]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/mips-linux-tdep.c
MIPS: Replace regset_alloc() invocations by static regset structures.
[thirdparty/binutils-gdb.git] / gdb / mips-linux-tdep.c
CommitLineData
75c9abc6 1/* Target-dependent code for GNU/Linux on MIPS processors.
a094c6fb 2
ecd75fc8 3 Copyright (C) 2001-2014 Free Software Foundation, Inc.
2aa830e4
DJ
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
2aa830e4
DJ
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
2aa830e4
DJ
19
20#include "defs.h"
21#include "gdbcore.h"
22#include "target.h"
23#include "solib-svr4.h"
19ed69dd 24#include "osabi.h"
96f026fc 25#include "mips-tdep.h"
0e9f083f 26#include <string.h>
96f026fc 27#include "gdb_assert.h"
6de918a6 28#include "frame.h"
2fdf551c 29#include "regcache.h"
5792a79b
DJ
30#include "trad-frame.h"
31#include "tramp-frame.h"
e6bb342a 32#include "gdbtypes.h"
3e5d3a5a 33#include "objfiles.h"
5ea03926 34#include "solib.h"
7d522c90 35#include "solist.h"
982e9687 36#include "symtab.h"
822b6570 37#include "target-descriptions.h"
50e8a0d5 38#include "regset.h"
d37eb719 39#include "mips-linux-tdep.h"
db5f024e 40#include "glibc-tdep.h"
a5ee0f0c 41#include "linux-tdep.h"
385203ed 42#include "xml-syscall.h"
232b8704 43#include "gdb_signals.h"
2aa830e4 44
7d522c90
DJ
45static struct target_so_ops mips_svr4_so_ops;
46
eb14d406
SDJ
47/* This enum represents the signals' numbers on the MIPS
48 architecture. It just contains the signal definitions which are
49 different from the generic implementation.
50
51 It is derived from the file <arch/mips/include/uapi/asm/signal.h>,
52 from the Linux kernel tree. */
53
54enum
55 {
56 MIPS_LINUX_SIGEMT = 7,
57 MIPS_LINUX_SIGBUS = 10,
58 MIPS_LINUX_SIGSYS = 12,
59 MIPS_LINUX_SIGUSR1 = 16,
60 MIPS_LINUX_SIGUSR2 = 17,
61 MIPS_LINUX_SIGCHLD = 18,
62 MIPS_LINUX_SIGCLD = MIPS_LINUX_SIGCHLD,
63 MIPS_LINUX_SIGPWR = 19,
64 MIPS_LINUX_SIGWINCH = 20,
65 MIPS_LINUX_SIGURG = 21,
66 MIPS_LINUX_SIGIO = 22,
67 MIPS_LINUX_SIGPOLL = MIPS_LINUX_SIGIO,
68 MIPS_LINUX_SIGSTOP = 23,
69 MIPS_LINUX_SIGTSTP = 24,
70 MIPS_LINUX_SIGCONT = 25,
71 MIPS_LINUX_SIGTTIN = 26,
72 MIPS_LINUX_SIGTTOU = 27,
73 MIPS_LINUX_SIGVTALRM = 28,
74 MIPS_LINUX_SIGPROF = 29,
75 MIPS_LINUX_SIGXCPU = 30,
76 MIPS_LINUX_SIGXFSZ = 31,
77
78 MIPS_LINUX_SIGRTMIN = 32,
79 MIPS_LINUX_SIGRT64 = 64,
80 MIPS_LINUX_SIGRTMAX = 127,
81 };
82
2aa830e4 83/* Figure out where the longjmp will land.
295093a4
MS
84 We expect the first arg to be a pointer to the jmp_buf structure
85 from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
86 at. The pc is copied into PC. This routine returns 1 on
87 success. */
2aa830e4 88
19ed69dd
KB
89#define MIPS_LINUX_JB_ELEMENT_SIZE 4
90#define MIPS_LINUX_JB_PC 0
91
92static int
60ade65d 93mips_linux_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2aa830e4
DJ
94{
95 CORE_ADDR jb_addr;
2eb4d78b 96 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 97 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e362b510 98 gdb_byte buf[gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT];
2aa830e4 99
60ade65d 100 jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM);
2aa830e4 101
7d266584
MR
102 if (target_read_memory ((jb_addr
103 + MIPS_LINUX_JB_PC * MIPS_LINUX_JB_ELEMENT_SIZE),
2eb4d78b 104 buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
2aa830e4
DJ
105 return 0;
106
819844ad 107 *pc = extract_unsigned_integer (buf,
e17a4113
UW
108 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT,
109 byte_order);
2aa830e4
DJ
110
111 return 1;
112}
113
4246e332 114/* Transform the bits comprising a 32-bit register to the right size
23a6d369
AC
115 for regcache_raw_supply(). This is needed when mips_isa_regsize()
116 is 8. */
96f026fc
KB
117
118static void
28f5035f 119supply_32bit_reg (struct regcache *regcache, int regnum, const void *addr)
96f026fc 120{
e17a4113
UW
121 struct gdbarch *gdbarch = get_regcache_arch (regcache);
122 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d37eb719 123 gdb_byte buf[MAX_REGISTER_SIZE];
e17a4113 124 store_signed_integer (buf, register_size (gdbarch, regnum), byte_order,
7d266584 125 extract_signed_integer (addr, 4, byte_order));
28f5035f 126 regcache_raw_supply (regcache, regnum, buf);
96f026fc
KB
127}
128
2aa830e4
DJ
129/* Unpack an elf_gregset_t into GDB's register cache. */
130
d37eb719 131void
28f5035f
UW
132mips_supply_gregset (struct regcache *regcache,
133 const mips_elf_gregset_t *gregsetp)
2aa830e4
DJ
134{
135 int regi;
28f5035f 136 const mips_elf_greg_t *regp = *gregsetp;
d9d9c31f 137 char zerobuf[MAX_REGISTER_SIZE];
2eb4d78b 138 struct gdbarch *gdbarch = get_regcache_arch (regcache);
bf072999 139
d9d9c31f 140 memset (zerobuf, 0, MAX_REGISTER_SIZE);
2aa830e4 141
822b6570 142 for (regi = EF_REG0 + 1; regi <= EF_REG31; regi++)
28f5035f 143 supply_32bit_reg (regcache, regi - EF_REG0, regp + regi);
2aa830e4 144
2eb4d78b 145 if (mips_linux_restart_reg_p (gdbarch))
822b6570
DJ
146 supply_32bit_reg (regcache, MIPS_RESTART_REGNUM, regp + EF_REG0);
147
2eb4d78b
UW
148 supply_32bit_reg (regcache, mips_regnum (gdbarch)->lo, regp + EF_LO);
149 supply_32bit_reg (regcache, mips_regnum (gdbarch)->hi, regp + EF_HI);
56cea623 150
2eb4d78b 151 supply_32bit_reg (regcache, mips_regnum (gdbarch)->pc,
28f5035f 152 regp + EF_CP0_EPC);
2eb4d78b 153 supply_32bit_reg (regcache, mips_regnum (gdbarch)->badvaddr,
28f5035f
UW
154 regp + EF_CP0_BADVADDR);
155 supply_32bit_reg (regcache, MIPS_PS_REGNUM, regp + EF_CP0_STATUS);
2eb4d78b 156 supply_32bit_reg (regcache, mips_regnum (gdbarch)->cause,
28f5035f 157 regp + EF_CP0_CAUSE);
2aa830e4 158
1faeff08 159 /* Fill the inaccessible zero register with zero. */
822b6570 160 regcache_raw_supply (regcache, MIPS_ZERO_REGNUM, zerobuf);
2aa830e4
DJ
161}
162
50e8a0d5
HZ
163static void
164mips_supply_gregset_wrapper (const struct regset *regset,
7d266584
MR
165 struct regcache *regcache,
166 int regnum, const void *gregs, size_t len)
50e8a0d5
HZ
167{
168 gdb_assert (len == sizeof (mips_elf_gregset_t));
169
170 mips_supply_gregset (regcache, (const mips_elf_gregset_t *)gregs);
171}
172
2aa830e4
DJ
173/* Pack our registers (or one register) into an elf_gregset_t. */
174
d37eb719 175void
28f5035f
UW
176mips_fill_gregset (const struct regcache *regcache,
177 mips_elf_gregset_t *gregsetp, int regno)
2aa830e4 178{
2eb4d78b 179 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2aa830e4 180 int regaddr, regi;
d37eb719 181 mips_elf_greg_t *regp = *gregsetp;
96f026fc 182 void *dst;
2aa830e4
DJ
183
184 if (regno == -1)
185 {
d37eb719 186 memset (regp, 0, sizeof (mips_elf_gregset_t));
822b6570 187 for (regi = 1; regi < 32; regi++)
28f5035f 188 mips_fill_gregset (regcache, gregsetp, regi);
2eb4d78b
UW
189 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->lo);
190 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->hi);
191 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->pc);
192 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->badvaddr);
28f5035f 193 mips_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
2eb4d78b 194 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->cause);
822b6570 195 mips_fill_gregset (regcache, gregsetp, MIPS_RESTART_REGNUM);
2aa830e4
DJ
196 return;
197 }
198
822b6570 199 if (regno > 0 && regno < 32)
2aa830e4 200 {
2aa830e4 201 dst = regp + regno + EF_REG0;
28f5035f 202 regcache_raw_collect (regcache, regno, dst);
2aa830e4
DJ
203 return;
204 }
205
2eb4d78b
UW
206 if (regno == mips_regnum (gdbarch)->lo)
207 regaddr = EF_LO;
208 else if (regno == mips_regnum (gdbarch)->hi)
56cea623 209 regaddr = EF_HI;
2eb4d78b 210 else if (regno == mips_regnum (gdbarch)->pc)
56cea623 211 regaddr = EF_CP0_EPC;
2eb4d78b 212 else if (regno == mips_regnum (gdbarch)->badvaddr)
56cea623 213 regaddr = EF_CP0_BADVADDR;
24e05951 214 else if (regno == MIPS_PS_REGNUM)
56cea623 215 regaddr = EF_CP0_STATUS;
2eb4d78b 216 else if (regno == mips_regnum (gdbarch)->cause)
56cea623 217 regaddr = EF_CP0_CAUSE;
2eb4d78b 218 else if (mips_linux_restart_reg_p (gdbarch)
822b6570
DJ
219 && regno == MIPS_RESTART_REGNUM)
220 regaddr = EF_REG0;
56cea623
AC
221 else
222 regaddr = -1;
2aa830e4
DJ
223
224 if (regaddr != -1)
225 {
2aa830e4 226 dst = regp + regaddr;
28f5035f 227 regcache_raw_collect (regcache, regno, dst);
2aa830e4
DJ
228 }
229}
230
50e8a0d5
HZ
231static void
232mips_fill_gregset_wrapper (const struct regset *regset,
233 const struct regcache *regcache,
234 int regnum, void *gregs, size_t len)
235{
236 gdb_assert (len == sizeof (mips_elf_gregset_t));
237
238 mips_fill_gregset (regcache, (mips_elf_gregset_t *)gregs, regnum);
239}
240
2aa830e4
DJ
241/* Likewise, unpack an elf_fpregset_t. */
242
d37eb719 243void
28f5035f
UW
244mips_supply_fpregset (struct regcache *regcache,
245 const mips_elf_fpregset_t *fpregsetp)
2aa830e4 246{
2eb4d78b 247 struct gdbarch *gdbarch = get_regcache_arch (regcache);
52f0bd74 248 int regi;
d9d9c31f 249 char zerobuf[MAX_REGISTER_SIZE];
bf072999 250
d9d9c31f 251 memset (zerobuf, 0, MAX_REGISTER_SIZE);
2aa830e4
DJ
252
253 for (regi = 0; regi < 32; regi++)
3e8c568d 254 regcache_raw_supply (regcache,
2eb4d78b 255 gdbarch_fp0_regnum (gdbarch) + regi,
3e8c568d 256 *fpregsetp + regi);
2aa830e4 257
28f5035f 258 regcache_raw_supply (regcache,
2eb4d78b 259 mips_regnum (gdbarch)->fp_control_status,
28f5035f 260 *fpregsetp + 32);
2aa830e4 261
295093a4 262 /* FIXME: how can we supply FCRIR? The ABI doesn't tell us. */
28f5035f 263 regcache_raw_supply (regcache,
2eb4d78b 264 mips_regnum (gdbarch)->fp_implementation_revision,
23a6d369 265 zerobuf);
2aa830e4
DJ
266}
267
50e8a0d5
HZ
268static void
269mips_supply_fpregset_wrapper (const struct regset *regset,
7d266584
MR
270 struct regcache *regcache,
271 int regnum, const void *gregs, size_t len)
50e8a0d5
HZ
272{
273 gdb_assert (len == sizeof (mips_elf_fpregset_t));
274
275 mips_supply_fpregset (regcache, (const mips_elf_fpregset_t *)gregs);
276}
277
2aa830e4
DJ
278/* Likewise, pack one or all floating point registers into an
279 elf_fpregset_t. */
280
d37eb719 281void
28f5035f
UW
282mips_fill_fpregset (const struct regcache *regcache,
283 mips_elf_fpregset_t *fpregsetp, int regno)
2aa830e4 284{
2eb4d78b 285 struct gdbarch *gdbarch = get_regcache_arch (regcache);
22e048c9 286 char *to;
2aa830e4 287
2eb4d78b
UW
288 if ((regno >= gdbarch_fp0_regnum (gdbarch))
289 && (regno < gdbarch_fp0_regnum (gdbarch) + 32))
2aa830e4 290 {
2eb4d78b 291 to = (char *) (*fpregsetp + regno - gdbarch_fp0_regnum (gdbarch));
28f5035f 292 regcache_raw_collect (regcache, regno, to);
2aa830e4 293 }
2eb4d78b 294 else if (regno == mips_regnum (gdbarch)->fp_control_status)
2aa830e4 295 {
2aa830e4 296 to = (char *) (*fpregsetp + 32);
28f5035f 297 regcache_raw_collect (regcache, regno, to);
2aa830e4
DJ
298 }
299 else if (regno == -1)
300 {
301 int regi;
302
303 for (regi = 0; regi < 32; regi++)
3e8c568d 304 mips_fill_fpregset (regcache, fpregsetp,
2eb4d78b 305 gdbarch_fp0_regnum (gdbarch) + regi);
28f5035f 306 mips_fill_fpregset (regcache, fpregsetp,
2eb4d78b 307 mips_regnum (gdbarch)->fp_control_status);
2aa830e4
DJ
308 }
309}
310
50e8a0d5
HZ
311static void
312mips_fill_fpregset_wrapper (const struct regset *regset,
313 const struct regcache *regcache,
314 int regnum, void *gregs, size_t len)
315{
316 gdb_assert (len == sizeof (mips_elf_fpregset_t));
317
318 mips_fill_fpregset (regcache, (mips_elf_fpregset_t *)gregs, regnum);
319}
320
96f026fc
KB
321/* Support for 64-bit ABIs. */
322
96f026fc 323/* Figure out where the longjmp will land.
295093a4
MS
324 We expect the first arg to be a pointer to the jmp_buf structure
325 from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
326 at. The pc is copied into PC. This routine returns 1 on
327 success. */
96f026fc
KB
328
329/* Details about jmp_buf. */
330
331#define MIPS64_LINUX_JB_PC 0
332
333static int
60ade65d 334mips64_linux_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
96f026fc
KB
335{
336 CORE_ADDR jb_addr;
2eb4d78b 337 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 338 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2eb4d78b
UW
339 void *buf = alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
340 int element_size = gdbarch_ptr_bit (gdbarch) == 32 ? 4 : 8;
96f026fc 341
60ade65d 342 jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM);
96f026fc
KB
343
344 if (target_read_memory (jb_addr + MIPS64_LINUX_JB_PC * element_size,
819844ad 345 buf,
2eb4d78b 346 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
96f026fc
KB
347 return 0;
348
819844ad 349 *pc = extract_unsigned_integer (buf,
e17a4113
UW
350 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT,
351 byte_order);
96f026fc
KB
352
353 return 1;
354}
355
d37eb719
DJ
356/* Register set support functions. These operate on standard 64-bit
357 regsets, but work whether the target is 32-bit or 64-bit. A 32-bit
358 target will still use the 64-bit format for PTRACE_GETREGS. */
359
360/* Supply a 64-bit register. */
96f026fc 361
63807e1d 362static void
28f5035f
UW
363supply_64bit_reg (struct regcache *regcache, int regnum,
364 const gdb_byte *buf)
d37eb719 365{
2eb4d78b
UW
366 struct gdbarch *gdbarch = get_regcache_arch (regcache);
367 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
368 && register_size (gdbarch, regnum) == 4)
28f5035f 369 regcache_raw_supply (regcache, regnum, buf + 4);
d37eb719 370 else
28f5035f 371 regcache_raw_supply (regcache, regnum, buf);
d37eb719
DJ
372}
373
374/* Unpack a 64-bit elf_gregset_t into GDB's register cache. */
375
376void
28f5035f
UW
377mips64_supply_gregset (struct regcache *regcache,
378 const mips64_elf_gregset_t *gregsetp)
96f026fc
KB
379{
380 int regi;
28f5035f 381 const mips64_elf_greg_t *regp = *gregsetp;
d37eb719 382 gdb_byte zerobuf[MAX_REGISTER_SIZE];
2eb4d78b 383 struct gdbarch *gdbarch = get_regcache_arch (regcache);
96f026fc 384
d9d9c31f 385 memset (zerobuf, 0, MAX_REGISTER_SIZE);
96f026fc 386
822b6570 387 for (regi = MIPS64_EF_REG0 + 1; regi <= MIPS64_EF_REG31; regi++)
28f5035f 388 supply_64bit_reg (regcache, regi - MIPS64_EF_REG0,
7d266584 389 (const gdb_byte *) (regp + regi));
28f5035f 390
2eb4d78b 391 if (mips_linux_restart_reg_p (gdbarch))
822b6570 392 supply_64bit_reg (regcache, MIPS_RESTART_REGNUM,
7d266584 393 (const gdb_byte *) (regp + MIPS64_EF_REG0));
822b6570 394
2eb4d78b 395 supply_64bit_reg (regcache, mips_regnum (gdbarch)->lo,
28f5035f 396 (const gdb_byte *) (regp + MIPS64_EF_LO));
2eb4d78b 397 supply_64bit_reg (regcache, mips_regnum (gdbarch)->hi,
28f5035f
UW
398 (const gdb_byte *) (regp + MIPS64_EF_HI));
399
2eb4d78b 400 supply_64bit_reg (regcache, mips_regnum (gdbarch)->pc,
28f5035f 401 (const gdb_byte *) (regp + MIPS64_EF_CP0_EPC));
2eb4d78b 402 supply_64bit_reg (regcache, mips_regnum (gdbarch)->badvaddr,
28f5035f
UW
403 (const gdb_byte *) (regp + MIPS64_EF_CP0_BADVADDR));
404 supply_64bit_reg (regcache, MIPS_PS_REGNUM,
405 (const gdb_byte *) (regp + MIPS64_EF_CP0_STATUS));
2eb4d78b 406 supply_64bit_reg (regcache, mips_regnum (gdbarch)->cause,
28f5035f 407 (const gdb_byte *) (regp + MIPS64_EF_CP0_CAUSE));
96f026fc 408
1faeff08 409 /* Fill the inaccessible zero register with zero. */
822b6570 410 regcache_raw_supply (regcache, MIPS_ZERO_REGNUM, zerobuf);
96f026fc
KB
411}
412
50e8a0d5
HZ
413static void
414mips64_supply_gregset_wrapper (const struct regset *regset,
7d266584
MR
415 struct regcache *regcache,
416 int regnum, const void *gregs, size_t len)
50e8a0d5
HZ
417{
418 gdb_assert (len == sizeof (mips64_elf_gregset_t));
419
420 mips64_supply_gregset (regcache, (const mips64_elf_gregset_t *)gregs);
421}
422
d37eb719 423/* Pack our registers (or one register) into a 64-bit elf_gregset_t. */
96f026fc 424
d37eb719 425void
28f5035f
UW
426mips64_fill_gregset (const struct regcache *regcache,
427 mips64_elf_gregset_t *gregsetp, int regno)
96f026fc 428{
2eb4d78b 429 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e17a4113 430 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
96f026fc
KB
431 int regaddr, regi;
432 mips64_elf_greg_t *regp = *gregsetp;
2ba93934 433 void *dst;
96f026fc
KB
434
435 if (regno == -1)
436 {
437 memset (regp, 0, sizeof (mips64_elf_gregset_t));
822b6570 438 for (regi = 1; regi < 32; regi++)
7d266584 439 mips64_fill_gregset (regcache, gregsetp, regi);
2eb4d78b
UW
440 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->lo);
441 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->hi);
442 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->pc);
025bb325
MS
443 mips64_fill_gregset (regcache, gregsetp,
444 mips_regnum (gdbarch)->badvaddr);
28f5035f 445 mips64_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
2eb4d78b 446 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->cause);
822b6570 447 mips64_fill_gregset (regcache, gregsetp, MIPS_RESTART_REGNUM);
96f026fc
KB
448 return;
449 }
450
822b6570 451 if (regno > 0 && regno < 32)
d37eb719 452 regaddr = regno + MIPS64_EF_REG0;
2eb4d78b 453 else if (regno == mips_regnum (gdbarch)->lo)
56cea623 454 regaddr = MIPS64_EF_LO;
2eb4d78b 455 else if (regno == mips_regnum (gdbarch)->hi)
56cea623 456 regaddr = MIPS64_EF_HI;
2eb4d78b 457 else if (regno == mips_regnum (gdbarch)->pc)
56cea623 458 regaddr = MIPS64_EF_CP0_EPC;
2eb4d78b 459 else if (regno == mips_regnum (gdbarch)->badvaddr)
56cea623 460 regaddr = MIPS64_EF_CP0_BADVADDR;
24e05951 461 else if (regno == MIPS_PS_REGNUM)
56cea623 462 regaddr = MIPS64_EF_CP0_STATUS;
2eb4d78b 463 else if (regno == mips_regnum (gdbarch)->cause)
56cea623 464 regaddr = MIPS64_EF_CP0_CAUSE;
2eb4d78b 465 else if (mips_linux_restart_reg_p (gdbarch)
822b6570
DJ
466 && regno == MIPS_RESTART_REGNUM)
467 regaddr = MIPS64_EF_REG0;
56cea623
AC
468 else
469 regaddr = -1;
96f026fc
KB
470
471 if (regaddr != -1)
472 {
d37eb719
DJ
473 gdb_byte buf[MAX_REGISTER_SIZE];
474 LONGEST val;
475
28f5035f 476 regcache_raw_collect (regcache, regno, buf);
e17a4113
UW
477 val = extract_signed_integer (buf, register_size (gdbarch, regno),
478 byte_order);
96f026fc 479 dst = regp + regaddr;
e17a4113 480 store_signed_integer (dst, 8, byte_order, val);
96f026fc
KB
481 }
482}
483
50e8a0d5
HZ
484static void
485mips64_fill_gregset_wrapper (const struct regset *regset,
486 const struct regcache *regcache,
487 int regnum, void *gregs, size_t len)
488{
489 gdb_assert (len == sizeof (mips64_elf_gregset_t));
490
491 mips64_fill_gregset (regcache, (mips64_elf_gregset_t *)gregs, regnum);
492}
493
96f026fc
KB
494/* Likewise, unpack an elf_fpregset_t. */
495
d37eb719 496void
28f5035f
UW
497mips64_supply_fpregset (struct regcache *regcache,
498 const mips64_elf_fpregset_t *fpregsetp)
96f026fc 499{
2eb4d78b 500 struct gdbarch *gdbarch = get_regcache_arch (regcache);
52f0bd74 501 int regi;
96f026fc 502
d37eb719
DJ
503 /* See mips_linux_o32_sigframe_init for a description of the
504 peculiar FP register layout. */
2eb4d78b 505 if (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)) == 4)
d37eb719
DJ
506 for (regi = 0; regi < 32; regi++)
507 {
7d266584
MR
508 const gdb_byte *reg_ptr
509 = (const gdb_byte *) (*fpregsetp + (regi & ~1));
2eb4d78b 510 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (regi & 1))
d37eb719 511 reg_ptr += 4;
3e8c568d 512 regcache_raw_supply (regcache,
2eb4d78b 513 gdbarch_fp0_regnum (gdbarch) + regi,
3e8c568d 514 reg_ptr);
d37eb719
DJ
515 }
516 else
517 for (regi = 0; regi < 32; regi++)
3e8c568d 518 regcache_raw_supply (regcache,
2eb4d78b 519 gdbarch_fp0_regnum (gdbarch) + regi,
7d266584 520 (const char *) (*fpregsetp + regi));
d37eb719 521
2eb4d78b 522 supply_32bit_reg (regcache, mips_regnum (gdbarch)->fp_control_status,
7d266584 523 (const gdb_byte *) (*fpregsetp + 32));
d37eb719
DJ
524
525 /* The ABI doesn't tell us how to supply FCRIR, and core dumps don't
526 include it - but the result of PTRACE_GETFPREGS does. The best we
527 can do is to assume that its value is present. */
28f5035f 528 supply_32bit_reg (regcache,
2eb4d78b 529 mips_regnum (gdbarch)->fp_implementation_revision,
7d266584 530 (const gdb_byte *) (*fpregsetp + 32) + 4);
96f026fc
KB
531}
532
50e8a0d5
HZ
533static void
534mips64_supply_fpregset_wrapper (const struct regset *regset,
7d266584
MR
535 struct regcache *regcache,
536 int regnum, const void *gregs, size_t len)
50e8a0d5
HZ
537{
538 gdb_assert (len == sizeof (mips64_elf_fpregset_t));
539
540 mips64_supply_fpregset (regcache, (const mips64_elf_fpregset_t *)gregs);
541}
542
96f026fc
KB
543/* Likewise, pack one or all floating point registers into an
544 elf_fpregset_t. */
545
d37eb719 546void
28f5035f
UW
547mips64_fill_fpregset (const struct regcache *regcache,
548 mips64_elf_fpregset_t *fpregsetp, int regno)
96f026fc 549{
2eb4d78b 550 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e17a4113 551 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d37eb719 552 gdb_byte *to;
96f026fc 553
2eb4d78b
UW
554 if ((regno >= gdbarch_fp0_regnum (gdbarch))
555 && (regno < gdbarch_fp0_regnum (gdbarch) + 32))
96f026fc 556 {
d37eb719
DJ
557 /* See mips_linux_o32_sigframe_init for a description of the
558 peculiar FP register layout. */
2eb4d78b 559 if (register_size (gdbarch, regno) == 4)
d37eb719 560 {
2eb4d78b 561 int regi = regno - gdbarch_fp0_regnum (gdbarch);
d37eb719
DJ
562
563 to = (gdb_byte *) (*fpregsetp + (regi & ~1));
2eb4d78b 564 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (regi & 1))
d37eb719 565 to += 4;
28f5035f 566 regcache_raw_collect (regcache, regno, to);
d37eb719
DJ
567 }
568 else
569 {
025bb325
MS
570 to = (gdb_byte *) (*fpregsetp + regno
571 - gdbarch_fp0_regnum (gdbarch));
28f5035f 572 regcache_raw_collect (regcache, regno, to);
d37eb719 573 }
96f026fc 574 }
2eb4d78b 575 else if (regno == mips_regnum (gdbarch)->fp_control_status)
96f026fc 576 {
d37eb719
DJ
577 gdb_byte buf[MAX_REGISTER_SIZE];
578 LONGEST val;
579
28f5035f 580 regcache_raw_collect (regcache, regno, buf);
e17a4113
UW
581 val = extract_signed_integer (buf, register_size (gdbarch, regno),
582 byte_order);
d37eb719 583 to = (gdb_byte *) (*fpregsetp + 32);
e17a4113 584 store_signed_integer (to, 4, byte_order, val);
d37eb719 585 }
2eb4d78b 586 else if (regno == mips_regnum (gdbarch)->fp_implementation_revision)
d37eb719
DJ
587 {
588 gdb_byte buf[MAX_REGISTER_SIZE];
589 LONGEST val;
590
28f5035f 591 regcache_raw_collect (regcache, regno, buf);
e17a4113
UW
592 val = extract_signed_integer (buf, register_size (gdbarch, regno),
593 byte_order);
d37eb719 594 to = (gdb_byte *) (*fpregsetp + 32) + 4;
e17a4113 595 store_signed_integer (to, 4, byte_order, val);
96f026fc
KB
596 }
597 else if (regno == -1)
598 {
599 int regi;
600
601 for (regi = 0; regi < 32; regi++)
3e8c568d 602 mips64_fill_fpregset (regcache, fpregsetp,
2eb4d78b 603 gdbarch_fp0_regnum (gdbarch) + regi);
28f5035f 604 mips64_fill_fpregset (regcache, fpregsetp,
2eb4d78b 605 mips_regnum (gdbarch)->fp_control_status);
28f5035f 606 mips64_fill_fpregset (regcache, fpregsetp,
7d266584 607 mips_regnum (gdbarch)->fp_implementation_revision);
96f026fc
KB
608 }
609}
610
50e8a0d5
HZ
611static void
612mips64_fill_fpregset_wrapper (const struct regset *regset,
613 const struct regcache *regcache,
614 int regnum, void *gregs, size_t len)
615{
616 gdb_assert (len == sizeof (mips64_elf_fpregset_t));
96f026fc 617
50e8a0d5
HZ
618 mips64_fill_fpregset (regcache, (mips64_elf_fpregset_t *)gregs, regnum);
619}
2aa830e4 620
b7195f27
AA
621static const struct regset mips_linux_gregset =
622 {
623 NULL, mips_supply_gregset_wrapper, mips_fill_gregset_wrapper
624 };
625
626static const struct regset mips64_linux_gregset =
627 {
628 NULL, mips64_supply_gregset_wrapper, mips64_fill_gregset_wrapper
629 };
630
631static const struct regset mips_linux_fpregset =
632 {
633 NULL, mips_supply_fpregset_wrapper, mips_fill_fpregset_wrapper
634 };
635
636static const struct regset mips64_linux_fpregset =
637 {
638 NULL, mips64_supply_fpregset_wrapper, mips64_fill_fpregset_wrapper
639 };
640
693be288 641static const struct regset *
50e8a0d5 642mips_linux_regset_from_core_section (struct gdbarch *gdbarch,
7d266584 643 const char *sect_name, size_t sect_size)
2aa830e4 644{
d37eb719
DJ
645 mips_elf_gregset_t gregset;
646 mips_elf_fpregset_t fpregset;
96f026fc
KB
647 mips64_elf_gregset_t gregset64;
648 mips64_elf_fpregset_t fpregset64;
2aa830e4 649
50e8a0d5 650 if (strcmp (sect_name, ".reg") == 0)
2aa830e4 651 {
50e8a0d5 652 if (sect_size == sizeof (gregset))
b7195f27 653 return &mips_linux_gregset;
50e8a0d5 654 else if (sect_size == sizeof (gregset64))
b7195f27 655 return &mips64_linux_gregset;
2aa830e4
DJ
656 else
657 {
8a3fe4f8 658 warning (_("wrong size gregset struct in core file"));
2aa830e4
DJ
659 }
660 }
50e8a0d5 661 else if (strcmp (sect_name, ".reg2") == 0)
2aa830e4 662 {
50e8a0d5 663 if (sect_size == sizeof (fpregset))
b7195f27 664 return &mips_linux_fpregset;
50e8a0d5 665 else if (sect_size == sizeof (fpregset64))
b7195f27 666 return &mips64_linux_fpregset;
2aa830e4
DJ
667 else
668 {
8a3fe4f8 669 warning (_("wrong size fpregset struct in core file"));
2aa830e4
DJ
670 }
671 }
2aa830e4 672
50e8a0d5
HZ
673 return NULL;
674}
2aa830e4 675
4eb0ad19
DJ
676static const struct target_desc *
677mips_linux_core_read_description (struct gdbarch *gdbarch,
678 struct target_ops *target,
679 bfd *abfd)
680{
681 asection *section = bfd_get_section_by_name (abfd, ".reg");
682 if (! section)
683 return NULL;
684
685 switch (bfd_section_size (abfd, section))
686 {
687 case sizeof (mips_elf_gregset_t):
688 return mips_tdesc_gp32;
689
690 case sizeof (mips64_elf_gregset_t):
691 return mips_tdesc_gp64;
692
693 default:
694 return NULL;
695 }
696}
697
96f026fc 698
295093a4 699/* Check the code at PC for a dynamic linker lazy resolution stub.
3e5d3a5a
MR
700 GNU ld for MIPS has put lazy resolution stubs into a ".MIPS.stubs"
701 section uniformly since version 2.15. If the pc is in that section,
702 then we are in such a stub. Before that ".stub" was used in 32-bit
703 ELF binaries, however we do not bother checking for that since we
704 have never had and that case should be extremely rare these days.
705 Instead we pattern-match on the code generated by GNU ld. They look
706 like this:
6de918a6
DJ
707
708 lw t9,0x8010(gp)
709 addu t7,ra
710 jalr t9,ra
711 addiu t8,zero,INDEX
712
3e5d3a5a
MR
713 (with the appropriate doubleword instructions for N64). As any lazy
714 resolution stubs in microMIPS binaries will always be in a
715 ".MIPS.stubs" section we only ever verify standard MIPS patterns. */
6de918a6
DJ
716
717static int
3e5d3a5a 718mips_linux_in_dynsym_stub (CORE_ADDR pc)
6de918a6 719{
e362b510 720 gdb_byte buf[28], *p;
6de918a6 721 ULONGEST insn, insn1;
f5656ead
TT
722 int n64 = (mips_abi (target_gdbarch ()) == MIPS_ABI_N64);
723 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
6de918a6 724
3e5d3a5a
MR
725 if (in_mips_stubs_section (pc))
726 return 1;
727
6de918a6
DJ
728 read_memory (pc - 12, buf, 28);
729
730 if (n64)
731 {
732 /* ld t9,0x8010(gp) */
733 insn1 = 0xdf998010;
734 }
735 else
736 {
737 /* lw t9,0x8010(gp) */
738 insn1 = 0x8f998010;
739 }
740
741 p = buf + 12;
742 while (p >= buf)
743 {
e17a4113 744 insn = extract_unsigned_integer (p, 4, byte_order);
6de918a6
DJ
745 if (insn == insn1)
746 break;
747 p -= 4;
748 }
749 if (p < buf)
750 return 0;
751
e17a4113 752 insn = extract_unsigned_integer (p + 4, 4, byte_order);
6de918a6
DJ
753 if (n64)
754 {
755 /* daddu t7,ra */
756 if (insn != 0x03e0782d)
757 return 0;
758 }
759 else
760 {
761 /* addu t7,ra */
762 if (insn != 0x03e07821)
763 return 0;
764 }
295093a4 765
e17a4113 766 insn = extract_unsigned_integer (p + 8, 4, byte_order);
6de918a6
DJ
767 /* jalr t9,ra */
768 if (insn != 0x0320f809)
769 return 0;
770
e17a4113 771 insn = extract_unsigned_integer (p + 12, 4, byte_order);
6de918a6
DJ
772 if (n64)
773 {
774 /* daddiu t8,zero,0 */
775 if ((insn & 0xffff0000) != 0x64180000)
776 return 0;
777 }
778 else
779 {
780 /* addiu t8,zero,0 */
781 if ((insn & 0xffff0000) != 0x24180000)
782 return 0;
783 }
784
3e5d3a5a 785 return 1;
6de918a6
DJ
786}
787
295093a4 788/* Return non-zero iff PC belongs to the dynamic linker resolution
db5f024e 789 code, a PLT entry, or a lazy binding stub. */
6de918a6 790
7d522c90 791static int
6de918a6
DJ
792mips_linux_in_dynsym_resolve_code (CORE_ADDR pc)
793{
295093a4 794 /* Check whether PC is in the dynamic linker. This also checks
db5f024e 795 whether it is in the .plt section, used by non-PIC executables. */
7d522c90 796 if (svr4_in_dynsym_resolve_code (pc))
6de918a6
DJ
797 return 1;
798
3e5d3a5a
MR
799 /* Likewise for the stubs. They live in the .MIPS.stubs section these
800 days, so we check if the PC is within, than fall back to a pattern
801 match. */
802 if (mips_linux_in_dynsym_stub (pc))
6de918a6
DJ
803 return 1;
804
805 return 0;
806}
807
808/* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c,
809 and glibc_skip_solib_resolver in glibc-tdep.c. The normal glibc
810 implementation of this triggers at "fixup" from the same objfile as
c4c5b7ba 811 "_dl_runtime_resolve"; MIPS GNU/Linux can trigger at
db5f024e
DJ
812 "__dl_runtime_resolve" directly. An unresolved lazy binding
813 stub will point to _dl_runtime_resolve, which will first call
c4c5b7ba
AC
814 __dl_runtime_resolve, and then pass control to the resolved
815 function. */
6de918a6
DJ
816
817static CORE_ADDR
818mips_linux_skip_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
819{
3b7344d5 820 struct bound_minimal_symbol resolver;
6de918a6
DJ
821
822 resolver = lookup_minimal_symbol ("__dl_runtime_resolve", NULL, NULL);
823
77e371c0 824 if (resolver.minsym && BMSYMBOL_VALUE_ADDRESS (resolver) == pc)
c7ce8faa 825 return frame_unwind_caller_pc (get_current_frame ());
6de918a6 826
db5f024e 827 return glibc_skip_solib_resolver (gdbarch, pc);
295093a4 828}
6de918a6 829
5792a79b
DJ
830/* Signal trampoline support. There are four supported layouts for a
831 signal frame: o32 sigframe, o32 rt_sigframe, n32 rt_sigframe, and
832 n64 rt_sigframe. We handle them all independently; not the most
833 efficient way, but simplest. First, declare all the unwinders. */
834
835static void mips_linux_o32_sigframe_init (const struct tramp_frame *self,
b8a22b94 836 struct frame_info *this_frame,
5792a79b
DJ
837 struct trad_frame_cache *this_cache,
838 CORE_ADDR func);
839
840static void mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
b8a22b94 841 struct frame_info *this_frame,
5792a79b
DJ
842 struct trad_frame_cache *this_cache,
843 CORE_ADDR func);
844
845#define MIPS_NR_LINUX 4000
846#define MIPS_NR_N64_LINUX 5000
847#define MIPS_NR_N32_LINUX 6000
848
849#define MIPS_NR_sigreturn MIPS_NR_LINUX + 119
850#define MIPS_NR_rt_sigreturn MIPS_NR_LINUX + 193
851#define MIPS_NR_N64_rt_sigreturn MIPS_NR_N64_LINUX + 211
852#define MIPS_NR_N32_rt_sigreturn MIPS_NR_N32_LINUX + 211
853
854#define MIPS_INST_LI_V0_SIGRETURN 0x24020000 + MIPS_NR_sigreturn
855#define MIPS_INST_LI_V0_RT_SIGRETURN 0x24020000 + MIPS_NR_rt_sigreturn
856#define MIPS_INST_LI_V0_N64_RT_SIGRETURN 0x24020000 + MIPS_NR_N64_rt_sigreturn
857#define MIPS_INST_LI_V0_N32_RT_SIGRETURN 0x24020000 + MIPS_NR_N32_rt_sigreturn
858#define MIPS_INST_SYSCALL 0x0000000c
859
2cd8546d
AC
860static const struct tramp_frame mips_linux_o32_sigframe = {
861 SIGTRAMP_FRAME,
5792a79b 862 4,
2cd8546d
AC
863 {
864 { MIPS_INST_LI_V0_SIGRETURN, -1 },
865 { MIPS_INST_SYSCALL, -1 },
866 { TRAMP_SENTINEL_INSN, -1 }
867 },
5792a79b
DJ
868 mips_linux_o32_sigframe_init
869};
870
2cd8546d
AC
871static const struct tramp_frame mips_linux_o32_rt_sigframe = {
872 SIGTRAMP_FRAME,
5792a79b 873 4,
2cd8546d
AC
874 {
875 { MIPS_INST_LI_V0_RT_SIGRETURN, -1 },
876 { MIPS_INST_SYSCALL, -1 },
877 { TRAMP_SENTINEL_INSN, -1 } },
5792a79b
DJ
878 mips_linux_o32_sigframe_init
879};
880
2cd8546d
AC
881static const struct tramp_frame mips_linux_n32_rt_sigframe = {
882 SIGTRAMP_FRAME,
5792a79b 883 4,
2cd8546d
AC
884 {
885 { MIPS_INST_LI_V0_N32_RT_SIGRETURN, -1 },
886 { MIPS_INST_SYSCALL, -1 },
887 { TRAMP_SENTINEL_INSN, -1 }
888 },
5792a79b
DJ
889 mips_linux_n32n64_sigframe_init
890};
891
2cd8546d
AC
892static const struct tramp_frame mips_linux_n64_rt_sigframe = {
893 SIGTRAMP_FRAME,
5792a79b 894 4,
fcbd8a5c
TS
895 {
896 { MIPS_INST_LI_V0_N64_RT_SIGRETURN, -1 },
897 { MIPS_INST_SYSCALL, -1 },
898 { TRAMP_SENTINEL_INSN, -1 }
899 },
5792a79b
DJ
900 mips_linux_n32n64_sigframe_init
901};
902
903/* *INDENT-OFF* */
904/* The unwinder for o32 signal frames. The legacy structures look
905 like this:
906
907 struct sigframe {
908 u32 sf_ass[4]; [argument save space for o32]
eb195664 909 u32 sf_code[2]; [signal trampoline or fill]
5792a79b
DJ
910 struct sigcontext sf_sc;
911 sigset_t sf_mask;
912 };
913
d0e64392
MR
914 Pre-2.6.12 sigcontext:
915
5792a79b
DJ
916 struct sigcontext {
917 unsigned int sc_regmask; [Unused]
918 unsigned int sc_status;
919 unsigned long long sc_pc;
920 unsigned long long sc_regs[32];
921 unsigned long long sc_fpregs[32];
922 unsigned int sc_ownedfp;
923 unsigned int sc_fpc_csr;
924 unsigned int sc_fpc_eir; [Unused]
925 unsigned int sc_used_math;
926 unsigned int sc_ssflags; [Unused]
927 [Alignment hole of four bytes]
928 unsigned long long sc_mdhi;
929 unsigned long long sc_mdlo;
930
931 unsigned int sc_cause; [Unused]
932 unsigned int sc_badvaddr; [Unused]
933
934 unsigned long sc_sigset[4]; [kernel's sigset_t]
935 };
936
d0e64392
MR
937 Post-2.6.12 sigcontext (SmartMIPS/DSP support added):
938
939 struct sigcontext {
940 unsigned int sc_regmask; [Unused]
941 unsigned int sc_status; [Unused]
942 unsigned long long sc_pc;
943 unsigned long long sc_regs[32];
944 unsigned long long sc_fpregs[32];
945 unsigned int sc_acx;
946 unsigned int sc_fpc_csr;
947 unsigned int sc_fpc_eir; [Unused]
948 unsigned int sc_used_math;
949 unsigned int sc_dsp;
950 [Alignment hole of four bytes]
951 unsigned long long sc_mdhi;
952 unsigned long long sc_mdlo;
953 unsigned long sc_hi1;
954 unsigned long sc_lo1;
955 unsigned long sc_hi2;
956 unsigned long sc_lo2;
957 unsigned long sc_hi3;
958 unsigned long sc_lo3;
959 };
960
5792a79b
DJ
961 The RT signal frames look like this:
962
963 struct rt_sigframe {
964 u32 rs_ass[4]; [argument save space for o32]
eb195664 965 u32 rs_code[2] [signal trampoline or fill]
5792a79b
DJ
966 struct siginfo rs_info;
967 struct ucontext rs_uc;
968 };
969
970 struct ucontext {
971 unsigned long uc_flags;
972 struct ucontext *uc_link;
973 stack_t uc_stack;
974 [Alignment hole of four bytes]
975 struct sigcontext uc_mcontext;
976 sigset_t uc_sigmask;
977 }; */
978/* *INDENT-ON* */
979
5792a79b
DJ
980#define SIGFRAME_SIGCONTEXT_OFFSET (6 * 4)
981
982#define RTSIGFRAME_SIGINFO_SIZE 128
983#define STACK_T_SIZE (3 * 4)
984#define UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + STACK_T_SIZE + 4)
985#define RTSIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
986 + RTSIGFRAME_SIGINFO_SIZE \
987 + UCONTEXT_SIGCONTEXT_OFFSET)
988
989#define SIGCONTEXT_PC (1 * 8)
990#define SIGCONTEXT_REGS (2 * 8)
991#define SIGCONTEXT_FPREGS (34 * 8)
992#define SIGCONTEXT_FPCSR (66 * 8 + 4)
d0e64392 993#define SIGCONTEXT_DSPCTL (68 * 8 + 0)
5792a79b
DJ
994#define SIGCONTEXT_HI (69 * 8)
995#define SIGCONTEXT_LO (70 * 8)
996#define SIGCONTEXT_CAUSE (71 * 8 + 0)
997#define SIGCONTEXT_BADVADDR (71 * 8 + 4)
d0e64392
MR
998#define SIGCONTEXT_HI1 (71 * 8 + 0)
999#define SIGCONTEXT_LO1 (71 * 8 + 4)
1000#define SIGCONTEXT_HI2 (72 * 8 + 0)
1001#define SIGCONTEXT_LO2 (72 * 8 + 4)
1002#define SIGCONTEXT_HI3 (73 * 8 + 0)
1003#define SIGCONTEXT_LO3 (73 * 8 + 4)
5792a79b
DJ
1004
1005#define SIGCONTEXT_REG_SIZE 8
1006
1007static void
1008mips_linux_o32_sigframe_init (const struct tramp_frame *self,
b8a22b94 1009 struct frame_info *this_frame,
5792a79b
DJ
1010 struct trad_frame_cache *this_cache,
1011 CORE_ADDR func)
1012{
b8a22b94 1013 struct gdbarch *gdbarch = get_frame_arch (this_frame);
22e048c9 1014 int ireg;
eb195664
DD
1015 CORE_ADDR frame_sp = get_frame_sp (this_frame);
1016 CORE_ADDR sigcontext_base;
2eb4d78b 1017 const struct mips_regnum *regs = mips_regnum (gdbarch);
37c4d197 1018 CORE_ADDR regs_base;
5792a79b
DJ
1019
1020 if (self == &mips_linux_o32_sigframe)
eb195664 1021 sigcontext_base = frame_sp + SIGFRAME_SIGCONTEXT_OFFSET;
5792a79b 1022 else
eb195664 1023 sigcontext_base = frame_sp + RTSIGFRAME_SIGCONTEXT_OFFSET;
295093a4
MS
1024
1025 /* I'm not proud of this hack. Eventually we will have the
1026 infrastructure to indicate the size of saved registers on a
1027 per-frame basis, but right now we don't; the kernel saves eight
37c4d197
DJ
1028 bytes but we only want four. Use regs_base to access any
1029 64-bit fields. */
2eb4d78b 1030 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
37c4d197
DJ
1031 regs_base = sigcontext_base + 4;
1032 else
1033 regs_base = sigcontext_base;
5792a79b 1034
2eb4d78b 1035 if (mips_linux_restart_reg_p (gdbarch))
822b6570
DJ
1036 trad_frame_set_reg_addr (this_cache,
1037 (MIPS_RESTART_REGNUM
2eb4d78b 1038 + gdbarch_num_regs (gdbarch)),
822b6570 1039 regs_base + SIGCONTEXT_REGS);
5792a79b
DJ
1040
1041 for (ireg = 1; ireg < 32; ireg++)
295093a4 1042 trad_frame_set_reg_addr (this_cache,
7d266584
MR
1043 (ireg + MIPS_ZERO_REGNUM
1044 + gdbarch_num_regs (gdbarch)),
1045 (regs_base + SIGCONTEXT_REGS
1046 + ireg * SIGCONTEXT_REG_SIZE));
5792a79b 1047
37c4d197
DJ
1048 /* The way that floating point registers are saved, unfortunately,
1049 depends on the architecture the kernel is built for. For the r3000 and
1050 tx39, four bytes of each register are at the beginning of each of the
1051 32 eight byte slots. For everything else, the registers are saved
1052 using double precision; only the even-numbered slots are initialized,
1053 and the high bits are the odd-numbered register. Assume the latter
1054 layout, since we can't tell, and it's much more common. Which bits are
1055 the "high" bits depends on endianness. */
5792a79b 1056 for (ireg = 0; ireg < 32; ireg++)
2eb4d78b 1057 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (ireg & 1))
f57d151a 1058 trad_frame_set_reg_addr (this_cache,
7d266584
MR
1059 ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
1060 (sigcontext_base + SIGCONTEXT_FPREGS + 4
1061 + (ireg & ~1) * SIGCONTEXT_REG_SIZE));
37c4d197 1062 else
f57d151a 1063 trad_frame_set_reg_addr (this_cache,
7d266584
MR
1064 ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
1065 (sigcontext_base + SIGCONTEXT_FPREGS
1066 + (ireg & ~1) * SIGCONTEXT_REG_SIZE));
5792a79b 1067
f57d151a 1068 trad_frame_set_reg_addr (this_cache,
2eb4d78b 1069 regs->pc + gdbarch_num_regs (gdbarch),
37c4d197 1070 regs_base + SIGCONTEXT_PC);
5792a79b 1071
295093a4 1072 trad_frame_set_reg_addr (this_cache,
7d266584
MR
1073 (regs->fp_control_status
1074 + gdbarch_num_regs (gdbarch)),
5792a79b 1075 sigcontext_base + SIGCONTEXT_FPCSR);
d0e64392
MR
1076
1077 if (regs->dspctl != -1)
1078 trad_frame_set_reg_addr (this_cache,
1079 regs->dspctl + gdbarch_num_regs (gdbarch),
1080 sigcontext_base + SIGCONTEXT_DSPCTL);
1081
f57d151a 1082 trad_frame_set_reg_addr (this_cache,
2eb4d78b 1083 regs->hi + gdbarch_num_regs (gdbarch),
37c4d197 1084 regs_base + SIGCONTEXT_HI);
f57d151a 1085 trad_frame_set_reg_addr (this_cache,
2eb4d78b 1086 regs->lo + gdbarch_num_regs (gdbarch),
37c4d197 1087 regs_base + SIGCONTEXT_LO);
d0e64392
MR
1088
1089 if (regs->dspacc != -1)
1090 {
1091 trad_frame_set_reg_addr (this_cache,
1092 regs->dspacc + 0 + gdbarch_num_regs (gdbarch),
1093 sigcontext_base + SIGCONTEXT_HI1);
1094 trad_frame_set_reg_addr (this_cache,
1095 regs->dspacc + 1 + gdbarch_num_regs (gdbarch),
1096 sigcontext_base + SIGCONTEXT_LO1);
1097 trad_frame_set_reg_addr (this_cache,
1098 regs->dspacc + 2 + gdbarch_num_regs (gdbarch),
1099 sigcontext_base + SIGCONTEXT_HI2);
1100 trad_frame_set_reg_addr (this_cache,
1101 regs->dspacc + 3 + gdbarch_num_regs (gdbarch),
1102 sigcontext_base + SIGCONTEXT_LO2);
1103 trad_frame_set_reg_addr (this_cache,
1104 regs->dspacc + 4 + gdbarch_num_regs (gdbarch),
1105 sigcontext_base + SIGCONTEXT_HI3);
1106 trad_frame_set_reg_addr (this_cache,
1107 regs->dspacc + 5 + gdbarch_num_regs (gdbarch),
1108 sigcontext_base + SIGCONTEXT_LO3);
1109 }
1110 else
1111 {
1112 trad_frame_set_reg_addr (this_cache,
1113 regs->cause + gdbarch_num_regs (gdbarch),
1114 sigcontext_base + SIGCONTEXT_CAUSE);
1115 trad_frame_set_reg_addr (this_cache,
1116 regs->badvaddr + gdbarch_num_regs (gdbarch),
1117 sigcontext_base + SIGCONTEXT_BADVADDR);
1118 }
5792a79b
DJ
1119
1120 /* Choice of the bottom of the sigframe is somewhat arbitrary. */
eb195664 1121 trad_frame_set_id (this_cache, frame_id_build (frame_sp, func));
5792a79b
DJ
1122}
1123
1124/* *INDENT-OFF* */
1125/* For N32/N64 things look different. There is no non-rt signal frame.
1126
1127 struct rt_sigframe_n32 {
1128 u32 rs_ass[4]; [ argument save space for o32 ]
eb195664 1129 u32 rs_code[2]; [ signal trampoline or fill ]
5792a79b
DJ
1130 struct siginfo rs_info;
1131 struct ucontextn32 rs_uc;
1132 };
1133
1134 struct ucontextn32 {
1135 u32 uc_flags;
1136 s32 uc_link;
1137 stack32_t uc_stack;
1138 struct sigcontext uc_mcontext;
1139 sigset_t uc_sigmask; [ mask last for extensibility ]
1140 };
295093a4 1141
e741f4d4 1142 struct rt_sigframe {
5792a79b
DJ
1143 u32 rs_ass[4]; [ argument save space for o32 ]
1144 u32 rs_code[2]; [ signal trampoline ]
1145 struct siginfo rs_info;
1146 struct ucontext rs_uc;
1147 };
1148
1149 struct ucontext {
1150 unsigned long uc_flags;
1151 struct ucontext *uc_link;
1152 stack_t uc_stack;
1153 struct sigcontext uc_mcontext;
1154 sigset_t uc_sigmask; [ mask last for extensibility ]
1155 };
1156
1157 And the sigcontext is different (this is for both n32 and n64):
1158
1159 struct sigcontext {
1160 unsigned long long sc_regs[32];
1161 unsigned long long sc_fpregs[32];
1162 unsigned long long sc_mdhi;
e741f4d4
DJ
1163 unsigned long long sc_hi1;
1164 unsigned long long sc_hi2;
1165 unsigned long long sc_hi3;
5792a79b 1166 unsigned long long sc_mdlo;
e741f4d4
DJ
1167 unsigned long long sc_lo1;
1168 unsigned long long sc_lo2;
1169 unsigned long long sc_lo3;
5792a79b 1170 unsigned long long sc_pc;
5792a79b 1171 unsigned int sc_fpc_csr;
5792a79b 1172 unsigned int sc_used_math;
e741f4d4
DJ
1173 unsigned int sc_dsp;
1174 unsigned int sc_reserved;
1175 };
1176
1177 That is the post-2.6.12 definition of the 64-bit sigcontext; before
1178 then, there were no hi1-hi3 or lo1-lo3. Cause and badvaddr were
1179 included too. */
5792a79b
DJ
1180/* *INDENT-ON* */
1181
1182#define N32_STACK_T_SIZE STACK_T_SIZE
1183#define N64_STACK_T_SIZE (2 * 8 + 4)
1184#define N32_UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + N32_STACK_T_SIZE + 4)
1185#define N64_UCONTEXT_SIGCONTEXT_OFFSET (2 * 8 + N64_STACK_T_SIZE + 4)
1186#define N32_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
1187 + RTSIGFRAME_SIGINFO_SIZE \
1188 + N32_UCONTEXT_SIGCONTEXT_OFFSET)
1189#define N64_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
1190 + RTSIGFRAME_SIGINFO_SIZE \
1191 + N64_UCONTEXT_SIGCONTEXT_OFFSET)
1192
1193#define N64_SIGCONTEXT_REGS (0 * 8)
1194#define N64_SIGCONTEXT_FPREGS (32 * 8)
1195#define N64_SIGCONTEXT_HI (64 * 8)
d0e64392
MR
1196#define N64_SIGCONTEXT_HI1 (65 * 8)
1197#define N64_SIGCONTEXT_HI2 (66 * 8)
1198#define N64_SIGCONTEXT_HI3 (67 * 8)
e741f4d4 1199#define N64_SIGCONTEXT_LO (68 * 8)
d0e64392
MR
1200#define N64_SIGCONTEXT_LO1 (69 * 8)
1201#define N64_SIGCONTEXT_LO2 (70 * 8)
1202#define N64_SIGCONTEXT_LO3 (71 * 8)
e741f4d4 1203#define N64_SIGCONTEXT_PC (72 * 8)
d0e64392
MR
1204#define N64_SIGCONTEXT_FPCSR (73 * 8 + 0)
1205#define N64_SIGCONTEXT_DSPCTL (74 * 8 + 0)
5792a79b
DJ
1206
1207#define N64_SIGCONTEXT_REG_SIZE 8
295093a4 1208
5792a79b
DJ
1209static void
1210mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
b8a22b94 1211 struct frame_info *this_frame,
5792a79b
DJ
1212 struct trad_frame_cache *this_cache,
1213 CORE_ADDR func)
1214{
b8a22b94 1215 struct gdbarch *gdbarch = get_frame_arch (this_frame);
22e048c9 1216 int ireg;
eb195664
DD
1217 CORE_ADDR frame_sp = get_frame_sp (this_frame);
1218 CORE_ADDR sigcontext_base;
2eb4d78b 1219 const struct mips_regnum *regs = mips_regnum (gdbarch);
5792a79b
DJ
1220
1221 if (self == &mips_linux_n32_rt_sigframe)
eb195664 1222 sigcontext_base = frame_sp + N32_SIGFRAME_SIGCONTEXT_OFFSET;
5792a79b 1223 else
eb195664 1224 sigcontext_base = frame_sp + N64_SIGFRAME_SIGCONTEXT_OFFSET;
295093a4 1225
2eb4d78b 1226 if (mips_linux_restart_reg_p (gdbarch))
822b6570
DJ
1227 trad_frame_set_reg_addr (this_cache,
1228 (MIPS_RESTART_REGNUM
2eb4d78b 1229 + gdbarch_num_regs (gdbarch)),
822b6570 1230 sigcontext_base + N64_SIGCONTEXT_REGS);
5792a79b
DJ
1231
1232 for (ireg = 1; ireg < 32; ireg++)
295093a4 1233 trad_frame_set_reg_addr (this_cache,
7d266584
MR
1234 (ireg + MIPS_ZERO_REGNUM
1235 + gdbarch_num_regs (gdbarch)),
1236 (sigcontext_base + N64_SIGCONTEXT_REGS
1237 + ireg * N64_SIGCONTEXT_REG_SIZE));
5792a79b
DJ
1238
1239 for (ireg = 0; ireg < 32; ireg++)
f57d151a 1240 trad_frame_set_reg_addr (this_cache,
7d266584
MR
1241 ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
1242 (sigcontext_base + N64_SIGCONTEXT_FPREGS
1243 + ireg * N64_SIGCONTEXT_REG_SIZE));
5792a79b 1244
f57d151a 1245 trad_frame_set_reg_addr (this_cache,
2eb4d78b 1246 regs->pc + gdbarch_num_regs (gdbarch),
5792a79b
DJ
1247 sigcontext_base + N64_SIGCONTEXT_PC);
1248
295093a4 1249 trad_frame_set_reg_addr (this_cache,
7d266584
MR
1250 (regs->fp_control_status
1251 + gdbarch_num_regs (gdbarch)),
5792a79b 1252 sigcontext_base + N64_SIGCONTEXT_FPCSR);
d0e64392 1253
f57d151a 1254 trad_frame_set_reg_addr (this_cache,
2eb4d78b 1255 regs->hi + gdbarch_num_regs (gdbarch),
5792a79b 1256 sigcontext_base + N64_SIGCONTEXT_HI);
f57d151a 1257 trad_frame_set_reg_addr (this_cache,
2eb4d78b 1258 regs->lo + gdbarch_num_regs (gdbarch),
5792a79b 1259 sigcontext_base + N64_SIGCONTEXT_LO);
5792a79b 1260
d0e64392
MR
1261 if (regs->dspacc != -1)
1262 {
1263 trad_frame_set_reg_addr (this_cache,
1264 regs->dspacc + 0 + gdbarch_num_regs (gdbarch),
1265 sigcontext_base + N64_SIGCONTEXT_HI1);
1266 trad_frame_set_reg_addr (this_cache,
1267 regs->dspacc + 1 + gdbarch_num_regs (gdbarch),
1268 sigcontext_base + N64_SIGCONTEXT_LO1);
1269 trad_frame_set_reg_addr (this_cache,
1270 regs->dspacc + 2 + gdbarch_num_regs (gdbarch),
1271 sigcontext_base + N64_SIGCONTEXT_HI2);
1272 trad_frame_set_reg_addr (this_cache,
1273 regs->dspacc + 3 + gdbarch_num_regs (gdbarch),
1274 sigcontext_base + N64_SIGCONTEXT_LO2);
1275 trad_frame_set_reg_addr (this_cache,
1276 regs->dspacc + 4 + gdbarch_num_regs (gdbarch),
1277 sigcontext_base + N64_SIGCONTEXT_HI3);
1278 trad_frame_set_reg_addr (this_cache,
1279 regs->dspacc + 5 + gdbarch_num_regs (gdbarch),
1280 sigcontext_base + N64_SIGCONTEXT_LO3);
1281 }
1282 if (regs->dspctl != -1)
1283 trad_frame_set_reg_addr (this_cache,
1284 regs->dspctl + gdbarch_num_regs (gdbarch),
1285 sigcontext_base + N64_SIGCONTEXT_DSPCTL);
1286
5792a79b 1287 /* Choice of the bottom of the sigframe is somewhat arbitrary. */
eb195664 1288 trad_frame_set_id (this_cache, frame_id_build (frame_sp, func));
5792a79b
DJ
1289}
1290
5a439849
MR
1291/* Implement the "write_pc" gdbarch method. */
1292
822b6570 1293static void
61a1198a 1294mips_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
822b6570 1295{
2eb4d78b 1296 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5a439849
MR
1297
1298 mips_write_pc (regcache, pc);
822b6570
DJ
1299
1300 /* Clear the syscall restart flag. */
2eb4d78b 1301 if (mips_linux_restart_reg_p (gdbarch))
61a1198a 1302 regcache_cooked_write_unsigned (regcache, MIPS_RESTART_REGNUM, 0);
822b6570
DJ
1303}
1304
1305/* Return 1 if MIPS_RESTART_REGNUM is usable. */
1306
1307int
1308mips_linux_restart_reg_p (struct gdbarch *gdbarch)
1309{
1310 /* If we do not have a target description with registers, then
1311 MIPS_RESTART_REGNUM will not be included in the register set. */
1312 if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
1313 return 0;
1314
1315 /* If we do, then MIPS_RESTART_REGNUM is safe to check; it will
1316 either be GPR-sized or missing. */
1317 return register_size (gdbarch, MIPS_RESTART_REGNUM) > 0;
1318}
9f62d0e2 1319
e38d4e1a
DJ
1320/* When FRAME is at a syscall instruction, return the PC of the next
1321 instruction to be executed. */
1322
63807e1d 1323static CORE_ADDR
e38d4e1a
DJ
1324mips_linux_syscall_next_pc (struct frame_info *frame)
1325{
1326 CORE_ADDR pc = get_frame_pc (frame);
1327 ULONGEST v0 = get_frame_register_unsigned (frame, MIPS_V0_REGNUM);
1328
1329 /* If we are about to make a sigreturn syscall, use the unwinder to
1330 decode the signal frame. */
1331 if (v0 == MIPS_NR_sigreturn
1332 || v0 == MIPS_NR_rt_sigreturn
1333 || v0 == MIPS_NR_N64_rt_sigreturn
1334 || v0 == MIPS_NR_N32_rt_sigreturn)
c7ce8faa 1335 return frame_unwind_caller_pc (get_current_frame ());
e38d4e1a
DJ
1336
1337 return pc + 4;
1338}
1339
385203ed
DD
1340/* Return the current system call's number present in the
1341 v0 register. When the function fails, it returns -1. */
1342
1343static LONGEST
1344mips_linux_get_syscall_number (struct gdbarch *gdbarch,
1345 ptid_t ptid)
1346{
1347 struct regcache *regcache = get_thread_regcache (ptid);
1348 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1349 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1350 int regsize = register_size (gdbarch, MIPS_V0_REGNUM);
1351 /* The content of a register */
1352 gdb_byte buf[8];
1353 /* The result */
1354 LONGEST ret;
1355
1356 /* Make sure we're in a known ABI */
1357 gdb_assert (tdep->mips_abi == MIPS_ABI_O32
1358 || tdep->mips_abi == MIPS_ABI_N32
1359 || tdep->mips_abi == MIPS_ABI_N64);
1360
1361 gdb_assert (regsize <= sizeof (buf));
1362
1363 /* Getting the system call number from the register.
1364 syscall number is in v0 or $2. */
1365 regcache_cooked_read (regcache, MIPS_V0_REGNUM, buf);
1366
1367 ret = extract_signed_integer (buf, regsize, byte_order);
1368
1369 return ret;
1370}
1371
eb14d406
SDJ
1372/* Implementation of `gdbarch_gdb_signal_to_target', as defined in
1373 gdbarch.h. */
1374
1375static int
1376mips_gdb_signal_to_target (struct gdbarch *gdbarch,
1377 enum gdb_signal signal)
1378{
1379 switch (signal)
1380 {
1381 case GDB_SIGNAL_EMT:
1382 return MIPS_LINUX_SIGEMT;
1383
1384 case GDB_SIGNAL_BUS:
1385 return MIPS_LINUX_SIGBUS;
1386
1387 case GDB_SIGNAL_SYS:
1388 return MIPS_LINUX_SIGSYS;
1389
1390 case GDB_SIGNAL_USR1:
1391 return MIPS_LINUX_SIGUSR1;
1392
1393 case GDB_SIGNAL_USR2:
1394 return MIPS_LINUX_SIGUSR2;
1395
1396 case GDB_SIGNAL_CHLD:
1397 return MIPS_LINUX_SIGCHLD;
1398
1399 case GDB_SIGNAL_PWR:
1400 return MIPS_LINUX_SIGPWR;
1401
1402 case GDB_SIGNAL_WINCH:
1403 return MIPS_LINUX_SIGWINCH;
1404
1405 case GDB_SIGNAL_URG:
1406 return MIPS_LINUX_SIGURG;
1407
1408 case GDB_SIGNAL_IO:
1409 return MIPS_LINUX_SIGIO;
1410
1411 case GDB_SIGNAL_POLL:
1412 return MIPS_LINUX_SIGPOLL;
1413
1414 case GDB_SIGNAL_STOP:
1415 return MIPS_LINUX_SIGSTOP;
1416
1417 case GDB_SIGNAL_TSTP:
1418 return MIPS_LINUX_SIGTSTP;
1419
1420 case GDB_SIGNAL_CONT:
1421 return MIPS_LINUX_SIGCONT;
1422
1423 case GDB_SIGNAL_TTIN:
1424 return MIPS_LINUX_SIGTTIN;
1425
1426 case GDB_SIGNAL_TTOU:
1427 return MIPS_LINUX_SIGTTOU;
1428
1429 case GDB_SIGNAL_VTALRM:
1430 return MIPS_LINUX_SIGVTALRM;
1431
1432 case GDB_SIGNAL_PROF:
1433 return MIPS_LINUX_SIGPROF;
1434
1435 case GDB_SIGNAL_XCPU:
1436 return MIPS_LINUX_SIGXCPU;
1437
1438 case GDB_SIGNAL_XFSZ:
1439 return MIPS_LINUX_SIGXFSZ;
1440
1441 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
1442 therefore we have to handle it here. */
1443 case GDB_SIGNAL_REALTIME_32:
1444 return MIPS_LINUX_SIGRTMIN;
1445 }
1446
1447 if (signal >= GDB_SIGNAL_REALTIME_33
1448 && signal <= GDB_SIGNAL_REALTIME_63)
1449 {
1450 int offset = signal - GDB_SIGNAL_REALTIME_33;
1451
1452 return MIPS_LINUX_SIGRTMIN + 1 + offset;
1453 }
1454 else if (signal >= GDB_SIGNAL_REALTIME_64
1455 && signal <= GDB_SIGNAL_REALTIME_127)
1456 {
1457 int offset = signal - GDB_SIGNAL_REALTIME_64;
1458
1459 return MIPS_LINUX_SIGRT64 + offset;
1460 }
1461
1462 return linux_gdb_signal_to_target (gdbarch, signal);
1463}
1464
7d266584 1465/* Translate signals based on MIPS signal values.
232b8704
ME
1466 Adapted from gdb/common/signals.c. */
1467
1468static enum gdb_signal
eb14d406 1469mips_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
232b8704 1470{
eb14d406 1471 switch (signal)
232b8704 1472 {
eb14d406 1473 case MIPS_LINUX_SIGEMT:
232b8704 1474 return GDB_SIGNAL_EMT;
eb14d406
SDJ
1475
1476 case MIPS_LINUX_SIGBUS:
232b8704 1477 return GDB_SIGNAL_BUS;
eb14d406
SDJ
1478
1479 case MIPS_LINUX_SIGSYS:
232b8704 1480 return GDB_SIGNAL_SYS;
eb14d406
SDJ
1481
1482 case MIPS_LINUX_SIGUSR1:
232b8704 1483 return GDB_SIGNAL_USR1;
eb14d406
SDJ
1484
1485 case MIPS_LINUX_SIGUSR2:
232b8704 1486 return GDB_SIGNAL_USR2;
eb14d406
SDJ
1487
1488 case MIPS_LINUX_SIGCHLD:
232b8704 1489 return GDB_SIGNAL_CHLD;
eb14d406
SDJ
1490
1491 case MIPS_LINUX_SIGPWR:
232b8704 1492 return GDB_SIGNAL_PWR;
eb14d406
SDJ
1493
1494 case MIPS_LINUX_SIGWINCH:
232b8704 1495 return GDB_SIGNAL_WINCH;
eb14d406
SDJ
1496
1497 case MIPS_LINUX_SIGURG:
232b8704 1498 return GDB_SIGNAL_URG;
eb14d406
SDJ
1499
1500 /* No way to differentiate between SIGIO and SIGPOLL.
1501 Therefore, we just handle the first one. */
1502 case MIPS_LINUX_SIGIO:
1503 return GDB_SIGNAL_IO;
1504
1505 case MIPS_LINUX_SIGSTOP:
232b8704 1506 return GDB_SIGNAL_STOP;
eb14d406
SDJ
1507
1508 case MIPS_LINUX_SIGTSTP:
232b8704 1509 return GDB_SIGNAL_TSTP;
eb14d406
SDJ
1510
1511 case MIPS_LINUX_SIGCONT:
232b8704 1512 return GDB_SIGNAL_CONT;
eb14d406
SDJ
1513
1514 case MIPS_LINUX_SIGTTIN:
232b8704 1515 return GDB_SIGNAL_TTIN;
eb14d406
SDJ
1516
1517 case MIPS_LINUX_SIGTTOU:
232b8704 1518 return GDB_SIGNAL_TTOU;
eb14d406
SDJ
1519
1520 case MIPS_LINUX_SIGVTALRM:
232b8704 1521 return GDB_SIGNAL_VTALRM;
eb14d406
SDJ
1522
1523 case MIPS_LINUX_SIGPROF:
232b8704 1524 return GDB_SIGNAL_PROF;
eb14d406
SDJ
1525
1526 case MIPS_LINUX_SIGXCPU:
232b8704 1527 return GDB_SIGNAL_XCPU;
eb14d406
SDJ
1528
1529 case MIPS_LINUX_SIGXFSZ:
232b8704 1530 return GDB_SIGNAL_XFSZ;
eb14d406 1531 }
232b8704 1532
eb14d406 1533 if (signal >= MIPS_LINUX_SIGRTMIN && signal <= MIPS_LINUX_SIGRTMAX)
232b8704
ME
1534 {
1535 /* GDB_SIGNAL_REALTIME values are not contiguous, map parts of
1536 the MIPS block to the respective GDB_SIGNAL_REALTIME blocks. */
eb14d406
SDJ
1537 int offset = signal - MIPS_LINUX_SIGRTMIN;
1538
1539 if (offset == 0)
232b8704 1540 return GDB_SIGNAL_REALTIME_32;
eb14d406
SDJ
1541 else if (offset < 32)
1542 return (enum gdb_signal) (offset - 1
1543 + (int) GDB_SIGNAL_REALTIME_33);
232b8704 1544 else
eb14d406
SDJ
1545 return (enum gdb_signal) (offset - 32
1546 + (int) GDB_SIGNAL_REALTIME_64);
232b8704
ME
1547 }
1548
eb14d406 1549 return linux_gdb_signal_from_target (gdbarch, signal);
232b8704
ME
1550}
1551
5792a79b
DJ
1552/* Initialize one of the GNU/Linux OS ABIs. */
1553
19ed69dd 1554static void
295093a4
MS
1555mips_linux_init_abi (struct gdbarch_info info,
1556 struct gdbarch *gdbarch)
19ed69dd 1557{
96f026fc
KB
1558 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1559 enum mips_abi abi = mips_abi (gdbarch);
822b6570 1560 struct tdesc_arch_data *tdesc_data = (void *) info.tdep_info;
96f026fc 1561
a5ee0f0c
PA
1562 linux_init_abi (info, gdbarch);
1563
385203ed
DD
1564 /* Get the syscall number from the arch's register. */
1565 set_gdbarch_get_syscall_number (gdbarch, mips_linux_get_syscall_number);
1566
96f026fc
KB
1567 switch (abi)
1568 {
1569 case MIPS_ABI_O32:
1570 set_gdbarch_get_longjmp_target (gdbarch,
7d266584 1571 mips_linux_get_longjmp_target);
96f026fc 1572 set_solib_svr4_fetch_link_map_offsets
76a9d10f 1573 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
fb2be677
AC
1574 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_sigframe);
1575 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_rt_sigframe);
385203ed 1576 set_xml_syscall_file_name ("syscalls/mips-o32-linux.xml");
96f026fc
KB
1577 break;
1578 case MIPS_ABI_N32:
1579 set_gdbarch_get_longjmp_target (gdbarch,
7d266584 1580 mips_linux_get_longjmp_target);
96f026fc 1581 set_solib_svr4_fetch_link_map_offsets
76a9d10f 1582 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
d05f6826
DJ
1583 set_gdbarch_long_double_bit (gdbarch, 128);
1584 /* These floatformats should probably be renamed. MIPS uses
1585 the same 128-bit IEEE floating point format that IA-64 uses,
1586 except that the quiet/signalling NaN bit is reversed (GDB
1587 does not distinguish between quiet and signalling NaNs). */
8da61cc4 1588 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
fb2be677 1589 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n32_rt_sigframe);
385203ed 1590 set_xml_syscall_file_name ("syscalls/mips-n32-linux.xml");
96f026fc
KB
1591 break;
1592 case MIPS_ABI_N64:
1593 set_gdbarch_get_longjmp_target (gdbarch,
7d266584 1594 mips64_linux_get_longjmp_target);
96f026fc 1595 set_solib_svr4_fetch_link_map_offsets
76a9d10f 1596 (gdbarch, svr4_lp64_fetch_link_map_offsets);
d05f6826
DJ
1597 set_gdbarch_long_double_bit (gdbarch, 128);
1598 /* These floatformats should probably be renamed. MIPS uses
1599 the same 128-bit IEEE floating point format that IA-64 uses,
1600 except that the quiet/signalling NaN bit is reversed (GDB
1601 does not distinguish between quiet and signalling NaNs). */
8da61cc4 1602 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
fb2be677 1603 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n64_rt_sigframe);
385203ed 1604 set_xml_syscall_file_name ("syscalls/mips-n64-linux.xml");
96f026fc
KB
1605 break;
1606 default:
96f026fc
KB
1607 break;
1608 }
6de918a6
DJ
1609
1610 set_gdbarch_skip_solib_resolver (gdbarch, mips_linux_skip_resolver);
1611
0d0266c6 1612 set_gdbarch_software_single_step (gdbarch, mips_software_single_step);
b2756930
KB
1613
1614 /* Enable TLS support. */
1615 set_gdbarch_fetch_tls_load_module_address (gdbarch,
7d266584 1616 svr4_fetch_objfile_link_map);
7d522c90
DJ
1617
1618 /* Initialize this lazily, to avoid an initialization order
1619 dependency on solib-svr4.c's _initialize routine. */
1620 if (mips_svr4_so_ops.in_dynsym_resolve_code == NULL)
1621 {
1622 mips_svr4_so_ops = svr4_so_ops;
1623 mips_svr4_so_ops.in_dynsym_resolve_code
1624 = mips_linux_in_dynsym_resolve_code;
1625 }
1626 set_solib_ops (gdbarch, &mips_svr4_so_ops);
822b6570
DJ
1627
1628 set_gdbarch_write_pc (gdbarch, mips_linux_write_pc);
1629
4eb0ad19
DJ
1630 set_gdbarch_core_read_description (gdbarch,
1631 mips_linux_core_read_description);
1632
50e8a0d5
HZ
1633 set_gdbarch_regset_from_core_section (gdbarch,
1634 mips_linux_regset_from_core_section);
1635
232b8704
ME
1636 set_gdbarch_gdb_signal_from_target (gdbarch,
1637 mips_gdb_signal_from_target);
1638
eb14d406
SDJ
1639 set_gdbarch_gdb_signal_to_target (gdbarch,
1640 mips_gdb_signal_to_target);
1641
e38d4e1a
DJ
1642 tdep->syscall_next_pc = mips_linux_syscall_next_pc;
1643
822b6570
DJ
1644 if (tdesc_data)
1645 {
1646 const struct tdesc_feature *feature;
1647
1648 /* If we have target-described registers, then we can safely
1649 reserve a number for MIPS_RESTART_REGNUM (whether it is
1650 described or not). */
1651 gdb_assert (gdbarch_num_regs (gdbarch) <= MIPS_RESTART_REGNUM);
1652 set_gdbarch_num_regs (gdbarch, MIPS_RESTART_REGNUM + 1);
cf233303 1653 set_gdbarch_num_pseudo_regs (gdbarch, MIPS_RESTART_REGNUM + 1);
822b6570
DJ
1654
1655 /* If it's present, then assign it to the reserved number. */
1656 feature = tdesc_find_feature (info.target_desc,
1657 "org.gnu.gdb.mips.linux");
1658 if (feature != NULL)
1659 tdesc_numbered_register (feature, tdesc_data, MIPS_RESTART_REGNUM,
1660 "restart");
1661 }
19ed69dd
KB
1662}
1663
63807e1d
PA
1664/* Provide a prototype to silence -Wmissing-prototypes. */
1665extern initialize_file_ftype _initialize_mips_linux_tdep;
1666
2aa830e4 1667void
d1bacddc 1668_initialize_mips_linux_tdep (void)
2aa830e4 1669{
96f026fc
KB
1670 const struct bfd_arch_info *arch_info;
1671
96f026fc
KB
1672 for (arch_info = bfd_lookup_arch (bfd_arch_mips, 0);
1673 arch_info != NULL;
1674 arch_info = arch_info->next)
1675 {
295093a4
MS
1676 gdbarch_register_osabi (bfd_arch_mips, arch_info->mach,
1677 GDB_OSABI_LINUX,
96f026fc
KB
1678 mips_linux_init_abi);
1679 }
2aa830e4 1680}