]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/mep-tdep.c
Fix typo in skip_prologue_sal's comment.
[thirdparty/binutils-gdb.git] / gdb / mep-tdep.c
CommitLineData
aeb43123
KB
1/* Target-dependent code for the Toshiba MeP for GDB, the GNU debugger.
2
0b302171 3 Copyright (C) 2001-2012 Free Software Foundation, Inc.
aeb43123
KB
4
5 Contributed by Red Hat, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
aeb43123
KB
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
aeb43123
KB
21
22#include "defs.h"
23#include "frame.h"
24#include "frame-unwind.h"
25#include "frame-base.h"
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "gdbcore.h"
30#include "gdb_string.h"
31#include "value.h"
32#include "inferior.h"
33#include "dis-asm.h"
34#include "symfile.h"
35#include "objfiles.h"
36#include "language.h"
37#include "arch-utils.h"
38#include "regcache.h"
39#include "remote.h"
40#include "floatformat.h"
41#include "sim-regno.h"
42#include "disasm.h"
43#include "trad-frame.h"
44#include "reggroups.h"
45#include "elf-bfd.h"
46#include "elf/mep.h"
47#include "prologue-value.h"
342b5fef 48#include "cgen/bitset.h"
aeb43123
KB
49#include "infcall.h"
50
51#include "gdb_assert.h"
52
53/* Get the user's customized MeP coprocessor register names from
54 libopcodes. */
55#include "opcodes/mep-desc.h"
56#include "opcodes/mep-opc.h"
57
58\f
59/* The gdbarch_tdep structure. */
60
61/* A quick recap for GDB hackers not familiar with the whole Toshiba
62 Media Processor story:
63
64 The MeP media engine is a configureable processor: users can design
65 their own coprocessors, implement custom instructions, adjust cache
66 sizes, select optional standard facilities like add-and-saturate
67 instructions, and so on. Then, they can build custom versions of
68 the GNU toolchain to support their customized chips. The
69 MeP-Integrator program (see utils/mep) takes a GNU toolchain source
70 tree, and a config file pointing to various files provided by the
71 user describing their customizations, and edits the source tree to
72 produce a compiler that can generate their custom instructions, an
73 assembler that can assemble them and recognize their custom
74 register names, and so on.
75
76 Furthermore, the user can actually specify several of these custom
77 configurations, called 'me_modules', and get a toolchain which can
78 produce code for any of them, given a compiler/assembler switch;
79 you say something like 'gcc -mconfig=mm_max' to generate code for
80 the me_module named 'mm_max'.
81
82 GDB, in particular, needs to:
83
84 - use the coprocessor control register names provided by the user
85 in their hardware description, in expressions, 'info register'
86 output, and disassembly,
87
88 - know the number, names, and types of the coprocessor's
89 general-purpose registers, adjust the 'info all-registers' output
90 accordingly, and print error messages if the user refers to one
91 that doesn't exist
92
93 - allow access to the control bus space only when the configuration
94 actually has a control bus, and recognize which regions of the
95 control bus space are actually populated,
96
97 - disassemble using the user's provided mnemonics for their custom
98 instructions, and
99
100 - recognize whether the $hi and $lo registers are present, and
101 allow access to them only when they are actually there.
102
103 There are three sources of information about what sort of me_module
104 we're actually dealing with:
105
106 - A MeP executable file indicates which me_module it was compiled
107 for, and libopcodes has tables describing each module. So, given
108 an executable file, we can find out about the processor it was
109 compiled for.
110
111 - There are SID command-line options to select a particular
112 me_module, overriding the one specified in the ELF file. SID
113 provides GDB with a fake read-only register, 'module', which
114 indicates which me_module GDB is communicating with an instance
115 of.
116
117 - There are SID command-line options to enable or disable certain
118 optional processor features, overriding the defaults for the
119 selected me_module. The MeP $OPT register indicates which
120 options are present on the current processor. */
121
122
123struct gdbarch_tdep
124{
125 /* A CGEN cpu descriptor for this BFD architecture and machine.
126
127 Note: this is *not* customized for any particular me_module; the
128 MeP libopcodes machinery actually puts off module-specific
129 customization until the last minute. So this contains
130 information about all supported me_modules. */
131 CGEN_CPU_DESC cpu_desc;
132
133 /* The me_module index from the ELF file we used to select this
134 architecture, or CONFIG_NONE if there was none.
135
136 Note that we should prefer to use the me_module number available
137 via the 'module' register, whenever we're actually talking to a
138 real target.
139
140 In the absence of live information, we'd like to get the
141 me_module number from the ELF file. But which ELF file: the
142 executable file, the core file, ... ? The answer is, "the last
143 ELF file we used to set the current architecture". Thus, we
144 create a separate instance of the gdbarch structure for each
145 me_module value mep_gdbarch_init sees, and store the me_module
146 value from the ELF file here. */
147 CONFIG_ATTR me_module;
148};
149
150
151\f
152/* Getting me_module information from the CGEN tables. */
153
154
155/* Find an entry in the DESC's hardware table whose name begins with
156 PREFIX, and whose ISA mask intersects COPRO_ISA_MASK, but does not
157 intersect with GENERIC_ISA_MASK. If there is no matching entry,
158 return zero. */
159static const CGEN_HW_ENTRY *
160find_hw_entry_by_prefix_and_isa (CGEN_CPU_DESC desc,
161 const char *prefix,
162 CGEN_BITSET *copro_isa_mask,
163 CGEN_BITSET *generic_isa_mask)
164{
165 int prefix_len = strlen (prefix);
166 int i;
167
168 for (i = 0; i < desc->hw_table.num_entries; i++)
169 {
170 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
171 if (strncmp (prefix, hw->name, prefix_len) == 0)
172 {
173 CGEN_BITSET *hw_isa_mask
174 = ((CGEN_BITSET *)
175 &CGEN_ATTR_CGEN_HW_ISA_VALUE (CGEN_HW_ATTRS (hw)));
176
177 if (cgen_bitset_intersect_p (hw_isa_mask, copro_isa_mask)
178 && ! cgen_bitset_intersect_p (hw_isa_mask, generic_isa_mask))
179 return hw;
180 }
181 }
182
183 return 0;
184}
185
186
187/* Find an entry in DESC's hardware table whose type is TYPE. Return
188 zero if there is none. */
189static const CGEN_HW_ENTRY *
190find_hw_entry_by_type (CGEN_CPU_DESC desc, CGEN_HW_TYPE type)
191{
192 int i;
193
194 for (i = 0; i < desc->hw_table.num_entries; i++)
195 {
196 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
197
198 if (hw->type == type)
199 return hw;
200 }
201
202 return 0;
203}
204
205
206/* Return the CGEN hardware table entry for the coprocessor register
207 set for ME_MODULE, whose name prefix is PREFIX. If ME_MODULE has
208 no such register set, return zero. If ME_MODULE is the generic
209 me_module CONFIG_NONE, return the table entry for the register set
210 whose hardware type is GENERIC_TYPE. */
211static const CGEN_HW_ENTRY *
212me_module_register_set (CONFIG_ATTR me_module,
213 const char *prefix,
214 CGEN_HW_TYPE generic_type)
215{
216 /* This is kind of tricky, because the hardware table is constructed
217 in a way that isn't very helpful. Perhaps we can fix that, but
218 here's how it works at the moment:
219
220 The configuration map, `mep_config_map', is indexed by me_module
221 number, and indicates which coprocessor and core ISAs that
222 me_module supports. The 'core_isa' mask includes all the core
223 ISAs, and the 'cop_isa' mask includes all the coprocessor ISAs.
224 The entry for the generic me_module, CONFIG_NONE, has an empty
225 'cop_isa', and its 'core_isa' selects only the standard MeP
226 instruction set.
227
228 The CGEN CPU descriptor's hardware table, desc->hw_table, has
229 entries for all the register sets, for all me_modules. Each
230 entry has a mask indicating which ISAs use that register set.
231 So, if an me_module supports some coprocessor ISA, we can find
232 applicable register sets by scanning the hardware table for
233 register sets whose masks include (at least some of) those ISAs.
234
235 Each hardware table entry also has a name, whose prefix says
236 whether it's a general-purpose ("h-cr") or control ("h-ccr")
237 coprocessor register set. It might be nicer to have an attribute
238 indicating what sort of register set it was, that we could use
239 instead of pattern-matching on the name.
240
241 When there is no hardware table entry whose mask includes a
242 particular coprocessor ISA and whose name starts with a given
243 prefix, then that means that that coprocessor doesn't have any
244 registers of that type. In such cases, this function must return
245 a null pointer.
246
247 Coprocessor register sets' masks may or may not include the core
248 ISA for the me_module they belong to. Those generated by a2cgen
249 do, but the sample me_module included in the unconfigured tree,
250 'ccfx', does not.
251
252 There are generic coprocessor register sets, intended only for
253 use with the generic me_module. Unfortunately, their masks
254 include *all* ISAs --- even those for coprocessors that don't
255 have such register sets. This makes detecting the case where a
256 coprocessor lacks a particular register set more complicated.
257
258 So, here's the approach we take:
259
260 - For CONFIG_NONE, we return the generic coprocessor register set.
261
262 - For any other me_module, we search for a register set whose
263 mask contains any of the me_module's coprocessor ISAs,
264 specifically excluding the generic coprocessor register sets. */
265
1cf3db46 266 CGEN_CPU_DESC desc = gdbarch_tdep (target_gdbarch)->cpu_desc;
aeb43123
KB
267 const CGEN_HW_ENTRY *hw;
268
269 if (me_module == CONFIG_NONE)
270 hw = find_hw_entry_by_type (desc, generic_type);
271 else
272 {
273 CGEN_BITSET *cop = &mep_config_map[me_module].cop_isa;
274 CGEN_BITSET *core = &mep_config_map[me_module].core_isa;
275 CGEN_BITSET *generic = &mep_config_map[CONFIG_NONE].core_isa;
276 CGEN_BITSET *cop_and_core;
277
278 /* The coprocessor ISAs include the ISA for the specific core which
279 has that coprocessor. */
280 cop_and_core = cgen_bitset_copy (cop);
281 cgen_bitset_union (cop, core, cop_and_core);
282 hw = find_hw_entry_by_prefix_and_isa (desc, prefix, cop_and_core, generic);
283 }
284
285 return hw;
286}
287
288
289/* Given a hardware table entry HW representing a register set, return
290 a pointer to the keyword table with all the register names. If HW
291 is NULL, return NULL, to propage the "no such register set" info
292 along. */
293static CGEN_KEYWORD *
294register_set_keyword_table (const CGEN_HW_ENTRY *hw)
295{
296 if (! hw)
297 return NULL;
298
299 /* Check that HW is actually a keyword table. */
300 gdb_assert (hw->asm_type == CGEN_ASM_KEYWORD);
301
302 /* The 'asm_data' field of a register set's hardware table entry
303 refers to a keyword table. */
304 return (CGEN_KEYWORD *) hw->asm_data;
305}
306
307
308/* Given a keyword table KEYWORD and a register number REGNUM, return
309 the name of the register, or "" if KEYWORD contains no register
310 whose number is REGNUM. */
311static char *
312register_name_from_keyword (CGEN_KEYWORD *keyword_table, int regnum)
313{
314 const CGEN_KEYWORD_ENTRY *entry
315 = cgen_keyword_lookup_value (keyword_table, regnum);
316
317 if (entry)
318 {
319 char *name = entry->name;
320
321 /* The CGEN keyword entries for register names include the
322 leading $, which appears in MeP assembly as well as in GDB.
323 But we don't want to return that; GDB core code adds that
324 itself. */
325 if (name[0] == '$')
326 name++;
327
328 return name;
329 }
330 else
331 return "";
332}
333
334
335/* Masks for option bits in the OPT special-purpose register. */
336enum {
337 MEP_OPT_DIV = 1 << 25, /* 32-bit divide instruction option */
338 MEP_OPT_MUL = 1 << 24, /* 32-bit multiply instruction option */
339 MEP_OPT_BIT = 1 << 23, /* bit manipulation instruction option */
340 MEP_OPT_SAT = 1 << 22, /* saturation instruction option */
341 MEP_OPT_CLP = 1 << 21, /* clip instruction option */
342 MEP_OPT_MIN = 1 << 20, /* min/max instruction option */
343 MEP_OPT_AVE = 1 << 19, /* average instruction option */
344 MEP_OPT_ABS = 1 << 18, /* absolute difference instruction option */
345 MEP_OPT_LDZ = 1 << 16, /* leading zero instruction option */
346 MEP_OPT_VL64 = 1 << 6, /* 64-bit VLIW operation mode option */
347 MEP_OPT_VL32 = 1 << 5, /* 32-bit VLIW operation mode option */
348 MEP_OPT_COP = 1 << 4, /* coprocessor option */
349 MEP_OPT_DSP = 1 << 2, /* DSP option */
350 MEP_OPT_UCI = 1 << 1, /* UCI option */
351 MEP_OPT_DBG = 1 << 0, /* DBG function option */
352};
353
354
355/* Given the option_mask value for a particular entry in
356 mep_config_map, produce the value the processor's OPT register
357 would use to represent the same set of options. */
358static unsigned int
359opt_from_option_mask (unsigned int option_mask)
360{
361 /* A table mapping OPT register bits onto CGEN config map option
362 bits. */
363 struct {
364 unsigned int opt_bit, option_mask_bit;
365 } bits[] = {
366 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
367 { MEP_OPT_MUL, 1 << CGEN_INSN_OPTIONAL_MUL_INSN },
368 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
369 { MEP_OPT_DBG, 1 << CGEN_INSN_OPTIONAL_DEBUG_INSN },
370 { MEP_OPT_LDZ, 1 << CGEN_INSN_OPTIONAL_LDZ_INSN },
371 { MEP_OPT_ABS, 1 << CGEN_INSN_OPTIONAL_ABS_INSN },
372 { MEP_OPT_AVE, 1 << CGEN_INSN_OPTIONAL_AVE_INSN },
373 { MEP_OPT_MIN, 1 << CGEN_INSN_OPTIONAL_MINMAX_INSN },
374 { MEP_OPT_CLP, 1 << CGEN_INSN_OPTIONAL_CLIP_INSN },
375 { MEP_OPT_SAT, 1 << CGEN_INSN_OPTIONAL_SAT_INSN },
376 { MEP_OPT_UCI, 1 << CGEN_INSN_OPTIONAL_UCI_INSN },
377 { MEP_OPT_DSP, 1 << CGEN_INSN_OPTIONAL_DSP_INSN },
378 { MEP_OPT_COP, 1 << CGEN_INSN_OPTIONAL_CP_INSN },
379 };
380
381 int i;
382 unsigned int opt = 0;
383
384 for (i = 0; i < (sizeof (bits) / sizeof (bits[0])); i++)
385 if (option_mask & bits[i].option_mask_bit)
386 opt |= bits[i].opt_bit;
387
388 return opt;
389}
390
391
392/* Return the value the $OPT register would use to represent the set
393 of options for ME_MODULE. */
394static unsigned int
395me_module_opt (CONFIG_ATTR me_module)
396{
397 return opt_from_option_mask (mep_config_map[me_module].option_mask);
398}
399
400
401/* Return the width of ME_MODULE's coprocessor data bus, in bits.
402 This is either 32 or 64. */
403static int
404me_module_cop_data_bus_width (CONFIG_ATTR me_module)
405{
406 if (mep_config_map[me_module].option_mask
407 & (1 << CGEN_INSN_OPTIONAL_CP64_INSN))
408 return 64;
409 else
410 return 32;
411}
412
413
414/* Return true if ME_MODULE is big-endian, false otherwise. */
415static int
416me_module_big_endian (CONFIG_ATTR me_module)
417{
418 return mep_config_map[me_module].big_endian;
419}
420
421
422/* Return the name of ME_MODULE, or NULL if it has no name. */
423static const char *
424me_module_name (CONFIG_ATTR me_module)
425{
426 /* The default me_module has "" as its name, but it's easier for our
427 callers to test for NULL. */
428 if (! mep_config_map[me_module].name
429 || mep_config_map[me_module].name[0] == '\0')
430 return NULL;
431 else
432 return mep_config_map[me_module].name;
433}
434\f
435/* Register set. */
436
437
438/* The MeP spec defines the following registers:
439 16 general purpose registers (r0-r15)
440 32 control/special registers (csr0-csr31)
441 32 coprocessor general-purpose registers (c0 -- c31)
442 64 coprocessor control registers (ccr0 -- ccr63)
443
444 For the raw registers, we assign numbers here explicitly, instead
445 of letting the enum assign them for us; the numbers are a matter of
446 external protocol, and shouldn't shift around as things are edited.
447
448 We access the control/special registers via pseudoregisters, to
449 enforce read-only portions that some registers have.
450
451 We access the coprocessor general purpose and control registers via
452 pseudoregisters, to make sure they appear in the proper order in
453 the 'info all-registers' command (which uses the register number
454 ordering), and also to allow them to be renamed and resized
455 depending on the me_module in use.
456
457 The MeP allows coprocessor general-purpose registers to be either
458 32 or 64 bits long, depending on the configuration. Since we don't
459 want the format of the 'g' packet to vary from one core to another,
460 the raw coprocessor GPRs are always 64 bits. GDB doesn't allow the
461 types of registers to change (see the implementation of
462 register_type), so we have four banks of pseudoregisters for the
463 coprocessor gprs --- 32-bit vs. 64-bit, and integer
464 vs. floating-point --- and we show or hide them depending on the
465 configuration. */
466enum
467{
468 MEP_FIRST_RAW_REGNUM = 0,
469
470 MEP_FIRST_GPR_REGNUM = 0,
471 MEP_R0_REGNUM = 0,
472 MEP_R1_REGNUM = 1,
473 MEP_R2_REGNUM = 2,
474 MEP_R3_REGNUM = 3,
475 MEP_R4_REGNUM = 4,
476 MEP_R5_REGNUM = 5,
477 MEP_R6_REGNUM = 6,
478 MEP_R7_REGNUM = 7,
479 MEP_R8_REGNUM = 8,
480 MEP_R9_REGNUM = 9,
481 MEP_R10_REGNUM = 10,
482 MEP_R11_REGNUM = 11,
483 MEP_R12_REGNUM = 12,
484 MEP_FP_REGNUM = MEP_R8_REGNUM,
485 MEP_R13_REGNUM = 13,
486 MEP_TP_REGNUM = MEP_R13_REGNUM, /* (r13) Tiny data pointer */
487 MEP_R14_REGNUM = 14,
488 MEP_GP_REGNUM = MEP_R14_REGNUM, /* (r14) Global pointer */
489 MEP_R15_REGNUM = 15,
490 MEP_SP_REGNUM = MEP_R15_REGNUM, /* (r15) Stack pointer */
491 MEP_LAST_GPR_REGNUM = MEP_R15_REGNUM,
492
493 /* The raw control registers. These are the values as received via
494 the remote protocol, directly from the target; we only let user
495 code touch the via the pseudoregisters, which enforce read-only
496 bits. */
497 MEP_FIRST_RAW_CSR_REGNUM = 16,
498 MEP_RAW_PC_REGNUM = 16, /* Program counter */
499 MEP_RAW_LP_REGNUM = 17, /* Link pointer */
500 MEP_RAW_SAR_REGNUM = 18, /* Raw shift amount */
501 MEP_RAW_CSR3_REGNUM = 19, /* csr3: reserved */
502 MEP_RAW_RPB_REGNUM = 20, /* Raw repeat begin address */
503 MEP_RAW_RPE_REGNUM = 21, /* Repeat end address */
504 MEP_RAW_RPC_REGNUM = 22, /* Repeat count */
505 MEP_RAW_HI_REGNUM = 23, /* Upper 32 bits of result of 64 bit mult/div */
506 MEP_RAW_LO_REGNUM = 24, /* Lower 32 bits of result of 64 bit mult/div */
507 MEP_RAW_CSR9_REGNUM = 25, /* csr3: reserved */
508 MEP_RAW_CSR10_REGNUM = 26, /* csr3: reserved */
509 MEP_RAW_CSR11_REGNUM = 27, /* csr3: reserved */
510 MEP_RAW_MB0_REGNUM = 28, /* Raw modulo begin address 0 */
511 MEP_RAW_ME0_REGNUM = 29, /* Raw modulo end address 0 */
512 MEP_RAW_MB1_REGNUM = 30, /* Raw modulo begin address 1 */
513 MEP_RAW_ME1_REGNUM = 31, /* Raw modulo end address 1 */
514 MEP_RAW_PSW_REGNUM = 32, /* Raw program status word */
515 MEP_RAW_ID_REGNUM = 33, /* Raw processor ID/revision */
516 MEP_RAW_TMP_REGNUM = 34, /* Temporary */
517 MEP_RAW_EPC_REGNUM = 35, /* Exception program counter */
518 MEP_RAW_EXC_REGNUM = 36, /* Raw exception cause */
519 MEP_RAW_CFG_REGNUM = 37, /* Raw processor configuration*/
520 MEP_RAW_CSR22_REGNUM = 38, /* csr3: reserved */
521 MEP_RAW_NPC_REGNUM = 39, /* Nonmaskable interrupt PC */
522 MEP_RAW_DBG_REGNUM = 40, /* Raw debug */
523 MEP_RAW_DEPC_REGNUM = 41, /* Debug exception PC */
524 MEP_RAW_OPT_REGNUM = 42, /* Raw options */
525 MEP_RAW_RCFG_REGNUM = 43, /* Raw local ram config */
526 MEP_RAW_CCFG_REGNUM = 44, /* Raw cache config */
527 MEP_RAW_CSR29_REGNUM = 45, /* csr3: reserved */
528 MEP_RAW_CSR30_REGNUM = 46, /* csr3: reserved */
529 MEP_RAW_CSR31_REGNUM = 47, /* csr3: reserved */
530 MEP_LAST_RAW_CSR_REGNUM = MEP_RAW_CSR31_REGNUM,
531
532 /* The raw coprocessor general-purpose registers. These are all 64
533 bits wide. */
534 MEP_FIRST_RAW_CR_REGNUM = 48,
535 MEP_LAST_RAW_CR_REGNUM = MEP_FIRST_RAW_CR_REGNUM + 31,
536
537 MEP_FIRST_RAW_CCR_REGNUM = 80,
538 MEP_LAST_RAW_CCR_REGNUM = MEP_FIRST_RAW_CCR_REGNUM + 63,
539
540 /* The module number register. This is the index of the me_module
541 of which the current target is an instance. (This is not a real
542 MeP-specified register; it's provided by SID.) */
543 MEP_MODULE_REGNUM,
544
545 MEP_LAST_RAW_REGNUM = MEP_MODULE_REGNUM,
546
547 MEP_NUM_RAW_REGS = MEP_LAST_RAW_REGNUM + 1,
548
549 /* Pseudoregisters. See mep_pseudo_register_read and
550 mep_pseudo_register_write. */
551 MEP_FIRST_PSEUDO_REGNUM = MEP_NUM_RAW_REGS,
552
553 /* We have a pseudoregister for every control/special register, to
554 implement registers with read-only bits. */
555 MEP_FIRST_CSR_REGNUM = MEP_FIRST_PSEUDO_REGNUM,
556 MEP_PC_REGNUM = MEP_FIRST_CSR_REGNUM, /* Program counter */
557 MEP_LP_REGNUM, /* Link pointer */
558 MEP_SAR_REGNUM, /* shift amount */
559 MEP_CSR3_REGNUM, /* csr3: reserved */
560 MEP_RPB_REGNUM, /* repeat begin address */
561 MEP_RPE_REGNUM, /* Repeat end address */
562 MEP_RPC_REGNUM, /* Repeat count */
563 MEP_HI_REGNUM, /* Upper 32 bits of the result of 64 bit mult/div */
564 MEP_LO_REGNUM, /* Lower 32 bits of the result of 64 bit mult/div */
565 MEP_CSR9_REGNUM, /* csr3: reserved */
566 MEP_CSR10_REGNUM, /* csr3: reserved */
567 MEP_CSR11_REGNUM, /* csr3: reserved */
568 MEP_MB0_REGNUM, /* modulo begin address 0 */
569 MEP_ME0_REGNUM, /* modulo end address 0 */
570 MEP_MB1_REGNUM, /* modulo begin address 1 */
571 MEP_ME1_REGNUM, /* modulo end address 1 */
572 MEP_PSW_REGNUM, /* program status word */
573 MEP_ID_REGNUM, /* processor ID/revision */
574 MEP_TMP_REGNUM, /* Temporary */
575 MEP_EPC_REGNUM, /* Exception program counter */
576 MEP_EXC_REGNUM, /* exception cause */
577 MEP_CFG_REGNUM, /* processor configuration*/
578 MEP_CSR22_REGNUM, /* csr3: reserved */
579 MEP_NPC_REGNUM, /* Nonmaskable interrupt PC */
580 MEP_DBG_REGNUM, /* debug */
581 MEP_DEPC_REGNUM, /* Debug exception PC */
582 MEP_OPT_REGNUM, /* options */
583 MEP_RCFG_REGNUM, /* local ram config */
584 MEP_CCFG_REGNUM, /* cache config */
585 MEP_CSR29_REGNUM, /* csr3: reserved */
586 MEP_CSR30_REGNUM, /* csr3: reserved */
587 MEP_CSR31_REGNUM, /* csr3: reserved */
588 MEP_LAST_CSR_REGNUM = MEP_CSR31_REGNUM,
589
590 /* The 32-bit integer view of the coprocessor GPR's. */
591 MEP_FIRST_CR32_REGNUM,
592 MEP_LAST_CR32_REGNUM = MEP_FIRST_CR32_REGNUM + 31,
593
594 /* The 32-bit floating-point view of the coprocessor GPR's. */
595 MEP_FIRST_FP_CR32_REGNUM,
596 MEP_LAST_FP_CR32_REGNUM = MEP_FIRST_FP_CR32_REGNUM + 31,
597
598 /* The 64-bit integer view of the coprocessor GPR's. */
599 MEP_FIRST_CR64_REGNUM,
600 MEP_LAST_CR64_REGNUM = MEP_FIRST_CR64_REGNUM + 31,
601
602 /* The 64-bit floating-point view of the coprocessor GPR's. */
603 MEP_FIRST_FP_CR64_REGNUM,
604 MEP_LAST_FP_CR64_REGNUM = MEP_FIRST_FP_CR64_REGNUM + 31,
605
606 MEP_FIRST_CCR_REGNUM,
607 MEP_LAST_CCR_REGNUM = MEP_FIRST_CCR_REGNUM + 63,
608
609 MEP_LAST_PSEUDO_REGNUM = MEP_LAST_CCR_REGNUM,
610
611 MEP_NUM_PSEUDO_REGS = (MEP_LAST_PSEUDO_REGNUM - MEP_LAST_RAW_REGNUM),
612
613 MEP_NUM_REGS = MEP_NUM_RAW_REGS + MEP_NUM_PSEUDO_REGS
614};
615
616
617#define IN_SET(set, n) \
618 (MEP_FIRST_ ## set ## _REGNUM <= (n) && (n) <= MEP_LAST_ ## set ## _REGNUM)
619
620#define IS_GPR_REGNUM(n) (IN_SET (GPR, (n)))
621#define IS_RAW_CSR_REGNUM(n) (IN_SET (RAW_CSR, (n)))
622#define IS_RAW_CR_REGNUM(n) (IN_SET (RAW_CR, (n)))
623#define IS_RAW_CCR_REGNUM(n) (IN_SET (RAW_CCR, (n)))
624
625#define IS_CSR_REGNUM(n) (IN_SET (CSR, (n)))
626#define IS_CR32_REGNUM(n) (IN_SET (CR32, (n)))
627#define IS_FP_CR32_REGNUM(n) (IN_SET (FP_CR32, (n)))
628#define IS_CR64_REGNUM(n) (IN_SET (CR64, (n)))
629#define IS_FP_CR64_REGNUM(n) (IN_SET (FP_CR64, (n)))
630#define IS_CR_REGNUM(n) (IS_CR32_REGNUM (n) || IS_FP_CR32_REGNUM (n) \
631 || IS_CR64_REGNUM (n) || IS_FP_CR64_REGNUM (n))
632#define IS_CCR_REGNUM(n) (IN_SET (CCR, (n)))
633
634#define IS_RAW_REGNUM(n) (IN_SET (RAW, (n)))
635#define IS_PSEUDO_REGNUM(n) (IN_SET (PSEUDO, (n)))
636
637#define NUM_REGS_IN_SET(set) \
638 (MEP_LAST_ ## set ## _REGNUM - MEP_FIRST_ ## set ## _REGNUM + 1)
639
640#define MEP_GPR_SIZE (4) /* Size of a MeP general-purpose register. */
641#define MEP_PSW_SIZE (4) /* Size of the PSW register. */
642#define MEP_LP_SIZE (4) /* Size of the LP register. */
643
644
645/* Many of the control/special registers contain bits that cannot be
646 written to; some are entirely read-only. So we present them all as
647 pseudoregisters.
648
649 The following table describes the special properties of each CSR. */
650struct mep_csr_register
651{
652 /* The number of this CSR's raw register. */
653 int raw;
654
655 /* The number of this CSR's pseudoregister. */
656 int pseudo;
657
658 /* A mask of the bits that are writeable: if a bit is set here, then
659 it can be modified; if the bit is clear, then it cannot. */
660 LONGEST writeable_bits;
661};
662
663
664/* mep_csr_registers[i] describes the i'th CSR.
665 We just list the register numbers here explicitly to help catch
666 typos. */
667#define CSR(name) MEP_RAW_ ## name ## _REGNUM, MEP_ ## name ## _REGNUM
668struct mep_csr_register mep_csr_registers[] = {
669 { CSR(PC), 0xffffffff }, /* manual says r/o, but we can write it */
670 { CSR(LP), 0xffffffff },
671 { CSR(SAR), 0x0000003f },
672 { CSR(CSR3), 0xffffffff },
673 { CSR(RPB), 0xfffffffe },
674 { CSR(RPE), 0xffffffff },
675 { CSR(RPC), 0xffffffff },
676 { CSR(HI), 0xffffffff },
677 { CSR(LO), 0xffffffff },
678 { CSR(CSR9), 0xffffffff },
679 { CSR(CSR10), 0xffffffff },
680 { CSR(CSR11), 0xffffffff },
681 { CSR(MB0), 0x0000ffff },
682 { CSR(ME0), 0x0000ffff },
683 { CSR(MB1), 0x0000ffff },
684 { CSR(ME1), 0x0000ffff },
685 { CSR(PSW), 0x000003ff },
686 { CSR(ID), 0x00000000 },
687 { CSR(TMP), 0xffffffff },
688 { CSR(EPC), 0xffffffff },
689 { CSR(EXC), 0x000030f0 },
690 { CSR(CFG), 0x00c0001b },
691 { CSR(CSR22), 0xffffffff },
692 { CSR(NPC), 0xffffffff },
693 { CSR(DBG), 0x00000580 },
694 { CSR(DEPC), 0xffffffff },
695 { CSR(OPT), 0x00000000 },
696 { CSR(RCFG), 0x00000000 },
697 { CSR(CCFG), 0x00000000 },
698 { CSR(CSR29), 0xffffffff },
699 { CSR(CSR30), 0xffffffff },
700 { CSR(CSR31), 0xffffffff },
701};
702
703
704/* If R is the number of a raw register, then mep_raw_to_pseudo[R] is
705 the number of the corresponding pseudoregister. Otherwise,
706 mep_raw_to_pseudo[R] == R. */
707static int mep_raw_to_pseudo[MEP_NUM_REGS];
708
709/* If R is the number of a pseudoregister, then mep_pseudo_to_raw[R]
710 is the number of the underlying raw register. Otherwise
711 mep_pseudo_to_raw[R] == R. */
712static int mep_pseudo_to_raw[MEP_NUM_REGS];
713
714static void
715mep_init_pseudoregister_maps (void)
716{
717 int i;
718
719 /* Verify that mep_csr_registers covers all the CSRs, in order. */
720 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (CSR));
721 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (RAW_CSR));
722
723 /* Verify that the raw and pseudo ranges have matching sizes. */
724 gdb_assert (NUM_REGS_IN_SET (RAW_CSR) == NUM_REGS_IN_SET (CSR));
725 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR32));
726 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR64));
727 gdb_assert (NUM_REGS_IN_SET (RAW_CCR) == NUM_REGS_IN_SET (CCR));
728
729 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
730 {
731 struct mep_csr_register *r = &mep_csr_registers[i];
732
733 gdb_assert (r->pseudo == MEP_FIRST_CSR_REGNUM + i);
734 gdb_assert (r->raw == MEP_FIRST_RAW_CSR_REGNUM + i);
735 }
736
737 /* Set up the initial raw<->pseudo mappings. */
738 for (i = 0; i < MEP_NUM_REGS; i++)
739 {
740 mep_raw_to_pseudo[i] = i;
741 mep_pseudo_to_raw[i] = i;
742 }
743
744 /* Add the CSR raw<->pseudo mappings. */
745 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
746 {
747 struct mep_csr_register *r = &mep_csr_registers[i];
748
749 mep_raw_to_pseudo[r->raw] = r->pseudo;
750 mep_pseudo_to_raw[r->pseudo] = r->raw;
751 }
752
753 /* Add the CR raw<->pseudo mappings. */
754 for (i = 0; i < NUM_REGS_IN_SET (RAW_CR); i++)
755 {
756 int raw = MEP_FIRST_RAW_CR_REGNUM + i;
757 int pseudo32 = MEP_FIRST_CR32_REGNUM + i;
758 int pseudofp32 = MEP_FIRST_FP_CR32_REGNUM + i;
759 int pseudo64 = MEP_FIRST_CR64_REGNUM + i;
760 int pseudofp64 = MEP_FIRST_FP_CR64_REGNUM + i;
761
762 /* Truly, the raw->pseudo mapping depends on the current module.
763 But we use the raw->pseudo mapping when we read the debugging
764 info; at that point, we don't know what module we'll actually
765 be running yet. So, we always supply the 64-bit register
766 numbers; GDB knows how to pick a smaller value out of a
767 larger register properly. */
768 mep_raw_to_pseudo[raw] = pseudo64;
769 mep_pseudo_to_raw[pseudo32] = raw;
770 mep_pseudo_to_raw[pseudofp32] = raw;
771 mep_pseudo_to_raw[pseudo64] = raw;
772 mep_pseudo_to_raw[pseudofp64] = raw;
773 }
774
775 /* Add the CCR raw<->pseudo mappings. */
776 for (i = 0; i < NUM_REGS_IN_SET (CCR); i++)
777 {
778 int raw = MEP_FIRST_RAW_CCR_REGNUM + i;
779 int pseudo = MEP_FIRST_CCR_REGNUM + i;
780 mep_raw_to_pseudo[raw] = pseudo;
781 mep_pseudo_to_raw[pseudo] = raw;
782 }
783}
784
785
786static int
d3f73121 787mep_debug_reg_to_regnum (struct gdbarch *gdbarch, int debug_reg)
aeb43123
KB
788{
789 /* The debug info uses the raw register numbers. */
790 return mep_raw_to_pseudo[debug_reg];
791}
792
793
794/* Return the size, in bits, of the coprocessor pseudoregister
795 numbered PSEUDO. */
796static int
797mep_pseudo_cr_size (int pseudo)
798{
799 if (IS_CR32_REGNUM (pseudo)
800 || IS_FP_CR32_REGNUM (pseudo))
801 return 32;
802 else if (IS_CR64_REGNUM (pseudo)
803 || IS_FP_CR64_REGNUM (pseudo))
804 return 64;
805 else
f3574227 806 gdb_assert_not_reached ("unexpected coprocessor pseudo register");
aeb43123
KB
807}
808
809
810/* If the coprocessor pseudoregister numbered PSEUDO is a
811 floating-point register, return non-zero; if it is an integer
812 register, return zero. */
813static int
814mep_pseudo_cr_is_float (int pseudo)
815{
816 return (IS_FP_CR32_REGNUM (pseudo)
817 || IS_FP_CR64_REGNUM (pseudo));
818}
819
820
821/* Given a coprocessor GPR pseudoregister number, return its index
822 within that register bank. */
823static int
824mep_pseudo_cr_index (int pseudo)
825{
826 if (IS_CR32_REGNUM (pseudo))
827 return pseudo - MEP_FIRST_CR32_REGNUM;
828 else if (IS_FP_CR32_REGNUM (pseudo))
829 return pseudo - MEP_FIRST_FP_CR32_REGNUM;
830 else if (IS_CR64_REGNUM (pseudo))
831 return pseudo - MEP_FIRST_CR64_REGNUM;
832 else if (IS_FP_CR64_REGNUM (pseudo))
833 return pseudo - MEP_FIRST_FP_CR64_REGNUM;
834 else
f3574227 835 gdb_assert_not_reached ("unexpected coprocessor pseudo register");
aeb43123
KB
836}
837
838
839/* Return the me_module index describing the current target.
840
841 If the current target has registers (e.g., simulator, remote
842 target), then this uses the value of the 'module' register, raw
843 register MEP_MODULE_REGNUM. Otherwise, this retrieves the value
844 from the ELF header's e_flags field of the current executable
845 file. */
846static CONFIG_ATTR
eeae04df 847current_me_module (void)
aeb43123
KB
848{
849 if (target_has_registers)
3d1a74ac
UW
850 {
851 ULONGEST regval;
594f7785 852 regcache_cooked_read_unsigned (get_current_regcache (),
3d1a74ac
UW
853 MEP_MODULE_REGNUM, &regval);
854 return regval;
855 }
aeb43123 856 else
1cf3db46 857 return gdbarch_tdep (target_gdbarch)->me_module;
aeb43123
KB
858}
859
860
861/* Return the set of options for the current target, in the form that
862 the OPT register would use.
863
864 If the current target has registers (e.g., simulator, remote
865 target), then this is the actual value of the OPT register. If the
866 current target does not have registers (e.g., an executable file),
867 then use the 'module_opt' field we computed when we build the
868 gdbarch object for this module. */
869static unsigned int
eeae04df 870current_options (void)
aeb43123
KB
871{
872 if (target_has_registers)
3d1a74ac
UW
873 {
874 ULONGEST regval;
594f7785 875 regcache_cooked_read_unsigned (get_current_regcache (),
3d1a74ac
UW
876 MEP_OPT_REGNUM, &regval);
877 return regval;
878 }
aeb43123
KB
879 else
880 return me_module_opt (current_me_module ());
881}
882
883
884/* Return the width of the current me_module's coprocessor data bus,
885 in bits. This is either 32 or 64. */
886static int
eeae04df 887current_cop_data_bus_width (void)
aeb43123
KB
888{
889 return me_module_cop_data_bus_width (current_me_module ());
890}
891
892
893/* Return the keyword table of coprocessor general-purpose register
894 names appropriate for the me_module we're dealing with. */
895static CGEN_KEYWORD *
eeae04df 896current_cr_names (void)
aeb43123
KB
897{
898 const CGEN_HW_ENTRY *hw
899 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
900
901 return register_set_keyword_table (hw);
902}
903
904
905/* Return non-zero if the coprocessor general-purpose registers are
906 floating-point values, zero otherwise. */
907static int
eeae04df 908current_cr_is_float (void)
aeb43123
KB
909{
910 const CGEN_HW_ENTRY *hw
911 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
912
913 return CGEN_ATTR_CGEN_HW_IS_FLOAT_VALUE (CGEN_HW_ATTRS (hw));
914}
915
916
917/* Return the keyword table of coprocessor control register names
918 appropriate for the me_module we're dealing with. */
919static CGEN_KEYWORD *
eeae04df 920current_ccr_names (void)
aeb43123
KB
921{
922 const CGEN_HW_ENTRY *hw
923 = me_module_register_set (current_me_module (), "h-ccr-", HW_H_CCR);
924
925 return register_set_keyword_table (hw);
926}
927
928
929static const char *
d93859e2 930mep_register_name (struct gdbarch *gdbarch, int regnr)
aeb43123 931{
d93859e2 932 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
aeb43123
KB
933
934 /* General-purpose registers. */
935 static const char *gpr_names[] = {
936 "r0", "r1", "r2", "r3", /* 0 */
937 "r4", "r5", "r6", "r7", /* 4 */
938 "fp", "r9", "r10", "r11", /* 8 */
939 "r12", "tp", "gp", "sp" /* 12 */
940 };
941
942 /* Special-purpose registers. */
943 static const char *csr_names[] = {
944 "pc", "lp", "sar", "", /* 0 csr3: reserved */
945 "rpb", "rpe", "rpc", "hi", /* 4 */
946 "lo", "", "", "", /* 8 csr9-csr11: reserved */
947 "mb0", "me0", "mb1", "me1", /* 12 */
948
949 "psw", "id", "tmp", "epc", /* 16 */
950 "exc", "cfg", "", "npc", /* 20 csr22: reserved */
951 "dbg", "depc", "opt", "rcfg", /* 24 */
952 "ccfg", "", "", "" /* 28 csr29-csr31: reserved */
953 };
954
955 if (IS_GPR_REGNUM (regnr))
956 return gpr_names[regnr - MEP_R0_REGNUM];
957 else if (IS_CSR_REGNUM (regnr))
958 {
959 /* The 'hi' and 'lo' registers are only present on processors
960 that have the 'MUL' or 'DIV' instructions enabled. */
961 if ((regnr == MEP_HI_REGNUM || regnr == MEP_LO_REGNUM)
962 && (! (current_options () & (MEP_OPT_MUL | MEP_OPT_DIV))))
963 return "";
964
965 return csr_names[regnr - MEP_FIRST_CSR_REGNUM];
966 }
967 else if (IS_CR_REGNUM (regnr))
968 {
969 CGEN_KEYWORD *names;
970 int cr_size;
971 int cr_is_float;
972
973 /* Does this module have a coprocessor at all? */
974 if (! (current_options () & MEP_OPT_COP))
975 return "";
976
977 names = current_cr_names ();
978 if (! names)
979 /* This module's coprocessor has no general-purpose registers. */
980 return "";
981
982 cr_size = current_cop_data_bus_width ();
983 if (cr_size != mep_pseudo_cr_size (regnr))
984 /* This module's coprocessor's GPR's are of a different size. */
985 return "";
986
987 cr_is_float = current_cr_is_float ();
988 /* The extra ! operators ensure we get boolean equality, not
989 numeric equality. */
990 if (! cr_is_float != ! mep_pseudo_cr_is_float (regnr))
991 /* This module's coprocessor's GPR's are of a different type. */
992 return "";
993
994 return register_name_from_keyword (names, mep_pseudo_cr_index (regnr));
995 }
996 else if (IS_CCR_REGNUM (regnr))
997 {
998 /* Does this module have a coprocessor at all? */
999 if (! (current_options () & MEP_OPT_COP))
1000 return "";
1001
1002 {
1003 CGEN_KEYWORD *names = current_ccr_names ();
1004
1005 if (! names)
1006 /* This me_module's coprocessor has no control registers. */
1007 return "";
1008
1009 return register_name_from_keyword (names, regnr-MEP_FIRST_CCR_REGNUM);
1010 }
1011 }
1012
1013 /* It might be nice to give the 'module' register a name, but that
1014 would affect the output of 'info all-registers', which would
1015 disturb the test suites. So we leave it invisible. */
1016 else
1017 return NULL;
1018}
1019
1020
1021/* Custom register groups for the MeP. */
1022static struct reggroup *mep_csr_reggroup; /* control/special */
1023static struct reggroup *mep_cr_reggroup; /* coprocessor general-purpose */
1024static struct reggroup *mep_ccr_reggroup; /* coprocessor control */
1025
1026
1027static int
1028mep_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1029 struct reggroup *group)
1030{
1031 /* Filter reserved or unused register numbers. */
1032 {
d93859e2 1033 const char *name = mep_register_name (gdbarch, regnum);
aeb43123
KB
1034
1035 if (! name || name[0] == '\0')
1036 return 0;
1037 }
1038
1039 /* We could separate the GPRs and the CSRs. Toshiba has approved of
1040 the existing behavior, so we'd want to run that by them. */
1041 if (group == general_reggroup)
1042 return (IS_GPR_REGNUM (regnum)
1043 || IS_CSR_REGNUM (regnum));
1044
1045 /* Everything is in the 'all' reggroup, except for the raw CSR's. */
1046 else if (group == all_reggroup)
1047 return (IS_GPR_REGNUM (regnum)
1048 || IS_CSR_REGNUM (regnum)
1049 || IS_CR_REGNUM (regnum)
1050 || IS_CCR_REGNUM (regnum));
1051
1052 /* All registers should be saved and restored, except for the raw
1053 CSR's.
1054
1055 This is probably right if the coprocessor is something like a
1056 floating-point unit, but would be wrong if the coprocessor is
1057 something that does I/O, where register accesses actually cause
1058 externally-visible actions. But I get the impression that the
1059 coprocessor isn't supposed to do things like that --- you'd use a
1060 hardware engine, perhaps. */
1061 else if (group == save_reggroup || group == restore_reggroup)
1062 return (IS_GPR_REGNUM (regnum)
1063 || IS_CSR_REGNUM (regnum)
1064 || IS_CR_REGNUM (regnum)
1065 || IS_CCR_REGNUM (regnum));
1066
1067 else if (group == mep_csr_reggroup)
1068 return IS_CSR_REGNUM (regnum);
1069 else if (group == mep_cr_reggroup)
1070 return IS_CR_REGNUM (regnum);
1071 else if (group == mep_ccr_reggroup)
1072 return IS_CCR_REGNUM (regnum);
1073 else
1074 return 0;
1075}
1076
1077
1078static struct type *
1079mep_register_type (struct gdbarch *gdbarch, int reg_nr)
1080{
1081 /* Coprocessor general-purpose registers may be either 32 or 64 bits
1082 long. So for them, the raw registers are always 64 bits long (to
1083 keep the 'g' packet format fixed), and the pseudoregisters vary
1084 in length. */
1085 if (IS_RAW_CR_REGNUM (reg_nr))
df4df182 1086 return builtin_type (gdbarch)->builtin_uint64;
aeb43123
KB
1087
1088 /* Since GDB doesn't allow registers to change type, we have two
1089 banks of pseudoregisters for the coprocessor general-purpose
1090 registers: one that gives a 32-bit view, and one that gives a
1091 64-bit view. We hide or show one or the other depending on the
1092 current module. */
1093 if (IS_CR_REGNUM (reg_nr))
1094 {
1095 int size = mep_pseudo_cr_size (reg_nr);
1096 if (size == 32)
1097 {
1098 if (mep_pseudo_cr_is_float (reg_nr))
0dfff4cb 1099 return builtin_type (gdbarch)->builtin_float;
aeb43123 1100 else
df4df182 1101 return builtin_type (gdbarch)->builtin_uint32;
aeb43123
KB
1102 }
1103 else if (size == 64)
1104 {
1105 if (mep_pseudo_cr_is_float (reg_nr))
0dfff4cb 1106 return builtin_type (gdbarch)->builtin_double;
aeb43123 1107 else
df4df182 1108 return builtin_type (gdbarch)->builtin_uint64;
aeb43123
KB
1109 }
1110 else
f3574227 1111 gdb_assert_not_reached ("unexpected cr size");
aeb43123
KB
1112 }
1113
1114 /* All other registers are 32 bits long. */
1115 else
df4df182 1116 return builtin_type (gdbarch)->builtin_uint32;
aeb43123
KB
1117}
1118
1119
1120static CORE_ADDR
61a1198a 1121mep_read_pc (struct regcache *regcache)
aeb43123 1122{
61a1198a
UW
1123 ULONGEST pc;
1124 regcache_cooked_read_unsigned (regcache, MEP_PC_REGNUM, &pc);
aeb43123
KB
1125 return pc;
1126}
1127
1128static void
61a1198a 1129mep_write_pc (struct regcache *regcache, CORE_ADDR pc)
aeb43123 1130{
61a1198a 1131 regcache_cooked_write_unsigned (regcache, MEP_PC_REGNUM, pc);
aeb43123
KB
1132}
1133
1134
05d1431c 1135static enum register_status
aeb43123
KB
1136mep_pseudo_cr32_read (struct gdbarch *gdbarch,
1137 struct regcache *regcache,
1138 int cookednum,
1139 void *buf)
1140{
05d1431c 1141 enum register_status status;
e17a4113 1142 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
aeb43123
KB
1143 /* Read the raw register into a 64-bit buffer, and then return the
1144 appropriate end of that buffer. */
1145 int rawnum = mep_pseudo_to_raw[cookednum];
1146 char buf64[8];
1147
1148 gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1149 gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
05d1431c
PA
1150 status = regcache_raw_read (regcache, rawnum, buf64);
1151 if (status == REG_VALID)
1152 {
1153 /* Slow, but legible. */
1154 store_unsigned_integer (buf, 4, byte_order,
1155 extract_unsigned_integer (buf64, 8, byte_order));
1156 }
1157 return status;
aeb43123
KB
1158}
1159
1160
05d1431c 1161static enum register_status
aeb43123
KB
1162mep_pseudo_cr64_read (struct gdbarch *gdbarch,
1163 struct regcache *regcache,
1164 int cookednum,
1165 void *buf)
1166{
05d1431c 1167 return regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
aeb43123
KB
1168}
1169
1170
05d1431c 1171static enum register_status
aeb43123
KB
1172mep_pseudo_register_read (struct gdbarch *gdbarch,
1173 struct regcache *regcache,
1174 int cookednum,
1175 gdb_byte *buf)
1176{
1177 if (IS_CSR_REGNUM (cookednum)
1178 || IS_CCR_REGNUM (cookednum))
05d1431c 1179 return regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
aeb43123
KB
1180 else if (IS_CR32_REGNUM (cookednum)
1181 || IS_FP_CR32_REGNUM (cookednum))
05d1431c 1182 return mep_pseudo_cr32_read (gdbarch, regcache, cookednum, buf);
aeb43123
KB
1183 else if (IS_CR64_REGNUM (cookednum)
1184 || IS_FP_CR64_REGNUM (cookednum))
05d1431c 1185 return mep_pseudo_cr64_read (gdbarch, regcache, cookednum, buf);
aeb43123 1186 else
f3574227 1187 gdb_assert_not_reached ("unexpected pseudo register");
aeb43123
KB
1188}
1189
1190
1191static void
1192mep_pseudo_csr_write (struct gdbarch *gdbarch,
1193 struct regcache *regcache,
1194 int cookednum,
1195 const void *buf)
1196{
e17a4113 1197 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
aeb43123
KB
1198 int size = register_size (gdbarch, cookednum);
1199 struct mep_csr_register *r
1200 = &mep_csr_registers[cookednum - MEP_FIRST_CSR_REGNUM];
1201
1202 if (r->writeable_bits == 0)
1203 /* A completely read-only register; avoid the read-modify-
1204 write cycle, and juts ignore the entire write. */
1205 ;
1206 else
1207 {
1208 /* A partially writeable register; do a read-modify-write cycle. */
1209 ULONGEST old_bits;
1210 ULONGEST new_bits;
1211 ULONGEST mixed_bits;
1212
1213 regcache_raw_read_unsigned (regcache, r->raw, &old_bits);
e17a4113 1214 new_bits = extract_unsigned_integer (buf, size, byte_order);
aeb43123
KB
1215 mixed_bits = ((r->writeable_bits & new_bits)
1216 | (~r->writeable_bits & old_bits));
1217 regcache_raw_write_unsigned (regcache, r->raw, mixed_bits);
1218 }
1219}
1220
1221
1222static void
1223mep_pseudo_cr32_write (struct gdbarch *gdbarch,
1224 struct regcache *regcache,
1225 int cookednum,
1226 const void *buf)
1227{
e17a4113 1228 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
aeb43123
KB
1229 /* Expand the 32-bit value into a 64-bit value, and write that to
1230 the pseudoregister. */
1231 int rawnum = mep_pseudo_to_raw[cookednum];
1232 char buf64[8];
1233
1234 gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1235 gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1236 /* Slow, but legible. */
e17a4113
UW
1237 store_unsigned_integer (buf64, 8, byte_order,
1238 extract_unsigned_integer (buf, 4, byte_order));
aeb43123
KB
1239 regcache_raw_write (regcache, rawnum, buf64);
1240}
1241
1242
1243static void
1244mep_pseudo_cr64_write (struct gdbarch *gdbarch,
1245 struct regcache *regcache,
1246 int cookednum,
1247 const void *buf)
1248{
1249 regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1250}
1251
1252
1253static void
1254mep_pseudo_register_write (struct gdbarch *gdbarch,
1255 struct regcache *regcache,
1256 int cookednum,
1257 const gdb_byte *buf)
1258{
1259 if (IS_CSR_REGNUM (cookednum))
1260 mep_pseudo_csr_write (gdbarch, regcache, cookednum, buf);
1261 else if (IS_CR32_REGNUM (cookednum)
1262 || IS_FP_CR32_REGNUM (cookednum))
1263 mep_pseudo_cr32_write (gdbarch, regcache, cookednum, buf);
1264 else if (IS_CR64_REGNUM (cookednum)
1265 || IS_FP_CR64_REGNUM (cookednum))
1266 mep_pseudo_cr64_write (gdbarch, regcache, cookednum, buf);
1267 else if (IS_CCR_REGNUM (cookednum))
1268 regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1269 else
f3574227 1270 gdb_assert_not_reached ("unexpected pseudo register");
aeb43123
KB
1271}
1272
1273
1274\f
1275/* Disassembly. */
1276
1277/* The mep disassembler needs to know about the section in order to
025bb325 1278 work correctly. */
63807e1d 1279static int
aeb43123
KB
1280mep_gdb_print_insn (bfd_vma pc, disassemble_info * info)
1281{
1282 struct obj_section * s = find_pc_section (pc);
1283
1284 if (s)
1285 {
1286 /* The libopcodes disassembly code uses the section to find the
1287 BFD, the BFD to find the ELF header, the ELF header to find
1288 the me_module index, and the me_module index to select the
1289 right instructions to print. */
1290 info->section = s->the_bfd_section;
1291 info->arch = bfd_arch_mep;
1292
1293 return print_insn_mep (pc, info);
1294 }
1295
1296 return 0;
1297}
1298
1299\f
1300/* Prologue analysis. */
1301
1302
1303/* The MeP has two classes of instructions: "core" instructions, which
1304 are pretty normal RISC chip stuff, and "coprocessor" instructions,
1305 which are mostly concerned with moving data in and out of
1306 coprocessor registers, and branching on coprocessor condition
1307 codes. There's space in the instruction set for custom coprocessor
1308 instructions, too.
1309
1310 Instructions can be 16 or 32 bits long; the top two bits of the
1311 first byte indicate the length. The coprocessor instructions are
1312 mixed in with the core instructions, and there's no easy way to
1313 distinguish them; you have to completely decode them to tell one
1314 from the other.
1315
1316 The MeP also supports a "VLIW" operation mode, where instructions
1317 always occur in fixed-width bundles. The bundles are either 32
1318 bits or 64 bits long, depending on a fixed configuration flag. You
1319 decode the first part of the bundle as normal; if it's a core
1320 instruction, and there's any space left in the bundle, the
1321 remainder of the bundle is a coprocessor instruction, which will
1322 execute in parallel with the core instruction. If the first part
1323 of the bundle is a coprocessor instruction, it occupies the entire
1324 bundle.
1325
1326 So, here are all the cases:
1327
1328 - 32-bit VLIW mode:
1329 Every bundle is four bytes long, and naturally aligned, and can hold
1330 one or two instructions:
1331 - 16-bit core instruction; 16-bit coprocessor instruction
025bb325 1332 These execute in parallel.
aeb43123
KB
1333 - 32-bit core instruction
1334 - 32-bit coprocessor instruction
1335
1336 - 64-bit VLIW mode:
1337 Every bundle is eight bytes long, and naturally aligned, and can hold
1338 one or two instructions:
1339 - 16-bit core instruction; 48-bit (!) coprocessor instruction
025bb325 1340 These execute in parallel.
aeb43123 1341 - 32-bit core instruction; 32-bit coprocessor instruction
025bb325 1342 These execute in parallel.
aeb43123
KB
1343 - 64-bit coprocessor instruction
1344
1345 Now, the MeP manual doesn't define any 48- or 64-bit coprocessor
1346 instruction, so I don't really know what's up there; perhaps these
1347 are always the user-defined coprocessor instructions. */
1348
1349
1350/* Return non-zero if PC is in a VLIW code section, zero
1351 otherwise. */
1352static int
1353mep_pc_in_vliw_section (CORE_ADDR pc)
1354{
1355 struct obj_section *s = find_pc_section (pc);
1356 if (s)
1357 return (s->the_bfd_section->flags & SEC_MEP_VLIW);
1358 return 0;
1359}
1360
1361
1362/* Set *INSN to the next core instruction at PC, and return the
1363 address of the next instruction.
1364
1365 The MeP instruction encoding is endian-dependent. 16- and 32-bit
1366 instructions are encoded as one or two two-byte parts, and each
1367 part is byte-swapped independently. Thus:
1368
1369 void
1370 foo (void)
1371 {
1372 asm ("movu $1, 0x123456");
1373 asm ("sb $1,0x5678($2)");
1374 asm ("clip $1, 19");
1375 }
1376
1377 compiles to this big-endian code:
1378
1379 0: d1 56 12 34 movu $1,0x123456
1380 4: c1 28 56 78 sb $1,22136($2)
1381 8: f1 01 10 98 clip $1,0x13
1382 c: 70 02 ret
1383
1384 and this little-endian code:
1385
1386 0: 56 d1 34 12 movu $1,0x123456
1387 4: 28 c1 78 56 sb $1,22136($2)
1388 8: 01 f1 98 10 clip $1,0x13
1389 c: 02 70 ret
1390
1391 Instructions are returned in *INSN in an endian-independent form: a
1392 given instruction always appears in *INSN the same way, regardless
1393 of whether the instruction stream is big-endian or little-endian.
1394
1395 *INSN's most significant 16 bits are the first (i.e., at lower
1396 addresses) 16 bit part of the instruction. Its least significant
1397 16 bits are the second (i.e., higher-addressed) 16 bit part of the
1398 instruction, or zero for a 16-bit instruction. Both 16-bit parts
1399 are fetched using the current endianness.
1400
1401 So, the *INSN values for the instruction sequence above would be
1402 the following, in either endianness:
1403
1404 0xd1561234 movu $1,0x123456
1405 0xc1285678 sb $1,22136($2)
1406 0xf1011098 clip $1,0x13
1407 0x70020000 ret
1408
1409 (In a sense, it would be more natural to return 16-bit instructions
1410 in the least significant 16 bits of *INSN, but that would be
1411 ambiguous. In order to tell whether you're looking at a 16- or a
1412 32-bit instruction, you have to consult the major opcode field ---
1413 the most significant four bits of the instruction's first 16-bit
1414 part. But if we put 16-bit instructions at the least significant
1415 end of *INSN, then you don't know where to find the major opcode
1416 field until you know if it's a 16- or a 32-bit instruction ---
1417 which is where we started.)
1418
1419 If PC points to a core / coprocessor bundle in a VLIW section, set
1420 *INSN to the core instruction, and return the address of the next
1421 bundle. This has the effect of skipping the bundled coprocessor
1422 instruction. That's okay, since coprocessor instructions aren't
1423 significant to prologue analysis --- for the time being,
1424 anyway. */
1425
1426static CORE_ADDR
e17a4113 1427mep_get_insn (struct gdbarch *gdbarch, CORE_ADDR pc, long *insn)
aeb43123 1428{
e17a4113 1429 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
aeb43123
KB
1430 int pc_in_vliw_section;
1431 int vliw_mode;
1432 int insn_len;
1433 char buf[2];
1434
1435 *insn = 0;
1436
1437 /* Are we in a VLIW section? */
1438 pc_in_vliw_section = mep_pc_in_vliw_section (pc);
1439 if (pc_in_vliw_section)
1440 {
1441 /* Yes, find out which bundle size. */
1442 vliw_mode = current_options () & (MEP_OPT_VL32 | MEP_OPT_VL64);
1443
1444 /* If PC is in a VLIW section, but the current core doesn't say
1445 that it supports either VLIW mode, then we don't have enough
1446 information to parse the instruction stream it contains.
1447 Since the "undifferentiated" standard core doesn't have
1448 either VLIW mode bit set, this could happen.
1449
1450 But it shouldn't be an error to (say) set a breakpoint in a
1451 VLIW section, if you know you'll never reach it. (Perhaps
1452 you have a script that sets a bunch of standard breakpoints.)
1453
1454 So we'll just return zero here, and hope for the best. */
1455 if (! (vliw_mode & (MEP_OPT_VL32 | MEP_OPT_VL64)))
1456 return 0;
1457
1458 /* If both VL32 and VL64 are set, that's bogus, too. */
1459 if (vliw_mode == (MEP_OPT_VL32 | MEP_OPT_VL64))
1460 return 0;
1461 }
1462 else
1463 vliw_mode = 0;
1464
1465 read_memory (pc, buf, sizeof (buf));
e17a4113 1466 *insn = extract_unsigned_integer (buf, 2, byte_order) << 16;
aeb43123
KB
1467
1468 /* The major opcode --- the top four bits of the first 16-bit
1469 part --- indicates whether this instruction is 16 or 32 bits
1470 long. All 32-bit instructions have a major opcode whose top
1471 two bits are 11; all the rest are 16-bit instructions. */
1472 if ((*insn & 0xc0000000) == 0xc0000000)
1473 {
1474 /* Fetch the second 16-bit part of the instruction. */
1475 read_memory (pc + 2, buf, sizeof (buf));
e17a4113 1476 *insn = *insn | extract_unsigned_integer (buf, 2, byte_order);
aeb43123
KB
1477 }
1478
1479 /* If we're in VLIW code, then the VLIW width determines the address
1480 of the next instruction. */
1481 if (vliw_mode)
1482 {
1483 /* In 32-bit VLIW code, all bundles are 32 bits long. We ignore the
1484 coprocessor half of a core / copro bundle. */
1485 if (vliw_mode == MEP_OPT_VL32)
1486 insn_len = 4;
1487
1488 /* In 64-bit VLIW code, all bundles are 64 bits long. We ignore the
1489 coprocessor half of a core / copro bundle. */
1490 else if (vliw_mode == MEP_OPT_VL64)
1491 insn_len = 8;
1492
1493 /* We'd better be in either core, 32-bit VLIW, or 64-bit VLIW mode. */
1494 else
f3574227 1495 gdb_assert_not_reached ("unexpected vliw mode");
aeb43123
KB
1496 }
1497
1498 /* Otherwise, the top two bits of the major opcode are (again) what
1499 we need to check. */
1500 else if ((*insn & 0xc0000000) == 0xc0000000)
1501 insn_len = 4;
1502 else
1503 insn_len = 2;
1504
1505 return pc + insn_len;
1506}
1507
1508
1509/* Sign-extend the LEN-bit value N. */
1510#define SEXT(n, len) ((((int) (n)) ^ (1 << ((len) - 1))) - (1 << ((len) - 1)))
1511
1512/* Return the LEN-bit field at POS from I. */
1513#define FIELD(i, pos, len) (((i) >> (pos)) & ((1 << (len)) - 1))
1514
1515/* Like FIELD, but sign-extend the field's value. */
1516#define SFIELD(i, pos, len) (SEXT (FIELD ((i), (pos), (len)), (len)))
1517
1518
1519/* Macros for decoding instructions.
1520
1521 Remember that 16-bit instructions are placed in bits 16..31 of i,
1522 not at the least significant end; this means that the major opcode
1523 field is always in the same place, regardless of the width of the
1524 instruction. As a reminder of this, we show the lower 16 bits of a
1525 16-bit instruction as xxxx_xxxx_xxxx_xxxx. */
1526
1527/* SB Rn,(Rm) 0000_nnnn_mmmm_1000 */
1528/* SH Rn,(Rm) 0000_nnnn_mmmm_1001 */
1529/* SW Rn,(Rm) 0000_nnnn_mmmm_1010 */
1530
1531/* SW Rn,disp16(Rm) 1100_nnnn_mmmm_1010 dddd_dddd_dddd_dddd */
1532#define IS_SW(i) (((i) & 0xf00f0000) == 0xc00a0000)
1533/* SB Rn,disp16(Rm) 1100_nnnn_mmmm_1000 dddd_dddd_dddd_dddd */
1534#define IS_SB(i) (((i) & 0xf00f0000) == 0xc0080000)
1535/* SH Rn,disp16(Rm) 1100_nnnn_mmmm_1001 dddd_dddd_dddd_dddd */
1536#define IS_SH(i) (((i) & 0xf00f0000) == 0xc0090000)
1537#define SWBH_32_BASE(i) (FIELD (i, 20, 4))
1538#define SWBH_32_SOURCE(i) (FIELD (i, 24, 4))
1539#define SWBH_32_OFFSET(i) (SFIELD (i, 0, 16))
1540
1541/* SW Rn,disp7.align4(SP) 0100_nnnn_0ddd_dd10 xxxx_xxxx_xxxx_xxxx */
1542#define IS_SW_IMMD(i) (((i) & 0xf0830000) == 0x40020000)
1543#define SW_IMMD_SOURCE(i) (FIELD (i, 24, 4))
1544#define SW_IMMD_OFFSET(i) (FIELD (i, 18, 5) << 2)
1545
1546/* SW Rn,(Rm) 0000_nnnn_mmmm_1010 xxxx_xxxx_xxxx_xxxx */
1547#define IS_SW_REG(i) (((i) & 0xf00f0000) == 0x000a0000)
1548#define SW_REG_SOURCE(i) (FIELD (i, 24, 4))
1549#define SW_REG_BASE(i) (FIELD (i, 20, 4))
1550
1551/* ADD3 Rl,Rn,Rm 1001_nnnn_mmmm_llll xxxx_xxxx_xxxx_xxxx */
1552#define IS_ADD3_16_REG(i) (((i) & 0xf0000000) == 0x90000000)
1553#define ADD3_16_REG_SRC1(i) (FIELD (i, 20, 4)) /* n */
1554#define ADD3_16_REG_SRC2(i) (FIELD (i, 24, 4)) /* m */
1555
1556/* ADD3 Rn,Rm,imm16 1100_nnnn_mmmm_0000 iiii_iiii_iiii_iiii */
1557#define IS_ADD3_32(i) (((i) & 0xf00f0000) == 0xc0000000)
1558#define ADD3_32_TARGET(i) (FIELD (i, 24, 4))
1559#define ADD3_32_SOURCE(i) (FIELD (i, 20, 4))
1560#define ADD3_32_OFFSET(i) (SFIELD (i, 0, 16))
1561
1562/* ADD3 Rn,SP,imm7.align4 0100_nnnn_0iii_ii00 xxxx_xxxx_xxxx_xxxx */
1563#define IS_ADD3_16(i) (((i) & 0xf0830000) == 0x40000000)
1564#define ADD3_16_TARGET(i) (FIELD (i, 24, 4))
1565#define ADD3_16_OFFSET(i) (FIELD (i, 18, 5) << 2)
1566
1567/* ADD Rn,imm6 0110_nnnn_iiii_ii00 xxxx_xxxx_xxxx_xxxx */
1568#define IS_ADD(i) (((i) & 0xf0030000) == 0x60000000)
1569#define ADD_TARGET(i) (FIELD (i, 24, 4))
1570#define ADD_OFFSET(i) (SFIELD (i, 18, 6))
1571
1572/* LDC Rn,imm5 0111_nnnn_iiii_101I xxxx_xxxx_xxxx_xxxx
1573 imm5 = I||i[7:4] */
1574#define IS_LDC(i) (((i) & 0xf00e0000) == 0x700a0000)
1575#define LDC_IMM(i) ((FIELD (i, 16, 1) << 4) | FIELD (i, 20, 4))
1576#define LDC_TARGET(i) (FIELD (i, 24, 4))
1577
1578/* LW Rn,disp16(Rm) 1100_nnnn_mmmm_1110 dddd_dddd_dddd_dddd */
1579#define IS_LW(i) (((i) & 0xf00f0000) == 0xc00e0000)
1580#define LW_TARGET(i) (FIELD (i, 24, 4))
1581#define LW_BASE(i) (FIELD (i, 20, 4))
1582#define LW_OFFSET(i) (SFIELD (i, 0, 16))
1583
1584/* MOV Rn,Rm 0000_nnnn_mmmm_0000 xxxx_xxxx_xxxx_xxxx */
1585#define IS_MOV(i) (((i) & 0xf00f0000) == 0x00000000)
1586#define MOV_TARGET(i) (FIELD (i, 24, 4))
1587#define MOV_SOURCE(i) (FIELD (i, 20, 4))
1588
1ba3e7a3
KB
1589/* BRA disp12.align2 1011_dddd_dddd_ddd0 xxxx_xxxx_xxxx_xxxx */
1590#define IS_BRA(i) (((i) & 0xf0010000) == 0xb0000000)
1591#define BRA_DISP(i) (SFIELD (i, 17, 11) << 1)
1592
aeb43123
KB
1593
1594/* This structure holds the results of a prologue analysis. */
1595struct mep_prologue
1596{
9dacea90
UW
1597 /* The architecture for which we generated this prologue info. */
1598 struct gdbarch *gdbarch;
1599
aeb43123
KB
1600 /* The offset from the frame base to the stack pointer --- always
1601 zero or negative.
1602
1603 Calling this a "size" is a bit misleading, but given that the
1604 stack grows downwards, using offsets for everything keeps one
1605 from going completely sign-crazy: you never change anything's
1606 sign for an ADD instruction; always change the second operand's
1607 sign for a SUB instruction; and everything takes care of
1608 itself. */
1609 int frame_size;
1610
1611 /* Non-zero if this function has initialized the frame pointer from
1612 the stack pointer, zero otherwise. */
1613 int has_frame_ptr;
1614
1615 /* If has_frame_ptr is non-zero, this is the offset from the frame
1616 base to where the frame pointer points. This is always zero or
1617 negative. */
1618 int frame_ptr_offset;
1619
1620 /* The address of the first instruction at which the frame has been
1621 set up and the arguments are where the debug info says they are
1622 --- as best as we can tell. */
1623 CORE_ADDR prologue_end;
1624
1625 /* reg_offset[R] is the offset from the CFA at which register R is
1626 saved, or 1 if register R has not been saved. (Real values are
1627 always zero or negative.) */
1628 int reg_offset[MEP_NUM_REGS];
1629};
1630
1631/* Return non-zero if VALUE is an incoming argument register. */
1632
1633static int
1634is_arg_reg (pv_t value)
1635{
1636 return (value.kind == pvk_register
1637 && MEP_R1_REGNUM <= value.reg && value.reg <= MEP_R4_REGNUM
1638 && value.k == 0);
1639}
1640
1641/* Return non-zero if a store of REG's current value VALUE to ADDR is
1642 probably spilling an argument register to its stack slot in STACK.
1643 Such instructions should be included in the prologue, if possible.
1644
1645 The store is a spill if:
1646 - the value being stored is REG's original value;
1647 - the value has not already been stored somewhere in STACK; and
1648 - ADDR is a stack slot's address (e.g., relative to the original
1649 value of the SP). */
1650static int
9dacea90
UW
1651is_arg_spill (struct gdbarch *gdbarch, pv_t value, pv_t addr,
1652 struct pv_area *stack)
aeb43123
KB
1653{
1654 return (is_arg_reg (value)
1655 && pv_is_register (addr, MEP_SP_REGNUM)
9dacea90 1656 && ! pv_area_find_reg (stack, gdbarch, value.reg, 0));
aeb43123
KB
1657}
1658
1659
1660/* Function for finding saved registers in a 'struct pv_area'; we pass
1661 this to pv_area_scan.
1662
1663 If VALUE is a saved register, ADDR says it was saved at a constant
1664 offset from the frame base, and SIZE indicates that the whole
1665 register was saved, record its offset in RESULT_UNTYPED. */
1666static void
1667check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1668{
1669 struct mep_prologue *result = (struct mep_prologue *) result_untyped;
1670
1671 if (value.kind == pvk_register
1672 && value.k == 0
1673 && pv_is_register (addr, MEP_SP_REGNUM)
9dacea90 1674 && size == register_size (result->gdbarch, value.reg))
aeb43123
KB
1675 result->reg_offset[value.reg] = addr.k;
1676}
1677
1678
1679/* Analyze a prologue starting at START_PC, going no further than
1680 LIMIT_PC. Fill in RESULT as appropriate. */
1681static void
9dacea90
UW
1682mep_analyze_prologue (struct gdbarch *gdbarch,
1683 CORE_ADDR start_pc, CORE_ADDR limit_pc,
aeb43123
KB
1684 struct mep_prologue *result)
1685{
1686 CORE_ADDR pc;
1687 unsigned long insn;
1688 int rn;
1689 int found_lp = 0;
1690 pv_t reg[MEP_NUM_REGS];
1691 struct pv_area *stack;
1692 struct cleanup *back_to;
1693 CORE_ADDR after_last_frame_setup_insn = start_pc;
1694
1695 memset (result, 0, sizeof (*result));
9dacea90 1696 result->gdbarch = gdbarch;
aeb43123
KB
1697
1698 for (rn = 0; rn < MEP_NUM_REGS; rn++)
1699 {
1700 reg[rn] = pv_register (rn, 0);
1701 result->reg_offset[rn] = 1;
1702 }
1703
55f960e1 1704 stack = make_pv_area (MEP_SP_REGNUM, gdbarch_addr_bit (gdbarch));
aeb43123
KB
1705 back_to = make_cleanup_free_pv_area (stack);
1706
1707 pc = start_pc;
1708 while (pc < limit_pc)
1709 {
1710 CORE_ADDR next_pc;
1711 pv_t pre_insn_fp, pre_insn_sp;
1712
e17a4113 1713 next_pc = mep_get_insn (gdbarch, pc, &insn);
aeb43123
KB
1714
1715 /* A zero return from mep_get_insn means that either we weren't
1716 able to read the instruction from memory, or that we don't
1717 have enough information to be able to reliably decode it. So
1718 we'll store here and hope for the best. */
1719 if (! next_pc)
1720 break;
1721
1722 /* Note the current values of the SP and FP, so we can tell if
1723 this instruction changed them, below. */
1724 pre_insn_fp = reg[MEP_FP_REGNUM];
1725 pre_insn_sp = reg[MEP_SP_REGNUM];
1726
1727 if (IS_ADD (insn))
1728 {
1729 int rn = ADD_TARGET (insn);
1730 CORE_ADDR imm6 = ADD_OFFSET (insn);
1731
1732 reg[rn] = pv_add_constant (reg[rn], imm6);
1733 }
1734 else if (IS_ADD3_16 (insn))
1735 {
1736 int rn = ADD3_16_TARGET (insn);
1737 int imm7 = ADD3_16_OFFSET (insn);
1738
1739 reg[rn] = pv_add_constant (reg[MEP_SP_REGNUM], imm7);
1740 }
1741 else if (IS_ADD3_32 (insn))
1742 {
1743 int rn = ADD3_32_TARGET (insn);
1744 int rm = ADD3_32_SOURCE (insn);
1745 int imm16 = ADD3_32_OFFSET (insn);
1746
1747 reg[rn] = pv_add_constant (reg[rm], imm16);
1748 }
1749 else if (IS_SW_REG (insn))
1750 {
1751 int rn = SW_REG_SOURCE (insn);
1752 int rm = SW_REG_BASE (insn);
1753
1754 /* If simulating this store would require us to forget
1755 everything we know about the stack frame in the name of
1756 accuracy, it would be better to just quit now. */
1757 if (pv_area_store_would_trash (stack, reg[rm]))
1758 break;
1759
9dacea90 1760 if (is_arg_spill (gdbarch, reg[rn], reg[rm], stack))
aeb43123
KB
1761 after_last_frame_setup_insn = next_pc;
1762
1763 pv_area_store (stack, reg[rm], 4, reg[rn]);
1764 }
1765 else if (IS_SW_IMMD (insn))
1766 {
1767 int rn = SW_IMMD_SOURCE (insn);
1768 int offset = SW_IMMD_OFFSET (insn);
1769 pv_t addr = pv_add_constant (reg[MEP_SP_REGNUM], offset);
1770
1771 /* If simulating this store would require us to forget
1772 everything we know about the stack frame in the name of
1773 accuracy, it would be better to just quit now. */
1774 if (pv_area_store_would_trash (stack, addr))
1775 break;
1776
9dacea90 1777 if (is_arg_spill (gdbarch, reg[rn], addr, stack))
aeb43123
KB
1778 after_last_frame_setup_insn = next_pc;
1779
1780 pv_area_store (stack, addr, 4, reg[rn]);
1781 }
1782 else if (IS_MOV (insn))
1783 {
1784 int rn = MOV_TARGET (insn);
1785 int rm = MOV_SOURCE (insn);
1786
1787 reg[rn] = reg[rm];
1788
1789 if (pv_is_register (reg[rm], rm) && is_arg_reg (reg[rm]))
1790 after_last_frame_setup_insn = next_pc;
1791 }
1792 else if (IS_SB (insn) || IS_SH (insn) || IS_SW (insn))
1793 {
1794 int rn = SWBH_32_SOURCE (insn);
1795 int rm = SWBH_32_BASE (insn);
1796 int disp = SWBH_32_OFFSET (insn);
1797 int size = (IS_SB (insn) ? 1
1798 : IS_SH (insn) ? 2
f3574227 1799 : (gdb_assert (IS_SW (insn)), 4));
aeb43123
KB
1800 pv_t addr = pv_add_constant (reg[rm], disp);
1801
1802 if (pv_area_store_would_trash (stack, addr))
1803 break;
1804
9dacea90 1805 if (is_arg_spill (gdbarch, reg[rn], addr, stack))
aeb43123
KB
1806 after_last_frame_setup_insn = next_pc;
1807
1808 pv_area_store (stack, addr, size, reg[rn]);
1809 }
1810 else if (IS_LDC (insn))
1811 {
1812 int rn = LDC_TARGET (insn);
1813 int cr = LDC_IMM (insn) + MEP_FIRST_CSR_REGNUM;
1814
1815 reg[rn] = reg[cr];
1816 }
1817 else if (IS_LW (insn))
1818 {
1819 int rn = LW_TARGET (insn);
1820 int rm = LW_BASE (insn);
1821 int offset = LW_OFFSET (insn);
1822 pv_t addr = pv_add_constant (reg[rm], offset);
1823
1824 reg[rn] = pv_area_fetch (stack, addr, 4);
1825 }
1ba3e7a3
KB
1826 else if (IS_BRA (insn) && BRA_DISP (insn) > 0)
1827 {
f219aedc 1828 /* When a loop appears as the first statement of a function
1ba3e7a3
KB
1829 body, gcc 4.x will use a BRA instruction to branch to the
1830 loop condition checking code. This BRA instruction is
1831 marked as part of the prologue. We therefore set next_pc
025bb325 1832 to this branch target and also stop the prologue scan.
1ba3e7a3 1833 The instructions at and beyond the branch target should
f219aedc
KB
1834 no longer be associated with the prologue.
1835
1836 Note that we only consider forward branches here. We
1837 presume that a forward branch is being used to skip over
1838 a loop body.
1839
1840 A backwards branch is covered by the default case below.
1841 If we were to encounter a backwards branch, that would
1842 most likely mean that we've scanned through a loop body.
1843 We definitely want to stop the prologue scan when this
1844 happens and that is precisely what is done by the default
1845 case below. */
1ba3e7a3
KB
1846 next_pc = pc + BRA_DISP (insn);
1847 after_last_frame_setup_insn = next_pc;
1848 break;
1849 }
aeb43123
KB
1850 else
1851 /* We've hit some instruction we don't know how to simulate.
1852 Strictly speaking, we should set every value we're
1853 tracking to "unknown". But we'll be optimistic, assume
1854 that we have enough information already, and stop
1855 analysis here. */
1856 break;
1857
1858 /* If this instruction changed the FP or decreased the SP (i.e.,
1859 allocated more stack space), then this may be a good place to
1860 declare the prologue finished. However, there are some
1861 exceptions:
1862
1863 - If the instruction just changed the FP back to its original
1864 value, then that's probably a restore instruction. The
1865 prologue should definitely end before that.
1866
1867 - If the instruction increased the value of the SP (that is,
1868 shrunk the frame), then it's probably part of a frame
1869 teardown sequence, and the prologue should end before that. */
1870
1871 if (! pv_is_identical (reg[MEP_FP_REGNUM], pre_insn_fp))
1872 {
1873 if (! pv_is_register_k (reg[MEP_FP_REGNUM], MEP_FP_REGNUM, 0))
1874 after_last_frame_setup_insn = next_pc;
1875 }
1876 else if (! pv_is_identical (reg[MEP_SP_REGNUM], pre_insn_sp))
1877 {
1878 /* The comparison of constants looks odd, there, because .k
1879 is unsigned. All it really means is that the new value
1880 is lower than it was before the instruction. */
1881 if (pv_is_register (pre_insn_sp, MEP_SP_REGNUM)
1882 && pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM)
1883 && ((pre_insn_sp.k - reg[MEP_SP_REGNUM].k)
1884 < (reg[MEP_SP_REGNUM].k - pre_insn_sp.k)))
1885 after_last_frame_setup_insn = next_pc;
1886 }
1887
1888 pc = next_pc;
1889 }
1890
1891 /* Is the frame size (offset, really) a known constant? */
1892 if (pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM))
1893 result->frame_size = reg[MEP_SP_REGNUM].k;
1894
1895 /* Was the frame pointer initialized? */
1896 if (pv_is_register (reg[MEP_FP_REGNUM], MEP_SP_REGNUM))
1897 {
1898 result->has_frame_ptr = 1;
1899 result->frame_ptr_offset = reg[MEP_FP_REGNUM].k;
1900 }
1901
1902 /* Record where all the registers were saved. */
1903 pv_area_scan (stack, check_for_saved, (void *) result);
1904
1905 result->prologue_end = after_last_frame_setup_insn;
1906
1907 do_cleanups (back_to);
1908}
1909
1910
1911static CORE_ADDR
6093d2eb 1912mep_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
aeb43123 1913{
2c02bd72 1914 const char *name;
aeb43123
KB
1915 CORE_ADDR func_addr, func_end;
1916 struct mep_prologue p;
1917
1918 /* Try to find the extent of the function that contains PC. */
1919 if (! find_pc_partial_function (pc, &name, &func_addr, &func_end))
1920 return pc;
1921
9dacea90 1922 mep_analyze_prologue (gdbarch, pc, func_end, &p);
aeb43123
KB
1923 return p.prologue_end;
1924}
1925
1926
1927\f
1928/* Breakpoints. */
1929
1930static const unsigned char *
67d57894 1931mep_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR * pcptr, int *lenptr)
aeb43123
KB
1932{
1933 static unsigned char breakpoint[] = { 0x70, 0x32 };
1934 *lenptr = sizeof (breakpoint);
1935 return breakpoint;
1936}
1937
1938
1939\f
1940/* Frames and frame unwinding. */
1941
1942
1943static struct mep_prologue *
94afd7a6 1944mep_analyze_frame_prologue (struct frame_info *this_frame,
aeb43123
KB
1945 void **this_prologue_cache)
1946{
1947 if (! *this_prologue_cache)
1948 {
1949 CORE_ADDR func_start, stop_addr;
1950
1951 *this_prologue_cache
1952 = FRAME_OBSTACK_ZALLOC (struct mep_prologue);
1953
94afd7a6
UW
1954 func_start = get_frame_func (this_frame);
1955 stop_addr = get_frame_pc (this_frame);
aeb43123
KB
1956
1957 /* If we couldn't find any function containing the PC, then
1958 just initialize the prologue cache, but don't do anything. */
1959 if (! func_start)
1960 stop_addr = func_start;
1961
9dacea90
UW
1962 mep_analyze_prologue (get_frame_arch (this_frame),
1963 func_start, stop_addr, *this_prologue_cache);
aeb43123
KB
1964 }
1965
1966 return *this_prologue_cache;
1967}
1968
1969
1970/* Given the next frame and a prologue cache, return this frame's
1971 base. */
1972static CORE_ADDR
94afd7a6 1973mep_frame_base (struct frame_info *this_frame,
aeb43123
KB
1974 void **this_prologue_cache)
1975{
1976 struct mep_prologue *p
94afd7a6 1977 = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
aeb43123
KB
1978
1979 /* In functions that use alloca, the distance between the stack
1980 pointer and the frame base varies dynamically, so we can't use
1981 the SP plus static information like prologue analysis to find the
1982 frame base. However, such functions must have a frame pointer,
1983 to be able to restore the SP on exit. So whenever we do have a
1984 frame pointer, use that to find the base. */
1985 if (p->has_frame_ptr)
1986 {
1987 CORE_ADDR fp
94afd7a6 1988 = get_frame_register_unsigned (this_frame, MEP_FP_REGNUM);
aeb43123
KB
1989 return fp - p->frame_ptr_offset;
1990 }
1991 else
1992 {
1993 CORE_ADDR sp
94afd7a6 1994 = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
aeb43123
KB
1995 return sp - p->frame_size;
1996 }
1997}
1998
1999
2000static void
94afd7a6 2001mep_frame_this_id (struct frame_info *this_frame,
aeb43123
KB
2002 void **this_prologue_cache,
2003 struct frame_id *this_id)
2004{
94afd7a6
UW
2005 *this_id = frame_id_build (mep_frame_base (this_frame, this_prologue_cache),
2006 get_frame_func (this_frame));
aeb43123
KB
2007}
2008
2009
94afd7a6
UW
2010static struct value *
2011mep_frame_prev_register (struct frame_info *this_frame,
2012 void **this_prologue_cache, int regnum)
aeb43123
KB
2013{
2014 struct mep_prologue *p
94afd7a6 2015 = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
aeb43123
KB
2016
2017 /* There are a number of complications in unwinding registers on the
2018 MeP, having to do with core functions calling VLIW functions and
2019 vice versa.
2020
2021 The least significant bit of the link register, LP.LTOM, is the
2022 VLIW mode toggle bit: it's set if a core function called a VLIW
2023 function, or vice versa, and clear when the caller and callee
2024 were both in the same mode.
2025
2026 So, if we're asked to unwind the PC, then we really want to
2027 unwind the LP and clear the least significant bit. (Real return
2028 addresses are always even.) And if we want to unwind the program
2029 status word (PSW), we need to toggle PSW.OM if LP.LTOM is set.
2030
2031 Tweaking the register values we return in this way means that the
2032 bits in BUFFERP[] are not the same as the bits you'd find at
2033 ADDRP in the inferior, so we make sure lvalp is not_lval when we
2034 do this. */
2035 if (regnum == MEP_PC_REGNUM)
2036 {
94afd7a6
UW
2037 struct value *value;
2038 CORE_ADDR lp;
2039 value = mep_frame_prev_register (this_frame, this_prologue_cache,
2040 MEP_LP_REGNUM);
2041 lp = value_as_long (value);
2042 release_value (value);
2043 value_free (value);
2044
2045 return frame_unwind_got_constant (this_frame, regnum, lp & ~1);
aeb43123
KB
2046 }
2047 else
2048 {
94afd7a6
UW
2049 CORE_ADDR frame_base = mep_frame_base (this_frame, this_prologue_cache);
2050 struct value *value;
aeb43123
KB
2051
2052 /* Our caller's SP is our frame base. */
2053 if (regnum == MEP_SP_REGNUM)
94afd7a6 2054 return frame_unwind_got_constant (this_frame, regnum, frame_base);
aeb43123
KB
2055
2056 /* If prologue analysis says we saved this register somewhere,
2057 return a description of the stack slot holding it. */
94afd7a6
UW
2058 if (p->reg_offset[regnum] != 1)
2059 value = frame_unwind_got_memory (this_frame, regnum,
2060 frame_base + p->reg_offset[regnum]);
aeb43123
KB
2061
2062 /* Otherwise, presume we haven't changed the value of this
2063 register, and get it from the next frame. */
2064 else
94afd7a6 2065 value = frame_unwind_got_register (this_frame, regnum, regnum);
aeb43123
KB
2066
2067 /* If we need to toggle the operating mode, do so. */
2068 if (regnum == MEP_PSW_REGNUM)
2069 {
94afd7a6
UW
2070 CORE_ADDR psw, lp;
2071
2072 psw = value_as_long (value);
2073 release_value (value);
2074 value_free (value);
aeb43123
KB
2075
2076 /* Get the LP's value, too. */
94afd7a6
UW
2077 value = get_frame_register_value (this_frame, MEP_LP_REGNUM);
2078 lp = value_as_long (value);
2079 release_value (value);
2080 value_free (value);
aeb43123
KB
2081
2082 /* If LP.LTOM is set, then toggle PSW.OM. */
94afd7a6
UW
2083 if (lp & 0x1)
2084 psw ^= 0x1000;
2085
2086 return frame_unwind_got_constant (this_frame, regnum, psw);
aeb43123 2087 }
94afd7a6
UW
2088
2089 return value;
aeb43123
KB
2090 }
2091}
2092
2093
2094static const struct frame_unwind mep_frame_unwind = {
2095 NORMAL_FRAME,
8fbca658 2096 default_frame_unwind_stop_reason,
aeb43123 2097 mep_frame_this_id,
94afd7a6
UW
2098 mep_frame_prev_register,
2099 NULL,
2100 default_frame_sniffer
aeb43123
KB
2101};
2102
2103
aeb43123
KB
2104/* Our general unwinding function can handle unwinding the PC. */
2105static CORE_ADDR
2106mep_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2107{
2108 return frame_unwind_register_unsigned (next_frame, MEP_PC_REGNUM);
2109}
2110
2111
2112/* Our general unwinding function can handle unwinding the SP. */
2113static CORE_ADDR
2114mep_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2115{
2116 return frame_unwind_register_unsigned (next_frame, MEP_SP_REGNUM);
2117}
2118
2119
2120\f
2121/* Return values. */
2122
2123
2124static int
2125mep_use_struct_convention (struct type *type)
2126{
2127 return (TYPE_LENGTH (type) > MEP_GPR_SIZE);
2128}
2129
2130
2131static void
2132mep_extract_return_value (struct gdbarch *arch,
2133 struct type *type,
2134 struct regcache *regcache,
2135 gdb_byte *valbuf)
2136{
2137 int byte_order = gdbarch_byte_order (arch);
2138
2139 /* Values that don't occupy a full register appear at the less
2140 significant end of the value. This is the offset to where the
2141 value starts. */
2142 int offset;
2143
2144 /* Return values > MEP_GPR_SIZE bytes are returned in memory,
2145 pointed to by R0. */
2146 gdb_assert (TYPE_LENGTH (type) <= MEP_GPR_SIZE);
2147
2148 if (byte_order == BFD_ENDIAN_BIG)
2149 offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2150 else
2151 offset = 0;
2152
025bb325 2153 /* Return values that do fit in a single register are returned in R0. */
aeb43123
KB
2154 regcache_cooked_read_part (regcache, MEP_R0_REGNUM,
2155 offset, TYPE_LENGTH (type),
2156 valbuf);
2157}
2158
2159
2160static void
2161mep_store_return_value (struct gdbarch *arch,
2162 struct type *type,
2163 struct regcache *regcache,
2164 const gdb_byte *valbuf)
2165{
2166 int byte_order = gdbarch_byte_order (arch);
2167
2168 /* Values that fit in a single register go in R0. */
2169 if (TYPE_LENGTH (type) <= MEP_GPR_SIZE)
2170 {
2171 /* Values that don't occupy a full register appear at the least
2172 significant end of the value. This is the offset to where the
2173 value starts. */
2174 int offset;
2175
2176 if (byte_order == BFD_ENDIAN_BIG)
2177 offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2178 else
2179 offset = 0;
2180
2181 regcache_cooked_write_part (regcache, MEP_R0_REGNUM,
2182 offset, TYPE_LENGTH (type),
2183 valbuf);
2184 }
2185
2186 /* Return values larger than a single register are returned in
2187 memory, pointed to by R0. Unfortunately, we can't count on R0
025bb325 2188 pointing to the return buffer, so we raise an error here. */
aeb43123 2189 else
a73c6dcd
MS
2190 error (_("\
2191GDB cannot set return values larger than four bytes; the Media Processor's\n\
2192calling conventions do not provide enough information to do this.\n\
2193Try using the 'return' command with no argument."));
aeb43123
KB
2194}
2195
63807e1d 2196static enum return_value_convention
6a3a010b 2197mep_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
2198 struct type *type, struct regcache *regcache,
2199 gdb_byte *readbuf, const gdb_byte *writebuf)
aeb43123
KB
2200{
2201 if (mep_use_struct_convention (type))
2202 {
2203 if (readbuf)
2204 {
2205 ULONGEST addr;
2206 /* Although the address of the struct buffer gets passed in R1, it's
2207 returned in R0. Fetch R0's value and then read the memory
2208 at that address. */
2209 regcache_raw_read_unsigned (regcache, MEP_R0_REGNUM, &addr);
2210 read_memory (addr, readbuf, TYPE_LENGTH (type));
2211 }
2212 if (writebuf)
2213 {
2214 /* Return values larger than a single register are returned in
2215 memory, pointed to by R0. Unfortunately, we can't count on R0
025bb325 2216 pointing to the return buffer, so we raise an error here. */
a73c6dcd
MS
2217 error (_("\
2218GDB cannot set return values larger than four bytes; the Media Processor's\n\
2219calling conventions do not provide enough information to do this.\n\
2220Try using the 'return' command with no argument."));
aeb43123
KB
2221 }
2222 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2223 }
2224
2225 if (readbuf)
2226 mep_extract_return_value (gdbarch, type, regcache, readbuf);
2227 if (writebuf)
2228 mep_store_return_value (gdbarch, type, regcache, writebuf);
2229
2230 return RETURN_VALUE_REGISTER_CONVENTION;
2231}
2232
2233\f
2234/* Inferior calls. */
2235
2236
2237static CORE_ADDR
2238mep_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2239{
2240 /* Require word alignment. */
2241 return sp & -4;
2242}
2243
2244
2245/* From "lang_spec2.txt":
2246
2247 4.2 Calling conventions
2248
2249 4.2.1 Core register conventions
2250
2251 - Parameters should be evaluated from left to right, and they
025bb325
MS
2252 should be held in $1,$2,$3,$4 in order. The fifth parameter or
2253 after should be held in the stack. If the size is larger than 4
aeb43123 2254 bytes in the first four parameters, the pointer should be held in
025bb325 2255 the registers instead. If the size is larger than 4 bytes in the
aeb43123
KB
2256 fifth parameter or after, the pointer should be held in the stack.
2257
025bb325 2258 - Return value of a function should be held in register $0. If the
aeb43123 2259 size of return value is larger than 4 bytes, $1 should hold the
025bb325 2260 pointer pointing memory that would hold the return value. In this
aeb43123
KB
2261 case, the first parameter should be held in $2, the second one in
2262 $3, and the third one in $4, and the forth parameter or after
2263 should be held in the stack.
2264
2265 [This doesn't say so, but arguments shorter than four bytes are
2266 passed in the least significant end of a four-byte word when
2267 they're passed on the stack.] */
2268
2269
2270/* Traverse the list of ARGC arguments ARGV; for every ARGV[i] too
2271 large to fit in a register, save it on the stack, and place its
2272 address in COPY[i]. SP is the initial stack pointer; return the
2273 new stack pointer. */
2274static CORE_ADDR
2275push_large_arguments (CORE_ADDR sp, int argc, struct value **argv,
2276 CORE_ADDR copy[])
2277{
2278 int i;
2279
2280 for (i = 0; i < argc; i++)
2281 {
2282 unsigned arg_len = TYPE_LENGTH (value_type (argv[i]));
2283
2284 if (arg_len > MEP_GPR_SIZE)
2285 {
2286 /* Reserve space for the copy, and then round the SP down, to
2287 make sure it's all aligned properly. */
2288 sp = (sp - arg_len) & -4;
2289 write_memory (sp, value_contents (argv[i]), arg_len);
2290 copy[i] = sp;
2291 }
2292 }
2293
2294 return sp;
2295}
2296
2297
2298static CORE_ADDR
2299mep_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2300 struct regcache *regcache, CORE_ADDR bp_addr,
2301 int argc, struct value **argv, CORE_ADDR sp,
2302 int struct_return,
2303 CORE_ADDR struct_addr)
2304{
e17a4113 2305 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
aeb43123
KB
2306 CORE_ADDR *copy = (CORE_ADDR *) alloca (argc * sizeof (copy[0]));
2307 CORE_ADDR func_addr = find_function_addr (function, NULL);
2308 int i;
2309
2310 /* The number of the next register available to hold an argument. */
2311 int arg_reg;
2312
2313 /* The address of the next stack slot available to hold an argument. */
2314 CORE_ADDR arg_stack;
2315
2316 /* The address of the end of the stack area for arguments. This is
2317 just for error checking. */
2318 CORE_ADDR arg_stack_end;
2319
2320 sp = push_large_arguments (sp, argc, argv, copy);
2321
2322 /* Reserve space for the stack arguments, if any. */
2323 arg_stack_end = sp;
2324 if (argc + (struct_addr ? 1 : 0) > 4)
2325 sp -= ((argc + (struct_addr ? 1 : 0)) - 4) * MEP_GPR_SIZE;
2326
2327 arg_reg = MEP_R1_REGNUM;
2328 arg_stack = sp;
2329
2330 /* If we're returning a structure by value, push the pointer to the
2331 buffer as the first argument. */
2332 if (struct_return)
2333 {
2334 regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
2335 arg_reg++;
2336 }
2337
2338 for (i = 0; i < argc; i++)
2339 {
2340 unsigned arg_size = TYPE_LENGTH (value_type (argv[i]));
2341 ULONGEST value;
2342
2343 /* Arguments that fit in a GPR get expanded to fill the GPR. */
2344 if (arg_size <= MEP_GPR_SIZE)
2345 value = extract_unsigned_integer (value_contents (argv[i]),
e17a4113
UW
2346 TYPE_LENGTH (value_type (argv[i])),
2347 byte_order);
aeb43123
KB
2348
2349 /* Arguments too large to fit in a GPR get copied to the stack,
2350 and we pass a pointer to the copy. */
2351 else
2352 value = copy[i];
2353
2354 /* We use $1 -- $4 for passing arguments, then use the stack. */
2355 if (arg_reg <= MEP_R4_REGNUM)
2356 {
2357 regcache_cooked_write_unsigned (regcache, arg_reg, value);
2358 arg_reg++;
2359 }
2360 else
2361 {
2362 char buf[MEP_GPR_SIZE];
e17a4113 2363 store_unsigned_integer (buf, MEP_GPR_SIZE, byte_order, value);
aeb43123
KB
2364 write_memory (arg_stack, buf, MEP_GPR_SIZE);
2365 arg_stack += MEP_GPR_SIZE;
2366 }
2367 }
2368
2369 gdb_assert (arg_stack <= arg_stack_end);
2370
2371 /* Set the return address. */
2372 regcache_cooked_write_unsigned (regcache, MEP_LP_REGNUM, bp_addr);
2373
2374 /* Update the stack pointer. */
2375 regcache_cooked_write_unsigned (regcache, MEP_SP_REGNUM, sp);
2376
2377 return sp;
2378}
2379
2380
2381static struct frame_id
94afd7a6 2382mep_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
aeb43123 2383{
94afd7a6
UW
2384 CORE_ADDR sp = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
2385 return frame_id_build (sp, get_frame_pc (this_frame));
aeb43123
KB
2386}
2387
2388
2389\f
2390/* Initialization. */
2391
2392
2393static struct gdbarch *
2394mep_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2395{
2396 struct gdbarch *gdbarch;
2397 struct gdbarch_tdep *tdep;
2398
2399 /* Which me_module are we building a gdbarch object for? */
2400 CONFIG_ATTR me_module;
2401
2402 /* If we have a BFD in hand, figure out which me_module it was built
2403 for. Otherwise, use the no-particular-me_module code. */
2404 if (info.abfd)
2405 {
2406 /* The way to get the me_module code depends on the object file
2407 format. At the moment, we only know how to handle ELF. */
2408 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
2409 me_module = elf_elfheader (info.abfd)->e_flags & EF_MEP_INDEX_MASK;
2410 else
2411 me_module = CONFIG_NONE;
2412 }
2413 else
2414 me_module = CONFIG_NONE;
2415
2416 /* If we're setting the architecture from a file, check the
2417 endianness of the file against that of the me_module. */
2418 if (info.abfd)
2419 {
2420 /* The negations on either side make the comparison treat all
2421 non-zero (true) values as equal. */
2422 if (! bfd_big_endian (info.abfd) != ! me_module_big_endian (me_module))
2423 {
2424 const char *module_name = me_module_name (me_module);
2425 const char *module_endianness
2426 = me_module_big_endian (me_module) ? "big" : "little";
2427 const char *file_name = bfd_get_filename (info.abfd);
2428 const char *file_endianness
2429 = bfd_big_endian (info.abfd) ? "big" : "little";
2430
2431 fputc_unfiltered ('\n', gdb_stderr);
2432 if (module_name)
a73c6dcd
MS
2433 warning (_("the MeP module '%s' is %s-endian, but the executable\n"
2434 "%s is %s-endian."),
aeb43123
KB
2435 module_name, module_endianness,
2436 file_name, file_endianness);
2437 else
a73c6dcd
MS
2438 warning (_("the selected MeP module is %s-endian, but the "
2439 "executable\n"
2440 "%s is %s-endian."),
aeb43123
KB
2441 module_endianness, file_name, file_endianness);
2442 }
2443 }
2444
2445 /* Find a candidate among the list of architectures we've created
2446 already. info->bfd_arch_info needs to match, but we also want
2447 the right me_module: the ELF header's e_flags field needs to
2448 match as well. */
2449 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2450 arches != NULL;
2451 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2452 if (gdbarch_tdep (arches->gdbarch)->me_module == me_module)
2453 return arches->gdbarch;
2454
2455 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
2456 gdbarch = gdbarch_alloc (&info, tdep);
2457
2458 /* Get a CGEN CPU descriptor for this architecture. */
2459 {
2460 const char *mach_name = info.bfd_arch_info->printable_name;
2461 enum cgen_endian endian = (info.byte_order == BFD_ENDIAN_BIG
2462 ? CGEN_ENDIAN_BIG
2463 : CGEN_ENDIAN_LITTLE);
2464
2465 tdep->cpu_desc = mep_cgen_cpu_open (CGEN_CPU_OPEN_BFDMACH, mach_name,
2466 CGEN_CPU_OPEN_ENDIAN, endian,
2467 CGEN_CPU_OPEN_END);
2468 }
2469
2470 tdep->me_module = me_module;
2471
2472 /* Register set. */
2473 set_gdbarch_read_pc (gdbarch, mep_read_pc);
2474 set_gdbarch_write_pc (gdbarch, mep_write_pc);
2475 set_gdbarch_num_regs (gdbarch, MEP_NUM_RAW_REGS);
2476 set_gdbarch_sp_regnum (gdbarch, MEP_SP_REGNUM);
2477 set_gdbarch_register_name (gdbarch, mep_register_name);
2478 set_gdbarch_register_type (gdbarch, mep_register_type);
2479 set_gdbarch_num_pseudo_regs (gdbarch, MEP_NUM_PSEUDO_REGS);
2480 set_gdbarch_pseudo_register_read (gdbarch, mep_pseudo_register_read);
2481 set_gdbarch_pseudo_register_write (gdbarch, mep_pseudo_register_write);
2482 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2483 set_gdbarch_stab_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2484
2485 set_gdbarch_register_reggroup_p (gdbarch, mep_register_reggroup_p);
2486 reggroup_add (gdbarch, all_reggroup);
2487 reggroup_add (gdbarch, general_reggroup);
2488 reggroup_add (gdbarch, save_reggroup);
2489 reggroup_add (gdbarch, restore_reggroup);
2490 reggroup_add (gdbarch, mep_csr_reggroup);
2491 reggroup_add (gdbarch, mep_cr_reggroup);
2492 reggroup_add (gdbarch, mep_ccr_reggroup);
2493
2494 /* Disassembly. */
2495 set_gdbarch_print_insn (gdbarch, mep_gdb_print_insn);
2496
2497 /* Breakpoints. */
2498 set_gdbarch_breakpoint_from_pc (gdbarch, mep_breakpoint_from_pc);
2499 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2500 set_gdbarch_skip_prologue (gdbarch, mep_skip_prologue);
2501
2502 /* Frames and frame unwinding. */
94afd7a6 2503 frame_unwind_append_unwinder (gdbarch, &mep_frame_unwind);
aeb43123
KB
2504 set_gdbarch_unwind_pc (gdbarch, mep_unwind_pc);
2505 set_gdbarch_unwind_sp (gdbarch, mep_unwind_sp);
2506 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2507 set_gdbarch_frame_args_skip (gdbarch, 0);
2508
2509 /* Return values. */
2510 set_gdbarch_return_value (gdbarch, mep_return_value);
2511
2512 /* Inferior function calls. */
2513 set_gdbarch_frame_align (gdbarch, mep_frame_align);
2514 set_gdbarch_push_dummy_call (gdbarch, mep_push_dummy_call);
94afd7a6 2515 set_gdbarch_dummy_id (gdbarch, mep_dummy_id);
aeb43123
KB
2516
2517 return gdbarch;
2518}
2519
63807e1d
PA
2520/* Provide a prototype to silence -Wmissing-prototypes. */
2521extern initialize_file_ftype _initialize_mep_tdep;
aeb43123
KB
2522
2523void
2524_initialize_mep_tdep (void)
2525{
2526 mep_csr_reggroup = reggroup_new ("csr", USER_REGGROUP);
2527 mep_cr_reggroup = reggroup_new ("cr", USER_REGGROUP);
2528 mep_ccr_reggroup = reggroup_new ("ccr", USER_REGGROUP);
2529
2530 register_gdbarch_init (bfd_arch_mep, mep_gdbarch_init);
2531
2532 mep_init_pseudoregister_maps ();
2533}