]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/infrun.c
Fix mi-nonstop.exp with extended-remote
[thirdparty/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
32d0add0 4 Copyright (C) 1986-2015 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
8d297bbf 66#include "common/enum-flags.h"
c906108c
SS
67
68/* Prototypes for local functions */
69
96baa820 70static void signals_info (char *, int);
c906108c 71
96baa820 72static void handle_command (char *, int);
c906108c 73
2ea28649 74static void sig_print_info (enum gdb_signal);
c906108c 75
96baa820 76static void sig_print_header (void);
c906108c 77
74b7792f 78static void resume_cleanups (void *);
c906108c 79
96baa820 80static int hook_stop_stub (void *);
c906108c 81
96baa820
JM
82static int restore_selected_frame (void *);
83
4ef3f3be 84static int follow_fork (void);
96baa820 85
d83ad864
DB
86static int follow_fork_inferior (int follow_child, int detach_fork);
87
88static void follow_inferior_reset_breakpoints (void);
89
96baa820 90static void set_schedlock_func (char *args, int from_tty,
488f131b 91 struct cmd_list_element *c);
96baa820 92
a289b8f6
JK
93static int currently_stepping (struct thread_info *tp);
94
96baa820 95void _initialize_infrun (void);
43ff13b4 96
e58b0e63
PA
97void nullify_last_target_wait_ptid (void);
98
2c03e5be 99static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
100
101static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
102
2484c66b
UW
103static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
104
8550d3b3
YQ
105static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
106
372316f1
PA
107/* Asynchronous signal handler registered as event loop source for
108 when we have pending events ready to be passed to the core. */
109static struct async_event_handler *infrun_async_inferior_event_token;
110
111/* Stores whether infrun_async was previously enabled or disabled.
112 Starts off as -1, indicating "never enabled/disabled". */
113static int infrun_is_async = -1;
114
115/* See infrun.h. */
116
117void
118infrun_async (int enable)
119{
120 if (infrun_is_async != enable)
121 {
122 infrun_is_async = enable;
123
124 if (debug_infrun)
125 fprintf_unfiltered (gdb_stdlog,
126 "infrun: infrun_async(%d)\n",
127 enable);
128
129 if (enable)
130 mark_async_event_handler (infrun_async_inferior_event_token);
131 else
132 clear_async_event_handler (infrun_async_inferior_event_token);
133 }
134}
135
0b333c5e
PA
136/* See infrun.h. */
137
138void
139mark_infrun_async_event_handler (void)
140{
141 mark_async_event_handler (infrun_async_inferior_event_token);
142}
143
5fbbeb29
CF
144/* When set, stop the 'step' command if we enter a function which has
145 no line number information. The normal behavior is that we step
146 over such function. */
147int step_stop_if_no_debug = 0;
920d2a44
AC
148static void
149show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151{
152 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
153}
5fbbeb29 154
1777feb0 155/* In asynchronous mode, but simulating synchronous execution. */
96baa820 156
43ff13b4
JM
157int sync_execution = 0;
158
b9f437de
PA
159/* proceed and normal_stop use this to notify the user when the
160 inferior stopped in a different thread than it had been running
161 in. */
96baa820 162
39f77062 163static ptid_t previous_inferior_ptid;
7a292a7a 164
07107ca6
LM
165/* If set (default for legacy reasons), when following a fork, GDB
166 will detach from one of the fork branches, child or parent.
167 Exactly which branch is detached depends on 'set follow-fork-mode'
168 setting. */
169
170static int detach_fork = 1;
6c95b8df 171
237fc4c9
PA
172int debug_displaced = 0;
173static void
174show_debug_displaced (struct ui_file *file, int from_tty,
175 struct cmd_list_element *c, const char *value)
176{
177 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
178}
179
ccce17b0 180unsigned int debug_infrun = 0;
920d2a44
AC
181static void
182show_debug_infrun (struct ui_file *file, int from_tty,
183 struct cmd_list_element *c, const char *value)
184{
185 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
186}
527159b7 187
03583c20
UW
188
189/* Support for disabling address space randomization. */
190
191int disable_randomization = 1;
192
193static void
194show_disable_randomization (struct ui_file *file, int from_tty,
195 struct cmd_list_element *c, const char *value)
196{
197 if (target_supports_disable_randomization ())
198 fprintf_filtered (file,
199 _("Disabling randomization of debuggee's "
200 "virtual address space is %s.\n"),
201 value);
202 else
203 fputs_filtered (_("Disabling randomization of debuggee's "
204 "virtual address space is unsupported on\n"
205 "this platform.\n"), file);
206}
207
208static void
209set_disable_randomization (char *args, int from_tty,
210 struct cmd_list_element *c)
211{
212 if (!target_supports_disable_randomization ())
213 error (_("Disabling randomization of debuggee's "
214 "virtual address space is unsupported on\n"
215 "this platform."));
216}
217
d32dc48e
PA
218/* User interface for non-stop mode. */
219
220int non_stop = 0;
221static int non_stop_1 = 0;
222
223static void
224set_non_stop (char *args, int from_tty,
225 struct cmd_list_element *c)
226{
227 if (target_has_execution)
228 {
229 non_stop_1 = non_stop;
230 error (_("Cannot change this setting while the inferior is running."));
231 }
232
233 non_stop = non_stop_1;
234}
235
236static void
237show_non_stop (struct ui_file *file, int from_tty,
238 struct cmd_list_element *c, const char *value)
239{
240 fprintf_filtered (file,
241 _("Controlling the inferior in non-stop mode is %s.\n"),
242 value);
243}
244
d914c394
SS
245/* "Observer mode" is somewhat like a more extreme version of
246 non-stop, in which all GDB operations that might affect the
247 target's execution have been disabled. */
248
d914c394
SS
249int observer_mode = 0;
250static int observer_mode_1 = 0;
251
252static void
253set_observer_mode (char *args, int from_tty,
254 struct cmd_list_element *c)
255{
d914c394
SS
256 if (target_has_execution)
257 {
258 observer_mode_1 = observer_mode;
259 error (_("Cannot change this setting while the inferior is running."));
260 }
261
262 observer_mode = observer_mode_1;
263
264 may_write_registers = !observer_mode;
265 may_write_memory = !observer_mode;
266 may_insert_breakpoints = !observer_mode;
267 may_insert_tracepoints = !observer_mode;
268 /* We can insert fast tracepoints in or out of observer mode,
269 but enable them if we're going into this mode. */
270 if (observer_mode)
271 may_insert_fast_tracepoints = 1;
272 may_stop = !observer_mode;
273 update_target_permissions ();
274
275 /* Going *into* observer mode we must force non-stop, then
276 going out we leave it that way. */
277 if (observer_mode)
278 {
d914c394
SS
279 pagination_enabled = 0;
280 non_stop = non_stop_1 = 1;
281 }
282
283 if (from_tty)
284 printf_filtered (_("Observer mode is now %s.\n"),
285 (observer_mode ? "on" : "off"));
286}
287
288static void
289show_observer_mode (struct ui_file *file, int from_tty,
290 struct cmd_list_element *c, const char *value)
291{
292 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
293}
294
295/* This updates the value of observer mode based on changes in
296 permissions. Note that we are deliberately ignoring the values of
297 may-write-registers and may-write-memory, since the user may have
298 reason to enable these during a session, for instance to turn on a
299 debugging-related global. */
300
301void
302update_observer_mode (void)
303{
304 int newval;
305
306 newval = (!may_insert_breakpoints
307 && !may_insert_tracepoints
308 && may_insert_fast_tracepoints
309 && !may_stop
310 && non_stop);
311
312 /* Let the user know if things change. */
313 if (newval != observer_mode)
314 printf_filtered (_("Observer mode is now %s.\n"),
315 (newval ? "on" : "off"));
316
317 observer_mode = observer_mode_1 = newval;
318}
c2c6d25f 319
c906108c
SS
320/* Tables of how to react to signals; the user sets them. */
321
322static unsigned char *signal_stop;
323static unsigned char *signal_print;
324static unsigned char *signal_program;
325
ab04a2af
TT
326/* Table of signals that are registered with "catch signal". A
327 non-zero entry indicates that the signal is caught by some "catch
328 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
329 signals. */
330static unsigned char *signal_catch;
331
2455069d
UW
332/* Table of signals that the target may silently handle.
333 This is automatically determined from the flags above,
334 and simply cached here. */
335static unsigned char *signal_pass;
336
c906108c
SS
337#define SET_SIGS(nsigs,sigs,flags) \
338 do { \
339 int signum = (nsigs); \
340 while (signum-- > 0) \
341 if ((sigs)[signum]) \
342 (flags)[signum] = 1; \
343 } while (0)
344
345#define UNSET_SIGS(nsigs,sigs,flags) \
346 do { \
347 int signum = (nsigs); \
348 while (signum-- > 0) \
349 if ((sigs)[signum]) \
350 (flags)[signum] = 0; \
351 } while (0)
352
9b224c5e
PA
353/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
354 this function is to avoid exporting `signal_program'. */
355
356void
357update_signals_program_target (void)
358{
a493e3e2 359 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
360}
361
1777feb0 362/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 363
edb3359d 364#define RESUME_ALL minus_one_ptid
c906108c
SS
365
366/* Command list pointer for the "stop" placeholder. */
367
368static struct cmd_list_element *stop_command;
369
c906108c
SS
370/* Nonzero if we want to give control to the user when we're notified
371 of shared library events by the dynamic linker. */
628fe4e4 372int stop_on_solib_events;
f9e14852
GB
373
374/* Enable or disable optional shared library event breakpoints
375 as appropriate when the above flag is changed. */
376
377static void
378set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
379{
380 update_solib_breakpoints ();
381}
382
920d2a44
AC
383static void
384show_stop_on_solib_events (struct ui_file *file, int from_tty,
385 struct cmd_list_element *c, const char *value)
386{
387 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
388 value);
389}
c906108c 390
c906108c
SS
391/* Nonzero after stop if current stack frame should be printed. */
392
393static int stop_print_frame;
394
e02bc4cc 395/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
396 returned by target_wait()/deprecated_target_wait_hook(). This
397 information is returned by get_last_target_status(). */
39f77062 398static ptid_t target_last_wait_ptid;
e02bc4cc
DS
399static struct target_waitstatus target_last_waitstatus;
400
0d1e5fa7
PA
401static void context_switch (ptid_t ptid);
402
4e1c45ea 403void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 404
53904c9e
AC
405static const char follow_fork_mode_child[] = "child";
406static const char follow_fork_mode_parent[] = "parent";
407
40478521 408static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
409 follow_fork_mode_child,
410 follow_fork_mode_parent,
411 NULL
ef346e04 412};
c906108c 413
53904c9e 414static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
415static void
416show_follow_fork_mode_string (struct ui_file *file, int from_tty,
417 struct cmd_list_element *c, const char *value)
418{
3e43a32a
MS
419 fprintf_filtered (file,
420 _("Debugger response to a program "
421 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
422 value);
423}
c906108c
SS
424\f
425
d83ad864
DB
426/* Handle changes to the inferior list based on the type of fork,
427 which process is being followed, and whether the other process
428 should be detached. On entry inferior_ptid must be the ptid of
429 the fork parent. At return inferior_ptid is the ptid of the
430 followed inferior. */
431
432static int
433follow_fork_inferior (int follow_child, int detach_fork)
434{
435 int has_vforked;
79639e11 436 ptid_t parent_ptid, child_ptid;
d83ad864
DB
437
438 has_vforked = (inferior_thread ()->pending_follow.kind
439 == TARGET_WAITKIND_VFORKED);
79639e11
PA
440 parent_ptid = inferior_ptid;
441 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
442
443 if (has_vforked
444 && !non_stop /* Non-stop always resumes both branches. */
445 && (!target_is_async_p () || sync_execution)
446 && !(follow_child || detach_fork || sched_multi))
447 {
448 /* The parent stays blocked inside the vfork syscall until the
449 child execs or exits. If we don't let the child run, then
450 the parent stays blocked. If we're telling the parent to run
451 in the foreground, the user will not be able to ctrl-c to get
452 back the terminal, effectively hanging the debug session. */
453 fprintf_filtered (gdb_stderr, _("\
454Can not resume the parent process over vfork in the foreground while\n\
455holding the child stopped. Try \"set detach-on-fork\" or \
456\"set schedule-multiple\".\n"));
457 /* FIXME output string > 80 columns. */
458 return 1;
459 }
460
461 if (!follow_child)
462 {
463 /* Detach new forked process? */
464 if (detach_fork)
465 {
466 struct cleanup *old_chain;
467
468 /* Before detaching from the child, remove all breakpoints
469 from it. If we forked, then this has already been taken
470 care of by infrun.c. If we vforked however, any
471 breakpoint inserted in the parent is visible in the
472 child, even those added while stopped in a vfork
473 catchpoint. This will remove the breakpoints from the
474 parent also, but they'll be reinserted below. */
475 if (has_vforked)
476 {
477 /* Keep breakpoints list in sync. */
478 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
479 }
480
481 if (info_verbose || debug_infrun)
482 {
8dd06f7a
DB
483 /* Ensure that we have a process ptid. */
484 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
485
6f259a23 486 target_terminal_ours_for_output ();
d83ad864 487 fprintf_filtered (gdb_stdlog,
79639e11 488 _("Detaching after %s from child %s.\n"),
6f259a23 489 has_vforked ? "vfork" : "fork",
8dd06f7a 490 target_pid_to_str (process_ptid));
d83ad864
DB
491 }
492 }
493 else
494 {
495 struct inferior *parent_inf, *child_inf;
496 struct cleanup *old_chain;
497
498 /* Add process to GDB's tables. */
79639e11 499 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
500
501 parent_inf = current_inferior ();
502 child_inf->attach_flag = parent_inf->attach_flag;
503 copy_terminal_info (child_inf, parent_inf);
504 child_inf->gdbarch = parent_inf->gdbarch;
505 copy_inferior_target_desc_info (child_inf, parent_inf);
506
507 old_chain = save_inferior_ptid ();
508 save_current_program_space ();
509
79639e11 510 inferior_ptid = child_ptid;
d83ad864
DB
511 add_thread (inferior_ptid);
512 child_inf->symfile_flags = SYMFILE_NO_READ;
513
514 /* If this is a vfork child, then the address-space is
515 shared with the parent. */
516 if (has_vforked)
517 {
518 child_inf->pspace = parent_inf->pspace;
519 child_inf->aspace = parent_inf->aspace;
520
521 /* The parent will be frozen until the child is done
522 with the shared region. Keep track of the
523 parent. */
524 child_inf->vfork_parent = parent_inf;
525 child_inf->pending_detach = 0;
526 parent_inf->vfork_child = child_inf;
527 parent_inf->pending_detach = 0;
528 }
529 else
530 {
531 child_inf->aspace = new_address_space ();
532 child_inf->pspace = add_program_space (child_inf->aspace);
533 child_inf->removable = 1;
534 set_current_program_space (child_inf->pspace);
535 clone_program_space (child_inf->pspace, parent_inf->pspace);
536
537 /* Let the shared library layer (e.g., solib-svr4) learn
538 about this new process, relocate the cloned exec, pull
539 in shared libraries, and install the solib event
540 breakpoint. If a "cloned-VM" event was propagated
541 better throughout the core, this wouldn't be
542 required. */
543 solib_create_inferior_hook (0);
544 }
545
546 do_cleanups (old_chain);
547 }
548
549 if (has_vforked)
550 {
551 struct inferior *parent_inf;
552
553 parent_inf = current_inferior ();
554
555 /* If we detached from the child, then we have to be careful
556 to not insert breakpoints in the parent until the child
557 is done with the shared memory region. However, if we're
558 staying attached to the child, then we can and should
559 insert breakpoints, so that we can debug it. A
560 subsequent child exec or exit is enough to know when does
561 the child stops using the parent's address space. */
562 parent_inf->waiting_for_vfork_done = detach_fork;
563 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
564 }
565 }
566 else
567 {
568 /* Follow the child. */
569 struct inferior *parent_inf, *child_inf;
570 struct program_space *parent_pspace;
571
572 if (info_verbose || debug_infrun)
573 {
6f259a23
DB
574 target_terminal_ours_for_output ();
575 fprintf_filtered (gdb_stdlog,
79639e11
PA
576 _("Attaching after %s %s to child %s.\n"),
577 target_pid_to_str (parent_ptid),
6f259a23 578 has_vforked ? "vfork" : "fork",
79639e11 579 target_pid_to_str (child_ptid));
d83ad864
DB
580 }
581
582 /* Add the new inferior first, so that the target_detach below
583 doesn't unpush the target. */
584
79639e11 585 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
586
587 parent_inf = current_inferior ();
588 child_inf->attach_flag = parent_inf->attach_flag;
589 copy_terminal_info (child_inf, parent_inf);
590 child_inf->gdbarch = parent_inf->gdbarch;
591 copy_inferior_target_desc_info (child_inf, parent_inf);
592
593 parent_pspace = parent_inf->pspace;
594
595 /* If we're vforking, we want to hold on to the parent until the
596 child exits or execs. At child exec or exit time we can
597 remove the old breakpoints from the parent and detach or
598 resume debugging it. Otherwise, detach the parent now; we'll
599 want to reuse it's program/address spaces, but we can't set
600 them to the child before removing breakpoints from the
601 parent, otherwise, the breakpoints module could decide to
602 remove breakpoints from the wrong process (since they'd be
603 assigned to the same address space). */
604
605 if (has_vforked)
606 {
607 gdb_assert (child_inf->vfork_parent == NULL);
608 gdb_assert (parent_inf->vfork_child == NULL);
609 child_inf->vfork_parent = parent_inf;
610 child_inf->pending_detach = 0;
611 parent_inf->vfork_child = child_inf;
612 parent_inf->pending_detach = detach_fork;
613 parent_inf->waiting_for_vfork_done = 0;
614 }
615 else if (detach_fork)
6f259a23
DB
616 {
617 if (info_verbose || debug_infrun)
618 {
8dd06f7a
DB
619 /* Ensure that we have a process ptid. */
620 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
621
6f259a23
DB
622 target_terminal_ours_for_output ();
623 fprintf_filtered (gdb_stdlog,
624 _("Detaching after fork from "
79639e11 625 "child %s.\n"),
8dd06f7a 626 target_pid_to_str (process_ptid));
6f259a23
DB
627 }
628
629 target_detach (NULL, 0);
630 }
d83ad864
DB
631
632 /* Note that the detach above makes PARENT_INF dangling. */
633
634 /* Add the child thread to the appropriate lists, and switch to
635 this new thread, before cloning the program space, and
636 informing the solib layer about this new process. */
637
79639e11 638 inferior_ptid = child_ptid;
d83ad864
DB
639 add_thread (inferior_ptid);
640
641 /* If this is a vfork child, then the address-space is shared
642 with the parent. If we detached from the parent, then we can
643 reuse the parent's program/address spaces. */
644 if (has_vforked || detach_fork)
645 {
646 child_inf->pspace = parent_pspace;
647 child_inf->aspace = child_inf->pspace->aspace;
648 }
649 else
650 {
651 child_inf->aspace = new_address_space ();
652 child_inf->pspace = add_program_space (child_inf->aspace);
653 child_inf->removable = 1;
654 child_inf->symfile_flags = SYMFILE_NO_READ;
655 set_current_program_space (child_inf->pspace);
656 clone_program_space (child_inf->pspace, parent_pspace);
657
658 /* Let the shared library layer (e.g., solib-svr4) learn
659 about this new process, relocate the cloned exec, pull in
660 shared libraries, and install the solib event breakpoint.
661 If a "cloned-VM" event was propagated better throughout
662 the core, this wouldn't be required. */
663 solib_create_inferior_hook (0);
664 }
665 }
666
667 return target_follow_fork (follow_child, detach_fork);
668}
669
e58b0e63
PA
670/* Tell the target to follow the fork we're stopped at. Returns true
671 if the inferior should be resumed; false, if the target for some
672 reason decided it's best not to resume. */
673
6604731b 674static int
4ef3f3be 675follow_fork (void)
c906108c 676{
ea1dd7bc 677 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
678 int should_resume = 1;
679 struct thread_info *tp;
680
681 /* Copy user stepping state to the new inferior thread. FIXME: the
682 followed fork child thread should have a copy of most of the
4e3990f4
DE
683 parent thread structure's run control related fields, not just these.
684 Initialized to avoid "may be used uninitialized" warnings from gcc. */
685 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 686 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
687 CORE_ADDR step_range_start = 0;
688 CORE_ADDR step_range_end = 0;
689 struct frame_id step_frame_id = { 0 };
17b2616c 690 struct interp *command_interp = NULL;
e58b0e63
PA
691
692 if (!non_stop)
693 {
694 ptid_t wait_ptid;
695 struct target_waitstatus wait_status;
696
697 /* Get the last target status returned by target_wait(). */
698 get_last_target_status (&wait_ptid, &wait_status);
699
700 /* If not stopped at a fork event, then there's nothing else to
701 do. */
702 if (wait_status.kind != TARGET_WAITKIND_FORKED
703 && wait_status.kind != TARGET_WAITKIND_VFORKED)
704 return 1;
705
706 /* Check if we switched over from WAIT_PTID, since the event was
707 reported. */
708 if (!ptid_equal (wait_ptid, minus_one_ptid)
709 && !ptid_equal (inferior_ptid, wait_ptid))
710 {
711 /* We did. Switch back to WAIT_PTID thread, to tell the
712 target to follow it (in either direction). We'll
713 afterwards refuse to resume, and inform the user what
714 happened. */
715 switch_to_thread (wait_ptid);
716 should_resume = 0;
717 }
718 }
719
720 tp = inferior_thread ();
721
722 /* If there were any forks/vforks that were caught and are now to be
723 followed, then do so now. */
724 switch (tp->pending_follow.kind)
725 {
726 case TARGET_WAITKIND_FORKED:
727 case TARGET_WAITKIND_VFORKED:
728 {
729 ptid_t parent, child;
730
731 /* If the user did a next/step, etc, over a fork call,
732 preserve the stepping state in the fork child. */
733 if (follow_child && should_resume)
734 {
8358c15c
JK
735 step_resume_breakpoint = clone_momentary_breakpoint
736 (tp->control.step_resume_breakpoint);
16c381f0
JK
737 step_range_start = tp->control.step_range_start;
738 step_range_end = tp->control.step_range_end;
739 step_frame_id = tp->control.step_frame_id;
186c406b
TT
740 exception_resume_breakpoint
741 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
17b2616c 742 command_interp = tp->control.command_interp;
e58b0e63
PA
743
744 /* For now, delete the parent's sr breakpoint, otherwise,
745 parent/child sr breakpoints are considered duplicates,
746 and the child version will not be installed. Remove
747 this when the breakpoints module becomes aware of
748 inferiors and address spaces. */
749 delete_step_resume_breakpoint (tp);
16c381f0
JK
750 tp->control.step_range_start = 0;
751 tp->control.step_range_end = 0;
752 tp->control.step_frame_id = null_frame_id;
186c406b 753 delete_exception_resume_breakpoint (tp);
17b2616c 754 tp->control.command_interp = NULL;
e58b0e63
PA
755 }
756
757 parent = inferior_ptid;
758 child = tp->pending_follow.value.related_pid;
759
d83ad864
DB
760 /* Set up inferior(s) as specified by the caller, and tell the
761 target to do whatever is necessary to follow either parent
762 or child. */
763 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
764 {
765 /* Target refused to follow, or there's some other reason
766 we shouldn't resume. */
767 should_resume = 0;
768 }
769 else
770 {
771 /* This pending follow fork event is now handled, one way
772 or another. The previous selected thread may be gone
773 from the lists by now, but if it is still around, need
774 to clear the pending follow request. */
e09875d4 775 tp = find_thread_ptid (parent);
e58b0e63
PA
776 if (tp)
777 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
778
779 /* This makes sure we don't try to apply the "Switched
780 over from WAIT_PID" logic above. */
781 nullify_last_target_wait_ptid ();
782
1777feb0 783 /* If we followed the child, switch to it... */
e58b0e63
PA
784 if (follow_child)
785 {
786 switch_to_thread (child);
787
788 /* ... and preserve the stepping state, in case the
789 user was stepping over the fork call. */
790 if (should_resume)
791 {
792 tp = inferior_thread ();
8358c15c
JK
793 tp->control.step_resume_breakpoint
794 = step_resume_breakpoint;
16c381f0
JK
795 tp->control.step_range_start = step_range_start;
796 tp->control.step_range_end = step_range_end;
797 tp->control.step_frame_id = step_frame_id;
186c406b
TT
798 tp->control.exception_resume_breakpoint
799 = exception_resume_breakpoint;
17b2616c 800 tp->control.command_interp = command_interp;
e58b0e63
PA
801 }
802 else
803 {
804 /* If we get here, it was because we're trying to
805 resume from a fork catchpoint, but, the user
806 has switched threads away from the thread that
807 forked. In that case, the resume command
808 issued is most likely not applicable to the
809 child, so just warn, and refuse to resume. */
3e43a32a 810 warning (_("Not resuming: switched threads "
fd7dcb94 811 "before following fork child."));
e58b0e63
PA
812 }
813
814 /* Reset breakpoints in the child as appropriate. */
815 follow_inferior_reset_breakpoints ();
816 }
817 else
818 switch_to_thread (parent);
819 }
820 }
821 break;
822 case TARGET_WAITKIND_SPURIOUS:
823 /* Nothing to follow. */
824 break;
825 default:
826 internal_error (__FILE__, __LINE__,
827 "Unexpected pending_follow.kind %d\n",
828 tp->pending_follow.kind);
829 break;
830 }
c906108c 831
e58b0e63 832 return should_resume;
c906108c
SS
833}
834
d83ad864 835static void
6604731b 836follow_inferior_reset_breakpoints (void)
c906108c 837{
4e1c45ea
PA
838 struct thread_info *tp = inferior_thread ();
839
6604731b
DJ
840 /* Was there a step_resume breakpoint? (There was if the user
841 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
842 thread number. Cloned step_resume breakpoints are disabled on
843 creation, so enable it here now that it is associated with the
844 correct thread.
6604731b
DJ
845
846 step_resumes are a form of bp that are made to be per-thread.
847 Since we created the step_resume bp when the parent process
848 was being debugged, and now are switching to the child process,
849 from the breakpoint package's viewpoint, that's a switch of
850 "threads". We must update the bp's notion of which thread
851 it is for, or it'll be ignored when it triggers. */
852
8358c15c 853 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
854 {
855 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
856 tp->control.step_resume_breakpoint->loc->enabled = 1;
857 }
6604731b 858
a1aa2221 859 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 860 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
861 {
862 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
863 tp->control.exception_resume_breakpoint->loc->enabled = 1;
864 }
186c406b 865
6604731b
DJ
866 /* Reinsert all breakpoints in the child. The user may have set
867 breakpoints after catching the fork, in which case those
868 were never set in the child, but only in the parent. This makes
869 sure the inserted breakpoints match the breakpoint list. */
870
871 breakpoint_re_set ();
872 insert_breakpoints ();
c906108c 873}
c906108c 874
6c95b8df
PA
875/* The child has exited or execed: resume threads of the parent the
876 user wanted to be executing. */
877
878static int
879proceed_after_vfork_done (struct thread_info *thread,
880 void *arg)
881{
882 int pid = * (int *) arg;
883
884 if (ptid_get_pid (thread->ptid) == pid
885 && is_running (thread->ptid)
886 && !is_executing (thread->ptid)
887 && !thread->stop_requested
a493e3e2 888 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
889 {
890 if (debug_infrun)
891 fprintf_unfiltered (gdb_stdlog,
892 "infrun: resuming vfork parent thread %s\n",
893 target_pid_to_str (thread->ptid));
894
895 switch_to_thread (thread->ptid);
70509625 896 clear_proceed_status (0);
64ce06e4 897 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
898 }
899
900 return 0;
901}
902
903/* Called whenever we notice an exec or exit event, to handle
904 detaching or resuming a vfork parent. */
905
906static void
907handle_vfork_child_exec_or_exit (int exec)
908{
909 struct inferior *inf = current_inferior ();
910
911 if (inf->vfork_parent)
912 {
913 int resume_parent = -1;
914
915 /* This exec or exit marks the end of the shared memory region
916 between the parent and the child. If the user wanted to
917 detach from the parent, now is the time. */
918
919 if (inf->vfork_parent->pending_detach)
920 {
921 struct thread_info *tp;
922 struct cleanup *old_chain;
923 struct program_space *pspace;
924 struct address_space *aspace;
925
1777feb0 926 /* follow-fork child, detach-on-fork on. */
6c95b8df 927
68c9da30
PA
928 inf->vfork_parent->pending_detach = 0;
929
f50f4e56
PA
930 if (!exec)
931 {
932 /* If we're handling a child exit, then inferior_ptid
933 points at the inferior's pid, not to a thread. */
934 old_chain = save_inferior_ptid ();
935 save_current_program_space ();
936 save_current_inferior ();
937 }
938 else
939 old_chain = save_current_space_and_thread ();
6c95b8df
PA
940
941 /* We're letting loose of the parent. */
942 tp = any_live_thread_of_process (inf->vfork_parent->pid);
943 switch_to_thread (tp->ptid);
944
945 /* We're about to detach from the parent, which implicitly
946 removes breakpoints from its address space. There's a
947 catch here: we want to reuse the spaces for the child,
948 but, parent/child are still sharing the pspace at this
949 point, although the exec in reality makes the kernel give
950 the child a fresh set of new pages. The problem here is
951 that the breakpoints module being unaware of this, would
952 likely chose the child process to write to the parent
953 address space. Swapping the child temporarily away from
954 the spaces has the desired effect. Yes, this is "sort
955 of" a hack. */
956
957 pspace = inf->pspace;
958 aspace = inf->aspace;
959 inf->aspace = NULL;
960 inf->pspace = NULL;
961
962 if (debug_infrun || info_verbose)
963 {
6f259a23 964 target_terminal_ours_for_output ();
6c95b8df
PA
965
966 if (exec)
6f259a23
DB
967 {
968 fprintf_filtered (gdb_stdlog,
969 _("Detaching vfork parent process "
970 "%d after child exec.\n"),
971 inf->vfork_parent->pid);
972 }
6c95b8df 973 else
6f259a23
DB
974 {
975 fprintf_filtered (gdb_stdlog,
976 _("Detaching vfork parent process "
977 "%d after child exit.\n"),
978 inf->vfork_parent->pid);
979 }
6c95b8df
PA
980 }
981
982 target_detach (NULL, 0);
983
984 /* Put it back. */
985 inf->pspace = pspace;
986 inf->aspace = aspace;
987
988 do_cleanups (old_chain);
989 }
990 else if (exec)
991 {
992 /* We're staying attached to the parent, so, really give the
993 child a new address space. */
994 inf->pspace = add_program_space (maybe_new_address_space ());
995 inf->aspace = inf->pspace->aspace;
996 inf->removable = 1;
997 set_current_program_space (inf->pspace);
998
999 resume_parent = inf->vfork_parent->pid;
1000
1001 /* Break the bonds. */
1002 inf->vfork_parent->vfork_child = NULL;
1003 }
1004 else
1005 {
1006 struct cleanup *old_chain;
1007 struct program_space *pspace;
1008
1009 /* If this is a vfork child exiting, then the pspace and
1010 aspaces were shared with the parent. Since we're
1011 reporting the process exit, we'll be mourning all that is
1012 found in the address space, and switching to null_ptid,
1013 preparing to start a new inferior. But, since we don't
1014 want to clobber the parent's address/program spaces, we
1015 go ahead and create a new one for this exiting
1016 inferior. */
1017
1018 /* Switch to null_ptid, so that clone_program_space doesn't want
1019 to read the selected frame of a dead process. */
1020 old_chain = save_inferior_ptid ();
1021 inferior_ptid = null_ptid;
1022
1023 /* This inferior is dead, so avoid giving the breakpoints
1024 module the option to write through to it (cloning a
1025 program space resets breakpoints). */
1026 inf->aspace = NULL;
1027 inf->pspace = NULL;
1028 pspace = add_program_space (maybe_new_address_space ());
1029 set_current_program_space (pspace);
1030 inf->removable = 1;
7dcd53a0 1031 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1032 clone_program_space (pspace, inf->vfork_parent->pspace);
1033 inf->pspace = pspace;
1034 inf->aspace = pspace->aspace;
1035
1036 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 1037 inferior. */
6c95b8df
PA
1038 do_cleanups (old_chain);
1039
1040 resume_parent = inf->vfork_parent->pid;
1041 /* Break the bonds. */
1042 inf->vfork_parent->vfork_child = NULL;
1043 }
1044
1045 inf->vfork_parent = NULL;
1046
1047 gdb_assert (current_program_space == inf->pspace);
1048
1049 if (non_stop && resume_parent != -1)
1050 {
1051 /* If the user wanted the parent to be running, let it go
1052 free now. */
1053 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1054
1055 if (debug_infrun)
3e43a32a
MS
1056 fprintf_unfiltered (gdb_stdlog,
1057 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1058 resume_parent);
1059
1060 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1061
1062 do_cleanups (old_chain);
1063 }
1064 }
1065}
1066
eb6c553b 1067/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1068
1069static const char follow_exec_mode_new[] = "new";
1070static const char follow_exec_mode_same[] = "same";
40478521 1071static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1072{
1073 follow_exec_mode_new,
1074 follow_exec_mode_same,
1075 NULL,
1076};
1077
1078static const char *follow_exec_mode_string = follow_exec_mode_same;
1079static void
1080show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1081 struct cmd_list_element *c, const char *value)
1082{
1083 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1084}
1085
1777feb0 1086/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 1087
c906108c 1088static void
95e50b27 1089follow_exec (ptid_t ptid, char *execd_pathname)
c906108c 1090{
95e50b27 1091 struct thread_info *th, *tmp;
6c95b8df 1092 struct inferior *inf = current_inferior ();
95e50b27 1093 int pid = ptid_get_pid (ptid);
94585166 1094 ptid_t process_ptid;
7a292a7a 1095
c906108c
SS
1096 /* This is an exec event that we actually wish to pay attention to.
1097 Refresh our symbol table to the newly exec'd program, remove any
1098 momentary bp's, etc.
1099
1100 If there are breakpoints, they aren't really inserted now,
1101 since the exec() transformed our inferior into a fresh set
1102 of instructions.
1103
1104 We want to preserve symbolic breakpoints on the list, since
1105 we have hopes that they can be reset after the new a.out's
1106 symbol table is read.
1107
1108 However, any "raw" breakpoints must be removed from the list
1109 (e.g., the solib bp's), since their address is probably invalid
1110 now.
1111
1112 And, we DON'T want to call delete_breakpoints() here, since
1113 that may write the bp's "shadow contents" (the instruction
1114 value that was overwritten witha TRAP instruction). Since
1777feb0 1115 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1116
1117 mark_breakpoints_out ();
1118
95e50b27
PA
1119 /* The target reports the exec event to the main thread, even if
1120 some other thread does the exec, and even if the main thread was
1121 stopped or already gone. We may still have non-leader threads of
1122 the process on our list. E.g., on targets that don't have thread
1123 exit events (like remote); or on native Linux in non-stop mode if
1124 there were only two threads in the inferior and the non-leader
1125 one is the one that execs (and nothing forces an update of the
1126 thread list up to here). When debugging remotely, it's best to
1127 avoid extra traffic, when possible, so avoid syncing the thread
1128 list with the target, and instead go ahead and delete all threads
1129 of the process but one that reported the event. Note this must
1130 be done before calling update_breakpoints_after_exec, as
1131 otherwise clearing the threads' resources would reference stale
1132 thread breakpoints -- it may have been one of these threads that
1133 stepped across the exec. We could just clear their stepping
1134 states, but as long as we're iterating, might as well delete
1135 them. Deleting them now rather than at the next user-visible
1136 stop provides a nicer sequence of events for user and MI
1137 notifications. */
8a06aea7 1138 ALL_THREADS_SAFE (th, tmp)
95e50b27
PA
1139 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1140 delete_thread (th->ptid);
1141
1142 /* We also need to clear any left over stale state for the
1143 leader/event thread. E.g., if there was any step-resume
1144 breakpoint or similar, it's gone now. We cannot truly
1145 step-to-next statement through an exec(). */
1146 th = inferior_thread ();
8358c15c 1147 th->control.step_resume_breakpoint = NULL;
186c406b 1148 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1149 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1150 th->control.step_range_start = 0;
1151 th->control.step_range_end = 0;
c906108c 1152
95e50b27
PA
1153 /* The user may have had the main thread held stopped in the
1154 previous image (e.g., schedlock on, or non-stop). Release
1155 it now. */
a75724bc
PA
1156 th->stop_requested = 0;
1157
95e50b27
PA
1158 update_breakpoints_after_exec ();
1159
1777feb0 1160 /* What is this a.out's name? */
94585166 1161 process_ptid = pid_to_ptid (pid);
6c95b8df 1162 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1163 target_pid_to_str (process_ptid),
6c95b8df 1164 execd_pathname);
c906108c
SS
1165
1166 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1167 inferior has essentially been killed & reborn. */
7a292a7a 1168
c906108c 1169 gdb_flush (gdb_stdout);
6ca15a4b
PA
1170
1171 breakpoint_init_inferior (inf_execd);
e85a822c 1172
a3be80c3 1173 if (*gdb_sysroot != '\0')
e85a822c 1174 {
998d2a3e 1175 char *name = exec_file_find (execd_pathname, NULL);
ff862be4 1176
224c3ddb 1177 execd_pathname = (char *) alloca (strlen (name) + 1);
ff862be4
GB
1178 strcpy (execd_pathname, name);
1179 xfree (name);
e85a822c 1180 }
c906108c 1181
cce9b6bf
PA
1182 /* Reset the shared library package. This ensures that we get a
1183 shlib event when the child reaches "_start", at which point the
1184 dld will have had a chance to initialize the child. */
1185 /* Also, loading a symbol file below may trigger symbol lookups, and
1186 we don't want those to be satisfied by the libraries of the
1187 previous incarnation of this process. */
1188 no_shared_libraries (NULL, 0);
1189
6c95b8df
PA
1190 if (follow_exec_mode_string == follow_exec_mode_new)
1191 {
6c95b8df
PA
1192 /* The user wants to keep the old inferior and program spaces
1193 around. Create a new fresh one, and switch to it. */
1194
17d8546e
DB
1195 /* Do exit processing for the original inferior before adding
1196 the new inferior so we don't have two active inferiors with
1197 the same ptid, which can confuse find_inferior_ptid. */
1198 exit_inferior_num_silent (current_inferior ()->num);
1199
94585166
DB
1200 inf = add_inferior_with_spaces ();
1201 inf->pid = pid;
1202 target_follow_exec (inf, execd_pathname);
6c95b8df
PA
1203
1204 set_current_inferior (inf);
94585166
DB
1205 set_current_program_space (inf->pspace);
1206 add_thread (ptid);
6c95b8df 1207 }
9107fc8d
PA
1208 else
1209 {
1210 /* The old description may no longer be fit for the new image.
1211 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1212 old description; we'll read a new one below. No need to do
1213 this on "follow-exec-mode new", as the old inferior stays
1214 around (its description is later cleared/refetched on
1215 restart). */
1216 target_clear_description ();
1217 }
6c95b8df
PA
1218
1219 gdb_assert (current_program_space == inf->pspace);
1220
1777feb0 1221 /* That a.out is now the one to use. */
6c95b8df
PA
1222 exec_file_attach (execd_pathname, 0);
1223
c1e56572
JK
1224 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1225 (Position Independent Executable) main symbol file will get applied by
1226 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1227 the breakpoints with the zero displacement. */
1228
7dcd53a0
TT
1229 symbol_file_add (execd_pathname,
1230 (inf->symfile_flags
1231 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
1232 NULL, 0);
1233
7dcd53a0
TT
1234 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1235 set_initial_language ();
c906108c 1236
9107fc8d
PA
1237 /* If the target can specify a description, read it. Must do this
1238 after flipping to the new executable (because the target supplied
1239 description must be compatible with the executable's
1240 architecture, and the old executable may e.g., be 32-bit, while
1241 the new one 64-bit), and before anything involving memory or
1242 registers. */
1243 target_find_description ();
1244
268a4a75 1245 solib_create_inferior_hook (0);
c906108c 1246
4efc6507
DE
1247 jit_inferior_created_hook ();
1248
c1e56572
JK
1249 breakpoint_re_set ();
1250
c906108c
SS
1251 /* Reinsert all breakpoints. (Those which were symbolic have
1252 been reset to the proper address in the new a.out, thanks
1777feb0 1253 to symbol_file_command...). */
c906108c
SS
1254 insert_breakpoints ();
1255
1256 /* The next resume of this inferior should bring it to the shlib
1257 startup breakpoints. (If the user had also set bp's on
1258 "main" from the old (parent) process, then they'll auto-
1777feb0 1259 matically get reset there in the new process.). */
c906108c
SS
1260}
1261
c2829269
PA
1262/* The queue of threads that need to do a step-over operation to get
1263 past e.g., a breakpoint. What technique is used to step over the
1264 breakpoint/watchpoint does not matter -- all threads end up in the
1265 same queue, to maintain rough temporal order of execution, in order
1266 to avoid starvation, otherwise, we could e.g., find ourselves
1267 constantly stepping the same couple threads past their breakpoints
1268 over and over, if the single-step finish fast enough. */
1269struct thread_info *step_over_queue_head;
1270
6c4cfb24
PA
1271/* Bit flags indicating what the thread needs to step over. */
1272
8d297bbf 1273enum step_over_what_flag
6c4cfb24
PA
1274 {
1275 /* Step over a breakpoint. */
1276 STEP_OVER_BREAKPOINT = 1,
1277
1278 /* Step past a non-continuable watchpoint, in order to let the
1279 instruction execute so we can evaluate the watchpoint
1280 expression. */
1281 STEP_OVER_WATCHPOINT = 2
1282 };
8d297bbf 1283DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1284
963f9c80 1285/* Info about an instruction that is being stepped over. */
31e77af2
PA
1286
1287struct step_over_info
1288{
963f9c80
PA
1289 /* If we're stepping past a breakpoint, this is the address space
1290 and address of the instruction the breakpoint is set at. We'll
1291 skip inserting all breakpoints here. Valid iff ASPACE is
1292 non-NULL. */
31e77af2 1293 struct address_space *aspace;
31e77af2 1294 CORE_ADDR address;
963f9c80
PA
1295
1296 /* The instruction being stepped over triggers a nonsteppable
1297 watchpoint. If true, we'll skip inserting watchpoints. */
1298 int nonsteppable_watchpoint_p;
31e77af2
PA
1299};
1300
1301/* The step-over info of the location that is being stepped over.
1302
1303 Note that with async/breakpoint always-inserted mode, a user might
1304 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1305 being stepped over. As setting a new breakpoint inserts all
1306 breakpoints, we need to make sure the breakpoint being stepped over
1307 isn't inserted then. We do that by only clearing the step-over
1308 info when the step-over is actually finished (or aborted).
1309
1310 Presently GDB can only step over one breakpoint at any given time.
1311 Given threads that can't run code in the same address space as the
1312 breakpoint's can't really miss the breakpoint, GDB could be taught
1313 to step-over at most one breakpoint per address space (so this info
1314 could move to the address space object if/when GDB is extended).
1315 The set of breakpoints being stepped over will normally be much
1316 smaller than the set of all breakpoints, so a flag in the
1317 breakpoint location structure would be wasteful. A separate list
1318 also saves complexity and run-time, as otherwise we'd have to go
1319 through all breakpoint locations clearing their flag whenever we
1320 start a new sequence. Similar considerations weigh against storing
1321 this info in the thread object. Plus, not all step overs actually
1322 have breakpoint locations -- e.g., stepping past a single-step
1323 breakpoint, or stepping to complete a non-continuable
1324 watchpoint. */
1325static struct step_over_info step_over_info;
1326
1327/* Record the address of the breakpoint/instruction we're currently
1328 stepping over. */
1329
1330static void
963f9c80
PA
1331set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1332 int nonsteppable_watchpoint_p)
31e77af2
PA
1333{
1334 step_over_info.aspace = aspace;
1335 step_over_info.address = address;
963f9c80 1336 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
31e77af2
PA
1337}
1338
1339/* Called when we're not longer stepping over a breakpoint / an
1340 instruction, so all breakpoints are free to be (re)inserted. */
1341
1342static void
1343clear_step_over_info (void)
1344{
372316f1
PA
1345 if (debug_infrun)
1346 fprintf_unfiltered (gdb_stdlog,
1347 "infrun: clear_step_over_info\n");
31e77af2
PA
1348 step_over_info.aspace = NULL;
1349 step_over_info.address = 0;
963f9c80 1350 step_over_info.nonsteppable_watchpoint_p = 0;
31e77af2
PA
1351}
1352
7f89fd65 1353/* See infrun.h. */
31e77af2
PA
1354
1355int
1356stepping_past_instruction_at (struct address_space *aspace,
1357 CORE_ADDR address)
1358{
1359 return (step_over_info.aspace != NULL
1360 && breakpoint_address_match (aspace, address,
1361 step_over_info.aspace,
1362 step_over_info.address));
1363}
1364
963f9c80
PA
1365/* See infrun.h. */
1366
1367int
1368stepping_past_nonsteppable_watchpoint (void)
1369{
1370 return step_over_info.nonsteppable_watchpoint_p;
1371}
1372
6cc83d2a
PA
1373/* Returns true if step-over info is valid. */
1374
1375static int
1376step_over_info_valid_p (void)
1377{
963f9c80
PA
1378 return (step_over_info.aspace != NULL
1379 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1380}
1381
c906108c 1382\f
237fc4c9
PA
1383/* Displaced stepping. */
1384
1385/* In non-stop debugging mode, we must take special care to manage
1386 breakpoints properly; in particular, the traditional strategy for
1387 stepping a thread past a breakpoint it has hit is unsuitable.
1388 'Displaced stepping' is a tactic for stepping one thread past a
1389 breakpoint it has hit while ensuring that other threads running
1390 concurrently will hit the breakpoint as they should.
1391
1392 The traditional way to step a thread T off a breakpoint in a
1393 multi-threaded program in all-stop mode is as follows:
1394
1395 a0) Initially, all threads are stopped, and breakpoints are not
1396 inserted.
1397 a1) We single-step T, leaving breakpoints uninserted.
1398 a2) We insert breakpoints, and resume all threads.
1399
1400 In non-stop debugging, however, this strategy is unsuitable: we
1401 don't want to have to stop all threads in the system in order to
1402 continue or step T past a breakpoint. Instead, we use displaced
1403 stepping:
1404
1405 n0) Initially, T is stopped, other threads are running, and
1406 breakpoints are inserted.
1407 n1) We copy the instruction "under" the breakpoint to a separate
1408 location, outside the main code stream, making any adjustments
1409 to the instruction, register, and memory state as directed by
1410 T's architecture.
1411 n2) We single-step T over the instruction at its new location.
1412 n3) We adjust the resulting register and memory state as directed
1413 by T's architecture. This includes resetting T's PC to point
1414 back into the main instruction stream.
1415 n4) We resume T.
1416
1417 This approach depends on the following gdbarch methods:
1418
1419 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1420 indicate where to copy the instruction, and how much space must
1421 be reserved there. We use these in step n1.
1422
1423 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1424 address, and makes any necessary adjustments to the instruction,
1425 register contents, and memory. We use this in step n1.
1426
1427 - gdbarch_displaced_step_fixup adjusts registers and memory after
1428 we have successfuly single-stepped the instruction, to yield the
1429 same effect the instruction would have had if we had executed it
1430 at its original address. We use this in step n3.
1431
1432 - gdbarch_displaced_step_free_closure provides cleanup.
1433
1434 The gdbarch_displaced_step_copy_insn and
1435 gdbarch_displaced_step_fixup functions must be written so that
1436 copying an instruction with gdbarch_displaced_step_copy_insn,
1437 single-stepping across the copied instruction, and then applying
1438 gdbarch_displaced_insn_fixup should have the same effects on the
1439 thread's memory and registers as stepping the instruction in place
1440 would have. Exactly which responsibilities fall to the copy and
1441 which fall to the fixup is up to the author of those functions.
1442
1443 See the comments in gdbarch.sh for details.
1444
1445 Note that displaced stepping and software single-step cannot
1446 currently be used in combination, although with some care I think
1447 they could be made to. Software single-step works by placing
1448 breakpoints on all possible subsequent instructions; if the
1449 displaced instruction is a PC-relative jump, those breakpoints
1450 could fall in very strange places --- on pages that aren't
1451 executable, or at addresses that are not proper instruction
1452 boundaries. (We do generally let other threads run while we wait
1453 to hit the software single-step breakpoint, and they might
1454 encounter such a corrupted instruction.) One way to work around
1455 this would be to have gdbarch_displaced_step_copy_insn fully
1456 simulate the effect of PC-relative instructions (and return NULL)
1457 on architectures that use software single-stepping.
1458
1459 In non-stop mode, we can have independent and simultaneous step
1460 requests, so more than one thread may need to simultaneously step
1461 over a breakpoint. The current implementation assumes there is
1462 only one scratch space per process. In this case, we have to
1463 serialize access to the scratch space. If thread A wants to step
1464 over a breakpoint, but we are currently waiting for some other
1465 thread to complete a displaced step, we leave thread A stopped and
1466 place it in the displaced_step_request_queue. Whenever a displaced
1467 step finishes, we pick the next thread in the queue and start a new
1468 displaced step operation on it. See displaced_step_prepare and
1469 displaced_step_fixup for details. */
1470
fc1cf338
PA
1471/* Per-inferior displaced stepping state. */
1472struct displaced_step_inferior_state
1473{
1474 /* Pointer to next in linked list. */
1475 struct displaced_step_inferior_state *next;
1476
1477 /* The process this displaced step state refers to. */
1478 int pid;
1479
3fc8eb30
PA
1480 /* True if preparing a displaced step ever failed. If so, we won't
1481 try displaced stepping for this inferior again. */
1482 int failed_before;
1483
fc1cf338
PA
1484 /* If this is not null_ptid, this is the thread carrying out a
1485 displaced single-step in process PID. This thread's state will
1486 require fixing up once it has completed its step. */
1487 ptid_t step_ptid;
1488
1489 /* The architecture the thread had when we stepped it. */
1490 struct gdbarch *step_gdbarch;
1491
1492 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1493 for post-step cleanup. */
1494 struct displaced_step_closure *step_closure;
1495
1496 /* The address of the original instruction, and the copy we
1497 made. */
1498 CORE_ADDR step_original, step_copy;
1499
1500 /* Saved contents of copy area. */
1501 gdb_byte *step_saved_copy;
1502};
1503
1504/* The list of states of processes involved in displaced stepping
1505 presently. */
1506static struct displaced_step_inferior_state *displaced_step_inferior_states;
1507
1508/* Get the displaced stepping state of process PID. */
1509
1510static struct displaced_step_inferior_state *
1511get_displaced_stepping_state (int pid)
1512{
1513 struct displaced_step_inferior_state *state;
1514
1515 for (state = displaced_step_inferior_states;
1516 state != NULL;
1517 state = state->next)
1518 if (state->pid == pid)
1519 return state;
1520
1521 return NULL;
1522}
1523
372316f1
PA
1524/* Returns true if any inferior has a thread doing a displaced
1525 step. */
1526
1527static int
1528displaced_step_in_progress_any_inferior (void)
1529{
1530 struct displaced_step_inferior_state *state;
1531
1532 for (state = displaced_step_inferior_states;
1533 state != NULL;
1534 state = state->next)
1535 if (!ptid_equal (state->step_ptid, null_ptid))
1536 return 1;
1537
1538 return 0;
1539}
1540
c0987663
YQ
1541/* Return true if thread represented by PTID is doing a displaced
1542 step. */
1543
1544static int
1545displaced_step_in_progress_thread (ptid_t ptid)
1546{
1547 struct displaced_step_inferior_state *displaced;
1548
1549 gdb_assert (!ptid_equal (ptid, null_ptid));
1550
1551 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1552
1553 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1554}
1555
8f572e5c
PA
1556/* Return true if process PID has a thread doing a displaced step. */
1557
1558static int
1559displaced_step_in_progress (int pid)
1560{
1561 struct displaced_step_inferior_state *displaced;
1562
1563 displaced = get_displaced_stepping_state (pid);
1564 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1565 return 1;
1566
1567 return 0;
1568}
1569
fc1cf338
PA
1570/* Add a new displaced stepping state for process PID to the displaced
1571 stepping state list, or return a pointer to an already existing
1572 entry, if it already exists. Never returns NULL. */
1573
1574static struct displaced_step_inferior_state *
1575add_displaced_stepping_state (int pid)
1576{
1577 struct displaced_step_inferior_state *state;
1578
1579 for (state = displaced_step_inferior_states;
1580 state != NULL;
1581 state = state->next)
1582 if (state->pid == pid)
1583 return state;
237fc4c9 1584
8d749320 1585 state = XCNEW (struct displaced_step_inferior_state);
fc1cf338
PA
1586 state->pid = pid;
1587 state->next = displaced_step_inferior_states;
1588 displaced_step_inferior_states = state;
237fc4c9 1589
fc1cf338
PA
1590 return state;
1591}
1592
a42244db
YQ
1593/* If inferior is in displaced stepping, and ADDR equals to starting address
1594 of copy area, return corresponding displaced_step_closure. Otherwise,
1595 return NULL. */
1596
1597struct displaced_step_closure*
1598get_displaced_step_closure_by_addr (CORE_ADDR addr)
1599{
1600 struct displaced_step_inferior_state *displaced
1601 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1602
1603 /* If checking the mode of displaced instruction in copy area. */
1604 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1605 && (displaced->step_copy == addr))
1606 return displaced->step_closure;
1607
1608 return NULL;
1609}
1610
fc1cf338 1611/* Remove the displaced stepping state of process PID. */
237fc4c9 1612
fc1cf338
PA
1613static void
1614remove_displaced_stepping_state (int pid)
1615{
1616 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1617
fc1cf338
PA
1618 gdb_assert (pid != 0);
1619
1620 it = displaced_step_inferior_states;
1621 prev_next_p = &displaced_step_inferior_states;
1622 while (it)
1623 {
1624 if (it->pid == pid)
1625 {
1626 *prev_next_p = it->next;
1627 xfree (it);
1628 return;
1629 }
1630
1631 prev_next_p = &it->next;
1632 it = *prev_next_p;
1633 }
1634}
1635
1636static void
1637infrun_inferior_exit (struct inferior *inf)
1638{
1639 remove_displaced_stepping_state (inf->pid);
1640}
237fc4c9 1641
fff08868
HZ
1642/* If ON, and the architecture supports it, GDB will use displaced
1643 stepping to step over breakpoints. If OFF, or if the architecture
1644 doesn't support it, GDB will instead use the traditional
1645 hold-and-step approach. If AUTO (which is the default), GDB will
1646 decide which technique to use to step over breakpoints depending on
1647 which of all-stop or non-stop mode is active --- displaced stepping
1648 in non-stop mode; hold-and-step in all-stop mode. */
1649
72d0e2c5 1650static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1651
237fc4c9
PA
1652static void
1653show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1654 struct cmd_list_element *c,
1655 const char *value)
1656{
72d0e2c5 1657 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1658 fprintf_filtered (file,
1659 _("Debugger's willingness to use displaced stepping "
1660 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1661 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1662 else
3e43a32a
MS
1663 fprintf_filtered (file,
1664 _("Debugger's willingness to use displaced stepping "
1665 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1666}
1667
fff08868 1668/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1669 over breakpoints of thread TP. */
fff08868 1670
237fc4c9 1671static int
3fc8eb30 1672use_displaced_stepping (struct thread_info *tp)
237fc4c9 1673{
3fc8eb30
PA
1674 struct regcache *regcache = get_thread_regcache (tp->ptid);
1675 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1676 struct displaced_step_inferior_state *displaced_state;
1677
1678 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1679
fbea99ea
PA
1680 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1681 && target_is_non_stop_p ())
72d0e2c5 1682 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1683 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30
PA
1684 && find_record_target () == NULL
1685 && (displaced_state == NULL
1686 || !displaced_state->failed_before));
237fc4c9
PA
1687}
1688
1689/* Clean out any stray displaced stepping state. */
1690static void
fc1cf338 1691displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1692{
1693 /* Indicate that there is no cleanup pending. */
fc1cf338 1694 displaced->step_ptid = null_ptid;
237fc4c9 1695
fc1cf338 1696 if (displaced->step_closure)
237fc4c9 1697 {
fc1cf338
PA
1698 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1699 displaced->step_closure);
1700 displaced->step_closure = NULL;
237fc4c9
PA
1701 }
1702}
1703
1704static void
fc1cf338 1705displaced_step_clear_cleanup (void *arg)
237fc4c9 1706{
9a3c8263
SM
1707 struct displaced_step_inferior_state *state
1708 = (struct displaced_step_inferior_state *) arg;
fc1cf338
PA
1709
1710 displaced_step_clear (state);
237fc4c9
PA
1711}
1712
1713/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1714void
1715displaced_step_dump_bytes (struct ui_file *file,
1716 const gdb_byte *buf,
1717 size_t len)
1718{
1719 int i;
1720
1721 for (i = 0; i < len; i++)
1722 fprintf_unfiltered (file, "%02x ", buf[i]);
1723 fputs_unfiltered ("\n", file);
1724}
1725
1726/* Prepare to single-step, using displaced stepping.
1727
1728 Note that we cannot use displaced stepping when we have a signal to
1729 deliver. If we have a signal to deliver and an instruction to step
1730 over, then after the step, there will be no indication from the
1731 target whether the thread entered a signal handler or ignored the
1732 signal and stepped over the instruction successfully --- both cases
1733 result in a simple SIGTRAP. In the first case we mustn't do a
1734 fixup, and in the second case we must --- but we can't tell which.
1735 Comments in the code for 'random signals' in handle_inferior_event
1736 explain how we handle this case instead.
1737
1738 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1739 stepped now; 0 if displaced stepping this thread got queued; or -1
1740 if this instruction can't be displaced stepped. */
1741
237fc4c9 1742static int
3fc8eb30 1743displaced_step_prepare_throw (ptid_t ptid)
237fc4c9 1744{
ad53cd71 1745 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1746 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1747 struct regcache *regcache = get_thread_regcache (ptid);
1748 struct gdbarch *gdbarch = get_regcache_arch (regcache);
d35ae833 1749 struct address_space *aspace = get_regcache_aspace (regcache);
237fc4c9
PA
1750 CORE_ADDR original, copy;
1751 ULONGEST len;
1752 struct displaced_step_closure *closure;
fc1cf338 1753 struct displaced_step_inferior_state *displaced;
9e529e1d 1754 int status;
237fc4c9
PA
1755
1756 /* We should never reach this function if the architecture does not
1757 support displaced stepping. */
1758 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1759
c2829269
PA
1760 /* Nor if the thread isn't meant to step over a breakpoint. */
1761 gdb_assert (tp->control.trap_expected);
1762
c1e36e3e
PA
1763 /* Disable range stepping while executing in the scratch pad. We
1764 want a single-step even if executing the displaced instruction in
1765 the scratch buffer lands within the stepping range (e.g., a
1766 jump/branch). */
1767 tp->control.may_range_step = 0;
1768
fc1cf338
PA
1769 /* We have to displaced step one thread at a time, as we only have
1770 access to a single scratch space per inferior. */
237fc4c9 1771
fc1cf338
PA
1772 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1773
1774 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1775 {
1776 /* Already waiting for a displaced step to finish. Defer this
1777 request and place in queue. */
237fc4c9
PA
1778
1779 if (debug_displaced)
1780 fprintf_unfiltered (gdb_stdlog,
c2829269 1781 "displaced: deferring step of %s\n",
237fc4c9
PA
1782 target_pid_to_str (ptid));
1783
c2829269 1784 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1785 return 0;
1786 }
1787 else
1788 {
1789 if (debug_displaced)
1790 fprintf_unfiltered (gdb_stdlog,
1791 "displaced: stepping %s now\n",
1792 target_pid_to_str (ptid));
1793 }
1794
fc1cf338 1795 displaced_step_clear (displaced);
237fc4c9 1796
ad53cd71
PA
1797 old_cleanups = save_inferior_ptid ();
1798 inferior_ptid = ptid;
1799
515630c5 1800 original = regcache_read_pc (regcache);
237fc4c9
PA
1801
1802 copy = gdbarch_displaced_step_location (gdbarch);
1803 len = gdbarch_max_insn_length (gdbarch);
1804
d35ae833
PA
1805 if (breakpoint_in_range_p (aspace, copy, len))
1806 {
1807 /* There's a breakpoint set in the scratch pad location range
1808 (which is usually around the entry point). We'd either
1809 install it before resuming, which would overwrite/corrupt the
1810 scratch pad, or if it was already inserted, this displaced
1811 step would overwrite it. The latter is OK in the sense that
1812 we already assume that no thread is going to execute the code
1813 in the scratch pad range (after initial startup) anyway, but
1814 the former is unacceptable. Simply punt and fallback to
1815 stepping over this breakpoint in-line. */
1816 if (debug_displaced)
1817 {
1818 fprintf_unfiltered (gdb_stdlog,
1819 "displaced: breakpoint set in scratch pad. "
1820 "Stepping over breakpoint in-line instead.\n");
1821 }
1822
1823 do_cleanups (old_cleanups);
1824 return -1;
1825 }
1826
237fc4c9 1827 /* Save the original contents of the copy area. */
224c3ddb 1828 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
ad53cd71 1829 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1830 &displaced->step_saved_copy);
9e529e1d
JK
1831 status = target_read_memory (copy, displaced->step_saved_copy, len);
1832 if (status != 0)
1833 throw_error (MEMORY_ERROR,
1834 _("Error accessing memory address %s (%s) for "
1835 "displaced-stepping scratch space."),
1836 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1837 if (debug_displaced)
1838 {
5af949e3
UW
1839 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1840 paddress (gdbarch, copy));
fc1cf338
PA
1841 displaced_step_dump_bytes (gdb_stdlog,
1842 displaced->step_saved_copy,
1843 len);
237fc4c9
PA
1844 };
1845
1846 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1847 original, copy, regcache);
7f03bd92
PA
1848 if (closure == NULL)
1849 {
1850 /* The architecture doesn't know how or want to displaced step
1851 this instruction or instruction sequence. Fallback to
1852 stepping over the breakpoint in-line. */
1853 do_cleanups (old_cleanups);
1854 return -1;
1855 }
237fc4c9 1856
9f5a595d
UW
1857 /* Save the information we need to fix things up if the step
1858 succeeds. */
fc1cf338
PA
1859 displaced->step_ptid = ptid;
1860 displaced->step_gdbarch = gdbarch;
1861 displaced->step_closure = closure;
1862 displaced->step_original = original;
1863 displaced->step_copy = copy;
9f5a595d 1864
fc1cf338 1865 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1866
1867 /* Resume execution at the copy. */
515630c5 1868 regcache_write_pc (regcache, copy);
237fc4c9 1869
ad53cd71
PA
1870 discard_cleanups (ignore_cleanups);
1871
1872 do_cleanups (old_cleanups);
237fc4c9
PA
1873
1874 if (debug_displaced)
5af949e3
UW
1875 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1876 paddress (gdbarch, copy));
237fc4c9 1877
237fc4c9
PA
1878 return 1;
1879}
1880
3fc8eb30
PA
1881/* Wrapper for displaced_step_prepare_throw that disabled further
1882 attempts at displaced stepping if we get a memory error. */
1883
1884static int
1885displaced_step_prepare (ptid_t ptid)
1886{
1887 int prepared = -1;
1888
1889 TRY
1890 {
1891 prepared = displaced_step_prepare_throw (ptid);
1892 }
1893 CATCH (ex, RETURN_MASK_ERROR)
1894 {
1895 struct displaced_step_inferior_state *displaced_state;
1896
1897 if (ex.error != MEMORY_ERROR)
1898 throw_exception (ex);
1899
1900 if (debug_infrun)
1901 {
1902 fprintf_unfiltered (gdb_stdlog,
1903 "infrun: disabling displaced stepping: %s\n",
1904 ex.message);
1905 }
1906
1907 /* Be verbose if "set displaced-stepping" is "on", silent if
1908 "auto". */
1909 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1910 {
fd7dcb94 1911 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1912 ex.message);
1913 }
1914
1915 /* Disable further displaced stepping attempts. */
1916 displaced_state
1917 = get_displaced_stepping_state (ptid_get_pid (ptid));
1918 displaced_state->failed_before = 1;
1919 }
1920 END_CATCH
1921
1922 return prepared;
1923}
1924
237fc4c9 1925static void
3e43a32a
MS
1926write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1927 const gdb_byte *myaddr, int len)
237fc4c9
PA
1928{
1929 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1930
237fc4c9
PA
1931 inferior_ptid = ptid;
1932 write_memory (memaddr, myaddr, len);
1933 do_cleanups (ptid_cleanup);
1934}
1935
e2d96639
YQ
1936/* Restore the contents of the copy area for thread PTID. */
1937
1938static void
1939displaced_step_restore (struct displaced_step_inferior_state *displaced,
1940 ptid_t ptid)
1941{
1942 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1943
1944 write_memory_ptid (ptid, displaced->step_copy,
1945 displaced->step_saved_copy, len);
1946 if (debug_displaced)
1947 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1948 target_pid_to_str (ptid),
1949 paddress (displaced->step_gdbarch,
1950 displaced->step_copy));
1951}
1952
372316f1
PA
1953/* If we displaced stepped an instruction successfully, adjust
1954 registers and memory to yield the same effect the instruction would
1955 have had if we had executed it at its original address, and return
1956 1. If the instruction didn't complete, relocate the PC and return
1957 -1. If the thread wasn't displaced stepping, return 0. */
1958
1959static int
2ea28649 1960displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1961{
1962 struct cleanup *old_cleanups;
fc1cf338
PA
1963 struct displaced_step_inferior_state *displaced
1964 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
372316f1 1965 int ret;
fc1cf338
PA
1966
1967 /* Was any thread of this process doing a displaced step? */
1968 if (displaced == NULL)
372316f1 1969 return 0;
237fc4c9
PA
1970
1971 /* Was this event for the pid we displaced? */
fc1cf338
PA
1972 if (ptid_equal (displaced->step_ptid, null_ptid)
1973 || ! ptid_equal (displaced->step_ptid, event_ptid))
372316f1 1974 return 0;
237fc4c9 1975
fc1cf338 1976 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1977
e2d96639 1978 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9 1979
cb71640d
PA
1980 /* Fixup may need to read memory/registers. Switch to the thread
1981 that we're fixing up. Also, target_stopped_by_watchpoint checks
1982 the current thread. */
1983 switch_to_thread (event_ptid);
1984
237fc4c9 1985 /* Did the instruction complete successfully? */
cb71640d
PA
1986 if (signal == GDB_SIGNAL_TRAP
1987 && !(target_stopped_by_watchpoint ()
1988 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1989 || target_have_steppable_watchpoint)))
237fc4c9
PA
1990 {
1991 /* Fix up the resulting state. */
fc1cf338
PA
1992 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1993 displaced->step_closure,
1994 displaced->step_original,
1995 displaced->step_copy,
1996 get_thread_regcache (displaced->step_ptid));
372316f1 1997 ret = 1;
237fc4c9
PA
1998 }
1999 else
2000 {
2001 /* Since the instruction didn't complete, all we can do is
2002 relocate the PC. */
515630c5
UW
2003 struct regcache *regcache = get_thread_regcache (event_ptid);
2004 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 2005
fc1cf338 2006 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 2007 regcache_write_pc (regcache, pc);
372316f1 2008 ret = -1;
237fc4c9
PA
2009 }
2010
2011 do_cleanups (old_cleanups);
2012
fc1cf338 2013 displaced->step_ptid = null_ptid;
372316f1
PA
2014
2015 return ret;
c2829269 2016}
1c5cfe86 2017
4d9d9d04
PA
2018/* Data to be passed around while handling an event. This data is
2019 discarded between events. */
2020struct execution_control_state
2021{
2022 ptid_t ptid;
2023 /* The thread that got the event, if this was a thread event; NULL
2024 otherwise. */
2025 struct thread_info *event_thread;
2026
2027 struct target_waitstatus ws;
2028 int stop_func_filled_in;
2029 CORE_ADDR stop_func_start;
2030 CORE_ADDR stop_func_end;
2031 const char *stop_func_name;
2032 int wait_some_more;
2033
2034 /* True if the event thread hit the single-step breakpoint of
2035 another thread. Thus the event doesn't cause a stop, the thread
2036 needs to be single-stepped past the single-step breakpoint before
2037 we can switch back to the original stepping thread. */
2038 int hit_singlestep_breakpoint;
2039};
2040
2041/* Clear ECS and set it to point at TP. */
c2829269
PA
2042
2043static void
4d9d9d04
PA
2044reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2045{
2046 memset (ecs, 0, sizeof (*ecs));
2047 ecs->event_thread = tp;
2048 ecs->ptid = tp->ptid;
2049}
2050
2051static void keep_going_pass_signal (struct execution_control_state *ecs);
2052static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 2053static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 2054static step_over_what thread_still_needs_step_over (struct thread_info *tp);
3fc8eb30 2055static void stop_all_threads (void);
4d9d9d04
PA
2056
2057/* Are there any pending step-over requests? If so, run all we can
2058 now and return true. Otherwise, return false. */
2059
2060static int
c2829269
PA
2061start_step_over (void)
2062{
2063 struct thread_info *tp, *next;
2064
372316f1
PA
2065 /* Don't start a new step-over if we already have an in-line
2066 step-over operation ongoing. */
2067 if (step_over_info_valid_p ())
2068 return 0;
2069
c2829269 2070 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 2071 {
4d9d9d04
PA
2072 struct execution_control_state ecss;
2073 struct execution_control_state *ecs = &ecss;
8d297bbf 2074 step_over_what step_what;
372316f1 2075 int must_be_in_line;
c2829269
PA
2076
2077 next = thread_step_over_chain_next (tp);
237fc4c9 2078
c2829269
PA
2079 /* If this inferior already has a displaced step in process,
2080 don't start a new one. */
4d9d9d04 2081 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
c2829269
PA
2082 continue;
2083
372316f1
PA
2084 step_what = thread_still_needs_step_over (tp);
2085 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2086 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 2087 && !use_displaced_stepping (tp)));
372316f1
PA
2088
2089 /* We currently stop all threads of all processes to step-over
2090 in-line. If we need to start a new in-line step-over, let
2091 any pending displaced steps finish first. */
2092 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2093 return 0;
2094
c2829269
PA
2095 thread_step_over_chain_remove (tp);
2096
2097 if (step_over_queue_head == NULL)
2098 {
2099 if (debug_infrun)
2100 fprintf_unfiltered (gdb_stdlog,
2101 "infrun: step-over queue now empty\n");
2102 }
2103
372316f1
PA
2104 if (tp->control.trap_expected
2105 || tp->resumed
2106 || tp->executing)
ad53cd71 2107 {
4d9d9d04
PA
2108 internal_error (__FILE__, __LINE__,
2109 "[%s] has inconsistent state: "
372316f1 2110 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
2111 target_pid_to_str (tp->ptid),
2112 tp->control.trap_expected,
372316f1 2113 tp->resumed,
4d9d9d04 2114 tp->executing);
ad53cd71 2115 }
1c5cfe86 2116
4d9d9d04
PA
2117 if (debug_infrun)
2118 fprintf_unfiltered (gdb_stdlog,
2119 "infrun: resuming [%s] for step-over\n",
2120 target_pid_to_str (tp->ptid));
2121
2122 /* keep_going_pass_signal skips the step-over if the breakpoint
2123 is no longer inserted. In all-stop, we want to keep looking
2124 for a thread that needs a step-over instead of resuming TP,
2125 because we wouldn't be able to resume anything else until the
2126 target stops again. In non-stop, the resume always resumes
2127 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2128 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2129 continue;
8550d3b3 2130
4d9d9d04
PA
2131 switch_to_thread (tp->ptid);
2132 reset_ecs (ecs, tp);
2133 keep_going_pass_signal (ecs);
1c5cfe86 2134
4d9d9d04
PA
2135 if (!ecs->wait_some_more)
2136 error (_("Command aborted."));
1c5cfe86 2137
372316f1
PA
2138 gdb_assert (tp->resumed);
2139
2140 /* If we started a new in-line step-over, we're done. */
2141 if (step_over_info_valid_p ())
2142 {
2143 gdb_assert (tp->control.trap_expected);
2144 return 1;
2145 }
2146
fbea99ea 2147 if (!target_is_non_stop_p ())
4d9d9d04
PA
2148 {
2149 /* On all-stop, shouldn't have resumed unless we needed a
2150 step over. */
2151 gdb_assert (tp->control.trap_expected
2152 || tp->step_after_step_resume_breakpoint);
2153
2154 /* With remote targets (at least), in all-stop, we can't
2155 issue any further remote commands until the program stops
2156 again. */
2157 return 1;
1c5cfe86 2158 }
c2829269 2159
4d9d9d04
PA
2160 /* Either the thread no longer needed a step-over, or a new
2161 displaced stepping sequence started. Even in the latter
2162 case, continue looking. Maybe we can also start another
2163 displaced step on a thread of other process. */
237fc4c9 2164 }
4d9d9d04
PA
2165
2166 return 0;
237fc4c9
PA
2167}
2168
5231c1fd
PA
2169/* Update global variables holding ptids to hold NEW_PTID if they were
2170 holding OLD_PTID. */
2171static void
2172infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2173{
2174 struct displaced_step_request *it;
fc1cf338 2175 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
2176
2177 if (ptid_equal (inferior_ptid, old_ptid))
2178 inferior_ptid = new_ptid;
2179
fc1cf338
PA
2180 for (displaced = displaced_step_inferior_states;
2181 displaced;
2182 displaced = displaced->next)
2183 {
2184 if (ptid_equal (displaced->step_ptid, old_ptid))
2185 displaced->step_ptid = new_ptid;
fc1cf338 2186 }
5231c1fd
PA
2187}
2188
237fc4c9
PA
2189\f
2190/* Resuming. */
c906108c
SS
2191
2192/* Things to clean up if we QUIT out of resume (). */
c906108c 2193static void
74b7792f 2194resume_cleanups (void *ignore)
c906108c 2195{
34b7e8a6
PA
2196 if (!ptid_equal (inferior_ptid, null_ptid))
2197 delete_single_step_breakpoints (inferior_thread ());
7c16b83e 2198
c906108c
SS
2199 normal_stop ();
2200}
2201
53904c9e
AC
2202static const char schedlock_off[] = "off";
2203static const char schedlock_on[] = "on";
2204static const char schedlock_step[] = "step";
f2665db5 2205static const char schedlock_replay[] = "replay";
40478521 2206static const char *const scheduler_enums[] = {
ef346e04
AC
2207 schedlock_off,
2208 schedlock_on,
2209 schedlock_step,
f2665db5 2210 schedlock_replay,
ef346e04
AC
2211 NULL
2212};
f2665db5 2213static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2214static void
2215show_scheduler_mode (struct ui_file *file, int from_tty,
2216 struct cmd_list_element *c, const char *value)
2217{
3e43a32a
MS
2218 fprintf_filtered (file,
2219 _("Mode for locking scheduler "
2220 "during execution is \"%s\".\n"),
920d2a44
AC
2221 value);
2222}
c906108c
SS
2223
2224static void
96baa820 2225set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2226{
eefe576e
AC
2227 if (!target_can_lock_scheduler)
2228 {
2229 scheduler_mode = schedlock_off;
2230 error (_("Target '%s' cannot support this command."), target_shortname);
2231 }
c906108c
SS
2232}
2233
d4db2f36
PA
2234/* True if execution commands resume all threads of all processes by
2235 default; otherwise, resume only threads of the current inferior
2236 process. */
2237int sched_multi = 0;
2238
2facfe5c
DD
2239/* Try to setup for software single stepping over the specified location.
2240 Return 1 if target_resume() should use hardware single step.
2241
2242 GDBARCH the current gdbarch.
2243 PC the location to step over. */
2244
2245static int
2246maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2247{
2248 int hw_step = 1;
2249
f02253f1
HZ
2250 if (execution_direction == EXEC_FORWARD
2251 && gdbarch_software_single_step_p (gdbarch)
99e40580 2252 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 2253 {
99e40580 2254 hw_step = 0;
2facfe5c
DD
2255 }
2256 return hw_step;
2257}
c906108c 2258
f3263aa4
PA
2259/* See infrun.h. */
2260
09cee04b
PA
2261ptid_t
2262user_visible_resume_ptid (int step)
2263{
f3263aa4 2264 ptid_t resume_ptid;
09cee04b 2265
09cee04b
PA
2266 if (non_stop)
2267 {
2268 /* With non-stop mode on, threads are always handled
2269 individually. */
2270 resume_ptid = inferior_ptid;
2271 }
2272 else if ((scheduler_mode == schedlock_on)
03d46957 2273 || (scheduler_mode == schedlock_step && step))
09cee04b 2274 {
f3263aa4
PA
2275 /* User-settable 'scheduler' mode requires solo thread
2276 resume. */
09cee04b
PA
2277 resume_ptid = inferior_ptid;
2278 }
f2665db5
MM
2279 else if ((scheduler_mode == schedlock_replay)
2280 && target_record_will_replay (minus_one_ptid, execution_direction))
2281 {
2282 /* User-settable 'scheduler' mode requires solo thread resume in replay
2283 mode. */
2284 resume_ptid = inferior_ptid;
2285 }
f3263aa4
PA
2286 else if (!sched_multi && target_supports_multi_process ())
2287 {
2288 /* Resume all threads of the current process (and none of other
2289 processes). */
2290 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2291 }
2292 else
2293 {
2294 /* Resume all threads of all processes. */
2295 resume_ptid = RESUME_ALL;
2296 }
09cee04b
PA
2297
2298 return resume_ptid;
2299}
2300
fbea99ea
PA
2301/* Return a ptid representing the set of threads that we will resume,
2302 in the perspective of the target, assuming run control handling
2303 does not require leaving some threads stopped (e.g., stepping past
2304 breakpoint). USER_STEP indicates whether we're about to start the
2305 target for a stepping command. */
2306
2307static ptid_t
2308internal_resume_ptid (int user_step)
2309{
2310 /* In non-stop, we always control threads individually. Note that
2311 the target may always work in non-stop mode even with "set
2312 non-stop off", in which case user_visible_resume_ptid could
2313 return a wildcard ptid. */
2314 if (target_is_non_stop_p ())
2315 return inferior_ptid;
2316 else
2317 return user_visible_resume_ptid (user_step);
2318}
2319
64ce06e4
PA
2320/* Wrapper for target_resume, that handles infrun-specific
2321 bookkeeping. */
2322
2323static void
2324do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2325{
2326 struct thread_info *tp = inferior_thread ();
2327
2328 /* Install inferior's terminal modes. */
2329 target_terminal_inferior ();
2330
2331 /* Avoid confusing the next resume, if the next stop/resume
2332 happens to apply to another thread. */
2333 tp->suspend.stop_signal = GDB_SIGNAL_0;
2334
8f572e5c
PA
2335 /* Advise target which signals may be handled silently.
2336
2337 If we have removed breakpoints because we are stepping over one
2338 in-line (in any thread), we need to receive all signals to avoid
2339 accidentally skipping a breakpoint during execution of a signal
2340 handler.
2341
2342 Likewise if we're displaced stepping, otherwise a trap for a
2343 breakpoint in a signal handler might be confused with the
2344 displaced step finishing. We don't make the displaced_step_fixup
2345 step distinguish the cases instead, because:
2346
2347 - a backtrace while stopped in the signal handler would show the
2348 scratch pad as frame older than the signal handler, instead of
2349 the real mainline code.
2350
2351 - when the thread is later resumed, the signal handler would
2352 return to the scratch pad area, which would no longer be
2353 valid. */
2354 if (step_over_info_valid_p ()
2355 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
64ce06e4
PA
2356 target_pass_signals (0, NULL);
2357 else
2358 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2359
2360 target_resume (resume_ptid, step, sig);
2361}
2362
c906108c
SS
2363/* Resume the inferior, but allow a QUIT. This is useful if the user
2364 wants to interrupt some lengthy single-stepping operation
2365 (for child processes, the SIGINT goes to the inferior, and so
2366 we get a SIGINT random_signal, but for remote debugging and perhaps
2367 other targets, that's not true).
2368
c906108c
SS
2369 SIG is the signal to give the inferior (zero for none). */
2370void
64ce06e4 2371resume (enum gdb_signal sig)
c906108c 2372{
74b7792f 2373 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
2374 struct regcache *regcache = get_current_regcache ();
2375 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 2376 struct thread_info *tp = inferior_thread ();
515630c5 2377 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 2378 struct address_space *aspace = get_regcache_aspace (regcache);
b0f16a3e 2379 ptid_t resume_ptid;
856e7dd6
PA
2380 /* This represents the user's step vs continue request. When
2381 deciding whether "set scheduler-locking step" applies, it's the
2382 user's intention that counts. */
2383 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2384 /* This represents what we'll actually request the target to do.
2385 This can decay from a step to a continue, if e.g., we need to
2386 implement single-stepping with breakpoints (software
2387 single-step). */
6b403daa 2388 int step;
c7e8a53c 2389
c2829269
PA
2390 gdb_assert (!thread_is_in_step_over_chain (tp));
2391
c906108c
SS
2392 QUIT;
2393
372316f1
PA
2394 if (tp->suspend.waitstatus_pending_p)
2395 {
2396 if (debug_infrun)
2397 {
2398 char *statstr;
2399
2400 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2401 fprintf_unfiltered (gdb_stdlog,
2402 "infrun: resume: thread %s has pending wait status %s "
2403 "(currently_stepping=%d).\n",
2404 target_pid_to_str (tp->ptid), statstr,
2405 currently_stepping (tp));
2406 xfree (statstr);
2407 }
2408
2409 tp->resumed = 1;
2410
2411 /* FIXME: What should we do if we are supposed to resume this
2412 thread with a signal? Maybe we should maintain a queue of
2413 pending signals to deliver. */
2414 if (sig != GDB_SIGNAL_0)
2415 {
fd7dcb94 2416 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2417 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2418 }
2419
2420 tp->suspend.stop_signal = GDB_SIGNAL_0;
2421 discard_cleanups (old_cleanups);
2422
2423 if (target_can_async_p ())
2424 target_async (1);
2425 return;
2426 }
2427
2428 tp->stepped_breakpoint = 0;
2429
6b403daa
PA
2430 /* Depends on stepped_breakpoint. */
2431 step = currently_stepping (tp);
2432
74609e71
YQ
2433 if (current_inferior ()->waiting_for_vfork_done)
2434 {
48f9886d
PA
2435 /* Don't try to single-step a vfork parent that is waiting for
2436 the child to get out of the shared memory region (by exec'ing
2437 or exiting). This is particularly important on software
2438 single-step archs, as the child process would trip on the
2439 software single step breakpoint inserted for the parent
2440 process. Since the parent will not actually execute any
2441 instruction until the child is out of the shared region (such
2442 are vfork's semantics), it is safe to simply continue it.
2443 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2444 the parent, and tell it to `keep_going', which automatically
2445 re-sets it stepping. */
74609e71
YQ
2446 if (debug_infrun)
2447 fprintf_unfiltered (gdb_stdlog,
2448 "infrun: resume : clear step\n");
a09dd441 2449 step = 0;
74609e71
YQ
2450 }
2451
527159b7 2452 if (debug_infrun)
237fc4c9 2453 fprintf_unfiltered (gdb_stdlog,
c9737c08 2454 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2455 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2456 step, gdb_signal_to_symbol_string (sig),
2457 tp->control.trap_expected,
0d9a9a5f
PA
2458 target_pid_to_str (inferior_ptid),
2459 paddress (gdbarch, pc));
c906108c 2460
c2c6d25f
JM
2461 /* Normally, by the time we reach `resume', the breakpoints are either
2462 removed or inserted, as appropriate. The exception is if we're sitting
2463 at a permanent breakpoint; we need to step over it, but permanent
2464 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2465 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2466 {
af48d08f
PA
2467 if (sig != GDB_SIGNAL_0)
2468 {
2469 /* We have a signal to pass to the inferior. The resume
2470 may, or may not take us to the signal handler. If this
2471 is a step, we'll need to stop in the signal handler, if
2472 there's one, (if the target supports stepping into
2473 handlers), or in the next mainline instruction, if
2474 there's no handler. If this is a continue, we need to be
2475 sure to run the handler with all breakpoints inserted.
2476 In all cases, set a breakpoint at the current address
2477 (where the handler returns to), and once that breakpoint
2478 is hit, resume skipping the permanent breakpoint. If
2479 that breakpoint isn't hit, then we've stepped into the
2480 signal handler (or hit some other event). We'll delete
2481 the step-resume breakpoint then. */
2482
2483 if (debug_infrun)
2484 fprintf_unfiltered (gdb_stdlog,
2485 "infrun: resume: skipping permanent breakpoint, "
2486 "deliver signal first\n");
2487
2488 clear_step_over_info ();
2489 tp->control.trap_expected = 0;
2490
2491 if (tp->control.step_resume_breakpoint == NULL)
2492 {
2493 /* Set a "high-priority" step-resume, as we don't want
2494 user breakpoints at PC to trigger (again) when this
2495 hits. */
2496 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2497 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2498
2499 tp->step_after_step_resume_breakpoint = step;
2500 }
2501
2502 insert_breakpoints ();
2503 }
2504 else
2505 {
2506 /* There's no signal to pass, we can go ahead and skip the
2507 permanent breakpoint manually. */
2508 if (debug_infrun)
2509 fprintf_unfiltered (gdb_stdlog,
2510 "infrun: resume: skipping permanent breakpoint\n");
2511 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2512 /* Update pc to reflect the new address from which we will
2513 execute instructions. */
2514 pc = regcache_read_pc (regcache);
2515
2516 if (step)
2517 {
2518 /* We've already advanced the PC, so the stepping part
2519 is done. Now we need to arrange for a trap to be
2520 reported to handle_inferior_event. Set a breakpoint
2521 at the current PC, and run to it. Don't update
2522 prev_pc, because if we end in
44a1ee51
PA
2523 switch_back_to_stepped_thread, we want the "expected
2524 thread advanced also" branch to be taken. IOW, we
2525 don't want this thread to step further from PC
af48d08f 2526 (overstep). */
1ac806b8 2527 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2528 insert_single_step_breakpoint (gdbarch, aspace, pc);
2529 insert_breakpoints ();
2530
fbea99ea 2531 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2532 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
af48d08f 2533 discard_cleanups (old_cleanups);
372316f1 2534 tp->resumed = 1;
af48d08f
PA
2535 return;
2536 }
2537 }
6d350bb5 2538 }
c2c6d25f 2539
c1e36e3e
PA
2540 /* If we have a breakpoint to step over, make sure to do a single
2541 step only. Same if we have software watchpoints. */
2542 if (tp->control.trap_expected || bpstat_should_step ())
2543 tp->control.may_range_step = 0;
2544
237fc4c9
PA
2545 /* If enabled, step over breakpoints by executing a copy of the
2546 instruction at a different address.
2547
2548 We can't use displaced stepping when we have a signal to deliver;
2549 the comments for displaced_step_prepare explain why. The
2550 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2551 signals' explain what we do instead.
2552
2553 We can't use displaced stepping when we are waiting for vfork_done
2554 event, displaced stepping breaks the vfork child similarly as single
2555 step software breakpoint. */
3fc8eb30
PA
2556 if (tp->control.trap_expected
2557 && use_displaced_stepping (tp)
cb71640d 2558 && !step_over_info_valid_p ()
a493e3e2 2559 && sig == GDB_SIGNAL_0
74609e71 2560 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2561 {
3fc8eb30 2562 int prepared = displaced_step_prepare (inferior_ptid);
fc1cf338 2563
3fc8eb30 2564 if (prepared == 0)
d56b7306 2565 {
4d9d9d04
PA
2566 if (debug_infrun)
2567 fprintf_unfiltered (gdb_stdlog,
2568 "Got placed in step-over queue\n");
2569
2570 tp->control.trap_expected = 0;
d56b7306
VP
2571 discard_cleanups (old_cleanups);
2572 return;
2573 }
3fc8eb30
PA
2574 else if (prepared < 0)
2575 {
2576 /* Fallback to stepping over the breakpoint in-line. */
2577
2578 if (target_is_non_stop_p ())
2579 stop_all_threads ();
2580
2581 set_step_over_info (get_regcache_aspace (regcache),
2582 regcache_read_pc (regcache), 0);
2583
2584 step = maybe_software_singlestep (gdbarch, pc);
2585
2586 insert_breakpoints ();
2587 }
2588 else if (prepared > 0)
2589 {
2590 struct displaced_step_inferior_state *displaced;
99e40580 2591
3fc8eb30
PA
2592 /* Update pc to reflect the new address from which we will
2593 execute instructions due to displaced stepping. */
2594 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
ca7781d2 2595
3fc8eb30
PA
2596 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2597 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2598 displaced->step_closure);
2599 }
237fc4c9
PA
2600 }
2601
2facfe5c 2602 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2603 else if (step)
2facfe5c 2604 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2605
30852783
UW
2606 /* Currently, our software single-step implementation leads to different
2607 results than hardware single-stepping in one situation: when stepping
2608 into delivering a signal which has an associated signal handler,
2609 hardware single-step will stop at the first instruction of the handler,
2610 while software single-step will simply skip execution of the handler.
2611
2612 For now, this difference in behavior is accepted since there is no
2613 easy way to actually implement single-stepping into a signal handler
2614 without kernel support.
2615
2616 However, there is one scenario where this difference leads to follow-on
2617 problems: if we're stepping off a breakpoint by removing all breakpoints
2618 and then single-stepping. In this case, the software single-step
2619 behavior means that even if there is a *breakpoint* in the signal
2620 handler, GDB still would not stop.
2621
2622 Fortunately, we can at least fix this particular issue. We detect
2623 here the case where we are about to deliver a signal while software
2624 single-stepping with breakpoints removed. In this situation, we
2625 revert the decisions to remove all breakpoints and insert single-
2626 step breakpoints, and instead we install a step-resume breakpoint
2627 at the current address, deliver the signal without stepping, and
2628 once we arrive back at the step-resume breakpoint, actually step
2629 over the breakpoint we originally wanted to step over. */
34b7e8a6 2630 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2631 && sig != GDB_SIGNAL_0
2632 && step_over_info_valid_p ())
30852783
UW
2633 {
2634 /* If we have nested signals or a pending signal is delivered
2635 immediately after a handler returns, might might already have
2636 a step-resume breakpoint set on the earlier handler. We cannot
2637 set another step-resume breakpoint; just continue on until the
2638 original breakpoint is hit. */
2639 if (tp->control.step_resume_breakpoint == NULL)
2640 {
2c03e5be 2641 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2642 tp->step_after_step_resume_breakpoint = 1;
2643 }
2644
34b7e8a6 2645 delete_single_step_breakpoints (tp);
30852783 2646
31e77af2 2647 clear_step_over_info ();
30852783 2648 tp->control.trap_expected = 0;
31e77af2
PA
2649
2650 insert_breakpoints ();
30852783
UW
2651 }
2652
b0f16a3e
SM
2653 /* If STEP is set, it's a request to use hardware stepping
2654 facilities. But in that case, we should never
2655 use singlestep breakpoint. */
34b7e8a6 2656 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2657
fbea99ea 2658 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2659 if (tp->control.trap_expected)
b0f16a3e
SM
2660 {
2661 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2662 hit, either by single-stepping the thread with the breakpoint
2663 removed, or by displaced stepping, with the breakpoint inserted.
2664 In the former case, we need to single-step only this thread,
2665 and keep others stopped, as they can miss this breakpoint if
2666 allowed to run. That's not really a problem for displaced
2667 stepping, but, we still keep other threads stopped, in case
2668 another thread is also stopped for a breakpoint waiting for
2669 its turn in the displaced stepping queue. */
b0f16a3e
SM
2670 resume_ptid = inferior_ptid;
2671 }
fbea99ea
PA
2672 else
2673 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2674
7f5ef605
PA
2675 if (execution_direction != EXEC_REVERSE
2676 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2677 {
372316f1
PA
2678 /* There are two cases where we currently need to step a
2679 breakpoint instruction when we have a signal to deliver:
2680
2681 - See handle_signal_stop where we handle random signals that
2682 could take out us out of the stepping range. Normally, in
2683 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2684 signal handler with a breakpoint at PC, but there are cases
2685 where we should _always_ single-step, even if we have a
2686 step-resume breakpoint, like when a software watchpoint is
2687 set. Assuming single-stepping and delivering a signal at the
2688 same time would takes us to the signal handler, then we could
2689 have removed the breakpoint at PC to step over it. However,
2690 some hardware step targets (like e.g., Mac OS) can't step
2691 into signal handlers, and for those, we need to leave the
2692 breakpoint at PC inserted, as otherwise if the handler
2693 recurses and executes PC again, it'll miss the breakpoint.
2694 So we leave the breakpoint inserted anyway, but we need to
2695 record that we tried to step a breakpoint instruction, so
372316f1
PA
2696 that adjust_pc_after_break doesn't end up confused.
2697
2698 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2699 in one thread after another thread that was stepping had been
2700 momentarily paused for a step-over. When we re-resume the
2701 stepping thread, it may be resumed from that address with a
2702 breakpoint that hasn't trapped yet. Seen with
2703 gdb.threads/non-stop-fair-events.exp, on targets that don't
2704 do displaced stepping. */
2705
2706 if (debug_infrun)
2707 fprintf_unfiltered (gdb_stdlog,
2708 "infrun: resume: [%s] stepped breakpoint\n",
2709 target_pid_to_str (tp->ptid));
7f5ef605
PA
2710
2711 tp->stepped_breakpoint = 1;
2712
b0f16a3e
SM
2713 /* Most targets can step a breakpoint instruction, thus
2714 executing it normally. But if this one cannot, just
2715 continue and we will hit it anyway. */
7f5ef605 2716 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2717 step = 0;
2718 }
ef5cf84e 2719
b0f16a3e 2720 if (debug_displaced
cb71640d 2721 && tp->control.trap_expected
3fc8eb30 2722 && use_displaced_stepping (tp)
cb71640d 2723 && !step_over_info_valid_p ())
b0f16a3e 2724 {
d9b67d9f 2725 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
b0f16a3e
SM
2726 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2727 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2728 gdb_byte buf[4];
2729
2730 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2731 paddress (resume_gdbarch, actual_pc));
2732 read_memory (actual_pc, buf, sizeof (buf));
2733 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2734 }
237fc4c9 2735
b0f16a3e
SM
2736 if (tp->control.may_range_step)
2737 {
2738 /* If we're resuming a thread with the PC out of the step
2739 range, then we're doing some nested/finer run control
2740 operation, like stepping the thread out of the dynamic
2741 linker or the displaced stepping scratch pad. We
2742 shouldn't have allowed a range step then. */
2743 gdb_assert (pc_in_thread_step_range (pc, tp));
2744 }
c1e36e3e 2745
64ce06e4 2746 do_target_resume (resume_ptid, step, sig);
372316f1 2747 tp->resumed = 1;
c906108c
SS
2748 discard_cleanups (old_cleanups);
2749}
2750\f
237fc4c9 2751/* Proceeding. */
c906108c 2752
4c2f2a79
PA
2753/* See infrun.h. */
2754
2755/* Counter that tracks number of user visible stops. This can be used
2756 to tell whether a command has proceeded the inferior past the
2757 current location. This allows e.g., inferior function calls in
2758 breakpoint commands to not interrupt the command list. When the
2759 call finishes successfully, the inferior is standing at the same
2760 breakpoint as if nothing happened (and so we don't call
2761 normal_stop). */
2762static ULONGEST current_stop_id;
2763
2764/* See infrun.h. */
2765
2766ULONGEST
2767get_stop_id (void)
2768{
2769 return current_stop_id;
2770}
2771
2772/* Called when we report a user visible stop. */
2773
2774static void
2775new_stop_id (void)
2776{
2777 current_stop_id++;
2778}
2779
c906108c
SS
2780/* Clear out all variables saying what to do when inferior is continued.
2781 First do this, then set the ones you want, then call `proceed'. */
2782
a7212384
UW
2783static void
2784clear_proceed_status_thread (struct thread_info *tp)
c906108c 2785{
a7212384
UW
2786 if (debug_infrun)
2787 fprintf_unfiltered (gdb_stdlog,
2788 "infrun: clear_proceed_status_thread (%s)\n",
2789 target_pid_to_str (tp->ptid));
d6b48e9c 2790
372316f1
PA
2791 /* If we're starting a new sequence, then the previous finished
2792 single-step is no longer relevant. */
2793 if (tp->suspend.waitstatus_pending_p)
2794 {
2795 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2796 {
2797 if (debug_infrun)
2798 fprintf_unfiltered (gdb_stdlog,
2799 "infrun: clear_proceed_status: pending "
2800 "event of %s was a finished step. "
2801 "Discarding.\n",
2802 target_pid_to_str (tp->ptid));
2803
2804 tp->suspend.waitstatus_pending_p = 0;
2805 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2806 }
2807 else if (debug_infrun)
2808 {
2809 char *statstr;
2810
2811 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2812 fprintf_unfiltered (gdb_stdlog,
2813 "infrun: clear_proceed_status_thread: thread %s "
2814 "has pending wait status %s "
2815 "(currently_stepping=%d).\n",
2816 target_pid_to_str (tp->ptid), statstr,
2817 currently_stepping (tp));
2818 xfree (statstr);
2819 }
2820 }
2821
70509625
PA
2822 /* If this signal should not be seen by program, give it zero.
2823 Used for debugging signals. */
2824 if (!signal_pass_state (tp->suspend.stop_signal))
2825 tp->suspend.stop_signal = GDB_SIGNAL_0;
2826
243a9253
PA
2827 thread_fsm_delete (tp->thread_fsm);
2828 tp->thread_fsm = NULL;
2829
16c381f0
JK
2830 tp->control.trap_expected = 0;
2831 tp->control.step_range_start = 0;
2832 tp->control.step_range_end = 0;
c1e36e3e 2833 tp->control.may_range_step = 0;
16c381f0
JK
2834 tp->control.step_frame_id = null_frame_id;
2835 tp->control.step_stack_frame_id = null_frame_id;
2836 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2837 tp->control.step_start_function = NULL;
a7212384 2838 tp->stop_requested = 0;
4e1c45ea 2839
16c381f0 2840 tp->control.stop_step = 0;
32400beb 2841
16c381f0 2842 tp->control.proceed_to_finish = 0;
414c69f7 2843
17b2616c 2844 tp->control.command_interp = NULL;
856e7dd6 2845 tp->control.stepping_command = 0;
17b2616c 2846
a7212384 2847 /* Discard any remaining commands or status from previous stop. */
16c381f0 2848 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2849}
32400beb 2850
a7212384 2851void
70509625 2852clear_proceed_status (int step)
a7212384 2853{
f2665db5
MM
2854 /* With scheduler-locking replay, stop replaying other threads if we're
2855 not replaying the user-visible resume ptid.
2856
2857 This is a convenience feature to not require the user to explicitly
2858 stop replaying the other threads. We're assuming that the user's
2859 intent is to resume tracing the recorded process. */
2860 if (!non_stop && scheduler_mode == schedlock_replay
2861 && target_record_is_replaying (minus_one_ptid)
2862 && !target_record_will_replay (user_visible_resume_ptid (step),
2863 execution_direction))
2864 target_record_stop_replaying ();
2865
6c95b8df
PA
2866 if (!non_stop)
2867 {
70509625
PA
2868 struct thread_info *tp;
2869 ptid_t resume_ptid;
2870
2871 resume_ptid = user_visible_resume_ptid (step);
2872
2873 /* In all-stop mode, delete the per-thread status of all threads
2874 we're about to resume, implicitly and explicitly. */
2875 ALL_NON_EXITED_THREADS (tp)
2876 {
2877 if (!ptid_match (tp->ptid, resume_ptid))
2878 continue;
2879 clear_proceed_status_thread (tp);
2880 }
6c95b8df
PA
2881 }
2882
a7212384
UW
2883 if (!ptid_equal (inferior_ptid, null_ptid))
2884 {
2885 struct inferior *inferior;
2886
2887 if (non_stop)
2888 {
6c95b8df
PA
2889 /* If in non-stop mode, only delete the per-thread status of
2890 the current thread. */
a7212384
UW
2891 clear_proceed_status_thread (inferior_thread ());
2892 }
6c95b8df 2893
d6b48e9c 2894 inferior = current_inferior ();
16c381f0 2895 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2896 }
2897
f3b1572e 2898 observer_notify_about_to_proceed ();
c906108c
SS
2899}
2900
99619bea
PA
2901/* Returns true if TP is still stopped at a breakpoint that needs
2902 stepping-over in order to make progress. If the breakpoint is gone
2903 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2904
2905static int
6c4cfb24 2906thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2907{
2908 if (tp->stepping_over_breakpoint)
2909 {
2910 struct regcache *regcache = get_thread_regcache (tp->ptid);
2911
2912 if (breakpoint_here_p (get_regcache_aspace (regcache),
af48d08f
PA
2913 regcache_read_pc (regcache))
2914 == ordinary_breakpoint_here)
99619bea
PA
2915 return 1;
2916
2917 tp->stepping_over_breakpoint = 0;
2918 }
2919
2920 return 0;
2921}
2922
6c4cfb24
PA
2923/* Check whether thread TP still needs to start a step-over in order
2924 to make progress when resumed. Returns an bitwise or of enum
2925 step_over_what bits, indicating what needs to be stepped over. */
2926
8d297bbf 2927static step_over_what
6c4cfb24
PA
2928thread_still_needs_step_over (struct thread_info *tp)
2929{
2930 struct inferior *inf = find_inferior_ptid (tp->ptid);
8d297bbf 2931 step_over_what what = 0;
6c4cfb24
PA
2932
2933 if (thread_still_needs_step_over_bp (tp))
2934 what |= STEP_OVER_BREAKPOINT;
2935
2936 if (tp->stepping_over_watchpoint
2937 && !target_have_steppable_watchpoint)
2938 what |= STEP_OVER_WATCHPOINT;
2939
2940 return what;
2941}
2942
483805cf
PA
2943/* Returns true if scheduler locking applies. STEP indicates whether
2944 we're about to do a step/next-like command to a thread. */
2945
2946static int
856e7dd6 2947schedlock_applies (struct thread_info *tp)
483805cf
PA
2948{
2949 return (scheduler_mode == schedlock_on
2950 || (scheduler_mode == schedlock_step
f2665db5
MM
2951 && tp->control.stepping_command)
2952 || (scheduler_mode == schedlock_replay
2953 && target_record_will_replay (minus_one_ptid,
2954 execution_direction)));
483805cf
PA
2955}
2956
c906108c
SS
2957/* Basic routine for continuing the program in various fashions.
2958
2959 ADDR is the address to resume at, or -1 for resume where stopped.
2960 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2961 or -1 for act according to how it stopped.
c906108c 2962 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2963 -1 means return after that and print nothing.
2964 You should probably set various step_... variables
2965 before calling here, if you are stepping.
c906108c
SS
2966
2967 You should call clear_proceed_status before calling proceed. */
2968
2969void
64ce06e4 2970proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2971{
e58b0e63
PA
2972 struct regcache *regcache;
2973 struct gdbarch *gdbarch;
4e1c45ea 2974 struct thread_info *tp;
e58b0e63 2975 CORE_ADDR pc;
6c95b8df 2976 struct address_space *aspace;
4d9d9d04
PA
2977 ptid_t resume_ptid;
2978 struct execution_control_state ecss;
2979 struct execution_control_state *ecs = &ecss;
2980 struct cleanup *old_chain;
2981 int started;
c906108c 2982
e58b0e63
PA
2983 /* If we're stopped at a fork/vfork, follow the branch set by the
2984 "set follow-fork-mode" command; otherwise, we'll just proceed
2985 resuming the current thread. */
2986 if (!follow_fork ())
2987 {
2988 /* The target for some reason decided not to resume. */
2989 normal_stop ();
f148b27e
PA
2990 if (target_can_async_p ())
2991 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2992 return;
2993 }
2994
842951eb
PA
2995 /* We'll update this if & when we switch to a new thread. */
2996 previous_inferior_ptid = inferior_ptid;
2997
e58b0e63
PA
2998 regcache = get_current_regcache ();
2999 gdbarch = get_regcache_arch (regcache);
6c95b8df 3000 aspace = get_regcache_aspace (regcache);
e58b0e63 3001 pc = regcache_read_pc (regcache);
2adfaa28 3002 tp = inferior_thread ();
e58b0e63 3003
99619bea
PA
3004 /* Fill in with reasonable starting values. */
3005 init_thread_stepping_state (tp);
3006
c2829269
PA
3007 gdb_assert (!thread_is_in_step_over_chain (tp));
3008
2acceee2 3009 if (addr == (CORE_ADDR) -1)
c906108c 3010 {
af48d08f
PA
3011 if (pc == stop_pc
3012 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 3013 && execution_direction != EXEC_REVERSE)
3352ef37
AC
3014 /* There is a breakpoint at the address we will resume at,
3015 step one instruction before inserting breakpoints so that
3016 we do not stop right away (and report a second hit at this
b2175913
MS
3017 breakpoint).
3018
3019 Note, we don't do this in reverse, because we won't
3020 actually be executing the breakpoint insn anyway.
3021 We'll be (un-)executing the previous instruction. */
99619bea 3022 tp->stepping_over_breakpoint = 1;
515630c5
UW
3023 else if (gdbarch_single_step_through_delay_p (gdbarch)
3024 && gdbarch_single_step_through_delay (gdbarch,
3025 get_current_frame ()))
3352ef37
AC
3026 /* We stepped onto an instruction that needs to be stepped
3027 again before re-inserting the breakpoint, do so. */
99619bea 3028 tp->stepping_over_breakpoint = 1;
c906108c
SS
3029 }
3030 else
3031 {
515630c5 3032 regcache_write_pc (regcache, addr);
c906108c
SS
3033 }
3034
70509625
PA
3035 if (siggnal != GDB_SIGNAL_DEFAULT)
3036 tp->suspend.stop_signal = siggnal;
3037
17b2616c
PA
3038 /* Record the interpreter that issued the execution command that
3039 caused this thread to resume. If the top level interpreter is
3040 MI/async, and the execution command was a CLI command
3041 (next/step/etc.), we'll want to print stop event output to the MI
3042 console channel (the stepped-to line, etc.), as if the user
3043 entered the execution command on a real GDB console. */
4d9d9d04
PA
3044 tp->control.command_interp = command_interp ();
3045
3046 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3047
3048 /* If an exception is thrown from this point on, make sure to
3049 propagate GDB's knowledge of the executing state to the
3050 frontend/user running state. */
3051 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3052
3053 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3054 threads (e.g., we might need to set threads stepping over
3055 breakpoints first), from the user/frontend's point of view, all
3056 threads in RESUME_PTID are now running. Unless we're calling an
3057 inferior function, as in that case we pretend the inferior
3058 doesn't run at all. */
3059 if (!tp->control.in_infcall)
3060 set_running (resume_ptid, 1);
17b2616c 3061
527159b7 3062 if (debug_infrun)
8a9de0e4 3063 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3064 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3065 paddress (gdbarch, addr),
64ce06e4 3066 gdb_signal_to_symbol_string (siggnal));
527159b7 3067
4d9d9d04
PA
3068 annotate_starting ();
3069
3070 /* Make sure that output from GDB appears before output from the
3071 inferior. */
3072 gdb_flush (gdb_stdout);
3073
3074 /* In a multi-threaded task we may select another thread and
3075 then continue or step.
3076
3077 But if a thread that we're resuming had stopped at a breakpoint,
3078 it will immediately cause another breakpoint stop without any
3079 execution (i.e. it will report a breakpoint hit incorrectly). So
3080 we must step over it first.
3081
3082 Look for threads other than the current (TP) that reported a
3083 breakpoint hit and haven't been resumed yet since. */
3084
3085 /* If scheduler locking applies, we can avoid iterating over all
3086 threads. */
3087 if (!non_stop && !schedlock_applies (tp))
94cc34af 3088 {
4d9d9d04
PA
3089 struct thread_info *current = tp;
3090
3091 ALL_NON_EXITED_THREADS (tp)
3092 {
3093 /* Ignore the current thread here. It's handled
3094 afterwards. */
3095 if (tp == current)
3096 continue;
99619bea 3097
4d9d9d04
PA
3098 /* Ignore threads of processes we're not resuming. */
3099 if (!ptid_match (tp->ptid, resume_ptid))
3100 continue;
c906108c 3101
4d9d9d04
PA
3102 if (!thread_still_needs_step_over (tp))
3103 continue;
3104
3105 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3106
99619bea
PA
3107 if (debug_infrun)
3108 fprintf_unfiltered (gdb_stdlog,
3109 "infrun: need to step-over [%s] first\n",
4d9d9d04 3110 target_pid_to_str (tp->ptid));
99619bea 3111
4d9d9d04 3112 thread_step_over_chain_enqueue (tp);
2adfaa28 3113 }
31e77af2 3114
4d9d9d04 3115 tp = current;
30852783
UW
3116 }
3117
4d9d9d04
PA
3118 /* Enqueue the current thread last, so that we move all other
3119 threads over their breakpoints first. */
3120 if (tp->stepping_over_breakpoint)
3121 thread_step_over_chain_enqueue (tp);
30852783 3122
4d9d9d04
PA
3123 /* If the thread isn't started, we'll still need to set its prev_pc,
3124 so that switch_back_to_stepped_thread knows the thread hasn't
3125 advanced. Must do this before resuming any thread, as in
3126 all-stop/remote, once we resume we can't send any other packet
3127 until the target stops again. */
3128 tp->prev_pc = regcache_read_pc (regcache);
99619bea 3129
4d9d9d04 3130 started = start_step_over ();
c906108c 3131
4d9d9d04
PA
3132 if (step_over_info_valid_p ())
3133 {
3134 /* Either this thread started a new in-line step over, or some
3135 other thread was already doing one. In either case, don't
3136 resume anything else until the step-over is finished. */
3137 }
fbea99ea 3138 else if (started && !target_is_non_stop_p ())
4d9d9d04
PA
3139 {
3140 /* A new displaced stepping sequence was started. In all-stop,
3141 we can't talk to the target anymore until it next stops. */
3142 }
fbea99ea
PA
3143 else if (!non_stop && target_is_non_stop_p ())
3144 {
3145 /* In all-stop, but the target is always in non-stop mode.
3146 Start all other threads that are implicitly resumed too. */
3147 ALL_NON_EXITED_THREADS (tp)
3148 {
3149 /* Ignore threads of processes we're not resuming. */
3150 if (!ptid_match (tp->ptid, resume_ptid))
3151 continue;
3152
3153 if (tp->resumed)
3154 {
3155 if (debug_infrun)
3156 fprintf_unfiltered (gdb_stdlog,
3157 "infrun: proceed: [%s] resumed\n",
3158 target_pid_to_str (tp->ptid));
3159 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3160 continue;
3161 }
3162
3163 if (thread_is_in_step_over_chain (tp))
3164 {
3165 if (debug_infrun)
3166 fprintf_unfiltered (gdb_stdlog,
3167 "infrun: proceed: [%s] needs step-over\n",
3168 target_pid_to_str (tp->ptid));
3169 continue;
3170 }
3171
3172 if (debug_infrun)
3173 fprintf_unfiltered (gdb_stdlog,
3174 "infrun: proceed: resuming %s\n",
3175 target_pid_to_str (tp->ptid));
3176
3177 reset_ecs (ecs, tp);
3178 switch_to_thread (tp->ptid);
3179 keep_going_pass_signal (ecs);
3180 if (!ecs->wait_some_more)
fd7dcb94 3181 error (_("Command aborted."));
fbea99ea
PA
3182 }
3183 }
372316f1 3184 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
4d9d9d04
PA
3185 {
3186 /* The thread wasn't started, and isn't queued, run it now. */
3187 reset_ecs (ecs, tp);
3188 switch_to_thread (tp->ptid);
3189 keep_going_pass_signal (ecs);
3190 if (!ecs->wait_some_more)
fd7dcb94 3191 error (_("Command aborted."));
4d9d9d04 3192 }
c906108c 3193
4d9d9d04 3194 discard_cleanups (old_chain);
c906108c 3195
0b333c5e
PA
3196 /* Tell the event loop to wait for it to stop. If the target
3197 supports asynchronous execution, it'll do this from within
3198 target_resume. */
362646f5 3199 if (!target_can_async_p ())
0b333c5e 3200 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3201}
c906108c
SS
3202\f
3203
3204/* Start remote-debugging of a machine over a serial link. */
96baa820 3205
c906108c 3206void
8621d6a9 3207start_remote (int from_tty)
c906108c 3208{
d6b48e9c 3209 struct inferior *inferior;
d6b48e9c
PA
3210
3211 inferior = current_inferior ();
16c381f0 3212 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3213
1777feb0 3214 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3215 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3216 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3217 nothing is returned (instead of just blocking). Because of this,
3218 targets expecting an immediate response need to, internally, set
3219 things up so that the target_wait() is forced to eventually
1777feb0 3220 timeout. */
6426a772
JM
3221 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3222 differentiate to its caller what the state of the target is after
3223 the initial open has been performed. Here we're assuming that
3224 the target has stopped. It should be possible to eventually have
3225 target_open() return to the caller an indication that the target
3226 is currently running and GDB state should be set to the same as
1777feb0 3227 for an async run. */
e4c8541f 3228 wait_for_inferior ();
8621d6a9
DJ
3229
3230 /* Now that the inferior has stopped, do any bookkeeping like
3231 loading shared libraries. We want to do this before normal_stop,
3232 so that the displayed frame is up to date. */
3233 post_create_inferior (&current_target, from_tty);
3234
6426a772 3235 normal_stop ();
c906108c
SS
3236}
3237
3238/* Initialize static vars when a new inferior begins. */
3239
3240void
96baa820 3241init_wait_for_inferior (void)
c906108c
SS
3242{
3243 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3244
c906108c
SS
3245 breakpoint_init_inferior (inf_starting);
3246
70509625 3247 clear_proceed_status (0);
9f976b41 3248
ca005067 3249 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3250
842951eb 3251 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 3252
edb3359d
DJ
3253 /* Discard any skipped inlined frames. */
3254 clear_inline_frame_state (minus_one_ptid);
c906108c 3255}
237fc4c9 3256
c906108c 3257\f
488f131b 3258
ec9499be 3259static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3260
568d6575
UW
3261static void handle_step_into_function (struct gdbarch *gdbarch,
3262 struct execution_control_state *ecs);
3263static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3264 struct execution_control_state *ecs);
4f5d7f63 3265static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3266static void check_exception_resume (struct execution_control_state *,
28106bc2 3267 struct frame_info *);
611c83ae 3268
bdc36728 3269static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3270static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3271static void keep_going (struct execution_control_state *ecs);
94c57d6a 3272static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3273static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3274
252fbfc8
PA
3275/* Callback for iterate over threads. If the thread is stopped, but
3276 the user/frontend doesn't know about that yet, go through
3277 normal_stop, as if the thread had just stopped now. ARG points at
3278 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3279 ptid_is_pid(PTID) is true, applies to all threads of the process
3280 pointed at by PTID. Otherwise, apply only to the thread pointed by
3281 PTID. */
3282
3283static int
3284infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3285{
3286 ptid_t ptid = * (ptid_t *) arg;
3287
3288 if ((ptid_equal (info->ptid, ptid)
3289 || ptid_equal (minus_one_ptid, ptid)
3290 || (ptid_is_pid (ptid)
3291 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3292 && is_running (info->ptid)
3293 && !is_executing (info->ptid))
3294 {
3295 struct cleanup *old_chain;
3296 struct execution_control_state ecss;
3297 struct execution_control_state *ecs = &ecss;
3298
3299 memset (ecs, 0, sizeof (*ecs));
3300
3301 old_chain = make_cleanup_restore_current_thread ();
3302
f15cb84a
YQ
3303 overlay_cache_invalid = 1;
3304 /* Flush target cache before starting to handle each event.
3305 Target was running and cache could be stale. This is just a
3306 heuristic. Running threads may modify target memory, but we
3307 don't get any event. */
3308 target_dcache_invalidate ();
3309
252fbfc8
PA
3310 /* Go through handle_inferior_event/normal_stop, so we always
3311 have consistent output as if the stop event had been
3312 reported. */
3313 ecs->ptid = info->ptid;
243a9253 3314 ecs->event_thread = info;
252fbfc8 3315 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 3316 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
3317
3318 handle_inferior_event (ecs);
3319
3320 if (!ecs->wait_some_more)
3321 {
243a9253
PA
3322 /* Cancel any running execution command. */
3323 thread_cancel_execution_command (info);
3324
252fbfc8 3325 normal_stop ();
252fbfc8
PA
3326 }
3327
3328 do_cleanups (old_chain);
3329 }
3330
3331 return 0;
3332}
3333
3334/* This function is attached as a "thread_stop_requested" observer.
3335 Cleanup local state that assumed the PTID was to be resumed, and
3336 report the stop to the frontend. */
3337
2c0b251b 3338static void
252fbfc8
PA
3339infrun_thread_stop_requested (ptid_t ptid)
3340{
c2829269 3341 struct thread_info *tp;
252fbfc8 3342
c2829269
PA
3343 /* PTID was requested to stop. Remove matching threads from the
3344 step-over queue, so we don't try to resume them
3345 automatically. */
3346 ALL_NON_EXITED_THREADS (tp)
3347 if (ptid_match (tp->ptid, ptid))
3348 {
3349 if (thread_is_in_step_over_chain (tp))
3350 thread_step_over_chain_remove (tp);
3351 }
252fbfc8
PA
3352
3353 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3354}
3355
a07daef3
PA
3356static void
3357infrun_thread_thread_exit (struct thread_info *tp, int silent)
3358{
3359 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3360 nullify_last_target_wait_ptid ();
3361}
3362
0cbcdb96
PA
3363/* Delete the step resume, single-step and longjmp/exception resume
3364 breakpoints of TP. */
4e1c45ea 3365
0cbcdb96
PA
3366static void
3367delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3368{
0cbcdb96
PA
3369 delete_step_resume_breakpoint (tp);
3370 delete_exception_resume_breakpoint (tp);
34b7e8a6 3371 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3372}
3373
0cbcdb96
PA
3374/* If the target still has execution, call FUNC for each thread that
3375 just stopped. In all-stop, that's all the non-exited threads; in
3376 non-stop, that's the current thread, only. */
3377
3378typedef void (*for_each_just_stopped_thread_callback_func)
3379 (struct thread_info *tp);
4e1c45ea
PA
3380
3381static void
0cbcdb96 3382for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3383{
0cbcdb96 3384 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
3385 return;
3386
fbea99ea 3387 if (target_is_non_stop_p ())
4e1c45ea 3388 {
0cbcdb96
PA
3389 /* If in non-stop mode, only the current thread stopped. */
3390 func (inferior_thread ());
4e1c45ea
PA
3391 }
3392 else
0cbcdb96
PA
3393 {
3394 struct thread_info *tp;
3395
3396 /* In all-stop mode, all threads have stopped. */
3397 ALL_NON_EXITED_THREADS (tp)
3398 {
3399 func (tp);
3400 }
3401 }
3402}
3403
3404/* Delete the step resume and longjmp/exception resume breakpoints of
3405 the threads that just stopped. */
3406
3407static void
3408delete_just_stopped_threads_infrun_breakpoints (void)
3409{
3410 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3411}
3412
3413/* Delete the single-step breakpoints of the threads that just
3414 stopped. */
7c16b83e 3415
34b7e8a6
PA
3416static void
3417delete_just_stopped_threads_single_step_breakpoints (void)
3418{
3419 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3420}
3421
1777feb0 3422/* A cleanup wrapper. */
4e1c45ea
PA
3423
3424static void
0cbcdb96 3425delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3426{
0cbcdb96 3427 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3428}
3429
221e1a37 3430/* See infrun.h. */
223698f8 3431
221e1a37 3432void
223698f8
DE
3433print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3434 const struct target_waitstatus *ws)
3435{
3436 char *status_string = target_waitstatus_to_string (ws);
3437 struct ui_file *tmp_stream = mem_fileopen ();
3438 char *text;
223698f8
DE
3439
3440 /* The text is split over several lines because it was getting too long.
3441 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3442 output as a unit; we want only one timestamp printed if debug_timestamp
3443 is set. */
3444
3445 fprintf_unfiltered (tmp_stream,
1176ecec
PA
3446 "infrun: target_wait (%d.%ld.%ld",
3447 ptid_get_pid (waiton_ptid),
3448 ptid_get_lwp (waiton_ptid),
3449 ptid_get_tid (waiton_ptid));
dfd4cc63 3450 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
3451 fprintf_unfiltered (tmp_stream,
3452 " [%s]", target_pid_to_str (waiton_ptid));
3453 fprintf_unfiltered (tmp_stream, ", status) =\n");
3454 fprintf_unfiltered (tmp_stream,
1176ecec 3455 "infrun: %d.%ld.%ld [%s],\n",
dfd4cc63 3456 ptid_get_pid (result_ptid),
1176ecec
PA
3457 ptid_get_lwp (result_ptid),
3458 ptid_get_tid (result_ptid),
dfd4cc63 3459 target_pid_to_str (result_ptid));
223698f8
DE
3460 fprintf_unfiltered (tmp_stream,
3461 "infrun: %s\n",
3462 status_string);
3463
759ef836 3464 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
3465
3466 /* This uses %s in part to handle %'s in the text, but also to avoid
3467 a gcc error: the format attribute requires a string literal. */
3468 fprintf_unfiltered (gdb_stdlog, "%s", text);
3469
3470 xfree (status_string);
3471 xfree (text);
3472 ui_file_delete (tmp_stream);
3473}
3474
372316f1
PA
3475/* Select a thread at random, out of those which are resumed and have
3476 had events. */
3477
3478static struct thread_info *
3479random_pending_event_thread (ptid_t waiton_ptid)
3480{
3481 struct thread_info *event_tp;
3482 int num_events = 0;
3483 int random_selector;
3484
3485 /* First see how many events we have. Count only resumed threads
3486 that have an event pending. */
3487 ALL_NON_EXITED_THREADS (event_tp)
3488 if (ptid_match (event_tp->ptid, waiton_ptid)
3489 && event_tp->resumed
3490 && event_tp->suspend.waitstatus_pending_p)
3491 num_events++;
3492
3493 if (num_events == 0)
3494 return NULL;
3495
3496 /* Now randomly pick a thread out of those that have had events. */
3497 random_selector = (int)
3498 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3499
3500 if (debug_infrun && num_events > 1)
3501 fprintf_unfiltered (gdb_stdlog,
3502 "infrun: Found %d events, selecting #%d\n",
3503 num_events, random_selector);
3504
3505 /* Select the Nth thread that has had an event. */
3506 ALL_NON_EXITED_THREADS (event_tp)
3507 if (ptid_match (event_tp->ptid, waiton_ptid)
3508 && event_tp->resumed
3509 && event_tp->suspend.waitstatus_pending_p)
3510 if (random_selector-- == 0)
3511 break;
3512
3513 return event_tp;
3514}
3515
3516/* Wrapper for target_wait that first checks whether threads have
3517 pending statuses to report before actually asking the target for
3518 more events. */
3519
3520static ptid_t
3521do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3522{
3523 ptid_t event_ptid;
3524 struct thread_info *tp;
3525
3526 /* First check if there is a resumed thread with a wait status
3527 pending. */
3528 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3529 {
3530 tp = random_pending_event_thread (ptid);
3531 }
3532 else
3533 {
3534 if (debug_infrun)
3535 fprintf_unfiltered (gdb_stdlog,
3536 "infrun: Waiting for specific thread %s.\n",
3537 target_pid_to_str (ptid));
3538
3539 /* We have a specific thread to check. */
3540 tp = find_thread_ptid (ptid);
3541 gdb_assert (tp != NULL);
3542 if (!tp->suspend.waitstatus_pending_p)
3543 tp = NULL;
3544 }
3545
3546 if (tp != NULL
3547 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3548 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3549 {
3550 struct regcache *regcache = get_thread_regcache (tp->ptid);
3551 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3552 CORE_ADDR pc;
3553 int discard = 0;
3554
3555 pc = regcache_read_pc (regcache);
3556
3557 if (pc != tp->suspend.stop_pc)
3558 {
3559 if (debug_infrun)
3560 fprintf_unfiltered (gdb_stdlog,
3561 "infrun: PC of %s changed. was=%s, now=%s\n",
3562 target_pid_to_str (tp->ptid),
3563 paddress (gdbarch, tp->prev_pc),
3564 paddress (gdbarch, pc));
3565 discard = 1;
3566 }
3567 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3568 {
3569 if (debug_infrun)
3570 fprintf_unfiltered (gdb_stdlog,
3571 "infrun: previous breakpoint of %s, at %s gone\n",
3572 target_pid_to_str (tp->ptid),
3573 paddress (gdbarch, pc));
3574
3575 discard = 1;
3576 }
3577
3578 if (discard)
3579 {
3580 if (debug_infrun)
3581 fprintf_unfiltered (gdb_stdlog,
3582 "infrun: pending event of %s cancelled.\n",
3583 target_pid_to_str (tp->ptid));
3584
3585 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3586 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3587 }
3588 }
3589
3590 if (tp != NULL)
3591 {
3592 if (debug_infrun)
3593 {
3594 char *statstr;
3595
3596 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3597 fprintf_unfiltered (gdb_stdlog,
3598 "infrun: Using pending wait status %s for %s.\n",
3599 statstr,
3600 target_pid_to_str (tp->ptid));
3601 xfree (statstr);
3602 }
3603
3604 /* Now that we've selected our final event LWP, un-adjust its PC
3605 if it was a software breakpoint (and the target doesn't
3606 always adjust the PC itself). */
3607 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3608 && !target_supports_stopped_by_sw_breakpoint ())
3609 {
3610 struct regcache *regcache;
3611 struct gdbarch *gdbarch;
3612 int decr_pc;
3613
3614 regcache = get_thread_regcache (tp->ptid);
3615 gdbarch = get_regcache_arch (regcache);
3616
3617 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3618 if (decr_pc != 0)
3619 {
3620 CORE_ADDR pc;
3621
3622 pc = regcache_read_pc (regcache);
3623 regcache_write_pc (regcache, pc + decr_pc);
3624 }
3625 }
3626
3627 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3628 *status = tp->suspend.waitstatus;
3629 tp->suspend.waitstatus_pending_p = 0;
3630
3631 /* Wake up the event loop again, until all pending events are
3632 processed. */
3633 if (target_is_async_p ())
3634 mark_async_event_handler (infrun_async_inferior_event_token);
3635 return tp->ptid;
3636 }
3637
3638 /* But if we don't find one, we'll have to wait. */
3639
3640 if (deprecated_target_wait_hook)
3641 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3642 else
3643 event_ptid = target_wait (ptid, status, options);
3644
3645 return event_ptid;
3646}
3647
24291992
PA
3648/* Prepare and stabilize the inferior for detaching it. E.g.,
3649 detaching while a thread is displaced stepping is a recipe for
3650 crashing it, as nothing would readjust the PC out of the scratch
3651 pad. */
3652
3653void
3654prepare_for_detach (void)
3655{
3656 struct inferior *inf = current_inferior ();
3657 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3658 struct cleanup *old_chain_1;
3659 struct displaced_step_inferior_state *displaced;
3660
3661 displaced = get_displaced_stepping_state (inf->pid);
3662
3663 /* Is any thread of this process displaced stepping? If not,
3664 there's nothing else to do. */
3665 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3666 return;
3667
3668 if (debug_infrun)
3669 fprintf_unfiltered (gdb_stdlog,
3670 "displaced-stepping in-process while detaching");
3671
3672 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3673 inf->detaching = 1;
3674
3675 while (!ptid_equal (displaced->step_ptid, null_ptid))
3676 {
3677 struct cleanup *old_chain_2;
3678 struct execution_control_state ecss;
3679 struct execution_control_state *ecs;
3680
3681 ecs = &ecss;
3682 memset (ecs, 0, sizeof (*ecs));
3683
3684 overlay_cache_invalid = 1;
f15cb84a
YQ
3685 /* Flush target cache before starting to handle each event.
3686 Target was running and cache could be stale. This is just a
3687 heuristic. Running threads may modify target memory, but we
3688 don't get any event. */
3689 target_dcache_invalidate ();
24291992 3690
372316f1 3691 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3692
3693 if (debug_infrun)
3694 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3695
3696 /* If an error happens while handling the event, propagate GDB's
3697 knowledge of the executing state to the frontend/user running
3698 state. */
3e43a32a
MS
3699 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3700 &minus_one_ptid);
24291992
PA
3701
3702 /* Now figure out what to do with the result of the result. */
3703 handle_inferior_event (ecs);
3704
3705 /* No error, don't finish the state yet. */
3706 discard_cleanups (old_chain_2);
3707
3708 /* Breakpoints and watchpoints are not installed on the target
3709 at this point, and signals are passed directly to the
3710 inferior, so this must mean the process is gone. */
3711 if (!ecs->wait_some_more)
3712 {
3713 discard_cleanups (old_chain_1);
3714 error (_("Program exited while detaching"));
3715 }
3716 }
3717
3718 discard_cleanups (old_chain_1);
3719}
3720
cd0fc7c3 3721/* Wait for control to return from inferior to debugger.
ae123ec6 3722
cd0fc7c3
SS
3723 If inferior gets a signal, we may decide to start it up again
3724 instead of returning. That is why there is a loop in this function.
3725 When this function actually returns it means the inferior
3726 should be left stopped and GDB should read more commands. */
3727
3728void
e4c8541f 3729wait_for_inferior (void)
cd0fc7c3
SS
3730{
3731 struct cleanup *old_cleanups;
e6f5c25b 3732 struct cleanup *thread_state_chain;
c906108c 3733
527159b7 3734 if (debug_infrun)
ae123ec6 3735 fprintf_unfiltered
e4c8541f 3736 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3737
0cbcdb96
PA
3738 old_cleanups
3739 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3740 NULL);
cd0fc7c3 3741
e6f5c25b
PA
3742 /* If an error happens while handling the event, propagate GDB's
3743 knowledge of the executing state to the frontend/user running
3744 state. */
3745 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3746
c906108c
SS
3747 while (1)
3748 {
ae25568b
PA
3749 struct execution_control_state ecss;
3750 struct execution_control_state *ecs = &ecss;
963f9c80 3751 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3752
ae25568b
PA
3753 memset (ecs, 0, sizeof (*ecs));
3754
ec9499be 3755 overlay_cache_invalid = 1;
ec9499be 3756
f15cb84a
YQ
3757 /* Flush target cache before starting to handle each event.
3758 Target was running and cache could be stale. This is just a
3759 heuristic. Running threads may modify target memory, but we
3760 don't get any event. */
3761 target_dcache_invalidate ();
3762
372316f1 3763 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3764
f00150c9 3765 if (debug_infrun)
223698f8 3766 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3767
cd0fc7c3
SS
3768 /* Now figure out what to do with the result of the result. */
3769 handle_inferior_event (ecs);
c906108c 3770
cd0fc7c3
SS
3771 if (!ecs->wait_some_more)
3772 break;
3773 }
4e1c45ea 3774
e6f5c25b
PA
3775 /* No error, don't finish the state yet. */
3776 discard_cleanups (thread_state_chain);
3777
cd0fc7c3
SS
3778 do_cleanups (old_cleanups);
3779}
c906108c 3780
d3d4baed
PA
3781/* Cleanup that reinstalls the readline callback handler, if the
3782 target is running in the background. If while handling the target
3783 event something triggered a secondary prompt, like e.g., a
3784 pagination prompt, we'll have removed the callback handler (see
3785 gdb_readline_wrapper_line). Need to do this as we go back to the
3786 event loop, ready to process further input. Note this has no
3787 effect if the handler hasn't actually been removed, because calling
3788 rl_callback_handler_install resets the line buffer, thus losing
3789 input. */
3790
3791static void
3792reinstall_readline_callback_handler_cleanup (void *arg)
3793{
6c400b59
PA
3794 if (!interpreter_async)
3795 {
3796 /* We're not going back to the top level event loop yet. Don't
3797 install the readline callback, as it'd prep the terminal,
3798 readline-style (raw, noecho) (e.g., --batch). We'll install
3799 it the next time the prompt is displayed, when we're ready
3800 for input. */
3801 return;
3802 }
3803
d3d4baed
PA
3804 if (async_command_editing_p && !sync_execution)
3805 gdb_rl_callback_handler_reinstall ();
3806}
3807
243a9253
PA
3808/* Clean up the FSMs of threads that are now stopped. In non-stop,
3809 that's just the event thread. In all-stop, that's all threads. */
3810
3811static void
3812clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3813{
3814 struct thread_info *thr = ecs->event_thread;
3815
3816 if (thr != NULL && thr->thread_fsm != NULL)
3817 thread_fsm_clean_up (thr->thread_fsm);
3818
3819 if (!non_stop)
3820 {
3821 ALL_NON_EXITED_THREADS (thr)
3822 {
3823 if (thr->thread_fsm == NULL)
3824 continue;
3825 if (thr == ecs->event_thread)
3826 continue;
3827
3828 switch_to_thread (thr->ptid);
3829 thread_fsm_clean_up (thr->thread_fsm);
3830 }
3831
3832 if (ecs->event_thread != NULL)
3833 switch_to_thread (ecs->event_thread->ptid);
3834 }
3835}
3836
170742de
PA
3837/* A cleanup that restores the execution direction to the value saved
3838 in *ARG. */
3839
3840static void
3841restore_execution_direction (void *arg)
3842{
3843 enum exec_direction_kind *save_exec_dir = (enum exec_direction_kind *) arg;
3844
3845 execution_direction = *save_exec_dir;
3846}
3847
1777feb0 3848/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3849 event loop whenever a change of state is detected on the file
1777feb0
MS
3850 descriptor corresponding to the target. It can be called more than
3851 once to complete a single execution command. In such cases we need
3852 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3853 that this function is called for a single execution command, then
3854 report to the user that the inferior has stopped, and do the
1777feb0 3855 necessary cleanups. */
43ff13b4
JM
3856
3857void
fba45db2 3858fetch_inferior_event (void *client_data)
43ff13b4 3859{
0d1e5fa7 3860 struct execution_control_state ecss;
a474d7c2 3861 struct execution_control_state *ecs = &ecss;
4f8d22e3 3862 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3863 struct cleanup *ts_old_chain;
4f8d22e3 3864 int was_sync = sync_execution;
170742de 3865 enum exec_direction_kind save_exec_dir = execution_direction;
0f641c01 3866 int cmd_done = 0;
963f9c80 3867 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3868
0d1e5fa7
PA
3869 memset (ecs, 0, sizeof (*ecs));
3870
d3d4baed
PA
3871 /* End up with readline processing input, if necessary. */
3872 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3873
c5187ac6
PA
3874 /* We're handling a live event, so make sure we're doing live
3875 debugging. If we're looking at traceframes while the target is
3876 running, we're going to need to get back to that mode after
3877 handling the event. */
3878 if (non_stop)
3879 {
3880 make_cleanup_restore_current_traceframe ();
e6e4e701 3881 set_current_traceframe (-1);
c5187ac6
PA
3882 }
3883
4f8d22e3
PA
3884 if (non_stop)
3885 /* In non-stop mode, the user/frontend should not notice a thread
3886 switch due to internal events. Make sure we reverse to the
3887 user selected thread and frame after handling the event and
3888 running any breakpoint commands. */
3889 make_cleanup_restore_current_thread ();
3890
ec9499be 3891 overlay_cache_invalid = 1;
f15cb84a
YQ
3892 /* Flush target cache before starting to handle each event. Target
3893 was running and cache could be stale. This is just a heuristic.
3894 Running threads may modify target memory, but we don't get any
3895 event. */
3896 target_dcache_invalidate ();
3dd5b83d 3897
170742de 3898 make_cleanup (restore_execution_direction, &save_exec_dir);
32231432
PA
3899 execution_direction = target_execution_direction ();
3900
0b333c5e
PA
3901 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3902 target_can_async_p () ? TARGET_WNOHANG : 0);
43ff13b4 3903
f00150c9 3904 if (debug_infrun)
223698f8 3905 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3906
29f49a6a
PA
3907 /* If an error happens while handling the event, propagate GDB's
3908 knowledge of the executing state to the frontend/user running
3909 state. */
fbea99ea 3910 if (!target_is_non_stop_p ())
29f49a6a
PA
3911 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3912 else
3913 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3914
353d1d73
JK
3915 /* Get executed before make_cleanup_restore_current_thread above to apply
3916 still for the thread which has thrown the exception. */
3917 make_bpstat_clear_actions_cleanup ();
3918
7c16b83e
PA
3919 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3920
43ff13b4 3921 /* Now figure out what to do with the result of the result. */
a474d7c2 3922 handle_inferior_event (ecs);
43ff13b4 3923
a474d7c2 3924 if (!ecs->wait_some_more)
43ff13b4 3925 {
c9657e70 3926 struct inferior *inf = find_inferior_ptid (ecs->ptid);
243a9253
PA
3927 int should_stop = 1;
3928 struct thread_info *thr = ecs->event_thread;
388a7084 3929 int should_notify_stop = 1;
d6b48e9c 3930
0cbcdb96 3931 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3932
243a9253
PA
3933 if (thr != NULL)
3934 {
3935 struct thread_fsm *thread_fsm = thr->thread_fsm;
3936
3937 if (thread_fsm != NULL)
3938 should_stop = thread_fsm_should_stop (thread_fsm);
3939 }
3940
3941 if (!should_stop)
3942 {
3943 keep_going (ecs);
3944 }
c2d11a7d 3945 else
0f641c01 3946 {
243a9253
PA
3947 clean_up_just_stopped_threads_fsms (ecs);
3948
388a7084
PA
3949 if (thr != NULL && thr->thread_fsm != NULL)
3950 {
3951 should_notify_stop
3952 = thread_fsm_should_notify_stop (thr->thread_fsm);
3953 }
3954
3955 if (should_notify_stop)
3956 {
4c2f2a79
PA
3957 int proceeded = 0;
3958
388a7084
PA
3959 /* We may not find an inferior if this was a process exit. */
3960 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4c2f2a79 3961 proceeded = normal_stop ();
243a9253 3962
4c2f2a79
PA
3963 if (!proceeded)
3964 {
3965 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3966 cmd_done = 1;
3967 }
388a7084 3968 }
0f641c01 3969 }
43ff13b4 3970 }
4f8d22e3 3971
29f49a6a
PA
3972 /* No error, don't finish the thread states yet. */
3973 discard_cleanups (ts_old_chain);
3974
4f8d22e3
PA
3975 /* Revert thread and frame. */
3976 do_cleanups (old_chain);
3977
3978 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
3979 restore the prompt (a synchronous execution command has finished,
3980 and we're ready for input). */
b4a14fd0 3981 if (interpreter_async && was_sync && !sync_execution)
92bcb5f9 3982 observer_notify_sync_execution_done ();
0f641c01
PA
3983
3984 if (cmd_done
3985 && !was_sync
3986 && exec_done_display_p
3987 && (ptid_equal (inferior_ptid, null_ptid)
3988 || !is_running (inferior_ptid)))
3989 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3990}
3991
edb3359d
DJ
3992/* Record the frame and location we're currently stepping through. */
3993void
3994set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3995{
3996 struct thread_info *tp = inferior_thread ();
3997
16c381f0
JK
3998 tp->control.step_frame_id = get_frame_id (frame);
3999 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4000
4001 tp->current_symtab = sal.symtab;
4002 tp->current_line = sal.line;
4003}
4004
0d1e5fa7
PA
4005/* Clear context switchable stepping state. */
4006
4007void
4e1c45ea 4008init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4009{
7f5ef605 4010 tss->stepped_breakpoint = 0;
0d1e5fa7 4011 tss->stepping_over_breakpoint = 0;
963f9c80 4012 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4013 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4014}
4015
c32c64b7
DE
4016/* Set the cached copy of the last ptid/waitstatus. */
4017
4018static void
4019set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4020{
4021 target_last_wait_ptid = ptid;
4022 target_last_waitstatus = status;
4023}
4024
e02bc4cc 4025/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
4026 target_wait()/deprecated_target_wait_hook(). The data is actually
4027 cached by handle_inferior_event(), which gets called immediately
4028 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
4029
4030void
488f131b 4031get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 4032{
39f77062 4033 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
4034 *status = target_last_waitstatus;
4035}
4036
ac264b3b
MS
4037void
4038nullify_last_target_wait_ptid (void)
4039{
4040 target_last_wait_ptid = minus_one_ptid;
4041}
4042
dcf4fbde 4043/* Switch thread contexts. */
dd80620e
MS
4044
4045static void
0d1e5fa7 4046context_switch (ptid_t ptid)
dd80620e 4047{
4b51d87b 4048 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
4049 {
4050 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4051 target_pid_to_str (inferior_ptid));
4052 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 4053 target_pid_to_str (ptid));
fd48f117
DJ
4054 }
4055
0d1e5fa7 4056 switch_to_thread (ptid);
dd80620e
MS
4057}
4058
d8dd4d5f
PA
4059/* If the target can't tell whether we've hit breakpoints
4060 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4061 check whether that could have been caused by a breakpoint. If so,
4062 adjust the PC, per gdbarch_decr_pc_after_break. */
4063
4fa8626c 4064static void
d8dd4d5f
PA
4065adjust_pc_after_break (struct thread_info *thread,
4066 struct target_waitstatus *ws)
4fa8626c 4067{
24a73cce
UW
4068 struct regcache *regcache;
4069 struct gdbarch *gdbarch;
6c95b8df 4070 struct address_space *aspace;
118e6252 4071 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4072
4fa8626c
DJ
4073 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4074 we aren't, just return.
9709f61c
DJ
4075
4076 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4077 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4078 implemented by software breakpoints should be handled through the normal
4079 breakpoint layer.
8fb3e588 4080
4fa8626c
DJ
4081 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4082 different signals (SIGILL or SIGEMT for instance), but it is less
4083 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4084 gdbarch_decr_pc_after_break. I don't know any specific target that
4085 generates these signals at breakpoints (the code has been in GDB since at
4086 least 1992) so I can not guess how to handle them here.
8fb3e588 4087
e6cf7916
UW
4088 In earlier versions of GDB, a target with
4089 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4090 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4091 target with both of these set in GDB history, and it seems unlikely to be
4092 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4093
d8dd4d5f 4094 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4095 return;
4096
d8dd4d5f 4097 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4098 return;
4099
4058b839
PA
4100 /* In reverse execution, when a breakpoint is hit, the instruction
4101 under it has already been de-executed. The reported PC always
4102 points at the breakpoint address, so adjusting it further would
4103 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4104 architecture:
4105
4106 B1 0x08000000 : INSN1
4107 B2 0x08000001 : INSN2
4108 0x08000002 : INSN3
4109 PC -> 0x08000003 : INSN4
4110
4111 Say you're stopped at 0x08000003 as above. Reverse continuing
4112 from that point should hit B2 as below. Reading the PC when the
4113 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4114 been de-executed already.
4115
4116 B1 0x08000000 : INSN1
4117 B2 PC -> 0x08000001 : INSN2
4118 0x08000002 : INSN3
4119 0x08000003 : INSN4
4120
4121 We can't apply the same logic as for forward execution, because
4122 we would wrongly adjust the PC to 0x08000000, since there's a
4123 breakpoint at PC - 1. We'd then report a hit on B1, although
4124 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4125 behaviour. */
4126 if (execution_direction == EXEC_REVERSE)
4127 return;
4128
1cf4d951
PA
4129 /* If the target can tell whether the thread hit a SW breakpoint,
4130 trust it. Targets that can tell also adjust the PC
4131 themselves. */
4132 if (target_supports_stopped_by_sw_breakpoint ())
4133 return;
4134
4135 /* Note that relying on whether a breakpoint is planted in memory to
4136 determine this can fail. E.g,. the breakpoint could have been
4137 removed since. Or the thread could have been told to step an
4138 instruction the size of a breakpoint instruction, and only
4139 _after_ was a breakpoint inserted at its address. */
4140
24a73cce
UW
4141 /* If this target does not decrement the PC after breakpoints, then
4142 we have nothing to do. */
d8dd4d5f 4143 regcache = get_thread_regcache (thread->ptid);
24a73cce 4144 gdbarch = get_regcache_arch (regcache);
118e6252 4145
527a273a 4146 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4147 if (decr_pc == 0)
24a73cce
UW
4148 return;
4149
6c95b8df
PA
4150 aspace = get_regcache_aspace (regcache);
4151
8aad930b
AC
4152 /* Find the location where (if we've hit a breakpoint) the
4153 breakpoint would be. */
118e6252 4154 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4155
1cf4d951
PA
4156 /* If the target can't tell whether a software breakpoint triggered,
4157 fallback to figuring it out based on breakpoints we think were
4158 inserted in the target, and on whether the thread was stepped or
4159 continued. */
4160
1c5cfe86
PA
4161 /* Check whether there actually is a software breakpoint inserted at
4162 that location.
4163
4164 If in non-stop mode, a race condition is possible where we've
4165 removed a breakpoint, but stop events for that breakpoint were
4166 already queued and arrive later. To suppress those spurious
4167 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4168 and retire them after a number of stop events are reported. Note
4169 this is an heuristic and can thus get confused. The real fix is
4170 to get the "stopped by SW BP and needs adjustment" info out of
4171 the target/kernel (and thus never reach here; see above). */
6c95b8df 4172 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4173 || (target_is_non_stop_p ()
4174 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4175 {
77f9e713 4176 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 4177
8213266a 4178 if (record_full_is_used ())
77f9e713 4179 record_full_gdb_operation_disable_set ();
96429cc8 4180
1c0fdd0e
UW
4181 /* When using hardware single-step, a SIGTRAP is reported for both
4182 a completed single-step and a software breakpoint. Need to
4183 differentiate between the two, as the latter needs adjusting
4184 but the former does not.
4185
4186 The SIGTRAP can be due to a completed hardware single-step only if
4187 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4188 - this thread is currently being stepped
4189
4190 If any of these events did not occur, we must have stopped due
4191 to hitting a software breakpoint, and have to back up to the
4192 breakpoint address.
4193
4194 As a special case, we could have hardware single-stepped a
4195 software breakpoint. In this case (prev_pc == breakpoint_pc),
4196 we also need to back up to the breakpoint address. */
4197
d8dd4d5f
PA
4198 if (thread_has_single_step_breakpoints_set (thread)
4199 || !currently_stepping (thread)
4200 || (thread->stepped_breakpoint
4201 && thread->prev_pc == breakpoint_pc))
515630c5 4202 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 4203
77f9e713 4204 do_cleanups (old_cleanups);
8aad930b 4205 }
4fa8626c
DJ
4206}
4207
edb3359d
DJ
4208static int
4209stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4210{
4211 for (frame = get_prev_frame (frame);
4212 frame != NULL;
4213 frame = get_prev_frame (frame))
4214 {
4215 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4216 return 1;
4217 if (get_frame_type (frame) != INLINE_FRAME)
4218 break;
4219 }
4220
4221 return 0;
4222}
4223
a96d9b2e
SDJ
4224/* Auxiliary function that handles syscall entry/return events.
4225 It returns 1 if the inferior should keep going (and GDB
4226 should ignore the event), or 0 if the event deserves to be
4227 processed. */
ca2163eb 4228
a96d9b2e 4229static int
ca2163eb 4230handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4231{
ca2163eb 4232 struct regcache *regcache;
ca2163eb
PA
4233 int syscall_number;
4234
4235 if (!ptid_equal (ecs->ptid, inferior_ptid))
4236 context_switch (ecs->ptid);
4237
4238 regcache = get_thread_regcache (ecs->ptid);
f90263c1 4239 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
4240 stop_pc = regcache_read_pc (regcache);
4241
a96d9b2e
SDJ
4242 if (catch_syscall_enabled () > 0
4243 && catching_syscall_number (syscall_number) > 0)
4244 {
4245 if (debug_infrun)
4246 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4247 syscall_number);
a96d9b2e 4248
16c381f0 4249 ecs->event_thread->control.stop_bpstat
6c95b8df 4250 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 4251 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4252
ce12b012 4253 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4254 {
4255 /* Catchpoint hit. */
ca2163eb
PA
4256 return 0;
4257 }
a96d9b2e 4258 }
ca2163eb
PA
4259
4260 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4261 keep_going (ecs);
4262 return 1;
a96d9b2e
SDJ
4263}
4264
7e324e48
GB
4265/* Lazily fill in the execution_control_state's stop_func_* fields. */
4266
4267static void
4268fill_in_stop_func (struct gdbarch *gdbarch,
4269 struct execution_control_state *ecs)
4270{
4271 if (!ecs->stop_func_filled_in)
4272 {
4273 /* Don't care about return value; stop_func_start and stop_func_name
4274 will both be 0 if it doesn't work. */
4275 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4276 &ecs->stop_func_start, &ecs->stop_func_end);
4277 ecs->stop_func_start
4278 += gdbarch_deprecated_function_start_offset (gdbarch);
4279
591a12a1
UW
4280 if (gdbarch_skip_entrypoint_p (gdbarch))
4281 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4282 ecs->stop_func_start);
4283
7e324e48
GB
4284 ecs->stop_func_filled_in = 1;
4285 }
4286}
4287
4f5d7f63
PA
4288
4289/* Return the STOP_SOON field of the inferior pointed at by PTID. */
4290
4291static enum stop_kind
4292get_inferior_stop_soon (ptid_t ptid)
4293{
c9657e70 4294 struct inferior *inf = find_inferior_ptid (ptid);
4f5d7f63
PA
4295
4296 gdb_assert (inf != NULL);
4297 return inf->control.stop_soon;
4298}
4299
372316f1
PA
4300/* Wait for one event. Store the resulting waitstatus in WS, and
4301 return the event ptid. */
4302
4303static ptid_t
4304wait_one (struct target_waitstatus *ws)
4305{
4306 ptid_t event_ptid;
4307 ptid_t wait_ptid = minus_one_ptid;
4308
4309 overlay_cache_invalid = 1;
4310
4311 /* Flush target cache before starting to handle each event.
4312 Target was running and cache could be stale. This is just a
4313 heuristic. Running threads may modify target memory, but we
4314 don't get any event. */
4315 target_dcache_invalidate ();
4316
4317 if (deprecated_target_wait_hook)
4318 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4319 else
4320 event_ptid = target_wait (wait_ptid, ws, 0);
4321
4322 if (debug_infrun)
4323 print_target_wait_results (wait_ptid, event_ptid, ws);
4324
4325 return event_ptid;
4326}
4327
4328/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4329 instead of the current thread. */
4330#define THREAD_STOPPED_BY(REASON) \
4331static int \
4332thread_stopped_by_ ## REASON (ptid_t ptid) \
4333{ \
4334 struct cleanup *old_chain; \
4335 int res; \
4336 \
4337 old_chain = save_inferior_ptid (); \
4338 inferior_ptid = ptid; \
4339 \
4340 res = target_stopped_by_ ## REASON (); \
4341 \
4342 do_cleanups (old_chain); \
4343 \
4344 return res; \
4345}
4346
4347/* Generate thread_stopped_by_watchpoint. */
4348THREAD_STOPPED_BY (watchpoint)
4349/* Generate thread_stopped_by_sw_breakpoint. */
4350THREAD_STOPPED_BY (sw_breakpoint)
4351/* Generate thread_stopped_by_hw_breakpoint. */
4352THREAD_STOPPED_BY (hw_breakpoint)
4353
4354/* Cleanups that switches to the PTID pointed at by PTID_P. */
4355
4356static void
4357switch_to_thread_cleanup (void *ptid_p)
4358{
4359 ptid_t ptid = *(ptid_t *) ptid_p;
4360
4361 switch_to_thread (ptid);
4362}
4363
4364/* Save the thread's event and stop reason to process it later. */
4365
4366static void
4367save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4368{
4369 struct regcache *regcache;
4370 struct address_space *aspace;
4371
4372 if (debug_infrun)
4373 {
4374 char *statstr;
4375
4376 statstr = target_waitstatus_to_string (ws);
4377 fprintf_unfiltered (gdb_stdlog,
4378 "infrun: saving status %s for %d.%ld.%ld\n",
4379 statstr,
4380 ptid_get_pid (tp->ptid),
4381 ptid_get_lwp (tp->ptid),
4382 ptid_get_tid (tp->ptid));
4383 xfree (statstr);
4384 }
4385
4386 /* Record for later. */
4387 tp->suspend.waitstatus = *ws;
4388 tp->suspend.waitstatus_pending_p = 1;
4389
4390 regcache = get_thread_regcache (tp->ptid);
4391 aspace = get_regcache_aspace (regcache);
4392
4393 if (ws->kind == TARGET_WAITKIND_STOPPED
4394 && ws->value.sig == GDB_SIGNAL_TRAP)
4395 {
4396 CORE_ADDR pc = regcache_read_pc (regcache);
4397
4398 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4399
4400 if (thread_stopped_by_watchpoint (tp->ptid))
4401 {
4402 tp->suspend.stop_reason
4403 = TARGET_STOPPED_BY_WATCHPOINT;
4404 }
4405 else if (target_supports_stopped_by_sw_breakpoint ()
4406 && thread_stopped_by_sw_breakpoint (tp->ptid))
4407 {
4408 tp->suspend.stop_reason
4409 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4410 }
4411 else if (target_supports_stopped_by_hw_breakpoint ()
4412 && thread_stopped_by_hw_breakpoint (tp->ptid))
4413 {
4414 tp->suspend.stop_reason
4415 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4416 }
4417 else if (!target_supports_stopped_by_hw_breakpoint ()
4418 && hardware_breakpoint_inserted_here_p (aspace,
4419 pc))
4420 {
4421 tp->suspend.stop_reason
4422 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4423 }
4424 else if (!target_supports_stopped_by_sw_breakpoint ()
4425 && software_breakpoint_inserted_here_p (aspace,
4426 pc))
4427 {
4428 tp->suspend.stop_reason
4429 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4430 }
4431 else if (!thread_has_single_step_breakpoints_set (tp)
4432 && currently_stepping (tp))
4433 {
4434 tp->suspend.stop_reason
4435 = TARGET_STOPPED_BY_SINGLE_STEP;
4436 }
4437 }
4438}
4439
4440/* Stop all threads. */
4441
4442static void
4443stop_all_threads (void)
4444{
4445 /* We may need multiple passes to discover all threads. */
4446 int pass;
4447 int iterations = 0;
4448 ptid_t entry_ptid;
4449 struct cleanup *old_chain;
4450
fbea99ea 4451 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4452
4453 if (debug_infrun)
4454 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4455
4456 entry_ptid = inferior_ptid;
4457 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4458
4459 /* Request threads to stop, and then wait for the stops. Because
4460 threads we already know about can spawn more threads while we're
4461 trying to stop them, and we only learn about new threads when we
4462 update the thread list, do this in a loop, and keep iterating
4463 until two passes find no threads that need to be stopped. */
4464 for (pass = 0; pass < 2; pass++, iterations++)
4465 {
4466 if (debug_infrun)
4467 fprintf_unfiltered (gdb_stdlog,
4468 "infrun: stop_all_threads, pass=%d, "
4469 "iterations=%d\n", pass, iterations);
4470 while (1)
4471 {
4472 ptid_t event_ptid;
4473 struct target_waitstatus ws;
4474 int need_wait = 0;
4475 struct thread_info *t;
4476
4477 update_thread_list ();
4478
4479 /* Go through all threads looking for threads that we need
4480 to tell the target to stop. */
4481 ALL_NON_EXITED_THREADS (t)
4482 {
4483 if (t->executing)
4484 {
4485 /* If already stopping, don't request a stop again.
4486 We just haven't seen the notification yet. */
4487 if (!t->stop_requested)
4488 {
4489 if (debug_infrun)
4490 fprintf_unfiltered (gdb_stdlog,
4491 "infrun: %s executing, "
4492 "need stop\n",
4493 target_pid_to_str (t->ptid));
4494 target_stop (t->ptid);
4495 t->stop_requested = 1;
4496 }
4497 else
4498 {
4499 if (debug_infrun)
4500 fprintf_unfiltered (gdb_stdlog,
4501 "infrun: %s executing, "
4502 "already stopping\n",
4503 target_pid_to_str (t->ptid));
4504 }
4505
4506 if (t->stop_requested)
4507 need_wait = 1;
4508 }
4509 else
4510 {
4511 if (debug_infrun)
4512 fprintf_unfiltered (gdb_stdlog,
4513 "infrun: %s not executing\n",
4514 target_pid_to_str (t->ptid));
4515
4516 /* The thread may be not executing, but still be
4517 resumed with a pending status to process. */
4518 t->resumed = 0;
4519 }
4520 }
4521
4522 if (!need_wait)
4523 break;
4524
4525 /* If we find new threads on the second iteration, restart
4526 over. We want to see two iterations in a row with all
4527 threads stopped. */
4528 if (pass > 0)
4529 pass = -1;
4530
4531 event_ptid = wait_one (&ws);
4532 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4533 {
4534 /* All resumed threads exited. */
4535 }
4536 else if (ws.kind == TARGET_WAITKIND_EXITED
4537 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4538 {
4539 if (debug_infrun)
4540 {
4541 ptid_t ptid = pid_to_ptid (ws.value.integer);
4542
4543 fprintf_unfiltered (gdb_stdlog,
4544 "infrun: %s exited while "
4545 "stopping threads\n",
4546 target_pid_to_str (ptid));
4547 }
4548 }
4549 else
4550 {
4551 t = find_thread_ptid (event_ptid);
4552 if (t == NULL)
4553 t = add_thread (event_ptid);
4554
4555 t->stop_requested = 0;
4556 t->executing = 0;
4557 t->resumed = 0;
4558 t->control.may_range_step = 0;
4559
4560 if (ws.kind == TARGET_WAITKIND_STOPPED
4561 && ws.value.sig == GDB_SIGNAL_0)
4562 {
4563 /* We caught the event that we intended to catch, so
4564 there's no event pending. */
4565 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4566 t->suspend.waitstatus_pending_p = 0;
4567
4568 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4569 {
4570 /* Add it back to the step-over queue. */
4571 if (debug_infrun)
4572 {
4573 fprintf_unfiltered (gdb_stdlog,
4574 "infrun: displaced-step of %s "
4575 "canceled: adding back to the "
4576 "step-over queue\n",
4577 target_pid_to_str (t->ptid));
4578 }
4579 t->control.trap_expected = 0;
4580 thread_step_over_chain_enqueue (t);
4581 }
4582 }
4583 else
4584 {
4585 enum gdb_signal sig;
4586 struct regcache *regcache;
4587 struct address_space *aspace;
4588
4589 if (debug_infrun)
4590 {
4591 char *statstr;
4592
4593 statstr = target_waitstatus_to_string (&ws);
4594 fprintf_unfiltered (gdb_stdlog,
4595 "infrun: target_wait %s, saving "
4596 "status for %d.%ld.%ld\n",
4597 statstr,
4598 ptid_get_pid (t->ptid),
4599 ptid_get_lwp (t->ptid),
4600 ptid_get_tid (t->ptid));
4601 xfree (statstr);
4602 }
4603
4604 /* Record for later. */
4605 save_waitstatus (t, &ws);
4606
4607 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4608 ? ws.value.sig : GDB_SIGNAL_0);
4609
4610 if (displaced_step_fixup (t->ptid, sig) < 0)
4611 {
4612 /* Add it back to the step-over queue. */
4613 t->control.trap_expected = 0;
4614 thread_step_over_chain_enqueue (t);
4615 }
4616
4617 regcache = get_thread_regcache (t->ptid);
4618 t->suspend.stop_pc = regcache_read_pc (regcache);
4619
4620 if (debug_infrun)
4621 {
4622 fprintf_unfiltered (gdb_stdlog,
4623 "infrun: saved stop_pc=%s for %s "
4624 "(currently_stepping=%d)\n",
4625 paddress (target_gdbarch (),
4626 t->suspend.stop_pc),
4627 target_pid_to_str (t->ptid),
4628 currently_stepping (t));
4629 }
4630 }
4631 }
4632 }
4633 }
4634
4635 do_cleanups (old_chain);
4636
4637 if (debug_infrun)
4638 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4639}
4640
05ba8510
PA
4641/* Given an execution control state that has been freshly filled in by
4642 an event from the inferior, figure out what it means and take
4643 appropriate action.
4644
4645 The alternatives are:
4646
22bcd14b 4647 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4648 debugger.
4649
4650 2) keep_going and return; to wait for the next event (set
4651 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4652 once). */
c906108c 4653
ec9499be 4654static void
0b6e5e10 4655handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4656{
d6b48e9c
PA
4657 enum stop_kind stop_soon;
4658
28736962
PA
4659 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4660 {
4661 /* We had an event in the inferior, but we are not interested in
4662 handling it at this level. The lower layers have already
4663 done what needs to be done, if anything.
4664
4665 One of the possible circumstances for this is when the
4666 inferior produces output for the console. The inferior has
4667 not stopped, and we are ignoring the event. Another possible
4668 circumstance is any event which the lower level knows will be
4669 reported multiple times without an intervening resume. */
4670 if (debug_infrun)
4671 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4672 prepare_to_wait (ecs);
4673 return;
4674 }
4675
0e5bf2a8
PA
4676 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4677 && target_can_async_p () && !sync_execution)
4678 {
4679 /* There were no unwaited-for children left in the target, but,
4680 we're not synchronously waiting for events either. Just
4681 ignore. Otherwise, if we were running a synchronous
4682 execution command, we need to cancel it and give the user
4683 back the terminal. */
4684 if (debug_infrun)
4685 fprintf_unfiltered (gdb_stdlog,
4686 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
4687 prepare_to_wait (ecs);
4688 return;
4689 }
4690
1777feb0 4691 /* Cache the last pid/waitstatus. */
c32c64b7 4692 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4693
ca005067 4694 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4695 stop_stack_dummy = STOP_NONE;
ca005067 4696
0e5bf2a8
PA
4697 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4698 {
4699 /* No unwaited-for children left. IOW, all resumed children
4700 have exited. */
4701 if (debug_infrun)
4702 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4703
4704 stop_print_frame = 0;
22bcd14b 4705 stop_waiting (ecs);
0e5bf2a8
PA
4706 return;
4707 }
4708
8c90c137 4709 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4710 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4711 {
4712 ecs->event_thread = find_thread_ptid (ecs->ptid);
4713 /* If it's a new thread, add it to the thread database. */
4714 if (ecs->event_thread == NULL)
4715 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4716
4717 /* Disable range stepping. If the next step request could use a
4718 range, this will be end up re-enabled then. */
4719 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4720 }
88ed393a
JK
4721
4722 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4723 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4724
4725 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4726 reinit_frame_cache ();
4727
28736962
PA
4728 breakpoint_retire_moribund ();
4729
2b009048
DJ
4730 /* First, distinguish signals caused by the debugger from signals
4731 that have to do with the program's own actions. Note that
4732 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4733 on the operating system version. Here we detect when a SIGILL or
4734 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4735 something similar for SIGSEGV, since a SIGSEGV will be generated
4736 when we're trying to execute a breakpoint instruction on a
4737 non-executable stack. This happens for call dummy breakpoints
4738 for architectures like SPARC that place call dummies on the
4739 stack. */
2b009048 4740 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4741 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4742 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4743 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4744 {
de0a0249
UW
4745 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4746
4747 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4748 regcache_read_pc (regcache)))
4749 {
4750 if (debug_infrun)
4751 fprintf_unfiltered (gdb_stdlog,
4752 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4753 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4754 }
2b009048
DJ
4755 }
4756
28736962
PA
4757 /* Mark the non-executing threads accordingly. In all-stop, all
4758 threads of all processes are stopped when we get any event
e1316e60 4759 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4760 {
4761 ptid_t mark_ptid;
4762
fbea99ea 4763 if (!target_is_non_stop_p ())
372316f1
PA
4764 mark_ptid = minus_one_ptid;
4765 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4766 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4767 {
4768 /* If we're handling a process exit in non-stop mode, even
4769 though threads haven't been deleted yet, one would think
4770 that there is nothing to do, as threads of the dead process
4771 will be soon deleted, and threads of any other process were
4772 left running. However, on some targets, threads survive a
4773 process exit event. E.g., for the "checkpoint" command,
4774 when the current checkpoint/fork exits, linux-fork.c
4775 automatically switches to another fork from within
4776 target_mourn_inferior, by associating the same
4777 inferior/thread to another fork. We haven't mourned yet at
4778 this point, but we must mark any threads left in the
4779 process as not-executing so that finish_thread_state marks
4780 them stopped (in the user's perspective) if/when we present
4781 the stop to the user. */
4782 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4783 }
4784 else
4785 mark_ptid = ecs->ptid;
4786
4787 set_executing (mark_ptid, 0);
4788
4789 /* Likewise the resumed flag. */
4790 set_resumed (mark_ptid, 0);
4791 }
8c90c137 4792
488f131b
JB
4793 switch (ecs->ws.kind)
4794 {
4795 case TARGET_WAITKIND_LOADED:
527159b7 4796 if (debug_infrun)
8a9de0e4 4797 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
4798 if (!ptid_equal (ecs->ptid, inferior_ptid))
4799 context_switch (ecs->ptid);
b0f4b84b
DJ
4800 /* Ignore gracefully during startup of the inferior, as it might
4801 be the shell which has just loaded some objects, otherwise
4802 add the symbols for the newly loaded objects. Also ignore at
4803 the beginning of an attach or remote session; we will query
4804 the full list of libraries once the connection is
4805 established. */
4f5d7f63
PA
4806
4807 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 4808 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4809 {
edcc5120
TT
4810 struct regcache *regcache;
4811
edcc5120
TT
4812 regcache = get_thread_regcache (ecs->ptid);
4813
4814 handle_solib_event ();
4815
4816 ecs->event_thread->control.stop_bpstat
4817 = bpstat_stop_status (get_regcache_aspace (regcache),
4818 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4819
ce12b012 4820 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4821 {
4822 /* A catchpoint triggered. */
94c57d6a
PA
4823 process_event_stop_test (ecs);
4824 return;
edcc5120 4825 }
488f131b 4826
b0f4b84b
DJ
4827 /* If requested, stop when the dynamic linker notifies
4828 gdb of events. This allows the user to get control
4829 and place breakpoints in initializer routines for
4830 dynamically loaded objects (among other things). */
a493e3e2 4831 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4832 if (stop_on_solib_events)
4833 {
55409f9d
DJ
4834 /* Make sure we print "Stopped due to solib-event" in
4835 normal_stop. */
4836 stop_print_frame = 1;
4837
22bcd14b 4838 stop_waiting (ecs);
b0f4b84b
DJ
4839 return;
4840 }
488f131b 4841 }
b0f4b84b
DJ
4842
4843 /* If we are skipping through a shell, or through shared library
4844 loading that we aren't interested in, resume the program. If
5c09a2c5 4845 we're running the program normally, also resume. */
b0f4b84b
DJ
4846 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4847 {
74960c60
VP
4848 /* Loading of shared libraries might have changed breakpoint
4849 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4850 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4851 insert_breakpoints ();
64ce06e4 4852 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4853 prepare_to_wait (ecs);
4854 return;
4855 }
4856
5c09a2c5
PA
4857 /* But stop if we're attaching or setting up a remote
4858 connection. */
4859 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4860 || stop_soon == STOP_QUIETLY_REMOTE)
4861 {
4862 if (debug_infrun)
4863 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 4864 stop_waiting (ecs);
5c09a2c5
PA
4865 return;
4866 }
4867
4868 internal_error (__FILE__, __LINE__,
4869 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 4870
488f131b 4871 case TARGET_WAITKIND_SPURIOUS:
527159b7 4872 if (debug_infrun)
8a9de0e4 4873 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 4874 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 4875 context_switch (ecs->ptid);
64ce06e4 4876 resume (GDB_SIGNAL_0);
488f131b
JB
4877 prepare_to_wait (ecs);
4878 return;
c5aa993b 4879
488f131b 4880 case TARGET_WAITKIND_EXITED:
940c3c06 4881 case TARGET_WAITKIND_SIGNALLED:
527159b7 4882 if (debug_infrun)
940c3c06
PA
4883 {
4884 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4885 fprintf_unfiltered (gdb_stdlog,
4886 "infrun: TARGET_WAITKIND_EXITED\n");
4887 else
4888 fprintf_unfiltered (gdb_stdlog,
4889 "infrun: TARGET_WAITKIND_SIGNALLED\n");
4890 }
4891
fb66883a 4892 inferior_ptid = ecs->ptid;
c9657e70 4893 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
4894 set_current_program_space (current_inferior ()->pspace);
4895 handle_vfork_child_exec_or_exit (0);
1777feb0 4896 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 4897
0c557179
SDJ
4898 /* Clearing any previous state of convenience variables. */
4899 clear_exit_convenience_vars ();
4900
940c3c06
PA
4901 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4902 {
4903 /* Record the exit code in the convenience variable $_exitcode, so
4904 that the user can inspect this again later. */
4905 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4906 (LONGEST) ecs->ws.value.integer);
4907
4908 /* Also record this in the inferior itself. */
4909 current_inferior ()->has_exit_code = 1;
4910 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 4911
98eb56a4
PA
4912 /* Support the --return-child-result option. */
4913 return_child_result_value = ecs->ws.value.integer;
4914
fd664c91 4915 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
4916 }
4917 else
0c557179
SDJ
4918 {
4919 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4920 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4921
4922 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4923 {
4924 /* Set the value of the internal variable $_exitsignal,
4925 which holds the signal uncaught by the inferior. */
4926 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4927 gdbarch_gdb_signal_to_target (gdbarch,
4928 ecs->ws.value.sig));
4929 }
4930 else
4931 {
4932 /* We don't have access to the target's method used for
4933 converting between signal numbers (GDB's internal
4934 representation <-> target's representation).
4935 Therefore, we cannot do a good job at displaying this
4936 information to the user. It's better to just warn
4937 her about it (if infrun debugging is enabled), and
4938 give up. */
4939 if (debug_infrun)
4940 fprintf_filtered (gdb_stdlog, _("\
4941Cannot fill $_exitsignal with the correct signal number.\n"));
4942 }
4943
fd664c91 4944 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 4945 }
8cf64490 4946
488f131b
JB
4947 gdb_flush (gdb_stdout);
4948 target_mourn_inferior ();
488f131b 4949 stop_print_frame = 0;
22bcd14b 4950 stop_waiting (ecs);
488f131b 4951 return;
c5aa993b 4952
488f131b 4953 /* The following are the only cases in which we keep going;
1777feb0 4954 the above cases end in a continue or goto. */
488f131b 4955 case TARGET_WAITKIND_FORKED:
deb3b17b 4956 case TARGET_WAITKIND_VFORKED:
527159b7 4957 if (debug_infrun)
fed708ed
PA
4958 {
4959 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4960 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
4961 else
4962 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
4963 }
c906108c 4964
e2d96639
YQ
4965 /* Check whether the inferior is displaced stepping. */
4966 {
4967 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4968 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e2d96639
YQ
4969
4970 /* If checking displaced stepping is supported, and thread
4971 ecs->ptid is displaced stepping. */
c0987663 4972 if (displaced_step_in_progress_thread (ecs->ptid))
e2d96639
YQ
4973 {
4974 struct inferior *parent_inf
c9657e70 4975 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
4976 struct regcache *child_regcache;
4977 CORE_ADDR parent_pc;
4978
4979 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4980 indicating that the displaced stepping of syscall instruction
4981 has been done. Perform cleanup for parent process here. Note
4982 that this operation also cleans up the child process for vfork,
4983 because their pages are shared. */
a493e3e2 4984 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
c2829269
PA
4985 /* Start a new step-over in another thread if there's one
4986 that needs it. */
4987 start_step_over ();
e2d96639
YQ
4988
4989 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4990 {
c0987663
YQ
4991 struct displaced_step_inferior_state *displaced
4992 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
4993
e2d96639
YQ
4994 /* Restore scratch pad for child process. */
4995 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4996 }
4997
4998 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4999 the child's PC is also within the scratchpad. Set the child's PC
5000 to the parent's PC value, which has already been fixed up.
5001 FIXME: we use the parent's aspace here, although we're touching
5002 the child, because the child hasn't been added to the inferior
5003 list yet at this point. */
5004
5005 child_regcache
5006 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5007 gdbarch,
5008 parent_inf->aspace);
5009 /* Read PC value of parent process. */
5010 parent_pc = regcache_read_pc (regcache);
5011
5012 if (debug_displaced)
5013 fprintf_unfiltered (gdb_stdlog,
5014 "displaced: write child pc from %s to %s\n",
5015 paddress (gdbarch,
5016 regcache_read_pc (child_regcache)),
5017 paddress (gdbarch, parent_pc));
5018
5019 regcache_write_pc (child_regcache, parent_pc);
5020 }
5021 }
5022
5a2901d9 5023 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5024 context_switch (ecs->ptid);
5a2901d9 5025
b242c3c2
PA
5026 /* Immediately detach breakpoints from the child before there's
5027 any chance of letting the user delete breakpoints from the
5028 breakpoint lists. If we don't do this early, it's easy to
5029 leave left over traps in the child, vis: "break foo; catch
5030 fork; c; <fork>; del; c; <child calls foo>". We only follow
5031 the fork on the last `continue', and by that time the
5032 breakpoint at "foo" is long gone from the breakpoint table.
5033 If we vforked, then we don't need to unpatch here, since both
5034 parent and child are sharing the same memory pages; we'll
5035 need to unpatch at follow/detach time instead to be certain
5036 that new breakpoints added between catchpoint hit time and
5037 vfork follow are detached. */
5038 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5039 {
b242c3c2
PA
5040 /* This won't actually modify the breakpoint list, but will
5041 physically remove the breakpoints from the child. */
d80ee84f 5042 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5043 }
5044
34b7e8a6 5045 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5046
e58b0e63
PA
5047 /* In case the event is caught by a catchpoint, remember that
5048 the event is to be followed at the next resume of the thread,
5049 and not immediately. */
5050 ecs->event_thread->pending_follow = ecs->ws;
5051
fb14de7b 5052 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 5053
16c381f0 5054 ecs->event_thread->control.stop_bpstat
6c95b8df 5055 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5056 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 5057
ce12b012
PA
5058 /* If no catchpoint triggered for this, then keep going. Note
5059 that we're interested in knowing the bpstat actually causes a
5060 stop, not just if it may explain the signal. Software
5061 watchpoints, for example, always appear in the bpstat. */
5062 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5063 {
6c95b8df
PA
5064 ptid_t parent;
5065 ptid_t child;
e58b0e63 5066 int should_resume;
3e43a32a
MS
5067 int follow_child
5068 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5069
a493e3e2 5070 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5071
5072 should_resume = follow_fork ();
5073
6c95b8df
PA
5074 parent = ecs->ptid;
5075 child = ecs->ws.value.related_pid;
5076
5077 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5078 if (!detach_fork && (non_stop
5079 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5080 {
5081 if (follow_child)
5082 switch_to_thread (parent);
5083 else
5084 switch_to_thread (child);
5085
5086 ecs->event_thread = inferior_thread ();
5087 ecs->ptid = inferior_ptid;
5088 keep_going (ecs);
5089 }
5090
5091 if (follow_child)
5092 switch_to_thread (child);
5093 else
5094 switch_to_thread (parent);
5095
e58b0e63
PA
5096 ecs->event_thread = inferior_thread ();
5097 ecs->ptid = inferior_ptid;
5098
5099 if (should_resume)
5100 keep_going (ecs);
5101 else
22bcd14b 5102 stop_waiting (ecs);
04e68871
DJ
5103 return;
5104 }
94c57d6a
PA
5105 process_event_stop_test (ecs);
5106 return;
488f131b 5107
6c95b8df
PA
5108 case TARGET_WAITKIND_VFORK_DONE:
5109 /* Done with the shared memory region. Re-insert breakpoints in
5110 the parent, and keep going. */
5111
5112 if (debug_infrun)
3e43a32a
MS
5113 fprintf_unfiltered (gdb_stdlog,
5114 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
5115
5116 if (!ptid_equal (ecs->ptid, inferior_ptid))
5117 context_switch (ecs->ptid);
5118
5119 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5120 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
5121 /* This also takes care of reinserting breakpoints in the
5122 previously locked inferior. */
5123 keep_going (ecs);
5124 return;
5125
488f131b 5126 case TARGET_WAITKIND_EXECD:
527159b7 5127 if (debug_infrun)
fc5261f2 5128 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5129
5a2901d9 5130 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5131 context_switch (ecs->ptid);
5a2901d9 5132
fb14de7b 5133 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 5134
6c95b8df
PA
5135 /* Do whatever is necessary to the parent branch of the vfork. */
5136 handle_vfork_child_exec_or_exit (1);
5137
795e548f
PA
5138 /* This causes the eventpoints and symbol table to be reset.
5139 Must do this now, before trying to determine whether to
5140 stop. */
71b43ef8 5141 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5142
17d8546e
DB
5143 /* In follow_exec we may have deleted the original thread and
5144 created a new one. Make sure that the event thread is the
5145 execd thread for that case (this is a nop otherwise). */
5146 ecs->event_thread = inferior_thread ();
5147
16c381f0 5148 ecs->event_thread->control.stop_bpstat
6c95b8df 5149 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5150 stop_pc, ecs->ptid, &ecs->ws);
795e548f 5151
71b43ef8
PA
5152 /* Note that this may be referenced from inside
5153 bpstat_stop_status above, through inferior_has_execd. */
5154 xfree (ecs->ws.value.execd_pathname);
5155 ecs->ws.value.execd_pathname = NULL;
5156
04e68871 5157 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5158 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5159 {
a493e3e2 5160 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5161 keep_going (ecs);
5162 return;
5163 }
94c57d6a
PA
5164 process_event_stop_test (ecs);
5165 return;
488f131b 5166
b4dc5ffa
MK
5167 /* Be careful not to try to gather much state about a thread
5168 that's in a syscall. It's frequently a losing proposition. */
488f131b 5169 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5170 if (debug_infrun)
3e43a32a
MS
5171 fprintf_unfiltered (gdb_stdlog,
5172 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5173 /* Getting the current syscall number. */
94c57d6a
PA
5174 if (handle_syscall_event (ecs) == 0)
5175 process_event_stop_test (ecs);
5176 return;
c906108c 5177
488f131b
JB
5178 /* Before examining the threads further, step this thread to
5179 get it entirely out of the syscall. (We get notice of the
5180 event when the thread is just on the verge of exiting a
5181 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5182 into user code.) */
488f131b 5183 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5184 if (debug_infrun)
3e43a32a
MS
5185 fprintf_unfiltered (gdb_stdlog,
5186 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5187 if (handle_syscall_event (ecs) == 0)
5188 process_event_stop_test (ecs);
5189 return;
c906108c 5190
488f131b 5191 case TARGET_WAITKIND_STOPPED:
527159b7 5192 if (debug_infrun)
8a9de0e4 5193 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 5194 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4f5d7f63
PA
5195 handle_signal_stop (ecs);
5196 return;
c906108c 5197
b2175913 5198 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5199 if (debug_infrun)
5200 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5201 /* Reverse execution: target ran out of history info. */
eab402df 5202
d1988021
MM
5203 /* Switch to the stopped thread. */
5204 if (!ptid_equal (ecs->ptid, inferior_ptid))
5205 context_switch (ecs->ptid);
5206 if (debug_infrun)
5207 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5208
34b7e8a6 5209 delete_just_stopped_threads_single_step_breakpoints ();
d1988021 5210 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
fd664c91 5211 observer_notify_no_history ();
22bcd14b 5212 stop_waiting (ecs);
b2175913 5213 return;
488f131b 5214 }
4f5d7f63
PA
5215}
5216
0b6e5e10
JB
5217/* A wrapper around handle_inferior_event_1, which also makes sure
5218 that all temporary struct value objects that were created during
5219 the handling of the event get deleted at the end. */
5220
5221static void
5222handle_inferior_event (struct execution_control_state *ecs)
5223{
5224 struct value *mark = value_mark ();
5225
5226 handle_inferior_event_1 (ecs);
5227 /* Purge all temporary values created during the event handling,
5228 as it could be a long time before we return to the command level
5229 where such values would otherwise be purged. */
5230 value_free_to_mark (mark);
5231}
5232
372316f1
PA
5233/* Restart threads back to what they were trying to do back when we
5234 paused them for an in-line step-over. The EVENT_THREAD thread is
5235 ignored. */
4d9d9d04
PA
5236
5237static void
372316f1
PA
5238restart_threads (struct thread_info *event_thread)
5239{
5240 struct thread_info *tp;
5241 struct thread_info *step_over = NULL;
5242
5243 /* In case the instruction just stepped spawned a new thread. */
5244 update_thread_list ();
5245
5246 ALL_NON_EXITED_THREADS (tp)
5247 {
5248 if (tp == event_thread)
5249 {
5250 if (debug_infrun)
5251 fprintf_unfiltered (gdb_stdlog,
5252 "infrun: restart threads: "
5253 "[%s] is event thread\n",
5254 target_pid_to_str (tp->ptid));
5255 continue;
5256 }
5257
5258 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5259 {
5260 if (debug_infrun)
5261 fprintf_unfiltered (gdb_stdlog,
5262 "infrun: restart threads: "
5263 "[%s] not meant to be running\n",
5264 target_pid_to_str (tp->ptid));
5265 continue;
5266 }
5267
5268 if (tp->resumed)
5269 {
5270 if (debug_infrun)
5271 fprintf_unfiltered (gdb_stdlog,
5272 "infrun: restart threads: [%s] resumed\n",
5273 target_pid_to_str (tp->ptid));
5274 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5275 continue;
5276 }
5277
5278 if (thread_is_in_step_over_chain (tp))
5279 {
5280 if (debug_infrun)
5281 fprintf_unfiltered (gdb_stdlog,
5282 "infrun: restart threads: "
5283 "[%s] needs step-over\n",
5284 target_pid_to_str (tp->ptid));
5285 gdb_assert (!tp->resumed);
5286 continue;
5287 }
5288
5289
5290 if (tp->suspend.waitstatus_pending_p)
5291 {
5292 if (debug_infrun)
5293 fprintf_unfiltered (gdb_stdlog,
5294 "infrun: restart threads: "
5295 "[%s] has pending status\n",
5296 target_pid_to_str (tp->ptid));
5297 tp->resumed = 1;
5298 continue;
5299 }
5300
5301 /* If some thread needs to start a step-over at this point, it
5302 should still be in the step-over queue, and thus skipped
5303 above. */
5304 if (thread_still_needs_step_over (tp))
5305 {
5306 internal_error (__FILE__, __LINE__,
5307 "thread [%s] needs a step-over, but not in "
5308 "step-over queue\n",
5309 target_pid_to_str (tp->ptid));
5310 }
5311
5312 if (currently_stepping (tp))
5313 {
5314 if (debug_infrun)
5315 fprintf_unfiltered (gdb_stdlog,
5316 "infrun: restart threads: [%s] was stepping\n",
5317 target_pid_to_str (tp->ptid));
5318 keep_going_stepped_thread (tp);
5319 }
5320 else
5321 {
5322 struct execution_control_state ecss;
5323 struct execution_control_state *ecs = &ecss;
5324
5325 if (debug_infrun)
5326 fprintf_unfiltered (gdb_stdlog,
5327 "infrun: restart threads: [%s] continuing\n",
5328 target_pid_to_str (tp->ptid));
5329 reset_ecs (ecs, tp);
5330 switch_to_thread (tp->ptid);
5331 keep_going_pass_signal (ecs);
5332 }
5333 }
5334}
5335
5336/* Callback for iterate_over_threads. Find a resumed thread that has
5337 a pending waitstatus. */
5338
5339static int
5340resumed_thread_with_pending_status (struct thread_info *tp,
5341 void *arg)
5342{
5343 return (tp->resumed
5344 && tp->suspend.waitstatus_pending_p);
5345}
5346
5347/* Called when we get an event that may finish an in-line or
5348 out-of-line (displaced stepping) step-over started previously.
5349 Return true if the event is processed and we should go back to the
5350 event loop; false if the caller should continue processing the
5351 event. */
5352
5353static int
4d9d9d04
PA
5354finish_step_over (struct execution_control_state *ecs)
5355{
372316f1
PA
5356 int had_step_over_info;
5357
4d9d9d04
PA
5358 displaced_step_fixup (ecs->ptid,
5359 ecs->event_thread->suspend.stop_signal);
5360
372316f1
PA
5361 had_step_over_info = step_over_info_valid_p ();
5362
5363 if (had_step_over_info)
4d9d9d04
PA
5364 {
5365 /* If we're stepping over a breakpoint with all threads locked,
5366 then only the thread that was stepped should be reporting
5367 back an event. */
5368 gdb_assert (ecs->event_thread->control.trap_expected);
5369
5370 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5371 clear_step_over_info ();
5372 }
5373
fbea99ea 5374 if (!target_is_non_stop_p ())
372316f1 5375 return 0;
4d9d9d04
PA
5376
5377 /* Start a new step-over in another thread if there's one that
5378 needs it. */
5379 start_step_over ();
372316f1
PA
5380
5381 /* If we were stepping over a breakpoint before, and haven't started
5382 a new in-line step-over sequence, then restart all other threads
5383 (except the event thread). We can't do this in all-stop, as then
5384 e.g., we wouldn't be able to issue any other remote packet until
5385 these other threads stop. */
5386 if (had_step_over_info && !step_over_info_valid_p ())
5387 {
5388 struct thread_info *pending;
5389
5390 /* If we only have threads with pending statuses, the restart
5391 below won't restart any thread and so nothing re-inserts the
5392 breakpoint we just stepped over. But we need it inserted
5393 when we later process the pending events, otherwise if
5394 another thread has a pending event for this breakpoint too,
5395 we'd discard its event (because the breakpoint that
5396 originally caused the event was no longer inserted). */
5397 context_switch (ecs->ptid);
5398 insert_breakpoints ();
5399
5400 restart_threads (ecs->event_thread);
5401
5402 /* If we have events pending, go through handle_inferior_event
5403 again, picking up a pending event at random. This avoids
5404 thread starvation. */
5405
5406 /* But not if we just stepped over a watchpoint in order to let
5407 the instruction execute so we can evaluate its expression.
5408 The set of watchpoints that triggered is recorded in the
5409 breakpoint objects themselves (see bp->watchpoint_triggered).
5410 If we processed another event first, that other event could
5411 clobber this info. */
5412 if (ecs->event_thread->stepping_over_watchpoint)
5413 return 0;
5414
5415 pending = iterate_over_threads (resumed_thread_with_pending_status,
5416 NULL);
5417 if (pending != NULL)
5418 {
5419 struct thread_info *tp = ecs->event_thread;
5420 struct regcache *regcache;
5421
5422 if (debug_infrun)
5423 {
5424 fprintf_unfiltered (gdb_stdlog,
5425 "infrun: found resumed threads with "
5426 "pending events, saving status\n");
5427 }
5428
5429 gdb_assert (pending != tp);
5430
5431 /* Record the event thread's event for later. */
5432 save_waitstatus (tp, &ecs->ws);
5433 /* This was cleared early, by handle_inferior_event. Set it
5434 so this pending event is considered by
5435 do_target_wait. */
5436 tp->resumed = 1;
5437
5438 gdb_assert (!tp->executing);
5439
5440 regcache = get_thread_regcache (tp->ptid);
5441 tp->suspend.stop_pc = regcache_read_pc (regcache);
5442
5443 if (debug_infrun)
5444 {
5445 fprintf_unfiltered (gdb_stdlog,
5446 "infrun: saved stop_pc=%s for %s "
5447 "(currently_stepping=%d)\n",
5448 paddress (target_gdbarch (),
5449 tp->suspend.stop_pc),
5450 target_pid_to_str (tp->ptid),
5451 currently_stepping (tp));
5452 }
5453
5454 /* This in-line step-over finished; clear this so we won't
5455 start a new one. This is what handle_signal_stop would
5456 do, if we returned false. */
5457 tp->stepping_over_breakpoint = 0;
5458
5459 /* Wake up the event loop again. */
5460 mark_async_event_handler (infrun_async_inferior_event_token);
5461
5462 prepare_to_wait (ecs);
5463 return 1;
5464 }
5465 }
5466
5467 return 0;
4d9d9d04
PA
5468}
5469
4f5d7f63
PA
5470/* Come here when the program has stopped with a signal. */
5471
5472static void
5473handle_signal_stop (struct execution_control_state *ecs)
5474{
5475 struct frame_info *frame;
5476 struct gdbarch *gdbarch;
5477 int stopped_by_watchpoint;
5478 enum stop_kind stop_soon;
5479 int random_signal;
c906108c 5480
f0407826
DE
5481 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5482
5483 /* Do we need to clean up the state of a thread that has
5484 completed a displaced single-step? (Doing so usually affects
5485 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5486 if (finish_step_over (ecs))
5487 return;
f0407826
DE
5488
5489 /* If we either finished a single-step or hit a breakpoint, but
5490 the user wanted this thread to be stopped, pretend we got a
5491 SIG0 (generic unsignaled stop). */
5492 if (ecs->event_thread->stop_requested
5493 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5494 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5495
515630c5 5496 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 5497
527159b7 5498 if (debug_infrun)
237fc4c9 5499 {
5af949e3
UW
5500 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5501 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
5502 struct cleanup *old_chain = save_inferior_ptid ();
5503
5504 inferior_ptid = ecs->ptid;
5af949e3
UW
5505
5506 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5507 paddress (gdbarch, stop_pc));
d92524f1 5508 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5509 {
5510 CORE_ADDR addr;
abbb1732 5511
237fc4c9
PA
5512 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5513
5514 if (target_stopped_data_address (&current_target, &addr))
5515 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5516 "infrun: stopped data address = %s\n",
5517 paddress (gdbarch, addr));
237fc4c9
PA
5518 else
5519 fprintf_unfiltered (gdb_stdlog,
5520 "infrun: (no data address available)\n");
5521 }
7f82dfc7
JK
5522
5523 do_cleanups (old_chain);
237fc4c9 5524 }
527159b7 5525
36fa8042
PA
5526 /* This is originated from start_remote(), start_inferior() and
5527 shared libraries hook functions. */
5528 stop_soon = get_inferior_stop_soon (ecs->ptid);
5529 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5530 {
5531 if (!ptid_equal (ecs->ptid, inferior_ptid))
5532 context_switch (ecs->ptid);
5533 if (debug_infrun)
5534 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5535 stop_print_frame = 1;
22bcd14b 5536 stop_waiting (ecs);
36fa8042
PA
5537 return;
5538 }
5539
36fa8042
PA
5540 /* This originates from attach_command(). We need to overwrite
5541 the stop_signal here, because some kernels don't ignore a
5542 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5543 See more comments in inferior.h. On the other hand, if we
5544 get a non-SIGSTOP, report it to the user - assume the backend
5545 will handle the SIGSTOP if it should show up later.
5546
5547 Also consider that the attach is complete when we see a
5548 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5549 target extended-remote report it instead of a SIGSTOP
5550 (e.g. gdbserver). We already rely on SIGTRAP being our
5551 signal, so this is no exception.
5552
5553 Also consider that the attach is complete when we see a
5554 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5555 the target to stop all threads of the inferior, in case the
5556 low level attach operation doesn't stop them implicitly. If
5557 they weren't stopped implicitly, then the stub will report a
5558 GDB_SIGNAL_0, meaning: stopped for no particular reason
5559 other than GDB's request. */
5560 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5561 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5562 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5563 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5564 {
5565 stop_print_frame = 1;
22bcd14b 5566 stop_waiting (ecs);
36fa8042
PA
5567 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5568 return;
5569 }
5570
488f131b 5571 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
5572 so, then switch to that thread. */
5573 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 5574 {
527159b7 5575 if (debug_infrun)
8a9de0e4 5576 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5577
0d1e5fa7 5578 context_switch (ecs->ptid);
c5aa993b 5579
9a4105ab
AC
5580 if (deprecated_context_hook)
5581 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 5582 }
c906108c 5583
568d6575
UW
5584 /* At this point, get hold of the now-current thread's frame. */
5585 frame = get_current_frame ();
5586 gdbarch = get_frame_arch (frame);
5587
2adfaa28 5588 /* Pull the single step breakpoints out of the target. */
af48d08f 5589 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5590 {
af48d08f
PA
5591 struct regcache *regcache;
5592 struct address_space *aspace;
5593 CORE_ADDR pc;
2adfaa28 5594
af48d08f
PA
5595 regcache = get_thread_regcache (ecs->ptid);
5596 aspace = get_regcache_aspace (regcache);
5597 pc = regcache_read_pc (regcache);
34b7e8a6 5598
af48d08f
PA
5599 /* However, before doing so, if this single-step breakpoint was
5600 actually for another thread, set this thread up for moving
5601 past it. */
5602 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5603 aspace, pc))
5604 {
5605 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5606 {
5607 if (debug_infrun)
5608 {
5609 fprintf_unfiltered (gdb_stdlog,
af48d08f 5610 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5611 "single-step breakpoint\n",
5612 target_pid_to_str (ecs->ptid));
2adfaa28 5613 }
af48d08f
PA
5614 ecs->hit_singlestep_breakpoint = 1;
5615 }
5616 }
5617 else
5618 {
5619 if (debug_infrun)
5620 {
5621 fprintf_unfiltered (gdb_stdlog,
5622 "infrun: [%s] hit its "
5623 "single-step breakpoint\n",
5624 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5625 }
5626 }
488f131b 5627 }
af48d08f 5628 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5629
963f9c80
PA
5630 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5631 && ecs->event_thread->control.trap_expected
5632 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5633 stopped_by_watchpoint = 0;
5634 else
5635 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5636
5637 /* If necessary, step over this watchpoint. We'll be back to display
5638 it in a moment. */
5639 if (stopped_by_watchpoint
d92524f1 5640 && (target_have_steppable_watchpoint
568d6575 5641 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5642 {
488f131b
JB
5643 /* At this point, we are stopped at an instruction which has
5644 attempted to write to a piece of memory under control of
5645 a watchpoint. The instruction hasn't actually executed
5646 yet. If we were to evaluate the watchpoint expression
5647 now, we would get the old value, and therefore no change
5648 would seem to have occurred.
5649
5650 In order to make watchpoints work `right', we really need
5651 to complete the memory write, and then evaluate the
d983da9c
DJ
5652 watchpoint expression. We do this by single-stepping the
5653 target.
5654
7f89fd65 5655 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5656 it. For example, the PA can (with some kernel cooperation)
5657 single step over a watchpoint without disabling the watchpoint.
5658
5659 It is far more common to need to disable a watchpoint to step
5660 the inferior over it. If we have non-steppable watchpoints,
5661 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5662 disable all watchpoints.
5663
5664 Any breakpoint at PC must also be stepped over -- if there's
5665 one, it will have already triggered before the watchpoint
5666 triggered, and we either already reported it to the user, or
5667 it didn't cause a stop and we called keep_going. In either
5668 case, if there was a breakpoint at PC, we must be trying to
5669 step past it. */
5670 ecs->event_thread->stepping_over_watchpoint = 1;
5671 keep_going (ecs);
488f131b
JB
5672 return;
5673 }
5674
4e1c45ea 5675 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5676 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5677 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5678 ecs->event_thread->control.stop_step = 0;
488f131b 5679 stop_print_frame = 1;
488f131b 5680 stopped_by_random_signal = 0;
488f131b 5681
edb3359d
DJ
5682 /* Hide inlined functions starting here, unless we just performed stepi or
5683 nexti. After stepi and nexti, always show the innermost frame (not any
5684 inline function call sites). */
16c381f0 5685 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
5686 {
5687 struct address_space *aspace =
5688 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5689
5690 /* skip_inline_frames is expensive, so we avoid it if we can
5691 determine that the address is one where functions cannot have
5692 been inlined. This improves performance with inferiors that
5693 load a lot of shared libraries, because the solib event
5694 breakpoint is defined as the address of a function (i.e. not
5695 inline). Note that we have to check the previous PC as well
5696 as the current one to catch cases when we have just
5697 single-stepped off a breakpoint prior to reinstating it.
5698 Note that we're assuming that the code we single-step to is
5699 not inline, but that's not definitive: there's nothing
5700 preventing the event breakpoint function from containing
5701 inlined code, and the single-step ending up there. If the
5702 user had set a breakpoint on that inlined code, the missing
5703 skip_inline_frames call would break things. Fortunately
5704 that's an extremely unlikely scenario. */
09ac7c10 5705 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
5706 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5707 && ecs->event_thread->control.trap_expected
5708 && pc_at_non_inline_function (aspace,
5709 ecs->event_thread->prev_pc,
09ac7c10 5710 &ecs->ws)))
1c5a993e
MR
5711 {
5712 skip_inline_frames (ecs->ptid);
5713
5714 /* Re-fetch current thread's frame in case that invalidated
5715 the frame cache. */
5716 frame = get_current_frame ();
5717 gdbarch = get_frame_arch (frame);
5718 }
0574c78f 5719 }
edb3359d 5720
a493e3e2 5721 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5722 && ecs->event_thread->control.trap_expected
568d6575 5723 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5724 && currently_stepping (ecs->event_thread))
3352ef37 5725 {
b50d7442 5726 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5727 also on an instruction that needs to be stepped multiple
1777feb0 5728 times before it's been fully executing. E.g., architectures
3352ef37
AC
5729 with a delay slot. It needs to be stepped twice, once for
5730 the instruction and once for the delay slot. */
5731 int step_through_delay
568d6575 5732 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5733
527159b7 5734 if (debug_infrun && step_through_delay)
8a9de0e4 5735 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5736 if (ecs->event_thread->control.step_range_end == 0
5737 && step_through_delay)
3352ef37
AC
5738 {
5739 /* The user issued a continue when stopped at a breakpoint.
5740 Set up for another trap and get out of here. */
4e1c45ea 5741 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5742 keep_going (ecs);
5743 return;
5744 }
5745 else if (step_through_delay)
5746 {
5747 /* The user issued a step when stopped at a breakpoint.
5748 Maybe we should stop, maybe we should not - the delay
5749 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5750 case, don't decide that here, just set
5751 ecs->stepping_over_breakpoint, making sure we
5752 single-step again before breakpoints are re-inserted. */
4e1c45ea 5753 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5754 }
5755 }
5756
ab04a2af
TT
5757 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5758 handles this event. */
5759 ecs->event_thread->control.stop_bpstat
5760 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5761 stop_pc, ecs->ptid, &ecs->ws);
db82e815 5762
ab04a2af
TT
5763 /* Following in case break condition called a
5764 function. */
5765 stop_print_frame = 1;
73dd234f 5766
ab04a2af
TT
5767 /* This is where we handle "moribund" watchpoints. Unlike
5768 software breakpoints traps, hardware watchpoint traps are
5769 always distinguishable from random traps. If no high-level
5770 watchpoint is associated with the reported stop data address
5771 anymore, then the bpstat does not explain the signal ---
5772 simply make sure to ignore it if `stopped_by_watchpoint' is
5773 set. */
5774
5775 if (debug_infrun
5776 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5777 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5778 GDB_SIGNAL_TRAP)
ab04a2af
TT
5779 && stopped_by_watchpoint)
5780 fprintf_unfiltered (gdb_stdlog,
5781 "infrun: no user watchpoint explains "
5782 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5783
bac7d97b 5784 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5785 at one stage in the past included checks for an inferior
5786 function call's call dummy's return breakpoint. The original
5787 comment, that went with the test, read:
03cebad2 5788
ab04a2af
TT
5789 ``End of a stack dummy. Some systems (e.g. Sony news) give
5790 another signal besides SIGTRAP, so check here as well as
5791 above.''
73dd234f 5792
ab04a2af
TT
5793 If someone ever tries to get call dummys on a
5794 non-executable stack to work (where the target would stop
5795 with something like a SIGSEGV), then those tests might need
5796 to be re-instated. Given, however, that the tests were only
5797 enabled when momentary breakpoints were not being used, I
5798 suspect that it won't be the case.
488f131b 5799
ab04a2af
TT
5800 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5801 be necessary for call dummies on a non-executable stack on
5802 SPARC. */
488f131b 5803
bac7d97b 5804 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5805 random_signal
5806 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5807 ecs->event_thread->suspend.stop_signal);
bac7d97b 5808
1cf4d951
PA
5809 /* Maybe this was a trap for a software breakpoint that has since
5810 been removed. */
5811 if (random_signal && target_stopped_by_sw_breakpoint ())
5812 {
5813 if (program_breakpoint_here_p (gdbarch, stop_pc))
5814 {
5815 struct regcache *regcache;
5816 int decr_pc;
5817
5818 /* Re-adjust PC to what the program would see if GDB was not
5819 debugging it. */
5820 regcache = get_thread_regcache (ecs->event_thread->ptid);
527a273a 5821 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
5822 if (decr_pc != 0)
5823 {
5824 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
5825
5826 if (record_full_is_used ())
5827 record_full_gdb_operation_disable_set ();
5828
5829 regcache_write_pc (regcache, stop_pc + decr_pc);
5830
5831 do_cleanups (old_cleanups);
5832 }
5833 }
5834 else
5835 {
5836 /* A delayed software breakpoint event. Ignore the trap. */
5837 if (debug_infrun)
5838 fprintf_unfiltered (gdb_stdlog,
5839 "infrun: delayed software breakpoint "
5840 "trap, ignoring\n");
5841 random_signal = 0;
5842 }
5843 }
5844
5845 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5846 has since been removed. */
5847 if (random_signal && target_stopped_by_hw_breakpoint ())
5848 {
5849 /* A delayed hardware breakpoint event. Ignore the trap. */
5850 if (debug_infrun)
5851 fprintf_unfiltered (gdb_stdlog,
5852 "infrun: delayed hardware breakpoint/watchpoint "
5853 "trap, ignoring\n");
5854 random_signal = 0;
5855 }
5856
bac7d97b
PA
5857 /* If not, perhaps stepping/nexting can. */
5858 if (random_signal)
5859 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5860 && currently_stepping (ecs->event_thread));
ab04a2af 5861
2adfaa28
PA
5862 /* Perhaps the thread hit a single-step breakpoint of _another_
5863 thread. Single-step breakpoints are transparent to the
5864 breakpoints module. */
5865 if (random_signal)
5866 random_signal = !ecs->hit_singlestep_breakpoint;
5867
bac7d97b
PA
5868 /* No? Perhaps we got a moribund watchpoint. */
5869 if (random_signal)
5870 random_signal = !stopped_by_watchpoint;
ab04a2af 5871
488f131b
JB
5872 /* For the program's own signals, act according to
5873 the signal handling tables. */
5874
ce12b012 5875 if (random_signal)
488f131b
JB
5876 {
5877 /* Signal not for debugging purposes. */
c9657e70 5878 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 5879 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 5880
527159b7 5881 if (debug_infrun)
c9737c08
PA
5882 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5883 gdb_signal_to_symbol_string (stop_signal));
527159b7 5884
488f131b
JB
5885 stopped_by_random_signal = 1;
5886
252fbfc8
PA
5887 /* Always stop on signals if we're either just gaining control
5888 of the program, or the user explicitly requested this thread
5889 to remain stopped. */
d6b48e9c 5890 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 5891 || ecs->event_thread->stop_requested
24291992 5892 || (!inf->detaching
16c381f0 5893 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 5894 {
22bcd14b 5895 stop_waiting (ecs);
488f131b
JB
5896 return;
5897 }
b57bacec
PA
5898
5899 /* Notify observers the signal has "handle print" set. Note we
5900 returned early above if stopping; normal_stop handles the
5901 printing in that case. */
5902 if (signal_print[ecs->event_thread->suspend.stop_signal])
5903 {
5904 /* The signal table tells us to print about this signal. */
5905 target_terminal_ours_for_output ();
5906 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
5907 target_terminal_inferior ();
5908 }
488f131b
JB
5909
5910 /* Clear the signal if it should not be passed. */
16c381f0 5911 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 5912 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 5913
fb14de7b 5914 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 5915 && ecs->event_thread->control.trap_expected
8358c15c 5916 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502 5917 {
372316f1
PA
5918 int was_in_line;
5919
68f53502
AC
5920 /* We were just starting a new sequence, attempting to
5921 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 5922 Instead this signal arrives. This signal will take us out
68f53502
AC
5923 of the stepping range so GDB needs to remember to, when
5924 the signal handler returns, resume stepping off that
5925 breakpoint. */
5926 /* To simplify things, "continue" is forced to use the same
5927 code paths as single-step - set a breakpoint at the
5928 signal return address and then, once hit, step off that
5929 breakpoint. */
237fc4c9
PA
5930 if (debug_infrun)
5931 fprintf_unfiltered (gdb_stdlog,
5932 "infrun: signal arrived while stepping over "
5933 "breakpoint\n");
d3169d93 5934
372316f1
PA
5935 was_in_line = step_over_info_valid_p ();
5936 clear_step_over_info ();
2c03e5be 5937 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 5938 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5939 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5940 ecs->event_thread->control.trap_expected = 0;
d137e6dc 5941
fbea99ea 5942 if (target_is_non_stop_p ())
372316f1 5943 {
fbea99ea
PA
5944 /* Either "set non-stop" is "on", or the target is
5945 always in non-stop mode. In this case, we have a bit
5946 more work to do. Resume the current thread, and if
5947 we had paused all threads, restart them while the
5948 signal handler runs. */
372316f1
PA
5949 keep_going (ecs);
5950
372316f1
PA
5951 if (was_in_line)
5952 {
372316f1
PA
5953 restart_threads (ecs->event_thread);
5954 }
5955 else if (debug_infrun)
5956 {
5957 fprintf_unfiltered (gdb_stdlog,
5958 "infrun: no need to restart threads\n");
5959 }
5960 return;
5961 }
5962
d137e6dc
PA
5963 /* If we were nexting/stepping some other thread, switch to
5964 it, so that we don't continue it, losing control. */
5965 if (!switch_back_to_stepped_thread (ecs))
5966 keep_going (ecs);
9d799f85 5967 return;
68f53502 5968 }
9d799f85 5969
e5f8a7cc
PA
5970 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
5971 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
5972 || ecs->event_thread->control.step_range_end == 1)
edb3359d 5973 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 5974 ecs->event_thread->control.step_stack_frame_id)
8358c15c 5975 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
5976 {
5977 /* The inferior is about to take a signal that will take it
5978 out of the single step range. Set a breakpoint at the
5979 current PC (which is presumably where the signal handler
5980 will eventually return) and then allow the inferior to
5981 run free.
5982
5983 Note that this is only needed for a signal delivered
5984 while in the single-step range. Nested signals aren't a
5985 problem as they eventually all return. */
237fc4c9
PA
5986 if (debug_infrun)
5987 fprintf_unfiltered (gdb_stdlog,
5988 "infrun: signal may take us out of "
5989 "single-step range\n");
5990
372316f1 5991 clear_step_over_info ();
2c03e5be 5992 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 5993 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5994 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5995 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
5996 keep_going (ecs);
5997 return;
d303a6c7 5998 }
9d799f85
AC
5999
6000 /* Note: step_resume_breakpoint may be non-NULL. This occures
6001 when either there's a nested signal, or when there's a
6002 pending signal enabled just as the signal handler returns
6003 (leaving the inferior at the step-resume-breakpoint without
6004 actually executing it). Either way continue until the
6005 breakpoint is really hit. */
c447ac0b
PA
6006
6007 if (!switch_back_to_stepped_thread (ecs))
6008 {
6009 if (debug_infrun)
6010 fprintf_unfiltered (gdb_stdlog,
6011 "infrun: random signal, keep going\n");
6012
6013 keep_going (ecs);
6014 }
6015 return;
488f131b 6016 }
94c57d6a
PA
6017
6018 process_event_stop_test (ecs);
6019}
6020
6021/* Come here when we've got some debug event / signal we can explain
6022 (IOW, not a random signal), and test whether it should cause a
6023 stop, or whether we should resume the inferior (transparently).
6024 E.g., could be a breakpoint whose condition evaluates false; we
6025 could be still stepping within the line; etc. */
6026
6027static void
6028process_event_stop_test (struct execution_control_state *ecs)
6029{
6030 struct symtab_and_line stop_pc_sal;
6031 struct frame_info *frame;
6032 struct gdbarch *gdbarch;
cdaa5b73
PA
6033 CORE_ADDR jmp_buf_pc;
6034 struct bpstat_what what;
94c57d6a 6035
cdaa5b73 6036 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6037
cdaa5b73
PA
6038 frame = get_current_frame ();
6039 gdbarch = get_frame_arch (frame);
fcf3daef 6040
cdaa5b73 6041 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6042
cdaa5b73
PA
6043 if (what.call_dummy)
6044 {
6045 stop_stack_dummy = what.call_dummy;
6046 }
186c406b 6047
243a9253
PA
6048 /* A few breakpoint types have callbacks associated (e.g.,
6049 bp_jit_event). Run them now. */
6050 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6051
cdaa5b73
PA
6052 /* If we hit an internal event that triggers symbol changes, the
6053 current frame will be invalidated within bpstat_what (e.g., if we
6054 hit an internal solib event). Re-fetch it. */
6055 frame = get_current_frame ();
6056 gdbarch = get_frame_arch (frame);
e2e4d78b 6057
cdaa5b73
PA
6058 switch (what.main_action)
6059 {
6060 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6061 /* If we hit the breakpoint at longjmp while stepping, we
6062 install a momentary breakpoint at the target of the
6063 jmp_buf. */
186c406b 6064
cdaa5b73
PA
6065 if (debug_infrun)
6066 fprintf_unfiltered (gdb_stdlog,
6067 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6068
cdaa5b73 6069 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6070
cdaa5b73
PA
6071 if (what.is_longjmp)
6072 {
6073 struct value *arg_value;
6074
6075 /* If we set the longjmp breakpoint via a SystemTap probe,
6076 then use it to extract the arguments. The destination PC
6077 is the third argument to the probe. */
6078 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6079 if (arg_value)
8fa0c4f8
AA
6080 {
6081 jmp_buf_pc = value_as_address (arg_value);
6082 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6083 }
cdaa5b73
PA
6084 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6085 || !gdbarch_get_longjmp_target (gdbarch,
6086 frame, &jmp_buf_pc))
e2e4d78b 6087 {
cdaa5b73
PA
6088 if (debug_infrun)
6089 fprintf_unfiltered (gdb_stdlog,
6090 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6091 "(!gdbarch_get_longjmp_target)\n");
6092 keep_going (ecs);
6093 return;
e2e4d78b 6094 }
e2e4d78b 6095
cdaa5b73
PA
6096 /* Insert a breakpoint at resume address. */
6097 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6098 }
6099 else
6100 check_exception_resume (ecs, frame);
6101 keep_going (ecs);
6102 return;
e81a37f7 6103
cdaa5b73
PA
6104 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6105 {
6106 struct frame_info *init_frame;
e81a37f7 6107
cdaa5b73 6108 /* There are several cases to consider.
c906108c 6109
cdaa5b73
PA
6110 1. The initiating frame no longer exists. In this case we
6111 must stop, because the exception or longjmp has gone too
6112 far.
2c03e5be 6113
cdaa5b73
PA
6114 2. The initiating frame exists, and is the same as the
6115 current frame. We stop, because the exception or longjmp
6116 has been caught.
2c03e5be 6117
cdaa5b73
PA
6118 3. The initiating frame exists and is different from the
6119 current frame. This means the exception or longjmp has
6120 been caught beneath the initiating frame, so keep going.
c906108c 6121
cdaa5b73
PA
6122 4. longjmp breakpoint has been placed just to protect
6123 against stale dummy frames and user is not interested in
6124 stopping around longjmps. */
c5aa993b 6125
cdaa5b73
PA
6126 if (debug_infrun)
6127 fprintf_unfiltered (gdb_stdlog,
6128 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6129
cdaa5b73
PA
6130 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6131 != NULL);
6132 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6133
cdaa5b73
PA
6134 if (what.is_longjmp)
6135 {
b67a2c6f 6136 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6137
cdaa5b73 6138 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6139 {
cdaa5b73
PA
6140 /* Case 4. */
6141 keep_going (ecs);
6142 return;
e5ef252a 6143 }
cdaa5b73 6144 }
c5aa993b 6145
cdaa5b73 6146 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6147
cdaa5b73
PA
6148 if (init_frame)
6149 {
6150 struct frame_id current_id
6151 = get_frame_id (get_current_frame ());
6152 if (frame_id_eq (current_id,
6153 ecs->event_thread->initiating_frame))
6154 {
6155 /* Case 2. Fall through. */
6156 }
6157 else
6158 {
6159 /* Case 3. */
6160 keep_going (ecs);
6161 return;
6162 }
68f53502 6163 }
488f131b 6164
cdaa5b73
PA
6165 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6166 exists. */
6167 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6168
bdc36728 6169 end_stepping_range (ecs);
cdaa5b73
PA
6170 }
6171 return;
e5ef252a 6172
cdaa5b73
PA
6173 case BPSTAT_WHAT_SINGLE:
6174 if (debug_infrun)
6175 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6176 ecs->event_thread->stepping_over_breakpoint = 1;
6177 /* Still need to check other stuff, at least the case where we
6178 are stepping and step out of the right range. */
6179 break;
e5ef252a 6180
cdaa5b73
PA
6181 case BPSTAT_WHAT_STEP_RESUME:
6182 if (debug_infrun)
6183 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6184
cdaa5b73
PA
6185 delete_step_resume_breakpoint (ecs->event_thread);
6186 if (ecs->event_thread->control.proceed_to_finish
6187 && execution_direction == EXEC_REVERSE)
6188 {
6189 struct thread_info *tp = ecs->event_thread;
6190
6191 /* We are finishing a function in reverse, and just hit the
6192 step-resume breakpoint at the start address of the
6193 function, and we're almost there -- just need to back up
6194 by one more single-step, which should take us back to the
6195 function call. */
6196 tp->control.step_range_start = tp->control.step_range_end = 1;
6197 keep_going (ecs);
e5ef252a 6198 return;
cdaa5b73
PA
6199 }
6200 fill_in_stop_func (gdbarch, ecs);
6201 if (stop_pc == ecs->stop_func_start
6202 && execution_direction == EXEC_REVERSE)
6203 {
6204 /* We are stepping over a function call in reverse, and just
6205 hit the step-resume breakpoint at the start address of
6206 the function. Go back to single-stepping, which should
6207 take us back to the function call. */
6208 ecs->event_thread->stepping_over_breakpoint = 1;
6209 keep_going (ecs);
6210 return;
6211 }
6212 break;
e5ef252a 6213
cdaa5b73
PA
6214 case BPSTAT_WHAT_STOP_NOISY:
6215 if (debug_infrun)
6216 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6217 stop_print_frame = 1;
e5ef252a 6218
99619bea
PA
6219 /* Assume the thread stopped for a breapoint. We'll still check
6220 whether a/the breakpoint is there when the thread is next
6221 resumed. */
6222 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6223
22bcd14b 6224 stop_waiting (ecs);
cdaa5b73 6225 return;
e5ef252a 6226
cdaa5b73
PA
6227 case BPSTAT_WHAT_STOP_SILENT:
6228 if (debug_infrun)
6229 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6230 stop_print_frame = 0;
e5ef252a 6231
99619bea
PA
6232 /* Assume the thread stopped for a breapoint. We'll still check
6233 whether a/the breakpoint is there when the thread is next
6234 resumed. */
6235 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6236 stop_waiting (ecs);
cdaa5b73
PA
6237 return;
6238
6239 case BPSTAT_WHAT_HP_STEP_RESUME:
6240 if (debug_infrun)
6241 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6242
6243 delete_step_resume_breakpoint (ecs->event_thread);
6244 if (ecs->event_thread->step_after_step_resume_breakpoint)
6245 {
6246 /* Back when the step-resume breakpoint was inserted, we
6247 were trying to single-step off a breakpoint. Go back to
6248 doing that. */
6249 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6250 ecs->event_thread->stepping_over_breakpoint = 1;
6251 keep_going (ecs);
6252 return;
e5ef252a 6253 }
cdaa5b73
PA
6254 break;
6255
6256 case BPSTAT_WHAT_KEEP_CHECKING:
6257 break;
e5ef252a 6258 }
c906108c 6259
af48d08f
PA
6260 /* If we stepped a permanent breakpoint and we had a high priority
6261 step-resume breakpoint for the address we stepped, but we didn't
6262 hit it, then we must have stepped into the signal handler. The
6263 step-resume was only necessary to catch the case of _not_
6264 stepping into the handler, so delete it, and fall through to
6265 checking whether the step finished. */
6266 if (ecs->event_thread->stepped_breakpoint)
6267 {
6268 struct breakpoint *sr_bp
6269 = ecs->event_thread->control.step_resume_breakpoint;
6270
8d707a12
PA
6271 if (sr_bp != NULL
6272 && sr_bp->loc->permanent
af48d08f
PA
6273 && sr_bp->type == bp_hp_step_resume
6274 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6275 {
6276 if (debug_infrun)
6277 fprintf_unfiltered (gdb_stdlog,
6278 "infrun: stepped permanent breakpoint, stopped in "
6279 "handler\n");
6280 delete_step_resume_breakpoint (ecs->event_thread);
6281 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6282 }
6283 }
6284
cdaa5b73
PA
6285 /* We come here if we hit a breakpoint but should not stop for it.
6286 Possibly we also were stepping and should stop for that. So fall
6287 through and test for stepping. But, if not stepping, do not
6288 stop. */
c906108c 6289
a7212384
UW
6290 /* In all-stop mode, if we're currently stepping but have stopped in
6291 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6292 if (switch_back_to_stepped_thread (ecs))
6293 return;
776f04fa 6294
8358c15c 6295 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6296 {
527159b7 6297 if (debug_infrun)
d3169d93
DJ
6298 fprintf_unfiltered (gdb_stdlog,
6299 "infrun: step-resume breakpoint is inserted\n");
527159b7 6300
488f131b
JB
6301 /* Having a step-resume breakpoint overrides anything
6302 else having to do with stepping commands until
6303 that breakpoint is reached. */
488f131b
JB
6304 keep_going (ecs);
6305 return;
6306 }
c5aa993b 6307
16c381f0 6308 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6309 {
527159b7 6310 if (debug_infrun)
8a9de0e4 6311 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6312 /* Likewise if we aren't even stepping. */
488f131b
JB
6313 keep_going (ecs);
6314 return;
6315 }
c5aa993b 6316
4b7703ad
JB
6317 /* Re-fetch current thread's frame in case the code above caused
6318 the frame cache to be re-initialized, making our FRAME variable
6319 a dangling pointer. */
6320 frame = get_current_frame ();
628fe4e4 6321 gdbarch = get_frame_arch (frame);
7e324e48 6322 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6323
488f131b 6324 /* If stepping through a line, keep going if still within it.
c906108c 6325
488f131b
JB
6326 Note that step_range_end is the address of the first instruction
6327 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6328 within it!
6329
6330 Note also that during reverse execution, we may be stepping
6331 through a function epilogue and therefore must detect when
6332 the current-frame changes in the middle of a line. */
6333
ce4c476a 6334 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 6335 && (execution_direction != EXEC_REVERSE
388a8562 6336 || frame_id_eq (get_frame_id (frame),
16c381f0 6337 ecs->event_thread->control.step_frame_id)))
488f131b 6338 {
527159b7 6339 if (debug_infrun)
5af949e3
UW
6340 fprintf_unfiltered
6341 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6342 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6343 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6344
c1e36e3e
PA
6345 /* Tentatively re-enable range stepping; `resume' disables it if
6346 necessary (e.g., if we're stepping over a breakpoint or we
6347 have software watchpoints). */
6348 ecs->event_thread->control.may_range_step = 1;
6349
b2175913
MS
6350 /* When stepping backward, stop at beginning of line range
6351 (unless it's the function entry point, in which case
6352 keep going back to the call point). */
16c381f0 6353 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6354 && stop_pc != ecs->stop_func_start
6355 && execution_direction == EXEC_REVERSE)
bdc36728 6356 end_stepping_range (ecs);
b2175913
MS
6357 else
6358 keep_going (ecs);
6359
488f131b
JB
6360 return;
6361 }
c5aa993b 6362
488f131b 6363 /* We stepped out of the stepping range. */
c906108c 6364
488f131b 6365 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6366 loader dynamic symbol resolution code...
6367
6368 EXEC_FORWARD: we keep on single stepping until we exit the run
6369 time loader code and reach the callee's address.
6370
6371 EXEC_REVERSE: we've already executed the callee (backward), and
6372 the runtime loader code is handled just like any other
6373 undebuggable function call. Now we need only keep stepping
6374 backward through the trampoline code, and that's handled further
6375 down, so there is nothing for us to do here. */
6376
6377 if (execution_direction != EXEC_REVERSE
16c381f0 6378 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 6379 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 6380 {
4c8c40e6 6381 CORE_ADDR pc_after_resolver =
568d6575 6382 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 6383
527159b7 6384 if (debug_infrun)
3e43a32a
MS
6385 fprintf_unfiltered (gdb_stdlog,
6386 "infrun: stepped into dynsym resolve code\n");
527159b7 6387
488f131b
JB
6388 if (pc_after_resolver)
6389 {
6390 /* Set up a step-resume breakpoint at the address
6391 indicated by SKIP_SOLIB_RESOLVER. */
6392 struct symtab_and_line sr_sal;
abbb1732 6393
fe39c653 6394 init_sal (&sr_sal);
488f131b 6395 sr_sal.pc = pc_after_resolver;
6c95b8df 6396 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6397
a6d9a66e
UW
6398 insert_step_resume_breakpoint_at_sal (gdbarch,
6399 sr_sal, null_frame_id);
c5aa993b 6400 }
c906108c 6401
488f131b
JB
6402 keep_going (ecs);
6403 return;
6404 }
c906108c 6405
16c381f0
JK
6406 if (ecs->event_thread->control.step_range_end != 1
6407 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6408 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6409 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6410 {
527159b7 6411 if (debug_infrun)
3e43a32a
MS
6412 fprintf_unfiltered (gdb_stdlog,
6413 "infrun: stepped into signal trampoline\n");
42edda50 6414 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6415 a signal trampoline (either by a signal being delivered or by
6416 the signal handler returning). Just single-step until the
6417 inferior leaves the trampoline (either by calling the handler
6418 or returning). */
488f131b
JB
6419 keep_going (ecs);
6420 return;
6421 }
c906108c 6422
14132e89
MR
6423 /* If we're in the return path from a shared library trampoline,
6424 we want to proceed through the trampoline when stepping. */
6425 /* macro/2012-04-25: This needs to come before the subroutine
6426 call check below as on some targets return trampolines look
6427 like subroutine calls (MIPS16 return thunks). */
6428 if (gdbarch_in_solib_return_trampoline (gdbarch,
6429 stop_pc, ecs->stop_func_name)
6430 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6431 {
6432 /* Determine where this trampoline returns. */
6433 CORE_ADDR real_stop_pc;
6434
6435 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6436
6437 if (debug_infrun)
6438 fprintf_unfiltered (gdb_stdlog,
6439 "infrun: stepped into solib return tramp\n");
6440
6441 /* Only proceed through if we know where it's going. */
6442 if (real_stop_pc)
6443 {
6444 /* And put the step-breakpoint there and go until there. */
6445 struct symtab_and_line sr_sal;
6446
6447 init_sal (&sr_sal); /* initialize to zeroes */
6448 sr_sal.pc = real_stop_pc;
6449 sr_sal.section = find_pc_overlay (sr_sal.pc);
6450 sr_sal.pspace = get_frame_program_space (frame);
6451
6452 /* Do not specify what the fp should be when we stop since
6453 on some machines the prologue is where the new fp value
6454 is established. */
6455 insert_step_resume_breakpoint_at_sal (gdbarch,
6456 sr_sal, null_frame_id);
6457
6458 /* Restart without fiddling with the step ranges or
6459 other state. */
6460 keep_going (ecs);
6461 return;
6462 }
6463 }
6464
c17eaafe
DJ
6465 /* Check for subroutine calls. The check for the current frame
6466 equalling the step ID is not necessary - the check of the
6467 previous frame's ID is sufficient - but it is a common case and
6468 cheaper than checking the previous frame's ID.
14e60db5
DJ
6469
6470 NOTE: frame_id_eq will never report two invalid frame IDs as
6471 being equal, so to get into this block, both the current and
6472 previous frame must have valid frame IDs. */
005ca36a
JB
6473 /* The outer_frame_id check is a heuristic to detect stepping
6474 through startup code. If we step over an instruction which
6475 sets the stack pointer from an invalid value to a valid value,
6476 we may detect that as a subroutine call from the mythical
6477 "outermost" function. This could be fixed by marking
6478 outermost frames as !stack_p,code_p,special_p. Then the
6479 initial outermost frame, before sp was valid, would
ce6cca6d 6480 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6481 for more. */
edb3359d 6482 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6483 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6484 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6485 ecs->event_thread->control.step_stack_frame_id)
6486 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6487 outer_frame_id)
885eeb5b
PA
6488 || (ecs->event_thread->control.step_start_function
6489 != find_pc_function (stop_pc)))))
488f131b 6490 {
95918acb 6491 CORE_ADDR real_stop_pc;
8fb3e588 6492
527159b7 6493 if (debug_infrun)
8a9de0e4 6494 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6495
b7a084be 6496 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6497 {
6498 /* I presume that step_over_calls is only 0 when we're
6499 supposed to be stepping at the assembly language level
6500 ("stepi"). Just stop. */
388a8562 6501 /* And this works the same backward as frontward. MVS */
bdc36728 6502 end_stepping_range (ecs);
95918acb
AC
6503 return;
6504 }
8fb3e588 6505
388a8562
MS
6506 /* Reverse stepping through solib trampolines. */
6507
6508 if (execution_direction == EXEC_REVERSE
16c381f0 6509 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6510 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6511 || (ecs->stop_func_start == 0
6512 && in_solib_dynsym_resolve_code (stop_pc))))
6513 {
6514 /* Any solib trampoline code can be handled in reverse
6515 by simply continuing to single-step. We have already
6516 executed the solib function (backwards), and a few
6517 steps will take us back through the trampoline to the
6518 caller. */
6519 keep_going (ecs);
6520 return;
6521 }
6522
16c381f0 6523 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6524 {
b2175913
MS
6525 /* We're doing a "next".
6526
6527 Normal (forward) execution: set a breakpoint at the
6528 callee's return address (the address at which the caller
6529 will resume).
6530
6531 Reverse (backward) execution. set the step-resume
6532 breakpoint at the start of the function that we just
6533 stepped into (backwards), and continue to there. When we
6130d0b7 6534 get there, we'll need to single-step back to the caller. */
b2175913
MS
6535
6536 if (execution_direction == EXEC_REVERSE)
6537 {
acf9414f
JK
6538 /* If we're already at the start of the function, we've either
6539 just stepped backward into a single instruction function,
6540 or stepped back out of a signal handler to the first instruction
6541 of the function. Just keep going, which will single-step back
6542 to the caller. */
58c48e72 6543 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
6544 {
6545 struct symtab_and_line sr_sal;
6546
6547 /* Normal function call return (static or dynamic). */
6548 init_sal (&sr_sal);
6549 sr_sal.pc = ecs->stop_func_start;
6550 sr_sal.pspace = get_frame_program_space (frame);
6551 insert_step_resume_breakpoint_at_sal (gdbarch,
6552 sr_sal, null_frame_id);
6553 }
b2175913
MS
6554 }
6555 else
568d6575 6556 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6557
8567c30f
AC
6558 keep_going (ecs);
6559 return;
6560 }
a53c66de 6561
95918acb 6562 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6563 calling routine and the real function), locate the real
6564 function. That's what tells us (a) whether we want to step
6565 into it at all, and (b) what prologue we want to run to the
6566 end of, if we do step into it. */
568d6575 6567 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6568 if (real_stop_pc == 0)
568d6575 6569 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6570 if (real_stop_pc != 0)
6571 ecs->stop_func_start = real_stop_pc;
8fb3e588 6572
db5f024e 6573 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
6574 {
6575 struct symtab_and_line sr_sal;
abbb1732 6576
1b2bfbb9
RC
6577 init_sal (&sr_sal);
6578 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6579 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6580
a6d9a66e
UW
6581 insert_step_resume_breakpoint_at_sal (gdbarch,
6582 sr_sal, null_frame_id);
8fb3e588
AC
6583 keep_going (ecs);
6584 return;
1b2bfbb9
RC
6585 }
6586
95918acb 6587 /* If we have line number information for the function we are
1bfeeb0f
JL
6588 thinking of stepping into and the function isn't on the skip
6589 list, step into it.
95918acb 6590
8fb3e588
AC
6591 If there are several symtabs at that PC (e.g. with include
6592 files), just want to know whether *any* of them have line
6593 numbers. find_pc_line handles this. */
95918acb
AC
6594 {
6595 struct symtab_and_line tmp_sal;
8fb3e588 6596
95918acb 6597 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6598 if (tmp_sal.line != 0
85817405
JK
6599 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6600 &tmp_sal))
95918acb 6601 {
b2175913 6602 if (execution_direction == EXEC_REVERSE)
568d6575 6603 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6604 else
568d6575 6605 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6606 return;
6607 }
6608 }
6609
6610 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6611 set, we stop the step so that the user has a chance to switch
6612 in assembly mode. */
16c381f0 6613 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6614 && step_stop_if_no_debug)
95918acb 6615 {
bdc36728 6616 end_stepping_range (ecs);
95918acb
AC
6617 return;
6618 }
6619
b2175913
MS
6620 if (execution_direction == EXEC_REVERSE)
6621 {
acf9414f
JK
6622 /* If we're already at the start of the function, we've either just
6623 stepped backward into a single instruction function without line
6624 number info, or stepped back out of a signal handler to the first
6625 instruction of the function without line number info. Just keep
6626 going, which will single-step back to the caller. */
6627 if (ecs->stop_func_start != stop_pc)
6628 {
6629 /* Set a breakpoint at callee's start address.
6630 From there we can step once and be back in the caller. */
6631 struct symtab_and_line sr_sal;
abbb1732 6632
acf9414f
JK
6633 init_sal (&sr_sal);
6634 sr_sal.pc = ecs->stop_func_start;
6635 sr_sal.pspace = get_frame_program_space (frame);
6636 insert_step_resume_breakpoint_at_sal (gdbarch,
6637 sr_sal, null_frame_id);
6638 }
b2175913
MS
6639 }
6640 else
6641 /* Set a breakpoint at callee's return address (the address
6642 at which the caller will resume). */
568d6575 6643 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6644
95918acb 6645 keep_going (ecs);
488f131b 6646 return;
488f131b 6647 }
c906108c 6648
fdd654f3
MS
6649 /* Reverse stepping through solib trampolines. */
6650
6651 if (execution_direction == EXEC_REVERSE
16c381f0 6652 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
6653 {
6654 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6655 || (ecs->stop_func_start == 0
6656 && in_solib_dynsym_resolve_code (stop_pc)))
6657 {
6658 /* Any solib trampoline code can be handled in reverse
6659 by simply continuing to single-step. We have already
6660 executed the solib function (backwards), and a few
6661 steps will take us back through the trampoline to the
6662 caller. */
6663 keep_going (ecs);
6664 return;
6665 }
6666 else if (in_solib_dynsym_resolve_code (stop_pc))
6667 {
6668 /* Stepped backward into the solib dynsym resolver.
6669 Set a breakpoint at its start and continue, then
6670 one more step will take us out. */
6671 struct symtab_and_line sr_sal;
abbb1732 6672
fdd654f3
MS
6673 init_sal (&sr_sal);
6674 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6675 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6676 insert_step_resume_breakpoint_at_sal (gdbarch,
6677 sr_sal, null_frame_id);
6678 keep_going (ecs);
6679 return;
6680 }
6681 }
6682
2afb61aa 6683 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 6684
1b2bfbb9
RC
6685 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6686 the trampoline processing logic, however, there are some trampolines
6687 that have no names, so we should do trampoline handling first. */
16c381f0 6688 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6689 && ecs->stop_func_name == NULL
2afb61aa 6690 && stop_pc_sal.line == 0)
1b2bfbb9 6691 {
527159b7 6692 if (debug_infrun)
3e43a32a
MS
6693 fprintf_unfiltered (gdb_stdlog,
6694 "infrun: stepped into undebuggable function\n");
527159b7 6695
1b2bfbb9 6696 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6697 undebuggable function (where there is no debugging information
6698 and no line number corresponding to the address where the
1b2bfbb9
RC
6699 inferior stopped). Since we want to skip this kind of code,
6700 we keep going until the inferior returns from this
14e60db5
DJ
6701 function - unless the user has asked us not to (via
6702 set step-mode) or we no longer know how to get back
6703 to the call site. */
6704 if (step_stop_if_no_debug
c7ce8faa 6705 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6706 {
6707 /* If we have no line number and the step-stop-if-no-debug
6708 is set, we stop the step so that the user has a chance to
6709 switch in assembly mode. */
bdc36728 6710 end_stepping_range (ecs);
1b2bfbb9
RC
6711 return;
6712 }
6713 else
6714 {
6715 /* Set a breakpoint at callee's return address (the address
6716 at which the caller will resume). */
568d6575 6717 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6718 keep_going (ecs);
6719 return;
6720 }
6721 }
6722
16c381f0 6723 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6724 {
6725 /* It is stepi or nexti. We always want to stop stepping after
6726 one instruction. */
527159b7 6727 if (debug_infrun)
8a9de0e4 6728 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6729 end_stepping_range (ecs);
1b2bfbb9
RC
6730 return;
6731 }
6732
2afb61aa 6733 if (stop_pc_sal.line == 0)
488f131b
JB
6734 {
6735 /* We have no line number information. That means to stop
6736 stepping (does this always happen right after one instruction,
6737 when we do "s" in a function with no line numbers,
6738 or can this happen as a result of a return or longjmp?). */
527159b7 6739 if (debug_infrun)
8a9de0e4 6740 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6741 end_stepping_range (ecs);
488f131b
JB
6742 return;
6743 }
c906108c 6744
edb3359d
DJ
6745 /* Look for "calls" to inlined functions, part one. If the inline
6746 frame machinery detected some skipped call sites, we have entered
6747 a new inline function. */
6748
6749 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6750 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
6751 && inline_skipped_frames (ecs->ptid))
6752 {
6753 struct symtab_and_line call_sal;
6754
6755 if (debug_infrun)
6756 fprintf_unfiltered (gdb_stdlog,
6757 "infrun: stepped into inlined function\n");
6758
6759 find_frame_sal (get_current_frame (), &call_sal);
6760
16c381f0 6761 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6762 {
6763 /* For "step", we're going to stop. But if the call site
6764 for this inlined function is on the same source line as
6765 we were previously stepping, go down into the function
6766 first. Otherwise stop at the call site. */
6767
6768 if (call_sal.line == ecs->event_thread->current_line
6769 && call_sal.symtab == ecs->event_thread->current_symtab)
6770 step_into_inline_frame (ecs->ptid);
6771
bdc36728 6772 end_stepping_range (ecs);
edb3359d
DJ
6773 return;
6774 }
6775 else
6776 {
6777 /* For "next", we should stop at the call site if it is on a
6778 different source line. Otherwise continue through the
6779 inlined function. */
6780 if (call_sal.line == ecs->event_thread->current_line
6781 && call_sal.symtab == ecs->event_thread->current_symtab)
6782 keep_going (ecs);
6783 else
bdc36728 6784 end_stepping_range (ecs);
edb3359d
DJ
6785 return;
6786 }
6787 }
6788
6789 /* Look for "calls" to inlined functions, part two. If we are still
6790 in the same real function we were stepping through, but we have
6791 to go further up to find the exact frame ID, we are stepping
6792 through a more inlined call beyond its call site. */
6793
6794 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6795 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6796 ecs->event_thread->control.step_frame_id)
edb3359d 6797 && stepped_in_from (get_current_frame (),
16c381f0 6798 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6799 {
6800 if (debug_infrun)
6801 fprintf_unfiltered (gdb_stdlog,
6802 "infrun: stepping through inlined function\n");
6803
16c381f0 6804 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6805 keep_going (ecs);
6806 else
bdc36728 6807 end_stepping_range (ecs);
edb3359d
DJ
6808 return;
6809 }
6810
2afb61aa 6811 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6812 && (ecs->event_thread->current_line != stop_pc_sal.line
6813 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6814 {
6815 /* We are at the start of a different line. So stop. Note that
6816 we don't stop if we step into the middle of a different line.
6817 That is said to make things like for (;;) statements work
6818 better. */
527159b7 6819 if (debug_infrun)
3e43a32a
MS
6820 fprintf_unfiltered (gdb_stdlog,
6821 "infrun: stepped to a different line\n");
bdc36728 6822 end_stepping_range (ecs);
488f131b
JB
6823 return;
6824 }
c906108c 6825
488f131b 6826 /* We aren't done stepping.
c906108c 6827
488f131b
JB
6828 Optimize by setting the stepping range to the line.
6829 (We might not be in the original line, but if we entered a
6830 new line in mid-statement, we continue stepping. This makes
6831 things like for(;;) statements work better.) */
c906108c 6832
16c381f0
JK
6833 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6834 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6835 ecs->event_thread->control.may_range_step = 1;
edb3359d 6836 set_step_info (frame, stop_pc_sal);
488f131b 6837
527159b7 6838 if (debug_infrun)
8a9de0e4 6839 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6840 keep_going (ecs);
104c1213
JM
6841}
6842
c447ac0b
PA
6843/* In all-stop mode, if we're currently stepping but have stopped in
6844 some other thread, we may need to switch back to the stepped
6845 thread. Returns true we set the inferior running, false if we left
6846 it stopped (and the event needs further processing). */
6847
6848static int
6849switch_back_to_stepped_thread (struct execution_control_state *ecs)
6850{
fbea99ea 6851 if (!target_is_non_stop_p ())
c447ac0b
PA
6852 {
6853 struct thread_info *tp;
99619bea
PA
6854 struct thread_info *stepping_thread;
6855
6856 /* If any thread is blocked on some internal breakpoint, and we
6857 simply need to step over that breakpoint to get it going
6858 again, do that first. */
6859
6860 /* However, if we see an event for the stepping thread, then we
6861 know all other threads have been moved past their breakpoints
6862 already. Let the caller check whether the step is finished,
6863 etc., before deciding to move it past a breakpoint. */
6864 if (ecs->event_thread->control.step_range_end != 0)
6865 return 0;
6866
6867 /* Check if the current thread is blocked on an incomplete
6868 step-over, interrupted by a random signal. */
6869 if (ecs->event_thread->control.trap_expected
6870 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 6871 {
99619bea
PA
6872 if (debug_infrun)
6873 {
6874 fprintf_unfiltered (gdb_stdlog,
6875 "infrun: need to finish step-over of [%s]\n",
6876 target_pid_to_str (ecs->event_thread->ptid));
6877 }
6878 keep_going (ecs);
6879 return 1;
6880 }
2adfaa28 6881
99619bea
PA
6882 /* Check if the current thread is blocked by a single-step
6883 breakpoint of another thread. */
6884 if (ecs->hit_singlestep_breakpoint)
6885 {
6886 if (debug_infrun)
6887 {
6888 fprintf_unfiltered (gdb_stdlog,
6889 "infrun: need to step [%s] over single-step "
6890 "breakpoint\n",
6891 target_pid_to_str (ecs->ptid));
6892 }
6893 keep_going (ecs);
6894 return 1;
6895 }
6896
4d9d9d04
PA
6897 /* If this thread needs yet another step-over (e.g., stepping
6898 through a delay slot), do it first before moving on to
6899 another thread. */
6900 if (thread_still_needs_step_over (ecs->event_thread))
6901 {
6902 if (debug_infrun)
6903 {
6904 fprintf_unfiltered (gdb_stdlog,
6905 "infrun: thread [%s] still needs step-over\n",
6906 target_pid_to_str (ecs->event_thread->ptid));
6907 }
6908 keep_going (ecs);
6909 return 1;
6910 }
70509625 6911
483805cf
PA
6912 /* If scheduler locking applies even if not stepping, there's no
6913 need to walk over threads. Above we've checked whether the
6914 current thread is stepping. If some other thread not the
6915 event thread is stepping, then it must be that scheduler
6916 locking is not in effect. */
856e7dd6 6917 if (schedlock_applies (ecs->event_thread))
483805cf
PA
6918 return 0;
6919
4d9d9d04
PA
6920 /* Otherwise, we no longer expect a trap in the current thread.
6921 Clear the trap_expected flag before switching back -- this is
6922 what keep_going does as well, if we call it. */
6923 ecs->event_thread->control.trap_expected = 0;
6924
6925 /* Likewise, clear the signal if it should not be passed. */
6926 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6927 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6928
6929 /* Do all pending step-overs before actually proceeding with
483805cf 6930 step/next/etc. */
4d9d9d04
PA
6931 if (start_step_over ())
6932 {
6933 prepare_to_wait (ecs);
6934 return 1;
6935 }
6936
6937 /* Look for the stepping/nexting thread. */
483805cf 6938 stepping_thread = NULL;
4d9d9d04 6939
034f788c 6940 ALL_NON_EXITED_THREADS (tp)
483805cf 6941 {
fbea99ea
PA
6942 /* Ignore threads of processes the caller is not
6943 resuming. */
483805cf 6944 if (!sched_multi
1afd5965 6945 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
483805cf
PA
6946 continue;
6947
6948 /* When stepping over a breakpoint, we lock all threads
6949 except the one that needs to move past the breakpoint.
6950 If a non-event thread has this set, the "incomplete
6951 step-over" check above should have caught it earlier. */
372316f1
PA
6952 if (tp->control.trap_expected)
6953 {
6954 internal_error (__FILE__, __LINE__,
6955 "[%s] has inconsistent state: "
6956 "trap_expected=%d\n",
6957 target_pid_to_str (tp->ptid),
6958 tp->control.trap_expected);
6959 }
483805cf
PA
6960
6961 /* Did we find the stepping thread? */
6962 if (tp->control.step_range_end)
6963 {
6964 /* Yep. There should only one though. */
6965 gdb_assert (stepping_thread == NULL);
6966
6967 /* The event thread is handled at the top, before we
6968 enter this loop. */
6969 gdb_assert (tp != ecs->event_thread);
6970
6971 /* If some thread other than the event thread is
6972 stepping, then scheduler locking can't be in effect,
6973 otherwise we wouldn't have resumed the current event
6974 thread in the first place. */
856e7dd6 6975 gdb_assert (!schedlock_applies (tp));
483805cf
PA
6976
6977 stepping_thread = tp;
6978 }
99619bea
PA
6979 }
6980
483805cf 6981 if (stepping_thread != NULL)
99619bea 6982 {
c447ac0b
PA
6983 if (debug_infrun)
6984 fprintf_unfiltered (gdb_stdlog,
6985 "infrun: switching back to stepped thread\n");
6986
2ac7589c
PA
6987 if (keep_going_stepped_thread (stepping_thread))
6988 {
6989 prepare_to_wait (ecs);
6990 return 1;
6991 }
6992 }
6993 }
2adfaa28 6994
2ac7589c
PA
6995 return 0;
6996}
2adfaa28 6997
2ac7589c
PA
6998/* Set a previously stepped thread back to stepping. Returns true on
6999 success, false if the resume is not possible (e.g., the thread
7000 vanished). */
7001
7002static int
7003keep_going_stepped_thread (struct thread_info *tp)
7004{
7005 struct frame_info *frame;
7006 struct gdbarch *gdbarch;
7007 struct execution_control_state ecss;
7008 struct execution_control_state *ecs = &ecss;
2adfaa28 7009
2ac7589c
PA
7010 /* If the stepping thread exited, then don't try to switch back and
7011 resume it, which could fail in several different ways depending
7012 on the target. Instead, just keep going.
2adfaa28 7013
2ac7589c
PA
7014 We can find a stepping dead thread in the thread list in two
7015 cases:
2adfaa28 7016
2ac7589c
PA
7017 - The target supports thread exit events, and when the target
7018 tries to delete the thread from the thread list, inferior_ptid
7019 pointed at the exiting thread. In such case, calling
7020 delete_thread does not really remove the thread from the list;
7021 instead, the thread is left listed, with 'exited' state.
64ce06e4 7022
2ac7589c
PA
7023 - The target's debug interface does not support thread exit
7024 events, and so we have no idea whatsoever if the previously
7025 stepping thread is still alive. For that reason, we need to
7026 synchronously query the target now. */
2adfaa28 7027
2ac7589c
PA
7028 if (is_exited (tp->ptid)
7029 || !target_thread_alive (tp->ptid))
7030 {
7031 if (debug_infrun)
7032 fprintf_unfiltered (gdb_stdlog,
7033 "infrun: not resuming previously "
7034 "stepped thread, it has vanished\n");
7035
7036 delete_thread (tp->ptid);
7037 return 0;
c447ac0b 7038 }
2ac7589c
PA
7039
7040 if (debug_infrun)
7041 fprintf_unfiltered (gdb_stdlog,
7042 "infrun: resuming previously stepped thread\n");
7043
7044 reset_ecs (ecs, tp);
7045 switch_to_thread (tp->ptid);
7046
7047 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7048 frame = get_current_frame ();
7049 gdbarch = get_frame_arch (frame);
7050
7051 /* If the PC of the thread we were trying to single-step has
7052 changed, then that thread has trapped or been signaled, but the
7053 event has not been reported to GDB yet. Re-poll the target
7054 looking for this particular thread's event (i.e. temporarily
7055 enable schedlock) by:
7056
7057 - setting a break at the current PC
7058 - resuming that particular thread, only (by setting trap
7059 expected)
7060
7061 This prevents us continuously moving the single-step breakpoint
7062 forward, one instruction at a time, overstepping. */
7063
7064 if (stop_pc != tp->prev_pc)
7065 {
7066 ptid_t resume_ptid;
7067
7068 if (debug_infrun)
7069 fprintf_unfiltered (gdb_stdlog,
7070 "infrun: expected thread advanced also (%s -> %s)\n",
7071 paddress (target_gdbarch (), tp->prev_pc),
7072 paddress (target_gdbarch (), stop_pc));
7073
7074 /* Clear the info of the previous step-over, as it's no longer
7075 valid (if the thread was trying to step over a breakpoint, it
7076 has already succeeded). It's what keep_going would do too,
7077 if we called it. Do this before trying to insert the sss
7078 breakpoint, otherwise if we were previously trying to step
7079 over this exact address in another thread, the breakpoint is
7080 skipped. */
7081 clear_step_over_info ();
7082 tp->control.trap_expected = 0;
7083
7084 insert_single_step_breakpoint (get_frame_arch (frame),
7085 get_frame_address_space (frame),
7086 stop_pc);
7087
372316f1 7088 tp->resumed = 1;
fbea99ea 7089 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7090 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7091 }
7092 else
7093 {
7094 if (debug_infrun)
7095 fprintf_unfiltered (gdb_stdlog,
7096 "infrun: expected thread still hasn't advanced\n");
7097
7098 keep_going_pass_signal (ecs);
7099 }
7100 return 1;
c447ac0b
PA
7101}
7102
8b061563
PA
7103/* Is thread TP in the middle of (software or hardware)
7104 single-stepping? (Note the result of this function must never be
7105 passed directly as target_resume's STEP parameter.) */
104c1213 7106
a289b8f6 7107static int
b3444185 7108currently_stepping (struct thread_info *tp)
a7212384 7109{
8358c15c
JK
7110 return ((tp->control.step_range_end
7111 && tp->control.step_resume_breakpoint == NULL)
7112 || tp->control.trap_expected
af48d08f 7113 || tp->stepped_breakpoint
8358c15c 7114 || bpstat_should_step ());
a7212384
UW
7115}
7116
b2175913
MS
7117/* Inferior has stepped into a subroutine call with source code that
7118 we should not step over. Do step to the first line of code in
7119 it. */
c2c6d25f
JM
7120
7121static void
568d6575
UW
7122handle_step_into_function (struct gdbarch *gdbarch,
7123 struct execution_control_state *ecs)
c2c6d25f 7124{
43f3e411 7125 struct compunit_symtab *cust;
2afb61aa 7126 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 7127
7e324e48
GB
7128 fill_in_stop_func (gdbarch, ecs);
7129
43f3e411
DE
7130 cust = find_pc_compunit_symtab (stop_pc);
7131 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7132 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 7133 ecs->stop_func_start);
c2c6d25f 7134
2afb61aa 7135 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7136 /* Use the step_resume_break to step until the end of the prologue,
7137 even if that involves jumps (as it seems to on the vax under
7138 4.2). */
7139 /* If the prologue ends in the middle of a source line, continue to
7140 the end of that source line (if it is still within the function).
7141 Otherwise, just go to end of prologue. */
2afb61aa
PA
7142 if (stop_func_sal.end
7143 && stop_func_sal.pc != ecs->stop_func_start
7144 && stop_func_sal.end < ecs->stop_func_end)
7145 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7146
2dbd5e30
KB
7147 /* Architectures which require breakpoint adjustment might not be able
7148 to place a breakpoint at the computed address. If so, the test
7149 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7150 ecs->stop_func_start to an address at which a breakpoint may be
7151 legitimately placed.
8fb3e588 7152
2dbd5e30
KB
7153 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7154 made, GDB will enter an infinite loop when stepping through
7155 optimized code consisting of VLIW instructions which contain
7156 subinstructions corresponding to different source lines. On
7157 FR-V, it's not permitted to place a breakpoint on any but the
7158 first subinstruction of a VLIW instruction. When a breakpoint is
7159 set, GDB will adjust the breakpoint address to the beginning of
7160 the VLIW instruction. Thus, we need to make the corresponding
7161 adjustment here when computing the stop address. */
8fb3e588 7162
568d6575 7163 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7164 {
7165 ecs->stop_func_start
568d6575 7166 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7167 ecs->stop_func_start);
2dbd5e30
KB
7168 }
7169
c2c6d25f
JM
7170 if (ecs->stop_func_start == stop_pc)
7171 {
7172 /* We are already there: stop now. */
bdc36728 7173 end_stepping_range (ecs);
c2c6d25f
JM
7174 return;
7175 }
7176 else
7177 {
7178 /* Put the step-breakpoint there and go until there. */
fe39c653 7179 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
7180 sr_sal.pc = ecs->stop_func_start;
7181 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7182 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7183
c2c6d25f 7184 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7185 some machines the prologue is where the new fp value is
7186 established. */
a6d9a66e 7187 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7188
7189 /* And make sure stepping stops right away then. */
16c381f0
JK
7190 ecs->event_thread->control.step_range_end
7191 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7192 }
7193 keep_going (ecs);
7194}
d4f3574e 7195
b2175913
MS
7196/* Inferior has stepped backward into a subroutine call with source
7197 code that we should not step over. Do step to the beginning of the
7198 last line of code in it. */
7199
7200static void
568d6575
UW
7201handle_step_into_function_backward (struct gdbarch *gdbarch,
7202 struct execution_control_state *ecs)
b2175913 7203{
43f3e411 7204 struct compunit_symtab *cust;
167e4384 7205 struct symtab_and_line stop_func_sal;
b2175913 7206
7e324e48
GB
7207 fill_in_stop_func (gdbarch, ecs);
7208
43f3e411
DE
7209 cust = find_pc_compunit_symtab (stop_pc);
7210 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7211 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
7212 ecs->stop_func_start);
7213
7214 stop_func_sal = find_pc_line (stop_pc, 0);
7215
7216 /* OK, we're just going to keep stepping here. */
7217 if (stop_func_sal.pc == stop_pc)
7218 {
7219 /* We're there already. Just stop stepping now. */
bdc36728 7220 end_stepping_range (ecs);
b2175913
MS
7221 }
7222 else
7223 {
7224 /* Else just reset the step range and keep going.
7225 No step-resume breakpoint, they don't work for
7226 epilogues, which can have multiple entry paths. */
16c381f0
JK
7227 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7228 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7229 keep_going (ecs);
7230 }
7231 return;
7232}
7233
d3169d93 7234/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7235 This is used to both functions and to skip over code. */
7236
7237static void
2c03e5be
PA
7238insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7239 struct symtab_and_line sr_sal,
7240 struct frame_id sr_id,
7241 enum bptype sr_type)
44cbf7b5 7242{
611c83ae
PA
7243 /* There should never be more than one step-resume or longjmp-resume
7244 breakpoint per thread, so we should never be setting a new
44cbf7b5 7245 step_resume_breakpoint when one is already active. */
8358c15c 7246 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7247 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7248
7249 if (debug_infrun)
7250 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7251 "infrun: inserting step-resume breakpoint at %s\n",
7252 paddress (gdbarch, sr_sal.pc));
d3169d93 7253
8358c15c 7254 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
7255 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7256}
7257
9da8c2a0 7258void
2c03e5be
PA
7259insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7260 struct symtab_and_line sr_sal,
7261 struct frame_id sr_id)
7262{
7263 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7264 sr_sal, sr_id,
7265 bp_step_resume);
44cbf7b5 7266}
7ce450bd 7267
2c03e5be
PA
7268/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7269 This is used to skip a potential signal handler.
7ce450bd 7270
14e60db5
DJ
7271 This is called with the interrupted function's frame. The signal
7272 handler, when it returns, will resume the interrupted function at
7273 RETURN_FRAME.pc. */
d303a6c7
AC
7274
7275static void
2c03e5be 7276insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
7277{
7278 struct symtab_and_line sr_sal;
a6d9a66e 7279 struct gdbarch *gdbarch;
d303a6c7 7280
f4c1edd8 7281 gdb_assert (return_frame != NULL);
d303a6c7
AC
7282 init_sal (&sr_sal); /* initialize to zeros */
7283
a6d9a66e 7284 gdbarch = get_frame_arch (return_frame);
568d6575 7285 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7286 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7287 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7288
2c03e5be
PA
7289 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7290 get_stack_frame_id (return_frame),
7291 bp_hp_step_resume);
d303a6c7
AC
7292}
7293
2c03e5be
PA
7294/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7295 is used to skip a function after stepping into it (for "next" or if
7296 the called function has no debugging information).
14e60db5
DJ
7297
7298 The current function has almost always been reached by single
7299 stepping a call or return instruction. NEXT_FRAME belongs to the
7300 current function, and the breakpoint will be set at the caller's
7301 resume address.
7302
7303 This is a separate function rather than reusing
2c03e5be 7304 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7305 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7306 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7307
7308static void
7309insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7310{
7311 struct symtab_and_line sr_sal;
a6d9a66e 7312 struct gdbarch *gdbarch;
14e60db5
DJ
7313
7314 /* We shouldn't have gotten here if we don't know where the call site
7315 is. */
c7ce8faa 7316 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
7317
7318 init_sal (&sr_sal); /* initialize to zeros */
7319
a6d9a66e 7320 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
7321 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7322 frame_unwind_caller_pc (next_frame));
14e60db5 7323 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7324 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7325
a6d9a66e 7326 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7327 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7328}
7329
611c83ae
PA
7330/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7331 new breakpoint at the target of a jmp_buf. The handling of
7332 longjmp-resume uses the same mechanisms used for handling
7333 "step-resume" breakpoints. */
7334
7335static void
a6d9a66e 7336insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7337{
e81a37f7
TT
7338 /* There should never be more than one longjmp-resume breakpoint per
7339 thread, so we should never be setting a new
611c83ae 7340 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7341 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7342
7343 if (debug_infrun)
7344 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7345 "infrun: inserting longjmp-resume breakpoint at %s\n",
7346 paddress (gdbarch, pc));
611c83ae 7347
e81a37f7 7348 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 7349 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
7350}
7351
186c406b
TT
7352/* Insert an exception resume breakpoint. TP is the thread throwing
7353 the exception. The block B is the block of the unwinder debug hook
7354 function. FRAME is the frame corresponding to the call to this
7355 function. SYM is the symbol of the function argument holding the
7356 target PC of the exception. */
7357
7358static void
7359insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7360 const struct block *b,
186c406b
TT
7361 struct frame_info *frame,
7362 struct symbol *sym)
7363{
492d29ea 7364 TRY
186c406b 7365 {
63e43d3a 7366 struct block_symbol vsym;
186c406b
TT
7367 struct value *value;
7368 CORE_ADDR handler;
7369 struct breakpoint *bp;
7370
63e43d3a
PMR
7371 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7372 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7373 /* If the value was optimized out, revert to the old behavior. */
7374 if (! value_optimized_out (value))
7375 {
7376 handler = value_as_address (value);
7377
7378 if (debug_infrun)
7379 fprintf_unfiltered (gdb_stdlog,
7380 "infrun: exception resume at %lx\n",
7381 (unsigned long) handler);
7382
7383 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7384 handler, bp_exception_resume);
c70a6932
JK
7385
7386 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7387 frame = NULL;
7388
186c406b
TT
7389 bp->thread = tp->num;
7390 inferior_thread ()->control.exception_resume_breakpoint = bp;
7391 }
7392 }
492d29ea
PA
7393 CATCH (e, RETURN_MASK_ERROR)
7394 {
7395 /* We want to ignore errors here. */
7396 }
7397 END_CATCH
186c406b
TT
7398}
7399
28106bc2
SDJ
7400/* A helper for check_exception_resume that sets an
7401 exception-breakpoint based on a SystemTap probe. */
7402
7403static void
7404insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7405 const struct bound_probe *probe,
28106bc2
SDJ
7406 struct frame_info *frame)
7407{
7408 struct value *arg_value;
7409 CORE_ADDR handler;
7410 struct breakpoint *bp;
7411
7412 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7413 if (!arg_value)
7414 return;
7415
7416 handler = value_as_address (arg_value);
7417
7418 if (debug_infrun)
7419 fprintf_unfiltered (gdb_stdlog,
7420 "infrun: exception resume at %s\n",
6bac7473 7421 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7422 handler));
7423
7424 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7425 handler, bp_exception_resume);
7426 bp->thread = tp->num;
7427 inferior_thread ()->control.exception_resume_breakpoint = bp;
7428}
7429
186c406b
TT
7430/* This is called when an exception has been intercepted. Check to
7431 see whether the exception's destination is of interest, and if so,
7432 set an exception resume breakpoint there. */
7433
7434static void
7435check_exception_resume (struct execution_control_state *ecs,
28106bc2 7436 struct frame_info *frame)
186c406b 7437{
729662a5 7438 struct bound_probe probe;
28106bc2
SDJ
7439 struct symbol *func;
7440
7441 /* First see if this exception unwinding breakpoint was set via a
7442 SystemTap probe point. If so, the probe has two arguments: the
7443 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7444 set a breakpoint there. */
6bac7473 7445 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 7446 if (probe.probe)
28106bc2 7447 {
729662a5 7448 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7449 return;
7450 }
7451
7452 func = get_frame_function (frame);
7453 if (!func)
7454 return;
186c406b 7455
492d29ea 7456 TRY
186c406b 7457 {
3977b71f 7458 const struct block *b;
8157b174 7459 struct block_iterator iter;
186c406b
TT
7460 struct symbol *sym;
7461 int argno = 0;
7462
7463 /* The exception breakpoint is a thread-specific breakpoint on
7464 the unwinder's debug hook, declared as:
7465
7466 void _Unwind_DebugHook (void *cfa, void *handler);
7467
7468 The CFA argument indicates the frame to which control is
7469 about to be transferred. HANDLER is the destination PC.
7470
7471 We ignore the CFA and set a temporary breakpoint at HANDLER.
7472 This is not extremely efficient but it avoids issues in gdb
7473 with computing the DWARF CFA, and it also works even in weird
7474 cases such as throwing an exception from inside a signal
7475 handler. */
7476
7477 b = SYMBOL_BLOCK_VALUE (func);
7478 ALL_BLOCK_SYMBOLS (b, iter, sym)
7479 {
7480 if (!SYMBOL_IS_ARGUMENT (sym))
7481 continue;
7482
7483 if (argno == 0)
7484 ++argno;
7485 else
7486 {
7487 insert_exception_resume_breakpoint (ecs->event_thread,
7488 b, frame, sym);
7489 break;
7490 }
7491 }
7492 }
492d29ea
PA
7493 CATCH (e, RETURN_MASK_ERROR)
7494 {
7495 }
7496 END_CATCH
186c406b
TT
7497}
7498
104c1213 7499static void
22bcd14b 7500stop_waiting (struct execution_control_state *ecs)
104c1213 7501{
527159b7 7502 if (debug_infrun)
22bcd14b 7503 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7504
31e77af2
PA
7505 clear_step_over_info ();
7506
cd0fc7c3
SS
7507 /* Let callers know we don't want to wait for the inferior anymore. */
7508 ecs->wait_some_more = 0;
fbea99ea
PA
7509
7510 /* If all-stop, but the target is always in non-stop mode, stop all
7511 threads now that we're presenting the stop to the user. */
7512 if (!non_stop && target_is_non_stop_p ())
7513 stop_all_threads ();
cd0fc7c3
SS
7514}
7515
4d9d9d04
PA
7516/* Like keep_going, but passes the signal to the inferior, even if the
7517 signal is set to nopass. */
d4f3574e
SS
7518
7519static void
4d9d9d04 7520keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7521{
c4dbc9af
PA
7522 /* Make sure normal_stop is called if we get a QUIT handled before
7523 reaching resume. */
7524 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7525
4d9d9d04 7526 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
372316f1 7527 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7528
d4f3574e 7529 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
7530 ecs->event_thread->prev_pc
7531 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 7532
4d9d9d04 7533 if (ecs->event_thread->control.trap_expected)
d4f3574e 7534 {
4d9d9d04
PA
7535 struct thread_info *tp = ecs->event_thread;
7536
7537 if (debug_infrun)
7538 fprintf_unfiltered (gdb_stdlog,
7539 "infrun: %s has trap_expected set, "
7540 "resuming to collect trap\n",
7541 target_pid_to_str (tp->ptid));
7542
a9ba6bae
PA
7543 /* We haven't yet gotten our trap, and either: intercepted a
7544 non-signal event (e.g., a fork); or took a signal which we
7545 are supposed to pass through to the inferior. Simply
7546 continue. */
c4dbc9af 7547 discard_cleanups (old_cleanups);
64ce06e4 7548 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7549 }
372316f1
PA
7550 else if (step_over_info_valid_p ())
7551 {
7552 /* Another thread is stepping over a breakpoint in-line. If
7553 this thread needs a step-over too, queue the request. In
7554 either case, this resume must be deferred for later. */
7555 struct thread_info *tp = ecs->event_thread;
7556
7557 if (ecs->hit_singlestep_breakpoint
7558 || thread_still_needs_step_over (tp))
7559 {
7560 if (debug_infrun)
7561 fprintf_unfiltered (gdb_stdlog,
7562 "infrun: step-over already in progress: "
7563 "step-over for %s deferred\n",
7564 target_pid_to_str (tp->ptid));
7565 thread_step_over_chain_enqueue (tp);
7566 }
7567 else
7568 {
7569 if (debug_infrun)
7570 fprintf_unfiltered (gdb_stdlog,
7571 "infrun: step-over in progress: "
7572 "resume of %s deferred\n",
7573 target_pid_to_str (tp->ptid));
7574 }
7575
7576 discard_cleanups (old_cleanups);
7577 }
d4f3574e
SS
7578 else
7579 {
31e77af2 7580 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7581 int remove_bp;
7582 int remove_wps;
8d297bbf 7583 step_over_what step_what;
31e77af2 7584
d4f3574e 7585 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7586 anyway (if we got a signal, the user asked it be passed to
7587 the child)
7588 -- or --
7589 We got our expected trap, but decided we should resume from
7590 it.
d4f3574e 7591
a9ba6bae 7592 We're going to run this baby now!
d4f3574e 7593
c36b740a
VP
7594 Note that insert_breakpoints won't try to re-insert
7595 already inserted breakpoints. Therefore, we don't
7596 care if breakpoints were already inserted, or not. */
a9ba6bae 7597
31e77af2
PA
7598 /* If we need to step over a breakpoint, and we're not using
7599 displaced stepping to do so, insert all breakpoints
7600 (watchpoints, etc.) but the one we're stepping over, step one
7601 instruction, and then re-insert the breakpoint when that step
7602 is finished. */
963f9c80 7603
6c4cfb24
PA
7604 step_what = thread_still_needs_step_over (ecs->event_thread);
7605
963f9c80 7606 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7607 || (step_what & STEP_OVER_BREAKPOINT));
7608 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7609
cb71640d
PA
7610 /* We can't use displaced stepping if we need to step past a
7611 watchpoint. The instruction copied to the scratch pad would
7612 still trigger the watchpoint. */
7613 if (remove_bp
3fc8eb30 7614 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7615 {
31e77af2 7616 set_step_over_info (get_regcache_aspace (regcache),
963f9c80 7617 regcache_read_pc (regcache), remove_wps);
45e8c884 7618 }
963f9c80
PA
7619 else if (remove_wps)
7620 set_step_over_info (NULL, 0, remove_wps);
372316f1
PA
7621
7622 /* If we now need to do an in-line step-over, we need to stop
7623 all other threads. Note this must be done before
7624 insert_breakpoints below, because that removes the breakpoint
7625 we're about to step over, otherwise other threads could miss
7626 it. */
fbea99ea 7627 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7628 stop_all_threads ();
abbb1732 7629
31e77af2 7630 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7631 TRY
31e77af2
PA
7632 {
7633 insert_breakpoints ();
7634 }
492d29ea 7635 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7636 {
7637 exception_print (gdb_stderr, e);
22bcd14b 7638 stop_waiting (ecs);
de1fe8c8 7639 discard_cleanups (old_cleanups);
31e77af2 7640 return;
d4f3574e 7641 }
492d29ea 7642 END_CATCH
d4f3574e 7643
963f9c80 7644 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7645
c4dbc9af 7646 discard_cleanups (old_cleanups);
64ce06e4 7647 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7648 }
7649
488f131b 7650 prepare_to_wait (ecs);
d4f3574e
SS
7651}
7652
4d9d9d04
PA
7653/* Called when we should continue running the inferior, because the
7654 current event doesn't cause a user visible stop. This does the
7655 resuming part; waiting for the next event is done elsewhere. */
7656
7657static void
7658keep_going (struct execution_control_state *ecs)
7659{
7660 if (ecs->event_thread->control.trap_expected
7661 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7662 ecs->event_thread->control.trap_expected = 0;
7663
7664 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7665 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7666 keep_going_pass_signal (ecs);
7667}
7668
104c1213
JM
7669/* This function normally comes after a resume, before
7670 handle_inferior_event exits. It takes care of any last bits of
7671 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7672
104c1213
JM
7673static void
7674prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7675{
527159b7 7676 if (debug_infrun)
8a9de0e4 7677 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7678
104c1213 7679 ecs->wait_some_more = 1;
0b333c5e
PA
7680
7681 if (!target_is_async_p ())
7682 mark_infrun_async_event_handler ();
c906108c 7683}
11cf8741 7684
fd664c91 7685/* We are done with the step range of a step/next/si/ni command.
b57bacec 7686 Called once for each n of a "step n" operation. */
fd664c91
PA
7687
7688static void
bdc36728 7689end_stepping_range (struct execution_control_state *ecs)
fd664c91 7690{
bdc36728 7691 ecs->event_thread->control.stop_step = 1;
bdc36728 7692 stop_waiting (ecs);
fd664c91
PA
7693}
7694
33d62d64
JK
7695/* Several print_*_reason functions to print why the inferior has stopped.
7696 We always print something when the inferior exits, or receives a signal.
7697 The rest of the cases are dealt with later on in normal_stop and
7698 print_it_typical. Ideally there should be a call to one of these
7699 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7700 stop_waiting is called.
33d62d64 7701
fd664c91
PA
7702 Note that we don't call these directly, instead we delegate that to
7703 the interpreters, through observers. Interpreters then call these
7704 with whatever uiout is right. */
33d62d64 7705
fd664c91
PA
7706void
7707print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7708{
fd664c91 7709 /* For CLI-like interpreters, print nothing. */
33d62d64 7710
fd664c91
PA
7711 if (ui_out_is_mi_like_p (uiout))
7712 {
7713 ui_out_field_string (uiout, "reason",
7714 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7715 }
7716}
33d62d64 7717
fd664c91
PA
7718void
7719print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7720{
33d62d64
JK
7721 annotate_signalled ();
7722 if (ui_out_is_mi_like_p (uiout))
7723 ui_out_field_string
7724 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7725 ui_out_text (uiout, "\nProgram terminated with signal ");
7726 annotate_signal_name ();
7727 ui_out_field_string (uiout, "signal-name",
2ea28649 7728 gdb_signal_to_name (siggnal));
33d62d64
JK
7729 annotate_signal_name_end ();
7730 ui_out_text (uiout, ", ");
7731 annotate_signal_string ();
7732 ui_out_field_string (uiout, "signal-meaning",
2ea28649 7733 gdb_signal_to_string (siggnal));
33d62d64
JK
7734 annotate_signal_string_end ();
7735 ui_out_text (uiout, ".\n");
7736 ui_out_text (uiout, "The program no longer exists.\n");
7737}
7738
fd664c91
PA
7739void
7740print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7741{
fda326dd
TT
7742 struct inferior *inf = current_inferior ();
7743 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7744
33d62d64
JK
7745 annotate_exited (exitstatus);
7746 if (exitstatus)
7747 {
7748 if (ui_out_is_mi_like_p (uiout))
7749 ui_out_field_string (uiout, "reason",
7750 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
7751 ui_out_text (uiout, "[Inferior ");
7752 ui_out_text (uiout, plongest (inf->num));
7753 ui_out_text (uiout, " (");
7754 ui_out_text (uiout, pidstr);
7755 ui_out_text (uiout, ") exited with code ");
33d62d64 7756 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 7757 ui_out_text (uiout, "]\n");
33d62d64
JK
7758 }
7759 else
11cf8741 7760 {
9dc5e2a9 7761 if (ui_out_is_mi_like_p (uiout))
034dad6f 7762 ui_out_field_string
33d62d64 7763 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
7764 ui_out_text (uiout, "[Inferior ");
7765 ui_out_text (uiout, plongest (inf->num));
7766 ui_out_text (uiout, " (");
7767 ui_out_text (uiout, pidstr);
7768 ui_out_text (uiout, ") exited normally]\n");
33d62d64 7769 }
33d62d64
JK
7770}
7771
fd664c91
PA
7772void
7773print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64
JK
7774{
7775 annotate_signal ();
7776
a493e3e2 7777 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
7778 {
7779 struct thread_info *t = inferior_thread ();
7780
7781 ui_out_text (uiout, "\n[");
7782 ui_out_field_string (uiout, "thread-name",
7783 target_pid_to_str (t->ptid));
7784 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
7785 ui_out_text (uiout, " stopped");
7786 }
7787 else
7788 {
7789 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 7790 annotate_signal_name ();
33d62d64
JK
7791 if (ui_out_is_mi_like_p (uiout))
7792 ui_out_field_string
7793 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 7794 ui_out_field_string (uiout, "signal-name",
2ea28649 7795 gdb_signal_to_name (siggnal));
8b93c638
JM
7796 annotate_signal_name_end ();
7797 ui_out_text (uiout, ", ");
7798 annotate_signal_string ();
488f131b 7799 ui_out_field_string (uiout, "signal-meaning",
2ea28649 7800 gdb_signal_to_string (siggnal));
8b93c638 7801 annotate_signal_string_end ();
33d62d64
JK
7802 }
7803 ui_out_text (uiout, ".\n");
7804}
252fbfc8 7805
fd664c91
PA
7806void
7807print_no_history_reason (struct ui_out *uiout)
33d62d64 7808{
fd664c91 7809 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
11cf8741 7810}
43ff13b4 7811
0c7e1a46
PA
7812/* Print current location without a level number, if we have changed
7813 functions or hit a breakpoint. Print source line if we have one.
7814 bpstat_print contains the logic deciding in detail what to print,
7815 based on the event(s) that just occurred. */
7816
243a9253
PA
7817static void
7818print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7819{
7820 int bpstat_ret;
f486487f 7821 enum print_what source_flag;
0c7e1a46
PA
7822 int do_frame_printing = 1;
7823 struct thread_info *tp = inferior_thread ();
7824
7825 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7826 switch (bpstat_ret)
7827 {
7828 case PRINT_UNKNOWN:
7829 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7830 should) carry around the function and does (or should) use
7831 that when doing a frame comparison. */
7832 if (tp->control.stop_step
7833 && frame_id_eq (tp->control.step_frame_id,
7834 get_frame_id (get_current_frame ()))
885eeb5b 7835 && tp->control.step_start_function == find_pc_function (stop_pc))
0c7e1a46
PA
7836 {
7837 /* Finished step, just print source line. */
7838 source_flag = SRC_LINE;
7839 }
7840 else
7841 {
7842 /* Print location and source line. */
7843 source_flag = SRC_AND_LOC;
7844 }
7845 break;
7846 case PRINT_SRC_AND_LOC:
7847 /* Print location and source line. */
7848 source_flag = SRC_AND_LOC;
7849 break;
7850 case PRINT_SRC_ONLY:
7851 source_flag = SRC_LINE;
7852 break;
7853 case PRINT_NOTHING:
7854 /* Something bogus. */
7855 source_flag = SRC_LINE;
7856 do_frame_printing = 0;
7857 break;
7858 default:
7859 internal_error (__FILE__, __LINE__, _("Unknown value."));
7860 }
7861
7862 /* The behavior of this routine with respect to the source
7863 flag is:
7864 SRC_LINE: Print only source line
7865 LOCATION: Print only location
7866 SRC_AND_LOC: Print location and source line. */
7867 if (do_frame_printing)
7868 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
7869}
7870
7871/* Cleanup that restores a previous current uiout. */
7872
7873static void
7874restore_current_uiout_cleanup (void *arg)
7875{
9a3c8263 7876 struct ui_out *saved_uiout = (struct ui_out *) arg;
243a9253
PA
7877
7878 current_uiout = saved_uiout;
7879}
7880
7881/* See infrun.h. */
7882
7883void
7884print_stop_event (struct ui_out *uiout)
7885{
7886 struct cleanup *old_chain;
7887 struct target_waitstatus last;
7888 ptid_t last_ptid;
7889 struct thread_info *tp;
7890
7891 get_last_target_status (&last_ptid, &last);
7892
7893 old_chain = make_cleanup (restore_current_uiout_cleanup, current_uiout);
7894 current_uiout = uiout;
7895
7896 print_stop_location (&last);
0c7e1a46
PA
7897
7898 /* Display the auto-display expressions. */
7899 do_displays ();
243a9253
PA
7900
7901 do_cleanups (old_chain);
7902
7903 tp = inferior_thread ();
7904 if (tp->thread_fsm != NULL
7905 && thread_fsm_finished_p (tp->thread_fsm))
7906 {
7907 struct return_value_info *rv;
7908
7909 rv = thread_fsm_return_value (tp->thread_fsm);
7910 if (rv != NULL)
7911 print_return_value (uiout, rv);
7912 }
0c7e1a46
PA
7913}
7914
388a7084
PA
7915/* See infrun.h. */
7916
7917void
7918maybe_remove_breakpoints (void)
7919{
7920 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7921 {
7922 if (remove_breakpoints ())
7923 {
7924 target_terminal_ours_for_output ();
7925 printf_filtered (_("Cannot remove breakpoints because "
7926 "program is no longer writable.\nFurther "
7927 "execution is probably impossible.\n"));
7928 }
7929 }
7930}
7931
4c2f2a79
PA
7932/* The execution context that just caused a normal stop. */
7933
7934struct stop_context
7935{
7936 /* The stop ID. */
7937 ULONGEST stop_id;
c906108c 7938
4c2f2a79 7939 /* The event PTID. */
c906108c 7940
4c2f2a79
PA
7941 ptid_t ptid;
7942
7943 /* If stopp for a thread event, this is the thread that caused the
7944 stop. */
7945 struct thread_info *thread;
7946
7947 /* The inferior that caused the stop. */
7948 int inf_num;
7949};
7950
7951/* Returns a new stop context. If stopped for a thread event, this
7952 takes a strong reference to the thread. */
7953
7954static struct stop_context *
7955save_stop_context (void)
7956{
224c3ddb 7957 struct stop_context *sc = XNEW (struct stop_context);
4c2f2a79
PA
7958
7959 sc->stop_id = get_stop_id ();
7960 sc->ptid = inferior_ptid;
7961 sc->inf_num = current_inferior ()->num;
7962
7963 if (!ptid_equal (inferior_ptid, null_ptid))
7964 {
7965 /* Take a strong reference so that the thread can't be deleted
7966 yet. */
7967 sc->thread = inferior_thread ();
7968 sc->thread->refcount++;
7969 }
7970 else
7971 sc->thread = NULL;
7972
7973 return sc;
7974}
7975
7976/* Release a stop context previously created with save_stop_context.
7977 Releases the strong reference to the thread as well. */
7978
7979static void
7980release_stop_context_cleanup (void *arg)
7981{
9a3c8263 7982 struct stop_context *sc = (struct stop_context *) arg;
4c2f2a79
PA
7983
7984 if (sc->thread != NULL)
7985 sc->thread->refcount--;
7986 xfree (sc);
7987}
7988
7989/* Return true if the current context no longer matches the saved stop
7990 context. */
7991
7992static int
7993stop_context_changed (struct stop_context *prev)
7994{
7995 if (!ptid_equal (prev->ptid, inferior_ptid))
7996 return 1;
7997 if (prev->inf_num != current_inferior ()->num)
7998 return 1;
7999 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8000 return 1;
8001 if (get_stop_id () != prev->stop_id)
8002 return 1;
8003 return 0;
8004}
8005
8006/* See infrun.h. */
8007
8008int
96baa820 8009normal_stop (void)
c906108c 8010{
73b65bb0
DJ
8011 struct target_waitstatus last;
8012 ptid_t last_ptid;
29f49a6a 8013 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
e1316e60 8014 ptid_t pid_ptid;
73b65bb0
DJ
8015
8016 get_last_target_status (&last_ptid, &last);
8017
4c2f2a79
PA
8018 new_stop_id ();
8019
29f49a6a
PA
8020 /* If an exception is thrown from this point on, make sure to
8021 propagate GDB's knowledge of the executing state to the
8022 frontend/user running state. A QUIT is an easy exception to see
8023 here, so do this before any filtered output. */
c35b1492
PA
8024 if (!non_stop)
8025 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
e1316e60
PA
8026 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8027 || last.kind == TARGET_WAITKIND_EXITED)
8028 {
8029 /* On some targets, we may still have live threads in the
8030 inferior when we get a process exit event. E.g., for
8031 "checkpoint", when the current checkpoint/fork exits,
8032 linux-fork.c automatically switches to another fork from
8033 within target_mourn_inferior. */
8034 if (!ptid_equal (inferior_ptid, null_ptid))
8035 {
8036 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8037 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8038 }
8039 }
8040 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 8041 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 8042
b57bacec
PA
8043 /* As we're presenting a stop, and potentially removing breakpoints,
8044 update the thread list so we can tell whether there are threads
8045 running on the target. With target remote, for example, we can
8046 only learn about new threads when we explicitly update the thread
8047 list. Do this before notifying the interpreters about signal
8048 stops, end of stepping ranges, etc., so that the "new thread"
8049 output is emitted before e.g., "Program received signal FOO",
8050 instead of after. */
8051 update_thread_list ();
8052
8053 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8054 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8055
c906108c
SS
8056 /* As with the notification of thread events, we want to delay
8057 notifying the user that we've switched thread context until
8058 the inferior actually stops.
8059
73b65bb0
DJ
8060 There's no point in saying anything if the inferior has exited.
8061 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8062 "received a signal".
8063
8064 Also skip saying anything in non-stop mode. In that mode, as we
8065 don't want GDB to switch threads behind the user's back, to avoid
8066 races where the user is typing a command to apply to thread x,
8067 but GDB switches to thread y before the user finishes entering
8068 the command, fetch_inferior_event installs a cleanup to restore
8069 the current thread back to the thread the user had selected right
8070 after this event is handled, so we're not really switching, only
8071 informing of a stop. */
4f8d22e3
PA
8072 if (!non_stop
8073 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
8074 && target_has_execution
8075 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8076 && last.kind != TARGET_WAITKIND_EXITED
8077 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
8078 {
8079 target_terminal_ours_for_output ();
a3f17187 8080 printf_filtered (_("[Switching to %s]\n"),
c95310c6 8081 target_pid_to_str (inferior_ptid));
b8fa951a 8082 annotate_thread_changed ();
39f77062 8083 previous_inferior_ptid = inferior_ptid;
c906108c 8084 }
c906108c 8085
0e5bf2a8
PA
8086 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8087 {
8088 gdb_assert (sync_execution || !target_can_async_p ());
8089
8090 target_terminal_ours_for_output ();
8091 printf_filtered (_("No unwaited-for children left.\n"));
8092 }
8093
b57bacec 8094 /* Note: this depends on the update_thread_list call above. */
388a7084 8095 maybe_remove_breakpoints ();
c906108c 8096
c906108c
SS
8097 /* If an auto-display called a function and that got a signal,
8098 delete that auto-display to avoid an infinite recursion. */
8099
8100 if (stopped_by_random_signal)
8101 disable_current_display ();
8102
c906108c 8103 target_terminal_ours ();
0f641c01 8104 async_enable_stdin ();
c906108c 8105
388a7084
PA
8106 /* Let the user/frontend see the threads as stopped. */
8107 do_cleanups (old_chain);
8108
8109 /* Select innermost stack frame - i.e., current frame is frame 0,
8110 and current location is based on that. Handle the case where the
8111 dummy call is returning after being stopped. E.g. the dummy call
8112 previously hit a breakpoint. (If the dummy call returns
8113 normally, we won't reach here.) Do this before the stop hook is
8114 run, so that it doesn't get to see the temporary dummy frame,
8115 which is not where we'll present the stop. */
8116 if (has_stack_frames ())
8117 {
8118 if (stop_stack_dummy == STOP_STACK_DUMMY)
8119 {
8120 /* Pop the empty frame that contains the stack dummy. This
8121 also restores inferior state prior to the call (struct
8122 infcall_suspend_state). */
8123 struct frame_info *frame = get_current_frame ();
8124
8125 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8126 frame_pop (frame);
8127 /* frame_pop calls reinit_frame_cache as the last thing it
8128 does which means there's now no selected frame. */
8129 }
8130
8131 select_frame (get_current_frame ());
8132
8133 /* Set the current source location. */
8134 set_current_sal_from_frame (get_current_frame ());
8135 }
dd7e2d2b
PA
8136
8137 /* Look up the hook_stop and run it (CLI internally handles problem
8138 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8139 if (stop_command != NULL)
8140 {
8141 struct stop_context *saved_context = save_stop_context ();
8142 struct cleanup *old_chain
8143 = make_cleanup (release_stop_context_cleanup, saved_context);
8144
8145 catch_errors (hook_stop_stub, stop_command,
8146 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8147
8148 /* If the stop hook resumes the target, then there's no point in
8149 trying to notify about the previous stop; its context is
8150 gone. Likewise if the command switches thread or inferior --
8151 the observers would print a stop for the wrong
8152 thread/inferior. */
8153 if (stop_context_changed (saved_context))
8154 {
8155 do_cleanups (old_chain);
8156 return 1;
8157 }
8158 do_cleanups (old_chain);
8159 }
dd7e2d2b 8160
388a7084
PA
8161 /* Notify observers about the stop. This is where the interpreters
8162 print the stop event. */
8163 if (!ptid_equal (inferior_ptid, null_ptid))
8164 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8165 stop_print_frame);
8166 else
8167 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 8168
243a9253
PA
8169 annotate_stopped ();
8170
48844aa6
PA
8171 if (target_has_execution)
8172 {
8173 if (last.kind != TARGET_WAITKIND_SIGNALLED
8174 && last.kind != TARGET_WAITKIND_EXITED)
8175 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8176 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8177 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8178 }
6c95b8df
PA
8179
8180 /* Try to get rid of automatically added inferiors that are no
8181 longer needed. Keeping those around slows down things linearly.
8182 Note that this never removes the current inferior. */
8183 prune_inferiors ();
4c2f2a79
PA
8184
8185 return 0;
c906108c
SS
8186}
8187
8188static int
96baa820 8189hook_stop_stub (void *cmd)
c906108c 8190{
5913bcb0 8191 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
8192 return (0);
8193}
8194\f
c5aa993b 8195int
96baa820 8196signal_stop_state (int signo)
c906108c 8197{
d6b48e9c 8198 return signal_stop[signo];
c906108c
SS
8199}
8200
c5aa993b 8201int
96baa820 8202signal_print_state (int signo)
c906108c
SS
8203{
8204 return signal_print[signo];
8205}
8206
c5aa993b 8207int
96baa820 8208signal_pass_state (int signo)
c906108c
SS
8209{
8210 return signal_program[signo];
8211}
8212
2455069d
UW
8213static void
8214signal_cache_update (int signo)
8215{
8216 if (signo == -1)
8217 {
a493e3e2 8218 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8219 signal_cache_update (signo);
8220
8221 return;
8222 }
8223
8224 signal_pass[signo] = (signal_stop[signo] == 0
8225 && signal_print[signo] == 0
ab04a2af
TT
8226 && signal_program[signo] == 1
8227 && signal_catch[signo] == 0);
2455069d
UW
8228}
8229
488f131b 8230int
7bda5e4a 8231signal_stop_update (int signo, int state)
d4f3574e
SS
8232{
8233 int ret = signal_stop[signo];
abbb1732 8234
d4f3574e 8235 signal_stop[signo] = state;
2455069d 8236 signal_cache_update (signo);
d4f3574e
SS
8237 return ret;
8238}
8239
488f131b 8240int
7bda5e4a 8241signal_print_update (int signo, int state)
d4f3574e
SS
8242{
8243 int ret = signal_print[signo];
abbb1732 8244
d4f3574e 8245 signal_print[signo] = state;
2455069d 8246 signal_cache_update (signo);
d4f3574e
SS
8247 return ret;
8248}
8249
488f131b 8250int
7bda5e4a 8251signal_pass_update (int signo, int state)
d4f3574e
SS
8252{
8253 int ret = signal_program[signo];
abbb1732 8254
d4f3574e 8255 signal_program[signo] = state;
2455069d 8256 signal_cache_update (signo);
d4f3574e
SS
8257 return ret;
8258}
8259
ab04a2af
TT
8260/* Update the global 'signal_catch' from INFO and notify the
8261 target. */
8262
8263void
8264signal_catch_update (const unsigned int *info)
8265{
8266 int i;
8267
8268 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8269 signal_catch[i] = info[i] > 0;
8270 signal_cache_update (-1);
8271 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8272}
8273
c906108c 8274static void
96baa820 8275sig_print_header (void)
c906108c 8276{
3e43a32a
MS
8277 printf_filtered (_("Signal Stop\tPrint\tPass "
8278 "to program\tDescription\n"));
c906108c
SS
8279}
8280
8281static void
2ea28649 8282sig_print_info (enum gdb_signal oursig)
c906108c 8283{
2ea28649 8284 const char *name = gdb_signal_to_name (oursig);
c906108c 8285 int name_padding = 13 - strlen (name);
96baa820 8286
c906108c
SS
8287 if (name_padding <= 0)
8288 name_padding = 0;
8289
8290 printf_filtered ("%s", name);
488f131b 8291 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8292 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8293 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8294 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8295 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8296}
8297
8298/* Specify how various signals in the inferior should be handled. */
8299
8300static void
96baa820 8301handle_command (char *args, int from_tty)
c906108c
SS
8302{
8303 char **argv;
8304 int digits, wordlen;
8305 int sigfirst, signum, siglast;
2ea28649 8306 enum gdb_signal oursig;
c906108c
SS
8307 int allsigs;
8308 int nsigs;
8309 unsigned char *sigs;
8310 struct cleanup *old_chain;
8311
8312 if (args == NULL)
8313 {
e2e0b3e5 8314 error_no_arg (_("signal to handle"));
c906108c
SS
8315 }
8316
1777feb0 8317 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8318
a493e3e2 8319 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
8320 sigs = (unsigned char *) alloca (nsigs);
8321 memset (sigs, 0, nsigs);
8322
1777feb0 8323 /* Break the command line up into args. */
c906108c 8324
d1a41061 8325 argv = gdb_buildargv (args);
7a292a7a 8326 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
8327
8328 /* Walk through the args, looking for signal oursigs, signal names, and
8329 actions. Signal numbers and signal names may be interspersed with
8330 actions, with the actions being performed for all signals cumulatively
1777feb0 8331 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
8332
8333 while (*argv != NULL)
8334 {
8335 wordlen = strlen (*argv);
8336 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8337 {;
8338 }
8339 allsigs = 0;
8340 sigfirst = siglast = -1;
8341
8342 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8343 {
8344 /* Apply action to all signals except those used by the
1777feb0 8345 debugger. Silently skip those. */
c906108c
SS
8346 allsigs = 1;
8347 sigfirst = 0;
8348 siglast = nsigs - 1;
8349 }
8350 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8351 {
8352 SET_SIGS (nsigs, sigs, signal_stop);
8353 SET_SIGS (nsigs, sigs, signal_print);
8354 }
8355 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8356 {
8357 UNSET_SIGS (nsigs, sigs, signal_program);
8358 }
8359 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8360 {
8361 SET_SIGS (nsigs, sigs, signal_print);
8362 }
8363 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8364 {
8365 SET_SIGS (nsigs, sigs, signal_program);
8366 }
8367 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8368 {
8369 UNSET_SIGS (nsigs, sigs, signal_stop);
8370 }
8371 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8372 {
8373 SET_SIGS (nsigs, sigs, signal_program);
8374 }
8375 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8376 {
8377 UNSET_SIGS (nsigs, sigs, signal_print);
8378 UNSET_SIGS (nsigs, sigs, signal_stop);
8379 }
8380 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8381 {
8382 UNSET_SIGS (nsigs, sigs, signal_program);
8383 }
8384 else if (digits > 0)
8385 {
8386 /* It is numeric. The numeric signal refers to our own
8387 internal signal numbering from target.h, not to host/target
8388 signal number. This is a feature; users really should be
8389 using symbolic names anyway, and the common ones like
8390 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8391
8392 sigfirst = siglast = (int)
2ea28649 8393 gdb_signal_from_command (atoi (*argv));
c906108c
SS
8394 if ((*argv)[digits] == '-')
8395 {
8396 siglast = (int)
2ea28649 8397 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
8398 }
8399 if (sigfirst > siglast)
8400 {
1777feb0 8401 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
8402 signum = sigfirst;
8403 sigfirst = siglast;
8404 siglast = signum;
8405 }
8406 }
8407 else
8408 {
2ea28649 8409 oursig = gdb_signal_from_name (*argv);
a493e3e2 8410 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8411 {
8412 sigfirst = siglast = (int) oursig;
8413 }
8414 else
8415 {
8416 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 8417 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
8418 }
8419 }
8420
8421 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8422 which signals to apply actions to. */
c906108c
SS
8423
8424 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8425 {
2ea28649 8426 switch ((enum gdb_signal) signum)
c906108c 8427 {
a493e3e2
PA
8428 case GDB_SIGNAL_TRAP:
8429 case GDB_SIGNAL_INT:
c906108c
SS
8430 if (!allsigs && !sigs[signum])
8431 {
9e2f0ad4 8432 if (query (_("%s is used by the debugger.\n\
3e43a32a 8433Are you sure you want to change it? "),
2ea28649 8434 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8435 {
8436 sigs[signum] = 1;
8437 }
8438 else
8439 {
a3f17187 8440 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8441 gdb_flush (gdb_stdout);
8442 }
8443 }
8444 break;
a493e3e2
PA
8445 case GDB_SIGNAL_0:
8446 case GDB_SIGNAL_DEFAULT:
8447 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8448 /* Make sure that "all" doesn't print these. */
8449 break;
8450 default:
8451 sigs[signum] = 1;
8452 break;
8453 }
8454 }
8455
8456 argv++;
8457 }
8458
3a031f65
PA
8459 for (signum = 0; signum < nsigs; signum++)
8460 if (sigs[signum])
8461 {
2455069d 8462 signal_cache_update (-1);
a493e3e2
PA
8463 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8464 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 8465
3a031f65
PA
8466 if (from_tty)
8467 {
8468 /* Show the results. */
8469 sig_print_header ();
8470 for (; signum < nsigs; signum++)
8471 if (sigs[signum])
aead7601 8472 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8473 }
8474
8475 break;
8476 }
c906108c
SS
8477
8478 do_cleanups (old_chain);
8479}
8480
de0bea00
MF
8481/* Complete the "handle" command. */
8482
8483static VEC (char_ptr) *
8484handle_completer (struct cmd_list_element *ignore,
6f937416 8485 const char *text, const char *word)
de0bea00
MF
8486{
8487 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8488 static const char * const keywords[] =
8489 {
8490 "all",
8491 "stop",
8492 "ignore",
8493 "print",
8494 "pass",
8495 "nostop",
8496 "noignore",
8497 "noprint",
8498 "nopass",
8499 NULL,
8500 };
8501
8502 vec_signals = signal_completer (ignore, text, word);
8503 vec_keywords = complete_on_enum (keywords, word, word);
8504
8505 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8506 VEC_free (char_ptr, vec_signals);
8507 VEC_free (char_ptr, vec_keywords);
8508 return return_val;
8509}
8510
2ea28649
PA
8511enum gdb_signal
8512gdb_signal_from_command (int num)
ed01b82c
PA
8513{
8514 if (num >= 1 && num <= 15)
2ea28649 8515 return (enum gdb_signal) num;
ed01b82c
PA
8516 error (_("Only signals 1-15 are valid as numeric signals.\n\
8517Use \"info signals\" for a list of symbolic signals."));
8518}
8519
c906108c
SS
8520/* Print current contents of the tables set by the handle command.
8521 It is possible we should just be printing signals actually used
8522 by the current target (but for things to work right when switching
8523 targets, all signals should be in the signal tables). */
8524
8525static void
96baa820 8526signals_info (char *signum_exp, int from_tty)
c906108c 8527{
2ea28649 8528 enum gdb_signal oursig;
abbb1732 8529
c906108c
SS
8530 sig_print_header ();
8531
8532 if (signum_exp)
8533 {
8534 /* First see if this is a symbol name. */
2ea28649 8535 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8536 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8537 {
8538 /* No, try numeric. */
8539 oursig =
2ea28649 8540 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8541 }
8542 sig_print_info (oursig);
8543 return;
8544 }
8545
8546 printf_filtered ("\n");
8547 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8548 for (oursig = GDB_SIGNAL_FIRST;
8549 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8550 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8551 {
8552 QUIT;
8553
a493e3e2
PA
8554 if (oursig != GDB_SIGNAL_UNKNOWN
8555 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8556 sig_print_info (oursig);
8557 }
8558
3e43a32a
MS
8559 printf_filtered (_("\nUse the \"handle\" command "
8560 "to change these tables.\n"));
c906108c 8561}
4aa995e1 8562
c709acd1
PA
8563/* Check if it makes sense to read $_siginfo from the current thread
8564 at this point. If not, throw an error. */
8565
8566static void
8567validate_siginfo_access (void)
8568{
8569 /* No current inferior, no siginfo. */
8570 if (ptid_equal (inferior_ptid, null_ptid))
8571 error (_("No thread selected."));
8572
8573 /* Don't try to read from a dead thread. */
8574 if (is_exited (inferior_ptid))
8575 error (_("The current thread has terminated"));
8576
8577 /* ... or from a spinning thread. */
8578 if (is_running (inferior_ptid))
8579 error (_("Selected thread is running."));
8580}
8581
4aa995e1
PA
8582/* The $_siginfo convenience variable is a bit special. We don't know
8583 for sure the type of the value until we actually have a chance to
7a9dd1b2 8584 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8585 also dependent on which thread you have selected.
8586
8587 1. making $_siginfo be an internalvar that creates a new value on
8588 access.
8589
8590 2. making the value of $_siginfo be an lval_computed value. */
8591
8592/* This function implements the lval_computed support for reading a
8593 $_siginfo value. */
8594
8595static void
8596siginfo_value_read (struct value *v)
8597{
8598 LONGEST transferred;
8599
c709acd1
PA
8600 validate_siginfo_access ();
8601
4aa995e1
PA
8602 transferred =
8603 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8604 NULL,
8605 value_contents_all_raw (v),
8606 value_offset (v),
8607 TYPE_LENGTH (value_type (v)));
8608
8609 if (transferred != TYPE_LENGTH (value_type (v)))
8610 error (_("Unable to read siginfo"));
8611}
8612
8613/* This function implements the lval_computed support for writing a
8614 $_siginfo value. */
8615
8616static void
8617siginfo_value_write (struct value *v, struct value *fromval)
8618{
8619 LONGEST transferred;
8620
c709acd1
PA
8621 validate_siginfo_access ();
8622
4aa995e1
PA
8623 transferred = target_write (&current_target,
8624 TARGET_OBJECT_SIGNAL_INFO,
8625 NULL,
8626 value_contents_all_raw (fromval),
8627 value_offset (v),
8628 TYPE_LENGTH (value_type (fromval)));
8629
8630 if (transferred != TYPE_LENGTH (value_type (fromval)))
8631 error (_("Unable to write siginfo"));
8632}
8633
c8f2448a 8634static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8635 {
8636 siginfo_value_read,
8637 siginfo_value_write
8638 };
8639
8640/* Return a new value with the correct type for the siginfo object of
78267919
UW
8641 the current thread using architecture GDBARCH. Return a void value
8642 if there's no object available. */
4aa995e1 8643
2c0b251b 8644static struct value *
22d2b532
SDJ
8645siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8646 void *ignore)
4aa995e1 8647{
4aa995e1 8648 if (target_has_stack
78267919
UW
8649 && !ptid_equal (inferior_ptid, null_ptid)
8650 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8651 {
78267919 8652 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8653
78267919 8654 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8655 }
8656
78267919 8657 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8658}
8659
c906108c 8660\f
16c381f0
JK
8661/* infcall_suspend_state contains state about the program itself like its
8662 registers and any signal it received when it last stopped.
8663 This state must be restored regardless of how the inferior function call
8664 ends (either successfully, or after it hits a breakpoint or signal)
8665 if the program is to properly continue where it left off. */
8666
8667struct infcall_suspend_state
7a292a7a 8668{
16c381f0 8669 struct thread_suspend_state thread_suspend;
16c381f0
JK
8670
8671 /* Other fields: */
7a292a7a 8672 CORE_ADDR stop_pc;
b89667eb 8673 struct regcache *registers;
1736ad11 8674
35515841 8675 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
8676 struct gdbarch *siginfo_gdbarch;
8677
8678 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8679 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8680 content would be invalid. */
8681 gdb_byte *siginfo_data;
b89667eb
DE
8682};
8683
16c381f0
JK
8684struct infcall_suspend_state *
8685save_infcall_suspend_state (void)
b89667eb 8686{
16c381f0 8687 struct infcall_suspend_state *inf_state;
b89667eb 8688 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8689 struct regcache *regcache = get_current_regcache ();
8690 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8691 gdb_byte *siginfo_data = NULL;
8692
8693 if (gdbarch_get_siginfo_type_p (gdbarch))
8694 {
8695 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8696 size_t len = TYPE_LENGTH (type);
8697 struct cleanup *back_to;
8698
224c3ddb 8699 siginfo_data = (gdb_byte *) xmalloc (len);
1736ad11
JK
8700 back_to = make_cleanup (xfree, siginfo_data);
8701
8702 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8703 siginfo_data, 0, len) == len)
8704 discard_cleanups (back_to);
8705 else
8706 {
8707 /* Errors ignored. */
8708 do_cleanups (back_to);
8709 siginfo_data = NULL;
8710 }
8711 }
8712
41bf6aca 8713 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
8714
8715 if (siginfo_data)
8716 {
8717 inf_state->siginfo_gdbarch = gdbarch;
8718 inf_state->siginfo_data = siginfo_data;
8719 }
b89667eb 8720
16c381f0 8721 inf_state->thread_suspend = tp->suspend;
16c381f0 8722
35515841 8723 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
8724 GDB_SIGNAL_0 anyway. */
8725 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8726
b89667eb
DE
8727 inf_state->stop_pc = stop_pc;
8728
1736ad11 8729 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
8730
8731 return inf_state;
8732}
8733
8734/* Restore inferior session state to INF_STATE. */
8735
8736void
16c381f0 8737restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8738{
8739 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8740 struct regcache *regcache = get_current_regcache ();
8741 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 8742
16c381f0 8743 tp->suspend = inf_state->thread_suspend;
16c381f0 8744
b89667eb
DE
8745 stop_pc = inf_state->stop_pc;
8746
1736ad11
JK
8747 if (inf_state->siginfo_gdbarch == gdbarch)
8748 {
8749 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
8750
8751 /* Errors ignored. */
8752 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 8753 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
8754 }
8755
b89667eb
DE
8756 /* The inferior can be gone if the user types "print exit(0)"
8757 (and perhaps other times). */
8758 if (target_has_execution)
8759 /* NB: The register write goes through to the target. */
1736ad11 8760 regcache_cpy (regcache, inf_state->registers);
803b5f95 8761
16c381f0 8762 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8763}
8764
8765static void
16c381f0 8766do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 8767{
9a3c8263 8768 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
b89667eb
DE
8769}
8770
8771struct cleanup *
16c381f0
JK
8772make_cleanup_restore_infcall_suspend_state
8773 (struct infcall_suspend_state *inf_state)
b89667eb 8774{
16c381f0 8775 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
8776}
8777
8778void
16c381f0 8779discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8780{
8781 regcache_xfree (inf_state->registers);
803b5f95 8782 xfree (inf_state->siginfo_data);
b89667eb
DE
8783 xfree (inf_state);
8784}
8785
8786struct regcache *
16c381f0 8787get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
8788{
8789 return inf_state->registers;
8790}
8791
16c381f0
JK
8792/* infcall_control_state contains state regarding gdb's control of the
8793 inferior itself like stepping control. It also contains session state like
8794 the user's currently selected frame. */
b89667eb 8795
16c381f0 8796struct infcall_control_state
b89667eb 8797{
16c381f0
JK
8798 struct thread_control_state thread_control;
8799 struct inferior_control_state inferior_control;
d82142e2
JK
8800
8801 /* Other fields: */
8802 enum stop_stack_kind stop_stack_dummy;
8803 int stopped_by_random_signal;
7a292a7a 8804
b89667eb 8805 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 8806 struct frame_id selected_frame_id;
7a292a7a
SS
8807};
8808
c906108c 8809/* Save all of the information associated with the inferior<==>gdb
b89667eb 8810 connection. */
c906108c 8811
16c381f0
JK
8812struct infcall_control_state *
8813save_infcall_control_state (void)
c906108c 8814{
8d749320
SM
8815 struct infcall_control_state *inf_status =
8816 XNEW (struct infcall_control_state);
4e1c45ea 8817 struct thread_info *tp = inferior_thread ();
d6b48e9c 8818 struct inferior *inf = current_inferior ();
7a292a7a 8819
16c381f0
JK
8820 inf_status->thread_control = tp->control;
8821 inf_status->inferior_control = inf->control;
d82142e2 8822
8358c15c 8823 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8824 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8825
16c381f0
JK
8826 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8827 chain. If caller's caller is walking the chain, they'll be happier if we
8828 hand them back the original chain when restore_infcall_control_state is
8829 called. */
8830 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8831
8832 /* Other fields: */
8833 inf_status->stop_stack_dummy = stop_stack_dummy;
8834 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 8835
206415a3 8836 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8837
7a292a7a 8838 return inf_status;
c906108c
SS
8839}
8840
c906108c 8841static int
96baa820 8842restore_selected_frame (void *args)
c906108c 8843{
488f131b 8844 struct frame_id *fid = (struct frame_id *) args;
c906108c 8845 struct frame_info *frame;
c906108c 8846
101dcfbe 8847 frame = frame_find_by_id (*fid);
c906108c 8848
aa0cd9c1
AC
8849 /* If inf_status->selected_frame_id is NULL, there was no previously
8850 selected frame. */
101dcfbe 8851 if (frame == NULL)
c906108c 8852 {
8a3fe4f8 8853 warning (_("Unable to restore previously selected frame."));
c906108c
SS
8854 return 0;
8855 }
8856
0f7d239c 8857 select_frame (frame);
c906108c
SS
8858
8859 return (1);
8860}
8861
b89667eb
DE
8862/* Restore inferior session state to INF_STATUS. */
8863
c906108c 8864void
16c381f0 8865restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 8866{
4e1c45ea 8867 struct thread_info *tp = inferior_thread ();
d6b48e9c 8868 struct inferior *inf = current_inferior ();
4e1c45ea 8869
8358c15c
JK
8870 if (tp->control.step_resume_breakpoint)
8871 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8872
5b79abe7
TT
8873 if (tp->control.exception_resume_breakpoint)
8874 tp->control.exception_resume_breakpoint->disposition
8875 = disp_del_at_next_stop;
8876
d82142e2 8877 /* Handle the bpstat_copy of the chain. */
16c381f0 8878 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 8879
16c381f0
JK
8880 tp->control = inf_status->thread_control;
8881 inf->control = inf_status->inferior_control;
d82142e2
JK
8882
8883 /* Other fields: */
8884 stop_stack_dummy = inf_status->stop_stack_dummy;
8885 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 8886
b89667eb 8887 if (target_has_stack)
c906108c 8888 {
c906108c 8889 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
8890 walking the stack might encounter a garbage pointer and
8891 error() trying to dereference it. */
488f131b
JB
8892 if (catch_errors
8893 (restore_selected_frame, &inf_status->selected_frame_id,
8894 "Unable to restore previously selected frame:\n",
8895 RETURN_MASK_ERROR) == 0)
c906108c
SS
8896 /* Error in restoring the selected frame. Select the innermost
8897 frame. */
0f7d239c 8898 select_frame (get_current_frame ());
c906108c 8899 }
c906108c 8900
72cec141 8901 xfree (inf_status);
7a292a7a 8902}
c906108c 8903
74b7792f 8904static void
16c381f0 8905do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 8906{
9a3c8263 8907 restore_infcall_control_state ((struct infcall_control_state *) sts);
74b7792f
AC
8908}
8909
8910struct cleanup *
16c381f0
JK
8911make_cleanup_restore_infcall_control_state
8912 (struct infcall_control_state *inf_status)
74b7792f 8913{
16c381f0 8914 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
8915}
8916
c906108c 8917void
16c381f0 8918discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 8919{
8358c15c
JK
8920 if (inf_status->thread_control.step_resume_breakpoint)
8921 inf_status->thread_control.step_resume_breakpoint->disposition
8922 = disp_del_at_next_stop;
8923
5b79abe7
TT
8924 if (inf_status->thread_control.exception_resume_breakpoint)
8925 inf_status->thread_control.exception_resume_breakpoint->disposition
8926 = disp_del_at_next_stop;
8927
1777feb0 8928 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 8929 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 8930
72cec141 8931 xfree (inf_status);
7a292a7a 8932}
b89667eb 8933\f
ca6724c1
KB
8934/* restore_inferior_ptid() will be used by the cleanup machinery
8935 to restore the inferior_ptid value saved in a call to
8936 save_inferior_ptid(). */
ce696e05
KB
8937
8938static void
8939restore_inferior_ptid (void *arg)
8940{
9a3c8263 8941 ptid_t *saved_ptid_ptr = (ptid_t *) arg;
abbb1732 8942
ce696e05
KB
8943 inferior_ptid = *saved_ptid_ptr;
8944 xfree (arg);
8945}
8946
8947/* Save the value of inferior_ptid so that it may be restored by a
8948 later call to do_cleanups(). Returns the struct cleanup pointer
8949 needed for later doing the cleanup. */
8950
8951struct cleanup *
8952save_inferior_ptid (void)
8953{
8d749320 8954 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
ce696e05 8955
ce696e05
KB
8956 *saved_ptid_ptr = inferior_ptid;
8957 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
8958}
0c557179 8959
7f89fd65 8960/* See infrun.h. */
0c557179
SDJ
8961
8962void
8963clear_exit_convenience_vars (void)
8964{
8965 clear_internalvar (lookup_internalvar ("_exitsignal"));
8966 clear_internalvar (lookup_internalvar ("_exitcode"));
8967}
c5aa993b 8968\f
488f131b 8969
b2175913
MS
8970/* User interface for reverse debugging:
8971 Set exec-direction / show exec-direction commands
8972 (returns error unless target implements to_set_exec_direction method). */
8973
170742de 8974enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
8975static const char exec_forward[] = "forward";
8976static const char exec_reverse[] = "reverse";
8977static const char *exec_direction = exec_forward;
40478521 8978static const char *const exec_direction_names[] = {
b2175913
MS
8979 exec_forward,
8980 exec_reverse,
8981 NULL
8982};
8983
8984static void
8985set_exec_direction_func (char *args, int from_tty,
8986 struct cmd_list_element *cmd)
8987{
8988 if (target_can_execute_reverse)
8989 {
8990 if (!strcmp (exec_direction, exec_forward))
8991 execution_direction = EXEC_FORWARD;
8992 else if (!strcmp (exec_direction, exec_reverse))
8993 execution_direction = EXEC_REVERSE;
8994 }
8bbed405
MS
8995 else
8996 {
8997 exec_direction = exec_forward;
8998 error (_("Target does not support this operation."));
8999 }
b2175913
MS
9000}
9001
9002static void
9003show_exec_direction_func (struct ui_file *out, int from_tty,
9004 struct cmd_list_element *cmd, const char *value)
9005{
9006 switch (execution_direction) {
9007 case EXEC_FORWARD:
9008 fprintf_filtered (out, _("Forward.\n"));
9009 break;
9010 case EXEC_REVERSE:
9011 fprintf_filtered (out, _("Reverse.\n"));
9012 break;
b2175913 9013 default:
d8b34453
PA
9014 internal_error (__FILE__, __LINE__,
9015 _("bogus execution_direction value: %d"),
9016 (int) execution_direction);
b2175913
MS
9017 }
9018}
9019
d4db2f36
PA
9020static void
9021show_schedule_multiple (struct ui_file *file, int from_tty,
9022 struct cmd_list_element *c, const char *value)
9023{
3e43a32a
MS
9024 fprintf_filtered (file, _("Resuming the execution of threads "
9025 "of all processes is %s.\n"), value);
d4db2f36 9026}
ad52ddc6 9027
22d2b532
SDJ
9028/* Implementation of `siginfo' variable. */
9029
9030static const struct internalvar_funcs siginfo_funcs =
9031{
9032 siginfo_make_value,
9033 NULL,
9034 NULL
9035};
9036
372316f1
PA
9037/* Callback for infrun's target events source. This is marked when a
9038 thread has a pending status to process. */
9039
9040static void
9041infrun_async_inferior_event_handler (gdb_client_data data)
9042{
372316f1
PA
9043 inferior_event_handler (INF_REG_EVENT, NULL);
9044}
9045
c906108c 9046void
96baa820 9047_initialize_infrun (void)
c906108c 9048{
52f0bd74
AC
9049 int i;
9050 int numsigs;
de0bea00 9051 struct cmd_list_element *c;
c906108c 9052
372316f1
PA
9053 /* Register extra event sources in the event loop. */
9054 infrun_async_inferior_event_token
9055 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9056
1bedd215
AC
9057 add_info ("signals", signals_info, _("\
9058What debugger does when program gets various signals.\n\
9059Specify a signal as argument to print info on that signal only."));
c906108c
SS
9060 add_info_alias ("handle", "signals", 0);
9061
de0bea00 9062 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9063Specify how to handle signals.\n\
486c7739 9064Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9065Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9066If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9067will be displayed instead.\n\
9068\n\
c906108c
SS
9069Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9070from 1-15 are allowed for compatibility with old versions of GDB.\n\
9071Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9072The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9073used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9074\n\
1bedd215 9075Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9076\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9077Stop means reenter debugger if this signal happens (implies print).\n\
9078Print means print a message if this signal happens.\n\
9079Pass means let program see this signal; otherwise program doesn't know.\n\
9080Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9081Pass and Stop may be combined.\n\
9082\n\
9083Multiple signals may be specified. Signal numbers and signal names\n\
9084may be interspersed with actions, with the actions being performed for\n\
9085all signals cumulatively specified."));
de0bea00 9086 set_cmd_completer (c, handle_completer);
486c7739 9087
c906108c 9088 if (!dbx_commands)
1a966eab
AC
9089 stop_command = add_cmd ("stop", class_obscure,
9090 not_just_help_class_command, _("\
9091There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9092This allows you to set a list of commands to be run each time execution\n\
1a966eab 9093of the program stops."), &cmdlist);
c906108c 9094
ccce17b0 9095 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9096Set inferior debugging."), _("\
9097Show inferior debugging."), _("\
9098When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9099 NULL,
9100 show_debug_infrun,
9101 &setdebuglist, &showdebuglist);
527159b7 9102
3e43a32a
MS
9103 add_setshow_boolean_cmd ("displaced", class_maintenance,
9104 &debug_displaced, _("\
237fc4c9
PA
9105Set displaced stepping debugging."), _("\
9106Show displaced stepping debugging."), _("\
9107When non-zero, displaced stepping specific debugging is enabled."),
9108 NULL,
9109 show_debug_displaced,
9110 &setdebuglist, &showdebuglist);
9111
ad52ddc6
PA
9112 add_setshow_boolean_cmd ("non-stop", no_class,
9113 &non_stop_1, _("\
9114Set whether gdb controls the inferior in non-stop mode."), _("\
9115Show whether gdb controls the inferior in non-stop mode."), _("\
9116When debugging a multi-threaded program and this setting is\n\
9117off (the default, also called all-stop mode), when one thread stops\n\
9118(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9119all other threads in the program while you interact with the thread of\n\
9120interest. When you continue or step a thread, you can allow the other\n\
9121threads to run, or have them remain stopped, but while you inspect any\n\
9122thread's state, all threads stop.\n\
9123\n\
9124In non-stop mode, when one thread stops, other threads can continue\n\
9125to run freely. You'll be able to step each thread independently,\n\
9126leave it stopped or free to run as needed."),
9127 set_non_stop,
9128 show_non_stop,
9129 &setlist,
9130 &showlist);
9131
a493e3e2 9132 numsigs = (int) GDB_SIGNAL_LAST;
8d749320
SM
9133 signal_stop = XNEWVEC (unsigned char, numsigs);
9134 signal_print = XNEWVEC (unsigned char, numsigs);
9135 signal_program = XNEWVEC (unsigned char, numsigs);
9136 signal_catch = XNEWVEC (unsigned char, numsigs);
9137 signal_pass = XNEWVEC (unsigned char, numsigs);
c906108c
SS
9138 for (i = 0; i < numsigs; i++)
9139 {
9140 signal_stop[i] = 1;
9141 signal_print[i] = 1;
9142 signal_program[i] = 1;
ab04a2af 9143 signal_catch[i] = 0;
c906108c
SS
9144 }
9145
4d9d9d04
PA
9146 /* Signals caused by debugger's own actions should not be given to
9147 the program afterwards.
9148
9149 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9150 explicitly specifies that it should be delivered to the target
9151 program. Typically, that would occur when a user is debugging a
9152 target monitor on a simulator: the target monitor sets a
9153 breakpoint; the simulator encounters this breakpoint and halts
9154 the simulation handing control to GDB; GDB, noting that the stop
9155 address doesn't map to any known breakpoint, returns control back
9156 to the simulator; the simulator then delivers the hardware
9157 equivalent of a GDB_SIGNAL_TRAP to the program being
9158 debugged. */
a493e3e2
PA
9159 signal_program[GDB_SIGNAL_TRAP] = 0;
9160 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9161
9162 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9163 signal_stop[GDB_SIGNAL_ALRM] = 0;
9164 signal_print[GDB_SIGNAL_ALRM] = 0;
9165 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9166 signal_print[GDB_SIGNAL_VTALRM] = 0;
9167 signal_stop[GDB_SIGNAL_PROF] = 0;
9168 signal_print[GDB_SIGNAL_PROF] = 0;
9169 signal_stop[GDB_SIGNAL_CHLD] = 0;
9170 signal_print[GDB_SIGNAL_CHLD] = 0;
9171 signal_stop[GDB_SIGNAL_IO] = 0;
9172 signal_print[GDB_SIGNAL_IO] = 0;
9173 signal_stop[GDB_SIGNAL_POLL] = 0;
9174 signal_print[GDB_SIGNAL_POLL] = 0;
9175 signal_stop[GDB_SIGNAL_URG] = 0;
9176 signal_print[GDB_SIGNAL_URG] = 0;
9177 signal_stop[GDB_SIGNAL_WINCH] = 0;
9178 signal_print[GDB_SIGNAL_WINCH] = 0;
9179 signal_stop[GDB_SIGNAL_PRIO] = 0;
9180 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9181
cd0fc7c3
SS
9182 /* These signals are used internally by user-level thread
9183 implementations. (See signal(5) on Solaris.) Like the above
9184 signals, a healthy program receives and handles them as part of
9185 its normal operation. */
a493e3e2
PA
9186 signal_stop[GDB_SIGNAL_LWP] = 0;
9187 signal_print[GDB_SIGNAL_LWP] = 0;
9188 signal_stop[GDB_SIGNAL_WAITING] = 0;
9189 signal_print[GDB_SIGNAL_WAITING] = 0;
9190 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9191 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 9192
2455069d
UW
9193 /* Update cached state. */
9194 signal_cache_update (-1);
9195
85c07804
AC
9196 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9197 &stop_on_solib_events, _("\
9198Set stopping for shared library events."), _("\
9199Show stopping for shared library events."), _("\
c906108c
SS
9200If nonzero, gdb will give control to the user when the dynamic linker\n\
9201notifies gdb of shared library events. The most common event of interest\n\
85c07804 9202to the user would be loading/unloading of a new library."),
f9e14852 9203 set_stop_on_solib_events,
920d2a44 9204 show_stop_on_solib_events,
85c07804 9205 &setlist, &showlist);
c906108c 9206
7ab04401
AC
9207 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9208 follow_fork_mode_kind_names,
9209 &follow_fork_mode_string, _("\
9210Set debugger response to a program call of fork or vfork."), _("\
9211Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9212A fork or vfork creates a new process. follow-fork-mode can be:\n\
9213 parent - the original process is debugged after a fork\n\
9214 child - the new process is debugged after a fork\n\
ea1dd7bc 9215The unfollowed process will continue to run.\n\
7ab04401
AC
9216By default, the debugger will follow the parent process."),
9217 NULL,
920d2a44 9218 show_follow_fork_mode_string,
7ab04401
AC
9219 &setlist, &showlist);
9220
6c95b8df
PA
9221 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9222 follow_exec_mode_names,
9223 &follow_exec_mode_string, _("\
9224Set debugger response to a program call of exec."), _("\
9225Show debugger response to a program call of exec."), _("\
9226An exec call replaces the program image of a process.\n\
9227\n\
9228follow-exec-mode can be:\n\
9229\n\
cce7e648 9230 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9231to this new inferior. The program the process was running before\n\
9232the exec call can be restarted afterwards by restarting the original\n\
9233inferior.\n\
9234\n\
9235 same - the debugger keeps the process bound to the same inferior.\n\
9236The new executable image replaces the previous executable loaded in\n\
9237the inferior. Restarting the inferior after the exec call restarts\n\
9238the executable the process was running after the exec call.\n\
9239\n\
9240By default, the debugger will use the same inferior."),
9241 NULL,
9242 show_follow_exec_mode_string,
9243 &setlist, &showlist);
9244
7ab04401
AC
9245 add_setshow_enum_cmd ("scheduler-locking", class_run,
9246 scheduler_enums, &scheduler_mode, _("\
9247Set mode for locking scheduler during execution."), _("\
9248Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9249off == no locking (threads may preempt at any time)\n\
9250on == full locking (no thread except the current thread may run)\n\
9251 This applies to both normal execution and replay mode.\n\
9252step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9253 In this mode, other threads may run during other commands.\n\
9254 This applies to both normal execution and replay mode.\n\
9255replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9256 set_schedlock_func, /* traps on target vector */
920d2a44 9257 show_scheduler_mode,
7ab04401 9258 &setlist, &showlist);
5fbbeb29 9259
d4db2f36
PA
9260 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9261Set mode for resuming threads of all processes."), _("\
9262Show mode for resuming threads of all processes."), _("\
9263When on, execution commands (such as 'continue' or 'next') resume all\n\
9264threads of all processes. When off (which is the default), execution\n\
9265commands only resume the threads of the current process. The set of\n\
9266threads that are resumed is further refined by the scheduler-locking\n\
9267mode (see help set scheduler-locking)."),
9268 NULL,
9269 show_schedule_multiple,
9270 &setlist, &showlist);
9271
5bf193a2
AC
9272 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9273Set mode of the step operation."), _("\
9274Show mode of the step operation."), _("\
9275When set, doing a step over a function without debug line information\n\
9276will stop at the first instruction of that function. Otherwise, the\n\
9277function is skipped and the step command stops at a different source line."),
9278 NULL,
920d2a44 9279 show_step_stop_if_no_debug,
5bf193a2 9280 &setlist, &showlist);
ca6724c1 9281
72d0e2c5
YQ
9282 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9283 &can_use_displaced_stepping, _("\
237fc4c9
PA
9284Set debugger's willingness to use displaced stepping."), _("\
9285Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9286If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9287supported by the target architecture. If off, gdb will not use displaced\n\
9288stepping to step over breakpoints, even if such is supported by the target\n\
9289architecture. If auto (which is the default), gdb will use displaced stepping\n\
9290if the target architecture supports it and non-stop mode is active, but will not\n\
9291use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9292 NULL,
9293 show_can_use_displaced_stepping,
9294 &setlist, &showlist);
237fc4c9 9295
b2175913
MS
9296 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9297 &exec_direction, _("Set direction of execution.\n\
9298Options are 'forward' or 'reverse'."),
9299 _("Show direction of execution (forward/reverse)."),
9300 _("Tells gdb whether to execute forward or backward."),
9301 set_exec_direction_func, show_exec_direction_func,
9302 &setlist, &showlist);
9303
6c95b8df
PA
9304 /* Set/show detach-on-fork: user-settable mode. */
9305
9306 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9307Set whether gdb will detach the child of a fork."), _("\
9308Show whether gdb will detach the child of a fork."), _("\
9309Tells gdb whether to detach the child of a fork."),
9310 NULL, NULL, &setlist, &showlist);
9311
03583c20
UW
9312 /* Set/show disable address space randomization mode. */
9313
9314 add_setshow_boolean_cmd ("disable-randomization", class_support,
9315 &disable_randomization, _("\
9316Set disabling of debuggee's virtual address space randomization."), _("\
9317Show disabling of debuggee's virtual address space randomization."), _("\
9318When this mode is on (which is the default), randomization of the virtual\n\
9319address space is disabled. Standalone programs run with the randomization\n\
9320enabled by default on some platforms."),
9321 &set_disable_randomization,
9322 &show_disable_randomization,
9323 &setlist, &showlist);
9324
ca6724c1 9325 /* ptid initializations */
ca6724c1
KB
9326 inferior_ptid = null_ptid;
9327 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
9328
9329 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 9330 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 9331 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 9332 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
9333
9334 /* Explicitly create without lookup, since that tries to create a
9335 value with a void typed value, and when we get here, gdbarch
9336 isn't initialized yet. At this point, we're quite sure there
9337 isn't another convenience variable of the same name. */
22d2b532 9338 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9339
9340 add_setshow_boolean_cmd ("observer", no_class,
9341 &observer_mode_1, _("\
9342Set whether gdb controls the inferior in observer mode."), _("\
9343Show whether gdb controls the inferior in observer mode."), _("\
9344In observer mode, GDB can get data from the inferior, but not\n\
9345affect its execution. Registers and memory may not be changed,\n\
9346breakpoints may not be set, and the program cannot be interrupted\n\
9347or signalled."),
9348 set_observer_mode,
9349 show_observer_mode,
9350 &setlist,
9351 &showlist);
c906108c 9352}