]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/infrun.c
Convert struct target_ops to C++
[thirdparty/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
e2882c85 4 Copyright (C) 1986-2018 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
76727919 41#include "observable.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
8d297bbf 66#include "common/enum-flags.h"
5ed8105e
PA
67#include "progspace-and-thread.h"
68#include "common/gdb_optional.h"
46a62268 69#include "arch-utils.h"
c906108c
SS
70
71/* Prototypes for local functions */
72
2ea28649 73static void sig_print_info (enum gdb_signal);
c906108c 74
96baa820 75static void sig_print_header (void);
c906108c 76
4ef3f3be 77static int follow_fork (void);
96baa820 78
d83ad864
DB
79static int follow_fork_inferior (int follow_child, int detach_fork);
80
81static void follow_inferior_reset_breakpoints (void);
82
a289b8f6
JK
83static int currently_stepping (struct thread_info *tp);
84
e58b0e63
PA
85void nullify_last_target_wait_ptid (void);
86
2c03e5be 87static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
88
89static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
90
2484c66b
UW
91static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
92
8550d3b3
YQ
93static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
94
372316f1
PA
95/* Asynchronous signal handler registered as event loop source for
96 when we have pending events ready to be passed to the core. */
97static struct async_event_handler *infrun_async_inferior_event_token;
98
99/* Stores whether infrun_async was previously enabled or disabled.
100 Starts off as -1, indicating "never enabled/disabled". */
101static int infrun_is_async = -1;
102
103/* See infrun.h. */
104
105void
106infrun_async (int enable)
107{
108 if (infrun_is_async != enable)
109 {
110 infrun_is_async = enable;
111
112 if (debug_infrun)
113 fprintf_unfiltered (gdb_stdlog,
114 "infrun: infrun_async(%d)\n",
115 enable);
116
117 if (enable)
118 mark_async_event_handler (infrun_async_inferior_event_token);
119 else
120 clear_async_event_handler (infrun_async_inferior_event_token);
121 }
122}
123
0b333c5e
PA
124/* See infrun.h. */
125
126void
127mark_infrun_async_event_handler (void)
128{
129 mark_async_event_handler (infrun_async_inferior_event_token);
130}
131
5fbbeb29
CF
132/* When set, stop the 'step' command if we enter a function which has
133 no line number information. The normal behavior is that we step
134 over such function. */
135int step_stop_if_no_debug = 0;
920d2a44
AC
136static void
137show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
138 struct cmd_list_element *c, const char *value)
139{
140 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
141}
5fbbeb29 142
b9f437de
PA
143/* proceed and normal_stop use this to notify the user when the
144 inferior stopped in a different thread than it had been running
145 in. */
96baa820 146
39f77062 147static ptid_t previous_inferior_ptid;
7a292a7a 148
07107ca6
LM
149/* If set (default for legacy reasons), when following a fork, GDB
150 will detach from one of the fork branches, child or parent.
151 Exactly which branch is detached depends on 'set follow-fork-mode'
152 setting. */
153
154static int detach_fork = 1;
6c95b8df 155
237fc4c9
PA
156int debug_displaced = 0;
157static void
158show_debug_displaced (struct ui_file *file, int from_tty,
159 struct cmd_list_element *c, const char *value)
160{
161 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
162}
163
ccce17b0 164unsigned int debug_infrun = 0;
920d2a44
AC
165static void
166show_debug_infrun (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168{
169 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
170}
527159b7 171
03583c20
UW
172
173/* Support for disabling address space randomization. */
174
175int disable_randomization = 1;
176
177static void
178show_disable_randomization (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180{
181 if (target_supports_disable_randomization ())
182 fprintf_filtered (file,
183 _("Disabling randomization of debuggee's "
184 "virtual address space is %s.\n"),
185 value);
186 else
187 fputs_filtered (_("Disabling randomization of debuggee's "
188 "virtual address space is unsupported on\n"
189 "this platform.\n"), file);
190}
191
192static void
eb4c3f4a 193set_disable_randomization (const char *args, int from_tty,
03583c20
UW
194 struct cmd_list_element *c)
195{
196 if (!target_supports_disable_randomization ())
197 error (_("Disabling randomization of debuggee's "
198 "virtual address space is unsupported on\n"
199 "this platform."));
200}
201
d32dc48e
PA
202/* User interface for non-stop mode. */
203
204int non_stop = 0;
205static int non_stop_1 = 0;
206
207static void
eb4c3f4a 208set_non_stop (const char *args, int from_tty,
d32dc48e
PA
209 struct cmd_list_element *c)
210{
211 if (target_has_execution)
212 {
213 non_stop_1 = non_stop;
214 error (_("Cannot change this setting while the inferior is running."));
215 }
216
217 non_stop = non_stop_1;
218}
219
220static void
221show_non_stop (struct ui_file *file, int from_tty,
222 struct cmd_list_element *c, const char *value)
223{
224 fprintf_filtered (file,
225 _("Controlling the inferior in non-stop mode is %s.\n"),
226 value);
227}
228
d914c394
SS
229/* "Observer mode" is somewhat like a more extreme version of
230 non-stop, in which all GDB operations that might affect the
231 target's execution have been disabled. */
232
d914c394
SS
233int observer_mode = 0;
234static int observer_mode_1 = 0;
235
236static void
eb4c3f4a 237set_observer_mode (const char *args, int from_tty,
d914c394
SS
238 struct cmd_list_element *c)
239{
d914c394
SS
240 if (target_has_execution)
241 {
242 observer_mode_1 = observer_mode;
243 error (_("Cannot change this setting while the inferior is running."));
244 }
245
246 observer_mode = observer_mode_1;
247
248 may_write_registers = !observer_mode;
249 may_write_memory = !observer_mode;
250 may_insert_breakpoints = !observer_mode;
251 may_insert_tracepoints = !observer_mode;
252 /* We can insert fast tracepoints in or out of observer mode,
253 but enable them if we're going into this mode. */
254 if (observer_mode)
255 may_insert_fast_tracepoints = 1;
256 may_stop = !observer_mode;
257 update_target_permissions ();
258
259 /* Going *into* observer mode we must force non-stop, then
260 going out we leave it that way. */
261 if (observer_mode)
262 {
d914c394
SS
263 pagination_enabled = 0;
264 non_stop = non_stop_1 = 1;
265 }
266
267 if (from_tty)
268 printf_filtered (_("Observer mode is now %s.\n"),
269 (observer_mode ? "on" : "off"));
270}
271
272static void
273show_observer_mode (struct ui_file *file, int from_tty,
274 struct cmd_list_element *c, const char *value)
275{
276 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
277}
278
279/* This updates the value of observer mode based on changes in
280 permissions. Note that we are deliberately ignoring the values of
281 may-write-registers and may-write-memory, since the user may have
282 reason to enable these during a session, for instance to turn on a
283 debugging-related global. */
284
285void
286update_observer_mode (void)
287{
288 int newval;
289
290 newval = (!may_insert_breakpoints
291 && !may_insert_tracepoints
292 && may_insert_fast_tracepoints
293 && !may_stop
294 && non_stop);
295
296 /* Let the user know if things change. */
297 if (newval != observer_mode)
298 printf_filtered (_("Observer mode is now %s.\n"),
299 (newval ? "on" : "off"));
300
301 observer_mode = observer_mode_1 = newval;
302}
c2c6d25f 303
c906108c
SS
304/* Tables of how to react to signals; the user sets them. */
305
306static unsigned char *signal_stop;
307static unsigned char *signal_print;
308static unsigned char *signal_program;
309
ab04a2af
TT
310/* Table of signals that are registered with "catch signal". A
311 non-zero entry indicates that the signal is caught by some "catch
312 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
313 signals. */
314static unsigned char *signal_catch;
315
2455069d
UW
316/* Table of signals that the target may silently handle.
317 This is automatically determined from the flags above,
318 and simply cached here. */
319static unsigned char *signal_pass;
320
c906108c
SS
321#define SET_SIGS(nsigs,sigs,flags) \
322 do { \
323 int signum = (nsigs); \
324 while (signum-- > 0) \
325 if ((sigs)[signum]) \
326 (flags)[signum] = 1; \
327 } while (0)
328
329#define UNSET_SIGS(nsigs,sigs,flags) \
330 do { \
331 int signum = (nsigs); \
332 while (signum-- > 0) \
333 if ((sigs)[signum]) \
334 (flags)[signum] = 0; \
335 } while (0)
336
9b224c5e
PA
337/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
338 this function is to avoid exporting `signal_program'. */
339
340void
341update_signals_program_target (void)
342{
a493e3e2 343 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
344}
345
1777feb0 346/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 347
edb3359d 348#define RESUME_ALL minus_one_ptid
c906108c
SS
349
350/* Command list pointer for the "stop" placeholder. */
351
352static struct cmd_list_element *stop_command;
353
c906108c
SS
354/* Nonzero if we want to give control to the user when we're notified
355 of shared library events by the dynamic linker. */
628fe4e4 356int stop_on_solib_events;
f9e14852
GB
357
358/* Enable or disable optional shared library event breakpoints
359 as appropriate when the above flag is changed. */
360
361static void
eb4c3f4a
TT
362set_stop_on_solib_events (const char *args,
363 int from_tty, struct cmd_list_element *c)
f9e14852
GB
364{
365 update_solib_breakpoints ();
366}
367
920d2a44
AC
368static void
369show_stop_on_solib_events (struct ui_file *file, int from_tty,
370 struct cmd_list_element *c, const char *value)
371{
372 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
373 value);
374}
c906108c 375
c906108c
SS
376/* Nonzero after stop if current stack frame should be printed. */
377
378static int stop_print_frame;
379
e02bc4cc 380/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
381 returned by target_wait()/deprecated_target_wait_hook(). This
382 information is returned by get_last_target_status(). */
39f77062 383static ptid_t target_last_wait_ptid;
e02bc4cc
DS
384static struct target_waitstatus target_last_waitstatus;
385
0d1e5fa7
PA
386static void context_switch (ptid_t ptid);
387
4e1c45ea 388void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 389
53904c9e
AC
390static const char follow_fork_mode_child[] = "child";
391static const char follow_fork_mode_parent[] = "parent";
392
40478521 393static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
394 follow_fork_mode_child,
395 follow_fork_mode_parent,
396 NULL
ef346e04 397};
c906108c 398
53904c9e 399static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
400static void
401show_follow_fork_mode_string (struct ui_file *file, int from_tty,
402 struct cmd_list_element *c, const char *value)
403{
3e43a32a
MS
404 fprintf_filtered (file,
405 _("Debugger response to a program "
406 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
407 value);
408}
c906108c
SS
409\f
410
d83ad864
DB
411/* Handle changes to the inferior list based on the type of fork,
412 which process is being followed, and whether the other process
413 should be detached. On entry inferior_ptid must be the ptid of
414 the fork parent. At return inferior_ptid is the ptid of the
415 followed inferior. */
416
417static int
418follow_fork_inferior (int follow_child, int detach_fork)
419{
420 int has_vforked;
79639e11 421 ptid_t parent_ptid, child_ptid;
d83ad864
DB
422
423 has_vforked = (inferior_thread ()->pending_follow.kind
424 == TARGET_WAITKIND_VFORKED);
79639e11
PA
425 parent_ptid = inferior_ptid;
426 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
427
428 if (has_vforked
429 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 430 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
431 && !(follow_child || detach_fork || sched_multi))
432 {
433 /* The parent stays blocked inside the vfork syscall until the
434 child execs or exits. If we don't let the child run, then
435 the parent stays blocked. If we're telling the parent to run
436 in the foreground, the user will not be able to ctrl-c to get
437 back the terminal, effectively hanging the debug session. */
438 fprintf_filtered (gdb_stderr, _("\
439Can not resume the parent process over vfork in the foreground while\n\
440holding the child stopped. Try \"set detach-on-fork\" or \
441\"set schedule-multiple\".\n"));
442 /* FIXME output string > 80 columns. */
443 return 1;
444 }
445
446 if (!follow_child)
447 {
448 /* Detach new forked process? */
449 if (detach_fork)
450 {
d83ad864
DB
451 /* Before detaching from the child, remove all breakpoints
452 from it. If we forked, then this has already been taken
453 care of by infrun.c. If we vforked however, any
454 breakpoint inserted in the parent is visible in the
455 child, even those added while stopped in a vfork
456 catchpoint. This will remove the breakpoints from the
457 parent also, but they'll be reinserted below. */
458 if (has_vforked)
459 {
460 /* Keep breakpoints list in sync. */
461 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
462 }
463
f67c0c91 464 if (print_inferior_events)
d83ad864 465 {
8dd06f7a
DB
466 /* Ensure that we have a process ptid. */
467 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
468
223ffa71 469 target_terminal::ours_for_output ();
d83ad864 470 fprintf_filtered (gdb_stdlog,
f67c0c91 471 _("[Detaching after %s from child %s]\n"),
6f259a23 472 has_vforked ? "vfork" : "fork",
8dd06f7a 473 target_pid_to_str (process_ptid));
d83ad864
DB
474 }
475 }
476 else
477 {
478 struct inferior *parent_inf, *child_inf;
d83ad864
DB
479
480 /* Add process to GDB's tables. */
79639e11 481 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
482
483 parent_inf = current_inferior ();
484 child_inf->attach_flag = parent_inf->attach_flag;
485 copy_terminal_info (child_inf, parent_inf);
486 child_inf->gdbarch = parent_inf->gdbarch;
487 copy_inferior_target_desc_info (child_inf, parent_inf);
488
5ed8105e 489 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 490
79639e11 491 inferior_ptid = child_ptid;
f67c0c91 492 add_thread_silent (inferior_ptid);
2a00d7ce 493 set_current_inferior (child_inf);
d83ad864
DB
494 child_inf->symfile_flags = SYMFILE_NO_READ;
495
496 /* If this is a vfork child, then the address-space is
497 shared with the parent. */
498 if (has_vforked)
499 {
500 child_inf->pspace = parent_inf->pspace;
501 child_inf->aspace = parent_inf->aspace;
502
503 /* The parent will be frozen until the child is done
504 with the shared region. Keep track of the
505 parent. */
506 child_inf->vfork_parent = parent_inf;
507 child_inf->pending_detach = 0;
508 parent_inf->vfork_child = child_inf;
509 parent_inf->pending_detach = 0;
510 }
511 else
512 {
513 child_inf->aspace = new_address_space ();
564b1e3f 514 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
515 child_inf->removable = 1;
516 set_current_program_space (child_inf->pspace);
517 clone_program_space (child_inf->pspace, parent_inf->pspace);
518
519 /* Let the shared library layer (e.g., solib-svr4) learn
520 about this new process, relocate the cloned exec, pull
521 in shared libraries, and install the solib event
522 breakpoint. If a "cloned-VM" event was propagated
523 better throughout the core, this wouldn't be
524 required. */
525 solib_create_inferior_hook (0);
526 }
d83ad864
DB
527 }
528
529 if (has_vforked)
530 {
531 struct inferior *parent_inf;
532
533 parent_inf = current_inferior ();
534
535 /* If we detached from the child, then we have to be careful
536 to not insert breakpoints in the parent until the child
537 is done with the shared memory region. However, if we're
538 staying attached to the child, then we can and should
539 insert breakpoints, so that we can debug it. A
540 subsequent child exec or exit is enough to know when does
541 the child stops using the parent's address space. */
542 parent_inf->waiting_for_vfork_done = detach_fork;
543 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
544 }
545 }
546 else
547 {
548 /* Follow the child. */
549 struct inferior *parent_inf, *child_inf;
550 struct program_space *parent_pspace;
551
f67c0c91 552 if (print_inferior_events)
d83ad864 553 {
f67c0c91
SDJ
554 std::string parent_pid = target_pid_to_str (parent_ptid);
555 std::string child_pid = target_pid_to_str (child_ptid);
556
223ffa71 557 target_terminal::ours_for_output ();
6f259a23 558 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
559 _("[Attaching after %s %s to child %s]\n"),
560 parent_pid.c_str (),
6f259a23 561 has_vforked ? "vfork" : "fork",
f67c0c91 562 child_pid.c_str ());
d83ad864
DB
563 }
564
565 /* Add the new inferior first, so that the target_detach below
566 doesn't unpush the target. */
567
79639e11 568 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
569
570 parent_inf = current_inferior ();
571 child_inf->attach_flag = parent_inf->attach_flag;
572 copy_terminal_info (child_inf, parent_inf);
573 child_inf->gdbarch = parent_inf->gdbarch;
574 copy_inferior_target_desc_info (child_inf, parent_inf);
575
576 parent_pspace = parent_inf->pspace;
577
578 /* If we're vforking, we want to hold on to the parent until the
579 child exits or execs. At child exec or exit time we can
580 remove the old breakpoints from the parent and detach or
581 resume debugging it. Otherwise, detach the parent now; we'll
582 want to reuse it's program/address spaces, but we can't set
583 them to the child before removing breakpoints from the
584 parent, otherwise, the breakpoints module could decide to
585 remove breakpoints from the wrong process (since they'd be
586 assigned to the same address space). */
587
588 if (has_vforked)
589 {
590 gdb_assert (child_inf->vfork_parent == NULL);
591 gdb_assert (parent_inf->vfork_child == NULL);
592 child_inf->vfork_parent = parent_inf;
593 child_inf->pending_detach = 0;
594 parent_inf->vfork_child = child_inf;
595 parent_inf->pending_detach = detach_fork;
596 parent_inf->waiting_for_vfork_done = 0;
597 }
598 else if (detach_fork)
6f259a23 599 {
f67c0c91 600 if (print_inferior_events)
6f259a23 601 {
8dd06f7a 602 /* Ensure that we have a process ptid. */
f67c0c91 603 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (parent_ptid));
8dd06f7a 604
223ffa71 605 target_terminal::ours_for_output ();
6f259a23 606 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
607 _("[Detaching after fork from "
608 "parent %s]\n"),
8dd06f7a 609 target_pid_to_str (process_ptid));
6f259a23
DB
610 }
611
6e1e1966 612 target_detach (parent_inf, 0);
6f259a23 613 }
d83ad864
DB
614
615 /* Note that the detach above makes PARENT_INF dangling. */
616
617 /* Add the child thread to the appropriate lists, and switch to
618 this new thread, before cloning the program space, and
619 informing the solib layer about this new process. */
620
79639e11 621 inferior_ptid = child_ptid;
f67c0c91 622 add_thread_silent (inferior_ptid);
2a00d7ce 623 set_current_inferior (child_inf);
d83ad864
DB
624
625 /* If this is a vfork child, then the address-space is shared
626 with the parent. If we detached from the parent, then we can
627 reuse the parent's program/address spaces. */
628 if (has_vforked || detach_fork)
629 {
630 child_inf->pspace = parent_pspace;
631 child_inf->aspace = child_inf->pspace->aspace;
632 }
633 else
634 {
635 child_inf->aspace = new_address_space ();
564b1e3f 636 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
637 child_inf->removable = 1;
638 child_inf->symfile_flags = SYMFILE_NO_READ;
639 set_current_program_space (child_inf->pspace);
640 clone_program_space (child_inf->pspace, parent_pspace);
641
642 /* Let the shared library layer (e.g., solib-svr4) learn
643 about this new process, relocate the cloned exec, pull in
644 shared libraries, and install the solib event breakpoint.
645 If a "cloned-VM" event was propagated better throughout
646 the core, this wouldn't be required. */
647 solib_create_inferior_hook (0);
648 }
649 }
650
651 return target_follow_fork (follow_child, detach_fork);
652}
653
e58b0e63
PA
654/* Tell the target to follow the fork we're stopped at. Returns true
655 if the inferior should be resumed; false, if the target for some
656 reason decided it's best not to resume. */
657
6604731b 658static int
4ef3f3be 659follow_fork (void)
c906108c 660{
ea1dd7bc 661 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
662 int should_resume = 1;
663 struct thread_info *tp;
664
665 /* Copy user stepping state to the new inferior thread. FIXME: the
666 followed fork child thread should have a copy of most of the
4e3990f4
DE
667 parent thread structure's run control related fields, not just these.
668 Initialized to avoid "may be used uninitialized" warnings from gcc. */
669 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 670 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
671 CORE_ADDR step_range_start = 0;
672 CORE_ADDR step_range_end = 0;
673 struct frame_id step_frame_id = { 0 };
8980e177 674 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
675
676 if (!non_stop)
677 {
678 ptid_t wait_ptid;
679 struct target_waitstatus wait_status;
680
681 /* Get the last target status returned by target_wait(). */
682 get_last_target_status (&wait_ptid, &wait_status);
683
684 /* If not stopped at a fork event, then there's nothing else to
685 do. */
686 if (wait_status.kind != TARGET_WAITKIND_FORKED
687 && wait_status.kind != TARGET_WAITKIND_VFORKED)
688 return 1;
689
690 /* Check if we switched over from WAIT_PTID, since the event was
691 reported. */
692 if (!ptid_equal (wait_ptid, minus_one_ptid)
693 && !ptid_equal (inferior_ptid, wait_ptid))
694 {
695 /* We did. Switch back to WAIT_PTID thread, to tell the
696 target to follow it (in either direction). We'll
697 afterwards refuse to resume, and inform the user what
698 happened. */
699 switch_to_thread (wait_ptid);
700 should_resume = 0;
701 }
702 }
703
704 tp = inferior_thread ();
705
706 /* If there were any forks/vforks that were caught and are now to be
707 followed, then do so now. */
708 switch (tp->pending_follow.kind)
709 {
710 case TARGET_WAITKIND_FORKED:
711 case TARGET_WAITKIND_VFORKED:
712 {
713 ptid_t parent, child;
714
715 /* If the user did a next/step, etc, over a fork call,
716 preserve the stepping state in the fork child. */
717 if (follow_child && should_resume)
718 {
8358c15c
JK
719 step_resume_breakpoint = clone_momentary_breakpoint
720 (tp->control.step_resume_breakpoint);
16c381f0
JK
721 step_range_start = tp->control.step_range_start;
722 step_range_end = tp->control.step_range_end;
723 step_frame_id = tp->control.step_frame_id;
186c406b
TT
724 exception_resume_breakpoint
725 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 726 thread_fsm = tp->thread_fsm;
e58b0e63
PA
727
728 /* For now, delete the parent's sr breakpoint, otherwise,
729 parent/child sr breakpoints are considered duplicates,
730 and the child version will not be installed. Remove
731 this when the breakpoints module becomes aware of
732 inferiors and address spaces. */
733 delete_step_resume_breakpoint (tp);
16c381f0
JK
734 tp->control.step_range_start = 0;
735 tp->control.step_range_end = 0;
736 tp->control.step_frame_id = null_frame_id;
186c406b 737 delete_exception_resume_breakpoint (tp);
8980e177 738 tp->thread_fsm = NULL;
e58b0e63
PA
739 }
740
741 parent = inferior_ptid;
742 child = tp->pending_follow.value.related_pid;
743
d83ad864
DB
744 /* Set up inferior(s) as specified by the caller, and tell the
745 target to do whatever is necessary to follow either parent
746 or child. */
747 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
748 {
749 /* Target refused to follow, or there's some other reason
750 we shouldn't resume. */
751 should_resume = 0;
752 }
753 else
754 {
755 /* This pending follow fork event is now handled, one way
756 or another. The previous selected thread may be gone
757 from the lists by now, but if it is still around, need
758 to clear the pending follow request. */
e09875d4 759 tp = find_thread_ptid (parent);
e58b0e63
PA
760 if (tp)
761 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
762
763 /* This makes sure we don't try to apply the "Switched
764 over from WAIT_PID" logic above. */
765 nullify_last_target_wait_ptid ();
766
1777feb0 767 /* If we followed the child, switch to it... */
e58b0e63
PA
768 if (follow_child)
769 {
770 switch_to_thread (child);
771
772 /* ... and preserve the stepping state, in case the
773 user was stepping over the fork call. */
774 if (should_resume)
775 {
776 tp = inferior_thread ();
8358c15c
JK
777 tp->control.step_resume_breakpoint
778 = step_resume_breakpoint;
16c381f0
JK
779 tp->control.step_range_start = step_range_start;
780 tp->control.step_range_end = step_range_end;
781 tp->control.step_frame_id = step_frame_id;
186c406b
TT
782 tp->control.exception_resume_breakpoint
783 = exception_resume_breakpoint;
8980e177 784 tp->thread_fsm = thread_fsm;
e58b0e63
PA
785 }
786 else
787 {
788 /* If we get here, it was because we're trying to
789 resume from a fork catchpoint, but, the user
790 has switched threads away from the thread that
791 forked. In that case, the resume command
792 issued is most likely not applicable to the
793 child, so just warn, and refuse to resume. */
3e43a32a 794 warning (_("Not resuming: switched threads "
fd7dcb94 795 "before following fork child."));
e58b0e63
PA
796 }
797
798 /* Reset breakpoints in the child as appropriate. */
799 follow_inferior_reset_breakpoints ();
800 }
801 else
802 switch_to_thread (parent);
803 }
804 }
805 break;
806 case TARGET_WAITKIND_SPURIOUS:
807 /* Nothing to follow. */
808 break;
809 default:
810 internal_error (__FILE__, __LINE__,
811 "Unexpected pending_follow.kind %d\n",
812 tp->pending_follow.kind);
813 break;
814 }
c906108c 815
e58b0e63 816 return should_resume;
c906108c
SS
817}
818
d83ad864 819static void
6604731b 820follow_inferior_reset_breakpoints (void)
c906108c 821{
4e1c45ea
PA
822 struct thread_info *tp = inferior_thread ();
823
6604731b
DJ
824 /* Was there a step_resume breakpoint? (There was if the user
825 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
826 thread number. Cloned step_resume breakpoints are disabled on
827 creation, so enable it here now that it is associated with the
828 correct thread.
6604731b
DJ
829
830 step_resumes are a form of bp that are made to be per-thread.
831 Since we created the step_resume bp when the parent process
832 was being debugged, and now are switching to the child process,
833 from the breakpoint package's viewpoint, that's a switch of
834 "threads". We must update the bp's notion of which thread
835 it is for, or it'll be ignored when it triggers. */
836
8358c15c 837 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
838 {
839 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
840 tp->control.step_resume_breakpoint->loc->enabled = 1;
841 }
6604731b 842
a1aa2221 843 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 844 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
845 {
846 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
847 tp->control.exception_resume_breakpoint->loc->enabled = 1;
848 }
186c406b 849
6604731b
DJ
850 /* Reinsert all breakpoints in the child. The user may have set
851 breakpoints after catching the fork, in which case those
852 were never set in the child, but only in the parent. This makes
853 sure the inserted breakpoints match the breakpoint list. */
854
855 breakpoint_re_set ();
856 insert_breakpoints ();
c906108c 857}
c906108c 858
6c95b8df
PA
859/* The child has exited or execed: resume threads of the parent the
860 user wanted to be executing. */
861
862static int
863proceed_after_vfork_done (struct thread_info *thread,
864 void *arg)
865{
866 int pid = * (int *) arg;
867
868 if (ptid_get_pid (thread->ptid) == pid
869 && is_running (thread->ptid)
870 && !is_executing (thread->ptid)
871 && !thread->stop_requested
a493e3e2 872 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
873 {
874 if (debug_infrun)
875 fprintf_unfiltered (gdb_stdlog,
876 "infrun: resuming vfork parent thread %s\n",
877 target_pid_to_str (thread->ptid));
878
879 switch_to_thread (thread->ptid);
70509625 880 clear_proceed_status (0);
64ce06e4 881 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
882 }
883
884 return 0;
885}
886
5ed8105e
PA
887/* Save/restore inferior_ptid, current program space and current
888 inferior. Only use this if the current context points at an exited
889 inferior (and therefore there's no current thread to save). */
890class scoped_restore_exited_inferior
891{
892public:
893 scoped_restore_exited_inferior ()
894 : m_saved_ptid (&inferior_ptid)
895 {}
896
897private:
898 scoped_restore_tmpl<ptid_t> m_saved_ptid;
899 scoped_restore_current_program_space m_pspace;
900 scoped_restore_current_inferior m_inferior;
901};
902
6c95b8df
PA
903/* Called whenever we notice an exec or exit event, to handle
904 detaching or resuming a vfork parent. */
905
906static void
907handle_vfork_child_exec_or_exit (int exec)
908{
909 struct inferior *inf = current_inferior ();
910
911 if (inf->vfork_parent)
912 {
913 int resume_parent = -1;
914
915 /* This exec or exit marks the end of the shared memory region
916 between the parent and the child. If the user wanted to
917 detach from the parent, now is the time. */
918
919 if (inf->vfork_parent->pending_detach)
920 {
921 struct thread_info *tp;
6c95b8df
PA
922 struct program_space *pspace;
923 struct address_space *aspace;
924
1777feb0 925 /* follow-fork child, detach-on-fork on. */
6c95b8df 926
68c9da30
PA
927 inf->vfork_parent->pending_detach = 0;
928
5ed8105e
PA
929 gdb::optional<scoped_restore_exited_inferior>
930 maybe_restore_inferior;
931 gdb::optional<scoped_restore_current_pspace_and_thread>
932 maybe_restore_thread;
933
934 /* If we're handling a child exit, then inferior_ptid points
935 at the inferior's pid, not to a thread. */
f50f4e56 936 if (!exec)
5ed8105e 937 maybe_restore_inferior.emplace ();
f50f4e56 938 else
5ed8105e 939 maybe_restore_thread.emplace ();
6c95b8df
PA
940
941 /* We're letting loose of the parent. */
942 tp = any_live_thread_of_process (inf->vfork_parent->pid);
943 switch_to_thread (tp->ptid);
944
945 /* We're about to detach from the parent, which implicitly
946 removes breakpoints from its address space. There's a
947 catch here: we want to reuse the spaces for the child,
948 but, parent/child are still sharing the pspace at this
949 point, although the exec in reality makes the kernel give
950 the child a fresh set of new pages. The problem here is
951 that the breakpoints module being unaware of this, would
952 likely chose the child process to write to the parent
953 address space. Swapping the child temporarily away from
954 the spaces has the desired effect. Yes, this is "sort
955 of" a hack. */
956
957 pspace = inf->pspace;
958 aspace = inf->aspace;
959 inf->aspace = NULL;
960 inf->pspace = NULL;
961
f67c0c91 962 if (print_inferior_events)
6c95b8df 963 {
f67c0c91
SDJ
964 const char *pidstr
965 = target_pid_to_str (pid_to_ptid (inf->vfork_parent->pid));
966
223ffa71 967 target_terminal::ours_for_output ();
6c95b8df
PA
968
969 if (exec)
6f259a23
DB
970 {
971 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
972 _("[Detaching vfork parent %s "
973 "after child exec]\n"), pidstr);
6f259a23 974 }
6c95b8df 975 else
6f259a23
DB
976 {
977 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
978 _("[Detaching vfork parent %s "
979 "after child exit]\n"), pidstr);
6f259a23 980 }
6c95b8df
PA
981 }
982
6e1e1966 983 target_detach (inf->vfork_parent, 0);
6c95b8df
PA
984
985 /* Put it back. */
986 inf->pspace = pspace;
987 inf->aspace = aspace;
6c95b8df
PA
988 }
989 else if (exec)
990 {
991 /* We're staying attached to the parent, so, really give the
992 child a new address space. */
564b1e3f 993 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
994 inf->aspace = inf->pspace->aspace;
995 inf->removable = 1;
996 set_current_program_space (inf->pspace);
997
998 resume_parent = inf->vfork_parent->pid;
999
1000 /* Break the bonds. */
1001 inf->vfork_parent->vfork_child = NULL;
1002 }
1003 else
1004 {
6c95b8df
PA
1005 struct program_space *pspace;
1006
1007 /* If this is a vfork child exiting, then the pspace and
1008 aspaces were shared with the parent. Since we're
1009 reporting the process exit, we'll be mourning all that is
1010 found in the address space, and switching to null_ptid,
1011 preparing to start a new inferior. But, since we don't
1012 want to clobber the parent's address/program spaces, we
1013 go ahead and create a new one for this exiting
1014 inferior. */
1015
5ed8105e
PA
1016 /* Switch to null_ptid while running clone_program_space, so
1017 that clone_program_space doesn't want to read the
1018 selected frame of a dead process. */
1019 scoped_restore restore_ptid
1020 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df
PA
1021
1022 /* This inferior is dead, so avoid giving the breakpoints
1023 module the option to write through to it (cloning a
1024 program space resets breakpoints). */
1025 inf->aspace = NULL;
1026 inf->pspace = NULL;
564b1e3f 1027 pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1028 set_current_program_space (pspace);
1029 inf->removable = 1;
7dcd53a0 1030 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1031 clone_program_space (pspace, inf->vfork_parent->pspace);
1032 inf->pspace = pspace;
1033 inf->aspace = pspace->aspace;
1034
6c95b8df
PA
1035 resume_parent = inf->vfork_parent->pid;
1036 /* Break the bonds. */
1037 inf->vfork_parent->vfork_child = NULL;
1038 }
1039
1040 inf->vfork_parent = NULL;
1041
1042 gdb_assert (current_program_space == inf->pspace);
1043
1044 if (non_stop && resume_parent != -1)
1045 {
1046 /* If the user wanted the parent to be running, let it go
1047 free now. */
5ed8105e 1048 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1049
1050 if (debug_infrun)
3e43a32a
MS
1051 fprintf_unfiltered (gdb_stdlog,
1052 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1053 resume_parent);
1054
1055 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1056 }
1057 }
1058}
1059
eb6c553b 1060/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1061
1062static const char follow_exec_mode_new[] = "new";
1063static const char follow_exec_mode_same[] = "same";
40478521 1064static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1065{
1066 follow_exec_mode_new,
1067 follow_exec_mode_same,
1068 NULL,
1069};
1070
1071static const char *follow_exec_mode_string = follow_exec_mode_same;
1072static void
1073show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1074 struct cmd_list_element *c, const char *value)
1075{
1076 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1077}
1078
ecf45d2c 1079/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1080
c906108c 1081static void
ecf45d2c 1082follow_exec (ptid_t ptid, char *exec_file_target)
c906108c 1083{
95e50b27 1084 struct thread_info *th, *tmp;
6c95b8df 1085 struct inferior *inf = current_inferior ();
95e50b27 1086 int pid = ptid_get_pid (ptid);
94585166 1087 ptid_t process_ptid;
7a292a7a 1088
c906108c
SS
1089 /* This is an exec event that we actually wish to pay attention to.
1090 Refresh our symbol table to the newly exec'd program, remove any
1091 momentary bp's, etc.
1092
1093 If there are breakpoints, they aren't really inserted now,
1094 since the exec() transformed our inferior into a fresh set
1095 of instructions.
1096
1097 We want to preserve symbolic breakpoints on the list, since
1098 we have hopes that they can be reset after the new a.out's
1099 symbol table is read.
1100
1101 However, any "raw" breakpoints must be removed from the list
1102 (e.g., the solib bp's), since their address is probably invalid
1103 now.
1104
1105 And, we DON'T want to call delete_breakpoints() here, since
1106 that may write the bp's "shadow contents" (the instruction
1107 value that was overwritten witha TRAP instruction). Since
1777feb0 1108 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1109
1110 mark_breakpoints_out ();
1111
95e50b27
PA
1112 /* The target reports the exec event to the main thread, even if
1113 some other thread does the exec, and even if the main thread was
1114 stopped or already gone. We may still have non-leader threads of
1115 the process on our list. E.g., on targets that don't have thread
1116 exit events (like remote); or on native Linux in non-stop mode if
1117 there were only two threads in the inferior and the non-leader
1118 one is the one that execs (and nothing forces an update of the
1119 thread list up to here). When debugging remotely, it's best to
1120 avoid extra traffic, when possible, so avoid syncing the thread
1121 list with the target, and instead go ahead and delete all threads
1122 of the process but one that reported the event. Note this must
1123 be done before calling update_breakpoints_after_exec, as
1124 otherwise clearing the threads' resources would reference stale
1125 thread breakpoints -- it may have been one of these threads that
1126 stepped across the exec. We could just clear their stepping
1127 states, but as long as we're iterating, might as well delete
1128 them. Deleting them now rather than at the next user-visible
1129 stop provides a nicer sequence of events for user and MI
1130 notifications. */
8a06aea7 1131 ALL_THREADS_SAFE (th, tmp)
95e50b27
PA
1132 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1133 delete_thread (th->ptid);
1134
1135 /* We also need to clear any left over stale state for the
1136 leader/event thread. E.g., if there was any step-resume
1137 breakpoint or similar, it's gone now. We cannot truly
1138 step-to-next statement through an exec(). */
1139 th = inferior_thread ();
8358c15c 1140 th->control.step_resume_breakpoint = NULL;
186c406b 1141 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1142 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1143 th->control.step_range_start = 0;
1144 th->control.step_range_end = 0;
c906108c 1145
95e50b27
PA
1146 /* The user may have had the main thread held stopped in the
1147 previous image (e.g., schedlock on, or non-stop). Release
1148 it now. */
a75724bc
PA
1149 th->stop_requested = 0;
1150
95e50b27
PA
1151 update_breakpoints_after_exec ();
1152
1777feb0 1153 /* What is this a.out's name? */
94585166 1154 process_ptid = pid_to_ptid (pid);
6c95b8df 1155 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1156 target_pid_to_str (process_ptid),
ecf45d2c 1157 exec_file_target);
c906108c
SS
1158
1159 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1160 inferior has essentially been killed & reborn. */
7a292a7a 1161
c906108c 1162 gdb_flush (gdb_stdout);
6ca15a4b
PA
1163
1164 breakpoint_init_inferior (inf_execd);
e85a822c 1165
797bc1cb
TT
1166 gdb::unique_xmalloc_ptr<char> exec_file_host
1167 = exec_file_find (exec_file_target, NULL);
ff862be4 1168
ecf45d2c
SL
1169 /* If we were unable to map the executable target pathname onto a host
1170 pathname, tell the user that. Otherwise GDB's subsequent behavior
1171 is confusing. Maybe it would even be better to stop at this point
1172 so that the user can specify a file manually before continuing. */
1173 if (exec_file_host == NULL)
1174 warning (_("Could not load symbols for executable %s.\n"
1175 "Do you need \"set sysroot\"?"),
1176 exec_file_target);
c906108c 1177
cce9b6bf
PA
1178 /* Reset the shared library package. This ensures that we get a
1179 shlib event when the child reaches "_start", at which point the
1180 dld will have had a chance to initialize the child. */
1181 /* Also, loading a symbol file below may trigger symbol lookups, and
1182 we don't want those to be satisfied by the libraries of the
1183 previous incarnation of this process. */
1184 no_shared_libraries (NULL, 0);
1185
6c95b8df
PA
1186 if (follow_exec_mode_string == follow_exec_mode_new)
1187 {
6c95b8df
PA
1188 /* The user wants to keep the old inferior and program spaces
1189 around. Create a new fresh one, and switch to it. */
1190
17d8546e
DB
1191 /* Do exit processing for the original inferior before adding
1192 the new inferior so we don't have two active inferiors with
1193 the same ptid, which can confuse find_inferior_ptid. */
1194 exit_inferior_num_silent (current_inferior ()->num);
1195
94585166
DB
1196 inf = add_inferior_with_spaces ();
1197 inf->pid = pid;
ecf45d2c 1198 target_follow_exec (inf, exec_file_target);
6c95b8df
PA
1199
1200 set_current_inferior (inf);
94585166 1201 set_current_program_space (inf->pspace);
6c95b8df 1202 }
9107fc8d
PA
1203 else
1204 {
1205 /* The old description may no longer be fit for the new image.
1206 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1207 old description; we'll read a new one below. No need to do
1208 this on "follow-exec-mode new", as the old inferior stays
1209 around (its description is later cleared/refetched on
1210 restart). */
1211 target_clear_description ();
1212 }
6c95b8df
PA
1213
1214 gdb_assert (current_program_space == inf->pspace);
1215
ecf45d2c
SL
1216 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1217 because the proper displacement for a PIE (Position Independent
1218 Executable) main symbol file will only be computed by
1219 solib_create_inferior_hook below. breakpoint_re_set would fail
1220 to insert the breakpoints with the zero displacement. */
797bc1cb 1221 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1222
9107fc8d
PA
1223 /* If the target can specify a description, read it. Must do this
1224 after flipping to the new executable (because the target supplied
1225 description must be compatible with the executable's
1226 architecture, and the old executable may e.g., be 32-bit, while
1227 the new one 64-bit), and before anything involving memory or
1228 registers. */
1229 target_find_description ();
1230
bf93d7ba
SM
1231 /* The add_thread call ends up reading registers, so do it after updating the
1232 target description. */
1233 if (follow_exec_mode_string == follow_exec_mode_new)
1234 add_thread (ptid);
1235
268a4a75 1236 solib_create_inferior_hook (0);
c906108c 1237
4efc6507
DE
1238 jit_inferior_created_hook ();
1239
c1e56572
JK
1240 breakpoint_re_set ();
1241
c906108c
SS
1242 /* Reinsert all breakpoints. (Those which were symbolic have
1243 been reset to the proper address in the new a.out, thanks
1777feb0 1244 to symbol_file_command...). */
c906108c
SS
1245 insert_breakpoints ();
1246
1247 /* The next resume of this inferior should bring it to the shlib
1248 startup breakpoints. (If the user had also set bp's on
1249 "main" from the old (parent) process, then they'll auto-
1777feb0 1250 matically get reset there in the new process.). */
c906108c
SS
1251}
1252
c2829269
PA
1253/* The queue of threads that need to do a step-over operation to get
1254 past e.g., a breakpoint. What technique is used to step over the
1255 breakpoint/watchpoint does not matter -- all threads end up in the
1256 same queue, to maintain rough temporal order of execution, in order
1257 to avoid starvation, otherwise, we could e.g., find ourselves
1258 constantly stepping the same couple threads past their breakpoints
1259 over and over, if the single-step finish fast enough. */
1260struct thread_info *step_over_queue_head;
1261
6c4cfb24
PA
1262/* Bit flags indicating what the thread needs to step over. */
1263
8d297bbf 1264enum step_over_what_flag
6c4cfb24
PA
1265 {
1266 /* Step over a breakpoint. */
1267 STEP_OVER_BREAKPOINT = 1,
1268
1269 /* Step past a non-continuable watchpoint, in order to let the
1270 instruction execute so we can evaluate the watchpoint
1271 expression. */
1272 STEP_OVER_WATCHPOINT = 2
1273 };
8d297bbf 1274DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1275
963f9c80 1276/* Info about an instruction that is being stepped over. */
31e77af2
PA
1277
1278struct step_over_info
1279{
963f9c80
PA
1280 /* If we're stepping past a breakpoint, this is the address space
1281 and address of the instruction the breakpoint is set at. We'll
1282 skip inserting all breakpoints here. Valid iff ASPACE is
1283 non-NULL. */
8b86c959 1284 const address_space *aspace;
31e77af2 1285 CORE_ADDR address;
963f9c80
PA
1286
1287 /* The instruction being stepped over triggers a nonsteppable
1288 watchpoint. If true, we'll skip inserting watchpoints. */
1289 int nonsteppable_watchpoint_p;
21edc42f
YQ
1290
1291 /* The thread's global number. */
1292 int thread;
31e77af2
PA
1293};
1294
1295/* The step-over info of the location that is being stepped over.
1296
1297 Note that with async/breakpoint always-inserted mode, a user might
1298 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1299 being stepped over. As setting a new breakpoint inserts all
1300 breakpoints, we need to make sure the breakpoint being stepped over
1301 isn't inserted then. We do that by only clearing the step-over
1302 info when the step-over is actually finished (or aborted).
1303
1304 Presently GDB can only step over one breakpoint at any given time.
1305 Given threads that can't run code in the same address space as the
1306 breakpoint's can't really miss the breakpoint, GDB could be taught
1307 to step-over at most one breakpoint per address space (so this info
1308 could move to the address space object if/when GDB is extended).
1309 The set of breakpoints being stepped over will normally be much
1310 smaller than the set of all breakpoints, so a flag in the
1311 breakpoint location structure would be wasteful. A separate list
1312 also saves complexity and run-time, as otherwise we'd have to go
1313 through all breakpoint locations clearing their flag whenever we
1314 start a new sequence. Similar considerations weigh against storing
1315 this info in the thread object. Plus, not all step overs actually
1316 have breakpoint locations -- e.g., stepping past a single-step
1317 breakpoint, or stepping to complete a non-continuable
1318 watchpoint. */
1319static struct step_over_info step_over_info;
1320
1321/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1322 stepping over.
1323 N.B. We record the aspace and address now, instead of say just the thread,
1324 because when we need the info later the thread may be running. */
31e77af2
PA
1325
1326static void
8b86c959 1327set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1328 int nonsteppable_watchpoint_p,
1329 int thread)
31e77af2
PA
1330{
1331 step_over_info.aspace = aspace;
1332 step_over_info.address = address;
963f9c80 1333 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1334 step_over_info.thread = thread;
31e77af2
PA
1335}
1336
1337/* Called when we're not longer stepping over a breakpoint / an
1338 instruction, so all breakpoints are free to be (re)inserted. */
1339
1340static void
1341clear_step_over_info (void)
1342{
372316f1
PA
1343 if (debug_infrun)
1344 fprintf_unfiltered (gdb_stdlog,
1345 "infrun: clear_step_over_info\n");
31e77af2
PA
1346 step_over_info.aspace = NULL;
1347 step_over_info.address = 0;
963f9c80 1348 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1349 step_over_info.thread = -1;
31e77af2
PA
1350}
1351
7f89fd65 1352/* See infrun.h. */
31e77af2
PA
1353
1354int
1355stepping_past_instruction_at (struct address_space *aspace,
1356 CORE_ADDR address)
1357{
1358 return (step_over_info.aspace != NULL
1359 && breakpoint_address_match (aspace, address,
1360 step_over_info.aspace,
1361 step_over_info.address));
1362}
1363
963f9c80
PA
1364/* See infrun.h. */
1365
21edc42f
YQ
1366int
1367thread_is_stepping_over_breakpoint (int thread)
1368{
1369 return (step_over_info.thread != -1
1370 && thread == step_over_info.thread);
1371}
1372
1373/* See infrun.h. */
1374
963f9c80
PA
1375int
1376stepping_past_nonsteppable_watchpoint (void)
1377{
1378 return step_over_info.nonsteppable_watchpoint_p;
1379}
1380
6cc83d2a
PA
1381/* Returns true if step-over info is valid. */
1382
1383static int
1384step_over_info_valid_p (void)
1385{
963f9c80
PA
1386 return (step_over_info.aspace != NULL
1387 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1388}
1389
c906108c 1390\f
237fc4c9
PA
1391/* Displaced stepping. */
1392
1393/* In non-stop debugging mode, we must take special care to manage
1394 breakpoints properly; in particular, the traditional strategy for
1395 stepping a thread past a breakpoint it has hit is unsuitable.
1396 'Displaced stepping' is a tactic for stepping one thread past a
1397 breakpoint it has hit while ensuring that other threads running
1398 concurrently will hit the breakpoint as they should.
1399
1400 The traditional way to step a thread T off a breakpoint in a
1401 multi-threaded program in all-stop mode is as follows:
1402
1403 a0) Initially, all threads are stopped, and breakpoints are not
1404 inserted.
1405 a1) We single-step T, leaving breakpoints uninserted.
1406 a2) We insert breakpoints, and resume all threads.
1407
1408 In non-stop debugging, however, this strategy is unsuitable: we
1409 don't want to have to stop all threads in the system in order to
1410 continue or step T past a breakpoint. Instead, we use displaced
1411 stepping:
1412
1413 n0) Initially, T is stopped, other threads are running, and
1414 breakpoints are inserted.
1415 n1) We copy the instruction "under" the breakpoint to a separate
1416 location, outside the main code stream, making any adjustments
1417 to the instruction, register, and memory state as directed by
1418 T's architecture.
1419 n2) We single-step T over the instruction at its new location.
1420 n3) We adjust the resulting register and memory state as directed
1421 by T's architecture. This includes resetting T's PC to point
1422 back into the main instruction stream.
1423 n4) We resume T.
1424
1425 This approach depends on the following gdbarch methods:
1426
1427 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1428 indicate where to copy the instruction, and how much space must
1429 be reserved there. We use these in step n1.
1430
1431 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1432 address, and makes any necessary adjustments to the instruction,
1433 register contents, and memory. We use this in step n1.
1434
1435 - gdbarch_displaced_step_fixup adjusts registers and memory after
1436 we have successfuly single-stepped the instruction, to yield the
1437 same effect the instruction would have had if we had executed it
1438 at its original address. We use this in step n3.
1439
237fc4c9
PA
1440 The gdbarch_displaced_step_copy_insn and
1441 gdbarch_displaced_step_fixup functions must be written so that
1442 copying an instruction with gdbarch_displaced_step_copy_insn,
1443 single-stepping across the copied instruction, and then applying
1444 gdbarch_displaced_insn_fixup should have the same effects on the
1445 thread's memory and registers as stepping the instruction in place
1446 would have. Exactly which responsibilities fall to the copy and
1447 which fall to the fixup is up to the author of those functions.
1448
1449 See the comments in gdbarch.sh for details.
1450
1451 Note that displaced stepping and software single-step cannot
1452 currently be used in combination, although with some care I think
1453 they could be made to. Software single-step works by placing
1454 breakpoints on all possible subsequent instructions; if the
1455 displaced instruction is a PC-relative jump, those breakpoints
1456 could fall in very strange places --- on pages that aren't
1457 executable, or at addresses that are not proper instruction
1458 boundaries. (We do generally let other threads run while we wait
1459 to hit the software single-step breakpoint, and they might
1460 encounter such a corrupted instruction.) One way to work around
1461 this would be to have gdbarch_displaced_step_copy_insn fully
1462 simulate the effect of PC-relative instructions (and return NULL)
1463 on architectures that use software single-stepping.
1464
1465 In non-stop mode, we can have independent and simultaneous step
1466 requests, so more than one thread may need to simultaneously step
1467 over a breakpoint. The current implementation assumes there is
1468 only one scratch space per process. In this case, we have to
1469 serialize access to the scratch space. If thread A wants to step
1470 over a breakpoint, but we are currently waiting for some other
1471 thread to complete a displaced step, we leave thread A stopped and
1472 place it in the displaced_step_request_queue. Whenever a displaced
1473 step finishes, we pick the next thread in the queue and start a new
1474 displaced step operation on it. See displaced_step_prepare and
1475 displaced_step_fixup for details. */
1476
cfba9872
SM
1477/* Default destructor for displaced_step_closure. */
1478
1479displaced_step_closure::~displaced_step_closure () = default;
1480
fc1cf338
PA
1481/* Per-inferior displaced stepping state. */
1482struct displaced_step_inferior_state
1483{
1484 /* Pointer to next in linked list. */
1485 struct displaced_step_inferior_state *next;
1486
1487 /* The process this displaced step state refers to. */
1488 int pid;
1489
3fc8eb30
PA
1490 /* True if preparing a displaced step ever failed. If so, we won't
1491 try displaced stepping for this inferior again. */
1492 int failed_before;
1493
fc1cf338
PA
1494 /* If this is not null_ptid, this is the thread carrying out a
1495 displaced single-step in process PID. This thread's state will
1496 require fixing up once it has completed its step. */
1497 ptid_t step_ptid;
1498
1499 /* The architecture the thread had when we stepped it. */
1500 struct gdbarch *step_gdbarch;
1501
1502 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1503 for post-step cleanup. */
1504 struct displaced_step_closure *step_closure;
1505
1506 /* The address of the original instruction, and the copy we
1507 made. */
1508 CORE_ADDR step_original, step_copy;
1509
1510 /* Saved contents of copy area. */
1511 gdb_byte *step_saved_copy;
1512};
1513
1514/* The list of states of processes involved in displaced stepping
1515 presently. */
1516static struct displaced_step_inferior_state *displaced_step_inferior_states;
1517
1518/* Get the displaced stepping state of process PID. */
1519
1520static struct displaced_step_inferior_state *
1521get_displaced_stepping_state (int pid)
1522{
1523 struct displaced_step_inferior_state *state;
1524
1525 for (state = displaced_step_inferior_states;
1526 state != NULL;
1527 state = state->next)
1528 if (state->pid == pid)
1529 return state;
1530
1531 return NULL;
1532}
1533
372316f1
PA
1534/* Returns true if any inferior has a thread doing a displaced
1535 step. */
1536
1537static int
1538displaced_step_in_progress_any_inferior (void)
1539{
1540 struct displaced_step_inferior_state *state;
1541
1542 for (state = displaced_step_inferior_states;
1543 state != NULL;
1544 state = state->next)
1545 if (!ptid_equal (state->step_ptid, null_ptid))
1546 return 1;
1547
1548 return 0;
1549}
1550
c0987663
YQ
1551/* Return true if thread represented by PTID is doing a displaced
1552 step. */
1553
1554static int
1555displaced_step_in_progress_thread (ptid_t ptid)
1556{
1557 struct displaced_step_inferior_state *displaced;
1558
1559 gdb_assert (!ptid_equal (ptid, null_ptid));
1560
1561 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1562
1563 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1564}
1565
8f572e5c
PA
1566/* Return true if process PID has a thread doing a displaced step. */
1567
1568static int
1569displaced_step_in_progress (int pid)
1570{
1571 struct displaced_step_inferior_state *displaced;
1572
1573 displaced = get_displaced_stepping_state (pid);
1574 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1575 return 1;
1576
1577 return 0;
1578}
1579
fc1cf338
PA
1580/* Add a new displaced stepping state for process PID to the displaced
1581 stepping state list, or return a pointer to an already existing
1582 entry, if it already exists. Never returns NULL. */
1583
1584static struct displaced_step_inferior_state *
1585add_displaced_stepping_state (int pid)
1586{
1587 struct displaced_step_inferior_state *state;
1588
1589 for (state = displaced_step_inferior_states;
1590 state != NULL;
1591 state = state->next)
1592 if (state->pid == pid)
1593 return state;
237fc4c9 1594
8d749320 1595 state = XCNEW (struct displaced_step_inferior_state);
fc1cf338
PA
1596 state->pid = pid;
1597 state->next = displaced_step_inferior_states;
1598 displaced_step_inferior_states = state;
237fc4c9 1599
fc1cf338
PA
1600 return state;
1601}
1602
a42244db
YQ
1603/* If inferior is in displaced stepping, and ADDR equals to starting address
1604 of copy area, return corresponding displaced_step_closure. Otherwise,
1605 return NULL. */
1606
1607struct displaced_step_closure*
1608get_displaced_step_closure_by_addr (CORE_ADDR addr)
1609{
1610 struct displaced_step_inferior_state *displaced
1611 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1612
1613 /* If checking the mode of displaced instruction in copy area. */
1614 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1615 && (displaced->step_copy == addr))
1616 return displaced->step_closure;
1617
1618 return NULL;
1619}
1620
fc1cf338 1621/* Remove the displaced stepping state of process PID. */
237fc4c9 1622
fc1cf338
PA
1623static void
1624remove_displaced_stepping_state (int pid)
1625{
1626 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1627
fc1cf338
PA
1628 gdb_assert (pid != 0);
1629
1630 it = displaced_step_inferior_states;
1631 prev_next_p = &displaced_step_inferior_states;
1632 while (it)
1633 {
1634 if (it->pid == pid)
1635 {
1636 *prev_next_p = it->next;
1637 xfree (it);
1638 return;
1639 }
1640
1641 prev_next_p = &it->next;
1642 it = *prev_next_p;
1643 }
1644}
1645
1646static void
1647infrun_inferior_exit (struct inferior *inf)
1648{
1649 remove_displaced_stepping_state (inf->pid);
1650}
237fc4c9 1651
fff08868
HZ
1652/* If ON, and the architecture supports it, GDB will use displaced
1653 stepping to step over breakpoints. If OFF, or if the architecture
1654 doesn't support it, GDB will instead use the traditional
1655 hold-and-step approach. If AUTO (which is the default), GDB will
1656 decide which technique to use to step over breakpoints depending on
1657 which of all-stop or non-stop mode is active --- displaced stepping
1658 in non-stop mode; hold-and-step in all-stop mode. */
1659
72d0e2c5 1660static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1661
237fc4c9
PA
1662static void
1663show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1664 struct cmd_list_element *c,
1665 const char *value)
1666{
72d0e2c5 1667 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1668 fprintf_filtered (file,
1669 _("Debugger's willingness to use displaced stepping "
1670 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1671 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1672 else
3e43a32a
MS
1673 fprintf_filtered (file,
1674 _("Debugger's willingness to use displaced stepping "
1675 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1676}
1677
fff08868 1678/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1679 over breakpoints of thread TP. */
fff08868 1680
237fc4c9 1681static int
3fc8eb30 1682use_displaced_stepping (struct thread_info *tp)
237fc4c9 1683{
3fc8eb30 1684 struct regcache *regcache = get_thread_regcache (tp->ptid);
ac7936df 1685 struct gdbarch *gdbarch = regcache->arch ();
3fc8eb30
PA
1686 struct displaced_step_inferior_state *displaced_state;
1687
1688 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1689
fbea99ea
PA
1690 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1691 && target_is_non_stop_p ())
72d0e2c5 1692 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1693 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30
PA
1694 && find_record_target () == NULL
1695 && (displaced_state == NULL
1696 || !displaced_state->failed_before));
237fc4c9
PA
1697}
1698
1699/* Clean out any stray displaced stepping state. */
1700static void
fc1cf338 1701displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1702{
1703 /* Indicate that there is no cleanup pending. */
fc1cf338 1704 displaced->step_ptid = null_ptid;
237fc4c9 1705
cfba9872 1706 delete displaced->step_closure;
6d45d4b4 1707 displaced->step_closure = NULL;
237fc4c9
PA
1708}
1709
1710static void
fc1cf338 1711displaced_step_clear_cleanup (void *arg)
237fc4c9 1712{
9a3c8263
SM
1713 struct displaced_step_inferior_state *state
1714 = (struct displaced_step_inferior_state *) arg;
fc1cf338
PA
1715
1716 displaced_step_clear (state);
237fc4c9
PA
1717}
1718
1719/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1720void
1721displaced_step_dump_bytes (struct ui_file *file,
1722 const gdb_byte *buf,
1723 size_t len)
1724{
1725 int i;
1726
1727 for (i = 0; i < len; i++)
1728 fprintf_unfiltered (file, "%02x ", buf[i]);
1729 fputs_unfiltered ("\n", file);
1730}
1731
1732/* Prepare to single-step, using displaced stepping.
1733
1734 Note that we cannot use displaced stepping when we have a signal to
1735 deliver. If we have a signal to deliver and an instruction to step
1736 over, then after the step, there will be no indication from the
1737 target whether the thread entered a signal handler or ignored the
1738 signal and stepped over the instruction successfully --- both cases
1739 result in a simple SIGTRAP. In the first case we mustn't do a
1740 fixup, and in the second case we must --- but we can't tell which.
1741 Comments in the code for 'random signals' in handle_inferior_event
1742 explain how we handle this case instead.
1743
1744 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1745 stepped now; 0 if displaced stepping this thread got queued; or -1
1746 if this instruction can't be displaced stepped. */
1747
237fc4c9 1748static int
3fc8eb30 1749displaced_step_prepare_throw (ptid_t ptid)
237fc4c9 1750{
2989a365 1751 struct cleanup *ignore_cleanups;
c1e36e3e 1752 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9 1753 struct regcache *regcache = get_thread_regcache (ptid);
ac7936df 1754 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1755 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1756 CORE_ADDR original, copy;
1757 ULONGEST len;
1758 struct displaced_step_closure *closure;
fc1cf338 1759 struct displaced_step_inferior_state *displaced;
9e529e1d 1760 int status;
237fc4c9
PA
1761
1762 /* We should never reach this function if the architecture does not
1763 support displaced stepping. */
1764 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1765
c2829269
PA
1766 /* Nor if the thread isn't meant to step over a breakpoint. */
1767 gdb_assert (tp->control.trap_expected);
1768
c1e36e3e
PA
1769 /* Disable range stepping while executing in the scratch pad. We
1770 want a single-step even if executing the displaced instruction in
1771 the scratch buffer lands within the stepping range (e.g., a
1772 jump/branch). */
1773 tp->control.may_range_step = 0;
1774
fc1cf338
PA
1775 /* We have to displaced step one thread at a time, as we only have
1776 access to a single scratch space per inferior. */
237fc4c9 1777
fc1cf338
PA
1778 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1779
1780 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1781 {
1782 /* Already waiting for a displaced step to finish. Defer this
1783 request and place in queue. */
237fc4c9
PA
1784
1785 if (debug_displaced)
1786 fprintf_unfiltered (gdb_stdlog,
c2829269 1787 "displaced: deferring step of %s\n",
237fc4c9
PA
1788 target_pid_to_str (ptid));
1789
c2829269 1790 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1791 return 0;
1792 }
1793 else
1794 {
1795 if (debug_displaced)
1796 fprintf_unfiltered (gdb_stdlog,
1797 "displaced: stepping %s now\n",
1798 target_pid_to_str (ptid));
1799 }
1800
fc1cf338 1801 displaced_step_clear (displaced);
237fc4c9 1802
2989a365 1803 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
ad53cd71
PA
1804 inferior_ptid = ptid;
1805
515630c5 1806 original = regcache_read_pc (regcache);
237fc4c9
PA
1807
1808 copy = gdbarch_displaced_step_location (gdbarch);
1809 len = gdbarch_max_insn_length (gdbarch);
1810
d35ae833
PA
1811 if (breakpoint_in_range_p (aspace, copy, len))
1812 {
1813 /* There's a breakpoint set in the scratch pad location range
1814 (which is usually around the entry point). We'd either
1815 install it before resuming, which would overwrite/corrupt the
1816 scratch pad, or if it was already inserted, this displaced
1817 step would overwrite it. The latter is OK in the sense that
1818 we already assume that no thread is going to execute the code
1819 in the scratch pad range (after initial startup) anyway, but
1820 the former is unacceptable. Simply punt and fallback to
1821 stepping over this breakpoint in-line. */
1822 if (debug_displaced)
1823 {
1824 fprintf_unfiltered (gdb_stdlog,
1825 "displaced: breakpoint set in scratch pad. "
1826 "Stepping over breakpoint in-line instead.\n");
1827 }
1828
d35ae833
PA
1829 return -1;
1830 }
1831
237fc4c9 1832 /* Save the original contents of the copy area. */
224c3ddb 1833 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
ad53cd71 1834 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1835 &displaced->step_saved_copy);
9e529e1d
JK
1836 status = target_read_memory (copy, displaced->step_saved_copy, len);
1837 if (status != 0)
1838 throw_error (MEMORY_ERROR,
1839 _("Error accessing memory address %s (%s) for "
1840 "displaced-stepping scratch space."),
1841 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1842 if (debug_displaced)
1843 {
5af949e3
UW
1844 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1845 paddress (gdbarch, copy));
fc1cf338
PA
1846 displaced_step_dump_bytes (gdb_stdlog,
1847 displaced->step_saved_copy,
1848 len);
237fc4c9
PA
1849 };
1850
1851 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1852 original, copy, regcache);
7f03bd92
PA
1853 if (closure == NULL)
1854 {
1855 /* The architecture doesn't know how or want to displaced step
1856 this instruction or instruction sequence. Fallback to
1857 stepping over the breakpoint in-line. */
2989a365 1858 do_cleanups (ignore_cleanups);
7f03bd92
PA
1859 return -1;
1860 }
237fc4c9 1861
9f5a595d
UW
1862 /* Save the information we need to fix things up if the step
1863 succeeds. */
fc1cf338
PA
1864 displaced->step_ptid = ptid;
1865 displaced->step_gdbarch = gdbarch;
1866 displaced->step_closure = closure;
1867 displaced->step_original = original;
1868 displaced->step_copy = copy;
9f5a595d 1869
fc1cf338 1870 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1871
1872 /* Resume execution at the copy. */
515630c5 1873 regcache_write_pc (regcache, copy);
237fc4c9 1874
ad53cd71
PA
1875 discard_cleanups (ignore_cleanups);
1876
237fc4c9 1877 if (debug_displaced)
5af949e3
UW
1878 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1879 paddress (gdbarch, copy));
237fc4c9 1880
237fc4c9
PA
1881 return 1;
1882}
1883
3fc8eb30
PA
1884/* Wrapper for displaced_step_prepare_throw that disabled further
1885 attempts at displaced stepping if we get a memory error. */
1886
1887static int
1888displaced_step_prepare (ptid_t ptid)
1889{
1890 int prepared = -1;
1891
1892 TRY
1893 {
1894 prepared = displaced_step_prepare_throw (ptid);
1895 }
1896 CATCH (ex, RETURN_MASK_ERROR)
1897 {
1898 struct displaced_step_inferior_state *displaced_state;
1899
16b41842
PA
1900 if (ex.error != MEMORY_ERROR
1901 && ex.error != NOT_SUPPORTED_ERROR)
3fc8eb30
PA
1902 throw_exception (ex);
1903
1904 if (debug_infrun)
1905 {
1906 fprintf_unfiltered (gdb_stdlog,
1907 "infrun: disabling displaced stepping: %s\n",
1908 ex.message);
1909 }
1910
1911 /* Be verbose if "set displaced-stepping" is "on", silent if
1912 "auto". */
1913 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1914 {
fd7dcb94 1915 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1916 ex.message);
1917 }
1918
1919 /* Disable further displaced stepping attempts. */
1920 displaced_state
1921 = get_displaced_stepping_state (ptid_get_pid (ptid));
1922 displaced_state->failed_before = 1;
1923 }
1924 END_CATCH
1925
1926 return prepared;
1927}
1928
237fc4c9 1929static void
3e43a32a
MS
1930write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1931 const gdb_byte *myaddr, int len)
237fc4c9 1932{
2989a365 1933 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1934
237fc4c9
PA
1935 inferior_ptid = ptid;
1936 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1937}
1938
e2d96639
YQ
1939/* Restore the contents of the copy area for thread PTID. */
1940
1941static void
1942displaced_step_restore (struct displaced_step_inferior_state *displaced,
1943 ptid_t ptid)
1944{
1945 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1946
1947 write_memory_ptid (ptid, displaced->step_copy,
1948 displaced->step_saved_copy, len);
1949 if (debug_displaced)
1950 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1951 target_pid_to_str (ptid),
1952 paddress (displaced->step_gdbarch,
1953 displaced->step_copy));
1954}
1955
372316f1
PA
1956/* If we displaced stepped an instruction successfully, adjust
1957 registers and memory to yield the same effect the instruction would
1958 have had if we had executed it at its original address, and return
1959 1. If the instruction didn't complete, relocate the PC and return
1960 -1. If the thread wasn't displaced stepping, return 0. */
1961
1962static int
2ea28649 1963displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1964{
1965 struct cleanup *old_cleanups;
fc1cf338
PA
1966 struct displaced_step_inferior_state *displaced
1967 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
372316f1 1968 int ret;
fc1cf338
PA
1969
1970 /* Was any thread of this process doing a displaced step? */
1971 if (displaced == NULL)
372316f1 1972 return 0;
237fc4c9
PA
1973
1974 /* Was this event for the pid we displaced? */
fc1cf338
PA
1975 if (ptid_equal (displaced->step_ptid, null_ptid)
1976 || ! ptid_equal (displaced->step_ptid, event_ptid))
372316f1 1977 return 0;
237fc4c9 1978
fc1cf338 1979 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1980
e2d96639 1981 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9 1982
cb71640d
PA
1983 /* Fixup may need to read memory/registers. Switch to the thread
1984 that we're fixing up. Also, target_stopped_by_watchpoint checks
1985 the current thread. */
1986 switch_to_thread (event_ptid);
1987
237fc4c9 1988 /* Did the instruction complete successfully? */
cb71640d
PA
1989 if (signal == GDB_SIGNAL_TRAP
1990 && !(target_stopped_by_watchpoint ()
1991 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1992 || target_have_steppable_watchpoint)))
237fc4c9
PA
1993 {
1994 /* Fix up the resulting state. */
fc1cf338
PA
1995 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1996 displaced->step_closure,
1997 displaced->step_original,
1998 displaced->step_copy,
1999 get_thread_regcache (displaced->step_ptid));
372316f1 2000 ret = 1;
237fc4c9
PA
2001 }
2002 else
2003 {
2004 /* Since the instruction didn't complete, all we can do is
2005 relocate the PC. */
515630c5
UW
2006 struct regcache *regcache = get_thread_regcache (event_ptid);
2007 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 2008
fc1cf338 2009 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 2010 regcache_write_pc (regcache, pc);
372316f1 2011 ret = -1;
237fc4c9
PA
2012 }
2013
2014 do_cleanups (old_cleanups);
2015
fc1cf338 2016 displaced->step_ptid = null_ptid;
372316f1
PA
2017
2018 return ret;
c2829269 2019}
1c5cfe86 2020
4d9d9d04
PA
2021/* Data to be passed around while handling an event. This data is
2022 discarded between events. */
2023struct execution_control_state
2024{
2025 ptid_t ptid;
2026 /* The thread that got the event, if this was a thread event; NULL
2027 otherwise. */
2028 struct thread_info *event_thread;
2029
2030 struct target_waitstatus ws;
2031 int stop_func_filled_in;
2032 CORE_ADDR stop_func_start;
2033 CORE_ADDR stop_func_end;
2034 const char *stop_func_name;
2035 int wait_some_more;
2036
2037 /* True if the event thread hit the single-step breakpoint of
2038 another thread. Thus the event doesn't cause a stop, the thread
2039 needs to be single-stepped past the single-step breakpoint before
2040 we can switch back to the original stepping thread. */
2041 int hit_singlestep_breakpoint;
2042};
2043
2044/* Clear ECS and set it to point at TP. */
c2829269
PA
2045
2046static void
4d9d9d04
PA
2047reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2048{
2049 memset (ecs, 0, sizeof (*ecs));
2050 ecs->event_thread = tp;
2051 ecs->ptid = tp->ptid;
2052}
2053
2054static void keep_going_pass_signal (struct execution_control_state *ecs);
2055static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 2056static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 2057static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
2058
2059/* Are there any pending step-over requests? If so, run all we can
2060 now and return true. Otherwise, return false. */
2061
2062static int
c2829269
PA
2063start_step_over (void)
2064{
2065 struct thread_info *tp, *next;
2066
372316f1
PA
2067 /* Don't start a new step-over if we already have an in-line
2068 step-over operation ongoing. */
2069 if (step_over_info_valid_p ())
2070 return 0;
2071
c2829269 2072 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 2073 {
4d9d9d04
PA
2074 struct execution_control_state ecss;
2075 struct execution_control_state *ecs = &ecss;
8d297bbf 2076 step_over_what step_what;
372316f1 2077 int must_be_in_line;
c2829269 2078
c65d6b55
PA
2079 gdb_assert (!tp->stop_requested);
2080
c2829269 2081 next = thread_step_over_chain_next (tp);
237fc4c9 2082
c2829269
PA
2083 /* If this inferior already has a displaced step in process,
2084 don't start a new one. */
4d9d9d04 2085 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
c2829269
PA
2086 continue;
2087
372316f1
PA
2088 step_what = thread_still_needs_step_over (tp);
2089 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2090 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 2091 && !use_displaced_stepping (tp)));
372316f1
PA
2092
2093 /* We currently stop all threads of all processes to step-over
2094 in-line. If we need to start a new in-line step-over, let
2095 any pending displaced steps finish first. */
2096 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2097 return 0;
2098
c2829269
PA
2099 thread_step_over_chain_remove (tp);
2100
2101 if (step_over_queue_head == NULL)
2102 {
2103 if (debug_infrun)
2104 fprintf_unfiltered (gdb_stdlog,
2105 "infrun: step-over queue now empty\n");
2106 }
2107
372316f1
PA
2108 if (tp->control.trap_expected
2109 || tp->resumed
2110 || tp->executing)
ad53cd71 2111 {
4d9d9d04
PA
2112 internal_error (__FILE__, __LINE__,
2113 "[%s] has inconsistent state: "
372316f1 2114 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
2115 target_pid_to_str (tp->ptid),
2116 tp->control.trap_expected,
372316f1 2117 tp->resumed,
4d9d9d04 2118 tp->executing);
ad53cd71 2119 }
1c5cfe86 2120
4d9d9d04
PA
2121 if (debug_infrun)
2122 fprintf_unfiltered (gdb_stdlog,
2123 "infrun: resuming [%s] for step-over\n",
2124 target_pid_to_str (tp->ptid));
2125
2126 /* keep_going_pass_signal skips the step-over if the breakpoint
2127 is no longer inserted. In all-stop, we want to keep looking
2128 for a thread that needs a step-over instead of resuming TP,
2129 because we wouldn't be able to resume anything else until the
2130 target stops again. In non-stop, the resume always resumes
2131 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2132 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2133 continue;
8550d3b3 2134
4d9d9d04
PA
2135 switch_to_thread (tp->ptid);
2136 reset_ecs (ecs, tp);
2137 keep_going_pass_signal (ecs);
1c5cfe86 2138
4d9d9d04
PA
2139 if (!ecs->wait_some_more)
2140 error (_("Command aborted."));
1c5cfe86 2141
372316f1
PA
2142 gdb_assert (tp->resumed);
2143
2144 /* If we started a new in-line step-over, we're done. */
2145 if (step_over_info_valid_p ())
2146 {
2147 gdb_assert (tp->control.trap_expected);
2148 return 1;
2149 }
2150
fbea99ea 2151 if (!target_is_non_stop_p ())
4d9d9d04
PA
2152 {
2153 /* On all-stop, shouldn't have resumed unless we needed a
2154 step over. */
2155 gdb_assert (tp->control.trap_expected
2156 || tp->step_after_step_resume_breakpoint);
2157
2158 /* With remote targets (at least), in all-stop, we can't
2159 issue any further remote commands until the program stops
2160 again. */
2161 return 1;
1c5cfe86 2162 }
c2829269 2163
4d9d9d04
PA
2164 /* Either the thread no longer needed a step-over, or a new
2165 displaced stepping sequence started. Even in the latter
2166 case, continue looking. Maybe we can also start another
2167 displaced step on a thread of other process. */
237fc4c9 2168 }
4d9d9d04
PA
2169
2170 return 0;
237fc4c9
PA
2171}
2172
5231c1fd
PA
2173/* Update global variables holding ptids to hold NEW_PTID if they were
2174 holding OLD_PTID. */
2175static void
2176infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2177{
fc1cf338 2178 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
2179
2180 if (ptid_equal (inferior_ptid, old_ptid))
2181 inferior_ptid = new_ptid;
2182
fc1cf338
PA
2183 for (displaced = displaced_step_inferior_states;
2184 displaced;
2185 displaced = displaced->next)
2186 {
2187 if (ptid_equal (displaced->step_ptid, old_ptid))
2188 displaced->step_ptid = new_ptid;
fc1cf338 2189 }
5231c1fd
PA
2190}
2191
237fc4c9 2192\f
c906108c 2193
53904c9e
AC
2194static const char schedlock_off[] = "off";
2195static const char schedlock_on[] = "on";
2196static const char schedlock_step[] = "step";
f2665db5 2197static const char schedlock_replay[] = "replay";
40478521 2198static const char *const scheduler_enums[] = {
ef346e04
AC
2199 schedlock_off,
2200 schedlock_on,
2201 schedlock_step,
f2665db5 2202 schedlock_replay,
ef346e04
AC
2203 NULL
2204};
f2665db5 2205static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2206static void
2207show_scheduler_mode (struct ui_file *file, int from_tty,
2208 struct cmd_list_element *c, const char *value)
2209{
3e43a32a
MS
2210 fprintf_filtered (file,
2211 _("Mode for locking scheduler "
2212 "during execution is \"%s\".\n"),
920d2a44
AC
2213 value);
2214}
c906108c
SS
2215
2216static void
eb4c3f4a 2217set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2218{
eefe576e
AC
2219 if (!target_can_lock_scheduler)
2220 {
2221 scheduler_mode = schedlock_off;
2222 error (_("Target '%s' cannot support this command."), target_shortname);
2223 }
c906108c
SS
2224}
2225
d4db2f36
PA
2226/* True if execution commands resume all threads of all processes by
2227 default; otherwise, resume only threads of the current inferior
2228 process. */
2229int sched_multi = 0;
2230
2facfe5c
DD
2231/* Try to setup for software single stepping over the specified location.
2232 Return 1 if target_resume() should use hardware single step.
2233
2234 GDBARCH the current gdbarch.
2235 PC the location to step over. */
2236
2237static int
2238maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2239{
2240 int hw_step = 1;
2241
f02253f1 2242 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2243 && gdbarch_software_single_step_p (gdbarch))
2244 hw_step = !insert_single_step_breakpoints (gdbarch);
2245
2facfe5c
DD
2246 return hw_step;
2247}
c906108c 2248
f3263aa4
PA
2249/* See infrun.h. */
2250
09cee04b
PA
2251ptid_t
2252user_visible_resume_ptid (int step)
2253{
f3263aa4 2254 ptid_t resume_ptid;
09cee04b 2255
09cee04b
PA
2256 if (non_stop)
2257 {
2258 /* With non-stop mode on, threads are always handled
2259 individually. */
2260 resume_ptid = inferior_ptid;
2261 }
2262 else if ((scheduler_mode == schedlock_on)
03d46957 2263 || (scheduler_mode == schedlock_step && step))
09cee04b 2264 {
f3263aa4
PA
2265 /* User-settable 'scheduler' mode requires solo thread
2266 resume. */
09cee04b
PA
2267 resume_ptid = inferior_ptid;
2268 }
f2665db5
MM
2269 else if ((scheduler_mode == schedlock_replay)
2270 && target_record_will_replay (minus_one_ptid, execution_direction))
2271 {
2272 /* User-settable 'scheduler' mode requires solo thread resume in replay
2273 mode. */
2274 resume_ptid = inferior_ptid;
2275 }
f3263aa4
PA
2276 else if (!sched_multi && target_supports_multi_process ())
2277 {
2278 /* Resume all threads of the current process (and none of other
2279 processes). */
2280 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2281 }
2282 else
2283 {
2284 /* Resume all threads of all processes. */
2285 resume_ptid = RESUME_ALL;
2286 }
09cee04b
PA
2287
2288 return resume_ptid;
2289}
2290
fbea99ea
PA
2291/* Return a ptid representing the set of threads that we will resume,
2292 in the perspective of the target, assuming run control handling
2293 does not require leaving some threads stopped (e.g., stepping past
2294 breakpoint). USER_STEP indicates whether we're about to start the
2295 target for a stepping command. */
2296
2297static ptid_t
2298internal_resume_ptid (int user_step)
2299{
2300 /* In non-stop, we always control threads individually. Note that
2301 the target may always work in non-stop mode even with "set
2302 non-stop off", in which case user_visible_resume_ptid could
2303 return a wildcard ptid. */
2304 if (target_is_non_stop_p ())
2305 return inferior_ptid;
2306 else
2307 return user_visible_resume_ptid (user_step);
2308}
2309
64ce06e4
PA
2310/* Wrapper for target_resume, that handles infrun-specific
2311 bookkeeping. */
2312
2313static void
2314do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2315{
2316 struct thread_info *tp = inferior_thread ();
2317
c65d6b55
PA
2318 gdb_assert (!tp->stop_requested);
2319
64ce06e4 2320 /* Install inferior's terminal modes. */
223ffa71 2321 target_terminal::inferior ();
64ce06e4
PA
2322
2323 /* Avoid confusing the next resume, if the next stop/resume
2324 happens to apply to another thread. */
2325 tp->suspend.stop_signal = GDB_SIGNAL_0;
2326
8f572e5c
PA
2327 /* Advise target which signals may be handled silently.
2328
2329 If we have removed breakpoints because we are stepping over one
2330 in-line (in any thread), we need to receive all signals to avoid
2331 accidentally skipping a breakpoint during execution of a signal
2332 handler.
2333
2334 Likewise if we're displaced stepping, otherwise a trap for a
2335 breakpoint in a signal handler might be confused with the
2336 displaced step finishing. We don't make the displaced_step_fixup
2337 step distinguish the cases instead, because:
2338
2339 - a backtrace while stopped in the signal handler would show the
2340 scratch pad as frame older than the signal handler, instead of
2341 the real mainline code.
2342
2343 - when the thread is later resumed, the signal handler would
2344 return to the scratch pad area, which would no longer be
2345 valid. */
2346 if (step_over_info_valid_p ()
2347 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
64ce06e4
PA
2348 target_pass_signals (0, NULL);
2349 else
2350 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2351
2352 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2353
2354 target_commit_resume ();
64ce06e4
PA
2355}
2356
d930703d 2357/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2358 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2359 call 'resume', which handles exceptions. */
c906108c 2360
71d378ae
PA
2361static void
2362resume_1 (enum gdb_signal sig)
c906108c 2363{
515630c5 2364 struct regcache *regcache = get_current_regcache ();
ac7936df 2365 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2366 struct thread_info *tp = inferior_thread ();
515630c5 2367 CORE_ADDR pc = regcache_read_pc (regcache);
8b86c959 2368 const address_space *aspace = regcache->aspace ();
b0f16a3e 2369 ptid_t resume_ptid;
856e7dd6
PA
2370 /* This represents the user's step vs continue request. When
2371 deciding whether "set scheduler-locking step" applies, it's the
2372 user's intention that counts. */
2373 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2374 /* This represents what we'll actually request the target to do.
2375 This can decay from a step to a continue, if e.g., we need to
2376 implement single-stepping with breakpoints (software
2377 single-step). */
6b403daa 2378 int step;
c7e8a53c 2379
c65d6b55 2380 gdb_assert (!tp->stop_requested);
c2829269
PA
2381 gdb_assert (!thread_is_in_step_over_chain (tp));
2382
372316f1
PA
2383 if (tp->suspend.waitstatus_pending_p)
2384 {
2385 if (debug_infrun)
2386 {
23fdd69e
SM
2387 std::string statstr
2388 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2389
372316f1 2390 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2391 "infrun: resume: thread %s has pending wait "
2392 "status %s (currently_stepping=%d).\n",
2393 target_pid_to_str (tp->ptid), statstr.c_str (),
372316f1 2394 currently_stepping (tp));
372316f1
PA
2395 }
2396
2397 tp->resumed = 1;
2398
2399 /* FIXME: What should we do if we are supposed to resume this
2400 thread with a signal? Maybe we should maintain a queue of
2401 pending signals to deliver. */
2402 if (sig != GDB_SIGNAL_0)
2403 {
fd7dcb94 2404 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2405 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2406 }
2407
2408 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2409
2410 if (target_can_async_p ())
2411 target_async (1);
2412 return;
2413 }
2414
2415 tp->stepped_breakpoint = 0;
2416
6b403daa
PA
2417 /* Depends on stepped_breakpoint. */
2418 step = currently_stepping (tp);
2419
74609e71
YQ
2420 if (current_inferior ()->waiting_for_vfork_done)
2421 {
48f9886d
PA
2422 /* Don't try to single-step a vfork parent that is waiting for
2423 the child to get out of the shared memory region (by exec'ing
2424 or exiting). This is particularly important on software
2425 single-step archs, as the child process would trip on the
2426 software single step breakpoint inserted for the parent
2427 process. Since the parent will not actually execute any
2428 instruction until the child is out of the shared region (such
2429 are vfork's semantics), it is safe to simply continue it.
2430 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2431 the parent, and tell it to `keep_going', which automatically
2432 re-sets it stepping. */
74609e71
YQ
2433 if (debug_infrun)
2434 fprintf_unfiltered (gdb_stdlog,
2435 "infrun: resume : clear step\n");
a09dd441 2436 step = 0;
74609e71
YQ
2437 }
2438
527159b7 2439 if (debug_infrun)
237fc4c9 2440 fprintf_unfiltered (gdb_stdlog,
c9737c08 2441 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2442 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2443 step, gdb_signal_to_symbol_string (sig),
2444 tp->control.trap_expected,
0d9a9a5f
PA
2445 target_pid_to_str (inferior_ptid),
2446 paddress (gdbarch, pc));
c906108c 2447
c2c6d25f
JM
2448 /* Normally, by the time we reach `resume', the breakpoints are either
2449 removed or inserted, as appropriate. The exception is if we're sitting
2450 at a permanent breakpoint; we need to step over it, but permanent
2451 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2452 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2453 {
af48d08f
PA
2454 if (sig != GDB_SIGNAL_0)
2455 {
2456 /* We have a signal to pass to the inferior. The resume
2457 may, or may not take us to the signal handler. If this
2458 is a step, we'll need to stop in the signal handler, if
2459 there's one, (if the target supports stepping into
2460 handlers), or in the next mainline instruction, if
2461 there's no handler. If this is a continue, we need to be
2462 sure to run the handler with all breakpoints inserted.
2463 In all cases, set a breakpoint at the current address
2464 (where the handler returns to), and once that breakpoint
2465 is hit, resume skipping the permanent breakpoint. If
2466 that breakpoint isn't hit, then we've stepped into the
2467 signal handler (or hit some other event). We'll delete
2468 the step-resume breakpoint then. */
2469
2470 if (debug_infrun)
2471 fprintf_unfiltered (gdb_stdlog,
2472 "infrun: resume: skipping permanent breakpoint, "
2473 "deliver signal first\n");
2474
2475 clear_step_over_info ();
2476 tp->control.trap_expected = 0;
2477
2478 if (tp->control.step_resume_breakpoint == NULL)
2479 {
2480 /* Set a "high-priority" step-resume, as we don't want
2481 user breakpoints at PC to trigger (again) when this
2482 hits. */
2483 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2484 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2485
2486 tp->step_after_step_resume_breakpoint = step;
2487 }
2488
2489 insert_breakpoints ();
2490 }
2491 else
2492 {
2493 /* There's no signal to pass, we can go ahead and skip the
2494 permanent breakpoint manually. */
2495 if (debug_infrun)
2496 fprintf_unfiltered (gdb_stdlog,
2497 "infrun: resume: skipping permanent breakpoint\n");
2498 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2499 /* Update pc to reflect the new address from which we will
2500 execute instructions. */
2501 pc = regcache_read_pc (regcache);
2502
2503 if (step)
2504 {
2505 /* We've already advanced the PC, so the stepping part
2506 is done. Now we need to arrange for a trap to be
2507 reported to handle_inferior_event. Set a breakpoint
2508 at the current PC, and run to it. Don't update
2509 prev_pc, because if we end in
44a1ee51
PA
2510 switch_back_to_stepped_thread, we want the "expected
2511 thread advanced also" branch to be taken. IOW, we
2512 don't want this thread to step further from PC
af48d08f 2513 (overstep). */
1ac806b8 2514 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2515 insert_single_step_breakpoint (gdbarch, aspace, pc);
2516 insert_breakpoints ();
2517
fbea99ea 2518 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2519 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
372316f1 2520 tp->resumed = 1;
af48d08f
PA
2521 return;
2522 }
2523 }
6d350bb5 2524 }
c2c6d25f 2525
c1e36e3e
PA
2526 /* If we have a breakpoint to step over, make sure to do a single
2527 step only. Same if we have software watchpoints. */
2528 if (tp->control.trap_expected || bpstat_should_step ())
2529 tp->control.may_range_step = 0;
2530
237fc4c9
PA
2531 /* If enabled, step over breakpoints by executing a copy of the
2532 instruction at a different address.
2533
2534 We can't use displaced stepping when we have a signal to deliver;
2535 the comments for displaced_step_prepare explain why. The
2536 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2537 signals' explain what we do instead.
2538
2539 We can't use displaced stepping when we are waiting for vfork_done
2540 event, displaced stepping breaks the vfork child similarly as single
2541 step software breakpoint. */
3fc8eb30
PA
2542 if (tp->control.trap_expected
2543 && use_displaced_stepping (tp)
cb71640d 2544 && !step_over_info_valid_p ()
a493e3e2 2545 && sig == GDB_SIGNAL_0
74609e71 2546 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2547 {
3fc8eb30 2548 int prepared = displaced_step_prepare (inferior_ptid);
fc1cf338 2549
3fc8eb30 2550 if (prepared == 0)
d56b7306 2551 {
4d9d9d04
PA
2552 if (debug_infrun)
2553 fprintf_unfiltered (gdb_stdlog,
2554 "Got placed in step-over queue\n");
2555
2556 tp->control.trap_expected = 0;
d56b7306
VP
2557 return;
2558 }
3fc8eb30
PA
2559 else if (prepared < 0)
2560 {
2561 /* Fallback to stepping over the breakpoint in-line. */
2562
2563 if (target_is_non_stop_p ())
2564 stop_all_threads ();
2565
a01bda52 2566 set_step_over_info (regcache->aspace (),
21edc42f 2567 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2568
2569 step = maybe_software_singlestep (gdbarch, pc);
2570
2571 insert_breakpoints ();
2572 }
2573 else if (prepared > 0)
2574 {
2575 struct displaced_step_inferior_state *displaced;
99e40580 2576
3fc8eb30
PA
2577 /* Update pc to reflect the new address from which we will
2578 execute instructions due to displaced stepping. */
2579 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
ca7781d2 2580
3fc8eb30
PA
2581 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2582 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2583 displaced->step_closure);
2584 }
237fc4c9
PA
2585 }
2586
2facfe5c 2587 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2588 else if (step)
2facfe5c 2589 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2590
30852783
UW
2591 /* Currently, our software single-step implementation leads to different
2592 results than hardware single-stepping in one situation: when stepping
2593 into delivering a signal which has an associated signal handler,
2594 hardware single-step will stop at the first instruction of the handler,
2595 while software single-step will simply skip execution of the handler.
2596
2597 For now, this difference in behavior is accepted since there is no
2598 easy way to actually implement single-stepping into a signal handler
2599 without kernel support.
2600
2601 However, there is one scenario where this difference leads to follow-on
2602 problems: if we're stepping off a breakpoint by removing all breakpoints
2603 and then single-stepping. In this case, the software single-step
2604 behavior means that even if there is a *breakpoint* in the signal
2605 handler, GDB still would not stop.
2606
2607 Fortunately, we can at least fix this particular issue. We detect
2608 here the case where we are about to deliver a signal while software
2609 single-stepping with breakpoints removed. In this situation, we
2610 revert the decisions to remove all breakpoints and insert single-
2611 step breakpoints, and instead we install a step-resume breakpoint
2612 at the current address, deliver the signal without stepping, and
2613 once we arrive back at the step-resume breakpoint, actually step
2614 over the breakpoint we originally wanted to step over. */
34b7e8a6 2615 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2616 && sig != GDB_SIGNAL_0
2617 && step_over_info_valid_p ())
30852783
UW
2618 {
2619 /* If we have nested signals or a pending signal is delivered
2620 immediately after a handler returns, might might already have
2621 a step-resume breakpoint set on the earlier handler. We cannot
2622 set another step-resume breakpoint; just continue on until the
2623 original breakpoint is hit. */
2624 if (tp->control.step_resume_breakpoint == NULL)
2625 {
2c03e5be 2626 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2627 tp->step_after_step_resume_breakpoint = 1;
2628 }
2629
34b7e8a6 2630 delete_single_step_breakpoints (tp);
30852783 2631
31e77af2 2632 clear_step_over_info ();
30852783 2633 tp->control.trap_expected = 0;
31e77af2
PA
2634
2635 insert_breakpoints ();
30852783
UW
2636 }
2637
b0f16a3e
SM
2638 /* If STEP is set, it's a request to use hardware stepping
2639 facilities. But in that case, we should never
2640 use singlestep breakpoint. */
34b7e8a6 2641 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2642
fbea99ea 2643 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2644 if (tp->control.trap_expected)
b0f16a3e
SM
2645 {
2646 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2647 hit, either by single-stepping the thread with the breakpoint
2648 removed, or by displaced stepping, with the breakpoint inserted.
2649 In the former case, we need to single-step only this thread,
2650 and keep others stopped, as they can miss this breakpoint if
2651 allowed to run. That's not really a problem for displaced
2652 stepping, but, we still keep other threads stopped, in case
2653 another thread is also stopped for a breakpoint waiting for
2654 its turn in the displaced stepping queue. */
b0f16a3e
SM
2655 resume_ptid = inferior_ptid;
2656 }
fbea99ea
PA
2657 else
2658 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2659
7f5ef605
PA
2660 if (execution_direction != EXEC_REVERSE
2661 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2662 {
372316f1
PA
2663 /* There are two cases where we currently need to step a
2664 breakpoint instruction when we have a signal to deliver:
2665
2666 - See handle_signal_stop where we handle random signals that
2667 could take out us out of the stepping range. Normally, in
2668 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2669 signal handler with a breakpoint at PC, but there are cases
2670 where we should _always_ single-step, even if we have a
2671 step-resume breakpoint, like when a software watchpoint is
2672 set. Assuming single-stepping and delivering a signal at the
2673 same time would takes us to the signal handler, then we could
2674 have removed the breakpoint at PC to step over it. However,
2675 some hardware step targets (like e.g., Mac OS) can't step
2676 into signal handlers, and for those, we need to leave the
2677 breakpoint at PC inserted, as otherwise if the handler
2678 recurses and executes PC again, it'll miss the breakpoint.
2679 So we leave the breakpoint inserted anyway, but we need to
2680 record that we tried to step a breakpoint instruction, so
372316f1
PA
2681 that adjust_pc_after_break doesn't end up confused.
2682
2683 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2684 in one thread after another thread that was stepping had been
2685 momentarily paused for a step-over. When we re-resume the
2686 stepping thread, it may be resumed from that address with a
2687 breakpoint that hasn't trapped yet. Seen with
2688 gdb.threads/non-stop-fair-events.exp, on targets that don't
2689 do displaced stepping. */
2690
2691 if (debug_infrun)
2692 fprintf_unfiltered (gdb_stdlog,
2693 "infrun: resume: [%s] stepped breakpoint\n",
2694 target_pid_to_str (tp->ptid));
7f5ef605
PA
2695
2696 tp->stepped_breakpoint = 1;
2697
b0f16a3e
SM
2698 /* Most targets can step a breakpoint instruction, thus
2699 executing it normally. But if this one cannot, just
2700 continue and we will hit it anyway. */
7f5ef605 2701 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2702 step = 0;
2703 }
ef5cf84e 2704
b0f16a3e 2705 if (debug_displaced
cb71640d 2706 && tp->control.trap_expected
3fc8eb30 2707 && use_displaced_stepping (tp)
cb71640d 2708 && !step_over_info_valid_p ())
b0f16a3e 2709 {
d9b67d9f 2710 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
ac7936df 2711 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2712 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2713 gdb_byte buf[4];
2714
2715 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2716 paddress (resume_gdbarch, actual_pc));
2717 read_memory (actual_pc, buf, sizeof (buf));
2718 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2719 }
237fc4c9 2720
b0f16a3e
SM
2721 if (tp->control.may_range_step)
2722 {
2723 /* If we're resuming a thread with the PC out of the step
2724 range, then we're doing some nested/finer run control
2725 operation, like stepping the thread out of the dynamic
2726 linker or the displaced stepping scratch pad. We
2727 shouldn't have allowed a range step then. */
2728 gdb_assert (pc_in_thread_step_range (pc, tp));
2729 }
c1e36e3e 2730
64ce06e4 2731 do_target_resume (resume_ptid, step, sig);
372316f1 2732 tp->resumed = 1;
c906108c 2733}
71d378ae
PA
2734
2735/* Resume the inferior. SIG is the signal to give the inferior
2736 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2737 rolls back state on error. */
2738
2739void
2740resume (gdb_signal sig)
2741{
2742 TRY
2743 {
2744 resume_1 (sig);
2745 }
2746 CATCH (ex, RETURN_MASK_ALL)
2747 {
2748 /* If resuming is being aborted for any reason, delete any
2749 single-step breakpoint resume_1 may have created, to avoid
2750 confusing the following resumption, and to avoid leaving
2751 single-step breakpoints perturbing other threads, in case
2752 we're running in non-stop mode. */
2753 if (inferior_ptid != null_ptid)
2754 delete_single_step_breakpoints (inferior_thread ());
2755 throw_exception (ex);
2756 }
2757 END_CATCH
2758}
2759
c906108c 2760\f
237fc4c9 2761/* Proceeding. */
c906108c 2762
4c2f2a79
PA
2763/* See infrun.h. */
2764
2765/* Counter that tracks number of user visible stops. This can be used
2766 to tell whether a command has proceeded the inferior past the
2767 current location. This allows e.g., inferior function calls in
2768 breakpoint commands to not interrupt the command list. When the
2769 call finishes successfully, the inferior is standing at the same
2770 breakpoint as if nothing happened (and so we don't call
2771 normal_stop). */
2772static ULONGEST current_stop_id;
2773
2774/* See infrun.h. */
2775
2776ULONGEST
2777get_stop_id (void)
2778{
2779 return current_stop_id;
2780}
2781
2782/* Called when we report a user visible stop. */
2783
2784static void
2785new_stop_id (void)
2786{
2787 current_stop_id++;
2788}
2789
c906108c
SS
2790/* Clear out all variables saying what to do when inferior is continued.
2791 First do this, then set the ones you want, then call `proceed'. */
2792
a7212384
UW
2793static void
2794clear_proceed_status_thread (struct thread_info *tp)
c906108c 2795{
a7212384
UW
2796 if (debug_infrun)
2797 fprintf_unfiltered (gdb_stdlog,
2798 "infrun: clear_proceed_status_thread (%s)\n",
2799 target_pid_to_str (tp->ptid));
d6b48e9c 2800
372316f1
PA
2801 /* If we're starting a new sequence, then the previous finished
2802 single-step is no longer relevant. */
2803 if (tp->suspend.waitstatus_pending_p)
2804 {
2805 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2806 {
2807 if (debug_infrun)
2808 fprintf_unfiltered (gdb_stdlog,
2809 "infrun: clear_proceed_status: pending "
2810 "event of %s was a finished step. "
2811 "Discarding.\n",
2812 target_pid_to_str (tp->ptid));
2813
2814 tp->suspend.waitstatus_pending_p = 0;
2815 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2816 }
2817 else if (debug_infrun)
2818 {
23fdd69e
SM
2819 std::string statstr
2820 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2821
372316f1
PA
2822 fprintf_unfiltered (gdb_stdlog,
2823 "infrun: clear_proceed_status_thread: thread %s "
2824 "has pending wait status %s "
2825 "(currently_stepping=%d).\n",
23fdd69e 2826 target_pid_to_str (tp->ptid), statstr.c_str (),
372316f1 2827 currently_stepping (tp));
372316f1
PA
2828 }
2829 }
2830
70509625
PA
2831 /* If this signal should not be seen by program, give it zero.
2832 Used for debugging signals. */
2833 if (!signal_pass_state (tp->suspend.stop_signal))
2834 tp->suspend.stop_signal = GDB_SIGNAL_0;
2835
243a9253
PA
2836 thread_fsm_delete (tp->thread_fsm);
2837 tp->thread_fsm = NULL;
2838
16c381f0
JK
2839 tp->control.trap_expected = 0;
2840 tp->control.step_range_start = 0;
2841 tp->control.step_range_end = 0;
c1e36e3e 2842 tp->control.may_range_step = 0;
16c381f0
JK
2843 tp->control.step_frame_id = null_frame_id;
2844 tp->control.step_stack_frame_id = null_frame_id;
2845 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2846 tp->control.step_start_function = NULL;
a7212384 2847 tp->stop_requested = 0;
4e1c45ea 2848
16c381f0 2849 tp->control.stop_step = 0;
32400beb 2850
16c381f0 2851 tp->control.proceed_to_finish = 0;
414c69f7 2852
856e7dd6 2853 tp->control.stepping_command = 0;
17b2616c 2854
a7212384 2855 /* Discard any remaining commands or status from previous stop. */
16c381f0 2856 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2857}
32400beb 2858
a7212384 2859void
70509625 2860clear_proceed_status (int step)
a7212384 2861{
f2665db5
MM
2862 /* With scheduler-locking replay, stop replaying other threads if we're
2863 not replaying the user-visible resume ptid.
2864
2865 This is a convenience feature to not require the user to explicitly
2866 stop replaying the other threads. We're assuming that the user's
2867 intent is to resume tracing the recorded process. */
2868 if (!non_stop && scheduler_mode == schedlock_replay
2869 && target_record_is_replaying (minus_one_ptid)
2870 && !target_record_will_replay (user_visible_resume_ptid (step),
2871 execution_direction))
2872 target_record_stop_replaying ();
2873
6c95b8df
PA
2874 if (!non_stop)
2875 {
70509625
PA
2876 struct thread_info *tp;
2877 ptid_t resume_ptid;
2878
2879 resume_ptid = user_visible_resume_ptid (step);
2880
2881 /* In all-stop mode, delete the per-thread status of all threads
2882 we're about to resume, implicitly and explicitly. */
2883 ALL_NON_EXITED_THREADS (tp)
2884 {
2885 if (!ptid_match (tp->ptid, resume_ptid))
2886 continue;
2887 clear_proceed_status_thread (tp);
2888 }
6c95b8df
PA
2889 }
2890
a7212384
UW
2891 if (!ptid_equal (inferior_ptid, null_ptid))
2892 {
2893 struct inferior *inferior;
2894
2895 if (non_stop)
2896 {
6c95b8df
PA
2897 /* If in non-stop mode, only delete the per-thread status of
2898 the current thread. */
a7212384
UW
2899 clear_proceed_status_thread (inferior_thread ());
2900 }
6c95b8df 2901
d6b48e9c 2902 inferior = current_inferior ();
16c381f0 2903 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2904 }
2905
76727919 2906 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2907}
2908
99619bea
PA
2909/* Returns true if TP is still stopped at a breakpoint that needs
2910 stepping-over in order to make progress. If the breakpoint is gone
2911 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2912
2913static int
6c4cfb24 2914thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2915{
2916 if (tp->stepping_over_breakpoint)
2917 {
2918 struct regcache *regcache = get_thread_regcache (tp->ptid);
2919
a01bda52 2920 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2921 regcache_read_pc (regcache))
2922 == ordinary_breakpoint_here)
99619bea
PA
2923 return 1;
2924
2925 tp->stepping_over_breakpoint = 0;
2926 }
2927
2928 return 0;
2929}
2930
6c4cfb24
PA
2931/* Check whether thread TP still needs to start a step-over in order
2932 to make progress when resumed. Returns an bitwise or of enum
2933 step_over_what bits, indicating what needs to be stepped over. */
2934
8d297bbf 2935static step_over_what
6c4cfb24
PA
2936thread_still_needs_step_over (struct thread_info *tp)
2937{
8d297bbf 2938 step_over_what what = 0;
6c4cfb24
PA
2939
2940 if (thread_still_needs_step_over_bp (tp))
2941 what |= STEP_OVER_BREAKPOINT;
2942
2943 if (tp->stepping_over_watchpoint
2944 && !target_have_steppable_watchpoint)
2945 what |= STEP_OVER_WATCHPOINT;
2946
2947 return what;
2948}
2949
483805cf
PA
2950/* Returns true if scheduler locking applies. STEP indicates whether
2951 we're about to do a step/next-like command to a thread. */
2952
2953static int
856e7dd6 2954schedlock_applies (struct thread_info *tp)
483805cf
PA
2955{
2956 return (scheduler_mode == schedlock_on
2957 || (scheduler_mode == schedlock_step
f2665db5
MM
2958 && tp->control.stepping_command)
2959 || (scheduler_mode == schedlock_replay
2960 && target_record_will_replay (minus_one_ptid,
2961 execution_direction)));
483805cf
PA
2962}
2963
c906108c
SS
2964/* Basic routine for continuing the program in various fashions.
2965
2966 ADDR is the address to resume at, or -1 for resume where stopped.
2967 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2968 or -1 for act according to how it stopped.
c906108c 2969 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2970 -1 means return after that and print nothing.
2971 You should probably set various step_... variables
2972 before calling here, if you are stepping.
c906108c
SS
2973
2974 You should call clear_proceed_status before calling proceed. */
2975
2976void
64ce06e4 2977proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2978{
e58b0e63
PA
2979 struct regcache *regcache;
2980 struct gdbarch *gdbarch;
4e1c45ea 2981 struct thread_info *tp;
e58b0e63 2982 CORE_ADDR pc;
4d9d9d04
PA
2983 ptid_t resume_ptid;
2984 struct execution_control_state ecss;
2985 struct execution_control_state *ecs = &ecss;
4d9d9d04 2986 int started;
c906108c 2987
e58b0e63
PA
2988 /* If we're stopped at a fork/vfork, follow the branch set by the
2989 "set follow-fork-mode" command; otherwise, we'll just proceed
2990 resuming the current thread. */
2991 if (!follow_fork ())
2992 {
2993 /* The target for some reason decided not to resume. */
2994 normal_stop ();
f148b27e
PA
2995 if (target_can_async_p ())
2996 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2997 return;
2998 }
2999
842951eb
PA
3000 /* We'll update this if & when we switch to a new thread. */
3001 previous_inferior_ptid = inferior_ptid;
3002
e58b0e63 3003 regcache = get_current_regcache ();
ac7936df 3004 gdbarch = regcache->arch ();
8b86c959
YQ
3005 const address_space *aspace = regcache->aspace ();
3006
e58b0e63 3007 pc = regcache_read_pc (regcache);
2adfaa28 3008 tp = inferior_thread ();
e58b0e63 3009
99619bea
PA
3010 /* Fill in with reasonable starting values. */
3011 init_thread_stepping_state (tp);
3012
c2829269
PA
3013 gdb_assert (!thread_is_in_step_over_chain (tp));
3014
2acceee2 3015 if (addr == (CORE_ADDR) -1)
c906108c 3016 {
af48d08f
PA
3017 if (pc == stop_pc
3018 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 3019 && execution_direction != EXEC_REVERSE)
3352ef37
AC
3020 /* There is a breakpoint at the address we will resume at,
3021 step one instruction before inserting breakpoints so that
3022 we do not stop right away (and report a second hit at this
b2175913
MS
3023 breakpoint).
3024
3025 Note, we don't do this in reverse, because we won't
3026 actually be executing the breakpoint insn anyway.
3027 We'll be (un-)executing the previous instruction. */
99619bea 3028 tp->stepping_over_breakpoint = 1;
515630c5
UW
3029 else if (gdbarch_single_step_through_delay_p (gdbarch)
3030 && gdbarch_single_step_through_delay (gdbarch,
3031 get_current_frame ()))
3352ef37
AC
3032 /* We stepped onto an instruction that needs to be stepped
3033 again before re-inserting the breakpoint, do so. */
99619bea 3034 tp->stepping_over_breakpoint = 1;
c906108c
SS
3035 }
3036 else
3037 {
515630c5 3038 regcache_write_pc (regcache, addr);
c906108c
SS
3039 }
3040
70509625
PA
3041 if (siggnal != GDB_SIGNAL_DEFAULT)
3042 tp->suspend.stop_signal = siggnal;
3043
4d9d9d04
PA
3044 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3045
3046 /* If an exception is thrown from this point on, make sure to
3047 propagate GDB's knowledge of the executing state to the
3048 frontend/user running state. */
731f534f 3049 scoped_finish_thread_state finish_state (resume_ptid);
4d9d9d04
PA
3050
3051 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3052 threads (e.g., we might need to set threads stepping over
3053 breakpoints first), from the user/frontend's point of view, all
3054 threads in RESUME_PTID are now running. Unless we're calling an
3055 inferior function, as in that case we pretend the inferior
3056 doesn't run at all. */
3057 if (!tp->control.in_infcall)
3058 set_running (resume_ptid, 1);
17b2616c 3059
527159b7 3060 if (debug_infrun)
8a9de0e4 3061 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3062 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3063 paddress (gdbarch, addr),
64ce06e4 3064 gdb_signal_to_symbol_string (siggnal));
527159b7 3065
4d9d9d04
PA
3066 annotate_starting ();
3067
3068 /* Make sure that output from GDB appears before output from the
3069 inferior. */
3070 gdb_flush (gdb_stdout);
3071
d930703d
PA
3072 /* Since we've marked the inferior running, give it the terminal. A
3073 QUIT/Ctrl-C from here on is forwarded to the target (which can
3074 still detect attempts to unblock a stuck connection with repeated
3075 Ctrl-C from within target_pass_ctrlc). */
3076 target_terminal::inferior ();
3077
4d9d9d04
PA
3078 /* In a multi-threaded task we may select another thread and
3079 then continue or step.
3080
3081 But if a thread that we're resuming had stopped at a breakpoint,
3082 it will immediately cause another breakpoint stop without any
3083 execution (i.e. it will report a breakpoint hit incorrectly). So
3084 we must step over it first.
3085
3086 Look for threads other than the current (TP) that reported a
3087 breakpoint hit and haven't been resumed yet since. */
3088
3089 /* If scheduler locking applies, we can avoid iterating over all
3090 threads. */
3091 if (!non_stop && !schedlock_applies (tp))
94cc34af 3092 {
4d9d9d04
PA
3093 struct thread_info *current = tp;
3094
3095 ALL_NON_EXITED_THREADS (tp)
3096 {
3097 /* Ignore the current thread here. It's handled
3098 afterwards. */
3099 if (tp == current)
3100 continue;
99619bea 3101
4d9d9d04
PA
3102 /* Ignore threads of processes we're not resuming. */
3103 if (!ptid_match (tp->ptid, resume_ptid))
3104 continue;
c906108c 3105
4d9d9d04
PA
3106 if (!thread_still_needs_step_over (tp))
3107 continue;
3108
3109 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3110
99619bea
PA
3111 if (debug_infrun)
3112 fprintf_unfiltered (gdb_stdlog,
3113 "infrun: need to step-over [%s] first\n",
4d9d9d04 3114 target_pid_to_str (tp->ptid));
99619bea 3115
4d9d9d04 3116 thread_step_over_chain_enqueue (tp);
2adfaa28 3117 }
31e77af2 3118
4d9d9d04 3119 tp = current;
30852783
UW
3120 }
3121
4d9d9d04
PA
3122 /* Enqueue the current thread last, so that we move all other
3123 threads over their breakpoints first. */
3124 if (tp->stepping_over_breakpoint)
3125 thread_step_over_chain_enqueue (tp);
30852783 3126
4d9d9d04
PA
3127 /* If the thread isn't started, we'll still need to set its prev_pc,
3128 so that switch_back_to_stepped_thread knows the thread hasn't
3129 advanced. Must do this before resuming any thread, as in
3130 all-stop/remote, once we resume we can't send any other packet
3131 until the target stops again. */
3132 tp->prev_pc = regcache_read_pc (regcache);
99619bea 3133
a9bc57b9
TT
3134 {
3135 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 3136
a9bc57b9 3137 started = start_step_over ();
c906108c 3138
a9bc57b9
TT
3139 if (step_over_info_valid_p ())
3140 {
3141 /* Either this thread started a new in-line step over, or some
3142 other thread was already doing one. In either case, don't
3143 resume anything else until the step-over is finished. */
3144 }
3145 else if (started && !target_is_non_stop_p ())
3146 {
3147 /* A new displaced stepping sequence was started. In all-stop,
3148 we can't talk to the target anymore until it next stops. */
3149 }
3150 else if (!non_stop && target_is_non_stop_p ())
3151 {
3152 /* In all-stop, but the target is always in non-stop mode.
3153 Start all other threads that are implicitly resumed too. */
3154 ALL_NON_EXITED_THREADS (tp)
fbea99ea
PA
3155 {
3156 /* Ignore threads of processes we're not resuming. */
3157 if (!ptid_match (tp->ptid, resume_ptid))
3158 continue;
3159
3160 if (tp->resumed)
3161 {
3162 if (debug_infrun)
3163 fprintf_unfiltered (gdb_stdlog,
3164 "infrun: proceed: [%s] resumed\n",
3165 target_pid_to_str (tp->ptid));
3166 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3167 continue;
3168 }
3169
3170 if (thread_is_in_step_over_chain (tp))
3171 {
3172 if (debug_infrun)
3173 fprintf_unfiltered (gdb_stdlog,
3174 "infrun: proceed: [%s] needs step-over\n",
3175 target_pid_to_str (tp->ptid));
3176 continue;
3177 }
3178
3179 if (debug_infrun)
3180 fprintf_unfiltered (gdb_stdlog,
3181 "infrun: proceed: resuming %s\n",
3182 target_pid_to_str (tp->ptid));
3183
3184 reset_ecs (ecs, tp);
3185 switch_to_thread (tp->ptid);
3186 keep_going_pass_signal (ecs);
3187 if (!ecs->wait_some_more)
fd7dcb94 3188 error (_("Command aborted."));
fbea99ea 3189 }
a9bc57b9
TT
3190 }
3191 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3192 {
3193 /* The thread wasn't started, and isn't queued, run it now. */
3194 reset_ecs (ecs, tp);
3195 switch_to_thread (tp->ptid);
3196 keep_going_pass_signal (ecs);
3197 if (!ecs->wait_some_more)
3198 error (_("Command aborted."));
3199 }
3200 }
c906108c 3201
85ad3aaf
PA
3202 target_commit_resume ();
3203
731f534f 3204 finish_state.release ();
c906108c 3205
0b333c5e
PA
3206 /* Tell the event loop to wait for it to stop. If the target
3207 supports asynchronous execution, it'll do this from within
3208 target_resume. */
362646f5 3209 if (!target_can_async_p ())
0b333c5e 3210 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3211}
c906108c
SS
3212\f
3213
3214/* Start remote-debugging of a machine over a serial link. */
96baa820 3215
c906108c 3216void
8621d6a9 3217start_remote (int from_tty)
c906108c 3218{
d6b48e9c 3219 struct inferior *inferior;
d6b48e9c
PA
3220
3221 inferior = current_inferior ();
16c381f0 3222 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3223
1777feb0 3224 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3225 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3226 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3227 nothing is returned (instead of just blocking). Because of this,
3228 targets expecting an immediate response need to, internally, set
3229 things up so that the target_wait() is forced to eventually
1777feb0 3230 timeout. */
6426a772
JM
3231 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3232 differentiate to its caller what the state of the target is after
3233 the initial open has been performed. Here we're assuming that
3234 the target has stopped. It should be possible to eventually have
3235 target_open() return to the caller an indication that the target
3236 is currently running and GDB state should be set to the same as
1777feb0 3237 for an async run. */
e4c8541f 3238 wait_for_inferior ();
8621d6a9
DJ
3239
3240 /* Now that the inferior has stopped, do any bookkeeping like
3241 loading shared libraries. We want to do this before normal_stop,
3242 so that the displayed frame is up to date. */
f6ac5f3d 3243 post_create_inferior (target_stack, from_tty);
8621d6a9 3244
6426a772 3245 normal_stop ();
c906108c
SS
3246}
3247
3248/* Initialize static vars when a new inferior begins. */
3249
3250void
96baa820 3251init_wait_for_inferior (void)
c906108c
SS
3252{
3253 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3254
c906108c
SS
3255 breakpoint_init_inferior (inf_starting);
3256
70509625 3257 clear_proceed_status (0);
9f976b41 3258
ca005067 3259 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3260
842951eb 3261 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 3262
edb3359d
DJ
3263 /* Discard any skipped inlined frames. */
3264 clear_inline_frame_state (minus_one_ptid);
c906108c 3265}
237fc4c9 3266
c906108c 3267\f
488f131b 3268
ec9499be 3269static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3270
568d6575
UW
3271static void handle_step_into_function (struct gdbarch *gdbarch,
3272 struct execution_control_state *ecs);
3273static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3274 struct execution_control_state *ecs);
4f5d7f63 3275static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3276static void check_exception_resume (struct execution_control_state *,
28106bc2 3277 struct frame_info *);
611c83ae 3278
bdc36728 3279static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3280static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3281static void keep_going (struct execution_control_state *ecs);
94c57d6a 3282static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3283static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3284
252fbfc8
PA
3285/* This function is attached as a "thread_stop_requested" observer.
3286 Cleanup local state that assumed the PTID was to be resumed, and
3287 report the stop to the frontend. */
3288
2c0b251b 3289static void
252fbfc8
PA
3290infrun_thread_stop_requested (ptid_t ptid)
3291{
c2829269 3292 struct thread_info *tp;
252fbfc8 3293
c65d6b55
PA
3294 /* PTID was requested to stop. If the thread was already stopped,
3295 but the user/frontend doesn't know about that yet (e.g., the
3296 thread had been temporarily paused for some step-over), set up
3297 for reporting the stop now. */
c2829269
PA
3298 ALL_NON_EXITED_THREADS (tp)
3299 if (ptid_match (tp->ptid, ptid))
3300 {
c65d6b55
PA
3301 if (tp->state != THREAD_RUNNING)
3302 continue;
3303 if (tp->executing)
3304 continue;
3305
3306 /* Remove matching threads from the step-over queue, so
3307 start_step_over doesn't try to resume them
3308 automatically. */
c2829269
PA
3309 if (thread_is_in_step_over_chain (tp))
3310 thread_step_over_chain_remove (tp);
252fbfc8 3311
c65d6b55
PA
3312 /* If the thread is stopped, but the user/frontend doesn't
3313 know about that yet, queue a pending event, as if the
3314 thread had just stopped now. Unless the thread already had
3315 a pending event. */
3316 if (!tp->suspend.waitstatus_pending_p)
3317 {
3318 tp->suspend.waitstatus_pending_p = 1;
3319 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3320 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3321 }
3322
3323 /* Clear the inline-frame state, since we're re-processing the
3324 stop. */
3325 clear_inline_frame_state (tp->ptid);
3326
3327 /* If this thread was paused because some other thread was
3328 doing an inline-step over, let that finish first. Once
3329 that happens, we'll restart all threads and consume pending
3330 stop events then. */
3331 if (step_over_info_valid_p ())
3332 continue;
3333
3334 /* Otherwise we can process the (new) pending event now. Set
3335 it so this pending event is considered by
3336 do_target_wait. */
3337 tp->resumed = 1;
3338 }
252fbfc8
PA
3339}
3340
a07daef3
PA
3341static void
3342infrun_thread_thread_exit (struct thread_info *tp, int silent)
3343{
3344 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3345 nullify_last_target_wait_ptid ();
3346}
3347
0cbcdb96
PA
3348/* Delete the step resume, single-step and longjmp/exception resume
3349 breakpoints of TP. */
4e1c45ea 3350
0cbcdb96
PA
3351static void
3352delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3353{
0cbcdb96
PA
3354 delete_step_resume_breakpoint (tp);
3355 delete_exception_resume_breakpoint (tp);
34b7e8a6 3356 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3357}
3358
0cbcdb96
PA
3359/* If the target still has execution, call FUNC for each thread that
3360 just stopped. In all-stop, that's all the non-exited threads; in
3361 non-stop, that's the current thread, only. */
3362
3363typedef void (*for_each_just_stopped_thread_callback_func)
3364 (struct thread_info *tp);
4e1c45ea
PA
3365
3366static void
0cbcdb96 3367for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3368{
0cbcdb96 3369 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
3370 return;
3371
fbea99ea 3372 if (target_is_non_stop_p ())
4e1c45ea 3373 {
0cbcdb96
PA
3374 /* If in non-stop mode, only the current thread stopped. */
3375 func (inferior_thread ());
4e1c45ea
PA
3376 }
3377 else
0cbcdb96
PA
3378 {
3379 struct thread_info *tp;
3380
3381 /* In all-stop mode, all threads have stopped. */
3382 ALL_NON_EXITED_THREADS (tp)
3383 {
3384 func (tp);
3385 }
3386 }
3387}
3388
3389/* Delete the step resume and longjmp/exception resume breakpoints of
3390 the threads that just stopped. */
3391
3392static void
3393delete_just_stopped_threads_infrun_breakpoints (void)
3394{
3395 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3396}
3397
3398/* Delete the single-step breakpoints of the threads that just
3399 stopped. */
7c16b83e 3400
34b7e8a6
PA
3401static void
3402delete_just_stopped_threads_single_step_breakpoints (void)
3403{
3404 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3405}
3406
1777feb0 3407/* A cleanup wrapper. */
4e1c45ea
PA
3408
3409static void
0cbcdb96 3410delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3411{
0cbcdb96 3412 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3413}
3414
221e1a37 3415/* See infrun.h. */
223698f8 3416
221e1a37 3417void
223698f8
DE
3418print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3419 const struct target_waitstatus *ws)
3420{
23fdd69e 3421 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3422 string_file stb;
223698f8
DE
3423
3424 /* The text is split over several lines because it was getting too long.
3425 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3426 output as a unit; we want only one timestamp printed if debug_timestamp
3427 is set. */
3428
d7e74731
PA
3429 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3430 ptid_get_pid (waiton_ptid),
3431 ptid_get_lwp (waiton_ptid),
3432 ptid_get_tid (waiton_ptid));
dfd4cc63 3433 if (ptid_get_pid (waiton_ptid) != -1)
d7e74731
PA
3434 stb.printf (" [%s]", target_pid_to_str (waiton_ptid));
3435 stb.printf (", status) =\n");
3436 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3437 ptid_get_pid (result_ptid),
3438 ptid_get_lwp (result_ptid),
3439 ptid_get_tid (result_ptid),
3440 target_pid_to_str (result_ptid));
23fdd69e 3441 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3442
3443 /* This uses %s in part to handle %'s in the text, but also to avoid
3444 a gcc error: the format attribute requires a string literal. */
d7e74731 3445 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3446}
3447
372316f1
PA
3448/* Select a thread at random, out of those which are resumed and have
3449 had events. */
3450
3451static struct thread_info *
3452random_pending_event_thread (ptid_t waiton_ptid)
3453{
3454 struct thread_info *event_tp;
3455 int num_events = 0;
3456 int random_selector;
3457
3458 /* First see how many events we have. Count only resumed threads
3459 that have an event pending. */
3460 ALL_NON_EXITED_THREADS (event_tp)
3461 if (ptid_match (event_tp->ptid, waiton_ptid)
3462 && event_tp->resumed
3463 && event_tp->suspend.waitstatus_pending_p)
3464 num_events++;
3465
3466 if (num_events == 0)
3467 return NULL;
3468
3469 /* Now randomly pick a thread out of those that have had events. */
3470 random_selector = (int)
3471 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3472
3473 if (debug_infrun && num_events > 1)
3474 fprintf_unfiltered (gdb_stdlog,
3475 "infrun: Found %d events, selecting #%d\n",
3476 num_events, random_selector);
3477
3478 /* Select the Nth thread that has had an event. */
3479 ALL_NON_EXITED_THREADS (event_tp)
3480 if (ptid_match (event_tp->ptid, waiton_ptid)
3481 && event_tp->resumed
3482 && event_tp->suspend.waitstatus_pending_p)
3483 if (random_selector-- == 0)
3484 break;
3485
3486 return event_tp;
3487}
3488
3489/* Wrapper for target_wait that first checks whether threads have
3490 pending statuses to report before actually asking the target for
3491 more events. */
3492
3493static ptid_t
3494do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3495{
3496 ptid_t event_ptid;
3497 struct thread_info *tp;
3498
3499 /* First check if there is a resumed thread with a wait status
3500 pending. */
3501 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3502 {
3503 tp = random_pending_event_thread (ptid);
3504 }
3505 else
3506 {
3507 if (debug_infrun)
3508 fprintf_unfiltered (gdb_stdlog,
3509 "infrun: Waiting for specific thread %s.\n",
3510 target_pid_to_str (ptid));
3511
3512 /* We have a specific thread to check. */
3513 tp = find_thread_ptid (ptid);
3514 gdb_assert (tp != NULL);
3515 if (!tp->suspend.waitstatus_pending_p)
3516 tp = NULL;
3517 }
3518
3519 if (tp != NULL
3520 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3521 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3522 {
3523 struct regcache *regcache = get_thread_regcache (tp->ptid);
ac7936df 3524 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3525 CORE_ADDR pc;
3526 int discard = 0;
3527
3528 pc = regcache_read_pc (regcache);
3529
3530 if (pc != tp->suspend.stop_pc)
3531 {
3532 if (debug_infrun)
3533 fprintf_unfiltered (gdb_stdlog,
3534 "infrun: PC of %s changed. was=%s, now=%s\n",
3535 target_pid_to_str (tp->ptid),
3536 paddress (gdbarch, tp->prev_pc),
3537 paddress (gdbarch, pc));
3538 discard = 1;
3539 }
a01bda52 3540 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1
PA
3541 {
3542 if (debug_infrun)
3543 fprintf_unfiltered (gdb_stdlog,
3544 "infrun: previous breakpoint of %s, at %s gone\n",
3545 target_pid_to_str (tp->ptid),
3546 paddress (gdbarch, pc));
3547
3548 discard = 1;
3549 }
3550
3551 if (discard)
3552 {
3553 if (debug_infrun)
3554 fprintf_unfiltered (gdb_stdlog,
3555 "infrun: pending event of %s cancelled.\n",
3556 target_pid_to_str (tp->ptid));
3557
3558 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3559 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3560 }
3561 }
3562
3563 if (tp != NULL)
3564 {
3565 if (debug_infrun)
3566 {
23fdd69e
SM
3567 std::string statstr
3568 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3569
372316f1
PA
3570 fprintf_unfiltered (gdb_stdlog,
3571 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3572 statstr.c_str (),
372316f1 3573 target_pid_to_str (tp->ptid));
372316f1
PA
3574 }
3575
3576 /* Now that we've selected our final event LWP, un-adjust its PC
3577 if it was a software breakpoint (and the target doesn't
3578 always adjust the PC itself). */
3579 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3580 && !target_supports_stopped_by_sw_breakpoint ())
3581 {
3582 struct regcache *regcache;
3583 struct gdbarch *gdbarch;
3584 int decr_pc;
3585
3586 regcache = get_thread_regcache (tp->ptid);
ac7936df 3587 gdbarch = regcache->arch ();
372316f1
PA
3588
3589 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3590 if (decr_pc != 0)
3591 {
3592 CORE_ADDR pc;
3593
3594 pc = regcache_read_pc (regcache);
3595 regcache_write_pc (regcache, pc + decr_pc);
3596 }
3597 }
3598
3599 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3600 *status = tp->suspend.waitstatus;
3601 tp->suspend.waitstatus_pending_p = 0;
3602
3603 /* Wake up the event loop again, until all pending events are
3604 processed. */
3605 if (target_is_async_p ())
3606 mark_async_event_handler (infrun_async_inferior_event_token);
3607 return tp->ptid;
3608 }
3609
3610 /* But if we don't find one, we'll have to wait. */
3611
3612 if (deprecated_target_wait_hook)
3613 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3614 else
3615 event_ptid = target_wait (ptid, status, options);
3616
3617 return event_ptid;
3618}
3619
24291992
PA
3620/* Prepare and stabilize the inferior for detaching it. E.g.,
3621 detaching while a thread is displaced stepping is a recipe for
3622 crashing it, as nothing would readjust the PC out of the scratch
3623 pad. */
3624
3625void
3626prepare_for_detach (void)
3627{
3628 struct inferior *inf = current_inferior ();
3629 ptid_t pid_ptid = pid_to_ptid (inf->pid);
24291992
PA
3630 struct displaced_step_inferior_state *displaced;
3631
3632 displaced = get_displaced_stepping_state (inf->pid);
3633
3634 /* Is any thread of this process displaced stepping? If not,
3635 there's nothing else to do. */
3636 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3637 return;
3638
3639 if (debug_infrun)
3640 fprintf_unfiltered (gdb_stdlog,
3641 "displaced-stepping in-process while detaching");
3642
9bcb1f16 3643 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992
PA
3644
3645 while (!ptid_equal (displaced->step_ptid, null_ptid))
3646 {
24291992
PA
3647 struct execution_control_state ecss;
3648 struct execution_control_state *ecs;
3649
3650 ecs = &ecss;
3651 memset (ecs, 0, sizeof (*ecs));
3652
3653 overlay_cache_invalid = 1;
f15cb84a
YQ
3654 /* Flush target cache before starting to handle each event.
3655 Target was running and cache could be stale. This is just a
3656 heuristic. Running threads may modify target memory, but we
3657 don't get any event. */
3658 target_dcache_invalidate ();
24291992 3659
372316f1 3660 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3661
3662 if (debug_infrun)
3663 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3664
3665 /* If an error happens while handling the event, propagate GDB's
3666 knowledge of the executing state to the frontend/user running
3667 state. */
731f534f 3668 scoped_finish_thread_state finish_state (minus_one_ptid);
24291992
PA
3669
3670 /* Now figure out what to do with the result of the result. */
3671 handle_inferior_event (ecs);
3672
3673 /* No error, don't finish the state yet. */
731f534f 3674 finish_state.release ();
24291992
PA
3675
3676 /* Breakpoints and watchpoints are not installed on the target
3677 at this point, and signals are passed directly to the
3678 inferior, so this must mean the process is gone. */
3679 if (!ecs->wait_some_more)
3680 {
9bcb1f16 3681 restore_detaching.release ();
24291992
PA
3682 error (_("Program exited while detaching"));
3683 }
3684 }
3685
9bcb1f16 3686 restore_detaching.release ();
24291992
PA
3687}
3688
cd0fc7c3 3689/* Wait for control to return from inferior to debugger.
ae123ec6 3690
cd0fc7c3
SS
3691 If inferior gets a signal, we may decide to start it up again
3692 instead of returning. That is why there is a loop in this function.
3693 When this function actually returns it means the inferior
3694 should be left stopped and GDB should read more commands. */
3695
3696void
e4c8541f 3697wait_for_inferior (void)
cd0fc7c3
SS
3698{
3699 struct cleanup *old_cleanups;
c906108c 3700
527159b7 3701 if (debug_infrun)
ae123ec6 3702 fprintf_unfiltered
e4c8541f 3703 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3704
0cbcdb96
PA
3705 old_cleanups
3706 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3707 NULL);
cd0fc7c3 3708
e6f5c25b
PA
3709 /* If an error happens while handling the event, propagate GDB's
3710 knowledge of the executing state to the frontend/user running
3711 state. */
731f534f 3712 scoped_finish_thread_state finish_state (minus_one_ptid);
e6f5c25b 3713
c906108c
SS
3714 while (1)
3715 {
ae25568b
PA
3716 struct execution_control_state ecss;
3717 struct execution_control_state *ecs = &ecss;
963f9c80 3718 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3719
ae25568b
PA
3720 memset (ecs, 0, sizeof (*ecs));
3721
ec9499be 3722 overlay_cache_invalid = 1;
ec9499be 3723
f15cb84a
YQ
3724 /* Flush target cache before starting to handle each event.
3725 Target was running and cache could be stale. This is just a
3726 heuristic. Running threads may modify target memory, but we
3727 don't get any event. */
3728 target_dcache_invalidate ();
3729
372316f1 3730 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3731
f00150c9 3732 if (debug_infrun)
223698f8 3733 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3734
cd0fc7c3
SS
3735 /* Now figure out what to do with the result of the result. */
3736 handle_inferior_event (ecs);
c906108c 3737
cd0fc7c3
SS
3738 if (!ecs->wait_some_more)
3739 break;
3740 }
4e1c45ea 3741
e6f5c25b 3742 /* No error, don't finish the state yet. */
731f534f 3743 finish_state.release ();
e6f5c25b 3744
cd0fc7c3
SS
3745 do_cleanups (old_cleanups);
3746}
c906108c 3747
d3d4baed
PA
3748/* Cleanup that reinstalls the readline callback handler, if the
3749 target is running in the background. If while handling the target
3750 event something triggered a secondary prompt, like e.g., a
3751 pagination prompt, we'll have removed the callback handler (see
3752 gdb_readline_wrapper_line). Need to do this as we go back to the
3753 event loop, ready to process further input. Note this has no
3754 effect if the handler hasn't actually been removed, because calling
3755 rl_callback_handler_install resets the line buffer, thus losing
3756 input. */
3757
3758static void
3759reinstall_readline_callback_handler_cleanup (void *arg)
3760{
3b12939d
PA
3761 struct ui *ui = current_ui;
3762
3763 if (!ui->async)
6c400b59
PA
3764 {
3765 /* We're not going back to the top level event loop yet. Don't
3766 install the readline callback, as it'd prep the terminal,
3767 readline-style (raw, noecho) (e.g., --batch). We'll install
3768 it the next time the prompt is displayed, when we're ready
3769 for input. */
3770 return;
3771 }
3772
3b12939d 3773 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3774 gdb_rl_callback_handler_reinstall ();
3775}
3776
243a9253
PA
3777/* Clean up the FSMs of threads that are now stopped. In non-stop,
3778 that's just the event thread. In all-stop, that's all threads. */
3779
3780static void
3781clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3782{
3783 struct thread_info *thr = ecs->event_thread;
3784
3785 if (thr != NULL && thr->thread_fsm != NULL)
8980e177 3786 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3787
3788 if (!non_stop)
3789 {
3790 ALL_NON_EXITED_THREADS (thr)
3791 {
3792 if (thr->thread_fsm == NULL)
3793 continue;
3794 if (thr == ecs->event_thread)
3795 continue;
3796
3797 switch_to_thread (thr->ptid);
8980e177 3798 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3799 }
3800
3801 if (ecs->event_thread != NULL)
3802 switch_to_thread (ecs->event_thread->ptid);
3803 }
3804}
3805
3b12939d
PA
3806/* Helper for all_uis_check_sync_execution_done that works on the
3807 current UI. */
3808
3809static void
3810check_curr_ui_sync_execution_done (void)
3811{
3812 struct ui *ui = current_ui;
3813
3814 if (ui->prompt_state == PROMPT_NEEDED
3815 && ui->async
3816 && !gdb_in_secondary_prompt_p (ui))
3817 {
223ffa71 3818 target_terminal::ours ();
76727919 3819 gdb::observers::sync_execution_done.notify ();
3eb7562a 3820 ui_register_input_event_handler (ui);
3b12939d
PA
3821 }
3822}
3823
3824/* See infrun.h. */
3825
3826void
3827all_uis_check_sync_execution_done (void)
3828{
0e454242 3829 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3830 {
3831 check_curr_ui_sync_execution_done ();
3832 }
3833}
3834
a8836c93
PA
3835/* See infrun.h. */
3836
3837void
3838all_uis_on_sync_execution_starting (void)
3839{
0e454242 3840 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3841 {
3842 if (current_ui->prompt_state == PROMPT_NEEDED)
3843 async_disable_stdin ();
3844 }
3845}
3846
1777feb0 3847/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3848 event loop whenever a change of state is detected on the file
1777feb0
MS
3849 descriptor corresponding to the target. It can be called more than
3850 once to complete a single execution command. In such cases we need
3851 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3852 that this function is called for a single execution command, then
3853 report to the user that the inferior has stopped, and do the
1777feb0 3854 necessary cleanups. */
43ff13b4
JM
3855
3856void
fba45db2 3857fetch_inferior_event (void *client_data)
43ff13b4 3858{
0d1e5fa7 3859 struct execution_control_state ecss;
a474d7c2 3860 struct execution_control_state *ecs = &ecss;
4f8d22e3 3861 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
0f641c01 3862 int cmd_done = 0;
963f9c80 3863 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3864
0d1e5fa7
PA
3865 memset (ecs, 0, sizeof (*ecs));
3866
c61db772
PA
3867 /* Events are always processed with the main UI as current UI. This
3868 way, warnings, debug output, etc. are always consistently sent to
3869 the main console. */
4b6749b9 3870 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3871
d3d4baed
PA
3872 /* End up with readline processing input, if necessary. */
3873 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3874
c5187ac6
PA
3875 /* We're handling a live event, so make sure we're doing live
3876 debugging. If we're looking at traceframes while the target is
3877 running, we're going to need to get back to that mode after
3878 handling the event. */
6f14adc5 3879 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
c5187ac6
PA
3880 if (non_stop)
3881 {
6f14adc5 3882 maybe_restore_traceframe.emplace ();
e6e4e701 3883 set_current_traceframe (-1);
c5187ac6
PA
3884 }
3885
5ed8105e
PA
3886 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3887
4f8d22e3
PA
3888 if (non_stop)
3889 /* In non-stop mode, the user/frontend should not notice a thread
3890 switch due to internal events. Make sure we reverse to the
3891 user selected thread and frame after handling the event and
3892 running any breakpoint commands. */
5ed8105e 3893 maybe_restore_thread.emplace ();
4f8d22e3 3894
ec9499be 3895 overlay_cache_invalid = 1;
f15cb84a
YQ
3896 /* Flush target cache before starting to handle each event. Target
3897 was running and cache could be stale. This is just a heuristic.
3898 Running threads may modify target memory, but we don't get any
3899 event. */
3900 target_dcache_invalidate ();
3dd5b83d 3901
b7b633e9
TT
3902 scoped_restore save_exec_dir
3903 = make_scoped_restore (&execution_direction, target_execution_direction ());
32231432 3904
0b333c5e
PA
3905 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3906 target_can_async_p () ? TARGET_WNOHANG : 0);
43ff13b4 3907
f00150c9 3908 if (debug_infrun)
223698f8 3909 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3910
29f49a6a
PA
3911 /* If an error happens while handling the event, propagate GDB's
3912 knowledge of the executing state to the frontend/user running
3913 state. */
731f534f
PA
3914 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3915 scoped_finish_thread_state finish_state (finish_ptid);
29f49a6a 3916
353d1d73
JK
3917 /* Get executed before make_cleanup_restore_current_thread above to apply
3918 still for the thread which has thrown the exception. */
731f534f 3919 struct cleanup *ts_old_chain = make_bpstat_clear_actions_cleanup ();
353d1d73 3920
7c16b83e
PA
3921 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3922
43ff13b4 3923 /* Now figure out what to do with the result of the result. */
a474d7c2 3924 handle_inferior_event (ecs);
43ff13b4 3925
a474d7c2 3926 if (!ecs->wait_some_more)
43ff13b4 3927 {
c9657e70 3928 struct inferior *inf = find_inferior_ptid (ecs->ptid);
243a9253
PA
3929 int should_stop = 1;
3930 struct thread_info *thr = ecs->event_thread;
388a7084 3931 int should_notify_stop = 1;
d6b48e9c 3932
0cbcdb96 3933 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3934
243a9253
PA
3935 if (thr != NULL)
3936 {
3937 struct thread_fsm *thread_fsm = thr->thread_fsm;
3938
3939 if (thread_fsm != NULL)
8980e177 3940 should_stop = thread_fsm_should_stop (thread_fsm, thr);
243a9253
PA
3941 }
3942
3943 if (!should_stop)
3944 {
3945 keep_going (ecs);
3946 }
c2d11a7d 3947 else
0f641c01 3948 {
243a9253
PA
3949 clean_up_just_stopped_threads_fsms (ecs);
3950
388a7084
PA
3951 if (thr != NULL && thr->thread_fsm != NULL)
3952 {
3953 should_notify_stop
3954 = thread_fsm_should_notify_stop (thr->thread_fsm);
3955 }
3956
3957 if (should_notify_stop)
3958 {
4c2f2a79
PA
3959 int proceeded = 0;
3960
388a7084
PA
3961 /* We may not find an inferior if this was a process exit. */
3962 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4c2f2a79 3963 proceeded = normal_stop ();
243a9253 3964
4c2f2a79
PA
3965 if (!proceeded)
3966 {
3967 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3968 cmd_done = 1;
3969 }
388a7084 3970 }
0f641c01 3971 }
43ff13b4 3972 }
4f8d22e3 3973
29f49a6a
PA
3974 discard_cleanups (ts_old_chain);
3975
731f534f
PA
3976 /* No error, don't finish the thread states yet. */
3977 finish_state.release ();
3978
4f8d22e3
PA
3979 /* Revert thread and frame. */
3980 do_cleanups (old_chain);
3981
3b12939d
PA
3982 /* If a UI was in sync execution mode, and now isn't, restore its
3983 prompt (a synchronous execution command has finished, and we're
3984 ready for input). */
3985 all_uis_check_sync_execution_done ();
0f641c01
PA
3986
3987 if (cmd_done
0f641c01
PA
3988 && exec_done_display_p
3989 && (ptid_equal (inferior_ptid, null_ptid)
3990 || !is_running (inferior_ptid)))
3991 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3992}
3993
edb3359d
DJ
3994/* Record the frame and location we're currently stepping through. */
3995void
3996set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3997{
3998 struct thread_info *tp = inferior_thread ();
3999
16c381f0
JK
4000 tp->control.step_frame_id = get_frame_id (frame);
4001 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4002
4003 tp->current_symtab = sal.symtab;
4004 tp->current_line = sal.line;
4005}
4006
0d1e5fa7
PA
4007/* Clear context switchable stepping state. */
4008
4009void
4e1c45ea 4010init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4011{
7f5ef605 4012 tss->stepped_breakpoint = 0;
0d1e5fa7 4013 tss->stepping_over_breakpoint = 0;
963f9c80 4014 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4015 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4016}
4017
c32c64b7
DE
4018/* Set the cached copy of the last ptid/waitstatus. */
4019
6efcd9a8 4020void
c32c64b7
DE
4021set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4022{
4023 target_last_wait_ptid = ptid;
4024 target_last_waitstatus = status;
4025}
4026
e02bc4cc 4027/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
4028 target_wait()/deprecated_target_wait_hook(). The data is actually
4029 cached by handle_inferior_event(), which gets called immediately
4030 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
4031
4032void
488f131b 4033get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 4034{
39f77062 4035 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
4036 *status = target_last_waitstatus;
4037}
4038
ac264b3b
MS
4039void
4040nullify_last_target_wait_ptid (void)
4041{
4042 target_last_wait_ptid = minus_one_ptid;
4043}
4044
dcf4fbde 4045/* Switch thread contexts. */
dd80620e
MS
4046
4047static void
0d1e5fa7 4048context_switch (ptid_t ptid)
dd80620e 4049{
4b51d87b 4050 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
4051 {
4052 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4053 target_pid_to_str (inferior_ptid));
4054 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 4055 target_pid_to_str (ptid));
fd48f117
DJ
4056 }
4057
0d1e5fa7 4058 switch_to_thread (ptid);
dd80620e
MS
4059}
4060
d8dd4d5f
PA
4061/* If the target can't tell whether we've hit breakpoints
4062 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4063 check whether that could have been caused by a breakpoint. If so,
4064 adjust the PC, per gdbarch_decr_pc_after_break. */
4065
4fa8626c 4066static void
d8dd4d5f
PA
4067adjust_pc_after_break (struct thread_info *thread,
4068 struct target_waitstatus *ws)
4fa8626c 4069{
24a73cce
UW
4070 struct regcache *regcache;
4071 struct gdbarch *gdbarch;
118e6252 4072 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4073
4fa8626c
DJ
4074 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4075 we aren't, just return.
9709f61c
DJ
4076
4077 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4078 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4079 implemented by software breakpoints should be handled through the normal
4080 breakpoint layer.
8fb3e588 4081
4fa8626c
DJ
4082 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4083 different signals (SIGILL or SIGEMT for instance), but it is less
4084 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4085 gdbarch_decr_pc_after_break. I don't know any specific target that
4086 generates these signals at breakpoints (the code has been in GDB since at
4087 least 1992) so I can not guess how to handle them here.
8fb3e588 4088
e6cf7916
UW
4089 In earlier versions of GDB, a target with
4090 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4091 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4092 target with both of these set in GDB history, and it seems unlikely to be
4093 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4094
d8dd4d5f 4095 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4096 return;
4097
d8dd4d5f 4098 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4099 return;
4100
4058b839
PA
4101 /* In reverse execution, when a breakpoint is hit, the instruction
4102 under it has already been de-executed. The reported PC always
4103 points at the breakpoint address, so adjusting it further would
4104 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4105 architecture:
4106
4107 B1 0x08000000 : INSN1
4108 B2 0x08000001 : INSN2
4109 0x08000002 : INSN3
4110 PC -> 0x08000003 : INSN4
4111
4112 Say you're stopped at 0x08000003 as above. Reverse continuing
4113 from that point should hit B2 as below. Reading the PC when the
4114 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4115 been de-executed already.
4116
4117 B1 0x08000000 : INSN1
4118 B2 PC -> 0x08000001 : INSN2
4119 0x08000002 : INSN3
4120 0x08000003 : INSN4
4121
4122 We can't apply the same logic as for forward execution, because
4123 we would wrongly adjust the PC to 0x08000000, since there's a
4124 breakpoint at PC - 1. We'd then report a hit on B1, although
4125 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4126 behaviour. */
4127 if (execution_direction == EXEC_REVERSE)
4128 return;
4129
1cf4d951
PA
4130 /* If the target can tell whether the thread hit a SW breakpoint,
4131 trust it. Targets that can tell also adjust the PC
4132 themselves. */
4133 if (target_supports_stopped_by_sw_breakpoint ())
4134 return;
4135
4136 /* Note that relying on whether a breakpoint is planted in memory to
4137 determine this can fail. E.g,. the breakpoint could have been
4138 removed since. Or the thread could have been told to step an
4139 instruction the size of a breakpoint instruction, and only
4140 _after_ was a breakpoint inserted at its address. */
4141
24a73cce
UW
4142 /* If this target does not decrement the PC after breakpoints, then
4143 we have nothing to do. */
d8dd4d5f 4144 regcache = get_thread_regcache (thread->ptid);
ac7936df 4145 gdbarch = regcache->arch ();
118e6252 4146
527a273a 4147 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4148 if (decr_pc == 0)
24a73cce
UW
4149 return;
4150
8b86c959 4151 const address_space *aspace = regcache->aspace ();
6c95b8df 4152
8aad930b
AC
4153 /* Find the location where (if we've hit a breakpoint) the
4154 breakpoint would be. */
118e6252 4155 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4156
1cf4d951
PA
4157 /* If the target can't tell whether a software breakpoint triggered,
4158 fallback to figuring it out based on breakpoints we think were
4159 inserted in the target, and on whether the thread was stepped or
4160 continued. */
4161
1c5cfe86
PA
4162 /* Check whether there actually is a software breakpoint inserted at
4163 that location.
4164
4165 If in non-stop mode, a race condition is possible where we've
4166 removed a breakpoint, but stop events for that breakpoint were
4167 already queued and arrive later. To suppress those spurious
4168 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4169 and retire them after a number of stop events are reported. Note
4170 this is an heuristic and can thus get confused. The real fix is
4171 to get the "stopped by SW BP and needs adjustment" info out of
4172 the target/kernel (and thus never reach here; see above). */
6c95b8df 4173 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4174 || (target_is_non_stop_p ()
4175 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4176 {
07036511 4177 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4178
8213266a 4179 if (record_full_is_used ())
07036511
TT
4180 restore_operation_disable.emplace
4181 (record_full_gdb_operation_disable_set ());
96429cc8 4182
1c0fdd0e
UW
4183 /* When using hardware single-step, a SIGTRAP is reported for both
4184 a completed single-step and a software breakpoint. Need to
4185 differentiate between the two, as the latter needs adjusting
4186 but the former does not.
4187
4188 The SIGTRAP can be due to a completed hardware single-step only if
4189 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4190 - this thread is currently being stepped
4191
4192 If any of these events did not occur, we must have stopped due
4193 to hitting a software breakpoint, and have to back up to the
4194 breakpoint address.
4195
4196 As a special case, we could have hardware single-stepped a
4197 software breakpoint. In this case (prev_pc == breakpoint_pc),
4198 we also need to back up to the breakpoint address. */
4199
d8dd4d5f
PA
4200 if (thread_has_single_step_breakpoints_set (thread)
4201 || !currently_stepping (thread)
4202 || (thread->stepped_breakpoint
4203 && thread->prev_pc == breakpoint_pc))
515630c5 4204 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4205 }
4fa8626c
DJ
4206}
4207
edb3359d
DJ
4208static int
4209stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4210{
4211 for (frame = get_prev_frame (frame);
4212 frame != NULL;
4213 frame = get_prev_frame (frame))
4214 {
4215 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4216 return 1;
4217 if (get_frame_type (frame) != INLINE_FRAME)
4218 break;
4219 }
4220
4221 return 0;
4222}
4223
c65d6b55
PA
4224/* If the event thread has the stop requested flag set, pretend it
4225 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4226 target_stop). */
4227
4228static bool
4229handle_stop_requested (struct execution_control_state *ecs)
4230{
4231 if (ecs->event_thread->stop_requested)
4232 {
4233 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4234 ecs->ws.value.sig = GDB_SIGNAL_0;
4235 handle_signal_stop (ecs);
4236 return true;
4237 }
4238 return false;
4239}
4240
a96d9b2e
SDJ
4241/* Auxiliary function that handles syscall entry/return events.
4242 It returns 1 if the inferior should keep going (and GDB
4243 should ignore the event), or 0 if the event deserves to be
4244 processed. */
ca2163eb 4245
a96d9b2e 4246static int
ca2163eb 4247handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4248{
ca2163eb 4249 struct regcache *regcache;
ca2163eb
PA
4250 int syscall_number;
4251
4252 if (!ptid_equal (ecs->ptid, inferior_ptid))
4253 context_switch (ecs->ptid);
4254
4255 regcache = get_thread_regcache (ecs->ptid);
f90263c1 4256 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
4257 stop_pc = regcache_read_pc (regcache);
4258
a96d9b2e
SDJ
4259 if (catch_syscall_enabled () > 0
4260 && catching_syscall_number (syscall_number) > 0)
4261 {
4262 if (debug_infrun)
4263 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4264 syscall_number);
a96d9b2e 4265
16c381f0 4266 ecs->event_thread->control.stop_bpstat
a01bda52 4267 = bpstat_stop_status (regcache->aspace (),
09ac7c10 4268 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4269
c65d6b55
PA
4270 if (handle_stop_requested (ecs))
4271 return 0;
4272
ce12b012 4273 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4274 {
4275 /* Catchpoint hit. */
ca2163eb
PA
4276 return 0;
4277 }
a96d9b2e 4278 }
ca2163eb 4279
c65d6b55
PA
4280 if (handle_stop_requested (ecs))
4281 return 0;
4282
ca2163eb 4283 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4284 keep_going (ecs);
4285 return 1;
a96d9b2e
SDJ
4286}
4287
7e324e48
GB
4288/* Lazily fill in the execution_control_state's stop_func_* fields. */
4289
4290static void
4291fill_in_stop_func (struct gdbarch *gdbarch,
4292 struct execution_control_state *ecs)
4293{
4294 if (!ecs->stop_func_filled_in)
4295 {
4296 /* Don't care about return value; stop_func_start and stop_func_name
4297 will both be 0 if it doesn't work. */
4298 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4299 &ecs->stop_func_start, &ecs->stop_func_end);
4300 ecs->stop_func_start
4301 += gdbarch_deprecated_function_start_offset (gdbarch);
4302
591a12a1
UW
4303 if (gdbarch_skip_entrypoint_p (gdbarch))
4304 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4305 ecs->stop_func_start);
4306
7e324e48
GB
4307 ecs->stop_func_filled_in = 1;
4308 }
4309}
4310
4f5d7f63
PA
4311
4312/* Return the STOP_SOON field of the inferior pointed at by PTID. */
4313
4314static enum stop_kind
4315get_inferior_stop_soon (ptid_t ptid)
4316{
c9657e70 4317 struct inferior *inf = find_inferior_ptid (ptid);
4f5d7f63
PA
4318
4319 gdb_assert (inf != NULL);
4320 return inf->control.stop_soon;
4321}
4322
372316f1
PA
4323/* Wait for one event. Store the resulting waitstatus in WS, and
4324 return the event ptid. */
4325
4326static ptid_t
4327wait_one (struct target_waitstatus *ws)
4328{
4329 ptid_t event_ptid;
4330 ptid_t wait_ptid = minus_one_ptid;
4331
4332 overlay_cache_invalid = 1;
4333
4334 /* Flush target cache before starting to handle each event.
4335 Target was running and cache could be stale. This is just a
4336 heuristic. Running threads may modify target memory, but we
4337 don't get any event. */
4338 target_dcache_invalidate ();
4339
4340 if (deprecated_target_wait_hook)
4341 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4342 else
4343 event_ptid = target_wait (wait_ptid, ws, 0);
4344
4345 if (debug_infrun)
4346 print_target_wait_results (wait_ptid, event_ptid, ws);
4347
4348 return event_ptid;
4349}
4350
4351/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4352 instead of the current thread. */
4353#define THREAD_STOPPED_BY(REASON) \
4354static int \
4355thread_stopped_by_ ## REASON (ptid_t ptid) \
4356{ \
2989a365 4357 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
372316f1
PA
4358 inferior_ptid = ptid; \
4359 \
2989a365 4360 return target_stopped_by_ ## REASON (); \
372316f1
PA
4361}
4362
4363/* Generate thread_stopped_by_watchpoint. */
4364THREAD_STOPPED_BY (watchpoint)
4365/* Generate thread_stopped_by_sw_breakpoint. */
4366THREAD_STOPPED_BY (sw_breakpoint)
4367/* Generate thread_stopped_by_hw_breakpoint. */
4368THREAD_STOPPED_BY (hw_breakpoint)
4369
4370/* Cleanups that switches to the PTID pointed at by PTID_P. */
4371
4372static void
4373switch_to_thread_cleanup (void *ptid_p)
4374{
4375 ptid_t ptid = *(ptid_t *) ptid_p;
4376
4377 switch_to_thread (ptid);
4378}
4379
4380/* Save the thread's event and stop reason to process it later. */
4381
4382static void
4383save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4384{
4385 struct regcache *regcache;
372316f1
PA
4386
4387 if (debug_infrun)
4388 {
23fdd69e 4389 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4390
372316f1
PA
4391 fprintf_unfiltered (gdb_stdlog,
4392 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4393 statstr.c_str (),
372316f1
PA
4394 ptid_get_pid (tp->ptid),
4395 ptid_get_lwp (tp->ptid),
4396 ptid_get_tid (tp->ptid));
372316f1
PA
4397 }
4398
4399 /* Record for later. */
4400 tp->suspend.waitstatus = *ws;
4401 tp->suspend.waitstatus_pending_p = 1;
4402
4403 regcache = get_thread_regcache (tp->ptid);
8b86c959 4404 const address_space *aspace = regcache->aspace ();
372316f1
PA
4405
4406 if (ws->kind == TARGET_WAITKIND_STOPPED
4407 && ws->value.sig == GDB_SIGNAL_TRAP)
4408 {
4409 CORE_ADDR pc = regcache_read_pc (regcache);
4410
4411 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4412
4413 if (thread_stopped_by_watchpoint (tp->ptid))
4414 {
4415 tp->suspend.stop_reason
4416 = TARGET_STOPPED_BY_WATCHPOINT;
4417 }
4418 else if (target_supports_stopped_by_sw_breakpoint ()
4419 && thread_stopped_by_sw_breakpoint (tp->ptid))
4420 {
4421 tp->suspend.stop_reason
4422 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4423 }
4424 else if (target_supports_stopped_by_hw_breakpoint ()
4425 && thread_stopped_by_hw_breakpoint (tp->ptid))
4426 {
4427 tp->suspend.stop_reason
4428 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4429 }
4430 else if (!target_supports_stopped_by_hw_breakpoint ()
4431 && hardware_breakpoint_inserted_here_p (aspace,
4432 pc))
4433 {
4434 tp->suspend.stop_reason
4435 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4436 }
4437 else if (!target_supports_stopped_by_sw_breakpoint ()
4438 && software_breakpoint_inserted_here_p (aspace,
4439 pc))
4440 {
4441 tp->suspend.stop_reason
4442 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4443 }
4444 else if (!thread_has_single_step_breakpoints_set (tp)
4445 && currently_stepping (tp))
4446 {
4447 tp->suspend.stop_reason
4448 = TARGET_STOPPED_BY_SINGLE_STEP;
4449 }
4450 }
4451}
4452
65706a29
PA
4453/* A cleanup that disables thread create/exit events. */
4454
4455static void
4456disable_thread_events (void *arg)
4457{
4458 target_thread_events (0);
4459}
4460
6efcd9a8 4461/* See infrun.h. */
372316f1 4462
6efcd9a8 4463void
372316f1
PA
4464stop_all_threads (void)
4465{
4466 /* We may need multiple passes to discover all threads. */
4467 int pass;
4468 int iterations = 0;
4469 ptid_t entry_ptid;
4470 struct cleanup *old_chain;
4471
fbea99ea 4472 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4473
4474 if (debug_infrun)
4475 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4476
4477 entry_ptid = inferior_ptid;
4478 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4479
65706a29
PA
4480 target_thread_events (1);
4481 make_cleanup (disable_thread_events, NULL);
4482
372316f1
PA
4483 /* Request threads to stop, and then wait for the stops. Because
4484 threads we already know about can spawn more threads while we're
4485 trying to stop them, and we only learn about new threads when we
4486 update the thread list, do this in a loop, and keep iterating
4487 until two passes find no threads that need to be stopped. */
4488 for (pass = 0; pass < 2; pass++, iterations++)
4489 {
4490 if (debug_infrun)
4491 fprintf_unfiltered (gdb_stdlog,
4492 "infrun: stop_all_threads, pass=%d, "
4493 "iterations=%d\n", pass, iterations);
4494 while (1)
4495 {
4496 ptid_t event_ptid;
4497 struct target_waitstatus ws;
4498 int need_wait = 0;
4499 struct thread_info *t;
4500
4501 update_thread_list ();
4502
4503 /* Go through all threads looking for threads that we need
4504 to tell the target to stop. */
4505 ALL_NON_EXITED_THREADS (t)
4506 {
4507 if (t->executing)
4508 {
4509 /* If already stopping, don't request a stop again.
4510 We just haven't seen the notification yet. */
4511 if (!t->stop_requested)
4512 {
4513 if (debug_infrun)
4514 fprintf_unfiltered (gdb_stdlog,
4515 "infrun: %s executing, "
4516 "need stop\n",
4517 target_pid_to_str (t->ptid));
4518 target_stop (t->ptid);
4519 t->stop_requested = 1;
4520 }
4521 else
4522 {
4523 if (debug_infrun)
4524 fprintf_unfiltered (gdb_stdlog,
4525 "infrun: %s executing, "
4526 "already stopping\n",
4527 target_pid_to_str (t->ptid));
4528 }
4529
4530 if (t->stop_requested)
4531 need_wait = 1;
4532 }
4533 else
4534 {
4535 if (debug_infrun)
4536 fprintf_unfiltered (gdb_stdlog,
4537 "infrun: %s not executing\n",
4538 target_pid_to_str (t->ptid));
4539
4540 /* The thread may be not executing, but still be
4541 resumed with a pending status to process. */
4542 t->resumed = 0;
4543 }
4544 }
4545
4546 if (!need_wait)
4547 break;
4548
4549 /* If we find new threads on the second iteration, restart
4550 over. We want to see two iterations in a row with all
4551 threads stopped. */
4552 if (pass > 0)
4553 pass = -1;
4554
4555 event_ptid = wait_one (&ws);
4556 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4557 {
4558 /* All resumed threads exited. */
4559 }
65706a29
PA
4560 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4561 || ws.kind == TARGET_WAITKIND_EXITED
372316f1
PA
4562 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4563 {
4564 if (debug_infrun)
4565 {
4566 ptid_t ptid = pid_to_ptid (ws.value.integer);
4567
4568 fprintf_unfiltered (gdb_stdlog,
4569 "infrun: %s exited while "
4570 "stopping threads\n",
4571 target_pid_to_str (ptid));
4572 }
4573 }
4574 else
4575 {
6efcd9a8
PA
4576 struct inferior *inf;
4577
372316f1
PA
4578 t = find_thread_ptid (event_ptid);
4579 if (t == NULL)
4580 t = add_thread (event_ptid);
4581
4582 t->stop_requested = 0;
4583 t->executing = 0;
4584 t->resumed = 0;
4585 t->control.may_range_step = 0;
4586
6efcd9a8
PA
4587 /* This may be the first time we see the inferior report
4588 a stop. */
4589 inf = find_inferior_ptid (event_ptid);
4590 if (inf->needs_setup)
4591 {
4592 switch_to_thread_no_regs (t);
4593 setup_inferior (0);
4594 }
4595
372316f1
PA
4596 if (ws.kind == TARGET_WAITKIND_STOPPED
4597 && ws.value.sig == GDB_SIGNAL_0)
4598 {
4599 /* We caught the event that we intended to catch, so
4600 there's no event pending. */
4601 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4602 t->suspend.waitstatus_pending_p = 0;
4603
4604 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4605 {
4606 /* Add it back to the step-over queue. */
4607 if (debug_infrun)
4608 {
4609 fprintf_unfiltered (gdb_stdlog,
4610 "infrun: displaced-step of %s "
4611 "canceled: adding back to the "
4612 "step-over queue\n",
4613 target_pid_to_str (t->ptid));
4614 }
4615 t->control.trap_expected = 0;
4616 thread_step_over_chain_enqueue (t);
4617 }
4618 }
4619 else
4620 {
4621 enum gdb_signal sig;
4622 struct regcache *regcache;
372316f1
PA
4623
4624 if (debug_infrun)
4625 {
23fdd69e 4626 std::string statstr = target_waitstatus_to_string (&ws);
372316f1 4627
372316f1
PA
4628 fprintf_unfiltered (gdb_stdlog,
4629 "infrun: target_wait %s, saving "
4630 "status for %d.%ld.%ld\n",
23fdd69e 4631 statstr.c_str (),
372316f1
PA
4632 ptid_get_pid (t->ptid),
4633 ptid_get_lwp (t->ptid),
4634 ptid_get_tid (t->ptid));
372316f1
PA
4635 }
4636
4637 /* Record for later. */
4638 save_waitstatus (t, &ws);
4639
4640 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4641 ? ws.value.sig : GDB_SIGNAL_0);
4642
4643 if (displaced_step_fixup (t->ptid, sig) < 0)
4644 {
4645 /* Add it back to the step-over queue. */
4646 t->control.trap_expected = 0;
4647 thread_step_over_chain_enqueue (t);
4648 }
4649
4650 regcache = get_thread_regcache (t->ptid);
4651 t->suspend.stop_pc = regcache_read_pc (regcache);
4652
4653 if (debug_infrun)
4654 {
4655 fprintf_unfiltered (gdb_stdlog,
4656 "infrun: saved stop_pc=%s for %s "
4657 "(currently_stepping=%d)\n",
4658 paddress (target_gdbarch (),
4659 t->suspend.stop_pc),
4660 target_pid_to_str (t->ptid),
4661 currently_stepping (t));
4662 }
4663 }
4664 }
4665 }
4666 }
4667
4668 do_cleanups (old_chain);
4669
4670 if (debug_infrun)
4671 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4672}
4673
f4836ba9
PA
4674/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4675
4676static int
4677handle_no_resumed (struct execution_control_state *ecs)
4678{
4679 struct inferior *inf;
4680 struct thread_info *thread;
4681
3b12939d 4682 if (target_can_async_p ())
f4836ba9 4683 {
3b12939d
PA
4684 struct ui *ui;
4685 int any_sync = 0;
f4836ba9 4686
3b12939d
PA
4687 ALL_UIS (ui)
4688 {
4689 if (ui->prompt_state == PROMPT_BLOCKED)
4690 {
4691 any_sync = 1;
4692 break;
4693 }
4694 }
4695 if (!any_sync)
4696 {
4697 /* There were no unwaited-for children left in the target, but,
4698 we're not synchronously waiting for events either. Just
4699 ignore. */
4700
4701 if (debug_infrun)
4702 fprintf_unfiltered (gdb_stdlog,
4703 "infrun: TARGET_WAITKIND_NO_RESUMED "
4704 "(ignoring: bg)\n");
4705 prepare_to_wait (ecs);
4706 return 1;
4707 }
f4836ba9
PA
4708 }
4709
4710 /* Otherwise, if we were running a synchronous execution command, we
4711 may need to cancel it and give the user back the terminal.
4712
4713 In non-stop mode, the target can't tell whether we've already
4714 consumed previous stop events, so it can end up sending us a
4715 no-resumed event like so:
4716
4717 #0 - thread 1 is left stopped
4718
4719 #1 - thread 2 is resumed and hits breakpoint
4720 -> TARGET_WAITKIND_STOPPED
4721
4722 #2 - thread 3 is resumed and exits
4723 this is the last resumed thread, so
4724 -> TARGET_WAITKIND_NO_RESUMED
4725
4726 #3 - gdb processes stop for thread 2 and decides to re-resume
4727 it.
4728
4729 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4730 thread 2 is now resumed, so the event should be ignored.
4731
4732 IOW, if the stop for thread 2 doesn't end a foreground command,
4733 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4734 event. But it could be that the event meant that thread 2 itself
4735 (or whatever other thread was the last resumed thread) exited.
4736
4737 To address this we refresh the thread list and check whether we
4738 have resumed threads _now_. In the example above, this removes
4739 thread 3 from the thread list. If thread 2 was re-resumed, we
4740 ignore this event. If we find no thread resumed, then we cancel
4741 the synchronous command show "no unwaited-for " to the user. */
4742 update_thread_list ();
4743
4744 ALL_NON_EXITED_THREADS (thread)
4745 {
4746 if (thread->executing
4747 || thread->suspend.waitstatus_pending_p)
4748 {
4749 /* There were no unwaited-for children left in the target at
4750 some point, but there are now. Just ignore. */
4751 if (debug_infrun)
4752 fprintf_unfiltered (gdb_stdlog,
4753 "infrun: TARGET_WAITKIND_NO_RESUMED "
4754 "(ignoring: found resumed)\n");
4755 prepare_to_wait (ecs);
4756 return 1;
4757 }
4758 }
4759
4760 /* Note however that we may find no resumed thread because the whole
4761 process exited meanwhile (thus updating the thread list results
4762 in an empty thread list). In this case we know we'll be getting
4763 a process exit event shortly. */
4764 ALL_INFERIORS (inf)
4765 {
4766 if (inf->pid == 0)
4767 continue;
4768
4769 thread = any_live_thread_of_process (inf->pid);
4770 if (thread == NULL)
4771 {
4772 if (debug_infrun)
4773 fprintf_unfiltered (gdb_stdlog,
4774 "infrun: TARGET_WAITKIND_NO_RESUMED "
4775 "(expect process exit)\n");
4776 prepare_to_wait (ecs);
4777 return 1;
4778 }
4779 }
4780
4781 /* Go ahead and report the event. */
4782 return 0;
4783}
4784
05ba8510
PA
4785/* Given an execution control state that has been freshly filled in by
4786 an event from the inferior, figure out what it means and take
4787 appropriate action.
4788
4789 The alternatives are:
4790
22bcd14b 4791 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4792 debugger.
4793
4794 2) keep_going and return; to wait for the next event (set
4795 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4796 once). */
c906108c 4797
ec9499be 4798static void
0b6e5e10 4799handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4800{
d6b48e9c
PA
4801 enum stop_kind stop_soon;
4802
28736962
PA
4803 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4804 {
4805 /* We had an event in the inferior, but we are not interested in
4806 handling it at this level. The lower layers have already
4807 done what needs to be done, if anything.
4808
4809 One of the possible circumstances for this is when the
4810 inferior produces output for the console. The inferior has
4811 not stopped, and we are ignoring the event. Another possible
4812 circumstance is any event which the lower level knows will be
4813 reported multiple times without an intervening resume. */
4814 if (debug_infrun)
4815 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4816 prepare_to_wait (ecs);
4817 return;
4818 }
4819
65706a29
PA
4820 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4821 {
4822 if (debug_infrun)
4823 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4824 prepare_to_wait (ecs);
4825 return;
4826 }
4827
0e5bf2a8 4828 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4829 && handle_no_resumed (ecs))
4830 return;
0e5bf2a8 4831
1777feb0 4832 /* Cache the last pid/waitstatus. */
c32c64b7 4833 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4834
ca005067 4835 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4836 stop_stack_dummy = STOP_NONE;
ca005067 4837
0e5bf2a8
PA
4838 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4839 {
4840 /* No unwaited-for children left. IOW, all resumed children
4841 have exited. */
4842 if (debug_infrun)
4843 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4844
4845 stop_print_frame = 0;
22bcd14b 4846 stop_waiting (ecs);
0e5bf2a8
PA
4847 return;
4848 }
4849
8c90c137 4850 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4851 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4852 {
4853 ecs->event_thread = find_thread_ptid (ecs->ptid);
4854 /* If it's a new thread, add it to the thread database. */
4855 if (ecs->event_thread == NULL)
4856 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4857
4858 /* Disable range stepping. If the next step request could use a
4859 range, this will be end up re-enabled then. */
4860 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4861 }
88ed393a
JK
4862
4863 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4864 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4865
4866 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4867 reinit_frame_cache ();
4868
28736962
PA
4869 breakpoint_retire_moribund ();
4870
2b009048
DJ
4871 /* First, distinguish signals caused by the debugger from signals
4872 that have to do with the program's own actions. Note that
4873 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4874 on the operating system version. Here we detect when a SIGILL or
4875 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4876 something similar for SIGSEGV, since a SIGSEGV will be generated
4877 when we're trying to execute a breakpoint instruction on a
4878 non-executable stack. This happens for call dummy breakpoints
4879 for architectures like SPARC that place call dummies on the
4880 stack. */
2b009048 4881 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4882 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4883 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4884 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4885 {
de0a0249
UW
4886 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4887
a01bda52 4888 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
4889 regcache_read_pc (regcache)))
4890 {
4891 if (debug_infrun)
4892 fprintf_unfiltered (gdb_stdlog,
4893 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4894 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4895 }
2b009048
DJ
4896 }
4897
28736962
PA
4898 /* Mark the non-executing threads accordingly. In all-stop, all
4899 threads of all processes are stopped when we get any event
e1316e60 4900 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4901 {
4902 ptid_t mark_ptid;
4903
fbea99ea 4904 if (!target_is_non_stop_p ())
372316f1
PA
4905 mark_ptid = minus_one_ptid;
4906 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4907 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4908 {
4909 /* If we're handling a process exit in non-stop mode, even
4910 though threads haven't been deleted yet, one would think
4911 that there is nothing to do, as threads of the dead process
4912 will be soon deleted, and threads of any other process were
4913 left running. However, on some targets, threads survive a
4914 process exit event. E.g., for the "checkpoint" command,
4915 when the current checkpoint/fork exits, linux-fork.c
4916 automatically switches to another fork from within
4917 target_mourn_inferior, by associating the same
4918 inferior/thread to another fork. We haven't mourned yet at
4919 this point, but we must mark any threads left in the
4920 process as not-executing so that finish_thread_state marks
4921 them stopped (in the user's perspective) if/when we present
4922 the stop to the user. */
4923 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4924 }
4925 else
4926 mark_ptid = ecs->ptid;
4927
4928 set_executing (mark_ptid, 0);
4929
4930 /* Likewise the resumed flag. */
4931 set_resumed (mark_ptid, 0);
4932 }
8c90c137 4933
488f131b
JB
4934 switch (ecs->ws.kind)
4935 {
4936 case TARGET_WAITKIND_LOADED:
527159b7 4937 if (debug_infrun)
8a9de0e4 4938 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
4939 if (!ptid_equal (ecs->ptid, inferior_ptid))
4940 context_switch (ecs->ptid);
b0f4b84b
DJ
4941 /* Ignore gracefully during startup of the inferior, as it might
4942 be the shell which has just loaded some objects, otherwise
4943 add the symbols for the newly loaded objects. Also ignore at
4944 the beginning of an attach or remote session; we will query
4945 the full list of libraries once the connection is
4946 established. */
4f5d7f63
PA
4947
4948 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 4949 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4950 {
edcc5120
TT
4951 struct regcache *regcache;
4952
edcc5120
TT
4953 regcache = get_thread_regcache (ecs->ptid);
4954
4955 handle_solib_event ();
4956
4957 ecs->event_thread->control.stop_bpstat
a01bda52 4958 = bpstat_stop_status (regcache->aspace (),
edcc5120 4959 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4960
c65d6b55
PA
4961 if (handle_stop_requested (ecs))
4962 return;
4963
ce12b012 4964 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4965 {
4966 /* A catchpoint triggered. */
94c57d6a
PA
4967 process_event_stop_test (ecs);
4968 return;
edcc5120 4969 }
488f131b 4970
b0f4b84b
DJ
4971 /* If requested, stop when the dynamic linker notifies
4972 gdb of events. This allows the user to get control
4973 and place breakpoints in initializer routines for
4974 dynamically loaded objects (among other things). */
a493e3e2 4975 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4976 if (stop_on_solib_events)
4977 {
55409f9d
DJ
4978 /* Make sure we print "Stopped due to solib-event" in
4979 normal_stop. */
4980 stop_print_frame = 1;
4981
22bcd14b 4982 stop_waiting (ecs);
b0f4b84b
DJ
4983 return;
4984 }
488f131b 4985 }
b0f4b84b
DJ
4986
4987 /* If we are skipping through a shell, or through shared library
4988 loading that we aren't interested in, resume the program. If
5c09a2c5 4989 we're running the program normally, also resume. */
b0f4b84b
DJ
4990 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4991 {
74960c60
VP
4992 /* Loading of shared libraries might have changed breakpoint
4993 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4994 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4995 insert_breakpoints ();
64ce06e4 4996 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4997 prepare_to_wait (ecs);
4998 return;
4999 }
5000
5c09a2c5
PA
5001 /* But stop if we're attaching or setting up a remote
5002 connection. */
5003 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5004 || stop_soon == STOP_QUIETLY_REMOTE)
5005 {
5006 if (debug_infrun)
5007 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 5008 stop_waiting (ecs);
5c09a2c5
PA
5009 return;
5010 }
5011
5012 internal_error (__FILE__, __LINE__,
5013 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 5014
488f131b 5015 case TARGET_WAITKIND_SPURIOUS:
527159b7 5016 if (debug_infrun)
8a9de0e4 5017 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
c65d6b55
PA
5018 if (handle_stop_requested (ecs))
5019 return;
64776a0b 5020 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 5021 context_switch (ecs->ptid);
64ce06e4 5022 resume (GDB_SIGNAL_0);
488f131b
JB
5023 prepare_to_wait (ecs);
5024 return;
c5aa993b 5025
65706a29
PA
5026 case TARGET_WAITKIND_THREAD_CREATED:
5027 if (debug_infrun)
5028 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
c65d6b55
PA
5029 if (handle_stop_requested (ecs))
5030 return;
65706a29
PA
5031 if (!ptid_equal (ecs->ptid, inferior_ptid))
5032 context_switch (ecs->ptid);
5033 if (!switch_back_to_stepped_thread (ecs))
5034 keep_going (ecs);
5035 return;
5036
488f131b 5037 case TARGET_WAITKIND_EXITED:
940c3c06 5038 case TARGET_WAITKIND_SIGNALLED:
527159b7 5039 if (debug_infrun)
940c3c06
PA
5040 {
5041 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5042 fprintf_unfiltered (gdb_stdlog,
5043 "infrun: TARGET_WAITKIND_EXITED\n");
5044 else
5045 fprintf_unfiltered (gdb_stdlog,
5046 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5047 }
5048
fb66883a 5049 inferior_ptid = ecs->ptid;
c9657e70 5050 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
5051 set_current_program_space (current_inferior ()->pspace);
5052 handle_vfork_child_exec_or_exit (0);
223ffa71 5053 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 5054
0c557179
SDJ
5055 /* Clearing any previous state of convenience variables. */
5056 clear_exit_convenience_vars ();
5057
940c3c06
PA
5058 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5059 {
5060 /* Record the exit code in the convenience variable $_exitcode, so
5061 that the user can inspect this again later. */
5062 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5063 (LONGEST) ecs->ws.value.integer);
5064
5065 /* Also record this in the inferior itself. */
5066 current_inferior ()->has_exit_code = 1;
5067 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5068
98eb56a4
PA
5069 /* Support the --return-child-result option. */
5070 return_child_result_value = ecs->ws.value.integer;
5071
76727919 5072 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
5073 }
5074 else
0c557179
SDJ
5075 {
5076 struct regcache *regcache = get_thread_regcache (ecs->ptid);
ac7936df 5077 struct gdbarch *gdbarch = regcache->arch ();
0c557179
SDJ
5078
5079 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5080 {
5081 /* Set the value of the internal variable $_exitsignal,
5082 which holds the signal uncaught by the inferior. */
5083 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5084 gdbarch_gdb_signal_to_target (gdbarch,
5085 ecs->ws.value.sig));
5086 }
5087 else
5088 {
5089 /* We don't have access to the target's method used for
5090 converting between signal numbers (GDB's internal
5091 representation <-> target's representation).
5092 Therefore, we cannot do a good job at displaying this
5093 information to the user. It's better to just warn
5094 her about it (if infrun debugging is enabled), and
5095 give up. */
5096 if (debug_infrun)
5097 fprintf_filtered (gdb_stdlog, _("\
5098Cannot fill $_exitsignal with the correct signal number.\n"));
5099 }
5100
76727919 5101 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 5102 }
8cf64490 5103
488f131b 5104 gdb_flush (gdb_stdout);
bc1e6c81 5105 target_mourn_inferior (inferior_ptid);
488f131b 5106 stop_print_frame = 0;
22bcd14b 5107 stop_waiting (ecs);
488f131b 5108 return;
c5aa993b 5109
488f131b 5110 /* The following are the only cases in which we keep going;
1777feb0 5111 the above cases end in a continue or goto. */
488f131b 5112 case TARGET_WAITKIND_FORKED:
deb3b17b 5113 case TARGET_WAITKIND_VFORKED:
527159b7 5114 if (debug_infrun)
fed708ed
PA
5115 {
5116 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5117 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5118 else
5119 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5120 }
c906108c 5121
e2d96639
YQ
5122 /* Check whether the inferior is displaced stepping. */
5123 {
5124 struct regcache *regcache = get_thread_regcache (ecs->ptid);
ac7936df 5125 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
5126
5127 /* If checking displaced stepping is supported, and thread
5128 ecs->ptid is displaced stepping. */
c0987663 5129 if (displaced_step_in_progress_thread (ecs->ptid))
e2d96639
YQ
5130 {
5131 struct inferior *parent_inf
c9657e70 5132 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
5133 struct regcache *child_regcache;
5134 CORE_ADDR parent_pc;
5135
5136 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5137 indicating that the displaced stepping of syscall instruction
5138 has been done. Perform cleanup for parent process here. Note
5139 that this operation also cleans up the child process for vfork,
5140 because their pages are shared. */
a493e3e2 5141 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
c2829269
PA
5142 /* Start a new step-over in another thread if there's one
5143 that needs it. */
5144 start_step_over ();
e2d96639
YQ
5145
5146 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5147 {
c0987663
YQ
5148 struct displaced_step_inferior_state *displaced
5149 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5150
e2d96639
YQ
5151 /* Restore scratch pad for child process. */
5152 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5153 }
5154
5155 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5156 the child's PC is also within the scratchpad. Set the child's PC
5157 to the parent's PC value, which has already been fixed up.
5158 FIXME: we use the parent's aspace here, although we're touching
5159 the child, because the child hasn't been added to the inferior
5160 list yet at this point. */
5161
5162 child_regcache
5163 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5164 gdbarch,
5165 parent_inf->aspace);
5166 /* Read PC value of parent process. */
5167 parent_pc = regcache_read_pc (regcache);
5168
5169 if (debug_displaced)
5170 fprintf_unfiltered (gdb_stdlog,
5171 "displaced: write child pc from %s to %s\n",
5172 paddress (gdbarch,
5173 regcache_read_pc (child_regcache)),
5174 paddress (gdbarch, parent_pc));
5175
5176 regcache_write_pc (child_regcache, parent_pc);
5177 }
5178 }
5179
5a2901d9 5180 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5181 context_switch (ecs->ptid);
5a2901d9 5182
b242c3c2
PA
5183 /* Immediately detach breakpoints from the child before there's
5184 any chance of letting the user delete breakpoints from the
5185 breakpoint lists. If we don't do this early, it's easy to
5186 leave left over traps in the child, vis: "break foo; catch
5187 fork; c; <fork>; del; c; <child calls foo>". We only follow
5188 the fork on the last `continue', and by that time the
5189 breakpoint at "foo" is long gone from the breakpoint table.
5190 If we vforked, then we don't need to unpatch here, since both
5191 parent and child are sharing the same memory pages; we'll
5192 need to unpatch at follow/detach time instead to be certain
5193 that new breakpoints added between catchpoint hit time and
5194 vfork follow are detached. */
5195 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5196 {
b242c3c2
PA
5197 /* This won't actually modify the breakpoint list, but will
5198 physically remove the breakpoints from the child. */
d80ee84f 5199 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5200 }
5201
34b7e8a6 5202 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5203
e58b0e63
PA
5204 /* In case the event is caught by a catchpoint, remember that
5205 the event is to be followed at the next resume of the thread,
5206 and not immediately. */
5207 ecs->event_thread->pending_follow = ecs->ws;
5208
fb14de7b 5209 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 5210
16c381f0 5211 ecs->event_thread->control.stop_bpstat
a01bda52 5212 = bpstat_stop_status (get_current_regcache ()->aspace (),
09ac7c10 5213 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 5214
c65d6b55
PA
5215 if (handle_stop_requested (ecs))
5216 return;
5217
ce12b012
PA
5218 /* If no catchpoint triggered for this, then keep going. Note
5219 that we're interested in knowing the bpstat actually causes a
5220 stop, not just if it may explain the signal. Software
5221 watchpoints, for example, always appear in the bpstat. */
5222 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5223 {
6c95b8df
PA
5224 ptid_t parent;
5225 ptid_t child;
e58b0e63 5226 int should_resume;
3e43a32a
MS
5227 int follow_child
5228 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5229
a493e3e2 5230 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5231
5232 should_resume = follow_fork ();
5233
6c95b8df
PA
5234 parent = ecs->ptid;
5235 child = ecs->ws.value.related_pid;
5236
a2077e25
PA
5237 /* At this point, the parent is marked running, and the
5238 child is marked stopped. */
5239
5240 /* If not resuming the parent, mark it stopped. */
5241 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5242 set_running (parent, 0);
5243
5244 /* If resuming the child, mark it running. */
5245 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5246 set_running (child, 1);
5247
6c95b8df 5248 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5249 if (!detach_fork && (non_stop
5250 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5251 {
5252 if (follow_child)
5253 switch_to_thread (parent);
5254 else
5255 switch_to_thread (child);
5256
5257 ecs->event_thread = inferior_thread ();
5258 ecs->ptid = inferior_ptid;
5259 keep_going (ecs);
5260 }
5261
5262 if (follow_child)
5263 switch_to_thread (child);
5264 else
5265 switch_to_thread (parent);
5266
e58b0e63
PA
5267 ecs->event_thread = inferior_thread ();
5268 ecs->ptid = inferior_ptid;
5269
5270 if (should_resume)
5271 keep_going (ecs);
5272 else
22bcd14b 5273 stop_waiting (ecs);
04e68871
DJ
5274 return;
5275 }
94c57d6a
PA
5276 process_event_stop_test (ecs);
5277 return;
488f131b 5278
6c95b8df
PA
5279 case TARGET_WAITKIND_VFORK_DONE:
5280 /* Done with the shared memory region. Re-insert breakpoints in
5281 the parent, and keep going. */
5282
5283 if (debug_infrun)
3e43a32a
MS
5284 fprintf_unfiltered (gdb_stdlog,
5285 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
5286
5287 if (!ptid_equal (ecs->ptid, inferior_ptid))
5288 context_switch (ecs->ptid);
5289
5290 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5291 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5292
5293 if (handle_stop_requested (ecs))
5294 return;
5295
6c95b8df
PA
5296 /* This also takes care of reinserting breakpoints in the
5297 previously locked inferior. */
5298 keep_going (ecs);
5299 return;
5300
488f131b 5301 case TARGET_WAITKIND_EXECD:
527159b7 5302 if (debug_infrun)
fc5261f2 5303 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5304
cbd2b4e3
PA
5305 /* Note we can't read registers yet (the stop_pc), because we
5306 don't yet know the inferior's post-exec architecture.
5307 'stop_pc' is explicitly read below instead. */
5a2901d9 5308 if (!ptid_equal (ecs->ptid, inferior_ptid))
cbd2b4e3 5309 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5310
6c95b8df
PA
5311 /* Do whatever is necessary to the parent branch of the vfork. */
5312 handle_vfork_child_exec_or_exit (1);
5313
795e548f
PA
5314 /* This causes the eventpoints and symbol table to be reset.
5315 Must do this now, before trying to determine whether to
5316 stop. */
71b43ef8 5317 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5318
1bb7c059
SM
5319 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5320
17d8546e
DB
5321 /* In follow_exec we may have deleted the original thread and
5322 created a new one. Make sure that the event thread is the
5323 execd thread for that case (this is a nop otherwise). */
5324 ecs->event_thread = inferior_thread ();
5325
16c381f0 5326 ecs->event_thread->control.stop_bpstat
a01bda52 5327 = bpstat_stop_status (get_current_regcache ()->aspace (),
09ac7c10 5328 stop_pc, ecs->ptid, &ecs->ws);
795e548f 5329
71b43ef8
PA
5330 /* Note that this may be referenced from inside
5331 bpstat_stop_status above, through inferior_has_execd. */
5332 xfree (ecs->ws.value.execd_pathname);
5333 ecs->ws.value.execd_pathname = NULL;
5334
c65d6b55
PA
5335 if (handle_stop_requested (ecs))
5336 return;
5337
04e68871 5338 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5339 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5340 {
a493e3e2 5341 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5342 keep_going (ecs);
5343 return;
5344 }
94c57d6a
PA
5345 process_event_stop_test (ecs);
5346 return;
488f131b 5347
b4dc5ffa
MK
5348 /* Be careful not to try to gather much state about a thread
5349 that's in a syscall. It's frequently a losing proposition. */
488f131b 5350 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5351 if (debug_infrun)
3e43a32a
MS
5352 fprintf_unfiltered (gdb_stdlog,
5353 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5354 /* Getting the current syscall number. */
94c57d6a
PA
5355 if (handle_syscall_event (ecs) == 0)
5356 process_event_stop_test (ecs);
5357 return;
c906108c 5358
488f131b
JB
5359 /* Before examining the threads further, step this thread to
5360 get it entirely out of the syscall. (We get notice of the
5361 event when the thread is just on the verge of exiting a
5362 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5363 into user code.) */
488f131b 5364 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5365 if (debug_infrun)
3e43a32a
MS
5366 fprintf_unfiltered (gdb_stdlog,
5367 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5368 if (handle_syscall_event (ecs) == 0)
5369 process_event_stop_test (ecs);
5370 return;
c906108c 5371
488f131b 5372 case TARGET_WAITKIND_STOPPED:
527159b7 5373 if (debug_infrun)
8a9de0e4 5374 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
4f5d7f63
PA
5375 handle_signal_stop (ecs);
5376 return;
c906108c 5377
b2175913 5378 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5379 if (debug_infrun)
5380 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5381 /* Reverse execution: target ran out of history info. */
eab402df 5382
d1988021
MM
5383 /* Switch to the stopped thread. */
5384 if (!ptid_equal (ecs->ptid, inferior_ptid))
5385 context_switch (ecs->ptid);
5386 if (debug_infrun)
5387 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5388
34b7e8a6 5389 delete_just_stopped_threads_single_step_breakpoints ();
d1988021 5390 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
c65d6b55
PA
5391
5392 if (handle_stop_requested (ecs))
5393 return;
5394
76727919 5395 gdb::observers::no_history.notify ();
22bcd14b 5396 stop_waiting (ecs);
b2175913 5397 return;
488f131b 5398 }
4f5d7f63
PA
5399}
5400
0b6e5e10
JB
5401/* A wrapper around handle_inferior_event_1, which also makes sure
5402 that all temporary struct value objects that were created during
5403 the handling of the event get deleted at the end. */
5404
5405static void
5406handle_inferior_event (struct execution_control_state *ecs)
5407{
5408 struct value *mark = value_mark ();
5409
5410 handle_inferior_event_1 (ecs);
5411 /* Purge all temporary values created during the event handling,
5412 as it could be a long time before we return to the command level
5413 where such values would otherwise be purged. */
5414 value_free_to_mark (mark);
5415}
5416
372316f1
PA
5417/* Restart threads back to what they were trying to do back when we
5418 paused them for an in-line step-over. The EVENT_THREAD thread is
5419 ignored. */
4d9d9d04
PA
5420
5421static void
372316f1
PA
5422restart_threads (struct thread_info *event_thread)
5423{
5424 struct thread_info *tp;
372316f1
PA
5425
5426 /* In case the instruction just stepped spawned a new thread. */
5427 update_thread_list ();
5428
5429 ALL_NON_EXITED_THREADS (tp)
5430 {
5431 if (tp == event_thread)
5432 {
5433 if (debug_infrun)
5434 fprintf_unfiltered (gdb_stdlog,
5435 "infrun: restart threads: "
5436 "[%s] is event thread\n",
5437 target_pid_to_str (tp->ptid));
5438 continue;
5439 }
5440
5441 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5442 {
5443 if (debug_infrun)
5444 fprintf_unfiltered (gdb_stdlog,
5445 "infrun: restart threads: "
5446 "[%s] not meant to be running\n",
5447 target_pid_to_str (tp->ptid));
5448 continue;
5449 }
5450
5451 if (tp->resumed)
5452 {
5453 if (debug_infrun)
5454 fprintf_unfiltered (gdb_stdlog,
5455 "infrun: restart threads: [%s] resumed\n",
5456 target_pid_to_str (tp->ptid));
5457 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5458 continue;
5459 }
5460
5461 if (thread_is_in_step_over_chain (tp))
5462 {
5463 if (debug_infrun)
5464 fprintf_unfiltered (gdb_stdlog,
5465 "infrun: restart threads: "
5466 "[%s] needs step-over\n",
5467 target_pid_to_str (tp->ptid));
5468 gdb_assert (!tp->resumed);
5469 continue;
5470 }
5471
5472
5473 if (tp->suspend.waitstatus_pending_p)
5474 {
5475 if (debug_infrun)
5476 fprintf_unfiltered (gdb_stdlog,
5477 "infrun: restart threads: "
5478 "[%s] has pending status\n",
5479 target_pid_to_str (tp->ptid));
5480 tp->resumed = 1;
5481 continue;
5482 }
5483
c65d6b55
PA
5484 gdb_assert (!tp->stop_requested);
5485
372316f1
PA
5486 /* If some thread needs to start a step-over at this point, it
5487 should still be in the step-over queue, and thus skipped
5488 above. */
5489 if (thread_still_needs_step_over (tp))
5490 {
5491 internal_error (__FILE__, __LINE__,
5492 "thread [%s] needs a step-over, but not in "
5493 "step-over queue\n",
5494 target_pid_to_str (tp->ptid));
5495 }
5496
5497 if (currently_stepping (tp))
5498 {
5499 if (debug_infrun)
5500 fprintf_unfiltered (gdb_stdlog,
5501 "infrun: restart threads: [%s] was stepping\n",
5502 target_pid_to_str (tp->ptid));
5503 keep_going_stepped_thread (tp);
5504 }
5505 else
5506 {
5507 struct execution_control_state ecss;
5508 struct execution_control_state *ecs = &ecss;
5509
5510 if (debug_infrun)
5511 fprintf_unfiltered (gdb_stdlog,
5512 "infrun: restart threads: [%s] continuing\n",
5513 target_pid_to_str (tp->ptid));
5514 reset_ecs (ecs, tp);
5515 switch_to_thread (tp->ptid);
5516 keep_going_pass_signal (ecs);
5517 }
5518 }
5519}
5520
5521/* Callback for iterate_over_threads. Find a resumed thread that has
5522 a pending waitstatus. */
5523
5524static int
5525resumed_thread_with_pending_status (struct thread_info *tp,
5526 void *arg)
5527{
5528 return (tp->resumed
5529 && tp->suspend.waitstatus_pending_p);
5530}
5531
5532/* Called when we get an event that may finish an in-line or
5533 out-of-line (displaced stepping) step-over started previously.
5534 Return true if the event is processed and we should go back to the
5535 event loop; false if the caller should continue processing the
5536 event. */
5537
5538static int
4d9d9d04
PA
5539finish_step_over (struct execution_control_state *ecs)
5540{
372316f1
PA
5541 int had_step_over_info;
5542
4d9d9d04
PA
5543 displaced_step_fixup (ecs->ptid,
5544 ecs->event_thread->suspend.stop_signal);
5545
372316f1
PA
5546 had_step_over_info = step_over_info_valid_p ();
5547
5548 if (had_step_over_info)
4d9d9d04
PA
5549 {
5550 /* If we're stepping over a breakpoint with all threads locked,
5551 then only the thread that was stepped should be reporting
5552 back an event. */
5553 gdb_assert (ecs->event_thread->control.trap_expected);
5554
c65d6b55 5555 clear_step_over_info ();
4d9d9d04
PA
5556 }
5557
fbea99ea 5558 if (!target_is_non_stop_p ())
372316f1 5559 return 0;
4d9d9d04
PA
5560
5561 /* Start a new step-over in another thread if there's one that
5562 needs it. */
5563 start_step_over ();
372316f1
PA
5564
5565 /* If we were stepping over a breakpoint before, and haven't started
5566 a new in-line step-over sequence, then restart all other threads
5567 (except the event thread). We can't do this in all-stop, as then
5568 e.g., we wouldn't be able to issue any other remote packet until
5569 these other threads stop. */
5570 if (had_step_over_info && !step_over_info_valid_p ())
5571 {
5572 struct thread_info *pending;
5573
5574 /* If we only have threads with pending statuses, the restart
5575 below won't restart any thread and so nothing re-inserts the
5576 breakpoint we just stepped over. But we need it inserted
5577 when we later process the pending events, otherwise if
5578 another thread has a pending event for this breakpoint too,
5579 we'd discard its event (because the breakpoint that
5580 originally caused the event was no longer inserted). */
5581 context_switch (ecs->ptid);
5582 insert_breakpoints ();
5583
5584 restart_threads (ecs->event_thread);
5585
5586 /* If we have events pending, go through handle_inferior_event
5587 again, picking up a pending event at random. This avoids
5588 thread starvation. */
5589
5590 /* But not if we just stepped over a watchpoint in order to let
5591 the instruction execute so we can evaluate its expression.
5592 The set of watchpoints that triggered is recorded in the
5593 breakpoint objects themselves (see bp->watchpoint_triggered).
5594 If we processed another event first, that other event could
5595 clobber this info. */
5596 if (ecs->event_thread->stepping_over_watchpoint)
5597 return 0;
5598
5599 pending = iterate_over_threads (resumed_thread_with_pending_status,
5600 NULL);
5601 if (pending != NULL)
5602 {
5603 struct thread_info *tp = ecs->event_thread;
5604 struct regcache *regcache;
5605
5606 if (debug_infrun)
5607 {
5608 fprintf_unfiltered (gdb_stdlog,
5609 "infrun: found resumed threads with "
5610 "pending events, saving status\n");
5611 }
5612
5613 gdb_assert (pending != tp);
5614
5615 /* Record the event thread's event for later. */
5616 save_waitstatus (tp, &ecs->ws);
5617 /* This was cleared early, by handle_inferior_event. Set it
5618 so this pending event is considered by
5619 do_target_wait. */
5620 tp->resumed = 1;
5621
5622 gdb_assert (!tp->executing);
5623
5624 regcache = get_thread_regcache (tp->ptid);
5625 tp->suspend.stop_pc = regcache_read_pc (regcache);
5626
5627 if (debug_infrun)
5628 {
5629 fprintf_unfiltered (gdb_stdlog,
5630 "infrun: saved stop_pc=%s for %s "
5631 "(currently_stepping=%d)\n",
5632 paddress (target_gdbarch (),
5633 tp->suspend.stop_pc),
5634 target_pid_to_str (tp->ptid),
5635 currently_stepping (tp));
5636 }
5637
5638 /* This in-line step-over finished; clear this so we won't
5639 start a new one. This is what handle_signal_stop would
5640 do, if we returned false. */
5641 tp->stepping_over_breakpoint = 0;
5642
5643 /* Wake up the event loop again. */
5644 mark_async_event_handler (infrun_async_inferior_event_token);
5645
5646 prepare_to_wait (ecs);
5647 return 1;
5648 }
5649 }
5650
5651 return 0;
4d9d9d04
PA
5652}
5653
4f5d7f63
PA
5654/* Come here when the program has stopped with a signal. */
5655
5656static void
5657handle_signal_stop (struct execution_control_state *ecs)
5658{
5659 struct frame_info *frame;
5660 struct gdbarch *gdbarch;
5661 int stopped_by_watchpoint;
5662 enum stop_kind stop_soon;
5663 int random_signal;
c906108c 5664
f0407826
DE
5665 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5666
c65d6b55
PA
5667 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5668
f0407826
DE
5669 /* Do we need to clean up the state of a thread that has
5670 completed a displaced single-step? (Doing so usually affects
5671 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5672 if (finish_step_over (ecs))
5673 return;
f0407826
DE
5674
5675 /* If we either finished a single-step or hit a breakpoint, but
5676 the user wanted this thread to be stopped, pretend we got a
5677 SIG0 (generic unsignaled stop). */
5678 if (ecs->event_thread->stop_requested
5679 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5680 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5681
515630c5 5682 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 5683
527159b7 5684 if (debug_infrun)
237fc4c9 5685 {
5af949e3 5686 struct regcache *regcache = get_thread_regcache (ecs->ptid);
ac7936df 5687 struct gdbarch *gdbarch = regcache->arch ();
2989a365 5688 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
7f82dfc7
JK
5689
5690 inferior_ptid = ecs->ptid;
5af949e3
UW
5691
5692 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5693 paddress (gdbarch, stop_pc));
d92524f1 5694 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5695 {
5696 CORE_ADDR addr;
abbb1732 5697
237fc4c9
PA
5698 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5699
f6ac5f3d 5700 if (target_stopped_data_address (target_stack, &addr))
237fc4c9 5701 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5702 "infrun: stopped data address = %s\n",
5703 paddress (gdbarch, addr));
237fc4c9
PA
5704 else
5705 fprintf_unfiltered (gdb_stdlog,
5706 "infrun: (no data address available)\n");
5707 }
5708 }
527159b7 5709
36fa8042
PA
5710 /* This is originated from start_remote(), start_inferior() and
5711 shared libraries hook functions. */
5712 stop_soon = get_inferior_stop_soon (ecs->ptid);
5713 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5714 {
5715 if (!ptid_equal (ecs->ptid, inferior_ptid))
5716 context_switch (ecs->ptid);
5717 if (debug_infrun)
5718 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5719 stop_print_frame = 1;
22bcd14b 5720 stop_waiting (ecs);
36fa8042
PA
5721 return;
5722 }
5723
36fa8042
PA
5724 /* This originates from attach_command(). We need to overwrite
5725 the stop_signal here, because some kernels don't ignore a
5726 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5727 See more comments in inferior.h. On the other hand, if we
5728 get a non-SIGSTOP, report it to the user - assume the backend
5729 will handle the SIGSTOP if it should show up later.
5730
5731 Also consider that the attach is complete when we see a
5732 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5733 target extended-remote report it instead of a SIGSTOP
5734 (e.g. gdbserver). We already rely on SIGTRAP being our
5735 signal, so this is no exception.
5736
5737 Also consider that the attach is complete when we see a
5738 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5739 the target to stop all threads of the inferior, in case the
5740 low level attach operation doesn't stop them implicitly. If
5741 they weren't stopped implicitly, then the stub will report a
5742 GDB_SIGNAL_0, meaning: stopped for no particular reason
5743 other than GDB's request. */
5744 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5745 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5746 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5747 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5748 {
5749 stop_print_frame = 1;
22bcd14b 5750 stop_waiting (ecs);
36fa8042
PA
5751 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5752 return;
5753 }
5754
488f131b 5755 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
5756 so, then switch to that thread. */
5757 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 5758 {
527159b7 5759 if (debug_infrun)
8a9de0e4 5760 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5761
0d1e5fa7 5762 context_switch (ecs->ptid);
c5aa993b 5763
9a4105ab 5764 if (deprecated_context_hook)
5d5658a1 5765 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
488f131b 5766 }
c906108c 5767
568d6575
UW
5768 /* At this point, get hold of the now-current thread's frame. */
5769 frame = get_current_frame ();
5770 gdbarch = get_frame_arch (frame);
5771
2adfaa28 5772 /* Pull the single step breakpoints out of the target. */
af48d08f 5773 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5774 {
af48d08f 5775 struct regcache *regcache;
af48d08f 5776 CORE_ADDR pc;
2adfaa28 5777
af48d08f 5778 regcache = get_thread_regcache (ecs->ptid);
8b86c959
YQ
5779 const address_space *aspace = regcache->aspace ();
5780
af48d08f 5781 pc = regcache_read_pc (regcache);
34b7e8a6 5782
af48d08f
PA
5783 /* However, before doing so, if this single-step breakpoint was
5784 actually for another thread, set this thread up for moving
5785 past it. */
5786 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5787 aspace, pc))
5788 {
5789 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5790 {
5791 if (debug_infrun)
5792 {
5793 fprintf_unfiltered (gdb_stdlog,
af48d08f 5794 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5795 "single-step breakpoint\n",
5796 target_pid_to_str (ecs->ptid));
2adfaa28 5797 }
af48d08f
PA
5798 ecs->hit_singlestep_breakpoint = 1;
5799 }
5800 }
5801 else
5802 {
5803 if (debug_infrun)
5804 {
5805 fprintf_unfiltered (gdb_stdlog,
5806 "infrun: [%s] hit its "
5807 "single-step breakpoint\n",
5808 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5809 }
5810 }
488f131b 5811 }
af48d08f 5812 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5813
963f9c80
PA
5814 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5815 && ecs->event_thread->control.trap_expected
5816 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5817 stopped_by_watchpoint = 0;
5818 else
5819 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5820
5821 /* If necessary, step over this watchpoint. We'll be back to display
5822 it in a moment. */
5823 if (stopped_by_watchpoint
d92524f1 5824 && (target_have_steppable_watchpoint
568d6575 5825 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5826 {
488f131b
JB
5827 /* At this point, we are stopped at an instruction which has
5828 attempted to write to a piece of memory under control of
5829 a watchpoint. The instruction hasn't actually executed
5830 yet. If we were to evaluate the watchpoint expression
5831 now, we would get the old value, and therefore no change
5832 would seem to have occurred.
5833
5834 In order to make watchpoints work `right', we really need
5835 to complete the memory write, and then evaluate the
d983da9c
DJ
5836 watchpoint expression. We do this by single-stepping the
5837 target.
5838
7f89fd65 5839 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5840 it. For example, the PA can (with some kernel cooperation)
5841 single step over a watchpoint without disabling the watchpoint.
5842
5843 It is far more common to need to disable a watchpoint to step
5844 the inferior over it. If we have non-steppable watchpoints,
5845 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5846 disable all watchpoints.
5847
5848 Any breakpoint at PC must also be stepped over -- if there's
5849 one, it will have already triggered before the watchpoint
5850 triggered, and we either already reported it to the user, or
5851 it didn't cause a stop and we called keep_going. In either
5852 case, if there was a breakpoint at PC, we must be trying to
5853 step past it. */
5854 ecs->event_thread->stepping_over_watchpoint = 1;
5855 keep_going (ecs);
488f131b
JB
5856 return;
5857 }
5858
4e1c45ea 5859 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5860 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5861 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5862 ecs->event_thread->control.stop_step = 0;
488f131b 5863 stop_print_frame = 1;
488f131b 5864 stopped_by_random_signal = 0;
488f131b 5865
edb3359d
DJ
5866 /* Hide inlined functions starting here, unless we just performed stepi or
5867 nexti. After stepi and nexti, always show the innermost frame (not any
5868 inline function call sites). */
16c381f0 5869 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 5870 {
8b86c959 5871 const address_space *aspace =
a01bda52 5872 get_thread_regcache (ecs->ptid)->aspace ();
0574c78f
GB
5873
5874 /* skip_inline_frames is expensive, so we avoid it if we can
5875 determine that the address is one where functions cannot have
5876 been inlined. This improves performance with inferiors that
5877 load a lot of shared libraries, because the solib event
5878 breakpoint is defined as the address of a function (i.e. not
5879 inline). Note that we have to check the previous PC as well
5880 as the current one to catch cases when we have just
5881 single-stepped off a breakpoint prior to reinstating it.
5882 Note that we're assuming that the code we single-step to is
5883 not inline, but that's not definitive: there's nothing
5884 preventing the event breakpoint function from containing
5885 inlined code, and the single-step ending up there. If the
5886 user had set a breakpoint on that inlined code, the missing
5887 skip_inline_frames call would break things. Fortunately
5888 that's an extremely unlikely scenario. */
09ac7c10 5889 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
5890 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5891 && ecs->event_thread->control.trap_expected
5892 && pc_at_non_inline_function (aspace,
5893 ecs->event_thread->prev_pc,
09ac7c10 5894 &ecs->ws)))
1c5a993e
MR
5895 {
5896 skip_inline_frames (ecs->ptid);
5897
5898 /* Re-fetch current thread's frame in case that invalidated
5899 the frame cache. */
5900 frame = get_current_frame ();
5901 gdbarch = get_frame_arch (frame);
5902 }
0574c78f 5903 }
edb3359d 5904
a493e3e2 5905 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5906 && ecs->event_thread->control.trap_expected
568d6575 5907 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5908 && currently_stepping (ecs->event_thread))
3352ef37 5909 {
b50d7442 5910 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5911 also on an instruction that needs to be stepped multiple
1777feb0 5912 times before it's been fully executing. E.g., architectures
3352ef37
AC
5913 with a delay slot. It needs to be stepped twice, once for
5914 the instruction and once for the delay slot. */
5915 int step_through_delay
568d6575 5916 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5917
527159b7 5918 if (debug_infrun && step_through_delay)
8a9de0e4 5919 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5920 if (ecs->event_thread->control.step_range_end == 0
5921 && step_through_delay)
3352ef37
AC
5922 {
5923 /* The user issued a continue when stopped at a breakpoint.
5924 Set up for another trap and get out of here. */
4e1c45ea 5925 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5926 keep_going (ecs);
5927 return;
5928 }
5929 else if (step_through_delay)
5930 {
5931 /* The user issued a step when stopped at a breakpoint.
5932 Maybe we should stop, maybe we should not - the delay
5933 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5934 case, don't decide that here, just set
5935 ecs->stepping_over_breakpoint, making sure we
5936 single-step again before breakpoints are re-inserted. */
4e1c45ea 5937 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5938 }
5939 }
5940
ab04a2af
TT
5941 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5942 handles this event. */
5943 ecs->event_thread->control.stop_bpstat
a01bda52 5944 = bpstat_stop_status (get_current_regcache ()->aspace (),
ab04a2af 5945 stop_pc, ecs->ptid, &ecs->ws);
db82e815 5946
ab04a2af
TT
5947 /* Following in case break condition called a
5948 function. */
5949 stop_print_frame = 1;
73dd234f 5950
ab04a2af
TT
5951 /* This is where we handle "moribund" watchpoints. Unlike
5952 software breakpoints traps, hardware watchpoint traps are
5953 always distinguishable from random traps. If no high-level
5954 watchpoint is associated with the reported stop data address
5955 anymore, then the bpstat does not explain the signal ---
5956 simply make sure to ignore it if `stopped_by_watchpoint' is
5957 set. */
5958
5959 if (debug_infrun
5960 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5961 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5962 GDB_SIGNAL_TRAP)
ab04a2af
TT
5963 && stopped_by_watchpoint)
5964 fprintf_unfiltered (gdb_stdlog,
5965 "infrun: no user watchpoint explains "
5966 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5967
bac7d97b 5968 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5969 at one stage in the past included checks for an inferior
5970 function call's call dummy's return breakpoint. The original
5971 comment, that went with the test, read:
03cebad2 5972
ab04a2af
TT
5973 ``End of a stack dummy. Some systems (e.g. Sony news) give
5974 another signal besides SIGTRAP, so check here as well as
5975 above.''
73dd234f 5976
ab04a2af
TT
5977 If someone ever tries to get call dummys on a
5978 non-executable stack to work (where the target would stop
5979 with something like a SIGSEGV), then those tests might need
5980 to be re-instated. Given, however, that the tests were only
5981 enabled when momentary breakpoints were not being used, I
5982 suspect that it won't be the case.
488f131b 5983
ab04a2af
TT
5984 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5985 be necessary for call dummies on a non-executable stack on
5986 SPARC. */
488f131b 5987
bac7d97b 5988 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5989 random_signal
5990 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5991 ecs->event_thread->suspend.stop_signal);
bac7d97b 5992
1cf4d951
PA
5993 /* Maybe this was a trap for a software breakpoint that has since
5994 been removed. */
5995 if (random_signal && target_stopped_by_sw_breakpoint ())
5996 {
5997 if (program_breakpoint_here_p (gdbarch, stop_pc))
5998 {
5999 struct regcache *regcache;
6000 int decr_pc;
6001
6002 /* Re-adjust PC to what the program would see if GDB was not
6003 debugging it. */
6004 regcache = get_thread_regcache (ecs->event_thread->ptid);
527a273a 6005 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6006 if (decr_pc != 0)
6007 {
07036511
TT
6008 gdb::optional<scoped_restore_tmpl<int>>
6009 restore_operation_disable;
1cf4d951
PA
6010
6011 if (record_full_is_used ())
07036511
TT
6012 restore_operation_disable.emplace
6013 (record_full_gdb_operation_disable_set ());
1cf4d951
PA
6014
6015 regcache_write_pc (regcache, stop_pc + decr_pc);
1cf4d951
PA
6016 }
6017 }
6018 else
6019 {
6020 /* A delayed software breakpoint event. Ignore the trap. */
6021 if (debug_infrun)
6022 fprintf_unfiltered (gdb_stdlog,
6023 "infrun: delayed software breakpoint "
6024 "trap, ignoring\n");
6025 random_signal = 0;
6026 }
6027 }
6028
6029 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6030 has since been removed. */
6031 if (random_signal && target_stopped_by_hw_breakpoint ())
6032 {
6033 /* A delayed hardware breakpoint event. Ignore the trap. */
6034 if (debug_infrun)
6035 fprintf_unfiltered (gdb_stdlog,
6036 "infrun: delayed hardware breakpoint/watchpoint "
6037 "trap, ignoring\n");
6038 random_signal = 0;
6039 }
6040
bac7d97b
PA
6041 /* If not, perhaps stepping/nexting can. */
6042 if (random_signal)
6043 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6044 && currently_stepping (ecs->event_thread));
ab04a2af 6045
2adfaa28
PA
6046 /* Perhaps the thread hit a single-step breakpoint of _another_
6047 thread. Single-step breakpoints are transparent to the
6048 breakpoints module. */
6049 if (random_signal)
6050 random_signal = !ecs->hit_singlestep_breakpoint;
6051
bac7d97b
PA
6052 /* No? Perhaps we got a moribund watchpoint. */
6053 if (random_signal)
6054 random_signal = !stopped_by_watchpoint;
ab04a2af 6055
c65d6b55
PA
6056 /* Always stop if the user explicitly requested this thread to
6057 remain stopped. */
6058 if (ecs->event_thread->stop_requested)
6059 {
6060 random_signal = 1;
6061 if (debug_infrun)
6062 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6063 }
6064
488f131b
JB
6065 /* For the program's own signals, act according to
6066 the signal handling tables. */
6067
ce12b012 6068 if (random_signal)
488f131b
JB
6069 {
6070 /* Signal not for debugging purposes. */
c9657e70 6071 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 6072 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6073
527159b7 6074 if (debug_infrun)
c9737c08
PA
6075 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6076 gdb_signal_to_symbol_string (stop_signal));
527159b7 6077
488f131b
JB
6078 stopped_by_random_signal = 1;
6079
252fbfc8
PA
6080 /* Always stop on signals if we're either just gaining control
6081 of the program, or the user explicitly requested this thread
6082 to remain stopped. */
d6b48e9c 6083 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6084 || ecs->event_thread->stop_requested
24291992 6085 || (!inf->detaching
16c381f0 6086 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6087 {
22bcd14b 6088 stop_waiting (ecs);
488f131b
JB
6089 return;
6090 }
b57bacec
PA
6091
6092 /* Notify observers the signal has "handle print" set. Note we
6093 returned early above if stopping; normal_stop handles the
6094 printing in that case. */
6095 if (signal_print[ecs->event_thread->suspend.stop_signal])
6096 {
6097 /* The signal table tells us to print about this signal. */
223ffa71 6098 target_terminal::ours_for_output ();
76727919 6099 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 6100 target_terminal::inferior ();
b57bacec 6101 }
488f131b
JB
6102
6103 /* Clear the signal if it should not be passed. */
16c381f0 6104 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6105 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6106
fb14de7b 6107 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 6108 && ecs->event_thread->control.trap_expected
8358c15c 6109 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
6110 {
6111 /* We were just starting a new sequence, attempting to
6112 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6113 Instead this signal arrives. This signal will take us out
68f53502
AC
6114 of the stepping range so GDB needs to remember to, when
6115 the signal handler returns, resume stepping off that
6116 breakpoint. */
6117 /* To simplify things, "continue" is forced to use the same
6118 code paths as single-step - set a breakpoint at the
6119 signal return address and then, once hit, step off that
6120 breakpoint. */
237fc4c9
PA
6121 if (debug_infrun)
6122 fprintf_unfiltered (gdb_stdlog,
6123 "infrun: signal arrived while stepping over "
6124 "breakpoint\n");
d3169d93 6125
2c03e5be 6126 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6127 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6128 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6129 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
6130
6131 /* If we were nexting/stepping some other thread, switch to
6132 it, so that we don't continue it, losing control. */
6133 if (!switch_back_to_stepped_thread (ecs))
6134 keep_going (ecs);
9d799f85 6135 return;
68f53502 6136 }
9d799f85 6137
e5f8a7cc
PA
6138 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6139 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6140 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6141 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6142 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6143 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6144 {
6145 /* The inferior is about to take a signal that will take it
6146 out of the single step range. Set a breakpoint at the
6147 current PC (which is presumably where the signal handler
6148 will eventually return) and then allow the inferior to
6149 run free.
6150
6151 Note that this is only needed for a signal delivered
6152 while in the single-step range. Nested signals aren't a
6153 problem as they eventually all return. */
237fc4c9
PA
6154 if (debug_infrun)
6155 fprintf_unfiltered (gdb_stdlog,
6156 "infrun: signal may take us out of "
6157 "single-step range\n");
6158
372316f1 6159 clear_step_over_info ();
2c03e5be 6160 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6161 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6162 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6163 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6164 keep_going (ecs);
6165 return;
d303a6c7 6166 }
9d799f85
AC
6167
6168 /* Note: step_resume_breakpoint may be non-NULL. This occures
6169 when either there's a nested signal, or when there's a
6170 pending signal enabled just as the signal handler returns
6171 (leaving the inferior at the step-resume-breakpoint without
6172 actually executing it). Either way continue until the
6173 breakpoint is really hit. */
c447ac0b
PA
6174
6175 if (!switch_back_to_stepped_thread (ecs))
6176 {
6177 if (debug_infrun)
6178 fprintf_unfiltered (gdb_stdlog,
6179 "infrun: random signal, keep going\n");
6180
6181 keep_going (ecs);
6182 }
6183 return;
488f131b 6184 }
94c57d6a
PA
6185
6186 process_event_stop_test (ecs);
6187}
6188
6189/* Come here when we've got some debug event / signal we can explain
6190 (IOW, not a random signal), and test whether it should cause a
6191 stop, or whether we should resume the inferior (transparently).
6192 E.g., could be a breakpoint whose condition evaluates false; we
6193 could be still stepping within the line; etc. */
6194
6195static void
6196process_event_stop_test (struct execution_control_state *ecs)
6197{
6198 struct symtab_and_line stop_pc_sal;
6199 struct frame_info *frame;
6200 struct gdbarch *gdbarch;
cdaa5b73
PA
6201 CORE_ADDR jmp_buf_pc;
6202 struct bpstat_what what;
94c57d6a 6203
cdaa5b73 6204 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6205
cdaa5b73
PA
6206 frame = get_current_frame ();
6207 gdbarch = get_frame_arch (frame);
fcf3daef 6208
cdaa5b73 6209 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6210
cdaa5b73
PA
6211 if (what.call_dummy)
6212 {
6213 stop_stack_dummy = what.call_dummy;
6214 }
186c406b 6215
243a9253
PA
6216 /* A few breakpoint types have callbacks associated (e.g.,
6217 bp_jit_event). Run them now. */
6218 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6219
cdaa5b73
PA
6220 /* If we hit an internal event that triggers symbol changes, the
6221 current frame will be invalidated within bpstat_what (e.g., if we
6222 hit an internal solib event). Re-fetch it. */
6223 frame = get_current_frame ();
6224 gdbarch = get_frame_arch (frame);
e2e4d78b 6225
cdaa5b73
PA
6226 switch (what.main_action)
6227 {
6228 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6229 /* If we hit the breakpoint at longjmp while stepping, we
6230 install a momentary breakpoint at the target of the
6231 jmp_buf. */
186c406b 6232
cdaa5b73
PA
6233 if (debug_infrun)
6234 fprintf_unfiltered (gdb_stdlog,
6235 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6236
cdaa5b73 6237 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6238
cdaa5b73
PA
6239 if (what.is_longjmp)
6240 {
6241 struct value *arg_value;
6242
6243 /* If we set the longjmp breakpoint via a SystemTap probe,
6244 then use it to extract the arguments. The destination PC
6245 is the third argument to the probe. */
6246 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6247 if (arg_value)
8fa0c4f8
AA
6248 {
6249 jmp_buf_pc = value_as_address (arg_value);
6250 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6251 }
cdaa5b73
PA
6252 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6253 || !gdbarch_get_longjmp_target (gdbarch,
6254 frame, &jmp_buf_pc))
e2e4d78b 6255 {
cdaa5b73
PA
6256 if (debug_infrun)
6257 fprintf_unfiltered (gdb_stdlog,
6258 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6259 "(!gdbarch_get_longjmp_target)\n");
6260 keep_going (ecs);
6261 return;
e2e4d78b 6262 }
e2e4d78b 6263
cdaa5b73
PA
6264 /* Insert a breakpoint at resume address. */
6265 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6266 }
6267 else
6268 check_exception_resume (ecs, frame);
6269 keep_going (ecs);
6270 return;
e81a37f7 6271
cdaa5b73
PA
6272 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6273 {
6274 struct frame_info *init_frame;
e81a37f7 6275
cdaa5b73 6276 /* There are several cases to consider.
c906108c 6277
cdaa5b73
PA
6278 1. The initiating frame no longer exists. In this case we
6279 must stop, because the exception or longjmp has gone too
6280 far.
2c03e5be 6281
cdaa5b73
PA
6282 2. The initiating frame exists, and is the same as the
6283 current frame. We stop, because the exception or longjmp
6284 has been caught.
2c03e5be 6285
cdaa5b73
PA
6286 3. The initiating frame exists and is different from the
6287 current frame. This means the exception or longjmp has
6288 been caught beneath the initiating frame, so keep going.
c906108c 6289
cdaa5b73
PA
6290 4. longjmp breakpoint has been placed just to protect
6291 against stale dummy frames and user is not interested in
6292 stopping around longjmps. */
c5aa993b 6293
cdaa5b73
PA
6294 if (debug_infrun)
6295 fprintf_unfiltered (gdb_stdlog,
6296 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6297
cdaa5b73
PA
6298 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6299 != NULL);
6300 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6301
cdaa5b73
PA
6302 if (what.is_longjmp)
6303 {
b67a2c6f 6304 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6305
cdaa5b73 6306 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6307 {
cdaa5b73
PA
6308 /* Case 4. */
6309 keep_going (ecs);
6310 return;
e5ef252a 6311 }
cdaa5b73 6312 }
c5aa993b 6313
cdaa5b73 6314 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6315
cdaa5b73
PA
6316 if (init_frame)
6317 {
6318 struct frame_id current_id
6319 = get_frame_id (get_current_frame ());
6320 if (frame_id_eq (current_id,
6321 ecs->event_thread->initiating_frame))
6322 {
6323 /* Case 2. Fall through. */
6324 }
6325 else
6326 {
6327 /* Case 3. */
6328 keep_going (ecs);
6329 return;
6330 }
68f53502 6331 }
488f131b 6332
cdaa5b73
PA
6333 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6334 exists. */
6335 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6336
bdc36728 6337 end_stepping_range (ecs);
cdaa5b73
PA
6338 }
6339 return;
e5ef252a 6340
cdaa5b73
PA
6341 case BPSTAT_WHAT_SINGLE:
6342 if (debug_infrun)
6343 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6344 ecs->event_thread->stepping_over_breakpoint = 1;
6345 /* Still need to check other stuff, at least the case where we
6346 are stepping and step out of the right range. */
6347 break;
e5ef252a 6348
cdaa5b73
PA
6349 case BPSTAT_WHAT_STEP_RESUME:
6350 if (debug_infrun)
6351 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6352
cdaa5b73
PA
6353 delete_step_resume_breakpoint (ecs->event_thread);
6354 if (ecs->event_thread->control.proceed_to_finish
6355 && execution_direction == EXEC_REVERSE)
6356 {
6357 struct thread_info *tp = ecs->event_thread;
6358
6359 /* We are finishing a function in reverse, and just hit the
6360 step-resume breakpoint at the start address of the
6361 function, and we're almost there -- just need to back up
6362 by one more single-step, which should take us back to the
6363 function call. */
6364 tp->control.step_range_start = tp->control.step_range_end = 1;
6365 keep_going (ecs);
e5ef252a 6366 return;
cdaa5b73
PA
6367 }
6368 fill_in_stop_func (gdbarch, ecs);
6369 if (stop_pc == ecs->stop_func_start
6370 && execution_direction == EXEC_REVERSE)
6371 {
6372 /* We are stepping over a function call in reverse, and just
6373 hit the step-resume breakpoint at the start address of
6374 the function. Go back to single-stepping, which should
6375 take us back to the function call. */
6376 ecs->event_thread->stepping_over_breakpoint = 1;
6377 keep_going (ecs);
6378 return;
6379 }
6380 break;
e5ef252a 6381
cdaa5b73
PA
6382 case BPSTAT_WHAT_STOP_NOISY:
6383 if (debug_infrun)
6384 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6385 stop_print_frame = 1;
e5ef252a 6386
99619bea
PA
6387 /* Assume the thread stopped for a breapoint. We'll still check
6388 whether a/the breakpoint is there when the thread is next
6389 resumed. */
6390 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6391
22bcd14b 6392 stop_waiting (ecs);
cdaa5b73 6393 return;
e5ef252a 6394
cdaa5b73
PA
6395 case BPSTAT_WHAT_STOP_SILENT:
6396 if (debug_infrun)
6397 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6398 stop_print_frame = 0;
e5ef252a 6399
99619bea
PA
6400 /* Assume the thread stopped for a breapoint. We'll still check
6401 whether a/the breakpoint is there when the thread is next
6402 resumed. */
6403 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6404 stop_waiting (ecs);
cdaa5b73
PA
6405 return;
6406
6407 case BPSTAT_WHAT_HP_STEP_RESUME:
6408 if (debug_infrun)
6409 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6410
6411 delete_step_resume_breakpoint (ecs->event_thread);
6412 if (ecs->event_thread->step_after_step_resume_breakpoint)
6413 {
6414 /* Back when the step-resume breakpoint was inserted, we
6415 were trying to single-step off a breakpoint. Go back to
6416 doing that. */
6417 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6418 ecs->event_thread->stepping_over_breakpoint = 1;
6419 keep_going (ecs);
6420 return;
e5ef252a 6421 }
cdaa5b73
PA
6422 break;
6423
6424 case BPSTAT_WHAT_KEEP_CHECKING:
6425 break;
e5ef252a 6426 }
c906108c 6427
af48d08f
PA
6428 /* If we stepped a permanent breakpoint and we had a high priority
6429 step-resume breakpoint for the address we stepped, but we didn't
6430 hit it, then we must have stepped into the signal handler. The
6431 step-resume was only necessary to catch the case of _not_
6432 stepping into the handler, so delete it, and fall through to
6433 checking whether the step finished. */
6434 if (ecs->event_thread->stepped_breakpoint)
6435 {
6436 struct breakpoint *sr_bp
6437 = ecs->event_thread->control.step_resume_breakpoint;
6438
8d707a12
PA
6439 if (sr_bp != NULL
6440 && sr_bp->loc->permanent
af48d08f
PA
6441 && sr_bp->type == bp_hp_step_resume
6442 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6443 {
6444 if (debug_infrun)
6445 fprintf_unfiltered (gdb_stdlog,
6446 "infrun: stepped permanent breakpoint, stopped in "
6447 "handler\n");
6448 delete_step_resume_breakpoint (ecs->event_thread);
6449 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6450 }
6451 }
6452
cdaa5b73
PA
6453 /* We come here if we hit a breakpoint but should not stop for it.
6454 Possibly we also were stepping and should stop for that. So fall
6455 through and test for stepping. But, if not stepping, do not
6456 stop. */
c906108c 6457
a7212384
UW
6458 /* In all-stop mode, if we're currently stepping but have stopped in
6459 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6460 if (switch_back_to_stepped_thread (ecs))
6461 return;
776f04fa 6462
8358c15c 6463 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6464 {
527159b7 6465 if (debug_infrun)
d3169d93
DJ
6466 fprintf_unfiltered (gdb_stdlog,
6467 "infrun: step-resume breakpoint is inserted\n");
527159b7 6468
488f131b
JB
6469 /* Having a step-resume breakpoint overrides anything
6470 else having to do with stepping commands until
6471 that breakpoint is reached. */
488f131b
JB
6472 keep_going (ecs);
6473 return;
6474 }
c5aa993b 6475
16c381f0 6476 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6477 {
527159b7 6478 if (debug_infrun)
8a9de0e4 6479 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6480 /* Likewise if we aren't even stepping. */
488f131b
JB
6481 keep_going (ecs);
6482 return;
6483 }
c5aa993b 6484
4b7703ad
JB
6485 /* Re-fetch current thread's frame in case the code above caused
6486 the frame cache to be re-initialized, making our FRAME variable
6487 a dangling pointer. */
6488 frame = get_current_frame ();
628fe4e4 6489 gdbarch = get_frame_arch (frame);
7e324e48 6490 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6491
488f131b 6492 /* If stepping through a line, keep going if still within it.
c906108c 6493
488f131b
JB
6494 Note that step_range_end is the address of the first instruction
6495 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6496 within it!
6497
6498 Note also that during reverse execution, we may be stepping
6499 through a function epilogue and therefore must detect when
6500 the current-frame changes in the middle of a line. */
6501
ce4c476a 6502 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 6503 && (execution_direction != EXEC_REVERSE
388a8562 6504 || frame_id_eq (get_frame_id (frame),
16c381f0 6505 ecs->event_thread->control.step_frame_id)))
488f131b 6506 {
527159b7 6507 if (debug_infrun)
5af949e3
UW
6508 fprintf_unfiltered
6509 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6510 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6511 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6512
c1e36e3e
PA
6513 /* Tentatively re-enable range stepping; `resume' disables it if
6514 necessary (e.g., if we're stepping over a breakpoint or we
6515 have software watchpoints). */
6516 ecs->event_thread->control.may_range_step = 1;
6517
b2175913
MS
6518 /* When stepping backward, stop at beginning of line range
6519 (unless it's the function entry point, in which case
6520 keep going back to the call point). */
16c381f0 6521 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6522 && stop_pc != ecs->stop_func_start
6523 && execution_direction == EXEC_REVERSE)
bdc36728 6524 end_stepping_range (ecs);
b2175913
MS
6525 else
6526 keep_going (ecs);
6527
488f131b
JB
6528 return;
6529 }
c5aa993b 6530
488f131b 6531 /* We stepped out of the stepping range. */
c906108c 6532
488f131b 6533 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6534 loader dynamic symbol resolution code...
6535
6536 EXEC_FORWARD: we keep on single stepping until we exit the run
6537 time loader code and reach the callee's address.
6538
6539 EXEC_REVERSE: we've already executed the callee (backward), and
6540 the runtime loader code is handled just like any other
6541 undebuggable function call. Now we need only keep stepping
6542 backward through the trampoline code, and that's handled further
6543 down, so there is nothing for us to do here. */
6544
6545 if (execution_direction != EXEC_REVERSE
16c381f0 6546 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 6547 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 6548 {
4c8c40e6 6549 CORE_ADDR pc_after_resolver =
568d6575 6550 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 6551
527159b7 6552 if (debug_infrun)
3e43a32a
MS
6553 fprintf_unfiltered (gdb_stdlog,
6554 "infrun: stepped into dynsym resolve code\n");
527159b7 6555
488f131b
JB
6556 if (pc_after_resolver)
6557 {
6558 /* Set up a step-resume breakpoint at the address
6559 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6560 symtab_and_line sr_sal;
488f131b 6561 sr_sal.pc = pc_after_resolver;
6c95b8df 6562 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6563
a6d9a66e
UW
6564 insert_step_resume_breakpoint_at_sal (gdbarch,
6565 sr_sal, null_frame_id);
c5aa993b 6566 }
c906108c 6567
488f131b
JB
6568 keep_going (ecs);
6569 return;
6570 }
c906108c 6571
1d509aa6
MM
6572 /* Step through an indirect branch thunk. */
6573 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6574 && gdbarch_in_indirect_branch_thunk (gdbarch, stop_pc))
6575 {
6576 if (debug_infrun)
6577 fprintf_unfiltered (gdb_stdlog,
6578 "infrun: stepped into indirect branch thunk\n");
6579 keep_going (ecs);
6580 return;
6581 }
6582
16c381f0
JK
6583 if (ecs->event_thread->control.step_range_end != 1
6584 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6585 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6586 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6587 {
527159b7 6588 if (debug_infrun)
3e43a32a
MS
6589 fprintf_unfiltered (gdb_stdlog,
6590 "infrun: stepped into signal trampoline\n");
42edda50 6591 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6592 a signal trampoline (either by a signal being delivered or by
6593 the signal handler returning). Just single-step until the
6594 inferior leaves the trampoline (either by calling the handler
6595 or returning). */
488f131b
JB
6596 keep_going (ecs);
6597 return;
6598 }
c906108c 6599
14132e89
MR
6600 /* If we're in the return path from a shared library trampoline,
6601 we want to proceed through the trampoline when stepping. */
6602 /* macro/2012-04-25: This needs to come before the subroutine
6603 call check below as on some targets return trampolines look
6604 like subroutine calls (MIPS16 return thunks). */
6605 if (gdbarch_in_solib_return_trampoline (gdbarch,
6606 stop_pc, ecs->stop_func_name)
6607 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6608 {
6609 /* Determine where this trampoline returns. */
6610 CORE_ADDR real_stop_pc;
6611
6612 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6613
6614 if (debug_infrun)
6615 fprintf_unfiltered (gdb_stdlog,
6616 "infrun: stepped into solib return tramp\n");
6617
6618 /* Only proceed through if we know where it's going. */
6619 if (real_stop_pc)
6620 {
6621 /* And put the step-breakpoint there and go until there. */
51abb421 6622 symtab_and_line sr_sal;
14132e89
MR
6623 sr_sal.pc = real_stop_pc;
6624 sr_sal.section = find_pc_overlay (sr_sal.pc);
6625 sr_sal.pspace = get_frame_program_space (frame);
6626
6627 /* Do not specify what the fp should be when we stop since
6628 on some machines the prologue is where the new fp value
6629 is established. */
6630 insert_step_resume_breakpoint_at_sal (gdbarch,
6631 sr_sal, null_frame_id);
6632
6633 /* Restart without fiddling with the step ranges or
6634 other state. */
6635 keep_going (ecs);
6636 return;
6637 }
6638 }
6639
c17eaafe
DJ
6640 /* Check for subroutine calls. The check for the current frame
6641 equalling the step ID is not necessary - the check of the
6642 previous frame's ID is sufficient - but it is a common case and
6643 cheaper than checking the previous frame's ID.
14e60db5
DJ
6644
6645 NOTE: frame_id_eq will never report two invalid frame IDs as
6646 being equal, so to get into this block, both the current and
6647 previous frame must have valid frame IDs. */
005ca36a
JB
6648 /* The outer_frame_id check is a heuristic to detect stepping
6649 through startup code. If we step over an instruction which
6650 sets the stack pointer from an invalid value to a valid value,
6651 we may detect that as a subroutine call from the mythical
6652 "outermost" function. This could be fixed by marking
6653 outermost frames as !stack_p,code_p,special_p. Then the
6654 initial outermost frame, before sp was valid, would
ce6cca6d 6655 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6656 for more. */
edb3359d 6657 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6658 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6659 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6660 ecs->event_thread->control.step_stack_frame_id)
6661 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6662 outer_frame_id)
885eeb5b
PA
6663 || (ecs->event_thread->control.step_start_function
6664 != find_pc_function (stop_pc)))))
488f131b 6665 {
95918acb 6666 CORE_ADDR real_stop_pc;
8fb3e588 6667
527159b7 6668 if (debug_infrun)
8a9de0e4 6669 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6670
b7a084be 6671 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6672 {
6673 /* I presume that step_over_calls is only 0 when we're
6674 supposed to be stepping at the assembly language level
6675 ("stepi"). Just stop. */
388a8562 6676 /* And this works the same backward as frontward. MVS */
bdc36728 6677 end_stepping_range (ecs);
95918acb
AC
6678 return;
6679 }
8fb3e588 6680
388a8562
MS
6681 /* Reverse stepping through solib trampolines. */
6682
6683 if (execution_direction == EXEC_REVERSE
16c381f0 6684 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6685 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6686 || (ecs->stop_func_start == 0
6687 && in_solib_dynsym_resolve_code (stop_pc))))
6688 {
6689 /* Any solib trampoline code can be handled in reverse
6690 by simply continuing to single-step. We have already
6691 executed the solib function (backwards), and a few
6692 steps will take us back through the trampoline to the
6693 caller. */
6694 keep_going (ecs);
6695 return;
6696 }
6697
16c381f0 6698 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6699 {
b2175913
MS
6700 /* We're doing a "next".
6701
6702 Normal (forward) execution: set a breakpoint at the
6703 callee's return address (the address at which the caller
6704 will resume).
6705
6706 Reverse (backward) execution. set the step-resume
6707 breakpoint at the start of the function that we just
6708 stepped into (backwards), and continue to there. When we
6130d0b7 6709 get there, we'll need to single-step back to the caller. */
b2175913
MS
6710
6711 if (execution_direction == EXEC_REVERSE)
6712 {
acf9414f
JK
6713 /* If we're already at the start of the function, we've either
6714 just stepped backward into a single instruction function,
6715 or stepped back out of a signal handler to the first instruction
6716 of the function. Just keep going, which will single-step back
6717 to the caller. */
58c48e72 6718 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6719 {
acf9414f 6720 /* Normal function call return (static or dynamic). */
51abb421 6721 symtab_and_line sr_sal;
acf9414f
JK
6722 sr_sal.pc = ecs->stop_func_start;
6723 sr_sal.pspace = get_frame_program_space (frame);
6724 insert_step_resume_breakpoint_at_sal (gdbarch,
6725 sr_sal, null_frame_id);
6726 }
b2175913
MS
6727 }
6728 else
568d6575 6729 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6730
8567c30f
AC
6731 keep_going (ecs);
6732 return;
6733 }
a53c66de 6734
95918acb 6735 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6736 calling routine and the real function), locate the real
6737 function. That's what tells us (a) whether we want to step
6738 into it at all, and (b) what prologue we want to run to the
6739 end of, if we do step into it. */
568d6575 6740 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6741 if (real_stop_pc == 0)
568d6575 6742 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6743 if (real_stop_pc != 0)
6744 ecs->stop_func_start = real_stop_pc;
8fb3e588 6745
db5f024e 6746 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6747 {
51abb421 6748 symtab_and_line sr_sal;
1b2bfbb9 6749 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6750 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6751
a6d9a66e
UW
6752 insert_step_resume_breakpoint_at_sal (gdbarch,
6753 sr_sal, null_frame_id);
8fb3e588
AC
6754 keep_going (ecs);
6755 return;
1b2bfbb9
RC
6756 }
6757
95918acb 6758 /* If we have line number information for the function we are
1bfeeb0f
JL
6759 thinking of stepping into and the function isn't on the skip
6760 list, step into it.
95918acb 6761
8fb3e588
AC
6762 If there are several symtabs at that PC (e.g. with include
6763 files), just want to know whether *any* of them have line
6764 numbers. find_pc_line handles this. */
95918acb
AC
6765 {
6766 struct symtab_and_line tmp_sal;
8fb3e588 6767
95918acb 6768 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6769 if (tmp_sal.line != 0
85817405 6770 && !function_name_is_marked_for_skip (ecs->stop_func_name,
de7985c3 6771 tmp_sal))
95918acb 6772 {
b2175913 6773 if (execution_direction == EXEC_REVERSE)
568d6575 6774 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6775 else
568d6575 6776 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6777 return;
6778 }
6779 }
6780
6781 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6782 set, we stop the step so that the user has a chance to switch
6783 in assembly mode. */
16c381f0 6784 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6785 && step_stop_if_no_debug)
95918acb 6786 {
bdc36728 6787 end_stepping_range (ecs);
95918acb
AC
6788 return;
6789 }
6790
b2175913
MS
6791 if (execution_direction == EXEC_REVERSE)
6792 {
acf9414f
JK
6793 /* If we're already at the start of the function, we've either just
6794 stepped backward into a single instruction function without line
6795 number info, or stepped back out of a signal handler to the first
6796 instruction of the function without line number info. Just keep
6797 going, which will single-step back to the caller. */
6798 if (ecs->stop_func_start != stop_pc)
6799 {
6800 /* Set a breakpoint at callee's start address.
6801 From there we can step once and be back in the caller. */
51abb421 6802 symtab_and_line sr_sal;
acf9414f
JK
6803 sr_sal.pc = ecs->stop_func_start;
6804 sr_sal.pspace = get_frame_program_space (frame);
6805 insert_step_resume_breakpoint_at_sal (gdbarch,
6806 sr_sal, null_frame_id);
6807 }
b2175913
MS
6808 }
6809 else
6810 /* Set a breakpoint at callee's return address (the address
6811 at which the caller will resume). */
568d6575 6812 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6813
95918acb 6814 keep_going (ecs);
488f131b 6815 return;
488f131b 6816 }
c906108c 6817
fdd654f3
MS
6818 /* Reverse stepping through solib trampolines. */
6819
6820 if (execution_direction == EXEC_REVERSE
16c381f0 6821 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
6822 {
6823 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6824 || (ecs->stop_func_start == 0
6825 && in_solib_dynsym_resolve_code (stop_pc)))
6826 {
6827 /* Any solib trampoline code can be handled in reverse
6828 by simply continuing to single-step. We have already
6829 executed the solib function (backwards), and a few
6830 steps will take us back through the trampoline to the
6831 caller. */
6832 keep_going (ecs);
6833 return;
6834 }
6835 else if (in_solib_dynsym_resolve_code (stop_pc))
6836 {
6837 /* Stepped backward into the solib dynsym resolver.
6838 Set a breakpoint at its start and continue, then
6839 one more step will take us out. */
51abb421 6840 symtab_and_line sr_sal;
fdd654f3 6841 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6842 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6843 insert_step_resume_breakpoint_at_sal (gdbarch,
6844 sr_sal, null_frame_id);
6845 keep_going (ecs);
6846 return;
6847 }
6848 }
6849
2afb61aa 6850 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 6851
1b2bfbb9
RC
6852 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6853 the trampoline processing logic, however, there are some trampolines
6854 that have no names, so we should do trampoline handling first. */
16c381f0 6855 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6856 && ecs->stop_func_name == NULL
2afb61aa 6857 && stop_pc_sal.line == 0)
1b2bfbb9 6858 {
527159b7 6859 if (debug_infrun)
3e43a32a
MS
6860 fprintf_unfiltered (gdb_stdlog,
6861 "infrun: stepped into undebuggable function\n");
527159b7 6862
1b2bfbb9 6863 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6864 undebuggable function (where there is no debugging information
6865 and no line number corresponding to the address where the
1b2bfbb9
RC
6866 inferior stopped). Since we want to skip this kind of code,
6867 we keep going until the inferior returns from this
14e60db5
DJ
6868 function - unless the user has asked us not to (via
6869 set step-mode) or we no longer know how to get back
6870 to the call site. */
6871 if (step_stop_if_no_debug
c7ce8faa 6872 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6873 {
6874 /* If we have no line number and the step-stop-if-no-debug
6875 is set, we stop the step so that the user has a chance to
6876 switch in assembly mode. */
bdc36728 6877 end_stepping_range (ecs);
1b2bfbb9
RC
6878 return;
6879 }
6880 else
6881 {
6882 /* Set a breakpoint at callee's return address (the address
6883 at which the caller will resume). */
568d6575 6884 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6885 keep_going (ecs);
6886 return;
6887 }
6888 }
6889
16c381f0 6890 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6891 {
6892 /* It is stepi or nexti. We always want to stop stepping after
6893 one instruction. */
527159b7 6894 if (debug_infrun)
8a9de0e4 6895 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6896 end_stepping_range (ecs);
1b2bfbb9
RC
6897 return;
6898 }
6899
2afb61aa 6900 if (stop_pc_sal.line == 0)
488f131b
JB
6901 {
6902 /* We have no line number information. That means to stop
6903 stepping (does this always happen right after one instruction,
6904 when we do "s" in a function with no line numbers,
6905 or can this happen as a result of a return or longjmp?). */
527159b7 6906 if (debug_infrun)
8a9de0e4 6907 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6908 end_stepping_range (ecs);
488f131b
JB
6909 return;
6910 }
c906108c 6911
edb3359d
DJ
6912 /* Look for "calls" to inlined functions, part one. If the inline
6913 frame machinery detected some skipped call sites, we have entered
6914 a new inline function. */
6915
6916 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6917 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
6918 && inline_skipped_frames (ecs->ptid))
6919 {
edb3359d
DJ
6920 if (debug_infrun)
6921 fprintf_unfiltered (gdb_stdlog,
6922 "infrun: stepped into inlined function\n");
6923
51abb421 6924 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 6925
16c381f0 6926 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6927 {
6928 /* For "step", we're going to stop. But if the call site
6929 for this inlined function is on the same source line as
6930 we were previously stepping, go down into the function
6931 first. Otherwise stop at the call site. */
6932
6933 if (call_sal.line == ecs->event_thread->current_line
6934 && call_sal.symtab == ecs->event_thread->current_symtab)
6935 step_into_inline_frame (ecs->ptid);
6936
bdc36728 6937 end_stepping_range (ecs);
edb3359d
DJ
6938 return;
6939 }
6940 else
6941 {
6942 /* For "next", we should stop at the call site if it is on a
6943 different source line. Otherwise continue through the
6944 inlined function. */
6945 if (call_sal.line == ecs->event_thread->current_line
6946 && call_sal.symtab == ecs->event_thread->current_symtab)
6947 keep_going (ecs);
6948 else
bdc36728 6949 end_stepping_range (ecs);
edb3359d
DJ
6950 return;
6951 }
6952 }
6953
6954 /* Look for "calls" to inlined functions, part two. If we are still
6955 in the same real function we were stepping through, but we have
6956 to go further up to find the exact frame ID, we are stepping
6957 through a more inlined call beyond its call site. */
6958
6959 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6960 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6961 ecs->event_thread->control.step_frame_id)
edb3359d 6962 && stepped_in_from (get_current_frame (),
16c381f0 6963 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6964 {
6965 if (debug_infrun)
6966 fprintf_unfiltered (gdb_stdlog,
6967 "infrun: stepping through inlined function\n");
6968
16c381f0 6969 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6970 keep_going (ecs);
6971 else
bdc36728 6972 end_stepping_range (ecs);
edb3359d
DJ
6973 return;
6974 }
6975
2afb61aa 6976 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6977 && (ecs->event_thread->current_line != stop_pc_sal.line
6978 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6979 {
6980 /* We are at the start of a different line. So stop. Note that
6981 we don't stop if we step into the middle of a different line.
6982 That is said to make things like for (;;) statements work
6983 better. */
527159b7 6984 if (debug_infrun)
3e43a32a
MS
6985 fprintf_unfiltered (gdb_stdlog,
6986 "infrun: stepped to a different line\n");
bdc36728 6987 end_stepping_range (ecs);
488f131b
JB
6988 return;
6989 }
c906108c 6990
488f131b 6991 /* We aren't done stepping.
c906108c 6992
488f131b
JB
6993 Optimize by setting the stepping range to the line.
6994 (We might not be in the original line, but if we entered a
6995 new line in mid-statement, we continue stepping. This makes
6996 things like for(;;) statements work better.) */
c906108c 6997
16c381f0
JK
6998 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6999 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 7000 ecs->event_thread->control.may_range_step = 1;
edb3359d 7001 set_step_info (frame, stop_pc_sal);
488f131b 7002
527159b7 7003 if (debug_infrun)
8a9de0e4 7004 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 7005 keep_going (ecs);
104c1213
JM
7006}
7007
c447ac0b
PA
7008/* In all-stop mode, if we're currently stepping but have stopped in
7009 some other thread, we may need to switch back to the stepped
7010 thread. Returns true we set the inferior running, false if we left
7011 it stopped (and the event needs further processing). */
7012
7013static int
7014switch_back_to_stepped_thread (struct execution_control_state *ecs)
7015{
fbea99ea 7016 if (!target_is_non_stop_p ())
c447ac0b
PA
7017 {
7018 struct thread_info *tp;
99619bea
PA
7019 struct thread_info *stepping_thread;
7020
7021 /* If any thread is blocked on some internal breakpoint, and we
7022 simply need to step over that breakpoint to get it going
7023 again, do that first. */
7024
7025 /* However, if we see an event for the stepping thread, then we
7026 know all other threads have been moved past their breakpoints
7027 already. Let the caller check whether the step is finished,
7028 etc., before deciding to move it past a breakpoint. */
7029 if (ecs->event_thread->control.step_range_end != 0)
7030 return 0;
7031
7032 /* Check if the current thread is blocked on an incomplete
7033 step-over, interrupted by a random signal. */
7034 if (ecs->event_thread->control.trap_expected
7035 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7036 {
99619bea
PA
7037 if (debug_infrun)
7038 {
7039 fprintf_unfiltered (gdb_stdlog,
7040 "infrun: need to finish step-over of [%s]\n",
7041 target_pid_to_str (ecs->event_thread->ptid));
7042 }
7043 keep_going (ecs);
7044 return 1;
7045 }
2adfaa28 7046
99619bea
PA
7047 /* Check if the current thread is blocked by a single-step
7048 breakpoint of another thread. */
7049 if (ecs->hit_singlestep_breakpoint)
7050 {
7051 if (debug_infrun)
7052 {
7053 fprintf_unfiltered (gdb_stdlog,
7054 "infrun: need to step [%s] over single-step "
7055 "breakpoint\n",
7056 target_pid_to_str (ecs->ptid));
7057 }
7058 keep_going (ecs);
7059 return 1;
7060 }
7061
4d9d9d04
PA
7062 /* If this thread needs yet another step-over (e.g., stepping
7063 through a delay slot), do it first before moving on to
7064 another thread. */
7065 if (thread_still_needs_step_over (ecs->event_thread))
7066 {
7067 if (debug_infrun)
7068 {
7069 fprintf_unfiltered (gdb_stdlog,
7070 "infrun: thread [%s] still needs step-over\n",
7071 target_pid_to_str (ecs->event_thread->ptid));
7072 }
7073 keep_going (ecs);
7074 return 1;
7075 }
70509625 7076
483805cf
PA
7077 /* If scheduler locking applies even if not stepping, there's no
7078 need to walk over threads. Above we've checked whether the
7079 current thread is stepping. If some other thread not the
7080 event thread is stepping, then it must be that scheduler
7081 locking is not in effect. */
856e7dd6 7082 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7083 return 0;
7084
4d9d9d04
PA
7085 /* Otherwise, we no longer expect a trap in the current thread.
7086 Clear the trap_expected flag before switching back -- this is
7087 what keep_going does as well, if we call it. */
7088 ecs->event_thread->control.trap_expected = 0;
7089
7090 /* Likewise, clear the signal if it should not be passed. */
7091 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7092 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7093
7094 /* Do all pending step-overs before actually proceeding with
483805cf 7095 step/next/etc. */
4d9d9d04
PA
7096 if (start_step_over ())
7097 {
7098 prepare_to_wait (ecs);
7099 return 1;
7100 }
7101
7102 /* Look for the stepping/nexting thread. */
483805cf 7103 stepping_thread = NULL;
4d9d9d04 7104
034f788c 7105 ALL_NON_EXITED_THREADS (tp)
483805cf 7106 {
fbea99ea
PA
7107 /* Ignore threads of processes the caller is not
7108 resuming. */
483805cf 7109 if (!sched_multi
1afd5965 7110 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
483805cf
PA
7111 continue;
7112
7113 /* When stepping over a breakpoint, we lock all threads
7114 except the one that needs to move past the breakpoint.
7115 If a non-event thread has this set, the "incomplete
7116 step-over" check above should have caught it earlier. */
372316f1
PA
7117 if (tp->control.trap_expected)
7118 {
7119 internal_error (__FILE__, __LINE__,
7120 "[%s] has inconsistent state: "
7121 "trap_expected=%d\n",
7122 target_pid_to_str (tp->ptid),
7123 tp->control.trap_expected);
7124 }
483805cf
PA
7125
7126 /* Did we find the stepping thread? */
7127 if (tp->control.step_range_end)
7128 {
7129 /* Yep. There should only one though. */
7130 gdb_assert (stepping_thread == NULL);
7131
7132 /* The event thread is handled at the top, before we
7133 enter this loop. */
7134 gdb_assert (tp != ecs->event_thread);
7135
7136 /* If some thread other than the event thread is
7137 stepping, then scheduler locking can't be in effect,
7138 otherwise we wouldn't have resumed the current event
7139 thread in the first place. */
856e7dd6 7140 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7141
7142 stepping_thread = tp;
7143 }
99619bea
PA
7144 }
7145
483805cf 7146 if (stepping_thread != NULL)
99619bea 7147 {
c447ac0b
PA
7148 if (debug_infrun)
7149 fprintf_unfiltered (gdb_stdlog,
7150 "infrun: switching back to stepped thread\n");
7151
2ac7589c
PA
7152 if (keep_going_stepped_thread (stepping_thread))
7153 {
7154 prepare_to_wait (ecs);
7155 return 1;
7156 }
7157 }
7158 }
2adfaa28 7159
2ac7589c
PA
7160 return 0;
7161}
2adfaa28 7162
2ac7589c
PA
7163/* Set a previously stepped thread back to stepping. Returns true on
7164 success, false if the resume is not possible (e.g., the thread
7165 vanished). */
7166
7167static int
7168keep_going_stepped_thread (struct thread_info *tp)
7169{
7170 struct frame_info *frame;
2ac7589c
PA
7171 struct execution_control_state ecss;
7172 struct execution_control_state *ecs = &ecss;
2adfaa28 7173
2ac7589c
PA
7174 /* If the stepping thread exited, then don't try to switch back and
7175 resume it, which could fail in several different ways depending
7176 on the target. Instead, just keep going.
2adfaa28 7177
2ac7589c
PA
7178 We can find a stepping dead thread in the thread list in two
7179 cases:
2adfaa28 7180
2ac7589c
PA
7181 - The target supports thread exit events, and when the target
7182 tries to delete the thread from the thread list, inferior_ptid
7183 pointed at the exiting thread. In such case, calling
7184 delete_thread does not really remove the thread from the list;
7185 instead, the thread is left listed, with 'exited' state.
64ce06e4 7186
2ac7589c
PA
7187 - The target's debug interface does not support thread exit
7188 events, and so we have no idea whatsoever if the previously
7189 stepping thread is still alive. For that reason, we need to
7190 synchronously query the target now. */
2adfaa28 7191
2ac7589c
PA
7192 if (is_exited (tp->ptid)
7193 || !target_thread_alive (tp->ptid))
7194 {
7195 if (debug_infrun)
7196 fprintf_unfiltered (gdb_stdlog,
7197 "infrun: not resuming previously "
7198 "stepped thread, it has vanished\n");
7199
7200 delete_thread (tp->ptid);
7201 return 0;
c447ac0b 7202 }
2ac7589c
PA
7203
7204 if (debug_infrun)
7205 fprintf_unfiltered (gdb_stdlog,
7206 "infrun: resuming previously stepped thread\n");
7207
7208 reset_ecs (ecs, tp);
7209 switch_to_thread (tp->ptid);
7210
7211 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7212 frame = get_current_frame ();
2ac7589c
PA
7213
7214 /* If the PC of the thread we were trying to single-step has
7215 changed, then that thread has trapped or been signaled, but the
7216 event has not been reported to GDB yet. Re-poll the target
7217 looking for this particular thread's event (i.e. temporarily
7218 enable schedlock) by:
7219
7220 - setting a break at the current PC
7221 - resuming that particular thread, only (by setting trap
7222 expected)
7223
7224 This prevents us continuously moving the single-step breakpoint
7225 forward, one instruction at a time, overstepping. */
7226
7227 if (stop_pc != tp->prev_pc)
7228 {
7229 ptid_t resume_ptid;
7230
7231 if (debug_infrun)
7232 fprintf_unfiltered (gdb_stdlog,
7233 "infrun: expected thread advanced also (%s -> %s)\n",
7234 paddress (target_gdbarch (), tp->prev_pc),
7235 paddress (target_gdbarch (), stop_pc));
7236
7237 /* Clear the info of the previous step-over, as it's no longer
7238 valid (if the thread was trying to step over a breakpoint, it
7239 has already succeeded). It's what keep_going would do too,
7240 if we called it. Do this before trying to insert the sss
7241 breakpoint, otherwise if we were previously trying to step
7242 over this exact address in another thread, the breakpoint is
7243 skipped. */
7244 clear_step_over_info ();
7245 tp->control.trap_expected = 0;
7246
7247 insert_single_step_breakpoint (get_frame_arch (frame),
7248 get_frame_address_space (frame),
7249 stop_pc);
7250
372316f1 7251 tp->resumed = 1;
fbea99ea 7252 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7253 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7254 }
7255 else
7256 {
7257 if (debug_infrun)
7258 fprintf_unfiltered (gdb_stdlog,
7259 "infrun: expected thread still hasn't advanced\n");
7260
7261 keep_going_pass_signal (ecs);
7262 }
7263 return 1;
c447ac0b
PA
7264}
7265
8b061563
PA
7266/* Is thread TP in the middle of (software or hardware)
7267 single-stepping? (Note the result of this function must never be
7268 passed directly as target_resume's STEP parameter.) */
104c1213 7269
a289b8f6 7270static int
b3444185 7271currently_stepping (struct thread_info *tp)
a7212384 7272{
8358c15c
JK
7273 return ((tp->control.step_range_end
7274 && tp->control.step_resume_breakpoint == NULL)
7275 || tp->control.trap_expected
af48d08f 7276 || tp->stepped_breakpoint
8358c15c 7277 || bpstat_should_step ());
a7212384
UW
7278}
7279
b2175913
MS
7280/* Inferior has stepped into a subroutine call with source code that
7281 we should not step over. Do step to the first line of code in
7282 it. */
c2c6d25f
JM
7283
7284static void
568d6575
UW
7285handle_step_into_function (struct gdbarch *gdbarch,
7286 struct execution_control_state *ecs)
c2c6d25f 7287{
7e324e48
GB
7288 fill_in_stop_func (gdbarch, ecs);
7289
51abb421 7290 compunit_symtab *cust = find_pc_compunit_symtab (stop_pc);
43f3e411 7291 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7292 ecs->stop_func_start
7293 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7294
51abb421 7295 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7296 /* Use the step_resume_break to step until the end of the prologue,
7297 even if that involves jumps (as it seems to on the vax under
7298 4.2). */
7299 /* If the prologue ends in the middle of a source line, continue to
7300 the end of that source line (if it is still within the function).
7301 Otherwise, just go to end of prologue. */
2afb61aa
PA
7302 if (stop_func_sal.end
7303 && stop_func_sal.pc != ecs->stop_func_start
7304 && stop_func_sal.end < ecs->stop_func_end)
7305 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7306
2dbd5e30
KB
7307 /* Architectures which require breakpoint adjustment might not be able
7308 to place a breakpoint at the computed address. If so, the test
7309 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7310 ecs->stop_func_start to an address at which a breakpoint may be
7311 legitimately placed.
8fb3e588 7312
2dbd5e30
KB
7313 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7314 made, GDB will enter an infinite loop when stepping through
7315 optimized code consisting of VLIW instructions which contain
7316 subinstructions corresponding to different source lines. On
7317 FR-V, it's not permitted to place a breakpoint on any but the
7318 first subinstruction of a VLIW instruction. When a breakpoint is
7319 set, GDB will adjust the breakpoint address to the beginning of
7320 the VLIW instruction. Thus, we need to make the corresponding
7321 adjustment here when computing the stop address. */
8fb3e588 7322
568d6575 7323 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7324 {
7325 ecs->stop_func_start
568d6575 7326 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7327 ecs->stop_func_start);
2dbd5e30
KB
7328 }
7329
c2c6d25f
JM
7330 if (ecs->stop_func_start == stop_pc)
7331 {
7332 /* We are already there: stop now. */
bdc36728 7333 end_stepping_range (ecs);
c2c6d25f
JM
7334 return;
7335 }
7336 else
7337 {
7338 /* Put the step-breakpoint there and go until there. */
51abb421 7339 symtab_and_line sr_sal;
c2c6d25f
JM
7340 sr_sal.pc = ecs->stop_func_start;
7341 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7342 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7343
c2c6d25f 7344 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7345 some machines the prologue is where the new fp value is
7346 established. */
a6d9a66e 7347 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7348
7349 /* And make sure stepping stops right away then. */
16c381f0
JK
7350 ecs->event_thread->control.step_range_end
7351 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7352 }
7353 keep_going (ecs);
7354}
d4f3574e 7355
b2175913
MS
7356/* Inferior has stepped backward into a subroutine call with source
7357 code that we should not step over. Do step to the beginning of the
7358 last line of code in it. */
7359
7360static void
568d6575
UW
7361handle_step_into_function_backward (struct gdbarch *gdbarch,
7362 struct execution_control_state *ecs)
b2175913 7363{
43f3e411 7364 struct compunit_symtab *cust;
167e4384 7365 struct symtab_and_line stop_func_sal;
b2175913 7366
7e324e48
GB
7367 fill_in_stop_func (gdbarch, ecs);
7368
43f3e411
DE
7369 cust = find_pc_compunit_symtab (stop_pc);
7370 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7371 ecs->stop_func_start
7372 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913
MS
7373
7374 stop_func_sal = find_pc_line (stop_pc, 0);
7375
7376 /* OK, we're just going to keep stepping here. */
7377 if (stop_func_sal.pc == stop_pc)
7378 {
7379 /* We're there already. Just stop stepping now. */
bdc36728 7380 end_stepping_range (ecs);
b2175913
MS
7381 }
7382 else
7383 {
7384 /* Else just reset the step range and keep going.
7385 No step-resume breakpoint, they don't work for
7386 epilogues, which can have multiple entry paths. */
16c381f0
JK
7387 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7388 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7389 keep_going (ecs);
7390 }
7391 return;
7392}
7393
d3169d93 7394/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7395 This is used to both functions and to skip over code. */
7396
7397static void
2c03e5be
PA
7398insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7399 struct symtab_and_line sr_sal,
7400 struct frame_id sr_id,
7401 enum bptype sr_type)
44cbf7b5 7402{
611c83ae
PA
7403 /* There should never be more than one step-resume or longjmp-resume
7404 breakpoint per thread, so we should never be setting a new
44cbf7b5 7405 step_resume_breakpoint when one is already active. */
8358c15c 7406 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7407 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7408
7409 if (debug_infrun)
7410 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7411 "infrun: inserting step-resume breakpoint at %s\n",
7412 paddress (gdbarch, sr_sal.pc));
d3169d93 7413
8358c15c 7414 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7415 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7416}
7417
9da8c2a0 7418void
2c03e5be
PA
7419insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7420 struct symtab_and_line sr_sal,
7421 struct frame_id sr_id)
7422{
7423 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7424 sr_sal, sr_id,
7425 bp_step_resume);
44cbf7b5 7426}
7ce450bd 7427
2c03e5be
PA
7428/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7429 This is used to skip a potential signal handler.
7ce450bd 7430
14e60db5
DJ
7431 This is called with the interrupted function's frame. The signal
7432 handler, when it returns, will resume the interrupted function at
7433 RETURN_FRAME.pc. */
d303a6c7
AC
7434
7435static void
2c03e5be 7436insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7437{
f4c1edd8 7438 gdb_assert (return_frame != NULL);
d303a6c7 7439
51abb421
PA
7440 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7441
7442 symtab_and_line sr_sal;
568d6575 7443 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7444 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7445 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7446
2c03e5be
PA
7447 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7448 get_stack_frame_id (return_frame),
7449 bp_hp_step_resume);
d303a6c7
AC
7450}
7451
2c03e5be
PA
7452/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7453 is used to skip a function after stepping into it (for "next" or if
7454 the called function has no debugging information).
14e60db5
DJ
7455
7456 The current function has almost always been reached by single
7457 stepping a call or return instruction. NEXT_FRAME belongs to the
7458 current function, and the breakpoint will be set at the caller's
7459 resume address.
7460
7461 This is a separate function rather than reusing
2c03e5be 7462 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7463 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7464 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7465
7466static void
7467insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7468{
14e60db5
DJ
7469 /* We shouldn't have gotten here if we don't know where the call site
7470 is. */
c7ce8faa 7471 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7472
51abb421 7473 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7474
51abb421 7475 symtab_and_line sr_sal;
c7ce8faa
DJ
7476 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7477 frame_unwind_caller_pc (next_frame));
14e60db5 7478 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7479 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7480
a6d9a66e 7481 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7482 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7483}
7484
611c83ae
PA
7485/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7486 new breakpoint at the target of a jmp_buf. The handling of
7487 longjmp-resume uses the same mechanisms used for handling
7488 "step-resume" breakpoints. */
7489
7490static void
a6d9a66e 7491insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7492{
e81a37f7
TT
7493 /* There should never be more than one longjmp-resume breakpoint per
7494 thread, so we should never be setting a new
611c83ae 7495 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7496 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7497
7498 if (debug_infrun)
7499 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7500 "infrun: inserting longjmp-resume breakpoint at %s\n",
7501 paddress (gdbarch, pc));
611c83ae 7502
e81a37f7 7503 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7504 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7505}
7506
186c406b
TT
7507/* Insert an exception resume breakpoint. TP is the thread throwing
7508 the exception. The block B is the block of the unwinder debug hook
7509 function. FRAME is the frame corresponding to the call to this
7510 function. SYM is the symbol of the function argument holding the
7511 target PC of the exception. */
7512
7513static void
7514insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7515 const struct block *b,
186c406b
TT
7516 struct frame_info *frame,
7517 struct symbol *sym)
7518{
492d29ea 7519 TRY
186c406b 7520 {
63e43d3a 7521 struct block_symbol vsym;
186c406b
TT
7522 struct value *value;
7523 CORE_ADDR handler;
7524 struct breakpoint *bp;
7525
de63c46b
PA
7526 vsym = lookup_symbol_search_name (SYMBOL_SEARCH_NAME (sym),
7527 b, VAR_DOMAIN);
63e43d3a 7528 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7529 /* If the value was optimized out, revert to the old behavior. */
7530 if (! value_optimized_out (value))
7531 {
7532 handler = value_as_address (value);
7533
7534 if (debug_infrun)
7535 fprintf_unfiltered (gdb_stdlog,
7536 "infrun: exception resume at %lx\n",
7537 (unsigned long) handler);
7538
7539 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7540 handler,
7541 bp_exception_resume).release ();
c70a6932
JK
7542
7543 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7544 frame = NULL;
7545
5d5658a1 7546 bp->thread = tp->global_num;
186c406b
TT
7547 inferior_thread ()->control.exception_resume_breakpoint = bp;
7548 }
7549 }
492d29ea
PA
7550 CATCH (e, RETURN_MASK_ERROR)
7551 {
7552 /* We want to ignore errors here. */
7553 }
7554 END_CATCH
186c406b
TT
7555}
7556
28106bc2
SDJ
7557/* A helper for check_exception_resume that sets an
7558 exception-breakpoint based on a SystemTap probe. */
7559
7560static void
7561insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7562 const struct bound_probe *probe,
28106bc2
SDJ
7563 struct frame_info *frame)
7564{
7565 struct value *arg_value;
7566 CORE_ADDR handler;
7567 struct breakpoint *bp;
7568
7569 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7570 if (!arg_value)
7571 return;
7572
7573 handler = value_as_address (arg_value);
7574
7575 if (debug_infrun)
7576 fprintf_unfiltered (gdb_stdlog,
7577 "infrun: exception resume at %s\n",
6bac7473 7578 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7579 handler));
7580
7581 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7582 handler, bp_exception_resume).release ();
5d5658a1 7583 bp->thread = tp->global_num;
28106bc2
SDJ
7584 inferior_thread ()->control.exception_resume_breakpoint = bp;
7585}
7586
186c406b
TT
7587/* This is called when an exception has been intercepted. Check to
7588 see whether the exception's destination is of interest, and if so,
7589 set an exception resume breakpoint there. */
7590
7591static void
7592check_exception_resume (struct execution_control_state *ecs,
28106bc2 7593 struct frame_info *frame)
186c406b 7594{
729662a5 7595 struct bound_probe probe;
28106bc2
SDJ
7596 struct symbol *func;
7597
7598 /* First see if this exception unwinding breakpoint was set via a
7599 SystemTap probe point. If so, the probe has two arguments: the
7600 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7601 set a breakpoint there. */
6bac7473 7602 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7603 if (probe.prob)
28106bc2 7604 {
729662a5 7605 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7606 return;
7607 }
7608
7609 func = get_frame_function (frame);
7610 if (!func)
7611 return;
186c406b 7612
492d29ea 7613 TRY
186c406b 7614 {
3977b71f 7615 const struct block *b;
8157b174 7616 struct block_iterator iter;
186c406b
TT
7617 struct symbol *sym;
7618 int argno = 0;
7619
7620 /* The exception breakpoint is a thread-specific breakpoint on
7621 the unwinder's debug hook, declared as:
7622
7623 void _Unwind_DebugHook (void *cfa, void *handler);
7624
7625 The CFA argument indicates the frame to which control is
7626 about to be transferred. HANDLER is the destination PC.
7627
7628 We ignore the CFA and set a temporary breakpoint at HANDLER.
7629 This is not extremely efficient but it avoids issues in gdb
7630 with computing the DWARF CFA, and it also works even in weird
7631 cases such as throwing an exception from inside a signal
7632 handler. */
7633
7634 b = SYMBOL_BLOCK_VALUE (func);
7635 ALL_BLOCK_SYMBOLS (b, iter, sym)
7636 {
7637 if (!SYMBOL_IS_ARGUMENT (sym))
7638 continue;
7639
7640 if (argno == 0)
7641 ++argno;
7642 else
7643 {
7644 insert_exception_resume_breakpoint (ecs->event_thread,
7645 b, frame, sym);
7646 break;
7647 }
7648 }
7649 }
492d29ea
PA
7650 CATCH (e, RETURN_MASK_ERROR)
7651 {
7652 }
7653 END_CATCH
186c406b
TT
7654}
7655
104c1213 7656static void
22bcd14b 7657stop_waiting (struct execution_control_state *ecs)
104c1213 7658{
527159b7 7659 if (debug_infrun)
22bcd14b 7660 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7661
cd0fc7c3
SS
7662 /* Let callers know we don't want to wait for the inferior anymore. */
7663 ecs->wait_some_more = 0;
fbea99ea
PA
7664
7665 /* If all-stop, but the target is always in non-stop mode, stop all
7666 threads now that we're presenting the stop to the user. */
7667 if (!non_stop && target_is_non_stop_p ())
7668 stop_all_threads ();
cd0fc7c3
SS
7669}
7670
4d9d9d04
PA
7671/* Like keep_going, but passes the signal to the inferior, even if the
7672 signal is set to nopass. */
d4f3574e
SS
7673
7674static void
4d9d9d04 7675keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7676{
4d9d9d04 7677 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
372316f1 7678 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7679
d4f3574e 7680 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
7681 ecs->event_thread->prev_pc
7682 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 7683
4d9d9d04 7684 if (ecs->event_thread->control.trap_expected)
d4f3574e 7685 {
4d9d9d04
PA
7686 struct thread_info *tp = ecs->event_thread;
7687
7688 if (debug_infrun)
7689 fprintf_unfiltered (gdb_stdlog,
7690 "infrun: %s has trap_expected set, "
7691 "resuming to collect trap\n",
7692 target_pid_to_str (tp->ptid));
7693
a9ba6bae
PA
7694 /* We haven't yet gotten our trap, and either: intercepted a
7695 non-signal event (e.g., a fork); or took a signal which we
7696 are supposed to pass through to the inferior. Simply
7697 continue. */
64ce06e4 7698 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7699 }
372316f1
PA
7700 else if (step_over_info_valid_p ())
7701 {
7702 /* Another thread is stepping over a breakpoint in-line. If
7703 this thread needs a step-over too, queue the request. In
7704 either case, this resume must be deferred for later. */
7705 struct thread_info *tp = ecs->event_thread;
7706
7707 if (ecs->hit_singlestep_breakpoint
7708 || thread_still_needs_step_over (tp))
7709 {
7710 if (debug_infrun)
7711 fprintf_unfiltered (gdb_stdlog,
7712 "infrun: step-over already in progress: "
7713 "step-over for %s deferred\n",
7714 target_pid_to_str (tp->ptid));
7715 thread_step_over_chain_enqueue (tp);
7716 }
7717 else
7718 {
7719 if (debug_infrun)
7720 fprintf_unfiltered (gdb_stdlog,
7721 "infrun: step-over in progress: "
7722 "resume of %s deferred\n",
7723 target_pid_to_str (tp->ptid));
7724 }
372316f1 7725 }
d4f3574e
SS
7726 else
7727 {
31e77af2 7728 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7729 int remove_bp;
7730 int remove_wps;
8d297bbf 7731 step_over_what step_what;
31e77af2 7732
d4f3574e 7733 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7734 anyway (if we got a signal, the user asked it be passed to
7735 the child)
7736 -- or --
7737 We got our expected trap, but decided we should resume from
7738 it.
d4f3574e 7739
a9ba6bae 7740 We're going to run this baby now!
d4f3574e 7741
c36b740a
VP
7742 Note that insert_breakpoints won't try to re-insert
7743 already inserted breakpoints. Therefore, we don't
7744 care if breakpoints were already inserted, or not. */
a9ba6bae 7745
31e77af2
PA
7746 /* If we need to step over a breakpoint, and we're not using
7747 displaced stepping to do so, insert all breakpoints
7748 (watchpoints, etc.) but the one we're stepping over, step one
7749 instruction, and then re-insert the breakpoint when that step
7750 is finished. */
963f9c80 7751
6c4cfb24
PA
7752 step_what = thread_still_needs_step_over (ecs->event_thread);
7753
963f9c80 7754 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7755 || (step_what & STEP_OVER_BREAKPOINT));
7756 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7757
cb71640d
PA
7758 /* We can't use displaced stepping if we need to step past a
7759 watchpoint. The instruction copied to the scratch pad would
7760 still trigger the watchpoint. */
7761 if (remove_bp
3fc8eb30 7762 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7763 {
a01bda52 7764 set_step_over_info (regcache->aspace (),
21edc42f
YQ
7765 regcache_read_pc (regcache), remove_wps,
7766 ecs->event_thread->global_num);
45e8c884 7767 }
963f9c80 7768 else if (remove_wps)
21edc42f 7769 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7770
7771 /* If we now need to do an in-line step-over, we need to stop
7772 all other threads. Note this must be done before
7773 insert_breakpoints below, because that removes the breakpoint
7774 we're about to step over, otherwise other threads could miss
7775 it. */
fbea99ea 7776 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7777 stop_all_threads ();
abbb1732 7778
31e77af2 7779 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7780 TRY
31e77af2
PA
7781 {
7782 insert_breakpoints ();
7783 }
492d29ea 7784 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7785 {
7786 exception_print (gdb_stderr, e);
22bcd14b 7787 stop_waiting (ecs);
bdf2a94a 7788 clear_step_over_info ();
31e77af2 7789 return;
d4f3574e 7790 }
492d29ea 7791 END_CATCH
d4f3574e 7792
963f9c80 7793 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7794
64ce06e4 7795 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7796 }
7797
488f131b 7798 prepare_to_wait (ecs);
d4f3574e
SS
7799}
7800
4d9d9d04
PA
7801/* Called when we should continue running the inferior, because the
7802 current event doesn't cause a user visible stop. This does the
7803 resuming part; waiting for the next event is done elsewhere. */
7804
7805static void
7806keep_going (struct execution_control_state *ecs)
7807{
7808 if (ecs->event_thread->control.trap_expected
7809 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7810 ecs->event_thread->control.trap_expected = 0;
7811
7812 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7813 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7814 keep_going_pass_signal (ecs);
7815}
7816
104c1213
JM
7817/* This function normally comes after a resume, before
7818 handle_inferior_event exits. It takes care of any last bits of
7819 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7820
104c1213
JM
7821static void
7822prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7823{
527159b7 7824 if (debug_infrun)
8a9de0e4 7825 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7826
104c1213 7827 ecs->wait_some_more = 1;
0b333c5e
PA
7828
7829 if (!target_is_async_p ())
7830 mark_infrun_async_event_handler ();
c906108c 7831}
11cf8741 7832
fd664c91 7833/* We are done with the step range of a step/next/si/ni command.
b57bacec 7834 Called once for each n of a "step n" operation. */
fd664c91
PA
7835
7836static void
bdc36728 7837end_stepping_range (struct execution_control_state *ecs)
fd664c91 7838{
bdc36728 7839 ecs->event_thread->control.stop_step = 1;
bdc36728 7840 stop_waiting (ecs);
fd664c91
PA
7841}
7842
33d62d64
JK
7843/* Several print_*_reason functions to print why the inferior has stopped.
7844 We always print something when the inferior exits, or receives a signal.
7845 The rest of the cases are dealt with later on in normal_stop and
7846 print_it_typical. Ideally there should be a call to one of these
7847 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7848 stop_waiting is called.
33d62d64 7849
fd664c91
PA
7850 Note that we don't call these directly, instead we delegate that to
7851 the interpreters, through observers. Interpreters then call these
7852 with whatever uiout is right. */
33d62d64 7853
fd664c91
PA
7854void
7855print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7856{
fd664c91 7857 /* For CLI-like interpreters, print nothing. */
33d62d64 7858
112e8700 7859 if (uiout->is_mi_like_p ())
fd664c91 7860 {
112e8700 7861 uiout->field_string ("reason",
fd664c91
PA
7862 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7863 }
7864}
33d62d64 7865
fd664c91
PA
7866void
7867print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7868{
33d62d64 7869 annotate_signalled ();
112e8700
SM
7870 if (uiout->is_mi_like_p ())
7871 uiout->field_string
7872 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7873 uiout->text ("\nProgram terminated with signal ");
33d62d64 7874 annotate_signal_name ();
112e8700 7875 uiout->field_string ("signal-name",
2ea28649 7876 gdb_signal_to_name (siggnal));
33d62d64 7877 annotate_signal_name_end ();
112e8700 7878 uiout->text (", ");
33d62d64 7879 annotate_signal_string ();
112e8700 7880 uiout->field_string ("signal-meaning",
2ea28649 7881 gdb_signal_to_string (siggnal));
33d62d64 7882 annotate_signal_string_end ();
112e8700
SM
7883 uiout->text (".\n");
7884 uiout->text ("The program no longer exists.\n");
33d62d64
JK
7885}
7886
fd664c91
PA
7887void
7888print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7889{
fda326dd
TT
7890 struct inferior *inf = current_inferior ();
7891 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7892
33d62d64
JK
7893 annotate_exited (exitstatus);
7894 if (exitstatus)
7895 {
112e8700
SM
7896 if (uiout->is_mi_like_p ())
7897 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7898 uiout->text ("[Inferior ");
7899 uiout->text (plongest (inf->num));
7900 uiout->text (" (");
7901 uiout->text (pidstr);
7902 uiout->text (") exited with code ");
7903 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7904 uiout->text ("]\n");
33d62d64
JK
7905 }
7906 else
11cf8741 7907 {
112e8700
SM
7908 if (uiout->is_mi_like_p ())
7909 uiout->field_string
7910 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7911 uiout->text ("[Inferior ");
7912 uiout->text (plongest (inf->num));
7913 uiout->text (" (");
7914 uiout->text (pidstr);
7915 uiout->text (") exited normally]\n");
33d62d64 7916 }
33d62d64
JK
7917}
7918
012b3a21
WT
7919/* Some targets/architectures can do extra processing/display of
7920 segmentation faults. E.g., Intel MPX boundary faults.
7921 Call the architecture dependent function to handle the fault. */
7922
7923static void
7924handle_segmentation_fault (struct ui_out *uiout)
7925{
7926 struct regcache *regcache = get_current_regcache ();
ac7936df 7927 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
7928
7929 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7930 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7931}
7932
fd664c91
PA
7933void
7934print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7935{
f303dbd6
PA
7936 struct thread_info *thr = inferior_thread ();
7937
33d62d64
JK
7938 annotate_signal ();
7939
112e8700 7940 if (uiout->is_mi_like_p ())
f303dbd6
PA
7941 ;
7942 else if (show_thread_that_caused_stop ())
33d62d64 7943 {
f303dbd6 7944 const char *name;
33d62d64 7945
112e8700
SM
7946 uiout->text ("\nThread ");
7947 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
f303dbd6
PA
7948
7949 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7950 if (name != NULL)
7951 {
112e8700
SM
7952 uiout->text (" \"");
7953 uiout->field_fmt ("name", "%s", name);
7954 uiout->text ("\"");
f303dbd6 7955 }
33d62d64 7956 }
f303dbd6 7957 else
112e8700 7958 uiout->text ("\nProgram");
f303dbd6 7959
112e8700
SM
7960 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7961 uiout->text (" stopped");
33d62d64
JK
7962 else
7963 {
112e8700 7964 uiout->text (" received signal ");
8b93c638 7965 annotate_signal_name ();
112e8700
SM
7966 if (uiout->is_mi_like_p ())
7967 uiout->field_string
7968 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7969 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 7970 annotate_signal_name_end ();
112e8700 7971 uiout->text (", ");
8b93c638 7972 annotate_signal_string ();
112e8700 7973 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
7974
7975 if (siggnal == GDB_SIGNAL_SEGV)
7976 handle_segmentation_fault (uiout);
7977
8b93c638 7978 annotate_signal_string_end ();
33d62d64 7979 }
112e8700 7980 uiout->text (".\n");
33d62d64 7981}
252fbfc8 7982
fd664c91
PA
7983void
7984print_no_history_reason (struct ui_out *uiout)
33d62d64 7985{
112e8700 7986 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 7987}
43ff13b4 7988
0c7e1a46
PA
7989/* Print current location without a level number, if we have changed
7990 functions or hit a breakpoint. Print source line if we have one.
7991 bpstat_print contains the logic deciding in detail what to print,
7992 based on the event(s) that just occurred. */
7993
243a9253
PA
7994static void
7995print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7996{
7997 int bpstat_ret;
f486487f 7998 enum print_what source_flag;
0c7e1a46
PA
7999 int do_frame_printing = 1;
8000 struct thread_info *tp = inferior_thread ();
8001
8002 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8003 switch (bpstat_ret)
8004 {
8005 case PRINT_UNKNOWN:
8006 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8007 should) carry around the function and does (or should) use
8008 that when doing a frame comparison. */
8009 if (tp->control.stop_step
8010 && frame_id_eq (tp->control.step_frame_id,
8011 get_frame_id (get_current_frame ()))
885eeb5b 8012 && tp->control.step_start_function == find_pc_function (stop_pc))
0c7e1a46
PA
8013 {
8014 /* Finished step, just print source line. */
8015 source_flag = SRC_LINE;
8016 }
8017 else
8018 {
8019 /* Print location and source line. */
8020 source_flag = SRC_AND_LOC;
8021 }
8022 break;
8023 case PRINT_SRC_AND_LOC:
8024 /* Print location and source line. */
8025 source_flag = SRC_AND_LOC;
8026 break;
8027 case PRINT_SRC_ONLY:
8028 source_flag = SRC_LINE;
8029 break;
8030 case PRINT_NOTHING:
8031 /* Something bogus. */
8032 source_flag = SRC_LINE;
8033 do_frame_printing = 0;
8034 break;
8035 default:
8036 internal_error (__FILE__, __LINE__, _("Unknown value."));
8037 }
8038
8039 /* The behavior of this routine with respect to the source
8040 flag is:
8041 SRC_LINE: Print only source line
8042 LOCATION: Print only location
8043 SRC_AND_LOC: Print location and source line. */
8044 if (do_frame_printing)
8045 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8046}
8047
243a9253
PA
8048/* See infrun.h. */
8049
8050void
8051print_stop_event (struct ui_out *uiout)
8052{
243a9253
PA
8053 struct target_waitstatus last;
8054 ptid_t last_ptid;
8055 struct thread_info *tp;
8056
8057 get_last_target_status (&last_ptid, &last);
8058
67ad9399
TT
8059 {
8060 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8061
67ad9399 8062 print_stop_location (&last);
243a9253 8063
67ad9399
TT
8064 /* Display the auto-display expressions. */
8065 do_displays ();
8066 }
243a9253
PA
8067
8068 tp = inferior_thread ();
8069 if (tp->thread_fsm != NULL
8070 && thread_fsm_finished_p (tp->thread_fsm))
8071 {
8072 struct return_value_info *rv;
8073
8074 rv = thread_fsm_return_value (tp->thread_fsm);
8075 if (rv != NULL)
8076 print_return_value (uiout, rv);
8077 }
0c7e1a46
PA
8078}
8079
388a7084
PA
8080/* See infrun.h. */
8081
8082void
8083maybe_remove_breakpoints (void)
8084{
8085 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8086 {
8087 if (remove_breakpoints ())
8088 {
223ffa71 8089 target_terminal::ours_for_output ();
388a7084
PA
8090 printf_filtered (_("Cannot remove breakpoints because "
8091 "program is no longer writable.\nFurther "
8092 "execution is probably impossible.\n"));
8093 }
8094 }
8095}
8096
4c2f2a79
PA
8097/* The execution context that just caused a normal stop. */
8098
8099struct stop_context
8100{
8101 /* The stop ID. */
8102 ULONGEST stop_id;
c906108c 8103
4c2f2a79 8104 /* The event PTID. */
c906108c 8105
4c2f2a79
PA
8106 ptid_t ptid;
8107
8108 /* If stopp for a thread event, this is the thread that caused the
8109 stop. */
8110 struct thread_info *thread;
8111
8112 /* The inferior that caused the stop. */
8113 int inf_num;
8114};
8115
8116/* Returns a new stop context. If stopped for a thread event, this
8117 takes a strong reference to the thread. */
8118
8119static struct stop_context *
8120save_stop_context (void)
8121{
224c3ddb 8122 struct stop_context *sc = XNEW (struct stop_context);
4c2f2a79
PA
8123
8124 sc->stop_id = get_stop_id ();
8125 sc->ptid = inferior_ptid;
8126 sc->inf_num = current_inferior ()->num;
8127
8128 if (!ptid_equal (inferior_ptid, null_ptid))
8129 {
8130 /* Take a strong reference so that the thread can't be deleted
8131 yet. */
8132 sc->thread = inferior_thread ();
803bdfe4 8133 sc->thread->incref ();
4c2f2a79
PA
8134 }
8135 else
8136 sc->thread = NULL;
8137
8138 return sc;
8139}
8140
8141/* Release a stop context previously created with save_stop_context.
8142 Releases the strong reference to the thread as well. */
8143
8144static void
8145release_stop_context_cleanup (void *arg)
8146{
9a3c8263 8147 struct stop_context *sc = (struct stop_context *) arg;
4c2f2a79
PA
8148
8149 if (sc->thread != NULL)
803bdfe4 8150 sc->thread->decref ();
4c2f2a79
PA
8151 xfree (sc);
8152}
8153
8154/* Return true if the current context no longer matches the saved stop
8155 context. */
8156
8157static int
8158stop_context_changed (struct stop_context *prev)
8159{
8160 if (!ptid_equal (prev->ptid, inferior_ptid))
8161 return 1;
8162 if (prev->inf_num != current_inferior ()->num)
8163 return 1;
8164 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8165 return 1;
8166 if (get_stop_id () != prev->stop_id)
8167 return 1;
8168 return 0;
8169}
8170
8171/* See infrun.h. */
8172
8173int
96baa820 8174normal_stop (void)
c906108c 8175{
73b65bb0
DJ
8176 struct target_waitstatus last;
8177 ptid_t last_ptid;
8178
8179 get_last_target_status (&last_ptid, &last);
8180
4c2f2a79
PA
8181 new_stop_id ();
8182
29f49a6a
PA
8183 /* If an exception is thrown from this point on, make sure to
8184 propagate GDB's knowledge of the executing state to the
8185 frontend/user running state. A QUIT is an easy exception to see
8186 here, so do this before any filtered output. */
731f534f
PA
8187
8188 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8189
c35b1492 8190 if (!non_stop)
731f534f 8191 maybe_finish_thread_state.emplace (minus_one_ptid);
e1316e60
PA
8192 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8193 || last.kind == TARGET_WAITKIND_EXITED)
8194 {
8195 /* On some targets, we may still have live threads in the
8196 inferior when we get a process exit event. E.g., for
8197 "checkpoint", when the current checkpoint/fork exits,
8198 linux-fork.c automatically switches to another fork from
8199 within target_mourn_inferior. */
731f534f
PA
8200 if (inferior_ptid != null_ptid)
8201 maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ()));
e1316e60
PA
8202 }
8203 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
731f534f 8204 maybe_finish_thread_state.emplace (inferior_ptid);
29f49a6a 8205
b57bacec
PA
8206 /* As we're presenting a stop, and potentially removing breakpoints,
8207 update the thread list so we can tell whether there are threads
8208 running on the target. With target remote, for example, we can
8209 only learn about new threads when we explicitly update the thread
8210 list. Do this before notifying the interpreters about signal
8211 stops, end of stepping ranges, etc., so that the "new thread"
8212 output is emitted before e.g., "Program received signal FOO",
8213 instead of after. */
8214 update_thread_list ();
8215
8216 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8217 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8218
c906108c
SS
8219 /* As with the notification of thread events, we want to delay
8220 notifying the user that we've switched thread context until
8221 the inferior actually stops.
8222
73b65bb0
DJ
8223 There's no point in saying anything if the inferior has exited.
8224 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8225 "received a signal".
8226
8227 Also skip saying anything in non-stop mode. In that mode, as we
8228 don't want GDB to switch threads behind the user's back, to avoid
8229 races where the user is typing a command to apply to thread x,
8230 but GDB switches to thread y before the user finishes entering
8231 the command, fetch_inferior_event installs a cleanup to restore
8232 the current thread back to the thread the user had selected right
8233 after this event is handled, so we're not really switching, only
8234 informing of a stop. */
4f8d22e3 8235 if (!non_stop
731f534f 8236 && previous_inferior_ptid != inferior_ptid
73b65bb0
DJ
8237 && target_has_execution
8238 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8239 && last.kind != TARGET_WAITKIND_EXITED
8240 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8241 {
0e454242 8242 SWITCH_THRU_ALL_UIS ()
3b12939d 8243 {
223ffa71 8244 target_terminal::ours_for_output ();
3b12939d
PA
8245 printf_filtered (_("[Switching to %s]\n"),
8246 target_pid_to_str (inferior_ptid));
8247 annotate_thread_changed ();
8248 }
39f77062 8249 previous_inferior_ptid = inferior_ptid;
c906108c 8250 }
c906108c 8251
0e5bf2a8
PA
8252 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8253 {
0e454242 8254 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8255 if (current_ui->prompt_state == PROMPT_BLOCKED)
8256 {
223ffa71 8257 target_terminal::ours_for_output ();
3b12939d
PA
8258 printf_filtered (_("No unwaited-for children left.\n"));
8259 }
0e5bf2a8
PA
8260 }
8261
b57bacec 8262 /* Note: this depends on the update_thread_list call above. */
388a7084 8263 maybe_remove_breakpoints ();
c906108c 8264
c906108c
SS
8265 /* If an auto-display called a function and that got a signal,
8266 delete that auto-display to avoid an infinite recursion. */
8267
8268 if (stopped_by_random_signal)
8269 disable_current_display ();
8270
0e454242 8271 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8272 {
8273 async_enable_stdin ();
8274 }
c906108c 8275
388a7084 8276 /* Let the user/frontend see the threads as stopped. */
731f534f 8277 maybe_finish_thread_state.reset ();
388a7084
PA
8278
8279 /* Select innermost stack frame - i.e., current frame is frame 0,
8280 and current location is based on that. Handle the case where the
8281 dummy call is returning after being stopped. E.g. the dummy call
8282 previously hit a breakpoint. (If the dummy call returns
8283 normally, we won't reach here.) Do this before the stop hook is
8284 run, so that it doesn't get to see the temporary dummy frame,
8285 which is not where we'll present the stop. */
8286 if (has_stack_frames ())
8287 {
8288 if (stop_stack_dummy == STOP_STACK_DUMMY)
8289 {
8290 /* Pop the empty frame that contains the stack dummy. This
8291 also restores inferior state prior to the call (struct
8292 infcall_suspend_state). */
8293 struct frame_info *frame = get_current_frame ();
8294
8295 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8296 frame_pop (frame);
8297 /* frame_pop calls reinit_frame_cache as the last thing it
8298 does which means there's now no selected frame. */
8299 }
8300
8301 select_frame (get_current_frame ());
8302
8303 /* Set the current source location. */
8304 set_current_sal_from_frame (get_current_frame ());
8305 }
dd7e2d2b
PA
8306
8307 /* Look up the hook_stop and run it (CLI internally handles problem
8308 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8309 if (stop_command != NULL)
8310 {
8311 struct stop_context *saved_context = save_stop_context ();
8312 struct cleanup *old_chain
8313 = make_cleanup (release_stop_context_cleanup, saved_context);
8314
bf469271
PA
8315 TRY
8316 {
8317 execute_cmd_pre_hook (stop_command);
8318 }
8319 CATCH (ex, RETURN_MASK_ALL)
8320 {
8321 exception_fprintf (gdb_stderr, ex,
8322 "Error while running hook_stop:\n");
8323 }
8324 END_CATCH
4c2f2a79
PA
8325
8326 /* If the stop hook resumes the target, then there's no point in
8327 trying to notify about the previous stop; its context is
8328 gone. Likewise if the command switches thread or inferior --
8329 the observers would print a stop for the wrong
8330 thread/inferior. */
8331 if (stop_context_changed (saved_context))
8332 {
8333 do_cleanups (old_chain);
8334 return 1;
8335 }
8336 do_cleanups (old_chain);
8337 }
dd7e2d2b 8338
388a7084
PA
8339 /* Notify observers about the stop. This is where the interpreters
8340 print the stop event. */
8341 if (!ptid_equal (inferior_ptid, null_ptid))
76727919 8342 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8343 stop_print_frame);
8344 else
76727919 8345 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8346
243a9253
PA
8347 annotate_stopped ();
8348
48844aa6
PA
8349 if (target_has_execution)
8350 {
8351 if (last.kind != TARGET_WAITKIND_SIGNALLED
8352 && last.kind != TARGET_WAITKIND_EXITED)
8353 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8354 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8355 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8356 }
6c95b8df
PA
8357
8358 /* Try to get rid of automatically added inferiors that are no
8359 longer needed. Keeping those around slows down things linearly.
8360 Note that this never removes the current inferior. */
8361 prune_inferiors ();
4c2f2a79
PA
8362
8363 return 0;
c906108c 8364}
c906108c 8365\f
c5aa993b 8366int
96baa820 8367signal_stop_state (int signo)
c906108c 8368{
d6b48e9c 8369 return signal_stop[signo];
c906108c
SS
8370}
8371
c5aa993b 8372int
96baa820 8373signal_print_state (int signo)
c906108c
SS
8374{
8375 return signal_print[signo];
8376}
8377
c5aa993b 8378int
96baa820 8379signal_pass_state (int signo)
c906108c
SS
8380{
8381 return signal_program[signo];
8382}
8383
2455069d
UW
8384static void
8385signal_cache_update (int signo)
8386{
8387 if (signo == -1)
8388 {
a493e3e2 8389 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8390 signal_cache_update (signo);
8391
8392 return;
8393 }
8394
8395 signal_pass[signo] = (signal_stop[signo] == 0
8396 && signal_print[signo] == 0
ab04a2af
TT
8397 && signal_program[signo] == 1
8398 && signal_catch[signo] == 0);
2455069d
UW
8399}
8400
488f131b 8401int
7bda5e4a 8402signal_stop_update (int signo, int state)
d4f3574e
SS
8403{
8404 int ret = signal_stop[signo];
abbb1732 8405
d4f3574e 8406 signal_stop[signo] = state;
2455069d 8407 signal_cache_update (signo);
d4f3574e
SS
8408 return ret;
8409}
8410
488f131b 8411int
7bda5e4a 8412signal_print_update (int signo, int state)
d4f3574e
SS
8413{
8414 int ret = signal_print[signo];
abbb1732 8415
d4f3574e 8416 signal_print[signo] = state;
2455069d 8417 signal_cache_update (signo);
d4f3574e
SS
8418 return ret;
8419}
8420
488f131b 8421int
7bda5e4a 8422signal_pass_update (int signo, int state)
d4f3574e
SS
8423{
8424 int ret = signal_program[signo];
abbb1732 8425
d4f3574e 8426 signal_program[signo] = state;
2455069d 8427 signal_cache_update (signo);
d4f3574e
SS
8428 return ret;
8429}
8430
ab04a2af
TT
8431/* Update the global 'signal_catch' from INFO and notify the
8432 target. */
8433
8434void
8435signal_catch_update (const unsigned int *info)
8436{
8437 int i;
8438
8439 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8440 signal_catch[i] = info[i] > 0;
8441 signal_cache_update (-1);
8442 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8443}
8444
c906108c 8445static void
96baa820 8446sig_print_header (void)
c906108c 8447{
3e43a32a
MS
8448 printf_filtered (_("Signal Stop\tPrint\tPass "
8449 "to program\tDescription\n"));
c906108c
SS
8450}
8451
8452static void
2ea28649 8453sig_print_info (enum gdb_signal oursig)
c906108c 8454{
2ea28649 8455 const char *name = gdb_signal_to_name (oursig);
c906108c 8456 int name_padding = 13 - strlen (name);
96baa820 8457
c906108c
SS
8458 if (name_padding <= 0)
8459 name_padding = 0;
8460
8461 printf_filtered ("%s", name);
488f131b 8462 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8463 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8464 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8465 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8466 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8467}
8468
8469/* Specify how various signals in the inferior should be handled. */
8470
8471static void
0b39b52e 8472handle_command (const char *args, int from_tty)
c906108c 8473{
c906108c
SS
8474 int digits, wordlen;
8475 int sigfirst, signum, siglast;
2ea28649 8476 enum gdb_signal oursig;
c906108c
SS
8477 int allsigs;
8478 int nsigs;
8479 unsigned char *sigs;
c906108c
SS
8480
8481 if (args == NULL)
8482 {
e2e0b3e5 8483 error_no_arg (_("signal to handle"));
c906108c
SS
8484 }
8485
1777feb0 8486 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8487
a493e3e2 8488 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
8489 sigs = (unsigned char *) alloca (nsigs);
8490 memset (sigs, 0, nsigs);
8491
1777feb0 8492 /* Break the command line up into args. */
c906108c 8493
773a1edc 8494 gdb_argv built_argv (args);
c906108c
SS
8495
8496 /* Walk through the args, looking for signal oursigs, signal names, and
8497 actions. Signal numbers and signal names may be interspersed with
8498 actions, with the actions being performed for all signals cumulatively
1777feb0 8499 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8500
773a1edc 8501 for (char *arg : built_argv)
c906108c 8502 {
773a1edc
TT
8503 wordlen = strlen (arg);
8504 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8505 {;
8506 }
8507 allsigs = 0;
8508 sigfirst = siglast = -1;
8509
773a1edc 8510 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8511 {
8512 /* Apply action to all signals except those used by the
1777feb0 8513 debugger. Silently skip those. */
c906108c
SS
8514 allsigs = 1;
8515 sigfirst = 0;
8516 siglast = nsigs - 1;
8517 }
773a1edc 8518 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8519 {
8520 SET_SIGS (nsigs, sigs, signal_stop);
8521 SET_SIGS (nsigs, sigs, signal_print);
8522 }
773a1edc 8523 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8524 {
8525 UNSET_SIGS (nsigs, sigs, signal_program);
8526 }
773a1edc 8527 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8528 {
8529 SET_SIGS (nsigs, sigs, signal_print);
8530 }
773a1edc 8531 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8532 {
8533 SET_SIGS (nsigs, sigs, signal_program);
8534 }
773a1edc 8535 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8536 {
8537 UNSET_SIGS (nsigs, sigs, signal_stop);
8538 }
773a1edc 8539 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8540 {
8541 SET_SIGS (nsigs, sigs, signal_program);
8542 }
773a1edc 8543 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8544 {
8545 UNSET_SIGS (nsigs, sigs, signal_print);
8546 UNSET_SIGS (nsigs, sigs, signal_stop);
8547 }
773a1edc 8548 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8549 {
8550 UNSET_SIGS (nsigs, sigs, signal_program);
8551 }
8552 else if (digits > 0)
8553 {
8554 /* It is numeric. The numeric signal refers to our own
8555 internal signal numbering from target.h, not to host/target
8556 signal number. This is a feature; users really should be
8557 using symbolic names anyway, and the common ones like
8558 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8559
8560 sigfirst = siglast = (int)
773a1edc
TT
8561 gdb_signal_from_command (atoi (arg));
8562 if (arg[digits] == '-')
c906108c
SS
8563 {
8564 siglast = (int)
773a1edc 8565 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8566 }
8567 if (sigfirst > siglast)
8568 {
1777feb0 8569 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
8570 signum = sigfirst;
8571 sigfirst = siglast;
8572 siglast = signum;
8573 }
8574 }
8575 else
8576 {
773a1edc 8577 oursig = gdb_signal_from_name (arg);
a493e3e2 8578 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8579 {
8580 sigfirst = siglast = (int) oursig;
8581 }
8582 else
8583 {
8584 /* Not a number and not a recognized flag word => complain. */
773a1edc 8585 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8586 }
8587 }
8588
8589 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8590 which signals to apply actions to. */
c906108c
SS
8591
8592 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8593 {
2ea28649 8594 switch ((enum gdb_signal) signum)
c906108c 8595 {
a493e3e2
PA
8596 case GDB_SIGNAL_TRAP:
8597 case GDB_SIGNAL_INT:
c906108c
SS
8598 if (!allsigs && !sigs[signum])
8599 {
9e2f0ad4 8600 if (query (_("%s is used by the debugger.\n\
3e43a32a 8601Are you sure you want to change it? "),
2ea28649 8602 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8603 {
8604 sigs[signum] = 1;
8605 }
8606 else
8607 {
a3f17187 8608 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8609 gdb_flush (gdb_stdout);
8610 }
8611 }
8612 break;
a493e3e2
PA
8613 case GDB_SIGNAL_0:
8614 case GDB_SIGNAL_DEFAULT:
8615 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8616 /* Make sure that "all" doesn't print these. */
8617 break;
8618 default:
8619 sigs[signum] = 1;
8620 break;
8621 }
8622 }
c906108c
SS
8623 }
8624
3a031f65
PA
8625 for (signum = 0; signum < nsigs; signum++)
8626 if (sigs[signum])
8627 {
2455069d 8628 signal_cache_update (-1);
a493e3e2
PA
8629 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8630 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 8631
3a031f65
PA
8632 if (from_tty)
8633 {
8634 /* Show the results. */
8635 sig_print_header ();
8636 for (; signum < nsigs; signum++)
8637 if (sigs[signum])
aead7601 8638 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8639 }
8640
8641 break;
8642 }
c906108c
SS
8643}
8644
de0bea00
MF
8645/* Complete the "handle" command. */
8646
eb3ff9a5 8647static void
de0bea00 8648handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8649 completion_tracker &tracker,
6f937416 8650 const char *text, const char *word)
de0bea00 8651{
de0bea00
MF
8652 static const char * const keywords[] =
8653 {
8654 "all",
8655 "stop",
8656 "ignore",
8657 "print",
8658 "pass",
8659 "nostop",
8660 "noignore",
8661 "noprint",
8662 "nopass",
8663 NULL,
8664 };
8665
eb3ff9a5
PA
8666 signal_completer (ignore, tracker, text, word);
8667 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8668}
8669
2ea28649
PA
8670enum gdb_signal
8671gdb_signal_from_command (int num)
ed01b82c
PA
8672{
8673 if (num >= 1 && num <= 15)
2ea28649 8674 return (enum gdb_signal) num;
ed01b82c
PA
8675 error (_("Only signals 1-15 are valid as numeric signals.\n\
8676Use \"info signals\" for a list of symbolic signals."));
8677}
8678
c906108c
SS
8679/* Print current contents of the tables set by the handle command.
8680 It is possible we should just be printing signals actually used
8681 by the current target (but for things to work right when switching
8682 targets, all signals should be in the signal tables). */
8683
8684static void
1d12d88f 8685info_signals_command (const char *signum_exp, int from_tty)
c906108c 8686{
2ea28649 8687 enum gdb_signal oursig;
abbb1732 8688
c906108c
SS
8689 sig_print_header ();
8690
8691 if (signum_exp)
8692 {
8693 /* First see if this is a symbol name. */
2ea28649 8694 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8695 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8696 {
8697 /* No, try numeric. */
8698 oursig =
2ea28649 8699 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8700 }
8701 sig_print_info (oursig);
8702 return;
8703 }
8704
8705 printf_filtered ("\n");
8706 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8707 for (oursig = GDB_SIGNAL_FIRST;
8708 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8709 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8710 {
8711 QUIT;
8712
a493e3e2
PA
8713 if (oursig != GDB_SIGNAL_UNKNOWN
8714 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8715 sig_print_info (oursig);
8716 }
8717
3e43a32a
MS
8718 printf_filtered (_("\nUse the \"handle\" command "
8719 "to change these tables.\n"));
c906108c 8720}
4aa995e1
PA
8721
8722/* The $_siginfo convenience variable is a bit special. We don't know
8723 for sure the type of the value until we actually have a chance to
7a9dd1b2 8724 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8725 also dependent on which thread you have selected.
8726
8727 1. making $_siginfo be an internalvar that creates a new value on
8728 access.
8729
8730 2. making the value of $_siginfo be an lval_computed value. */
8731
8732/* This function implements the lval_computed support for reading a
8733 $_siginfo value. */
8734
8735static void
8736siginfo_value_read (struct value *v)
8737{
8738 LONGEST transferred;
8739
a911d87a
PA
8740 /* If we can access registers, so can we access $_siginfo. Likewise
8741 vice versa. */
8742 validate_registers_access ();
c709acd1 8743
4aa995e1 8744 transferred =
f6ac5f3d 8745 target_read (target_stack, TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
8746 NULL,
8747 value_contents_all_raw (v),
8748 value_offset (v),
8749 TYPE_LENGTH (value_type (v)));
8750
8751 if (transferred != TYPE_LENGTH (value_type (v)))
8752 error (_("Unable to read siginfo"));
8753}
8754
8755/* This function implements the lval_computed support for writing a
8756 $_siginfo value. */
8757
8758static void
8759siginfo_value_write (struct value *v, struct value *fromval)
8760{
8761 LONGEST transferred;
8762
a911d87a
PA
8763 /* If we can access registers, so can we access $_siginfo. Likewise
8764 vice versa. */
8765 validate_registers_access ();
c709acd1 8766
f6ac5f3d 8767 transferred = target_write (target_stack,
4aa995e1
PA
8768 TARGET_OBJECT_SIGNAL_INFO,
8769 NULL,
8770 value_contents_all_raw (fromval),
8771 value_offset (v),
8772 TYPE_LENGTH (value_type (fromval)));
8773
8774 if (transferred != TYPE_LENGTH (value_type (fromval)))
8775 error (_("Unable to write siginfo"));
8776}
8777
c8f2448a 8778static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8779 {
8780 siginfo_value_read,
8781 siginfo_value_write
8782 };
8783
8784/* Return a new value with the correct type for the siginfo object of
78267919
UW
8785 the current thread using architecture GDBARCH. Return a void value
8786 if there's no object available. */
4aa995e1 8787
2c0b251b 8788static struct value *
22d2b532
SDJ
8789siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8790 void *ignore)
4aa995e1 8791{
4aa995e1 8792 if (target_has_stack
78267919
UW
8793 && !ptid_equal (inferior_ptid, null_ptid)
8794 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8795 {
78267919 8796 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8797
78267919 8798 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8799 }
8800
78267919 8801 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8802}
8803
c906108c 8804\f
16c381f0
JK
8805/* infcall_suspend_state contains state about the program itself like its
8806 registers and any signal it received when it last stopped.
8807 This state must be restored regardless of how the inferior function call
8808 ends (either successfully, or after it hits a breakpoint or signal)
8809 if the program is to properly continue where it left off. */
8810
8811struct infcall_suspend_state
7a292a7a 8812{
16c381f0 8813 struct thread_suspend_state thread_suspend;
16c381f0
JK
8814
8815 /* Other fields: */
7a292a7a 8816 CORE_ADDR stop_pc;
daf6667d 8817 readonly_detached_regcache *registers;
1736ad11 8818
35515841 8819 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
8820 struct gdbarch *siginfo_gdbarch;
8821
8822 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8823 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8824 content would be invalid. */
8825 gdb_byte *siginfo_data;
b89667eb
DE
8826};
8827
16c381f0
JK
8828struct infcall_suspend_state *
8829save_infcall_suspend_state (void)
b89667eb 8830{
16c381f0 8831 struct infcall_suspend_state *inf_state;
b89667eb 8832 struct thread_info *tp = inferior_thread ();
1736ad11 8833 struct regcache *regcache = get_current_regcache ();
ac7936df 8834 struct gdbarch *gdbarch = regcache->arch ();
1736ad11
JK
8835 gdb_byte *siginfo_data = NULL;
8836
8837 if (gdbarch_get_siginfo_type_p (gdbarch))
8838 {
8839 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8840 size_t len = TYPE_LENGTH (type);
8841 struct cleanup *back_to;
8842
224c3ddb 8843 siginfo_data = (gdb_byte *) xmalloc (len);
1736ad11
JK
8844 back_to = make_cleanup (xfree, siginfo_data);
8845
f6ac5f3d 8846 if (target_read (target_stack, TARGET_OBJECT_SIGNAL_INFO, NULL,
1736ad11
JK
8847 siginfo_data, 0, len) == len)
8848 discard_cleanups (back_to);
8849 else
8850 {
8851 /* Errors ignored. */
8852 do_cleanups (back_to);
8853 siginfo_data = NULL;
8854 }
8855 }
8856
41bf6aca 8857 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
8858
8859 if (siginfo_data)
8860 {
8861 inf_state->siginfo_gdbarch = gdbarch;
8862 inf_state->siginfo_data = siginfo_data;
8863 }
b89667eb 8864
16c381f0 8865 inf_state->thread_suspend = tp->suspend;
16c381f0 8866
35515841 8867 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
8868 GDB_SIGNAL_0 anyway. */
8869 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8870
b89667eb
DE
8871 inf_state->stop_pc = stop_pc;
8872
daf6667d 8873 inf_state->registers = new readonly_detached_regcache (*regcache);
b89667eb
DE
8874
8875 return inf_state;
8876}
8877
8878/* Restore inferior session state to INF_STATE. */
8879
8880void
16c381f0 8881restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8882{
8883 struct thread_info *tp = inferior_thread ();
1736ad11 8884 struct regcache *regcache = get_current_regcache ();
ac7936df 8885 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 8886
16c381f0 8887 tp->suspend = inf_state->thread_suspend;
16c381f0 8888
b89667eb
DE
8889 stop_pc = inf_state->stop_pc;
8890
1736ad11
JK
8891 if (inf_state->siginfo_gdbarch == gdbarch)
8892 {
8893 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
8894
8895 /* Errors ignored. */
f6ac5f3d 8896 target_write (target_stack, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 8897 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
8898 }
8899
b89667eb
DE
8900 /* The inferior can be gone if the user types "print exit(0)"
8901 (and perhaps other times). */
8902 if (target_has_execution)
8903 /* NB: The register write goes through to the target. */
fc5b8736 8904 regcache->restore (inf_state->registers);
803b5f95 8905
16c381f0 8906 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8907}
8908
8909static void
16c381f0 8910do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 8911{
9a3c8263 8912 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
b89667eb
DE
8913}
8914
8915struct cleanup *
16c381f0
JK
8916make_cleanup_restore_infcall_suspend_state
8917 (struct infcall_suspend_state *inf_state)
b89667eb 8918{
16c381f0 8919 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
8920}
8921
8922void
16c381f0 8923discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 8924{
c0e383c6 8925 delete inf_state->registers;
803b5f95 8926 xfree (inf_state->siginfo_data);
b89667eb
DE
8927 xfree (inf_state);
8928}
8929
daf6667d 8930readonly_detached_regcache *
16c381f0 8931get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
8932{
8933 return inf_state->registers;
8934}
8935
16c381f0
JK
8936/* infcall_control_state contains state regarding gdb's control of the
8937 inferior itself like stepping control. It also contains session state like
8938 the user's currently selected frame. */
b89667eb 8939
16c381f0 8940struct infcall_control_state
b89667eb 8941{
16c381f0
JK
8942 struct thread_control_state thread_control;
8943 struct inferior_control_state inferior_control;
d82142e2
JK
8944
8945 /* Other fields: */
8946 enum stop_stack_kind stop_stack_dummy;
8947 int stopped_by_random_signal;
7a292a7a 8948
b89667eb 8949 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 8950 struct frame_id selected_frame_id;
7a292a7a
SS
8951};
8952
c906108c 8953/* Save all of the information associated with the inferior<==>gdb
b89667eb 8954 connection. */
c906108c 8955
16c381f0
JK
8956struct infcall_control_state *
8957save_infcall_control_state (void)
c906108c 8958{
8d749320
SM
8959 struct infcall_control_state *inf_status =
8960 XNEW (struct infcall_control_state);
4e1c45ea 8961 struct thread_info *tp = inferior_thread ();
d6b48e9c 8962 struct inferior *inf = current_inferior ();
7a292a7a 8963
16c381f0
JK
8964 inf_status->thread_control = tp->control;
8965 inf_status->inferior_control = inf->control;
d82142e2 8966
8358c15c 8967 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8968 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8969
16c381f0
JK
8970 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8971 chain. If caller's caller is walking the chain, they'll be happier if we
8972 hand them back the original chain when restore_infcall_control_state is
8973 called. */
8974 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8975
8976 /* Other fields: */
8977 inf_status->stop_stack_dummy = stop_stack_dummy;
8978 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 8979
206415a3 8980 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8981
7a292a7a 8982 return inf_status;
c906108c
SS
8983}
8984
bf469271
PA
8985static void
8986restore_selected_frame (const frame_id &fid)
c906108c 8987{
bf469271 8988 frame_info *frame = frame_find_by_id (fid);
c906108c 8989
aa0cd9c1
AC
8990 /* If inf_status->selected_frame_id is NULL, there was no previously
8991 selected frame. */
101dcfbe 8992 if (frame == NULL)
c906108c 8993 {
8a3fe4f8 8994 warning (_("Unable to restore previously selected frame."));
bf469271 8995 return;
c906108c
SS
8996 }
8997
0f7d239c 8998 select_frame (frame);
c906108c
SS
8999}
9000
b89667eb
DE
9001/* Restore inferior session state to INF_STATUS. */
9002
c906108c 9003void
16c381f0 9004restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9005{
4e1c45ea 9006 struct thread_info *tp = inferior_thread ();
d6b48e9c 9007 struct inferior *inf = current_inferior ();
4e1c45ea 9008
8358c15c
JK
9009 if (tp->control.step_resume_breakpoint)
9010 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9011
5b79abe7
TT
9012 if (tp->control.exception_resume_breakpoint)
9013 tp->control.exception_resume_breakpoint->disposition
9014 = disp_del_at_next_stop;
9015
d82142e2 9016 /* Handle the bpstat_copy of the chain. */
16c381f0 9017 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9018
16c381f0
JK
9019 tp->control = inf_status->thread_control;
9020 inf->control = inf_status->inferior_control;
d82142e2
JK
9021
9022 /* Other fields: */
9023 stop_stack_dummy = inf_status->stop_stack_dummy;
9024 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9025
b89667eb 9026 if (target_has_stack)
c906108c 9027 {
bf469271 9028 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
9029 walking the stack might encounter a garbage pointer and
9030 error() trying to dereference it. */
bf469271
PA
9031 TRY
9032 {
9033 restore_selected_frame (inf_status->selected_frame_id);
9034 }
9035 CATCH (ex, RETURN_MASK_ERROR)
9036 {
9037 exception_fprintf (gdb_stderr, ex,
9038 "Unable to restore previously selected frame:\n");
9039 /* Error in restoring the selected frame. Select the
9040 innermost frame. */
9041 select_frame (get_current_frame ());
9042 }
9043 END_CATCH
c906108c 9044 }
c906108c 9045
72cec141 9046 xfree (inf_status);
7a292a7a 9047}
c906108c 9048
74b7792f 9049static void
16c381f0 9050do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 9051{
9a3c8263 9052 restore_infcall_control_state ((struct infcall_control_state *) sts);
74b7792f
AC
9053}
9054
9055struct cleanup *
16c381f0
JK
9056make_cleanup_restore_infcall_control_state
9057 (struct infcall_control_state *inf_status)
74b7792f 9058{
16c381f0 9059 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
9060}
9061
c906108c 9062void
16c381f0 9063discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9064{
8358c15c
JK
9065 if (inf_status->thread_control.step_resume_breakpoint)
9066 inf_status->thread_control.step_resume_breakpoint->disposition
9067 = disp_del_at_next_stop;
9068
5b79abe7
TT
9069 if (inf_status->thread_control.exception_resume_breakpoint)
9070 inf_status->thread_control.exception_resume_breakpoint->disposition
9071 = disp_del_at_next_stop;
9072
1777feb0 9073 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9074 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9075
72cec141 9076 xfree (inf_status);
7a292a7a 9077}
b89667eb 9078\f
7f89fd65 9079/* See infrun.h. */
0c557179
SDJ
9080
9081void
9082clear_exit_convenience_vars (void)
9083{
9084 clear_internalvar (lookup_internalvar ("_exitsignal"));
9085 clear_internalvar (lookup_internalvar ("_exitcode"));
9086}
c5aa993b 9087\f
488f131b 9088
b2175913
MS
9089/* User interface for reverse debugging:
9090 Set exec-direction / show exec-direction commands
9091 (returns error unless target implements to_set_exec_direction method). */
9092
170742de 9093enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9094static const char exec_forward[] = "forward";
9095static const char exec_reverse[] = "reverse";
9096static const char *exec_direction = exec_forward;
40478521 9097static const char *const exec_direction_names[] = {
b2175913
MS
9098 exec_forward,
9099 exec_reverse,
9100 NULL
9101};
9102
9103static void
eb4c3f4a 9104set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
9105 struct cmd_list_element *cmd)
9106{
9107 if (target_can_execute_reverse)
9108 {
9109 if (!strcmp (exec_direction, exec_forward))
9110 execution_direction = EXEC_FORWARD;
9111 else if (!strcmp (exec_direction, exec_reverse))
9112 execution_direction = EXEC_REVERSE;
9113 }
8bbed405
MS
9114 else
9115 {
9116 exec_direction = exec_forward;
9117 error (_("Target does not support this operation."));
9118 }
b2175913
MS
9119}
9120
9121static void
9122show_exec_direction_func (struct ui_file *out, int from_tty,
9123 struct cmd_list_element *cmd, const char *value)
9124{
9125 switch (execution_direction) {
9126 case EXEC_FORWARD:
9127 fprintf_filtered (out, _("Forward.\n"));
9128 break;
9129 case EXEC_REVERSE:
9130 fprintf_filtered (out, _("Reverse.\n"));
9131 break;
b2175913 9132 default:
d8b34453
PA
9133 internal_error (__FILE__, __LINE__,
9134 _("bogus execution_direction value: %d"),
9135 (int) execution_direction);
b2175913
MS
9136 }
9137}
9138
d4db2f36
PA
9139static void
9140show_schedule_multiple (struct ui_file *file, int from_tty,
9141 struct cmd_list_element *c, const char *value)
9142{
3e43a32a
MS
9143 fprintf_filtered (file, _("Resuming the execution of threads "
9144 "of all processes is %s.\n"), value);
d4db2f36 9145}
ad52ddc6 9146
22d2b532
SDJ
9147/* Implementation of `siginfo' variable. */
9148
9149static const struct internalvar_funcs siginfo_funcs =
9150{
9151 siginfo_make_value,
9152 NULL,
9153 NULL
9154};
9155
372316f1
PA
9156/* Callback for infrun's target events source. This is marked when a
9157 thread has a pending status to process. */
9158
9159static void
9160infrun_async_inferior_event_handler (gdb_client_data data)
9161{
372316f1
PA
9162 inferior_event_handler (INF_REG_EVENT, NULL);
9163}
9164
c906108c 9165void
96baa820 9166_initialize_infrun (void)
c906108c 9167{
52f0bd74
AC
9168 int i;
9169 int numsigs;
de0bea00 9170 struct cmd_list_element *c;
c906108c 9171
372316f1
PA
9172 /* Register extra event sources in the event loop. */
9173 infrun_async_inferior_event_token
9174 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9175
11db9430 9176 add_info ("signals", info_signals_command, _("\
1bedd215
AC
9177What debugger does when program gets various signals.\n\
9178Specify a signal as argument to print info on that signal only."));
c906108c
SS
9179 add_info_alias ("handle", "signals", 0);
9180
de0bea00 9181 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9182Specify how to handle signals.\n\
486c7739 9183Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9184Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9185If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9186will be displayed instead.\n\
9187\n\
c906108c
SS
9188Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9189from 1-15 are allowed for compatibility with old versions of GDB.\n\
9190Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9191The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9192used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9193\n\
1bedd215 9194Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9195\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9196Stop means reenter debugger if this signal happens (implies print).\n\
9197Print means print a message if this signal happens.\n\
9198Pass means let program see this signal; otherwise program doesn't know.\n\
9199Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9200Pass and Stop may be combined.\n\
9201\n\
9202Multiple signals may be specified. Signal numbers and signal names\n\
9203may be interspersed with actions, with the actions being performed for\n\
9204all signals cumulatively specified."));
de0bea00 9205 set_cmd_completer (c, handle_completer);
486c7739 9206
c906108c 9207 if (!dbx_commands)
1a966eab
AC
9208 stop_command = add_cmd ("stop", class_obscure,
9209 not_just_help_class_command, _("\
9210There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9211This allows you to set a list of commands to be run each time execution\n\
1a966eab 9212of the program stops."), &cmdlist);
c906108c 9213
ccce17b0 9214 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9215Set inferior debugging."), _("\
9216Show inferior debugging."), _("\
9217When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9218 NULL,
9219 show_debug_infrun,
9220 &setdebuglist, &showdebuglist);
527159b7 9221
3e43a32a
MS
9222 add_setshow_boolean_cmd ("displaced", class_maintenance,
9223 &debug_displaced, _("\
237fc4c9
PA
9224Set displaced stepping debugging."), _("\
9225Show displaced stepping debugging."), _("\
9226When non-zero, displaced stepping specific debugging is enabled."),
9227 NULL,
9228 show_debug_displaced,
9229 &setdebuglist, &showdebuglist);
9230
ad52ddc6
PA
9231 add_setshow_boolean_cmd ("non-stop", no_class,
9232 &non_stop_1, _("\
9233Set whether gdb controls the inferior in non-stop mode."), _("\
9234Show whether gdb controls the inferior in non-stop mode."), _("\
9235When debugging a multi-threaded program and this setting is\n\
9236off (the default, also called all-stop mode), when one thread stops\n\
9237(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9238all other threads in the program while you interact with the thread of\n\
9239interest. When you continue or step a thread, you can allow the other\n\
9240threads to run, or have them remain stopped, but while you inspect any\n\
9241thread's state, all threads stop.\n\
9242\n\
9243In non-stop mode, when one thread stops, other threads can continue\n\
9244to run freely. You'll be able to step each thread independently,\n\
9245leave it stopped or free to run as needed."),
9246 set_non_stop,
9247 show_non_stop,
9248 &setlist,
9249 &showlist);
9250
a493e3e2 9251 numsigs = (int) GDB_SIGNAL_LAST;
8d749320
SM
9252 signal_stop = XNEWVEC (unsigned char, numsigs);
9253 signal_print = XNEWVEC (unsigned char, numsigs);
9254 signal_program = XNEWVEC (unsigned char, numsigs);
9255 signal_catch = XNEWVEC (unsigned char, numsigs);
9256 signal_pass = XNEWVEC (unsigned char, numsigs);
c906108c
SS
9257 for (i = 0; i < numsigs; i++)
9258 {
9259 signal_stop[i] = 1;
9260 signal_print[i] = 1;
9261 signal_program[i] = 1;
ab04a2af 9262 signal_catch[i] = 0;
c906108c
SS
9263 }
9264
4d9d9d04
PA
9265 /* Signals caused by debugger's own actions should not be given to
9266 the program afterwards.
9267
9268 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9269 explicitly specifies that it should be delivered to the target
9270 program. Typically, that would occur when a user is debugging a
9271 target monitor on a simulator: the target monitor sets a
9272 breakpoint; the simulator encounters this breakpoint and halts
9273 the simulation handing control to GDB; GDB, noting that the stop
9274 address doesn't map to any known breakpoint, returns control back
9275 to the simulator; the simulator then delivers the hardware
9276 equivalent of a GDB_SIGNAL_TRAP to the program being
9277 debugged. */
a493e3e2
PA
9278 signal_program[GDB_SIGNAL_TRAP] = 0;
9279 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9280
9281 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9282 signal_stop[GDB_SIGNAL_ALRM] = 0;
9283 signal_print[GDB_SIGNAL_ALRM] = 0;
9284 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9285 signal_print[GDB_SIGNAL_VTALRM] = 0;
9286 signal_stop[GDB_SIGNAL_PROF] = 0;
9287 signal_print[GDB_SIGNAL_PROF] = 0;
9288 signal_stop[GDB_SIGNAL_CHLD] = 0;
9289 signal_print[GDB_SIGNAL_CHLD] = 0;
9290 signal_stop[GDB_SIGNAL_IO] = 0;
9291 signal_print[GDB_SIGNAL_IO] = 0;
9292 signal_stop[GDB_SIGNAL_POLL] = 0;
9293 signal_print[GDB_SIGNAL_POLL] = 0;
9294 signal_stop[GDB_SIGNAL_URG] = 0;
9295 signal_print[GDB_SIGNAL_URG] = 0;
9296 signal_stop[GDB_SIGNAL_WINCH] = 0;
9297 signal_print[GDB_SIGNAL_WINCH] = 0;
9298 signal_stop[GDB_SIGNAL_PRIO] = 0;
9299 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9300
cd0fc7c3
SS
9301 /* These signals are used internally by user-level thread
9302 implementations. (See signal(5) on Solaris.) Like the above
9303 signals, a healthy program receives and handles them as part of
9304 its normal operation. */
a493e3e2
PA
9305 signal_stop[GDB_SIGNAL_LWP] = 0;
9306 signal_print[GDB_SIGNAL_LWP] = 0;
9307 signal_stop[GDB_SIGNAL_WAITING] = 0;
9308 signal_print[GDB_SIGNAL_WAITING] = 0;
9309 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9310 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9311 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9312 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9313
2455069d
UW
9314 /* Update cached state. */
9315 signal_cache_update (-1);
9316
85c07804
AC
9317 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9318 &stop_on_solib_events, _("\
9319Set stopping for shared library events."), _("\
9320Show stopping for shared library events."), _("\
c906108c
SS
9321If nonzero, gdb will give control to the user when the dynamic linker\n\
9322notifies gdb of shared library events. The most common event of interest\n\
85c07804 9323to the user would be loading/unloading of a new library."),
f9e14852 9324 set_stop_on_solib_events,
920d2a44 9325 show_stop_on_solib_events,
85c07804 9326 &setlist, &showlist);
c906108c 9327
7ab04401
AC
9328 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9329 follow_fork_mode_kind_names,
9330 &follow_fork_mode_string, _("\
9331Set debugger response to a program call of fork or vfork."), _("\
9332Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9333A fork or vfork creates a new process. follow-fork-mode can be:\n\
9334 parent - the original process is debugged after a fork\n\
9335 child - the new process is debugged after a fork\n\
ea1dd7bc 9336The unfollowed process will continue to run.\n\
7ab04401
AC
9337By default, the debugger will follow the parent process."),
9338 NULL,
920d2a44 9339 show_follow_fork_mode_string,
7ab04401
AC
9340 &setlist, &showlist);
9341
6c95b8df
PA
9342 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9343 follow_exec_mode_names,
9344 &follow_exec_mode_string, _("\
9345Set debugger response to a program call of exec."), _("\
9346Show debugger response to a program call of exec."), _("\
9347An exec call replaces the program image of a process.\n\
9348\n\
9349follow-exec-mode can be:\n\
9350\n\
cce7e648 9351 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9352to this new inferior. The program the process was running before\n\
9353the exec call can be restarted afterwards by restarting the original\n\
9354inferior.\n\
9355\n\
9356 same - the debugger keeps the process bound to the same inferior.\n\
9357The new executable image replaces the previous executable loaded in\n\
9358the inferior. Restarting the inferior after the exec call restarts\n\
9359the executable the process was running after the exec call.\n\
9360\n\
9361By default, the debugger will use the same inferior."),
9362 NULL,
9363 show_follow_exec_mode_string,
9364 &setlist, &showlist);
9365
7ab04401
AC
9366 add_setshow_enum_cmd ("scheduler-locking", class_run,
9367 scheduler_enums, &scheduler_mode, _("\
9368Set mode for locking scheduler during execution."), _("\
9369Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9370off == no locking (threads may preempt at any time)\n\
9371on == full locking (no thread except the current thread may run)\n\
9372 This applies to both normal execution and replay mode.\n\
9373step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9374 In this mode, other threads may run during other commands.\n\
9375 This applies to both normal execution and replay mode.\n\
9376replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9377 set_schedlock_func, /* traps on target vector */
920d2a44 9378 show_scheduler_mode,
7ab04401 9379 &setlist, &showlist);
5fbbeb29 9380
d4db2f36
PA
9381 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9382Set mode for resuming threads of all processes."), _("\
9383Show mode for resuming threads of all processes."), _("\
9384When on, execution commands (such as 'continue' or 'next') resume all\n\
9385threads of all processes. When off (which is the default), execution\n\
9386commands only resume the threads of the current process. The set of\n\
9387threads that are resumed is further refined by the scheduler-locking\n\
9388mode (see help set scheduler-locking)."),
9389 NULL,
9390 show_schedule_multiple,
9391 &setlist, &showlist);
9392
5bf193a2
AC
9393 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9394Set mode of the step operation."), _("\
9395Show mode of the step operation."), _("\
9396When set, doing a step over a function without debug line information\n\
9397will stop at the first instruction of that function. Otherwise, the\n\
9398function is skipped and the step command stops at a different source line."),
9399 NULL,
920d2a44 9400 show_step_stop_if_no_debug,
5bf193a2 9401 &setlist, &showlist);
ca6724c1 9402
72d0e2c5
YQ
9403 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9404 &can_use_displaced_stepping, _("\
237fc4c9
PA
9405Set debugger's willingness to use displaced stepping."), _("\
9406Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9407If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9408supported by the target architecture. If off, gdb will not use displaced\n\
9409stepping to step over breakpoints, even if such is supported by the target\n\
9410architecture. If auto (which is the default), gdb will use displaced stepping\n\
9411if the target architecture supports it and non-stop mode is active, but will not\n\
9412use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9413 NULL,
9414 show_can_use_displaced_stepping,
9415 &setlist, &showlist);
237fc4c9 9416
b2175913
MS
9417 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9418 &exec_direction, _("Set direction of execution.\n\
9419Options are 'forward' or 'reverse'."),
9420 _("Show direction of execution (forward/reverse)."),
9421 _("Tells gdb whether to execute forward or backward."),
9422 set_exec_direction_func, show_exec_direction_func,
9423 &setlist, &showlist);
9424
6c95b8df
PA
9425 /* Set/show detach-on-fork: user-settable mode. */
9426
9427 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9428Set whether gdb will detach the child of a fork."), _("\
9429Show whether gdb will detach the child of a fork."), _("\
9430Tells gdb whether to detach the child of a fork."),
9431 NULL, NULL, &setlist, &showlist);
9432
03583c20
UW
9433 /* Set/show disable address space randomization mode. */
9434
9435 add_setshow_boolean_cmd ("disable-randomization", class_support,
9436 &disable_randomization, _("\
9437Set disabling of debuggee's virtual address space randomization."), _("\
9438Show disabling of debuggee's virtual address space randomization."), _("\
9439When this mode is on (which is the default), randomization of the virtual\n\
9440address space is disabled. Standalone programs run with the randomization\n\
9441enabled by default on some platforms."),
9442 &set_disable_randomization,
9443 &show_disable_randomization,
9444 &setlist, &showlist);
9445
ca6724c1 9446 /* ptid initializations */
ca6724c1
KB
9447 inferior_ptid = null_ptid;
9448 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9449
76727919
TT
9450 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9451 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9452 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9453 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9454
9455 /* Explicitly create without lookup, since that tries to create a
9456 value with a void typed value, and when we get here, gdbarch
9457 isn't initialized yet. At this point, we're quite sure there
9458 isn't another convenience variable of the same name. */
22d2b532 9459 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9460
9461 add_setshow_boolean_cmd ("observer", no_class,
9462 &observer_mode_1, _("\
9463Set whether gdb controls the inferior in observer mode."), _("\
9464Show whether gdb controls the inferior in observer mode."), _("\
9465In observer mode, GDB can get data from the inferior, but not\n\
9466affect its execution. Registers and memory may not be changed,\n\
9467breakpoints may not be set, and the program cannot be interrupted\n\
9468or signalled."),
9469 set_observer_mode,
9470 show_observer_mode,
9471 &setlist,
9472 &showlist);
c906108c 9473}