]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/infrun.c
* dummy-frame.c (deprecated_pc_in_call_dummy): Add GDBARCH parameter,
[thirdparty/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca 4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1 5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
0fb0cc75 6 2008, 2009 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
9f976b41 48#include "gdb_assert.h"
034dad6f 49#include "mi/mi-common.h"
4f8d22e3 50#include "event-top.h"
96429cc8 51#include "record.h"
c906108c
SS
52
53/* Prototypes for local functions */
54
96baa820 55static void signals_info (char *, int);
c906108c 56
96baa820 57static void handle_command (char *, int);
c906108c 58
96baa820 59static void sig_print_info (enum target_signal);
c906108c 60
96baa820 61static void sig_print_header (void);
c906108c 62
74b7792f 63static void resume_cleanups (void *);
c906108c 64
96baa820 65static int hook_stop_stub (void *);
c906108c 66
96baa820
JM
67static int restore_selected_frame (void *);
68
69static void build_infrun (void);
70
4ef3f3be 71static int follow_fork (void);
96baa820
JM
72
73static void set_schedlock_func (char *args, int from_tty,
488f131b 74 struct cmd_list_element *c);
96baa820 75
4e1c45ea 76static int currently_stepping (struct thread_info *tp);
96baa820 77
b3444185
PA
78static int currently_stepping_or_nexting_callback (struct thread_info *tp,
79 void *data);
a7212384 80
96baa820
JM
81static void xdb_handle_command (char *args, int from_tty);
82
6a6b96b9 83static int prepare_to_proceed (int);
ea67f13b 84
96baa820 85void _initialize_infrun (void);
43ff13b4 86
e58b0e63
PA
87void nullify_last_target_wait_ptid (void);
88
5fbbeb29
CF
89/* When set, stop the 'step' command if we enter a function which has
90 no line number information. The normal behavior is that we step
91 over such function. */
92int step_stop_if_no_debug = 0;
920d2a44
AC
93static void
94show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
95 struct cmd_list_element *c, const char *value)
96{
97 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
98}
5fbbeb29 99
43ff13b4 100/* In asynchronous mode, but simulating synchronous execution. */
96baa820 101
43ff13b4
JM
102int sync_execution = 0;
103
c906108c
SS
104/* wait_for_inferior and normal_stop use this to notify the user
105 when the inferior stopped in a different thread than it had been
96baa820
JM
106 running in. */
107
39f77062 108static ptid_t previous_inferior_ptid;
7a292a7a 109
237fc4c9
PA
110int debug_displaced = 0;
111static void
112show_debug_displaced (struct ui_file *file, int from_tty,
113 struct cmd_list_element *c, const char *value)
114{
115 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
116}
117
527159b7 118static int debug_infrun = 0;
920d2a44
AC
119static void
120show_debug_infrun (struct ui_file *file, int from_tty,
121 struct cmd_list_element *c, const char *value)
122{
123 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
124}
527159b7 125
d4f3574e
SS
126/* If the program uses ELF-style shared libraries, then calls to
127 functions in shared libraries go through stubs, which live in a
128 table called the PLT (Procedure Linkage Table). The first time the
129 function is called, the stub sends control to the dynamic linker,
130 which looks up the function's real address, patches the stub so
131 that future calls will go directly to the function, and then passes
132 control to the function.
133
134 If we are stepping at the source level, we don't want to see any of
135 this --- we just want to skip over the stub and the dynamic linker.
136 The simple approach is to single-step until control leaves the
137 dynamic linker.
138
ca557f44
AC
139 However, on some systems (e.g., Red Hat's 5.2 distribution) the
140 dynamic linker calls functions in the shared C library, so you
141 can't tell from the PC alone whether the dynamic linker is still
142 running. In this case, we use a step-resume breakpoint to get us
143 past the dynamic linker, as if we were using "next" to step over a
144 function call.
d4f3574e 145
cfd8ab24 146 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
147 linker code or not. Normally, this means we single-step. However,
148 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
149 address where we can place a step-resume breakpoint to get past the
150 linker's symbol resolution function.
151
cfd8ab24 152 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
153 pretty portable way, by comparing the PC against the address ranges
154 of the dynamic linker's sections.
155
156 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
157 it depends on internal details of the dynamic linker. It's usually
158 not too hard to figure out where to put a breakpoint, but it
159 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
160 sanity checking. If it can't figure things out, returning zero and
161 getting the (possibly confusing) stepping behavior is better than
162 signalling an error, which will obscure the change in the
163 inferior's state. */
c906108c 164
c906108c
SS
165/* This function returns TRUE if pc is the address of an instruction
166 that lies within the dynamic linker (such as the event hook, or the
167 dld itself).
168
169 This function must be used only when a dynamic linker event has
170 been caught, and the inferior is being stepped out of the hook, or
171 undefined results are guaranteed. */
172
173#ifndef SOLIB_IN_DYNAMIC_LINKER
174#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
175#endif
176
c2c6d25f 177
7a292a7a
SS
178/* Convert the #defines into values. This is temporary until wfi control
179 flow is completely sorted out. */
180
692590c1
MS
181#ifndef CANNOT_STEP_HW_WATCHPOINTS
182#define CANNOT_STEP_HW_WATCHPOINTS 0
183#else
184#undef CANNOT_STEP_HW_WATCHPOINTS
185#define CANNOT_STEP_HW_WATCHPOINTS 1
186#endif
187
c906108c
SS
188/* Tables of how to react to signals; the user sets them. */
189
190static unsigned char *signal_stop;
191static unsigned char *signal_print;
192static unsigned char *signal_program;
193
194#define SET_SIGS(nsigs,sigs,flags) \
195 do { \
196 int signum = (nsigs); \
197 while (signum-- > 0) \
198 if ((sigs)[signum]) \
199 (flags)[signum] = 1; \
200 } while (0)
201
202#define UNSET_SIGS(nsigs,sigs,flags) \
203 do { \
204 int signum = (nsigs); \
205 while (signum-- > 0) \
206 if ((sigs)[signum]) \
207 (flags)[signum] = 0; \
208 } while (0)
209
39f77062
KB
210/* Value to pass to target_resume() to cause all threads to resume */
211
212#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
213
214/* Command list pointer for the "stop" placeholder. */
215
216static struct cmd_list_element *stop_command;
217
c906108c
SS
218/* Function inferior was in as of last step command. */
219
220static struct symbol *step_start_function;
221
c906108c
SS
222/* Nonzero if we want to give control to the user when we're notified
223 of shared library events by the dynamic linker. */
224static int stop_on_solib_events;
920d2a44
AC
225static void
226show_stop_on_solib_events (struct ui_file *file, int from_tty,
227 struct cmd_list_element *c, const char *value)
228{
229 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
230 value);
231}
c906108c 232
c906108c
SS
233/* Nonzero means expecting a trace trap
234 and should stop the inferior and return silently when it happens. */
235
236int stop_after_trap;
237
642fd101
DE
238/* Save register contents here when executing a "finish" command or are
239 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
240 Thus this contains the return value from the called function (assuming
241 values are returned in a register). */
242
72cec141 243struct regcache *stop_registers;
c906108c 244
c906108c
SS
245/* Nonzero after stop if current stack frame should be printed. */
246
247static int stop_print_frame;
248
e02bc4cc 249/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
250 returned by target_wait()/deprecated_target_wait_hook(). This
251 information is returned by get_last_target_status(). */
39f77062 252static ptid_t target_last_wait_ptid;
e02bc4cc
DS
253static struct target_waitstatus target_last_waitstatus;
254
0d1e5fa7
PA
255static void context_switch (ptid_t ptid);
256
4e1c45ea 257void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
258
259void init_infwait_state (void);
a474d7c2 260
53904c9e
AC
261static const char follow_fork_mode_child[] = "child";
262static const char follow_fork_mode_parent[] = "parent";
263
488f131b 264static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
265 follow_fork_mode_child,
266 follow_fork_mode_parent,
267 NULL
ef346e04 268};
c906108c 269
53904c9e 270static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
271static void
272show_follow_fork_mode_string (struct ui_file *file, int from_tty,
273 struct cmd_list_element *c, const char *value)
274{
275 fprintf_filtered (file, _("\
276Debugger response to a program call of fork or vfork is \"%s\".\n"),
277 value);
278}
c906108c
SS
279\f
280
e58b0e63
PA
281/* Tell the target to follow the fork we're stopped at. Returns true
282 if the inferior should be resumed; false, if the target for some
283 reason decided it's best not to resume. */
284
6604731b 285static int
4ef3f3be 286follow_fork (void)
c906108c 287{
ea1dd7bc 288 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
289 int should_resume = 1;
290 struct thread_info *tp;
291
292 /* Copy user stepping state to the new inferior thread. FIXME: the
293 followed fork child thread should have a copy of most of the
4e3990f4
DE
294 parent thread structure's run control related fields, not just these.
295 Initialized to avoid "may be used uninitialized" warnings from gcc. */
296 struct breakpoint *step_resume_breakpoint = NULL;
297 CORE_ADDR step_range_start = 0;
298 CORE_ADDR step_range_end = 0;
299 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
300
301 if (!non_stop)
302 {
303 ptid_t wait_ptid;
304 struct target_waitstatus wait_status;
305
306 /* Get the last target status returned by target_wait(). */
307 get_last_target_status (&wait_ptid, &wait_status);
308
309 /* If not stopped at a fork event, then there's nothing else to
310 do. */
311 if (wait_status.kind != TARGET_WAITKIND_FORKED
312 && wait_status.kind != TARGET_WAITKIND_VFORKED)
313 return 1;
314
315 /* Check if we switched over from WAIT_PTID, since the event was
316 reported. */
317 if (!ptid_equal (wait_ptid, minus_one_ptid)
318 && !ptid_equal (inferior_ptid, wait_ptid))
319 {
320 /* We did. Switch back to WAIT_PTID thread, to tell the
321 target to follow it (in either direction). We'll
322 afterwards refuse to resume, and inform the user what
323 happened. */
324 switch_to_thread (wait_ptid);
325 should_resume = 0;
326 }
327 }
328
329 tp = inferior_thread ();
330
331 /* If there were any forks/vforks that were caught and are now to be
332 followed, then do so now. */
333 switch (tp->pending_follow.kind)
334 {
335 case TARGET_WAITKIND_FORKED:
336 case TARGET_WAITKIND_VFORKED:
337 {
338 ptid_t parent, child;
339
340 /* If the user did a next/step, etc, over a fork call,
341 preserve the stepping state in the fork child. */
342 if (follow_child && should_resume)
343 {
344 step_resume_breakpoint
345 = clone_momentary_breakpoint (tp->step_resume_breakpoint);
346 step_range_start = tp->step_range_start;
347 step_range_end = tp->step_range_end;
348 step_frame_id = tp->step_frame_id;
349
350 /* For now, delete the parent's sr breakpoint, otherwise,
351 parent/child sr breakpoints are considered duplicates,
352 and the child version will not be installed. Remove
353 this when the breakpoints module becomes aware of
354 inferiors and address spaces. */
355 delete_step_resume_breakpoint (tp);
356 tp->step_range_start = 0;
357 tp->step_range_end = 0;
358 tp->step_frame_id = null_frame_id;
359 }
360
361 parent = inferior_ptid;
362 child = tp->pending_follow.value.related_pid;
363
364 /* Tell the target to do whatever is necessary to follow
365 either parent or child. */
366 if (target_follow_fork (follow_child))
367 {
368 /* Target refused to follow, or there's some other reason
369 we shouldn't resume. */
370 should_resume = 0;
371 }
372 else
373 {
374 /* This pending follow fork event is now handled, one way
375 or another. The previous selected thread may be gone
376 from the lists by now, but if it is still around, need
377 to clear the pending follow request. */
e09875d4 378 tp = find_thread_ptid (parent);
e58b0e63
PA
379 if (tp)
380 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
381
382 /* This makes sure we don't try to apply the "Switched
383 over from WAIT_PID" logic above. */
384 nullify_last_target_wait_ptid ();
385
386 /* If we followed the child, switch to it... */
387 if (follow_child)
388 {
389 switch_to_thread (child);
390
391 /* ... and preserve the stepping state, in case the
392 user was stepping over the fork call. */
393 if (should_resume)
394 {
395 tp = inferior_thread ();
396 tp->step_resume_breakpoint = step_resume_breakpoint;
397 tp->step_range_start = step_range_start;
398 tp->step_range_end = step_range_end;
399 tp->step_frame_id = step_frame_id;
400 }
401 else
402 {
403 /* If we get here, it was because we're trying to
404 resume from a fork catchpoint, but, the user
405 has switched threads away from the thread that
406 forked. In that case, the resume command
407 issued is most likely not applicable to the
408 child, so just warn, and refuse to resume. */
409 warning (_("\
410Not resuming: switched threads before following fork child.\n"));
411 }
412
413 /* Reset breakpoints in the child as appropriate. */
414 follow_inferior_reset_breakpoints ();
415 }
416 else
417 switch_to_thread (parent);
418 }
419 }
420 break;
421 case TARGET_WAITKIND_SPURIOUS:
422 /* Nothing to follow. */
423 break;
424 default:
425 internal_error (__FILE__, __LINE__,
426 "Unexpected pending_follow.kind %d\n",
427 tp->pending_follow.kind);
428 break;
429 }
c906108c 430
e58b0e63 431 return should_resume;
c906108c
SS
432}
433
6604731b
DJ
434void
435follow_inferior_reset_breakpoints (void)
c906108c 436{
4e1c45ea
PA
437 struct thread_info *tp = inferior_thread ();
438
6604731b
DJ
439 /* Was there a step_resume breakpoint? (There was if the user
440 did a "next" at the fork() call.) If so, explicitly reset its
441 thread number.
442
443 step_resumes are a form of bp that are made to be per-thread.
444 Since we created the step_resume bp when the parent process
445 was being debugged, and now are switching to the child process,
446 from the breakpoint package's viewpoint, that's a switch of
447 "threads". We must update the bp's notion of which thread
448 it is for, or it'll be ignored when it triggers. */
449
4e1c45ea
PA
450 if (tp->step_resume_breakpoint)
451 breakpoint_re_set_thread (tp->step_resume_breakpoint);
6604731b
DJ
452
453 /* Reinsert all breakpoints in the child. The user may have set
454 breakpoints after catching the fork, in which case those
455 were never set in the child, but only in the parent. This makes
456 sure the inserted breakpoints match the breakpoint list. */
457
458 breakpoint_re_set ();
459 insert_breakpoints ();
c906108c 460}
c906108c 461
1adeb98a
FN
462/* EXECD_PATHNAME is assumed to be non-NULL. */
463
c906108c 464static void
3a3e9ee3 465follow_exec (ptid_t pid, char *execd_pathname)
c906108c 466{
7a292a7a 467 struct target_ops *tgt;
4e1c45ea 468 struct thread_info *th = inferior_thread ();
7a292a7a 469
c906108c
SS
470 /* This is an exec event that we actually wish to pay attention to.
471 Refresh our symbol table to the newly exec'd program, remove any
472 momentary bp's, etc.
473
474 If there are breakpoints, they aren't really inserted now,
475 since the exec() transformed our inferior into a fresh set
476 of instructions.
477
478 We want to preserve symbolic breakpoints on the list, since
479 we have hopes that they can be reset after the new a.out's
480 symbol table is read.
481
482 However, any "raw" breakpoints must be removed from the list
483 (e.g., the solib bp's), since their address is probably invalid
484 now.
485
486 And, we DON'T want to call delete_breakpoints() here, since
487 that may write the bp's "shadow contents" (the instruction
488 value that was overwritten witha TRAP instruction). Since
489 we now have a new a.out, those shadow contents aren't valid. */
490 update_breakpoints_after_exec ();
491
492 /* If there was one, it's gone now. We cannot truly step-to-next
493 statement through an exec(). */
4e1c45ea
PA
494 th->step_resume_breakpoint = NULL;
495 th->step_range_start = 0;
496 th->step_range_end = 0;
c906108c 497
a75724bc
PA
498 /* The target reports the exec event to the main thread, even if
499 some other thread does the exec, and even if the main thread was
500 already stopped --- if debugging in non-stop mode, it's possible
501 the user had the main thread held stopped in the previous image
502 --- release it now. This is the same behavior as step-over-exec
503 with scheduler-locking on in all-stop mode. */
504 th->stop_requested = 0;
505
c906108c 506 /* What is this a.out's name? */
a3f17187 507 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
c906108c
SS
508
509 /* We've followed the inferior through an exec. Therefore, the
510 inferior has essentially been killed & reborn. */
7a292a7a 511
c906108c 512 gdb_flush (gdb_stdout);
6ca15a4b
PA
513
514 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
515
516 if (gdb_sysroot && *gdb_sysroot)
517 {
518 char *name = alloca (strlen (gdb_sysroot)
519 + strlen (execd_pathname)
520 + 1);
521 strcpy (name, gdb_sysroot);
522 strcat (name, execd_pathname);
523 execd_pathname = name;
524 }
c906108c
SS
525
526 /* That a.out is now the one to use. */
527 exec_file_attach (execd_pathname, 0);
528
cce9b6bf
PA
529 /* Reset the shared library package. This ensures that we get a
530 shlib event when the child reaches "_start", at which point the
531 dld will have had a chance to initialize the child. */
532 /* Also, loading a symbol file below may trigger symbol lookups, and
533 we don't want those to be satisfied by the libraries of the
534 previous incarnation of this process. */
535 no_shared_libraries (NULL, 0);
536
537 /* Load the main file's symbols. */
1adeb98a 538 symbol_file_add_main (execd_pathname, 0);
c906108c 539
7a292a7a 540#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 541 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2
MK
542#else
543 solib_create_inferior_hook ();
7a292a7a 544#endif
c906108c
SS
545
546 /* Reinsert all breakpoints. (Those which were symbolic have
547 been reset to the proper address in the new a.out, thanks
548 to symbol_file_command...) */
549 insert_breakpoints ();
550
551 /* The next resume of this inferior should bring it to the shlib
552 startup breakpoints. (If the user had also set bp's on
553 "main" from the old (parent) process, then they'll auto-
554 matically get reset there in the new process.) */
c906108c
SS
555}
556
557/* Non-zero if we just simulating a single-step. This is needed
558 because we cannot remove the breakpoints in the inferior process
559 until after the `wait' in `wait_for_inferior'. */
560static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
561
562/* The thread we inserted single-step breakpoints for. */
563static ptid_t singlestep_ptid;
564
fd48f117
DJ
565/* PC when we started this single-step. */
566static CORE_ADDR singlestep_pc;
567
9f976b41
DJ
568/* If another thread hit the singlestep breakpoint, we save the original
569 thread here so that we can resume single-stepping it later. */
570static ptid_t saved_singlestep_ptid;
571static int stepping_past_singlestep_breakpoint;
6a6b96b9 572
ca67fcb8
VP
573/* If not equal to null_ptid, this means that after stepping over breakpoint
574 is finished, we need to switch to deferred_step_ptid, and step it.
575
576 The use case is when one thread has hit a breakpoint, and then the user
577 has switched to another thread and issued 'step'. We need to step over
578 breakpoint in the thread which hit the breakpoint, but then continue
579 stepping the thread user has selected. */
580static ptid_t deferred_step_ptid;
c906108c 581\f
237fc4c9
PA
582/* Displaced stepping. */
583
584/* In non-stop debugging mode, we must take special care to manage
585 breakpoints properly; in particular, the traditional strategy for
586 stepping a thread past a breakpoint it has hit is unsuitable.
587 'Displaced stepping' is a tactic for stepping one thread past a
588 breakpoint it has hit while ensuring that other threads running
589 concurrently will hit the breakpoint as they should.
590
591 The traditional way to step a thread T off a breakpoint in a
592 multi-threaded program in all-stop mode is as follows:
593
594 a0) Initially, all threads are stopped, and breakpoints are not
595 inserted.
596 a1) We single-step T, leaving breakpoints uninserted.
597 a2) We insert breakpoints, and resume all threads.
598
599 In non-stop debugging, however, this strategy is unsuitable: we
600 don't want to have to stop all threads in the system in order to
601 continue or step T past a breakpoint. Instead, we use displaced
602 stepping:
603
604 n0) Initially, T is stopped, other threads are running, and
605 breakpoints are inserted.
606 n1) We copy the instruction "under" the breakpoint to a separate
607 location, outside the main code stream, making any adjustments
608 to the instruction, register, and memory state as directed by
609 T's architecture.
610 n2) We single-step T over the instruction at its new location.
611 n3) We adjust the resulting register and memory state as directed
612 by T's architecture. This includes resetting T's PC to point
613 back into the main instruction stream.
614 n4) We resume T.
615
616 This approach depends on the following gdbarch methods:
617
618 - gdbarch_max_insn_length and gdbarch_displaced_step_location
619 indicate where to copy the instruction, and how much space must
620 be reserved there. We use these in step n1.
621
622 - gdbarch_displaced_step_copy_insn copies a instruction to a new
623 address, and makes any necessary adjustments to the instruction,
624 register contents, and memory. We use this in step n1.
625
626 - gdbarch_displaced_step_fixup adjusts registers and memory after
627 we have successfuly single-stepped the instruction, to yield the
628 same effect the instruction would have had if we had executed it
629 at its original address. We use this in step n3.
630
631 - gdbarch_displaced_step_free_closure provides cleanup.
632
633 The gdbarch_displaced_step_copy_insn and
634 gdbarch_displaced_step_fixup functions must be written so that
635 copying an instruction with gdbarch_displaced_step_copy_insn,
636 single-stepping across the copied instruction, and then applying
637 gdbarch_displaced_insn_fixup should have the same effects on the
638 thread's memory and registers as stepping the instruction in place
639 would have. Exactly which responsibilities fall to the copy and
640 which fall to the fixup is up to the author of those functions.
641
642 See the comments in gdbarch.sh for details.
643
644 Note that displaced stepping and software single-step cannot
645 currently be used in combination, although with some care I think
646 they could be made to. Software single-step works by placing
647 breakpoints on all possible subsequent instructions; if the
648 displaced instruction is a PC-relative jump, those breakpoints
649 could fall in very strange places --- on pages that aren't
650 executable, or at addresses that are not proper instruction
651 boundaries. (We do generally let other threads run while we wait
652 to hit the software single-step breakpoint, and they might
653 encounter such a corrupted instruction.) One way to work around
654 this would be to have gdbarch_displaced_step_copy_insn fully
655 simulate the effect of PC-relative instructions (and return NULL)
656 on architectures that use software single-stepping.
657
658 In non-stop mode, we can have independent and simultaneous step
659 requests, so more than one thread may need to simultaneously step
660 over a breakpoint. The current implementation assumes there is
661 only one scratch space per process. In this case, we have to
662 serialize access to the scratch space. If thread A wants to step
663 over a breakpoint, but we are currently waiting for some other
664 thread to complete a displaced step, we leave thread A stopped and
665 place it in the displaced_step_request_queue. Whenever a displaced
666 step finishes, we pick the next thread in the queue and start a new
667 displaced step operation on it. See displaced_step_prepare and
668 displaced_step_fixup for details. */
669
670/* If this is not null_ptid, this is the thread carrying out a
671 displaced single-step. This thread's state will require fixing up
672 once it has completed its step. */
673static ptid_t displaced_step_ptid;
674
675struct displaced_step_request
676{
677 ptid_t ptid;
678 struct displaced_step_request *next;
679};
680
681/* A queue of pending displaced stepping requests. */
682struct displaced_step_request *displaced_step_request_queue;
683
684/* The architecture the thread had when we stepped it. */
685static struct gdbarch *displaced_step_gdbarch;
686
687/* The closure provided gdbarch_displaced_step_copy_insn, to be used
688 for post-step cleanup. */
689static struct displaced_step_closure *displaced_step_closure;
690
691/* The address of the original instruction, and the copy we made. */
692static CORE_ADDR displaced_step_original, displaced_step_copy;
693
694/* Saved contents of copy area. */
695static gdb_byte *displaced_step_saved_copy;
696
fff08868
HZ
697/* Enum strings for "set|show displaced-stepping". */
698
699static const char can_use_displaced_stepping_auto[] = "auto";
700static const char can_use_displaced_stepping_on[] = "on";
701static const char can_use_displaced_stepping_off[] = "off";
702static const char *can_use_displaced_stepping_enum[] =
703{
704 can_use_displaced_stepping_auto,
705 can_use_displaced_stepping_on,
706 can_use_displaced_stepping_off,
707 NULL,
708};
709
710/* If ON, and the architecture supports it, GDB will use displaced
711 stepping to step over breakpoints. If OFF, or if the architecture
712 doesn't support it, GDB will instead use the traditional
713 hold-and-step approach. If AUTO (which is the default), GDB will
714 decide which technique to use to step over breakpoints depending on
715 which of all-stop or non-stop mode is active --- displaced stepping
716 in non-stop mode; hold-and-step in all-stop mode. */
717
718static const char *can_use_displaced_stepping =
719 can_use_displaced_stepping_auto;
720
237fc4c9
PA
721static void
722show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
723 struct cmd_list_element *c,
724 const char *value)
725{
fff08868
HZ
726 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
727 fprintf_filtered (file, _("\
728Debugger's willingness to use displaced stepping to step over \
729breakpoints is %s (currently %s).\n"),
730 value, non_stop ? "on" : "off");
731 else
732 fprintf_filtered (file, _("\
733Debugger's willingness to use displaced stepping to step over \
734breakpoints is %s.\n"), value);
237fc4c9
PA
735}
736
fff08868
HZ
737/* Return non-zero if displaced stepping can/should be used to step
738 over breakpoints. */
739
237fc4c9
PA
740static int
741use_displaced_stepping (struct gdbarch *gdbarch)
742{
fff08868
HZ
743 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
744 && non_stop)
745 || can_use_displaced_stepping == can_use_displaced_stepping_on)
96429cc8
HZ
746 && gdbarch_displaced_step_copy_insn_p (gdbarch)
747 && !RECORD_IS_USED);
237fc4c9
PA
748}
749
750/* Clean out any stray displaced stepping state. */
751static void
752displaced_step_clear (void)
753{
754 /* Indicate that there is no cleanup pending. */
755 displaced_step_ptid = null_ptid;
756
757 if (displaced_step_closure)
758 {
759 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
760 displaced_step_closure);
761 displaced_step_closure = NULL;
762 }
763}
764
765static void
9f5a595d 766displaced_step_clear_cleanup (void *ignore)
237fc4c9 767{
9f5a595d 768 displaced_step_clear ();
237fc4c9
PA
769}
770
771/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
772void
773displaced_step_dump_bytes (struct ui_file *file,
774 const gdb_byte *buf,
775 size_t len)
776{
777 int i;
778
779 for (i = 0; i < len; i++)
780 fprintf_unfiltered (file, "%02x ", buf[i]);
781 fputs_unfiltered ("\n", file);
782}
783
784/* Prepare to single-step, using displaced stepping.
785
786 Note that we cannot use displaced stepping when we have a signal to
787 deliver. If we have a signal to deliver and an instruction to step
788 over, then after the step, there will be no indication from the
789 target whether the thread entered a signal handler or ignored the
790 signal and stepped over the instruction successfully --- both cases
791 result in a simple SIGTRAP. In the first case we mustn't do a
792 fixup, and in the second case we must --- but we can't tell which.
793 Comments in the code for 'random signals' in handle_inferior_event
794 explain how we handle this case instead.
795
796 Returns 1 if preparing was successful -- this thread is going to be
797 stepped now; or 0 if displaced stepping this thread got queued. */
798static int
799displaced_step_prepare (ptid_t ptid)
800{
ad53cd71 801 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
802 struct regcache *regcache = get_thread_regcache (ptid);
803 struct gdbarch *gdbarch = get_regcache_arch (regcache);
804 CORE_ADDR original, copy;
805 ULONGEST len;
806 struct displaced_step_closure *closure;
807
808 /* We should never reach this function if the architecture does not
809 support displaced stepping. */
810 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
811
812 /* For the first cut, we're displaced stepping one thread at a
813 time. */
814
815 if (!ptid_equal (displaced_step_ptid, null_ptid))
816 {
817 /* Already waiting for a displaced step to finish. Defer this
818 request and place in queue. */
819 struct displaced_step_request *req, *new_req;
820
821 if (debug_displaced)
822 fprintf_unfiltered (gdb_stdlog,
823 "displaced: defering step of %s\n",
824 target_pid_to_str (ptid));
825
826 new_req = xmalloc (sizeof (*new_req));
827 new_req->ptid = ptid;
828 new_req->next = NULL;
829
830 if (displaced_step_request_queue)
831 {
832 for (req = displaced_step_request_queue;
833 req && req->next;
834 req = req->next)
835 ;
836 req->next = new_req;
837 }
838 else
839 displaced_step_request_queue = new_req;
840
841 return 0;
842 }
843 else
844 {
845 if (debug_displaced)
846 fprintf_unfiltered (gdb_stdlog,
847 "displaced: stepping %s now\n",
848 target_pid_to_str (ptid));
849 }
850
851 displaced_step_clear ();
852
ad53cd71
PA
853 old_cleanups = save_inferior_ptid ();
854 inferior_ptid = ptid;
855
515630c5 856 original = regcache_read_pc (regcache);
237fc4c9
PA
857
858 copy = gdbarch_displaced_step_location (gdbarch);
859 len = gdbarch_max_insn_length (gdbarch);
860
861 /* Save the original contents of the copy area. */
862 displaced_step_saved_copy = xmalloc (len);
ad53cd71
PA
863 ignore_cleanups = make_cleanup (free_current_contents,
864 &displaced_step_saved_copy);
237fc4c9
PA
865 read_memory (copy, displaced_step_saved_copy, len);
866 if (debug_displaced)
867 {
868 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
869 paddr_nz (copy));
870 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
871 };
872
873 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 874 original, copy, regcache);
237fc4c9
PA
875
876 /* We don't support the fully-simulated case at present. */
877 gdb_assert (closure);
878
9f5a595d
UW
879 /* Save the information we need to fix things up if the step
880 succeeds. */
881 displaced_step_ptid = ptid;
882 displaced_step_gdbarch = gdbarch;
883 displaced_step_closure = closure;
884 displaced_step_original = original;
885 displaced_step_copy = copy;
886
887 make_cleanup (displaced_step_clear_cleanup, 0);
237fc4c9
PA
888
889 /* Resume execution at the copy. */
515630c5 890 regcache_write_pc (regcache, copy);
237fc4c9 891
ad53cd71
PA
892 discard_cleanups (ignore_cleanups);
893
894 do_cleanups (old_cleanups);
237fc4c9
PA
895
896 if (debug_displaced)
897 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
ad53cd71 898 paddr_nz (copy));
237fc4c9 899
237fc4c9
PA
900 return 1;
901}
902
237fc4c9
PA
903static void
904write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
905{
906 struct cleanup *ptid_cleanup = save_inferior_ptid ();
907 inferior_ptid = ptid;
908 write_memory (memaddr, myaddr, len);
909 do_cleanups (ptid_cleanup);
910}
911
912static void
913displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
914{
915 struct cleanup *old_cleanups;
916
917 /* Was this event for the pid we displaced? */
918 if (ptid_equal (displaced_step_ptid, null_ptid)
919 || ! ptid_equal (displaced_step_ptid, event_ptid))
920 return;
921
922 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
923
924 /* Restore the contents of the copy area. */
925 {
926 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
927 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
928 displaced_step_saved_copy, len);
929 if (debug_displaced)
930 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
931 paddr_nz (displaced_step_copy));
932 }
933
934 /* Did the instruction complete successfully? */
935 if (signal == TARGET_SIGNAL_TRAP)
936 {
937 /* Fix up the resulting state. */
938 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
939 displaced_step_closure,
940 displaced_step_original,
941 displaced_step_copy,
942 get_thread_regcache (displaced_step_ptid));
943 }
944 else
945 {
946 /* Since the instruction didn't complete, all we can do is
947 relocate the PC. */
515630c5
UW
948 struct regcache *regcache = get_thread_regcache (event_ptid);
949 CORE_ADDR pc = regcache_read_pc (regcache);
237fc4c9 950 pc = displaced_step_original + (pc - displaced_step_copy);
515630c5 951 regcache_write_pc (regcache, pc);
237fc4c9
PA
952 }
953
954 do_cleanups (old_cleanups);
955
1c5cfe86
PA
956 displaced_step_ptid = null_ptid;
957
237fc4c9
PA
958 /* Are there any pending displaced stepping requests? If so, run
959 one now. */
1c5cfe86 960 while (displaced_step_request_queue)
237fc4c9
PA
961 {
962 struct displaced_step_request *head;
963 ptid_t ptid;
1c5cfe86 964 CORE_ADDR actual_pc;
237fc4c9
PA
965
966 head = displaced_step_request_queue;
967 ptid = head->ptid;
968 displaced_step_request_queue = head->next;
969 xfree (head);
970
ad53cd71
PA
971 context_switch (ptid);
972
fb14de7b 973 actual_pc = regcache_read_pc (get_thread_regcache (ptid));
1c5cfe86
PA
974
975 if (breakpoint_here_p (actual_pc))
ad53cd71 976 {
1c5cfe86
PA
977 if (debug_displaced)
978 fprintf_unfiltered (gdb_stdlog,
979 "displaced: stepping queued %s now\n",
980 target_pid_to_str (ptid));
981
982 displaced_step_prepare (ptid);
983
984 if (debug_displaced)
985 {
986 gdb_byte buf[4];
987
988 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
989 paddr_nz (actual_pc));
990 read_memory (actual_pc, buf, sizeof (buf));
991 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
992 }
993
994 target_resume (ptid, 1, TARGET_SIGNAL_0);
995
996 /* Done, we're stepping a thread. */
997 break;
ad53cd71 998 }
1c5cfe86
PA
999 else
1000 {
1001 int step;
1002 struct thread_info *tp = inferior_thread ();
1003
1004 /* The breakpoint we were sitting under has since been
1005 removed. */
1006 tp->trap_expected = 0;
1007
1008 /* Go back to what we were trying to do. */
1009 step = currently_stepping (tp);
ad53cd71 1010
1c5cfe86
PA
1011 if (debug_displaced)
1012 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
1013 target_pid_to_str (tp->ptid), step);
1014
1015 target_resume (ptid, step, TARGET_SIGNAL_0);
1016 tp->stop_signal = TARGET_SIGNAL_0;
1017
1018 /* This request was discarded. See if there's any other
1019 thread waiting for its turn. */
1020 }
237fc4c9
PA
1021 }
1022}
1023
5231c1fd
PA
1024/* Update global variables holding ptids to hold NEW_PTID if they were
1025 holding OLD_PTID. */
1026static void
1027infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1028{
1029 struct displaced_step_request *it;
1030
1031 if (ptid_equal (inferior_ptid, old_ptid))
1032 inferior_ptid = new_ptid;
1033
1034 if (ptid_equal (singlestep_ptid, old_ptid))
1035 singlestep_ptid = new_ptid;
1036
1037 if (ptid_equal (displaced_step_ptid, old_ptid))
1038 displaced_step_ptid = new_ptid;
1039
1040 if (ptid_equal (deferred_step_ptid, old_ptid))
1041 deferred_step_ptid = new_ptid;
1042
1043 for (it = displaced_step_request_queue; it; it = it->next)
1044 if (ptid_equal (it->ptid, old_ptid))
1045 it->ptid = new_ptid;
1046}
1047
237fc4c9
PA
1048\f
1049/* Resuming. */
c906108c
SS
1050
1051/* Things to clean up if we QUIT out of resume (). */
c906108c 1052static void
74b7792f 1053resume_cleanups (void *ignore)
c906108c
SS
1054{
1055 normal_stop ();
1056}
1057
53904c9e
AC
1058static const char schedlock_off[] = "off";
1059static const char schedlock_on[] = "on";
1060static const char schedlock_step[] = "step";
488f131b 1061static const char *scheduler_enums[] = {
ef346e04
AC
1062 schedlock_off,
1063 schedlock_on,
1064 schedlock_step,
1065 NULL
1066};
920d2a44
AC
1067static const char *scheduler_mode = schedlock_off;
1068static void
1069show_scheduler_mode (struct ui_file *file, int from_tty,
1070 struct cmd_list_element *c, const char *value)
1071{
1072 fprintf_filtered (file, _("\
1073Mode for locking scheduler during execution is \"%s\".\n"),
1074 value);
1075}
c906108c
SS
1076
1077static void
96baa820 1078set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1079{
eefe576e
AC
1080 if (!target_can_lock_scheduler)
1081 {
1082 scheduler_mode = schedlock_off;
1083 error (_("Target '%s' cannot support this command."), target_shortname);
1084 }
c906108c
SS
1085}
1086
d4db2f36
PA
1087/* True if execution commands resume all threads of all processes by
1088 default; otherwise, resume only threads of the current inferior
1089 process. */
1090int sched_multi = 0;
1091
2facfe5c
DD
1092/* Try to setup for software single stepping over the specified location.
1093 Return 1 if target_resume() should use hardware single step.
1094
1095 GDBARCH the current gdbarch.
1096 PC the location to step over. */
1097
1098static int
1099maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1100{
1101 int hw_step = 1;
1102
1103 if (gdbarch_software_single_step_p (gdbarch)
1104 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1105 {
1106 hw_step = 0;
1107 /* Do not pull these breakpoints until after a `wait' in
1108 `wait_for_inferior' */
1109 singlestep_breakpoints_inserted_p = 1;
1110 singlestep_ptid = inferior_ptid;
1111 singlestep_pc = pc;
1112 }
1113 return hw_step;
1114}
c906108c
SS
1115
1116/* Resume the inferior, but allow a QUIT. This is useful if the user
1117 wants to interrupt some lengthy single-stepping operation
1118 (for child processes, the SIGINT goes to the inferior, and so
1119 we get a SIGINT random_signal, but for remote debugging and perhaps
1120 other targets, that's not true).
1121
1122 STEP nonzero if we should step (zero to continue instead).
1123 SIG is the signal to give the inferior (zero for none). */
1124void
96baa820 1125resume (int step, enum target_signal sig)
c906108c
SS
1126{
1127 int should_resume = 1;
74b7792f 1128 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1129 struct regcache *regcache = get_current_regcache ();
1130 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1131 struct thread_info *tp = inferior_thread ();
515630c5 1132 CORE_ADDR pc = regcache_read_pc (regcache);
c7e8a53c 1133
c906108c
SS
1134 QUIT;
1135
527159b7 1136 if (debug_infrun)
237fc4c9
PA
1137 fprintf_unfiltered (gdb_stdlog,
1138 "infrun: resume (step=%d, signal=%d), "
4e1c45ea
PA
1139 "trap_expected=%d\n",
1140 step, sig, tp->trap_expected);
c906108c 1141
692590c1
MS
1142 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
1143 over an instruction that causes a page fault without triggering
1144 a hardware watchpoint. The kernel properly notices that it shouldn't
1145 stop, because the hardware watchpoint is not triggered, but it forgets
1146 the step request and continues the program normally.
1147 Work around the problem by removing hardware watchpoints if a step is
1148 requested, GDB will check for a hardware watchpoint trigger after the
1149 step anyway. */
c36b740a 1150 if (CANNOT_STEP_HW_WATCHPOINTS && step)
692590c1 1151 remove_hw_watchpoints ();
488f131b 1152
692590c1 1153
c2c6d25f
JM
1154 /* Normally, by the time we reach `resume', the breakpoints are either
1155 removed or inserted, as appropriate. The exception is if we're sitting
1156 at a permanent breakpoint; we need to step over it, but permanent
1157 breakpoints can't be removed. So we have to test for it here. */
237fc4c9 1158 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
6d350bb5 1159 {
515630c5
UW
1160 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1161 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5
UW
1162 else
1163 error (_("\
1164The program is stopped at a permanent breakpoint, but GDB does not know\n\
1165how to step past a permanent breakpoint on this architecture. Try using\n\
1166a command like `return' or `jump' to continue execution."));
1167 }
c2c6d25f 1168
237fc4c9
PA
1169 /* If enabled, step over breakpoints by executing a copy of the
1170 instruction at a different address.
1171
1172 We can't use displaced stepping when we have a signal to deliver;
1173 the comments for displaced_step_prepare explain why. The
1174 comments in the handle_inferior event for dealing with 'random
1175 signals' explain what we do instead. */
515630c5 1176 if (use_displaced_stepping (gdbarch)
4e1c45ea 1177 && tp->trap_expected
237fc4c9
PA
1178 && sig == TARGET_SIGNAL_0)
1179 {
1180 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1181 {
1182 /* Got placed in displaced stepping queue. Will be resumed
1183 later when all the currently queued displaced stepping
7f7efbd9
VP
1184 requests finish. The thread is not executing at this point,
1185 and the call to set_executing will be made later. But we
1186 need to call set_running here, since from frontend point of view,
1187 the thread is running. */
1188 set_running (inferior_ptid, 1);
d56b7306
VP
1189 discard_cleanups (old_cleanups);
1190 return;
1191 }
237fc4c9
PA
1192 }
1193
2facfe5c
DD
1194 /* Do we need to do it the hard way, w/temp breakpoints? */
1195 if (step)
1196 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1197
c906108c
SS
1198 if (should_resume)
1199 {
39f77062 1200 ptid_t resume_ptid;
dfcd3bfb 1201
cd76b0b7
VP
1202 /* If STEP is set, it's a request to use hardware stepping
1203 facilities. But in that case, we should never
1204 use singlestep breakpoint. */
1205 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1206
d4db2f36
PA
1207 /* Decide the set of threads to ask the target to resume. Start
1208 by assuming everything will be resumed, than narrow the set
1209 by applying increasingly restricting conditions. */
1210
1211 /* By default, resume all threads of all processes. */
1212 resume_ptid = RESUME_ALL;
1213
1214 /* Maybe resume only all threads of the current process. */
1215 if (!sched_multi && target_supports_multi_process ())
1216 {
1217 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1218 }
1219
1220 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1221 if (singlestep_breakpoints_inserted_p
1222 && stepping_past_singlestep_breakpoint)
c906108c 1223 {
cd76b0b7
VP
1224 /* The situation here is as follows. In thread T1 we wanted to
1225 single-step. Lacking hardware single-stepping we've
1226 set breakpoint at the PC of the next instruction -- call it
1227 P. After resuming, we've hit that breakpoint in thread T2.
1228 Now we've removed original breakpoint, inserted breakpoint
1229 at P+1, and try to step to advance T2 past breakpoint.
1230 We need to step only T2, as if T1 is allowed to freely run,
1231 it can run past P, and if other threads are allowed to run,
1232 they can hit breakpoint at P+1, and nested hits of single-step
1233 breakpoints is not something we'd want -- that's complicated
1234 to support, and has no value. */
1235 resume_ptid = inferior_ptid;
1236 }
d4db2f36
PA
1237 else if ((step || singlestep_breakpoints_inserted_p)
1238 && tp->trap_expected)
cd76b0b7 1239 {
74960c60
VP
1240 /* We're allowing a thread to run past a breakpoint it has
1241 hit, by single-stepping the thread with the breakpoint
1242 removed. In which case, we need to single-step only this
1243 thread, and keep others stopped, as they can miss this
1244 breakpoint if allowed to run.
1245
1246 The current code actually removes all breakpoints when
1247 doing this, not just the one being stepped over, so if we
1248 let other threads run, we can actually miss any
1249 breakpoint, not just the one at PC. */
ef5cf84e 1250 resume_ptid = inferior_ptid;
c906108c 1251 }
d4db2f36 1252 else if (non_stop)
94cc34af
PA
1253 {
1254 /* With non-stop mode on, threads are always handled
1255 individually. */
1256 resume_ptid = inferior_ptid;
1257 }
1258 else if ((scheduler_mode == schedlock_on)
1259 || (scheduler_mode == schedlock_step
1260 && (step || singlestep_breakpoints_inserted_p)))
c906108c 1261 {
ef5cf84e 1262 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 1263 resume_ptid = inferior_ptid;
c906108c 1264 }
ef5cf84e 1265
515630c5 1266 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1267 {
1268 /* Most targets can step a breakpoint instruction, thus
1269 executing it normally. But if this one cannot, just
1270 continue and we will hit it anyway. */
237fc4c9 1271 if (step && breakpoint_inserted_here_p (pc))
c4ed33b9
AC
1272 step = 0;
1273 }
237fc4c9
PA
1274
1275 if (debug_displaced
515630c5 1276 && use_displaced_stepping (gdbarch)
4e1c45ea 1277 && tp->trap_expected)
237fc4c9 1278 {
515630c5
UW
1279 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1280 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1281 gdb_byte buf[4];
1282
1283 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1284 paddr_nz (actual_pc));
1285 read_memory (actual_pc, buf, sizeof (buf));
1286 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1287 }
1288
e58b0e63
PA
1289 /* Install inferior's terminal modes. */
1290 target_terminal_inferior ();
1291
2020b7ab
PA
1292 /* Avoid confusing the next resume, if the next stop/resume
1293 happens to apply to another thread. */
1294 tp->stop_signal = TARGET_SIGNAL_0;
607cecd2
PA
1295
1296 target_resume (resume_ptid, step, sig);
c906108c
SS
1297 }
1298
1299 discard_cleanups (old_cleanups);
1300}
1301\f
237fc4c9 1302/* Proceeding. */
c906108c
SS
1303
1304/* Clear out all variables saying what to do when inferior is continued.
1305 First do this, then set the ones you want, then call `proceed'. */
1306
a7212384
UW
1307static void
1308clear_proceed_status_thread (struct thread_info *tp)
c906108c 1309{
a7212384
UW
1310 if (debug_infrun)
1311 fprintf_unfiltered (gdb_stdlog,
1312 "infrun: clear_proceed_status_thread (%s)\n",
1313 target_pid_to_str (tp->ptid));
d6b48e9c 1314
a7212384
UW
1315 tp->trap_expected = 0;
1316 tp->step_range_start = 0;
1317 tp->step_range_end = 0;
1318 tp->step_frame_id = null_frame_id;
1319 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1320 tp->stop_requested = 0;
4e1c45ea 1321
a7212384 1322 tp->stop_step = 0;
32400beb 1323
a7212384 1324 tp->proceed_to_finish = 0;
414c69f7 1325
a7212384
UW
1326 /* Discard any remaining commands or status from previous stop. */
1327 bpstat_clear (&tp->stop_bpstat);
1328}
32400beb 1329
a7212384
UW
1330static int
1331clear_proceed_status_callback (struct thread_info *tp, void *data)
1332{
1333 if (is_exited (tp->ptid))
1334 return 0;
d6b48e9c 1335
a7212384
UW
1336 clear_proceed_status_thread (tp);
1337 return 0;
1338}
1339
1340void
1341clear_proceed_status (void)
1342{
1343 if (!ptid_equal (inferior_ptid, null_ptid))
1344 {
1345 struct inferior *inferior;
1346
1347 if (non_stop)
1348 {
1349 /* If in non-stop mode, only delete the per-thread status
1350 of the current thread. */
1351 clear_proceed_status_thread (inferior_thread ());
1352 }
1353 else
1354 {
1355 /* In all-stop mode, delete the per-thread status of
1356 *all* threads. */
1357 iterate_over_threads (clear_proceed_status_callback, NULL);
1358 }
1359
d6b48e9c
PA
1360 inferior = current_inferior ();
1361 inferior->stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
1362 }
1363
c906108c 1364 stop_after_trap = 0;
f3b1572e
PA
1365
1366 observer_notify_about_to_proceed ();
c906108c 1367
d5c31457
UW
1368 if (stop_registers)
1369 {
1370 regcache_xfree (stop_registers);
1371 stop_registers = NULL;
1372 }
c906108c
SS
1373}
1374
5a437975
DE
1375/* Check the current thread against the thread that reported the most recent
1376 event. If a step-over is required return TRUE and set the current thread
1377 to the old thread. Otherwise return FALSE.
1378
1379 This should be suitable for any targets that support threads. */
ea67f13b
DJ
1380
1381static int
6a6b96b9 1382prepare_to_proceed (int step)
ea67f13b
DJ
1383{
1384 ptid_t wait_ptid;
1385 struct target_waitstatus wait_status;
5a437975
DE
1386 int schedlock_enabled;
1387
1388 /* With non-stop mode on, threads are always handled individually. */
1389 gdb_assert (! non_stop);
ea67f13b
DJ
1390
1391 /* Get the last target status returned by target_wait(). */
1392 get_last_target_status (&wait_ptid, &wait_status);
1393
6a6b96b9 1394 /* Make sure we were stopped at a breakpoint. */
ea67f13b 1395 if (wait_status.kind != TARGET_WAITKIND_STOPPED
6a6b96b9 1396 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
ea67f13b
DJ
1397 {
1398 return 0;
1399 }
1400
5a437975
DE
1401 schedlock_enabled = (scheduler_mode == schedlock_on
1402 || (scheduler_mode == schedlock_step
1403 && step));
1404
d4db2f36
PA
1405 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
1406 if (schedlock_enabled)
1407 return 0;
1408
1409 /* Don't switch over if we're about to resume some other process
1410 other than WAIT_PTID's, and schedule-multiple is off. */
1411 if (!sched_multi
1412 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
1413 return 0;
1414
6a6b96b9 1415 /* Switched over from WAIT_PID. */
ea67f13b 1416 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 1417 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 1418 {
515630c5
UW
1419 struct regcache *regcache = get_thread_regcache (wait_ptid);
1420
1421 if (breakpoint_here_p (regcache_read_pc (regcache)))
ea67f13b 1422 {
515630c5
UW
1423 /* If stepping, remember current thread to switch back to. */
1424 if (step)
1425 deferred_step_ptid = inferior_ptid;
ea67f13b 1426
515630c5
UW
1427 /* Switch back to WAIT_PID thread. */
1428 switch_to_thread (wait_ptid);
6a6b96b9 1429
515630c5
UW
1430 /* We return 1 to indicate that there is a breakpoint here,
1431 so we need to step over it before continuing to avoid
1432 hitting it straight away. */
1433 return 1;
1434 }
ea67f13b
DJ
1435 }
1436
1437 return 0;
ea67f13b 1438}
e4846b08 1439
c906108c
SS
1440/* Basic routine for continuing the program in various fashions.
1441
1442 ADDR is the address to resume at, or -1 for resume where stopped.
1443 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 1444 or -1 for act according to how it stopped.
c906108c 1445 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
1446 -1 means return after that and print nothing.
1447 You should probably set various step_... variables
1448 before calling here, if you are stepping.
c906108c
SS
1449
1450 You should call clear_proceed_status before calling proceed. */
1451
1452void
96baa820 1453proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 1454{
e58b0e63
PA
1455 struct regcache *regcache;
1456 struct gdbarch *gdbarch;
4e1c45ea 1457 struct thread_info *tp;
e58b0e63 1458 CORE_ADDR pc;
c906108c
SS
1459 int oneproc = 0;
1460
e58b0e63
PA
1461 /* If we're stopped at a fork/vfork, follow the branch set by the
1462 "set follow-fork-mode" command; otherwise, we'll just proceed
1463 resuming the current thread. */
1464 if (!follow_fork ())
1465 {
1466 /* The target for some reason decided not to resume. */
1467 normal_stop ();
1468 return;
1469 }
1470
1471 regcache = get_current_regcache ();
1472 gdbarch = get_regcache_arch (regcache);
1473 pc = regcache_read_pc (regcache);
1474
c906108c 1475 if (step > 0)
515630c5 1476 step_start_function = find_pc_function (pc);
c906108c
SS
1477 if (step < 0)
1478 stop_after_trap = 1;
1479
2acceee2 1480 if (addr == (CORE_ADDR) -1)
c906108c 1481 {
b2175913
MS
1482 if (pc == stop_pc && breakpoint_here_p (pc)
1483 && execution_direction != EXEC_REVERSE)
3352ef37
AC
1484 /* There is a breakpoint at the address we will resume at,
1485 step one instruction before inserting breakpoints so that
1486 we do not stop right away (and report a second hit at this
b2175913
MS
1487 breakpoint).
1488
1489 Note, we don't do this in reverse, because we won't
1490 actually be executing the breakpoint insn anyway.
1491 We'll be (un-)executing the previous instruction. */
1492
c906108c 1493 oneproc = 1;
515630c5
UW
1494 else if (gdbarch_single_step_through_delay_p (gdbarch)
1495 && gdbarch_single_step_through_delay (gdbarch,
1496 get_current_frame ()))
3352ef37
AC
1497 /* We stepped onto an instruction that needs to be stepped
1498 again before re-inserting the breakpoint, do so. */
c906108c
SS
1499 oneproc = 1;
1500 }
1501 else
1502 {
515630c5 1503 regcache_write_pc (regcache, addr);
c906108c
SS
1504 }
1505
527159b7 1506 if (debug_infrun)
8a9de0e4
AC
1507 fprintf_unfiltered (gdb_stdlog,
1508 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1509 paddr_nz (addr), siggnal, step);
527159b7 1510
94cc34af
PA
1511 if (non_stop)
1512 /* In non-stop, each thread is handled individually. The context
1513 must already be set to the right thread here. */
1514 ;
1515 else
1516 {
1517 /* In a multi-threaded task we may select another thread and
1518 then continue or step.
c906108c 1519
94cc34af
PA
1520 But if the old thread was stopped at a breakpoint, it will
1521 immediately cause another breakpoint stop without any
1522 execution (i.e. it will report a breakpoint hit incorrectly).
1523 So we must step over it first.
c906108c 1524
94cc34af
PA
1525 prepare_to_proceed checks the current thread against the
1526 thread that reported the most recent event. If a step-over
1527 is required it returns TRUE and sets the current thread to
1528 the old thread. */
1529 if (prepare_to_proceed (step))
1530 oneproc = 1;
1531 }
c906108c 1532
4e1c45ea
PA
1533 /* prepare_to_proceed may change the current thread. */
1534 tp = inferior_thread ();
1535
c906108c 1536 if (oneproc)
74960c60 1537 {
4e1c45ea 1538 tp->trap_expected = 1;
237fc4c9
PA
1539 /* If displaced stepping is enabled, we can step over the
1540 breakpoint without hitting it, so leave all breakpoints
1541 inserted. Otherwise we need to disable all breakpoints, step
1542 one instruction, and then re-add them when that step is
1543 finished. */
515630c5 1544 if (!use_displaced_stepping (gdbarch))
237fc4c9 1545 remove_breakpoints ();
74960c60 1546 }
237fc4c9
PA
1547
1548 /* We can insert breakpoints if we're not trying to step over one,
1549 or if we are stepping over one but we're using displaced stepping
1550 to do so. */
4e1c45ea 1551 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
c36b740a 1552 insert_breakpoints ();
c906108c 1553
2020b7ab
PA
1554 if (!non_stop)
1555 {
1556 /* Pass the last stop signal to the thread we're resuming,
1557 irrespective of whether the current thread is the thread that
1558 got the last event or not. This was historically GDB's
1559 behaviour before keeping a stop_signal per thread. */
1560
1561 struct thread_info *last_thread;
1562 ptid_t last_ptid;
1563 struct target_waitstatus last_status;
1564
1565 get_last_target_status (&last_ptid, &last_status);
1566 if (!ptid_equal (inferior_ptid, last_ptid)
1567 && !ptid_equal (last_ptid, null_ptid)
1568 && !ptid_equal (last_ptid, minus_one_ptid))
1569 {
e09875d4 1570 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
1571 if (last_thread)
1572 {
1573 tp->stop_signal = last_thread->stop_signal;
1574 last_thread->stop_signal = TARGET_SIGNAL_0;
1575 }
1576 }
1577 }
1578
c906108c 1579 if (siggnal != TARGET_SIGNAL_DEFAULT)
2020b7ab 1580 tp->stop_signal = siggnal;
c906108c
SS
1581 /* If this signal should not be seen by program,
1582 give it zero. Used for debugging signals. */
2020b7ab
PA
1583 else if (!signal_program[tp->stop_signal])
1584 tp->stop_signal = TARGET_SIGNAL_0;
c906108c
SS
1585
1586 annotate_starting ();
1587
1588 /* Make sure that output from GDB appears before output from the
1589 inferior. */
1590 gdb_flush (gdb_stdout);
1591
e4846b08
JJ
1592 /* Refresh prev_pc value just prior to resuming. This used to be
1593 done in stop_stepping, however, setting prev_pc there did not handle
1594 scenarios such as inferior function calls or returning from
1595 a function via the return command. In those cases, the prev_pc
1596 value was not set properly for subsequent commands. The prev_pc value
1597 is used to initialize the starting line number in the ecs. With an
1598 invalid value, the gdb next command ends up stopping at the position
1599 represented by the next line table entry past our start position.
1600 On platforms that generate one line table entry per line, this
1601 is not a problem. However, on the ia64, the compiler generates
1602 extraneous line table entries that do not increase the line number.
1603 When we issue the gdb next command on the ia64 after an inferior call
1604 or a return command, we often end up a few instructions forward, still
1605 within the original line we started.
1606
1607 An attempt was made to have init_execution_control_state () refresh
1608 the prev_pc value before calculating the line number. This approach
1609 did not work because on platforms that use ptrace, the pc register
1610 cannot be read unless the inferior is stopped. At that point, we
515630c5 1611 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
e4846b08 1612 call can fail. Setting the prev_pc value here ensures the value is
8fb3e588 1613 updated correctly when the inferior is stopped. */
4e1c45ea 1614 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 1615
59f0d5d9 1616 /* Fill in with reasonable starting values. */
4e1c45ea 1617 init_thread_stepping_state (tp);
59f0d5d9 1618
59f0d5d9
PA
1619 /* Reset to normal state. */
1620 init_infwait_state ();
1621
c906108c 1622 /* Resume inferior. */
2020b7ab 1623 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
c906108c
SS
1624
1625 /* Wait for it to stop (if not standalone)
1626 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
1627 /* Do this only if we are not using the event loop, or if the target
1628 does not support asynchronous execution. */
362646f5 1629 if (!target_can_async_p ())
43ff13b4 1630 {
ae123ec6 1631 wait_for_inferior (0);
43ff13b4
JM
1632 normal_stop ();
1633 }
c906108c 1634}
c906108c
SS
1635\f
1636
1637/* Start remote-debugging of a machine over a serial link. */
96baa820 1638
c906108c 1639void
8621d6a9 1640start_remote (int from_tty)
c906108c 1641{
d6b48e9c 1642 struct inferior *inferior;
c906108c 1643 init_wait_for_inferior ();
d6b48e9c
PA
1644
1645 inferior = current_inferior ();
1646 inferior->stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 1647
6426a772
JM
1648 /* Always go on waiting for the target, regardless of the mode. */
1649 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 1650 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
1651 nothing is returned (instead of just blocking). Because of this,
1652 targets expecting an immediate response need to, internally, set
1653 things up so that the target_wait() is forced to eventually
1654 timeout. */
1655 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1656 differentiate to its caller what the state of the target is after
1657 the initial open has been performed. Here we're assuming that
1658 the target has stopped. It should be possible to eventually have
1659 target_open() return to the caller an indication that the target
1660 is currently running and GDB state should be set to the same as
1661 for an async run. */
ae123ec6 1662 wait_for_inferior (0);
8621d6a9
DJ
1663
1664 /* Now that the inferior has stopped, do any bookkeeping like
1665 loading shared libraries. We want to do this before normal_stop,
1666 so that the displayed frame is up to date. */
1667 post_create_inferior (&current_target, from_tty);
1668
6426a772 1669 normal_stop ();
c906108c
SS
1670}
1671
1672/* Initialize static vars when a new inferior begins. */
1673
1674void
96baa820 1675init_wait_for_inferior (void)
c906108c
SS
1676{
1677 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 1678
c906108c
SS
1679 breakpoint_init_inferior (inf_starting);
1680
c906108c 1681 clear_proceed_status ();
9f976b41
DJ
1682
1683 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 1684 deferred_step_ptid = null_ptid;
ca005067
DJ
1685
1686 target_last_wait_ptid = minus_one_ptid;
237fc4c9 1687
0d1e5fa7
PA
1688 previous_inferior_ptid = null_ptid;
1689 init_infwait_state ();
1690
237fc4c9 1691 displaced_step_clear ();
c906108c 1692}
237fc4c9 1693
c906108c 1694\f
b83266a0
SS
1695/* This enum encodes possible reasons for doing a target_wait, so that
1696 wfi can call target_wait in one place. (Ultimately the call will be
1697 moved out of the infinite loop entirely.) */
1698
c5aa993b
JM
1699enum infwait_states
1700{
cd0fc7c3
SS
1701 infwait_normal_state,
1702 infwait_thread_hop_state,
d983da9c 1703 infwait_step_watch_state,
cd0fc7c3 1704 infwait_nonstep_watch_state
b83266a0
SS
1705};
1706
11cf8741
JM
1707/* Why did the inferior stop? Used to print the appropriate messages
1708 to the interface from within handle_inferior_event(). */
1709enum inferior_stop_reason
1710{
11cf8741
JM
1711 /* Step, next, nexti, stepi finished. */
1712 END_STEPPING_RANGE,
11cf8741
JM
1713 /* Inferior terminated by signal. */
1714 SIGNAL_EXITED,
1715 /* Inferior exited. */
1716 EXITED,
1717 /* Inferior received signal, and user asked to be notified. */
b2175913
MS
1718 SIGNAL_RECEIVED,
1719 /* Reverse execution -- target ran out of history info. */
1720 NO_HISTORY
11cf8741
JM
1721};
1722
0d1e5fa7
PA
1723/* The PTID we'll do a target_wait on.*/
1724ptid_t waiton_ptid;
1725
1726/* Current inferior wait state. */
1727enum infwait_states infwait_state;
cd0fc7c3 1728
0d1e5fa7
PA
1729/* Data to be passed around while handling an event. This data is
1730 discarded between events. */
c5aa993b 1731struct execution_control_state
488f131b 1732{
0d1e5fa7 1733 ptid_t ptid;
4e1c45ea
PA
1734 /* The thread that got the event, if this was a thread event; NULL
1735 otherwise. */
1736 struct thread_info *event_thread;
1737
488f131b 1738 struct target_waitstatus ws;
488f131b
JB
1739 int random_signal;
1740 CORE_ADDR stop_func_start;
1741 CORE_ADDR stop_func_end;
1742 char *stop_func_name;
488f131b 1743 int new_thread_event;
488f131b
JB
1744 int wait_some_more;
1745};
1746
1747void init_execution_control_state (struct execution_control_state *ecs);
1748
1749void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 1750
568d6575
UW
1751static void handle_step_into_function (struct gdbarch *gdbarch,
1752 struct execution_control_state *ecs);
1753static void handle_step_into_function_backward (struct gdbarch *gdbarch,
1754 struct execution_control_state *ecs);
44cbf7b5 1755static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
14e60db5 1756static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
44cbf7b5
AC
1757static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1758 struct frame_id sr_id);
611c83ae
PA
1759static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1760
104c1213
JM
1761static void stop_stepping (struct execution_control_state *ecs);
1762static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 1763static void keep_going (struct execution_control_state *ecs);
488f131b
JB
1764static void print_stop_reason (enum inferior_stop_reason stop_reason,
1765 int stop_info);
104c1213 1766
252fbfc8
PA
1767/* Callback for iterate over threads. If the thread is stopped, but
1768 the user/frontend doesn't know about that yet, go through
1769 normal_stop, as if the thread had just stopped now. ARG points at
1770 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
1771 ptid_is_pid(PTID) is true, applies to all threads of the process
1772 pointed at by PTID. Otherwise, apply only to the thread pointed by
1773 PTID. */
1774
1775static int
1776infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
1777{
1778 ptid_t ptid = * (ptid_t *) arg;
1779
1780 if ((ptid_equal (info->ptid, ptid)
1781 || ptid_equal (minus_one_ptid, ptid)
1782 || (ptid_is_pid (ptid)
1783 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
1784 && is_running (info->ptid)
1785 && !is_executing (info->ptid))
1786 {
1787 struct cleanup *old_chain;
1788 struct execution_control_state ecss;
1789 struct execution_control_state *ecs = &ecss;
1790
1791 memset (ecs, 0, sizeof (*ecs));
1792
1793 old_chain = make_cleanup_restore_current_thread ();
1794
1795 switch_to_thread (info->ptid);
1796
1797 /* Go through handle_inferior_event/normal_stop, so we always
1798 have consistent output as if the stop event had been
1799 reported. */
1800 ecs->ptid = info->ptid;
e09875d4 1801 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8
PA
1802 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1803 ecs->ws.value.sig = TARGET_SIGNAL_0;
1804
1805 handle_inferior_event (ecs);
1806
1807 if (!ecs->wait_some_more)
1808 {
1809 struct thread_info *tp;
1810
1811 normal_stop ();
1812
1813 /* Finish off the continuations. The continations
1814 themselves are responsible for realising the thread
1815 didn't finish what it was supposed to do. */
1816 tp = inferior_thread ();
1817 do_all_intermediate_continuations_thread (tp);
1818 do_all_continuations_thread (tp);
1819 }
1820
1821 do_cleanups (old_chain);
1822 }
1823
1824 return 0;
1825}
1826
1827/* This function is attached as a "thread_stop_requested" observer.
1828 Cleanup local state that assumed the PTID was to be resumed, and
1829 report the stop to the frontend. */
1830
2c0b251b 1831static void
252fbfc8
PA
1832infrun_thread_stop_requested (ptid_t ptid)
1833{
1834 struct displaced_step_request *it, *next, *prev = NULL;
1835
1836 /* PTID was requested to stop. Remove it from the displaced
1837 stepping queue, so we don't try to resume it automatically. */
1838 for (it = displaced_step_request_queue; it; it = next)
1839 {
1840 next = it->next;
1841
1842 if (ptid_equal (it->ptid, ptid)
1843 || ptid_equal (minus_one_ptid, ptid)
1844 || (ptid_is_pid (ptid)
1845 && ptid_get_pid (ptid) == ptid_get_pid (it->ptid)))
1846 {
1847 if (displaced_step_request_queue == it)
1848 displaced_step_request_queue = it->next;
1849 else
1850 prev->next = it->next;
1851
1852 xfree (it);
1853 }
1854 else
1855 prev = it;
1856 }
1857
1858 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
1859}
1860
a07daef3
PA
1861static void
1862infrun_thread_thread_exit (struct thread_info *tp, int silent)
1863{
1864 if (ptid_equal (target_last_wait_ptid, tp->ptid))
1865 nullify_last_target_wait_ptid ();
1866}
1867
4e1c45ea
PA
1868/* Callback for iterate_over_threads. */
1869
1870static int
1871delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
1872{
1873 if (is_exited (info->ptid))
1874 return 0;
1875
1876 delete_step_resume_breakpoint (info);
1877 return 0;
1878}
1879
1880/* In all-stop, delete the step resume breakpoint of any thread that
1881 had one. In non-stop, delete the step resume breakpoint of the
1882 thread that just stopped. */
1883
1884static void
1885delete_step_thread_step_resume_breakpoint (void)
1886{
1887 if (!target_has_execution
1888 || ptid_equal (inferior_ptid, null_ptid))
1889 /* If the inferior has exited, we have already deleted the step
1890 resume breakpoints out of GDB's lists. */
1891 return;
1892
1893 if (non_stop)
1894 {
1895 /* If in non-stop mode, only delete the step-resume or
1896 longjmp-resume breakpoint of the thread that just stopped
1897 stepping. */
1898 struct thread_info *tp = inferior_thread ();
1899 delete_step_resume_breakpoint (tp);
1900 }
1901 else
1902 /* In all-stop mode, delete all step-resume and longjmp-resume
1903 breakpoints of any thread that had them. */
1904 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
1905}
1906
1907/* A cleanup wrapper. */
1908
1909static void
1910delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
1911{
1912 delete_step_thread_step_resume_breakpoint ();
1913}
1914
223698f8
DE
1915/* Pretty print the results of target_wait, for debugging purposes. */
1916
1917static void
1918print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
1919 const struct target_waitstatus *ws)
1920{
1921 char *status_string = target_waitstatus_to_string (ws);
1922 struct ui_file *tmp_stream = mem_fileopen ();
1923 char *text;
1924 long len;
1925
1926 /* The text is split over several lines because it was getting too long.
1927 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
1928 output as a unit; we want only one timestamp printed if debug_timestamp
1929 is set. */
1930
1931 fprintf_unfiltered (tmp_stream,
1932 "infrun: target_wait (%d", PIDGET (waiton_ptid));
1933 if (PIDGET (waiton_ptid) != -1)
1934 fprintf_unfiltered (tmp_stream,
1935 " [%s]", target_pid_to_str (waiton_ptid));
1936 fprintf_unfiltered (tmp_stream, ", status) =\n");
1937 fprintf_unfiltered (tmp_stream,
1938 "infrun: %d [%s],\n",
1939 PIDGET (result_ptid), target_pid_to_str (result_ptid));
1940 fprintf_unfiltered (tmp_stream,
1941 "infrun: %s\n",
1942 status_string);
1943
1944 text = ui_file_xstrdup (tmp_stream, &len);
1945
1946 /* This uses %s in part to handle %'s in the text, but also to avoid
1947 a gcc error: the format attribute requires a string literal. */
1948 fprintf_unfiltered (gdb_stdlog, "%s", text);
1949
1950 xfree (status_string);
1951 xfree (text);
1952 ui_file_delete (tmp_stream);
1953}
1954
cd0fc7c3 1955/* Wait for control to return from inferior to debugger.
ae123ec6
JB
1956
1957 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1958 as if they were SIGTRAP signals. This can be useful during
1959 the startup sequence on some targets such as HP/UX, where
1960 we receive an EXEC event instead of the expected SIGTRAP.
1961
cd0fc7c3
SS
1962 If inferior gets a signal, we may decide to start it up again
1963 instead of returning. That is why there is a loop in this function.
1964 When this function actually returns it means the inferior
1965 should be left stopped and GDB should read more commands. */
1966
1967void
ae123ec6 1968wait_for_inferior (int treat_exec_as_sigtrap)
cd0fc7c3
SS
1969{
1970 struct cleanup *old_cleanups;
0d1e5fa7 1971 struct execution_control_state ecss;
cd0fc7c3 1972 struct execution_control_state *ecs;
c906108c 1973
527159b7 1974 if (debug_infrun)
ae123ec6
JB
1975 fprintf_unfiltered
1976 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1977 treat_exec_as_sigtrap);
527159b7 1978
4e1c45ea
PA
1979 old_cleanups =
1980 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 1981
cd0fc7c3 1982 ecs = &ecss;
0d1e5fa7
PA
1983 memset (ecs, 0, sizeof (*ecs));
1984
cd0fc7c3
SS
1985 overlay_cache_invalid = 1;
1986
e0bb1c1c
PA
1987 /* We'll update this if & when we switch to a new thread. */
1988 previous_inferior_ptid = inferior_ptid;
1989
cd0fc7c3
SS
1990 /* We have to invalidate the registers BEFORE calling target_wait
1991 because they can be loaded from the target while in target_wait.
1992 This makes remote debugging a bit more efficient for those
1993 targets that provide critical registers as part of their normal
1994 status mechanism. */
1995
1996 registers_changed ();
b83266a0 1997
c906108c
SS
1998 while (1)
1999 {
29f49a6a
PA
2000 struct cleanup *old_chain;
2001
9a4105ab 2002 if (deprecated_target_wait_hook)
47608cb1 2003 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2004 else
47608cb1 2005 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2006
f00150c9 2007 if (debug_infrun)
223698f8 2008 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2009
ae123ec6
JB
2010 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
2011 {
2012 xfree (ecs->ws.value.execd_pathname);
2013 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2014 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
2015 }
2016
29f49a6a
PA
2017 /* If an error happens while handling the event, propagate GDB's
2018 knowledge of the executing state to the frontend/user running
2019 state. */
2020 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2021
cd0fc7c3
SS
2022 /* Now figure out what to do with the result of the result. */
2023 handle_inferior_event (ecs);
c906108c 2024
29f49a6a
PA
2025 /* No error, don't finish the state yet. */
2026 discard_cleanups (old_chain);
2027
cd0fc7c3
SS
2028 if (!ecs->wait_some_more)
2029 break;
2030 }
4e1c45ea 2031
cd0fc7c3
SS
2032 do_cleanups (old_cleanups);
2033}
c906108c 2034
43ff13b4
JM
2035/* Asynchronous version of wait_for_inferior. It is called by the
2036 event loop whenever a change of state is detected on the file
2037 descriptor corresponding to the target. It can be called more than
2038 once to complete a single execution command. In such cases we need
a474d7c2
PA
2039 to keep the state in a global variable ECSS. If it is the last time
2040 that this function is called for a single execution command, then
2041 report to the user that the inferior has stopped, and do the
2042 necessary cleanups. */
43ff13b4
JM
2043
2044void
fba45db2 2045fetch_inferior_event (void *client_data)
43ff13b4 2046{
0d1e5fa7 2047 struct execution_control_state ecss;
a474d7c2 2048 struct execution_control_state *ecs = &ecss;
4f8d22e3 2049 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2050 struct cleanup *ts_old_chain;
4f8d22e3 2051 int was_sync = sync_execution;
43ff13b4 2052
0d1e5fa7
PA
2053 memset (ecs, 0, sizeof (*ecs));
2054
59f0d5d9 2055 overlay_cache_invalid = 1;
43ff13b4 2056
e0bb1c1c
PA
2057 /* We can only rely on wait_for_more being correct before handling
2058 the event in all-stop, but previous_inferior_ptid isn't used in
2059 non-stop. */
2060 if (!ecs->wait_some_more)
2061 /* We'll update this if & when we switch to a new thread. */
2062 previous_inferior_ptid = inferior_ptid;
2063
4f8d22e3
PA
2064 if (non_stop)
2065 /* In non-stop mode, the user/frontend should not notice a thread
2066 switch due to internal events. Make sure we reverse to the
2067 user selected thread and frame after handling the event and
2068 running any breakpoint commands. */
2069 make_cleanup_restore_current_thread ();
2070
59f0d5d9
PA
2071 /* We have to invalidate the registers BEFORE calling target_wait
2072 because they can be loaded from the target while in target_wait.
2073 This makes remote debugging a bit more efficient for those
2074 targets that provide critical registers as part of their normal
2075 status mechanism. */
43ff13b4 2076
59f0d5d9 2077 registers_changed ();
43ff13b4 2078
9a4105ab 2079 if (deprecated_target_wait_hook)
a474d7c2 2080 ecs->ptid =
47608cb1 2081 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2082 else
47608cb1 2083 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2084
f00150c9 2085 if (debug_infrun)
223698f8 2086 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2087
94cc34af
PA
2088 if (non_stop
2089 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2090 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2091 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2092 /* In non-stop mode, each thread is handled individually. Switch
2093 early, so the global state is set correctly for this
2094 thread. */
2095 context_switch (ecs->ptid);
2096
29f49a6a
PA
2097 /* If an error happens while handling the event, propagate GDB's
2098 knowledge of the executing state to the frontend/user running
2099 state. */
2100 if (!non_stop)
2101 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2102 else
2103 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2104
43ff13b4 2105 /* Now figure out what to do with the result of the result. */
a474d7c2 2106 handle_inferior_event (ecs);
43ff13b4 2107
a474d7c2 2108 if (!ecs->wait_some_more)
43ff13b4 2109 {
d6b48e9c
PA
2110 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2111
4e1c45ea 2112 delete_step_thread_step_resume_breakpoint ();
f107f563 2113
d6b48e9c
PA
2114 /* We may not find an inferior if this was a process exit. */
2115 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2116 normal_stop ();
2117
af679fd0
PA
2118 if (target_has_execution
2119 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2120 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2121 && ecs->event_thread->step_multi
414c69f7 2122 && ecs->event_thread->stop_step)
c2d11a7d
JM
2123 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2124 else
2125 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4 2126 }
4f8d22e3 2127
29f49a6a
PA
2128 /* No error, don't finish the thread states yet. */
2129 discard_cleanups (ts_old_chain);
2130
4f8d22e3
PA
2131 /* Revert thread and frame. */
2132 do_cleanups (old_chain);
2133
2134 /* If the inferior was in sync execution mode, and now isn't,
2135 restore the prompt. */
2136 if (was_sync && !sync_execution)
2137 display_gdb_prompt (0);
43ff13b4
JM
2138}
2139
cd0fc7c3
SS
2140/* Prepare an execution control state for looping through a
2141 wait_for_inferior-type loop. */
2142
2143void
96baa820 2144init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3
SS
2145{
2146 ecs->random_signal = 0;
0d1e5fa7
PA
2147}
2148
2149/* Clear context switchable stepping state. */
2150
2151void
4e1c45ea 2152init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 2153{
2afb61aa
PA
2154 struct symtab_and_line sal;
2155
0d1e5fa7
PA
2156 tss->stepping_over_breakpoint = 0;
2157 tss->step_after_step_resume_breakpoint = 0;
2158 tss->stepping_through_solib_after_catch = 0;
2159 tss->stepping_through_solib_catchpoints = NULL;
2afb61aa 2160
4e1c45ea 2161 sal = find_pc_line (tss->prev_pc, 0);
2afb61aa
PA
2162 tss->current_line = sal.line;
2163 tss->current_symtab = sal.symtab;
cd0fc7c3
SS
2164}
2165
e02bc4cc 2166/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2167 target_wait()/deprecated_target_wait_hook(). The data is actually
2168 cached by handle_inferior_event(), which gets called immediately
2169 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2170
2171void
488f131b 2172get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2173{
39f77062 2174 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2175 *status = target_last_waitstatus;
2176}
2177
ac264b3b
MS
2178void
2179nullify_last_target_wait_ptid (void)
2180{
2181 target_last_wait_ptid = minus_one_ptid;
2182}
2183
dcf4fbde 2184/* Switch thread contexts. */
dd80620e
MS
2185
2186static void
0d1e5fa7 2187context_switch (ptid_t ptid)
dd80620e 2188{
fd48f117
DJ
2189 if (debug_infrun)
2190 {
2191 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2192 target_pid_to_str (inferior_ptid));
2193 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2194 target_pid_to_str (ptid));
fd48f117
DJ
2195 }
2196
0d1e5fa7 2197 switch_to_thread (ptid);
dd80620e
MS
2198}
2199
4fa8626c
DJ
2200static void
2201adjust_pc_after_break (struct execution_control_state *ecs)
2202{
24a73cce
UW
2203 struct regcache *regcache;
2204 struct gdbarch *gdbarch;
8aad930b 2205 CORE_ADDR breakpoint_pc;
4fa8626c 2206
4fa8626c
DJ
2207 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2208 we aren't, just return.
9709f61c
DJ
2209
2210 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2211 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2212 implemented by software breakpoints should be handled through the normal
2213 breakpoint layer.
8fb3e588 2214
4fa8626c
DJ
2215 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2216 different signals (SIGILL or SIGEMT for instance), but it is less
2217 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2218 gdbarch_decr_pc_after_break. I don't know any specific target that
2219 generates these signals at breakpoints (the code has been in GDB since at
2220 least 1992) so I can not guess how to handle them here.
8fb3e588 2221
e6cf7916
UW
2222 In earlier versions of GDB, a target with
2223 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2224 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2225 target with both of these set in GDB history, and it seems unlikely to be
2226 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2227
2228 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2229 return;
2230
2231 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2232 return;
2233
4058b839
PA
2234 /* In reverse execution, when a breakpoint is hit, the instruction
2235 under it has already been de-executed. The reported PC always
2236 points at the breakpoint address, so adjusting it further would
2237 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2238 architecture:
2239
2240 B1 0x08000000 : INSN1
2241 B2 0x08000001 : INSN2
2242 0x08000002 : INSN3
2243 PC -> 0x08000003 : INSN4
2244
2245 Say you're stopped at 0x08000003 as above. Reverse continuing
2246 from that point should hit B2 as below. Reading the PC when the
2247 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2248 been de-executed already.
2249
2250 B1 0x08000000 : INSN1
2251 B2 PC -> 0x08000001 : INSN2
2252 0x08000002 : INSN3
2253 0x08000003 : INSN4
2254
2255 We can't apply the same logic as for forward execution, because
2256 we would wrongly adjust the PC to 0x08000000, since there's a
2257 breakpoint at PC - 1. We'd then report a hit on B1, although
2258 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2259 behaviour. */
2260 if (execution_direction == EXEC_REVERSE)
2261 return;
2262
24a73cce
UW
2263 /* If this target does not decrement the PC after breakpoints, then
2264 we have nothing to do. */
2265 regcache = get_thread_regcache (ecs->ptid);
2266 gdbarch = get_regcache_arch (regcache);
2267 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2268 return;
2269
8aad930b
AC
2270 /* Find the location where (if we've hit a breakpoint) the
2271 breakpoint would be. */
515630c5
UW
2272 breakpoint_pc = regcache_read_pc (regcache)
2273 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 2274
1c5cfe86
PA
2275 /* Check whether there actually is a software breakpoint inserted at
2276 that location.
2277
2278 If in non-stop mode, a race condition is possible where we've
2279 removed a breakpoint, but stop events for that breakpoint were
2280 already queued and arrive later. To suppress those spurious
2281 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2282 and retire them after a number of stop events are reported. */
2283 if (software_breakpoint_inserted_here_p (breakpoint_pc)
2284 || (non_stop && moribund_breakpoint_here_p (breakpoint_pc)))
8aad930b 2285 {
96429cc8
HZ
2286 struct cleanup *old_cleanups = NULL;
2287 if (RECORD_IS_USED)
2288 old_cleanups = record_gdb_operation_disable_set ();
2289
1c0fdd0e
UW
2290 /* When using hardware single-step, a SIGTRAP is reported for both
2291 a completed single-step and a software breakpoint. Need to
2292 differentiate between the two, as the latter needs adjusting
2293 but the former does not.
2294
2295 The SIGTRAP can be due to a completed hardware single-step only if
2296 - we didn't insert software single-step breakpoints
2297 - the thread to be examined is still the current thread
2298 - this thread is currently being stepped
2299
2300 If any of these events did not occur, we must have stopped due
2301 to hitting a software breakpoint, and have to back up to the
2302 breakpoint address.
2303
2304 As a special case, we could have hardware single-stepped a
2305 software breakpoint. In this case (prev_pc == breakpoint_pc),
2306 we also need to back up to the breakpoint address. */
2307
2308 if (singlestep_breakpoints_inserted_p
2309 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
2310 || !currently_stepping (ecs->event_thread)
2311 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 2312 regcache_write_pc (regcache, breakpoint_pc);
96429cc8
HZ
2313
2314 if (RECORD_IS_USED)
2315 do_cleanups (old_cleanups);
8aad930b 2316 }
4fa8626c
DJ
2317}
2318
0d1e5fa7
PA
2319void
2320init_infwait_state (void)
2321{
2322 waiton_ptid = pid_to_ptid (-1);
2323 infwait_state = infwait_normal_state;
2324}
2325
94cc34af
PA
2326void
2327error_is_running (void)
2328{
2329 error (_("\
2330Cannot execute this command while the selected thread is running."));
2331}
2332
2333void
2334ensure_not_running (void)
2335{
2336 if (is_running (inferior_ptid))
2337 error_is_running ();
2338}
2339
cd0fc7c3
SS
2340/* Given an execution control state that has been freshly filled in
2341 by an event from the inferior, figure out what it means and take
2342 appropriate action. */
c906108c 2343
cd0fc7c3 2344void
96baa820 2345handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 2346{
568d6575
UW
2347 struct frame_info *frame;
2348 struct gdbarch *gdbarch;
c8edd8b4 2349 int sw_single_step_trap_p = 0;
d983da9c
DJ
2350 int stopped_by_watchpoint;
2351 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 2352 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
2353 enum stop_kind stop_soon;
2354
2355 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2356 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2357 && ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2358 {
2359 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2360 gdb_assert (inf);
2361 stop_soon = inf->stop_soon;
2362 }
2363 else
2364 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 2365
e02bc4cc 2366 /* Cache the last pid/waitstatus. */
39f77062 2367 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 2368 target_last_waitstatus = ecs->ws;
e02bc4cc 2369
ca005067
DJ
2370 /* Always clear state belonging to the previous time we stopped. */
2371 stop_stack_dummy = 0;
2372
8c90c137
LM
2373 /* If it's a new process, add it to the thread database */
2374
2375 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
2376 && !ptid_equal (ecs->ptid, minus_one_ptid)
2377 && !in_thread_list (ecs->ptid));
2378
2379 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2380 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
2381 add_thread (ecs->ptid);
2382
e09875d4 2383 ecs->event_thread = find_thread_ptid (ecs->ptid);
88ed393a
JK
2384
2385 /* Dependent on valid ECS->EVENT_THREAD. */
2386 adjust_pc_after_break (ecs);
2387
2388 /* Dependent on the current PC value modified by adjust_pc_after_break. */
2389 reinit_frame_cache ();
2390
8c90c137
LM
2391 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2392 {
1c5cfe86
PA
2393 breakpoint_retire_moribund ();
2394
48844aa6
PA
2395 /* Mark the non-executing threads accordingly. In all-stop, all
2396 threads of all processes are stopped when we get any event
2397 reported. In non-stop mode, only the event thread stops. If
2398 we're handling a process exit in non-stop mode, there's
2399 nothing to do, as threads of the dead process are gone, and
2400 threads of any other process were left running. */
2401 if (!non_stop)
2402 set_executing (minus_one_ptid, 0);
2403 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2404 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
2405 set_executing (inferior_ptid, 0);
8c90c137
LM
2406 }
2407
0d1e5fa7 2408 switch (infwait_state)
488f131b
JB
2409 {
2410 case infwait_thread_hop_state:
527159b7 2411 if (debug_infrun)
8a9de0e4 2412 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
488f131b 2413 /* Cancel the waiton_ptid. */
0d1e5fa7 2414 waiton_ptid = pid_to_ptid (-1);
65e82032 2415 break;
b83266a0 2416
488f131b 2417 case infwait_normal_state:
527159b7 2418 if (debug_infrun)
8a9de0e4 2419 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
2420 break;
2421
2422 case infwait_step_watch_state:
2423 if (debug_infrun)
2424 fprintf_unfiltered (gdb_stdlog,
2425 "infrun: infwait_step_watch_state\n");
2426
2427 stepped_after_stopped_by_watchpoint = 1;
488f131b 2428 break;
b83266a0 2429
488f131b 2430 case infwait_nonstep_watch_state:
527159b7 2431 if (debug_infrun)
8a9de0e4
AC
2432 fprintf_unfiltered (gdb_stdlog,
2433 "infrun: infwait_nonstep_watch_state\n");
488f131b 2434 insert_breakpoints ();
c906108c 2435
488f131b
JB
2436 /* FIXME-maybe: is this cleaner than setting a flag? Does it
2437 handle things like signals arriving and other things happening
2438 in combination correctly? */
2439 stepped_after_stopped_by_watchpoint = 1;
2440 break;
65e82032
AC
2441
2442 default:
e2e0b3e5 2443 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 2444 }
0d1e5fa7 2445 infwait_state = infwait_normal_state;
c906108c 2446
488f131b
JB
2447 switch (ecs->ws.kind)
2448 {
2449 case TARGET_WAITKIND_LOADED:
527159b7 2450 if (debug_infrun)
8a9de0e4 2451 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
2452 /* Ignore gracefully during startup of the inferior, as it might
2453 be the shell which has just loaded some objects, otherwise
2454 add the symbols for the newly loaded objects. Also ignore at
2455 the beginning of an attach or remote session; we will query
2456 the full list of libraries once the connection is
2457 established. */
c0236d92 2458 if (stop_soon == NO_STOP_QUIETLY)
488f131b 2459 {
488f131b
JB
2460 /* Check for any newly added shared libraries if we're
2461 supposed to be adding them automatically. Switch
2462 terminal for any messages produced by
2463 breakpoint_re_set. */
2464 target_terminal_ours_for_output ();
aff6338a 2465 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
2466 stack's section table is kept up-to-date. Architectures,
2467 (e.g., PPC64), use the section table to perform
2468 operations such as address => section name and hence
2469 require the table to contain all sections (including
2470 those found in shared libraries). */
b0f4b84b 2471#ifdef SOLIB_ADD
aff6338a 2472 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
2473#else
2474 solib_add (NULL, 0, &current_target, auto_solib_add);
2475#endif
488f131b
JB
2476 target_terminal_inferior ();
2477
b0f4b84b
DJ
2478 /* If requested, stop when the dynamic linker notifies
2479 gdb of events. This allows the user to get control
2480 and place breakpoints in initializer routines for
2481 dynamically loaded objects (among other things). */
2482 if (stop_on_solib_events)
2483 {
2484 stop_stepping (ecs);
2485 return;
2486 }
2487
2488 /* NOTE drow/2007-05-11: This might be a good place to check
2489 for "catch load". */
488f131b 2490 }
b0f4b84b
DJ
2491
2492 /* If we are skipping through a shell, or through shared library
2493 loading that we aren't interested in, resume the program. If
2494 we're running the program normally, also resume. But stop if
2495 we're attaching or setting up a remote connection. */
2496 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
2497 {
74960c60
VP
2498 /* Loading of shared libraries might have changed breakpoint
2499 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
2500 if (stop_soon == NO_STOP_QUIETLY
2501 && !breakpoints_always_inserted_mode ())
74960c60 2502 insert_breakpoints ();
b0f4b84b
DJ
2503 resume (0, TARGET_SIGNAL_0);
2504 prepare_to_wait (ecs);
2505 return;
2506 }
2507
2508 break;
c5aa993b 2509
488f131b 2510 case TARGET_WAITKIND_SPURIOUS:
527159b7 2511 if (debug_infrun)
8a9de0e4 2512 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
2513 resume (0, TARGET_SIGNAL_0);
2514 prepare_to_wait (ecs);
2515 return;
c5aa993b 2516
488f131b 2517 case TARGET_WAITKIND_EXITED:
527159b7 2518 if (debug_infrun)
8a9de0e4 2519 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
fb66883a 2520 inferior_ptid = ecs->ptid;
488f131b
JB
2521 target_terminal_ours (); /* Must do this before mourn anyway */
2522 print_stop_reason (EXITED, ecs->ws.value.integer);
2523
2524 /* Record the exit code in the convenience variable $_exitcode, so
2525 that the user can inspect this again later. */
4fa62494
UW
2526 set_internalvar_integer (lookup_internalvar ("_exitcode"),
2527 (LONGEST) ecs->ws.value.integer);
488f131b
JB
2528 gdb_flush (gdb_stdout);
2529 target_mourn_inferior ();
1c0fdd0e 2530 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
2531 stop_print_frame = 0;
2532 stop_stepping (ecs);
2533 return;
c5aa993b 2534
488f131b 2535 case TARGET_WAITKIND_SIGNALLED:
527159b7 2536 if (debug_infrun)
8a9de0e4 2537 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
fb66883a 2538 inferior_ptid = ecs->ptid;
488f131b 2539 stop_print_frame = 0;
488f131b 2540 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 2541
488f131b
JB
2542 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2543 reach here unless the inferior is dead. However, for years
2544 target_kill() was called here, which hints that fatal signals aren't
2545 really fatal on some systems. If that's true, then some changes
2546 may be needed. */
2547 target_mourn_inferior ();
c906108c 2548
2020b7ab 2549 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
1c0fdd0e 2550 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
2551 stop_stepping (ecs);
2552 return;
c906108c 2553
488f131b
JB
2554 /* The following are the only cases in which we keep going;
2555 the above cases end in a continue or goto. */
2556 case TARGET_WAITKIND_FORKED:
deb3b17b 2557 case TARGET_WAITKIND_VFORKED:
527159b7 2558 if (debug_infrun)
8a9de0e4 2559 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
c906108c 2560
5a2901d9
DJ
2561 if (!ptid_equal (ecs->ptid, inferior_ptid))
2562 {
0d1e5fa7 2563 context_switch (ecs->ptid);
35f196d9 2564 reinit_frame_cache ();
5a2901d9
DJ
2565 }
2566
b242c3c2
PA
2567 /* Immediately detach breakpoints from the child before there's
2568 any chance of letting the user delete breakpoints from the
2569 breakpoint lists. If we don't do this early, it's easy to
2570 leave left over traps in the child, vis: "break foo; catch
2571 fork; c; <fork>; del; c; <child calls foo>". We only follow
2572 the fork on the last `continue', and by that time the
2573 breakpoint at "foo" is long gone from the breakpoint table.
2574 If we vforked, then we don't need to unpatch here, since both
2575 parent and child are sharing the same memory pages; we'll
2576 need to unpatch at follow/detach time instead to be certain
2577 that new breakpoints added between catchpoint hit time and
2578 vfork follow are detached. */
2579 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
2580 {
2581 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
2582
2583 /* This won't actually modify the breakpoint list, but will
2584 physically remove the breakpoints from the child. */
2585 detach_breakpoints (child_pid);
2586 }
2587
e58b0e63
PA
2588 /* In case the event is caught by a catchpoint, remember that
2589 the event is to be followed at the next resume of the thread,
2590 and not immediately. */
2591 ecs->event_thread->pending_follow = ecs->ws;
2592
fb14de7b 2593 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 2594
347bddb7 2595 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
675bf4cb 2596
347bddb7 2597 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
04e68871
DJ
2598
2599 /* If no catchpoint triggered for this, then keep going. */
2600 if (ecs->random_signal)
2601 {
e58b0e63
PA
2602 int should_resume;
2603
2020b7ab 2604 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
e58b0e63
PA
2605
2606 should_resume = follow_fork ();
2607
2608 ecs->event_thread = inferior_thread ();
2609 ecs->ptid = inferior_ptid;
2610
2611 if (should_resume)
2612 keep_going (ecs);
2613 else
2614 stop_stepping (ecs);
04e68871
DJ
2615 return;
2616 }
2020b7ab 2617 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
2618 goto process_event_stop_test;
2619
2620 case TARGET_WAITKIND_EXECD:
527159b7 2621 if (debug_infrun)
fc5261f2 2622 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 2623
5a2901d9
DJ
2624 if (!ptid_equal (ecs->ptid, inferior_ptid))
2625 {
0d1e5fa7 2626 context_switch (ecs->ptid);
35f196d9 2627 reinit_frame_cache ();
5a2901d9
DJ
2628 }
2629
fb14de7b 2630 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f
PA
2631
2632 /* This causes the eventpoints and symbol table to be reset.
2633 Must do this now, before trying to determine whether to
2634 stop. */
71b43ef8 2635 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f
PA
2636
2637 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2638 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2639
71b43ef8
PA
2640 /* Note that this may be referenced from inside
2641 bpstat_stop_status above, through inferior_has_execd. */
2642 xfree (ecs->ws.value.execd_pathname);
2643 ecs->ws.value.execd_pathname = NULL;
2644
04e68871
DJ
2645 /* If no catchpoint triggered for this, then keep going. */
2646 if (ecs->random_signal)
2647 {
2020b7ab 2648 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
2649 keep_going (ecs);
2650 return;
2651 }
2020b7ab 2652 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
2653 goto process_event_stop_test;
2654
b4dc5ffa
MK
2655 /* Be careful not to try to gather much state about a thread
2656 that's in a syscall. It's frequently a losing proposition. */
488f131b 2657 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 2658 if (debug_infrun)
8a9de0e4 2659 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
488f131b
JB
2660 resume (0, TARGET_SIGNAL_0);
2661 prepare_to_wait (ecs);
2662 return;
c906108c 2663
488f131b
JB
2664 /* Before examining the threads further, step this thread to
2665 get it entirely out of the syscall. (We get notice of the
2666 event when the thread is just on the verge of exiting a
2667 syscall. Stepping one instruction seems to get it back
b4dc5ffa 2668 into user code.) */
488f131b 2669 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 2670 if (debug_infrun)
8a9de0e4 2671 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
488f131b 2672 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
488f131b
JB
2673 prepare_to_wait (ecs);
2674 return;
c906108c 2675
488f131b 2676 case TARGET_WAITKIND_STOPPED:
527159b7 2677 if (debug_infrun)
8a9de0e4 2678 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2020b7ab 2679 ecs->event_thread->stop_signal = ecs->ws.value.sig;
488f131b 2680 break;
c906108c 2681
b2175913
MS
2682 case TARGET_WAITKIND_NO_HISTORY:
2683 /* Reverse execution: target ran out of history info. */
fb14de7b 2684 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
b2175913
MS
2685 print_stop_reason (NO_HISTORY, 0);
2686 stop_stepping (ecs);
2687 return;
2688
488f131b
JB
2689 /* We had an event in the inferior, but we are not interested
2690 in handling it at this level. The lower layers have already
8e7d2c16 2691 done what needs to be done, if anything.
8fb3e588
AC
2692
2693 One of the possible circumstances for this is when the
2694 inferior produces output for the console. The inferior has
2695 not stopped, and we are ignoring the event. Another possible
2696 circumstance is any event which the lower level knows will be
2697 reported multiple times without an intervening resume. */
488f131b 2698 case TARGET_WAITKIND_IGNORE:
527159b7 2699 if (debug_infrun)
8a9de0e4 2700 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
8e7d2c16 2701 prepare_to_wait (ecs);
488f131b
JB
2702 return;
2703 }
c906108c 2704
488f131b
JB
2705 if (ecs->new_thread_event)
2706 {
94cc34af
PA
2707 if (non_stop)
2708 /* Non-stop assumes that the target handles adding new threads
2709 to the thread list. */
2710 internal_error (__FILE__, __LINE__, "\
2711targets should add new threads to the thread list themselves in non-stop mode.");
2712
2713 /* We may want to consider not doing a resume here in order to
2714 give the user a chance to play with the new thread. It might
2715 be good to make that a user-settable option. */
2716
2717 /* At this point, all threads are stopped (happens automatically
2718 in either the OS or the native code). Therefore we need to
2719 continue all threads in order to make progress. */
2720
488f131b
JB
2721 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2722 prepare_to_wait (ecs);
2723 return;
2724 }
c906108c 2725
2020b7ab 2726 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
2727 {
2728 /* Do we need to clean up the state of a thread that has
2729 completed a displaced single-step? (Doing so usually affects
2730 the PC, so do it here, before we set stop_pc.) */
2731 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
2732
2733 /* If we either finished a single-step or hit a breakpoint, but
2734 the user wanted this thread to be stopped, pretend we got a
2735 SIG0 (generic unsignaled stop). */
2736
2737 if (ecs->event_thread->stop_requested
2738 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2739 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2740 }
237fc4c9 2741
515630c5 2742 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 2743
527159b7 2744 if (debug_infrun)
237fc4c9
PA
2745 {
2746 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2747 paddr_nz (stop_pc));
d92524f1 2748 if (target_stopped_by_watchpoint ())
237fc4c9
PA
2749 {
2750 CORE_ADDR addr;
2751 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2752
2753 if (target_stopped_data_address (&current_target, &addr))
2754 fprintf_unfiltered (gdb_stdlog,
2755 "infrun: stopped data address = 0x%s\n",
2756 paddr_nz (addr));
2757 else
2758 fprintf_unfiltered (gdb_stdlog,
2759 "infrun: (no data address available)\n");
2760 }
2761 }
527159b7 2762
9f976b41
DJ
2763 if (stepping_past_singlestep_breakpoint)
2764 {
1c0fdd0e 2765 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
2766 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2767 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2768
2769 stepping_past_singlestep_breakpoint = 0;
2770
2771 /* We've either finished single-stepping past the single-step
8fb3e588
AC
2772 breakpoint, or stopped for some other reason. It would be nice if
2773 we could tell, but we can't reliably. */
2020b7ab 2774 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 2775 {
527159b7 2776 if (debug_infrun)
8a9de0e4 2777 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41 2778 /* Pull the single step breakpoints out of the target. */
e0cd558a 2779 remove_single_step_breakpoints ();
9f976b41
DJ
2780 singlestep_breakpoints_inserted_p = 0;
2781
2782 ecs->random_signal = 0;
2783
0d1e5fa7 2784 context_switch (saved_singlestep_ptid);
9a4105ab
AC
2785 if (deprecated_context_hook)
2786 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
2787
2788 resume (1, TARGET_SIGNAL_0);
2789 prepare_to_wait (ecs);
2790 return;
2791 }
2792 }
2793
ca67fcb8 2794 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 2795 {
94cc34af
PA
2796 /* In non-stop mode, there's never a deferred_step_ptid set. */
2797 gdb_assert (!non_stop);
2798
6a6b96b9
UW
2799 /* If we stopped for some other reason than single-stepping, ignore
2800 the fact that we were supposed to switch back. */
2020b7ab 2801 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
6a6b96b9
UW
2802 {
2803 if (debug_infrun)
2804 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 2805 "infrun: handling deferred step\n");
6a6b96b9
UW
2806
2807 /* Pull the single step breakpoints out of the target. */
2808 if (singlestep_breakpoints_inserted_p)
2809 {
2810 remove_single_step_breakpoints ();
2811 singlestep_breakpoints_inserted_p = 0;
2812 }
2813
2814 /* Note: We do not call context_switch at this point, as the
2815 context is already set up for stepping the original thread. */
ca67fcb8
VP
2816 switch_to_thread (deferred_step_ptid);
2817 deferred_step_ptid = null_ptid;
6a6b96b9
UW
2818 /* Suppress spurious "Switching to ..." message. */
2819 previous_inferior_ptid = inferior_ptid;
2820
2821 resume (1, TARGET_SIGNAL_0);
2822 prepare_to_wait (ecs);
2823 return;
2824 }
ca67fcb8
VP
2825
2826 deferred_step_ptid = null_ptid;
6a6b96b9
UW
2827 }
2828
488f131b
JB
2829 /* See if a thread hit a thread-specific breakpoint that was meant for
2830 another thread. If so, then step that thread past the breakpoint,
2831 and continue it. */
2832
2020b7ab 2833 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 2834 {
9f976b41
DJ
2835 int thread_hop_needed = 0;
2836
f8d40ec8
JB
2837 /* Check if a regular breakpoint has been hit before checking
2838 for a potential single step breakpoint. Otherwise, GDB will
2839 not see this breakpoint hit when stepping onto breakpoints. */
c36b740a 2840 if (regular_breakpoint_inserted_here_p (stop_pc))
488f131b 2841 {
c5aa993b 2842 ecs->random_signal = 0;
4fa8626c 2843 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
2844 thread_hop_needed = 1;
2845 }
1c0fdd0e 2846 else if (singlestep_breakpoints_inserted_p)
9f976b41 2847 {
fd48f117
DJ
2848 /* We have not context switched yet, so this should be true
2849 no matter which thread hit the singlestep breakpoint. */
2850 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2851 if (debug_infrun)
2852 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2853 "trap for %s\n",
2854 target_pid_to_str (ecs->ptid));
2855
9f976b41
DJ
2856 ecs->random_signal = 0;
2857 /* The call to in_thread_list is necessary because PTIDs sometimes
2858 change when we go from single-threaded to multi-threaded. If
2859 the singlestep_ptid is still in the list, assume that it is
2860 really different from ecs->ptid. */
2861 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2862 && in_thread_list (singlestep_ptid))
2863 {
fd48f117
DJ
2864 /* If the PC of the thread we were trying to single-step
2865 has changed, discard this event (which we were going
2866 to ignore anyway), and pretend we saw that thread
2867 trap. This prevents us continuously moving the
2868 single-step breakpoint forward, one instruction at a
2869 time. If the PC has changed, then the thread we were
2870 trying to single-step has trapped or been signalled,
2871 but the event has not been reported to GDB yet.
2872
2873 There might be some cases where this loses signal
2874 information, if a signal has arrived at exactly the
2875 same time that the PC changed, but this is the best
2876 we can do with the information available. Perhaps we
2877 should arrange to report all events for all threads
2878 when they stop, or to re-poll the remote looking for
2879 this particular thread (i.e. temporarily enable
2880 schedlock). */
515630c5
UW
2881
2882 CORE_ADDR new_singlestep_pc
2883 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2884
2885 if (new_singlestep_pc != singlestep_pc)
fd48f117 2886 {
2020b7ab
PA
2887 enum target_signal stop_signal;
2888
fd48f117
DJ
2889 if (debug_infrun)
2890 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2891 " but expected thread advanced also\n");
2892
2893 /* The current context still belongs to
2894 singlestep_ptid. Don't swap here, since that's
2895 the context we want to use. Just fudge our
2896 state and continue. */
2020b7ab
PA
2897 stop_signal = ecs->event_thread->stop_signal;
2898 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
fd48f117 2899 ecs->ptid = singlestep_ptid;
e09875d4 2900 ecs->event_thread = find_thread_ptid (ecs->ptid);
2020b7ab 2901 ecs->event_thread->stop_signal = stop_signal;
515630c5 2902 stop_pc = new_singlestep_pc;
fd48f117
DJ
2903 }
2904 else
2905 {
2906 if (debug_infrun)
2907 fprintf_unfiltered (gdb_stdlog,
2908 "infrun: unexpected thread\n");
2909
2910 thread_hop_needed = 1;
2911 stepping_past_singlestep_breakpoint = 1;
2912 saved_singlestep_ptid = singlestep_ptid;
2913 }
9f976b41
DJ
2914 }
2915 }
2916
2917 if (thread_hop_needed)
8fb3e588 2918 {
9f5a595d 2919 struct regcache *thread_regcache;
237fc4c9 2920 int remove_status = 0;
8fb3e588 2921
527159b7 2922 if (debug_infrun)
8a9de0e4 2923 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 2924
b3444185
PA
2925 /* Switch context before touching inferior memory, the
2926 previous thread may have exited. */
2927 if (!ptid_equal (inferior_ptid, ecs->ptid))
2928 context_switch (ecs->ptid);
2929
8fb3e588
AC
2930 /* Saw a breakpoint, but it was hit by the wrong thread.
2931 Just continue. */
2932
1c0fdd0e 2933 if (singlestep_breakpoints_inserted_p)
488f131b 2934 {
8fb3e588 2935 /* Pull the single step breakpoints out of the target. */
e0cd558a 2936 remove_single_step_breakpoints ();
8fb3e588
AC
2937 singlestep_breakpoints_inserted_p = 0;
2938 }
2939
237fc4c9
PA
2940 /* If the arch can displace step, don't remove the
2941 breakpoints. */
9f5a595d
UW
2942 thread_regcache = get_thread_regcache (ecs->ptid);
2943 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
2944 remove_status = remove_breakpoints ();
2945
8fb3e588
AC
2946 /* Did we fail to remove breakpoints? If so, try
2947 to set the PC past the bp. (There's at least
2948 one situation in which we can fail to remove
2949 the bp's: On HP-UX's that use ttrace, we can't
2950 change the address space of a vforking child
2951 process until the child exits (well, okay, not
2952 then either :-) or execs. */
2953 if (remove_status != 0)
9d9cd7ac 2954 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
2955 else
2956 { /* Single step */
94cc34af
PA
2957 if (!non_stop)
2958 {
2959 /* Only need to require the next event from this
2960 thread in all-stop mode. */
2961 waiton_ptid = ecs->ptid;
2962 infwait_state = infwait_thread_hop_state;
2963 }
8fb3e588 2964
4e1c45ea 2965 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588
AC
2966 keep_going (ecs);
2967 registers_changed ();
2968 return;
2969 }
488f131b 2970 }
1c0fdd0e 2971 else if (singlestep_breakpoints_inserted_p)
8fb3e588
AC
2972 {
2973 sw_single_step_trap_p = 1;
2974 ecs->random_signal = 0;
2975 }
488f131b
JB
2976 }
2977 else
2978 ecs->random_signal = 1;
c906108c 2979
488f131b 2980 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
2981 so, then switch to that thread. */
2982 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 2983 {
527159b7 2984 if (debug_infrun)
8a9de0e4 2985 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 2986
0d1e5fa7 2987 context_switch (ecs->ptid);
c5aa993b 2988
9a4105ab
AC
2989 if (deprecated_context_hook)
2990 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 2991 }
c906108c 2992
568d6575
UW
2993 /* At this point, get hold of the now-current thread's frame. */
2994 frame = get_current_frame ();
2995 gdbarch = get_frame_arch (frame);
2996
1c0fdd0e 2997 if (singlestep_breakpoints_inserted_p)
488f131b
JB
2998 {
2999 /* Pull the single step breakpoints out of the target. */
e0cd558a 3000 remove_single_step_breakpoints ();
488f131b
JB
3001 singlestep_breakpoints_inserted_p = 0;
3002 }
c906108c 3003
d983da9c
DJ
3004 if (stepped_after_stopped_by_watchpoint)
3005 stopped_by_watchpoint = 0;
3006 else
3007 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3008
3009 /* If necessary, step over this watchpoint. We'll be back to display
3010 it in a moment. */
3011 if (stopped_by_watchpoint
d92524f1 3012 && (target_have_steppable_watchpoint
568d6575 3013 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 3014 {
488f131b
JB
3015 /* At this point, we are stopped at an instruction which has
3016 attempted to write to a piece of memory under control of
3017 a watchpoint. The instruction hasn't actually executed
3018 yet. If we were to evaluate the watchpoint expression
3019 now, we would get the old value, and therefore no change
3020 would seem to have occurred.
3021
3022 In order to make watchpoints work `right', we really need
3023 to complete the memory write, and then evaluate the
d983da9c
DJ
3024 watchpoint expression. We do this by single-stepping the
3025 target.
3026
3027 It may not be necessary to disable the watchpoint to stop over
3028 it. For example, the PA can (with some kernel cooperation)
3029 single step over a watchpoint without disabling the watchpoint.
3030
3031 It is far more common to need to disable a watchpoint to step
3032 the inferior over it. If we have non-steppable watchpoints,
3033 we must disable the current watchpoint; it's simplest to
3034 disable all watchpoints and breakpoints. */
2facfe5c
DD
3035 int hw_step = 1;
3036
d92524f1 3037 if (!target_have_steppable_watchpoint)
d983da9c 3038 remove_breakpoints ();
2facfe5c 3039 /* Single step */
568d6575 3040 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
2facfe5c 3041 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
b9412953 3042 registers_changed ();
0d1e5fa7 3043 waiton_ptid = ecs->ptid;
d92524f1 3044 if (target_have_steppable_watchpoint)
0d1e5fa7 3045 infwait_state = infwait_step_watch_state;
d983da9c 3046 else
0d1e5fa7 3047 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
3048 prepare_to_wait (ecs);
3049 return;
3050 }
3051
488f131b
JB
3052 ecs->stop_func_start = 0;
3053 ecs->stop_func_end = 0;
3054 ecs->stop_func_name = 0;
3055 /* Don't care about return value; stop_func_start and stop_func_name
3056 will both be 0 if it doesn't work. */
3057 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3058 &ecs->stop_func_start, &ecs->stop_func_end);
cbf3b44a 3059 ecs->stop_func_start
568d6575 3060 += gdbarch_deprecated_function_start_offset (gdbarch);
4e1c45ea 3061 ecs->event_thread->stepping_over_breakpoint = 0;
347bddb7 3062 bpstat_clear (&ecs->event_thread->stop_bpstat);
414c69f7 3063 ecs->event_thread->stop_step = 0;
488f131b
JB
3064 stop_print_frame = 1;
3065 ecs->random_signal = 0;
3066 stopped_by_random_signal = 0;
488f131b 3067
2020b7ab 3068 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4e1c45ea 3069 && ecs->event_thread->trap_expected
568d6575 3070 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 3071 && currently_stepping (ecs->event_thread))
3352ef37 3072 {
b50d7442 3073 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37
AC
3074 also on an instruction that needs to be stepped multiple
3075 times before it's been fully executing. E.g., architectures
3076 with a delay slot. It needs to be stepped twice, once for
3077 the instruction and once for the delay slot. */
3078 int step_through_delay
568d6575 3079 = gdbarch_single_step_through_delay (gdbarch, frame);
527159b7 3080 if (debug_infrun && step_through_delay)
8a9de0e4 3081 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4e1c45ea 3082 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
3352ef37
AC
3083 {
3084 /* The user issued a continue when stopped at a breakpoint.
3085 Set up for another trap and get out of here. */
4e1c45ea 3086 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3087 keep_going (ecs);
3088 return;
3089 }
3090 else if (step_through_delay)
3091 {
3092 /* The user issued a step when stopped at a breakpoint.
3093 Maybe we should stop, maybe we should not - the delay
3094 slot *might* correspond to a line of source. In any
ca67fcb8
VP
3095 case, don't decide that here, just set
3096 ecs->stepping_over_breakpoint, making sure we
3097 single-step again before breakpoints are re-inserted. */
4e1c45ea 3098 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
3099 }
3100 }
3101
488f131b
JB
3102 /* Look at the cause of the stop, and decide what to do.
3103 The alternatives are:
0d1e5fa7
PA
3104 1) stop_stepping and return; to really stop and return to the debugger,
3105 2) keep_going and return to start up again
4e1c45ea 3106 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
3107 3) set ecs->random_signal to 1, and the decision between 1 and 2
3108 will be made according to the signal handling tables. */
3109
3110 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
3111 that have to do with the program's own actions. Note that
3112 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3113 on the operating system version. Here we detect when a SIGILL or
3114 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3115 something similar for SIGSEGV, since a SIGSEGV will be generated
3116 when we're trying to execute a breakpoint instruction on a
3117 non-executable stack. This happens for call dummy breakpoints
3118 for architectures like SPARC that place call dummies on the
237fc4c9 3119 stack.
488f131b 3120
237fc4c9
PA
3121 If we're doing a displaced step past a breakpoint, then the
3122 breakpoint is always inserted at the original instruction;
3123 non-standard signals can't be explained by the breakpoint. */
2020b7ab 3124 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4e1c45ea 3125 || (! ecs->event_thread->trap_expected
237fc4c9 3126 && breakpoint_inserted_here_p (stop_pc)
2020b7ab
PA
3127 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_ILL
3128 || ecs->event_thread->stop_signal == TARGET_SIGNAL_SEGV
3129 || ecs->event_thread->stop_signal == TARGET_SIGNAL_EMT))
b0f4b84b
DJ
3130 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
3131 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 3132 {
2020b7ab 3133 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
488f131b 3134 {
527159b7 3135 if (debug_infrun)
8a9de0e4 3136 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
3137 stop_print_frame = 0;
3138 stop_stepping (ecs);
3139 return;
3140 }
c54cfec8
EZ
3141
3142 /* This is originated from start_remote(), start_inferior() and
3143 shared libraries hook functions. */
b0f4b84b 3144 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 3145 {
527159b7 3146 if (debug_infrun)
8a9de0e4 3147 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
3148 stop_stepping (ecs);
3149 return;
3150 }
3151
c54cfec8 3152 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
3153 the stop_signal here, because some kernels don't ignore a
3154 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3155 See more comments in inferior.h. On the other hand, if we
a0ef4274 3156 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
3157 will handle the SIGSTOP if it should show up later.
3158
3159 Also consider that the attach is complete when we see a
3160 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
3161 target extended-remote report it instead of a SIGSTOP
3162 (e.g. gdbserver). We already rely on SIGTRAP being our
e0ba6746
PA
3163 signal, so this is no exception.
3164
3165 Also consider that the attach is complete when we see a
3166 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
3167 the target to stop all threads of the inferior, in case the
3168 low level attach operation doesn't stop them implicitly. If
3169 they weren't stopped implicitly, then the stub will report a
3170 TARGET_SIGNAL_0, meaning: stopped for no particular reason
3171 other than GDB's request. */
a0ef4274 3172 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2020b7ab 3173 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
e0ba6746
PA
3174 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3175 || ecs->event_thread->stop_signal == TARGET_SIGNAL_0))
c54cfec8
EZ
3176 {
3177 stop_stepping (ecs);
2020b7ab 3178 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
3179 return;
3180 }
3181
fba57f8f 3182 /* See if there is a breakpoint at the current PC. */
347bddb7 3183 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
fba57f8f
VP
3184
3185 /* Following in case break condition called a
3186 function. */
3187 stop_print_frame = 1;
488f131b 3188
73dd234f 3189 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
3190 at one stage in the past included checks for an inferior
3191 function call's call dummy's return breakpoint. The original
3192 comment, that went with the test, read:
73dd234f 3193
8fb3e588
AC
3194 ``End of a stack dummy. Some systems (e.g. Sony news) give
3195 another signal besides SIGTRAP, so check here as well as
3196 above.''
73dd234f 3197
8002d778 3198 If someone ever tries to get call dummys on a
73dd234f 3199 non-executable stack to work (where the target would stop
03cebad2
MK
3200 with something like a SIGSEGV), then those tests might need
3201 to be re-instated. Given, however, that the tests were only
73dd234f 3202 enabled when momentary breakpoints were not being used, I
03cebad2
MK
3203 suspect that it won't be the case.
3204
8fb3e588
AC
3205 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
3206 be necessary for call dummies on a non-executable stack on
3207 SPARC. */
73dd234f 3208
2020b7ab 3209 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 3210 ecs->random_signal
347bddb7 3211 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
4e1c45ea
PA
3212 || ecs->event_thread->trap_expected
3213 || (ecs->event_thread->step_range_end
3214 && ecs->event_thread->step_resume_breakpoint == NULL));
488f131b
JB
3215 else
3216 {
347bddb7 3217 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
488f131b 3218 if (!ecs->random_signal)
2020b7ab 3219 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3220 }
3221 }
3222
3223 /* When we reach this point, we've pretty much decided
3224 that the reason for stopping must've been a random
3225 (unexpected) signal. */
3226
3227 else
3228 ecs->random_signal = 1;
488f131b 3229
04e68871 3230process_event_stop_test:
568d6575
UW
3231
3232 /* Re-fetch current thread's frame in case we did a
3233 "goto process_event_stop_test" above. */
3234 frame = get_current_frame ();
3235 gdbarch = get_frame_arch (frame);
3236
488f131b
JB
3237 /* For the program's own signals, act according to
3238 the signal handling tables. */
3239
3240 if (ecs->random_signal)
3241 {
3242 /* Signal not for debugging purposes. */
3243 int printed = 0;
3244
527159b7 3245 if (debug_infrun)
2020b7ab
PA
3246 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
3247 ecs->event_thread->stop_signal);
527159b7 3248
488f131b
JB
3249 stopped_by_random_signal = 1;
3250
2020b7ab 3251 if (signal_print[ecs->event_thread->stop_signal])
488f131b
JB
3252 {
3253 printed = 1;
3254 target_terminal_ours_for_output ();
2020b7ab 3255 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
488f131b 3256 }
252fbfc8
PA
3257 /* Always stop on signals if we're either just gaining control
3258 of the program, or the user explicitly requested this thread
3259 to remain stopped. */
d6b48e9c 3260 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 3261 || ecs->event_thread->stop_requested
d6b48e9c 3262 || signal_stop_state (ecs->event_thread->stop_signal))
488f131b
JB
3263 {
3264 stop_stepping (ecs);
3265 return;
3266 }
3267 /* If not going to stop, give terminal back
3268 if we took it away. */
3269 else if (printed)
3270 target_terminal_inferior ();
3271
3272 /* Clear the signal if it should not be passed. */
2020b7ab
PA
3273 if (signal_program[ecs->event_thread->stop_signal] == 0)
3274 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
488f131b 3275
fb14de7b 3276 if (ecs->event_thread->prev_pc == stop_pc
4e1c45ea
PA
3277 && ecs->event_thread->trap_expected
3278 && ecs->event_thread->step_resume_breakpoint == NULL)
68f53502
AC
3279 {
3280 /* We were just starting a new sequence, attempting to
3281 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 3282 Instead this signal arrives. This signal will take us out
68f53502
AC
3283 of the stepping range so GDB needs to remember to, when
3284 the signal handler returns, resume stepping off that
3285 breakpoint. */
3286 /* To simplify things, "continue" is forced to use the same
3287 code paths as single-step - set a breakpoint at the
3288 signal return address and then, once hit, step off that
3289 breakpoint. */
237fc4c9
PA
3290 if (debug_infrun)
3291 fprintf_unfiltered (gdb_stdlog,
3292 "infrun: signal arrived while stepping over "
3293 "breakpoint\n");
d3169d93 3294
568d6575 3295 insert_step_resume_breakpoint_at_frame (frame);
4e1c45ea 3296 ecs->event_thread->step_after_step_resume_breakpoint = 1;
9d799f85
AC
3297 keep_going (ecs);
3298 return;
68f53502 3299 }
9d799f85 3300
4e1c45ea 3301 if (ecs->event_thread->step_range_end != 0
2020b7ab 3302 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
4e1c45ea
PA
3303 && (ecs->event_thread->step_range_start <= stop_pc
3304 && stop_pc < ecs->event_thread->step_range_end)
568d6575 3305 && frame_id_eq (get_frame_id (frame),
4e1c45ea
PA
3306 ecs->event_thread->step_frame_id)
3307 && ecs->event_thread->step_resume_breakpoint == NULL)
d303a6c7
AC
3308 {
3309 /* The inferior is about to take a signal that will take it
3310 out of the single step range. Set a breakpoint at the
3311 current PC (which is presumably where the signal handler
3312 will eventually return) and then allow the inferior to
3313 run free.
3314
3315 Note that this is only needed for a signal delivered
3316 while in the single-step range. Nested signals aren't a
3317 problem as they eventually all return. */
237fc4c9
PA
3318 if (debug_infrun)
3319 fprintf_unfiltered (gdb_stdlog,
3320 "infrun: signal may take us out of "
3321 "single-step range\n");
3322
568d6575 3323 insert_step_resume_breakpoint_at_frame (frame);
9d799f85
AC
3324 keep_going (ecs);
3325 return;
d303a6c7 3326 }
9d799f85
AC
3327
3328 /* Note: step_resume_breakpoint may be non-NULL. This occures
3329 when either there's a nested signal, or when there's a
3330 pending signal enabled just as the signal handler returns
3331 (leaving the inferior at the step-resume-breakpoint without
3332 actually executing it). Either way continue until the
3333 breakpoint is really hit. */
488f131b
JB
3334 keep_going (ecs);
3335 return;
3336 }
3337
3338 /* Handle cases caused by hitting a breakpoint. */
3339 {
3340 CORE_ADDR jmp_buf_pc;
3341 struct bpstat_what what;
3342
347bddb7 3343 what = bpstat_what (ecs->event_thread->stop_bpstat);
488f131b
JB
3344
3345 if (what.call_dummy)
3346 {
3347 stop_stack_dummy = 1;
c5aa993b 3348 }
c906108c 3349
488f131b 3350 switch (what.main_action)
c5aa993b 3351 {
488f131b 3352 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
3353 /* If we hit the breakpoint at longjmp while stepping, we
3354 install a momentary breakpoint at the target of the
3355 jmp_buf. */
3356
3357 if (debug_infrun)
3358 fprintf_unfiltered (gdb_stdlog,
3359 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
3360
4e1c45ea 3361 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 3362
568d6575
UW
3363 if (!gdbarch_get_longjmp_target_p (gdbarch)
3364 || !gdbarch_get_longjmp_target (gdbarch, frame, &jmp_buf_pc))
c5aa993b 3365 {
611c83ae
PA
3366 if (debug_infrun)
3367 fprintf_unfiltered (gdb_stdlog, "\
3368infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
488f131b 3369 keep_going (ecs);
104c1213 3370 return;
c5aa993b 3371 }
488f131b 3372
611c83ae
PA
3373 /* We're going to replace the current step-resume breakpoint
3374 with a longjmp-resume breakpoint. */
4e1c45ea 3375 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae
PA
3376
3377 /* Insert a breakpoint at resume address. */
3378 insert_longjmp_resume_breakpoint (jmp_buf_pc);
c906108c 3379
488f131b
JB
3380 keep_going (ecs);
3381 return;
c906108c 3382
488f131b 3383 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 3384 if (debug_infrun)
611c83ae
PA
3385 fprintf_unfiltered (gdb_stdlog,
3386 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
3387
4e1c45ea
PA
3388 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
3389 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae 3390
414c69f7 3391 ecs->event_thread->stop_step = 1;
611c83ae
PA
3392 print_stop_reason (END_STEPPING_RANGE, 0);
3393 stop_stepping (ecs);
3394 return;
488f131b
JB
3395
3396 case BPSTAT_WHAT_SINGLE:
527159b7 3397 if (debug_infrun)
8802d8ed 3398 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4e1c45ea 3399 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b
JB
3400 /* Still need to check other stuff, at least the case
3401 where we are stepping and step out of the right range. */
3402 break;
c906108c 3403
488f131b 3404 case BPSTAT_WHAT_STOP_NOISY:
527159b7 3405 if (debug_infrun)
8802d8ed 3406 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 3407 stop_print_frame = 1;
c906108c 3408
d303a6c7
AC
3409 /* We are about to nuke the step_resume_breakpointt via the
3410 cleanup chain, so no need to worry about it here. */
c5aa993b 3411
488f131b
JB
3412 stop_stepping (ecs);
3413 return;
c5aa993b 3414
488f131b 3415 case BPSTAT_WHAT_STOP_SILENT:
527159b7 3416 if (debug_infrun)
8802d8ed 3417 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 3418 stop_print_frame = 0;
c5aa993b 3419
d303a6c7
AC
3420 /* We are about to nuke the step_resume_breakpoin via the
3421 cleanup chain, so no need to worry about it here. */
c5aa993b 3422
488f131b 3423 stop_stepping (ecs);
e441088d 3424 return;
c5aa993b 3425
488f131b 3426 case BPSTAT_WHAT_STEP_RESUME:
527159b7 3427 if (debug_infrun)
8802d8ed 3428 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 3429
4e1c45ea
PA
3430 delete_step_resume_breakpoint (ecs->event_thread);
3431 if (ecs->event_thread->step_after_step_resume_breakpoint)
68f53502
AC
3432 {
3433 /* Back when the step-resume breakpoint was inserted, we
3434 were trying to single-step off a breakpoint. Go back
3435 to doing that. */
4e1c45ea
PA
3436 ecs->event_thread->step_after_step_resume_breakpoint = 0;
3437 ecs->event_thread->stepping_over_breakpoint = 1;
68f53502
AC
3438 keep_going (ecs);
3439 return;
3440 }
b2175913
MS
3441 if (stop_pc == ecs->stop_func_start
3442 && execution_direction == EXEC_REVERSE)
3443 {
3444 /* We are stepping over a function call in reverse, and
3445 just hit the step-resume breakpoint at the start
3446 address of the function. Go back to single-stepping,
3447 which should take us back to the function call. */
3448 ecs->event_thread->stepping_over_breakpoint = 1;
3449 keep_going (ecs);
3450 return;
3451 }
488f131b
JB
3452 break;
3453
488f131b 3454 case BPSTAT_WHAT_CHECK_SHLIBS:
c906108c 3455 {
527159b7 3456 if (debug_infrun)
8802d8ed 3457 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
488f131b
JB
3458
3459 /* Check for any newly added shared libraries if we're
3460 supposed to be adding them automatically. Switch
3461 terminal for any messages produced by
3462 breakpoint_re_set. */
3463 target_terminal_ours_for_output ();
aff6338a 3464 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
3465 stack's section table is kept up-to-date. Architectures,
3466 (e.g., PPC64), use the section table to perform
3467 operations such as address => section name and hence
3468 require the table to contain all sections (including
3469 those found in shared libraries). */
a77053c2 3470#ifdef SOLIB_ADD
aff6338a 3471 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
a77053c2
MK
3472#else
3473 solib_add (NULL, 0, &current_target, auto_solib_add);
3474#endif
488f131b
JB
3475 target_terminal_inferior ();
3476
488f131b
JB
3477 /* If requested, stop when the dynamic linker notifies
3478 gdb of events. This allows the user to get control
3479 and place breakpoints in initializer routines for
3480 dynamically loaded objects (among other things). */
877522db 3481 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 3482 {
488f131b 3483 stop_stepping (ecs);
d4f3574e
SS
3484 return;
3485 }
c5aa993b 3486 else
c5aa993b 3487 {
488f131b 3488 /* We want to step over this breakpoint, then keep going. */
4e1c45ea 3489 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 3490 break;
c5aa993b 3491 }
488f131b 3492 }
488f131b 3493 break;
c906108c 3494
488f131b
JB
3495 case BPSTAT_WHAT_LAST:
3496 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 3497
488f131b
JB
3498 case BPSTAT_WHAT_KEEP_CHECKING:
3499 break;
3500 }
3501 }
c906108c 3502
488f131b
JB
3503 /* We come here if we hit a breakpoint but should not
3504 stop for it. Possibly we also were stepping
3505 and should stop for that. So fall through and
3506 test for stepping. But, if not stepping,
3507 do not stop. */
c906108c 3508
a7212384
UW
3509 /* In all-stop mode, if we're currently stepping but have stopped in
3510 some other thread, we need to switch back to the stepped thread. */
3511 if (!non_stop)
3512 {
3513 struct thread_info *tp;
b3444185 3514 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
3515 ecs->event_thread);
3516 if (tp)
3517 {
3518 /* However, if the current thread is blocked on some internal
3519 breakpoint, and we simply need to step over that breakpoint
3520 to get it going again, do that first. */
3521 if ((ecs->event_thread->trap_expected
3522 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3523 || ecs->event_thread->stepping_over_breakpoint)
3524 {
3525 keep_going (ecs);
3526 return;
3527 }
3528
66852e9c
PA
3529 /* If the stepping thread exited, then don't try to switch
3530 back and resume it, which could fail in several different
3531 ways depending on the target. Instead, just keep going.
3532
3533 We can find a stepping dead thread in the thread list in
3534 two cases:
3535
3536 - The target supports thread exit events, and when the
3537 target tries to delete the thread from the thread list,
3538 inferior_ptid pointed at the exiting thread. In such
3539 case, calling delete_thread does not really remove the
3540 thread from the list; instead, the thread is left listed,
3541 with 'exited' state.
3542
3543 - The target's debug interface does not support thread
3544 exit events, and so we have no idea whatsoever if the
3545 previously stepping thread is still alive. For that
3546 reason, we need to synchronously query the target
3547 now. */
b3444185
PA
3548 if (is_exited (tp->ptid)
3549 || !target_thread_alive (tp->ptid))
3550 {
3551 if (debug_infrun)
3552 fprintf_unfiltered (gdb_stdlog, "\
3553infrun: not switching back to stepped thread, it has vanished\n");
3554
3555 delete_thread (tp->ptid);
3556 keep_going (ecs);
3557 return;
3558 }
3559
a7212384
UW
3560 /* Otherwise, we no longer expect a trap in the current thread.
3561 Clear the trap_expected flag before switching back -- this is
3562 what keep_going would do as well, if we called it. */
3563 ecs->event_thread->trap_expected = 0;
3564
3565 if (debug_infrun)
3566 fprintf_unfiltered (gdb_stdlog,
3567 "infrun: switching back to stepped thread\n");
3568
3569 ecs->event_thread = tp;
3570 ecs->ptid = tp->ptid;
3571 context_switch (ecs->ptid);
3572 keep_going (ecs);
3573 return;
3574 }
3575 }
3576
9d1ff73f
MS
3577 /* Are we stepping to get the inferior out of the dynamic linker's
3578 hook (and possibly the dld itself) after catching a shlib
3579 event? */
4e1c45ea 3580 if (ecs->event_thread->stepping_through_solib_after_catch)
488f131b
JB
3581 {
3582#if defined(SOLIB_ADD)
3583 /* Have we reached our destination? If not, keep going. */
3584 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
3585 {
527159b7 3586 if (debug_infrun)
8a9de0e4 3587 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
4e1c45ea 3588 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 3589 keep_going (ecs);
104c1213 3590 return;
488f131b
JB
3591 }
3592#endif
527159b7 3593 if (debug_infrun)
8a9de0e4 3594 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
3595 /* Else, stop and report the catchpoint(s) whose triggering
3596 caused us to begin stepping. */
4e1c45ea 3597 ecs->event_thread->stepping_through_solib_after_catch = 0;
347bddb7
PA
3598 bpstat_clear (&ecs->event_thread->stop_bpstat);
3599 ecs->event_thread->stop_bpstat
3600 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4e1c45ea 3601 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
488f131b
JB
3602 stop_print_frame = 1;
3603 stop_stepping (ecs);
3604 return;
3605 }
c906108c 3606
4e1c45ea 3607 if (ecs->event_thread->step_resume_breakpoint)
488f131b 3608 {
527159b7 3609 if (debug_infrun)
d3169d93
DJ
3610 fprintf_unfiltered (gdb_stdlog,
3611 "infrun: step-resume breakpoint is inserted\n");
527159b7 3612
488f131b
JB
3613 /* Having a step-resume breakpoint overrides anything
3614 else having to do with stepping commands until
3615 that breakpoint is reached. */
488f131b
JB
3616 keep_going (ecs);
3617 return;
3618 }
c5aa993b 3619
4e1c45ea 3620 if (ecs->event_thread->step_range_end == 0)
488f131b 3621 {
527159b7 3622 if (debug_infrun)
8a9de0e4 3623 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 3624 /* Likewise if we aren't even stepping. */
488f131b
JB
3625 keep_going (ecs);
3626 return;
3627 }
c5aa993b 3628
488f131b 3629 /* If stepping through a line, keep going if still within it.
c906108c 3630
488f131b
JB
3631 Note that step_range_end is the address of the first instruction
3632 beyond the step range, and NOT the address of the last instruction
3633 within it! */
4e1c45ea
PA
3634 if (stop_pc >= ecs->event_thread->step_range_start
3635 && stop_pc < ecs->event_thread->step_range_end)
488f131b 3636 {
527159b7 3637 if (debug_infrun)
b2175913 3638 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
4e1c45ea
PA
3639 paddr_nz (ecs->event_thread->step_range_start),
3640 paddr_nz (ecs->event_thread->step_range_end));
b2175913
MS
3641
3642 /* When stepping backward, stop at beginning of line range
3643 (unless it's the function entry point, in which case
3644 keep going back to the call point). */
3645 if (stop_pc == ecs->event_thread->step_range_start
3646 && stop_pc != ecs->stop_func_start
3647 && execution_direction == EXEC_REVERSE)
3648 {
3649 ecs->event_thread->stop_step = 1;
3650 print_stop_reason (END_STEPPING_RANGE, 0);
3651 stop_stepping (ecs);
3652 }
3653 else
3654 keep_going (ecs);
3655
488f131b
JB
3656 return;
3657 }
c5aa993b 3658
488f131b 3659 /* We stepped out of the stepping range. */
c906108c 3660
488f131b
JB
3661 /* If we are stepping at the source level and entered the runtime
3662 loader dynamic symbol resolution code, we keep on single stepping
3663 until we exit the run time loader code and reach the callee's
3664 address. */
078130d0 3665 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 3666 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 3667 {
4c8c40e6 3668 CORE_ADDR pc_after_resolver =
568d6575 3669 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 3670
527159b7 3671 if (debug_infrun)
8a9de0e4 3672 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 3673
488f131b
JB
3674 if (pc_after_resolver)
3675 {
3676 /* Set up a step-resume breakpoint at the address
3677 indicated by SKIP_SOLIB_RESOLVER. */
3678 struct symtab_and_line sr_sal;
fe39c653 3679 init_sal (&sr_sal);
488f131b
JB
3680 sr_sal.pc = pc_after_resolver;
3681
44cbf7b5 3682 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c5aa993b 3683 }
c906108c 3684
488f131b
JB
3685 keep_going (ecs);
3686 return;
3687 }
c906108c 3688
4e1c45ea 3689 if (ecs->event_thread->step_range_end != 1
078130d0
PA
3690 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3691 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
568d6575 3692 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 3693 {
527159b7 3694 if (debug_infrun)
8a9de0e4 3695 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 3696 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
3697 a signal trampoline (either by a signal being delivered or by
3698 the signal handler returning). Just single-step until the
3699 inferior leaves the trampoline (either by calling the handler
3700 or returning). */
488f131b
JB
3701 keep_going (ecs);
3702 return;
3703 }
c906108c 3704
c17eaafe
DJ
3705 /* Check for subroutine calls. The check for the current frame
3706 equalling the step ID is not necessary - the check of the
3707 previous frame's ID is sufficient - but it is a common case and
3708 cheaper than checking the previous frame's ID.
14e60db5
DJ
3709
3710 NOTE: frame_id_eq will never report two invalid frame IDs as
3711 being equal, so to get into this block, both the current and
3712 previous frame must have valid frame IDs. */
568d6575 3713 if (!frame_id_eq (get_frame_id (frame),
4e1c45ea 3714 ecs->event_thread->step_frame_id)
568d6575 3715 && (frame_id_eq (frame_unwind_id (frame),
b2175913
MS
3716 ecs->event_thread->step_frame_id)
3717 || execution_direction == EXEC_REVERSE))
488f131b 3718 {
95918acb 3719 CORE_ADDR real_stop_pc;
8fb3e588 3720
527159b7 3721 if (debug_infrun)
8a9de0e4 3722 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 3723
078130d0 3724 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
4e1c45ea 3725 || ((ecs->event_thread->step_range_end == 1)
d80b854b 3726 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 3727 ecs->stop_func_start)))
95918acb
AC
3728 {
3729 /* I presume that step_over_calls is only 0 when we're
3730 supposed to be stepping at the assembly language level
3731 ("stepi"). Just stop. */
3732 /* Also, maybe we just did a "nexti" inside a prolog, so we
3733 thought it was a subroutine call but it was not. Stop as
3734 well. FENN */
414c69f7 3735 ecs->event_thread->stop_step = 1;
95918acb
AC
3736 print_stop_reason (END_STEPPING_RANGE, 0);
3737 stop_stepping (ecs);
3738 return;
3739 }
8fb3e588 3740
078130d0 3741 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
8567c30f 3742 {
b2175913
MS
3743 /* We're doing a "next".
3744
3745 Normal (forward) execution: set a breakpoint at the
3746 callee's return address (the address at which the caller
3747 will resume).
3748
3749 Reverse (backward) execution. set the step-resume
3750 breakpoint at the start of the function that we just
3751 stepped into (backwards), and continue to there. When we
6130d0b7 3752 get there, we'll need to single-step back to the caller. */
b2175913
MS
3753
3754 if (execution_direction == EXEC_REVERSE)
3755 {
3756 struct symtab_and_line sr_sal;
3067f6e5
MS
3757
3758 if (ecs->stop_func_start == 0
3759 && in_solib_dynsym_resolve_code (stop_pc))
3760 {
3761 /* Stepped into runtime loader dynamic symbol
3762 resolution code. Since we're in reverse,
3763 we have already backed up through the runtime
3764 loader and the dynamic function. This is just
3765 the trampoline (jump table).
3766
3767 Just keep stepping, we'll soon be home.
3768 */
3769 keep_going (ecs);
3770 return;
3771 }
3772 /* Normal (staticly linked) function call return. */
b2175913
MS
3773 init_sal (&sr_sal);
3774 sr_sal.pc = ecs->stop_func_start;
3775 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3776 }
3777 else
568d6575 3778 insert_step_resume_breakpoint_at_caller (frame);
b2175913 3779
8567c30f
AC
3780 keep_going (ecs);
3781 return;
3782 }
a53c66de 3783
95918acb 3784 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
3785 calling routine and the real function), locate the real
3786 function. That's what tells us (a) whether we want to step
3787 into it at all, and (b) what prologue we want to run to the
3788 end of, if we do step into it. */
568d6575 3789 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 3790 if (real_stop_pc == 0)
568d6575 3791 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
3792 if (real_stop_pc != 0)
3793 ecs->stop_func_start = real_stop_pc;
8fb3e588 3794
db5f024e 3795 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
3796 {
3797 struct symtab_and_line sr_sal;
3798 init_sal (&sr_sal);
3799 sr_sal.pc = ecs->stop_func_start;
3800
44cbf7b5 3801 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
8fb3e588
AC
3802 keep_going (ecs);
3803 return;
1b2bfbb9
RC
3804 }
3805
95918acb 3806 /* If we have line number information for the function we are
8fb3e588 3807 thinking of stepping into, step into it.
95918acb 3808
8fb3e588
AC
3809 If there are several symtabs at that PC (e.g. with include
3810 files), just want to know whether *any* of them have line
3811 numbers. find_pc_line handles this. */
95918acb
AC
3812 {
3813 struct symtab_and_line tmp_sal;
8fb3e588 3814
95918acb
AC
3815 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3816 if (tmp_sal.line != 0)
3817 {
b2175913 3818 if (execution_direction == EXEC_REVERSE)
568d6575 3819 handle_step_into_function_backward (gdbarch, ecs);
b2175913 3820 else
568d6575 3821 handle_step_into_function (gdbarch, ecs);
95918acb
AC
3822 return;
3823 }
3824 }
3825
3826 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
3827 set, we stop the step so that the user has a chance to switch
3828 in assembly mode. */
078130d0
PA
3829 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3830 && step_stop_if_no_debug)
95918acb 3831 {
414c69f7 3832 ecs->event_thread->stop_step = 1;
95918acb
AC
3833 print_stop_reason (END_STEPPING_RANGE, 0);
3834 stop_stepping (ecs);
3835 return;
3836 }
3837
b2175913
MS
3838 if (execution_direction == EXEC_REVERSE)
3839 {
3840 /* Set a breakpoint at callee's start address.
3841 From there we can step once and be back in the caller. */
3842 struct symtab_and_line sr_sal;
3843 init_sal (&sr_sal);
3844 sr_sal.pc = ecs->stop_func_start;
3845 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3846 }
3847 else
3848 /* Set a breakpoint at callee's return address (the address
3849 at which the caller will resume). */
568d6575 3850 insert_step_resume_breakpoint_at_caller (frame);
b2175913 3851
95918acb 3852 keep_going (ecs);
488f131b 3853 return;
488f131b 3854 }
c906108c 3855
488f131b
JB
3856 /* If we're in the return path from a shared library trampoline,
3857 we want to proceed through the trampoline when stepping. */
568d6575 3858 if (gdbarch_in_solib_return_trampoline (gdbarch,
e76f05fa 3859 stop_pc, ecs->stop_func_name))
488f131b 3860 {
488f131b 3861 /* Determine where this trampoline returns. */
52f729a7 3862 CORE_ADDR real_stop_pc;
568d6575 3863 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
c906108c 3864
527159b7 3865 if (debug_infrun)
8a9de0e4 3866 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 3867
488f131b 3868 /* Only proceed through if we know where it's going. */
d764a824 3869 if (real_stop_pc)
488f131b
JB
3870 {
3871 /* And put the step-breakpoint there and go until there. */
3872 struct symtab_and_line sr_sal;
3873
fe39c653 3874 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 3875 sr_sal.pc = real_stop_pc;
488f131b 3876 sr_sal.section = find_pc_overlay (sr_sal.pc);
44cbf7b5
AC
3877
3878 /* Do not specify what the fp should be when we stop since
3879 on some machines the prologue is where the new fp value
3880 is established. */
3881 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c906108c 3882
488f131b
JB
3883 /* Restart without fiddling with the step ranges or
3884 other state. */
3885 keep_going (ecs);
3886 return;
3887 }
3888 }
c906108c 3889
2afb61aa 3890 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 3891
1b2bfbb9
RC
3892 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3893 the trampoline processing logic, however, there are some trampolines
3894 that have no names, so we should do trampoline handling first. */
078130d0 3895 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 3896 && ecs->stop_func_name == NULL
2afb61aa 3897 && stop_pc_sal.line == 0)
1b2bfbb9 3898 {
527159b7 3899 if (debug_infrun)
8a9de0e4 3900 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 3901
1b2bfbb9 3902 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
3903 undebuggable function (where there is no debugging information
3904 and no line number corresponding to the address where the
1b2bfbb9
RC
3905 inferior stopped). Since we want to skip this kind of code,
3906 we keep going until the inferior returns from this
14e60db5
DJ
3907 function - unless the user has asked us not to (via
3908 set step-mode) or we no longer know how to get back
3909 to the call site. */
3910 if (step_stop_if_no_debug
568d6575 3911 || !frame_id_p (frame_unwind_id (frame)))
1b2bfbb9
RC
3912 {
3913 /* If we have no line number and the step-stop-if-no-debug
3914 is set, we stop the step so that the user has a chance to
3915 switch in assembly mode. */
414c69f7 3916 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
3917 print_stop_reason (END_STEPPING_RANGE, 0);
3918 stop_stepping (ecs);
3919 return;
3920 }
3921 else
3922 {
3923 /* Set a breakpoint at callee's return address (the address
3924 at which the caller will resume). */
568d6575 3925 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
3926 keep_going (ecs);
3927 return;
3928 }
3929 }
3930
4e1c45ea 3931 if (ecs->event_thread->step_range_end == 1)
1b2bfbb9
RC
3932 {
3933 /* It is stepi or nexti. We always want to stop stepping after
3934 one instruction. */
527159b7 3935 if (debug_infrun)
8a9de0e4 3936 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
414c69f7 3937 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
3938 print_stop_reason (END_STEPPING_RANGE, 0);
3939 stop_stepping (ecs);
3940 return;
3941 }
3942
2afb61aa 3943 if (stop_pc_sal.line == 0)
488f131b
JB
3944 {
3945 /* We have no line number information. That means to stop
3946 stepping (does this always happen right after one instruction,
3947 when we do "s" in a function with no line numbers,
3948 or can this happen as a result of a return or longjmp?). */
527159b7 3949 if (debug_infrun)
8a9de0e4 3950 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
414c69f7 3951 ecs->event_thread->stop_step = 1;
488f131b
JB
3952 print_stop_reason (END_STEPPING_RANGE, 0);
3953 stop_stepping (ecs);
3954 return;
3955 }
c906108c 3956
2afb61aa 3957 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
3958 && (ecs->event_thread->current_line != stop_pc_sal.line
3959 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
3960 {
3961 /* We are at the start of a different line. So stop. Note that
3962 we don't stop if we step into the middle of a different line.
3963 That is said to make things like for (;;) statements work
3964 better. */
527159b7 3965 if (debug_infrun)
8a9de0e4 3966 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
414c69f7 3967 ecs->event_thread->stop_step = 1;
488f131b
JB
3968 print_stop_reason (END_STEPPING_RANGE, 0);
3969 stop_stepping (ecs);
3970 return;
3971 }
c906108c 3972
488f131b 3973 /* We aren't done stepping.
c906108c 3974
488f131b
JB
3975 Optimize by setting the stepping range to the line.
3976 (We might not be in the original line, but if we entered a
3977 new line in mid-statement, we continue stepping. This makes
3978 things like for(;;) statements work better.) */
c906108c 3979
4e1c45ea
PA
3980 ecs->event_thread->step_range_start = stop_pc_sal.pc;
3981 ecs->event_thread->step_range_end = stop_pc_sal.end;
568d6575 3982 ecs->event_thread->step_frame_id = get_frame_id (frame);
4e1c45ea
PA
3983 ecs->event_thread->current_line = stop_pc_sal.line;
3984 ecs->event_thread->current_symtab = stop_pc_sal.symtab;
488f131b 3985
527159b7 3986 if (debug_infrun)
8a9de0e4 3987 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 3988 keep_going (ecs);
104c1213
JM
3989}
3990
b3444185 3991/* Is thread TP in the middle of single-stepping? */
104c1213 3992
a7212384 3993static int
b3444185 3994currently_stepping (struct thread_info *tp)
a7212384 3995{
b3444185
PA
3996 return ((tp->step_range_end && tp->step_resume_breakpoint == NULL)
3997 || tp->trap_expected
3998 || tp->stepping_through_solib_after_catch
3999 || bpstat_should_step ());
a7212384
UW
4000}
4001
b3444185
PA
4002/* Returns true if any thread *but* the one passed in "data" is in the
4003 middle of stepping or of handling a "next". */
a7212384 4004
104c1213 4005static int
b3444185 4006currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 4007{
b3444185
PA
4008 if (tp == data)
4009 return 0;
4010
4011 return (tp->step_range_end
4012 || tp->trap_expected
4013 || tp->stepping_through_solib_after_catch);
104c1213 4014}
c906108c 4015
b2175913
MS
4016/* Inferior has stepped into a subroutine call with source code that
4017 we should not step over. Do step to the first line of code in
4018 it. */
c2c6d25f
JM
4019
4020static void
568d6575
UW
4021handle_step_into_function (struct gdbarch *gdbarch,
4022 struct execution_control_state *ecs)
c2c6d25f
JM
4023{
4024 struct symtab *s;
2afb61aa 4025 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f
JM
4026
4027 s = find_pc_symtab (stop_pc);
4028 if (s && s->language != language_asm)
568d6575 4029 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 4030 ecs->stop_func_start);
c2c6d25f 4031
2afb61aa 4032 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
4033 /* Use the step_resume_break to step until the end of the prologue,
4034 even if that involves jumps (as it seems to on the vax under
4035 4.2). */
4036 /* If the prologue ends in the middle of a source line, continue to
4037 the end of that source line (if it is still within the function).
4038 Otherwise, just go to end of prologue. */
2afb61aa
PA
4039 if (stop_func_sal.end
4040 && stop_func_sal.pc != ecs->stop_func_start
4041 && stop_func_sal.end < ecs->stop_func_end)
4042 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 4043
2dbd5e30
KB
4044 /* Architectures which require breakpoint adjustment might not be able
4045 to place a breakpoint at the computed address. If so, the test
4046 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
4047 ecs->stop_func_start to an address at which a breakpoint may be
4048 legitimately placed.
8fb3e588 4049
2dbd5e30
KB
4050 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
4051 made, GDB will enter an infinite loop when stepping through
4052 optimized code consisting of VLIW instructions which contain
4053 subinstructions corresponding to different source lines. On
4054 FR-V, it's not permitted to place a breakpoint on any but the
4055 first subinstruction of a VLIW instruction. When a breakpoint is
4056 set, GDB will adjust the breakpoint address to the beginning of
4057 the VLIW instruction. Thus, we need to make the corresponding
4058 adjustment here when computing the stop address. */
8fb3e588 4059
568d6575 4060 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
4061 {
4062 ecs->stop_func_start
568d6575 4063 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 4064 ecs->stop_func_start);
2dbd5e30
KB
4065 }
4066
c2c6d25f
JM
4067 if (ecs->stop_func_start == stop_pc)
4068 {
4069 /* We are already there: stop now. */
414c69f7 4070 ecs->event_thread->stop_step = 1;
488f131b 4071 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
4072 stop_stepping (ecs);
4073 return;
4074 }
4075 else
4076 {
4077 /* Put the step-breakpoint there and go until there. */
fe39c653 4078 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
4079 sr_sal.pc = ecs->stop_func_start;
4080 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
44cbf7b5 4081
c2c6d25f 4082 /* Do not specify what the fp should be when we stop since on
488f131b
JB
4083 some machines the prologue is where the new fp value is
4084 established. */
44cbf7b5 4085 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c2c6d25f
JM
4086
4087 /* And make sure stepping stops right away then. */
4e1c45ea 4088 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
c2c6d25f
JM
4089 }
4090 keep_going (ecs);
4091}
d4f3574e 4092
b2175913
MS
4093/* Inferior has stepped backward into a subroutine call with source
4094 code that we should not step over. Do step to the beginning of the
4095 last line of code in it. */
4096
4097static void
568d6575
UW
4098handle_step_into_function_backward (struct gdbarch *gdbarch,
4099 struct execution_control_state *ecs)
b2175913
MS
4100{
4101 struct symtab *s;
4102 struct symtab_and_line stop_func_sal, sr_sal;
4103
4104 s = find_pc_symtab (stop_pc);
4105 if (s && s->language != language_asm)
568d6575 4106 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
4107 ecs->stop_func_start);
4108
4109 stop_func_sal = find_pc_line (stop_pc, 0);
4110
4111 /* OK, we're just going to keep stepping here. */
4112 if (stop_func_sal.pc == stop_pc)
4113 {
4114 /* We're there already. Just stop stepping now. */
4115 ecs->event_thread->stop_step = 1;
4116 print_stop_reason (END_STEPPING_RANGE, 0);
4117 stop_stepping (ecs);
4118 }
4119 else
4120 {
4121 /* Else just reset the step range and keep going.
4122 No step-resume breakpoint, they don't work for
4123 epilogues, which can have multiple entry paths. */
4124 ecs->event_thread->step_range_start = stop_func_sal.pc;
4125 ecs->event_thread->step_range_end = stop_func_sal.end;
4126 keep_going (ecs);
4127 }
4128 return;
4129}
4130
d3169d93 4131/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
4132 This is used to both functions and to skip over code. */
4133
4134static void
4135insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
4136 struct frame_id sr_id)
4137{
611c83ae
PA
4138 /* There should never be more than one step-resume or longjmp-resume
4139 breakpoint per thread, so we should never be setting a new
44cbf7b5 4140 step_resume_breakpoint when one is already active. */
4e1c45ea 4141 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
d3169d93
DJ
4142
4143 if (debug_infrun)
4144 fprintf_unfiltered (gdb_stdlog,
4145 "infrun: inserting step-resume breakpoint at 0x%s\n",
4146 paddr_nz (sr_sal.pc));
4147
4e1c45ea
PA
4148 inferior_thread ()->step_resume_breakpoint
4149 = set_momentary_breakpoint (sr_sal, sr_id, bp_step_resume);
44cbf7b5 4150}
7ce450bd 4151
d3169d93 4152/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
14e60db5 4153 to skip a potential signal handler.
7ce450bd 4154
14e60db5
DJ
4155 This is called with the interrupted function's frame. The signal
4156 handler, when it returns, will resume the interrupted function at
4157 RETURN_FRAME.pc. */
d303a6c7
AC
4158
4159static void
44cbf7b5 4160insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 4161{
568d6575 4162 struct gdbarch *gdbarch = get_frame_arch (return_frame);
d303a6c7
AC
4163 struct symtab_and_line sr_sal;
4164
f4c1edd8 4165 gdb_assert (return_frame != NULL);
d303a6c7
AC
4166 init_sal (&sr_sal); /* initialize to zeros */
4167
568d6575 4168 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7
AC
4169 sr_sal.section = find_pc_overlay (sr_sal.pc);
4170
44cbf7b5 4171 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
d303a6c7
AC
4172}
4173
14e60db5
DJ
4174/* Similar to insert_step_resume_breakpoint_at_frame, except
4175 but a breakpoint at the previous frame's PC. This is used to
4176 skip a function after stepping into it (for "next" or if the called
4177 function has no debugging information).
4178
4179 The current function has almost always been reached by single
4180 stepping a call or return instruction. NEXT_FRAME belongs to the
4181 current function, and the breakpoint will be set at the caller's
4182 resume address.
4183
4184 This is a separate function rather than reusing
4185 insert_step_resume_breakpoint_at_frame in order to avoid
4186 get_prev_frame, which may stop prematurely (see the implementation
eb2f4a08 4187 of frame_unwind_id for an example). */
14e60db5
DJ
4188
4189static void
4190insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
4191{
568d6575 4192 struct gdbarch *gdbarch = get_frame_arch (next_frame);
14e60db5
DJ
4193 struct symtab_and_line sr_sal;
4194
4195 /* We shouldn't have gotten here if we don't know where the call site
4196 is. */
eb2f4a08 4197 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
14e60db5
DJ
4198
4199 init_sal (&sr_sal); /* initialize to zeros */
4200
568d6575 4201 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, frame_pc_unwind (next_frame));
14e60db5
DJ
4202 sr_sal.section = find_pc_overlay (sr_sal.pc);
4203
eb2f4a08 4204 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
14e60db5
DJ
4205}
4206
611c83ae
PA
4207/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
4208 new breakpoint at the target of a jmp_buf. The handling of
4209 longjmp-resume uses the same mechanisms used for handling
4210 "step-resume" breakpoints. */
4211
4212static void
4213insert_longjmp_resume_breakpoint (CORE_ADDR pc)
4214{
4215 /* There should never be more than one step-resume or longjmp-resume
4216 breakpoint per thread, so we should never be setting a new
4217 longjmp_resume_breakpoint when one is already active. */
4e1c45ea 4218 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
611c83ae
PA
4219
4220 if (debug_infrun)
4221 fprintf_unfiltered (gdb_stdlog,
4222 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
4223 paddr_nz (pc));
4224
4e1c45ea 4225 inferior_thread ()->step_resume_breakpoint =
611c83ae
PA
4226 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
4227}
4228
104c1213
JM
4229static void
4230stop_stepping (struct execution_control_state *ecs)
4231{
527159b7 4232 if (debug_infrun)
8a9de0e4 4233 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 4234
cd0fc7c3
SS
4235 /* Let callers know we don't want to wait for the inferior anymore. */
4236 ecs->wait_some_more = 0;
4237}
4238
d4f3574e
SS
4239/* This function handles various cases where we need to continue
4240 waiting for the inferior. */
4241/* (Used to be the keep_going: label in the old wait_for_inferior) */
4242
4243static void
4244keep_going (struct execution_control_state *ecs)
4245{
d4f3574e 4246 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
4247 ecs->event_thread->prev_pc
4248 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 4249
d4f3574e
SS
4250 /* If we did not do break;, it means we should keep running the
4251 inferior and not return to debugger. */
4252
2020b7ab
PA
4253 if (ecs->event_thread->trap_expected
4254 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
4255 {
4256 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
4257 the inferior, else we'd not get here) and we haven't yet
4258 gotten our trap. Simply continue. */
2020b7ab
PA
4259 resume (currently_stepping (ecs->event_thread),
4260 ecs->event_thread->stop_signal);
d4f3574e
SS
4261 }
4262 else
4263 {
4264 /* Either the trap was not expected, but we are continuing
488f131b
JB
4265 anyway (the user asked that this signal be passed to the
4266 child)
4267 -- or --
4268 The signal was SIGTRAP, e.g. it was our signal, but we
4269 decided we should resume from it.
d4f3574e 4270
c36b740a 4271 We're going to run this baby now!
d4f3574e 4272
c36b740a
VP
4273 Note that insert_breakpoints won't try to re-insert
4274 already inserted breakpoints. Therefore, we don't
4275 care if breakpoints were already inserted, or not. */
4276
4e1c45ea 4277 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 4278 {
9f5a595d
UW
4279 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
4280 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
4281 /* Since we can't do a displaced step, we have to remove
4282 the breakpoint while we step it. To keep things
4283 simple, we remove them all. */
4284 remove_breakpoints ();
45e8c884
VP
4285 }
4286 else
d4f3574e 4287 {
e236ba44 4288 struct gdb_exception e;
569631c6
UW
4289 /* Stop stepping when inserting breakpoints
4290 has failed. */
e236ba44
VP
4291 TRY_CATCH (e, RETURN_MASK_ERROR)
4292 {
4293 insert_breakpoints ();
4294 }
4295 if (e.reason < 0)
d4f3574e
SS
4296 {
4297 stop_stepping (ecs);
4298 return;
4299 }
d4f3574e
SS
4300 }
4301
4e1c45ea 4302 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
4303
4304 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
4305 specifies that such a signal should be delivered to the
4306 target program).
4307
4308 Typically, this would occure when a user is debugging a
4309 target monitor on a simulator: the target monitor sets a
4310 breakpoint; the simulator encounters this break-point and
4311 halts the simulation handing control to GDB; GDB, noteing
4312 that the break-point isn't valid, returns control back to the
4313 simulator; the simulator then delivers the hardware
4314 equivalent of a SIGNAL_TRAP to the program being debugged. */
4315
2020b7ab
PA
4316 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4317 && !signal_program[ecs->event_thread->stop_signal])
4318 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
d4f3574e 4319
2020b7ab
PA
4320 resume (currently_stepping (ecs->event_thread),
4321 ecs->event_thread->stop_signal);
d4f3574e
SS
4322 }
4323
488f131b 4324 prepare_to_wait (ecs);
d4f3574e
SS
4325}
4326
104c1213
JM
4327/* This function normally comes after a resume, before
4328 handle_inferior_event exits. It takes care of any last bits of
4329 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 4330
104c1213
JM
4331static void
4332prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 4333{
527159b7 4334 if (debug_infrun)
8a9de0e4 4335 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
0d1e5fa7 4336 if (infwait_state == infwait_normal_state)
104c1213
JM
4337 {
4338 overlay_cache_invalid = 1;
4339
4340 /* We have to invalidate the registers BEFORE calling
488f131b
JB
4341 target_wait because they can be loaded from the target while
4342 in target_wait. This makes remote debugging a bit more
4343 efficient for those targets that provide critical registers
4344 as part of their normal status mechanism. */
104c1213
JM
4345
4346 registers_changed ();
0d1e5fa7 4347 waiton_ptid = pid_to_ptid (-1);
104c1213
JM
4348 }
4349 /* This is the old end of the while loop. Let everybody know we
4350 want to wait for the inferior some more and get called again
4351 soon. */
4352 ecs->wait_some_more = 1;
c906108c 4353}
11cf8741
JM
4354
4355/* Print why the inferior has stopped. We always print something when
4356 the inferior exits, or receives a signal. The rest of the cases are
4357 dealt with later on in normal_stop() and print_it_typical(). Ideally
4358 there should be a call to this function from handle_inferior_event()
4359 each time stop_stepping() is called.*/
4360static void
4361print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
4362{
4363 switch (stop_reason)
4364 {
11cf8741
JM
4365 case END_STEPPING_RANGE:
4366 /* We are done with a step/next/si/ni command. */
4367 /* For now print nothing. */
fb40c209 4368 /* Print a message only if not in the middle of doing a "step n"
488f131b 4369 operation for n > 1 */
414c69f7
PA
4370 if (!inferior_thread ()->step_multi
4371 || !inferior_thread ()->stop_step)
9dc5e2a9 4372 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4373 ui_out_field_string
4374 (uiout, "reason",
4375 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
11cf8741 4376 break;
11cf8741
JM
4377 case SIGNAL_EXITED:
4378 /* The inferior was terminated by a signal. */
8b93c638 4379 annotate_signalled ();
9dc5e2a9 4380 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4381 ui_out_field_string
4382 (uiout, "reason",
4383 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8b93c638
JM
4384 ui_out_text (uiout, "\nProgram terminated with signal ");
4385 annotate_signal_name ();
488f131b
JB
4386 ui_out_field_string (uiout, "signal-name",
4387 target_signal_to_name (stop_info));
8b93c638
JM
4388 annotate_signal_name_end ();
4389 ui_out_text (uiout, ", ");
4390 annotate_signal_string ();
488f131b
JB
4391 ui_out_field_string (uiout, "signal-meaning",
4392 target_signal_to_string (stop_info));
8b93c638
JM
4393 annotate_signal_string_end ();
4394 ui_out_text (uiout, ".\n");
4395 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
4396 break;
4397 case EXITED:
4398 /* The inferior program is finished. */
8b93c638
JM
4399 annotate_exited (stop_info);
4400 if (stop_info)
4401 {
9dc5e2a9 4402 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4403 ui_out_field_string (uiout, "reason",
4404 async_reason_lookup (EXEC_ASYNC_EXITED));
8b93c638 4405 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
4406 ui_out_field_fmt (uiout, "exit-code", "0%o",
4407 (unsigned int) stop_info);
8b93c638
JM
4408 ui_out_text (uiout, ".\n");
4409 }
4410 else
4411 {
9dc5e2a9 4412 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
4413 ui_out_field_string
4414 (uiout, "reason",
4415 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8b93c638
JM
4416 ui_out_text (uiout, "\nProgram exited normally.\n");
4417 }
f17517ea
AS
4418 /* Support the --return-child-result option. */
4419 return_child_result_value = stop_info;
11cf8741
JM
4420 break;
4421 case SIGNAL_RECEIVED:
252fbfc8
PA
4422 /* Signal received. The signal table tells us to print about
4423 it. */
8b93c638 4424 annotate_signal ();
252fbfc8
PA
4425
4426 if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
4427 {
4428 struct thread_info *t = inferior_thread ();
4429
4430 ui_out_text (uiout, "\n[");
4431 ui_out_field_string (uiout, "thread-name",
4432 target_pid_to_str (t->ptid));
4433 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
4434 ui_out_text (uiout, " stopped");
4435 }
4436 else
4437 {
4438 ui_out_text (uiout, "\nProgram received signal ");
4439 annotate_signal_name ();
4440 if (ui_out_is_mi_like_p (uiout))
4441 ui_out_field_string
4442 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
4443 ui_out_field_string (uiout, "signal-name",
4444 target_signal_to_name (stop_info));
4445 annotate_signal_name_end ();
4446 ui_out_text (uiout, ", ");
4447 annotate_signal_string ();
4448 ui_out_field_string (uiout, "signal-meaning",
4449 target_signal_to_string (stop_info));
4450 annotate_signal_string_end ();
4451 }
8b93c638 4452 ui_out_text (uiout, ".\n");
11cf8741 4453 break;
b2175913
MS
4454 case NO_HISTORY:
4455 /* Reverse execution: target ran out of history info. */
4456 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
4457 break;
11cf8741 4458 default:
8e65ff28 4459 internal_error (__FILE__, __LINE__,
e2e0b3e5 4460 _("print_stop_reason: unrecognized enum value"));
11cf8741
JM
4461 break;
4462 }
4463}
c906108c 4464\f
43ff13b4 4465
c906108c
SS
4466/* Here to return control to GDB when the inferior stops for real.
4467 Print appropriate messages, remove breakpoints, give terminal our modes.
4468
4469 STOP_PRINT_FRAME nonzero means print the executing frame
4470 (pc, function, args, file, line number and line text).
4471 BREAKPOINTS_FAILED nonzero means stop was due to error
4472 attempting to insert breakpoints. */
4473
4474void
96baa820 4475normal_stop (void)
c906108c 4476{
73b65bb0
DJ
4477 struct target_waitstatus last;
4478 ptid_t last_ptid;
29f49a6a 4479 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
4480
4481 get_last_target_status (&last_ptid, &last);
4482
29f49a6a
PA
4483 /* If an exception is thrown from this point on, make sure to
4484 propagate GDB's knowledge of the executing state to the
4485 frontend/user running state. A QUIT is an easy exception to see
4486 here, so do this before any filtered output. */
c35b1492
PA
4487 if (!non_stop)
4488 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
4489 else if (last.kind != TARGET_WAITKIND_SIGNALLED
4490 && last.kind != TARGET_WAITKIND_EXITED)
4491 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 4492
4f8d22e3
PA
4493 /* In non-stop mode, we don't want GDB to switch threads behind the
4494 user's back, to avoid races where the user is typing a command to
4495 apply to thread x, but GDB switches to thread y before the user
4496 finishes entering the command. */
4497
c906108c
SS
4498 /* As with the notification of thread events, we want to delay
4499 notifying the user that we've switched thread context until
4500 the inferior actually stops.
4501
73b65bb0
DJ
4502 There's no point in saying anything if the inferior has exited.
4503 Note that SIGNALLED here means "exited with a signal", not
4504 "received a signal". */
4f8d22e3
PA
4505 if (!non_stop
4506 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
4507 && target_has_execution
4508 && last.kind != TARGET_WAITKIND_SIGNALLED
4509 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
4510 {
4511 target_terminal_ours_for_output ();
a3f17187 4512 printf_filtered (_("[Switching to %s]\n"),
c95310c6 4513 target_pid_to_str (inferior_ptid));
b8fa951a 4514 annotate_thread_changed ();
39f77062 4515 previous_inferior_ptid = inferior_ptid;
c906108c 4516 }
c906108c 4517
74960c60 4518 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
4519 {
4520 if (remove_breakpoints ())
4521 {
4522 target_terminal_ours_for_output ();
a3f17187
AC
4523 printf_filtered (_("\
4524Cannot remove breakpoints because program is no longer writable.\n\
a3f17187 4525Further execution is probably impossible.\n"));
c906108c
SS
4526 }
4527 }
c906108c 4528
c906108c
SS
4529 /* If an auto-display called a function and that got a signal,
4530 delete that auto-display to avoid an infinite recursion. */
4531
4532 if (stopped_by_random_signal)
4533 disable_current_display ();
4534
4535 /* Don't print a message if in the middle of doing a "step n"
4536 operation for n > 1 */
af679fd0
PA
4537 if (target_has_execution
4538 && last.kind != TARGET_WAITKIND_SIGNALLED
4539 && last.kind != TARGET_WAITKIND_EXITED
4540 && inferior_thread ()->step_multi
414c69f7 4541 && inferior_thread ()->stop_step)
c906108c
SS
4542 goto done;
4543
4544 target_terminal_ours ();
4545
7abfe014
DJ
4546 /* Set the current source location. This will also happen if we
4547 display the frame below, but the current SAL will be incorrect
4548 during a user hook-stop function. */
d729566a 4549 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
4550 set_current_sal_from_frame (get_current_frame (), 1);
4551
dd7e2d2b
PA
4552 /* Let the user/frontend see the threads as stopped. */
4553 do_cleanups (old_chain);
4554
4555 /* Look up the hook_stop and run it (CLI internally handles problem
4556 of stop_command's pre-hook not existing). */
4557 if (stop_command)
4558 catch_errors (hook_stop_stub, stop_command,
4559 "Error while running hook_stop:\n", RETURN_MASK_ALL);
4560
d729566a 4561 if (!has_stack_frames ())
d51fd4c8 4562 goto done;
c906108c 4563
32400beb
PA
4564 if (last.kind == TARGET_WAITKIND_SIGNALLED
4565 || last.kind == TARGET_WAITKIND_EXITED)
4566 goto done;
4567
c906108c
SS
4568 /* Select innermost stack frame - i.e., current frame is frame 0,
4569 and current location is based on that.
4570 Don't do this on return from a stack dummy routine,
4571 or if the program has exited. */
4572
4573 if (!stop_stack_dummy)
4574 {
0f7d239c 4575 select_frame (get_current_frame ());
c906108c
SS
4576
4577 /* Print current location without a level number, if
c5aa993b
JM
4578 we have changed functions or hit a breakpoint.
4579 Print source line if we have one.
4580 bpstat_print() contains the logic deciding in detail
4581 what to print, based on the event(s) that just occurred. */
c906108c 4582
d01a8610
AS
4583 /* If --batch-silent is enabled then there's no need to print the current
4584 source location, and to try risks causing an error message about
4585 missing source files. */
4586 if (stop_print_frame && !batch_silent)
c906108c
SS
4587 {
4588 int bpstat_ret;
4589 int source_flag;
917317f4 4590 int do_frame_printing = 1;
347bddb7 4591 struct thread_info *tp = inferior_thread ();
c906108c 4592
347bddb7 4593 bpstat_ret = bpstat_print (tp->stop_bpstat);
917317f4
JM
4594 switch (bpstat_ret)
4595 {
4596 case PRINT_UNKNOWN:
b0f4b84b
DJ
4597 /* If we had hit a shared library event breakpoint,
4598 bpstat_print would print out this message. If we hit
4599 an OS-level shared library event, do the same
4600 thing. */
4601 if (last.kind == TARGET_WAITKIND_LOADED)
4602 {
4603 printf_filtered (_("Stopped due to shared library event\n"));
4604 source_flag = SRC_LINE; /* something bogus */
4605 do_frame_printing = 0;
4606 break;
4607 }
4608
aa0cd9c1 4609 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
4610 (or should) carry around the function and does (or
4611 should) use that when doing a frame comparison. */
414c69f7 4612 if (tp->stop_step
347bddb7 4613 && frame_id_eq (tp->step_frame_id,
aa0cd9c1 4614 get_frame_id (get_current_frame ()))
917317f4 4615 && step_start_function == find_pc_function (stop_pc))
488f131b 4616 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 4617 else
488f131b 4618 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
4619 break;
4620 case PRINT_SRC_AND_LOC:
488f131b 4621 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
4622 break;
4623 case PRINT_SRC_ONLY:
c5394b80 4624 source_flag = SRC_LINE;
917317f4
JM
4625 break;
4626 case PRINT_NOTHING:
488f131b 4627 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
4628 do_frame_printing = 0;
4629 break;
4630 default:
e2e0b3e5 4631 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 4632 }
c906108c
SS
4633
4634 /* The behavior of this routine with respect to the source
4635 flag is:
c5394b80
JM
4636 SRC_LINE: Print only source line
4637 LOCATION: Print only location
4638 SRC_AND_LOC: Print location and source line */
917317f4 4639 if (do_frame_printing)
b04f3ab4 4640 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
4641
4642 /* Display the auto-display expressions. */
4643 do_displays ();
4644 }
4645 }
4646
4647 /* Save the function value return registers, if we care.
4648 We might be about to restore their previous contents. */
32400beb 4649 if (inferior_thread ()->proceed_to_finish)
d5c31457
UW
4650 {
4651 /* This should not be necessary. */
4652 if (stop_registers)
4653 regcache_xfree (stop_registers);
4654
4655 /* NB: The copy goes through to the target picking up the value of
4656 all the registers. */
4657 stop_registers = regcache_dup (get_current_regcache ());
4658 }
c906108c
SS
4659
4660 if (stop_stack_dummy)
4661 {
b89667eb
DE
4662 /* Pop the empty frame that contains the stack dummy.
4663 This also restores inferior state prior to the call
4664 (struct inferior_thread_state). */
4665 struct frame_info *frame = get_current_frame ();
4666 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
4667 frame_pop (frame);
4668 /* frame_pop() calls reinit_frame_cache as the last thing it does
4669 which means there's currently no selected frame. We don't need
4670 to re-establish a selected frame if the dummy call returns normally,
4671 that will be done by restore_inferior_status. However, we do have
4672 to handle the case where the dummy call is returning after being
4673 stopped (e.g. the dummy call previously hit a breakpoint). We
4674 can't know which case we have so just always re-establish a
4675 selected frame here. */
0f7d239c 4676 select_frame (get_current_frame ());
c906108c
SS
4677 }
4678
c906108c
SS
4679done:
4680 annotate_stopped ();
41d2bdb4
PA
4681
4682 /* Suppress the stop observer if we're in the middle of:
4683
4684 - a step n (n > 1), as there still more steps to be done.
4685
4686 - a "finish" command, as the observer will be called in
4687 finish_command_continuation, so it can include the inferior
4688 function's return value.
4689
4690 - calling an inferior function, as we pretend we inferior didn't
4691 run at all. The return value of the call is handled by the
4692 expression evaluator, through call_function_by_hand. */
4693
4694 if (!target_has_execution
4695 || last.kind == TARGET_WAITKIND_SIGNALLED
4696 || last.kind == TARGET_WAITKIND_EXITED
4697 || (!inferior_thread ()->step_multi
4698 && !(inferior_thread ()->stop_bpstat
c5a4d20b
PA
4699 && inferior_thread ()->proceed_to_finish)
4700 && !inferior_thread ()->in_infcall))
347bddb7
PA
4701 {
4702 if (!ptid_equal (inferior_ptid, null_ptid))
1d33d6ba
VP
4703 observer_notify_normal_stop (inferior_thread ()->stop_bpstat,
4704 stop_print_frame);
347bddb7 4705 else
1d33d6ba 4706 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 4707 }
347bddb7 4708
48844aa6
PA
4709 if (target_has_execution)
4710 {
4711 if (last.kind != TARGET_WAITKIND_SIGNALLED
4712 && last.kind != TARGET_WAITKIND_EXITED)
4713 /* Delete the breakpoint we stopped at, if it wants to be deleted.
4714 Delete any breakpoint that is to be deleted at the next stop. */
4715 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
94cc34af 4716 }
c906108c
SS
4717}
4718
4719static int
96baa820 4720hook_stop_stub (void *cmd)
c906108c 4721{
5913bcb0 4722 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
4723 return (0);
4724}
4725\f
c5aa993b 4726int
96baa820 4727signal_stop_state (int signo)
c906108c 4728{
d6b48e9c 4729 return signal_stop[signo];
c906108c
SS
4730}
4731
c5aa993b 4732int
96baa820 4733signal_print_state (int signo)
c906108c
SS
4734{
4735 return signal_print[signo];
4736}
4737
c5aa993b 4738int
96baa820 4739signal_pass_state (int signo)
c906108c
SS
4740{
4741 return signal_program[signo];
4742}
4743
488f131b 4744int
7bda5e4a 4745signal_stop_update (int signo, int state)
d4f3574e
SS
4746{
4747 int ret = signal_stop[signo];
4748 signal_stop[signo] = state;
4749 return ret;
4750}
4751
488f131b 4752int
7bda5e4a 4753signal_print_update (int signo, int state)
d4f3574e
SS
4754{
4755 int ret = signal_print[signo];
4756 signal_print[signo] = state;
4757 return ret;
4758}
4759
488f131b 4760int
7bda5e4a 4761signal_pass_update (int signo, int state)
d4f3574e
SS
4762{
4763 int ret = signal_program[signo];
4764 signal_program[signo] = state;
4765 return ret;
4766}
4767
c906108c 4768static void
96baa820 4769sig_print_header (void)
c906108c 4770{
a3f17187
AC
4771 printf_filtered (_("\
4772Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
4773}
4774
4775static void
96baa820 4776sig_print_info (enum target_signal oursig)
c906108c 4777{
54363045 4778 const char *name = target_signal_to_name (oursig);
c906108c 4779 int name_padding = 13 - strlen (name);
96baa820 4780
c906108c
SS
4781 if (name_padding <= 0)
4782 name_padding = 0;
4783
4784 printf_filtered ("%s", name);
488f131b 4785 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
4786 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4787 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4788 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4789 printf_filtered ("%s\n", target_signal_to_string (oursig));
4790}
4791
4792/* Specify how various signals in the inferior should be handled. */
4793
4794static void
96baa820 4795handle_command (char *args, int from_tty)
c906108c
SS
4796{
4797 char **argv;
4798 int digits, wordlen;
4799 int sigfirst, signum, siglast;
4800 enum target_signal oursig;
4801 int allsigs;
4802 int nsigs;
4803 unsigned char *sigs;
4804 struct cleanup *old_chain;
4805
4806 if (args == NULL)
4807 {
e2e0b3e5 4808 error_no_arg (_("signal to handle"));
c906108c
SS
4809 }
4810
4811 /* Allocate and zero an array of flags for which signals to handle. */
4812
4813 nsigs = (int) TARGET_SIGNAL_LAST;
4814 sigs = (unsigned char *) alloca (nsigs);
4815 memset (sigs, 0, nsigs);
4816
4817 /* Break the command line up into args. */
4818
d1a41061 4819 argv = gdb_buildargv (args);
7a292a7a 4820 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
4821
4822 /* Walk through the args, looking for signal oursigs, signal names, and
4823 actions. Signal numbers and signal names may be interspersed with
4824 actions, with the actions being performed for all signals cumulatively
4825 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
4826
4827 while (*argv != NULL)
4828 {
4829 wordlen = strlen (*argv);
4830 for (digits = 0; isdigit ((*argv)[digits]); digits++)
4831 {;
4832 }
4833 allsigs = 0;
4834 sigfirst = siglast = -1;
4835
4836 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
4837 {
4838 /* Apply action to all signals except those used by the
4839 debugger. Silently skip those. */
4840 allsigs = 1;
4841 sigfirst = 0;
4842 siglast = nsigs - 1;
4843 }
4844 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
4845 {
4846 SET_SIGS (nsigs, sigs, signal_stop);
4847 SET_SIGS (nsigs, sigs, signal_print);
4848 }
4849 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
4850 {
4851 UNSET_SIGS (nsigs, sigs, signal_program);
4852 }
4853 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
4854 {
4855 SET_SIGS (nsigs, sigs, signal_print);
4856 }
4857 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
4858 {
4859 SET_SIGS (nsigs, sigs, signal_program);
4860 }
4861 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
4862 {
4863 UNSET_SIGS (nsigs, sigs, signal_stop);
4864 }
4865 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
4866 {
4867 SET_SIGS (nsigs, sigs, signal_program);
4868 }
4869 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
4870 {
4871 UNSET_SIGS (nsigs, sigs, signal_print);
4872 UNSET_SIGS (nsigs, sigs, signal_stop);
4873 }
4874 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
4875 {
4876 UNSET_SIGS (nsigs, sigs, signal_program);
4877 }
4878 else if (digits > 0)
4879 {
4880 /* It is numeric. The numeric signal refers to our own
4881 internal signal numbering from target.h, not to host/target
4882 signal number. This is a feature; users really should be
4883 using symbolic names anyway, and the common ones like
4884 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
4885
4886 sigfirst = siglast = (int)
4887 target_signal_from_command (atoi (*argv));
4888 if ((*argv)[digits] == '-')
4889 {
4890 siglast = (int)
4891 target_signal_from_command (atoi ((*argv) + digits + 1));
4892 }
4893 if (sigfirst > siglast)
4894 {
4895 /* Bet he didn't figure we'd think of this case... */
4896 signum = sigfirst;
4897 sigfirst = siglast;
4898 siglast = signum;
4899 }
4900 }
4901 else
4902 {
4903 oursig = target_signal_from_name (*argv);
4904 if (oursig != TARGET_SIGNAL_UNKNOWN)
4905 {
4906 sigfirst = siglast = (int) oursig;
4907 }
4908 else
4909 {
4910 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 4911 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
4912 }
4913 }
4914
4915 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 4916 which signals to apply actions to. */
c906108c
SS
4917
4918 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
4919 {
4920 switch ((enum target_signal) signum)
4921 {
4922 case TARGET_SIGNAL_TRAP:
4923 case TARGET_SIGNAL_INT:
4924 if (!allsigs && !sigs[signum])
4925 {
9e2f0ad4
HZ
4926 if (query (_("%s is used by the debugger.\n\
4927Are you sure you want to change it? "), target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
4928 {
4929 sigs[signum] = 1;
4930 }
4931 else
4932 {
a3f17187 4933 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
4934 gdb_flush (gdb_stdout);
4935 }
4936 }
4937 break;
4938 case TARGET_SIGNAL_0:
4939 case TARGET_SIGNAL_DEFAULT:
4940 case TARGET_SIGNAL_UNKNOWN:
4941 /* Make sure that "all" doesn't print these. */
4942 break;
4943 default:
4944 sigs[signum] = 1;
4945 break;
4946 }
4947 }
4948
4949 argv++;
4950 }
4951
3a031f65
PA
4952 for (signum = 0; signum < nsigs; signum++)
4953 if (sigs[signum])
4954 {
4955 target_notice_signals (inferior_ptid);
c906108c 4956
3a031f65
PA
4957 if (from_tty)
4958 {
4959 /* Show the results. */
4960 sig_print_header ();
4961 for (; signum < nsigs; signum++)
4962 if (sigs[signum])
4963 sig_print_info (signum);
4964 }
4965
4966 break;
4967 }
c906108c
SS
4968
4969 do_cleanups (old_chain);
4970}
4971
4972static void
96baa820 4973xdb_handle_command (char *args, int from_tty)
c906108c
SS
4974{
4975 char **argv;
4976 struct cleanup *old_chain;
4977
d1a41061
PP
4978 if (args == NULL)
4979 error_no_arg (_("xdb command"));
4980
c906108c
SS
4981 /* Break the command line up into args. */
4982
d1a41061 4983 argv = gdb_buildargv (args);
7a292a7a 4984 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
4985 if (argv[1] != (char *) NULL)
4986 {
4987 char *argBuf;
4988 int bufLen;
4989
4990 bufLen = strlen (argv[0]) + 20;
4991 argBuf = (char *) xmalloc (bufLen);
4992 if (argBuf)
4993 {
4994 int validFlag = 1;
4995 enum target_signal oursig;
4996
4997 oursig = target_signal_from_name (argv[0]);
4998 memset (argBuf, 0, bufLen);
4999 if (strcmp (argv[1], "Q") == 0)
5000 sprintf (argBuf, "%s %s", argv[0], "noprint");
5001 else
5002 {
5003 if (strcmp (argv[1], "s") == 0)
5004 {
5005 if (!signal_stop[oursig])
5006 sprintf (argBuf, "%s %s", argv[0], "stop");
5007 else
5008 sprintf (argBuf, "%s %s", argv[0], "nostop");
5009 }
5010 else if (strcmp (argv[1], "i") == 0)
5011 {
5012 if (!signal_program[oursig])
5013 sprintf (argBuf, "%s %s", argv[0], "pass");
5014 else
5015 sprintf (argBuf, "%s %s", argv[0], "nopass");
5016 }
5017 else if (strcmp (argv[1], "r") == 0)
5018 {
5019 if (!signal_print[oursig])
5020 sprintf (argBuf, "%s %s", argv[0], "print");
5021 else
5022 sprintf (argBuf, "%s %s", argv[0], "noprint");
5023 }
5024 else
5025 validFlag = 0;
5026 }
5027 if (validFlag)
5028 handle_command (argBuf, from_tty);
5029 else
a3f17187 5030 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 5031 if (argBuf)
b8c9b27d 5032 xfree (argBuf);
c906108c
SS
5033 }
5034 }
5035 do_cleanups (old_chain);
5036}
5037
5038/* Print current contents of the tables set by the handle command.
5039 It is possible we should just be printing signals actually used
5040 by the current target (but for things to work right when switching
5041 targets, all signals should be in the signal tables). */
5042
5043static void
96baa820 5044signals_info (char *signum_exp, int from_tty)
c906108c
SS
5045{
5046 enum target_signal oursig;
5047 sig_print_header ();
5048
5049 if (signum_exp)
5050 {
5051 /* First see if this is a symbol name. */
5052 oursig = target_signal_from_name (signum_exp);
5053 if (oursig == TARGET_SIGNAL_UNKNOWN)
5054 {
5055 /* No, try numeric. */
5056 oursig =
bb518678 5057 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
5058 }
5059 sig_print_info (oursig);
5060 return;
5061 }
5062
5063 printf_filtered ("\n");
5064 /* These ugly casts brought to you by the native VAX compiler. */
5065 for (oursig = TARGET_SIGNAL_FIRST;
5066 (int) oursig < (int) TARGET_SIGNAL_LAST;
5067 oursig = (enum target_signal) ((int) oursig + 1))
5068 {
5069 QUIT;
5070
5071 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 5072 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
5073 sig_print_info (oursig);
5074 }
5075
a3f17187 5076 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c 5077}
4aa995e1
PA
5078
5079/* The $_siginfo convenience variable is a bit special. We don't know
5080 for sure the type of the value until we actually have a chance to
5081 fetch the data. The type can change depending on gdbarch, so it it
5082 also dependent on which thread you have selected.
5083
5084 1. making $_siginfo be an internalvar that creates a new value on
5085 access.
5086
5087 2. making the value of $_siginfo be an lval_computed value. */
5088
5089/* This function implements the lval_computed support for reading a
5090 $_siginfo value. */
5091
5092static void
5093siginfo_value_read (struct value *v)
5094{
5095 LONGEST transferred;
5096
5097 transferred =
5098 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
5099 NULL,
5100 value_contents_all_raw (v),
5101 value_offset (v),
5102 TYPE_LENGTH (value_type (v)));
5103
5104 if (transferred != TYPE_LENGTH (value_type (v)))
5105 error (_("Unable to read siginfo"));
5106}
5107
5108/* This function implements the lval_computed support for writing a
5109 $_siginfo value. */
5110
5111static void
5112siginfo_value_write (struct value *v, struct value *fromval)
5113{
5114 LONGEST transferred;
5115
5116 transferred = target_write (&current_target,
5117 TARGET_OBJECT_SIGNAL_INFO,
5118 NULL,
5119 value_contents_all_raw (fromval),
5120 value_offset (v),
5121 TYPE_LENGTH (value_type (fromval)));
5122
5123 if (transferred != TYPE_LENGTH (value_type (fromval)))
5124 error (_("Unable to write siginfo"));
5125}
5126
5127static struct lval_funcs siginfo_value_funcs =
5128 {
5129 siginfo_value_read,
5130 siginfo_value_write
5131 };
5132
5133/* Return a new value with the correct type for the siginfo object of
5134 the current thread. Return a void value if there's no object
5135 available. */
5136
2c0b251b 5137static struct value *
4aa995e1
PA
5138siginfo_make_value (struct internalvar *var)
5139{
5140 struct type *type;
5141 struct gdbarch *gdbarch;
5142
5143 if (target_has_stack
5144 && !ptid_equal (inferior_ptid, null_ptid))
5145 {
5146 gdbarch = get_frame_arch (get_current_frame ());
5147
5148 if (gdbarch_get_siginfo_type_p (gdbarch))
5149 {
5150 type = gdbarch_get_siginfo_type (gdbarch);
5151
5152 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
5153 }
5154 }
5155
5156 return allocate_value (builtin_type_void);
5157}
5158
c906108c 5159\f
b89667eb
DE
5160/* Inferior thread state.
5161 These are details related to the inferior itself, and don't include
5162 things like what frame the user had selected or what gdb was doing
5163 with the target at the time.
5164 For inferior function calls these are things we want to restore
5165 regardless of whether the function call successfully completes
5166 or the dummy frame has to be manually popped. */
5167
5168struct inferior_thread_state
7a292a7a
SS
5169{
5170 enum target_signal stop_signal;
5171 CORE_ADDR stop_pc;
b89667eb
DE
5172 struct regcache *registers;
5173};
5174
5175struct inferior_thread_state *
5176save_inferior_thread_state (void)
5177{
5178 struct inferior_thread_state *inf_state = XMALLOC (struct inferior_thread_state);
5179 struct thread_info *tp = inferior_thread ();
5180
5181 inf_state->stop_signal = tp->stop_signal;
5182 inf_state->stop_pc = stop_pc;
5183
5184 inf_state->registers = regcache_dup (get_current_regcache ());
5185
5186 return inf_state;
5187}
5188
5189/* Restore inferior session state to INF_STATE. */
5190
5191void
5192restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5193{
5194 struct thread_info *tp = inferior_thread ();
5195
5196 tp->stop_signal = inf_state->stop_signal;
5197 stop_pc = inf_state->stop_pc;
5198
5199 /* The inferior can be gone if the user types "print exit(0)"
5200 (and perhaps other times). */
5201 if (target_has_execution)
5202 /* NB: The register write goes through to the target. */
5203 regcache_cpy (get_current_regcache (), inf_state->registers);
5204 regcache_xfree (inf_state->registers);
5205 xfree (inf_state);
5206}
5207
5208static void
5209do_restore_inferior_thread_state_cleanup (void *state)
5210{
5211 restore_inferior_thread_state (state);
5212}
5213
5214struct cleanup *
5215make_cleanup_restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5216{
5217 return make_cleanup (do_restore_inferior_thread_state_cleanup, inf_state);
5218}
5219
5220void
5221discard_inferior_thread_state (struct inferior_thread_state *inf_state)
5222{
5223 regcache_xfree (inf_state->registers);
5224 xfree (inf_state);
5225}
5226
5227struct regcache *
5228get_inferior_thread_state_regcache (struct inferior_thread_state *inf_state)
5229{
5230 return inf_state->registers;
5231}
5232
5233/* Session related state for inferior function calls.
5234 These are the additional bits of state that need to be restored
5235 when an inferior function call successfully completes. */
5236
5237struct inferior_status
5238{
7a292a7a
SS
5239 bpstat stop_bpstat;
5240 int stop_step;
5241 int stop_stack_dummy;
5242 int stopped_by_random_signal;
ca67fcb8 5243 int stepping_over_breakpoint;
7a292a7a
SS
5244 CORE_ADDR step_range_start;
5245 CORE_ADDR step_range_end;
aa0cd9c1 5246 struct frame_id step_frame_id;
5fbbeb29 5247 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
5248 CORE_ADDR step_resume_break_address;
5249 int stop_after_trap;
c0236d92 5250 int stop_soon;
7a292a7a 5251
b89667eb 5252 /* ID if the selected frame when the inferior function call was made. */
101dcfbe
AC
5253 struct frame_id selected_frame_id;
5254
7a292a7a 5255 int proceed_to_finish;
c5a4d20b 5256 int in_infcall;
7a292a7a
SS
5257};
5258
c906108c 5259/* Save all of the information associated with the inferior<==>gdb
b89667eb 5260 connection. */
c906108c 5261
7a292a7a 5262struct inferior_status *
b89667eb 5263save_inferior_status (void)
c906108c 5264{
72cec141 5265 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4e1c45ea 5266 struct thread_info *tp = inferior_thread ();
d6b48e9c 5267 struct inferior *inf = current_inferior ();
7a292a7a 5268
414c69f7 5269 inf_status->stop_step = tp->stop_step;
c906108c
SS
5270 inf_status->stop_stack_dummy = stop_stack_dummy;
5271 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4e1c45ea
PA
5272 inf_status->stepping_over_breakpoint = tp->trap_expected;
5273 inf_status->step_range_start = tp->step_range_start;
5274 inf_status->step_range_end = tp->step_range_end;
5275 inf_status->step_frame_id = tp->step_frame_id;
078130d0 5276 inf_status->step_over_calls = tp->step_over_calls;
c906108c 5277 inf_status->stop_after_trap = stop_after_trap;
d6b48e9c 5278 inf_status->stop_soon = inf->stop_soon;
c906108c
SS
5279 /* Save original bpstat chain here; replace it with copy of chain.
5280 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
5281 hand them back the original chain when restore_inferior_status is
5282 called. */
347bddb7
PA
5283 inf_status->stop_bpstat = tp->stop_bpstat;
5284 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
32400beb 5285 inf_status->proceed_to_finish = tp->proceed_to_finish;
c5a4d20b 5286 inf_status->in_infcall = tp->in_infcall;
c5aa993b 5287
206415a3 5288 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 5289
7a292a7a 5290 return inf_status;
c906108c
SS
5291}
5292
c906108c 5293static int
96baa820 5294restore_selected_frame (void *args)
c906108c 5295{
488f131b 5296 struct frame_id *fid = (struct frame_id *) args;
c906108c 5297 struct frame_info *frame;
c906108c 5298
101dcfbe 5299 frame = frame_find_by_id (*fid);
c906108c 5300
aa0cd9c1
AC
5301 /* If inf_status->selected_frame_id is NULL, there was no previously
5302 selected frame. */
101dcfbe 5303 if (frame == NULL)
c906108c 5304 {
8a3fe4f8 5305 warning (_("Unable to restore previously selected frame."));
c906108c
SS
5306 return 0;
5307 }
5308
0f7d239c 5309 select_frame (frame);
c906108c
SS
5310
5311 return (1);
5312}
5313
b89667eb
DE
5314/* Restore inferior session state to INF_STATUS. */
5315
c906108c 5316void
96baa820 5317restore_inferior_status (struct inferior_status *inf_status)
c906108c 5318{
4e1c45ea 5319 struct thread_info *tp = inferior_thread ();
d6b48e9c 5320 struct inferior *inf = current_inferior ();
4e1c45ea 5321
414c69f7 5322 tp->stop_step = inf_status->stop_step;
c906108c
SS
5323 stop_stack_dummy = inf_status->stop_stack_dummy;
5324 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4e1c45ea
PA
5325 tp->trap_expected = inf_status->stepping_over_breakpoint;
5326 tp->step_range_start = inf_status->step_range_start;
5327 tp->step_range_end = inf_status->step_range_end;
5328 tp->step_frame_id = inf_status->step_frame_id;
078130d0 5329 tp->step_over_calls = inf_status->step_over_calls;
c906108c 5330 stop_after_trap = inf_status->stop_after_trap;
d6b48e9c 5331 inf->stop_soon = inf_status->stop_soon;
347bddb7
PA
5332 bpstat_clear (&tp->stop_bpstat);
5333 tp->stop_bpstat = inf_status->stop_bpstat;
b89667eb 5334 inf_status->stop_bpstat = NULL;
32400beb 5335 tp->proceed_to_finish = inf_status->proceed_to_finish;
c5a4d20b 5336 tp->in_infcall = inf_status->in_infcall;
c906108c 5337
b89667eb 5338 if (target_has_stack)
c906108c 5339 {
c906108c 5340 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
5341 walking the stack might encounter a garbage pointer and
5342 error() trying to dereference it. */
488f131b
JB
5343 if (catch_errors
5344 (restore_selected_frame, &inf_status->selected_frame_id,
5345 "Unable to restore previously selected frame:\n",
5346 RETURN_MASK_ERROR) == 0)
c906108c
SS
5347 /* Error in restoring the selected frame. Select the innermost
5348 frame. */
0f7d239c 5349 select_frame (get_current_frame ());
c906108c 5350 }
c906108c 5351
72cec141 5352 xfree (inf_status);
7a292a7a 5353}
c906108c 5354
74b7792f
AC
5355static void
5356do_restore_inferior_status_cleanup (void *sts)
5357{
5358 restore_inferior_status (sts);
5359}
5360
5361struct cleanup *
5362make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
5363{
5364 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
5365}
5366
c906108c 5367void
96baa820 5368discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
5369{
5370 /* See save_inferior_status for info on stop_bpstat. */
5371 bpstat_clear (&inf_status->stop_bpstat);
72cec141 5372 xfree (inf_status);
7a292a7a 5373}
b89667eb 5374\f
47932f85 5375int
3a3e9ee3 5376inferior_has_forked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
5377{
5378 struct target_waitstatus last;
5379 ptid_t last_ptid;
5380
5381 get_last_target_status (&last_ptid, &last);
5382
5383 if (last.kind != TARGET_WAITKIND_FORKED)
5384 return 0;
5385
3a3e9ee3 5386 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
5387 return 0;
5388
5389 *child_pid = last.value.related_pid;
5390 return 1;
5391}
5392
5393int
3a3e9ee3 5394inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
5395{
5396 struct target_waitstatus last;
5397 ptid_t last_ptid;
5398
5399 get_last_target_status (&last_ptid, &last);
5400
5401 if (last.kind != TARGET_WAITKIND_VFORKED)
5402 return 0;
5403
3a3e9ee3 5404 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
5405 return 0;
5406
5407 *child_pid = last.value.related_pid;
5408 return 1;
5409}
5410
5411int
3a3e9ee3 5412inferior_has_execd (ptid_t pid, char **execd_pathname)
47932f85
DJ
5413{
5414 struct target_waitstatus last;
5415 ptid_t last_ptid;
5416
5417 get_last_target_status (&last_ptid, &last);
5418
5419 if (last.kind != TARGET_WAITKIND_EXECD)
5420 return 0;
5421
3a3e9ee3 5422 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
5423 return 0;
5424
5425 *execd_pathname = xstrdup (last.value.execd_pathname);
5426 return 1;
5427}
5428
ca6724c1
KB
5429/* Oft used ptids */
5430ptid_t null_ptid;
5431ptid_t minus_one_ptid;
5432
5433/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 5434
ca6724c1
KB
5435ptid_t
5436ptid_build (int pid, long lwp, long tid)
5437{
5438 ptid_t ptid;
5439
5440 ptid.pid = pid;
5441 ptid.lwp = lwp;
5442 ptid.tid = tid;
5443 return ptid;
5444}
5445
5446/* Create a ptid from just a pid. */
5447
5448ptid_t
5449pid_to_ptid (int pid)
5450{
5451 return ptid_build (pid, 0, 0);
5452}
5453
5454/* Fetch the pid (process id) component from a ptid. */
5455
5456int
5457ptid_get_pid (ptid_t ptid)
5458{
5459 return ptid.pid;
5460}
5461
5462/* Fetch the lwp (lightweight process) component from a ptid. */
5463
5464long
5465ptid_get_lwp (ptid_t ptid)
5466{
5467 return ptid.lwp;
5468}
5469
5470/* Fetch the tid (thread id) component from a ptid. */
5471
5472long
5473ptid_get_tid (ptid_t ptid)
5474{
5475 return ptid.tid;
5476}
5477
5478/* ptid_equal() is used to test equality of two ptids. */
5479
5480int
5481ptid_equal (ptid_t ptid1, ptid_t ptid2)
5482{
5483 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 5484 && ptid1.tid == ptid2.tid);
ca6724c1
KB
5485}
5486
252fbfc8
PA
5487/* Returns true if PTID represents a process. */
5488
5489int
5490ptid_is_pid (ptid_t ptid)
5491{
5492 if (ptid_equal (minus_one_ptid, ptid))
5493 return 0;
5494 if (ptid_equal (null_ptid, ptid))
5495 return 0;
5496
5497 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
5498}
5499
ca6724c1
KB
5500/* restore_inferior_ptid() will be used by the cleanup machinery
5501 to restore the inferior_ptid value saved in a call to
5502 save_inferior_ptid(). */
ce696e05
KB
5503
5504static void
5505restore_inferior_ptid (void *arg)
5506{
5507 ptid_t *saved_ptid_ptr = arg;
5508 inferior_ptid = *saved_ptid_ptr;
5509 xfree (arg);
5510}
5511
5512/* Save the value of inferior_ptid so that it may be restored by a
5513 later call to do_cleanups(). Returns the struct cleanup pointer
5514 needed for later doing the cleanup. */
5515
5516struct cleanup *
5517save_inferior_ptid (void)
5518{
5519 ptid_t *saved_ptid_ptr;
5520
5521 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
5522 *saved_ptid_ptr = inferior_ptid;
5523 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
5524}
c5aa993b 5525\f
488f131b 5526
b2175913
MS
5527/* User interface for reverse debugging:
5528 Set exec-direction / show exec-direction commands
5529 (returns error unless target implements to_set_exec_direction method). */
5530
5531enum exec_direction_kind execution_direction = EXEC_FORWARD;
5532static const char exec_forward[] = "forward";
5533static const char exec_reverse[] = "reverse";
5534static const char *exec_direction = exec_forward;
5535static const char *exec_direction_names[] = {
5536 exec_forward,
5537 exec_reverse,
5538 NULL
5539};
5540
5541static void
5542set_exec_direction_func (char *args, int from_tty,
5543 struct cmd_list_element *cmd)
5544{
5545 if (target_can_execute_reverse)
5546 {
5547 if (!strcmp (exec_direction, exec_forward))
5548 execution_direction = EXEC_FORWARD;
5549 else if (!strcmp (exec_direction, exec_reverse))
5550 execution_direction = EXEC_REVERSE;
5551 }
5552}
5553
5554static void
5555show_exec_direction_func (struct ui_file *out, int from_tty,
5556 struct cmd_list_element *cmd, const char *value)
5557{
5558 switch (execution_direction) {
5559 case EXEC_FORWARD:
5560 fprintf_filtered (out, _("Forward.\n"));
5561 break;
5562 case EXEC_REVERSE:
5563 fprintf_filtered (out, _("Reverse.\n"));
5564 break;
5565 case EXEC_ERROR:
5566 default:
5567 fprintf_filtered (out,
5568 _("Forward (target `%s' does not support exec-direction).\n"),
5569 target_shortname);
5570 break;
5571 }
5572}
5573
5574/* User interface for non-stop mode. */
5575
ad52ddc6
PA
5576int non_stop = 0;
5577static int non_stop_1 = 0;
5578
5579static void
5580set_non_stop (char *args, int from_tty,
5581 struct cmd_list_element *c)
5582{
5583 if (target_has_execution)
5584 {
5585 non_stop_1 = non_stop;
5586 error (_("Cannot change this setting while the inferior is running."));
5587 }
5588
5589 non_stop = non_stop_1;
5590}
5591
5592static void
5593show_non_stop (struct ui_file *file, int from_tty,
5594 struct cmd_list_element *c, const char *value)
5595{
5596 fprintf_filtered (file,
5597 _("Controlling the inferior in non-stop mode is %s.\n"),
5598 value);
5599}
5600
d4db2f36
PA
5601static void
5602show_schedule_multiple (struct ui_file *file, int from_tty,
5603 struct cmd_list_element *c, const char *value)
5604{
5605 fprintf_filtered (file, _("\
5606Resuming the execution of threads of all processes is %s.\n"), value);
5607}
ad52ddc6 5608
c906108c 5609void
96baa820 5610_initialize_infrun (void)
c906108c 5611{
52f0bd74
AC
5612 int i;
5613 int numsigs;
c906108c
SS
5614 struct cmd_list_element *c;
5615
1bedd215
AC
5616 add_info ("signals", signals_info, _("\
5617What debugger does when program gets various signals.\n\
5618Specify a signal as argument to print info on that signal only."));
c906108c
SS
5619 add_info_alias ("handle", "signals", 0);
5620
1bedd215
AC
5621 add_com ("handle", class_run, handle_command, _("\
5622Specify how to handle a signal.\n\
c906108c
SS
5623Args are signals and actions to apply to those signals.\n\
5624Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5625from 1-15 are allowed for compatibility with old versions of GDB.\n\
5626Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5627The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
5628used by the debugger, typically SIGTRAP and SIGINT.\n\
5629Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
5630\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
5631Stop means reenter debugger if this signal happens (implies print).\n\
5632Print means print a message if this signal happens.\n\
5633Pass means let program see this signal; otherwise program doesn't know.\n\
5634Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 5635Pass and Stop may be combined."));
c906108c
SS
5636 if (xdb_commands)
5637 {
1bedd215
AC
5638 add_com ("lz", class_info, signals_info, _("\
5639What debugger does when program gets various signals.\n\
5640Specify a signal as argument to print info on that signal only."));
5641 add_com ("z", class_run, xdb_handle_command, _("\
5642Specify how to handle a signal.\n\
c906108c
SS
5643Args are signals and actions to apply to those signals.\n\
5644Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5645from 1-15 are allowed for compatibility with old versions of GDB.\n\
5646Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5647The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
5648used by the debugger, typically SIGTRAP and SIGINT.\n\
5649Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
5650\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
5651nopass), \"Q\" (noprint)\n\
5652Stop means reenter debugger if this signal happens (implies print).\n\
5653Print means print a message if this signal happens.\n\
5654Pass means let program see this signal; otherwise program doesn't know.\n\
5655Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 5656Pass and Stop may be combined."));
c906108c
SS
5657 }
5658
5659 if (!dbx_commands)
1a966eab
AC
5660 stop_command = add_cmd ("stop", class_obscure,
5661 not_just_help_class_command, _("\
5662There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 5663This allows you to set a list of commands to be run each time execution\n\
1a966eab 5664of the program stops."), &cmdlist);
c906108c 5665
85c07804
AC
5666 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
5667Set inferior debugging."), _("\
5668Show inferior debugging."), _("\
5669When non-zero, inferior specific debugging is enabled."),
5670 NULL,
920d2a44 5671 show_debug_infrun,
85c07804 5672 &setdebuglist, &showdebuglist);
527159b7 5673
237fc4c9
PA
5674 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
5675Set displaced stepping debugging."), _("\
5676Show displaced stepping debugging."), _("\
5677When non-zero, displaced stepping specific debugging is enabled."),
5678 NULL,
5679 show_debug_displaced,
5680 &setdebuglist, &showdebuglist);
5681
ad52ddc6
PA
5682 add_setshow_boolean_cmd ("non-stop", no_class,
5683 &non_stop_1, _("\
5684Set whether gdb controls the inferior in non-stop mode."), _("\
5685Show whether gdb controls the inferior in non-stop mode."), _("\
5686When debugging a multi-threaded program and this setting is\n\
5687off (the default, also called all-stop mode), when one thread stops\n\
5688(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
5689all other threads in the program while you interact with the thread of\n\
5690interest. When you continue or step a thread, you can allow the other\n\
5691threads to run, or have them remain stopped, but while you inspect any\n\
5692thread's state, all threads stop.\n\
5693\n\
5694In non-stop mode, when one thread stops, other threads can continue\n\
5695to run freely. You'll be able to step each thread independently,\n\
5696leave it stopped or free to run as needed."),
5697 set_non_stop,
5698 show_non_stop,
5699 &setlist,
5700 &showlist);
5701
c906108c 5702 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 5703 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
5704 signal_print = (unsigned char *)
5705 xmalloc (sizeof (signal_print[0]) * numsigs);
5706 signal_program = (unsigned char *)
5707 xmalloc (sizeof (signal_program[0]) * numsigs);
5708 for (i = 0; i < numsigs; i++)
5709 {
5710 signal_stop[i] = 1;
5711 signal_print[i] = 1;
5712 signal_program[i] = 1;
5713 }
5714
5715 /* Signals caused by debugger's own actions
5716 should not be given to the program afterwards. */
5717 signal_program[TARGET_SIGNAL_TRAP] = 0;
5718 signal_program[TARGET_SIGNAL_INT] = 0;
5719
5720 /* Signals that are not errors should not normally enter the debugger. */
5721 signal_stop[TARGET_SIGNAL_ALRM] = 0;
5722 signal_print[TARGET_SIGNAL_ALRM] = 0;
5723 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
5724 signal_print[TARGET_SIGNAL_VTALRM] = 0;
5725 signal_stop[TARGET_SIGNAL_PROF] = 0;
5726 signal_print[TARGET_SIGNAL_PROF] = 0;
5727 signal_stop[TARGET_SIGNAL_CHLD] = 0;
5728 signal_print[TARGET_SIGNAL_CHLD] = 0;
5729 signal_stop[TARGET_SIGNAL_IO] = 0;
5730 signal_print[TARGET_SIGNAL_IO] = 0;
5731 signal_stop[TARGET_SIGNAL_POLL] = 0;
5732 signal_print[TARGET_SIGNAL_POLL] = 0;
5733 signal_stop[TARGET_SIGNAL_URG] = 0;
5734 signal_print[TARGET_SIGNAL_URG] = 0;
5735 signal_stop[TARGET_SIGNAL_WINCH] = 0;
5736 signal_print[TARGET_SIGNAL_WINCH] = 0;
5737
cd0fc7c3
SS
5738 /* These signals are used internally by user-level thread
5739 implementations. (See signal(5) on Solaris.) Like the above
5740 signals, a healthy program receives and handles them as part of
5741 its normal operation. */
5742 signal_stop[TARGET_SIGNAL_LWP] = 0;
5743 signal_print[TARGET_SIGNAL_LWP] = 0;
5744 signal_stop[TARGET_SIGNAL_WAITING] = 0;
5745 signal_print[TARGET_SIGNAL_WAITING] = 0;
5746 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
5747 signal_print[TARGET_SIGNAL_CANCEL] = 0;
5748
85c07804
AC
5749 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
5750 &stop_on_solib_events, _("\
5751Set stopping for shared library events."), _("\
5752Show stopping for shared library events."), _("\
c906108c
SS
5753If nonzero, gdb will give control to the user when the dynamic linker\n\
5754notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
5755to the user would be loading/unloading of a new library."),
5756 NULL,
920d2a44 5757 show_stop_on_solib_events,
85c07804 5758 &setlist, &showlist);
c906108c 5759
7ab04401
AC
5760 add_setshow_enum_cmd ("follow-fork-mode", class_run,
5761 follow_fork_mode_kind_names,
5762 &follow_fork_mode_string, _("\
5763Set debugger response to a program call of fork or vfork."), _("\
5764Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
5765A fork or vfork creates a new process. follow-fork-mode can be:\n\
5766 parent - the original process is debugged after a fork\n\
5767 child - the new process is debugged after a fork\n\
ea1dd7bc 5768The unfollowed process will continue to run.\n\
7ab04401
AC
5769By default, the debugger will follow the parent process."),
5770 NULL,
920d2a44 5771 show_follow_fork_mode_string,
7ab04401
AC
5772 &setlist, &showlist);
5773
5774 add_setshow_enum_cmd ("scheduler-locking", class_run,
5775 scheduler_enums, &scheduler_mode, _("\
5776Set mode for locking scheduler during execution."), _("\
5777Show mode for locking scheduler during execution."), _("\
c906108c
SS
5778off == no locking (threads may preempt at any time)\n\
5779on == full locking (no thread except the current thread may run)\n\
5780step == scheduler locked during every single-step operation.\n\
5781 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
5782 Other threads may run while stepping over a function call ('next')."),
5783 set_schedlock_func, /* traps on target vector */
920d2a44 5784 show_scheduler_mode,
7ab04401 5785 &setlist, &showlist);
5fbbeb29 5786
d4db2f36
PA
5787 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
5788Set mode for resuming threads of all processes."), _("\
5789Show mode for resuming threads of all processes."), _("\
5790When on, execution commands (such as 'continue' or 'next') resume all\n\
5791threads of all processes. When off (which is the default), execution\n\
5792commands only resume the threads of the current process. The set of\n\
5793threads that are resumed is further refined by the scheduler-locking\n\
5794mode (see help set scheduler-locking)."),
5795 NULL,
5796 show_schedule_multiple,
5797 &setlist, &showlist);
5798
5bf193a2
AC
5799 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
5800Set mode of the step operation."), _("\
5801Show mode of the step operation."), _("\
5802When set, doing a step over a function without debug line information\n\
5803will stop at the first instruction of that function. Otherwise, the\n\
5804function is skipped and the step command stops at a different source line."),
5805 NULL,
920d2a44 5806 show_step_stop_if_no_debug,
5bf193a2 5807 &setlist, &showlist);
ca6724c1 5808
fff08868
HZ
5809 add_setshow_enum_cmd ("displaced-stepping", class_run,
5810 can_use_displaced_stepping_enum,
5811 &can_use_displaced_stepping, _("\
237fc4c9
PA
5812Set debugger's willingness to use displaced stepping."), _("\
5813Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
5814If on, gdb will use displaced stepping to step over breakpoints if it is\n\
5815supported by the target architecture. If off, gdb will not use displaced\n\
5816stepping to step over breakpoints, even if such is supported by the target\n\
5817architecture. If auto (which is the default), gdb will use displaced stepping\n\
5818if the target architecture supports it and non-stop mode is active, but will not\n\
5819use it in all-stop mode (see help set non-stop)."),
5820 NULL,
5821 show_can_use_displaced_stepping,
5822 &setlist, &showlist);
237fc4c9 5823
b2175913
MS
5824 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
5825 &exec_direction, _("Set direction of execution.\n\
5826Options are 'forward' or 'reverse'."),
5827 _("Show direction of execution (forward/reverse)."),
5828 _("Tells gdb whether to execute forward or backward."),
5829 set_exec_direction_func, show_exec_direction_func,
5830 &setlist, &showlist);
5831
ca6724c1
KB
5832 /* ptid initializations */
5833 null_ptid = ptid_build (0, 0, 0);
5834 minus_one_ptid = ptid_build (-1, 0, 0);
5835 inferior_ptid = null_ptid;
5836 target_last_wait_ptid = minus_one_ptid;
237fc4c9 5837 displaced_step_ptid = null_ptid;
5231c1fd
PA
5838
5839 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 5840 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 5841 observer_attach_thread_exit (infrun_thread_thread_exit);
4aa995e1
PA
5842
5843 /* Explicitly create without lookup, since that tries to create a
5844 value with a void typed value, and when we get here, gdbarch
5845 isn't initialized yet. At this point, we're quite sure there
5846 isn't another convenience variable of the same name. */
5847 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
c906108c 5848}