]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/infrun.c
Fix missing breakpoint/watchpoint hits, eliminate deferred_step_ptid.
[thirdparty/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
ecd75fc8 4 Copyright (C) 1986-2014 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
0e9f083f 22#include <string.h>
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
60250e8b 27#include "exceptions.h"
c906108c 28#include "breakpoint.h"
03f2053f 29#include "gdb_wait.h"
c906108c
SS
30#include "gdbcore.h"
31#include "gdbcmd.h"
210661e7 32#include "cli/cli-script.h"
c906108c
SS
33#include "target.h"
34#include "gdbthread.h"
35#include "annotate.h"
1adeb98a 36#include "symfile.h"
7a292a7a 37#include "top.h"
c906108c 38#include <signal.h>
2acceee2 39#include "inf-loop.h"
4e052eda 40#include "regcache.h"
fd0407d6 41#include "value.h"
06600e06 42#include "observer.h"
f636b87d 43#include "language.h"
a77053c2 44#include "solib.h"
f17517ea 45#include "main.h"
186c406b
TT
46#include "dictionary.h"
47#include "block.h"
9f976b41 48#include "gdb_assert.h"
034dad6f 49#include "mi/mi-common.h"
4f8d22e3 50#include "event-top.h"
96429cc8 51#include "record.h"
d02ed0bb 52#include "record-full.h"
edb3359d 53#include "inline-frame.h"
4efc6507 54#include "jit.h"
06cd862c 55#include "tracepoint.h"
be34f849 56#include "continuations.h"
b4a14fd0 57#include "interps.h"
1bfeeb0f 58#include "skip.h"
28106bc2
SDJ
59#include "probe.h"
60#include "objfiles.h"
de0bea00 61#include "completer.h"
9107fc8d 62#include "target-descriptions.h"
f15cb84a 63#include "target-dcache.h"
c906108c
SS
64
65/* Prototypes for local functions */
66
96baa820 67static void signals_info (char *, int);
c906108c 68
96baa820 69static void handle_command (char *, int);
c906108c 70
2ea28649 71static void sig_print_info (enum gdb_signal);
c906108c 72
96baa820 73static void sig_print_header (void);
c906108c 74
74b7792f 75static void resume_cleanups (void *);
c906108c 76
96baa820 77static int hook_stop_stub (void *);
c906108c 78
96baa820
JM
79static int restore_selected_frame (void *);
80
4ef3f3be 81static int follow_fork (void);
96baa820
JM
82
83static void set_schedlock_func (char *args, int from_tty,
488f131b 84 struct cmd_list_element *c);
96baa820 85
a289b8f6
JK
86static int currently_stepping (struct thread_info *tp);
87
b3444185
PA
88static int currently_stepping_or_nexting_callback (struct thread_info *tp,
89 void *data);
a7212384 90
96baa820
JM
91static void xdb_handle_command (char *args, int from_tty);
92
6a6b96b9 93static int prepare_to_proceed (int);
ea67f13b 94
33d62d64
JK
95static void print_exited_reason (int exitstatus);
96
2ea28649 97static void print_signal_exited_reason (enum gdb_signal siggnal);
33d62d64
JK
98
99static void print_no_history_reason (void);
100
2ea28649 101static void print_signal_received_reason (enum gdb_signal siggnal);
33d62d64
JK
102
103static void print_end_stepping_range_reason (void);
104
96baa820 105void _initialize_infrun (void);
43ff13b4 106
e58b0e63
PA
107void nullify_last_target_wait_ptid (void);
108
2c03e5be 109static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
110
111static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
112
2484c66b
UW
113static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
114
5fbbeb29
CF
115/* When set, stop the 'step' command if we enter a function which has
116 no line number information. The normal behavior is that we step
117 over such function. */
118int step_stop_if_no_debug = 0;
920d2a44
AC
119static void
120show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
121 struct cmd_list_element *c, const char *value)
122{
123 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
124}
5fbbeb29 125
1777feb0 126/* In asynchronous mode, but simulating synchronous execution. */
96baa820 127
43ff13b4
JM
128int sync_execution = 0;
129
b9f437de
PA
130/* proceed and normal_stop use this to notify the user when the
131 inferior stopped in a different thread than it had been running
132 in. */
96baa820 133
39f77062 134static ptid_t previous_inferior_ptid;
7a292a7a 135
07107ca6
LM
136/* If set (default for legacy reasons), when following a fork, GDB
137 will detach from one of the fork branches, child or parent.
138 Exactly which branch is detached depends on 'set follow-fork-mode'
139 setting. */
140
141static int detach_fork = 1;
6c95b8df 142
237fc4c9
PA
143int debug_displaced = 0;
144static void
145show_debug_displaced (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147{
148 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
149}
150
ccce17b0 151unsigned int debug_infrun = 0;
920d2a44
AC
152static void
153show_debug_infrun (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155{
156 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
157}
527159b7 158
03583c20
UW
159
160/* Support for disabling address space randomization. */
161
162int disable_randomization = 1;
163
164static void
165show_disable_randomization (struct ui_file *file, int from_tty,
166 struct cmd_list_element *c, const char *value)
167{
168 if (target_supports_disable_randomization ())
169 fprintf_filtered (file,
170 _("Disabling randomization of debuggee's "
171 "virtual address space is %s.\n"),
172 value);
173 else
174 fputs_filtered (_("Disabling randomization of debuggee's "
175 "virtual address space is unsupported on\n"
176 "this platform.\n"), file);
177}
178
179static void
180set_disable_randomization (char *args, int from_tty,
181 struct cmd_list_element *c)
182{
183 if (!target_supports_disable_randomization ())
184 error (_("Disabling randomization of debuggee's "
185 "virtual address space is unsupported on\n"
186 "this platform."));
187}
188
d32dc48e
PA
189/* User interface for non-stop mode. */
190
191int non_stop = 0;
192static int non_stop_1 = 0;
193
194static void
195set_non_stop (char *args, int from_tty,
196 struct cmd_list_element *c)
197{
198 if (target_has_execution)
199 {
200 non_stop_1 = non_stop;
201 error (_("Cannot change this setting while the inferior is running."));
202 }
203
204 non_stop = non_stop_1;
205}
206
207static void
208show_non_stop (struct ui_file *file, int from_tty,
209 struct cmd_list_element *c, const char *value)
210{
211 fprintf_filtered (file,
212 _("Controlling the inferior in non-stop mode is %s.\n"),
213 value);
214}
215
d914c394
SS
216/* "Observer mode" is somewhat like a more extreme version of
217 non-stop, in which all GDB operations that might affect the
218 target's execution have been disabled. */
219
d914c394
SS
220int observer_mode = 0;
221static int observer_mode_1 = 0;
222
223static void
224set_observer_mode (char *args, int from_tty,
225 struct cmd_list_element *c)
226{
d914c394
SS
227 if (target_has_execution)
228 {
229 observer_mode_1 = observer_mode;
230 error (_("Cannot change this setting while the inferior is running."));
231 }
232
233 observer_mode = observer_mode_1;
234
235 may_write_registers = !observer_mode;
236 may_write_memory = !observer_mode;
237 may_insert_breakpoints = !observer_mode;
238 may_insert_tracepoints = !observer_mode;
239 /* We can insert fast tracepoints in or out of observer mode,
240 but enable them if we're going into this mode. */
241 if (observer_mode)
242 may_insert_fast_tracepoints = 1;
243 may_stop = !observer_mode;
244 update_target_permissions ();
245
246 /* Going *into* observer mode we must force non-stop, then
247 going out we leave it that way. */
248 if (observer_mode)
249 {
250 target_async_permitted = 1;
251 pagination_enabled = 0;
252 non_stop = non_stop_1 = 1;
253 }
254
255 if (from_tty)
256 printf_filtered (_("Observer mode is now %s.\n"),
257 (observer_mode ? "on" : "off"));
258}
259
260static void
261show_observer_mode (struct ui_file *file, int from_tty,
262 struct cmd_list_element *c, const char *value)
263{
264 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
265}
266
267/* This updates the value of observer mode based on changes in
268 permissions. Note that we are deliberately ignoring the values of
269 may-write-registers and may-write-memory, since the user may have
270 reason to enable these during a session, for instance to turn on a
271 debugging-related global. */
272
273void
274update_observer_mode (void)
275{
276 int newval;
277
278 newval = (!may_insert_breakpoints
279 && !may_insert_tracepoints
280 && may_insert_fast_tracepoints
281 && !may_stop
282 && non_stop);
283
284 /* Let the user know if things change. */
285 if (newval != observer_mode)
286 printf_filtered (_("Observer mode is now %s.\n"),
287 (newval ? "on" : "off"));
288
289 observer_mode = observer_mode_1 = newval;
290}
c2c6d25f 291
c906108c
SS
292/* Tables of how to react to signals; the user sets them. */
293
294static unsigned char *signal_stop;
295static unsigned char *signal_print;
296static unsigned char *signal_program;
297
ab04a2af
TT
298/* Table of signals that are registered with "catch signal". A
299 non-zero entry indicates that the signal is caught by some "catch
300 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
301 signals. */
302static unsigned char *signal_catch;
303
2455069d
UW
304/* Table of signals that the target may silently handle.
305 This is automatically determined from the flags above,
306 and simply cached here. */
307static unsigned char *signal_pass;
308
c906108c
SS
309#define SET_SIGS(nsigs,sigs,flags) \
310 do { \
311 int signum = (nsigs); \
312 while (signum-- > 0) \
313 if ((sigs)[signum]) \
314 (flags)[signum] = 1; \
315 } while (0)
316
317#define UNSET_SIGS(nsigs,sigs,flags) \
318 do { \
319 int signum = (nsigs); \
320 while (signum-- > 0) \
321 if ((sigs)[signum]) \
322 (flags)[signum] = 0; \
323 } while (0)
324
9b224c5e
PA
325/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
326 this function is to avoid exporting `signal_program'. */
327
328void
329update_signals_program_target (void)
330{
a493e3e2 331 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
332}
333
1777feb0 334/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 335
edb3359d 336#define RESUME_ALL minus_one_ptid
c906108c
SS
337
338/* Command list pointer for the "stop" placeholder. */
339
340static struct cmd_list_element *stop_command;
341
c906108c
SS
342/* Function inferior was in as of last step command. */
343
344static struct symbol *step_start_function;
345
c906108c
SS
346/* Nonzero if we want to give control to the user when we're notified
347 of shared library events by the dynamic linker. */
628fe4e4 348int stop_on_solib_events;
f9e14852
GB
349
350/* Enable or disable optional shared library event breakpoints
351 as appropriate when the above flag is changed. */
352
353static void
354set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
355{
356 update_solib_breakpoints ();
357}
358
920d2a44
AC
359static void
360show_stop_on_solib_events (struct ui_file *file, int from_tty,
361 struct cmd_list_element *c, const char *value)
362{
363 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
364 value);
365}
c906108c 366
c906108c
SS
367/* Nonzero means expecting a trace trap
368 and should stop the inferior and return silently when it happens. */
369
370int stop_after_trap;
371
642fd101
DE
372/* Save register contents here when executing a "finish" command or are
373 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
374 Thus this contains the return value from the called function (assuming
375 values are returned in a register). */
376
72cec141 377struct regcache *stop_registers;
c906108c 378
c906108c
SS
379/* Nonzero after stop if current stack frame should be printed. */
380
381static int stop_print_frame;
382
e02bc4cc 383/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
384 returned by target_wait()/deprecated_target_wait_hook(). This
385 information is returned by get_last_target_status(). */
39f77062 386static ptid_t target_last_wait_ptid;
e02bc4cc
DS
387static struct target_waitstatus target_last_waitstatus;
388
0d1e5fa7
PA
389static void context_switch (ptid_t ptid);
390
4e1c45ea 391void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 392
7a76f5b8 393static void init_infwait_state (void);
a474d7c2 394
53904c9e
AC
395static const char follow_fork_mode_child[] = "child";
396static const char follow_fork_mode_parent[] = "parent";
397
40478521 398static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
399 follow_fork_mode_child,
400 follow_fork_mode_parent,
401 NULL
ef346e04 402};
c906108c 403
53904c9e 404static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
405static void
406show_follow_fork_mode_string (struct ui_file *file, int from_tty,
407 struct cmd_list_element *c, const char *value)
408{
3e43a32a
MS
409 fprintf_filtered (file,
410 _("Debugger response to a program "
411 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
412 value);
413}
c906108c
SS
414\f
415
e58b0e63
PA
416/* Tell the target to follow the fork we're stopped at. Returns true
417 if the inferior should be resumed; false, if the target for some
418 reason decided it's best not to resume. */
419
6604731b 420static int
4ef3f3be 421follow_fork (void)
c906108c 422{
ea1dd7bc 423 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
424 int should_resume = 1;
425 struct thread_info *tp;
426
427 /* Copy user stepping state to the new inferior thread. FIXME: the
428 followed fork child thread should have a copy of most of the
4e3990f4
DE
429 parent thread structure's run control related fields, not just these.
430 Initialized to avoid "may be used uninitialized" warnings from gcc. */
431 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 432 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
433 CORE_ADDR step_range_start = 0;
434 CORE_ADDR step_range_end = 0;
435 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
436
437 if (!non_stop)
438 {
439 ptid_t wait_ptid;
440 struct target_waitstatus wait_status;
441
442 /* Get the last target status returned by target_wait(). */
443 get_last_target_status (&wait_ptid, &wait_status);
444
445 /* If not stopped at a fork event, then there's nothing else to
446 do. */
447 if (wait_status.kind != TARGET_WAITKIND_FORKED
448 && wait_status.kind != TARGET_WAITKIND_VFORKED)
449 return 1;
450
451 /* Check if we switched over from WAIT_PTID, since the event was
452 reported. */
453 if (!ptid_equal (wait_ptid, minus_one_ptid)
454 && !ptid_equal (inferior_ptid, wait_ptid))
455 {
456 /* We did. Switch back to WAIT_PTID thread, to tell the
457 target to follow it (in either direction). We'll
458 afterwards refuse to resume, and inform the user what
459 happened. */
460 switch_to_thread (wait_ptid);
461 should_resume = 0;
462 }
463 }
464
465 tp = inferior_thread ();
466
467 /* If there were any forks/vforks that were caught and are now to be
468 followed, then do so now. */
469 switch (tp->pending_follow.kind)
470 {
471 case TARGET_WAITKIND_FORKED:
472 case TARGET_WAITKIND_VFORKED:
473 {
474 ptid_t parent, child;
475
476 /* If the user did a next/step, etc, over a fork call,
477 preserve the stepping state in the fork child. */
478 if (follow_child && should_resume)
479 {
8358c15c
JK
480 step_resume_breakpoint = clone_momentary_breakpoint
481 (tp->control.step_resume_breakpoint);
16c381f0
JK
482 step_range_start = tp->control.step_range_start;
483 step_range_end = tp->control.step_range_end;
484 step_frame_id = tp->control.step_frame_id;
186c406b
TT
485 exception_resume_breakpoint
486 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
e58b0e63
PA
487
488 /* For now, delete the parent's sr breakpoint, otherwise,
489 parent/child sr breakpoints are considered duplicates,
490 and the child version will not be installed. Remove
491 this when the breakpoints module becomes aware of
492 inferiors and address spaces. */
493 delete_step_resume_breakpoint (tp);
16c381f0
JK
494 tp->control.step_range_start = 0;
495 tp->control.step_range_end = 0;
496 tp->control.step_frame_id = null_frame_id;
186c406b 497 delete_exception_resume_breakpoint (tp);
e58b0e63
PA
498 }
499
500 parent = inferior_ptid;
501 child = tp->pending_follow.value.related_pid;
502
503 /* Tell the target to do whatever is necessary to follow
504 either parent or child. */
07107ca6 505 if (target_follow_fork (follow_child, detach_fork))
e58b0e63
PA
506 {
507 /* Target refused to follow, or there's some other reason
508 we shouldn't resume. */
509 should_resume = 0;
510 }
511 else
512 {
513 /* This pending follow fork event is now handled, one way
514 or another. The previous selected thread may be gone
515 from the lists by now, but if it is still around, need
516 to clear the pending follow request. */
e09875d4 517 tp = find_thread_ptid (parent);
e58b0e63
PA
518 if (tp)
519 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
520
521 /* This makes sure we don't try to apply the "Switched
522 over from WAIT_PID" logic above. */
523 nullify_last_target_wait_ptid ();
524
1777feb0 525 /* If we followed the child, switch to it... */
e58b0e63
PA
526 if (follow_child)
527 {
528 switch_to_thread (child);
529
530 /* ... and preserve the stepping state, in case the
531 user was stepping over the fork call. */
532 if (should_resume)
533 {
534 tp = inferior_thread ();
8358c15c
JK
535 tp->control.step_resume_breakpoint
536 = step_resume_breakpoint;
16c381f0
JK
537 tp->control.step_range_start = step_range_start;
538 tp->control.step_range_end = step_range_end;
539 tp->control.step_frame_id = step_frame_id;
186c406b
TT
540 tp->control.exception_resume_breakpoint
541 = exception_resume_breakpoint;
e58b0e63
PA
542 }
543 else
544 {
545 /* If we get here, it was because we're trying to
546 resume from a fork catchpoint, but, the user
547 has switched threads away from the thread that
548 forked. In that case, the resume command
549 issued is most likely not applicable to the
550 child, so just warn, and refuse to resume. */
3e43a32a
MS
551 warning (_("Not resuming: switched threads "
552 "before following fork child.\n"));
e58b0e63
PA
553 }
554
555 /* Reset breakpoints in the child as appropriate. */
556 follow_inferior_reset_breakpoints ();
557 }
558 else
559 switch_to_thread (parent);
560 }
561 }
562 break;
563 case TARGET_WAITKIND_SPURIOUS:
564 /* Nothing to follow. */
565 break;
566 default:
567 internal_error (__FILE__, __LINE__,
568 "Unexpected pending_follow.kind %d\n",
569 tp->pending_follow.kind);
570 break;
571 }
c906108c 572
e58b0e63 573 return should_resume;
c906108c
SS
574}
575
6604731b
DJ
576void
577follow_inferior_reset_breakpoints (void)
c906108c 578{
4e1c45ea
PA
579 struct thread_info *tp = inferior_thread ();
580
6604731b
DJ
581 /* Was there a step_resume breakpoint? (There was if the user
582 did a "next" at the fork() call.) If so, explicitly reset its
583 thread number.
584
585 step_resumes are a form of bp that are made to be per-thread.
586 Since we created the step_resume bp when the parent process
587 was being debugged, and now are switching to the child process,
588 from the breakpoint package's viewpoint, that's a switch of
589 "threads". We must update the bp's notion of which thread
590 it is for, or it'll be ignored when it triggers. */
591
8358c15c
JK
592 if (tp->control.step_resume_breakpoint)
593 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
6604731b 594
186c406b
TT
595 if (tp->control.exception_resume_breakpoint)
596 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
597
6604731b
DJ
598 /* Reinsert all breakpoints in the child. The user may have set
599 breakpoints after catching the fork, in which case those
600 were never set in the child, but only in the parent. This makes
601 sure the inserted breakpoints match the breakpoint list. */
602
603 breakpoint_re_set ();
604 insert_breakpoints ();
c906108c 605}
c906108c 606
6c95b8df
PA
607/* The child has exited or execed: resume threads of the parent the
608 user wanted to be executing. */
609
610static int
611proceed_after_vfork_done (struct thread_info *thread,
612 void *arg)
613{
614 int pid = * (int *) arg;
615
616 if (ptid_get_pid (thread->ptid) == pid
617 && is_running (thread->ptid)
618 && !is_executing (thread->ptid)
619 && !thread->stop_requested
a493e3e2 620 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
621 {
622 if (debug_infrun)
623 fprintf_unfiltered (gdb_stdlog,
624 "infrun: resuming vfork parent thread %s\n",
625 target_pid_to_str (thread->ptid));
626
627 switch_to_thread (thread->ptid);
628 clear_proceed_status ();
a493e3e2 629 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
6c95b8df
PA
630 }
631
632 return 0;
633}
634
635/* Called whenever we notice an exec or exit event, to handle
636 detaching or resuming a vfork parent. */
637
638static void
639handle_vfork_child_exec_or_exit (int exec)
640{
641 struct inferior *inf = current_inferior ();
642
643 if (inf->vfork_parent)
644 {
645 int resume_parent = -1;
646
647 /* This exec or exit marks the end of the shared memory region
648 between the parent and the child. If the user wanted to
649 detach from the parent, now is the time. */
650
651 if (inf->vfork_parent->pending_detach)
652 {
653 struct thread_info *tp;
654 struct cleanup *old_chain;
655 struct program_space *pspace;
656 struct address_space *aspace;
657
1777feb0 658 /* follow-fork child, detach-on-fork on. */
6c95b8df 659
68c9da30
PA
660 inf->vfork_parent->pending_detach = 0;
661
f50f4e56
PA
662 if (!exec)
663 {
664 /* If we're handling a child exit, then inferior_ptid
665 points at the inferior's pid, not to a thread. */
666 old_chain = save_inferior_ptid ();
667 save_current_program_space ();
668 save_current_inferior ();
669 }
670 else
671 old_chain = save_current_space_and_thread ();
6c95b8df
PA
672
673 /* We're letting loose of the parent. */
674 tp = any_live_thread_of_process (inf->vfork_parent->pid);
675 switch_to_thread (tp->ptid);
676
677 /* We're about to detach from the parent, which implicitly
678 removes breakpoints from its address space. There's a
679 catch here: we want to reuse the spaces for the child,
680 but, parent/child are still sharing the pspace at this
681 point, although the exec in reality makes the kernel give
682 the child a fresh set of new pages. The problem here is
683 that the breakpoints module being unaware of this, would
684 likely chose the child process to write to the parent
685 address space. Swapping the child temporarily away from
686 the spaces has the desired effect. Yes, this is "sort
687 of" a hack. */
688
689 pspace = inf->pspace;
690 aspace = inf->aspace;
691 inf->aspace = NULL;
692 inf->pspace = NULL;
693
694 if (debug_infrun || info_verbose)
695 {
696 target_terminal_ours ();
697
698 if (exec)
699 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
700 "Detaching vfork parent process "
701 "%d after child exec.\n",
6c95b8df
PA
702 inf->vfork_parent->pid);
703 else
704 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
705 "Detaching vfork parent process "
706 "%d after child exit.\n",
6c95b8df
PA
707 inf->vfork_parent->pid);
708 }
709
710 target_detach (NULL, 0);
711
712 /* Put it back. */
713 inf->pspace = pspace;
714 inf->aspace = aspace;
715
716 do_cleanups (old_chain);
717 }
718 else if (exec)
719 {
720 /* We're staying attached to the parent, so, really give the
721 child a new address space. */
722 inf->pspace = add_program_space (maybe_new_address_space ());
723 inf->aspace = inf->pspace->aspace;
724 inf->removable = 1;
725 set_current_program_space (inf->pspace);
726
727 resume_parent = inf->vfork_parent->pid;
728
729 /* Break the bonds. */
730 inf->vfork_parent->vfork_child = NULL;
731 }
732 else
733 {
734 struct cleanup *old_chain;
735 struct program_space *pspace;
736
737 /* If this is a vfork child exiting, then the pspace and
738 aspaces were shared with the parent. Since we're
739 reporting the process exit, we'll be mourning all that is
740 found in the address space, and switching to null_ptid,
741 preparing to start a new inferior. But, since we don't
742 want to clobber the parent's address/program spaces, we
743 go ahead and create a new one for this exiting
744 inferior. */
745
746 /* Switch to null_ptid, so that clone_program_space doesn't want
747 to read the selected frame of a dead process. */
748 old_chain = save_inferior_ptid ();
749 inferior_ptid = null_ptid;
750
751 /* This inferior is dead, so avoid giving the breakpoints
752 module the option to write through to it (cloning a
753 program space resets breakpoints). */
754 inf->aspace = NULL;
755 inf->pspace = NULL;
756 pspace = add_program_space (maybe_new_address_space ());
757 set_current_program_space (pspace);
758 inf->removable = 1;
7dcd53a0 759 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
760 clone_program_space (pspace, inf->vfork_parent->pspace);
761 inf->pspace = pspace;
762 inf->aspace = pspace->aspace;
763
764 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 765 inferior. */
6c95b8df
PA
766 do_cleanups (old_chain);
767
768 resume_parent = inf->vfork_parent->pid;
769 /* Break the bonds. */
770 inf->vfork_parent->vfork_child = NULL;
771 }
772
773 inf->vfork_parent = NULL;
774
775 gdb_assert (current_program_space == inf->pspace);
776
777 if (non_stop && resume_parent != -1)
778 {
779 /* If the user wanted the parent to be running, let it go
780 free now. */
781 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
782
783 if (debug_infrun)
3e43a32a
MS
784 fprintf_unfiltered (gdb_stdlog,
785 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
786 resume_parent);
787
788 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
789
790 do_cleanups (old_chain);
791 }
792 }
793}
794
eb6c553b 795/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
796
797static const char follow_exec_mode_new[] = "new";
798static const char follow_exec_mode_same[] = "same";
40478521 799static const char *const follow_exec_mode_names[] =
6c95b8df
PA
800{
801 follow_exec_mode_new,
802 follow_exec_mode_same,
803 NULL,
804};
805
806static const char *follow_exec_mode_string = follow_exec_mode_same;
807static void
808show_follow_exec_mode_string (struct ui_file *file, int from_tty,
809 struct cmd_list_element *c, const char *value)
810{
811 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
812}
813
1777feb0 814/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 815
c906108c 816static void
3a3e9ee3 817follow_exec (ptid_t pid, char *execd_pathname)
c906108c 818{
4e1c45ea 819 struct thread_info *th = inferior_thread ();
6c95b8df 820 struct inferior *inf = current_inferior ();
7a292a7a 821
c906108c
SS
822 /* This is an exec event that we actually wish to pay attention to.
823 Refresh our symbol table to the newly exec'd program, remove any
824 momentary bp's, etc.
825
826 If there are breakpoints, they aren't really inserted now,
827 since the exec() transformed our inferior into a fresh set
828 of instructions.
829
830 We want to preserve symbolic breakpoints on the list, since
831 we have hopes that they can be reset after the new a.out's
832 symbol table is read.
833
834 However, any "raw" breakpoints must be removed from the list
835 (e.g., the solib bp's), since their address is probably invalid
836 now.
837
838 And, we DON'T want to call delete_breakpoints() here, since
839 that may write the bp's "shadow contents" (the instruction
840 value that was overwritten witha TRAP instruction). Since
1777feb0 841 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
842
843 mark_breakpoints_out ();
844
c906108c
SS
845 update_breakpoints_after_exec ();
846
847 /* If there was one, it's gone now. We cannot truly step-to-next
1777feb0 848 statement through an exec(). */
8358c15c 849 th->control.step_resume_breakpoint = NULL;
186c406b 850 th->control.exception_resume_breakpoint = NULL;
16c381f0
JK
851 th->control.step_range_start = 0;
852 th->control.step_range_end = 0;
c906108c 853
a75724bc
PA
854 /* The target reports the exec event to the main thread, even if
855 some other thread does the exec, and even if the main thread was
856 already stopped --- if debugging in non-stop mode, it's possible
857 the user had the main thread held stopped in the previous image
858 --- release it now. This is the same behavior as step-over-exec
859 with scheduler-locking on in all-stop mode. */
860 th->stop_requested = 0;
861
1777feb0 862 /* What is this a.out's name? */
6c95b8df
PA
863 printf_unfiltered (_("%s is executing new program: %s\n"),
864 target_pid_to_str (inferior_ptid),
865 execd_pathname);
c906108c
SS
866
867 /* We've followed the inferior through an exec. Therefore, the
1777feb0 868 inferior has essentially been killed & reborn. */
7a292a7a 869
c906108c 870 gdb_flush (gdb_stdout);
6ca15a4b
PA
871
872 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
873
874 if (gdb_sysroot && *gdb_sysroot)
875 {
876 char *name = alloca (strlen (gdb_sysroot)
877 + strlen (execd_pathname)
878 + 1);
abbb1732 879
e85a822c
DJ
880 strcpy (name, gdb_sysroot);
881 strcat (name, execd_pathname);
882 execd_pathname = name;
883 }
c906108c 884
cce9b6bf
PA
885 /* Reset the shared library package. This ensures that we get a
886 shlib event when the child reaches "_start", at which point the
887 dld will have had a chance to initialize the child. */
888 /* Also, loading a symbol file below may trigger symbol lookups, and
889 we don't want those to be satisfied by the libraries of the
890 previous incarnation of this process. */
891 no_shared_libraries (NULL, 0);
892
6c95b8df
PA
893 if (follow_exec_mode_string == follow_exec_mode_new)
894 {
895 struct program_space *pspace;
6c95b8df
PA
896
897 /* The user wants to keep the old inferior and program spaces
898 around. Create a new fresh one, and switch to it. */
899
900 inf = add_inferior (current_inferior ()->pid);
901 pspace = add_program_space (maybe_new_address_space ());
902 inf->pspace = pspace;
903 inf->aspace = pspace->aspace;
904
905 exit_inferior_num_silent (current_inferior ()->num);
906
907 set_current_inferior (inf);
908 set_current_program_space (pspace);
909 }
9107fc8d
PA
910 else
911 {
912 /* The old description may no longer be fit for the new image.
913 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
914 old description; we'll read a new one below. No need to do
915 this on "follow-exec-mode new", as the old inferior stays
916 around (its description is later cleared/refetched on
917 restart). */
918 target_clear_description ();
919 }
6c95b8df
PA
920
921 gdb_assert (current_program_space == inf->pspace);
922
1777feb0 923 /* That a.out is now the one to use. */
6c95b8df
PA
924 exec_file_attach (execd_pathname, 0);
925
c1e56572
JK
926 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
927 (Position Independent Executable) main symbol file will get applied by
928 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
929 the breakpoints with the zero displacement. */
930
7dcd53a0
TT
931 symbol_file_add (execd_pathname,
932 (inf->symfile_flags
933 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
934 NULL, 0);
935
7dcd53a0
TT
936 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
937 set_initial_language ();
c906108c 938
9107fc8d
PA
939 /* If the target can specify a description, read it. Must do this
940 after flipping to the new executable (because the target supplied
941 description must be compatible with the executable's
942 architecture, and the old executable may e.g., be 32-bit, while
943 the new one 64-bit), and before anything involving memory or
944 registers. */
945 target_find_description ();
946
268a4a75 947 solib_create_inferior_hook (0);
c906108c 948
4efc6507
DE
949 jit_inferior_created_hook ();
950
c1e56572
JK
951 breakpoint_re_set ();
952
c906108c
SS
953 /* Reinsert all breakpoints. (Those which were symbolic have
954 been reset to the proper address in the new a.out, thanks
1777feb0 955 to symbol_file_command...). */
c906108c
SS
956 insert_breakpoints ();
957
958 /* The next resume of this inferior should bring it to the shlib
959 startup breakpoints. (If the user had also set bp's on
960 "main" from the old (parent) process, then they'll auto-
1777feb0 961 matically get reset there in the new process.). */
c906108c
SS
962}
963
964/* Non-zero if we just simulating a single-step. This is needed
965 because we cannot remove the breakpoints in the inferior process
966 until after the `wait' in `wait_for_inferior'. */
967static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
968
969/* The thread we inserted single-step breakpoints for. */
970static ptid_t singlestep_ptid;
971
fd48f117
DJ
972/* PC when we started this single-step. */
973static CORE_ADDR singlestep_pc;
974
9f976b41
DJ
975/* If another thread hit the singlestep breakpoint, we save the original
976 thread here so that we can resume single-stepping it later. */
977static ptid_t saved_singlestep_ptid;
978static int stepping_past_singlestep_breakpoint;
6a6b96b9 979
c906108c 980\f
237fc4c9
PA
981/* Displaced stepping. */
982
983/* In non-stop debugging mode, we must take special care to manage
984 breakpoints properly; in particular, the traditional strategy for
985 stepping a thread past a breakpoint it has hit is unsuitable.
986 'Displaced stepping' is a tactic for stepping one thread past a
987 breakpoint it has hit while ensuring that other threads running
988 concurrently will hit the breakpoint as they should.
989
990 The traditional way to step a thread T off a breakpoint in a
991 multi-threaded program in all-stop mode is as follows:
992
993 a0) Initially, all threads are stopped, and breakpoints are not
994 inserted.
995 a1) We single-step T, leaving breakpoints uninserted.
996 a2) We insert breakpoints, and resume all threads.
997
998 In non-stop debugging, however, this strategy is unsuitable: we
999 don't want to have to stop all threads in the system in order to
1000 continue or step T past a breakpoint. Instead, we use displaced
1001 stepping:
1002
1003 n0) Initially, T is stopped, other threads are running, and
1004 breakpoints are inserted.
1005 n1) We copy the instruction "under" the breakpoint to a separate
1006 location, outside the main code stream, making any adjustments
1007 to the instruction, register, and memory state as directed by
1008 T's architecture.
1009 n2) We single-step T over the instruction at its new location.
1010 n3) We adjust the resulting register and memory state as directed
1011 by T's architecture. This includes resetting T's PC to point
1012 back into the main instruction stream.
1013 n4) We resume T.
1014
1015 This approach depends on the following gdbarch methods:
1016
1017 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1018 indicate where to copy the instruction, and how much space must
1019 be reserved there. We use these in step n1.
1020
1021 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1022 address, and makes any necessary adjustments to the instruction,
1023 register contents, and memory. We use this in step n1.
1024
1025 - gdbarch_displaced_step_fixup adjusts registers and memory after
1026 we have successfuly single-stepped the instruction, to yield the
1027 same effect the instruction would have had if we had executed it
1028 at its original address. We use this in step n3.
1029
1030 - gdbarch_displaced_step_free_closure provides cleanup.
1031
1032 The gdbarch_displaced_step_copy_insn and
1033 gdbarch_displaced_step_fixup functions must be written so that
1034 copying an instruction with gdbarch_displaced_step_copy_insn,
1035 single-stepping across the copied instruction, and then applying
1036 gdbarch_displaced_insn_fixup should have the same effects on the
1037 thread's memory and registers as stepping the instruction in place
1038 would have. Exactly which responsibilities fall to the copy and
1039 which fall to the fixup is up to the author of those functions.
1040
1041 See the comments in gdbarch.sh for details.
1042
1043 Note that displaced stepping and software single-step cannot
1044 currently be used in combination, although with some care I think
1045 they could be made to. Software single-step works by placing
1046 breakpoints on all possible subsequent instructions; if the
1047 displaced instruction is a PC-relative jump, those breakpoints
1048 could fall in very strange places --- on pages that aren't
1049 executable, or at addresses that are not proper instruction
1050 boundaries. (We do generally let other threads run while we wait
1051 to hit the software single-step breakpoint, and they might
1052 encounter such a corrupted instruction.) One way to work around
1053 this would be to have gdbarch_displaced_step_copy_insn fully
1054 simulate the effect of PC-relative instructions (and return NULL)
1055 on architectures that use software single-stepping.
1056
1057 In non-stop mode, we can have independent and simultaneous step
1058 requests, so more than one thread may need to simultaneously step
1059 over a breakpoint. The current implementation assumes there is
1060 only one scratch space per process. In this case, we have to
1061 serialize access to the scratch space. If thread A wants to step
1062 over a breakpoint, but we are currently waiting for some other
1063 thread to complete a displaced step, we leave thread A stopped and
1064 place it in the displaced_step_request_queue. Whenever a displaced
1065 step finishes, we pick the next thread in the queue and start a new
1066 displaced step operation on it. See displaced_step_prepare and
1067 displaced_step_fixup for details. */
1068
237fc4c9
PA
1069struct displaced_step_request
1070{
1071 ptid_t ptid;
1072 struct displaced_step_request *next;
1073};
1074
fc1cf338
PA
1075/* Per-inferior displaced stepping state. */
1076struct displaced_step_inferior_state
1077{
1078 /* Pointer to next in linked list. */
1079 struct displaced_step_inferior_state *next;
1080
1081 /* The process this displaced step state refers to. */
1082 int pid;
1083
1084 /* A queue of pending displaced stepping requests. One entry per
1085 thread that needs to do a displaced step. */
1086 struct displaced_step_request *step_request_queue;
1087
1088 /* If this is not null_ptid, this is the thread carrying out a
1089 displaced single-step in process PID. This thread's state will
1090 require fixing up once it has completed its step. */
1091 ptid_t step_ptid;
1092
1093 /* The architecture the thread had when we stepped it. */
1094 struct gdbarch *step_gdbarch;
1095
1096 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1097 for post-step cleanup. */
1098 struct displaced_step_closure *step_closure;
1099
1100 /* The address of the original instruction, and the copy we
1101 made. */
1102 CORE_ADDR step_original, step_copy;
1103
1104 /* Saved contents of copy area. */
1105 gdb_byte *step_saved_copy;
1106};
1107
1108/* The list of states of processes involved in displaced stepping
1109 presently. */
1110static struct displaced_step_inferior_state *displaced_step_inferior_states;
1111
1112/* Get the displaced stepping state of process PID. */
1113
1114static struct displaced_step_inferior_state *
1115get_displaced_stepping_state (int pid)
1116{
1117 struct displaced_step_inferior_state *state;
1118
1119 for (state = displaced_step_inferior_states;
1120 state != NULL;
1121 state = state->next)
1122 if (state->pid == pid)
1123 return state;
1124
1125 return NULL;
1126}
1127
1128/* Add a new displaced stepping state for process PID to the displaced
1129 stepping state list, or return a pointer to an already existing
1130 entry, if it already exists. Never returns NULL. */
1131
1132static struct displaced_step_inferior_state *
1133add_displaced_stepping_state (int pid)
1134{
1135 struct displaced_step_inferior_state *state;
1136
1137 for (state = displaced_step_inferior_states;
1138 state != NULL;
1139 state = state->next)
1140 if (state->pid == pid)
1141 return state;
237fc4c9 1142
fc1cf338
PA
1143 state = xcalloc (1, sizeof (*state));
1144 state->pid = pid;
1145 state->next = displaced_step_inferior_states;
1146 displaced_step_inferior_states = state;
237fc4c9 1147
fc1cf338
PA
1148 return state;
1149}
1150
a42244db
YQ
1151/* If inferior is in displaced stepping, and ADDR equals to starting address
1152 of copy area, return corresponding displaced_step_closure. Otherwise,
1153 return NULL. */
1154
1155struct displaced_step_closure*
1156get_displaced_step_closure_by_addr (CORE_ADDR addr)
1157{
1158 struct displaced_step_inferior_state *displaced
1159 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1160
1161 /* If checking the mode of displaced instruction in copy area. */
1162 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1163 && (displaced->step_copy == addr))
1164 return displaced->step_closure;
1165
1166 return NULL;
1167}
1168
fc1cf338 1169/* Remove the displaced stepping state of process PID. */
237fc4c9 1170
fc1cf338
PA
1171static void
1172remove_displaced_stepping_state (int pid)
1173{
1174 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1175
fc1cf338
PA
1176 gdb_assert (pid != 0);
1177
1178 it = displaced_step_inferior_states;
1179 prev_next_p = &displaced_step_inferior_states;
1180 while (it)
1181 {
1182 if (it->pid == pid)
1183 {
1184 *prev_next_p = it->next;
1185 xfree (it);
1186 return;
1187 }
1188
1189 prev_next_p = &it->next;
1190 it = *prev_next_p;
1191 }
1192}
1193
1194static void
1195infrun_inferior_exit (struct inferior *inf)
1196{
1197 remove_displaced_stepping_state (inf->pid);
1198}
237fc4c9 1199
fff08868
HZ
1200/* If ON, and the architecture supports it, GDB will use displaced
1201 stepping to step over breakpoints. If OFF, or if the architecture
1202 doesn't support it, GDB will instead use the traditional
1203 hold-and-step approach. If AUTO (which is the default), GDB will
1204 decide which technique to use to step over breakpoints depending on
1205 which of all-stop or non-stop mode is active --- displaced stepping
1206 in non-stop mode; hold-and-step in all-stop mode. */
1207
72d0e2c5 1208static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1209
237fc4c9
PA
1210static void
1211show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1212 struct cmd_list_element *c,
1213 const char *value)
1214{
72d0e2c5 1215 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1216 fprintf_filtered (file,
1217 _("Debugger's willingness to use displaced stepping "
1218 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1219 value, non_stop ? "on" : "off");
1220 else
3e43a32a
MS
1221 fprintf_filtered (file,
1222 _("Debugger's willingness to use displaced stepping "
1223 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1224}
1225
fff08868
HZ
1226/* Return non-zero if displaced stepping can/should be used to step
1227 over breakpoints. */
1228
237fc4c9
PA
1229static int
1230use_displaced_stepping (struct gdbarch *gdbarch)
1231{
72d0e2c5
YQ
1232 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1233 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1234 && gdbarch_displaced_step_copy_insn_p (gdbarch)
8213266a 1235 && find_record_target () == NULL);
237fc4c9
PA
1236}
1237
1238/* Clean out any stray displaced stepping state. */
1239static void
fc1cf338 1240displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1241{
1242 /* Indicate that there is no cleanup pending. */
fc1cf338 1243 displaced->step_ptid = null_ptid;
237fc4c9 1244
fc1cf338 1245 if (displaced->step_closure)
237fc4c9 1246 {
fc1cf338
PA
1247 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1248 displaced->step_closure);
1249 displaced->step_closure = NULL;
237fc4c9
PA
1250 }
1251}
1252
1253static void
fc1cf338 1254displaced_step_clear_cleanup (void *arg)
237fc4c9 1255{
fc1cf338
PA
1256 struct displaced_step_inferior_state *state = arg;
1257
1258 displaced_step_clear (state);
237fc4c9
PA
1259}
1260
1261/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1262void
1263displaced_step_dump_bytes (struct ui_file *file,
1264 const gdb_byte *buf,
1265 size_t len)
1266{
1267 int i;
1268
1269 for (i = 0; i < len; i++)
1270 fprintf_unfiltered (file, "%02x ", buf[i]);
1271 fputs_unfiltered ("\n", file);
1272}
1273
1274/* Prepare to single-step, using displaced stepping.
1275
1276 Note that we cannot use displaced stepping when we have a signal to
1277 deliver. If we have a signal to deliver and an instruction to step
1278 over, then after the step, there will be no indication from the
1279 target whether the thread entered a signal handler or ignored the
1280 signal and stepped over the instruction successfully --- both cases
1281 result in a simple SIGTRAP. In the first case we mustn't do a
1282 fixup, and in the second case we must --- but we can't tell which.
1283 Comments in the code for 'random signals' in handle_inferior_event
1284 explain how we handle this case instead.
1285
1286 Returns 1 if preparing was successful -- this thread is going to be
1287 stepped now; or 0 if displaced stepping this thread got queued. */
1288static int
1289displaced_step_prepare (ptid_t ptid)
1290{
ad53cd71 1291 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1292 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1293 struct regcache *regcache = get_thread_regcache (ptid);
1294 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1295 CORE_ADDR original, copy;
1296 ULONGEST len;
1297 struct displaced_step_closure *closure;
fc1cf338 1298 struct displaced_step_inferior_state *displaced;
9e529e1d 1299 int status;
237fc4c9
PA
1300
1301 /* We should never reach this function if the architecture does not
1302 support displaced stepping. */
1303 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1304
c1e36e3e
PA
1305 /* Disable range stepping while executing in the scratch pad. We
1306 want a single-step even if executing the displaced instruction in
1307 the scratch buffer lands within the stepping range (e.g., a
1308 jump/branch). */
1309 tp->control.may_range_step = 0;
1310
fc1cf338
PA
1311 /* We have to displaced step one thread at a time, as we only have
1312 access to a single scratch space per inferior. */
237fc4c9 1313
fc1cf338
PA
1314 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1315
1316 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1317 {
1318 /* Already waiting for a displaced step to finish. Defer this
1319 request and place in queue. */
1320 struct displaced_step_request *req, *new_req;
1321
1322 if (debug_displaced)
1323 fprintf_unfiltered (gdb_stdlog,
1324 "displaced: defering step of %s\n",
1325 target_pid_to_str (ptid));
1326
1327 new_req = xmalloc (sizeof (*new_req));
1328 new_req->ptid = ptid;
1329 new_req->next = NULL;
1330
fc1cf338 1331 if (displaced->step_request_queue)
237fc4c9 1332 {
fc1cf338 1333 for (req = displaced->step_request_queue;
237fc4c9
PA
1334 req && req->next;
1335 req = req->next)
1336 ;
1337 req->next = new_req;
1338 }
1339 else
fc1cf338 1340 displaced->step_request_queue = new_req;
237fc4c9
PA
1341
1342 return 0;
1343 }
1344 else
1345 {
1346 if (debug_displaced)
1347 fprintf_unfiltered (gdb_stdlog,
1348 "displaced: stepping %s now\n",
1349 target_pid_to_str (ptid));
1350 }
1351
fc1cf338 1352 displaced_step_clear (displaced);
237fc4c9 1353
ad53cd71
PA
1354 old_cleanups = save_inferior_ptid ();
1355 inferior_ptid = ptid;
1356
515630c5 1357 original = regcache_read_pc (regcache);
237fc4c9
PA
1358
1359 copy = gdbarch_displaced_step_location (gdbarch);
1360 len = gdbarch_max_insn_length (gdbarch);
1361
1362 /* Save the original contents of the copy area. */
fc1cf338 1363 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1364 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1365 &displaced->step_saved_copy);
9e529e1d
JK
1366 status = target_read_memory (copy, displaced->step_saved_copy, len);
1367 if (status != 0)
1368 throw_error (MEMORY_ERROR,
1369 _("Error accessing memory address %s (%s) for "
1370 "displaced-stepping scratch space."),
1371 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1372 if (debug_displaced)
1373 {
5af949e3
UW
1374 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1375 paddress (gdbarch, copy));
fc1cf338
PA
1376 displaced_step_dump_bytes (gdb_stdlog,
1377 displaced->step_saved_copy,
1378 len);
237fc4c9
PA
1379 };
1380
1381 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1382 original, copy, regcache);
237fc4c9
PA
1383
1384 /* We don't support the fully-simulated case at present. */
1385 gdb_assert (closure);
1386
9f5a595d
UW
1387 /* Save the information we need to fix things up if the step
1388 succeeds. */
fc1cf338
PA
1389 displaced->step_ptid = ptid;
1390 displaced->step_gdbarch = gdbarch;
1391 displaced->step_closure = closure;
1392 displaced->step_original = original;
1393 displaced->step_copy = copy;
9f5a595d 1394
fc1cf338 1395 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1396
1397 /* Resume execution at the copy. */
515630c5 1398 regcache_write_pc (regcache, copy);
237fc4c9 1399
ad53cd71
PA
1400 discard_cleanups (ignore_cleanups);
1401
1402 do_cleanups (old_cleanups);
237fc4c9
PA
1403
1404 if (debug_displaced)
5af949e3
UW
1405 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1406 paddress (gdbarch, copy));
237fc4c9 1407
237fc4c9
PA
1408 return 1;
1409}
1410
237fc4c9 1411static void
3e43a32a
MS
1412write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1413 const gdb_byte *myaddr, int len)
237fc4c9
PA
1414{
1415 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1416
237fc4c9
PA
1417 inferior_ptid = ptid;
1418 write_memory (memaddr, myaddr, len);
1419 do_cleanups (ptid_cleanup);
1420}
1421
e2d96639
YQ
1422/* Restore the contents of the copy area for thread PTID. */
1423
1424static void
1425displaced_step_restore (struct displaced_step_inferior_state *displaced,
1426 ptid_t ptid)
1427{
1428 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1429
1430 write_memory_ptid (ptid, displaced->step_copy,
1431 displaced->step_saved_copy, len);
1432 if (debug_displaced)
1433 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1434 target_pid_to_str (ptid),
1435 paddress (displaced->step_gdbarch,
1436 displaced->step_copy));
1437}
1438
237fc4c9 1439static void
2ea28649 1440displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1441{
1442 struct cleanup *old_cleanups;
fc1cf338
PA
1443 struct displaced_step_inferior_state *displaced
1444 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1445
1446 /* Was any thread of this process doing a displaced step? */
1447 if (displaced == NULL)
1448 return;
237fc4c9
PA
1449
1450 /* Was this event for the pid we displaced? */
fc1cf338
PA
1451 if (ptid_equal (displaced->step_ptid, null_ptid)
1452 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1453 return;
1454
fc1cf338 1455 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1456
e2d96639 1457 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9
PA
1458
1459 /* Did the instruction complete successfully? */
a493e3e2 1460 if (signal == GDB_SIGNAL_TRAP)
237fc4c9
PA
1461 {
1462 /* Fix up the resulting state. */
fc1cf338
PA
1463 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1464 displaced->step_closure,
1465 displaced->step_original,
1466 displaced->step_copy,
1467 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1468 }
1469 else
1470 {
1471 /* Since the instruction didn't complete, all we can do is
1472 relocate the PC. */
515630c5
UW
1473 struct regcache *regcache = get_thread_regcache (event_ptid);
1474 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1475
fc1cf338 1476 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1477 regcache_write_pc (regcache, pc);
237fc4c9
PA
1478 }
1479
1480 do_cleanups (old_cleanups);
1481
fc1cf338 1482 displaced->step_ptid = null_ptid;
1c5cfe86 1483
237fc4c9 1484 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1485 one now. Leave the state object around, since we're likely to
1486 need it again soon. */
1487 while (displaced->step_request_queue)
237fc4c9
PA
1488 {
1489 struct displaced_step_request *head;
1490 ptid_t ptid;
5af949e3 1491 struct regcache *regcache;
929dfd4f 1492 struct gdbarch *gdbarch;
1c5cfe86 1493 CORE_ADDR actual_pc;
6c95b8df 1494 struct address_space *aspace;
237fc4c9 1495
fc1cf338 1496 head = displaced->step_request_queue;
237fc4c9 1497 ptid = head->ptid;
fc1cf338 1498 displaced->step_request_queue = head->next;
237fc4c9
PA
1499 xfree (head);
1500
ad53cd71
PA
1501 context_switch (ptid);
1502
5af949e3
UW
1503 regcache = get_thread_regcache (ptid);
1504 actual_pc = regcache_read_pc (regcache);
6c95b8df 1505 aspace = get_regcache_aspace (regcache);
1c5cfe86 1506
6c95b8df 1507 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1508 {
1c5cfe86
PA
1509 if (debug_displaced)
1510 fprintf_unfiltered (gdb_stdlog,
1511 "displaced: stepping queued %s now\n",
1512 target_pid_to_str (ptid));
1513
1514 displaced_step_prepare (ptid);
1515
929dfd4f
JB
1516 gdbarch = get_regcache_arch (regcache);
1517
1c5cfe86
PA
1518 if (debug_displaced)
1519 {
929dfd4f 1520 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1521 gdb_byte buf[4];
1522
5af949e3
UW
1523 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1524 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1525 read_memory (actual_pc, buf, sizeof (buf));
1526 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1527 }
1528
fc1cf338
PA
1529 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1530 displaced->step_closure))
a493e3e2 1531 target_resume (ptid, 1, GDB_SIGNAL_0);
99e40580 1532 else
a493e3e2 1533 target_resume (ptid, 0, GDB_SIGNAL_0);
1c5cfe86
PA
1534
1535 /* Done, we're stepping a thread. */
1536 break;
ad53cd71 1537 }
1c5cfe86
PA
1538 else
1539 {
1540 int step;
1541 struct thread_info *tp = inferior_thread ();
1542
1543 /* The breakpoint we were sitting under has since been
1544 removed. */
16c381f0 1545 tp->control.trap_expected = 0;
1c5cfe86
PA
1546
1547 /* Go back to what we were trying to do. */
1548 step = currently_stepping (tp);
ad53cd71 1549
1c5cfe86 1550 if (debug_displaced)
3e43a32a 1551 fprintf_unfiltered (gdb_stdlog,
27d2932e 1552 "displaced: breakpoint is gone: %s, step(%d)\n",
1c5cfe86
PA
1553 target_pid_to_str (tp->ptid), step);
1554
a493e3e2
PA
1555 target_resume (ptid, step, GDB_SIGNAL_0);
1556 tp->suspend.stop_signal = GDB_SIGNAL_0;
1c5cfe86
PA
1557
1558 /* This request was discarded. See if there's any other
1559 thread waiting for its turn. */
1560 }
237fc4c9
PA
1561 }
1562}
1563
5231c1fd
PA
1564/* Update global variables holding ptids to hold NEW_PTID if they were
1565 holding OLD_PTID. */
1566static void
1567infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1568{
1569 struct displaced_step_request *it;
fc1cf338 1570 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1571
1572 if (ptid_equal (inferior_ptid, old_ptid))
1573 inferior_ptid = new_ptid;
1574
1575 if (ptid_equal (singlestep_ptid, old_ptid))
1576 singlestep_ptid = new_ptid;
1577
fc1cf338
PA
1578 for (displaced = displaced_step_inferior_states;
1579 displaced;
1580 displaced = displaced->next)
1581 {
1582 if (ptid_equal (displaced->step_ptid, old_ptid))
1583 displaced->step_ptid = new_ptid;
1584
1585 for (it = displaced->step_request_queue; it; it = it->next)
1586 if (ptid_equal (it->ptid, old_ptid))
1587 it->ptid = new_ptid;
1588 }
5231c1fd
PA
1589}
1590
237fc4c9
PA
1591\f
1592/* Resuming. */
c906108c
SS
1593
1594/* Things to clean up if we QUIT out of resume (). */
c906108c 1595static void
74b7792f 1596resume_cleanups (void *ignore)
c906108c
SS
1597{
1598 normal_stop ();
1599}
1600
53904c9e
AC
1601static const char schedlock_off[] = "off";
1602static const char schedlock_on[] = "on";
1603static const char schedlock_step[] = "step";
40478521 1604static const char *const scheduler_enums[] = {
ef346e04
AC
1605 schedlock_off,
1606 schedlock_on,
1607 schedlock_step,
1608 NULL
1609};
920d2a44
AC
1610static const char *scheduler_mode = schedlock_off;
1611static void
1612show_scheduler_mode (struct ui_file *file, int from_tty,
1613 struct cmd_list_element *c, const char *value)
1614{
3e43a32a
MS
1615 fprintf_filtered (file,
1616 _("Mode for locking scheduler "
1617 "during execution is \"%s\".\n"),
920d2a44
AC
1618 value);
1619}
c906108c
SS
1620
1621static void
96baa820 1622set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1623{
eefe576e
AC
1624 if (!target_can_lock_scheduler)
1625 {
1626 scheduler_mode = schedlock_off;
1627 error (_("Target '%s' cannot support this command."), target_shortname);
1628 }
c906108c
SS
1629}
1630
d4db2f36
PA
1631/* True if execution commands resume all threads of all processes by
1632 default; otherwise, resume only threads of the current inferior
1633 process. */
1634int sched_multi = 0;
1635
2facfe5c
DD
1636/* Try to setup for software single stepping over the specified location.
1637 Return 1 if target_resume() should use hardware single step.
1638
1639 GDBARCH the current gdbarch.
1640 PC the location to step over. */
1641
1642static int
1643maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1644{
1645 int hw_step = 1;
1646
f02253f1
HZ
1647 if (execution_direction == EXEC_FORWARD
1648 && gdbarch_software_single_step_p (gdbarch)
99e40580 1649 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1650 {
99e40580
UW
1651 hw_step = 0;
1652 /* Do not pull these breakpoints until after a `wait' in
1777feb0 1653 `wait_for_inferior'. */
99e40580
UW
1654 singlestep_breakpoints_inserted_p = 1;
1655 singlestep_ptid = inferior_ptid;
1656 singlestep_pc = pc;
2facfe5c
DD
1657 }
1658 return hw_step;
1659}
c906108c 1660
09cee04b
PA
1661/* Return a ptid representing the set of threads that we will proceed,
1662 in the perspective of the user/frontend. We may actually resume
1663 fewer threads at first, e.g., if a thread is stopped at a
b136cd05
PA
1664 breakpoint that needs stepping-off, but that should not be visible
1665 to the user/frontend, and neither should the frontend/user be
1666 allowed to proceed any of the threads that happen to be stopped for
09cee04b
PA
1667 internal run control handling, if a previous command wanted them
1668 resumed. */
1669
1670ptid_t
1671user_visible_resume_ptid (int step)
1672{
1673 /* By default, resume all threads of all processes. */
1674 ptid_t resume_ptid = RESUME_ALL;
1675
1676 /* Maybe resume only all threads of the current process. */
1677 if (!sched_multi && target_supports_multi_process ())
1678 {
1679 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1680 }
1681
1682 /* Maybe resume a single thread after all. */
1683 if (non_stop)
1684 {
1685 /* With non-stop mode on, threads are always handled
1686 individually. */
1687 resume_ptid = inferior_ptid;
1688 }
1689 else if ((scheduler_mode == schedlock_on)
1690 || (scheduler_mode == schedlock_step
1691 && (step || singlestep_breakpoints_inserted_p)))
1692 {
1693 /* User-settable 'scheduler' mode requires solo thread resume. */
1694 resume_ptid = inferior_ptid;
1695 }
1696
1697 return resume_ptid;
1698}
1699
c906108c
SS
1700/* Resume the inferior, but allow a QUIT. This is useful if the user
1701 wants to interrupt some lengthy single-stepping operation
1702 (for child processes, the SIGINT goes to the inferior, and so
1703 we get a SIGINT random_signal, but for remote debugging and perhaps
1704 other targets, that's not true).
1705
1706 STEP nonzero if we should step (zero to continue instead).
1707 SIG is the signal to give the inferior (zero for none). */
1708void
2ea28649 1709resume (int step, enum gdb_signal sig)
c906108c
SS
1710{
1711 int should_resume = 1;
74b7792f 1712 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1713 struct regcache *regcache = get_current_regcache ();
1714 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1715 struct thread_info *tp = inferior_thread ();
515630c5 1716 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1717 struct address_space *aspace = get_regcache_aspace (regcache);
c7e8a53c 1718
c906108c
SS
1719 QUIT;
1720
74609e71
YQ
1721 if (current_inferior ()->waiting_for_vfork_done)
1722 {
48f9886d
PA
1723 /* Don't try to single-step a vfork parent that is waiting for
1724 the child to get out of the shared memory region (by exec'ing
1725 or exiting). This is particularly important on software
1726 single-step archs, as the child process would trip on the
1727 software single step breakpoint inserted for the parent
1728 process. Since the parent will not actually execute any
1729 instruction until the child is out of the shared region (such
1730 are vfork's semantics), it is safe to simply continue it.
1731 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1732 the parent, and tell it to `keep_going', which automatically
1733 re-sets it stepping. */
74609e71
YQ
1734 if (debug_infrun)
1735 fprintf_unfiltered (gdb_stdlog,
1736 "infrun: resume : clear step\n");
1737 step = 0;
1738 }
1739
527159b7 1740 if (debug_infrun)
237fc4c9 1741 fprintf_unfiltered (gdb_stdlog,
c9737c08 1742 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 1743 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
1744 step, gdb_signal_to_symbol_string (sig),
1745 tp->control.trap_expected,
0d9a9a5f
PA
1746 target_pid_to_str (inferior_ptid),
1747 paddress (gdbarch, pc));
c906108c 1748
c2c6d25f
JM
1749 /* Normally, by the time we reach `resume', the breakpoints are either
1750 removed or inserted, as appropriate. The exception is if we're sitting
1751 at a permanent breakpoint; we need to step over it, but permanent
1752 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1753 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1754 {
515630c5
UW
1755 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1756 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5 1757 else
ac74f770
MS
1758 error (_("\
1759The program is stopped at a permanent breakpoint, but GDB does not know\n\
1760how to step past a permanent breakpoint on this architecture. Try using\n\
1761a command like `return' or `jump' to continue execution."));
6d350bb5 1762 }
c2c6d25f 1763
c1e36e3e
PA
1764 /* If we have a breakpoint to step over, make sure to do a single
1765 step only. Same if we have software watchpoints. */
1766 if (tp->control.trap_expected || bpstat_should_step ())
1767 tp->control.may_range_step = 0;
1768
237fc4c9
PA
1769 /* If enabled, step over breakpoints by executing a copy of the
1770 instruction at a different address.
1771
1772 We can't use displaced stepping when we have a signal to deliver;
1773 the comments for displaced_step_prepare explain why. The
1774 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
1775 signals' explain what we do instead.
1776
1777 We can't use displaced stepping when we are waiting for vfork_done
1778 event, displaced stepping breaks the vfork child similarly as single
1779 step software breakpoint. */
515630c5 1780 if (use_displaced_stepping (gdbarch)
16c381f0 1781 && (tp->control.trap_expected
929dfd4f 1782 || (step && gdbarch_software_single_step_p (gdbarch)))
a493e3e2 1783 && sig == GDB_SIGNAL_0
74609e71 1784 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 1785 {
fc1cf338
PA
1786 struct displaced_step_inferior_state *displaced;
1787
237fc4c9 1788 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1789 {
1790 /* Got placed in displaced stepping queue. Will be resumed
1791 later when all the currently queued displaced stepping
7f7efbd9
VP
1792 requests finish. The thread is not executing at this point,
1793 and the call to set_executing will be made later. But we
1794 need to call set_running here, since from frontend point of view,
1795 the thread is running. */
1796 set_running (inferior_ptid, 1);
d56b7306
VP
1797 discard_cleanups (old_cleanups);
1798 return;
1799 }
99e40580 1800
ca7781d2
LM
1801 /* Update pc to reflect the new address from which we will execute
1802 instructions due to displaced stepping. */
1803 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1804
fc1cf338
PA
1805 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1806 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1807 displaced->step_closure);
237fc4c9
PA
1808 }
1809
2facfe5c 1810 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1811 else if (step)
2facfe5c 1812 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1813
30852783
UW
1814 /* Currently, our software single-step implementation leads to different
1815 results than hardware single-stepping in one situation: when stepping
1816 into delivering a signal which has an associated signal handler,
1817 hardware single-step will stop at the first instruction of the handler,
1818 while software single-step will simply skip execution of the handler.
1819
1820 For now, this difference in behavior is accepted since there is no
1821 easy way to actually implement single-stepping into a signal handler
1822 without kernel support.
1823
1824 However, there is one scenario where this difference leads to follow-on
1825 problems: if we're stepping off a breakpoint by removing all breakpoints
1826 and then single-stepping. In this case, the software single-step
1827 behavior means that even if there is a *breakpoint* in the signal
1828 handler, GDB still would not stop.
1829
1830 Fortunately, we can at least fix this particular issue. We detect
1831 here the case where we are about to deliver a signal while software
1832 single-stepping with breakpoints removed. In this situation, we
1833 revert the decisions to remove all breakpoints and insert single-
1834 step breakpoints, and instead we install a step-resume breakpoint
1835 at the current address, deliver the signal without stepping, and
1836 once we arrive back at the step-resume breakpoint, actually step
1837 over the breakpoint we originally wanted to step over. */
1838 if (singlestep_breakpoints_inserted_p
a493e3e2 1839 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
30852783
UW
1840 {
1841 /* If we have nested signals or a pending signal is delivered
1842 immediately after a handler returns, might might already have
1843 a step-resume breakpoint set on the earlier handler. We cannot
1844 set another step-resume breakpoint; just continue on until the
1845 original breakpoint is hit. */
1846 if (tp->control.step_resume_breakpoint == NULL)
1847 {
2c03e5be 1848 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
1849 tp->step_after_step_resume_breakpoint = 1;
1850 }
1851
1852 remove_single_step_breakpoints ();
1853 singlestep_breakpoints_inserted_p = 0;
1854
1855 insert_breakpoints ();
1856 tp->control.trap_expected = 0;
1857 }
1858
c906108c
SS
1859 if (should_resume)
1860 {
39f77062 1861 ptid_t resume_ptid;
dfcd3bfb 1862
cd76b0b7
VP
1863 /* If STEP is set, it's a request to use hardware stepping
1864 facilities. But in that case, we should never
1865 use singlestep breakpoint. */
1866 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1867
d4db2f36
PA
1868 /* Decide the set of threads to ask the target to resume. Start
1869 by assuming everything will be resumed, than narrow the set
1870 by applying increasingly restricting conditions. */
09cee04b 1871 resume_ptid = user_visible_resume_ptid (step);
d4db2f36
PA
1872
1873 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1874 if (singlestep_breakpoints_inserted_p
1875 && stepping_past_singlestep_breakpoint)
c906108c 1876 {
cd76b0b7
VP
1877 /* The situation here is as follows. In thread T1 we wanted to
1878 single-step. Lacking hardware single-stepping we've
1879 set breakpoint at the PC of the next instruction -- call it
1880 P. After resuming, we've hit that breakpoint in thread T2.
1881 Now we've removed original breakpoint, inserted breakpoint
1882 at P+1, and try to step to advance T2 past breakpoint.
1883 We need to step only T2, as if T1 is allowed to freely run,
1884 it can run past P, and if other threads are allowed to run,
1885 they can hit breakpoint at P+1, and nested hits of single-step
1886 breakpoints is not something we'd want -- that's complicated
1887 to support, and has no value. */
1888 resume_ptid = inferior_ptid;
1889 }
d4db2f36 1890 else if ((step || singlestep_breakpoints_inserted_p)
16c381f0 1891 && tp->control.trap_expected)
cd76b0b7 1892 {
74960c60
VP
1893 /* We're allowing a thread to run past a breakpoint it has
1894 hit, by single-stepping the thread with the breakpoint
1895 removed. In which case, we need to single-step only this
1896 thread, and keep others stopped, as they can miss this
1897 breakpoint if allowed to run.
1898
1899 The current code actually removes all breakpoints when
1900 doing this, not just the one being stepped over, so if we
1901 let other threads run, we can actually miss any
1902 breakpoint, not just the one at PC. */
ef5cf84e 1903 resume_ptid = inferior_ptid;
c906108c 1904 }
ef5cf84e 1905
515630c5 1906 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1907 {
1908 /* Most targets can step a breakpoint instruction, thus
1909 executing it normally. But if this one cannot, just
1910 continue and we will hit it anyway. */
6c95b8df 1911 if (step && breakpoint_inserted_here_p (aspace, pc))
c4ed33b9
AC
1912 step = 0;
1913 }
237fc4c9
PA
1914
1915 if (debug_displaced
515630c5 1916 && use_displaced_stepping (gdbarch)
16c381f0 1917 && tp->control.trap_expected)
237fc4c9 1918 {
515630c5 1919 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1920 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1921 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1922 gdb_byte buf[4];
1923
5af949e3
UW
1924 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1925 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1926 read_memory (actual_pc, buf, sizeof (buf));
1927 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1928 }
1929
c1e36e3e
PA
1930 if (tp->control.may_range_step)
1931 {
1932 /* If we're resuming a thread with the PC out of the step
1933 range, then we're doing some nested/finer run control
1934 operation, like stepping the thread out of the dynamic
1935 linker or the displaced stepping scratch pad. We
1936 shouldn't have allowed a range step then. */
1937 gdb_assert (pc_in_thread_step_range (pc, tp));
1938 }
1939
e58b0e63
PA
1940 /* Install inferior's terminal modes. */
1941 target_terminal_inferior ();
1942
2020b7ab
PA
1943 /* Avoid confusing the next resume, if the next stop/resume
1944 happens to apply to another thread. */
a493e3e2 1945 tp->suspend.stop_signal = GDB_SIGNAL_0;
607cecd2 1946
2455069d
UW
1947 /* Advise target which signals may be handled silently. If we have
1948 removed breakpoints because we are stepping over one (which can
1949 happen only if we are not using displaced stepping), we need to
1950 receive all signals to avoid accidentally skipping a breakpoint
1951 during execution of a signal handler. */
1952 if ((step || singlestep_breakpoints_inserted_p)
1953 && tp->control.trap_expected
1954 && !use_displaced_stepping (gdbarch))
1955 target_pass_signals (0, NULL);
1956 else
a493e3e2 1957 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2455069d 1958
607cecd2 1959 target_resume (resume_ptid, step, sig);
c906108c
SS
1960 }
1961
1962 discard_cleanups (old_cleanups);
1963}
1964\f
237fc4c9 1965/* Proceeding. */
c906108c
SS
1966
1967/* Clear out all variables saying what to do when inferior is continued.
1968 First do this, then set the ones you want, then call `proceed'. */
1969
a7212384
UW
1970static void
1971clear_proceed_status_thread (struct thread_info *tp)
c906108c 1972{
a7212384
UW
1973 if (debug_infrun)
1974 fprintf_unfiltered (gdb_stdlog,
1975 "infrun: clear_proceed_status_thread (%s)\n",
1976 target_pid_to_str (tp->ptid));
d6b48e9c 1977
16c381f0
JK
1978 tp->control.trap_expected = 0;
1979 tp->control.step_range_start = 0;
1980 tp->control.step_range_end = 0;
c1e36e3e 1981 tp->control.may_range_step = 0;
16c381f0
JK
1982 tp->control.step_frame_id = null_frame_id;
1983 tp->control.step_stack_frame_id = null_frame_id;
1984 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 1985 tp->stop_requested = 0;
4e1c45ea 1986
16c381f0 1987 tp->control.stop_step = 0;
32400beb 1988
16c381f0 1989 tp->control.proceed_to_finish = 0;
414c69f7 1990
a7212384 1991 /* Discard any remaining commands or status from previous stop. */
16c381f0 1992 bpstat_clear (&tp->control.stop_bpstat);
a7212384 1993}
32400beb 1994
a7212384
UW
1995static int
1996clear_proceed_status_callback (struct thread_info *tp, void *data)
1997{
1998 if (is_exited (tp->ptid))
1999 return 0;
d6b48e9c 2000
a7212384
UW
2001 clear_proceed_status_thread (tp);
2002 return 0;
2003}
2004
2005void
2006clear_proceed_status (void)
2007{
6c95b8df
PA
2008 if (!non_stop)
2009 {
2010 /* In all-stop mode, delete the per-thread status of all
2011 threads, even if inferior_ptid is null_ptid, there may be
2012 threads on the list. E.g., we may be launching a new
2013 process, while selecting the executable. */
2014 iterate_over_threads (clear_proceed_status_callback, NULL);
2015 }
2016
a7212384
UW
2017 if (!ptid_equal (inferior_ptid, null_ptid))
2018 {
2019 struct inferior *inferior;
2020
2021 if (non_stop)
2022 {
6c95b8df
PA
2023 /* If in non-stop mode, only delete the per-thread status of
2024 the current thread. */
a7212384
UW
2025 clear_proceed_status_thread (inferior_thread ());
2026 }
6c95b8df 2027
d6b48e9c 2028 inferior = current_inferior ();
16c381f0 2029 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2030 }
2031
c906108c 2032 stop_after_trap = 0;
f3b1572e
PA
2033
2034 observer_notify_about_to_proceed ();
c906108c 2035
d5c31457
UW
2036 if (stop_registers)
2037 {
2038 regcache_xfree (stop_registers);
2039 stop_registers = NULL;
2040 }
c906108c
SS
2041}
2042
5a437975
DE
2043/* Check the current thread against the thread that reported the most recent
2044 event. If a step-over is required return TRUE and set the current thread
2045 to the old thread. Otherwise return FALSE.
2046
1777feb0 2047 This should be suitable for any targets that support threads. */
ea67f13b
DJ
2048
2049static int
6a6b96b9 2050prepare_to_proceed (int step)
ea67f13b
DJ
2051{
2052 ptid_t wait_ptid;
2053 struct target_waitstatus wait_status;
5a437975
DE
2054 int schedlock_enabled;
2055
2056 /* With non-stop mode on, threads are always handled individually. */
2057 gdb_assert (! non_stop);
ea67f13b
DJ
2058
2059 /* Get the last target status returned by target_wait(). */
2060 get_last_target_status (&wait_ptid, &wait_status);
2061
6a6b96b9 2062 /* Make sure we were stopped at a breakpoint. */
ea67f13b 2063 if (wait_status.kind != TARGET_WAITKIND_STOPPED
a493e3e2
PA
2064 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2065 && wait_status.value.sig != GDB_SIGNAL_ILL
2066 && wait_status.value.sig != GDB_SIGNAL_SEGV
2067 && wait_status.value.sig != GDB_SIGNAL_EMT))
ea67f13b
DJ
2068 {
2069 return 0;
2070 }
2071
5a437975
DE
2072 schedlock_enabled = (scheduler_mode == schedlock_on
2073 || (scheduler_mode == schedlock_step
2074 && step));
2075
d4db2f36
PA
2076 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2077 if (schedlock_enabled)
2078 return 0;
2079
2080 /* Don't switch over if we're about to resume some other process
2081 other than WAIT_PTID's, and schedule-multiple is off. */
2082 if (!sched_multi
2083 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2084 return 0;
2085
6a6b96b9 2086 /* Switched over from WAIT_PID. */
ea67f13b 2087 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 2088 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 2089 {
515630c5
UW
2090 struct regcache *regcache = get_thread_regcache (wait_ptid);
2091
6c95b8df
PA
2092 if (breakpoint_here_p (get_regcache_aspace (regcache),
2093 regcache_read_pc (regcache)))
ea67f13b 2094 {
515630c5
UW
2095 /* Switch back to WAIT_PID thread. */
2096 switch_to_thread (wait_ptid);
6a6b96b9 2097
0d9a9a5f
PA
2098 if (debug_infrun)
2099 fprintf_unfiltered (gdb_stdlog,
2100 "infrun: prepare_to_proceed (step=%d), "
2101 "switched to [%s]\n",
2102 step, target_pid_to_str (inferior_ptid));
2103
515630c5
UW
2104 /* We return 1 to indicate that there is a breakpoint here,
2105 so we need to step over it before continuing to avoid
1777feb0 2106 hitting it straight away. */
515630c5
UW
2107 return 1;
2108 }
ea67f13b
DJ
2109 }
2110
2111 return 0;
ea67f13b 2112}
e4846b08 2113
c906108c
SS
2114/* Basic routine for continuing the program in various fashions.
2115
2116 ADDR is the address to resume at, or -1 for resume where stopped.
2117 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2118 or -1 for act according to how it stopped.
c906108c 2119 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2120 -1 means return after that and print nothing.
2121 You should probably set various step_... variables
2122 before calling here, if you are stepping.
c906108c
SS
2123
2124 You should call clear_proceed_status before calling proceed. */
2125
2126void
2ea28649 2127proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
c906108c 2128{
e58b0e63
PA
2129 struct regcache *regcache;
2130 struct gdbarch *gdbarch;
4e1c45ea 2131 struct thread_info *tp;
e58b0e63 2132 CORE_ADDR pc;
6c95b8df 2133 struct address_space *aspace;
0de5618e
YQ
2134 /* GDB may force the inferior to step due to various reasons. */
2135 int force_step = 0;
c906108c 2136
e58b0e63
PA
2137 /* If we're stopped at a fork/vfork, follow the branch set by the
2138 "set follow-fork-mode" command; otherwise, we'll just proceed
2139 resuming the current thread. */
2140 if (!follow_fork ())
2141 {
2142 /* The target for some reason decided not to resume. */
2143 normal_stop ();
f148b27e
PA
2144 if (target_can_async_p ())
2145 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2146 return;
2147 }
2148
842951eb
PA
2149 /* We'll update this if & when we switch to a new thread. */
2150 previous_inferior_ptid = inferior_ptid;
2151
e58b0e63
PA
2152 regcache = get_current_regcache ();
2153 gdbarch = get_regcache_arch (regcache);
6c95b8df 2154 aspace = get_regcache_aspace (regcache);
e58b0e63
PA
2155 pc = regcache_read_pc (regcache);
2156
c906108c 2157 if (step > 0)
515630c5 2158 step_start_function = find_pc_function (pc);
c906108c
SS
2159 if (step < 0)
2160 stop_after_trap = 1;
2161
2acceee2 2162 if (addr == (CORE_ADDR) -1)
c906108c 2163 {
6c95b8df 2164 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 2165 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2166 /* There is a breakpoint at the address we will resume at,
2167 step one instruction before inserting breakpoints so that
2168 we do not stop right away (and report a second hit at this
b2175913
MS
2169 breakpoint).
2170
2171 Note, we don't do this in reverse, because we won't
2172 actually be executing the breakpoint insn anyway.
2173 We'll be (un-)executing the previous instruction. */
2174
0de5618e 2175 force_step = 1;
515630c5
UW
2176 else if (gdbarch_single_step_through_delay_p (gdbarch)
2177 && gdbarch_single_step_through_delay (gdbarch,
2178 get_current_frame ()))
3352ef37
AC
2179 /* We stepped onto an instruction that needs to be stepped
2180 again before re-inserting the breakpoint, do so. */
0de5618e 2181 force_step = 1;
c906108c
SS
2182 }
2183 else
2184 {
515630c5 2185 regcache_write_pc (regcache, addr);
c906108c
SS
2186 }
2187
527159b7 2188 if (debug_infrun)
8a9de0e4 2189 fprintf_unfiltered (gdb_stdlog,
c9737c08
PA
2190 "infrun: proceed (addr=%s, signal=%s, step=%d)\n",
2191 paddress (gdbarch, addr),
2192 gdb_signal_to_symbol_string (siggnal), step);
527159b7 2193
94cc34af
PA
2194 if (non_stop)
2195 /* In non-stop, each thread is handled individually. The context
2196 must already be set to the right thread here. */
2197 ;
2198 else
2199 {
2200 /* In a multi-threaded task we may select another thread and
2201 then continue or step.
c906108c 2202
94cc34af
PA
2203 But if the old thread was stopped at a breakpoint, it will
2204 immediately cause another breakpoint stop without any
2205 execution (i.e. it will report a breakpoint hit incorrectly).
2206 So we must step over it first.
c906108c 2207
94cc34af
PA
2208 prepare_to_proceed checks the current thread against the
2209 thread that reported the most recent event. If a step-over
2210 is required it returns TRUE and sets the current thread to
1777feb0 2211 the old thread. */
94cc34af 2212 if (prepare_to_proceed (step))
0de5618e 2213 force_step = 1;
94cc34af 2214 }
c906108c 2215
4e1c45ea
PA
2216 /* prepare_to_proceed may change the current thread. */
2217 tp = inferior_thread ();
2218
0de5618e 2219 if (force_step)
30852783
UW
2220 {
2221 tp->control.trap_expected = 1;
2222 /* If displaced stepping is enabled, we can step over the
2223 breakpoint without hitting it, so leave all breakpoints
2224 inserted. Otherwise we need to disable all breakpoints, step
2225 one instruction, and then re-add them when that step is
2226 finished. */
2227 if (!use_displaced_stepping (gdbarch))
2228 remove_breakpoints ();
2229 }
2230
2231 /* We can insert breakpoints if we're not trying to step over one,
2232 or if we are stepping over one but we're using displaced stepping
2233 to do so. */
2234 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2235 insert_breakpoints ();
2236
2020b7ab
PA
2237 if (!non_stop)
2238 {
2239 /* Pass the last stop signal to the thread we're resuming,
2240 irrespective of whether the current thread is the thread that
2241 got the last event or not. This was historically GDB's
2242 behaviour before keeping a stop_signal per thread. */
2243
2244 struct thread_info *last_thread;
2245 ptid_t last_ptid;
2246 struct target_waitstatus last_status;
2247
2248 get_last_target_status (&last_ptid, &last_status);
2249 if (!ptid_equal (inferior_ptid, last_ptid)
2250 && !ptid_equal (last_ptid, null_ptid)
2251 && !ptid_equal (last_ptid, minus_one_ptid))
2252 {
e09875d4 2253 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
2254 if (last_thread)
2255 {
16c381f0 2256 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
a493e3e2 2257 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2020b7ab
PA
2258 }
2259 }
2260 }
2261
a493e3e2 2262 if (siggnal != GDB_SIGNAL_DEFAULT)
16c381f0 2263 tp->suspend.stop_signal = siggnal;
c906108c
SS
2264 /* If this signal should not be seen by program,
2265 give it zero. Used for debugging signals. */
16c381f0 2266 else if (!signal_program[tp->suspend.stop_signal])
a493e3e2 2267 tp->suspend.stop_signal = GDB_SIGNAL_0;
c906108c
SS
2268
2269 annotate_starting ();
2270
2271 /* Make sure that output from GDB appears before output from the
2272 inferior. */
2273 gdb_flush (gdb_stdout);
2274
e4846b08
JJ
2275 /* Refresh prev_pc value just prior to resuming. This used to be
2276 done in stop_stepping, however, setting prev_pc there did not handle
2277 scenarios such as inferior function calls or returning from
2278 a function via the return command. In those cases, the prev_pc
2279 value was not set properly for subsequent commands. The prev_pc value
2280 is used to initialize the starting line number in the ecs. With an
2281 invalid value, the gdb next command ends up stopping at the position
2282 represented by the next line table entry past our start position.
2283 On platforms that generate one line table entry per line, this
2284 is not a problem. However, on the ia64, the compiler generates
2285 extraneous line table entries that do not increase the line number.
2286 When we issue the gdb next command on the ia64 after an inferior call
2287 or a return command, we often end up a few instructions forward, still
2288 within the original line we started.
2289
d5cd6034
JB
2290 An attempt was made to refresh the prev_pc at the same time the
2291 execution_control_state is initialized (for instance, just before
2292 waiting for an inferior event). But this approach did not work
2293 because of platforms that use ptrace, where the pc register cannot
2294 be read unless the inferior is stopped. At that point, we are not
2295 guaranteed the inferior is stopped and so the regcache_read_pc() call
2296 can fail. Setting the prev_pc value here ensures the value is updated
2297 correctly when the inferior is stopped. */
4e1c45ea 2298 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2299
59f0d5d9 2300 /* Fill in with reasonable starting values. */
4e1c45ea 2301 init_thread_stepping_state (tp);
59f0d5d9 2302
59f0d5d9
PA
2303 /* Reset to normal state. */
2304 init_infwait_state ();
2305
c906108c 2306 /* Resume inferior. */
0de5618e
YQ
2307 resume (force_step || step || bpstat_should_step (),
2308 tp->suspend.stop_signal);
c906108c
SS
2309
2310 /* Wait for it to stop (if not standalone)
2311 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2312 /* Do this only if we are not using the event loop, or if the target
1777feb0 2313 does not support asynchronous execution. */
362646f5 2314 if (!target_can_async_p ())
43ff13b4 2315 {
e4c8541f 2316 wait_for_inferior ();
43ff13b4
JM
2317 normal_stop ();
2318 }
c906108c 2319}
c906108c
SS
2320\f
2321
2322/* Start remote-debugging of a machine over a serial link. */
96baa820 2323
c906108c 2324void
8621d6a9 2325start_remote (int from_tty)
c906108c 2326{
d6b48e9c 2327 struct inferior *inferior;
d6b48e9c
PA
2328
2329 inferior = current_inferior ();
16c381f0 2330 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2331
1777feb0 2332 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2333 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2334 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2335 nothing is returned (instead of just blocking). Because of this,
2336 targets expecting an immediate response need to, internally, set
2337 things up so that the target_wait() is forced to eventually
1777feb0 2338 timeout. */
6426a772
JM
2339 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2340 differentiate to its caller what the state of the target is after
2341 the initial open has been performed. Here we're assuming that
2342 the target has stopped. It should be possible to eventually have
2343 target_open() return to the caller an indication that the target
2344 is currently running and GDB state should be set to the same as
1777feb0 2345 for an async run. */
e4c8541f 2346 wait_for_inferior ();
8621d6a9
DJ
2347
2348 /* Now that the inferior has stopped, do any bookkeeping like
2349 loading shared libraries. We want to do this before normal_stop,
2350 so that the displayed frame is up to date. */
2351 post_create_inferior (&current_target, from_tty);
2352
6426a772 2353 normal_stop ();
c906108c
SS
2354}
2355
2356/* Initialize static vars when a new inferior begins. */
2357
2358void
96baa820 2359init_wait_for_inferior (void)
c906108c
SS
2360{
2361 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2362
c906108c
SS
2363 breakpoint_init_inferior (inf_starting);
2364
c906108c 2365 clear_proceed_status ();
9f976b41
DJ
2366
2367 stepping_past_singlestep_breakpoint = 0;
ca005067
DJ
2368
2369 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2370
842951eb 2371 previous_inferior_ptid = inferior_ptid;
0d1e5fa7
PA
2372 init_infwait_state ();
2373
edb3359d
DJ
2374 /* Discard any skipped inlined frames. */
2375 clear_inline_frame_state (minus_one_ptid);
c906108c 2376}
237fc4c9 2377
c906108c 2378\f
b83266a0
SS
2379/* This enum encodes possible reasons for doing a target_wait, so that
2380 wfi can call target_wait in one place. (Ultimately the call will be
2381 moved out of the infinite loop entirely.) */
2382
c5aa993b
JM
2383enum infwait_states
2384{
cd0fc7c3
SS
2385 infwait_normal_state,
2386 infwait_thread_hop_state,
d983da9c 2387 infwait_step_watch_state,
cd0fc7c3 2388 infwait_nonstep_watch_state
b83266a0
SS
2389};
2390
0d1e5fa7
PA
2391/* The PTID we'll do a target_wait on.*/
2392ptid_t waiton_ptid;
2393
2394/* Current inferior wait state. */
8870954f 2395static enum infwait_states infwait_state;
cd0fc7c3 2396
0d1e5fa7
PA
2397/* Data to be passed around while handling an event. This data is
2398 discarded between events. */
c5aa993b 2399struct execution_control_state
488f131b 2400{
0d1e5fa7 2401 ptid_t ptid;
4e1c45ea
PA
2402 /* The thread that got the event, if this was a thread event; NULL
2403 otherwise. */
2404 struct thread_info *event_thread;
2405
488f131b 2406 struct target_waitstatus ws;
7e324e48 2407 int stop_func_filled_in;
488f131b
JB
2408 CORE_ADDR stop_func_start;
2409 CORE_ADDR stop_func_end;
2c02bd72 2410 const char *stop_func_name;
488f131b 2411 int wait_some_more;
4f5d7f63
PA
2412
2413 /* We were in infwait_step_watch_state or
2414 infwait_nonstep_watch_state state, and the thread reported an
2415 event. */
2416 int stepped_after_stopped_by_watchpoint;
488f131b
JB
2417};
2418
ec9499be 2419static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2420
568d6575
UW
2421static void handle_step_into_function (struct gdbarch *gdbarch,
2422 struct execution_control_state *ecs);
2423static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2424 struct execution_control_state *ecs);
4f5d7f63 2425static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 2426static void check_exception_resume (struct execution_control_state *,
28106bc2 2427 struct frame_info *);
611c83ae 2428
104c1213
JM
2429static void stop_stepping (struct execution_control_state *ecs);
2430static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2431static void keep_going (struct execution_control_state *ecs);
94c57d6a 2432static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 2433static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 2434
252fbfc8
PA
2435/* Callback for iterate over threads. If the thread is stopped, but
2436 the user/frontend doesn't know about that yet, go through
2437 normal_stop, as if the thread had just stopped now. ARG points at
2438 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2439 ptid_is_pid(PTID) is true, applies to all threads of the process
2440 pointed at by PTID. Otherwise, apply only to the thread pointed by
2441 PTID. */
2442
2443static int
2444infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2445{
2446 ptid_t ptid = * (ptid_t *) arg;
2447
2448 if ((ptid_equal (info->ptid, ptid)
2449 || ptid_equal (minus_one_ptid, ptid)
2450 || (ptid_is_pid (ptid)
2451 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2452 && is_running (info->ptid)
2453 && !is_executing (info->ptid))
2454 {
2455 struct cleanup *old_chain;
2456 struct execution_control_state ecss;
2457 struct execution_control_state *ecs = &ecss;
2458
2459 memset (ecs, 0, sizeof (*ecs));
2460
2461 old_chain = make_cleanup_restore_current_thread ();
2462
f15cb84a
YQ
2463 overlay_cache_invalid = 1;
2464 /* Flush target cache before starting to handle each event.
2465 Target was running and cache could be stale. This is just a
2466 heuristic. Running threads may modify target memory, but we
2467 don't get any event. */
2468 target_dcache_invalidate ();
2469
252fbfc8
PA
2470 /* Go through handle_inferior_event/normal_stop, so we always
2471 have consistent output as if the stop event had been
2472 reported. */
2473 ecs->ptid = info->ptid;
e09875d4 2474 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8 2475 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 2476 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
2477
2478 handle_inferior_event (ecs);
2479
2480 if (!ecs->wait_some_more)
2481 {
2482 struct thread_info *tp;
2483
2484 normal_stop ();
2485
fa4cd53f 2486 /* Finish off the continuations. */
252fbfc8 2487 tp = inferior_thread ();
fa4cd53f
PA
2488 do_all_intermediate_continuations_thread (tp, 1);
2489 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2490 }
2491
2492 do_cleanups (old_chain);
2493 }
2494
2495 return 0;
2496}
2497
2498/* This function is attached as a "thread_stop_requested" observer.
2499 Cleanup local state that assumed the PTID was to be resumed, and
2500 report the stop to the frontend. */
2501
2c0b251b 2502static void
252fbfc8
PA
2503infrun_thread_stop_requested (ptid_t ptid)
2504{
fc1cf338 2505 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2506
2507 /* PTID was requested to stop. Remove it from the displaced
2508 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2509
2510 for (displaced = displaced_step_inferior_states;
2511 displaced;
2512 displaced = displaced->next)
252fbfc8 2513 {
fc1cf338 2514 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2515
fc1cf338
PA
2516 it = displaced->step_request_queue;
2517 prev_next_p = &displaced->step_request_queue;
2518 while (it)
252fbfc8 2519 {
fc1cf338
PA
2520 if (ptid_match (it->ptid, ptid))
2521 {
2522 *prev_next_p = it->next;
2523 it->next = NULL;
2524 xfree (it);
2525 }
252fbfc8 2526 else
fc1cf338
PA
2527 {
2528 prev_next_p = &it->next;
2529 }
252fbfc8 2530
fc1cf338 2531 it = *prev_next_p;
252fbfc8 2532 }
252fbfc8
PA
2533 }
2534
2535 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2536}
2537
a07daef3
PA
2538static void
2539infrun_thread_thread_exit (struct thread_info *tp, int silent)
2540{
2541 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2542 nullify_last_target_wait_ptid ();
2543}
2544
4e1c45ea
PA
2545/* Callback for iterate_over_threads. */
2546
2547static int
2548delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2549{
2550 if (is_exited (info->ptid))
2551 return 0;
2552
2553 delete_step_resume_breakpoint (info);
186c406b 2554 delete_exception_resume_breakpoint (info);
4e1c45ea
PA
2555 return 0;
2556}
2557
2558/* In all-stop, delete the step resume breakpoint of any thread that
2559 had one. In non-stop, delete the step resume breakpoint of the
2560 thread that just stopped. */
2561
2562static void
2563delete_step_thread_step_resume_breakpoint (void)
2564{
2565 if (!target_has_execution
2566 || ptid_equal (inferior_ptid, null_ptid))
2567 /* If the inferior has exited, we have already deleted the step
2568 resume breakpoints out of GDB's lists. */
2569 return;
2570
2571 if (non_stop)
2572 {
2573 /* If in non-stop mode, only delete the step-resume or
2574 longjmp-resume breakpoint of the thread that just stopped
2575 stepping. */
2576 struct thread_info *tp = inferior_thread ();
abbb1732 2577
4e1c45ea 2578 delete_step_resume_breakpoint (tp);
186c406b 2579 delete_exception_resume_breakpoint (tp);
4e1c45ea
PA
2580 }
2581 else
2582 /* In all-stop mode, delete all step-resume and longjmp-resume
2583 breakpoints of any thread that had them. */
2584 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2585}
2586
1777feb0 2587/* A cleanup wrapper. */
4e1c45ea
PA
2588
2589static void
2590delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2591{
2592 delete_step_thread_step_resume_breakpoint ();
2593}
2594
223698f8
DE
2595/* Pretty print the results of target_wait, for debugging purposes. */
2596
2597static void
2598print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2599 const struct target_waitstatus *ws)
2600{
2601 char *status_string = target_waitstatus_to_string (ws);
2602 struct ui_file *tmp_stream = mem_fileopen ();
2603 char *text;
223698f8
DE
2604
2605 /* The text is split over several lines because it was getting too long.
2606 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2607 output as a unit; we want only one timestamp printed if debug_timestamp
2608 is set. */
2609
2610 fprintf_unfiltered (tmp_stream,
dfd4cc63
LM
2611 "infrun: target_wait (%d", ptid_get_pid (waiton_ptid));
2612 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
2613 fprintf_unfiltered (tmp_stream,
2614 " [%s]", target_pid_to_str (waiton_ptid));
2615 fprintf_unfiltered (tmp_stream, ", status) =\n");
2616 fprintf_unfiltered (tmp_stream,
2617 "infrun: %d [%s],\n",
dfd4cc63
LM
2618 ptid_get_pid (result_ptid),
2619 target_pid_to_str (result_ptid));
223698f8
DE
2620 fprintf_unfiltered (tmp_stream,
2621 "infrun: %s\n",
2622 status_string);
2623
759ef836 2624 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2625
2626 /* This uses %s in part to handle %'s in the text, but also to avoid
2627 a gcc error: the format attribute requires a string literal. */
2628 fprintf_unfiltered (gdb_stdlog, "%s", text);
2629
2630 xfree (status_string);
2631 xfree (text);
2632 ui_file_delete (tmp_stream);
2633}
2634
24291992
PA
2635/* Prepare and stabilize the inferior for detaching it. E.g.,
2636 detaching while a thread is displaced stepping is a recipe for
2637 crashing it, as nothing would readjust the PC out of the scratch
2638 pad. */
2639
2640void
2641prepare_for_detach (void)
2642{
2643 struct inferior *inf = current_inferior ();
2644 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2645 struct cleanup *old_chain_1;
2646 struct displaced_step_inferior_state *displaced;
2647
2648 displaced = get_displaced_stepping_state (inf->pid);
2649
2650 /* Is any thread of this process displaced stepping? If not,
2651 there's nothing else to do. */
2652 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2653 return;
2654
2655 if (debug_infrun)
2656 fprintf_unfiltered (gdb_stdlog,
2657 "displaced-stepping in-process while detaching");
2658
2659 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2660 inf->detaching = 1;
2661
2662 while (!ptid_equal (displaced->step_ptid, null_ptid))
2663 {
2664 struct cleanup *old_chain_2;
2665 struct execution_control_state ecss;
2666 struct execution_control_state *ecs;
2667
2668 ecs = &ecss;
2669 memset (ecs, 0, sizeof (*ecs));
2670
2671 overlay_cache_invalid = 1;
f15cb84a
YQ
2672 /* Flush target cache before starting to handle each event.
2673 Target was running and cache could be stale. This is just a
2674 heuristic. Running threads may modify target memory, but we
2675 don't get any event. */
2676 target_dcache_invalidate ();
24291992 2677
24291992
PA
2678 if (deprecated_target_wait_hook)
2679 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2680 else
2681 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2682
2683 if (debug_infrun)
2684 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2685
2686 /* If an error happens while handling the event, propagate GDB's
2687 knowledge of the executing state to the frontend/user running
2688 state. */
3e43a32a
MS
2689 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2690 &minus_one_ptid);
24291992
PA
2691
2692 /* Now figure out what to do with the result of the result. */
2693 handle_inferior_event (ecs);
2694
2695 /* No error, don't finish the state yet. */
2696 discard_cleanups (old_chain_2);
2697
2698 /* Breakpoints and watchpoints are not installed on the target
2699 at this point, and signals are passed directly to the
2700 inferior, so this must mean the process is gone. */
2701 if (!ecs->wait_some_more)
2702 {
2703 discard_cleanups (old_chain_1);
2704 error (_("Program exited while detaching"));
2705 }
2706 }
2707
2708 discard_cleanups (old_chain_1);
2709}
2710
cd0fc7c3 2711/* Wait for control to return from inferior to debugger.
ae123ec6 2712
cd0fc7c3
SS
2713 If inferior gets a signal, we may decide to start it up again
2714 instead of returning. That is why there is a loop in this function.
2715 When this function actually returns it means the inferior
2716 should be left stopped and GDB should read more commands. */
2717
2718void
e4c8541f 2719wait_for_inferior (void)
cd0fc7c3
SS
2720{
2721 struct cleanup *old_cleanups;
c906108c 2722
527159b7 2723 if (debug_infrun)
ae123ec6 2724 fprintf_unfiltered
e4c8541f 2725 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 2726
4e1c45ea
PA
2727 old_cleanups =
2728 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2729
c906108c
SS
2730 while (1)
2731 {
ae25568b
PA
2732 struct execution_control_state ecss;
2733 struct execution_control_state *ecs = &ecss;
29f49a6a
PA
2734 struct cleanup *old_chain;
2735
ae25568b
PA
2736 memset (ecs, 0, sizeof (*ecs));
2737
ec9499be 2738 overlay_cache_invalid = 1;
ec9499be 2739
f15cb84a
YQ
2740 /* Flush target cache before starting to handle each event.
2741 Target was running and cache could be stale. This is just a
2742 heuristic. Running threads may modify target memory, but we
2743 don't get any event. */
2744 target_dcache_invalidate ();
2745
9a4105ab 2746 if (deprecated_target_wait_hook)
47608cb1 2747 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2748 else
47608cb1 2749 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2750
f00150c9 2751 if (debug_infrun)
223698f8 2752 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2753
29f49a6a
PA
2754 /* If an error happens while handling the event, propagate GDB's
2755 knowledge of the executing state to the frontend/user running
2756 state. */
2757 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2758
cd0fc7c3
SS
2759 /* Now figure out what to do with the result of the result. */
2760 handle_inferior_event (ecs);
c906108c 2761
29f49a6a
PA
2762 /* No error, don't finish the state yet. */
2763 discard_cleanups (old_chain);
2764
cd0fc7c3
SS
2765 if (!ecs->wait_some_more)
2766 break;
2767 }
4e1c45ea 2768
cd0fc7c3
SS
2769 do_cleanups (old_cleanups);
2770}
c906108c 2771
1777feb0 2772/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 2773 event loop whenever a change of state is detected on the file
1777feb0
MS
2774 descriptor corresponding to the target. It can be called more than
2775 once to complete a single execution command. In such cases we need
2776 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
2777 that this function is called for a single execution command, then
2778 report to the user that the inferior has stopped, and do the
1777feb0 2779 necessary cleanups. */
43ff13b4
JM
2780
2781void
fba45db2 2782fetch_inferior_event (void *client_data)
43ff13b4 2783{
0d1e5fa7 2784 struct execution_control_state ecss;
a474d7c2 2785 struct execution_control_state *ecs = &ecss;
4f8d22e3 2786 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2787 struct cleanup *ts_old_chain;
4f8d22e3 2788 int was_sync = sync_execution;
0f641c01 2789 int cmd_done = 0;
43ff13b4 2790
0d1e5fa7
PA
2791 memset (ecs, 0, sizeof (*ecs));
2792
c5187ac6
PA
2793 /* We're handling a live event, so make sure we're doing live
2794 debugging. If we're looking at traceframes while the target is
2795 running, we're going to need to get back to that mode after
2796 handling the event. */
2797 if (non_stop)
2798 {
2799 make_cleanup_restore_current_traceframe ();
e6e4e701 2800 set_current_traceframe (-1);
c5187ac6
PA
2801 }
2802
4f8d22e3
PA
2803 if (non_stop)
2804 /* In non-stop mode, the user/frontend should not notice a thread
2805 switch due to internal events. Make sure we reverse to the
2806 user selected thread and frame after handling the event and
2807 running any breakpoint commands. */
2808 make_cleanup_restore_current_thread ();
2809
ec9499be 2810 overlay_cache_invalid = 1;
f15cb84a
YQ
2811 /* Flush target cache before starting to handle each event. Target
2812 was running and cache could be stale. This is just a heuristic.
2813 Running threads may modify target memory, but we don't get any
2814 event. */
2815 target_dcache_invalidate ();
3dd5b83d 2816
32231432
PA
2817 make_cleanup_restore_integer (&execution_direction);
2818 execution_direction = target_execution_direction ();
2819
9a4105ab 2820 if (deprecated_target_wait_hook)
a474d7c2 2821 ecs->ptid =
47608cb1 2822 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2823 else
47608cb1 2824 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2825
f00150c9 2826 if (debug_infrun)
223698f8 2827 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2828
29f49a6a
PA
2829 /* If an error happens while handling the event, propagate GDB's
2830 knowledge of the executing state to the frontend/user running
2831 state. */
2832 if (!non_stop)
2833 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2834 else
2835 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2836
353d1d73
JK
2837 /* Get executed before make_cleanup_restore_current_thread above to apply
2838 still for the thread which has thrown the exception. */
2839 make_bpstat_clear_actions_cleanup ();
2840
43ff13b4 2841 /* Now figure out what to do with the result of the result. */
a474d7c2 2842 handle_inferior_event (ecs);
43ff13b4 2843
a474d7c2 2844 if (!ecs->wait_some_more)
43ff13b4 2845 {
d6b48e9c
PA
2846 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2847
4e1c45ea 2848 delete_step_thread_step_resume_breakpoint ();
f107f563 2849
d6b48e9c 2850 /* We may not find an inferior if this was a process exit. */
16c381f0 2851 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2852 normal_stop ();
2853
af679fd0 2854 if (target_has_execution
0e5bf2a8 2855 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
af679fd0
PA
2856 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2857 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2858 && ecs->event_thread->step_multi
16c381f0 2859 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
2860 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2861 else
0f641c01
PA
2862 {
2863 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2864 cmd_done = 1;
2865 }
43ff13b4 2866 }
4f8d22e3 2867
29f49a6a
PA
2868 /* No error, don't finish the thread states yet. */
2869 discard_cleanups (ts_old_chain);
2870
4f8d22e3
PA
2871 /* Revert thread and frame. */
2872 do_cleanups (old_chain);
2873
2874 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
2875 restore the prompt (a synchronous execution command has finished,
2876 and we're ready for input). */
b4a14fd0 2877 if (interpreter_async && was_sync && !sync_execution)
4f8d22e3 2878 display_gdb_prompt (0);
0f641c01
PA
2879
2880 if (cmd_done
2881 && !was_sync
2882 && exec_done_display_p
2883 && (ptid_equal (inferior_ptid, null_ptid)
2884 || !is_running (inferior_ptid)))
2885 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
2886}
2887
edb3359d
DJ
2888/* Record the frame and location we're currently stepping through. */
2889void
2890set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2891{
2892 struct thread_info *tp = inferior_thread ();
2893
16c381f0
JK
2894 tp->control.step_frame_id = get_frame_id (frame);
2895 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
2896
2897 tp->current_symtab = sal.symtab;
2898 tp->current_line = sal.line;
2899}
2900
0d1e5fa7
PA
2901/* Clear context switchable stepping state. */
2902
2903void
4e1c45ea 2904init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2905{
2906 tss->stepping_over_breakpoint = 0;
2907 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
2908}
2909
e02bc4cc 2910/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2911 target_wait()/deprecated_target_wait_hook(). The data is actually
2912 cached by handle_inferior_event(), which gets called immediately
2913 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2914
2915void
488f131b 2916get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2917{
39f77062 2918 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2919 *status = target_last_waitstatus;
2920}
2921
ac264b3b
MS
2922void
2923nullify_last_target_wait_ptid (void)
2924{
2925 target_last_wait_ptid = minus_one_ptid;
2926}
2927
dcf4fbde 2928/* Switch thread contexts. */
dd80620e
MS
2929
2930static void
0d1e5fa7 2931context_switch (ptid_t ptid)
dd80620e 2932{
4b51d87b 2933 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
2934 {
2935 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2936 target_pid_to_str (inferior_ptid));
2937 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2938 target_pid_to_str (ptid));
fd48f117
DJ
2939 }
2940
0d1e5fa7 2941 switch_to_thread (ptid);
dd80620e
MS
2942}
2943
4fa8626c
DJ
2944static void
2945adjust_pc_after_break (struct execution_control_state *ecs)
2946{
24a73cce
UW
2947 struct regcache *regcache;
2948 struct gdbarch *gdbarch;
6c95b8df 2949 struct address_space *aspace;
118e6252 2950 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 2951
4fa8626c
DJ
2952 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2953 we aren't, just return.
9709f61c
DJ
2954
2955 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2956 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2957 implemented by software breakpoints should be handled through the normal
2958 breakpoint layer.
8fb3e588 2959
4fa8626c
DJ
2960 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2961 different signals (SIGILL or SIGEMT for instance), but it is less
2962 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2963 gdbarch_decr_pc_after_break. I don't know any specific target that
2964 generates these signals at breakpoints (the code has been in GDB since at
2965 least 1992) so I can not guess how to handle them here.
8fb3e588 2966
e6cf7916
UW
2967 In earlier versions of GDB, a target with
2968 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2969 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2970 target with both of these set in GDB history, and it seems unlikely to be
2971 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2972
2973 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2974 return;
2975
a493e3e2 2976 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
2977 return;
2978
4058b839
PA
2979 /* In reverse execution, when a breakpoint is hit, the instruction
2980 under it has already been de-executed. The reported PC always
2981 points at the breakpoint address, so adjusting it further would
2982 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2983 architecture:
2984
2985 B1 0x08000000 : INSN1
2986 B2 0x08000001 : INSN2
2987 0x08000002 : INSN3
2988 PC -> 0x08000003 : INSN4
2989
2990 Say you're stopped at 0x08000003 as above. Reverse continuing
2991 from that point should hit B2 as below. Reading the PC when the
2992 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2993 been de-executed already.
2994
2995 B1 0x08000000 : INSN1
2996 B2 PC -> 0x08000001 : INSN2
2997 0x08000002 : INSN3
2998 0x08000003 : INSN4
2999
3000 We can't apply the same logic as for forward execution, because
3001 we would wrongly adjust the PC to 0x08000000, since there's a
3002 breakpoint at PC - 1. We'd then report a hit on B1, although
3003 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3004 behaviour. */
3005 if (execution_direction == EXEC_REVERSE)
3006 return;
3007
24a73cce
UW
3008 /* If this target does not decrement the PC after breakpoints, then
3009 we have nothing to do. */
3010 regcache = get_thread_regcache (ecs->ptid);
3011 gdbarch = get_regcache_arch (regcache);
118e6252
MM
3012
3013 decr_pc = target_decr_pc_after_break (gdbarch);
3014 if (decr_pc == 0)
24a73cce
UW
3015 return;
3016
6c95b8df
PA
3017 aspace = get_regcache_aspace (regcache);
3018
8aad930b
AC
3019 /* Find the location where (if we've hit a breakpoint) the
3020 breakpoint would be. */
118e6252 3021 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 3022
1c5cfe86
PA
3023 /* Check whether there actually is a software breakpoint inserted at
3024 that location.
3025
3026 If in non-stop mode, a race condition is possible where we've
3027 removed a breakpoint, but stop events for that breakpoint were
3028 already queued and arrive later. To suppress those spurious
3029 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3030 and retire them after a number of stop events are reported. */
6c95b8df
PA
3031 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3032 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 3033 {
77f9e713 3034 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 3035
8213266a 3036 if (record_full_is_used ())
77f9e713 3037 record_full_gdb_operation_disable_set ();
96429cc8 3038
1c0fdd0e
UW
3039 /* When using hardware single-step, a SIGTRAP is reported for both
3040 a completed single-step and a software breakpoint. Need to
3041 differentiate between the two, as the latter needs adjusting
3042 but the former does not.
3043
3044 The SIGTRAP can be due to a completed hardware single-step only if
3045 - we didn't insert software single-step breakpoints
3046 - the thread to be examined is still the current thread
3047 - this thread is currently being stepped
3048
3049 If any of these events did not occur, we must have stopped due
3050 to hitting a software breakpoint, and have to back up to the
3051 breakpoint address.
3052
3053 As a special case, we could have hardware single-stepped a
3054 software breakpoint. In this case (prev_pc == breakpoint_pc),
3055 we also need to back up to the breakpoint address. */
3056
3057 if (singlestep_breakpoints_inserted_p
3058 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
3059 || !currently_stepping (ecs->event_thread)
3060 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 3061 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 3062
77f9e713 3063 do_cleanups (old_cleanups);
8aad930b 3064 }
4fa8626c
DJ
3065}
3066
7a76f5b8 3067static void
0d1e5fa7
PA
3068init_infwait_state (void)
3069{
3070 waiton_ptid = pid_to_ptid (-1);
3071 infwait_state = infwait_normal_state;
3072}
3073
edb3359d
DJ
3074static int
3075stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3076{
3077 for (frame = get_prev_frame (frame);
3078 frame != NULL;
3079 frame = get_prev_frame (frame))
3080 {
3081 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3082 return 1;
3083 if (get_frame_type (frame) != INLINE_FRAME)
3084 break;
3085 }
3086
3087 return 0;
3088}
3089
a96d9b2e
SDJ
3090/* Auxiliary function that handles syscall entry/return events.
3091 It returns 1 if the inferior should keep going (and GDB
3092 should ignore the event), or 0 if the event deserves to be
3093 processed. */
ca2163eb 3094
a96d9b2e 3095static int
ca2163eb 3096handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3097{
ca2163eb 3098 struct regcache *regcache;
ca2163eb
PA
3099 int syscall_number;
3100
3101 if (!ptid_equal (ecs->ptid, inferior_ptid))
3102 context_switch (ecs->ptid);
3103
3104 regcache = get_thread_regcache (ecs->ptid);
f90263c1 3105 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
3106 stop_pc = regcache_read_pc (regcache);
3107
a96d9b2e
SDJ
3108 if (catch_syscall_enabled () > 0
3109 && catching_syscall_number (syscall_number) > 0)
3110 {
3111 if (debug_infrun)
3112 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3113 syscall_number);
a96d9b2e 3114
16c381f0 3115 ecs->event_thread->control.stop_bpstat
6c95b8df 3116 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 3117 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 3118
ce12b012 3119 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
3120 {
3121 /* Catchpoint hit. */
ca2163eb
PA
3122 return 0;
3123 }
a96d9b2e 3124 }
ca2163eb
PA
3125
3126 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
3127 keep_going (ecs);
3128 return 1;
a96d9b2e
SDJ
3129}
3130
7e324e48
GB
3131/* Lazily fill in the execution_control_state's stop_func_* fields. */
3132
3133static void
3134fill_in_stop_func (struct gdbarch *gdbarch,
3135 struct execution_control_state *ecs)
3136{
3137 if (!ecs->stop_func_filled_in)
3138 {
3139 /* Don't care about return value; stop_func_start and stop_func_name
3140 will both be 0 if it doesn't work. */
3141 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3142 &ecs->stop_func_start, &ecs->stop_func_end);
3143 ecs->stop_func_start
3144 += gdbarch_deprecated_function_start_offset (gdbarch);
3145
591a12a1
UW
3146 if (gdbarch_skip_entrypoint_p (gdbarch))
3147 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
3148 ecs->stop_func_start);
3149
7e324e48
GB
3150 ecs->stop_func_filled_in = 1;
3151 }
3152}
3153
4f5d7f63
PA
3154
3155/* Return the STOP_SOON field of the inferior pointed at by PTID. */
3156
3157static enum stop_kind
3158get_inferior_stop_soon (ptid_t ptid)
3159{
3160 struct inferior *inf = find_inferior_pid (ptid_get_pid (ptid));
3161
3162 gdb_assert (inf != NULL);
3163 return inf->control.stop_soon;
3164}
3165
05ba8510
PA
3166/* Given an execution control state that has been freshly filled in by
3167 an event from the inferior, figure out what it means and take
3168 appropriate action.
3169
3170 The alternatives are:
3171
3172 1) stop_stepping and return; to really stop and return to the
3173 debugger.
3174
3175 2) keep_going and return; to wait for the next event (set
3176 ecs->event_thread->stepping_over_breakpoint to 1 to single step
3177 once). */
c906108c 3178
ec9499be 3179static void
96baa820 3180handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3181{
d6b48e9c
PA
3182 enum stop_kind stop_soon;
3183
28736962
PA
3184 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3185 {
3186 /* We had an event in the inferior, but we are not interested in
3187 handling it at this level. The lower layers have already
3188 done what needs to be done, if anything.
3189
3190 One of the possible circumstances for this is when the
3191 inferior produces output for the console. The inferior has
3192 not stopped, and we are ignoring the event. Another possible
3193 circumstance is any event which the lower level knows will be
3194 reported multiple times without an intervening resume. */
3195 if (debug_infrun)
3196 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3197 prepare_to_wait (ecs);
3198 return;
3199 }
3200
0e5bf2a8
PA
3201 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3202 && target_can_async_p () && !sync_execution)
3203 {
3204 /* There were no unwaited-for children left in the target, but,
3205 we're not synchronously waiting for events either. Just
3206 ignore. Otherwise, if we were running a synchronous
3207 execution command, we need to cancel it and give the user
3208 back the terminal. */
3209 if (debug_infrun)
3210 fprintf_unfiltered (gdb_stdlog,
3211 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3212 prepare_to_wait (ecs);
3213 return;
3214 }
3215
1777feb0 3216 /* Cache the last pid/waitstatus. */
39f77062 3217 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 3218 target_last_waitstatus = ecs->ws;
e02bc4cc 3219
ca005067 3220 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3221 stop_stack_dummy = STOP_NONE;
ca005067 3222
0e5bf2a8
PA
3223 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3224 {
3225 /* No unwaited-for children left. IOW, all resumed children
3226 have exited. */
3227 if (debug_infrun)
3228 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3229
3230 stop_print_frame = 0;
3231 stop_stepping (ecs);
3232 return;
3233 }
3234
8c90c137 3235 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 3236 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
3237 {
3238 ecs->event_thread = find_thread_ptid (ecs->ptid);
3239 /* If it's a new thread, add it to the thread database. */
3240 if (ecs->event_thread == NULL)
3241 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
3242
3243 /* Disable range stepping. If the next step request could use a
3244 range, this will be end up re-enabled then. */
3245 ecs->event_thread->control.may_range_step = 0;
359f5fe6 3246 }
88ed393a
JK
3247
3248 /* Dependent on valid ECS->EVENT_THREAD. */
3249 adjust_pc_after_break (ecs);
3250
3251 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3252 reinit_frame_cache ();
3253
28736962
PA
3254 breakpoint_retire_moribund ();
3255
2b009048
DJ
3256 /* First, distinguish signals caused by the debugger from signals
3257 that have to do with the program's own actions. Note that
3258 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3259 on the operating system version. Here we detect when a SIGILL or
3260 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3261 something similar for SIGSEGV, since a SIGSEGV will be generated
3262 when we're trying to execute a breakpoint instruction on a
3263 non-executable stack. This happens for call dummy breakpoints
3264 for architectures like SPARC that place call dummies on the
3265 stack. */
2b009048 3266 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
3267 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3268 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3269 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 3270 {
de0a0249
UW
3271 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3272
3273 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3274 regcache_read_pc (regcache)))
3275 {
3276 if (debug_infrun)
3277 fprintf_unfiltered (gdb_stdlog,
3278 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 3279 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 3280 }
2b009048
DJ
3281 }
3282
28736962
PA
3283 /* Mark the non-executing threads accordingly. In all-stop, all
3284 threads of all processes are stopped when we get any event
3285 reported. In non-stop mode, only the event thread stops. If
3286 we're handling a process exit in non-stop mode, there's nothing
3287 to do, as threads of the dead process are gone, and threads of
3288 any other process were left running. */
3289 if (!non_stop)
3290 set_executing (minus_one_ptid, 0);
3291 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3292 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
7aee8dc2 3293 set_executing (ecs->ptid, 0);
8c90c137 3294
0d1e5fa7 3295 switch (infwait_state)
488f131b
JB
3296 {
3297 case infwait_thread_hop_state:
527159b7 3298 if (debug_infrun)
8a9de0e4 3299 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 3300 break;
b83266a0 3301
488f131b 3302 case infwait_normal_state:
527159b7 3303 if (debug_infrun)
8a9de0e4 3304 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
3305 break;
3306
3307 case infwait_step_watch_state:
3308 if (debug_infrun)
3309 fprintf_unfiltered (gdb_stdlog,
3310 "infrun: infwait_step_watch_state\n");
3311
4f5d7f63 3312 ecs->stepped_after_stopped_by_watchpoint = 1;
488f131b 3313 break;
b83266a0 3314
488f131b 3315 case infwait_nonstep_watch_state:
527159b7 3316 if (debug_infrun)
8a9de0e4
AC
3317 fprintf_unfiltered (gdb_stdlog,
3318 "infrun: infwait_nonstep_watch_state\n");
488f131b 3319 insert_breakpoints ();
c906108c 3320
488f131b
JB
3321 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3322 handle things like signals arriving and other things happening
3323 in combination correctly? */
4f5d7f63 3324 ecs->stepped_after_stopped_by_watchpoint = 1;
488f131b 3325 break;
65e82032
AC
3326
3327 default:
e2e0b3e5 3328 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 3329 }
ec9499be 3330
0d1e5fa7 3331 infwait_state = infwait_normal_state;
ec9499be 3332 waiton_ptid = pid_to_ptid (-1);
c906108c 3333
488f131b
JB
3334 switch (ecs->ws.kind)
3335 {
3336 case TARGET_WAITKIND_LOADED:
527159b7 3337 if (debug_infrun)
8a9de0e4 3338 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
3339 if (!ptid_equal (ecs->ptid, inferior_ptid))
3340 context_switch (ecs->ptid);
b0f4b84b
DJ
3341 /* Ignore gracefully during startup of the inferior, as it might
3342 be the shell which has just loaded some objects, otherwise
3343 add the symbols for the newly loaded objects. Also ignore at
3344 the beginning of an attach or remote session; we will query
3345 the full list of libraries once the connection is
3346 established. */
4f5d7f63
PA
3347
3348 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 3349 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3350 {
edcc5120
TT
3351 struct regcache *regcache;
3352
edcc5120
TT
3353 regcache = get_thread_regcache (ecs->ptid);
3354
3355 handle_solib_event ();
3356
3357 ecs->event_thread->control.stop_bpstat
3358 = bpstat_stop_status (get_regcache_aspace (regcache),
3359 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 3360
ce12b012 3361 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
3362 {
3363 /* A catchpoint triggered. */
94c57d6a
PA
3364 process_event_stop_test (ecs);
3365 return;
edcc5120 3366 }
488f131b 3367
b0f4b84b
DJ
3368 /* If requested, stop when the dynamic linker notifies
3369 gdb of events. This allows the user to get control
3370 and place breakpoints in initializer routines for
3371 dynamically loaded objects (among other things). */
a493e3e2 3372 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
3373 if (stop_on_solib_events)
3374 {
55409f9d
DJ
3375 /* Make sure we print "Stopped due to solib-event" in
3376 normal_stop. */
3377 stop_print_frame = 1;
3378
b0f4b84b
DJ
3379 stop_stepping (ecs);
3380 return;
3381 }
488f131b 3382 }
b0f4b84b
DJ
3383
3384 /* If we are skipping through a shell, or through shared library
3385 loading that we aren't interested in, resume the program. If
5c09a2c5 3386 we're running the program normally, also resume. */
b0f4b84b
DJ
3387 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3388 {
74960c60
VP
3389 /* Loading of shared libraries might have changed breakpoint
3390 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
3391 if (stop_soon == NO_STOP_QUIETLY
3392 && !breakpoints_always_inserted_mode ())
74960c60 3393 insert_breakpoints ();
a493e3e2 3394 resume (0, GDB_SIGNAL_0);
b0f4b84b
DJ
3395 prepare_to_wait (ecs);
3396 return;
3397 }
3398
5c09a2c5
PA
3399 /* But stop if we're attaching or setting up a remote
3400 connection. */
3401 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3402 || stop_soon == STOP_QUIETLY_REMOTE)
3403 {
3404 if (debug_infrun)
3405 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3406 stop_stepping (ecs);
3407 return;
3408 }
3409
3410 internal_error (__FILE__, __LINE__,
3411 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 3412
488f131b 3413 case TARGET_WAITKIND_SPURIOUS:
527159b7 3414 if (debug_infrun)
8a9de0e4 3415 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 3416 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 3417 context_switch (ecs->ptid);
a493e3e2 3418 resume (0, GDB_SIGNAL_0);
488f131b
JB
3419 prepare_to_wait (ecs);
3420 return;
c5aa993b 3421
488f131b 3422 case TARGET_WAITKIND_EXITED:
940c3c06 3423 case TARGET_WAITKIND_SIGNALLED:
527159b7 3424 if (debug_infrun)
940c3c06
PA
3425 {
3426 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3427 fprintf_unfiltered (gdb_stdlog,
3428 "infrun: TARGET_WAITKIND_EXITED\n");
3429 else
3430 fprintf_unfiltered (gdb_stdlog,
3431 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3432 }
3433
fb66883a 3434 inferior_ptid = ecs->ptid;
6c95b8df
PA
3435 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3436 set_current_program_space (current_inferior ()->pspace);
3437 handle_vfork_child_exec_or_exit (0);
1777feb0 3438 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 3439
0c557179
SDJ
3440 /* Clearing any previous state of convenience variables. */
3441 clear_exit_convenience_vars ();
3442
940c3c06
PA
3443 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3444 {
3445 /* Record the exit code in the convenience variable $_exitcode, so
3446 that the user can inspect this again later. */
3447 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3448 (LONGEST) ecs->ws.value.integer);
3449
3450 /* Also record this in the inferior itself. */
3451 current_inferior ()->has_exit_code = 1;
3452 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 3453
940c3c06
PA
3454 print_exited_reason (ecs->ws.value.integer);
3455 }
3456 else
0c557179
SDJ
3457 {
3458 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3459 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3460
3461 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3462 {
3463 /* Set the value of the internal variable $_exitsignal,
3464 which holds the signal uncaught by the inferior. */
3465 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3466 gdbarch_gdb_signal_to_target (gdbarch,
3467 ecs->ws.value.sig));
3468 }
3469 else
3470 {
3471 /* We don't have access to the target's method used for
3472 converting between signal numbers (GDB's internal
3473 representation <-> target's representation).
3474 Therefore, we cannot do a good job at displaying this
3475 information to the user. It's better to just warn
3476 her about it (if infrun debugging is enabled), and
3477 give up. */
3478 if (debug_infrun)
3479 fprintf_filtered (gdb_stdlog, _("\
3480Cannot fill $_exitsignal with the correct signal number.\n"));
3481 }
3482
3483 print_signal_exited_reason (ecs->ws.value.sig);
3484 }
8cf64490 3485
488f131b
JB
3486 gdb_flush (gdb_stdout);
3487 target_mourn_inferior ();
1c0fdd0e 3488 singlestep_breakpoints_inserted_p = 0;
d03285ec 3489 cancel_single_step_breakpoints ();
488f131b
JB
3490 stop_print_frame = 0;
3491 stop_stepping (ecs);
3492 return;
c5aa993b 3493
488f131b 3494 /* The following are the only cases in which we keep going;
1777feb0 3495 the above cases end in a continue or goto. */
488f131b 3496 case TARGET_WAITKIND_FORKED:
deb3b17b 3497 case TARGET_WAITKIND_VFORKED:
527159b7 3498 if (debug_infrun)
fed708ed
PA
3499 {
3500 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3501 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3502 else
3503 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3504 }
c906108c 3505
e2d96639
YQ
3506 /* Check whether the inferior is displaced stepping. */
3507 {
3508 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3509 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3510 struct displaced_step_inferior_state *displaced
3511 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3512
3513 /* If checking displaced stepping is supported, and thread
3514 ecs->ptid is displaced stepping. */
3515 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3516 {
3517 struct inferior *parent_inf
3518 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3519 struct regcache *child_regcache;
3520 CORE_ADDR parent_pc;
3521
3522 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3523 indicating that the displaced stepping of syscall instruction
3524 has been done. Perform cleanup for parent process here. Note
3525 that this operation also cleans up the child process for vfork,
3526 because their pages are shared. */
a493e3e2 3527 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
e2d96639
YQ
3528
3529 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3530 {
3531 /* Restore scratch pad for child process. */
3532 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3533 }
3534
3535 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3536 the child's PC is also within the scratchpad. Set the child's PC
3537 to the parent's PC value, which has already been fixed up.
3538 FIXME: we use the parent's aspace here, although we're touching
3539 the child, because the child hasn't been added to the inferior
3540 list yet at this point. */
3541
3542 child_regcache
3543 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3544 gdbarch,
3545 parent_inf->aspace);
3546 /* Read PC value of parent process. */
3547 parent_pc = regcache_read_pc (regcache);
3548
3549 if (debug_displaced)
3550 fprintf_unfiltered (gdb_stdlog,
3551 "displaced: write child pc from %s to %s\n",
3552 paddress (gdbarch,
3553 regcache_read_pc (child_regcache)),
3554 paddress (gdbarch, parent_pc));
3555
3556 regcache_write_pc (child_regcache, parent_pc);
3557 }
3558 }
3559
5a2901d9 3560 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3561 context_switch (ecs->ptid);
5a2901d9 3562
b242c3c2
PA
3563 /* Immediately detach breakpoints from the child before there's
3564 any chance of letting the user delete breakpoints from the
3565 breakpoint lists. If we don't do this early, it's easy to
3566 leave left over traps in the child, vis: "break foo; catch
3567 fork; c; <fork>; del; c; <child calls foo>". We only follow
3568 the fork on the last `continue', and by that time the
3569 breakpoint at "foo" is long gone from the breakpoint table.
3570 If we vforked, then we don't need to unpatch here, since both
3571 parent and child are sharing the same memory pages; we'll
3572 need to unpatch at follow/detach time instead to be certain
3573 that new breakpoints added between catchpoint hit time and
3574 vfork follow are detached. */
3575 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3576 {
b242c3c2
PA
3577 /* This won't actually modify the breakpoint list, but will
3578 physically remove the breakpoints from the child. */
d80ee84f 3579 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
3580 }
3581
d03285ec
UW
3582 if (singlestep_breakpoints_inserted_p)
3583 {
1777feb0 3584 /* Pull the single step breakpoints out of the target. */
d03285ec
UW
3585 remove_single_step_breakpoints ();
3586 singlestep_breakpoints_inserted_p = 0;
3587 }
3588
e58b0e63
PA
3589 /* In case the event is caught by a catchpoint, remember that
3590 the event is to be followed at the next resume of the thread,
3591 and not immediately. */
3592 ecs->event_thread->pending_follow = ecs->ws;
3593
fb14de7b 3594 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3595
16c381f0 3596 ecs->event_thread->control.stop_bpstat
6c95b8df 3597 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3598 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 3599
ce12b012
PA
3600 /* If no catchpoint triggered for this, then keep going. Note
3601 that we're interested in knowing the bpstat actually causes a
3602 stop, not just if it may explain the signal. Software
3603 watchpoints, for example, always appear in the bpstat. */
3604 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 3605 {
6c95b8df
PA
3606 ptid_t parent;
3607 ptid_t child;
e58b0e63 3608 int should_resume;
3e43a32a
MS
3609 int follow_child
3610 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3611
a493e3e2 3612 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
3613
3614 should_resume = follow_fork ();
3615
6c95b8df
PA
3616 parent = ecs->ptid;
3617 child = ecs->ws.value.related_pid;
3618
3619 /* In non-stop mode, also resume the other branch. */
3620 if (non_stop && !detach_fork)
3621 {
3622 if (follow_child)
3623 switch_to_thread (parent);
3624 else
3625 switch_to_thread (child);
3626
3627 ecs->event_thread = inferior_thread ();
3628 ecs->ptid = inferior_ptid;
3629 keep_going (ecs);
3630 }
3631
3632 if (follow_child)
3633 switch_to_thread (child);
3634 else
3635 switch_to_thread (parent);
3636
e58b0e63
PA
3637 ecs->event_thread = inferior_thread ();
3638 ecs->ptid = inferior_ptid;
3639
3640 if (should_resume)
3641 keep_going (ecs);
3642 else
3643 stop_stepping (ecs);
04e68871
DJ
3644 return;
3645 }
94c57d6a
PA
3646 process_event_stop_test (ecs);
3647 return;
488f131b 3648
6c95b8df
PA
3649 case TARGET_WAITKIND_VFORK_DONE:
3650 /* Done with the shared memory region. Re-insert breakpoints in
3651 the parent, and keep going. */
3652
3653 if (debug_infrun)
3e43a32a
MS
3654 fprintf_unfiltered (gdb_stdlog,
3655 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
3656
3657 if (!ptid_equal (ecs->ptid, inferior_ptid))
3658 context_switch (ecs->ptid);
3659
3660 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3661 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3662 /* This also takes care of reinserting breakpoints in the
3663 previously locked inferior. */
3664 keep_going (ecs);
3665 return;
3666
488f131b 3667 case TARGET_WAITKIND_EXECD:
527159b7 3668 if (debug_infrun)
fc5261f2 3669 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3670
5a2901d9 3671 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3672 context_switch (ecs->ptid);
5a2901d9 3673
d03285ec
UW
3674 singlestep_breakpoints_inserted_p = 0;
3675 cancel_single_step_breakpoints ();
3676
fb14de7b 3677 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3678
6c95b8df
PA
3679 /* Do whatever is necessary to the parent branch of the vfork. */
3680 handle_vfork_child_exec_or_exit (1);
3681
795e548f
PA
3682 /* This causes the eventpoints and symbol table to be reset.
3683 Must do this now, before trying to determine whether to
3684 stop. */
71b43ef8 3685 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3686
16c381f0 3687 ecs->event_thread->control.stop_bpstat
6c95b8df 3688 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3689 stop_pc, ecs->ptid, &ecs->ws);
795e548f 3690
71b43ef8
PA
3691 /* Note that this may be referenced from inside
3692 bpstat_stop_status above, through inferior_has_execd. */
3693 xfree (ecs->ws.value.execd_pathname);
3694 ecs->ws.value.execd_pathname = NULL;
3695
04e68871 3696 /* If no catchpoint triggered for this, then keep going. */
ce12b012 3697 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 3698 {
a493e3e2 3699 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
3700 keep_going (ecs);
3701 return;
3702 }
94c57d6a
PA
3703 process_event_stop_test (ecs);
3704 return;
488f131b 3705
b4dc5ffa
MK
3706 /* Be careful not to try to gather much state about a thread
3707 that's in a syscall. It's frequently a losing proposition. */
488f131b 3708 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3709 if (debug_infrun)
3e43a32a
MS
3710 fprintf_unfiltered (gdb_stdlog,
3711 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 3712 /* Getting the current syscall number. */
94c57d6a
PA
3713 if (handle_syscall_event (ecs) == 0)
3714 process_event_stop_test (ecs);
3715 return;
c906108c 3716
488f131b
JB
3717 /* Before examining the threads further, step this thread to
3718 get it entirely out of the syscall. (We get notice of the
3719 event when the thread is just on the verge of exiting a
3720 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3721 into user code.) */
488f131b 3722 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3723 if (debug_infrun)
3e43a32a
MS
3724 fprintf_unfiltered (gdb_stdlog,
3725 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
3726 if (handle_syscall_event (ecs) == 0)
3727 process_event_stop_test (ecs);
3728 return;
c906108c 3729
488f131b 3730 case TARGET_WAITKIND_STOPPED:
527159b7 3731 if (debug_infrun)
8a9de0e4 3732 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 3733 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4f5d7f63
PA
3734 handle_signal_stop (ecs);
3735 return;
c906108c 3736
b2175913 3737 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
3738 if (debug_infrun)
3739 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 3740 /* Reverse execution: target ran out of history info. */
eab402df
PA
3741
3742 /* Pull the single step breakpoints out of the target. */
3743 if (singlestep_breakpoints_inserted_p)
3744 {
3745 if (!ptid_equal (ecs->ptid, inferior_ptid))
3746 context_switch (ecs->ptid);
3747 remove_single_step_breakpoints ();
3748 singlestep_breakpoints_inserted_p = 0;
3749 }
fb14de7b 3750 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
33d62d64 3751 print_no_history_reason ();
b2175913
MS
3752 stop_stepping (ecs);
3753 return;
488f131b 3754 }
4f5d7f63
PA
3755}
3756
3757/* Come here when the program has stopped with a signal. */
3758
3759static void
3760handle_signal_stop (struct execution_control_state *ecs)
3761{
3762 struct frame_info *frame;
3763 struct gdbarch *gdbarch;
3764 int stopped_by_watchpoint;
3765 enum stop_kind stop_soon;
3766 int random_signal;
c906108c 3767
f0407826
DE
3768 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
3769
3770 /* Do we need to clean up the state of a thread that has
3771 completed a displaced single-step? (Doing so usually affects
3772 the PC, so do it here, before we set stop_pc.) */
3773 displaced_step_fixup (ecs->ptid,
3774 ecs->event_thread->suspend.stop_signal);
3775
3776 /* If we either finished a single-step or hit a breakpoint, but
3777 the user wanted this thread to be stopped, pretend we got a
3778 SIG0 (generic unsignaled stop). */
3779 if (ecs->event_thread->stop_requested
3780 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3781 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 3782
515630c5 3783 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3784
527159b7 3785 if (debug_infrun)
237fc4c9 3786 {
5af949e3
UW
3787 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3788 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
3789 struct cleanup *old_chain = save_inferior_ptid ();
3790
3791 inferior_ptid = ecs->ptid;
5af949e3
UW
3792
3793 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3794 paddress (gdbarch, stop_pc));
d92524f1 3795 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3796 {
3797 CORE_ADDR addr;
abbb1732 3798
237fc4c9
PA
3799 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3800
3801 if (target_stopped_data_address (&current_target, &addr))
3802 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3803 "infrun: stopped data address = %s\n",
3804 paddress (gdbarch, addr));
237fc4c9
PA
3805 else
3806 fprintf_unfiltered (gdb_stdlog,
3807 "infrun: (no data address available)\n");
3808 }
7f82dfc7
JK
3809
3810 do_cleanups (old_chain);
237fc4c9 3811 }
527159b7 3812
36fa8042
PA
3813 /* This is originated from start_remote(), start_inferior() and
3814 shared libraries hook functions. */
3815 stop_soon = get_inferior_stop_soon (ecs->ptid);
3816 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
3817 {
3818 if (!ptid_equal (ecs->ptid, inferior_ptid))
3819 context_switch (ecs->ptid);
3820 if (debug_infrun)
3821 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3822 stop_print_frame = 1;
3823 stop_stepping (ecs);
3824 return;
3825 }
3826
3827 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
3828 && stop_after_trap)
3829 {
3830 if (!ptid_equal (ecs->ptid, inferior_ptid))
3831 context_switch (ecs->ptid);
3832 if (debug_infrun)
3833 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
3834 stop_print_frame = 0;
3835 stop_stepping (ecs);
3836 return;
3837 }
3838
3839 /* This originates from attach_command(). We need to overwrite
3840 the stop_signal here, because some kernels don't ignore a
3841 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3842 See more comments in inferior.h. On the other hand, if we
3843 get a non-SIGSTOP, report it to the user - assume the backend
3844 will handle the SIGSTOP if it should show up later.
3845
3846 Also consider that the attach is complete when we see a
3847 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
3848 target extended-remote report it instead of a SIGSTOP
3849 (e.g. gdbserver). We already rely on SIGTRAP being our
3850 signal, so this is no exception.
3851
3852 Also consider that the attach is complete when we see a
3853 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
3854 the target to stop all threads of the inferior, in case the
3855 low level attach operation doesn't stop them implicitly. If
3856 they weren't stopped implicitly, then the stub will report a
3857 GDB_SIGNAL_0, meaning: stopped for no particular reason
3858 other than GDB's request. */
3859 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3860 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
3861 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
3862 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
3863 {
3864 stop_print_frame = 1;
3865 stop_stepping (ecs);
3866 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3867 return;
3868 }
3869
9f976b41
DJ
3870 if (stepping_past_singlestep_breakpoint)
3871 {
1c0fdd0e 3872 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
3873 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3874 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3875
3876 stepping_past_singlestep_breakpoint = 0;
3877
3878 /* We've either finished single-stepping past the single-step
8fb3e588
AC
3879 breakpoint, or stopped for some other reason. It would be nice if
3880 we could tell, but we can't reliably. */
a493e3e2 3881 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8fb3e588 3882 {
527159b7 3883 if (debug_infrun)
3e43a32a
MS
3884 fprintf_unfiltered (gdb_stdlog,
3885 "infrun: stepping_past_"
3886 "singlestep_breakpoint\n");
9f976b41 3887 /* Pull the single step breakpoints out of the target. */
8b3ee56d
PA
3888 if (!ptid_equal (ecs->ptid, inferior_ptid))
3889 context_switch (ecs->ptid);
e0cd558a 3890 remove_single_step_breakpoints ();
9f976b41
DJ
3891 singlestep_breakpoints_inserted_p = 0;
3892
16c381f0 3893 ecs->event_thread->control.trap_expected = 0;
9f976b41 3894
0d1e5fa7 3895 context_switch (saved_singlestep_ptid);
9a4105ab 3896 if (deprecated_context_hook)
de9f1b68 3897 deprecated_context_hook (pid_to_thread_id (saved_singlestep_ptid));
9f976b41 3898
a493e3e2 3899 resume (1, GDB_SIGNAL_0);
9f976b41
DJ
3900 prepare_to_wait (ecs);
3901 return;
3902 }
3903 }
3904
488f131b
JB
3905 /* See if a thread hit a thread-specific breakpoint that was meant for
3906 another thread. If so, then step that thread past the breakpoint,
3907 and continue it. */
3908
a493e3e2 3909 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 3910 {
9f976b41 3911 int thread_hop_needed = 0;
cf00dfa7
VP
3912 struct address_space *aspace =
3913 get_regcache_aspace (get_thread_regcache (ecs->ptid));
9f976b41 3914
f8d40ec8 3915 /* Check if a regular breakpoint has been hit before checking
1777feb0 3916 for a potential single step breakpoint. Otherwise, GDB will
f8d40ec8 3917 not see this breakpoint hit when stepping onto breakpoints. */
6c95b8df 3918 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
488f131b 3919 {
6c95b8df 3920 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
9f976b41
DJ
3921 thread_hop_needed = 1;
3922 }
1c0fdd0e 3923 else if (singlestep_breakpoints_inserted_p)
9f976b41 3924 {
fd48f117
DJ
3925 /* We have not context switched yet, so this should be true
3926 no matter which thread hit the singlestep breakpoint. */
3927 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3928 if (debug_infrun)
3929 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3930 "trap for %s\n",
3931 target_pid_to_str (ecs->ptid));
3932
9f976b41
DJ
3933 /* The call to in_thread_list is necessary because PTIDs sometimes
3934 change when we go from single-threaded to multi-threaded. If
3935 the singlestep_ptid is still in the list, assume that it is
3936 really different from ecs->ptid. */
3937 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3938 && in_thread_list (singlestep_ptid))
3939 {
fd48f117
DJ
3940 /* If the PC of the thread we were trying to single-step
3941 has changed, discard this event (which we were going
3942 to ignore anyway), and pretend we saw that thread
3943 trap. This prevents us continuously moving the
3944 single-step breakpoint forward, one instruction at a
3945 time. If the PC has changed, then the thread we were
3946 trying to single-step has trapped or been signalled,
3947 but the event has not been reported to GDB yet.
3948
3949 There might be some cases where this loses signal
3950 information, if a signal has arrived at exactly the
3951 same time that the PC changed, but this is the best
3952 we can do with the information available. Perhaps we
3953 should arrange to report all events for all threads
3954 when they stop, or to re-poll the remote looking for
3955 this particular thread (i.e. temporarily enable
3956 schedlock). */
515630c5
UW
3957
3958 CORE_ADDR new_singlestep_pc
3959 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3960
3961 if (new_singlestep_pc != singlestep_pc)
fd48f117 3962 {
2ea28649 3963 enum gdb_signal stop_signal;
2020b7ab 3964
fd48f117
DJ
3965 if (debug_infrun)
3966 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3967 " but expected thread advanced also\n");
3968
3969 /* The current context still belongs to
3970 singlestep_ptid. Don't swap here, since that's
3971 the context we want to use. Just fudge our
3972 state and continue. */
16c381f0 3973 stop_signal = ecs->event_thread->suspend.stop_signal;
a493e3e2 3974 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
fd48f117 3975 ecs->ptid = singlestep_ptid;
e09875d4 3976 ecs->event_thread = find_thread_ptid (ecs->ptid);
16c381f0 3977 ecs->event_thread->suspend.stop_signal = stop_signal;
515630c5 3978 stop_pc = new_singlestep_pc;
fd48f117
DJ
3979 }
3980 else
3981 {
3982 if (debug_infrun)
3983 fprintf_unfiltered (gdb_stdlog,
3984 "infrun: unexpected thread\n");
3985
3986 thread_hop_needed = 1;
3987 stepping_past_singlestep_breakpoint = 1;
3988 saved_singlestep_ptid = singlestep_ptid;
3989 }
9f976b41
DJ
3990 }
3991 }
3992
3993 if (thread_hop_needed)
8fb3e588 3994 {
9f5a595d 3995 struct regcache *thread_regcache;
237fc4c9 3996 int remove_status = 0;
8fb3e588 3997
527159b7 3998 if (debug_infrun)
8a9de0e4 3999 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 4000
b3444185
PA
4001 /* Switch context before touching inferior memory, the
4002 previous thread may have exited. */
4003 if (!ptid_equal (inferior_ptid, ecs->ptid))
4004 context_switch (ecs->ptid);
4005
8fb3e588 4006 /* Saw a breakpoint, but it was hit by the wrong thread.
1777feb0 4007 Just continue. */
8fb3e588 4008
1c0fdd0e 4009 if (singlestep_breakpoints_inserted_p)
488f131b 4010 {
1777feb0 4011 /* Pull the single step breakpoints out of the target. */
e0cd558a 4012 remove_single_step_breakpoints ();
8fb3e588
AC
4013 singlestep_breakpoints_inserted_p = 0;
4014 }
4015
237fc4c9
PA
4016 /* If the arch can displace step, don't remove the
4017 breakpoints. */
9f5a595d
UW
4018 thread_regcache = get_thread_regcache (ecs->ptid);
4019 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
4020 remove_status = remove_breakpoints ();
4021
8fb3e588
AC
4022 /* Did we fail to remove breakpoints? If so, try
4023 to set the PC past the bp. (There's at least
4024 one situation in which we can fail to remove
4025 the bp's: On HP-UX's that use ttrace, we can't
4026 change the address space of a vforking child
4027 process until the child exits (well, okay, not
1777feb0 4028 then either :-) or execs. */
8fb3e588 4029 if (remove_status != 0)
9d9cd7ac 4030 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
4031 else
4032 { /* Single step */
94cc34af
PA
4033 if (!non_stop)
4034 {
4035 /* Only need to require the next event from this
4036 thread in all-stop mode. */
4037 waiton_ptid = ecs->ptid;
4038 infwait_state = infwait_thread_hop_state;
4039 }
8fb3e588 4040
4e1c45ea 4041 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 4042 keep_going (ecs);
8fb3e588
AC
4043 return;
4044 }
488f131b
JB
4045 }
4046 }
c906108c 4047
488f131b 4048 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
4049 so, then switch to that thread. */
4050 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 4051 {
527159b7 4052 if (debug_infrun)
8a9de0e4 4053 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 4054
0d1e5fa7 4055 context_switch (ecs->ptid);
c5aa993b 4056
9a4105ab
AC
4057 if (deprecated_context_hook)
4058 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 4059 }
c906108c 4060
568d6575
UW
4061 /* At this point, get hold of the now-current thread's frame. */
4062 frame = get_current_frame ();
4063 gdbarch = get_frame_arch (frame);
4064
1c0fdd0e 4065 if (singlestep_breakpoints_inserted_p)
488f131b 4066 {
1777feb0 4067 /* Pull the single step breakpoints out of the target. */
e0cd558a 4068 remove_single_step_breakpoints ();
488f131b
JB
4069 singlestep_breakpoints_inserted_p = 0;
4070 }
c906108c 4071
4f5d7f63 4072 if (ecs->stepped_after_stopped_by_watchpoint)
d983da9c
DJ
4073 stopped_by_watchpoint = 0;
4074 else
4075 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4076
4077 /* If necessary, step over this watchpoint. We'll be back to display
4078 it in a moment. */
4079 if (stopped_by_watchpoint
d92524f1 4080 && (target_have_steppable_watchpoint
568d6575 4081 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 4082 {
488f131b
JB
4083 /* At this point, we are stopped at an instruction which has
4084 attempted to write to a piece of memory under control of
4085 a watchpoint. The instruction hasn't actually executed
4086 yet. If we were to evaluate the watchpoint expression
4087 now, we would get the old value, and therefore no change
4088 would seem to have occurred.
4089
4090 In order to make watchpoints work `right', we really need
4091 to complete the memory write, and then evaluate the
d983da9c
DJ
4092 watchpoint expression. We do this by single-stepping the
4093 target.
4094
4095 It may not be necessary to disable the watchpoint to stop over
4096 it. For example, the PA can (with some kernel cooperation)
4097 single step over a watchpoint without disabling the watchpoint.
4098
4099 It is far more common to need to disable a watchpoint to step
4100 the inferior over it. If we have non-steppable watchpoints,
4101 we must disable the current watchpoint; it's simplest to
4102 disable all watchpoints and breakpoints. */
2facfe5c
DD
4103 int hw_step = 1;
4104
d92524f1 4105 if (!target_have_steppable_watchpoint)
2455069d
UW
4106 {
4107 remove_breakpoints ();
4108 /* See comment in resume why we need to stop bypassing signals
4109 while breakpoints have been removed. */
4110 target_pass_signals (0, NULL);
4111 }
2facfe5c 4112 /* Single step */
568d6575 4113 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
a493e3e2 4114 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
0d1e5fa7 4115 waiton_ptid = ecs->ptid;
d92524f1 4116 if (target_have_steppable_watchpoint)
0d1e5fa7 4117 infwait_state = infwait_step_watch_state;
d983da9c 4118 else
0d1e5fa7 4119 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
4120 prepare_to_wait (ecs);
4121 return;
4122 }
4123
4e1c45ea 4124 ecs->event_thread->stepping_over_breakpoint = 0;
16c381f0
JK
4125 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4126 ecs->event_thread->control.stop_step = 0;
488f131b 4127 stop_print_frame = 1;
488f131b 4128 stopped_by_random_signal = 0;
488f131b 4129
edb3359d
DJ
4130 /* Hide inlined functions starting here, unless we just performed stepi or
4131 nexti. After stepi and nexti, always show the innermost frame (not any
4132 inline function call sites). */
16c381f0 4133 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
4134 {
4135 struct address_space *aspace =
4136 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4137
4138 /* skip_inline_frames is expensive, so we avoid it if we can
4139 determine that the address is one where functions cannot have
4140 been inlined. This improves performance with inferiors that
4141 load a lot of shared libraries, because the solib event
4142 breakpoint is defined as the address of a function (i.e. not
4143 inline). Note that we have to check the previous PC as well
4144 as the current one to catch cases when we have just
4145 single-stepped off a breakpoint prior to reinstating it.
4146 Note that we're assuming that the code we single-step to is
4147 not inline, but that's not definitive: there's nothing
4148 preventing the event breakpoint function from containing
4149 inlined code, and the single-step ending up there. If the
4150 user had set a breakpoint on that inlined code, the missing
4151 skip_inline_frames call would break things. Fortunately
4152 that's an extremely unlikely scenario. */
09ac7c10 4153 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
4154 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4155 && ecs->event_thread->control.trap_expected
4156 && pc_at_non_inline_function (aspace,
4157 ecs->event_thread->prev_pc,
09ac7c10 4158 &ecs->ws)))
1c5a993e
MR
4159 {
4160 skip_inline_frames (ecs->ptid);
4161
4162 /* Re-fetch current thread's frame in case that invalidated
4163 the frame cache. */
4164 frame = get_current_frame ();
4165 gdbarch = get_frame_arch (frame);
4166 }
0574c78f 4167 }
edb3359d 4168
a493e3e2 4169 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 4170 && ecs->event_thread->control.trap_expected
568d6575 4171 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 4172 && currently_stepping (ecs->event_thread))
3352ef37 4173 {
b50d7442 4174 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 4175 also on an instruction that needs to be stepped multiple
1777feb0 4176 times before it's been fully executing. E.g., architectures
3352ef37
AC
4177 with a delay slot. It needs to be stepped twice, once for
4178 the instruction and once for the delay slot. */
4179 int step_through_delay
568d6575 4180 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 4181
527159b7 4182 if (debug_infrun && step_through_delay)
8a9de0e4 4183 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
4184 if (ecs->event_thread->control.step_range_end == 0
4185 && step_through_delay)
3352ef37
AC
4186 {
4187 /* The user issued a continue when stopped at a breakpoint.
4188 Set up for another trap and get out of here. */
4e1c45ea 4189 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4190 keep_going (ecs);
4191 return;
4192 }
4193 else if (step_through_delay)
4194 {
4195 /* The user issued a step when stopped at a breakpoint.
4196 Maybe we should stop, maybe we should not - the delay
4197 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4198 case, don't decide that here, just set
4199 ecs->stepping_over_breakpoint, making sure we
4200 single-step again before breakpoints are re-inserted. */
4e1c45ea 4201 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4202 }
4203 }
4204
ab04a2af
TT
4205 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4206 handles this event. */
4207 ecs->event_thread->control.stop_bpstat
4208 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4209 stop_pc, ecs->ptid, &ecs->ws);
db82e815 4210
ab04a2af
TT
4211 /* Following in case break condition called a
4212 function. */
4213 stop_print_frame = 1;
73dd234f 4214
ab04a2af
TT
4215 /* This is where we handle "moribund" watchpoints. Unlike
4216 software breakpoints traps, hardware watchpoint traps are
4217 always distinguishable from random traps. If no high-level
4218 watchpoint is associated with the reported stop data address
4219 anymore, then the bpstat does not explain the signal ---
4220 simply make sure to ignore it if `stopped_by_watchpoint' is
4221 set. */
4222
4223 if (debug_infrun
4224 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 4225 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 4226 GDB_SIGNAL_TRAP)
ab04a2af
TT
4227 && stopped_by_watchpoint)
4228 fprintf_unfiltered (gdb_stdlog,
4229 "infrun: no user watchpoint explains "
4230 "watchpoint SIGTRAP, ignoring\n");
73dd234f 4231
bac7d97b 4232 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
4233 at one stage in the past included checks for an inferior
4234 function call's call dummy's return breakpoint. The original
4235 comment, that went with the test, read:
03cebad2 4236
ab04a2af
TT
4237 ``End of a stack dummy. Some systems (e.g. Sony news) give
4238 another signal besides SIGTRAP, so check here as well as
4239 above.''
73dd234f 4240
ab04a2af
TT
4241 If someone ever tries to get call dummys on a
4242 non-executable stack to work (where the target would stop
4243 with something like a SIGSEGV), then those tests might need
4244 to be re-instated. Given, however, that the tests were only
4245 enabled when momentary breakpoints were not being used, I
4246 suspect that it won't be the case.
488f131b 4247
ab04a2af
TT
4248 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4249 be necessary for call dummies on a non-executable stack on
4250 SPARC. */
488f131b 4251
bac7d97b 4252 /* See if the breakpoints module can explain the signal. */
47591c29
PA
4253 random_signal
4254 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4255 ecs->event_thread->suspend.stop_signal);
bac7d97b
PA
4256
4257 /* If not, perhaps stepping/nexting can. */
4258 if (random_signal)
4259 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4260 && currently_stepping (ecs->event_thread));
ab04a2af 4261
bac7d97b
PA
4262 /* No? Perhaps we got a moribund watchpoint. */
4263 if (random_signal)
4264 random_signal = !stopped_by_watchpoint;
ab04a2af 4265
488f131b
JB
4266 /* For the program's own signals, act according to
4267 the signal handling tables. */
4268
ce12b012 4269 if (random_signal)
488f131b
JB
4270 {
4271 /* Signal not for debugging purposes. */
4272 int printed = 0;
24291992 4273 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
c9737c08 4274 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 4275
527159b7 4276 if (debug_infrun)
c9737c08
PA
4277 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4278 gdb_signal_to_symbol_string (stop_signal));
527159b7 4279
488f131b
JB
4280 stopped_by_random_signal = 1;
4281
16c381f0 4282 if (signal_print[ecs->event_thread->suspend.stop_signal])
488f131b
JB
4283 {
4284 printed = 1;
4285 target_terminal_ours_for_output ();
16c381f0
JK
4286 print_signal_received_reason
4287 (ecs->event_thread->suspend.stop_signal);
488f131b 4288 }
252fbfc8
PA
4289 /* Always stop on signals if we're either just gaining control
4290 of the program, or the user explicitly requested this thread
4291 to remain stopped. */
d6b48e9c 4292 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4293 || ecs->event_thread->stop_requested
24291992 4294 || (!inf->detaching
16c381f0 4295 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b
JB
4296 {
4297 stop_stepping (ecs);
4298 return;
4299 }
4300 /* If not going to stop, give terminal back
4301 if we took it away. */
4302 else if (printed)
4303 target_terminal_inferior ();
4304
4305 /* Clear the signal if it should not be passed. */
16c381f0 4306 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 4307 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 4308
fb14de7b 4309 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4310 && ecs->event_thread->control.trap_expected
8358c15c 4311 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4312 {
4313 /* We were just starting a new sequence, attempting to
4314 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4315 Instead this signal arrives. This signal will take us out
68f53502
AC
4316 of the stepping range so GDB needs to remember to, when
4317 the signal handler returns, resume stepping off that
4318 breakpoint. */
4319 /* To simplify things, "continue" is forced to use the same
4320 code paths as single-step - set a breakpoint at the
4321 signal return address and then, once hit, step off that
4322 breakpoint. */
237fc4c9
PA
4323 if (debug_infrun)
4324 fprintf_unfiltered (gdb_stdlog,
4325 "infrun: signal arrived while stepping over "
4326 "breakpoint\n");
d3169d93 4327
2c03e5be 4328 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4329 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4330 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4331 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
4332
4333 /* If we were nexting/stepping some other thread, switch to
4334 it, so that we don't continue it, losing control. */
4335 if (!switch_back_to_stepped_thread (ecs))
4336 keep_going (ecs);
9d799f85 4337 return;
68f53502 4338 }
9d799f85 4339
16c381f0 4340 if (ecs->event_thread->control.step_range_end != 0
a493e3e2 4341 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
ce4c476a 4342 && pc_in_thread_step_range (stop_pc, ecs->event_thread)
edb3359d 4343 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4344 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4345 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4346 {
4347 /* The inferior is about to take a signal that will take it
4348 out of the single step range. Set a breakpoint at the
4349 current PC (which is presumably where the signal handler
4350 will eventually return) and then allow the inferior to
4351 run free.
4352
4353 Note that this is only needed for a signal delivered
4354 while in the single-step range. Nested signals aren't a
4355 problem as they eventually all return. */
237fc4c9
PA
4356 if (debug_infrun)
4357 fprintf_unfiltered (gdb_stdlog,
4358 "infrun: signal may take us out of "
4359 "single-step range\n");
4360
2c03e5be 4361 insert_hp_step_resume_breakpoint_at_frame (frame);
2455069d
UW
4362 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4363 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4364 keep_going (ecs);
4365 return;
d303a6c7 4366 }
9d799f85
AC
4367
4368 /* Note: step_resume_breakpoint may be non-NULL. This occures
4369 when either there's a nested signal, or when there's a
4370 pending signal enabled just as the signal handler returns
4371 (leaving the inferior at the step-resume-breakpoint without
4372 actually executing it). Either way continue until the
4373 breakpoint is really hit. */
c447ac0b
PA
4374
4375 if (!switch_back_to_stepped_thread (ecs))
4376 {
4377 if (debug_infrun)
4378 fprintf_unfiltered (gdb_stdlog,
4379 "infrun: random signal, keep going\n");
4380
4381 keep_going (ecs);
4382 }
4383 return;
488f131b 4384 }
94c57d6a
PA
4385
4386 process_event_stop_test (ecs);
4387}
4388
4389/* Come here when we've got some debug event / signal we can explain
4390 (IOW, not a random signal), and test whether it should cause a
4391 stop, or whether we should resume the inferior (transparently).
4392 E.g., could be a breakpoint whose condition evaluates false; we
4393 could be still stepping within the line; etc. */
4394
4395static void
4396process_event_stop_test (struct execution_control_state *ecs)
4397{
4398 struct symtab_and_line stop_pc_sal;
4399 struct frame_info *frame;
4400 struct gdbarch *gdbarch;
cdaa5b73
PA
4401 CORE_ADDR jmp_buf_pc;
4402 struct bpstat_what what;
94c57d6a 4403
cdaa5b73 4404 /* Handle cases caused by hitting a breakpoint. */
611c83ae 4405
cdaa5b73
PA
4406 frame = get_current_frame ();
4407 gdbarch = get_frame_arch (frame);
fcf3daef 4408
cdaa5b73 4409 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 4410
cdaa5b73
PA
4411 if (what.call_dummy)
4412 {
4413 stop_stack_dummy = what.call_dummy;
4414 }
186c406b 4415
cdaa5b73
PA
4416 /* If we hit an internal event that triggers symbol changes, the
4417 current frame will be invalidated within bpstat_what (e.g., if we
4418 hit an internal solib event). Re-fetch it. */
4419 frame = get_current_frame ();
4420 gdbarch = get_frame_arch (frame);
e2e4d78b 4421
cdaa5b73
PA
4422 switch (what.main_action)
4423 {
4424 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4425 /* If we hit the breakpoint at longjmp while stepping, we
4426 install a momentary breakpoint at the target of the
4427 jmp_buf. */
186c406b 4428
cdaa5b73
PA
4429 if (debug_infrun)
4430 fprintf_unfiltered (gdb_stdlog,
4431 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 4432
cdaa5b73 4433 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4434
cdaa5b73
PA
4435 if (what.is_longjmp)
4436 {
4437 struct value *arg_value;
4438
4439 /* If we set the longjmp breakpoint via a SystemTap probe,
4440 then use it to extract the arguments. The destination PC
4441 is the third argument to the probe. */
4442 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4443 if (arg_value)
4444 jmp_buf_pc = value_as_address (arg_value);
4445 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4446 || !gdbarch_get_longjmp_target (gdbarch,
4447 frame, &jmp_buf_pc))
e2e4d78b 4448 {
cdaa5b73
PA
4449 if (debug_infrun)
4450 fprintf_unfiltered (gdb_stdlog,
4451 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4452 "(!gdbarch_get_longjmp_target)\n");
4453 keep_going (ecs);
4454 return;
e2e4d78b 4455 }
e2e4d78b 4456
cdaa5b73
PA
4457 /* Insert a breakpoint at resume address. */
4458 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4459 }
4460 else
4461 check_exception_resume (ecs, frame);
4462 keep_going (ecs);
4463 return;
e81a37f7 4464
cdaa5b73
PA
4465 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4466 {
4467 struct frame_info *init_frame;
e81a37f7 4468
cdaa5b73 4469 /* There are several cases to consider.
c906108c 4470
cdaa5b73
PA
4471 1. The initiating frame no longer exists. In this case we
4472 must stop, because the exception or longjmp has gone too
4473 far.
2c03e5be 4474
cdaa5b73
PA
4475 2. The initiating frame exists, and is the same as the
4476 current frame. We stop, because the exception or longjmp
4477 has been caught.
2c03e5be 4478
cdaa5b73
PA
4479 3. The initiating frame exists and is different from the
4480 current frame. This means the exception or longjmp has
4481 been caught beneath the initiating frame, so keep going.
c906108c 4482
cdaa5b73
PA
4483 4. longjmp breakpoint has been placed just to protect
4484 against stale dummy frames and user is not interested in
4485 stopping around longjmps. */
c5aa993b 4486
cdaa5b73
PA
4487 if (debug_infrun)
4488 fprintf_unfiltered (gdb_stdlog,
4489 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 4490
cdaa5b73
PA
4491 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4492 != NULL);
4493 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 4494
cdaa5b73
PA
4495 if (what.is_longjmp)
4496 {
4497 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
c5aa993b 4498
cdaa5b73 4499 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 4500 {
cdaa5b73
PA
4501 /* Case 4. */
4502 keep_going (ecs);
4503 return;
e5ef252a 4504 }
cdaa5b73 4505 }
c5aa993b 4506
cdaa5b73 4507 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 4508
cdaa5b73
PA
4509 if (init_frame)
4510 {
4511 struct frame_id current_id
4512 = get_frame_id (get_current_frame ());
4513 if (frame_id_eq (current_id,
4514 ecs->event_thread->initiating_frame))
4515 {
4516 /* Case 2. Fall through. */
4517 }
4518 else
4519 {
4520 /* Case 3. */
4521 keep_going (ecs);
4522 return;
4523 }
68f53502 4524 }
488f131b 4525
cdaa5b73
PA
4526 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
4527 exists. */
4528 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 4529
cdaa5b73
PA
4530 ecs->event_thread->control.stop_step = 1;
4531 print_end_stepping_range_reason ();
4532 stop_stepping (ecs);
4533 }
4534 return;
e5ef252a 4535
cdaa5b73
PA
4536 case BPSTAT_WHAT_SINGLE:
4537 if (debug_infrun)
4538 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4539 ecs->event_thread->stepping_over_breakpoint = 1;
4540 /* Still need to check other stuff, at least the case where we
4541 are stepping and step out of the right range. */
4542 break;
e5ef252a 4543
cdaa5b73
PA
4544 case BPSTAT_WHAT_STEP_RESUME:
4545 if (debug_infrun)
4546 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 4547
cdaa5b73
PA
4548 delete_step_resume_breakpoint (ecs->event_thread);
4549 if (ecs->event_thread->control.proceed_to_finish
4550 && execution_direction == EXEC_REVERSE)
4551 {
4552 struct thread_info *tp = ecs->event_thread;
4553
4554 /* We are finishing a function in reverse, and just hit the
4555 step-resume breakpoint at the start address of the
4556 function, and we're almost there -- just need to back up
4557 by one more single-step, which should take us back to the
4558 function call. */
4559 tp->control.step_range_start = tp->control.step_range_end = 1;
4560 keep_going (ecs);
e5ef252a 4561 return;
cdaa5b73
PA
4562 }
4563 fill_in_stop_func (gdbarch, ecs);
4564 if (stop_pc == ecs->stop_func_start
4565 && execution_direction == EXEC_REVERSE)
4566 {
4567 /* We are stepping over a function call in reverse, and just
4568 hit the step-resume breakpoint at the start address of
4569 the function. Go back to single-stepping, which should
4570 take us back to the function call. */
4571 ecs->event_thread->stepping_over_breakpoint = 1;
4572 keep_going (ecs);
4573 return;
4574 }
4575 break;
e5ef252a 4576
cdaa5b73
PA
4577 case BPSTAT_WHAT_STOP_NOISY:
4578 if (debug_infrun)
4579 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4580 stop_print_frame = 1;
e5ef252a 4581
cdaa5b73
PA
4582 /* We are about to nuke the step_resume_breakpointt via the
4583 cleanup chain, so no need to worry about it here. */
e5ef252a 4584
cdaa5b73
PA
4585 stop_stepping (ecs);
4586 return;
e5ef252a 4587
cdaa5b73
PA
4588 case BPSTAT_WHAT_STOP_SILENT:
4589 if (debug_infrun)
4590 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4591 stop_print_frame = 0;
e5ef252a 4592
cdaa5b73
PA
4593 /* We are about to nuke the step_resume_breakpoin via the
4594 cleanup chain, so no need to worry about it here. */
e5ef252a 4595
cdaa5b73
PA
4596 stop_stepping (ecs);
4597 return;
4598
4599 case BPSTAT_WHAT_HP_STEP_RESUME:
4600 if (debug_infrun)
4601 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4602
4603 delete_step_resume_breakpoint (ecs->event_thread);
4604 if (ecs->event_thread->step_after_step_resume_breakpoint)
4605 {
4606 /* Back when the step-resume breakpoint was inserted, we
4607 were trying to single-step off a breakpoint. Go back to
4608 doing that. */
4609 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4610 ecs->event_thread->stepping_over_breakpoint = 1;
4611 keep_going (ecs);
4612 return;
e5ef252a 4613 }
cdaa5b73
PA
4614 break;
4615
4616 case BPSTAT_WHAT_KEEP_CHECKING:
4617 break;
e5ef252a 4618 }
c906108c 4619
cdaa5b73
PA
4620 /* We come here if we hit a breakpoint but should not stop for it.
4621 Possibly we also were stepping and should stop for that. So fall
4622 through and test for stepping. But, if not stepping, do not
4623 stop. */
c906108c 4624
a7212384
UW
4625 /* In all-stop mode, if we're currently stepping but have stopped in
4626 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
4627 if (switch_back_to_stepped_thread (ecs))
4628 return;
776f04fa 4629
8358c15c 4630 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4631 {
527159b7 4632 if (debug_infrun)
d3169d93
DJ
4633 fprintf_unfiltered (gdb_stdlog,
4634 "infrun: step-resume breakpoint is inserted\n");
527159b7 4635
488f131b
JB
4636 /* Having a step-resume breakpoint overrides anything
4637 else having to do with stepping commands until
4638 that breakpoint is reached. */
488f131b
JB
4639 keep_going (ecs);
4640 return;
4641 }
c5aa993b 4642
16c381f0 4643 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4644 {
527159b7 4645 if (debug_infrun)
8a9de0e4 4646 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4647 /* Likewise if we aren't even stepping. */
488f131b
JB
4648 keep_going (ecs);
4649 return;
4650 }
c5aa993b 4651
4b7703ad
JB
4652 /* Re-fetch current thread's frame in case the code above caused
4653 the frame cache to be re-initialized, making our FRAME variable
4654 a dangling pointer. */
4655 frame = get_current_frame ();
628fe4e4 4656 gdbarch = get_frame_arch (frame);
7e324e48 4657 fill_in_stop_func (gdbarch, ecs);
4b7703ad 4658
488f131b 4659 /* If stepping through a line, keep going if still within it.
c906108c 4660
488f131b
JB
4661 Note that step_range_end is the address of the first instruction
4662 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4663 within it!
4664
4665 Note also that during reverse execution, we may be stepping
4666 through a function epilogue and therefore must detect when
4667 the current-frame changes in the middle of a line. */
4668
ce4c476a 4669 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 4670 && (execution_direction != EXEC_REVERSE
388a8562 4671 || frame_id_eq (get_frame_id (frame),
16c381f0 4672 ecs->event_thread->control.step_frame_id)))
488f131b 4673 {
527159b7 4674 if (debug_infrun)
5af949e3
UW
4675 fprintf_unfiltered
4676 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4677 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4678 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 4679
c1e36e3e
PA
4680 /* Tentatively re-enable range stepping; `resume' disables it if
4681 necessary (e.g., if we're stepping over a breakpoint or we
4682 have software watchpoints). */
4683 ecs->event_thread->control.may_range_step = 1;
4684
b2175913
MS
4685 /* When stepping backward, stop at beginning of line range
4686 (unless it's the function entry point, in which case
4687 keep going back to the call point). */
16c381f0 4688 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4689 && stop_pc != ecs->stop_func_start
4690 && execution_direction == EXEC_REVERSE)
4691 {
16c381f0 4692 ecs->event_thread->control.stop_step = 1;
33d62d64 4693 print_end_stepping_range_reason ();
b2175913
MS
4694 stop_stepping (ecs);
4695 }
4696 else
4697 keep_going (ecs);
4698
488f131b
JB
4699 return;
4700 }
c5aa993b 4701
488f131b 4702 /* We stepped out of the stepping range. */
c906108c 4703
488f131b 4704 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4705 loader dynamic symbol resolution code...
4706
4707 EXEC_FORWARD: we keep on single stepping until we exit the run
4708 time loader code and reach the callee's address.
4709
4710 EXEC_REVERSE: we've already executed the callee (backward), and
4711 the runtime loader code is handled just like any other
4712 undebuggable function call. Now we need only keep stepping
4713 backward through the trampoline code, and that's handled further
4714 down, so there is nothing for us to do here. */
4715
4716 if (execution_direction != EXEC_REVERSE
16c381f0 4717 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4718 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4719 {
4c8c40e6 4720 CORE_ADDR pc_after_resolver =
568d6575 4721 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4722
527159b7 4723 if (debug_infrun)
3e43a32a
MS
4724 fprintf_unfiltered (gdb_stdlog,
4725 "infrun: stepped into dynsym resolve code\n");
527159b7 4726
488f131b
JB
4727 if (pc_after_resolver)
4728 {
4729 /* Set up a step-resume breakpoint at the address
4730 indicated by SKIP_SOLIB_RESOLVER. */
4731 struct symtab_and_line sr_sal;
abbb1732 4732
fe39c653 4733 init_sal (&sr_sal);
488f131b 4734 sr_sal.pc = pc_after_resolver;
6c95b8df 4735 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4736
a6d9a66e
UW
4737 insert_step_resume_breakpoint_at_sal (gdbarch,
4738 sr_sal, null_frame_id);
c5aa993b 4739 }
c906108c 4740
488f131b
JB
4741 keep_going (ecs);
4742 return;
4743 }
c906108c 4744
16c381f0
JK
4745 if (ecs->event_thread->control.step_range_end != 1
4746 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4747 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 4748 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4749 {
527159b7 4750 if (debug_infrun)
3e43a32a
MS
4751 fprintf_unfiltered (gdb_stdlog,
4752 "infrun: stepped into signal trampoline\n");
42edda50 4753 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4754 a signal trampoline (either by a signal being delivered or by
4755 the signal handler returning). Just single-step until the
4756 inferior leaves the trampoline (either by calling the handler
4757 or returning). */
488f131b
JB
4758 keep_going (ecs);
4759 return;
4760 }
c906108c 4761
14132e89
MR
4762 /* If we're in the return path from a shared library trampoline,
4763 we want to proceed through the trampoline when stepping. */
4764 /* macro/2012-04-25: This needs to come before the subroutine
4765 call check below as on some targets return trampolines look
4766 like subroutine calls (MIPS16 return thunks). */
4767 if (gdbarch_in_solib_return_trampoline (gdbarch,
4768 stop_pc, ecs->stop_func_name)
4769 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4770 {
4771 /* Determine where this trampoline returns. */
4772 CORE_ADDR real_stop_pc;
4773
4774 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4775
4776 if (debug_infrun)
4777 fprintf_unfiltered (gdb_stdlog,
4778 "infrun: stepped into solib return tramp\n");
4779
4780 /* Only proceed through if we know where it's going. */
4781 if (real_stop_pc)
4782 {
4783 /* And put the step-breakpoint there and go until there. */
4784 struct symtab_and_line sr_sal;
4785
4786 init_sal (&sr_sal); /* initialize to zeroes */
4787 sr_sal.pc = real_stop_pc;
4788 sr_sal.section = find_pc_overlay (sr_sal.pc);
4789 sr_sal.pspace = get_frame_program_space (frame);
4790
4791 /* Do not specify what the fp should be when we stop since
4792 on some machines the prologue is where the new fp value
4793 is established. */
4794 insert_step_resume_breakpoint_at_sal (gdbarch,
4795 sr_sal, null_frame_id);
4796
4797 /* Restart without fiddling with the step ranges or
4798 other state. */
4799 keep_going (ecs);
4800 return;
4801 }
4802 }
4803
c17eaafe
DJ
4804 /* Check for subroutine calls. The check for the current frame
4805 equalling the step ID is not necessary - the check of the
4806 previous frame's ID is sufficient - but it is a common case and
4807 cheaper than checking the previous frame's ID.
14e60db5
DJ
4808
4809 NOTE: frame_id_eq will never report two invalid frame IDs as
4810 being equal, so to get into this block, both the current and
4811 previous frame must have valid frame IDs. */
005ca36a
JB
4812 /* The outer_frame_id check is a heuristic to detect stepping
4813 through startup code. If we step over an instruction which
4814 sets the stack pointer from an invalid value to a valid value,
4815 we may detect that as a subroutine call from the mythical
4816 "outermost" function. This could be fixed by marking
4817 outermost frames as !stack_p,code_p,special_p. Then the
4818 initial outermost frame, before sp was valid, would
ce6cca6d 4819 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4820 for more. */
edb3359d 4821 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 4822 ecs->event_thread->control.step_stack_frame_id)
005ca36a 4823 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
4824 ecs->event_thread->control.step_stack_frame_id)
4825 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
4826 outer_frame_id)
4827 || step_start_function != find_pc_function (stop_pc))))
488f131b 4828 {
95918acb 4829 CORE_ADDR real_stop_pc;
8fb3e588 4830
527159b7 4831 if (debug_infrun)
8a9de0e4 4832 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4833
16c381f0
JK
4834 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4835 || ((ecs->event_thread->control.step_range_end == 1)
d80b854b 4836 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4837 ecs->stop_func_start)))
95918acb
AC
4838 {
4839 /* I presume that step_over_calls is only 0 when we're
4840 supposed to be stepping at the assembly language level
4841 ("stepi"). Just stop. */
4842 /* Also, maybe we just did a "nexti" inside a prolog, so we
4843 thought it was a subroutine call but it was not. Stop as
4844 well. FENN */
388a8562 4845 /* And this works the same backward as frontward. MVS */
16c381f0 4846 ecs->event_thread->control.stop_step = 1;
33d62d64 4847 print_end_stepping_range_reason ();
95918acb
AC
4848 stop_stepping (ecs);
4849 return;
4850 }
8fb3e588 4851
388a8562
MS
4852 /* Reverse stepping through solib trampolines. */
4853
4854 if (execution_direction == EXEC_REVERSE
16c381f0 4855 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
4856 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4857 || (ecs->stop_func_start == 0
4858 && in_solib_dynsym_resolve_code (stop_pc))))
4859 {
4860 /* Any solib trampoline code can be handled in reverse
4861 by simply continuing to single-step. We have already
4862 executed the solib function (backwards), and a few
4863 steps will take us back through the trampoline to the
4864 caller. */
4865 keep_going (ecs);
4866 return;
4867 }
4868
16c381f0 4869 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 4870 {
b2175913
MS
4871 /* We're doing a "next".
4872
4873 Normal (forward) execution: set a breakpoint at the
4874 callee's return address (the address at which the caller
4875 will resume).
4876
4877 Reverse (backward) execution. set the step-resume
4878 breakpoint at the start of the function that we just
4879 stepped into (backwards), and continue to there. When we
6130d0b7 4880 get there, we'll need to single-step back to the caller. */
b2175913
MS
4881
4882 if (execution_direction == EXEC_REVERSE)
4883 {
acf9414f
JK
4884 /* If we're already at the start of the function, we've either
4885 just stepped backward into a single instruction function,
4886 or stepped back out of a signal handler to the first instruction
4887 of the function. Just keep going, which will single-step back
4888 to the caller. */
58c48e72 4889 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
4890 {
4891 struct symtab_and_line sr_sal;
4892
4893 /* Normal function call return (static or dynamic). */
4894 init_sal (&sr_sal);
4895 sr_sal.pc = ecs->stop_func_start;
4896 sr_sal.pspace = get_frame_program_space (frame);
4897 insert_step_resume_breakpoint_at_sal (gdbarch,
4898 sr_sal, null_frame_id);
4899 }
b2175913
MS
4900 }
4901 else
568d6575 4902 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4903
8567c30f
AC
4904 keep_going (ecs);
4905 return;
4906 }
a53c66de 4907
95918acb 4908 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
4909 calling routine and the real function), locate the real
4910 function. That's what tells us (a) whether we want to step
4911 into it at all, and (b) what prologue we want to run to the
4912 end of, if we do step into it. */
568d6575 4913 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 4914 if (real_stop_pc == 0)
568d6575 4915 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
4916 if (real_stop_pc != 0)
4917 ecs->stop_func_start = real_stop_pc;
8fb3e588 4918
db5f024e 4919 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
4920 {
4921 struct symtab_and_line sr_sal;
abbb1732 4922
1b2bfbb9
RC
4923 init_sal (&sr_sal);
4924 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4925 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 4926
a6d9a66e
UW
4927 insert_step_resume_breakpoint_at_sal (gdbarch,
4928 sr_sal, null_frame_id);
8fb3e588
AC
4929 keep_going (ecs);
4930 return;
1b2bfbb9
RC
4931 }
4932
95918acb 4933 /* If we have line number information for the function we are
1bfeeb0f
JL
4934 thinking of stepping into and the function isn't on the skip
4935 list, step into it.
95918acb 4936
8fb3e588
AC
4937 If there are several symtabs at that PC (e.g. with include
4938 files), just want to know whether *any* of them have line
4939 numbers. find_pc_line handles this. */
95918acb
AC
4940 {
4941 struct symtab_and_line tmp_sal;
8fb3e588 4942
95918acb 4943 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 4944 if (tmp_sal.line != 0
85817405
JK
4945 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4946 &tmp_sal))
95918acb 4947 {
b2175913 4948 if (execution_direction == EXEC_REVERSE)
568d6575 4949 handle_step_into_function_backward (gdbarch, ecs);
b2175913 4950 else
568d6575 4951 handle_step_into_function (gdbarch, ecs);
95918acb
AC
4952 return;
4953 }
4954 }
4955
4956 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
4957 set, we stop the step so that the user has a chance to switch
4958 in assembly mode. */
16c381f0 4959 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 4960 && step_stop_if_no_debug)
95918acb 4961 {
16c381f0 4962 ecs->event_thread->control.stop_step = 1;
33d62d64 4963 print_end_stepping_range_reason ();
95918acb
AC
4964 stop_stepping (ecs);
4965 return;
4966 }
4967
b2175913
MS
4968 if (execution_direction == EXEC_REVERSE)
4969 {
acf9414f
JK
4970 /* If we're already at the start of the function, we've either just
4971 stepped backward into a single instruction function without line
4972 number info, or stepped back out of a signal handler to the first
4973 instruction of the function without line number info. Just keep
4974 going, which will single-step back to the caller. */
4975 if (ecs->stop_func_start != stop_pc)
4976 {
4977 /* Set a breakpoint at callee's start address.
4978 From there we can step once and be back in the caller. */
4979 struct symtab_and_line sr_sal;
abbb1732 4980
acf9414f
JK
4981 init_sal (&sr_sal);
4982 sr_sal.pc = ecs->stop_func_start;
4983 sr_sal.pspace = get_frame_program_space (frame);
4984 insert_step_resume_breakpoint_at_sal (gdbarch,
4985 sr_sal, null_frame_id);
4986 }
b2175913
MS
4987 }
4988 else
4989 /* Set a breakpoint at callee's return address (the address
4990 at which the caller will resume). */
568d6575 4991 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4992
95918acb 4993 keep_going (ecs);
488f131b 4994 return;
488f131b 4995 }
c906108c 4996
fdd654f3
MS
4997 /* Reverse stepping through solib trampolines. */
4998
4999 if (execution_direction == EXEC_REVERSE
16c381f0 5000 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
5001 {
5002 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5003 || (ecs->stop_func_start == 0
5004 && in_solib_dynsym_resolve_code (stop_pc)))
5005 {
5006 /* Any solib trampoline code can be handled in reverse
5007 by simply continuing to single-step. We have already
5008 executed the solib function (backwards), and a few
5009 steps will take us back through the trampoline to the
5010 caller. */
5011 keep_going (ecs);
5012 return;
5013 }
5014 else if (in_solib_dynsym_resolve_code (stop_pc))
5015 {
5016 /* Stepped backward into the solib dynsym resolver.
5017 Set a breakpoint at its start and continue, then
5018 one more step will take us out. */
5019 struct symtab_and_line sr_sal;
abbb1732 5020
fdd654f3
MS
5021 init_sal (&sr_sal);
5022 sr_sal.pc = ecs->stop_func_start;
9d1807c3 5023 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
5024 insert_step_resume_breakpoint_at_sal (gdbarch,
5025 sr_sal, null_frame_id);
5026 keep_going (ecs);
5027 return;
5028 }
5029 }
5030
2afb61aa 5031 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 5032
1b2bfbb9
RC
5033 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5034 the trampoline processing logic, however, there are some trampolines
5035 that have no names, so we should do trampoline handling first. */
16c381f0 5036 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 5037 && ecs->stop_func_name == NULL
2afb61aa 5038 && stop_pc_sal.line == 0)
1b2bfbb9 5039 {
527159b7 5040 if (debug_infrun)
3e43a32a
MS
5041 fprintf_unfiltered (gdb_stdlog,
5042 "infrun: stepped into undebuggable function\n");
527159b7 5043
1b2bfbb9 5044 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
5045 undebuggable function (where there is no debugging information
5046 and no line number corresponding to the address where the
1b2bfbb9
RC
5047 inferior stopped). Since we want to skip this kind of code,
5048 we keep going until the inferior returns from this
14e60db5
DJ
5049 function - unless the user has asked us not to (via
5050 set step-mode) or we no longer know how to get back
5051 to the call site. */
5052 if (step_stop_if_no_debug
c7ce8faa 5053 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
5054 {
5055 /* If we have no line number and the step-stop-if-no-debug
5056 is set, we stop the step so that the user has a chance to
5057 switch in assembly mode. */
16c381f0 5058 ecs->event_thread->control.stop_step = 1;
33d62d64 5059 print_end_stepping_range_reason ();
1b2bfbb9
RC
5060 stop_stepping (ecs);
5061 return;
5062 }
5063 else
5064 {
5065 /* Set a breakpoint at callee's return address (the address
5066 at which the caller will resume). */
568d6575 5067 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
5068 keep_going (ecs);
5069 return;
5070 }
5071 }
5072
16c381f0 5073 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
5074 {
5075 /* It is stepi or nexti. We always want to stop stepping after
5076 one instruction. */
527159b7 5077 if (debug_infrun)
8a9de0e4 5078 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
16c381f0 5079 ecs->event_thread->control.stop_step = 1;
33d62d64 5080 print_end_stepping_range_reason ();
1b2bfbb9
RC
5081 stop_stepping (ecs);
5082 return;
5083 }
5084
2afb61aa 5085 if (stop_pc_sal.line == 0)
488f131b
JB
5086 {
5087 /* We have no line number information. That means to stop
5088 stepping (does this always happen right after one instruction,
5089 when we do "s" in a function with no line numbers,
5090 or can this happen as a result of a return or longjmp?). */
527159b7 5091 if (debug_infrun)
8a9de0e4 5092 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
16c381f0 5093 ecs->event_thread->control.stop_step = 1;
33d62d64 5094 print_end_stepping_range_reason ();
488f131b
JB
5095 stop_stepping (ecs);
5096 return;
5097 }
c906108c 5098
edb3359d
DJ
5099 /* Look for "calls" to inlined functions, part one. If the inline
5100 frame machinery detected some skipped call sites, we have entered
5101 a new inline function. */
5102
5103 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5104 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5105 && inline_skipped_frames (ecs->ptid))
5106 {
5107 struct symtab_and_line call_sal;
5108
5109 if (debug_infrun)
5110 fprintf_unfiltered (gdb_stdlog,
5111 "infrun: stepped into inlined function\n");
5112
5113 find_frame_sal (get_current_frame (), &call_sal);
5114
16c381f0 5115 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5116 {
5117 /* For "step", we're going to stop. But if the call site
5118 for this inlined function is on the same source line as
5119 we were previously stepping, go down into the function
5120 first. Otherwise stop at the call site. */
5121
5122 if (call_sal.line == ecs->event_thread->current_line
5123 && call_sal.symtab == ecs->event_thread->current_symtab)
5124 step_into_inline_frame (ecs->ptid);
5125
16c381f0 5126 ecs->event_thread->control.stop_step = 1;
33d62d64 5127 print_end_stepping_range_reason ();
edb3359d
DJ
5128 stop_stepping (ecs);
5129 return;
5130 }
5131 else
5132 {
5133 /* For "next", we should stop at the call site if it is on a
5134 different source line. Otherwise continue through the
5135 inlined function. */
5136 if (call_sal.line == ecs->event_thread->current_line
5137 && call_sal.symtab == ecs->event_thread->current_symtab)
5138 keep_going (ecs);
5139 else
5140 {
16c381f0 5141 ecs->event_thread->control.stop_step = 1;
33d62d64 5142 print_end_stepping_range_reason ();
edb3359d
DJ
5143 stop_stepping (ecs);
5144 }
5145 return;
5146 }
5147 }
5148
5149 /* Look for "calls" to inlined functions, part two. If we are still
5150 in the same real function we were stepping through, but we have
5151 to go further up to find the exact frame ID, we are stepping
5152 through a more inlined call beyond its call site. */
5153
5154 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5155 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5156 ecs->event_thread->control.step_frame_id)
edb3359d 5157 && stepped_in_from (get_current_frame (),
16c381f0 5158 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5159 {
5160 if (debug_infrun)
5161 fprintf_unfiltered (gdb_stdlog,
5162 "infrun: stepping through inlined function\n");
5163
16c381f0 5164 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5165 keep_going (ecs);
5166 else
5167 {
16c381f0 5168 ecs->event_thread->control.stop_step = 1;
33d62d64 5169 print_end_stepping_range_reason ();
edb3359d
DJ
5170 stop_stepping (ecs);
5171 }
5172 return;
5173 }
5174
2afb61aa 5175 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5176 && (ecs->event_thread->current_line != stop_pc_sal.line
5177 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5178 {
5179 /* We are at the start of a different line. So stop. Note that
5180 we don't stop if we step into the middle of a different line.
5181 That is said to make things like for (;;) statements work
5182 better. */
527159b7 5183 if (debug_infrun)
3e43a32a
MS
5184 fprintf_unfiltered (gdb_stdlog,
5185 "infrun: stepped to a different line\n");
16c381f0 5186 ecs->event_thread->control.stop_step = 1;
33d62d64 5187 print_end_stepping_range_reason ();
488f131b
JB
5188 stop_stepping (ecs);
5189 return;
5190 }
c906108c 5191
488f131b 5192 /* We aren't done stepping.
c906108c 5193
488f131b
JB
5194 Optimize by setting the stepping range to the line.
5195 (We might not be in the original line, but if we entered a
5196 new line in mid-statement, we continue stepping. This makes
5197 things like for(;;) statements work better.) */
c906108c 5198
16c381f0
JK
5199 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5200 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 5201 ecs->event_thread->control.may_range_step = 1;
edb3359d 5202 set_step_info (frame, stop_pc_sal);
488f131b 5203
527159b7 5204 if (debug_infrun)
8a9de0e4 5205 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5206 keep_going (ecs);
104c1213
JM
5207}
5208
c447ac0b
PA
5209/* In all-stop mode, if we're currently stepping but have stopped in
5210 some other thread, we may need to switch back to the stepped
5211 thread. Returns true we set the inferior running, false if we left
5212 it stopped (and the event needs further processing). */
5213
5214static int
5215switch_back_to_stepped_thread (struct execution_control_state *ecs)
5216{
5217 if (!non_stop)
5218 {
5219 struct thread_info *tp;
5220
5221 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
5222 ecs->event_thread);
5223 if (tp)
5224 {
5225 /* However, if the current thread is blocked on some internal
5226 breakpoint, and we simply need to step over that breakpoint
5227 to get it going again, do that first. */
5228 if ((ecs->event_thread->control.trap_expected
5229 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5230 || ecs->event_thread->stepping_over_breakpoint)
5231 {
5232 keep_going (ecs);
5233 return 1;
5234 }
5235
5236 /* If the stepping thread exited, then don't try to switch
5237 back and resume it, which could fail in several different
5238 ways depending on the target. Instead, just keep going.
5239
5240 We can find a stepping dead thread in the thread list in
5241 two cases:
5242
5243 - The target supports thread exit events, and when the
5244 target tries to delete the thread from the thread list,
5245 inferior_ptid pointed at the exiting thread. In such
5246 case, calling delete_thread does not really remove the
5247 thread from the list; instead, the thread is left listed,
5248 with 'exited' state.
5249
5250 - The target's debug interface does not support thread
5251 exit events, and so we have no idea whatsoever if the
5252 previously stepping thread is still alive. For that
5253 reason, we need to synchronously query the target
5254 now. */
5255 if (is_exited (tp->ptid)
5256 || !target_thread_alive (tp->ptid))
5257 {
5258 if (debug_infrun)
5259 fprintf_unfiltered (gdb_stdlog,
5260 "infrun: not switching back to "
5261 "stepped thread, it has vanished\n");
5262
5263 delete_thread (tp->ptid);
5264 keep_going (ecs);
5265 return 1;
5266 }
5267
5268 /* Otherwise, we no longer expect a trap in the current thread.
5269 Clear the trap_expected flag before switching back -- this is
5270 what keep_going would do as well, if we called it. */
5271 ecs->event_thread->control.trap_expected = 0;
5272
5273 if (debug_infrun)
5274 fprintf_unfiltered (gdb_stdlog,
5275 "infrun: switching back to stepped thread\n");
5276
5277 ecs->event_thread = tp;
5278 ecs->ptid = tp->ptid;
5279 context_switch (ecs->ptid);
5280 keep_going (ecs);
5281 return 1;
5282 }
5283 }
5284 return 0;
5285}
5286
b3444185 5287/* Is thread TP in the middle of single-stepping? */
104c1213 5288
a289b8f6 5289static int
b3444185 5290currently_stepping (struct thread_info *tp)
a7212384 5291{
8358c15c
JK
5292 return ((tp->control.step_range_end
5293 && tp->control.step_resume_breakpoint == NULL)
5294 || tp->control.trap_expected
8358c15c 5295 || bpstat_should_step ());
a7212384
UW
5296}
5297
b3444185
PA
5298/* Returns true if any thread *but* the one passed in "data" is in the
5299 middle of stepping or of handling a "next". */
a7212384 5300
104c1213 5301static int
b3444185 5302currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 5303{
b3444185
PA
5304 if (tp == data)
5305 return 0;
5306
16c381f0 5307 return (tp->control.step_range_end
ede1849f 5308 || tp->control.trap_expected);
104c1213 5309}
c906108c 5310
b2175913
MS
5311/* Inferior has stepped into a subroutine call with source code that
5312 we should not step over. Do step to the first line of code in
5313 it. */
c2c6d25f
JM
5314
5315static void
568d6575
UW
5316handle_step_into_function (struct gdbarch *gdbarch,
5317 struct execution_control_state *ecs)
c2c6d25f
JM
5318{
5319 struct symtab *s;
2afb61aa 5320 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5321
7e324e48
GB
5322 fill_in_stop_func (gdbarch, ecs);
5323
c2c6d25f
JM
5324 s = find_pc_symtab (stop_pc);
5325 if (s && s->language != language_asm)
568d6575 5326 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5327 ecs->stop_func_start);
c2c6d25f 5328
2afb61aa 5329 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5330 /* Use the step_resume_break to step until the end of the prologue,
5331 even if that involves jumps (as it seems to on the vax under
5332 4.2). */
5333 /* If the prologue ends in the middle of a source line, continue to
5334 the end of that source line (if it is still within the function).
5335 Otherwise, just go to end of prologue. */
2afb61aa
PA
5336 if (stop_func_sal.end
5337 && stop_func_sal.pc != ecs->stop_func_start
5338 && stop_func_sal.end < ecs->stop_func_end)
5339 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5340
2dbd5e30
KB
5341 /* Architectures which require breakpoint adjustment might not be able
5342 to place a breakpoint at the computed address. If so, the test
5343 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5344 ecs->stop_func_start to an address at which a breakpoint may be
5345 legitimately placed.
8fb3e588 5346
2dbd5e30
KB
5347 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5348 made, GDB will enter an infinite loop when stepping through
5349 optimized code consisting of VLIW instructions which contain
5350 subinstructions corresponding to different source lines. On
5351 FR-V, it's not permitted to place a breakpoint on any but the
5352 first subinstruction of a VLIW instruction. When a breakpoint is
5353 set, GDB will adjust the breakpoint address to the beginning of
5354 the VLIW instruction. Thus, we need to make the corresponding
5355 adjustment here when computing the stop address. */
8fb3e588 5356
568d6575 5357 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5358 {
5359 ecs->stop_func_start
568d6575 5360 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5361 ecs->stop_func_start);
2dbd5e30
KB
5362 }
5363
c2c6d25f
JM
5364 if (ecs->stop_func_start == stop_pc)
5365 {
5366 /* We are already there: stop now. */
16c381f0 5367 ecs->event_thread->control.stop_step = 1;
33d62d64 5368 print_end_stepping_range_reason ();
c2c6d25f
JM
5369 stop_stepping (ecs);
5370 return;
5371 }
5372 else
5373 {
5374 /* Put the step-breakpoint there and go until there. */
fe39c653 5375 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5376 sr_sal.pc = ecs->stop_func_start;
5377 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5378 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5379
c2c6d25f 5380 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5381 some machines the prologue is where the new fp value is
5382 established. */
a6d9a66e 5383 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5384
5385 /* And make sure stepping stops right away then. */
16c381f0
JK
5386 ecs->event_thread->control.step_range_end
5387 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5388 }
5389 keep_going (ecs);
5390}
d4f3574e 5391
b2175913
MS
5392/* Inferior has stepped backward into a subroutine call with source
5393 code that we should not step over. Do step to the beginning of the
5394 last line of code in it. */
5395
5396static void
568d6575
UW
5397handle_step_into_function_backward (struct gdbarch *gdbarch,
5398 struct execution_control_state *ecs)
b2175913
MS
5399{
5400 struct symtab *s;
167e4384 5401 struct symtab_and_line stop_func_sal;
b2175913 5402
7e324e48
GB
5403 fill_in_stop_func (gdbarch, ecs);
5404
b2175913
MS
5405 s = find_pc_symtab (stop_pc);
5406 if (s && s->language != language_asm)
568d6575 5407 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5408 ecs->stop_func_start);
5409
5410 stop_func_sal = find_pc_line (stop_pc, 0);
5411
5412 /* OK, we're just going to keep stepping here. */
5413 if (stop_func_sal.pc == stop_pc)
5414 {
5415 /* We're there already. Just stop stepping now. */
16c381f0 5416 ecs->event_thread->control.stop_step = 1;
33d62d64 5417 print_end_stepping_range_reason ();
b2175913
MS
5418 stop_stepping (ecs);
5419 }
5420 else
5421 {
5422 /* Else just reset the step range and keep going.
5423 No step-resume breakpoint, they don't work for
5424 epilogues, which can have multiple entry paths. */
16c381f0
JK
5425 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5426 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5427 keep_going (ecs);
5428 }
5429 return;
5430}
5431
d3169d93 5432/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5433 This is used to both functions and to skip over code. */
5434
5435static void
2c03e5be
PA
5436insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5437 struct symtab_and_line sr_sal,
5438 struct frame_id sr_id,
5439 enum bptype sr_type)
44cbf7b5 5440{
611c83ae
PA
5441 /* There should never be more than one step-resume or longjmp-resume
5442 breakpoint per thread, so we should never be setting a new
44cbf7b5 5443 step_resume_breakpoint when one is already active. */
8358c15c 5444 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 5445 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
5446
5447 if (debug_infrun)
5448 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5449 "infrun: inserting step-resume breakpoint at %s\n",
5450 paddress (gdbarch, sr_sal.pc));
d3169d93 5451
8358c15c 5452 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
5453 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5454}
5455
9da8c2a0 5456void
2c03e5be
PA
5457insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5458 struct symtab_and_line sr_sal,
5459 struct frame_id sr_id)
5460{
5461 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5462 sr_sal, sr_id,
5463 bp_step_resume);
44cbf7b5 5464}
7ce450bd 5465
2c03e5be
PA
5466/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5467 This is used to skip a potential signal handler.
7ce450bd 5468
14e60db5
DJ
5469 This is called with the interrupted function's frame. The signal
5470 handler, when it returns, will resume the interrupted function at
5471 RETURN_FRAME.pc. */
d303a6c7
AC
5472
5473static void
2c03e5be 5474insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5475{
5476 struct symtab_and_line sr_sal;
a6d9a66e 5477 struct gdbarch *gdbarch;
d303a6c7 5478
f4c1edd8 5479 gdb_assert (return_frame != NULL);
d303a6c7
AC
5480 init_sal (&sr_sal); /* initialize to zeros */
5481
a6d9a66e 5482 gdbarch = get_frame_arch (return_frame);
568d6575 5483 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5484 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5485 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5486
2c03e5be
PA
5487 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5488 get_stack_frame_id (return_frame),
5489 bp_hp_step_resume);
d303a6c7
AC
5490}
5491
2c03e5be
PA
5492/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5493 is used to skip a function after stepping into it (for "next" or if
5494 the called function has no debugging information).
14e60db5
DJ
5495
5496 The current function has almost always been reached by single
5497 stepping a call or return instruction. NEXT_FRAME belongs to the
5498 current function, and the breakpoint will be set at the caller's
5499 resume address.
5500
5501 This is a separate function rather than reusing
2c03e5be 5502 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 5503 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5504 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5505
5506static void
5507insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5508{
5509 struct symtab_and_line sr_sal;
a6d9a66e 5510 struct gdbarch *gdbarch;
14e60db5
DJ
5511
5512 /* We shouldn't have gotten here if we don't know where the call site
5513 is. */
c7ce8faa 5514 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5515
5516 init_sal (&sr_sal); /* initialize to zeros */
5517
a6d9a66e 5518 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5519 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5520 frame_unwind_caller_pc (next_frame));
14e60db5 5521 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5522 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5523
a6d9a66e 5524 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5525 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5526}
5527
611c83ae
PA
5528/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5529 new breakpoint at the target of a jmp_buf. The handling of
5530 longjmp-resume uses the same mechanisms used for handling
5531 "step-resume" breakpoints. */
5532
5533static void
a6d9a66e 5534insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 5535{
e81a37f7
TT
5536 /* There should never be more than one longjmp-resume breakpoint per
5537 thread, so we should never be setting a new
611c83ae 5538 longjmp_resume_breakpoint when one is already active. */
e81a37f7 5539 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
5540
5541 if (debug_infrun)
5542 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5543 "infrun: inserting longjmp-resume breakpoint at %s\n",
5544 paddress (gdbarch, pc));
611c83ae 5545
e81a37f7 5546 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 5547 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5548}
5549
186c406b
TT
5550/* Insert an exception resume breakpoint. TP is the thread throwing
5551 the exception. The block B is the block of the unwinder debug hook
5552 function. FRAME is the frame corresponding to the call to this
5553 function. SYM is the symbol of the function argument holding the
5554 target PC of the exception. */
5555
5556static void
5557insert_exception_resume_breakpoint (struct thread_info *tp,
5558 struct block *b,
5559 struct frame_info *frame,
5560 struct symbol *sym)
5561{
bfd189b1 5562 volatile struct gdb_exception e;
186c406b
TT
5563
5564 /* We want to ignore errors here. */
5565 TRY_CATCH (e, RETURN_MASK_ERROR)
5566 {
5567 struct symbol *vsym;
5568 struct value *value;
5569 CORE_ADDR handler;
5570 struct breakpoint *bp;
5571
5572 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5573 value = read_var_value (vsym, frame);
5574 /* If the value was optimized out, revert to the old behavior. */
5575 if (! value_optimized_out (value))
5576 {
5577 handler = value_as_address (value);
5578
5579 if (debug_infrun)
5580 fprintf_unfiltered (gdb_stdlog,
5581 "infrun: exception resume at %lx\n",
5582 (unsigned long) handler);
5583
5584 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5585 handler, bp_exception_resume);
c70a6932
JK
5586
5587 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5588 frame = NULL;
5589
186c406b
TT
5590 bp->thread = tp->num;
5591 inferior_thread ()->control.exception_resume_breakpoint = bp;
5592 }
5593 }
5594}
5595
28106bc2
SDJ
5596/* A helper for check_exception_resume that sets an
5597 exception-breakpoint based on a SystemTap probe. */
5598
5599static void
5600insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 5601 const struct bound_probe *probe,
28106bc2
SDJ
5602 struct frame_info *frame)
5603{
5604 struct value *arg_value;
5605 CORE_ADDR handler;
5606 struct breakpoint *bp;
5607
5608 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5609 if (!arg_value)
5610 return;
5611
5612 handler = value_as_address (arg_value);
5613
5614 if (debug_infrun)
5615 fprintf_unfiltered (gdb_stdlog,
5616 "infrun: exception resume at %s\n",
6bac7473 5617 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
5618 handler));
5619
5620 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5621 handler, bp_exception_resume);
5622 bp->thread = tp->num;
5623 inferior_thread ()->control.exception_resume_breakpoint = bp;
5624}
5625
186c406b
TT
5626/* This is called when an exception has been intercepted. Check to
5627 see whether the exception's destination is of interest, and if so,
5628 set an exception resume breakpoint there. */
5629
5630static void
5631check_exception_resume (struct execution_control_state *ecs,
28106bc2 5632 struct frame_info *frame)
186c406b 5633{
bfd189b1 5634 volatile struct gdb_exception e;
729662a5 5635 struct bound_probe probe;
28106bc2
SDJ
5636 struct symbol *func;
5637
5638 /* First see if this exception unwinding breakpoint was set via a
5639 SystemTap probe point. If so, the probe has two arguments: the
5640 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5641 set a breakpoint there. */
6bac7473 5642 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 5643 if (probe.probe)
28106bc2 5644 {
729662a5 5645 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
5646 return;
5647 }
5648
5649 func = get_frame_function (frame);
5650 if (!func)
5651 return;
186c406b
TT
5652
5653 TRY_CATCH (e, RETURN_MASK_ERROR)
5654 {
5655 struct block *b;
8157b174 5656 struct block_iterator iter;
186c406b
TT
5657 struct symbol *sym;
5658 int argno = 0;
5659
5660 /* The exception breakpoint is a thread-specific breakpoint on
5661 the unwinder's debug hook, declared as:
5662
5663 void _Unwind_DebugHook (void *cfa, void *handler);
5664
5665 The CFA argument indicates the frame to which control is
5666 about to be transferred. HANDLER is the destination PC.
5667
5668 We ignore the CFA and set a temporary breakpoint at HANDLER.
5669 This is not extremely efficient but it avoids issues in gdb
5670 with computing the DWARF CFA, and it also works even in weird
5671 cases such as throwing an exception from inside a signal
5672 handler. */
5673
5674 b = SYMBOL_BLOCK_VALUE (func);
5675 ALL_BLOCK_SYMBOLS (b, iter, sym)
5676 {
5677 if (!SYMBOL_IS_ARGUMENT (sym))
5678 continue;
5679
5680 if (argno == 0)
5681 ++argno;
5682 else
5683 {
5684 insert_exception_resume_breakpoint (ecs->event_thread,
5685 b, frame, sym);
5686 break;
5687 }
5688 }
5689 }
5690}
5691
104c1213
JM
5692static void
5693stop_stepping (struct execution_control_state *ecs)
5694{
527159b7 5695 if (debug_infrun)
8a9de0e4 5696 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 5697
cd0fc7c3
SS
5698 /* Let callers know we don't want to wait for the inferior anymore. */
5699 ecs->wait_some_more = 0;
5700}
5701
a9ba6bae
PA
5702/* Called when we should continue running the inferior, because the
5703 current event doesn't cause a user visible stop. This does the
5704 resuming part; waiting for the next event is done elsewhere. */
d4f3574e
SS
5705
5706static void
5707keep_going (struct execution_control_state *ecs)
5708{
c4dbc9af
PA
5709 /* Make sure normal_stop is called if we get a QUIT handled before
5710 reaching resume. */
5711 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5712
d4f3574e 5713 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5714 ecs->event_thread->prev_pc
5715 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5716
16c381f0 5717 if (ecs->event_thread->control.trap_expected
a493e3e2 5718 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
d4f3574e 5719 {
a9ba6bae
PA
5720 /* We haven't yet gotten our trap, and either: intercepted a
5721 non-signal event (e.g., a fork); or took a signal which we
5722 are supposed to pass through to the inferior. Simply
5723 continue. */
c4dbc9af 5724 discard_cleanups (old_cleanups);
2020b7ab 5725 resume (currently_stepping (ecs->event_thread),
16c381f0 5726 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5727 }
5728 else
5729 {
5730 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
5731 anyway (if we got a signal, the user asked it be passed to
5732 the child)
5733 -- or --
5734 We got our expected trap, but decided we should resume from
5735 it.
d4f3574e 5736
a9ba6bae 5737 We're going to run this baby now!
d4f3574e 5738
c36b740a
VP
5739 Note that insert_breakpoints won't try to re-insert
5740 already inserted breakpoints. Therefore, we don't
5741 care if breakpoints were already inserted, or not. */
a9ba6bae 5742
4e1c45ea 5743 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 5744 {
9f5a595d 5745 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
abbb1732 5746
9f5a595d 5747 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
a9ba6bae
PA
5748 {
5749 /* Since we can't do a displaced step, we have to remove
5750 the breakpoint while we step it. To keep things
5751 simple, we remove them all. */
5752 remove_breakpoints ();
5753 }
45e8c884
VP
5754 }
5755 else
d4f3574e 5756 {
bfd189b1 5757 volatile struct gdb_exception e;
abbb1732 5758
a9ba6bae 5759 /* Stop stepping if inserting breakpoints fails. */
e236ba44
VP
5760 TRY_CATCH (e, RETURN_MASK_ERROR)
5761 {
5762 insert_breakpoints ();
5763 }
5764 if (e.reason < 0)
d4f3574e 5765 {
97bd5475 5766 exception_print (gdb_stderr, e);
d4f3574e
SS
5767 stop_stepping (ecs);
5768 return;
5769 }
d4f3574e
SS
5770 }
5771
16c381f0
JK
5772 ecs->event_thread->control.trap_expected
5773 = ecs->event_thread->stepping_over_breakpoint;
d4f3574e 5774
a9ba6bae
PA
5775 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
5776 explicitly specifies that such a signal should be delivered
5777 to the target program). Typically, that would occur when a
5778 user is debugging a target monitor on a simulator: the target
5779 monitor sets a breakpoint; the simulator encounters this
5780 breakpoint and halts the simulation handing control to GDB;
5781 GDB, noting that the stop address doesn't map to any known
5782 breakpoint, returns control back to the simulator; the
5783 simulator then delivers the hardware equivalent of a
5784 GDB_SIGNAL_TRAP to the program being debugged. */
a493e3e2 5785 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5786 && !signal_program[ecs->event_thread->suspend.stop_signal])
a493e3e2 5787 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
d4f3574e 5788
c4dbc9af 5789 discard_cleanups (old_cleanups);
2020b7ab 5790 resume (currently_stepping (ecs->event_thread),
16c381f0 5791 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5792 }
5793
488f131b 5794 prepare_to_wait (ecs);
d4f3574e
SS
5795}
5796
104c1213
JM
5797/* This function normally comes after a resume, before
5798 handle_inferior_event exits. It takes care of any last bits of
5799 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 5800
104c1213
JM
5801static void
5802prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 5803{
527159b7 5804 if (debug_infrun)
8a9de0e4 5805 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 5806
104c1213
JM
5807 /* This is the old end of the while loop. Let everybody know we
5808 want to wait for the inferior some more and get called again
5809 soon. */
5810 ecs->wait_some_more = 1;
c906108c 5811}
11cf8741 5812
33d62d64
JK
5813/* Several print_*_reason functions to print why the inferior has stopped.
5814 We always print something when the inferior exits, or receives a signal.
5815 The rest of the cases are dealt with later on in normal_stop and
5816 print_it_typical. Ideally there should be a call to one of these
5817 print_*_reason functions functions from handle_inferior_event each time
5818 stop_stepping is called. */
5819
5820/* Print why the inferior has stopped.
5821 We are done with a step/next/si/ni command, print why the inferior has
5822 stopped. For now print nothing. Print a message only if not in the middle
5823 of doing a "step n" operation for n > 1. */
5824
5825static void
5826print_end_stepping_range_reason (void)
5827{
16c381f0
JK
5828 if ((!inferior_thread ()->step_multi
5829 || !inferior_thread ()->control.stop_step)
79a45e25
PA
5830 && ui_out_is_mi_like_p (current_uiout))
5831 ui_out_field_string (current_uiout, "reason",
33d62d64
JK
5832 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5833}
5834
5835/* The inferior was terminated by a signal, print why it stopped. */
5836
11cf8741 5837static void
2ea28649 5838print_signal_exited_reason (enum gdb_signal siggnal)
11cf8741 5839{
79a45e25
PA
5840 struct ui_out *uiout = current_uiout;
5841
33d62d64
JK
5842 annotate_signalled ();
5843 if (ui_out_is_mi_like_p (uiout))
5844 ui_out_field_string
5845 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5846 ui_out_text (uiout, "\nProgram terminated with signal ");
5847 annotate_signal_name ();
5848 ui_out_field_string (uiout, "signal-name",
2ea28649 5849 gdb_signal_to_name (siggnal));
33d62d64
JK
5850 annotate_signal_name_end ();
5851 ui_out_text (uiout, ", ");
5852 annotate_signal_string ();
5853 ui_out_field_string (uiout, "signal-meaning",
2ea28649 5854 gdb_signal_to_string (siggnal));
33d62d64
JK
5855 annotate_signal_string_end ();
5856 ui_out_text (uiout, ".\n");
5857 ui_out_text (uiout, "The program no longer exists.\n");
5858}
5859
5860/* The inferior program is finished, print why it stopped. */
5861
5862static void
5863print_exited_reason (int exitstatus)
5864{
fda326dd
TT
5865 struct inferior *inf = current_inferior ();
5866 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
79a45e25 5867 struct ui_out *uiout = current_uiout;
fda326dd 5868
33d62d64
JK
5869 annotate_exited (exitstatus);
5870 if (exitstatus)
5871 {
5872 if (ui_out_is_mi_like_p (uiout))
5873 ui_out_field_string (uiout, "reason",
5874 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
5875 ui_out_text (uiout, "[Inferior ");
5876 ui_out_text (uiout, plongest (inf->num));
5877 ui_out_text (uiout, " (");
5878 ui_out_text (uiout, pidstr);
5879 ui_out_text (uiout, ") exited with code ");
33d62d64 5880 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 5881 ui_out_text (uiout, "]\n");
33d62d64
JK
5882 }
5883 else
11cf8741 5884 {
9dc5e2a9 5885 if (ui_out_is_mi_like_p (uiout))
034dad6f 5886 ui_out_field_string
33d62d64 5887 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
5888 ui_out_text (uiout, "[Inferior ");
5889 ui_out_text (uiout, plongest (inf->num));
5890 ui_out_text (uiout, " (");
5891 ui_out_text (uiout, pidstr);
5892 ui_out_text (uiout, ") exited normally]\n");
33d62d64
JK
5893 }
5894 /* Support the --return-child-result option. */
5895 return_child_result_value = exitstatus;
5896}
5897
5898/* Signal received, print why the inferior has stopped. The signal table
1777feb0 5899 tells us to print about it. */
33d62d64
JK
5900
5901static void
2ea28649 5902print_signal_received_reason (enum gdb_signal siggnal)
33d62d64 5903{
79a45e25
PA
5904 struct ui_out *uiout = current_uiout;
5905
33d62d64
JK
5906 annotate_signal ();
5907
a493e3e2 5908 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
5909 {
5910 struct thread_info *t = inferior_thread ();
5911
5912 ui_out_text (uiout, "\n[");
5913 ui_out_field_string (uiout, "thread-name",
5914 target_pid_to_str (t->ptid));
5915 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5916 ui_out_text (uiout, " stopped");
5917 }
5918 else
5919 {
5920 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 5921 annotate_signal_name ();
33d62d64
JK
5922 if (ui_out_is_mi_like_p (uiout))
5923 ui_out_field_string
5924 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 5925 ui_out_field_string (uiout, "signal-name",
2ea28649 5926 gdb_signal_to_name (siggnal));
8b93c638
JM
5927 annotate_signal_name_end ();
5928 ui_out_text (uiout, ", ");
5929 annotate_signal_string ();
488f131b 5930 ui_out_field_string (uiout, "signal-meaning",
2ea28649 5931 gdb_signal_to_string (siggnal));
8b93c638 5932 annotate_signal_string_end ();
33d62d64
JK
5933 }
5934 ui_out_text (uiout, ".\n");
5935}
252fbfc8 5936
33d62d64
JK
5937/* Reverse execution: target ran out of history info, print why the inferior
5938 has stopped. */
252fbfc8 5939
33d62d64
JK
5940static void
5941print_no_history_reason (void)
5942{
79a45e25 5943 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
11cf8741 5944}
43ff13b4 5945
0c7e1a46
PA
5946/* Print current location without a level number, if we have changed
5947 functions or hit a breakpoint. Print source line if we have one.
5948 bpstat_print contains the logic deciding in detail what to print,
5949 based on the event(s) that just occurred. */
5950
5951void
5952print_stop_event (struct target_waitstatus *ws)
5953{
5954 int bpstat_ret;
5955 int source_flag;
5956 int do_frame_printing = 1;
5957 struct thread_info *tp = inferior_thread ();
5958
5959 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
5960 switch (bpstat_ret)
5961 {
5962 case PRINT_UNKNOWN:
5963 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
5964 should) carry around the function and does (or should) use
5965 that when doing a frame comparison. */
5966 if (tp->control.stop_step
5967 && frame_id_eq (tp->control.step_frame_id,
5968 get_frame_id (get_current_frame ()))
5969 && step_start_function == find_pc_function (stop_pc))
5970 {
5971 /* Finished step, just print source line. */
5972 source_flag = SRC_LINE;
5973 }
5974 else
5975 {
5976 /* Print location and source line. */
5977 source_flag = SRC_AND_LOC;
5978 }
5979 break;
5980 case PRINT_SRC_AND_LOC:
5981 /* Print location and source line. */
5982 source_flag = SRC_AND_LOC;
5983 break;
5984 case PRINT_SRC_ONLY:
5985 source_flag = SRC_LINE;
5986 break;
5987 case PRINT_NOTHING:
5988 /* Something bogus. */
5989 source_flag = SRC_LINE;
5990 do_frame_printing = 0;
5991 break;
5992 default:
5993 internal_error (__FILE__, __LINE__, _("Unknown value."));
5994 }
5995
5996 /* The behavior of this routine with respect to the source
5997 flag is:
5998 SRC_LINE: Print only source line
5999 LOCATION: Print only location
6000 SRC_AND_LOC: Print location and source line. */
6001 if (do_frame_printing)
6002 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
6003
6004 /* Display the auto-display expressions. */
6005 do_displays ();
6006}
6007
c906108c
SS
6008/* Here to return control to GDB when the inferior stops for real.
6009 Print appropriate messages, remove breakpoints, give terminal our modes.
6010
6011 STOP_PRINT_FRAME nonzero means print the executing frame
6012 (pc, function, args, file, line number and line text).
6013 BREAKPOINTS_FAILED nonzero means stop was due to error
6014 attempting to insert breakpoints. */
6015
6016void
96baa820 6017normal_stop (void)
c906108c 6018{
73b65bb0
DJ
6019 struct target_waitstatus last;
6020 ptid_t last_ptid;
29f49a6a 6021 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
6022
6023 get_last_target_status (&last_ptid, &last);
6024
29f49a6a
PA
6025 /* If an exception is thrown from this point on, make sure to
6026 propagate GDB's knowledge of the executing state to the
6027 frontend/user running state. A QUIT is an easy exception to see
6028 here, so do this before any filtered output. */
c35b1492
PA
6029 if (!non_stop)
6030 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
6031 else if (last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
6032 && last.kind != TARGET_WAITKIND_EXITED
6033 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 6034 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 6035
4f8d22e3
PA
6036 /* In non-stop mode, we don't want GDB to switch threads behind the
6037 user's back, to avoid races where the user is typing a command to
6038 apply to thread x, but GDB switches to thread y before the user
6039 finishes entering the command. */
6040
c906108c
SS
6041 /* As with the notification of thread events, we want to delay
6042 notifying the user that we've switched thread context until
6043 the inferior actually stops.
6044
73b65bb0
DJ
6045 There's no point in saying anything if the inferior has exited.
6046 Note that SIGNALLED here means "exited with a signal", not
6047 "received a signal". */
4f8d22e3
PA
6048 if (!non_stop
6049 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
6050 && target_has_execution
6051 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
6052 && last.kind != TARGET_WAITKIND_EXITED
6053 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
6054 {
6055 target_terminal_ours_for_output ();
a3f17187 6056 printf_filtered (_("[Switching to %s]\n"),
c95310c6 6057 target_pid_to_str (inferior_ptid));
b8fa951a 6058 annotate_thread_changed ();
39f77062 6059 previous_inferior_ptid = inferior_ptid;
c906108c 6060 }
c906108c 6061
0e5bf2a8
PA
6062 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6063 {
6064 gdb_assert (sync_execution || !target_can_async_p ());
6065
6066 target_terminal_ours_for_output ();
6067 printf_filtered (_("No unwaited-for children left.\n"));
6068 }
6069
74960c60 6070 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
6071 {
6072 if (remove_breakpoints ())
6073 {
6074 target_terminal_ours_for_output ();
3e43a32a
MS
6075 printf_filtered (_("Cannot remove breakpoints because "
6076 "program is no longer writable.\nFurther "
6077 "execution is probably impossible.\n"));
c906108c
SS
6078 }
6079 }
c906108c 6080
c906108c
SS
6081 /* If an auto-display called a function and that got a signal,
6082 delete that auto-display to avoid an infinite recursion. */
6083
6084 if (stopped_by_random_signal)
6085 disable_current_display ();
6086
6087 /* Don't print a message if in the middle of doing a "step n"
6088 operation for n > 1 */
af679fd0
PA
6089 if (target_has_execution
6090 && last.kind != TARGET_WAITKIND_SIGNALLED
6091 && last.kind != TARGET_WAITKIND_EXITED
6092 && inferior_thread ()->step_multi
16c381f0 6093 && inferior_thread ()->control.stop_step)
c906108c
SS
6094 goto done;
6095
6096 target_terminal_ours ();
0f641c01 6097 async_enable_stdin ();
c906108c 6098
7abfe014
DJ
6099 /* Set the current source location. This will also happen if we
6100 display the frame below, but the current SAL will be incorrect
6101 during a user hook-stop function. */
d729566a 6102 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
6103 set_current_sal_from_frame (get_current_frame (), 1);
6104
dd7e2d2b
PA
6105 /* Let the user/frontend see the threads as stopped. */
6106 do_cleanups (old_chain);
6107
6108 /* Look up the hook_stop and run it (CLI internally handles problem
6109 of stop_command's pre-hook not existing). */
6110 if (stop_command)
6111 catch_errors (hook_stop_stub, stop_command,
6112 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6113
d729566a 6114 if (!has_stack_frames ())
d51fd4c8 6115 goto done;
c906108c 6116
32400beb
PA
6117 if (last.kind == TARGET_WAITKIND_SIGNALLED
6118 || last.kind == TARGET_WAITKIND_EXITED)
6119 goto done;
6120
c906108c
SS
6121 /* Select innermost stack frame - i.e., current frame is frame 0,
6122 and current location is based on that.
6123 Don't do this on return from a stack dummy routine,
1777feb0 6124 or if the program has exited. */
c906108c
SS
6125
6126 if (!stop_stack_dummy)
6127 {
0f7d239c 6128 select_frame (get_current_frame ());
c906108c 6129
d01a8610
AS
6130 /* If --batch-silent is enabled then there's no need to print the current
6131 source location, and to try risks causing an error message about
6132 missing source files. */
6133 if (stop_print_frame && !batch_silent)
0c7e1a46 6134 print_stop_event (&last);
c906108c
SS
6135 }
6136
6137 /* Save the function value return registers, if we care.
6138 We might be about to restore their previous contents. */
9da8c2a0
PA
6139 if (inferior_thread ()->control.proceed_to_finish
6140 && execution_direction != EXEC_REVERSE)
d5c31457
UW
6141 {
6142 /* This should not be necessary. */
6143 if (stop_registers)
6144 regcache_xfree (stop_registers);
6145
6146 /* NB: The copy goes through to the target picking up the value of
6147 all the registers. */
6148 stop_registers = regcache_dup (get_current_regcache ());
6149 }
c906108c 6150
aa7d318d 6151 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 6152 {
b89667eb
DE
6153 /* Pop the empty frame that contains the stack dummy.
6154 This also restores inferior state prior to the call
16c381f0 6155 (struct infcall_suspend_state). */
b89667eb 6156 struct frame_info *frame = get_current_frame ();
abbb1732 6157
b89667eb
DE
6158 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6159 frame_pop (frame);
3e43a32a
MS
6160 /* frame_pop() calls reinit_frame_cache as the last thing it
6161 does which means there's currently no selected frame. We
6162 don't need to re-establish a selected frame if the dummy call
6163 returns normally, that will be done by
6164 restore_infcall_control_state. However, we do have to handle
6165 the case where the dummy call is returning after being
6166 stopped (e.g. the dummy call previously hit a breakpoint).
6167 We can't know which case we have so just always re-establish
6168 a selected frame here. */
0f7d239c 6169 select_frame (get_current_frame ());
c906108c
SS
6170 }
6171
c906108c
SS
6172done:
6173 annotate_stopped ();
41d2bdb4
PA
6174
6175 /* Suppress the stop observer if we're in the middle of:
6176
6177 - a step n (n > 1), as there still more steps to be done.
6178
6179 - a "finish" command, as the observer will be called in
6180 finish_command_continuation, so it can include the inferior
6181 function's return value.
6182
6183 - calling an inferior function, as we pretend we inferior didn't
6184 run at all. The return value of the call is handled by the
6185 expression evaluator, through call_function_by_hand. */
6186
6187 if (!target_has_execution
6188 || last.kind == TARGET_WAITKIND_SIGNALLED
6189 || last.kind == TARGET_WAITKIND_EXITED
0e5bf2a8 6190 || last.kind == TARGET_WAITKIND_NO_RESUMED
2ca0b532
PA
6191 || (!(inferior_thread ()->step_multi
6192 && inferior_thread ()->control.stop_step)
16c381f0
JK
6193 && !(inferior_thread ()->control.stop_bpstat
6194 && inferior_thread ()->control.proceed_to_finish)
6195 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
6196 {
6197 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 6198 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 6199 stop_print_frame);
347bddb7 6200 else
1d33d6ba 6201 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 6202 }
347bddb7 6203
48844aa6
PA
6204 if (target_has_execution)
6205 {
6206 if (last.kind != TARGET_WAITKIND_SIGNALLED
6207 && last.kind != TARGET_WAITKIND_EXITED)
6208 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6209 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 6210 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 6211 }
6c95b8df
PA
6212
6213 /* Try to get rid of automatically added inferiors that are no
6214 longer needed. Keeping those around slows down things linearly.
6215 Note that this never removes the current inferior. */
6216 prune_inferiors ();
c906108c
SS
6217}
6218
6219static int
96baa820 6220hook_stop_stub (void *cmd)
c906108c 6221{
5913bcb0 6222 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
6223 return (0);
6224}
6225\f
c5aa993b 6226int
96baa820 6227signal_stop_state (int signo)
c906108c 6228{
d6b48e9c 6229 return signal_stop[signo];
c906108c
SS
6230}
6231
c5aa993b 6232int
96baa820 6233signal_print_state (int signo)
c906108c
SS
6234{
6235 return signal_print[signo];
6236}
6237
c5aa993b 6238int
96baa820 6239signal_pass_state (int signo)
c906108c
SS
6240{
6241 return signal_program[signo];
6242}
6243
2455069d
UW
6244static void
6245signal_cache_update (int signo)
6246{
6247 if (signo == -1)
6248 {
a493e3e2 6249 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
6250 signal_cache_update (signo);
6251
6252 return;
6253 }
6254
6255 signal_pass[signo] = (signal_stop[signo] == 0
6256 && signal_print[signo] == 0
ab04a2af
TT
6257 && signal_program[signo] == 1
6258 && signal_catch[signo] == 0);
2455069d
UW
6259}
6260
488f131b 6261int
7bda5e4a 6262signal_stop_update (int signo, int state)
d4f3574e
SS
6263{
6264 int ret = signal_stop[signo];
abbb1732 6265
d4f3574e 6266 signal_stop[signo] = state;
2455069d 6267 signal_cache_update (signo);
d4f3574e
SS
6268 return ret;
6269}
6270
488f131b 6271int
7bda5e4a 6272signal_print_update (int signo, int state)
d4f3574e
SS
6273{
6274 int ret = signal_print[signo];
abbb1732 6275
d4f3574e 6276 signal_print[signo] = state;
2455069d 6277 signal_cache_update (signo);
d4f3574e
SS
6278 return ret;
6279}
6280
488f131b 6281int
7bda5e4a 6282signal_pass_update (int signo, int state)
d4f3574e
SS
6283{
6284 int ret = signal_program[signo];
abbb1732 6285
d4f3574e 6286 signal_program[signo] = state;
2455069d 6287 signal_cache_update (signo);
d4f3574e
SS
6288 return ret;
6289}
6290
ab04a2af
TT
6291/* Update the global 'signal_catch' from INFO and notify the
6292 target. */
6293
6294void
6295signal_catch_update (const unsigned int *info)
6296{
6297 int i;
6298
6299 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6300 signal_catch[i] = info[i] > 0;
6301 signal_cache_update (-1);
6302 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6303}
6304
c906108c 6305static void
96baa820 6306sig_print_header (void)
c906108c 6307{
3e43a32a
MS
6308 printf_filtered (_("Signal Stop\tPrint\tPass "
6309 "to program\tDescription\n"));
c906108c
SS
6310}
6311
6312static void
2ea28649 6313sig_print_info (enum gdb_signal oursig)
c906108c 6314{
2ea28649 6315 const char *name = gdb_signal_to_name (oursig);
c906108c 6316 int name_padding = 13 - strlen (name);
96baa820 6317
c906108c
SS
6318 if (name_padding <= 0)
6319 name_padding = 0;
6320
6321 printf_filtered ("%s", name);
488f131b 6322 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6323 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6324 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6325 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 6326 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
6327}
6328
6329/* Specify how various signals in the inferior should be handled. */
6330
6331static void
96baa820 6332handle_command (char *args, int from_tty)
c906108c
SS
6333{
6334 char **argv;
6335 int digits, wordlen;
6336 int sigfirst, signum, siglast;
2ea28649 6337 enum gdb_signal oursig;
c906108c
SS
6338 int allsigs;
6339 int nsigs;
6340 unsigned char *sigs;
6341 struct cleanup *old_chain;
6342
6343 if (args == NULL)
6344 {
e2e0b3e5 6345 error_no_arg (_("signal to handle"));
c906108c
SS
6346 }
6347
1777feb0 6348 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 6349
a493e3e2 6350 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
6351 sigs = (unsigned char *) alloca (nsigs);
6352 memset (sigs, 0, nsigs);
6353
1777feb0 6354 /* Break the command line up into args. */
c906108c 6355
d1a41061 6356 argv = gdb_buildargv (args);
7a292a7a 6357 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6358
6359 /* Walk through the args, looking for signal oursigs, signal names, and
6360 actions. Signal numbers and signal names may be interspersed with
6361 actions, with the actions being performed for all signals cumulatively
1777feb0 6362 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6363
6364 while (*argv != NULL)
6365 {
6366 wordlen = strlen (*argv);
6367 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6368 {;
6369 }
6370 allsigs = 0;
6371 sigfirst = siglast = -1;
6372
6373 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6374 {
6375 /* Apply action to all signals except those used by the
1777feb0 6376 debugger. Silently skip those. */
c906108c
SS
6377 allsigs = 1;
6378 sigfirst = 0;
6379 siglast = nsigs - 1;
6380 }
6381 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6382 {
6383 SET_SIGS (nsigs, sigs, signal_stop);
6384 SET_SIGS (nsigs, sigs, signal_print);
6385 }
6386 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6387 {
6388 UNSET_SIGS (nsigs, sigs, signal_program);
6389 }
6390 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6391 {
6392 SET_SIGS (nsigs, sigs, signal_print);
6393 }
6394 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6395 {
6396 SET_SIGS (nsigs, sigs, signal_program);
6397 }
6398 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6399 {
6400 UNSET_SIGS (nsigs, sigs, signal_stop);
6401 }
6402 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6403 {
6404 SET_SIGS (nsigs, sigs, signal_program);
6405 }
6406 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6407 {
6408 UNSET_SIGS (nsigs, sigs, signal_print);
6409 UNSET_SIGS (nsigs, sigs, signal_stop);
6410 }
6411 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6412 {
6413 UNSET_SIGS (nsigs, sigs, signal_program);
6414 }
6415 else if (digits > 0)
6416 {
6417 /* It is numeric. The numeric signal refers to our own
6418 internal signal numbering from target.h, not to host/target
6419 signal number. This is a feature; users really should be
6420 using symbolic names anyway, and the common ones like
6421 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6422
6423 sigfirst = siglast = (int)
2ea28649 6424 gdb_signal_from_command (atoi (*argv));
c906108c
SS
6425 if ((*argv)[digits] == '-')
6426 {
6427 siglast = (int)
2ea28649 6428 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
6429 }
6430 if (sigfirst > siglast)
6431 {
1777feb0 6432 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6433 signum = sigfirst;
6434 sigfirst = siglast;
6435 siglast = signum;
6436 }
6437 }
6438 else
6439 {
2ea28649 6440 oursig = gdb_signal_from_name (*argv);
a493e3e2 6441 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
6442 {
6443 sigfirst = siglast = (int) oursig;
6444 }
6445 else
6446 {
6447 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6448 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6449 }
6450 }
6451
6452 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6453 which signals to apply actions to. */
c906108c
SS
6454
6455 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6456 {
2ea28649 6457 switch ((enum gdb_signal) signum)
c906108c 6458 {
a493e3e2
PA
6459 case GDB_SIGNAL_TRAP:
6460 case GDB_SIGNAL_INT:
c906108c
SS
6461 if (!allsigs && !sigs[signum])
6462 {
9e2f0ad4 6463 if (query (_("%s is used by the debugger.\n\
3e43a32a 6464Are you sure you want to change it? "),
2ea28649 6465 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
6466 {
6467 sigs[signum] = 1;
6468 }
6469 else
6470 {
a3f17187 6471 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6472 gdb_flush (gdb_stdout);
6473 }
6474 }
6475 break;
a493e3e2
PA
6476 case GDB_SIGNAL_0:
6477 case GDB_SIGNAL_DEFAULT:
6478 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
6479 /* Make sure that "all" doesn't print these. */
6480 break;
6481 default:
6482 sigs[signum] = 1;
6483 break;
6484 }
6485 }
6486
6487 argv++;
6488 }
6489
3a031f65
PA
6490 for (signum = 0; signum < nsigs; signum++)
6491 if (sigs[signum])
6492 {
2455069d 6493 signal_cache_update (-1);
a493e3e2
PA
6494 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6495 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 6496
3a031f65
PA
6497 if (from_tty)
6498 {
6499 /* Show the results. */
6500 sig_print_header ();
6501 for (; signum < nsigs; signum++)
6502 if (sigs[signum])
6503 sig_print_info (signum);
6504 }
6505
6506 break;
6507 }
c906108c
SS
6508
6509 do_cleanups (old_chain);
6510}
6511
de0bea00
MF
6512/* Complete the "handle" command. */
6513
6514static VEC (char_ptr) *
6515handle_completer (struct cmd_list_element *ignore,
6f937416 6516 const char *text, const char *word)
de0bea00
MF
6517{
6518 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6519 static const char * const keywords[] =
6520 {
6521 "all",
6522 "stop",
6523 "ignore",
6524 "print",
6525 "pass",
6526 "nostop",
6527 "noignore",
6528 "noprint",
6529 "nopass",
6530 NULL,
6531 };
6532
6533 vec_signals = signal_completer (ignore, text, word);
6534 vec_keywords = complete_on_enum (keywords, word, word);
6535
6536 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6537 VEC_free (char_ptr, vec_signals);
6538 VEC_free (char_ptr, vec_keywords);
6539 return return_val;
6540}
6541
c906108c 6542static void
96baa820 6543xdb_handle_command (char *args, int from_tty)
c906108c
SS
6544{
6545 char **argv;
6546 struct cleanup *old_chain;
6547
d1a41061
PP
6548 if (args == NULL)
6549 error_no_arg (_("xdb command"));
6550
1777feb0 6551 /* Break the command line up into args. */
c906108c 6552
d1a41061 6553 argv = gdb_buildargv (args);
7a292a7a 6554 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6555 if (argv[1] != (char *) NULL)
6556 {
6557 char *argBuf;
6558 int bufLen;
6559
6560 bufLen = strlen (argv[0]) + 20;
6561 argBuf = (char *) xmalloc (bufLen);
6562 if (argBuf)
6563 {
6564 int validFlag = 1;
2ea28649 6565 enum gdb_signal oursig;
c906108c 6566
2ea28649 6567 oursig = gdb_signal_from_name (argv[0]);
c906108c
SS
6568 memset (argBuf, 0, bufLen);
6569 if (strcmp (argv[1], "Q") == 0)
6570 sprintf (argBuf, "%s %s", argv[0], "noprint");
6571 else
6572 {
6573 if (strcmp (argv[1], "s") == 0)
6574 {
6575 if (!signal_stop[oursig])
6576 sprintf (argBuf, "%s %s", argv[0], "stop");
6577 else
6578 sprintf (argBuf, "%s %s", argv[0], "nostop");
6579 }
6580 else if (strcmp (argv[1], "i") == 0)
6581 {
6582 if (!signal_program[oursig])
6583 sprintf (argBuf, "%s %s", argv[0], "pass");
6584 else
6585 sprintf (argBuf, "%s %s", argv[0], "nopass");
6586 }
6587 else if (strcmp (argv[1], "r") == 0)
6588 {
6589 if (!signal_print[oursig])
6590 sprintf (argBuf, "%s %s", argv[0], "print");
6591 else
6592 sprintf (argBuf, "%s %s", argv[0], "noprint");
6593 }
6594 else
6595 validFlag = 0;
6596 }
6597 if (validFlag)
6598 handle_command (argBuf, from_tty);
6599 else
a3f17187 6600 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 6601 if (argBuf)
b8c9b27d 6602 xfree (argBuf);
c906108c
SS
6603 }
6604 }
6605 do_cleanups (old_chain);
6606}
6607
2ea28649
PA
6608enum gdb_signal
6609gdb_signal_from_command (int num)
ed01b82c
PA
6610{
6611 if (num >= 1 && num <= 15)
2ea28649 6612 return (enum gdb_signal) num;
ed01b82c
PA
6613 error (_("Only signals 1-15 are valid as numeric signals.\n\
6614Use \"info signals\" for a list of symbolic signals."));
6615}
6616
c906108c
SS
6617/* Print current contents of the tables set by the handle command.
6618 It is possible we should just be printing signals actually used
6619 by the current target (but for things to work right when switching
6620 targets, all signals should be in the signal tables). */
6621
6622static void
96baa820 6623signals_info (char *signum_exp, int from_tty)
c906108c 6624{
2ea28649 6625 enum gdb_signal oursig;
abbb1732 6626
c906108c
SS
6627 sig_print_header ();
6628
6629 if (signum_exp)
6630 {
6631 /* First see if this is a symbol name. */
2ea28649 6632 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 6633 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
6634 {
6635 /* No, try numeric. */
6636 oursig =
2ea28649 6637 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
6638 }
6639 sig_print_info (oursig);
6640 return;
6641 }
6642
6643 printf_filtered ("\n");
6644 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
6645 for (oursig = GDB_SIGNAL_FIRST;
6646 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 6647 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
6648 {
6649 QUIT;
6650
a493e3e2
PA
6651 if (oursig != GDB_SIGNAL_UNKNOWN
6652 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
6653 sig_print_info (oursig);
6654 }
6655
3e43a32a
MS
6656 printf_filtered (_("\nUse the \"handle\" command "
6657 "to change these tables.\n"));
c906108c 6658}
4aa995e1 6659
c709acd1
PA
6660/* Check if it makes sense to read $_siginfo from the current thread
6661 at this point. If not, throw an error. */
6662
6663static void
6664validate_siginfo_access (void)
6665{
6666 /* No current inferior, no siginfo. */
6667 if (ptid_equal (inferior_ptid, null_ptid))
6668 error (_("No thread selected."));
6669
6670 /* Don't try to read from a dead thread. */
6671 if (is_exited (inferior_ptid))
6672 error (_("The current thread has terminated"));
6673
6674 /* ... or from a spinning thread. */
6675 if (is_running (inferior_ptid))
6676 error (_("Selected thread is running."));
6677}
6678
4aa995e1
PA
6679/* The $_siginfo convenience variable is a bit special. We don't know
6680 for sure the type of the value until we actually have a chance to
7a9dd1b2 6681 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
6682 also dependent on which thread you have selected.
6683
6684 1. making $_siginfo be an internalvar that creates a new value on
6685 access.
6686
6687 2. making the value of $_siginfo be an lval_computed value. */
6688
6689/* This function implements the lval_computed support for reading a
6690 $_siginfo value. */
6691
6692static void
6693siginfo_value_read (struct value *v)
6694{
6695 LONGEST transferred;
6696
c709acd1
PA
6697 validate_siginfo_access ();
6698
4aa995e1
PA
6699 transferred =
6700 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6701 NULL,
6702 value_contents_all_raw (v),
6703 value_offset (v),
6704 TYPE_LENGTH (value_type (v)));
6705
6706 if (transferred != TYPE_LENGTH (value_type (v)))
6707 error (_("Unable to read siginfo"));
6708}
6709
6710/* This function implements the lval_computed support for writing a
6711 $_siginfo value. */
6712
6713static void
6714siginfo_value_write (struct value *v, struct value *fromval)
6715{
6716 LONGEST transferred;
6717
c709acd1
PA
6718 validate_siginfo_access ();
6719
4aa995e1
PA
6720 transferred = target_write (&current_target,
6721 TARGET_OBJECT_SIGNAL_INFO,
6722 NULL,
6723 value_contents_all_raw (fromval),
6724 value_offset (v),
6725 TYPE_LENGTH (value_type (fromval)));
6726
6727 if (transferred != TYPE_LENGTH (value_type (fromval)))
6728 error (_("Unable to write siginfo"));
6729}
6730
c8f2448a 6731static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
6732 {
6733 siginfo_value_read,
6734 siginfo_value_write
6735 };
6736
6737/* Return a new value with the correct type for the siginfo object of
78267919
UW
6738 the current thread using architecture GDBARCH. Return a void value
6739 if there's no object available. */
4aa995e1 6740
2c0b251b 6741static struct value *
22d2b532
SDJ
6742siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6743 void *ignore)
4aa995e1 6744{
4aa995e1 6745 if (target_has_stack
78267919
UW
6746 && !ptid_equal (inferior_ptid, null_ptid)
6747 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 6748 {
78267919 6749 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 6750
78267919 6751 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
6752 }
6753
78267919 6754 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
6755}
6756
c906108c 6757\f
16c381f0
JK
6758/* infcall_suspend_state contains state about the program itself like its
6759 registers and any signal it received when it last stopped.
6760 This state must be restored regardless of how the inferior function call
6761 ends (either successfully, or after it hits a breakpoint or signal)
6762 if the program is to properly continue where it left off. */
6763
6764struct infcall_suspend_state
7a292a7a 6765{
16c381f0 6766 struct thread_suspend_state thread_suspend;
dd80ea3c 6767#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6768 struct inferior_suspend_state inferior_suspend;
dd80ea3c 6769#endif
16c381f0
JK
6770
6771 /* Other fields: */
7a292a7a 6772 CORE_ADDR stop_pc;
b89667eb 6773 struct regcache *registers;
1736ad11 6774
35515841 6775 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
6776 struct gdbarch *siginfo_gdbarch;
6777
6778 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6779 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6780 content would be invalid. */
6781 gdb_byte *siginfo_data;
b89667eb
DE
6782};
6783
16c381f0
JK
6784struct infcall_suspend_state *
6785save_infcall_suspend_state (void)
b89667eb 6786{
16c381f0 6787 struct infcall_suspend_state *inf_state;
b89667eb 6788 struct thread_info *tp = inferior_thread ();
974a734b 6789#if 0
16c381f0 6790 struct inferior *inf = current_inferior ();
974a734b 6791#endif
1736ad11
JK
6792 struct regcache *regcache = get_current_regcache ();
6793 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6794 gdb_byte *siginfo_data = NULL;
6795
6796 if (gdbarch_get_siginfo_type_p (gdbarch))
6797 {
6798 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6799 size_t len = TYPE_LENGTH (type);
6800 struct cleanup *back_to;
6801
6802 siginfo_data = xmalloc (len);
6803 back_to = make_cleanup (xfree, siginfo_data);
6804
6805 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6806 siginfo_data, 0, len) == len)
6807 discard_cleanups (back_to);
6808 else
6809 {
6810 /* Errors ignored. */
6811 do_cleanups (back_to);
6812 siginfo_data = NULL;
6813 }
6814 }
6815
41bf6aca 6816 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
6817
6818 if (siginfo_data)
6819 {
6820 inf_state->siginfo_gdbarch = gdbarch;
6821 inf_state->siginfo_data = siginfo_data;
6822 }
b89667eb 6823
16c381f0 6824 inf_state->thread_suspend = tp->suspend;
dd80ea3c 6825#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6826 inf_state->inferior_suspend = inf->suspend;
dd80ea3c 6827#endif
16c381f0 6828
35515841 6829 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
6830 GDB_SIGNAL_0 anyway. */
6831 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 6832
b89667eb
DE
6833 inf_state->stop_pc = stop_pc;
6834
1736ad11 6835 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
6836
6837 return inf_state;
6838}
6839
6840/* Restore inferior session state to INF_STATE. */
6841
6842void
16c381f0 6843restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6844{
6845 struct thread_info *tp = inferior_thread ();
974a734b 6846#if 0
16c381f0 6847 struct inferior *inf = current_inferior ();
974a734b 6848#endif
1736ad11
JK
6849 struct regcache *regcache = get_current_regcache ();
6850 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 6851
16c381f0 6852 tp->suspend = inf_state->thread_suspend;
dd80ea3c 6853#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6854 inf->suspend = inf_state->inferior_suspend;
dd80ea3c 6855#endif
16c381f0 6856
b89667eb
DE
6857 stop_pc = inf_state->stop_pc;
6858
1736ad11
JK
6859 if (inf_state->siginfo_gdbarch == gdbarch)
6860 {
6861 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
6862
6863 /* Errors ignored. */
6864 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 6865 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
6866 }
6867
b89667eb
DE
6868 /* The inferior can be gone if the user types "print exit(0)"
6869 (and perhaps other times). */
6870 if (target_has_execution)
6871 /* NB: The register write goes through to the target. */
1736ad11 6872 regcache_cpy (regcache, inf_state->registers);
803b5f95 6873
16c381f0 6874 discard_infcall_suspend_state (inf_state);
b89667eb
DE
6875}
6876
6877static void
16c381f0 6878do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 6879{
16c381f0 6880 restore_infcall_suspend_state (state);
b89667eb
DE
6881}
6882
6883struct cleanup *
16c381f0
JK
6884make_cleanup_restore_infcall_suspend_state
6885 (struct infcall_suspend_state *inf_state)
b89667eb 6886{
16c381f0 6887 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
6888}
6889
6890void
16c381f0 6891discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6892{
6893 regcache_xfree (inf_state->registers);
803b5f95 6894 xfree (inf_state->siginfo_data);
b89667eb
DE
6895 xfree (inf_state);
6896}
6897
6898struct regcache *
16c381f0 6899get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
6900{
6901 return inf_state->registers;
6902}
6903
16c381f0
JK
6904/* infcall_control_state contains state regarding gdb's control of the
6905 inferior itself like stepping control. It also contains session state like
6906 the user's currently selected frame. */
b89667eb 6907
16c381f0 6908struct infcall_control_state
b89667eb 6909{
16c381f0
JK
6910 struct thread_control_state thread_control;
6911 struct inferior_control_state inferior_control;
d82142e2
JK
6912
6913 /* Other fields: */
6914 enum stop_stack_kind stop_stack_dummy;
6915 int stopped_by_random_signal;
7a292a7a 6916 int stop_after_trap;
7a292a7a 6917
b89667eb 6918 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 6919 struct frame_id selected_frame_id;
7a292a7a
SS
6920};
6921
c906108c 6922/* Save all of the information associated with the inferior<==>gdb
b89667eb 6923 connection. */
c906108c 6924
16c381f0
JK
6925struct infcall_control_state *
6926save_infcall_control_state (void)
c906108c 6927{
16c381f0 6928 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 6929 struct thread_info *tp = inferior_thread ();
d6b48e9c 6930 struct inferior *inf = current_inferior ();
7a292a7a 6931
16c381f0
JK
6932 inf_status->thread_control = tp->control;
6933 inf_status->inferior_control = inf->control;
d82142e2 6934
8358c15c 6935 tp->control.step_resume_breakpoint = NULL;
5b79abe7 6936 tp->control.exception_resume_breakpoint = NULL;
8358c15c 6937
16c381f0
JK
6938 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6939 chain. If caller's caller is walking the chain, they'll be happier if we
6940 hand them back the original chain when restore_infcall_control_state is
6941 called. */
6942 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
6943
6944 /* Other fields: */
6945 inf_status->stop_stack_dummy = stop_stack_dummy;
6946 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6947 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 6948
206415a3 6949 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 6950
7a292a7a 6951 return inf_status;
c906108c
SS
6952}
6953
c906108c 6954static int
96baa820 6955restore_selected_frame (void *args)
c906108c 6956{
488f131b 6957 struct frame_id *fid = (struct frame_id *) args;
c906108c 6958 struct frame_info *frame;
c906108c 6959
101dcfbe 6960 frame = frame_find_by_id (*fid);
c906108c 6961
aa0cd9c1
AC
6962 /* If inf_status->selected_frame_id is NULL, there was no previously
6963 selected frame. */
101dcfbe 6964 if (frame == NULL)
c906108c 6965 {
8a3fe4f8 6966 warning (_("Unable to restore previously selected frame."));
c906108c
SS
6967 return 0;
6968 }
6969
0f7d239c 6970 select_frame (frame);
c906108c
SS
6971
6972 return (1);
6973}
6974
b89667eb
DE
6975/* Restore inferior session state to INF_STATUS. */
6976
c906108c 6977void
16c381f0 6978restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 6979{
4e1c45ea 6980 struct thread_info *tp = inferior_thread ();
d6b48e9c 6981 struct inferior *inf = current_inferior ();
4e1c45ea 6982
8358c15c
JK
6983 if (tp->control.step_resume_breakpoint)
6984 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6985
5b79abe7
TT
6986 if (tp->control.exception_resume_breakpoint)
6987 tp->control.exception_resume_breakpoint->disposition
6988 = disp_del_at_next_stop;
6989
d82142e2 6990 /* Handle the bpstat_copy of the chain. */
16c381f0 6991 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 6992
16c381f0
JK
6993 tp->control = inf_status->thread_control;
6994 inf->control = inf_status->inferior_control;
d82142e2
JK
6995
6996 /* Other fields: */
6997 stop_stack_dummy = inf_status->stop_stack_dummy;
6998 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6999 stop_after_trap = inf_status->stop_after_trap;
c906108c 7000
b89667eb 7001 if (target_has_stack)
c906108c 7002 {
c906108c 7003 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
7004 walking the stack might encounter a garbage pointer and
7005 error() trying to dereference it. */
488f131b
JB
7006 if (catch_errors
7007 (restore_selected_frame, &inf_status->selected_frame_id,
7008 "Unable to restore previously selected frame:\n",
7009 RETURN_MASK_ERROR) == 0)
c906108c
SS
7010 /* Error in restoring the selected frame. Select the innermost
7011 frame. */
0f7d239c 7012 select_frame (get_current_frame ());
c906108c 7013 }
c906108c 7014
72cec141 7015 xfree (inf_status);
7a292a7a 7016}
c906108c 7017
74b7792f 7018static void
16c381f0 7019do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 7020{
16c381f0 7021 restore_infcall_control_state (sts);
74b7792f
AC
7022}
7023
7024struct cleanup *
16c381f0
JK
7025make_cleanup_restore_infcall_control_state
7026 (struct infcall_control_state *inf_status)
74b7792f 7027{
16c381f0 7028 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
7029}
7030
c906108c 7031void
16c381f0 7032discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 7033{
8358c15c
JK
7034 if (inf_status->thread_control.step_resume_breakpoint)
7035 inf_status->thread_control.step_resume_breakpoint->disposition
7036 = disp_del_at_next_stop;
7037
5b79abe7
TT
7038 if (inf_status->thread_control.exception_resume_breakpoint)
7039 inf_status->thread_control.exception_resume_breakpoint->disposition
7040 = disp_del_at_next_stop;
7041
1777feb0 7042 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 7043 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 7044
72cec141 7045 xfree (inf_status);
7a292a7a 7046}
b89667eb 7047\f
ca6724c1
KB
7048/* restore_inferior_ptid() will be used by the cleanup machinery
7049 to restore the inferior_ptid value saved in a call to
7050 save_inferior_ptid(). */
ce696e05
KB
7051
7052static void
7053restore_inferior_ptid (void *arg)
7054{
7055 ptid_t *saved_ptid_ptr = arg;
abbb1732 7056
ce696e05
KB
7057 inferior_ptid = *saved_ptid_ptr;
7058 xfree (arg);
7059}
7060
7061/* Save the value of inferior_ptid so that it may be restored by a
7062 later call to do_cleanups(). Returns the struct cleanup pointer
7063 needed for later doing the cleanup. */
7064
7065struct cleanup *
7066save_inferior_ptid (void)
7067{
7068 ptid_t *saved_ptid_ptr;
7069
7070 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7071 *saved_ptid_ptr = inferior_ptid;
7072 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7073}
0c557179
SDJ
7074
7075/* See inferior.h. */
7076
7077void
7078clear_exit_convenience_vars (void)
7079{
7080 clear_internalvar (lookup_internalvar ("_exitsignal"));
7081 clear_internalvar (lookup_internalvar ("_exitcode"));
7082}
c5aa993b 7083\f
488f131b 7084
b2175913
MS
7085/* User interface for reverse debugging:
7086 Set exec-direction / show exec-direction commands
7087 (returns error unless target implements to_set_exec_direction method). */
7088
32231432 7089int execution_direction = EXEC_FORWARD;
b2175913
MS
7090static const char exec_forward[] = "forward";
7091static const char exec_reverse[] = "reverse";
7092static const char *exec_direction = exec_forward;
40478521 7093static const char *const exec_direction_names[] = {
b2175913
MS
7094 exec_forward,
7095 exec_reverse,
7096 NULL
7097};
7098
7099static void
7100set_exec_direction_func (char *args, int from_tty,
7101 struct cmd_list_element *cmd)
7102{
7103 if (target_can_execute_reverse)
7104 {
7105 if (!strcmp (exec_direction, exec_forward))
7106 execution_direction = EXEC_FORWARD;
7107 else if (!strcmp (exec_direction, exec_reverse))
7108 execution_direction = EXEC_REVERSE;
7109 }
8bbed405
MS
7110 else
7111 {
7112 exec_direction = exec_forward;
7113 error (_("Target does not support this operation."));
7114 }
b2175913
MS
7115}
7116
7117static void
7118show_exec_direction_func (struct ui_file *out, int from_tty,
7119 struct cmd_list_element *cmd, const char *value)
7120{
7121 switch (execution_direction) {
7122 case EXEC_FORWARD:
7123 fprintf_filtered (out, _("Forward.\n"));
7124 break;
7125 case EXEC_REVERSE:
7126 fprintf_filtered (out, _("Reverse.\n"));
7127 break;
b2175913 7128 default:
d8b34453
PA
7129 internal_error (__FILE__, __LINE__,
7130 _("bogus execution_direction value: %d"),
7131 (int) execution_direction);
b2175913
MS
7132 }
7133}
7134
d4db2f36
PA
7135static void
7136show_schedule_multiple (struct ui_file *file, int from_tty,
7137 struct cmd_list_element *c, const char *value)
7138{
3e43a32a
MS
7139 fprintf_filtered (file, _("Resuming the execution of threads "
7140 "of all processes is %s.\n"), value);
d4db2f36 7141}
ad52ddc6 7142
22d2b532
SDJ
7143/* Implementation of `siginfo' variable. */
7144
7145static const struct internalvar_funcs siginfo_funcs =
7146{
7147 siginfo_make_value,
7148 NULL,
7149 NULL
7150};
7151
c906108c 7152void
96baa820 7153_initialize_infrun (void)
c906108c 7154{
52f0bd74
AC
7155 int i;
7156 int numsigs;
de0bea00 7157 struct cmd_list_element *c;
c906108c 7158
1bedd215
AC
7159 add_info ("signals", signals_info, _("\
7160What debugger does when program gets various signals.\n\
7161Specify a signal as argument to print info on that signal only."));
c906108c
SS
7162 add_info_alias ("handle", "signals", 0);
7163
de0bea00 7164 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 7165Specify how to handle signals.\n\
486c7739 7166Usage: handle SIGNAL [ACTIONS]\n\
c906108c 7167Args are signals and actions to apply to those signals.\n\
dfbd5e7b 7168If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
7169will be displayed instead.\n\
7170\n\
c906108c
SS
7171Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7172from 1-15 are allowed for compatibility with old versions of GDB.\n\
7173Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7174The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7175used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 7176\n\
1bedd215 7177Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
7178\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7179Stop means reenter debugger if this signal happens (implies print).\n\
7180Print means print a message if this signal happens.\n\
7181Pass means let program see this signal; otherwise program doesn't know.\n\
7182Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
7183Pass and Stop may be combined.\n\
7184\n\
7185Multiple signals may be specified. Signal numbers and signal names\n\
7186may be interspersed with actions, with the actions being performed for\n\
7187all signals cumulatively specified."));
de0bea00 7188 set_cmd_completer (c, handle_completer);
486c7739 7189
c906108c
SS
7190 if (xdb_commands)
7191 {
1bedd215
AC
7192 add_com ("lz", class_info, signals_info, _("\
7193What debugger does when program gets various signals.\n\
7194Specify a signal as argument to print info on that signal only."));
7195 add_com ("z", class_run, xdb_handle_command, _("\
7196Specify how to handle a signal.\n\
c906108c
SS
7197Args are signals and actions to apply to those signals.\n\
7198Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7199from 1-15 are allowed for compatibility with old versions of GDB.\n\
7200Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7201The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7202used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 7203Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
7204\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7205nopass), \"Q\" (noprint)\n\
7206Stop means reenter debugger if this signal happens (implies print).\n\
7207Print means print a message if this signal happens.\n\
7208Pass means let program see this signal; otherwise program doesn't know.\n\
7209Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7210Pass and Stop may be combined."));
c906108c
SS
7211 }
7212
7213 if (!dbx_commands)
1a966eab
AC
7214 stop_command = add_cmd ("stop", class_obscure,
7215 not_just_help_class_command, _("\
7216There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 7217This allows you to set a list of commands to be run each time execution\n\
1a966eab 7218of the program stops."), &cmdlist);
c906108c 7219
ccce17b0 7220 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
7221Set inferior debugging."), _("\
7222Show inferior debugging."), _("\
7223When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
7224 NULL,
7225 show_debug_infrun,
7226 &setdebuglist, &showdebuglist);
527159b7 7227
3e43a32a
MS
7228 add_setshow_boolean_cmd ("displaced", class_maintenance,
7229 &debug_displaced, _("\
237fc4c9
PA
7230Set displaced stepping debugging."), _("\
7231Show displaced stepping debugging."), _("\
7232When non-zero, displaced stepping specific debugging is enabled."),
7233 NULL,
7234 show_debug_displaced,
7235 &setdebuglist, &showdebuglist);
7236
ad52ddc6
PA
7237 add_setshow_boolean_cmd ("non-stop", no_class,
7238 &non_stop_1, _("\
7239Set whether gdb controls the inferior in non-stop mode."), _("\
7240Show whether gdb controls the inferior in non-stop mode."), _("\
7241When debugging a multi-threaded program and this setting is\n\
7242off (the default, also called all-stop mode), when one thread stops\n\
7243(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7244all other threads in the program while you interact with the thread of\n\
7245interest. When you continue or step a thread, you can allow the other\n\
7246threads to run, or have them remain stopped, but while you inspect any\n\
7247thread's state, all threads stop.\n\
7248\n\
7249In non-stop mode, when one thread stops, other threads can continue\n\
7250to run freely. You'll be able to step each thread independently,\n\
7251leave it stopped or free to run as needed."),
7252 set_non_stop,
7253 show_non_stop,
7254 &setlist,
7255 &showlist);
7256
a493e3e2 7257 numsigs = (int) GDB_SIGNAL_LAST;
488f131b 7258 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7259 signal_print = (unsigned char *)
7260 xmalloc (sizeof (signal_print[0]) * numsigs);
7261 signal_program = (unsigned char *)
7262 xmalloc (sizeof (signal_program[0]) * numsigs);
ab04a2af
TT
7263 signal_catch = (unsigned char *)
7264 xmalloc (sizeof (signal_catch[0]) * numsigs);
2455069d
UW
7265 signal_pass = (unsigned char *)
7266 xmalloc (sizeof (signal_program[0]) * numsigs);
c906108c
SS
7267 for (i = 0; i < numsigs; i++)
7268 {
7269 signal_stop[i] = 1;
7270 signal_print[i] = 1;
7271 signal_program[i] = 1;
ab04a2af 7272 signal_catch[i] = 0;
c906108c
SS
7273 }
7274
7275 /* Signals caused by debugger's own actions
7276 should not be given to the program afterwards. */
a493e3e2
PA
7277 signal_program[GDB_SIGNAL_TRAP] = 0;
7278 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
7279
7280 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
7281 signal_stop[GDB_SIGNAL_ALRM] = 0;
7282 signal_print[GDB_SIGNAL_ALRM] = 0;
7283 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7284 signal_print[GDB_SIGNAL_VTALRM] = 0;
7285 signal_stop[GDB_SIGNAL_PROF] = 0;
7286 signal_print[GDB_SIGNAL_PROF] = 0;
7287 signal_stop[GDB_SIGNAL_CHLD] = 0;
7288 signal_print[GDB_SIGNAL_CHLD] = 0;
7289 signal_stop[GDB_SIGNAL_IO] = 0;
7290 signal_print[GDB_SIGNAL_IO] = 0;
7291 signal_stop[GDB_SIGNAL_POLL] = 0;
7292 signal_print[GDB_SIGNAL_POLL] = 0;
7293 signal_stop[GDB_SIGNAL_URG] = 0;
7294 signal_print[GDB_SIGNAL_URG] = 0;
7295 signal_stop[GDB_SIGNAL_WINCH] = 0;
7296 signal_print[GDB_SIGNAL_WINCH] = 0;
7297 signal_stop[GDB_SIGNAL_PRIO] = 0;
7298 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 7299
cd0fc7c3
SS
7300 /* These signals are used internally by user-level thread
7301 implementations. (See signal(5) on Solaris.) Like the above
7302 signals, a healthy program receives and handles them as part of
7303 its normal operation. */
a493e3e2
PA
7304 signal_stop[GDB_SIGNAL_LWP] = 0;
7305 signal_print[GDB_SIGNAL_LWP] = 0;
7306 signal_stop[GDB_SIGNAL_WAITING] = 0;
7307 signal_print[GDB_SIGNAL_WAITING] = 0;
7308 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7309 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 7310
2455069d
UW
7311 /* Update cached state. */
7312 signal_cache_update (-1);
7313
85c07804
AC
7314 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7315 &stop_on_solib_events, _("\
7316Set stopping for shared library events."), _("\
7317Show stopping for shared library events."), _("\
c906108c
SS
7318If nonzero, gdb will give control to the user when the dynamic linker\n\
7319notifies gdb of shared library events. The most common event of interest\n\
85c07804 7320to the user would be loading/unloading of a new library."),
f9e14852 7321 set_stop_on_solib_events,
920d2a44 7322 show_stop_on_solib_events,
85c07804 7323 &setlist, &showlist);
c906108c 7324
7ab04401
AC
7325 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7326 follow_fork_mode_kind_names,
7327 &follow_fork_mode_string, _("\
7328Set debugger response to a program call of fork or vfork."), _("\
7329Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7330A fork or vfork creates a new process. follow-fork-mode can be:\n\
7331 parent - the original process is debugged after a fork\n\
7332 child - the new process is debugged after a fork\n\
ea1dd7bc 7333The unfollowed process will continue to run.\n\
7ab04401
AC
7334By default, the debugger will follow the parent process."),
7335 NULL,
920d2a44 7336 show_follow_fork_mode_string,
7ab04401
AC
7337 &setlist, &showlist);
7338
6c95b8df
PA
7339 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7340 follow_exec_mode_names,
7341 &follow_exec_mode_string, _("\
7342Set debugger response to a program call of exec."), _("\
7343Show debugger response to a program call of exec."), _("\
7344An exec call replaces the program image of a process.\n\
7345\n\
7346follow-exec-mode can be:\n\
7347\n\
cce7e648 7348 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7349to this new inferior. The program the process was running before\n\
7350the exec call can be restarted afterwards by restarting the original\n\
7351inferior.\n\
7352\n\
7353 same - the debugger keeps the process bound to the same inferior.\n\
7354The new executable image replaces the previous executable loaded in\n\
7355the inferior. Restarting the inferior after the exec call restarts\n\
7356the executable the process was running after the exec call.\n\
7357\n\
7358By default, the debugger will use the same inferior."),
7359 NULL,
7360 show_follow_exec_mode_string,
7361 &setlist, &showlist);
7362
7ab04401
AC
7363 add_setshow_enum_cmd ("scheduler-locking", class_run,
7364 scheduler_enums, &scheduler_mode, _("\
7365Set mode for locking scheduler during execution."), _("\
7366Show mode for locking scheduler during execution."), _("\
c906108c
SS
7367off == no locking (threads may preempt at any time)\n\
7368on == full locking (no thread except the current thread may run)\n\
7369step == scheduler locked during every single-step operation.\n\
7370 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7371 Other threads may run while stepping over a function call ('next')."),
7372 set_schedlock_func, /* traps on target vector */
920d2a44 7373 show_scheduler_mode,
7ab04401 7374 &setlist, &showlist);
5fbbeb29 7375
d4db2f36
PA
7376 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7377Set mode for resuming threads of all processes."), _("\
7378Show mode for resuming threads of all processes."), _("\
7379When on, execution commands (such as 'continue' or 'next') resume all\n\
7380threads of all processes. When off (which is the default), execution\n\
7381commands only resume the threads of the current process. The set of\n\
7382threads that are resumed is further refined by the scheduler-locking\n\
7383mode (see help set scheduler-locking)."),
7384 NULL,
7385 show_schedule_multiple,
7386 &setlist, &showlist);
7387
5bf193a2
AC
7388 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7389Set mode of the step operation."), _("\
7390Show mode of the step operation."), _("\
7391When set, doing a step over a function without debug line information\n\
7392will stop at the first instruction of that function. Otherwise, the\n\
7393function is skipped and the step command stops at a different source line."),
7394 NULL,
920d2a44 7395 show_step_stop_if_no_debug,
5bf193a2 7396 &setlist, &showlist);
ca6724c1 7397
72d0e2c5
YQ
7398 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7399 &can_use_displaced_stepping, _("\
237fc4c9
PA
7400Set debugger's willingness to use displaced stepping."), _("\
7401Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7402If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7403supported by the target architecture. If off, gdb will not use displaced\n\
7404stepping to step over breakpoints, even if such is supported by the target\n\
7405architecture. If auto (which is the default), gdb will use displaced stepping\n\
7406if the target architecture supports it and non-stop mode is active, but will not\n\
7407use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
7408 NULL,
7409 show_can_use_displaced_stepping,
7410 &setlist, &showlist);
237fc4c9 7411
b2175913
MS
7412 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7413 &exec_direction, _("Set direction of execution.\n\
7414Options are 'forward' or 'reverse'."),
7415 _("Show direction of execution (forward/reverse)."),
7416 _("Tells gdb whether to execute forward or backward."),
7417 set_exec_direction_func, show_exec_direction_func,
7418 &setlist, &showlist);
7419
6c95b8df
PA
7420 /* Set/show detach-on-fork: user-settable mode. */
7421
7422 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7423Set whether gdb will detach the child of a fork."), _("\
7424Show whether gdb will detach the child of a fork."), _("\
7425Tells gdb whether to detach the child of a fork."),
7426 NULL, NULL, &setlist, &showlist);
7427
03583c20
UW
7428 /* Set/show disable address space randomization mode. */
7429
7430 add_setshow_boolean_cmd ("disable-randomization", class_support,
7431 &disable_randomization, _("\
7432Set disabling of debuggee's virtual address space randomization."), _("\
7433Show disabling of debuggee's virtual address space randomization."), _("\
7434When this mode is on (which is the default), randomization of the virtual\n\
7435address space is disabled. Standalone programs run with the randomization\n\
7436enabled by default on some platforms."),
7437 &set_disable_randomization,
7438 &show_disable_randomization,
7439 &setlist, &showlist);
7440
ca6724c1 7441 /* ptid initializations */
ca6724c1
KB
7442 inferior_ptid = null_ptid;
7443 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7444
7445 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7446 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7447 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7448 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7449
7450 /* Explicitly create without lookup, since that tries to create a
7451 value with a void typed value, and when we get here, gdbarch
7452 isn't initialized yet. At this point, we're quite sure there
7453 isn't another convenience variable of the same name. */
22d2b532 7454 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
7455
7456 add_setshow_boolean_cmd ("observer", no_class,
7457 &observer_mode_1, _("\
7458Set whether gdb controls the inferior in observer mode."), _("\
7459Show whether gdb controls the inferior in observer mode."), _("\
7460In observer mode, GDB can get data from the inferior, but not\n\
7461affect its execution. Registers and memory may not be changed,\n\
7462breakpoints may not be set, and the program cannot be interrupted\n\
7463or signalled."),
7464 set_observer_mode,
7465 show_observer_mode,
7466 &setlist,
7467 &showlist);
c906108c 7468}