]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/mips-tdep.c
Backport gettext fixes to get rid of warnings on macOS
[thirdparty/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
e2882c85 3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
bf64bfd6 4
c906108c
SS
5 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
6 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
c906108c
SS
24#include "frame.h"
25#include "inferior.h"
26#include "symtab.h"
27#include "value.h"
28#include "gdbcmd.h"
29#include "language.h"
30#include "gdbcore.h"
31#include "symfile.h"
32#include "objfiles.h"
33#include "gdbtypes.h"
34#include "target.h"
28d069e6 35#include "arch-utils.h"
4e052eda 36#include "regcache.h"
70f80edf 37#include "osabi.h"
d1973055 38#include "mips-tdep.h"
fe898f56 39#include "block.h"
a4b8ebc8 40#include "reggroups.h"
c906108c 41#include "opcode/mips.h"
c2d11a7d
JM
42#include "elf/mips.h"
43#include "elf-bfd.h"
2475bac3 44#include "symcat.h"
a4b8ebc8 45#include "sim-regno.h"
a89aa300 46#include "dis-asm.h"
e47ad6c0 47#include "disasm.h"
edfae063
AC
48#include "frame-unwind.h"
49#include "frame-base.h"
50#include "trad-frame.h"
7d9b040b 51#include "infcall.h"
29709017
DJ
52#include "remote.h"
53#include "target-descriptions.h"
2bd0c3d7 54#include "dwarf2-frame.h"
f8b73d13 55#include "user-regs.h"
79a45b7d 56#include "valprint.h"
175ff332 57#include "ax.h"
f69fdf9b 58#include "target-float.h"
325fac50 59#include <algorithm>
c906108c 60
8d5f9dcb
DJ
61static const struct objfile_data *mips_pdr_data;
62
5bbcb741 63static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
e0f7ec59 64
ab50adb6
MR
65static int mips32_instruction_has_delay_slot (struct gdbarch *gdbarch,
66 ULONGEST inst);
67static int micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32);
68static int mips16_instruction_has_delay_slot (unsigned short inst,
69 int mustbe32);
70
71static int mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
72 CORE_ADDR addr);
73static int micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
74 CORE_ADDR addr, int mustbe32);
75static int mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
76 CORE_ADDR addr, int mustbe32);
4cc0665f 77
1bab7383
YQ
78static void mips_print_float_info (struct gdbarch *, struct ui_file *,
79 struct frame_info *, const char *);
80
24e05951 81/* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
dd824b04
DJ
82/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
83#define ST0_FR (1 << 26)
84
b0069a17
AC
85/* The sizes of floating point registers. */
86
87enum
88{
89 MIPS_FPU_SINGLE_REGSIZE = 4,
90 MIPS_FPU_DOUBLE_REGSIZE = 8
91};
92
1a69e1e4
DJ
93enum
94{
95 MIPS32_REGSIZE = 4,
96 MIPS64_REGSIZE = 8
97};
0dadbba0 98
2e4ebe70
DJ
99static const char *mips_abi_string;
100
40478521 101static const char *const mips_abi_strings[] = {
2e4ebe70
DJ
102 "auto",
103 "n32",
104 "o32",
28d169de 105 "n64",
2e4ebe70
DJ
106 "o64",
107 "eabi32",
108 "eabi64",
109 NULL
110};
111
44f1c4d7
YQ
112/* Enum describing the different kinds of breakpoints. */
113
114enum mips_breakpoint_kind
115{
116 /* 16-bit MIPS16 mode breakpoint. */
117 MIPS_BP_KIND_MIPS16 = 2,
118
119 /* 16-bit microMIPS mode breakpoint. */
120 MIPS_BP_KIND_MICROMIPS16 = 3,
121
122 /* 32-bit standard MIPS mode breakpoint. */
123 MIPS_BP_KIND_MIPS32 = 4,
124
125 /* 32-bit microMIPS mode breakpoint. */
126 MIPS_BP_KIND_MICROMIPS32 = 5,
127};
128
4cc0665f
MR
129/* For backwards compatibility we default to MIPS16. This flag is
130 overridden as soon as unambiguous ELF file flags tell us the
131 compressed ISA encoding used. */
132static const char mips_compression_mips16[] = "mips16";
133static const char mips_compression_micromips[] = "micromips";
134static const char *const mips_compression_strings[] =
135{
136 mips_compression_mips16,
137 mips_compression_micromips,
138 NULL
139};
140
141static const char *mips_compression_string = mips_compression_mips16;
142
f8b73d13
DJ
143/* The standard register names, and all the valid aliases for them. */
144struct register_alias
145{
146 const char *name;
147 int regnum;
148};
149
150/* Aliases for o32 and most other ABIs. */
151const struct register_alias mips_o32_aliases[] = {
152 { "ta0", 12 },
153 { "ta1", 13 },
154 { "ta2", 14 },
155 { "ta3", 15 }
156};
157
158/* Aliases for n32 and n64. */
159const struct register_alias mips_n32_n64_aliases[] = {
160 { "ta0", 8 },
161 { "ta1", 9 },
162 { "ta2", 10 },
163 { "ta3", 11 }
164};
165
166/* Aliases for ABI-independent registers. */
167const struct register_alias mips_register_aliases[] = {
168 /* The architecture manuals specify these ABI-independent names for
169 the GPRs. */
170#define R(n) { "r" #n, n }
171 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
172 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
173 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
174 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
175#undef R
176
177 /* k0 and k1 are sometimes called these instead (for "kernel
178 temp"). */
179 { "kt0", 26 },
180 { "kt1", 27 },
181
182 /* This is the traditional GDB name for the CP0 status register. */
183 { "sr", MIPS_PS_REGNUM },
184
185 /* This is the traditional GDB name for the CP0 BadVAddr register. */
186 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
187
188 /* This is the traditional GDB name for the FCSR. */
189 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
190};
191
865093a3
AR
192const struct register_alias mips_numeric_register_aliases[] = {
193#define R(n) { #n, n }
194 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
195 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
196 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
197 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
198#undef R
199};
200
c906108c
SS
201#ifndef MIPS_DEFAULT_FPU_TYPE
202#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
203#endif
204static int mips_fpu_type_auto = 1;
205static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 206
ccce17b0 207static unsigned int mips_debug = 0;
7a292a7a 208
29709017
DJ
209/* Properties (for struct target_desc) describing the g/G packet
210 layout. */
211#define PROPERTY_GP32 "internal: transfers-32bit-registers"
212#define PROPERTY_GP64 "internal: transfers-64bit-registers"
213
4eb0ad19
DJ
214struct target_desc *mips_tdesc_gp32;
215struct target_desc *mips_tdesc_gp64;
216
471b9d15
MR
217/* The current set of options to be passed to the disassembler. */
218static char *mips_disassembler_options;
219
220/* Implicit disassembler options for individual ABIs. These tell
221 libopcodes to use general-purpose register names corresponding
222 to the ABI we have selected, perhaps via a `set mips abi ...'
223 override, rather than ones inferred from the ABI set in the ELF
224 headers of the binary file selected for debugging. */
225static const char mips_disassembler_options_o32[] = "gpr-names=32";
226static const char mips_disassembler_options_n32[] = "gpr-names=n32";
227static const char mips_disassembler_options_n64[] = "gpr-names=64";
228
56cea623
AC
229const struct mips_regnum *
230mips_regnum (struct gdbarch *gdbarch)
231{
232 return gdbarch_tdep (gdbarch)->regnum;
233}
234
235static int
236mips_fpa0_regnum (struct gdbarch *gdbarch)
237{
238 return mips_regnum (gdbarch)->fp0 + 12;
239}
240
004159a2
MR
241/* Return 1 if REGNUM refers to a floating-point general register, raw
242 or cooked. Otherwise return 0. */
243
244static int
245mips_float_register_p (struct gdbarch *gdbarch, int regnum)
246{
247 int rawnum = regnum % gdbarch_num_regs (gdbarch);
248
249 return (rawnum >= mips_regnum (gdbarch)->fp0
250 && rawnum < mips_regnum (gdbarch)->fp0 + 32);
251}
252
74ed0bb4
MD
253#define MIPS_EABI(gdbarch) (gdbarch_tdep (gdbarch)->mips_abi \
254 == MIPS_ABI_EABI32 \
255 || gdbarch_tdep (gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 256
025bb325
MS
257#define MIPS_LAST_FP_ARG_REGNUM(gdbarch) \
258 (gdbarch_tdep (gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 259
025bb325
MS
260#define MIPS_LAST_ARG_REGNUM(gdbarch) \
261 (gdbarch_tdep (gdbarch)->mips_last_arg_regnum)
c2d11a7d 262
74ed0bb4 263#define MIPS_FPU_TYPE(gdbarch) (gdbarch_tdep (gdbarch)->mips_fpu_type)
c2d11a7d 264
d1973055
KB
265/* Return the MIPS ABI associated with GDBARCH. */
266enum mips_abi
267mips_abi (struct gdbarch *gdbarch)
268{
269 return gdbarch_tdep (gdbarch)->mips_abi;
270}
271
4246e332 272int
1b13c4f6 273mips_isa_regsize (struct gdbarch *gdbarch)
4246e332 274{
29709017
DJ
275 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
276
277 /* If we know how big the registers are, use that size. */
278 if (tdep->register_size_valid_p)
279 return tdep->register_size;
280
281 /* Fall back to the previous behavior. */
4246e332
AC
282 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
283 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
284}
285
b3464d03
PA
286/* Max saved register size. */
287#define MAX_MIPS_ABI_REGSIZE 8
288
025bb325 289/* Return the currently configured (or set) saved register size. */
480d3dd2 290
e6bc2e8a 291unsigned int
13326b4e 292mips_abi_regsize (struct gdbarch *gdbarch)
d929b26f 293{
1a69e1e4
DJ
294 switch (mips_abi (gdbarch))
295 {
296 case MIPS_ABI_EABI32:
297 case MIPS_ABI_O32:
298 return 4;
299 case MIPS_ABI_N32:
300 case MIPS_ABI_N64:
301 case MIPS_ABI_O64:
302 case MIPS_ABI_EABI64:
303 return 8;
304 case MIPS_ABI_UNKNOWN:
305 case MIPS_ABI_LAST:
306 default:
307 internal_error (__FILE__, __LINE__, _("bad switch"));
308 }
d929b26f
AC
309}
310
4cc0665f
MR
311/* MIPS16/microMIPS function addresses are odd (bit 0 is set). Here
312 are some functions to handle addresses associated with compressed
313 code including but not limited to testing, setting, or clearing
314 bit 0 of such addresses. */
742c84f6 315
4cc0665f
MR
316/* Return one iff compressed code is the MIPS16 instruction set. */
317
318static int
319is_mips16_isa (struct gdbarch *gdbarch)
320{
321 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MIPS16;
322}
323
324/* Return one iff compressed code is the microMIPS instruction set. */
325
326static int
327is_micromips_isa (struct gdbarch *gdbarch)
328{
329 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MICROMIPS;
330}
331
332/* Return one iff ADDR denotes compressed code. */
333
334static int
335is_compact_addr (CORE_ADDR addr)
742c84f6
MR
336{
337 return ((addr) & 1);
338}
339
4cc0665f
MR
340/* Return one iff ADDR denotes standard ISA code. */
341
342static int
343is_mips_addr (CORE_ADDR addr)
344{
345 return !is_compact_addr (addr);
346}
347
348/* Return one iff ADDR denotes MIPS16 code. */
349
350static int
351is_mips16_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
352{
353 return is_compact_addr (addr) && is_mips16_isa (gdbarch);
354}
355
356/* Return one iff ADDR denotes microMIPS code. */
357
358static int
359is_micromips_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
360{
361 return is_compact_addr (addr) && is_micromips_isa (gdbarch);
362}
363
364/* Strip the ISA (compression) bit off from ADDR. */
365
742c84f6 366static CORE_ADDR
4cc0665f 367unmake_compact_addr (CORE_ADDR addr)
742c84f6
MR
368{
369 return ((addr) & ~(CORE_ADDR) 1);
370}
371
4cc0665f
MR
372/* Add the ISA (compression) bit to ADDR. */
373
742c84f6 374static CORE_ADDR
4cc0665f 375make_compact_addr (CORE_ADDR addr)
742c84f6
MR
376{
377 return ((addr) | (CORE_ADDR) 1);
378}
379
3e29f34a
MR
380/* Extern version of unmake_compact_addr; we use a separate function
381 so that unmake_compact_addr can be inlined throughout this file. */
382
383CORE_ADDR
384mips_unmake_compact_addr (CORE_ADDR addr)
385{
386 return unmake_compact_addr (addr);
387}
388
71b8ef93 389/* Functions for setting and testing a bit in a minimal symbol that
4cc0665f
MR
390 marks it as MIPS16 or microMIPS function. The MSB of the minimal
391 symbol's "info" field is used for this purpose.
5a89d8aa 392
4cc0665f
MR
393 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is
394 "special", i.e. refers to a MIPS16 or microMIPS function, and sets
395 one of the "special" bits in a minimal symbol to mark it accordingly.
396 The test checks an ELF-private flag that is valid for true function
1bbce132
MR
397 symbols only; for synthetic symbols such as for PLT stubs that have
398 no ELF-private part at all the MIPS BFD backend arranges for this
399 information to be carried in the asymbol's udata field instead.
5a89d8aa 400
4cc0665f
MR
401 msymbol_is_mips16 and msymbol_is_micromips test the "special" bit
402 in a minimal symbol. */
5a89d8aa 403
5a89d8aa 404static void
6d82d43b
AC
405mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
406{
4cc0665f 407 elf_symbol_type *elfsym = (elf_symbol_type *) sym;
1bbce132 408 unsigned char st_other;
4cc0665f 409
1bbce132
MR
410 if ((sym->flags & BSF_SYNTHETIC) == 0)
411 st_other = elfsym->internal_elf_sym.st_other;
412 else if ((sym->flags & BSF_FUNCTION) != 0)
413 st_other = sym->udata.i;
414 else
4cc0665f
MR
415 return;
416
1bbce132 417 if (ELF_ST_IS_MICROMIPS (st_other))
3e29f34a 418 {
f161c171 419 MSYMBOL_TARGET_FLAG_MICROMIPS (msym) = 1;
3e29f34a
MR
420 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
421 }
1bbce132 422 else if (ELF_ST_IS_MIPS16 (st_other))
3e29f34a 423 {
f161c171 424 MSYMBOL_TARGET_FLAG_MIPS16 (msym) = 1;
3e29f34a
MR
425 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
426 }
4cc0665f
MR
427}
428
429/* Return one iff MSYM refers to standard ISA code. */
430
431static int
432msymbol_is_mips (struct minimal_symbol *msym)
433{
f161c171
MR
434 return !(MSYMBOL_TARGET_FLAG_MIPS16 (msym)
435 | MSYMBOL_TARGET_FLAG_MICROMIPS (msym));
5a89d8aa
MS
436}
437
4cc0665f
MR
438/* Return one iff MSYM refers to MIPS16 code. */
439
71b8ef93 440static int
4cc0665f 441msymbol_is_mips16 (struct minimal_symbol *msym)
71b8ef93 442{
f161c171 443 return MSYMBOL_TARGET_FLAG_MIPS16 (msym);
71b8ef93
MS
444}
445
4cc0665f
MR
446/* Return one iff MSYM refers to microMIPS code. */
447
448static int
449msymbol_is_micromips (struct minimal_symbol *msym)
450{
f161c171 451 return MSYMBOL_TARGET_FLAG_MICROMIPS (msym);
4cc0665f
MR
452}
453
3e29f34a
MR
454/* Set the ISA bit in the main symbol too, complementing the corresponding
455 minimal symbol setting and reflecting the run-time value of the symbol.
456 The need for comes from the ISA bit having been cleared as code in
457 `_bfd_mips_elf_symbol_processing' separated it into the ELF symbol's
458 `st_other' STO_MIPS16 or STO_MICROMIPS annotation, making the values
459 of symbols referring to compressed code different in GDB to the values
460 used by actual code. That in turn makes them evaluate incorrectly in
461 expressions, producing results different to what the same expressions
462 yield when compiled into the program being debugged. */
463
464static void
465mips_make_symbol_special (struct symbol *sym, struct objfile *objfile)
466{
467 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
468 {
469 /* We are in symbol reading so it is OK to cast away constness. */
470 struct block *block = (struct block *) SYMBOL_BLOCK_VALUE (sym);
471 CORE_ADDR compact_block_start;
472 struct bound_minimal_symbol msym;
473
474 compact_block_start = BLOCK_START (block) | 1;
475 msym = lookup_minimal_symbol_by_pc (compact_block_start);
476 if (msym.minsym && !msymbol_is_mips (msym.minsym))
477 {
478 BLOCK_START (block) = compact_block_start;
479 }
480 }
481}
482
88658117
AC
483/* XFER a value from the big/little/left end of the register.
484 Depending on the size of the value it might occupy the entire
485 register or just part of it. Make an allowance for this, aligning
486 things accordingly. */
487
488static void
ba32f989
DJ
489mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
490 int reg_num, int length,
870cd05e
MK
491 enum bfd_endian endian, gdb_byte *in,
492 const gdb_byte *out, int buf_offset)
88658117 493{
88658117 494 int reg_offset = 0;
72a155b4
UW
495
496 gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
cb1d2653
AC
497 /* Need to transfer the left or right part of the register, based on
498 the targets byte order. */
88658117
AC
499 switch (endian)
500 {
501 case BFD_ENDIAN_BIG:
72a155b4 502 reg_offset = register_size (gdbarch, reg_num) - length;
88658117
AC
503 break;
504 case BFD_ENDIAN_LITTLE:
505 reg_offset = 0;
506 break;
6d82d43b 507 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
88658117
AC
508 reg_offset = 0;
509 break;
510 default:
e2e0b3e5 511 internal_error (__FILE__, __LINE__, _("bad switch"));
88658117
AC
512 }
513 if (mips_debug)
cb1d2653
AC
514 fprintf_unfiltered (gdb_stderr,
515 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
516 reg_num, reg_offset, buf_offset, length);
88658117
AC
517 if (mips_debug && out != NULL)
518 {
519 int i;
cb1d2653 520 fprintf_unfiltered (gdb_stdlog, "out ");
88658117 521 for (i = 0; i < length; i++)
cb1d2653 522 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
88658117
AC
523 }
524 if (in != NULL)
73bb0000 525 regcache->cooked_read_part (reg_num, reg_offset, length, in + buf_offset);
88658117 526 if (out != NULL)
e4c4a59b 527 regcache->cooked_write_part (reg_num, reg_offset, length, out + buf_offset);
88658117
AC
528 if (mips_debug && in != NULL)
529 {
530 int i;
cb1d2653 531 fprintf_unfiltered (gdb_stdlog, "in ");
88658117 532 for (i = 0; i < length; i++)
cb1d2653 533 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
88658117
AC
534 }
535 if (mips_debug)
536 fprintf_unfiltered (gdb_stdlog, "\n");
537}
538
dd824b04
DJ
539/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
540 compatiblity mode. A return value of 1 means that we have
541 physical 64-bit registers, but should treat them as 32-bit registers. */
542
543static int
9c9acae0 544mips2_fp_compat (struct frame_info *frame)
dd824b04 545{
72a155b4 546 struct gdbarch *gdbarch = get_frame_arch (frame);
dd824b04
DJ
547 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
548 meaningful. */
72a155b4 549 if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
dd824b04
DJ
550 return 0;
551
552#if 0
553 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
554 in all the places we deal with FP registers. PR gdb/413. */
555 /* Otherwise check the FR bit in the status register - it controls
556 the FP compatiblity mode. If it is clear we are in compatibility
557 mode. */
9c9acae0 558 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
dd824b04
DJ
559 return 1;
560#endif
361d1df0 561
dd824b04
DJ
562 return 0;
563}
564
7a292a7a 565#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 566
74ed0bb4 567static CORE_ADDR heuristic_proc_start (struct gdbarch *, CORE_ADDR);
c906108c 568
025bb325 569/* The list of available "set mips " and "show mips " commands. */
acdb74a0
AC
570
571static struct cmd_list_element *setmipscmdlist = NULL;
572static struct cmd_list_element *showmipscmdlist = NULL;
573
5e2e9765
KB
574/* Integer registers 0 thru 31 are handled explicitly by
575 mips_register_name(). Processor specific registers 32 and above
8a9fc081 576 are listed in the following tables. */
691c0433 577
6d82d43b
AC
578enum
579{ NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
691c0433
AC
580
581/* Generic MIPS. */
582
583static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
584 "sr", "lo", "hi", "bad", "cause", "pc",
585 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
586 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
587 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
588 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
1faeff08 589 "fsr", "fir",
691c0433
AC
590};
591
691c0433
AC
592/* Names of tx39 registers. */
593
594static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
595 "sr", "lo", "hi", "bad", "cause", "pc",
596 "", "", "", "", "", "", "", "",
597 "", "", "", "", "", "", "", "",
598 "", "", "", "", "", "", "", "",
599 "", "", "", "", "", "", "", "",
600 "", "", "", "",
601 "", "", "", "", "", "", "", "",
1faeff08 602 "", "", "config", "cache", "debug", "depc", "epc",
691c0433
AC
603};
604
44099a67 605/* Names of registers with Linux kernels. */
1faeff08
MR
606static const char *mips_linux_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
607 "sr", "lo", "hi", "bad", "cause", "pc",
608 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
609 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
610 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
611 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
612 "fsr", "fir"
613};
614
cce74817 615
5e2e9765 616/* Return the name of the register corresponding to REGNO. */
5a89d8aa 617static const char *
d93859e2 618mips_register_name (struct gdbarch *gdbarch, int regno)
cce74817 619{
d93859e2 620 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5e2e9765 621 /* GPR names for all ABIs other than n32/n64. */
a121b7c1 622 static const char *mips_gpr_names[] = {
6d82d43b
AC
623 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
624 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
625 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
626 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
5e2e9765
KB
627 };
628
629 /* GPR names for n32 and n64 ABIs. */
a121b7c1 630 static const char *mips_n32_n64_gpr_names[] = {
6d82d43b
AC
631 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
632 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
633 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
634 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
5e2e9765
KB
635 };
636
d93859e2 637 enum mips_abi abi = mips_abi (gdbarch);
5e2e9765 638
f57d151a 639 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
6229fbea
HZ
640 but then don't make the raw register names visible. This (upper)
641 range of user visible register numbers are the pseudo-registers.
642
643 This approach was adopted accommodate the following scenario:
644 It is possible to debug a 64-bit device using a 32-bit
645 programming model. In such instances, the raw registers are
646 configured to be 64-bits wide, while the pseudo registers are
647 configured to be 32-bits wide. The registers that the user
648 sees - the pseudo registers - match the users expectations
649 given the programming model being used. */
d93859e2
UW
650 int rawnum = regno % gdbarch_num_regs (gdbarch);
651 if (regno < gdbarch_num_regs (gdbarch))
a4b8ebc8
AC
652 return "";
653
5e2e9765
KB
654 /* The MIPS integer registers are always mapped from 0 to 31. The
655 names of the registers (which reflects the conventions regarding
656 register use) vary depending on the ABI. */
a4b8ebc8 657 if (0 <= rawnum && rawnum < 32)
5e2e9765
KB
658 {
659 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
a4b8ebc8 660 return mips_n32_n64_gpr_names[rawnum];
5e2e9765 661 else
a4b8ebc8 662 return mips_gpr_names[rawnum];
5e2e9765 663 }
d93859e2
UW
664 else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
665 return tdesc_register_name (gdbarch, rawnum);
666 else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
691c0433
AC
667 {
668 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
1faeff08
MR
669 if (tdep->mips_processor_reg_names[rawnum - 32])
670 return tdep->mips_processor_reg_names[rawnum - 32];
671 return "";
691c0433 672 }
5e2e9765
KB
673 else
674 internal_error (__FILE__, __LINE__,
e2e0b3e5 675 _("mips_register_name: bad register number %d"), rawnum);
cce74817 676}
5e2e9765 677
a4b8ebc8 678/* Return the groups that a MIPS register can be categorised into. */
c5aa993b 679
a4b8ebc8
AC
680static int
681mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
682 struct reggroup *reggroup)
683{
684 int vector_p;
685 int float_p;
686 int raw_p;
72a155b4
UW
687 int rawnum = regnum % gdbarch_num_regs (gdbarch);
688 int pseudo = regnum / gdbarch_num_regs (gdbarch);
a4b8ebc8
AC
689 if (reggroup == all_reggroup)
690 return pseudo;
691 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
692 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
693 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
694 (gdbarch), as not all architectures are multi-arch. */
72a155b4
UW
695 raw_p = rawnum < gdbarch_num_regs (gdbarch);
696 if (gdbarch_register_name (gdbarch, regnum) == NULL
697 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
a4b8ebc8
AC
698 return 0;
699 if (reggroup == float_reggroup)
700 return float_p && pseudo;
701 if (reggroup == vector_reggroup)
702 return vector_p && pseudo;
703 if (reggroup == general_reggroup)
704 return (!vector_p && !float_p) && pseudo;
705 /* Save the pseudo registers. Need to make certain that any code
706 extracting register values from a saved register cache also uses
707 pseudo registers. */
708 if (reggroup == save_reggroup)
709 return raw_p && pseudo;
710 /* Restore the same pseudo register. */
711 if (reggroup == restore_reggroup)
712 return raw_p && pseudo;
6d82d43b 713 return 0;
a4b8ebc8
AC
714}
715
f8b73d13
DJ
716/* Return the groups that a MIPS register can be categorised into.
717 This version is only used if we have a target description which
718 describes real registers (and their groups). */
719
720static int
721mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
722 struct reggroup *reggroup)
723{
724 int rawnum = regnum % gdbarch_num_regs (gdbarch);
725 int pseudo = regnum / gdbarch_num_regs (gdbarch);
726 int ret;
727
728 /* Only save, restore, and display the pseudo registers. Need to
729 make certain that any code extracting register values from a
730 saved register cache also uses pseudo registers.
731
732 Note: saving and restoring the pseudo registers is slightly
733 strange; if we have 64 bits, we should save and restore all
734 64 bits. But this is hard and has little benefit. */
735 if (!pseudo)
736 return 0;
737
738 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
739 if (ret != -1)
740 return ret;
741
742 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
743}
744
a4b8ebc8 745/* Map the symbol table registers which live in the range [1 *
f57d151a 746 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
47ebcfbe 747 registers. Take care of alignment and size problems. */
c5aa993b 748
05d1431c 749static enum register_status
849d0ba8 750mips_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
47a35522 751 int cookednum, gdb_byte *buf)
a4b8ebc8 752{
72a155b4
UW
753 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
754 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
755 && cookednum < 2 * gdbarch_num_regs (gdbarch));
47ebcfbe 756 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
03f50fc8 757 return regcache->raw_read (rawnum, buf);
6d82d43b
AC
758 else if (register_size (gdbarch, rawnum) >
759 register_size (gdbarch, cookednum))
47ebcfbe 760 {
8bdf35dc 761 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
03f50fc8 762 return regcache->raw_read_part (rawnum, 0, 4, buf);
47ebcfbe 763 else
8bdf35dc
KB
764 {
765 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
766 LONGEST regval;
05d1431c
PA
767 enum register_status status;
768
03f50fc8 769 status = regcache->raw_read (rawnum, &regval);
05d1431c
PA
770 if (status == REG_VALID)
771 store_signed_integer (buf, 4, byte_order, regval);
772 return status;
8bdf35dc 773 }
47ebcfbe
AC
774 }
775 else
e2e0b3e5 776 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8
AC
777}
778
779static void
6d82d43b
AC
780mips_pseudo_register_write (struct gdbarch *gdbarch,
781 struct regcache *regcache, int cookednum,
47a35522 782 const gdb_byte *buf)
a4b8ebc8 783{
72a155b4
UW
784 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
785 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
786 && cookednum < 2 * gdbarch_num_regs (gdbarch));
47ebcfbe 787 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
10eaee5f 788 regcache->raw_write (rawnum, buf);
6d82d43b
AC
789 else if (register_size (gdbarch, rawnum) >
790 register_size (gdbarch, cookednum))
47ebcfbe 791 {
8bdf35dc 792 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
4f0420fd 793 regcache->raw_write_part (rawnum, 0, 4, buf);
47ebcfbe 794 else
8bdf35dc
KB
795 {
796 /* Sign extend the shortened version of the register prior
797 to placing it in the raw register. This is required for
798 some mips64 parts in order to avoid unpredictable behavior. */
799 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
800 LONGEST regval = extract_signed_integer (buf, 4, byte_order);
801 regcache_raw_write_signed (regcache, rawnum, regval);
802 }
47ebcfbe
AC
803 }
804 else
e2e0b3e5 805 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8 806}
c5aa993b 807
175ff332
HZ
808static int
809mips_ax_pseudo_register_collect (struct gdbarch *gdbarch,
810 struct agent_expr *ax, int reg)
811{
812 int rawnum = reg % gdbarch_num_regs (gdbarch);
813 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
814 && reg < 2 * gdbarch_num_regs (gdbarch));
815
816 ax_reg_mask (ax, rawnum);
817
818 return 0;
819}
820
821static int
822mips_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
823 struct agent_expr *ax, int reg)
824{
825 int rawnum = reg % gdbarch_num_regs (gdbarch);
826 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
827 && reg < 2 * gdbarch_num_regs (gdbarch));
828 if (register_size (gdbarch, rawnum) >= register_size (gdbarch, reg))
829 {
830 ax_reg (ax, rawnum);
831
832 if (register_size (gdbarch, rawnum) > register_size (gdbarch, reg))
833 {
834 if (!gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
835 || gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
836 {
837 ax_const_l (ax, 32);
838 ax_simple (ax, aop_lsh);
839 }
840 ax_const_l (ax, 32);
841 ax_simple (ax, aop_rsh_signed);
842 }
843 }
844 else
845 internal_error (__FILE__, __LINE__, _("bad register size"));
846
847 return 0;
848}
849
4cc0665f 850/* Table to translate 3-bit register field to actual register number. */
d467df4e 851static const signed char mips_reg3_to_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
c906108c
SS
852
853/* Heuristic_proc_start may hunt through the text section for a long
854 time across a 2400 baud serial line. Allows the user to limit this
855 search. */
856
44096aee 857static int heuristic_fence_post = 0;
c906108c 858
46cd78fb 859/* Number of bytes of storage in the actual machine representation for
719ec221
AC
860 register N. NOTE: This defines the pseudo register type so need to
861 rebuild the architecture vector. */
43e526b9
JM
862
863static int mips64_transfers_32bit_regs_p = 0;
864
719ec221 865static void
eb4c3f4a 866set_mips64_transfers_32bit_regs (const char *args, int from_tty,
719ec221 867 struct cmd_list_element *c)
43e526b9 868{
719ec221
AC
869 struct gdbarch_info info;
870 gdbarch_info_init (&info);
871 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
872 instead of relying on globals. Doing that would let generic code
873 handle the search for this specific architecture. */
874 if (!gdbarch_update_p (info))
a4b8ebc8 875 {
719ec221 876 mips64_transfers_32bit_regs_p = 0;
8a3fe4f8 877 error (_("32-bit compatibility mode not supported"));
a4b8ebc8 878 }
a4b8ebc8
AC
879}
880
47ebcfbe 881/* Convert to/from a register and the corresponding memory value. */
43e526b9 882
ee51a8c7
KB
883/* This predicate tests for the case of an 8 byte floating point
884 value that is being transferred to or from a pair of floating point
885 registers each of which are (or are considered to be) only 4 bytes
886 wide. */
ff2e87ac 887static int
ee51a8c7
KB
888mips_convert_register_float_case_p (struct gdbarch *gdbarch, int regnum,
889 struct type *type)
ff2e87ac 890{
0abe36f5
MD
891 return (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
892 && register_size (gdbarch, regnum) == 4
004159a2 893 && mips_float_register_p (gdbarch, regnum)
6d82d43b 894 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
ff2e87ac
AC
895}
896
ee51a8c7
KB
897/* This predicate tests for the case of a value of less than 8
898 bytes in width that is being transfered to or from an 8 byte
899 general purpose register. */
900static int
901mips_convert_register_gpreg_case_p (struct gdbarch *gdbarch, int regnum,
902 struct type *type)
903{
904 int num_regs = gdbarch_num_regs (gdbarch);
905
906 return (register_size (gdbarch, regnum) == 8
907 && regnum % num_regs > 0 && regnum % num_regs < 32
908 && TYPE_LENGTH (type) < 8);
909}
910
911static int
025bb325
MS
912mips_convert_register_p (struct gdbarch *gdbarch,
913 int regnum, struct type *type)
ee51a8c7 914{
eaa05d59
MR
915 return (mips_convert_register_float_case_p (gdbarch, regnum, type)
916 || mips_convert_register_gpreg_case_p (gdbarch, regnum, type));
ee51a8c7
KB
917}
918
8dccd430 919static int
ff2e87ac 920mips_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
921 struct type *type, gdb_byte *to,
922 int *optimizedp, int *unavailablep)
102182a9 923{
ee51a8c7
KB
924 struct gdbarch *gdbarch = get_frame_arch (frame);
925
926 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
927 {
928 get_frame_register (frame, regnum + 0, to + 4);
929 get_frame_register (frame, regnum + 1, to + 0);
8dccd430
PA
930
931 if (!get_frame_register_bytes (frame, regnum + 0, 0, 4, to + 4,
932 optimizedp, unavailablep))
933 return 0;
934
935 if (!get_frame_register_bytes (frame, regnum + 1, 0, 4, to + 0,
936 optimizedp, unavailablep))
937 return 0;
938 *optimizedp = *unavailablep = 0;
939 return 1;
ee51a8c7
KB
940 }
941 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
942 {
943 int len = TYPE_LENGTH (type);
8dccd430
PA
944 CORE_ADDR offset;
945
946 offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 - len : 0;
947 if (!get_frame_register_bytes (frame, regnum, offset, len, to,
948 optimizedp, unavailablep))
949 return 0;
950
951 *optimizedp = *unavailablep = 0;
952 return 1;
ee51a8c7
KB
953 }
954 else
955 {
956 internal_error (__FILE__, __LINE__,
957 _("mips_register_to_value: unrecognized case"));
958 }
102182a9
MS
959}
960
42c466d7 961static void
ff2e87ac 962mips_value_to_register (struct frame_info *frame, int regnum,
47a35522 963 struct type *type, const gdb_byte *from)
102182a9 964{
ee51a8c7
KB
965 struct gdbarch *gdbarch = get_frame_arch (frame);
966
967 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
968 {
969 put_frame_register (frame, regnum + 0, from + 4);
970 put_frame_register (frame, regnum + 1, from + 0);
971 }
972 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
973 {
974 gdb_byte fill[8];
975 int len = TYPE_LENGTH (type);
976
977 /* Sign extend values, irrespective of type, that are stored to
978 a 64-bit general purpose register. (32-bit unsigned values
979 are stored as signed quantities within a 64-bit register.
980 When performing an operation, in compiled code, that combines
981 a 32-bit unsigned value with a signed 64-bit value, a type
982 conversion is first performed that zeroes out the high 32 bits.) */
983 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
984 {
985 if (from[0] & 0x80)
986 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, -1);
987 else
988 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, 0);
989 put_frame_register_bytes (frame, regnum, 0, 8 - len, fill);
990 put_frame_register_bytes (frame, regnum, 8 - len, len, from);
991 }
992 else
993 {
994 if (from[len-1] & 0x80)
995 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, -1);
996 else
997 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, 0);
998 put_frame_register_bytes (frame, regnum, 0, len, from);
999 put_frame_register_bytes (frame, regnum, len, 8 - len, fill);
1000 }
1001 }
1002 else
1003 {
1004 internal_error (__FILE__, __LINE__,
1005 _("mips_value_to_register: unrecognized case"));
1006 }
102182a9
MS
1007}
1008
a4b8ebc8
AC
1009/* Return the GDB type object for the "standard" data type of data in
1010 register REG. */
78fde5f8
KB
1011
1012static struct type *
a4b8ebc8
AC
1013mips_register_type (struct gdbarch *gdbarch, int regnum)
1014{
72a155b4 1015 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
004159a2 1016 if (mips_float_register_p (gdbarch, regnum))
a6425924 1017 {
5ef80fb0 1018 /* The floating-point registers raw, or cooked, always match
1b13c4f6 1019 mips_isa_regsize(), and also map 1:1, byte for byte. */
8da61cc4 1020 if (mips_isa_regsize (gdbarch) == 4)
27067745 1021 return builtin_type (gdbarch)->builtin_float;
8da61cc4 1022 else
27067745 1023 return builtin_type (gdbarch)->builtin_double;
a6425924 1024 }
72a155b4 1025 else if (regnum < gdbarch_num_regs (gdbarch))
d5ac5a39
AC
1026 {
1027 /* The raw or ISA registers. These are all sized according to
1028 the ISA regsize. */
1029 if (mips_isa_regsize (gdbarch) == 4)
df4df182 1030 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39 1031 else
df4df182 1032 return builtin_type (gdbarch)->builtin_int64;
d5ac5a39 1033 }
78fde5f8 1034 else
d5ac5a39 1035 {
1faeff08
MR
1036 int rawnum = regnum - gdbarch_num_regs (gdbarch);
1037
d5ac5a39
AC
1038 /* The cooked or ABI registers. These are sized according to
1039 the ABI (with a few complications). */
1faeff08
MR
1040 if (rawnum == mips_regnum (gdbarch)->fp_control_status
1041 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
1042 return builtin_type (gdbarch)->builtin_int32;
de4bfa86 1043 else if (gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1faeff08
MR
1044 && rawnum >= MIPS_FIRST_EMBED_REGNUM
1045 && rawnum <= MIPS_LAST_EMBED_REGNUM)
d5ac5a39
AC
1046 /* The pseudo/cooked view of the embedded registers is always
1047 32-bit. The raw view is handled below. */
df4df182 1048 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39
AC
1049 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
1050 /* The target, while possibly using a 64-bit register buffer,
1051 is only transfering 32-bits of each integer register.
1052 Reflect this in the cooked/pseudo (ABI) register value. */
df4df182 1053 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39
AC
1054 else if (mips_abi_regsize (gdbarch) == 4)
1055 /* The ABI is restricted to 32-bit registers (the ISA could be
1056 32- or 64-bit). */
df4df182 1057 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39
AC
1058 else
1059 /* 64-bit ABI. */
df4df182 1060 return builtin_type (gdbarch)->builtin_int64;
d5ac5a39 1061 }
78fde5f8
KB
1062}
1063
f8b73d13
DJ
1064/* Return the GDB type for the pseudo register REGNUM, which is the
1065 ABI-level view. This function is only called if there is a target
1066 description which includes registers, so we know precisely the
1067 types of hardware registers. */
1068
1069static struct type *
1070mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
1071{
1072 const int num_regs = gdbarch_num_regs (gdbarch);
f8b73d13
DJ
1073 int rawnum = regnum % num_regs;
1074 struct type *rawtype;
1075
1076 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
1077
1078 /* Absent registers are still absent. */
1079 rawtype = gdbarch_register_type (gdbarch, rawnum);
1080 if (TYPE_LENGTH (rawtype) == 0)
1081 return rawtype;
1082
a6912260
MR
1083 /* Present the floating point registers however the hardware did;
1084 do not try to convert between FPU layouts. */
de13fcf2 1085 if (mips_float_register_p (gdbarch, rawnum))
f8b73d13
DJ
1086 return rawtype;
1087
78b86327
MR
1088 /* Floating-point control registers are always 32-bit even though for
1089 backwards compatibility reasons 64-bit targets will transfer them
1090 as 64-bit quantities even if using XML descriptions. */
1091 if (rawnum == mips_regnum (gdbarch)->fp_control_status
1092 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
1093 return builtin_type (gdbarch)->builtin_int32;
1094
f8b73d13
DJ
1095 /* Use pointer types for registers if we can. For n32 we can not,
1096 since we do not have a 64-bit pointer type. */
0dfff4cb
UW
1097 if (mips_abi_regsize (gdbarch)
1098 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr))
f8b73d13 1099 {
1faeff08
MR
1100 if (rawnum == MIPS_SP_REGNUM
1101 || rawnum == mips_regnum (gdbarch)->badvaddr)
0dfff4cb 1102 return builtin_type (gdbarch)->builtin_data_ptr;
1faeff08 1103 else if (rawnum == mips_regnum (gdbarch)->pc)
0dfff4cb 1104 return builtin_type (gdbarch)->builtin_func_ptr;
f8b73d13
DJ
1105 }
1106
1107 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
1faeff08
MR
1108 && ((rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_PS_REGNUM)
1109 || rawnum == mips_regnum (gdbarch)->lo
1110 || rawnum == mips_regnum (gdbarch)->hi
1111 || rawnum == mips_regnum (gdbarch)->badvaddr
1112 || rawnum == mips_regnum (gdbarch)->cause
1113 || rawnum == mips_regnum (gdbarch)->pc
1114 || (mips_regnum (gdbarch)->dspacc != -1
1115 && rawnum >= mips_regnum (gdbarch)->dspacc
1116 && rawnum < mips_regnum (gdbarch)->dspacc + 6)))
df4df182 1117 return builtin_type (gdbarch)->builtin_int32;
f8b73d13 1118
a6912260
MR
1119 /* The pseudo/cooked view of embedded registers is always
1120 32-bit, even if the target transfers 64-bit values for them.
1121 New targets relying on XML descriptions should only transfer
1122 the necessary 32 bits, but older versions of GDB expected 64,
1123 so allow the target to provide 64 bits without interfering
1124 with the displayed type. */
de4bfa86 1125 if (gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
78b86327 1126 && rawnum >= MIPS_FIRST_EMBED_REGNUM
1faeff08 1127 && rawnum <= MIPS_LAST_EMBED_REGNUM)
a6912260 1128 return builtin_type (gdbarch)->builtin_int32;
1faeff08 1129
f8b73d13
DJ
1130 /* For all other registers, pass through the hardware type. */
1131 return rawtype;
1132}
bcb0cc15 1133
025bb325 1134/* Should the upper word of 64-bit addresses be zeroed? */
ea33cd92 1135static enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
1136
1137static int
480d3dd2 1138mips_mask_address_p (struct gdbarch_tdep *tdep)
4014092b
AC
1139{
1140 switch (mask_address_var)
1141 {
7f19b9a2 1142 case AUTO_BOOLEAN_TRUE:
4014092b 1143 return 1;
7f19b9a2 1144 case AUTO_BOOLEAN_FALSE:
4014092b
AC
1145 return 0;
1146 break;
7f19b9a2 1147 case AUTO_BOOLEAN_AUTO:
480d3dd2 1148 return tdep->default_mask_address_p;
4014092b 1149 default:
025bb325
MS
1150 internal_error (__FILE__, __LINE__,
1151 _("mips_mask_address_p: bad switch"));
4014092b 1152 return -1;
361d1df0 1153 }
4014092b
AC
1154}
1155
1156static void
08546159
AC
1157show_mask_address (struct ui_file *file, int from_tty,
1158 struct cmd_list_element *c, const char *value)
4014092b 1159{
f5656ead 1160 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
08546159
AC
1161
1162 deprecated_show_value_hack (file, from_tty, c, value);
4014092b
AC
1163 switch (mask_address_var)
1164 {
7f19b9a2 1165 case AUTO_BOOLEAN_TRUE:
4014092b
AC
1166 printf_filtered ("The 32 bit mips address mask is enabled\n");
1167 break;
7f19b9a2 1168 case AUTO_BOOLEAN_FALSE:
4014092b
AC
1169 printf_filtered ("The 32 bit mips address mask is disabled\n");
1170 break;
7f19b9a2 1171 case AUTO_BOOLEAN_AUTO:
6d82d43b
AC
1172 printf_filtered
1173 ("The 32 bit address mask is set automatically. Currently %s\n",
1174 mips_mask_address_p (tdep) ? "enabled" : "disabled");
4014092b
AC
1175 break;
1176 default:
e2e0b3e5 1177 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
4014092b 1178 break;
361d1df0 1179 }
4014092b 1180}
c906108c 1181
4cc0665f
MR
1182/* Tell if the program counter value in MEMADDR is in a standard ISA
1183 function. */
1184
1185int
1186mips_pc_is_mips (CORE_ADDR memaddr)
1187{
7cbd4a93 1188 struct bound_minimal_symbol sym;
4cc0665f
MR
1189
1190 /* Flags indicating that this is a MIPS16 or microMIPS function is
1191 stored by elfread.c in the high bit of the info field. Use this
1192 to decide if the function is standard MIPS. Otherwise if bit 0
1193 of the address is clear, then this is a standard MIPS function. */
3e29f34a 1194 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
7cbd4a93
TT
1195 if (sym.minsym)
1196 return msymbol_is_mips (sym.minsym);
4cc0665f
MR
1197 else
1198 return is_mips_addr (memaddr);
1199}
1200
c906108c
SS
1201/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
1202
0fe7e7c8 1203int
4cc0665f 1204mips_pc_is_mips16 (struct gdbarch *gdbarch, CORE_ADDR memaddr)
c906108c 1205{
7cbd4a93 1206 struct bound_minimal_symbol sym;
c906108c 1207
91912e4d
MR
1208 /* A flag indicating that this is a MIPS16 function is stored by
1209 elfread.c in the high bit of the info field. Use this to decide
4cc0665f
MR
1210 if the function is MIPS16. Otherwise if bit 0 of the address is
1211 set, then ELF file flags will tell if this is a MIPS16 function. */
3e29f34a 1212 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
7cbd4a93
TT
1213 if (sym.minsym)
1214 return msymbol_is_mips16 (sym.minsym);
4cc0665f
MR
1215 else
1216 return is_mips16_addr (gdbarch, memaddr);
1217}
1218
1219/* Tell if the program counter value in MEMADDR is in a microMIPS function. */
1220
1221int
1222mips_pc_is_micromips (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1223{
7cbd4a93 1224 struct bound_minimal_symbol sym;
4cc0665f
MR
1225
1226 /* A flag indicating that this is a microMIPS function is stored by
1227 elfread.c in the high bit of the info field. Use this to decide
1228 if the function is microMIPS. Otherwise if bit 0 of the address
1229 is set, then ELF file flags will tell if this is a microMIPS
1230 function. */
3e29f34a 1231 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
7cbd4a93
TT
1232 if (sym.minsym)
1233 return msymbol_is_micromips (sym.minsym);
4cc0665f
MR
1234 else
1235 return is_micromips_addr (gdbarch, memaddr);
1236}
1237
1238/* Tell the ISA type of the function the program counter value in MEMADDR
1239 is in. */
1240
1241static enum mips_isa
1242mips_pc_isa (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1243{
7cbd4a93 1244 struct bound_minimal_symbol sym;
4cc0665f
MR
1245
1246 /* A flag indicating that this is a MIPS16 or a microMIPS function
1247 is stored by elfread.c in the high bit of the info field. Use
1248 this to decide if the function is MIPS16 or microMIPS or normal
1249 MIPS. Otherwise if bit 0 of the address is set, then ELF file
1250 flags will tell if this is a MIPS16 or a microMIPS function. */
3e29f34a 1251 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
7cbd4a93 1252 if (sym.minsym)
4cc0665f 1253 {
7cbd4a93 1254 if (msymbol_is_micromips (sym.minsym))
4cc0665f 1255 return ISA_MICROMIPS;
7cbd4a93 1256 else if (msymbol_is_mips16 (sym.minsym))
4cc0665f
MR
1257 return ISA_MIPS16;
1258 else
1259 return ISA_MIPS;
1260 }
c906108c 1261 else
4cc0665f
MR
1262 {
1263 if (is_mips_addr (memaddr))
1264 return ISA_MIPS;
1265 else if (is_micromips_addr (gdbarch, memaddr))
1266 return ISA_MICROMIPS;
1267 else
1268 return ISA_MIPS16;
1269 }
c906108c
SS
1270}
1271
3e29f34a
MR
1272/* Set the ISA bit correctly in the PC, used by DWARF-2 machinery.
1273 The need for comes from the ISA bit having been cleared, making
1274 addresses in FDE, range records, etc. referring to compressed code
1275 different to those in line information, the symbol table and finally
1276 the PC register. That in turn confuses many operations. */
1277
1278static CORE_ADDR
1279mips_adjust_dwarf2_addr (CORE_ADDR pc)
1280{
1281 pc = unmake_compact_addr (pc);
1282 return mips_pc_is_mips (pc) ? pc : make_compact_addr (pc);
1283}
1284
1285/* Recalculate the line record requested so that the resulting PC has
1286 the ISA bit set correctly, used by DWARF-2 machinery. The need for
1287 this adjustment comes from some records associated with compressed
1288 code having the ISA bit cleared, most notably at function prologue
1289 ends. The ISA bit is in this context retrieved from the minimal
1290 symbol covering the address requested, which in turn has been
1291 constructed from the binary's symbol table rather than DWARF-2
1292 information. The correct setting of the ISA bit is required for
1293 breakpoint addresses to correctly match against the stop PC.
1294
1295 As line entries can specify relative address adjustments we need to
1296 keep track of the absolute value of the last line address recorded
1297 in line information, so that we can calculate the actual address to
1298 apply the ISA bit adjustment to. We use PC for this tracking and
1299 keep the original address there.
1300
1301 As such relative address adjustments can be odd within compressed
1302 code we need to keep track of the last line address with the ISA
1303 bit adjustment applied too, as the original address may or may not
1304 have had the ISA bit set. We use ADJ_PC for this tracking and keep
1305 the adjusted address there.
1306
1307 For relative address adjustments we then use these variables to
1308 calculate the address intended by line information, which will be
1309 PC-relative, and return an updated adjustment carrying ISA bit
1310 information, which will be ADJ_PC-relative. For absolute address
1311 adjustments we just return the same address that we store in ADJ_PC
1312 too.
1313
1314 As the first line entry can be relative to an implied address value
1315 of 0 we need to have the initial address set up that we store in PC
1316 and ADJ_PC. This is arranged with a call from `dwarf_decode_lines_1'
1317 that sets PC to 0 and ADJ_PC accordingly, usually 0 as well. */
1318
1319static CORE_ADDR
1320mips_adjust_dwarf2_line (CORE_ADDR addr, int rel)
1321{
1322 static CORE_ADDR adj_pc;
1323 static CORE_ADDR pc;
1324 CORE_ADDR isa_pc;
1325
1326 pc = rel ? pc + addr : addr;
1327 isa_pc = mips_adjust_dwarf2_addr (pc);
1328 addr = rel ? isa_pc - adj_pc : isa_pc;
1329 adj_pc = isa_pc;
1330 return addr;
1331}
1332
14132e89
MR
1333/* Various MIPS16 thunk (aka stub or trampoline) names. */
1334
1335static const char mips_str_mips16_call_stub[] = "__mips16_call_stub_";
1336static const char mips_str_mips16_ret_stub[] = "__mips16_ret_";
1337static const char mips_str_call_fp_stub[] = "__call_stub_fp_";
1338static const char mips_str_call_stub[] = "__call_stub_";
1339static const char mips_str_fn_stub[] = "__fn_stub_";
1340
1341/* This is used as a PIC thunk prefix. */
1342
1343static const char mips_str_pic[] = ".pic.";
1344
1345/* Return non-zero if the PC is inside a call thunk (aka stub or
1346 trampoline) that should be treated as a temporary frame. */
1347
1348static int
1349mips_in_frame_stub (CORE_ADDR pc)
1350{
1351 CORE_ADDR start_addr;
1352 const char *name;
1353
1354 /* Find the starting address of the function containing the PC. */
1355 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
1356 return 0;
1357
1358 /* If the PC is in __mips16_call_stub_*, this is a call/return stub. */
61012eef 1359 if (startswith (name, mips_str_mips16_call_stub))
14132e89
MR
1360 return 1;
1361 /* If the PC is in __call_stub_*, this is a call/return or a call stub. */
61012eef 1362 if (startswith (name, mips_str_call_stub))
14132e89
MR
1363 return 1;
1364 /* If the PC is in __fn_stub_*, this is a call stub. */
61012eef 1365 if (startswith (name, mips_str_fn_stub))
14132e89
MR
1366 return 1;
1367
1368 return 0; /* Not a stub. */
1369}
1370
b2fa5097 1371/* MIPS believes that the PC has a sign extended value. Perhaps the
025bb325 1372 all registers should be sign extended for simplicity? */
6c997a34
AC
1373
1374static CORE_ADDR
c113ed0c 1375mips_read_pc (readable_regcache *regcache)
6c997a34 1376{
ac7936df 1377 int regnum = gdbarch_pc_regnum (regcache->arch ());
70242eb1 1378 LONGEST pc;
8376de04 1379
c113ed0c 1380 regcache->cooked_read (regnum, &pc);
61a1198a 1381 return pc;
b6cb9035
AC
1382}
1383
58dfe9ff
AC
1384static CORE_ADDR
1385mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1386{
14132e89 1387 CORE_ADDR pc;
930bd0e0 1388
8376de04 1389 pc = frame_unwind_register_signed (next_frame, gdbarch_pc_regnum (gdbarch));
14132e89
MR
1390 /* macro/2012-04-20: This hack skips over MIPS16 call thunks as
1391 intermediate frames. In this case we can get the caller's address
1392 from $ra, or if $ra contains an address within a thunk as well, then
1393 it must be in the return path of __mips16_call_stub_{s,d}{f,c}_{0..10}
1394 and thus the caller's address is in $s2. */
1395 if (frame_relative_level (next_frame) >= 0 && mips_in_frame_stub (pc))
1396 {
1397 pc = frame_unwind_register_signed
1398 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
14132e89 1399 if (mips_in_frame_stub (pc))
3e29f34a
MR
1400 pc = frame_unwind_register_signed
1401 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
14132e89 1402 }
930bd0e0 1403 return pc;
edfae063
AC
1404}
1405
30244cd8
UW
1406static CORE_ADDR
1407mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1408{
72a155b4
UW
1409 return frame_unwind_register_signed
1410 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
30244cd8
UW
1411}
1412
b8a22b94 1413/* Assuming THIS_FRAME is a dummy, return the frame ID of that
edfae063
AC
1414 dummy frame. The frame ID's base needs to match the TOS value
1415 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1416 breakpoint. */
1417
1418static struct frame_id
b8a22b94 1419mips_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
edfae063 1420{
f57d151a 1421 return frame_id_build
b8a22b94
DJ
1422 (get_frame_register_signed (this_frame,
1423 gdbarch_num_regs (gdbarch)
1424 + MIPS_SP_REGNUM),
1425 get_frame_pc (this_frame));
58dfe9ff
AC
1426}
1427
5a439849
MR
1428/* Implement the "write_pc" gdbarch method. */
1429
1430void
61a1198a 1431mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
b6cb9035 1432{
ac7936df 1433 int regnum = gdbarch_pc_regnum (regcache->arch ());
8376de04 1434
3e29f34a 1435 regcache_cooked_write_unsigned (regcache, regnum, pc);
6c997a34 1436}
c906108c 1437
4cc0665f
MR
1438/* Fetch and return instruction from the specified location. Handle
1439 MIPS16/microMIPS as appropriate. */
c906108c 1440
d37cca3d 1441static ULONGEST
4cc0665f 1442mips_fetch_instruction (struct gdbarch *gdbarch,
d09f2c3f 1443 enum mips_isa isa, CORE_ADDR addr, int *errp)
c906108c 1444{
e17a4113 1445 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
47a35522 1446 gdb_byte buf[MIPS_INSN32_SIZE];
c906108c 1447 int instlen;
d09f2c3f 1448 int err;
c906108c 1449
4cc0665f 1450 switch (isa)
c906108c 1451 {
4cc0665f
MR
1452 case ISA_MICROMIPS:
1453 case ISA_MIPS16:
95ac2dcf 1454 instlen = MIPS_INSN16_SIZE;
4cc0665f
MR
1455 addr = unmake_compact_addr (addr);
1456 break;
1457 case ISA_MIPS:
1458 instlen = MIPS_INSN32_SIZE;
1459 break;
1460 default:
1461 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1462 break;
c906108c 1463 }
d09f2c3f
PA
1464 err = target_read_memory (addr, buf, instlen);
1465 if (errp != NULL)
1466 *errp = err;
1467 if (err != 0)
4cc0665f 1468 {
d09f2c3f
PA
1469 if (errp == NULL)
1470 memory_error (TARGET_XFER_E_IO, addr);
4cc0665f
MR
1471 return 0;
1472 }
e17a4113 1473 return extract_unsigned_integer (buf, instlen, byte_order);
c906108c
SS
1474}
1475
025bb325 1476/* These are the fields of 32 bit mips instructions. */
e135b889
DJ
1477#define mips32_op(x) (x >> 26)
1478#define itype_op(x) (x >> 26)
1479#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 1480#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 1481#define itype_immediate(x) (x & 0xffff)
c906108c 1482
e135b889
DJ
1483#define jtype_op(x) (x >> 26)
1484#define jtype_target(x) (x & 0x03ffffff)
c906108c 1485
e135b889
DJ
1486#define rtype_op(x) (x >> 26)
1487#define rtype_rs(x) ((x >> 21) & 0x1f)
1488#define rtype_rt(x) ((x >> 16) & 0x1f)
1489#define rtype_rd(x) ((x >> 11) & 0x1f)
1490#define rtype_shamt(x) ((x >> 6) & 0x1f)
1491#define rtype_funct(x) (x & 0x3f)
c906108c 1492
4cc0665f
MR
1493/* MicroMIPS instruction fields. */
1494#define micromips_op(x) ((x) >> 10)
1495
1496/* 16-bit/32-bit-high-part instruction formats, B and S refer to the lowest
1497 bit and the size respectively of the field extracted. */
1498#define b0s4_imm(x) ((x) & 0xf)
1499#define b0s5_imm(x) ((x) & 0x1f)
1500#define b0s5_reg(x) ((x) & 0x1f)
1501#define b0s7_imm(x) ((x) & 0x7f)
1502#define b0s10_imm(x) ((x) & 0x3ff)
1503#define b1s4_imm(x) (((x) >> 1) & 0xf)
1504#define b1s9_imm(x) (((x) >> 1) & 0x1ff)
1505#define b2s3_cc(x) (((x) >> 2) & 0x7)
1506#define b4s2_regl(x) (((x) >> 4) & 0x3)
1507#define b5s5_op(x) (((x) >> 5) & 0x1f)
1508#define b5s5_reg(x) (((x) >> 5) & 0x1f)
1509#define b6s4_op(x) (((x) >> 6) & 0xf)
1510#define b7s3_reg(x) (((x) >> 7) & 0x7)
1511
1512/* 32-bit instruction formats, B and S refer to the lowest bit and the size
1513 respectively of the field extracted. */
1514#define b0s6_op(x) ((x) & 0x3f)
1515#define b0s11_op(x) ((x) & 0x7ff)
1516#define b0s12_imm(x) ((x) & 0xfff)
1517#define b0s16_imm(x) ((x) & 0xffff)
1518#define b0s26_imm(x) ((x) & 0x3ffffff)
1519#define b6s10_ext(x) (((x) >> 6) & 0x3ff)
1520#define b11s5_reg(x) (((x) >> 11) & 0x1f)
1521#define b12s4_op(x) (((x) >> 12) & 0xf)
1522
1523/* Return the size in bytes of the instruction INSN encoded in the ISA
1524 instruction set. */
1525
1526static int
1527mips_insn_size (enum mips_isa isa, ULONGEST insn)
1528{
1529 switch (isa)
1530 {
1531 case ISA_MICROMIPS:
100b4f2e
MR
1532 if ((micromips_op (insn) & 0x4) == 0x4
1533 || (micromips_op (insn) & 0x7) == 0x0)
4cc0665f
MR
1534 return 2 * MIPS_INSN16_SIZE;
1535 else
1536 return MIPS_INSN16_SIZE;
1537 case ISA_MIPS16:
1538 if ((insn & 0xf800) == 0xf000)
1539 return 2 * MIPS_INSN16_SIZE;
1540 else
1541 return MIPS_INSN16_SIZE;
1542 case ISA_MIPS:
1543 return MIPS_INSN32_SIZE;
1544 }
1545 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1546}
1547
06987e64
MK
1548static LONGEST
1549mips32_relative_offset (ULONGEST inst)
c5aa993b 1550{
06987e64 1551 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
c906108c
SS
1552}
1553
a385295e
MR
1554/* Determine the address of the next instruction executed after the INST
1555 floating condition branch instruction at PC. COUNT specifies the
1556 number of the floating condition bits tested by the branch. */
1557
1558static CORE_ADDR
7113a196 1559mips32_bc1_pc (struct gdbarch *gdbarch, struct regcache *regcache,
a385295e
MR
1560 ULONGEST inst, CORE_ADDR pc, int count)
1561{
1562 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1563 int cnum = (itype_rt (inst) >> 2) & (count - 1);
1564 int tf = itype_rt (inst) & 1;
1565 int mask = (1 << count) - 1;
1566 ULONGEST fcs;
1567 int cond;
1568
1569 if (fcsr == -1)
1570 /* No way to handle; it'll most likely trap anyway. */
1571 return pc;
1572
7113a196 1573 fcs = regcache_raw_get_unsigned (regcache, fcsr);
a385295e
MR
1574 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1575
1576 if (((cond >> cnum) & mask) != mask * !tf)
1577 pc += mips32_relative_offset (inst);
1578 else
1579 pc += 4;
1580
1581 return pc;
1582}
1583
f94363d7
AP
1584/* Return nonzero if the gdbarch is an Octeon series. */
1585
1586static int
1587is_octeon (struct gdbarch *gdbarch)
1588{
1589 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
1590
1591 return (info->mach == bfd_mach_mips_octeon
1592 || info->mach == bfd_mach_mips_octeonp
1593 || info->mach == bfd_mach_mips_octeon2);
1594}
1595
1596/* Return true if the OP represents the Octeon's BBIT instruction. */
1597
1598static int
1599is_octeon_bbit_op (int op, struct gdbarch *gdbarch)
1600{
1601 if (!is_octeon (gdbarch))
1602 return 0;
1603 /* BBIT0 is encoded as LWC2: 110 010. */
1604 /* BBIT032 is encoded as LDC2: 110 110. */
1605 /* BBIT1 is encoded as SWC2: 111 010. */
1606 /* BBIT132 is encoded as SDC2: 111 110. */
1607 if (op == 50 || op == 54 || op == 58 || op == 62)
1608 return 1;
1609 return 0;
1610}
1611
1612
f49e4e6d
MS
1613/* Determine where to set a single step breakpoint while considering
1614 branch prediction. */
78a59c2f 1615
5a89d8aa 1616static CORE_ADDR
7113a196 1617mips32_next_pc (struct regcache *regcache, CORE_ADDR pc)
c5aa993b 1618{
ac7936df 1619 struct gdbarch *gdbarch = regcache->arch ();
c5aa993b
JM
1620 unsigned long inst;
1621 int op;
4cc0665f 1622 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
4f5bcb50 1623 op = itype_op (inst);
025bb325
MS
1624 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch
1625 instruction. */
c5aa993b 1626 {
4f5bcb50 1627 if (op >> 2 == 5)
6d82d43b 1628 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 1629 {
4f5bcb50 1630 switch (op & 0x03)
c906108c 1631 {
e135b889
DJ
1632 case 0: /* BEQL */
1633 goto equal_branch;
1634 case 1: /* BNEL */
1635 goto neq_branch;
1636 case 2: /* BLEZL */
1637 goto less_branch;
313628cc 1638 case 3: /* BGTZL */
e135b889 1639 goto greater_branch;
c5aa993b
JM
1640 default:
1641 pc += 4;
c906108c
SS
1642 }
1643 }
4f5bcb50 1644 else if (op == 17 && itype_rs (inst) == 8)
6d82d43b 1645 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
7113a196 1646 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 1);
4f5bcb50 1647 else if (op == 17 && itype_rs (inst) == 9
a385295e
MR
1648 && (itype_rt (inst) & 2) == 0)
1649 /* BC1ANY2F, BC1ANY2T: 010001 01001 xxx0x */
7113a196 1650 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 2);
4f5bcb50 1651 else if (op == 17 && itype_rs (inst) == 10
a385295e
MR
1652 && (itype_rt (inst) & 2) == 0)
1653 /* BC1ANY4F, BC1ANY4T: 010001 01010 xxx0x */
7113a196 1654 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 4);
4f5bcb50 1655 else if (op == 29)
9e8da49c
MR
1656 /* JALX: 011101 */
1657 /* The new PC will be alternate mode. */
1658 {
1659 unsigned long reg;
1660
1661 reg = jtype_target (inst) << 2;
1662 /* Add 1 to indicate 16-bit mode -- invert ISA mode. */
1663 pc = ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + reg + 1;
1664 }
f94363d7
AP
1665 else if (is_octeon_bbit_op (op, gdbarch))
1666 {
1667 int bit, branch_if;
1668
1669 branch_if = op == 58 || op == 62;
1670 bit = itype_rt (inst);
1671
1672 /* Take into account the *32 instructions. */
1673 if (op == 54 || op == 62)
1674 bit += 32;
1675
7113a196
YQ
1676 if (((regcache_raw_get_signed (regcache,
1677 itype_rs (inst)) >> bit) & 1)
f94363d7
AP
1678 == branch_if)
1679 pc += mips32_relative_offset (inst) + 4;
1680 else
1681 pc += 8; /* After the delay slot. */
1682 }
1683
c5aa993b 1684 else
025bb325 1685 pc += 4; /* Not a branch, next instruction is easy. */
c906108c
SS
1686 }
1687 else
025bb325 1688 { /* This gets way messy. */
c5aa993b 1689
025bb325 1690 /* Further subdivide into SPECIAL, REGIMM and other. */
4f5bcb50 1691 switch (op & 0x07) /* Extract bits 28,27,26. */
c906108c 1692 {
c5aa993b
JM
1693 case 0: /* SPECIAL */
1694 op = rtype_funct (inst);
1695 switch (op)
1696 {
1697 case 8: /* JR */
1698 case 9: /* JALR */
025bb325 1699 /* Set PC to that address. */
7113a196 1700 pc = regcache_raw_get_signed (regcache, rtype_rs (inst));
c5aa993b 1701 break;
e38d4e1a
DJ
1702 case 12: /* SYSCALL */
1703 {
1704 struct gdbarch_tdep *tdep;
1705
7113a196 1706 tdep = gdbarch_tdep (gdbarch);
e38d4e1a 1707 if (tdep->syscall_next_pc != NULL)
7113a196 1708 pc = tdep->syscall_next_pc (get_current_frame ());
e38d4e1a
DJ
1709 else
1710 pc += 4;
1711 }
1712 break;
c5aa993b
JM
1713 default:
1714 pc += 4;
1715 }
1716
6d82d43b 1717 break; /* end SPECIAL */
025bb325 1718 case 1: /* REGIMM */
c906108c 1719 {
e135b889
DJ
1720 op = itype_rt (inst); /* branch condition */
1721 switch (op)
c906108c 1722 {
c5aa993b 1723 case 0: /* BLTZ */
e135b889
DJ
1724 case 2: /* BLTZL */
1725 case 16: /* BLTZAL */
c5aa993b 1726 case 18: /* BLTZALL */
c906108c 1727 less_branch:
7113a196 1728 if (regcache_raw_get_signed (regcache, itype_rs (inst)) < 0)
c5aa993b
JM
1729 pc += mips32_relative_offset (inst) + 4;
1730 else
1731 pc += 8; /* after the delay slot */
1732 break;
e135b889 1733 case 1: /* BGEZ */
c5aa993b
JM
1734 case 3: /* BGEZL */
1735 case 17: /* BGEZAL */
1736 case 19: /* BGEZALL */
7113a196 1737 if (regcache_raw_get_signed (regcache, itype_rs (inst)) >= 0)
c5aa993b
JM
1738 pc += mips32_relative_offset (inst) + 4;
1739 else
1740 pc += 8; /* after the delay slot */
1741 break;
a385295e
MR
1742 case 0x1c: /* BPOSGE32 */
1743 case 0x1e: /* BPOSGE64 */
1744 pc += 4;
1745 if (itype_rs (inst) == 0)
1746 {
1747 unsigned int pos = (op & 2) ? 64 : 32;
1748 int dspctl = mips_regnum (gdbarch)->dspctl;
1749
1750 if (dspctl == -1)
1751 /* No way to handle; it'll most likely trap anyway. */
1752 break;
1753
7113a196
YQ
1754 if ((regcache_raw_get_unsigned (regcache,
1755 dspctl) & 0x7f) >= pos)
a385295e
MR
1756 pc += mips32_relative_offset (inst);
1757 else
1758 pc += 4;
1759 }
1760 break;
e135b889 1761 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
1762 default:
1763 pc += 4;
c906108c
SS
1764 }
1765 }
6d82d43b 1766 break; /* end REGIMM */
c5aa993b
JM
1767 case 2: /* J */
1768 case 3: /* JAL */
1769 {
1770 unsigned long reg;
1771 reg = jtype_target (inst) << 2;
025bb325 1772 /* Upper four bits get never changed... */
5b652102 1773 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
c906108c 1774 }
c5aa993b 1775 break;
e135b889 1776 case 4: /* BEQ, BEQL */
c5aa993b 1777 equal_branch:
7113a196
YQ
1778 if (regcache_raw_get_signed (regcache, itype_rs (inst)) ==
1779 regcache_raw_get_signed (regcache, itype_rt (inst)))
c5aa993b
JM
1780 pc += mips32_relative_offset (inst) + 4;
1781 else
1782 pc += 8;
1783 break;
e135b889 1784 case 5: /* BNE, BNEL */
c5aa993b 1785 neq_branch:
7113a196
YQ
1786 if (regcache_raw_get_signed (regcache, itype_rs (inst)) !=
1787 regcache_raw_get_signed (regcache, itype_rt (inst)))
c5aa993b
JM
1788 pc += mips32_relative_offset (inst) + 4;
1789 else
1790 pc += 8;
1791 break;
e135b889 1792 case 6: /* BLEZ, BLEZL */
7113a196 1793 if (regcache_raw_get_signed (regcache, itype_rs (inst)) <= 0)
c5aa993b
JM
1794 pc += mips32_relative_offset (inst) + 4;
1795 else
1796 pc += 8;
1797 break;
1798 case 7:
e135b889
DJ
1799 default:
1800 greater_branch: /* BGTZ, BGTZL */
7113a196 1801 if (regcache_raw_get_signed (regcache, itype_rs (inst)) > 0)
c5aa993b
JM
1802 pc += mips32_relative_offset (inst) + 4;
1803 else
1804 pc += 8;
1805 break;
c5aa993b
JM
1806 } /* switch */
1807 } /* else */
1808 return pc;
1809} /* mips32_next_pc */
c906108c 1810
4cc0665f
MR
1811/* Extract the 7-bit signed immediate offset from the microMIPS instruction
1812 INSN. */
1813
1814static LONGEST
1815micromips_relative_offset7 (ULONGEST insn)
1816{
1817 return ((b0s7_imm (insn) ^ 0x40) - 0x40) << 1;
1818}
1819
1820/* Extract the 10-bit signed immediate offset from the microMIPS instruction
1821 INSN. */
1822
1823static LONGEST
1824micromips_relative_offset10 (ULONGEST insn)
1825{
1826 return ((b0s10_imm (insn) ^ 0x200) - 0x200) << 1;
1827}
1828
1829/* Extract the 16-bit signed immediate offset from the microMIPS instruction
1830 INSN. */
1831
1832static LONGEST
1833micromips_relative_offset16 (ULONGEST insn)
1834{
1835 return ((b0s16_imm (insn) ^ 0x8000) - 0x8000) << 1;
1836}
1837
1838/* Return the size in bytes of the microMIPS instruction at the address PC. */
1839
1840static int
1841micromips_pc_insn_size (struct gdbarch *gdbarch, CORE_ADDR pc)
1842{
1843 ULONGEST insn;
1844
1845 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1846 return mips_insn_size (ISA_MICROMIPS, insn);
1847}
1848
1849/* Calculate the address of the next microMIPS instruction to execute
1850 after the INSN coprocessor 1 conditional branch instruction at the
1851 address PC. COUNT denotes the number of coprocessor condition bits
1852 examined by the branch. */
1853
1854static CORE_ADDR
7113a196 1855micromips_bc1_pc (struct gdbarch *gdbarch, struct regcache *regcache,
4cc0665f
MR
1856 ULONGEST insn, CORE_ADDR pc, int count)
1857{
1858 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1859 int cnum = b2s3_cc (insn >> 16) & (count - 1);
1860 int tf = b5s5_op (insn >> 16) & 1;
1861 int mask = (1 << count) - 1;
1862 ULONGEST fcs;
1863 int cond;
1864
1865 if (fcsr == -1)
1866 /* No way to handle; it'll most likely trap anyway. */
1867 return pc;
1868
7113a196 1869 fcs = regcache_raw_get_unsigned (regcache, fcsr);
4cc0665f
MR
1870 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1871
1872 if (((cond >> cnum) & mask) != mask * !tf)
1873 pc += micromips_relative_offset16 (insn);
1874 else
1875 pc += micromips_pc_insn_size (gdbarch, pc);
1876
1877 return pc;
1878}
1879
1880/* Calculate the address of the next microMIPS instruction to execute
1881 after the instruction at the address PC. */
1882
1883static CORE_ADDR
7113a196 1884micromips_next_pc (struct regcache *regcache, CORE_ADDR pc)
4cc0665f 1885{
ac7936df 1886 struct gdbarch *gdbarch = regcache->arch ();
4cc0665f
MR
1887 ULONGEST insn;
1888
1889 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1890 pc += MIPS_INSN16_SIZE;
1891 switch (mips_insn_size (ISA_MICROMIPS, insn))
1892 {
4cc0665f
MR
1893 /* 32-bit instructions. */
1894 case 2 * MIPS_INSN16_SIZE:
1895 insn <<= 16;
1896 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1897 pc += MIPS_INSN16_SIZE;
1898 switch (micromips_op (insn >> 16))
1899 {
1900 case 0x00: /* POOL32A: bits 000000 */
6592ceed
MR
1901 switch (b0s6_op (insn))
1902 {
1903 case 0x3c: /* POOL32Axf: bits 000000 ... 111100 */
1904 switch (b6s10_ext (insn))
1905 {
1906 case 0x3c: /* JALR: 000000 0000111100 111100 */
1907 case 0x7c: /* JALR.HB: 000000 0001111100 111100 */
1908 case 0x13c: /* JALRS: 000000 0100111100 111100 */
1909 case 0x17c: /* JALRS.HB: 000000 0101111100 111100 */
1910 pc = regcache_raw_get_signed (regcache,
1911 b0s5_reg (insn >> 16));
1912 break;
1913 case 0x22d: /* SYSCALL: 000000 1000101101 111100 */
1914 {
1915 struct gdbarch_tdep *tdep;
1916
1917 tdep = gdbarch_tdep (gdbarch);
1918 if (tdep->syscall_next_pc != NULL)
1919 pc = tdep->syscall_next_pc (get_current_frame ());
1920 }
1921 break;
1922 }
1923 break;
1924 }
4cc0665f
MR
1925 break;
1926
1927 case 0x10: /* POOL32I: bits 010000 */
1928 switch (b5s5_op (insn >> 16))
1929 {
1930 case 0x00: /* BLTZ: bits 010000 00000 */
1931 case 0x01: /* BLTZAL: bits 010000 00001 */
1932 case 0x11: /* BLTZALS: bits 010000 10001 */
7113a196
YQ
1933 if (regcache_raw_get_signed (regcache,
1934 b0s5_reg (insn >> 16)) < 0)
4cc0665f
MR
1935 pc += micromips_relative_offset16 (insn);
1936 else
1937 pc += micromips_pc_insn_size (gdbarch, pc);
1938 break;
1939
1940 case 0x02: /* BGEZ: bits 010000 00010 */
1941 case 0x03: /* BGEZAL: bits 010000 00011 */
1942 case 0x13: /* BGEZALS: bits 010000 10011 */
7113a196
YQ
1943 if (regcache_raw_get_signed (regcache,
1944 b0s5_reg (insn >> 16)) >= 0)
4cc0665f
MR
1945 pc += micromips_relative_offset16 (insn);
1946 else
1947 pc += micromips_pc_insn_size (gdbarch, pc);
1948 break;
1949
1950 case 0x04: /* BLEZ: bits 010000 00100 */
7113a196
YQ
1951 if (regcache_raw_get_signed (regcache,
1952 b0s5_reg (insn >> 16)) <= 0)
4cc0665f
MR
1953 pc += micromips_relative_offset16 (insn);
1954 else
1955 pc += micromips_pc_insn_size (gdbarch, pc);
1956 break;
1957
1958 case 0x05: /* BNEZC: bits 010000 00101 */
7113a196
YQ
1959 if (regcache_raw_get_signed (regcache,
1960 b0s5_reg (insn >> 16)) != 0)
4cc0665f
MR
1961 pc += micromips_relative_offset16 (insn);
1962 break;
1963
1964 case 0x06: /* BGTZ: bits 010000 00110 */
7113a196
YQ
1965 if (regcache_raw_get_signed (regcache,
1966 b0s5_reg (insn >> 16)) > 0)
4cc0665f
MR
1967 pc += micromips_relative_offset16 (insn);
1968 else
1969 pc += micromips_pc_insn_size (gdbarch, pc);
1970 break;
1971
1972 case 0x07: /* BEQZC: bits 010000 00111 */
7113a196
YQ
1973 if (regcache_raw_get_signed (regcache,
1974 b0s5_reg (insn >> 16)) == 0)
4cc0665f
MR
1975 pc += micromips_relative_offset16 (insn);
1976 break;
1977
1978 case 0x14: /* BC2F: bits 010000 10100 xxx00 */
1979 case 0x15: /* BC2T: bits 010000 10101 xxx00 */
1980 if (((insn >> 16) & 0x3) == 0x0)
1981 /* BC2F, BC2T: don't know how to handle these. */
1982 break;
1983 break;
1984
1985 case 0x1a: /* BPOSGE64: bits 010000 11010 */
1986 case 0x1b: /* BPOSGE32: bits 010000 11011 */
1987 {
1988 unsigned int pos = (b5s5_op (insn >> 16) & 1) ? 32 : 64;
1989 int dspctl = mips_regnum (gdbarch)->dspctl;
1990
1991 if (dspctl == -1)
1992 /* No way to handle; it'll most likely trap anyway. */
1993 break;
1994
7113a196
YQ
1995 if ((regcache_raw_get_unsigned (regcache,
1996 dspctl) & 0x7f) >= pos)
4cc0665f
MR
1997 pc += micromips_relative_offset16 (insn);
1998 else
1999 pc += micromips_pc_insn_size (gdbarch, pc);
2000 }
2001 break;
2002
2003 case 0x1c: /* BC1F: bits 010000 11100 xxx00 */
2004 /* BC1ANY2F: bits 010000 11100 xxx01 */
2005 case 0x1d: /* BC1T: bits 010000 11101 xxx00 */
2006 /* BC1ANY2T: bits 010000 11101 xxx01 */
2007 if (((insn >> 16) & 0x2) == 0x0)
7113a196 2008 pc = micromips_bc1_pc (gdbarch, regcache, insn, pc,
4cc0665f
MR
2009 ((insn >> 16) & 0x1) + 1);
2010 break;
2011
2012 case 0x1e: /* BC1ANY4F: bits 010000 11110 xxx01 */
2013 case 0x1f: /* BC1ANY4T: bits 010000 11111 xxx01 */
2014 if (((insn >> 16) & 0x3) == 0x1)
7113a196 2015 pc = micromips_bc1_pc (gdbarch, regcache, insn, pc, 4);
4cc0665f
MR
2016 break;
2017 }
2018 break;
2019
2020 case 0x1d: /* JALS: bits 011101 */
2021 case 0x35: /* J: bits 110101 */
2022 case 0x3d: /* JAL: bits 111101 */
2023 pc = ((pc | 0x7fffffe) ^ 0x7fffffe) | (b0s26_imm (insn) << 1);
2024 break;
2025
2026 case 0x25: /* BEQ: bits 100101 */
7113a196
YQ
2027 if (regcache_raw_get_signed (regcache, b0s5_reg (insn >> 16))
2028 == regcache_raw_get_signed (regcache, b5s5_reg (insn >> 16)))
4cc0665f
MR
2029 pc += micromips_relative_offset16 (insn);
2030 else
2031 pc += micromips_pc_insn_size (gdbarch, pc);
2032 break;
2033
2034 case 0x2d: /* BNE: bits 101101 */
7113a196
YQ
2035 if (regcache_raw_get_signed (regcache, b0s5_reg (insn >> 16))
2036 != regcache_raw_get_signed (regcache, b5s5_reg (insn >> 16)))
4cc0665f
MR
2037 pc += micromips_relative_offset16 (insn);
2038 else
2039 pc += micromips_pc_insn_size (gdbarch, pc);
2040 break;
2041
2042 case 0x3c: /* JALX: bits 111100 */
2043 pc = ((pc | 0xfffffff) ^ 0xfffffff) | (b0s26_imm (insn) << 2);
2044 break;
2045 }
2046 break;
2047
2048 /* 16-bit instructions. */
2049 case MIPS_INSN16_SIZE:
2050 switch (micromips_op (insn))
2051 {
2052 case 0x11: /* POOL16C: bits 010001 */
2053 if ((b5s5_op (insn) & 0x1c) == 0xc)
2054 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
7113a196 2055 pc = regcache_raw_get_signed (regcache, b0s5_reg (insn));
4cc0665f
MR
2056 else if (b5s5_op (insn) == 0x18)
2057 /* JRADDIUSP: bits 010001 11000 */
7113a196 2058 pc = regcache_raw_get_signed (regcache, MIPS_RA_REGNUM);
4cc0665f
MR
2059 break;
2060
2061 case 0x23: /* BEQZ16: bits 100011 */
2062 {
2063 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2064
7113a196 2065 if (regcache_raw_get_signed (regcache, rs) == 0)
4cc0665f
MR
2066 pc += micromips_relative_offset7 (insn);
2067 else
2068 pc += micromips_pc_insn_size (gdbarch, pc);
2069 }
2070 break;
2071
2072 case 0x2b: /* BNEZ16: bits 101011 */
2073 {
2074 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2075
7113a196 2076 if (regcache_raw_get_signed (regcache, rs) != 0)
4cc0665f
MR
2077 pc += micromips_relative_offset7 (insn);
2078 else
2079 pc += micromips_pc_insn_size (gdbarch, pc);
2080 }
2081 break;
2082
2083 case 0x33: /* B16: bits 110011 */
2084 pc += micromips_relative_offset10 (insn);
2085 break;
2086 }
2087 break;
2088 }
2089
2090 return pc;
2091}
2092
c906108c 2093/* Decoding the next place to set a breakpoint is irregular for the
025bb325
MS
2094 mips 16 variant, but fortunately, there fewer instructions. We have
2095 to cope ith extensions for 16 bit instructions and a pair of actual
2096 32 bit instructions. We dont want to set a single step instruction
2097 on the extend instruction either. */
c906108c
SS
2098
2099/* Lots of mips16 instruction formats */
2100/* Predicting jumps requires itype,ritype,i8type
025bb325 2101 and their extensions extItype,extritype,extI8type. */
c906108c
SS
2102enum mips16_inst_fmts
2103{
c5aa993b
JM
2104 itype, /* 0 immediate 5,10 */
2105 ritype, /* 1 5,3,8 */
2106 rrtype, /* 2 5,3,3,5 */
2107 rritype, /* 3 5,3,3,5 */
2108 rrrtype, /* 4 5,3,3,3,2 */
2109 rriatype, /* 5 5,3,3,1,4 */
2110 shifttype, /* 6 5,3,3,3,2 */
2111 i8type, /* 7 5,3,8 */
2112 i8movtype, /* 8 5,3,3,5 */
2113 i8mov32rtype, /* 9 5,3,5,3 */
2114 i64type, /* 10 5,3,8 */
2115 ri64type, /* 11 5,3,3,5 */
2116 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
2117 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
2118 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
2119 extRRItype, /* 15 5,5,5,5,3,3,5 */
2120 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
2121 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
2122 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
2123 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
2124 extRi64type, /* 20 5,6,5,5,3,3,5 */
2125 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
2126};
12f02c2a 2127/* I am heaping all the fields of the formats into one structure and
025bb325 2128 then, only the fields which are involved in instruction extension. */
c906108c 2129struct upk_mips16
6d82d43b
AC
2130{
2131 CORE_ADDR offset;
025bb325 2132 unsigned int regx; /* Function in i8 type. */
6d82d43b
AC
2133 unsigned int regy;
2134};
c906108c
SS
2135
2136
12f02c2a 2137/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
c68cf8ad 2138 for the bits which make up the immediate extension. */
c906108c 2139
12f02c2a
AC
2140static CORE_ADDR
2141extended_offset (unsigned int extension)
c906108c 2142{
12f02c2a 2143 CORE_ADDR value;
130854df 2144
4c2051c6 2145 value = (extension >> 16) & 0x1f; /* Extract 15:11. */
c5aa993b 2146 value = value << 6;
4c2051c6 2147 value |= (extension >> 21) & 0x3f; /* Extract 10:5. */
c5aa993b 2148 value = value << 5;
130854df
MR
2149 value |= extension & 0x1f; /* Extract 4:0. */
2150
c5aa993b 2151 return value;
c906108c
SS
2152}
2153
2154/* Only call this function if you know that this is an extendable
bcf1ea1e
MR
2155 instruction. It won't malfunction, but why make excess remote memory
2156 references? If the immediate operands get sign extended or something,
2157 do it after the extension is performed. */
c906108c 2158/* FIXME: Every one of these cases needs to worry about sign extension
bcf1ea1e 2159 when the offset is to be used in relative addressing. */
c906108c 2160
12f02c2a 2161static unsigned int
e17a4113 2162fetch_mips_16 (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 2163{
e17a4113 2164 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
47a35522 2165 gdb_byte buf[8];
a2fb2cee
MR
2166
2167 pc = unmake_compact_addr (pc); /* Clear the low order bit. */
c5aa993b 2168 target_read_memory (pc, buf, 2);
e17a4113 2169 return extract_unsigned_integer (buf, 2, byte_order);
c906108c
SS
2170}
2171
2172static void
e17a4113 2173unpack_mips16 (struct gdbarch *gdbarch, CORE_ADDR pc,
12f02c2a
AC
2174 unsigned int extension,
2175 unsigned int inst,
6d82d43b 2176 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
c906108c 2177{
12f02c2a
AC
2178 CORE_ADDR offset;
2179 int regx;
2180 int regy;
2181 switch (insn_format)
c906108c 2182 {
c5aa993b 2183 case itype:
c906108c 2184 {
12f02c2a
AC
2185 CORE_ADDR value;
2186 if (extension)
c5aa993b 2187 {
4c2051c6
MR
2188 value = extended_offset ((extension << 16) | inst);
2189 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
c906108c
SS
2190 }
2191 else
c5aa993b 2192 {
12f02c2a 2193 value = inst & 0x7ff;
4c2051c6 2194 value = (value ^ 0x400) - 0x400; /* Sign-extend. */
c906108c 2195 }
12f02c2a
AC
2196 offset = value;
2197 regx = -1;
2198 regy = -1;
c906108c 2199 }
c5aa993b
JM
2200 break;
2201 case ritype:
2202 case i8type:
025bb325 2203 { /* A register identifier and an offset. */
c906108c 2204 /* Most of the fields are the same as I type but the
025bb325 2205 immediate value is of a different length. */
12f02c2a
AC
2206 CORE_ADDR value;
2207 if (extension)
c906108c 2208 {
4c2051c6
MR
2209 value = extended_offset ((extension << 16) | inst);
2210 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
c906108c 2211 }
c5aa993b
JM
2212 else
2213 {
4c2051c6
MR
2214 value = inst & 0xff; /* 8 bits */
2215 value = (value ^ 0x80) - 0x80; /* Sign-extend. */
c5aa993b 2216 }
12f02c2a 2217 offset = value;
4c2051c6 2218 regx = (inst >> 8) & 0x07; /* i8 funct */
12f02c2a 2219 regy = -1;
c5aa993b 2220 break;
c906108c 2221 }
c5aa993b 2222 case jalxtype:
c906108c 2223 {
c5aa993b 2224 unsigned long value;
12f02c2a
AC
2225 unsigned int nexthalf;
2226 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b 2227 value = value << 16;
4cc0665f
MR
2228 nexthalf = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc + 2, NULL);
2229 /* Low bit still set. */
c5aa993b 2230 value |= nexthalf;
12f02c2a
AC
2231 offset = value;
2232 regx = -1;
2233 regy = -1;
c5aa993b 2234 break;
c906108c
SS
2235 }
2236 default:
e2e0b3e5 2237 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c 2238 }
12f02c2a
AC
2239 upk->offset = offset;
2240 upk->regx = regx;
2241 upk->regy = regy;
c906108c
SS
2242}
2243
2244
484933d1
MR
2245/* Calculate the destination of a branch whose 16-bit opcode word is at PC,
2246 and having a signed 16-bit OFFSET. */
2247
c5aa993b
JM
2248static CORE_ADDR
2249add_offset_16 (CORE_ADDR pc, int offset)
c906108c 2250{
484933d1 2251 return pc + (offset << 1) + 2;
c906108c
SS
2252}
2253
12f02c2a 2254static CORE_ADDR
7113a196 2255extended_mips16_next_pc (regcache *regcache, CORE_ADDR pc,
6d82d43b 2256 unsigned int extension, unsigned int insn)
c906108c 2257{
ac7936df 2258 struct gdbarch *gdbarch = regcache->arch ();
12f02c2a
AC
2259 int op = (insn >> 11);
2260 switch (op)
c906108c 2261 {
6d82d43b 2262 case 2: /* Branch */
12f02c2a 2263 {
12f02c2a 2264 struct upk_mips16 upk;
e17a4113 2265 unpack_mips16 (gdbarch, pc, extension, insn, itype, &upk);
484933d1 2266 pc = add_offset_16 (pc, upk.offset);
12f02c2a
AC
2267 break;
2268 }
025bb325
MS
2269 case 3: /* JAL , JALX - Watch out, these are 32 bit
2270 instructions. */
12f02c2a
AC
2271 {
2272 struct upk_mips16 upk;
e17a4113 2273 unpack_mips16 (gdbarch, pc, extension, insn, jalxtype, &upk);
484933d1 2274 pc = ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)) | (upk.offset << 2);
12f02c2a 2275 if ((insn >> 10) & 0x01) /* Exchange mode */
025bb325 2276 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode. */
12f02c2a
AC
2277 else
2278 pc |= 0x01;
2279 break;
2280 }
6d82d43b 2281 case 4: /* beqz */
12f02c2a
AC
2282 {
2283 struct upk_mips16 upk;
2284 int reg;
e17a4113 2285 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
7113a196 2286 reg = regcache_raw_get_signed (regcache, mips_reg3_to_reg[upk.regx]);
12f02c2a 2287 if (reg == 0)
484933d1 2288 pc = add_offset_16 (pc, upk.offset);
12f02c2a
AC
2289 else
2290 pc += 2;
2291 break;
2292 }
6d82d43b 2293 case 5: /* bnez */
12f02c2a
AC
2294 {
2295 struct upk_mips16 upk;
2296 int reg;
e17a4113 2297 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
7113a196 2298 reg = regcache_raw_get_signed (regcache, mips_reg3_to_reg[upk.regx]);
12f02c2a 2299 if (reg != 0)
484933d1 2300 pc = add_offset_16 (pc, upk.offset);
12f02c2a
AC
2301 else
2302 pc += 2;
2303 break;
2304 }
6d82d43b 2305 case 12: /* I8 Formats btez btnez */
12f02c2a
AC
2306 {
2307 struct upk_mips16 upk;
2308 int reg;
e17a4113 2309 unpack_mips16 (gdbarch, pc, extension, insn, i8type, &upk);
12f02c2a 2310 /* upk.regx contains the opcode */
7113a196
YQ
2311 /* Test register is 24 */
2312 reg = regcache_raw_get_signed (regcache, 24);
12f02c2a
AC
2313 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
2314 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
484933d1 2315 pc = add_offset_16 (pc, upk.offset);
12f02c2a
AC
2316 else
2317 pc += 2;
2318 break;
2319 }
6d82d43b 2320 case 29: /* RR Formats JR, JALR, JALR-RA */
12f02c2a
AC
2321 {
2322 struct upk_mips16 upk;
2323 /* upk.fmt = rrtype; */
2324 op = insn & 0x1f;
2325 if (op == 0)
c5aa993b 2326 {
12f02c2a
AC
2327 int reg;
2328 upk.regx = (insn >> 8) & 0x07;
2329 upk.regy = (insn >> 5) & 0x07;
4c2051c6 2330 if ((upk.regy & 1) == 0)
4cc0665f 2331 reg = mips_reg3_to_reg[upk.regx];
4c2051c6
MR
2332 else
2333 reg = 31; /* Function return instruction. */
7113a196 2334 pc = regcache_raw_get_signed (regcache, reg);
c906108c 2335 }
12f02c2a 2336 else
c5aa993b 2337 pc += 2;
12f02c2a
AC
2338 break;
2339 }
2340 case 30:
2341 /* This is an instruction extension. Fetch the real instruction
2342 (which follows the extension) and decode things based on
025bb325 2343 that. */
12f02c2a
AC
2344 {
2345 pc += 2;
7113a196 2346 pc = extended_mips16_next_pc (regcache, pc, insn,
e17a4113 2347 fetch_mips_16 (gdbarch, pc));
12f02c2a
AC
2348 break;
2349 }
2350 default:
2351 {
2352 pc += 2;
2353 break;
2354 }
c906108c 2355 }
c5aa993b 2356 return pc;
12f02c2a 2357}
c906108c 2358
5a89d8aa 2359static CORE_ADDR
7113a196 2360mips16_next_pc (struct regcache *regcache, CORE_ADDR pc)
12f02c2a 2361{
ac7936df 2362 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 2363 unsigned int insn = fetch_mips_16 (gdbarch, pc);
7113a196 2364 return extended_mips16_next_pc (regcache, pc, 0, insn);
12f02c2a
AC
2365}
2366
2367/* The mips_next_pc function supports single_step when the remote
7e73cedf 2368 target monitor or stub is not developed enough to do a single_step.
12f02c2a 2369 It works by decoding the current instruction and predicting where a
1aee363c 2370 branch will go. This isn't hard because all the data is available.
4cc0665f 2371 The MIPS32, MIPS16 and microMIPS variants are quite different. */
ad527d2e 2372static CORE_ADDR
7113a196 2373mips_next_pc (struct regcache *regcache, CORE_ADDR pc)
c906108c 2374{
ac7936df 2375 struct gdbarch *gdbarch = regcache->arch ();
4cc0665f
MR
2376
2377 if (mips_pc_is_mips16 (gdbarch, pc))
7113a196 2378 return mips16_next_pc (regcache, pc);
4cc0665f 2379 else if (mips_pc_is_micromips (gdbarch, pc))
7113a196 2380 return micromips_next_pc (regcache, pc);
c5aa993b 2381 else
7113a196 2382 return mips32_next_pc (regcache, pc);
12f02c2a 2383}
c906108c 2384
ab50adb6
MR
2385/* Return non-zero if the MIPS16 instruction INSN is a compact branch
2386 or jump. */
2387
2388static int
2389mips16_instruction_is_compact_branch (unsigned short insn)
2390{
2391 switch (insn & 0xf800)
2392 {
2393 case 0xe800:
2394 return (insn & 0x009f) == 0x80; /* JALRC/JRC */
2395 case 0x6000:
2396 return (insn & 0x0600) == 0; /* BTNEZ/BTEQZ */
2397 case 0x2800: /* BNEZ */
2398 case 0x2000: /* BEQZ */
2399 case 0x1000: /* B */
2400 return 1;
2401 default:
2402 return 0;
2403 }
2404}
2405
2406/* Return non-zero if the microMIPS instruction INSN is a compact branch
2407 or jump. */
2408
2409static int
2410micromips_instruction_is_compact_branch (unsigned short insn)
2411{
2412 switch (micromips_op (insn))
2413 {
2414 case 0x11: /* POOL16C: bits 010001 */
2415 return (b5s5_op (insn) == 0x18
2416 /* JRADDIUSP: bits 010001 11000 */
2417 || b5s5_op (insn) == 0xd);
2418 /* JRC: bits 010011 01101 */
2419 case 0x10: /* POOL32I: bits 010000 */
2420 return (b5s5_op (insn) & 0x1d) == 0x5;
2421 /* BEQZC/BNEZC: bits 010000 001x1 */
2422 default:
2423 return 0;
2424 }
2425}
2426
edfae063
AC
2427struct mips_frame_cache
2428{
2429 CORE_ADDR base;
2430 struct trad_frame_saved_reg *saved_regs;
2431};
2432
29639122
JB
2433/* Set a register's saved stack address in temp_saved_regs. If an
2434 address has already been set for this register, do nothing; this
2435 way we will only recognize the first save of a given register in a
2436 function prologue.
eec63939 2437
f57d151a
UW
2438 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
2439 [gdbarch_num_regs .. 2*gdbarch_num_regs).
2440 Strictly speaking, only the second range is used as it is only second
2441 range (the ABI instead of ISA registers) that comes into play when finding
2442 saved registers in a frame. */
eec63939
AC
2443
2444static void
74ed0bb4
MD
2445set_reg_offset (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache,
2446 int regnum, CORE_ADDR offset)
eec63939 2447{
29639122
JB
2448 if (this_cache != NULL
2449 && this_cache->saved_regs[regnum].addr == -1)
2450 {
74ed0bb4
MD
2451 this_cache->saved_regs[regnum + 0 * gdbarch_num_regs (gdbarch)].addr
2452 = offset;
2453 this_cache->saved_regs[regnum + 1 * gdbarch_num_regs (gdbarch)].addr
2454 = offset;
29639122 2455 }
eec63939
AC
2456}
2457
eec63939 2458
29639122
JB
2459/* Fetch the immediate value from a MIPS16 instruction.
2460 If the previous instruction was an EXTEND, use it to extend
2461 the upper bits of the immediate value. This is a helper function
2462 for mips16_scan_prologue. */
eec63939 2463
29639122
JB
2464static int
2465mips16_get_imm (unsigned short prev_inst, /* previous instruction */
2466 unsigned short inst, /* current instruction */
2467 int nbits, /* number of bits in imm field */
2468 int scale, /* scale factor to be applied to imm */
025bb325 2469 int is_signed) /* is the imm field signed? */
eec63939 2470{
29639122 2471 int offset;
eec63939 2472
29639122
JB
2473 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
2474 {
2475 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
2476 if (offset & 0x8000) /* check for negative extend */
2477 offset = 0 - (0x10000 - (offset & 0xffff));
2478 return offset | (inst & 0x1f);
2479 }
eec63939 2480 else
29639122
JB
2481 {
2482 int max_imm = 1 << nbits;
2483 int mask = max_imm - 1;
2484 int sign_bit = max_imm >> 1;
45c9dd44 2485
29639122
JB
2486 offset = inst & mask;
2487 if (is_signed && (offset & sign_bit))
2488 offset = 0 - (max_imm - offset);
2489 return offset * scale;
2490 }
2491}
eec63939 2492
65596487 2493
29639122
JB
2494/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
2495 the associated FRAME_CACHE if not null.
2496 Return the address of the first instruction past the prologue. */
eec63939 2497
29639122 2498static CORE_ADDR
e17a4113
UW
2499mips16_scan_prologue (struct gdbarch *gdbarch,
2500 CORE_ADDR start_pc, CORE_ADDR limit_pc,
b8a22b94 2501 struct frame_info *this_frame,
29639122
JB
2502 struct mips_frame_cache *this_cache)
2503{
ab50adb6
MR
2504 int prev_non_prologue_insn = 0;
2505 int this_non_prologue_insn;
2506 int non_prologue_insns = 0;
2507 CORE_ADDR prev_pc;
29639122 2508 CORE_ADDR cur_pc;
025bb325 2509 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer. */
29639122
JB
2510 CORE_ADDR sp;
2511 long frame_offset = 0; /* Size of stack frame. */
2512 long frame_adjust = 0; /* Offset of FP from SP. */
2513 int frame_reg = MIPS_SP_REGNUM;
025bb325 2514 unsigned short prev_inst = 0; /* saved copy of previous instruction. */
29639122
JB
2515 unsigned inst = 0; /* current instruction */
2516 unsigned entry_inst = 0; /* the entry instruction */
2207132d 2517 unsigned save_inst = 0; /* the save instruction */
ab50adb6
MR
2518 int prev_delay_slot = 0;
2519 int in_delay_slot;
29639122 2520 int reg, offset;
a343eb3c 2521
29639122 2522 int extend_bytes = 0;
ab50adb6
MR
2523 int prev_extend_bytes = 0;
2524 CORE_ADDR end_prologue_addr;
a343eb3c 2525
29639122 2526 /* Can be called when there's no process, and hence when there's no
b8a22b94
DJ
2527 THIS_FRAME. */
2528 if (this_frame != NULL)
2529 sp = get_frame_register_signed (this_frame,
2530 gdbarch_num_regs (gdbarch)
2531 + MIPS_SP_REGNUM);
29639122
JB
2532 else
2533 sp = 0;
eec63939 2534
29639122
JB
2535 if (limit_pc > start_pc + 200)
2536 limit_pc = start_pc + 200;
ab50adb6 2537 prev_pc = start_pc;
eec63939 2538
ab50adb6
MR
2539 /* Permit at most one non-prologue non-control-transfer instruction
2540 in the middle which may have been reordered by the compiler for
2541 optimisation. */
95ac2dcf 2542 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
29639122 2543 {
ab50adb6
MR
2544 this_non_prologue_insn = 0;
2545 in_delay_slot = 0;
2546
29639122
JB
2547 /* Save the previous instruction. If it's an EXTEND, we'll extract
2548 the immediate offset extension from it in mips16_get_imm. */
2549 prev_inst = inst;
eec63939 2550
025bb325 2551 /* Fetch and decode the instruction. */
4cc0665f
MR
2552 inst = (unsigned short) mips_fetch_instruction (gdbarch, ISA_MIPS16,
2553 cur_pc, NULL);
eec63939 2554
29639122
JB
2555 /* Normally we ignore extend instructions. However, if it is
2556 not followed by a valid prologue instruction, then this
2557 instruction is not part of the prologue either. We must
2558 remember in this case to adjust the end_prologue_addr back
2559 over the extend. */
2560 if ((inst & 0xf800) == 0xf000) /* extend */
2561 {
95ac2dcf 2562 extend_bytes = MIPS_INSN16_SIZE;
29639122
JB
2563 continue;
2564 }
eec63939 2565
29639122
JB
2566 prev_extend_bytes = extend_bytes;
2567 extend_bytes = 0;
eec63939 2568
29639122
JB
2569 if ((inst & 0xff00) == 0x6300 /* addiu sp */
2570 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2571 {
2572 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
025bb325 2573 if (offset < 0) /* Negative stack adjustment? */
29639122
JB
2574 frame_offset -= offset;
2575 else
2576 /* Exit loop if a positive stack adjustment is found, which
2577 usually means that the stack cleanup code in the function
2578 epilogue is reached. */
2579 break;
2580 }
2581 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2582 {
2583 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
4cc0665f 2584 reg = mips_reg3_to_reg[(inst & 0x700) >> 8];
74ed0bb4 2585 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
29639122
JB
2586 }
2587 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2588 {
2589 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
4cc0665f 2590 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
74ed0bb4 2591 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
29639122
JB
2592 }
2593 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2594 {
2595 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
74ed0bb4 2596 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
2597 }
2598 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2599 {
2600 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
74ed0bb4 2601 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
2602 }
2603 else if (inst == 0x673d) /* move $s1, $sp */
2604 {
2605 frame_addr = sp;
2606 frame_reg = 17;
2607 }
2608 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2609 {
2610 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2611 frame_addr = sp + offset;
2612 frame_reg = 17;
2613 frame_adjust = offset;
2614 }
2615 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2616 {
2617 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
4cc0665f 2618 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
74ed0bb4 2619 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
29639122
JB
2620 }
2621 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2622 {
2623 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
4cc0665f 2624 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
74ed0bb4 2625 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
29639122
JB
2626 }
2627 else if ((inst & 0xf81f) == 0xe809
2628 && (inst & 0x700) != 0x700) /* entry */
025bb325 2629 entry_inst = inst; /* Save for later processing. */
2207132d
MR
2630 else if ((inst & 0xff80) == 0x6480) /* save */
2631 {
025bb325 2632 save_inst = inst; /* Save for later processing. */
2207132d
MR
2633 if (prev_extend_bytes) /* extend */
2634 save_inst |= prev_inst << 16;
2635 }
29639122
JB
2636 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
2637 {
2638 /* This instruction is part of the prologue, but we don't
2639 need to do anything special to handle it. */
2640 }
ab50adb6
MR
2641 else if (mips16_instruction_has_delay_slot (inst, 0))
2642 /* JAL/JALR/JALX/JR */
2643 {
2644 /* The instruction in the delay slot can be a part
2645 of the prologue, so move forward once more. */
2646 in_delay_slot = 1;
2647 if (mips16_instruction_has_delay_slot (inst, 1))
2648 /* JAL/JALX */
2649 {
2650 prev_extend_bytes = MIPS_INSN16_SIZE;
2651 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
2652 }
2653 }
29639122
JB
2654 else
2655 {
ab50adb6 2656 this_non_prologue_insn = 1;
29639122 2657 }
ab50adb6
MR
2658
2659 non_prologue_insns += this_non_prologue_insn;
2660
2661 /* A jump or branch, or enough non-prologue insns seen? If so,
2662 then we must have reached the end of the prologue by now. */
2663 if (prev_delay_slot || non_prologue_insns > 1
2664 || mips16_instruction_is_compact_branch (inst))
2665 break;
2666
2667 prev_non_prologue_insn = this_non_prologue_insn;
2668 prev_delay_slot = in_delay_slot;
2669 prev_pc = cur_pc - prev_extend_bytes;
29639122 2670 }
eec63939 2671
29639122
JB
2672 /* The entry instruction is typically the first instruction in a function,
2673 and it stores registers at offsets relative to the value of the old SP
2674 (before the prologue). But the value of the sp parameter to this
2675 function is the new SP (after the prologue has been executed). So we
2676 can't calculate those offsets until we've seen the entire prologue,
025bb325 2677 and can calculate what the old SP must have been. */
29639122
JB
2678 if (entry_inst != 0)
2679 {
2680 int areg_count = (entry_inst >> 8) & 7;
2681 int sreg_count = (entry_inst >> 6) & 3;
eec63939 2682
29639122
JB
2683 /* The entry instruction always subtracts 32 from the SP. */
2684 frame_offset += 32;
2685
2686 /* Now we can calculate what the SP must have been at the
2687 start of the function prologue. */
2688 sp += frame_offset;
2689
2690 /* Check if a0-a3 were saved in the caller's argument save area. */
2691 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2692 {
74ed0bb4 2693 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
72a155b4 2694 offset += mips_abi_regsize (gdbarch);
29639122
JB
2695 }
2696
2697 /* Check if the ra register was pushed on the stack. */
2698 offset = -4;
2699 if (entry_inst & 0x20)
2700 {
74ed0bb4 2701 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
72a155b4 2702 offset -= mips_abi_regsize (gdbarch);
29639122
JB
2703 }
2704
2705 /* Check if the s0 and s1 registers were pushed on the stack. */
2706 for (reg = 16; reg < sreg_count + 16; reg++)
2707 {
74ed0bb4 2708 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
72a155b4 2709 offset -= mips_abi_regsize (gdbarch);
29639122
JB
2710 }
2711 }
2712
2207132d
MR
2713 /* The SAVE instruction is similar to ENTRY, except that defined by the
2714 MIPS16e ASE of the MIPS Architecture. Unlike with ENTRY though, the
2715 size of the frame is specified as an immediate field of instruction
2716 and an extended variation exists which lets additional registers and
2717 frame space to be specified. The instruction always treats registers
2718 as 32-bit so its usefulness for 64-bit ABIs is questionable. */
2719 if (save_inst != 0 && mips_abi_regsize (gdbarch) == 4)
2720 {
2721 static int args_table[16] = {
2722 0, 0, 0, 0, 1, 1, 1, 1,
2723 2, 2, 2, 0, 3, 3, 4, -1,
2724 };
2725 static int astatic_table[16] = {
2726 0, 1, 2, 3, 0, 1, 2, 3,
2727 0, 1, 2, 4, 0, 1, 0, -1,
2728 };
2729 int aregs = (save_inst >> 16) & 0xf;
2730 int xsregs = (save_inst >> 24) & 0x7;
2731 int args = args_table[aregs];
2732 int astatic = astatic_table[aregs];
2733 long frame_size;
2734
2735 if (args < 0)
2736 {
2737 warning (_("Invalid number of argument registers encoded in SAVE."));
2738 args = 0;
2739 }
2740 if (astatic < 0)
2741 {
2742 warning (_("Invalid number of static registers encoded in SAVE."));
2743 astatic = 0;
2744 }
2745
2746 /* For standard SAVE the frame size of 0 means 128. */
2747 frame_size = ((save_inst >> 16) & 0xf0) | (save_inst & 0xf);
2748 if (frame_size == 0 && (save_inst >> 16) == 0)
2749 frame_size = 16;
2750 frame_size *= 8;
2751 frame_offset += frame_size;
2752
2753 /* Now we can calculate what the SP must have been at the
2754 start of the function prologue. */
2755 sp += frame_offset;
2756
2757 /* Check if A0-A3 were saved in the caller's argument save area. */
2758 for (reg = MIPS_A0_REGNUM, offset = 0; reg < args + 4; reg++)
2759 {
74ed0bb4 2760 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2207132d
MR
2761 offset += mips_abi_regsize (gdbarch);
2762 }
2763
2764 offset = -4;
2765
2766 /* Check if the RA register was pushed on the stack. */
2767 if (save_inst & 0x40)
2768 {
74ed0bb4 2769 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2207132d
MR
2770 offset -= mips_abi_regsize (gdbarch);
2771 }
2772
2773 /* Check if the S8 register was pushed on the stack. */
2774 if (xsregs > 6)
2775 {
74ed0bb4 2776 set_reg_offset (gdbarch, this_cache, 30, sp + offset);
2207132d
MR
2777 offset -= mips_abi_regsize (gdbarch);
2778 xsregs--;
2779 }
2780 /* Check if S2-S7 were pushed on the stack. */
2781 for (reg = 18 + xsregs - 1; reg > 18 - 1; reg--)
2782 {
74ed0bb4 2783 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2207132d
MR
2784 offset -= mips_abi_regsize (gdbarch);
2785 }
2786
2787 /* Check if the S1 register was pushed on the stack. */
2788 if (save_inst & 0x10)
2789 {
74ed0bb4 2790 set_reg_offset (gdbarch, this_cache, 17, sp + offset);
2207132d
MR
2791 offset -= mips_abi_regsize (gdbarch);
2792 }
2793 /* Check if the S0 register was pushed on the stack. */
2794 if (save_inst & 0x20)
2795 {
74ed0bb4 2796 set_reg_offset (gdbarch, this_cache, 16, sp + offset);
2207132d
MR
2797 offset -= mips_abi_regsize (gdbarch);
2798 }
2799
4cc0665f
MR
2800 /* Check if A0-A3 were pushed on the stack. */
2801 for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
2802 {
2803 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2804 offset -= mips_abi_regsize (gdbarch);
2805 }
2806 }
2807
2808 if (this_cache != NULL)
2809 {
2810 this_cache->base =
2811 (get_frame_register_signed (this_frame,
2812 gdbarch_num_regs (gdbarch) + frame_reg)
2813 + frame_offset - frame_adjust);
2814 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
2815 be able to get rid of the assignment below, evetually. But it's
2816 still needed for now. */
2817 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2818 + mips_regnum (gdbarch)->pc]
2819 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
2820 }
2821
ab50adb6
MR
2822 /* Set end_prologue_addr to the address of the instruction immediately
2823 after the last one we scanned. Unless the last one looked like a
2824 non-prologue instruction (and we looked ahead), in which case use
2825 its address instead. */
2826 end_prologue_addr = (prev_non_prologue_insn || prev_delay_slot
2827 ? prev_pc : cur_pc - prev_extend_bytes);
4cc0665f
MR
2828
2829 return end_prologue_addr;
2830}
2831
2832/* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
2833 Procedures that use the 32-bit instruction set are handled by the
2834 mips_insn32 unwinder. */
2835
2836static struct mips_frame_cache *
2837mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
2838{
2839 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2840 struct mips_frame_cache *cache;
2841
2842 if ((*this_cache) != NULL)
19ba03f4 2843 return (struct mips_frame_cache *) (*this_cache);
4cc0665f
MR
2844 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2845 (*this_cache) = cache;
2846 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2847
2848 /* Analyze the function prologue. */
2849 {
2850 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
2851 CORE_ADDR start_addr;
2852
2853 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2854 if (start_addr == 0)
2855 start_addr = heuristic_proc_start (gdbarch, pc);
2856 /* We can't analyze the prologue if we couldn't find the begining
2857 of the function. */
2858 if (start_addr == 0)
2859 return cache;
2860
19ba03f4
SM
2861 mips16_scan_prologue (gdbarch, start_addr, pc, this_frame,
2862 (struct mips_frame_cache *) *this_cache);
4cc0665f
MR
2863 }
2864
2865 /* gdbarch_sp_regnum contains the value and not the address. */
2866 trad_frame_set_value (cache->saved_regs,
2867 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
2868 cache->base);
2869
19ba03f4 2870 return (struct mips_frame_cache *) (*this_cache);
4cc0665f
MR
2871}
2872
2873static void
2874mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
2875 struct frame_id *this_id)
2876{
2877 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2878 this_cache);
2879 /* This marks the outermost frame. */
2880 if (info->base == 0)
2881 return;
2882 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2883}
2884
2885static struct value *
2886mips_insn16_frame_prev_register (struct frame_info *this_frame,
2887 void **this_cache, int regnum)
2888{
2889 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2890 this_cache);
2891 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
2892}
2893
2894static int
2895mips_insn16_frame_sniffer (const struct frame_unwind *self,
2896 struct frame_info *this_frame, void **this_cache)
2897{
2898 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2899 CORE_ADDR pc = get_frame_pc (this_frame);
2900 if (mips_pc_is_mips16 (gdbarch, pc))
2901 return 1;
2902 return 0;
2903}
2904
2905static const struct frame_unwind mips_insn16_frame_unwind =
2906{
2907 NORMAL_FRAME,
2908 default_frame_unwind_stop_reason,
2909 mips_insn16_frame_this_id,
2910 mips_insn16_frame_prev_register,
2911 NULL,
2912 mips_insn16_frame_sniffer
2913};
2914
2915static CORE_ADDR
2916mips_insn16_frame_base_address (struct frame_info *this_frame,
2917 void **this_cache)
2918{
2919 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2920 this_cache);
2921 return info->base;
2922}
2923
2924static const struct frame_base mips_insn16_frame_base =
2925{
2926 &mips_insn16_frame_unwind,
2927 mips_insn16_frame_base_address,
2928 mips_insn16_frame_base_address,
2929 mips_insn16_frame_base_address
2930};
2931
2932static const struct frame_base *
2933mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
2934{
2935 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2936 CORE_ADDR pc = get_frame_pc (this_frame);
2937 if (mips_pc_is_mips16 (gdbarch, pc))
2938 return &mips_insn16_frame_base;
2939 else
2940 return NULL;
2941}
2942
2943/* Decode a 9-bit signed immediate argument of ADDIUSP -- -2 is mapped
2944 to -258, -1 -- to -257, 0 -- to 256, 1 -- to 257 and other values are
2945 interpreted directly, and then multiplied by 4. */
2946
2947static int
2948micromips_decode_imm9 (int imm)
2949{
2950 imm = (imm ^ 0x100) - 0x100;
2951 if (imm > -3 && imm < 2)
2952 imm ^= 0x100;
2953 return imm << 2;
2954}
2955
2956/* Analyze the function prologue from START_PC to LIMIT_PC. Return
2957 the address of the first instruction past the prologue. */
2958
2959static CORE_ADDR
2960micromips_scan_prologue (struct gdbarch *gdbarch,
2961 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2962 struct frame_info *this_frame,
2963 struct mips_frame_cache *this_cache)
2964{
ab50adb6 2965 CORE_ADDR end_prologue_addr;
4cc0665f
MR
2966 int prev_non_prologue_insn = 0;
2967 int frame_reg = MIPS_SP_REGNUM;
2968 int this_non_prologue_insn;
2969 int non_prologue_insns = 0;
2970 long frame_offset = 0; /* Size of stack frame. */
2971 long frame_adjust = 0; /* Offset of FP from SP. */
ab50adb6
MR
2972 int prev_delay_slot = 0;
2973 int in_delay_slot;
4cc0665f
MR
2974 CORE_ADDR prev_pc;
2975 CORE_ADDR cur_pc;
2976 ULONGEST insn; /* current instruction */
2977 CORE_ADDR sp;
2978 long offset;
2979 long sp_adj;
2980 long v1_off = 0; /* The assumption is LUI will replace it. */
2981 int reglist;
2982 int breg;
2983 int dreg;
2984 int sreg;
2985 int treg;
2986 int loc;
2987 int op;
2988 int s;
2989 int i;
2990
2991 /* Can be called when there's no process, and hence when there's no
2992 THIS_FRAME. */
2993 if (this_frame != NULL)
2994 sp = get_frame_register_signed (this_frame,
2995 gdbarch_num_regs (gdbarch)
2996 + MIPS_SP_REGNUM);
2997 else
2998 sp = 0;
2999
3000 if (limit_pc > start_pc + 200)
3001 limit_pc = start_pc + 200;
3002 prev_pc = start_pc;
3003
3004 /* Permit at most one non-prologue non-control-transfer instruction
3005 in the middle which may have been reordered by the compiler for
3006 optimisation. */
3007 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += loc)
3008 {
3009 this_non_prologue_insn = 0;
ab50adb6 3010 in_delay_slot = 0;
4cc0665f
MR
3011 sp_adj = 0;
3012 loc = 0;
3013 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, cur_pc, NULL);
3014 loc += MIPS_INSN16_SIZE;
3015 switch (mips_insn_size (ISA_MICROMIPS, insn))
3016 {
4cc0665f
MR
3017 /* 32-bit instructions. */
3018 case 2 * MIPS_INSN16_SIZE:
3019 insn <<= 16;
3020 insn |= mips_fetch_instruction (gdbarch,
3021 ISA_MICROMIPS, cur_pc + loc, NULL);
3022 loc += MIPS_INSN16_SIZE;
3023 switch (micromips_op (insn >> 16))
3024 {
3025 /* Record $sp/$fp adjustment. */
3026 /* Discard (D)ADDU $gp,$jp used for PIC code. */
3027 case 0x0: /* POOL32A: bits 000000 */
3028 case 0x16: /* POOL32S: bits 010110 */
3029 op = b0s11_op (insn);
3030 sreg = b0s5_reg (insn >> 16);
3031 treg = b5s5_reg (insn >> 16);
3032 dreg = b11s5_reg (insn);
3033 if (op == 0x1d0
3034 /* SUBU: bits 000000 00111010000 */
3035 /* DSUBU: bits 010110 00111010000 */
3036 && dreg == MIPS_SP_REGNUM && sreg == MIPS_SP_REGNUM
3037 && treg == 3)
3038 /* (D)SUBU $sp, $v1 */
3039 sp_adj = v1_off;
3040 else if (op != 0x150
3041 /* ADDU: bits 000000 00101010000 */
3042 /* DADDU: bits 010110 00101010000 */
3043 || dreg != 28 || sreg != 28 || treg != MIPS_T9_REGNUM)
3044 this_non_prologue_insn = 1;
3045 break;
3046
3047 case 0x8: /* POOL32B: bits 001000 */
3048 op = b12s4_op (insn);
3049 breg = b0s5_reg (insn >> 16);
3050 reglist = sreg = b5s5_reg (insn >> 16);
3051 offset = (b0s12_imm (insn) ^ 0x800) - 0x800;
3052 if ((op == 0x9 || op == 0xc)
3053 /* SWP: bits 001000 1001 */
3054 /* SDP: bits 001000 1100 */
3055 && breg == MIPS_SP_REGNUM && sreg < MIPS_RA_REGNUM)
3056 /* S[DW]P reg,offset($sp) */
3057 {
3058 s = 4 << ((b12s4_op (insn) & 0x4) == 0x4);
3059 set_reg_offset (gdbarch, this_cache,
3060 sreg, sp + offset);
3061 set_reg_offset (gdbarch, this_cache,
3062 sreg + 1, sp + offset + s);
3063 }
3064 else if ((op == 0xd || op == 0xf)
3065 /* SWM: bits 001000 1101 */
3066 /* SDM: bits 001000 1111 */
3067 && breg == MIPS_SP_REGNUM
3068 /* SWM reglist,offset($sp) */
3069 && ((reglist >= 1 && reglist <= 9)
3070 || (reglist >= 16 && reglist <= 25)))
3071 {
325fac50 3072 int sreglist = std::min(reglist & 0xf, 8);
4cc0665f
MR
3073
3074 s = 4 << ((b12s4_op (insn) & 0x2) == 0x2);
3075 for (i = 0; i < sreglist; i++)
3076 set_reg_offset (gdbarch, this_cache, 16 + i, sp + s * i);
3077 if ((reglist & 0xf) > 8)
3078 set_reg_offset (gdbarch, this_cache, 30, sp + s * i++);
3079 if ((reglist & 0x10) == 0x10)
3080 set_reg_offset (gdbarch, this_cache,
3081 MIPS_RA_REGNUM, sp + s * i++);
3082 }
3083 else
3084 this_non_prologue_insn = 1;
3085 break;
3086
3087 /* Record $sp/$fp adjustment. */
3088 /* Discard (D)ADDIU $gp used for PIC code. */
3089 case 0xc: /* ADDIU: bits 001100 */
3090 case 0x17: /* DADDIU: bits 010111 */
3091 sreg = b0s5_reg (insn >> 16);
3092 dreg = b5s5_reg (insn >> 16);
3093 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3094 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM)
3095 /* (D)ADDIU $sp, imm */
3096 sp_adj = offset;
3097 else if (sreg == MIPS_SP_REGNUM && dreg == 30)
3098 /* (D)ADDIU $fp, $sp, imm */
3099 {
4cc0665f
MR
3100 frame_adjust = offset;
3101 frame_reg = 30;
3102 }
3103 else if (sreg != 28 || dreg != 28)
3104 /* (D)ADDIU $gp, imm */
3105 this_non_prologue_insn = 1;
3106 break;
3107
3108 /* LUI $v1 is used for larger $sp adjustments. */
3356937a 3109 /* Discard LUI $gp used for PIC code. */
4cc0665f
MR
3110 case 0x10: /* POOL32I: bits 010000 */
3111 if (b5s5_op (insn >> 16) == 0xd
3112 /* LUI: bits 010000 001101 */
3113 && b0s5_reg (insn >> 16) == 3)
3114 /* LUI $v1, imm */
3115 v1_off = ((b0s16_imm (insn) << 16) ^ 0x80000000) - 0x80000000;
3116 else if (b5s5_op (insn >> 16) != 0xd
3117 /* LUI: bits 010000 001101 */
3118 || b0s5_reg (insn >> 16) != 28)
3119 /* LUI $gp, imm */
3120 this_non_prologue_insn = 1;
3121 break;
3122
3123 /* ORI $v1 is used for larger $sp adjustments. */
3124 case 0x14: /* ORI: bits 010100 */
3125 sreg = b0s5_reg (insn >> 16);
3126 dreg = b5s5_reg (insn >> 16);
3127 if (sreg == 3 && dreg == 3)
3128 /* ORI $v1, imm */
3129 v1_off |= b0s16_imm (insn);
3130 else
3131 this_non_prologue_insn = 1;
3132 break;
3133
3134 case 0x26: /* SWC1: bits 100110 */
3135 case 0x2e: /* SDC1: bits 101110 */
3136 breg = b0s5_reg (insn >> 16);
3137 if (breg != MIPS_SP_REGNUM)
3138 /* S[DW]C1 reg,offset($sp) */
3139 this_non_prologue_insn = 1;
3140 break;
3141
3142 case 0x36: /* SD: bits 110110 */
3143 case 0x3e: /* SW: bits 111110 */
3144 breg = b0s5_reg (insn >> 16);
3145 sreg = b5s5_reg (insn >> 16);
3146 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3147 if (breg == MIPS_SP_REGNUM)
3148 /* S[DW] reg,offset($sp) */
3149 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3150 else
3151 this_non_prologue_insn = 1;
3152 break;
3153
3154 default:
ab50adb6
MR
3155 /* The instruction in the delay slot can be a part
3156 of the prologue, so move forward once more. */
3157 if (micromips_instruction_has_delay_slot (insn, 0))
3158 in_delay_slot = 1;
3159 else
3160 this_non_prologue_insn = 1;
4cc0665f
MR
3161 break;
3162 }
ab50adb6 3163 insn >>= 16;
4cc0665f
MR
3164 break;
3165
3166 /* 16-bit instructions. */
3167 case MIPS_INSN16_SIZE:
3168 switch (micromips_op (insn))
3169 {
3170 case 0x3: /* MOVE: bits 000011 */
3171 sreg = b0s5_reg (insn);
3172 dreg = b5s5_reg (insn);
3173 if (sreg == MIPS_SP_REGNUM && dreg == 30)
3174 /* MOVE $fp, $sp */
78cc6c2d 3175 frame_reg = 30;
4cc0665f
MR
3176 else if ((sreg & 0x1c) != 0x4)
3177 /* MOVE reg, $a0-$a3 */
3178 this_non_prologue_insn = 1;
3179 break;
3180
3181 case 0x11: /* POOL16C: bits 010001 */
3182 if (b6s4_op (insn) == 0x5)
3183 /* SWM: bits 010001 0101 */
3184 {
3185 offset = ((b0s4_imm (insn) << 2) ^ 0x20) - 0x20;
3186 reglist = b4s2_regl (insn);
3187 for (i = 0; i <= reglist; i++)
3188 set_reg_offset (gdbarch, this_cache, 16 + i, sp + 4 * i);
3189 set_reg_offset (gdbarch, this_cache,
3190 MIPS_RA_REGNUM, sp + 4 * i++);
3191 }
3192 else
3193 this_non_prologue_insn = 1;
3194 break;
3195
3196 case 0x13: /* POOL16D: bits 010011 */
3197 if ((insn & 0x1) == 0x1)
3198 /* ADDIUSP: bits 010011 1 */
3199 sp_adj = micromips_decode_imm9 (b1s9_imm (insn));
3200 else if (b5s5_reg (insn) == MIPS_SP_REGNUM)
3201 /* ADDIUS5: bits 010011 0 */
3202 /* ADDIUS5 $sp, imm */
3203 sp_adj = (b1s4_imm (insn) ^ 8) - 8;
3204 else
3205 this_non_prologue_insn = 1;
3206 break;
3207
3208 case 0x32: /* SWSP: bits 110010 */
3209 offset = b0s5_imm (insn) << 2;
3210 sreg = b5s5_reg (insn);
3211 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3212 break;
3213
3214 default:
ab50adb6
MR
3215 /* The instruction in the delay slot can be a part
3216 of the prologue, so move forward once more. */
3217 if (micromips_instruction_has_delay_slot (insn << 16, 0))
3218 in_delay_slot = 1;
3219 else
3220 this_non_prologue_insn = 1;
4cc0665f
MR
3221 break;
3222 }
3223 break;
3224 }
3225 if (sp_adj < 0)
3226 frame_offset -= sp_adj;
3227
3228 non_prologue_insns += this_non_prologue_insn;
ab50adb6
MR
3229
3230 /* A jump or branch, enough non-prologue insns seen or positive
3231 stack adjustment? If so, then we must have reached the end
3232 of the prologue by now. */
3233 if (prev_delay_slot || non_prologue_insns > 1 || sp_adj > 0
3234 || micromips_instruction_is_compact_branch (insn))
3235 break;
3236
4cc0665f 3237 prev_non_prologue_insn = this_non_prologue_insn;
ab50adb6 3238 prev_delay_slot = in_delay_slot;
4cc0665f 3239 prev_pc = cur_pc;
2207132d
MR
3240 }
3241
29639122
JB
3242 if (this_cache != NULL)
3243 {
3244 this_cache->base =
4cc0665f 3245 (get_frame_register_signed (this_frame,
b8a22b94 3246 gdbarch_num_regs (gdbarch) + frame_reg)
4cc0665f 3247 + frame_offset - frame_adjust);
29639122 3248 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
4cc0665f
MR
3249 be able to get rid of the assignment below, evetually. But it's
3250 still needed for now. */
72a155b4
UW
3251 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3252 + mips_regnum (gdbarch)->pc]
4cc0665f 3253 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
29639122
JB
3254 }
3255
ab50adb6
MR
3256 /* Set end_prologue_addr to the address of the instruction immediately
3257 after the last one we scanned. Unless the last one looked like a
3258 non-prologue instruction (and we looked ahead), in which case use
3259 its address instead. */
3260 end_prologue_addr
3261 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
29639122
JB
3262
3263 return end_prologue_addr;
eec63939
AC
3264}
3265
4cc0665f 3266/* Heuristic unwinder for procedures using microMIPS instructions.
29639122 3267 Procedures that use the 32-bit instruction set are handled by the
4cc0665f 3268 mips_insn32 unwinder. Likewise MIPS16 and the mips_insn16 unwinder. */
29639122
JB
3269
3270static struct mips_frame_cache *
4cc0665f 3271mips_micro_frame_cache (struct frame_info *this_frame, void **this_cache)
eec63939 3272{
e17a4113 3273 struct gdbarch *gdbarch = get_frame_arch (this_frame);
29639122 3274 struct mips_frame_cache *cache;
eec63939
AC
3275
3276 if ((*this_cache) != NULL)
19ba03f4 3277 return (struct mips_frame_cache *) (*this_cache);
4cc0665f 3278
29639122
JB
3279 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3280 (*this_cache) = cache;
b8a22b94 3281 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
eec63939 3282
29639122
JB
3283 /* Analyze the function prologue. */
3284 {
b8a22b94 3285 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
29639122 3286 CORE_ADDR start_addr;
eec63939 3287
29639122
JB
3288 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3289 if (start_addr == 0)
4cc0665f 3290 start_addr = heuristic_proc_start (get_frame_arch (this_frame), pc);
29639122
JB
3291 /* We can't analyze the prologue if we couldn't find the begining
3292 of the function. */
3293 if (start_addr == 0)
3294 return cache;
eec63939 3295
19ba03f4
SM
3296 micromips_scan_prologue (gdbarch, start_addr, pc, this_frame,
3297 (struct mips_frame_cache *) *this_cache);
29639122 3298 }
4cc0665f 3299
3e8c568d 3300 /* gdbarch_sp_regnum contains the value and not the address. */
72a155b4 3301 trad_frame_set_value (cache->saved_regs,
e17a4113 3302 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
72a155b4 3303 cache->base);
eec63939 3304
19ba03f4 3305 return (struct mips_frame_cache *) (*this_cache);
eec63939
AC
3306}
3307
3308static void
4cc0665f
MR
3309mips_micro_frame_this_id (struct frame_info *this_frame, void **this_cache,
3310 struct frame_id *this_id)
eec63939 3311{
4cc0665f
MR
3312 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3313 this_cache);
21327321
DJ
3314 /* This marks the outermost frame. */
3315 if (info->base == 0)
3316 return;
b8a22b94 3317 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
eec63939
AC
3318}
3319
b8a22b94 3320static struct value *
4cc0665f
MR
3321mips_micro_frame_prev_register (struct frame_info *this_frame,
3322 void **this_cache, int regnum)
eec63939 3323{
4cc0665f
MR
3324 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3325 this_cache);
b8a22b94
DJ
3326 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3327}
3328
3329static int
4cc0665f
MR
3330mips_micro_frame_sniffer (const struct frame_unwind *self,
3331 struct frame_info *this_frame, void **this_cache)
b8a22b94 3332{
4cc0665f 3333 struct gdbarch *gdbarch = get_frame_arch (this_frame);
b8a22b94 3334 CORE_ADDR pc = get_frame_pc (this_frame);
4cc0665f
MR
3335
3336 if (mips_pc_is_micromips (gdbarch, pc))
b8a22b94
DJ
3337 return 1;
3338 return 0;
eec63939
AC
3339}
3340
4cc0665f 3341static const struct frame_unwind mips_micro_frame_unwind =
eec63939
AC
3342{
3343 NORMAL_FRAME,
8fbca658 3344 default_frame_unwind_stop_reason,
4cc0665f
MR
3345 mips_micro_frame_this_id,
3346 mips_micro_frame_prev_register,
b8a22b94 3347 NULL,
4cc0665f 3348 mips_micro_frame_sniffer
eec63939
AC
3349};
3350
eec63939 3351static CORE_ADDR
4cc0665f
MR
3352mips_micro_frame_base_address (struct frame_info *this_frame,
3353 void **this_cache)
eec63939 3354{
4cc0665f
MR
3355 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3356 this_cache);
29639122 3357 return info->base;
eec63939
AC
3358}
3359
4cc0665f 3360static const struct frame_base mips_micro_frame_base =
eec63939 3361{
4cc0665f
MR
3362 &mips_micro_frame_unwind,
3363 mips_micro_frame_base_address,
3364 mips_micro_frame_base_address,
3365 mips_micro_frame_base_address
eec63939
AC
3366};
3367
3368static const struct frame_base *
4cc0665f 3369mips_micro_frame_base_sniffer (struct frame_info *this_frame)
eec63939 3370{
4cc0665f 3371 struct gdbarch *gdbarch = get_frame_arch (this_frame);
b8a22b94 3372 CORE_ADDR pc = get_frame_pc (this_frame);
4cc0665f
MR
3373
3374 if (mips_pc_is_micromips (gdbarch, pc))
3375 return &mips_micro_frame_base;
eec63939
AC
3376 else
3377 return NULL;
edfae063
AC
3378}
3379
29639122
JB
3380/* Mark all the registers as unset in the saved_regs array
3381 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
3382
74ed0bb4
MD
3383static void
3384reset_saved_regs (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache)
c906108c 3385{
29639122
JB
3386 if (this_cache == NULL || this_cache->saved_regs == NULL)
3387 return;
3388
3389 {
74ed0bb4 3390 const int num_regs = gdbarch_num_regs (gdbarch);
29639122 3391 int i;
64159455 3392
29639122
JB
3393 for (i = 0; i < num_regs; i++)
3394 {
3395 this_cache->saved_regs[i].addr = -1;
3396 }
3397 }
c906108c
SS
3398}
3399
025bb325 3400/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
29639122
JB
3401 the associated FRAME_CACHE if not null.
3402 Return the address of the first instruction past the prologue. */
c906108c 3403
875e1767 3404static CORE_ADDR
e17a4113
UW
3405mips32_scan_prologue (struct gdbarch *gdbarch,
3406 CORE_ADDR start_pc, CORE_ADDR limit_pc,
b8a22b94 3407 struct frame_info *this_frame,
29639122 3408 struct mips_frame_cache *this_cache)
c906108c 3409{
ab50adb6
MR
3410 int prev_non_prologue_insn;
3411 int this_non_prologue_insn;
3412 int non_prologue_insns;
025bb325
MS
3413 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for
3414 frame-pointer. */
ab50adb6
MR
3415 int prev_delay_slot;
3416 CORE_ADDR prev_pc;
3417 CORE_ADDR cur_pc;
29639122
JB
3418 CORE_ADDR sp;
3419 long frame_offset;
3420 int frame_reg = MIPS_SP_REGNUM;
8fa9cfa1 3421
ab50adb6 3422 CORE_ADDR end_prologue_addr;
29639122
JB
3423 int seen_sp_adjust = 0;
3424 int load_immediate_bytes = 0;
ab50adb6 3425 int in_delay_slot;
7d1e6fb8 3426 int regsize_is_64_bits = (mips_abi_regsize (gdbarch) == 8);
8fa9cfa1 3427
29639122 3428 /* Can be called when there's no process, and hence when there's no
b8a22b94
DJ
3429 THIS_FRAME. */
3430 if (this_frame != NULL)
3431 sp = get_frame_register_signed (this_frame,
3432 gdbarch_num_regs (gdbarch)
3433 + MIPS_SP_REGNUM);
8fa9cfa1 3434 else
29639122 3435 sp = 0;
9022177c 3436
29639122
JB
3437 if (limit_pc > start_pc + 200)
3438 limit_pc = start_pc + 200;
9022177c 3439
29639122 3440restart:
ab50adb6
MR
3441 prev_non_prologue_insn = 0;
3442 non_prologue_insns = 0;
3443 prev_delay_slot = 0;
3444 prev_pc = start_pc;
9022177c 3445
ab50adb6
MR
3446 /* Permit at most one non-prologue non-control-transfer instruction
3447 in the middle which may have been reordered by the compiler for
3448 optimisation. */
29639122 3449 frame_offset = 0;
95ac2dcf 3450 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
9022177c 3451 {
eaa6a9a4
MR
3452 unsigned long inst, high_word;
3453 long offset;
29639122 3454 int reg;
9022177c 3455
ab50adb6
MR
3456 this_non_prologue_insn = 0;
3457 in_delay_slot = 0;
3458
025bb325 3459 /* Fetch the instruction. */
4cc0665f
MR
3460 inst = (unsigned long) mips_fetch_instruction (gdbarch, ISA_MIPS,
3461 cur_pc, NULL);
9022177c 3462
29639122
JB
3463 /* Save some code by pre-extracting some useful fields. */
3464 high_word = (inst >> 16) & 0xffff;
eaa6a9a4 3465 offset = ((inst & 0xffff) ^ 0x8000) - 0x8000;
29639122 3466 reg = high_word & 0x1f;
fe29b929 3467
025bb325 3468 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
29639122
JB
3469 || high_word == 0x23bd /* addi $sp,$sp,-i */
3470 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
3471 {
eaa6a9a4
MR
3472 if (offset < 0) /* Negative stack adjustment? */
3473 frame_offset -= offset;
29639122
JB
3474 else
3475 /* Exit loop if a positive stack adjustment is found, which
3476 usually means that the stack cleanup code in the function
3477 epilogue is reached. */
3478 break;
3479 seen_sp_adjust = 1;
3480 }
7d1e6fb8
KB
3481 else if (((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
3482 && !regsize_is_64_bits)
29639122 3483 {
eaa6a9a4 3484 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
29639122 3485 }
7d1e6fb8
KB
3486 else if (((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
3487 && regsize_is_64_bits)
29639122
JB
3488 {
3489 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
eaa6a9a4 3490 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
29639122
JB
3491 }
3492 else if (high_word == 0x27be) /* addiu $30,$sp,size */
3493 {
3494 /* Old gcc frame, r30 is virtual frame pointer. */
eaa6a9a4
MR
3495 if (offset != frame_offset)
3496 frame_addr = sp + offset;
b8a22b94 3497 else if (this_frame && frame_reg == MIPS_SP_REGNUM)
29639122
JB
3498 {
3499 unsigned alloca_adjust;
a4b8ebc8 3500
29639122 3501 frame_reg = 30;
b8a22b94
DJ
3502 frame_addr = get_frame_register_signed
3503 (this_frame, gdbarch_num_regs (gdbarch) + 30);
ca9c94ef 3504 frame_offset = 0;
d2ca4222 3505
eaa6a9a4 3506 alloca_adjust = (unsigned) (frame_addr - (sp + offset));
29639122
JB
3507 if (alloca_adjust > 0)
3508 {
025bb325 3509 /* FP > SP + frame_size. This may be because of
29639122
JB
3510 an alloca or somethings similar. Fix sp to
3511 "pre-alloca" value, and try again. */
3512 sp += alloca_adjust;
3513 /* Need to reset the status of all registers. Otherwise,
3514 we will hit a guard that prevents the new address
3515 for each register to be recomputed during the second
3516 pass. */
74ed0bb4 3517 reset_saved_regs (gdbarch, this_cache);
29639122
JB
3518 goto restart;
3519 }
3520 }
3521 }
3522 /* move $30,$sp. With different versions of gas this will be either
3523 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
3524 Accept any one of these. */
3525 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
3526 {
3527 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
b8a22b94 3528 if (this_frame && frame_reg == MIPS_SP_REGNUM)
29639122
JB
3529 {
3530 unsigned alloca_adjust;
c906108c 3531
29639122 3532 frame_reg = 30;
b8a22b94
DJ
3533 frame_addr = get_frame_register_signed
3534 (this_frame, gdbarch_num_regs (gdbarch) + 30);
d2ca4222 3535
29639122
JB
3536 alloca_adjust = (unsigned) (frame_addr - sp);
3537 if (alloca_adjust > 0)
3538 {
025bb325 3539 /* FP > SP + frame_size. This may be because of
29639122
JB
3540 an alloca or somethings similar. Fix sp to
3541 "pre-alloca" value, and try again. */
3542 sp = frame_addr;
3543 /* Need to reset the status of all registers. Otherwise,
3544 we will hit a guard that prevents the new address
3545 for each register to be recomputed during the second
3546 pass. */
74ed0bb4 3547 reset_saved_regs (gdbarch, this_cache);
29639122
JB
3548 goto restart;
3549 }
3550 }
3551 }
7d1e6fb8
KB
3552 else if ((high_word & 0xFFE0) == 0xafc0 /* sw reg,offset($30) */
3553 && !regsize_is_64_bits)
29639122 3554 {
eaa6a9a4 3555 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
29639122
JB
3556 }
3557 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
3558 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
3559 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
3560 || high_word == 0x3c1c /* lui $gp,n */
3561 || high_word == 0x279c /* addiu $gp,$gp,n */
3562 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
3563 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
3564 )
19080931
MR
3565 {
3566 /* These instructions are part of the prologue, but we don't
3567 need to do anything special to handle them. */
3568 }
29639122
JB
3569 /* The instructions below load $at or $t0 with an immediate
3570 value in preparation for a stack adjustment via
025bb325 3571 subu $sp,$sp,[$at,$t0]. These instructions could also
29639122
JB
3572 initialize a local variable, so we accept them only before
3573 a stack adjustment instruction was seen. */
3574 else if (!seen_sp_adjust
ab50adb6 3575 && !prev_delay_slot
19080931
MR
3576 && (high_word == 0x3c01 /* lui $at,n */
3577 || high_word == 0x3c08 /* lui $t0,n */
3578 || high_word == 0x3421 /* ori $at,$at,n */
3579 || high_word == 0x3508 /* ori $t0,$t0,n */
3580 || high_word == 0x3401 /* ori $at,$zero,n */
3581 || high_word == 0x3408 /* ori $t0,$zero,n */
3582 ))
3583 {
ab50adb6 3584 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
19080931 3585 }
ab50adb6
MR
3586 /* Check for branches and jumps. The instruction in the delay
3587 slot can be a part of the prologue, so move forward once more. */
3588 else if (mips32_instruction_has_delay_slot (gdbarch, inst))
3589 {
3590 in_delay_slot = 1;
3591 }
3592 /* This instruction is not an instruction typically found
3593 in a prologue, so we must have reached the end of the
3594 prologue. */
29639122 3595 else
19080931 3596 {
ab50adb6 3597 this_non_prologue_insn = 1;
19080931 3598 }
db5f024e 3599
ab50adb6
MR
3600 non_prologue_insns += this_non_prologue_insn;
3601
3602 /* A jump or branch, or enough non-prologue insns seen? If so,
3603 then we must have reached the end of the prologue by now. */
3604 if (prev_delay_slot || non_prologue_insns > 1)
db5f024e 3605 break;
ab50adb6
MR
3606
3607 prev_non_prologue_insn = this_non_prologue_insn;
3608 prev_delay_slot = in_delay_slot;
3609 prev_pc = cur_pc;
a4b8ebc8 3610 }
c906108c 3611
29639122
JB
3612 if (this_cache != NULL)
3613 {
3614 this_cache->base =
b8a22b94
DJ
3615 (get_frame_register_signed (this_frame,
3616 gdbarch_num_regs (gdbarch) + frame_reg)
29639122
JB
3617 + frame_offset);
3618 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
3619 this assignment below, eventually. But it's still needed
3620 for now. */
72a155b4
UW
3621 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3622 + mips_regnum (gdbarch)->pc]
3623 = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
f57d151a 3624 + MIPS_RA_REGNUM];
29639122 3625 }
c906108c 3626
ab50adb6
MR
3627 /* Set end_prologue_addr to the address of the instruction immediately
3628 after the last one we scanned. Unless the last one looked like a
3629 non-prologue instruction (and we looked ahead), in which case use
3630 its address instead. */
3631 end_prologue_addr
3632 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
29639122
JB
3633
3634 /* In a frameless function, we might have incorrectly
025bb325 3635 skipped some load immediate instructions. Undo the skipping
29639122
JB
3636 if the load immediate was not followed by a stack adjustment. */
3637 if (load_immediate_bytes && !seen_sp_adjust)
3638 end_prologue_addr -= load_immediate_bytes;
c906108c 3639
29639122 3640 return end_prologue_addr;
c906108c
SS
3641}
3642
29639122
JB
3643/* Heuristic unwinder for procedures using 32-bit instructions (covers
3644 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
3645 instructions (a.k.a. MIPS16) are handled by the mips_insn16
4cc0665f 3646 unwinder. Likewise microMIPS and the mips_micro unwinder. */
c906108c 3647
29639122 3648static struct mips_frame_cache *
b8a22b94 3649mips_insn32_frame_cache (struct frame_info *this_frame, void **this_cache)
c906108c 3650{
e17a4113 3651 struct gdbarch *gdbarch = get_frame_arch (this_frame);
29639122 3652 struct mips_frame_cache *cache;
c906108c 3653
29639122 3654 if ((*this_cache) != NULL)
19ba03f4 3655 return (struct mips_frame_cache *) (*this_cache);
c5aa993b 3656
29639122
JB
3657 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3658 (*this_cache) = cache;
b8a22b94 3659 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
c5aa993b 3660
29639122
JB
3661 /* Analyze the function prologue. */
3662 {
b8a22b94 3663 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
29639122 3664 CORE_ADDR start_addr;
c906108c 3665
29639122
JB
3666 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3667 if (start_addr == 0)
e17a4113 3668 start_addr = heuristic_proc_start (gdbarch, pc);
29639122
JB
3669 /* We can't analyze the prologue if we couldn't find the begining
3670 of the function. */
3671 if (start_addr == 0)
3672 return cache;
c5aa993b 3673
19ba03f4
SM
3674 mips32_scan_prologue (gdbarch, start_addr, pc, this_frame,
3675 (struct mips_frame_cache *) *this_cache);
29639122
JB
3676 }
3677
3e8c568d 3678 /* gdbarch_sp_regnum contains the value and not the address. */
f57d151a 3679 trad_frame_set_value (cache->saved_regs,
e17a4113 3680 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
f57d151a 3681 cache->base);
c5aa993b 3682
19ba03f4 3683 return (struct mips_frame_cache *) (*this_cache);
c906108c
SS
3684}
3685
29639122 3686static void
b8a22b94 3687mips_insn32_frame_this_id (struct frame_info *this_frame, void **this_cache,
29639122 3688 struct frame_id *this_id)
c906108c 3689{
b8a22b94 3690 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
29639122 3691 this_cache);
21327321
DJ
3692 /* This marks the outermost frame. */
3693 if (info->base == 0)
3694 return;
b8a22b94 3695 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
29639122 3696}
c906108c 3697
b8a22b94
DJ
3698static struct value *
3699mips_insn32_frame_prev_register (struct frame_info *this_frame,
3700 void **this_cache, int regnum)
29639122 3701{
b8a22b94 3702 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
29639122 3703 this_cache);
b8a22b94
DJ
3704 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3705}
3706
3707static int
3708mips_insn32_frame_sniffer (const struct frame_unwind *self,
3709 struct frame_info *this_frame, void **this_cache)
3710{
3711 CORE_ADDR pc = get_frame_pc (this_frame);
4cc0665f 3712 if (mips_pc_is_mips (pc))
b8a22b94
DJ
3713 return 1;
3714 return 0;
c906108c
SS
3715}
3716
29639122
JB
3717static const struct frame_unwind mips_insn32_frame_unwind =
3718{
3719 NORMAL_FRAME,
8fbca658 3720 default_frame_unwind_stop_reason,
29639122 3721 mips_insn32_frame_this_id,
b8a22b94
DJ
3722 mips_insn32_frame_prev_register,
3723 NULL,
3724 mips_insn32_frame_sniffer
29639122 3725};
c906108c 3726
1c645fec 3727static CORE_ADDR
b8a22b94 3728mips_insn32_frame_base_address (struct frame_info *this_frame,
29639122 3729 void **this_cache)
c906108c 3730{
b8a22b94 3731 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
29639122
JB
3732 this_cache);
3733 return info->base;
3734}
c906108c 3735
29639122
JB
3736static const struct frame_base mips_insn32_frame_base =
3737{
3738 &mips_insn32_frame_unwind,
3739 mips_insn32_frame_base_address,
3740 mips_insn32_frame_base_address,
3741 mips_insn32_frame_base_address
3742};
1c645fec 3743
29639122 3744static const struct frame_base *
b8a22b94 3745mips_insn32_frame_base_sniffer (struct frame_info *this_frame)
29639122 3746{
b8a22b94 3747 CORE_ADDR pc = get_frame_pc (this_frame);
4cc0665f 3748 if (mips_pc_is_mips (pc))
29639122 3749 return &mips_insn32_frame_base;
a65bbe44 3750 else
29639122
JB
3751 return NULL;
3752}
a65bbe44 3753
29639122 3754static struct trad_frame_cache *
b8a22b94 3755mips_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
29639122
JB
3756{
3757 CORE_ADDR pc;
3758 CORE_ADDR start_addr;
3759 CORE_ADDR stack_addr;
3760 struct trad_frame_cache *this_trad_cache;
b8a22b94
DJ
3761 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3762 int num_regs = gdbarch_num_regs (gdbarch);
c906108c 3763
29639122 3764 if ((*this_cache) != NULL)
19ba03f4 3765 return (struct trad_frame_cache *) (*this_cache);
b8a22b94 3766 this_trad_cache = trad_frame_cache_zalloc (this_frame);
29639122 3767 (*this_cache) = this_trad_cache;
1c645fec 3768
29639122 3769 /* The return address is in the link register. */
3e8c568d 3770 trad_frame_set_reg_realreg (this_trad_cache,
72a155b4 3771 gdbarch_pc_regnum (gdbarch),
b8a22b94 3772 num_regs + MIPS_RA_REGNUM);
1c645fec 3773
29639122
JB
3774 /* Frame ID, since it's a frameless / stackless function, no stack
3775 space is allocated and SP on entry is the current SP. */
b8a22b94 3776 pc = get_frame_pc (this_frame);
29639122 3777 find_pc_partial_function (pc, NULL, &start_addr, NULL);
b8a22b94
DJ
3778 stack_addr = get_frame_register_signed (this_frame,
3779 num_regs + MIPS_SP_REGNUM);
aa6c981f 3780 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
1c645fec 3781
29639122
JB
3782 /* Assume that the frame's base is the same as the
3783 stack-pointer. */
3784 trad_frame_set_this_base (this_trad_cache, stack_addr);
c906108c 3785
29639122
JB
3786 return this_trad_cache;
3787}
c906108c 3788
29639122 3789static void
b8a22b94 3790mips_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
29639122
JB
3791 struct frame_id *this_id)
3792{
3793 struct trad_frame_cache *this_trad_cache
b8a22b94 3794 = mips_stub_frame_cache (this_frame, this_cache);
29639122
JB
3795 trad_frame_get_id (this_trad_cache, this_id);
3796}
c906108c 3797
b8a22b94
DJ
3798static struct value *
3799mips_stub_frame_prev_register (struct frame_info *this_frame,
3800 void **this_cache, int regnum)
29639122
JB
3801{
3802 struct trad_frame_cache *this_trad_cache
b8a22b94
DJ
3803 = mips_stub_frame_cache (this_frame, this_cache);
3804 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
29639122 3805}
c906108c 3806
b8a22b94
DJ
3807static int
3808mips_stub_frame_sniffer (const struct frame_unwind *self,
3809 struct frame_info *this_frame, void **this_cache)
29639122 3810{
aa6c981f 3811 gdb_byte dummy[4];
b8a22b94 3812 CORE_ADDR pc = get_frame_address_in_block (this_frame);
7cbd4a93 3813 struct bound_minimal_symbol msym;
979b38e0 3814
aa6c981f 3815 /* Use the stub unwinder for unreadable code. */
b8a22b94
DJ
3816 if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
3817 return 1;
aa6c981f 3818
3e5d3a5a 3819 if (in_plt_section (pc) || in_mips_stubs_section (pc))
b8a22b94 3820 return 1;
979b38e0 3821
db5f024e
DJ
3822 /* Calling a PIC function from a non-PIC function passes through a
3823 stub. The stub for foo is named ".pic.foo". */
3824 msym = lookup_minimal_symbol_by_pc (pc);
7cbd4a93 3825 if (msym.minsym != NULL
efd66ac6 3826 && MSYMBOL_LINKAGE_NAME (msym.minsym) != NULL
61012eef 3827 && startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
db5f024e
DJ
3828 return 1;
3829
b8a22b94 3830 return 0;
29639122 3831}
c906108c 3832
b8a22b94
DJ
3833static const struct frame_unwind mips_stub_frame_unwind =
3834{
3835 NORMAL_FRAME,
8fbca658 3836 default_frame_unwind_stop_reason,
b8a22b94
DJ
3837 mips_stub_frame_this_id,
3838 mips_stub_frame_prev_register,
3839 NULL,
3840 mips_stub_frame_sniffer
3841};
3842
29639122 3843static CORE_ADDR
b8a22b94 3844mips_stub_frame_base_address (struct frame_info *this_frame,
29639122
JB
3845 void **this_cache)
3846{
3847 struct trad_frame_cache *this_trad_cache
b8a22b94 3848 = mips_stub_frame_cache (this_frame, this_cache);
29639122
JB
3849 return trad_frame_get_this_base (this_trad_cache);
3850}
0fce0821 3851
29639122
JB
3852static const struct frame_base mips_stub_frame_base =
3853{
3854 &mips_stub_frame_unwind,
3855 mips_stub_frame_base_address,
3856 mips_stub_frame_base_address,
3857 mips_stub_frame_base_address
3858};
3859
3860static const struct frame_base *
b8a22b94 3861mips_stub_frame_base_sniffer (struct frame_info *this_frame)
29639122 3862{
b8a22b94 3863 if (mips_stub_frame_sniffer (&mips_stub_frame_unwind, this_frame, NULL))
29639122
JB
3864 return &mips_stub_frame_base;
3865 else
3866 return NULL;
3867}
3868
29639122 3869/* mips_addr_bits_remove - remove useless address bits */
65596487 3870
29639122 3871static CORE_ADDR
24568a2c 3872mips_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
65596487 3873{
24568a2c 3874 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
930bd0e0 3875
29639122
JB
3876 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
3877 /* This hack is a work-around for existing boards using PMON, the
3878 simulator, and any other 64-bit targets that doesn't have true
3879 64-bit addressing. On these targets, the upper 32 bits of
3880 addresses are ignored by the hardware. Thus, the PC or SP are
3881 likely to have been sign extended to all 1s by instruction
3882 sequences that load 32-bit addresses. For example, a typical
3883 piece of code that loads an address is this:
65596487 3884
29639122
JB
3885 lui $r2, <upper 16 bits>
3886 ori $r2, <lower 16 bits>
65596487 3887
29639122
JB
3888 But the lui sign-extends the value such that the upper 32 bits
3889 may be all 1s. The workaround is simply to mask off these
3890 bits. In the future, gcc may be changed to support true 64-bit
3891 addressing, and this masking will have to be disabled. */
3892 return addr &= 0xffffffffUL;
3893 else
3894 return addr;
65596487
JB
3895}
3896
3d5f6d12
DJ
3897
3898/* Checks for an atomic sequence of instructions beginning with a LL/LLD
3899 instruction and ending with a SC/SCD instruction. If such a sequence
3900 is found, attempt to step through it. A breakpoint is placed at the end of
3901 the sequence. */
3902
4cc0665f
MR
3903/* Instructions used during single-stepping of atomic sequences, standard
3904 ISA version. */
3905#define LL_OPCODE 0x30
3906#define LLD_OPCODE 0x34
3907#define SC_OPCODE 0x38
3908#define SCD_OPCODE 0x3c
3909
a0ff9e1a 3910static std::vector<CORE_ADDR>
93f9a11f 3911mips_deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc)
3d5f6d12
DJ
3912{
3913 CORE_ADDR breaks[2] = {-1, -1};
3914 CORE_ADDR loc = pc;
3915 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
4cc0665f 3916 ULONGEST insn;
3d5f6d12
DJ
3917 int insn_count;
3918 int index;
3919 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3920 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3921
4cc0665f 3922 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3d5f6d12
DJ
3923 /* Assume all atomic sequences start with a ll/lld instruction. */
3924 if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
a0ff9e1a 3925 return {};
3d5f6d12
DJ
3926
3927 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
3928 instructions. */
3929 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
3930 {
3931 int is_branch = 0;
3932 loc += MIPS_INSN32_SIZE;
4cc0665f 3933 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3d5f6d12
DJ
3934
3935 /* Assume that there is at most one branch in the atomic
3936 sequence. If a branch is found, put a breakpoint in its
3937 destination address. */
3938 switch (itype_op (insn))
3939 {
3940 case 0: /* SPECIAL */
3941 if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
a0ff9e1a 3942 return {}; /* fallback to the standard single-step code. */
3d5f6d12
DJ
3943 break;
3944 case 1: /* REGIMM */
a385295e
MR
3945 is_branch = ((itype_rt (insn) & 0xc) == 0 /* B{LT,GE}Z* */
3946 || ((itype_rt (insn) & 0x1e) == 0
3947 && itype_rs (insn) == 0)); /* BPOSGE* */
3d5f6d12
DJ
3948 break;
3949 case 2: /* J */
3950 case 3: /* JAL */
a0ff9e1a 3951 return {}; /* fallback to the standard single-step code. */
3d5f6d12
DJ
3952 case 4: /* BEQ */
3953 case 5: /* BNE */
3954 case 6: /* BLEZ */
3955 case 7: /* BGTZ */
3956 case 20: /* BEQL */
3957 case 21: /* BNEL */
3958 case 22: /* BLEZL */
3959 case 23: /* BGTTL */
3960 is_branch = 1;
3961 break;
3962 case 17: /* COP1 */
a385295e
MR
3963 is_branch = ((itype_rs (insn) == 9 || itype_rs (insn) == 10)
3964 && (itype_rt (insn) & 0x2) == 0);
3965 if (is_branch) /* BC1ANY2F, BC1ANY2T, BC1ANY4F, BC1ANY4T */
3966 break;
3967 /* Fall through. */
3d5f6d12
DJ
3968 case 18: /* COP2 */
3969 case 19: /* COP3 */
3970 is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
3971 break;
3972 }
3973 if (is_branch)
3974 {
3975 branch_bp = loc + mips32_relative_offset (insn) + 4;
3976 if (last_breakpoint >= 1)
a0ff9e1a
SM
3977 return {}; /* More than one branch found, fallback to the
3978 standard single-step code. */
3d5f6d12
DJ
3979 breaks[1] = branch_bp;
3980 last_breakpoint++;
3981 }
3982
3983 if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
3984 break;
3985 }
3986
3987 /* Assume that the atomic sequence ends with a sc/scd instruction. */
3988 if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
a0ff9e1a 3989 return {};
3d5f6d12
DJ
3990
3991 loc += MIPS_INSN32_SIZE;
3992
3993 /* Insert a breakpoint right after the end of the atomic sequence. */
3994 breaks[0] = loc;
3995
3996 /* Check for duplicated breakpoints. Check also for a breakpoint
025bb325 3997 placed (branch instruction's destination) in the atomic sequence. */
3d5f6d12
DJ
3998 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
3999 last_breakpoint = 0;
4000
a0ff9e1a
SM
4001 std::vector<CORE_ADDR> next_pcs;
4002
3d5f6d12
DJ
4003 /* Effectively inserts the breakpoints. */
4004 for (index = 0; index <= last_breakpoint; index++)
a0ff9e1a 4005 next_pcs.push_back (breaks[index]);
3d5f6d12 4006
93f9a11f 4007 return next_pcs;
3d5f6d12
DJ
4008}
4009
a0ff9e1a 4010static std::vector<CORE_ADDR>
4cc0665f 4011micromips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
4cc0665f
MR
4012 CORE_ADDR pc)
4013{
4014 const int atomic_sequence_length = 16; /* Instruction sequence length. */
4015 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
4016 CORE_ADDR breaks[2] = {-1, -1};
4b844a38
AT
4017 CORE_ADDR branch_bp = 0; /* Breakpoint at branch instruction's
4018 destination. */
4cc0665f
MR
4019 CORE_ADDR loc = pc;
4020 int sc_found = 0;
4021 ULONGEST insn;
4022 int insn_count;
4023 int index;
4024
4025 /* Assume all atomic sequences start with a ll/lld instruction. */
4026 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4027 if (micromips_op (insn) != 0x18) /* POOL32C: bits 011000 */
a0ff9e1a 4028 return {};
4cc0665f
MR
4029 loc += MIPS_INSN16_SIZE;
4030 insn <<= 16;
4031 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4032 if ((b12s4_op (insn) & 0xb) != 0x3) /* LL, LLD: bits 011000 0x11 */
a0ff9e1a 4033 return {};
4cc0665f
MR
4034 loc += MIPS_INSN16_SIZE;
4035
4036 /* Assume all atomic sequences end with an sc/scd instruction. Assume
4037 that no atomic sequence is longer than "atomic_sequence_length"
4038 instructions. */
4039 for (insn_count = 0;
4040 !sc_found && insn_count < atomic_sequence_length;
4041 ++insn_count)
4042 {
4043 int is_branch = 0;
4044
4045 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4046 loc += MIPS_INSN16_SIZE;
4047
4048 /* Assume that there is at most one conditional branch in the
4049 atomic sequence. If a branch is found, put a breakpoint in
4050 its destination address. */
4051 switch (mips_insn_size (ISA_MICROMIPS, insn))
4052 {
4cc0665f
MR
4053 /* 32-bit instructions. */
4054 case 2 * MIPS_INSN16_SIZE:
4055 switch (micromips_op (insn))
4056 {
4057 case 0x10: /* POOL32I: bits 010000 */
4058 if ((b5s5_op (insn) & 0x18) != 0x0
4059 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
4060 /* BLEZ, BNEZC, BGTZ, BEQZC: 010000 001xx */
4061 && (b5s5_op (insn) & 0x1d) != 0x11
4062 /* BLTZALS, BGEZALS: bits 010000 100x1 */
4063 && ((b5s5_op (insn) & 0x1e) != 0x14
4064 || (insn & 0x3) != 0x0)
4065 /* BC2F, BC2T: bits 010000 1010x xxx00 */
4066 && (b5s5_op (insn) & 0x1e) != 0x1a
4067 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
4068 && ((b5s5_op (insn) & 0x1e) != 0x1c
4069 || (insn & 0x3) != 0x0)
4070 /* BC1F, BC1T: bits 010000 1110x xxx00 */
4071 && ((b5s5_op (insn) & 0x1c) != 0x1c
4072 || (insn & 0x3) != 0x1))
4073 /* BC1ANY*: bits 010000 111xx xxx01 */
4074 break;
4075 /* Fall through. */
4076
4077 case 0x25: /* BEQ: bits 100101 */
4078 case 0x2d: /* BNE: bits 101101 */
4079 insn <<= 16;
4080 insn |= mips_fetch_instruction (gdbarch,
4081 ISA_MICROMIPS, loc, NULL);
4082 branch_bp = (loc + MIPS_INSN16_SIZE
4083 + micromips_relative_offset16 (insn));
4084 is_branch = 1;
4085 break;
4086
4087 case 0x00: /* POOL32A: bits 000000 */
4088 insn <<= 16;
4089 insn |= mips_fetch_instruction (gdbarch,
4090 ISA_MICROMIPS, loc, NULL);
4091 if (b0s6_op (insn) != 0x3c
4092 /* POOL32Axf: bits 000000 ... 111100 */
4093 || (b6s10_ext (insn) & 0x2bf) != 0x3c)
4094 /* JALR, JALR.HB: 000000 000x111100 111100 */
4095 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
4096 break;
4097 /* Fall through. */
4098
4099 case 0x1d: /* JALS: bits 011101 */
4100 case 0x35: /* J: bits 110101 */
4101 case 0x3d: /* JAL: bits 111101 */
4102 case 0x3c: /* JALX: bits 111100 */
a0ff9e1a 4103 return {}; /* Fall back to the standard single-step code. */
4cc0665f
MR
4104
4105 case 0x18: /* POOL32C: bits 011000 */
4106 if ((b12s4_op (insn) & 0xb) == 0xb)
4107 /* SC, SCD: bits 011000 1x11 */
4108 sc_found = 1;
4109 break;
4110 }
4111 loc += MIPS_INSN16_SIZE;
4112 break;
4113
4114 /* 16-bit instructions. */
4115 case MIPS_INSN16_SIZE:
4116 switch (micromips_op (insn))
4117 {
4118 case 0x23: /* BEQZ16: bits 100011 */
4119 case 0x2b: /* BNEZ16: bits 101011 */
4120 branch_bp = loc + micromips_relative_offset7 (insn);
4121 is_branch = 1;
4122 break;
4123
4124 case 0x11: /* POOL16C: bits 010001 */
4125 if ((b5s5_op (insn) & 0x1c) != 0xc
4126 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
4127 && b5s5_op (insn) != 0x18)
4128 /* JRADDIUSP: bits 010001 11000 */
4129 break;
a0ff9e1a 4130 return {}; /* Fall back to the standard single-step code. */
4cc0665f
MR
4131
4132 case 0x33: /* B16: bits 110011 */
a0ff9e1a 4133 return {}; /* Fall back to the standard single-step code. */
4cc0665f
MR
4134 }
4135 break;
4136 }
4137 if (is_branch)
4138 {
4139 if (last_breakpoint >= 1)
a0ff9e1a
SM
4140 return {}; /* More than one branch found, fallback to the
4141 standard single-step code. */
4cc0665f
MR
4142 breaks[1] = branch_bp;
4143 last_breakpoint++;
4144 }
4145 }
4146 if (!sc_found)
a0ff9e1a 4147 return {};
4cc0665f
MR
4148
4149 /* Insert a breakpoint right after the end of the atomic sequence. */
4150 breaks[0] = loc;
4151
4152 /* Check for duplicated breakpoints. Check also for a breakpoint
4153 placed (branch instruction's destination) in the atomic sequence */
4154 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
4155 last_breakpoint = 0;
4156
a0ff9e1a
SM
4157 std::vector<CORE_ADDR> next_pcs;
4158
4cc0665f
MR
4159 /* Effectively inserts the breakpoints. */
4160 for (index = 0; index <= last_breakpoint; index++)
a0ff9e1a 4161 next_pcs.push_back (breaks[index]);
4cc0665f 4162
93f9a11f 4163 return next_pcs;
4cc0665f
MR
4164}
4165
a0ff9e1a 4166static std::vector<CORE_ADDR>
93f9a11f 4167deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc)
4cc0665f
MR
4168{
4169 if (mips_pc_is_mips (pc))
93f9a11f 4170 return mips_deal_with_atomic_sequence (gdbarch, pc);
4cc0665f 4171 else if (mips_pc_is_micromips (gdbarch, pc))
93f9a11f 4172 return micromips_deal_with_atomic_sequence (gdbarch, pc);
4cc0665f 4173 else
a0ff9e1a 4174 return {};
4cc0665f
MR
4175}
4176
29639122
JB
4177/* mips_software_single_step() is called just before we want to resume
4178 the inferior, if we want to single-step it but there is no hardware
4179 or kernel single-step support (MIPS on GNU/Linux for example). We find
e0cd558a 4180 the target of the coming instruction and breakpoint it. */
29639122 4181
a0ff9e1a 4182std::vector<CORE_ADDR>
f5ea389a 4183mips_software_single_step (struct regcache *regcache)
c906108c 4184{
ac7936df 4185 struct gdbarch *gdbarch = regcache->arch ();
8181d85f 4186 CORE_ADDR pc, next_pc;
65596487 4187
7113a196 4188 pc = regcache_read_pc (regcache);
a0ff9e1a
SM
4189 std::vector<CORE_ADDR> next_pcs = deal_with_atomic_sequence (gdbarch, pc);
4190
4191 if (!next_pcs.empty ())
93f9a11f 4192 return next_pcs;
3d5f6d12 4193
7113a196 4194 next_pc = mips_next_pc (regcache, pc);
e6590a1b 4195
a0ff9e1a 4196 return {next_pc};
29639122 4197}
a65bbe44 4198
29639122 4199/* Test whether the PC points to the return instruction at the
025bb325 4200 end of a function. */
65596487 4201
29639122 4202static int
e17a4113 4203mips_about_to_return (struct gdbarch *gdbarch, CORE_ADDR pc)
29639122 4204{
6321c22a
MR
4205 ULONGEST insn;
4206 ULONGEST hint;
4207
4208 /* This used to check for MIPS16, but this piece of code is never
4cc0665f
MR
4209 called for MIPS16 functions. And likewise microMIPS ones. */
4210 gdb_assert (mips_pc_is_mips (pc));
6321c22a 4211
4cc0665f 4212 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
6321c22a
MR
4213 hint = 0x7c0;
4214 return (insn & ~hint) == 0x3e00008; /* jr(.hb) $ra */
29639122 4215}
c906108c 4216
c906108c 4217
29639122
JB
4218/* This fencepost looks highly suspicious to me. Removing it also
4219 seems suspicious as it could affect remote debugging across serial
4220 lines. */
c906108c 4221
29639122 4222static CORE_ADDR
74ed0bb4 4223heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
29639122
JB
4224{
4225 CORE_ADDR start_pc;
4226 CORE_ADDR fence;
4227 int instlen;
4228 int seen_adjsp = 0;
d6b48e9c 4229 struct inferior *inf;
65596487 4230
74ed0bb4 4231 pc = gdbarch_addr_bits_remove (gdbarch, pc);
29639122
JB
4232 start_pc = pc;
4233 fence = start_pc - heuristic_fence_post;
4234 if (start_pc == 0)
4235 return 0;
65596487 4236
44096aee 4237 if (heuristic_fence_post == -1 || fence < VM_MIN_ADDRESS)
29639122 4238 fence = VM_MIN_ADDRESS;
65596487 4239
4cc0665f 4240 instlen = mips_pc_is_mips (pc) ? MIPS_INSN32_SIZE : MIPS_INSN16_SIZE;
98b4dd94 4241
d6b48e9c
PA
4242 inf = current_inferior ();
4243
025bb325 4244 /* Search back for previous return. */
29639122
JB
4245 for (start_pc -= instlen;; start_pc -= instlen)
4246 if (start_pc < fence)
4247 {
4248 /* It's not clear to me why we reach this point when
4249 stop_soon, but with this test, at least we
4250 don't print out warnings for every child forked (eg, on
4251 decstation). 22apr93 rich@cygnus.com. */
16c381f0 4252 if (inf->control.stop_soon == NO_STOP_QUIETLY)
29639122
JB
4253 {
4254 static int blurb_printed = 0;
98b4dd94 4255
5af949e3
UW
4256 warning (_("GDB can't find the start of the function at %s."),
4257 paddress (gdbarch, pc));
29639122
JB
4258
4259 if (!blurb_printed)
4260 {
4261 /* This actually happens frequently in embedded
4262 development, when you first connect to a board
4263 and your stack pointer and pc are nowhere in
4264 particular. This message needs to give people
4265 in that situation enough information to
4266 determine that it's no big deal. */
4267 printf_filtered ("\n\
5af949e3 4268 GDB is unable to find the start of the function at %s\n\
29639122
JB
4269and thus can't determine the size of that function's stack frame.\n\
4270This means that GDB may be unable to access that stack frame, or\n\
4271the frames below it.\n\
4272 This problem is most likely caused by an invalid program counter or\n\
4273stack pointer.\n\
4274 However, if you think GDB should simply search farther back\n\
5af949e3 4275from %s for code which looks like the beginning of a\n\
29639122 4276function, you can increase the range of the search using the `set\n\
5af949e3
UW
4277heuristic-fence-post' command.\n",
4278 paddress (gdbarch, pc), paddress (gdbarch, pc));
29639122
JB
4279 blurb_printed = 1;
4280 }
4281 }
4282
4283 return 0;
4284 }
4cc0665f 4285 else if (mips_pc_is_mips16 (gdbarch, start_pc))
29639122
JB
4286 {
4287 unsigned short inst;
4288
4289 /* On MIPS16, any one of the following is likely to be the
4290 start of a function:
193774b3
MR
4291 extend save
4292 save
29639122
JB
4293 entry
4294 addiu sp,-n
4295 daddiu sp,-n
025bb325 4296 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n'. */
4cc0665f 4297 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, start_pc, NULL);
193774b3
MR
4298 if ((inst & 0xff80) == 0x6480) /* save */
4299 {
4300 if (start_pc - instlen >= fence)
4301 {
4cc0665f
MR
4302 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16,
4303 start_pc - instlen, NULL);
193774b3
MR
4304 if ((inst & 0xf800) == 0xf000) /* extend */
4305 start_pc -= instlen;
4306 }
4307 break;
4308 }
4309 else if (((inst & 0xf81f) == 0xe809
4310 && (inst & 0x700) != 0x700) /* entry */
4311 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
4312 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
4313 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
29639122
JB
4314 break;
4315 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
4316 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
4317 seen_adjsp = 1;
4318 else
4319 seen_adjsp = 0;
4320 }
4cc0665f
MR
4321 else if (mips_pc_is_micromips (gdbarch, start_pc))
4322 {
4323 ULONGEST insn;
4324 int stop = 0;
4325 long offset;
4326 int dreg;
4327 int sreg;
4328
4329 /* On microMIPS, any one of the following is likely to be the
4330 start of a function:
4331 ADDIUSP -imm
4332 (D)ADDIU $sp, -imm
4333 LUI $gp, imm */
4334 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
4335 switch (micromips_op (insn))
4336 {
4337 case 0xc: /* ADDIU: bits 001100 */
4338 case 0x17: /* DADDIU: bits 010111 */
4339 sreg = b0s5_reg (insn);
4340 dreg = b5s5_reg (insn);
4341 insn <<= 16;
4342 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS,
4343 pc + MIPS_INSN16_SIZE, NULL);
4344 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
4345 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
4346 /* (D)ADDIU $sp, imm */
4347 && offset < 0)
4348 stop = 1;
4349 break;
4350
4351 case 0x10: /* POOL32I: bits 010000 */
4352 if (b5s5_op (insn) == 0xd
4353 /* LUI: bits 010000 001101 */
4354 && b0s5_reg (insn >> 16) == 28)
4355 /* LUI $gp, imm */
4356 stop = 1;
4357 break;
4358
4359 case 0x13: /* POOL16D: bits 010011 */
4360 if ((insn & 0x1) == 0x1)
4361 /* ADDIUSP: bits 010011 1 */
4362 {
4363 offset = micromips_decode_imm9 (b1s9_imm (insn));
4364 if (offset < 0)
4365 /* ADDIUSP -imm */
4366 stop = 1;
4367 }
4368 else
4369 /* ADDIUS5: bits 010011 0 */
4370 {
4371 dreg = b5s5_reg (insn);
4372 offset = (b1s4_imm (insn) ^ 8) - 8;
4373 if (dreg == MIPS_SP_REGNUM && offset < 0)
4374 /* ADDIUS5 $sp, -imm */
4375 stop = 1;
4376 }
4377 break;
4378 }
4379 if (stop)
4380 break;
4381 }
e17a4113 4382 else if (mips_about_to_return (gdbarch, start_pc))
29639122 4383 {
4c7d22cb 4384 /* Skip return and its delay slot. */
95ac2dcf 4385 start_pc += 2 * MIPS_INSN32_SIZE;
29639122
JB
4386 break;
4387 }
4388
4389 return start_pc;
c906108c
SS
4390}
4391
6c0d6680
DJ
4392struct mips_objfile_private
4393{
4394 bfd_size_type size;
4395 char *contents;
4396};
4397
f09ded24
AC
4398/* According to the current ABI, should the type be passed in a
4399 floating-point register (assuming that there is space)? When there
a1f5b845 4400 is no FPU, FP are not even considered as possible candidates for
f09ded24 4401 FP registers and, consequently this returns false - forces FP
025bb325 4402 arguments into integer registers. */
f09ded24
AC
4403
4404static int
74ed0bb4
MD
4405fp_register_arg_p (struct gdbarch *gdbarch, enum type_code typecode,
4406 struct type *arg_type)
f09ded24
AC
4407{
4408 return ((typecode == TYPE_CODE_FLT
74ed0bb4 4409 || (MIPS_EABI (gdbarch)
6d82d43b
AC
4410 && (typecode == TYPE_CODE_STRUCT
4411 || typecode == TYPE_CODE_UNION)
f09ded24 4412 && TYPE_NFIELDS (arg_type) == 1
b2d6f210
MS
4413 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
4414 == TYPE_CODE_FLT))
74ed0bb4 4415 && MIPS_FPU_TYPE(gdbarch) != MIPS_FPU_NONE);
f09ded24
AC
4416}
4417
49e790b0 4418/* On o32, argument passing in GPRs depends on the alignment of the type being
025bb325 4419 passed. Return 1 if this type must be aligned to a doubleword boundary. */
49e790b0
DJ
4420
4421static int
4422mips_type_needs_double_align (struct type *type)
4423{
4424 enum type_code typecode = TYPE_CODE (type);
361d1df0 4425
49e790b0
DJ
4426 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
4427 return 1;
4428 else if (typecode == TYPE_CODE_STRUCT)
4429 {
4430 if (TYPE_NFIELDS (type) < 1)
4431 return 0;
4432 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
4433 }
4434 else if (typecode == TYPE_CODE_UNION)
4435 {
361d1df0 4436 int i, n;
49e790b0
DJ
4437
4438 n = TYPE_NFIELDS (type);
4439 for (i = 0; i < n; i++)
4440 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
4441 return 1;
4442 return 0;
4443 }
4444 return 0;
4445}
4446
dc604539
AC
4447/* Adjust the address downward (direction of stack growth) so that it
4448 is correctly aligned for a new stack frame. */
4449static CORE_ADDR
4450mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
4451{
5b03f266 4452 return align_down (addr, 16);
dc604539
AC
4453}
4454
8ae38c14 4455/* Implement the "push_dummy_code" gdbarch method. */
2c76a0c7
JB
4456
4457static CORE_ADDR
4458mips_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
4459 CORE_ADDR funaddr, struct value **args,
4460 int nargs, struct type *value_type,
4461 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
4462 struct regcache *regcache)
4463{
2c76a0c7 4464 static gdb_byte nop_insn[] = { 0, 0, 0, 0 };
2e81047f
MR
4465 CORE_ADDR nop_addr;
4466 CORE_ADDR bp_slot;
2c76a0c7
JB
4467
4468 /* Reserve enough room on the stack for our breakpoint instruction. */
2e81047f
MR
4469 bp_slot = sp - sizeof (nop_insn);
4470
4471 /* Return to microMIPS mode if calling microMIPS code to avoid
4472 triggering an address error exception on processors that only
4473 support microMIPS execution. */
4474 *bp_addr = (mips_pc_is_micromips (gdbarch, funaddr)
4475 ? make_compact_addr (bp_slot) : bp_slot);
2c76a0c7
JB
4476
4477 /* The breakpoint layer automatically adjusts the address of
4478 breakpoints inserted in a branch delay slot. With enough
4479 bad luck, the 4 bytes located just before our breakpoint
4480 instruction could look like a branch instruction, and thus
4481 trigger the adjustement, and break the function call entirely.
4482 So, we reserve those 4 bytes and write a nop instruction
4483 to prevent that from happening. */
2e81047f 4484 nop_addr = bp_slot - sizeof (nop_insn);
2c76a0c7
JB
4485 write_memory (nop_addr, nop_insn, sizeof (nop_insn));
4486 sp = mips_frame_align (gdbarch, nop_addr);
4487
4488 /* Inferior resumes at the function entry point. */
4489 *real_pc = funaddr;
4490
4491 return sp;
4492}
4493
f7ab6ec6 4494static CORE_ADDR
7d9b040b 4495mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
4496 struct regcache *regcache, CORE_ADDR bp_addr,
4497 int nargs, struct value **args, CORE_ADDR sp,
4498 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
4499{
4500 int argreg;
4501 int float_argreg;
4502 int argnum;
4503 int len = 0;
4504 int stack_offset = 0;
e17a4113 4505 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 4506 CORE_ADDR func_addr = find_function_addr (function, NULL);
b3464d03 4507 int abi_regsize = mips_abi_regsize (gdbarch);
c906108c 4508
25ab4790
AC
4509 /* For shared libraries, "t9" needs to point at the function
4510 address. */
4c7d22cb 4511 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
4512
4513 /* Set the return address register to point to the entry point of
4514 the program, where a breakpoint lies in wait. */
4c7d22cb 4515 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 4516
c906108c 4517 /* First ensure that the stack and structure return address (if any)
cb3d25d1
MS
4518 are properly aligned. The stack has to be at least 64-bit
4519 aligned even on 32-bit machines, because doubles must be 64-bit
4520 aligned. For n32 and n64, stack frames need to be 128-bit
4521 aligned, so we round to this widest known alignment. */
4522
5b03f266
AC
4523 sp = align_down (sp, 16);
4524 struct_addr = align_down (struct_addr, 16);
c5aa993b 4525
46e0f506 4526 /* Now make space on the stack for the args. We allocate more
c906108c 4527 than necessary for EABI, because the first few arguments are
46e0f506 4528 passed in registers, but that's OK. */
c906108c 4529 for (argnum = 0; argnum < nargs; argnum++)
b3464d03 4530 len += align_up (TYPE_LENGTH (value_type (args[argnum])), abi_regsize);
5b03f266 4531 sp -= align_up (len, 16);
c906108c 4532
9ace0497 4533 if (mips_debug)
6d82d43b 4534 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4535 "mips_eabi_push_dummy_call: sp=%s allocated %ld\n",
4536 paddress (gdbarch, sp), (long) align_up (len, 16));
9ace0497 4537
c906108c 4538 /* Initialize the integer and float register pointers. */
4c7d22cb 4539 argreg = MIPS_A0_REGNUM;
72a155b4 4540 float_argreg = mips_fpa0_regnum (gdbarch);
c906108c 4541
46e0f506 4542 /* The struct_return pointer occupies the first parameter-passing reg. */
c906108c 4543 if (struct_return)
9ace0497
AC
4544 {
4545 if (mips_debug)
4546 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
4547 "mips_eabi_push_dummy_call: "
4548 "struct_return reg=%d %s\n",
5af949e3 4549 argreg, paddress (gdbarch, struct_addr));
9c9acae0 4550 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
9ace0497 4551 }
c906108c
SS
4552
4553 /* Now load as many as possible of the first arguments into
4554 registers, and push the rest onto the stack. Loop thru args
4555 from first to last. */
4556 for (argnum = 0; argnum < nargs; argnum++)
4557 {
47a35522 4558 const gdb_byte *val;
b3464d03
PA
4559 /* This holds the address of structures that are passed by
4560 reference. */
4561 gdb_byte ref_valbuf[MAX_MIPS_ABI_REGSIZE];
ea7c478f 4562 struct value *arg = args[argnum];
4991999e 4563 struct type *arg_type = check_typedef (value_type (arg));
c906108c
SS
4564 int len = TYPE_LENGTH (arg_type);
4565 enum type_code typecode = TYPE_CODE (arg_type);
4566
9ace0497
AC
4567 if (mips_debug)
4568 fprintf_unfiltered (gdb_stdlog,
25ab4790 4569 "mips_eabi_push_dummy_call: %d len=%d type=%d",
acdb74a0 4570 argnum + 1, len, (int) typecode);
9ace0497 4571
c906108c 4572 /* The EABI passes structures that do not fit in a register by
46e0f506 4573 reference. */
b3464d03 4574 if (len > abi_regsize
9ace0497 4575 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 4576 {
b3464d03
PA
4577 gdb_assert (abi_regsize <= ARRAY_SIZE (ref_valbuf));
4578 store_unsigned_integer (ref_valbuf, abi_regsize, byte_order,
e17a4113 4579 value_address (arg));
c906108c 4580 typecode = TYPE_CODE_PTR;
b3464d03
PA
4581 len = abi_regsize;
4582 val = ref_valbuf;
9ace0497
AC
4583 if (mips_debug)
4584 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
4585 }
4586 else
47a35522 4587 val = value_contents (arg);
c906108c
SS
4588
4589 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
4590 even-numbered floating point register. Round the FP register
4591 up before the check to see if there are any FP registers
46e0f506
MS
4592 left. Non MIPS_EABI targets also pass the FP in the integer
4593 registers so also round up normal registers. */
b3464d03 4594 if (abi_regsize < 8 && fp_register_arg_p (gdbarch, typecode, arg_type))
acdb74a0
AC
4595 {
4596 if ((float_argreg & 1))
4597 float_argreg++;
4598 }
c906108c
SS
4599
4600 /* Floating point arguments passed in registers have to be
4601 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
4602 are passed in register pairs; the even register gets
4603 the low word, and the odd register gets the high word.
4604 On non-EABI processors, the first two floating point arguments are
4605 also copied to general registers, because MIPS16 functions
4606 don't use float registers for arguments. This duplication of
4607 arguments in general registers can't hurt non-MIPS16 functions
4608 because those registers are normally skipped. */
1012bd0e
EZ
4609 /* MIPS_EABI squeezes a struct that contains a single floating
4610 point value into an FP register instead of pushing it onto the
46e0f506 4611 stack. */
74ed0bb4
MD
4612 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4613 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
c906108c 4614 {
6da397e0
KB
4615 /* EABI32 will pass doubles in consecutive registers, even on
4616 64-bit cores. At one time, we used to check the size of
4617 `float_argreg' to determine whether or not to pass doubles
4618 in consecutive registers, but this is not sufficient for
4619 making the ABI determination. */
4620 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
c906108c 4621 {
72a155b4 4622 int low_offset = gdbarch_byte_order (gdbarch)
4c6b5505 4623 == BFD_ENDIAN_BIG ? 4 : 0;
a8852dc5 4624 long regval;
c906108c
SS
4625
4626 /* Write the low word of the double to the even register(s). */
a8852dc5
KB
4627 regval = extract_signed_integer (val + low_offset,
4628 4, byte_order);
9ace0497 4629 if (mips_debug)
acdb74a0 4630 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 4631 float_argreg, phex (regval, 4));
a8852dc5 4632 regcache_cooked_write_signed (regcache, float_argreg++, regval);
c906108c
SS
4633
4634 /* Write the high word of the double to the odd register(s). */
a8852dc5
KB
4635 regval = extract_signed_integer (val + 4 - low_offset,
4636 4, byte_order);
9ace0497 4637 if (mips_debug)
acdb74a0 4638 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 4639 float_argreg, phex (regval, 4));
a8852dc5 4640 regcache_cooked_write_signed (regcache, float_argreg++, regval);
c906108c
SS
4641 }
4642 else
4643 {
4644 /* This is a floating point value that fits entirely
4645 in a single register. */
53a5351d 4646 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 4647 above to ensure that it is even register aligned. */
a8852dc5 4648 LONGEST regval = extract_signed_integer (val, len, byte_order);
9ace0497 4649 if (mips_debug)
acdb74a0 4650 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 4651 float_argreg, phex (regval, len));
a8852dc5 4652 regcache_cooked_write_signed (regcache, float_argreg++, regval);
c906108c
SS
4653 }
4654 }
4655 else
4656 {
4657 /* Copy the argument to general registers or the stack in
4658 register-sized pieces. Large arguments are split between
4659 registers and stack. */
b3464d03 4660 /* Note: structs whose size is not a multiple of abi_regsize
1a69e1e4 4661 are treated specially: Irix cc passes
d5ac5a39
AC
4662 them in registers where gcc sometimes puts them on the
4663 stack. For maximum compatibility, we will put them in
4664 both places. */
b3464d03 4665 int odd_sized_struct = (len > abi_regsize && len % abi_regsize != 0);
46e0f506 4666
f09ded24 4667 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 4668 register are only written to memory. */
c906108c
SS
4669 while (len > 0)
4670 {
ebafbe83 4671 /* Remember if the argument was written to the stack. */
566f0f7a 4672 int stack_used_p = 0;
b3464d03 4673 int partial_len = (len < abi_regsize ? len : abi_regsize);
c906108c 4674
acdb74a0
AC
4675 if (mips_debug)
4676 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4677 partial_len);
4678
566f0f7a 4679 /* Write this portion of the argument to the stack. */
74ed0bb4 4680 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
f09ded24 4681 || odd_sized_struct
74ed0bb4 4682 || fp_register_arg_p (gdbarch, typecode, arg_type))
c906108c 4683 {
c906108c 4684 /* Should shorter than int integer values be
025bb325 4685 promoted to int before being stored? */
c906108c 4686 int longword_offset = 0;
9ace0497 4687 CORE_ADDR addr;
566f0f7a 4688 stack_used_p = 1;
72a155b4 4689 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
7a292a7a 4690 {
b3464d03 4691 if (abi_regsize == 8
480d3dd2
AC
4692 && (typecode == TYPE_CODE_INT
4693 || typecode == TYPE_CODE_PTR
6d82d43b 4694 || typecode == TYPE_CODE_FLT) && len <= 4)
b3464d03 4695 longword_offset = abi_regsize - len;
480d3dd2
AC
4696 else if ((typecode == TYPE_CODE_STRUCT
4697 || typecode == TYPE_CODE_UNION)
b3464d03
PA
4698 && TYPE_LENGTH (arg_type) < abi_regsize)
4699 longword_offset = abi_regsize - len;
7a292a7a 4700 }
c5aa993b 4701
9ace0497
AC
4702 if (mips_debug)
4703 {
5af949e3
UW
4704 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
4705 paddress (gdbarch, stack_offset));
4706 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
4707 paddress (gdbarch, longword_offset));
9ace0497 4708 }
361d1df0 4709
9ace0497
AC
4710 addr = sp + stack_offset + longword_offset;
4711
4712 if (mips_debug)
4713 {
4714 int i;
5af949e3
UW
4715 fprintf_unfiltered (gdb_stdlog, " @%s ",
4716 paddress (gdbarch, addr));
9ace0497
AC
4717 for (i = 0; i < partial_len; i++)
4718 {
6d82d43b 4719 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1 4720 val[i] & 0xff);
9ace0497
AC
4721 }
4722 }
4723 write_memory (addr, val, partial_len);
c906108c
SS
4724 }
4725
f09ded24
AC
4726 /* Note!!! This is NOT an else clause. Odd sized
4727 structs may go thru BOTH paths. Floating point
46e0f506 4728 arguments will not. */
566f0f7a 4729 /* Write this portion of the argument to a general
6d82d43b 4730 purpose register. */
74ed0bb4
MD
4731 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch)
4732 && !fp_register_arg_p (gdbarch, typecode, arg_type))
c906108c 4733 {
6d82d43b 4734 LONGEST regval =
a8852dc5 4735 extract_signed_integer (val, partial_len, byte_order);
c906108c 4736
9ace0497 4737 if (mips_debug)
acdb74a0 4738 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497 4739 argreg,
b3464d03 4740 phex (regval, abi_regsize));
a8852dc5 4741 regcache_cooked_write_signed (regcache, argreg, regval);
c906108c 4742 argreg++;
c906108c 4743 }
c5aa993b 4744
c906108c
SS
4745 len -= partial_len;
4746 val += partial_len;
4747
b021a221
MS
4748 /* Compute the offset into the stack at which we will
4749 copy the next parameter.
566f0f7a 4750
566f0f7a 4751 In the new EABI (and the NABI32), the stack_offset
46e0f506 4752 only needs to be adjusted when it has been used. */
c906108c 4753
46e0f506 4754 if (stack_used_p)
b3464d03 4755 stack_offset += align_up (partial_len, abi_regsize);
c906108c
SS
4756 }
4757 }
9ace0497
AC
4758 if (mips_debug)
4759 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
4760 }
4761
f10683bb 4762 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 4763
0f71a2f6
JM
4764 /* Return adjusted stack pointer. */
4765 return sp;
4766}
4767
a1f5b845 4768/* Determine the return value convention being used. */
6d82d43b 4769
9c8fdbfa 4770static enum return_value_convention
6a3a010b 4771mips_eabi_return_value (struct gdbarch *gdbarch, struct value *function,
9c8fdbfa 4772 struct type *type, struct regcache *regcache,
47a35522 4773 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 4774{
609ba780
JM
4775 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4776 int fp_return_type = 0;
4777 int offset, regnum, xfer;
4778
9c8fdbfa
AC
4779 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
4780 return RETURN_VALUE_STRUCT_CONVENTION;
609ba780
JM
4781
4782 /* Floating point type? */
4783 if (tdep->mips_fpu_type != MIPS_FPU_NONE)
4784 {
4785 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4786 fp_return_type = 1;
4787 /* Structs with a single field of float type
4788 are returned in a floating point register. */
4789 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
4790 || TYPE_CODE (type) == TYPE_CODE_UNION)
4791 && TYPE_NFIELDS (type) == 1)
4792 {
4793 struct type *fieldtype = TYPE_FIELD_TYPE (type, 0);
4794
4795 if (TYPE_CODE (check_typedef (fieldtype)) == TYPE_CODE_FLT)
4796 fp_return_type = 1;
4797 }
4798 }
4799
4800 if (fp_return_type)
4801 {
4802 /* A floating-point value belongs in the least significant part
4803 of FP0/FP1. */
4804 if (mips_debug)
4805 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4806 regnum = mips_regnum (gdbarch)->fp0;
4807 }
4808 else
4809 {
4810 /* An integer value goes in V0/V1. */
4811 if (mips_debug)
4812 fprintf_unfiltered (gdb_stderr, "Return scalar in $v0\n");
4813 regnum = MIPS_V0_REGNUM;
4814 }
4815 for (offset = 0;
4816 offset < TYPE_LENGTH (type);
4817 offset += mips_abi_regsize (gdbarch), regnum++)
4818 {
4819 xfer = mips_abi_regsize (gdbarch);
4820 if (offset + xfer > TYPE_LENGTH (type))
4821 xfer = TYPE_LENGTH (type) - offset;
4822 mips_xfer_register (gdbarch, regcache,
4823 gdbarch_num_regs (gdbarch) + regnum, xfer,
4824 gdbarch_byte_order (gdbarch), readbuf, writebuf,
4825 offset);
4826 }
4827
9c8fdbfa 4828 return RETURN_VALUE_REGISTER_CONVENTION;
6d82d43b
AC
4829}
4830
6d82d43b
AC
4831
4832/* N32/N64 ABI stuff. */
ebafbe83 4833
8d26208a
DJ
4834/* Search for a naturally aligned double at OFFSET inside a struct
4835 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
4836 registers. */
4837
4838static int
74ed0bb4
MD
4839mips_n32n64_fp_arg_chunk_p (struct gdbarch *gdbarch, struct type *arg_type,
4840 int offset)
8d26208a
DJ
4841{
4842 int i;
4843
4844 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
4845 return 0;
4846
74ed0bb4 4847 if (MIPS_FPU_TYPE (gdbarch) != MIPS_FPU_DOUBLE)
8d26208a
DJ
4848 return 0;
4849
4850 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
4851 return 0;
4852
4853 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
4854 {
4855 int pos;
4856 struct type *field_type;
4857
4858 /* We're only looking at normal fields. */
5bc60cfb 4859 if (field_is_static (&TYPE_FIELD (arg_type, i))
8d26208a
DJ
4860 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
4861 continue;
4862
4863 /* If we have gone past the offset, there is no double to pass. */
4864 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
4865 if (pos > offset)
4866 return 0;
4867
4868 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
4869
4870 /* If this field is entirely before the requested offset, go
4871 on to the next one. */
4872 if (pos + TYPE_LENGTH (field_type) <= offset)
4873 continue;
4874
4875 /* If this is our special aligned double, we can stop. */
4876 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
4877 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
4878 return 1;
4879
4880 /* This field starts at or before the requested offset, and
4881 overlaps it. If it is a structure, recurse inwards. */
74ed0bb4 4882 return mips_n32n64_fp_arg_chunk_p (gdbarch, field_type, offset - pos);
8d26208a
DJ
4883 }
4884
4885 return 0;
4886}
4887
f7ab6ec6 4888static CORE_ADDR
7d9b040b 4889mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
4890 struct regcache *regcache, CORE_ADDR bp_addr,
4891 int nargs, struct value **args, CORE_ADDR sp,
4892 int struct_return, CORE_ADDR struct_addr)
cb3d25d1
MS
4893{
4894 int argreg;
4895 int float_argreg;
4896 int argnum;
4897 int len = 0;
4898 int stack_offset = 0;
e17a4113 4899 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 4900 CORE_ADDR func_addr = find_function_addr (function, NULL);
cb3d25d1 4901
25ab4790
AC
4902 /* For shared libraries, "t9" needs to point at the function
4903 address. */
4c7d22cb 4904 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
4905
4906 /* Set the return address register to point to the entry point of
4907 the program, where a breakpoint lies in wait. */
4c7d22cb 4908 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 4909
cb3d25d1
MS
4910 /* First ensure that the stack and structure return address (if any)
4911 are properly aligned. The stack has to be at least 64-bit
4912 aligned even on 32-bit machines, because doubles must be 64-bit
4913 aligned. For n32 and n64, stack frames need to be 128-bit
4914 aligned, so we round to this widest known alignment. */
4915
5b03f266
AC
4916 sp = align_down (sp, 16);
4917 struct_addr = align_down (struct_addr, 16);
cb3d25d1
MS
4918
4919 /* Now make space on the stack for the args. */
4920 for (argnum = 0; argnum < nargs; argnum++)
1a69e1e4 4921 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
5b03f266 4922 sp -= align_up (len, 16);
cb3d25d1
MS
4923
4924 if (mips_debug)
6d82d43b 4925 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4926 "mips_n32n64_push_dummy_call: sp=%s allocated %ld\n",
4927 paddress (gdbarch, sp), (long) align_up (len, 16));
cb3d25d1
MS
4928
4929 /* Initialize the integer and float register pointers. */
4c7d22cb 4930 argreg = MIPS_A0_REGNUM;
72a155b4 4931 float_argreg = mips_fpa0_regnum (gdbarch);
cb3d25d1 4932
46e0f506 4933 /* The struct_return pointer occupies the first parameter-passing reg. */
cb3d25d1
MS
4934 if (struct_return)
4935 {
4936 if (mips_debug)
4937 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
4938 "mips_n32n64_push_dummy_call: "
4939 "struct_return reg=%d %s\n",
5af949e3 4940 argreg, paddress (gdbarch, struct_addr));
9c9acae0 4941 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
cb3d25d1
MS
4942 }
4943
4944 /* Now load as many as possible of the first arguments into
4945 registers, and push the rest onto the stack. Loop thru args
4946 from first to last. */
4947 for (argnum = 0; argnum < nargs; argnum++)
4948 {
47a35522 4949 const gdb_byte *val;
cb3d25d1 4950 struct value *arg = args[argnum];
4991999e 4951 struct type *arg_type = check_typedef (value_type (arg));
cb3d25d1
MS
4952 int len = TYPE_LENGTH (arg_type);
4953 enum type_code typecode = TYPE_CODE (arg_type);
4954
4955 if (mips_debug)
4956 fprintf_unfiltered (gdb_stdlog,
25ab4790 4957 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
cb3d25d1
MS
4958 argnum + 1, len, (int) typecode);
4959
47a35522 4960 val = value_contents (arg);
cb3d25d1 4961
5b68030f
JM
4962 /* A 128-bit long double value requires an even-odd pair of
4963 floating-point registers. */
4964 if (len == 16
4965 && fp_register_arg_p (gdbarch, typecode, arg_type)
4966 && (float_argreg & 1))
4967 {
4968 float_argreg++;
4969 argreg++;
4970 }
4971
74ed0bb4
MD
4972 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4973 && argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
cb3d25d1
MS
4974 {
4975 /* This is a floating point value that fits entirely
5b68030f
JM
4976 in a single register or a pair of registers. */
4977 int reglen = (len <= MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
e17a4113 4978 LONGEST regval = extract_unsigned_integer (val, reglen, byte_order);
cb3d25d1
MS
4979 if (mips_debug)
4980 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5b68030f 4981 float_argreg, phex (regval, reglen));
8d26208a 4982 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
cb3d25d1
MS
4983
4984 if (mips_debug)
4985 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5b68030f 4986 argreg, phex (regval, reglen));
9c9acae0 4987 regcache_cooked_write_unsigned (regcache, argreg, regval);
8d26208a
DJ
4988 float_argreg++;
4989 argreg++;
5b68030f
JM
4990 if (len == 16)
4991 {
e17a4113
UW
4992 regval = extract_unsigned_integer (val + reglen,
4993 reglen, byte_order);
5b68030f
JM
4994 if (mips_debug)
4995 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4996 float_argreg, phex (regval, reglen));
4997 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4998
4999 if (mips_debug)
5000 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5001 argreg, phex (regval, reglen));
5002 regcache_cooked_write_unsigned (regcache, argreg, regval);
5003 float_argreg++;
5004 argreg++;
5005 }
cb3d25d1
MS
5006 }
5007 else
5008 {
5009 /* Copy the argument to general registers or the stack in
5010 register-sized pieces. Large arguments are split between
5011 registers and stack. */
ab2e1992
MR
5012 /* For N32/N64, structs, unions, or other composite types are
5013 treated as a sequence of doublewords, and are passed in integer
5014 or floating point registers as though they were simple scalar
5015 parameters to the extent that they fit, with any excess on the
5016 stack packed according to the normal memory layout of the
5017 object.
5018 The caller does not reserve space for the register arguments;
5019 the callee is responsible for reserving it if required. */
cb3d25d1 5020 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 5021 register are only written to memory. */
cb3d25d1
MS
5022 while (len > 0)
5023 {
ad018eee 5024 /* Remember if the argument was written to the stack. */
cb3d25d1 5025 int stack_used_p = 0;
1a69e1e4 5026 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
cb3d25d1
MS
5027
5028 if (mips_debug)
5029 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5030 partial_len);
5031
74ed0bb4
MD
5032 if (fp_register_arg_p (gdbarch, typecode, arg_type))
5033 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM (gdbarch));
8d26208a 5034
cb3d25d1 5035 /* Write this portion of the argument to the stack. */
74ed0bb4 5036 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch))
cb3d25d1
MS
5037 {
5038 /* Should shorter than int integer values be
025bb325 5039 promoted to int before being stored? */
cb3d25d1
MS
5040 int longword_offset = 0;
5041 CORE_ADDR addr;
5042 stack_used_p = 1;
72a155b4 5043 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
cb3d25d1 5044 {
1a69e1e4 5045 if ((typecode == TYPE_CODE_INT
5b68030f 5046 || typecode == TYPE_CODE_PTR)
1a69e1e4
DJ
5047 && len <= 4)
5048 longword_offset = MIPS64_REGSIZE - len;
cb3d25d1
MS
5049 }
5050
5051 if (mips_debug)
5052 {
5af949e3
UW
5053 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5054 paddress (gdbarch, stack_offset));
5055 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5056 paddress (gdbarch, longword_offset));
cb3d25d1
MS
5057 }
5058
5059 addr = sp + stack_offset + longword_offset;
5060
5061 if (mips_debug)
5062 {
5063 int i;
5af949e3
UW
5064 fprintf_unfiltered (gdb_stdlog, " @%s ",
5065 paddress (gdbarch, addr));
cb3d25d1
MS
5066 for (i = 0; i < partial_len; i++)
5067 {
6d82d43b 5068 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1
MS
5069 val[i] & 0xff);
5070 }
5071 }
5072 write_memory (addr, val, partial_len);
5073 }
5074
5075 /* Note!!! This is NOT an else clause. Odd sized
8d26208a 5076 structs may go thru BOTH paths. */
cb3d25d1 5077 /* Write this portion of the argument to a general
6d82d43b 5078 purpose register. */
74ed0bb4 5079 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
cb3d25d1 5080 {
5863b5d5
MR
5081 LONGEST regval;
5082
5083 /* Sign extend pointers, 32-bit integers and signed
5084 16-bit and 8-bit integers; everything else is taken
5085 as is. */
5086
5087 if ((partial_len == 4
5088 && (typecode == TYPE_CODE_PTR
5089 || typecode == TYPE_CODE_INT))
5090 || (partial_len < 4
5091 && typecode == TYPE_CODE_INT
5092 && !TYPE_UNSIGNED (arg_type)))
e17a4113
UW
5093 regval = extract_signed_integer (val, partial_len,
5094 byte_order);
5863b5d5 5095 else
e17a4113
UW
5096 regval = extract_unsigned_integer (val, partial_len,
5097 byte_order);
cb3d25d1
MS
5098
5099 /* A non-floating-point argument being passed in a
5100 general register. If a struct or union, and if
5101 the remaining length is smaller than the register
5102 size, we have to adjust the register value on
5103 big endian targets.
5104
5105 It does not seem to be necessary to do the
1a69e1e4 5106 same for integral types. */
cb3d25d1 5107
72a155b4 5108 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 5109 && partial_len < MIPS64_REGSIZE
06f9a1af
MR
5110 && (typecode == TYPE_CODE_STRUCT
5111 || typecode == TYPE_CODE_UNION))
1a69e1e4 5112 regval <<= ((MIPS64_REGSIZE - partial_len)
9ecf7166 5113 * TARGET_CHAR_BIT);
cb3d25d1
MS
5114
5115 if (mips_debug)
5116 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5117 argreg,
1a69e1e4 5118 phex (regval, MIPS64_REGSIZE));
9c9acae0 5119 regcache_cooked_write_unsigned (regcache, argreg, regval);
8d26208a 5120
74ed0bb4 5121 if (mips_n32n64_fp_arg_chunk_p (gdbarch, arg_type,
8d26208a
DJ
5122 TYPE_LENGTH (arg_type) - len))
5123 {
5124 if (mips_debug)
5125 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
5126 float_argreg,
5127 phex (regval, MIPS64_REGSIZE));
5128 regcache_cooked_write_unsigned (regcache, float_argreg,
5129 regval);
5130 }
5131
5132 float_argreg++;
cb3d25d1
MS
5133 argreg++;
5134 }
5135
5136 len -= partial_len;
5137 val += partial_len;
5138
b021a221
MS
5139 /* Compute the offset into the stack at which we will
5140 copy the next parameter.
cb3d25d1
MS
5141
5142 In N32 (N64?), the stack_offset only needs to be
5143 adjusted when it has been used. */
5144
5145 if (stack_used_p)
1a69e1e4 5146 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
cb3d25d1
MS
5147 }
5148 }
5149 if (mips_debug)
5150 fprintf_unfiltered (gdb_stdlog, "\n");
5151 }
5152
f10683bb 5153 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 5154
cb3d25d1
MS
5155 /* Return adjusted stack pointer. */
5156 return sp;
5157}
5158
6d82d43b 5159static enum return_value_convention
6a3a010b 5160mips_n32n64_return_value (struct gdbarch *gdbarch, struct value *function,
6d82d43b 5161 struct type *type, struct regcache *regcache,
47a35522 5162 gdb_byte *readbuf, const gdb_byte *writebuf)
ebafbe83 5163{
72a155b4 5164 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
b18bb924
MR
5165
5166 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
5167
5168 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
5169 if needed), as appropriate for the type. Composite results (struct,
5170 union, or array) are returned in $2/$f0 and $3/$f2 according to the
5171 following rules:
5172
5173 * A struct with only one or two floating point fields is returned in $f0
5174 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
5175 case.
5176
f08877ba 5177 * Any other composite results of at most 128 bits are returned in
b18bb924
MR
5178 $2 (first 64 bits) and $3 (remainder, if necessary).
5179
5180 * Larger composite results are handled by converting the function to a
5181 procedure with an implicit first parameter, which is a pointer to an area
5182 reserved by the caller to receive the result. [The o32-bit ABI requires
5183 that all composite results be handled by conversion to implicit first
5184 parameters. The MIPS/SGI Fortran implementation has always made a
5185 specific exception to return COMPLEX results in the floating point
5186 registers.] */
5187
f08877ba 5188 if (TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
6d82d43b 5189 return RETURN_VALUE_STRUCT_CONVENTION;
d05f6826
DJ
5190 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5191 && TYPE_LENGTH (type) == 16
5192 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5193 {
5194 /* A 128-bit floating-point value fills both $f0 and $f2. The
5195 two registers are used in the same as memory order, so the
5196 eight bytes with the lower memory address are in $f0. */
5197 if (mips_debug)
5198 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
ba32f989 5199 mips_xfer_register (gdbarch, regcache,
dca9aa3a
MR
5200 (gdbarch_num_regs (gdbarch)
5201 + mips_regnum (gdbarch)->fp0),
72a155b4 5202 8, gdbarch_byte_order (gdbarch),
4c6b5505 5203 readbuf, writebuf, 0);
ba32f989 5204 mips_xfer_register (gdbarch, regcache,
dca9aa3a
MR
5205 (gdbarch_num_regs (gdbarch)
5206 + mips_regnum (gdbarch)->fp0 + 2),
72a155b4 5207 8, gdbarch_byte_order (gdbarch),
4c6b5505 5208 readbuf ? readbuf + 8 : readbuf,
d05f6826
DJ
5209 writebuf ? writebuf + 8 : writebuf, 0);
5210 return RETURN_VALUE_REGISTER_CONVENTION;
5211 }
6d82d43b
AC
5212 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5213 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5214 {
59aa1faa 5215 /* A single or double floating-point value that fits in FP0. */
6d82d43b
AC
5216 if (mips_debug)
5217 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
ba32f989 5218 mips_xfer_register (gdbarch, regcache,
dca9aa3a
MR
5219 (gdbarch_num_regs (gdbarch)
5220 + mips_regnum (gdbarch)->fp0),
6d82d43b 5221 TYPE_LENGTH (type),
72a155b4 5222 gdbarch_byte_order (gdbarch),
4c6b5505 5223 readbuf, writebuf, 0);
6d82d43b
AC
5224 return RETURN_VALUE_REGISTER_CONVENTION;
5225 }
5226 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5227 && TYPE_NFIELDS (type) <= 2
5228 && TYPE_NFIELDS (type) >= 1
5229 && ((TYPE_NFIELDS (type) == 1
b18bb924 5230 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
6d82d43b
AC
5231 == TYPE_CODE_FLT))
5232 || (TYPE_NFIELDS (type) == 2
b18bb924 5233 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
6d82d43b 5234 == TYPE_CODE_FLT)
b18bb924 5235 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
5b68030f 5236 == TYPE_CODE_FLT))))
6d82d43b
AC
5237 {
5238 /* A struct that contains one or two floats. Each value is part
5239 in the least significant part of their floating point
5b68030f 5240 register (or GPR, for soft float). */
6d82d43b
AC
5241 int regnum;
5242 int field;
5b68030f
JM
5243 for (field = 0, regnum = (tdep->mips_fpu_type != MIPS_FPU_NONE
5244 ? mips_regnum (gdbarch)->fp0
5245 : MIPS_V0_REGNUM);
6d82d43b
AC
5246 field < TYPE_NFIELDS (type); field++, regnum += 2)
5247 {
5248 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5249 / TARGET_CHAR_BIT);
5250 if (mips_debug)
5251 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5252 offset);
5b68030f
JM
5253 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)) == 16)
5254 {
5255 /* A 16-byte long double field goes in two consecutive
5256 registers. */
5257 mips_xfer_register (gdbarch, regcache,
5258 gdbarch_num_regs (gdbarch) + regnum,
5259 8,
5260 gdbarch_byte_order (gdbarch),
5261 readbuf, writebuf, offset);
5262 mips_xfer_register (gdbarch, regcache,
5263 gdbarch_num_regs (gdbarch) + regnum + 1,
5264 8,
5265 gdbarch_byte_order (gdbarch),
5266 readbuf, writebuf, offset + 8);
5267 }
5268 else
5269 mips_xfer_register (gdbarch, regcache,
5270 gdbarch_num_regs (gdbarch) + regnum,
5271 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5272 gdbarch_byte_order (gdbarch),
5273 readbuf, writebuf, offset);
6d82d43b
AC
5274 }
5275 return RETURN_VALUE_REGISTER_CONVENTION;
5276 }
5277 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
f08877ba
JB
5278 || TYPE_CODE (type) == TYPE_CODE_UNION
5279 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
6d82d43b 5280 {
f08877ba 5281 /* A composite type. Extract the left justified value,
6d82d43b
AC
5282 regardless of the byte order. I.e. DO NOT USE
5283 mips_xfer_lower. */
5284 int offset;
5285 int regnum;
4c7d22cb 5286 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 5287 offset < TYPE_LENGTH (type);
72a155b4 5288 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 5289 {
72a155b4 5290 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
5291 if (offset + xfer > TYPE_LENGTH (type))
5292 xfer = TYPE_LENGTH (type) - offset;
5293 if (mips_debug)
5294 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5295 offset, xfer, regnum);
ba32f989
DJ
5296 mips_xfer_register (gdbarch, regcache,
5297 gdbarch_num_regs (gdbarch) + regnum,
72a155b4
UW
5298 xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
5299 offset);
6d82d43b
AC
5300 }
5301 return RETURN_VALUE_REGISTER_CONVENTION;
5302 }
5303 else
5304 {
5305 /* A scalar extract each part but least-significant-byte
5306 justified. */
5307 int offset;
5308 int regnum;
4c7d22cb 5309 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 5310 offset < TYPE_LENGTH (type);
72a155b4 5311 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 5312 {
72a155b4 5313 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
5314 if (offset + xfer > TYPE_LENGTH (type))
5315 xfer = TYPE_LENGTH (type) - offset;
5316 if (mips_debug)
5317 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5318 offset, xfer, regnum);
ba32f989
DJ
5319 mips_xfer_register (gdbarch, regcache,
5320 gdbarch_num_regs (gdbarch) + regnum,
72a155b4 5321 xfer, gdbarch_byte_order (gdbarch),
4c6b5505 5322 readbuf, writebuf, offset);
6d82d43b
AC
5323 }
5324 return RETURN_VALUE_REGISTER_CONVENTION;
5325 }
5326}
5327
6a3a010b
MR
5328/* Which registers to use for passing floating-point values between
5329 function calls, one of floating-point, general and both kinds of
5330 registers. O32 and O64 use different register kinds for standard
5331 MIPS and MIPS16 code; to make the handling of cases where we may
5332 not know what kind of code is being used (e.g. no debug information)
5333 easier we sometimes use both kinds. */
5334
5335enum mips_fval_reg
5336{
5337 mips_fval_fpr,
5338 mips_fval_gpr,
5339 mips_fval_both
5340};
5341
6d82d43b
AC
5342/* O32 ABI stuff. */
5343
5344static CORE_ADDR
7d9b040b 5345mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
5346 struct regcache *regcache, CORE_ADDR bp_addr,
5347 int nargs, struct value **args, CORE_ADDR sp,
5348 int struct_return, CORE_ADDR struct_addr)
5349{
5350 int argreg;
5351 int float_argreg;
5352 int argnum;
5353 int len = 0;
5354 int stack_offset = 0;
e17a4113 5355 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 5356 CORE_ADDR func_addr = find_function_addr (function, NULL);
6d82d43b
AC
5357
5358 /* For shared libraries, "t9" needs to point at the function
5359 address. */
4c7d22cb 5360 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
6d82d43b
AC
5361
5362 /* Set the return address register to point to the entry point of
5363 the program, where a breakpoint lies in wait. */
4c7d22cb 5364 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
6d82d43b
AC
5365
5366 /* First ensure that the stack and structure return address (if any)
5367 are properly aligned. The stack has to be at least 64-bit
5368 aligned even on 32-bit machines, because doubles must be 64-bit
ebafbe83
MS
5369 aligned. For n32 and n64, stack frames need to be 128-bit
5370 aligned, so we round to this widest known alignment. */
5371
5b03f266
AC
5372 sp = align_down (sp, 16);
5373 struct_addr = align_down (struct_addr, 16);
ebafbe83
MS
5374
5375 /* Now make space on the stack for the args. */
5376 for (argnum = 0; argnum < nargs; argnum++)
968b5391
MR
5377 {
5378 struct type *arg_type = check_typedef (value_type (args[argnum]));
968b5391
MR
5379
5380 /* Align to double-word if necessary. */
2afd3f0a 5381 if (mips_type_needs_double_align (arg_type))
1a69e1e4 5382 len = align_up (len, MIPS32_REGSIZE * 2);
968b5391 5383 /* Allocate space on the stack. */
354ecfd5 5384 len += align_up (TYPE_LENGTH (arg_type), MIPS32_REGSIZE);
968b5391 5385 }
5b03f266 5386 sp -= align_up (len, 16);
ebafbe83
MS
5387
5388 if (mips_debug)
6d82d43b 5389 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5390 "mips_o32_push_dummy_call: sp=%s allocated %ld\n",
5391 paddress (gdbarch, sp), (long) align_up (len, 16));
ebafbe83
MS
5392
5393 /* Initialize the integer and float register pointers. */
4c7d22cb 5394 argreg = MIPS_A0_REGNUM;
72a155b4 5395 float_argreg = mips_fpa0_regnum (gdbarch);
ebafbe83 5396
bcb0cc15 5397 /* The struct_return pointer occupies the first parameter-passing reg. */
ebafbe83
MS
5398 if (struct_return)
5399 {
5400 if (mips_debug)
5401 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
5402 "mips_o32_push_dummy_call: "
5403 "struct_return reg=%d %s\n",
5af949e3 5404 argreg, paddress (gdbarch, struct_addr));
9c9acae0 5405 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1a69e1e4 5406 stack_offset += MIPS32_REGSIZE;
ebafbe83
MS
5407 }
5408
5409 /* Now load as many as possible of the first arguments into
5410 registers, and push the rest onto the stack. Loop thru args
5411 from first to last. */
5412 for (argnum = 0; argnum < nargs; argnum++)
5413 {
47a35522 5414 const gdb_byte *val;
ebafbe83 5415 struct value *arg = args[argnum];
4991999e 5416 struct type *arg_type = check_typedef (value_type (arg));
ebafbe83
MS
5417 int len = TYPE_LENGTH (arg_type);
5418 enum type_code typecode = TYPE_CODE (arg_type);
5419
5420 if (mips_debug)
5421 fprintf_unfiltered (gdb_stdlog,
25ab4790 5422 "mips_o32_push_dummy_call: %d len=%d type=%d",
46cac009
AC
5423 argnum + 1, len, (int) typecode);
5424
47a35522 5425 val = value_contents (arg);
46cac009
AC
5426
5427 /* 32-bit ABIs always start floating point arguments in an
5428 even-numbered floating point register. Round the FP register
5429 up before the check to see if there are any FP registers
6a3a010b
MR
5430 left. O32 targets also pass the FP in the integer registers
5431 so also round up normal registers. */
74ed0bb4 5432 if (fp_register_arg_p (gdbarch, typecode, arg_type))
46cac009
AC
5433 {
5434 if ((float_argreg & 1))
5435 float_argreg++;
5436 }
5437
5438 /* Floating point arguments passed in registers have to be
6a3a010b
MR
5439 treated specially. On 32-bit architectures, doubles are
5440 passed in register pairs; the even FP register gets the
5441 low word, and the odd FP register gets the high word.
5442 On O32, the first two floating point arguments are also
5443 copied to general registers, following their memory order,
5444 because MIPS16 functions don't use float registers for
5445 arguments. This duplication of arguments in general
5446 registers can't hurt non-MIPS16 functions, because those
5447 registers are normally skipped. */
46cac009 5448
74ed0bb4
MD
5449 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5450 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
46cac009 5451 {
8b07f6d8 5452 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
46cac009 5453 {
6a3a010b
MR
5454 int freg_offset = gdbarch_byte_order (gdbarch)
5455 == BFD_ENDIAN_BIG ? 1 : 0;
46cac009
AC
5456 unsigned long regval;
5457
6a3a010b
MR
5458 /* First word. */
5459 regval = extract_unsigned_integer (val, 4, byte_order);
46cac009
AC
5460 if (mips_debug)
5461 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
6a3a010b
MR
5462 float_argreg + freg_offset,
5463 phex (regval, 4));
025bb325 5464 regcache_cooked_write_unsigned (regcache,
6a3a010b
MR
5465 float_argreg++ + freg_offset,
5466 regval);
46cac009
AC
5467 if (mips_debug)
5468 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5469 argreg, phex (regval, 4));
9c9acae0 5470 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009 5471
6a3a010b
MR
5472 /* Second word. */
5473 regval = extract_unsigned_integer (val + 4, 4, byte_order);
46cac009
AC
5474 if (mips_debug)
5475 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
6a3a010b
MR
5476 float_argreg - freg_offset,
5477 phex (regval, 4));
025bb325 5478 regcache_cooked_write_unsigned (regcache,
6a3a010b
MR
5479 float_argreg++ - freg_offset,
5480 regval);
46cac009
AC
5481 if (mips_debug)
5482 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5483 argreg, phex (regval, 4));
9c9acae0 5484 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009
AC
5485 }
5486 else
5487 {
5488 /* This is a floating point value that fits entirely
5489 in a single register. */
5490 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 5491 above to ensure that it is even register aligned. */
e17a4113 5492 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
46cac009
AC
5493 if (mips_debug)
5494 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5495 float_argreg, phex (regval, len));
025bb325
MS
5496 regcache_cooked_write_unsigned (regcache,
5497 float_argreg++, regval);
5b68030f
JM
5498 /* Although two FP registers are reserved for each
5499 argument, only one corresponding integer register is
5500 reserved. */
46cac009
AC
5501 if (mips_debug)
5502 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5503 argreg, phex (regval, len));
5b68030f 5504 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009
AC
5505 }
5506 /* Reserve space for the FP register. */
1a69e1e4 5507 stack_offset += align_up (len, MIPS32_REGSIZE);
46cac009
AC
5508 }
5509 else
5510 {
5511 /* Copy the argument to general registers or the stack in
5512 register-sized pieces. Large arguments are split between
5513 registers and stack. */
1a69e1e4
DJ
5514 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
5515 are treated specially: Irix cc passes
d5ac5a39
AC
5516 them in registers where gcc sometimes puts them on the
5517 stack. For maximum compatibility, we will put them in
5518 both places. */
1a69e1e4
DJ
5519 int odd_sized_struct = (len > MIPS32_REGSIZE
5520 && len % MIPS32_REGSIZE != 0);
46cac009
AC
5521 /* Structures should be aligned to eight bytes (even arg registers)
5522 on MIPS_ABI_O32, if their first member has double precision. */
2afd3f0a 5523 if (mips_type_needs_double_align (arg_type))
46cac009
AC
5524 {
5525 if ((argreg & 1))
968b5391
MR
5526 {
5527 argreg++;
1a69e1e4 5528 stack_offset += MIPS32_REGSIZE;
968b5391 5529 }
46cac009 5530 }
46cac009
AC
5531 while (len > 0)
5532 {
1a69e1e4 5533 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
46cac009
AC
5534
5535 if (mips_debug)
5536 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5537 partial_len);
5538
5539 /* Write this portion of the argument to the stack. */
74ed0bb4 5540 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
968b5391 5541 || odd_sized_struct)
46cac009
AC
5542 {
5543 /* Should shorter than int integer values be
025bb325 5544 promoted to int before being stored? */
46cac009
AC
5545 int longword_offset = 0;
5546 CORE_ADDR addr;
46cac009
AC
5547
5548 if (mips_debug)
5549 {
5af949e3
UW
5550 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5551 paddress (gdbarch, stack_offset));
5552 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5553 paddress (gdbarch, longword_offset));
46cac009
AC
5554 }
5555
5556 addr = sp + stack_offset + longword_offset;
5557
5558 if (mips_debug)
5559 {
5560 int i;
5af949e3
UW
5561 fprintf_unfiltered (gdb_stdlog, " @%s ",
5562 paddress (gdbarch, addr));
46cac009
AC
5563 for (i = 0; i < partial_len; i++)
5564 {
6d82d43b 5565 fprintf_unfiltered (gdb_stdlog, "%02x",
46cac009
AC
5566 val[i] & 0xff);
5567 }
5568 }
5569 write_memory (addr, val, partial_len);
5570 }
5571
5572 /* Note!!! This is NOT an else clause. Odd sized
968b5391 5573 structs may go thru BOTH paths. */
46cac009 5574 /* Write this portion of the argument to a general
6d82d43b 5575 purpose register. */
74ed0bb4 5576 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
46cac009 5577 {
e17a4113
UW
5578 LONGEST regval = extract_signed_integer (val, partial_len,
5579 byte_order);
4246e332 5580 /* Value may need to be sign extended, because
1b13c4f6 5581 mips_isa_regsize() != mips_abi_regsize(). */
46cac009
AC
5582
5583 /* A non-floating-point argument being passed in a
5584 general register. If a struct or union, and if
5585 the remaining length is smaller than the register
5586 size, we have to adjust the register value on
5587 big endian targets.
5588
5589 It does not seem to be necessary to do the
5590 same for integral types.
5591
5592 Also don't do this adjustment on O64 binaries.
5593
5594 cagney/2001-07-23: gdb/179: Also, GCC, when
5595 outputting LE O32 with sizeof (struct) <
e914cb17
MR
5596 mips_abi_regsize(), generates a left shift
5597 as part of storing the argument in a register
5598 (the left shift isn't generated when
1b13c4f6 5599 sizeof (struct) >= mips_abi_regsize()). Since
480d3dd2
AC
5600 it is quite possible that this is GCC
5601 contradicting the LE/O32 ABI, GDB has not been
5602 adjusted to accommodate this. Either someone
5603 needs to demonstrate that the LE/O32 ABI
5604 specifies such a left shift OR this new ABI gets
5605 identified as such and GDB gets tweaked
5606 accordingly. */
5607
72a155b4 5608 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 5609 && partial_len < MIPS32_REGSIZE
06f9a1af
MR
5610 && (typecode == TYPE_CODE_STRUCT
5611 || typecode == TYPE_CODE_UNION))
1a69e1e4 5612 regval <<= ((MIPS32_REGSIZE - partial_len)
9ecf7166 5613 * TARGET_CHAR_BIT);
46cac009
AC
5614
5615 if (mips_debug)
5616 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5617 argreg,
1a69e1e4 5618 phex (regval, MIPS32_REGSIZE));
9c9acae0 5619 regcache_cooked_write_unsigned (regcache, argreg, regval);
46cac009
AC
5620 argreg++;
5621
5622 /* Prevent subsequent floating point arguments from
5623 being passed in floating point registers. */
74ed0bb4 5624 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
46cac009
AC
5625 }
5626
5627 len -= partial_len;
5628 val += partial_len;
5629
b021a221
MS
5630 /* Compute the offset into the stack at which we will
5631 copy the next parameter.
46cac009 5632
6d82d43b
AC
5633 In older ABIs, the caller reserved space for
5634 registers that contained arguments. This was loosely
5635 refered to as their "home". Consequently, space is
5636 always allocated. */
46cac009 5637
1a69e1e4 5638 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
46cac009
AC
5639 }
5640 }
5641 if (mips_debug)
5642 fprintf_unfiltered (gdb_stdlog, "\n");
5643 }
5644
f10683bb 5645 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 5646
46cac009
AC
5647 /* Return adjusted stack pointer. */
5648 return sp;
5649}
5650
6d82d43b 5651static enum return_value_convention
6a3a010b 5652mips_o32_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101 5653 struct type *type, struct regcache *regcache,
47a35522 5654 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 5655{
6a3a010b 5656 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
4cc0665f 5657 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
72a155b4 5658 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6a3a010b 5659 enum mips_fval_reg fval_reg;
6d82d43b 5660
6a3a010b 5661 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
6d82d43b
AC
5662 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5663 || TYPE_CODE (type) == TYPE_CODE_UNION
5664 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5665 return RETURN_VALUE_STRUCT_CONVENTION;
5666 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5667 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5668 {
6a3a010b
MR
5669 /* A single-precision floating-point value. If reading in or copying,
5670 then we get it from/put it to FP0 for standard MIPS code or GPR2
5671 for MIPS16 code. If writing out only, then we put it to both FP0
5672 and GPR2. We do not support reading in with no function known, if
5673 this safety check ever triggers, then we'll have to try harder. */
5674 gdb_assert (function || !readbuf);
6d82d43b 5675 if (mips_debug)
6a3a010b
MR
5676 switch (fval_reg)
5677 {
5678 case mips_fval_fpr:
5679 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5680 break;
5681 case mips_fval_gpr:
5682 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
5683 break;
5684 case mips_fval_both:
5685 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
5686 break;
5687 }
5688 if (fval_reg != mips_fval_gpr)
5689 mips_xfer_register (gdbarch, regcache,
5690 (gdbarch_num_regs (gdbarch)
5691 + mips_regnum (gdbarch)->fp0),
5692 TYPE_LENGTH (type),
5693 gdbarch_byte_order (gdbarch),
5694 readbuf, writebuf, 0);
5695 if (fval_reg != mips_fval_fpr)
5696 mips_xfer_register (gdbarch, regcache,
5697 gdbarch_num_regs (gdbarch) + 2,
5698 TYPE_LENGTH (type),
5699 gdbarch_byte_order (gdbarch),
5700 readbuf, writebuf, 0);
6d82d43b
AC
5701 return RETURN_VALUE_REGISTER_CONVENTION;
5702 }
5703 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5704 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5705 {
6a3a010b
MR
5706 /* A double-precision floating-point value. If reading in or copying,
5707 then we get it from/put it to FP1 and FP0 for standard MIPS code or
5708 GPR2 and GPR3 for MIPS16 code. If writing out only, then we put it
5709 to both FP1/FP0 and GPR2/GPR3. We do not support reading in with
5710 no function known, if this safety check ever triggers, then we'll
5711 have to try harder. */
5712 gdb_assert (function || !readbuf);
6d82d43b 5713 if (mips_debug)
6a3a010b
MR
5714 switch (fval_reg)
5715 {
5716 case mips_fval_fpr:
5717 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
5718 break;
5719 case mips_fval_gpr:
5720 fprintf_unfiltered (gdb_stderr, "Return float in $2/$3\n");
5721 break;
5722 case mips_fval_both:
5723 fprintf_unfiltered (gdb_stderr,
5724 "Return float in $fp1/$fp0 and $2/$3\n");
5725 break;
5726 }
5727 if (fval_reg != mips_fval_gpr)
6d82d43b 5728 {
6a3a010b
MR
5729 /* The most significant part goes in FP1, and the least significant
5730 in FP0. */
5731 switch (gdbarch_byte_order (gdbarch))
5732 {
5733 case BFD_ENDIAN_LITTLE:
5734 mips_xfer_register (gdbarch, regcache,
5735 (gdbarch_num_regs (gdbarch)
5736 + mips_regnum (gdbarch)->fp0 + 0),
5737 4, gdbarch_byte_order (gdbarch),
5738 readbuf, writebuf, 0);
5739 mips_xfer_register (gdbarch, regcache,
5740 (gdbarch_num_regs (gdbarch)
5741 + mips_regnum (gdbarch)->fp0 + 1),
5742 4, gdbarch_byte_order (gdbarch),
5743 readbuf, writebuf, 4);
5744 break;
5745 case BFD_ENDIAN_BIG:
5746 mips_xfer_register (gdbarch, regcache,
5747 (gdbarch_num_regs (gdbarch)
5748 + mips_regnum (gdbarch)->fp0 + 1),
5749 4, gdbarch_byte_order (gdbarch),
5750 readbuf, writebuf, 0);
5751 mips_xfer_register (gdbarch, regcache,
5752 (gdbarch_num_regs (gdbarch)
5753 + mips_regnum (gdbarch)->fp0 + 0),
5754 4, gdbarch_byte_order (gdbarch),
5755 readbuf, writebuf, 4);
5756 break;
5757 default:
5758 internal_error (__FILE__, __LINE__, _("bad switch"));
5759 }
5760 }
5761 if (fval_reg != mips_fval_fpr)
5762 {
5763 /* The two 32-bit parts are always placed in GPR2 and GPR3
5764 following these registers' memory order. */
ba32f989 5765 mips_xfer_register (gdbarch, regcache,
6a3a010b 5766 gdbarch_num_regs (gdbarch) + 2,
72a155b4 5767 4, gdbarch_byte_order (gdbarch),
4c6b5505 5768 readbuf, writebuf, 0);
ba32f989 5769 mips_xfer_register (gdbarch, regcache,
6a3a010b 5770 gdbarch_num_regs (gdbarch) + 3,
72a155b4 5771 4, gdbarch_byte_order (gdbarch),
4c6b5505 5772 readbuf, writebuf, 4);
6d82d43b
AC
5773 }
5774 return RETURN_VALUE_REGISTER_CONVENTION;
5775 }
5776#if 0
5777 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5778 && TYPE_NFIELDS (type) <= 2
5779 && TYPE_NFIELDS (type) >= 1
5780 && ((TYPE_NFIELDS (type) == 1
5781 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5782 == TYPE_CODE_FLT))
5783 || (TYPE_NFIELDS (type) == 2
5784 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5785 == TYPE_CODE_FLT)
5786 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
5787 == TYPE_CODE_FLT)))
5788 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5789 {
5790 /* A struct that contains one or two floats. Each value is part
5791 in the least significant part of their floating point
5792 register.. */
6d82d43b
AC
5793 int regnum;
5794 int field;
72a155b4 5795 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
6d82d43b
AC
5796 field < TYPE_NFIELDS (type); field++, regnum += 2)
5797 {
5798 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5799 / TARGET_CHAR_BIT);
5800 if (mips_debug)
5801 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5802 offset);
ba32f989
DJ
5803 mips_xfer_register (gdbarch, regcache,
5804 gdbarch_num_regs (gdbarch) + regnum,
6d82d43b 5805 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
72a155b4 5806 gdbarch_byte_order (gdbarch),
4c6b5505 5807 readbuf, writebuf, offset);
6d82d43b
AC
5808 }
5809 return RETURN_VALUE_REGISTER_CONVENTION;
5810 }
5811#endif
5812#if 0
5813 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5814 || TYPE_CODE (type) == TYPE_CODE_UNION)
5815 {
5816 /* A structure or union. Extract the left justified value,
5817 regardless of the byte order. I.e. DO NOT USE
5818 mips_xfer_lower. */
5819 int offset;
5820 int regnum;
4c7d22cb 5821 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 5822 offset < TYPE_LENGTH (type);
72a155b4 5823 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 5824 {
72a155b4 5825 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
5826 if (offset + xfer > TYPE_LENGTH (type))
5827 xfer = TYPE_LENGTH (type) - offset;
5828 if (mips_debug)
5829 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5830 offset, xfer, regnum);
ba32f989
DJ
5831 mips_xfer_register (gdbarch, regcache,
5832 gdbarch_num_regs (gdbarch) + regnum, xfer,
6d82d43b
AC
5833 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
5834 }
5835 return RETURN_VALUE_REGISTER_CONVENTION;
5836 }
5837#endif
5838 else
5839 {
5840 /* A scalar extract each part but least-significant-byte
5841 justified. o32 thinks registers are 4 byte, regardless of
1a69e1e4 5842 the ISA. */
6d82d43b
AC
5843 int offset;
5844 int regnum;
4c7d22cb 5845 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 5846 offset < TYPE_LENGTH (type);
1a69e1e4 5847 offset += MIPS32_REGSIZE, regnum++)
6d82d43b 5848 {
1a69e1e4 5849 int xfer = MIPS32_REGSIZE;
6d82d43b
AC
5850 if (offset + xfer > TYPE_LENGTH (type))
5851 xfer = TYPE_LENGTH (type) - offset;
5852 if (mips_debug)
5853 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5854 offset, xfer, regnum);
ba32f989
DJ
5855 mips_xfer_register (gdbarch, regcache,
5856 gdbarch_num_regs (gdbarch) + regnum, xfer,
72a155b4 5857 gdbarch_byte_order (gdbarch),
4c6b5505 5858 readbuf, writebuf, offset);
6d82d43b
AC
5859 }
5860 return RETURN_VALUE_REGISTER_CONVENTION;
5861 }
5862}
5863
5864/* O64 ABI. This is a hacked up kind of 64-bit version of the o32
5865 ABI. */
46cac009
AC
5866
5867static CORE_ADDR
7d9b040b 5868mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
5869 struct regcache *regcache, CORE_ADDR bp_addr,
5870 int nargs,
5871 struct value **args, CORE_ADDR sp,
5872 int struct_return, CORE_ADDR struct_addr)
46cac009
AC
5873{
5874 int argreg;
5875 int float_argreg;
5876 int argnum;
5877 int len = 0;
5878 int stack_offset = 0;
e17a4113 5879 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 5880 CORE_ADDR func_addr = find_function_addr (function, NULL);
46cac009 5881
25ab4790
AC
5882 /* For shared libraries, "t9" needs to point at the function
5883 address. */
4c7d22cb 5884 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
5885
5886 /* Set the return address register to point to the entry point of
5887 the program, where a breakpoint lies in wait. */
4c7d22cb 5888 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 5889
46cac009
AC
5890 /* First ensure that the stack and structure return address (if any)
5891 are properly aligned. The stack has to be at least 64-bit
5892 aligned even on 32-bit machines, because doubles must be 64-bit
5893 aligned. For n32 and n64, stack frames need to be 128-bit
5894 aligned, so we round to this widest known alignment. */
5895
5b03f266
AC
5896 sp = align_down (sp, 16);
5897 struct_addr = align_down (struct_addr, 16);
46cac009
AC
5898
5899 /* Now make space on the stack for the args. */
5900 for (argnum = 0; argnum < nargs; argnum++)
968b5391
MR
5901 {
5902 struct type *arg_type = check_typedef (value_type (args[argnum]));
968b5391 5903
968b5391 5904 /* Allocate space on the stack. */
354ecfd5 5905 len += align_up (TYPE_LENGTH (arg_type), MIPS64_REGSIZE);
968b5391 5906 }
5b03f266 5907 sp -= align_up (len, 16);
46cac009
AC
5908
5909 if (mips_debug)
6d82d43b 5910 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5911 "mips_o64_push_dummy_call: sp=%s allocated %ld\n",
5912 paddress (gdbarch, sp), (long) align_up (len, 16));
46cac009
AC
5913
5914 /* Initialize the integer and float register pointers. */
4c7d22cb 5915 argreg = MIPS_A0_REGNUM;
72a155b4 5916 float_argreg = mips_fpa0_regnum (gdbarch);
46cac009
AC
5917
5918 /* The struct_return pointer occupies the first parameter-passing reg. */
5919 if (struct_return)
5920 {
5921 if (mips_debug)
5922 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
5923 "mips_o64_push_dummy_call: "
5924 "struct_return reg=%d %s\n",
5af949e3 5925 argreg, paddress (gdbarch, struct_addr));
9c9acae0 5926 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1a69e1e4 5927 stack_offset += MIPS64_REGSIZE;
46cac009
AC
5928 }
5929
5930 /* Now load as many as possible of the first arguments into
5931 registers, and push the rest onto the stack. Loop thru args
5932 from first to last. */
5933 for (argnum = 0; argnum < nargs; argnum++)
5934 {
47a35522 5935 const gdb_byte *val;
46cac009 5936 struct value *arg = args[argnum];
4991999e 5937 struct type *arg_type = check_typedef (value_type (arg));
46cac009
AC
5938 int len = TYPE_LENGTH (arg_type);
5939 enum type_code typecode = TYPE_CODE (arg_type);
5940
5941 if (mips_debug)
5942 fprintf_unfiltered (gdb_stdlog,
25ab4790 5943 "mips_o64_push_dummy_call: %d len=%d type=%d",
ebafbe83
MS
5944 argnum + 1, len, (int) typecode);
5945
47a35522 5946 val = value_contents (arg);
ebafbe83 5947
ebafbe83 5948 /* Floating point arguments passed in registers have to be
6a3a010b
MR
5949 treated specially. On 32-bit architectures, doubles are
5950 passed in register pairs; the even FP register gets the
5951 low word, and the odd FP register gets the high word.
5952 On O64, the first two floating point arguments are also
5953 copied to general registers, because MIPS16 functions
5954 don't use float registers for arguments. This duplication
5955 of arguments in general registers can't hurt non-MIPS16
5956 functions because those registers are normally skipped. */
ebafbe83 5957
74ed0bb4
MD
5958 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5959 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
ebafbe83 5960 {
e17a4113 5961 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
2afd3f0a
MR
5962 if (mips_debug)
5963 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5964 float_argreg, phex (regval, len));
9c9acae0 5965 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2afd3f0a
MR
5966 if (mips_debug)
5967 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5968 argreg, phex (regval, len));
9c9acae0 5969 regcache_cooked_write_unsigned (regcache, argreg, regval);
2afd3f0a 5970 argreg++;
ebafbe83 5971 /* Reserve space for the FP register. */
1a69e1e4 5972 stack_offset += align_up (len, MIPS64_REGSIZE);
ebafbe83
MS
5973 }
5974 else
5975 {
5976 /* Copy the argument to general registers or the stack in
5977 register-sized pieces. Large arguments are split between
5978 registers and stack. */
1a69e1e4 5979 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
436aafc4
MR
5980 are treated specially: Irix cc passes them in registers
5981 where gcc sometimes puts them on the stack. For maximum
5982 compatibility, we will put them in both places. */
1a69e1e4
DJ
5983 int odd_sized_struct = (len > MIPS64_REGSIZE
5984 && len % MIPS64_REGSIZE != 0);
ebafbe83
MS
5985 while (len > 0)
5986 {
1a69e1e4 5987 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
ebafbe83
MS
5988
5989 if (mips_debug)
5990 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5991 partial_len);
5992
5993 /* Write this portion of the argument to the stack. */
74ed0bb4 5994 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
968b5391 5995 || odd_sized_struct)
ebafbe83
MS
5996 {
5997 /* Should shorter than int integer values be
025bb325 5998 promoted to int before being stored? */
ebafbe83
MS
5999 int longword_offset = 0;
6000 CORE_ADDR addr;
72a155b4 6001 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
ebafbe83 6002 {
1a69e1e4
DJ
6003 if ((typecode == TYPE_CODE_INT
6004 || typecode == TYPE_CODE_PTR
6005 || typecode == TYPE_CODE_FLT)
6006 && len <= 4)
6007 longword_offset = MIPS64_REGSIZE - len;
ebafbe83
MS
6008 }
6009
6010 if (mips_debug)
6011 {
5af949e3
UW
6012 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
6013 paddress (gdbarch, stack_offset));
6014 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
6015 paddress (gdbarch, longword_offset));
ebafbe83
MS
6016 }
6017
6018 addr = sp + stack_offset + longword_offset;
6019
6020 if (mips_debug)
6021 {
6022 int i;
5af949e3
UW
6023 fprintf_unfiltered (gdb_stdlog, " @%s ",
6024 paddress (gdbarch, addr));
ebafbe83
MS
6025 for (i = 0; i < partial_len; i++)
6026 {
6d82d43b 6027 fprintf_unfiltered (gdb_stdlog, "%02x",
ebafbe83
MS
6028 val[i] & 0xff);
6029 }
6030 }
6031 write_memory (addr, val, partial_len);
6032 }
6033
6034 /* Note!!! This is NOT an else clause. Odd sized
968b5391 6035 structs may go thru BOTH paths. */
ebafbe83 6036 /* Write this portion of the argument to a general
6d82d43b 6037 purpose register. */
74ed0bb4 6038 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
ebafbe83 6039 {
e17a4113
UW
6040 LONGEST regval = extract_signed_integer (val, partial_len,
6041 byte_order);
4246e332 6042 /* Value may need to be sign extended, because
1b13c4f6 6043 mips_isa_regsize() != mips_abi_regsize(). */
ebafbe83
MS
6044
6045 /* A non-floating-point argument being passed in a
6046 general register. If a struct or union, and if
6047 the remaining length is smaller than the register
6048 size, we have to adjust the register value on
6049 big endian targets.
6050
6051 It does not seem to be necessary to do the
025bb325 6052 same for integral types. */
480d3dd2 6053
72a155b4 6054 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 6055 && partial_len < MIPS64_REGSIZE
06f9a1af
MR
6056 && (typecode == TYPE_CODE_STRUCT
6057 || typecode == TYPE_CODE_UNION))
1a69e1e4 6058 regval <<= ((MIPS64_REGSIZE - partial_len)
9ecf7166 6059 * TARGET_CHAR_BIT);
ebafbe83
MS
6060
6061 if (mips_debug)
6062 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
6063 argreg,
1a69e1e4 6064 phex (regval, MIPS64_REGSIZE));
9c9acae0 6065 regcache_cooked_write_unsigned (regcache, argreg, regval);
ebafbe83
MS
6066 argreg++;
6067
6068 /* Prevent subsequent floating point arguments from
6069 being passed in floating point registers. */
74ed0bb4 6070 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
ebafbe83
MS
6071 }
6072
6073 len -= partial_len;
6074 val += partial_len;
6075
b021a221
MS
6076 /* Compute the offset into the stack at which we will
6077 copy the next parameter.
ebafbe83 6078
6d82d43b
AC
6079 In older ABIs, the caller reserved space for
6080 registers that contained arguments. This was loosely
6081 refered to as their "home". Consequently, space is
6082 always allocated. */
ebafbe83 6083
1a69e1e4 6084 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
ebafbe83
MS
6085 }
6086 }
6087 if (mips_debug)
6088 fprintf_unfiltered (gdb_stdlog, "\n");
6089 }
6090
f10683bb 6091 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 6092
ebafbe83
MS
6093 /* Return adjusted stack pointer. */
6094 return sp;
6095}
6096
9c8fdbfa 6097static enum return_value_convention
6a3a010b 6098mips_o64_return_value (struct gdbarch *gdbarch, struct value *function,
9c8fdbfa 6099 struct type *type, struct regcache *regcache,
47a35522 6100 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 6101{
6a3a010b 6102 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
4cc0665f 6103 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
6a3a010b 6104 enum mips_fval_reg fval_reg;
7a076fd2 6105
6a3a010b 6106 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
7a076fd2
FF
6107 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
6108 || TYPE_CODE (type) == TYPE_CODE_UNION
6109 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
6110 return RETURN_VALUE_STRUCT_CONVENTION;
74ed0bb4 6111 else if (fp_register_arg_p (gdbarch, TYPE_CODE (type), type))
7a076fd2 6112 {
6a3a010b
MR
6113 /* A floating-point value. If reading in or copying, then we get it
6114 from/put it to FP0 for standard MIPS code or GPR2 for MIPS16 code.
6115 If writing out only, then we put it to both FP0 and GPR2. We do
6116 not support reading in with no function known, if this safety
6117 check ever triggers, then we'll have to try harder. */
6118 gdb_assert (function || !readbuf);
7a076fd2 6119 if (mips_debug)
6a3a010b
MR
6120 switch (fval_reg)
6121 {
6122 case mips_fval_fpr:
6123 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
6124 break;
6125 case mips_fval_gpr:
6126 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
6127 break;
6128 case mips_fval_both:
6129 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
6130 break;
6131 }
6132 if (fval_reg != mips_fval_gpr)
6133 mips_xfer_register (gdbarch, regcache,
6134 (gdbarch_num_regs (gdbarch)
6135 + mips_regnum (gdbarch)->fp0),
6136 TYPE_LENGTH (type),
6137 gdbarch_byte_order (gdbarch),
6138 readbuf, writebuf, 0);
6139 if (fval_reg != mips_fval_fpr)
6140 mips_xfer_register (gdbarch, regcache,
6141 gdbarch_num_regs (gdbarch) + 2,
6142 TYPE_LENGTH (type),
6143 gdbarch_byte_order (gdbarch),
6144 readbuf, writebuf, 0);
7a076fd2
FF
6145 return RETURN_VALUE_REGISTER_CONVENTION;
6146 }
6147 else
6148 {
6149 /* A scalar extract each part but least-significant-byte
025bb325 6150 justified. */
7a076fd2
FF
6151 int offset;
6152 int regnum;
6153 for (offset = 0, regnum = MIPS_V0_REGNUM;
6154 offset < TYPE_LENGTH (type);
1a69e1e4 6155 offset += MIPS64_REGSIZE, regnum++)
7a076fd2 6156 {
1a69e1e4 6157 int xfer = MIPS64_REGSIZE;
7a076fd2
FF
6158 if (offset + xfer > TYPE_LENGTH (type))
6159 xfer = TYPE_LENGTH (type) - offset;
6160 if (mips_debug)
6161 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
6162 offset, xfer, regnum);
ba32f989
DJ
6163 mips_xfer_register (gdbarch, regcache,
6164 gdbarch_num_regs (gdbarch) + regnum,
72a155b4 6165 xfer, gdbarch_byte_order (gdbarch),
4c6b5505 6166 readbuf, writebuf, offset);
7a076fd2
FF
6167 }
6168 return RETURN_VALUE_REGISTER_CONVENTION;
6169 }
6d82d43b
AC
6170}
6171
dd824b04
DJ
6172/* Floating point register management.
6173
6174 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
6175 64bit operations, these early MIPS cpus treat fp register pairs
6176 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
6177 registers and offer a compatibility mode that emulates the MIPS2 fp
6178 model. When operating in MIPS2 fp compat mode, later cpu's split
6179 double precision floats into two 32-bit chunks and store them in
6180 consecutive fp regs. To display 64-bit floats stored in this
6181 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
6182 Throw in user-configurable endianness and you have a real mess.
6183
6184 The way this works is:
6185 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
6186 double-precision value will be split across two logical registers.
6187 The lower-numbered logical register will hold the low-order bits,
6188 regardless of the processor's endianness.
6189 - If we are on a 64-bit processor, and we are looking for a
6190 single-precision value, it will be in the low ordered bits
6191 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
6192 save slot in memory.
6193 - If we are in 64-bit mode, everything is straightforward.
6194
6195 Note that this code only deals with "live" registers at the top of the
6196 stack. We will attempt to deal with saved registers later, when
025bb325 6197 the raw/cooked register interface is in place. (We need a general
dd824b04
DJ
6198 interface that can deal with dynamic saved register sizes -- fp
6199 regs could be 32 bits wide in one frame and 64 on the frame above
6200 and below). */
6201
6202/* Copy a 32-bit single-precision value from the current frame
6203 into rare_buffer. */
6204
6205static void
e11c53d2 6206mips_read_fp_register_single (struct frame_info *frame, int regno,
47a35522 6207 gdb_byte *rare_buffer)
dd824b04 6208{
72a155b4
UW
6209 struct gdbarch *gdbarch = get_frame_arch (frame);
6210 int raw_size = register_size (gdbarch, regno);
224c3ddb 6211 gdb_byte *raw_buffer = (gdb_byte *) alloca (raw_size);
dd824b04 6212
ca9d61b9 6213 if (!deprecated_frame_register_read (frame, regno, raw_buffer))
c9f4d572 6214 error (_("can't read register %d (%s)"),
72a155b4 6215 regno, gdbarch_register_name (gdbarch, regno));
dd824b04
DJ
6216 if (raw_size == 8)
6217 {
6218 /* We have a 64-bit value for this register. Find the low-order
6d82d43b 6219 32 bits. */
dd824b04
DJ
6220 int offset;
6221
72a155b4 6222 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
dd824b04
DJ
6223 offset = 4;
6224 else
6225 offset = 0;
6226
6227 memcpy (rare_buffer, raw_buffer + offset, 4);
6228 }
6229 else
6230 {
6231 memcpy (rare_buffer, raw_buffer, 4);
6232 }
6233}
6234
6235/* Copy a 64-bit double-precision value from the current frame into
6236 rare_buffer. This may include getting half of it from the next
6237 register. */
6238
6239static void
e11c53d2 6240mips_read_fp_register_double (struct frame_info *frame, int regno,
47a35522 6241 gdb_byte *rare_buffer)
dd824b04 6242{
72a155b4
UW
6243 struct gdbarch *gdbarch = get_frame_arch (frame);
6244 int raw_size = register_size (gdbarch, regno);
dd824b04 6245
9c9acae0 6246 if (raw_size == 8 && !mips2_fp_compat (frame))
dd824b04
DJ
6247 {
6248 /* We have a 64-bit value for this register, and we should use
6d82d43b 6249 all 64 bits. */
ca9d61b9 6250 if (!deprecated_frame_register_read (frame, regno, rare_buffer))
c9f4d572 6251 error (_("can't read register %d (%s)"),
72a155b4 6252 regno, gdbarch_register_name (gdbarch, regno));
dd824b04
DJ
6253 }
6254 else
6255 {
72a155b4 6256 int rawnum = regno % gdbarch_num_regs (gdbarch);
82e91389 6257
72a155b4 6258 if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
dd824b04 6259 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
6260 _("mips_read_fp_register_double: bad access to "
6261 "odd-numbered FP register"));
dd824b04
DJ
6262
6263 /* mips_read_fp_register_single will find the correct 32 bits from
6d82d43b 6264 each register. */
72a155b4 6265 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
dd824b04 6266 {
e11c53d2
AC
6267 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
6268 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
dd824b04 6269 }
361d1df0 6270 else
dd824b04 6271 {
e11c53d2
AC
6272 mips_read_fp_register_single (frame, regno, rare_buffer);
6273 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
dd824b04
DJ
6274 }
6275 }
6276}
6277
c906108c 6278static void
e11c53d2
AC
6279mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
6280 int regnum)
025bb325 6281{ /* Do values for FP (float) regs. */
72a155b4 6282 struct gdbarch *gdbarch = get_frame_arch (frame);
47a35522 6283 gdb_byte *raw_buffer;
8ba0dd51
UW
6284 std::string flt_str, dbl_str;
6285
f69fdf9b
UW
6286 const struct type *flt_type = builtin_type (gdbarch)->builtin_float;
6287 const struct type *dbl_type = builtin_type (gdbarch)->builtin_double;
c5aa993b 6288
224c3ddb
SM
6289 raw_buffer
6290 = ((gdb_byte *)
6291 alloca (2 * register_size (gdbarch, mips_regnum (gdbarch)->fp0)));
c906108c 6292
72a155b4 6293 fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
c9f4d572 6294 fprintf_filtered (file, "%*s",
72a155b4 6295 4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
e11c53d2 6296 "");
f0ef6b29 6297
72a155b4 6298 if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
c906108c 6299 {
79a45b7d
TT
6300 struct value_print_options opts;
6301
f0ef6b29
KB
6302 /* 4-byte registers: Print hex and floating. Also print even
6303 numbered registers as doubles. */
e11c53d2 6304 mips_read_fp_register_single (frame, regnum, raw_buffer);
f69fdf9b 6305 flt_str = target_float_to_string (raw_buffer, flt_type, "%-17.9g");
c5aa993b 6306
79a45b7d 6307 get_formatted_print_options (&opts, 'x');
df4df182
UW
6308 print_scalar_formatted (raw_buffer,
6309 builtin_type (gdbarch)->builtin_uint32,
6310 &opts, 'w', file);
dd824b04 6311
8ba0dd51 6312 fprintf_filtered (file, " flt: %s", flt_str.c_str ());
1adad886 6313
72a155b4 6314 if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
f0ef6b29 6315 {
e11c53d2 6316 mips_read_fp_register_double (frame, regnum, raw_buffer);
f69fdf9b 6317 dbl_str = target_float_to_string (raw_buffer, dbl_type, "%-24.17g");
1adad886 6318
8ba0dd51 6319 fprintf_filtered (file, " dbl: %s", dbl_str.c_str ());
f0ef6b29 6320 }
c906108c
SS
6321 }
6322 else
dd824b04 6323 {
79a45b7d
TT
6324 struct value_print_options opts;
6325
f0ef6b29 6326 /* Eight byte registers: print each one as hex, float and double. */
e11c53d2 6327 mips_read_fp_register_single (frame, regnum, raw_buffer);
f69fdf9b 6328 flt_str = target_float_to_string (raw_buffer, flt_type, "%-17.9g");
c906108c 6329
e11c53d2 6330 mips_read_fp_register_double (frame, regnum, raw_buffer);
f69fdf9b 6331 dbl_str = target_float_to_string (raw_buffer, dbl_type, "%-24.17g");
f0ef6b29 6332
79a45b7d 6333 get_formatted_print_options (&opts, 'x');
df4df182
UW
6334 print_scalar_formatted (raw_buffer,
6335 builtin_type (gdbarch)->builtin_uint64,
6336 &opts, 'g', file);
f0ef6b29 6337
8ba0dd51
UW
6338 fprintf_filtered (file, " flt: %s", flt_str.c_str ());
6339 fprintf_filtered (file, " dbl: %s", dbl_str.c_str ());
f0ef6b29
KB
6340 }
6341}
6342
6343static void
e11c53d2 6344mips_print_register (struct ui_file *file, struct frame_info *frame,
0cc93a06 6345 int regnum)
f0ef6b29 6346{
a4b8ebc8 6347 struct gdbarch *gdbarch = get_frame_arch (frame);
79a45b7d 6348 struct value_print_options opts;
de15c4ab 6349 struct value *val;
1adad886 6350
004159a2 6351 if (mips_float_register_p (gdbarch, regnum))
f0ef6b29 6352 {
e11c53d2 6353 mips_print_fp_register (file, frame, regnum);
f0ef6b29
KB
6354 return;
6355 }
6356
de15c4ab 6357 val = get_frame_register_value (frame, regnum);
f0ef6b29 6358
72a155b4 6359 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
f0ef6b29
KB
6360
6361 /* The problem with printing numeric register names (r26, etc.) is that
6362 the user can't use them on input. Probably the best solution is to
6363 fix it so that either the numeric or the funky (a2, etc.) names
6364 are accepted on input. */
6365 if (regnum < MIPS_NUMREGS)
e11c53d2 6366 fprintf_filtered (file, "(r%d): ", regnum);
f0ef6b29 6367 else
e11c53d2 6368 fprintf_filtered (file, ": ");
f0ef6b29 6369
79a45b7d 6370 get_formatted_print_options (&opts, 'x');
de15c4ab 6371 val_print_scalar_formatted (value_type (val),
de15c4ab
PA
6372 value_embedded_offset (val),
6373 val,
6374 &opts, 0, file);
c906108c
SS
6375}
6376
1bab7383
YQ
6377/* Print IEEE exception condition bits in FLAGS. */
6378
6379static void
6380print_fpu_flags (struct ui_file *file, int flags)
6381{
6382 if (flags & (1 << 0))
6383 fputs_filtered (" inexact", file);
6384 if (flags & (1 << 1))
6385 fputs_filtered (" uflow", file);
6386 if (flags & (1 << 2))
6387 fputs_filtered (" oflow", file);
6388 if (flags & (1 << 3))
6389 fputs_filtered (" div0", file);
6390 if (flags & (1 << 4))
6391 fputs_filtered (" inval", file);
6392 if (flags & (1 << 5))
6393 fputs_filtered (" unimp", file);
6394 fputc_filtered ('\n', file);
6395}
6396
6397/* Print interesting information about the floating point processor
6398 (if present) or emulator. */
6399
6400static void
6401mips_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
6402 struct frame_info *frame, const char *args)
6403{
6404 int fcsr = mips_regnum (gdbarch)->fp_control_status;
6405 enum mips_fpu_type type = MIPS_FPU_TYPE (gdbarch);
6406 ULONGEST fcs = 0;
6407 int i;
6408
6409 if (fcsr == -1 || !read_frame_register_unsigned (frame, fcsr, &fcs))
6410 type = MIPS_FPU_NONE;
6411
6412 fprintf_filtered (file, "fpu type: %s\n",
6413 type == MIPS_FPU_DOUBLE ? "double-precision"
6414 : type == MIPS_FPU_SINGLE ? "single-precision"
6415 : "none / unused");
6416
6417 if (type == MIPS_FPU_NONE)
6418 return;
6419
6420 fprintf_filtered (file, "reg size: %d bits\n",
6421 register_size (gdbarch, mips_regnum (gdbarch)->fp0) * 8);
6422
6423 fputs_filtered ("cond :", file);
6424 if (fcs & (1 << 23))
6425 fputs_filtered (" 0", file);
6426 for (i = 1; i <= 7; i++)
6427 if (fcs & (1 << (24 + i)))
6428 fprintf_filtered (file, " %d", i);
6429 fputc_filtered ('\n', file);
6430
6431 fputs_filtered ("cause :", file);
6432 print_fpu_flags (file, (fcs >> 12) & 0x3f);
6433 fputs ("mask :", stdout);
6434 print_fpu_flags (file, (fcs >> 7) & 0x1f);
6435 fputs ("flags :", stdout);
6436 print_fpu_flags (file, (fcs >> 2) & 0x1f);
6437
6438 fputs_filtered ("rounding: ", file);
6439 switch (fcs & 3)
6440 {
6441 case 0: fputs_filtered ("nearest\n", file); break;
6442 case 1: fputs_filtered ("zero\n", file); break;
6443 case 2: fputs_filtered ("+inf\n", file); break;
6444 case 3: fputs_filtered ("-inf\n", file); break;
6445 }
6446
6447 fputs_filtered ("flush :", file);
6448 if (fcs & (1 << 21))
6449 fputs_filtered (" nearest", file);
6450 if (fcs & (1 << 22))
6451 fputs_filtered (" override", file);
6452 if (fcs & (1 << 24))
6453 fputs_filtered (" zero", file);
6454 if ((fcs & (0xb << 21)) == 0)
6455 fputs_filtered (" no", file);
6456 fputc_filtered ('\n', file);
6457
6458 fprintf_filtered (file, "nan2008 : %s\n", fcs & (1 << 18) ? "yes" : "no");
6459 fprintf_filtered (file, "abs2008 : %s\n", fcs & (1 << 19) ? "yes" : "no");
6460 fputc_filtered ('\n', file);
6461
6462 default_print_float_info (gdbarch, file, frame, args);
6463}
6464
f0ef6b29
KB
6465/* Replacement for generic do_registers_info.
6466 Print regs in pretty columns. */
6467
6468static int
e11c53d2
AC
6469print_fp_register_row (struct ui_file *file, struct frame_info *frame,
6470 int regnum)
f0ef6b29 6471{
e11c53d2
AC
6472 fprintf_filtered (file, " ");
6473 mips_print_fp_register (file, frame, regnum);
6474 fprintf_filtered (file, "\n");
f0ef6b29
KB
6475 return regnum + 1;
6476}
6477
6478
025bb325 6479/* Print a row's worth of GP (int) registers, with name labels above. */
c906108c
SS
6480
6481static int
e11c53d2 6482print_gp_register_row (struct ui_file *file, struct frame_info *frame,
a4b8ebc8 6483 int start_regnum)
c906108c 6484{
a4b8ebc8 6485 struct gdbarch *gdbarch = get_frame_arch (frame);
025bb325 6486 /* Do values for GP (int) regs. */
313c5961
AH
6487 const gdb_byte *raw_buffer;
6488 struct value *value;
025bb325
MS
6489 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols
6490 per row. */
c906108c 6491 int col, byte;
a4b8ebc8 6492 int regnum;
c906108c 6493
025bb325 6494 /* For GP registers, we print a separate row of names above the vals. */
a4b8ebc8 6495 for (col = 0, regnum = start_regnum;
72a155b4
UW
6496 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6497 + gdbarch_num_pseudo_regs (gdbarch);
f57d151a 6498 regnum++)
c906108c 6499 {
72a155b4 6500 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
c5aa993b 6501 continue; /* unused register */
004159a2 6502 if (mips_float_register_p (gdbarch, regnum))
025bb325 6503 break; /* End the row: reached FP register. */
0cc93a06 6504 /* Large registers are handled separately. */
72a155b4 6505 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
0cc93a06
DJ
6506 {
6507 if (col > 0)
6508 break; /* End the row before this register. */
6509
6510 /* Print this register on a row by itself. */
6511 mips_print_register (file, frame, regnum);
6512 fprintf_filtered (file, "\n");
6513 return regnum + 1;
6514 }
d05f6826
DJ
6515 if (col == 0)
6516 fprintf_filtered (file, " ");
6d82d43b 6517 fprintf_filtered (file,
72a155b4
UW
6518 mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
6519 gdbarch_register_name (gdbarch, regnum));
c906108c
SS
6520 col++;
6521 }
d05f6826
DJ
6522
6523 if (col == 0)
6524 return regnum;
6525
025bb325 6526 /* Print the R0 to R31 names. */
72a155b4 6527 if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
f57d151a 6528 fprintf_filtered (file, "\n R%-4d",
72a155b4 6529 start_regnum % gdbarch_num_regs (gdbarch));
20e6603c
AC
6530 else
6531 fprintf_filtered (file, "\n ");
c906108c 6532
025bb325 6533 /* Now print the values in hex, 4 or 8 to the row. */
a4b8ebc8 6534 for (col = 0, regnum = start_regnum;
72a155b4
UW
6535 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6536 + gdbarch_num_pseudo_regs (gdbarch);
f57d151a 6537 regnum++)
c906108c 6538 {
72a155b4 6539 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
c5aa993b 6540 continue; /* unused register */
004159a2 6541 if (mips_float_register_p (gdbarch, regnum))
025bb325 6542 break; /* End row: reached FP register. */
72a155b4 6543 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
0cc93a06
DJ
6544 break; /* End row: large register. */
6545
c906108c 6546 /* OK: get the data in raw format. */
313c5961
AH
6547 value = get_frame_register_value (frame, regnum);
6548 if (value_optimized_out (value)
6549 || !value_entirely_available (value))
325c9fd4
JB
6550 {
6551 fprintf_filtered (file, "%*s ",
6552 (int) mips_abi_regsize (gdbarch) * 2,
6553 (mips_abi_regsize (gdbarch) == 4 ? "<unavl>"
6554 : "<unavailable>"));
6555 col++;
6556 continue;
6557 }
313c5961 6558 raw_buffer = value_contents_all (value);
c906108c 6559 /* pad small registers */
4246e332 6560 for (byte = 0;
72a155b4
UW
6561 byte < (mips_abi_regsize (gdbarch)
6562 - register_size (gdbarch, regnum)); byte++)
428544e8 6563 fprintf_filtered (file, " ");
025bb325 6564 /* Now print the register value in hex, endian order. */
72a155b4 6565 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6d82d43b 6566 for (byte =
72a155b4
UW
6567 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
6568 byte < register_size (gdbarch, regnum); byte++)
47a35522 6569 fprintf_filtered (file, "%02x", raw_buffer[byte]);
c906108c 6570 else
72a155b4 6571 for (byte = register_size (gdbarch, regnum) - 1;
6d82d43b 6572 byte >= 0; byte--)
47a35522 6573 fprintf_filtered (file, "%02x", raw_buffer[byte]);
e11c53d2 6574 fprintf_filtered (file, " ");
c906108c
SS
6575 col++;
6576 }
025bb325 6577 if (col > 0) /* ie. if we actually printed anything... */
e11c53d2 6578 fprintf_filtered (file, "\n");
c906108c
SS
6579
6580 return regnum;
6581}
6582
025bb325 6583/* MIPS_DO_REGISTERS_INFO(): called by "info register" command. */
c906108c 6584
bf1f5b4c 6585static void
e11c53d2
AC
6586mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
6587 struct frame_info *frame, int regnum, int all)
c906108c 6588{
025bb325 6589 if (regnum != -1) /* Do one specified register. */
c906108c 6590 {
72a155b4
UW
6591 gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
6592 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
8a3fe4f8 6593 error (_("Not a valid register for the current processor type"));
c906108c 6594
0cc93a06 6595 mips_print_register (file, frame, regnum);
e11c53d2 6596 fprintf_filtered (file, "\n");
c906108c 6597 }
c5aa993b 6598 else
025bb325 6599 /* Do all (or most) registers. */
c906108c 6600 {
72a155b4
UW
6601 regnum = gdbarch_num_regs (gdbarch);
6602 while (regnum < gdbarch_num_regs (gdbarch)
6603 + gdbarch_num_pseudo_regs (gdbarch))
c906108c 6604 {
004159a2 6605 if (mips_float_register_p (gdbarch, regnum))
e11c53d2 6606 {
025bb325 6607 if (all) /* True for "INFO ALL-REGISTERS" command. */
e11c53d2
AC
6608 regnum = print_fp_register_row (file, frame, regnum);
6609 else
025bb325 6610 regnum += MIPS_NUMREGS; /* Skip floating point regs. */
e11c53d2 6611 }
c906108c 6612 else
e11c53d2 6613 regnum = print_gp_register_row (file, frame, regnum);
c906108c
SS
6614 }
6615 }
6616}
6617
63807e1d 6618static int
3352ef37
AC
6619mips_single_step_through_delay (struct gdbarch *gdbarch,
6620 struct frame_info *frame)
c906108c 6621{
3352ef37 6622 CORE_ADDR pc = get_frame_pc (frame);
4cc0665f
MR
6623 enum mips_isa isa;
6624 ULONGEST insn;
4cc0665f
MR
6625 int size;
6626
6627 if ((mips_pc_is_mips (pc)
ab50adb6 6628 && !mips32_insn_at_pc_has_delay_slot (gdbarch, pc))
4cc0665f 6629 || (mips_pc_is_micromips (gdbarch, pc)
ab50adb6 6630 && !micromips_insn_at_pc_has_delay_slot (gdbarch, pc, 0))
4cc0665f 6631 || (mips_pc_is_mips16 (gdbarch, pc)
ab50adb6 6632 && !mips16_insn_at_pc_has_delay_slot (gdbarch, pc, 0)))
06648491
MK
6633 return 0;
6634
4cc0665f
MR
6635 isa = mips_pc_isa (gdbarch, pc);
6636 /* _has_delay_slot above will have validated the read. */
6637 insn = mips_fetch_instruction (gdbarch, isa, pc, NULL);
6638 size = mips_insn_size (isa, insn);
8b86c959
YQ
6639
6640 const address_space *aspace = get_frame_address_space (frame);
6641
4cc0665f 6642 return breakpoint_here_p (aspace, pc + size) != no_breakpoint_here;
c906108c
SS
6643}
6644
6d82d43b
AC
6645/* To skip prologues, I use this predicate. Returns either PC itself
6646 if the code at PC does not look like a function prologue; otherwise
6647 returns an address that (if we're lucky) follows the prologue. If
6648 LENIENT, then we must skip everything which is involved in setting
6649 up the frame (it's OK to skip more, just so long as we don't skip
6650 anything which might clobber the registers which are being saved.
6651 We must skip more in the case where part of the prologue is in the
6652 delay slot of a non-prologue instruction). */
6653
6654static CORE_ADDR
6093d2eb 6655mips_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
6d82d43b 6656{
8b622e6a
AC
6657 CORE_ADDR limit_pc;
6658 CORE_ADDR func_addr;
6659
6d82d43b
AC
6660 /* See if we can determine the end of the prologue via the symbol table.
6661 If so, then return either PC, or the PC after the prologue, whichever
6662 is greater. */
8b622e6a
AC
6663 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
6664 {
d80b854b
UW
6665 CORE_ADDR post_prologue_pc
6666 = skip_prologue_using_sal (gdbarch, func_addr);
8b622e6a 6667 if (post_prologue_pc != 0)
325fac50 6668 return std::max (pc, post_prologue_pc);
8b622e6a 6669 }
6d82d43b
AC
6670
6671 /* Can't determine prologue from the symbol table, need to examine
6672 instructions. */
6673
98b4dd94
JB
6674 /* Find an upper limit on the function prologue using the debug
6675 information. If the debug information could not be used to provide
6676 that bound, then use an arbitrary large number as the upper bound. */
d80b854b 6677 limit_pc = skip_prologue_using_sal (gdbarch, pc);
98b4dd94
JB
6678 if (limit_pc == 0)
6679 limit_pc = pc + 100; /* Magic. */
6680
4cc0665f 6681 if (mips_pc_is_mips16 (gdbarch, pc))
e17a4113 6682 return mips16_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
4cc0665f
MR
6683 else if (mips_pc_is_micromips (gdbarch, pc))
6684 return micromips_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6d82d43b 6685 else
e17a4113 6686 return mips32_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
88658117
AC
6687}
6688
c9cf6e20
MG
6689/* Implement the stack_frame_destroyed_p gdbarch method (32-bit version).
6690 This is a helper function for mips_stack_frame_destroyed_p. */
6691
97ab0fdd 6692static int
c9cf6e20 6693mips32_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
97ab0fdd
MR
6694{
6695 CORE_ADDR func_addr = 0, func_end = 0;
6696
6697 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6698 {
6699 /* The MIPS epilogue is max. 12 bytes long. */
6700 CORE_ADDR addr = func_end - 12;
6701
6702 if (addr < func_addr + 4)
6703 addr = func_addr + 4;
6704 if (pc < addr)
6705 return 0;
6706
6707 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
6708 {
6709 unsigned long high_word;
6710 unsigned long inst;
6711
4cc0665f 6712 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
97ab0fdd
MR
6713 high_word = (inst >> 16) & 0xffff;
6714
6715 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
6716 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
6717 && inst != 0x03e00008 /* jr $ra */
6718 && inst != 0x00000000) /* nop */
6719 return 0;
6720 }
6721
6722 return 1;
6723 }
6724
6725 return 0;
6726}
6727
c9cf6e20
MG
6728/* Implement the stack_frame_destroyed_p gdbarch method (microMIPS version).
6729 This is a helper function for mips_stack_frame_destroyed_p. */
4cc0665f
MR
6730
6731static int
c9cf6e20 6732micromips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
4cc0665f
MR
6733{
6734 CORE_ADDR func_addr = 0;
6735 CORE_ADDR func_end = 0;
6736 CORE_ADDR addr;
6737 ULONGEST insn;
6738 long offset;
6739 int dreg;
6740 int sreg;
6741 int loc;
6742
6743 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6744 return 0;
6745
6746 /* The microMIPS epilogue is max. 12 bytes long. */
6747 addr = func_end - 12;
6748
6749 if (addr < func_addr + 2)
6750 addr = func_addr + 2;
6751 if (pc < addr)
6752 return 0;
6753
6754 for (; pc < func_end; pc += loc)
6755 {
6756 loc = 0;
6757 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
6758 loc += MIPS_INSN16_SIZE;
6759 switch (mips_insn_size (ISA_MICROMIPS, insn))
6760 {
4cc0665f
MR
6761 /* 32-bit instructions. */
6762 case 2 * MIPS_INSN16_SIZE:
6763 insn <<= 16;
6764 insn |= mips_fetch_instruction (gdbarch,
6765 ISA_MICROMIPS, pc + loc, NULL);
6766 loc += MIPS_INSN16_SIZE;
6767 switch (micromips_op (insn >> 16))
6768 {
6769 case 0xc: /* ADDIU: bits 001100 */
6770 case 0x17: /* DADDIU: bits 010111 */
6771 sreg = b0s5_reg (insn >> 16);
6772 dreg = b5s5_reg (insn >> 16);
6773 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
6774 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
6775 /* (D)ADDIU $sp, imm */
6776 && offset >= 0)
6777 break;
6778 return 0;
6779
6780 default:
6781 return 0;
6782 }
6783 break;
6784
6785 /* 16-bit instructions. */
6786 case MIPS_INSN16_SIZE:
6787 switch (micromips_op (insn))
6788 {
6789 case 0x3: /* MOVE: bits 000011 */
6790 sreg = b0s5_reg (insn);
6791 dreg = b5s5_reg (insn);
6792 if (sreg == 0 && dreg == 0)
6793 /* MOVE $zero, $zero aka NOP */
6794 break;
6795 return 0;
6796
6797 case 0x11: /* POOL16C: bits 010001 */
6798 if (b5s5_op (insn) == 0x18
6799 /* JRADDIUSP: bits 010011 11000 */
6800 || (b5s5_op (insn) == 0xd
6801 /* JRC: bits 010011 01101 */
6802 && b0s5_reg (insn) == MIPS_RA_REGNUM))
6803 /* JRC $ra */
6804 break;
6805 return 0;
6806
6807 case 0x13: /* POOL16D: bits 010011 */
6808 offset = micromips_decode_imm9 (b1s9_imm (insn));
6809 if ((insn & 0x1) == 0x1
6810 /* ADDIUSP: bits 010011 1 */
6811 && offset > 0)
6812 break;
6813 return 0;
6814
6815 default:
6816 return 0;
6817 }
6818 }
6819 }
6820
6821 return 1;
6822}
6823
c9cf6e20
MG
6824/* Implement the stack_frame_destroyed_p gdbarch method (16-bit version).
6825 This is a helper function for mips_stack_frame_destroyed_p. */
6826
97ab0fdd 6827static int
c9cf6e20 6828mips16_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
97ab0fdd
MR
6829{
6830 CORE_ADDR func_addr = 0, func_end = 0;
6831
6832 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6833 {
6834 /* The MIPS epilogue is max. 12 bytes long. */
6835 CORE_ADDR addr = func_end - 12;
6836
6837 if (addr < func_addr + 4)
6838 addr = func_addr + 4;
6839 if (pc < addr)
6840 return 0;
6841
6842 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
6843 {
6844 unsigned short inst;
6845
4cc0665f 6846 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc, NULL);
97ab0fdd
MR
6847
6848 if ((inst & 0xf800) == 0xf000) /* extend */
6849 continue;
6850
6851 if (inst != 0x6300 /* addiu $sp,offset */
6852 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
6853 && inst != 0xe820 /* jr $ra */
6854 && inst != 0xe8a0 /* jrc $ra */
6855 && inst != 0x6500) /* nop */
6856 return 0;
6857 }
6858
6859 return 1;
6860 }
6861
6862 return 0;
6863}
6864
c9cf6e20
MG
6865/* Implement the stack_frame_destroyed_p gdbarch method.
6866
6867 The epilogue is defined here as the area at the end of a function,
97ab0fdd 6868 after an instruction which destroys the function's stack frame. */
c9cf6e20 6869
97ab0fdd 6870static int
c9cf6e20 6871mips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
97ab0fdd 6872{
4cc0665f 6873 if (mips_pc_is_mips16 (gdbarch, pc))
c9cf6e20 6874 return mips16_stack_frame_destroyed_p (gdbarch, pc);
4cc0665f 6875 else if (mips_pc_is_micromips (gdbarch, pc))
c9cf6e20 6876 return micromips_stack_frame_destroyed_p (gdbarch, pc);
97ab0fdd 6877 else
c9cf6e20 6878 return mips32_stack_frame_destroyed_p (gdbarch, pc);
97ab0fdd
MR
6879}
6880
025bb325 6881/* Root of all "set mips "/"show mips " commands. This will eventually be
a5ea2558
AC
6882 used for all MIPS-specific commands. */
6883
a5ea2558 6884static void
981a3fb3 6885show_mips_command (const char *args, int from_tty)
a5ea2558
AC
6886{
6887 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
6888}
6889
a5ea2558 6890static void
981a3fb3 6891set_mips_command (const char *args, int from_tty)
a5ea2558 6892{
6d82d43b
AC
6893 printf_unfiltered
6894 ("\"set mips\" must be followed by an appropriate subcommand.\n");
a5ea2558
AC
6895 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
6896}
6897
c906108c
SS
6898/* Commands to show/set the MIPS FPU type. */
6899
c906108c 6900static void
bd4c9dfe 6901show_mipsfpu_command (const char *args, int from_tty)
c906108c 6902{
a121b7c1 6903 const char *fpu;
6ca0852e 6904
f5656ead 6905 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
6ca0852e
UW
6906 {
6907 printf_unfiltered
6908 ("The MIPS floating-point coprocessor is unknown "
6909 "because the current architecture is not MIPS.\n");
6910 return;
6911 }
6912
f5656ead 6913 switch (MIPS_FPU_TYPE (target_gdbarch ()))
c906108c
SS
6914 {
6915 case MIPS_FPU_SINGLE:
6916 fpu = "single-precision";
6917 break;
6918 case MIPS_FPU_DOUBLE:
6919 fpu = "double-precision";
6920 break;
6921 case MIPS_FPU_NONE:
6922 fpu = "absent (none)";
6923 break;
93d56215 6924 default:
e2e0b3e5 6925 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c
SS
6926 }
6927 if (mips_fpu_type_auto)
025bb325
MS
6928 printf_unfiltered ("The MIPS floating-point coprocessor "
6929 "is set automatically (currently %s)\n",
6930 fpu);
c906108c 6931 else
6d82d43b
AC
6932 printf_unfiltered
6933 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
c906108c
SS
6934}
6935
6936
c906108c 6937static void
981a3fb3 6938set_mipsfpu_command (const char *args, int from_tty)
c906108c 6939{
025bb325
MS
6940 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", "
6941 "\"single\",\"none\" or \"auto\".\n");
c906108c
SS
6942 show_mipsfpu_command (args, from_tty);
6943}
6944
c906108c 6945static void
bd4c9dfe 6946set_mipsfpu_single_command (const char *args, int from_tty)
c906108c 6947{
8d5838b5
AC
6948 struct gdbarch_info info;
6949 gdbarch_info_init (&info);
c906108c
SS
6950 mips_fpu_type = MIPS_FPU_SINGLE;
6951 mips_fpu_type_auto = 0;
8d5838b5
AC
6952 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6953 instead of relying on globals. Doing that would let generic code
6954 handle the search for this specific architecture. */
6955 if (!gdbarch_update_p (info))
e2e0b3e5 6956 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
6957}
6958
c906108c 6959static void
bd4c9dfe 6960set_mipsfpu_double_command (const char *args, int from_tty)
c906108c 6961{
8d5838b5
AC
6962 struct gdbarch_info info;
6963 gdbarch_info_init (&info);
c906108c
SS
6964 mips_fpu_type = MIPS_FPU_DOUBLE;
6965 mips_fpu_type_auto = 0;
8d5838b5
AC
6966 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6967 instead of relying on globals. Doing that would let generic code
6968 handle the search for this specific architecture. */
6969 if (!gdbarch_update_p (info))
e2e0b3e5 6970 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
6971}
6972
c906108c 6973static void
bd4c9dfe 6974set_mipsfpu_none_command (const char *args, int from_tty)
c906108c 6975{
8d5838b5
AC
6976 struct gdbarch_info info;
6977 gdbarch_info_init (&info);
c906108c
SS
6978 mips_fpu_type = MIPS_FPU_NONE;
6979 mips_fpu_type_auto = 0;
8d5838b5
AC
6980 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6981 instead of relying on globals. Doing that would let generic code
6982 handle the search for this specific architecture. */
6983 if (!gdbarch_update_p (info))
e2e0b3e5 6984 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
6985}
6986
c906108c 6987static void
bd4c9dfe 6988set_mipsfpu_auto_command (const char *args, int from_tty)
c906108c
SS
6989{
6990 mips_fpu_type_auto = 1;
6991}
6992
c906108c
SS
6993/* Just like reinit_frame_cache, but with the right arguments to be
6994 callable as an sfunc. */
6995
6996static void
eb4c3f4a 6997reinit_frame_cache_sfunc (const char *args, int from_tty,
acdb74a0 6998 struct cmd_list_element *c)
c906108c
SS
6999{
7000 reinit_frame_cache ();
7001}
7002
a89aa300
AC
7003static int
7004gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
c906108c 7005{
e47ad6c0
YQ
7006 gdb_disassembler *di
7007 = static_cast<gdb_disassembler *>(info->application_data);
7008 struct gdbarch *gdbarch = di->arch ();
4cc0665f 7009
d31431ed
AC
7010 /* FIXME: cagney/2003-06-26: Is this even necessary? The
7011 disassembler needs to be able to locally determine the ISA, and
7012 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
7013 work. */
4cc0665f 7014 if (mips_pc_is_mips16 (gdbarch, memaddr))
ec4045ea 7015 info->mach = bfd_mach_mips16;
4cc0665f
MR
7016 else if (mips_pc_is_micromips (gdbarch, memaddr))
7017 info->mach = bfd_mach_mips_micromips;
c906108c
SS
7018
7019 /* Round down the instruction address to the appropriate boundary. */
4cc0665f
MR
7020 memaddr &= (info->mach == bfd_mach_mips16
7021 || info->mach == bfd_mach_mips_micromips) ? ~1 : ~3;
c5aa993b 7022
6394c606 7023 return default_print_insn (memaddr, info);
c906108c
SS
7024}
7025
cd6c3b4f
YQ
7026/* Implement the breakpoint_kind_from_pc gdbarch method. */
7027
d19280ad
YQ
7028static int
7029mips_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
c906108c 7030{
4cc0665f
MR
7031 CORE_ADDR pc = *pcptr;
7032
d19280ad 7033 if (mips_pc_is_mips16 (gdbarch, pc))
c906108c 7034 {
d19280ad
YQ
7035 *pcptr = unmake_compact_addr (pc);
7036 return MIPS_BP_KIND_MIPS16;
7037 }
7038 else if (mips_pc_is_micromips (gdbarch, pc))
7039 {
7040 ULONGEST insn;
7041 int status;
c906108c 7042
d19280ad
YQ
7043 *pcptr = unmake_compact_addr (pc);
7044 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
7045 if (status || (mips_insn_size (ISA_MICROMIPS, insn) == 2))
7046 return MIPS_BP_KIND_MICROMIPS16;
7047 else
7048 return MIPS_BP_KIND_MICROMIPS32;
c906108c
SS
7049 }
7050 else
d19280ad
YQ
7051 return MIPS_BP_KIND_MIPS32;
7052}
7053
cd6c3b4f
YQ
7054/* Implement the sw_breakpoint_from_kind gdbarch method. */
7055
d19280ad
YQ
7056static const gdb_byte *
7057mips_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
7058{
7059 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7060
7061 switch (kind)
c906108c 7062 {
d19280ad
YQ
7063 case MIPS_BP_KIND_MIPS16:
7064 {
7065 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
7066 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
7067
7068 *size = 2;
7069 if (byte_order_for_code == BFD_ENDIAN_BIG)
7070 return mips16_big_breakpoint;
7071 else
c906108c 7072 return mips16_little_breakpoint;
d19280ad
YQ
7073 }
7074 case MIPS_BP_KIND_MICROMIPS16:
7075 {
7076 static gdb_byte micromips16_big_breakpoint[] = { 0x46, 0x85 };
7077 static gdb_byte micromips16_little_breakpoint[] = { 0x85, 0x46 };
7078
7079 *size = 2;
7080
7081 if (byte_order_for_code == BFD_ENDIAN_BIG)
7082 return micromips16_big_breakpoint;
7083 else
7084 return micromips16_little_breakpoint;
7085 }
7086 case MIPS_BP_KIND_MICROMIPS32:
7087 {
7088 static gdb_byte micromips32_big_breakpoint[] = { 0, 0x5, 0, 0x7 };
7089 static gdb_byte micromips32_little_breakpoint[] = { 0x5, 0, 0x7, 0 };
7090
7091 *size = 4;
7092 if (byte_order_for_code == BFD_ENDIAN_BIG)
7093 return micromips32_big_breakpoint;
7094 else
7095 return micromips32_little_breakpoint;
7096 }
7097 case MIPS_BP_KIND_MIPS32:
7098 {
7099 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
7100 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
c906108c 7101
d19280ad
YQ
7102 *size = 4;
7103 if (byte_order_for_code == BFD_ENDIAN_BIG)
7104 return big_breakpoint;
7105 else
7e3d947d 7106 return little_breakpoint;
d19280ad
YQ
7107 }
7108 default:
7109 gdb_assert_not_reached ("unexpected mips breakpoint kind");
7110 };
c906108c
SS
7111}
7112
ab50adb6
MR
7113/* Return non-zero if the standard MIPS instruction INST has a branch
7114 delay slot (i.e. it is a jump or branch instruction). This function
7115 is based on mips32_next_pc. */
c8cef75f
MR
7116
7117static int
ab50adb6 7118mips32_instruction_has_delay_slot (struct gdbarch *gdbarch, ULONGEST inst)
c8cef75f 7119{
c8cef75f 7120 int op;
a385295e
MR
7121 int rs;
7122 int rt;
c8cef75f 7123
c8cef75f
MR
7124 op = itype_op (inst);
7125 if ((inst & 0xe0000000) != 0)
a385295e
MR
7126 {
7127 rs = itype_rs (inst);
7128 rt = itype_rt (inst);
f94363d7
AP
7129 return (is_octeon_bbit_op (op, gdbarch)
7130 || op >> 2 == 5 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
a385295e
MR
7131 || op == 29 /* JALX: bits 011101 */
7132 || (op == 17
7133 && (rs == 8
c8cef75f 7134 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
a385295e
MR
7135 || (rs == 9 && (rt & 0x2) == 0)
7136 /* BC1ANY2F, BC1ANY2T: bits 010001 01001 */
7137 || (rs == 10 && (rt & 0x2) == 0))));
7138 /* BC1ANY4F, BC1ANY4T: bits 010001 01010 */
7139 }
c8cef75f
MR
7140 else
7141 switch (op & 0x07) /* extract bits 28,27,26 */
7142 {
7143 case 0: /* SPECIAL */
7144 op = rtype_funct (inst);
7145 return (op == 8 /* JR */
7146 || op == 9); /* JALR */
7147 break; /* end SPECIAL */
7148 case 1: /* REGIMM */
a385295e
MR
7149 rs = itype_rs (inst);
7150 rt = itype_rt (inst); /* branch condition */
7151 return ((rt & 0xc) == 0
c8cef75f
MR
7152 /* BLTZ, BLTZL, BGEZ, BGEZL: bits 000xx */
7153 /* BLTZAL, BLTZALL, BGEZAL, BGEZALL: 100xx */
a385295e
MR
7154 || ((rt & 0x1e) == 0x1c && rs == 0));
7155 /* BPOSGE32, BPOSGE64: bits 1110x */
c8cef75f
MR
7156 break; /* end REGIMM */
7157 default: /* J, JAL, BEQ, BNE, BLEZ, BGTZ */
7158 return 1;
7159 break;
7160 }
7161}
7162
ab50adb6
MR
7163/* Return non-zero if a standard MIPS instruction at ADDR has a branch
7164 delay slot (i.e. it is a jump or branch instruction). */
c8cef75f 7165
4cc0665f 7166static int
ab50adb6 7167mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch, CORE_ADDR addr)
4cc0665f
MR
7168{
7169 ULONGEST insn;
7170 int status;
7171
ab50adb6 7172 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, addr, &status);
4cc0665f
MR
7173 if (status)
7174 return 0;
7175
ab50adb6
MR
7176 return mips32_instruction_has_delay_slot (gdbarch, insn);
7177}
4cc0665f 7178
ab50adb6
MR
7179/* Return non-zero if the microMIPS instruction INSN, comprising the
7180 16-bit major opcode word in the high 16 bits and any second word
7181 in the low 16 bits, has a branch delay slot (i.e. it is a non-compact
7182 jump or branch instruction). The instruction must be 32-bit if
7183 MUSTBE32 is set or can be any instruction otherwise. */
7184
7185static int
7186micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32)
7187{
7188 ULONGEST major = insn >> 16;
4cc0665f 7189
ab50adb6
MR
7190 switch (micromips_op (major))
7191 {
7192 /* 16-bit instructions. */
7193 case 0x33: /* B16: bits 110011 */
7194 case 0x2b: /* BNEZ16: bits 101011 */
7195 case 0x23: /* BEQZ16: bits 100011 */
7196 return !mustbe32;
7197 case 0x11: /* POOL16C: bits 010001 */
7198 return (!mustbe32
7199 && ((b5s5_op (major) == 0xc
7200 /* JR16: bits 010001 01100 */
7201 || (b5s5_op (major) & 0x1e) == 0xe)));
7202 /* JALR16, JALRS16: bits 010001 0111x */
7203 /* 32-bit instructions. */
7204 case 0x3d: /* JAL: bits 111101 */
7205 case 0x3c: /* JALX: bits 111100 */
7206 case 0x35: /* J: bits 110101 */
7207 case 0x2d: /* BNE: bits 101101 */
7208 case 0x25: /* BEQ: bits 100101 */
7209 case 0x1d: /* JALS: bits 011101 */
7210 return 1;
7211 case 0x10: /* POOL32I: bits 010000 */
7212 return ((b5s5_op (major) & 0x1c) == 0x0
4cc0665f 7213 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
ab50adb6 7214 || (b5s5_op (major) & 0x1d) == 0x4
4cc0665f 7215 /* BLEZ, BGTZ: bits 010000 001x0 */
ab50adb6 7216 || (b5s5_op (major) & 0x1d) == 0x11
4cc0665f 7217 /* BLTZALS, BGEZALS: bits 010000 100x1 */
ab50adb6
MR
7218 || ((b5s5_op (major) & 0x1e) == 0x14
7219 && (major & 0x3) == 0x0)
4cc0665f 7220 /* BC2F, BC2T: bits 010000 1010x xxx00 */
ab50adb6 7221 || (b5s5_op (major) & 0x1e) == 0x1a
4cc0665f 7222 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
ab50adb6
MR
7223 || ((b5s5_op (major) & 0x1e) == 0x1c
7224 && (major & 0x3) == 0x0)
4cc0665f 7225 /* BC1F, BC1T: bits 010000 1110x xxx00 */
ab50adb6
MR
7226 || ((b5s5_op (major) & 0x1c) == 0x1c
7227 && (major & 0x3) == 0x1));
4cc0665f 7228 /* BC1ANY*: bits 010000 111xx xxx01 */
ab50adb6
MR
7229 case 0x0: /* POOL32A: bits 000000 */
7230 return (b0s6_op (insn) == 0x3c
7231 /* POOL32Axf: bits 000000 ... 111100 */
7232 && (b6s10_ext (insn) & 0x2bf) == 0x3c);
7233 /* JALR, JALR.HB: 000000 000x111100 111100 */
7234 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
7235 default:
7236 return 0;
7237 }
4cc0665f
MR
7238}
7239
ab50adb6 7240/* Return non-zero if a microMIPS instruction at ADDR has a branch delay
ae790652
MR
7241 slot (i.e. it is a non-compact jump instruction). The instruction
7242 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7243
c8cef75f 7244static int
ab50adb6
MR
7245micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7246 CORE_ADDR addr, int mustbe32)
c8cef75f 7247{
ab50adb6 7248 ULONGEST insn;
c8cef75f 7249 int status;
3f7f3650 7250 int size;
c8cef75f 7251
ab50adb6 7252 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
c8cef75f
MR
7253 if (status)
7254 return 0;
3f7f3650 7255 size = mips_insn_size (ISA_MICROMIPS, insn);
ab50adb6 7256 insn <<= 16;
3f7f3650 7257 if (size == 2 * MIPS_INSN16_SIZE)
ab50adb6
MR
7258 {
7259 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7260 if (status)
7261 return 0;
7262 }
7263
7264 return micromips_instruction_has_delay_slot (insn, mustbe32);
7265}
c8cef75f 7266
ab50adb6
MR
7267/* Return non-zero if the MIPS16 instruction INST, which must be
7268 a 32-bit instruction if MUSTBE32 is set or can be any instruction
7269 otherwise, has a branch delay slot (i.e. it is a non-compact jump
7270 instruction). This function is based on mips16_next_pc. */
7271
7272static int
7273mips16_instruction_has_delay_slot (unsigned short inst, int mustbe32)
7274{
ae790652
MR
7275 if ((inst & 0xf89f) == 0xe800) /* JR/JALR (16-bit instruction) */
7276 return !mustbe32;
c8cef75f
MR
7277 return (inst & 0xf800) == 0x1800; /* JAL/JALX (32-bit instruction) */
7278}
7279
ab50adb6
MR
7280/* Return non-zero if a MIPS16 instruction at ADDR has a branch delay
7281 slot (i.e. it is a non-compact jump instruction). The instruction
7282 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7283
7284static int
7285mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7286 CORE_ADDR addr, int mustbe32)
7287{
7288 unsigned short insn;
7289 int status;
7290
7291 insn = mips_fetch_instruction (gdbarch, ISA_MIPS16, addr, &status);
7292 if (status)
7293 return 0;
7294
7295 return mips16_instruction_has_delay_slot (insn, mustbe32);
7296}
7297
c8cef75f
MR
7298/* Calculate the starting address of the MIPS memory segment BPADDR is in.
7299 This assumes KSSEG exists. */
7300
7301static CORE_ADDR
7302mips_segment_boundary (CORE_ADDR bpaddr)
7303{
7304 CORE_ADDR mask = CORE_ADDR_MAX;
7305 int segsize;
7306
7307 if (sizeof (CORE_ADDR) == 8)
7308 /* Get the topmost two bits of bpaddr in a 32-bit safe manner (avoid
7309 a compiler warning produced where CORE_ADDR is a 32-bit type even
7310 though in that case this is dead code). */
7311 switch (bpaddr >> ((sizeof (CORE_ADDR) << 3) - 2) & 3)
7312 {
7313 case 3:
7314 if (bpaddr == (bfd_signed_vma) (int32_t) bpaddr)
7315 segsize = 29; /* 32-bit compatibility segment */
7316 else
7317 segsize = 62; /* xkseg */
7318 break;
7319 case 2: /* xkphys */
7320 segsize = 59;
7321 break;
7322 default: /* xksseg (1), xkuseg/kuseg (0) */
7323 segsize = 62;
7324 break;
7325 }
7326 else if (bpaddr & 0x80000000) /* kernel segment */
7327 segsize = 29;
7328 else
7329 segsize = 31; /* user segment */
7330 mask <<= segsize;
7331 return bpaddr & mask;
7332}
7333
7334/* Move the breakpoint at BPADDR out of any branch delay slot by shifting
7335 it backwards if necessary. Return the address of the new location. */
7336
7337static CORE_ADDR
7338mips_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
7339{
22e048c9 7340 CORE_ADDR prev_addr;
c8cef75f
MR
7341 CORE_ADDR boundary;
7342 CORE_ADDR func_addr;
7343
7344 /* If a breakpoint is set on the instruction in a branch delay slot,
7345 GDB gets confused. When the breakpoint is hit, the PC isn't on
7346 the instruction in the branch delay slot, the PC will point to
7347 the branch instruction. Since the PC doesn't match any known
7348 breakpoints, GDB reports a trap exception.
7349
7350 There are two possible fixes for this problem.
7351
7352 1) When the breakpoint gets hit, see if the BD bit is set in the
7353 Cause register (which indicates the last exception occurred in a
7354 branch delay slot). If the BD bit is set, fix the PC to point to
7355 the instruction in the branch delay slot.
7356
7357 2) When the user sets the breakpoint, don't allow him to set the
7358 breakpoint on the instruction in the branch delay slot. Instead
7359 move the breakpoint to the branch instruction (which will have
7360 the same result).
7361
7362 The problem with the first solution is that if the user then
7363 single-steps the processor, the branch instruction will get
7364 skipped (since GDB thinks the PC is on the instruction in the
7365 branch delay slot).
7366
7367 So, we'll use the second solution. To do this we need to know if
7368 the instruction we're trying to set the breakpoint on is in the
7369 branch delay slot. */
7370
7371 boundary = mips_segment_boundary (bpaddr);
7372
7373 /* Make sure we don't scan back before the beginning of the current
7374 function, since we may fetch constant data or insns that look like
7375 a jump. Of course we might do that anyway if the compiler has
7376 moved constants inline. :-( */
7377 if (find_pc_partial_function (bpaddr, NULL, &func_addr, NULL)
7378 && func_addr > boundary && func_addr <= bpaddr)
7379 boundary = func_addr;
7380
4cc0665f 7381 if (mips_pc_is_mips (bpaddr))
c8cef75f
MR
7382 {
7383 if (bpaddr == boundary)
7384 return bpaddr;
7385
7386 /* If the previous instruction has a branch delay slot, we have
7387 to move the breakpoint to the branch instruction. */
7388 prev_addr = bpaddr - 4;
ab50adb6 7389 if (mips32_insn_at_pc_has_delay_slot (gdbarch, prev_addr))
c8cef75f
MR
7390 bpaddr = prev_addr;
7391 }
7392 else
7393 {
ab50adb6 7394 int (*insn_at_pc_has_delay_slot) (struct gdbarch *, CORE_ADDR, int);
c8cef75f
MR
7395 CORE_ADDR addr, jmpaddr;
7396 int i;
7397
4cc0665f 7398 boundary = unmake_compact_addr (boundary);
c8cef75f
MR
7399
7400 /* The only MIPS16 instructions with delay slots are JAL, JALX,
7401 JALR and JR. An absolute JAL/JALX is always 4 bytes long,
7402 so try for that first, then try the 2 byte JALR/JR.
4cc0665f
MR
7403 The microMIPS ASE has a whole range of jumps and branches
7404 with delay slots, some of which take 4 bytes and some take
7405 2 bytes, so the idea is the same.
c8cef75f
MR
7406 FIXME: We have to assume that bpaddr is not the second half
7407 of an extended instruction. */
ab50adb6
MR
7408 insn_at_pc_has_delay_slot = (mips_pc_is_micromips (gdbarch, bpaddr)
7409 ? micromips_insn_at_pc_has_delay_slot
7410 : mips16_insn_at_pc_has_delay_slot);
c8cef75f
MR
7411
7412 jmpaddr = 0;
7413 addr = bpaddr;
7414 for (i = 1; i < 4; i++)
7415 {
4cc0665f 7416 if (unmake_compact_addr (addr) == boundary)
c8cef75f 7417 break;
4cc0665f 7418 addr -= MIPS_INSN16_SIZE;
ab50adb6 7419 if (i == 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 0))
c8cef75f
MR
7420 /* Looks like a JR/JALR at [target-1], but it could be
7421 the second word of a previous JAL/JALX, so record it
7422 and check back one more. */
7423 jmpaddr = addr;
ab50adb6 7424 else if (i > 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 1))
c8cef75f
MR
7425 {
7426 if (i == 2)
7427 /* Looks like a JAL/JALX at [target-2], but it could also
7428 be the second word of a previous JAL/JALX, record it,
7429 and check back one more. */
7430 jmpaddr = addr;
7431 else
7432 /* Looks like a JAL/JALX at [target-3], so any previously
7433 recorded JAL/JALX or JR/JALR must be wrong, because:
7434
7435 >-3: JAL
7436 -2: JAL-ext (can't be JAL/JALX)
7437 -1: bdslot (can't be JR/JALR)
7438 0: target insn
7439
7440 Of course it could be another JAL-ext which looks
7441 like a JAL, but in that case we'd have broken out
7442 of this loop at [target-2]:
7443
7444 -4: JAL
7445 >-3: JAL-ext
7446 -2: bdslot (can't be jmp)
7447 -1: JR/JALR
7448 0: target insn */
7449 jmpaddr = 0;
7450 }
7451 else
7452 {
7453 /* Not a jump instruction: if we're at [target-1] this
7454 could be the second word of a JAL/JALX, so continue;
7455 otherwise we're done. */
7456 if (i > 1)
7457 break;
7458 }
7459 }
7460
7461 if (jmpaddr)
7462 bpaddr = jmpaddr;
7463 }
7464
7465 return bpaddr;
7466}
7467
14132e89
MR
7468/* Return non-zero if SUFFIX is one of the numeric suffixes used for MIPS16
7469 call stubs, one of 1, 2, 5, 6, 9, 10, or, if ZERO is non-zero, also 0. */
7470
7471static int
7472mips_is_stub_suffix (const char *suffix, int zero)
7473{
7474 switch (suffix[0])
7475 {
7476 case '0':
7477 return zero && suffix[1] == '\0';
7478 case '1':
7479 return suffix[1] == '\0' || (suffix[1] == '0' && suffix[2] == '\0');
7480 case '2':
7481 case '5':
7482 case '6':
7483 case '9':
7484 return suffix[1] == '\0';
7485 default:
7486 return 0;
7487 }
7488}
7489
7490/* Return non-zero if MODE is one of the mode infixes used for MIPS16
7491 call stubs, one of sf, df, sc, or dc. */
7492
7493static int
7494mips_is_stub_mode (const char *mode)
7495{
7496 return ((mode[0] == 's' || mode[0] == 'd')
7497 && (mode[1] == 'f' || mode[1] == 'c'));
7498}
7499
7500/* Code at PC is a compiler-generated stub. Such a stub for a function
7501 bar might have a name like __fn_stub_bar, and might look like this:
7502
7503 mfc1 $4, $f13
7504 mfc1 $5, $f12
7505 mfc1 $6, $f15
7506 mfc1 $7, $f14
7507
7508 followed by (or interspersed with):
7509
7510 j bar
7511
7512 or:
7513
7514 lui $25, %hi(bar)
7515 addiu $25, $25, %lo(bar)
7516 jr $25
7517
7518 ($1 may be used in old code; for robustness we accept any register)
7519 or, in PIC code:
7520
7521 lui $28, %hi(_gp_disp)
7522 addiu $28, $28, %lo(_gp_disp)
7523 addu $28, $28, $25
7524 lw $25, %got(bar)
7525 addiu $25, $25, %lo(bar)
7526 jr $25
7527
7528 In the case of a __call_stub_bar stub, the sequence to set up
7529 arguments might look like this:
7530
7531 mtc1 $4, $f13
7532 mtc1 $5, $f12
7533 mtc1 $6, $f15
7534 mtc1 $7, $f14
7535
7536 followed by (or interspersed with) one of the jump sequences above.
7537
7538 In the case of a __call_stub_fp_bar stub, JAL or JALR is used instead
7539 of J or JR, respectively, followed by:
7540
7541 mfc1 $2, $f0
7542 mfc1 $3, $f1
7543 jr $18
7544
7545 We are at the beginning of the stub here, and scan down and extract
7546 the target address from the jump immediate instruction or, if a jump
7547 register instruction is used, from the register referred. Return
7548 the value of PC calculated or 0 if inconclusive.
7549
7550 The limit on the search is arbitrarily set to 20 instructions. FIXME. */
7551
7552static CORE_ADDR
7553mips_get_mips16_fn_stub_pc (struct frame_info *frame, CORE_ADDR pc)
7554{
7555 struct gdbarch *gdbarch = get_frame_arch (frame);
7556 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7557 int addrreg = MIPS_ZERO_REGNUM;
7558 CORE_ADDR start_pc = pc;
7559 CORE_ADDR target_pc = 0;
7560 CORE_ADDR addr = 0;
7561 CORE_ADDR gp = 0;
7562 int status = 0;
7563 int i;
7564
7565 for (i = 0;
7566 status == 0 && target_pc == 0 && i < 20;
7567 i++, pc += MIPS_INSN32_SIZE)
7568 {
4cc0665f 7569 ULONGEST inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
14132e89
MR
7570 CORE_ADDR imm;
7571 int rt;
7572 int rs;
7573 int rd;
7574
7575 switch (itype_op (inst))
7576 {
7577 case 0: /* SPECIAL */
7578 switch (rtype_funct (inst))
7579 {
7580 case 8: /* JR */
7581 case 9: /* JALR */
7582 rs = rtype_rs (inst);
7583 if (rs == MIPS_GP_REGNUM)
7584 target_pc = gp; /* Hmm... */
7585 else if (rs == addrreg)
7586 target_pc = addr;
7587 break;
7588
7589 case 0x21: /* ADDU */
7590 rt = rtype_rt (inst);
7591 rs = rtype_rs (inst);
7592 rd = rtype_rd (inst);
7593 if (rd == MIPS_GP_REGNUM
7594 && ((rs == MIPS_GP_REGNUM && rt == MIPS_T9_REGNUM)
7595 || (rs == MIPS_T9_REGNUM && rt == MIPS_GP_REGNUM)))
7596 gp += start_pc;
7597 break;
7598 }
7599 break;
7600
7601 case 2: /* J */
7602 case 3: /* JAL */
7603 target_pc = jtype_target (inst) << 2;
7604 target_pc += ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
7605 break;
7606
7607 case 9: /* ADDIU */
7608 rt = itype_rt (inst);
7609 rs = itype_rs (inst);
7610 if (rt == rs)
7611 {
7612 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7613 if (rt == MIPS_GP_REGNUM)
7614 gp += imm;
7615 else if (rt == addrreg)
7616 addr += imm;
7617 }
7618 break;
7619
7620 case 0xf: /* LUI */
7621 rt = itype_rt (inst);
7622 imm = ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 16;
7623 if (rt == MIPS_GP_REGNUM)
7624 gp = imm;
7625 else if (rt != MIPS_ZERO_REGNUM)
7626 {
7627 addrreg = rt;
7628 addr = imm;
7629 }
7630 break;
7631
7632 case 0x23: /* LW */
7633 rt = itype_rt (inst);
7634 rs = itype_rs (inst);
7635 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7636 if (gp != 0 && rs == MIPS_GP_REGNUM)
7637 {
7638 gdb_byte buf[4];
7639
7640 memset (buf, 0, sizeof (buf));
7641 status = target_read_memory (gp + imm, buf, sizeof (buf));
7642 addrreg = rt;
7643 addr = extract_signed_integer (buf, sizeof (buf), byte_order);
7644 }
7645 break;
7646 }
7647 }
7648
7649 return target_pc;
7650}
7651
7652/* If PC is in a MIPS16 call or return stub, return the address of the
7653 target PC, which is either the callee or the caller. There are several
c906108c
SS
7654 cases which must be handled:
7655
14132e89
MR
7656 * If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7657 and the target PC is in $31 ($ra).
c906108c 7658 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
14132e89
MR
7659 and the target PC is in $2.
7660 * If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7661 i.e. before the JALR instruction, this is effectively a call stub
7662 and the target PC is in $2. Otherwise this is effectively
7663 a return stub and the target PC is in $18.
7664 * If the PC is at the start of __call_stub_fp_*, i.e. before the
7665 JAL or JALR instruction, this is effectively a call stub and the
7666 target PC is buried in the instruction stream. Otherwise this
7667 is effectively a return stub and the target PC is in $18.
7668 * If the PC is in __call_stub_* or in __fn_stub_*, this is a call
7669 stub and the target PC is buried in the instruction stream.
7670
7671 See the source code for the stubs in gcc/config/mips/mips16.S, or the
7672 stub builder in gcc/config/mips/mips.c (mips16_build_call_stub) for the
e7d6a6d2 7673 gory details. */
c906108c 7674
757a7cc6 7675static CORE_ADDR
db5f024e 7676mips_skip_mips16_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
c906108c 7677{
e17a4113 7678 struct gdbarch *gdbarch = get_frame_arch (frame);
c906108c 7679 CORE_ADDR start_addr;
14132e89
MR
7680 const char *name;
7681 size_t prefixlen;
c906108c
SS
7682
7683 /* Find the starting address and name of the function containing the PC. */
7684 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
7685 return 0;
7686
14132e89
MR
7687 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7688 and the target PC is in $31 ($ra). */
7689 prefixlen = strlen (mips_str_mips16_ret_stub);
7690 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7691 && mips_is_stub_mode (name + prefixlen)
7692 && name[prefixlen + 2] == '\0')
7693 return get_frame_register_signed
7694 (frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
7695
7696 /* If the PC is in __mips16_call_stub_*, this is one of the call
7697 call/return stubs. */
7698 prefixlen = strlen (mips_str_mips16_call_stub);
7699 if (strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0)
c906108c
SS
7700 {
7701 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7702 and the target PC is in $2. */
14132e89
MR
7703 if (mips_is_stub_suffix (name + prefixlen, 0))
7704 return get_frame_register_signed
7705 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
c906108c 7706
14132e89
MR
7707 /* If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7708 i.e. before the JALR instruction, this is effectively a call stub
b021a221 7709 and the target PC is in $2. Otherwise this is effectively
c5aa993b 7710 a return stub and the target PC is in $18. */
14132e89
MR
7711 else if (mips_is_stub_mode (name + prefixlen)
7712 && name[prefixlen + 2] == '_'
7713 && mips_is_stub_suffix (name + prefixlen + 3, 0))
c906108c
SS
7714 {
7715 if (pc == start_addr)
14132e89
MR
7716 /* This is the 'call' part of a call stub. The return
7717 address is in $2. */
7718 return get_frame_register_signed
7719 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
c906108c
SS
7720 else
7721 /* This is the 'return' part of a call stub. The return
14132e89
MR
7722 address is in $18. */
7723 return get_frame_register_signed
7724 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
c906108c 7725 }
14132e89
MR
7726 else
7727 return 0; /* Not a stub. */
7728 }
7729
7730 /* If the PC is in __call_stub_* or __fn_stub*, this is one of the
7731 compiler-generated call or call/return stubs. */
61012eef
GB
7732 if (startswith (name, mips_str_fn_stub)
7733 || startswith (name, mips_str_call_stub))
14132e89
MR
7734 {
7735 if (pc == start_addr)
7736 /* This is the 'call' part of a call stub. Call this helper
7737 to scan through this code for interesting instructions
7738 and determine the final PC. */
7739 return mips_get_mips16_fn_stub_pc (frame, pc);
7740 else
7741 /* This is the 'return' part of a call stub. The return address
7742 is in $18. */
7743 return get_frame_register_signed
7744 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
c906108c 7745 }
14132e89
MR
7746
7747 return 0; /* Not a stub. */
7748}
7749
7750/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
7751 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
7752
7753static int
7754mips_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc, const char *name)
7755{
7756 CORE_ADDR start_addr;
7757 size_t prefixlen;
7758
7759 /* Find the starting address of the function containing the PC. */
7760 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
7761 return 0;
7762
7763 /* If the PC is in __mips16_call_stub_{s,d}{f,c}_{0..10} but not at
7764 the start, i.e. after the JALR instruction, this is effectively
7765 a return stub. */
7766 prefixlen = strlen (mips_str_mips16_call_stub);
7767 if (pc != start_addr
7768 && strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0
7769 && mips_is_stub_mode (name + prefixlen)
7770 && name[prefixlen + 2] == '_'
7771 && mips_is_stub_suffix (name + prefixlen + 3, 1))
7772 return 1;
7773
7774 /* If the PC is in __call_stub_fp_* but not at the start, i.e. after
7775 the JAL or JALR instruction, this is effectively a return stub. */
7776 prefixlen = strlen (mips_str_call_fp_stub);
7777 if (pc != start_addr
7778 && strncmp (name, mips_str_call_fp_stub, prefixlen) == 0)
7779 return 1;
7780
7781 /* Consume the .pic. prefix of any PIC stub, this function must return
7782 true when the PC is in a PIC stub of a __mips16_ret_{d,s}{f,c} stub
7783 or the call stub path will trigger in handle_inferior_event causing
7784 it to go astray. */
7785 prefixlen = strlen (mips_str_pic);
7786 if (strncmp (name, mips_str_pic, prefixlen) == 0)
7787 name += prefixlen;
7788
7789 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub. */
7790 prefixlen = strlen (mips_str_mips16_ret_stub);
7791 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7792 && mips_is_stub_mode (name + prefixlen)
7793 && name[prefixlen + 2] == '\0')
7794 return 1;
7795
7796 return 0; /* Not a stub. */
c906108c
SS
7797}
7798
db5f024e
DJ
7799/* If the current PC is the start of a non-PIC-to-PIC stub, return the
7800 PC of the stub target. The stub just loads $t9 and jumps to it,
7801 so that $t9 has the correct value at function entry. */
7802
7803static CORE_ADDR
7804mips_skip_pic_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7805{
e17a4113
UW
7806 struct gdbarch *gdbarch = get_frame_arch (frame);
7807 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7cbd4a93 7808 struct bound_minimal_symbol msym;
db5f024e
DJ
7809 int i;
7810 gdb_byte stub_code[16];
7811 int32_t stub_words[4];
7812
7813 /* The stub for foo is named ".pic.foo", and is either two
7814 instructions inserted before foo or a three instruction sequence
7815 which jumps to foo. */
7816 msym = lookup_minimal_symbol_by_pc (pc);
7cbd4a93 7817 if (msym.minsym == NULL
77e371c0 7818 || BMSYMBOL_VALUE_ADDRESS (msym) != pc
efd66ac6 7819 || MSYMBOL_LINKAGE_NAME (msym.minsym) == NULL
61012eef 7820 || !startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
db5f024e
DJ
7821 return 0;
7822
7823 /* A two-instruction header. */
7cbd4a93 7824 if (MSYMBOL_SIZE (msym.minsym) == 8)
db5f024e
DJ
7825 return pc + 8;
7826
7827 /* A three-instruction (plus delay slot) trampoline. */
7cbd4a93 7828 if (MSYMBOL_SIZE (msym.minsym) == 16)
db5f024e
DJ
7829 {
7830 if (target_read_memory (pc, stub_code, 16) != 0)
7831 return 0;
7832 for (i = 0; i < 4; i++)
e17a4113
UW
7833 stub_words[i] = extract_unsigned_integer (stub_code + i * 4,
7834 4, byte_order);
db5f024e
DJ
7835
7836 /* A stub contains these instructions:
7837 lui t9, %hi(target)
7838 j target
7839 addiu t9, t9, %lo(target)
7840 nop
7841
7842 This works even for N64, since stubs are only generated with
7843 -msym32. */
7844 if ((stub_words[0] & 0xffff0000U) == 0x3c190000
7845 && (stub_words[1] & 0xfc000000U) == 0x08000000
7846 && (stub_words[2] & 0xffff0000U) == 0x27390000
7847 && stub_words[3] == 0x00000000)
34b192ce
MR
7848 return ((((stub_words[0] & 0x0000ffff) << 16)
7849 + (stub_words[2] & 0x0000ffff)) ^ 0x8000) - 0x8000;
db5f024e
DJ
7850 }
7851
7852 /* Not a recognized stub. */
7853 return 0;
7854}
7855
7856static CORE_ADDR
7857mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7858{
14132e89 7859 CORE_ADDR requested_pc = pc;
db5f024e 7860 CORE_ADDR target_pc;
14132e89
MR
7861 CORE_ADDR new_pc;
7862
7863 do
7864 {
7865 target_pc = pc;
db5f024e 7866
14132e89
MR
7867 new_pc = mips_skip_mips16_trampoline_code (frame, pc);
7868 if (new_pc)
3e29f34a 7869 pc = new_pc;
db5f024e 7870
14132e89
MR
7871 new_pc = find_solib_trampoline_target (frame, pc);
7872 if (new_pc)
3e29f34a 7873 pc = new_pc;
db5f024e 7874
14132e89
MR
7875 new_pc = mips_skip_pic_trampoline_code (frame, pc);
7876 if (new_pc)
3e29f34a 7877 pc = new_pc;
14132e89
MR
7878 }
7879 while (pc != target_pc);
db5f024e 7880
14132e89 7881 return pc != requested_pc ? pc : 0;
db5f024e
DJ
7882}
7883
a4b8ebc8 7884/* Convert a dbx stab register number (from `r' declaration) to a GDB
f57d151a 7885 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
88c72b7d
AC
7886
7887static int
d3f73121 7888mips_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
88c72b7d 7889{
a4b8ebc8 7890 int regnum;
2f38ef89 7891 if (num >= 0 && num < 32)
a4b8ebc8 7892 regnum = num;
2f38ef89 7893 else if (num >= 38 && num < 70)
d3f73121 7894 regnum = num + mips_regnum (gdbarch)->fp0 - 38;
040b99fd 7895 else if (num == 70)
d3f73121 7896 regnum = mips_regnum (gdbarch)->hi;
040b99fd 7897 else if (num == 71)
d3f73121 7898 regnum = mips_regnum (gdbarch)->lo;
1faeff08
MR
7899 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 72 && num < 78)
7900 regnum = num + mips_regnum (gdbarch)->dspacc - 72;
2f38ef89 7901 else
0fde2c53 7902 return -1;
d3f73121 7903 return gdbarch_num_regs (gdbarch) + regnum;
88c72b7d
AC
7904}
7905
2f38ef89 7906
a4b8ebc8 7907/* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
f57d151a 7908 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
88c72b7d
AC
7909
7910static int
d3f73121 7911mips_dwarf_dwarf2_ecoff_reg_to_regnum (struct gdbarch *gdbarch, int num)
88c72b7d 7912{
a4b8ebc8 7913 int regnum;
2f38ef89 7914 if (num >= 0 && num < 32)
a4b8ebc8 7915 regnum = num;
2f38ef89 7916 else if (num >= 32 && num < 64)
d3f73121 7917 regnum = num + mips_regnum (gdbarch)->fp0 - 32;
040b99fd 7918 else if (num == 64)
d3f73121 7919 regnum = mips_regnum (gdbarch)->hi;
040b99fd 7920 else if (num == 65)
d3f73121 7921 regnum = mips_regnum (gdbarch)->lo;
1faeff08
MR
7922 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 66 && num < 72)
7923 regnum = num + mips_regnum (gdbarch)->dspacc - 66;
2f38ef89 7924 else
0fde2c53 7925 return -1;
d3f73121 7926 return gdbarch_num_regs (gdbarch) + regnum;
a4b8ebc8
AC
7927}
7928
7929static int
e7faf938 7930mips_register_sim_regno (struct gdbarch *gdbarch, int regnum)
a4b8ebc8
AC
7931{
7932 /* Only makes sense to supply raw registers. */
e7faf938 7933 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
a4b8ebc8
AC
7934 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
7935 decide if it is valid. Should instead define a standard sim/gdb
7936 register numbering scheme. */
e7faf938
MD
7937 if (gdbarch_register_name (gdbarch,
7938 gdbarch_num_regs (gdbarch) + regnum) != NULL
7939 && gdbarch_register_name (gdbarch,
025bb325
MS
7940 gdbarch_num_regs (gdbarch)
7941 + regnum)[0] != '\0')
a4b8ebc8
AC
7942 return regnum;
7943 else
6d82d43b 7944 return LEGACY_SIM_REGNO_IGNORE;
88c72b7d
AC
7945}
7946
2f38ef89 7947
4844f454
CV
7948/* Convert an integer into an address. Extracting the value signed
7949 guarantees a correctly sign extended address. */
fc0c74b1
AC
7950
7951static CORE_ADDR
79dd2d24 7952mips_integer_to_address (struct gdbarch *gdbarch,
870cd05e 7953 struct type *type, const gdb_byte *buf)
fc0c74b1 7954{
e17a4113
UW
7955 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7956 return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
fc0c74b1
AC
7957}
7958
82e91389
DJ
7959/* Dummy virtual frame pointer method. This is no more or less accurate
7960 than most other architectures; we just need to be explicit about it,
7961 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
7962 an assertion failure. */
7963
7964static void
a54fba4c
MD
7965mips_virtual_frame_pointer (struct gdbarch *gdbarch,
7966 CORE_ADDR pc, int *reg, LONGEST *offset)
82e91389
DJ
7967{
7968 *reg = MIPS_SP_REGNUM;
7969 *offset = 0;
7970}
7971
caaa3122
DJ
7972static void
7973mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
7974{
7975 enum mips_abi *abip = (enum mips_abi *) obj;
7976 const char *name = bfd_get_section_name (abfd, sect);
7977
7978 if (*abip != MIPS_ABI_UNKNOWN)
7979 return;
7980
61012eef 7981 if (!startswith (name, ".mdebug."))
caaa3122
DJ
7982 return;
7983
7984 if (strcmp (name, ".mdebug.abi32") == 0)
7985 *abip = MIPS_ABI_O32;
7986 else if (strcmp (name, ".mdebug.abiN32") == 0)
7987 *abip = MIPS_ABI_N32;
62a49b2c 7988 else if (strcmp (name, ".mdebug.abi64") == 0)
e3bddbfa 7989 *abip = MIPS_ABI_N64;
caaa3122
DJ
7990 else if (strcmp (name, ".mdebug.abiO64") == 0)
7991 *abip = MIPS_ABI_O64;
7992 else if (strcmp (name, ".mdebug.eabi32") == 0)
7993 *abip = MIPS_ABI_EABI32;
7994 else if (strcmp (name, ".mdebug.eabi64") == 0)
7995 *abip = MIPS_ABI_EABI64;
7996 else
8a3fe4f8 7997 warning (_("unsupported ABI %s."), name + 8);
caaa3122
DJ
7998}
7999
22e47e37
FF
8000static void
8001mips_find_long_section (bfd *abfd, asection *sect, void *obj)
8002{
8003 int *lbp = (int *) obj;
8004 const char *name = bfd_get_section_name (abfd, sect);
8005
61012eef 8006 if (startswith (name, ".gcc_compiled_long32"))
22e47e37 8007 *lbp = 32;
61012eef 8008 else if (startswith (name, ".gcc_compiled_long64"))
22e47e37 8009 *lbp = 64;
61012eef 8010 else if (startswith (name, ".gcc_compiled_long"))
22e47e37
FF
8011 warning (_("unrecognized .gcc_compiled_longXX"));
8012}
8013
2e4ebe70
DJ
8014static enum mips_abi
8015global_mips_abi (void)
8016{
8017 int i;
8018
8019 for (i = 0; mips_abi_strings[i] != NULL; i++)
8020 if (mips_abi_strings[i] == mips_abi_string)
8021 return (enum mips_abi) i;
8022
e2e0b3e5 8023 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
2e4ebe70
DJ
8024}
8025
4cc0665f
MR
8026/* Return the default compressed instruction set, either of MIPS16
8027 or microMIPS, selected when none could have been determined from
8028 the ELF header of the binary being executed (or no binary has been
8029 selected. */
8030
8031static enum mips_isa
8032global_mips_compression (void)
8033{
8034 int i;
8035
8036 for (i = 0; mips_compression_strings[i] != NULL; i++)
8037 if (mips_compression_strings[i] == mips_compression_string)
8038 return (enum mips_isa) i;
8039
8040 internal_error (__FILE__, __LINE__, _("unknown compressed ISA string"));
8041}
8042
29709017
DJ
8043static void
8044mips_register_g_packet_guesses (struct gdbarch *gdbarch)
8045{
29709017
DJ
8046 /* If the size matches the set of 32-bit or 64-bit integer registers,
8047 assume that's what we've got. */
4eb0ad19
DJ
8048 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
8049 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
29709017
DJ
8050
8051 /* If the size matches the full set of registers GDB traditionally
8052 knows about, including floating point, for either 32-bit or
8053 64-bit, assume that's what we've got. */
4eb0ad19
DJ
8054 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
8055 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
29709017
DJ
8056
8057 /* Otherwise we don't have a useful guess. */
8058}
8059
f8b73d13
DJ
8060static struct value *
8061value_of_mips_user_reg (struct frame_info *frame, const void *baton)
8062{
19ba03f4 8063 const int *reg_p = (const int *) baton;
f8b73d13
DJ
8064 return value_of_register (*reg_p, frame);
8065}
8066
c2d11a7d 8067static struct gdbarch *
6d82d43b 8068mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
c2d11a7d 8069{
c2d11a7d
JM
8070 struct gdbarch *gdbarch;
8071 struct gdbarch_tdep *tdep;
8072 int elf_flags;
2e4ebe70 8073 enum mips_abi mips_abi, found_abi, wanted_abi;
f8b73d13 8074 int i, num_regs;
8d5838b5 8075 enum mips_fpu_type fpu_type;
f8b73d13 8076 struct tdesc_arch_data *tdesc_data = NULL;
d929bc19 8077 int elf_fpu_type = Val_GNU_MIPS_ABI_FP_ANY;
1faeff08
MR
8078 const char **reg_names;
8079 struct mips_regnum mips_regnum, *regnum;
4cc0665f 8080 enum mips_isa mips_isa;
1faeff08
MR
8081 int dspacc;
8082 int dspctl;
8083
ec03c1ac
AC
8084 /* First of all, extract the elf_flags, if available. */
8085 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8086 elf_flags = elf_elfheader (info.abfd)->e_flags;
6214a8a1
AC
8087 else if (arches != NULL)
8088 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
ec03c1ac
AC
8089 else
8090 elf_flags = 0;
8091 if (gdbarch_debug)
8092 fprintf_unfiltered (gdb_stdlog,
6d82d43b 8093 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
c2d11a7d 8094
102182a9 8095 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
0dadbba0
AC
8096 switch ((elf_flags & EF_MIPS_ABI))
8097 {
8098 case E_MIPS_ABI_O32:
ec03c1ac 8099 found_abi = MIPS_ABI_O32;
0dadbba0
AC
8100 break;
8101 case E_MIPS_ABI_O64:
ec03c1ac 8102 found_abi = MIPS_ABI_O64;
0dadbba0
AC
8103 break;
8104 case E_MIPS_ABI_EABI32:
ec03c1ac 8105 found_abi = MIPS_ABI_EABI32;
0dadbba0
AC
8106 break;
8107 case E_MIPS_ABI_EABI64:
ec03c1ac 8108 found_abi = MIPS_ABI_EABI64;
0dadbba0
AC
8109 break;
8110 default:
acdb74a0 8111 if ((elf_flags & EF_MIPS_ABI2))
ec03c1ac 8112 found_abi = MIPS_ABI_N32;
acdb74a0 8113 else
ec03c1ac 8114 found_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
8115 break;
8116 }
acdb74a0 8117
caaa3122 8118 /* GCC creates a pseudo-section whose name describes the ABI. */
ec03c1ac
AC
8119 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
8120 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
caaa3122 8121
dc305454 8122 /* If we have no useful BFD information, use the ABI from the last
ec03c1ac
AC
8123 MIPS architecture (if there is one). */
8124 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
8125 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
2e4ebe70 8126
32a6503c 8127 /* Try the architecture for any hint of the correct ABI. */
ec03c1ac 8128 if (found_abi == MIPS_ABI_UNKNOWN
bf64bfd6
AC
8129 && info.bfd_arch_info != NULL
8130 && info.bfd_arch_info->arch == bfd_arch_mips)
8131 {
8132 switch (info.bfd_arch_info->mach)
8133 {
8134 case bfd_mach_mips3900:
ec03c1ac 8135 found_abi = MIPS_ABI_EABI32;
bf64bfd6
AC
8136 break;
8137 case bfd_mach_mips4100:
8138 case bfd_mach_mips5000:
ec03c1ac 8139 found_abi = MIPS_ABI_EABI64;
bf64bfd6 8140 break;
1d06468c
EZ
8141 case bfd_mach_mips8000:
8142 case bfd_mach_mips10000:
32a6503c
KB
8143 /* On Irix, ELF64 executables use the N64 ABI. The
8144 pseudo-sections which describe the ABI aren't present
8145 on IRIX. (Even for executables created by gcc.) */
e6c2f47b
PA
8146 if (info.abfd != NULL
8147 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
28d169de 8148 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
ec03c1ac 8149 found_abi = MIPS_ABI_N64;
28d169de 8150 else
ec03c1ac 8151 found_abi = MIPS_ABI_N32;
1d06468c 8152 break;
bf64bfd6
AC
8153 }
8154 }
2e4ebe70 8155
26c53e50
DJ
8156 /* Default 64-bit objects to N64 instead of O32. */
8157 if (found_abi == MIPS_ABI_UNKNOWN
8158 && info.abfd != NULL
8159 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8160 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8161 found_abi = MIPS_ABI_N64;
8162
ec03c1ac
AC
8163 if (gdbarch_debug)
8164 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
8165 found_abi);
8166
8167 /* What has the user specified from the command line? */
8168 wanted_abi = global_mips_abi ();
8169 if (gdbarch_debug)
8170 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
8171 wanted_abi);
2e4ebe70
DJ
8172
8173 /* Now that we have found what the ABI for this binary would be,
8174 check whether the user is overriding it. */
2e4ebe70
DJ
8175 if (wanted_abi != MIPS_ABI_UNKNOWN)
8176 mips_abi = wanted_abi;
ec03c1ac
AC
8177 else if (found_abi != MIPS_ABI_UNKNOWN)
8178 mips_abi = found_abi;
8179 else
8180 mips_abi = MIPS_ABI_O32;
8181 if (gdbarch_debug)
8182 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
8183 mips_abi);
2e4ebe70 8184
c5196c92
MR
8185 /* Make sure we don't use a 32-bit architecture with a 64-bit ABI. */
8186 if (mips_abi != MIPS_ABI_EABI32
8187 && mips_abi != MIPS_ABI_O32
8188 && info.bfd_arch_info != NULL
8189 && info.bfd_arch_info->arch == bfd_arch_mips
8190 && info.bfd_arch_info->bits_per_word < 64)
8191 info.bfd_arch_info = bfd_lookup_arch (bfd_arch_mips, bfd_mach_mips4000);
8192
4cc0665f
MR
8193 /* Determine the default compressed ISA. */
8194 if ((elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0
8195 && (elf_flags & EF_MIPS_ARCH_ASE_M16) == 0)
8196 mips_isa = ISA_MICROMIPS;
8197 else if ((elf_flags & EF_MIPS_ARCH_ASE_M16) != 0
8198 && (elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) == 0)
8199 mips_isa = ISA_MIPS16;
8200 else
8201 mips_isa = global_mips_compression ();
8202 mips_compression_string = mips_compression_strings[mips_isa];
8203
ec03c1ac 8204 /* Also used when doing an architecture lookup. */
4b9b3959 8205 if (gdbarch_debug)
ec03c1ac 8206 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
8207 "mips_gdbarch_init: "
8208 "mips64_transfers_32bit_regs_p = %d\n",
ec03c1ac 8209 mips64_transfers_32bit_regs_p);
0dadbba0 8210
8d5838b5 8211 /* Determine the MIPS FPU type. */
609ca2b9
DJ
8212#ifdef HAVE_ELF
8213 if (info.abfd
8214 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8215 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
8216 Tag_GNU_MIPS_ABI_FP);
8217#endif /* HAVE_ELF */
8218
8d5838b5
AC
8219 if (!mips_fpu_type_auto)
8220 fpu_type = mips_fpu_type;
d929bc19 8221 else if (elf_fpu_type != Val_GNU_MIPS_ABI_FP_ANY)
609ca2b9
DJ
8222 {
8223 switch (elf_fpu_type)
8224 {
d929bc19 8225 case Val_GNU_MIPS_ABI_FP_DOUBLE:
609ca2b9
DJ
8226 fpu_type = MIPS_FPU_DOUBLE;
8227 break;
d929bc19 8228 case Val_GNU_MIPS_ABI_FP_SINGLE:
609ca2b9
DJ
8229 fpu_type = MIPS_FPU_SINGLE;
8230 break;
d929bc19 8231 case Val_GNU_MIPS_ABI_FP_SOFT:
609ca2b9
DJ
8232 default:
8233 /* Soft float or unknown. */
8234 fpu_type = MIPS_FPU_NONE;
8235 break;
8236 }
8237 }
8d5838b5
AC
8238 else if (info.bfd_arch_info != NULL
8239 && info.bfd_arch_info->arch == bfd_arch_mips)
8240 switch (info.bfd_arch_info->mach)
8241 {
8242 case bfd_mach_mips3900:
8243 case bfd_mach_mips4100:
8244 case bfd_mach_mips4111:
a9d61c86 8245 case bfd_mach_mips4120:
8d5838b5
AC
8246 fpu_type = MIPS_FPU_NONE;
8247 break;
8248 case bfd_mach_mips4650:
8249 fpu_type = MIPS_FPU_SINGLE;
8250 break;
8251 default:
8252 fpu_type = MIPS_FPU_DOUBLE;
8253 break;
8254 }
8255 else if (arches != NULL)
a2f1f308 8256 fpu_type = MIPS_FPU_TYPE (arches->gdbarch);
8d5838b5
AC
8257 else
8258 fpu_type = MIPS_FPU_DOUBLE;
8259 if (gdbarch_debug)
8260 fprintf_unfiltered (gdb_stdlog,
6d82d43b 8261 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
8d5838b5 8262
29709017
DJ
8263 /* Check for blatant incompatibilities. */
8264
8265 /* If we have only 32-bit registers, then we can't debug a 64-bit
8266 ABI. */
8267 if (info.target_desc
8268 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
8269 && mips_abi != MIPS_ABI_EABI32
8270 && mips_abi != MIPS_ABI_O32)
37c33887
MR
8271 return NULL;
8272
8273 /* Fill in the OS dependent register numbers and names. */
8274 if (info.osabi == GDB_OSABI_LINUX)
f8b73d13 8275 {
37c33887
MR
8276 mips_regnum.fp0 = 38;
8277 mips_regnum.pc = 37;
8278 mips_regnum.cause = 36;
8279 mips_regnum.badvaddr = 35;
8280 mips_regnum.hi = 34;
8281 mips_regnum.lo = 33;
8282 mips_regnum.fp_control_status = 70;
8283 mips_regnum.fp_implementation_revision = 71;
8284 mips_regnum.dspacc = -1;
8285 mips_regnum.dspctl = -1;
8286 dspacc = 72;
8287 dspctl = 78;
8288 num_regs = 90;
8289 reg_names = mips_linux_reg_names;
8290 }
8291 else
8292 {
8293 mips_regnum.lo = MIPS_EMBED_LO_REGNUM;
8294 mips_regnum.hi = MIPS_EMBED_HI_REGNUM;
8295 mips_regnum.badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
8296 mips_regnum.cause = MIPS_EMBED_CAUSE_REGNUM;
8297 mips_regnum.pc = MIPS_EMBED_PC_REGNUM;
8298 mips_regnum.fp0 = MIPS_EMBED_FP0_REGNUM;
8299 mips_regnum.fp_control_status = 70;
8300 mips_regnum.fp_implementation_revision = 71;
8301 mips_regnum.dspacc = dspacc = -1;
8302 mips_regnum.dspctl = dspctl = -1;
8303 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
8304 if (info.bfd_arch_info != NULL
8305 && info.bfd_arch_info->mach == bfd_mach_mips3900)
8306 reg_names = mips_tx39_reg_names;
8307 else
8308 reg_names = mips_generic_reg_names;
8309 }
8310
8311 /* Check any target description for validity. */
8312 if (tdesc_has_registers (info.target_desc))
8313 {
8314 static const char *const mips_gprs[] = {
8315 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
8316 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8317 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
8318 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
8319 };
8320 static const char *const mips_fprs[] = {
8321 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
8322 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
8323 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
8324 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
8325 };
8326
8327 const struct tdesc_feature *feature;
8328 int valid_p;
8329
8330 feature = tdesc_find_feature (info.target_desc,
8331 "org.gnu.gdb.mips.cpu");
8332 if (feature == NULL)
8333 return NULL;
8334
8335 tdesc_data = tdesc_data_alloc ();
8336
8337 valid_p = 1;
8338 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
8339 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
8340 mips_gprs[i]);
8341
8342
8343 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8344 mips_regnum.lo, "lo");
8345 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8346 mips_regnum.hi, "hi");
8347 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8348 mips_regnum.pc, "pc");
8349
8350 if (!valid_p)
8351 {
8352 tdesc_data_cleanup (tdesc_data);
8353 return NULL;
8354 }
8355
8356 feature = tdesc_find_feature (info.target_desc,
8357 "org.gnu.gdb.mips.cp0");
8358 if (feature == NULL)
8359 {
8360 tdesc_data_cleanup (tdesc_data);
8361 return NULL;
8362 }
8363
8364 valid_p = 1;
8365 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8366 mips_regnum.badvaddr, "badvaddr");
8367 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8368 MIPS_PS_REGNUM, "status");
8369 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8370 mips_regnum.cause, "cause");
8371
8372 if (!valid_p)
8373 {
8374 tdesc_data_cleanup (tdesc_data);
8375 return NULL;
8376 }
8377
8378 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
8379 backend is not prepared for that, though. */
8380 feature = tdesc_find_feature (info.target_desc,
8381 "org.gnu.gdb.mips.fpu");
8382 if (feature == NULL)
8383 {
8384 tdesc_data_cleanup (tdesc_data);
8385 return NULL;
8386 }
8387
8388 valid_p = 1;
8389 for (i = 0; i < 32; i++)
8390 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8391 i + mips_regnum.fp0, mips_fprs[i]);
8392
8393 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8394 mips_regnum.fp_control_status,
8395 "fcsr");
8396 valid_p
8397 &= tdesc_numbered_register (feature, tdesc_data,
8398 mips_regnum.fp_implementation_revision,
8399 "fir");
8400
8401 if (!valid_p)
8402 {
8403 tdesc_data_cleanup (tdesc_data);
8404 return NULL;
8405 }
8406
8407 num_regs = mips_regnum.fp_implementation_revision + 1;
8408
8409 if (dspacc >= 0)
8410 {
8411 feature = tdesc_find_feature (info.target_desc,
8412 "org.gnu.gdb.mips.dsp");
8413 /* The DSP registers are optional; it's OK if they are absent. */
8414 if (feature != NULL)
8415 {
8416 i = 0;
8417 valid_p = 1;
8418 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8419 dspacc + i++, "hi1");
8420 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8421 dspacc + i++, "lo1");
8422 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8423 dspacc + i++, "hi2");
8424 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8425 dspacc + i++, "lo2");
8426 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8427 dspacc + i++, "hi3");
8428 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8429 dspacc + i++, "lo3");
8430
8431 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8432 dspctl, "dspctl");
8433
8434 if (!valid_p)
8435 {
8436 tdesc_data_cleanup (tdesc_data);
8437 return NULL;
8438 }
8439
8440 mips_regnum.dspacc = dspacc;
8441 mips_regnum.dspctl = dspctl;
8442
8443 num_regs = mips_regnum.dspctl + 1;
8444 }
8445 }
8446
8447 /* It would be nice to detect an attempt to use a 64-bit ABI
8448 when only 32-bit registers are provided. */
8449 reg_names = NULL;
f8b73d13 8450 }
29709017 8451
025bb325 8452 /* Try to find a pre-existing architecture. */
c2d11a7d
JM
8453 for (arches = gdbarch_list_lookup_by_info (arches, &info);
8454 arches != NULL;
8455 arches = gdbarch_list_lookup_by_info (arches->next, &info))
8456 {
d54398a7
MR
8457 /* MIPS needs to be pedantic about which ABI and the compressed
8458 ISA variation the object is using. */
9103eae0 8459 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 8460 continue;
9103eae0 8461 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 8462 continue;
d54398a7
MR
8463 if (gdbarch_tdep (arches->gdbarch)->mips_isa != mips_isa)
8464 continue;
719ec221
AC
8465 /* Need to be pedantic about which register virtual size is
8466 used. */
8467 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
8468 != mips64_transfers_32bit_regs_p)
8469 continue;
8d5838b5 8470 /* Be pedantic about which FPU is selected. */
a2f1f308 8471 if (MIPS_FPU_TYPE (arches->gdbarch) != fpu_type)
8d5838b5 8472 continue;
f8b73d13
DJ
8473
8474 if (tdesc_data != NULL)
8475 tdesc_data_cleanup (tdesc_data);
4be87837 8476 return arches->gdbarch;
c2d11a7d
JM
8477 }
8478
102182a9 8479 /* Need a new architecture. Fill in a target specific vector. */
cdd238da 8480 tdep = XCNEW (struct gdbarch_tdep);
c2d11a7d
JM
8481 gdbarch = gdbarch_alloc (&info, tdep);
8482 tdep->elf_flags = elf_flags;
719ec221 8483 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
ec03c1ac
AC
8484 tdep->found_abi = found_abi;
8485 tdep->mips_abi = mips_abi;
4cc0665f 8486 tdep->mips_isa = mips_isa;
8d5838b5 8487 tdep->mips_fpu_type = fpu_type;
29709017
DJ
8488 tdep->register_size_valid_p = 0;
8489 tdep->register_size = 0;
8490
8491 if (info.target_desc)
8492 {
8493 /* Some useful properties can be inferred from the target. */
8494 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
8495 {
8496 tdep->register_size_valid_p = 1;
8497 tdep->register_size = 4;
8498 }
8499 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
8500 {
8501 tdep->register_size_valid_p = 1;
8502 tdep->register_size = 8;
8503 }
8504 }
c2d11a7d 8505
102182a9 8506 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
8507 set_gdbarch_short_bit (gdbarch, 16);
8508 set_gdbarch_int_bit (gdbarch, 32);
8509 set_gdbarch_float_bit (gdbarch, 32);
8510 set_gdbarch_double_bit (gdbarch, 64);
8511 set_gdbarch_long_double_bit (gdbarch, 64);
a4b8ebc8
AC
8512 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
8513 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
8514 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
1d06468c 8515
175ff332
HZ
8516 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8517 mips_ax_pseudo_register_collect);
8518 set_gdbarch_ax_pseudo_register_push_stack
8519 (gdbarch, mips_ax_pseudo_register_push_stack);
8520
6d82d43b 8521 set_gdbarch_elf_make_msymbol_special (gdbarch,
f7ab6ec6 8522 mips_elf_make_msymbol_special);
3e29f34a
MR
8523 set_gdbarch_make_symbol_special (gdbarch, mips_make_symbol_special);
8524 set_gdbarch_adjust_dwarf2_addr (gdbarch, mips_adjust_dwarf2_addr);
8525 set_gdbarch_adjust_dwarf2_line (gdbarch, mips_adjust_dwarf2_line);
f7ab6ec6 8526
1faeff08
MR
8527 regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct mips_regnum);
8528 *regnum = mips_regnum;
1faeff08
MR
8529 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
8530 set_gdbarch_num_regs (gdbarch, num_regs);
8531 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8532 set_gdbarch_register_name (gdbarch, mips_register_name);
8533 set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
8534 tdep->mips_processor_reg_names = reg_names;
8535 tdep->regnum = regnum;
fe29b929 8536
0dadbba0 8537 switch (mips_abi)
c2d11a7d 8538 {
0dadbba0 8539 case MIPS_ABI_O32:
25ab4790 8540 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
29dfb2ac 8541 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
4c7d22cb 8542 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 8543 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4014092b 8544 tdep->default_mask_address_p = 0;
c2d11a7d
JM
8545 set_gdbarch_long_bit (gdbarch, 32);
8546 set_gdbarch_ptr_bit (gdbarch, 32);
8547 set_gdbarch_long_long_bit (gdbarch, 64);
8548 break;
0dadbba0 8549 case MIPS_ABI_O64:
25ab4790 8550 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
9c8fdbfa 8551 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
4c7d22cb 8552 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 8553 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
361d1df0 8554 tdep->default_mask_address_p = 0;
c2d11a7d
JM
8555 set_gdbarch_long_bit (gdbarch, 32);
8556 set_gdbarch_ptr_bit (gdbarch, 32);
8557 set_gdbarch_long_long_bit (gdbarch, 64);
8558 break;
0dadbba0 8559 case MIPS_ABI_EABI32:
25ab4790 8560 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 8561 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 8562 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 8563 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 8564 tdep->default_mask_address_p = 0;
c2d11a7d
JM
8565 set_gdbarch_long_bit (gdbarch, 32);
8566 set_gdbarch_ptr_bit (gdbarch, 32);
8567 set_gdbarch_long_long_bit (gdbarch, 64);
8568 break;
0dadbba0 8569 case MIPS_ABI_EABI64:
25ab4790 8570 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 8571 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 8572 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 8573 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 8574 tdep->default_mask_address_p = 0;
c2d11a7d
JM
8575 set_gdbarch_long_bit (gdbarch, 64);
8576 set_gdbarch_ptr_bit (gdbarch, 64);
8577 set_gdbarch_long_long_bit (gdbarch, 64);
8578 break;
0dadbba0 8579 case MIPS_ABI_N32:
25ab4790 8580 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 8581 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 8582 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 8583 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 8584 tdep->default_mask_address_p = 0;
0dadbba0
AC
8585 set_gdbarch_long_bit (gdbarch, 32);
8586 set_gdbarch_ptr_bit (gdbarch, 32);
8587 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43 8588 set_gdbarch_long_double_bit (gdbarch, 128);
b14d30e1 8589 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
28d169de
KB
8590 break;
8591 case MIPS_ABI_N64:
25ab4790 8592 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 8593 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 8594 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 8595 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
28d169de
KB
8596 tdep->default_mask_address_p = 0;
8597 set_gdbarch_long_bit (gdbarch, 64);
8598 set_gdbarch_ptr_bit (gdbarch, 64);
8599 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43 8600 set_gdbarch_long_double_bit (gdbarch, 128);
b14d30e1 8601 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
0dadbba0 8602 break;
c2d11a7d 8603 default:
e2e0b3e5 8604 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
c2d11a7d
JM
8605 }
8606
22e47e37
FF
8607 /* GCC creates a pseudo-section whose name specifies the size of
8608 longs, since -mlong32 or -mlong64 may be used independent of
8609 other options. How those options affect pointer sizes is ABI and
8610 architecture dependent, so use them to override the default sizes
8611 set by the ABI. This table shows the relationship between ABI,
8612 -mlongXX, and size of pointers:
8613
8614 ABI -mlongXX ptr bits
8615 --- -------- --------
8616 o32 32 32
8617 o32 64 32
8618 n32 32 32
8619 n32 64 64
8620 o64 32 32
8621 o64 64 64
8622 n64 32 32
8623 n64 64 64
8624 eabi32 32 32
8625 eabi32 64 32
8626 eabi64 32 32
8627 eabi64 64 64
8628
8629 Note that for o32 and eabi32, pointers are always 32 bits
8630 regardless of any -mlongXX option. For all others, pointers and
025bb325 8631 longs are the same, as set by -mlongXX or set by defaults. */
22e47e37
FF
8632
8633 if (info.abfd != NULL)
8634 {
8635 int long_bit = 0;
8636
8637 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
8638 if (long_bit)
8639 {
8640 set_gdbarch_long_bit (gdbarch, long_bit);
8641 switch (mips_abi)
8642 {
8643 case MIPS_ABI_O32:
8644 case MIPS_ABI_EABI32:
8645 break;
8646 case MIPS_ABI_N32:
8647 case MIPS_ABI_O64:
8648 case MIPS_ABI_N64:
8649 case MIPS_ABI_EABI64:
8650 set_gdbarch_ptr_bit (gdbarch, long_bit);
8651 break;
8652 default:
8653 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8654 }
8655 }
8656 }
8657
a5ea2558
AC
8658 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
8659 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
8660 comment:
8661
8662 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
8663 flag in object files because to do so would make it impossible to
102182a9 8664 link with libraries compiled without "-gp32". This is
a5ea2558 8665 unnecessarily restrictive.
361d1df0 8666
a5ea2558
AC
8667 We could solve this problem by adding "-gp32" multilibs to gcc,
8668 but to set this flag before gcc is built with such multilibs will
8669 break too many systems.''
8670
8671 But even more unhelpfully, the default linker output target for
8672 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
8673 for 64-bit programs - you need to change the ABI to change this,
102182a9 8674 and not all gcc targets support that currently. Therefore using
a5ea2558
AC
8675 this flag to detect 32-bit mode would do the wrong thing given
8676 the current gcc - it would make GDB treat these 64-bit programs
102182a9 8677 as 32-bit programs by default. */
a5ea2558 8678
6c997a34 8679 set_gdbarch_read_pc (gdbarch, mips_read_pc);
b6cb9035 8680 set_gdbarch_write_pc (gdbarch, mips_write_pc);
c2d11a7d 8681
102182a9
MS
8682 /* Add/remove bits from an address. The MIPS needs be careful to
8683 ensure that all 32 bit addresses are sign extended to 64 bits. */
875e1767
AC
8684 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
8685
58dfe9ff
AC
8686 /* Unwind the frame. */
8687 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
30244cd8 8688 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
b8a22b94 8689 set_gdbarch_dummy_id (gdbarch, mips_dummy_id);
10312cc4 8690
102182a9 8691 /* Map debug register numbers onto internal register numbers. */
88c72b7d 8692 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
6d82d43b
AC
8693 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
8694 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6d82d43b
AC
8695 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
8696 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
a4b8ebc8 8697 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
88c72b7d 8698
025bb325 8699 /* MIPS version of CALL_DUMMY. */
c2d11a7d 8700
2c76a0c7
JB
8701 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8702 set_gdbarch_push_dummy_code (gdbarch, mips_push_dummy_code);
dc604539 8703 set_gdbarch_frame_align (gdbarch, mips_frame_align);
d05285fa 8704
1bab7383
YQ
8705 set_gdbarch_print_float_info (gdbarch, mips_print_float_info);
8706
87783b8b
AC
8707 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
8708 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
8709 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
8710
f7b9e9fc 8711 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
04180708
YQ
8712 set_gdbarch_breakpoint_kind_from_pc (gdbarch, mips_breakpoint_kind_from_pc);
8713 set_gdbarch_sw_breakpoint_from_kind (gdbarch, mips_sw_breakpoint_from_kind);
c8cef75f
MR
8714 set_gdbarch_adjust_breakpoint_address (gdbarch,
8715 mips_adjust_breakpoint_address);
f7b9e9fc
AC
8716
8717 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
f7b9e9fc 8718
c9cf6e20 8719 set_gdbarch_stack_frame_destroyed_p (gdbarch, mips_stack_frame_destroyed_p);
97ab0fdd 8720
fc0c74b1
AC
8721 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
8722 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
8723 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf 8724
a4b8ebc8 8725 set_gdbarch_register_type (gdbarch, mips_register_type);
78fde5f8 8726
e11c53d2 8727 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
bf1f5b4c 8728
471b9d15
MR
8729 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
8730 if (mips_abi == MIPS_ABI_N64)
8731 set_gdbarch_disassembler_options_implicit
8732 (gdbarch, (const char *) mips_disassembler_options_n64);
8733 else if (mips_abi == MIPS_ABI_N32)
8734 set_gdbarch_disassembler_options_implicit
8735 (gdbarch, (const char *) mips_disassembler_options_n32);
9dae60cc 8736 else
471b9d15
MR
8737 set_gdbarch_disassembler_options_implicit
8738 (gdbarch, (const char *) mips_disassembler_options_o32);
8739 set_gdbarch_disassembler_options (gdbarch, &mips_disassembler_options);
8740 set_gdbarch_valid_disassembler_options (gdbarch,
8741 disassembler_options_mips ());
e5ab0dce 8742
d92524f1
PM
8743 /* FIXME: cagney/2003-08-29: The macros target_have_steppable_watchpoint,
8744 HAVE_NONSTEPPABLE_WATCHPOINT, and target_have_continuable_watchpoint
3a3bc038 8745 need to all be folded into the target vector. Since they are
d92524f1
PM
8746 being used as guards for target_stopped_by_watchpoint, why not have
8747 target_stopped_by_watchpoint return the type of watchpoint that the code
3a3bc038
AC
8748 is sitting on? */
8749 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
8750
e7d6a6d2 8751 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
757a7cc6 8752
14132e89
MR
8753 /* NOTE drow/2012-04-25: We overload the core solib trampoline code
8754 to support MIPS16. This is a bad thing. Make sure not to do it
8755 if we have an OS ABI that actually supports shared libraries, since
8756 shared library support is more important. If we have an OS someday
8757 that supports both shared libraries and MIPS16, we'll have to find
8758 a better place for these.
8759 macro/2012-04-25: But that applies to return trampolines only and
8760 currently no MIPS OS ABI uses shared libraries that have them. */
8761 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
8762
025bb325
MS
8763 set_gdbarch_single_step_through_delay (gdbarch,
8764 mips_single_step_through_delay);
3352ef37 8765
0d5de010
DJ
8766 /* Virtual tables. */
8767 set_gdbarch_vbit_in_delta (gdbarch, 1);
8768
29709017
DJ
8769 mips_register_g_packet_guesses (gdbarch);
8770
6de918a6 8771 /* Hook in OS ABI-specific overrides, if they have been registered. */
0dba2a6c 8772 info.tdesc_data = tdesc_data;
6de918a6 8773 gdbarch_init_osabi (info, gdbarch);
757a7cc6 8774
9aac7884
MR
8775 /* The hook may have adjusted num_regs, fetch the final value and
8776 set pc_regnum and sp_regnum now that it has been fixed. */
9aac7884
MR
8777 num_regs = gdbarch_num_regs (gdbarch);
8778 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
8779 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8780
5792a79b 8781 /* Unwind the frame. */
b8a22b94
DJ
8782 dwarf2_append_unwinders (gdbarch);
8783 frame_unwind_append_unwinder (gdbarch, &mips_stub_frame_unwind);
8784 frame_unwind_append_unwinder (gdbarch, &mips_insn16_frame_unwind);
4cc0665f 8785 frame_unwind_append_unwinder (gdbarch, &mips_micro_frame_unwind);
b8a22b94 8786 frame_unwind_append_unwinder (gdbarch, &mips_insn32_frame_unwind);
2bd0c3d7 8787 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
eec63939 8788 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
45c9dd44 8789 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
4cc0665f 8790 frame_base_append_sniffer (gdbarch, mips_micro_frame_base_sniffer);
45c9dd44 8791 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5792a79b 8792
f8b73d13
DJ
8793 if (tdesc_data)
8794 {
8795 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
7cc46491 8796 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
f8b73d13
DJ
8797
8798 /* Override the normal target description methods to handle our
8799 dual real and pseudo registers. */
8800 set_gdbarch_register_name (gdbarch, mips_register_name);
025bb325
MS
8801 set_gdbarch_register_reggroup_p (gdbarch,
8802 mips_tdesc_register_reggroup_p);
f8b73d13
DJ
8803
8804 num_regs = gdbarch_num_regs (gdbarch);
8805 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8806 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
8807 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8808 }
8809
8810 /* Add ABI-specific aliases for the registers. */
8811 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
8812 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
8813 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
8814 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
8815 else
8816 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
8817 user_reg_add (gdbarch, mips_o32_aliases[i].name,
8818 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
8819
8820 /* Add some other standard aliases. */
8821 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
8822 user_reg_add (gdbarch, mips_register_aliases[i].name,
8823 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
8824
865093a3
AR
8825 for (i = 0; i < ARRAY_SIZE (mips_numeric_register_aliases); i++)
8826 user_reg_add (gdbarch, mips_numeric_register_aliases[i].name,
8827 value_of_mips_user_reg,
8828 &mips_numeric_register_aliases[i].regnum);
8829
4b9b3959
AC
8830 return gdbarch;
8831}
8832
2e4ebe70 8833static void
eb4c3f4a
TT
8834mips_abi_update (const char *ignore_args,
8835 int from_tty, struct cmd_list_element *c)
2e4ebe70
DJ
8836{
8837 struct gdbarch_info info;
8838
8839 /* Force the architecture to update, and (if it's a MIPS architecture)
8840 mips_gdbarch_init will take care of the rest. */
8841 gdbarch_info_init (&info);
8842 gdbarch_update_p (info);
8843}
8844
ad188201
KB
8845/* Print out which MIPS ABI is in use. */
8846
8847static void
1f8ca57c
JB
8848show_mips_abi (struct ui_file *file,
8849 int from_tty,
8850 struct cmd_list_element *ignored_cmd,
8851 const char *ignored_value)
ad188201 8852{
f5656ead 8853 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
1f8ca57c
JB
8854 fprintf_filtered
8855 (file,
8856 "The MIPS ABI is unknown because the current architecture "
8857 "is not MIPS.\n");
ad188201
KB
8858 else
8859 {
8860 enum mips_abi global_abi = global_mips_abi ();
f5656ead 8861 enum mips_abi actual_abi = mips_abi (target_gdbarch ());
ad188201
KB
8862 const char *actual_abi_str = mips_abi_strings[actual_abi];
8863
8864 if (global_abi == MIPS_ABI_UNKNOWN)
1f8ca57c
JB
8865 fprintf_filtered
8866 (file,
8867 "The MIPS ABI is set automatically (currently \"%s\").\n",
6d82d43b 8868 actual_abi_str);
ad188201 8869 else if (global_abi == actual_abi)
1f8ca57c
JB
8870 fprintf_filtered
8871 (file,
8872 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6d82d43b 8873 actual_abi_str);
ad188201
KB
8874 else
8875 {
8876 /* Probably shouldn't happen... */
025bb325
MS
8877 fprintf_filtered (file,
8878 "The (auto detected) MIPS ABI \"%s\" is in use "
8879 "even though the user setting was \"%s\".\n",
6d82d43b 8880 actual_abi_str, mips_abi_strings[global_abi]);
ad188201
KB
8881 }
8882 }
8883}
8884
4cc0665f
MR
8885/* Print out which MIPS compressed ISA encoding is used. */
8886
8887static void
8888show_mips_compression (struct ui_file *file, int from_tty,
8889 struct cmd_list_element *c, const char *value)
8890{
8891 fprintf_filtered (file, _("The compressed ISA encoding used is %s.\n"),
8892 value);
8893}
8894
a4f320fd
MR
8895/* Return a textual name for MIPS FPU type FPU_TYPE. */
8896
8897static const char *
8898mips_fpu_type_str (enum mips_fpu_type fpu_type)
8899{
8900 switch (fpu_type)
8901 {
8902 case MIPS_FPU_NONE:
8903 return "none";
8904 case MIPS_FPU_SINGLE:
8905 return "single";
8906 case MIPS_FPU_DOUBLE:
8907 return "double";
8908 default:
8909 return "???";
8910 }
8911}
8912
4b9b3959 8913static void
72a155b4 8914mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
4b9b3959 8915{
72a155b4 8916 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4b9b3959 8917 if (tdep != NULL)
c2d11a7d 8918 {
acdb74a0
AC
8919 int ef_mips_arch;
8920 int ef_mips_32bitmode;
f49e4e6d 8921 /* Determine the ISA. */
acdb74a0
AC
8922 switch (tdep->elf_flags & EF_MIPS_ARCH)
8923 {
8924 case E_MIPS_ARCH_1:
8925 ef_mips_arch = 1;
8926 break;
8927 case E_MIPS_ARCH_2:
8928 ef_mips_arch = 2;
8929 break;
8930 case E_MIPS_ARCH_3:
8931 ef_mips_arch = 3;
8932 break;
8933 case E_MIPS_ARCH_4:
93d56215 8934 ef_mips_arch = 4;
acdb74a0
AC
8935 break;
8936 default:
93d56215 8937 ef_mips_arch = 0;
acdb74a0
AC
8938 break;
8939 }
f49e4e6d 8940 /* Determine the size of a pointer. */
acdb74a0 8941 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
8942 fprintf_unfiltered (file,
8943 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 8944 tdep->elf_flags);
4b9b3959 8945 fprintf_unfiltered (file,
acdb74a0
AC
8946 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
8947 ef_mips_32bitmode);
8948 fprintf_unfiltered (file,
8949 "mips_dump_tdep: ef_mips_arch = %d\n",
8950 ef_mips_arch);
8951 fprintf_unfiltered (file,
8952 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6d82d43b 8953 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
4014092b 8954 fprintf_unfiltered (file,
025bb325
MS
8955 "mips_dump_tdep: "
8956 "mips_mask_address_p() %d (default %d)\n",
480d3dd2 8957 mips_mask_address_p (tdep),
4014092b 8958 tdep->default_mask_address_p);
c2d11a7d 8959 }
4b9b3959
AC
8960 fprintf_unfiltered (file,
8961 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
8962 MIPS_DEFAULT_FPU_TYPE,
a4f320fd 8963 mips_fpu_type_str (MIPS_DEFAULT_FPU_TYPE));
74ed0bb4
MD
8964 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n",
8965 MIPS_EABI (gdbarch));
4b9b3959
AC
8966 fprintf_unfiltered (file,
8967 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
74ed0bb4 8968 MIPS_FPU_TYPE (gdbarch),
a4f320fd 8969 mips_fpu_type_str (MIPS_FPU_TYPE (gdbarch)));
c2d11a7d
JM
8970}
8971
c906108c 8972void
acdb74a0 8973_initialize_mips_tdep (void)
c906108c
SS
8974{
8975 static struct cmd_list_element *mipsfpulist = NULL;
c906108c 8976
6d82d43b 8977 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
2e4ebe70
DJ
8978 if (MIPS_ABI_LAST + 1
8979 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
e2e0b3e5 8980 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
2e4ebe70 8981
4b9b3959 8982 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c906108c 8983
8d5f9dcb
DJ
8984 mips_pdr_data = register_objfile_data ();
8985
4eb0ad19
DJ
8986 /* Create feature sets with the appropriate properties. The values
8987 are not important. */
8988 mips_tdesc_gp32 = allocate_target_description ();
8989 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
8990
8991 mips_tdesc_gp64 = allocate_target_description ();
8992 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
8993
025bb325 8994 /* Add root prefix command for all "set mips"/"show mips" commands. */
a5ea2558 8995 add_prefix_cmd ("mips", no_class, set_mips_command,
1bedd215 8996 _("Various MIPS specific commands."),
a5ea2558
AC
8997 &setmipscmdlist, "set mips ", 0, &setlist);
8998
8999 add_prefix_cmd ("mips", no_class, show_mips_command,
1bedd215 9000 _("Various MIPS specific commands."),
a5ea2558
AC
9001 &showmipscmdlist, "show mips ", 0, &showlist);
9002
025bb325 9003 /* Allow the user to override the ABI. */
7ab04401
AC
9004 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
9005 &mips_abi_string, _("\
9006Set the MIPS ABI used by this program."), _("\
9007Show the MIPS ABI used by this program."), _("\
9008This option can be set to one of:\n\
9009 auto - the default ABI associated with the current binary\n\
9010 o32\n\
9011 o64\n\
9012 n32\n\
9013 n64\n\
9014 eabi32\n\
9015 eabi64"),
9016 mips_abi_update,
9017 show_mips_abi,
9018 &setmipscmdlist, &showmipscmdlist);
2e4ebe70 9019
4cc0665f
MR
9020 /* Allow the user to set the ISA to assume for compressed code if ELF
9021 file flags don't tell or there is no program file selected. This
9022 setting is updated whenever unambiguous ELF file flags are interpreted,
9023 and carried over to subsequent sessions. */
9024 add_setshow_enum_cmd ("compression", class_obscure, mips_compression_strings,
9025 &mips_compression_string, _("\
9026Set the compressed ISA encoding used by MIPS code."), _("\
9027Show the compressed ISA encoding used by MIPS code."), _("\
9028Select the compressed ISA encoding used in functions that have no symbol\n\
9029information available. The encoding can be set to either of:\n\
9030 mips16\n\
9031 micromips\n\
9032and is updated automatically from ELF file flags if available."),
9033 mips_abi_update,
9034 show_mips_compression,
9035 &setmipscmdlist, &showmipscmdlist);
9036
c906108c
SS
9037 /* Let the user turn off floating point and set the fence post for
9038 heuristic_proc_start. */
9039
9040 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
1bedd215 9041 _("Set use of MIPS floating-point coprocessor."),
c906108c
SS
9042 &mipsfpulist, "set mipsfpu ", 0, &setlist);
9043 add_cmd ("single", class_support, set_mipsfpu_single_command,
1a966eab 9044 _("Select single-precision MIPS floating-point coprocessor."),
c906108c
SS
9045 &mipsfpulist);
9046 add_cmd ("double", class_support, set_mipsfpu_double_command,
1a966eab 9047 _("Select double-precision MIPS floating-point coprocessor."),
c906108c
SS
9048 &mipsfpulist);
9049 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
9050 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
9051 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
9052 add_cmd ("none", class_support, set_mipsfpu_none_command,
1a966eab 9053 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
c906108c
SS
9054 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
9055 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
9056 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
9057 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
1a966eab 9058 _("Select MIPS floating-point coprocessor automatically."),
c906108c
SS
9059 &mipsfpulist);
9060 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
1a966eab 9061 _("Show current use of MIPS floating-point coprocessor target."),
c906108c
SS
9062 &showlist);
9063
c906108c
SS
9064 /* We really would like to have both "0" and "unlimited" work, but
9065 command.c doesn't deal with that. So make it a var_zinteger
9066 because the user can always use "999999" or some such for unlimited. */
6bcadd06 9067 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
7915a72c
AC
9068 &heuristic_fence_post, _("\
9069Set the distance searched for the start of a function."), _("\
9070Show the distance searched for the start of a function."), _("\
c906108c
SS
9071If you are debugging a stripped executable, GDB needs to search through the\n\
9072program for the start of a function. This command sets the distance of the\n\
7915a72c 9073search. The only need to set it is when debugging a stripped executable."),
2c5b56ce 9074 reinit_frame_cache_sfunc,
025bb325
MS
9075 NULL, /* FIXME: i18n: The distance searched for
9076 the start of a function is %s. */
6bcadd06 9077 &setlist, &showlist);
c906108c
SS
9078
9079 /* Allow the user to control whether the upper bits of 64-bit
9080 addresses should be zeroed. */
7915a72c
AC
9081 add_setshow_auto_boolean_cmd ("mask-address", no_class,
9082 &mask_address_var, _("\
9083Set zeroing of upper 32 bits of 64-bit addresses."), _("\
9084Show zeroing of upper 32 bits of 64-bit addresses."), _("\
cce7e648 9085Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to\n\
7915a72c 9086allow GDB to determine the correct value."),
08546159
AC
9087 NULL, show_mask_address,
9088 &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
9089
9090 /* Allow the user to control the size of 32 bit registers within the
9091 raw remote packet. */
b3f42336 9092 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
7915a72c
AC
9093 &mips64_transfers_32bit_regs_p, _("\
9094Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9095 _("\
9096Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9097 _("\
719ec221
AC
9098Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
9099that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
7915a72c 910064 bits for others. Use \"off\" to disable compatibility mode"),
2c5b56ce 9101 set_mips64_transfers_32bit_regs,
025bb325
MS
9102 NULL, /* FIXME: i18n: Compatibility with 64-bit
9103 MIPS target that transfers 32-bit
9104 quantities is %s. */
7915a72c 9105 &setlist, &showlist);
9ace0497 9106
025bb325 9107 /* Debug this files internals. */
ccce17b0
YQ
9108 add_setshow_zuinteger_cmd ("mips", class_maintenance,
9109 &mips_debug, _("\
7915a72c
AC
9110Set mips debugging."), _("\
9111Show mips debugging."), _("\
9112When non-zero, mips specific debugging is enabled."),
ccce17b0
YQ
9113 NULL,
9114 NULL, /* FIXME: i18n: Mips debugging is
9115 currently %s. */
9116 &setdebuglist, &showdebuglist);
c906108c 9117}