]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/infrun.c
* dwarf2read.c (dwarf_decode_lines): Recognize and ignore
[thirdparty/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca 4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1 5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
0fb0cc75 6 2008, 2009 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
9f976b41 48#include "gdb_assert.h"
034dad6f 49#include "mi/mi-common.h"
4f8d22e3 50#include "event-top.h"
96429cc8 51#include "record.h"
c906108c
SS
52
53/* Prototypes for local functions */
54
96baa820 55static void signals_info (char *, int);
c906108c 56
96baa820 57static void handle_command (char *, int);
c906108c 58
96baa820 59static void sig_print_info (enum target_signal);
c906108c 60
96baa820 61static void sig_print_header (void);
c906108c 62
74b7792f 63static void resume_cleanups (void *);
c906108c 64
96baa820 65static int hook_stop_stub (void *);
c906108c 66
96baa820
JM
67static int restore_selected_frame (void *);
68
69static void build_infrun (void);
70
4ef3f3be 71static int follow_fork (void);
96baa820
JM
72
73static void set_schedlock_func (char *args, int from_tty,
488f131b 74 struct cmd_list_element *c);
96baa820 75
4e1c45ea 76static int currently_stepping (struct thread_info *tp);
96baa820 77
b3444185
PA
78static int currently_stepping_or_nexting_callback (struct thread_info *tp,
79 void *data);
a7212384 80
96baa820
JM
81static void xdb_handle_command (char *args, int from_tty);
82
6a6b96b9 83static int prepare_to_proceed (int);
ea67f13b 84
96baa820 85void _initialize_infrun (void);
43ff13b4 86
e58b0e63
PA
87void nullify_last_target_wait_ptid (void);
88
5fbbeb29
CF
89/* When set, stop the 'step' command if we enter a function which has
90 no line number information. The normal behavior is that we step
91 over such function. */
92int step_stop_if_no_debug = 0;
920d2a44
AC
93static void
94show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
95 struct cmd_list_element *c, const char *value)
96{
97 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
98}
5fbbeb29 99
43ff13b4 100/* In asynchronous mode, but simulating synchronous execution. */
96baa820 101
43ff13b4
JM
102int sync_execution = 0;
103
c906108c
SS
104/* wait_for_inferior and normal_stop use this to notify the user
105 when the inferior stopped in a different thread than it had been
96baa820
JM
106 running in. */
107
39f77062 108static ptid_t previous_inferior_ptid;
7a292a7a 109
237fc4c9
PA
110int debug_displaced = 0;
111static void
112show_debug_displaced (struct ui_file *file, int from_tty,
113 struct cmd_list_element *c, const char *value)
114{
115 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
116}
117
527159b7 118static int debug_infrun = 0;
920d2a44
AC
119static void
120show_debug_infrun (struct ui_file *file, int from_tty,
121 struct cmd_list_element *c, const char *value)
122{
123 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
124}
527159b7 125
d4f3574e
SS
126/* If the program uses ELF-style shared libraries, then calls to
127 functions in shared libraries go through stubs, which live in a
128 table called the PLT (Procedure Linkage Table). The first time the
129 function is called, the stub sends control to the dynamic linker,
130 which looks up the function's real address, patches the stub so
131 that future calls will go directly to the function, and then passes
132 control to the function.
133
134 If we are stepping at the source level, we don't want to see any of
135 this --- we just want to skip over the stub and the dynamic linker.
136 The simple approach is to single-step until control leaves the
137 dynamic linker.
138
ca557f44
AC
139 However, on some systems (e.g., Red Hat's 5.2 distribution) the
140 dynamic linker calls functions in the shared C library, so you
141 can't tell from the PC alone whether the dynamic linker is still
142 running. In this case, we use a step-resume breakpoint to get us
143 past the dynamic linker, as if we were using "next" to step over a
144 function call.
d4f3574e 145
cfd8ab24 146 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
147 linker code or not. Normally, this means we single-step. However,
148 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
149 address where we can place a step-resume breakpoint to get past the
150 linker's symbol resolution function.
151
cfd8ab24 152 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
153 pretty portable way, by comparing the PC against the address ranges
154 of the dynamic linker's sections.
155
156 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
157 it depends on internal details of the dynamic linker. It's usually
158 not too hard to figure out where to put a breakpoint, but it
159 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
160 sanity checking. If it can't figure things out, returning zero and
161 getting the (possibly confusing) stepping behavior is better than
162 signalling an error, which will obscure the change in the
163 inferior's state. */
c906108c 164
c906108c
SS
165/* This function returns TRUE if pc is the address of an instruction
166 that lies within the dynamic linker (such as the event hook, or the
167 dld itself).
168
169 This function must be used only when a dynamic linker event has
170 been caught, and the inferior is being stepped out of the hook, or
171 undefined results are guaranteed. */
172
173#ifndef SOLIB_IN_DYNAMIC_LINKER
174#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
175#endif
176
c2c6d25f 177
7a292a7a
SS
178/* Convert the #defines into values. This is temporary until wfi control
179 flow is completely sorted out. */
180
692590c1
MS
181#ifndef CANNOT_STEP_HW_WATCHPOINTS
182#define CANNOT_STEP_HW_WATCHPOINTS 0
183#else
184#undef CANNOT_STEP_HW_WATCHPOINTS
185#define CANNOT_STEP_HW_WATCHPOINTS 1
186#endif
187
c906108c
SS
188/* Tables of how to react to signals; the user sets them. */
189
190static unsigned char *signal_stop;
191static unsigned char *signal_print;
192static unsigned char *signal_program;
193
194#define SET_SIGS(nsigs,sigs,flags) \
195 do { \
196 int signum = (nsigs); \
197 while (signum-- > 0) \
198 if ((sigs)[signum]) \
199 (flags)[signum] = 1; \
200 } while (0)
201
202#define UNSET_SIGS(nsigs,sigs,flags) \
203 do { \
204 int signum = (nsigs); \
205 while (signum-- > 0) \
206 if ((sigs)[signum]) \
207 (flags)[signum] = 0; \
208 } while (0)
209
39f77062
KB
210/* Value to pass to target_resume() to cause all threads to resume */
211
212#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
213
214/* Command list pointer for the "stop" placeholder. */
215
216static struct cmd_list_element *stop_command;
217
c906108c
SS
218/* Function inferior was in as of last step command. */
219
220static struct symbol *step_start_function;
221
c906108c
SS
222/* Nonzero if we want to give control to the user when we're notified
223 of shared library events by the dynamic linker. */
224static int stop_on_solib_events;
920d2a44
AC
225static void
226show_stop_on_solib_events (struct ui_file *file, int from_tty,
227 struct cmd_list_element *c, const char *value)
228{
229 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
230 value);
231}
c906108c 232
c906108c
SS
233/* Nonzero means expecting a trace trap
234 and should stop the inferior and return silently when it happens. */
235
236int stop_after_trap;
237
642fd101
DE
238/* Save register contents here when executing a "finish" command or are
239 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
240 Thus this contains the return value from the called function (assuming
241 values are returned in a register). */
242
72cec141 243struct regcache *stop_registers;
c906108c 244
c906108c
SS
245/* Nonzero after stop if current stack frame should be printed. */
246
247static int stop_print_frame;
248
e02bc4cc 249/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
250 returned by target_wait()/deprecated_target_wait_hook(). This
251 information is returned by get_last_target_status(). */
39f77062 252static ptid_t target_last_wait_ptid;
e02bc4cc
DS
253static struct target_waitstatus target_last_waitstatus;
254
0d1e5fa7
PA
255static void context_switch (ptid_t ptid);
256
4e1c45ea 257void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
258
259void init_infwait_state (void);
a474d7c2 260
53904c9e
AC
261static const char follow_fork_mode_child[] = "child";
262static const char follow_fork_mode_parent[] = "parent";
263
488f131b 264static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
265 follow_fork_mode_child,
266 follow_fork_mode_parent,
267 NULL
ef346e04 268};
c906108c 269
53904c9e 270static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
271static void
272show_follow_fork_mode_string (struct ui_file *file, int from_tty,
273 struct cmd_list_element *c, const char *value)
274{
275 fprintf_filtered (file, _("\
276Debugger response to a program call of fork or vfork is \"%s\".\n"),
277 value);
278}
c906108c
SS
279\f
280
e58b0e63
PA
281/* Tell the target to follow the fork we're stopped at. Returns true
282 if the inferior should be resumed; false, if the target for some
283 reason decided it's best not to resume. */
284
6604731b 285static int
4ef3f3be 286follow_fork (void)
c906108c 287{
ea1dd7bc 288 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
289 int should_resume = 1;
290 struct thread_info *tp;
291
292 /* Copy user stepping state to the new inferior thread. FIXME: the
293 followed fork child thread should have a copy of most of the
4e3990f4
DE
294 parent thread structure's run control related fields, not just these.
295 Initialized to avoid "may be used uninitialized" warnings from gcc. */
296 struct breakpoint *step_resume_breakpoint = NULL;
297 CORE_ADDR step_range_start = 0;
298 CORE_ADDR step_range_end = 0;
299 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
300
301 if (!non_stop)
302 {
303 ptid_t wait_ptid;
304 struct target_waitstatus wait_status;
305
306 /* Get the last target status returned by target_wait(). */
307 get_last_target_status (&wait_ptid, &wait_status);
308
309 /* If not stopped at a fork event, then there's nothing else to
310 do. */
311 if (wait_status.kind != TARGET_WAITKIND_FORKED
312 && wait_status.kind != TARGET_WAITKIND_VFORKED)
313 return 1;
314
315 /* Check if we switched over from WAIT_PTID, since the event was
316 reported. */
317 if (!ptid_equal (wait_ptid, minus_one_ptid)
318 && !ptid_equal (inferior_ptid, wait_ptid))
319 {
320 /* We did. Switch back to WAIT_PTID thread, to tell the
321 target to follow it (in either direction). We'll
322 afterwards refuse to resume, and inform the user what
323 happened. */
324 switch_to_thread (wait_ptid);
325 should_resume = 0;
326 }
327 }
328
329 tp = inferior_thread ();
330
331 /* If there were any forks/vforks that were caught and are now to be
332 followed, then do so now. */
333 switch (tp->pending_follow.kind)
334 {
335 case TARGET_WAITKIND_FORKED:
336 case TARGET_WAITKIND_VFORKED:
337 {
338 ptid_t parent, child;
339
340 /* If the user did a next/step, etc, over a fork call,
341 preserve the stepping state in the fork child. */
342 if (follow_child && should_resume)
343 {
344 step_resume_breakpoint
345 = clone_momentary_breakpoint (tp->step_resume_breakpoint);
346 step_range_start = tp->step_range_start;
347 step_range_end = tp->step_range_end;
348 step_frame_id = tp->step_frame_id;
349
350 /* For now, delete the parent's sr breakpoint, otherwise,
351 parent/child sr breakpoints are considered duplicates,
352 and the child version will not be installed. Remove
353 this when the breakpoints module becomes aware of
354 inferiors and address spaces. */
355 delete_step_resume_breakpoint (tp);
356 tp->step_range_start = 0;
357 tp->step_range_end = 0;
358 tp->step_frame_id = null_frame_id;
359 }
360
361 parent = inferior_ptid;
362 child = tp->pending_follow.value.related_pid;
363
364 /* Tell the target to do whatever is necessary to follow
365 either parent or child. */
366 if (target_follow_fork (follow_child))
367 {
368 /* Target refused to follow, or there's some other reason
369 we shouldn't resume. */
370 should_resume = 0;
371 }
372 else
373 {
374 /* This pending follow fork event is now handled, one way
375 or another. The previous selected thread may be gone
376 from the lists by now, but if it is still around, need
377 to clear the pending follow request. */
e09875d4 378 tp = find_thread_ptid (parent);
e58b0e63
PA
379 if (tp)
380 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
381
382 /* This makes sure we don't try to apply the "Switched
383 over from WAIT_PID" logic above. */
384 nullify_last_target_wait_ptid ();
385
386 /* If we followed the child, switch to it... */
387 if (follow_child)
388 {
389 switch_to_thread (child);
390
391 /* ... and preserve the stepping state, in case the
392 user was stepping over the fork call. */
393 if (should_resume)
394 {
395 tp = inferior_thread ();
396 tp->step_resume_breakpoint = step_resume_breakpoint;
397 tp->step_range_start = step_range_start;
398 tp->step_range_end = step_range_end;
399 tp->step_frame_id = step_frame_id;
400 }
401 else
402 {
403 /* If we get here, it was because we're trying to
404 resume from a fork catchpoint, but, the user
405 has switched threads away from the thread that
406 forked. In that case, the resume command
407 issued is most likely not applicable to the
408 child, so just warn, and refuse to resume. */
409 warning (_("\
410Not resuming: switched threads before following fork child.\n"));
411 }
412
413 /* Reset breakpoints in the child as appropriate. */
414 follow_inferior_reset_breakpoints ();
415 }
416 else
417 switch_to_thread (parent);
418 }
419 }
420 break;
421 case TARGET_WAITKIND_SPURIOUS:
422 /* Nothing to follow. */
423 break;
424 default:
425 internal_error (__FILE__, __LINE__,
426 "Unexpected pending_follow.kind %d\n",
427 tp->pending_follow.kind);
428 break;
429 }
c906108c 430
e58b0e63 431 return should_resume;
c906108c
SS
432}
433
6604731b
DJ
434void
435follow_inferior_reset_breakpoints (void)
c906108c 436{
4e1c45ea
PA
437 struct thread_info *tp = inferior_thread ();
438
6604731b
DJ
439 /* Was there a step_resume breakpoint? (There was if the user
440 did a "next" at the fork() call.) If so, explicitly reset its
441 thread number.
442
443 step_resumes are a form of bp that are made to be per-thread.
444 Since we created the step_resume bp when the parent process
445 was being debugged, and now are switching to the child process,
446 from the breakpoint package's viewpoint, that's a switch of
447 "threads". We must update the bp's notion of which thread
448 it is for, or it'll be ignored when it triggers. */
449
4e1c45ea
PA
450 if (tp->step_resume_breakpoint)
451 breakpoint_re_set_thread (tp->step_resume_breakpoint);
6604731b
DJ
452
453 /* Reinsert all breakpoints in the child. The user may have set
454 breakpoints after catching the fork, in which case those
455 were never set in the child, but only in the parent. This makes
456 sure the inserted breakpoints match the breakpoint list. */
457
458 breakpoint_re_set ();
459 insert_breakpoints ();
c906108c 460}
c906108c 461
1adeb98a
FN
462/* EXECD_PATHNAME is assumed to be non-NULL. */
463
c906108c 464static void
3a3e9ee3 465follow_exec (ptid_t pid, char *execd_pathname)
c906108c 466{
7a292a7a 467 struct target_ops *tgt;
4e1c45ea 468 struct thread_info *th = inferior_thread ();
7a292a7a 469
c906108c
SS
470 /* This is an exec event that we actually wish to pay attention to.
471 Refresh our symbol table to the newly exec'd program, remove any
472 momentary bp's, etc.
473
474 If there are breakpoints, they aren't really inserted now,
475 since the exec() transformed our inferior into a fresh set
476 of instructions.
477
478 We want to preserve symbolic breakpoints on the list, since
479 we have hopes that they can be reset after the new a.out's
480 symbol table is read.
481
482 However, any "raw" breakpoints must be removed from the list
483 (e.g., the solib bp's), since their address is probably invalid
484 now.
485
486 And, we DON'T want to call delete_breakpoints() here, since
487 that may write the bp's "shadow contents" (the instruction
488 value that was overwritten witha TRAP instruction). Since
489 we now have a new a.out, those shadow contents aren't valid. */
490 update_breakpoints_after_exec ();
491
492 /* If there was one, it's gone now. We cannot truly step-to-next
493 statement through an exec(). */
4e1c45ea
PA
494 th->step_resume_breakpoint = NULL;
495 th->step_range_start = 0;
496 th->step_range_end = 0;
c906108c 497
a75724bc
PA
498 /* The target reports the exec event to the main thread, even if
499 some other thread does the exec, and even if the main thread was
500 already stopped --- if debugging in non-stop mode, it's possible
501 the user had the main thread held stopped in the previous image
502 --- release it now. This is the same behavior as step-over-exec
503 with scheduler-locking on in all-stop mode. */
504 th->stop_requested = 0;
505
c906108c 506 /* What is this a.out's name? */
a3f17187 507 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
c906108c
SS
508
509 /* We've followed the inferior through an exec. Therefore, the
510 inferior has essentially been killed & reborn. */
7a292a7a 511
c906108c 512 gdb_flush (gdb_stdout);
6ca15a4b
PA
513
514 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
515
516 if (gdb_sysroot && *gdb_sysroot)
517 {
518 char *name = alloca (strlen (gdb_sysroot)
519 + strlen (execd_pathname)
520 + 1);
521 strcpy (name, gdb_sysroot);
522 strcat (name, execd_pathname);
523 execd_pathname = name;
524 }
c906108c
SS
525
526 /* That a.out is now the one to use. */
527 exec_file_attach (execd_pathname, 0);
528
cce9b6bf
PA
529 /* Reset the shared library package. This ensures that we get a
530 shlib event when the child reaches "_start", at which point the
531 dld will have had a chance to initialize the child. */
532 /* Also, loading a symbol file below may trigger symbol lookups, and
533 we don't want those to be satisfied by the libraries of the
534 previous incarnation of this process. */
535 no_shared_libraries (NULL, 0);
536
537 /* Load the main file's symbols. */
1adeb98a 538 symbol_file_add_main (execd_pathname, 0);
c906108c 539
7a292a7a 540#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 541 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2
MK
542#else
543 solib_create_inferior_hook ();
7a292a7a 544#endif
c906108c
SS
545
546 /* Reinsert all breakpoints. (Those which were symbolic have
547 been reset to the proper address in the new a.out, thanks
548 to symbol_file_command...) */
549 insert_breakpoints ();
550
551 /* The next resume of this inferior should bring it to the shlib
552 startup breakpoints. (If the user had also set bp's on
553 "main" from the old (parent) process, then they'll auto-
554 matically get reset there in the new process.) */
c906108c
SS
555}
556
557/* Non-zero if we just simulating a single-step. This is needed
558 because we cannot remove the breakpoints in the inferior process
559 until after the `wait' in `wait_for_inferior'. */
560static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
561
562/* The thread we inserted single-step breakpoints for. */
563static ptid_t singlestep_ptid;
564
fd48f117
DJ
565/* PC when we started this single-step. */
566static CORE_ADDR singlestep_pc;
567
9f976b41
DJ
568/* If another thread hit the singlestep breakpoint, we save the original
569 thread here so that we can resume single-stepping it later. */
570static ptid_t saved_singlestep_ptid;
571static int stepping_past_singlestep_breakpoint;
6a6b96b9 572
ca67fcb8
VP
573/* If not equal to null_ptid, this means that after stepping over breakpoint
574 is finished, we need to switch to deferred_step_ptid, and step it.
575
576 The use case is when one thread has hit a breakpoint, and then the user
577 has switched to another thread and issued 'step'. We need to step over
578 breakpoint in the thread which hit the breakpoint, but then continue
579 stepping the thread user has selected. */
580static ptid_t deferred_step_ptid;
c906108c 581\f
237fc4c9
PA
582/* Displaced stepping. */
583
584/* In non-stop debugging mode, we must take special care to manage
585 breakpoints properly; in particular, the traditional strategy for
586 stepping a thread past a breakpoint it has hit is unsuitable.
587 'Displaced stepping' is a tactic for stepping one thread past a
588 breakpoint it has hit while ensuring that other threads running
589 concurrently will hit the breakpoint as they should.
590
591 The traditional way to step a thread T off a breakpoint in a
592 multi-threaded program in all-stop mode is as follows:
593
594 a0) Initially, all threads are stopped, and breakpoints are not
595 inserted.
596 a1) We single-step T, leaving breakpoints uninserted.
597 a2) We insert breakpoints, and resume all threads.
598
599 In non-stop debugging, however, this strategy is unsuitable: we
600 don't want to have to stop all threads in the system in order to
601 continue or step T past a breakpoint. Instead, we use displaced
602 stepping:
603
604 n0) Initially, T is stopped, other threads are running, and
605 breakpoints are inserted.
606 n1) We copy the instruction "under" the breakpoint to a separate
607 location, outside the main code stream, making any adjustments
608 to the instruction, register, and memory state as directed by
609 T's architecture.
610 n2) We single-step T over the instruction at its new location.
611 n3) We adjust the resulting register and memory state as directed
612 by T's architecture. This includes resetting T's PC to point
613 back into the main instruction stream.
614 n4) We resume T.
615
616 This approach depends on the following gdbarch methods:
617
618 - gdbarch_max_insn_length and gdbarch_displaced_step_location
619 indicate where to copy the instruction, and how much space must
620 be reserved there. We use these in step n1.
621
622 - gdbarch_displaced_step_copy_insn copies a instruction to a new
623 address, and makes any necessary adjustments to the instruction,
624 register contents, and memory. We use this in step n1.
625
626 - gdbarch_displaced_step_fixup adjusts registers and memory after
627 we have successfuly single-stepped the instruction, to yield the
628 same effect the instruction would have had if we had executed it
629 at its original address. We use this in step n3.
630
631 - gdbarch_displaced_step_free_closure provides cleanup.
632
633 The gdbarch_displaced_step_copy_insn and
634 gdbarch_displaced_step_fixup functions must be written so that
635 copying an instruction with gdbarch_displaced_step_copy_insn,
636 single-stepping across the copied instruction, and then applying
637 gdbarch_displaced_insn_fixup should have the same effects on the
638 thread's memory and registers as stepping the instruction in place
639 would have. Exactly which responsibilities fall to the copy and
640 which fall to the fixup is up to the author of those functions.
641
642 See the comments in gdbarch.sh for details.
643
644 Note that displaced stepping and software single-step cannot
645 currently be used in combination, although with some care I think
646 they could be made to. Software single-step works by placing
647 breakpoints on all possible subsequent instructions; if the
648 displaced instruction is a PC-relative jump, those breakpoints
649 could fall in very strange places --- on pages that aren't
650 executable, or at addresses that are not proper instruction
651 boundaries. (We do generally let other threads run while we wait
652 to hit the software single-step breakpoint, and they might
653 encounter such a corrupted instruction.) One way to work around
654 this would be to have gdbarch_displaced_step_copy_insn fully
655 simulate the effect of PC-relative instructions (and return NULL)
656 on architectures that use software single-stepping.
657
658 In non-stop mode, we can have independent and simultaneous step
659 requests, so more than one thread may need to simultaneously step
660 over a breakpoint. The current implementation assumes there is
661 only one scratch space per process. In this case, we have to
662 serialize access to the scratch space. If thread A wants to step
663 over a breakpoint, but we are currently waiting for some other
664 thread to complete a displaced step, we leave thread A stopped and
665 place it in the displaced_step_request_queue. Whenever a displaced
666 step finishes, we pick the next thread in the queue and start a new
667 displaced step operation on it. See displaced_step_prepare and
668 displaced_step_fixup for details. */
669
670/* If this is not null_ptid, this is the thread carrying out a
671 displaced single-step. This thread's state will require fixing up
672 once it has completed its step. */
673static ptid_t displaced_step_ptid;
674
675struct displaced_step_request
676{
677 ptid_t ptid;
678 struct displaced_step_request *next;
679};
680
681/* A queue of pending displaced stepping requests. */
682struct displaced_step_request *displaced_step_request_queue;
683
684/* The architecture the thread had when we stepped it. */
685static struct gdbarch *displaced_step_gdbarch;
686
687/* The closure provided gdbarch_displaced_step_copy_insn, to be used
688 for post-step cleanup. */
689static struct displaced_step_closure *displaced_step_closure;
690
691/* The address of the original instruction, and the copy we made. */
692static CORE_ADDR displaced_step_original, displaced_step_copy;
693
694/* Saved contents of copy area. */
695static gdb_byte *displaced_step_saved_copy;
696
fff08868
HZ
697/* Enum strings for "set|show displaced-stepping". */
698
699static const char can_use_displaced_stepping_auto[] = "auto";
700static const char can_use_displaced_stepping_on[] = "on";
701static const char can_use_displaced_stepping_off[] = "off";
702static const char *can_use_displaced_stepping_enum[] =
703{
704 can_use_displaced_stepping_auto,
705 can_use_displaced_stepping_on,
706 can_use_displaced_stepping_off,
707 NULL,
708};
709
710/* If ON, and the architecture supports it, GDB will use displaced
711 stepping to step over breakpoints. If OFF, or if the architecture
712 doesn't support it, GDB will instead use the traditional
713 hold-and-step approach. If AUTO (which is the default), GDB will
714 decide which technique to use to step over breakpoints depending on
715 which of all-stop or non-stop mode is active --- displaced stepping
716 in non-stop mode; hold-and-step in all-stop mode. */
717
718static const char *can_use_displaced_stepping =
719 can_use_displaced_stepping_auto;
720
237fc4c9
PA
721static void
722show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
723 struct cmd_list_element *c,
724 const char *value)
725{
fff08868
HZ
726 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
727 fprintf_filtered (file, _("\
728Debugger's willingness to use displaced stepping to step over \
729breakpoints is %s (currently %s).\n"),
730 value, non_stop ? "on" : "off");
731 else
732 fprintf_filtered (file, _("\
733Debugger's willingness to use displaced stepping to step over \
734breakpoints is %s.\n"), value);
237fc4c9
PA
735}
736
fff08868
HZ
737/* Return non-zero if displaced stepping can/should be used to step
738 over breakpoints. */
739
237fc4c9
PA
740static int
741use_displaced_stepping (struct gdbarch *gdbarch)
742{
fff08868
HZ
743 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
744 && non_stop)
745 || can_use_displaced_stepping == can_use_displaced_stepping_on)
96429cc8
HZ
746 && gdbarch_displaced_step_copy_insn_p (gdbarch)
747 && !RECORD_IS_USED);
237fc4c9
PA
748}
749
750/* Clean out any stray displaced stepping state. */
751static void
752displaced_step_clear (void)
753{
754 /* Indicate that there is no cleanup pending. */
755 displaced_step_ptid = null_ptid;
756
757 if (displaced_step_closure)
758 {
759 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
760 displaced_step_closure);
761 displaced_step_closure = NULL;
762 }
763}
764
765static void
766cleanup_displaced_step_closure (void *ptr)
767{
768 struct displaced_step_closure *closure = ptr;
769
770 gdbarch_displaced_step_free_closure (current_gdbarch, closure);
771}
772
773/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
774void
775displaced_step_dump_bytes (struct ui_file *file,
776 const gdb_byte *buf,
777 size_t len)
778{
779 int i;
780
781 for (i = 0; i < len; i++)
782 fprintf_unfiltered (file, "%02x ", buf[i]);
783 fputs_unfiltered ("\n", file);
784}
785
786/* Prepare to single-step, using displaced stepping.
787
788 Note that we cannot use displaced stepping when we have a signal to
789 deliver. If we have a signal to deliver and an instruction to step
790 over, then after the step, there will be no indication from the
791 target whether the thread entered a signal handler or ignored the
792 signal and stepped over the instruction successfully --- both cases
793 result in a simple SIGTRAP. In the first case we mustn't do a
794 fixup, and in the second case we must --- but we can't tell which.
795 Comments in the code for 'random signals' in handle_inferior_event
796 explain how we handle this case instead.
797
798 Returns 1 if preparing was successful -- this thread is going to be
799 stepped now; or 0 if displaced stepping this thread got queued. */
800static int
801displaced_step_prepare (ptid_t ptid)
802{
ad53cd71 803 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
804 struct regcache *regcache = get_thread_regcache (ptid);
805 struct gdbarch *gdbarch = get_regcache_arch (regcache);
806 CORE_ADDR original, copy;
807 ULONGEST len;
808 struct displaced_step_closure *closure;
809
810 /* We should never reach this function if the architecture does not
811 support displaced stepping. */
812 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
813
814 /* For the first cut, we're displaced stepping one thread at a
815 time. */
816
817 if (!ptid_equal (displaced_step_ptid, null_ptid))
818 {
819 /* Already waiting for a displaced step to finish. Defer this
820 request and place in queue. */
821 struct displaced_step_request *req, *new_req;
822
823 if (debug_displaced)
824 fprintf_unfiltered (gdb_stdlog,
825 "displaced: defering step of %s\n",
826 target_pid_to_str (ptid));
827
828 new_req = xmalloc (sizeof (*new_req));
829 new_req->ptid = ptid;
830 new_req->next = NULL;
831
832 if (displaced_step_request_queue)
833 {
834 for (req = displaced_step_request_queue;
835 req && req->next;
836 req = req->next)
837 ;
838 req->next = new_req;
839 }
840 else
841 displaced_step_request_queue = new_req;
842
843 return 0;
844 }
845 else
846 {
847 if (debug_displaced)
848 fprintf_unfiltered (gdb_stdlog,
849 "displaced: stepping %s now\n",
850 target_pid_to_str (ptid));
851 }
852
853 displaced_step_clear ();
854
ad53cd71
PA
855 old_cleanups = save_inferior_ptid ();
856 inferior_ptid = ptid;
857
515630c5 858 original = regcache_read_pc (regcache);
237fc4c9
PA
859
860 copy = gdbarch_displaced_step_location (gdbarch);
861 len = gdbarch_max_insn_length (gdbarch);
862
863 /* Save the original contents of the copy area. */
864 displaced_step_saved_copy = xmalloc (len);
ad53cd71
PA
865 ignore_cleanups = make_cleanup (free_current_contents,
866 &displaced_step_saved_copy);
237fc4c9
PA
867 read_memory (copy, displaced_step_saved_copy, len);
868 if (debug_displaced)
869 {
870 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
871 paddr_nz (copy));
872 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
873 };
874
875 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 876 original, copy, regcache);
237fc4c9
PA
877
878 /* We don't support the fully-simulated case at present. */
879 gdb_assert (closure);
880
881 make_cleanup (cleanup_displaced_step_closure, closure);
882
883 /* Resume execution at the copy. */
515630c5 884 regcache_write_pc (regcache, copy);
237fc4c9 885
ad53cd71
PA
886 discard_cleanups (ignore_cleanups);
887
888 do_cleanups (old_cleanups);
237fc4c9
PA
889
890 if (debug_displaced)
891 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
ad53cd71 892 paddr_nz (copy));
237fc4c9
PA
893
894 /* Save the information we need to fix things up if the step
895 succeeds. */
896 displaced_step_ptid = ptid;
897 displaced_step_gdbarch = gdbarch;
898 displaced_step_closure = closure;
899 displaced_step_original = original;
900 displaced_step_copy = copy;
901 return 1;
902}
903
904static void
905displaced_step_clear_cleanup (void *ignore)
906{
907 displaced_step_clear ();
908}
909
910static void
911write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
912{
913 struct cleanup *ptid_cleanup = save_inferior_ptid ();
914 inferior_ptid = ptid;
915 write_memory (memaddr, myaddr, len);
916 do_cleanups (ptid_cleanup);
917}
918
919static void
920displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
921{
922 struct cleanup *old_cleanups;
923
924 /* Was this event for the pid we displaced? */
925 if (ptid_equal (displaced_step_ptid, null_ptid)
926 || ! ptid_equal (displaced_step_ptid, event_ptid))
927 return;
928
929 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
930
931 /* Restore the contents of the copy area. */
932 {
933 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
934 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
935 displaced_step_saved_copy, len);
936 if (debug_displaced)
937 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
938 paddr_nz (displaced_step_copy));
939 }
940
941 /* Did the instruction complete successfully? */
942 if (signal == TARGET_SIGNAL_TRAP)
943 {
944 /* Fix up the resulting state. */
945 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
946 displaced_step_closure,
947 displaced_step_original,
948 displaced_step_copy,
949 get_thread_regcache (displaced_step_ptid));
950 }
951 else
952 {
953 /* Since the instruction didn't complete, all we can do is
954 relocate the PC. */
515630c5
UW
955 struct regcache *regcache = get_thread_regcache (event_ptid);
956 CORE_ADDR pc = regcache_read_pc (regcache);
237fc4c9 957 pc = displaced_step_original + (pc - displaced_step_copy);
515630c5 958 regcache_write_pc (regcache, pc);
237fc4c9
PA
959 }
960
961 do_cleanups (old_cleanups);
962
1c5cfe86
PA
963 displaced_step_ptid = null_ptid;
964
237fc4c9
PA
965 /* Are there any pending displaced stepping requests? If so, run
966 one now. */
1c5cfe86 967 while (displaced_step_request_queue)
237fc4c9
PA
968 {
969 struct displaced_step_request *head;
970 ptid_t ptid;
1c5cfe86 971 CORE_ADDR actual_pc;
237fc4c9
PA
972
973 head = displaced_step_request_queue;
974 ptid = head->ptid;
975 displaced_step_request_queue = head->next;
976 xfree (head);
977
ad53cd71
PA
978 context_switch (ptid);
979
fb14de7b 980 actual_pc = regcache_read_pc (get_thread_regcache (ptid));
1c5cfe86
PA
981
982 if (breakpoint_here_p (actual_pc))
ad53cd71 983 {
1c5cfe86
PA
984 if (debug_displaced)
985 fprintf_unfiltered (gdb_stdlog,
986 "displaced: stepping queued %s now\n",
987 target_pid_to_str (ptid));
988
989 displaced_step_prepare (ptid);
990
991 if (debug_displaced)
992 {
993 gdb_byte buf[4];
994
995 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
996 paddr_nz (actual_pc));
997 read_memory (actual_pc, buf, sizeof (buf));
998 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
999 }
1000
1001 target_resume (ptid, 1, TARGET_SIGNAL_0);
1002
1003 /* Done, we're stepping a thread. */
1004 break;
ad53cd71 1005 }
1c5cfe86
PA
1006 else
1007 {
1008 int step;
1009 struct thread_info *tp = inferior_thread ();
1010
1011 /* The breakpoint we were sitting under has since been
1012 removed. */
1013 tp->trap_expected = 0;
1014
1015 /* Go back to what we were trying to do. */
1016 step = currently_stepping (tp);
ad53cd71 1017
1c5cfe86
PA
1018 if (debug_displaced)
1019 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
1020 target_pid_to_str (tp->ptid), step);
1021
1022 target_resume (ptid, step, TARGET_SIGNAL_0);
1023 tp->stop_signal = TARGET_SIGNAL_0;
1024
1025 /* This request was discarded. See if there's any other
1026 thread waiting for its turn. */
1027 }
237fc4c9
PA
1028 }
1029}
1030
5231c1fd
PA
1031/* Update global variables holding ptids to hold NEW_PTID if they were
1032 holding OLD_PTID. */
1033static void
1034infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1035{
1036 struct displaced_step_request *it;
1037
1038 if (ptid_equal (inferior_ptid, old_ptid))
1039 inferior_ptid = new_ptid;
1040
1041 if (ptid_equal (singlestep_ptid, old_ptid))
1042 singlestep_ptid = new_ptid;
1043
1044 if (ptid_equal (displaced_step_ptid, old_ptid))
1045 displaced_step_ptid = new_ptid;
1046
1047 if (ptid_equal (deferred_step_ptid, old_ptid))
1048 deferred_step_ptid = new_ptid;
1049
1050 for (it = displaced_step_request_queue; it; it = it->next)
1051 if (ptid_equal (it->ptid, old_ptid))
1052 it->ptid = new_ptid;
1053}
1054
237fc4c9
PA
1055\f
1056/* Resuming. */
c906108c
SS
1057
1058/* Things to clean up if we QUIT out of resume (). */
c906108c 1059static void
74b7792f 1060resume_cleanups (void *ignore)
c906108c
SS
1061{
1062 normal_stop ();
1063}
1064
53904c9e
AC
1065static const char schedlock_off[] = "off";
1066static const char schedlock_on[] = "on";
1067static const char schedlock_step[] = "step";
488f131b 1068static const char *scheduler_enums[] = {
ef346e04
AC
1069 schedlock_off,
1070 schedlock_on,
1071 schedlock_step,
1072 NULL
1073};
920d2a44
AC
1074static const char *scheduler_mode = schedlock_off;
1075static void
1076show_scheduler_mode (struct ui_file *file, int from_tty,
1077 struct cmd_list_element *c, const char *value)
1078{
1079 fprintf_filtered (file, _("\
1080Mode for locking scheduler during execution is \"%s\".\n"),
1081 value);
1082}
c906108c
SS
1083
1084static void
96baa820 1085set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1086{
eefe576e
AC
1087 if (!target_can_lock_scheduler)
1088 {
1089 scheduler_mode = schedlock_off;
1090 error (_("Target '%s' cannot support this command."), target_shortname);
1091 }
c906108c
SS
1092}
1093
2facfe5c
DD
1094/* Try to setup for software single stepping over the specified location.
1095 Return 1 if target_resume() should use hardware single step.
1096
1097 GDBARCH the current gdbarch.
1098 PC the location to step over. */
1099
1100static int
1101maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1102{
1103 int hw_step = 1;
1104
1105 if (gdbarch_software_single_step_p (gdbarch)
1106 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1107 {
1108 hw_step = 0;
1109 /* Do not pull these breakpoints until after a `wait' in
1110 `wait_for_inferior' */
1111 singlestep_breakpoints_inserted_p = 1;
1112 singlestep_ptid = inferior_ptid;
1113 singlestep_pc = pc;
1114 }
1115 return hw_step;
1116}
c906108c
SS
1117
1118/* Resume the inferior, but allow a QUIT. This is useful if the user
1119 wants to interrupt some lengthy single-stepping operation
1120 (for child processes, the SIGINT goes to the inferior, and so
1121 we get a SIGINT random_signal, but for remote debugging and perhaps
1122 other targets, that's not true).
1123
1124 STEP nonzero if we should step (zero to continue instead).
1125 SIG is the signal to give the inferior (zero for none). */
1126void
96baa820 1127resume (int step, enum target_signal sig)
c906108c
SS
1128{
1129 int should_resume = 1;
74b7792f 1130 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1131 struct regcache *regcache = get_current_regcache ();
1132 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1133 struct thread_info *tp = inferior_thread ();
515630c5 1134 CORE_ADDR pc = regcache_read_pc (regcache);
c7e8a53c 1135
c906108c
SS
1136 QUIT;
1137
527159b7 1138 if (debug_infrun)
237fc4c9
PA
1139 fprintf_unfiltered (gdb_stdlog,
1140 "infrun: resume (step=%d, signal=%d), "
4e1c45ea
PA
1141 "trap_expected=%d\n",
1142 step, sig, tp->trap_expected);
c906108c 1143
692590c1
MS
1144 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
1145 over an instruction that causes a page fault without triggering
1146 a hardware watchpoint. The kernel properly notices that it shouldn't
1147 stop, because the hardware watchpoint is not triggered, but it forgets
1148 the step request and continues the program normally.
1149 Work around the problem by removing hardware watchpoints if a step is
1150 requested, GDB will check for a hardware watchpoint trigger after the
1151 step anyway. */
c36b740a 1152 if (CANNOT_STEP_HW_WATCHPOINTS && step)
692590c1 1153 remove_hw_watchpoints ();
488f131b 1154
692590c1 1155
c2c6d25f
JM
1156 /* Normally, by the time we reach `resume', the breakpoints are either
1157 removed or inserted, as appropriate. The exception is if we're sitting
1158 at a permanent breakpoint; we need to step over it, but permanent
1159 breakpoints can't be removed. So we have to test for it here. */
237fc4c9 1160 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
6d350bb5 1161 {
515630c5
UW
1162 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1163 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5
UW
1164 else
1165 error (_("\
1166The program is stopped at a permanent breakpoint, but GDB does not know\n\
1167how to step past a permanent breakpoint on this architecture. Try using\n\
1168a command like `return' or `jump' to continue execution."));
1169 }
c2c6d25f 1170
237fc4c9
PA
1171 /* If enabled, step over breakpoints by executing a copy of the
1172 instruction at a different address.
1173
1174 We can't use displaced stepping when we have a signal to deliver;
1175 the comments for displaced_step_prepare explain why. The
1176 comments in the handle_inferior event for dealing with 'random
1177 signals' explain what we do instead. */
515630c5 1178 if (use_displaced_stepping (gdbarch)
4e1c45ea 1179 && tp->trap_expected
237fc4c9
PA
1180 && sig == TARGET_SIGNAL_0)
1181 {
1182 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1183 {
1184 /* Got placed in displaced stepping queue. Will be resumed
1185 later when all the currently queued displaced stepping
7f7efbd9
VP
1186 requests finish. The thread is not executing at this point,
1187 and the call to set_executing will be made later. But we
1188 need to call set_running here, since from frontend point of view,
1189 the thread is running. */
1190 set_running (inferior_ptid, 1);
d56b7306
VP
1191 discard_cleanups (old_cleanups);
1192 return;
1193 }
237fc4c9
PA
1194 }
1195
2facfe5c
DD
1196 /* Do we need to do it the hard way, w/temp breakpoints? */
1197 if (step)
1198 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1199
c906108c
SS
1200 if (should_resume)
1201 {
39f77062 1202 ptid_t resume_ptid;
dfcd3bfb 1203
488f131b 1204 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e 1205
cd76b0b7
VP
1206 /* If STEP is set, it's a request to use hardware stepping
1207 facilities. But in that case, we should never
1208 use singlestep breakpoint. */
1209 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1210
1211 if (singlestep_breakpoints_inserted_p
1212 && stepping_past_singlestep_breakpoint)
c906108c 1213 {
cd76b0b7
VP
1214 /* The situation here is as follows. In thread T1 we wanted to
1215 single-step. Lacking hardware single-stepping we've
1216 set breakpoint at the PC of the next instruction -- call it
1217 P. After resuming, we've hit that breakpoint in thread T2.
1218 Now we've removed original breakpoint, inserted breakpoint
1219 at P+1, and try to step to advance T2 past breakpoint.
1220 We need to step only T2, as if T1 is allowed to freely run,
1221 it can run past P, and if other threads are allowed to run,
1222 they can hit breakpoint at P+1, and nested hits of single-step
1223 breakpoints is not something we'd want -- that's complicated
1224 to support, and has no value. */
1225 resume_ptid = inferior_ptid;
1226 }
c906108c 1227
e842223a 1228 if ((step || singlestep_breakpoints_inserted_p)
4e1c45ea 1229 && tp->trap_expected)
cd76b0b7 1230 {
74960c60
VP
1231 /* We're allowing a thread to run past a breakpoint it has
1232 hit, by single-stepping the thread with the breakpoint
1233 removed. In which case, we need to single-step only this
1234 thread, and keep others stopped, as they can miss this
1235 breakpoint if allowed to run.
1236
1237 The current code actually removes all breakpoints when
1238 doing this, not just the one being stepped over, so if we
1239 let other threads run, we can actually miss any
1240 breakpoint, not just the one at PC. */
ef5cf84e 1241 resume_ptid = inferior_ptid;
c906108c 1242 }
ef5cf84e 1243
94cc34af
PA
1244 if (non_stop)
1245 {
1246 /* With non-stop mode on, threads are always handled
1247 individually. */
1248 resume_ptid = inferior_ptid;
1249 }
1250 else if ((scheduler_mode == schedlock_on)
1251 || (scheduler_mode == schedlock_step
1252 && (step || singlestep_breakpoints_inserted_p)))
c906108c 1253 {
ef5cf84e 1254 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 1255 resume_ptid = inferior_ptid;
c906108c 1256 }
ef5cf84e 1257
515630c5 1258 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1259 {
1260 /* Most targets can step a breakpoint instruction, thus
1261 executing it normally. But if this one cannot, just
1262 continue and we will hit it anyway. */
237fc4c9 1263 if (step && breakpoint_inserted_here_p (pc))
c4ed33b9
AC
1264 step = 0;
1265 }
237fc4c9
PA
1266
1267 if (debug_displaced
515630c5 1268 && use_displaced_stepping (gdbarch)
4e1c45ea 1269 && tp->trap_expected)
237fc4c9 1270 {
515630c5
UW
1271 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1272 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1273 gdb_byte buf[4];
1274
1275 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1276 paddr_nz (actual_pc));
1277 read_memory (actual_pc, buf, sizeof (buf));
1278 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1279 }
1280
e58b0e63
PA
1281 /* Install inferior's terminal modes. */
1282 target_terminal_inferior ();
1283
2020b7ab
PA
1284 /* Avoid confusing the next resume, if the next stop/resume
1285 happens to apply to another thread. */
1286 tp->stop_signal = TARGET_SIGNAL_0;
607cecd2
PA
1287
1288 target_resume (resume_ptid, step, sig);
c906108c
SS
1289 }
1290
1291 discard_cleanups (old_cleanups);
1292}
1293\f
237fc4c9 1294/* Proceeding. */
c906108c
SS
1295
1296/* Clear out all variables saying what to do when inferior is continued.
1297 First do this, then set the ones you want, then call `proceed'. */
1298
a7212384
UW
1299static void
1300clear_proceed_status_thread (struct thread_info *tp)
c906108c 1301{
a7212384
UW
1302 if (debug_infrun)
1303 fprintf_unfiltered (gdb_stdlog,
1304 "infrun: clear_proceed_status_thread (%s)\n",
1305 target_pid_to_str (tp->ptid));
d6b48e9c 1306
a7212384
UW
1307 tp->trap_expected = 0;
1308 tp->step_range_start = 0;
1309 tp->step_range_end = 0;
1310 tp->step_frame_id = null_frame_id;
1311 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1312 tp->stop_requested = 0;
4e1c45ea 1313
a7212384 1314 tp->stop_step = 0;
32400beb 1315
a7212384 1316 tp->proceed_to_finish = 0;
414c69f7 1317
a7212384
UW
1318 /* Discard any remaining commands or status from previous stop. */
1319 bpstat_clear (&tp->stop_bpstat);
1320}
32400beb 1321
a7212384
UW
1322static int
1323clear_proceed_status_callback (struct thread_info *tp, void *data)
1324{
1325 if (is_exited (tp->ptid))
1326 return 0;
d6b48e9c 1327
a7212384
UW
1328 clear_proceed_status_thread (tp);
1329 return 0;
1330}
1331
1332void
1333clear_proceed_status (void)
1334{
1335 if (!ptid_equal (inferior_ptid, null_ptid))
1336 {
1337 struct inferior *inferior;
1338
1339 if (non_stop)
1340 {
1341 /* If in non-stop mode, only delete the per-thread status
1342 of the current thread. */
1343 clear_proceed_status_thread (inferior_thread ());
1344 }
1345 else
1346 {
1347 /* In all-stop mode, delete the per-thread status of
1348 *all* threads. */
1349 iterate_over_threads (clear_proceed_status_callback, NULL);
1350 }
1351
d6b48e9c
PA
1352 inferior = current_inferior ();
1353 inferior->stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
1354 }
1355
c906108c 1356 stop_after_trap = 0;
f3b1572e
PA
1357
1358 observer_notify_about_to_proceed ();
c906108c 1359
d5c31457
UW
1360 if (stop_registers)
1361 {
1362 regcache_xfree (stop_registers);
1363 stop_registers = NULL;
1364 }
c906108c
SS
1365}
1366
5a437975
DE
1367/* Check the current thread against the thread that reported the most recent
1368 event. If a step-over is required return TRUE and set the current thread
1369 to the old thread. Otherwise return FALSE.
1370
1371 This should be suitable for any targets that support threads. */
ea67f13b
DJ
1372
1373static int
6a6b96b9 1374prepare_to_proceed (int step)
ea67f13b
DJ
1375{
1376 ptid_t wait_ptid;
1377 struct target_waitstatus wait_status;
5a437975
DE
1378 int schedlock_enabled;
1379
1380 /* With non-stop mode on, threads are always handled individually. */
1381 gdb_assert (! non_stop);
ea67f13b
DJ
1382
1383 /* Get the last target status returned by target_wait(). */
1384 get_last_target_status (&wait_ptid, &wait_status);
1385
6a6b96b9 1386 /* Make sure we were stopped at a breakpoint. */
ea67f13b 1387 if (wait_status.kind != TARGET_WAITKIND_STOPPED
6a6b96b9 1388 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
ea67f13b
DJ
1389 {
1390 return 0;
1391 }
1392
5a437975
DE
1393 schedlock_enabled = (scheduler_mode == schedlock_on
1394 || (scheduler_mode == schedlock_step
1395 && step));
1396
6a6b96b9 1397 /* Switched over from WAIT_PID. */
ea67f13b 1398 if (!ptid_equal (wait_ptid, minus_one_ptid)
5a437975
DE
1399 && !ptid_equal (inferior_ptid, wait_ptid)
1400 /* Don't single step WAIT_PID if scheduler locking is on. */
1401 && !schedlock_enabled)
ea67f13b 1402 {
515630c5
UW
1403 struct regcache *regcache = get_thread_regcache (wait_ptid);
1404
1405 if (breakpoint_here_p (regcache_read_pc (regcache)))
ea67f13b 1406 {
515630c5
UW
1407 /* If stepping, remember current thread to switch back to. */
1408 if (step)
1409 deferred_step_ptid = inferior_ptid;
ea67f13b 1410
515630c5
UW
1411 /* Switch back to WAIT_PID thread. */
1412 switch_to_thread (wait_ptid);
6a6b96b9 1413
515630c5
UW
1414 /* We return 1 to indicate that there is a breakpoint here,
1415 so we need to step over it before continuing to avoid
1416 hitting it straight away. */
1417 return 1;
1418 }
ea67f13b
DJ
1419 }
1420
1421 return 0;
ea67f13b 1422}
e4846b08 1423
c906108c
SS
1424/* Basic routine for continuing the program in various fashions.
1425
1426 ADDR is the address to resume at, or -1 for resume where stopped.
1427 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 1428 or -1 for act according to how it stopped.
c906108c 1429 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
1430 -1 means return after that and print nothing.
1431 You should probably set various step_... variables
1432 before calling here, if you are stepping.
c906108c
SS
1433
1434 You should call clear_proceed_status before calling proceed. */
1435
1436void
96baa820 1437proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 1438{
e58b0e63
PA
1439 struct regcache *regcache;
1440 struct gdbarch *gdbarch;
4e1c45ea 1441 struct thread_info *tp;
e58b0e63 1442 CORE_ADDR pc;
c906108c
SS
1443 int oneproc = 0;
1444
e58b0e63
PA
1445 /* If we're stopped at a fork/vfork, follow the branch set by the
1446 "set follow-fork-mode" command; otherwise, we'll just proceed
1447 resuming the current thread. */
1448 if (!follow_fork ())
1449 {
1450 /* The target for some reason decided not to resume. */
1451 normal_stop ();
1452 return;
1453 }
1454
1455 regcache = get_current_regcache ();
1456 gdbarch = get_regcache_arch (regcache);
1457 pc = regcache_read_pc (regcache);
1458
c906108c 1459 if (step > 0)
515630c5 1460 step_start_function = find_pc_function (pc);
c906108c
SS
1461 if (step < 0)
1462 stop_after_trap = 1;
1463
2acceee2 1464 if (addr == (CORE_ADDR) -1)
c906108c 1465 {
b2175913
MS
1466 if (pc == stop_pc && breakpoint_here_p (pc)
1467 && execution_direction != EXEC_REVERSE)
3352ef37
AC
1468 /* There is a breakpoint at the address we will resume at,
1469 step one instruction before inserting breakpoints so that
1470 we do not stop right away (and report a second hit at this
b2175913
MS
1471 breakpoint).
1472
1473 Note, we don't do this in reverse, because we won't
1474 actually be executing the breakpoint insn anyway.
1475 We'll be (un-)executing the previous instruction. */
1476
c906108c 1477 oneproc = 1;
515630c5
UW
1478 else if (gdbarch_single_step_through_delay_p (gdbarch)
1479 && gdbarch_single_step_through_delay (gdbarch,
1480 get_current_frame ()))
3352ef37
AC
1481 /* We stepped onto an instruction that needs to be stepped
1482 again before re-inserting the breakpoint, do so. */
c906108c
SS
1483 oneproc = 1;
1484 }
1485 else
1486 {
515630c5 1487 regcache_write_pc (regcache, addr);
c906108c
SS
1488 }
1489
527159b7 1490 if (debug_infrun)
8a9de0e4
AC
1491 fprintf_unfiltered (gdb_stdlog,
1492 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1493 paddr_nz (addr), siggnal, step);
527159b7 1494
94cc34af
PA
1495 if (non_stop)
1496 /* In non-stop, each thread is handled individually. The context
1497 must already be set to the right thread here. */
1498 ;
1499 else
1500 {
1501 /* In a multi-threaded task we may select another thread and
1502 then continue or step.
c906108c 1503
94cc34af
PA
1504 But if the old thread was stopped at a breakpoint, it will
1505 immediately cause another breakpoint stop without any
1506 execution (i.e. it will report a breakpoint hit incorrectly).
1507 So we must step over it first.
c906108c 1508
94cc34af
PA
1509 prepare_to_proceed checks the current thread against the
1510 thread that reported the most recent event. If a step-over
1511 is required it returns TRUE and sets the current thread to
1512 the old thread. */
1513 if (prepare_to_proceed (step))
1514 oneproc = 1;
1515 }
c906108c 1516
4e1c45ea
PA
1517 /* prepare_to_proceed may change the current thread. */
1518 tp = inferior_thread ();
1519
c906108c 1520 if (oneproc)
74960c60 1521 {
4e1c45ea 1522 tp->trap_expected = 1;
237fc4c9
PA
1523 /* If displaced stepping is enabled, we can step over the
1524 breakpoint without hitting it, so leave all breakpoints
1525 inserted. Otherwise we need to disable all breakpoints, step
1526 one instruction, and then re-add them when that step is
1527 finished. */
515630c5 1528 if (!use_displaced_stepping (gdbarch))
237fc4c9 1529 remove_breakpoints ();
74960c60 1530 }
237fc4c9
PA
1531
1532 /* We can insert breakpoints if we're not trying to step over one,
1533 or if we are stepping over one but we're using displaced stepping
1534 to do so. */
4e1c45ea 1535 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
c36b740a 1536 insert_breakpoints ();
c906108c 1537
2020b7ab
PA
1538 if (!non_stop)
1539 {
1540 /* Pass the last stop signal to the thread we're resuming,
1541 irrespective of whether the current thread is the thread that
1542 got the last event or not. This was historically GDB's
1543 behaviour before keeping a stop_signal per thread. */
1544
1545 struct thread_info *last_thread;
1546 ptid_t last_ptid;
1547 struct target_waitstatus last_status;
1548
1549 get_last_target_status (&last_ptid, &last_status);
1550 if (!ptid_equal (inferior_ptid, last_ptid)
1551 && !ptid_equal (last_ptid, null_ptid)
1552 && !ptid_equal (last_ptid, minus_one_ptid))
1553 {
e09875d4 1554 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
1555 if (last_thread)
1556 {
1557 tp->stop_signal = last_thread->stop_signal;
1558 last_thread->stop_signal = TARGET_SIGNAL_0;
1559 }
1560 }
1561 }
1562
c906108c 1563 if (siggnal != TARGET_SIGNAL_DEFAULT)
2020b7ab 1564 tp->stop_signal = siggnal;
c906108c
SS
1565 /* If this signal should not be seen by program,
1566 give it zero. Used for debugging signals. */
2020b7ab
PA
1567 else if (!signal_program[tp->stop_signal])
1568 tp->stop_signal = TARGET_SIGNAL_0;
c906108c
SS
1569
1570 annotate_starting ();
1571
1572 /* Make sure that output from GDB appears before output from the
1573 inferior. */
1574 gdb_flush (gdb_stdout);
1575
e4846b08
JJ
1576 /* Refresh prev_pc value just prior to resuming. This used to be
1577 done in stop_stepping, however, setting prev_pc there did not handle
1578 scenarios such as inferior function calls or returning from
1579 a function via the return command. In those cases, the prev_pc
1580 value was not set properly for subsequent commands. The prev_pc value
1581 is used to initialize the starting line number in the ecs. With an
1582 invalid value, the gdb next command ends up stopping at the position
1583 represented by the next line table entry past our start position.
1584 On platforms that generate one line table entry per line, this
1585 is not a problem. However, on the ia64, the compiler generates
1586 extraneous line table entries that do not increase the line number.
1587 When we issue the gdb next command on the ia64 after an inferior call
1588 or a return command, we often end up a few instructions forward, still
1589 within the original line we started.
1590
1591 An attempt was made to have init_execution_control_state () refresh
1592 the prev_pc value before calculating the line number. This approach
1593 did not work because on platforms that use ptrace, the pc register
1594 cannot be read unless the inferior is stopped. At that point, we
515630c5 1595 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
e4846b08 1596 call can fail. Setting the prev_pc value here ensures the value is
8fb3e588 1597 updated correctly when the inferior is stopped. */
4e1c45ea 1598 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 1599
59f0d5d9 1600 /* Fill in with reasonable starting values. */
4e1c45ea 1601 init_thread_stepping_state (tp);
59f0d5d9 1602
59f0d5d9
PA
1603 /* Reset to normal state. */
1604 init_infwait_state ();
1605
c906108c 1606 /* Resume inferior. */
2020b7ab 1607 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
c906108c
SS
1608
1609 /* Wait for it to stop (if not standalone)
1610 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
1611 /* Do this only if we are not using the event loop, or if the target
1612 does not support asynchronous execution. */
362646f5 1613 if (!target_can_async_p ())
43ff13b4 1614 {
ae123ec6 1615 wait_for_inferior (0);
43ff13b4
JM
1616 normal_stop ();
1617 }
c906108c 1618}
c906108c
SS
1619\f
1620
1621/* Start remote-debugging of a machine over a serial link. */
96baa820 1622
c906108c 1623void
8621d6a9 1624start_remote (int from_tty)
c906108c 1625{
d6b48e9c 1626 struct inferior *inferior;
c906108c 1627 init_wait_for_inferior ();
d6b48e9c
PA
1628
1629 inferior = current_inferior ();
1630 inferior->stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 1631
6426a772
JM
1632 /* Always go on waiting for the target, regardless of the mode. */
1633 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 1634 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
1635 nothing is returned (instead of just blocking). Because of this,
1636 targets expecting an immediate response need to, internally, set
1637 things up so that the target_wait() is forced to eventually
1638 timeout. */
1639 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1640 differentiate to its caller what the state of the target is after
1641 the initial open has been performed. Here we're assuming that
1642 the target has stopped. It should be possible to eventually have
1643 target_open() return to the caller an indication that the target
1644 is currently running and GDB state should be set to the same as
1645 for an async run. */
ae123ec6 1646 wait_for_inferior (0);
8621d6a9
DJ
1647
1648 /* Now that the inferior has stopped, do any bookkeeping like
1649 loading shared libraries. We want to do this before normal_stop,
1650 so that the displayed frame is up to date. */
1651 post_create_inferior (&current_target, from_tty);
1652
6426a772 1653 normal_stop ();
c906108c
SS
1654}
1655
1656/* Initialize static vars when a new inferior begins. */
1657
1658void
96baa820 1659init_wait_for_inferior (void)
c906108c
SS
1660{
1661 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 1662
c906108c
SS
1663 breakpoint_init_inferior (inf_starting);
1664
c906108c 1665 clear_proceed_status ();
9f976b41
DJ
1666
1667 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 1668 deferred_step_ptid = null_ptid;
ca005067
DJ
1669
1670 target_last_wait_ptid = minus_one_ptid;
237fc4c9 1671
0d1e5fa7
PA
1672 previous_inferior_ptid = null_ptid;
1673 init_infwait_state ();
1674
237fc4c9 1675 displaced_step_clear ();
c906108c 1676}
237fc4c9 1677
c906108c 1678\f
b83266a0
SS
1679/* This enum encodes possible reasons for doing a target_wait, so that
1680 wfi can call target_wait in one place. (Ultimately the call will be
1681 moved out of the infinite loop entirely.) */
1682
c5aa993b
JM
1683enum infwait_states
1684{
cd0fc7c3
SS
1685 infwait_normal_state,
1686 infwait_thread_hop_state,
d983da9c 1687 infwait_step_watch_state,
cd0fc7c3 1688 infwait_nonstep_watch_state
b83266a0
SS
1689};
1690
11cf8741
JM
1691/* Why did the inferior stop? Used to print the appropriate messages
1692 to the interface from within handle_inferior_event(). */
1693enum inferior_stop_reason
1694{
11cf8741
JM
1695 /* Step, next, nexti, stepi finished. */
1696 END_STEPPING_RANGE,
11cf8741
JM
1697 /* Inferior terminated by signal. */
1698 SIGNAL_EXITED,
1699 /* Inferior exited. */
1700 EXITED,
1701 /* Inferior received signal, and user asked to be notified. */
b2175913
MS
1702 SIGNAL_RECEIVED,
1703 /* Reverse execution -- target ran out of history info. */
1704 NO_HISTORY
11cf8741
JM
1705};
1706
0d1e5fa7
PA
1707/* The PTID we'll do a target_wait on.*/
1708ptid_t waiton_ptid;
1709
1710/* Current inferior wait state. */
1711enum infwait_states infwait_state;
cd0fc7c3 1712
0d1e5fa7
PA
1713/* Data to be passed around while handling an event. This data is
1714 discarded between events. */
c5aa993b 1715struct execution_control_state
488f131b 1716{
0d1e5fa7 1717 ptid_t ptid;
4e1c45ea
PA
1718 /* The thread that got the event, if this was a thread event; NULL
1719 otherwise. */
1720 struct thread_info *event_thread;
1721
488f131b 1722 struct target_waitstatus ws;
488f131b
JB
1723 int random_signal;
1724 CORE_ADDR stop_func_start;
1725 CORE_ADDR stop_func_end;
1726 char *stop_func_name;
488f131b 1727 int new_thread_event;
488f131b
JB
1728 int wait_some_more;
1729};
1730
1731void init_execution_control_state (struct execution_control_state *ecs);
1732
1733void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 1734
b2175913
MS
1735static void handle_step_into_function (struct execution_control_state *ecs);
1736static void handle_step_into_function_backward (struct execution_control_state *ecs);
44cbf7b5 1737static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
14e60db5 1738static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
44cbf7b5
AC
1739static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1740 struct frame_id sr_id);
611c83ae
PA
1741static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1742
104c1213
JM
1743static void stop_stepping (struct execution_control_state *ecs);
1744static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 1745static void keep_going (struct execution_control_state *ecs);
488f131b
JB
1746static void print_stop_reason (enum inferior_stop_reason stop_reason,
1747 int stop_info);
104c1213 1748
252fbfc8
PA
1749/* Callback for iterate over threads. If the thread is stopped, but
1750 the user/frontend doesn't know about that yet, go through
1751 normal_stop, as if the thread had just stopped now. ARG points at
1752 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
1753 ptid_is_pid(PTID) is true, applies to all threads of the process
1754 pointed at by PTID. Otherwise, apply only to the thread pointed by
1755 PTID. */
1756
1757static int
1758infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
1759{
1760 ptid_t ptid = * (ptid_t *) arg;
1761
1762 if ((ptid_equal (info->ptid, ptid)
1763 || ptid_equal (minus_one_ptid, ptid)
1764 || (ptid_is_pid (ptid)
1765 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
1766 && is_running (info->ptid)
1767 && !is_executing (info->ptid))
1768 {
1769 struct cleanup *old_chain;
1770 struct execution_control_state ecss;
1771 struct execution_control_state *ecs = &ecss;
1772
1773 memset (ecs, 0, sizeof (*ecs));
1774
1775 old_chain = make_cleanup_restore_current_thread ();
1776
1777 switch_to_thread (info->ptid);
1778
1779 /* Go through handle_inferior_event/normal_stop, so we always
1780 have consistent output as if the stop event had been
1781 reported. */
1782 ecs->ptid = info->ptid;
e09875d4 1783 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8
PA
1784 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1785 ecs->ws.value.sig = TARGET_SIGNAL_0;
1786
1787 handle_inferior_event (ecs);
1788
1789 if (!ecs->wait_some_more)
1790 {
1791 struct thread_info *tp;
1792
1793 normal_stop ();
1794
1795 /* Finish off the continuations. The continations
1796 themselves are responsible for realising the thread
1797 didn't finish what it was supposed to do. */
1798 tp = inferior_thread ();
1799 do_all_intermediate_continuations_thread (tp);
1800 do_all_continuations_thread (tp);
1801 }
1802
1803 do_cleanups (old_chain);
1804 }
1805
1806 return 0;
1807}
1808
1809/* This function is attached as a "thread_stop_requested" observer.
1810 Cleanup local state that assumed the PTID was to be resumed, and
1811 report the stop to the frontend. */
1812
2c0b251b 1813static void
252fbfc8
PA
1814infrun_thread_stop_requested (ptid_t ptid)
1815{
1816 struct displaced_step_request *it, *next, *prev = NULL;
1817
1818 /* PTID was requested to stop. Remove it from the displaced
1819 stepping queue, so we don't try to resume it automatically. */
1820 for (it = displaced_step_request_queue; it; it = next)
1821 {
1822 next = it->next;
1823
1824 if (ptid_equal (it->ptid, ptid)
1825 || ptid_equal (minus_one_ptid, ptid)
1826 || (ptid_is_pid (ptid)
1827 && ptid_get_pid (ptid) == ptid_get_pid (it->ptid)))
1828 {
1829 if (displaced_step_request_queue == it)
1830 displaced_step_request_queue = it->next;
1831 else
1832 prev->next = it->next;
1833
1834 xfree (it);
1835 }
1836 else
1837 prev = it;
1838 }
1839
1840 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
1841}
1842
a07daef3
PA
1843static void
1844infrun_thread_thread_exit (struct thread_info *tp, int silent)
1845{
1846 if (ptid_equal (target_last_wait_ptid, tp->ptid))
1847 nullify_last_target_wait_ptid ();
1848}
1849
4e1c45ea
PA
1850/* Callback for iterate_over_threads. */
1851
1852static int
1853delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
1854{
1855 if (is_exited (info->ptid))
1856 return 0;
1857
1858 delete_step_resume_breakpoint (info);
1859 return 0;
1860}
1861
1862/* In all-stop, delete the step resume breakpoint of any thread that
1863 had one. In non-stop, delete the step resume breakpoint of the
1864 thread that just stopped. */
1865
1866static void
1867delete_step_thread_step_resume_breakpoint (void)
1868{
1869 if (!target_has_execution
1870 || ptid_equal (inferior_ptid, null_ptid))
1871 /* If the inferior has exited, we have already deleted the step
1872 resume breakpoints out of GDB's lists. */
1873 return;
1874
1875 if (non_stop)
1876 {
1877 /* If in non-stop mode, only delete the step-resume or
1878 longjmp-resume breakpoint of the thread that just stopped
1879 stepping. */
1880 struct thread_info *tp = inferior_thread ();
1881 delete_step_resume_breakpoint (tp);
1882 }
1883 else
1884 /* In all-stop mode, delete all step-resume and longjmp-resume
1885 breakpoints of any thread that had them. */
1886 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
1887}
1888
1889/* A cleanup wrapper. */
1890
1891static void
1892delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
1893{
1894 delete_step_thread_step_resume_breakpoint ();
1895}
1896
223698f8
DE
1897/* Pretty print the results of target_wait, for debugging purposes. */
1898
1899static void
1900print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
1901 const struct target_waitstatus *ws)
1902{
1903 char *status_string = target_waitstatus_to_string (ws);
1904 struct ui_file *tmp_stream = mem_fileopen ();
1905 char *text;
1906 long len;
1907
1908 /* The text is split over several lines because it was getting too long.
1909 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
1910 output as a unit; we want only one timestamp printed if debug_timestamp
1911 is set. */
1912
1913 fprintf_unfiltered (tmp_stream,
1914 "infrun: target_wait (%d", PIDGET (waiton_ptid));
1915 if (PIDGET (waiton_ptid) != -1)
1916 fprintf_unfiltered (tmp_stream,
1917 " [%s]", target_pid_to_str (waiton_ptid));
1918 fprintf_unfiltered (tmp_stream, ", status) =\n");
1919 fprintf_unfiltered (tmp_stream,
1920 "infrun: %d [%s],\n",
1921 PIDGET (result_ptid), target_pid_to_str (result_ptid));
1922 fprintf_unfiltered (tmp_stream,
1923 "infrun: %s\n",
1924 status_string);
1925
1926 text = ui_file_xstrdup (tmp_stream, &len);
1927
1928 /* This uses %s in part to handle %'s in the text, but also to avoid
1929 a gcc error: the format attribute requires a string literal. */
1930 fprintf_unfiltered (gdb_stdlog, "%s", text);
1931
1932 xfree (status_string);
1933 xfree (text);
1934 ui_file_delete (tmp_stream);
1935}
1936
cd0fc7c3 1937/* Wait for control to return from inferior to debugger.
ae123ec6
JB
1938
1939 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1940 as if they were SIGTRAP signals. This can be useful during
1941 the startup sequence on some targets such as HP/UX, where
1942 we receive an EXEC event instead of the expected SIGTRAP.
1943
cd0fc7c3
SS
1944 If inferior gets a signal, we may decide to start it up again
1945 instead of returning. That is why there is a loop in this function.
1946 When this function actually returns it means the inferior
1947 should be left stopped and GDB should read more commands. */
1948
1949void
ae123ec6 1950wait_for_inferior (int treat_exec_as_sigtrap)
cd0fc7c3
SS
1951{
1952 struct cleanup *old_cleanups;
0d1e5fa7 1953 struct execution_control_state ecss;
cd0fc7c3 1954 struct execution_control_state *ecs;
c906108c 1955
527159b7 1956 if (debug_infrun)
ae123ec6
JB
1957 fprintf_unfiltered
1958 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1959 treat_exec_as_sigtrap);
527159b7 1960
4e1c45ea
PA
1961 old_cleanups =
1962 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 1963
cd0fc7c3 1964 ecs = &ecss;
0d1e5fa7
PA
1965 memset (ecs, 0, sizeof (*ecs));
1966
cd0fc7c3
SS
1967 overlay_cache_invalid = 1;
1968
e0bb1c1c
PA
1969 /* We'll update this if & when we switch to a new thread. */
1970 previous_inferior_ptid = inferior_ptid;
1971
cd0fc7c3
SS
1972 /* We have to invalidate the registers BEFORE calling target_wait
1973 because they can be loaded from the target while in target_wait.
1974 This makes remote debugging a bit more efficient for those
1975 targets that provide critical registers as part of their normal
1976 status mechanism. */
1977
1978 registers_changed ();
b83266a0 1979
c906108c
SS
1980 while (1)
1981 {
29f49a6a
PA
1982 struct cleanup *old_chain;
1983
9a4105ab 1984 if (deprecated_target_wait_hook)
47608cb1 1985 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 1986 else
47608cb1 1987 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 1988
f00150c9 1989 if (debug_infrun)
223698f8 1990 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 1991
ae123ec6
JB
1992 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1993 {
1994 xfree (ecs->ws.value.execd_pathname);
1995 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1996 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1997 }
1998
29f49a6a
PA
1999 /* If an error happens while handling the event, propagate GDB's
2000 knowledge of the executing state to the frontend/user running
2001 state. */
2002 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2003
cd0fc7c3
SS
2004 /* Now figure out what to do with the result of the result. */
2005 handle_inferior_event (ecs);
c906108c 2006
29f49a6a
PA
2007 /* No error, don't finish the state yet. */
2008 discard_cleanups (old_chain);
2009
cd0fc7c3
SS
2010 if (!ecs->wait_some_more)
2011 break;
2012 }
4e1c45ea 2013
cd0fc7c3
SS
2014 do_cleanups (old_cleanups);
2015}
c906108c 2016
43ff13b4
JM
2017/* Asynchronous version of wait_for_inferior. It is called by the
2018 event loop whenever a change of state is detected on the file
2019 descriptor corresponding to the target. It can be called more than
2020 once to complete a single execution command. In such cases we need
a474d7c2
PA
2021 to keep the state in a global variable ECSS. If it is the last time
2022 that this function is called for a single execution command, then
2023 report to the user that the inferior has stopped, and do the
2024 necessary cleanups. */
43ff13b4
JM
2025
2026void
fba45db2 2027fetch_inferior_event (void *client_data)
43ff13b4 2028{
0d1e5fa7 2029 struct execution_control_state ecss;
a474d7c2 2030 struct execution_control_state *ecs = &ecss;
4f8d22e3 2031 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2032 struct cleanup *ts_old_chain;
4f8d22e3 2033 int was_sync = sync_execution;
43ff13b4 2034
0d1e5fa7
PA
2035 memset (ecs, 0, sizeof (*ecs));
2036
59f0d5d9 2037 overlay_cache_invalid = 1;
43ff13b4 2038
e0bb1c1c
PA
2039 /* We can only rely on wait_for_more being correct before handling
2040 the event in all-stop, but previous_inferior_ptid isn't used in
2041 non-stop. */
2042 if (!ecs->wait_some_more)
2043 /* We'll update this if & when we switch to a new thread. */
2044 previous_inferior_ptid = inferior_ptid;
2045
4f8d22e3
PA
2046 if (non_stop)
2047 /* In non-stop mode, the user/frontend should not notice a thread
2048 switch due to internal events. Make sure we reverse to the
2049 user selected thread and frame after handling the event and
2050 running any breakpoint commands. */
2051 make_cleanup_restore_current_thread ();
2052
59f0d5d9
PA
2053 /* We have to invalidate the registers BEFORE calling target_wait
2054 because they can be loaded from the target while in target_wait.
2055 This makes remote debugging a bit more efficient for those
2056 targets that provide critical registers as part of their normal
2057 status mechanism. */
43ff13b4 2058
59f0d5d9 2059 registers_changed ();
43ff13b4 2060
9a4105ab 2061 if (deprecated_target_wait_hook)
a474d7c2 2062 ecs->ptid =
47608cb1 2063 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2064 else
47608cb1 2065 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2066
f00150c9 2067 if (debug_infrun)
223698f8 2068 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2069
94cc34af
PA
2070 if (non_stop
2071 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2072 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2073 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2074 /* In non-stop mode, each thread is handled individually. Switch
2075 early, so the global state is set correctly for this
2076 thread. */
2077 context_switch (ecs->ptid);
2078
29f49a6a
PA
2079 /* If an error happens while handling the event, propagate GDB's
2080 knowledge of the executing state to the frontend/user running
2081 state. */
2082 if (!non_stop)
2083 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2084 else
2085 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2086
43ff13b4 2087 /* Now figure out what to do with the result of the result. */
a474d7c2 2088 handle_inferior_event (ecs);
43ff13b4 2089
a474d7c2 2090 if (!ecs->wait_some_more)
43ff13b4 2091 {
d6b48e9c
PA
2092 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2093
4e1c45ea 2094 delete_step_thread_step_resume_breakpoint ();
f107f563 2095
d6b48e9c
PA
2096 /* We may not find an inferior if this was a process exit. */
2097 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2098 normal_stop ();
2099
af679fd0
PA
2100 if (target_has_execution
2101 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2102 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2103 && ecs->event_thread->step_multi
414c69f7 2104 && ecs->event_thread->stop_step)
c2d11a7d
JM
2105 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2106 else
2107 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4 2108 }
4f8d22e3 2109
29f49a6a
PA
2110 /* No error, don't finish the thread states yet. */
2111 discard_cleanups (ts_old_chain);
2112
4f8d22e3
PA
2113 /* Revert thread and frame. */
2114 do_cleanups (old_chain);
2115
2116 /* If the inferior was in sync execution mode, and now isn't,
2117 restore the prompt. */
2118 if (was_sync && !sync_execution)
2119 display_gdb_prompt (0);
43ff13b4
JM
2120}
2121
cd0fc7c3
SS
2122/* Prepare an execution control state for looping through a
2123 wait_for_inferior-type loop. */
2124
2125void
96baa820 2126init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3
SS
2127{
2128 ecs->random_signal = 0;
0d1e5fa7
PA
2129}
2130
2131/* Clear context switchable stepping state. */
2132
2133void
4e1c45ea 2134init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 2135{
2afb61aa
PA
2136 struct symtab_and_line sal;
2137
0d1e5fa7
PA
2138 tss->stepping_over_breakpoint = 0;
2139 tss->step_after_step_resume_breakpoint = 0;
2140 tss->stepping_through_solib_after_catch = 0;
2141 tss->stepping_through_solib_catchpoints = NULL;
2afb61aa 2142
4e1c45ea 2143 sal = find_pc_line (tss->prev_pc, 0);
2afb61aa
PA
2144 tss->current_line = sal.line;
2145 tss->current_symtab = sal.symtab;
cd0fc7c3
SS
2146}
2147
e02bc4cc 2148/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2149 target_wait()/deprecated_target_wait_hook(). The data is actually
2150 cached by handle_inferior_event(), which gets called immediately
2151 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2152
2153void
488f131b 2154get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2155{
39f77062 2156 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2157 *status = target_last_waitstatus;
2158}
2159
ac264b3b
MS
2160void
2161nullify_last_target_wait_ptid (void)
2162{
2163 target_last_wait_ptid = minus_one_ptid;
2164}
2165
dcf4fbde 2166/* Switch thread contexts. */
dd80620e
MS
2167
2168static void
0d1e5fa7 2169context_switch (ptid_t ptid)
dd80620e 2170{
fd48f117
DJ
2171 if (debug_infrun)
2172 {
2173 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2174 target_pid_to_str (inferior_ptid));
2175 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2176 target_pid_to_str (ptid));
fd48f117
DJ
2177 }
2178
0d1e5fa7 2179 switch_to_thread (ptid);
dd80620e
MS
2180}
2181
4fa8626c
DJ
2182static void
2183adjust_pc_after_break (struct execution_control_state *ecs)
2184{
24a73cce
UW
2185 struct regcache *regcache;
2186 struct gdbarch *gdbarch;
8aad930b 2187 CORE_ADDR breakpoint_pc;
4fa8626c 2188
4fa8626c
DJ
2189 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2190 we aren't, just return.
9709f61c
DJ
2191
2192 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2193 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2194 implemented by software breakpoints should be handled through the normal
2195 breakpoint layer.
8fb3e588 2196
4fa8626c
DJ
2197 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2198 different signals (SIGILL or SIGEMT for instance), but it is less
2199 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2200 gdbarch_decr_pc_after_break. I don't know any specific target that
2201 generates these signals at breakpoints (the code has been in GDB since at
2202 least 1992) so I can not guess how to handle them here.
8fb3e588 2203
e6cf7916
UW
2204 In earlier versions of GDB, a target with
2205 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2206 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2207 target with both of these set in GDB history, and it seems unlikely to be
2208 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2209
2210 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2211 return;
2212
2213 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2214 return;
2215
4058b839
PA
2216 /* In reverse execution, when a breakpoint is hit, the instruction
2217 under it has already been de-executed. The reported PC always
2218 points at the breakpoint address, so adjusting it further would
2219 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2220 architecture:
2221
2222 B1 0x08000000 : INSN1
2223 B2 0x08000001 : INSN2
2224 0x08000002 : INSN3
2225 PC -> 0x08000003 : INSN4
2226
2227 Say you're stopped at 0x08000003 as above. Reverse continuing
2228 from that point should hit B2 as below. Reading the PC when the
2229 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2230 been de-executed already.
2231
2232 B1 0x08000000 : INSN1
2233 B2 PC -> 0x08000001 : INSN2
2234 0x08000002 : INSN3
2235 0x08000003 : INSN4
2236
2237 We can't apply the same logic as for forward execution, because
2238 we would wrongly adjust the PC to 0x08000000, since there's a
2239 breakpoint at PC - 1. We'd then report a hit on B1, although
2240 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2241 behaviour. */
2242 if (execution_direction == EXEC_REVERSE)
2243 return;
2244
24a73cce
UW
2245 /* If this target does not decrement the PC after breakpoints, then
2246 we have nothing to do. */
2247 regcache = get_thread_regcache (ecs->ptid);
2248 gdbarch = get_regcache_arch (regcache);
2249 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2250 return;
2251
8aad930b
AC
2252 /* Find the location where (if we've hit a breakpoint) the
2253 breakpoint would be. */
515630c5
UW
2254 breakpoint_pc = regcache_read_pc (regcache)
2255 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 2256
1c5cfe86
PA
2257 /* Check whether there actually is a software breakpoint inserted at
2258 that location.
2259
2260 If in non-stop mode, a race condition is possible where we've
2261 removed a breakpoint, but stop events for that breakpoint were
2262 already queued and arrive later. To suppress those spurious
2263 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2264 and retire them after a number of stop events are reported. */
2265 if (software_breakpoint_inserted_here_p (breakpoint_pc)
2266 || (non_stop && moribund_breakpoint_here_p (breakpoint_pc)))
8aad930b 2267 {
96429cc8
HZ
2268 struct cleanup *old_cleanups = NULL;
2269 if (RECORD_IS_USED)
2270 old_cleanups = record_gdb_operation_disable_set ();
2271
1c0fdd0e
UW
2272 /* When using hardware single-step, a SIGTRAP is reported for both
2273 a completed single-step and a software breakpoint. Need to
2274 differentiate between the two, as the latter needs adjusting
2275 but the former does not.
2276
2277 The SIGTRAP can be due to a completed hardware single-step only if
2278 - we didn't insert software single-step breakpoints
2279 - the thread to be examined is still the current thread
2280 - this thread is currently being stepped
2281
2282 If any of these events did not occur, we must have stopped due
2283 to hitting a software breakpoint, and have to back up to the
2284 breakpoint address.
2285
2286 As a special case, we could have hardware single-stepped a
2287 software breakpoint. In this case (prev_pc == breakpoint_pc),
2288 we also need to back up to the breakpoint address. */
2289
2290 if (singlestep_breakpoints_inserted_p
2291 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
2292 || !currently_stepping (ecs->event_thread)
2293 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 2294 regcache_write_pc (regcache, breakpoint_pc);
96429cc8
HZ
2295
2296 if (RECORD_IS_USED)
2297 do_cleanups (old_cleanups);
8aad930b 2298 }
4fa8626c
DJ
2299}
2300
0d1e5fa7
PA
2301void
2302init_infwait_state (void)
2303{
2304 waiton_ptid = pid_to_ptid (-1);
2305 infwait_state = infwait_normal_state;
2306}
2307
94cc34af
PA
2308void
2309error_is_running (void)
2310{
2311 error (_("\
2312Cannot execute this command while the selected thread is running."));
2313}
2314
2315void
2316ensure_not_running (void)
2317{
2318 if (is_running (inferior_ptid))
2319 error_is_running ();
2320}
2321
cd0fc7c3
SS
2322/* Given an execution control state that has been freshly filled in
2323 by an event from the inferior, figure out what it means and take
2324 appropriate action. */
c906108c 2325
cd0fc7c3 2326void
96baa820 2327handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 2328{
c8edd8b4 2329 int sw_single_step_trap_p = 0;
d983da9c
DJ
2330 int stopped_by_watchpoint;
2331 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 2332 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
2333 enum stop_kind stop_soon;
2334
2335 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2336 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2337 && ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2338 {
2339 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2340 gdb_assert (inf);
2341 stop_soon = inf->stop_soon;
2342 }
2343 else
2344 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 2345
e02bc4cc 2346 /* Cache the last pid/waitstatus. */
39f77062 2347 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 2348 target_last_waitstatus = ecs->ws;
e02bc4cc 2349
ca005067
DJ
2350 /* Always clear state belonging to the previous time we stopped. */
2351 stop_stack_dummy = 0;
2352
8c90c137
LM
2353 /* If it's a new process, add it to the thread database */
2354
2355 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
2356 && !ptid_equal (ecs->ptid, minus_one_ptid)
2357 && !in_thread_list (ecs->ptid));
2358
2359 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2360 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
2361 add_thread (ecs->ptid);
2362
e09875d4 2363 ecs->event_thread = find_thread_ptid (ecs->ptid);
88ed393a
JK
2364
2365 /* Dependent on valid ECS->EVENT_THREAD. */
2366 adjust_pc_after_break (ecs);
2367
2368 /* Dependent on the current PC value modified by adjust_pc_after_break. */
2369 reinit_frame_cache ();
2370
8c90c137
LM
2371 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2372 {
1c5cfe86
PA
2373 breakpoint_retire_moribund ();
2374
48844aa6
PA
2375 /* Mark the non-executing threads accordingly. In all-stop, all
2376 threads of all processes are stopped when we get any event
2377 reported. In non-stop mode, only the event thread stops. If
2378 we're handling a process exit in non-stop mode, there's
2379 nothing to do, as threads of the dead process are gone, and
2380 threads of any other process were left running. */
2381 if (!non_stop)
2382 set_executing (minus_one_ptid, 0);
2383 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2384 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
2385 set_executing (inferior_ptid, 0);
8c90c137
LM
2386 }
2387
0d1e5fa7 2388 switch (infwait_state)
488f131b
JB
2389 {
2390 case infwait_thread_hop_state:
527159b7 2391 if (debug_infrun)
8a9de0e4 2392 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
488f131b 2393 /* Cancel the waiton_ptid. */
0d1e5fa7 2394 waiton_ptid = pid_to_ptid (-1);
65e82032 2395 break;
b83266a0 2396
488f131b 2397 case infwait_normal_state:
527159b7 2398 if (debug_infrun)
8a9de0e4 2399 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
2400 break;
2401
2402 case infwait_step_watch_state:
2403 if (debug_infrun)
2404 fprintf_unfiltered (gdb_stdlog,
2405 "infrun: infwait_step_watch_state\n");
2406
2407 stepped_after_stopped_by_watchpoint = 1;
488f131b 2408 break;
b83266a0 2409
488f131b 2410 case infwait_nonstep_watch_state:
527159b7 2411 if (debug_infrun)
8a9de0e4
AC
2412 fprintf_unfiltered (gdb_stdlog,
2413 "infrun: infwait_nonstep_watch_state\n");
488f131b 2414 insert_breakpoints ();
c906108c 2415
488f131b
JB
2416 /* FIXME-maybe: is this cleaner than setting a flag? Does it
2417 handle things like signals arriving and other things happening
2418 in combination correctly? */
2419 stepped_after_stopped_by_watchpoint = 1;
2420 break;
65e82032
AC
2421
2422 default:
e2e0b3e5 2423 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 2424 }
0d1e5fa7 2425 infwait_state = infwait_normal_state;
c906108c 2426
488f131b
JB
2427 switch (ecs->ws.kind)
2428 {
2429 case TARGET_WAITKIND_LOADED:
527159b7 2430 if (debug_infrun)
8a9de0e4 2431 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
2432 /* Ignore gracefully during startup of the inferior, as it might
2433 be the shell which has just loaded some objects, otherwise
2434 add the symbols for the newly loaded objects. Also ignore at
2435 the beginning of an attach or remote session; we will query
2436 the full list of libraries once the connection is
2437 established. */
c0236d92 2438 if (stop_soon == NO_STOP_QUIETLY)
488f131b 2439 {
488f131b
JB
2440 /* Check for any newly added shared libraries if we're
2441 supposed to be adding them automatically. Switch
2442 terminal for any messages produced by
2443 breakpoint_re_set. */
2444 target_terminal_ours_for_output ();
aff6338a 2445 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
2446 stack's section table is kept up-to-date. Architectures,
2447 (e.g., PPC64), use the section table to perform
2448 operations such as address => section name and hence
2449 require the table to contain all sections (including
2450 those found in shared libraries). */
b0f4b84b 2451#ifdef SOLIB_ADD
aff6338a 2452 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
2453#else
2454 solib_add (NULL, 0, &current_target, auto_solib_add);
2455#endif
488f131b
JB
2456 target_terminal_inferior ();
2457
b0f4b84b
DJ
2458 /* If requested, stop when the dynamic linker notifies
2459 gdb of events. This allows the user to get control
2460 and place breakpoints in initializer routines for
2461 dynamically loaded objects (among other things). */
2462 if (stop_on_solib_events)
2463 {
2464 stop_stepping (ecs);
2465 return;
2466 }
2467
2468 /* NOTE drow/2007-05-11: This might be a good place to check
2469 for "catch load". */
488f131b 2470 }
b0f4b84b
DJ
2471
2472 /* If we are skipping through a shell, or through shared library
2473 loading that we aren't interested in, resume the program. If
2474 we're running the program normally, also resume. But stop if
2475 we're attaching or setting up a remote connection. */
2476 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
2477 {
74960c60
VP
2478 /* Loading of shared libraries might have changed breakpoint
2479 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
2480 if (stop_soon == NO_STOP_QUIETLY
2481 && !breakpoints_always_inserted_mode ())
74960c60 2482 insert_breakpoints ();
b0f4b84b
DJ
2483 resume (0, TARGET_SIGNAL_0);
2484 prepare_to_wait (ecs);
2485 return;
2486 }
2487
2488 break;
c5aa993b 2489
488f131b 2490 case TARGET_WAITKIND_SPURIOUS:
527159b7 2491 if (debug_infrun)
8a9de0e4 2492 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
2493 resume (0, TARGET_SIGNAL_0);
2494 prepare_to_wait (ecs);
2495 return;
c5aa993b 2496
488f131b 2497 case TARGET_WAITKIND_EXITED:
527159b7 2498 if (debug_infrun)
8a9de0e4 2499 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
fb66883a 2500 inferior_ptid = ecs->ptid;
488f131b
JB
2501 target_terminal_ours (); /* Must do this before mourn anyway */
2502 print_stop_reason (EXITED, ecs->ws.value.integer);
2503
2504 /* Record the exit code in the convenience variable $_exitcode, so
2505 that the user can inspect this again later. */
4fa62494
UW
2506 set_internalvar_integer (lookup_internalvar ("_exitcode"),
2507 (LONGEST) ecs->ws.value.integer);
488f131b
JB
2508 gdb_flush (gdb_stdout);
2509 target_mourn_inferior ();
1c0fdd0e 2510 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
2511 stop_print_frame = 0;
2512 stop_stepping (ecs);
2513 return;
c5aa993b 2514
488f131b 2515 case TARGET_WAITKIND_SIGNALLED:
527159b7 2516 if (debug_infrun)
8a9de0e4 2517 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
fb66883a 2518 inferior_ptid = ecs->ptid;
488f131b 2519 stop_print_frame = 0;
488f131b 2520 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 2521
488f131b
JB
2522 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2523 reach here unless the inferior is dead. However, for years
2524 target_kill() was called here, which hints that fatal signals aren't
2525 really fatal on some systems. If that's true, then some changes
2526 may be needed. */
2527 target_mourn_inferior ();
c906108c 2528
2020b7ab 2529 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
1c0fdd0e 2530 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
2531 stop_stepping (ecs);
2532 return;
c906108c 2533
488f131b
JB
2534 /* The following are the only cases in which we keep going;
2535 the above cases end in a continue or goto. */
2536 case TARGET_WAITKIND_FORKED:
deb3b17b 2537 case TARGET_WAITKIND_VFORKED:
527159b7 2538 if (debug_infrun)
8a9de0e4 2539 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
c906108c 2540
5a2901d9
DJ
2541 if (!ptid_equal (ecs->ptid, inferior_ptid))
2542 {
0d1e5fa7 2543 context_switch (ecs->ptid);
35f196d9 2544 reinit_frame_cache ();
5a2901d9
DJ
2545 }
2546
b242c3c2
PA
2547 /* Immediately detach breakpoints from the child before there's
2548 any chance of letting the user delete breakpoints from the
2549 breakpoint lists. If we don't do this early, it's easy to
2550 leave left over traps in the child, vis: "break foo; catch
2551 fork; c; <fork>; del; c; <child calls foo>". We only follow
2552 the fork on the last `continue', and by that time the
2553 breakpoint at "foo" is long gone from the breakpoint table.
2554 If we vforked, then we don't need to unpatch here, since both
2555 parent and child are sharing the same memory pages; we'll
2556 need to unpatch at follow/detach time instead to be certain
2557 that new breakpoints added between catchpoint hit time and
2558 vfork follow are detached. */
2559 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
2560 {
2561 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
2562
2563 /* This won't actually modify the breakpoint list, but will
2564 physically remove the breakpoints from the child. */
2565 detach_breakpoints (child_pid);
2566 }
2567
e58b0e63
PA
2568 /* In case the event is caught by a catchpoint, remember that
2569 the event is to be followed at the next resume of the thread,
2570 and not immediately. */
2571 ecs->event_thread->pending_follow = ecs->ws;
2572
fb14de7b 2573 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 2574
347bddb7 2575 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
675bf4cb 2576
347bddb7 2577 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
04e68871
DJ
2578
2579 /* If no catchpoint triggered for this, then keep going. */
2580 if (ecs->random_signal)
2581 {
e58b0e63
PA
2582 int should_resume;
2583
2020b7ab 2584 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
e58b0e63
PA
2585
2586 should_resume = follow_fork ();
2587
2588 ecs->event_thread = inferior_thread ();
2589 ecs->ptid = inferior_ptid;
2590
2591 if (should_resume)
2592 keep_going (ecs);
2593 else
2594 stop_stepping (ecs);
04e68871
DJ
2595 return;
2596 }
2020b7ab 2597 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
2598 goto process_event_stop_test;
2599
2600 case TARGET_WAITKIND_EXECD:
527159b7 2601 if (debug_infrun)
fc5261f2 2602 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 2603
5a2901d9
DJ
2604 if (!ptid_equal (ecs->ptid, inferior_ptid))
2605 {
0d1e5fa7 2606 context_switch (ecs->ptid);
35f196d9 2607 reinit_frame_cache ();
5a2901d9
DJ
2608 }
2609
fb14de7b 2610 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f
PA
2611
2612 /* This causes the eventpoints and symbol table to be reset.
2613 Must do this now, before trying to determine whether to
2614 stop. */
71b43ef8 2615 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f
PA
2616
2617 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2618 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2619
71b43ef8
PA
2620 /* Note that this may be referenced from inside
2621 bpstat_stop_status above, through inferior_has_execd. */
2622 xfree (ecs->ws.value.execd_pathname);
2623 ecs->ws.value.execd_pathname = NULL;
2624
04e68871
DJ
2625 /* If no catchpoint triggered for this, then keep going. */
2626 if (ecs->random_signal)
2627 {
2020b7ab 2628 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
2629 keep_going (ecs);
2630 return;
2631 }
2020b7ab 2632 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
2633 goto process_event_stop_test;
2634
b4dc5ffa
MK
2635 /* Be careful not to try to gather much state about a thread
2636 that's in a syscall. It's frequently a losing proposition. */
488f131b 2637 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 2638 if (debug_infrun)
8a9de0e4 2639 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
488f131b
JB
2640 resume (0, TARGET_SIGNAL_0);
2641 prepare_to_wait (ecs);
2642 return;
c906108c 2643
488f131b
JB
2644 /* Before examining the threads further, step this thread to
2645 get it entirely out of the syscall. (We get notice of the
2646 event when the thread is just on the verge of exiting a
2647 syscall. Stepping one instruction seems to get it back
b4dc5ffa 2648 into user code.) */
488f131b 2649 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 2650 if (debug_infrun)
8a9de0e4 2651 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
488f131b 2652 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
488f131b
JB
2653 prepare_to_wait (ecs);
2654 return;
c906108c 2655
488f131b 2656 case TARGET_WAITKIND_STOPPED:
527159b7 2657 if (debug_infrun)
8a9de0e4 2658 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2020b7ab 2659 ecs->event_thread->stop_signal = ecs->ws.value.sig;
488f131b 2660 break;
c906108c 2661
b2175913
MS
2662 case TARGET_WAITKIND_NO_HISTORY:
2663 /* Reverse execution: target ran out of history info. */
fb14de7b 2664 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
b2175913
MS
2665 print_stop_reason (NO_HISTORY, 0);
2666 stop_stepping (ecs);
2667 return;
2668
488f131b
JB
2669 /* We had an event in the inferior, but we are not interested
2670 in handling it at this level. The lower layers have already
8e7d2c16 2671 done what needs to be done, if anything.
8fb3e588
AC
2672
2673 One of the possible circumstances for this is when the
2674 inferior produces output for the console. The inferior has
2675 not stopped, and we are ignoring the event. Another possible
2676 circumstance is any event which the lower level knows will be
2677 reported multiple times without an intervening resume. */
488f131b 2678 case TARGET_WAITKIND_IGNORE:
527159b7 2679 if (debug_infrun)
8a9de0e4 2680 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
8e7d2c16 2681 prepare_to_wait (ecs);
488f131b
JB
2682 return;
2683 }
c906108c 2684
488f131b
JB
2685 if (ecs->new_thread_event)
2686 {
94cc34af
PA
2687 if (non_stop)
2688 /* Non-stop assumes that the target handles adding new threads
2689 to the thread list. */
2690 internal_error (__FILE__, __LINE__, "\
2691targets should add new threads to the thread list themselves in non-stop mode.");
2692
2693 /* We may want to consider not doing a resume here in order to
2694 give the user a chance to play with the new thread. It might
2695 be good to make that a user-settable option. */
2696
2697 /* At this point, all threads are stopped (happens automatically
2698 in either the OS or the native code). Therefore we need to
2699 continue all threads in order to make progress. */
2700
488f131b
JB
2701 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2702 prepare_to_wait (ecs);
2703 return;
2704 }
c906108c 2705
2020b7ab 2706 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
2707 {
2708 /* Do we need to clean up the state of a thread that has
2709 completed a displaced single-step? (Doing so usually affects
2710 the PC, so do it here, before we set stop_pc.) */
2711 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
2712
2713 /* If we either finished a single-step or hit a breakpoint, but
2714 the user wanted this thread to be stopped, pretend we got a
2715 SIG0 (generic unsignaled stop). */
2716
2717 if (ecs->event_thread->stop_requested
2718 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2719 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2720 }
237fc4c9 2721
515630c5 2722 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 2723
527159b7 2724 if (debug_infrun)
237fc4c9
PA
2725 {
2726 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2727 paddr_nz (stop_pc));
d92524f1 2728 if (target_stopped_by_watchpoint ())
237fc4c9
PA
2729 {
2730 CORE_ADDR addr;
2731 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2732
2733 if (target_stopped_data_address (&current_target, &addr))
2734 fprintf_unfiltered (gdb_stdlog,
2735 "infrun: stopped data address = 0x%s\n",
2736 paddr_nz (addr));
2737 else
2738 fprintf_unfiltered (gdb_stdlog,
2739 "infrun: (no data address available)\n");
2740 }
2741 }
527159b7 2742
9f976b41
DJ
2743 if (stepping_past_singlestep_breakpoint)
2744 {
1c0fdd0e 2745 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
2746 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2747 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2748
2749 stepping_past_singlestep_breakpoint = 0;
2750
2751 /* We've either finished single-stepping past the single-step
8fb3e588
AC
2752 breakpoint, or stopped for some other reason. It would be nice if
2753 we could tell, but we can't reliably. */
2020b7ab 2754 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 2755 {
527159b7 2756 if (debug_infrun)
8a9de0e4 2757 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41 2758 /* Pull the single step breakpoints out of the target. */
e0cd558a 2759 remove_single_step_breakpoints ();
9f976b41
DJ
2760 singlestep_breakpoints_inserted_p = 0;
2761
2762 ecs->random_signal = 0;
2763
0d1e5fa7 2764 context_switch (saved_singlestep_ptid);
9a4105ab
AC
2765 if (deprecated_context_hook)
2766 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
2767
2768 resume (1, TARGET_SIGNAL_0);
2769 prepare_to_wait (ecs);
2770 return;
2771 }
2772 }
2773
ca67fcb8 2774 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 2775 {
94cc34af
PA
2776 /* In non-stop mode, there's never a deferred_step_ptid set. */
2777 gdb_assert (!non_stop);
2778
6a6b96b9
UW
2779 /* If we stopped for some other reason than single-stepping, ignore
2780 the fact that we were supposed to switch back. */
2020b7ab 2781 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
6a6b96b9
UW
2782 {
2783 if (debug_infrun)
2784 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 2785 "infrun: handling deferred step\n");
6a6b96b9
UW
2786
2787 /* Pull the single step breakpoints out of the target. */
2788 if (singlestep_breakpoints_inserted_p)
2789 {
2790 remove_single_step_breakpoints ();
2791 singlestep_breakpoints_inserted_p = 0;
2792 }
2793
2794 /* Note: We do not call context_switch at this point, as the
2795 context is already set up for stepping the original thread. */
ca67fcb8
VP
2796 switch_to_thread (deferred_step_ptid);
2797 deferred_step_ptid = null_ptid;
6a6b96b9
UW
2798 /* Suppress spurious "Switching to ..." message. */
2799 previous_inferior_ptid = inferior_ptid;
2800
2801 resume (1, TARGET_SIGNAL_0);
2802 prepare_to_wait (ecs);
2803 return;
2804 }
ca67fcb8
VP
2805
2806 deferred_step_ptid = null_ptid;
6a6b96b9
UW
2807 }
2808
488f131b
JB
2809 /* See if a thread hit a thread-specific breakpoint that was meant for
2810 another thread. If so, then step that thread past the breakpoint,
2811 and continue it. */
2812
2020b7ab 2813 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 2814 {
9f976b41
DJ
2815 int thread_hop_needed = 0;
2816
f8d40ec8
JB
2817 /* Check if a regular breakpoint has been hit before checking
2818 for a potential single step breakpoint. Otherwise, GDB will
2819 not see this breakpoint hit when stepping onto breakpoints. */
c36b740a 2820 if (regular_breakpoint_inserted_here_p (stop_pc))
488f131b 2821 {
c5aa993b 2822 ecs->random_signal = 0;
4fa8626c 2823 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
2824 thread_hop_needed = 1;
2825 }
1c0fdd0e 2826 else if (singlestep_breakpoints_inserted_p)
9f976b41 2827 {
fd48f117
DJ
2828 /* We have not context switched yet, so this should be true
2829 no matter which thread hit the singlestep breakpoint. */
2830 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2831 if (debug_infrun)
2832 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2833 "trap for %s\n",
2834 target_pid_to_str (ecs->ptid));
2835
9f976b41
DJ
2836 ecs->random_signal = 0;
2837 /* The call to in_thread_list is necessary because PTIDs sometimes
2838 change when we go from single-threaded to multi-threaded. If
2839 the singlestep_ptid is still in the list, assume that it is
2840 really different from ecs->ptid. */
2841 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2842 && in_thread_list (singlestep_ptid))
2843 {
fd48f117
DJ
2844 /* If the PC of the thread we were trying to single-step
2845 has changed, discard this event (which we were going
2846 to ignore anyway), and pretend we saw that thread
2847 trap. This prevents us continuously moving the
2848 single-step breakpoint forward, one instruction at a
2849 time. If the PC has changed, then the thread we were
2850 trying to single-step has trapped or been signalled,
2851 but the event has not been reported to GDB yet.
2852
2853 There might be some cases where this loses signal
2854 information, if a signal has arrived at exactly the
2855 same time that the PC changed, but this is the best
2856 we can do with the information available. Perhaps we
2857 should arrange to report all events for all threads
2858 when they stop, or to re-poll the remote looking for
2859 this particular thread (i.e. temporarily enable
2860 schedlock). */
515630c5
UW
2861
2862 CORE_ADDR new_singlestep_pc
2863 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2864
2865 if (new_singlestep_pc != singlestep_pc)
fd48f117 2866 {
2020b7ab
PA
2867 enum target_signal stop_signal;
2868
fd48f117
DJ
2869 if (debug_infrun)
2870 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2871 " but expected thread advanced also\n");
2872
2873 /* The current context still belongs to
2874 singlestep_ptid. Don't swap here, since that's
2875 the context we want to use. Just fudge our
2876 state and continue. */
2020b7ab
PA
2877 stop_signal = ecs->event_thread->stop_signal;
2878 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
fd48f117 2879 ecs->ptid = singlestep_ptid;
e09875d4 2880 ecs->event_thread = find_thread_ptid (ecs->ptid);
2020b7ab 2881 ecs->event_thread->stop_signal = stop_signal;
515630c5 2882 stop_pc = new_singlestep_pc;
fd48f117
DJ
2883 }
2884 else
2885 {
2886 if (debug_infrun)
2887 fprintf_unfiltered (gdb_stdlog,
2888 "infrun: unexpected thread\n");
2889
2890 thread_hop_needed = 1;
2891 stepping_past_singlestep_breakpoint = 1;
2892 saved_singlestep_ptid = singlestep_ptid;
2893 }
9f976b41
DJ
2894 }
2895 }
2896
2897 if (thread_hop_needed)
8fb3e588 2898 {
237fc4c9 2899 int remove_status = 0;
8fb3e588 2900
527159b7 2901 if (debug_infrun)
8a9de0e4 2902 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 2903
b3444185
PA
2904 /* Switch context before touching inferior memory, the
2905 previous thread may have exited. */
2906 if (!ptid_equal (inferior_ptid, ecs->ptid))
2907 context_switch (ecs->ptid);
2908
8fb3e588
AC
2909 /* Saw a breakpoint, but it was hit by the wrong thread.
2910 Just continue. */
2911
1c0fdd0e 2912 if (singlestep_breakpoints_inserted_p)
488f131b 2913 {
8fb3e588 2914 /* Pull the single step breakpoints out of the target. */
e0cd558a 2915 remove_single_step_breakpoints ();
8fb3e588
AC
2916 singlestep_breakpoints_inserted_p = 0;
2917 }
2918
237fc4c9
PA
2919 /* If the arch can displace step, don't remove the
2920 breakpoints. */
2921 if (!use_displaced_stepping (current_gdbarch))
2922 remove_status = remove_breakpoints ();
2923
8fb3e588
AC
2924 /* Did we fail to remove breakpoints? If so, try
2925 to set the PC past the bp. (There's at least
2926 one situation in which we can fail to remove
2927 the bp's: On HP-UX's that use ttrace, we can't
2928 change the address space of a vforking child
2929 process until the child exits (well, okay, not
2930 then either :-) or execs. */
2931 if (remove_status != 0)
9d9cd7ac 2932 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
2933 else
2934 { /* Single step */
94cc34af
PA
2935 if (!non_stop)
2936 {
2937 /* Only need to require the next event from this
2938 thread in all-stop mode. */
2939 waiton_ptid = ecs->ptid;
2940 infwait_state = infwait_thread_hop_state;
2941 }
8fb3e588 2942
4e1c45ea 2943 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588
AC
2944 keep_going (ecs);
2945 registers_changed ();
2946 return;
2947 }
488f131b 2948 }
1c0fdd0e 2949 else if (singlestep_breakpoints_inserted_p)
8fb3e588
AC
2950 {
2951 sw_single_step_trap_p = 1;
2952 ecs->random_signal = 0;
2953 }
488f131b
JB
2954 }
2955 else
2956 ecs->random_signal = 1;
c906108c 2957
488f131b 2958 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
2959 so, then switch to that thread. */
2960 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 2961 {
527159b7 2962 if (debug_infrun)
8a9de0e4 2963 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 2964
0d1e5fa7 2965 context_switch (ecs->ptid);
c5aa993b 2966
9a4105ab
AC
2967 if (deprecated_context_hook)
2968 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 2969 }
c906108c 2970
1c0fdd0e 2971 if (singlestep_breakpoints_inserted_p)
488f131b
JB
2972 {
2973 /* Pull the single step breakpoints out of the target. */
e0cd558a 2974 remove_single_step_breakpoints ();
488f131b
JB
2975 singlestep_breakpoints_inserted_p = 0;
2976 }
c906108c 2977
d983da9c
DJ
2978 if (stepped_after_stopped_by_watchpoint)
2979 stopped_by_watchpoint = 0;
2980 else
2981 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
2982
2983 /* If necessary, step over this watchpoint. We'll be back to display
2984 it in a moment. */
2985 if (stopped_by_watchpoint
d92524f1 2986 && (target_have_steppable_watchpoint
d983da9c 2987 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
488f131b 2988 {
488f131b
JB
2989 /* At this point, we are stopped at an instruction which has
2990 attempted to write to a piece of memory under control of
2991 a watchpoint. The instruction hasn't actually executed
2992 yet. If we were to evaluate the watchpoint expression
2993 now, we would get the old value, and therefore no change
2994 would seem to have occurred.
2995
2996 In order to make watchpoints work `right', we really need
2997 to complete the memory write, and then evaluate the
d983da9c
DJ
2998 watchpoint expression. We do this by single-stepping the
2999 target.
3000
3001 It may not be necessary to disable the watchpoint to stop over
3002 it. For example, the PA can (with some kernel cooperation)
3003 single step over a watchpoint without disabling the watchpoint.
3004
3005 It is far more common to need to disable a watchpoint to step
3006 the inferior over it. If we have non-steppable watchpoints,
3007 we must disable the current watchpoint; it's simplest to
3008 disable all watchpoints and breakpoints. */
2facfe5c
DD
3009 int hw_step = 1;
3010
d92524f1 3011 if (!target_have_steppable_watchpoint)
d983da9c 3012 remove_breakpoints ();
2facfe5c 3013 /* Single step */
fb14de7b 3014 hw_step = maybe_software_singlestep (current_gdbarch, stop_pc);
2facfe5c 3015 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
b9412953 3016 registers_changed ();
0d1e5fa7 3017 waiton_ptid = ecs->ptid;
d92524f1 3018 if (target_have_steppable_watchpoint)
0d1e5fa7 3019 infwait_state = infwait_step_watch_state;
d983da9c 3020 else
0d1e5fa7 3021 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
3022 prepare_to_wait (ecs);
3023 return;
3024 }
3025
488f131b
JB
3026 ecs->stop_func_start = 0;
3027 ecs->stop_func_end = 0;
3028 ecs->stop_func_name = 0;
3029 /* Don't care about return value; stop_func_start and stop_func_name
3030 will both be 0 if it doesn't work. */
3031 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3032 &ecs->stop_func_start, &ecs->stop_func_end);
cbf3b44a
UW
3033 ecs->stop_func_start
3034 += gdbarch_deprecated_function_start_offset (current_gdbarch);
4e1c45ea 3035 ecs->event_thread->stepping_over_breakpoint = 0;
347bddb7 3036 bpstat_clear (&ecs->event_thread->stop_bpstat);
414c69f7 3037 ecs->event_thread->stop_step = 0;
488f131b
JB
3038 stop_print_frame = 1;
3039 ecs->random_signal = 0;
3040 stopped_by_random_signal = 0;
488f131b 3041
2020b7ab 3042 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4e1c45ea 3043 && ecs->event_thread->trap_expected
3352ef37 3044 && gdbarch_single_step_through_delay_p (current_gdbarch)
4e1c45ea 3045 && currently_stepping (ecs->event_thread))
3352ef37 3046 {
b50d7442 3047 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37
AC
3048 also on an instruction that needs to be stepped multiple
3049 times before it's been fully executing. E.g., architectures
3050 with a delay slot. It needs to be stepped twice, once for
3051 the instruction and once for the delay slot. */
3052 int step_through_delay
3053 = gdbarch_single_step_through_delay (current_gdbarch,
3054 get_current_frame ());
527159b7 3055 if (debug_infrun && step_through_delay)
8a9de0e4 3056 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4e1c45ea 3057 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
3352ef37
AC
3058 {
3059 /* The user issued a continue when stopped at a breakpoint.
3060 Set up for another trap and get out of here. */
4e1c45ea 3061 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3062 keep_going (ecs);
3063 return;
3064 }
3065 else if (step_through_delay)
3066 {
3067 /* The user issued a step when stopped at a breakpoint.
3068 Maybe we should stop, maybe we should not - the delay
3069 slot *might* correspond to a line of source. In any
ca67fcb8
VP
3070 case, don't decide that here, just set
3071 ecs->stepping_over_breakpoint, making sure we
3072 single-step again before breakpoints are re-inserted. */
4e1c45ea 3073 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3074 }
3075 }
3076
488f131b
JB
3077 /* Look at the cause of the stop, and decide what to do.
3078 The alternatives are:
0d1e5fa7
PA
3079 1) stop_stepping and return; to really stop and return to the debugger,
3080 2) keep_going and return to start up again
4e1c45ea 3081 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
3082 3) set ecs->random_signal to 1, and the decision between 1 and 2
3083 will be made according to the signal handling tables. */
3084
3085 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
3086 that have to do with the program's own actions. Note that
3087 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3088 on the operating system version. Here we detect when a SIGILL or
3089 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3090 something similar for SIGSEGV, since a SIGSEGV will be generated
3091 when we're trying to execute a breakpoint instruction on a
3092 non-executable stack. This happens for call dummy breakpoints
3093 for architectures like SPARC that place call dummies on the
237fc4c9 3094 stack.
488f131b 3095
237fc4c9
PA
3096 If we're doing a displaced step past a breakpoint, then the
3097 breakpoint is always inserted at the original instruction;
3098 non-standard signals can't be explained by the breakpoint. */
2020b7ab 3099 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4e1c45ea 3100 || (! ecs->event_thread->trap_expected
237fc4c9 3101 && breakpoint_inserted_here_p (stop_pc)
2020b7ab
PA
3102 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_ILL
3103 || ecs->event_thread->stop_signal == TARGET_SIGNAL_SEGV
3104 || ecs->event_thread->stop_signal == TARGET_SIGNAL_EMT))
b0f4b84b
DJ
3105 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
3106 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 3107 {
2020b7ab 3108 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
488f131b 3109 {
527159b7 3110 if (debug_infrun)
8a9de0e4 3111 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
3112 stop_print_frame = 0;
3113 stop_stepping (ecs);
3114 return;
3115 }
c54cfec8
EZ
3116
3117 /* This is originated from start_remote(), start_inferior() and
3118 shared libraries hook functions. */
b0f4b84b 3119 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 3120 {
527159b7 3121 if (debug_infrun)
8a9de0e4 3122 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
3123 stop_stepping (ecs);
3124 return;
3125 }
3126
c54cfec8 3127 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
3128 the stop_signal here, because some kernels don't ignore a
3129 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3130 See more comments in inferior.h. On the other hand, if we
a0ef4274 3131 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
3132 will handle the SIGSTOP if it should show up later.
3133
3134 Also consider that the attach is complete when we see a
3135 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
3136 target extended-remote report it instead of a SIGSTOP
3137 (e.g. gdbserver). We already rely on SIGTRAP being our
e0ba6746
PA
3138 signal, so this is no exception.
3139
3140 Also consider that the attach is complete when we see a
3141 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
3142 the target to stop all threads of the inferior, in case the
3143 low level attach operation doesn't stop them implicitly. If
3144 they weren't stopped implicitly, then the stub will report a
3145 TARGET_SIGNAL_0, meaning: stopped for no particular reason
3146 other than GDB's request. */
a0ef4274 3147 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2020b7ab 3148 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
e0ba6746
PA
3149 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3150 || ecs->event_thread->stop_signal == TARGET_SIGNAL_0))
c54cfec8
EZ
3151 {
3152 stop_stepping (ecs);
2020b7ab 3153 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
3154 return;
3155 }
3156
fba57f8f 3157 /* See if there is a breakpoint at the current PC. */
347bddb7 3158 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
fba57f8f
VP
3159
3160 /* Following in case break condition called a
3161 function. */
3162 stop_print_frame = 1;
488f131b 3163
73dd234f 3164 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
3165 at one stage in the past included checks for an inferior
3166 function call's call dummy's return breakpoint. The original
3167 comment, that went with the test, read:
73dd234f 3168
8fb3e588
AC
3169 ``End of a stack dummy. Some systems (e.g. Sony news) give
3170 another signal besides SIGTRAP, so check here as well as
3171 above.''
73dd234f 3172
8002d778 3173 If someone ever tries to get call dummys on a
73dd234f 3174 non-executable stack to work (where the target would stop
03cebad2
MK
3175 with something like a SIGSEGV), then those tests might need
3176 to be re-instated. Given, however, that the tests were only
73dd234f 3177 enabled when momentary breakpoints were not being used, I
03cebad2
MK
3178 suspect that it won't be the case.
3179
8fb3e588
AC
3180 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
3181 be necessary for call dummies on a non-executable stack on
3182 SPARC. */
73dd234f 3183
2020b7ab 3184 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 3185 ecs->random_signal
347bddb7 3186 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
4e1c45ea
PA
3187 || ecs->event_thread->trap_expected
3188 || (ecs->event_thread->step_range_end
3189 && ecs->event_thread->step_resume_breakpoint == NULL));
488f131b
JB
3190 else
3191 {
347bddb7 3192 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
488f131b 3193 if (!ecs->random_signal)
2020b7ab 3194 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3195 }
3196 }
3197
3198 /* When we reach this point, we've pretty much decided
3199 that the reason for stopping must've been a random
3200 (unexpected) signal. */
3201
3202 else
3203 ecs->random_signal = 1;
488f131b 3204
04e68871 3205process_event_stop_test:
488f131b
JB
3206 /* For the program's own signals, act according to
3207 the signal handling tables. */
3208
3209 if (ecs->random_signal)
3210 {
3211 /* Signal not for debugging purposes. */
3212 int printed = 0;
3213
527159b7 3214 if (debug_infrun)
2020b7ab
PA
3215 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
3216 ecs->event_thread->stop_signal);
527159b7 3217
488f131b
JB
3218 stopped_by_random_signal = 1;
3219
2020b7ab 3220 if (signal_print[ecs->event_thread->stop_signal])
488f131b
JB
3221 {
3222 printed = 1;
3223 target_terminal_ours_for_output ();
2020b7ab 3224 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
488f131b 3225 }
252fbfc8
PA
3226 /* Always stop on signals if we're either just gaining control
3227 of the program, or the user explicitly requested this thread
3228 to remain stopped. */
d6b48e9c 3229 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 3230 || ecs->event_thread->stop_requested
d6b48e9c 3231 || signal_stop_state (ecs->event_thread->stop_signal))
488f131b
JB
3232 {
3233 stop_stepping (ecs);
3234 return;
3235 }
3236 /* If not going to stop, give terminal back
3237 if we took it away. */
3238 else if (printed)
3239 target_terminal_inferior ();
3240
3241 /* Clear the signal if it should not be passed. */
2020b7ab
PA
3242 if (signal_program[ecs->event_thread->stop_signal] == 0)
3243 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
488f131b 3244
fb14de7b 3245 if (ecs->event_thread->prev_pc == stop_pc
4e1c45ea
PA
3246 && ecs->event_thread->trap_expected
3247 && ecs->event_thread->step_resume_breakpoint == NULL)
68f53502
AC
3248 {
3249 /* We were just starting a new sequence, attempting to
3250 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 3251 Instead this signal arrives. This signal will take us out
68f53502
AC
3252 of the stepping range so GDB needs to remember to, when
3253 the signal handler returns, resume stepping off that
3254 breakpoint. */
3255 /* To simplify things, "continue" is forced to use the same
3256 code paths as single-step - set a breakpoint at the
3257 signal return address and then, once hit, step off that
3258 breakpoint. */
237fc4c9
PA
3259 if (debug_infrun)
3260 fprintf_unfiltered (gdb_stdlog,
3261 "infrun: signal arrived while stepping over "
3262 "breakpoint\n");
d3169d93 3263
44cbf7b5 3264 insert_step_resume_breakpoint_at_frame (get_current_frame ());
4e1c45ea 3265 ecs->event_thread->step_after_step_resume_breakpoint = 1;
9d799f85
AC
3266 keep_going (ecs);
3267 return;
68f53502 3268 }
9d799f85 3269
4e1c45ea 3270 if (ecs->event_thread->step_range_end != 0
2020b7ab 3271 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
4e1c45ea
PA
3272 && (ecs->event_thread->step_range_start <= stop_pc
3273 && stop_pc < ecs->event_thread->step_range_end)
9d799f85 3274 && frame_id_eq (get_frame_id (get_current_frame ()),
4e1c45ea
PA
3275 ecs->event_thread->step_frame_id)
3276 && ecs->event_thread->step_resume_breakpoint == NULL)
d303a6c7
AC
3277 {
3278 /* The inferior is about to take a signal that will take it
3279 out of the single step range. Set a breakpoint at the
3280 current PC (which is presumably where the signal handler
3281 will eventually return) and then allow the inferior to
3282 run free.
3283
3284 Note that this is only needed for a signal delivered
3285 while in the single-step range. Nested signals aren't a
3286 problem as they eventually all return. */
237fc4c9
PA
3287 if (debug_infrun)
3288 fprintf_unfiltered (gdb_stdlog,
3289 "infrun: signal may take us out of "
3290 "single-step range\n");
3291
44cbf7b5 3292 insert_step_resume_breakpoint_at_frame (get_current_frame ());
9d799f85
AC
3293 keep_going (ecs);
3294 return;
d303a6c7 3295 }
9d799f85
AC
3296
3297 /* Note: step_resume_breakpoint may be non-NULL. This occures
3298 when either there's a nested signal, or when there's a
3299 pending signal enabled just as the signal handler returns
3300 (leaving the inferior at the step-resume-breakpoint without
3301 actually executing it). Either way continue until the
3302 breakpoint is really hit. */
488f131b
JB
3303 keep_going (ecs);
3304 return;
3305 }
3306
3307 /* Handle cases caused by hitting a breakpoint. */
3308 {
3309 CORE_ADDR jmp_buf_pc;
3310 struct bpstat_what what;
3311
347bddb7 3312 what = bpstat_what (ecs->event_thread->stop_bpstat);
488f131b
JB
3313
3314 if (what.call_dummy)
3315 {
3316 stop_stack_dummy = 1;
c5aa993b 3317 }
c906108c 3318
488f131b 3319 switch (what.main_action)
c5aa993b 3320 {
488f131b 3321 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
3322 /* If we hit the breakpoint at longjmp while stepping, we
3323 install a momentary breakpoint at the target of the
3324 jmp_buf. */
3325
3326 if (debug_infrun)
3327 fprintf_unfiltered (gdb_stdlog,
3328 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
3329
4e1c45ea 3330 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 3331
91104499 3332 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
60ade65d
UW
3333 || !gdbarch_get_longjmp_target (current_gdbarch,
3334 get_current_frame (), &jmp_buf_pc))
c5aa993b 3335 {
611c83ae
PA
3336 if (debug_infrun)
3337 fprintf_unfiltered (gdb_stdlog, "\
3338infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
488f131b 3339 keep_going (ecs);
104c1213 3340 return;
c5aa993b 3341 }
488f131b 3342
611c83ae
PA
3343 /* We're going to replace the current step-resume breakpoint
3344 with a longjmp-resume breakpoint. */
4e1c45ea 3345 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae
PA
3346
3347 /* Insert a breakpoint at resume address. */
3348 insert_longjmp_resume_breakpoint (jmp_buf_pc);
c906108c 3349
488f131b
JB
3350 keep_going (ecs);
3351 return;
c906108c 3352
488f131b 3353 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 3354 if (debug_infrun)
611c83ae
PA
3355 fprintf_unfiltered (gdb_stdlog,
3356 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
3357
4e1c45ea
PA
3358 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
3359 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae 3360
414c69f7 3361 ecs->event_thread->stop_step = 1;
611c83ae
PA
3362 print_stop_reason (END_STEPPING_RANGE, 0);
3363 stop_stepping (ecs);
3364 return;
488f131b
JB
3365
3366 case BPSTAT_WHAT_SINGLE:
527159b7 3367 if (debug_infrun)
8802d8ed 3368 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4e1c45ea 3369 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b
JB
3370 /* Still need to check other stuff, at least the case
3371 where we are stepping and step out of the right range. */
3372 break;
c906108c 3373
488f131b 3374 case BPSTAT_WHAT_STOP_NOISY:
527159b7 3375 if (debug_infrun)
8802d8ed 3376 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 3377 stop_print_frame = 1;
c906108c 3378
d303a6c7
AC
3379 /* We are about to nuke the step_resume_breakpointt via the
3380 cleanup chain, so no need to worry about it here. */
c5aa993b 3381
488f131b
JB
3382 stop_stepping (ecs);
3383 return;
c5aa993b 3384
488f131b 3385 case BPSTAT_WHAT_STOP_SILENT:
527159b7 3386 if (debug_infrun)
8802d8ed 3387 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 3388 stop_print_frame = 0;
c5aa993b 3389
d303a6c7
AC
3390 /* We are about to nuke the step_resume_breakpoin via the
3391 cleanup chain, so no need to worry about it here. */
c5aa993b 3392
488f131b 3393 stop_stepping (ecs);
e441088d 3394 return;
c5aa993b 3395
488f131b 3396 case BPSTAT_WHAT_STEP_RESUME:
527159b7 3397 if (debug_infrun)
8802d8ed 3398 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 3399
4e1c45ea
PA
3400 delete_step_resume_breakpoint (ecs->event_thread);
3401 if (ecs->event_thread->step_after_step_resume_breakpoint)
68f53502
AC
3402 {
3403 /* Back when the step-resume breakpoint was inserted, we
3404 were trying to single-step off a breakpoint. Go back
3405 to doing that. */
4e1c45ea
PA
3406 ecs->event_thread->step_after_step_resume_breakpoint = 0;
3407 ecs->event_thread->stepping_over_breakpoint = 1;
68f53502
AC
3408 keep_going (ecs);
3409 return;
3410 }
b2175913
MS
3411 if (stop_pc == ecs->stop_func_start
3412 && execution_direction == EXEC_REVERSE)
3413 {
3414 /* We are stepping over a function call in reverse, and
3415 just hit the step-resume breakpoint at the start
3416 address of the function. Go back to single-stepping,
3417 which should take us back to the function call. */
3418 ecs->event_thread->stepping_over_breakpoint = 1;
3419 keep_going (ecs);
3420 return;
3421 }
488f131b
JB
3422 break;
3423
488f131b 3424 case BPSTAT_WHAT_CHECK_SHLIBS:
c906108c 3425 {
527159b7 3426 if (debug_infrun)
8802d8ed 3427 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
488f131b
JB
3428
3429 /* Check for any newly added shared libraries if we're
3430 supposed to be adding them automatically. Switch
3431 terminal for any messages produced by
3432 breakpoint_re_set. */
3433 target_terminal_ours_for_output ();
aff6338a 3434 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
3435 stack's section table is kept up-to-date. Architectures,
3436 (e.g., PPC64), use the section table to perform
3437 operations such as address => section name and hence
3438 require the table to contain all sections (including
3439 those found in shared libraries). */
a77053c2 3440#ifdef SOLIB_ADD
aff6338a 3441 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
a77053c2
MK
3442#else
3443 solib_add (NULL, 0, &current_target, auto_solib_add);
3444#endif
488f131b
JB
3445 target_terminal_inferior ();
3446
488f131b
JB
3447 /* If requested, stop when the dynamic linker notifies
3448 gdb of events. This allows the user to get control
3449 and place breakpoints in initializer routines for
3450 dynamically loaded objects (among other things). */
877522db 3451 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 3452 {
488f131b 3453 stop_stepping (ecs);
d4f3574e
SS
3454 return;
3455 }
c5aa993b 3456 else
c5aa993b 3457 {
488f131b 3458 /* We want to step over this breakpoint, then keep going. */
4e1c45ea 3459 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 3460 break;
c5aa993b 3461 }
488f131b 3462 }
488f131b 3463 break;
c906108c 3464
488f131b
JB
3465 case BPSTAT_WHAT_LAST:
3466 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 3467
488f131b
JB
3468 case BPSTAT_WHAT_KEEP_CHECKING:
3469 break;
3470 }
3471 }
c906108c 3472
488f131b
JB
3473 /* We come here if we hit a breakpoint but should not
3474 stop for it. Possibly we also were stepping
3475 and should stop for that. So fall through and
3476 test for stepping. But, if not stepping,
3477 do not stop. */
c906108c 3478
a7212384
UW
3479 /* In all-stop mode, if we're currently stepping but have stopped in
3480 some other thread, we need to switch back to the stepped thread. */
3481 if (!non_stop)
3482 {
3483 struct thread_info *tp;
b3444185 3484 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
3485 ecs->event_thread);
3486 if (tp)
3487 {
3488 /* However, if the current thread is blocked on some internal
3489 breakpoint, and we simply need to step over that breakpoint
3490 to get it going again, do that first. */
3491 if ((ecs->event_thread->trap_expected
3492 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3493 || ecs->event_thread->stepping_over_breakpoint)
3494 {
3495 keep_going (ecs);
3496 return;
3497 }
3498
b3444185
PA
3499 /* If the stepping thread exited, then don't try reverting
3500 back to it, just keep going. We need to query the target
3501 in case it doesn't support thread exit events. */
3502 if (is_exited (tp->ptid)
3503 || !target_thread_alive (tp->ptid))
3504 {
3505 if (debug_infrun)
3506 fprintf_unfiltered (gdb_stdlog, "\
3507infrun: not switching back to stepped thread, it has vanished\n");
3508
3509 delete_thread (tp->ptid);
3510 keep_going (ecs);
3511 return;
3512 }
3513
a7212384
UW
3514 /* Otherwise, we no longer expect a trap in the current thread.
3515 Clear the trap_expected flag before switching back -- this is
3516 what keep_going would do as well, if we called it. */
3517 ecs->event_thread->trap_expected = 0;
3518
3519 if (debug_infrun)
3520 fprintf_unfiltered (gdb_stdlog,
3521 "infrun: switching back to stepped thread\n");
3522
3523 ecs->event_thread = tp;
3524 ecs->ptid = tp->ptid;
3525 context_switch (ecs->ptid);
3526 keep_going (ecs);
3527 return;
3528 }
3529 }
3530
9d1ff73f
MS
3531 /* Are we stepping to get the inferior out of the dynamic linker's
3532 hook (and possibly the dld itself) after catching a shlib
3533 event? */
4e1c45ea 3534 if (ecs->event_thread->stepping_through_solib_after_catch)
488f131b
JB
3535 {
3536#if defined(SOLIB_ADD)
3537 /* Have we reached our destination? If not, keep going. */
3538 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
3539 {
527159b7 3540 if (debug_infrun)
8a9de0e4 3541 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
4e1c45ea 3542 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 3543 keep_going (ecs);
104c1213 3544 return;
488f131b
JB
3545 }
3546#endif
527159b7 3547 if (debug_infrun)
8a9de0e4 3548 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
3549 /* Else, stop and report the catchpoint(s) whose triggering
3550 caused us to begin stepping. */
4e1c45ea 3551 ecs->event_thread->stepping_through_solib_after_catch = 0;
347bddb7
PA
3552 bpstat_clear (&ecs->event_thread->stop_bpstat);
3553 ecs->event_thread->stop_bpstat
3554 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4e1c45ea 3555 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
488f131b
JB
3556 stop_print_frame = 1;
3557 stop_stepping (ecs);
3558 return;
3559 }
c906108c 3560
4e1c45ea 3561 if (ecs->event_thread->step_resume_breakpoint)
488f131b 3562 {
527159b7 3563 if (debug_infrun)
d3169d93
DJ
3564 fprintf_unfiltered (gdb_stdlog,
3565 "infrun: step-resume breakpoint is inserted\n");
527159b7 3566
488f131b
JB
3567 /* Having a step-resume breakpoint overrides anything
3568 else having to do with stepping commands until
3569 that breakpoint is reached. */
488f131b
JB
3570 keep_going (ecs);
3571 return;
3572 }
c5aa993b 3573
4e1c45ea 3574 if (ecs->event_thread->step_range_end == 0)
488f131b 3575 {
527159b7 3576 if (debug_infrun)
8a9de0e4 3577 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 3578 /* Likewise if we aren't even stepping. */
488f131b
JB
3579 keep_going (ecs);
3580 return;
3581 }
c5aa993b 3582
488f131b 3583 /* If stepping through a line, keep going if still within it.
c906108c 3584
488f131b
JB
3585 Note that step_range_end is the address of the first instruction
3586 beyond the step range, and NOT the address of the last instruction
3587 within it! */
4e1c45ea
PA
3588 if (stop_pc >= ecs->event_thread->step_range_start
3589 && stop_pc < ecs->event_thread->step_range_end)
488f131b 3590 {
527159b7 3591 if (debug_infrun)
b2175913 3592 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
4e1c45ea
PA
3593 paddr_nz (ecs->event_thread->step_range_start),
3594 paddr_nz (ecs->event_thread->step_range_end));
b2175913
MS
3595
3596 /* When stepping backward, stop at beginning of line range
3597 (unless it's the function entry point, in which case
3598 keep going back to the call point). */
3599 if (stop_pc == ecs->event_thread->step_range_start
3600 && stop_pc != ecs->stop_func_start
3601 && execution_direction == EXEC_REVERSE)
3602 {
3603 ecs->event_thread->stop_step = 1;
3604 print_stop_reason (END_STEPPING_RANGE, 0);
3605 stop_stepping (ecs);
3606 }
3607 else
3608 keep_going (ecs);
3609
488f131b
JB
3610 return;
3611 }
c5aa993b 3612
488f131b 3613 /* We stepped out of the stepping range. */
c906108c 3614
488f131b
JB
3615 /* If we are stepping at the source level and entered the runtime
3616 loader dynamic symbol resolution code, we keep on single stepping
3617 until we exit the run time loader code and reach the callee's
3618 address. */
078130d0 3619 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 3620 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 3621 {
4c8c40e6
MK
3622 CORE_ADDR pc_after_resolver =
3623 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
c906108c 3624
527159b7 3625 if (debug_infrun)
8a9de0e4 3626 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 3627
488f131b
JB
3628 if (pc_after_resolver)
3629 {
3630 /* Set up a step-resume breakpoint at the address
3631 indicated by SKIP_SOLIB_RESOLVER. */
3632 struct symtab_and_line sr_sal;
fe39c653 3633 init_sal (&sr_sal);
488f131b
JB
3634 sr_sal.pc = pc_after_resolver;
3635
44cbf7b5 3636 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c5aa993b 3637 }
c906108c 3638
488f131b
JB
3639 keep_going (ecs);
3640 return;
3641 }
c906108c 3642
4e1c45ea 3643 if (ecs->event_thread->step_range_end != 1
078130d0
PA
3644 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3645 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
42edda50 3646 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
488f131b 3647 {
527159b7 3648 if (debug_infrun)
8a9de0e4 3649 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 3650 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
3651 a signal trampoline (either by a signal being delivered or by
3652 the signal handler returning). Just single-step until the
3653 inferior leaves the trampoline (either by calling the handler
3654 or returning). */
488f131b
JB
3655 keep_going (ecs);
3656 return;
3657 }
c906108c 3658
c17eaafe
DJ
3659 /* Check for subroutine calls. The check for the current frame
3660 equalling the step ID is not necessary - the check of the
3661 previous frame's ID is sufficient - but it is a common case and
3662 cheaper than checking the previous frame's ID.
14e60db5
DJ
3663
3664 NOTE: frame_id_eq will never report two invalid frame IDs as
3665 being equal, so to get into this block, both the current and
3666 previous frame must have valid frame IDs. */
4e1c45ea
PA
3667 if (!frame_id_eq (get_frame_id (get_current_frame ()),
3668 ecs->event_thread->step_frame_id)
b2175913
MS
3669 && (frame_id_eq (frame_unwind_id (get_current_frame ()),
3670 ecs->event_thread->step_frame_id)
3671 || execution_direction == EXEC_REVERSE))
488f131b 3672 {
95918acb 3673 CORE_ADDR real_stop_pc;
8fb3e588 3674
527159b7 3675 if (debug_infrun)
8a9de0e4 3676 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 3677
078130d0 3678 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
4e1c45ea
PA
3679 || ((ecs->event_thread->step_range_end == 1)
3680 && in_prologue (ecs->event_thread->prev_pc,
3681 ecs->stop_func_start)))
95918acb
AC
3682 {
3683 /* I presume that step_over_calls is only 0 when we're
3684 supposed to be stepping at the assembly language level
3685 ("stepi"). Just stop. */
3686 /* Also, maybe we just did a "nexti" inside a prolog, so we
3687 thought it was a subroutine call but it was not. Stop as
3688 well. FENN */
414c69f7 3689 ecs->event_thread->stop_step = 1;
95918acb
AC
3690 print_stop_reason (END_STEPPING_RANGE, 0);
3691 stop_stepping (ecs);
3692 return;
3693 }
8fb3e588 3694
078130d0 3695 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
8567c30f 3696 {
b2175913
MS
3697 /* We're doing a "next".
3698
3699 Normal (forward) execution: set a breakpoint at the
3700 callee's return address (the address at which the caller
3701 will resume).
3702
3703 Reverse (backward) execution. set the step-resume
3704 breakpoint at the start of the function that we just
3705 stepped into (backwards), and continue to there. When we
6130d0b7 3706 get there, we'll need to single-step back to the caller. */
b2175913
MS
3707
3708 if (execution_direction == EXEC_REVERSE)
3709 {
3710 struct symtab_and_line sr_sal;
3067f6e5
MS
3711
3712 if (ecs->stop_func_start == 0
3713 && in_solib_dynsym_resolve_code (stop_pc))
3714 {
3715 /* Stepped into runtime loader dynamic symbol
3716 resolution code. Since we're in reverse,
3717 we have already backed up through the runtime
3718 loader and the dynamic function. This is just
3719 the trampoline (jump table).
3720
3721 Just keep stepping, we'll soon be home.
3722 */
3723 keep_going (ecs);
3724 return;
3725 }
3726 /* Normal (staticly linked) function call return. */
b2175913
MS
3727 init_sal (&sr_sal);
3728 sr_sal.pc = ecs->stop_func_start;
3729 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3730 }
3731 else
3732 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3733
8567c30f
AC
3734 keep_going (ecs);
3735 return;
3736 }
a53c66de 3737
95918acb 3738 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
3739 calling routine and the real function), locate the real
3740 function. That's what tells us (a) whether we want to step
3741 into it at all, and (b) what prologue we want to run to the
3742 end of, if we do step into it. */
52f729a7 3743 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
95918acb 3744 if (real_stop_pc == 0)
52f729a7
UW
3745 real_stop_pc = gdbarch_skip_trampoline_code
3746 (current_gdbarch, get_current_frame (), stop_pc);
95918acb
AC
3747 if (real_stop_pc != 0)
3748 ecs->stop_func_start = real_stop_pc;
8fb3e588 3749
db5f024e 3750 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
3751 {
3752 struct symtab_and_line sr_sal;
3753 init_sal (&sr_sal);
3754 sr_sal.pc = ecs->stop_func_start;
3755
44cbf7b5 3756 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
8fb3e588
AC
3757 keep_going (ecs);
3758 return;
1b2bfbb9
RC
3759 }
3760
95918acb 3761 /* If we have line number information for the function we are
8fb3e588 3762 thinking of stepping into, step into it.
95918acb 3763
8fb3e588
AC
3764 If there are several symtabs at that PC (e.g. with include
3765 files), just want to know whether *any* of them have line
3766 numbers. find_pc_line handles this. */
95918acb
AC
3767 {
3768 struct symtab_and_line tmp_sal;
8fb3e588 3769
95918acb
AC
3770 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3771 if (tmp_sal.line != 0)
3772 {
b2175913
MS
3773 if (execution_direction == EXEC_REVERSE)
3774 handle_step_into_function_backward (ecs);
3775 else
3776 handle_step_into_function (ecs);
95918acb
AC
3777 return;
3778 }
3779 }
3780
3781 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
3782 set, we stop the step so that the user has a chance to switch
3783 in assembly mode. */
078130d0
PA
3784 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3785 && step_stop_if_no_debug)
95918acb 3786 {
414c69f7 3787 ecs->event_thread->stop_step = 1;
95918acb
AC
3788 print_stop_reason (END_STEPPING_RANGE, 0);
3789 stop_stepping (ecs);
3790 return;
3791 }
3792
b2175913
MS
3793 if (execution_direction == EXEC_REVERSE)
3794 {
3795 /* Set a breakpoint at callee's start address.
3796 From there we can step once and be back in the caller. */
3797 struct symtab_and_line sr_sal;
3798 init_sal (&sr_sal);
3799 sr_sal.pc = ecs->stop_func_start;
3800 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3801 }
3802 else
3803 /* Set a breakpoint at callee's return address (the address
3804 at which the caller will resume). */
3805 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3806
95918acb 3807 keep_going (ecs);
488f131b 3808 return;
488f131b 3809 }
c906108c 3810
488f131b
JB
3811 /* If we're in the return path from a shared library trampoline,
3812 we want to proceed through the trampoline when stepping. */
e76f05fa
UW
3813 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
3814 stop_pc, ecs->stop_func_name))
488f131b 3815 {
488f131b 3816 /* Determine where this trampoline returns. */
52f729a7
UW
3817 CORE_ADDR real_stop_pc;
3818 real_stop_pc = gdbarch_skip_trampoline_code
3819 (current_gdbarch, get_current_frame (), stop_pc);
c906108c 3820
527159b7 3821 if (debug_infrun)
8a9de0e4 3822 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 3823
488f131b 3824 /* Only proceed through if we know where it's going. */
d764a824 3825 if (real_stop_pc)
488f131b
JB
3826 {
3827 /* And put the step-breakpoint there and go until there. */
3828 struct symtab_and_line sr_sal;
3829
fe39c653 3830 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 3831 sr_sal.pc = real_stop_pc;
488f131b 3832 sr_sal.section = find_pc_overlay (sr_sal.pc);
44cbf7b5
AC
3833
3834 /* Do not specify what the fp should be when we stop since
3835 on some machines the prologue is where the new fp value
3836 is established. */
3837 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c906108c 3838
488f131b
JB
3839 /* Restart without fiddling with the step ranges or
3840 other state. */
3841 keep_going (ecs);
3842 return;
3843 }
3844 }
c906108c 3845
2afb61aa 3846 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 3847
1b2bfbb9
RC
3848 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3849 the trampoline processing logic, however, there are some trampolines
3850 that have no names, so we should do trampoline handling first. */
078130d0 3851 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 3852 && ecs->stop_func_name == NULL
2afb61aa 3853 && stop_pc_sal.line == 0)
1b2bfbb9 3854 {
527159b7 3855 if (debug_infrun)
8a9de0e4 3856 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 3857
1b2bfbb9 3858 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
3859 undebuggable function (where there is no debugging information
3860 and no line number corresponding to the address where the
1b2bfbb9
RC
3861 inferior stopped). Since we want to skip this kind of code,
3862 we keep going until the inferior returns from this
14e60db5
DJ
3863 function - unless the user has asked us not to (via
3864 set step-mode) or we no longer know how to get back
3865 to the call site. */
3866 if (step_stop_if_no_debug
eb2f4a08 3867 || !frame_id_p (frame_unwind_id (get_current_frame ())))
1b2bfbb9
RC
3868 {
3869 /* If we have no line number and the step-stop-if-no-debug
3870 is set, we stop the step so that the user has a chance to
3871 switch in assembly mode. */
414c69f7 3872 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
3873 print_stop_reason (END_STEPPING_RANGE, 0);
3874 stop_stepping (ecs);
3875 return;
3876 }
3877 else
3878 {
3879 /* Set a breakpoint at callee's return address (the address
3880 at which the caller will resume). */
14e60db5 3881 insert_step_resume_breakpoint_at_caller (get_current_frame ());
1b2bfbb9
RC
3882 keep_going (ecs);
3883 return;
3884 }
3885 }
3886
4e1c45ea 3887 if (ecs->event_thread->step_range_end == 1)
1b2bfbb9
RC
3888 {
3889 /* It is stepi or nexti. We always want to stop stepping after
3890 one instruction. */
527159b7 3891 if (debug_infrun)
8a9de0e4 3892 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
414c69f7 3893 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
3894 print_stop_reason (END_STEPPING_RANGE, 0);
3895 stop_stepping (ecs);
3896 return;
3897 }
3898
2afb61aa 3899 if (stop_pc_sal.line == 0)
488f131b
JB
3900 {
3901 /* We have no line number information. That means to stop
3902 stepping (does this always happen right after one instruction,
3903 when we do "s" in a function with no line numbers,
3904 or can this happen as a result of a return or longjmp?). */
527159b7 3905 if (debug_infrun)
8a9de0e4 3906 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
414c69f7 3907 ecs->event_thread->stop_step = 1;
488f131b
JB
3908 print_stop_reason (END_STEPPING_RANGE, 0);
3909 stop_stepping (ecs);
3910 return;
3911 }
c906108c 3912
2afb61aa 3913 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
3914 && (ecs->event_thread->current_line != stop_pc_sal.line
3915 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
3916 {
3917 /* We are at the start of a different line. So stop. Note that
3918 we don't stop if we step into the middle of a different line.
3919 That is said to make things like for (;;) statements work
3920 better. */
527159b7 3921 if (debug_infrun)
8a9de0e4 3922 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
414c69f7 3923 ecs->event_thread->stop_step = 1;
488f131b
JB
3924 print_stop_reason (END_STEPPING_RANGE, 0);
3925 stop_stepping (ecs);
3926 return;
3927 }
c906108c 3928
488f131b 3929 /* We aren't done stepping.
c906108c 3930
488f131b
JB
3931 Optimize by setting the stepping range to the line.
3932 (We might not be in the original line, but if we entered a
3933 new line in mid-statement, we continue stepping. This makes
3934 things like for(;;) statements work better.) */
c906108c 3935
4e1c45ea
PA
3936 ecs->event_thread->step_range_start = stop_pc_sal.pc;
3937 ecs->event_thread->step_range_end = stop_pc_sal.end;
3938 ecs->event_thread->step_frame_id = get_frame_id (get_current_frame ());
3939 ecs->event_thread->current_line = stop_pc_sal.line;
3940 ecs->event_thread->current_symtab = stop_pc_sal.symtab;
488f131b 3941
527159b7 3942 if (debug_infrun)
8a9de0e4 3943 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 3944 keep_going (ecs);
104c1213
JM
3945}
3946
b3444185 3947/* Is thread TP in the middle of single-stepping? */
104c1213 3948
a7212384 3949static int
b3444185 3950currently_stepping (struct thread_info *tp)
a7212384 3951{
b3444185
PA
3952 return ((tp->step_range_end && tp->step_resume_breakpoint == NULL)
3953 || tp->trap_expected
3954 || tp->stepping_through_solib_after_catch
3955 || bpstat_should_step ());
a7212384
UW
3956}
3957
b3444185
PA
3958/* Returns true if any thread *but* the one passed in "data" is in the
3959 middle of stepping or of handling a "next". */
a7212384 3960
104c1213 3961static int
b3444185 3962currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 3963{
b3444185
PA
3964 if (tp == data)
3965 return 0;
3966
3967 return (tp->step_range_end
3968 || tp->trap_expected
3969 || tp->stepping_through_solib_after_catch);
104c1213 3970}
c906108c 3971
b2175913
MS
3972/* Inferior has stepped into a subroutine call with source code that
3973 we should not step over. Do step to the first line of code in
3974 it. */
c2c6d25f
JM
3975
3976static void
b2175913 3977handle_step_into_function (struct execution_control_state *ecs)
c2c6d25f
JM
3978{
3979 struct symtab *s;
2afb61aa 3980 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f
JM
3981
3982 s = find_pc_symtab (stop_pc);
3983 if (s && s->language != language_asm)
b2175913
MS
3984 ecs->stop_func_start = gdbarch_skip_prologue (current_gdbarch,
3985 ecs->stop_func_start);
c2c6d25f 3986
2afb61aa 3987 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
3988 /* Use the step_resume_break to step until the end of the prologue,
3989 even if that involves jumps (as it seems to on the vax under
3990 4.2). */
3991 /* If the prologue ends in the middle of a source line, continue to
3992 the end of that source line (if it is still within the function).
3993 Otherwise, just go to end of prologue. */
2afb61aa
PA
3994 if (stop_func_sal.end
3995 && stop_func_sal.pc != ecs->stop_func_start
3996 && stop_func_sal.end < ecs->stop_func_end)
3997 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 3998
2dbd5e30
KB
3999 /* Architectures which require breakpoint adjustment might not be able
4000 to place a breakpoint at the computed address. If so, the test
4001 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
4002 ecs->stop_func_start to an address at which a breakpoint may be
4003 legitimately placed.
8fb3e588 4004
2dbd5e30
KB
4005 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
4006 made, GDB will enter an infinite loop when stepping through
4007 optimized code consisting of VLIW instructions which contain
4008 subinstructions corresponding to different source lines. On
4009 FR-V, it's not permitted to place a breakpoint on any but the
4010 first subinstruction of a VLIW instruction. When a breakpoint is
4011 set, GDB will adjust the breakpoint address to the beginning of
4012 the VLIW instruction. Thus, we need to make the corresponding
4013 adjustment here when computing the stop address. */
8fb3e588 4014
2dbd5e30
KB
4015 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
4016 {
4017 ecs->stop_func_start
4018 = gdbarch_adjust_breakpoint_address (current_gdbarch,
8fb3e588 4019 ecs->stop_func_start);
2dbd5e30
KB
4020 }
4021
c2c6d25f
JM
4022 if (ecs->stop_func_start == stop_pc)
4023 {
4024 /* We are already there: stop now. */
414c69f7 4025 ecs->event_thread->stop_step = 1;
488f131b 4026 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
4027 stop_stepping (ecs);
4028 return;
4029 }
4030 else
4031 {
4032 /* Put the step-breakpoint there and go until there. */
fe39c653 4033 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
4034 sr_sal.pc = ecs->stop_func_start;
4035 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
44cbf7b5 4036
c2c6d25f 4037 /* Do not specify what the fp should be when we stop since on
488f131b
JB
4038 some machines the prologue is where the new fp value is
4039 established. */
44cbf7b5 4040 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c2c6d25f
JM
4041
4042 /* And make sure stepping stops right away then. */
4e1c45ea 4043 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
c2c6d25f
JM
4044 }
4045 keep_going (ecs);
4046}
d4f3574e 4047
b2175913
MS
4048/* Inferior has stepped backward into a subroutine call with source
4049 code that we should not step over. Do step to the beginning of the
4050 last line of code in it. */
4051
4052static void
4053handle_step_into_function_backward (struct execution_control_state *ecs)
4054{
4055 struct symtab *s;
4056 struct symtab_and_line stop_func_sal, sr_sal;
4057
4058 s = find_pc_symtab (stop_pc);
4059 if (s && s->language != language_asm)
4060 ecs->stop_func_start = gdbarch_skip_prologue (current_gdbarch,
4061 ecs->stop_func_start);
4062
4063 stop_func_sal = find_pc_line (stop_pc, 0);
4064
4065 /* OK, we're just going to keep stepping here. */
4066 if (stop_func_sal.pc == stop_pc)
4067 {
4068 /* We're there already. Just stop stepping now. */
4069 ecs->event_thread->stop_step = 1;
4070 print_stop_reason (END_STEPPING_RANGE, 0);
4071 stop_stepping (ecs);
4072 }
4073 else
4074 {
4075 /* Else just reset the step range and keep going.
4076 No step-resume breakpoint, they don't work for
4077 epilogues, which can have multiple entry paths. */
4078 ecs->event_thread->step_range_start = stop_func_sal.pc;
4079 ecs->event_thread->step_range_end = stop_func_sal.end;
4080 keep_going (ecs);
4081 }
4082 return;
4083}
4084
d3169d93 4085/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
4086 This is used to both functions and to skip over code. */
4087
4088static void
4089insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
4090 struct frame_id sr_id)
4091{
611c83ae
PA
4092 /* There should never be more than one step-resume or longjmp-resume
4093 breakpoint per thread, so we should never be setting a new
44cbf7b5 4094 step_resume_breakpoint when one is already active. */
4e1c45ea 4095 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
d3169d93
DJ
4096
4097 if (debug_infrun)
4098 fprintf_unfiltered (gdb_stdlog,
4099 "infrun: inserting step-resume breakpoint at 0x%s\n",
4100 paddr_nz (sr_sal.pc));
4101
4e1c45ea
PA
4102 inferior_thread ()->step_resume_breakpoint
4103 = set_momentary_breakpoint (sr_sal, sr_id, bp_step_resume);
44cbf7b5 4104}
7ce450bd 4105
d3169d93 4106/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
14e60db5 4107 to skip a potential signal handler.
7ce450bd 4108
14e60db5
DJ
4109 This is called with the interrupted function's frame. The signal
4110 handler, when it returns, will resume the interrupted function at
4111 RETURN_FRAME.pc. */
d303a6c7
AC
4112
4113static void
44cbf7b5 4114insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
4115{
4116 struct symtab_and_line sr_sal;
4117
f4c1edd8 4118 gdb_assert (return_frame != NULL);
d303a6c7
AC
4119 init_sal (&sr_sal); /* initialize to zeros */
4120
bf6ae464
UW
4121 sr_sal.pc = gdbarch_addr_bits_remove
4122 (current_gdbarch, get_frame_pc (return_frame));
d303a6c7
AC
4123 sr_sal.section = find_pc_overlay (sr_sal.pc);
4124
44cbf7b5 4125 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
d303a6c7
AC
4126}
4127
14e60db5
DJ
4128/* Similar to insert_step_resume_breakpoint_at_frame, except
4129 but a breakpoint at the previous frame's PC. This is used to
4130 skip a function after stepping into it (for "next" or if the called
4131 function has no debugging information).
4132
4133 The current function has almost always been reached by single
4134 stepping a call or return instruction. NEXT_FRAME belongs to the
4135 current function, and the breakpoint will be set at the caller's
4136 resume address.
4137
4138 This is a separate function rather than reusing
4139 insert_step_resume_breakpoint_at_frame in order to avoid
4140 get_prev_frame, which may stop prematurely (see the implementation
eb2f4a08 4141 of frame_unwind_id for an example). */
14e60db5
DJ
4142
4143static void
4144insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
4145{
4146 struct symtab_and_line sr_sal;
4147
4148 /* We shouldn't have gotten here if we don't know where the call site
4149 is. */
eb2f4a08 4150 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
14e60db5
DJ
4151
4152 init_sal (&sr_sal); /* initialize to zeros */
4153
bf6ae464 4154 sr_sal.pc = gdbarch_addr_bits_remove
eb2f4a08 4155 (current_gdbarch, frame_pc_unwind (next_frame));
14e60db5
DJ
4156 sr_sal.section = find_pc_overlay (sr_sal.pc);
4157
eb2f4a08 4158 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
14e60db5
DJ
4159}
4160
611c83ae
PA
4161/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
4162 new breakpoint at the target of a jmp_buf. The handling of
4163 longjmp-resume uses the same mechanisms used for handling
4164 "step-resume" breakpoints. */
4165
4166static void
4167insert_longjmp_resume_breakpoint (CORE_ADDR pc)
4168{
4169 /* There should never be more than one step-resume or longjmp-resume
4170 breakpoint per thread, so we should never be setting a new
4171 longjmp_resume_breakpoint when one is already active. */
4e1c45ea 4172 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
611c83ae
PA
4173
4174 if (debug_infrun)
4175 fprintf_unfiltered (gdb_stdlog,
4176 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
4177 paddr_nz (pc));
4178
4e1c45ea 4179 inferior_thread ()->step_resume_breakpoint =
611c83ae
PA
4180 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
4181}
4182
104c1213
JM
4183static void
4184stop_stepping (struct execution_control_state *ecs)
4185{
527159b7 4186 if (debug_infrun)
8a9de0e4 4187 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 4188
cd0fc7c3
SS
4189 /* Let callers know we don't want to wait for the inferior anymore. */
4190 ecs->wait_some_more = 0;
4191}
4192
d4f3574e
SS
4193/* This function handles various cases where we need to continue
4194 waiting for the inferior. */
4195/* (Used to be the keep_going: label in the old wait_for_inferior) */
4196
4197static void
4198keep_going (struct execution_control_state *ecs)
4199{
d4f3574e 4200 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
4201 ecs->event_thread->prev_pc
4202 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 4203
d4f3574e
SS
4204 /* If we did not do break;, it means we should keep running the
4205 inferior and not return to debugger. */
4206
2020b7ab
PA
4207 if (ecs->event_thread->trap_expected
4208 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
4209 {
4210 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
4211 the inferior, else we'd not get here) and we haven't yet
4212 gotten our trap. Simply continue. */
2020b7ab
PA
4213 resume (currently_stepping (ecs->event_thread),
4214 ecs->event_thread->stop_signal);
d4f3574e
SS
4215 }
4216 else
4217 {
4218 /* Either the trap was not expected, but we are continuing
488f131b
JB
4219 anyway (the user asked that this signal be passed to the
4220 child)
4221 -- or --
4222 The signal was SIGTRAP, e.g. it was our signal, but we
4223 decided we should resume from it.
d4f3574e 4224
c36b740a 4225 We're going to run this baby now!
d4f3574e 4226
c36b740a
VP
4227 Note that insert_breakpoints won't try to re-insert
4228 already inserted breakpoints. Therefore, we don't
4229 care if breakpoints were already inserted, or not. */
4230
4e1c45ea 4231 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 4232 {
237fc4c9
PA
4233 if (! use_displaced_stepping (current_gdbarch))
4234 /* Since we can't do a displaced step, we have to remove
4235 the breakpoint while we step it. To keep things
4236 simple, we remove them all. */
4237 remove_breakpoints ();
45e8c884
VP
4238 }
4239 else
d4f3574e 4240 {
e236ba44 4241 struct gdb_exception e;
569631c6
UW
4242 /* Stop stepping when inserting breakpoints
4243 has failed. */
e236ba44
VP
4244 TRY_CATCH (e, RETURN_MASK_ERROR)
4245 {
4246 insert_breakpoints ();
4247 }
4248 if (e.reason < 0)
d4f3574e
SS
4249 {
4250 stop_stepping (ecs);
4251 return;
4252 }
d4f3574e
SS
4253 }
4254
4e1c45ea 4255 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
4256
4257 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
4258 specifies that such a signal should be delivered to the
4259 target program).
4260
4261 Typically, this would occure when a user is debugging a
4262 target monitor on a simulator: the target monitor sets a
4263 breakpoint; the simulator encounters this break-point and
4264 halts the simulation handing control to GDB; GDB, noteing
4265 that the break-point isn't valid, returns control back to the
4266 simulator; the simulator then delivers the hardware
4267 equivalent of a SIGNAL_TRAP to the program being debugged. */
4268
2020b7ab
PA
4269 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4270 && !signal_program[ecs->event_thread->stop_signal])
4271 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
d4f3574e 4272
2020b7ab
PA
4273 resume (currently_stepping (ecs->event_thread),
4274 ecs->event_thread->stop_signal);
d4f3574e
SS
4275 }
4276
488f131b 4277 prepare_to_wait (ecs);
d4f3574e
SS
4278}
4279
104c1213
JM
4280/* This function normally comes after a resume, before
4281 handle_inferior_event exits. It takes care of any last bits of
4282 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 4283
104c1213
JM
4284static void
4285prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 4286{
527159b7 4287 if (debug_infrun)
8a9de0e4 4288 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
0d1e5fa7 4289 if (infwait_state == infwait_normal_state)
104c1213
JM
4290 {
4291 overlay_cache_invalid = 1;
4292
4293 /* We have to invalidate the registers BEFORE calling
488f131b
JB
4294 target_wait because they can be loaded from the target while
4295 in target_wait. This makes remote debugging a bit more
4296 efficient for those targets that provide critical registers
4297 as part of their normal status mechanism. */
104c1213
JM
4298
4299 registers_changed ();
0d1e5fa7 4300 waiton_ptid = pid_to_ptid (-1);
104c1213
JM
4301 }
4302 /* This is the old end of the while loop. Let everybody know we
4303 want to wait for the inferior some more and get called again
4304 soon. */
4305 ecs->wait_some_more = 1;
c906108c 4306}
11cf8741
JM
4307
4308/* Print why the inferior has stopped. We always print something when
4309 the inferior exits, or receives a signal. The rest of the cases are
4310 dealt with later on in normal_stop() and print_it_typical(). Ideally
4311 there should be a call to this function from handle_inferior_event()
4312 each time stop_stepping() is called.*/
4313static void
4314print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
4315{
4316 switch (stop_reason)
4317 {
11cf8741
JM
4318 case END_STEPPING_RANGE:
4319 /* We are done with a step/next/si/ni command. */
4320 /* For now print nothing. */
fb40c209 4321 /* Print a message only if not in the middle of doing a "step n"
488f131b 4322 operation for n > 1 */
414c69f7
PA
4323 if (!inferior_thread ()->step_multi
4324 || !inferior_thread ()->stop_step)
9dc5e2a9 4325 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4326 ui_out_field_string
4327 (uiout, "reason",
4328 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
11cf8741 4329 break;
11cf8741
JM
4330 case SIGNAL_EXITED:
4331 /* The inferior was terminated by a signal. */
8b93c638 4332 annotate_signalled ();
9dc5e2a9 4333 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4334 ui_out_field_string
4335 (uiout, "reason",
4336 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8b93c638
JM
4337 ui_out_text (uiout, "\nProgram terminated with signal ");
4338 annotate_signal_name ();
488f131b
JB
4339 ui_out_field_string (uiout, "signal-name",
4340 target_signal_to_name (stop_info));
8b93c638
JM
4341 annotate_signal_name_end ();
4342 ui_out_text (uiout, ", ");
4343 annotate_signal_string ();
488f131b
JB
4344 ui_out_field_string (uiout, "signal-meaning",
4345 target_signal_to_string (stop_info));
8b93c638
JM
4346 annotate_signal_string_end ();
4347 ui_out_text (uiout, ".\n");
4348 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
4349 break;
4350 case EXITED:
4351 /* The inferior program is finished. */
8b93c638
JM
4352 annotate_exited (stop_info);
4353 if (stop_info)
4354 {
9dc5e2a9 4355 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4356 ui_out_field_string (uiout, "reason",
4357 async_reason_lookup (EXEC_ASYNC_EXITED));
8b93c638 4358 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
4359 ui_out_field_fmt (uiout, "exit-code", "0%o",
4360 (unsigned int) stop_info);
8b93c638
JM
4361 ui_out_text (uiout, ".\n");
4362 }
4363 else
4364 {
9dc5e2a9 4365 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4366 ui_out_field_string
4367 (uiout, "reason",
4368 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8b93c638
JM
4369 ui_out_text (uiout, "\nProgram exited normally.\n");
4370 }
f17517ea
AS
4371 /* Support the --return-child-result option. */
4372 return_child_result_value = stop_info;
11cf8741
JM
4373 break;
4374 case SIGNAL_RECEIVED:
252fbfc8
PA
4375 /* Signal received. The signal table tells us to print about
4376 it. */
8b93c638 4377 annotate_signal ();
252fbfc8
PA
4378
4379 if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
4380 {
4381 struct thread_info *t = inferior_thread ();
4382
4383 ui_out_text (uiout, "\n[");
4384 ui_out_field_string (uiout, "thread-name",
4385 target_pid_to_str (t->ptid));
4386 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
4387 ui_out_text (uiout, " stopped");
4388 }
4389 else
4390 {
4391 ui_out_text (uiout, "\nProgram received signal ");
4392 annotate_signal_name ();
4393 if (ui_out_is_mi_like_p (uiout))
4394 ui_out_field_string
4395 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
4396 ui_out_field_string (uiout, "signal-name",
4397 target_signal_to_name (stop_info));
4398 annotate_signal_name_end ();
4399 ui_out_text (uiout, ", ");
4400 annotate_signal_string ();
4401 ui_out_field_string (uiout, "signal-meaning",
4402 target_signal_to_string (stop_info));
4403 annotate_signal_string_end ();
4404 }
8b93c638 4405 ui_out_text (uiout, ".\n");
11cf8741 4406 break;
b2175913
MS
4407 case NO_HISTORY:
4408 /* Reverse execution: target ran out of history info. */
4409 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
4410 break;
11cf8741 4411 default:
8e65ff28 4412 internal_error (__FILE__, __LINE__,
e2e0b3e5 4413 _("print_stop_reason: unrecognized enum value"));
11cf8741
JM
4414 break;
4415 }
4416}
c906108c 4417\f
43ff13b4 4418
c906108c
SS
4419/* Here to return control to GDB when the inferior stops for real.
4420 Print appropriate messages, remove breakpoints, give terminal our modes.
4421
4422 STOP_PRINT_FRAME nonzero means print the executing frame
4423 (pc, function, args, file, line number and line text).
4424 BREAKPOINTS_FAILED nonzero means stop was due to error
4425 attempting to insert breakpoints. */
4426
4427void
96baa820 4428normal_stop (void)
c906108c 4429{
73b65bb0
DJ
4430 struct target_waitstatus last;
4431 ptid_t last_ptid;
29f49a6a 4432 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
4433
4434 get_last_target_status (&last_ptid, &last);
4435
29f49a6a
PA
4436 /* If an exception is thrown from this point on, make sure to
4437 propagate GDB's knowledge of the executing state to the
4438 frontend/user running state. A QUIT is an easy exception to see
4439 here, so do this before any filtered output. */
c35b1492
PA
4440 if (!non_stop)
4441 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
4442 else if (last.kind != TARGET_WAITKIND_SIGNALLED
4443 && last.kind != TARGET_WAITKIND_EXITED)
4444 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 4445
4f8d22e3
PA
4446 /* In non-stop mode, we don't want GDB to switch threads behind the
4447 user's back, to avoid races where the user is typing a command to
4448 apply to thread x, but GDB switches to thread y before the user
4449 finishes entering the command. */
4450
c906108c
SS
4451 /* As with the notification of thread events, we want to delay
4452 notifying the user that we've switched thread context until
4453 the inferior actually stops.
4454
73b65bb0
DJ
4455 There's no point in saying anything if the inferior has exited.
4456 Note that SIGNALLED here means "exited with a signal", not
4457 "received a signal". */
4f8d22e3
PA
4458 if (!non_stop
4459 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
4460 && target_has_execution
4461 && last.kind != TARGET_WAITKIND_SIGNALLED
4462 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
4463 {
4464 target_terminal_ours_for_output ();
a3f17187 4465 printf_filtered (_("[Switching to %s]\n"),
c95310c6 4466 target_pid_to_str (inferior_ptid));
b8fa951a 4467 annotate_thread_changed ();
39f77062 4468 previous_inferior_ptid = inferior_ptid;
c906108c 4469 }
c906108c 4470
74960c60 4471 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
4472 {
4473 if (remove_breakpoints ())
4474 {
4475 target_terminal_ours_for_output ();
a3f17187
AC
4476 printf_filtered (_("\
4477Cannot remove breakpoints because program is no longer writable.\n\
a3f17187 4478Further execution is probably impossible.\n"));
c906108c
SS
4479 }
4480 }
c906108c 4481
c906108c
SS
4482 /* If an auto-display called a function and that got a signal,
4483 delete that auto-display to avoid an infinite recursion. */
4484
4485 if (stopped_by_random_signal)
4486 disable_current_display ();
4487
4488 /* Don't print a message if in the middle of doing a "step n"
4489 operation for n > 1 */
af679fd0
PA
4490 if (target_has_execution
4491 && last.kind != TARGET_WAITKIND_SIGNALLED
4492 && last.kind != TARGET_WAITKIND_EXITED
4493 && inferior_thread ()->step_multi
414c69f7 4494 && inferior_thread ()->stop_step)
c906108c
SS
4495 goto done;
4496
4497 target_terminal_ours ();
4498
7abfe014
DJ
4499 /* Set the current source location. This will also happen if we
4500 display the frame below, but the current SAL will be incorrect
4501 during a user hook-stop function. */
d729566a 4502 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
4503 set_current_sal_from_frame (get_current_frame (), 1);
4504
dd7e2d2b
PA
4505 /* Let the user/frontend see the threads as stopped. */
4506 do_cleanups (old_chain);
4507
4508 /* Look up the hook_stop and run it (CLI internally handles problem
4509 of stop_command's pre-hook not existing). */
4510 if (stop_command)
4511 catch_errors (hook_stop_stub, stop_command,
4512 "Error while running hook_stop:\n", RETURN_MASK_ALL);
4513
d729566a 4514 if (!has_stack_frames ())
d51fd4c8 4515 goto done;
c906108c 4516
32400beb
PA
4517 if (last.kind == TARGET_WAITKIND_SIGNALLED
4518 || last.kind == TARGET_WAITKIND_EXITED)
4519 goto done;
4520
c906108c
SS
4521 /* Select innermost stack frame - i.e., current frame is frame 0,
4522 and current location is based on that.
4523 Don't do this on return from a stack dummy routine,
4524 or if the program has exited. */
4525
4526 if (!stop_stack_dummy)
4527 {
0f7d239c 4528 select_frame (get_current_frame ());
c906108c
SS
4529
4530 /* Print current location without a level number, if
c5aa993b
JM
4531 we have changed functions or hit a breakpoint.
4532 Print source line if we have one.
4533 bpstat_print() contains the logic deciding in detail
4534 what to print, based on the event(s) that just occurred. */
c906108c 4535
d01a8610
AS
4536 /* If --batch-silent is enabled then there's no need to print the current
4537 source location, and to try risks causing an error message about
4538 missing source files. */
4539 if (stop_print_frame && !batch_silent)
c906108c
SS
4540 {
4541 int bpstat_ret;
4542 int source_flag;
917317f4 4543 int do_frame_printing = 1;
347bddb7 4544 struct thread_info *tp = inferior_thread ();
c906108c 4545
347bddb7 4546 bpstat_ret = bpstat_print (tp->stop_bpstat);
917317f4
JM
4547 switch (bpstat_ret)
4548 {
4549 case PRINT_UNKNOWN:
b0f4b84b
DJ
4550 /* If we had hit a shared library event breakpoint,
4551 bpstat_print would print out this message. If we hit
4552 an OS-level shared library event, do the same
4553 thing. */
4554 if (last.kind == TARGET_WAITKIND_LOADED)
4555 {
4556 printf_filtered (_("Stopped due to shared library event\n"));
4557 source_flag = SRC_LINE; /* something bogus */
4558 do_frame_printing = 0;
4559 break;
4560 }
4561
aa0cd9c1 4562 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
4563 (or should) carry around the function and does (or
4564 should) use that when doing a frame comparison. */
414c69f7 4565 if (tp->stop_step
347bddb7 4566 && frame_id_eq (tp->step_frame_id,
aa0cd9c1 4567 get_frame_id (get_current_frame ()))
917317f4 4568 && step_start_function == find_pc_function (stop_pc))
488f131b 4569 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 4570 else
488f131b 4571 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
4572 break;
4573 case PRINT_SRC_AND_LOC:
488f131b 4574 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
4575 break;
4576 case PRINT_SRC_ONLY:
c5394b80 4577 source_flag = SRC_LINE;
917317f4
JM
4578 break;
4579 case PRINT_NOTHING:
488f131b 4580 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
4581 do_frame_printing = 0;
4582 break;
4583 default:
e2e0b3e5 4584 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 4585 }
c906108c
SS
4586
4587 /* The behavior of this routine with respect to the source
4588 flag is:
c5394b80
JM
4589 SRC_LINE: Print only source line
4590 LOCATION: Print only location
4591 SRC_AND_LOC: Print location and source line */
917317f4 4592 if (do_frame_printing)
b04f3ab4 4593 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
4594
4595 /* Display the auto-display expressions. */
4596 do_displays ();
4597 }
4598 }
4599
4600 /* Save the function value return registers, if we care.
4601 We might be about to restore their previous contents. */
32400beb 4602 if (inferior_thread ()->proceed_to_finish)
d5c31457
UW
4603 {
4604 /* This should not be necessary. */
4605 if (stop_registers)
4606 regcache_xfree (stop_registers);
4607
4608 /* NB: The copy goes through to the target picking up the value of
4609 all the registers. */
4610 stop_registers = regcache_dup (get_current_regcache ());
4611 }
c906108c
SS
4612
4613 if (stop_stack_dummy)
4614 {
b89667eb
DE
4615 /* Pop the empty frame that contains the stack dummy.
4616 This also restores inferior state prior to the call
4617 (struct inferior_thread_state). */
4618 struct frame_info *frame = get_current_frame ();
4619 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
4620 frame_pop (frame);
4621 /* frame_pop() calls reinit_frame_cache as the last thing it does
4622 which means there's currently no selected frame. We don't need
4623 to re-establish a selected frame if the dummy call returns normally,
4624 that will be done by restore_inferior_status. However, we do have
4625 to handle the case where the dummy call is returning after being
4626 stopped (e.g. the dummy call previously hit a breakpoint). We
4627 can't know which case we have so just always re-establish a
4628 selected frame here. */
0f7d239c 4629 select_frame (get_current_frame ());
c906108c
SS
4630 }
4631
c906108c
SS
4632done:
4633 annotate_stopped ();
41d2bdb4
PA
4634
4635 /* Suppress the stop observer if we're in the middle of:
4636
4637 - a step n (n > 1), as there still more steps to be done.
4638
4639 - a "finish" command, as the observer will be called in
4640 finish_command_continuation, so it can include the inferior
4641 function's return value.
4642
4643 - calling an inferior function, as we pretend we inferior didn't
4644 run at all. The return value of the call is handled by the
4645 expression evaluator, through call_function_by_hand. */
4646
4647 if (!target_has_execution
4648 || last.kind == TARGET_WAITKIND_SIGNALLED
4649 || last.kind == TARGET_WAITKIND_EXITED
4650 || (!inferior_thread ()->step_multi
4651 && !(inferior_thread ()->stop_bpstat
c5a4d20b
PA
4652 && inferior_thread ()->proceed_to_finish)
4653 && !inferior_thread ()->in_infcall))
347bddb7
PA
4654 {
4655 if (!ptid_equal (inferior_ptid, null_ptid))
1d33d6ba
VP
4656 observer_notify_normal_stop (inferior_thread ()->stop_bpstat,
4657 stop_print_frame);
347bddb7 4658 else
1d33d6ba 4659 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 4660 }
347bddb7 4661
48844aa6
PA
4662 if (target_has_execution)
4663 {
4664 if (last.kind != TARGET_WAITKIND_SIGNALLED
4665 && last.kind != TARGET_WAITKIND_EXITED)
4666 /* Delete the breakpoint we stopped at, if it wants to be deleted.
4667 Delete any breakpoint that is to be deleted at the next stop. */
4668 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
94cc34af 4669 }
c906108c
SS
4670}
4671
4672static int
96baa820 4673hook_stop_stub (void *cmd)
c906108c 4674{
5913bcb0 4675 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
4676 return (0);
4677}
4678\f
c5aa993b 4679int
96baa820 4680signal_stop_state (int signo)
c906108c 4681{
d6b48e9c 4682 return signal_stop[signo];
c906108c
SS
4683}
4684
c5aa993b 4685int
96baa820 4686signal_print_state (int signo)
c906108c
SS
4687{
4688 return signal_print[signo];
4689}
4690
c5aa993b 4691int
96baa820 4692signal_pass_state (int signo)
c906108c
SS
4693{
4694 return signal_program[signo];
4695}
4696
488f131b 4697int
7bda5e4a 4698signal_stop_update (int signo, int state)
d4f3574e
SS
4699{
4700 int ret = signal_stop[signo];
4701 signal_stop[signo] = state;
4702 return ret;
4703}
4704
488f131b 4705int
7bda5e4a 4706signal_print_update (int signo, int state)
d4f3574e
SS
4707{
4708 int ret = signal_print[signo];
4709 signal_print[signo] = state;
4710 return ret;
4711}
4712
488f131b 4713int
7bda5e4a 4714signal_pass_update (int signo, int state)
d4f3574e
SS
4715{
4716 int ret = signal_program[signo];
4717 signal_program[signo] = state;
4718 return ret;
4719}
4720
c906108c 4721static void
96baa820 4722sig_print_header (void)
c906108c 4723{
a3f17187
AC
4724 printf_filtered (_("\
4725Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
4726}
4727
4728static void
96baa820 4729sig_print_info (enum target_signal oursig)
c906108c 4730{
54363045 4731 const char *name = target_signal_to_name (oursig);
c906108c 4732 int name_padding = 13 - strlen (name);
96baa820 4733
c906108c
SS
4734 if (name_padding <= 0)
4735 name_padding = 0;
4736
4737 printf_filtered ("%s", name);
488f131b 4738 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
4739 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4740 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4741 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4742 printf_filtered ("%s\n", target_signal_to_string (oursig));
4743}
4744
4745/* Specify how various signals in the inferior should be handled. */
4746
4747static void
96baa820 4748handle_command (char *args, int from_tty)
c906108c
SS
4749{
4750 char **argv;
4751 int digits, wordlen;
4752 int sigfirst, signum, siglast;
4753 enum target_signal oursig;
4754 int allsigs;
4755 int nsigs;
4756 unsigned char *sigs;
4757 struct cleanup *old_chain;
4758
4759 if (args == NULL)
4760 {
e2e0b3e5 4761 error_no_arg (_("signal to handle"));
c906108c
SS
4762 }
4763
4764 /* Allocate and zero an array of flags for which signals to handle. */
4765
4766 nsigs = (int) TARGET_SIGNAL_LAST;
4767 sigs = (unsigned char *) alloca (nsigs);
4768 memset (sigs, 0, nsigs);
4769
4770 /* Break the command line up into args. */
4771
d1a41061 4772 argv = gdb_buildargv (args);
7a292a7a 4773 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
4774
4775 /* Walk through the args, looking for signal oursigs, signal names, and
4776 actions. Signal numbers and signal names may be interspersed with
4777 actions, with the actions being performed for all signals cumulatively
4778 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
4779
4780 while (*argv != NULL)
4781 {
4782 wordlen = strlen (*argv);
4783 for (digits = 0; isdigit ((*argv)[digits]); digits++)
4784 {;
4785 }
4786 allsigs = 0;
4787 sigfirst = siglast = -1;
4788
4789 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
4790 {
4791 /* Apply action to all signals except those used by the
4792 debugger. Silently skip those. */
4793 allsigs = 1;
4794 sigfirst = 0;
4795 siglast = nsigs - 1;
4796 }
4797 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
4798 {
4799 SET_SIGS (nsigs, sigs, signal_stop);
4800 SET_SIGS (nsigs, sigs, signal_print);
4801 }
4802 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
4803 {
4804 UNSET_SIGS (nsigs, sigs, signal_program);
4805 }
4806 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
4807 {
4808 SET_SIGS (nsigs, sigs, signal_print);
4809 }
4810 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
4811 {
4812 SET_SIGS (nsigs, sigs, signal_program);
4813 }
4814 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
4815 {
4816 UNSET_SIGS (nsigs, sigs, signal_stop);
4817 }
4818 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
4819 {
4820 SET_SIGS (nsigs, sigs, signal_program);
4821 }
4822 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
4823 {
4824 UNSET_SIGS (nsigs, sigs, signal_print);
4825 UNSET_SIGS (nsigs, sigs, signal_stop);
4826 }
4827 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
4828 {
4829 UNSET_SIGS (nsigs, sigs, signal_program);
4830 }
4831 else if (digits > 0)
4832 {
4833 /* It is numeric. The numeric signal refers to our own
4834 internal signal numbering from target.h, not to host/target
4835 signal number. This is a feature; users really should be
4836 using symbolic names anyway, and the common ones like
4837 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
4838
4839 sigfirst = siglast = (int)
4840 target_signal_from_command (atoi (*argv));
4841 if ((*argv)[digits] == '-')
4842 {
4843 siglast = (int)
4844 target_signal_from_command (atoi ((*argv) + digits + 1));
4845 }
4846 if (sigfirst > siglast)
4847 {
4848 /* Bet he didn't figure we'd think of this case... */
4849 signum = sigfirst;
4850 sigfirst = siglast;
4851 siglast = signum;
4852 }
4853 }
4854 else
4855 {
4856 oursig = target_signal_from_name (*argv);
4857 if (oursig != TARGET_SIGNAL_UNKNOWN)
4858 {
4859 sigfirst = siglast = (int) oursig;
4860 }
4861 else
4862 {
4863 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 4864 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
4865 }
4866 }
4867
4868 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 4869 which signals to apply actions to. */
c906108c
SS
4870
4871 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
4872 {
4873 switch ((enum target_signal) signum)
4874 {
4875 case TARGET_SIGNAL_TRAP:
4876 case TARGET_SIGNAL_INT:
4877 if (!allsigs && !sigs[signum])
4878 {
9e2f0ad4
HZ
4879 if (query (_("%s is used by the debugger.\n\
4880Are you sure you want to change it? "), target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
4881 {
4882 sigs[signum] = 1;
4883 }
4884 else
4885 {
a3f17187 4886 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
4887 gdb_flush (gdb_stdout);
4888 }
4889 }
4890 break;
4891 case TARGET_SIGNAL_0:
4892 case TARGET_SIGNAL_DEFAULT:
4893 case TARGET_SIGNAL_UNKNOWN:
4894 /* Make sure that "all" doesn't print these. */
4895 break;
4896 default:
4897 sigs[signum] = 1;
4898 break;
4899 }
4900 }
4901
4902 argv++;
4903 }
4904
3a031f65
PA
4905 for (signum = 0; signum < nsigs; signum++)
4906 if (sigs[signum])
4907 {
4908 target_notice_signals (inferior_ptid);
c906108c 4909
3a031f65
PA
4910 if (from_tty)
4911 {
4912 /* Show the results. */
4913 sig_print_header ();
4914 for (; signum < nsigs; signum++)
4915 if (sigs[signum])
4916 sig_print_info (signum);
4917 }
4918
4919 break;
4920 }
c906108c
SS
4921
4922 do_cleanups (old_chain);
4923}
4924
4925static void
96baa820 4926xdb_handle_command (char *args, int from_tty)
c906108c
SS
4927{
4928 char **argv;
4929 struct cleanup *old_chain;
4930
d1a41061
PP
4931 if (args == NULL)
4932 error_no_arg (_("xdb command"));
4933
c906108c
SS
4934 /* Break the command line up into args. */
4935
d1a41061 4936 argv = gdb_buildargv (args);
7a292a7a 4937 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
4938 if (argv[1] != (char *) NULL)
4939 {
4940 char *argBuf;
4941 int bufLen;
4942
4943 bufLen = strlen (argv[0]) + 20;
4944 argBuf = (char *) xmalloc (bufLen);
4945 if (argBuf)
4946 {
4947 int validFlag = 1;
4948 enum target_signal oursig;
4949
4950 oursig = target_signal_from_name (argv[0]);
4951 memset (argBuf, 0, bufLen);
4952 if (strcmp (argv[1], "Q") == 0)
4953 sprintf (argBuf, "%s %s", argv[0], "noprint");
4954 else
4955 {
4956 if (strcmp (argv[1], "s") == 0)
4957 {
4958 if (!signal_stop[oursig])
4959 sprintf (argBuf, "%s %s", argv[0], "stop");
4960 else
4961 sprintf (argBuf, "%s %s", argv[0], "nostop");
4962 }
4963 else if (strcmp (argv[1], "i") == 0)
4964 {
4965 if (!signal_program[oursig])
4966 sprintf (argBuf, "%s %s", argv[0], "pass");
4967 else
4968 sprintf (argBuf, "%s %s", argv[0], "nopass");
4969 }
4970 else if (strcmp (argv[1], "r") == 0)
4971 {
4972 if (!signal_print[oursig])
4973 sprintf (argBuf, "%s %s", argv[0], "print");
4974 else
4975 sprintf (argBuf, "%s %s", argv[0], "noprint");
4976 }
4977 else
4978 validFlag = 0;
4979 }
4980 if (validFlag)
4981 handle_command (argBuf, from_tty);
4982 else
a3f17187 4983 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 4984 if (argBuf)
b8c9b27d 4985 xfree (argBuf);
c906108c
SS
4986 }
4987 }
4988 do_cleanups (old_chain);
4989}
4990
4991/* Print current contents of the tables set by the handle command.
4992 It is possible we should just be printing signals actually used
4993 by the current target (but for things to work right when switching
4994 targets, all signals should be in the signal tables). */
4995
4996static void
96baa820 4997signals_info (char *signum_exp, int from_tty)
c906108c
SS
4998{
4999 enum target_signal oursig;
5000 sig_print_header ();
5001
5002 if (signum_exp)
5003 {
5004 /* First see if this is a symbol name. */
5005 oursig = target_signal_from_name (signum_exp);
5006 if (oursig == TARGET_SIGNAL_UNKNOWN)
5007 {
5008 /* No, try numeric. */
5009 oursig =
bb518678 5010 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
5011 }
5012 sig_print_info (oursig);
5013 return;
5014 }
5015
5016 printf_filtered ("\n");
5017 /* These ugly casts brought to you by the native VAX compiler. */
5018 for (oursig = TARGET_SIGNAL_FIRST;
5019 (int) oursig < (int) TARGET_SIGNAL_LAST;
5020 oursig = (enum target_signal) ((int) oursig + 1))
5021 {
5022 QUIT;
5023
5024 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 5025 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
5026 sig_print_info (oursig);
5027 }
5028
a3f17187 5029 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c 5030}
4aa995e1
PA
5031
5032/* The $_siginfo convenience variable is a bit special. We don't know
5033 for sure the type of the value until we actually have a chance to
5034 fetch the data. The type can change depending on gdbarch, so it it
5035 also dependent on which thread you have selected.
5036
5037 1. making $_siginfo be an internalvar that creates a new value on
5038 access.
5039
5040 2. making the value of $_siginfo be an lval_computed value. */
5041
5042/* This function implements the lval_computed support for reading a
5043 $_siginfo value. */
5044
5045static void
5046siginfo_value_read (struct value *v)
5047{
5048 LONGEST transferred;
5049
5050 transferred =
5051 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
5052 NULL,
5053 value_contents_all_raw (v),
5054 value_offset (v),
5055 TYPE_LENGTH (value_type (v)));
5056
5057 if (transferred != TYPE_LENGTH (value_type (v)))
5058 error (_("Unable to read siginfo"));
5059}
5060
5061/* This function implements the lval_computed support for writing a
5062 $_siginfo value. */
5063
5064static void
5065siginfo_value_write (struct value *v, struct value *fromval)
5066{
5067 LONGEST transferred;
5068
5069 transferred = target_write (&current_target,
5070 TARGET_OBJECT_SIGNAL_INFO,
5071 NULL,
5072 value_contents_all_raw (fromval),
5073 value_offset (v),
5074 TYPE_LENGTH (value_type (fromval)));
5075
5076 if (transferred != TYPE_LENGTH (value_type (fromval)))
5077 error (_("Unable to write siginfo"));
5078}
5079
5080static struct lval_funcs siginfo_value_funcs =
5081 {
5082 siginfo_value_read,
5083 siginfo_value_write
5084 };
5085
5086/* Return a new value with the correct type for the siginfo object of
5087 the current thread. Return a void value if there's no object
5088 available. */
5089
2c0b251b 5090static struct value *
4aa995e1
PA
5091siginfo_make_value (struct internalvar *var)
5092{
5093 struct type *type;
5094 struct gdbarch *gdbarch;
5095
5096 if (target_has_stack
5097 && !ptid_equal (inferior_ptid, null_ptid))
5098 {
5099 gdbarch = get_frame_arch (get_current_frame ());
5100
5101 if (gdbarch_get_siginfo_type_p (gdbarch))
5102 {
5103 type = gdbarch_get_siginfo_type (gdbarch);
5104
5105 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
5106 }
5107 }
5108
5109 return allocate_value (builtin_type_void);
5110}
5111
c906108c 5112\f
b89667eb
DE
5113/* Inferior thread state.
5114 These are details related to the inferior itself, and don't include
5115 things like what frame the user had selected or what gdb was doing
5116 with the target at the time.
5117 For inferior function calls these are things we want to restore
5118 regardless of whether the function call successfully completes
5119 or the dummy frame has to be manually popped. */
5120
5121struct inferior_thread_state
7a292a7a
SS
5122{
5123 enum target_signal stop_signal;
5124 CORE_ADDR stop_pc;
b89667eb
DE
5125 struct regcache *registers;
5126};
5127
5128struct inferior_thread_state *
5129save_inferior_thread_state (void)
5130{
5131 struct inferior_thread_state *inf_state = XMALLOC (struct inferior_thread_state);
5132 struct thread_info *tp = inferior_thread ();
5133
5134 inf_state->stop_signal = tp->stop_signal;
5135 inf_state->stop_pc = stop_pc;
5136
5137 inf_state->registers = regcache_dup (get_current_regcache ());
5138
5139 return inf_state;
5140}
5141
5142/* Restore inferior session state to INF_STATE. */
5143
5144void
5145restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5146{
5147 struct thread_info *tp = inferior_thread ();
5148
5149 tp->stop_signal = inf_state->stop_signal;
5150 stop_pc = inf_state->stop_pc;
5151
5152 /* The inferior can be gone if the user types "print exit(0)"
5153 (and perhaps other times). */
5154 if (target_has_execution)
5155 /* NB: The register write goes through to the target. */
5156 regcache_cpy (get_current_regcache (), inf_state->registers);
5157 regcache_xfree (inf_state->registers);
5158 xfree (inf_state);
5159}
5160
5161static void
5162do_restore_inferior_thread_state_cleanup (void *state)
5163{
5164 restore_inferior_thread_state (state);
5165}
5166
5167struct cleanup *
5168make_cleanup_restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5169{
5170 return make_cleanup (do_restore_inferior_thread_state_cleanup, inf_state);
5171}
5172
5173void
5174discard_inferior_thread_state (struct inferior_thread_state *inf_state)
5175{
5176 regcache_xfree (inf_state->registers);
5177 xfree (inf_state);
5178}
5179
5180struct regcache *
5181get_inferior_thread_state_regcache (struct inferior_thread_state *inf_state)
5182{
5183 return inf_state->registers;
5184}
5185
5186/* Session related state for inferior function calls.
5187 These are the additional bits of state that need to be restored
5188 when an inferior function call successfully completes. */
5189
5190struct inferior_status
5191{
7a292a7a
SS
5192 bpstat stop_bpstat;
5193 int stop_step;
5194 int stop_stack_dummy;
5195 int stopped_by_random_signal;
ca67fcb8 5196 int stepping_over_breakpoint;
7a292a7a
SS
5197 CORE_ADDR step_range_start;
5198 CORE_ADDR step_range_end;
aa0cd9c1 5199 struct frame_id step_frame_id;
5fbbeb29 5200 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
5201 CORE_ADDR step_resume_break_address;
5202 int stop_after_trap;
c0236d92 5203 int stop_soon;
7a292a7a 5204
b89667eb 5205 /* ID if the selected frame when the inferior function call was made. */
101dcfbe
AC
5206 struct frame_id selected_frame_id;
5207
7a292a7a 5208 int proceed_to_finish;
c5a4d20b 5209 int in_infcall;
7a292a7a
SS
5210};
5211
c906108c 5212/* Save all of the information associated with the inferior<==>gdb
b89667eb 5213 connection. */
c906108c 5214
7a292a7a 5215struct inferior_status *
b89667eb 5216save_inferior_status (void)
c906108c 5217{
72cec141 5218 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4e1c45ea 5219 struct thread_info *tp = inferior_thread ();
d6b48e9c 5220 struct inferior *inf = current_inferior ();
7a292a7a 5221
414c69f7 5222 inf_status->stop_step = tp->stop_step;
c906108c
SS
5223 inf_status->stop_stack_dummy = stop_stack_dummy;
5224 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4e1c45ea
PA
5225 inf_status->stepping_over_breakpoint = tp->trap_expected;
5226 inf_status->step_range_start = tp->step_range_start;
5227 inf_status->step_range_end = tp->step_range_end;
5228 inf_status->step_frame_id = tp->step_frame_id;
078130d0 5229 inf_status->step_over_calls = tp->step_over_calls;
c906108c 5230 inf_status->stop_after_trap = stop_after_trap;
d6b48e9c 5231 inf_status->stop_soon = inf->stop_soon;
c906108c
SS
5232 /* Save original bpstat chain here; replace it with copy of chain.
5233 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
5234 hand them back the original chain when restore_inferior_status is
5235 called. */
347bddb7
PA
5236 inf_status->stop_bpstat = tp->stop_bpstat;
5237 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
32400beb 5238 inf_status->proceed_to_finish = tp->proceed_to_finish;
c5a4d20b 5239 inf_status->in_infcall = tp->in_infcall;
c5aa993b 5240
206415a3 5241 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 5242
7a292a7a 5243 return inf_status;
c906108c
SS
5244}
5245
c906108c 5246static int
96baa820 5247restore_selected_frame (void *args)
c906108c 5248{
488f131b 5249 struct frame_id *fid = (struct frame_id *) args;
c906108c 5250 struct frame_info *frame;
c906108c 5251
101dcfbe 5252 frame = frame_find_by_id (*fid);
c906108c 5253
aa0cd9c1
AC
5254 /* If inf_status->selected_frame_id is NULL, there was no previously
5255 selected frame. */
101dcfbe 5256 if (frame == NULL)
c906108c 5257 {
8a3fe4f8 5258 warning (_("Unable to restore previously selected frame."));
c906108c
SS
5259 return 0;
5260 }
5261
0f7d239c 5262 select_frame (frame);
c906108c
SS
5263
5264 return (1);
5265}
5266
b89667eb
DE
5267/* Restore inferior session state to INF_STATUS. */
5268
c906108c 5269void
96baa820 5270restore_inferior_status (struct inferior_status *inf_status)
c906108c 5271{
4e1c45ea 5272 struct thread_info *tp = inferior_thread ();
d6b48e9c 5273 struct inferior *inf = current_inferior ();
4e1c45ea 5274
414c69f7 5275 tp->stop_step = inf_status->stop_step;
c906108c
SS
5276 stop_stack_dummy = inf_status->stop_stack_dummy;
5277 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4e1c45ea
PA
5278 tp->trap_expected = inf_status->stepping_over_breakpoint;
5279 tp->step_range_start = inf_status->step_range_start;
5280 tp->step_range_end = inf_status->step_range_end;
5281 tp->step_frame_id = inf_status->step_frame_id;
078130d0 5282 tp->step_over_calls = inf_status->step_over_calls;
c906108c 5283 stop_after_trap = inf_status->stop_after_trap;
d6b48e9c 5284 inf->stop_soon = inf_status->stop_soon;
347bddb7
PA
5285 bpstat_clear (&tp->stop_bpstat);
5286 tp->stop_bpstat = inf_status->stop_bpstat;
b89667eb 5287 inf_status->stop_bpstat = NULL;
32400beb 5288 tp->proceed_to_finish = inf_status->proceed_to_finish;
c5a4d20b 5289 tp->in_infcall = inf_status->in_infcall;
c906108c 5290
b89667eb 5291 if (target_has_stack)
c906108c 5292 {
c906108c 5293 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
5294 walking the stack might encounter a garbage pointer and
5295 error() trying to dereference it. */
488f131b
JB
5296 if (catch_errors
5297 (restore_selected_frame, &inf_status->selected_frame_id,
5298 "Unable to restore previously selected frame:\n",
5299 RETURN_MASK_ERROR) == 0)
c906108c
SS
5300 /* Error in restoring the selected frame. Select the innermost
5301 frame. */
0f7d239c 5302 select_frame (get_current_frame ());
c906108c 5303 }
c906108c 5304
72cec141 5305 xfree (inf_status);
7a292a7a 5306}
c906108c 5307
74b7792f
AC
5308static void
5309do_restore_inferior_status_cleanup (void *sts)
5310{
5311 restore_inferior_status (sts);
5312}
5313
5314struct cleanup *
5315make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
5316{
5317 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
5318}
5319
c906108c 5320void
96baa820 5321discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
5322{
5323 /* See save_inferior_status for info on stop_bpstat. */
5324 bpstat_clear (&inf_status->stop_bpstat);
72cec141 5325 xfree (inf_status);
7a292a7a 5326}
b89667eb 5327\f
47932f85 5328int
3a3e9ee3 5329inferior_has_forked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
5330{
5331 struct target_waitstatus last;
5332 ptid_t last_ptid;
5333
5334 get_last_target_status (&last_ptid, &last);
5335
5336 if (last.kind != TARGET_WAITKIND_FORKED)
5337 return 0;
5338
3a3e9ee3 5339 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
5340 return 0;
5341
5342 *child_pid = last.value.related_pid;
5343 return 1;
5344}
5345
5346int
3a3e9ee3 5347inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
5348{
5349 struct target_waitstatus last;
5350 ptid_t last_ptid;
5351
5352 get_last_target_status (&last_ptid, &last);
5353
5354 if (last.kind != TARGET_WAITKIND_VFORKED)
5355 return 0;
5356
3a3e9ee3 5357 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
5358 return 0;
5359
5360 *child_pid = last.value.related_pid;
5361 return 1;
5362}
5363
5364int
3a3e9ee3 5365inferior_has_execd (ptid_t pid, char **execd_pathname)
47932f85
DJ
5366{
5367 struct target_waitstatus last;
5368 ptid_t last_ptid;
5369
5370 get_last_target_status (&last_ptid, &last);
5371
5372 if (last.kind != TARGET_WAITKIND_EXECD)
5373 return 0;
5374
3a3e9ee3 5375 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
5376 return 0;
5377
5378 *execd_pathname = xstrdup (last.value.execd_pathname);
5379 return 1;
5380}
5381
ca6724c1
KB
5382/* Oft used ptids */
5383ptid_t null_ptid;
5384ptid_t minus_one_ptid;
5385
5386/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 5387
ca6724c1
KB
5388ptid_t
5389ptid_build (int pid, long lwp, long tid)
5390{
5391 ptid_t ptid;
5392
5393 ptid.pid = pid;
5394 ptid.lwp = lwp;
5395 ptid.tid = tid;
5396 return ptid;
5397}
5398
5399/* Create a ptid from just a pid. */
5400
5401ptid_t
5402pid_to_ptid (int pid)
5403{
5404 return ptid_build (pid, 0, 0);
5405}
5406
5407/* Fetch the pid (process id) component from a ptid. */
5408
5409int
5410ptid_get_pid (ptid_t ptid)
5411{
5412 return ptid.pid;
5413}
5414
5415/* Fetch the lwp (lightweight process) component from a ptid. */
5416
5417long
5418ptid_get_lwp (ptid_t ptid)
5419{
5420 return ptid.lwp;
5421}
5422
5423/* Fetch the tid (thread id) component from a ptid. */
5424
5425long
5426ptid_get_tid (ptid_t ptid)
5427{
5428 return ptid.tid;
5429}
5430
5431/* ptid_equal() is used to test equality of two ptids. */
5432
5433int
5434ptid_equal (ptid_t ptid1, ptid_t ptid2)
5435{
5436 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 5437 && ptid1.tid == ptid2.tid);
ca6724c1
KB
5438}
5439
252fbfc8
PA
5440/* Returns true if PTID represents a process. */
5441
5442int
5443ptid_is_pid (ptid_t ptid)
5444{
5445 if (ptid_equal (minus_one_ptid, ptid))
5446 return 0;
5447 if (ptid_equal (null_ptid, ptid))
5448 return 0;
5449
5450 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
5451}
5452
ca6724c1
KB
5453/* restore_inferior_ptid() will be used by the cleanup machinery
5454 to restore the inferior_ptid value saved in a call to
5455 save_inferior_ptid(). */
ce696e05
KB
5456
5457static void
5458restore_inferior_ptid (void *arg)
5459{
5460 ptid_t *saved_ptid_ptr = arg;
5461 inferior_ptid = *saved_ptid_ptr;
5462 xfree (arg);
5463}
5464
5465/* Save the value of inferior_ptid so that it may be restored by a
5466 later call to do_cleanups(). Returns the struct cleanup pointer
5467 needed for later doing the cleanup. */
5468
5469struct cleanup *
5470save_inferior_ptid (void)
5471{
5472 ptid_t *saved_ptid_ptr;
5473
5474 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
5475 *saved_ptid_ptr = inferior_ptid;
5476 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
5477}
c5aa993b 5478\f
488f131b 5479
b2175913
MS
5480/* User interface for reverse debugging:
5481 Set exec-direction / show exec-direction commands
5482 (returns error unless target implements to_set_exec_direction method). */
5483
5484enum exec_direction_kind execution_direction = EXEC_FORWARD;
5485static const char exec_forward[] = "forward";
5486static const char exec_reverse[] = "reverse";
5487static const char *exec_direction = exec_forward;
5488static const char *exec_direction_names[] = {
5489 exec_forward,
5490 exec_reverse,
5491 NULL
5492};
5493
5494static void
5495set_exec_direction_func (char *args, int from_tty,
5496 struct cmd_list_element *cmd)
5497{
5498 if (target_can_execute_reverse)
5499 {
5500 if (!strcmp (exec_direction, exec_forward))
5501 execution_direction = EXEC_FORWARD;
5502 else if (!strcmp (exec_direction, exec_reverse))
5503 execution_direction = EXEC_REVERSE;
5504 }
5505}
5506
5507static void
5508show_exec_direction_func (struct ui_file *out, int from_tty,
5509 struct cmd_list_element *cmd, const char *value)
5510{
5511 switch (execution_direction) {
5512 case EXEC_FORWARD:
5513 fprintf_filtered (out, _("Forward.\n"));
5514 break;
5515 case EXEC_REVERSE:
5516 fprintf_filtered (out, _("Reverse.\n"));
5517 break;
5518 case EXEC_ERROR:
5519 default:
5520 fprintf_filtered (out,
5521 _("Forward (target `%s' does not support exec-direction).\n"),
5522 target_shortname);
5523 break;
5524 }
5525}
5526
5527/* User interface for non-stop mode. */
5528
ad52ddc6
PA
5529int non_stop = 0;
5530static int non_stop_1 = 0;
5531
5532static void
5533set_non_stop (char *args, int from_tty,
5534 struct cmd_list_element *c)
5535{
5536 if (target_has_execution)
5537 {
5538 non_stop_1 = non_stop;
5539 error (_("Cannot change this setting while the inferior is running."));
5540 }
5541
5542 non_stop = non_stop_1;
5543}
5544
5545static void
5546show_non_stop (struct ui_file *file, int from_tty,
5547 struct cmd_list_element *c, const char *value)
5548{
5549 fprintf_filtered (file,
5550 _("Controlling the inferior in non-stop mode is %s.\n"),
5551 value);
5552}
5553
5554
c906108c 5555void
96baa820 5556_initialize_infrun (void)
c906108c 5557{
52f0bd74
AC
5558 int i;
5559 int numsigs;
c906108c
SS
5560 struct cmd_list_element *c;
5561
1bedd215
AC
5562 add_info ("signals", signals_info, _("\
5563What debugger does when program gets various signals.\n\
5564Specify a signal as argument to print info on that signal only."));
c906108c
SS
5565 add_info_alias ("handle", "signals", 0);
5566
1bedd215
AC
5567 add_com ("handle", class_run, handle_command, _("\
5568Specify how to handle a signal.\n\
c906108c
SS
5569Args are signals and actions to apply to those signals.\n\
5570Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5571from 1-15 are allowed for compatibility with old versions of GDB.\n\
5572Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5573The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
5574used by the debugger, typically SIGTRAP and SIGINT.\n\
5575Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
5576\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
5577Stop means reenter debugger if this signal happens (implies print).\n\
5578Print means print a message if this signal happens.\n\
5579Pass means let program see this signal; otherwise program doesn't know.\n\
5580Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 5581Pass and Stop may be combined."));
c906108c
SS
5582 if (xdb_commands)
5583 {
1bedd215
AC
5584 add_com ("lz", class_info, signals_info, _("\
5585What debugger does when program gets various signals.\n\
5586Specify a signal as argument to print info on that signal only."));
5587 add_com ("z", class_run, xdb_handle_command, _("\
5588Specify how to handle a signal.\n\
c906108c
SS
5589Args are signals and actions to apply to those signals.\n\
5590Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5591from 1-15 are allowed for compatibility with old versions of GDB.\n\
5592Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5593The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
5594used by the debugger, typically SIGTRAP and SIGINT.\n\
5595Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
5596\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
5597nopass), \"Q\" (noprint)\n\
5598Stop means reenter debugger if this signal happens (implies print).\n\
5599Print means print a message if this signal happens.\n\
5600Pass means let program see this signal; otherwise program doesn't know.\n\
5601Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 5602Pass and Stop may be combined."));
c906108c
SS
5603 }
5604
5605 if (!dbx_commands)
1a966eab
AC
5606 stop_command = add_cmd ("stop", class_obscure,
5607 not_just_help_class_command, _("\
5608There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 5609This allows you to set a list of commands to be run each time execution\n\
1a966eab 5610of the program stops."), &cmdlist);
c906108c 5611
85c07804
AC
5612 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
5613Set inferior debugging."), _("\
5614Show inferior debugging."), _("\
5615When non-zero, inferior specific debugging is enabled."),
5616 NULL,
920d2a44 5617 show_debug_infrun,
85c07804 5618 &setdebuglist, &showdebuglist);
527159b7 5619
237fc4c9
PA
5620 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
5621Set displaced stepping debugging."), _("\
5622Show displaced stepping debugging."), _("\
5623When non-zero, displaced stepping specific debugging is enabled."),
5624 NULL,
5625 show_debug_displaced,
5626 &setdebuglist, &showdebuglist);
5627
ad52ddc6
PA
5628 add_setshow_boolean_cmd ("non-stop", no_class,
5629 &non_stop_1, _("\
5630Set whether gdb controls the inferior in non-stop mode."), _("\
5631Show whether gdb controls the inferior in non-stop mode."), _("\
5632When debugging a multi-threaded program and this setting is\n\
5633off (the default, also called all-stop mode), when one thread stops\n\
5634(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
5635all other threads in the program while you interact with the thread of\n\
5636interest. When you continue or step a thread, you can allow the other\n\
5637threads to run, or have them remain stopped, but while you inspect any\n\
5638thread's state, all threads stop.\n\
5639\n\
5640In non-stop mode, when one thread stops, other threads can continue\n\
5641to run freely. You'll be able to step each thread independently,\n\
5642leave it stopped or free to run as needed."),
5643 set_non_stop,
5644 show_non_stop,
5645 &setlist,
5646 &showlist);
5647
c906108c 5648 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 5649 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
5650 signal_print = (unsigned char *)
5651 xmalloc (sizeof (signal_print[0]) * numsigs);
5652 signal_program = (unsigned char *)
5653 xmalloc (sizeof (signal_program[0]) * numsigs);
5654 for (i = 0; i < numsigs; i++)
5655 {
5656 signal_stop[i] = 1;
5657 signal_print[i] = 1;
5658 signal_program[i] = 1;
5659 }
5660
5661 /* Signals caused by debugger's own actions
5662 should not be given to the program afterwards. */
5663 signal_program[TARGET_SIGNAL_TRAP] = 0;
5664 signal_program[TARGET_SIGNAL_INT] = 0;
5665
5666 /* Signals that are not errors should not normally enter the debugger. */
5667 signal_stop[TARGET_SIGNAL_ALRM] = 0;
5668 signal_print[TARGET_SIGNAL_ALRM] = 0;
5669 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
5670 signal_print[TARGET_SIGNAL_VTALRM] = 0;
5671 signal_stop[TARGET_SIGNAL_PROF] = 0;
5672 signal_print[TARGET_SIGNAL_PROF] = 0;
5673 signal_stop[TARGET_SIGNAL_CHLD] = 0;
5674 signal_print[TARGET_SIGNAL_CHLD] = 0;
5675 signal_stop[TARGET_SIGNAL_IO] = 0;
5676 signal_print[TARGET_SIGNAL_IO] = 0;
5677 signal_stop[TARGET_SIGNAL_POLL] = 0;
5678 signal_print[TARGET_SIGNAL_POLL] = 0;
5679 signal_stop[TARGET_SIGNAL_URG] = 0;
5680 signal_print[TARGET_SIGNAL_URG] = 0;
5681 signal_stop[TARGET_SIGNAL_WINCH] = 0;
5682 signal_print[TARGET_SIGNAL_WINCH] = 0;
5683
cd0fc7c3
SS
5684 /* These signals are used internally by user-level thread
5685 implementations. (See signal(5) on Solaris.) Like the above
5686 signals, a healthy program receives and handles them as part of
5687 its normal operation. */
5688 signal_stop[TARGET_SIGNAL_LWP] = 0;
5689 signal_print[TARGET_SIGNAL_LWP] = 0;
5690 signal_stop[TARGET_SIGNAL_WAITING] = 0;
5691 signal_print[TARGET_SIGNAL_WAITING] = 0;
5692 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
5693 signal_print[TARGET_SIGNAL_CANCEL] = 0;
5694
85c07804
AC
5695 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
5696 &stop_on_solib_events, _("\
5697Set stopping for shared library events."), _("\
5698Show stopping for shared library events."), _("\
c906108c
SS
5699If nonzero, gdb will give control to the user when the dynamic linker\n\
5700notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
5701to the user would be loading/unloading of a new library."),
5702 NULL,
920d2a44 5703 show_stop_on_solib_events,
85c07804 5704 &setlist, &showlist);
c906108c 5705
7ab04401
AC
5706 add_setshow_enum_cmd ("follow-fork-mode", class_run,
5707 follow_fork_mode_kind_names,
5708 &follow_fork_mode_string, _("\
5709Set debugger response to a program call of fork or vfork."), _("\
5710Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
5711A fork or vfork creates a new process. follow-fork-mode can be:\n\
5712 parent - the original process is debugged after a fork\n\
5713 child - the new process is debugged after a fork\n\
ea1dd7bc 5714The unfollowed process will continue to run.\n\
7ab04401
AC
5715By default, the debugger will follow the parent process."),
5716 NULL,
920d2a44 5717 show_follow_fork_mode_string,
7ab04401
AC
5718 &setlist, &showlist);
5719
5720 add_setshow_enum_cmd ("scheduler-locking", class_run,
5721 scheduler_enums, &scheduler_mode, _("\
5722Set mode for locking scheduler during execution."), _("\
5723Show mode for locking scheduler during execution."), _("\
c906108c
SS
5724off == no locking (threads may preempt at any time)\n\
5725on == full locking (no thread except the current thread may run)\n\
5726step == scheduler locked during every single-step operation.\n\
5727 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
5728 Other threads may run while stepping over a function call ('next')."),
5729 set_schedlock_func, /* traps on target vector */
920d2a44 5730 show_scheduler_mode,
7ab04401 5731 &setlist, &showlist);
5fbbeb29 5732
5bf193a2
AC
5733 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
5734Set mode of the step operation."), _("\
5735Show mode of the step operation."), _("\
5736When set, doing a step over a function without debug line information\n\
5737will stop at the first instruction of that function. Otherwise, the\n\
5738function is skipped and the step command stops at a different source line."),
5739 NULL,
920d2a44 5740 show_step_stop_if_no_debug,
5bf193a2 5741 &setlist, &showlist);
ca6724c1 5742
fff08868
HZ
5743 add_setshow_enum_cmd ("displaced-stepping", class_run,
5744 can_use_displaced_stepping_enum,
5745 &can_use_displaced_stepping, _("\
237fc4c9
PA
5746Set debugger's willingness to use displaced stepping."), _("\
5747Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
5748If on, gdb will use displaced stepping to step over breakpoints if it is\n\
5749supported by the target architecture. If off, gdb will not use displaced\n\
5750stepping to step over breakpoints, even if such is supported by the target\n\
5751architecture. If auto (which is the default), gdb will use displaced stepping\n\
5752if the target architecture supports it and non-stop mode is active, but will not\n\
5753use it in all-stop mode (see help set non-stop)."),
5754 NULL,
5755 show_can_use_displaced_stepping,
5756 &setlist, &showlist);
237fc4c9 5757
b2175913
MS
5758 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
5759 &exec_direction, _("Set direction of execution.\n\
5760Options are 'forward' or 'reverse'."),
5761 _("Show direction of execution (forward/reverse)."),
5762 _("Tells gdb whether to execute forward or backward."),
5763 set_exec_direction_func, show_exec_direction_func,
5764 &setlist, &showlist);
5765
ca6724c1
KB
5766 /* ptid initializations */
5767 null_ptid = ptid_build (0, 0, 0);
5768 minus_one_ptid = ptid_build (-1, 0, 0);
5769 inferior_ptid = null_ptid;
5770 target_last_wait_ptid = minus_one_ptid;
237fc4c9 5771 displaced_step_ptid = null_ptid;
5231c1fd
PA
5772
5773 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 5774 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 5775 observer_attach_thread_exit (infrun_thread_thread_exit);
4aa995e1
PA
5776
5777 /* Explicitly create without lookup, since that tries to create a
5778 value with a void typed value, and when we get here, gdbarch
5779 isn't initialized yet. At this point, we're quite sure there
5780 isn't another convenience variable of the same name. */
5781 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
c906108c 5782}