]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/mep-tdep.c
daily update
[thirdparty/binutils-gdb.git] / gdb / mep-tdep.c
CommitLineData
aeb43123
KB
1/* Target-dependent code for the Toshiba MeP for GDB, the GNU debugger.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 Contributed by Red Hat, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25#include "defs.h"
26#include "frame.h"
27#include "frame-unwind.h"
28#include "frame-base.h"
29#include "symtab.h"
30#include "gdbtypes.h"
31#include "gdbcmd.h"
32#include "gdbcore.h"
33#include "gdb_string.h"
34#include "value.h"
35#include "inferior.h"
36#include "dis-asm.h"
37#include "symfile.h"
38#include "objfiles.h"
39#include "language.h"
40#include "arch-utils.h"
41#include "regcache.h"
42#include "remote.h"
43#include "floatformat.h"
44#include "sim-regno.h"
45#include "disasm.h"
46#include "trad-frame.h"
47#include "reggroups.h"
48#include "elf-bfd.h"
49#include "elf/mep.h"
50#include "prologue-value.h"
51#include "opcode/cgen-bitset.h"
52#include "infcall.h"
53
54#include "gdb_assert.h"
55
56/* Get the user's customized MeP coprocessor register names from
57 libopcodes. */
58#include "opcodes/mep-desc.h"
59#include "opcodes/mep-opc.h"
60
61\f
62/* The gdbarch_tdep structure. */
63
64/* A quick recap for GDB hackers not familiar with the whole Toshiba
65 Media Processor story:
66
67 The MeP media engine is a configureable processor: users can design
68 their own coprocessors, implement custom instructions, adjust cache
69 sizes, select optional standard facilities like add-and-saturate
70 instructions, and so on. Then, they can build custom versions of
71 the GNU toolchain to support their customized chips. The
72 MeP-Integrator program (see utils/mep) takes a GNU toolchain source
73 tree, and a config file pointing to various files provided by the
74 user describing their customizations, and edits the source tree to
75 produce a compiler that can generate their custom instructions, an
76 assembler that can assemble them and recognize their custom
77 register names, and so on.
78
79 Furthermore, the user can actually specify several of these custom
80 configurations, called 'me_modules', and get a toolchain which can
81 produce code for any of them, given a compiler/assembler switch;
82 you say something like 'gcc -mconfig=mm_max' to generate code for
83 the me_module named 'mm_max'.
84
85 GDB, in particular, needs to:
86
87 - use the coprocessor control register names provided by the user
88 in their hardware description, in expressions, 'info register'
89 output, and disassembly,
90
91 - know the number, names, and types of the coprocessor's
92 general-purpose registers, adjust the 'info all-registers' output
93 accordingly, and print error messages if the user refers to one
94 that doesn't exist
95
96 - allow access to the control bus space only when the configuration
97 actually has a control bus, and recognize which regions of the
98 control bus space are actually populated,
99
100 - disassemble using the user's provided mnemonics for their custom
101 instructions, and
102
103 - recognize whether the $hi and $lo registers are present, and
104 allow access to them only when they are actually there.
105
106 There are three sources of information about what sort of me_module
107 we're actually dealing with:
108
109 - A MeP executable file indicates which me_module it was compiled
110 for, and libopcodes has tables describing each module. So, given
111 an executable file, we can find out about the processor it was
112 compiled for.
113
114 - There are SID command-line options to select a particular
115 me_module, overriding the one specified in the ELF file. SID
116 provides GDB with a fake read-only register, 'module', which
117 indicates which me_module GDB is communicating with an instance
118 of.
119
120 - There are SID command-line options to enable or disable certain
121 optional processor features, overriding the defaults for the
122 selected me_module. The MeP $OPT register indicates which
123 options are present on the current processor. */
124
125
126struct gdbarch_tdep
127{
128 /* A CGEN cpu descriptor for this BFD architecture and machine.
129
130 Note: this is *not* customized for any particular me_module; the
131 MeP libopcodes machinery actually puts off module-specific
132 customization until the last minute. So this contains
133 information about all supported me_modules. */
134 CGEN_CPU_DESC cpu_desc;
135
136 /* The me_module index from the ELF file we used to select this
137 architecture, or CONFIG_NONE if there was none.
138
139 Note that we should prefer to use the me_module number available
140 via the 'module' register, whenever we're actually talking to a
141 real target.
142
143 In the absence of live information, we'd like to get the
144 me_module number from the ELF file. But which ELF file: the
145 executable file, the core file, ... ? The answer is, "the last
146 ELF file we used to set the current architecture". Thus, we
147 create a separate instance of the gdbarch structure for each
148 me_module value mep_gdbarch_init sees, and store the me_module
149 value from the ELF file here. */
150 CONFIG_ATTR me_module;
151};
152
153
154\f
155/* Getting me_module information from the CGEN tables. */
156
157
158/* Find an entry in the DESC's hardware table whose name begins with
159 PREFIX, and whose ISA mask intersects COPRO_ISA_MASK, but does not
160 intersect with GENERIC_ISA_MASK. If there is no matching entry,
161 return zero. */
162static const CGEN_HW_ENTRY *
163find_hw_entry_by_prefix_and_isa (CGEN_CPU_DESC desc,
164 const char *prefix,
165 CGEN_BITSET *copro_isa_mask,
166 CGEN_BITSET *generic_isa_mask)
167{
168 int prefix_len = strlen (prefix);
169 int i;
170
171 for (i = 0; i < desc->hw_table.num_entries; i++)
172 {
173 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
174 if (strncmp (prefix, hw->name, prefix_len) == 0)
175 {
176 CGEN_BITSET *hw_isa_mask
177 = ((CGEN_BITSET *)
178 &CGEN_ATTR_CGEN_HW_ISA_VALUE (CGEN_HW_ATTRS (hw)));
179
180 if (cgen_bitset_intersect_p (hw_isa_mask, copro_isa_mask)
181 && ! cgen_bitset_intersect_p (hw_isa_mask, generic_isa_mask))
182 return hw;
183 }
184 }
185
186 return 0;
187}
188
189
190/* Find an entry in DESC's hardware table whose type is TYPE. Return
191 zero if there is none. */
192static const CGEN_HW_ENTRY *
193find_hw_entry_by_type (CGEN_CPU_DESC desc, CGEN_HW_TYPE type)
194{
195 int i;
196
197 for (i = 0; i < desc->hw_table.num_entries; i++)
198 {
199 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
200
201 if (hw->type == type)
202 return hw;
203 }
204
205 return 0;
206}
207
208
209/* Return the CGEN hardware table entry for the coprocessor register
210 set for ME_MODULE, whose name prefix is PREFIX. If ME_MODULE has
211 no such register set, return zero. If ME_MODULE is the generic
212 me_module CONFIG_NONE, return the table entry for the register set
213 whose hardware type is GENERIC_TYPE. */
214static const CGEN_HW_ENTRY *
215me_module_register_set (CONFIG_ATTR me_module,
216 const char *prefix,
217 CGEN_HW_TYPE generic_type)
218{
219 /* This is kind of tricky, because the hardware table is constructed
220 in a way that isn't very helpful. Perhaps we can fix that, but
221 here's how it works at the moment:
222
223 The configuration map, `mep_config_map', is indexed by me_module
224 number, and indicates which coprocessor and core ISAs that
225 me_module supports. The 'core_isa' mask includes all the core
226 ISAs, and the 'cop_isa' mask includes all the coprocessor ISAs.
227 The entry for the generic me_module, CONFIG_NONE, has an empty
228 'cop_isa', and its 'core_isa' selects only the standard MeP
229 instruction set.
230
231 The CGEN CPU descriptor's hardware table, desc->hw_table, has
232 entries for all the register sets, for all me_modules. Each
233 entry has a mask indicating which ISAs use that register set.
234 So, if an me_module supports some coprocessor ISA, we can find
235 applicable register sets by scanning the hardware table for
236 register sets whose masks include (at least some of) those ISAs.
237
238 Each hardware table entry also has a name, whose prefix says
239 whether it's a general-purpose ("h-cr") or control ("h-ccr")
240 coprocessor register set. It might be nicer to have an attribute
241 indicating what sort of register set it was, that we could use
242 instead of pattern-matching on the name.
243
244 When there is no hardware table entry whose mask includes a
245 particular coprocessor ISA and whose name starts with a given
246 prefix, then that means that that coprocessor doesn't have any
247 registers of that type. In such cases, this function must return
248 a null pointer.
249
250 Coprocessor register sets' masks may or may not include the core
251 ISA for the me_module they belong to. Those generated by a2cgen
252 do, but the sample me_module included in the unconfigured tree,
253 'ccfx', does not.
254
255 There are generic coprocessor register sets, intended only for
256 use with the generic me_module. Unfortunately, their masks
257 include *all* ISAs --- even those for coprocessors that don't
258 have such register sets. This makes detecting the case where a
259 coprocessor lacks a particular register set more complicated.
260
261 So, here's the approach we take:
262
263 - For CONFIG_NONE, we return the generic coprocessor register set.
264
265 - For any other me_module, we search for a register set whose
266 mask contains any of the me_module's coprocessor ISAs,
267 specifically excluding the generic coprocessor register sets. */
268
269 CGEN_CPU_DESC desc = gdbarch_tdep (current_gdbarch)->cpu_desc;
270 const CGEN_HW_ENTRY *hw;
271
272 if (me_module == CONFIG_NONE)
273 hw = find_hw_entry_by_type (desc, generic_type);
274 else
275 {
276 CGEN_BITSET *cop = &mep_config_map[me_module].cop_isa;
277 CGEN_BITSET *core = &mep_config_map[me_module].core_isa;
278 CGEN_BITSET *generic = &mep_config_map[CONFIG_NONE].core_isa;
279 CGEN_BITSET *cop_and_core;
280
281 /* The coprocessor ISAs include the ISA for the specific core which
282 has that coprocessor. */
283 cop_and_core = cgen_bitset_copy (cop);
284 cgen_bitset_union (cop, core, cop_and_core);
285 hw = find_hw_entry_by_prefix_and_isa (desc, prefix, cop_and_core, generic);
286 }
287
288 return hw;
289}
290
291
292/* Given a hardware table entry HW representing a register set, return
293 a pointer to the keyword table with all the register names. If HW
294 is NULL, return NULL, to propage the "no such register set" info
295 along. */
296static CGEN_KEYWORD *
297register_set_keyword_table (const CGEN_HW_ENTRY *hw)
298{
299 if (! hw)
300 return NULL;
301
302 /* Check that HW is actually a keyword table. */
303 gdb_assert (hw->asm_type == CGEN_ASM_KEYWORD);
304
305 /* The 'asm_data' field of a register set's hardware table entry
306 refers to a keyword table. */
307 return (CGEN_KEYWORD *) hw->asm_data;
308}
309
310
311/* Given a keyword table KEYWORD and a register number REGNUM, return
312 the name of the register, or "" if KEYWORD contains no register
313 whose number is REGNUM. */
314static char *
315register_name_from_keyword (CGEN_KEYWORD *keyword_table, int regnum)
316{
317 const CGEN_KEYWORD_ENTRY *entry
318 = cgen_keyword_lookup_value (keyword_table, regnum);
319
320 if (entry)
321 {
322 char *name = entry->name;
323
324 /* The CGEN keyword entries for register names include the
325 leading $, which appears in MeP assembly as well as in GDB.
326 But we don't want to return that; GDB core code adds that
327 itself. */
328 if (name[0] == '$')
329 name++;
330
331 return name;
332 }
333 else
334 return "";
335}
336
337
338/* Masks for option bits in the OPT special-purpose register. */
339enum {
340 MEP_OPT_DIV = 1 << 25, /* 32-bit divide instruction option */
341 MEP_OPT_MUL = 1 << 24, /* 32-bit multiply instruction option */
342 MEP_OPT_BIT = 1 << 23, /* bit manipulation instruction option */
343 MEP_OPT_SAT = 1 << 22, /* saturation instruction option */
344 MEP_OPT_CLP = 1 << 21, /* clip instruction option */
345 MEP_OPT_MIN = 1 << 20, /* min/max instruction option */
346 MEP_OPT_AVE = 1 << 19, /* average instruction option */
347 MEP_OPT_ABS = 1 << 18, /* absolute difference instruction option */
348 MEP_OPT_LDZ = 1 << 16, /* leading zero instruction option */
349 MEP_OPT_VL64 = 1 << 6, /* 64-bit VLIW operation mode option */
350 MEP_OPT_VL32 = 1 << 5, /* 32-bit VLIW operation mode option */
351 MEP_OPT_COP = 1 << 4, /* coprocessor option */
352 MEP_OPT_DSP = 1 << 2, /* DSP option */
353 MEP_OPT_UCI = 1 << 1, /* UCI option */
354 MEP_OPT_DBG = 1 << 0, /* DBG function option */
355};
356
357
358/* Given the option_mask value for a particular entry in
359 mep_config_map, produce the value the processor's OPT register
360 would use to represent the same set of options. */
361static unsigned int
362opt_from_option_mask (unsigned int option_mask)
363{
364 /* A table mapping OPT register bits onto CGEN config map option
365 bits. */
366 struct {
367 unsigned int opt_bit, option_mask_bit;
368 } bits[] = {
369 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
370 { MEP_OPT_MUL, 1 << CGEN_INSN_OPTIONAL_MUL_INSN },
371 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
372 { MEP_OPT_DBG, 1 << CGEN_INSN_OPTIONAL_DEBUG_INSN },
373 { MEP_OPT_LDZ, 1 << CGEN_INSN_OPTIONAL_LDZ_INSN },
374 { MEP_OPT_ABS, 1 << CGEN_INSN_OPTIONAL_ABS_INSN },
375 { MEP_OPT_AVE, 1 << CGEN_INSN_OPTIONAL_AVE_INSN },
376 { MEP_OPT_MIN, 1 << CGEN_INSN_OPTIONAL_MINMAX_INSN },
377 { MEP_OPT_CLP, 1 << CGEN_INSN_OPTIONAL_CLIP_INSN },
378 { MEP_OPT_SAT, 1 << CGEN_INSN_OPTIONAL_SAT_INSN },
379 { MEP_OPT_UCI, 1 << CGEN_INSN_OPTIONAL_UCI_INSN },
380 { MEP_OPT_DSP, 1 << CGEN_INSN_OPTIONAL_DSP_INSN },
381 { MEP_OPT_COP, 1 << CGEN_INSN_OPTIONAL_CP_INSN },
382 };
383
384 int i;
385 unsigned int opt = 0;
386
387 for (i = 0; i < (sizeof (bits) / sizeof (bits[0])); i++)
388 if (option_mask & bits[i].option_mask_bit)
389 opt |= bits[i].opt_bit;
390
391 return opt;
392}
393
394
395/* Return the value the $OPT register would use to represent the set
396 of options for ME_MODULE. */
397static unsigned int
398me_module_opt (CONFIG_ATTR me_module)
399{
400 return opt_from_option_mask (mep_config_map[me_module].option_mask);
401}
402
403
404/* Return the width of ME_MODULE's coprocessor data bus, in bits.
405 This is either 32 or 64. */
406static int
407me_module_cop_data_bus_width (CONFIG_ATTR me_module)
408{
409 if (mep_config_map[me_module].option_mask
410 & (1 << CGEN_INSN_OPTIONAL_CP64_INSN))
411 return 64;
412 else
413 return 32;
414}
415
416
417/* Return true if ME_MODULE is big-endian, false otherwise. */
418static int
419me_module_big_endian (CONFIG_ATTR me_module)
420{
421 return mep_config_map[me_module].big_endian;
422}
423
424
425/* Return the name of ME_MODULE, or NULL if it has no name. */
426static const char *
427me_module_name (CONFIG_ATTR me_module)
428{
429 /* The default me_module has "" as its name, but it's easier for our
430 callers to test for NULL. */
431 if (! mep_config_map[me_module].name
432 || mep_config_map[me_module].name[0] == '\0')
433 return NULL;
434 else
435 return mep_config_map[me_module].name;
436}
437\f
438/* Register set. */
439
440
441/* The MeP spec defines the following registers:
442 16 general purpose registers (r0-r15)
443 32 control/special registers (csr0-csr31)
444 32 coprocessor general-purpose registers (c0 -- c31)
445 64 coprocessor control registers (ccr0 -- ccr63)
446
447 For the raw registers, we assign numbers here explicitly, instead
448 of letting the enum assign them for us; the numbers are a matter of
449 external protocol, and shouldn't shift around as things are edited.
450
451 We access the control/special registers via pseudoregisters, to
452 enforce read-only portions that some registers have.
453
454 We access the coprocessor general purpose and control registers via
455 pseudoregisters, to make sure they appear in the proper order in
456 the 'info all-registers' command (which uses the register number
457 ordering), and also to allow them to be renamed and resized
458 depending on the me_module in use.
459
460 The MeP allows coprocessor general-purpose registers to be either
461 32 or 64 bits long, depending on the configuration. Since we don't
462 want the format of the 'g' packet to vary from one core to another,
463 the raw coprocessor GPRs are always 64 bits. GDB doesn't allow the
464 types of registers to change (see the implementation of
465 register_type), so we have four banks of pseudoregisters for the
466 coprocessor gprs --- 32-bit vs. 64-bit, and integer
467 vs. floating-point --- and we show or hide them depending on the
468 configuration. */
469enum
470{
471 MEP_FIRST_RAW_REGNUM = 0,
472
473 MEP_FIRST_GPR_REGNUM = 0,
474 MEP_R0_REGNUM = 0,
475 MEP_R1_REGNUM = 1,
476 MEP_R2_REGNUM = 2,
477 MEP_R3_REGNUM = 3,
478 MEP_R4_REGNUM = 4,
479 MEP_R5_REGNUM = 5,
480 MEP_R6_REGNUM = 6,
481 MEP_R7_REGNUM = 7,
482 MEP_R8_REGNUM = 8,
483 MEP_R9_REGNUM = 9,
484 MEP_R10_REGNUM = 10,
485 MEP_R11_REGNUM = 11,
486 MEP_R12_REGNUM = 12,
487 MEP_FP_REGNUM = MEP_R8_REGNUM,
488 MEP_R13_REGNUM = 13,
489 MEP_TP_REGNUM = MEP_R13_REGNUM, /* (r13) Tiny data pointer */
490 MEP_R14_REGNUM = 14,
491 MEP_GP_REGNUM = MEP_R14_REGNUM, /* (r14) Global pointer */
492 MEP_R15_REGNUM = 15,
493 MEP_SP_REGNUM = MEP_R15_REGNUM, /* (r15) Stack pointer */
494 MEP_LAST_GPR_REGNUM = MEP_R15_REGNUM,
495
496 /* The raw control registers. These are the values as received via
497 the remote protocol, directly from the target; we only let user
498 code touch the via the pseudoregisters, which enforce read-only
499 bits. */
500 MEP_FIRST_RAW_CSR_REGNUM = 16,
501 MEP_RAW_PC_REGNUM = 16, /* Program counter */
502 MEP_RAW_LP_REGNUM = 17, /* Link pointer */
503 MEP_RAW_SAR_REGNUM = 18, /* Raw shift amount */
504 MEP_RAW_CSR3_REGNUM = 19, /* csr3: reserved */
505 MEP_RAW_RPB_REGNUM = 20, /* Raw repeat begin address */
506 MEP_RAW_RPE_REGNUM = 21, /* Repeat end address */
507 MEP_RAW_RPC_REGNUM = 22, /* Repeat count */
508 MEP_RAW_HI_REGNUM = 23, /* Upper 32 bits of result of 64 bit mult/div */
509 MEP_RAW_LO_REGNUM = 24, /* Lower 32 bits of result of 64 bit mult/div */
510 MEP_RAW_CSR9_REGNUM = 25, /* csr3: reserved */
511 MEP_RAW_CSR10_REGNUM = 26, /* csr3: reserved */
512 MEP_RAW_CSR11_REGNUM = 27, /* csr3: reserved */
513 MEP_RAW_MB0_REGNUM = 28, /* Raw modulo begin address 0 */
514 MEP_RAW_ME0_REGNUM = 29, /* Raw modulo end address 0 */
515 MEP_RAW_MB1_REGNUM = 30, /* Raw modulo begin address 1 */
516 MEP_RAW_ME1_REGNUM = 31, /* Raw modulo end address 1 */
517 MEP_RAW_PSW_REGNUM = 32, /* Raw program status word */
518 MEP_RAW_ID_REGNUM = 33, /* Raw processor ID/revision */
519 MEP_RAW_TMP_REGNUM = 34, /* Temporary */
520 MEP_RAW_EPC_REGNUM = 35, /* Exception program counter */
521 MEP_RAW_EXC_REGNUM = 36, /* Raw exception cause */
522 MEP_RAW_CFG_REGNUM = 37, /* Raw processor configuration*/
523 MEP_RAW_CSR22_REGNUM = 38, /* csr3: reserved */
524 MEP_RAW_NPC_REGNUM = 39, /* Nonmaskable interrupt PC */
525 MEP_RAW_DBG_REGNUM = 40, /* Raw debug */
526 MEP_RAW_DEPC_REGNUM = 41, /* Debug exception PC */
527 MEP_RAW_OPT_REGNUM = 42, /* Raw options */
528 MEP_RAW_RCFG_REGNUM = 43, /* Raw local ram config */
529 MEP_RAW_CCFG_REGNUM = 44, /* Raw cache config */
530 MEP_RAW_CSR29_REGNUM = 45, /* csr3: reserved */
531 MEP_RAW_CSR30_REGNUM = 46, /* csr3: reserved */
532 MEP_RAW_CSR31_REGNUM = 47, /* csr3: reserved */
533 MEP_LAST_RAW_CSR_REGNUM = MEP_RAW_CSR31_REGNUM,
534
535 /* The raw coprocessor general-purpose registers. These are all 64
536 bits wide. */
537 MEP_FIRST_RAW_CR_REGNUM = 48,
538 MEP_LAST_RAW_CR_REGNUM = MEP_FIRST_RAW_CR_REGNUM + 31,
539
540 MEP_FIRST_RAW_CCR_REGNUM = 80,
541 MEP_LAST_RAW_CCR_REGNUM = MEP_FIRST_RAW_CCR_REGNUM + 63,
542
543 /* The module number register. This is the index of the me_module
544 of which the current target is an instance. (This is not a real
545 MeP-specified register; it's provided by SID.) */
546 MEP_MODULE_REGNUM,
547
548 MEP_LAST_RAW_REGNUM = MEP_MODULE_REGNUM,
549
550 MEP_NUM_RAW_REGS = MEP_LAST_RAW_REGNUM + 1,
551
552 /* Pseudoregisters. See mep_pseudo_register_read and
553 mep_pseudo_register_write. */
554 MEP_FIRST_PSEUDO_REGNUM = MEP_NUM_RAW_REGS,
555
556 /* We have a pseudoregister for every control/special register, to
557 implement registers with read-only bits. */
558 MEP_FIRST_CSR_REGNUM = MEP_FIRST_PSEUDO_REGNUM,
559 MEP_PC_REGNUM = MEP_FIRST_CSR_REGNUM, /* Program counter */
560 MEP_LP_REGNUM, /* Link pointer */
561 MEP_SAR_REGNUM, /* shift amount */
562 MEP_CSR3_REGNUM, /* csr3: reserved */
563 MEP_RPB_REGNUM, /* repeat begin address */
564 MEP_RPE_REGNUM, /* Repeat end address */
565 MEP_RPC_REGNUM, /* Repeat count */
566 MEP_HI_REGNUM, /* Upper 32 bits of the result of 64 bit mult/div */
567 MEP_LO_REGNUM, /* Lower 32 bits of the result of 64 bit mult/div */
568 MEP_CSR9_REGNUM, /* csr3: reserved */
569 MEP_CSR10_REGNUM, /* csr3: reserved */
570 MEP_CSR11_REGNUM, /* csr3: reserved */
571 MEP_MB0_REGNUM, /* modulo begin address 0 */
572 MEP_ME0_REGNUM, /* modulo end address 0 */
573 MEP_MB1_REGNUM, /* modulo begin address 1 */
574 MEP_ME1_REGNUM, /* modulo end address 1 */
575 MEP_PSW_REGNUM, /* program status word */
576 MEP_ID_REGNUM, /* processor ID/revision */
577 MEP_TMP_REGNUM, /* Temporary */
578 MEP_EPC_REGNUM, /* Exception program counter */
579 MEP_EXC_REGNUM, /* exception cause */
580 MEP_CFG_REGNUM, /* processor configuration*/
581 MEP_CSR22_REGNUM, /* csr3: reserved */
582 MEP_NPC_REGNUM, /* Nonmaskable interrupt PC */
583 MEP_DBG_REGNUM, /* debug */
584 MEP_DEPC_REGNUM, /* Debug exception PC */
585 MEP_OPT_REGNUM, /* options */
586 MEP_RCFG_REGNUM, /* local ram config */
587 MEP_CCFG_REGNUM, /* cache config */
588 MEP_CSR29_REGNUM, /* csr3: reserved */
589 MEP_CSR30_REGNUM, /* csr3: reserved */
590 MEP_CSR31_REGNUM, /* csr3: reserved */
591 MEP_LAST_CSR_REGNUM = MEP_CSR31_REGNUM,
592
593 /* The 32-bit integer view of the coprocessor GPR's. */
594 MEP_FIRST_CR32_REGNUM,
595 MEP_LAST_CR32_REGNUM = MEP_FIRST_CR32_REGNUM + 31,
596
597 /* The 32-bit floating-point view of the coprocessor GPR's. */
598 MEP_FIRST_FP_CR32_REGNUM,
599 MEP_LAST_FP_CR32_REGNUM = MEP_FIRST_FP_CR32_REGNUM + 31,
600
601 /* The 64-bit integer view of the coprocessor GPR's. */
602 MEP_FIRST_CR64_REGNUM,
603 MEP_LAST_CR64_REGNUM = MEP_FIRST_CR64_REGNUM + 31,
604
605 /* The 64-bit floating-point view of the coprocessor GPR's. */
606 MEP_FIRST_FP_CR64_REGNUM,
607 MEP_LAST_FP_CR64_REGNUM = MEP_FIRST_FP_CR64_REGNUM + 31,
608
609 MEP_FIRST_CCR_REGNUM,
610 MEP_LAST_CCR_REGNUM = MEP_FIRST_CCR_REGNUM + 63,
611
612 MEP_LAST_PSEUDO_REGNUM = MEP_LAST_CCR_REGNUM,
613
614 MEP_NUM_PSEUDO_REGS = (MEP_LAST_PSEUDO_REGNUM - MEP_LAST_RAW_REGNUM),
615
616 MEP_NUM_REGS = MEP_NUM_RAW_REGS + MEP_NUM_PSEUDO_REGS
617};
618
619
620#define IN_SET(set, n) \
621 (MEP_FIRST_ ## set ## _REGNUM <= (n) && (n) <= MEP_LAST_ ## set ## _REGNUM)
622
623#define IS_GPR_REGNUM(n) (IN_SET (GPR, (n)))
624#define IS_RAW_CSR_REGNUM(n) (IN_SET (RAW_CSR, (n)))
625#define IS_RAW_CR_REGNUM(n) (IN_SET (RAW_CR, (n)))
626#define IS_RAW_CCR_REGNUM(n) (IN_SET (RAW_CCR, (n)))
627
628#define IS_CSR_REGNUM(n) (IN_SET (CSR, (n)))
629#define IS_CR32_REGNUM(n) (IN_SET (CR32, (n)))
630#define IS_FP_CR32_REGNUM(n) (IN_SET (FP_CR32, (n)))
631#define IS_CR64_REGNUM(n) (IN_SET (CR64, (n)))
632#define IS_FP_CR64_REGNUM(n) (IN_SET (FP_CR64, (n)))
633#define IS_CR_REGNUM(n) (IS_CR32_REGNUM (n) || IS_FP_CR32_REGNUM (n) \
634 || IS_CR64_REGNUM (n) || IS_FP_CR64_REGNUM (n))
635#define IS_CCR_REGNUM(n) (IN_SET (CCR, (n)))
636
637#define IS_RAW_REGNUM(n) (IN_SET (RAW, (n)))
638#define IS_PSEUDO_REGNUM(n) (IN_SET (PSEUDO, (n)))
639
640#define NUM_REGS_IN_SET(set) \
641 (MEP_LAST_ ## set ## _REGNUM - MEP_FIRST_ ## set ## _REGNUM + 1)
642
643#define MEP_GPR_SIZE (4) /* Size of a MeP general-purpose register. */
644#define MEP_PSW_SIZE (4) /* Size of the PSW register. */
645#define MEP_LP_SIZE (4) /* Size of the LP register. */
646
647
648/* Many of the control/special registers contain bits that cannot be
649 written to; some are entirely read-only. So we present them all as
650 pseudoregisters.
651
652 The following table describes the special properties of each CSR. */
653struct mep_csr_register
654{
655 /* The number of this CSR's raw register. */
656 int raw;
657
658 /* The number of this CSR's pseudoregister. */
659 int pseudo;
660
661 /* A mask of the bits that are writeable: if a bit is set here, then
662 it can be modified; if the bit is clear, then it cannot. */
663 LONGEST writeable_bits;
664};
665
666
667/* mep_csr_registers[i] describes the i'th CSR.
668 We just list the register numbers here explicitly to help catch
669 typos. */
670#define CSR(name) MEP_RAW_ ## name ## _REGNUM, MEP_ ## name ## _REGNUM
671struct mep_csr_register mep_csr_registers[] = {
672 { CSR(PC), 0xffffffff }, /* manual says r/o, but we can write it */
673 { CSR(LP), 0xffffffff },
674 { CSR(SAR), 0x0000003f },
675 { CSR(CSR3), 0xffffffff },
676 { CSR(RPB), 0xfffffffe },
677 { CSR(RPE), 0xffffffff },
678 { CSR(RPC), 0xffffffff },
679 { CSR(HI), 0xffffffff },
680 { CSR(LO), 0xffffffff },
681 { CSR(CSR9), 0xffffffff },
682 { CSR(CSR10), 0xffffffff },
683 { CSR(CSR11), 0xffffffff },
684 { CSR(MB0), 0x0000ffff },
685 { CSR(ME0), 0x0000ffff },
686 { CSR(MB1), 0x0000ffff },
687 { CSR(ME1), 0x0000ffff },
688 { CSR(PSW), 0x000003ff },
689 { CSR(ID), 0x00000000 },
690 { CSR(TMP), 0xffffffff },
691 { CSR(EPC), 0xffffffff },
692 { CSR(EXC), 0x000030f0 },
693 { CSR(CFG), 0x00c0001b },
694 { CSR(CSR22), 0xffffffff },
695 { CSR(NPC), 0xffffffff },
696 { CSR(DBG), 0x00000580 },
697 { CSR(DEPC), 0xffffffff },
698 { CSR(OPT), 0x00000000 },
699 { CSR(RCFG), 0x00000000 },
700 { CSR(CCFG), 0x00000000 },
701 { CSR(CSR29), 0xffffffff },
702 { CSR(CSR30), 0xffffffff },
703 { CSR(CSR31), 0xffffffff },
704};
705
706
707/* If R is the number of a raw register, then mep_raw_to_pseudo[R] is
708 the number of the corresponding pseudoregister. Otherwise,
709 mep_raw_to_pseudo[R] == R. */
710static int mep_raw_to_pseudo[MEP_NUM_REGS];
711
712/* If R is the number of a pseudoregister, then mep_pseudo_to_raw[R]
713 is the number of the underlying raw register. Otherwise
714 mep_pseudo_to_raw[R] == R. */
715static int mep_pseudo_to_raw[MEP_NUM_REGS];
716
717static void
718mep_init_pseudoregister_maps (void)
719{
720 int i;
721
722 /* Verify that mep_csr_registers covers all the CSRs, in order. */
723 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (CSR));
724 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (RAW_CSR));
725
726 /* Verify that the raw and pseudo ranges have matching sizes. */
727 gdb_assert (NUM_REGS_IN_SET (RAW_CSR) == NUM_REGS_IN_SET (CSR));
728 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR32));
729 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR64));
730 gdb_assert (NUM_REGS_IN_SET (RAW_CCR) == NUM_REGS_IN_SET (CCR));
731
732 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
733 {
734 struct mep_csr_register *r = &mep_csr_registers[i];
735
736 gdb_assert (r->pseudo == MEP_FIRST_CSR_REGNUM + i);
737 gdb_assert (r->raw == MEP_FIRST_RAW_CSR_REGNUM + i);
738 }
739
740 /* Set up the initial raw<->pseudo mappings. */
741 for (i = 0; i < MEP_NUM_REGS; i++)
742 {
743 mep_raw_to_pseudo[i] = i;
744 mep_pseudo_to_raw[i] = i;
745 }
746
747 /* Add the CSR raw<->pseudo mappings. */
748 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
749 {
750 struct mep_csr_register *r = &mep_csr_registers[i];
751
752 mep_raw_to_pseudo[r->raw] = r->pseudo;
753 mep_pseudo_to_raw[r->pseudo] = r->raw;
754 }
755
756 /* Add the CR raw<->pseudo mappings. */
757 for (i = 0; i < NUM_REGS_IN_SET (RAW_CR); i++)
758 {
759 int raw = MEP_FIRST_RAW_CR_REGNUM + i;
760 int pseudo32 = MEP_FIRST_CR32_REGNUM + i;
761 int pseudofp32 = MEP_FIRST_FP_CR32_REGNUM + i;
762 int pseudo64 = MEP_FIRST_CR64_REGNUM + i;
763 int pseudofp64 = MEP_FIRST_FP_CR64_REGNUM + i;
764
765 /* Truly, the raw->pseudo mapping depends on the current module.
766 But we use the raw->pseudo mapping when we read the debugging
767 info; at that point, we don't know what module we'll actually
768 be running yet. So, we always supply the 64-bit register
769 numbers; GDB knows how to pick a smaller value out of a
770 larger register properly. */
771 mep_raw_to_pseudo[raw] = pseudo64;
772 mep_pseudo_to_raw[pseudo32] = raw;
773 mep_pseudo_to_raw[pseudofp32] = raw;
774 mep_pseudo_to_raw[pseudo64] = raw;
775 mep_pseudo_to_raw[pseudofp64] = raw;
776 }
777
778 /* Add the CCR raw<->pseudo mappings. */
779 for (i = 0; i < NUM_REGS_IN_SET (CCR); i++)
780 {
781 int raw = MEP_FIRST_RAW_CCR_REGNUM + i;
782 int pseudo = MEP_FIRST_CCR_REGNUM + i;
783 mep_raw_to_pseudo[raw] = pseudo;
784 mep_pseudo_to_raw[pseudo] = raw;
785 }
786}
787
788
789static int
790mep_debug_reg_to_regnum (int debug_reg)
791{
792 /* The debug info uses the raw register numbers. */
793 return mep_raw_to_pseudo[debug_reg];
794}
795
796
797/* Return the size, in bits, of the coprocessor pseudoregister
798 numbered PSEUDO. */
799static int
800mep_pseudo_cr_size (int pseudo)
801{
802 if (IS_CR32_REGNUM (pseudo)
803 || IS_FP_CR32_REGNUM (pseudo))
804 return 32;
805 else if (IS_CR64_REGNUM (pseudo)
806 || IS_FP_CR64_REGNUM (pseudo))
807 return 64;
808 else
809 gdb_assert (0);
810}
811
812
813/* If the coprocessor pseudoregister numbered PSEUDO is a
814 floating-point register, return non-zero; if it is an integer
815 register, return zero. */
816static int
817mep_pseudo_cr_is_float (int pseudo)
818{
819 return (IS_FP_CR32_REGNUM (pseudo)
820 || IS_FP_CR64_REGNUM (pseudo));
821}
822
823
824/* Given a coprocessor GPR pseudoregister number, return its index
825 within that register bank. */
826static int
827mep_pseudo_cr_index (int pseudo)
828{
829 if (IS_CR32_REGNUM (pseudo))
830 return pseudo - MEP_FIRST_CR32_REGNUM;
831 else if (IS_FP_CR32_REGNUM (pseudo))
832 return pseudo - MEP_FIRST_FP_CR32_REGNUM;
833 else if (IS_CR64_REGNUM (pseudo))
834 return pseudo - MEP_FIRST_CR64_REGNUM;
835 else if (IS_FP_CR64_REGNUM (pseudo))
836 return pseudo - MEP_FIRST_FP_CR64_REGNUM;
837 else
838 gdb_assert (0);
839}
840
841
842/* Return the me_module index describing the current target.
843
844 If the current target has registers (e.g., simulator, remote
845 target), then this uses the value of the 'module' register, raw
846 register MEP_MODULE_REGNUM. Otherwise, this retrieves the value
847 from the ELF header's e_flags field of the current executable
848 file. */
849static CONFIG_ATTR
850current_me_module ()
851{
852 if (target_has_registers)
3d1a74ac
UW
853 {
854 ULONGEST regval;
594f7785 855 regcache_cooked_read_unsigned (get_current_regcache (),
3d1a74ac
UW
856 MEP_MODULE_REGNUM, &regval);
857 return regval;
858 }
aeb43123
KB
859 else
860 return gdbarch_tdep (current_gdbarch)->me_module;
861}
862
863
864/* Return the set of options for the current target, in the form that
865 the OPT register would use.
866
867 If the current target has registers (e.g., simulator, remote
868 target), then this is the actual value of the OPT register. If the
869 current target does not have registers (e.g., an executable file),
870 then use the 'module_opt' field we computed when we build the
871 gdbarch object for this module. */
872static unsigned int
873current_options ()
874{
875 if (target_has_registers)
3d1a74ac
UW
876 {
877 ULONGEST regval;
594f7785 878 regcache_cooked_read_unsigned (get_current_regcache (),
3d1a74ac
UW
879 MEP_OPT_REGNUM, &regval);
880 return regval;
881 }
aeb43123
KB
882 else
883 return me_module_opt (current_me_module ());
884}
885
886
887/* Return the width of the current me_module's coprocessor data bus,
888 in bits. This is either 32 or 64. */
889static int
890current_cop_data_bus_width ()
891{
892 return me_module_cop_data_bus_width (current_me_module ());
893}
894
895
896/* Return the keyword table of coprocessor general-purpose register
897 names appropriate for the me_module we're dealing with. */
898static CGEN_KEYWORD *
899current_cr_names ()
900{
901 const CGEN_HW_ENTRY *hw
902 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
903
904 return register_set_keyword_table (hw);
905}
906
907
908/* Return non-zero if the coprocessor general-purpose registers are
909 floating-point values, zero otherwise. */
910static int
911current_cr_is_float ()
912{
913 const CGEN_HW_ENTRY *hw
914 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
915
916 return CGEN_ATTR_CGEN_HW_IS_FLOAT_VALUE (CGEN_HW_ATTRS (hw));
917}
918
919
920/* Return the keyword table of coprocessor control register names
921 appropriate for the me_module we're dealing with. */
922static CGEN_KEYWORD *
923current_ccr_names ()
924{
925 const CGEN_HW_ENTRY *hw
926 = me_module_register_set (current_me_module (), "h-ccr-", HW_H_CCR);
927
928 return register_set_keyword_table (hw);
929}
930
931
932static const char *
933mep_register_name (int regnr)
934{
935 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
936
937 /* General-purpose registers. */
938 static const char *gpr_names[] = {
939 "r0", "r1", "r2", "r3", /* 0 */
940 "r4", "r5", "r6", "r7", /* 4 */
941 "fp", "r9", "r10", "r11", /* 8 */
942 "r12", "tp", "gp", "sp" /* 12 */
943 };
944
945 /* Special-purpose registers. */
946 static const char *csr_names[] = {
947 "pc", "lp", "sar", "", /* 0 csr3: reserved */
948 "rpb", "rpe", "rpc", "hi", /* 4 */
949 "lo", "", "", "", /* 8 csr9-csr11: reserved */
950 "mb0", "me0", "mb1", "me1", /* 12 */
951
952 "psw", "id", "tmp", "epc", /* 16 */
953 "exc", "cfg", "", "npc", /* 20 csr22: reserved */
954 "dbg", "depc", "opt", "rcfg", /* 24 */
955 "ccfg", "", "", "" /* 28 csr29-csr31: reserved */
956 };
957
958 if (IS_GPR_REGNUM (regnr))
959 return gpr_names[regnr - MEP_R0_REGNUM];
960 else if (IS_CSR_REGNUM (regnr))
961 {
962 /* The 'hi' and 'lo' registers are only present on processors
963 that have the 'MUL' or 'DIV' instructions enabled. */
964 if ((regnr == MEP_HI_REGNUM || regnr == MEP_LO_REGNUM)
965 && (! (current_options () & (MEP_OPT_MUL | MEP_OPT_DIV))))
966 return "";
967
968 return csr_names[regnr - MEP_FIRST_CSR_REGNUM];
969 }
970 else if (IS_CR_REGNUM (regnr))
971 {
972 CGEN_KEYWORD *names;
973 int cr_size;
974 int cr_is_float;
975
976 /* Does this module have a coprocessor at all? */
977 if (! (current_options () & MEP_OPT_COP))
978 return "";
979
980 names = current_cr_names ();
981 if (! names)
982 /* This module's coprocessor has no general-purpose registers. */
983 return "";
984
985 cr_size = current_cop_data_bus_width ();
986 if (cr_size != mep_pseudo_cr_size (regnr))
987 /* This module's coprocessor's GPR's are of a different size. */
988 return "";
989
990 cr_is_float = current_cr_is_float ();
991 /* The extra ! operators ensure we get boolean equality, not
992 numeric equality. */
993 if (! cr_is_float != ! mep_pseudo_cr_is_float (regnr))
994 /* This module's coprocessor's GPR's are of a different type. */
995 return "";
996
997 return register_name_from_keyword (names, mep_pseudo_cr_index (regnr));
998 }
999 else if (IS_CCR_REGNUM (regnr))
1000 {
1001 /* Does this module have a coprocessor at all? */
1002 if (! (current_options () & MEP_OPT_COP))
1003 return "";
1004
1005 {
1006 CGEN_KEYWORD *names = current_ccr_names ();
1007
1008 if (! names)
1009 /* This me_module's coprocessor has no control registers. */
1010 return "";
1011
1012 return register_name_from_keyword (names, regnr-MEP_FIRST_CCR_REGNUM);
1013 }
1014 }
1015
1016 /* It might be nice to give the 'module' register a name, but that
1017 would affect the output of 'info all-registers', which would
1018 disturb the test suites. So we leave it invisible. */
1019 else
1020 return NULL;
1021}
1022
1023
1024/* Custom register groups for the MeP. */
1025static struct reggroup *mep_csr_reggroup; /* control/special */
1026static struct reggroup *mep_cr_reggroup; /* coprocessor general-purpose */
1027static struct reggroup *mep_ccr_reggroup; /* coprocessor control */
1028
1029
1030static int
1031mep_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1032 struct reggroup *group)
1033{
1034 /* Filter reserved or unused register numbers. */
1035 {
1036 const char *name = mep_register_name (regnum);
1037
1038 if (! name || name[0] == '\0')
1039 return 0;
1040 }
1041
1042 /* We could separate the GPRs and the CSRs. Toshiba has approved of
1043 the existing behavior, so we'd want to run that by them. */
1044 if (group == general_reggroup)
1045 return (IS_GPR_REGNUM (regnum)
1046 || IS_CSR_REGNUM (regnum));
1047
1048 /* Everything is in the 'all' reggroup, except for the raw CSR's. */
1049 else if (group == all_reggroup)
1050 return (IS_GPR_REGNUM (regnum)
1051 || IS_CSR_REGNUM (regnum)
1052 || IS_CR_REGNUM (regnum)
1053 || IS_CCR_REGNUM (regnum));
1054
1055 /* All registers should be saved and restored, except for the raw
1056 CSR's.
1057
1058 This is probably right if the coprocessor is something like a
1059 floating-point unit, but would be wrong if the coprocessor is
1060 something that does I/O, where register accesses actually cause
1061 externally-visible actions. But I get the impression that the
1062 coprocessor isn't supposed to do things like that --- you'd use a
1063 hardware engine, perhaps. */
1064 else if (group == save_reggroup || group == restore_reggroup)
1065 return (IS_GPR_REGNUM (regnum)
1066 || IS_CSR_REGNUM (regnum)
1067 || IS_CR_REGNUM (regnum)
1068 || IS_CCR_REGNUM (regnum));
1069
1070 else if (group == mep_csr_reggroup)
1071 return IS_CSR_REGNUM (regnum);
1072 else if (group == mep_cr_reggroup)
1073 return IS_CR_REGNUM (regnum);
1074 else if (group == mep_ccr_reggroup)
1075 return IS_CCR_REGNUM (regnum);
1076 else
1077 return 0;
1078}
1079
1080
1081static struct type *
1082mep_register_type (struct gdbarch *gdbarch, int reg_nr)
1083{
1084 /* Coprocessor general-purpose registers may be either 32 or 64 bits
1085 long. So for them, the raw registers are always 64 bits long (to
1086 keep the 'g' packet format fixed), and the pseudoregisters vary
1087 in length. */
1088 if (IS_RAW_CR_REGNUM (reg_nr))
1089 return builtin_type_uint64;
1090
1091 /* Since GDB doesn't allow registers to change type, we have two
1092 banks of pseudoregisters for the coprocessor general-purpose
1093 registers: one that gives a 32-bit view, and one that gives a
1094 64-bit view. We hide or show one or the other depending on the
1095 current module. */
1096 if (IS_CR_REGNUM (reg_nr))
1097 {
1098 int size = mep_pseudo_cr_size (reg_nr);
1099 if (size == 32)
1100 {
1101 if (mep_pseudo_cr_is_float (reg_nr))
1102 return builtin_type_float;
1103 else
1104 return builtin_type_uint32;
1105 }
1106 else if (size == 64)
1107 {
1108 if (mep_pseudo_cr_is_float (reg_nr))
1109 return builtin_type_double;
1110 else
1111 return builtin_type_uint64;
1112 }
1113 else
1114 gdb_assert (0);
1115 }
1116
1117 /* All other registers are 32 bits long. */
1118 else
1119 return builtin_type_uint32;
1120}
1121
1122
1123static CORE_ADDR
61a1198a 1124mep_read_pc (struct regcache *regcache)
aeb43123 1125{
61a1198a
UW
1126 ULONGEST pc;
1127 regcache_cooked_read_unsigned (regcache, MEP_PC_REGNUM, &pc);
aeb43123
KB
1128 return pc;
1129}
1130
1131static void
61a1198a 1132mep_write_pc (struct regcache *regcache, CORE_ADDR pc)
aeb43123 1133{
61a1198a 1134 regcache_cooked_write_unsigned (regcache, MEP_PC_REGNUM, pc);
aeb43123
KB
1135}
1136
1137
1138static void
1139mep_pseudo_cr32_read (struct gdbarch *gdbarch,
1140 struct regcache *regcache,
1141 int cookednum,
1142 void *buf)
1143{
1144 /* Read the raw register into a 64-bit buffer, and then return the
1145 appropriate end of that buffer. */
1146 int rawnum = mep_pseudo_to_raw[cookednum];
1147 char buf64[8];
1148
1149 gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1150 gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1151 regcache_raw_read (regcache, rawnum, buf64);
1152 /* Slow, but legible. */
1153 store_unsigned_integer (buf, 4, extract_unsigned_integer (buf64, 8));
1154}
1155
1156
1157static void
1158mep_pseudo_cr64_read (struct gdbarch *gdbarch,
1159 struct regcache *regcache,
1160 int cookednum,
1161 void *buf)
1162{
1163 regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1164}
1165
1166
1167static void
1168mep_pseudo_register_read (struct gdbarch *gdbarch,
1169 struct regcache *regcache,
1170 int cookednum,
1171 gdb_byte *buf)
1172{
1173 if (IS_CSR_REGNUM (cookednum)
1174 || IS_CCR_REGNUM (cookednum))
1175 regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1176 else if (IS_CR32_REGNUM (cookednum)
1177 || IS_FP_CR32_REGNUM (cookednum))
1178 mep_pseudo_cr32_read (gdbarch, regcache, cookednum, buf);
1179 else if (IS_CR64_REGNUM (cookednum)
1180 || IS_FP_CR64_REGNUM (cookednum))
1181 mep_pseudo_cr64_read (gdbarch, regcache, cookednum, buf);
1182 else
1183 gdb_assert (0);
1184}
1185
1186
1187static void
1188mep_pseudo_csr_write (struct gdbarch *gdbarch,
1189 struct regcache *regcache,
1190 int cookednum,
1191 const void *buf)
1192{
1193 int size = register_size (gdbarch, cookednum);
1194 struct mep_csr_register *r
1195 = &mep_csr_registers[cookednum - MEP_FIRST_CSR_REGNUM];
1196
1197 if (r->writeable_bits == 0)
1198 /* A completely read-only register; avoid the read-modify-
1199 write cycle, and juts ignore the entire write. */
1200 ;
1201 else
1202 {
1203 /* A partially writeable register; do a read-modify-write cycle. */
1204 ULONGEST old_bits;
1205 ULONGEST new_bits;
1206 ULONGEST mixed_bits;
1207
1208 regcache_raw_read_unsigned (regcache, r->raw, &old_bits);
1209 new_bits = extract_unsigned_integer (buf, size);
1210 mixed_bits = ((r->writeable_bits & new_bits)
1211 | (~r->writeable_bits & old_bits));
1212 regcache_raw_write_unsigned (regcache, r->raw, mixed_bits);
1213 }
1214}
1215
1216
1217static void
1218mep_pseudo_cr32_write (struct gdbarch *gdbarch,
1219 struct regcache *regcache,
1220 int cookednum,
1221 const void *buf)
1222{
1223 /* Expand the 32-bit value into a 64-bit value, and write that to
1224 the pseudoregister. */
1225 int rawnum = mep_pseudo_to_raw[cookednum];
1226 char buf64[8];
1227
1228 gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1229 gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1230 /* Slow, but legible. */
1231 store_unsigned_integer (buf64, 8, extract_unsigned_integer (buf, 4));
1232 regcache_raw_write (regcache, rawnum, buf64);
1233}
1234
1235
1236static void
1237mep_pseudo_cr64_write (struct gdbarch *gdbarch,
1238 struct regcache *regcache,
1239 int cookednum,
1240 const void *buf)
1241{
1242 regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1243}
1244
1245
1246static void
1247mep_pseudo_register_write (struct gdbarch *gdbarch,
1248 struct regcache *regcache,
1249 int cookednum,
1250 const gdb_byte *buf)
1251{
1252 if (IS_CSR_REGNUM (cookednum))
1253 mep_pseudo_csr_write (gdbarch, regcache, cookednum, buf);
1254 else if (IS_CR32_REGNUM (cookednum)
1255 || IS_FP_CR32_REGNUM (cookednum))
1256 mep_pseudo_cr32_write (gdbarch, regcache, cookednum, buf);
1257 else if (IS_CR64_REGNUM (cookednum)
1258 || IS_FP_CR64_REGNUM (cookednum))
1259 mep_pseudo_cr64_write (gdbarch, regcache, cookednum, buf);
1260 else if (IS_CCR_REGNUM (cookednum))
1261 regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1262 else
1263 gdb_assert (0);
1264}
1265
1266
1267\f
1268/* Disassembly. */
1269
1270/* The mep disassembler needs to know about the section in order to
1271 work correctly. */
1272int
1273mep_gdb_print_insn (bfd_vma pc, disassemble_info * info)
1274{
1275 struct obj_section * s = find_pc_section (pc);
1276
1277 if (s)
1278 {
1279 /* The libopcodes disassembly code uses the section to find the
1280 BFD, the BFD to find the ELF header, the ELF header to find
1281 the me_module index, and the me_module index to select the
1282 right instructions to print. */
1283 info->section = s->the_bfd_section;
1284 info->arch = bfd_arch_mep;
1285
1286 return print_insn_mep (pc, info);
1287 }
1288
1289 return 0;
1290}
1291
1292\f
1293/* Prologue analysis. */
1294
1295
1296/* The MeP has two classes of instructions: "core" instructions, which
1297 are pretty normal RISC chip stuff, and "coprocessor" instructions,
1298 which are mostly concerned with moving data in and out of
1299 coprocessor registers, and branching on coprocessor condition
1300 codes. There's space in the instruction set for custom coprocessor
1301 instructions, too.
1302
1303 Instructions can be 16 or 32 bits long; the top two bits of the
1304 first byte indicate the length. The coprocessor instructions are
1305 mixed in with the core instructions, and there's no easy way to
1306 distinguish them; you have to completely decode them to tell one
1307 from the other.
1308
1309 The MeP also supports a "VLIW" operation mode, where instructions
1310 always occur in fixed-width bundles. The bundles are either 32
1311 bits or 64 bits long, depending on a fixed configuration flag. You
1312 decode the first part of the bundle as normal; if it's a core
1313 instruction, and there's any space left in the bundle, the
1314 remainder of the bundle is a coprocessor instruction, which will
1315 execute in parallel with the core instruction. If the first part
1316 of the bundle is a coprocessor instruction, it occupies the entire
1317 bundle.
1318
1319 So, here are all the cases:
1320
1321 - 32-bit VLIW mode:
1322 Every bundle is four bytes long, and naturally aligned, and can hold
1323 one or two instructions:
1324 - 16-bit core instruction; 16-bit coprocessor instruction
1325 These execute in parallel.
1326 - 32-bit core instruction
1327 - 32-bit coprocessor instruction
1328
1329 - 64-bit VLIW mode:
1330 Every bundle is eight bytes long, and naturally aligned, and can hold
1331 one or two instructions:
1332 - 16-bit core instruction; 48-bit (!) coprocessor instruction
1333 These execute in parallel.
1334 - 32-bit core instruction; 32-bit coprocessor instruction
1335 These execute in parallel.
1336 - 64-bit coprocessor instruction
1337
1338 Now, the MeP manual doesn't define any 48- or 64-bit coprocessor
1339 instruction, so I don't really know what's up there; perhaps these
1340 are always the user-defined coprocessor instructions. */
1341
1342
1343/* Return non-zero if PC is in a VLIW code section, zero
1344 otherwise. */
1345static int
1346mep_pc_in_vliw_section (CORE_ADDR pc)
1347{
1348 struct obj_section *s = find_pc_section (pc);
1349 if (s)
1350 return (s->the_bfd_section->flags & SEC_MEP_VLIW);
1351 return 0;
1352}
1353
1354
1355/* Set *INSN to the next core instruction at PC, and return the
1356 address of the next instruction.
1357
1358 The MeP instruction encoding is endian-dependent. 16- and 32-bit
1359 instructions are encoded as one or two two-byte parts, and each
1360 part is byte-swapped independently. Thus:
1361
1362 void
1363 foo (void)
1364 {
1365 asm ("movu $1, 0x123456");
1366 asm ("sb $1,0x5678($2)");
1367 asm ("clip $1, 19");
1368 }
1369
1370 compiles to this big-endian code:
1371
1372 0: d1 56 12 34 movu $1,0x123456
1373 4: c1 28 56 78 sb $1,22136($2)
1374 8: f1 01 10 98 clip $1,0x13
1375 c: 70 02 ret
1376
1377 and this little-endian code:
1378
1379 0: 56 d1 34 12 movu $1,0x123456
1380 4: 28 c1 78 56 sb $1,22136($2)
1381 8: 01 f1 98 10 clip $1,0x13
1382 c: 02 70 ret
1383
1384 Instructions are returned in *INSN in an endian-independent form: a
1385 given instruction always appears in *INSN the same way, regardless
1386 of whether the instruction stream is big-endian or little-endian.
1387
1388 *INSN's most significant 16 bits are the first (i.e., at lower
1389 addresses) 16 bit part of the instruction. Its least significant
1390 16 bits are the second (i.e., higher-addressed) 16 bit part of the
1391 instruction, or zero for a 16-bit instruction. Both 16-bit parts
1392 are fetched using the current endianness.
1393
1394 So, the *INSN values for the instruction sequence above would be
1395 the following, in either endianness:
1396
1397 0xd1561234 movu $1,0x123456
1398 0xc1285678 sb $1,22136($2)
1399 0xf1011098 clip $1,0x13
1400 0x70020000 ret
1401
1402 (In a sense, it would be more natural to return 16-bit instructions
1403 in the least significant 16 bits of *INSN, but that would be
1404 ambiguous. In order to tell whether you're looking at a 16- or a
1405 32-bit instruction, you have to consult the major opcode field ---
1406 the most significant four bits of the instruction's first 16-bit
1407 part. But if we put 16-bit instructions at the least significant
1408 end of *INSN, then you don't know where to find the major opcode
1409 field until you know if it's a 16- or a 32-bit instruction ---
1410 which is where we started.)
1411
1412 If PC points to a core / coprocessor bundle in a VLIW section, set
1413 *INSN to the core instruction, and return the address of the next
1414 bundle. This has the effect of skipping the bundled coprocessor
1415 instruction. That's okay, since coprocessor instructions aren't
1416 significant to prologue analysis --- for the time being,
1417 anyway. */
1418
1419static CORE_ADDR
1420mep_get_insn (CORE_ADDR pc, long *insn)
1421{
1422 int pc_in_vliw_section;
1423 int vliw_mode;
1424 int insn_len;
1425 char buf[2];
1426
1427 *insn = 0;
1428
1429 /* Are we in a VLIW section? */
1430 pc_in_vliw_section = mep_pc_in_vliw_section (pc);
1431 if (pc_in_vliw_section)
1432 {
1433 /* Yes, find out which bundle size. */
1434 vliw_mode = current_options () & (MEP_OPT_VL32 | MEP_OPT_VL64);
1435
1436 /* If PC is in a VLIW section, but the current core doesn't say
1437 that it supports either VLIW mode, then we don't have enough
1438 information to parse the instruction stream it contains.
1439 Since the "undifferentiated" standard core doesn't have
1440 either VLIW mode bit set, this could happen.
1441
1442 But it shouldn't be an error to (say) set a breakpoint in a
1443 VLIW section, if you know you'll never reach it. (Perhaps
1444 you have a script that sets a bunch of standard breakpoints.)
1445
1446 So we'll just return zero here, and hope for the best. */
1447 if (! (vliw_mode & (MEP_OPT_VL32 | MEP_OPT_VL64)))
1448 return 0;
1449
1450 /* If both VL32 and VL64 are set, that's bogus, too. */
1451 if (vliw_mode == (MEP_OPT_VL32 | MEP_OPT_VL64))
1452 return 0;
1453 }
1454 else
1455 vliw_mode = 0;
1456
1457 read_memory (pc, buf, sizeof (buf));
1458 *insn = extract_unsigned_integer (buf, 2) << 16;
1459
1460 /* The major opcode --- the top four bits of the first 16-bit
1461 part --- indicates whether this instruction is 16 or 32 bits
1462 long. All 32-bit instructions have a major opcode whose top
1463 two bits are 11; all the rest are 16-bit instructions. */
1464 if ((*insn & 0xc0000000) == 0xc0000000)
1465 {
1466 /* Fetch the second 16-bit part of the instruction. */
1467 read_memory (pc + 2, buf, sizeof (buf));
1468 *insn = *insn | extract_unsigned_integer (buf, 2);
1469 }
1470
1471 /* If we're in VLIW code, then the VLIW width determines the address
1472 of the next instruction. */
1473 if (vliw_mode)
1474 {
1475 /* In 32-bit VLIW code, all bundles are 32 bits long. We ignore the
1476 coprocessor half of a core / copro bundle. */
1477 if (vliw_mode == MEP_OPT_VL32)
1478 insn_len = 4;
1479
1480 /* In 64-bit VLIW code, all bundles are 64 bits long. We ignore the
1481 coprocessor half of a core / copro bundle. */
1482 else if (vliw_mode == MEP_OPT_VL64)
1483 insn_len = 8;
1484
1485 /* We'd better be in either core, 32-bit VLIW, or 64-bit VLIW mode. */
1486 else
1487 gdb_assert (0);
1488 }
1489
1490 /* Otherwise, the top two bits of the major opcode are (again) what
1491 we need to check. */
1492 else if ((*insn & 0xc0000000) == 0xc0000000)
1493 insn_len = 4;
1494 else
1495 insn_len = 2;
1496
1497 return pc + insn_len;
1498}
1499
1500
1501/* Sign-extend the LEN-bit value N. */
1502#define SEXT(n, len) ((((int) (n)) ^ (1 << ((len) - 1))) - (1 << ((len) - 1)))
1503
1504/* Return the LEN-bit field at POS from I. */
1505#define FIELD(i, pos, len) (((i) >> (pos)) & ((1 << (len)) - 1))
1506
1507/* Like FIELD, but sign-extend the field's value. */
1508#define SFIELD(i, pos, len) (SEXT (FIELD ((i), (pos), (len)), (len)))
1509
1510
1511/* Macros for decoding instructions.
1512
1513 Remember that 16-bit instructions are placed in bits 16..31 of i,
1514 not at the least significant end; this means that the major opcode
1515 field is always in the same place, regardless of the width of the
1516 instruction. As a reminder of this, we show the lower 16 bits of a
1517 16-bit instruction as xxxx_xxxx_xxxx_xxxx. */
1518
1519/* SB Rn,(Rm) 0000_nnnn_mmmm_1000 */
1520/* SH Rn,(Rm) 0000_nnnn_mmmm_1001 */
1521/* SW Rn,(Rm) 0000_nnnn_mmmm_1010 */
1522
1523/* SW Rn,disp16(Rm) 1100_nnnn_mmmm_1010 dddd_dddd_dddd_dddd */
1524#define IS_SW(i) (((i) & 0xf00f0000) == 0xc00a0000)
1525/* SB Rn,disp16(Rm) 1100_nnnn_mmmm_1000 dddd_dddd_dddd_dddd */
1526#define IS_SB(i) (((i) & 0xf00f0000) == 0xc0080000)
1527/* SH Rn,disp16(Rm) 1100_nnnn_mmmm_1001 dddd_dddd_dddd_dddd */
1528#define IS_SH(i) (((i) & 0xf00f0000) == 0xc0090000)
1529#define SWBH_32_BASE(i) (FIELD (i, 20, 4))
1530#define SWBH_32_SOURCE(i) (FIELD (i, 24, 4))
1531#define SWBH_32_OFFSET(i) (SFIELD (i, 0, 16))
1532
1533/* SW Rn,disp7.align4(SP) 0100_nnnn_0ddd_dd10 xxxx_xxxx_xxxx_xxxx */
1534#define IS_SW_IMMD(i) (((i) & 0xf0830000) == 0x40020000)
1535#define SW_IMMD_SOURCE(i) (FIELD (i, 24, 4))
1536#define SW_IMMD_OFFSET(i) (FIELD (i, 18, 5) << 2)
1537
1538/* SW Rn,(Rm) 0000_nnnn_mmmm_1010 xxxx_xxxx_xxxx_xxxx */
1539#define IS_SW_REG(i) (((i) & 0xf00f0000) == 0x000a0000)
1540#define SW_REG_SOURCE(i) (FIELD (i, 24, 4))
1541#define SW_REG_BASE(i) (FIELD (i, 20, 4))
1542
1543/* ADD3 Rl,Rn,Rm 1001_nnnn_mmmm_llll xxxx_xxxx_xxxx_xxxx */
1544#define IS_ADD3_16_REG(i) (((i) & 0xf0000000) == 0x90000000)
1545#define ADD3_16_REG_SRC1(i) (FIELD (i, 20, 4)) /* n */
1546#define ADD3_16_REG_SRC2(i) (FIELD (i, 24, 4)) /* m */
1547
1548/* ADD3 Rn,Rm,imm16 1100_nnnn_mmmm_0000 iiii_iiii_iiii_iiii */
1549#define IS_ADD3_32(i) (((i) & 0xf00f0000) == 0xc0000000)
1550#define ADD3_32_TARGET(i) (FIELD (i, 24, 4))
1551#define ADD3_32_SOURCE(i) (FIELD (i, 20, 4))
1552#define ADD3_32_OFFSET(i) (SFIELD (i, 0, 16))
1553
1554/* ADD3 Rn,SP,imm7.align4 0100_nnnn_0iii_ii00 xxxx_xxxx_xxxx_xxxx */
1555#define IS_ADD3_16(i) (((i) & 0xf0830000) == 0x40000000)
1556#define ADD3_16_TARGET(i) (FIELD (i, 24, 4))
1557#define ADD3_16_OFFSET(i) (FIELD (i, 18, 5) << 2)
1558
1559/* ADD Rn,imm6 0110_nnnn_iiii_ii00 xxxx_xxxx_xxxx_xxxx */
1560#define IS_ADD(i) (((i) & 0xf0030000) == 0x60000000)
1561#define ADD_TARGET(i) (FIELD (i, 24, 4))
1562#define ADD_OFFSET(i) (SFIELD (i, 18, 6))
1563
1564/* LDC Rn,imm5 0111_nnnn_iiii_101I xxxx_xxxx_xxxx_xxxx
1565 imm5 = I||i[7:4] */
1566#define IS_LDC(i) (((i) & 0xf00e0000) == 0x700a0000)
1567#define LDC_IMM(i) ((FIELD (i, 16, 1) << 4) | FIELD (i, 20, 4))
1568#define LDC_TARGET(i) (FIELD (i, 24, 4))
1569
1570/* LW Rn,disp16(Rm) 1100_nnnn_mmmm_1110 dddd_dddd_dddd_dddd */
1571#define IS_LW(i) (((i) & 0xf00f0000) == 0xc00e0000)
1572#define LW_TARGET(i) (FIELD (i, 24, 4))
1573#define LW_BASE(i) (FIELD (i, 20, 4))
1574#define LW_OFFSET(i) (SFIELD (i, 0, 16))
1575
1576/* MOV Rn,Rm 0000_nnnn_mmmm_0000 xxxx_xxxx_xxxx_xxxx */
1577#define IS_MOV(i) (((i) & 0xf00f0000) == 0x00000000)
1578#define MOV_TARGET(i) (FIELD (i, 24, 4))
1579#define MOV_SOURCE(i) (FIELD (i, 20, 4))
1580
1ba3e7a3
KB
1581/* BRA disp12.align2 1011_dddd_dddd_ddd0 xxxx_xxxx_xxxx_xxxx */
1582#define IS_BRA(i) (((i) & 0xf0010000) == 0xb0000000)
1583#define BRA_DISP(i) (SFIELD (i, 17, 11) << 1)
1584
aeb43123
KB
1585
1586/* This structure holds the results of a prologue analysis. */
1587struct mep_prologue
1588{
1589 /* The offset from the frame base to the stack pointer --- always
1590 zero or negative.
1591
1592 Calling this a "size" is a bit misleading, but given that the
1593 stack grows downwards, using offsets for everything keeps one
1594 from going completely sign-crazy: you never change anything's
1595 sign for an ADD instruction; always change the second operand's
1596 sign for a SUB instruction; and everything takes care of
1597 itself. */
1598 int frame_size;
1599
1600 /* Non-zero if this function has initialized the frame pointer from
1601 the stack pointer, zero otherwise. */
1602 int has_frame_ptr;
1603
1604 /* If has_frame_ptr is non-zero, this is the offset from the frame
1605 base to where the frame pointer points. This is always zero or
1606 negative. */
1607 int frame_ptr_offset;
1608
1609 /* The address of the first instruction at which the frame has been
1610 set up and the arguments are where the debug info says they are
1611 --- as best as we can tell. */
1612 CORE_ADDR prologue_end;
1613
1614 /* reg_offset[R] is the offset from the CFA at which register R is
1615 saved, or 1 if register R has not been saved. (Real values are
1616 always zero or negative.) */
1617 int reg_offset[MEP_NUM_REGS];
1618};
1619
1620/* Return non-zero if VALUE is an incoming argument register. */
1621
1622static int
1623is_arg_reg (pv_t value)
1624{
1625 return (value.kind == pvk_register
1626 && MEP_R1_REGNUM <= value.reg && value.reg <= MEP_R4_REGNUM
1627 && value.k == 0);
1628}
1629
1630/* Return non-zero if a store of REG's current value VALUE to ADDR is
1631 probably spilling an argument register to its stack slot in STACK.
1632 Such instructions should be included in the prologue, if possible.
1633
1634 The store is a spill if:
1635 - the value being stored is REG's original value;
1636 - the value has not already been stored somewhere in STACK; and
1637 - ADDR is a stack slot's address (e.g., relative to the original
1638 value of the SP). */
1639static int
1640is_arg_spill (pv_t value, pv_t addr, struct pv_area *stack)
1641{
1642 return (is_arg_reg (value)
1643 && pv_is_register (addr, MEP_SP_REGNUM)
1644 && ! pv_area_find_reg (stack, current_gdbarch, value.reg, 0));
1645}
1646
1647
1648/* Function for finding saved registers in a 'struct pv_area'; we pass
1649 this to pv_area_scan.
1650
1651 If VALUE is a saved register, ADDR says it was saved at a constant
1652 offset from the frame base, and SIZE indicates that the whole
1653 register was saved, record its offset in RESULT_UNTYPED. */
1654static void
1655check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1656{
1657 struct mep_prologue *result = (struct mep_prologue *) result_untyped;
1658
1659 if (value.kind == pvk_register
1660 && value.k == 0
1661 && pv_is_register (addr, MEP_SP_REGNUM)
1662 && size == register_size (current_gdbarch, value.reg))
1663 result->reg_offset[value.reg] = addr.k;
1664}
1665
1666
1667/* Analyze a prologue starting at START_PC, going no further than
1668 LIMIT_PC. Fill in RESULT as appropriate. */
1669static void
1670mep_analyze_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1671 struct mep_prologue *result)
1672{
1673 CORE_ADDR pc;
1674 unsigned long insn;
1675 int rn;
1676 int found_lp = 0;
1677 pv_t reg[MEP_NUM_REGS];
1678 struct pv_area *stack;
1679 struct cleanup *back_to;
1680 CORE_ADDR after_last_frame_setup_insn = start_pc;
1681
1682 memset (result, 0, sizeof (*result));
1683
1684 for (rn = 0; rn < MEP_NUM_REGS; rn++)
1685 {
1686 reg[rn] = pv_register (rn, 0);
1687 result->reg_offset[rn] = 1;
1688 }
1689
1690 stack = make_pv_area (MEP_SP_REGNUM);
1691 back_to = make_cleanup_free_pv_area (stack);
1692
1693 pc = start_pc;
1694 while (pc < limit_pc)
1695 {
1696 CORE_ADDR next_pc;
1697 pv_t pre_insn_fp, pre_insn_sp;
1698
1699 next_pc = mep_get_insn (pc, &insn);
1700
1701 /* A zero return from mep_get_insn means that either we weren't
1702 able to read the instruction from memory, or that we don't
1703 have enough information to be able to reliably decode it. So
1704 we'll store here and hope for the best. */
1705 if (! next_pc)
1706 break;
1707
1708 /* Note the current values of the SP and FP, so we can tell if
1709 this instruction changed them, below. */
1710 pre_insn_fp = reg[MEP_FP_REGNUM];
1711 pre_insn_sp = reg[MEP_SP_REGNUM];
1712
1713 if (IS_ADD (insn))
1714 {
1715 int rn = ADD_TARGET (insn);
1716 CORE_ADDR imm6 = ADD_OFFSET (insn);
1717
1718 reg[rn] = pv_add_constant (reg[rn], imm6);
1719 }
1720 else if (IS_ADD3_16 (insn))
1721 {
1722 int rn = ADD3_16_TARGET (insn);
1723 int imm7 = ADD3_16_OFFSET (insn);
1724
1725 reg[rn] = pv_add_constant (reg[MEP_SP_REGNUM], imm7);
1726 }
1727 else if (IS_ADD3_32 (insn))
1728 {
1729 int rn = ADD3_32_TARGET (insn);
1730 int rm = ADD3_32_SOURCE (insn);
1731 int imm16 = ADD3_32_OFFSET (insn);
1732
1733 reg[rn] = pv_add_constant (reg[rm], imm16);
1734 }
1735 else if (IS_SW_REG (insn))
1736 {
1737 int rn = SW_REG_SOURCE (insn);
1738 int rm = SW_REG_BASE (insn);
1739
1740 /* If simulating this store would require us to forget
1741 everything we know about the stack frame in the name of
1742 accuracy, it would be better to just quit now. */
1743 if (pv_area_store_would_trash (stack, reg[rm]))
1744 break;
1745
1746 if (is_arg_spill (reg[rn], reg[rm], stack))
1747 after_last_frame_setup_insn = next_pc;
1748
1749 pv_area_store (stack, reg[rm], 4, reg[rn]);
1750 }
1751 else if (IS_SW_IMMD (insn))
1752 {
1753 int rn = SW_IMMD_SOURCE (insn);
1754 int offset = SW_IMMD_OFFSET (insn);
1755 pv_t addr = pv_add_constant (reg[MEP_SP_REGNUM], offset);
1756
1757 /* If simulating this store would require us to forget
1758 everything we know about the stack frame in the name of
1759 accuracy, it would be better to just quit now. */
1760 if (pv_area_store_would_trash (stack, addr))
1761 break;
1762
1763 if (is_arg_spill (reg[rn], addr, stack))
1764 after_last_frame_setup_insn = next_pc;
1765
1766 pv_area_store (stack, addr, 4, reg[rn]);
1767 }
1768 else if (IS_MOV (insn))
1769 {
1770 int rn = MOV_TARGET (insn);
1771 int rm = MOV_SOURCE (insn);
1772
1773 reg[rn] = reg[rm];
1774
1775 if (pv_is_register (reg[rm], rm) && is_arg_reg (reg[rm]))
1776 after_last_frame_setup_insn = next_pc;
1777 }
1778 else if (IS_SB (insn) || IS_SH (insn) || IS_SW (insn))
1779 {
1780 int rn = SWBH_32_SOURCE (insn);
1781 int rm = SWBH_32_BASE (insn);
1782 int disp = SWBH_32_OFFSET (insn);
1783 int size = (IS_SB (insn) ? 1
1784 : IS_SH (insn) ? 2
1785 : IS_SW (insn) ? 4
1786 : (gdb_assert (0), 1));
1787 pv_t addr = pv_add_constant (reg[rm], disp);
1788
1789 if (pv_area_store_would_trash (stack, addr))
1790 break;
1791
1792 if (is_arg_spill (reg[rn], addr, stack))
1793 after_last_frame_setup_insn = next_pc;
1794
1795 pv_area_store (stack, addr, size, reg[rn]);
1796 }
1797 else if (IS_LDC (insn))
1798 {
1799 int rn = LDC_TARGET (insn);
1800 int cr = LDC_IMM (insn) + MEP_FIRST_CSR_REGNUM;
1801
1802 reg[rn] = reg[cr];
1803 }
1804 else if (IS_LW (insn))
1805 {
1806 int rn = LW_TARGET (insn);
1807 int rm = LW_BASE (insn);
1808 int offset = LW_OFFSET (insn);
1809 pv_t addr = pv_add_constant (reg[rm], offset);
1810
1811 reg[rn] = pv_area_fetch (stack, addr, 4);
1812 }
1ba3e7a3
KB
1813 else if (IS_BRA (insn) && BRA_DISP (insn) > 0)
1814 {
1815 /* When a loop appears as the first statement as a function
1816 body, gcc 4.x will use a BRA instruction to branch to the
1817 loop condition checking code. This BRA instruction is
1818 marked as part of the prologue. We therefore set next_pc
1819 to this branch target and also stop the prologue scan.
1820 The instructions at and beyond the branch target should
1821 no longer be associated with the prologue. */
1822 next_pc = pc + BRA_DISP (insn);
1823 after_last_frame_setup_insn = next_pc;
1824 break;
1825 }
aeb43123
KB
1826 else
1827 /* We've hit some instruction we don't know how to simulate.
1828 Strictly speaking, we should set every value we're
1829 tracking to "unknown". But we'll be optimistic, assume
1830 that we have enough information already, and stop
1831 analysis here. */
1832 break;
1833
1834 /* If this instruction changed the FP or decreased the SP (i.e.,
1835 allocated more stack space), then this may be a good place to
1836 declare the prologue finished. However, there are some
1837 exceptions:
1838
1839 - If the instruction just changed the FP back to its original
1840 value, then that's probably a restore instruction. The
1841 prologue should definitely end before that.
1842
1843 - If the instruction increased the value of the SP (that is,
1844 shrunk the frame), then it's probably part of a frame
1845 teardown sequence, and the prologue should end before that. */
1846
1847 if (! pv_is_identical (reg[MEP_FP_REGNUM], pre_insn_fp))
1848 {
1849 if (! pv_is_register_k (reg[MEP_FP_REGNUM], MEP_FP_REGNUM, 0))
1850 after_last_frame_setup_insn = next_pc;
1851 }
1852 else if (! pv_is_identical (reg[MEP_SP_REGNUM], pre_insn_sp))
1853 {
1854 /* The comparison of constants looks odd, there, because .k
1855 is unsigned. All it really means is that the new value
1856 is lower than it was before the instruction. */
1857 if (pv_is_register (pre_insn_sp, MEP_SP_REGNUM)
1858 && pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM)
1859 && ((pre_insn_sp.k - reg[MEP_SP_REGNUM].k)
1860 < (reg[MEP_SP_REGNUM].k - pre_insn_sp.k)))
1861 after_last_frame_setup_insn = next_pc;
1862 }
1863
1864 pc = next_pc;
1865 }
1866
1867 /* Is the frame size (offset, really) a known constant? */
1868 if (pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM))
1869 result->frame_size = reg[MEP_SP_REGNUM].k;
1870
1871 /* Was the frame pointer initialized? */
1872 if (pv_is_register (reg[MEP_FP_REGNUM], MEP_SP_REGNUM))
1873 {
1874 result->has_frame_ptr = 1;
1875 result->frame_ptr_offset = reg[MEP_FP_REGNUM].k;
1876 }
1877
1878 /* Record where all the registers were saved. */
1879 pv_area_scan (stack, check_for_saved, (void *) result);
1880
1881 result->prologue_end = after_last_frame_setup_insn;
1882
1883 do_cleanups (back_to);
1884}
1885
1886
1887static CORE_ADDR
1888mep_skip_prologue (CORE_ADDR pc)
1889{
1890 char *name;
1891 CORE_ADDR func_addr, func_end;
1892 struct mep_prologue p;
1893
1894 /* Try to find the extent of the function that contains PC. */
1895 if (! find_pc_partial_function (pc, &name, &func_addr, &func_end))
1896 return pc;
1897
1898 mep_analyze_prologue (pc, func_end, &p);
1899 return p.prologue_end;
1900}
1901
1902
1903\f
1904/* Breakpoints. */
1905
1906static const unsigned char *
1907mep_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
1908{
1909 static unsigned char breakpoint[] = { 0x70, 0x32 };
1910 *lenptr = sizeof (breakpoint);
1911 return breakpoint;
1912}
1913
1914
1915\f
1916/* Frames and frame unwinding. */
1917
1918
1919static struct mep_prologue *
1920mep_analyze_frame_prologue (struct frame_info *next_frame,
1921 void **this_prologue_cache)
1922{
1923 if (! *this_prologue_cache)
1924 {
1925 CORE_ADDR func_start, stop_addr;
1926
1927 *this_prologue_cache
1928 = FRAME_OBSTACK_ZALLOC (struct mep_prologue);
1929
1c86fa97 1930 func_start = frame_func_unwind (next_frame, NORMAL_FRAME);
aeb43123
KB
1931 stop_addr = frame_pc_unwind (next_frame);
1932
1933 /* If we couldn't find any function containing the PC, then
1934 just initialize the prologue cache, but don't do anything. */
1935 if (! func_start)
1936 stop_addr = func_start;
1937
1938 mep_analyze_prologue (func_start, stop_addr, *this_prologue_cache);
1939 }
1940
1941 return *this_prologue_cache;
1942}
1943
1944
1945/* Given the next frame and a prologue cache, return this frame's
1946 base. */
1947static CORE_ADDR
1948mep_frame_base (struct frame_info *next_frame,
1949 void **this_prologue_cache)
1950{
1951 struct mep_prologue *p
1952 = mep_analyze_frame_prologue (next_frame, this_prologue_cache);
1953
1954 /* In functions that use alloca, the distance between the stack
1955 pointer and the frame base varies dynamically, so we can't use
1956 the SP plus static information like prologue analysis to find the
1957 frame base. However, such functions must have a frame pointer,
1958 to be able to restore the SP on exit. So whenever we do have a
1959 frame pointer, use that to find the base. */
1960 if (p->has_frame_ptr)
1961 {
1962 CORE_ADDR fp
1963 = frame_unwind_register_unsigned (next_frame, MEP_FP_REGNUM);
1964 return fp - p->frame_ptr_offset;
1965 }
1966 else
1967 {
1968 CORE_ADDR sp
1969 = frame_unwind_register_unsigned (next_frame, MEP_SP_REGNUM);
1970 return sp - p->frame_size;
1971 }
1972}
1973
1974
1975static void
1976mep_frame_this_id (struct frame_info *next_frame,
1977 void **this_prologue_cache,
1978 struct frame_id *this_id)
1979{
1980 *this_id = frame_id_build (mep_frame_base (next_frame, this_prologue_cache),
1c86fa97 1981 frame_func_unwind (next_frame, NORMAL_FRAME));
aeb43123
KB
1982}
1983
1984
1985static void
1986mep_frame_prev_register (struct frame_info *next_frame,
1987 void **this_prologue_cache,
1988 int regnum, int *optimizedp,
1989 enum lval_type *lvalp, CORE_ADDR *addrp,
1990 int *realnump, gdb_byte *bufferp)
1991{
1992 struct mep_prologue *p
1993 = mep_analyze_frame_prologue (next_frame, this_prologue_cache);
1994
1995 /* There are a number of complications in unwinding registers on the
1996 MeP, having to do with core functions calling VLIW functions and
1997 vice versa.
1998
1999 The least significant bit of the link register, LP.LTOM, is the
2000 VLIW mode toggle bit: it's set if a core function called a VLIW
2001 function, or vice versa, and clear when the caller and callee
2002 were both in the same mode.
2003
2004 So, if we're asked to unwind the PC, then we really want to
2005 unwind the LP and clear the least significant bit. (Real return
2006 addresses are always even.) And if we want to unwind the program
2007 status word (PSW), we need to toggle PSW.OM if LP.LTOM is set.
2008
2009 Tweaking the register values we return in this way means that the
2010 bits in BUFFERP[] are not the same as the bits you'd find at
2011 ADDRP in the inferior, so we make sure lvalp is not_lval when we
2012 do this. */
2013 if (regnum == MEP_PC_REGNUM)
2014 {
2015 mep_frame_prev_register (next_frame, this_prologue_cache, MEP_LP_REGNUM,
2016 optimizedp, lvalp, addrp, realnump, bufferp);
2017 store_unsigned_integer (bufferp, MEP_LP_SIZE,
2018 (extract_unsigned_integer (bufferp, MEP_LP_SIZE)
2019 & ~1));
2020 *lvalp = not_lval;
2021 }
2022 else
2023 {
2024 CORE_ADDR frame_base = mep_frame_base (next_frame, this_prologue_cache);
2025 int reg_size = register_size (get_frame_arch (next_frame), regnum);
2026
2027 /* Our caller's SP is our frame base. */
2028 if (regnum == MEP_SP_REGNUM)
2029 {
2030 *optimizedp = 0;
2031 *lvalp = not_lval;
2032 *addrp = 0;
2033 *realnump = -1;
2034 if (bufferp)
2035 store_unsigned_integer (bufferp, reg_size, frame_base);
2036 }
2037
2038 /* If prologue analysis says we saved this register somewhere,
2039 return a description of the stack slot holding it. */
2040 else if (p->reg_offset[regnum] != 1)
2041 {
2042 *optimizedp = 0;
2043 *lvalp = lval_memory;
2044 *addrp = frame_base + p->reg_offset[regnum];
2045 *realnump = -1;
2046 if (bufferp)
2047 get_frame_memory (next_frame, *addrp, bufferp, reg_size);
2048 }
2049
2050 /* Otherwise, presume we haven't changed the value of this
2051 register, and get it from the next frame. */
2052 else
2053 frame_register_unwind (next_frame, regnum,
2054 optimizedp, lvalp, addrp, realnump, bufferp);
2055
2056 /* If we need to toggle the operating mode, do so. */
2057 if (regnum == MEP_PSW_REGNUM)
2058 {
2059 int lp_optimized;
2060 enum lval_type lp_lval;
2061 CORE_ADDR lp_addr;
2062 int lp_realnum;
2063 char lp_buffer[MEP_LP_SIZE];
2064
2065 /* Get the LP's value, too. */
2066 frame_register_unwind (next_frame, MEP_LP_REGNUM,
2067 &lp_optimized, &lp_lval, &lp_addr,
2068 &lp_realnum, lp_buffer);
2069
2070 /* If LP.LTOM is set, then toggle PSW.OM. */
2071 if (extract_unsigned_integer (lp_buffer, MEP_LP_SIZE) & 0x1)
2072 store_unsigned_integer
2073 (bufferp, MEP_PSW_SIZE,
2074 (extract_unsigned_integer (bufferp, MEP_PSW_SIZE) ^ 0x1000));
2075 *lvalp = not_lval;
2076 }
2077 }
2078}
2079
2080
2081static const struct frame_unwind mep_frame_unwind = {
2082 NORMAL_FRAME,
2083 mep_frame_this_id,
2084 mep_frame_prev_register
2085};
2086
2087
2088static const struct frame_unwind *
2089mep_frame_sniffer (struct frame_info *next_frame)
2090{
2091 return &mep_frame_unwind;
2092}
2093
2094
2095/* Our general unwinding function can handle unwinding the PC. */
2096static CORE_ADDR
2097mep_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2098{
2099 return frame_unwind_register_unsigned (next_frame, MEP_PC_REGNUM);
2100}
2101
2102
2103/* Our general unwinding function can handle unwinding the SP. */
2104static CORE_ADDR
2105mep_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2106{
2107 return frame_unwind_register_unsigned (next_frame, MEP_SP_REGNUM);
2108}
2109
2110
2111\f
2112/* Return values. */
2113
2114
2115static int
2116mep_use_struct_convention (struct type *type)
2117{
2118 return (TYPE_LENGTH (type) > MEP_GPR_SIZE);
2119}
2120
2121
2122static void
2123mep_extract_return_value (struct gdbarch *arch,
2124 struct type *type,
2125 struct regcache *regcache,
2126 gdb_byte *valbuf)
2127{
2128 int byte_order = gdbarch_byte_order (arch);
2129
2130 /* Values that don't occupy a full register appear at the less
2131 significant end of the value. This is the offset to where the
2132 value starts. */
2133 int offset;
2134
2135 /* Return values > MEP_GPR_SIZE bytes are returned in memory,
2136 pointed to by R0. */
2137 gdb_assert (TYPE_LENGTH (type) <= MEP_GPR_SIZE);
2138
2139 if (byte_order == BFD_ENDIAN_BIG)
2140 offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2141 else
2142 offset = 0;
2143
2144 /* Return values that do fit in a single register are returned in R0. */
2145 regcache_cooked_read_part (regcache, MEP_R0_REGNUM,
2146 offset, TYPE_LENGTH (type),
2147 valbuf);
2148}
2149
2150
2151static void
2152mep_store_return_value (struct gdbarch *arch,
2153 struct type *type,
2154 struct regcache *regcache,
2155 const gdb_byte *valbuf)
2156{
2157 int byte_order = gdbarch_byte_order (arch);
2158
2159 /* Values that fit in a single register go in R0. */
2160 if (TYPE_LENGTH (type) <= MEP_GPR_SIZE)
2161 {
2162 /* Values that don't occupy a full register appear at the least
2163 significant end of the value. This is the offset to where the
2164 value starts. */
2165 int offset;
2166
2167 if (byte_order == BFD_ENDIAN_BIG)
2168 offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2169 else
2170 offset = 0;
2171
2172 regcache_cooked_write_part (regcache, MEP_R0_REGNUM,
2173 offset, TYPE_LENGTH (type),
2174 valbuf);
2175 }
2176
2177 /* Return values larger than a single register are returned in
2178 memory, pointed to by R0. Unfortunately, we can't count on R0
2179 pointing to the return buffer, so we raise an error here. */
2180 else
2181 error ("GDB cannot set return values larger than four bytes; "
2182 "the Media Processor's\n"
2183 "calling conventions do not provide enough information "
2184 "to do this.\n"
2185 "Try using the 'return' command with no argument.");
2186}
2187
2188enum return_value_convention
2189mep_return_value (struct gdbarch *gdbarch, struct type *type,
2190 struct regcache *regcache, gdb_byte *readbuf,
2191 const gdb_byte *writebuf)
2192{
2193 if (mep_use_struct_convention (type))
2194 {
2195 if (readbuf)
2196 {
2197 ULONGEST addr;
2198 /* Although the address of the struct buffer gets passed in R1, it's
2199 returned in R0. Fetch R0's value and then read the memory
2200 at that address. */
2201 regcache_raw_read_unsigned (regcache, MEP_R0_REGNUM, &addr);
2202 read_memory (addr, readbuf, TYPE_LENGTH (type));
2203 }
2204 if (writebuf)
2205 {
2206 /* Return values larger than a single register are returned in
2207 memory, pointed to by R0. Unfortunately, we can't count on R0
2208 pointing to the return buffer, so we raise an error here. */
2209 error ("GDB cannot set return values larger than four bytes; "
2210 "the Media Processor's\n"
2211 "calling conventions do not provide enough information "
2212 "to do this.\n"
2213 "Try using the 'return' command with no argument.");
2214 }
2215 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2216 }
2217
2218 if (readbuf)
2219 mep_extract_return_value (gdbarch, type, regcache, readbuf);
2220 if (writebuf)
2221 mep_store_return_value (gdbarch, type, regcache, writebuf);
2222
2223 return RETURN_VALUE_REGISTER_CONVENTION;
2224}
2225
2226\f
2227/* Inferior calls. */
2228
2229
2230static CORE_ADDR
2231mep_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2232{
2233 /* Require word alignment. */
2234 return sp & -4;
2235}
2236
2237
2238/* From "lang_spec2.txt":
2239
2240 4.2 Calling conventions
2241
2242 4.2.1 Core register conventions
2243
2244 - Parameters should be evaluated from left to right, and they
2245 should be held in $1,$2,$3,$4 in order. The fifth parameter or
2246 after should be held in the stack. If the size is larger than 4
2247 bytes in the first four parameters, the pointer should be held in
2248 the registers instead. If the size is larger than 4 bytes in the
2249 fifth parameter or after, the pointer should be held in the stack.
2250
2251 - Return value of a function should be held in register $0. If the
2252 size of return value is larger than 4 bytes, $1 should hold the
2253 pointer pointing memory that would hold the return value. In this
2254 case, the first parameter should be held in $2, the second one in
2255 $3, and the third one in $4, and the forth parameter or after
2256 should be held in the stack.
2257
2258 [This doesn't say so, but arguments shorter than four bytes are
2259 passed in the least significant end of a four-byte word when
2260 they're passed on the stack.] */
2261
2262
2263/* Traverse the list of ARGC arguments ARGV; for every ARGV[i] too
2264 large to fit in a register, save it on the stack, and place its
2265 address in COPY[i]. SP is the initial stack pointer; return the
2266 new stack pointer. */
2267static CORE_ADDR
2268push_large_arguments (CORE_ADDR sp, int argc, struct value **argv,
2269 CORE_ADDR copy[])
2270{
2271 int i;
2272
2273 for (i = 0; i < argc; i++)
2274 {
2275 unsigned arg_len = TYPE_LENGTH (value_type (argv[i]));
2276
2277 if (arg_len > MEP_GPR_SIZE)
2278 {
2279 /* Reserve space for the copy, and then round the SP down, to
2280 make sure it's all aligned properly. */
2281 sp = (sp - arg_len) & -4;
2282 write_memory (sp, value_contents (argv[i]), arg_len);
2283 copy[i] = sp;
2284 }
2285 }
2286
2287 return sp;
2288}
2289
2290
2291static CORE_ADDR
2292mep_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2293 struct regcache *regcache, CORE_ADDR bp_addr,
2294 int argc, struct value **argv, CORE_ADDR sp,
2295 int struct_return,
2296 CORE_ADDR struct_addr)
2297{
2298 CORE_ADDR *copy = (CORE_ADDR *) alloca (argc * sizeof (copy[0]));
2299 CORE_ADDR func_addr = find_function_addr (function, NULL);
2300 int i;
2301
2302 /* The number of the next register available to hold an argument. */
2303 int arg_reg;
2304
2305 /* The address of the next stack slot available to hold an argument. */
2306 CORE_ADDR arg_stack;
2307
2308 /* The address of the end of the stack area for arguments. This is
2309 just for error checking. */
2310 CORE_ADDR arg_stack_end;
2311
2312 sp = push_large_arguments (sp, argc, argv, copy);
2313
2314 /* Reserve space for the stack arguments, if any. */
2315 arg_stack_end = sp;
2316 if (argc + (struct_addr ? 1 : 0) > 4)
2317 sp -= ((argc + (struct_addr ? 1 : 0)) - 4) * MEP_GPR_SIZE;
2318
2319 arg_reg = MEP_R1_REGNUM;
2320 arg_stack = sp;
2321
2322 /* If we're returning a structure by value, push the pointer to the
2323 buffer as the first argument. */
2324 if (struct_return)
2325 {
2326 regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
2327 arg_reg++;
2328 }
2329
2330 for (i = 0; i < argc; i++)
2331 {
2332 unsigned arg_size = TYPE_LENGTH (value_type (argv[i]));
2333 ULONGEST value;
2334
2335 /* Arguments that fit in a GPR get expanded to fill the GPR. */
2336 if (arg_size <= MEP_GPR_SIZE)
2337 value = extract_unsigned_integer (value_contents (argv[i]),
2338 TYPE_LENGTH (value_type (argv[i])));
2339
2340 /* Arguments too large to fit in a GPR get copied to the stack,
2341 and we pass a pointer to the copy. */
2342 else
2343 value = copy[i];
2344
2345 /* We use $1 -- $4 for passing arguments, then use the stack. */
2346 if (arg_reg <= MEP_R4_REGNUM)
2347 {
2348 regcache_cooked_write_unsigned (regcache, arg_reg, value);
2349 arg_reg++;
2350 }
2351 else
2352 {
2353 char buf[MEP_GPR_SIZE];
2354 store_unsigned_integer (buf, MEP_GPR_SIZE, value);
2355 write_memory (arg_stack, buf, MEP_GPR_SIZE);
2356 arg_stack += MEP_GPR_SIZE;
2357 }
2358 }
2359
2360 gdb_assert (arg_stack <= arg_stack_end);
2361
2362 /* Set the return address. */
2363 regcache_cooked_write_unsigned (regcache, MEP_LP_REGNUM, bp_addr);
2364
2365 /* Update the stack pointer. */
2366 regcache_cooked_write_unsigned (regcache, MEP_SP_REGNUM, sp);
2367
2368 return sp;
2369}
2370
2371
2372static struct frame_id
2373mep_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2374{
2375 return frame_id_build (mep_unwind_sp (gdbarch, next_frame),
2376 frame_pc_unwind (next_frame));
2377}
2378
2379
2380\f
2381/* Initialization. */
2382
2383
2384static struct gdbarch *
2385mep_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2386{
2387 struct gdbarch *gdbarch;
2388 struct gdbarch_tdep *tdep;
2389
2390 /* Which me_module are we building a gdbarch object for? */
2391 CONFIG_ATTR me_module;
2392
2393 /* If we have a BFD in hand, figure out which me_module it was built
2394 for. Otherwise, use the no-particular-me_module code. */
2395 if (info.abfd)
2396 {
2397 /* The way to get the me_module code depends on the object file
2398 format. At the moment, we only know how to handle ELF. */
2399 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
2400 me_module = elf_elfheader (info.abfd)->e_flags & EF_MEP_INDEX_MASK;
2401 else
2402 me_module = CONFIG_NONE;
2403 }
2404 else
2405 me_module = CONFIG_NONE;
2406
2407 /* If we're setting the architecture from a file, check the
2408 endianness of the file against that of the me_module. */
2409 if (info.abfd)
2410 {
2411 /* The negations on either side make the comparison treat all
2412 non-zero (true) values as equal. */
2413 if (! bfd_big_endian (info.abfd) != ! me_module_big_endian (me_module))
2414 {
2415 const char *module_name = me_module_name (me_module);
2416 const char *module_endianness
2417 = me_module_big_endian (me_module) ? "big" : "little";
2418 const char *file_name = bfd_get_filename (info.abfd);
2419 const char *file_endianness
2420 = bfd_big_endian (info.abfd) ? "big" : "little";
2421
2422 fputc_unfiltered ('\n', gdb_stderr);
2423 if (module_name)
2424 warning ("the MeP module '%s' is %s-endian, but the executable\n"
2425 "%s is %s-endian.",
2426 module_name, module_endianness,
2427 file_name, file_endianness);
2428 else
2429 warning ("the selected MeP module is %s-endian, but the "
2430 "executable\n"
2431 "%s is %s-endian.",
2432 module_endianness, file_name, file_endianness);
2433 }
2434 }
2435
2436 /* Find a candidate among the list of architectures we've created
2437 already. info->bfd_arch_info needs to match, but we also want
2438 the right me_module: the ELF header's e_flags field needs to
2439 match as well. */
2440 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2441 arches != NULL;
2442 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2443 if (gdbarch_tdep (arches->gdbarch)->me_module == me_module)
2444 return arches->gdbarch;
2445
2446 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
2447 gdbarch = gdbarch_alloc (&info, tdep);
2448
2449 /* Get a CGEN CPU descriptor for this architecture. */
2450 {
2451 const char *mach_name = info.bfd_arch_info->printable_name;
2452 enum cgen_endian endian = (info.byte_order == BFD_ENDIAN_BIG
2453 ? CGEN_ENDIAN_BIG
2454 : CGEN_ENDIAN_LITTLE);
2455
2456 tdep->cpu_desc = mep_cgen_cpu_open (CGEN_CPU_OPEN_BFDMACH, mach_name,
2457 CGEN_CPU_OPEN_ENDIAN, endian,
2458 CGEN_CPU_OPEN_END);
2459 }
2460
2461 tdep->me_module = me_module;
2462
2463 /* Register set. */
2464 set_gdbarch_read_pc (gdbarch, mep_read_pc);
2465 set_gdbarch_write_pc (gdbarch, mep_write_pc);
2466 set_gdbarch_num_regs (gdbarch, MEP_NUM_RAW_REGS);
2467 set_gdbarch_sp_regnum (gdbarch, MEP_SP_REGNUM);
2468 set_gdbarch_register_name (gdbarch, mep_register_name);
2469 set_gdbarch_register_type (gdbarch, mep_register_type);
2470 set_gdbarch_num_pseudo_regs (gdbarch, MEP_NUM_PSEUDO_REGS);
2471 set_gdbarch_pseudo_register_read (gdbarch, mep_pseudo_register_read);
2472 set_gdbarch_pseudo_register_write (gdbarch, mep_pseudo_register_write);
2473 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2474 set_gdbarch_stab_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2475
2476 set_gdbarch_register_reggroup_p (gdbarch, mep_register_reggroup_p);
2477 reggroup_add (gdbarch, all_reggroup);
2478 reggroup_add (gdbarch, general_reggroup);
2479 reggroup_add (gdbarch, save_reggroup);
2480 reggroup_add (gdbarch, restore_reggroup);
2481 reggroup_add (gdbarch, mep_csr_reggroup);
2482 reggroup_add (gdbarch, mep_cr_reggroup);
2483 reggroup_add (gdbarch, mep_ccr_reggroup);
2484
2485 /* Disassembly. */
2486 set_gdbarch_print_insn (gdbarch, mep_gdb_print_insn);
2487
2488 /* Breakpoints. */
2489 set_gdbarch_breakpoint_from_pc (gdbarch, mep_breakpoint_from_pc);
2490 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2491 set_gdbarch_skip_prologue (gdbarch, mep_skip_prologue);
2492
2493 /* Frames and frame unwinding. */
2494 frame_unwind_append_sniffer (gdbarch, mep_frame_sniffer);
2495 set_gdbarch_unwind_pc (gdbarch, mep_unwind_pc);
2496 set_gdbarch_unwind_sp (gdbarch, mep_unwind_sp);
2497 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2498 set_gdbarch_frame_args_skip (gdbarch, 0);
2499
2500 /* Return values. */
2501 set_gdbarch_return_value (gdbarch, mep_return_value);
2502
2503 /* Inferior function calls. */
2504 set_gdbarch_frame_align (gdbarch, mep_frame_align);
2505 set_gdbarch_push_dummy_call (gdbarch, mep_push_dummy_call);
2506 set_gdbarch_unwind_dummy_id (gdbarch, mep_unwind_dummy_id);
2507
2508 return gdbarch;
2509}
2510
2511
2512void
2513_initialize_mep_tdep (void)
2514{
2515 mep_csr_reggroup = reggroup_new ("csr", USER_REGGROUP);
2516 mep_cr_reggroup = reggroup_new ("cr", USER_REGGROUP);
2517 mep_ccr_reggroup = reggroup_new ("ccr", USER_REGGROUP);
2518
2519 register_gdbarch_init (bfd_arch_mep, mep_gdbarch_init);
2520
2521 mep_init_pseudoregister_maps ();
2522}