]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/linux-tdep.c
Automatic date update in version.in
[thirdparty/binutils-gdb.git] / gdb / linux-tdep.c
CommitLineData
4aa995e1
PA
1/* Target-dependent code for GNU/Linux, architecture independent.
2
b811d2c2 3 Copyright (C) 2009-2020 Free Software Foundation, Inc.
4aa995e1
PA
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "gdbtypes.h"
2c0b251b 22#include "linux-tdep.h"
6c95b8df
PA
23#include "auxv.h"
24#include "target.h"
6432734d
UW
25#include "gdbthread.h"
26#include "gdbcore.h"
27#include "regcache.h"
28#include "regset.h"
6c95b8df 29#include "elf/common.h"
6432734d 30#include "elf-bfd.h" /* for elfcore_write_* */
a5ee0f0c 31#include "inferior.h"
3030c96e 32#include "cli/cli-utils.h"
451b7c33
TT
33#include "arch-utils.h"
34#include "gdb_obstack.h"
76727919 35#include "observable.h"
3bc3cebe
JK
36#include "objfiles.h"
37#include "infcall.h"
df8411da 38#include "gdbcmd.h"
db1ff28b 39#include "gdb_regex.h"
268a13a5
TT
40#include "gdbsupport/enum-flags.h"
41#include "gdbsupport/gdb_optional.h"
3030c96e
UW
42
43#include <ctype.h>
4aa995e1 44
db1ff28b
JK
45/* This enum represents the values that the user can choose when
46 informing the Linux kernel about which memory mappings will be
47 dumped in a corefile. They are described in the file
48 Documentation/filesystems/proc.txt, inside the Linux kernel
49 tree. */
50
8d297bbf 51enum filter_flag
db1ff28b
JK
52 {
53 COREFILTER_ANON_PRIVATE = 1 << 0,
54 COREFILTER_ANON_SHARED = 1 << 1,
55 COREFILTER_MAPPED_PRIVATE = 1 << 2,
56 COREFILTER_MAPPED_SHARED = 1 << 3,
57 COREFILTER_ELF_HEADERS = 1 << 4,
58 COREFILTER_HUGETLB_PRIVATE = 1 << 5,
59 COREFILTER_HUGETLB_SHARED = 1 << 6,
60 };
8d297bbf 61DEF_ENUM_FLAGS_TYPE (enum filter_flag, filter_flags);
db1ff28b
JK
62
63/* This struct is used to map flags found in the "VmFlags:" field (in
64 the /proc/<PID>/smaps file). */
65
66struct smaps_vmflags
67 {
68 /* Zero if this structure has not been initialized yet. It
69 probably means that the Linux kernel being used does not emit
70 the "VmFlags:" field on "/proc/PID/smaps". */
71
72 unsigned int initialized_p : 1;
73
74 /* Memory mapped I/O area (VM_IO, "io"). */
75
76 unsigned int io_page : 1;
77
78 /* Area uses huge TLB pages (VM_HUGETLB, "ht"). */
79
80 unsigned int uses_huge_tlb : 1;
81
82 /* Do not include this memory region on the coredump (VM_DONTDUMP, "dd"). */
83
84 unsigned int exclude_coredump : 1;
85
86 /* Is this a MAP_SHARED mapping (VM_SHARED, "sh"). */
87
88 unsigned int shared_mapping : 1;
89 };
90
df8411da
SDJ
91/* Whether to take the /proc/PID/coredump_filter into account when
92 generating a corefile. */
93
491144b5 94static bool use_coredump_filter = true;
df8411da 95
afa840dc
SL
96/* Whether the value of smaps_vmflags->exclude_coredump should be
97 ignored, including mappings marked with the VM_DONTDUMP flag in
98 the dump. */
491144b5 99static bool dump_excluded_mappings = false;
afa840dc 100
eb14d406
SDJ
101/* This enum represents the signals' numbers on a generic architecture
102 running the Linux kernel. The definition of "generic" comes from
103 the file <include/uapi/asm-generic/signal.h>, from the Linux kernel
104 tree, which is the "de facto" implementation of signal numbers to
105 be used by new architecture ports.
106
107 For those architectures which have differences between the generic
108 standard (e.g., Alpha), we define the different signals (and *only*
109 those) in the specific target-dependent file (e.g.,
110 alpha-linux-tdep.c, for Alpha). Please refer to the architecture's
111 tdep file for more information.
112
113 ARM deserves a special mention here. On the file
114 <arch/arm/include/uapi/asm/signal.h>, it defines only one different
115 (and ARM-only) signal, which is SIGSWI, with the same number as
116 SIGRTMIN. This signal is used only for a very specific target,
117 called ArthurOS (from RISCOS). Therefore, we do not handle it on
118 the ARM-tdep file, and we can safely use the generic signal handler
119 here for ARM targets.
120
121 As stated above, this enum is derived from
122 <include/uapi/asm-generic/signal.h>, from the Linux kernel
123 tree. */
124
125enum
126 {
127 LINUX_SIGHUP = 1,
128 LINUX_SIGINT = 2,
129 LINUX_SIGQUIT = 3,
130 LINUX_SIGILL = 4,
131 LINUX_SIGTRAP = 5,
132 LINUX_SIGABRT = 6,
133 LINUX_SIGIOT = 6,
134 LINUX_SIGBUS = 7,
135 LINUX_SIGFPE = 8,
136 LINUX_SIGKILL = 9,
137 LINUX_SIGUSR1 = 10,
138 LINUX_SIGSEGV = 11,
139 LINUX_SIGUSR2 = 12,
140 LINUX_SIGPIPE = 13,
141 LINUX_SIGALRM = 14,
142 LINUX_SIGTERM = 15,
143 LINUX_SIGSTKFLT = 16,
144 LINUX_SIGCHLD = 17,
145 LINUX_SIGCONT = 18,
146 LINUX_SIGSTOP = 19,
147 LINUX_SIGTSTP = 20,
148 LINUX_SIGTTIN = 21,
149 LINUX_SIGTTOU = 22,
150 LINUX_SIGURG = 23,
151 LINUX_SIGXCPU = 24,
152 LINUX_SIGXFSZ = 25,
153 LINUX_SIGVTALRM = 26,
154 LINUX_SIGPROF = 27,
155 LINUX_SIGWINCH = 28,
156 LINUX_SIGIO = 29,
157 LINUX_SIGPOLL = LINUX_SIGIO,
158 LINUX_SIGPWR = 30,
159 LINUX_SIGSYS = 31,
160 LINUX_SIGUNUSED = 31,
161
162 LINUX_SIGRTMIN = 32,
163 LINUX_SIGRTMAX = 64,
164 };
165
06253dd3
JK
166static struct gdbarch_data *linux_gdbarch_data_handle;
167
168struct linux_gdbarch_data
169 {
170 struct type *siginfo_type;
171 };
172
173static void *
174init_linux_gdbarch_data (struct gdbarch *gdbarch)
175{
176 return GDBARCH_OBSTACK_ZALLOC (gdbarch, struct linux_gdbarch_data);
177}
178
179static struct linux_gdbarch_data *
180get_linux_gdbarch_data (struct gdbarch *gdbarch)
181{
9a3c8263
SM
182 return ((struct linux_gdbarch_data *)
183 gdbarch_data (gdbarch, linux_gdbarch_data_handle));
06253dd3
JK
184}
185
cdfa0b0a
PA
186/* Linux-specific cached data. This is used by GDB for caching
187 purposes for each inferior. This helps reduce the overhead of
188 transfering data from a remote target to the local host. */
189struct linux_info
190{
191 /* Cache of the inferior's vsyscall/vDSO mapping range. Only valid
192 if VSYSCALL_RANGE_P is positive. This is cached because getting
193 at this info requires an auxv lookup (which is itself cached),
194 and looking through the inferior's mappings (which change
195 throughout execution and therefore cannot be cached). */
89fb8848 196 struct mem_range vsyscall_range {};
cdfa0b0a
PA
197
198 /* Zero if we haven't tried looking up the vsyscall's range before
199 yet. Positive if we tried looking it up, and found it. Negative
200 if we tried looking it up but failed. */
89fb8848 201 int vsyscall_range_p = 0;
cdfa0b0a
PA
202};
203
89fb8848
TT
204/* Per-inferior data key. */
205static const struct inferior_key<linux_info> linux_inferior_data;
206
cdfa0b0a
PA
207/* Frees whatever allocated space there is to be freed and sets INF's
208 linux cache data pointer to NULL. */
209
210static void
211invalidate_linux_cache_inf (struct inferior *inf)
212{
89fb8848 213 linux_inferior_data.clear (inf);
cdfa0b0a
PA
214}
215
216/* Fetch the linux cache info for INF. This function always returns a
217 valid INFO pointer. */
218
219static struct linux_info *
220get_linux_inferior_data (void)
221{
222 struct linux_info *info;
223 struct inferior *inf = current_inferior ();
224
89fb8848 225 info = linux_inferior_data.get (inf);
cdfa0b0a 226 if (info == NULL)
89fb8848 227 info = linux_inferior_data.emplace (inf);
cdfa0b0a
PA
228
229 return info;
230}
231
190b495d 232/* See linux-tdep.h. */
4aa995e1 233
190b495d 234struct type *
43564574
WT
235linux_get_siginfo_type_with_fields (struct gdbarch *gdbarch,
236 linux_siginfo_extra_fields extra_fields)
4aa995e1 237{
06253dd3 238 struct linux_gdbarch_data *linux_gdbarch_data;
96b5c49f 239 struct type *int_type, *uint_type, *long_type, *void_ptr_type, *short_type;
4aa995e1
PA
240 struct type *uid_type, *pid_type;
241 struct type *sigval_type, *clock_type;
242 struct type *siginfo_type, *sifields_type;
243 struct type *type;
244
06253dd3
JK
245 linux_gdbarch_data = get_linux_gdbarch_data (gdbarch);
246 if (linux_gdbarch_data->siginfo_type != NULL)
247 return linux_gdbarch_data->siginfo_type;
248
e9bb382b
UW
249 int_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
250 0, "int");
251 uint_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
252 1, "unsigned int");
253 long_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
254 0, "long");
96b5c49f
WT
255 short_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
256 0, "short");
4aa995e1
PA
257 void_ptr_type = lookup_pointer_type (builtin_type (gdbarch)->builtin_void);
258
259 /* sival_t */
e9bb382b 260 sigval_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
d0e39ea2 261 sigval_type->set_name (xstrdup ("sigval_t"));
4aa995e1
PA
262 append_composite_type_field (sigval_type, "sival_int", int_type);
263 append_composite_type_field (sigval_type, "sival_ptr", void_ptr_type);
264
265 /* __pid_t */
e3aa49af 266 pid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
77b7c781 267 TYPE_LENGTH (int_type) * TARGET_CHAR_BIT, "__pid_t");
4aa995e1 268 TYPE_TARGET_TYPE (pid_type) = int_type;
e9bb382b 269 TYPE_TARGET_STUB (pid_type) = 1;
4aa995e1
PA
270
271 /* __uid_t */
e3aa49af 272 uid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
77b7c781 273 TYPE_LENGTH (uint_type) * TARGET_CHAR_BIT, "__uid_t");
4aa995e1 274 TYPE_TARGET_TYPE (uid_type) = uint_type;
e9bb382b 275 TYPE_TARGET_STUB (uid_type) = 1;
4aa995e1
PA
276
277 /* __clock_t */
e3aa49af 278 clock_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
77b7c781
UW
279 TYPE_LENGTH (long_type) * TARGET_CHAR_BIT,
280 "__clock_t");
4aa995e1 281 TYPE_TARGET_TYPE (clock_type) = long_type;
e9bb382b 282 TYPE_TARGET_STUB (clock_type) = 1;
4aa995e1
PA
283
284 /* _sifields */
e9bb382b 285 sifields_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
4aa995e1
PA
286
287 {
288 const int si_max_size = 128;
289 int si_pad_size;
290 int size_of_int = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
291
292 /* _pad */
293 if (gdbarch_ptr_bit (gdbarch) == 64)
294 si_pad_size = (si_max_size / size_of_int) - 4;
295 else
296 si_pad_size = (si_max_size / size_of_int) - 3;
297 append_composite_type_field (sifields_type, "_pad",
298 init_vector_type (int_type, si_pad_size));
299 }
300
301 /* _kill */
e9bb382b 302 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
303 append_composite_type_field (type, "si_pid", pid_type);
304 append_composite_type_field (type, "si_uid", uid_type);
305 append_composite_type_field (sifields_type, "_kill", type);
306
307 /* _timer */
e9bb382b 308 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
309 append_composite_type_field (type, "si_tid", int_type);
310 append_composite_type_field (type, "si_overrun", int_type);
311 append_composite_type_field (type, "si_sigval", sigval_type);
312 append_composite_type_field (sifields_type, "_timer", type);
313
314 /* _rt */
e9bb382b 315 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
316 append_composite_type_field (type, "si_pid", pid_type);
317 append_composite_type_field (type, "si_uid", uid_type);
318 append_composite_type_field (type, "si_sigval", sigval_type);
319 append_composite_type_field (sifields_type, "_rt", type);
320
321 /* _sigchld */
e9bb382b 322 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
323 append_composite_type_field (type, "si_pid", pid_type);
324 append_composite_type_field (type, "si_uid", uid_type);
325 append_composite_type_field (type, "si_status", int_type);
326 append_composite_type_field (type, "si_utime", clock_type);
327 append_composite_type_field (type, "si_stime", clock_type);
328 append_composite_type_field (sifields_type, "_sigchld", type);
329
330 /* _sigfault */
e9bb382b 331 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1 332 append_composite_type_field (type, "si_addr", void_ptr_type);
96b5c49f
WT
333
334 /* Additional bound fields for _sigfault in case they were requested. */
335 if ((extra_fields & LINUX_SIGINFO_FIELD_ADDR_BND) != 0)
336 {
337 struct type *sigfault_bnd_fields;
338
339 append_composite_type_field (type, "_addr_lsb", short_type);
340 sigfault_bnd_fields = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
341 append_composite_type_field (sigfault_bnd_fields, "_lower", void_ptr_type);
342 append_composite_type_field (sigfault_bnd_fields, "_upper", void_ptr_type);
343 append_composite_type_field (type, "_addr_bnd", sigfault_bnd_fields);
344 }
4aa995e1
PA
345 append_composite_type_field (sifields_type, "_sigfault", type);
346
347 /* _sigpoll */
e9bb382b 348 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
4aa995e1
PA
349 append_composite_type_field (type, "si_band", long_type);
350 append_composite_type_field (type, "si_fd", int_type);
351 append_composite_type_field (sifields_type, "_sigpoll", type);
352
353 /* struct siginfo */
e9bb382b 354 siginfo_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
d0e39ea2 355 siginfo_type->set_name (xstrdup ("siginfo"));
4aa995e1
PA
356 append_composite_type_field (siginfo_type, "si_signo", int_type);
357 append_composite_type_field (siginfo_type, "si_errno", int_type);
358 append_composite_type_field (siginfo_type, "si_code", int_type);
359 append_composite_type_field_aligned (siginfo_type,
360 "_sifields", sifields_type,
361 TYPE_LENGTH (long_type));
362
06253dd3
JK
363 linux_gdbarch_data->siginfo_type = siginfo_type;
364
4aa995e1
PA
365 return siginfo_type;
366}
6b3ae818 367
43564574
WT
368/* This function is suitable for architectures that don't
369 extend/override the standard siginfo structure. */
370
371static struct type *
372linux_get_siginfo_type (struct gdbarch *gdbarch)
373{
374 return linux_get_siginfo_type_with_fields (gdbarch, 0);
375}
376
c01cbb3d
YQ
377/* Return true if the target is running on uClinux instead of normal
378 Linux kernel. */
379
380int
381linux_is_uclinux (void)
6c95b8df 382{
6c95b8df 383 CORE_ADDR dummy;
6c95b8df 384
8b88a78e
PA
385 return (target_auxv_search (current_top_target (), AT_NULL, &dummy) > 0
386 && target_auxv_search (current_top_target (), AT_PAGESZ, &dummy) == 0);
c01cbb3d 387}
6c95b8df 388
c01cbb3d
YQ
389static int
390linux_has_shared_address_space (struct gdbarch *gdbarch)
391{
392 return linux_is_uclinux ();
6c95b8df 393}
a5ee0f0c
PA
394
395/* This is how we want PTIDs from core files to be printed. */
396
a068643d 397static std::string
a5ee0f0c
PA
398linux_core_pid_to_str (struct gdbarch *gdbarch, ptid_t ptid)
399{
e38504b3 400 if (ptid.lwp () != 0)
a068643d 401 return string_printf ("LWP %ld", ptid.lwp ());
a5ee0f0c
PA
402
403 return normal_pid_to_str (ptid);
404}
405
db1ff28b
JK
406/* Service function for corefiles and info proc. */
407
408static void
409read_mapping (const char *line,
410 ULONGEST *addr, ULONGEST *endaddr,
411 const char **permissions, size_t *permissions_len,
412 ULONGEST *offset,
413 const char **device, size_t *device_len,
414 ULONGEST *inode,
415 const char **filename)
416{
417 const char *p = line;
418
419 *addr = strtoulst (p, &p, 16);
420 if (*p == '-')
421 p++;
422 *endaddr = strtoulst (p, &p, 16);
423
f1735a53 424 p = skip_spaces (p);
db1ff28b
JK
425 *permissions = p;
426 while (*p && !isspace (*p))
427 p++;
428 *permissions_len = p - *permissions;
429
430 *offset = strtoulst (p, &p, 16);
431
f1735a53 432 p = skip_spaces (p);
db1ff28b
JK
433 *device = p;
434 while (*p && !isspace (*p))
435 p++;
436 *device_len = p - *device;
437
438 *inode = strtoulst (p, &p, 10);
439
f1735a53 440 p = skip_spaces (p);
db1ff28b
JK
441 *filename = p;
442}
443
444/* Helper function to decode the "VmFlags" field in /proc/PID/smaps.
445
446 This function was based on the documentation found on
447 <Documentation/filesystems/proc.txt>, on the Linux kernel.
448
449 Linux kernels before commit
450 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have this
451 field on smaps. */
452
453static void
454decode_vmflags (char *p, struct smaps_vmflags *v)
455{
456 char *saveptr = NULL;
457 const char *s;
458
459 v->initialized_p = 1;
460 p = skip_to_space (p);
461 p = skip_spaces (p);
462
463 for (s = strtok_r (p, " ", &saveptr);
464 s != NULL;
465 s = strtok_r (NULL, " ", &saveptr))
466 {
467 if (strcmp (s, "io") == 0)
468 v->io_page = 1;
469 else if (strcmp (s, "ht") == 0)
470 v->uses_huge_tlb = 1;
471 else if (strcmp (s, "dd") == 0)
472 v->exclude_coredump = 1;
473 else if (strcmp (s, "sh") == 0)
474 v->shared_mapping = 1;
475 }
476}
477
2d7cc5c7
PA
478/* Regexes used by mapping_is_anonymous_p. Put in a structure because
479 they're initialized lazily. */
480
481struct mapping_regexes
482{
483 /* Matches "/dev/zero" filenames (with or without the "(deleted)"
484 string in the end). We know for sure, based on the Linux kernel
485 code, that memory mappings whose associated filename is
486 "/dev/zero" are guaranteed to be MAP_ANONYMOUS. */
487 compiled_regex dev_zero
488 {"^/dev/zero\\( (deleted)\\)\\?$", REG_NOSUB,
489 _("Could not compile regex to match /dev/zero filename")};
490
491 /* Matches "/SYSV%08x" filenames (with or without the "(deleted)"
492 string in the end). These filenames refer to shared memory
493 (shmem), and memory mappings associated with them are
494 MAP_ANONYMOUS as well. */
495 compiled_regex shmem_file
496 {"^/\\?SYSV[0-9a-fA-F]\\{8\\}\\( (deleted)\\)\\?$", REG_NOSUB,
497 _("Could not compile regex to match shmem filenames")};
498
499 /* A heuristic we use to try to mimic the Linux kernel's 'n_link ==
500 0' code, which is responsible to decide if it is dealing with a
501 'MAP_SHARED | MAP_ANONYMOUS' mapping. In other words, if
502 FILE_DELETED matches, it does not necessarily mean that we are
503 dealing with an anonymous shared mapping. However, there is no
504 easy way to detect this currently, so this is the best
505 approximation we have.
506
507 As a result, GDB will dump readonly pages of deleted executables
508 when using the default value of coredump_filter (0x33), while the
509 Linux kernel will not dump those pages. But we can live with
510 that. */
511 compiled_regex file_deleted
512 {" (deleted)$", REG_NOSUB,
513 _("Could not compile regex to match '<file> (deleted)'")};
514};
515
db1ff28b
JK
516/* Return 1 if the memory mapping is anonymous, 0 otherwise.
517
518 FILENAME is the name of the file present in the first line of the
519 memory mapping, in the "/proc/PID/smaps" output. For example, if
520 the first line is:
521
522 7fd0ca877000-7fd0d0da0000 r--p 00000000 fd:02 2100770 /path/to/file
523
524 Then FILENAME will be "/path/to/file". */
525
526static int
527mapping_is_anonymous_p (const char *filename)
528{
2d7cc5c7 529 static gdb::optional<mapping_regexes> regexes;
db1ff28b
JK
530 static int init_regex_p = 0;
531
532 if (!init_regex_p)
533 {
db1ff28b
JK
534 /* Let's be pessimistic and assume there will be an error while
535 compiling the regex'es. */
536 init_regex_p = -1;
537
2d7cc5c7 538 regexes.emplace ();
db1ff28b
JK
539
540 /* If we reached this point, then everything succeeded. */
541 init_regex_p = 1;
542 }
543
544 if (init_regex_p == -1)
545 {
546 const char deleted[] = " (deleted)";
547 size_t del_len = sizeof (deleted) - 1;
548 size_t filename_len = strlen (filename);
549
550 /* There was an error while compiling the regex'es above. In
551 order to try to give some reliable information to the caller,
552 we just try to find the string " (deleted)" in the filename.
553 If we managed to find it, then we assume the mapping is
554 anonymous. */
555 return (filename_len >= del_len
556 && strcmp (filename + filename_len - del_len, deleted) == 0);
557 }
558
559 if (*filename == '\0'
2d7cc5c7
PA
560 || regexes->dev_zero.exec (filename, 0, NULL, 0) == 0
561 || regexes->shmem_file.exec (filename, 0, NULL, 0) == 0
562 || regexes->file_deleted.exec (filename, 0, NULL, 0) == 0)
db1ff28b
JK
563 return 1;
564
565 return 0;
566}
567
568/* Return 0 if the memory mapping (which is related to FILTERFLAGS, V,
57e5e645
SDJ
569 MAYBE_PRIVATE_P, MAPPING_ANONYMOUS_P, ADDR and OFFSET) should not
570 be dumped, or greater than 0 if it should.
db1ff28b
JK
571
572 In a nutshell, this is the logic that we follow in order to decide
573 if a mapping should be dumped or not.
574
575 - If the mapping is associated to a file whose name ends with
576 " (deleted)", or if the file is "/dev/zero", or if it is
577 "/SYSV%08x" (shared memory), or if there is no file associated
578 with it, or if the AnonHugePages: or the Anonymous: fields in the
579 /proc/PID/smaps have contents, then GDB considers this mapping to
580 be anonymous. Otherwise, GDB considers this mapping to be a
581 file-backed mapping (because there will be a file associated with
582 it).
583
584 It is worth mentioning that, from all those checks described
585 above, the most fragile is the one to see if the file name ends
586 with " (deleted)". This does not necessarily mean that the
587 mapping is anonymous, because the deleted file associated with
588 the mapping may have been a hard link to another file, for
589 example. The Linux kernel checks to see if "i_nlink == 0", but
590 GDB cannot easily (and normally) do this check (iff running as
591 root, it could find the mapping in /proc/PID/map_files/ and
592 determine whether there still are other hard links to the
593 inode/file). Therefore, we made a compromise here, and we assume
594 that if the file name ends with " (deleted)", then the mapping is
595 indeed anonymous. FWIW, this is something the Linux kernel could
596 do better: expose this information in a more direct way.
597
598 - If we see the flag "sh" in the "VmFlags:" field (in
599 /proc/PID/smaps), then certainly the memory mapping is shared
600 (VM_SHARED). If we have access to the VmFlags, and we don't see
601 the "sh" there, then certainly the mapping is private. However,
602 Linux kernels before commit
603 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have the
604 "VmFlags:" field; in that case, we use another heuristic: if we
605 see 'p' in the permission flags, then we assume that the mapping
606 is private, even though the presence of the 's' flag there would
607 mean VM_MAYSHARE, which means the mapping could still be private.
57e5e645
SDJ
608 This should work OK enough, however.
609
610 - Even if, at the end, we decided that we should not dump the
611 mapping, we still have to check if it is something like an ELF
612 header (of a DSO or an executable, for example). If it is, and
613 if the user is interested in dump it, then we should dump it. */
db1ff28b
JK
614
615static int
8d297bbf 616dump_mapping_p (filter_flags filterflags, const struct smaps_vmflags *v,
db1ff28b 617 int maybe_private_p, int mapping_anon_p, int mapping_file_p,
57e5e645 618 const char *filename, ULONGEST addr, ULONGEST offset)
db1ff28b
JK
619{
620 /* Initially, we trust in what we received from our caller. This
621 value may not be very precise (i.e., it was probably gathered
622 from the permission line in the /proc/PID/smaps list, which
623 actually refers to VM_MAYSHARE, and not VM_SHARED), but it is
624 what we have until we take a look at the "VmFlags:" field
625 (assuming that the version of the Linux kernel being used
626 supports it, of course). */
627 int private_p = maybe_private_p;
57e5e645 628 int dump_p;
db1ff28b
JK
629
630 /* We always dump vDSO and vsyscall mappings, because it's likely that
631 there'll be no file to read the contents from at core load time.
632 The kernel does the same. */
633 if (strcmp ("[vdso]", filename) == 0
634 || strcmp ("[vsyscall]", filename) == 0)
635 return 1;
636
637 if (v->initialized_p)
638 {
639 /* We never dump I/O mappings. */
640 if (v->io_page)
641 return 0;
642
643 /* Check if we should exclude this mapping. */
afa840dc 644 if (!dump_excluded_mappings && v->exclude_coredump)
db1ff28b
JK
645 return 0;
646
647 /* Update our notion of whether this mapping is shared or
648 private based on a trustworthy value. */
649 private_p = !v->shared_mapping;
650
651 /* HugeTLB checking. */
652 if (v->uses_huge_tlb)
653 {
654 if ((private_p && (filterflags & COREFILTER_HUGETLB_PRIVATE))
655 || (!private_p && (filterflags & COREFILTER_HUGETLB_SHARED)))
656 return 1;
657
658 return 0;
659 }
660 }
661
662 if (private_p)
663 {
664 if (mapping_anon_p && mapping_file_p)
665 {
666 /* This is a special situation. It can happen when we see a
667 mapping that is file-backed, but that contains anonymous
668 pages. */
57e5e645
SDJ
669 dump_p = ((filterflags & COREFILTER_ANON_PRIVATE) != 0
670 || (filterflags & COREFILTER_MAPPED_PRIVATE) != 0);
db1ff28b
JK
671 }
672 else if (mapping_anon_p)
57e5e645 673 dump_p = (filterflags & COREFILTER_ANON_PRIVATE) != 0;
db1ff28b 674 else
57e5e645 675 dump_p = (filterflags & COREFILTER_MAPPED_PRIVATE) != 0;
db1ff28b
JK
676 }
677 else
678 {
679 if (mapping_anon_p && mapping_file_p)
680 {
681 /* This is a special situation. It can happen when we see a
682 mapping that is file-backed, but that contains anonymous
683 pages. */
57e5e645
SDJ
684 dump_p = ((filterflags & COREFILTER_ANON_SHARED) != 0
685 || (filterflags & COREFILTER_MAPPED_SHARED) != 0);
db1ff28b
JK
686 }
687 else if (mapping_anon_p)
57e5e645 688 dump_p = (filterflags & COREFILTER_ANON_SHARED) != 0;
db1ff28b 689 else
57e5e645 690 dump_p = (filterflags & COREFILTER_MAPPED_SHARED) != 0;
db1ff28b 691 }
57e5e645
SDJ
692
693 /* Even if we decided that we shouldn't dump this mapping, we still
694 have to check whether (a) the user wants us to dump mappings
695 containing an ELF header, and (b) the mapping in question
696 contains an ELF header. If (a) and (b) are true, then we should
697 dump this mapping.
698
699 A mapping contains an ELF header if it is a private mapping, its
700 offset is zero, and its first word is ELFMAG. */
701 if (!dump_p && private_p && offset == 0
702 && (filterflags & COREFILTER_ELF_HEADERS) != 0)
703 {
57e5e645
SDJ
704 /* Useful define specifying the size of the ELF magical
705 header. */
706#ifndef SELFMAG
707#define SELFMAG 4
708#endif
709
a5d871dd
TT
710 /* Let's check if we have an ELF header. */
711 gdb_byte h[SELFMAG];
712 if (target_read_memory (addr, h, SELFMAG) == 0)
57e5e645 713 {
57e5e645
SDJ
714 /* The EI_MAG* and ELFMAG* constants come from
715 <elf/common.h>. */
716 if (h[EI_MAG0] == ELFMAG0 && h[EI_MAG1] == ELFMAG1
717 && h[EI_MAG2] == ELFMAG2 && h[EI_MAG3] == ELFMAG3)
718 {
719 /* This mapping contains an ELF header, so we
720 should dump it. */
721 dump_p = 1;
722 }
723 }
724 }
725
726 return dump_p;
db1ff28b
JK
727}
728
4ba11f89
KB
729/* As above, but return true only when we should dump the NT_FILE
730 entry. */
731
732static int
733dump_note_entry_p (filter_flags filterflags, const struct smaps_vmflags *v,
734 int maybe_private_p, int mapping_anon_p, int mapping_file_p,
735 const char *filename, ULONGEST addr, ULONGEST offset)
736{
737 /* vDSO and vsyscall mappings will end up in the core file. Don't
738 put them in the NT_FILE note. */
739 if (strcmp ("[vdso]", filename) == 0
740 || strcmp ("[vsyscall]", filename) == 0)
741 return 0;
742
743 /* Otherwise, any other file-based mapping should be placed in the
744 note. */
745 return filename != nullptr;
746}
747
3030c96e
UW
748/* Implement the "info proc" command. */
749
750static void
7bc112c1 751linux_info_proc (struct gdbarch *gdbarch, const char *args,
3030c96e
UW
752 enum info_proc_what what)
753{
754 /* A long is used for pid instead of an int to avoid a loss of precision
755 compiler warning from the output of strtoul. */
756 long pid;
757 int cmdline_f = (what == IP_MINIMAL || what == IP_CMDLINE || what == IP_ALL);
758 int cwd_f = (what == IP_MINIMAL || what == IP_CWD || what == IP_ALL);
759 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
760 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
761 int status_f = (what == IP_STATUS || what == IP_ALL);
762 int stat_f = (what == IP_STAT || what == IP_ALL);
763 char filename[100];
3030c96e
UW
764 int target_errno;
765
766 if (args && isdigit (args[0]))
7bc112c1
TT
767 {
768 char *tem;
769
770 pid = strtoul (args, &tem, 10);
771 args = tem;
772 }
3030c96e
UW
773 else
774 {
775 if (!target_has_execution)
776 error (_("No current process: you must name one."));
777 if (current_inferior ()->fake_pid_p)
778 error (_("Can't determine the current process's PID: you must name one."));
779
780 pid = current_inferior ()->pid;
781 }
782
f1735a53 783 args = skip_spaces (args);
3030c96e
UW
784 if (args && args[0])
785 error (_("Too many parameters: %s"), args);
786
787 printf_filtered (_("process %ld\n"), pid);
788 if (cmdline_f)
789 {
790 xsnprintf (filename, sizeof filename, "/proc/%ld/cmdline", pid);
26d6cec4
AA
791 gdb_byte *buffer;
792 ssize_t len = target_fileio_read_alloc (NULL, filename, &buffer);
793
794 if (len > 0)
795 {
796 gdb::unique_xmalloc_ptr<char> cmdline ((char *) buffer);
797 ssize_t pos;
798
799 for (pos = 0; pos < len - 1; pos++)
800 {
801 if (buffer[pos] == '\0')
802 buffer[pos] = ' ';
803 }
804 buffer[len - 1] = '\0';
805 printf_filtered ("cmdline = '%s'\n", buffer);
806 }
3030c96e
UW
807 else
808 warning (_("unable to open /proc file '%s'"), filename);
809 }
810 if (cwd_f)
811 {
812 xsnprintf (filename, sizeof filename, "/proc/%ld/cwd", pid);
e0d3522b
TT
813 gdb::optional<std::string> contents
814 = target_fileio_readlink (NULL, filename, &target_errno);
815 if (contents.has_value ())
816 printf_filtered ("cwd = '%s'\n", contents->c_str ());
3030c96e
UW
817 else
818 warning (_("unable to read link '%s'"), filename);
819 }
820 if (exe_f)
821 {
822 xsnprintf (filename, sizeof filename, "/proc/%ld/exe", pid);
e0d3522b
TT
823 gdb::optional<std::string> contents
824 = target_fileio_readlink (NULL, filename, &target_errno);
825 if (contents.has_value ())
826 printf_filtered ("exe = '%s'\n", contents->c_str ());
3030c96e
UW
827 else
828 warning (_("unable to read link '%s'"), filename);
829 }
830 if (mappings_f)
831 {
832 xsnprintf (filename, sizeof filename, "/proc/%ld/maps", pid);
87028b87
TT
833 gdb::unique_xmalloc_ptr<char> map
834 = target_fileio_read_stralloc (NULL, filename);
835 if (map != NULL)
3030c96e 836 {
3030c96e
UW
837 char *line;
838
839 printf_filtered (_("Mapped address spaces:\n\n"));
840 if (gdbarch_addr_bit (gdbarch) == 32)
841 {
842 printf_filtered ("\t%10s %10s %10s %10s %s\n",
843 "Start Addr",
844 " End Addr",
845 " Size", " Offset", "objfile");
846 }
847 else
848 {
849 printf_filtered (" %18s %18s %10s %10s %s\n",
850 "Start Addr",
851 " End Addr",
852 " Size", " Offset", "objfile");
853 }
854
ca3a04f6
CB
855 char *saveptr;
856 for (line = strtok_r (map.get (), "\n", &saveptr);
87028b87 857 line;
ca3a04f6 858 line = strtok_r (NULL, "\n", &saveptr))
3030c96e
UW
859 {
860 ULONGEST addr, endaddr, offset, inode;
b926417a 861 const char *permissions, *device, *mapping_filename;
3030c96e
UW
862 size_t permissions_len, device_len;
863
864 read_mapping (line, &addr, &endaddr,
865 &permissions, &permissions_len,
866 &offset, &device, &device_len,
b926417a 867 &inode, &mapping_filename);
3030c96e
UW
868
869 if (gdbarch_addr_bit (gdbarch) == 32)
870 {
871 printf_filtered ("\t%10s %10s %10s %10s %s\n",
872 paddress (gdbarch, addr),
873 paddress (gdbarch, endaddr),
874 hex_string (endaddr - addr),
875 hex_string (offset),
b926417a 876 *mapping_filename ? mapping_filename : "");
3030c96e
UW
877 }
878 else
879 {
880 printf_filtered (" %18s %18s %10s %10s %s\n",
881 paddress (gdbarch, addr),
882 paddress (gdbarch, endaddr),
883 hex_string (endaddr - addr),
884 hex_string (offset),
b926417a 885 *mapping_filename ? mapping_filename : "");
3030c96e
UW
886 }
887 }
3030c96e
UW
888 }
889 else
890 warning (_("unable to open /proc file '%s'"), filename);
891 }
892 if (status_f)
893 {
894 xsnprintf (filename, sizeof filename, "/proc/%ld/status", pid);
87028b87
TT
895 gdb::unique_xmalloc_ptr<char> status
896 = target_fileio_read_stralloc (NULL, filename);
897 if (status)
898 puts_filtered (status.get ());
3030c96e
UW
899 else
900 warning (_("unable to open /proc file '%s'"), filename);
901 }
902 if (stat_f)
903 {
904 xsnprintf (filename, sizeof filename, "/proc/%ld/stat", pid);
87028b87
TT
905 gdb::unique_xmalloc_ptr<char> statstr
906 = target_fileio_read_stralloc (NULL, filename);
907 if (statstr)
3030c96e 908 {
87028b87 909 const char *p = statstr.get ();
3030c96e
UW
910
911 printf_filtered (_("Process: %s\n"),
912 pulongest (strtoulst (p, &p, 10)));
913
f1735a53 914 p = skip_spaces (p);
a71b5a38 915 if (*p == '(')
3030c96e 916 {
184cd072
JK
917 /* ps command also relies on no trailing fields
918 ever contain ')'. */
919 const char *ep = strrchr (p, ')');
a71b5a38
UW
920 if (ep != NULL)
921 {
922 printf_filtered ("Exec file: %.*s\n",
923 (int) (ep - p - 1), p + 1);
924 p = ep + 1;
925 }
3030c96e
UW
926 }
927
f1735a53 928 p = skip_spaces (p);
3030c96e
UW
929 if (*p)
930 printf_filtered (_("State: %c\n"), *p++);
931
932 if (*p)
933 printf_filtered (_("Parent process: %s\n"),
934 pulongest (strtoulst (p, &p, 10)));
935 if (*p)
936 printf_filtered (_("Process group: %s\n"),
937 pulongest (strtoulst (p, &p, 10)));
938 if (*p)
939 printf_filtered (_("Session id: %s\n"),
940 pulongest (strtoulst (p, &p, 10)));
941 if (*p)
942 printf_filtered (_("TTY: %s\n"),
943 pulongest (strtoulst (p, &p, 10)));
944 if (*p)
945 printf_filtered (_("TTY owner process group: %s\n"),
946 pulongest (strtoulst (p, &p, 10)));
947
948 if (*p)
949 printf_filtered (_("Flags: %s\n"),
950 hex_string (strtoulst (p, &p, 10)));
951 if (*p)
952 printf_filtered (_("Minor faults (no memory page): %s\n"),
953 pulongest (strtoulst (p, &p, 10)));
954 if (*p)
955 printf_filtered (_("Minor faults, children: %s\n"),
956 pulongest (strtoulst (p, &p, 10)));
957 if (*p)
958 printf_filtered (_("Major faults (memory page faults): %s\n"),
959 pulongest (strtoulst (p, &p, 10)));
960 if (*p)
961 printf_filtered (_("Major faults, children: %s\n"),
962 pulongest (strtoulst (p, &p, 10)));
963 if (*p)
964 printf_filtered (_("utime: %s\n"),
965 pulongest (strtoulst (p, &p, 10)));
966 if (*p)
967 printf_filtered (_("stime: %s\n"),
968 pulongest (strtoulst (p, &p, 10)));
969 if (*p)
970 printf_filtered (_("utime, children: %s\n"),
971 pulongest (strtoulst (p, &p, 10)));
972 if (*p)
973 printf_filtered (_("stime, children: %s\n"),
974 pulongest (strtoulst (p, &p, 10)));
975 if (*p)
976 printf_filtered (_("jiffies remaining in current "
977 "time slice: %s\n"),
978 pulongest (strtoulst (p, &p, 10)));
979 if (*p)
980 printf_filtered (_("'nice' value: %s\n"),
981 pulongest (strtoulst (p, &p, 10)));
982 if (*p)
983 printf_filtered (_("jiffies until next timeout: %s\n"),
984 pulongest (strtoulst (p, &p, 10)));
985 if (*p)
986 printf_filtered (_("jiffies until next SIGALRM: %s\n"),
987 pulongest (strtoulst (p, &p, 10)));
988 if (*p)
989 printf_filtered (_("start time (jiffies since "
990 "system boot): %s\n"),
991 pulongest (strtoulst (p, &p, 10)));
992 if (*p)
993 printf_filtered (_("Virtual memory size: %s\n"),
994 pulongest (strtoulst (p, &p, 10)));
995 if (*p)
996 printf_filtered (_("Resident set size: %s\n"),
997 pulongest (strtoulst (p, &p, 10)));
998 if (*p)
999 printf_filtered (_("rlim: %s\n"),
1000 pulongest (strtoulst (p, &p, 10)));
1001 if (*p)
1002 printf_filtered (_("Start of text: %s\n"),
1003 hex_string (strtoulst (p, &p, 10)));
1004 if (*p)
1005 printf_filtered (_("End of text: %s\n"),
1006 hex_string (strtoulst (p, &p, 10)));
1007 if (*p)
1008 printf_filtered (_("Start of stack: %s\n"),
1009 hex_string (strtoulst (p, &p, 10)));
1010#if 0 /* Don't know how architecture-dependent the rest is...
1011 Anyway the signal bitmap info is available from "status". */
1012 if (*p)
1013 printf_filtered (_("Kernel stack pointer: %s\n"),
1014 hex_string (strtoulst (p, &p, 10)));
1015 if (*p)
1016 printf_filtered (_("Kernel instr pointer: %s\n"),
1017 hex_string (strtoulst (p, &p, 10)));
1018 if (*p)
1019 printf_filtered (_("Pending signals bitmap: %s\n"),
1020 hex_string (strtoulst (p, &p, 10)));
1021 if (*p)
1022 printf_filtered (_("Blocked signals bitmap: %s\n"),
1023 hex_string (strtoulst (p, &p, 10)));
1024 if (*p)
1025 printf_filtered (_("Ignored signals bitmap: %s\n"),
1026 hex_string (strtoulst (p, &p, 10)));
1027 if (*p)
1028 printf_filtered (_("Catched signals bitmap: %s\n"),
1029 hex_string (strtoulst (p, &p, 10)));
1030 if (*p)
1031 printf_filtered (_("wchan (system call): %s\n"),
1032 hex_string (strtoulst (p, &p, 10)));
1033#endif
3030c96e
UW
1034 }
1035 else
1036 warning (_("unable to open /proc file '%s'"), filename);
1037 }
1038}
1039
db082f59
KB
1040/* Implementation of `gdbarch_read_core_file_mappings', as defined in
1041 gdbarch.h.
1042
1043 This function reads the NT_FILE note (which BFD turns into the
1044 section ".note.linuxcore.file"). The format of this note / section
1045 is described as follows in the Linux kernel sources in
1046 fs/binfmt_elf.c:
1047
1048 long count -- how many files are mapped
1049 long page_size -- units for file_ofs
1050 array of [COUNT] elements of
1051 long start
1052 long end
1053 long file_ofs
1054 followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1055
1056 CBFD is the BFD of the core file.
1057
1058 PRE_LOOP_CB is the callback function to invoke prior to starting
1059 the loop which processes individual entries. This callback will
1060 only be executed after the note has been examined in enough
1061 detail to verify that it's not malformed in some way.
1062
1063 LOOP_CB is the callback function that will be executed once
1064 for each mapping. */
451b7c33
TT
1065
1066static void
db082f59
KB
1067linux_read_core_file_mappings (struct gdbarch *gdbarch,
1068 struct bfd *cbfd,
1069 gdb::function_view<void (ULONGEST count)>
1070 pre_loop_cb,
1071 gdb::function_view<void (int num,
1072 ULONGEST start,
1073 ULONGEST end,
1074 ULONGEST file_ofs,
1075 const char *filename,
1076 const void *other)>
1077 loop_cb)
451b7c33 1078{
db082f59 1079 /* Ensure that ULONGEST is big enough for reading 64-bit core files. */
451b7c33
TT
1080 gdb_static_assert (sizeof (ULONGEST) >= 8);
1081
db082f59
KB
1082 /* It's not required that the NT_FILE note exists, so return silently
1083 if it's not found. Beyond this point though, we'll complain
1084 if problems are found. */
1085 asection *section = bfd_get_section_by_name (cbfd, ".note.linuxcore.file");
1086 if (section == nullptr)
1087 return;
451b7c33 1088
db082f59
KB
1089 unsigned int addr_size_bits = gdbarch_addr_bit (gdbarch);
1090 unsigned int addr_size = addr_size_bits / 8;
1091 size_t note_size = bfd_section_size (section);
451b7c33
TT
1092
1093 if (note_size < 2 * addr_size)
db082f59
KB
1094 {
1095 warning (_("malformed core note - too short for header"));
1096 return;
1097 }
451b7c33 1098
db082f59 1099 gdb::def_vector<gdb_byte> contents (note_size);
9f584b37
TT
1100 if (!bfd_get_section_contents (core_bfd, section, contents.data (),
1101 0, note_size))
db082f59
KB
1102 {
1103 warning (_("could not get core note contents"));
1104 return;
1105 }
451b7c33 1106
db082f59
KB
1107 gdb_byte *descdata = contents.data ();
1108 char *descend = (char *) descdata + note_size;
451b7c33
TT
1109
1110 if (descdata[note_size - 1] != '\0')
db082f59
KB
1111 {
1112 warning (_("malformed note - does not end with \\0"));
1113 return;
1114 }
451b7c33 1115
db082f59 1116 ULONGEST count = bfd_get (addr_size_bits, core_bfd, descdata);
451b7c33
TT
1117 descdata += addr_size;
1118
db082f59 1119 ULONGEST page_size = bfd_get (addr_size_bits, core_bfd, descdata);
451b7c33
TT
1120 descdata += addr_size;
1121
1122 if (note_size < 2 * addr_size + count * 3 * addr_size)
451b7c33 1123 {
db082f59
KB
1124 warning (_("malformed note - too short for supplied file count"));
1125 return;
451b7c33
TT
1126 }
1127
db082f59
KB
1128 char *filenames = (char *) descdata + count * 3 * addr_size;
1129
1130 /* Make sure that the correct number of filenames exist. Complain
1131 if there aren't enough or are too many. */
1132 char *f = filenames;
1133 for (int i = 0; i < count; i++)
451b7c33 1134 {
db082f59
KB
1135 if (f >= descend)
1136 {
1137 warning (_("malformed note - filename area is too small"));
1138 return;
1139 }
1140 f += strnlen (f, descend - f) + 1;
1141 }
1142 /* Complain, but don't return early if the filename area is too big. */
1143 if (f != descend)
1144 warning (_("malformed note - filename area is too big"));
451b7c33 1145
db082f59 1146 pre_loop_cb (count);
451b7c33 1147
db082f59
KB
1148 for (int i = 0; i < count; i++)
1149 {
1150 ULONGEST start = bfd_get (addr_size_bits, core_bfd, descdata);
451b7c33 1151 descdata += addr_size;
db082f59 1152 ULONGEST end = bfd_get (addr_size_bits, core_bfd, descdata);
451b7c33 1153 descdata += addr_size;
db082f59
KB
1154 ULONGEST file_ofs
1155 = bfd_get (addr_size_bits, core_bfd, descdata) * page_size;
451b7c33 1156 descdata += addr_size;
db082f59
KB
1157 char * filename = filenames;
1158 filenames += strlen ((char *) filenames) + 1;
451b7c33 1159
db082f59 1160 loop_cb (i, start, end, file_ofs, filename, nullptr);
451b7c33 1161 }
451b7c33
TT
1162}
1163
db082f59
KB
1164/* Implement "info proc mappings" for a corefile. */
1165
1166static void
1167linux_core_info_proc_mappings (struct gdbarch *gdbarch, const char *args)
1168{
1169 linux_read_core_file_mappings (gdbarch, core_bfd,
1170 [=] (ULONGEST count)
1171 {
1172 printf_filtered (_("Mapped address spaces:\n\n"));
1173 if (gdbarch_addr_bit (gdbarch) == 32)
1174 {
1175 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1176 "Start Addr",
1177 " End Addr",
1178 " Size", " Offset", "objfile");
1179 }
1180 else
1181 {
1182 printf_filtered (" %18s %18s %10s %10s %s\n",
1183 "Start Addr",
1184 " End Addr",
1185 " Size", " Offset", "objfile");
1186 }
1187 },
1188 [=] (int num, ULONGEST start, ULONGEST end, ULONGEST file_ofs,
1189 const char *filename, const void *other)
1190 {
1191 if (gdbarch_addr_bit (gdbarch) == 32)
1192 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1193 paddress (gdbarch, start),
1194 paddress (gdbarch, end),
1195 hex_string (end - start),
1196 hex_string (file_ofs),
1197 filename);
1198 else
1199 printf_filtered (" %18s %18s %10s %10s %s\n",
1200 paddress (gdbarch, start),
1201 paddress (gdbarch, end),
1202 hex_string (end - start),
1203 hex_string (file_ofs),
1204 filename);
1205 });
1206}
1207
451b7c33
TT
1208/* Implement "info proc" for a corefile. */
1209
1210static void
7bc112c1 1211linux_core_info_proc (struct gdbarch *gdbarch, const char *args,
451b7c33
TT
1212 enum info_proc_what what)
1213{
1214 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
1215 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
1216
1217 if (exe_f)
1218 {
1219 const char *exe;
1220
1221 exe = bfd_core_file_failing_command (core_bfd);
1222 if (exe != NULL)
1223 printf_filtered ("exe = '%s'\n", exe);
1224 else
1225 warning (_("unable to find command name in core file"));
1226 }
1227
1228 if (mappings_f)
1229 linux_core_info_proc_mappings (gdbarch, args);
1230
1231 if (!exe_f && !mappings_f)
1232 error (_("unable to handle request"));
1233}
1234
382b69bb
JB
1235/* Read siginfo data from the core, if possible. Returns -1 on
1236 failure. Otherwise, returns the number of bytes read. READBUF,
1237 OFFSET, and LEN are all as specified by the to_xfer_partial
1238 interface. */
1239
1240static LONGEST
1241linux_core_xfer_siginfo (struct gdbarch *gdbarch, gdb_byte *readbuf,
1242 ULONGEST offset, ULONGEST len)
1243{
1244 thread_section_name section_name (".note.linuxcore.siginfo", inferior_ptid);
1245 asection *section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
1246 if (section == NULL)
1247 return -1;
1248
1249 if (!bfd_get_section_contents (core_bfd, section, readbuf, offset, len))
1250 return -1;
1251
1252 return len;
1253}
1254
db1ff28b
JK
1255typedef int linux_find_memory_region_ftype (ULONGEST vaddr, ULONGEST size,
1256 ULONGEST offset, ULONGEST inode,
1257 int read, int write,
1258 int exec, int modified,
1259 const char *filename,
1260 void *data);
451b7c33 1261
4ba11f89
KB
1262typedef int linux_dump_mapping_p_ftype (filter_flags filterflags,
1263 const struct smaps_vmflags *v,
1264 int maybe_private_p,
1265 int mapping_anon_p,
1266 int mapping_file_p,
1267 const char *filename,
1268 ULONGEST addr,
1269 ULONGEST offset);
1270
db1ff28b 1271/* List memory regions in the inferior for a corefile. */
451b7c33
TT
1272
1273static int
db1ff28b 1274linux_find_memory_regions_full (struct gdbarch *gdbarch,
4ba11f89 1275 linux_dump_mapping_p_ftype *should_dump_mapping_p,
db1ff28b
JK
1276 linux_find_memory_region_ftype *func,
1277 void *obfd)
f7af1fcd 1278{
db1ff28b
JK
1279 char mapsfilename[100];
1280 char coredumpfilter_name[100];
f7af1fcd
JK
1281 pid_t pid;
1282 /* Default dump behavior of coredump_filter (0x33), according to
1283 Documentation/filesystems/proc.txt from the Linux kernel
1284 tree. */
8d297bbf
PA
1285 filter_flags filterflags = (COREFILTER_ANON_PRIVATE
1286 | COREFILTER_ANON_SHARED
1287 | COREFILTER_ELF_HEADERS
1288 | COREFILTER_HUGETLB_PRIVATE);
f7af1fcd 1289
db1ff28b 1290 /* We need to know the real target PID to access /proc. */
f7af1fcd 1291 if (current_inferior ()->fake_pid_p)
db1ff28b 1292 return 1;
f7af1fcd
JK
1293
1294 pid = current_inferior ()->pid;
1295
1296 if (use_coredump_filter)
1297 {
f7af1fcd
JK
1298 xsnprintf (coredumpfilter_name, sizeof (coredumpfilter_name),
1299 "/proc/%d/coredump_filter", pid);
87028b87
TT
1300 gdb::unique_xmalloc_ptr<char> coredumpfilterdata
1301 = target_fileio_read_stralloc (NULL, coredumpfilter_name);
f7af1fcd
JK
1302 if (coredumpfilterdata != NULL)
1303 {
8d297bbf
PA
1304 unsigned int flags;
1305
87028b87 1306 sscanf (coredumpfilterdata.get (), "%x", &flags);
8d297bbf 1307 filterflags = (enum filter_flag) flags;
f7af1fcd
JK
1308 }
1309 }
1310
db1ff28b 1311 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/smaps", pid);
87028b87
TT
1312 gdb::unique_xmalloc_ptr<char> data
1313 = target_fileio_read_stralloc (NULL, mapsfilename);
db1ff28b
JK
1314 if (data == NULL)
1315 {
1316 /* Older Linux kernels did not support /proc/PID/smaps. */
1317 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/maps", pid);
1318 data = target_fileio_read_stralloc (NULL, mapsfilename);
1319 }
1320
1321 if (data != NULL)
1322 {
db1ff28b
JK
1323 char *line, *t;
1324
87028b87 1325 line = strtok_r (data.get (), "\n", &t);
db1ff28b
JK
1326 while (line != NULL)
1327 {
1328 ULONGEST addr, endaddr, offset, inode;
1329 const char *permissions, *device, *filename;
1330 struct smaps_vmflags v;
1331 size_t permissions_len, device_len;
1332 int read, write, exec, priv;
1333 int has_anonymous = 0;
1334 int should_dump_p = 0;
1335 int mapping_anon_p;
1336 int mapping_file_p;
1337
1338 memset (&v, 0, sizeof (v));
1339 read_mapping (line, &addr, &endaddr, &permissions, &permissions_len,
1340 &offset, &device, &device_len, &inode, &filename);
1341 mapping_anon_p = mapping_is_anonymous_p (filename);
1342 /* If the mapping is not anonymous, then we can consider it
1343 to be file-backed. These two states (anonymous or
1344 file-backed) seem to be exclusive, but they can actually
1345 coexist. For example, if a file-backed mapping has
1346 "Anonymous:" pages (see more below), then the Linux
1347 kernel will dump this mapping when the user specified
1348 that she only wants anonymous mappings in the corefile
1349 (*even* when she explicitly disabled the dumping of
1350 file-backed mappings). */
1351 mapping_file_p = !mapping_anon_p;
1352
1353 /* Decode permissions. */
1354 read = (memchr (permissions, 'r', permissions_len) != 0);
1355 write = (memchr (permissions, 'w', permissions_len) != 0);
1356 exec = (memchr (permissions, 'x', permissions_len) != 0);
1357 /* 'private' here actually means VM_MAYSHARE, and not
1358 VM_SHARED. In order to know if a mapping is really
1359 private or not, we must check the flag "sh" in the
1360 VmFlags field. This is done by decode_vmflags. However,
1361 if we are using a Linux kernel released before the commit
1362 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10), we will
1363 not have the VmFlags there. In this case, there is
1364 really no way to know if we are dealing with VM_SHARED,
1365 so we just assume that VM_MAYSHARE is enough. */
1366 priv = memchr (permissions, 'p', permissions_len) != 0;
1367
1368 /* Try to detect if region should be dumped by parsing smaps
1369 counters. */
1370 for (line = strtok_r (NULL, "\n", &t);
1371 line != NULL && line[0] >= 'A' && line[0] <= 'Z';
1372 line = strtok_r (NULL, "\n", &t))
1373 {
1374 char keyword[64 + 1];
1375
1376 if (sscanf (line, "%64s", keyword) != 1)
1377 {
1378 warning (_("Error parsing {s,}maps file '%s'"), mapsfilename);
1379 break;
1380 }
1381
1382 if (strcmp (keyword, "Anonymous:") == 0)
1383 {
1384 /* Older Linux kernels did not support the
1385 "Anonymous:" counter. Check it here. */
1386 has_anonymous = 1;
1387 }
1388 else if (strcmp (keyword, "VmFlags:") == 0)
1389 decode_vmflags (line, &v);
1390
1391 if (strcmp (keyword, "AnonHugePages:") == 0
1392 || strcmp (keyword, "Anonymous:") == 0)
1393 {
1394 unsigned long number;
1395
1396 if (sscanf (line, "%*s%lu", &number) != 1)
1397 {
1398 warning (_("Error parsing {s,}maps file '%s' number"),
1399 mapsfilename);
1400 break;
1401 }
1402 if (number > 0)
1403 {
1404 /* Even if we are dealing with a file-backed
1405 mapping, if it contains anonymous pages we
1406 consider it to be *also* an anonymous
1407 mapping, because this is what the Linux
1408 kernel does:
1409
1410 // Dump segments that have been written to.
1411 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1412 goto whole;
1413
1414 Note that if the mapping is already marked as
1415 file-backed (i.e., mapping_file_p is
1416 non-zero), then this is a special case, and
1417 this mapping will be dumped either when the
1418 user wants to dump file-backed *or* anonymous
1419 mappings. */
1420 mapping_anon_p = 1;
1421 }
1422 }
1423 }
1424
1425 if (has_anonymous)
4ba11f89
KB
1426 should_dump_p = should_dump_mapping_p (filterflags, &v, priv,
1427 mapping_anon_p,
1428 mapping_file_p,
1429 filename, addr, offset);
db1ff28b
JK
1430 else
1431 {
1432 /* Older Linux kernels did not support the "Anonymous:" counter.
1433 If it is missing, we can't be sure - dump all the pages. */
1434 should_dump_p = 1;
1435 }
1436
1437 /* Invoke the callback function to create the corefile segment. */
1438 if (should_dump_p)
1439 func (addr, endaddr - addr, offset, inode,
1440 read, write, exec, 1, /* MODIFIED is true because we
1441 want to dump the mapping. */
1442 filename, obfd);
1443 }
1444
db1ff28b
JK
1445 return 0;
1446 }
1447
1448 return 1;
1449}
1450
1451/* A structure for passing information through
1452 linux_find_memory_regions_full. */
1453
1454struct linux_find_memory_regions_data
1455{
1456 /* The original callback. */
1457
1458 find_memory_region_ftype func;
1459
1460 /* The original datum. */
1461
1462 void *obfd;
1463};
1464
1465/* A callback for linux_find_memory_regions that converts between the
1466 "full"-style callback and find_memory_region_ftype. */
1467
1468static int
1469linux_find_memory_regions_thunk (ULONGEST vaddr, ULONGEST size,
1470 ULONGEST offset, ULONGEST inode,
1471 int read, int write, int exec, int modified,
1472 const char *filename, void *arg)
1473{
9a3c8263
SM
1474 struct linux_find_memory_regions_data *data
1475 = (struct linux_find_memory_regions_data *) arg;
db1ff28b
JK
1476
1477 return data->func (vaddr, size, read, write, exec, modified, data->obfd);
451b7c33
TT
1478}
1479
1480/* A variant of linux_find_memory_regions_full that is suitable as the
1481 gdbarch find_memory_regions method. */
1482
1483static int
1484linux_find_memory_regions (struct gdbarch *gdbarch,
db1ff28b 1485 find_memory_region_ftype func, void *obfd)
451b7c33
TT
1486{
1487 struct linux_find_memory_regions_data data;
1488
1489 data.func = func;
db1ff28b 1490 data.obfd = obfd;
451b7c33 1491
db1ff28b 1492 return linux_find_memory_regions_full (gdbarch,
4ba11f89 1493 dump_mapping_p,
db1ff28b
JK
1494 linux_find_memory_regions_thunk,
1495 &data);
451b7c33
TT
1496}
1497
451b7c33
TT
1498/* This is used to pass information from
1499 linux_make_mappings_corefile_notes through
1500 linux_find_memory_regions_full. */
1501
1502struct linux_make_mappings_data
1503{
1504 /* Number of files mapped. */
1505 ULONGEST file_count;
1506
1507 /* The obstack for the main part of the data. */
1508 struct obstack *data_obstack;
1509
1510 /* The filename obstack. */
1511 struct obstack *filename_obstack;
1512
1513 /* The architecture's "long" type. */
1514 struct type *long_type;
1515};
1516
1517static linux_find_memory_region_ftype linux_make_mappings_callback;
1518
1519/* A callback for linux_find_memory_regions_full that updates the
1520 mappings data for linux_make_mappings_corefile_notes. */
1521
1522static int
1523linux_make_mappings_callback (ULONGEST vaddr, ULONGEST size,
1524 ULONGEST offset, ULONGEST inode,
1525 int read, int write, int exec, int modified,
1526 const char *filename, void *data)
1527{
9a3c8263
SM
1528 struct linux_make_mappings_data *map_data
1529 = (struct linux_make_mappings_data *) data;
451b7c33
TT
1530 gdb_byte buf[sizeof (ULONGEST)];
1531
1532 if (*filename == '\0' || inode == 0)
1533 return 0;
1534
1535 ++map_data->file_count;
1536
1537 pack_long (buf, map_data->long_type, vaddr);
1538 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1539 pack_long (buf, map_data->long_type, vaddr + size);
1540 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1541 pack_long (buf, map_data->long_type, offset);
1542 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1543
1544 obstack_grow_str0 (map_data->filename_obstack, filename);
1545
1546 return 0;
1547}
1548
1549/* Write the file mapping data to the core file, if possible. OBFD is
1550 the output BFD. NOTE_DATA is the current note data, and NOTE_SIZE
1551 is a pointer to the note size. Returns the new NOTE_DATA and
1552 updates NOTE_SIZE. */
1553
1554static char *
1555linux_make_mappings_corefile_notes (struct gdbarch *gdbarch, bfd *obfd,
1556 char *note_data, int *note_size)
1557{
451b7c33
TT
1558 struct linux_make_mappings_data mapping_data;
1559 struct type *long_type
1560 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 0, "long");
1561 gdb_byte buf[sizeof (ULONGEST)];
1562
8268c778 1563 auto_obstack data_obstack, filename_obstack;
451b7c33
TT
1564
1565 mapping_data.file_count = 0;
1566 mapping_data.data_obstack = &data_obstack;
1567 mapping_data.filename_obstack = &filename_obstack;
1568 mapping_data.long_type = long_type;
1569
1570 /* Reserve space for the count. */
1571 obstack_blank (&data_obstack, TYPE_LENGTH (long_type));
1572 /* We always write the page size as 1 since we have no good way to
1573 determine the correct value. */
1574 pack_long (buf, long_type, 1);
1575 obstack_grow (&data_obstack, buf, TYPE_LENGTH (long_type));
1576
4ba11f89
KB
1577 linux_find_memory_regions_full (gdbarch,
1578 dump_note_entry_p,
1579 linux_make_mappings_callback,
db1ff28b 1580 &mapping_data);
451b7c33
TT
1581
1582 if (mapping_data.file_count != 0)
1583 {
1584 /* Write the count to the obstack. */
51a5cd90
PA
1585 pack_long ((gdb_byte *) obstack_base (&data_obstack),
1586 long_type, mapping_data.file_count);
451b7c33
TT
1587
1588 /* Copy the filenames to the data obstack. */
3fba72f7 1589 int size = obstack_object_size (&filename_obstack);
451b7c33 1590 obstack_grow (&data_obstack, obstack_base (&filename_obstack),
3fba72f7 1591 size);
451b7c33
TT
1592
1593 note_data = elfcore_write_note (obfd, note_data, note_size,
1594 "CORE", NT_FILE,
1595 obstack_base (&data_obstack),
1596 obstack_object_size (&data_obstack));
1597 }
1598
451b7c33
TT
1599 return note_data;
1600}
1601
5aa82d05
AA
1602/* Structure for passing information from
1603 linux_collect_thread_registers via an iterator to
1604 linux_collect_regset_section_cb. */
1605
1606struct linux_collect_regset_section_cb_data
1607{
1608 struct gdbarch *gdbarch;
1609 const struct regcache *regcache;
1610 bfd *obfd;
1611 char *note_data;
1612 int *note_size;
1613 unsigned long lwp;
1614 enum gdb_signal stop_signal;
1615 int abort_iteration;
1616};
1617
1618/* Callback for iterate_over_regset_sections that records a single
1619 regset in the corefile note section. */
1620
1621static void
a616bb94
AH
1622linux_collect_regset_section_cb (const char *sect_name, int supply_size,
1623 int collect_size, const struct regset *regset,
5aa82d05
AA
1624 const char *human_name, void *cb_data)
1625{
7567e115
SM
1626 struct linux_collect_regset_section_cb_data *data
1627 = (struct linux_collect_regset_section_cb_data *) cb_data;
a616bb94
AH
1628 bool variable_size_section = (regset != NULL
1629 && regset->flags & REGSET_VARIABLE_SIZE);
1630
1631 if (!variable_size_section)
1632 gdb_assert (supply_size == collect_size);
5aa82d05
AA
1633
1634 if (data->abort_iteration)
1635 return;
1636
5aa82d05
AA
1637 gdb_assert (regset && regset->collect_regset);
1638
afde3032
PFC
1639 /* This is intentionally zero-initialized by using std::vector, so
1640 that any padding bytes in the core file will show as 0. */
1641 std::vector<gdb_byte> buf (collect_size);
1642
1643 regset->collect_regset (regset, data->regcache, -1, buf.data (),
1644 collect_size);
5aa82d05
AA
1645
1646 /* PRSTATUS still needs to be treated specially. */
1647 if (strcmp (sect_name, ".reg") == 0)
1648 data->note_data = (char *) elfcore_write_prstatus
1649 (data->obfd, data->note_data, data->note_size, data->lwp,
afde3032 1650 gdb_signal_to_host (data->stop_signal), buf.data ());
5aa82d05
AA
1651 else
1652 data->note_data = (char *) elfcore_write_register_note
1653 (data->obfd, data->note_data, data->note_size,
afde3032 1654 sect_name, buf.data (), collect_size);
5aa82d05
AA
1655
1656 if (data->note_data == NULL)
1657 data->abort_iteration = 1;
1658}
1659
6432734d
UW
1660/* Records the thread's register state for the corefile note
1661 section. */
1662
1663static char *
1664linux_collect_thread_registers (const struct regcache *regcache,
1665 ptid_t ptid, bfd *obfd,
1666 char *note_data, int *note_size,
2ea28649 1667 enum gdb_signal stop_signal)
6432734d 1668{
ac7936df 1669 struct gdbarch *gdbarch = regcache->arch ();
5aa82d05 1670 struct linux_collect_regset_section_cb_data data;
6432734d 1671
5aa82d05
AA
1672 data.gdbarch = gdbarch;
1673 data.regcache = regcache;
1674 data.obfd = obfd;
1675 data.note_data = note_data;
1676 data.note_size = note_size;
1677 data.stop_signal = stop_signal;
1678 data.abort_iteration = 0;
6432734d
UW
1679
1680 /* For remote targets the LWP may not be available, so use the TID. */
e38504b3 1681 data.lwp = ptid.lwp ();
5aa82d05 1682 if (!data.lwp)
cc6bcb54 1683 data.lwp = ptid.tid ();
5aa82d05
AA
1684
1685 gdbarch_iterate_over_regset_sections (gdbarch,
1686 linux_collect_regset_section_cb,
1687 &data, regcache);
1688 return data.note_data;
6432734d
UW
1689}
1690
2989a365 1691/* Fetch the siginfo data for the specified thread, if it exists. If
9f584b37
TT
1692 there is no data, or we could not read it, return an empty
1693 buffer. */
1694
1695static gdb::byte_vector
1696linux_get_siginfo_data (thread_info *thread, struct gdbarch *gdbarch)
9015683b
TT
1697{
1698 struct type *siginfo_type;
9015683b 1699 LONGEST bytes_read;
9015683b
TT
1700
1701 if (!gdbarch_get_siginfo_type_p (gdbarch))
9f584b37
TT
1702 return gdb::byte_vector ();
1703
41792d68
PA
1704 scoped_restore_current_thread save_current_thread;
1705 switch_to_thread (thread);
2989a365 1706
9015683b
TT
1707 siginfo_type = gdbarch_get_siginfo_type (gdbarch);
1708
9f584b37 1709 gdb::byte_vector buf (TYPE_LENGTH (siginfo_type));
9015683b 1710
8b88a78e 1711 bytes_read = target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9f584b37
TT
1712 buf.data (), 0, TYPE_LENGTH (siginfo_type));
1713 if (bytes_read != TYPE_LENGTH (siginfo_type))
1714 buf.clear ();
9015683b
TT
1715
1716 return buf;
1717}
1718
6432734d
UW
1719struct linux_corefile_thread_data
1720{
1721 struct gdbarch *gdbarch;
6432734d
UW
1722 bfd *obfd;
1723 char *note_data;
1724 int *note_size;
2ea28649 1725 enum gdb_signal stop_signal;
6432734d
UW
1726};
1727
050c224b
PA
1728/* Records the thread's register state for the corefile note
1729 section. */
6432734d 1730
050c224b
PA
1731static void
1732linux_corefile_thread (struct thread_info *info,
1733 struct linux_corefile_thread_data *args)
6432734d 1734{
050c224b 1735 struct regcache *regcache;
050c224b 1736
5b6d1e4f
PA
1737 regcache = get_thread_arch_regcache (info->inf->process_target (),
1738 info->ptid, args->gdbarch);
050c224b 1739
050c224b 1740 target_fetch_registers (regcache, -1);
9f584b37 1741 gdb::byte_vector siginfo_data = linux_get_siginfo_data (info, args->gdbarch);
050c224b
PA
1742
1743 args->note_data = linux_collect_thread_registers
1744 (regcache, info->ptid, args->obfd, args->note_data,
1745 args->note_size, args->stop_signal);
1746
1747 /* Don't return anything if we got no register information above,
1748 such a core file is useless. */
1749 if (args->note_data != NULL)
9f584b37 1750 if (!siginfo_data.empty ())
050c224b
PA
1751 args->note_data = elfcore_write_note (args->obfd,
1752 args->note_data,
1753 args->note_size,
1754 "CORE", NT_SIGINFO,
9f584b37
TT
1755 siginfo_data.data (),
1756 siginfo_data.size ());
6432734d
UW
1757}
1758
b3ac9c77
SDJ
1759/* Fill the PRPSINFO structure with information about the process being
1760 debugged. Returns 1 in case of success, 0 for failures. Please note that
1761 even if the structure cannot be entirely filled (e.g., GDB was unable to
1762 gather information about the process UID/GID), this function will still
1763 return 1 since some information was already recorded. It will only return
1764 0 iff nothing can be gathered. */
1765
1766static int
1767linux_fill_prpsinfo (struct elf_internal_linux_prpsinfo *p)
1768{
1769 /* The filename which we will use to obtain some info about the process.
1770 We will basically use this to store the `/proc/PID/FILENAME' file. */
1771 char filename[100];
b3ac9c77
SDJ
1772 /* The basename of the executable. */
1773 const char *basename;
cbaaa0ca 1774 const char *infargs;
b3ac9c77
SDJ
1775 /* Temporary buffer. */
1776 char *tmpstr;
1777 /* The valid states of a process, according to the Linux kernel. */
1778 const char valid_states[] = "RSDTZW";
1779 /* The program state. */
1780 const char *prog_state;
1781 /* The state of the process. */
1782 char pr_sname;
1783 /* The PID of the program which generated the corefile. */
1784 pid_t pid;
1785 /* Process flags. */
1786 unsigned int pr_flag;
1787 /* Process nice value. */
1788 long pr_nice;
1789 /* The number of fields read by `sscanf'. */
1790 int n_fields = 0;
b3ac9c77
SDJ
1791
1792 gdb_assert (p != NULL);
1793
1794 /* Obtaining PID and filename. */
e99b03dc 1795 pid = inferior_ptid.pid ();
b3ac9c77 1796 xsnprintf (filename, sizeof (filename), "/proc/%d/cmdline", (int) pid);
87028b87
TT
1797 /* The full name of the program which generated the corefile. */
1798 gdb::unique_xmalloc_ptr<char> fname
1799 = target_fileio_read_stralloc (NULL, filename);
b3ac9c77 1800
87028b87 1801 if (fname == NULL || fname.get ()[0] == '\0')
b3ac9c77
SDJ
1802 {
1803 /* No program name was read, so we won't be able to retrieve more
1804 information about the process. */
b3ac9c77
SDJ
1805 return 0;
1806 }
1807
b3ac9c77
SDJ
1808 memset (p, 0, sizeof (*p));
1809
1810 /* Defining the PID. */
1811 p->pr_pid = pid;
1812
1813 /* Copying the program name. Only the basename matters. */
87028b87 1814 basename = lbasename (fname.get ());
f67210ff 1815 strncpy (p->pr_fname, basename, sizeof (p->pr_fname) - 1);
b3ac9c77
SDJ
1816 p->pr_fname[sizeof (p->pr_fname) - 1] = '\0';
1817
1818 infargs = get_inferior_args ();
1819
87028b87
TT
1820 /* The arguments of the program. */
1821 std::string psargs = fname.get ();
b3ac9c77 1822 if (infargs != NULL)
87028b87 1823 psargs = psargs + " " + infargs;
b3ac9c77 1824
f67210ff 1825 strncpy (p->pr_psargs, psargs.c_str (), sizeof (p->pr_psargs) - 1);
b3ac9c77
SDJ
1826 p->pr_psargs[sizeof (p->pr_psargs) - 1] = '\0';
1827
1828 xsnprintf (filename, sizeof (filename), "/proc/%d/stat", (int) pid);
87028b87
TT
1829 /* The contents of `/proc/PID/stat'. */
1830 gdb::unique_xmalloc_ptr<char> proc_stat_contents
1831 = target_fileio_read_stralloc (NULL, filename);
1832 char *proc_stat = proc_stat_contents.get ();
b3ac9c77
SDJ
1833
1834 if (proc_stat == NULL || *proc_stat == '\0')
1835 {
1836 /* Despite being unable to read more information about the
1837 process, we return 1 here because at least we have its
1838 command line, PID and arguments. */
b3ac9c77
SDJ
1839 return 1;
1840 }
1841
1842 /* Ok, we have the stats. It's time to do a little parsing of the
1843 contents of the buffer, so that we end up reading what we want.
1844
1845 The following parsing mechanism is strongly based on the
1846 information generated by the `fs/proc/array.c' file, present in
1847 the Linux kernel tree. More details about how the information is
1848 displayed can be obtained by seeing the manpage of proc(5),
1849 specifically under the entry of `/proc/[pid]/stat'. */
1850
1851 /* Getting rid of the PID, since we already have it. */
1852 while (isdigit (*proc_stat))
1853 ++proc_stat;
1854
1855 proc_stat = skip_spaces (proc_stat);
1856
184cd072
JK
1857 /* ps command also relies on no trailing fields ever contain ')'. */
1858 proc_stat = strrchr (proc_stat, ')');
1859 if (proc_stat == NULL)
87028b87 1860 return 1;
184cd072 1861 proc_stat++;
b3ac9c77
SDJ
1862
1863 proc_stat = skip_spaces (proc_stat);
1864
1865 n_fields = sscanf (proc_stat,
1866 "%c" /* Process state. */
1867 "%d%d%d" /* Parent PID, group ID, session ID. */
1868 "%*d%*d" /* tty_nr, tpgid (not used). */
1869 "%u" /* Flags. */
1870 "%*s%*s%*s%*s" /* minflt, cminflt, majflt,
1871 cmajflt (not used). */
1872 "%*s%*s%*s%*s" /* utime, stime, cutime,
1873 cstime (not used). */
1874 "%*s" /* Priority (not used). */
1875 "%ld", /* Nice. */
1876 &pr_sname,
1877 &p->pr_ppid, &p->pr_pgrp, &p->pr_sid,
1878 &pr_flag,
1879 &pr_nice);
1880
1881 if (n_fields != 6)
1882 {
1883 /* Again, we couldn't read the complementary information about
1884 the process state. However, we already have minimal
1885 information, so we just return 1 here. */
b3ac9c77
SDJ
1886 return 1;
1887 }
1888
1889 /* Filling the structure fields. */
1890 prog_state = strchr (valid_states, pr_sname);
1891 if (prog_state != NULL)
1892 p->pr_state = prog_state - valid_states;
1893 else
1894 {
1895 /* Zero means "Running". */
1896 p->pr_state = 0;
1897 }
1898
1899 p->pr_sname = p->pr_state > 5 ? '.' : pr_sname;
1900 p->pr_zomb = p->pr_sname == 'Z';
1901 p->pr_nice = pr_nice;
1902 p->pr_flag = pr_flag;
1903
1904 /* Finally, obtaining the UID and GID. For that, we read and parse the
1905 contents of the `/proc/PID/status' file. */
1906 xsnprintf (filename, sizeof (filename), "/proc/%d/status", (int) pid);
87028b87
TT
1907 /* The contents of `/proc/PID/status'. */
1908 gdb::unique_xmalloc_ptr<char> proc_status_contents
1909 = target_fileio_read_stralloc (NULL, filename);
1910 char *proc_status = proc_status_contents.get ();
b3ac9c77
SDJ
1911
1912 if (proc_status == NULL || *proc_status == '\0')
1913 {
1914 /* Returning 1 since we already have a bunch of information. */
b3ac9c77
SDJ
1915 return 1;
1916 }
1917
1918 /* Extracting the UID. */
1919 tmpstr = strstr (proc_status, "Uid:");
1920 if (tmpstr != NULL)
1921 {
1922 /* Advancing the pointer to the beginning of the UID. */
1923 tmpstr += sizeof ("Uid:");
1924 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1925 ++tmpstr;
1926
1927 if (isdigit (*tmpstr))
1928 p->pr_uid = strtol (tmpstr, &tmpstr, 10);
1929 }
1930
1931 /* Extracting the GID. */
1932 tmpstr = strstr (proc_status, "Gid:");
1933 if (tmpstr != NULL)
1934 {
1935 /* Advancing the pointer to the beginning of the GID. */
1936 tmpstr += sizeof ("Gid:");
1937 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1938 ++tmpstr;
1939
1940 if (isdigit (*tmpstr))
1941 p->pr_gid = strtol (tmpstr, &tmpstr, 10);
1942 }
1943
b3ac9c77
SDJ
1944 return 1;
1945}
1946
8df01799
PA
1947/* Find the signalled thread. In case there's more than one signalled
1948 thread, prefer the current thread, if it is signalled. If no
1949 thread was signalled, default to the current thread, unless it has
1950 exited, in which case return NULL. */
1951
1952static thread_info *
1953find_signalled_thread ()
1954{
1955 thread_info *curr_thr = inferior_thread ();
1956 if (curr_thr->state != THREAD_EXITED
1957 && curr_thr->suspend.stop_signal != GDB_SIGNAL_0)
1958 return curr_thr;
1959
1960 for (thread_info *thr : current_inferior ()->non_exited_threads ())
1961 if (thr->suspend.stop_signal != GDB_SIGNAL_0)
1962 return thr;
1963
1964 /* Default to the current thread, unless it has exited. */
1965 if (curr_thr->state != THREAD_EXITED)
1966 return curr_thr;
1967
1968 return nullptr;
1969}
1970
f968fe80
AA
1971/* Build the note section for a corefile, and return it in a malloc
1972 buffer. */
6432734d 1973
f968fe80
AA
1974static char *
1975linux_make_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, int *note_size)
6432734d
UW
1976{
1977 struct linux_corefile_thread_data thread_args;
b3ac9c77 1978 struct elf_internal_linux_prpsinfo prpsinfo;
6432734d 1979 char *note_data = NULL;
6432734d 1980
f968fe80
AA
1981 if (! gdbarch_iterate_over_regset_sections_p (gdbarch))
1982 return NULL;
1983
b3ac9c77 1984 if (linux_fill_prpsinfo (&prpsinfo))
6432734d 1985 {
fe220226
MR
1986 if (gdbarch_ptr_bit (gdbarch) == 64)
1987 note_data = elfcore_write_linux_prpsinfo64 (obfd,
1988 note_data, note_size,
1989 &prpsinfo);
b3ac9c77 1990 else
fe220226
MR
1991 note_data = elfcore_write_linux_prpsinfo32 (obfd,
1992 note_data, note_size,
1993 &prpsinfo);
6432734d
UW
1994 }
1995
1996 /* Thread register information. */
a70b8144 1997 try
22fd09ae
JK
1998 {
1999 update_thread_list ();
2000 }
230d2906 2001 catch (const gdb_exception_error &e)
492d29ea
PA
2002 {
2003 exception_print (gdb_stderr, e);
2004 }
492d29ea 2005
050c224b 2006 /* Like the kernel, prefer dumping the signalled thread first.
8df01799
PA
2007 "First thread" is what tools use to infer the signalled
2008 thread. */
2009 thread_info *signalled_thr = find_signalled_thread ();
050c224b 2010
6432734d 2011 thread_args.gdbarch = gdbarch;
6432734d
UW
2012 thread_args.obfd = obfd;
2013 thread_args.note_data = note_data;
2014 thread_args.note_size = note_size;
8df01799
PA
2015 if (signalled_thr != nullptr)
2016 thread_args.stop_signal = signalled_thr->suspend.stop_signal;
2017 else
2018 thread_args.stop_signal = GDB_SIGNAL_0;
050c224b 2019
8df01799
PA
2020 if (signalled_thr != nullptr)
2021 linux_corefile_thread (signalled_thr, &thread_args);
08036331 2022 for (thread_info *thr : current_inferior ()->non_exited_threads ())
050c224b
PA
2023 {
2024 if (thr == signalled_thr)
2025 continue;
050c224b
PA
2026
2027 linux_corefile_thread (thr, &thread_args);
2028 }
2029
6432734d
UW
2030 note_data = thread_args.note_data;
2031 if (!note_data)
2032 return NULL;
2033
2034 /* Auxillary vector. */
9018be22 2035 gdb::optional<gdb::byte_vector> auxv =
8b88a78e 2036 target_read_alloc (current_top_target (), TARGET_OBJECT_AUXV, NULL);
9018be22 2037 if (auxv && !auxv->empty ())
6432734d
UW
2038 {
2039 note_data = elfcore_write_note (obfd, note_data, note_size,
9018be22
SM
2040 "CORE", NT_AUXV, auxv->data (),
2041 auxv->size ());
6432734d
UW
2042
2043 if (!note_data)
2044 return NULL;
2045 }
2046
451b7c33
TT
2047 /* File mappings. */
2048 note_data = linux_make_mappings_corefile_notes (gdbarch, obfd,
2049 note_data, note_size);
2050
6432734d
UW
2051 return note_data;
2052}
2053
eb14d406
SDJ
2054/* Implementation of `gdbarch_gdb_signal_from_target', as defined in
2055 gdbarch.h. This function is not static because it is exported to
2056 other -tdep files. */
2057
2058enum gdb_signal
2059linux_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
2060{
2061 switch (signal)
2062 {
2063 case 0:
2064 return GDB_SIGNAL_0;
2065
2066 case LINUX_SIGHUP:
2067 return GDB_SIGNAL_HUP;
2068
2069 case LINUX_SIGINT:
2070 return GDB_SIGNAL_INT;
2071
2072 case LINUX_SIGQUIT:
2073 return GDB_SIGNAL_QUIT;
2074
2075 case LINUX_SIGILL:
2076 return GDB_SIGNAL_ILL;
2077
2078 case LINUX_SIGTRAP:
2079 return GDB_SIGNAL_TRAP;
2080
2081 case LINUX_SIGABRT:
2082 return GDB_SIGNAL_ABRT;
2083
2084 case LINUX_SIGBUS:
2085 return GDB_SIGNAL_BUS;
2086
2087 case LINUX_SIGFPE:
2088 return GDB_SIGNAL_FPE;
2089
2090 case LINUX_SIGKILL:
2091 return GDB_SIGNAL_KILL;
2092
2093 case LINUX_SIGUSR1:
2094 return GDB_SIGNAL_USR1;
2095
2096 case LINUX_SIGSEGV:
2097 return GDB_SIGNAL_SEGV;
2098
2099 case LINUX_SIGUSR2:
2100 return GDB_SIGNAL_USR2;
2101
2102 case LINUX_SIGPIPE:
2103 return GDB_SIGNAL_PIPE;
2104
2105 case LINUX_SIGALRM:
2106 return GDB_SIGNAL_ALRM;
2107
2108 case LINUX_SIGTERM:
2109 return GDB_SIGNAL_TERM;
2110
2111 case LINUX_SIGCHLD:
2112 return GDB_SIGNAL_CHLD;
2113
2114 case LINUX_SIGCONT:
2115 return GDB_SIGNAL_CONT;
2116
2117 case LINUX_SIGSTOP:
2118 return GDB_SIGNAL_STOP;
2119
2120 case LINUX_SIGTSTP:
2121 return GDB_SIGNAL_TSTP;
2122
2123 case LINUX_SIGTTIN:
2124 return GDB_SIGNAL_TTIN;
2125
2126 case LINUX_SIGTTOU:
2127 return GDB_SIGNAL_TTOU;
2128
2129 case LINUX_SIGURG:
2130 return GDB_SIGNAL_URG;
2131
2132 case LINUX_SIGXCPU:
2133 return GDB_SIGNAL_XCPU;
2134
2135 case LINUX_SIGXFSZ:
2136 return GDB_SIGNAL_XFSZ;
2137
2138 case LINUX_SIGVTALRM:
2139 return GDB_SIGNAL_VTALRM;
2140
2141 case LINUX_SIGPROF:
2142 return GDB_SIGNAL_PROF;
2143
2144 case LINUX_SIGWINCH:
2145 return GDB_SIGNAL_WINCH;
2146
2147 /* No way to differentiate between SIGIO and SIGPOLL.
2148 Therefore, we just handle the first one. */
2149 case LINUX_SIGIO:
2150 return GDB_SIGNAL_IO;
2151
2152 case LINUX_SIGPWR:
2153 return GDB_SIGNAL_PWR;
2154
2155 case LINUX_SIGSYS:
2156 return GDB_SIGNAL_SYS;
2157
2158 /* SIGRTMIN and SIGRTMAX are not continuous in <gdb/signals.def>,
2159 therefore we have to handle them here. */
2160 case LINUX_SIGRTMIN:
2161 return GDB_SIGNAL_REALTIME_32;
2162
2163 case LINUX_SIGRTMAX:
2164 return GDB_SIGNAL_REALTIME_64;
2165 }
2166
2167 if (signal >= LINUX_SIGRTMIN + 1 && signal <= LINUX_SIGRTMAX - 1)
2168 {
2169 int offset = signal - LINUX_SIGRTMIN + 1;
2170
2171 return (enum gdb_signal) ((int) GDB_SIGNAL_REALTIME_33 + offset);
2172 }
2173
2174 return GDB_SIGNAL_UNKNOWN;
2175}
2176
2177/* Implementation of `gdbarch_gdb_signal_to_target', as defined in
2178 gdbarch.h. This function is not static because it is exported to
2179 other -tdep files. */
2180
2181int
2182linux_gdb_signal_to_target (struct gdbarch *gdbarch,
2183 enum gdb_signal signal)
2184{
2185 switch (signal)
2186 {
2187 case GDB_SIGNAL_0:
2188 return 0;
2189
2190 case GDB_SIGNAL_HUP:
2191 return LINUX_SIGHUP;
2192
2193 case GDB_SIGNAL_INT:
2194 return LINUX_SIGINT;
2195
2196 case GDB_SIGNAL_QUIT:
2197 return LINUX_SIGQUIT;
2198
2199 case GDB_SIGNAL_ILL:
2200 return LINUX_SIGILL;
2201
2202 case GDB_SIGNAL_TRAP:
2203 return LINUX_SIGTRAP;
2204
2205 case GDB_SIGNAL_ABRT:
2206 return LINUX_SIGABRT;
2207
2208 case GDB_SIGNAL_FPE:
2209 return LINUX_SIGFPE;
2210
2211 case GDB_SIGNAL_KILL:
2212 return LINUX_SIGKILL;
2213
2214 case GDB_SIGNAL_BUS:
2215 return LINUX_SIGBUS;
2216
2217 case GDB_SIGNAL_SEGV:
2218 return LINUX_SIGSEGV;
2219
2220 case GDB_SIGNAL_SYS:
2221 return LINUX_SIGSYS;
2222
2223 case GDB_SIGNAL_PIPE:
2224 return LINUX_SIGPIPE;
2225
2226 case GDB_SIGNAL_ALRM:
2227 return LINUX_SIGALRM;
2228
2229 case GDB_SIGNAL_TERM:
2230 return LINUX_SIGTERM;
2231
2232 case GDB_SIGNAL_URG:
2233 return LINUX_SIGURG;
2234
2235 case GDB_SIGNAL_STOP:
2236 return LINUX_SIGSTOP;
2237
2238 case GDB_SIGNAL_TSTP:
2239 return LINUX_SIGTSTP;
2240
2241 case GDB_SIGNAL_CONT:
2242 return LINUX_SIGCONT;
2243
2244 case GDB_SIGNAL_CHLD:
2245 return LINUX_SIGCHLD;
2246
2247 case GDB_SIGNAL_TTIN:
2248 return LINUX_SIGTTIN;
2249
2250 case GDB_SIGNAL_TTOU:
2251 return LINUX_SIGTTOU;
2252
2253 case GDB_SIGNAL_IO:
2254 return LINUX_SIGIO;
2255
2256 case GDB_SIGNAL_XCPU:
2257 return LINUX_SIGXCPU;
2258
2259 case GDB_SIGNAL_XFSZ:
2260 return LINUX_SIGXFSZ;
2261
2262 case GDB_SIGNAL_VTALRM:
2263 return LINUX_SIGVTALRM;
2264
2265 case GDB_SIGNAL_PROF:
2266 return LINUX_SIGPROF;
2267
2268 case GDB_SIGNAL_WINCH:
2269 return LINUX_SIGWINCH;
2270
2271 case GDB_SIGNAL_USR1:
2272 return LINUX_SIGUSR1;
2273
2274 case GDB_SIGNAL_USR2:
2275 return LINUX_SIGUSR2;
2276
2277 case GDB_SIGNAL_PWR:
2278 return LINUX_SIGPWR;
2279
2280 case GDB_SIGNAL_POLL:
2281 return LINUX_SIGPOLL;
2282
2283 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
2284 therefore we have to handle it here. */
2285 case GDB_SIGNAL_REALTIME_32:
2286 return LINUX_SIGRTMIN;
2287
2288 /* Same comment applies to _64. */
2289 case GDB_SIGNAL_REALTIME_64:
2290 return LINUX_SIGRTMAX;
2291 }
2292
2293 /* GDB_SIGNAL_REALTIME_33 to _64 are continuous. */
2294 if (signal >= GDB_SIGNAL_REALTIME_33
2295 && signal <= GDB_SIGNAL_REALTIME_63)
2296 {
2297 int offset = signal - GDB_SIGNAL_REALTIME_33;
2298
2299 return LINUX_SIGRTMIN + 1 + offset;
2300 }
2301
2302 return -1;
2303}
2304
cdfa0b0a
PA
2305/* Helper for linux_vsyscall_range that does the real work of finding
2306 the vsyscall's address range. */
3437254d
PA
2307
2308static int
cdfa0b0a 2309linux_vsyscall_range_raw (struct gdbarch *gdbarch, struct mem_range *range)
3437254d 2310{
95e94c3f
PA
2311 char filename[100];
2312 long pid;
95e94c3f 2313
8b88a78e 2314 if (target_auxv_search (current_top_target (), AT_SYSINFO_EHDR, &range->start) <= 0)
95e94c3f
PA
2315 return 0;
2316
6bb90213
PA
2317 /* It doesn't make sense to access the host's /proc when debugging a
2318 core file. Instead, look for the PT_LOAD segment that matches
2319 the vDSO. */
2320 if (!target_has_execution)
2321 {
6bb90213
PA
2322 long phdrs_size;
2323 int num_phdrs, i;
2324
2325 phdrs_size = bfd_get_elf_phdr_upper_bound (core_bfd);
2326 if (phdrs_size == -1)
2327 return 0;
2328
31aceee8
TV
2329 gdb::unique_xmalloc_ptr<Elf_Internal_Phdr>
2330 phdrs ((Elf_Internal_Phdr *) xmalloc (phdrs_size));
2331 num_phdrs = bfd_get_elf_phdrs (core_bfd, phdrs.get ());
6bb90213
PA
2332 if (num_phdrs == -1)
2333 return 0;
2334
2335 for (i = 0; i < num_phdrs; i++)
31aceee8
TV
2336 if (phdrs.get ()[i].p_type == PT_LOAD
2337 && phdrs.get ()[i].p_vaddr == range->start)
6bb90213 2338 {
31aceee8 2339 range->length = phdrs.get ()[i].p_memsz;
6bb90213
PA
2340 return 1;
2341 }
2342
2343 return 0;
2344 }
2345
95e94c3f
PA
2346 /* We need to know the real target PID to access /proc. */
2347 if (current_inferior ()->fake_pid_p)
2348 return 0;
2349
95e94c3f 2350 pid = current_inferior ()->pid;
3437254d 2351
95e94c3f
PA
2352 /* Note that reading /proc/PID/task/PID/maps (1) is much faster than
2353 reading /proc/PID/maps (2). The later identifies thread stacks
2354 in the output, which requires scanning every thread in the thread
2355 group to check whether a VMA is actually a thread's stack. With
2356 Linux 4.4 on an Intel i7-4810MQ @ 2.80GHz, with an inferior with
2357 a few thousand threads, (1) takes a few miliseconds, while (2)
2358 takes several seconds. Also note that "smaps", what we read for
2359 determining core dump mappings, is even slower than "maps". */
2360 xsnprintf (filename, sizeof filename, "/proc/%ld/task/%ld/maps", pid, pid);
87028b87
TT
2361 gdb::unique_xmalloc_ptr<char> data
2362 = target_fileio_read_stralloc (NULL, filename);
95e94c3f
PA
2363 if (data != NULL)
2364 {
95e94c3f
PA
2365 char *line;
2366 char *saveptr = NULL;
2367
87028b87 2368 for (line = strtok_r (data.get (), "\n", &saveptr);
95e94c3f
PA
2369 line != NULL;
2370 line = strtok_r (NULL, "\n", &saveptr))
2371 {
2372 ULONGEST addr, endaddr;
2373 const char *p = line;
2374
2375 addr = strtoulst (p, &p, 16);
2376 if (addr == range->start)
2377 {
2378 if (*p == '-')
2379 p++;
2380 endaddr = strtoulst (p, &p, 16);
2381 range->length = endaddr - addr;
95e94c3f
PA
2382 return 1;
2383 }
2384 }
95e94c3f
PA
2385 }
2386 else
2387 warning (_("unable to open /proc file '%s'"), filename);
2388
2389 return 0;
3437254d
PA
2390}
2391
cdfa0b0a
PA
2392/* Implementation of the "vsyscall_range" gdbarch hook. Handles
2393 caching, and defers the real work to linux_vsyscall_range_raw. */
2394
2395static int
2396linux_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
2397{
2398 struct linux_info *info = get_linux_inferior_data ();
2399
2400 if (info->vsyscall_range_p == 0)
2401 {
2402 if (linux_vsyscall_range_raw (gdbarch, &info->vsyscall_range))
2403 info->vsyscall_range_p = 1;
2404 else
2405 info->vsyscall_range_p = -1;
2406 }
2407
2408 if (info->vsyscall_range_p < 0)
2409 return 0;
2410
2411 *range = info->vsyscall_range;
2412 return 1;
2413}
2414
3bc3cebe
JK
2415/* Symbols for linux_infcall_mmap's ARG_FLAGS; their Linux MAP_* system
2416 definitions would be dependent on compilation host. */
2417#define GDB_MMAP_MAP_PRIVATE 0x02 /* Changes are private. */
2418#define GDB_MMAP_MAP_ANONYMOUS 0x20 /* Don't use a file. */
2419
2420/* See gdbarch.sh 'infcall_mmap'. */
2421
2422static CORE_ADDR
2423linux_infcall_mmap (CORE_ADDR size, unsigned prot)
2424{
2425 struct objfile *objf;
2426 /* Do there still exist any Linux systems without "mmap64"?
2427 "mmap" uses 64-bit off_t on x86_64 and 32-bit off_t on i386 and x32. */
2428 struct value *mmap_val = find_function_in_inferior ("mmap64", &objf);
2429 struct value *addr_val;
08feed99 2430 struct gdbarch *gdbarch = objf->arch ();
3bc3cebe
JK
2431 CORE_ADDR retval;
2432 enum
2433 {
2a546367 2434 ARG_ADDR, ARG_LENGTH, ARG_PROT, ARG_FLAGS, ARG_FD, ARG_OFFSET, ARG_LAST
3bc3cebe 2435 };
2a546367 2436 struct value *arg[ARG_LAST];
3bc3cebe
JK
2437
2438 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2439 0);
2440 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2441 arg[ARG_LENGTH] = value_from_ulongest
2442 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2443 gdb_assert ((prot & ~(GDB_MMAP_PROT_READ | GDB_MMAP_PROT_WRITE
2444 | GDB_MMAP_PROT_EXEC))
2445 == 0);
2446 arg[ARG_PROT] = value_from_longest (builtin_type (gdbarch)->builtin_int, prot);
2447 arg[ARG_FLAGS] = value_from_longest (builtin_type (gdbarch)->builtin_int,
2448 GDB_MMAP_MAP_PRIVATE
2449 | GDB_MMAP_MAP_ANONYMOUS);
2450 arg[ARG_FD] = value_from_longest (builtin_type (gdbarch)->builtin_int, -1);
2451 arg[ARG_OFFSET] = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2452 0);
e71585ff 2453 addr_val = call_function_by_hand (mmap_val, NULL, arg);
3bc3cebe
JK
2454 retval = value_as_address (addr_val);
2455 if (retval == (CORE_ADDR) -1)
2456 error (_("Failed inferior mmap call for %s bytes, errno is changed."),
2457 pulongest (size));
2458 return retval;
2459}
2460
7f361056
JK
2461/* See gdbarch.sh 'infcall_munmap'. */
2462
2463static void
2464linux_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
2465{
2466 struct objfile *objf;
2467 struct value *munmap_val = find_function_in_inferior ("munmap", &objf);
2468 struct value *retval_val;
08feed99 2469 struct gdbarch *gdbarch = objf->arch ();
7f361056
JK
2470 LONGEST retval;
2471 enum
2472 {
2473 ARG_ADDR, ARG_LENGTH, ARG_LAST
2474 };
2475 struct value *arg[ARG_LAST];
2476
2477 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2478 addr);
2479 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2480 arg[ARG_LENGTH] = value_from_ulongest
2481 (builtin_type (gdbarch)->builtin_unsigned_long, size);
e71585ff 2482 retval_val = call_function_by_hand (munmap_val, NULL, arg);
7f361056
JK
2483 retval = value_as_long (retval_val);
2484 if (retval != 0)
2485 warning (_("Failed inferior munmap call at %s for %s bytes, "
2486 "errno is changed."),
2487 hex_string (addr), pulongest (size));
2488}
2489
906d60cf
PA
2490/* See linux-tdep.h. */
2491
2492CORE_ADDR
2493linux_displaced_step_location (struct gdbarch *gdbarch)
2494{
2495 CORE_ADDR addr;
2496 int bp_len;
2497
2498 /* Determine entry point from target auxiliary vector. This avoids
2499 the need for symbols. Also, when debugging a stand-alone SPU
2500 executable, entry_point_address () will point to an SPU
2501 local-store address and is thus not usable as displaced stepping
2502 location. The auxiliary vector gets us the PowerPC-side entry
2503 point address instead. */
8b88a78e 2504 if (target_auxv_search (current_top_target (), AT_ENTRY, &addr) <= 0)
16b41842
PA
2505 throw_error (NOT_SUPPORTED_ERROR,
2506 _("Cannot find AT_ENTRY auxiliary vector entry."));
906d60cf
PA
2507
2508 /* Make certain that the address points at real code, and not a
2509 function descriptor. */
2510 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
8b88a78e 2511 current_top_target ());
906d60cf
PA
2512
2513 /* Inferior calls also use the entry point as a breakpoint location.
2514 We don't want displaced stepping to interfere with those
2515 breakpoints, so leave space. */
2516 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
2517 addr += bp_len * 2;
2518
2519 return addr;
2520}
2521
0f83012e
AH
2522/* See linux-tdep.h. */
2523
2524CORE_ADDR
2525linux_get_hwcap (struct target_ops *target)
2526{
2527 CORE_ADDR field;
2528 if (target_auxv_search (target, AT_HWCAP, &field) != 1)
2529 return 0;
2530 return field;
2531}
2532
2533/* See linux-tdep.h. */
2534
2535CORE_ADDR
2536linux_get_hwcap2 (struct target_ops *target)
2537{
2538 CORE_ADDR field;
2539 if (target_auxv_search (target, AT_HWCAP2, &field) != 1)
2540 return 0;
2541 return field;
2542}
2543
df8411da
SDJ
2544/* Display whether the gcore command is using the
2545 /proc/PID/coredump_filter file. */
2546
2547static void
2548show_use_coredump_filter (struct ui_file *file, int from_tty,
2549 struct cmd_list_element *c, const char *value)
2550{
2551 fprintf_filtered (file, _("Use of /proc/PID/coredump_filter file to generate"
2552 " corefiles is %s.\n"), value);
2553}
2554
afa840dc
SL
2555/* Display whether the gcore command is dumping mappings marked with
2556 the VM_DONTDUMP flag. */
2557
2558static void
2559show_dump_excluded_mappings (struct ui_file *file, int from_tty,
2560 struct cmd_list_element *c, const char *value)
2561{
2562 fprintf_filtered (file, _("Dumping of mappings marked with the VM_DONTDUMP"
2563 " flag is %s.\n"), value);
2564}
2565
a5ee0f0c
PA
2566/* To be called from the various GDB_OSABI_LINUX handlers for the
2567 various GNU/Linux architectures and machine types. */
2568
2569void
2570linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2571{
2572 set_gdbarch_core_pid_to_str (gdbarch, linux_core_pid_to_str);
3030c96e 2573 set_gdbarch_info_proc (gdbarch, linux_info_proc);
451b7c33 2574 set_gdbarch_core_info_proc (gdbarch, linux_core_info_proc);
382b69bb 2575 set_gdbarch_core_xfer_siginfo (gdbarch, linux_core_xfer_siginfo);
db082f59 2576 set_gdbarch_read_core_file_mappings (gdbarch, linux_read_core_file_mappings);
35c2fab7 2577 set_gdbarch_find_memory_regions (gdbarch, linux_find_memory_regions);
f968fe80 2578 set_gdbarch_make_corefile_notes (gdbarch, linux_make_corefile_notes);
33fbcbee
PA
2579 set_gdbarch_has_shared_address_space (gdbarch,
2580 linux_has_shared_address_space);
eb14d406
SDJ
2581 set_gdbarch_gdb_signal_from_target (gdbarch,
2582 linux_gdb_signal_from_target);
2583 set_gdbarch_gdb_signal_to_target (gdbarch,
2584 linux_gdb_signal_to_target);
3437254d 2585 set_gdbarch_vsyscall_range (gdbarch, linux_vsyscall_range);
3bc3cebe 2586 set_gdbarch_infcall_mmap (gdbarch, linux_infcall_mmap);
7f361056 2587 set_gdbarch_infcall_munmap (gdbarch, linux_infcall_munmap);
5cd867b4 2588 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
a5ee0f0c 2589}
06253dd3 2590
6c265988 2591void _initialize_linux_tdep ();
06253dd3 2592void
6c265988 2593_initialize_linux_tdep ()
06253dd3
JK
2594{
2595 linux_gdbarch_data_handle =
2596 gdbarch_data_register_post_init (init_linux_gdbarch_data);
cdfa0b0a 2597
cdfa0b0a 2598 /* Observers used to invalidate the cache when needed. */
76727919
TT
2599 gdb::observers::inferior_exit.attach (invalidate_linux_cache_inf);
2600 gdb::observers::inferior_appeared.attach (invalidate_linux_cache_inf);
df8411da
SDJ
2601
2602 add_setshow_boolean_cmd ("use-coredump-filter", class_files,
2603 &use_coredump_filter, _("\
2604Set whether gcore should consider /proc/PID/coredump_filter."),
2605 _("\
2606Show whether gcore should consider /proc/PID/coredump_filter."),
2607 _("\
2608Use this command to set whether gcore should consider the contents\n\
2609of /proc/PID/coredump_filter when generating the corefile. For more information\n\
2610about this file, refer to the manpage of core(5)."),
2611 NULL, show_use_coredump_filter,
2612 &setlist, &showlist);
afa840dc
SL
2613
2614 add_setshow_boolean_cmd ("dump-excluded-mappings", class_files,
2615 &dump_excluded_mappings, _("\
2616Set whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2617 _("\
2618Show whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2619 _("\
2620Use this command to set whether gcore should dump mappings marked with the\n\
2621VM_DONTDUMP flag (\"dd\" in /proc/PID/smaps) when generating the corefile. For\n\
2622more information about this file, refer to the manpage of proc(5) and core(5)."),
2623 NULL, show_dump_excluded_mappings,
2624 &setlist, &showlist);
06253dd3 2625}