efc6507
DE
948 jit_inferior_created_hook ();
949
c1e56572
JK
950 breakpoint_re_set ();
951
c906108c
SS
952 /* Reinsert all breakpoints. (Those which were symbolic have
953 been reset to the proper address in the new a.out, thanks
1777feb0 954 to symbol_file_command...). */
c906108c
SS
955 insert_breakpoints ();
956
957 /* The next resume of this inferior should bring it to the shlib
958 startup breakpoints. (If the user had also set bp's on
959 "main" from the old (parent) process, then they'll auto-
1777feb0 960 matically get reset there in the new process.). */
c906108c
SS
961}
962
963/* Non-zero if we just simulating a single-step. This is needed
964 because we cannot remove the breakpoints in the inferior process
965 until after the `wait' in `wait_for_inferior'. */
966static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
967
968/* The thread we inserted single-step breakpoints for. */
969static ptid_t singlestep_ptid;
970
fd48f117
DJ
971/* PC when we started this single-step. */
972static CORE_ADDR singlestep_pc;
973
9f976b41
DJ
974/* If another thread hit the singlestep breakpoint, we save the original
975 thread here so that we can resume single-stepping it later. */
976static ptid_t saved_singlestep_ptid;
977static int stepping_past_singlestep_breakpoint;
6a6b96b9 978
ca67fcb8
VP
979/* If not equal to null_ptid, this means that after stepping over breakpoint
980 is finished, we need to switch to deferred_step_ptid, and step it.
981
982 The use case is when one thread has hit a breakpoint, and then the user
1777feb0 983 has switched to another thread and issued 'step'. We need to step over
ca67fcb8
VP
984 breakpoint in the thread which hit the breakpoint, but then continue
985 stepping the thread user has selected. */
986static ptid_t deferred_step_ptid;
c906108c 987\f
237fc4c9
PA
988/* Displaced stepping. */
989
990/* In non-stop debugging mode, we must take special care to manage
991 breakpoints properly; in particular, the traditional strategy for
992 stepping a thread past a breakpoint it has hit is unsuitable.
993 'Displaced stepping' is a tactic for stepping one thread past a
994 breakpoint it has hit while ensuring that other threads running
995 concurrently will hit the breakpoint as they should.
996
997 The traditional way to step a thread T off a breakpoint in a
998 multi-threaded program in all-stop mode is as follows:
999
1000 a0) Initially, all threads are stopped, and breakpoints are not
1001 inserted.
1002 a1) We single-step T, leaving breakpoints uninserted.
1003 a2) We insert breakpoints, and resume all threads.
1004
1005 In non-stop debugging, however, this strategy is unsuitable: we
1006 don't want to have to stop all threads in the system in order to
1007 continue or step T past a breakpoint. Instead, we use displaced
1008 stepping:
1009
1010 n0) Initially, T is stopped, other threads are running, and
1011 breakpoints are inserted.
1012 n1) We copy the instruction "under" the breakpoint to a separate
1013 location, outside the main code stream, making any adjustments
1014 to the instruction, register, and memory state as directed by
1015 T's architecture.
1016 n2) We single-step T over the instruction at its new location.
1017 n3) We adjust the resulting register and memory state as directed
1018 by T's architecture. This includes resetting T's PC to point
1019 back into the main instruction stream.
1020 n4) We resume T.
1021
1022 This approach depends on the following gdbarch methods:
1023
1024 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1025 indicate where to copy the instruction, and how much space must
1026 be reserved there. We use these in step n1.
1027
1028 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1029 address, and makes any necessary adjustments to the instruction,
1030 register contents, and memory. We use this in step n1.
1031
1032 - gdbarch_displaced_step_fixup adjusts registers and memory after
1033 we have successfuly single-stepped the instruction, to yield the
1034 same effect the instruction would have had if we had executed it
1035 at its original address. We use this in step n3.
1036
1037 - gdbarch_displaced_step_free_closure provides cleanup.
1038
1039 The gdbarch_displaced_step_copy_insn and
1040 gdbarch_displaced_step_fixup functions must be written so that
1041 copying an instruction with gdbarch_displaced_step_copy_insn,
1042 single-stepping across the copied instruction, and then applying
1043 gdbarch_displaced_insn_fixup should have the same effects on the
1044 thread's memory and registers as stepping the instruction in place
1045 would have. Exactly which responsibilities fall to the copy and
1046 which fall to the fixup is up to the author of those functions.
1047
1048 See the comments in gdbarch.sh for details.
1049
1050 Note that displaced stepping and software single-step cannot
1051 currently be used in combination, although with some care I think
1052 they could be made to. Software single-step works by placing
1053 breakpoints on all possible subsequent instructions; if the
1054 displaced instruction is a PC-relative jump, those breakpoints
1055 could fall in very strange places --- on pages that aren't
1056 executable, or at addresses that are not proper instruction
1057 boundaries. (We do generally let other threads run while we wait
1058 to hit the software single-step breakpoint, and they might
1059 encounter such a corrupted instruction.) One way to work around
1060 this would be to have gdbarch_displaced_step_copy_insn fully
1061 simulate the effect of PC-relative instructions (and return NULL)
1062 on architectures that use software single-stepping.
1063
1064 In non-stop mode, we can have independent and simultaneous step
1065 requests, so more than one thread may need to simultaneously step
1066 over a breakpoint. The current implementation assumes there is
1067 only one scratch space per process. In this case, we have to
1068 serialize access to the scratch space. If thread A wants to step
1069 over a breakpoint, but we are currently waiting for some other
1070 thread to complete a displaced step, we leave thread A stopped and
1071 place it in the displaced_step_request_queue. Whenever a displaced
1072 step finishes, we pick the next thread in the queue and start a new
1073 displaced step operation on it. See displaced_step_prepare and
1074 displaced_step_fixup for details. */
1075
237fc4c9
PA
1076struct displaced_step_request
1077{
1078 ptid_t ptid;
1079 struct displaced_step_request *next;
1080};
1081
fc1cf338
PA
1082/* Per-inferior displaced stepping state. */
1083struct displaced_step_inferior_state
1084{
1085 /* Pointer to next in linked list. */
1086 struct displaced_step_inferior_state *next;
1087
1088 /* The process this displaced step state refers to. */
1089 int pid;
1090
1091 /* A queue of pending displaced stepping requests. One entry per
1092 thread that needs to do a displaced step. */
1093 struct displaced_step_request *step_request_queue;
1094
1095 /* If this is not null_ptid, this is the thread carrying out a
1096 displaced single-step in process PID. This thread's state will
1097 require fixing up once it has completed its step. */
1098 ptid_t step_ptid;
1099
1100 /* The architecture the thread had when we stepped it. */
1101 struct gdbarch *step_gdbarch;
1102
1103 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1104 for post-step cleanup. */
1105 struct displaced_step_closure *step_closure;
1106
1107 /* The address of the original instruction, and the copy we
1108 made. */
1109 CORE_ADDR step_original, step_copy;
1110
1111 /* Saved contents of copy area. */
1112 gdb_byte *step_saved_copy;
1113};
1114
1115/* The list of states of processes involved in displaced stepping
1116 presently. */
1117static struct displaced_step_inferior_state *displaced_step_inferior_states;
1118
1119/* Get the displaced stepping state of process PID. */
1120
1121static struct displaced_step_inferior_state *
1122get_displaced_stepping_state (int pid)
1123{
1124 struct displaced_step_inferior_state *state;
1125
1126 for (state = displaced_step_inferior_states;
1127 state != NULL;
1128 state = state->next)
1129 if (state->pid == pid)
1130 return state;
1131
1132 return NULL;
1133}
1134
1135/* Add a new displaced stepping state for process PID to the displaced
1136 stepping state list, or return a pointer to an already existing
1137 entry, if it already exists. Never returns NULL. */
1138
1139static struct displaced_step_inferior_state *
1140add_displaced_stepping_state (int pid)
1141{
1142 struct displaced_step_inferior_state *state;
1143
1144 for (state = displaced_step_inferior_states;
1145 state != NULL;
1146 state = state->next)
1147 if (state->pid == pid)
1148 return state;
237fc4c9 1149
fc1cf338
PA
1150 state = xcalloc (1, sizeof (*state));
1151 state->pid = pid;
1152 state->next = displaced_step_inferior_states;
1153 displaced_step_inferior_states = state;
237fc4c9 1154
fc1cf338
PA
1155 return state;
1156}
1157
a42244db
YQ
1158/* If inferior is in displaced stepping, and ADDR equals to starting address
1159 of copy area, return corresponding displaced_step_closure. Otherwise,
1160 return NULL. */
1161
1162struct displaced_step_closure*
1163get_displaced_step_closure_by_addr (CORE_ADDR addr)
1164{
1165 struct displaced_step_inferior_state *displaced
1166 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1167
1168 /* If checking the mode of displaced instruction in copy area. */
1169 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1170 && (displaced->step_copy == addr))
1171 return displaced->step_closure;
1172
1173 return NULL;
1174}
1175
fc1cf338 1176/* Remove the displaced stepping state of process PID. */
237fc4c9 1177
fc1cf338
PA
1178static void
1179remove_displaced_stepping_state (int pid)
1180{
1181 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1182
fc1cf338
PA
1183 gdb_assert (pid != 0);
1184
1185 it = displaced_step_inferior_states;
1186 prev_next_p = &displaced_step_inferior_states;
1187 while (it)
1188 {
1189 if (it->pid == pid)
1190 {
1191 *prev_next_p = it->next;
1192 xfree (it);
1193 return;
1194 }
1195
1196 prev_next_p = &it->next;
1197 it = *prev_next_p;
1198 }
1199}
1200
1201static void
1202infrun_inferior_exit (struct inferior *inf)
1203{
1204 remove_displaced_stepping_state (inf->pid);
1205}
237fc4c9 1206
fff08868
HZ
1207/* If ON, and the architecture supports it, GDB will use displaced
1208 stepping to step over breakpoints. If OFF, or if the architecture
1209 doesn't support it, GDB will instead use the traditional
1210 hold-and-step approach. If AUTO (which is the default), GDB will
1211 decide which technique to use to step over breakpoints depending on
1212 which of all-stop or non-stop mode is active --- displaced stepping
1213 in non-stop mode; hold-and-step in all-stop mode. */
1214
72d0e2c5 1215static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1216
237fc4c9
PA
1217static void
1218show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1219 struct cmd_list_element *c,
1220 const char *value)
1221{
72d0e2c5 1222 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1223 fprintf_filtered (file,
1224 _("Debugger's willingness to use displaced stepping "
1225 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1226 value, non_stop ? "on" : "off");
1227 else
3e43a32a
MS
1228 fprintf_filtered (file,
1229 _("Debugger's willingness to use displaced stepping "
1230 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1231}
1232
fff08868
HZ
1233/* Return non-zero if displaced stepping can/should be used to step
1234 over breakpoints. */
1235
237fc4c9
PA
1236static int
1237use_displaced_stepping (struct gdbarch *gdbarch)
1238{
72d0e2c5
YQ
1239 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1240 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8
HZ
1241 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1242 && !RECORD_IS_USED);
237fc4c9
PA
1243}
1244
1245/* Clean out any stray displaced stepping state. */
1246static void
fc1cf338 1247displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1248{
1249 /* Indicate that there is no cleanup pending. */
fc1cf338 1250 displaced->step_ptid = null_ptid;
237fc4c9 1251
fc1cf338 1252 if (displaced->step_closure)
237fc4c9 1253 {
fc1cf338
PA
1254 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1255 displaced->step_closure);
1256 displaced->step_closure = NULL;
237fc4c9
PA
1257 }
1258}
1259
1260static void
fc1cf338 1261displaced_step_clear_cleanup (void *arg)
237fc4c9 1262{
fc1cf338
PA
1263 struct displaced_step_inferior_state *state = arg;
1264
1265 displaced_step_clear (state);
237fc4c9
PA
1266}
1267
1268/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1269void
1270displaced_step_dump_bytes (struct ui_file *file,
1271 const gdb_byte *buf,
1272 size_t len)
1273{
1274 int i;
1275
1276 for (i = 0; i < len; i++)
1277 fprintf_unfiltered (file, "%02x ", buf[i]);
1278 fputs_unfiltered ("\n", file);
1279}
1280
1281/* Prepare to single-step, using displaced stepping.
1282
1283 Note that we cannot use displaced stepping when we have a signal to
1284 deliver. If we have a signal to deliver and an instruction to step
1285 over, then after the step, there will be no indication from the
1286 target whether the thread entered a signal handler or ignored the
1287 signal and stepped over the instruction successfully --- both cases
1288 result in a simple SIGTRAP. In the first case we mustn't do a
1289 fixup, and in the second case we must --- but we can't tell which.
1290 Comments in the code for 'random signals' in handle_inferior_event
1291 explain how we handle this case instead.
1292
1293 Returns 1 if preparing was successful -- this thread is going to be
1294 stepped now; or 0 if displaced stepping this thread got queued. */
1295static int
1296displaced_step_prepare (ptid_t ptid)
1297{
ad53cd71 1298 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1299 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1300 struct regcache *regcache = get_thread_regcache (ptid);
1301 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1302 CORE_ADDR original, copy;
1303 ULONGEST len;
1304 struct displaced_step_closure *closure;
fc1cf338 1305 struct displaced_step_inferior_state *displaced;
9e529e1d 1306 int status;
237fc4c9
PA
1307
1308 /* We should never reach this function if the architecture does not
1309 support displaced stepping. */
1310 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1311
c1e36e3e
PA
1312 /* Disable range stepping while executing in the scratch pad. We
1313 want a single-step even if executing the displaced instruction in
1314 the scratch buffer lands within the stepping range (e.g., a
1315 jump/branch). */
1316 tp->control.may_range_step = 0;
1317
fc1cf338
PA
1318 /* We have to displaced step one thread at a time, as we only have
1319 access to a single scratch space per inferior. */
237fc4c9 1320
fc1cf338
PA
1321 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1322
1323 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1324 {
1325 /* Already waiting for a displaced step to finish. Defer this
1326 request and place in queue. */
1327 struct displaced_step_request *req, *new_req;
1328
1329 if (debug_displaced)
1330 fprintf_unfiltered (gdb_stdlog,
1331 "displaced: defering step of %s\n",
1332 target_pid_to_str (ptid));
1333
1334 new_req = xmalloc (sizeof (*new_req));
1335 new_req->ptid = ptid;
1336 new_req->next = NULL;
1337
fc1cf338 1338 if (displaced->step_request_queue)
237fc4c9 1339 {
fc1cf338 1340 for (req = displaced->step_request_queue;
237fc4c9
PA
1341 req && req->next;
1342 req = req->next)
1343 ;
1344 req->next = new_req;
1345 }
1346 else
fc1cf338 1347 displaced->step_request_queue = new_req;
237fc4c9
PA
1348
1349 return 0;
1350 }
1351 else
1352 {
1353 if (debug_displaced)
1354 fprintf_unfiltered (gdb_stdlog,
1355 "displaced: stepping %s now\n",
1356 target_pid_to_str (ptid));
1357 }
1358
fc1cf338 1359 displaced_step_clear (displaced);
237fc4c9 1360
ad53cd71
PA
1361 old_cleanups = save_inferior_ptid ();
1362 inferior_ptid = ptid;
1363
515630c5 1364 original = regcache_read_pc (regcache);
237fc4c9
PA
1365
1366 copy = gdbarch_displaced_step_location (gdbarch);
1367 len = gdbarch_max_insn_length (gdbarch);
1368
1369 /* Save the original contents of the copy area. */
fc1cf338 1370 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1371 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1372 &displaced->step_saved_copy);
9e529e1d
JK
1373 status = target_read_memory (copy, displaced->step_saved_copy, len);
1374 if (status != 0)
1375 throw_error (MEMORY_ERROR,
1376 _("Error accessing memory address %s (%s) for "
1377 "displaced-stepping scratch space."),
1378 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1379 if (debug_displaced)
1380 {
5af949e3
UW
1381 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1382 paddress (gdbarch, copy));
fc1cf338
PA
1383 displaced_step_dump_bytes (gdb_stdlog,
1384 displaced->step_saved_copy,
1385 len);
237fc4c9
PA
1386 };
1387
1388 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1389 original, copy, regcache);
237fc4c9
PA
1390
1391 /* We don't support the fully-simulated case at present. */
1392 gdb_assert (closure);
1393
9f5a595d
UW
1394 /* Save the information we need to fix things up if the step
1395 succeeds. */
fc1cf338
PA
1396 displaced->step_ptid = ptid;
1397 displaced->step_gdbarch = gdbarch;
1398 displaced->step_closure = closure;
1399 displaced->step_original = original;
1400 displaced->step_copy = copy;
9f5a595d 1401
fc1cf338 1402 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1403
1404 /* Resume execution at the copy. */
515630c5 1405 regcache_write_pc (regcache, copy);
237fc4c9 1406
ad53cd71
PA
1407 discard_cleanups (ignore_cleanups);
1408
1409 do_cleanups (old_cleanups);
237fc4c9
PA
1410
1411 if (debug_displaced)
5af949e3
UW
1412 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1413 paddress (gdbarch, copy));
237fc4c9 1414
237fc4c9
PA
1415 return 1;
1416}
1417
237fc4c9 1418static void
3e43a32a
MS
1419write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1420 const gdb_byte *myaddr, int len)
237fc4c9
PA
1421{
1422 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1423
237fc4c9
PA
1424 inferior_ptid = ptid;
1425 write_memory (memaddr, myaddr, len);
1426 do_cleanups (ptid_cleanup);
1427}
1428
e2d96639
YQ
1429/* Restore the contents of the copy area for thread PTID. */
1430
1431static void
1432displaced_step_restore (struct displaced_step_inferior_state *displaced,
1433 ptid_t ptid)
1434{
1435 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1436
1437 write_memory_ptid (ptid, displaced->step_copy,
1438 displaced->step_saved_copy, len);
1439 if (debug_displaced)
1440 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1441 target_pid_to_str (ptid),
1442 paddress (displaced->step_gdbarch,
1443 displaced->step_copy));
1444}
1445
237fc4c9 1446static void
2ea28649 1447displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1448{
1449 struct cleanup *old_cleanups;
fc1cf338
PA
1450 struct displaced_step_inferior_state *displaced
1451 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1452
1453 /* Was any thread of this process doing a displaced step? */
1454 if (displaced == NULL)
1455 return;
237fc4c9
PA
1456
1457 /* Was this event for the pid we displaced? */
fc1cf338
PA
1458 if (ptid_equal (displaced->step_ptid, null_ptid)
1459 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1460 return;
1461
fc1cf338 1462 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1463
e2d96639 1464 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9
PA
1465
1466 /* Did the instruction complete successfully? */
a493e3e2 1467 if (signal == GDB_SIGNAL_TRAP)
237fc4c9
PA
1468 {
1469 /* Fix up the resulting state. */
fc1cf338
PA
1470 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1471 displaced->step_closure,
1472 displaced->step_original,
1473 displaced->step_copy,
1474 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1475 }
1476 else
1477 {
1478 /* Since the instruction didn't complete, all we can do is
1479 relocate the PC. */
515630c5
UW
1480 struct regcache *regcache = get_thread_regcache (event_ptid);
1481 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1482
fc1cf338 1483 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1484 regcache_write_pc (regcache, pc);
237fc4c9
PA
1485 }
1486
1487 do_cleanups (old_cleanups);
1488
fc1cf338 1489 displaced->step_ptid = null_ptid;
1c5cfe86 1490
237fc4c9 1491 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1492 one now. Leave the state object around, since we're likely to
1493 need it again soon. */
1494 while (displaced->step_request_queue)
237fc4c9
PA
1495 {
1496 struct displaced_step_request *head;
1497 ptid_t ptid;
5af949e3 1498 struct regcache *regcache;
929dfd4f 1499 struct gdbarch *gdbarch;
1c5cfe86 1500 CORE_ADDR actual_pc;
6c95b8df 1501 struct address_space *aspace;
237fc4c9 1502
fc1cf338 1503 head = displaced->step_request_queue;
237fc4c9 1504 ptid = head->ptid;
fc1cf338 1505 displaced->step_request_queue = head->next;
237fc4c9
PA
1506 xfree (head);
1507
ad53cd71
PA
1508 context_switch (ptid);
1509
5af949e3
UW
1510 regcache = get_thread_regcache (ptid);
1511 actual_pc = regcache_read_pc (regcache);
6c95b8df 1512 aspace = get_regcache_aspace (regcache);
1c5cfe86 1513
6c95b8df 1514 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1515 {
1c5cfe86
PA
1516 if (debug_displaced)
1517 fprintf_unfiltered (gdb_stdlog,
1518 "displaced: stepping queued %s now\n",
1519 target_pid_to_str (ptid));
1520
1521 displaced_step_prepare (ptid);
1522
929dfd4f
JB
1523 gdbarch = get_regcache_arch (regcache);
1524
1c5cfe86
PA
1525 if (debug_displaced)
1526 {
929dfd4f 1527 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1528 gdb_byte buf[4];
1529
5af949e3
UW
1530 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1531 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1532 read_memory (actual_pc, buf, sizeof (buf));
1533 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1534 }
1535
fc1cf338
PA
1536 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1537 displaced->step_closure))
a493e3e2 1538 target_resume (ptid, 1, GDB_SIGNAL_0);
99e40580 1539 else
a493e3e2 1540 target_resume (ptid, 0, GDB_SIGNAL_0);
1c5cfe86
PA
1541
1542 /* Done, we're stepping a thread. */
1543 break;
ad53cd71 1544 }
1c5cfe86
PA
1545 else
1546 {
1547 int step;
1548 struct thread_info *tp = inferior_thread ();
1549
1550 /* The breakpoint we were sitting under has since been
1551 removed. */
16c381f0 1552 tp->control.trap_expected = 0;
1c5cfe86
PA
1553
1554 /* Go back to what we were trying to do. */
1555 step = currently_stepping (tp);
ad53cd71 1556
1c5cfe86 1557 if (debug_displaced)
3e43a32a 1558 fprintf_unfiltered (gdb_stdlog,
27d2932e 1559 "displaced: breakpoint is gone: %s, step(%d)\n",
1c5cfe86
PA
1560 target_pid_to_str (tp->ptid), step);
1561
a493e3e2
PA
1562 target_resume (ptid, step, GDB_SIGNAL_0);
1563 tp->suspend.stop_signal = GDB_SIGNAL_0;
1c5cfe86
PA
1564
1565 /* This request was discarded. See if there's any other
1566 thread waiting for its turn. */
1567 }
237fc4c9
PA
1568 }
1569}
1570
5231c1fd
PA
1571/* Update global variables holding ptids to hold NEW_PTID if they were
1572 holding OLD_PTID. */
1573static void
1574infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1575{
1576 struct displaced_step_request *it;
fc1cf338 1577 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1578
1579 if (ptid_equal (inferior_ptid, old_ptid))
1580 inferior_ptid = new_ptid;
1581
1582 if (ptid_equal (singlestep_ptid, old_ptid))
1583 singlestep_ptid = new_ptid;
1584
5231c1fd
PA
1585 if (ptid_equal (deferred_step_ptid, old_ptid))
1586 deferred_step_ptid = new_ptid;
1587
fc1cf338
PA
1588 for (displaced = displaced_step_inferior_states;
1589 displaced;
1590 displaced = displaced->next)
1591 {
1592 if (ptid_equal (displaced->step_ptid, old_ptid))
1593 displaced->step_ptid = new_ptid;
1594
1595 for (it = displaced->step_request_queue; it; it = it->next)
1596 if (ptid_equal (it->ptid, old_ptid))
1597 it->ptid = new_ptid;
1598 }
5231c1fd
PA
1599}
1600
237fc4c9
PA
1601\f
1602/* Resuming. */
c906108c
SS
1603
1604/* Things to clean up if we QUIT out of resume (). */
c906108c 1605static void
74b7792f 1606resume_cleanups (void *ignore)
c906108c
SS
1607{
1608 normal_stop ();
1609}
1610
53904c9e
AC
1611static const char schedlock_off[] = "off";
1612static const char schedlock_on[] = "on";
1613static const char schedlock_step[] = "step";
40478521 1614static const char *const scheduler_enums[] = {
ef346e04
AC
1615 schedlock_off,
1616 schedlock_on,
1617 schedlock_step,
1618 NULL
1619};
920d2a44
AC
1620static const char *scheduler_mode = schedlock_off;
1621static void
1622show_scheduler_mode (struct ui_file *file, int from_tty,
1623 struct cmd_list_element *c, const char *value)
1624{
3e43a32a
MS
1625 fprintf_filtered (file,
1626 _("Mode for locking scheduler "
1627 "during execution is \"%s\".\n"),
920d2a44
AC
1628 value);
1629}
c906108c
SS
1630
1631static void
96baa820 1632set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1633{
eefe576e
AC
1634 if (!target_can_lock_scheduler)
1635 {
1636 scheduler_mode = schedlock_off;
1637 error (_("Target '%s' cannot support this command."), target_shortname);
1638 }
c906108c
SS
1639}
1640
d4db2f36
PA
1641/* True if execution commands resume all threads of all processes by
1642 default; otherwise, resume only threads of the current inferior
1643 process. */
1644int sched_multi = 0;
1645
2facfe5c
DD
1646/* Try to setup for software single stepping over the specified location.
1647 Return 1 if target_resume() should use hardware single step.
1648
1649 GDBARCH the current gdbarch.
1650 PC the location to step over. */
1651
1652static int
1653maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1654{
1655 int hw_step = 1;
1656
f02253f1
HZ
1657 if (execution_direction == EXEC_FORWARD
1658 && gdbarch_software_single_step_p (gdbarch)
99e40580 1659 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1660 {
99e40580
UW
1661 hw_step = 0;
1662 /* Do not pull these breakpoints until after a `wait' in
1777feb0 1663 `wait_for_inferior'. */
99e40580
UW
1664 singlestep_breakpoints_inserted_p = 1;
1665 singlestep_ptid = inferior_ptid;
1666 singlestep_pc = pc;
2facfe5c
DD
1667 }
1668 return hw_step;
1669}
c906108c 1670
09cee04b
PA
1671/* Return a ptid representing the set of threads that we will proceed,
1672 in the perspective of the user/frontend. We may actually resume
1673 fewer threads at first, e.g., if a thread is stopped at a
b136cd05
PA
1674 breakpoint that needs stepping-off, but that should not be visible
1675 to the user/frontend, and neither should the frontend/user be
1676 allowed to proceed any of the threads that happen to be stopped for
09cee04b
PA
1677 internal run control handling, if a previous command wanted them
1678 resumed. */
1679
1680ptid_t
1681user_visible_resume_ptid (int step)
1682{
1683 /* By default, resume all threads of all processes. */
1684 ptid_t resume_ptid = RESUME_ALL;
1685
1686 /* Maybe resume only all threads of the current process. */
1687 if (!sched_multi && target_supports_multi_process ())
1688 {
1689 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1690 }
1691
1692 /* Maybe resume a single thread after all. */
1693 if (non_stop)
1694 {
1695 /* With non-stop mode on, threads are always handled
1696 individually. */
1697 resume_ptid = inferior_ptid;
1698 }
1699 else if ((scheduler_mode == schedlock_on)
1700 || (scheduler_mode == schedlock_step
1701 && (step || singlestep_breakpoints_inserted_p)))
1702 {
1703 /* User-settable 'scheduler' mode requires solo thread resume. */
1704 resume_ptid = inferior_ptid;
1705 }
1706
1707 return resume_ptid;
1708}
1709
c906108c
SS
1710/* Resume the inferior, but allow a QUIT. This is useful if the user
1711 wants to interrupt some lengthy single-stepping operation
1712 (for child processes, the SIGINT goes to the inferior, and so
1713 we get a SIGINT random_signal, but for remote debugging and perhaps
1714 other targets, that's not true).
1715
1716 STEP nonzero if we should step (zero to continue instead).
1717 SIG is the signal to give the inferior (zero for none). */
1718void
2ea28649 1719resume (int step, enum gdb_signal sig)
c906108c
SS
1720{
1721 int should_resume = 1;
74b7792f 1722 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1723 struct regcache *regcache = get_current_regcache ();
1724 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1725 struct thread_info *tp = inferior_thread ();
515630c5 1726 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1727 struct address_space *aspace = get_regcache_aspace (regcache);
c7e8a53c 1728
c906108c
SS
1729 QUIT;
1730
74609e71
YQ
1731 if (current_inferior ()->waiting_for_vfork_done)
1732 {
48f9886d
PA
1733 /* Don't try to single-step a vfork parent that is waiting for
1734 the child to get out of the shared memory region (by exec'ing
1735 or exiting). This is particularly important on software
1736 single-step archs, as the child process would trip on the
1737 software single step breakpoint inserted for the parent
1738 process. Since the parent will not actually execute any
1739 instruction until the child is out of the shared region (such
1740 are vfork's semantics), it is safe to simply continue it.
1741 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1742 the parent, and tell it to `keep_going', which automatically
1743 re-sets it stepping. */
74609e71
YQ
1744 if (debug_infrun)
1745 fprintf_unfiltered (gdb_stdlog,
1746 "infrun: resume : clear step\n");
1747 step = 0;
1748 }
1749
527159b7 1750 if (debug_infrun)
237fc4c9
PA
1751 fprintf_unfiltered (gdb_stdlog,
1752 "infrun: resume (step=%d, signal=%d), "
0d9a9a5f
PA
1753 "trap_expected=%d, current thread [%s] at %s\n",
1754 step, sig, tp->control.trap_expected,
1755 target_pid_to_str (inferior_ptid),
1756 paddress (gdbarch, pc));
c906108c 1757
c2c6d25f
JM
1758 /* Normally, by the time we reach `resume', the breakpoints are either
1759 removed or inserted, as appropriate. The exception is if we're sitting
1760 at a permanent breakpoint; we need to step over it, but permanent
1761 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1762 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1763 {
515630c5
UW
1764 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1765 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5 1766 else
ac74f770
MS
1767 error (_("\
1768The program is stopped at a permanent breakpoint, but GDB does not know\n\
1769how to step past a permanent breakpoint on this architecture. Try using\n\
1770a command like `return' or `jump' to continue execution."));
6d350bb5 1771 }
c2c6d25f 1772
c1e36e3e
PA
1773 /* If we have a breakpoint to step over, make sure to do a single
1774 step only. Same if we have software watchpoints. */
1775 if (tp->control.trap_expected || bpstat_should_step ())
1776 tp->control.may_range_step = 0;
1777
237fc4c9
PA
1778 /* If enabled, step over breakpoints by executing a copy of the
1779 instruction at a different address.
1780
1781 We can't use displaced stepping when we have a signal to deliver;
1782 the comments for displaced_step_prepare explain why. The
1783 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
1784 signals' explain what we do instead.
1785
1786 We can't use displaced stepping when we are waiting for vfork_done
1787 event, displaced stepping breaks the vfork child similarly as single
1788 step software breakpoint. */
515630c5 1789 if (use_displaced_stepping (gdbarch)
16c381f0 1790 && (tp->control.trap_expected
929dfd4f 1791 || (step && gdbarch_software_single_step_p (gdbarch)))
a493e3e2 1792 && sig == GDB_SIGNAL_0
74609e71 1793 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 1794 {
fc1cf338
PA
1795 struct displaced_step_inferior_state *displaced;
1796
237fc4c9 1797 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1798 {
1799 /* Got placed in displaced stepping queue. Will be resumed
1800 later when all the currently queued displaced stepping
7f7efbd9
VP
1801 requests finish. The thread is not executing at this point,
1802 and the call to set_executing will be made later. But we
1803 need to call set_running here, since from frontend point of view,
1804 the thread is running. */
1805 set_running (inferior_ptid, 1);
d56b7306
VP
1806 discard_cleanups (old_cleanups);
1807 return;
1808 }
99e40580 1809
ca7781d2
LM
1810 /* Update pc to reflect the new address from which we will execute
1811 instructions due to displaced stepping. */
1812 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1813
fc1cf338
PA
1814 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1815 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1816 displaced->step_closure);
237fc4c9
PA
1817 }
1818
2facfe5c 1819 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1820 else if (step)
2facfe5c 1821 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1822
30852783
UW
1823 /* Currently, our software single-step implementation leads to different
1824 results than hardware single-stepping in one situation: when stepping
1825 into delivering a signal which has an associated signal handler,
1826 hardware single-step will stop at the first instruction of the handler,
1827 while software single-step will simply skip execution of the handler.
1828
1829 For now, this difference in behavior is accepted since there is no
1830 easy way to actually implement single-stepping into a signal handler
1831 without kernel support.
1832
1833 However, there is one scenario where this difference leads to follow-on
1834 problems: if we're stepping off a breakpoint by removing all breakpoints
1835 and then single-stepping. In this case, the software single-step
1836 behavior means that even if there is a *breakpoint* in the signal
1837 handler, GDB still would not stop.
1838
1839 Fortunately, we can at least fix this particular issue. We detect
1840 here the case where we are about to deliver a signal while software
1841 single-stepping with breakpoints removed. In this situation, we
1842 revert the decisions to remove all breakpoints and insert single-
1843 step breakpoints, and instead we install a step-resume breakpoint
1844 at the current address, deliver the signal without stepping, and
1845 once we arrive back at the step-resume breakpoint, actually step
1846 over the breakpoint we originally wanted to step over. */
1847 if (singlestep_breakpoints_inserted_p
a493e3e2 1848 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
30852783
UW
1849 {
1850 /* If we have nested signals or a pending signal is delivered
1851 immediately after a handler returns, might might already have
1852 a step-resume breakpoint set on the earlier handler. We cannot
1853 set another step-resume breakpoint; just continue on until the
1854 original breakpoint is hit. */
1855 if (tp->control.step_resume_breakpoint == NULL)
1856 {
2c03e5be 1857 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
1858 tp->step_after_step_resume_breakpoint = 1;
1859 }
1860
1861 remove_single_step_breakpoints ();
1862 singlestep_breakpoints_inserted_p = 0;
1863
1864 insert_breakpoints ();
1865 tp->control.trap_expected = 0;
1866 }
1867
c906108c
SS
1868 if (should_resume)
1869 {
39f77062 1870 ptid_t resume_ptid;
dfcd3bfb 1871
cd76b0b7
VP
1872 /* If STEP is set, it's a request to use hardware stepping
1873 facilities. But in that case, we should never
1874 use singlestep breakpoint. */
1875 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1876
d4db2f36
PA
1877 /* Decide the set of threads to ask the target to resume. Start
1878 by assuming everything will be resumed, than narrow the set
1879 by applying increasingly restricting conditions. */
09cee04b 1880 resume_ptid = user_visible_resume_ptid (step);
d4db2f36
PA
1881
1882 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1883 if (singlestep_breakpoints_inserted_p
1884 && stepping_past_singlestep_breakpoint)
c906108c 1885 {
cd76b0b7
VP
1886 /* The situation here is as follows. In thread T1 we wanted to
1887 single-step. Lacking hardware single-stepping we've
1888 set breakpoint at the PC of the next instruction -- call it
1889 P. After resuming, we've hit that breakpoint in thread T2.
1890 Now we've removed original breakpoint, inserted breakpoint
1891 at P+1, and try to step to advance T2 past breakpoint.
1892 We need to step only T2, as if T1 is allowed to freely run,
1893 it can run past P, and if other threads are allowed to run,
1894 they can hit breakpoint at P+1, and nested hits of single-step
1895 breakpoints is not something we'd want -- that's complicated
1896 to support, and has no value. */
1897 resume_ptid = inferior_ptid;
1898 }
d4db2f36 1899 else if ((step || singlestep_breakpoints_inserted_p)
16c381f0 1900 && tp->control.trap_expected)
cd76b0b7 1901 {
74960c60
VP
1902 /* We're allowing a thread to run past a breakpoint it has
1903 hit, by single-stepping the thread with the breakpoint
1904 removed. In which case, we need to single-step only this
1905 thread, and keep others stopped, as they can miss this
1906 breakpoint if allowed to run.
1907
1908 The current code actually removes all breakpoints when
1909 doing this, not just the one being stepped over, so if we
1910 let other threads run, we can actually miss any
1911 breakpoint, not just the one at PC. */
ef5cf84e 1912 resume_ptid = inferior_ptid;
c906108c 1913 }
ef5cf84e 1914
515630c5 1915 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1916 {
1917 /* Most targets can step a breakpoint instruction, thus
1918 executing it normally. But if this one cannot, just
1919 continue and we will hit it anyway. */
6c95b8df 1920 if (step && breakpoint_inserted_here_p (aspace, pc))
c4ed33b9
AC
1921 step = 0;
1922 }
237fc4c9
PA
1923
1924 if (debug_displaced
515630c5 1925 && use_displaced_stepping (gdbarch)
16c381f0 1926 && tp->control.trap_expected)
237fc4c9 1927 {
515630c5 1928 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1929 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1930 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1931 gdb_byte buf[4];
1932
5af949e3
UW
1933 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1934 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1935 read_memory (actual_pc, buf, sizeof (buf));
1936 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1937 }
1938
c1e36e3e
PA
1939 if (tp->control.may_range_step)
1940 {
1941 /* If we're resuming a thread with the PC out of the step
1942 range, then we're doing some nested/finer run control
1943 operation, like stepping the thread out of the dynamic
1944 linker or the displaced stepping scratch pad. We
1945 shouldn't have allowed a range step then. */
1946 gdb_assert (pc_in_thread_step_range (pc, tp));
1947 }
1948
e58b0e63
PA
1949 /* Install inferior's terminal modes. */
1950 target_terminal_inferior ();
1951
2020b7ab
PA
1952 /* Avoid confusing the next resume, if the next stop/resume
1953 happens to apply to another thread. */
a493e3e2 1954 tp->suspend.stop_signal = GDB_SIGNAL_0;
607cecd2 1955
2455069d
UW
1956 /* Advise target which signals may be handled silently. If we have
1957 removed breakpoints because we are stepping over one (which can
1958 happen only if we are not using displaced stepping), we need to
1959 receive all signals to avoid accidentally skipping a breakpoint
1960 during execution of a signal handler. */
1961 if ((step || singlestep_breakpoints_inserted_p)
1962 && tp->control.trap_expected
1963 && !use_displaced_stepping (gdbarch))
1964 target_pass_signals (0, NULL);
1965 else
a493e3e2 1966 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2455069d 1967
607cecd2 1968 target_resume (resume_ptid, step, sig);
c906108c
SS
1969 }
1970
1971 discard_cleanups (old_cleanups);
1972}
1973\f
237fc4c9 1974/* Proceeding. */
c906108c
SS
1975
1976/* Clear out all variables saying what to do when inferior is continued.
1977 First do this, then set the ones you want, then call `proceed'. */
1978
a7212384
UW
1979static void
1980clear_proceed_status_thread (struct thread_info *tp)
c906108c 1981{
a7212384
UW
1982 if (debug_infrun)
1983 fprintf_unfiltered (gdb_stdlog,
1984 "infrun: clear_proceed_status_thread (%s)\n",
1985 target_pid_to_str (tp->ptid));
d6b48e9c 1986
16c381f0
JK
1987 tp->control.trap_expected = 0;
1988 tp->control.step_range_start = 0;
1989 tp->control.step_range_end = 0;
c1e36e3e 1990 tp->control.may_range_step = 0;
16c381f0
JK
1991 tp->control.step_frame_id = null_frame_id;
1992 tp->control.step_stack_frame_id = null_frame_id;
1993 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 1994 tp->stop_requested = 0;
4e1c45ea 1995
16c381f0 1996 tp->control.stop_step = 0;
32400beb 1997
16c381f0 1998 tp->control.proceed_to_finish = 0;
414c69f7 1999
a7212384 2000 /* Discard any remaining commands or status from previous stop. */
16c381f0 2001 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2002}
32400beb 2003
a7212384
UW
2004static int
2005clear_proceed_status_callback (struct thread_info *tp, void *data)
2006{
2007 if (is_exited (tp->ptid))
2008 return 0;
d6b48e9c 2009
a7212384
UW
2010 clear_proceed_status_thread (tp);
2011 return 0;
2012}
2013
2014void
2015clear_proceed_status (void)
2016{
6c95b8df
PA
2017 if (!non_stop)
2018 {
2019 /* In all-stop mode, delete the per-thread status of all
2020 threads, even if inferior_ptid is null_ptid, there may be
2021 threads on the list. E.g., we may be launching a new
2022 process, while selecting the executable. */
2023 iterate_over_threads (clear_proceed_status_callback, NULL);
2024 }
2025
a7212384
UW
2026 if (!ptid_equal (inferior_ptid, null_ptid))
2027 {
2028 struct inferior *inferior;
2029
2030 if (non_stop)
2031 {
6c95b8df
PA
2032 /* If in non-stop mode, only delete the per-thread status of
2033 the current thread. */
a7212384
UW
2034 clear_proceed_status_thread (inferior_thread ());
2035 }
6c95b8df 2036
d6b48e9c 2037 inferior = current_inferior ();
16c381f0 2038 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2039 }
2040
c906108c 2041 stop_after_trap = 0;
f3b1572e
PA
2042
2043 observer_notify_about_to_proceed ();
c906108c 2044
d5c31457
UW
2045 if (stop_registers)
2046 {
2047 regcache_xfree (stop_registers);
2048 stop_registers = NULL;
2049 }
c906108c
SS
2050}
2051
5a437975
DE
2052/* Check the current thread against the thread that reported the most recent
2053 event. If a step-over is required return TRUE and set the current thread
2054 to the old thread. Otherwise return FALSE.
2055
1777feb0 2056 This should be suitable for any targets that support threads. */
ea67f13b
DJ
2057
2058static int
6a6b96b9 2059prepare_to_proceed (int step)
ea67f13b
DJ
2060{
2061 ptid_t wait_ptid;
2062 struct target_waitstatus wait_status;
5a437975
DE
2063 int schedlock_enabled;
2064
2065 /* With non-stop mode on, threads are always handled individually. */
2066 gdb_assert (! non_stop);
ea67f13b
DJ
2067
2068 /* Get the last target status returned by target_wait(). */
2069 get_last_target_status (&wait_ptid, &wait_status);
2070
6a6b96b9 2071 /* Make sure we were stopped at a breakpoint. */
ea67f13b 2072 if (wait_status.kind != TARGET_WAITKIND_STOPPED
a493e3e2
PA
2073 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2074 && wait_status.value.sig != GDB_SIGNAL_ILL
2075 && wait_status.value.sig != GDB_SIGNAL_SEGV
2076 && wait_status.value.sig != GDB_SIGNAL_EMT))
ea67f13b
DJ
2077 {
2078 return 0;
2079 }
2080
5a437975
DE
2081 schedlock_enabled = (scheduler_mode == schedlock_on
2082 || (scheduler_mode == schedlock_step
2083 && step));
2084
d4db2f36
PA
2085 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2086 if (schedlock_enabled)
2087 return 0;
2088
2089 /* Don't switch over if we're about to resume some other process
2090 other than WAIT_PTID's, and schedule-multiple is off. */
2091 if (!sched_multi
2092 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2093 return 0;
2094
6a6b96b9 2095 /* Switched over from WAIT_PID. */
ea67f13b 2096 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 2097 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 2098 {
515630c5
UW
2099 struct regcache *regcache = get_thread_regcache (wait_ptid);
2100
6c95b8df
PA
2101 if (breakpoint_here_p (get_regcache_aspace (regcache),
2102 regcache_read_pc (regcache)))
ea67f13b 2103 {
515630c5
UW
2104 /* If stepping, remember current thread to switch back to. */
2105 if (step)
2106 deferred_step_ptid = inferior_ptid;
ea67f13b 2107
515630c5
UW
2108 /* Switch back to WAIT_PID thread. */
2109 switch_to_thread (wait_ptid);
6a6b96b9 2110
0d9a9a5f
PA
2111 if (debug_infrun)
2112 fprintf_unfiltered (gdb_stdlog,
2113 "infrun: prepare_to_proceed (step=%d), "
2114 "switched to [%s]\n",
2115 step, target_pid_to_str (inferior_ptid));
2116
515630c5
UW
2117 /* We return 1 to indicate that there is a breakpoint here,
2118 so we need to step over it before continuing to avoid
1777feb0 2119 hitting it straight away. */
515630c5
UW
2120 return 1;
2121 }
ea67f13b
DJ
2122 }
2123
2124 return 0;
ea67f13b 2125}
e4846b08 2126
c906108c
SS
2127/* Basic routine for continuing the program in various fashions.
2128
2129 ADDR is the address to resume at, or -1 for resume where stopped.
2130 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2131 or -1 for act according to how it stopped.
c906108c 2132 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2133 -1 means return after that and print nothing.
2134 You should probably set various step_... variables
2135 before calling here, if you are stepping.
c906108c
SS
2136
2137 You should call clear_proceed_status before calling proceed. */
2138
2139void
2ea28649 2140proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
c906108c 2141{
e58b0e63
PA
2142 struct regcache *regcache;
2143 struct gdbarch *gdbarch;
4e1c45ea 2144 struct thread_info *tp;
e58b0e63 2145 CORE_ADDR pc;
6c95b8df 2146 struct address_space *aspace;
0de5618e
YQ
2147 /* GDB may force the inferior to step due to various reasons. */
2148 int force_step = 0;
c906108c 2149
e58b0e63
PA
2150 /* If we're stopped at a fork/vfork, follow the branch set by the
2151 "set follow-fork-mode" command; otherwise, we'll just proceed
2152 resuming the current thread. */
2153 if (!follow_fork ())
2154 {
2155 /* The target for some reason decided not to resume. */
2156 normal_stop ();
f148b27e
PA
2157 if (target_can_async_p ())
2158 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2159 return;
2160 }
2161
842951eb
PA
2162 /* We'll update this if & when we switch to a new thread. */
2163 previous_inferior_ptid = inferior_ptid;
2164
e58b0e63
PA
2165 regcache = get_current_regcache ();
2166 gdbarch = get_regcache_arch (regcache);
6c95b8df 2167 aspace = get_regcache_aspace (regcache);
e58b0e63
PA
2168 pc = regcache_read_pc (regcache);
2169
c906108c 2170 if (step > 0)
515630c5 2171 step_start_function = find_pc_function (pc);
c906108c
SS
2172 if (step < 0)
2173 stop_after_trap = 1;
2174
2acceee2 2175 if (addr == (CORE_ADDR) -1)
c906108c 2176 {
6c95b8df 2177 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 2178 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2179 /* There is a breakpoint at the address we will resume at,
2180 step one instruction before inserting breakpoints so that
2181 we do not stop right away (and report a second hit at this
b2175913
MS
2182 breakpoint).
2183
2184 Note, we don't do this in reverse, because we won't
2185 actually be executing the breakpoint insn anyway.
2186 We'll be (un-)executing the previous instruction. */
2187
0de5618e 2188 force_step = 1;
515630c5
UW
2189 else if (gdbarch_single_step_through_delay_p (gdbarch)
2190 && gdbarch_single_step_through_delay (gdbarch,
2191 get_current_frame ()))
3352ef37
AC
2192 /* We stepped onto an instruction that needs to be stepped
2193 again before re-inserting the breakpoint, do so. */
0de5618e 2194 force_step = 1;
c906108c
SS
2195 }
2196 else
2197 {
515630c5 2198 regcache_write_pc (regcache, addr);
c906108c
SS
2199 }
2200
527159b7 2201 if (debug_infrun)
8a9de0e4 2202 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
2203 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2204 paddress (gdbarch, addr), siggnal, step);
527159b7 2205
94cc34af
PA
2206 if (non_stop)
2207 /* In non-stop, each thread is handled individually. The context
2208 must already be set to the right thread here. */
2209 ;
2210 else
2211 {
2212 /* In a multi-threaded task we may select another thread and
2213 then continue or step.
c906108c 2214
94cc34af
PA
2215 But if the old thread was stopped at a breakpoint, it will
2216 immediately cause another breakpoint stop without any
2217 execution (i.e. it will report a breakpoint hit incorrectly).
2218 So we must step over it first.
c906108c 2219
94cc34af
PA
2220 prepare_to_proceed checks the current thread against the
2221 thread that reported the most recent event. If a step-over
2222 is required it returns TRUE and sets the current thread to
1777feb0 2223 the old thread. */
94cc34af 2224 if (prepare_to_proceed (step))
0de5618e 2225 force_step = 1;
94cc34af 2226 }
c906108c 2227
4e1c45ea
PA
2228 /* prepare_to_proceed may change the current thread. */
2229 tp = inferior_thread ();
2230
0de5618e 2231 if (force_step)
30852783
UW
2232 {
2233 tp->control.trap_expected = 1;
2234 /* If displaced stepping is enabled, we can step over the
2235 breakpoint without hitting it, so leave all breakpoints
2236 inserted. Otherwise we need to disable all breakpoints, step
2237 one instruction, and then re-add them when that step is
2238 finished. */
2239 if (!use_displaced_stepping (gdbarch))
2240 remove_breakpoints ();
2241 }
2242
2243 /* We can insert breakpoints if we're not trying to step over one,
2244 or if we are stepping over one but we're using displaced stepping
2245 to do so. */
2246 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2247 insert_breakpoints ();
2248
2020b7ab
PA
2249 if (!non_stop)
2250 {
2251 /* Pass the last stop signal to the thread we're resuming,
2252 irrespective of whether the current thread is the thread that
2253 got the last event or not. This was historically GDB's
2254 behaviour before keeping a stop_signal per thread. */
2255
2256 struct thread_info *last_thread;
2257 ptid_t last_ptid;
2258 struct target_waitstatus last_status;
2259
2260 get_last_target_status (&last_ptid, &last_status);
2261 if (!ptid_equal (inferior_ptid, last_ptid)
2262 && !ptid_equal (last_ptid, null_ptid)
2263 && !ptid_equal (last_ptid, minus_one_ptid))
2264 {
e09875d4 2265 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
2266 if (last_thread)
2267 {
16c381f0 2268 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
a493e3e2 2269 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2020b7ab
PA
2270 }
2271 }
2272 }
2273
a493e3e2 2274 if (siggnal != GDB_SIGNAL_DEFAULT)
16c381f0 2275 tp->suspend.stop_signal = siggnal;
c906108c
SS
2276 /* If this signal should not be seen by program,
2277 give it zero. Used for debugging signals. */
16c381f0 2278 else if (!signal_program[tp->suspend.stop_signal])
a493e3e2 2279 tp->suspend.stop_signal = GDB_SIGNAL_0;
c906108c
SS
2280
2281 annotate_starting ();
2282
2283 /* Make sure that output from GDB appears before output from the
2284 inferior. */
2285 gdb_flush (gdb_stdout);
2286
e4846b08
JJ
2287 /* Refresh prev_pc value just prior to resuming. This used to be
2288 done in stop_stepping, however, setting prev_pc there did not handle
2289 scenarios such as inferior function calls or returning from
2290 a function via the return command. In those cases, the prev_pc
2291 value was not set properly for subsequent commands. The prev_pc value
2292 is used to initialize the starting line number in the ecs. With an
2293 invalid value, the gdb next command ends up stopping at the position
2294 represented by the next line table entry past our start position.
2295 On platforms that generate one line table entry per line, this
2296 is not a problem. However, on the ia64, the compiler generates
2297 extraneous line table entries that do not increase the line number.
2298 When we issue the gdb next command on the ia64 after an inferior call
2299 or a return command, we often end up a few instructions forward, still
2300 within the original line we started.
2301
d5cd6034
JB
2302 An attempt was made to refresh the prev_pc at the same time the
2303 execution_control_state is initialized (for instance, just before
2304 waiting for an inferior event). But this approach did not work
2305 because of platforms that use ptrace, where the pc register cannot
2306 be read unless the inferior is stopped. At that point, we are not
2307 guaranteed the inferior is stopped and so the regcache_read_pc() call
2308 can fail. Setting the prev_pc value here ensures the value is updated
2309 correctly when the inferior is stopped. */
4e1c45ea 2310 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2311
59f0d5d9 2312 /* Fill in with reasonable starting values. */
4e1c45ea 2313 init_thread_stepping_state (tp);
59f0d5d9 2314
59f0d5d9
PA
2315 /* Reset to normal state. */
2316 init_infwait_state ();
2317
c906108c 2318 /* Resume inferior. */
0de5618e
YQ
2319 resume (force_step || step || bpstat_should_step (),
2320 tp->suspend.stop_signal);
c906108c
SS
2321
2322 /* Wait for it to stop (if not standalone)
2323 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2324 /* Do this only if we are not using the event loop, or if the target
1777feb0 2325 does not support asynchronous execution. */
362646f5 2326 if (!target_can_async_p ())
43ff13b4 2327 {
e4c8541f 2328 wait_for_inferior ();
43ff13b4
JM
2329 normal_stop ();
2330 }
c906108c 2331}
c906108c
SS
2332\f
2333
2334/* Start remote-debugging of a machine over a serial link. */
96baa820 2335
c906108c 2336void
8621d6a9 2337start_remote (int from_tty)
c906108c 2338{
d6b48e9c 2339 struct inferior *inferior;
d6b48e9c
PA
2340
2341 inferior = current_inferior ();
16c381f0 2342 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2343
1777feb0 2344 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2345 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2346 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2347 nothing is returned (instead of just blocking). Because of this,
2348 targets expecting an immediate response need to, internally, set
2349 things up so that the target_wait() is forced to eventually
1777feb0 2350 timeout. */
6426a772
JM
2351 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2352 differentiate to its caller what the state of the target is after
2353 the initial open has been performed. Here we're assuming that
2354 the target has stopped. It should be possible to eventually have
2355 target_open() return to the caller an indication that the target
2356 is currently running and GDB state should be set to the same as
1777feb0 2357 for an async run. */
e4c8541f 2358 wait_for_inferior ();
8621d6a9
DJ
2359
2360 /* Now that the inferior has stopped, do any bookkeeping like
2361 loading shared libraries. We want to do this before normal_stop,
2362 so that the displayed frame is up to date. */
2363 post_create_inferior (&current_target, from_tty);
2364
6426a772 2365 normal_stop ();
c906108c
SS
2366}
2367
2368/* Initialize static vars when a new inferior begins. */
2369
2370void
96baa820 2371init_wait_for_inferior (void)
c906108c
SS
2372{
2373 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2374
c906108c
SS
2375 breakpoint_init_inferior (inf_starting);
2376
c906108c 2377 clear_proceed_status ();
9f976b41
DJ
2378
2379 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 2380 deferred_step_ptid = null_ptid;
ca005067
DJ
2381
2382 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2383
842951eb 2384 previous_inferior_ptid = inferior_ptid;
0d1e5fa7
PA
2385 init_infwait_state ();
2386
edb3359d
DJ
2387 /* Discard any skipped inlined frames. */
2388 clear_inline_frame_state (minus_one_ptid);
c906108c 2389}
237fc4c9 2390
c906108c 2391\f
b83266a0
SS
2392/* This enum encodes possible reasons for doing a target_wait, so that
2393 wfi can call target_wait in one place. (Ultimately the call will be
2394 moved out of the infinite loop entirely.) */
2395
c5aa993b
JM
2396enum infwait_states
2397{
cd0fc7c3
SS
2398 infwait_normal_state,
2399 infwait_thread_hop_state,
d983da9c 2400 infwait_step_watch_state,
cd0fc7c3 2401 infwait_nonstep_watch_state
b83266a0
SS
2402};
2403
0d1e5fa7
PA
2404/* The PTID we'll do a target_wait on.*/
2405ptid_t waiton_ptid;
2406
2407/* Current inferior wait state. */
8870954f 2408static enum infwait_states infwait_state;
cd0fc7c3 2409
0d1e5fa7
PA
2410/* Data to be passed around while handling an event. This data is
2411 discarded between events. */
c5aa993b 2412struct execution_control_state
488f131b 2413{
0d1e5fa7 2414 ptid_t ptid;
4e1c45ea
PA
2415 /* The thread that got the event, if this was a thread event; NULL
2416 otherwise. */
2417 struct thread_info *event_thread;
2418
488f131b 2419 struct target_waitstatus ws;
488f131b 2420 int random_signal;
7e324e48 2421 int stop_func_filled_in;
488f131b
JB
2422 CORE_ADDR stop_func_start;
2423 CORE_ADDR stop_func_end;
2c02bd72 2424 const char *stop_func_name;
488f131b
JB
2425 int wait_some_more;
2426};
2427
ec9499be 2428static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2429
568d6575
UW
2430static void handle_step_into_function (struct gdbarch *gdbarch,
2431 struct execution_control_state *ecs);
2432static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2433 struct execution_control_state *ecs);
186c406b 2434static void check_exception_resume (struct execution_control_state *,
28106bc2 2435 struct frame_info *);
611c83ae 2436
104c1213
JM
2437static void stop_stepping (struct execution_control_state *ecs);
2438static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2439static void keep_going (struct execution_control_state *ecs);
104c1213 2440
252fbfc8
PA
2441/* Callback for iterate over threads. If the thread is stopped, but
2442 the user/frontend doesn't know about that yet, go through
2443 normal_stop, as if the thread had just stopped now. ARG points at
2444 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2445 ptid_is_pid(PTID) is true, applies to all threads of the process
2446 pointed at by PTID. Otherwise, apply only to the thread pointed by
2447 PTID. */
2448
2449static int
2450infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2451{
2452 ptid_t ptid = * (ptid_t *) arg;
2453
2454 if ((ptid_equal (info->ptid, ptid)
2455 || ptid_equal (minus_one_ptid, ptid)
2456 || (ptid_is_pid (ptid)
2457 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2458 && is_running (info->ptid)
2459 && !is_executing (info->ptid))
2460 {
2461 struct cleanup *old_chain;
2462 struct execution_control_state ecss;
2463 struct execution_control_state *ecs = &ecss;
2464
2465 memset (ecs, 0, sizeof (*ecs));
2466
2467 old_chain = make_cleanup_restore_current_thread ();
2468
252fbfc8
PA
2469 /* Go through handle_inferior_event/normal_stop, so we always
2470 have consistent output as if the stop event had been
2471 reported. */
2472 ecs->ptid = info->ptid;
e09875d4 2473 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8 2474 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 2475 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
2476
2477 handle_inferior_event (ecs);
2478
2479 if (!ecs->wait_some_more)
2480 {
2481 struct thread_info *tp;
2482
2483 normal_stop ();
2484
fa4cd53f 2485 /* Finish off the continuations. */
252fbfc8 2486 tp = inferior_thread ();
fa4cd53f
PA
2487 do_all_intermediate_continuations_thread (tp, 1);
2488 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2489 }
2490
2491 do_cleanups (old_chain);
2492 }
2493
2494 return 0;
2495}
2496
2497/* This function is attached as a "thread_stop_requested" observer.
2498 Cleanup local state that assumed the PTID was to be resumed, and
2499 report the stop to the frontend. */
2500
2c0b251b 2501static void
252fbfc8
PA
2502infrun_thread_stop_requested (ptid_t ptid)
2503{
fc1cf338 2504 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2505
2506 /* PTID was requested to stop. Remove it from the displaced
2507 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2508
2509 for (displaced = displaced_step_inferior_states;
2510 displaced;
2511 displaced = displaced->next)
252fbfc8 2512 {
fc1cf338 2513 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2514
fc1cf338
PA
2515 it = displaced->step_request_queue;
2516 prev_next_p = &displaced->step_request_queue;
2517 while (it)
252fbfc8 2518 {
fc1cf338
PA
2519 if (ptid_match (it->ptid, ptid))
2520 {
2521 *prev_next_p = it->next;
2522 it->next = NULL;
2523 xfree (it);
2524 }
252fbfc8 2525 else
fc1cf338
PA
2526 {
2527 prev_next_p = &it->next;
2528 }
252fbfc8 2529
fc1cf338 2530 it = *prev_next_p;
252fbfc8 2531 }
252fbfc8
PA
2532 }
2533
2534 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2535}
2536
a07daef3
PA
2537static void
2538infrun_thread_thread_exit (struct thread_info *tp, int silent)
2539{
2540 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2541 nullify_last_target_wait_ptid ();
2542}
2543
4e1c45ea
PA
2544/* Callback for iterate_over_threads. */
2545
2546static int
2547delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2548{
2549 if (is_exited (info->ptid))
2550 return 0;
2551
2552 delete_step_resume_breakpoint (info);
186c406b 2553 delete_exception_resume_breakpoint (info);
4e1c45ea
PA
2554 return 0;
2555}
2556
2557/* In all-stop, delete the step resume breakpoint of any thread that
2558 had one. In non-stop, delete the step resume breakpoint of the
2559 thread that just stopped. */
2560
2561static void
2562delete_step_thread_step_resume_breakpoint (void)
2563{
2564 if (!target_has_execution
2565 || ptid_equal (inferior_ptid, null_ptid))
2566 /* If the inferior has exited, we have already deleted the step
2567 resume breakpoints out of GDB's lists. */
2568 return;
2569
2570 if (non_stop)
2571 {
2572 /* If in non-stop mode, only delete the step-resume or
2573 longjmp-resume breakpoint of the thread that just stopped
2574 stepping. */
2575 struct thread_info *tp = inferior_thread ();
abbb1732 2576
4e1c45ea 2577 delete_step_resume_breakpoint (tp);
186c406b 2578 delete_exception_resume_breakpoint (tp);
4e1c45ea
PA
2579 }
2580 else
2581 /* In all-stop mode, delete all step-resume and longjmp-resume
2582 breakpoints of any thread that had them. */
2583 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2584}
2585
1777feb0 2586/* A cleanup wrapper. */
4e1c45ea
PA
2587
2588static void
2589delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2590{
2591 delete_step_thread_step_resume_breakpoint ();
2592}
2593
223698f8
DE
2594/* Pretty print the results of target_wait, for debugging purposes. */
2595
2596static void
2597print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2598 const struct target_waitstatus *ws)
2599{
2600 char *status_string = target_waitstatus_to_string (ws);
2601 struct ui_file *tmp_stream = mem_fileopen ();
2602 char *text;
223698f8
DE
2603
2604 /* The text is split over several lines because it was getting too long.
2605 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2606 output as a unit; we want only one timestamp printed if debug_timestamp
2607 is set. */
2608
2609 fprintf_unfiltered (tmp_stream,
dfd4cc63
LM
2610 "infrun: target_wait (%d", ptid_get_pid (waiton_ptid));
2611 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
2612 fprintf_unfiltered (tmp_stream,
2613 " [%s]", target_pid_to_str (waiton_ptid));
2614 fprintf_unfiltered (tmp_stream, ", status) =\n");
2615 fprintf_unfiltered (tmp_stream,
2616 "infrun: %d [%s],\n",
dfd4cc63
LM
2617 ptid_get_pid (result_ptid),
2618 target_pid_to_str (result_ptid));
223698f8
DE
2619 fprintf_unfiltered (tmp_stream,
2620 "infrun: %s\n",
2621 status_string);
2622
759ef836 2623 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2624
2625 /* This uses %s in part to handle %'s in the text, but also to avoid
2626 a gcc error: the format attribute requires a string literal. */
2627 fprintf_unfiltered (gdb_stdlog, "%s", text);
2628
2629 xfree (status_string);
2630 xfree (text);
2631 ui_file_delete (tmp_stream);
2632}
2633
24291992
PA
2634/* Prepare and stabilize the inferior for detaching it. E.g.,
2635 detaching while a thread is displaced stepping is a recipe for
2636 crashing it, as nothing would readjust the PC out of the scratch
2637 pad. */
2638
2639void
2640prepare_for_detach (void)
2641{
2642 struct inferior *inf = current_inferior ();
2643 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2644 struct cleanup *old_chain_1;
2645 struct displaced_step_inferior_state *displaced;
2646
2647 displaced = get_displaced_stepping_state (inf->pid);
2648
2649 /* Is any thread of this process displaced stepping? If not,
2650 there's nothing else to do. */
2651 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2652 return;
2653
2654 if (debug_infrun)
2655 fprintf_unfiltered (gdb_stdlog,
2656 "displaced-stepping in-process while detaching");
2657
2658 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2659 inf->detaching = 1;
2660
2661 while (!ptid_equal (displaced->step_ptid, null_ptid))
2662 {
2663 struct cleanup *old_chain_2;
2664 struct execution_control_state ecss;
2665 struct execution_control_state *ecs;
2666
2667 ecs = &ecss;
2668 memset (ecs, 0, sizeof (*ecs));
2669
2670 overlay_cache_invalid = 1;
2671
24291992
PA
2672 if (deprecated_target_wait_hook)
2673 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2674 else
2675 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2676
2677 if (debug_infrun)
2678 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2679
2680 /* If an error happens while handling the event, propagate GDB's
2681 knowledge of the executing state to the frontend/user running
2682 state. */
3e43a32a
MS
2683 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2684 &minus_one_ptid);
24291992
PA
2685
2686 /* Now figure out what to do with the result of the result. */
2687 handle_inferior_event (ecs);
2688
2689 /* No error, don't finish the state yet. */
2690 discard_cleanups (old_chain_2);
2691
2692 /* Breakpoints and watchpoints are not installed on the target
2693 at this point, and signals are passed directly to the
2694 inferior, so this must mean the process is gone. */
2695 if (!ecs->wait_some_more)
2696 {
2697 discard_cleanups (old_chain_1);
2698 error (_("Program exited while detaching"));
2699 }
2700 }
2701
2702 discard_cleanups (old_chain_1);
2703}
2704
cd0fc7c3 2705/* Wait for control to return from inferior to debugger.
ae123ec6 2706
cd0fc7c3
SS
2707 If inferior gets a signal, we may decide to start it up again
2708 instead of returning. That is why there is a loop in this function.
2709 When this function actually returns it means the inferior
2710 should be left stopped and GDB should read more commands. */
2711
2712void
e4c8541f 2713wait_for_inferior (void)
cd0fc7c3
SS
2714{
2715 struct cleanup *old_cleanups;
c906108c 2716
527159b7 2717 if (debug_infrun)
ae123ec6 2718 fprintf_unfiltered
e4c8541f 2719 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 2720
4e1c45ea
PA
2721 old_cleanups =
2722 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2723
c906108c
SS
2724 while (1)
2725 {
ae25568b
PA
2726 struct execution_control_state ecss;
2727 struct execution_control_state *ecs = &ecss;
29f49a6a
PA
2728 struct cleanup *old_chain;
2729
ae25568b
PA
2730 memset (ecs, 0, sizeof (*ecs));
2731
ec9499be 2732 overlay_cache_invalid = 1;
ec9499be 2733
9a4105ab 2734 if (deprecated_target_wait_hook)
47608cb1 2735 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2736 else
47608cb1 2737 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2738
f00150c9 2739 if (debug_infrun)
223698f8 2740 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2741
29f49a6a
PA
2742 /* If an error happens while handling the event, propagate GDB's
2743 knowledge of the executing state to the frontend/user running
2744 state. */
2745 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2746
cd0fc7c3
SS
2747 /* Now figure out what to do with the result of the result. */
2748 handle_inferior_event (ecs);
c906108c 2749
29f49a6a
PA
2750 /* No error, don't finish the state yet. */
2751 discard_cleanups (old_chain);
2752
cd0fc7c3
SS
2753 if (!ecs->wait_some_more)
2754 break;
2755 }
4e1c45ea 2756
cd0fc7c3
SS
2757 do_cleanups (old_cleanups);
2758}
c906108c 2759
1777feb0 2760/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 2761 event loop whenever a change of state is detected on the file
1777feb0
MS
2762 descriptor corresponding to the target. It can be called more than
2763 once to complete a single execution command. In such cases we need
2764 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
2765 that this function is called for a single execution command, then
2766 report to the user that the inferior has stopped, and do the
1777feb0 2767 necessary cleanups. */
43ff13b4
JM
2768
2769void
fba45db2 2770fetch_inferior_event (void *client_data)
43ff13b4 2771{
0d1e5fa7 2772 struct execution_control_state ecss;
a474d7c2 2773 struct execution_control_state *ecs = &ecss;
4f8d22e3 2774 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2775 struct cleanup *ts_old_chain;
4f8d22e3 2776 int was_sync = sync_execution;
0f641c01 2777 int cmd_done = 0;
43ff13b4 2778
0d1e5fa7
PA
2779 memset (ecs, 0, sizeof (*ecs));
2780
c5187ac6
PA
2781 /* We're handling a live event, so make sure we're doing live
2782 debugging. If we're looking at traceframes while the target is
2783 running, we're going to need to get back to that mode after
2784 handling the event. */
2785 if (non_stop)
2786 {
2787 make_cleanup_restore_current_traceframe ();
e6e4e701 2788 set_current_traceframe (-1);
c5187ac6
PA
2789 }
2790
4f8d22e3
PA
2791 if (non_stop)
2792 /* In non-stop mode, the user/frontend should not notice a thread
2793 switch due to internal events. Make sure we reverse to the
2794 user selected thread and frame after handling the event and
2795 running any breakpoint commands. */
2796 make_cleanup_restore_current_thread ();
2797
ec9499be 2798 overlay_cache_invalid = 1;
3dd5b83d 2799
32231432
PA
2800 make_cleanup_restore_integer (&execution_direction);
2801 execution_direction = target_execution_direction ();
2802
9a4105ab 2803 if (deprecated_target_wait_hook)
a474d7c2 2804 ecs->ptid =
47608cb1 2805 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2806 else
47608cb1 2807 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2808
f00150c9 2809 if (debug_infrun)
223698f8 2810 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2811
29f49a6a
PA
2812 /* If an error happens while handling the event, propagate GDB's
2813 knowledge of the executing state to the frontend/user running
2814 state. */
2815 if (!non_stop)
2816 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2817 else
2818 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2819
353d1d73
JK
2820 /* Get executed before make_cleanup_restore_current_thread above to apply
2821 still for the thread which has thrown the exception. */
2822 make_bpstat_clear_actions_cleanup ();
2823
43ff13b4 2824 /* Now figure out what to do with the result of the result. */
a474d7c2 2825 handle_inferior_event (ecs);
43ff13b4 2826
a474d7c2 2827 if (!ecs->wait_some_more)
43ff13b4 2828 {
d6b48e9c
PA
2829 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2830
4e1c45ea 2831 delete_step_thread_step_resume_breakpoint ();
f107f563 2832
d6b48e9c 2833 /* We may not find an inferior if this was a process exit. */
16c381f0 2834 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2835 normal_stop ();
2836
af679fd0 2837 if (target_has_execution
0e5bf2a8 2838 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
af679fd0
PA
2839 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2840 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2841 && ecs->event_thread->step_multi
16c381f0 2842 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
2843 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2844 else
0f641c01
PA
2845 {
2846 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2847 cmd_done = 1;
2848 }
43ff13b4 2849 }
4f8d22e3 2850
29f49a6a
PA
2851 /* No error, don't finish the thread states yet. */
2852 discard_cleanups (ts_old_chain);
2853
4f8d22e3
PA
2854 /* Revert thread and frame. */
2855 do_cleanups (old_chain);
2856
2857 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
2858 restore the prompt (a synchronous execution command has finished,
2859 and we're ready for input). */
b4a14fd0 2860 if (interpreter_async && was_sync && !sync_execution)
4f8d22e3 2861 display_gdb_prompt (0);
0f641c01
PA
2862
2863 if (cmd_done
2864 && !was_sync
2865 && exec_done_display_p
2866 && (ptid_equal (inferior_ptid, null_ptid)
2867 || !is_running (inferior_ptid)))
2868 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
2869}
2870
edb3359d
DJ
2871/* Record the frame and location we're currently stepping through. */
2872void
2873set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2874{
2875 struct thread_info *tp = inferior_thread ();
2876
16c381f0
JK
2877 tp->control.step_frame_id = get_frame_id (frame);
2878 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
2879
2880 tp->current_symtab = sal.symtab;
2881 tp->current_line = sal.line;
2882}
2883
0d1e5fa7
PA
2884/* Clear context switchable stepping state. */
2885
2886void
4e1c45ea 2887init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2888{
2889 tss->stepping_over_breakpoint = 0;
2890 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
2891}
2892
e02bc4cc 2893/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2894 target_wait()/deprecated_target_wait_hook(). The data is actually
2895 cached by handle_inferior_event(), which gets called immediately
2896 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2897
2898void
488f131b 2899get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2900{
39f77062 2901 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2902 *status = target_last_waitstatus;
2903}
2904
ac264b3b
MS
2905void
2906nullify_last_target_wait_ptid (void)
2907{
2908 target_last_wait_ptid = minus_one_ptid;
2909}
2910
dcf4fbde 2911/* Switch thread contexts. */
dd80620e
MS
2912
2913static void
0d1e5fa7 2914context_switch (ptid_t ptid)
dd80620e 2915{
4b51d87b 2916 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
2917 {
2918 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2919 target_pid_to_str (inferior_ptid));
2920 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2921 target_pid_to_str (ptid));
fd48f117
DJ
2922 }
2923
0d1e5fa7 2924 switch_to_thread (ptid);
dd80620e
MS
2925}
2926
4fa8626c
DJ
2927static void
2928adjust_pc_after_break (struct execution_control_state *ecs)
2929{
24a73cce
UW
2930 struct regcache *regcache;
2931 struct gdbarch *gdbarch;
6c95b8df 2932 struct address_space *aspace;
8aad930b 2933 CORE_ADDR breakpoint_pc;
4fa8626c 2934
4fa8626c
DJ
2935 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2936 we aren't, just return.
9709f61c
DJ
2937
2938 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2939 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2940 implemented by software breakpoints should be handled through the normal
2941 breakpoint layer.
8fb3e588 2942
4fa8626c
DJ
2943 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2944 different signals (SIGILL or SIGEMT for instance), but it is less
2945 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2946 gdbarch_decr_pc_after_break. I don't know any specific target that
2947 generates these signals at breakpoints (the code has been in GDB since at
2948 least 1992) so I can not guess how to handle them here.
8fb3e588 2949
e6cf7916
UW
2950 In earlier versions of GDB, a target with
2951 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2952 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2953 target with both of these set in GDB history, and it seems unlikely to be
2954 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2955
2956 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2957 return;
2958
a493e3e2 2959 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
2960 return;
2961
4058b839
PA
2962 /* In reverse execution, when a breakpoint is hit, the instruction
2963 under it has already been de-executed. The reported PC always
2964 points at the breakpoint address, so adjusting it further would
2965 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2966 architecture:
2967
2968 B1 0x08000000 : INSN1
2969 B2 0x08000001 : INSN2
2970 0x08000002 : INSN3
2971 PC -> 0x08000003 : INSN4
2972
2973 Say you're stopped at 0x08000003 as above. Reverse continuing
2974 from that point should hit B2 as below. Reading the PC when the
2975 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2976 been de-executed already.
2977
2978 B1 0x08000000 : INSN1
2979 B2 PC -> 0x08000001 : INSN2
2980 0x08000002 : INSN3
2981 0x08000003 : INSN4
2982
2983 We can't apply the same logic as for forward execution, because
2984 we would wrongly adjust the PC to 0x08000000, since there's a
2985 breakpoint at PC - 1. We'd then report a hit on B1, although
2986 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2987 behaviour. */
2988 if (execution_direction == EXEC_REVERSE)
2989 return;
2990
24a73cce
UW
2991 /* If this target does not decrement the PC after breakpoints, then
2992 we have nothing to do. */
2993 regcache = get_thread_regcache (ecs->ptid);
2994 gdbarch = get_regcache_arch (regcache);
2995 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2996 return;
2997
6c95b8df
PA
2998 aspace = get_regcache_aspace (regcache);
2999
8aad930b
AC
3000 /* Find the location where (if we've hit a breakpoint) the
3001 breakpoint would be. */
515630c5
UW
3002 breakpoint_pc = regcache_read_pc (regcache)
3003 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 3004
1c5cfe86
PA
3005 /* Check whether there actually is a software breakpoint inserted at
3006 that location.
3007
3008 If in non-stop mode, a race condition is possible where we've
3009 removed a breakpoint, but stop events for that breakpoint were
3010 already queued and arrive later. To suppress those spurious
3011 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3012 and retire them after a number of stop events are reported. */
6c95b8df
PA
3013 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3014 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 3015 {
77f9e713 3016 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 3017
96429cc8 3018 if (RECORD_IS_USED)
77f9e713 3019 record_full_gdb_operation_disable_set ();
96429cc8 3020
1c0fdd0e
UW
3021 /* When using hardware single-step, a SIGTRAP is reported for both
3022 a completed single-step and a software breakpoint. Need to
3023 differentiate between the two, as the latter needs adjusting
3024 but the former does not.
3025
3026 The SIGTRAP can be due to a completed hardware single-step only if
3027 - we didn't insert software single-step breakpoints
3028 - the thread to be examined is still the current thread
3029 - this thread is currently being stepped
3030
3031 If any of these events did not occur, we must have stopped due
3032 to hitting a software breakpoint, and have to back up to the
3033 breakpoint address.
3034
3035 As a special case, we could have hardware single-stepped a
3036 software breakpoint. In this case (prev_pc == breakpoint_pc),
3037 we also need to back up to the breakpoint address. */
3038
3039 if (singlestep_breakpoints_inserted_p
3040 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
3041 || !currently_stepping (ecs->event_thread)
3042 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 3043 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 3044
77f9e713 3045 do_cleanups (old_cleanups);
8aad930b 3046 }
4fa8626c
DJ
3047}
3048
7a76f5b8 3049static void
0d1e5fa7
PA
3050init_infwait_state (void)
3051{
3052 waiton_ptid = pid_to_ptid (-1);
3053 infwait_state = infwait_normal_state;
3054}
3055
edb3359d
DJ
3056static int
3057stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3058{
3059 for (frame = get_prev_frame (frame);
3060 frame != NULL;
3061 frame = get_prev_frame (frame))
3062 {
3063 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3064 return 1;
3065 if (get_frame_type (frame) != INLINE_FRAME)
3066 break;
3067 }
3068
3069 return 0;
3070}
3071
a96d9b2e
SDJ
3072/* Auxiliary function that handles syscall entry/return events.
3073 It returns 1 if the inferior should keep going (and GDB
3074 should ignore the event), or 0 if the event deserves to be
3075 processed. */
ca2163eb 3076
a96d9b2e 3077static int
ca2163eb 3078handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3079{
ca2163eb 3080 struct regcache *regcache;
ca2163eb
PA
3081 int syscall_number;
3082
3083 if (!ptid_equal (ecs->ptid, inferior_ptid))
3084 context_switch (ecs->ptid);
3085
3086 regcache = get_thread_regcache (ecs->ptid);
f90263c1 3087 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
3088 stop_pc = regcache_read_pc (regcache);
3089
a96d9b2e
SDJ
3090 if (catch_syscall_enabled () > 0
3091 && catching_syscall_number (syscall_number) > 0)
3092 {
ab04a2af
TT
3093 enum bpstat_signal_value sval;
3094
a96d9b2e
SDJ
3095 if (debug_infrun)
3096 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3097 syscall_number);
a96d9b2e 3098
16c381f0 3099 ecs->event_thread->control.stop_bpstat
6c95b8df 3100 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 3101 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 3102
427cd150
TT
3103 sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3104 GDB_SIGNAL_TRAP);
ab04a2af 3105 ecs->random_signal = sval == BPSTAT_SIGNAL_NO;
a96d9b2e 3106
ca2163eb
PA
3107 if (!ecs->random_signal)
3108 {
3109 /* Catchpoint hit. */
a493e3e2 3110 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
ca2163eb
PA
3111 return 0;
3112 }
a96d9b2e 3113 }
ca2163eb
PA
3114
3115 /* If no catchpoint triggered for this, then keep going. */
a493e3e2 3116 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
ca2163eb
PA
3117 keep_going (ecs);
3118 return 1;
a96d9b2e
SDJ
3119}
3120
7e324e48
GB
3121/* Clear the supplied execution_control_state's stop_func_* fields. */
3122
3123static void
3124clear_stop_func (struct execution_control_state *ecs)
3125{
3126 ecs->stop_func_filled_in = 0;
3127 ecs->stop_func_start = 0;
3128 ecs->stop_func_end = 0;
3129 ecs->stop_func_name = NULL;
3130}
3131
3132/* Lazily fill in the execution_control_state's stop_func_* fields. */
3133
3134static void
3135fill_in_stop_func (struct gdbarch *gdbarch,
3136 struct execution_control_state *ecs)
3137{
3138 if (!ecs->stop_func_filled_in)
3139 {
3140 /* Don't care about return value; stop_func_start and stop_func_name
3141 will both be 0 if it doesn't work. */
3142 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3143 &ecs->stop_func_start, &ecs->stop_func_end);
3144 ecs->stop_func_start
3145 += gdbarch_deprecated_function_start_offset (gdbarch);
3146
3147 ecs->stop_func_filled_in = 1;
3148 }
3149}
3150
cd0fc7c3
SS
3151/* Given an execution control state that has been freshly filled in
3152 by an event from the inferior, figure out what it means and take
3153 appropriate action. */
c906108c 3154
ec9499be 3155static void
96baa820 3156handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3157{
568d6575
UW
3158 struct frame_info *frame;
3159 struct gdbarch *gdbarch;
d983da9c
DJ
3160 int stopped_by_watchpoint;
3161 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 3162 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
3163 enum stop_kind stop_soon;
3164
28736962
PA
3165 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3166 {
3167 /* We had an event in the inferior, but we are not interested in
3168 handling it at this level. The lower layers have already
3169 done what needs to be done, if anything.
3170
3171 One of the possible circumstances for this is when the
3172 inferior produces output for the console. The inferior has
3173 not stopped, and we are ignoring the event. Another possible
3174 circumstance is any event which the lower level knows will be
3175 reported multiple times without an intervening resume. */
3176 if (debug_infrun)
3177 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3178 prepare_to_wait (ecs);
3179 return;
3180 }
3181
0e5bf2a8
PA
3182 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3183 && target_can_async_p () && !sync_execution)
3184 {
3185 /* There were no unwaited-for children left in the target, but,
3186 we're not synchronously waiting for events either. Just
3187 ignore. Otherwise, if we were running a synchronous
3188 execution command, we need to cancel it and give the user
3189 back the terminal. */
3190 if (debug_infrun)
3191 fprintf_unfiltered (gdb_stdlog,
3192 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3193 prepare_to_wait (ecs);
3194 return;
3195 }
3196
d6b48e9c 3197 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
0e5bf2a8
PA
3198 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3199 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
d6b48e9c
PA
3200 {
3201 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
abbb1732 3202
d6b48e9c 3203 gdb_assert (inf);
16c381f0 3204 stop_soon = inf->control.stop_soon;
d6b48e9c
PA
3205 }
3206 else
3207 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 3208
1777feb0 3209 /* Cache the last pid/waitstatus. */
39f77062 3210 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 3211 target_last_waitstatus = ecs->ws;
e02bc4cc 3212
ca005067 3213 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3214 stop_stack_dummy = STOP_NONE;
ca005067 3215
0e5bf2a8
PA
3216 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3217 {
3218 /* No unwaited-for children left. IOW, all resumed children
3219 have exited. */
3220 if (debug_infrun)
3221 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3222
3223 stop_print_frame = 0;
3224 stop_stepping (ecs);
3225 return;
3226 }
3227
8c90c137 3228 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 3229 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
3230 {
3231 ecs->event_thread = find_thread_ptid (ecs->ptid);
3232 /* If it's a new thread, add it to the thread database. */
3233 if (ecs->event_thread == NULL)
3234 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
3235
3236 /* Disable range stepping. If the next step request could use a
3237 range, this will be end up re-enabled then. */
3238 ecs->event_thread->control.may_range_step = 0;
359f5fe6 3239 }
88ed393a
JK
3240
3241 /* Dependent on valid ECS->EVENT_THREAD. */
3242 adjust_pc_after_break (ecs);
3243
3244 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3245 reinit_frame_cache ();
3246
28736962
PA
3247 breakpoint_retire_moribund ();
3248
2b009048
DJ
3249 /* First, distinguish signals caused by the debugger from signals
3250 that have to do with the program's own actions. Note that
3251 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3252 on the operating system version. Here we detect when a SIGILL or
3253 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3254 something similar for SIGSEGV, since a SIGSEGV will be generated
3255 when we're trying to execute a breakpoint instruction on a
3256 non-executable stack. This happens for call dummy breakpoints
3257 for architectures like SPARC that place call dummies on the
3258 stack. */
2b009048 3259 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
3260 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3261 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3262 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 3263 {
de0a0249
UW
3264 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3265
3266 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3267 regcache_read_pc (regcache)))
3268 {
3269 if (debug_infrun)
3270 fprintf_unfiltered (gdb_stdlog,
3271 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 3272 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 3273 }
2b009048
DJ
3274 }
3275
28736962
PA
3276 /* Mark the non-executing threads accordingly. In all-stop, all
3277 threads of all processes are stopped when we get any event
3278 reported. In non-stop mode, only the event thread stops. If
3279 we're handling a process exit in non-stop mode, there's nothing
3280 to do, as threads of the dead process are gone, and threads of
3281 any other process were left running. */
3282 if (!non_stop)
3283 set_executing (minus_one_ptid, 0);
3284 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3285 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
7aee8dc2 3286 set_executing (ecs->ptid, 0);
8c90c137 3287
0d1e5fa7 3288 switch (infwait_state)
488f131b
JB
3289 {
3290 case infwait_thread_hop_state:
527159b7 3291 if (debug_infrun)
8a9de0e4 3292 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 3293 break;
b83266a0 3294
488f131b 3295 case infwait_normal_state:
527159b7 3296 if (debug_infrun)
8a9de0e4 3297 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
3298 break;
3299
3300 case infwait_step_watch_state:
3301 if (debug_infrun)
3302 fprintf_unfiltered (gdb_stdlog,
3303 "infrun: infwait_step_watch_state\n");
3304
3305 stepped_after_stopped_by_watchpoint = 1;
488f131b 3306 break;
b83266a0 3307
488f131b 3308 case infwait_nonstep_watch_state:
527159b7 3309 if (debug_infrun)
8a9de0e4
AC
3310 fprintf_unfiltered (gdb_stdlog,
3311 "infrun: infwait_nonstep_watch_state\n");
488f131b 3312 insert_breakpoints ();
c906108c 3313
488f131b
JB
3314 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3315 handle things like signals arriving and other things happening
3316 in combination correctly? */
3317 stepped_after_stopped_by_watchpoint = 1;
3318 break;
65e82032
AC
3319
3320 default:
e2e0b3e5 3321 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 3322 }
ec9499be 3323
0d1e5fa7 3324 infwait_state = infwait_normal_state;
ec9499be 3325 waiton_ptid = pid_to_ptid (-1);
c906108c 3326
488f131b
JB
3327 switch (ecs->ws.kind)
3328 {
3329 case TARGET_WAITKIND_LOADED:
527159b7 3330 if (debug_infrun)
8a9de0e4 3331 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
3332 /* Ignore gracefully during startup of the inferior, as it might
3333 be the shell which has just loaded some objects, otherwise
3334 add the symbols for the newly loaded objects. Also ignore at
3335 the beginning of an attach or remote session; we will query
3336 the full list of libraries once the connection is
3337 established. */
c0236d92 3338 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3339 {
edcc5120 3340 struct regcache *regcache;
ab04a2af 3341 enum bpstat_signal_value sval;
edcc5120
TT
3342
3343 if (!ptid_equal (ecs->ptid, inferior_ptid))
3344 context_switch (ecs->ptid);
3345 regcache = get_thread_regcache (ecs->ptid);
3346
3347 handle_solib_event ();
3348
3349 ecs->event_thread->control.stop_bpstat
3350 = bpstat_stop_status (get_regcache_aspace (regcache),
3351 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af
TT
3352
3353 sval
427cd150
TT
3354 = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3355 GDB_SIGNAL_TRAP);
ab04a2af 3356 ecs->random_signal = sval == BPSTAT_SIGNAL_NO;
edcc5120
TT
3357
3358 if (!ecs->random_signal)
3359 {
3360 /* A catchpoint triggered. */
a493e3e2 3361 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
edcc5120
TT
3362 goto process_event_stop_test;
3363 }
488f131b 3364
b0f4b84b
DJ
3365 /* If requested, stop when the dynamic linker notifies
3366 gdb of events. This allows the user to get control
3367 and place breakpoints in initializer routines for
3368 dynamically loaded objects (among other things). */
a493e3e2 3369 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
3370 if (stop_on_solib_events)
3371 {
55409f9d
DJ
3372 /* Make sure we print "Stopped due to solib-event" in
3373 normal_stop. */
3374 stop_print_frame = 1;
3375
b0f4b84b
DJ
3376 stop_stepping (ecs);
3377 return;
3378 }
488f131b 3379 }
b0f4b84b
DJ
3380
3381 /* If we are skipping through a shell, or through shared library
3382 loading that we aren't interested in, resume the program. If
3383 we're running the program normally, also resume. But stop if
3384 we're attaching or setting up a remote connection. */
3385 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3386 {
8b3ee56d
PA
3387 if (!ptid_equal (ecs->ptid, inferior_ptid))
3388 context_switch (ecs->ptid);
3389
74960c60
VP
3390 /* Loading of shared libraries might have changed breakpoint
3391 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
3392 if (stop_soon == NO_STOP_QUIETLY
3393 && !breakpoints_always_inserted_mode ())
74960c60 3394 insert_breakpoints ();
a493e3e2 3395 resume (0, GDB_SIGNAL_0);
b0f4b84b
DJ
3396 prepare_to_wait (ecs);
3397 return;
3398 }
3399
3400 break;
c5aa993b 3401
488f131b 3402 case TARGET_WAITKIND_SPURIOUS:
527159b7 3403 if (debug_infrun)
8a9de0e4 3404 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 3405 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 3406 context_switch (ecs->ptid);
a493e3e2 3407 resume (0, GDB_SIGNAL_0);
488f131b
JB
3408 prepare_to_wait (ecs);
3409 return;
c5aa993b 3410
488f131b 3411 case TARGET_WAITKIND_EXITED:
940c3c06 3412 case TARGET_WAITKIND_SIGNALLED:
527159b7 3413 if (debug_infrun)
940c3c06
PA
3414 {
3415 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3416 fprintf_unfiltered (gdb_stdlog,
3417 "infrun: TARGET_WAITKIND_EXITED\n");
3418 else
3419 fprintf_unfiltered (gdb_stdlog,
3420 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3421 }
3422
fb66883a 3423 inferior_ptid = ecs->ptid;
6c95b8df
PA
3424 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3425 set_current_program_space (current_inferior ()->pspace);
3426 handle_vfork_child_exec_or_exit (0);
1777feb0 3427 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 3428
0c557179
SDJ
3429 /* Clearing any previous state of convenience variables. */
3430 clear_exit_convenience_vars ();
3431
940c3c06
PA
3432 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3433 {
3434 /* Record the exit code in the convenience variable $_exitcode, so
3435 that the user can inspect this again later. */
3436 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3437 (LONGEST) ecs->ws.value.integer);
3438
3439 /* Also record this in the inferior itself. */
3440 current_inferior ()->has_exit_code = 1;
3441 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 3442
940c3c06
PA
3443 print_exited_reason (ecs->ws.value.integer);
3444 }
3445 else
0c557179
SDJ
3446 {
3447 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3448 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3449
3450 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3451 {
3452 /* Set the value of the internal variable $_exitsignal,
3453 which holds the signal uncaught by the inferior. */
3454 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3455 gdbarch_gdb_signal_to_target (gdbarch,
3456 ecs->ws.value.sig));
3457 }
3458 else
3459 {
3460 /* We don't have access to the target's method used for
3461 converting between signal numbers (GDB's internal
3462 representation <-> target's representation).
3463 Therefore, we cannot do a good job at displaying this
3464 information to the user. It's better to just warn
3465 her about it (if infrun debugging is enabled), and
3466 give up. */
3467 if (debug_infrun)
3468 fprintf_filtered (gdb_stdlog, _("\
3469Cannot fill $_exitsignal with the correct signal number.\n"));
3470 }
3471
3472 print_signal_exited_reason (ecs->ws.value.sig);
3473 }
8cf64490 3474
488f131b
JB
3475 gdb_flush (gdb_stdout);
3476 target_mourn_inferior ();
1c0fdd0e 3477 singlestep_breakpoints_inserted_p = 0;
d03285ec 3478 cancel_single_step_breakpoints ();
488f131b
JB
3479 stop_print_frame = 0;
3480 stop_stepping (ecs);
3481 return;
c5aa993b 3482
488f131b 3483 /* The following are the only cases in which we keep going;
1777feb0 3484 the above cases end in a continue or goto. */
488f131b 3485 case TARGET_WAITKIND_FORKED:
deb3b17b 3486 case TARGET_WAITKIND_VFORKED:
527159b7 3487 if (debug_infrun)
fed708ed
PA
3488 {
3489 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3490 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3491 else
3492 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3493 }
c906108c 3494
e2d96639
YQ
3495 /* Check whether the inferior is displaced stepping. */
3496 {
3497 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3498 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3499 struct displaced_step_inferior_state *displaced
3500 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3501
3502 /* If checking displaced stepping is supported, and thread
3503 ecs->ptid is displaced stepping. */
3504 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3505 {
3506 struct inferior *parent_inf
3507 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3508 struct regcache *child_regcache;
3509 CORE_ADDR parent_pc;
3510
3511 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3512 indicating that the displaced stepping of syscall instruction
3513 has been done. Perform cleanup for parent process here. Note
3514 that this operation also cleans up the child process for vfork,
3515 because their pages are shared. */
a493e3e2 3516 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
e2d96639
YQ
3517
3518 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3519 {
3520 /* Restore scratch pad for child process. */
3521 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3522 }
3523
3524 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3525 the child's PC is also within the scratchpad. Set the child's PC
3526 to the parent's PC value, which has already been fixed up.
3527 FIXME: we use the parent's aspace here, although we're touching
3528 the child, because the child hasn't been added to the inferior
3529 list yet at this point. */
3530
3531 child_regcache
3532 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3533 gdbarch,
3534 parent_inf->aspace);
3535 /* Read PC value of parent process. */
3536 parent_pc = regcache_read_pc (regcache);
3537
3538 if (debug_displaced)
3539 fprintf_unfiltered (gdb_stdlog,
3540 "displaced: write child pc from %s to %s\n",
3541 paddress (gdbarch,
3542 regcache_read_pc (child_regcache)),
3543 paddress (gdbarch, parent_pc));
3544
3545 regcache_write_pc (child_regcache, parent_pc);
3546 }
3547 }
3548
5a2901d9 3549 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3550 context_switch (ecs->ptid);
5a2901d9 3551
b242c3c2
PA
3552 /* Immediately detach breakpoints from the child before there's
3553 any chance of letting the user delete breakpoints from the
3554 breakpoint lists. If we don't do this early, it's easy to
3555 leave left over traps in the child, vis: "break foo; catch
3556 fork; c; <fork>; del; c; <child calls foo>". We only follow
3557 the fork on the last `continue', and by that time the
3558 breakpoint at "foo" is long gone from the breakpoint table.
3559 If we vforked, then we don't need to unpatch here, since both
3560 parent and child are sharing the same memory pages; we'll
3561 need to unpatch at follow/detach time instead to be certain
3562 that new breakpoints added between catchpoint hit time and
3563 vfork follow are detached. */
3564 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3565 {
b242c3c2
PA
3566 /* This won't actually modify the breakpoint list, but will
3567 physically remove the breakpoints from the child. */
d80ee84f 3568 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
3569 }
3570
d03285ec
UW
3571 if (singlestep_breakpoints_inserted_p)
3572 {
1777feb0 3573 /* Pull the single step breakpoints out of the target. */
d03285ec
UW
3574 remove_single_step_breakpoints ();
3575 singlestep_breakpoints_inserted_p = 0;
3576 }
3577
e58b0e63
PA
3578 /* In case the event is caught by a catchpoint, remember that
3579 the event is to be followed at the next resume of the thread,
3580 and not immediately. */
3581 ecs->event_thread->pending_follow = ecs->ws;
3582
fb14de7b 3583 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3584
16c381f0 3585 ecs->event_thread->control.stop_bpstat
6c95b8df 3586 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3587 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 3588
67822962
PA
3589 /* Note that we're interested in knowing the bpstat actually
3590 causes a stop, not just if it may explain the signal.
3591 Software watchpoints, for example, always appear in the
3592 bpstat. */
16c381f0
JK
3593 ecs->random_signal
3594 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
04e68871
DJ
3595
3596 /* If no catchpoint triggered for this, then keep going. */
3597 if (ecs->random_signal)
3598 {
6c95b8df
PA
3599 ptid_t parent;
3600 ptid_t child;
e58b0e63 3601 int should_resume;
3e43a32a
MS
3602 int follow_child
3603 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3604
a493e3e2 3605 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
3606
3607 should_resume = follow_fork ();
3608
6c95b8df
PA
3609 parent = ecs->ptid;
3610 child = ecs->ws.value.related_pid;
3611
3612 /* In non-stop mode, also resume the other branch. */
3613 if (non_stop && !detach_fork)
3614 {
3615 if (follow_child)
3616 switch_to_thread (parent);
3617 else
3618 switch_to_thread (child);
3619
3620 ecs->event_thread = inferior_thread ();
3621 ecs->ptid = inferior_ptid;
3622 keep_going (ecs);
3623 }
3624
3625 if (follow_child)
3626 switch_to_thread (child);
3627 else
3628 switch_to_thread (parent);
3629
e58b0e63
PA
3630 ecs->event_thread = inferior_thread ();
3631 ecs->ptid = inferior_ptid;
3632
3633 if (should_resume)
3634 keep_going (ecs);
3635 else
3636 stop_stepping (ecs);
04e68871
DJ
3637 return;
3638 }
a493e3e2 3639 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
488f131b
JB
3640 goto process_event_stop_test;
3641
6c95b8df
PA
3642 case TARGET_WAITKIND_VFORK_DONE:
3643 /* Done with the shared memory region. Re-insert breakpoints in
3644 the parent, and keep going. */
3645
3646 if (debug_infrun)
3e43a32a
MS
3647 fprintf_unfiltered (gdb_stdlog,
3648 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
3649
3650 if (!ptid_equal (ecs->ptid, inferior_ptid))
3651 context_switch (ecs->ptid);
3652
3653 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3654 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3655 /* This also takes care of reinserting breakpoints in the
3656 previously locked inferior. */
3657 keep_going (ecs);
3658 return;
3659
488f131b 3660 case TARGET_WAITKIND_EXECD:
527159b7 3661 if (debug_infrun)
fc5261f2 3662 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3663
5a2901d9 3664 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3665 context_switch (ecs->ptid);
5a2901d9 3666
d03285ec
UW
3667 singlestep_breakpoints_inserted_p = 0;
3668 cancel_single_step_breakpoints ();
3669
fb14de7b 3670 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3671
6c95b8df
PA
3672 /* Do whatever is necessary to the parent branch of the vfork. */
3673 handle_vfork_child_exec_or_exit (1);
3674
795e548f
PA
3675 /* This causes the eventpoints and symbol table to be reset.
3676 Must do this now, before trying to determine whether to
3677 stop. */
71b43ef8 3678 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3679
16c381f0 3680 ecs->event_thread->control.stop_bpstat
6c95b8df 3681 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3682 stop_pc, ecs->ptid, &ecs->ws);
16c381f0 3683 ecs->random_signal
427cd150
TT
3684 = (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3685 GDB_SIGNAL_TRAP)
ab04a2af 3686 == BPSTAT_SIGNAL_NO);
795e548f 3687
71b43ef8
PA
3688 /* Note that this may be referenced from inside
3689 bpstat_stop_status above, through inferior_has_execd. */
3690 xfree (ecs->ws.value.execd_pathname);
3691 ecs->ws.value.execd_pathname = NULL;
3692
04e68871
DJ
3693 /* If no catchpoint triggered for this, then keep going. */
3694 if (ecs->random_signal)
3695 {
a493e3e2 3696 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
3697 keep_going (ecs);
3698 return;
3699 }
a493e3e2 3700 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
488f131b
JB
3701 goto process_event_stop_test;
3702
b4dc5ffa
MK
3703 /* Be careful not to try to gather much state about a thread
3704 that's in a syscall. It's frequently a losing proposition. */
488f131b 3705 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3706 if (debug_infrun)
3e43a32a
MS
3707 fprintf_unfiltered (gdb_stdlog,
3708 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 3709 /* Getting the current syscall number. */
ca2163eb 3710 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3711 return;
3712 goto process_event_stop_test;
c906108c 3713
488f131b
JB
3714 /* Before examining the threads further, step this thread to
3715 get it entirely out of the syscall. (We get notice of the
3716 event when the thread is just on the verge of exiting a
3717 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3718 into user code.) */
488f131b 3719 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3720 if (debug_infrun)
3e43a32a
MS
3721 fprintf_unfiltered (gdb_stdlog,
3722 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
ca2163eb 3723 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3724 return;
3725 goto process_event_stop_test;
c906108c 3726
488f131b 3727 case TARGET_WAITKIND_STOPPED:
527159b7 3728 if (debug_infrun)
8a9de0e4 3729 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 3730 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
488f131b 3731 break;
c906108c 3732
b2175913 3733 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
3734 if (debug_infrun)
3735 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 3736 /* Reverse execution: target ran out of history info. */
eab402df
PA
3737
3738 /* Pull the single step breakpoints out of the target. */
3739 if (singlestep_breakpoints_inserted_p)
3740 {
3741 if (!ptid_equal (ecs->ptid, inferior_ptid))
3742 context_switch (ecs->ptid);
3743 remove_single_step_breakpoints ();
3744 singlestep_breakpoints_inserted_p = 0;
3745 }
fb14de7b 3746 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
33d62d64 3747 print_no_history_reason ();
b2175913
MS
3748 stop_stepping (ecs);
3749 return;
488f131b 3750 }
c906108c 3751
2020b7ab 3752 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
3753 {
3754 /* Do we need to clean up the state of a thread that has
3755 completed a displaced single-step? (Doing so usually affects
3756 the PC, so do it here, before we set stop_pc.) */
16c381f0
JK
3757 displaced_step_fixup (ecs->ptid,
3758 ecs->event_thread->suspend.stop_signal);
252fbfc8
PA
3759
3760 /* If we either finished a single-step or hit a breakpoint, but
3761 the user wanted this thread to be stopped, pretend we got a
3762 SIG0 (generic unsignaled stop). */
3763
3764 if (ecs->event_thread->stop_requested
a493e3e2
PA
3765 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3766 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
252fbfc8 3767 }
237fc4c9 3768
515630c5 3769 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3770
527159b7 3771 if (debug_infrun)
237fc4c9 3772 {
5af949e3
UW
3773 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3774 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
3775 struct cleanup *old_chain = save_inferior_ptid ();
3776
3777 inferior_ptid = ecs->ptid;
5af949e3
UW
3778
3779 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3780 paddress (gdbarch, stop_pc));
d92524f1 3781 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3782 {
3783 CORE_ADDR addr;
abbb1732 3784
237fc4c9
PA
3785 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3786
3787 if (target_stopped_data_address (&current_target, &addr))
3788 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3789 "infrun: stopped data address = %s\n",
3790 paddress (gdbarch, addr));
237fc4c9
PA
3791 else
3792 fprintf_unfiltered (gdb_stdlog,
3793 "infrun: (no data address available)\n");
3794 }
7f82dfc7
JK
3795
3796 do_cleanups (old_chain);
237fc4c9 3797 }
527159b7 3798
9f976b41
DJ
3799 if (stepping_past_singlestep_breakpoint)
3800 {
1c0fdd0e 3801 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
3802 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3803 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3804
3805 stepping_past_singlestep_breakpoint = 0;
3806
3807 /* We've either finished single-stepping past the single-step
8fb3e588
AC
3808 breakpoint, or stopped for some other reason. It would be nice if
3809 we could tell, but we can't reliably. */
a493e3e2 3810 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8fb3e588 3811 {
527159b7 3812 if (debug_infrun)
3e43a32a
MS
3813 fprintf_unfiltered (gdb_stdlog,
3814 "infrun: stepping_past_"
3815 "singlestep_breakpoint\n");
9f976b41 3816 /* Pull the single step breakpoints out of the target. */
8b3ee56d
PA
3817 if (!ptid_equal (ecs->ptid, inferior_ptid))
3818 context_switch (ecs->ptid);
e0cd558a 3819 remove_single_step_breakpoints ();
9f976b41
DJ
3820 singlestep_breakpoints_inserted_p = 0;
3821
3822 ecs->random_signal = 0;
16c381f0 3823 ecs->event_thread->control.trap_expected = 0;
9f976b41 3824
0d1e5fa7 3825 context_switch (saved_singlestep_ptid);
9a4105ab 3826 if (deprecated_context_hook)
de9f1b68 3827 deprecated_context_hook (pid_to_thread_id (saved_singlestep_ptid));
9f976b41 3828
a493e3e2 3829 resume (1, GDB_SIGNAL_0);
9f976b41
DJ
3830 prepare_to_wait (ecs);
3831 return;
3832 }
3833 }
3834
ca67fcb8 3835 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 3836 {
94cc34af
PA
3837 /* In non-stop mode, there's never a deferred_step_ptid set. */
3838 gdb_assert (!non_stop);
3839
6a6b96b9
UW
3840 /* If we stopped for some other reason than single-stepping, ignore
3841 the fact that we were supposed to switch back. */
a493e3e2 3842 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
6a6b96b9
UW
3843 {
3844 if (debug_infrun)
3845 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 3846 "infrun: handling deferred step\n");
6a6b96b9
UW
3847
3848 /* Pull the single step breakpoints out of the target. */
3849 if (singlestep_breakpoints_inserted_p)
3850 {
8b3ee56d
PA
3851 if (!ptid_equal (ecs->ptid, inferior_ptid))
3852 context_switch (ecs->ptid);
6a6b96b9
UW
3853 remove_single_step_breakpoints ();
3854 singlestep_breakpoints_inserted_p = 0;
3855 }
3856
cd3da28e
PA
3857 ecs->event_thread->control.trap_expected = 0;
3858
d25f45d9 3859 context_switch (deferred_step_ptid);
ca67fcb8 3860 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3861 /* Suppress spurious "Switching to ..." message. */
3862 previous_inferior_ptid = inferior_ptid;
3863
a493e3e2 3864 resume (1, GDB_SIGNAL_0);
6a6b96b9
UW
3865 prepare_to_wait (ecs);
3866 return;
3867 }
ca67fcb8
VP
3868
3869 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3870 }
3871
488f131b
JB
3872 /* See if a thread hit a thread-specific breakpoint that was meant for
3873 another thread. If so, then step that thread past the breakpoint,
3874 and continue it. */
3875
a493e3e2 3876 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 3877 {
9f976b41 3878 int thread_hop_needed = 0;
cf00dfa7
VP
3879 struct address_space *aspace =
3880 get_regcache_aspace (get_thread_regcache (ecs->ptid));
9f976b41 3881
f8d40ec8 3882 /* Check if a regular breakpoint has been hit before checking
1777feb0 3883 for a potential single step breakpoint. Otherwise, GDB will
f8d40ec8 3884 not see this breakpoint hit when stepping onto breakpoints. */
6c95b8df 3885 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
488f131b 3886 {
c5aa993b 3887 ecs->random_signal = 0;
6c95b8df 3888 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
9f976b41
DJ
3889 thread_hop_needed = 1;
3890 }
1c0fdd0e 3891 else if (singlestep_breakpoints_inserted_p)
9f976b41 3892 {
fd48f117
DJ
3893 /* We have not context switched yet, so this should be true
3894 no matter which thread hit the singlestep breakpoint. */
3895 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3896 if (debug_infrun)
3897 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3898 "trap for %s\n",
3899 target_pid_to_str (ecs->ptid));
3900
9f976b41
DJ
3901 ecs->random_signal = 0;
3902 /* The call to in_thread_list is necessary because PTIDs sometimes
3903 change when we go from single-threaded to multi-threaded. If
3904 the singlestep_ptid is still in the list, assume that it is
3905 really different from ecs->ptid. */
3906 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3907 && in_thread_list (singlestep_ptid))
3908 {
fd48f117
DJ
3909 /* If the PC of the thread we were trying to single-step
3910 has changed, discard this event (which we were going
3911 to ignore anyway), and pretend we saw that thread
3912 trap. This prevents us continuously moving the
3913 single-step breakpoint forward, one instruction at a
3914 time. If the PC has changed, then the thread we were
3915 trying to single-step has trapped or been signalled,
3916 but the event has not been reported to GDB yet.
3917
3918 There might be some cases where this loses signal
3919 information, if a signal has arrived at exactly the
3920 same time that the PC changed, but this is the best
3921 we can do with the information available. Perhaps we
3922 should arrange to report all events for all threads
3923 when they stop, or to re-poll the remote looking for
3924 this particular thread (i.e. temporarily enable
3925 schedlock). */
515630c5
UW
3926
3927 CORE_ADDR new_singlestep_pc
3928 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3929
3930 if (new_singlestep_pc != singlestep_pc)
fd48f117 3931 {
2ea28649 3932 enum gdb_signal stop_signal;
2020b7ab 3933
fd48f117
DJ
3934 if (debug_infrun)
3935 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3936 " but expected thread advanced also\n");
3937
3938 /* The current context still belongs to
3939 singlestep_ptid. Don't swap here, since that's
3940 the context we want to use. Just fudge our
3941 state and continue. */
16c381f0 3942 stop_signal = ecs->event_thread->suspend.stop_signal;
a493e3e2 3943 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
fd48f117 3944 ecs->ptid = singlestep_ptid;
e09875d4 3945 ecs->event_thread = find_thread_ptid (ecs->ptid);
16c381f0 3946 ecs->event_thread->suspend.stop_signal = stop_signal;
515630c5 3947 stop_pc = new_singlestep_pc;
fd48f117
DJ
3948 }
3949 else
3950 {
3951 if (debug_infrun)
3952 fprintf_unfiltered (gdb_stdlog,
3953 "infrun: unexpected thread\n");
3954
3955 thread_hop_needed = 1;
3956 stepping_past_singlestep_breakpoint = 1;
3957 saved_singlestep_ptid = singlestep_ptid;
3958 }
9f976b41
DJ
3959 }
3960 }
3961
3962 if (thread_hop_needed)
8fb3e588 3963 {
9f5a595d 3964 struct regcache *thread_regcache;
237fc4c9 3965 int remove_status = 0;
8fb3e588 3966
527159b7 3967 if (debug_infrun)
8a9de0e4 3968 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 3969
b3444185
PA
3970 /* Switch context before touching inferior memory, the
3971 previous thread may have exited. */
3972 if (!ptid_equal (inferior_ptid, ecs->ptid))
3973 context_switch (ecs->ptid);
3974
8fb3e588 3975 /* Saw a breakpoint, but it was hit by the wrong thread.
1777feb0 3976 Just continue. */
8fb3e588 3977
1c0fdd0e 3978 if (singlestep_breakpoints_inserted_p)
488f131b 3979 {
1777feb0 3980 /* Pull the single step breakpoints out of the target. */
e0cd558a 3981 remove_single_step_breakpoints ();
8fb3e588
AC
3982 singlestep_breakpoints_inserted_p = 0;
3983 }
3984
237fc4c9
PA
3985 /* If the arch can displace step, don't remove the
3986 breakpoints. */
9f5a595d
UW
3987 thread_regcache = get_thread_regcache (ecs->ptid);
3988 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
3989 remove_status = remove_breakpoints ();
3990
8fb3e588
AC
3991 /* Did we fail to remove breakpoints? If so, try
3992 to set the PC past the bp. (There's at least
3993 one situation in which we can fail to remove
3994 the bp's: On HP-UX's that use ttrace, we can't
3995 change the address space of a vforking child
3996 process until the child exits (well, okay, not
1777feb0 3997 then either :-) or execs. */
8fb3e588 3998 if (remove_status != 0)
9d9cd7ac 3999 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
4000 else
4001 { /* Single step */
94cc34af
PA
4002 if (!non_stop)
4003 {
4004 /* Only need to require the next event from this
4005 thread in all-stop mode. */
4006 waiton_ptid = ecs->ptid;
4007 infwait_state = infwait_thread_hop_state;
4008 }
8fb3e588 4009
4e1c45ea 4010 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 4011 keep_going (ecs);
8fb3e588
AC
4012 return;
4013 }
488f131b 4014 }
1c0fdd0e 4015 else if (singlestep_breakpoints_inserted_p)
8fb3e588 4016 {
8fb3e588
AC
4017 ecs->random_signal = 0;
4018 }
488f131b
JB
4019 }
4020 else
4021 ecs->random_signal = 1;
c906108c 4022
488f131b 4023 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
4024 so, then switch to that thread. */
4025 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 4026 {
527159b7 4027 if (debug_infrun)
8a9de0e4 4028 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 4029
0d1e5fa7 4030 context_switch (ecs->ptid);
c5aa993b 4031
9a4105ab
AC
4032 if (deprecated_context_hook)
4033 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 4034 }
c906108c 4035
568d6575
UW
4036 /* At this point, get hold of the now-current thread's frame. */
4037 frame = get_current_frame ();
4038 gdbarch = get_frame_arch (frame);
4039
1c0fdd0e 4040 if (singlestep_breakpoints_inserted_p)
488f131b 4041 {
1777feb0 4042 /* Pull the single step breakpoints out of the target. */
e0cd558a 4043 remove_single_step_breakpoints ();
488f131b
JB
4044 singlestep_breakpoints_inserted_p = 0;
4045 }
c906108c 4046
d983da9c
DJ
4047 if (stepped_after_stopped_by_watchpoint)
4048 stopped_by_watchpoint = 0;
4049 else
4050 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4051
4052 /* If necessary, step over this watchpoint. We'll be back to display
4053 it in a moment. */
4054 if (stopped_by_watchpoint
d92524f1 4055 && (target_have_steppable_watchpoint
568d6575 4056 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 4057 {
488f131b
JB
4058 /* At this point, we are stopped at an instruction which has
4059 attempted to write to a piece of memory under control of
4060 a watchpoint. The instruction hasn't actually executed
4061 yet. If we were to evaluate the watchpoint expression
4062 now, we would get the old value, and therefore no change
4063 would seem to have occurred.
4064
4065 In order to make watchpoints work `right', we really need
4066 to complete the memory write, and then evaluate the
d983da9c
DJ
4067 watchpoint expression. We do this by single-stepping the
4068 target.
4069
4070 It may not be necessary to disable the watchpoint to stop over
4071 it. For example, the PA can (with some kernel cooperation)
4072 single step over a watchpoint without disabling the watchpoint.
4073
4074 It is far more common to need to disable a watchpoint to step
4075 the inferior over it. If we have non-steppable watchpoints,
4076 we must disable the current watchpoint; it's simplest to
4077 disable all watchpoints and breakpoints. */
2facfe5c
DD
4078 int hw_step = 1;
4079
d92524f1 4080 if (!target_have_steppable_watchpoint)
2455069d
UW
4081 {
4082 remove_breakpoints ();
4083 /* See comment in resume why we need to stop bypassing signals
4084 while breakpoints have been removed. */
4085 target_pass_signals (0, NULL);
4086 }
2facfe5c 4087 /* Single step */
568d6575 4088 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
a493e3e2 4089 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
0d1e5fa7 4090 waiton_ptid = ecs->ptid;
d92524f1 4091 if (target_have_steppable_watchpoint)
0d1e5fa7 4092 infwait_state = infwait_step_watch_state;
d983da9c 4093 else
0d1e5fa7 4094 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
4095 prepare_to_wait (ecs);
4096 return;
4097 }
4098
7e324e48 4099 clear_stop_func (ecs);
4e1c45ea 4100 ecs->event_thread->stepping_over_breakpoint = 0;
16c381f0
JK
4101 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4102 ecs->event_thread->control.stop_step = 0;
488f131b
JB
4103 stop_print_frame = 1;
4104 ecs->random_signal = 0;
4105 stopped_by_random_signal = 0;
488f131b 4106
edb3359d
DJ
4107 /* Hide inlined functions starting here, unless we just performed stepi or
4108 nexti. After stepi and nexti, always show the innermost frame (not any
4109 inline function call sites). */
16c381f0 4110 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
4111 {
4112 struct address_space *aspace =
4113 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4114
4115 /* skip_inline_frames is expensive, so we avoid it if we can
4116 determine that the address is one where functions cannot have
4117 been inlined. This improves performance with inferiors that
4118 load a lot of shared libraries, because the solib event
4119 breakpoint is defined as the address of a function (i.e. not
4120 inline). Note that we have to check the previous PC as well
4121 as the current one to catch cases when we have just
4122 single-stepped off a breakpoint prior to reinstating it.
4123 Note that we're assuming that the code we single-step to is
4124 not inline, but that's not definitive: there's nothing
4125 preventing the event breakpoint function from containing
4126 inlined code, and the single-step ending up there. If the
4127 user had set a breakpoint on that inlined code, the missing
4128 skip_inline_frames call would break things. Fortunately
4129 that's an extremely unlikely scenario. */
09ac7c10 4130 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
4131 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4132 && ecs->event_thread->control.trap_expected
4133 && pc_at_non_inline_function (aspace,
4134 ecs->event_thread->prev_pc,
09ac7c10 4135 &ecs->ws)))
1c5a993e
MR
4136 {
4137 skip_inline_frames (ecs->ptid);
4138
4139 /* Re-fetch current thread's frame in case that invalidated
4140 the frame cache. */
4141 frame = get_current_frame ();
4142 gdbarch = get_frame_arch (frame);
4143 }
0574c78f 4144 }
edb3359d 4145
a493e3e2 4146 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 4147 && ecs->event_thread->control.trap_expected
568d6575 4148 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 4149 && currently_stepping (ecs->event_thread))
3352ef37 4150 {
b50d7442 4151 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 4152 also on an instruction that needs to be stepped multiple
1777feb0 4153 times before it's been fully executing. E.g., architectures
3352ef37
AC
4154 with a delay slot. It needs to be stepped twice, once for
4155 the instruction and once for the delay slot. */
4156 int step_through_delay
568d6575 4157 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 4158
527159b7 4159 if (debug_infrun && step_through_delay)
8a9de0e4 4160 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
4161 if (ecs->event_thread->control.step_range_end == 0
4162 && step_through_delay)
3352ef37
AC
4163 {
4164 /* The user issued a continue when stopped at a breakpoint.
4165 Set up for another trap and get out of here. */
4e1c45ea 4166 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4167 keep_going (ecs);
4168 return;
4169 }
4170 else if (step_through_delay)
4171 {
4172 /* The user issued a step when stopped at a breakpoint.
4173 Maybe we should stop, maybe we should not - the delay
4174 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4175 case, don't decide that here, just set
4176 ecs->stepping_over_breakpoint, making sure we
4177 single-step again before breakpoints are re-inserted. */
4e1c45ea 4178 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4179 }
4180 }
4181
488f131b
JB
4182 /* Look at the cause of the stop, and decide what to do.
4183 The alternatives are:
0d1e5fa7
PA
4184 1) stop_stepping and return; to really stop and return to the debugger,
4185 2) keep_going and return to start up again
4e1c45ea 4186 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
4187 3) set ecs->random_signal to 1, and the decision between 1 and 2
4188 will be made according to the signal handling tables. */
4189
a493e3e2 4190 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
ab04a2af 4191 && stop_after_trap)
488f131b 4192 {
ab04a2af
TT
4193 if (debug_infrun)
4194 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4195 stop_print_frame = 0;
4196 stop_stepping (ecs);
4197 return;
4198 }
488f131b 4199
ab04a2af
TT
4200 /* This is originated from start_remote(), start_inferior() and
4201 shared libraries hook functions. */
4202 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4203 {
4204 if (debug_infrun)
4205 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4206 stop_stepping (ecs);
4207 return;
4208 }
c54cfec8 4209
ab04a2af
TT
4210 /* This originates from attach_command(). We need to overwrite
4211 the stop_signal here, because some kernels don't ignore a
4212 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4213 See more comments in inferior.h. On the other hand, if we
4214 get a non-SIGSTOP, report it to the user - assume the backend
4215 will handle the SIGSTOP if it should show up later.
4216
4217 Also consider that the attach is complete when we see a
4218 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4219 target extended-remote report it instead of a SIGSTOP
4220 (e.g. gdbserver). We already rely on SIGTRAP being our
4221 signal, so this is no exception.
4222
4223 Also consider that the attach is complete when we see a
4224 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4225 the target to stop all threads of the inferior, in case the
4226 low level attach operation doesn't stop them implicitly. If
4227 they weren't stopped implicitly, then the stub will report a
4228 GDB_SIGNAL_0, meaning: stopped for no particular reason
4229 other than GDB's request. */
4230 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4231 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4232 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4233 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4234 {
4235 stop_stepping (ecs);
4236 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4237 return;
4238 }
6c95b8df 4239
ab04a2af
TT
4240 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4241 handles this event. */
4242 ecs->event_thread->control.stop_bpstat
4243 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4244 stop_pc, ecs->ptid, &ecs->ws);
db82e815 4245
ab04a2af
TT
4246 /* Following in case break condition called a
4247 function. */
4248 stop_print_frame = 1;
73dd234f 4249
ab04a2af
TT
4250 /* This is where we handle "moribund" watchpoints. Unlike
4251 software breakpoints traps, hardware watchpoint traps are
4252 always distinguishable from random traps. If no high-level
4253 watchpoint is associated with the reported stop data address
4254 anymore, then the bpstat does not explain the signal ---
4255 simply make sure to ignore it if `stopped_by_watchpoint' is
4256 set. */
4257
4258 if (debug_infrun
4259 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
427cd150
TT
4260 && (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4261 GDB_SIGNAL_TRAP)
ab04a2af
TT
4262 == BPSTAT_SIGNAL_NO)
4263 && stopped_by_watchpoint)
4264 fprintf_unfiltered (gdb_stdlog,
4265 "infrun: no user watchpoint explains "
4266 "watchpoint SIGTRAP, ignoring\n");
73dd234f 4267
ab04a2af
TT
4268 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4269 at one stage in the past included checks for an inferior
4270 function call's call dummy's return breakpoint. The original
4271 comment, that went with the test, read:
03cebad2 4272
ab04a2af
TT
4273 ``End of a stack dummy. Some systems (e.g. Sony news) give
4274 another signal besides SIGTRAP, so check here as well as
4275 above.''
73dd234f 4276
ab04a2af
TT
4277 If someone ever tries to get call dummys on a
4278 non-executable stack to work (where the target would stop
4279 with something like a SIGSEGV), then those tests might need
4280 to be re-instated. Given, however, that the tests were only
4281 enabled when momentary breakpoints were not being used, I
4282 suspect that it won't be the case.
488f131b 4283
ab04a2af
TT
4284 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4285 be necessary for call dummies on a non-executable stack on
4286 SPARC. */
488f131b 4287
ab04a2af
TT
4288 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4289 ecs->random_signal
427cd150
TT
4290 = !((bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4291 GDB_SIGNAL_TRAP)
ab04a2af
TT
4292 != BPSTAT_SIGNAL_NO)
4293 || stopped_by_watchpoint
4294 || ecs->event_thread->control.trap_expected
4295 || (ecs->event_thread->control.step_range_end
4296 && (ecs->event_thread->control.step_resume_breakpoint
4297 == NULL)));
488f131b 4298 else
ab04a2af
TT
4299 {
4300 enum bpstat_signal_value sval;
4301
427cd150
TT
4302 sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4303 ecs->event_thread->suspend.stop_signal);
ab04a2af
TT
4304 ecs->random_signal = (sval == BPSTAT_SIGNAL_NO);
4305
4306 if (sval == BPSTAT_SIGNAL_HIDE)
4307 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
4308 }
488f131b 4309
04e68871 4310process_event_stop_test:
568d6575
UW
4311
4312 /* Re-fetch current thread's frame in case we did a
4313 "goto process_event_stop_test" above. */
4314 frame = get_current_frame ();
4315 gdbarch = get_frame_arch (frame);
4316
488f131b
JB
4317 /* For the program's own signals, act according to
4318 the signal handling tables. */
4319
4320 if (ecs->random_signal)
4321 {
4322 /* Signal not for debugging purposes. */
4323 int printed = 0;
24291992 4324 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
488f131b 4325
527159b7 4326 if (debug_infrun)
2020b7ab 4327 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
16c381f0 4328 ecs->event_thread->suspend.stop_signal);
527159b7 4329
488f131b
JB
4330 stopped_by_random_signal = 1;
4331
16c381f0 4332 if (signal_print[ecs->event_thread->suspend.stop_signal])
488f131b
JB
4333 {
4334 printed = 1;
4335 target_terminal_ours_for_output ();
16c381f0
JK
4336 print_signal_received_reason
4337 (ecs->event_thread->suspend.stop_signal);
488f131b 4338 }
252fbfc8
PA
4339 /* Always stop on signals if we're either just gaining control
4340 of the program, or the user explicitly requested this thread
4341 to remain stopped. */
d6b48e9c 4342 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4343 || ecs->event_thread->stop_requested
24291992 4344 || (!inf->detaching
16c381f0 4345 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b
JB
4346 {
4347 stop_stepping (ecs);
4348 return;
4349 }
4350 /* If not going to stop, give terminal back
4351 if we took it away. */
4352 else if (printed)
4353 target_terminal_inferior ();
4354
4355 /* Clear the signal if it should not be passed. */
16c381f0 4356 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 4357 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 4358
fb14de7b 4359 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4360 && ecs->event_thread->control.trap_expected
8358c15c 4361 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4362 {
4363 /* We were just starting a new sequence, attempting to
4364 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4365 Instead this signal arrives. This signal will take us out
68f53502
AC
4366 of the stepping range so GDB needs to remember to, when
4367 the signal handler returns, resume stepping off that
4368 breakpoint. */
4369 /* To simplify things, "continue" is forced to use the same
4370 code paths as single-step - set a breakpoint at the
4371 signal return address and then, once hit, step off that
4372 breakpoint. */
237fc4c9
PA
4373 if (debug_infrun)
4374 fprintf_unfiltered (gdb_stdlog,
4375 "infrun: signal arrived while stepping over "
4376 "breakpoint\n");
d3169d93 4377
2c03e5be 4378 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4379 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4380 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4381 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4382 keep_going (ecs);
4383 return;
68f53502 4384 }
9d799f85 4385
16c381f0 4386 if (ecs->event_thread->control.step_range_end != 0
a493e3e2 4387 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
ce4c476a 4388 && pc_in_thread_step_range (stop_pc, ecs->event_thread)
edb3359d 4389 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4390 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4391 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4392 {
4393 /* The inferior is about to take a signal that will take it
4394 out of the single step range. Set a breakpoint at the
4395 current PC (which is presumably where the signal handler
4396 will eventually return) and then allow the inferior to
4397 run free.
4398
4399 Note that this is only needed for a signal delivered
4400 while in the single-step range. Nested signals aren't a
4401 problem as they eventually all return. */
237fc4c9
PA
4402 if (debug_infrun)
4403 fprintf_unfiltered (gdb_stdlog,
4404 "infrun: signal may take us out of "
4405 "single-step range\n");
4406
2c03e5be 4407 insert_hp_step_resume_breakpoint_at_frame (frame);
2455069d
UW
4408 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4409 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4410 keep_going (ecs);
4411 return;
d303a6c7 4412 }
9d799f85
AC
4413
4414 /* Note: step_resume_breakpoint may be non-NULL. This occures
4415 when either there's a nested signal, or when there's a
4416 pending signal enabled just as the signal handler returns
4417 (leaving the inferior at the step-resume-breakpoint without
4418 actually executing it). Either way continue until the
4419 breakpoint is really hit. */
488f131b 4420 }
e5ef252a
PA
4421 else
4422 {
4423 /* Handle cases caused by hitting a breakpoint. */
488f131b 4424
e5ef252a
PA
4425 CORE_ADDR jmp_buf_pc;
4426 struct bpstat_what what;
611c83ae 4427
e5ef252a 4428 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 4429
e5ef252a 4430 if (what.call_dummy)
e81a37f7 4431 {
e5ef252a
PA
4432 stop_stack_dummy = what.call_dummy;
4433 }
186c406b 4434
e5ef252a
PA
4435 /* If we hit an internal event that triggers symbol changes, the
4436 current frame will be invalidated within bpstat_what (e.g.,
4437 if we hit an internal solib event). Re-fetch it. */
4438 frame = get_current_frame ();
4439 gdbarch = get_frame_arch (frame);
e2e4d78b 4440
e5ef252a
PA
4441 switch (what.main_action)
4442 {
4443 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4444 /* If we hit the breakpoint at longjmp while stepping, we
4445 install a momentary breakpoint at the target of the
4446 jmp_buf. */
186c406b 4447
e81a37f7
TT
4448 if (debug_infrun)
4449 fprintf_unfiltered (gdb_stdlog,
e5ef252a 4450 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 4451
e5ef252a 4452 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4453
e2e4d78b
JK
4454 if (what.is_longjmp)
4455 {
e5ef252a
PA
4456 struct value *arg_value;
4457
4458 /* If we set the longjmp breakpoint via a SystemTap
4459 probe, then use it to extract the arguments. The
4460 destination PC is the third argument to the
4461 probe. */
4462 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4463 if (arg_value)
4464 jmp_buf_pc = value_as_address (arg_value);
4465 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4466 || !gdbarch_get_longjmp_target (gdbarch,
4467 frame, &jmp_buf_pc))
e2e4d78b 4468 {
e5ef252a
PA
4469 if (debug_infrun)
4470 fprintf_unfiltered (gdb_stdlog,
4471 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4472 "(!gdbarch_get_longjmp_target)\n");
e2e4d78b
JK
4473 keep_going (ecs);
4474 return;
4475 }
e5ef252a
PA
4476
4477 /* Insert a breakpoint at resume address. */
4478 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
e2e4d78b 4479 }
e5ef252a
PA
4480 else
4481 check_exception_resume (ecs, frame);
4482 keep_going (ecs);
4483 return;
e2e4d78b 4484
e5ef252a
PA
4485 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4486 {
4487 struct frame_info *init_frame;
e2e4d78b 4488
e5ef252a 4489 /* There are several cases to consider.
e81a37f7 4490
e5ef252a
PA
4491 1. The initiating frame no longer exists. In this case
4492 we must stop, because the exception or longjmp has gone
4493 too far.
e81a37f7 4494
e5ef252a
PA
4495 2. The initiating frame exists, and is the same as the
4496 current frame. We stop, because the exception or
4497 longjmp has been caught.
c906108c 4498
e5ef252a
PA
4499 3. The initiating frame exists and is different from
4500 the current frame. This means the exception or longjmp
4501 has been caught beneath the initiating frame, so keep
4502 going.
2c03e5be 4503
e5ef252a
PA
4504 4. longjmp breakpoint has been placed just to protect
4505 against stale dummy frames and user is not interested
4506 in stopping around longjmps. */
2c03e5be 4507
e5ef252a
PA
4508 if (debug_infrun)
4509 fprintf_unfiltered (gdb_stdlog,
4510 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c906108c 4511
e5ef252a
PA
4512 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4513 != NULL);
4514 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 4515
e5ef252a
PA
4516 if (what.is_longjmp)
4517 {
4518 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
c5aa993b 4519
e5ef252a
PA
4520 if (!frame_id_p (ecs->event_thread->initiating_frame))
4521 {
4522 /* Case 4. */
4523 keep_going (ecs);
4524 return;
4525 }
4526 }
c5aa993b 4527
e5ef252a 4528 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
c5aa993b 4529
e5ef252a
PA
4530 if (init_frame)
4531 {
4532 struct frame_id current_id
4533 = get_frame_id (get_current_frame ());
4534 if (frame_id_eq (current_id,
4535 ecs->event_thread->initiating_frame))
4536 {
4537 /* Case 2. Fall through. */
4538 }
4539 else
4540 {
4541 /* Case 3. */
4542 keep_going (ecs);
4543 return;
4544 }
4545 }
c5aa993b 4546
e5ef252a
PA
4547 /* For Cases 1 and 2, remove the step-resume breakpoint,
4548 if it exists. */
4549 delete_step_resume_breakpoint (ecs->event_thread);
527159b7 4550
e5ef252a
PA
4551 ecs->event_thread->control.stop_step = 1;
4552 print_end_stepping_range_reason ();
4553 stop_stepping (ecs);
68f53502 4554 }
e5ef252a 4555 return;
488f131b 4556
e5ef252a
PA
4557 case BPSTAT_WHAT_SINGLE:
4558 if (debug_infrun)
4559 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4560 ecs->event_thread->stepping_over_breakpoint = 1;
4561 /* Still need to check other stuff, at least the case where
4562 we are stepping and step out of the right range. */
4563 break;
4564
4565 case BPSTAT_WHAT_STEP_RESUME:
4566 if (debug_infrun)
4567 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4568
4569 delete_step_resume_breakpoint (ecs->event_thread);
4570 if (ecs->event_thread->control.proceed_to_finish
4571 && execution_direction == EXEC_REVERSE)
4572 {
4573 struct thread_info *tp = ecs->event_thread;
4574
4575 /* We are finishing a function in reverse, and just hit
4576 the step-resume breakpoint at the start address of
4577 the function, and we're almost there -- just need to
4578 back up by one more single-step, which should take us
4579 back to the function call. */
4580 tp->control.step_range_start = tp->control.step_range_end = 1;
4581 keep_going (ecs);
4582 return;
4583 }
4584 fill_in_stop_func (gdbarch, ecs);
4585 if (stop_pc == ecs->stop_func_start
4586 && execution_direction == EXEC_REVERSE)
4587 {
4588 /* We are stepping over a function call in reverse, and
4589 just hit the step-resume breakpoint at the start
4590 address of the function. Go back to single-stepping,
4591 which should take us back to the function call. */
4592 ecs->event_thread->stepping_over_breakpoint = 1;
4593 keep_going (ecs);
4594 return;
4595 }
4596 break;
4597
4598 case BPSTAT_WHAT_STOP_NOISY:
4599 if (debug_infrun)
4600 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4601 stop_print_frame = 1;
4602
4603 /* We are about to nuke the step_resume_breakpointt via the
4604 cleanup chain, so no need to worry about it here. */
4605
4606 stop_stepping (ecs);
4607 return;
4608
4609 case BPSTAT_WHAT_STOP_SILENT:
4610 if (debug_infrun)
4611 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4612 stop_print_frame = 0;
4613
4614 /* We are about to nuke the step_resume_breakpoin via the
4615 cleanup chain, so no need to worry about it here. */
4616
4617 stop_stepping (ecs);
4618 return;
4619
4620 case BPSTAT_WHAT_HP_STEP_RESUME:
4621 if (debug_infrun)
4622 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4623
4624 delete_step_resume_breakpoint (ecs->event_thread);
4625 if (ecs->event_thread->step_after_step_resume_breakpoint)
4626 {
4627 /* Back when the step-resume breakpoint was inserted, we
4628 were trying to single-step off a breakpoint. Go back
4629 to doing that. */
4630 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4631 ecs->event_thread->stepping_over_breakpoint = 1;
4632 keep_going (ecs);
4633 return;
4634 }
4635 break;
4636
4637 case BPSTAT_WHAT_KEEP_CHECKING:
4638 break;
4639 }
4640 }
c906108c 4641
488f131b
JB
4642 /* We come here if we hit a breakpoint but should not
4643 stop for it. Possibly we also were stepping
4644 and should stop for that. So fall through and
4645 test for stepping. But, if not stepping,
4646 do not stop. */
c906108c 4647
a7212384
UW
4648 /* In all-stop mode, if we're currently stepping but have stopped in
4649 some other thread, we need to switch back to the stepped thread. */
4650 if (!non_stop)
4651 {
4652 struct thread_info *tp;
abbb1732 4653
b3444185 4654 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
4655 ecs->event_thread);
4656 if (tp)
4657 {
4658 /* However, if the current thread is blocked on some internal
4659 breakpoint, and we simply need to step over that breakpoint
4660 to get it going again, do that first. */
16c381f0 4661 if ((ecs->event_thread->control.trap_expected
a493e3e2 4662 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
a7212384
UW
4663 || ecs->event_thread->stepping_over_breakpoint)
4664 {
4665 keep_going (ecs);
4666 return;
4667 }
4668
66852e9c
PA
4669 /* If the stepping thread exited, then don't try to switch
4670 back and resume it, which could fail in several different
4671 ways depending on the target. Instead, just keep going.
4672
4673 We can find a stepping dead thread in the thread list in
4674 two cases:
4675
4676 - The target supports thread exit events, and when the
4677 target tries to delete the thread from the thread list,
4678 inferior_ptid pointed at the exiting thread. In such
4679 case, calling delete_thread does not really remove the
4680 thread from the list; instead, the thread is left listed,
4681 with 'exited' state.
4682
4683 - The target's debug interface does not support thread
4684 exit events, and so we have no idea whatsoever if the
4685 previously stepping thread is still alive. For that
4686 reason, we need to synchronously query the target
4687 now. */
b3444185
PA
4688 if (is_exited (tp->ptid)
4689 || !target_thread_alive (tp->ptid))
4690 {
4691 if (debug_infrun)
3e43a32a
MS
4692 fprintf_unfiltered (gdb_stdlog,
4693 "infrun: not switching back to "
4694 "stepped thread, it has vanished\n");
b3444185
PA
4695
4696 delete_thread (tp->ptid);
4697 keep_going (ecs);
4698 return;
4699 }
4700
a7212384
UW
4701 /* Otherwise, we no longer expect a trap in the current thread.
4702 Clear the trap_expected flag before switching back -- this is
4703 what keep_going would do as well, if we called it. */
16c381f0 4704 ecs->event_thread->control.trap_expected = 0;
a7212384
UW
4705
4706 if (debug_infrun)
4707 fprintf_unfiltered (gdb_stdlog,
4708 "infrun: switching back to stepped thread\n");
4709
4710 ecs->event_thread = tp;
4711 ecs->ptid = tp->ptid;
4712 context_switch (ecs->ptid);
4713 keep_going (ecs);
4714 return;
4715 }
4716 }
4717
776f04fa
PA
4718 if (ecs->random_signal)
4719 {
4720 if (debug_infrun)
4721 fprintf_unfiltered (gdb_stdlog,
4722 "infrun: random signal, keep going\n");
4723
4724 /* Signal not stepping related. */
4725 keep_going (ecs);
4726 return;
4727 }
4728
8358c15c 4729 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4730 {
527159b7 4731 if (debug_infrun)
d3169d93
DJ
4732 fprintf_unfiltered (gdb_stdlog,
4733 "infrun: step-resume breakpoint is inserted\n");
527159b7 4734
488f131b
JB
4735 /* Having a step-resume breakpoint overrides anything
4736 else having to do with stepping commands until
4737 that breakpoint is reached. */
488f131b
JB
4738 keep_going (ecs);
4739 return;
4740 }
c5aa993b 4741
16c381f0 4742 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4743 {
527159b7 4744 if (debug_infrun)
8a9de0e4 4745 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4746 /* Likewise if we aren't even stepping. */
488f131b
JB
4747 keep_going (ecs);
4748 return;
4749 }
c5aa993b 4750
4b7703ad
JB
4751 /* Re-fetch current thread's frame in case the code above caused
4752 the frame cache to be re-initialized, making our FRAME variable
4753 a dangling pointer. */
4754 frame = get_current_frame ();
628fe4e4 4755 gdbarch = get_frame_arch (frame);
7e324e48 4756 fill_in_stop_func (gdbarch, ecs);
4b7703ad 4757
488f131b 4758 /* If stepping through a line, keep going if still within it.
c906108c 4759
488f131b
JB
4760 Note that step_range_end is the address of the first instruction
4761 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4762 within it!
4763
4764 Note also that during reverse execution, we may be stepping
4765 through a function epilogue and therefore must detect when
4766 the current-frame changes in the middle of a line. */
4767
ce4c476a 4768 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 4769 && (execution_direction != EXEC_REVERSE
388a8562 4770 || frame_id_eq (get_frame_id (frame),
16c381f0 4771 ecs->event_thread->control.step_frame_id)))
488f131b 4772 {
527159b7 4773 if (debug_infrun)
5af949e3
UW
4774 fprintf_unfiltered
4775 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4776 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4777 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 4778
c1e36e3e
PA
4779 /* Tentatively re-enable range stepping; `resume' disables it if
4780 necessary (e.g., if we're stepping over a breakpoint or we
4781 have software watchpoints). */
4782 ecs->event_thread->control.may_range_step = 1;
4783
b2175913
MS
4784 /* When stepping backward, stop at beginning of line range
4785 (unless it's the function entry point, in which case
4786 keep going back to the call point). */
16c381f0 4787 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4788 && stop_pc != ecs->stop_func_start
4789 && execution_direction == EXEC_REVERSE)
4790 {
16c381f0 4791 ecs->event_thread->control.stop_step = 1;
33d62d64 4792 print_end_stepping_range_reason ();
b2175913
MS
4793 stop_stepping (ecs);
4794 }
4795 else
4796 keep_going (ecs);
4797
488f131b
JB
4798 return;
4799 }
c5aa993b 4800
488f131b 4801 /* We stepped out of the stepping range. */
c906108c 4802
488f131b 4803 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4804 loader dynamic symbol resolution code...
4805
4806 EXEC_FORWARD: we keep on single stepping until we exit the run
4807 time loader code and reach the callee's address.
4808
4809 EXEC_REVERSE: we've already executed the callee (backward), and
4810 the runtime loader code is handled just like any other
4811 undebuggable function call. Now we need only keep stepping
4812 backward through the trampoline code, and that's handled further
4813 down, so there is nothing for us to do here. */
4814
4815 if (execution_direction != EXEC_REVERSE
16c381f0 4816 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4817 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4818 {
4c8c40e6 4819 CORE_ADDR pc_after_resolver =
568d6575 4820 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4821
527159b7 4822 if (debug_infrun)
3e43a32a
MS
4823 fprintf_unfiltered (gdb_stdlog,
4824 "infrun: stepped into dynsym resolve code\n");
527159b7 4825
488f131b
JB
4826 if (pc_after_resolver)
4827 {
4828 /* Set up a step-resume breakpoint at the address
4829 indicated by SKIP_SOLIB_RESOLVER. */
4830 struct symtab_and_line sr_sal;
abbb1732 4831
fe39c653 4832 init_sal (&sr_sal);
488f131b 4833 sr_sal.pc = pc_after_resolver;
6c95b8df 4834 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4835
a6d9a66e
UW
4836 insert_step_resume_breakpoint_at_sal (gdbarch,
4837 sr_sal, null_frame_id);
c5aa993b 4838 }
c906108c 4839
488f131b
JB
4840 keep_going (ecs);
4841 return;
4842 }
c906108c 4843
16c381f0
JK
4844 if (ecs->event_thread->control.step_range_end != 1
4845 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4846 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 4847 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4848 {
527159b7 4849 if (debug_infrun)
3e43a32a
MS
4850 fprintf_unfiltered (gdb_stdlog,
4851 "infrun: stepped into signal trampoline\n");
42edda50 4852 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4853 a signal trampoline (either by a signal being delivered or by
4854 the signal handler returning). Just single-step until the
4855 inferior leaves the trampoline (either by calling the handler
4856 or returning). */
488f131b
JB
4857 keep_going (ecs);
4858 return;
4859 }
c906108c 4860
14132e89
MR
4861 /* If we're in the return path from a shared library trampoline,
4862 we want to proceed through the trampoline when stepping. */
4863 /* macro/2012-04-25: This needs to come before the subroutine
4864 call check below as on some targets return trampolines look
4865 like subroutine calls (MIPS16 return thunks). */
4866 if (gdbarch_in_solib_return_trampoline (gdbarch,
4867 stop_pc, ecs->stop_func_name)
4868 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4869 {
4870 /* Determine where this trampoline returns. */
4871 CORE_ADDR real_stop_pc;
4872
4873 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4874
4875 if (debug_infrun)
4876 fprintf_unfiltered (gdb_stdlog,
4877 "infrun: stepped into solib return tramp\n");
4878
4879 /* Only proceed through if we know where it's going. */
4880 if (real_stop_pc)
4881 {
4882 /* And put the step-breakpoint there and go until there. */
4883 struct symtab_and_line sr_sal;
4884
4885 init_sal (&sr_sal); /* initialize to zeroes */
4886 sr_sal.pc = real_stop_pc;
4887 sr_sal.section = find_pc_overlay (sr_sal.pc);
4888 sr_sal.pspace = get_frame_program_space (frame);
4889
4890 /* Do not specify what the fp should be when we stop since
4891 on some machines the prologue is where the new fp value
4892 is established. */
4893 insert_step_resume_breakpoint_at_sal (gdbarch,
4894 sr_sal, null_frame_id);
4895
4896 /* Restart without fiddling with the step ranges or
4897 other state. */
4898 keep_going (ecs);
4899 return;
4900 }
4901 }
4902
c17eaafe
DJ
4903 /* Check for subroutine calls. The check for the current frame
4904 equalling the step ID is not necessary - the check of the
4905 previous frame's ID is sufficient - but it is a common case and
4906 cheaper than checking the previous frame's ID.
14e60db5
DJ
4907
4908 NOTE: frame_id_eq will never report two invalid frame IDs as
4909 being equal, so to get into this block, both the current and
4910 previous frame must have valid frame IDs. */
005ca36a
JB
4911 /* The outer_frame_id check is a heuristic to detect stepping
4912 through startup code. If we step over an instruction which
4913 sets the stack pointer from an invalid value to a valid value,
4914 we may detect that as a subroutine call from the mythical
4915 "outermost" function. This could be fixed by marking
4916 outermost frames as !stack_p,code_p,special_p. Then the
4917 initial outermost frame, before sp was valid, would
ce6cca6d 4918 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4919 for more. */
edb3359d 4920 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 4921 ecs->event_thread->control.step_stack_frame_id)
005ca36a 4922 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
4923 ecs->event_thread->control.step_stack_frame_id)
4924 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
4925 outer_frame_id)
4926 || step_start_function != find_pc_function (stop_pc))))
488f131b 4927 {
95918acb 4928 CORE_ADDR real_stop_pc;
8fb3e588 4929
527159b7 4930 if (debug_infrun)
8a9de0e4 4931 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4932
16c381f0
JK
4933 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4934 || ((ecs->event_thread->control.step_range_end == 1)
d80b854b 4935 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4936 ecs->stop_func_start)))
95918acb
AC
4937 {
4938 /* I presume that step_over_calls is only 0 when we're
4939 supposed to be stepping at the assembly language level
4940 ("stepi"). Just stop. */
4941 /* Also, maybe we just did a "nexti" inside a prolog, so we
4942 thought it was a subroutine call but it was not. Stop as
4943 well. FENN */
388a8562 4944 /* And this works the same backward as frontward. MVS */
16c381f0 4945 ecs->event_thread->control.stop_step = 1;
33d62d64 4946 print_end_stepping_range_reason ();
95918acb
AC
4947 stop_stepping (ecs);
4948 return;
4949 }
8fb3e588 4950
388a8562
MS
4951 /* Reverse stepping through solib trampolines. */
4952
4953 if (execution_direction == EXEC_REVERSE
16c381f0 4954 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
4955 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4956 || (ecs->stop_func_start == 0
4957 && in_solib_dynsym_resolve_code (stop_pc))))
4958 {
4959 /* Any solib trampoline code can be handled in reverse
4960 by simply continuing to single-step. We have already
4961 executed the solib function (backwards), and a few
4962 steps will take us back through the trampoline to the
4963 caller. */
4964 keep_going (ecs);
4965 return;
4966 }
4967
16c381f0 4968 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 4969 {
b2175913
MS
4970 /* We're doing a "next".
4971
4972 Normal (forward) execution: set a breakpoint at the
4973 callee's return address (the address at which the caller
4974 will resume).
4975
4976 Reverse (backward) execution. set the step-resume
4977 breakpoint at the start of the function that we just
4978 stepped into (backwards), and continue to there. When we
6130d0b7 4979 get there, we'll need to single-step back to the caller. */
b2175913
MS
4980
4981 if (execution_direction == EXEC_REVERSE)
4982 {
acf9414f
JK
4983 /* If we're already at the start of the function, we've either
4984 just stepped backward into a single instruction function,
4985 or stepped back out of a signal handler to the first instruction
4986 of the function. Just keep going, which will single-step back
4987 to the caller. */
58c48e72 4988 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
4989 {
4990 struct symtab_and_line sr_sal;
4991
4992 /* Normal function call return (static or dynamic). */
4993 init_sal (&sr_sal);
4994 sr_sal.pc = ecs->stop_func_start;
4995 sr_sal.pspace = get_frame_program_space (frame);
4996 insert_step_resume_breakpoint_at_sal (gdbarch,
4997 sr_sal, null_frame_id);
4998 }
b2175913
MS
4999 }
5000 else
568d6575 5001 insert_step_resume_breakpoint_at_caller (frame);
b2175913 5002
8567c30f
AC
5003 keep_going (ecs);
5004 return;
5005 }
a53c66de 5006
95918acb 5007 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
5008 calling routine and the real function), locate the real
5009 function. That's what tells us (a) whether we want to step
5010 into it at all, and (b) what prologue we want to run to the
5011 end of, if we do step into it. */
568d6575 5012 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 5013 if (real_stop_pc == 0)
568d6575 5014 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
5015 if (real_stop_pc != 0)
5016 ecs->stop_func_start = real_stop_pc;
8fb3e588 5017
db5f024e 5018 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
5019 {
5020 struct symtab_and_line sr_sal;
abbb1732 5021
1b2bfbb9
RC
5022 init_sal (&sr_sal);
5023 sr_sal.pc = ecs->stop_func_start;
6c95b8df 5024 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 5025
a6d9a66e
UW
5026 insert_step_resume_breakpoint_at_sal (gdbarch,
5027 sr_sal, null_frame_id);
8fb3e588
AC
5028 keep_going (ecs);
5029 return;
1b2bfbb9
RC
5030 }
5031
95918acb 5032 /* If we have line number information for the function we are
1bfeeb0f
JL
5033 thinking of stepping into and the function isn't on the skip
5034 list, step into it.
95918acb 5035
8fb3e588
AC
5036 If there are several symtabs at that PC (e.g. with include
5037 files), just want to know whether *any* of them have line
5038 numbers. find_pc_line handles this. */
95918acb
AC
5039 {
5040 struct symtab_and_line tmp_sal;
8fb3e588 5041
95918acb 5042 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 5043 if (tmp_sal.line != 0
85817405
JK
5044 && !function_name_is_marked_for_skip (ecs->stop_func_name,
5045 &tmp_sal))
95918acb 5046 {
b2175913 5047 if (execution_direction == EXEC_REVERSE)
568d6575 5048 handle_step_into_function_backward (gdbarch, ecs);
b2175913 5049 else
568d6575 5050 handle_step_into_function (gdbarch, ecs);
95918acb
AC
5051 return;
5052 }
5053 }
5054
5055 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
5056 set, we stop the step so that the user has a chance to switch
5057 in assembly mode. */
16c381f0 5058 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 5059 && step_stop_if_no_debug)
95918acb 5060 {
16c381f0 5061 ecs->event_thread->control.stop_step = 1;
33d62d64 5062 print_end_stepping_range_reason ();
95918acb
AC
5063 stop_stepping (ecs);
5064 return;
5065 }
5066
b2175913
MS
5067 if (execution_direction == EXEC_REVERSE)
5068 {
acf9414f
JK
5069 /* If we're already at the start of the function, we've either just
5070 stepped backward into a single instruction function without line
5071 number info, or stepped back out of a signal handler to the first
5072 instruction of the function without line number info. Just keep
5073 going, which will single-step back to the caller. */
5074 if (ecs->stop_func_start != stop_pc)
5075 {
5076 /* Set a breakpoint at callee's start address.
5077 From there we can step once and be back in the caller. */
5078 struct symtab_and_line sr_sal;
abbb1732 5079
acf9414f
JK
5080 init_sal (&sr_sal);
5081 sr_sal.pc = ecs->stop_func_start;
5082 sr_sal.pspace = get_frame_program_space (frame);
5083 insert_step_resume_breakpoint_at_sal (gdbarch,
5084 sr_sal, null_frame_id);
5085 }
b2175913
MS
5086 }
5087 else
5088 /* Set a breakpoint at callee's return address (the address
5089 at which the caller will resume). */
568d6575 5090 insert_step_resume_breakpoint_at_caller (frame);
b2175913 5091
95918acb 5092 keep_going (ecs);
488f131b 5093 return;
488f131b 5094 }
c906108c 5095
fdd654f3
MS
5096 /* Reverse stepping through solib trampolines. */
5097
5098 if (execution_direction == EXEC_REVERSE
16c381f0 5099 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
5100 {
5101 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5102 || (ecs->stop_func_start == 0
5103 && in_solib_dynsym_resolve_code (stop_pc)))
5104 {
5105 /* Any solib trampoline code can be handled in reverse
5106 by simply continuing to single-step. We have already
5107 executed the solib function (backwards), and a few
5108 steps will take us back through the trampoline to the
5109 caller. */
5110 keep_going (ecs);
5111 return;
5112 }
5113 else if (in_solib_dynsym_resolve_code (stop_pc))
5114 {
5115 /* Stepped backward into the solib dynsym resolver.
5116 Set a breakpoint at its start and continue, then
5117 one more step will take us out. */
5118 struct symtab_and_line sr_sal;
abbb1732 5119
fdd654f3
MS
5120 init_sal (&sr_sal);
5121 sr_sal.pc = ecs->stop_func_start;
9d1807c3 5122 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
5123 insert_step_resume_breakpoint_at_sal (gdbarch,
5124 sr_sal, null_frame_id);
5125 keep_going (ecs);
5126 return;
5127 }
5128 }
5129
2afb61aa 5130 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 5131
1b2bfbb9
RC
5132 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5133 the trampoline processing logic, however, there are some trampolines
5134 that have no names, so we should do trampoline handling first. */
16c381f0 5135 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 5136 && ecs->stop_func_name == NULL
2afb61aa 5137 && stop_pc_sal.line == 0)
1b2bfbb9 5138 {
527159b7 5139 if (debug_infrun)
3e43a32a
MS
5140 fprintf_unfiltered (gdb_stdlog,
5141 "infrun: stepped into undebuggable function\n");
527159b7 5142
1b2bfbb9 5143 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
5144 undebuggable function (where there is no debugging information
5145 and no line number corresponding to the address where the
1b2bfbb9
RC
5146 inferior stopped). Since we want to skip this kind of code,
5147 we keep going until the inferior returns from this
14e60db5
DJ
5148 function - unless the user has asked us not to (via
5149 set step-mode) or we no longer know how to get back
5150 to the call site. */
5151 if (step_stop_if_no_debug
c7ce8faa 5152 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
5153 {
5154 /* If we have no line number and the step-stop-if-no-debug
5155 is set, we stop the step so that the user has a chance to
5156 switch in assembly mode. */
16c381f0 5157 ecs->event_thread->control.stop_step = 1;
33d62d64 5158 print_end_stepping_range_reason ();
1b2bfbb9
RC
5159 stop_stepping (ecs);
5160 return;
5161 }
5162 else
5163 {
5164 /* Set a breakpoint at callee's return address (the address
5165 at which the caller will resume). */
568d6575 5166 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
5167 keep_going (ecs);
5168 return;
5169 }
5170 }
5171
16c381f0 5172 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
5173 {
5174 /* It is stepi or nexti. We always want to stop stepping after
5175 one instruction. */
527159b7 5176 if (debug_infrun)
8a9de0e4 5177 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
16c381f0 5178 ecs->event_thread->control.stop_step = 1;
33d62d64 5179 print_end_stepping_range_reason ();
1b2bfbb9
RC
5180 stop_stepping (ecs);
5181 return;
5182 }
5183
2afb61aa 5184 if (stop_pc_sal.line == 0)
488f131b
JB
5185 {
5186 /* We have no line number information. That means to stop
5187 stepping (does this always happen right after one instruction,
5188 when we do "s" in a function with no line numbers,
5189 or can this happen as a result of a return or longjmp?). */
527159b7 5190 if (debug_infrun)
8a9de0e4 5191 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
16c381f0 5192 ecs->event_thread->control.stop_step = 1;
33d62d64 5193 print_end_stepping_range_reason ();
488f131b
JB
5194 stop_stepping (ecs);
5195 return;
5196 }
c906108c 5197
edb3359d
DJ
5198 /* Look for "calls" to inlined functions, part one. If the inline
5199 frame machinery detected some skipped call sites, we have entered
5200 a new inline function. */
5201
5202 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5203 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5204 && inline_skipped_frames (ecs->ptid))
5205 {
5206 struct symtab_and_line call_sal;
5207
5208 if (debug_infrun)
5209 fprintf_unfiltered (gdb_stdlog,
5210 "infrun: stepped into inlined function\n");
5211
5212 find_frame_sal (get_current_frame (), &call_sal);
5213
16c381f0 5214 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5215 {
5216 /* For "step", we're going to stop. But if the call site
5217 for this inlined function is on the same source line as
5218 we were previously stepping, go down into the function
5219 first. Otherwise stop at the call site. */
5220
5221 if (call_sal.line == ecs->event_thread->current_line
5222 && call_sal.symtab == ecs->event_thread->current_symtab)
5223 step_into_inline_frame (ecs->ptid);
5224
16c381f0 5225 ecs->event_thread->control.stop_step = 1;
33d62d64 5226 print_end_stepping_range_reason ();
edb3359d
DJ
5227 stop_stepping (ecs);
5228 return;
5229 }
5230 else
5231 {
5232 /* For "next", we should stop at the call site if it is on a
5233 different source line. Otherwise continue through the
5234 inlined function. */
5235 if (call_sal.line == ecs->event_thread->current_line
5236 && call_sal.symtab == ecs->event_thread->current_symtab)
5237 keep_going (ecs);
5238 else
5239 {
16c381f0 5240 ecs->event_thread->control.stop_step = 1;
33d62d64 5241 print_end_stepping_range_reason ();
edb3359d
DJ
5242 stop_stepping (ecs);
5243 }
5244 return;
5245 }
5246 }
5247
5248 /* Look for "calls" to inlined functions, part two. If we are still
5249 in the same real function we were stepping through, but we have
5250 to go further up to find the exact frame ID, we are stepping
5251 through a more inlined call beyond its call site. */
5252
5253 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5254 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5255 ecs->event_thread->control.step_frame_id)
edb3359d 5256 && stepped_in_from (get_current_frame (),
16c381f0 5257 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5258 {
5259 if (debug_infrun)
5260 fprintf_unfiltered (gdb_stdlog,
5261 "infrun: stepping through inlined function\n");
5262
16c381f0 5263 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5264 keep_going (ecs);
5265 else
5266 {
16c381f0 5267 ecs->event_thread->control.stop_step = 1;
33d62d64 5268 print_end_stepping_range_reason ();
edb3359d
DJ
5269 stop_stepping (ecs);
5270 }
5271 return;
5272 }
5273
2afb61aa 5274 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5275 && (ecs->event_thread->current_line != stop_pc_sal.line
5276 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5277 {
5278 /* We are at the start of a different line. So stop. Note that
5279 we don't stop if we step into the middle of a different line.
5280 That is said to make things like for (;;) statements work
5281 better. */
527159b7 5282 if (debug_infrun)
3e43a32a
MS
5283 fprintf_unfiltered (gdb_stdlog,
5284 "infrun: stepped to a different line\n");
16c381f0 5285 ecs->event_thread->control.stop_step = 1;
33d62d64 5286 print_end_stepping_range_reason ();
488f131b
JB
5287 stop_stepping (ecs);
5288 return;
5289 }
c906108c 5290
488f131b 5291 /* We aren't done stepping.
c906108c 5292
488f131b
JB
5293 Optimize by setting the stepping range to the line.
5294 (We might not be in the original line, but if we entered a
5295 new line in mid-statement, we continue stepping. This makes
5296 things like for(;;) statements work better.) */
c906108c 5297
16c381f0
JK
5298 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5299 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 5300 ecs->event_thread->control.may_range_step = 1;
edb3359d 5301 set_step_info (frame, stop_pc_sal);
488f131b 5302
527159b7 5303 if (debug_infrun)
8a9de0e4 5304 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5305 keep_going (ecs);
104c1213
JM
5306}
5307
b3444185 5308/* Is thread TP in the middle of single-stepping? */
104c1213 5309
a289b8f6 5310static int
b3444185 5311currently_stepping (struct thread_info *tp)
a7212384 5312{
8358c15c
JK
5313 return ((tp->control.step_range_end
5314 && tp->control.step_resume_breakpoint == NULL)
5315 || tp->control.trap_expected
8358c15c 5316 || bpstat_should_step ());
a7212384
UW
5317}
5318
b3444185
PA
5319/* Returns true if any thread *but* the one passed in "data" is in the
5320 middle of stepping or of handling a "next". */
a7212384 5321
104c1213 5322static int
b3444185 5323currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 5324{
b3444185
PA
5325 if (tp == data)
5326 return 0;
5327
16c381f0 5328 return (tp->control.step_range_end
ede1849f 5329 || tp->control.trap_expected);
104c1213 5330}
c906108c 5331
b2175913
MS
5332/* Inferior has stepped into a subroutine call with source code that
5333 we should not step over. Do step to the first line of code in
5334 it. */
c2c6d25f
JM
5335
5336static void
568d6575
UW
5337handle_step_into_function (struct gdbarch *gdbarch,
5338 struct execution_control_state *ecs)
c2c6d25f
JM
5339{
5340 struct symtab *s;
2afb61aa 5341 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5342
7e324e48
GB
5343 fill_in_stop_func (gdbarch, ecs);
5344
c2c6d25f
JM
5345 s = find_pc_symtab (stop_pc);
5346 if (s && s->language != language_asm)
568d6575 5347 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5348 ecs->stop_func_start);
c2c6d25f 5349
2afb61aa 5350 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5351 /* Use the step_resume_break to step until the end of the prologue,
5352 even if that involves jumps (as it seems to on the vax under
5353 4.2). */
5354 /* If the prologue ends in the middle of a source line, continue to
5355 the end of that source line (if it is still within the function).
5356 Otherwise, just go to end of prologue. */
2afb61aa
PA
5357 if (stop_func_sal.end
5358 && stop_func_sal.pc != ecs->stop_func_start
5359 && stop_func_sal.end < ecs->stop_func_end)
5360 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5361
2dbd5e30
KB
5362 /* Architectures which require breakpoint adjustment might not be able
5363 to place a breakpoint at the computed address. If so, the test
5364 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5365 ecs->stop_func_start to an address at which a breakpoint may be
5366 legitimately placed.
8fb3e588 5367
2dbd5e30
KB
5368 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5369 made, GDB will enter an infinite loop when stepping through
5370 optimized code consisting of VLIW instructions which contain
5371 subinstructions corresponding to different source lines. On
5372 FR-V, it's not permitted to place a breakpoint on any but the
5373 first subinstruction of a VLIW instruction. When a breakpoint is
5374 set, GDB will adjust the breakpoint address to the beginning of
5375 the VLIW instruction. Thus, we need to make the corresponding
5376 adjustment here when computing the stop address. */
8fb3e588 5377
568d6575 5378 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5379 {
5380 ecs->stop_func_start
568d6575 5381 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5382 ecs->stop_func_start);
2dbd5e30
KB
5383 }
5384
c2c6d25f
JM
5385 if (ecs->stop_func_start == stop_pc)
5386 {
5387 /* We are already there: stop now. */
16c381f0 5388 ecs->event_thread->control.stop_step = 1;
33d62d64 5389 print_end_stepping_range_reason ();
c2c6d25f
JM
5390 stop_stepping (ecs);
5391 return;
5392 }
5393 else
5394 {
5395 /* Put the step-breakpoint there and go until there. */
fe39c653 5396 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5397 sr_sal.pc = ecs->stop_func_start;
5398 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5399 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5400
c2c6d25f 5401 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5402 some machines the prologue is where the new fp value is
5403 established. */
a6d9a66e 5404 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5405
5406 /* And make sure stepping stops right away then. */
16c381f0
JK
5407 ecs->event_thread->control.step_range_end
5408 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5409 }
5410 keep_going (ecs);
5411}
d4f3574e 5412
b2175913
MS
5413/* Inferior has stepped backward into a subroutine call with source
5414 code that we should not step over. Do step to the beginning of the
5415 last line of code in it. */
5416
5417static void
568d6575
UW
5418handle_step_into_function_backward (struct gdbarch *gdbarch,
5419 struct execution_control_state *ecs)
b2175913
MS
5420{
5421 struct symtab *s;
167e4384 5422 struct symtab_and_line stop_func_sal;
b2175913 5423
7e324e48
GB
5424 fill_in_stop_func (gdbarch, ecs);
5425
b2175913
MS
5426 s = find_pc_symtab (stop_pc);
5427 if (s && s->language != language_asm)
568d6575 5428 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5429 ecs->stop_func_start);
5430
5431 stop_func_sal = find_pc_line (stop_pc, 0);
5432
5433 /* OK, we're just going to keep stepping here. */
5434 if (stop_func_sal.pc == stop_pc)
5435 {
5436 /* We're there already. Just stop stepping now. */
16c381f0 5437 ecs->event_thread->control.stop_step = 1;
33d62d64 5438 print_end_stepping_range_reason ();
b2175913
MS
5439 stop_stepping (ecs);
5440 }
5441 else
5442 {
5443 /* Else just reset the step range and keep going.
5444 No step-resume breakpoint, they don't work for
5445 epilogues, which can have multiple entry paths. */
16c381f0
JK
5446 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5447 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5448 keep_going (ecs);
5449 }
5450 return;
5451}
5452
d3169d93 5453/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5454 This is used to both functions and to skip over code. */
5455
5456static void
2c03e5be
PA
5457insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5458 struct symtab_and_line sr_sal,
5459 struct frame_id sr_id,
5460 enum bptype sr_type)
44cbf7b5 5461{
611c83ae
PA
5462 /* There should never be more than one step-resume or longjmp-resume
5463 breakpoint per thread, so we should never be setting a new
44cbf7b5 5464 step_resume_breakpoint when one is already active. */
8358c15c 5465 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 5466 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
5467
5468 if (debug_infrun)
5469 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5470 "infrun: inserting step-resume breakpoint at %s\n",
5471 paddress (gdbarch, sr_sal.pc));
d3169d93 5472
8358c15c 5473 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
5474 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5475}
5476
9da8c2a0 5477void
2c03e5be
PA
5478insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5479 struct symtab_and_line sr_sal,
5480 struct frame_id sr_id)
5481{
5482 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5483 sr_sal, sr_id,
5484 bp_step_resume);
44cbf7b5 5485}
7ce450bd 5486
2c03e5be
PA
5487/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5488 This is used to skip a potential signal handler.
7ce450bd 5489
14e60db5
DJ
5490 This is called with the interrupted function's frame. The signal
5491 handler, when it returns, will resume the interrupted function at
5492 RETURN_FRAME.pc. */
d303a6c7
AC
5493
5494static void
2c03e5be 5495insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5496{
5497 struct symtab_and_line sr_sal;
a6d9a66e 5498 struct gdbarch *gdbarch;
d303a6c7 5499
f4c1edd8 5500 gdb_assert (return_frame != NULL);
d303a6c7
AC
5501 init_sal (&sr_sal); /* initialize to zeros */
5502
a6d9a66e 5503 gdbarch = get_frame_arch (return_frame);
568d6575 5504 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5505 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5506 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5507
2c03e5be
PA
5508 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5509 get_stack_frame_id (return_frame),
5510 bp_hp_step_resume);
d303a6c7
AC
5511}
5512
2c03e5be
PA
5513/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5514 is used to skip a function after stepping into it (for "next" or if
5515 the called function has no debugging information).
14e60db5
DJ
5516
5517 The current function has almost always been reached by single
5518 stepping a call or return instruction. NEXT_FRAME belongs to the
5519 current function, and the breakpoint will be set at the caller's
5520 resume address.
5521
5522 This is a separate function rather than reusing
2c03e5be 5523 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 5524 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5525 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5526
5527static void
5528insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5529{
5530 struct symtab_and_line sr_sal;
a6d9a66e 5531 struct gdbarch *gdbarch;
14e60db5
DJ
5532
5533 /* We shouldn't have gotten here if we don't know where the call site
5534 is. */
c7ce8faa 5535 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5536
5537 init_sal (&sr_sal); /* initialize to zeros */
5538
a6d9a66e 5539 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5540 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5541 frame_unwind_caller_pc (next_frame));
14e60db5 5542 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5543 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5544
a6d9a66e 5545 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5546 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5547}
5548
611c83ae
PA
5549/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5550 new breakpoint at the target of a jmp_buf. The handling of
5551 longjmp-resume uses the same mechanisms used for handling
5552 "step-resume" breakpoints. */
5553
5554static void
a6d9a66e 5555insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 5556{
e81a37f7
TT
5557 /* There should never be more than one longjmp-resume breakpoint per
5558 thread, so we should never be setting a new
611c83ae 5559 longjmp_resume_breakpoint when one is already active. */
e81a37f7 5560 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
5561
5562 if (debug_infrun)
5563 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5564 "infrun: inserting longjmp-resume breakpoint at %s\n",
5565 paddress (gdbarch, pc));
611c83ae 5566
e81a37f7 5567 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 5568 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5569}
5570
186c406b
TT
5571/* Insert an exception resume breakpoint. TP is the thread throwing
5572 the exception. The block B is the block of the unwinder debug hook
5573 function. FRAME is the frame corresponding to the call to this
5574 function. SYM is the symbol of the function argument holding the
5575 target PC of the exception. */
5576
5577static void
5578insert_exception_resume_breakpoint (struct thread_info *tp,
5579 struct block *b,
5580 struct frame_info *frame,
5581 struct symbol *sym)
5582{
bfd189b1 5583 volatile struct gdb_exception e;
186c406b
TT
5584
5585 /* We want to ignore errors here. */
5586 TRY_CATCH (e, RETURN_MASK_ERROR)
5587 {
5588 struct symbol *vsym;
5589 struct value *value;
5590 CORE_ADDR handler;
5591 struct breakpoint *bp;
5592
5593 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5594 value = read_var_value (vsym, frame);
5595 /* If the value was optimized out, revert to the old behavior. */
5596 if (! value_optimized_out (value))
5597 {
5598 handler = value_as_address (value);
5599
5600 if (debug_infrun)
5601 fprintf_unfiltered (gdb_stdlog,
5602 "infrun: exception resume at %lx\n",
5603 (unsigned long) handler);
5604
5605 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5606 handler, bp_exception_resume);
c70a6932
JK
5607
5608 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5609 frame = NULL;
5610
186c406b
TT
5611 bp->thread = tp->num;
5612 inferior_thread ()->control.exception_resume_breakpoint = bp;
5613 }
5614 }
5615}
5616
28106bc2
SDJ
5617/* A helper for check_exception_resume that sets an
5618 exception-breakpoint based on a SystemTap probe. */
5619
5620static void
5621insert_exception_resume_from_probe (struct thread_info *tp,
5622 const struct probe *probe,
28106bc2
SDJ
5623 struct frame_info *frame)
5624{
5625 struct value *arg_value;
5626 CORE_ADDR handler;
5627 struct breakpoint *bp;
5628
5629 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5630 if (!arg_value)
5631 return;
5632
5633 handler = value_as_address (arg_value);
5634
5635 if (debug_infrun)
5636 fprintf_unfiltered (gdb_stdlog,
5637 "infrun: exception resume at %s\n",
6bac7473 5638 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
5639 handler));
5640
5641 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5642 handler, bp_exception_resume);
5643 bp->thread = tp->num;
5644 inferior_thread ()->control.exception_resume_breakpoint = bp;
5645}
5646
186c406b
TT
5647/* This is called when an exception has been intercepted. Check to
5648 see whether the exception's destination is of interest, and if so,
5649 set an exception resume breakpoint there. */
5650
5651static void
5652check_exception_resume (struct execution_control_state *ecs,
28106bc2 5653 struct frame_info *frame)
186c406b 5654{
bfd189b1 5655 volatile struct gdb_exception e;
28106bc2
SDJ
5656 const struct probe *probe;
5657 struct symbol *func;
5658
5659 /* First see if this exception unwinding breakpoint was set via a
5660 SystemTap probe point. If so, the probe has two arguments: the
5661 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5662 set a breakpoint there. */
6bac7473 5663 probe = find_probe_by_pc (get_frame_pc (frame));
28106bc2
SDJ
5664 if (probe)
5665 {
6bac7473 5666 insert_exception_resume_from_probe (ecs->event_thread, probe, frame);
28106bc2
SDJ
5667 return;
5668 }
5669
5670 func = get_frame_function (frame);
5671 if (!func)
5672 return;
186c406b
TT
5673
5674 TRY_CATCH (e, RETURN_MASK_ERROR)
5675 {
5676 struct block *b;
8157b174 5677 struct block_iterator iter;
186c406b
TT
5678 struct symbol *sym;
5679 int argno = 0;
5680
5681 /* The exception breakpoint is a thread-specific breakpoint on
5682 the unwinder's debug hook, declared as:
5683
5684 void _Unwind_DebugHook (void *cfa, void *handler);
5685
5686 The CFA argument indicates the frame to which control is
5687 about to be transferred. HANDLER is the destination PC.
5688
5689 We ignore the CFA and set a temporary breakpoint at HANDLER.
5690 This is not extremely efficient but it avoids issues in gdb
5691 with computing the DWARF CFA, and it also works even in weird
5692 cases such as throwing an exception from inside a signal
5693 handler. */
5694
5695 b = SYMBOL_BLOCK_VALUE (func);
5696 ALL_BLOCK_SYMBOLS (b, iter, sym)
5697 {
5698 if (!SYMBOL_IS_ARGUMENT (sym))
5699 continue;
5700
5701 if (argno == 0)
5702 ++argno;
5703 else
5704 {
5705 insert_exception_resume_breakpoint (ecs->event_thread,
5706 b, frame, sym);
5707 break;
5708 }
5709 }
5710 }
5711}
5712
104c1213
JM
5713static void
5714stop_stepping (struct execution_control_state *ecs)
5715{
527159b7 5716 if (debug_infrun)
8a9de0e4 5717 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 5718
cd0fc7c3
SS
5719 /* Let callers know we don't want to wait for the inferior anymore. */
5720 ecs->wait_some_more = 0;
5721}
5722
a9ba6bae
PA
5723/* Called when we should continue running the inferior, because the
5724 current event doesn't cause a user visible stop. This does the
5725 resuming part; waiting for the next event is done elsewhere. */
d4f3574e
SS
5726
5727static void
5728keep_going (struct execution_control_state *ecs)
5729{
c4dbc9af
PA
5730 /* Make sure normal_stop is called if we get a QUIT handled before
5731 reaching resume. */
5732 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5733
d4f3574e 5734 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5735 ecs->event_thread->prev_pc
5736 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5737
16c381f0 5738 if (ecs->event_thread->control.trap_expected
a493e3e2 5739 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
d4f3574e 5740 {
a9ba6bae
PA
5741 /* We haven't yet gotten our trap, and either: intercepted a
5742 non-signal event (e.g., a fork); or took a signal which we
5743 are supposed to pass through to the inferior. Simply
5744 continue. */
c4dbc9af 5745 discard_cleanups (old_cleanups);
2020b7ab 5746 resume (currently_stepping (ecs->event_thread),
16c381f0 5747 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5748 }
5749 else
5750 {
5751 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
5752 anyway (if we got a signal, the user asked it be passed to
5753 the child)
5754 -- or --
5755 We got our expected trap, but decided we should resume from
5756 it.
d4f3574e 5757
a9ba6bae 5758 We're going to run this baby now!
d4f3574e 5759
c36b740a
VP
5760 Note that insert_breakpoints won't try to re-insert
5761 already inserted breakpoints. Therefore, we don't
5762 care if breakpoints were already inserted, or not. */
a9ba6bae 5763
4e1c45ea 5764 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 5765 {
9f5a595d 5766 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
abbb1732 5767
9f5a595d 5768 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
a9ba6bae
PA
5769 {
5770 /* Since we can't do a displaced step, we have to remove
5771 the breakpoint while we step it. To keep things
5772 simple, we remove them all. */
5773 remove_breakpoints ();
5774 }
45e8c884
VP
5775 }
5776 else
d4f3574e 5777 {
bfd189b1 5778 volatile struct gdb_exception e;
abbb1732 5779
a9ba6bae 5780 /* Stop stepping if inserting breakpoints fails. */
e236ba44
VP
5781 TRY_CATCH (e, RETURN_MASK_ERROR)
5782 {
5783 insert_breakpoints ();
5784 }
5785 if (e.reason < 0)
d4f3574e 5786 {
97bd5475 5787 exception_print (gdb_stderr, e);
d4f3574e
SS
5788 stop_stepping (ecs);
5789 return;
5790 }
d4f3574e
SS
5791 }
5792
16c381f0
JK
5793 ecs->event_thread->control.trap_expected
5794 = ecs->event_thread->stepping_over_breakpoint;
d4f3574e 5795
a9ba6bae
PA
5796 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
5797 explicitly specifies that such a signal should be delivered
5798 to the target program). Typically, that would occur when a
5799 user is debugging a target monitor on a simulator: the target
5800 monitor sets a breakpoint; the simulator encounters this
5801 breakpoint and halts the simulation handing control to GDB;
5802 GDB, noting that the stop address doesn't map to any known
5803 breakpoint, returns control back to the simulator; the
5804 simulator then delivers the hardware equivalent of a
5805 GDB_SIGNAL_TRAP to the program being debugged. */
a493e3e2 5806 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5807 && !signal_program[ecs->event_thread->suspend.stop_signal])
a493e3e2 5808 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
d4f3574e 5809
c4dbc9af 5810 discard_cleanups (old_cleanups);
2020b7ab 5811 resume (currently_stepping (ecs->event_thread),
16c381f0 5812 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5813 }
5814
488f131b 5815 prepare_to_wait (ecs);
d4f3574e
SS
5816}
5817
104c1213
JM
5818/* This function normally comes after a resume, before
5819 handle_inferior_event exits. It takes care of any last bits of
5820 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 5821
104c1213
JM
5822static void
5823prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 5824{
527159b7 5825 if (debug_infrun)
8a9de0e4 5826 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 5827
104c1213
JM
5828 /* This is the old end of the while loop. Let everybody know we
5829 want to wait for the inferior some more and get called again
5830 soon. */
5831 ecs->wait_some_more = 1;
c906108c 5832}
11cf8741 5833
33d62d64
JK
5834/* Several print_*_reason functions to print why the inferior has stopped.
5835 We always print something when the inferior exits, or receives a signal.
5836 The rest of the cases are dealt with later on in normal_stop and
5837 print_it_typical. Ideally there should be a call to one of these
5838 print_*_reason functions functions from handle_inferior_event each time
5839 stop_stepping is called. */
5840
5841/* Print why the inferior has stopped.
5842 We are done with a step/next/si/ni command, print why the inferior has
5843 stopped. For now print nothing. Print a message only if not in the middle
5844 of doing a "step n" operation for n > 1. */
5845
5846static void
5847print_end_stepping_range_reason (void)
5848{
16c381f0
JK
5849 if ((!inferior_thread ()->step_multi
5850 || !inferior_thread ()->control.stop_step)
79a45e25
PA
5851 && ui_out_is_mi_like_p (current_uiout))
5852 ui_out_field_string (current_uiout, "reason",
33d62d64
JK
5853 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5854}
5855
5856/* The inferior was terminated by a signal, print why it stopped. */
5857
11cf8741 5858static void
2ea28649 5859print_signal_exited_reason (enum gdb_signal siggnal)
11cf8741 5860{
79a45e25
PA
5861 struct ui_out *uiout = current_uiout;
5862
33d62d64
JK
5863 annotate_signalled ();
5864 if (ui_out_is_mi_like_p (uiout))
5865 ui_out_field_string
5866 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5867 ui_out_text (uiout, "\nProgram terminated with signal ");
5868 annotate_signal_name ();
5869 ui_out_field_string (uiout, "signal-name",
2ea28649 5870 gdb_signal_to_name (siggnal));
33d62d64
JK
5871 annotate_signal_name_end ();
5872 ui_out_text (uiout, ", ");
5873 annotate_signal_string ();
5874 ui_out_field_string (uiout, "signal-meaning",
2ea28649 5875 gdb_signal_to_string (siggnal));
33d62d64
JK
5876 annotate_signal_string_end ();
5877 ui_out_text (uiout, ".\n");
5878 ui_out_text (uiout, "The program no longer exists.\n");
5879}
5880
5881/* The inferior program is finished, print why it stopped. */
5882
5883static void
5884print_exited_reason (int exitstatus)
5885{
fda326dd
TT
5886 struct inferior *inf = current_inferior ();
5887 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
79a45e25 5888 struct ui_out *uiout = current_uiout;
fda326dd 5889
33d62d64
JK
5890 annotate_exited (exitstatus);
5891 if (exitstatus)
5892 {
5893 if (ui_out_is_mi_like_p (uiout))
5894 ui_out_field_string (uiout, "reason",
5895 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
5896 ui_out_text (uiout, "[Inferior ");
5897 ui_out_text (uiout, plongest (inf->num));
5898 ui_out_text (uiout, " (");
5899 ui_out_text (uiout, pidstr);
5900 ui_out_text (uiout, ") exited with code ");
33d62d64 5901 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 5902 ui_out_text (uiout, "]\n");
33d62d64
JK
5903 }
5904 else
11cf8741 5905 {
9dc5e2a9 5906 if (ui_out_is_mi_like_p (uiout))
034dad6f 5907 ui_out_field_string
33d62d64 5908 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
5909 ui_out_text (uiout, "[Inferior ");
5910 ui_out_text (uiout, plongest (inf->num));
5911 ui_out_text (uiout, " (");
5912 ui_out_text (uiout, pidstr);
5913 ui_out_text (uiout, ") exited normally]\n");
33d62d64
JK
5914 }
5915 /* Support the --return-child-result option. */
5916 return_child_result_value = exitstatus;
5917}
5918
5919/* Signal received, print why the inferior has stopped. The signal table
1777feb0 5920 tells us to print about it. */
33d62d64
JK
5921
5922static void
2ea28649 5923print_signal_received_reason (enum gdb_signal siggnal)
33d62d64 5924{
79a45e25
PA
5925 struct ui_out *uiout = current_uiout;
5926
33d62d64
JK
5927 annotate_signal ();
5928
a493e3e2 5929 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
5930 {
5931 struct thread_info *t = inferior_thread ();
5932
5933 ui_out_text (uiout, "\n[");
5934 ui_out_field_string (uiout, "thread-name",
5935 target_pid_to_str (t->ptid));
5936 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5937 ui_out_text (uiout, " stopped");
5938 }
5939 else
5940 {
5941 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 5942 annotate_signal_name ();
33d62d64
JK
5943 if (ui_out_is_mi_like_p (uiout))
5944 ui_out_field_string
5945 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 5946 ui_out_field_string (uiout, "signal-name",
2ea28649 5947 gdb_signal_to_name (siggnal));
8b93c638
JM
5948 annotate_signal_name_end ();
5949 ui_out_text (uiout, ", ");
5950 annotate_signal_string ();
488f131b 5951 ui_out_field_string (uiout, "signal-meaning",
2ea28649 5952 gdb_signal_to_string (siggnal));
8b93c638 5953 annotate_signal_string_end ();
33d62d64
JK
5954 }
5955 ui_out_text (uiout, ".\n");
5956}
252fbfc8 5957
33d62d64
JK
5958/* Reverse execution: target ran out of history info, print why the inferior
5959 has stopped. */
252fbfc8 5960
33d62d64
JK
5961static void
5962print_no_history_reason (void)
5963{
79a45e25 5964 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
11cf8741 5965}
43ff13b4 5966
c906108c
SS
5967/* Here to return control to GDB when the inferior stops for real.
5968 Print appropriate messages, remove breakpoints, give terminal our modes.
5969
5970 STOP_PRINT_FRAME nonzero means print the executing frame
5971 (pc, function, args, file, line number and line text).
5972 BREAKPOINTS_FAILED nonzero means stop was due to error
5973 attempting to insert breakpoints. */
5974
5975void
96baa820 5976normal_stop (void)
c906108c 5977{
73b65bb0
DJ
5978 struct target_waitstatus last;
5979 ptid_t last_ptid;
29f49a6a 5980 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
5981
5982 get_last_target_status (&last_ptid, &last);
5983
29f49a6a
PA
5984 /* If an exception is thrown from this point on, make sure to
5985 propagate GDB's knowledge of the executing state to the
5986 frontend/user running state. A QUIT is an easy exception to see
5987 here, so do this before any filtered output. */
c35b1492
PA
5988 if (!non_stop)
5989 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5990 else if (last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
5991 && last.kind != TARGET_WAITKIND_EXITED
5992 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 5993 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 5994
4f8d22e3
PA
5995 /* In non-stop mode, we don't want GDB to switch threads behind the
5996 user's back, to avoid races where the user is typing a command to
5997 apply to thread x, but GDB switches to thread y before the user
5998 finishes entering the command. */
5999
c906108c
SS
6000 /* As with the notification of thread events, we want to delay
6001 notifying the user that we've switched thread context until
6002 the inferior actually stops.
6003
73b65bb0
DJ
6004 There's no point in saying anything if the inferior has exited.
6005 Note that SIGNALLED here means "exited with a signal", not
6006 "received a signal". */
4f8d22e3
PA
6007 if (!non_stop
6008 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
6009 && target_has_execution
6010 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
6011 && last.kind != TARGET_WAITKIND_EXITED
6012 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
6013 {
6014 target_terminal_ours_for_output ();
a3f17187 6015 printf_filtered (_("[Switching to %s]\n"),
c95310c6 6016 target_pid_to_str (inferior_ptid));
b8fa951a 6017 annotate_thread_changed ();
39f77062 6018 previous_inferior_ptid = inferior_ptid;
c906108c 6019 }
c906108c 6020
0e5bf2a8
PA
6021 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6022 {
6023 gdb_assert (sync_execution || !target_can_async_p ());
6024
6025 target_terminal_ours_for_output ();
6026 printf_filtered (_("No unwaited-for children left.\n"));
6027 }
6028
74960c60 6029 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
6030 {
6031 if (remove_breakpoints ())
6032 {
6033 target_terminal_ours_for_output ();
3e43a32a
MS
6034 printf_filtered (_("Cannot remove breakpoints because "
6035 "program is no longer writable.\nFurther "
6036 "execution is probably impossible.\n"));
c906108c
SS
6037 }
6038 }
c906108c 6039
c906108c
SS
6040 /* If an auto-display called a function and that got a signal,
6041 delete that auto-display to avoid an infinite recursion. */
6042
6043 if (stopped_by_random_signal)
6044 disable_current_display ();
6045
6046 /* Don't print a message if in the middle of doing a "step n"
6047 operation for n > 1 */
af679fd0
PA
6048 if (target_has_execution
6049 && last.kind != TARGET_WAITKIND_SIGNALLED
6050 && last.kind != TARGET_WAITKIND_EXITED
6051 && inferior_thread ()->step_multi
16c381f0 6052 && inferior_thread ()->control.stop_step)
c906108c
SS
6053 goto done;
6054
6055 target_terminal_ours ();
0f641c01 6056 async_enable_stdin ();
c906108c 6057
7abfe014
DJ
6058 /* Set the current source location. This will also happen if we
6059 display the frame below, but the current SAL will be incorrect
6060 during a user hook-stop function. */
d729566a 6061 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
6062 set_current_sal_from_frame (get_current_frame (), 1);
6063
dd7e2d2b
PA
6064 /* Let the user/frontend see the threads as stopped. */
6065 do_cleanups (old_chain);
6066
6067 /* Look up the hook_stop and run it (CLI internally handles problem
6068 of stop_command's pre-hook not existing). */
6069 if (stop_command)
6070 catch_errors (hook_stop_stub, stop_command,
6071 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6072
d729566a 6073 if (!has_stack_frames ())
d51fd4c8 6074 goto done;
c906108c 6075
32400beb
PA
6076 if (last.kind == TARGET_WAITKIND_SIGNALLED
6077 || last.kind == TARGET_WAITKIND_EXITED)
6078 goto done;
6079
c906108c
SS
6080 /* Select innermost stack frame - i.e., current frame is frame 0,
6081 and current location is based on that.
6082 Don't do this on return from a stack dummy routine,
1777feb0 6083 or if the program has exited. */
c906108c
SS
6084
6085 if (!stop_stack_dummy)
6086 {
0f7d239c 6087 select_frame (get_current_frame ());
c906108c
SS
6088
6089 /* Print current location without a level number, if
c5aa993b
JM
6090 we have changed functions or hit a breakpoint.
6091 Print source line if we have one.
6092 bpstat_print() contains the logic deciding in detail
1777feb0 6093 what to print, based on the event(s) that just occurred. */
c906108c 6094
d01a8610
AS
6095 /* If --batch-silent is enabled then there's no need to print the current
6096 source location, and to try risks causing an error message about
6097 missing source files. */
6098 if (stop_print_frame && !batch_silent)
c906108c
SS
6099 {
6100 int bpstat_ret;
6101 int source_flag;
917317f4 6102 int do_frame_printing = 1;
347bddb7 6103 struct thread_info *tp = inferior_thread ();
c906108c 6104
36dfb11c 6105 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
917317f4
JM
6106 switch (bpstat_ret)
6107 {
6108 case PRINT_UNKNOWN:
aa0cd9c1 6109 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
6110 (or should) carry around the function and does (or
6111 should) use that when doing a frame comparison. */
16c381f0
JK
6112 if (tp->control.stop_step
6113 && frame_id_eq (tp->control.step_frame_id,
aa0cd9c1 6114 get_frame_id (get_current_frame ()))
917317f4 6115 && step_start_function == find_pc_function (stop_pc))
1777feb0
MS
6116 source_flag = SRC_LINE; /* Finished step, just
6117 print source line. */
917317f4 6118 else
1777feb0
MS
6119 source_flag = SRC_AND_LOC; /* Print location and
6120 source line. */
917317f4
JM
6121 break;
6122 case PRINT_SRC_AND_LOC:
1777feb0
MS
6123 source_flag = SRC_AND_LOC; /* Print location and
6124 source line. */
917317f4
JM
6125 break;
6126 case PRINT_SRC_ONLY:
c5394b80 6127 source_flag = SRC_LINE;
917317f4
JM
6128 break;
6129 case PRINT_NOTHING:
488f131b 6130 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
6131 do_frame_printing = 0;
6132 break;
6133 default:
e2e0b3e5 6134 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 6135 }
c906108c
SS
6136
6137 /* The behavior of this routine with respect to the source
6138 flag is:
c5394b80
JM
6139 SRC_LINE: Print only source line
6140 LOCATION: Print only location
1777feb0 6141 SRC_AND_LOC: Print location and source line. */
917317f4 6142 if (do_frame_printing)
08d72866 6143 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
c906108c
SS
6144
6145 /* Display the auto-display expressions. */
6146 do_displays ();
6147 }
6148 }
6149
6150 /* Save the function value return registers, if we care.
6151 We might be about to restore their previous contents. */
9da8c2a0
PA
6152 if (inferior_thread ()->control.proceed_to_finish
6153 && execution_direction != EXEC_REVERSE)
d5c31457
UW
6154 {
6155 /* This should not be necessary. */
6156 if (stop_registers)
6157 regcache_xfree (stop_registers);
6158
6159 /* NB: The copy goes through to the target picking up the value of
6160 all the registers. */
6161 stop_registers = regcache_dup (get_current_regcache ());
6162 }
c906108c 6163
aa7d318d 6164 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 6165 {
b89667eb
DE
6166 /* Pop the empty frame that contains the stack dummy.
6167 This also restores inferior state prior to the call
16c381f0 6168 (struct infcall_suspend_state). */
b89667eb 6169 struct frame_info *frame = get_current_frame ();
abbb1732 6170
b89667eb
DE
6171 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6172 frame_pop (frame);
3e43a32a
MS
6173 /* frame_pop() calls reinit_frame_cache as the last thing it
6174 does which means there's currently no selected frame. We
6175 don't need to re-establish a selected frame if the dummy call
6176 returns normally, that will be done by
6177 restore_infcall_control_state. However, we do have to handle
6178 the case where the dummy call is returning after being
6179 stopped (e.g. the dummy call previously hit a breakpoint).
6180 We can't know which case we have so just always re-establish
6181 a selected frame here. */
0f7d239c 6182 select_frame (get_current_frame ());
c906108c
SS
6183 }
6184
c906108c
SS
6185done:
6186 annotate_stopped ();
41d2bdb4
PA
6187
6188 /* Suppress the stop observer if we're in the middle of:
6189
6190 - a step n (n > 1), as there still more steps to be done.
6191
6192 - a "finish" command, as the observer will be called in
6193 finish_command_continuation, so it can include the inferior
6194 function's return value.
6195
6196 - calling an inferior function, as we pretend we inferior didn't
6197 run at all. The return value of the call is handled by the
6198 expression evaluator, through call_function_by_hand. */
6199
6200 if (!target_has_execution
6201 || last.kind == TARGET_WAITKIND_SIGNALLED
6202 || last.kind == TARGET_WAITKIND_EXITED
0e5bf2a8 6203 || last.kind == TARGET_WAITKIND_NO_RESUMED
2ca0b532
PA
6204 || (!(inferior_thread ()->step_multi
6205 && inferior_thread ()->control.stop_step)
16c381f0
JK
6206 && !(inferior_thread ()->control.stop_bpstat
6207 && inferior_thread ()->control.proceed_to_finish)
6208 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
6209 {
6210 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 6211 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 6212 stop_print_frame);
347bddb7 6213 else
1d33d6ba 6214 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 6215 }
347bddb7 6216
48844aa6
PA
6217 if (target_has_execution)
6218 {
6219 if (last.kind != TARGET_WAITKIND_SIGNALLED
6220 && last.kind != TARGET_WAITKIND_EXITED)
6221 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6222 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 6223 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 6224 }
6c95b8df
PA
6225
6226 /* Try to get rid of automatically added inferiors that are no
6227 longer needed. Keeping those around slows down things linearly.
6228 Note that this never removes the current inferior. */
6229 prune_inferiors ();
c906108c
SS
6230}
6231
6232static int
96baa820 6233hook_stop_stub (void *cmd)
c906108c 6234{
5913bcb0 6235 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
6236 return (0);
6237}
6238\f
c5aa993b 6239int
96baa820 6240signal_stop_state (int signo)
c906108c 6241{
d6b48e9c 6242 return signal_stop[signo];
c906108c
SS
6243}
6244
c5aa993b 6245int
96baa820 6246signal_print_state (int signo)
c906108c
SS
6247{
6248 return signal_print[signo];
6249}
6250
c5aa993b 6251int
96baa820 6252signal_pass_state (int signo)
c906108c
SS
6253{
6254 return signal_program[signo];
6255}
6256
2455069d
UW
6257static void
6258signal_cache_update (int signo)
6259{
6260 if (signo == -1)
6261 {
a493e3e2 6262 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
6263 signal_cache_update (signo);
6264
6265 return;
6266 }
6267
6268 signal_pass[signo] = (signal_stop[signo] == 0
6269 && signal_print[signo] == 0
ab04a2af
TT
6270 && signal_program[signo] == 1
6271 && signal_catch[signo] == 0);
2455069d
UW
6272}
6273
488f131b 6274int
7bda5e4a 6275signal_stop_update (int signo, int state)
d4f3574e
SS
6276{
6277 int ret = signal_stop[signo];
abbb1732 6278
d4f3574e 6279 signal_stop[signo] = state;
2455069d 6280 signal_cache_update (signo);
d4f3574e
SS
6281 return ret;
6282}
6283
488f131b 6284int
7bda5e4a 6285signal_print_update (int signo, int state)
d4f3574e
SS
6286{
6287 int ret = signal_print[signo];
abbb1732 6288
d4f3574e 6289 signal_print[signo] = state;
2455069d 6290 signal_cache_update (signo);
d4f3574e
SS
6291 return ret;
6292}
6293
488f131b 6294int
7bda5e4a 6295signal_pass_update (int signo, int state)
d4f3574e
SS
6296{
6297 int ret = signal_program[signo];
abbb1732 6298
d4f3574e 6299 signal_program[signo] = state;
2455069d 6300 signal_cache_update (signo);
d4f3574e
SS
6301 return ret;
6302}
6303
ab04a2af
TT
6304/* Update the global 'signal_catch' from INFO and notify the
6305 target. */
6306
6307void
6308signal_catch_update (const unsigned int *info)
6309{
6310 int i;
6311
6312 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6313 signal_catch[i] = info[i] > 0;
6314 signal_cache_update (-1);
6315 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6316}
6317
c906108c 6318static void
96baa820 6319sig_print_header (void)
c906108c 6320{
3e43a32a
MS
6321 printf_filtered (_("Signal Stop\tPrint\tPass "
6322 "to program\tDescription\n"));
c906108c
SS
6323}
6324
6325static void
2ea28649 6326sig_print_info (enum gdb_signal oursig)
c906108c 6327{
2ea28649 6328 const char *name = gdb_signal_to_name (oursig);
c906108c 6329 int name_padding = 13 - strlen (name);
96baa820 6330
c906108c
SS
6331 if (name_padding <= 0)
6332 name_padding = 0;
6333
6334 printf_filtered ("%s", name);
488f131b 6335 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6336 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6337 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6338 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 6339 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
6340}
6341
6342/* Specify how various signals in the inferior should be handled. */
6343
6344static void
96baa820 6345handle_command (char *args, int from_tty)
c906108c
SS
6346{
6347 char **argv;
6348 int digits, wordlen;
6349 int sigfirst, signum, siglast;
2ea28649 6350 enum gdb_signal oursig;
c906108c
SS
6351 int allsigs;
6352 int nsigs;
6353 unsigned char *sigs;
6354 struct cleanup *old_chain;
6355
6356 if (args == NULL)
6357 {
e2e0b3e5 6358 error_no_arg (_("signal to handle"));
c906108c
SS
6359 }
6360
1777feb0 6361 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 6362
a493e3e2 6363 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
6364 sigs = (unsigned char *) alloca (nsigs);
6365 memset (sigs, 0, nsigs);
6366
1777feb0 6367 /* Break the command line up into args. */
c906108c 6368
d1a41061 6369 argv = gdb_buildargv (args);
7a292a7a 6370 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6371
6372 /* Walk through the args, looking for signal oursigs, signal names, and
6373 actions. Signal numbers and signal names may be interspersed with
6374 actions, with the actions being performed for all signals cumulatively
1777feb0 6375 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6376
6377 while (*argv != NULL)
6378 {
6379 wordlen = strlen (*argv);
6380 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6381 {;
6382 }
6383 allsigs = 0;
6384 sigfirst = siglast = -1;
6385
6386 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6387 {
6388 /* Apply action to all signals except those used by the
1777feb0 6389 debugger. Silently skip those. */
c906108c
SS
6390 allsigs = 1;
6391 sigfirst = 0;
6392 siglast = nsigs - 1;
6393 }
6394 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6395 {
6396 SET_SIGS (nsigs, sigs, signal_stop);
6397 SET_SIGS (nsigs, sigs, signal_print);
6398 }
6399 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6400 {
6401 UNSET_SIGS (nsigs, sigs, signal_program);
6402 }
6403 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6404 {
6405 SET_SIGS (nsigs, sigs, signal_print);
6406 }
6407 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6408 {
6409 SET_SIGS (nsigs, sigs, signal_program);
6410 }
6411 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6412 {
6413 UNSET_SIGS (nsigs, sigs, signal_stop);
6414 }
6415 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6416 {
6417 SET_SIGS (nsigs, sigs, signal_program);
6418 }
6419 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6420 {
6421 UNSET_SIGS (nsigs, sigs, signal_print);
6422 UNSET_SIGS (nsigs, sigs, signal_stop);
6423 }
6424 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6425 {
6426 UNSET_SIGS (nsigs, sigs, signal_program);
6427 }
6428 else if (digits > 0)
6429 {
6430 /* It is numeric. The numeric signal refers to our own
6431 internal signal numbering from target.h, not to host/target
6432 signal number. This is a feature; users really should be
6433 using symbolic names anyway, and the common ones like
6434 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6435
6436 sigfirst = siglast = (int)
2ea28649 6437 gdb_signal_from_command (atoi (*argv));
c906108c
SS
6438 if ((*argv)[digits] == '-')
6439 {
6440 siglast = (int)
2ea28649 6441 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
6442 }
6443 if (sigfirst > siglast)
6444 {
1777feb0 6445 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6446 signum = sigfirst;
6447 sigfirst = siglast;
6448 siglast = signum;
6449 }
6450 }
6451 else
6452 {
2ea28649 6453 oursig = gdb_signal_from_name (*argv);
a493e3e2 6454 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
6455 {
6456 sigfirst = siglast = (int) oursig;
6457 }
6458 else
6459 {
6460 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6461 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6462 }
6463 }
6464
6465 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6466 which signals to apply actions to. */
c906108c
SS
6467
6468 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6469 {
2ea28649 6470 switch ((enum gdb_signal) signum)
c906108c 6471 {
a493e3e2
PA
6472 case GDB_SIGNAL_TRAP:
6473 case GDB_SIGNAL_INT:
c906108c
SS
6474 if (!allsigs && !sigs[signum])
6475 {
9e2f0ad4 6476 if (query (_("%s is used by the debugger.\n\
3e43a32a 6477Are you sure you want to change it? "),
2ea28649 6478 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
6479 {
6480 sigs[signum] = 1;
6481 }
6482 else
6483 {
a3f17187 6484 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6485 gdb_flush (gdb_stdout);
6486 }
6487 }
6488 break;
a493e3e2
PA
6489 case GDB_SIGNAL_0:
6490 case GDB_SIGNAL_DEFAULT:
6491 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
6492 /* Make sure that "all" doesn't print these. */
6493 break;
6494 default:
6495 sigs[signum] = 1;
6496 break;
6497 }
6498 }
6499
6500 argv++;
6501 }
6502
3a031f65
PA
6503 for (signum = 0; signum < nsigs; signum++)
6504 if (sigs[signum])
6505 {
2455069d 6506 signal_cache_update (-1);
a493e3e2
PA
6507 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6508 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 6509
3a031f65
PA
6510 if (from_tty)
6511 {
6512 /* Show the results. */
6513 sig_print_header ();
6514 for (; signum < nsigs; signum++)
6515 if (sigs[signum])
6516 sig_print_info (signum);
6517 }
6518
6519 break;
6520 }
c906108c
SS
6521
6522 do_cleanups (old_chain);
6523}
6524
de0bea00
MF
6525/* Complete the "handle" command. */
6526
6527static VEC (char_ptr) *
6528handle_completer (struct cmd_list_element *ignore,
6f937416 6529 const char *text, const char *word)
de0bea00
MF
6530{
6531 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6532 static const char * const keywords[] =
6533 {
6534 "all",
6535 "stop",
6536 "ignore",
6537 "print",
6538 "pass",
6539 "nostop",
6540 "noignore",
6541 "noprint",
6542 "nopass",
6543 NULL,
6544 };
6545
6546 vec_signals = signal_completer (ignore, text, word);
6547 vec_keywords = complete_on_enum (keywords, word, word);
6548
6549 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6550 VEC_free (char_ptr, vec_signals);
6551 VEC_free (char_ptr, vec_keywords);
6552 return return_val;
6553}
6554
c906108c 6555static void
96baa820 6556xdb_handle_command (char *args, int from_tty)
c906108c
SS
6557{
6558 char **argv;
6559 struct cleanup *old_chain;
6560
d1a41061
PP
6561 if (args == NULL)
6562 error_no_arg (_("xdb command"));
6563
1777feb0 6564 /* Break the command line up into args. */
c906108c 6565
d1a41061 6566 argv = gdb_buildargv (args);
7a292a7a 6567 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6568 if (argv[1] != (char *) NULL)
6569 {
6570 char *argBuf;
6571 int bufLen;
6572
6573 bufLen = strlen (argv[0]) + 20;
6574 argBuf = (char *) xmalloc (bufLen);
6575 if (argBuf)
6576 {
6577 int validFlag = 1;
2ea28649 6578 enum gdb_signal oursig;
c906108c 6579
2ea28649 6580 oursig = gdb_signal_from_name (argv[0]);
c906108c
SS
6581 memset (argBuf, 0, bufLen);
6582 if (strcmp (argv[1], "Q") == 0)
6583 sprintf (argBuf, "%s %s", argv[0], "noprint");
6584 else
6585 {
6586 if (strcmp (argv[1], "s") == 0)
6587 {
6588 if (!signal_stop[oursig])
6589 sprintf (argBuf, "%s %s", argv[0], "stop");
6590 else
6591 sprintf (argBuf, "%s %s", argv[0], "nostop");
6592 }
6593 else if (strcmp (argv[1], "i") == 0)
6594 {
6595 if (!signal_program[oursig])
6596 sprintf (argBuf, "%s %s", argv[0], "pass");
6597 else
6598 sprintf (argBuf, "%s %s", argv[0], "nopass");
6599 }
6600 else if (strcmp (argv[1], "r") == 0)
6601 {
6602 if (!signal_print[oursig])
6603 sprintf (argBuf, "%s %s", argv[0], "print");
6604 else
6605 sprintf (argBuf, "%s %s", argv[0], "noprint");
6606 }
6607 else
6608 validFlag = 0;
6609 }
6610 if (validFlag)
6611 handle_command (argBuf, from_tty);
6612 else
a3f17187 6613 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 6614 if (argBuf)
b8c9b27d 6615 xfree (argBuf);
c906108c
SS
6616 }
6617 }
6618 do_cleanups (old_chain);
6619}
6620
2ea28649
PA
6621enum gdb_signal
6622gdb_signal_from_command (int num)
ed01b82c
PA
6623{
6624 if (num >= 1 && num <= 15)
2ea28649 6625 return (enum gdb_signal) num;
ed01b82c
PA
6626 error (_("Only signals 1-15 are valid as numeric signals.\n\
6627Use \"info signals\" for a list of symbolic signals."));
6628}
6629
c906108c
SS
6630/* Print current contents of the tables set by the handle command.
6631 It is possible we should just be printing signals actually used
6632 by the current target (but for things to work right when switching
6633 targets, all signals should be in the signal tables). */
6634
6635static void
96baa820 6636signals_info (char *signum_exp, int from_tty)
c906108c 6637{
2ea28649 6638 enum gdb_signal oursig;
abbb1732 6639
c906108c
SS
6640 sig_print_header ();
6641
6642 if (signum_exp)
6643 {
6644 /* First see if this is a symbol name. */
2ea28649 6645 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 6646 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
6647 {
6648 /* No, try numeric. */
6649 oursig =
2ea28649 6650 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
6651 }
6652 sig_print_info (oursig);
6653 return;
6654 }
6655
6656 printf_filtered ("\n");
6657 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
6658 for (oursig = GDB_SIGNAL_FIRST;
6659 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 6660 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
6661 {
6662 QUIT;
6663
a493e3e2
PA
6664 if (oursig != GDB_SIGNAL_UNKNOWN
6665 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
6666 sig_print_info (oursig);
6667 }
6668
3e43a32a
MS
6669 printf_filtered (_("\nUse the \"handle\" command "
6670 "to change these tables.\n"));
c906108c 6671}
4aa995e1 6672
c709acd1
PA
6673/* Check if it makes sense to read $_siginfo from the current thread
6674 at this point. If not, throw an error. */
6675
6676static void
6677validate_siginfo_access (void)
6678{
6679 /* No current inferior, no siginfo. */
6680 if (ptid_equal (inferior_ptid, null_ptid))
6681 error (_("No thread selected."));
6682
6683 /* Don't try to read from a dead thread. */
6684 if (is_exited (inferior_ptid))
6685 error (_("The current thread has terminated"));
6686
6687 /* ... or from a spinning thread. */
6688 if (is_running (inferior_ptid))
6689 error (_("Selected thread is running."));
6690}
6691
4aa995e1
PA
6692/* The $_siginfo convenience variable is a bit special. We don't know
6693 for sure the type of the value until we actually have a chance to
7a9dd1b2 6694 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
6695 also dependent on which thread you have selected.
6696
6697 1. making $_siginfo be an internalvar that creates a new value on
6698 access.
6699
6700 2. making the value of $_siginfo be an lval_computed value. */
6701
6702/* This function implements the lval_computed support for reading a
6703 $_siginfo value. */
6704
6705static void
6706siginfo_value_read (struct value *v)
6707{
6708 LONGEST transferred;
6709
c709acd1
PA
6710 validate_siginfo_access ();
6711
4aa995e1
PA
6712 transferred =
6713 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6714 NULL,
6715 value_contents_all_raw (v),
6716 value_offset (v),
6717 TYPE_LENGTH (value_type (v)));
6718
6719 if (transferred != TYPE_LENGTH (value_type (v)))
6720 error (_("Unable to read siginfo"));
6721}
6722
6723/* This function implements the lval_computed support for writing a
6724 $_siginfo value. */
6725
6726static void
6727siginfo_value_write (struct value *v, struct value *fromval)
6728{
6729 LONGEST transferred;
6730
c709acd1
PA
6731 validate_siginfo_access ();
6732
4aa995e1
PA
6733 transferred = target_write (&current_target,
6734 TARGET_OBJECT_SIGNAL_INFO,
6735 NULL,
6736 value_contents_all_raw (fromval),
6737 value_offset (v),
6738 TYPE_LENGTH (value_type (fromval)));
6739
6740 if (transferred != TYPE_LENGTH (value_type (fromval)))
6741 error (_("Unable to write siginfo"));
6742}
6743
c8f2448a 6744static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
6745 {
6746 siginfo_value_read,
6747 siginfo_value_write
6748 };
6749
6750/* Return a new value with the correct type for the siginfo object of
78267919
UW
6751 the current thread using architecture GDBARCH. Return a void value
6752 if there's no object available. */
4aa995e1 6753
2c0b251b 6754static struct value *
22d2b532
SDJ
6755siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6756 void *ignore)
4aa995e1 6757{
4aa995e1 6758 if (target_has_stack
78267919
UW
6759 && !ptid_equal (inferior_ptid, null_ptid)
6760 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 6761 {
78267919 6762 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 6763
78267919 6764 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
6765 }
6766
78267919 6767 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
6768}
6769
c906108c 6770\f
16c381f0
JK
6771/* infcall_suspend_state contains state about the program itself like its
6772 registers and any signal it received when it last stopped.
6773 This state must be restored regardless of how the inferior function call
6774 ends (either successfully, or after it hits a breakpoint or signal)
6775 if the program is to properly continue where it left off. */
6776
6777struct infcall_suspend_state
7a292a7a 6778{
16c381f0 6779 struct thread_suspend_state thread_suspend;
dd80ea3c 6780#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6781 struct inferior_suspend_state inferior_suspend;
dd80ea3c 6782#endif
16c381f0
JK
6783
6784 /* Other fields: */
7a292a7a 6785 CORE_ADDR stop_pc;
b89667eb 6786 struct regcache *registers;
1736ad11 6787
35515841 6788 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
6789 struct gdbarch *siginfo_gdbarch;
6790
6791 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6792 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6793 content would be invalid. */
6794 gdb_byte *siginfo_data;
b89667eb
DE
6795};
6796
16c381f0
JK
6797struct infcall_suspend_state *
6798save_infcall_suspend_state (void)
b89667eb 6799{
16c381f0 6800 struct infcall_suspend_state *inf_state;
b89667eb 6801 struct thread_info *tp = inferior_thread ();
974a734b 6802#if 0
16c381f0 6803 struct inferior *inf = current_inferior ();
974a734b 6804#endif
1736ad11
JK
6805 struct regcache *regcache = get_current_regcache ();
6806 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6807 gdb_byte *siginfo_data = NULL;
6808
6809 if (gdbarch_get_siginfo_type_p (gdbarch))
6810 {
6811 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6812 size_t len = TYPE_LENGTH (type);
6813 struct cleanup *back_to;
6814
6815 siginfo_data = xmalloc (len);
6816 back_to = make_cleanup (xfree, siginfo_data);
6817
6818 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6819 siginfo_data, 0, len) == len)
6820 discard_cleanups (back_to);
6821 else
6822 {
6823 /* Errors ignored. */
6824 do_cleanups (back_to);
6825 siginfo_data = NULL;
6826 }
6827 }
6828
16c381f0 6829 inf_state = XZALLOC (struct infcall_suspend_state);
1736ad11
JK
6830
6831 if (siginfo_data)
6832 {
6833 inf_state->siginfo_gdbarch = gdbarch;
6834 inf_state->siginfo_data = siginfo_data;
6835 }
b89667eb 6836
16c381f0 6837 inf_state->thread_suspend = tp->suspend;
dd80ea3c 6838#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6839 inf_state->inferior_suspend = inf->suspend;
dd80ea3c 6840#endif
16c381f0 6841
35515841 6842 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
6843 GDB_SIGNAL_0 anyway. */
6844 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 6845
b89667eb
DE
6846 inf_state->stop_pc = stop_pc;
6847
1736ad11 6848 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
6849
6850 return inf_state;
6851}
6852
6853/* Restore inferior session state to INF_STATE. */
6854
6855void
16c381f0 6856restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6857{
6858 struct thread_info *tp = inferior_thread ();
974a734b 6859#if 0
16c381f0 6860 struct inferior *inf = current_inferior ();
974a734b 6861#endif
1736ad11
JK
6862 struct regcache *regcache = get_current_regcache ();
6863 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 6864
16c381f0 6865 tp->suspend = inf_state->thread_suspend;
dd80ea3c 6866#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6867 inf->suspend = inf_state->inferior_suspend;
dd80ea3c 6868#endif
16c381f0 6869
b89667eb
DE
6870 stop_pc = inf_state->stop_pc;
6871
1736ad11
JK
6872 if (inf_state->siginfo_gdbarch == gdbarch)
6873 {
6874 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
6875
6876 /* Errors ignored. */
6877 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 6878 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
6879 }
6880
b89667eb
DE
6881 /* The inferior can be gone if the user types "print exit(0)"
6882 (and perhaps other times). */
6883 if (target_has_execution)
6884 /* NB: The register write goes through to the target. */
1736ad11 6885 regcache_cpy (regcache, inf_state->registers);
803b5f95 6886
16c381f0 6887 discard_infcall_suspend_state (inf_state);
b89667eb
DE
6888}
6889
6890static void
16c381f0 6891do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 6892{
16c381f0 6893 restore_infcall_suspend_state (state);
b89667eb
DE
6894}
6895
6896struct cleanup *
16c381f0
JK
6897make_cleanup_restore_infcall_suspend_state
6898 (struct infcall_suspend_state *inf_state)
b89667eb 6899{
16c381f0 6900 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
6901}
6902
6903void
16c381f0 6904discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6905{
6906 regcache_xfree (inf_state->registers);
803b5f95 6907 xfree (inf_state->siginfo_data);
b89667eb
DE
6908 xfree (inf_state);
6909}
6910
6911struct regcache *
16c381f0 6912get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
6913{
6914 return inf_state->registers;
6915}
6916
16c381f0
JK
6917/* infcall_control_state contains state regarding gdb's control of the
6918 inferior itself like stepping control. It also contains session state like
6919 the user's currently selected frame. */
b89667eb 6920
16c381f0 6921struct infcall_control_state
b89667eb 6922{
16c381f0
JK
6923 struct thread_control_state thread_control;
6924 struct inferior_control_state inferior_control;
d82142e2
JK
6925
6926 /* Other fields: */
6927 enum stop_stack_kind stop_stack_dummy;
6928 int stopped_by_random_signal;
7a292a7a 6929 int stop_after_trap;
7a292a7a 6930
b89667eb 6931 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 6932 struct frame_id selected_frame_id;
7a292a7a
SS
6933};
6934
c906108c 6935/* Save all of the information associated with the inferior<==>gdb
b89667eb 6936 connection. */
c906108c 6937
16c381f0
JK
6938struct infcall_control_state *
6939save_infcall_control_state (void)
c906108c 6940{
16c381f0 6941 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 6942 struct thread_info *tp = inferior_thread ();
d6b48e9c 6943 struct inferior *inf = current_inferior ();
7a292a7a 6944
16c381f0
JK
6945 inf_status->thread_control = tp->control;
6946 inf_status->inferior_control = inf->control;
d82142e2 6947
8358c15c 6948 tp->control.step_resume_breakpoint = NULL;
5b79abe7 6949 tp->control.exception_resume_breakpoint = NULL;
8358c15c 6950
16c381f0
JK
6951 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6952 chain. If caller's caller is walking the chain, they'll be happier if we
6953 hand them back the original chain when restore_infcall_control_state is
6954 called. */
6955 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
6956
6957 /* Other fields: */
6958 inf_status->stop_stack_dummy = stop_stack_dummy;
6959 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6960 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 6961
206415a3 6962 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 6963
7a292a7a 6964 return inf_status;
c906108c
SS
6965}
6966
c906108c 6967static int
96baa820 6968restore_selected_frame (void *args)
c906108c 6969{
488f131b 6970 struct frame_id *fid = (struct frame_id *) args;
c906108c 6971 struct frame_info *frame;
c906108c 6972
101dcfbe 6973 frame = frame_find_by_id (*fid);
c906108c 6974
aa0cd9c1
AC
6975 /* If inf_status->selected_frame_id is NULL, there was no previously
6976 selected frame. */
101dcfbe 6977 if (frame == NULL)
c906108c 6978 {
8a3fe4f8 6979 warning (_("Unable to restore previously selected frame."));
c906108c
SS
6980 return 0;
6981 }
6982
0f7d239c 6983 select_frame (frame);
c906108c
SS
6984
6985 return (1);
6986}
6987
b89667eb
DE
6988/* Restore inferior session state to INF_STATUS. */
6989
c906108c 6990void
16c381f0 6991restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 6992{
4e1c45ea 6993 struct thread_info *tp = inferior_thread ();
d6b48e9c 6994 struct inferior *inf = current_inferior ();
4e1c45ea 6995
8358c15c
JK
6996 if (tp->control.step_resume_breakpoint)
6997 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6998
5b79abe7
TT
6999 if (tp->control.exception_resume_breakpoint)
7000 tp->control.exception_resume_breakpoint->disposition
7001 = disp_del_at_next_stop;
7002
d82142e2 7003 /* Handle the bpstat_copy of the chain. */
16c381f0 7004 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 7005
16c381f0
JK
7006 tp->control = inf_status->thread_control;
7007 inf->control = inf_status->inferior_control;
d82142e2
JK
7008
7009 /* Other fields: */
7010 stop_stack_dummy = inf_status->stop_stack_dummy;
7011 stopped_by_random_signal = inf_status->stopped_by_random_signal;
7012 stop_after_trap = inf_status->stop_after_trap;
c906108c 7013
b89667eb 7014 if (target_has_stack)
c906108c 7015 {
c906108c 7016 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
7017 walking the stack might encounter a garbage pointer and
7018 error() trying to dereference it. */
488f131b
JB
7019 if (catch_errors
7020 (restore_selected_frame, &inf_status->selected_frame_id,
7021 "Unable to restore previously selected frame:\n",
7022 RETURN_MASK_ERROR) == 0)
c906108c
SS
7023 /* Error in restoring the selected frame. Select the innermost
7024 frame. */
0f7d239c 7025 select_frame (get_current_frame ());
c906108c 7026 }
c906108c 7027
72cec141 7028 xfree (inf_status);
7a292a7a 7029}
c906108c 7030
74b7792f 7031static void
16c381f0 7032do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 7033{
16c381f0 7034 restore_infcall_control_state (sts);
74b7792f
AC
7035}
7036
7037struct cleanup *
16c381f0
JK
7038make_cleanup_restore_infcall_control_state
7039 (struct infcall_control_state *inf_status)
74b7792f 7040{
16c381f0 7041 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
7042}
7043
c906108c 7044void
16c381f0 7045discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 7046{
8358c15c
JK
7047 if (inf_status->thread_control.step_resume_breakpoint)
7048 inf_status->thread_control.step_resume_breakpoint->disposition
7049 = disp_del_at_next_stop;
7050
5b79abe7
TT
7051 if (inf_status->thread_control.exception_resume_breakpoint)
7052 inf_status->thread_control.exception_resume_breakpoint->disposition
7053 = disp_del_at_next_stop;
7054
1777feb0 7055 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 7056 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 7057
72cec141 7058 xfree (inf_status);
7a292a7a 7059}
b89667eb 7060\f
0723dbf5
PA
7061int
7062ptid_match (ptid_t ptid, ptid_t filter)
7063{
0723dbf5
PA
7064 if (ptid_equal (filter, minus_one_ptid))
7065 return 1;
7066 if (ptid_is_pid (filter)
7067 && ptid_get_pid (ptid) == ptid_get_pid (filter))
7068 return 1;
7069 else if (ptid_equal (ptid, filter))
7070 return 1;
7071
7072 return 0;
7073}
7074
ca6724c1
KB
7075/* restore_inferior_ptid() will be used by the cleanup machinery
7076 to restore the inferior_ptid value saved in a call to
7077 save_inferior_ptid(). */
ce696e05
KB
7078
7079static void
7080restore_inferior_ptid (void *arg)
7081{
7082 ptid_t *saved_ptid_ptr = arg;
abbb1732 7083
ce696e05
KB
7084 inferior_ptid = *saved_ptid_ptr;
7085 xfree (arg);
7086}
7087
7088/* Save the value of inferior_ptid so that it may be restored by a
7089 later call to do_cleanups(). Returns the struct cleanup pointer
7090 needed for later doing the cleanup. */
7091
7092struct cleanup *
7093save_inferior_ptid (void)
7094{
7095 ptid_t *saved_ptid_ptr;
7096
7097 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7098 *saved_ptid_ptr = inferior_ptid;
7099 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7100}
0c557179
SDJ
7101
7102/* See inferior.h. */
7103
7104void
7105clear_exit_convenience_vars (void)
7106{
7107 clear_internalvar (lookup_internalvar ("_exitsignal"));
7108 clear_internalvar (lookup_internalvar ("_exitcode"));
7109}
c5aa993b 7110\f
488f131b 7111
b2175913
MS
7112/* User interface for reverse debugging:
7113 Set exec-direction / show exec-direction commands
7114 (returns error unless target implements to_set_exec_direction method). */
7115
32231432 7116int execution_direction = EXEC_FORWARD;
b2175913
MS
7117static const char exec_forward[] = "forward";
7118static const char exec_reverse[] = "reverse";
7119static const char *exec_direction = exec_forward;
40478521 7120static const char *const exec_direction_names[] = {
b2175913
MS
7121 exec_forward,
7122 exec_reverse,
7123 NULL
7124};
7125
7126static void
7127set_exec_direction_func (char *args, int from_tty,
7128 struct cmd_list_element *cmd)
7129{
7130 if (target_can_execute_reverse)
7131 {
7132 if (!strcmp (exec_direction, exec_forward))
7133 execution_direction = EXEC_FORWARD;
7134 else if (!strcmp (exec_direction, exec_reverse))
7135 execution_direction = EXEC_REVERSE;
7136 }
8bbed405
MS
7137 else
7138 {
7139 exec_direction = exec_forward;
7140 error (_("Target does not support this operation."));
7141 }
b2175913
MS
7142}
7143
7144static void
7145show_exec_direction_func (struct ui_file *out, int from_tty,
7146 struct cmd_list_element *cmd, const char *value)
7147{
7148 switch (execution_direction) {
7149 case EXEC_FORWARD:
7150 fprintf_filtered (out, _("Forward.\n"));
7151 break;
7152 case EXEC_REVERSE:
7153 fprintf_filtered (out, _("Reverse.\n"));
7154 break;
b2175913 7155 default:
d8b34453
PA
7156 internal_error (__FILE__, __LINE__,
7157 _("bogus execution_direction value: %d"),
7158 (int) execution_direction);
b2175913
MS
7159 }
7160}
7161
d4db2f36
PA
7162static void
7163show_schedule_multiple (struct ui_file *file, int from_tty,
7164 struct cmd_list_element *c, const char *value)
7165{
3e43a32a
MS
7166 fprintf_filtered (file, _("Resuming the execution of threads "
7167 "of all processes is %s.\n"), value);
d4db2f36 7168}
ad52ddc6 7169
22d2b532
SDJ
7170/* Implementation of `siginfo' variable. */
7171
7172static const struct internalvar_funcs siginfo_funcs =
7173{
7174 siginfo_make_value,
7175 NULL,
7176 NULL
7177};
7178
c906108c 7179void
96baa820 7180_initialize_infrun (void)
c906108c 7181{
52f0bd74
AC
7182 int i;
7183 int numsigs;
de0bea00 7184 struct cmd_list_element *c;
c906108c 7185
1bedd215
AC
7186 add_info ("signals", signals_info, _("\
7187What debugger does when program gets various signals.\n\
7188Specify a signal as argument to print info on that signal only."));
c906108c
SS
7189 add_info_alias ("handle", "signals", 0);
7190
de0bea00 7191 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 7192Specify how to handle signals.\n\
486c7739 7193Usage: handle SIGNAL [ACTIONS]\n\
c906108c 7194Args are signals and actions to apply to those signals.\n\
dfbd5e7b 7195If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
7196will be displayed instead.\n\
7197\n\
c906108c
SS
7198Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7199from 1-15 are allowed for compatibility with old versions of GDB.\n\
7200Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7201The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7202used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 7203\n\
1bedd215 7204Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
7205\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7206Stop means reenter debugger if this signal happens (implies print).\n\
7207Print means print a message if this signal happens.\n\
7208Pass means let program see this signal; otherwise program doesn't know.\n\
7209Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
7210Pass and Stop may be combined.\n\
7211\n\
7212Multiple signals may be specified. Signal numbers and signal names\n\
7213may be interspersed with actions, with the actions being performed for\n\
7214all signals cumulatively specified."));
de0bea00 7215 set_cmd_completer (c, handle_completer);
486c7739 7216
c906108c
SS
7217 if (xdb_commands)
7218 {
1bedd215
AC
7219 add_com ("lz", class_info, signals_info, _("\
7220What debugger does when program gets various signals.\n\
7221Specify a signal as argument to print info on that signal only."));
7222 add_com ("z", class_run, xdb_handle_command, _("\
7223Specify how to handle a signal.\n\
c906108c
SS
7224Args are signals and actions to apply to those signals.\n\
7225Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7226from 1-15 are allowed for compatibility with old versions of GDB.\n\
7227Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7228The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7229used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 7230Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
7231\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7232nopass), \"Q\" (noprint)\n\
7233Stop means reenter debugger if this signal happens (implies print).\n\
7234Print means print a message if this signal happens.\n\
7235Pass means let program see this signal; otherwise program doesn't know.\n\
7236Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7237Pass and Stop may be combined."));
c906108c
SS
7238 }
7239
7240 if (!dbx_commands)
1a966eab
AC
7241 stop_command = add_cmd ("stop", class_obscure,
7242 not_just_help_class_command, _("\
7243There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 7244This allows you to set a list of commands to be run each time execution\n\
1a966eab 7245of the program stops."), &cmdlist);
c906108c 7246
ccce17b0 7247 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
7248Set inferior debugging."), _("\
7249Show inferior debugging."), _("\
7250When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
7251 NULL,
7252 show_debug_infrun,
7253 &setdebuglist, &showdebuglist);
527159b7 7254
3e43a32a
MS
7255 add_setshow_boolean_cmd ("displaced", class_maintenance,
7256 &debug_displaced, _("\
237fc4c9
PA
7257Set displaced stepping debugging."), _("\
7258Show displaced stepping debugging."), _("\
7259When non-zero, displaced stepping specific debugging is enabled."),
7260 NULL,
7261 show_debug_displaced,
7262 &setdebuglist, &showdebuglist);
7263
ad52ddc6
PA
7264 add_setshow_boolean_cmd ("non-stop", no_class,
7265 &non_stop_1, _("\
7266Set whether gdb controls the inferior in non-stop mode."), _("\
7267Show whether gdb controls the inferior in non-stop mode."), _("\
7268When debugging a multi-threaded program and this setting is\n\
7269off (the default, also called all-stop mode), when one thread stops\n\
7270(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7271all other threads in the program while you interact with the thread of\n\
7272interest. When you continue or step a thread, you can allow the other\n\
7273threads to run, or have them remain stopped, but while you inspect any\n\
7274thread's state, all threads stop.\n\
7275\n\
7276In non-stop mode, when one thread stops, other threads can continue\n\
7277to run freely. You'll be able to step each thread independently,\n\
7278leave it stopped or free to run as needed."),
7279 set_non_stop,
7280 show_non_stop,
7281 &setlist,
7282 &showlist);
7283
a493e3e2 7284 numsigs = (int) GDB_SIGNAL_LAST;
488f131b 7285 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7286 signal_print = (unsigned char *)
7287 xmalloc (sizeof (signal_print[0]) * numsigs);
7288 signal_program = (unsigned char *)
7289 xmalloc (sizeof (signal_program[0]) * numsigs);
ab04a2af
TT
7290 signal_catch = (unsigned char *)
7291 xmalloc (sizeof (signal_catch[0]) * numsigs);
2455069d
UW
7292 signal_pass = (unsigned char *)
7293 xmalloc (sizeof (signal_program[0]) * numsigs);
c906108c
SS
7294 for (i = 0; i < numsigs; i++)
7295 {
7296 signal_stop[i] = 1;
7297 signal_print[i] = 1;
7298 signal_program[i] = 1;
ab04a2af 7299 signal_catch[i] = 0;
c906108c
SS
7300 }
7301
7302 /* Signals caused by debugger's own actions
7303 should not be given to the program afterwards. */
a493e3e2
PA
7304 signal_program[GDB_SIGNAL_TRAP] = 0;
7305 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
7306
7307 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
7308 signal_stop[GDB_SIGNAL_ALRM] = 0;
7309 signal_print[GDB_SIGNAL_ALRM] = 0;
7310 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7311 signal_print[GDB_SIGNAL_VTALRM] = 0;
7312 signal_stop[GDB_SIGNAL_PROF] = 0;
7313 signal_print[GDB_SIGNAL_PROF] = 0;
7314 signal_stop[GDB_SIGNAL_CHLD] = 0;
7315 signal_print[GDB_SIGNAL_CHLD] = 0;
7316 signal_stop[GDB_SIGNAL_IO] = 0;
7317 signal_print[GDB_SIGNAL_IO] = 0;
7318 signal_stop[GDB_SIGNAL_POLL] = 0;
7319 signal_print[GDB_SIGNAL_POLL] = 0;
7320 signal_stop[GDB_SIGNAL_URG] = 0;
7321 signal_print[GDB_SIGNAL_URG] = 0;
7322 signal_stop[GDB_SIGNAL_WINCH] = 0;
7323 signal_print[GDB_SIGNAL_WINCH] = 0;
7324 signal_stop[GDB_SIGNAL_PRIO] = 0;
7325 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 7326
cd0fc7c3
SS
7327 /* These signals are used internally by user-level thread
7328 implementations. (See signal(5) on Solaris.) Like the above
7329 signals, a healthy program receives and handles them as part of
7330 its normal operation. */
a493e3e2
PA
7331 signal_stop[GDB_SIGNAL_LWP] = 0;
7332 signal_print[GDB_SIGNAL_LWP] = 0;
7333 signal_stop[GDB_SIGNAL_WAITING] = 0;
7334 signal_print[GDB_SIGNAL_WAITING] = 0;
7335 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7336 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 7337
2455069d
UW
7338 /* Update cached state. */
7339 signal_cache_update (-1);
7340
85c07804
AC
7341 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7342 &stop_on_solib_events, _("\
7343Set stopping for shared library events."), _("\
7344Show stopping for shared library events."), _("\
c906108c
SS
7345If nonzero, gdb will give control to the user when the dynamic linker\n\
7346notifies gdb of shared library events. The most common event of interest\n\
85c07804 7347to the user would be loading/unloading of a new library."),
f9e14852 7348 set_stop_on_solib_events,
920d2a44 7349 show_stop_on_solib_events,
85c07804 7350 &setlist, &showlist);
c906108c 7351
7ab04401
AC
7352 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7353 follow_fork_mode_kind_names,
7354 &follow_fork_mode_string, _("\
7355Set debugger response to a program call of fork or vfork."), _("\
7356Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7357A fork or vfork creates a new process. follow-fork-mode can be:\n\
7358 parent - the original process is debugged after a fork\n\
7359 child - the new process is debugged after a fork\n\
ea1dd7bc 7360The unfollowed process will continue to run.\n\
7ab04401
AC
7361By default, the debugger will follow the parent process."),
7362 NULL,
920d2a44 7363 show_follow_fork_mode_string,
7ab04401
AC
7364 &setlist, &showlist);
7365
6c95b8df
PA
7366 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7367 follow_exec_mode_names,
7368 &follow_exec_mode_string, _("\
7369Set debugger response to a program call of exec."), _("\
7370Show debugger response to a program call of exec."), _("\
7371An exec call replaces the program image of a process.\n\
7372\n\
7373follow-exec-mode can be:\n\
7374\n\
cce7e648 7375 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7376to this new inferior. The program the process was running before\n\
7377the exec call can be restarted afterwards by restarting the original\n\
7378inferior.\n\
7379\n\
7380 same - the debugger keeps the process bound to the same inferior.\n\
7381The new executable image replaces the previous executable loaded in\n\
7382the inferior. Restarting the inferior after the exec call restarts\n\
7383the executable the process was running after the exec call.\n\
7384\n\
7385By default, the debugger will use the same inferior."),
7386 NULL,
7387 show_follow_exec_mode_string,
7388 &setlist, &showlist);
7389
7ab04401
AC
7390 add_setshow_enum_cmd ("scheduler-locking", class_run,
7391 scheduler_enums, &scheduler_mode, _("\
7392Set mode for locking scheduler during execution."), _("\
7393Show mode for locking scheduler during execution."), _("\
c906108c
SS
7394off == no locking (threads may preempt at any time)\n\
7395on == full locking (no thread except the current thread may run)\n\
7396step == scheduler locked during every single-step operation.\n\
7397 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7398 Other threads may run while stepping over a function call ('next')."),
7399 set_schedlock_func, /* traps on target vector */
920d2a44 7400 show_scheduler_mode,
7ab04401 7401 &setlist, &showlist);
5fbbeb29 7402
d4db2f36
PA
7403 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7404Set mode for resuming threads of all processes."), _("\
7405Show mode for resuming threads of all processes."), _("\
7406When on, execution commands (such as 'continue' or 'next') resume all\n\
7407threads of all processes. When off (which is the default), execution\n\
7408commands only resume the threads of the current process. The set of\n\
7409threads that are resumed is further refined by the scheduler-locking\n\
7410mode (see help set scheduler-locking)."),
7411 NULL,
7412 show_schedule_multiple,
7413 &setlist, &showlist);
7414
5bf193a2
AC
7415 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7416Set mode of the step operation."), _("\
7417Show mode of the step operation."), _("\
7418When set, doing a step over a function without debug line information\n\
7419will stop at the first instruction of that function. Otherwise, the\n\
7420function is skipped and the step command stops at a different source line."),
7421 NULL,
920d2a44 7422 show_step_stop_if_no_debug,
5bf193a2 7423 &setlist, &showlist);
ca6724c1 7424
72d0e2c5
YQ
7425 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7426 &can_use_displaced_stepping, _("\
237fc4c9
PA
7427Set debugger's willingness to use displaced stepping."), _("\
7428Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7429If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7430supported by the target architecture. If off, gdb will not use displaced\n\
7431stepping to step over breakpoints, even if such is supported by the target\n\
7432architecture. If auto (which is the default), gdb will use displaced stepping\n\
7433if the target architecture supports it and non-stop mode is active, but will not\n\
7434use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
7435 NULL,
7436 show_can_use_displaced_stepping,
7437 &setlist, &showlist);
237fc4c9 7438
b2175913
MS
7439 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7440 &exec_direction, _("Set direction of execution.\n\
7441Options are 'forward' or 'reverse'."),
7442 _("Show direction of execution (forward/reverse)."),
7443 _("Tells gdb whether to execute forward or backward."),
7444 set_exec_direction_func, show_exec_direction_func,
7445 &setlist, &showlist);
7446
6c95b8df
PA
7447 /* Set/show detach-on-fork: user-settable mode. */
7448
7449 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7450Set whether gdb will detach the child of a fork."), _("\
7451Show whether gdb will detach the child of a fork."), _("\
7452Tells gdb whether to detach the child of a fork."),
7453 NULL, NULL, &setlist, &showlist);
7454
03583c20
UW
7455 /* Set/show disable address space randomization mode. */
7456
7457 add_setshow_boolean_cmd ("disable-randomization", class_support,
7458 &disable_randomization, _("\
7459Set disabling of debuggee's virtual address space randomization."), _("\
7460Show disabling of debuggee's virtual address space randomization."), _("\
7461When this mode is on (which is the default), randomization of the virtual\n\
7462address space is disabled. Standalone programs run with the randomization\n\
7463enabled by default on some platforms."),
7464 &set_disable_randomization,
7465 &show_disable_randomization,
7466 &setlist, &showlist);
7467
ca6724c1 7468 /* ptid initializations */
ca6724c1
KB
7469 inferior_ptid = null_ptid;
7470 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7471
7472 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7473 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7474 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7475 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7476
7477 /* Explicitly create without lookup, since that tries to create a
7478 value with a void typed value, and when we get here, gdbarch
7479 isn't initialized yet. At this point, we're quite sure there
7480 isn't another convenience variable of the same name. */
22d2b532 7481 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
7482
7483 add_setshow_boolean_cmd ("observer", no_class,
7484 &observer_mode_1, _("\
7485Set whether gdb controls the inferior in observer mode."), _("\
7486Show whether gdb controls the inferior in observer mode."), _("\
7487In observer mode, GDB can get data from the inferior, but not\n\
7488affect its execution. Registers and memory may not be changed,\n\
7489breakpoints may not be set, and the program cannot be interrupted\n\
7490or signalled."),
7491 set_observer_mode,
7492 show_observer_mode,
7493 &setlist,
7494 &showlist);
c906108c 7495}