]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/mips-tdep.c
gdb.dwarf2/dw4-sig-types.exp: Also pass -fdebug-types-section to gcc.
[thirdparty/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
32d0add0 3 Copyright (C) 1988-2015 Free Software Foundation, Inc.
bf64bfd6 4
c906108c
SS
5 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
6 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
c906108c
SS
24#include "frame.h"
25#include "inferior.h"
26#include "symtab.h"
27#include "value.h"
28#include "gdbcmd.h"
29#include "language.h"
30#include "gdbcore.h"
31#include "symfile.h"
32#include "objfiles.h"
33#include "gdbtypes.h"
34#include "target.h"
28d069e6 35#include "arch-utils.h"
4e052eda 36#include "regcache.h"
70f80edf 37#include "osabi.h"
d1973055 38#include "mips-tdep.h"
fe898f56 39#include "block.h"
a4b8ebc8 40#include "reggroups.h"
c906108c 41#include "opcode/mips.h"
c2d11a7d
JM
42#include "elf/mips.h"
43#include "elf-bfd.h"
2475bac3 44#include "symcat.h"
a4b8ebc8 45#include "sim-regno.h"
a89aa300 46#include "dis-asm.h"
edfae063
AC
47#include "frame-unwind.h"
48#include "frame-base.h"
49#include "trad-frame.h"
7d9b040b 50#include "infcall.h"
fed7ba43 51#include "floatformat.h"
29709017
DJ
52#include "remote.h"
53#include "target-descriptions.h"
2bd0c3d7 54#include "dwarf2-frame.h"
f8b73d13 55#include "user-regs.h"
79a45b7d 56#include "valprint.h"
175ff332 57#include "ax.h"
c906108c 58
8d5f9dcb
DJ
59static const struct objfile_data *mips_pdr_data;
60
5bbcb741 61static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
e0f7ec59 62
ab50adb6
MR
63static int mips32_instruction_has_delay_slot (struct gdbarch *gdbarch,
64 ULONGEST inst);
65static int micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32);
66static int mips16_instruction_has_delay_slot (unsigned short inst,
67 int mustbe32);
68
69static int mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
70 CORE_ADDR addr);
71static int micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
72 CORE_ADDR addr, int mustbe32);
73static int mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
74 CORE_ADDR addr, int mustbe32);
4cc0665f 75
1bab7383
YQ
76static void mips_print_float_info (struct gdbarch *, struct ui_file *,
77 struct frame_info *, const char *);
78
24e05951 79/* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
dd824b04
DJ
80/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
81#define ST0_FR (1 << 26)
82
b0069a17
AC
83/* The sizes of floating point registers. */
84
85enum
86{
87 MIPS_FPU_SINGLE_REGSIZE = 4,
88 MIPS_FPU_DOUBLE_REGSIZE = 8
89};
90
1a69e1e4
DJ
91enum
92{
93 MIPS32_REGSIZE = 4,
94 MIPS64_REGSIZE = 8
95};
0dadbba0 96
2e4ebe70
DJ
97static const char *mips_abi_string;
98
40478521 99static const char *const mips_abi_strings[] = {
2e4ebe70
DJ
100 "auto",
101 "n32",
102 "o32",
28d169de 103 "n64",
2e4ebe70
DJ
104 "o64",
105 "eabi32",
106 "eabi64",
107 NULL
108};
109
4cc0665f
MR
110/* For backwards compatibility we default to MIPS16. This flag is
111 overridden as soon as unambiguous ELF file flags tell us the
112 compressed ISA encoding used. */
113static const char mips_compression_mips16[] = "mips16";
114static const char mips_compression_micromips[] = "micromips";
115static const char *const mips_compression_strings[] =
116{
117 mips_compression_mips16,
118 mips_compression_micromips,
119 NULL
120};
121
122static const char *mips_compression_string = mips_compression_mips16;
123
f8b73d13
DJ
124/* The standard register names, and all the valid aliases for them. */
125struct register_alias
126{
127 const char *name;
128 int regnum;
129};
130
131/* Aliases for o32 and most other ABIs. */
132const struct register_alias mips_o32_aliases[] = {
133 { "ta0", 12 },
134 { "ta1", 13 },
135 { "ta2", 14 },
136 { "ta3", 15 }
137};
138
139/* Aliases for n32 and n64. */
140const struct register_alias mips_n32_n64_aliases[] = {
141 { "ta0", 8 },
142 { "ta1", 9 },
143 { "ta2", 10 },
144 { "ta3", 11 }
145};
146
147/* Aliases for ABI-independent registers. */
148const struct register_alias mips_register_aliases[] = {
149 /* The architecture manuals specify these ABI-independent names for
150 the GPRs. */
151#define R(n) { "r" #n, n }
152 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
153 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
154 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
155 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
156#undef R
157
158 /* k0 and k1 are sometimes called these instead (for "kernel
159 temp"). */
160 { "kt0", 26 },
161 { "kt1", 27 },
162
163 /* This is the traditional GDB name for the CP0 status register. */
164 { "sr", MIPS_PS_REGNUM },
165
166 /* This is the traditional GDB name for the CP0 BadVAddr register. */
167 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
168
169 /* This is the traditional GDB name for the FCSR. */
170 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
171};
172
865093a3
AR
173const struct register_alias mips_numeric_register_aliases[] = {
174#define R(n) { #n, n }
175 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
176 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
177 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
178 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
179#undef R
180};
181
c906108c
SS
182#ifndef MIPS_DEFAULT_FPU_TYPE
183#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
184#endif
185static int mips_fpu_type_auto = 1;
186static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 187
ccce17b0 188static unsigned int mips_debug = 0;
7a292a7a 189
29709017
DJ
190/* Properties (for struct target_desc) describing the g/G packet
191 layout. */
192#define PROPERTY_GP32 "internal: transfers-32bit-registers"
193#define PROPERTY_GP64 "internal: transfers-64bit-registers"
194
4eb0ad19
DJ
195struct target_desc *mips_tdesc_gp32;
196struct target_desc *mips_tdesc_gp64;
197
56cea623
AC
198const struct mips_regnum *
199mips_regnum (struct gdbarch *gdbarch)
200{
201 return gdbarch_tdep (gdbarch)->regnum;
202}
203
204static int
205mips_fpa0_regnum (struct gdbarch *gdbarch)
206{
207 return mips_regnum (gdbarch)->fp0 + 12;
208}
209
004159a2
MR
210/* Return 1 if REGNUM refers to a floating-point general register, raw
211 or cooked. Otherwise return 0. */
212
213static int
214mips_float_register_p (struct gdbarch *gdbarch, int regnum)
215{
216 int rawnum = regnum % gdbarch_num_regs (gdbarch);
217
218 return (rawnum >= mips_regnum (gdbarch)->fp0
219 && rawnum < mips_regnum (gdbarch)->fp0 + 32);
220}
221
74ed0bb4
MD
222#define MIPS_EABI(gdbarch) (gdbarch_tdep (gdbarch)->mips_abi \
223 == MIPS_ABI_EABI32 \
224 || gdbarch_tdep (gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 225
025bb325
MS
226#define MIPS_LAST_FP_ARG_REGNUM(gdbarch) \
227 (gdbarch_tdep (gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 228
025bb325
MS
229#define MIPS_LAST_ARG_REGNUM(gdbarch) \
230 (gdbarch_tdep (gdbarch)->mips_last_arg_regnum)
c2d11a7d 231
74ed0bb4 232#define MIPS_FPU_TYPE(gdbarch) (gdbarch_tdep (gdbarch)->mips_fpu_type)
c2d11a7d 233
d1973055
KB
234/* Return the MIPS ABI associated with GDBARCH. */
235enum mips_abi
236mips_abi (struct gdbarch *gdbarch)
237{
238 return gdbarch_tdep (gdbarch)->mips_abi;
239}
240
4246e332 241int
1b13c4f6 242mips_isa_regsize (struct gdbarch *gdbarch)
4246e332 243{
29709017
DJ
244 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
245
246 /* If we know how big the registers are, use that size. */
247 if (tdep->register_size_valid_p)
248 return tdep->register_size;
249
250 /* Fall back to the previous behavior. */
4246e332
AC
251 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
252 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
253}
254
025bb325 255/* Return the currently configured (or set) saved register size. */
480d3dd2 256
e6bc2e8a 257unsigned int
13326b4e 258mips_abi_regsize (struct gdbarch *gdbarch)
d929b26f 259{
1a69e1e4
DJ
260 switch (mips_abi (gdbarch))
261 {
262 case MIPS_ABI_EABI32:
263 case MIPS_ABI_O32:
264 return 4;
265 case MIPS_ABI_N32:
266 case MIPS_ABI_N64:
267 case MIPS_ABI_O64:
268 case MIPS_ABI_EABI64:
269 return 8;
270 case MIPS_ABI_UNKNOWN:
271 case MIPS_ABI_LAST:
272 default:
273 internal_error (__FILE__, __LINE__, _("bad switch"));
274 }
d929b26f
AC
275}
276
4cc0665f
MR
277/* MIPS16/microMIPS function addresses are odd (bit 0 is set). Here
278 are some functions to handle addresses associated with compressed
279 code including but not limited to testing, setting, or clearing
280 bit 0 of such addresses. */
742c84f6 281
4cc0665f
MR
282/* Return one iff compressed code is the MIPS16 instruction set. */
283
284static int
285is_mips16_isa (struct gdbarch *gdbarch)
286{
287 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MIPS16;
288}
289
290/* Return one iff compressed code is the microMIPS instruction set. */
291
292static int
293is_micromips_isa (struct gdbarch *gdbarch)
294{
295 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MICROMIPS;
296}
297
298/* Return one iff ADDR denotes compressed code. */
299
300static int
301is_compact_addr (CORE_ADDR addr)
742c84f6
MR
302{
303 return ((addr) & 1);
304}
305
4cc0665f
MR
306/* Return one iff ADDR denotes standard ISA code. */
307
308static int
309is_mips_addr (CORE_ADDR addr)
310{
311 return !is_compact_addr (addr);
312}
313
314/* Return one iff ADDR denotes MIPS16 code. */
315
316static int
317is_mips16_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
318{
319 return is_compact_addr (addr) && is_mips16_isa (gdbarch);
320}
321
322/* Return one iff ADDR denotes microMIPS code. */
323
324static int
325is_micromips_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
326{
327 return is_compact_addr (addr) && is_micromips_isa (gdbarch);
328}
329
330/* Strip the ISA (compression) bit off from ADDR. */
331
742c84f6 332static CORE_ADDR
4cc0665f 333unmake_compact_addr (CORE_ADDR addr)
742c84f6
MR
334{
335 return ((addr) & ~(CORE_ADDR) 1);
336}
337
4cc0665f
MR
338/* Add the ISA (compression) bit to ADDR. */
339
742c84f6 340static CORE_ADDR
4cc0665f 341make_compact_addr (CORE_ADDR addr)
742c84f6
MR
342{
343 return ((addr) | (CORE_ADDR) 1);
344}
345
3e29f34a
MR
346/* Extern version of unmake_compact_addr; we use a separate function
347 so that unmake_compact_addr can be inlined throughout this file. */
348
349CORE_ADDR
350mips_unmake_compact_addr (CORE_ADDR addr)
351{
352 return unmake_compact_addr (addr);
353}
354
71b8ef93 355/* Functions for setting and testing a bit in a minimal symbol that
4cc0665f
MR
356 marks it as MIPS16 or microMIPS function. The MSB of the minimal
357 symbol's "info" field is used for this purpose.
5a89d8aa 358
4cc0665f
MR
359 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is
360 "special", i.e. refers to a MIPS16 or microMIPS function, and sets
361 one of the "special" bits in a minimal symbol to mark it accordingly.
362 The test checks an ELF-private flag that is valid for true function
1bbce132
MR
363 symbols only; for synthetic symbols such as for PLT stubs that have
364 no ELF-private part at all the MIPS BFD backend arranges for this
365 information to be carried in the asymbol's udata field instead.
5a89d8aa 366
4cc0665f
MR
367 msymbol_is_mips16 and msymbol_is_micromips test the "special" bit
368 in a minimal symbol. */
5a89d8aa 369
5a89d8aa 370static void
6d82d43b
AC
371mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
372{
4cc0665f 373 elf_symbol_type *elfsym = (elf_symbol_type *) sym;
1bbce132 374 unsigned char st_other;
4cc0665f 375
1bbce132
MR
376 if ((sym->flags & BSF_SYNTHETIC) == 0)
377 st_other = elfsym->internal_elf_sym.st_other;
378 else if ((sym->flags & BSF_FUNCTION) != 0)
379 st_other = sym->udata.i;
380 else
4cc0665f
MR
381 return;
382
1bbce132 383 if (ELF_ST_IS_MICROMIPS (st_other))
3e29f34a 384 {
f161c171 385 MSYMBOL_TARGET_FLAG_MICROMIPS (msym) = 1;
3e29f34a
MR
386 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
387 }
1bbce132 388 else if (ELF_ST_IS_MIPS16 (st_other))
3e29f34a 389 {
f161c171 390 MSYMBOL_TARGET_FLAG_MIPS16 (msym) = 1;
3e29f34a
MR
391 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
392 }
4cc0665f
MR
393}
394
395/* Return one iff MSYM refers to standard ISA code. */
396
397static int
398msymbol_is_mips (struct minimal_symbol *msym)
399{
f161c171
MR
400 return !(MSYMBOL_TARGET_FLAG_MIPS16 (msym)
401 | MSYMBOL_TARGET_FLAG_MICROMIPS (msym));
5a89d8aa
MS
402}
403
4cc0665f
MR
404/* Return one iff MSYM refers to MIPS16 code. */
405
71b8ef93 406static int
4cc0665f 407msymbol_is_mips16 (struct minimal_symbol *msym)
71b8ef93 408{
f161c171 409 return MSYMBOL_TARGET_FLAG_MIPS16 (msym);
71b8ef93
MS
410}
411
4cc0665f
MR
412/* Return one iff MSYM refers to microMIPS code. */
413
414static int
415msymbol_is_micromips (struct minimal_symbol *msym)
416{
f161c171 417 return MSYMBOL_TARGET_FLAG_MICROMIPS (msym);
4cc0665f
MR
418}
419
3e29f34a
MR
420/* Set the ISA bit in the main symbol too, complementing the corresponding
421 minimal symbol setting and reflecting the run-time value of the symbol.
422 The need for comes from the ISA bit having been cleared as code in
423 `_bfd_mips_elf_symbol_processing' separated it into the ELF symbol's
424 `st_other' STO_MIPS16 or STO_MICROMIPS annotation, making the values
425 of symbols referring to compressed code different in GDB to the values
426 used by actual code. That in turn makes them evaluate incorrectly in
427 expressions, producing results different to what the same expressions
428 yield when compiled into the program being debugged. */
429
430static void
431mips_make_symbol_special (struct symbol *sym, struct objfile *objfile)
432{
433 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
434 {
435 /* We are in symbol reading so it is OK to cast away constness. */
436 struct block *block = (struct block *) SYMBOL_BLOCK_VALUE (sym);
437 CORE_ADDR compact_block_start;
438 struct bound_minimal_symbol msym;
439
440 compact_block_start = BLOCK_START (block) | 1;
441 msym = lookup_minimal_symbol_by_pc (compact_block_start);
442 if (msym.minsym && !msymbol_is_mips (msym.minsym))
443 {
444 BLOCK_START (block) = compact_block_start;
445 }
446 }
447}
448
88658117
AC
449/* XFER a value from the big/little/left end of the register.
450 Depending on the size of the value it might occupy the entire
451 register or just part of it. Make an allowance for this, aligning
452 things accordingly. */
453
454static void
ba32f989
DJ
455mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
456 int reg_num, int length,
870cd05e
MK
457 enum bfd_endian endian, gdb_byte *in,
458 const gdb_byte *out, int buf_offset)
88658117 459{
88658117 460 int reg_offset = 0;
72a155b4
UW
461
462 gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
cb1d2653
AC
463 /* Need to transfer the left or right part of the register, based on
464 the targets byte order. */
88658117
AC
465 switch (endian)
466 {
467 case BFD_ENDIAN_BIG:
72a155b4 468 reg_offset = register_size (gdbarch, reg_num) - length;
88658117
AC
469 break;
470 case BFD_ENDIAN_LITTLE:
471 reg_offset = 0;
472 break;
6d82d43b 473 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
88658117
AC
474 reg_offset = 0;
475 break;
476 default:
e2e0b3e5 477 internal_error (__FILE__, __LINE__, _("bad switch"));
88658117
AC
478 }
479 if (mips_debug)
cb1d2653
AC
480 fprintf_unfiltered (gdb_stderr,
481 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
482 reg_num, reg_offset, buf_offset, length);
88658117
AC
483 if (mips_debug && out != NULL)
484 {
485 int i;
cb1d2653 486 fprintf_unfiltered (gdb_stdlog, "out ");
88658117 487 for (i = 0; i < length; i++)
cb1d2653 488 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
88658117
AC
489 }
490 if (in != NULL)
6d82d43b
AC
491 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
492 in + buf_offset);
88658117 493 if (out != NULL)
6d82d43b
AC
494 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
495 out + buf_offset);
88658117
AC
496 if (mips_debug && in != NULL)
497 {
498 int i;
cb1d2653 499 fprintf_unfiltered (gdb_stdlog, "in ");
88658117 500 for (i = 0; i < length; i++)
cb1d2653 501 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
88658117
AC
502 }
503 if (mips_debug)
504 fprintf_unfiltered (gdb_stdlog, "\n");
505}
506
dd824b04
DJ
507/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
508 compatiblity mode. A return value of 1 means that we have
509 physical 64-bit registers, but should treat them as 32-bit registers. */
510
511static int
9c9acae0 512mips2_fp_compat (struct frame_info *frame)
dd824b04 513{
72a155b4 514 struct gdbarch *gdbarch = get_frame_arch (frame);
dd824b04
DJ
515 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
516 meaningful. */
72a155b4 517 if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
dd824b04
DJ
518 return 0;
519
520#if 0
521 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
522 in all the places we deal with FP registers. PR gdb/413. */
523 /* Otherwise check the FR bit in the status register - it controls
524 the FP compatiblity mode. If it is clear we are in compatibility
525 mode. */
9c9acae0 526 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
dd824b04
DJ
527 return 1;
528#endif
361d1df0 529
dd824b04
DJ
530 return 0;
531}
532
7a292a7a 533#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 534
74ed0bb4 535static CORE_ADDR heuristic_proc_start (struct gdbarch *, CORE_ADDR);
c906108c 536
a14ed312 537static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c 538
025bb325 539/* The list of available "set mips " and "show mips " commands. */
acdb74a0
AC
540
541static struct cmd_list_element *setmipscmdlist = NULL;
542static struct cmd_list_element *showmipscmdlist = NULL;
543
5e2e9765
KB
544/* Integer registers 0 thru 31 are handled explicitly by
545 mips_register_name(). Processor specific registers 32 and above
8a9fc081 546 are listed in the following tables. */
691c0433 547
6d82d43b
AC
548enum
549{ NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
691c0433
AC
550
551/* Generic MIPS. */
552
553static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
554 "sr", "lo", "hi", "bad", "cause", "pc",
555 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
556 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
557 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
558 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
1faeff08 559 "fsr", "fir",
691c0433
AC
560};
561
562/* Names of IDT R3041 registers. */
563
564static const char *mips_r3041_reg_names[] = {
6d82d43b
AC
565 "sr", "lo", "hi", "bad", "cause", "pc",
566 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
567 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
568 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
569 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
570 "fsr", "fir", "", /*"fp" */ "",
571 "", "", "bus", "ccfg", "", "", "", "",
572 "", "", "port", "cmp", "", "", "epc", "prid",
691c0433
AC
573};
574
575/* Names of tx39 registers. */
576
577static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
578 "sr", "lo", "hi", "bad", "cause", "pc",
579 "", "", "", "", "", "", "", "",
580 "", "", "", "", "", "", "", "",
581 "", "", "", "", "", "", "", "",
582 "", "", "", "", "", "", "", "",
583 "", "", "", "",
584 "", "", "", "", "", "", "", "",
1faeff08 585 "", "", "config", "cache", "debug", "depc", "epc",
691c0433
AC
586};
587
588/* Names of IRIX registers. */
589static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
590 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
591 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
592 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
593 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
594 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
691c0433
AC
595};
596
44099a67 597/* Names of registers with Linux kernels. */
1faeff08
MR
598static const char *mips_linux_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
599 "sr", "lo", "hi", "bad", "cause", "pc",
600 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
601 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
602 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
603 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
604 "fsr", "fir"
605};
606
cce74817 607
5e2e9765 608/* Return the name of the register corresponding to REGNO. */
5a89d8aa 609static const char *
d93859e2 610mips_register_name (struct gdbarch *gdbarch, int regno)
cce74817 611{
d93859e2 612 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5e2e9765
KB
613 /* GPR names for all ABIs other than n32/n64. */
614 static char *mips_gpr_names[] = {
6d82d43b
AC
615 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
616 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
617 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
618 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
5e2e9765
KB
619 };
620
621 /* GPR names for n32 and n64 ABIs. */
622 static char *mips_n32_n64_gpr_names[] = {
6d82d43b
AC
623 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
624 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
625 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
626 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
5e2e9765
KB
627 };
628
d93859e2 629 enum mips_abi abi = mips_abi (gdbarch);
5e2e9765 630
f57d151a 631 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
6229fbea
HZ
632 but then don't make the raw register names visible. This (upper)
633 range of user visible register numbers are the pseudo-registers.
634
635 This approach was adopted accommodate the following scenario:
636 It is possible to debug a 64-bit device using a 32-bit
637 programming model. In such instances, the raw registers are
638 configured to be 64-bits wide, while the pseudo registers are
639 configured to be 32-bits wide. The registers that the user
640 sees - the pseudo registers - match the users expectations
641 given the programming model being used. */
d93859e2
UW
642 int rawnum = regno % gdbarch_num_regs (gdbarch);
643 if (regno < gdbarch_num_regs (gdbarch))
a4b8ebc8
AC
644 return "";
645
5e2e9765
KB
646 /* The MIPS integer registers are always mapped from 0 to 31. The
647 names of the registers (which reflects the conventions regarding
648 register use) vary depending on the ABI. */
a4b8ebc8 649 if (0 <= rawnum && rawnum < 32)
5e2e9765
KB
650 {
651 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
a4b8ebc8 652 return mips_n32_n64_gpr_names[rawnum];
5e2e9765 653 else
a4b8ebc8 654 return mips_gpr_names[rawnum];
5e2e9765 655 }
d93859e2
UW
656 else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
657 return tdesc_register_name (gdbarch, rawnum);
658 else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
691c0433
AC
659 {
660 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
1faeff08
MR
661 if (tdep->mips_processor_reg_names[rawnum - 32])
662 return tdep->mips_processor_reg_names[rawnum - 32];
663 return "";
691c0433 664 }
5e2e9765
KB
665 else
666 internal_error (__FILE__, __LINE__,
e2e0b3e5 667 _("mips_register_name: bad register number %d"), rawnum);
cce74817 668}
5e2e9765 669
a4b8ebc8 670/* Return the groups that a MIPS register can be categorised into. */
c5aa993b 671
a4b8ebc8
AC
672static int
673mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
674 struct reggroup *reggroup)
675{
676 int vector_p;
677 int float_p;
678 int raw_p;
72a155b4
UW
679 int rawnum = regnum % gdbarch_num_regs (gdbarch);
680 int pseudo = regnum / gdbarch_num_regs (gdbarch);
a4b8ebc8
AC
681 if (reggroup == all_reggroup)
682 return pseudo;
683 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
684 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
685 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
686 (gdbarch), as not all architectures are multi-arch. */
72a155b4
UW
687 raw_p = rawnum < gdbarch_num_regs (gdbarch);
688 if (gdbarch_register_name (gdbarch, regnum) == NULL
689 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
a4b8ebc8
AC
690 return 0;
691 if (reggroup == float_reggroup)
692 return float_p && pseudo;
693 if (reggroup == vector_reggroup)
694 return vector_p && pseudo;
695 if (reggroup == general_reggroup)
696 return (!vector_p && !float_p) && pseudo;
697 /* Save the pseudo registers. Need to make certain that any code
698 extracting register values from a saved register cache also uses
699 pseudo registers. */
700 if (reggroup == save_reggroup)
701 return raw_p && pseudo;
702 /* Restore the same pseudo register. */
703 if (reggroup == restore_reggroup)
704 return raw_p && pseudo;
6d82d43b 705 return 0;
a4b8ebc8
AC
706}
707
f8b73d13
DJ
708/* Return the groups that a MIPS register can be categorised into.
709 This version is only used if we have a target description which
710 describes real registers (and their groups). */
711
712static int
713mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
714 struct reggroup *reggroup)
715{
716 int rawnum = regnum % gdbarch_num_regs (gdbarch);
717 int pseudo = regnum / gdbarch_num_regs (gdbarch);
718 int ret;
719
720 /* Only save, restore, and display the pseudo registers. Need to
721 make certain that any code extracting register values from a
722 saved register cache also uses pseudo registers.
723
724 Note: saving and restoring the pseudo registers is slightly
725 strange; if we have 64 bits, we should save and restore all
726 64 bits. But this is hard and has little benefit. */
727 if (!pseudo)
728 return 0;
729
730 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
731 if (ret != -1)
732 return ret;
733
734 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
735}
736
a4b8ebc8 737/* Map the symbol table registers which live in the range [1 *
f57d151a 738 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
47ebcfbe 739 registers. Take care of alignment and size problems. */
c5aa993b 740
05d1431c 741static enum register_status
a4b8ebc8 742mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
47a35522 743 int cookednum, gdb_byte *buf)
a4b8ebc8 744{
72a155b4
UW
745 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
746 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
747 && cookednum < 2 * gdbarch_num_regs (gdbarch));
47ebcfbe 748 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
05d1431c 749 return regcache_raw_read (regcache, rawnum, buf);
6d82d43b
AC
750 else if (register_size (gdbarch, rawnum) >
751 register_size (gdbarch, cookednum))
47ebcfbe 752 {
8bdf35dc 753 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
05d1431c 754 return regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
47ebcfbe 755 else
8bdf35dc
KB
756 {
757 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
758 LONGEST regval;
05d1431c
PA
759 enum register_status status;
760
761 status = regcache_raw_read_signed (regcache, rawnum, &regval);
762 if (status == REG_VALID)
763 store_signed_integer (buf, 4, byte_order, regval);
764 return status;
8bdf35dc 765 }
47ebcfbe
AC
766 }
767 else
e2e0b3e5 768 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8
AC
769}
770
771static void
6d82d43b
AC
772mips_pseudo_register_write (struct gdbarch *gdbarch,
773 struct regcache *regcache, int cookednum,
47a35522 774 const gdb_byte *buf)
a4b8ebc8 775{
72a155b4
UW
776 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
777 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
778 && cookednum < 2 * gdbarch_num_regs (gdbarch));
47ebcfbe 779 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
de38af99 780 regcache_raw_write (regcache, rawnum, buf);
6d82d43b
AC
781 else if (register_size (gdbarch, rawnum) >
782 register_size (gdbarch, cookednum))
47ebcfbe 783 {
8bdf35dc 784 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
47ebcfbe
AC
785 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
786 else
8bdf35dc
KB
787 {
788 /* Sign extend the shortened version of the register prior
789 to placing it in the raw register. This is required for
790 some mips64 parts in order to avoid unpredictable behavior. */
791 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
792 LONGEST regval = extract_signed_integer (buf, 4, byte_order);
793 regcache_raw_write_signed (regcache, rawnum, regval);
794 }
47ebcfbe
AC
795 }
796 else
e2e0b3e5 797 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8 798}
c5aa993b 799
175ff332
HZ
800static int
801mips_ax_pseudo_register_collect (struct gdbarch *gdbarch,
802 struct agent_expr *ax, int reg)
803{
804 int rawnum = reg % gdbarch_num_regs (gdbarch);
805 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
806 && reg < 2 * gdbarch_num_regs (gdbarch));
807
808 ax_reg_mask (ax, rawnum);
809
810 return 0;
811}
812
813static int
814mips_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
815 struct agent_expr *ax, int reg)
816{
817 int rawnum = reg % gdbarch_num_regs (gdbarch);
818 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
819 && reg < 2 * gdbarch_num_regs (gdbarch));
820 if (register_size (gdbarch, rawnum) >= register_size (gdbarch, reg))
821 {
822 ax_reg (ax, rawnum);
823
824 if (register_size (gdbarch, rawnum) > register_size (gdbarch, reg))
825 {
826 if (!gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
827 || gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
828 {
829 ax_const_l (ax, 32);
830 ax_simple (ax, aop_lsh);
831 }
832 ax_const_l (ax, 32);
833 ax_simple (ax, aop_rsh_signed);
834 }
835 }
836 else
837 internal_error (__FILE__, __LINE__, _("bad register size"));
838
839 return 0;
840}
841
4cc0665f 842/* Table to translate 3-bit register field to actual register number. */
d467df4e 843static const signed char mips_reg3_to_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
c906108c
SS
844
845/* Heuristic_proc_start may hunt through the text section for a long
846 time across a 2400 baud serial line. Allows the user to limit this
847 search. */
848
44096aee 849static int heuristic_fence_post = 0;
c906108c 850
46cd78fb 851/* Number of bytes of storage in the actual machine representation for
719ec221
AC
852 register N. NOTE: This defines the pseudo register type so need to
853 rebuild the architecture vector. */
43e526b9
JM
854
855static int mips64_transfers_32bit_regs_p = 0;
856
719ec221
AC
857static void
858set_mips64_transfers_32bit_regs (char *args, int from_tty,
859 struct cmd_list_element *c)
43e526b9 860{
719ec221
AC
861 struct gdbarch_info info;
862 gdbarch_info_init (&info);
863 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
864 instead of relying on globals. Doing that would let generic code
865 handle the search for this specific architecture. */
866 if (!gdbarch_update_p (info))
a4b8ebc8 867 {
719ec221 868 mips64_transfers_32bit_regs_p = 0;
8a3fe4f8 869 error (_("32-bit compatibility mode not supported"));
a4b8ebc8 870 }
a4b8ebc8
AC
871}
872
47ebcfbe 873/* Convert to/from a register and the corresponding memory value. */
43e526b9 874
ee51a8c7
KB
875/* This predicate tests for the case of an 8 byte floating point
876 value that is being transferred to or from a pair of floating point
877 registers each of which are (or are considered to be) only 4 bytes
878 wide. */
ff2e87ac 879static int
ee51a8c7
KB
880mips_convert_register_float_case_p (struct gdbarch *gdbarch, int regnum,
881 struct type *type)
ff2e87ac 882{
0abe36f5
MD
883 return (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
884 && register_size (gdbarch, regnum) == 4
004159a2 885 && mips_float_register_p (gdbarch, regnum)
6d82d43b 886 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
ff2e87ac
AC
887}
888
ee51a8c7
KB
889/* This predicate tests for the case of a value of less than 8
890 bytes in width that is being transfered to or from an 8 byte
891 general purpose register. */
892static int
893mips_convert_register_gpreg_case_p (struct gdbarch *gdbarch, int regnum,
894 struct type *type)
895{
896 int num_regs = gdbarch_num_regs (gdbarch);
897
898 return (register_size (gdbarch, regnum) == 8
899 && regnum % num_regs > 0 && regnum % num_regs < 32
900 && TYPE_LENGTH (type) < 8);
901}
902
903static int
025bb325
MS
904mips_convert_register_p (struct gdbarch *gdbarch,
905 int regnum, struct type *type)
ee51a8c7 906{
eaa05d59
MR
907 return (mips_convert_register_float_case_p (gdbarch, regnum, type)
908 || mips_convert_register_gpreg_case_p (gdbarch, regnum, type));
ee51a8c7
KB
909}
910
8dccd430 911static int
ff2e87ac 912mips_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
913 struct type *type, gdb_byte *to,
914 int *optimizedp, int *unavailablep)
102182a9 915{
ee51a8c7
KB
916 struct gdbarch *gdbarch = get_frame_arch (frame);
917
918 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
919 {
920 get_frame_register (frame, regnum + 0, to + 4);
921 get_frame_register (frame, regnum + 1, to + 0);
8dccd430
PA
922
923 if (!get_frame_register_bytes (frame, regnum + 0, 0, 4, to + 4,
924 optimizedp, unavailablep))
925 return 0;
926
927 if (!get_frame_register_bytes (frame, regnum + 1, 0, 4, to + 0,
928 optimizedp, unavailablep))
929 return 0;
930 *optimizedp = *unavailablep = 0;
931 return 1;
ee51a8c7
KB
932 }
933 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
934 {
935 int len = TYPE_LENGTH (type);
8dccd430
PA
936 CORE_ADDR offset;
937
938 offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 - len : 0;
939 if (!get_frame_register_bytes (frame, regnum, offset, len, to,
940 optimizedp, unavailablep))
941 return 0;
942
943 *optimizedp = *unavailablep = 0;
944 return 1;
ee51a8c7
KB
945 }
946 else
947 {
948 internal_error (__FILE__, __LINE__,
949 _("mips_register_to_value: unrecognized case"));
950 }
102182a9
MS
951}
952
42c466d7 953static void
ff2e87ac 954mips_value_to_register (struct frame_info *frame, int regnum,
47a35522 955 struct type *type, const gdb_byte *from)
102182a9 956{
ee51a8c7
KB
957 struct gdbarch *gdbarch = get_frame_arch (frame);
958
959 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
960 {
961 put_frame_register (frame, regnum + 0, from + 4);
962 put_frame_register (frame, regnum + 1, from + 0);
963 }
964 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
965 {
966 gdb_byte fill[8];
967 int len = TYPE_LENGTH (type);
968
969 /* Sign extend values, irrespective of type, that are stored to
970 a 64-bit general purpose register. (32-bit unsigned values
971 are stored as signed quantities within a 64-bit register.
972 When performing an operation, in compiled code, that combines
973 a 32-bit unsigned value with a signed 64-bit value, a type
974 conversion is first performed that zeroes out the high 32 bits.) */
975 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
976 {
977 if (from[0] & 0x80)
978 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, -1);
979 else
980 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, 0);
981 put_frame_register_bytes (frame, regnum, 0, 8 - len, fill);
982 put_frame_register_bytes (frame, regnum, 8 - len, len, from);
983 }
984 else
985 {
986 if (from[len-1] & 0x80)
987 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, -1);
988 else
989 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, 0);
990 put_frame_register_bytes (frame, regnum, 0, len, from);
991 put_frame_register_bytes (frame, regnum, len, 8 - len, fill);
992 }
993 }
994 else
995 {
996 internal_error (__FILE__, __LINE__,
997 _("mips_value_to_register: unrecognized case"));
998 }
102182a9
MS
999}
1000
a4b8ebc8
AC
1001/* Return the GDB type object for the "standard" data type of data in
1002 register REG. */
78fde5f8
KB
1003
1004static struct type *
a4b8ebc8
AC
1005mips_register_type (struct gdbarch *gdbarch, int regnum)
1006{
72a155b4 1007 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
004159a2 1008 if (mips_float_register_p (gdbarch, regnum))
a6425924 1009 {
5ef80fb0 1010 /* The floating-point registers raw, or cooked, always match
1b13c4f6 1011 mips_isa_regsize(), and also map 1:1, byte for byte. */
8da61cc4 1012 if (mips_isa_regsize (gdbarch) == 4)
27067745 1013 return builtin_type (gdbarch)->builtin_float;
8da61cc4 1014 else
27067745 1015 return builtin_type (gdbarch)->builtin_double;
a6425924 1016 }
72a155b4 1017 else if (regnum < gdbarch_num_regs (gdbarch))
d5ac5a39
AC
1018 {
1019 /* The raw or ISA registers. These are all sized according to
1020 the ISA regsize. */
1021 if (mips_isa_regsize (gdbarch) == 4)
df4df182 1022 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39 1023 else
df4df182 1024 return builtin_type (gdbarch)->builtin_int64;
d5ac5a39 1025 }
78fde5f8 1026 else
d5ac5a39 1027 {
1faeff08
MR
1028 int rawnum = regnum - gdbarch_num_regs (gdbarch);
1029
d5ac5a39
AC
1030 /* The cooked or ABI registers. These are sized according to
1031 the ABI (with a few complications). */
1faeff08
MR
1032 if (rawnum == mips_regnum (gdbarch)->fp_control_status
1033 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
1034 return builtin_type (gdbarch)->builtin_int32;
1035 else if (gdbarch_osabi (gdbarch) != GDB_OSABI_IRIX
1036 && gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1037 && rawnum >= MIPS_FIRST_EMBED_REGNUM
1038 && rawnum <= MIPS_LAST_EMBED_REGNUM)
d5ac5a39
AC
1039 /* The pseudo/cooked view of the embedded registers is always
1040 32-bit. The raw view is handled below. */
df4df182 1041 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39
AC
1042 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
1043 /* The target, while possibly using a 64-bit register buffer,
1044 is only transfering 32-bits of each integer register.
1045 Reflect this in the cooked/pseudo (ABI) register value. */
df4df182 1046 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39
AC
1047 else if (mips_abi_regsize (gdbarch) == 4)
1048 /* The ABI is restricted to 32-bit registers (the ISA could be
1049 32- or 64-bit). */
df4df182 1050 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39
AC
1051 else
1052 /* 64-bit ABI. */
df4df182 1053 return builtin_type (gdbarch)->builtin_int64;
d5ac5a39 1054 }
78fde5f8
KB
1055}
1056
f8b73d13
DJ
1057/* Return the GDB type for the pseudo register REGNUM, which is the
1058 ABI-level view. This function is only called if there is a target
1059 description which includes registers, so we know precisely the
1060 types of hardware registers. */
1061
1062static struct type *
1063mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
1064{
1065 const int num_regs = gdbarch_num_regs (gdbarch);
f8b73d13
DJ
1066 int rawnum = regnum % num_regs;
1067 struct type *rawtype;
1068
1069 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
1070
1071 /* Absent registers are still absent. */
1072 rawtype = gdbarch_register_type (gdbarch, rawnum);
1073 if (TYPE_LENGTH (rawtype) == 0)
1074 return rawtype;
1075
de13fcf2 1076 if (mips_float_register_p (gdbarch, rawnum))
f8b73d13
DJ
1077 /* Present the floating point registers however the hardware did;
1078 do not try to convert between FPU layouts. */
1079 return rawtype;
1080
f8b73d13
DJ
1081 /* Use pointer types for registers if we can. For n32 we can not,
1082 since we do not have a 64-bit pointer type. */
0dfff4cb
UW
1083 if (mips_abi_regsize (gdbarch)
1084 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr))
f8b73d13 1085 {
1faeff08
MR
1086 if (rawnum == MIPS_SP_REGNUM
1087 || rawnum == mips_regnum (gdbarch)->badvaddr)
0dfff4cb 1088 return builtin_type (gdbarch)->builtin_data_ptr;
1faeff08 1089 else if (rawnum == mips_regnum (gdbarch)->pc)
0dfff4cb 1090 return builtin_type (gdbarch)->builtin_func_ptr;
f8b73d13
DJ
1091 }
1092
1093 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
1faeff08
MR
1094 && ((rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_PS_REGNUM)
1095 || rawnum == mips_regnum (gdbarch)->lo
1096 || rawnum == mips_regnum (gdbarch)->hi
1097 || rawnum == mips_regnum (gdbarch)->badvaddr
1098 || rawnum == mips_regnum (gdbarch)->cause
1099 || rawnum == mips_regnum (gdbarch)->pc
1100 || (mips_regnum (gdbarch)->dspacc != -1
1101 && rawnum >= mips_regnum (gdbarch)->dspacc
1102 && rawnum < mips_regnum (gdbarch)->dspacc + 6)))
df4df182 1103 return builtin_type (gdbarch)->builtin_int32;
f8b73d13 1104
1faeff08
MR
1105 if (gdbarch_osabi (gdbarch) != GDB_OSABI_IRIX
1106 && gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1107 && rawnum >= MIPS_EMBED_FP0_REGNUM + 32
1108 && rawnum <= MIPS_LAST_EMBED_REGNUM)
1109 {
1110 /* The pseudo/cooked view of embedded registers is always
1111 32-bit, even if the target transfers 64-bit values for them.
1112 New targets relying on XML descriptions should only transfer
1113 the necessary 32 bits, but older versions of GDB expected 64,
1114 so allow the target to provide 64 bits without interfering
1115 with the displayed type. */
1116 return builtin_type (gdbarch)->builtin_int32;
1117 }
1118
f8b73d13
DJ
1119 /* For all other registers, pass through the hardware type. */
1120 return rawtype;
1121}
bcb0cc15 1122
025bb325 1123/* Should the upper word of 64-bit addresses be zeroed? */
7f19b9a2 1124enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
1125
1126static int
480d3dd2 1127mips_mask_address_p (struct gdbarch_tdep *tdep)
4014092b
AC
1128{
1129 switch (mask_address_var)
1130 {
7f19b9a2 1131 case AUTO_BOOLEAN_TRUE:
4014092b 1132 return 1;
7f19b9a2 1133 case AUTO_BOOLEAN_FALSE:
4014092b
AC
1134 return 0;
1135 break;
7f19b9a2 1136 case AUTO_BOOLEAN_AUTO:
480d3dd2 1137 return tdep->default_mask_address_p;
4014092b 1138 default:
025bb325
MS
1139 internal_error (__FILE__, __LINE__,
1140 _("mips_mask_address_p: bad switch"));
4014092b 1141 return -1;
361d1df0 1142 }
4014092b
AC
1143}
1144
1145static void
08546159
AC
1146show_mask_address (struct ui_file *file, int from_tty,
1147 struct cmd_list_element *c, const char *value)
4014092b 1148{
f5656ead 1149 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
08546159
AC
1150
1151 deprecated_show_value_hack (file, from_tty, c, value);
4014092b
AC
1152 switch (mask_address_var)
1153 {
7f19b9a2 1154 case AUTO_BOOLEAN_TRUE:
4014092b
AC
1155 printf_filtered ("The 32 bit mips address mask is enabled\n");
1156 break;
7f19b9a2 1157 case AUTO_BOOLEAN_FALSE:
4014092b
AC
1158 printf_filtered ("The 32 bit mips address mask is disabled\n");
1159 break;
7f19b9a2 1160 case AUTO_BOOLEAN_AUTO:
6d82d43b
AC
1161 printf_filtered
1162 ("The 32 bit address mask is set automatically. Currently %s\n",
1163 mips_mask_address_p (tdep) ? "enabled" : "disabled");
4014092b
AC
1164 break;
1165 default:
e2e0b3e5 1166 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
4014092b 1167 break;
361d1df0 1168 }
4014092b 1169}
c906108c 1170
4cc0665f
MR
1171/* Tell if the program counter value in MEMADDR is in a standard ISA
1172 function. */
1173
1174int
1175mips_pc_is_mips (CORE_ADDR memaddr)
1176{
7cbd4a93 1177 struct bound_minimal_symbol sym;
4cc0665f
MR
1178
1179 /* Flags indicating that this is a MIPS16 or microMIPS function is
1180 stored by elfread.c in the high bit of the info field. Use this
1181 to decide if the function is standard MIPS. Otherwise if bit 0
1182 of the address is clear, then this is a standard MIPS function. */
3e29f34a 1183 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
7cbd4a93
TT
1184 if (sym.minsym)
1185 return msymbol_is_mips (sym.minsym);
4cc0665f
MR
1186 else
1187 return is_mips_addr (memaddr);
1188}
1189
c906108c
SS
1190/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
1191
0fe7e7c8 1192int
4cc0665f 1193mips_pc_is_mips16 (struct gdbarch *gdbarch, CORE_ADDR memaddr)
c906108c 1194{
7cbd4a93 1195 struct bound_minimal_symbol sym;
c906108c 1196
91912e4d
MR
1197 /* A flag indicating that this is a MIPS16 function is stored by
1198 elfread.c in the high bit of the info field. Use this to decide
4cc0665f
MR
1199 if the function is MIPS16. Otherwise if bit 0 of the address is
1200 set, then ELF file flags will tell if this is a MIPS16 function. */
3e29f34a 1201 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
7cbd4a93
TT
1202 if (sym.minsym)
1203 return msymbol_is_mips16 (sym.minsym);
4cc0665f
MR
1204 else
1205 return is_mips16_addr (gdbarch, memaddr);
1206}
1207
1208/* Tell if the program counter value in MEMADDR is in a microMIPS function. */
1209
1210int
1211mips_pc_is_micromips (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1212{
7cbd4a93 1213 struct bound_minimal_symbol sym;
4cc0665f
MR
1214
1215 /* A flag indicating that this is a microMIPS function is stored by
1216 elfread.c in the high bit of the info field. Use this to decide
1217 if the function is microMIPS. Otherwise if bit 0 of the address
1218 is set, then ELF file flags will tell if this is a microMIPS
1219 function. */
3e29f34a 1220 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
7cbd4a93
TT
1221 if (sym.minsym)
1222 return msymbol_is_micromips (sym.minsym);
4cc0665f
MR
1223 else
1224 return is_micromips_addr (gdbarch, memaddr);
1225}
1226
1227/* Tell the ISA type of the function the program counter value in MEMADDR
1228 is in. */
1229
1230static enum mips_isa
1231mips_pc_isa (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1232{
7cbd4a93 1233 struct bound_minimal_symbol sym;
4cc0665f
MR
1234
1235 /* A flag indicating that this is a MIPS16 or a microMIPS function
1236 is stored by elfread.c in the high bit of the info field. Use
1237 this to decide if the function is MIPS16 or microMIPS or normal
1238 MIPS. Otherwise if bit 0 of the address is set, then ELF file
1239 flags will tell if this is a MIPS16 or a microMIPS function. */
3e29f34a 1240 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
7cbd4a93 1241 if (sym.minsym)
4cc0665f 1242 {
7cbd4a93 1243 if (msymbol_is_micromips (sym.minsym))
4cc0665f 1244 return ISA_MICROMIPS;
7cbd4a93 1245 else if (msymbol_is_mips16 (sym.minsym))
4cc0665f
MR
1246 return ISA_MIPS16;
1247 else
1248 return ISA_MIPS;
1249 }
c906108c 1250 else
4cc0665f
MR
1251 {
1252 if (is_mips_addr (memaddr))
1253 return ISA_MIPS;
1254 else if (is_micromips_addr (gdbarch, memaddr))
1255 return ISA_MICROMIPS;
1256 else
1257 return ISA_MIPS16;
1258 }
c906108c
SS
1259}
1260
3e29f34a
MR
1261/* Set the ISA bit correctly in the PC, used by DWARF-2 machinery.
1262 The need for comes from the ISA bit having been cleared, making
1263 addresses in FDE, range records, etc. referring to compressed code
1264 different to those in line information, the symbol table and finally
1265 the PC register. That in turn confuses many operations. */
1266
1267static CORE_ADDR
1268mips_adjust_dwarf2_addr (CORE_ADDR pc)
1269{
1270 pc = unmake_compact_addr (pc);
1271 return mips_pc_is_mips (pc) ? pc : make_compact_addr (pc);
1272}
1273
1274/* Recalculate the line record requested so that the resulting PC has
1275 the ISA bit set correctly, used by DWARF-2 machinery. The need for
1276 this adjustment comes from some records associated with compressed
1277 code having the ISA bit cleared, most notably at function prologue
1278 ends. The ISA bit is in this context retrieved from the minimal
1279 symbol covering the address requested, which in turn has been
1280 constructed from the binary's symbol table rather than DWARF-2
1281 information. The correct setting of the ISA bit is required for
1282 breakpoint addresses to correctly match against the stop PC.
1283
1284 As line entries can specify relative address adjustments we need to
1285 keep track of the absolute value of the last line address recorded
1286 in line information, so that we can calculate the actual address to
1287 apply the ISA bit adjustment to. We use PC for this tracking and
1288 keep the original address there.
1289
1290 As such relative address adjustments can be odd within compressed
1291 code we need to keep track of the last line address with the ISA
1292 bit adjustment applied too, as the original address may or may not
1293 have had the ISA bit set. We use ADJ_PC for this tracking and keep
1294 the adjusted address there.
1295
1296 For relative address adjustments we then use these variables to
1297 calculate the address intended by line information, which will be
1298 PC-relative, and return an updated adjustment carrying ISA bit
1299 information, which will be ADJ_PC-relative. For absolute address
1300 adjustments we just return the same address that we store in ADJ_PC
1301 too.
1302
1303 As the first line entry can be relative to an implied address value
1304 of 0 we need to have the initial address set up that we store in PC
1305 and ADJ_PC. This is arranged with a call from `dwarf_decode_lines_1'
1306 that sets PC to 0 and ADJ_PC accordingly, usually 0 as well. */
1307
1308static CORE_ADDR
1309mips_adjust_dwarf2_line (CORE_ADDR addr, int rel)
1310{
1311 static CORE_ADDR adj_pc;
1312 static CORE_ADDR pc;
1313 CORE_ADDR isa_pc;
1314
1315 pc = rel ? pc + addr : addr;
1316 isa_pc = mips_adjust_dwarf2_addr (pc);
1317 addr = rel ? isa_pc - adj_pc : isa_pc;
1318 adj_pc = isa_pc;
1319 return addr;
1320}
1321
14132e89
MR
1322/* Various MIPS16 thunk (aka stub or trampoline) names. */
1323
1324static const char mips_str_mips16_call_stub[] = "__mips16_call_stub_";
1325static const char mips_str_mips16_ret_stub[] = "__mips16_ret_";
1326static const char mips_str_call_fp_stub[] = "__call_stub_fp_";
1327static const char mips_str_call_stub[] = "__call_stub_";
1328static const char mips_str_fn_stub[] = "__fn_stub_";
1329
1330/* This is used as a PIC thunk prefix. */
1331
1332static const char mips_str_pic[] = ".pic.";
1333
1334/* Return non-zero if the PC is inside a call thunk (aka stub or
1335 trampoline) that should be treated as a temporary frame. */
1336
1337static int
1338mips_in_frame_stub (CORE_ADDR pc)
1339{
1340 CORE_ADDR start_addr;
1341 const char *name;
1342
1343 /* Find the starting address of the function containing the PC. */
1344 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
1345 return 0;
1346
1347 /* If the PC is in __mips16_call_stub_*, this is a call/return stub. */
1348 if (strncmp (name, mips_str_mips16_call_stub,
1349 strlen (mips_str_mips16_call_stub)) == 0)
1350 return 1;
1351 /* If the PC is in __call_stub_*, this is a call/return or a call stub. */
1352 if (strncmp (name, mips_str_call_stub, strlen (mips_str_call_stub)) == 0)
1353 return 1;
1354 /* If the PC is in __fn_stub_*, this is a call stub. */
1355 if (strncmp (name, mips_str_fn_stub, strlen (mips_str_fn_stub)) == 0)
1356 return 1;
1357
1358 return 0; /* Not a stub. */
1359}
1360
b2fa5097 1361/* MIPS believes that the PC has a sign extended value. Perhaps the
025bb325 1362 all registers should be sign extended for simplicity? */
6c997a34
AC
1363
1364static CORE_ADDR
61a1198a 1365mips_read_pc (struct regcache *regcache)
6c997a34 1366{
8376de04 1367 int regnum = gdbarch_pc_regnum (get_regcache_arch (regcache));
70242eb1 1368 LONGEST pc;
8376de04 1369
61a1198a
UW
1370 regcache_cooked_read_signed (regcache, regnum, &pc);
1371 return pc;
b6cb9035
AC
1372}
1373
58dfe9ff
AC
1374static CORE_ADDR
1375mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1376{
14132e89 1377 CORE_ADDR pc;
930bd0e0 1378
8376de04 1379 pc = frame_unwind_register_signed (next_frame, gdbarch_pc_regnum (gdbarch));
14132e89
MR
1380 /* macro/2012-04-20: This hack skips over MIPS16 call thunks as
1381 intermediate frames. In this case we can get the caller's address
1382 from $ra, or if $ra contains an address within a thunk as well, then
1383 it must be in the return path of __mips16_call_stub_{s,d}{f,c}_{0..10}
1384 and thus the caller's address is in $s2. */
1385 if (frame_relative_level (next_frame) >= 0 && mips_in_frame_stub (pc))
1386 {
1387 pc = frame_unwind_register_signed
1388 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
14132e89 1389 if (mips_in_frame_stub (pc))
3e29f34a
MR
1390 pc = frame_unwind_register_signed
1391 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
14132e89 1392 }
930bd0e0 1393 return pc;
edfae063
AC
1394}
1395
30244cd8
UW
1396static CORE_ADDR
1397mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1398{
72a155b4
UW
1399 return frame_unwind_register_signed
1400 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
30244cd8
UW
1401}
1402
b8a22b94 1403/* Assuming THIS_FRAME is a dummy, return the frame ID of that
edfae063
AC
1404 dummy frame. The frame ID's base needs to match the TOS value
1405 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1406 breakpoint. */
1407
1408static struct frame_id
b8a22b94 1409mips_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
edfae063 1410{
f57d151a 1411 return frame_id_build
b8a22b94
DJ
1412 (get_frame_register_signed (this_frame,
1413 gdbarch_num_regs (gdbarch)
1414 + MIPS_SP_REGNUM),
1415 get_frame_pc (this_frame));
58dfe9ff
AC
1416}
1417
5a439849
MR
1418/* Implement the "write_pc" gdbarch method. */
1419
1420void
61a1198a 1421mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
b6cb9035 1422{
8376de04
MR
1423 int regnum = gdbarch_pc_regnum (get_regcache_arch (regcache));
1424
3e29f34a 1425 regcache_cooked_write_unsigned (regcache, regnum, pc);
6c997a34 1426}
c906108c 1427
4cc0665f
MR
1428/* Fetch and return instruction from the specified location. Handle
1429 MIPS16/microMIPS as appropriate. */
c906108c 1430
d37cca3d 1431static ULONGEST
4cc0665f
MR
1432mips_fetch_instruction (struct gdbarch *gdbarch,
1433 enum mips_isa isa, CORE_ADDR addr, int *statusp)
c906108c 1434{
e17a4113 1435 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
47a35522 1436 gdb_byte buf[MIPS_INSN32_SIZE];
c906108c
SS
1437 int instlen;
1438 int status;
1439
4cc0665f 1440 switch (isa)
c906108c 1441 {
4cc0665f
MR
1442 case ISA_MICROMIPS:
1443 case ISA_MIPS16:
95ac2dcf 1444 instlen = MIPS_INSN16_SIZE;
4cc0665f
MR
1445 addr = unmake_compact_addr (addr);
1446 break;
1447 case ISA_MIPS:
1448 instlen = MIPS_INSN32_SIZE;
1449 break;
1450 default:
1451 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1452 break;
c906108c 1453 }
8defab1a 1454 status = target_read_memory (addr, buf, instlen);
4cc0665f
MR
1455 if (statusp != NULL)
1456 *statusp = status;
c906108c 1457 if (status)
4cc0665f
MR
1458 {
1459 if (statusp == NULL)
1460 memory_error (status, addr);
1461 return 0;
1462 }
e17a4113 1463 return extract_unsigned_integer (buf, instlen, byte_order);
c906108c
SS
1464}
1465
025bb325 1466/* These are the fields of 32 bit mips instructions. */
e135b889
DJ
1467#define mips32_op(x) (x >> 26)
1468#define itype_op(x) (x >> 26)
1469#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 1470#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 1471#define itype_immediate(x) (x & 0xffff)
c906108c 1472
e135b889
DJ
1473#define jtype_op(x) (x >> 26)
1474#define jtype_target(x) (x & 0x03ffffff)
c906108c 1475
e135b889
DJ
1476#define rtype_op(x) (x >> 26)
1477#define rtype_rs(x) ((x >> 21) & 0x1f)
1478#define rtype_rt(x) ((x >> 16) & 0x1f)
1479#define rtype_rd(x) ((x >> 11) & 0x1f)
1480#define rtype_shamt(x) ((x >> 6) & 0x1f)
1481#define rtype_funct(x) (x & 0x3f)
c906108c 1482
4cc0665f
MR
1483/* MicroMIPS instruction fields. */
1484#define micromips_op(x) ((x) >> 10)
1485
1486/* 16-bit/32-bit-high-part instruction formats, B and S refer to the lowest
1487 bit and the size respectively of the field extracted. */
1488#define b0s4_imm(x) ((x) & 0xf)
1489#define b0s5_imm(x) ((x) & 0x1f)
1490#define b0s5_reg(x) ((x) & 0x1f)
1491#define b0s7_imm(x) ((x) & 0x7f)
1492#define b0s10_imm(x) ((x) & 0x3ff)
1493#define b1s4_imm(x) (((x) >> 1) & 0xf)
1494#define b1s9_imm(x) (((x) >> 1) & 0x1ff)
1495#define b2s3_cc(x) (((x) >> 2) & 0x7)
1496#define b4s2_regl(x) (((x) >> 4) & 0x3)
1497#define b5s5_op(x) (((x) >> 5) & 0x1f)
1498#define b5s5_reg(x) (((x) >> 5) & 0x1f)
1499#define b6s4_op(x) (((x) >> 6) & 0xf)
1500#define b7s3_reg(x) (((x) >> 7) & 0x7)
1501
1502/* 32-bit instruction formats, B and S refer to the lowest bit and the size
1503 respectively of the field extracted. */
1504#define b0s6_op(x) ((x) & 0x3f)
1505#define b0s11_op(x) ((x) & 0x7ff)
1506#define b0s12_imm(x) ((x) & 0xfff)
1507#define b0s16_imm(x) ((x) & 0xffff)
1508#define b0s26_imm(x) ((x) & 0x3ffffff)
1509#define b6s10_ext(x) (((x) >> 6) & 0x3ff)
1510#define b11s5_reg(x) (((x) >> 11) & 0x1f)
1511#define b12s4_op(x) (((x) >> 12) & 0xf)
1512
1513/* Return the size in bytes of the instruction INSN encoded in the ISA
1514 instruction set. */
1515
1516static int
1517mips_insn_size (enum mips_isa isa, ULONGEST insn)
1518{
1519 switch (isa)
1520 {
1521 case ISA_MICROMIPS:
1522 if (micromips_op (insn) == 0x1f)
1523 return 3 * MIPS_INSN16_SIZE;
1524 else if (((micromips_op (insn) & 0x4) == 0x4)
1525 || ((micromips_op (insn) & 0x7) == 0x0))
1526 return 2 * MIPS_INSN16_SIZE;
1527 else
1528 return MIPS_INSN16_SIZE;
1529 case ISA_MIPS16:
1530 if ((insn & 0xf800) == 0xf000)
1531 return 2 * MIPS_INSN16_SIZE;
1532 else
1533 return MIPS_INSN16_SIZE;
1534 case ISA_MIPS:
1535 return MIPS_INSN32_SIZE;
1536 }
1537 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1538}
1539
06987e64
MK
1540static LONGEST
1541mips32_relative_offset (ULONGEST inst)
c5aa993b 1542{
06987e64 1543 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
c906108c
SS
1544}
1545
a385295e
MR
1546/* Determine the address of the next instruction executed after the INST
1547 floating condition branch instruction at PC. COUNT specifies the
1548 number of the floating condition bits tested by the branch. */
1549
1550static CORE_ADDR
1551mips32_bc1_pc (struct gdbarch *gdbarch, struct frame_info *frame,
1552 ULONGEST inst, CORE_ADDR pc, int count)
1553{
1554 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1555 int cnum = (itype_rt (inst) >> 2) & (count - 1);
1556 int tf = itype_rt (inst) & 1;
1557 int mask = (1 << count) - 1;
1558 ULONGEST fcs;
1559 int cond;
1560
1561 if (fcsr == -1)
1562 /* No way to handle; it'll most likely trap anyway. */
1563 return pc;
1564
1565 fcs = get_frame_register_unsigned (frame, fcsr);
1566 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1567
1568 if (((cond >> cnum) & mask) != mask * !tf)
1569 pc += mips32_relative_offset (inst);
1570 else
1571 pc += 4;
1572
1573 return pc;
1574}
1575
f94363d7
AP
1576/* Return nonzero if the gdbarch is an Octeon series. */
1577
1578static int
1579is_octeon (struct gdbarch *gdbarch)
1580{
1581 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
1582
1583 return (info->mach == bfd_mach_mips_octeon
1584 || info->mach == bfd_mach_mips_octeonp
1585 || info->mach == bfd_mach_mips_octeon2);
1586}
1587
1588/* Return true if the OP represents the Octeon's BBIT instruction. */
1589
1590static int
1591is_octeon_bbit_op (int op, struct gdbarch *gdbarch)
1592{
1593 if (!is_octeon (gdbarch))
1594 return 0;
1595 /* BBIT0 is encoded as LWC2: 110 010. */
1596 /* BBIT032 is encoded as LDC2: 110 110. */
1597 /* BBIT1 is encoded as SWC2: 111 010. */
1598 /* BBIT132 is encoded as SDC2: 111 110. */
1599 if (op == 50 || op == 54 || op == 58 || op == 62)
1600 return 1;
1601 return 0;
1602}
1603
1604
f49e4e6d
MS
1605/* Determine where to set a single step breakpoint while considering
1606 branch prediction. */
78a59c2f 1607
5a89d8aa 1608static CORE_ADDR
0b1b3e42 1609mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
c5aa993b 1610{
e17a4113 1611 struct gdbarch *gdbarch = get_frame_arch (frame);
c5aa993b
JM
1612 unsigned long inst;
1613 int op;
4cc0665f 1614 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
4f5bcb50 1615 op = itype_op (inst);
025bb325
MS
1616 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch
1617 instruction. */
c5aa993b 1618 {
4f5bcb50 1619 if (op >> 2 == 5)
6d82d43b 1620 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 1621 {
4f5bcb50 1622 switch (op & 0x03)
c906108c 1623 {
e135b889
DJ
1624 case 0: /* BEQL */
1625 goto equal_branch;
1626 case 1: /* BNEL */
1627 goto neq_branch;
1628 case 2: /* BLEZL */
1629 goto less_branch;
313628cc 1630 case 3: /* BGTZL */
e135b889 1631 goto greater_branch;
c5aa993b
JM
1632 default:
1633 pc += 4;
c906108c
SS
1634 }
1635 }
4f5bcb50 1636 else if (op == 17 && itype_rs (inst) == 8)
6d82d43b 1637 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
a385295e 1638 pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 1);
4f5bcb50 1639 else if (op == 17 && itype_rs (inst) == 9
a385295e
MR
1640 && (itype_rt (inst) & 2) == 0)
1641 /* BC1ANY2F, BC1ANY2T: 010001 01001 xxx0x */
1642 pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 2);
4f5bcb50 1643 else if (op == 17 && itype_rs (inst) == 10
a385295e
MR
1644 && (itype_rt (inst) & 2) == 0)
1645 /* BC1ANY4F, BC1ANY4T: 010001 01010 xxx0x */
1646 pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 4);
4f5bcb50 1647 else if (op == 29)
9e8da49c
MR
1648 /* JALX: 011101 */
1649 /* The new PC will be alternate mode. */
1650 {
1651 unsigned long reg;
1652
1653 reg = jtype_target (inst) << 2;
1654 /* Add 1 to indicate 16-bit mode -- invert ISA mode. */
1655 pc = ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + reg + 1;
1656 }
f94363d7
AP
1657 else if (is_octeon_bbit_op (op, gdbarch))
1658 {
1659 int bit, branch_if;
1660
1661 branch_if = op == 58 || op == 62;
1662 bit = itype_rt (inst);
1663
1664 /* Take into account the *32 instructions. */
1665 if (op == 54 || op == 62)
1666 bit += 32;
1667
1668 if (((get_frame_register_signed (frame,
1669 itype_rs (inst)) >> bit) & 1)
1670 == branch_if)
1671 pc += mips32_relative_offset (inst) + 4;
1672 else
1673 pc += 8; /* After the delay slot. */
1674 }
1675
c5aa993b 1676 else
025bb325 1677 pc += 4; /* Not a branch, next instruction is easy. */
c906108c
SS
1678 }
1679 else
025bb325 1680 { /* This gets way messy. */
c5aa993b 1681
025bb325 1682 /* Further subdivide into SPECIAL, REGIMM and other. */
4f5bcb50 1683 switch (op & 0x07) /* Extract bits 28,27,26. */
c906108c 1684 {
c5aa993b
JM
1685 case 0: /* SPECIAL */
1686 op = rtype_funct (inst);
1687 switch (op)
1688 {
1689 case 8: /* JR */
1690 case 9: /* JALR */
025bb325 1691 /* Set PC to that address. */
0b1b3e42 1692 pc = get_frame_register_signed (frame, rtype_rs (inst));
c5aa993b 1693 break;
e38d4e1a
DJ
1694 case 12: /* SYSCALL */
1695 {
1696 struct gdbarch_tdep *tdep;
1697
1698 tdep = gdbarch_tdep (get_frame_arch (frame));
1699 if (tdep->syscall_next_pc != NULL)
1700 pc = tdep->syscall_next_pc (frame);
1701 else
1702 pc += 4;
1703 }
1704 break;
c5aa993b
JM
1705 default:
1706 pc += 4;
1707 }
1708
6d82d43b 1709 break; /* end SPECIAL */
025bb325 1710 case 1: /* REGIMM */
c906108c 1711 {
e135b889
DJ
1712 op = itype_rt (inst); /* branch condition */
1713 switch (op)
c906108c 1714 {
c5aa993b 1715 case 0: /* BLTZ */
e135b889
DJ
1716 case 2: /* BLTZL */
1717 case 16: /* BLTZAL */
c5aa993b 1718 case 18: /* BLTZALL */
c906108c 1719 less_branch:
0b1b3e42 1720 if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
c5aa993b
JM
1721 pc += mips32_relative_offset (inst) + 4;
1722 else
1723 pc += 8; /* after the delay slot */
1724 break;
e135b889 1725 case 1: /* BGEZ */
c5aa993b
JM
1726 case 3: /* BGEZL */
1727 case 17: /* BGEZAL */
1728 case 19: /* BGEZALL */
0b1b3e42 1729 if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
c5aa993b
JM
1730 pc += mips32_relative_offset (inst) + 4;
1731 else
1732 pc += 8; /* after the delay slot */
1733 break;
a385295e
MR
1734 case 0x1c: /* BPOSGE32 */
1735 case 0x1e: /* BPOSGE64 */
1736 pc += 4;
1737 if (itype_rs (inst) == 0)
1738 {
1739 unsigned int pos = (op & 2) ? 64 : 32;
1740 int dspctl = mips_regnum (gdbarch)->dspctl;
1741
1742 if (dspctl == -1)
1743 /* No way to handle; it'll most likely trap anyway. */
1744 break;
1745
1746 if ((get_frame_register_unsigned (frame,
1747 dspctl) & 0x7f) >= pos)
1748 pc += mips32_relative_offset (inst);
1749 else
1750 pc += 4;
1751 }
1752 break;
e135b889 1753 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
1754 default:
1755 pc += 4;
c906108c
SS
1756 }
1757 }
6d82d43b 1758 break; /* end REGIMM */
c5aa993b
JM
1759 case 2: /* J */
1760 case 3: /* JAL */
1761 {
1762 unsigned long reg;
1763 reg = jtype_target (inst) << 2;
025bb325 1764 /* Upper four bits get never changed... */
5b652102 1765 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
c906108c 1766 }
c5aa993b 1767 break;
e135b889 1768 case 4: /* BEQ, BEQL */
c5aa993b 1769 equal_branch:
0b1b3e42
UW
1770 if (get_frame_register_signed (frame, itype_rs (inst)) ==
1771 get_frame_register_signed (frame, itype_rt (inst)))
c5aa993b
JM
1772 pc += mips32_relative_offset (inst) + 4;
1773 else
1774 pc += 8;
1775 break;
e135b889 1776 case 5: /* BNE, BNEL */
c5aa993b 1777 neq_branch:
0b1b3e42
UW
1778 if (get_frame_register_signed (frame, itype_rs (inst)) !=
1779 get_frame_register_signed (frame, itype_rt (inst)))
c5aa993b
JM
1780 pc += mips32_relative_offset (inst) + 4;
1781 else
1782 pc += 8;
1783 break;
e135b889 1784 case 6: /* BLEZ, BLEZL */
0b1b3e42 1785 if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
c5aa993b
JM
1786 pc += mips32_relative_offset (inst) + 4;
1787 else
1788 pc += 8;
1789 break;
1790 case 7:
e135b889
DJ
1791 default:
1792 greater_branch: /* BGTZ, BGTZL */
0b1b3e42 1793 if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
c5aa993b
JM
1794 pc += mips32_relative_offset (inst) + 4;
1795 else
1796 pc += 8;
1797 break;
c5aa993b
JM
1798 } /* switch */
1799 } /* else */
1800 return pc;
1801} /* mips32_next_pc */
c906108c 1802
4cc0665f
MR
1803/* Extract the 7-bit signed immediate offset from the microMIPS instruction
1804 INSN. */
1805
1806static LONGEST
1807micromips_relative_offset7 (ULONGEST insn)
1808{
1809 return ((b0s7_imm (insn) ^ 0x40) - 0x40) << 1;
1810}
1811
1812/* Extract the 10-bit signed immediate offset from the microMIPS instruction
1813 INSN. */
1814
1815static LONGEST
1816micromips_relative_offset10 (ULONGEST insn)
1817{
1818 return ((b0s10_imm (insn) ^ 0x200) - 0x200) << 1;
1819}
1820
1821/* Extract the 16-bit signed immediate offset from the microMIPS instruction
1822 INSN. */
1823
1824static LONGEST
1825micromips_relative_offset16 (ULONGEST insn)
1826{
1827 return ((b0s16_imm (insn) ^ 0x8000) - 0x8000) << 1;
1828}
1829
1830/* Return the size in bytes of the microMIPS instruction at the address PC. */
1831
1832static int
1833micromips_pc_insn_size (struct gdbarch *gdbarch, CORE_ADDR pc)
1834{
1835 ULONGEST insn;
1836
1837 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1838 return mips_insn_size (ISA_MICROMIPS, insn);
1839}
1840
1841/* Calculate the address of the next microMIPS instruction to execute
1842 after the INSN coprocessor 1 conditional branch instruction at the
1843 address PC. COUNT denotes the number of coprocessor condition bits
1844 examined by the branch. */
1845
1846static CORE_ADDR
1847micromips_bc1_pc (struct gdbarch *gdbarch, struct frame_info *frame,
1848 ULONGEST insn, CORE_ADDR pc, int count)
1849{
1850 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1851 int cnum = b2s3_cc (insn >> 16) & (count - 1);
1852 int tf = b5s5_op (insn >> 16) & 1;
1853 int mask = (1 << count) - 1;
1854 ULONGEST fcs;
1855 int cond;
1856
1857 if (fcsr == -1)
1858 /* No way to handle; it'll most likely trap anyway. */
1859 return pc;
1860
1861 fcs = get_frame_register_unsigned (frame, fcsr);
1862 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1863
1864 if (((cond >> cnum) & mask) != mask * !tf)
1865 pc += micromips_relative_offset16 (insn);
1866 else
1867 pc += micromips_pc_insn_size (gdbarch, pc);
1868
1869 return pc;
1870}
1871
1872/* Calculate the address of the next microMIPS instruction to execute
1873 after the instruction at the address PC. */
1874
1875static CORE_ADDR
1876micromips_next_pc (struct frame_info *frame, CORE_ADDR pc)
1877{
1878 struct gdbarch *gdbarch = get_frame_arch (frame);
1879 ULONGEST insn;
1880
1881 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1882 pc += MIPS_INSN16_SIZE;
1883 switch (mips_insn_size (ISA_MICROMIPS, insn))
1884 {
1885 /* 48-bit instructions. */
1886 case 3 * MIPS_INSN16_SIZE: /* POOL48A: bits 011111 */
1887 /* No branch or jump instructions in this category. */
1888 pc += 2 * MIPS_INSN16_SIZE;
1889 break;
1890
1891 /* 32-bit instructions. */
1892 case 2 * MIPS_INSN16_SIZE:
1893 insn <<= 16;
1894 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1895 pc += MIPS_INSN16_SIZE;
1896 switch (micromips_op (insn >> 16))
1897 {
1898 case 0x00: /* POOL32A: bits 000000 */
1899 if (b0s6_op (insn) == 0x3c
1900 /* POOL32Axf: bits 000000 ... 111100 */
1901 && (b6s10_ext (insn) & 0x2bf) == 0x3c)
1902 /* JALR, JALR.HB: 000000 000x111100 111100 */
1903 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
1904 pc = get_frame_register_signed (frame, b0s5_reg (insn >> 16));
1905 break;
1906
1907 case 0x10: /* POOL32I: bits 010000 */
1908 switch (b5s5_op (insn >> 16))
1909 {
1910 case 0x00: /* BLTZ: bits 010000 00000 */
1911 case 0x01: /* BLTZAL: bits 010000 00001 */
1912 case 0x11: /* BLTZALS: bits 010000 10001 */
1913 if (get_frame_register_signed (frame,
1914 b0s5_reg (insn >> 16)) < 0)
1915 pc += micromips_relative_offset16 (insn);
1916 else
1917 pc += micromips_pc_insn_size (gdbarch, pc);
1918 break;
1919
1920 case 0x02: /* BGEZ: bits 010000 00010 */
1921 case 0x03: /* BGEZAL: bits 010000 00011 */
1922 case 0x13: /* BGEZALS: bits 010000 10011 */
1923 if (get_frame_register_signed (frame,
1924 b0s5_reg (insn >> 16)) >= 0)
1925 pc += micromips_relative_offset16 (insn);
1926 else
1927 pc += micromips_pc_insn_size (gdbarch, pc);
1928 break;
1929
1930 case 0x04: /* BLEZ: bits 010000 00100 */
1931 if (get_frame_register_signed (frame,
1932 b0s5_reg (insn >> 16)) <= 0)
1933 pc += micromips_relative_offset16 (insn);
1934 else
1935 pc += micromips_pc_insn_size (gdbarch, pc);
1936 break;
1937
1938 case 0x05: /* BNEZC: bits 010000 00101 */
1939 if (get_frame_register_signed (frame,
1940 b0s5_reg (insn >> 16)) != 0)
1941 pc += micromips_relative_offset16 (insn);
1942 break;
1943
1944 case 0x06: /* BGTZ: bits 010000 00110 */
1945 if (get_frame_register_signed (frame,
1946 b0s5_reg (insn >> 16)) > 0)
1947 pc += micromips_relative_offset16 (insn);
1948 else
1949 pc += micromips_pc_insn_size (gdbarch, pc);
1950 break;
1951
1952 case 0x07: /* BEQZC: bits 010000 00111 */
1953 if (get_frame_register_signed (frame,
1954 b0s5_reg (insn >> 16)) == 0)
1955 pc += micromips_relative_offset16 (insn);
1956 break;
1957
1958 case 0x14: /* BC2F: bits 010000 10100 xxx00 */
1959 case 0x15: /* BC2T: bits 010000 10101 xxx00 */
1960 if (((insn >> 16) & 0x3) == 0x0)
1961 /* BC2F, BC2T: don't know how to handle these. */
1962 break;
1963 break;
1964
1965 case 0x1a: /* BPOSGE64: bits 010000 11010 */
1966 case 0x1b: /* BPOSGE32: bits 010000 11011 */
1967 {
1968 unsigned int pos = (b5s5_op (insn >> 16) & 1) ? 32 : 64;
1969 int dspctl = mips_regnum (gdbarch)->dspctl;
1970
1971 if (dspctl == -1)
1972 /* No way to handle; it'll most likely trap anyway. */
1973 break;
1974
1975 if ((get_frame_register_unsigned (frame,
1976 dspctl) & 0x7f) >= pos)
1977 pc += micromips_relative_offset16 (insn);
1978 else
1979 pc += micromips_pc_insn_size (gdbarch, pc);
1980 }
1981 break;
1982
1983 case 0x1c: /* BC1F: bits 010000 11100 xxx00 */
1984 /* BC1ANY2F: bits 010000 11100 xxx01 */
1985 case 0x1d: /* BC1T: bits 010000 11101 xxx00 */
1986 /* BC1ANY2T: bits 010000 11101 xxx01 */
1987 if (((insn >> 16) & 0x2) == 0x0)
1988 pc = micromips_bc1_pc (gdbarch, frame, insn, pc,
1989 ((insn >> 16) & 0x1) + 1);
1990 break;
1991
1992 case 0x1e: /* BC1ANY4F: bits 010000 11110 xxx01 */
1993 case 0x1f: /* BC1ANY4T: bits 010000 11111 xxx01 */
1994 if (((insn >> 16) & 0x3) == 0x1)
1995 pc = micromips_bc1_pc (gdbarch, frame, insn, pc, 4);
1996 break;
1997 }
1998 break;
1999
2000 case 0x1d: /* JALS: bits 011101 */
2001 case 0x35: /* J: bits 110101 */
2002 case 0x3d: /* JAL: bits 111101 */
2003 pc = ((pc | 0x7fffffe) ^ 0x7fffffe) | (b0s26_imm (insn) << 1);
2004 break;
2005
2006 case 0x25: /* BEQ: bits 100101 */
2007 if (get_frame_register_signed (frame, b0s5_reg (insn >> 16))
2008 == get_frame_register_signed (frame, b5s5_reg (insn >> 16)))
2009 pc += micromips_relative_offset16 (insn);
2010 else
2011 pc += micromips_pc_insn_size (gdbarch, pc);
2012 break;
2013
2014 case 0x2d: /* BNE: bits 101101 */
2015 if (get_frame_register_signed (frame, b0s5_reg (insn >> 16))
2016 != get_frame_register_signed (frame, b5s5_reg (insn >> 16)))
2017 pc += micromips_relative_offset16 (insn);
2018 else
2019 pc += micromips_pc_insn_size (gdbarch, pc);
2020 break;
2021
2022 case 0x3c: /* JALX: bits 111100 */
2023 pc = ((pc | 0xfffffff) ^ 0xfffffff) | (b0s26_imm (insn) << 2);
2024 break;
2025 }
2026 break;
2027
2028 /* 16-bit instructions. */
2029 case MIPS_INSN16_SIZE:
2030 switch (micromips_op (insn))
2031 {
2032 case 0x11: /* POOL16C: bits 010001 */
2033 if ((b5s5_op (insn) & 0x1c) == 0xc)
2034 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
2035 pc = get_frame_register_signed (frame, b0s5_reg (insn));
2036 else if (b5s5_op (insn) == 0x18)
2037 /* JRADDIUSP: bits 010001 11000 */
2038 pc = get_frame_register_signed (frame, MIPS_RA_REGNUM);
2039 break;
2040
2041 case 0x23: /* BEQZ16: bits 100011 */
2042 {
2043 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2044
2045 if (get_frame_register_signed (frame, rs) == 0)
2046 pc += micromips_relative_offset7 (insn);
2047 else
2048 pc += micromips_pc_insn_size (gdbarch, pc);
2049 }
2050 break;
2051
2052 case 0x2b: /* BNEZ16: bits 101011 */
2053 {
2054 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2055
2056 if (get_frame_register_signed (frame, rs) != 0)
2057 pc += micromips_relative_offset7 (insn);
2058 else
2059 pc += micromips_pc_insn_size (gdbarch, pc);
2060 }
2061 break;
2062
2063 case 0x33: /* B16: bits 110011 */
2064 pc += micromips_relative_offset10 (insn);
2065 break;
2066 }
2067 break;
2068 }
2069
2070 return pc;
2071}
2072
c906108c 2073/* Decoding the next place to set a breakpoint is irregular for the
025bb325
MS
2074 mips 16 variant, but fortunately, there fewer instructions. We have
2075 to cope ith extensions for 16 bit instructions and a pair of actual
2076 32 bit instructions. We dont want to set a single step instruction
2077 on the extend instruction either. */
c906108c
SS
2078
2079/* Lots of mips16 instruction formats */
2080/* Predicting jumps requires itype,ritype,i8type
025bb325 2081 and their extensions extItype,extritype,extI8type. */
c906108c
SS
2082enum mips16_inst_fmts
2083{
c5aa993b
JM
2084 itype, /* 0 immediate 5,10 */
2085 ritype, /* 1 5,3,8 */
2086 rrtype, /* 2 5,3,3,5 */
2087 rritype, /* 3 5,3,3,5 */
2088 rrrtype, /* 4 5,3,3,3,2 */
2089 rriatype, /* 5 5,3,3,1,4 */
2090 shifttype, /* 6 5,3,3,3,2 */
2091 i8type, /* 7 5,3,8 */
2092 i8movtype, /* 8 5,3,3,5 */
2093 i8mov32rtype, /* 9 5,3,5,3 */
2094 i64type, /* 10 5,3,8 */
2095 ri64type, /* 11 5,3,3,5 */
2096 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
2097 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
2098 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
2099 extRRItype, /* 15 5,5,5,5,3,3,5 */
2100 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
2101 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
2102 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
2103 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
2104 extRi64type, /* 20 5,6,5,5,3,3,5 */
2105 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
2106};
12f02c2a 2107/* I am heaping all the fields of the formats into one structure and
025bb325 2108 then, only the fields which are involved in instruction extension. */
c906108c 2109struct upk_mips16
6d82d43b
AC
2110{
2111 CORE_ADDR offset;
025bb325 2112 unsigned int regx; /* Function in i8 type. */
6d82d43b
AC
2113 unsigned int regy;
2114};
c906108c
SS
2115
2116
12f02c2a 2117/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
c68cf8ad 2118 for the bits which make up the immediate extension. */
c906108c 2119
12f02c2a
AC
2120static CORE_ADDR
2121extended_offset (unsigned int extension)
c906108c 2122{
12f02c2a 2123 CORE_ADDR value;
130854df 2124
4c2051c6 2125 value = (extension >> 16) & 0x1f; /* Extract 15:11. */
c5aa993b 2126 value = value << 6;
4c2051c6 2127 value |= (extension >> 21) & 0x3f; /* Extract 10:5. */
c5aa993b 2128 value = value << 5;
130854df
MR
2129 value |= extension & 0x1f; /* Extract 4:0. */
2130
c5aa993b 2131 return value;
c906108c
SS
2132}
2133
2134/* Only call this function if you know that this is an extendable
bcf1ea1e
MR
2135 instruction. It won't malfunction, but why make excess remote memory
2136 references? If the immediate operands get sign extended or something,
2137 do it after the extension is performed. */
c906108c 2138/* FIXME: Every one of these cases needs to worry about sign extension
bcf1ea1e 2139 when the offset is to be used in relative addressing. */
c906108c 2140
12f02c2a 2141static unsigned int
e17a4113 2142fetch_mips_16 (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 2143{
e17a4113 2144 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
47a35522 2145 gdb_byte buf[8];
a2fb2cee
MR
2146
2147 pc = unmake_compact_addr (pc); /* Clear the low order bit. */
c5aa993b 2148 target_read_memory (pc, buf, 2);
e17a4113 2149 return extract_unsigned_integer (buf, 2, byte_order);
c906108c
SS
2150}
2151
2152static void
e17a4113 2153unpack_mips16 (struct gdbarch *gdbarch, CORE_ADDR pc,
12f02c2a
AC
2154 unsigned int extension,
2155 unsigned int inst,
6d82d43b 2156 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
c906108c 2157{
12f02c2a
AC
2158 CORE_ADDR offset;
2159 int regx;
2160 int regy;
2161 switch (insn_format)
c906108c 2162 {
c5aa993b 2163 case itype:
c906108c 2164 {
12f02c2a
AC
2165 CORE_ADDR value;
2166 if (extension)
c5aa993b 2167 {
4c2051c6
MR
2168 value = extended_offset ((extension << 16) | inst);
2169 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
c906108c
SS
2170 }
2171 else
c5aa993b 2172 {
12f02c2a 2173 value = inst & 0x7ff;
4c2051c6 2174 value = (value ^ 0x400) - 0x400; /* Sign-extend. */
c906108c 2175 }
12f02c2a
AC
2176 offset = value;
2177 regx = -1;
2178 regy = -1;
c906108c 2179 }
c5aa993b
JM
2180 break;
2181 case ritype:
2182 case i8type:
025bb325 2183 { /* A register identifier and an offset. */
c906108c 2184 /* Most of the fields are the same as I type but the
025bb325 2185 immediate value is of a different length. */
12f02c2a
AC
2186 CORE_ADDR value;
2187 if (extension)
c906108c 2188 {
4c2051c6
MR
2189 value = extended_offset ((extension << 16) | inst);
2190 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
c906108c 2191 }
c5aa993b
JM
2192 else
2193 {
4c2051c6
MR
2194 value = inst & 0xff; /* 8 bits */
2195 value = (value ^ 0x80) - 0x80; /* Sign-extend. */
c5aa993b 2196 }
12f02c2a 2197 offset = value;
4c2051c6 2198 regx = (inst >> 8) & 0x07; /* i8 funct */
12f02c2a 2199 regy = -1;
c5aa993b 2200 break;
c906108c 2201 }
c5aa993b 2202 case jalxtype:
c906108c 2203 {
c5aa993b 2204 unsigned long value;
12f02c2a
AC
2205 unsigned int nexthalf;
2206 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b 2207 value = value << 16;
4cc0665f
MR
2208 nexthalf = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc + 2, NULL);
2209 /* Low bit still set. */
c5aa993b 2210 value |= nexthalf;
12f02c2a
AC
2211 offset = value;
2212 regx = -1;
2213 regy = -1;
c5aa993b 2214 break;
c906108c
SS
2215 }
2216 default:
e2e0b3e5 2217 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c 2218 }
12f02c2a
AC
2219 upk->offset = offset;
2220 upk->regx = regx;
2221 upk->regy = regy;
c906108c
SS
2222}
2223
2224
484933d1
MR
2225/* Calculate the destination of a branch whose 16-bit opcode word is at PC,
2226 and having a signed 16-bit OFFSET. */
2227
c5aa993b
JM
2228static CORE_ADDR
2229add_offset_16 (CORE_ADDR pc, int offset)
c906108c 2230{
484933d1 2231 return pc + (offset << 1) + 2;
c906108c
SS
2232}
2233
12f02c2a 2234static CORE_ADDR
0b1b3e42 2235extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
6d82d43b 2236 unsigned int extension, unsigned int insn)
c906108c 2237{
e17a4113 2238 struct gdbarch *gdbarch = get_frame_arch (frame);
12f02c2a
AC
2239 int op = (insn >> 11);
2240 switch (op)
c906108c 2241 {
6d82d43b 2242 case 2: /* Branch */
12f02c2a 2243 {
12f02c2a 2244 struct upk_mips16 upk;
e17a4113 2245 unpack_mips16 (gdbarch, pc, extension, insn, itype, &upk);
484933d1 2246 pc = add_offset_16 (pc, upk.offset);
12f02c2a
AC
2247 break;
2248 }
025bb325
MS
2249 case 3: /* JAL , JALX - Watch out, these are 32 bit
2250 instructions. */
12f02c2a
AC
2251 {
2252 struct upk_mips16 upk;
e17a4113 2253 unpack_mips16 (gdbarch, pc, extension, insn, jalxtype, &upk);
484933d1 2254 pc = ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)) | (upk.offset << 2);
12f02c2a 2255 if ((insn >> 10) & 0x01) /* Exchange mode */
025bb325 2256 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode. */
12f02c2a
AC
2257 else
2258 pc |= 0x01;
2259 break;
2260 }
6d82d43b 2261 case 4: /* beqz */
12f02c2a
AC
2262 {
2263 struct upk_mips16 upk;
2264 int reg;
e17a4113 2265 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
4cc0665f 2266 reg = get_frame_register_signed (frame, mips_reg3_to_reg[upk.regx]);
12f02c2a 2267 if (reg == 0)
484933d1 2268 pc = add_offset_16 (pc, upk.offset);
12f02c2a
AC
2269 else
2270 pc += 2;
2271 break;
2272 }
6d82d43b 2273 case 5: /* bnez */
12f02c2a
AC
2274 {
2275 struct upk_mips16 upk;
2276 int reg;
e17a4113 2277 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
4cc0665f 2278 reg = get_frame_register_signed (frame, mips_reg3_to_reg[upk.regx]);
12f02c2a 2279 if (reg != 0)
484933d1 2280 pc = add_offset_16 (pc, upk.offset);
12f02c2a
AC
2281 else
2282 pc += 2;
2283 break;
2284 }
6d82d43b 2285 case 12: /* I8 Formats btez btnez */
12f02c2a
AC
2286 {
2287 struct upk_mips16 upk;
2288 int reg;
e17a4113 2289 unpack_mips16 (gdbarch, pc, extension, insn, i8type, &upk);
12f02c2a 2290 /* upk.regx contains the opcode */
0b1b3e42 2291 reg = get_frame_register_signed (frame, 24); /* Test register is 24 */
12f02c2a
AC
2292 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
2293 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
484933d1 2294 pc = add_offset_16 (pc, upk.offset);
12f02c2a
AC
2295 else
2296 pc += 2;
2297 break;
2298 }
6d82d43b 2299 case 29: /* RR Formats JR, JALR, JALR-RA */
12f02c2a
AC
2300 {
2301 struct upk_mips16 upk;
2302 /* upk.fmt = rrtype; */
2303 op = insn & 0x1f;
2304 if (op == 0)
c5aa993b 2305 {
12f02c2a
AC
2306 int reg;
2307 upk.regx = (insn >> 8) & 0x07;
2308 upk.regy = (insn >> 5) & 0x07;
4c2051c6 2309 if ((upk.regy & 1) == 0)
4cc0665f 2310 reg = mips_reg3_to_reg[upk.regx];
4c2051c6
MR
2311 else
2312 reg = 31; /* Function return instruction. */
0b1b3e42 2313 pc = get_frame_register_signed (frame, reg);
c906108c 2314 }
12f02c2a 2315 else
c5aa993b 2316 pc += 2;
12f02c2a
AC
2317 break;
2318 }
2319 case 30:
2320 /* This is an instruction extension. Fetch the real instruction
2321 (which follows the extension) and decode things based on
025bb325 2322 that. */
12f02c2a
AC
2323 {
2324 pc += 2;
e17a4113
UW
2325 pc = extended_mips16_next_pc (frame, pc, insn,
2326 fetch_mips_16 (gdbarch, pc));
12f02c2a
AC
2327 break;
2328 }
2329 default:
2330 {
2331 pc += 2;
2332 break;
2333 }
c906108c 2334 }
c5aa993b 2335 return pc;
12f02c2a 2336}
c906108c 2337
5a89d8aa 2338static CORE_ADDR
0b1b3e42 2339mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
12f02c2a 2340{
e17a4113
UW
2341 struct gdbarch *gdbarch = get_frame_arch (frame);
2342 unsigned int insn = fetch_mips_16 (gdbarch, pc);
0b1b3e42 2343 return extended_mips16_next_pc (frame, pc, 0, insn);
12f02c2a
AC
2344}
2345
2346/* The mips_next_pc function supports single_step when the remote
7e73cedf 2347 target monitor or stub is not developed enough to do a single_step.
12f02c2a 2348 It works by decoding the current instruction and predicting where a
1aee363c 2349 branch will go. This isn't hard because all the data is available.
4cc0665f 2350 The MIPS32, MIPS16 and microMIPS variants are quite different. */
ad527d2e 2351static CORE_ADDR
0b1b3e42 2352mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
c906108c 2353{
4cc0665f
MR
2354 struct gdbarch *gdbarch = get_frame_arch (frame);
2355
2356 if (mips_pc_is_mips16 (gdbarch, pc))
0b1b3e42 2357 return mips16_next_pc (frame, pc);
4cc0665f
MR
2358 else if (mips_pc_is_micromips (gdbarch, pc))
2359 return micromips_next_pc (frame, pc);
c5aa993b 2360 else
0b1b3e42 2361 return mips32_next_pc (frame, pc);
12f02c2a 2362}
c906108c 2363
ab50adb6
MR
2364/* Return non-zero if the MIPS16 instruction INSN is a compact branch
2365 or jump. */
2366
2367static int
2368mips16_instruction_is_compact_branch (unsigned short insn)
2369{
2370 switch (insn & 0xf800)
2371 {
2372 case 0xe800:
2373 return (insn & 0x009f) == 0x80; /* JALRC/JRC */
2374 case 0x6000:
2375 return (insn & 0x0600) == 0; /* BTNEZ/BTEQZ */
2376 case 0x2800: /* BNEZ */
2377 case 0x2000: /* BEQZ */
2378 case 0x1000: /* B */
2379 return 1;
2380 default:
2381 return 0;
2382 }
2383}
2384
2385/* Return non-zero if the microMIPS instruction INSN is a compact branch
2386 or jump. */
2387
2388static int
2389micromips_instruction_is_compact_branch (unsigned short insn)
2390{
2391 switch (micromips_op (insn))
2392 {
2393 case 0x11: /* POOL16C: bits 010001 */
2394 return (b5s5_op (insn) == 0x18
2395 /* JRADDIUSP: bits 010001 11000 */
2396 || b5s5_op (insn) == 0xd);
2397 /* JRC: bits 010011 01101 */
2398 case 0x10: /* POOL32I: bits 010000 */
2399 return (b5s5_op (insn) & 0x1d) == 0x5;
2400 /* BEQZC/BNEZC: bits 010000 001x1 */
2401 default:
2402 return 0;
2403 }
2404}
2405
edfae063
AC
2406struct mips_frame_cache
2407{
2408 CORE_ADDR base;
2409 struct trad_frame_saved_reg *saved_regs;
2410};
2411
29639122
JB
2412/* Set a register's saved stack address in temp_saved_regs. If an
2413 address has already been set for this register, do nothing; this
2414 way we will only recognize the first save of a given register in a
2415 function prologue.
eec63939 2416
f57d151a
UW
2417 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
2418 [gdbarch_num_regs .. 2*gdbarch_num_regs).
2419 Strictly speaking, only the second range is used as it is only second
2420 range (the ABI instead of ISA registers) that comes into play when finding
2421 saved registers in a frame. */
eec63939
AC
2422
2423static void
74ed0bb4
MD
2424set_reg_offset (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache,
2425 int regnum, CORE_ADDR offset)
eec63939 2426{
29639122
JB
2427 if (this_cache != NULL
2428 && this_cache->saved_regs[regnum].addr == -1)
2429 {
74ed0bb4
MD
2430 this_cache->saved_regs[regnum + 0 * gdbarch_num_regs (gdbarch)].addr
2431 = offset;
2432 this_cache->saved_regs[regnum + 1 * gdbarch_num_regs (gdbarch)].addr
2433 = offset;
29639122 2434 }
eec63939
AC
2435}
2436
eec63939 2437
29639122
JB
2438/* Fetch the immediate value from a MIPS16 instruction.
2439 If the previous instruction was an EXTEND, use it to extend
2440 the upper bits of the immediate value. This is a helper function
2441 for mips16_scan_prologue. */
eec63939 2442
29639122
JB
2443static int
2444mips16_get_imm (unsigned short prev_inst, /* previous instruction */
2445 unsigned short inst, /* current instruction */
2446 int nbits, /* number of bits in imm field */
2447 int scale, /* scale factor to be applied to imm */
025bb325 2448 int is_signed) /* is the imm field signed? */
eec63939 2449{
29639122 2450 int offset;
eec63939 2451
29639122
JB
2452 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
2453 {
2454 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
2455 if (offset & 0x8000) /* check for negative extend */
2456 offset = 0 - (0x10000 - (offset & 0xffff));
2457 return offset | (inst & 0x1f);
2458 }
eec63939 2459 else
29639122
JB
2460 {
2461 int max_imm = 1 << nbits;
2462 int mask = max_imm - 1;
2463 int sign_bit = max_imm >> 1;
45c9dd44 2464
29639122
JB
2465 offset = inst & mask;
2466 if (is_signed && (offset & sign_bit))
2467 offset = 0 - (max_imm - offset);
2468 return offset * scale;
2469 }
2470}
eec63939 2471
65596487 2472
29639122
JB
2473/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
2474 the associated FRAME_CACHE if not null.
2475 Return the address of the first instruction past the prologue. */
eec63939 2476
29639122 2477static CORE_ADDR
e17a4113
UW
2478mips16_scan_prologue (struct gdbarch *gdbarch,
2479 CORE_ADDR start_pc, CORE_ADDR limit_pc,
b8a22b94 2480 struct frame_info *this_frame,
29639122
JB
2481 struct mips_frame_cache *this_cache)
2482{
ab50adb6
MR
2483 int prev_non_prologue_insn = 0;
2484 int this_non_prologue_insn;
2485 int non_prologue_insns = 0;
2486 CORE_ADDR prev_pc;
29639122 2487 CORE_ADDR cur_pc;
025bb325 2488 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer. */
29639122
JB
2489 CORE_ADDR sp;
2490 long frame_offset = 0; /* Size of stack frame. */
2491 long frame_adjust = 0; /* Offset of FP from SP. */
2492 int frame_reg = MIPS_SP_REGNUM;
025bb325 2493 unsigned short prev_inst = 0; /* saved copy of previous instruction. */
29639122
JB
2494 unsigned inst = 0; /* current instruction */
2495 unsigned entry_inst = 0; /* the entry instruction */
2207132d 2496 unsigned save_inst = 0; /* the save instruction */
ab50adb6
MR
2497 int prev_delay_slot = 0;
2498 int in_delay_slot;
29639122 2499 int reg, offset;
a343eb3c 2500
29639122 2501 int extend_bytes = 0;
ab50adb6
MR
2502 int prev_extend_bytes = 0;
2503 CORE_ADDR end_prologue_addr;
a343eb3c 2504
29639122 2505 /* Can be called when there's no process, and hence when there's no
b8a22b94
DJ
2506 THIS_FRAME. */
2507 if (this_frame != NULL)
2508 sp = get_frame_register_signed (this_frame,
2509 gdbarch_num_regs (gdbarch)
2510 + MIPS_SP_REGNUM);
29639122
JB
2511 else
2512 sp = 0;
eec63939 2513
29639122
JB
2514 if (limit_pc > start_pc + 200)
2515 limit_pc = start_pc + 200;
ab50adb6 2516 prev_pc = start_pc;
eec63939 2517
ab50adb6
MR
2518 /* Permit at most one non-prologue non-control-transfer instruction
2519 in the middle which may have been reordered by the compiler for
2520 optimisation. */
95ac2dcf 2521 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
29639122 2522 {
ab50adb6
MR
2523 this_non_prologue_insn = 0;
2524 in_delay_slot = 0;
2525
29639122
JB
2526 /* Save the previous instruction. If it's an EXTEND, we'll extract
2527 the immediate offset extension from it in mips16_get_imm. */
2528 prev_inst = inst;
eec63939 2529
025bb325 2530 /* Fetch and decode the instruction. */
4cc0665f
MR
2531 inst = (unsigned short) mips_fetch_instruction (gdbarch, ISA_MIPS16,
2532 cur_pc, NULL);
eec63939 2533
29639122
JB
2534 /* Normally we ignore extend instructions. However, if it is
2535 not followed by a valid prologue instruction, then this
2536 instruction is not part of the prologue either. We must
2537 remember in this case to adjust the end_prologue_addr back
2538 over the extend. */
2539 if ((inst & 0xf800) == 0xf000) /* extend */
2540 {
95ac2dcf 2541 extend_bytes = MIPS_INSN16_SIZE;
29639122
JB
2542 continue;
2543 }
eec63939 2544
29639122
JB
2545 prev_extend_bytes = extend_bytes;
2546 extend_bytes = 0;
eec63939 2547
29639122
JB
2548 if ((inst & 0xff00) == 0x6300 /* addiu sp */
2549 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2550 {
2551 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
025bb325 2552 if (offset < 0) /* Negative stack adjustment? */
29639122
JB
2553 frame_offset -= offset;
2554 else
2555 /* Exit loop if a positive stack adjustment is found, which
2556 usually means that the stack cleanup code in the function
2557 epilogue is reached. */
2558 break;
2559 }
2560 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2561 {
2562 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
4cc0665f 2563 reg = mips_reg3_to_reg[(inst & 0x700) >> 8];
74ed0bb4 2564 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
29639122
JB
2565 }
2566 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2567 {
2568 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
4cc0665f 2569 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
74ed0bb4 2570 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
29639122
JB
2571 }
2572 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2573 {
2574 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
74ed0bb4 2575 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
2576 }
2577 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2578 {
2579 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
74ed0bb4 2580 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
2581 }
2582 else if (inst == 0x673d) /* move $s1, $sp */
2583 {
2584 frame_addr = sp;
2585 frame_reg = 17;
2586 }
2587 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2588 {
2589 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2590 frame_addr = sp + offset;
2591 frame_reg = 17;
2592 frame_adjust = offset;
2593 }
2594 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2595 {
2596 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
4cc0665f 2597 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
74ed0bb4 2598 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
29639122
JB
2599 }
2600 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2601 {
2602 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
4cc0665f 2603 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
74ed0bb4 2604 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
29639122
JB
2605 }
2606 else if ((inst & 0xf81f) == 0xe809
2607 && (inst & 0x700) != 0x700) /* entry */
025bb325 2608 entry_inst = inst; /* Save for later processing. */
2207132d
MR
2609 else if ((inst & 0xff80) == 0x6480) /* save */
2610 {
025bb325 2611 save_inst = inst; /* Save for later processing. */
2207132d
MR
2612 if (prev_extend_bytes) /* extend */
2613 save_inst |= prev_inst << 16;
2614 }
29639122
JB
2615 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
2616 {
2617 /* This instruction is part of the prologue, but we don't
2618 need to do anything special to handle it. */
2619 }
ab50adb6
MR
2620 else if (mips16_instruction_has_delay_slot (inst, 0))
2621 /* JAL/JALR/JALX/JR */
2622 {
2623 /* The instruction in the delay slot can be a part
2624 of the prologue, so move forward once more. */
2625 in_delay_slot = 1;
2626 if (mips16_instruction_has_delay_slot (inst, 1))
2627 /* JAL/JALX */
2628 {
2629 prev_extend_bytes = MIPS_INSN16_SIZE;
2630 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
2631 }
2632 }
29639122
JB
2633 else
2634 {
ab50adb6 2635 this_non_prologue_insn = 1;
29639122 2636 }
ab50adb6
MR
2637
2638 non_prologue_insns += this_non_prologue_insn;
2639
2640 /* A jump or branch, or enough non-prologue insns seen? If so,
2641 then we must have reached the end of the prologue by now. */
2642 if (prev_delay_slot || non_prologue_insns > 1
2643 || mips16_instruction_is_compact_branch (inst))
2644 break;
2645
2646 prev_non_prologue_insn = this_non_prologue_insn;
2647 prev_delay_slot = in_delay_slot;
2648 prev_pc = cur_pc - prev_extend_bytes;
29639122 2649 }
eec63939 2650
29639122
JB
2651 /* The entry instruction is typically the first instruction in a function,
2652 and it stores registers at offsets relative to the value of the old SP
2653 (before the prologue). But the value of the sp parameter to this
2654 function is the new SP (after the prologue has been executed). So we
2655 can't calculate those offsets until we've seen the entire prologue,
025bb325 2656 and can calculate what the old SP must have been. */
29639122
JB
2657 if (entry_inst != 0)
2658 {
2659 int areg_count = (entry_inst >> 8) & 7;
2660 int sreg_count = (entry_inst >> 6) & 3;
eec63939 2661
29639122
JB
2662 /* The entry instruction always subtracts 32 from the SP. */
2663 frame_offset += 32;
2664
2665 /* Now we can calculate what the SP must have been at the
2666 start of the function prologue. */
2667 sp += frame_offset;
2668
2669 /* Check if a0-a3 were saved in the caller's argument save area. */
2670 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2671 {
74ed0bb4 2672 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
72a155b4 2673 offset += mips_abi_regsize (gdbarch);
29639122
JB
2674 }
2675
2676 /* Check if the ra register was pushed on the stack. */
2677 offset = -4;
2678 if (entry_inst & 0x20)
2679 {
74ed0bb4 2680 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
72a155b4 2681 offset -= mips_abi_regsize (gdbarch);
29639122
JB
2682 }
2683
2684 /* Check if the s0 and s1 registers were pushed on the stack. */
2685 for (reg = 16; reg < sreg_count + 16; reg++)
2686 {
74ed0bb4 2687 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
72a155b4 2688 offset -= mips_abi_regsize (gdbarch);
29639122
JB
2689 }
2690 }
2691
2207132d
MR
2692 /* The SAVE instruction is similar to ENTRY, except that defined by the
2693 MIPS16e ASE of the MIPS Architecture. Unlike with ENTRY though, the
2694 size of the frame is specified as an immediate field of instruction
2695 and an extended variation exists which lets additional registers and
2696 frame space to be specified. The instruction always treats registers
2697 as 32-bit so its usefulness for 64-bit ABIs is questionable. */
2698 if (save_inst != 0 && mips_abi_regsize (gdbarch) == 4)
2699 {
2700 static int args_table[16] = {
2701 0, 0, 0, 0, 1, 1, 1, 1,
2702 2, 2, 2, 0, 3, 3, 4, -1,
2703 };
2704 static int astatic_table[16] = {
2705 0, 1, 2, 3, 0, 1, 2, 3,
2706 0, 1, 2, 4, 0, 1, 0, -1,
2707 };
2708 int aregs = (save_inst >> 16) & 0xf;
2709 int xsregs = (save_inst >> 24) & 0x7;
2710 int args = args_table[aregs];
2711 int astatic = astatic_table[aregs];
2712 long frame_size;
2713
2714 if (args < 0)
2715 {
2716 warning (_("Invalid number of argument registers encoded in SAVE."));
2717 args = 0;
2718 }
2719 if (astatic < 0)
2720 {
2721 warning (_("Invalid number of static registers encoded in SAVE."));
2722 astatic = 0;
2723 }
2724
2725 /* For standard SAVE the frame size of 0 means 128. */
2726 frame_size = ((save_inst >> 16) & 0xf0) | (save_inst & 0xf);
2727 if (frame_size == 0 && (save_inst >> 16) == 0)
2728 frame_size = 16;
2729 frame_size *= 8;
2730 frame_offset += frame_size;
2731
2732 /* Now we can calculate what the SP must have been at the
2733 start of the function prologue. */
2734 sp += frame_offset;
2735
2736 /* Check if A0-A3 were saved in the caller's argument save area. */
2737 for (reg = MIPS_A0_REGNUM, offset = 0; reg < args + 4; reg++)
2738 {
74ed0bb4 2739 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2207132d
MR
2740 offset += mips_abi_regsize (gdbarch);
2741 }
2742
2743 offset = -4;
2744
2745 /* Check if the RA register was pushed on the stack. */
2746 if (save_inst & 0x40)
2747 {
74ed0bb4 2748 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2207132d
MR
2749 offset -= mips_abi_regsize (gdbarch);
2750 }
2751
2752 /* Check if the S8 register was pushed on the stack. */
2753 if (xsregs > 6)
2754 {
74ed0bb4 2755 set_reg_offset (gdbarch, this_cache, 30, sp + offset);
2207132d
MR
2756 offset -= mips_abi_regsize (gdbarch);
2757 xsregs--;
2758 }
2759 /* Check if S2-S7 were pushed on the stack. */
2760 for (reg = 18 + xsregs - 1; reg > 18 - 1; reg--)
2761 {
74ed0bb4 2762 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2207132d
MR
2763 offset -= mips_abi_regsize (gdbarch);
2764 }
2765
2766 /* Check if the S1 register was pushed on the stack. */
2767 if (save_inst & 0x10)
2768 {
74ed0bb4 2769 set_reg_offset (gdbarch, this_cache, 17, sp + offset);
2207132d
MR
2770 offset -= mips_abi_regsize (gdbarch);
2771 }
2772 /* Check if the S0 register was pushed on the stack. */
2773 if (save_inst & 0x20)
2774 {
74ed0bb4 2775 set_reg_offset (gdbarch, this_cache, 16, sp + offset);
2207132d
MR
2776 offset -= mips_abi_regsize (gdbarch);
2777 }
2778
4cc0665f
MR
2779 /* Check if A0-A3 were pushed on the stack. */
2780 for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
2781 {
2782 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2783 offset -= mips_abi_regsize (gdbarch);
2784 }
2785 }
2786
2787 if (this_cache != NULL)
2788 {
2789 this_cache->base =
2790 (get_frame_register_signed (this_frame,
2791 gdbarch_num_regs (gdbarch) + frame_reg)
2792 + frame_offset - frame_adjust);
2793 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
2794 be able to get rid of the assignment below, evetually. But it's
2795 still needed for now. */
2796 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2797 + mips_regnum (gdbarch)->pc]
2798 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
2799 }
2800
ab50adb6
MR
2801 /* Set end_prologue_addr to the address of the instruction immediately
2802 after the last one we scanned. Unless the last one looked like a
2803 non-prologue instruction (and we looked ahead), in which case use
2804 its address instead. */
2805 end_prologue_addr = (prev_non_prologue_insn || prev_delay_slot
2806 ? prev_pc : cur_pc - prev_extend_bytes);
4cc0665f
MR
2807
2808 return end_prologue_addr;
2809}
2810
2811/* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
2812 Procedures that use the 32-bit instruction set are handled by the
2813 mips_insn32 unwinder. */
2814
2815static struct mips_frame_cache *
2816mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
2817{
2818 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2819 struct mips_frame_cache *cache;
2820
2821 if ((*this_cache) != NULL)
2822 return (*this_cache);
2823 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2824 (*this_cache) = cache;
2825 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2826
2827 /* Analyze the function prologue. */
2828 {
2829 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
2830 CORE_ADDR start_addr;
2831
2832 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2833 if (start_addr == 0)
2834 start_addr = heuristic_proc_start (gdbarch, pc);
2835 /* We can't analyze the prologue if we couldn't find the begining
2836 of the function. */
2837 if (start_addr == 0)
2838 return cache;
2839
2840 mips16_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
2841 }
2842
2843 /* gdbarch_sp_regnum contains the value and not the address. */
2844 trad_frame_set_value (cache->saved_regs,
2845 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
2846 cache->base);
2847
2848 return (*this_cache);
2849}
2850
2851static void
2852mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
2853 struct frame_id *this_id)
2854{
2855 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2856 this_cache);
2857 /* This marks the outermost frame. */
2858 if (info->base == 0)
2859 return;
2860 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2861}
2862
2863static struct value *
2864mips_insn16_frame_prev_register (struct frame_info *this_frame,
2865 void **this_cache, int regnum)
2866{
2867 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2868 this_cache);
2869 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
2870}
2871
2872static int
2873mips_insn16_frame_sniffer (const struct frame_unwind *self,
2874 struct frame_info *this_frame, void **this_cache)
2875{
2876 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2877 CORE_ADDR pc = get_frame_pc (this_frame);
2878 if (mips_pc_is_mips16 (gdbarch, pc))
2879 return 1;
2880 return 0;
2881}
2882
2883static const struct frame_unwind mips_insn16_frame_unwind =
2884{
2885 NORMAL_FRAME,
2886 default_frame_unwind_stop_reason,
2887 mips_insn16_frame_this_id,
2888 mips_insn16_frame_prev_register,
2889 NULL,
2890 mips_insn16_frame_sniffer
2891};
2892
2893static CORE_ADDR
2894mips_insn16_frame_base_address (struct frame_info *this_frame,
2895 void **this_cache)
2896{
2897 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2898 this_cache);
2899 return info->base;
2900}
2901
2902static const struct frame_base mips_insn16_frame_base =
2903{
2904 &mips_insn16_frame_unwind,
2905 mips_insn16_frame_base_address,
2906 mips_insn16_frame_base_address,
2907 mips_insn16_frame_base_address
2908};
2909
2910static const struct frame_base *
2911mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
2912{
2913 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2914 CORE_ADDR pc = get_frame_pc (this_frame);
2915 if (mips_pc_is_mips16 (gdbarch, pc))
2916 return &mips_insn16_frame_base;
2917 else
2918 return NULL;
2919}
2920
2921/* Decode a 9-bit signed immediate argument of ADDIUSP -- -2 is mapped
2922 to -258, -1 -- to -257, 0 -- to 256, 1 -- to 257 and other values are
2923 interpreted directly, and then multiplied by 4. */
2924
2925static int
2926micromips_decode_imm9 (int imm)
2927{
2928 imm = (imm ^ 0x100) - 0x100;
2929 if (imm > -3 && imm < 2)
2930 imm ^= 0x100;
2931 return imm << 2;
2932}
2933
2934/* Analyze the function prologue from START_PC to LIMIT_PC. Return
2935 the address of the first instruction past the prologue. */
2936
2937static CORE_ADDR
2938micromips_scan_prologue (struct gdbarch *gdbarch,
2939 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2940 struct frame_info *this_frame,
2941 struct mips_frame_cache *this_cache)
2942{
ab50adb6 2943 CORE_ADDR end_prologue_addr;
4cc0665f
MR
2944 int prev_non_prologue_insn = 0;
2945 int frame_reg = MIPS_SP_REGNUM;
2946 int this_non_prologue_insn;
2947 int non_prologue_insns = 0;
2948 long frame_offset = 0; /* Size of stack frame. */
2949 long frame_adjust = 0; /* Offset of FP from SP. */
2950 CORE_ADDR frame_addr = 0; /* Value of $30, used as frame pointer. */
ab50adb6
MR
2951 int prev_delay_slot = 0;
2952 int in_delay_slot;
4cc0665f
MR
2953 CORE_ADDR prev_pc;
2954 CORE_ADDR cur_pc;
2955 ULONGEST insn; /* current instruction */
2956 CORE_ADDR sp;
2957 long offset;
2958 long sp_adj;
2959 long v1_off = 0; /* The assumption is LUI will replace it. */
2960 int reglist;
2961 int breg;
2962 int dreg;
2963 int sreg;
2964 int treg;
2965 int loc;
2966 int op;
2967 int s;
2968 int i;
2969
2970 /* Can be called when there's no process, and hence when there's no
2971 THIS_FRAME. */
2972 if (this_frame != NULL)
2973 sp = get_frame_register_signed (this_frame,
2974 gdbarch_num_regs (gdbarch)
2975 + MIPS_SP_REGNUM);
2976 else
2977 sp = 0;
2978
2979 if (limit_pc > start_pc + 200)
2980 limit_pc = start_pc + 200;
2981 prev_pc = start_pc;
2982
2983 /* Permit at most one non-prologue non-control-transfer instruction
2984 in the middle which may have been reordered by the compiler for
2985 optimisation. */
2986 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += loc)
2987 {
2988 this_non_prologue_insn = 0;
ab50adb6 2989 in_delay_slot = 0;
4cc0665f
MR
2990 sp_adj = 0;
2991 loc = 0;
2992 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, cur_pc, NULL);
2993 loc += MIPS_INSN16_SIZE;
2994 switch (mips_insn_size (ISA_MICROMIPS, insn))
2995 {
2996 /* 48-bit instructions. */
2997 case 3 * MIPS_INSN16_SIZE:
2998 /* No prologue instructions in this category. */
2999 this_non_prologue_insn = 1;
3000 loc += 2 * MIPS_INSN16_SIZE;
3001 break;
3002
3003 /* 32-bit instructions. */
3004 case 2 * MIPS_INSN16_SIZE:
3005 insn <<= 16;
3006 insn |= mips_fetch_instruction (gdbarch,
3007 ISA_MICROMIPS, cur_pc + loc, NULL);
3008 loc += MIPS_INSN16_SIZE;
3009 switch (micromips_op (insn >> 16))
3010 {
3011 /* Record $sp/$fp adjustment. */
3012 /* Discard (D)ADDU $gp,$jp used for PIC code. */
3013 case 0x0: /* POOL32A: bits 000000 */
3014 case 0x16: /* POOL32S: bits 010110 */
3015 op = b0s11_op (insn);
3016 sreg = b0s5_reg (insn >> 16);
3017 treg = b5s5_reg (insn >> 16);
3018 dreg = b11s5_reg (insn);
3019 if (op == 0x1d0
3020 /* SUBU: bits 000000 00111010000 */
3021 /* DSUBU: bits 010110 00111010000 */
3022 && dreg == MIPS_SP_REGNUM && sreg == MIPS_SP_REGNUM
3023 && treg == 3)
3024 /* (D)SUBU $sp, $v1 */
3025 sp_adj = v1_off;
3026 else if (op != 0x150
3027 /* ADDU: bits 000000 00101010000 */
3028 /* DADDU: bits 010110 00101010000 */
3029 || dreg != 28 || sreg != 28 || treg != MIPS_T9_REGNUM)
3030 this_non_prologue_insn = 1;
3031 break;
3032
3033 case 0x8: /* POOL32B: bits 001000 */
3034 op = b12s4_op (insn);
3035 breg = b0s5_reg (insn >> 16);
3036 reglist = sreg = b5s5_reg (insn >> 16);
3037 offset = (b0s12_imm (insn) ^ 0x800) - 0x800;
3038 if ((op == 0x9 || op == 0xc)
3039 /* SWP: bits 001000 1001 */
3040 /* SDP: bits 001000 1100 */
3041 && breg == MIPS_SP_REGNUM && sreg < MIPS_RA_REGNUM)
3042 /* S[DW]P reg,offset($sp) */
3043 {
3044 s = 4 << ((b12s4_op (insn) & 0x4) == 0x4);
3045 set_reg_offset (gdbarch, this_cache,
3046 sreg, sp + offset);
3047 set_reg_offset (gdbarch, this_cache,
3048 sreg + 1, sp + offset + s);
3049 }
3050 else if ((op == 0xd || op == 0xf)
3051 /* SWM: bits 001000 1101 */
3052 /* SDM: bits 001000 1111 */
3053 && breg == MIPS_SP_REGNUM
3054 /* SWM reglist,offset($sp) */
3055 && ((reglist >= 1 && reglist <= 9)
3056 || (reglist >= 16 && reglist <= 25)))
3057 {
3058 int sreglist = min(reglist & 0xf, 8);
3059
3060 s = 4 << ((b12s4_op (insn) & 0x2) == 0x2);
3061 for (i = 0; i < sreglist; i++)
3062 set_reg_offset (gdbarch, this_cache, 16 + i, sp + s * i);
3063 if ((reglist & 0xf) > 8)
3064 set_reg_offset (gdbarch, this_cache, 30, sp + s * i++);
3065 if ((reglist & 0x10) == 0x10)
3066 set_reg_offset (gdbarch, this_cache,
3067 MIPS_RA_REGNUM, sp + s * i++);
3068 }
3069 else
3070 this_non_prologue_insn = 1;
3071 break;
3072
3073 /* Record $sp/$fp adjustment. */
3074 /* Discard (D)ADDIU $gp used for PIC code. */
3075 case 0xc: /* ADDIU: bits 001100 */
3076 case 0x17: /* DADDIU: bits 010111 */
3077 sreg = b0s5_reg (insn >> 16);
3078 dreg = b5s5_reg (insn >> 16);
3079 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3080 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM)
3081 /* (D)ADDIU $sp, imm */
3082 sp_adj = offset;
3083 else if (sreg == MIPS_SP_REGNUM && dreg == 30)
3084 /* (D)ADDIU $fp, $sp, imm */
3085 {
3086 frame_addr = sp + offset;
3087 frame_adjust = offset;
3088 frame_reg = 30;
3089 }
3090 else if (sreg != 28 || dreg != 28)
3091 /* (D)ADDIU $gp, imm */
3092 this_non_prologue_insn = 1;
3093 break;
3094
3095 /* LUI $v1 is used for larger $sp adjustments. */
3356937a 3096 /* Discard LUI $gp used for PIC code. */
4cc0665f
MR
3097 case 0x10: /* POOL32I: bits 010000 */
3098 if (b5s5_op (insn >> 16) == 0xd
3099 /* LUI: bits 010000 001101 */
3100 && b0s5_reg (insn >> 16) == 3)
3101 /* LUI $v1, imm */
3102 v1_off = ((b0s16_imm (insn) << 16) ^ 0x80000000) - 0x80000000;
3103 else if (b5s5_op (insn >> 16) != 0xd
3104 /* LUI: bits 010000 001101 */
3105 || b0s5_reg (insn >> 16) != 28)
3106 /* LUI $gp, imm */
3107 this_non_prologue_insn = 1;
3108 break;
3109
3110 /* ORI $v1 is used for larger $sp adjustments. */
3111 case 0x14: /* ORI: bits 010100 */
3112 sreg = b0s5_reg (insn >> 16);
3113 dreg = b5s5_reg (insn >> 16);
3114 if (sreg == 3 && dreg == 3)
3115 /* ORI $v1, imm */
3116 v1_off |= b0s16_imm (insn);
3117 else
3118 this_non_prologue_insn = 1;
3119 break;
3120
3121 case 0x26: /* SWC1: bits 100110 */
3122 case 0x2e: /* SDC1: bits 101110 */
3123 breg = b0s5_reg (insn >> 16);
3124 if (breg != MIPS_SP_REGNUM)
3125 /* S[DW]C1 reg,offset($sp) */
3126 this_non_prologue_insn = 1;
3127 break;
3128
3129 case 0x36: /* SD: bits 110110 */
3130 case 0x3e: /* SW: bits 111110 */
3131 breg = b0s5_reg (insn >> 16);
3132 sreg = b5s5_reg (insn >> 16);
3133 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3134 if (breg == MIPS_SP_REGNUM)
3135 /* S[DW] reg,offset($sp) */
3136 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3137 else
3138 this_non_prologue_insn = 1;
3139 break;
3140
3141 default:
ab50adb6
MR
3142 /* The instruction in the delay slot can be a part
3143 of the prologue, so move forward once more. */
3144 if (micromips_instruction_has_delay_slot (insn, 0))
3145 in_delay_slot = 1;
3146 else
3147 this_non_prologue_insn = 1;
4cc0665f
MR
3148 break;
3149 }
ab50adb6 3150 insn >>= 16;
4cc0665f
MR
3151 break;
3152
3153 /* 16-bit instructions. */
3154 case MIPS_INSN16_SIZE:
3155 switch (micromips_op (insn))
3156 {
3157 case 0x3: /* MOVE: bits 000011 */
3158 sreg = b0s5_reg (insn);
3159 dreg = b5s5_reg (insn);
3160 if (sreg == MIPS_SP_REGNUM && dreg == 30)
3161 /* MOVE $fp, $sp */
3162 {
3163 frame_addr = sp;
3164 frame_reg = 30;
3165 }
3166 else if ((sreg & 0x1c) != 0x4)
3167 /* MOVE reg, $a0-$a3 */
3168 this_non_prologue_insn = 1;
3169 break;
3170
3171 case 0x11: /* POOL16C: bits 010001 */
3172 if (b6s4_op (insn) == 0x5)
3173 /* SWM: bits 010001 0101 */
3174 {
3175 offset = ((b0s4_imm (insn) << 2) ^ 0x20) - 0x20;
3176 reglist = b4s2_regl (insn);
3177 for (i = 0; i <= reglist; i++)
3178 set_reg_offset (gdbarch, this_cache, 16 + i, sp + 4 * i);
3179 set_reg_offset (gdbarch, this_cache,
3180 MIPS_RA_REGNUM, sp + 4 * i++);
3181 }
3182 else
3183 this_non_prologue_insn = 1;
3184 break;
3185
3186 case 0x13: /* POOL16D: bits 010011 */
3187 if ((insn & 0x1) == 0x1)
3188 /* ADDIUSP: bits 010011 1 */
3189 sp_adj = micromips_decode_imm9 (b1s9_imm (insn));
3190 else if (b5s5_reg (insn) == MIPS_SP_REGNUM)
3191 /* ADDIUS5: bits 010011 0 */
3192 /* ADDIUS5 $sp, imm */
3193 sp_adj = (b1s4_imm (insn) ^ 8) - 8;
3194 else
3195 this_non_prologue_insn = 1;
3196 break;
3197
3198 case 0x32: /* SWSP: bits 110010 */
3199 offset = b0s5_imm (insn) << 2;
3200 sreg = b5s5_reg (insn);
3201 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3202 break;
3203
3204 default:
ab50adb6
MR
3205 /* The instruction in the delay slot can be a part
3206 of the prologue, so move forward once more. */
3207 if (micromips_instruction_has_delay_slot (insn << 16, 0))
3208 in_delay_slot = 1;
3209 else
3210 this_non_prologue_insn = 1;
4cc0665f
MR
3211 break;
3212 }
3213 break;
3214 }
3215 if (sp_adj < 0)
3216 frame_offset -= sp_adj;
3217
3218 non_prologue_insns += this_non_prologue_insn;
ab50adb6
MR
3219
3220 /* A jump or branch, enough non-prologue insns seen or positive
3221 stack adjustment? If so, then we must have reached the end
3222 of the prologue by now. */
3223 if (prev_delay_slot || non_prologue_insns > 1 || sp_adj > 0
3224 || micromips_instruction_is_compact_branch (insn))
3225 break;
3226
4cc0665f 3227 prev_non_prologue_insn = this_non_prologue_insn;
ab50adb6 3228 prev_delay_slot = in_delay_slot;
4cc0665f 3229 prev_pc = cur_pc;
2207132d
MR
3230 }
3231
29639122
JB
3232 if (this_cache != NULL)
3233 {
3234 this_cache->base =
4cc0665f 3235 (get_frame_register_signed (this_frame,
b8a22b94 3236 gdbarch_num_regs (gdbarch) + frame_reg)
4cc0665f 3237 + frame_offset - frame_adjust);
29639122 3238 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
4cc0665f
MR
3239 be able to get rid of the assignment below, evetually. But it's
3240 still needed for now. */
72a155b4
UW
3241 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3242 + mips_regnum (gdbarch)->pc]
4cc0665f 3243 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
29639122
JB
3244 }
3245
ab50adb6
MR
3246 /* Set end_prologue_addr to the address of the instruction immediately
3247 after the last one we scanned. Unless the last one looked like a
3248 non-prologue instruction (and we looked ahead), in which case use
3249 its address instead. */
3250 end_prologue_addr
3251 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
29639122
JB
3252
3253 return end_prologue_addr;
eec63939
AC
3254}
3255
4cc0665f 3256/* Heuristic unwinder for procedures using microMIPS instructions.
29639122 3257 Procedures that use the 32-bit instruction set are handled by the
4cc0665f 3258 mips_insn32 unwinder. Likewise MIPS16 and the mips_insn16 unwinder. */
29639122
JB
3259
3260static struct mips_frame_cache *
4cc0665f 3261mips_micro_frame_cache (struct frame_info *this_frame, void **this_cache)
eec63939 3262{
e17a4113 3263 struct gdbarch *gdbarch = get_frame_arch (this_frame);
29639122 3264 struct mips_frame_cache *cache;
eec63939
AC
3265
3266 if ((*this_cache) != NULL)
3267 return (*this_cache);
4cc0665f 3268
29639122
JB
3269 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3270 (*this_cache) = cache;
b8a22b94 3271 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
eec63939 3272
29639122
JB
3273 /* Analyze the function prologue. */
3274 {
b8a22b94 3275 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
29639122 3276 CORE_ADDR start_addr;
eec63939 3277
29639122
JB
3278 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3279 if (start_addr == 0)
4cc0665f 3280 start_addr = heuristic_proc_start (get_frame_arch (this_frame), pc);
29639122
JB
3281 /* We can't analyze the prologue if we couldn't find the begining
3282 of the function. */
3283 if (start_addr == 0)
3284 return cache;
eec63939 3285
4cc0665f 3286 micromips_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
29639122 3287 }
4cc0665f 3288
3e8c568d 3289 /* gdbarch_sp_regnum contains the value and not the address. */
72a155b4 3290 trad_frame_set_value (cache->saved_regs,
e17a4113 3291 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
72a155b4 3292 cache->base);
eec63939 3293
29639122 3294 return (*this_cache);
eec63939
AC
3295}
3296
3297static void
4cc0665f
MR
3298mips_micro_frame_this_id (struct frame_info *this_frame, void **this_cache,
3299 struct frame_id *this_id)
eec63939 3300{
4cc0665f
MR
3301 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3302 this_cache);
21327321
DJ
3303 /* This marks the outermost frame. */
3304 if (info->base == 0)
3305 return;
b8a22b94 3306 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
eec63939
AC
3307}
3308
b8a22b94 3309static struct value *
4cc0665f
MR
3310mips_micro_frame_prev_register (struct frame_info *this_frame,
3311 void **this_cache, int regnum)
eec63939 3312{
4cc0665f
MR
3313 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3314 this_cache);
b8a22b94
DJ
3315 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3316}
3317
3318static int
4cc0665f
MR
3319mips_micro_frame_sniffer (const struct frame_unwind *self,
3320 struct frame_info *this_frame, void **this_cache)
b8a22b94 3321{
4cc0665f 3322 struct gdbarch *gdbarch = get_frame_arch (this_frame);
b8a22b94 3323 CORE_ADDR pc = get_frame_pc (this_frame);
4cc0665f
MR
3324
3325 if (mips_pc_is_micromips (gdbarch, pc))
b8a22b94
DJ
3326 return 1;
3327 return 0;
eec63939
AC
3328}
3329
4cc0665f 3330static const struct frame_unwind mips_micro_frame_unwind =
eec63939
AC
3331{
3332 NORMAL_FRAME,
8fbca658 3333 default_frame_unwind_stop_reason,
4cc0665f
MR
3334 mips_micro_frame_this_id,
3335 mips_micro_frame_prev_register,
b8a22b94 3336 NULL,
4cc0665f 3337 mips_micro_frame_sniffer
eec63939
AC
3338};
3339
eec63939 3340static CORE_ADDR
4cc0665f
MR
3341mips_micro_frame_base_address (struct frame_info *this_frame,
3342 void **this_cache)
eec63939 3343{
4cc0665f
MR
3344 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3345 this_cache);
29639122 3346 return info->base;
eec63939
AC
3347}
3348
4cc0665f 3349static const struct frame_base mips_micro_frame_base =
eec63939 3350{
4cc0665f
MR
3351 &mips_micro_frame_unwind,
3352 mips_micro_frame_base_address,
3353 mips_micro_frame_base_address,
3354 mips_micro_frame_base_address
eec63939
AC
3355};
3356
3357static const struct frame_base *
4cc0665f 3358mips_micro_frame_base_sniffer (struct frame_info *this_frame)
eec63939 3359{
4cc0665f 3360 struct gdbarch *gdbarch = get_frame_arch (this_frame);
b8a22b94 3361 CORE_ADDR pc = get_frame_pc (this_frame);
4cc0665f
MR
3362
3363 if (mips_pc_is_micromips (gdbarch, pc))
3364 return &mips_micro_frame_base;
eec63939
AC
3365 else
3366 return NULL;
edfae063
AC
3367}
3368
29639122
JB
3369/* Mark all the registers as unset in the saved_regs array
3370 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
3371
74ed0bb4
MD
3372static void
3373reset_saved_regs (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache)
c906108c 3374{
29639122
JB
3375 if (this_cache == NULL || this_cache->saved_regs == NULL)
3376 return;
3377
3378 {
74ed0bb4 3379 const int num_regs = gdbarch_num_regs (gdbarch);
29639122 3380 int i;
64159455 3381
29639122
JB
3382 for (i = 0; i < num_regs; i++)
3383 {
3384 this_cache->saved_regs[i].addr = -1;
3385 }
3386 }
c906108c
SS
3387}
3388
025bb325 3389/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
29639122
JB
3390 the associated FRAME_CACHE if not null.
3391 Return the address of the first instruction past the prologue. */
c906108c 3392
875e1767 3393static CORE_ADDR
e17a4113
UW
3394mips32_scan_prologue (struct gdbarch *gdbarch,
3395 CORE_ADDR start_pc, CORE_ADDR limit_pc,
b8a22b94 3396 struct frame_info *this_frame,
29639122 3397 struct mips_frame_cache *this_cache)
c906108c 3398{
ab50adb6
MR
3399 int prev_non_prologue_insn;
3400 int this_non_prologue_insn;
3401 int non_prologue_insns;
025bb325
MS
3402 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for
3403 frame-pointer. */
ab50adb6
MR
3404 int prev_delay_slot;
3405 CORE_ADDR prev_pc;
3406 CORE_ADDR cur_pc;
29639122
JB
3407 CORE_ADDR sp;
3408 long frame_offset;
3409 int frame_reg = MIPS_SP_REGNUM;
8fa9cfa1 3410
ab50adb6 3411 CORE_ADDR end_prologue_addr;
29639122
JB
3412 int seen_sp_adjust = 0;
3413 int load_immediate_bytes = 0;
ab50adb6 3414 int in_delay_slot;
7d1e6fb8 3415 int regsize_is_64_bits = (mips_abi_regsize (gdbarch) == 8);
8fa9cfa1 3416
29639122 3417 /* Can be called when there's no process, and hence when there's no
b8a22b94
DJ
3418 THIS_FRAME. */
3419 if (this_frame != NULL)
3420 sp = get_frame_register_signed (this_frame,
3421 gdbarch_num_regs (gdbarch)
3422 + MIPS_SP_REGNUM);
8fa9cfa1 3423 else
29639122 3424 sp = 0;
9022177c 3425
29639122
JB
3426 if (limit_pc > start_pc + 200)
3427 limit_pc = start_pc + 200;
9022177c 3428
29639122 3429restart:
ab50adb6
MR
3430 prev_non_prologue_insn = 0;
3431 non_prologue_insns = 0;
3432 prev_delay_slot = 0;
3433 prev_pc = start_pc;
9022177c 3434
ab50adb6
MR
3435 /* Permit at most one non-prologue non-control-transfer instruction
3436 in the middle which may have been reordered by the compiler for
3437 optimisation. */
29639122 3438 frame_offset = 0;
95ac2dcf 3439 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
9022177c 3440 {
29639122
JB
3441 unsigned long inst, high_word, low_word;
3442 int reg;
9022177c 3443
ab50adb6
MR
3444 this_non_prologue_insn = 0;
3445 in_delay_slot = 0;
3446
025bb325 3447 /* Fetch the instruction. */
4cc0665f
MR
3448 inst = (unsigned long) mips_fetch_instruction (gdbarch, ISA_MIPS,
3449 cur_pc, NULL);
9022177c 3450
29639122
JB
3451 /* Save some code by pre-extracting some useful fields. */
3452 high_word = (inst >> 16) & 0xffff;
3453 low_word = inst & 0xffff;
3454 reg = high_word & 0x1f;
fe29b929 3455
025bb325 3456 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
29639122
JB
3457 || high_word == 0x23bd /* addi $sp,$sp,-i */
3458 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
3459 {
025bb325 3460 if (low_word & 0x8000) /* Negative stack adjustment? */
29639122
JB
3461 frame_offset += 0x10000 - low_word;
3462 else
3463 /* Exit loop if a positive stack adjustment is found, which
3464 usually means that the stack cleanup code in the function
3465 epilogue is reached. */
3466 break;
3467 seen_sp_adjust = 1;
3468 }
7d1e6fb8
KB
3469 else if (((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
3470 && !regsize_is_64_bits)
29639122 3471 {
74ed0bb4 3472 set_reg_offset (gdbarch, this_cache, reg, sp + low_word);
29639122 3473 }
7d1e6fb8
KB
3474 else if (((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
3475 && regsize_is_64_bits)
29639122
JB
3476 {
3477 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
74ed0bb4 3478 set_reg_offset (gdbarch, this_cache, reg, sp + low_word);
29639122
JB
3479 }
3480 else if (high_word == 0x27be) /* addiu $30,$sp,size */
3481 {
3482 /* Old gcc frame, r30 is virtual frame pointer. */
3483 if ((long) low_word != frame_offset)
3484 frame_addr = sp + low_word;
b8a22b94 3485 else if (this_frame && frame_reg == MIPS_SP_REGNUM)
29639122
JB
3486 {
3487 unsigned alloca_adjust;
a4b8ebc8 3488
29639122 3489 frame_reg = 30;
b8a22b94
DJ
3490 frame_addr = get_frame_register_signed
3491 (this_frame, gdbarch_num_regs (gdbarch) + 30);
ca9c94ef 3492 frame_offset = 0;
d2ca4222 3493
29639122
JB
3494 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
3495 if (alloca_adjust > 0)
3496 {
025bb325 3497 /* FP > SP + frame_size. This may be because of
29639122
JB
3498 an alloca or somethings similar. Fix sp to
3499 "pre-alloca" value, and try again. */
3500 sp += alloca_adjust;
3501 /* Need to reset the status of all registers. Otherwise,
3502 we will hit a guard that prevents the new address
3503 for each register to be recomputed during the second
3504 pass. */
74ed0bb4 3505 reset_saved_regs (gdbarch, this_cache);
29639122
JB
3506 goto restart;
3507 }
3508 }
3509 }
3510 /* move $30,$sp. With different versions of gas this will be either
3511 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
3512 Accept any one of these. */
3513 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
3514 {
3515 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
b8a22b94 3516 if (this_frame && frame_reg == MIPS_SP_REGNUM)
29639122
JB
3517 {
3518 unsigned alloca_adjust;
c906108c 3519
29639122 3520 frame_reg = 30;
b8a22b94
DJ
3521 frame_addr = get_frame_register_signed
3522 (this_frame, gdbarch_num_regs (gdbarch) + 30);
d2ca4222 3523
29639122
JB
3524 alloca_adjust = (unsigned) (frame_addr - sp);
3525 if (alloca_adjust > 0)
3526 {
025bb325 3527 /* FP > SP + frame_size. This may be because of
29639122
JB
3528 an alloca or somethings similar. Fix sp to
3529 "pre-alloca" value, and try again. */
3530 sp = frame_addr;
3531 /* Need to reset the status of all registers. Otherwise,
3532 we will hit a guard that prevents the new address
3533 for each register to be recomputed during the second
3534 pass. */
74ed0bb4 3535 reset_saved_regs (gdbarch, this_cache);
29639122
JB
3536 goto restart;
3537 }
3538 }
3539 }
7d1e6fb8
KB
3540 else if ((high_word & 0xFFE0) == 0xafc0 /* sw reg,offset($30) */
3541 && !regsize_is_64_bits)
29639122 3542 {
74ed0bb4 3543 set_reg_offset (gdbarch, this_cache, reg, frame_addr + low_word);
29639122
JB
3544 }
3545 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
3546 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
3547 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
3548 || high_word == 0x3c1c /* lui $gp,n */
3549 || high_word == 0x279c /* addiu $gp,$gp,n */
3550 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
3551 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
3552 )
19080931
MR
3553 {
3554 /* These instructions are part of the prologue, but we don't
3555 need to do anything special to handle them. */
3556 }
29639122
JB
3557 /* The instructions below load $at or $t0 with an immediate
3558 value in preparation for a stack adjustment via
025bb325 3559 subu $sp,$sp,[$at,$t0]. These instructions could also
29639122
JB
3560 initialize a local variable, so we accept them only before
3561 a stack adjustment instruction was seen. */
3562 else if (!seen_sp_adjust
ab50adb6 3563 && !prev_delay_slot
19080931
MR
3564 && (high_word == 0x3c01 /* lui $at,n */
3565 || high_word == 0x3c08 /* lui $t0,n */
3566 || high_word == 0x3421 /* ori $at,$at,n */
3567 || high_word == 0x3508 /* ori $t0,$t0,n */
3568 || high_word == 0x3401 /* ori $at,$zero,n */
3569 || high_word == 0x3408 /* ori $t0,$zero,n */
3570 ))
3571 {
ab50adb6 3572 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
19080931 3573 }
ab50adb6
MR
3574 /* Check for branches and jumps. The instruction in the delay
3575 slot can be a part of the prologue, so move forward once more. */
3576 else if (mips32_instruction_has_delay_slot (gdbarch, inst))
3577 {
3578 in_delay_slot = 1;
3579 }
3580 /* This instruction is not an instruction typically found
3581 in a prologue, so we must have reached the end of the
3582 prologue. */
29639122 3583 else
19080931 3584 {
ab50adb6 3585 this_non_prologue_insn = 1;
19080931 3586 }
db5f024e 3587
ab50adb6
MR
3588 non_prologue_insns += this_non_prologue_insn;
3589
3590 /* A jump or branch, or enough non-prologue insns seen? If so,
3591 then we must have reached the end of the prologue by now. */
3592 if (prev_delay_slot || non_prologue_insns > 1)
db5f024e 3593 break;
ab50adb6
MR
3594
3595 prev_non_prologue_insn = this_non_prologue_insn;
3596 prev_delay_slot = in_delay_slot;
3597 prev_pc = cur_pc;
a4b8ebc8 3598 }
c906108c 3599
29639122
JB
3600 if (this_cache != NULL)
3601 {
3602 this_cache->base =
b8a22b94
DJ
3603 (get_frame_register_signed (this_frame,
3604 gdbarch_num_regs (gdbarch) + frame_reg)
29639122
JB
3605 + frame_offset);
3606 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
3607 this assignment below, eventually. But it's still needed
3608 for now. */
72a155b4
UW
3609 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3610 + mips_regnum (gdbarch)->pc]
3611 = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
f57d151a 3612 + MIPS_RA_REGNUM];
29639122 3613 }
c906108c 3614
ab50adb6
MR
3615 /* Set end_prologue_addr to the address of the instruction immediately
3616 after the last one we scanned. Unless the last one looked like a
3617 non-prologue instruction (and we looked ahead), in which case use
3618 its address instead. */
3619 end_prologue_addr
3620 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
29639122
JB
3621
3622 /* In a frameless function, we might have incorrectly
025bb325 3623 skipped some load immediate instructions. Undo the skipping
29639122
JB
3624 if the load immediate was not followed by a stack adjustment. */
3625 if (load_immediate_bytes && !seen_sp_adjust)
3626 end_prologue_addr -= load_immediate_bytes;
c906108c 3627
29639122 3628 return end_prologue_addr;
c906108c
SS
3629}
3630
29639122
JB
3631/* Heuristic unwinder for procedures using 32-bit instructions (covers
3632 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
3633 instructions (a.k.a. MIPS16) are handled by the mips_insn16
4cc0665f 3634 unwinder. Likewise microMIPS and the mips_micro unwinder. */
c906108c 3635
29639122 3636static struct mips_frame_cache *
b8a22b94 3637mips_insn32_frame_cache (struct frame_info *this_frame, void **this_cache)
c906108c 3638{
e17a4113 3639 struct gdbarch *gdbarch = get_frame_arch (this_frame);
29639122 3640 struct mips_frame_cache *cache;
c906108c 3641
29639122
JB
3642 if ((*this_cache) != NULL)
3643 return (*this_cache);
c5aa993b 3644
29639122
JB
3645 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3646 (*this_cache) = cache;
b8a22b94 3647 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
c5aa993b 3648
29639122
JB
3649 /* Analyze the function prologue. */
3650 {
b8a22b94 3651 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
29639122 3652 CORE_ADDR start_addr;
c906108c 3653
29639122
JB
3654 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3655 if (start_addr == 0)
e17a4113 3656 start_addr = heuristic_proc_start (gdbarch, pc);
29639122
JB
3657 /* We can't analyze the prologue if we couldn't find the begining
3658 of the function. */
3659 if (start_addr == 0)
3660 return cache;
c5aa993b 3661
e17a4113 3662 mips32_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
29639122
JB
3663 }
3664
3e8c568d 3665 /* gdbarch_sp_regnum contains the value and not the address. */
f57d151a 3666 trad_frame_set_value (cache->saved_regs,
e17a4113 3667 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
f57d151a 3668 cache->base);
c5aa993b 3669
29639122 3670 return (*this_cache);
c906108c
SS
3671}
3672
29639122 3673static void
b8a22b94 3674mips_insn32_frame_this_id (struct frame_info *this_frame, void **this_cache,
29639122 3675 struct frame_id *this_id)
c906108c 3676{
b8a22b94 3677 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
29639122 3678 this_cache);
21327321
DJ
3679 /* This marks the outermost frame. */
3680 if (info->base == 0)
3681 return;
b8a22b94 3682 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
29639122 3683}
c906108c 3684
b8a22b94
DJ
3685static struct value *
3686mips_insn32_frame_prev_register (struct frame_info *this_frame,
3687 void **this_cache, int regnum)
29639122 3688{
b8a22b94 3689 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
29639122 3690 this_cache);
b8a22b94
DJ
3691 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3692}
3693
3694static int
3695mips_insn32_frame_sniffer (const struct frame_unwind *self,
3696 struct frame_info *this_frame, void **this_cache)
3697{
3698 CORE_ADDR pc = get_frame_pc (this_frame);
4cc0665f 3699 if (mips_pc_is_mips (pc))
b8a22b94
DJ
3700 return 1;
3701 return 0;
c906108c
SS
3702}
3703
29639122
JB
3704static const struct frame_unwind mips_insn32_frame_unwind =
3705{
3706 NORMAL_FRAME,
8fbca658 3707 default_frame_unwind_stop_reason,
29639122 3708 mips_insn32_frame_this_id,
b8a22b94
DJ
3709 mips_insn32_frame_prev_register,
3710 NULL,
3711 mips_insn32_frame_sniffer
29639122 3712};
c906108c 3713
1c645fec 3714static CORE_ADDR
b8a22b94 3715mips_insn32_frame_base_address (struct frame_info *this_frame,
29639122 3716 void **this_cache)
c906108c 3717{
b8a22b94 3718 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
29639122
JB
3719 this_cache);
3720 return info->base;
3721}
c906108c 3722
29639122
JB
3723static const struct frame_base mips_insn32_frame_base =
3724{
3725 &mips_insn32_frame_unwind,
3726 mips_insn32_frame_base_address,
3727 mips_insn32_frame_base_address,
3728 mips_insn32_frame_base_address
3729};
1c645fec 3730
29639122 3731static const struct frame_base *
b8a22b94 3732mips_insn32_frame_base_sniffer (struct frame_info *this_frame)
29639122 3733{
b8a22b94 3734 CORE_ADDR pc = get_frame_pc (this_frame);
4cc0665f 3735 if (mips_pc_is_mips (pc))
29639122 3736 return &mips_insn32_frame_base;
a65bbe44 3737 else
29639122
JB
3738 return NULL;
3739}
a65bbe44 3740
29639122 3741static struct trad_frame_cache *
b8a22b94 3742mips_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
29639122
JB
3743{
3744 CORE_ADDR pc;
3745 CORE_ADDR start_addr;
3746 CORE_ADDR stack_addr;
3747 struct trad_frame_cache *this_trad_cache;
b8a22b94
DJ
3748 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3749 int num_regs = gdbarch_num_regs (gdbarch);
c906108c 3750
29639122
JB
3751 if ((*this_cache) != NULL)
3752 return (*this_cache);
b8a22b94 3753 this_trad_cache = trad_frame_cache_zalloc (this_frame);
29639122 3754 (*this_cache) = this_trad_cache;
1c645fec 3755
29639122 3756 /* The return address is in the link register. */
3e8c568d 3757 trad_frame_set_reg_realreg (this_trad_cache,
72a155b4 3758 gdbarch_pc_regnum (gdbarch),
b8a22b94 3759 num_regs + MIPS_RA_REGNUM);
1c645fec 3760
29639122
JB
3761 /* Frame ID, since it's a frameless / stackless function, no stack
3762 space is allocated and SP on entry is the current SP. */
b8a22b94 3763 pc = get_frame_pc (this_frame);
29639122 3764 find_pc_partial_function (pc, NULL, &start_addr, NULL);
b8a22b94
DJ
3765 stack_addr = get_frame_register_signed (this_frame,
3766 num_regs + MIPS_SP_REGNUM);
aa6c981f 3767 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
1c645fec 3768
29639122
JB
3769 /* Assume that the frame's base is the same as the
3770 stack-pointer. */
3771 trad_frame_set_this_base (this_trad_cache, stack_addr);
c906108c 3772
29639122
JB
3773 return this_trad_cache;
3774}
c906108c 3775
29639122 3776static void
b8a22b94 3777mips_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
29639122
JB
3778 struct frame_id *this_id)
3779{
3780 struct trad_frame_cache *this_trad_cache
b8a22b94 3781 = mips_stub_frame_cache (this_frame, this_cache);
29639122
JB
3782 trad_frame_get_id (this_trad_cache, this_id);
3783}
c906108c 3784
b8a22b94
DJ
3785static struct value *
3786mips_stub_frame_prev_register (struct frame_info *this_frame,
3787 void **this_cache, int regnum)
29639122
JB
3788{
3789 struct trad_frame_cache *this_trad_cache
b8a22b94
DJ
3790 = mips_stub_frame_cache (this_frame, this_cache);
3791 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
29639122 3792}
c906108c 3793
b8a22b94
DJ
3794static int
3795mips_stub_frame_sniffer (const struct frame_unwind *self,
3796 struct frame_info *this_frame, void **this_cache)
29639122 3797{
aa6c981f 3798 gdb_byte dummy[4];
979b38e0 3799 struct obj_section *s;
b8a22b94 3800 CORE_ADDR pc = get_frame_address_in_block (this_frame);
7cbd4a93 3801 struct bound_minimal_symbol msym;
979b38e0 3802
aa6c981f 3803 /* Use the stub unwinder for unreadable code. */
b8a22b94
DJ
3804 if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
3805 return 1;
aa6c981f 3806
3e5d3a5a 3807 if (in_plt_section (pc) || in_mips_stubs_section (pc))
b8a22b94 3808 return 1;
979b38e0 3809
db5f024e
DJ
3810 /* Calling a PIC function from a non-PIC function passes through a
3811 stub. The stub for foo is named ".pic.foo". */
3812 msym = lookup_minimal_symbol_by_pc (pc);
7cbd4a93 3813 if (msym.minsym != NULL
efd66ac6
TT
3814 && MSYMBOL_LINKAGE_NAME (msym.minsym) != NULL
3815 && strncmp (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic.", 5) == 0)
db5f024e
DJ
3816 return 1;
3817
b8a22b94 3818 return 0;
29639122 3819}
c906108c 3820
b8a22b94
DJ
3821static const struct frame_unwind mips_stub_frame_unwind =
3822{
3823 NORMAL_FRAME,
8fbca658 3824 default_frame_unwind_stop_reason,
b8a22b94
DJ
3825 mips_stub_frame_this_id,
3826 mips_stub_frame_prev_register,
3827 NULL,
3828 mips_stub_frame_sniffer
3829};
3830
29639122 3831static CORE_ADDR
b8a22b94 3832mips_stub_frame_base_address (struct frame_info *this_frame,
29639122
JB
3833 void **this_cache)
3834{
3835 struct trad_frame_cache *this_trad_cache
b8a22b94 3836 = mips_stub_frame_cache (this_frame, this_cache);
29639122
JB
3837 return trad_frame_get_this_base (this_trad_cache);
3838}
0fce0821 3839
29639122
JB
3840static const struct frame_base mips_stub_frame_base =
3841{
3842 &mips_stub_frame_unwind,
3843 mips_stub_frame_base_address,
3844 mips_stub_frame_base_address,
3845 mips_stub_frame_base_address
3846};
3847
3848static const struct frame_base *
b8a22b94 3849mips_stub_frame_base_sniffer (struct frame_info *this_frame)
29639122 3850{
b8a22b94 3851 if (mips_stub_frame_sniffer (&mips_stub_frame_unwind, this_frame, NULL))
29639122
JB
3852 return &mips_stub_frame_base;
3853 else
3854 return NULL;
3855}
3856
29639122 3857/* mips_addr_bits_remove - remove useless address bits */
65596487 3858
29639122 3859static CORE_ADDR
24568a2c 3860mips_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
65596487 3861{
24568a2c 3862 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
930bd0e0 3863
29639122
JB
3864 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
3865 /* This hack is a work-around for existing boards using PMON, the
3866 simulator, and any other 64-bit targets that doesn't have true
3867 64-bit addressing. On these targets, the upper 32 bits of
3868 addresses are ignored by the hardware. Thus, the PC or SP are
3869 likely to have been sign extended to all 1s by instruction
3870 sequences that load 32-bit addresses. For example, a typical
3871 piece of code that loads an address is this:
65596487 3872
29639122
JB
3873 lui $r2, <upper 16 bits>
3874 ori $r2, <lower 16 bits>
65596487 3875
29639122
JB
3876 But the lui sign-extends the value such that the upper 32 bits
3877 may be all 1s. The workaround is simply to mask off these
3878 bits. In the future, gcc may be changed to support true 64-bit
3879 addressing, and this masking will have to be disabled. */
3880 return addr &= 0xffffffffUL;
3881 else
3882 return addr;
65596487
JB
3883}
3884
3d5f6d12
DJ
3885
3886/* Checks for an atomic sequence of instructions beginning with a LL/LLD
3887 instruction and ending with a SC/SCD instruction. If such a sequence
3888 is found, attempt to step through it. A breakpoint is placed at the end of
3889 the sequence. */
3890
4cc0665f
MR
3891/* Instructions used during single-stepping of atomic sequences, standard
3892 ISA version. */
3893#define LL_OPCODE 0x30
3894#define LLD_OPCODE 0x34
3895#define SC_OPCODE 0x38
3896#define SCD_OPCODE 0x3c
3897
3d5f6d12 3898static int
4cc0665f
MR
3899mips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
3900 struct address_space *aspace, CORE_ADDR pc)
3d5f6d12
DJ
3901{
3902 CORE_ADDR breaks[2] = {-1, -1};
3903 CORE_ADDR loc = pc;
3904 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
4cc0665f 3905 ULONGEST insn;
3d5f6d12
DJ
3906 int insn_count;
3907 int index;
3908 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3909 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3910
4cc0665f 3911 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3d5f6d12
DJ
3912 /* Assume all atomic sequences start with a ll/lld instruction. */
3913 if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
3914 return 0;
3915
3916 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
3917 instructions. */
3918 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
3919 {
3920 int is_branch = 0;
3921 loc += MIPS_INSN32_SIZE;
4cc0665f 3922 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3d5f6d12
DJ
3923
3924 /* Assume that there is at most one branch in the atomic
3925 sequence. If a branch is found, put a breakpoint in its
3926 destination address. */
3927 switch (itype_op (insn))
3928 {
3929 case 0: /* SPECIAL */
3930 if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
025bb325 3931 return 0; /* fallback to the standard single-step code. */
3d5f6d12
DJ
3932 break;
3933 case 1: /* REGIMM */
a385295e
MR
3934 is_branch = ((itype_rt (insn) & 0xc) == 0 /* B{LT,GE}Z* */
3935 || ((itype_rt (insn) & 0x1e) == 0
3936 && itype_rs (insn) == 0)); /* BPOSGE* */
3d5f6d12
DJ
3937 break;
3938 case 2: /* J */
3939 case 3: /* JAL */
025bb325 3940 return 0; /* fallback to the standard single-step code. */
3d5f6d12
DJ
3941 case 4: /* BEQ */
3942 case 5: /* BNE */
3943 case 6: /* BLEZ */
3944 case 7: /* BGTZ */
3945 case 20: /* BEQL */
3946 case 21: /* BNEL */
3947 case 22: /* BLEZL */
3948 case 23: /* BGTTL */
3949 is_branch = 1;
3950 break;
3951 case 17: /* COP1 */
a385295e
MR
3952 is_branch = ((itype_rs (insn) == 9 || itype_rs (insn) == 10)
3953 && (itype_rt (insn) & 0x2) == 0);
3954 if (is_branch) /* BC1ANY2F, BC1ANY2T, BC1ANY4F, BC1ANY4T */
3955 break;
3956 /* Fall through. */
3d5f6d12
DJ
3957 case 18: /* COP2 */
3958 case 19: /* COP3 */
3959 is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
3960 break;
3961 }
3962 if (is_branch)
3963 {
3964 branch_bp = loc + mips32_relative_offset (insn) + 4;
3965 if (last_breakpoint >= 1)
3966 return 0; /* More than one branch found, fallback to the
3967 standard single-step code. */
3968 breaks[1] = branch_bp;
3969 last_breakpoint++;
3970 }
3971
3972 if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
3973 break;
3974 }
3975
3976 /* Assume that the atomic sequence ends with a sc/scd instruction. */
3977 if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
3978 return 0;
3979
3980 loc += MIPS_INSN32_SIZE;
3981
3982 /* Insert a breakpoint right after the end of the atomic sequence. */
3983 breaks[0] = loc;
3984
3985 /* Check for duplicated breakpoints. Check also for a breakpoint
025bb325 3986 placed (branch instruction's destination) in the atomic sequence. */
3d5f6d12
DJ
3987 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
3988 last_breakpoint = 0;
3989
3990 /* Effectively inserts the breakpoints. */
3991 for (index = 0; index <= last_breakpoint; index++)
6c95b8df 3992 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
3d5f6d12
DJ
3993
3994 return 1;
3995}
3996
4cc0665f
MR
3997static int
3998micromips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
3999 struct address_space *aspace,
4000 CORE_ADDR pc)
4001{
4002 const int atomic_sequence_length = 16; /* Instruction sequence length. */
4003 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
4004 CORE_ADDR breaks[2] = {-1, -1};
4b844a38
AT
4005 CORE_ADDR branch_bp = 0; /* Breakpoint at branch instruction's
4006 destination. */
4cc0665f
MR
4007 CORE_ADDR loc = pc;
4008 int sc_found = 0;
4009 ULONGEST insn;
4010 int insn_count;
4011 int index;
4012
4013 /* Assume all atomic sequences start with a ll/lld instruction. */
4014 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4015 if (micromips_op (insn) != 0x18) /* POOL32C: bits 011000 */
4016 return 0;
4017 loc += MIPS_INSN16_SIZE;
4018 insn <<= 16;
4019 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4020 if ((b12s4_op (insn) & 0xb) != 0x3) /* LL, LLD: bits 011000 0x11 */
4021 return 0;
4022 loc += MIPS_INSN16_SIZE;
4023
4024 /* Assume all atomic sequences end with an sc/scd instruction. Assume
4025 that no atomic sequence is longer than "atomic_sequence_length"
4026 instructions. */
4027 for (insn_count = 0;
4028 !sc_found && insn_count < atomic_sequence_length;
4029 ++insn_count)
4030 {
4031 int is_branch = 0;
4032
4033 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4034 loc += MIPS_INSN16_SIZE;
4035
4036 /* Assume that there is at most one conditional branch in the
4037 atomic sequence. If a branch is found, put a breakpoint in
4038 its destination address. */
4039 switch (mips_insn_size (ISA_MICROMIPS, insn))
4040 {
4041 /* 48-bit instructions. */
4042 case 3 * MIPS_INSN16_SIZE: /* POOL48A: bits 011111 */
4043 loc += 2 * MIPS_INSN16_SIZE;
4044 break;
4045
4046 /* 32-bit instructions. */
4047 case 2 * MIPS_INSN16_SIZE:
4048 switch (micromips_op (insn))
4049 {
4050 case 0x10: /* POOL32I: bits 010000 */
4051 if ((b5s5_op (insn) & 0x18) != 0x0
4052 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
4053 /* BLEZ, BNEZC, BGTZ, BEQZC: 010000 001xx */
4054 && (b5s5_op (insn) & 0x1d) != 0x11
4055 /* BLTZALS, BGEZALS: bits 010000 100x1 */
4056 && ((b5s5_op (insn) & 0x1e) != 0x14
4057 || (insn & 0x3) != 0x0)
4058 /* BC2F, BC2T: bits 010000 1010x xxx00 */
4059 && (b5s5_op (insn) & 0x1e) != 0x1a
4060 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
4061 && ((b5s5_op (insn) & 0x1e) != 0x1c
4062 || (insn & 0x3) != 0x0)
4063 /* BC1F, BC1T: bits 010000 1110x xxx00 */
4064 && ((b5s5_op (insn) & 0x1c) != 0x1c
4065 || (insn & 0x3) != 0x1))
4066 /* BC1ANY*: bits 010000 111xx xxx01 */
4067 break;
4068 /* Fall through. */
4069
4070 case 0x25: /* BEQ: bits 100101 */
4071 case 0x2d: /* BNE: bits 101101 */
4072 insn <<= 16;
4073 insn |= mips_fetch_instruction (gdbarch,
4074 ISA_MICROMIPS, loc, NULL);
4075 branch_bp = (loc + MIPS_INSN16_SIZE
4076 + micromips_relative_offset16 (insn));
4077 is_branch = 1;
4078 break;
4079
4080 case 0x00: /* POOL32A: bits 000000 */
4081 insn <<= 16;
4082 insn |= mips_fetch_instruction (gdbarch,
4083 ISA_MICROMIPS, loc, NULL);
4084 if (b0s6_op (insn) != 0x3c
4085 /* POOL32Axf: bits 000000 ... 111100 */
4086 || (b6s10_ext (insn) & 0x2bf) != 0x3c)
4087 /* JALR, JALR.HB: 000000 000x111100 111100 */
4088 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
4089 break;
4090 /* Fall through. */
4091
4092 case 0x1d: /* JALS: bits 011101 */
4093 case 0x35: /* J: bits 110101 */
4094 case 0x3d: /* JAL: bits 111101 */
4095 case 0x3c: /* JALX: bits 111100 */
4096 return 0; /* Fall back to the standard single-step code. */
4097
4098 case 0x18: /* POOL32C: bits 011000 */
4099 if ((b12s4_op (insn) & 0xb) == 0xb)
4100 /* SC, SCD: bits 011000 1x11 */
4101 sc_found = 1;
4102 break;
4103 }
4104 loc += MIPS_INSN16_SIZE;
4105 break;
4106
4107 /* 16-bit instructions. */
4108 case MIPS_INSN16_SIZE:
4109 switch (micromips_op (insn))
4110 {
4111 case 0x23: /* BEQZ16: bits 100011 */
4112 case 0x2b: /* BNEZ16: bits 101011 */
4113 branch_bp = loc + micromips_relative_offset7 (insn);
4114 is_branch = 1;
4115 break;
4116
4117 case 0x11: /* POOL16C: bits 010001 */
4118 if ((b5s5_op (insn) & 0x1c) != 0xc
4119 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
4120 && b5s5_op (insn) != 0x18)
4121 /* JRADDIUSP: bits 010001 11000 */
4122 break;
4123 return 0; /* Fall back to the standard single-step code. */
4124
4125 case 0x33: /* B16: bits 110011 */
4126 return 0; /* Fall back to the standard single-step code. */
4127 }
4128 break;
4129 }
4130 if (is_branch)
4131 {
4132 if (last_breakpoint >= 1)
4133 return 0; /* More than one branch found, fallback to the
4134 standard single-step code. */
4135 breaks[1] = branch_bp;
4136 last_breakpoint++;
4137 }
4138 }
4139 if (!sc_found)
4140 return 0;
4141
4142 /* Insert a breakpoint right after the end of the atomic sequence. */
4143 breaks[0] = loc;
4144
4145 /* Check for duplicated breakpoints. Check also for a breakpoint
4146 placed (branch instruction's destination) in the atomic sequence */
4147 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
4148 last_breakpoint = 0;
4149
4150 /* Effectively inserts the breakpoints. */
4151 for (index = 0; index <= last_breakpoint; index++)
3373342d 4152 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
4cc0665f
MR
4153
4154 return 1;
4155}
4156
4157static int
4158deal_with_atomic_sequence (struct gdbarch *gdbarch,
4159 struct address_space *aspace, CORE_ADDR pc)
4160{
4161 if (mips_pc_is_mips (pc))
4162 return mips_deal_with_atomic_sequence (gdbarch, aspace, pc);
4163 else if (mips_pc_is_micromips (gdbarch, pc))
4164 return micromips_deal_with_atomic_sequence (gdbarch, aspace, pc);
4165 else
4166 return 0;
4167}
4168
29639122
JB
4169/* mips_software_single_step() is called just before we want to resume
4170 the inferior, if we want to single-step it but there is no hardware
4171 or kernel single-step support (MIPS on GNU/Linux for example). We find
e0cd558a 4172 the target of the coming instruction and breakpoint it. */
29639122 4173
e6590a1b 4174int
0b1b3e42 4175mips_software_single_step (struct frame_info *frame)
c906108c 4176{
a6d9a66e 4177 struct gdbarch *gdbarch = get_frame_arch (frame);
6c95b8df 4178 struct address_space *aspace = get_frame_address_space (frame);
8181d85f 4179 CORE_ADDR pc, next_pc;
65596487 4180
0b1b3e42 4181 pc = get_frame_pc (frame);
6c95b8df 4182 if (deal_with_atomic_sequence (gdbarch, aspace, pc))
3d5f6d12
DJ
4183 return 1;
4184
0b1b3e42 4185 next_pc = mips_next_pc (frame, pc);
e6590a1b 4186
6c95b8df 4187 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
e6590a1b 4188 return 1;
29639122 4189}
a65bbe44 4190
29639122 4191/* Test whether the PC points to the return instruction at the
025bb325 4192 end of a function. */
65596487 4193
29639122 4194static int
e17a4113 4195mips_about_to_return (struct gdbarch *gdbarch, CORE_ADDR pc)
29639122 4196{
6321c22a
MR
4197 ULONGEST insn;
4198 ULONGEST hint;
4199
4200 /* This used to check for MIPS16, but this piece of code is never
4cc0665f
MR
4201 called for MIPS16 functions. And likewise microMIPS ones. */
4202 gdb_assert (mips_pc_is_mips (pc));
6321c22a 4203
4cc0665f 4204 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
6321c22a
MR
4205 hint = 0x7c0;
4206 return (insn & ~hint) == 0x3e00008; /* jr(.hb) $ra */
29639122 4207}
c906108c 4208
c906108c 4209
29639122
JB
4210/* This fencepost looks highly suspicious to me. Removing it also
4211 seems suspicious as it could affect remote debugging across serial
4212 lines. */
c906108c 4213
29639122 4214static CORE_ADDR
74ed0bb4 4215heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
29639122
JB
4216{
4217 CORE_ADDR start_pc;
4218 CORE_ADDR fence;
4219 int instlen;
4220 int seen_adjsp = 0;
d6b48e9c 4221 struct inferior *inf;
65596487 4222
74ed0bb4 4223 pc = gdbarch_addr_bits_remove (gdbarch, pc);
29639122
JB
4224 start_pc = pc;
4225 fence = start_pc - heuristic_fence_post;
4226 if (start_pc == 0)
4227 return 0;
65596487 4228
44096aee 4229 if (heuristic_fence_post == -1 || fence < VM_MIN_ADDRESS)
29639122 4230 fence = VM_MIN_ADDRESS;
65596487 4231
4cc0665f 4232 instlen = mips_pc_is_mips (pc) ? MIPS_INSN32_SIZE : MIPS_INSN16_SIZE;
98b4dd94 4233
d6b48e9c
PA
4234 inf = current_inferior ();
4235
025bb325 4236 /* Search back for previous return. */
29639122
JB
4237 for (start_pc -= instlen;; start_pc -= instlen)
4238 if (start_pc < fence)
4239 {
4240 /* It's not clear to me why we reach this point when
4241 stop_soon, but with this test, at least we
4242 don't print out warnings for every child forked (eg, on
4243 decstation). 22apr93 rich@cygnus.com. */
16c381f0 4244 if (inf->control.stop_soon == NO_STOP_QUIETLY)
29639122
JB
4245 {
4246 static int blurb_printed = 0;
98b4dd94 4247
5af949e3
UW
4248 warning (_("GDB can't find the start of the function at %s."),
4249 paddress (gdbarch, pc));
29639122
JB
4250
4251 if (!blurb_printed)
4252 {
4253 /* This actually happens frequently in embedded
4254 development, when you first connect to a board
4255 and your stack pointer and pc are nowhere in
4256 particular. This message needs to give people
4257 in that situation enough information to
4258 determine that it's no big deal. */
4259 printf_filtered ("\n\
5af949e3 4260 GDB is unable to find the start of the function at %s\n\
29639122
JB
4261and thus can't determine the size of that function's stack frame.\n\
4262This means that GDB may be unable to access that stack frame, or\n\
4263the frames below it.\n\
4264 This problem is most likely caused by an invalid program counter or\n\
4265stack pointer.\n\
4266 However, if you think GDB should simply search farther back\n\
5af949e3 4267from %s for code which looks like the beginning of a\n\
29639122 4268function, you can increase the range of the search using the `set\n\
5af949e3
UW
4269heuristic-fence-post' command.\n",
4270 paddress (gdbarch, pc), paddress (gdbarch, pc));
29639122
JB
4271 blurb_printed = 1;
4272 }
4273 }
4274
4275 return 0;
4276 }
4cc0665f 4277 else if (mips_pc_is_mips16 (gdbarch, start_pc))
29639122
JB
4278 {
4279 unsigned short inst;
4280
4281 /* On MIPS16, any one of the following is likely to be the
4282 start of a function:
193774b3
MR
4283 extend save
4284 save
29639122
JB
4285 entry
4286 addiu sp,-n
4287 daddiu sp,-n
025bb325 4288 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n'. */
4cc0665f 4289 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, start_pc, NULL);
193774b3
MR
4290 if ((inst & 0xff80) == 0x6480) /* save */
4291 {
4292 if (start_pc - instlen >= fence)
4293 {
4cc0665f
MR
4294 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16,
4295 start_pc - instlen, NULL);
193774b3
MR
4296 if ((inst & 0xf800) == 0xf000) /* extend */
4297 start_pc -= instlen;
4298 }
4299 break;
4300 }
4301 else if (((inst & 0xf81f) == 0xe809
4302 && (inst & 0x700) != 0x700) /* entry */
4303 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
4304 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
4305 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
29639122
JB
4306 break;
4307 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
4308 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
4309 seen_adjsp = 1;
4310 else
4311 seen_adjsp = 0;
4312 }
4cc0665f
MR
4313 else if (mips_pc_is_micromips (gdbarch, start_pc))
4314 {
4315 ULONGEST insn;
4316 int stop = 0;
4317 long offset;
4318 int dreg;
4319 int sreg;
4320
4321 /* On microMIPS, any one of the following is likely to be the
4322 start of a function:
4323 ADDIUSP -imm
4324 (D)ADDIU $sp, -imm
4325 LUI $gp, imm */
4326 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
4327 switch (micromips_op (insn))
4328 {
4329 case 0xc: /* ADDIU: bits 001100 */
4330 case 0x17: /* DADDIU: bits 010111 */
4331 sreg = b0s5_reg (insn);
4332 dreg = b5s5_reg (insn);
4333 insn <<= 16;
4334 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS,
4335 pc + MIPS_INSN16_SIZE, NULL);
4336 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
4337 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
4338 /* (D)ADDIU $sp, imm */
4339 && offset < 0)
4340 stop = 1;
4341 break;
4342
4343 case 0x10: /* POOL32I: bits 010000 */
4344 if (b5s5_op (insn) == 0xd
4345 /* LUI: bits 010000 001101 */
4346 && b0s5_reg (insn >> 16) == 28)
4347 /* LUI $gp, imm */
4348 stop = 1;
4349 break;
4350
4351 case 0x13: /* POOL16D: bits 010011 */
4352 if ((insn & 0x1) == 0x1)
4353 /* ADDIUSP: bits 010011 1 */
4354 {
4355 offset = micromips_decode_imm9 (b1s9_imm (insn));
4356 if (offset < 0)
4357 /* ADDIUSP -imm */
4358 stop = 1;
4359 }
4360 else
4361 /* ADDIUS5: bits 010011 0 */
4362 {
4363 dreg = b5s5_reg (insn);
4364 offset = (b1s4_imm (insn) ^ 8) - 8;
4365 if (dreg == MIPS_SP_REGNUM && offset < 0)
4366 /* ADDIUS5 $sp, -imm */
4367 stop = 1;
4368 }
4369 break;
4370 }
4371 if (stop)
4372 break;
4373 }
e17a4113 4374 else if (mips_about_to_return (gdbarch, start_pc))
29639122 4375 {
4c7d22cb 4376 /* Skip return and its delay slot. */
95ac2dcf 4377 start_pc += 2 * MIPS_INSN32_SIZE;
29639122
JB
4378 break;
4379 }
4380
4381 return start_pc;
c906108c
SS
4382}
4383
6c0d6680
DJ
4384struct mips_objfile_private
4385{
4386 bfd_size_type size;
4387 char *contents;
4388};
4389
f09ded24
AC
4390/* According to the current ABI, should the type be passed in a
4391 floating-point register (assuming that there is space)? When there
a1f5b845 4392 is no FPU, FP are not even considered as possible candidates for
f09ded24 4393 FP registers and, consequently this returns false - forces FP
025bb325 4394 arguments into integer registers. */
f09ded24
AC
4395
4396static int
74ed0bb4
MD
4397fp_register_arg_p (struct gdbarch *gdbarch, enum type_code typecode,
4398 struct type *arg_type)
f09ded24
AC
4399{
4400 return ((typecode == TYPE_CODE_FLT
74ed0bb4 4401 || (MIPS_EABI (gdbarch)
6d82d43b
AC
4402 && (typecode == TYPE_CODE_STRUCT
4403 || typecode == TYPE_CODE_UNION)
f09ded24 4404 && TYPE_NFIELDS (arg_type) == 1
b2d6f210
MS
4405 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
4406 == TYPE_CODE_FLT))
74ed0bb4 4407 && MIPS_FPU_TYPE(gdbarch) != MIPS_FPU_NONE);
f09ded24
AC
4408}
4409
49e790b0 4410/* On o32, argument passing in GPRs depends on the alignment of the type being
025bb325 4411 passed. Return 1 if this type must be aligned to a doubleword boundary. */
49e790b0
DJ
4412
4413static int
4414mips_type_needs_double_align (struct type *type)
4415{
4416 enum type_code typecode = TYPE_CODE (type);
361d1df0 4417
49e790b0
DJ
4418 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
4419 return 1;
4420 else if (typecode == TYPE_CODE_STRUCT)
4421 {
4422 if (TYPE_NFIELDS (type) < 1)
4423 return 0;
4424 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
4425 }
4426 else if (typecode == TYPE_CODE_UNION)
4427 {
361d1df0 4428 int i, n;
49e790b0
DJ
4429
4430 n = TYPE_NFIELDS (type);
4431 for (i = 0; i < n; i++)
4432 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
4433 return 1;
4434 return 0;
4435 }
4436 return 0;
4437}
4438
dc604539
AC
4439/* Adjust the address downward (direction of stack growth) so that it
4440 is correctly aligned for a new stack frame. */
4441static CORE_ADDR
4442mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
4443{
5b03f266 4444 return align_down (addr, 16);
dc604539
AC
4445}
4446
8ae38c14 4447/* Implement the "push_dummy_code" gdbarch method. */
2c76a0c7
JB
4448
4449static CORE_ADDR
4450mips_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
4451 CORE_ADDR funaddr, struct value **args,
4452 int nargs, struct type *value_type,
4453 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
4454 struct regcache *regcache)
4455{
2c76a0c7 4456 static gdb_byte nop_insn[] = { 0, 0, 0, 0 };
2e81047f
MR
4457 CORE_ADDR nop_addr;
4458 CORE_ADDR bp_slot;
2c76a0c7
JB
4459
4460 /* Reserve enough room on the stack for our breakpoint instruction. */
2e81047f
MR
4461 bp_slot = sp - sizeof (nop_insn);
4462
4463 /* Return to microMIPS mode if calling microMIPS code to avoid
4464 triggering an address error exception on processors that only
4465 support microMIPS execution. */
4466 *bp_addr = (mips_pc_is_micromips (gdbarch, funaddr)
4467 ? make_compact_addr (bp_slot) : bp_slot);
2c76a0c7
JB
4468
4469 /* The breakpoint layer automatically adjusts the address of
4470 breakpoints inserted in a branch delay slot. With enough
4471 bad luck, the 4 bytes located just before our breakpoint
4472 instruction could look like a branch instruction, and thus
4473 trigger the adjustement, and break the function call entirely.
4474 So, we reserve those 4 bytes and write a nop instruction
4475 to prevent that from happening. */
2e81047f 4476 nop_addr = bp_slot - sizeof (nop_insn);
2c76a0c7
JB
4477 write_memory (nop_addr, nop_insn, sizeof (nop_insn));
4478 sp = mips_frame_align (gdbarch, nop_addr);
4479
4480 /* Inferior resumes at the function entry point. */
4481 *real_pc = funaddr;
4482
4483 return sp;
4484}
4485
f7ab6ec6 4486static CORE_ADDR
7d9b040b 4487mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
4488 struct regcache *regcache, CORE_ADDR bp_addr,
4489 int nargs, struct value **args, CORE_ADDR sp,
4490 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
4491{
4492 int argreg;
4493 int float_argreg;
4494 int argnum;
4495 int len = 0;
4496 int stack_offset = 0;
e17a4113 4497 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 4498 CORE_ADDR func_addr = find_function_addr (function, NULL);
1a69e1e4 4499 int regsize = mips_abi_regsize (gdbarch);
c906108c 4500
25ab4790
AC
4501 /* For shared libraries, "t9" needs to point at the function
4502 address. */
4c7d22cb 4503 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
4504
4505 /* Set the return address register to point to the entry point of
4506 the program, where a breakpoint lies in wait. */
4c7d22cb 4507 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 4508
c906108c 4509 /* First ensure that the stack and structure return address (if any)
cb3d25d1
MS
4510 are properly aligned. The stack has to be at least 64-bit
4511 aligned even on 32-bit machines, because doubles must be 64-bit
4512 aligned. For n32 and n64, stack frames need to be 128-bit
4513 aligned, so we round to this widest known alignment. */
4514
5b03f266
AC
4515 sp = align_down (sp, 16);
4516 struct_addr = align_down (struct_addr, 16);
c5aa993b 4517
46e0f506 4518 /* Now make space on the stack for the args. We allocate more
c906108c 4519 than necessary for EABI, because the first few arguments are
46e0f506 4520 passed in registers, but that's OK. */
c906108c 4521 for (argnum = 0; argnum < nargs; argnum++)
1a69e1e4 4522 len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
5b03f266 4523 sp -= align_up (len, 16);
c906108c 4524
9ace0497 4525 if (mips_debug)
6d82d43b 4526 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4527 "mips_eabi_push_dummy_call: sp=%s allocated %ld\n",
4528 paddress (gdbarch, sp), (long) align_up (len, 16));
9ace0497 4529
c906108c 4530 /* Initialize the integer and float register pointers. */
4c7d22cb 4531 argreg = MIPS_A0_REGNUM;
72a155b4 4532 float_argreg = mips_fpa0_regnum (gdbarch);
c906108c 4533
46e0f506 4534 /* The struct_return pointer occupies the first parameter-passing reg. */
c906108c 4535 if (struct_return)
9ace0497
AC
4536 {
4537 if (mips_debug)
4538 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
4539 "mips_eabi_push_dummy_call: "
4540 "struct_return reg=%d %s\n",
5af949e3 4541 argreg, paddress (gdbarch, struct_addr));
9c9acae0 4542 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
9ace0497 4543 }
c906108c
SS
4544
4545 /* Now load as many as possible of the first arguments into
4546 registers, and push the rest onto the stack. Loop thru args
4547 from first to last. */
4548 for (argnum = 0; argnum < nargs; argnum++)
4549 {
47a35522
MK
4550 const gdb_byte *val;
4551 gdb_byte valbuf[MAX_REGISTER_SIZE];
ea7c478f 4552 struct value *arg = args[argnum];
4991999e 4553 struct type *arg_type = check_typedef (value_type (arg));
c906108c
SS
4554 int len = TYPE_LENGTH (arg_type);
4555 enum type_code typecode = TYPE_CODE (arg_type);
4556
9ace0497
AC
4557 if (mips_debug)
4558 fprintf_unfiltered (gdb_stdlog,
25ab4790 4559 "mips_eabi_push_dummy_call: %d len=%d type=%d",
acdb74a0 4560 argnum + 1, len, (int) typecode);
9ace0497 4561
c906108c 4562 /* The EABI passes structures that do not fit in a register by
46e0f506 4563 reference. */
3e29f34a 4564 if (len > regsize
9ace0497 4565 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 4566 {
e17a4113
UW
4567 store_unsigned_integer (valbuf, regsize, byte_order,
4568 value_address (arg));
c906108c 4569 typecode = TYPE_CODE_PTR;
1a69e1e4 4570 len = regsize;
c906108c 4571 val = valbuf;
9ace0497
AC
4572 if (mips_debug)
4573 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
4574 }
4575 else
47a35522 4576 val = value_contents (arg);
c906108c
SS
4577
4578 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
4579 even-numbered floating point register. Round the FP register
4580 up before the check to see if there are any FP registers
46e0f506
MS
4581 left. Non MIPS_EABI targets also pass the FP in the integer
4582 registers so also round up normal registers. */
74ed0bb4 4583 if (regsize < 8 && fp_register_arg_p (gdbarch, typecode, arg_type))
acdb74a0
AC
4584 {
4585 if ((float_argreg & 1))
4586 float_argreg++;
4587 }
c906108c
SS
4588
4589 /* Floating point arguments passed in registers have to be
4590 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
4591 are passed in register pairs; the even register gets
4592 the low word, and the odd register gets the high word.
4593 On non-EABI processors, the first two floating point arguments are
4594 also copied to general registers, because MIPS16 functions
4595 don't use float registers for arguments. This duplication of
4596 arguments in general registers can't hurt non-MIPS16 functions
4597 because those registers are normally skipped. */
1012bd0e
EZ
4598 /* MIPS_EABI squeezes a struct that contains a single floating
4599 point value into an FP register instead of pushing it onto the
46e0f506 4600 stack. */
74ed0bb4
MD
4601 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4602 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
c906108c 4603 {
6da397e0
KB
4604 /* EABI32 will pass doubles in consecutive registers, even on
4605 64-bit cores. At one time, we used to check the size of
4606 `float_argreg' to determine whether or not to pass doubles
4607 in consecutive registers, but this is not sufficient for
4608 making the ABI determination. */
4609 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
c906108c 4610 {
72a155b4 4611 int low_offset = gdbarch_byte_order (gdbarch)
4c6b5505 4612 == BFD_ENDIAN_BIG ? 4 : 0;
a8852dc5 4613 long regval;
c906108c
SS
4614
4615 /* Write the low word of the double to the even register(s). */
a8852dc5
KB
4616 regval = extract_signed_integer (val + low_offset,
4617 4, byte_order);
9ace0497 4618 if (mips_debug)
acdb74a0 4619 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 4620 float_argreg, phex (regval, 4));
a8852dc5 4621 regcache_cooked_write_signed (regcache, float_argreg++, regval);
c906108c
SS
4622
4623 /* Write the high word of the double to the odd register(s). */
a8852dc5
KB
4624 regval = extract_signed_integer (val + 4 - low_offset,
4625 4, byte_order);
9ace0497 4626 if (mips_debug)
acdb74a0 4627 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 4628 float_argreg, phex (regval, 4));
a8852dc5 4629 regcache_cooked_write_signed (regcache, float_argreg++, regval);
c906108c
SS
4630 }
4631 else
4632 {
4633 /* This is a floating point value that fits entirely
4634 in a single register. */
53a5351d 4635 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 4636 above to ensure that it is even register aligned. */
a8852dc5 4637 LONGEST regval = extract_signed_integer (val, len, byte_order);
9ace0497 4638 if (mips_debug)
acdb74a0 4639 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 4640 float_argreg, phex (regval, len));
a8852dc5 4641 regcache_cooked_write_signed (regcache, float_argreg++, regval);
c906108c
SS
4642 }
4643 }
4644 else
4645 {
4646 /* Copy the argument to general registers or the stack in
4647 register-sized pieces. Large arguments are split between
4648 registers and stack. */
1a69e1e4
DJ
4649 /* Note: structs whose size is not a multiple of regsize
4650 are treated specially: Irix cc passes
d5ac5a39
AC
4651 them in registers where gcc sometimes puts them on the
4652 stack. For maximum compatibility, we will put them in
4653 both places. */
1a69e1e4 4654 int odd_sized_struct = (len > regsize && len % regsize != 0);
46e0f506 4655
f09ded24 4656 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 4657 register are only written to memory. */
c906108c
SS
4658 while (len > 0)
4659 {
ebafbe83 4660 /* Remember if the argument was written to the stack. */
566f0f7a 4661 int stack_used_p = 0;
1a69e1e4 4662 int partial_len = (len < regsize ? len : regsize);
c906108c 4663
acdb74a0
AC
4664 if (mips_debug)
4665 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4666 partial_len);
4667
566f0f7a 4668 /* Write this portion of the argument to the stack. */
74ed0bb4 4669 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
f09ded24 4670 || odd_sized_struct
74ed0bb4 4671 || fp_register_arg_p (gdbarch, typecode, arg_type))
c906108c 4672 {
c906108c 4673 /* Should shorter than int integer values be
025bb325 4674 promoted to int before being stored? */
c906108c 4675 int longword_offset = 0;
9ace0497 4676 CORE_ADDR addr;
566f0f7a 4677 stack_used_p = 1;
72a155b4 4678 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
7a292a7a 4679 {
1a69e1e4 4680 if (regsize == 8
480d3dd2
AC
4681 && (typecode == TYPE_CODE_INT
4682 || typecode == TYPE_CODE_PTR
6d82d43b 4683 || typecode == TYPE_CODE_FLT) && len <= 4)
1a69e1e4 4684 longword_offset = regsize - len;
480d3dd2
AC
4685 else if ((typecode == TYPE_CODE_STRUCT
4686 || typecode == TYPE_CODE_UNION)
1a69e1e4
DJ
4687 && TYPE_LENGTH (arg_type) < regsize)
4688 longword_offset = regsize - len;
7a292a7a 4689 }
c5aa993b 4690
9ace0497
AC
4691 if (mips_debug)
4692 {
5af949e3
UW
4693 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
4694 paddress (gdbarch, stack_offset));
4695 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
4696 paddress (gdbarch, longword_offset));
9ace0497 4697 }
361d1df0 4698
9ace0497
AC
4699 addr = sp + stack_offset + longword_offset;
4700
4701 if (mips_debug)
4702 {
4703 int i;
5af949e3
UW
4704 fprintf_unfiltered (gdb_stdlog, " @%s ",
4705 paddress (gdbarch, addr));
9ace0497
AC
4706 for (i = 0; i < partial_len; i++)
4707 {
6d82d43b 4708 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1 4709 val[i] & 0xff);
9ace0497
AC
4710 }
4711 }
4712 write_memory (addr, val, partial_len);
c906108c
SS
4713 }
4714
f09ded24
AC
4715 /* Note!!! This is NOT an else clause. Odd sized
4716 structs may go thru BOTH paths. Floating point
46e0f506 4717 arguments will not. */
566f0f7a 4718 /* Write this portion of the argument to a general
6d82d43b 4719 purpose register. */
74ed0bb4
MD
4720 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch)
4721 && !fp_register_arg_p (gdbarch, typecode, arg_type))
c906108c 4722 {
6d82d43b 4723 LONGEST regval =
a8852dc5 4724 extract_signed_integer (val, partial_len, byte_order);
c906108c 4725
9ace0497 4726 if (mips_debug)
acdb74a0 4727 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497 4728 argreg,
1a69e1e4 4729 phex (regval, regsize));
a8852dc5 4730 regcache_cooked_write_signed (regcache, argreg, regval);
c906108c 4731 argreg++;
c906108c 4732 }
c5aa993b 4733
c906108c
SS
4734 len -= partial_len;
4735 val += partial_len;
4736
b021a221
MS
4737 /* Compute the offset into the stack at which we will
4738 copy the next parameter.
566f0f7a 4739
566f0f7a 4740 In the new EABI (and the NABI32), the stack_offset
46e0f506 4741 only needs to be adjusted when it has been used. */
c906108c 4742
46e0f506 4743 if (stack_used_p)
1a69e1e4 4744 stack_offset += align_up (partial_len, regsize);
c906108c
SS
4745 }
4746 }
9ace0497
AC
4747 if (mips_debug)
4748 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
4749 }
4750
f10683bb 4751 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 4752
0f71a2f6
JM
4753 /* Return adjusted stack pointer. */
4754 return sp;
4755}
4756
a1f5b845 4757/* Determine the return value convention being used. */
6d82d43b 4758
9c8fdbfa 4759static enum return_value_convention
6a3a010b 4760mips_eabi_return_value (struct gdbarch *gdbarch, struct value *function,
9c8fdbfa 4761 struct type *type, struct regcache *regcache,
47a35522 4762 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 4763{
609ba780
JM
4764 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4765 int fp_return_type = 0;
4766 int offset, regnum, xfer;
4767
9c8fdbfa
AC
4768 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
4769 return RETURN_VALUE_STRUCT_CONVENTION;
609ba780
JM
4770
4771 /* Floating point type? */
4772 if (tdep->mips_fpu_type != MIPS_FPU_NONE)
4773 {
4774 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4775 fp_return_type = 1;
4776 /* Structs with a single field of float type
4777 are returned in a floating point register. */
4778 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
4779 || TYPE_CODE (type) == TYPE_CODE_UNION)
4780 && TYPE_NFIELDS (type) == 1)
4781 {
4782 struct type *fieldtype = TYPE_FIELD_TYPE (type, 0);
4783
4784 if (TYPE_CODE (check_typedef (fieldtype)) == TYPE_CODE_FLT)
4785 fp_return_type = 1;
4786 }
4787 }
4788
4789 if (fp_return_type)
4790 {
4791 /* A floating-point value belongs in the least significant part
4792 of FP0/FP1. */
4793 if (mips_debug)
4794 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4795 regnum = mips_regnum (gdbarch)->fp0;
4796 }
4797 else
4798 {
4799 /* An integer value goes in V0/V1. */
4800 if (mips_debug)
4801 fprintf_unfiltered (gdb_stderr, "Return scalar in $v0\n");
4802 regnum = MIPS_V0_REGNUM;
4803 }
4804 for (offset = 0;
4805 offset < TYPE_LENGTH (type);
4806 offset += mips_abi_regsize (gdbarch), regnum++)
4807 {
4808 xfer = mips_abi_regsize (gdbarch);
4809 if (offset + xfer > TYPE_LENGTH (type))
4810 xfer = TYPE_LENGTH (type) - offset;
4811 mips_xfer_register (gdbarch, regcache,
4812 gdbarch_num_regs (gdbarch) + regnum, xfer,
4813 gdbarch_byte_order (gdbarch), readbuf, writebuf,
4814 offset);
4815 }
4816
9c8fdbfa 4817 return RETURN_VALUE_REGISTER_CONVENTION;
6d82d43b
AC
4818}
4819
6d82d43b
AC
4820
4821/* N32/N64 ABI stuff. */
ebafbe83 4822
8d26208a
DJ
4823/* Search for a naturally aligned double at OFFSET inside a struct
4824 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
4825 registers. */
4826
4827static int
74ed0bb4
MD
4828mips_n32n64_fp_arg_chunk_p (struct gdbarch *gdbarch, struct type *arg_type,
4829 int offset)
8d26208a
DJ
4830{
4831 int i;
4832
4833 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
4834 return 0;
4835
74ed0bb4 4836 if (MIPS_FPU_TYPE (gdbarch) != MIPS_FPU_DOUBLE)
8d26208a
DJ
4837 return 0;
4838
4839 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
4840 return 0;
4841
4842 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
4843 {
4844 int pos;
4845 struct type *field_type;
4846
4847 /* We're only looking at normal fields. */
5bc60cfb 4848 if (field_is_static (&TYPE_FIELD (arg_type, i))
8d26208a
DJ
4849 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
4850 continue;
4851
4852 /* If we have gone past the offset, there is no double to pass. */
4853 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
4854 if (pos > offset)
4855 return 0;
4856
4857 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
4858
4859 /* If this field is entirely before the requested offset, go
4860 on to the next one. */
4861 if (pos + TYPE_LENGTH (field_type) <= offset)
4862 continue;
4863
4864 /* If this is our special aligned double, we can stop. */
4865 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
4866 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
4867 return 1;
4868
4869 /* This field starts at or before the requested offset, and
4870 overlaps it. If it is a structure, recurse inwards. */
74ed0bb4 4871 return mips_n32n64_fp_arg_chunk_p (gdbarch, field_type, offset - pos);
8d26208a
DJ
4872 }
4873
4874 return 0;
4875}
4876
f7ab6ec6 4877static CORE_ADDR
7d9b040b 4878mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
4879 struct regcache *regcache, CORE_ADDR bp_addr,
4880 int nargs, struct value **args, CORE_ADDR sp,
4881 int struct_return, CORE_ADDR struct_addr)
cb3d25d1
MS
4882{
4883 int argreg;
4884 int float_argreg;
4885 int argnum;
4886 int len = 0;
4887 int stack_offset = 0;
e17a4113 4888 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 4889 CORE_ADDR func_addr = find_function_addr (function, NULL);
cb3d25d1 4890
25ab4790
AC
4891 /* For shared libraries, "t9" needs to point at the function
4892 address. */
4c7d22cb 4893 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
4894
4895 /* Set the return address register to point to the entry point of
4896 the program, where a breakpoint lies in wait. */
4c7d22cb 4897 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 4898
cb3d25d1
MS
4899 /* First ensure that the stack and structure return address (if any)
4900 are properly aligned. The stack has to be at least 64-bit
4901 aligned even on 32-bit machines, because doubles must be 64-bit
4902 aligned. For n32 and n64, stack frames need to be 128-bit
4903 aligned, so we round to this widest known alignment. */
4904
5b03f266
AC
4905 sp = align_down (sp, 16);
4906 struct_addr = align_down (struct_addr, 16);
cb3d25d1
MS
4907
4908 /* Now make space on the stack for the args. */
4909 for (argnum = 0; argnum < nargs; argnum++)
1a69e1e4 4910 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
5b03f266 4911 sp -= align_up (len, 16);
cb3d25d1
MS
4912
4913 if (mips_debug)
6d82d43b 4914 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4915 "mips_n32n64_push_dummy_call: sp=%s allocated %ld\n",
4916 paddress (gdbarch, sp), (long) align_up (len, 16));
cb3d25d1
MS
4917
4918 /* Initialize the integer and float register pointers. */
4c7d22cb 4919 argreg = MIPS_A0_REGNUM;
72a155b4 4920 float_argreg = mips_fpa0_regnum (gdbarch);
cb3d25d1 4921
46e0f506 4922 /* The struct_return pointer occupies the first parameter-passing reg. */
cb3d25d1
MS
4923 if (struct_return)
4924 {
4925 if (mips_debug)
4926 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
4927 "mips_n32n64_push_dummy_call: "
4928 "struct_return reg=%d %s\n",
5af949e3 4929 argreg, paddress (gdbarch, struct_addr));
9c9acae0 4930 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
cb3d25d1
MS
4931 }
4932
4933 /* Now load as many as possible of the first arguments into
4934 registers, and push the rest onto the stack. Loop thru args
4935 from first to last. */
4936 for (argnum = 0; argnum < nargs; argnum++)
4937 {
47a35522 4938 const gdb_byte *val;
cb3d25d1 4939 struct value *arg = args[argnum];
4991999e 4940 struct type *arg_type = check_typedef (value_type (arg));
cb3d25d1
MS
4941 int len = TYPE_LENGTH (arg_type);
4942 enum type_code typecode = TYPE_CODE (arg_type);
4943
4944 if (mips_debug)
4945 fprintf_unfiltered (gdb_stdlog,
25ab4790 4946 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
cb3d25d1
MS
4947 argnum + 1, len, (int) typecode);
4948
47a35522 4949 val = value_contents (arg);
cb3d25d1 4950
5b68030f
JM
4951 /* A 128-bit long double value requires an even-odd pair of
4952 floating-point registers. */
4953 if (len == 16
4954 && fp_register_arg_p (gdbarch, typecode, arg_type)
4955 && (float_argreg & 1))
4956 {
4957 float_argreg++;
4958 argreg++;
4959 }
4960
74ed0bb4
MD
4961 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4962 && argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
cb3d25d1
MS
4963 {
4964 /* This is a floating point value that fits entirely
5b68030f
JM
4965 in a single register or a pair of registers. */
4966 int reglen = (len <= MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
e17a4113 4967 LONGEST regval = extract_unsigned_integer (val, reglen, byte_order);
cb3d25d1
MS
4968 if (mips_debug)
4969 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5b68030f 4970 float_argreg, phex (regval, reglen));
8d26208a 4971 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
cb3d25d1
MS
4972
4973 if (mips_debug)
4974 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5b68030f 4975 argreg, phex (regval, reglen));
9c9acae0 4976 regcache_cooked_write_unsigned (regcache, argreg, regval);
8d26208a
DJ
4977 float_argreg++;
4978 argreg++;
5b68030f
JM
4979 if (len == 16)
4980 {
e17a4113
UW
4981 regval = extract_unsigned_integer (val + reglen,
4982 reglen, byte_order);
5b68030f
JM
4983 if (mips_debug)
4984 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4985 float_argreg, phex (regval, reglen));
4986 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4987
4988 if (mips_debug)
4989 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4990 argreg, phex (regval, reglen));
4991 regcache_cooked_write_unsigned (regcache, argreg, regval);
4992 float_argreg++;
4993 argreg++;
4994 }
cb3d25d1
MS
4995 }
4996 else
4997 {
4998 /* Copy the argument to general registers or the stack in
4999 register-sized pieces. Large arguments are split between
5000 registers and stack. */
ab2e1992
MR
5001 /* For N32/N64, structs, unions, or other composite types are
5002 treated as a sequence of doublewords, and are passed in integer
5003 or floating point registers as though they were simple scalar
5004 parameters to the extent that they fit, with any excess on the
5005 stack packed according to the normal memory layout of the
5006 object.
5007 The caller does not reserve space for the register arguments;
5008 the callee is responsible for reserving it if required. */
cb3d25d1 5009 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 5010 register are only written to memory. */
cb3d25d1
MS
5011 while (len > 0)
5012 {
ad018eee 5013 /* Remember if the argument was written to the stack. */
cb3d25d1 5014 int stack_used_p = 0;
1a69e1e4 5015 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
cb3d25d1
MS
5016
5017 if (mips_debug)
5018 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5019 partial_len);
5020
74ed0bb4
MD
5021 if (fp_register_arg_p (gdbarch, typecode, arg_type))
5022 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM (gdbarch));
8d26208a 5023
cb3d25d1 5024 /* Write this portion of the argument to the stack. */
74ed0bb4 5025 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch))
cb3d25d1
MS
5026 {
5027 /* Should shorter than int integer values be
025bb325 5028 promoted to int before being stored? */
cb3d25d1
MS
5029 int longword_offset = 0;
5030 CORE_ADDR addr;
5031 stack_used_p = 1;
72a155b4 5032 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
cb3d25d1 5033 {
1a69e1e4 5034 if ((typecode == TYPE_CODE_INT
5b68030f 5035 || typecode == TYPE_CODE_PTR)
1a69e1e4
DJ
5036 && len <= 4)
5037 longword_offset = MIPS64_REGSIZE - len;
cb3d25d1
MS
5038 }
5039
5040 if (mips_debug)
5041 {
5af949e3
UW
5042 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5043 paddress (gdbarch, stack_offset));
5044 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5045 paddress (gdbarch, longword_offset));
cb3d25d1
MS
5046 }
5047
5048 addr = sp + stack_offset + longword_offset;
5049
5050 if (mips_debug)
5051 {
5052 int i;
5af949e3
UW
5053 fprintf_unfiltered (gdb_stdlog, " @%s ",
5054 paddress (gdbarch, addr));
cb3d25d1
MS
5055 for (i = 0; i < partial_len; i++)
5056 {
6d82d43b 5057 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1
MS
5058 val[i] & 0xff);
5059 }
5060 }
5061 write_memory (addr, val, partial_len);
5062 }
5063
5064 /* Note!!! This is NOT an else clause. Odd sized
8d26208a 5065 structs may go thru BOTH paths. */
cb3d25d1 5066 /* Write this portion of the argument to a general
6d82d43b 5067 purpose register. */
74ed0bb4 5068 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
cb3d25d1 5069 {
5863b5d5
MR
5070 LONGEST regval;
5071
5072 /* Sign extend pointers, 32-bit integers and signed
5073 16-bit and 8-bit integers; everything else is taken
5074 as is. */
5075
5076 if ((partial_len == 4
5077 && (typecode == TYPE_CODE_PTR
5078 || typecode == TYPE_CODE_INT))
5079 || (partial_len < 4
5080 && typecode == TYPE_CODE_INT
5081 && !TYPE_UNSIGNED (arg_type)))
e17a4113
UW
5082 regval = extract_signed_integer (val, partial_len,
5083 byte_order);
5863b5d5 5084 else
e17a4113
UW
5085 regval = extract_unsigned_integer (val, partial_len,
5086 byte_order);
cb3d25d1
MS
5087
5088 /* A non-floating-point argument being passed in a
5089 general register. If a struct or union, and if
5090 the remaining length is smaller than the register
5091 size, we have to adjust the register value on
5092 big endian targets.
5093
5094 It does not seem to be necessary to do the
1a69e1e4 5095 same for integral types. */
cb3d25d1 5096
72a155b4 5097 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 5098 && partial_len < MIPS64_REGSIZE
06f9a1af
MR
5099 && (typecode == TYPE_CODE_STRUCT
5100 || typecode == TYPE_CODE_UNION))
1a69e1e4 5101 regval <<= ((MIPS64_REGSIZE - partial_len)
9ecf7166 5102 * TARGET_CHAR_BIT);
cb3d25d1
MS
5103
5104 if (mips_debug)
5105 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5106 argreg,
1a69e1e4 5107 phex (regval, MIPS64_REGSIZE));
9c9acae0 5108 regcache_cooked_write_unsigned (regcache, argreg, regval);
8d26208a 5109
74ed0bb4 5110 if (mips_n32n64_fp_arg_chunk_p (gdbarch, arg_type,
8d26208a
DJ
5111 TYPE_LENGTH (arg_type) - len))
5112 {
5113 if (mips_debug)
5114 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
5115 float_argreg,
5116 phex (regval, MIPS64_REGSIZE));
5117 regcache_cooked_write_unsigned (regcache, float_argreg,
5118 regval);
5119 }
5120
5121 float_argreg++;
cb3d25d1
MS
5122 argreg++;
5123 }
5124
5125 len -= partial_len;
5126 val += partial_len;
5127
b021a221
MS
5128 /* Compute the offset into the stack at which we will
5129 copy the next parameter.
cb3d25d1
MS
5130
5131 In N32 (N64?), the stack_offset only needs to be
5132 adjusted when it has been used. */
5133
5134 if (stack_used_p)
1a69e1e4 5135 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
cb3d25d1
MS
5136 }
5137 }
5138 if (mips_debug)
5139 fprintf_unfiltered (gdb_stdlog, "\n");
5140 }
5141
f10683bb 5142 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 5143
cb3d25d1
MS
5144 /* Return adjusted stack pointer. */
5145 return sp;
5146}
5147
6d82d43b 5148static enum return_value_convention
6a3a010b 5149mips_n32n64_return_value (struct gdbarch *gdbarch, struct value *function,
6d82d43b 5150 struct type *type, struct regcache *regcache,
47a35522 5151 gdb_byte *readbuf, const gdb_byte *writebuf)
ebafbe83 5152{
72a155b4 5153 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
b18bb924
MR
5154
5155 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
5156
5157 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
5158 if needed), as appropriate for the type. Composite results (struct,
5159 union, or array) are returned in $2/$f0 and $3/$f2 according to the
5160 following rules:
5161
5162 * A struct with only one or two floating point fields is returned in $f0
5163 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
5164 case.
5165
f08877ba 5166 * Any other composite results of at most 128 bits are returned in
b18bb924
MR
5167 $2 (first 64 bits) and $3 (remainder, if necessary).
5168
5169 * Larger composite results are handled by converting the function to a
5170 procedure with an implicit first parameter, which is a pointer to an area
5171 reserved by the caller to receive the result. [The o32-bit ABI requires
5172 that all composite results be handled by conversion to implicit first
5173 parameters. The MIPS/SGI Fortran implementation has always made a
5174 specific exception to return COMPLEX results in the floating point
5175 registers.] */
5176
f08877ba 5177 if (TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
6d82d43b 5178 return RETURN_VALUE_STRUCT_CONVENTION;
d05f6826
DJ
5179 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5180 && TYPE_LENGTH (type) == 16
5181 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5182 {
5183 /* A 128-bit floating-point value fills both $f0 and $f2. The
5184 two registers are used in the same as memory order, so the
5185 eight bytes with the lower memory address are in $f0. */
5186 if (mips_debug)
5187 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
ba32f989 5188 mips_xfer_register (gdbarch, regcache,
dca9aa3a
MR
5189 (gdbarch_num_regs (gdbarch)
5190 + mips_regnum (gdbarch)->fp0),
72a155b4 5191 8, gdbarch_byte_order (gdbarch),
4c6b5505 5192 readbuf, writebuf, 0);
ba32f989 5193 mips_xfer_register (gdbarch, regcache,
dca9aa3a
MR
5194 (gdbarch_num_regs (gdbarch)
5195 + mips_regnum (gdbarch)->fp0 + 2),
72a155b4 5196 8, gdbarch_byte_order (gdbarch),
4c6b5505 5197 readbuf ? readbuf + 8 : readbuf,
d05f6826
DJ
5198 writebuf ? writebuf + 8 : writebuf, 0);
5199 return RETURN_VALUE_REGISTER_CONVENTION;
5200 }
6d82d43b
AC
5201 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5202 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5203 {
59aa1faa 5204 /* A single or double floating-point value that fits in FP0. */
6d82d43b
AC
5205 if (mips_debug)
5206 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
ba32f989 5207 mips_xfer_register (gdbarch, regcache,
dca9aa3a
MR
5208 (gdbarch_num_regs (gdbarch)
5209 + mips_regnum (gdbarch)->fp0),
6d82d43b 5210 TYPE_LENGTH (type),
72a155b4 5211 gdbarch_byte_order (gdbarch),
4c6b5505 5212 readbuf, writebuf, 0);
6d82d43b
AC
5213 return RETURN_VALUE_REGISTER_CONVENTION;
5214 }
5215 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5216 && TYPE_NFIELDS (type) <= 2
5217 && TYPE_NFIELDS (type) >= 1
5218 && ((TYPE_NFIELDS (type) == 1
b18bb924 5219 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
6d82d43b
AC
5220 == TYPE_CODE_FLT))
5221 || (TYPE_NFIELDS (type) == 2
b18bb924 5222 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
6d82d43b 5223 == TYPE_CODE_FLT)
b18bb924 5224 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
5b68030f 5225 == TYPE_CODE_FLT))))
6d82d43b
AC
5226 {
5227 /* A struct that contains one or two floats. Each value is part
5228 in the least significant part of their floating point
5b68030f 5229 register (or GPR, for soft float). */
6d82d43b
AC
5230 int regnum;
5231 int field;
5b68030f
JM
5232 for (field = 0, regnum = (tdep->mips_fpu_type != MIPS_FPU_NONE
5233 ? mips_regnum (gdbarch)->fp0
5234 : MIPS_V0_REGNUM);
6d82d43b
AC
5235 field < TYPE_NFIELDS (type); field++, regnum += 2)
5236 {
5237 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5238 / TARGET_CHAR_BIT);
5239 if (mips_debug)
5240 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5241 offset);
5b68030f
JM
5242 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)) == 16)
5243 {
5244 /* A 16-byte long double field goes in two consecutive
5245 registers. */
5246 mips_xfer_register (gdbarch, regcache,
5247 gdbarch_num_regs (gdbarch) + regnum,
5248 8,
5249 gdbarch_byte_order (gdbarch),
5250 readbuf, writebuf, offset);
5251 mips_xfer_register (gdbarch, regcache,
5252 gdbarch_num_regs (gdbarch) + regnum + 1,
5253 8,
5254 gdbarch_byte_order (gdbarch),
5255 readbuf, writebuf, offset + 8);
5256 }
5257 else
5258 mips_xfer_register (gdbarch, regcache,
5259 gdbarch_num_regs (gdbarch) + regnum,
5260 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5261 gdbarch_byte_order (gdbarch),
5262 readbuf, writebuf, offset);
6d82d43b
AC
5263 }
5264 return RETURN_VALUE_REGISTER_CONVENTION;
5265 }
5266 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
f08877ba
JB
5267 || TYPE_CODE (type) == TYPE_CODE_UNION
5268 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
6d82d43b 5269 {
f08877ba 5270 /* A composite type. Extract the left justified value,
6d82d43b
AC
5271 regardless of the byte order. I.e. DO NOT USE
5272 mips_xfer_lower. */
5273 int offset;
5274 int regnum;
4c7d22cb 5275 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 5276 offset < TYPE_LENGTH (type);
72a155b4 5277 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 5278 {
72a155b4 5279 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
5280 if (offset + xfer > TYPE_LENGTH (type))
5281 xfer = TYPE_LENGTH (type) - offset;
5282 if (mips_debug)
5283 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5284 offset, xfer, regnum);
ba32f989
DJ
5285 mips_xfer_register (gdbarch, regcache,
5286 gdbarch_num_regs (gdbarch) + regnum,
72a155b4
UW
5287 xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
5288 offset);
6d82d43b
AC
5289 }
5290 return RETURN_VALUE_REGISTER_CONVENTION;
5291 }
5292 else
5293 {
5294 /* A scalar extract each part but least-significant-byte
5295 justified. */
5296 int offset;
5297 int regnum;
4c7d22cb 5298 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 5299 offset < TYPE_LENGTH (type);
72a155b4 5300 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 5301 {
72a155b4 5302 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
5303 if (offset + xfer > TYPE_LENGTH (type))
5304 xfer = TYPE_LENGTH (type) - offset;
5305 if (mips_debug)
5306 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5307 offset, xfer, regnum);
ba32f989
DJ
5308 mips_xfer_register (gdbarch, regcache,
5309 gdbarch_num_regs (gdbarch) + regnum,
72a155b4 5310 xfer, gdbarch_byte_order (gdbarch),
4c6b5505 5311 readbuf, writebuf, offset);
6d82d43b
AC
5312 }
5313 return RETURN_VALUE_REGISTER_CONVENTION;
5314 }
5315}
5316
6a3a010b
MR
5317/* Which registers to use for passing floating-point values between
5318 function calls, one of floating-point, general and both kinds of
5319 registers. O32 and O64 use different register kinds for standard
5320 MIPS and MIPS16 code; to make the handling of cases where we may
5321 not know what kind of code is being used (e.g. no debug information)
5322 easier we sometimes use both kinds. */
5323
5324enum mips_fval_reg
5325{
5326 mips_fval_fpr,
5327 mips_fval_gpr,
5328 mips_fval_both
5329};
5330
6d82d43b
AC
5331/* O32 ABI stuff. */
5332
5333static CORE_ADDR
7d9b040b 5334mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
5335 struct regcache *regcache, CORE_ADDR bp_addr,
5336 int nargs, struct value **args, CORE_ADDR sp,
5337 int struct_return, CORE_ADDR struct_addr)
5338{
5339 int argreg;
5340 int float_argreg;
5341 int argnum;
5342 int len = 0;
5343 int stack_offset = 0;
e17a4113 5344 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 5345 CORE_ADDR func_addr = find_function_addr (function, NULL);
6d82d43b
AC
5346
5347 /* For shared libraries, "t9" needs to point at the function
5348 address. */
4c7d22cb 5349 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
6d82d43b
AC
5350
5351 /* Set the return address register to point to the entry point of
5352 the program, where a breakpoint lies in wait. */
4c7d22cb 5353 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
6d82d43b
AC
5354
5355 /* First ensure that the stack and structure return address (if any)
5356 are properly aligned. The stack has to be at least 64-bit
5357 aligned even on 32-bit machines, because doubles must be 64-bit
ebafbe83
MS
5358 aligned. For n32 and n64, stack frames need to be 128-bit
5359 aligned, so we round to this widest known alignment. */
5360
5b03f266
AC
5361 sp = align_down (sp, 16);
5362 struct_addr = align_down (struct_addr, 16);
ebafbe83
MS
5363
5364 /* Now make space on the stack for the args. */
5365 for (argnum = 0; argnum < nargs; argnum++)
968b5391
MR
5366 {
5367 struct type *arg_type = check_typedef (value_type (args[argnum]));
968b5391
MR
5368
5369 /* Align to double-word if necessary. */
2afd3f0a 5370 if (mips_type_needs_double_align (arg_type))
1a69e1e4 5371 len = align_up (len, MIPS32_REGSIZE * 2);
968b5391 5372 /* Allocate space on the stack. */
354ecfd5 5373 len += align_up (TYPE_LENGTH (arg_type), MIPS32_REGSIZE);
968b5391 5374 }
5b03f266 5375 sp -= align_up (len, 16);
ebafbe83
MS
5376
5377 if (mips_debug)
6d82d43b 5378 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5379 "mips_o32_push_dummy_call: sp=%s allocated %ld\n",
5380 paddress (gdbarch, sp), (long) align_up (len, 16));
ebafbe83
MS
5381
5382 /* Initialize the integer and float register pointers. */
4c7d22cb 5383 argreg = MIPS_A0_REGNUM;
72a155b4 5384 float_argreg = mips_fpa0_regnum (gdbarch);
ebafbe83 5385
bcb0cc15 5386 /* The struct_return pointer occupies the first parameter-passing reg. */
ebafbe83
MS
5387 if (struct_return)
5388 {
5389 if (mips_debug)
5390 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
5391 "mips_o32_push_dummy_call: "
5392 "struct_return reg=%d %s\n",
5af949e3 5393 argreg, paddress (gdbarch, struct_addr));
9c9acae0 5394 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1a69e1e4 5395 stack_offset += MIPS32_REGSIZE;
ebafbe83
MS
5396 }
5397
5398 /* Now load as many as possible of the first arguments into
5399 registers, and push the rest onto the stack. Loop thru args
5400 from first to last. */
5401 for (argnum = 0; argnum < nargs; argnum++)
5402 {
47a35522 5403 const gdb_byte *val;
ebafbe83 5404 struct value *arg = args[argnum];
4991999e 5405 struct type *arg_type = check_typedef (value_type (arg));
ebafbe83
MS
5406 int len = TYPE_LENGTH (arg_type);
5407 enum type_code typecode = TYPE_CODE (arg_type);
5408
5409 if (mips_debug)
5410 fprintf_unfiltered (gdb_stdlog,
25ab4790 5411 "mips_o32_push_dummy_call: %d len=%d type=%d",
46cac009
AC
5412 argnum + 1, len, (int) typecode);
5413
47a35522 5414 val = value_contents (arg);
46cac009
AC
5415
5416 /* 32-bit ABIs always start floating point arguments in an
5417 even-numbered floating point register. Round the FP register
5418 up before the check to see if there are any FP registers
6a3a010b
MR
5419 left. O32 targets also pass the FP in the integer registers
5420 so also round up normal registers. */
74ed0bb4 5421 if (fp_register_arg_p (gdbarch, typecode, arg_type))
46cac009
AC
5422 {
5423 if ((float_argreg & 1))
5424 float_argreg++;
5425 }
5426
5427 /* Floating point arguments passed in registers have to be
6a3a010b
MR
5428 treated specially. On 32-bit architectures, doubles are
5429 passed in register pairs; the even FP register gets the
5430 low word, and the odd FP register gets the high word.
5431 On O32, the first two floating point arguments are also
5432 copied to general registers, following their memory order,
5433 because MIPS16 functions don't use float registers for
5434 arguments. This duplication of arguments in general
5435 registers can't hurt non-MIPS16 functions, because those
5436 registers are normally skipped. */
46cac009 5437
74ed0bb4
MD
5438 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5439 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
46cac009 5440 {
8b07f6d8 5441 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
46cac009 5442 {
6a3a010b
MR
5443 int freg_offset = gdbarch_byte_order (gdbarch)
5444 == BFD_ENDIAN_BIG ? 1 : 0;
46cac009
AC
5445 unsigned long regval;
5446
6a3a010b
MR
5447 /* First word. */
5448 regval = extract_unsigned_integer (val, 4, byte_order);
46cac009
AC
5449 if (mips_debug)
5450 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
6a3a010b
MR
5451 float_argreg + freg_offset,
5452 phex (regval, 4));
025bb325 5453 regcache_cooked_write_unsigned (regcache,
6a3a010b
MR
5454 float_argreg++ + freg_offset,
5455 regval);
46cac009
AC
5456 if (mips_debug)
5457 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5458 argreg, phex (regval, 4));
9c9acae0 5459 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009 5460
6a3a010b
MR
5461 /* Second word. */
5462 regval = extract_unsigned_integer (val + 4, 4, byte_order);
46cac009
AC
5463 if (mips_debug)
5464 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
6a3a010b
MR
5465 float_argreg - freg_offset,
5466 phex (regval, 4));
025bb325 5467 regcache_cooked_write_unsigned (regcache,
6a3a010b
MR
5468 float_argreg++ - freg_offset,
5469 regval);
46cac009
AC
5470 if (mips_debug)
5471 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5472 argreg, phex (regval, 4));
9c9acae0 5473 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009
AC
5474 }
5475 else
5476 {
5477 /* This is a floating point value that fits entirely
5478 in a single register. */
5479 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 5480 above to ensure that it is even register aligned. */
e17a4113 5481 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
46cac009
AC
5482 if (mips_debug)
5483 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5484 float_argreg, phex (regval, len));
025bb325
MS
5485 regcache_cooked_write_unsigned (regcache,
5486 float_argreg++, regval);
5b68030f
JM
5487 /* Although two FP registers are reserved for each
5488 argument, only one corresponding integer register is
5489 reserved. */
46cac009
AC
5490 if (mips_debug)
5491 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5492 argreg, phex (regval, len));
5b68030f 5493 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009
AC
5494 }
5495 /* Reserve space for the FP register. */
1a69e1e4 5496 stack_offset += align_up (len, MIPS32_REGSIZE);
46cac009
AC
5497 }
5498 else
5499 {
5500 /* Copy the argument to general registers or the stack in
5501 register-sized pieces. Large arguments are split between
5502 registers and stack. */
1a69e1e4
DJ
5503 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
5504 are treated specially: Irix cc passes
d5ac5a39
AC
5505 them in registers where gcc sometimes puts them on the
5506 stack. For maximum compatibility, we will put them in
5507 both places. */
1a69e1e4
DJ
5508 int odd_sized_struct = (len > MIPS32_REGSIZE
5509 && len % MIPS32_REGSIZE != 0);
46cac009
AC
5510 /* Structures should be aligned to eight bytes (even arg registers)
5511 on MIPS_ABI_O32, if their first member has double precision. */
2afd3f0a 5512 if (mips_type_needs_double_align (arg_type))
46cac009
AC
5513 {
5514 if ((argreg & 1))
968b5391
MR
5515 {
5516 argreg++;
1a69e1e4 5517 stack_offset += MIPS32_REGSIZE;
968b5391 5518 }
46cac009 5519 }
46cac009
AC
5520 while (len > 0)
5521 {
5522 /* Remember if the argument was written to the stack. */
5523 int stack_used_p = 0;
1a69e1e4 5524 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
46cac009
AC
5525
5526 if (mips_debug)
5527 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5528 partial_len);
5529
5530 /* Write this portion of the argument to the stack. */
74ed0bb4 5531 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
968b5391 5532 || odd_sized_struct)
46cac009
AC
5533 {
5534 /* Should shorter than int integer values be
025bb325 5535 promoted to int before being stored? */
46cac009
AC
5536 int longword_offset = 0;
5537 CORE_ADDR addr;
5538 stack_used_p = 1;
46cac009
AC
5539
5540 if (mips_debug)
5541 {
5af949e3
UW
5542 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5543 paddress (gdbarch, stack_offset));
5544 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5545 paddress (gdbarch, longword_offset));
46cac009
AC
5546 }
5547
5548 addr = sp + stack_offset + longword_offset;
5549
5550 if (mips_debug)
5551 {
5552 int i;
5af949e3
UW
5553 fprintf_unfiltered (gdb_stdlog, " @%s ",
5554 paddress (gdbarch, addr));
46cac009
AC
5555 for (i = 0; i < partial_len; i++)
5556 {
6d82d43b 5557 fprintf_unfiltered (gdb_stdlog, "%02x",
46cac009
AC
5558 val[i] & 0xff);
5559 }
5560 }
5561 write_memory (addr, val, partial_len);
5562 }
5563
5564 /* Note!!! This is NOT an else clause. Odd sized
968b5391 5565 structs may go thru BOTH paths. */
46cac009 5566 /* Write this portion of the argument to a general
6d82d43b 5567 purpose register. */
74ed0bb4 5568 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
46cac009 5569 {
e17a4113
UW
5570 LONGEST regval = extract_signed_integer (val, partial_len,
5571 byte_order);
4246e332 5572 /* Value may need to be sign extended, because
1b13c4f6 5573 mips_isa_regsize() != mips_abi_regsize(). */
46cac009
AC
5574
5575 /* A non-floating-point argument being passed in a
5576 general register. If a struct or union, and if
5577 the remaining length is smaller than the register
5578 size, we have to adjust the register value on
5579 big endian targets.
5580
5581 It does not seem to be necessary to do the
5582 same for integral types.
5583
5584 Also don't do this adjustment on O64 binaries.
5585
5586 cagney/2001-07-23: gdb/179: Also, GCC, when
5587 outputting LE O32 with sizeof (struct) <
e914cb17
MR
5588 mips_abi_regsize(), generates a left shift
5589 as part of storing the argument in a register
5590 (the left shift isn't generated when
1b13c4f6 5591 sizeof (struct) >= mips_abi_regsize()). Since
480d3dd2
AC
5592 it is quite possible that this is GCC
5593 contradicting the LE/O32 ABI, GDB has not been
5594 adjusted to accommodate this. Either someone
5595 needs to demonstrate that the LE/O32 ABI
5596 specifies such a left shift OR this new ABI gets
5597 identified as such and GDB gets tweaked
5598 accordingly. */
5599
72a155b4 5600 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 5601 && partial_len < MIPS32_REGSIZE
06f9a1af
MR
5602 && (typecode == TYPE_CODE_STRUCT
5603 || typecode == TYPE_CODE_UNION))
1a69e1e4 5604 regval <<= ((MIPS32_REGSIZE - partial_len)
9ecf7166 5605 * TARGET_CHAR_BIT);
46cac009
AC
5606
5607 if (mips_debug)
5608 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5609 argreg,
1a69e1e4 5610 phex (regval, MIPS32_REGSIZE));
9c9acae0 5611 regcache_cooked_write_unsigned (regcache, argreg, regval);
46cac009
AC
5612 argreg++;
5613
5614 /* Prevent subsequent floating point arguments from
5615 being passed in floating point registers. */
74ed0bb4 5616 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
46cac009
AC
5617 }
5618
5619 len -= partial_len;
5620 val += partial_len;
5621
b021a221
MS
5622 /* Compute the offset into the stack at which we will
5623 copy the next parameter.
46cac009 5624
6d82d43b
AC
5625 In older ABIs, the caller reserved space for
5626 registers that contained arguments. This was loosely
5627 refered to as their "home". Consequently, space is
5628 always allocated. */
46cac009 5629
1a69e1e4 5630 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
46cac009
AC
5631 }
5632 }
5633 if (mips_debug)
5634 fprintf_unfiltered (gdb_stdlog, "\n");
5635 }
5636
f10683bb 5637 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 5638
46cac009
AC
5639 /* Return adjusted stack pointer. */
5640 return sp;
5641}
5642
6d82d43b 5643static enum return_value_convention
6a3a010b 5644mips_o32_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101 5645 struct type *type, struct regcache *regcache,
47a35522 5646 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 5647{
6a3a010b 5648 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
4cc0665f 5649 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
72a155b4 5650 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6a3a010b 5651 enum mips_fval_reg fval_reg;
6d82d43b 5652
6a3a010b 5653 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
6d82d43b
AC
5654 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5655 || TYPE_CODE (type) == TYPE_CODE_UNION
5656 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5657 return RETURN_VALUE_STRUCT_CONVENTION;
5658 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5659 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5660 {
6a3a010b
MR
5661 /* A single-precision floating-point value. If reading in or copying,
5662 then we get it from/put it to FP0 for standard MIPS code or GPR2
5663 for MIPS16 code. If writing out only, then we put it to both FP0
5664 and GPR2. We do not support reading in with no function known, if
5665 this safety check ever triggers, then we'll have to try harder. */
5666 gdb_assert (function || !readbuf);
6d82d43b 5667 if (mips_debug)
6a3a010b
MR
5668 switch (fval_reg)
5669 {
5670 case mips_fval_fpr:
5671 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5672 break;
5673 case mips_fval_gpr:
5674 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
5675 break;
5676 case mips_fval_both:
5677 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
5678 break;
5679 }
5680 if (fval_reg != mips_fval_gpr)
5681 mips_xfer_register (gdbarch, regcache,
5682 (gdbarch_num_regs (gdbarch)
5683 + mips_regnum (gdbarch)->fp0),
5684 TYPE_LENGTH (type),
5685 gdbarch_byte_order (gdbarch),
5686 readbuf, writebuf, 0);
5687 if (fval_reg != mips_fval_fpr)
5688 mips_xfer_register (gdbarch, regcache,
5689 gdbarch_num_regs (gdbarch) + 2,
5690 TYPE_LENGTH (type),
5691 gdbarch_byte_order (gdbarch),
5692 readbuf, writebuf, 0);
6d82d43b
AC
5693 return RETURN_VALUE_REGISTER_CONVENTION;
5694 }
5695 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5696 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5697 {
6a3a010b
MR
5698 /* A double-precision floating-point value. If reading in or copying,
5699 then we get it from/put it to FP1 and FP0 for standard MIPS code or
5700 GPR2 and GPR3 for MIPS16 code. If writing out only, then we put it
5701 to both FP1/FP0 and GPR2/GPR3. We do not support reading in with
5702 no function known, if this safety check ever triggers, then we'll
5703 have to try harder. */
5704 gdb_assert (function || !readbuf);
6d82d43b 5705 if (mips_debug)
6a3a010b
MR
5706 switch (fval_reg)
5707 {
5708 case mips_fval_fpr:
5709 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
5710 break;
5711 case mips_fval_gpr:
5712 fprintf_unfiltered (gdb_stderr, "Return float in $2/$3\n");
5713 break;
5714 case mips_fval_both:
5715 fprintf_unfiltered (gdb_stderr,
5716 "Return float in $fp1/$fp0 and $2/$3\n");
5717 break;
5718 }
5719 if (fval_reg != mips_fval_gpr)
6d82d43b 5720 {
6a3a010b
MR
5721 /* The most significant part goes in FP1, and the least significant
5722 in FP0. */
5723 switch (gdbarch_byte_order (gdbarch))
5724 {
5725 case BFD_ENDIAN_LITTLE:
5726 mips_xfer_register (gdbarch, regcache,
5727 (gdbarch_num_regs (gdbarch)
5728 + mips_regnum (gdbarch)->fp0 + 0),
5729 4, gdbarch_byte_order (gdbarch),
5730 readbuf, writebuf, 0);
5731 mips_xfer_register (gdbarch, regcache,
5732 (gdbarch_num_regs (gdbarch)
5733 + mips_regnum (gdbarch)->fp0 + 1),
5734 4, gdbarch_byte_order (gdbarch),
5735 readbuf, writebuf, 4);
5736 break;
5737 case BFD_ENDIAN_BIG:
5738 mips_xfer_register (gdbarch, regcache,
5739 (gdbarch_num_regs (gdbarch)
5740 + mips_regnum (gdbarch)->fp0 + 1),
5741 4, gdbarch_byte_order (gdbarch),
5742 readbuf, writebuf, 0);
5743 mips_xfer_register (gdbarch, regcache,
5744 (gdbarch_num_regs (gdbarch)
5745 + mips_regnum (gdbarch)->fp0 + 0),
5746 4, gdbarch_byte_order (gdbarch),
5747 readbuf, writebuf, 4);
5748 break;
5749 default:
5750 internal_error (__FILE__, __LINE__, _("bad switch"));
5751 }
5752 }
5753 if (fval_reg != mips_fval_fpr)
5754 {
5755 /* The two 32-bit parts are always placed in GPR2 and GPR3
5756 following these registers' memory order. */
ba32f989 5757 mips_xfer_register (gdbarch, regcache,
6a3a010b 5758 gdbarch_num_regs (gdbarch) + 2,
72a155b4 5759 4, gdbarch_byte_order (gdbarch),
4c6b5505 5760 readbuf, writebuf, 0);
ba32f989 5761 mips_xfer_register (gdbarch, regcache,
6a3a010b 5762 gdbarch_num_regs (gdbarch) + 3,
72a155b4 5763 4, gdbarch_byte_order (gdbarch),
4c6b5505 5764 readbuf, writebuf, 4);
6d82d43b
AC
5765 }
5766 return RETURN_VALUE_REGISTER_CONVENTION;
5767 }
5768#if 0
5769 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5770 && TYPE_NFIELDS (type) <= 2
5771 && TYPE_NFIELDS (type) >= 1
5772 && ((TYPE_NFIELDS (type) == 1
5773 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5774 == TYPE_CODE_FLT))
5775 || (TYPE_NFIELDS (type) == 2
5776 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5777 == TYPE_CODE_FLT)
5778 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
5779 == TYPE_CODE_FLT)))
5780 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5781 {
5782 /* A struct that contains one or two floats. Each value is part
5783 in the least significant part of their floating point
5784 register.. */
870cd05e 5785 gdb_byte reg[MAX_REGISTER_SIZE];
6d82d43b
AC
5786 int regnum;
5787 int field;
72a155b4 5788 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
6d82d43b
AC
5789 field < TYPE_NFIELDS (type); field++, regnum += 2)
5790 {
5791 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5792 / TARGET_CHAR_BIT);
5793 if (mips_debug)
5794 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5795 offset);
ba32f989
DJ
5796 mips_xfer_register (gdbarch, regcache,
5797 gdbarch_num_regs (gdbarch) + regnum,
6d82d43b 5798 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
72a155b4 5799 gdbarch_byte_order (gdbarch),
4c6b5505 5800 readbuf, writebuf, offset);
6d82d43b
AC
5801 }
5802 return RETURN_VALUE_REGISTER_CONVENTION;
5803 }
5804#endif
5805#if 0
5806 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5807 || TYPE_CODE (type) == TYPE_CODE_UNION)
5808 {
5809 /* A structure or union. Extract the left justified value,
5810 regardless of the byte order. I.e. DO NOT USE
5811 mips_xfer_lower. */
5812 int offset;
5813 int regnum;
4c7d22cb 5814 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 5815 offset < TYPE_LENGTH (type);
72a155b4 5816 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 5817 {
72a155b4 5818 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
5819 if (offset + xfer > TYPE_LENGTH (type))
5820 xfer = TYPE_LENGTH (type) - offset;
5821 if (mips_debug)
5822 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5823 offset, xfer, regnum);
ba32f989
DJ
5824 mips_xfer_register (gdbarch, regcache,
5825 gdbarch_num_regs (gdbarch) + regnum, xfer,
6d82d43b
AC
5826 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
5827 }
5828 return RETURN_VALUE_REGISTER_CONVENTION;
5829 }
5830#endif
5831 else
5832 {
5833 /* A scalar extract each part but least-significant-byte
5834 justified. o32 thinks registers are 4 byte, regardless of
1a69e1e4 5835 the ISA. */
6d82d43b
AC
5836 int offset;
5837 int regnum;
4c7d22cb 5838 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 5839 offset < TYPE_LENGTH (type);
1a69e1e4 5840 offset += MIPS32_REGSIZE, regnum++)
6d82d43b 5841 {
1a69e1e4 5842 int xfer = MIPS32_REGSIZE;
6d82d43b
AC
5843 if (offset + xfer > TYPE_LENGTH (type))
5844 xfer = TYPE_LENGTH (type) - offset;
5845 if (mips_debug)
5846 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5847 offset, xfer, regnum);
ba32f989
DJ
5848 mips_xfer_register (gdbarch, regcache,
5849 gdbarch_num_regs (gdbarch) + regnum, xfer,
72a155b4 5850 gdbarch_byte_order (gdbarch),
4c6b5505 5851 readbuf, writebuf, offset);
6d82d43b
AC
5852 }
5853 return RETURN_VALUE_REGISTER_CONVENTION;
5854 }
5855}
5856
5857/* O64 ABI. This is a hacked up kind of 64-bit version of the o32
5858 ABI. */
46cac009
AC
5859
5860static CORE_ADDR
7d9b040b 5861mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
5862 struct regcache *regcache, CORE_ADDR bp_addr,
5863 int nargs,
5864 struct value **args, CORE_ADDR sp,
5865 int struct_return, CORE_ADDR struct_addr)
46cac009
AC
5866{
5867 int argreg;
5868 int float_argreg;
5869 int argnum;
5870 int len = 0;
5871 int stack_offset = 0;
e17a4113 5872 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 5873 CORE_ADDR func_addr = find_function_addr (function, NULL);
46cac009 5874
25ab4790
AC
5875 /* For shared libraries, "t9" needs to point at the function
5876 address. */
4c7d22cb 5877 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
5878
5879 /* Set the return address register to point to the entry point of
5880 the program, where a breakpoint lies in wait. */
4c7d22cb 5881 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 5882
46cac009
AC
5883 /* First ensure that the stack and structure return address (if any)
5884 are properly aligned. The stack has to be at least 64-bit
5885 aligned even on 32-bit machines, because doubles must be 64-bit
5886 aligned. For n32 and n64, stack frames need to be 128-bit
5887 aligned, so we round to this widest known alignment. */
5888
5b03f266
AC
5889 sp = align_down (sp, 16);
5890 struct_addr = align_down (struct_addr, 16);
46cac009
AC
5891
5892 /* Now make space on the stack for the args. */
5893 for (argnum = 0; argnum < nargs; argnum++)
968b5391
MR
5894 {
5895 struct type *arg_type = check_typedef (value_type (args[argnum]));
968b5391 5896
968b5391 5897 /* Allocate space on the stack. */
354ecfd5 5898 len += align_up (TYPE_LENGTH (arg_type), MIPS64_REGSIZE);
968b5391 5899 }
5b03f266 5900 sp -= align_up (len, 16);
46cac009
AC
5901
5902 if (mips_debug)
6d82d43b 5903 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5904 "mips_o64_push_dummy_call: sp=%s allocated %ld\n",
5905 paddress (gdbarch, sp), (long) align_up (len, 16));
46cac009
AC
5906
5907 /* Initialize the integer and float register pointers. */
4c7d22cb 5908 argreg = MIPS_A0_REGNUM;
72a155b4 5909 float_argreg = mips_fpa0_regnum (gdbarch);
46cac009
AC
5910
5911 /* The struct_return pointer occupies the first parameter-passing reg. */
5912 if (struct_return)
5913 {
5914 if (mips_debug)
5915 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
5916 "mips_o64_push_dummy_call: "
5917 "struct_return reg=%d %s\n",
5af949e3 5918 argreg, paddress (gdbarch, struct_addr));
9c9acae0 5919 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1a69e1e4 5920 stack_offset += MIPS64_REGSIZE;
46cac009
AC
5921 }
5922
5923 /* Now load as many as possible of the first arguments into
5924 registers, and push the rest onto the stack. Loop thru args
5925 from first to last. */
5926 for (argnum = 0; argnum < nargs; argnum++)
5927 {
47a35522 5928 const gdb_byte *val;
46cac009 5929 struct value *arg = args[argnum];
4991999e 5930 struct type *arg_type = check_typedef (value_type (arg));
46cac009
AC
5931 int len = TYPE_LENGTH (arg_type);
5932 enum type_code typecode = TYPE_CODE (arg_type);
5933
5934 if (mips_debug)
5935 fprintf_unfiltered (gdb_stdlog,
25ab4790 5936 "mips_o64_push_dummy_call: %d len=%d type=%d",
ebafbe83
MS
5937 argnum + 1, len, (int) typecode);
5938
47a35522 5939 val = value_contents (arg);
ebafbe83 5940
ebafbe83 5941 /* Floating point arguments passed in registers have to be
6a3a010b
MR
5942 treated specially. On 32-bit architectures, doubles are
5943 passed in register pairs; the even FP register gets the
5944 low word, and the odd FP register gets the high word.
5945 On O64, the first two floating point arguments are also
5946 copied to general registers, because MIPS16 functions
5947 don't use float registers for arguments. This duplication
5948 of arguments in general registers can't hurt non-MIPS16
5949 functions because those registers are normally skipped. */
ebafbe83 5950
74ed0bb4
MD
5951 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5952 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
ebafbe83 5953 {
e17a4113 5954 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
2afd3f0a
MR
5955 if (mips_debug)
5956 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5957 float_argreg, phex (regval, len));
9c9acae0 5958 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2afd3f0a
MR
5959 if (mips_debug)
5960 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5961 argreg, phex (regval, len));
9c9acae0 5962 regcache_cooked_write_unsigned (regcache, argreg, regval);
2afd3f0a 5963 argreg++;
ebafbe83 5964 /* Reserve space for the FP register. */
1a69e1e4 5965 stack_offset += align_up (len, MIPS64_REGSIZE);
ebafbe83
MS
5966 }
5967 else
5968 {
5969 /* Copy the argument to general registers or the stack in
5970 register-sized pieces. Large arguments are split between
5971 registers and stack. */
1a69e1e4 5972 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
436aafc4
MR
5973 are treated specially: Irix cc passes them in registers
5974 where gcc sometimes puts them on the stack. For maximum
5975 compatibility, we will put them in both places. */
1a69e1e4
DJ
5976 int odd_sized_struct = (len > MIPS64_REGSIZE
5977 && len % MIPS64_REGSIZE != 0);
ebafbe83
MS
5978 while (len > 0)
5979 {
5980 /* Remember if the argument was written to the stack. */
5981 int stack_used_p = 0;
1a69e1e4 5982 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
ebafbe83
MS
5983
5984 if (mips_debug)
5985 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5986 partial_len);
5987
5988 /* Write this portion of the argument to the stack. */
74ed0bb4 5989 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
968b5391 5990 || odd_sized_struct)
ebafbe83
MS
5991 {
5992 /* Should shorter than int integer values be
025bb325 5993 promoted to int before being stored? */
ebafbe83
MS
5994 int longword_offset = 0;
5995 CORE_ADDR addr;
5996 stack_used_p = 1;
72a155b4 5997 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
ebafbe83 5998 {
1a69e1e4
DJ
5999 if ((typecode == TYPE_CODE_INT
6000 || typecode == TYPE_CODE_PTR
6001 || typecode == TYPE_CODE_FLT)
6002 && len <= 4)
6003 longword_offset = MIPS64_REGSIZE - len;
ebafbe83
MS
6004 }
6005
6006 if (mips_debug)
6007 {
5af949e3
UW
6008 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
6009 paddress (gdbarch, stack_offset));
6010 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
6011 paddress (gdbarch, longword_offset));
ebafbe83
MS
6012 }
6013
6014 addr = sp + stack_offset + longword_offset;
6015
6016 if (mips_debug)
6017 {
6018 int i;
5af949e3
UW
6019 fprintf_unfiltered (gdb_stdlog, " @%s ",
6020 paddress (gdbarch, addr));
ebafbe83
MS
6021 for (i = 0; i < partial_len; i++)
6022 {
6d82d43b 6023 fprintf_unfiltered (gdb_stdlog, "%02x",
ebafbe83
MS
6024 val[i] & 0xff);
6025 }
6026 }
6027 write_memory (addr, val, partial_len);
6028 }
6029
6030 /* Note!!! This is NOT an else clause. Odd sized
968b5391 6031 structs may go thru BOTH paths. */
ebafbe83 6032 /* Write this portion of the argument to a general
6d82d43b 6033 purpose register. */
74ed0bb4 6034 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
ebafbe83 6035 {
e17a4113
UW
6036 LONGEST regval = extract_signed_integer (val, partial_len,
6037 byte_order);
4246e332 6038 /* Value may need to be sign extended, because
1b13c4f6 6039 mips_isa_regsize() != mips_abi_regsize(). */
ebafbe83
MS
6040
6041 /* A non-floating-point argument being passed in a
6042 general register. If a struct or union, and if
6043 the remaining length is smaller than the register
6044 size, we have to adjust the register value on
6045 big endian targets.
6046
6047 It does not seem to be necessary to do the
025bb325 6048 same for integral types. */
480d3dd2 6049
72a155b4 6050 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 6051 && partial_len < MIPS64_REGSIZE
06f9a1af
MR
6052 && (typecode == TYPE_CODE_STRUCT
6053 || typecode == TYPE_CODE_UNION))
1a69e1e4 6054 regval <<= ((MIPS64_REGSIZE - partial_len)
9ecf7166 6055 * TARGET_CHAR_BIT);
ebafbe83
MS
6056
6057 if (mips_debug)
6058 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
6059 argreg,
1a69e1e4 6060 phex (regval, MIPS64_REGSIZE));
9c9acae0 6061 regcache_cooked_write_unsigned (regcache, argreg, regval);
ebafbe83
MS
6062 argreg++;
6063
6064 /* Prevent subsequent floating point arguments from
6065 being passed in floating point registers. */
74ed0bb4 6066 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
ebafbe83
MS
6067 }
6068
6069 len -= partial_len;
6070 val += partial_len;
6071
b021a221
MS
6072 /* Compute the offset into the stack at which we will
6073 copy the next parameter.
ebafbe83 6074
6d82d43b
AC
6075 In older ABIs, the caller reserved space for
6076 registers that contained arguments. This was loosely
6077 refered to as their "home". Consequently, space is
6078 always allocated. */
ebafbe83 6079
1a69e1e4 6080 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
ebafbe83
MS
6081 }
6082 }
6083 if (mips_debug)
6084 fprintf_unfiltered (gdb_stdlog, "\n");
6085 }
6086
f10683bb 6087 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 6088
ebafbe83
MS
6089 /* Return adjusted stack pointer. */
6090 return sp;
6091}
6092
9c8fdbfa 6093static enum return_value_convention
6a3a010b 6094mips_o64_return_value (struct gdbarch *gdbarch, struct value *function,
9c8fdbfa 6095 struct type *type, struct regcache *regcache,
47a35522 6096 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 6097{
6a3a010b 6098 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
4cc0665f 6099 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
72a155b4 6100 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6a3a010b 6101 enum mips_fval_reg fval_reg;
7a076fd2 6102
6a3a010b 6103 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
7a076fd2
FF
6104 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
6105 || TYPE_CODE (type) == TYPE_CODE_UNION
6106 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
6107 return RETURN_VALUE_STRUCT_CONVENTION;
74ed0bb4 6108 else if (fp_register_arg_p (gdbarch, TYPE_CODE (type), type))
7a076fd2 6109 {
6a3a010b
MR
6110 /* A floating-point value. If reading in or copying, then we get it
6111 from/put it to FP0 for standard MIPS code or GPR2 for MIPS16 code.
6112 If writing out only, then we put it to both FP0 and GPR2. We do
6113 not support reading in with no function known, if this safety
6114 check ever triggers, then we'll have to try harder. */
6115 gdb_assert (function || !readbuf);
7a076fd2 6116 if (mips_debug)
6a3a010b
MR
6117 switch (fval_reg)
6118 {
6119 case mips_fval_fpr:
6120 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
6121 break;
6122 case mips_fval_gpr:
6123 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
6124 break;
6125 case mips_fval_both:
6126 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
6127 break;
6128 }
6129 if (fval_reg != mips_fval_gpr)
6130 mips_xfer_register (gdbarch, regcache,
6131 (gdbarch_num_regs (gdbarch)
6132 + mips_regnum (gdbarch)->fp0),
6133 TYPE_LENGTH (type),
6134 gdbarch_byte_order (gdbarch),
6135 readbuf, writebuf, 0);
6136 if (fval_reg != mips_fval_fpr)
6137 mips_xfer_register (gdbarch, regcache,
6138 gdbarch_num_regs (gdbarch) + 2,
6139 TYPE_LENGTH (type),
6140 gdbarch_byte_order (gdbarch),
6141 readbuf, writebuf, 0);
7a076fd2
FF
6142 return RETURN_VALUE_REGISTER_CONVENTION;
6143 }
6144 else
6145 {
6146 /* A scalar extract each part but least-significant-byte
025bb325 6147 justified. */
7a076fd2
FF
6148 int offset;
6149 int regnum;
6150 for (offset = 0, regnum = MIPS_V0_REGNUM;
6151 offset < TYPE_LENGTH (type);
1a69e1e4 6152 offset += MIPS64_REGSIZE, regnum++)
7a076fd2 6153 {
1a69e1e4 6154 int xfer = MIPS64_REGSIZE;
7a076fd2
FF
6155 if (offset + xfer > TYPE_LENGTH (type))
6156 xfer = TYPE_LENGTH (type) - offset;
6157 if (mips_debug)
6158 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
6159 offset, xfer, regnum);
ba32f989
DJ
6160 mips_xfer_register (gdbarch, regcache,
6161 gdbarch_num_regs (gdbarch) + regnum,
72a155b4 6162 xfer, gdbarch_byte_order (gdbarch),
4c6b5505 6163 readbuf, writebuf, offset);
7a076fd2
FF
6164 }
6165 return RETURN_VALUE_REGISTER_CONVENTION;
6166 }
6d82d43b
AC
6167}
6168
dd824b04
DJ
6169/* Floating point register management.
6170
6171 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
6172 64bit operations, these early MIPS cpus treat fp register pairs
6173 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
6174 registers and offer a compatibility mode that emulates the MIPS2 fp
6175 model. When operating in MIPS2 fp compat mode, later cpu's split
6176 double precision floats into two 32-bit chunks and store them in
6177 consecutive fp regs. To display 64-bit floats stored in this
6178 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
6179 Throw in user-configurable endianness and you have a real mess.
6180
6181 The way this works is:
6182 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
6183 double-precision value will be split across two logical registers.
6184 The lower-numbered logical register will hold the low-order bits,
6185 regardless of the processor's endianness.
6186 - If we are on a 64-bit processor, and we are looking for a
6187 single-precision value, it will be in the low ordered bits
6188 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
6189 save slot in memory.
6190 - If we are in 64-bit mode, everything is straightforward.
6191
6192 Note that this code only deals with "live" registers at the top of the
6193 stack. We will attempt to deal with saved registers later, when
025bb325 6194 the raw/cooked register interface is in place. (We need a general
dd824b04
DJ
6195 interface that can deal with dynamic saved register sizes -- fp
6196 regs could be 32 bits wide in one frame and 64 on the frame above
6197 and below). */
6198
6199/* Copy a 32-bit single-precision value from the current frame
6200 into rare_buffer. */
6201
6202static void
e11c53d2 6203mips_read_fp_register_single (struct frame_info *frame, int regno,
47a35522 6204 gdb_byte *rare_buffer)
dd824b04 6205{
72a155b4
UW
6206 struct gdbarch *gdbarch = get_frame_arch (frame);
6207 int raw_size = register_size (gdbarch, regno);
47a35522 6208 gdb_byte *raw_buffer = alloca (raw_size);
dd824b04 6209
ca9d61b9 6210 if (!deprecated_frame_register_read (frame, regno, raw_buffer))
c9f4d572 6211 error (_("can't read register %d (%s)"),
72a155b4 6212 regno, gdbarch_register_name (gdbarch, regno));
dd824b04
DJ
6213 if (raw_size == 8)
6214 {
6215 /* We have a 64-bit value for this register. Find the low-order
6d82d43b 6216 32 bits. */
dd824b04
DJ
6217 int offset;
6218
72a155b4 6219 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
dd824b04
DJ
6220 offset = 4;
6221 else
6222 offset = 0;
6223
6224 memcpy (rare_buffer, raw_buffer + offset, 4);
6225 }
6226 else
6227 {
6228 memcpy (rare_buffer, raw_buffer, 4);
6229 }
6230}
6231
6232/* Copy a 64-bit double-precision value from the current frame into
6233 rare_buffer. This may include getting half of it from the next
6234 register. */
6235
6236static void
e11c53d2 6237mips_read_fp_register_double (struct frame_info *frame, int regno,
47a35522 6238 gdb_byte *rare_buffer)
dd824b04 6239{
72a155b4
UW
6240 struct gdbarch *gdbarch = get_frame_arch (frame);
6241 int raw_size = register_size (gdbarch, regno);
dd824b04 6242
9c9acae0 6243 if (raw_size == 8 && !mips2_fp_compat (frame))
dd824b04
DJ
6244 {
6245 /* We have a 64-bit value for this register, and we should use
6d82d43b 6246 all 64 bits. */
ca9d61b9 6247 if (!deprecated_frame_register_read (frame, regno, rare_buffer))
c9f4d572 6248 error (_("can't read register %d (%s)"),
72a155b4 6249 regno, gdbarch_register_name (gdbarch, regno));
dd824b04
DJ
6250 }
6251 else
6252 {
72a155b4 6253 int rawnum = regno % gdbarch_num_regs (gdbarch);
82e91389 6254
72a155b4 6255 if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
dd824b04 6256 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
6257 _("mips_read_fp_register_double: bad access to "
6258 "odd-numbered FP register"));
dd824b04
DJ
6259
6260 /* mips_read_fp_register_single will find the correct 32 bits from
6d82d43b 6261 each register. */
72a155b4 6262 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
dd824b04 6263 {
e11c53d2
AC
6264 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
6265 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
dd824b04 6266 }
361d1df0 6267 else
dd824b04 6268 {
e11c53d2
AC
6269 mips_read_fp_register_single (frame, regno, rare_buffer);
6270 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
dd824b04
DJ
6271 }
6272 }
6273}
6274
c906108c 6275static void
e11c53d2
AC
6276mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
6277 int regnum)
025bb325 6278{ /* Do values for FP (float) regs. */
72a155b4 6279 struct gdbarch *gdbarch = get_frame_arch (frame);
47a35522 6280 gdb_byte *raw_buffer;
025bb325 6281 double doub, flt1; /* Doubles extracted from raw hex data. */
3903d437 6282 int inv1, inv2;
c5aa993b 6283
025bb325
MS
6284 raw_buffer = alloca (2 * register_size (gdbarch,
6285 mips_regnum (gdbarch)->fp0));
c906108c 6286
72a155b4 6287 fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
c9f4d572 6288 fprintf_filtered (file, "%*s",
72a155b4 6289 4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
e11c53d2 6290 "");
f0ef6b29 6291
72a155b4 6292 if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
c906108c 6293 {
79a45b7d
TT
6294 struct value_print_options opts;
6295
f0ef6b29
KB
6296 /* 4-byte registers: Print hex and floating. Also print even
6297 numbered registers as doubles. */
e11c53d2 6298 mips_read_fp_register_single (frame, regnum, raw_buffer);
025bb325
MS
6299 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
6300 raw_buffer, &inv1);
c5aa993b 6301
79a45b7d 6302 get_formatted_print_options (&opts, 'x');
df4df182
UW
6303 print_scalar_formatted (raw_buffer,
6304 builtin_type (gdbarch)->builtin_uint32,
6305 &opts, 'w', file);
dd824b04 6306
e11c53d2 6307 fprintf_filtered (file, " flt: ");
1adad886 6308 if (inv1)
e11c53d2 6309 fprintf_filtered (file, " <invalid float> ");
1adad886 6310 else
e11c53d2 6311 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 6312
72a155b4 6313 if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
f0ef6b29 6314 {
e11c53d2 6315 mips_read_fp_register_double (frame, regnum, raw_buffer);
27067745
UW
6316 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
6317 raw_buffer, &inv2);
1adad886 6318
e11c53d2 6319 fprintf_filtered (file, " dbl: ");
f0ef6b29 6320 if (inv2)
e11c53d2 6321 fprintf_filtered (file, "<invalid double>");
f0ef6b29 6322 else
e11c53d2 6323 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29 6324 }
c906108c
SS
6325 }
6326 else
dd824b04 6327 {
79a45b7d
TT
6328 struct value_print_options opts;
6329
f0ef6b29 6330 /* Eight byte registers: print each one as hex, float and double. */
e11c53d2 6331 mips_read_fp_register_single (frame, regnum, raw_buffer);
27067745
UW
6332 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
6333 raw_buffer, &inv1);
c906108c 6334
e11c53d2 6335 mips_read_fp_register_double (frame, regnum, raw_buffer);
27067745
UW
6336 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
6337 raw_buffer, &inv2);
f0ef6b29 6338
79a45b7d 6339 get_formatted_print_options (&opts, 'x');
df4df182
UW
6340 print_scalar_formatted (raw_buffer,
6341 builtin_type (gdbarch)->builtin_uint64,
6342 &opts, 'g', file);
f0ef6b29 6343
e11c53d2 6344 fprintf_filtered (file, " flt: ");
1adad886 6345 if (inv1)
e11c53d2 6346 fprintf_filtered (file, "<invalid float>");
1adad886 6347 else
e11c53d2 6348 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 6349
e11c53d2 6350 fprintf_filtered (file, " dbl: ");
f0ef6b29 6351 if (inv2)
e11c53d2 6352 fprintf_filtered (file, "<invalid double>");
1adad886 6353 else
e11c53d2 6354 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29
KB
6355 }
6356}
6357
6358static void
e11c53d2 6359mips_print_register (struct ui_file *file, struct frame_info *frame,
0cc93a06 6360 int regnum)
f0ef6b29 6361{
a4b8ebc8 6362 struct gdbarch *gdbarch = get_frame_arch (frame);
79a45b7d 6363 struct value_print_options opts;
de15c4ab 6364 struct value *val;
1adad886 6365
004159a2 6366 if (mips_float_register_p (gdbarch, regnum))
f0ef6b29 6367 {
e11c53d2 6368 mips_print_fp_register (file, frame, regnum);
f0ef6b29
KB
6369 return;
6370 }
6371
de15c4ab 6372 val = get_frame_register_value (frame, regnum);
f0ef6b29 6373
72a155b4 6374 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
f0ef6b29
KB
6375
6376 /* The problem with printing numeric register names (r26, etc.) is that
6377 the user can't use them on input. Probably the best solution is to
6378 fix it so that either the numeric or the funky (a2, etc.) names
6379 are accepted on input. */
6380 if (regnum < MIPS_NUMREGS)
e11c53d2 6381 fprintf_filtered (file, "(r%d): ", regnum);
f0ef6b29 6382 else
e11c53d2 6383 fprintf_filtered (file, ": ");
f0ef6b29 6384
79a45b7d 6385 get_formatted_print_options (&opts, 'x');
de15c4ab
PA
6386 val_print_scalar_formatted (value_type (val),
6387 value_contents_for_printing (val),
6388 value_embedded_offset (val),
6389 val,
6390 &opts, 0, file);
c906108c
SS
6391}
6392
1bab7383
YQ
6393/* Print IEEE exception condition bits in FLAGS. */
6394
6395static void
6396print_fpu_flags (struct ui_file *file, int flags)
6397{
6398 if (flags & (1 << 0))
6399 fputs_filtered (" inexact", file);
6400 if (flags & (1 << 1))
6401 fputs_filtered (" uflow", file);
6402 if (flags & (1 << 2))
6403 fputs_filtered (" oflow", file);
6404 if (flags & (1 << 3))
6405 fputs_filtered (" div0", file);
6406 if (flags & (1 << 4))
6407 fputs_filtered (" inval", file);
6408 if (flags & (1 << 5))
6409 fputs_filtered (" unimp", file);
6410 fputc_filtered ('\n', file);
6411}
6412
6413/* Print interesting information about the floating point processor
6414 (if present) or emulator. */
6415
6416static void
6417mips_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
6418 struct frame_info *frame, const char *args)
6419{
6420 int fcsr = mips_regnum (gdbarch)->fp_control_status;
6421 enum mips_fpu_type type = MIPS_FPU_TYPE (gdbarch);
6422 ULONGEST fcs = 0;
6423 int i;
6424
6425 if (fcsr == -1 || !read_frame_register_unsigned (frame, fcsr, &fcs))
6426 type = MIPS_FPU_NONE;
6427
6428 fprintf_filtered (file, "fpu type: %s\n",
6429 type == MIPS_FPU_DOUBLE ? "double-precision"
6430 : type == MIPS_FPU_SINGLE ? "single-precision"
6431 : "none / unused");
6432
6433 if (type == MIPS_FPU_NONE)
6434 return;
6435
6436 fprintf_filtered (file, "reg size: %d bits\n",
6437 register_size (gdbarch, mips_regnum (gdbarch)->fp0) * 8);
6438
6439 fputs_filtered ("cond :", file);
6440 if (fcs & (1 << 23))
6441 fputs_filtered (" 0", file);
6442 for (i = 1; i <= 7; i++)
6443 if (fcs & (1 << (24 + i)))
6444 fprintf_filtered (file, " %d", i);
6445 fputc_filtered ('\n', file);
6446
6447 fputs_filtered ("cause :", file);
6448 print_fpu_flags (file, (fcs >> 12) & 0x3f);
6449 fputs ("mask :", stdout);
6450 print_fpu_flags (file, (fcs >> 7) & 0x1f);
6451 fputs ("flags :", stdout);
6452 print_fpu_flags (file, (fcs >> 2) & 0x1f);
6453
6454 fputs_filtered ("rounding: ", file);
6455 switch (fcs & 3)
6456 {
6457 case 0: fputs_filtered ("nearest\n", file); break;
6458 case 1: fputs_filtered ("zero\n", file); break;
6459 case 2: fputs_filtered ("+inf\n", file); break;
6460 case 3: fputs_filtered ("-inf\n", file); break;
6461 }
6462
6463 fputs_filtered ("flush :", file);
6464 if (fcs & (1 << 21))
6465 fputs_filtered (" nearest", file);
6466 if (fcs & (1 << 22))
6467 fputs_filtered (" override", file);
6468 if (fcs & (1 << 24))
6469 fputs_filtered (" zero", file);
6470 if ((fcs & (0xb << 21)) == 0)
6471 fputs_filtered (" no", file);
6472 fputc_filtered ('\n', file);
6473
6474 fprintf_filtered (file, "nan2008 : %s\n", fcs & (1 << 18) ? "yes" : "no");
6475 fprintf_filtered (file, "abs2008 : %s\n", fcs & (1 << 19) ? "yes" : "no");
6476 fputc_filtered ('\n', file);
6477
6478 default_print_float_info (gdbarch, file, frame, args);
6479}
6480
f0ef6b29
KB
6481/* Replacement for generic do_registers_info.
6482 Print regs in pretty columns. */
6483
6484static int
e11c53d2
AC
6485print_fp_register_row (struct ui_file *file, struct frame_info *frame,
6486 int regnum)
f0ef6b29 6487{
e11c53d2
AC
6488 fprintf_filtered (file, " ");
6489 mips_print_fp_register (file, frame, regnum);
6490 fprintf_filtered (file, "\n");
f0ef6b29
KB
6491 return regnum + 1;
6492}
6493
6494
025bb325 6495/* Print a row's worth of GP (int) registers, with name labels above. */
c906108c
SS
6496
6497static int
e11c53d2 6498print_gp_register_row (struct ui_file *file, struct frame_info *frame,
a4b8ebc8 6499 int start_regnum)
c906108c 6500{
a4b8ebc8 6501 struct gdbarch *gdbarch = get_frame_arch (frame);
025bb325 6502 /* Do values for GP (int) regs. */
47a35522 6503 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
025bb325
MS
6504 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols
6505 per row. */
c906108c 6506 int col, byte;
a4b8ebc8 6507 int regnum;
c906108c 6508
025bb325 6509 /* For GP registers, we print a separate row of names above the vals. */
a4b8ebc8 6510 for (col = 0, regnum = start_regnum;
72a155b4
UW
6511 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6512 + gdbarch_num_pseudo_regs (gdbarch);
f57d151a 6513 regnum++)
c906108c 6514 {
72a155b4 6515 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
c5aa993b 6516 continue; /* unused register */
004159a2 6517 if (mips_float_register_p (gdbarch, regnum))
025bb325 6518 break; /* End the row: reached FP register. */
0cc93a06 6519 /* Large registers are handled separately. */
72a155b4 6520 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
0cc93a06
DJ
6521 {
6522 if (col > 0)
6523 break; /* End the row before this register. */
6524
6525 /* Print this register on a row by itself. */
6526 mips_print_register (file, frame, regnum);
6527 fprintf_filtered (file, "\n");
6528 return regnum + 1;
6529 }
d05f6826
DJ
6530 if (col == 0)
6531 fprintf_filtered (file, " ");
6d82d43b 6532 fprintf_filtered (file,
72a155b4
UW
6533 mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
6534 gdbarch_register_name (gdbarch, regnum));
c906108c
SS
6535 col++;
6536 }
d05f6826
DJ
6537
6538 if (col == 0)
6539 return regnum;
6540
025bb325 6541 /* Print the R0 to R31 names. */
72a155b4 6542 if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
f57d151a 6543 fprintf_filtered (file, "\n R%-4d",
72a155b4 6544 start_regnum % gdbarch_num_regs (gdbarch));
20e6603c
AC
6545 else
6546 fprintf_filtered (file, "\n ");
c906108c 6547
025bb325 6548 /* Now print the values in hex, 4 or 8 to the row. */
a4b8ebc8 6549 for (col = 0, regnum = start_regnum;
72a155b4
UW
6550 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6551 + gdbarch_num_pseudo_regs (gdbarch);
f57d151a 6552 regnum++)
c906108c 6553 {
72a155b4 6554 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
c5aa993b 6555 continue; /* unused register */
004159a2 6556 if (mips_float_register_p (gdbarch, regnum))
025bb325 6557 break; /* End row: reached FP register. */
72a155b4 6558 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
0cc93a06
DJ
6559 break; /* End row: large register. */
6560
c906108c 6561 /* OK: get the data in raw format. */
ca9d61b9 6562 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
c9f4d572 6563 error (_("can't read register %d (%s)"),
72a155b4 6564 regnum, gdbarch_register_name (gdbarch, regnum));
c906108c 6565 /* pad small registers */
4246e332 6566 for (byte = 0;
72a155b4
UW
6567 byte < (mips_abi_regsize (gdbarch)
6568 - register_size (gdbarch, regnum)); byte++)
c906108c 6569 printf_filtered (" ");
025bb325 6570 /* Now print the register value in hex, endian order. */
72a155b4 6571 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6d82d43b 6572 for (byte =
72a155b4
UW
6573 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
6574 byte < register_size (gdbarch, regnum); byte++)
47a35522 6575 fprintf_filtered (file, "%02x", raw_buffer[byte]);
c906108c 6576 else
72a155b4 6577 for (byte = register_size (gdbarch, regnum) - 1;
6d82d43b 6578 byte >= 0; byte--)
47a35522 6579 fprintf_filtered (file, "%02x", raw_buffer[byte]);
e11c53d2 6580 fprintf_filtered (file, " ");
c906108c
SS
6581 col++;
6582 }
025bb325 6583 if (col > 0) /* ie. if we actually printed anything... */
e11c53d2 6584 fprintf_filtered (file, "\n");
c906108c
SS
6585
6586 return regnum;
6587}
6588
025bb325 6589/* MIPS_DO_REGISTERS_INFO(): called by "info register" command. */
c906108c 6590
bf1f5b4c 6591static void
e11c53d2
AC
6592mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
6593 struct frame_info *frame, int regnum, int all)
c906108c 6594{
025bb325 6595 if (regnum != -1) /* Do one specified register. */
c906108c 6596 {
72a155b4
UW
6597 gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
6598 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
8a3fe4f8 6599 error (_("Not a valid register for the current processor type"));
c906108c 6600
0cc93a06 6601 mips_print_register (file, frame, regnum);
e11c53d2 6602 fprintf_filtered (file, "\n");
c906108c 6603 }
c5aa993b 6604 else
025bb325 6605 /* Do all (or most) registers. */
c906108c 6606 {
72a155b4
UW
6607 regnum = gdbarch_num_regs (gdbarch);
6608 while (regnum < gdbarch_num_regs (gdbarch)
6609 + gdbarch_num_pseudo_regs (gdbarch))
c906108c 6610 {
004159a2 6611 if (mips_float_register_p (gdbarch, regnum))
e11c53d2 6612 {
025bb325 6613 if (all) /* True for "INFO ALL-REGISTERS" command. */
e11c53d2
AC
6614 regnum = print_fp_register_row (file, frame, regnum);
6615 else
025bb325 6616 regnum += MIPS_NUMREGS; /* Skip floating point regs. */
e11c53d2 6617 }
c906108c 6618 else
e11c53d2 6619 regnum = print_gp_register_row (file, frame, regnum);
c906108c
SS
6620 }
6621 }
6622}
6623
63807e1d 6624static int
3352ef37
AC
6625mips_single_step_through_delay (struct gdbarch *gdbarch,
6626 struct frame_info *frame)
c906108c 6627{
e17a4113 6628 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3352ef37 6629 CORE_ADDR pc = get_frame_pc (frame);
4cc0665f
MR
6630 struct address_space *aspace;
6631 enum mips_isa isa;
6632 ULONGEST insn;
6633 int status;
6634 int size;
6635
6636 if ((mips_pc_is_mips (pc)
ab50adb6 6637 && !mips32_insn_at_pc_has_delay_slot (gdbarch, pc))
4cc0665f 6638 || (mips_pc_is_micromips (gdbarch, pc)
ab50adb6 6639 && !micromips_insn_at_pc_has_delay_slot (gdbarch, pc, 0))
4cc0665f 6640 || (mips_pc_is_mips16 (gdbarch, pc)
ab50adb6 6641 && !mips16_insn_at_pc_has_delay_slot (gdbarch, pc, 0)))
06648491
MK
6642 return 0;
6643
4cc0665f
MR
6644 isa = mips_pc_isa (gdbarch, pc);
6645 /* _has_delay_slot above will have validated the read. */
6646 insn = mips_fetch_instruction (gdbarch, isa, pc, NULL);
6647 size = mips_insn_size (isa, insn);
6648 aspace = get_frame_address_space (frame);
6649 return breakpoint_here_p (aspace, pc + size) != no_breakpoint_here;
c906108c
SS
6650}
6651
6d82d43b
AC
6652/* To skip prologues, I use this predicate. Returns either PC itself
6653 if the code at PC does not look like a function prologue; otherwise
6654 returns an address that (if we're lucky) follows the prologue. If
6655 LENIENT, then we must skip everything which is involved in setting
6656 up the frame (it's OK to skip more, just so long as we don't skip
6657 anything which might clobber the registers which are being saved.
6658 We must skip more in the case where part of the prologue is in the
6659 delay slot of a non-prologue instruction). */
6660
6661static CORE_ADDR
6093d2eb 6662mips_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
6d82d43b 6663{
8b622e6a
AC
6664 CORE_ADDR limit_pc;
6665 CORE_ADDR func_addr;
6666
6d82d43b
AC
6667 /* See if we can determine the end of the prologue via the symbol table.
6668 If so, then return either PC, or the PC after the prologue, whichever
6669 is greater. */
8b622e6a
AC
6670 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
6671 {
d80b854b
UW
6672 CORE_ADDR post_prologue_pc
6673 = skip_prologue_using_sal (gdbarch, func_addr);
8b622e6a
AC
6674 if (post_prologue_pc != 0)
6675 return max (pc, post_prologue_pc);
6676 }
6d82d43b
AC
6677
6678 /* Can't determine prologue from the symbol table, need to examine
6679 instructions. */
6680
98b4dd94
JB
6681 /* Find an upper limit on the function prologue using the debug
6682 information. If the debug information could not be used to provide
6683 that bound, then use an arbitrary large number as the upper bound. */
d80b854b 6684 limit_pc = skip_prologue_using_sal (gdbarch, pc);
98b4dd94
JB
6685 if (limit_pc == 0)
6686 limit_pc = pc + 100; /* Magic. */
6687
4cc0665f 6688 if (mips_pc_is_mips16 (gdbarch, pc))
e17a4113 6689 return mips16_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
4cc0665f
MR
6690 else if (mips_pc_is_micromips (gdbarch, pc))
6691 return micromips_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6d82d43b 6692 else
e17a4113 6693 return mips32_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
88658117
AC
6694}
6695
97ab0fdd
MR
6696/* Check whether the PC is in a function epilogue (32-bit version).
6697 This is a helper function for mips_in_function_epilogue_p. */
6698static int
e17a4113 6699mips32_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
97ab0fdd
MR
6700{
6701 CORE_ADDR func_addr = 0, func_end = 0;
6702
6703 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6704 {
6705 /* The MIPS epilogue is max. 12 bytes long. */
6706 CORE_ADDR addr = func_end - 12;
6707
6708 if (addr < func_addr + 4)
6709 addr = func_addr + 4;
6710 if (pc < addr)
6711 return 0;
6712
6713 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
6714 {
6715 unsigned long high_word;
6716 unsigned long inst;
6717
4cc0665f 6718 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
97ab0fdd
MR
6719 high_word = (inst >> 16) & 0xffff;
6720
6721 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
6722 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
6723 && inst != 0x03e00008 /* jr $ra */
6724 && inst != 0x00000000) /* nop */
6725 return 0;
6726 }
6727
6728 return 1;
6729 }
6730
6731 return 0;
6732}
6733
4cc0665f
MR
6734/* Check whether the PC is in a function epilogue (microMIPS version).
6735 This is a helper function for mips_in_function_epilogue_p. */
6736
6737static int
6738micromips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6739{
6740 CORE_ADDR func_addr = 0;
6741 CORE_ADDR func_end = 0;
6742 CORE_ADDR addr;
6743 ULONGEST insn;
6744 long offset;
6745 int dreg;
6746 int sreg;
6747 int loc;
6748
6749 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6750 return 0;
6751
6752 /* The microMIPS epilogue is max. 12 bytes long. */
6753 addr = func_end - 12;
6754
6755 if (addr < func_addr + 2)
6756 addr = func_addr + 2;
6757 if (pc < addr)
6758 return 0;
6759
6760 for (; pc < func_end; pc += loc)
6761 {
6762 loc = 0;
6763 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
6764 loc += MIPS_INSN16_SIZE;
6765 switch (mips_insn_size (ISA_MICROMIPS, insn))
6766 {
6767 /* 48-bit instructions. */
6768 case 3 * MIPS_INSN16_SIZE:
6769 /* No epilogue instructions in this category. */
6770 return 0;
6771
6772 /* 32-bit instructions. */
6773 case 2 * MIPS_INSN16_SIZE:
6774 insn <<= 16;
6775 insn |= mips_fetch_instruction (gdbarch,
6776 ISA_MICROMIPS, pc + loc, NULL);
6777 loc += MIPS_INSN16_SIZE;
6778 switch (micromips_op (insn >> 16))
6779 {
6780 case 0xc: /* ADDIU: bits 001100 */
6781 case 0x17: /* DADDIU: bits 010111 */
6782 sreg = b0s5_reg (insn >> 16);
6783 dreg = b5s5_reg (insn >> 16);
6784 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
6785 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
6786 /* (D)ADDIU $sp, imm */
6787 && offset >= 0)
6788 break;
6789 return 0;
6790
6791 default:
6792 return 0;
6793 }
6794 break;
6795
6796 /* 16-bit instructions. */
6797 case MIPS_INSN16_SIZE:
6798 switch (micromips_op (insn))
6799 {
6800 case 0x3: /* MOVE: bits 000011 */
6801 sreg = b0s5_reg (insn);
6802 dreg = b5s5_reg (insn);
6803 if (sreg == 0 && dreg == 0)
6804 /* MOVE $zero, $zero aka NOP */
6805 break;
6806 return 0;
6807
6808 case 0x11: /* POOL16C: bits 010001 */
6809 if (b5s5_op (insn) == 0x18
6810 /* JRADDIUSP: bits 010011 11000 */
6811 || (b5s5_op (insn) == 0xd
6812 /* JRC: bits 010011 01101 */
6813 && b0s5_reg (insn) == MIPS_RA_REGNUM))
6814 /* JRC $ra */
6815 break;
6816 return 0;
6817
6818 case 0x13: /* POOL16D: bits 010011 */
6819 offset = micromips_decode_imm9 (b1s9_imm (insn));
6820 if ((insn & 0x1) == 0x1
6821 /* ADDIUSP: bits 010011 1 */
6822 && offset > 0)
6823 break;
6824 return 0;
6825
6826 default:
6827 return 0;
6828 }
6829 }
6830 }
6831
6832 return 1;
6833}
6834
97ab0fdd
MR
6835/* Check whether the PC is in a function epilogue (16-bit version).
6836 This is a helper function for mips_in_function_epilogue_p. */
6837static int
e17a4113 6838mips16_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
97ab0fdd
MR
6839{
6840 CORE_ADDR func_addr = 0, func_end = 0;
6841
6842 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6843 {
6844 /* The MIPS epilogue is max. 12 bytes long. */
6845 CORE_ADDR addr = func_end - 12;
6846
6847 if (addr < func_addr + 4)
6848 addr = func_addr + 4;
6849 if (pc < addr)
6850 return 0;
6851
6852 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
6853 {
6854 unsigned short inst;
6855
4cc0665f 6856 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc, NULL);
97ab0fdd
MR
6857
6858 if ((inst & 0xf800) == 0xf000) /* extend */
6859 continue;
6860
6861 if (inst != 0x6300 /* addiu $sp,offset */
6862 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
6863 && inst != 0xe820 /* jr $ra */
6864 && inst != 0xe8a0 /* jrc $ra */
6865 && inst != 0x6500) /* nop */
6866 return 0;
6867 }
6868
6869 return 1;
6870 }
6871
6872 return 0;
6873}
6874
6875/* The epilogue is defined here as the area at the end of a function,
6876 after an instruction which destroys the function's stack frame. */
6877static int
6878mips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6879{
4cc0665f 6880 if (mips_pc_is_mips16 (gdbarch, pc))
e17a4113 6881 return mips16_in_function_epilogue_p (gdbarch, pc);
4cc0665f
MR
6882 else if (mips_pc_is_micromips (gdbarch, pc))
6883 return micromips_in_function_epilogue_p (gdbarch, pc);
97ab0fdd 6884 else
e17a4113 6885 return mips32_in_function_epilogue_p (gdbarch, pc);
97ab0fdd
MR
6886}
6887
025bb325 6888/* Root of all "set mips "/"show mips " commands. This will eventually be
a5ea2558
AC
6889 used for all MIPS-specific commands. */
6890
a5ea2558 6891static void
acdb74a0 6892show_mips_command (char *args, int from_tty)
a5ea2558
AC
6893{
6894 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
6895}
6896
a5ea2558 6897static void
acdb74a0 6898set_mips_command (char *args, int from_tty)
a5ea2558 6899{
6d82d43b
AC
6900 printf_unfiltered
6901 ("\"set mips\" must be followed by an appropriate subcommand.\n");
a5ea2558
AC
6902 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
6903}
6904
c906108c
SS
6905/* Commands to show/set the MIPS FPU type. */
6906
c906108c 6907static void
acdb74a0 6908show_mipsfpu_command (char *args, int from_tty)
c906108c 6909{
c906108c 6910 char *fpu;
6ca0852e 6911
f5656ead 6912 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
6ca0852e
UW
6913 {
6914 printf_unfiltered
6915 ("The MIPS floating-point coprocessor is unknown "
6916 "because the current architecture is not MIPS.\n");
6917 return;
6918 }
6919
f5656ead 6920 switch (MIPS_FPU_TYPE (target_gdbarch ()))
c906108c
SS
6921 {
6922 case MIPS_FPU_SINGLE:
6923 fpu = "single-precision";
6924 break;
6925 case MIPS_FPU_DOUBLE:
6926 fpu = "double-precision";
6927 break;
6928 case MIPS_FPU_NONE:
6929 fpu = "absent (none)";
6930 break;
93d56215 6931 default:
e2e0b3e5 6932 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c
SS
6933 }
6934 if (mips_fpu_type_auto)
025bb325
MS
6935 printf_unfiltered ("The MIPS floating-point coprocessor "
6936 "is set automatically (currently %s)\n",
6937 fpu);
c906108c 6938 else
6d82d43b
AC
6939 printf_unfiltered
6940 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
c906108c
SS
6941}
6942
6943
c906108c 6944static void
acdb74a0 6945set_mipsfpu_command (char *args, int from_tty)
c906108c 6946{
025bb325
MS
6947 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", "
6948 "\"single\",\"none\" or \"auto\".\n");
c906108c
SS
6949 show_mipsfpu_command (args, from_tty);
6950}
6951
c906108c 6952static void
acdb74a0 6953set_mipsfpu_single_command (char *args, int from_tty)
c906108c 6954{
8d5838b5
AC
6955 struct gdbarch_info info;
6956 gdbarch_info_init (&info);
c906108c
SS
6957 mips_fpu_type = MIPS_FPU_SINGLE;
6958 mips_fpu_type_auto = 0;
8d5838b5
AC
6959 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6960 instead of relying on globals. Doing that would let generic code
6961 handle the search for this specific architecture. */
6962 if (!gdbarch_update_p (info))
e2e0b3e5 6963 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
6964}
6965
c906108c 6966static void
acdb74a0 6967set_mipsfpu_double_command (char *args, int from_tty)
c906108c 6968{
8d5838b5
AC
6969 struct gdbarch_info info;
6970 gdbarch_info_init (&info);
c906108c
SS
6971 mips_fpu_type = MIPS_FPU_DOUBLE;
6972 mips_fpu_type_auto = 0;
8d5838b5
AC
6973 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6974 instead of relying on globals. Doing that would let generic code
6975 handle the search for this specific architecture. */
6976 if (!gdbarch_update_p (info))
e2e0b3e5 6977 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
6978}
6979
c906108c 6980static void
acdb74a0 6981set_mipsfpu_none_command (char *args, int from_tty)
c906108c 6982{
8d5838b5
AC
6983 struct gdbarch_info info;
6984 gdbarch_info_init (&info);
c906108c
SS
6985 mips_fpu_type = MIPS_FPU_NONE;
6986 mips_fpu_type_auto = 0;
8d5838b5
AC
6987 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6988 instead of relying on globals. Doing that would let generic code
6989 handle the search for this specific architecture. */
6990 if (!gdbarch_update_p (info))
e2e0b3e5 6991 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
6992}
6993
c906108c 6994static void
acdb74a0 6995set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
6996{
6997 mips_fpu_type_auto = 1;
6998}
6999
c906108c 7000/* Attempt to identify the particular processor model by reading the
691c0433
AC
7001 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
7002 the relevant processor still exists (it dates back to '94) and
7003 secondly this is not the way to do this. The processor type should
7004 be set by forcing an architecture change. */
c906108c 7005
691c0433
AC
7006void
7007deprecated_mips_set_processor_regs_hack (void)
c906108c 7008{
bb486190
UW
7009 struct regcache *regcache = get_current_regcache ();
7010 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7011 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
a9614958 7012 ULONGEST prid;
c906108c 7013
bb486190 7014 regcache_cooked_read_unsigned (regcache, MIPS_PRID_REGNUM, &prid);
c906108c 7015 if ((prid & ~0xf) == 0x700)
691c0433 7016 tdep->mips_processor_reg_names = mips_r3041_reg_names;
c906108c
SS
7017}
7018
7019/* Just like reinit_frame_cache, but with the right arguments to be
7020 callable as an sfunc. */
7021
7022static void
acdb74a0
AC
7023reinit_frame_cache_sfunc (char *args, int from_tty,
7024 struct cmd_list_element *c)
c906108c
SS
7025{
7026 reinit_frame_cache ();
7027}
7028
a89aa300
AC
7029static int
7030gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
c906108c 7031{
4cc0665f
MR
7032 struct gdbarch *gdbarch = info->application_data;
7033
d31431ed
AC
7034 /* FIXME: cagney/2003-06-26: Is this even necessary? The
7035 disassembler needs to be able to locally determine the ISA, and
7036 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
7037 work. */
4cc0665f 7038 if (mips_pc_is_mips16 (gdbarch, memaddr))
ec4045ea 7039 info->mach = bfd_mach_mips16;
4cc0665f
MR
7040 else if (mips_pc_is_micromips (gdbarch, memaddr))
7041 info->mach = bfd_mach_mips_micromips;
c906108c
SS
7042
7043 /* Round down the instruction address to the appropriate boundary. */
4cc0665f
MR
7044 memaddr &= (info->mach == bfd_mach_mips16
7045 || info->mach == bfd_mach_mips_micromips) ? ~1 : ~3;
c5aa993b 7046
e5ab0dce 7047 /* Set the disassembler options. */
9dae60cc 7048 if (!info->disassembler_options)
e5ab0dce
AC
7049 /* This string is not recognized explicitly by the disassembler,
7050 but it tells the disassembler to not try to guess the ABI from
7051 the bfd elf headers, such that, if the user overrides the ABI
7052 of a program linked as NewABI, the disassembly will follow the
7053 register naming conventions specified by the user. */
7054 info->disassembler_options = "gpr-names=32";
7055
c906108c 7056 /* Call the appropriate disassembler based on the target endian-ness. */
40887e1a 7057 if (info->endian == BFD_ENDIAN_BIG)
c906108c
SS
7058 return print_insn_big_mips (memaddr, info);
7059 else
7060 return print_insn_little_mips (memaddr, info);
7061}
7062
9dae60cc
UW
7063static int
7064gdb_print_insn_mips_n32 (bfd_vma memaddr, struct disassemble_info *info)
7065{
7066 /* Set up the disassembler info, so that we get the right
7067 register names from libopcodes. */
7068 info->disassembler_options = "gpr-names=n32";
7069 info->flavour = bfd_target_elf_flavour;
7070
7071 return gdb_print_insn_mips (memaddr, info);
7072}
7073
7074static int
7075gdb_print_insn_mips_n64 (bfd_vma memaddr, struct disassemble_info *info)
7076{
7077 /* Set up the disassembler info, so that we get the right
7078 register names from libopcodes. */
7079 info->disassembler_options = "gpr-names=64";
7080 info->flavour = bfd_target_elf_flavour;
7081
7082 return gdb_print_insn_mips (memaddr, info);
7083}
7084
025bb325
MS
7085/* This function implements gdbarch_breakpoint_from_pc. It uses the
7086 program counter value to determine whether a 16- or 32-bit breakpoint
7087 should be used. It returns a pointer to a string of bytes that encode a
7088 breakpoint instruction, stores the length of the string to *lenptr, and
7089 adjusts pc (if necessary) to point to the actual memory location where
7090 the breakpoint should be inserted. */
c906108c 7091
47a35522 7092static const gdb_byte *
025bb325
MS
7093mips_breakpoint_from_pc (struct gdbarch *gdbarch,
7094 CORE_ADDR *pcptr, int *lenptr)
c906108c 7095{
4cc0665f
MR
7096 CORE_ADDR pc = *pcptr;
7097
67d57894 7098 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
c906108c 7099 {
4cc0665f 7100 if (mips_pc_is_mips16 (gdbarch, pc))
c906108c 7101 {
47a35522 7102 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
4cc0665f 7103 *pcptr = unmake_compact_addr (pc);
c5aa993b 7104 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
7105 return mips16_big_breakpoint;
7106 }
4cc0665f
MR
7107 else if (mips_pc_is_micromips (gdbarch, pc))
7108 {
7109 static gdb_byte micromips16_big_breakpoint[] = { 0x46, 0x85 };
7110 static gdb_byte micromips32_big_breakpoint[] = { 0, 0x5, 0, 0x7 };
7111 ULONGEST insn;
7112 int status;
7113 int size;
7114
7115 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
7116 size = status ? 2
7117 : mips_insn_size (ISA_MICROMIPS, insn) == 2 ? 2 : 4;
7118 *pcptr = unmake_compact_addr (pc);
7119 *lenptr = size;
7120 return (size == 2) ? micromips16_big_breakpoint
7121 : micromips32_big_breakpoint;
7122 }
c906108c
SS
7123 else
7124 {
aaab4dba
AC
7125 /* The IDT board uses an unusual breakpoint value, and
7126 sometimes gets confused when it sees the usual MIPS
7127 breakpoint instruction. */
47a35522
MK
7128 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
7129 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
7130 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
f2ec0ecf 7131 /* Likewise, IRIX appears to expect a different breakpoint,
025bb325 7132 although this is not apparent until you try to use pthreads. */
f2ec0ecf 7133 static gdb_byte irix_big_breakpoint[] = { 0, 0, 0, 0xd };
c906108c 7134
c5aa993b 7135 *lenptr = sizeof (big_breakpoint);
c906108c
SS
7136
7137 if (strcmp (target_shortname, "mips") == 0)
7138 return idt_big_breakpoint;
7139 else if (strcmp (target_shortname, "ddb") == 0
7140 || strcmp (target_shortname, "pmon") == 0
7141 || strcmp (target_shortname, "lsi") == 0)
7142 return pmon_big_breakpoint;
f2ec0ecf
JB
7143 else if (gdbarch_osabi (gdbarch) == GDB_OSABI_IRIX)
7144 return irix_big_breakpoint;
c906108c
SS
7145 else
7146 return big_breakpoint;
7147 }
7148 }
7149 else
7150 {
4cc0665f 7151 if (mips_pc_is_mips16 (gdbarch, pc))
c906108c 7152 {
47a35522 7153 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
4cc0665f 7154 *pcptr = unmake_compact_addr (pc);
c5aa993b 7155 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
7156 return mips16_little_breakpoint;
7157 }
4cc0665f
MR
7158 else if (mips_pc_is_micromips (gdbarch, pc))
7159 {
7160 static gdb_byte micromips16_little_breakpoint[] = { 0x85, 0x46 };
7161 static gdb_byte micromips32_little_breakpoint[] = { 0x5, 0, 0x7, 0 };
7162 ULONGEST insn;
7163 int status;
7164 int size;
7165
7166 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
7167 size = status ? 2
7168 : mips_insn_size (ISA_MICROMIPS, insn) == 2 ? 2 : 4;
7169 *pcptr = unmake_compact_addr (pc);
7170 *lenptr = size;
7171 return (size == 2) ? micromips16_little_breakpoint
7172 : micromips32_little_breakpoint;
7173 }
c906108c
SS
7174 else
7175 {
47a35522
MK
7176 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
7177 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
7178 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
c906108c 7179
c5aa993b 7180 *lenptr = sizeof (little_breakpoint);
c906108c
SS
7181
7182 if (strcmp (target_shortname, "mips") == 0)
7183 return idt_little_breakpoint;
7184 else if (strcmp (target_shortname, "ddb") == 0
7185 || strcmp (target_shortname, "pmon") == 0
7186 || strcmp (target_shortname, "lsi") == 0)
7187 return pmon_little_breakpoint;
7188 else
7189 return little_breakpoint;
7190 }
7191 }
7192}
7193
4cc0665f
MR
7194/* Determine the remote breakpoint kind suitable for the PC. The following
7195 kinds are used:
7196
7197 * 2 -- 16-bit MIPS16 mode breakpoint,
7198
7199 * 3 -- 16-bit microMIPS mode breakpoint,
7200
7201 * 4 -- 32-bit standard MIPS mode breakpoint,
7202
7203 * 5 -- 32-bit microMIPS mode breakpoint. */
7204
7205static void
7206mips_remote_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
7207 int *kindptr)
7208{
7209 CORE_ADDR pc = *pcptr;
7210
7211 if (mips_pc_is_mips16 (gdbarch, pc))
7212 {
7213 *pcptr = unmake_compact_addr (pc);
7214 *kindptr = 2;
7215 }
7216 else if (mips_pc_is_micromips (gdbarch, pc))
7217 {
7218 ULONGEST insn;
7219 int status;
7220 int size;
7221
7222 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
7223 size = status ? 2 : mips_insn_size (ISA_MICROMIPS, insn) == 2 ? 2 : 4;
7224 *pcptr = unmake_compact_addr (pc);
7225 *kindptr = size | 1;
7226 }
7227 else
7228 *kindptr = 4;
7229}
7230
ab50adb6
MR
7231/* Return non-zero if the standard MIPS instruction INST has a branch
7232 delay slot (i.e. it is a jump or branch instruction). This function
7233 is based on mips32_next_pc. */
c8cef75f
MR
7234
7235static int
ab50adb6 7236mips32_instruction_has_delay_slot (struct gdbarch *gdbarch, ULONGEST inst)
c8cef75f 7237{
c8cef75f 7238 int op;
a385295e
MR
7239 int rs;
7240 int rt;
c8cef75f 7241
c8cef75f
MR
7242 op = itype_op (inst);
7243 if ((inst & 0xe0000000) != 0)
a385295e
MR
7244 {
7245 rs = itype_rs (inst);
7246 rt = itype_rt (inst);
f94363d7
AP
7247 return (is_octeon_bbit_op (op, gdbarch)
7248 || op >> 2 == 5 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
a385295e
MR
7249 || op == 29 /* JALX: bits 011101 */
7250 || (op == 17
7251 && (rs == 8
c8cef75f 7252 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
a385295e
MR
7253 || (rs == 9 && (rt & 0x2) == 0)
7254 /* BC1ANY2F, BC1ANY2T: bits 010001 01001 */
7255 || (rs == 10 && (rt & 0x2) == 0))));
7256 /* BC1ANY4F, BC1ANY4T: bits 010001 01010 */
7257 }
c8cef75f
MR
7258 else
7259 switch (op & 0x07) /* extract bits 28,27,26 */
7260 {
7261 case 0: /* SPECIAL */
7262 op = rtype_funct (inst);
7263 return (op == 8 /* JR */
7264 || op == 9); /* JALR */
7265 break; /* end SPECIAL */
7266 case 1: /* REGIMM */
a385295e
MR
7267 rs = itype_rs (inst);
7268 rt = itype_rt (inst); /* branch condition */
7269 return ((rt & 0xc) == 0
c8cef75f
MR
7270 /* BLTZ, BLTZL, BGEZ, BGEZL: bits 000xx */
7271 /* BLTZAL, BLTZALL, BGEZAL, BGEZALL: 100xx */
a385295e
MR
7272 || ((rt & 0x1e) == 0x1c && rs == 0));
7273 /* BPOSGE32, BPOSGE64: bits 1110x */
c8cef75f
MR
7274 break; /* end REGIMM */
7275 default: /* J, JAL, BEQ, BNE, BLEZ, BGTZ */
7276 return 1;
7277 break;
7278 }
7279}
7280
ab50adb6
MR
7281/* Return non-zero if a standard MIPS instruction at ADDR has a branch
7282 delay slot (i.e. it is a jump or branch instruction). */
c8cef75f 7283
4cc0665f 7284static int
ab50adb6 7285mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch, CORE_ADDR addr)
4cc0665f
MR
7286{
7287 ULONGEST insn;
7288 int status;
7289
ab50adb6 7290 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, addr, &status);
4cc0665f
MR
7291 if (status)
7292 return 0;
7293
ab50adb6
MR
7294 return mips32_instruction_has_delay_slot (gdbarch, insn);
7295}
4cc0665f 7296
ab50adb6
MR
7297/* Return non-zero if the microMIPS instruction INSN, comprising the
7298 16-bit major opcode word in the high 16 bits and any second word
7299 in the low 16 bits, has a branch delay slot (i.e. it is a non-compact
7300 jump or branch instruction). The instruction must be 32-bit if
7301 MUSTBE32 is set or can be any instruction otherwise. */
7302
7303static int
7304micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32)
7305{
7306 ULONGEST major = insn >> 16;
4cc0665f 7307
ab50adb6
MR
7308 switch (micromips_op (major))
7309 {
7310 /* 16-bit instructions. */
7311 case 0x33: /* B16: bits 110011 */
7312 case 0x2b: /* BNEZ16: bits 101011 */
7313 case 0x23: /* BEQZ16: bits 100011 */
7314 return !mustbe32;
7315 case 0x11: /* POOL16C: bits 010001 */
7316 return (!mustbe32
7317 && ((b5s5_op (major) == 0xc
7318 /* JR16: bits 010001 01100 */
7319 || (b5s5_op (major) & 0x1e) == 0xe)));
7320 /* JALR16, JALRS16: bits 010001 0111x */
7321 /* 32-bit instructions. */
7322 case 0x3d: /* JAL: bits 111101 */
7323 case 0x3c: /* JALX: bits 111100 */
7324 case 0x35: /* J: bits 110101 */
7325 case 0x2d: /* BNE: bits 101101 */
7326 case 0x25: /* BEQ: bits 100101 */
7327 case 0x1d: /* JALS: bits 011101 */
7328 return 1;
7329 case 0x10: /* POOL32I: bits 010000 */
7330 return ((b5s5_op (major) & 0x1c) == 0x0
4cc0665f 7331 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
ab50adb6 7332 || (b5s5_op (major) & 0x1d) == 0x4
4cc0665f 7333 /* BLEZ, BGTZ: bits 010000 001x0 */
ab50adb6 7334 || (b5s5_op (major) & 0x1d) == 0x11
4cc0665f 7335 /* BLTZALS, BGEZALS: bits 010000 100x1 */
ab50adb6
MR
7336 || ((b5s5_op (major) & 0x1e) == 0x14
7337 && (major & 0x3) == 0x0)
4cc0665f 7338 /* BC2F, BC2T: bits 010000 1010x xxx00 */
ab50adb6 7339 || (b5s5_op (major) & 0x1e) == 0x1a
4cc0665f 7340 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
ab50adb6
MR
7341 || ((b5s5_op (major) & 0x1e) == 0x1c
7342 && (major & 0x3) == 0x0)
4cc0665f 7343 /* BC1F, BC1T: bits 010000 1110x xxx00 */
ab50adb6
MR
7344 || ((b5s5_op (major) & 0x1c) == 0x1c
7345 && (major & 0x3) == 0x1));
4cc0665f 7346 /* BC1ANY*: bits 010000 111xx xxx01 */
ab50adb6
MR
7347 case 0x0: /* POOL32A: bits 000000 */
7348 return (b0s6_op (insn) == 0x3c
7349 /* POOL32Axf: bits 000000 ... 111100 */
7350 && (b6s10_ext (insn) & 0x2bf) == 0x3c);
7351 /* JALR, JALR.HB: 000000 000x111100 111100 */
7352 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
7353 default:
7354 return 0;
7355 }
4cc0665f
MR
7356}
7357
ab50adb6 7358/* Return non-zero if a microMIPS instruction at ADDR has a branch delay
ae790652
MR
7359 slot (i.e. it is a non-compact jump instruction). The instruction
7360 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7361
c8cef75f 7362static int
ab50adb6
MR
7363micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7364 CORE_ADDR addr, int mustbe32)
c8cef75f 7365{
ab50adb6 7366 ULONGEST insn;
c8cef75f
MR
7367 int status;
7368
ab50adb6 7369 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
c8cef75f
MR
7370 if (status)
7371 return 0;
ab50adb6
MR
7372 insn <<= 16;
7373 if (mips_insn_size (ISA_MICROMIPS, insn) == 2 * MIPS_INSN16_SIZE)
7374 {
7375 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7376 if (status)
7377 return 0;
7378 }
7379
7380 return micromips_instruction_has_delay_slot (insn, mustbe32);
7381}
c8cef75f 7382
ab50adb6
MR
7383/* Return non-zero if the MIPS16 instruction INST, which must be
7384 a 32-bit instruction if MUSTBE32 is set or can be any instruction
7385 otherwise, has a branch delay slot (i.e. it is a non-compact jump
7386 instruction). This function is based on mips16_next_pc. */
7387
7388static int
7389mips16_instruction_has_delay_slot (unsigned short inst, int mustbe32)
7390{
ae790652
MR
7391 if ((inst & 0xf89f) == 0xe800) /* JR/JALR (16-bit instruction) */
7392 return !mustbe32;
c8cef75f
MR
7393 return (inst & 0xf800) == 0x1800; /* JAL/JALX (32-bit instruction) */
7394}
7395
ab50adb6
MR
7396/* Return non-zero if a MIPS16 instruction at ADDR has a branch delay
7397 slot (i.e. it is a non-compact jump instruction). The instruction
7398 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7399
7400static int
7401mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7402 CORE_ADDR addr, int mustbe32)
7403{
7404 unsigned short insn;
7405 int status;
7406
7407 insn = mips_fetch_instruction (gdbarch, ISA_MIPS16, addr, &status);
7408 if (status)
7409 return 0;
7410
7411 return mips16_instruction_has_delay_slot (insn, mustbe32);
7412}
7413
c8cef75f
MR
7414/* Calculate the starting address of the MIPS memory segment BPADDR is in.
7415 This assumes KSSEG exists. */
7416
7417static CORE_ADDR
7418mips_segment_boundary (CORE_ADDR bpaddr)
7419{
7420 CORE_ADDR mask = CORE_ADDR_MAX;
7421 int segsize;
7422
7423 if (sizeof (CORE_ADDR) == 8)
7424 /* Get the topmost two bits of bpaddr in a 32-bit safe manner (avoid
7425 a compiler warning produced where CORE_ADDR is a 32-bit type even
7426 though in that case this is dead code). */
7427 switch (bpaddr >> ((sizeof (CORE_ADDR) << 3) - 2) & 3)
7428 {
7429 case 3:
7430 if (bpaddr == (bfd_signed_vma) (int32_t) bpaddr)
7431 segsize = 29; /* 32-bit compatibility segment */
7432 else
7433 segsize = 62; /* xkseg */
7434 break;
7435 case 2: /* xkphys */
7436 segsize = 59;
7437 break;
7438 default: /* xksseg (1), xkuseg/kuseg (0) */
7439 segsize = 62;
7440 break;
7441 }
7442 else if (bpaddr & 0x80000000) /* kernel segment */
7443 segsize = 29;
7444 else
7445 segsize = 31; /* user segment */
7446 mask <<= segsize;
7447 return bpaddr & mask;
7448}
7449
7450/* Move the breakpoint at BPADDR out of any branch delay slot by shifting
7451 it backwards if necessary. Return the address of the new location. */
7452
7453static CORE_ADDR
7454mips_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
7455{
22e048c9 7456 CORE_ADDR prev_addr;
c8cef75f
MR
7457 CORE_ADDR boundary;
7458 CORE_ADDR func_addr;
7459
7460 /* If a breakpoint is set on the instruction in a branch delay slot,
7461 GDB gets confused. When the breakpoint is hit, the PC isn't on
7462 the instruction in the branch delay slot, the PC will point to
7463 the branch instruction. Since the PC doesn't match any known
7464 breakpoints, GDB reports a trap exception.
7465
7466 There are two possible fixes for this problem.
7467
7468 1) When the breakpoint gets hit, see if the BD bit is set in the
7469 Cause register (which indicates the last exception occurred in a
7470 branch delay slot). If the BD bit is set, fix the PC to point to
7471 the instruction in the branch delay slot.
7472
7473 2) When the user sets the breakpoint, don't allow him to set the
7474 breakpoint on the instruction in the branch delay slot. Instead
7475 move the breakpoint to the branch instruction (which will have
7476 the same result).
7477
7478 The problem with the first solution is that if the user then
7479 single-steps the processor, the branch instruction will get
7480 skipped (since GDB thinks the PC is on the instruction in the
7481 branch delay slot).
7482
7483 So, we'll use the second solution. To do this we need to know if
7484 the instruction we're trying to set the breakpoint on is in the
7485 branch delay slot. */
7486
7487 boundary = mips_segment_boundary (bpaddr);
7488
7489 /* Make sure we don't scan back before the beginning of the current
7490 function, since we may fetch constant data or insns that look like
7491 a jump. Of course we might do that anyway if the compiler has
7492 moved constants inline. :-( */
7493 if (find_pc_partial_function (bpaddr, NULL, &func_addr, NULL)
7494 && func_addr > boundary && func_addr <= bpaddr)
7495 boundary = func_addr;
7496
4cc0665f 7497 if (mips_pc_is_mips (bpaddr))
c8cef75f
MR
7498 {
7499 if (bpaddr == boundary)
7500 return bpaddr;
7501
7502 /* If the previous instruction has a branch delay slot, we have
7503 to move the breakpoint to the branch instruction. */
7504 prev_addr = bpaddr - 4;
ab50adb6 7505 if (mips32_insn_at_pc_has_delay_slot (gdbarch, prev_addr))
c8cef75f
MR
7506 bpaddr = prev_addr;
7507 }
7508 else
7509 {
ab50adb6 7510 int (*insn_at_pc_has_delay_slot) (struct gdbarch *, CORE_ADDR, int);
c8cef75f
MR
7511 CORE_ADDR addr, jmpaddr;
7512 int i;
7513
4cc0665f 7514 boundary = unmake_compact_addr (boundary);
c8cef75f
MR
7515
7516 /* The only MIPS16 instructions with delay slots are JAL, JALX,
7517 JALR and JR. An absolute JAL/JALX is always 4 bytes long,
7518 so try for that first, then try the 2 byte JALR/JR.
4cc0665f
MR
7519 The microMIPS ASE has a whole range of jumps and branches
7520 with delay slots, some of which take 4 bytes and some take
7521 2 bytes, so the idea is the same.
c8cef75f
MR
7522 FIXME: We have to assume that bpaddr is not the second half
7523 of an extended instruction. */
ab50adb6
MR
7524 insn_at_pc_has_delay_slot = (mips_pc_is_micromips (gdbarch, bpaddr)
7525 ? micromips_insn_at_pc_has_delay_slot
7526 : mips16_insn_at_pc_has_delay_slot);
c8cef75f
MR
7527
7528 jmpaddr = 0;
7529 addr = bpaddr;
7530 for (i = 1; i < 4; i++)
7531 {
4cc0665f 7532 if (unmake_compact_addr (addr) == boundary)
c8cef75f 7533 break;
4cc0665f 7534 addr -= MIPS_INSN16_SIZE;
ab50adb6 7535 if (i == 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 0))
c8cef75f
MR
7536 /* Looks like a JR/JALR at [target-1], but it could be
7537 the second word of a previous JAL/JALX, so record it
7538 and check back one more. */
7539 jmpaddr = addr;
ab50adb6 7540 else if (i > 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 1))
c8cef75f
MR
7541 {
7542 if (i == 2)
7543 /* Looks like a JAL/JALX at [target-2], but it could also
7544 be the second word of a previous JAL/JALX, record it,
7545 and check back one more. */
7546 jmpaddr = addr;
7547 else
7548 /* Looks like a JAL/JALX at [target-3], so any previously
7549 recorded JAL/JALX or JR/JALR must be wrong, because:
7550
7551 >-3: JAL
7552 -2: JAL-ext (can't be JAL/JALX)
7553 -1: bdslot (can't be JR/JALR)
7554 0: target insn
7555
7556 Of course it could be another JAL-ext which looks
7557 like a JAL, but in that case we'd have broken out
7558 of this loop at [target-2]:
7559
7560 -4: JAL
7561 >-3: JAL-ext
7562 -2: bdslot (can't be jmp)
7563 -1: JR/JALR
7564 0: target insn */
7565 jmpaddr = 0;
7566 }
7567 else
7568 {
7569 /* Not a jump instruction: if we're at [target-1] this
7570 could be the second word of a JAL/JALX, so continue;
7571 otherwise we're done. */
7572 if (i > 1)
7573 break;
7574 }
7575 }
7576
7577 if (jmpaddr)
7578 bpaddr = jmpaddr;
7579 }
7580
7581 return bpaddr;
7582}
7583
14132e89
MR
7584/* Return non-zero if SUFFIX is one of the numeric suffixes used for MIPS16
7585 call stubs, one of 1, 2, 5, 6, 9, 10, or, if ZERO is non-zero, also 0. */
7586
7587static int
7588mips_is_stub_suffix (const char *suffix, int zero)
7589{
7590 switch (suffix[0])
7591 {
7592 case '0':
7593 return zero && suffix[1] == '\0';
7594 case '1':
7595 return suffix[1] == '\0' || (suffix[1] == '0' && suffix[2] == '\0');
7596 case '2':
7597 case '5':
7598 case '6':
7599 case '9':
7600 return suffix[1] == '\0';
7601 default:
7602 return 0;
7603 }
7604}
7605
7606/* Return non-zero if MODE is one of the mode infixes used for MIPS16
7607 call stubs, one of sf, df, sc, or dc. */
7608
7609static int
7610mips_is_stub_mode (const char *mode)
7611{
7612 return ((mode[0] == 's' || mode[0] == 'd')
7613 && (mode[1] == 'f' || mode[1] == 'c'));
7614}
7615
7616/* Code at PC is a compiler-generated stub. Such a stub for a function
7617 bar might have a name like __fn_stub_bar, and might look like this:
7618
7619 mfc1 $4, $f13
7620 mfc1 $5, $f12
7621 mfc1 $6, $f15
7622 mfc1 $7, $f14
7623
7624 followed by (or interspersed with):
7625
7626 j bar
7627
7628 or:
7629
7630 lui $25, %hi(bar)
7631 addiu $25, $25, %lo(bar)
7632 jr $25
7633
7634 ($1 may be used in old code; for robustness we accept any register)
7635 or, in PIC code:
7636
7637 lui $28, %hi(_gp_disp)
7638 addiu $28, $28, %lo(_gp_disp)
7639 addu $28, $28, $25
7640 lw $25, %got(bar)
7641 addiu $25, $25, %lo(bar)
7642 jr $25
7643
7644 In the case of a __call_stub_bar stub, the sequence to set up
7645 arguments might look like this:
7646
7647 mtc1 $4, $f13
7648 mtc1 $5, $f12
7649 mtc1 $6, $f15
7650 mtc1 $7, $f14
7651
7652 followed by (or interspersed with) one of the jump sequences above.
7653
7654 In the case of a __call_stub_fp_bar stub, JAL or JALR is used instead
7655 of J or JR, respectively, followed by:
7656
7657 mfc1 $2, $f0
7658 mfc1 $3, $f1
7659 jr $18
7660
7661 We are at the beginning of the stub here, and scan down and extract
7662 the target address from the jump immediate instruction or, if a jump
7663 register instruction is used, from the register referred. Return
7664 the value of PC calculated or 0 if inconclusive.
7665
7666 The limit on the search is arbitrarily set to 20 instructions. FIXME. */
7667
7668static CORE_ADDR
7669mips_get_mips16_fn_stub_pc (struct frame_info *frame, CORE_ADDR pc)
7670{
7671 struct gdbarch *gdbarch = get_frame_arch (frame);
7672 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7673 int addrreg = MIPS_ZERO_REGNUM;
7674 CORE_ADDR start_pc = pc;
7675 CORE_ADDR target_pc = 0;
7676 CORE_ADDR addr = 0;
7677 CORE_ADDR gp = 0;
7678 int status = 0;
7679 int i;
7680
7681 for (i = 0;
7682 status == 0 && target_pc == 0 && i < 20;
7683 i++, pc += MIPS_INSN32_SIZE)
7684 {
4cc0665f 7685 ULONGEST inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
14132e89
MR
7686 CORE_ADDR imm;
7687 int rt;
7688 int rs;
7689 int rd;
7690
7691 switch (itype_op (inst))
7692 {
7693 case 0: /* SPECIAL */
7694 switch (rtype_funct (inst))
7695 {
7696 case 8: /* JR */
7697 case 9: /* JALR */
7698 rs = rtype_rs (inst);
7699 if (rs == MIPS_GP_REGNUM)
7700 target_pc = gp; /* Hmm... */
7701 else if (rs == addrreg)
7702 target_pc = addr;
7703 break;
7704
7705 case 0x21: /* ADDU */
7706 rt = rtype_rt (inst);
7707 rs = rtype_rs (inst);
7708 rd = rtype_rd (inst);
7709 if (rd == MIPS_GP_REGNUM
7710 && ((rs == MIPS_GP_REGNUM && rt == MIPS_T9_REGNUM)
7711 || (rs == MIPS_T9_REGNUM && rt == MIPS_GP_REGNUM)))
7712 gp += start_pc;
7713 break;
7714 }
7715 break;
7716
7717 case 2: /* J */
7718 case 3: /* JAL */
7719 target_pc = jtype_target (inst) << 2;
7720 target_pc += ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
7721 break;
7722
7723 case 9: /* ADDIU */
7724 rt = itype_rt (inst);
7725 rs = itype_rs (inst);
7726 if (rt == rs)
7727 {
7728 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7729 if (rt == MIPS_GP_REGNUM)
7730 gp += imm;
7731 else if (rt == addrreg)
7732 addr += imm;
7733 }
7734 break;
7735
7736 case 0xf: /* LUI */
7737 rt = itype_rt (inst);
7738 imm = ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 16;
7739 if (rt == MIPS_GP_REGNUM)
7740 gp = imm;
7741 else if (rt != MIPS_ZERO_REGNUM)
7742 {
7743 addrreg = rt;
7744 addr = imm;
7745 }
7746 break;
7747
7748 case 0x23: /* LW */
7749 rt = itype_rt (inst);
7750 rs = itype_rs (inst);
7751 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7752 if (gp != 0 && rs == MIPS_GP_REGNUM)
7753 {
7754 gdb_byte buf[4];
7755
7756 memset (buf, 0, sizeof (buf));
7757 status = target_read_memory (gp + imm, buf, sizeof (buf));
7758 addrreg = rt;
7759 addr = extract_signed_integer (buf, sizeof (buf), byte_order);
7760 }
7761 break;
7762 }
7763 }
7764
7765 return target_pc;
7766}
7767
7768/* If PC is in a MIPS16 call or return stub, return the address of the
7769 target PC, which is either the callee or the caller. There are several
c906108c
SS
7770 cases which must be handled:
7771
14132e89
MR
7772 * If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7773 and the target PC is in $31 ($ra).
c906108c 7774 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
14132e89
MR
7775 and the target PC is in $2.
7776 * If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7777 i.e. before the JALR instruction, this is effectively a call stub
7778 and the target PC is in $2. Otherwise this is effectively
7779 a return stub and the target PC is in $18.
7780 * If the PC is at the start of __call_stub_fp_*, i.e. before the
7781 JAL or JALR instruction, this is effectively a call stub and the
7782 target PC is buried in the instruction stream. Otherwise this
7783 is effectively a return stub and the target PC is in $18.
7784 * If the PC is in __call_stub_* or in __fn_stub_*, this is a call
7785 stub and the target PC is buried in the instruction stream.
7786
7787 See the source code for the stubs in gcc/config/mips/mips16.S, or the
7788 stub builder in gcc/config/mips/mips.c (mips16_build_call_stub) for the
e7d6a6d2 7789 gory details. */
c906108c 7790
757a7cc6 7791static CORE_ADDR
db5f024e 7792mips_skip_mips16_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
c906108c 7793{
e17a4113 7794 struct gdbarch *gdbarch = get_frame_arch (frame);
c906108c 7795 CORE_ADDR start_addr;
14132e89
MR
7796 const char *name;
7797 size_t prefixlen;
c906108c
SS
7798
7799 /* Find the starting address and name of the function containing the PC. */
7800 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
7801 return 0;
7802
14132e89
MR
7803 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7804 and the target PC is in $31 ($ra). */
7805 prefixlen = strlen (mips_str_mips16_ret_stub);
7806 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7807 && mips_is_stub_mode (name + prefixlen)
7808 && name[prefixlen + 2] == '\0')
7809 return get_frame_register_signed
7810 (frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
7811
7812 /* If the PC is in __mips16_call_stub_*, this is one of the call
7813 call/return stubs. */
7814 prefixlen = strlen (mips_str_mips16_call_stub);
7815 if (strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0)
c906108c
SS
7816 {
7817 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7818 and the target PC is in $2. */
14132e89
MR
7819 if (mips_is_stub_suffix (name + prefixlen, 0))
7820 return get_frame_register_signed
7821 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
c906108c 7822
14132e89
MR
7823 /* If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7824 i.e. before the JALR instruction, this is effectively a call stub
b021a221 7825 and the target PC is in $2. Otherwise this is effectively
c5aa993b 7826 a return stub and the target PC is in $18. */
14132e89
MR
7827 else if (mips_is_stub_mode (name + prefixlen)
7828 && name[prefixlen + 2] == '_'
7829 && mips_is_stub_suffix (name + prefixlen + 3, 0))
c906108c
SS
7830 {
7831 if (pc == start_addr)
14132e89
MR
7832 /* This is the 'call' part of a call stub. The return
7833 address is in $2. */
7834 return get_frame_register_signed
7835 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
c906108c
SS
7836 else
7837 /* This is the 'return' part of a call stub. The return
14132e89
MR
7838 address is in $18. */
7839 return get_frame_register_signed
7840 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
c906108c 7841 }
14132e89
MR
7842 else
7843 return 0; /* Not a stub. */
7844 }
7845
7846 /* If the PC is in __call_stub_* or __fn_stub*, this is one of the
7847 compiler-generated call or call/return stubs. */
7848 if (strncmp (name, mips_str_fn_stub, strlen (mips_str_fn_stub)) == 0
7849 || strncmp (name, mips_str_call_stub, strlen (mips_str_call_stub)) == 0)
7850 {
7851 if (pc == start_addr)
7852 /* This is the 'call' part of a call stub. Call this helper
7853 to scan through this code for interesting instructions
7854 and determine the final PC. */
7855 return mips_get_mips16_fn_stub_pc (frame, pc);
7856 else
7857 /* This is the 'return' part of a call stub. The return address
7858 is in $18. */
7859 return get_frame_register_signed
7860 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
c906108c 7861 }
14132e89
MR
7862
7863 return 0; /* Not a stub. */
7864}
7865
7866/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
7867 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
7868
7869static int
7870mips_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc, const char *name)
7871{
7872 CORE_ADDR start_addr;
7873 size_t prefixlen;
7874
7875 /* Find the starting address of the function containing the PC. */
7876 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
7877 return 0;
7878
7879 /* If the PC is in __mips16_call_stub_{s,d}{f,c}_{0..10} but not at
7880 the start, i.e. after the JALR instruction, this is effectively
7881 a return stub. */
7882 prefixlen = strlen (mips_str_mips16_call_stub);
7883 if (pc != start_addr
7884 && strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0
7885 && mips_is_stub_mode (name + prefixlen)
7886 && name[prefixlen + 2] == '_'
7887 && mips_is_stub_suffix (name + prefixlen + 3, 1))
7888 return 1;
7889
7890 /* If the PC is in __call_stub_fp_* but not at the start, i.e. after
7891 the JAL or JALR instruction, this is effectively a return stub. */
7892 prefixlen = strlen (mips_str_call_fp_stub);
7893 if (pc != start_addr
7894 && strncmp (name, mips_str_call_fp_stub, prefixlen) == 0)
7895 return 1;
7896
7897 /* Consume the .pic. prefix of any PIC stub, this function must return
7898 true when the PC is in a PIC stub of a __mips16_ret_{d,s}{f,c} stub
7899 or the call stub path will trigger in handle_inferior_event causing
7900 it to go astray. */
7901 prefixlen = strlen (mips_str_pic);
7902 if (strncmp (name, mips_str_pic, prefixlen) == 0)
7903 name += prefixlen;
7904
7905 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub. */
7906 prefixlen = strlen (mips_str_mips16_ret_stub);
7907 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7908 && mips_is_stub_mode (name + prefixlen)
7909 && name[prefixlen + 2] == '\0')
7910 return 1;
7911
7912 return 0; /* Not a stub. */
c906108c
SS
7913}
7914
db5f024e
DJ
7915/* If the current PC is the start of a non-PIC-to-PIC stub, return the
7916 PC of the stub target. The stub just loads $t9 and jumps to it,
7917 so that $t9 has the correct value at function entry. */
7918
7919static CORE_ADDR
7920mips_skip_pic_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7921{
e17a4113
UW
7922 struct gdbarch *gdbarch = get_frame_arch (frame);
7923 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7cbd4a93 7924 struct bound_minimal_symbol msym;
db5f024e
DJ
7925 int i;
7926 gdb_byte stub_code[16];
7927 int32_t stub_words[4];
7928
7929 /* The stub for foo is named ".pic.foo", and is either two
7930 instructions inserted before foo or a three instruction sequence
7931 which jumps to foo. */
7932 msym = lookup_minimal_symbol_by_pc (pc);
7cbd4a93 7933 if (msym.minsym == NULL
77e371c0 7934 || BMSYMBOL_VALUE_ADDRESS (msym) != pc
efd66ac6
TT
7935 || MSYMBOL_LINKAGE_NAME (msym.minsym) == NULL
7936 || strncmp (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic.", 5) != 0)
db5f024e
DJ
7937 return 0;
7938
7939 /* A two-instruction header. */
7cbd4a93 7940 if (MSYMBOL_SIZE (msym.minsym) == 8)
db5f024e
DJ
7941 return pc + 8;
7942
7943 /* A three-instruction (plus delay slot) trampoline. */
7cbd4a93 7944 if (MSYMBOL_SIZE (msym.minsym) == 16)
db5f024e
DJ
7945 {
7946 if (target_read_memory (pc, stub_code, 16) != 0)
7947 return 0;
7948 for (i = 0; i < 4; i++)
e17a4113
UW
7949 stub_words[i] = extract_unsigned_integer (stub_code + i * 4,
7950 4, byte_order);
db5f024e
DJ
7951
7952 /* A stub contains these instructions:
7953 lui t9, %hi(target)
7954 j target
7955 addiu t9, t9, %lo(target)
7956 nop
7957
7958 This works even for N64, since stubs are only generated with
7959 -msym32. */
7960 if ((stub_words[0] & 0xffff0000U) == 0x3c190000
7961 && (stub_words[1] & 0xfc000000U) == 0x08000000
7962 && (stub_words[2] & 0xffff0000U) == 0x27390000
7963 && stub_words[3] == 0x00000000)
34b192ce
MR
7964 return ((((stub_words[0] & 0x0000ffff) << 16)
7965 + (stub_words[2] & 0x0000ffff)) ^ 0x8000) - 0x8000;
db5f024e
DJ
7966 }
7967
7968 /* Not a recognized stub. */
7969 return 0;
7970}
7971
7972static CORE_ADDR
7973mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7974{
14132e89 7975 CORE_ADDR requested_pc = pc;
db5f024e 7976 CORE_ADDR target_pc;
14132e89
MR
7977 CORE_ADDR new_pc;
7978
7979 do
7980 {
7981 target_pc = pc;
db5f024e 7982
14132e89
MR
7983 new_pc = mips_skip_mips16_trampoline_code (frame, pc);
7984 if (new_pc)
3e29f34a 7985 pc = new_pc;
db5f024e 7986
14132e89
MR
7987 new_pc = find_solib_trampoline_target (frame, pc);
7988 if (new_pc)
3e29f34a 7989 pc = new_pc;
db5f024e 7990
14132e89
MR
7991 new_pc = mips_skip_pic_trampoline_code (frame, pc);
7992 if (new_pc)
3e29f34a 7993 pc = new_pc;
14132e89
MR
7994 }
7995 while (pc != target_pc);
db5f024e 7996
14132e89 7997 return pc != requested_pc ? pc : 0;
db5f024e
DJ
7998}
7999
a4b8ebc8 8000/* Convert a dbx stab register number (from `r' declaration) to a GDB
f57d151a 8001 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
88c72b7d
AC
8002
8003static int
d3f73121 8004mips_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
88c72b7d 8005{
a4b8ebc8 8006 int regnum;
2f38ef89 8007 if (num >= 0 && num < 32)
a4b8ebc8 8008 regnum = num;
2f38ef89 8009 else if (num >= 38 && num < 70)
d3f73121 8010 regnum = num + mips_regnum (gdbarch)->fp0 - 38;
040b99fd 8011 else if (num == 70)
d3f73121 8012 regnum = mips_regnum (gdbarch)->hi;
040b99fd 8013 else if (num == 71)
d3f73121 8014 regnum = mips_regnum (gdbarch)->lo;
1faeff08
MR
8015 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 72 && num < 78)
8016 regnum = num + mips_regnum (gdbarch)->dspacc - 72;
2f38ef89 8017 else
a4b8ebc8
AC
8018 /* This will hopefully (eventually) provoke a warning. Should
8019 we be calling complaint() here? */
d3f73121
MD
8020 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
8021 return gdbarch_num_regs (gdbarch) + regnum;
88c72b7d
AC
8022}
8023
2f38ef89 8024
a4b8ebc8 8025/* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
f57d151a 8026 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
88c72b7d
AC
8027
8028static int
d3f73121 8029mips_dwarf_dwarf2_ecoff_reg_to_regnum (struct gdbarch *gdbarch, int num)
88c72b7d 8030{
a4b8ebc8 8031 int regnum;
2f38ef89 8032 if (num >= 0 && num < 32)
a4b8ebc8 8033 regnum = num;
2f38ef89 8034 else if (num >= 32 && num < 64)
d3f73121 8035 regnum = num + mips_regnum (gdbarch)->fp0 - 32;
040b99fd 8036 else if (num == 64)
d3f73121 8037 regnum = mips_regnum (gdbarch)->hi;
040b99fd 8038 else if (num == 65)
d3f73121 8039 regnum = mips_regnum (gdbarch)->lo;
1faeff08
MR
8040 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 66 && num < 72)
8041 regnum = num + mips_regnum (gdbarch)->dspacc - 66;
2f38ef89 8042 else
a4b8ebc8
AC
8043 /* This will hopefully (eventually) provoke a warning. Should we
8044 be calling complaint() here? */
d3f73121
MD
8045 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
8046 return gdbarch_num_regs (gdbarch) + regnum;
a4b8ebc8
AC
8047}
8048
8049static int
e7faf938 8050mips_register_sim_regno (struct gdbarch *gdbarch, int regnum)
a4b8ebc8
AC
8051{
8052 /* Only makes sense to supply raw registers. */
e7faf938 8053 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
a4b8ebc8
AC
8054 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
8055 decide if it is valid. Should instead define a standard sim/gdb
8056 register numbering scheme. */
e7faf938
MD
8057 if (gdbarch_register_name (gdbarch,
8058 gdbarch_num_regs (gdbarch) + regnum) != NULL
8059 && gdbarch_register_name (gdbarch,
025bb325
MS
8060 gdbarch_num_regs (gdbarch)
8061 + regnum)[0] != '\0')
a4b8ebc8
AC
8062 return regnum;
8063 else
6d82d43b 8064 return LEGACY_SIM_REGNO_IGNORE;
88c72b7d
AC
8065}
8066
2f38ef89 8067
4844f454
CV
8068/* Convert an integer into an address. Extracting the value signed
8069 guarantees a correctly sign extended address. */
fc0c74b1
AC
8070
8071static CORE_ADDR
79dd2d24 8072mips_integer_to_address (struct gdbarch *gdbarch,
870cd05e 8073 struct type *type, const gdb_byte *buf)
fc0c74b1 8074{
e17a4113
UW
8075 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8076 return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
fc0c74b1
AC
8077}
8078
82e91389
DJ
8079/* Dummy virtual frame pointer method. This is no more or less accurate
8080 than most other architectures; we just need to be explicit about it,
8081 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
8082 an assertion failure. */
8083
8084static void
a54fba4c
MD
8085mips_virtual_frame_pointer (struct gdbarch *gdbarch,
8086 CORE_ADDR pc, int *reg, LONGEST *offset)
82e91389
DJ
8087{
8088 *reg = MIPS_SP_REGNUM;
8089 *offset = 0;
8090}
8091
caaa3122
DJ
8092static void
8093mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
8094{
8095 enum mips_abi *abip = (enum mips_abi *) obj;
8096 const char *name = bfd_get_section_name (abfd, sect);
8097
8098 if (*abip != MIPS_ABI_UNKNOWN)
8099 return;
8100
8101 if (strncmp (name, ".mdebug.", 8) != 0)
8102 return;
8103
8104 if (strcmp (name, ".mdebug.abi32") == 0)
8105 *abip = MIPS_ABI_O32;
8106 else if (strcmp (name, ".mdebug.abiN32") == 0)
8107 *abip = MIPS_ABI_N32;
62a49b2c 8108 else if (strcmp (name, ".mdebug.abi64") == 0)
e3bddbfa 8109 *abip = MIPS_ABI_N64;
caaa3122
DJ
8110 else if (strcmp (name, ".mdebug.abiO64") == 0)
8111 *abip = MIPS_ABI_O64;
8112 else if (strcmp (name, ".mdebug.eabi32") == 0)
8113 *abip = MIPS_ABI_EABI32;
8114 else if (strcmp (name, ".mdebug.eabi64") == 0)
8115 *abip = MIPS_ABI_EABI64;
8116 else
8a3fe4f8 8117 warning (_("unsupported ABI %s."), name + 8);
caaa3122
DJ
8118}
8119
22e47e37
FF
8120static void
8121mips_find_long_section (bfd *abfd, asection *sect, void *obj)
8122{
8123 int *lbp = (int *) obj;
8124 const char *name = bfd_get_section_name (abfd, sect);
8125
8126 if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
8127 *lbp = 32;
8128 else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
8129 *lbp = 64;
8130 else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
8131 warning (_("unrecognized .gcc_compiled_longXX"));
8132}
8133
2e4ebe70
DJ
8134static enum mips_abi
8135global_mips_abi (void)
8136{
8137 int i;
8138
8139 for (i = 0; mips_abi_strings[i] != NULL; i++)
8140 if (mips_abi_strings[i] == mips_abi_string)
8141 return (enum mips_abi) i;
8142
e2e0b3e5 8143 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
2e4ebe70
DJ
8144}
8145
4cc0665f
MR
8146/* Return the default compressed instruction set, either of MIPS16
8147 or microMIPS, selected when none could have been determined from
8148 the ELF header of the binary being executed (or no binary has been
8149 selected. */
8150
8151static enum mips_isa
8152global_mips_compression (void)
8153{
8154 int i;
8155
8156 for (i = 0; mips_compression_strings[i] != NULL; i++)
8157 if (mips_compression_strings[i] == mips_compression_string)
8158 return (enum mips_isa) i;
8159
8160 internal_error (__FILE__, __LINE__, _("unknown compressed ISA string"));
8161}
8162
29709017
DJ
8163static void
8164mips_register_g_packet_guesses (struct gdbarch *gdbarch)
8165{
29709017
DJ
8166 /* If the size matches the set of 32-bit or 64-bit integer registers,
8167 assume that's what we've got. */
4eb0ad19
DJ
8168 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
8169 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
29709017
DJ
8170
8171 /* If the size matches the full set of registers GDB traditionally
8172 knows about, including floating point, for either 32-bit or
8173 64-bit, assume that's what we've got. */
4eb0ad19
DJ
8174 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
8175 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
29709017
DJ
8176
8177 /* Otherwise we don't have a useful guess. */
8178}
8179
f8b73d13
DJ
8180static struct value *
8181value_of_mips_user_reg (struct frame_info *frame, const void *baton)
8182{
8183 const int *reg_p = baton;
8184 return value_of_register (*reg_p, frame);
8185}
8186
c2d11a7d 8187static struct gdbarch *
6d82d43b 8188mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
c2d11a7d 8189{
c2d11a7d
JM
8190 struct gdbarch *gdbarch;
8191 struct gdbarch_tdep *tdep;
8192 int elf_flags;
2e4ebe70 8193 enum mips_abi mips_abi, found_abi, wanted_abi;
f8b73d13 8194 int i, num_regs;
8d5838b5 8195 enum mips_fpu_type fpu_type;
f8b73d13 8196 struct tdesc_arch_data *tdesc_data = NULL;
d929bc19 8197 int elf_fpu_type = Val_GNU_MIPS_ABI_FP_ANY;
1faeff08
MR
8198 const char **reg_names;
8199 struct mips_regnum mips_regnum, *regnum;
4cc0665f 8200 enum mips_isa mips_isa;
1faeff08
MR
8201 int dspacc;
8202 int dspctl;
8203
8204 /* Fill in the OS dependent register numbers and names. */
8205 if (info.osabi == GDB_OSABI_IRIX)
8206 {
8207 mips_regnum.fp0 = 32;
8208 mips_regnum.pc = 64;
8209 mips_regnum.cause = 65;
8210 mips_regnum.badvaddr = 66;
8211 mips_regnum.hi = 67;
8212 mips_regnum.lo = 68;
8213 mips_regnum.fp_control_status = 69;
8214 mips_regnum.fp_implementation_revision = 70;
8215 mips_regnum.dspacc = dspacc = -1;
8216 mips_regnum.dspctl = dspctl = -1;
8217 num_regs = 71;
8218 reg_names = mips_irix_reg_names;
8219 }
8220 else if (info.osabi == GDB_OSABI_LINUX)
8221 {
8222 mips_regnum.fp0 = 38;
8223 mips_regnum.pc = 37;
8224 mips_regnum.cause = 36;
8225 mips_regnum.badvaddr = 35;
8226 mips_regnum.hi = 34;
8227 mips_regnum.lo = 33;
8228 mips_regnum.fp_control_status = 70;
8229 mips_regnum.fp_implementation_revision = 71;
8230 mips_regnum.dspacc = -1;
8231 mips_regnum.dspctl = -1;
8232 dspacc = 72;
8233 dspctl = 78;
8234 num_regs = 79;
8235 reg_names = mips_linux_reg_names;
8236 }
8237 else
8238 {
8239 mips_regnum.lo = MIPS_EMBED_LO_REGNUM;
8240 mips_regnum.hi = MIPS_EMBED_HI_REGNUM;
8241 mips_regnum.badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
8242 mips_regnum.cause = MIPS_EMBED_CAUSE_REGNUM;
8243 mips_regnum.pc = MIPS_EMBED_PC_REGNUM;
8244 mips_regnum.fp0 = MIPS_EMBED_FP0_REGNUM;
8245 mips_regnum.fp_control_status = 70;
8246 mips_regnum.fp_implementation_revision = 71;
8247 mips_regnum.dspacc = dspacc = -1;
8248 mips_regnum.dspctl = dspctl = -1;
8249 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
8250 if (info.bfd_arch_info != NULL
8251 && info.bfd_arch_info->mach == bfd_mach_mips3900)
8252 reg_names = mips_tx39_reg_names;
8253 else
8254 reg_names = mips_generic_reg_names;
8255 }
f8b73d13
DJ
8256
8257 /* Check any target description for validity. */
8258 if (tdesc_has_registers (info.target_desc))
8259 {
8260 static const char *const mips_gprs[] = {
8261 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
8262 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8263 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
8264 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
8265 };
8266 static const char *const mips_fprs[] = {
8267 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
8268 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
8269 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
8270 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
8271 };
8272
8273 const struct tdesc_feature *feature;
8274 int valid_p;
8275
8276 feature = tdesc_find_feature (info.target_desc,
8277 "org.gnu.gdb.mips.cpu");
8278 if (feature == NULL)
8279 return NULL;
8280
8281 tdesc_data = tdesc_data_alloc ();
8282
8283 valid_p = 1;
8284 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
8285 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
8286 mips_gprs[i]);
8287
8288
8289 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 8290 mips_regnum.lo, "lo");
f8b73d13 8291 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 8292 mips_regnum.hi, "hi");
f8b73d13 8293 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 8294 mips_regnum.pc, "pc");
f8b73d13
DJ
8295
8296 if (!valid_p)
8297 {
8298 tdesc_data_cleanup (tdesc_data);
8299 return NULL;
8300 }
8301
8302 feature = tdesc_find_feature (info.target_desc,
8303 "org.gnu.gdb.mips.cp0");
8304 if (feature == NULL)
8305 {
8306 tdesc_data_cleanup (tdesc_data);
8307 return NULL;
8308 }
8309
8310 valid_p = 1;
8311 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 8312 mips_regnum.badvaddr, "badvaddr");
f8b73d13
DJ
8313 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8314 MIPS_PS_REGNUM, "status");
8315 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 8316 mips_regnum.cause, "cause");
f8b73d13
DJ
8317
8318 if (!valid_p)
8319 {
8320 tdesc_data_cleanup (tdesc_data);
8321 return NULL;
8322 }
8323
8324 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
8325 backend is not prepared for that, though. */
8326 feature = tdesc_find_feature (info.target_desc,
8327 "org.gnu.gdb.mips.fpu");
8328 if (feature == NULL)
8329 {
8330 tdesc_data_cleanup (tdesc_data);
8331 return NULL;
8332 }
8333
8334 valid_p = 1;
8335 for (i = 0; i < 32; i++)
8336 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 8337 i + mips_regnum.fp0, mips_fprs[i]);
f8b73d13
DJ
8338
8339 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08
MR
8340 mips_regnum.fp_control_status,
8341 "fcsr");
8342 valid_p
8343 &= tdesc_numbered_register (feature, tdesc_data,
8344 mips_regnum.fp_implementation_revision,
8345 "fir");
f8b73d13
DJ
8346
8347 if (!valid_p)
8348 {
8349 tdesc_data_cleanup (tdesc_data);
8350 return NULL;
8351 }
8352
1faeff08
MR
8353 if (dspacc >= 0)
8354 {
8355 feature = tdesc_find_feature (info.target_desc,
8356 "org.gnu.gdb.mips.dsp");
8357 /* The DSP registers are optional; it's OK if they are absent. */
8358 if (feature != NULL)
8359 {
8360 i = 0;
8361 valid_p = 1;
8362 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8363 dspacc + i++, "hi1");
8364 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8365 dspacc + i++, "lo1");
8366 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8367 dspacc + i++, "hi2");
8368 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8369 dspacc + i++, "lo2");
8370 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8371 dspacc + i++, "hi3");
8372 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8373 dspacc + i++, "lo3");
8374
8375 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8376 dspctl, "dspctl");
8377
8378 if (!valid_p)
8379 {
8380 tdesc_data_cleanup (tdesc_data);
8381 return NULL;
8382 }
8383
8384 mips_regnum.dspacc = dspacc;
8385 mips_regnum.dspctl = dspctl;
8386 }
8387 }
8388
f8b73d13
DJ
8389 /* It would be nice to detect an attempt to use a 64-bit ABI
8390 when only 32-bit registers are provided. */
1faeff08 8391 reg_names = NULL;
f8b73d13 8392 }
c2d11a7d 8393
ec03c1ac
AC
8394 /* First of all, extract the elf_flags, if available. */
8395 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8396 elf_flags = elf_elfheader (info.abfd)->e_flags;
6214a8a1
AC
8397 else if (arches != NULL)
8398 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
ec03c1ac
AC
8399 else
8400 elf_flags = 0;
8401 if (gdbarch_debug)
8402 fprintf_unfiltered (gdb_stdlog,
6d82d43b 8403 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
c2d11a7d 8404
102182a9 8405 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
0dadbba0
AC
8406 switch ((elf_flags & EF_MIPS_ABI))
8407 {
8408 case E_MIPS_ABI_O32:
ec03c1ac 8409 found_abi = MIPS_ABI_O32;
0dadbba0
AC
8410 break;
8411 case E_MIPS_ABI_O64:
ec03c1ac 8412 found_abi = MIPS_ABI_O64;
0dadbba0
AC
8413 break;
8414 case E_MIPS_ABI_EABI32:
ec03c1ac 8415 found_abi = MIPS_ABI_EABI32;
0dadbba0
AC
8416 break;
8417 case E_MIPS_ABI_EABI64:
ec03c1ac 8418 found_abi = MIPS_ABI_EABI64;
0dadbba0
AC
8419 break;
8420 default:
acdb74a0 8421 if ((elf_flags & EF_MIPS_ABI2))
ec03c1ac 8422 found_abi = MIPS_ABI_N32;
acdb74a0 8423 else
ec03c1ac 8424 found_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
8425 break;
8426 }
acdb74a0 8427
caaa3122 8428 /* GCC creates a pseudo-section whose name describes the ABI. */
ec03c1ac
AC
8429 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
8430 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
caaa3122 8431
dc305454 8432 /* If we have no useful BFD information, use the ABI from the last
ec03c1ac
AC
8433 MIPS architecture (if there is one). */
8434 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
8435 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
2e4ebe70 8436
32a6503c 8437 /* Try the architecture for any hint of the correct ABI. */
ec03c1ac 8438 if (found_abi == MIPS_ABI_UNKNOWN
bf64bfd6
AC
8439 && info.bfd_arch_info != NULL
8440 && info.bfd_arch_info->arch == bfd_arch_mips)
8441 {
8442 switch (info.bfd_arch_info->mach)
8443 {
8444 case bfd_mach_mips3900:
ec03c1ac 8445 found_abi = MIPS_ABI_EABI32;
bf64bfd6
AC
8446 break;
8447 case bfd_mach_mips4100:
8448 case bfd_mach_mips5000:
ec03c1ac 8449 found_abi = MIPS_ABI_EABI64;
bf64bfd6 8450 break;
1d06468c
EZ
8451 case bfd_mach_mips8000:
8452 case bfd_mach_mips10000:
32a6503c
KB
8453 /* On Irix, ELF64 executables use the N64 ABI. The
8454 pseudo-sections which describe the ABI aren't present
8455 on IRIX. (Even for executables created by gcc.) */
28d169de
KB
8456 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8457 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
ec03c1ac 8458 found_abi = MIPS_ABI_N64;
28d169de 8459 else
ec03c1ac 8460 found_abi = MIPS_ABI_N32;
1d06468c 8461 break;
bf64bfd6
AC
8462 }
8463 }
2e4ebe70 8464
26c53e50
DJ
8465 /* Default 64-bit objects to N64 instead of O32. */
8466 if (found_abi == MIPS_ABI_UNKNOWN
8467 && info.abfd != NULL
8468 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8469 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8470 found_abi = MIPS_ABI_N64;
8471
ec03c1ac
AC
8472 if (gdbarch_debug)
8473 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
8474 found_abi);
8475
8476 /* What has the user specified from the command line? */
8477 wanted_abi = global_mips_abi ();
8478 if (gdbarch_debug)
8479 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
8480 wanted_abi);
2e4ebe70
DJ
8481
8482 /* Now that we have found what the ABI for this binary would be,
8483 check whether the user is overriding it. */
2e4ebe70
DJ
8484 if (wanted_abi != MIPS_ABI_UNKNOWN)
8485 mips_abi = wanted_abi;
ec03c1ac
AC
8486 else if (found_abi != MIPS_ABI_UNKNOWN)
8487 mips_abi = found_abi;
8488 else
8489 mips_abi = MIPS_ABI_O32;
8490 if (gdbarch_debug)
8491 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
8492 mips_abi);
2e4ebe70 8493
4cc0665f
MR
8494 /* Determine the default compressed ISA. */
8495 if ((elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0
8496 && (elf_flags & EF_MIPS_ARCH_ASE_M16) == 0)
8497 mips_isa = ISA_MICROMIPS;
8498 else if ((elf_flags & EF_MIPS_ARCH_ASE_M16) != 0
8499 && (elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) == 0)
8500 mips_isa = ISA_MIPS16;
8501 else
8502 mips_isa = global_mips_compression ();
8503 mips_compression_string = mips_compression_strings[mips_isa];
8504
ec03c1ac 8505 /* Also used when doing an architecture lookup. */
4b9b3959 8506 if (gdbarch_debug)
ec03c1ac 8507 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
8508 "mips_gdbarch_init: "
8509 "mips64_transfers_32bit_regs_p = %d\n",
ec03c1ac 8510 mips64_transfers_32bit_regs_p);
0dadbba0 8511
8d5838b5 8512 /* Determine the MIPS FPU type. */
609ca2b9
DJ
8513#ifdef HAVE_ELF
8514 if (info.abfd
8515 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8516 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
8517 Tag_GNU_MIPS_ABI_FP);
8518#endif /* HAVE_ELF */
8519
8d5838b5
AC
8520 if (!mips_fpu_type_auto)
8521 fpu_type = mips_fpu_type;
d929bc19 8522 else if (elf_fpu_type != Val_GNU_MIPS_ABI_FP_ANY)
609ca2b9
DJ
8523 {
8524 switch (elf_fpu_type)
8525 {
d929bc19 8526 case Val_GNU_MIPS_ABI_FP_DOUBLE:
609ca2b9
DJ
8527 fpu_type = MIPS_FPU_DOUBLE;
8528 break;
d929bc19 8529 case Val_GNU_MIPS_ABI_FP_SINGLE:
609ca2b9
DJ
8530 fpu_type = MIPS_FPU_SINGLE;
8531 break;
d929bc19 8532 case Val_GNU_MIPS_ABI_FP_SOFT:
609ca2b9
DJ
8533 default:
8534 /* Soft float or unknown. */
8535 fpu_type = MIPS_FPU_NONE;
8536 break;
8537 }
8538 }
8d5838b5
AC
8539 else if (info.bfd_arch_info != NULL
8540 && info.bfd_arch_info->arch == bfd_arch_mips)
8541 switch (info.bfd_arch_info->mach)
8542 {
8543 case bfd_mach_mips3900:
8544 case bfd_mach_mips4100:
8545 case bfd_mach_mips4111:
a9d61c86 8546 case bfd_mach_mips4120:
8d5838b5
AC
8547 fpu_type = MIPS_FPU_NONE;
8548 break;
8549 case bfd_mach_mips4650:
8550 fpu_type = MIPS_FPU_SINGLE;
8551 break;
8552 default:
8553 fpu_type = MIPS_FPU_DOUBLE;
8554 break;
8555 }
8556 else if (arches != NULL)
8557 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
8558 else
8559 fpu_type = MIPS_FPU_DOUBLE;
8560 if (gdbarch_debug)
8561 fprintf_unfiltered (gdb_stdlog,
6d82d43b 8562 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
8d5838b5 8563
29709017
DJ
8564 /* Check for blatant incompatibilities. */
8565
8566 /* If we have only 32-bit registers, then we can't debug a 64-bit
8567 ABI. */
8568 if (info.target_desc
8569 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
8570 && mips_abi != MIPS_ABI_EABI32
8571 && mips_abi != MIPS_ABI_O32)
f8b73d13
DJ
8572 {
8573 if (tdesc_data != NULL)
8574 tdesc_data_cleanup (tdesc_data);
8575 return NULL;
8576 }
29709017 8577
025bb325 8578 /* Try to find a pre-existing architecture. */
c2d11a7d
JM
8579 for (arches = gdbarch_list_lookup_by_info (arches, &info);
8580 arches != NULL;
8581 arches = gdbarch_list_lookup_by_info (arches->next, &info))
8582 {
d54398a7
MR
8583 /* MIPS needs to be pedantic about which ABI and the compressed
8584 ISA variation the object is using. */
9103eae0 8585 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 8586 continue;
9103eae0 8587 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 8588 continue;
d54398a7
MR
8589 if (gdbarch_tdep (arches->gdbarch)->mips_isa != mips_isa)
8590 continue;
719ec221
AC
8591 /* Need to be pedantic about which register virtual size is
8592 used. */
8593 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
8594 != mips64_transfers_32bit_regs_p)
8595 continue;
8d5838b5
AC
8596 /* Be pedantic about which FPU is selected. */
8597 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
8598 continue;
f8b73d13
DJ
8599
8600 if (tdesc_data != NULL)
8601 tdesc_data_cleanup (tdesc_data);
4be87837 8602 return arches->gdbarch;
c2d11a7d
JM
8603 }
8604
102182a9 8605 /* Need a new architecture. Fill in a target specific vector. */
c2d11a7d
JM
8606 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
8607 gdbarch = gdbarch_alloc (&info, tdep);
8608 tdep->elf_flags = elf_flags;
719ec221 8609 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
ec03c1ac
AC
8610 tdep->found_abi = found_abi;
8611 tdep->mips_abi = mips_abi;
4cc0665f 8612 tdep->mips_isa = mips_isa;
8d5838b5 8613 tdep->mips_fpu_type = fpu_type;
29709017
DJ
8614 tdep->register_size_valid_p = 0;
8615 tdep->register_size = 0;
8616
8617 if (info.target_desc)
8618 {
8619 /* Some useful properties can be inferred from the target. */
8620 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
8621 {
8622 tdep->register_size_valid_p = 1;
8623 tdep->register_size = 4;
8624 }
8625 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
8626 {
8627 tdep->register_size_valid_p = 1;
8628 tdep->register_size = 8;
8629 }
8630 }
c2d11a7d 8631
102182a9 8632 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
8633 set_gdbarch_short_bit (gdbarch, 16);
8634 set_gdbarch_int_bit (gdbarch, 32);
8635 set_gdbarch_float_bit (gdbarch, 32);
8636 set_gdbarch_double_bit (gdbarch, 64);
8637 set_gdbarch_long_double_bit (gdbarch, 64);
a4b8ebc8
AC
8638 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
8639 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
8640 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
1d06468c 8641
175ff332
HZ
8642 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8643 mips_ax_pseudo_register_collect);
8644 set_gdbarch_ax_pseudo_register_push_stack
8645 (gdbarch, mips_ax_pseudo_register_push_stack);
8646
6d82d43b 8647 set_gdbarch_elf_make_msymbol_special (gdbarch,
f7ab6ec6 8648 mips_elf_make_msymbol_special);
3e29f34a
MR
8649 set_gdbarch_make_symbol_special (gdbarch, mips_make_symbol_special);
8650 set_gdbarch_adjust_dwarf2_addr (gdbarch, mips_adjust_dwarf2_addr);
8651 set_gdbarch_adjust_dwarf2_line (gdbarch, mips_adjust_dwarf2_line);
f7ab6ec6 8652
1faeff08
MR
8653 regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct mips_regnum);
8654 *regnum = mips_regnum;
1faeff08
MR
8655 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
8656 set_gdbarch_num_regs (gdbarch, num_regs);
8657 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8658 set_gdbarch_register_name (gdbarch, mips_register_name);
8659 set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
8660 tdep->mips_processor_reg_names = reg_names;
8661 tdep->regnum = regnum;
fe29b929 8662
0dadbba0 8663 switch (mips_abi)
c2d11a7d 8664 {
0dadbba0 8665 case MIPS_ABI_O32:
25ab4790 8666 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
29dfb2ac 8667 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
4c7d22cb 8668 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 8669 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4014092b 8670 tdep->default_mask_address_p = 0;
c2d11a7d
JM
8671 set_gdbarch_long_bit (gdbarch, 32);
8672 set_gdbarch_ptr_bit (gdbarch, 32);
8673 set_gdbarch_long_long_bit (gdbarch, 64);
8674 break;
0dadbba0 8675 case MIPS_ABI_O64:
25ab4790 8676 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
9c8fdbfa 8677 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
4c7d22cb 8678 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 8679 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
361d1df0 8680 tdep->default_mask_address_p = 0;
c2d11a7d
JM
8681 set_gdbarch_long_bit (gdbarch, 32);
8682 set_gdbarch_ptr_bit (gdbarch, 32);
8683 set_gdbarch_long_long_bit (gdbarch, 64);
8684 break;
0dadbba0 8685 case MIPS_ABI_EABI32:
25ab4790 8686 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 8687 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 8688 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 8689 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 8690 tdep->default_mask_address_p = 0;
c2d11a7d
JM
8691 set_gdbarch_long_bit (gdbarch, 32);
8692 set_gdbarch_ptr_bit (gdbarch, 32);
8693 set_gdbarch_long_long_bit (gdbarch, 64);
8694 break;
0dadbba0 8695 case MIPS_ABI_EABI64:
25ab4790 8696 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 8697 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 8698 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 8699 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 8700 tdep->default_mask_address_p = 0;
c2d11a7d
JM
8701 set_gdbarch_long_bit (gdbarch, 64);
8702 set_gdbarch_ptr_bit (gdbarch, 64);
8703 set_gdbarch_long_long_bit (gdbarch, 64);
8704 break;
0dadbba0 8705 case MIPS_ABI_N32:
25ab4790 8706 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 8707 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 8708 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 8709 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 8710 tdep->default_mask_address_p = 0;
0dadbba0
AC
8711 set_gdbarch_long_bit (gdbarch, 32);
8712 set_gdbarch_ptr_bit (gdbarch, 32);
8713 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43 8714 set_gdbarch_long_double_bit (gdbarch, 128);
b14d30e1 8715 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
28d169de
KB
8716 break;
8717 case MIPS_ABI_N64:
25ab4790 8718 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 8719 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 8720 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 8721 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
28d169de
KB
8722 tdep->default_mask_address_p = 0;
8723 set_gdbarch_long_bit (gdbarch, 64);
8724 set_gdbarch_ptr_bit (gdbarch, 64);
8725 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43 8726 set_gdbarch_long_double_bit (gdbarch, 128);
b14d30e1 8727 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
0dadbba0 8728 break;
c2d11a7d 8729 default:
e2e0b3e5 8730 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
c2d11a7d
JM
8731 }
8732
22e47e37
FF
8733 /* GCC creates a pseudo-section whose name specifies the size of
8734 longs, since -mlong32 or -mlong64 may be used independent of
8735 other options. How those options affect pointer sizes is ABI and
8736 architecture dependent, so use them to override the default sizes
8737 set by the ABI. This table shows the relationship between ABI,
8738 -mlongXX, and size of pointers:
8739
8740 ABI -mlongXX ptr bits
8741 --- -------- --------
8742 o32 32 32
8743 o32 64 32
8744 n32 32 32
8745 n32 64 64
8746 o64 32 32
8747 o64 64 64
8748 n64 32 32
8749 n64 64 64
8750 eabi32 32 32
8751 eabi32 64 32
8752 eabi64 32 32
8753 eabi64 64 64
8754
8755 Note that for o32 and eabi32, pointers are always 32 bits
8756 regardless of any -mlongXX option. For all others, pointers and
025bb325 8757 longs are the same, as set by -mlongXX or set by defaults. */
22e47e37
FF
8758
8759 if (info.abfd != NULL)
8760 {
8761 int long_bit = 0;
8762
8763 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
8764 if (long_bit)
8765 {
8766 set_gdbarch_long_bit (gdbarch, long_bit);
8767 switch (mips_abi)
8768 {
8769 case MIPS_ABI_O32:
8770 case MIPS_ABI_EABI32:
8771 break;
8772 case MIPS_ABI_N32:
8773 case MIPS_ABI_O64:
8774 case MIPS_ABI_N64:
8775 case MIPS_ABI_EABI64:
8776 set_gdbarch_ptr_bit (gdbarch, long_bit);
8777 break;
8778 default:
8779 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8780 }
8781 }
8782 }
8783
a5ea2558
AC
8784 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
8785 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
8786 comment:
8787
8788 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
8789 flag in object files because to do so would make it impossible to
102182a9 8790 link with libraries compiled without "-gp32". This is
a5ea2558 8791 unnecessarily restrictive.
361d1df0 8792
a5ea2558
AC
8793 We could solve this problem by adding "-gp32" multilibs to gcc,
8794 but to set this flag before gcc is built with such multilibs will
8795 break too many systems.''
8796
8797 But even more unhelpfully, the default linker output target for
8798 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
8799 for 64-bit programs - you need to change the ABI to change this,
102182a9 8800 and not all gcc targets support that currently. Therefore using
a5ea2558
AC
8801 this flag to detect 32-bit mode would do the wrong thing given
8802 the current gcc - it would make GDB treat these 64-bit programs
102182a9 8803 as 32-bit programs by default. */
a5ea2558 8804
6c997a34 8805 set_gdbarch_read_pc (gdbarch, mips_read_pc);
b6cb9035 8806 set_gdbarch_write_pc (gdbarch, mips_write_pc);
c2d11a7d 8807
102182a9
MS
8808 /* Add/remove bits from an address. The MIPS needs be careful to
8809 ensure that all 32 bit addresses are sign extended to 64 bits. */
875e1767
AC
8810 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
8811
58dfe9ff
AC
8812 /* Unwind the frame. */
8813 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
30244cd8 8814 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
b8a22b94 8815 set_gdbarch_dummy_id (gdbarch, mips_dummy_id);
10312cc4 8816
102182a9 8817 /* Map debug register numbers onto internal register numbers. */
88c72b7d 8818 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
6d82d43b
AC
8819 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
8820 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6d82d43b
AC
8821 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
8822 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
a4b8ebc8 8823 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
88c72b7d 8824
025bb325 8825 /* MIPS version of CALL_DUMMY. */
c2d11a7d 8826
2c76a0c7
JB
8827 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8828 set_gdbarch_push_dummy_code (gdbarch, mips_push_dummy_code);
dc604539 8829 set_gdbarch_frame_align (gdbarch, mips_frame_align);
d05285fa 8830
1bab7383
YQ
8831 set_gdbarch_print_float_info (gdbarch, mips_print_float_info);
8832
87783b8b
AC
8833 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
8834 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
8835 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
8836
f7b9e9fc
AC
8837 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8838 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
4cc0665f
MR
8839 set_gdbarch_remote_breakpoint_from_pc (gdbarch,
8840 mips_remote_breakpoint_from_pc);
c8cef75f
MR
8841 set_gdbarch_adjust_breakpoint_address (gdbarch,
8842 mips_adjust_breakpoint_address);
f7b9e9fc
AC
8843
8844 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
f7b9e9fc 8845
97ab0fdd
MR
8846 set_gdbarch_in_function_epilogue_p (gdbarch, mips_in_function_epilogue_p);
8847
fc0c74b1
AC
8848 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
8849 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
8850 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf 8851
a4b8ebc8 8852 set_gdbarch_register_type (gdbarch, mips_register_type);
78fde5f8 8853
e11c53d2 8854 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
bf1f5b4c 8855
9dae60cc
UW
8856 if (mips_abi == MIPS_ABI_N32)
8857 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n32);
8858 else if (mips_abi == MIPS_ABI_N64)
8859 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n64);
8860 else
8861 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
e5ab0dce 8862
d92524f1
PM
8863 /* FIXME: cagney/2003-08-29: The macros target_have_steppable_watchpoint,
8864 HAVE_NONSTEPPABLE_WATCHPOINT, and target_have_continuable_watchpoint
3a3bc038 8865 need to all be folded into the target vector. Since they are
d92524f1
PM
8866 being used as guards for target_stopped_by_watchpoint, why not have
8867 target_stopped_by_watchpoint return the type of watchpoint that the code
3a3bc038
AC
8868 is sitting on? */
8869 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
8870
e7d6a6d2 8871 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
757a7cc6 8872
14132e89
MR
8873 /* NOTE drow/2012-04-25: We overload the core solib trampoline code
8874 to support MIPS16. This is a bad thing. Make sure not to do it
8875 if we have an OS ABI that actually supports shared libraries, since
8876 shared library support is more important. If we have an OS someday
8877 that supports both shared libraries and MIPS16, we'll have to find
8878 a better place for these.
8879 macro/2012-04-25: But that applies to return trampolines only and
8880 currently no MIPS OS ABI uses shared libraries that have them. */
8881 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
8882
025bb325
MS
8883 set_gdbarch_single_step_through_delay (gdbarch,
8884 mips_single_step_through_delay);
3352ef37 8885
0d5de010
DJ
8886 /* Virtual tables. */
8887 set_gdbarch_vbit_in_delta (gdbarch, 1);
8888
29709017
DJ
8889 mips_register_g_packet_guesses (gdbarch);
8890
6de918a6 8891 /* Hook in OS ABI-specific overrides, if they have been registered. */
822b6570 8892 info.tdep_info = (void *) tdesc_data;
6de918a6 8893 gdbarch_init_osabi (info, gdbarch);
757a7cc6 8894
9aac7884
MR
8895 /* The hook may have adjusted num_regs, fetch the final value and
8896 set pc_regnum and sp_regnum now that it has been fixed. */
9aac7884
MR
8897 num_regs = gdbarch_num_regs (gdbarch);
8898 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
8899 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8900
5792a79b 8901 /* Unwind the frame. */
b8a22b94
DJ
8902 dwarf2_append_unwinders (gdbarch);
8903 frame_unwind_append_unwinder (gdbarch, &mips_stub_frame_unwind);
8904 frame_unwind_append_unwinder (gdbarch, &mips_insn16_frame_unwind);
4cc0665f 8905 frame_unwind_append_unwinder (gdbarch, &mips_micro_frame_unwind);
b8a22b94 8906 frame_unwind_append_unwinder (gdbarch, &mips_insn32_frame_unwind);
2bd0c3d7 8907 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
eec63939 8908 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
45c9dd44 8909 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
4cc0665f 8910 frame_base_append_sniffer (gdbarch, mips_micro_frame_base_sniffer);
45c9dd44 8911 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5792a79b 8912
f8b73d13
DJ
8913 if (tdesc_data)
8914 {
8915 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
7cc46491 8916 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
f8b73d13
DJ
8917
8918 /* Override the normal target description methods to handle our
8919 dual real and pseudo registers. */
8920 set_gdbarch_register_name (gdbarch, mips_register_name);
025bb325
MS
8921 set_gdbarch_register_reggroup_p (gdbarch,
8922 mips_tdesc_register_reggroup_p);
f8b73d13
DJ
8923
8924 num_regs = gdbarch_num_regs (gdbarch);
8925 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8926 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
8927 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8928 }
8929
8930 /* Add ABI-specific aliases for the registers. */
8931 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
8932 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
8933 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
8934 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
8935 else
8936 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
8937 user_reg_add (gdbarch, mips_o32_aliases[i].name,
8938 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
8939
8940 /* Add some other standard aliases. */
8941 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
8942 user_reg_add (gdbarch, mips_register_aliases[i].name,
8943 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
8944
865093a3
AR
8945 for (i = 0; i < ARRAY_SIZE (mips_numeric_register_aliases); i++)
8946 user_reg_add (gdbarch, mips_numeric_register_aliases[i].name,
8947 value_of_mips_user_reg,
8948 &mips_numeric_register_aliases[i].regnum);
8949
4b9b3959
AC
8950 return gdbarch;
8951}
8952
2e4ebe70 8953static void
6d82d43b 8954mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
2e4ebe70
DJ
8955{
8956 struct gdbarch_info info;
8957
8958 /* Force the architecture to update, and (if it's a MIPS architecture)
8959 mips_gdbarch_init will take care of the rest. */
8960 gdbarch_info_init (&info);
8961 gdbarch_update_p (info);
8962}
8963
ad188201
KB
8964/* Print out which MIPS ABI is in use. */
8965
8966static void
1f8ca57c
JB
8967show_mips_abi (struct ui_file *file,
8968 int from_tty,
8969 struct cmd_list_element *ignored_cmd,
8970 const char *ignored_value)
ad188201 8971{
f5656ead 8972 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
1f8ca57c
JB
8973 fprintf_filtered
8974 (file,
8975 "The MIPS ABI is unknown because the current architecture "
8976 "is not MIPS.\n");
ad188201
KB
8977 else
8978 {
8979 enum mips_abi global_abi = global_mips_abi ();
f5656ead 8980 enum mips_abi actual_abi = mips_abi (target_gdbarch ());
ad188201
KB
8981 const char *actual_abi_str = mips_abi_strings[actual_abi];
8982
8983 if (global_abi == MIPS_ABI_UNKNOWN)
1f8ca57c
JB
8984 fprintf_filtered
8985 (file,
8986 "The MIPS ABI is set automatically (currently \"%s\").\n",
6d82d43b 8987 actual_abi_str);
ad188201 8988 else if (global_abi == actual_abi)
1f8ca57c
JB
8989 fprintf_filtered
8990 (file,
8991 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6d82d43b 8992 actual_abi_str);
ad188201
KB
8993 else
8994 {
8995 /* Probably shouldn't happen... */
025bb325
MS
8996 fprintf_filtered (file,
8997 "The (auto detected) MIPS ABI \"%s\" is in use "
8998 "even though the user setting was \"%s\".\n",
6d82d43b 8999 actual_abi_str, mips_abi_strings[global_abi]);
ad188201
KB
9000 }
9001 }
9002}
9003
4cc0665f
MR
9004/* Print out which MIPS compressed ISA encoding is used. */
9005
9006static void
9007show_mips_compression (struct ui_file *file, int from_tty,
9008 struct cmd_list_element *c, const char *value)
9009{
9010 fprintf_filtered (file, _("The compressed ISA encoding used is %s.\n"),
9011 value);
9012}
9013
4b9b3959 9014static void
72a155b4 9015mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
4b9b3959 9016{
72a155b4 9017 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4b9b3959 9018 if (tdep != NULL)
c2d11a7d 9019 {
acdb74a0
AC
9020 int ef_mips_arch;
9021 int ef_mips_32bitmode;
f49e4e6d 9022 /* Determine the ISA. */
acdb74a0
AC
9023 switch (tdep->elf_flags & EF_MIPS_ARCH)
9024 {
9025 case E_MIPS_ARCH_1:
9026 ef_mips_arch = 1;
9027 break;
9028 case E_MIPS_ARCH_2:
9029 ef_mips_arch = 2;
9030 break;
9031 case E_MIPS_ARCH_3:
9032 ef_mips_arch = 3;
9033 break;
9034 case E_MIPS_ARCH_4:
93d56215 9035 ef_mips_arch = 4;
acdb74a0
AC
9036 break;
9037 default:
93d56215 9038 ef_mips_arch = 0;
acdb74a0
AC
9039 break;
9040 }
f49e4e6d 9041 /* Determine the size of a pointer. */
acdb74a0 9042 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
9043 fprintf_unfiltered (file,
9044 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 9045 tdep->elf_flags);
4b9b3959 9046 fprintf_unfiltered (file,
acdb74a0
AC
9047 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
9048 ef_mips_32bitmode);
9049 fprintf_unfiltered (file,
9050 "mips_dump_tdep: ef_mips_arch = %d\n",
9051 ef_mips_arch);
9052 fprintf_unfiltered (file,
9053 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6d82d43b 9054 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
4014092b 9055 fprintf_unfiltered (file,
025bb325
MS
9056 "mips_dump_tdep: "
9057 "mips_mask_address_p() %d (default %d)\n",
480d3dd2 9058 mips_mask_address_p (tdep),
4014092b 9059 tdep->default_mask_address_p);
c2d11a7d 9060 }
4b9b3959
AC
9061 fprintf_unfiltered (file,
9062 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
9063 MIPS_DEFAULT_FPU_TYPE,
9064 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
9065 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
9066 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
9067 : "???"));
74ed0bb4
MD
9068 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n",
9069 MIPS_EABI (gdbarch));
4b9b3959
AC
9070 fprintf_unfiltered (file,
9071 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
74ed0bb4
MD
9072 MIPS_FPU_TYPE (gdbarch),
9073 (MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_NONE ? "none"
9074 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_SINGLE ? "single"
9075 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_DOUBLE ? "double"
4b9b3959 9076 : "???"));
c2d11a7d
JM
9077}
9078
025bb325 9079extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
a78f21af 9080
c906108c 9081void
acdb74a0 9082_initialize_mips_tdep (void)
c906108c
SS
9083{
9084 static struct cmd_list_element *mipsfpulist = NULL;
9085 struct cmd_list_element *c;
9086
6d82d43b 9087 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
2e4ebe70
DJ
9088 if (MIPS_ABI_LAST + 1
9089 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
e2e0b3e5 9090 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
2e4ebe70 9091
4b9b3959 9092 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c906108c 9093
8d5f9dcb
DJ
9094 mips_pdr_data = register_objfile_data ();
9095
4eb0ad19
DJ
9096 /* Create feature sets with the appropriate properties. The values
9097 are not important. */
9098 mips_tdesc_gp32 = allocate_target_description ();
9099 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
9100
9101 mips_tdesc_gp64 = allocate_target_description ();
9102 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
9103
025bb325 9104 /* Add root prefix command for all "set mips"/"show mips" commands. */
a5ea2558 9105 add_prefix_cmd ("mips", no_class, set_mips_command,
1bedd215 9106 _("Various MIPS specific commands."),
a5ea2558
AC
9107 &setmipscmdlist, "set mips ", 0, &setlist);
9108
9109 add_prefix_cmd ("mips", no_class, show_mips_command,
1bedd215 9110 _("Various MIPS specific commands."),
a5ea2558
AC
9111 &showmipscmdlist, "show mips ", 0, &showlist);
9112
025bb325 9113 /* Allow the user to override the ABI. */
7ab04401
AC
9114 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
9115 &mips_abi_string, _("\
9116Set the MIPS ABI used by this program."), _("\
9117Show the MIPS ABI used by this program."), _("\
9118This option can be set to one of:\n\
9119 auto - the default ABI associated with the current binary\n\
9120 o32\n\
9121 o64\n\
9122 n32\n\
9123 n64\n\
9124 eabi32\n\
9125 eabi64"),
9126 mips_abi_update,
9127 show_mips_abi,
9128 &setmipscmdlist, &showmipscmdlist);
2e4ebe70 9129
4cc0665f
MR
9130 /* Allow the user to set the ISA to assume for compressed code if ELF
9131 file flags don't tell or there is no program file selected. This
9132 setting is updated whenever unambiguous ELF file flags are interpreted,
9133 and carried over to subsequent sessions. */
9134 add_setshow_enum_cmd ("compression", class_obscure, mips_compression_strings,
9135 &mips_compression_string, _("\
9136Set the compressed ISA encoding used by MIPS code."), _("\
9137Show the compressed ISA encoding used by MIPS code."), _("\
9138Select the compressed ISA encoding used in functions that have no symbol\n\
9139information available. The encoding can be set to either of:\n\
9140 mips16\n\
9141 micromips\n\
9142and is updated automatically from ELF file flags if available."),
9143 mips_abi_update,
9144 show_mips_compression,
9145 &setmipscmdlist, &showmipscmdlist);
9146
c906108c
SS
9147 /* Let the user turn off floating point and set the fence post for
9148 heuristic_proc_start. */
9149
9150 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
1bedd215 9151 _("Set use of MIPS floating-point coprocessor."),
c906108c
SS
9152 &mipsfpulist, "set mipsfpu ", 0, &setlist);
9153 add_cmd ("single", class_support, set_mipsfpu_single_command,
1a966eab 9154 _("Select single-precision MIPS floating-point coprocessor."),
c906108c
SS
9155 &mipsfpulist);
9156 add_cmd ("double", class_support, set_mipsfpu_double_command,
1a966eab 9157 _("Select double-precision MIPS floating-point coprocessor."),
c906108c
SS
9158 &mipsfpulist);
9159 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
9160 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
9161 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
9162 add_cmd ("none", class_support, set_mipsfpu_none_command,
1a966eab 9163 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
c906108c
SS
9164 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
9165 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
9166 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
9167 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
1a966eab 9168 _("Select MIPS floating-point coprocessor automatically."),
c906108c
SS
9169 &mipsfpulist);
9170 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
1a966eab 9171 _("Show current use of MIPS floating-point coprocessor target."),
c906108c
SS
9172 &showlist);
9173
c906108c
SS
9174 /* We really would like to have both "0" and "unlimited" work, but
9175 command.c doesn't deal with that. So make it a var_zinteger
9176 because the user can always use "999999" or some such for unlimited. */
6bcadd06 9177 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
7915a72c
AC
9178 &heuristic_fence_post, _("\
9179Set the distance searched for the start of a function."), _("\
9180Show the distance searched for the start of a function."), _("\
c906108c
SS
9181If you are debugging a stripped executable, GDB needs to search through the\n\
9182program for the start of a function. This command sets the distance of the\n\
7915a72c 9183search. The only need to set it is when debugging a stripped executable."),
2c5b56ce 9184 reinit_frame_cache_sfunc,
025bb325
MS
9185 NULL, /* FIXME: i18n: The distance searched for
9186 the start of a function is %s. */
6bcadd06 9187 &setlist, &showlist);
c906108c
SS
9188
9189 /* Allow the user to control whether the upper bits of 64-bit
9190 addresses should be zeroed. */
7915a72c
AC
9191 add_setshow_auto_boolean_cmd ("mask-address", no_class,
9192 &mask_address_var, _("\
9193Set zeroing of upper 32 bits of 64-bit addresses."), _("\
9194Show zeroing of upper 32 bits of 64-bit addresses."), _("\
cce7e648 9195Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to\n\
7915a72c 9196allow GDB to determine the correct value."),
08546159
AC
9197 NULL, show_mask_address,
9198 &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
9199
9200 /* Allow the user to control the size of 32 bit registers within the
9201 raw remote packet. */
b3f42336 9202 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
7915a72c
AC
9203 &mips64_transfers_32bit_regs_p, _("\
9204Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9205 _("\
9206Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9207 _("\
719ec221
AC
9208Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
9209that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
7915a72c 921064 bits for others. Use \"off\" to disable compatibility mode"),
2c5b56ce 9211 set_mips64_transfers_32bit_regs,
025bb325
MS
9212 NULL, /* FIXME: i18n: Compatibility with 64-bit
9213 MIPS target that transfers 32-bit
9214 quantities is %s. */
7915a72c 9215 &setlist, &showlist);
9ace0497 9216
025bb325 9217 /* Debug this files internals. */
ccce17b0
YQ
9218 add_setshow_zuinteger_cmd ("mips", class_maintenance,
9219 &mips_debug, _("\
7915a72c
AC
9220Set mips debugging."), _("\
9221Show mips debugging."), _("\
9222When non-zero, mips specific debugging is enabled."),
ccce17b0
YQ
9223 NULL,
9224 NULL, /* FIXME: i18n: Mips debugging is
9225 currently %s. */
9226 &setdebuglist, &showdebuglist);
c906108c 9227}